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Abstract

Adult stem cells are found in most adult tissues where they are responsible for
replacing cells that are lost due to turnover or injury. They have the unique ability
to give rise to differentiated progeny, while at the same time maintaining the stem
cell population. In order to preserve tissue homeostasis, these two processes:
maintenance versus differentiation have to be tightly regulated. It was shown
that surrounding cells form a specific microenvironment, the stem cell niche, that
controls the stem cell behavior. The results described in the present thesis show
that stem cell progeny differentiation also requires specific interactions with the
surrounding cells, the differentiation niche.

The D. melanogaster germarium provides an excellent model to study these
interactions since adult stem cell maintenance and adult stem cell progeny differ-
entiation can be analyzed in the same well characterized and easy to genetically
manipulate organ.

We found that components of the ecdysteroid signaling pathway play a role
in the germarium. It had been shown previously that ecdysteroids are required
for later stages of oogenesis; the present thesis describes how ecdysteroids control
the progression through the early stages of germline differentiation. Ecdysone
signaling perturbations lead to a germline stem cell progeny differentiation delay.
These delayed germline cells display a stem cell-like chromatin state; however,
based on the analysis of specific markers, they are not stem cells. Differentiation
markers also are not present, indicating that these germline cells are delayed at
the pre-cystoblast to cystoblast transition.

Interestingly, we found that the ecdysone signaling pathway is acting on the
germline cells in a cell non-autonomous way via the somatic germarial cells, a
process that requires the spatially restricted cofactors Taiman and Aprupt, ac-
tivator and inhibitor of ecdysone signaling. Deficit of ecdysone signaling during
the development leads to enlarged functional niches, somatic cell differentiation
defects and a confused sexual identity. The somatic escort cells fail to appropri-
ately differentiate in the absence of functional ecdysone signaling: shape, division
and cell adhesive characteristics are altered; cytoplasmic protrusions, required for
interacting with the germline, are not formed and escort cells form a columnar-like
epithelium. The cell adhesion proteins Armadillo and DE-Cadherin are found at
higher levels in mutant escort cells; which subsequently affects the germline cells
responsiveness to Wg signaling. Dampening of Wg signaling in the germline leads
to a germline differentiation delay.

Furthermore, the miRNA let-7 is modulating the tissue and time specific re-
sponse to ecdysone via regulating the levels of Abrupt, that is both an inhibitor
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Abstract

of ecdysone signaling and a potent regulator of epithelial cell fate. miRNA let-7
is induced by steroids, targets Ab and acts in a feedback loop to ensure the ro-
bustness of ecdysone signaling in escort cells in response to changing internal and
external conditions such as aging, stress and nutrition.
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1 Introduction

1.1 Stem cells can self-renew and generate
differentiated cells

Stem cells have unique abilities: upon division, they give rise to both, a new stem
cell and a cell that can differentiate into at least one specialized cell type. These
two processes – maintenance of the stem cell population versus generation of dif-
ferentiated cells – have to be very tightly balanced to preserve tissue homeostasis
(maintenance of the proper cell number and type). Depending on source and po-
tency, several types of stem cells can be distinguished: pluripotent embryonic stem
cells are capable of generating all different cell types of the adult body, whereas
tissue specific stem cells in the adult organism can give rise to only a subset of cell
types. In general, stem cells have an enormous potential for regenerative medicine:
however, each of the different stem cell types offers certain advantages and dis-
advantages with respect to availability, differentiation potential or probability of
teratoma formation.

1.1.1 Pluripotent stem cells have a great potential in
regenerative medicine

Embryonic stem cells are derived from the inner cell mass of pre-implantation
blastocysts. Having the capability to produce all three germ layers, they are
called pluripotent. In 1981 mouse embryonic stem cells were successfully generated
(Evans and Kaufman, 1981; Martin, 1981) and 18 years later human embryonic
stem cells were produced (Thomson et al., 1998). Using specific culture conditions,
embryonic stem cells can be kept in culture (Smith et al., 1988) for a long time and
it is possible to induce differentiation into different cell types including blood cells,
pancreatic insulin-producing cells, neural cells, cardiomyocytes etc. (reviewed in
Volarevic et al., 2011).

Despite of the great potential in medicine that embryonic stem cells have be-
cause of their regenerative capacity, there are a number of problems. First, un-
differentiated pluripotent cells cannot be used for transplantation due to the risk
of forming teratomas, tumors containing derivatives of several or all three germ
layers. Only a few undifferentiated cells would be sufficient to form teratomas,
which is one of the main reasons why the direct clinical use of pluripotent stem
cells remains problematic. Instead, research is focused on the generation of homo-
geneous, completely differentiated cell populations (reviewed in Ho et al., 2012).
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1 Introduction

Second, generation of embryonic stem cells from in vitro fertilized eggs involves
the destruction of human embryos, which is morally objectionable. In vitro fer-
tilization involves the surgical retrieval of several mature eggs after an extensive
treatment with ”fertility drugs”. In an attempt to maximize the chances of ob-
taining a viable blastocyst, typically a large number of donated eggs are fertilized.
Since frequently not all fertilized eggs are implanted, this results in a number
of ”excess” blastocysts that are used for research. One way to circumvent these
ethical problems is to directly reprogram somatic cells to a pluripotent status.

Somatic cells can be reprogrammed to a pluripotent state The reprogram-
ming of fully differentiated somatic cells to a pluripotent stage is remarkable and
can be achieved by transferring nuclear contents into oocytes, by cell fusion or by
induction using transcription factors.

During the process called nuclear transfer, nuclei of differentiated cells are in-
serted into a donated egg cell that was denucleated before. This method was used
successfully for the first time in 1962 by the laboratory of John Gurdon who gen-
erated tadpoles by inserting differentiated adult frog cells into unfertilized eggs
(Gurdon, 1962). Somatic nuclear transfer was also adapted to mammals and re-
sulted in the birth of live lambs from adult mammary gland tissue derived cells
(Wilmut et al., 1997). The fusion of two cells can produce proliferating cells with
fused nuclei (hybrids) or not-proliferating cells with several nuclei. Studies in-
volving fused cells showed for the first time, that the differentiated state of a cell
is not totally fixed, but rather the consequence of a complex regulation involv-
ing several factors. Differentiated somatic cell types can either be reprogrammed
to produce genes typical for another differentiated cell type or pluripotent cells
after fusion with embryonic stem cells (reviewed in Yamanaka and Blau, 2010).
Induced pluripotent stem cells offer another option for generating cells that have
similar characteristics as embryonic stem cells. It was shown by Takahashi and
Yamanaka, 2006 and Takahashi et al., 2007 that, using a combination of four
different factors, induced pluripotent stem cells can be generated from differen-
tiated adult human fibroblasts. A number of laboratories work on the possible
applications of induced pluripotent stem cells in modeling certain diseases, drug
screening and regenerative therapy (reviewed in Yamanaka, 2009). Whether or
not induced pluripotent stem cells and embryonic stem cells are remarkably differ-
ent from each other is still controversial in the field, but certainly both cell types
share a number of characteristics (reviewed in Blanpain et al., 2012).

Usage of induced pluripotent stem cells in clinical trials is problematic Gen-
erating pluripotent cells using a patients own somatic cells would allow the gener-
ation of tissue that is compatible to the donor, eliminating the risk of graft-versus-
host-diseases. In addition, inducing pluripotency in differentiated cells does not
require human blastocysts or oocytes, the generation of which involves extensive
hormone treatment in order to stimulate the maturation of several oocytes per
cycle for donation and subsequent destruction on human embryos. However, a
number of problems remain to be solved before induced pluripotent stem cells can
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be used for regenerative therapies. Introducing oncogenes like C-Myc to induce
pluripotency into cells is of course highly problematic if the cells are supposed
to be used for therapy. Furthermore, most studies on induced pluripotent stem
cells have used viral methods to introduce genetic factors. Since this can lead to
additional mutagenesis, it is not an acceptable method for clinical applications.
Both the factors that are introduced for reprogramming and the method that is
used to introduce these factors into the cell have to be carefully chosen and even
though a lot of progress has been made in these fields, there are still relatively
few clinical trials based on induced pluripotent stem cells (reviewed in Ho et al.,
2012 and Daley, 2012).

1.1.2 Direct lineage conversion illustrates cell plasticity

Differentiation was classically viewed as irreversible with the undifferentiated cell
on top of the hierarchy and as it moves towards terminal differentiation, the
lineage potential becomes restricted and the cellular plasticity is reduced. Since
Waddington and Kacser, 1957 illustrated this ”epigenetic landscape” model in
1957, several findings necessitated an expansion of this classical model. First,
as was discussed in the previous paragraph, the somatic epigenome can indeed
be reprogrammed to a pluripotent state and interestingly, recent reports suggest
that spontaneous dedifferentiation into stem-like stages can occur even in normal
mammalian cells. Differentiation is thus not a unidirectional process but can be
reverted. Second, terminally differentiated cells can be directly converted into
another lineage, without going through a pluripotency state, a process that is also
called transdifferentiation. Using specific transcription factors or miNRAs, cells
can transdifferentiate into a cell type originating from the same or another germ
layer (reviewed in Ladewig et al., 2013). Interestingly, some somatic cell types
can be easily converted while others are more resistant (reviewed in Elshamy and
Duhe, 2013). However, it is not clear, to which extent the converted cell can
retain epigenetic marks from the donor cell. Altogether, a certain cell fate is not
irrevocable and cells display a remarkable plasticity.

1.1.3 Adult stem cells are controlled by specialized
compartments: niches

In contrast to the pluripotent embryonic stem cells that are capable to form all the
different cell types that can be found in the adult organism, adult stem cells only
have a limited differentiation potential and are multi-, oligo- or unipotent. They
were found in virtually all human tissues and are required for growth, homeostasis
and replacement of damaged cells after injury (regeneration) and under certain
physiological and pathological conditions. A specific microenvironment, integrat-
ing local and systemic factors, that is also called the stem cell niche regulates the
stem cells behavior. The stem cell niche hypothesis, according to which stem cells
reside in these spatially restricted compartments of the tissue, was first developed
from a study on hematopoietic stem cells by Schofield, 1978. The different cellular
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and acellular components of the stem cell niche: secreted factors, cell adhesion,
extracellular matrix, neural inputs, vascular network and mechanical cues regulate
maintenance and self-renewal of the stem cells.

Model organisms are essential for studying stem cell-niche biology The iden-
tification of stem cell niches in vivo – especially in vertebrates – is rather difficult
because stem cells are rare and specific stem cell markers are often not available
or not reliable (reviewed in Morrison and Spradling, 2008). Well characterized
mammalian adult stem cell niches include hematopoietic stem cells, neural stem
cells, spermatogonial stem cells, satellite muscle cells, stem cells in intestinal ep-
ithelium, hair follicle bulge and interfollicular epidermis (reviewed in Walker et al.,
2009 and Zapata et al., 2012). In contrast, model organisms such as C. elegans
and especially D. melanogaster provide a variety of sophisticated genetic tools
and thus studies in these animals first revealed several important features of stem
cell-niche communication (reviewed in Jones and Wagers, 2008). The germline
stem cell (GSCs) niche in the germarium of D. melanogaster is widely used and
is today one of the best studied stem cell niches (see Section 1.2, page 5).

Maintenance and differentiation of adult stem cells have to be regulated by
somatic niches Some stem cell niches have to balance maintenance and differ-
entiation of the stem cell population throughout an individuals lifetime to contin-
uously produce differentiated cell progeny without depleting the stem cell popula-
tion – like stem cells in gut and epidermis. Other stem cells that give rise to long
lived progeny like in skeletal muscle have to only differentiate if necessary because
of injury or disease. Hematopoietic stem cells in turn have to fulfill both functions:
continuous production of blood cells and responsiveness to external stimuli. In
order to always provide the required amount of differentiated progeny, adult stem
cells have to modulate their activity in response to the overall body status. That
is, they have to respond to various stimuli like temperature, mechanical signals,
nutrient situation, inflammatory and hormonal factors. Whereas in some cases,
the stem cells are directly influenced by these signals, many external signals act
on the niche cells and influence the stem cells in a cell non-autonomous fashion.
Communication between the niche cells and between niche and stem cells is there-
fore essential in order to ensure that adult stem cells keep the correct balance
between self renewal and differentiation. The niche controls its stem cell popula-
tion via both signaling molecules and by physical attachment, mediated via cell
adhesion molecules.

Adhesive contacts are major elements of stem cell-niche relations First ev-
idence showing that adherens junctions – cell-cell contacts that are formed by
homophilic interactions of Cadherin (Cad) proteins – came from studies in the
D. melanogaster germarium. It was shown, that disrupting the function of Cad
leads to a loss of stem cells (Song et al., 2002). Comparable analysis in mam-
malian models are, due to the complex architecture of tissue and stem cell niches,
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rather difficult. However, it was suggested that N-Cad plays a role in adhering
hematopoietic stem cells to their niche (reviewed in Xi, 2009). Integrins are trans-
membranous cell adhesion molecules that act as heterodimers to link the cell to
the extracellular matrix. Again, first reports about integrins being required for
adult stem cells came from studies in D. melanogaster : the follicle stem cells were
shown not only to contact neighboring cells via DE-Cad, in addition they require
integrin mediated contact to the basal lamina in order to maintain their posi-
tion. Integrins also were shown to play a role in linking other stem cells including
D. melanogaster intestinal stem cells, mouse epidermal, hair follicle and mam-
mary stem cells to the basement membrane (reviewed in Xi, 2009). In addition
to physically attaching stem cells to support cells or basal lamina, integrins and
Cad also regulate the cell division plane in different stem cells including those
in D. melanogaster neuroepithelium or mammalian skin (reviewed in Marthiens
et al., 2010).

Establishment and turnover of niches affects stem cells Because of both, the
complex interactions between niche and stem cells and the necessity to precisely
regulate the stem cell behavior, it is clear that establishment and maintenance
of the niche have to be tightly regulated as well. Stem cells and the niche can
either co-develop or form independently from each other (reviewed in Jones and
Wagers, 2008). Muscle satellite cells originate from the same precursors as their
stem cells and it was suggested that epithelial stem cells are capable to generate
their own niche (reviewed in Jones and Wagers, 2008). Other stem cells, like the
hematopoietic and primordial stem cells, encounter different niches throughout
the development. Hematopoietic stem cells are committed during development
in a process that involves multiple hematopoietic sites including the yolk sac,
the placenta, the fetal liver and the aorta-gonad-mesonephros region (reviewed
in Christensen et al., 2004; Mikkola and Orkin, 2006). In the D. melanogaster
ovary, niche and stem cells originate independently from each other and somatic
gonadal cells are formed even in the absence of GSCs (Margolis and Spradling,
1995). Similar to that situation, fully competent Sertoli cells are also formed
in aspermic gonads. Besides niche establishment, stem cell activity can also be
controlled by the niche cell maintenance and turnover. The regenerative capacity
of different tissues like skin, liver, blood and muscle decreases with age. Apart
from cell-autonomous changes in the stem cells, stem cell niches also contribute to
this decreasing ability to renew the tissue. Furthermore, it was shown in different
systems that the age dependent changes in stem cell behavior can be reverted by
restoring the niche function (reviewed in Voog and Jones, 2010).

1.2 The D. melanogaster germarium – a model for
GSC niche communication

The first – and until now – best characterized stem cell niche is the one in the fe-
male D. melanogaster germarium (Xie and Spradling, 2000). The D. melanogaster

5



1 Introduction

ovary is a paired organ that each consists of 13–16 ovarioles. Each ovariole contains
the progressively developing egg chambers with two to three GSCs at the apical
tip (see Figure 1.1, page 7). If a GSC divides, one GSC will remain as a stem cell
and the other one – the pre-cystoblast (pre-CB) – will undergo differentiation to
form the cystoblast (CB). After four rounds of division with incomplete cytoki-
nesis the cysts will be enveloped by follicle cells (FCs), generated by follicle stem
cells (FSC) and leave the germarium. The GSCs can be easily identified by their
characteristic spherical cytoskeletal organelles – the spectrosomes. Upon CB/cyst
division and differentiation the spectrosomes elongate and branch to form the
fusome (Lin et al., 1994). Only GSCs and CBs therefore display a single spher-
ical spectrosome (single spectrosome cells; SSCs), whereas cysts have branched
fusomes. Since spectrosomes and fusomes can be visualized using specific anti-
bodies, they are important markers for characterizing germline cell identity. Apart
from the germline cells, the germarium houses several somatic cells. The terminal
filament cells (TFs) at the apical end of the germarium hold the different ovarioles
of an ovary whereas the cap cells (CpCs) – five to seven in each germarium –
attach the GSCs. In addition, escort cells (ECs, also called inner germarial sheath
cells in some publications) that form long cytoplasmic extensions with which they
encase the developing germline cells, line the germarium.

The D. melanogaster germarium (see Figure 1.1, page 7) thus represents the
key features of adult stem cell niches and contains a limited number of cells that
can be easily identified and analyzed. GSCs are attached to the CpCs by cell-cell
adhesions. In addition, signaling from the niche allows stem cell maintenance
and represses differentiation, whereas cells that are even only one cell diameter
further away from the niche cannot receive the niche signaling and loose stem
cell characteristics. The germarium therefore provides an amazing and valuable
model for analyzing key questions in stem cell biology: Which characteristics are
necessary and sufficient to maintain the stem cell state? How does the surrounding
somatic niche integrate systemic signals to control stem cells? How are niches and
stem cells formed during development? Which factors are important for the first
steps of germline differentiation? Since the germarium had been established as a
model in the 1990s, our knowledge has expanded greatly, nevertheless a number
of questions remain to be answered.

1.2.1 The somatic niche cells signal to the GSCs

The stem cell niche in the germarium is formed by CpCs, TFs and ECs, with
the CpCs being particularly important to adhere the GSCs. Because of the close
contact between GSCs and somatic cells, it is not feasible to ablate all CpCs, TFs
or ECs from a germarium. Removing specific genes from all TFs and CpCs of single
ovarioles, however, is not possible due to their polyclonal origin. Nevertheless,
the sophisticated genetic tools that are available in D. melanogaster allowed the
identification of several signaling pathways that are required for germline control
(see Figure 1.3, page 15 for an overview).
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Figure 1.1: D. melanogaster germarium is a model for research on adult
stem cells (A) An ovariole with the progressively developing egg chambers and
the germarium at the anterior. Each egg chamber starts in the germarium as a
cyst containing 16 germ cells; one of them will become the oocyte (green) and
the others will be nurse cells (dark blue). (B) The germarium contains GSCs
(purple) that are directly attached to the CpCs (dark gray). After the division,
one stem cell daughter, the CB (turquoise) differentiates via the intermediate
pre-CB (light purple) stage and undergoes four more rounds of division, forming
the cyst (dark blue). GSCs and CBs contain spherical spectrosomes (SS, red)
and are therefore called single spectrosome cells (SSCs), whereas cysts have
branched fusomes (red). ECs (yellow) outline the germarium and form long
cytoplasmic protrusions that envelop the developing cysts. In region 2b, FCs
(light gray), generated by FSCs (gray), surround the developing cysts, whereas
the TFs (dark red) attach the individual ovarioles.
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Bam is excluded from the GSCs by TGF-β signaling The master differenti-
ation factor in the female germline is the protein Bag of marbles (Bam) that is
excluded from the GSCs via TGF-β signaling. CpCs and TFs secrete the TGF-β
ligands Gbb (Glass bottom boat) and Dpp (Decapentaplegic) (Song et al., 2004;
Xie and Spradling, 1998). Upon receptor activation in GSCs, the transcription
of the differentiation factor Bam is repressed: the D. melanogaster Smad Mad
becomes phosphorylated upon TGF-β signaling, forms a complex with its partner
Medea (Med), binds to the transcriptional silencer elements of the bam promoter
and thereby inhibits its transcription (Chen and McKearin, 2003; Jiang et al.,
2008; Song et al., 2004). After GSC division along the anterior-posterior axis of
the germarium, only the anterior daughter cell that remains within the niche re-
ceives the signaling from the niche. In the other more proximal daughter cell, the
differentiation factor Bam becomes expressed and the cell will differentiate.

GSCs differentiate via an intermediate pre-CB stage Few markers are avail-
able to follow the early steps of germline differentiation from GSC to CB in detail.
GSCs, pre-CBs and CBs have single spherical spectrosomes; however, GSCs can
be distinguished from CBs via two criteria: position (GSCs are directly attached
to CpCs) and expression of bam which is present in CBs, but not in GSCs. Gilboa
et al., 2003 and Ohlstein and McKearin, 1997 observed single cells away form the
niche that lack Bam protein, suggesting that an intermediate pre-CB stage exists
between GSCs and CBs. Thus, the germline differentiation process towards CB is
gradual with low levels of pMad still found in pre-CBs/CBs and bam expression
starting at the pre-CB/CB transition (Gilboa et al., 2003; Kai and Spradling,
2003a; Ohlstein and McKearin, 1997) (see Figure 1.2, page 8).

Figure 1.2: GSCs self renew and give rise to differentiating progeny
CpCs (gray) provide ”self renewal” signaling to the GSCs (purple) and thus
are a major part of the GSC niche. Mad is phosphorylated in response to
TGF-β signaling from the CpCs in the GSCs; at the pre-CB (light purple) to
CB (turquoise) transition, bam is expressed. Via interacting with the germline,
ECs (yellow) promote germline differentiation.
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A functional niche is necessary and sufficient to maintain GSCs Different
from other systems, GSC daughters are not thought to be inherently different.
Instead, it seems that both cells compete for the available space in the niche, and
the daughter cell outside the niche will not receive signaling from the niche and
differentiate. In agreement with this, both GSC daughters can be recruited to
become GSCs to replace lost ones (Xie and Spradling, 2000) and even four- or
eight-cell cysts can break down, de-differentiate and repopulate the niche (Kai
and Spradling, 2004). Which GSC daughter differentiates and which one will be
maintained as the stem cell is therefore exclusively determined by interactions with
the niche. The TGF-β signaling pathway that prevents bam to be expressed in
the GSCs is particularly important for GSC maintenance: an overactivation of the
TGF-β pathway via overexpressing the ligand dpp or a loss of the differentiation
factor Bam have dramatic phenotypes and can block differentiation completely
(McKearin and Ohlstein, 1995; McKearin and Spradling; Song et al., 2004; Xie
and Spradling, 1998). Remarkably, the GSCs that respond to TGF-β signaling
and the CBs that enter the differentiation program ruled by Bam are only one cell
diameter apart from each other. This steep gradient of TGF-β reception in the
germarium has to be tightly regulated: different mechanisms are in place to limit
the range of Dpp production, stability and diffusion, to modulate the capacity
of a cell to respond to TGF-β ligands and to cell-autonomously derepress bam
expression in the CBs.

Dpp diffusion is limited to GSCs The type IV collagens Viking and Dcg1 can
bind Dpp and Viking was shown to be present in the germarium between the
somatic niche cells and between the GSC and niche cells. Dpp binding to type
IV collagens thus seems to limit Dpp diffusion (Wang et al., 2008b). The heparin
sulfate glycoprotein Dally is as well critical for GSC maintenance. It is highly
expressed in CpCs and ectopic expression of Dally in somatic germarial cells leads
to a higher number of GSC-like cells, suggesting that the presence of Dally con-
tributes to limit the range of niche signaling (Guo and Wang, 2009; Hayashi et al.,
2009).

JAK/STAT signaling controls Dpp signaling in the female germarium While
the TGF-β signaling pathway is generally considered the most important one in
the female germarium, the JAK/STAT signaling pathway is of similar impor-
tance for the male GSCs. Nevertheless, JAK/STAT signaling is also required in
the female germarium. In D. melanogaster JAK/STAT signaling is activated if
cytokines of the Unpaired (Upd) family are secreted and bind to the receptor
Domeless which activates the Janus kinase, Hopscotch. Hopscotch then phospho-
rylates the transcription factor STAT92E, which translocates to the nucleus and
activates the expression of target genes. The JAK/STAT signaling pathway is
active in the somatic cells of the germarium: in TFs, CpCs and ECs (Decotto and
Spradling, 2005; Lopez-Onieva et al., 2008). Loss of JAK/STAT activity leads
to GSC loss, but interestingly it was shown that JAK/STAT is not required cell-
autonomously in the GSCs. Instead it is required in the CpCs and ECs where it

9



1 Introduction

positively regulates the expression of dpp. In agreement with this, ectopic over-
expression of Upd in the somatic cells of the germarium leads to a higher number
of SSCs (single spectrosome cells). Similar to GSCs, but unlike differentiating
germline cells, these SSCs display pMad and Dad-lacZ, a reporter of TGF-β sig-
naling pathway activity. This proposes a model in which JAK/STAT signaling in
the niche is required to regulate the levels and range of Dpp signaling (Decotto
and Spradling, 2005; Lopez-Onieva et al., 2008; Wang et al., 2008a).

CBs become insensitive to TGF-β signaling Cell-autonomous mechanisms are
also required for transduction of the signal: the serine/threonine kinase Fused
that acts in concert with the E3 ligase Smurf regulates the ubiquitination and
degradation of the TGF-β receptor Thickveins in the CBs, which therefore quickly
become insensitive to TGF-β signaling (Casanueva and Ferguson, 2004; Xia et al.,
2010).

Several pathways regulate germline cells in the germarium Few other path-
ways with no known connection to TGF-β signaling are thought to be important
for GSC maintenance. The first one that was suggested to control D. melanogaster
GSCs is Hedgehog (Hh) signaling. Hh itself is present in TFs and CpCs but
hedgehog mutant GSCs show only minor division defects (Forbes et al., 1996a,b).
fs(1)Yb encodes a novel hydrophilic protein that is specifically expressed in the
TFs and is required for the maintenance of GSCs. It controls Hh and Piwi levels
by an unknown mechanism (King and Lin, 1999; King et al., 2001). In addition,
the nuclear membrane protein Otefin was suggested to interact with Med, proba-
bly relocalizing the bam locus to the nuclear periphery, allowing for its silencing
in the GSCs. In the absence of Otefin, GSCs cannot be maintained and are lost;
however, a recent report suggested that GSCs are not lost by differentiation but
due to cell death (Barton et al., 2013; Jiang et al., 2008). Altogether, a variety
of signaling pathways act in concert to control germline differentiation, with or
independently of TGF-β signaling.

1.2.2 bam expression switches on a differentiation program in
CBs

Overexpressing bam is sufficient to induce GSCs differentiation and on the other
hand, reduced Bam levels lead to the accumulation of GSC-like cells, illustrating
the importance of bam as a master differentiation gene (McKearin and Ohlstein,
1995; McKearin and Spradling; Ohlstein and McKearin, 1997). In agreement with
this, several mechanisms are in place to control bam expression (see Section 1.2.1,
page 6). However, despite the importance of Bam, there is relatively little infor-
mation about how it promotes differentiation.

Bam potentially acts via repressing Nos Bam forms a complex with its cofactor
Benign gonial cell neoplasm (Bgcn) that represses the expression of nanos (nos),
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possibly via nos 3’UTR (Li et al., 2009). In agreement with this, it was found
that bam expression is reciprocally to the one of nos (Li et al., 2009). Nos and
its partner Pumilio (Pum) are components of a translational repressor complex
(reviewed in Shen and Xie, 2010) and were shown to be critical for the mainte-
nance of GSCs (Wang and Lin, 2004). The Nos-Pum complex supposedly acts
via downregulating differentiation promoting mRNAs, most of which remain to be
identified. However, one mRNA that is downregulated by the Nos-Pum complex
is Brain tumor (Brat): Brat protein is limited to CBs and differentiating cysts. It
promotes differentiation via forming a complex with Pum that inhibits translation
of Mad and the growth regulator dMyc (Harris et al., 2011). Downregulating Mad
in CBs limits the ability of the CBs to transduce the signal of Dpp or Gbb that
may still be present in low levels and thereby contributes to limiting the range of
Dpp signaling to the GSCs.

The strength of TGF-β signaling is carefully shaped In summary, several
mechanisms are in place to assure that only GSCs receive niche signaling and to
promote quick derepression of the respective factors in differentiating germline
cells. However, it seems that the TGF-β signaling pathway is the most important
one, with many other pathways influencing the strength and range of the signaling.
This is further illustrated by the fact that overexpression of dpp in somatic cells
leads to a differentiation block of germline cells, indicating that high Dpp levels
can overrule antagonists (Song et al., 2004).

1.2.3 Adherens junctions between GSCs and CpCs are
required for GSC maintenance

As mentioned before, adherens junctions between GSCs and CpCs are required to
maintain GSCs in the niche. DE-Cad, a classical Cad (encoded by a gene called
shotgun) is required for the formation of adherens junctions. Armadillo (Arm), the
β-catenin homolog binds to the cytoplasmic domain of DE-Cad, linking adherens
junctions to the cytoskeleton via α-catenin. Both DE-Cad and Arm were shown to
be present at high levels between CpCs and GSCs and are crucial to recruit GSCs
to the niche during development and to maintain them there (Song et al., 2002). In
fact, the differentiation factor Bam itself was shown to reduce the levels of DE-Cad
in complex with Bgcn and the translation initiation factor eIF4A (Jin et al., 2008;
Shen et al., 2009). The quick downregulation of DE-Cad in differentiating CBs
further assures, that accidentally differentiating GSCs leave the niche and become
replaced by functional GSCs. Interestingly, GSCs with even only slightly lower
levels of DE-Cad are outcompeted by other GSCs and are lost from the niche
(Jin et al., 2008). The strength of cell adhesion between CpCs and GSCs and
the precise levels of DE-Cad in a given GSC therefore provide an additional level
to control the behavior of GSCs: insulin signaling decrease for example leads to
lower levels of DE-Cad and loss of GSCs (Hsu and Drummond-Barbosa, 2009).

11



1 Introduction

1.2.4 ECs are required for the differentiation of the GSC
progeny

ECs or – as they are sometimes called – inner germarial sheath cells line the
germarium in regions 1 and 2a. They form long cytoplasmic extensions that
envelope the developing CBs. It had been suggested, that ECs are maintained
by a population of 4–6 escort stem cells and that their progeny moves along with
the cysts through the germarium until they are lost by apoptosis (Decotto and
Spradling, 2005). In contrast to this, it was recently shown that ECs show little
movement and are stationary. Even though they are capable of dividing, they are
mitotically quiescent most of the time, unless the ratio of ECs to germline cells
increases. ECs do undergo some slow turnover, but the lost cells are replaced by
dividing neighboring ECs and not by escort stem cells (Kirilly et al., 2011; Morris
and Spradling, 2011).

Differentiating germline cells signal to the ECs ECs are of great importance
for the differentiating germline cells: they form long cytoplasmic extensions that
are believed to physically protect the differentiating CBs from the niche signaling.
In addition, ECs and germline cells actively communicate, and perturbing these
interactions leads to malformations and differentiation defects in both ECs and
germline: Stem cell tumor (Stet), a Rhomboid homolog is an intramembrane pro-
tease that is required for the maturation of the epidermal growth factor receptor
(EGFR) ligands Spitz, Gurken or Keren in the germline. Upon ligand secretion,
the EGFR pathway is activated in the surrounding somatic ECs which leads to
the activation of downstream signaling cascades including the mitogen-activated
protein kinase (MAP kinase), the phosphatidylinositol 3-kinase and phospholi-
pase C-γ pathways (Schulz et al., 2002; Yarden and Shilo, 2007). If stet function
is removed from the germline, germaria with ectopic Dpp activity and a higher
number of SSCs were observed, a phenotype that was accompanied by a disrupted
formation of cytoplasmic extensions (Liu et al., 2010; Schulz et al., 2002). Inter-
estingly, the EGFR signaling pathway in the somatic ECs is required to limit the
expression of the glypican Dally, a Dpp stabilizing protein. Altogether, this pro-
poses a model in which the activation of the EGFR pathway in the somatic ECs
by ligands coming from the germline, is required to restrict the Dpp diffusion and
thereby to enable CB differentiation. It was also shown that the differentiation
status of the germline cells in the germarium is important for the maintenance of
ECs extensions and ECs themselves. If GSCs are lost for example due to artifi-
cial bam overexpression, germaria also loose all ECs, indicating that the presence
of GSCs is required for EC maintenance (Margolis and Spradling, 1995; Xie and
Spradling, 2000). But then, germaria full of undifferentiated germline cells due to
bam loss of function or overexpression of dpp also do not show cytoplasmic ECs
protrusions (Kirilly et al., 2011). And last, ECs at different positions in the ger-
marium show different morphologies, depending on the germline cells that they
are associated with (Kirilly et al., 2011). These examples illustrate, that ECs
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cannot properly form protrusions and even cannot be maintained in the absence
of correctly differentiating germline cells.

ECs contribute to the GSC niche ECs are crucial for both the maintenance
of GSCs and the differentiation of GSC progeny. They also express the TGF-β
ligand Dpp which is mainly produced by CpCs and which is essential for GSC
maintenance (Casanueva and Ferguson, 2004; Xie and Spradling, 2000; Zhu and
Xie, 2003) and eliminating ECs from the germarium leads to GSC loss (Chen et al.,
2011). Recently it was furthermore suggested, that ECs and CpCs cooperate via
Hh signaling to regulate the levels of TGF-β signal that is transmitted to the
GSCs. The CpCs are decorated with long filopodia or cytonemes via which the
signal is transmitted to the ECs where it activates the transcription of gbb and
dpp (Rojas-Rios et al., 2012). In summary, even though it seems to be clear, that
CpCs are the main source for Dpp and Gbb, ECs also are an important part of
the GSC niche in the D. melanogaster germarium.

Cytoplasmic EC protrusions are crucial for cyst differentiation Remarkably,
besides its function for GSC maintenance, ECs are also required for cyst differ-
entiation: as was mentioned before, it is thought that ECs send signals to the
developing cysts and that EC protrusions also physically shield the germline from
the niche signaling. Disturbing the formation of ECs extensions via downreg-
ulating the actin-regulator cappuccino leads to an increase of SSCs, which is a
hallmark of delayed or blocked germline differentiation (Kirilly et al., 2011). Sim-
ilarly, knocking down the GTPase Rho specifically in ECs disturbs the formation
of ECs extensions, which cell non-autonomously affects the germline differentia-
tion (Kirilly et al., 2011). The JAK/STAT signaling pathway is active in CpCs
and ECs and perturbed JAK/STAT signaling leads to a disturbed EC morphology
that results in a higher number of germline cells (Decotto and Spradling, 2005;
Wang et al., 2008a). These results strongly suggest, that the proper formation of
EC protrusions is required to create a microenvironment in which the germline
cells receive differentiation promoting, but not TGF-β signaling from the CpCs
and can differentiate. ECs therefore seem to have a dual role: they are required
for both the maintenance of adult GSCs and for the differentiation of the GSC
daughters. Also, it is becoming clear that germline progeny differentiation is not
the default choice for germline cells that are not maintained as stem cells as the
consequence of lacking signaling from the GSC niche. Instead, germline differ-
entiation requires both appropriate physical interaction and communication with
the surrounding somatic ECs. The nature of these interactions and the relevant
signaling pathways remain poorly understood.

Systemic steroid hormone signaling is required for EC morphology In addi-
tion to the pathways already known to be required for EC morphology, we were
recently able to show that ecdysone, the main steroid hormone in D. melanogaster
is required for proper EC morphology. If ecdysone signaling is perturbed, ECs
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loose their squamous shape and cytoplasmic protrusions and instead resemble a
columnar-like epithelium. This affects the germline differentiation in a cell non-
autonomous way, resulting in an increased number of cells at the GSC to CB
transition, that are delayed in differentiation (König et al., 2011). This study is
the first evidence for hormone signaling acting on the germline cells via ECs.
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Figure 1.3: GSC maintenance and germline differentiation are regu-
lated by various signaling pathways The niche for the GSCs (purple) is
formed by CpCs (gray), TFs (dark red), and ECs (yellow). The differentiating
GSC daughter is the CB (turquoise) that is enveloped by cytoplasmic protru-
sions, sent from the ECs. Transcription of the master differentiation gene bam
is inhibited by TGF-β signaling: Dpp and Gbb, sent from the niche lead to the
phosphorylation of Mad in the GSCs. pMad partners with Med and translo-
cates to the nucleus where it inhibits bam expression. CBs do not receive TGF-β
signaling from the niche and bam therefore becomes expressed, leading to differ-
entiation. Bam forms a complex with its partner Bgcn and represses Nos, which
– together with its partner Pum – is necessary for the maintenance of GSCs
by repressing differentiation promoting mRNAs like Brat. Several other mecha-
nisms contribute to the sharp gradient of TGF-β reception. The production of
Dpp in the CpCs is regulated by Lsd1 and the JAK/STAT signaling pathway,
activated by the ligand Upd that is secreted from the TFs. Dpp diffusion is
limited by type IY collagens whereas Dpp is stabilized by the glypican Dally
that is itself downregulated in ECs by EGFR signaling. Several CB intrin-
sic pathways limit the responsiveness to TGF-β signaling and thereby assure
that only one cell diameter away from the GSCs, differentiation can start. The
translational repressor complex consists of Pum and Brat and downregulates
the levels of Mad. The serine/threonine Fu together with the E3 ligase Smurf
leads to the ubiquitination and subsequent degradation of the TGF-β receptor.
The homophilic cell adhesion proteins DE-Cad and Arm are found at high lev-
els between CpCs and GSCs, where they attach GSCs to the niche cells and at
lower levels between ECs and CBs and cysts. See the main text for details.
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1.2.5 GSCs respond to environmental cues

The division rate of GSCs has to be precisely regulated in response to the needs
of the whole organism: dietary conditions, stress or aging regulate the GSCs via
systemic signaling. Such general signals can either act on the GSCs directly or be
integrated by the somatic niche. In older animals, the niche size and signaling are
decreased, causing partial GSC loss which was suggested to be mainly the result of
lower insulin levels in aging flies. Insulin signaling controls the niche size via Notch
signaling and influences the GSC maintenance via acting on the adherens junc-
tions between CpCs and GSCs (Hsu and Drummond-Barbosa, 2009; Pan et al.,
2007). In addition, insulin signaling acts on the GSCs in a cell-autonomous fash-
ion: insulin-like peptides promote GSC division and via phosphoinositide-3 kinase
(PI3K) and dFOXO control the G2 phase of the GSC cell cycle (Hsu et al., 2008;
LaFever and Drummond-Barbosa, 2005). The steroid hormone ecdysone in con-
trast acts in the somatic cells of the germarium, influencing the germline via
altering cell adhesion.

1.2.6 CpCs constitute an important part of the GSC niche

Despite the importance of the GSC niche, relatively little is known about what
constitutes a functional niche and how it is formed. CpCs are an important
component of the GSC niche and it was shown that the number of CpCs and
attached GSCs directly correlates (Ward et al., 2006; Xie and Spradling, 2000).
CpCs in the adult animal are mitotically quiescent, establishing the niche with the
correct number of CpCs is therefore essential to ensure the lifelong functionality
of the GSC-niche unit.

The GSCs niche is formed during larval–pupal development Stacks of termi-
nal filaments start to specify in third instar larvae and CpCs form at their base at
the end of the third larval instar and until the first steps of pupation. Once the
niches are established, the undifferentiated GSC precursors, the primordial germ
cells are recruited to the niche to become GSCs (Song et al., 2002; Zhu and Xie,
2003). Several pathways were shown to be implicated in the formation and regula-
tion of the GSC niche. Notch signaling is not only required for the switch from the
mitotic cycle to the endocycle in FCs (Shcherbata et al., 2004), but also directly
controls the size of the niche. The Notch ligands Delta and Serrate are present on
the surface of GSCs and activate Notch signaling in the surrounding somatic cells
that in turn control the GSC population. Expanded Notch activation leads to the
formation of germaria with higher CpCs number and ectopic niches that are able
to maintain fully functional GSCs (Ward et al., 2006). Furthermore, the histone
methylase Lsd1 acts in ECs and is required to prevent the formation of ectopic
niches and accordingly, its loss of function leads to the misplaced expression of
CpC specific markers in ECs (Eliazer et al., 2011). Considering that CpCs are
specified around pupation, when the ecdysone titer in the animal is high, it is not
surprising that the ecdysone signaling pathway, that is discussed in more detail in
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Section 1.3, page 17 was recently also shown to regulate the formation of the GSC
niche. In early third instar larvae – before the ecdysone pulse that initiates pupa-
tion – the unliganded repressive ecdysone receptor complex is required to repress
precocious differentiation of both niche and primordial germ cells. As ecdysone
titers rise in mid and late third instar larvae, ecdysone signaling is necessary for
the formation of the niche and the differentiation of the primordial germ cells
(Gancz et al., 2011). In addition to the larval phenotypes that were described
by Gancz et al., 2011, we could show that perturbing ecdysone signaling during
larval and adult stages leads to a higher number of functional CpCs in the adult
(König et al., 2011). However, many questions regarding niche formation remain
and future analysis will help to reveal the exact origin of ECs and CpCs, the
signals that lead to the CpC recruitment and the different signaling activities of
the niche components.

1.3 Ecdysteroids control various aspects of
D. melanogaster development and adult life

1.3.1 Ecdysteroids regulate D. melanogaster development

20-hydroxyecdysone, that is commonly called ”ecdysone”, is one of several steroid
hormones that regulate the larval to adult metamorphosis in Arthropods as well
as several other processes in the adult animal (reviewed in Thummel, 1996).
It acts via activating a nuclear hormone receptor complex that consists of the
Ecdysone receptor (EcR) and its dimerization partner Ultraspiracle (Usp), the
D. melanogaster orthologs of the farnesoid X or liver X receptor and the retinoid
X receptor (Oro et al., 1990; Thomas et al., 1993; Yao et al., 1993). The EcR
belongs to the nuclear-receptor superfamily: an ancient protein family that can
be found throughout the Metazoa and that contains well known vertebrate recep-
tors like the estrogen, glucocorticoid, thyroid hormone and retinoic acid receptor.
Nuclear receptors contain a DNA-binding domain and ligand-binding and dimer-
ization domains (reviewed in King-Jones and Thummel, 2005). The EcR exists in
three splicing variants in D. melanogaster, EcRA, EcRB1 and EcRB2 that share
their DNA- and hormone binding domain, but differ in their N-terminal regions,
whereas Usp exists only in one isoform (Talbot et al., 1993).

The unliganded EcR/Usp complex has a repressive function The EcR is con-
stitutively present in the nucleus and the EcR/Usp complex binds to specific gene
sequences called ecdysone responsive elements (Cherbas et al., 1991). The sig-
naling cascade that is triggered by the activated EcR/Usp heterodimer is rather
complex: many direct targets – or early response genes – of the EcR complex,
including Broad Complex (Br), E75A and E75B activate themselves a variety of
late response genes. Besides activating the transcription of target genes in the
presence of ecdysone, the EcR/Usp complex is also thought to have a repressive
function when unliganded (Cherbas et al., 1991; Dobens et al., 1991; Schubiger and
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Truman, 2000). However, recently it was suggested that the EcR/Usp complex
is not itself repressing: instead the early response gene E75A, a nuclear hormone
receptor itself, is recruited to target genes and replaces the activating EcR/Usp
complex if ecdysone titers are low (Johnston et al., 2011). Whether this mecha-
nism also works for target genes, tissues and developmental stages that were not
analyzed by Johnston et al., 2011 remains unclear.

1.3.2 The spatial and temporal specificity of ecdysone
signaling is achieved via differential expression of
transcriptional and translational coregulators

The ecdysone induced responses are remarkably diverse. Whereas solely larval
tissues degenerate and lyse upon the ecdysone pulses during the larval to adult
transition, the imaginal discs grow and give rise to the adult structures. This
spatial and temporal specificity of ecdysone signaling is achieved via differential
expression of the EcR itself, of several co-activators, co-repressors and transla-
tional regulators. In the last years several cofactors – repressing or activating –
that are bound to the EcR/Usp complex were identified. Chromatin remodeler
like the nucleosome remodeling factor (NURF) alter chromatin-DNA interaction
and thereby affect transcription (Badenhorst et al., 2005). Another group of co-
factors acts via influencing histones: SMRTER possibly mediates repression of
ecdysone signaling by interacting with the repressor Sin3A and recruiting his-
tone deacetylases (Tsai et al., 1999). The histone methyltransferase TRR and the
acetyltransferase CBP in contrast are coactivators of ecdysone signaling (Kirilly
et al., 2011; Sedkov et al., 2003). It is believed that histone chaperones like the
D. melanogaster DEK that was identified as an EcR coactivator, are required for
the assembly and disassembly of histones at transcribed loci, and thereby act as
transcriptional cofactors (Sawatsubashi et al., 2010). In addition, several other
cofactors including Alien, Bonus, Dor, Rigor mortis and Taiman (Tai) were char-
acterized (Bai et al., 2000; Beckstead et al., 2001; Dressel et al., 1999; Francis
et al., 2010; Gates et al., 2004; Jang et al., 2009).

Tai is an EcR-activator tai was initially characterized from a genetic screen
for mutants that cause defects in border cell migration (Bai et al., 2000). The
migration of tai mutant border cells was either completely inhibited or slowed
down and tai loss of function was shown to cause an abnormal accumulation of
DE-Cad, Arm and focal adhesion kinase. Based on in vivo colocalization of Tai
and EcR, its ability to increase hormone induced transcription in cultured cells,
and its direct EcR binding in vitro, Tai was shown to be a coactivator of the
EcR in D. melanogaster. In accordance with these findings, Tai shows a high
sequence similarity to members of the p160 class of steroid hormone coactivator
proteins and is most closely related to AIB1, a steroid hormone coactivator pro-
tein that is amplified in breast and ovarian cancer (Bai et al., 2000; Chang and
Wu, 2012). Like other steroid hormone receptor coactivators, Tai contains an
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N-terminal bHLH and PAS domains, LXXLL motifs that are required for ligand
dependent hormone receptor binding and polyglutamin transactivation domains.
Interestingly, mutants of tai were identified in a candidate based screen in which
clonal germaria of hsFlp;FRT40A lethals from the Drosophila Genetic Resource
Center were analyzed, which was the first evidence for ecdysone signaling being
important for the GSC-niche complex (see Weiss, 2009 Section 2, page 37).

Abrupt is a negative regulator of ecdysone signaling and a powerful transde-
termination factor Another protein that was found in the above mentioned
screen is Abrupt (Ab). Ab is a transcription factor that contains a Broad,
Tramtrack and Bric-a-Brac/Poxvirus and Zinc finger (BTB/POZ) domain (Hu
et al., 1995). Ab is required for the formation of specific synaptic connections
between a subset of motoneurons and a subset of muscles, cell-autonomously sup-
presses dendritic branching in a subset of neurons and is required for the morpho-
genesis of dendritic arborization neurons (Hu et al., 1995; Li et al., 2004; Sugimura
et al., 2004). Furthermore, Ab was shown to be an inhibitor of the ecdysone sig-
naling by interacting with the bHLH domain of Tai (Jang et al., 2009). It is
interesting to note, that Ab was also shown to be a potent transdetermination
factor, since overexpressing Ab in antennal imaginal discs leads to the transfor-
mation of arista into putative legs (Grieder et al., 2007). This is illustrating, that
Ab is a powerful factor in development, whose levels and expression patterns have
to be tightly regulated.

The expression of primary ecdysone response genes is regulated on the trans-
lational level In addition to the availability of nuclear receptor co-regulators or
differential accessibility due to chromatin remodeling, translational control was
recently shown to add another regulatory layer (Ihry et al., 2012). The DEAD
box RNA helicase belle/DDX3 controls the translation of the primary ecdysone
signaling response gene E74A. In the absence of belle, genes downstream of E74A
are not properly controlled and additionally, E74A mRNA is accumulating. E74A
protein is necessary and sufficient to repress its own transcription. Translational
control is therefore contributing to translating the global steroid hormone signal
into a tissue specific response (Ihry et al., 2012).

1.3.3 Ecdysone signaling fulfills various functions in the adult
fly

In larvae, ecdysteroids are produced in the prothoracic gland (a part of the ring
gland) and are secreted into the hemolymph as inactive precursors that are further
processed in peripheral tissues. Even though 20-hydroxyecdysone is generally
considered the biologically active ecdysone form, it is also discussed, that other
derivatives or precursors of 20-hydroxyecdysone are active signaling molecules
(reviewed in Gilbert et al., 2002 and Gilbert and Warren, 2005). These issues
are however also complicating attempts to measure ecdysone levels. Ecdysone
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levels can be measured by radio- or enzyme-immunoassays, but both methods
are not specific to 20-hydroxyecdysone, which makes precise measurements of the
active hormone levels rather difficult (reviewed in Schwedes and Carney, 2012).
Nevertheless, EcR and Usp are found in adult tissues and it is clear that ecdysone
is present in the adult, albeit at lower levels than during the earlier steps of
development (Bownes, 1984; Carney and Bender, 2000; Hagedorn, 1985; Schwedes
et al., 2011; Schwedes and Carney, 2012). Even though the ovary seems to be the
main ecdysone producing tissue in the adult, other tissues also may contribute to
the overall ecdysone titer (Bownes, 1984).

Since ecdysone is absolutely essential during development, analyzing ecdysone
function in adults is technically challenging Whereas the roles of the ecdysone
signaling pathway during development have been extensively studied, less atten-
tion has been put on its function in the adult animal. Severe perturbations of
the ecdysone signaling pathway during development cause lethality, which com-
plicates analysis of ecdysone function in the adult. To circumvent these problems,
different strategies have been successfully applied: (1) using temperature sensitive
mutations like ecd1ts or DTS3 that lead to reduced ecdysone levels when shifted
to the appropriate temperature, (2) conditionally decreasing levels of functional
EcR/Usp coactivators or increasing inhibitors of ecdysone signaling, (3) analyzing
heterozygous mutants of ecdysone signaling pathway components, (4) generating
homozygous loss of function clones of ecdysone signaling pathway components in a
heterozygous background (Buszczak et al., 1999; Carney and Bender, 2000; König
et al., 2011).

Oogenesis and oviposition are regulated by ecdysone signaling It could be
shown, that ecdysone signaling regulates various aspects in the adult like ooge-
nesis, longevity, body size, sleep and long-term memory and the function in the
ovary has been studied in more detail. Ovaries from EcR mutant animals show
several defects, including FC differentiation defects, loss of stage 10–13, but in-
creased numbers of stage 14 egg chambers, and many defective or degenerating
egg chambers. Furthermore, at stage 8 of oogenesis, ecdysone controls, via Br, a
point after which the egg chambers, depending on the environmental conditions,
undergo apoptosis or develop further (Buszczak et al., 1999; Carney and Bender,
2000; Hackney et al., 2007; Kozlova and Thummel, 2000; Terashima and Bownes,
2005, 2006). In addition, ecdysone enhances the production of yolk proteins in fat
body and FCs and is required to control the migration of a specialized set of FCs –
the border cells (Bai et al., 2000; Hagedorn, 1985; Jang et al., 2009). Studies on the
role of ecdysone signaling in the germarium have been published only through-
out the last years: it was suggested, that the ecdysone signaling controls GSC
self-renewal and proliferation in a cell-autonomous fashion via interacting with
the intrinsic chromatin remodeling factors imitation SWI (ISWI) and NURF301
(Ables and Drummond-Barbosa, 2010). The present thesis describes how ecdysone
signaling influences the germline cells in a non cell-autonomous fashion via the
surrounding somatic cells, and is therefore partially conflicting to the model pre-
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sented by Ables and Drummond-Barbosa, 2010. Altogether, this suggests that
ecdysone signaling regulates multiple aspects of oogenesis.

Ecdysone signaling is required to adapt to changing environmental conditions
In addition to its role in certain organs, ecdysone signaling was shown to be critical
for the overall body status: reduced ecdysone signaling activity results in an
increased lifespan and a higher resistance to different stresses (Simon et al., 2003;
Tricoire et al., 2009). Insulin signaling plays a central role in promoting animal
growth and it was shown that it can be impeded by ecdysone signaling (Colombani
et al., 2005). Applying ecdysone to adult D. melanogaster promotes sleep, whereas
ecdysone signaling mutants sleep less (Ishimoto and Kitamoto, 2010). Finally,
ecdysone is also required for longterm courtship memory (Ishimoto et al., 2009).
Altogether, besides its function in the development of insects, ecdysone signaling
is of great importance for various processes including reproduction, longevity,
behavior, and stress response. If ecdysone signaling is required for responding
to stressful stimuli, one would expect ecdysone levels to vary, depending on the
environmental conditions. Indeed, ecdysone levels were shown to change if flies are
exposed to unfavorable conditions like heat, food or sleep deprivation (Ishimoto
and Kitamoto, 2010; Rauschenbach et al., 2000; Terashima and Bownes, 2005;
Terashima et al., 2005). In the ovary for example, starvation induces apoptosis of
nurse cells in stage 8 egg chambers, that are subsequently reabsorbed to provide
energy. This apoptosis can also be observed upon injection of ecdysone, thus, it
is believed that the ecdysone signaling pathway mediates the effects of starvation
at the stage 8 checkpoint (Soller et al., 1999).

Altogether, it is becoming clear, that the adult functions of ecdysone are differ-
ent from the ones in the developing animal. Especially, a potential role of ecdysone
as a stress hormone – similar to cortisol in humans – is of interest.

1.3.4 D. melanogaster as a model to study the complexity of
steroid hormone function

Humans contain several classes of steroid hormones including the sex steroids
(estrogens, androgens, progestagens), glucocorticoids (cortisol), and mineralcor-
ticoids that carry out diverse functions in metabolism, immune system, inflam-
mation, reproduction, sexual differentiation and renal excretion (Litwack, 1994).
But whereas hormone signaling pathways in humans are difficult to study due to
their complexity, ecdysone and the juvenile hormone are the only known lipophilic
hormones in D. melanogaster. Furthermore, similarities in several aspects of nu-
clear hormone receptor structure and signal transduction mechanisms suggests
that the steroid receptors are highly conserved (Cherbas et al., 1991). This makes
D. melanogaster an ideal model to study the complex networks regulating steroid
receptors, and nuclear receptors in general.
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1.4 Small non-coding RNAs regulate a variety of
processes

Transposons are one of the best understood selfish genetic elements. They are able
to multiply within the genome and to insert into new locations, possibly causing
insertional mutagenesis and chromosomal recombination in the host genome. Eu-
karyotes, therefore, developed defense strategies to protect their genomes from
transposon caused damage. Many of them involve small RNAs not encoding pro-
teins that mediate silencing of mRNAs. Common to all small RNA pathways is
the RNA induced silencing complex (RISC) that contains an Argonaute protein
and a small bound RNA. Via complementary base pairing, the RISC binds to
target mRNAs and mediates its translational silencing and/or degradation.

piRNAs protect germline cells from transposons PIWI proteins belong to
the AGO family, and D. melanogaster contains the three PIWI proteins PIWI,
Aubergine and Argonaute3 (reviewed in Samji, 2009). piRNAs (26–31 nucleotides)
are produced from long single stranded RNA precursors that can be originating
endogenously from transposons or viral transcripts or can be introduced exoge-
nously. piRNAs and the interacting PIWI proteins are necessary to silence selfish
genetic elements and thereby to protect the integrity of the GSC genome across
generations (reviewed in Senti and Brennecke, 2010). Loss of PIWI protein or
other components that interact with piRNA pathway and transposon control re-
sults in an altered GSC maintenance and loss of GSCs (Cox et al., 1998; King
et al., 2001; Saito et al., 2010)

siRNAs are required for protection against viral nucleic acids In contrast
to the piRNA pathway, that is mainly required for the defense against selfish
genetic elements in the germline, miRNA and siRNA pathways play a major role
in regulating gene expression. siRNA and miRNA pathways differ slightly in
their molecular origin and binding complementarity to their target mRNAs, but
nevertheless share a number of similarities. siRNAs mostly match perfectly with
the target mRNA and usually lead to translational repression by degradation.
siRNAs are produced from perfect double stranded precursors from exogenous
or endogenous sources. One of the 21–25nt long strands is incorporated into the
RISC and leads to the cleavage of the target mRNA. siRNAs are thought to mainly
mediate a defense mechanism against foreign nucleic acids but also regulate the
levels of target mRNA.

1.4.1 miRNAs regulate translation and degradation of target
mRNAs

miRNAs are produced from certain precursors that are encoded in the genome,
either with an independent promoter or embedded in the intron of another gene.
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Polycistronic miRNAs – several miRNAs are encoded on one transcript – also oc-
cur. Pri-miRNAs are processed in the nucleus by the RNAase-III enzyme Drosha,
producing ∼70bp single stranded RNA precursors that form hair pins with mis-
matches and bulges (pre-miRNA). Exportin5 transports the pre-miRNAs into the
cytoplasm, where they are further cleaved by the RNAase-III enzyme Dicer into
small 21nt–25nt double strands with 3’ and 5’ overhang. Two different Dicer
homologs were described in D. melanogaster (Dicer1 and Dicer2). In parallel,
a number of Drosha- and Dicer-independent miRNA biogenesis pathways exist;
misregulation of the ”classical” biogenesis pathway, therefore, does not necessar-
ily lead to a complete loss of miRNAs in a cell (reviewed in Yang and Lai, 2011).
The mature miRNA is loaded onto the Argonaute containing RISC that targets
mRNAs for repression. Most miRNAs bind to the 3’UTR of target mRNAs with
incomplete complementarity and lead to the translational repression of target
mRNAs (reviewed in He and Hannon, 2004). Interestingly, the first 2–7nt from
the 5’ end of the miRNA – called the seed sequence – often matches perfectly with
the mRNA sequence.

miRNAs confer biological robustness Very often, loss or overexpression of a
miRNA causes rather subtle phenotypes. It is, thus, believed that the main func-
tion of miRNAs is to fine tune protein levels: gene expression is subject to stochas-
tic fluctuations and, in addition, endogenous and exogenous perturbations lead to
variabilities. During development or upon environmental stress, this ”transcrip-
tional noise” has to be tightly controlled in order to ensure that biological processes
are not disturbed (reviewed in Siciliano et al., 2013). Due to the imperfect com-
plementarity, miRNAs can target a variety of mRNA targets at the same time; in
addition, they provide a rapid way of regulating protein levels and are, thus, great
candidates to confer cells robustness against endogenous or exogenous perturba-
tions. miR-9a is, for example, required to ensure that ”muscle specific” genes are
not ectopically expressed in neurons (Kai and Spradling, 2003b).

The first miRNAs were found in C. elegans Lin-4 is the first miRNA that was
identified through a genetic screen as a heterochronic gene in C. elegans. Loss of
lin-4 leads to defects in the developmental timing: early larval fates are reiterated
inappropriately at later stages. Opposite phenotypes – premature appearance of
larval stage 2 patterns in larval stage 1 – are observed if the lin-4 target lin-14
is missing. Lin-14 encodes a protein, the temporal regulation of which is re-
quired for correct sequence of cell lineages. The downregulation of lin-1 4 via its
3’UTR is both necessary and sufficient to enable the posttranscriptional temporal
regulation by lin-4 (Lee et al., 1993; Wightman et al., 1993). Since the descrip-
tion of lin-4, the number of known miRNAs increased rapidly: miRbase 19.0 lists
2042 mature miRNAs in humans, 368 in C. elegans, and 426 in D. melanogaster
(http://www.mirbase.org/). Even though the function of only a few miRNAs has
been analyzed in more detail so far, it is becoming clear that miRNAs are capable
to not only regulate various developmental processes, but also influence virtually
all other cellular processes.
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1.4.2 miRNAs are required for GSCs behavior

The miRNA pathway was shown to be of great importance for maintenance and
division of GSCs, since mutating key components of the miRNA pathway like the
double-stranded RNA-binding domain protein Loquacious, the double-stranded
RNases-III-type Dicer-1 and Argonaute1 result in loss of GSCs (Forstemann et al.,
2005; Hatfield et al., 2005; Jin and Xie, 2007; Park et al., 2007; Shcherbata et al.,
2007; Yang et al., 2007; Yu et al., 2009). Interestingly, components of the miRNA
pathway are differentially required in a stage-dependent manner (Shcherbata et al.,
2007). In the D. melanogaster ovarian germline, miRNAs do not only control
stem cell proliferation (Hatfield et al, 2005), but also define developmental, stage-
specific requirements for stem cell maintenance and differentiation (Shcherbata
et al., 2007) demonstrating that miRNAs are important components of the tem-
porally and spatially coordinated gene regulation machinery.

Function of a few individual miRNAs in the germarium was studied One
of the first miRNAs found in D. melanogaster is bantam. Bantam is expressed
in GSCs and was shown to be a key miRNA that is required for GSC mainte-
nance and division (Neumuller et al., 2008; Shcherbata et al., 2007). Mei-P26 is
a TRIM-NHL protein that is required for proliferation control, differentiation of
the GSC progeny and GSC maintenance. It is strongly induced in 16-cell cysts
and mei-P26 mutants display ovarian tumors. Mei-P26 functions by physically
associating with Argonaute1 and, thereby, inhibiting the miRNA pathway (Li
et al., 2012; Neumuller et al., 2008; Page et al., 2000). miR-7 and miR-278 act
in concert to regulate the levels of Dacapo, a cyclin-dependent kinase inhibitor.
Loss of miR-7 or miR-278 affects the proliferation of GSCs, in addition it was
shown in male testes that miR-7 can target the 3’UTR of the differentiation factor
Bam and thereby possibly contribute to transcriptional downregulation of bam if
dedifferentiation of cysts is needed (Pek et al., 2009; Yu et al., 2009). miR-184,
in contrast, was shown to affect the range of Dpp signaling by targeting the Dpp
receptor Saxophone, loss of miR-184 therefore affects the differentiation of the
GSC progeny (Iovino et al., 2009).

1.4.3 let-7 is a highly conserved heterochronic miRNA

let-7 was identified as a heterochronic gene in C. elegans The second small
non-coding RNA that was identified in C. elegans is encoded by the heterochronic
gene let-7. The let-7 mutation was first identified through an EMS (ethyl methane-
sulfonate) screen and was named after its late larval lethal phenotype in C. elegans
(Meneely and Herman, 1979). Hypodermal blast cells are stem cells that normally
divide at each larval transition; after the L4–adult transition, however, they exit
the cell cycle, differentiate and form adult structures. In let-7 mutant animals, the
blast cell lineages undergo an additional round of division. Loss of let-7, therefore,
leads to the reiteration of earlier larval cell division patterns and failure of stem
cells to differentiate appropriately to generate adult structures. Overexpression of

24



1 Introduction

let-7, in contrast, leads to precocious cell cycle exit (Reinhart et al., 2000; Slack
et al., 2000). Let-7 mutations can be rescued by mutations in the heterochronic
lin-41 gene; and lin-41 mutations were shown to cause phenotypes that are op-
posite to the ones of let-7. Using reporter assays, deletion analysis and genetic
interaction experiments it was proven that lin-41 is posttranscriptionally regu-
lated by let-7. Many other let-7 targets, most of which are transcription factors
or signaling molecules, were identified in C. elegans (Grosshans et al., 2005). In
accordance with the time at which let-7 mutant phenotypes become obvious, let-7
is not detectable until the last larval stages, where it mediates the downregulation
of lin-41 gene activity (Reinhart et al., 2000; Slack et al., 2000). Thus, lin-4 is re-
quired for proper timing during the first larval stages, whereas let-7 is responsible
for the transition from late larval to adult cell fates. In summary, let-7 regu-
lates the transition from proliferating stem cells to differentiated and mitotically
quiescent cells in C. elegans.

let-7 is highly conserved among bilateria Interestingly, it was furthermore
shown that let-7 sequence is highly conserved: Northern blot analyzes showed
identical 21nt let-7 RNA in a variety of bilaterian clades including annelid, arthro-
pod, mollusk, echinoderm, hemichordate and vertebrates but was absent from
cnidaria, porifera, plants and fungi (Pasquinelli et al., 2000). Apart from its se-
quence, the temporal expression pattern of let-7 also is highly conserved among
species: similar to the situation in C. elegans, D. melanogaster, let-7 cannot be de-
tected until the late third instar. D. melanogaster and C. elegans both are ecdyso-
zoans: that is, their development involves several molts, during which the animals
shed their cuticle. In two mollusks and one annelid species, let-7 was present
only during adulthood and even in vertebrates let-7 is temporally expressed (re-
viewed in Roush and Slack, 2008). In D. melanogaster, let-7 is expressed from
a common precursor and coordinately regulated with the lin-4 homolog miR-125
and miR-100 (Bashirullah et al., 2003; Sempere et al., 2003). The expression of
miR-125 and let-7 is first detected around day 9 of embryonic development and
peaks at day 13. Interestingly, mouse lin-41 – the homologs of which are regulated
by let-7 – shows an expression pattern reciprocally to the ones of miR-125 and
let-7 (reviewed in Sokol, 2012). The high level of sequence and expression pat-
tern conservation suggest that let-7 may regulate developmental processes among
bilateria.

Loss of let-7 leads to heterochronic defects in D. melanogaster Since let-7
sequence and temporal expression pattern are so highly conserved, it is possi-
ble that let-7 function as a regulator of proliferation and differentiation is also
conserved. Indeed, similar to the situation in the worm, loss of let-7 leads to
heterochronic defects in D. melanogaster. Dorsal internal oblique muscles are
remnants of the larval body that normally disappear after eclosion, but persist
in 90% of let-7 mutants (Sokol et al., 2008). Furthermore, cells in the wing disc
fail to exit the cell cycle short after puparium formation and instead continue
dividing (Caygill and Johnston, 2008). The adult body wall muscles are smaller
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than in control animals and the neuromuscular junctions are immature (Caygill
and Johnston, 2008; Sokol et al., 2008). In summary, the absence of let-7 results
in both, the perdurance of larval and the presence of immature adult structures
in D. melanogaster, which means that let-7 has similar functions in the fly as in
the worm, where it was initially identified as a heterochronic gene.

1.4.4 Expression of let-7 is initiated by ecdysone signaling

As already mentioned, let-7 expression follows a tight temporal regulation in sev-
eral animals among bilateria (Pasquinelli et al., 2000). In D. melanogaster, let-7
is first found in late third instar animals, coinciding with a pulse of ecdysone that
initiates puparium formation, and peaks several hours afterwards (Bashirullah
et al., 2003; Pasquinelli et al., 2000; Sempere et al., 2002). In addition, the known
ecdysone response mRNA E74A, shows a similar expression pattern, altogether
suggesting that let-7 expression is regulated by ecdysone signaling (Bashirullah
et al., 2003). Two different groups analyzed whether let-7 expression is initiated by
ecdysone signaling and reached contradictory conclusions (Bashirullah et al., 2003;
Sempere et al., 2002). Incubating cultured D. melanogaster cells with ecdysone
led to the induction of let-7 expression and animals with the temperature sensi-
tive ecd1ts mutation, which leads to dramatically reduced ecdysone levels, almost
completely lack let-7 (Bashirullah et al., 2003; Sempere et al., 2002). In contrast,
expression of EcR-RNAi caused no visible change in let-7 levels, estimated by
Northern blot (Bashirullah et al., 2003) and experiments, where third instar lar-
val organs were cultured in media with or without ecdysone, produced different
results (Bashirullah et al., 2003; Sempere et al., 2002). This discrepancy, however,
was resolved by Garbuzov and Tatar, 2010, who, prior to the micromolar ecdysone
treatment, incubated cells with nanomolar concentrations of ecdysone for a few
hours, which resembles the in vivo situation much better. This pre-treatment with
low concentrations of ecdysone primed cells to quickly respond to higher concen-
trations of ecdysone and induce let-7 expression. In the light of these results,
the conflicting data by Bashirullah et al., 2003 can be explained. In addition, it
was shown that the let-7 complex promoter contains three ecdysone responsive
elements via which the active EcR/Usp complex directly activate the transcrip-
tion of the let-7 complex, containing the miRNAs let-7, miR-100 and miR-125
(Chawla and Sokol, 2012). In summary, several lines of evidence indicate that
let-7 expression is initiated by ecdysone pulse in the developing larvae.

The transcription factor Ab is negatively regulated by miRNA let-7 miRNAs
function by regulating the translation of target mRNAs, identifying the targets of
a certain miRNA is, therefore, a key question to understand its role. Regulation
of ras and lin-41 by let-7 is conserved in several organisms (reviewed in Boyeri-
nas et al., 2010). In addition, the BTB/POZ protein Ab (see Section 1.3.2, page
19) that contains several let-7 binding sites in its 3’UTR was shown in vivo to
be a let-7 target. Ab levels persist in let-7 mutant cells and reducing Ab dose
can partially rescue some of let-7 mutant effects (Caygill and Johnston, 2008;
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Kucherenko and Shcherbata, 2013; Sokol et al., 2008). Ab is a powerful trans-
determination factor that was shown to be highly dosage dependent, suggesting
that mechanisms are required to precisely regulate Ab levels in the cell – a task
that may partially be fulfilled by the miRNA let-7. Keeping in mind that ab was
identified in our screen to be important for the overall germarium architecture, it
is interesting to consider that let-7 may play a role in the germarium by modulat-
ing Ab levels. Co-immunoprecipitation analysis and genetic interaction analyses
on border cells revealed that the transcription factor Ab functions by negatively
regulating the EcR co-activator Tai (Bai et al., 2000). As we could show, the
ecdysone signaling pathway is required for proper EC morphology and regulates
germline differentiation cell non-autonomously via acting on cell-adhesion levels,
which alters the responsiveness of germline cells to Wg signaling (König et al.,
2011, Section 2.5, page 95) The spatially restricted cofactors that enhance (Tai)
or inhibit (Ab) ecdysone signaling modulate the cell specific response to the sys-
temic ecdysone signaling. Interestingly, let-7 expression was shown to be initiated
by ecdysone signaling (see Section 1.4.4, page 26), suggesting a model in which
let-7 and ecdysone signaling act in a double negative feedback loop to fine tune
the strength of ecdysone signaling.

1.4.5 let-7 is important for cell differentiation and cancer –
also in mammals

D. melanogaster is the only model organism with only one let-7 family mem-
ber Apart from the let-7 sequence that is conserved among bilateria (let-7a), 9
other let-7 family members were found in humans. Whereas D. melanogaster con-
tains only one let-7 gene that is encoded by one precursor, the human let-7a is
generated by three different precursors (let-7a 1–3) (Roush and Slack, 2008). Sim-
ilar numbers of let-7 family members are found in zebrafish, chicken and mouse,
which makes D. melanogaster an extremely valuable model for analyzing let-7.

let-7 plays a role in neuronal development and cell differentiation The early
studies in C. elegans already revealed that let-7 is critical for cell differentiation.
Today, let-7 is widely considered one of the key miRNAs in developmental reg-
ulation and cancer. Human and mouse embryonic stem cells lack let-7, while its
levels increase during differentiation (reviewed in Boyerinas et al., 2010). The
RNA binding protein LIN28 is one of four factors that is able to reprogram mouse
fibroblasts to a stem cell state; repression of let-7 is probably contributing to this
reprogramming. LIN28 inhibits the processing of let-7 miRNA and, thus, prevents
cellular differentiation. When stem cells differentiate, let-7 and miR-125 promote
their own expression by targeting their negative regulator LIN28 (reviewed in
Mondol and Pasquinelli, 2012). In addition, let-7 is highly expressed in neuronal
tissues and regulates the remodeling of the neuromusculature, maturation of neu-
romuscular junctions, mushroom body morphology and several adult behaviors
including learning in D. melanogaster (Caygill and Johnston, 2008; Kucherenko
et al., 2012; Sempere et al., 2004; Sokol et al., 2008). An increase of let-7 levels
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is also observed during mammalian brain development and, in accordance with
this, the mammalian let-7 family was shown to promote neuronal differentiation
programs (reviewed in Mondol and Pasquinelli, 2012). C. elegans lin-41 is reg-
ulated by let-7, and lin-41 orthologs were found in D. melanogaster, mouse and
other animals (Grosshans et al., 2005; Slack et al., 2000). Remarkably, mouse and
human lin-41 contain putative let-7 binding sites. The expression patterns of the
two are reciprocal and it was suggested that its 3’UTR mediates its repression by
let-7 (Schulman et al., 2005). Not only is let-7 sequence strictly conserved, but, in
some cases, the let-7 targets seem to be conserved among organisms. This opens
intriguing prospects of this miRNA as an ancient regulator of cell differentiation,
and future research in mammals will enable detailed comparisons of let-7 function
through evolution.

let-7 is a tumor suppressor gene Low levels of let-7 family members in adult
tissues are a hallmark of several cancer types and can indicate poor prognosis.
Several cancer-relevant let-7 targets have been identified: RAS, an oncogene and
HMGA2, a chromatin-associated nonhistone protein that is misregulated in hu-
man cancers, are directly targeted by let-7 (reviewed in Boyerinas et al., 2010).
Many let-7 family members are tumor suppressors, even though, in same cases
let-7 family members were found to be expressed at higher levels in cancer tis-
sue. Analysis of let-7 in vertebrates are, however, complicated by the relatively
large number of let-7 family members. Taking together, let-7 plays a pivotal
role in cell differentiation and temporal development across animal species and
the importance of this miRNA is highlighted by its relevance in certain human
diseases.

1.5 The Wnt signaling pathway is a key
determinant for development

The Wnt signaling pathway presents a major molecular cascade that controls a
variety of different processes including cell proliferation, differentiation, migra-
tion, and polarity. It is highly conserved in invertebrates and vertebrates and is
activated by Wnt proteins, secreted glycoproteins that bind to transmembrane
receptors, acting as short range signaling molecules or as long range morphogens.
19 Wnt family members were identified that have 7 homologs in D. melanogaster
(reviewed in Saito-Diaz et al., 2013). The D. melanogaster ortholog Wingless
(Wg) was first identified through its effect on wing development and is one of
the best studied Wnt ligands. Signaling activated by Wnt proteins is traditionally
divided in canonical and non-canonical pathways that differ regarding the involve-
ment of β-Catenin (D. melanogaster homolog Arm). Depending on the cellular
context, different Wnt ligands can activate either or both Wnt pathways (reviewed
in MacDonald et al., 2009).
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1.5.1 The effects of the canonical Wnt signaling pathway are
mediated by β-Catenin

Canonical Wnt signaling leads to the stabilization of Arm and the subsequent acti-
vation of Arm target genes. If Wnt signaling is not active, Arm is phosphorylated,
ubiquitinated and degraded by a complex containing Axin, shaggy/Zeste-white 3,
and adenomatous polyposis coli. Upon binding of a Wnt ligand to the receptor
Frizzled with its coreceptor LRP5/6 (D. melanogaster homolog Arrow), a protein
called Dishevelled is activated and leads to the inactivation of the Arm degrading
complex. Arm then accumulates, translocates to the nucleus and forms a complex
with the Pangolin (Pan)/T-cell factor family of High mobility group transcrip-
tion factors, activating the transcription of target genes (reviewed in Chien et al.,
2009).

1.5.2 β-Catenin has a dual role as a structural component of
cell-adhesion complexes and as a major transmitter of
Wnt signaling

Besides its crucial role in Wnt signaling, Arm is a structural component of ad-
herens junctions (see Section 1.2.3, page 11). Due to its different functions as
signaling molecule and as structural component, β-Catenin was discovered inde-
pendently twice. Arm can be found at different locations within the cell: bound
to E-Cad at adherens junctions, as a transcription factor in the nucleus and in the
cytoplasm – bound to the destruction complex or free. Arm contains armadillo
repeats in its central region, flanked by C- and N-terminal domains. Each of
the armadillo repeats forms three helices, composing a large super helix with a
long positively charged groove. This groove serves as a platform for several Arm
binding partners. As a consequence of this, the different partners with which
Arm interacts in cell adhesion (DE-Cad), the destruction complex (APC) or in
the nucleus cannot bind Arm simultaneously; the different pools of Arm in the
cell, thus, influence each other (Kimelman and Xu, 2006; Wodarz et al., 2006).
The binding preferences of β-catenin and the stability of the interactions can be
influenced by several posttranslational modifications like phosphorylations, ubiq-
uitinations, acetylations and glycosylations (reviewed in Valenta et al., 2012). If
the Wnt signaling pathway is inactive, β-Catenin is mainly bound to E-Cad in
cell-cell adhesions, whereas cytoplasmic β-Catenin is phosphorylated and marked
for degradation by the destruction complex (reviewed in Kimelman and Xu, 2006).
Activation of the pathway destabilizes the β-Catenin destruction complex, which
leads to the accumulation of phosphorylated β-Catenin. Free β-Catenin then
translocates to the nucleus, associates with transcription factors and activates or
represses the transcription of target genes (reviewed in Chien et al., 2009).
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1.5.3 Wnt signaling regulates many processes in
D. melanogaster

D. melanogaster wg was first identified as a segmentation gene, the loss of which
leads to the transformation of adult wings to thoracic notums; and it appeared
that Wg and the vertebrate oncogene Int-1 are orthologs (Wg and int-1 were fused
to Wnt; reviewed in Chien et al., 2009; Swarup and Verheyen, 2012). Misregulation
of the Wnt signaling pathway plays a role in several human diseases (reviewed in
MacDonald et al., 2009). The role of Wg signaling in the germarium however
has not been studied extensively. Wg is expressed in CpCs and TFs and it was
shown that wg loss of function affects GSC region and FCs in the germarium. Wg,
produced from ECs, represents a key factor for controlling the FSC population
(Forbes et al., 1996b; Nystul and Spradling, 2007; Sahai-Hernandez and Nystul,
2013; Song and Xie, 2003). Whereas the exact role of Wg in FSCs and FCs had
been studied in more detail, the function of Wg signaling for GSCs and germline
differentiation is rather unclear. Immunostaining reveals that the DE-Cad/Arm
complex is found between GSCs and CpCs in large amounts and is essential for
GSC maintenance (see Section 1.2.3, page 11). However, whether a perturbation
of Wnt signaling due to altered cell adhesion also contributes to the observed
phenotypes, has not been addressed.

1.6 Chromatin modifications present an additional
level at which GSCs can be regulated

Apart from intrinsic and extrinsic signaling pathways that control stem cell fate,
chromatin modifying factors have been shown to be indispensable for stem cell
maintenance and differentiation (reviewed in Buszczak and Spradling, 2006). Hi-
stones can be post-transcriptionally modified in various ways, including methy-
lation, acetylation and phosphorylation of single amino acids, which together es-
tablish histone codes of active or silent transcription.

1.6.1 Chromatin modifications regulate GSC maintenance

Which epigenetic features define the stem cell state and how do they change
upon differentiation are key questions that need to be resolved in order to fully
understand and to potentially manipulate stem cell maintenance and differentia-
tion. The antagonizing Polycomb and Trithorax group proteins were discovered
in D. melanogaster (reviewed in Ringrose and Paro, 2004), and the GSCs present
an attractive model to study the complex interplay of chromatin modifications
and adult stem cell fate. The histone methyl transferases Su(var)3-9 and Egg-
less, that is acting with its cofactor Windei, are required for the trimethylation
of H3K9, which was shown to be required for normal oogenesis (Clough et al.,
2007; Koch et al., 2009; Yoon et al., 2008). In addition, the H3K4 trimethylation,
that is mediated by the E3 ubiquitin ligase dBre1 and the trimethylase dSet1, is
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required for GSC maintenance and germline differentiation (Xuan et al., 2013).
The ATP-dependent remodeling factor ISWI, a member of the SWI/SNF family
of chromatin factors is required for GSC maintenance: ISWI mutant GSCs pre-
maturely express the differentiation factor Bam and are lost quickly (Xi and Xie,
2005). In addition to ISWI, NURF301, another member of the NURF complex is
also required for GSC proliferation and maintenance.

Chromatin modifications mediate ecdysone signaling Interestingly, Baden-
horst et al., 2005 showed that NURF301 associates with the EcR in an ecdysone-
dependent manner and cooperates with the EcR to mediate the effects of ecdysone
signaling. Based on analysis of flies double heterozygous for components of ISWI
or NURF301 and components of the ecdysone signaling pathway, it was suggested
by Ables and Drummond-Barbosa, 2010 that the chromatin remodeling NURF
complex functionally interacts with the ecdysone signaling pathway. These data
show that the response to the ecdysone signaling can be transduced by chromatin
modifications.

1.6.2 Proper ubiquitination of histone H2B is required for GSC
behavior

The reversible addition of ubiquitin is another possible histone modification and
histones that display ubiquitinated residues can serve as a platform for other
modifications. The ubiquitination of histone H2B (H2Bub1) plays a role in vari-
ous developmental processes in flies, plants and mice (reviewed in Wright et al.,
2011). Recently, it was suggested that H2B monoubiquitination helps to medi-
ate ecdysone induced gene transcription: the protease USP7 interacts with the
biosynthetic enzyme GMP synthetase and removes the H2B ubiquitination mark.
USP7/GMP synthetase associates with the E74 and E75 loci before these genes
are induced by ecdysone signaling. In USP7 or GMP synthetase mutants, E74
and E75 are misregulated, and, furthermore, USP7/GMP synthetase physically
and functionally interacts with the EcR (van der Knaap et al., 2010). Based on
these findings, van der Knaap et al., 2010 suggest that USP7/GMP synthetase
is a corepressor of ecdysone signaling. Scrawny, another H2Bub protease is re-
quired for the maintenance of GSCs, FSCs and intestinal stem cells (Buszczak
et al., 2009). The histone demethylase Lsd1 is present in GSCs, FCs and ECs
but it only seems to be required in ECs: reducing the Lsd1 levels leads to mu-
tant germaria with a lot of undifferentiated GSC-like cells, which display high
TGF-β signaling activities. Apparently, Lsd1 epigenetically reduces the levels of
Dpp mRNA in ECs, contributing to the restriction of TGF-β signaling to CpCs
(Eliazer et al., 2011).

In summary, there are accumulating reports about H2Bub1 functions in diverse
processes. However, little is known about its role in stem cells. In cooperation
with Prof. Johnsen we showed that H2Bub1 levels decrease upon differentiation
of stem cells and, in particular, GSCs in D. melanogaster (Karpiuk et al., 2012).
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1.7 Maintaining sexual identity is required for
germline differentiation

Male and female GSCs are in principle controlled by similar mechanisms; however,
there are sex specific differences with respect to how, when and to which extent
certain signaling pathways are used (for review see Fuller and Spradling, 2007;
Spradling et al., 2011). The D. melanogaster testis is a paired tubular organ;
the GSCs reside at the apical tip and are attached to somatic hub cells. The
cyst stem cells give rise to somatic cells that – similar to the ECs in the female
ovaries – encapsulate the differentiating germline cells. The TGF-β ligands Dpp
and Gbb are produced in the somatic hub and cyst cells and – like in the ovary
– are required for GSC maintenance. Different from the situation in females,
ectopic activation of the TGF-β pathway is not sufficient to induce self-renewal of
germline cells (reviewed in Matunis et al., 2012). Bam is a differentiation factor
in males as well, but acting at a different step than in the females: it is expressed
in differentiating spermatocytes and is required to cease mitotic amplification
divisions (reviewed in Spradling et al., 2011).

1.7.1 Sex is determined by a series of alternative splicing
events in D. melanogaster

Different species use a variety of different mechanisms to establish and maintain
the somatic sex. The X chromosome to autosome ratio determine the sexual iden-
tity: two X chromosomes (XX:AA) determines female, one X chromosome (X:AA)
yields male identity. The Y chromosome has no influence on the sexual identity,
but is required for spermatogenesis. Regulatory proteins lead to the activation of
the gene encoding the RNA binding protein Sex lethal (Sxl) in XX:AA animals
only. After the Sxl activity was set up early in embryogenesis, a positive feed-
back splicing mechanism is used, in which Sxl controls its own splicing. X:AA
cells lack Sxl protein and all Sxl transcripts, therefore, contain an exon containing
a translation termination codon. In XX:AA cells, however, Sxl protein affects
splicing and thus, the male specific translation terminating codon is skipped and
functional Sxl mRNA is generated. Sxl is both necessary and sufficient to pursue
its own splicing loop and is on top of the cascade determining the female trait,
directly or indirectly controlling all female specific programs (reviewed in Salz,
2011; Salz and Erickson, 2010). Sxl controls the splicing of transformer (tra). Tra
– a female specific RNA binding protein as well – in turn, controls splicing of the
transcription factors Doublesex (Dsx) and Fruitless. Dsx is the main factor con-
trolling the sexual dimorphism of the somatic gonads. It is expressed in a subset
of somatic cells and controls the sexually dimorphic development of the others via
cell non-autonomous processes (reviewed in Murray et al. (2010)).

The germline sexual identity is determined in collaboration with the soma
Interestingly, the sexual identity of germline cells is determined differently from
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the somatic cells in many species. In some, the somatic cells solely control the
germline sexual fate. In others, such as fruit flies, mice or humans the sexual
identity of the germ cells is important for the germ cells sex. Tra and Dsx, the
main determinants of somatic sexual identity are not required in the germline
for specifying the sexual identity. The role of Sxl in the germline is discussed
controversial; while it was thought to act and be activated differently then in
the soma (reviewed in Casper and Van Doren, 2009), it was recently shown that
ectopic expression of Sxl is sufficient to induce female development in the pole cells
(Hashiyama et al., 2011). Hence, Sxl is a key player in establishing sexual identity
of both soma and germline, nevertheless a comprehensive analysis of downstream
effectors is missing (reviewed in Murray et al., 2010; Salz and Erickson, 2010). The
germline sexual identity is first detected after formation of the embryonic gonad
and is mainly controlled by the soma at this point (Casper and Van Doren, 2009;
Wei et al., 1994). As development goes on, the soma is not sufficient for keeping
the germline sex; XX:AA or X:AA germ cells in the soma of the opposite sex do
not follow the somatic sex. Transplant studies demonstrated, that XX:AA germ
cells cannot form oocytes in the male soma and XY:AA germ cells do not give
rise to spermatocytes when transferred into the female soma, but rather display a
confused sexual identity (reviewed in Murray et al., 2010). It is therefore critical
to understand, which pathways are used by the soma to control the germline
sex. The JAK/STAT signaling pathway that is known to be one of the main
mechanisms that control GSC maintenance in the testis also has a masculinizing
effect on the germ cells (Wawersik et al., 2005). The mechanisms that are used
by the female soma to control the germline sex remain undiscovered.

1.7.2 Germline tumor arise as a consequence of confused
sexual identity

Mutations in Sxl lead to tumors in XX:AA germline cells that are blocked between
GSC and CB stage. The tumorous cells not only express the differentiation factor
Bam, but also the GSC specific marker Nos (Chau et al., 2009, 2012). Together
with its partner Pum, Nos inhibits differentiation-promoting mRNAs, including
brat and it is therefore critical to restrict Nos function to the GSC. It is known
that Bam itself downregulates the levels of Nos (Li et al., 2009) and, in addition,
Chau et al., 2009, 2012 showed that the translation of nos is directly repressed
by Sxl. Sxl, thus, promotes differentiation of the GSC progeny; since Sxl is also
present in the GSCs themselves, this raises the question how the Nos repression by
Sxl is restricted to CBs. Based on epistasis experiments, Chau et al., 2009, 2012
suggest, that Bam itself is required for this germline cell specificity and that nos
is ultimately repressed by Bam and Sxl functioning together. The misdirected
expression of nos, however, is not sufficient to explain the described tumorous
phenotypes (Chau et al., 2012; Li et al., 2009).

Mismatch of germline and somatic sexual identity leads to differentiation
failure Interestingly, germline cells lacking Sxl or bam express a set of commonly

33



1 Introduction

testis-specific markers, suggesting that their sexual identity is confused (Chau
et al., 2009; Staab et al., 1996; Wei et al., 1994). Such ”ovarian tumors”, consisting
of germline cells displaying both male and female characteristics are also observed
when XX:AA germline cells are transplanted into a female soma (reviewed in
Casper and Van Doren, 2006). Furthermore, mutations in ovarian tumor or ovo,
which are thought to promote female identity, lead to germline overproliferation
(King; Oliver et al., 1987). Altogether, there are many examples showing that the
sexual identity of soma and germline have to match in order to allow for proper
germline development. Considering that steroid hormones are key determinants
for sexual development in mammals, these findings raise the question whether
defects in maintaining the sexual identity contribute to the differentiation delay
observed upon perturbed ecdysone signaling.
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1.8 Research objectives

In a genetic pilot screen, clonal germaria of hsFlp; FRT40A lethals from the
Drosophila Genomics Resource Center were analyzed in order to find novel genes
that affect the GSC niche architecture. Out of 206 preselected genotypes, 53
were chosen for a secondary analysis (Weiss, 2009). Interestingly, components of
a pathway, that had not been shown to play a role in GSC-niche communication
at that point, were found. The gene tai codes for the D. melanogaster homolog of
AIB1 (amplified in breast cancer) and its loss of function leads to severe defects in
the germarium architecture. Tai is a co-activator of the nuclear hormone receptor
for ecdysone, the hormone that triggers all developmental transitions in the fly
(Bai et al., 2000). In addition to that, the transcription factor Ab that binds
Tai and thereby is a repressor of ecdysone signaling, was also found to affect
germarium architecture in the screen.

Whereas the developmental roles of ecdysone in the fly have been extensively
studied, far less is known about the function of the only known steroid hormone in
adult flies. Steroid hormones control various aspects of adult life in vertebrates,
but since analysis of their function is technically challenging, good model sys-
tems are extremely valuable. We, therefore, decided to analyze the undescribed
functions of the ecdysone signaling pathway in the adult germarium.

First analysis had revealed that germaria with tai mutant clonal cells were
characterized by enlarged niches and disturbed differentiation of GSC progeny
(Weiss, 2009). In addition, data gained by Weiss, 2009 pointed towards a somatic
requirement of the ecdysone signaling pathway components. A first aim of the
present thesis was, therefore, to confirm, that the ecdysone signaling acts on the
germline in a cell non-autonomous fashion. For that purpose, the activity pat-
tern of ecdysone signaling pathway in the germarium was analyzed and different
mutations of ecdysone signaling pathway components – conditionally present in
soma, germline or both – were compared. As is described in Section 1.2.4, page
12, ECs form long cytoplasmic protrusions and are essential to allow for germline
differentiation. To reveal what happens in ECs upon perturbed ecdysone signal-
ing, EC shape was analyzed using specific markers. Importantly, several pathways
are known to be required for the communication between germline and soma in
the germarium (see Section 1.2.1, page 6): does any of these contribute to trans-
mitting the systemic ecdysone hormone signaling to the GSCs? Finally, specific
germline markers and epistasis experiments were used to characterize the nature
of the germline cells delayed in differentiation. In summary, the previously un-
known role of ecdysone signaling, controlling the germline and especially germline
differentiation was characterized.
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Previously, it has been shown that in Drosophila steroid

hormones are required for progression of oogenesis during

late stages of egg maturation. Here, we show that ecdys-

teroids regulate progression through the early steps of

germ cell lineage. Upon ecdysone signalling deficit germ-

line stem cell progeny delay to switch on a differentiation

programme. This differentiation impediment is associ-

ated with reduced TGF-b signalling in the germline and

increased levels of cell adhesion complexes and cytoske-

letal proteins in somatic escort cells. A co-activator of the

ecdysone receptor, Taiman is the spatially restricted

regulator of the ecdysone signalling pathway in soma.

Additionally, when ecdysone signalling is perturbed

during the process of somatic stem cell niche establish-

ment enlarged functional niches able to host additional

stem cells are formed.
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Introduction

One of the key characteristics of adult stem cells is their

ability to divide for a long period of time in an environment

where most other cells are quiescent. Typically, stem cells

divide asymmetrically where a mother cell gives rise to two

daughter cells with different fates, another stem cell and a

differentiated progeny (Gonczy, 2008).

Adult stem cells also require niches. The niche itself is

as significant as stem cell autonomous functions and its

environment has the potential to reprogramme somatic cells

and to transform them into stem cells (Brawley and Matunis,

2004; Kai and Spradling, 2004; Boulanger and Smith, 2009).

The niche includes all cellular and non-cellular components

that interact in order to control the adult stem cell. These

interactions can be divided into one of two main mechanistic

types—physical contacts and diffusible factors. Diffusible

factors travel over varying distances from a cell source to

instruct the stem cell, often affecting transcription (Walker

et al, 2009). Stem cells must be anchored to the niche through

cell-to-cell interactions so they will stay both close to niche

factors that specify self-renewal and far from differentiation

stimuli. While multiple studies focused on the aspects of how

the niche regulates stem cells, the question of how the niche

is established itself has not been addressed in depth.

The Drosophila ovarian stem cell niche model is an

exemplary system where two different stem cell types, germ-

line stem cells (GSCs) and somatic escort stem cells (ESCs)

share the same niche and coordinate their development.

Niche cells contact GSCs via E-cadherin and Integrin-

mediated cell adhesion complexes that bind to the extracel-

lular matrix and connect to the cytoskeleton and this physical

docking of stem cells to the niche is essential for GSC

maintenance (Xie and Spradling, 2000; Tanentzapf et al,

2007). In addition, the stem cell niche sends short-range

signals that specify and regulate stem cell fate by maintaining

the undifferentiated state of GSCs next to the niche. Not only

does the niche have an effect on stem cells, but also the stem

cells communicate with the niche. A feedback loop exists

between the stem cells and niche cells: Delta from the GSC

can activate Notch in the somatic cells that maintains a

functional niche and in turn controls GSC maintenance

(Ward et al, 2006). While the management of GSCs within

the niche is relatively well understood, the control of the

other present stem cell type, ESCs is not clear. An ESC, like a

GSC divides asymmetrically producing another ESC and a

daughter, escort cell (EC) that will differentiate into a squa-

mous cell that envelops the GSC progeny once disconnected

from the niche. It is believed that developing cyst encapsula-

tion by ECs protects from TGF-b signalling that maintains

GSC identity (Decotto and Spradling, 2005). The ESC and GSC

cycles have to be tightly coordinated, so a sufficient number

of ECs will be produced in response to GSC division.

However, the pathway used for GSC and ESC communication

is unknown.

Adult stem cell division mostly is activated locally in re-

sponse to tissue demands to replace lost cells. In addition, stem

cells can be regulated via more general stimuli in response to

systemic needs of the whole organism. Hormones are systemic

regulators that regulate a variety of processes in different

organs in response to the body’s status. Even though the effects

of hormonal signalling have been extensively studied, the

specific roles for hormones in stem cell biology remain com-

plex, poorly defined and difficult to study in vivo.

Drosophila is a great system to study the role of endocrine

signalling as it contains only one major steroid hormone,

ecdysone (20-hydroxyecdysone, 20E) that synchronises theReceived: 9 November 2010; accepted: 22 February 2011
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behavioural, genetic and morphological changes associ-

ated with developmental transitions and the establish-

ment of reproductive maturity (Shirras and Bownes,

1987; Riddiford, 1993; Buszczak et al, 1999; Kozlova and

Thummel, 2003; Gaziova et al, 2004; Schubiger et al, 2005;

Terashima and Bownes, 2005; McBrayer et al, 2007).

Ecdysteroids act through the heterodimeric nuclear receptor

complex consisting of the ecdysone receptor, EcR (Koelle

et al, 1991) and its partner ultraspiracle (USP), the

Drosophila retinoid X receptor homologue (Shea et al,

1990; Oro et al, 1992; Yao et al, 1992). The ecdysone/EcR/

USP receptor/ligand complex binds to ecdysone response

elements (EcREs) to coordinate gene expression in diverse

tissues (Riddihough and Pelham, 1987; Cherbas et al, 1991;

Dobens et al, 1991). Ecdysone signalling is patterned spatially

as well as temporally; depending on the tissue type and the

developmental stage, the EcR/USP complexes with different

co-activators or co-repressors including Taiman, Alien, Rig,

SMRTER, Bonus, Trithorax-related protein and DOR (Dressel

et al, 1999; Tsai et al, 1999; Bai et al, 2000; Beckstead et al,

2001; Sedkov et al, 2003; Gates et al, 2004; Jang et al, 2009;

Francis et al, 2010; Mauvezin et al, 2010). These co-factors

can have other binding partners that are themselves regulated

by different signalling pathways. For example, Abrupt con-

trolled by JAK/STATattenuates ecdysone signalling by binding

to its co-activator Taiman (Jang et al, 2009). In addition, other

signalling pathways (insulin, TGF-b) interact with ecdysone

pathway components to further modulate cell type-specific

responses (Zheng et al, 2003; Jang et al, 2009; Francis et al,

2010). This offers an additional level of combinatorial possi-

bilities and suggests a model of gene expression regulation

that is highly managed by this global endocrine signalling.

Data presented here show that ecdysone signalling is

involved in control of early germline differentiation. When

ecdysone signalling is perturbed, the strength of TGF-b signal-

ling in GSCs and their progeny is modified resulting in a

differentiation delay. Moreover, soma-specific disruption of

ecdysone signalling affects germline differentiation cell non-

autonomously. Ecdysteroids act in somatic ESCs and their

daughters to regulate cell adhesion complexes and cytoske-

letal proteins important for soma–germline communication.

Misexpression of ecdysone signalling components during

developmental stages leads to the formation of the enlarged

GSC niche that can facilitate more stem cells.

Results

Taiman, a Drosophila homologue of a steroid receptor

co-activator amplified in breast and ovarian cancer

(AIB1) influences the size of the niche and GSC number

The Drosophila ovary contains distinct populations of stem

cells: GSCs, which give rise to the gametes, and two types of

somatic stem cells: ESCs and follicle stem cells (FSCs)

(Figure 1A). These stem cells reside in stereotyped positions

inside the germarium, a specialised structure at the anterior

end of the Drosophila ovary. Both GSCs and ESCs are adjacent

to somatic signalling centres or niches consisting of the

terminal filament (TF) and cap cells (CpCs), which promote

stem cell identity. ESCs produce squamous daughters

with long processes that encase developing cysts to protect

them from niche signalling and allow differentiation. These

different cell types have distinct morphologies and molecular

markers (Figure 1C and E).

We performed a pilot genetic screen where clonal germaria

of hsFlp;FRT40A lethals (DGRC) were analysed in order to find

novel genes that affect stem cell niche architecture. One of the

genes found in our screen encoding a Drosophila homologue of

a human steroid receptor co-activator amplified in breast

cancer taiman (tai) was of a particular interest. Downregulat-

ion of Tai using different combinations of tai amorphic and

hypomorphic mutant alleles resulted in increased GSC number

and an enlarged niche (Figure 1D and F). The GSC average

number ranged from 3.2 to 5.1 depending on the genotype,

which was significantly higher than in heterozygous control

flies (2.1–2.4, Figure 1D, F and H; Supplementary Table S1).

This increase in GSC number coincided with stem cell niche

enlargement. While control germaria contained on average 6

niche cells, tai mutant niches consisted of 7–10 CpCs (Figure

1D, F and G; Supplementary Table S1). These observations

imply that Tai participates in niche formation and/or GSC

maintenance or differentiation.

As it has been shown that in Drosophila Taiman is a co-

activator of the ecdysone transcription-activating complex

(Figure 1I; Bai et al, 2000), we tested if tai and ecdysone

pathway components genetically interact in the process.

Transheterozygous germaria (tai/EcR and tai/usp) also showed

additional GSCs and enlarged niches (Figure 1J; Supplementary

Table S1), suggesting that the ecdysone pathway regulates early

germline progression and GSC niche assembly.

Figure 1 The ecdysone receptor co-activator Taiman controls the number of ovarian germline stem cell niche cells. (A) Schematic view of a
wild-type germarium: germline stem cells (GSCs, pink) marked by anterior spectrosomes (SS, red dots) are located at the apex of the
germarium next to the niche cap cells (CpCs, grey). Further noted are terminal filament (TF; dark blue), escort stem cells (ESCs, olive),
differentiating cystoblasts (CBs, blue), escort cells (ECs, lime), 4, 8 (bright green) and 16 cell (green) cysts in region 2A, indicated by the
presence of fusomes (FS, red branched structures), follicle stem cells (FSCs, violet) and follicle cells (FC, light grey) in regions 2B and 3.
(B) Schematic view of a tai mutant germarium with an increased number of single spectrosome containing cells (SSCs, pink and blue), CpCs
(grey) and additional somatic cells (plum). (C, E) In wild-type germaria, two GSCs marked by the presence of the stem cell marker pMad (C),
spectrosomes (stained with Adducin) and the absence of the differentiation factor BamC (E) are directly attached to the niche (marked with
LaminC, arrows). (D, F) In the tai61G1/taiBG02711 transheterozygous mutant germarium, the enlarged niche is coupled with an increased number
of GSCs that are pMad positive (D) and BamC negative (F). In addition, extra somatic cells are present at the anterior (marked with brackets).
CpC (G) and GSC (H) numbers are increased in tai mutant germaria. (I) Scheme illustrating that Tai is a co-activator of the EcR/USP nuclear
receptor complex that is activated upon binding of its ligand ecdysone; Ab negatively regulates the ecdysone signalling by direct binding to Tai
(based on Bai et al (2000) and Jang et al (2009)). (J) EcRQ50st/tai61G1 transheterozygous germaria also contain an increased number of GSCs and
CpCs, indicating that tai genetically interacts with EcR (see Supplementary Table S1). (D–F, J) Projections of optical sections assembled through
the germarial tissue; GSCs are outlined with yellow dashed lines, niche cells are marked with white arrows; Red, AdducinþLaminC; blue,
DAPI; and green, pMad (C, D), BamGFP (E), BamC (F) and Vasa (J); Error bars represent s.e.m. *Po0.05, **Po0.005, ***Po0.0005.

Steroids in stem cells and their niches
A König et al

The EMBO Journal &2011 European Molecular Biology Organization2



The steroid hormone ecdysone controls GSC progeny

differentiation

To further test the role of the endocrine pathway in the

germline, we used the ecdysoneless1 temperature-sensitive

mutation (ecd1ts) that blocks biosynthesis of the mature

ecdysteroid hormone, 20-hydroxyecdysone. ecd1ts animals

were allowed to develop normally at the permissive tempera-

ture and transferred to restrictive temperature conditions

as 3-day-old adults. When ecdysone production was

disrupted during adulthood, GSCs continued to divide

increasing the germarium size, however, their progeny

delayed progression through differentiation (Figure 2A

and B). Similar phenotypes were obtained upon ecdysone

signalling disruption using dominant-negative mutants for the
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ecdysone receptor, EcR and its dimerisation partner USP

(hs–Gal4-EcR-LBD (EcRDN) and hs-Gal4-usp-LBD (uspDN);

Kozlova and Thummel, 2002), (Figure 2C and D;

Supplementary Table S2). Instead of progressively developed

cysts, mutant germaria were filled with germline cells con-

taining a single spectrosome (single spectrosome containing

cells (SSCs)), on average seven SSCs per ecd1ts or EcRDN and

uspDN germarium were detected in comparison to four in

control (Figure 2G; Supplementary Table S2). After longer

ecdysone deprivation germaria look even more abnormal;

a slightly decreased GSC number and additional follicle

cell defects along with abnormal cyst pinching off from the

germarium, not shared by tai mutants, were observed

(Figure 2B; Supplementary Table S2). The differentiation

index or the ratio between developing fusome-containing

cells and SSCs in the region 1–2A was decreased 1.5–2-fold

in ecdysone mutant germaria (Figure 2H; Supplementary

Table S2). Disruption of ecdysone signalling via overexpres-

sion of EcR (hsEcR.A and hsEcR.B1) also resulted in the

appearance of germaria filled with supernumerary SSCs
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Figure 2 Disrupted ecdysone signalling during adulthood results in delayed germline differentiation. (A) At the restrictive temperature (291C)
ecd1ts adult animals contain germaria filled with supernumerary SSCs. (B) Extended depletion of ecdysone furthermore increases the
undifferentiated SSC number and causes somatic cell defects affecting cyst pinching off from the germarium. (C, D) Heat shock induced
expression of USP and EcR dominant-negative forms (uspDN (hs-Gal-4-usp-LBD) and EcRDN (hs-Gal-4-usp-LBD)) also lead to the appearance of
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but significantly alleviate this early germline differentiation delay. (A–F) Projections of optical sections assembled through the germarial tissue.
GSCs are outlined with yellow dashed lines, dumbbell-shaped fusomes are marked with arrows and additional somatic cells are marked with
brackets. Red, LaminCþAdducin; blue, DAPI; and green, pMad (A, E); Vasa (B) and b-galactosidase (C, D, F) Error bars represent s.e.m.
*Po0.05, **Po0.005, ***Po0.0005.
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(on average 11 in comparison to 4 in control, Figure 2E–H;

Supplementary Table S3).

The described phenotypes show that ecdysone signalling

loss of function (by disruption of ecdysone biosynthesis or

by expression of EcR and USP dominant-negative forms)

and overexpression of the main receptor of the pathway,

EcR cause similar abnormalities. Previously, it has been

shown that the EcR can form homodimers in the absence of

its binding partners in vitro (Elke et al, 1997), moreover the

un-liganded receptor complex is repressive and this repres-

sion is relieved as the hormone titre increases (Schubiger and

Truman, 2000; Schubiger et al, 2005).

To test if the latter can be the case in our system, we

performed experiments where adult flies were fed with 20E.

Feeding flies with ecdysone alone had no significant effect on

the number of SSCs or germline differentiation measured by

the ratio of differentiated cysts to SSCs within one germarium

(Figure 2G and H; Supplementary Table S3). Interestingly,

feeding of ecdysone to the animals that overexpressed

EcR moderately, but significantly rescued the cyst/SSC

ratio (Figure 2H; Supplementary Table S3), indicating that

EcR overexpression when the ecdysone receptor is abundant

and the ligand is limited is unfavourable for germline differ-

entiation.

Ecdysone signalling disturbance affects the intensity of

TGF-b signalling

Next, we attempted to analyse the identity of supernumerary

SSCs. If they are GSCs, they should express appropriate

markers. However, we found that additional SSCs are nega-

tive for the stem cell markers, phosphorylated Mad and Dad

(Figures 2A, E, F, 3B and E). We also noticed that levels of

pMad in GSCs were significantly reduced upon ecdysone

deficit (Figure 3A–C), suggesting that ecdysone signalling

can modulate pMad levels.
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As supernumerary SSCs did not express the stem cell

markers, we next analysed if the increased number of SSCs

can be explained by abnormal organisation of fusomes, the

structures that connect daughter cells within one cyst. Cysts

are formed by a process of mitosis with incomplete cytokin-

esis, and all cells forming one cyst divide simultaneously (de

Cuevas and Spradling, 1998). If ecdysone signalling affects

fusome stability leading to the appearance of dot-like instead

of branched fusomes, then SSCs are really cells within a

differentiating cyst and should have synchronised divisions.

However, staining with a mitotic marker phosphohistone H3

(PH3) showed that the cell cycle was not coordinated in SSCs,

which shows that single spectrosomes are not the result of

fusome breakage in pursuit of cyst de-differentiation into

single stem cell-like cells (Supplementary Figure S1).

We also noticed that many fusomes had a dumbbell shape,

which is a characteristic of perturbed Bam, a TGF-b signalling

target (McKearin and Ohlstein, 1995) (Figures 2B–F, 3B, G

and H). The amount of germaria with dumbbell-shaped

fusomes increased from 18% in control to 51–84% in animals

with exogenous EcR expression and ecdysone deficit

(Figure 3D). Interestingly, SSCs in germaria mutant for ecdy-

sone signalling, unlike wild-type differentiating cystoblasts do

not express Bam, a factor essential for germline differentia-

tion (Figure 3F–H). Taken together, these analyses show that

additional SSCs resulting from ecdysone signalling disruption

are ‘undecided’ cells that express neither stem cell nor

differentiation markers (Figure 3E).

These data suggest that ecdysone signalling affects early

germline differentiation possibly by modulation of the TGF-b
signalling strength causing a developmental delay. Eventually

some germline differentiation takes place implying that

ecdysone signalling is at least partially redundant with other

pathways for germline progression.

Ecdysone signalling is predominantly active in ESCs and

Taiman, an EcR/USP co-activator is spatially limited to

the soma

Previous studies show that ecdysone signalling in Drosophila

has a role in egg maturation and vitellogenesis (Shirras and

Bownes, 1987; Riddiford, 1993; Buszczak et al, 1999; Kozlova

and Thummel, 2003; Gaziova et al, 2004; Schubiger et al,

2005; Terashima and Bownes, 2005; McBrayer et al, 2007),

now our data indicate that it is also required for differentia-

tion of developing germline cysts. As germline differentiation

can be regulated cell autonomously or cell non-autono-

mously, we decided to test what goes awry in the GSC

niche community when the ecdysone pathway is perturbed.

We began with analysing the expression pattern of ecdysone

signalling pathway components to find out in which cell types

ecdysone signalling is working. The EcR protein measured by

a specific antibody was detected mostly in ESCs and ECs, thin

cells which envelop the differentiating cystoblast to assist in

differentiation by protecting it from the niche signals

(Figure 4A). Next, we used a GFP protein trap line inserted

in the tai gene and detected levels of GFP expression in CpCs

that form the niche and also to a lesser amount in ESCs

(Figure 4B). Similarly, staining with Tai and USP-specific

antibodies (Figure 4C and D; Supplementary Figure S2)

showed that these proteins are expressed predominantly in

somatic cells, however, some low levels are also present in
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Figure 4 Expression pattern of the ecdysone pathway components in the Drosophila germarium. (A) The anti-EcR (common region) antibody
detects high levels of EcR in ESCs and FCs. (B) In the tai G00308 protein trap line where GFP is expressed under the control of the endogenous
tai promoter, high GFP levels were detected in CpCs, ESCs and FSCs. (C) Comparable expression pattern is observed with the anti-Tai antibody.
(D) The nuclear receptor USP detected by the anti-USP antibody shows identical expression pattern to its binding partner EcR. (E, F) Spatial
patterns of ecdysone signalling activation identified via b-Gal staining of heat-treated hs-Gal4-usp.LBD/þ ; UAS-lacZ/þ (E) and hs-Gal4-
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signalling reporter EcRE-lacZ shows the presence of active ecdysone transcription complex in ESCs as well (marked with arrowheads). Different
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the germline indicative of a possible dual role of this

endocrine pathway in the germline and the soma.

After determining protein expression we wanted to

confirm that the ecdysone signalling pathway was active.

For this, we used reporters with a Gal4 transcription factor

fused to the ligand-binding domain of USP or EcR (hs-Gal4-

uspLBD, hs-Gal4-EcRLBD; Kozlova and Thummel, 2002). The

ecdysone pathway activity was detected mainly in ESCs and

ECs analysed using a somatically expressed UASt lacZ trans-

gene (Figure 4E and F). The EcRE-lacZ construct that senses

the presence of the active ecdysone receptor transcription

complex (Koelle et al, 1991) also validated the pathway

activity in ESCs and random CpCs (Figure 4G).

Ecdysone signalling is required cell non-autonomously

for progression through the early steps of germ cell

lineage

Our expression data demonstrate that ecdysone signalling

components are expressed in somatic cells within the GSC

niche and the signalling is active predominantly in ESCs,

leading to the hypothesis that ecdysone signalling controls

germline cell differentiation extrinsically. This idea is further

supported by the analysis of tai loss-of-function germline

clones (Supplementary Figure S3) that show that Tai is not

essential for germline progression: tai mutant GSCs were

normally maintained (Supplementary Table S4; Supplemen-

tary Figure S3B) and in general germline differentiation was

not affected (Supplementary Figure S3A). Together with

spatially restricted somatic Tai expression this provides

evidence that the ecdysone co-activator Taiman can act

as a cell-specific co-activator of ecdysone signalling in niche

and ECs.

To identify specific cellular processes regulated by the

ecdysone pathway in somatic cells proximal to the ovarian

stem cell niche, we downregulated ecdysone signalling using

transgenic UAS tai RNAi, UAS EcR RNAi and UAS ab lines

crossed to ovarian soma-specific drivers (bab1Gal4 and

ptcGal4, for expression patterns see Supplementary Figure

S4) combined with the temperature-sensitive Gal80 system to

avoid the lethality caused by downregulation of ecdysone

pathway components during developmental stages.

When the co-activator of ecdysone signalling Tai was

downregulated or the co-repressor Abrupt overexpressed in

soma, mutant germaria contained multiple SSCs (Figure

5A–C); this mutant phenotype became even more pro-

nounced over time (Figure 5B and D) resembling older

ecd1ts (Figure 2B) as well as JAK/STAT mutant germaria

(Decotto and Spradling, 2005). Similar phenotypes were

observed when EcR RNAi flies were kept at the restrictive

temperature; the development of germline cysts was retarded

(Figure 5E–G), and the ratio of fusome-containing cysts to

SSCs was reduced 2–3 times (Figure 5I; Supplementary Table

S5). Downregulation of EcR for longer periods (15, 21 days)

led to an increase in the number of SSCs (from 5 to 9–11 SSCs

per germarium, Figure 5H; compare 5F and 5G). In addition,

in proximity to undeveloped cysts mutant germaria contained

extra somatic cells, most likely improperly differentiated ECs

(Figure 5, brackets).

These data provide evidence that the soma-specific disrup-

tion of the ecdysone pathway is causing germline differentia-

tion defects, indicating a cell non-autonomous role of this

steroid hormone signalling.

Ecdysone signalling regulates turnover of cell adhesion

proteins

In order to analyse how mutant somatic cells cause a block in

germline cyst maturation, we used an FRT recombination

system to compare ecdysone pathway deficient and wild-type

somatic cells within one germarium. Detailed analysis of tai

mutant ESCs and their progeny showed that they lose their

squamous shape, and form a layer resembling columnar

epithelium (Figure 6A). Interestingly, these mutant cells

expressed higher levels of the cell adhesion molecules

b-Catenin/Armadillo, DE-Cadherin and a cytoskeleton com-

ponent Adducin (Figure 6A, C and D). DE-Cadherin was also

upregulated in abnormal somatic cells resulting from

somatic overexpression of Abrupt or downregulation of EcR

(UAS ab or UAS EcR RNAi crossed to ptcGal4/tubGal80ts;

Figure 6E and F) pointing towards possible defects in cell–cell

contacts, shape rearrangement and signalling transduction

processes. These data imply that in our system the ecdysone

pathway has a specific role in EC differentiation via regula-

tion of cell adhesion complexes that are required for

establishment of correct germline–soma communications.

Perhaps, when connections between germline cysts and

surrounding soma are perturbed, signalling cascades that

initiate germline differentiation are also perturbed causing a

developmental delay.

Ecdysone signalling controls the stem cell niche

formation

Another process in the germarium that should require a very

accurate regulation of cell adhesion is the niche establish-

ment. If ecdysone signalling is essential to control this process

as well, we would expect to see abnormalities in niche

formation in ecdysone pathway mutants. Recall that mutant

tai animals indeed had enlarged niches and extra GSCs

(Figure 1C and D), a phenotype not seen in other cases

analysed here. This discrepancy can be explained by the

time during the animal’s development when the mutation

was introduced. In the tai experiment, animals were tai

deficient during all developmental stages, including the per-

iod of niche establishment. In other cases in this study the

ecdysone pathway was misregulated during adulthood after

the niche was already formed and CpCs had stopped division.

Also, in tai heterozygouts both the soma and the germline

were mutant and the germline can affect via Notch signalling

the size of the niche (Ward et al, 2006). To prove that the

niche expansion is a soma-originated phenotype, we knocked

down tai in somatic pre-adult cells that contribute to niches

using the FRT/bab1Gal4/UASFlp system that allows to induce

mutant CpC clones during niche formation. As expected,

germaria with tai clonal CpCs had substantially enlarged

niches (Figure 7A and B), which provides evidence that the

ecdysone pathway co-activator Tai is required during devel-

opmental stages specifically in the pre-niche cells to control

the GSC niche assembly. Possibly in tai mutant somatic cells

within the larval ovary, like in ECs in adults, increased levels

of cell adhesion molecules allow them to adhere better

to germline cells and receive more signalling (Notch for

example) which makes them adopt the niche cell fate.

To confirm that the niche enlargement is an ecdysone

signalling-reliant phenotype and is not associated with

Tai-independent function, we introduced other ecdysone

pathway component mutations during the period of niche

Steroids in stem cells and their niches
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Figure 5 Ecdysteroids act from the soma to regulate the progression of germline development in the germarium. (A, B) The EcR co-activator
Tai is downregulated specifically in the somatic cells of the germarium using ptcGal4 and bab1Gal4 in combination with tubGal80ts system to
avoid lethality. Upon downregulation of tai in the soma, the number of developmentally delayed SSCs increases dramatically. (C, D)
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(B, D) The tai and ab mutant germaria are filled with undifferentiated SSCs, cysts are not pinching off and additional somatic cells (brackets)
are in the vicinity. Note the similarity of phenotypes caused by ecdysteriod deficit (ecd1ts, Figure 2B) and disruption of ecdysone signalling
pathway components just in germarial soma. (E–G) The downregulation of the EcR in the somatic cells of the germarium via expression of UAS
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*Po0.05, **Po0.005, ***Po0.0005.
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development. As most of the tested mutant combinations

affected viability, we could disrupt ecdysone signalling during

development only via induction of single cell clones using the

actoCD2oGal4, hsFlp system and via EcR overexpression.

Mutant single somatic clonal cells expressing UAS ab or UAS

EcR RNAi resembled niche cells by their shape and ability to

hold SSCs (Figure 7C and D). On average, mutant germaria

contained 7.5–8.5 germline SSCs oriented either towards ab

or EcR mutant or niche cells. UAS EcR.A and UAS EcR.B1

expressed by the niche cell-specific driver bab1Gal4 also

caused formation of an enlarged niche (on average 10 CpCs

in comparison to 6 in control, Figure 7F, G and K;

Supplementary Table S6) and appearance of supernumerary

SSCs (Figure 7H and I; Supplementary Table S6). To test if

these excessive niches were able to host extra stem cells, we

analysed the number of GSCs per germarium by staining

mutant germaria with specific markers. We observed that in

tai and EcR mutants additional SSCs that are touching ex-

panded niches are positive for the stem cell marker pMad and

do not stain positively for the differentiation factor Bam

(Figure 7H–K). The number of pMad-positive GSCs per

germarium significantly increased in clonal tai mutants

(4.47±0.26 (P¼ 4.29�10�7, n¼ 15) in tai61G1FRT40A/

UbiGFP FRT40A;bab1Gal4Flp in comparison to 2.18±0.26

(n¼ 12) in control) and ecdysone mutants (3.50±0.43

(P¼ 0.02, n¼ 6) in UAS EcR.A bab1Gal4 and 3.33±0.29

(P¼ 0.01, n¼ 9) in UAS EcR.B1 bab1Gal4 in comparison to

2.36±0.20 (n¼ 11) in UASlacZ, bab1Gal4 control). These

observations infer that additional cells in enlarged niches

are functional and can facilitate extra GSCs. We assume that

during development the ecdysone signalling pathway has a

role in the establishment of the stem cell niche.
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Discussion

Here, we show for the first time that in Drosophila ecdysone

signalling regulates differentiation of a GSC daughter and

modulates ovarian stem cell niche size (Figure 8). The

delay in GSC progeny differentiation correlates with reduced

expression levels of TGF-b pathway components. Based on

expression patterns it appears that germarial somatic cells,

niche and ECs are the critical sites of ecdysteroid action and a

co-activator of ecdysone receptor, Taiman is the spatially

restricted regulator of ecdysone signalling in soma. During

adulthood the ecdysone pathway has a specific role in EC

differentiation and soma–germline cell contact establish-

ment. In addition, during development the ecdysone signal-

ling pathway has a role in somatic niche formation (Figure 8).

Ecdysteroids in general control major developmental trans-

formations such as metamorphosis and morphogenesis in

Drosophila. Different tissues and even different cell types

within the same tissue respond to this broad signalling in a

specific fashion and in a timely manner. In the developing

Drosophila ovary steroid hormone receptors are expressed in

a well-timed mode, high levels coinciding with proliferative

and immature stages and low levels preceding reduced DNA

replication and differentiation (Hodin and Riddiford, 1998).

Mutations in ecdysone pathway components affect ovarian

morphogenesis, including heterochronic delay or acceleration

in the onset of TF differentiation. During the niche establish-

ment the levels of both ecdysone receptors, EcR and USP are

greatly downregulated in anterior somatic cells that will

contribute to the niche per se (Hodin and Riddiford, 1998).

Now, we show that perturbation of ecdysone signalling in pre-

adult ovarian soma leads to the formation of enlarged niches.

The specific response to systemic hormonal signalling in niche

precursors is achieved by a specific function of the ecdysone

receptor co-activator Taiman. When timely regulation of

ecdysone signalling does not occur, more cells are recruited

to become niche cells resulting in enlarged niches that are

capable to host more stem cells. These data first show that

ecdysone steroid hormonal signalling regulates the formation

of the adult stem cell niche and suggest that a developmental

tuning of ecdysone signalling controls the number of anterior

somatic cells that will differentiate into CpCs.

It is logical that stem cell division and germline differentia-

tion are regulated by some systemic signalling depending on

the general state of the organism, which depends on age,

nutrition, environmental conditions and so on. Hormones are

great candidates for this type of regulation as they act in a

paracrine fashion and their levels are changing in response to

ever-changing external and internal conditions. Steroid bind-

ing to nuclear receptors in vertebrates triggers a conforma-

tional switch accompanied by increased histone acetylation

that permits transcriptional co-activators binding and the

transcription initiation complex assembly (Collingwood

et al, 1999; Privalsky, 2004). In Drosophila, the trithorax-

related protein, a histone H3 methyltransferase that like

Taiman belongs to the p160 class of co-activators, and an

ISWI-containing ATP-dependent chromatin remodelling com-

plex (NURF), that regulates transcription by catalysing nu-

cleosome sliding, both bind EcR in an ecdysone-dependent

manner (Sedkov et al, 2003; Badenhorst et al, 2005), showing

that chromatin modifications can mediate response to this

general signalling. Transcriptional regulation has a key role in

GSC maintenance and differentiation, for example, the TGF-b
ligand dpp secreted by niche cells induces phosphorylation of

the transcription factor Mad in GSCs that in turn suppresses

transcription of the differentiation factor Bam (McKearin

and Ohlstein, 1995; Xie and Spradling, 1998; Chen and

Figure 7 Ecdysone signalling is required for niche formation. (A) Downregulation of tai61G1 before the niche is established (taiG161FRT40A/
UbiGFP FRT40A; bab1Gal4 UASFlp) causes significant niche enlargement (CpCs marked with arrowheads) that allows to anchor more GSC-like
cells (marked with white dashed lines). (B) In some extreme cases taik15101 mutant somatic cells (marked with pink dashed lines) encapsulate
the whole germarium that is filled with SSCs. CpCs are marked with yellow dashed lines. (C) Clonal overexpression of the Tai repressor
Ab (UASoCD2oGal4 UAS ab; UAS GFP; hsFlp) in somatic cells results in the appearance of supernumerary SSCs that are anchored to UAS ab
cells marked by GFP. (D) The same can be observed in somatic clonal EcR mutant cells (UASoCD2oGal4 UAS EcR RNAi; UAS GFP; hsFlp).
(E, F) The pre-adult expression of exogenous EcR only in the niche progenitor cells (bab1Gal4, F), but not in other somatic cells (ptcGal4, E)
results in the appearance of enlarged niches marked by DE-Cadherin (arrowheads). The average numbers of CpCs (G) and SSCs (H) are
significantly increased when UAS EcR.A or UAS EcR.B1 are overexpressed during the niche establishment in most anterior pre-niche somatic
cells (bab1Gal4), but not in other intermingled somatic cells (ptcGal4) within the larval ovary. (I) The niche expansion increases the number of
SSCs that are also negative for the differentiation marker BamC. Niche is outlined with pink and GSCs with white dashed lines. (J, K) The
enlarged tai clonal niches (tai61G1FRT 40A/Ubi GFP FRT 40A; bab1 Gal4 Flp) and niches overexpressing EcR bear a higher number of GSCs
whose identity is confirmed by the stem cell marker pMad. Niche is outlined with pink dashed lines in (J) and arrowheads in (K), GSCs are
marked with white dashed lines. (A–F, I–K) Projections of optical sections assembled through the germarial tissue are shown. Red,
AdducinþLaminC (A, B, K), Adducin (C–F, I), pMad (J); blue, DAPI; and green, GFP (A–D, J), Cadherin (E, F), BamC (I), pMad (K).
Error bars represent s.e.m. *Po0.05, **Po0.005, ***Po0.0005.
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McKearin, 2003; Song et al, 2004). In addition, it has been

shown recently that in Drosophila adult GSC ecdysone

modulates the strength of TGF-b signalling through a func-

tional interaction with the chromatin remodelling factors ISWI

and Nurf301, a subunit of the ISWI-containing NURF chro-

matin remodelling complex (Ables and Drummond-Barbosa,

2010). Therefore, it is plausible that ecdysone regulates Mad

expression cell autonomously via chromatin modifications.

As pMad directly suppresses a differentiation factor Bam, it is

expected that Bam would be expressed in pMad-negative

cells. Interestingly, our findings show that ecdysone deficit

decreases amounts of phosphorylated Mad in GSCs and also

cell non-autonomously suppresses Bam in SSCs. As SSCs that

express neither pMad nor Bam are accumulated when the

ecdysone pathway is perturbed it suggests that there should

be an alternative mechanism of Bam regulation. Even though

eventually this still can be done on the level of chromatin

modification, our data suggest that the origin of this soma-

generated signal may be associated with cell adhesion protein

levels. Further understanding of the nature of this signalling

is of a great interest.

The progression of oogenesis within the germarium

requires cooperation between two stem cell types, germline

and somatic (escort) stem cells. In Drosophila, reciprocal

signals between germline and escort (in female) or somatic

cyst (in male) cells can inhibit reversion to the stem cell state

(Brawley and Matunis, 2004; Kai and Spradling, 2004) and

restrict germ cell proliferation and cyst growth (Matunis et al,

1997). Therefore, the non-autonomous ecdysone effect can

be explained by the necessity of two stem cell types that share

the same niche (GSC and ESC) to coordinate their division

and progeny differentiation. This coordination is most likely

achieved via adhesive cues, as disruption of ecdysone signal-

ling affects turnover of adhesion complexes and cytoskeletal

proteins in somatic ECs: mutant cells exhibited abnormal

accumulation of DE-Cadherin, b-catenin/Armadillo and

Adducin.

Cell adhesion has a crucial role in Drosophila stem cells;

GSCs are recruited to and maintained in their niches via cell

adhesion (Song et al, 2002). Two major components of this

adhesion process, DE-Cadherin and Armadillo/b-catenin,

accumulate at high levels in the junctions between GSCs

and niche cells, while in the developing CB and ECs levels of

these proteins are strongly reduced. Levels of DE-Cadherin in

GSCs are regulated by various signals, for example, nutrition

activation of insulin signalling or chemokine activation of

STAT (Hsu and Drummond-Barbosa, 2009; Leatherman and

Dinardo, 2010), and here we show that in ESCs it is regulated

by steroid hormone signalling. Possibly, these two stem cell

types respond to different signals but then differentiation of

their progeny is synchronised via cell contacts. While hor-

mones, growth factors and cytokines certainly manage stem

cell maintenance and differentiation, our evidence also

reveals that the responses to hormonal stimuli are strongly

modified by adhesive cues.

Specificity to endocrine signalling can be achieved via

availability of co-factors in the targeted tissue. Tai is a

spatially restricted co-factor that cooperates with the EcR/

USP nuclear receptor complex to define appropriate

responses to globally available hormonal signals. Tai-positive

regulation of ecdysone signalling can be alleviated by Abrupt

via direct binding of these two proteins that prevents Tai

association with EcR/USP (Jang et al, 2009). Abrupt has been

shown to be downregulated by JAK/STAT signalling (Jang

et al, 2009). Interestingly, JAK/STAT signalling also has a

critical role in ovarian niche function and controls the

morphology and proliferation of ESCs as well as GSCs

(Decotto and Spradling, 2005). JAK/STAT signalling may

interact with ecdysone pathway components in ECs to further

modulate cell type-specific responses to global endocrine

signalling. A combination of regulated by different signalling

pathway factors that are also spatially and timely restricted

builds a network that ensures the specificity of systemic

signalling.

Knowledge of how steroids regulate stem cells and their

niche has a great potential for stem cell and regenerative

medicine. Our findings open the way for a detailed analysis of

a role for steroid hormones in niche development and regula-

tion of germline differentiation via adjacent soma.

Materials and methods

Fly stocks
Drosophila melanogaster stocks were raised on standard cornmeal-
yeast-agar-medium at 251C unless otherwise stated. Clones were
induced using the hsFlp/FRT system for mitotic recombination.
The following stocks were used: yd2w1118;taik15101 FRT40A/CyO
(DGRC Kyoto), dpovtai61G1FRT40A/CyO, tai01351cn1/CyO;ry506, w1118;
taiBG02711, taiKG02309/CyO, w1118;y1w67c23;taiEY11718/CyO, w1118;pUASt
tai, EcRM554fs/SM6b, EcRQ50st/SM6b, w1118;hs-GAL4-EcR.LBD, w1118;
hs-GAL4-usp.LBD, w1118;EcRE.lacZ, w1118;hs-EcR.B1, w1118,hs-EcR.A,
w1118;UAS-EcR-RNAi97, w1118,UAS-EcR-RNAi104, usp4/FM7a, uspEP1193,
w1118;UAS-EcR.A, w[*];UAS-EcR.B1, w1118;UAS-ab.B, UAS-lacZ,
ecd1218, ecd4210 (Bloomington Stock Centre), tai G00308/CyO
(Carnegie GFP trap line), tai RNAi (w1118; P{GD4265}, VDRC),
BamGFP (Dennis McKearin), w1118 was used for wild-type analysis.

Transheterozygous interaction
We used the amorph and hypomorph tai alleles and ecdysone
pathway mutants EcRQ50st/SM6b or usp4/FM7a, uspEP1193. Both the
number of GSCs (single spectrosome cells that are touching the
CpCs) and the number of CpCs itself were counted. As a control,
dpovtai61G1FRT40A/CyO and yd2w1118; taik15101FRT40A/CyO were
crossed to w1118 flies.

Disruption of EcR in soma
To specifically disrupt the ecdysone signalling in the somatic cells of
the germarium, w1118;UAS EcR RNAi97, w1118,UAS EcR RNAi104,
w1118;UAS ab.B or tai RNAi (w1118; P{GD4265}), females were
crossed to ptcGal4; tubGal80ts or tubGal80ts; bab1Gal4/TM6 males
at 181C. The hatched flies were then transferred to 291C and aged
for 7, 14 and 21 days. Controls were treated the same.

Clonal analysis
Germline and somatic cell clones were done as described previously
(Shcherbata et al, 2004, 2007) using hsFlp/FRT system for mitotic
recombination. Early formation of clones in CpCs and ESCs were
obtained via crossing yd2w1118; taik15101FRT40A/CyO and dpov-

tai61G1FRT40A/CyO to Ubi-GFP FRT40A/CyO; bab1Gal4:UAS-Flp/
TM2 flies (gift from A González-Reyes). Mutant clones were
identified by the absence of GFP.

To induce adult clones yd2w1118; taik15101FRT40A/CyO and
dpovtai61G1FRT40A/CyO males were crossed to hsFlp; FRT40A
GFP/CyO females. 2–4-day-old adult F1 females were heat shocked
in empty vials for 60 min 2 days in a row in a 371C water bath and
analysed 5, 7, and 12, 14 days after heat shock. CpC and ESC clones
were identified by the absence of GFP.

For generation of somatic ovarian clones we crossed hsFlp;;
UASt GFPact4FRT-CD2-FRT4Gal4/TM3 males to w1118;UAS ab.B or
w1118,UAS EcR RNAi females. Third instar larvae were heat shocked
2 days in a row for 2 h. Clonal cells expressing ab.B or EcR RNAi
were identified by GFP expression.
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Overexpression analysis
For overexpression of EcR isoforms in adult flies, w1118;hsEcR.A flies
were crossed to w1118 flies. The offspring with one copy of the
transgene were heat shocked (371C) twice per day for 30 min 4 or
7 days in a row. Controls were heat shocked as well. Furthermore,
flies with a copy of the hsEcR.A transgene were kept at 251C without
heat treatment.

To overexpress the different EcR isoforms specifically in the
soma w1118;UAS EcR.A and w1118;UAS EcR.B1 (Bloomington Stock
Center) were crossed to bab1Gal4/TM6 or ptcGal4.

Alteration of ecdysone signalling
To supply more ecdysone hormone, 20-Hydroxyecdysone (20E,
Sigma-Aldrich) was diluted in 5% ethanol to a 1mM concentration
and mixed with dry yeast to reach a dough-like consistency. The
mixture was then placed on top of agar juice plates to culture flies.
In all, 5% ethanol was used for controls.

The ecd1ts temperature-sensitive mutation is known to reduce
ecdysone levels at the non-permissive temperature. Fly stocks were
kept at the permissive temperature (181C) and adult flies were
shifted to the restrictive temperature (291C) in order to block
ecdysone synthesis. As a control, wild-type flies were kept at 291C
for the same time and ecd1ts flies that had not been shifted to 291C
were analysed.

w1118;hs-GAL4-EcR.LBD and w1118;hs-GAL4-usp.LBD (Kozlova
and Thummel, 2002) animals were heat shocked 30 min/day, 1–3
days in a row.

Ecdysone signalling pattern
To analyse the ecdysone signalling in the germarium, w1118;hs-GAL4-
EcR.LBD and w1118;hs-GAL4-usp.LBD (Kozlova and Thummel, 2002)
females were crossed to UAS-lacZ males. Flies were heat shocked for
60 min in a water bath before they were fixed and stained. EcRE-
lacZ, a homozygous viable stock with seven EcREs inserted into a
lacZ promoter was used to determine the pattern of ecdysone
signalling (Koelle et al, 1991). Adult flies were stained for
b-galactosidase. Taiman expression was identified with the tai
G00308/CyO enhancer-trap line (Morin et al, 2001).

Immunofluorescence and antibodies
Ovaries were fixed in 5% formaldehyde (Polysciences, Inc.) for
10 min and the staining procedure was performed as described
(Shcherbata et al, 2004). We used the following mouse monoclonal
antibodies: anti-Armadillo (1:40); anti-Adducin (1:50), anti-LaminC
(1:50), anti-EcR Ag10.2 (1:20, EcR common region) (Developmental
Studies Hybridoma Bank), anti-usp (1:50, RB Olano, F Kafatos), rat
anti-DE-Cadherin (1:50, DSHB), anti-BamC (1:1000, D McKearin)
and rat anti-Vasa (1:1000, P Lasko), rabbit anti-pMad (1:5000, D
Vasiliauskas, S Morton, T Jessell and E Laufer), anti-b-Gal (1:1000),
rabbit anti-tai (1:1000, D Montell), rabbit anti-PH3 (1:3000, Upstate

Biotechnology) and anti-GFP-directly conjugated with AF488
(1:3000, Invitrogen), Alexa 488, 568 or 633 goat anti-mouse, anti-
rabbit (1:500, Molecular Probes), goat anti-rat Cy5 (1:250, Jackson
Immunoresearch). Images were obtained with a confocal laser-
scanning microscope (Leica SPE5) and processed with Adobe
Photoshop.

Analysis and statistics
To determine the number of CpCs, LaminC-positive cells on the tip
of the germarium were counted. Single spectrosome cells that were
touching the niche cells were counted as GSCs. Single spectrosome
cells that were not touching the niche were counted separately. In
addition, the number of fusomes (indicating the number of cysts)
until region 2B, where follicle cells start cyst encapsulation, was
counted. To describe the differentiation in a given germarium the
number of cysts was divided by the number of SSCs (ratio¼ cysts/
SSCs). The percentage of germaria-containing dumbbell-shaped
fusomes (McKearin and Ohlstein, 1995) was counted. The intensity
of the pMad-positive area was determined via measuring the grey
value in at least 10 GSCs with Leica LAS AF Lite software, the
background levels were measured by the intensity of the pMad-
negative area in the germarium. Background levels were subtracted
to normalise the levels of antibody staining in different germaria.
Intensity levels relative to control were calculated. GSC main-
tenance was determined by comparison of the percentage of
germaria with clonal GSCs between two different time points after
clonal induction.

w2-test was used to determine if the percentage of dumbbell-
shaped fusomes was significantly increased. For all other statistical
analyses, the two-tailed Student’s t-test was performed.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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SUMMARY

Extensive changes in posttranslational histonemodi-
fications accompany the rewiring of the transcrip-
tional program during stem cell differentiation.
However, the mechanisms controlling the changes
in specific chromatinmodifications and their function
during differentiation remain only poorly understood.
We show that histone H2B monoubiquitination
(H2Bub1) significantly increases during differentia-
tion of human mesenchymal stem cells (hMSCs)
and various lineage-committed precursor cells and
in diverse organisms. Furthermore, the H2B ubiquitin
ligase RNF40 is required for the induction of differen-
tiation markers and transcriptional reprogramming of
hMSCs. This function is dependent upon CDK9 and
the WAC adaptor protein, which are required for H2B
monoubiquitination. Finally, we show that RNF40
is required for the resolution of the H3K4me3/
H3K27me3 bivalent poised state on lineage-specific
genes during the transition from an inactive to an
active chromatin conformation. Thus, these data
indicate thatH2Bub1 is required formaintainingmulti-
potency of hMSCs and plays a central role in control-
ling stem cell differentiation.

INTRODUCTION

Both embryonic development and tissue homeostasis require

the expansion and differentiation of multipotent self-renewing

stem cells. Stem cells can differentiate into a variety of cell types

depending upon the stimulus provided. A deeper understanding

of the molecular mechanisms determining cell-type-specific

differentiation may provide therapeutic opportunities for treating

a variety of pathological conditions.

Stem cells exhibit specific gene expression signatures which

dictate cell fate during differentiation (Fisher and Fisher, 2011).

A unique pattern of posttranslational histone modifications in

stem cells governs gene expression patterns and differentiation

potential (Fisher and Fisher, 2011; Meissner, 2010). Genome-

wide studies have revealed that many developmental genes

exhibit ‘‘bivalent’’ chromatin domains displaying both ‘‘active’’

(H3K4me3) and ‘‘repressive’’ (H3K27me3) histone modifications

(Azuara et al., 2006; Bernstein et al., 2006). This ‘‘poised’’ state is

proposed to allow for correct temporal gene expression.

The transcriptional apparatus and chromatin modifications

exhibit a high degree of crosstalk. For example, phosphorylation

of Ser2 (P-Ser2) within the heptapeptide repeat of the RNA poly-

merase II (RNAPII) C-terminal domain (CTD) provides a platform

for recruiting the WW domain containing adaptor protein with

coiled coil (WAC) (Zhang and Yu, 2011). In turn, WAC recruits

the RNF20/RNF40 ubiquitin ligase complex which monoubiquiti-

nates H2B (Kim et al., 2009; Zhu et al., 2005). Knockdown of

either CDK9 (Pirngruber et al., 2009b) or WAC (Zhang and Yu,

2011) elicits an effect on H2Bub1 similar to that of RNF20 or

RNF40 depletion.

Consistent with its dependence upon the elongating form of

RNAPII, H2Bub1 is primarily associated with the transcribed

regions of active genes (Minsky et al., 2008) where it facilitates

transcriptional elongation (Pavri et al., 2006; Prenzel et al.,

2011). However, despite its association with active genes,

H2Bub1 is only required for the transcription of a subset of induc-

ible genes (Prenzel et al., 2011; Shema et al., 2008). Consistent

with a specific regulation of tumor-relevant transcriptional path-

ways, H2Bub1 is a proposed tumor suppressor whose levels

decrease during tumor progression (Johnsen, 2012; Prenzel
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et al., 2011; Shema et al., 2008). The inverse relationship

between differentiation status and malignancy may indicate

that decreased H2Bub1 in advanced tumors leads to a less

differentiated phenotype. However, the role of H2Bub1, its modi-

fying enzymes, and upstream regulators in controlling cell-fate

determination in mammalian systems remains unexplored.

Here we demonstrate that H2Bub1 levels increase in diverse

cell differentiation systems. Perturbation of H2B monoubiquiti-

nation via depletion of its ubiquitin ligases RNF40 and RNF20,

or upstream regulators CDK9 and WAC impairs stem cell differ-

entiation. RNF40 depletion affects multipotency by preventing

the resolution of bivalent histone marks on lineage-specific

genes. These results uncover a previously unknown function of

H2Bub1 and its upstream regulatory pathway in stem cell differ-

entiation and shed light into themechanism bywhich its lossmay

increase malignant potential.

RESULTS

H2Bub1 Increases during Cellular Differentiation
We previously reported decreased H2Bub1 levels during malig-

nant progression (Prenzel et al., 2011). Given the inverse correla-

tion between tumor differentiation status and malignancy, we

hypothesized that H2Bub1 may increase during normal cellular

differentiation. We therefore examined H2Bub1 levels in various

differentiation systems including telomerase-immortalized

human mesenchymal stem cells (hMSCs) (Simonsen et al.,

2002) differentiated to either the osteoblast (Figure 1A) or adipo-

cyte lineages (Figure 1B), human fetal osteoblast (hFOB) cells

(Figure 1C), mouse neurospheres (Figure 1D, see Figure S1A

available online), and oligodendrocytes (Figure 1E). In each of

the investigated mammalian model systems, H2Bub1 levels

increased concomitantly with the induction of lineage specifica-

tion which was accompanied by increased RNF40 protein

levels in hMSC (Figure S1B). In contrast, the levels of H2Amono-

ubiquitination remained constant during hMSC differentiation

(Figure S1C).

In order to determine whether the increase in H2Bub1 levels

during cellular differentiation is conserved across species, we

performed immunofluorescence analyses of H2Bub1 in the

Drosophila melanogaster ovary. As observed in undifferentiated

mammalian cells, H2Bub1 was undetectable in Drosophila

germline stem cells (characterized by the presence of phos-

pho-Mad; Figure 1F). In contrast, differentiated cystoblasts

displayed readily detectable H2Bub1 levels. Thus, increased

H2Bub1 levels during cellular differentiation are common to

multiple differentiation programs and across species.

RNF40 Knockdown Impairs hMSC Differentiation
To test whether H2Bub1 is required for differentiation, we

examined the effects of RNF40 depletion on hMSC differentia-

tion. As assessed by staining for differentiated osteoblasts

(alkaline phosphatase) or adipocytes (oil red O), we observed a

clear decrease in both differentiation models following RNF40

knockdown with independent RNF40 siRNAs (Figures 2A and

2B; Figures S2A–S2F). Consistently, no lipid droplet formation

was observed by electron microscopy in RNF40-depleted cells

grown under adipocyte differentiating conditions (Figure S2G).

RNF40 Knockdown Impairs Differentiation-Regulated
Transcription
In order to determine the extent of the effects elicited by RNF40

knockdown on hMSC differentiation, we performed siRNA

knockdown and transcriptome-wide gene expression microar-

ray analyses of undifferentiated hMSCs and cells differentiated

to the adipocyte or osteoblast lineages for 2 or 5 days. RNF40

knockdown had little or no effect on gene expression in undiffer-

entiated hMSCs (Figure S2J). Strikingly, the differentiation-

induced gene expression changes were significantly impaired

following RNF40 knockdown (Figures 2C and 2D) without

affecting the expression of the osteoblast and adipocyte-regula-

tory factors RUNX2,CEBPB, and CEBPG (Figures S2H and S2I).

The effects of RNF40 knockdown were evident for common

(Figure S2K) as well as lineage-specific (Figures S2L and S2M)

transcriptional programs. Pathways significantly enriched in

gene sets differentially regulated in each differentiation program

and by RNF40 depletion (Table S1) include focal adhesion

(Figures S2N–S2Q), cell cycle (Figures S2R–S2U), adipocytokine

signaling (Figures S2V and S2W), and pathways in cancer

(Figures S2X–S2AA). Microarray data were verified on a number

of osteoblast (BGLAP, ALPL, and G6PD)- and adipocyte (PDK4,

PPARG, andRASD1)-specific genes (Figures 2E and 2F, respec-

tively). Consistent with the obligate heterodimeric function of

RNF20 and RNF40, RNF20 knockdown also decreased

H2Bub1 levels and impaired the induction of osteoblast- and

adipocyte-specific gene expression (Figures S2AB–S2AE).

Importantly, RNF40 depletion did not affect mRNA levels of other

pathway components (CDK9, WAC, RNF20; Figures S2AF

and S2AG).

CDK9 Controls hMSC Differentiation
Since CDK9 controls the global and gene-specific levels of

H2Bub1 (Pirngruber et al., 2009b; Shchebet et al., 2012), we

hypothesized that CDK9 may also be required for hMSC differ-

entiation by directing RNF40-dependent H2B monoubiquitina-

tion through P-Ser2 RNAPII CTD. Consistent with this notion,

the levels of P-Ser2 increased during hMSC differentiation

(Figure S3A).

We next examined the effects of CDK9 knockdown on hMSC

differentiation. Similar to the effects of RNF40 knockdown,

adipocyte differentiation and gene expression (Figures 3C and

3D, Figure S3F) were impaired following CDK9 knockdown, as

was the expression of the osteoblast marker genes BGLAP

and G6PD (Figure 3B) and global H2Bub1 levels (Figures S3B

and S3C). Surprisingly, the induction of alkaline phosphatase

activity (Figure 3A, Figure S3E) and ALPL gene expression (Fig-

ure 3B) was increased following CDK9 knockdown. Since alka-

line phosphatase is also a marker of pluripotency, these results

may indicate a reversion to an earlier stem cell phenotype. These

effects were not due to impaired expression of H2Bub1 pathway

regulators (Figures S3G and S3H). Thus, we conclude that CDK9

knockdown prevents hMSC differentiation irrespective of cell

lineage.

WAC Knockdown Phenocopies RNF40 Depletion
WAC functionally links CDK9 and H2Bub1 during transcription

by recruiting the RNF20/RNF40 complex to P-Ser2 RNAPII
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Figure 1. H2Bub1 Levels Increase upon

Differentiation

(A and B) Immortalized humanmesenchymal stem

cells (hMSCs) were induced to differentiate into

the osteoblast (A) or adipocyte (B) lineages for

5 days. Protein extracts were analyzed by western

blot using antibodies against H2Bub1 or H2B (left

panel). The expression of the osteoblast (ALPL,

BGLAP; A) or adipocyte (LPL, PPARG; B) marker

genes was verified by qRT-PCR. Gene expression

was normalized to a control gene (HNRNPK) and

the undifferentiated condition and expressed as

‘‘relative mRNA levels.’’ Mean ± SD, n = 3.

Statistical analysis, *p < 0.05; **p < 0.01; ***p <

0.001.

(C) Human fetal osteoblasts (hFOBs) were differ-

entiated and analyzed by western blot for H2Bub1

and H2B as in (A). Induction of osteoblast marker

genes (ALPL, BGLAP) was verified as in (A).

Mean ± SD, n = 3.

(D) Mouse neurospheres were induced to differ-

entiate and analyzed by western blot as in (A).

Differentiation to glial cells was examined by

immunofluorescence staining of GFAP (red).

Nuclei were costained with DAPI (blue).

(E) Mouse oligodendrocytes were differentiated

for 5 days and analyzed for H2Bub1 and H2B

levels by western blot. Differentiation was verified

by immunofluorescence staining against myelin

basic protein (MBP, green) and actin (red).

(F) Immunofluorescence analysis of Drosophila

melanogaster ovary stained for H2Bub1 and

phosphorylated Mad (pMad; marker of prolifer-

ating stem cells). TF, terminal filament cells; CpC,

cap cells; GSC, germline stem cells; Cyst, cysto-

blast; EC, escort cells.
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Figure 2. RNF 40 Is Required for hMSC Differentiation

(A and B) hMSCs were transfected with control and RNF40 siRNAs and induced to differentiate into osteoblasts (A) or adipocytes (B) for 5 days. Differentiation

was verified by alkaline phosphatase (A) or oil red O (B) staining (left). The stained area was quantified using ImageJ software and displayed as percentage of area

(right). Mean ± SD, n = 3.
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CTD (Zhang and Yu, 2011). Consistent with this report, WACwas

required for the stability of the RNF20/40 complex (Figures S3I

and S3J) and maintaining H2Bub1 levels (Figures S3K–S3N).

Importantly, WAC knockdown impaired osteoblast (Figure 3E

and Figure S3O) and adipocyte (Figure 3G and Figure S3P) differ-

entiation and the induction of marker gene expression (Figures

3F and 3H). While RNF20, RNF40, and WAC protein levels

were dependent upon one another (Figures S3I and S3J), their

mRNA levels were unaffected by WAC knockdown (Figures

S3Q and S3R). These results provide a mechanistic explanation

for how CDK9 directs H2Bub1 during differentiation through

RNAPII CTD phosphorylation and recruitment of the WAC/

RNF20/RNF40 ubiquitin ligase complex. Perturbation of any

component similarly impairs stem cell differentiation.

RNF40 Is Required for Resolution of Bivalency
In order to test whether the effects of RNF40, RNF20, CDK9,

and WAC depletion on hMSC differentiation may be a direct

effect of H2Bub1, we performed chromatin immunoprecipitation

analyses on the adipocyte-specific genes PDK4, PPARG, and

RASD1 as well as positive (GAPDH) and negative (TFF1) control

genes. Indeed, all three lineage-specific genes showed

increased levels of H2Bub1 during differentiation (Figure 4A).

Importantly, the levels of H2Bub1 were constantly present on

the GAPDH gene and decreased following RNF40 knockdown

but were constitutively absent from the silenced TFF1 gene.

Embryonic stem cells and some lineage-committed stem cells

display a unique combination of both activating (H3K4me3) and

repressing (H3K27me3) histone modifications on many lineage-

specific genes (Collas, 2010; Fisher and Fisher, 2011). During

differentiation, bivalency on adipocyte-specific genes is

resolved in favor of an active state in which H3K4me3 is retained

while H3K27me3 is lost (Collas, 2010; Noer et al., 2009). Pertur-

bations in the resolution of bivalency impair the inducibility of

lineage-specific genes during differentiation. The analysis of

genome-wide chromatin immunoprecipitation-sequencing data

(ChIP-Seq) from human embryonic stem cells (hESCs) and

normal adipose nuclei confirmed that the investigated adipo-

cyte-specific genes (PDK4, PPARG, RASD1) are all bivalent in

hESC and lose their bivalency in favor of H3K4me3 during

terminal adipocyte differentiation (Figure 4B).

Given the established dependence of H3K4me3 on H2Bub1 in

some systems (Kim et al., 2009; Pirngruber et al., 2009a; Zhu

et al., 2005), we hypothesized that the impaired differentiation

observed following RNF40 knockdown (with no major effects

on the global gene expression profile) may be due to changes

in the bivalency status of differentiation-induced genes. Surpris-

ingly, while adipocyte-specific genes (PDK4, PPARG, RASD1)

exhibit significant levels of both H3K4me3 and H3K27me3 in

the undifferentiated state (Figures 4C and 4D), neither the global

(Figure S4) nor the gene-associated levels of H3K4me3 were

reduced following RNF40 knockdown (Figure 4C). This supports

the findings that H3K4me3 may be independent of H2Bub1 in

some systems (Shema et al., 2008; Vethantham et al., 2012).

As previously reported (Noer et al., 2009), bivalency was

resolved in favor of H3K4me3 on adipocyte-specific genes

during differentiation (Figure 4D). In contrast, H3K27me3 was re-

tained on bivalent adipocyte-specific genes following RNF40

knockdown. Thus RNF40-dependent H2B monoubiquitination

appears to be dispensable for H3K4me3 but essential for the

resolution of bivalency on lineage-specific genes.

DISCUSSION

In order to obtain a clearer understanding of the roles of specific

chromatin modifications in the transition from stem cells into

a differentiated phenotype, we investigated the effects of per-

turbing H2Bub1 levels during cellular differentiation. We show

that both global and lineage-specific gene-associated H2Bub1

levels increase during hMSC differentiation. Although a recent

study reported a decrease in H2Bub1 during myoblast differen-

tiation (Vethantham et al., 2012), our data suggest that H2Bub1

levels increase in multiple diverse differentiation systems.

Furthermore, this process is evolutionarily conserved. Notably,

in addition to the investigated mouse and human cell culture

differentiation models, we demonstrate that H2Bub1 is sup-

pressed in stem cells in vivo. Although a suppression of

H2Bub1 was previously suggested to be essential for stem cell

maintenance in Drosophila (Buszczak et al., 2009), we now

show that H2Bub1 levels indeed increase during differentiation

and that its modifying enzymes and upstream regulators are

essential for the differentiation process.

We have demonstrated that CDK9 activity is essential for the

induction of lineage-specific gene expression. Data in

Drosophila and C. elegans support this observation, since

a suppression of CDK9 activity is required for stem cell mainte-

nance (Batchelder et al., 1999; Hanyu-Nakamura et al., 2008;

Zhang et al., 2003). Furthermore, it has been shown that CDK9

activity is required for differentiation in several mammalian cell

systems, including adipocyte (Iankova et al., 2006), myoblast

(Simone et al., 2002), monocyte (Yu et al., 2006), and cardiomyo-

cyte differentiation (Kaichi et al., 2011). Given that a large fraction

of unexpressed genes in ESCs exhibit paused RNAPII lacking

P-Ser2 (Guenther et al., 2007), suppression of CDK9 activity

may be a general mechanism employed for maintaining a stem

cell state. Like bivalent chromatin domains, the presence of

a paused RNAPII is expected to allow the timely induction of

differentiation-related genes.

Specific chromatin states play an essential role in controlling

pluripotency, and dynamic changes in these states are required

for proper lineage-specific differentiation (Fisher and Fisher,

2011; Meissner, 2010). We have confirmed that adipocyte-

specific genes exist in a bivalent chromatin state in multipotent

hMSCs. In parallel with the global increase in H2Bub1 levels,

(C and D) Transcriptome-wide gene expression microarray analysis of hMSC induced to differentiate into the osteoblast (C) or adipocyte (D) lineages for 2 or

5 days after RNF40 knockdown. The heatmaps indicate the fold changes in mRNA levels in the various conditions relative to the undifferentiated control

transfected cells. Color code indicates downregulated genes in red and upregulated genes in blue. Mean values, n = 3.

(E and F) qRT-PCR analyses verify the knockdown of RNF40 in the RNA samples utilized for microarray analyses in (C and D) as well as the changes in gene

expression of selected osteoblast (ALPL, BGLAP, G6PD; E) and adipocyte (PDK4, PPARG, RASD1; F) marker genes. Mean ± SD, n = 3.
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Figure 3. CDK9 and WAC Direct H2Bub1 during Differentiation

(A–H) hMSCs transfectedwith siRNAs against CDK9 (A–D) orWAC (E–H) were induced to differentiate into the osteoblast (A and B, E and F) or adipocyte (C andD,

G andH) lineages. Cells were stained for alkaline phosphatase activity (A and E) or oil red O (C andG) for osteoblast and adipocyte lineages, respectively. Staining

was quantified as in Figures 2A and 2B.Mean ± SD, n = 3. (B, D, F, andH) The knockdown efficiency and the effects on osteoblast- (ALPL,BGLAP,G6PD; B and F)

and adipocyte-specific (PDK4, PPARG, RASD1; D and H) gene expression were verified by qRT-PCR and analyzed as in Figures 2E and 2F following 2 days of

differentiation. Mean ± SD, n = 3.
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this bivalency is resolved, and these genes become fully active

and exhibit a decrease in H3K27me3 while retaining H3K4me3.

In ourmodel, tissue-specific transcription factors promote differ-

entiation in a CDK9-dependent manner by directing H2Bub1

(Figure 4E). In turn, H2Bub1 (or possibly RNF40 directly) likely

directs dynamic changes in chromatin structure which facilitate

the demethylation of H3K27me3 during the transition from

a repressive to an active chromatin state. Consistently, we and

others have shown that RNF20 and RNF40 cooperate with the

FACT histone chaperone complex to stimulate histone exchange

and facilitate transcriptional elongation (Pavri et al., 2006; Pre-

nzel et al., 2011). Consistent with a CDK9/WAC/RNF20/

RNF40/H2Bub1/FACT regulatory circuit, the presence of

both H2Bub1 and FACT on target genes depends upon CDK9

activity rather than transcriptional activity per se (Gomes et al.,

2006; Pirngruber et al., 2009b). Interestingly, the chromatin

remodeling factor CHD1 is required for pluripotency (Gaspar-

Maia et al., 2009) and was independently identified in complexes

containing CDK9 (Park et al., 2010) and FACT (Kelley et al.,

1999). Furthermore, a recent study identified a functional interac-

tion between H2Bub1 and Chd1 in yeast (Lee et al., 2012). More-

over, mammalian CHD1 interacts directly with H3K4me3 through

its chromodomain (Sims et al., 2007) but is excluded from biva-

lent domains (Gaspar-Maia et al., 2009). Thus, the maintenance

of H3K27me3 at bivalent genes following RNF40 knockdown

may function in part by preventing CHD1 recruitment.

In conclusion, our data establish a role for CDK9, WAC, and

RNF40 in directing H2B monoubiquitination and transcriptional

reprogramming during stem cell differentiation. This effect

appears to be due to dynamic changes in chromatin structure

during differentiation, which facilitate a transition from an

inactive to an active chromatin state. In keeping with this, we

observed maintenance of H3K27me3 levels on bivalent

adipocyte-specific genes following RNF40 depletion. Thus these

data place H2Bub1 and its regulatory pathway as central

players in cell-fate determination and underscore the importance

of dynamic changes in chromatin structure during cellular

differentiation.

EXPERIMENTAL PROCEDURES

Cell Culture, Differentiation, and Knockdowns

hMSC and hFOB1.17 cells were cultured and differentiated as previously done

(Simonsen et al., 2002; Harris et al., 1995) and are described together with

staining procedures and the generation, culture, and differentiation of neuro-

spheres and oligodendrocytes in the Supplemental Experimental Procedures.

Knockdown procedures and siRNAs utilized are listed in the Supplemental

Information.

Western Blot Analysis, RNA Isolation, qRT-PCR, ChIP

Western blot analysis was performed with antibodies and dilutions listed in

the Supplemental Information. RNA isolation, reverse transcription, ChIP,

and quantitative RT-PCR were performed as described (Prenzel et al.,

2011) with the modifications listed in the Supplemental Experimental Proce-

dures. ChIP-Seq results were obtained from the NIH Roadmap Epigenomics

Project (Bernstein et al., 2010), visualized using the UCSC Genome Browser,

and used under permission from the NIH Epigenome Mapping Center at

Broad Institute.

Microscopy

For analyzing H2Bub1 levels in vivo, ovaries from OregonR Drosophila were

fixed and stained as described in the Supplemental Experimental Procedures.

Microarray Studies

Whole-genome gene expression analysis was performed by the Vancouver

Prostate Centre Laboratory for Advanced Genome Analysis (Vancouver,

Canada) using the Illumina human HT-12 v4 beadchip. Gene expression

data were analyzed as previously described (Prenzel et al., 2011). Gene set

pathway analyses were performed as described in the Supplemental Experi-

mental Procedures. All gene expression data will be made publicly available

through the GEO repository.

ACCESSION NUMBERS

The Gene Expression Omnibus (GEO) accession numbers for the ES and

adipose nuclei ChIP-Seq reported in this paper are GSM669889, GSM669897,

GSM669925, and GSM669930. The GEO accession number for the gene

expression microarray analyses reported in is paper is GSE38173.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, one table, Supplemental

Experimental Procedures, and Supplemental References and can be found

with this article online at doi:10.1016/j.molcel.2012.05.022.
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Figure 4. RNF40 Expression Is Required for the Resolution of Bivalent Chromatin Marks

(A) ChIP analysis of H2Bub1 on adipocyte-regulated genes (PDK4, PPARG, and RASD1) upon RNF40 knockdown. hMSCs were differentiated to adipocytes for

2 days following RNF40 depletion for 24 hr.GAPDH serves as a positive control for an active gene displaying H2Bub1, and TFF1 serves as a control for an inactive

gene with no detectable H2Bub1. Background (IgG) levels are indicated as dotted lines. Mean ± SD, n = 3.

(B) Human ESCs demonstrate bivalent domains containing both H3K4me3 and H3K27me3 on the adipocyte-regulated genes PDK4, PPARG, and RASD1 while

this bivalency is resolved in favor of H3K4me3 in adipose nuclei. Red triangles indicate amplicons used for detection of bivalent domains; blue trianges indicate

amplicons used for detection of H2Bub1 within the transcribed region.

(C and D) H3K4me3 (C) and H3K27me3 (D) occupancy on adipocyte-regulated genes as well as one active gene (HIST1H2AC) and one repressed (TFF1) control

gene. ChIP analysis was performed in hMSCs as in (A) following RNF40 depletion. Mean ± SD, n = 3.

(E) Model of the role of H2Bub1 in differentiation. ‘‘4’’ in green circles, H3K4me3; ‘‘27’’ in red circles, H3K27me3; ‘‘120’’ in blue circles, H2Bub1; ‘‘P’’ in orange

circles, Ser5 phosphorylation of CTD; ‘‘P’’ in green circles, Ser2 phosphorylation of CTD; TSS, transcription start site.
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    Chapter 3   

 Visualization of Adult Stem Cells Within Their Niches Using 
the  Drosophila  Germline as a Model System 

           Annekatrin     König     and     Halyna     R.     Shcherbata    

    Abstract 

   The germaria of the fruit fl y  Drosophila melanogaster  present an excellent model to study germline stem 
cell–niche interactions. Two to three adult stem cells are surrounded by a number of somatic cells that 
form the niche. Here we describe how  Drosophilae  germaria can be dissected and specifi cally immuno-
stained to allow for identifi cation and analysis of both the adult stem cells and their somatic niche cells.  

  Key words      Drosophila   ,   Germarium  ,   Ovary  ,   Adult stem cells  ,   Stem cell niche  ,   Germline  ,   Ovarian 
soma  ,   Immunostaining  

1      Introduction 

 Adult stem cells usually reside in the stem cell niche, a unique 
physiological microenvironment that helps stem cells to carry on 
self-renewing divisions throughout the lifetime of an organism. 
The niche includes cellular and noncellular elements that can be 
divided into one of the two main mechanistic types—physical con-
tacts and diffusible factors [ 1 ]. Close contacts include tight junc-
tions, adherens junctions, gap junctions, the Notch signaling 
pathway, the basement membrane, and extracellular matrix pro-
teins. Diffusible factors, which are secreted by niche cells and travel 
over varying distances to keep stem cell identity, often affect tran-
scription. Stem cells must be anchored to the niche through cell–
cell interactions so that they will stay both close to niche factors 
that specify self-renewal and far from differentiation stimuli. 

 Presently the existence of a stem cell niche has been demon-
strated for mammalian adult stem cells in the hematopoietic, epi-
dermal, neural, and intestinal systems. However, the stem cell 
niches involved in maintenance of adult mammalian tissues and 
particularly their role in cancer development remain complex, 
poorly defi ned, and diffi cult to study in vivo [ 2 ]. 
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 The  Drosophila  ovarian stem cell niche is very well characterized 
and has been used for many years to unravel the complex stem cell–
niche interactions. The insights gained from these studies led to a 
better understanding of how stem cells work: in addition to cell–cell 
interactions [ 3 ] between stem and niche cells, a variety of signaling 
pathways involved in stem cell control were described [ 4 – 13 ]. 

 The easily identifi able and analyzable cells in the  Drosophila  
germline niches and the sophisticated genetic tools that are available 
in  Drosophila  make it an ideal system for studying stem cell–niche 
interactions [ 14 ]. The paired ovaries of the adult female fl y each 
consist of 16–20 ovarioles that contain developing egg chambers. 
Located at the anterior of every ovariole is the germarium, where 
two to three stem cells are held by 5–7 cap cells and are in contact 
with other somatic cells ( see  Fig.  1b ). By asymmetric division, the 
adult stem cells give rise to both new stem cells and differentiated 
cells that will become the egg. The differentiated germline cells are 
surrounded by somatic escort cells that are another important com-
ponent of the stem cell niche [ 4 ,  15 ]. More posteriorly, follicle cells 
that are generated by specifi c stem cells encapsulate the differentiat-
ing germline [ 16 ]. The individual ovarioles are held together by the 

  Fig. 1    Scheme of larval ovary and adult germarium. ( a ) The primordial germ cells (PGC) that can be identifi ed 
by their characteristic spherical spectrosomes ( SS  spherical skeletal organelles) are intermingled with somatic 
cells ( IC , intermingled cells). Stacks of the terminal fi lament (TF) cells have already formed in late L3 larvae. 
Cap cells (CpCs) are forming in late L3 larvae through the early pupal stages at the base of    TFs. Two popula-
tions of somatic cells ( APC , apical cells,  BC , basal cells) are also found in the larval ovary. ( b ) In the adult 
ovaries, the individual ovarioles with the germaria are separated by peritoneal sheath. The germline stem cells 
(GSCs) are positioned at the anterior of the germarium and directly attached to cap cells. Upon asymmetric 
division, the stem cells give rise to another stem cell and a differentiating daughter, the cystoblast (CB). The 
cystoblast divides four more times with incomplete cytokinesis, forming the cyst. During that process, the 
spherical spectrosomes of the GSCs elongate and branch to form the fusome (Fu). The terminal fi lament cells 
are in close proximity to the cap cells, but have a more  oval shape . The GSCs are furthermore in contact with 
another type of somatic cells that presents an important component of the niche: the escort cells (EC). Follicle 
cells (FC) that are produced by follicle stem cells (FSC) encapsulate the developing egg. Anterior is to the  left        
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terminal fi laments. A variety of different markers makes it possible to 
nicely immunostain and analyze number, localization, shape, and 
interactions of the individual cells ( see  Fig.  2b ). In addition, the 
development of the stem cell niche itself can be directly observed in 
developing larvae and early pupae where the cap cells divide and 
terminally differentiate ( see  Figs.  1a  and  2b ) [ 17 ].

    In this chapter we show how to visualize adult stem cells in 
their niches in adult female  Drosophila .  

2    Materials 

      1.    Standard cornmeal agar food (recipes can be found at   http://
fl y.bio.indiana.edu/    ).   

   2.    Yeast paste: Dry yeast should be mixed in 5 % propionic acid 
( see   Note 1 ).      

      1.    Ice block for immobilization of the fl ies.   
   2.    Sharp tweezers.   
   3.    Small Petri dish for dissections.   
   4.    Stereomicroscope for dissection.   
   5.    Pasteur pipettes.      

2.1  Fly Husbandry

2.2  Ovary Dissection

  Fig. 2    Pre-adult ovary and adult germaria. ( a ) In the late larval and early pupal ovaries, terminal fi lament stacks 
become visible (outlined in  yellow  ). The PGCs ( arrow  ), that can be identifi ed by their spherical SSs, are not 
separated yet into individual ovarioles and intermingled with somatic cells. ( b ) Adult ovaries consist of several 
germaria, each containing 2–3 GSCs, that can be not only identifi ed by their characteristic Adducin-marked 
SSs but also stained with the stem cell marker pMad. Directly attached to the stem cells are several somatic 
cells that are forming the stem cell niche: the CpCs can be marked using LaminC or Engrailed. DE-Cadherin 
staining shows the adhesion contacts between the GSCs and CpCs. Furthermore, ECs and CpCs are marked 
here with Traffi c jam       
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      1.    Fixing solution: 4 % formaldehyde in phosphate-buffered 
saline (PBS) ( see   Note 2 ).   

   2.    Nutator.   
   3.    PBT: 0.2 % Triton X in PBS.      

      1.    Blocking solution: 0.2 % bovine serum albumin, 5 % normal 
goat serum in PBT ( see   Note 3 ).   

   2.    Primary antibodies: Many antibodies are available to study 
germline–niche interactions; some of these are listed in Table  1 . 
Dilute primary antibodies in blocking solution and store at 
4 °C ( see   Notes 4 – 8 ).

2.3  Fixation 
and Washing

2.4  Antibodies

    Table 1  
  A subset of antibodies that are useful to study germline stem cell niche interactions is shown   

 Protein recognized 
 Name of the 
antibody  Raised in 

 Antibody 
source 

 Used to mark in the 
germarium  Dilution 

 Armadillo  N2 7A1  Mouse, 
IgG2a 

 DSHB Iowa  Cell-Cell adhesion 
between cap cells 
and between stem 
cells and cap cells 

 1:50 

 Bag of marbles 
(BAM) 

 BamC 
(cyto- 
plasmic) 

 Mouse, Rat  D. McKearin  Differentiating 
germline cysts, not 
in germline stem cells 

 1:1,000 

 E-Cadherin, 
extracellular 
domain 

 5D3  Mouse, 
IgG2b 

 DSHB 
Iowa 

 Cell-Cell adhesion 
between cap cells 
and between stem 
cells and cap cells 

 1:50 

 Engrailed  4D9  Mouse, 
IgG1 

 DSHB 
Iowa 

 Cap cells  1:50 

 Held out wings 
(HOW) 

 HOW  Rabbit, 
Rat 

 T. Volk  Germline stem cells, 
cystoblasts 

 1:1,000 

 Hts/Adducin-like  1B1  Mouse, 
IgG1 

 DSHB 
Iowa 

 Spectrosomes 
and fusomes 

 1:50 

 Lamin C  LC28.26  Mouse, IgG1  DSHB 
Iowa 

 Cap cells  1:50 

 Phosphorylated 
Mothers against 
Dpp (pMAD) 

 pMad  Rabbit  E. Laufer  Germline stem cells  1:5,000 

 Traffi c jam  TJ  Guinea pig  D. Godt  Escort cells, cap cells  1:3,000 

 Vasa  Rat  P. Lasko  Germline cells  1:1,000 

  Scientists who generated a particular antibody are named as source. Their addresses are available from fl ybase (  http://
fl ybase.org/    ).  DSHB  Developmental Studies Hybridoma Bank at the University of Iowa  
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       3.    Secondary antibodies: Conjugated Alexa fl uor goat anti- 
mouse, goat anti-rabbit, or goat anti-rat from Molecular 
Probes, diluted 1:500 in blocking solution (Molecular Probes); 
store at 4 °C ( see   Notes 8  and  9 ). The secondary antibodies 
have to be chosen with respect to the laser lines of the available 
microscope.      

      1.    DAPI solution: Make a 100× DAPI solution (1 mg/ml) and 
store aliquots at −20 °C. For staining, dilute in PBS 
( see   Note 10 ).   

   2.    Glycerol: 70 % Glycerol, 3 % n-propyl gallate (NPG) 
( see   Note 11 ).   

   3.    Tungsten needles.      

  Laser scanning confocal microscope is used for analysis. 

3         Methods 

 All steps are carried out at room temperature unless otherwise 
stated. During all incubations and washes, the Eppendorf tubes are 
placed on a nutator. 

       1.    Immobilize 5–10 female fl ies by putting them on an ice block.   
   2.    The ovaries are positioned in the abdomen of the fl y and are 

simple to fi nd in well-fed individuals ( see   Note 12 ). Dissect the 
fl ies in 1× PBS using a stereomicroscope, and hold the fl y with 
one pair of tweezers at the thorax. Carefully open the cuticle at 
the posterior end of the animal with another pair of tweezers. 
If necessary, gently push the abdomen to squeeze out the 
paired ovaries. Remove all remnants of guts and cuticle and 
place the ovaries in an Eppendorf tube using Pasteur pipettes 
( see   Note 13 ).      

      1.    Pick up late third instar larvae from the wall of the food vial or 
bottle.   

   2.    Select a female larva and hold with a pair of tweezers at the 
anterior end.   

   3.    The larval ovaries are located in the fat body. Cut off the larval 
head and hold the posterior end of the remaining larval body 
with one pair of tweezers. Carefully now invert the larvae by 
pulling it over the tweezers with another pair of tweezers. 
Remove cuticle and guts and transfer the fat body into an 
Eppendorf tube or a 24-well plate ( see   Note 14 ).      

2.5  DNA Staining 
and Mounting

 2.6 Analysis

3.1  Dissection

3.1.1  Adult Ovaries

3.1.2  Larval Ovaries
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      1.    Add fixing solution and incubate for 10 min. Remove the 
fixing solution carefully and wear protective gloves when 
handling the fi xative.   

   2.    Wash the ovaries three times for 15 min each with PBT 
( see   Notes 15  and  16 ).       

      1.    Add blocking solution and incubate for 1 h.   
   2.    Remove the blocking solution and add primary antibody solu-

tion. Incubate overnight at 4 °C.   
   3.    Remove the antibody solution ( see   Note 5 ) and wash the ova-

ries three times for 15 min each with PBT.   
   4.    Block again in blocking solution for 1 h.   
   5.    Incubate the ovaries in secondary antibody solution overnight 

at 4 °C or for 3 h at room temperature.   
   6.    Remove the secondary antibody solution and wash with PBT 

twice for 15 min. Add DAPI solution and incubate for 10 min.   
   7.    Remove the DAPI solution and wash three times for 15 min 

with PBT.   
   8.    Remove as much PBT as possible and add a few drops of glyc-

erol to the ovaries.
   (a)    Adult ovaries: Place the ovaries on a slide and use tweezers 

and tungsten needles to separate the individual ovaries 
and to remove the mature eggs.   

  (b)    Larval ovaries: Place the fat bodies on a slide and locate 
the larval ovaries. Carefully remove remnants of the fat 
body.       

   9.    Place a coverslip on top of the samples and analyze using a 
confocal microscope.       

4    Notes 

     1.    The yeast paste should have a “peanut butter-like” texture. 
The propionic acid helps to avoid fungal or bacterial 
contamination.   

   2.    Prepare the solution fresh from a 16 % stock solution at room 
temperature.   

   3.    Goat serum is used in the blocking solution if the secondary 
antibody was produced in goat. If you have to use secondary 
antibodies that were generated in another animal, use other 
serums from the appropriate animal.   

   4.    Primary antibodies: Apart from several monoclonal  antibodies, 
that are available from the Developmental Studies Hybridoma 
Bank, a variety of different polyclonal rabbit, goat, sheep, and 

3.1.3  Fixation

3.2  Antibody 
Staining
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guinea pig antibodies have been made by different labs ( see  
Table  1 ). However, make sure not to use goat serum in the 
blocking solution if the primary antibody is goat derived.   

   5.    When analyzing GFP-marked clonal cells, you may use an anti-
GFP antibody to better visualize the GFP.   

   6.    Stability of primary antibodies: Some primary antibodies can 
be reused a couple of times, whereas others can be used only 
once. Dilution and stability of every antibody or antibody 
batch have to be tested separately.   

   7.    If the antibody staining shows a high level of nonspecifi c back-
ground, it may be pre- absorbed with fi xed embryos: incubate 
fi xed embryos overnight with the antibody solution. Use this 
antibody solution and use it for staining your sample.   

   8.    To avoid bacterial contamination and to extend stability of the 
antibody solution 0.05 % of sodium azide can be added.   

   9.    Choose an antibody that targets the animal in which the pri-
mary antibody was produced. Conjugated Alexa fl uor antibod-
ies that were raised to target different animals and that have 
suffi ciently different emission spectra can be combined to 
immunostain different antigens at a time. Additionally, if the 
primary antibodies are from different antibody subclasses (IgM 
or IgG subclasses) secondary antibodies specifi c to the anti-
body subclass can be used to discriminate the patterns. 
Sensitivity and/or cross- reactivity can vary. We have had good 
experiences with Alexa 568 goat anti-mouse (emits red light), 
combined with for example Alexa 488 goat anti-rabbit/rat 
(emits green light) and Alexa 633 goat anti-rat/rabbit (emits 
far-red light).   

   10.    If the available confocal microscope does not have a UV laser 
illumination system that is necessary to detect DAPI-stained 
DNA, you may use propidium iodide to stain the nuclei 
instead. Propidium iodide staining: Incubate the ovaries for 
15 min in PBS containing 2 μgf/ml propidium iodide. Staining 
with DAPI allows you to use three other secondary antibodies 
emitting green, red, and far-red light in parallel with DNA 
staining, whereas propidium iodide emits red light itself.   

   11.    Add NPG to the glycerol and vortex. If the NPG will not dis-
solve, heat the solution at 37 °C overnight.   

   12.    Oogenesis is highly dependent on the individual’s environ-
ment. Therefore, the fl ies should be “fattened” on wet yeast 
prior to dissection for at least 2 days and should also be kept in 
a community with males. However, when analyzing ovarian 
phenotypes it is recommended to collect and stain wild-type 
and mutant females at different timepoints and in several inde-
pendent experiments.   
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   13.    Depending on the antibody used, the immunostaining proto-
col can vary. If the used antibody is also staining the peritoneal 
muscle sheath, it is necessary to destroy the sheath around the 
ovarioles by sucking them up and down several times in a 
Pasteur pipette.   

   14.    The larval fat body that contains the ovaries will not sink to the 
ground, but fl oats in the solution. It is therefore recommended 
to check under the stereomicroscope that the fat bodies are 
not washed away when adding or removing liquids from the 
sample.   

   15.    The ovaries should be fi xed as fast as possible after dissection to 
preserve the cellular structures. It is important not to exceed 
or shorten the fi xation time to avoid poor immunostaining.   

   16.    Upon all incubation and washing steps make sure to add an 
amount of liquid that is suffi cient to allow the ovaries to fl oat 
in the tube or the plate upon gentle rocking. Furthermore, 
when removing solutions from the tube do not pull up the 
ovaries into the pipette and do not damage the ovaries. The 
ovaries should stay intact until the very end of the procedure 
since the individual germaria are otherwise very easily lost.         
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A Genome-Wide Survey of Sexually Dimorphic
Expression of Drosophila miRNAs Identifies the

Steroid Hormone-Induced miRNA let-7 as
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ABSTRACT MiRNAs bear an increasing number of functions throughout development and in the aging adult. Here we address their

role in establishing sexually dimorphic traits and sexual identity in male and female Drosophila. Our survey of miRNA populations in

each sex identifies sets of miRNAs differentially expressed in male and female tissues across various stages of development. The

pervasive sex-biased expression of miRNAs generally increases with the complexity and sexual dimorphism of tissues, gonads revealing

the most striking biases. We find that the male-specific regulation of the X chromosome is relevant to miRNA expression on two levels.

First, in the male gonad, testis-biased miRNAs tend to reside on the X chromosome. Second, in the soma, X-linked miRNAs do not

systematically rely on dosage compensation. We set out to address the importance of a sex-biased expression of miRNAs in establishing

sexually dimorphic traits. Our study of the conserved let-7-C miRNA cluster controlled by the sex-biased hormone ecdysone places let-7

as a primary modulator of the sex-determination hierarchy. Flies with modified let-7 levels present doublesex-related phenotypes and

express sex-determination genes normally restricted to the opposite sex. In testes and ovaries, alterations of the ecdysone-induced let-7

result in aberrant gonadal somatic cell behavior and non-cell-autonomous defects in early germline differentiation. Gonadal defects as

well as aberrant expression of sex-determination genes persist in aging adults under hormonal control. Together, our findings place

ecdysone and let-7 as modulators of a somatic systemic signal that helps establish and sustain sexual identity in males and females and

differentiation in gonads. This work establishes the foundation for a role of miRNAs in sexual dimorphism and demonstrates that

similar to vertebrate hormonal control of cellular sexual identity exists in Drosophila.

SEXUAL dimorphism is pervasive throughout the animal

kingdom. From insects, fishes, reptiles, and birds to mam-

mals, hormones and genes shape the morphological, be-

havioral, and reproductive potential of each sex throughout

development and adult life. Drosophila is no exception, with

males and females differing in many ways: anatomical dif-

ferences include the number of abdominal segments and

their pigmentation, the proboscis, labial parts, dimorphic re-

productive organs, the formation of sex combs exclusively in

males, and 25% larger size in females. Differences that affect

male and female behavior exist also in the nervous system

and the brain. Y chromosome aside, male and female cells

possess a strictly identical genomic content. Most of the dif-

ferences between the sexes arise and persist via the regula-

tion of sets of genes in a sex-specific manner.

The question of how hundreds if not thousands of genes

are differentially expressed in males and females to produce
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sexually dimorphic individuals is extensively studied. Re-

fined genomic and genetic studies have converged toward

a model of differential expression that requires that both

spatial and temporal programs be established throughout

development (Arbeitman et al. 2002; Parisi et al. 2004; Lebo

et al. 2009; Chatterjee et al. 2011). Probably the most im-

portant of these programs in flies is the sex-determination

hierarchy (Baker et al. 1989; Christiansen et al. 2002;

Camara et al. 2008; Clough and Oliver 2012). The primary

determinant of Drosophila sex is the X chromosome to au-

tosome (X:A) ratio (Bridges 1921), which determines the

production of alternative splice variants of Sex lethal (Sxl)

to generate an active SXL protein in females and a nonfunc-

tional truncation in males (Cline 1978). Sxl activity is suffi-

cient to direct the entire developmental programs of both

somatic and germline sex determination (Christiansen et al.

2002; Robinett et al. 2010; Salz 2011; Whitworth et al.

2012). Sxl serves two essential functions: it restricts dosage

compensation to males and controls the sex-determination

hierarchy in each sex.

Dosage compensation is the process by which males double

the transcription of genes on their single X chromosome to

match the levels found in diplo-X females. This process re-

quires a ribonucleoprotein complex, the compensasome, com-

posed of two noncoding RNAs (roX1 and roX2) and six proteins

(male-specific lethals MSL-1, -2, -3, the helicase/ATPase MLE,

histone acetyltransferase MOF, and histone kinase JIL1). In

females, SXL represses the production of MSL-2 at both the

transcriptional and translational level, therefore preventing

dosage compensation. In males, lack of SXL function allows

the male-specific expression of MSL-2 and its assembly into

compensasomes to initiate dosage compensation (Bashaw and

Baker 1997; see Duncan et al. 2006 for review).

At the top of the sex-determination hierarchy, SXL

controls which sex-specific isoform is being processed from

the doublesex (dsx) transcripts (reviewed in Christiansen

et al. 2002). If the X:A ratio is 1, Sxl produces a female-

specific splicing factor that causes female-specific splicing

of the transformer (tra) transcript. TRA interacts with the

transformer-2 (TRA2) splicing factor to produce a female-

specific splice variant of dsx (Belote et al. 1989; Sosnowski

et al. 1989; Ryner and Baker 1991). The female-specific

DSXF protein then activates female and inhibits male devel-

opment. Because males lack SXL and subsequently TRA,

a “default” male-specific splicing of dsx transcript generates

the DSXM protein, which inhibits female and promotes male

traits. Loss-of-function mutations in Sxl, tra, and tra2 trans-

form XX individuals into males, but have no effect in XY

males. In contrast, the dsx gene is important for the sexual

differentiation of both sexes—in the absence of dsx, both XX

and XY flies are anatomically and behaviorally intersex

(Baker and Ridge 1980; Belote et al. 1985).

Only a few transcriptional targets through which DSX

ultimately functions are known (Luo et al. 2011). DSX reg-

ulates sex-specific pigmentation patterns with abdominal-B

(Abd-B) and bric-a-brac1 (bab1), resulting in males’ darker

abdomen (Williams et al. 2008). DSXM controls the devel-

opment of male-specific bristles or sex combs on the forelegs

with sex-comb reduced (Scr) (Tanaka et al. 2011). In each

sex, DSX orchestrates the differentiation of larval genital

discs into mature dimorphic reproductive organs, external

genitalia, and analia (Hildreth 1965; Chatterjee et al. 2011).

DSXF directly upregulates the expression of yolk proteins

(Yp1, Yp2) (Burtis et al. 1991), and DSXM downregulates

their transcription.

The thorough dissection of dsx expression reveals that

DSX presents two main characteristics (Lee et al. 2002;

Hempel and Oliver 2007; Rideout et al. 2010; Robinett

et al. 2010). First, the levels of DSX protein vary greatly

throughout development within cells and tissues, implying

a tight regulation of its steady states. Second, DSX is not

present in all cells in a given tissue, so only some cells know

their sex while others remain asexual.

MicroRNAs (miRNAs) appear as critical regulators of

development and are themselves highly regulated (Ambros

and Chen 2007; Bartel 2009; Smibert and Lai 2010; Dai

et al. 2012). The interaction of microRNAs with the 39-UTRs

of transcribed mRNAs affects both a transcript’s stability and

its translation. Each miRNA can target several different

mRNAs and each mRNA can be targeted by multiple miRNAs,

generating an intricate network of gene expression regula-

tion. As miRNAs could provide a rapid and tissue-specific

means to alter gene expression, they represent ideal candi-

dates for the regulation of spatial and temporal expression

patterns of sex-determination genes, their cofactors, and

downstream targets. Ultimately, the sex-biased expression of

miRNAs could control directly the differential expression of

many genes contributing to sexually dimorphic traits at a

given time and place during development.

Sexually dimorphic miRNA profiles have been reported in

mouse and chicken gonads, and in whole adult Caenorhabditis

elegans (Mishima et al. 2008; Kato et al. 2009; Baley and Li

2012). In Drosophila, probing miRNA populations in whole

animals during development has revealed widespread devel-

opmental regulation (Aravin et al. 2003; Ruby et al. 2007).

However, the small RNA libraries generated in these studies

came from either mixed-sex samples or single-sex but non-

homogenous tissues, which may mask important sex- and

tissue-specific variability in miRNA expression and function.

To date, Drosophila lacks a critical examination of miRNA

expression in two important contexts: sex-biased expression

that may lead to sexually dimorphic function or spatial and

temporal heterogeneity in expression that may drive tissue-

specific functions. Both are critical to understanding the role

of miRNAs across development.

To investigate these issues, we first established the

profiles of miRNAs in several male and female adult parts

and organs, larval dissected tissues, and embryonic cells.

Their comparison reveals, in each tissue, sets of male- and

female-biased miRNAs, increasing in number and extent

with the complexity and sexual dimorphism of each tissue.

We further address two aspects of miRNA functions in the
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context of sexual identity: first, we test whether X-linked

miRNAs are regulated by dosage compensation in males

and, second, we explore the role of the steroid-induced

miRNA let-7 in regulating sexually dimorphic traits and how

its male-biased expression in the gonads affects germline

differentiation programs.

Materials and Methods

Fly strains and genetics

Oregon-R flies were used for miRNA profiling. Msl3p, mle1,

and pr mle12.17 mutants are described in Fagegaltier and

Baker (2004). All chromosomes but the mutant-bearing allele

were exchanged to create isogenized lines by back crossing to

a w1118; MKRS/TM6B stock for .10 generations. Wandering

non-Tb- mutant male and female larvae were identified by

their gonads. Overexpression of miRNAs was performed us-

ing a dsx–GAL4 driver (Robinett et al. 2010). UAS–NLS–GFP

flies are from Bloomington (BL4776); UAS–let-7, UAS-mir-100,

UAS–mir-125, and UAS–let-7-C constructs are described in

Bejarano et al. (2012). In let-7-C and ecd mutant studies, flies

were raised on standard cornmeal–yeast–agar-medium at 25�

and fattened on wet yeast paste 1 day before dissection unless

otherwise stated. The two knockout alleles let-7-CGK1 and

let-7-CKO1 lack the whole let-7-C cluster; let-7-CGK1 contains

the transcriptional activator GAL4 under the control of the

let-7-C promoter; let-7-CGK1/let-7-CKO1 are referred to as

Dlet-7-C (Sokol et al. 2008). Flies with a transgene rescuing

the let-7-C cluster (P{W8, let-7-C}; let-7-CGK1/let-7-CKO1) are

referred to as let-7-C Rescue. The P{W8, let-7-C Dlet-7}

construct restores all let-7-C miRNA members except for let-7.

For miRNA loss of function, let-7-CGK1/let-7-CKO1; P{W8,

let-7-C Dlet-7}/+ flies referred to as Dlet-7 were used. The

following additional fly stocks were used: FRT40A let-7

mir-125/CyO and UAS–let-7-C; Sco/CyO (Caygill and Johnston

2008), UAS–let-7/TM6 (Sokol et al. 2008), Ubi–GFP FRT40A/

CyO; bab1–Gal4:UAS–Flp/TM2 (a gift from A. González-Reyes),

UAS–CD8GFP:UAS–nuc lacZ (a gift from F. Hirth), Oregon-R,

w1118, and ecd1ts (BL4210).

Sample collections for miRNA–Seq and validation

To ensure that miRNA–Seq samples are not contaminated by

other tissues, �120 Oregon-R heads were individually sep-

arated with a scalpel from the rest of the body of �24-hr-old

males and females, collected on ice and quickly frozen. Sal-

ivary glands were dissected from �130 wandering late L3

larvae of each sex identified by their gonads. For qPCR val-

idations of miRNA–Seq data sets, at least two additional

independent collections were performed as above. We also

collected ovaries and testes from 0- to 2- and 2- to 4-day-old

Oregon-R individuals, S2 (Invitrogen), and Kc-167 cells

(DGRC) washed in 13 PBS. All dissected tissues and cells

were quickly snap frozen in liquid nitrogen and RNA prep-

arations enriched for small RNAs using an adapted Trizol

protocol.

miRNA–Seq

30-100mg of total RNAs were subject to 2S rRNA depletion

and DNAse treated. Size selected 18-29nt sRNAs were cloned

according to (Malone et al. 2012). Libraries were clustered

and sequenced on the Illumina GAIIx platform.

Cuticle preparations

Three- to 4-day-old flies were placed in ethanol and incubated

in 10% NaOH for 1 hr at 70�. Adult abdominal cuticles were

mounted and flattened in 30% glycerol. Pictures were taken at

the same magnification using a Nikon SMZ150 microscope

and Nikon DS-RiI camera.

Perturbation of ecdysone levels

The ecd1ts temperature-sensitive mutation is known to re-

duce ecdysone levels at the nonpermissive temperature (Garen

et al. 1977). Oregon-R and ecd1ts flies were kept at the per-

missive temperature (18�) and 2- to 4-day-old adults were

shifted to the restrictive temperature (29�) for 5–11 days to

block ecdysone synthesis. Control Oregon-R and ecd1ts flies

were kept at 18� for the same time.

Clonal analysis

Somatic cell clones in CpCs and ECs were induced using

mitotic recombination as described previously (König et al.

2011). FRT40A let-7 mir-125/CyO; P{W8, let-7-C Dlet-7} flies

were crossed to Ubi–GFP FRT40A/CyO; bab1–Gal4:UAS–Flp/

TM2. Third-instar larvae were heat shocked for 2 hr on 2

consecutive days in a 37� water bath and returned to

25�. Mutant clones were identified by the absence of

GFP in 5-day-old adult ovaries.

Immunofluorescence and antibodies

Ovaries and testes were fixed in 5% formaldehyde

(Polysciences, Inc.) for 10 min and stained as described

in König and Shcherbata (2013). We used the following

mouse monoclonal antibodies: anti-adducin (1:50), anti-

lamin C (1:50), anti-arm (1:50), anti-FasIII (1:50), rat

monoclonal antibody anti-DE-cadherin (Developmental

Studies Hybridoma Bank), guinea pig anti-Tj (1:3000, D.

Godt), rabbit anti-vasa (1:5000, gift from R. Pflanz), anti-

b-Gal (1:3000, Cappel), and anti-GFP-directly conjugated

with AF488 (1:3000, Invitrogen), Alexa 488, 568, or

633 goat anti-mouse, anti-rabbit (1:500, Molecular Probes),

goat anti-rat Cy5 (1:250, Jackson Immunoresearch).

Images were obtained with a confocal laser-scanning

microscope (Zeiss LSM700) and processed with Adobe

Photoshop.

Testis analysis and statistics

To determine the frequency of somatic cell differentiation

defects in testis, the percentage of testis with somatic cell

clusters (,5, $5, and .10) and epithelium appearance at

the apex or at the lateral side of the anterior region of tes-

ticular tube were quantified. Statistics were calculated us-

ing two-way tables and chi-square test.
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Determination of let-7 expression

To analyze the expression pattern of let-7-C, let-7-CGK1/CyO

flies were crossed to UAS–mCD8–GFP:UAS–nuc–lacZ.

To analyze let-7-C levels upon stress, 3- to 5-day-old

let-7-CGK1/UAS–mCD8GFP:UAS–nuc–lacZ flies were heat

shocked for 1 hr at 37� and their gonads were dissected

and assayed for immunohistological analysis.

Quantitative PCR Assays (RT–qPCR)

For qPCR validation of the miRNA–Seq data sets and

X-linked miRNA expression studies, 100 ng/ml RNA samples

were spiked after DNAse digestion with a synthetic primer at

6.10e9 copies/ml, polyadenylated and reverse transcribed ac-

cording to the miScript reverse transcriptase kit instructions

(Qiagen). Each miRNA was quantified with a specific primer

(Supporting Information, Table S1) following themiScript SYBR

green PCR kit instructions. All miRNAs were tested in triplicates

on two independent biological replicates with the appropriate

controls. Ct values were normalized to U6 snRNA levels in

miRNA–Seq validation experiments using the ∆∆CT method

and 22DDCT values calculations and to Dspt4 mRNA levels in

the dosage compensation mutant studies (see Table S11, Table

S12, Table S13, Table S14, Table S15, and Table 16).

For let-7 quantification, reverse transcription and qPCR

were performed following the manufacturers’ protocol using

TaqMan MicroRNA assay, with 2S rRNA as an endogenous

control. Let-7 levels were determined in gonads and carcasses

from Oregon-R males and females. To eliminate effects that

could possibly arise because ovaries contain different amounts

of eggs and late egg chambers, late-stage egg chambers and

eggs were removed from the dissected ovaries, leaving only

the anterior part of the ovary containing the germaria. To

measure let-7 levels upon perturbation of ecdysone, ovaries

and testes of Oregon-R and ecd1ts mutants raised at 18� and

shifted to 29� for 5 or 11 days (or kept at 18� for control for

the same amount of time) were dissected. RNA was extracted

in Trizol according to the manufacturer’s instructions before

proceeding with RT–qPCR.

Sex-specific mRNA transcript levels were assessed in 5- to

7-day-old Dlet-7 and let-7-C Rescue control whole flies that

were raised at 25� and shifted to 33� for 4 days or in Oregon-R

and ecd1ts mutants raised at 18� and shifted 1–3 days after

hatching to 29� (or kept at 18� for control) for 5 or 11 days.

cDNA was generated using the cDNA reverse transcription

kit (Applied Biosystems) according to the manufacturer’s

instructions and qPCR performed using the fast SYBR Green

Master Mix (Applied Biosystems). A Step One Plus 96 well

system (Applied Biosystems) was used for all analyses. All

reactions were run in triplicates with appropriate blanks.

The reactions were incubated at 95� for 10 min followed

by 40 cycles at 95� for 15 sec and 60� for 60 sec (TaqMan

MicroRNA). The ∆CT value was determined by subtracting

the CT value of the endogenous control from the experimen-

tal CT value. ∆∆CT was calculated by subtracting the ∆CT of

the control sample from the suspect ∆CT value. The relative

RNA levels were calculated using 22DDCT. Primers are de-

scribed in Table S1.

Bioinformatics

The libraries produced in this study (NCBI GEO series record

GSE57029) were complemented with existing libraries from

lymphoid cells (GSM272653, Kc cells; GSM272652, S2 cells)

(Chung et al. 2008) and from 2- to 4-day-old Oregon-R adult

testis (GSM280085) and ovary (GSM280082) (Czech et al.

2008). Reads were clipped of the adapter sequences, filtered

for sequences mapping to viruses and simple repeats, and

aligned to the Drosophila melanogaster genome (BDGP R5/

dm3) with no mismatches using NexAlign (program available

from the OSC: Data & Resource website). Uniquely mapped

reads were annotated using a priority pipeline as in (Czech

et al. 2008) and FlyBase r5.26, miRbase r.15 and in-house

miRNA annotations. Reads corresponding to 184 annotated

miRNAs were extracted and counts reported to estimate ex-

pression levels (Table S9). For each library, miRNA reads are

normalized using the trimmed median ratio used to calculate

a correction factor applied to all miRNA counts in a given

library. Normalized counts (Table S10) were then input to

calculate the relative expression and fold change in expres-

sion in pairwise comparisons between male and female

samples. The contribution of each miRNA to a library was

calculated as the normalized read counts over the total num-

ber of miRNA reads in the library (Table S22). The relative

abundance of a miRNA across tissues was calculated by di-

viding the normalized count by the total of normalized counts

across all libraries. Heatmaps were generated in R using the

hclust() function to perform hierarchical cluster analysis.

Results and Discussion

MiRNA profiling in male and female tissues

We adopted a genomic approach and surveyed the popula-

tions of miRNAs in several Drosophilamale and female tissues

selected at various stages of development. Sexed miRNA–Seq

data sets include late-embryo-derived lymphoid cells, larval

salivary glands, and �1-day-old adult head and body, as well

as germline-enriched tissues (ovary and testis) from mature

adults (2- to 4-day-old).

Libraries prepared in different ways have been shown

to result in variable sequencing efficiencies for individual

miRNAs, so that differences in miRNA read counts between

libraries may be caused by differential cloning efficiencies

rather than reflect differences in their expression. To assess

potential biases between sexes as accurately as possible, we

prepared libraries and integrated carefully selected existing

data sets (see Materials and Methods). All provide sufficient

depth and breadth and were prepared with the Rnl2 trun-

cated ligase, identical 59 and 39 cloning adaptors, and PCR

conditions.

Several methods are available to analyze high-throughput

miRNA profiling; however, none has reached a consensus.
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The choice of a processing and normalization method can

affect greatly the estimates of differentially expressed miRNAs

between tissues, especially when comparing tissues that

differ substantially in their miRNA content (Dillies et al.

2013). We find the trimmed median method most suitable

to normalize our data sets, which cover a wide range of tis-

sues (see Materials and Methods). Normalized counts were

then input to get empirical estimates of the relative abun-

dance of a given miRNA in a library, in pairwise comparisons

between male and female tissues, and across all samples. To

assess the accuracy of our analyses, we assayed the expres-

sion of miRNAs across these samples using an independent

method (qPCR; Figure S1). Of the 22 miRNAs tested for

validation, 16 miRNAs show similar trends by qPCR and deep

sequencing consistently across all samples. For five additional

miRNAs, the enrichment trend and/or sex biases could not be

confirmed in one or more tissues, while consistent in others.

One miRNA showed systematically different profiles by qPCR

and deep sequencing due to the presence of miRNAs with

very close sequences that qPCR could not distinguish. Although

cloning artifacts that may alter miRNA expression profiles in

some libraries cannot be excluded, the highly overlapping

trends of our qPCR validation set with those of normalized

miRNA-Seq data suggest that our analysis reflects miRNA pop-

ulations in each tissue and supports our main conclusions.

Samples included in our data set were selected to allow a

detailed examination of the biases in miRNA content between

male and female in tissues of increasing complexity with

regard to the nature and number of different cells they contain

and in tissues ranging from poorly to highly sexually di-

morphic. We assess sex biases of miRNAs at the level of single

cells in culture (lymphoid cells), in a very simple tissue with

functions in both sexes (salivary glands), and in several fly

parts of variable complexity and sexual dimorphism (head,

body, ovary, and testis).

Each tissue is enriched for specific miRNAs, highlighted

in clusters in Figure 1A, many of which are enriched in both

sexes. Ubiquitous and evolutionary conserved miRNAs (mir-14,

bantam, mir-8, mir-1) are highly expressed in most tissues

(Table 1). However, even for such prevalent miRNAs, their

relative abundance varies greatly depending on the tissue and

stage studied (Table 1 and Figure 1A), denoting a high de-

gree of variation in miRNA populations between tissues and

the compartmentalization of their functions in a dynamic

fashion.

In addition to a temporal and spatial regulation of

miRNAs during development (Ruby et al. 2007), a novel

layer of complexity arises as we compare miRNA popula-

tions between males and females. Regardless of its hetero-

geneity, each tissue examined reveals miRNAs differentially

or even exclusively expressed in one sex (Figure 1, B–H).

The example of mir-8 illustrates how a miRNA classically

regarded as abundant presents unexpected differences at

the cellular level: mir-8 ranks within the top two most abun-

dant miRNAs in heads and salivary glands (10–15% of

reads), but fourth in lymphoid Kc cells (4%), and only

17th in S2 cells (,1%; Table 1). Following from this exam-

ple, we systematically analyzed the miRNAs families present

in each tissue and estimate their sex-biased expression.

MiRNAs in lymphoid embryonic-derived cells

We examinedmiRNAs populations in two embryonic hemocyte-

derived cell lines commonly considered as male (S2) and

female (Kc-167) based on the status of dosage compensation

(Alekseyenko et al. 2012). In S2 cells, the X chromosome is

upregulated by compensasomes recruited along the X chro-

mosome at sites identical to those seen in embryos, male

salivary glands, and whole larvae (Alekseyenko et al. 2006;

Legube et al. 2006; Straub et al. 2008). In Kc cells, dosage

compensation does not occur.

In our assays, most miRNAs are common to both Kc and

S2 cell lines (Figure 1B). Overall, mir-14, mir-184, and

bantam are most abundant and account for about half of

all miRNA reads (Table 1) in both cell lines. Our miRNA pro-

files agree with the medium levels of mir-2 (mir-2a/-2b mainly)

and high levels of mir-34 described in S2 cells (Sempere et al.

2003). High expression of mir-14 in these immortalized cell

lines is consistent with its role as a cell-death suppressor (Xu

et al. 2003). In addition, we do not detect miRNAs from the

let-7-C cluster (let-7, mir-100, mir-125) in either cell type.

This is consistent with previous reports in which the let-7-C

miRNAs are detected only upon addition of the steroid hor-

mone ecdysone, which has the opposite repressive effect on

mir-34 (Sempere et al. 2003; Chawla and Sokol 2012).

For sexually dimorphic expression, we identify sex biases

for several miRNAs: mir-12, mir-304, mir-92a, and mir-278

are more abundant in female Kc cells, whereas mir-252, mir-

307, mir-282, and mir-980 are more prominent in male S2

cells (full lists in Table S2). Simple male and female embry-

onic cell lines express comparable miRNAs, yet differ in the

level at which they express them.

MiRNAs in larval salivary glands

We examined miRNAs in larval salivary glands, organs that

secrete the “glue” allowing the larva to attach to a substrate

before pupariation. Salivary glands consist of two simple cell

types (Kerman et al. 2006): secretory cells and duct cells that

connect them to the larval mouth. Each type originates

from �100 cells in the embryonic ectoderm. The secretory cells

initiate multiple rounds of DNA replication and differentiate

without subsequent division (endoreplication) to create the gi-

ant polytene chromosomes needed to meet the increased met-

abolic requirements of these cells to produce secretory proteins.

Among all samples, miRNAs with a strong preference for

expression in salivary glands are, in descending expression

levels, mir-263a, mir-375, mir-304, mir-275, mir-283, mir-308,

mir-286, mir-5, and mir-307-as (Figure 1A). Many of these

highly expressed miRNAs (e.g., mir-8, mir-263a, mir-275,

mir-12, and mir-304) match those whose expression peaks

during the larval stages (Ruby et al. 2007). In contrast, others

(bantam, mir-13b, mir-11 or mir-14, mir-2b) are expressed

more ubiquitously during development.
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Figure 1 Expression of miRNAs in

various male and female tissues.

(A) Expression of miRNAs across

10 sexed libraries. Blue color in-

tensity ranging from light to dark

indicates an increasing abun-

dance of normalized counts esti-

mates for a given miRNA relative

to all miRNAs in that library and to

all libraries. Clusters of miRNAs

enriched in a given tissue are

highlighted. The 147 miRNAs

with .30 normalized reads across

all libraries were retained. 2–4 do:

2- to 4-day-old flies. The biased

expression of miRNAs and their

expression levels are shown in

pairwise comparisons in each tis-

sue in (B) embryonic hemocyte-

derived S2 (male) and Kc-167 (fe-

male) cells. (C) Late larvae L3 Sal-

ivary Glands. (D) Adult Head. (E)

Adult body (head removed). (F)

Testis compared to male Body.

(G) Ovary compared to female

Body. (H) Testis compared to

ovary. For each miRNA, the ratio

of normalized reads (M/M+F or F/

M+F) (x-axis) is plotted against its

normalized expression level (%,

log scale). Each dot represents

a miRNA; miRNA’s present in

one sexed tissue have a ratio of

0 or 1. Pearson correlations be-

tween male and female samples:

0.95 in lymphoid cells; 0.98 in sal-

ivary glands; 0.96 in heads; 0.99

in body; 0.25 in testis/ovary. M,

Male; F, Female.
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As expected from a tissue of low complexity with

functions essential to both sexes, miRNAs are found in

most instances at levels comparable in male and female

salivary glands (Figure 1C). This overwhelming similarity

is not without exceptions. Salivary glands present a limited

number of miRNAs whose expression is biased toward

Figure 1 (Continued )
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Table 1 Twenty-five most abundant miRNAs in male and female libraries from embryonic lymphoid cells (S2, male; Kc, female), third-instar larval salivary glands, 1-day-old adult

head and body, and 2- to 4-day-old adult gonads

Embryonic

lymphoid cells

Larval

salivary

glands

Adult

heads

Adult

body

Adult

gonads

S2 % Kc % Male % Female % Male % Female % Male % Female % Testis % Ovary %

mir-14 38.35 mir-14 29.10 mir-8 32.42 mir-8 35.67 mir-8 14.57 mir-8 11.44 mir-1 25.56 mir-1 26.75 mir-12 16.87 mir-989 18.37

mir-184 11.35 mir-184 16.38 mir-263a 10.45 mir-12 8.49 mir-1 10.00 mir-1 8.18 mir-8 23.01 mir-8 25.64 mir-8 15.35 bantam 11.43

bantam 7.44 mir-2a 4.44 mir-375 7.15 mir-263a 7.75 bantam 8.19 mir-276a 7.63 bantam 12.56 bantam 9.79 mir-305 5.04 mir-8 9.30

mir-996 4.85 mir-8 4.15 mir-12 6.25 mir-375 6.72 mir-276a 5.81 bantam 7.14 mir-276a 4.66 mir-276 5.02 mir-959 4.68 mir-2a 7.73

mir-279 3.47 bantam 4.08 mir-304 5.73 mir-282 6.30 mir-276 5.39 mir-210 5.00 mir-277 3.91 mir-276a 4.27 mir-2a 3.85 mir-318 7.25

mir-11 3.29 mir-34 3.40 mir-275 5.19 mir-304 6.01 mir-277 4.66 mir-277 4.90 mir-276 2.47 mir-2a 2.93 let-7 3.13 mir-184 6.40

mir-34 2.93 mir-988 3.37 bantam 4.71 bantam 4.82 mir-184 4.06 mir-184 4.17 mir-2a 2.20 mir-277 2.68 mir-34 3.11 mir-996 5.92

mir-988 2.90 mir-317 3.15 mir-2a 3.04 mir-11 2.46 mir-34 3.58 mir-34 3.61 mir-996 1.54 mir-989 1.76 mir-282 3.00 mir-2b 3.30

mir-282 2.84 mir-2b 3.11 mir-305 2.73 mir-13b 2.45 mir-2b 3.42 mir-14 3.20 let-7 1.49 mir-282 1.68 mir-964 2.74 mir-994 3.01

mir-252 2.79 mir-276 2.30 mir-2b 2.43 mir-305 1.93 mir-2a 3.23 mir-285 2.95 mir-9a 1.48 mir-31a 1.48 mir-277 2.59 mir-275 2.62

mir-13b 2.43 mir-996 2.30 mir-13b 1.99 mir-2a 1.91 mir-285 3.22 mir-2a 2.92 mir-14 1.34 mir-2b 1.21 mir-11 2.51 mir-13b 2.20

mir-2b 2.09 mir-279 2.26 mir-11 1.91 mir-2b 1.55 mir-14 2.46 mir-2b 2.73 mir-31a 1.28 mir-9a 1.18 mir-978 2.29 mir-9b 2.20

mir-317 1.92 mir-13b 2.20 mir-283 1.79 mir-283 1.54 mir-210 2.44 mir-276 2.72 mir-282 1.20 mir-996 1.08 mir-977 2.20 mir-263a 1.46

mir-276a 1.92 mir-11 2.09 mir-282 1.58 mir-996 1.20 mir-124 2.35 mir-274 2.60 mir-12 1.10 let-7 1.08 mir-274 2.15 mir-79 1.40

mir-2a 1.65 mir-9b 1.77 mir-996 1.14 mir-276 1.15 mir-13b 2.20 let-7 2.39 mir-13b 1.08 mir-184 1.06 mir-976 2.04 mir-282 1.38

mir-276 0.95 mir-276a 1.62 mir-308 1.06 mir-308 1.00 let-7 1.62 mir-124 2.28 mir-10 0.98 mir-13b 0.96 mir-9a 1.86 mir-11 1.34

mir-8 0.84 mir-12 1.58 mir-14 0.99 mir-998 0.99 mir-1000 1.47 mir-252 1.76 mir-2b 0.94 mir-10 0.84 mir-983 1.83 mir-34 1.32

mir-995 0.79 mir-305 1.54 mir-998 0.81 mir-276a 0.74 mir-263a 1.37 mir-13b 1.63 mir-281-1 0.91 mir-11 0.75 mir-9b 1.82 mir-305 1.08

mir-277 0.78 mir-2a-2 1.45 mir-276 0.74 mir-79 0.69 mir-987 1.16 mir-9a 1.53 mir-304 0.88 mir-14 0.74 mir-14 1.82 mir-9c 0.94

mir-305 0.70 mir-306 0.91 mir-34 0.63 mir-995 0.64 mir-252 1.14 mir-996 1.28 mir-184 0.79 mir-281-1 0.72 mir-988 1.79 mir-12 0.92

mir-998 0.65 mir-998 0.89 mir-995 0.62 mir-34 0.59 mir-274 1.09 mir-263a 1.21 mir-279 0.75 mir-314 0.60 mir-2b 1.64 mir-33 0.84

mir-306 0.52 mir-9c 0.84 mir-79 0.61 mir-14 0.52 mir-7 1.09 mir-1000 1.20 mir-11 0.74 mir-279 0.56 mir-960 1.47 mir-995 0.76

mir-9b 0.52 mir-995 0.84 mir-9a 0.59 mir-275 0.51 mir-9a 0.95 mir-31a 1.03 mir-305 0.72 mir-263a 0.52 mir-13b 1.41 mir-14 0.63

mir-79 0.43 mir-79 0.81 mir-9b 0.48 mir-33 0.45 mir-929 0.95 mir-11 1.00 mir-79 0.62 mir-305 0.50 mir-317 1.22 mir-1 0.62

mir-2a-2 0.42 mir-282 0.69 mir-33 0.47 mir-9a 0.43 mir-31a 0.91 mir-7 0.97 mir-263a 0.61 mir-34 0.44 mir-316 1.20 mir-312 0.58

miRNAs are ranked in decreasing order and their contribution to the library given as a percentage of all miRNA reads in the library. The full list and percentages are provided in Table S22.
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male (mir-275) and female cells (miR-279, mir-282)

(Table S3).

For several miRNAs, including mir-304, mir-12, mir-283,

mir-314, and mir-981, the relative abundance in male and

female salivary glands is matched in whole larvae, suggesting

widespread or general functions (D. Fagegaltier, data not

shown). Others vary, suggesting more discrete roles—these

include miR-210, mir-13b, mir-100, mir-1013, and miR-979

(note that the latter has low reproducibility in salivary glands

in our assay). Supporting this view, we detect by qPCR higher

amounts of mir-979, mir-210, and mir-314 in whole larvae

compared to salivary glands, and mir-979 and mir-314 are

expressed in mixed L1-L3 larval imaginal discs (Ruby et al.

2007).

Surprisingly, although let-7 is undetectable by Northern blot

on unsexed whole L3 larvae (Sempere et al. 2002), we find let-7

in salivary glands of both males (48 normalized reads) and

females (219 reads) (Table S3). The function of let-7 in sali-

vary glands is unknown, but sex-biased expression could reveal

interesting differences and asynchrony in tissue homeostasis

during male and female transition from larval to pupal stages.

MiRNAs in adult heads

In adult heads from 1-day-old flies, the most prominent

miRNAs are mir-8, mir-1, mir-276a, and bantam (Table 1).

All were shown to act on neural target genes, genes controlling

circadian rhythms, eye development, and growth (see Smibert

and Lai 2010 for review; Marrone et al. 2012; Li et al. 2013).

Interestingly, whole heads do not differ dramatically in their

miRNA profiles between males and females (Figure 1, A–D).

Mir-2a, mir-2b, mir-277, mir-278, and, importantly, let-7,

mir-34, and mir-124 are expressed at comparable levels in

both sexes, in agreement with their general role in specifying

neuronal cell fate, plasticity, and neurodegeneration (Kucherenko

et al. 2012; Liu et al. 2012; Weng and Cohen 2012; Wu et al.

2012). Conversely, head expression of mir-276 and mir-190 is

enriched in males, and mir-210, mir-274, mir-980, and mir-981

in females (Table S4). This finding hints toward sexually di-

morphic functions of these miRNAs in neuronal tissues.

Finally, miR-252 and miR-980 were previously detected

by qPCR in adult male and female heads 2–4 days after

eclosion, while no miR-984 could be detected (Marrone et al.

2012). The present analysis provides evidence that all three

miRNAs are expressed in the head and establishes the expres-

sion of both mir-252 and miR-984 as slightly more prominent

in female heads compared to males. The functional significance

of such biases is yet to be determined.

MiRNAs in the adult body, testis, and ovary

Almost all known miRNAs (155 miRNAs) are detected in the

body, the most complex sample in our data set that covers all

body parts of the adult fly with the exception of the head. We

find primarily mir-1, mir-8, bantam, mir-276a, mir-277,

mir-276, mir-2a, mir-996, and let-7 in the fly body (Table 1).

The adult fly presents striking biases for miRNAs in males

and females (Figure 1E and Table S5). Mir-989 represents

the strongest female-biased miRNA in the body. Among

a larger set of highly male-biased miRNAs, few are detected

in females. Of the 22 most strongly male-biased miRNAs in

the body (above fivefold), 17 miRNAs appear exclusively in

males and the remaining miRNAs (mir-960, mir-961, mir-963,

mir-983, and mir-984) yield at best a few tens of reads in

females. Valuable insights into the origin of these discrepancies

come from the following comparisons.

We compared the populations of miRNAs in testes and

ovaries. We have seen so far that from single lymphoid cells

to more complex and dimorphic heads and bodies, the most

abundant miRNAs remain overall conserved between males

and females with a few exceptions such as mir-8. This is

strikingly not the case in testes and ovaries in which the

most abundant miRNAs differ. In 2- to 4-day-old flies, about

half of the miRNAs cloned from ovaries correspond to mir-989,

bantam, mir-8, mir-2a, and mir-318 (Table 1). In testes, this set

only partially overlaps with that of ovaries and includes mir-12,

mir-8, mir-305, mir-959, mir-2a, let-7, and mir-34. Younger

males exhibit the same set of abundant miRNAs in testes

(D. Fagegaltier, data not shown) indicating that their high

expression persists in testes at least over the early adult stages.

Each tissue in our data set presents a set of miRNAs

underrepresented in the other tissues examined; although

their relative abundance varies between male and female,

these tissue-enriched miRNAs are usually overrepresented

in both sexes (Figure 1).

Ovaries and testes are enriched for certain miRNAs, but

very few are enriched in both tissues. Instead, two distinct

sets of miRNAs emerge: a large cluster of testis-enriched

miRNAs and a smaller set of ovary-enriched miRNAs (Figure

1A). The miRNA populations of these highly sexually dimor-

phic tissues are highly skewed and sexually dimorphic (Figure

1H). 47 miRNAs show higher levels of expression in testes

compared to ovaries (above fivefold), whereas 29 are prefer-

entially expressed in the ovary (Table S6). Fourteen strongly

testis-biased miRNAs are not detected in ovaries and may

carry important and specialized functions.

During maturation, oocytes express several classes of

miRNAs whose levels vary upon fertilization and later during

the initiation of zygotic transcription. Maternal deposition of

miRNAs has been reported in Drosophila to serve a variety

of functions, including the destabilization of a large number

of maternal mRNAs in early embryos via the SMAUG protein

(Giraldez et al. 2006; Bushati et al. 2008; Soni et al. 2013).

In whole ovaries from 2- to 4-day-old females, we identify

all but one of the reported maternally deposited miRNAs

previously described in oocytes, including miRNA populations

denoted as unstable (class I, restricted to stage 14 oocytes),

and stable (class II, including maternally deposited and

zygotically expressed miRNAs). Specifically, we identified

mir-318, mir-276a, mir-34, mir-317, mir-284, let-7 (class I);

mir-13b, mir-2a, mir-306, mir-184, mir-312, and mir-310

(class II). Zygote-specific miRNAs of class III were not detected,

namely the miR-309 cluster zygotically expressed �2- to

4-hr-post-fertilization (miR-309, miR-3, miR-286, miR-4,
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miR-5, miR-6-1, mir-6-2, and mir-6-3). We note, however,

that the expression of mir-3 and mir-5 for class III could

start earlier than previously described: six to eight reads

match mir-3 and mir-5. Supporting this view, low counts

for mir-3 and mir-5 in 2- to 4-day-old female ovaries in-

crease in loqs mutants in Czech et al. (2008). A low ex-

pression of these two miRNAs in the ovary therefore

remains a possibility.

In summary, in addition to expressing highly divergent sets

of miRNAs, both testes and ovaries express very different sets of

miRNAs compared to other tissues (Figure 1A): their respective

miRNA profiles appear as the most divergent of our data set.

To gain insight into the sexually dimorphic functions of

miRNAs in somatic tissues, we compared the miRNA pop-

ulations in testes and male body or ovaries and female body,

respectively. We reasoned that a miRNA present in the male

body sample (that includes testes) but not enriched in testes

is likely to have at least a somatic function outside the testes.

Thirty such miRNAs are enriched at least fivefold in the male

body (Figure 1F and Table S7), suggesting that they carry

distinct functions in the soma.

In a similar comparison between female body and ovaries,

we identify 45 miRNAs enriched in female somatic tissues, 28

of which are almost exclusively detected in the female body

(Figure 1G and Table S8).

Finally, the tallies of miRNAs enriched in ovaries and

testes compared to the body samples establish that most of

the differences in miRNA expression between male and female

body come primarily from these highly dimorphic internal

reproductive tissues.

Male- and female-biased somatic miRNAs

We next looked specifically for miRNAs presenting a consis-

tent bias toward males or toward females in all somatic

tissues studied. We considered miRNAs presenting at least

a twofold enrichment in one sex in lymphoid cells, salivary

glands, head, and/or body. Interestingly, not a single miRNA

presented male biases in all four or even three tissues,

suggesting that there is no ubiquitous male-biased somatic

miRNA. However, a total of 23 miRNAs are male biased in

two tissues, generally salivary glands and S2 cells, or head

and body (Figure S2A). Of these 23 somatic male miRNAs,

10 are also enriched in testes (compared to the male body)

and might therefore repress sex-specific targets in the male

soma and gonads. The remaining 13 miRNAs are not enriched

in testes and represent somatic male-biased miRNAs.

For females, 32 miRNAs are consistently female biased in

the soma (more than twofold; Figure S2B). Interestingly,

mir-318 is enriched in females in all four somatic tissues and

several other miRNAs in three tissues. Eight of these female-

biased miRNAs are also enriched in ovaries. The remaining 24

miRNAs represent somatic female-biased miRNAs.

Ovary and testis miRNAs

We next searched for miRNAs prevalent in ovaries, testes, or

both to identify those with possible functions in gameto-

genesis or the organization of the adult gonads. Compared

to same-sex somatic tissue, 32 miRNAs are enriched in the

ovary and 51 in testis. Of these, 18 are enriched in both

testis and ovary, likely underscoring important processes

common to gonads of both sexes. Conversely, 8 miRNAs

enriched in ovaries but not in testes and 30 miRNAs enriched

in testes but not in ovaries could control sex-specific aspects of

gonad development (Figure S2C).

The 30 testis-enriched miRNAs reflect a remarkable geno-

mic homogeneity: 11 of these miRNAs are located on the X

chromosome (Figure S2C). This fraction is much higher than

expected (P = 0.0018, hypergeometric distribution) and sig-

nificantly greater than the proportion of X-linked miRNAs

found in other tissues (male soma, P = 0.0747; ovaries, P =

0.2115). This enrichment of miRNAs originating from the X

chromosome is therefore a phenomenon specific to testes. The

prevalence of X-linked miRNAs expression in testes has been

reported in mouse and was explained by X-linked gene dosage

(Ro et al. 2007; Mishima et al. 2008). It is tempting to spec-

ulate that such a mechanismmay hold true in Drosophila testes

as well. To date, the mechanisms regulating X-linked genes ex-

pression in testes such as meiotic sex-chromosome inactivation

and dosage compensation remain unclear (Vibranovski et al.

2009; Deng et al. 2011; Meiklejohn et al. 2011; Vibranovski

et al. 2012).

Are X-linked miRNAs transcriptionally regulated by
dosage compensation?

We next asked whether the transcriptional regulation of X-

linked miRNAs depends on dosage compensation in male

somatic tissues. At the genomic level, miRNAs are evenly

distributed across the Drosophila genome with no obvious

pattern on the X chromosomes. The X chromosome repre-

sents �20% of the Drosophila genome and bears an even

share of miRNAs. The 149 genomic miRNA loci queried in

this study are distributed evenly across all chromosomes

with 34, 33, 22, 29, and 27 miRNAs on chromosomes 2L

and 2R, 3L and 3R, and the X chromosome. Together, the

fourth chromosome and heterochromatin of chromosome 3

(3h) account for 4 additional miRNAs. To date, no miRNA

has been reported on the Y chromosome.

Two classes of miRNAs are present as typical genic

miRNAs and mirtrons. A total of 37 mirtrons (24.8%) reside

within introns in the genome. Compared to miRNAs regulated

by their own promoter, mirtrons are slightly enriched on

chromosome 2L (32.4% of chromosome 2L miRNAs) and

underrepresented on chromosome 3L (13.6%); on the X

chromosome, 22.2% are encoded as mirtrons.

To address whether dosage compensation controls miRNA

expression directly on the X chromosome, we first examined

whether X-linked miRNAs reside in regions bound by MSL-1

in ChIP–Chip experiments reported by Straub et al. (2008) in

S2 cells and embryos. We note that X-linked miRNAs reside

outside the primary “high affinity sites” defined in these stud-

ies and are therefore not primary strong binding sites for
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compensasomes. MSL-1 levels were further divided into high,

medium, low, or MSL-1 absent subtypes (Figure 2A). With

the exception of two miRNA loci residing in regions not

addressed in this study, 67% of X-linked miRNA loci reside in

regions bound by compensasomes, indicating that some

miRNAs could be dosage compensated.

For those X-linked miRNAs residing in regions bound by

MSL1, dosage compensation could provide a direct means to

equalize their expression in both sexes. To test this possibility,

we assayed by quantitative PCR the levels of X-linked miRNAs

expressed in salivary glands, a tissue in which dosage com-

pensation has been extensively studied, and compared miRNA

levels in wild-type animals and mutants for compensasomes

function (msl-3 and mle; Figure 2, B and C). In mutant males,

X-linked mir-304, mir-13b, and mir-12 levels are reduced ap-

proximately twofold, as expected for genes whose expression

depends on compensasomes; autosomal controls mir-100 (2L),

mir-981, and mir-1013 (3R) were unaffected. However, levels

of two miRNAs mir-979 and mir-210 did not change signifi-

cantly in mutants, implying that some X-linked miRNAs escape

dosage compensation—these join the short list of X-linked pro-

tein coding genes (Lsp1-a, dpr8, CG9650) that similarly avoid

compensation. Interestingly, mir-12 and mir-304 belong to the

same cluster as mir-283 but behave differently in mutants. The

milder reduction of mir-283 levels in mutant animals supports

previous observations that mir-12 and mir-304 expression pat-

terns show little correlation with that of mir-283. Although

they share a common Pol II promoter, post-transcriptional pro-

cessing could account for these differences (Ryazansky et al.

2011).

In summary, only a few X-linked miRNAs are influenced

to some extent by dosage compensation. Two X-chromosome

miRNAs clearly escape dosage compensation (mir-979,

mir-210). One major difference between miRNA and protein-

coding genes escaping dosage compensation is that the lat-

ter tend to reside outside MSL-bound domains. Overall, it is

tempting to speculate that dosage compensation presents

only limited advantages for short, rapidly regulated miRNA

genes.

A role for the let-7-C locus in sexual dimorphism

We investigated the functional relevance of sex-biased expres-

sion of miRNAs using the example of let-7. Two miRNAs in the

let-7-C cluster, mir-125 and let-7, are highly expressed in the

fly head, body, and testis and poorly in the ovary (Figure 4A).

Mir-100 levels are consistently lower in all tissues expressing

let-7 and mir-125. From worms to flies and humans, the

let-7-C locus has an important role throughout development

(Pasquinelli et al. 2000). In flies, let-7-C is under the control

of ecdysone and mimics the hormone peaks required for each

of the developmental transitions that turn an embryo into an

adult (reviewed in Ambros 2011). We set out to investigate

the functional implications of the male-biased expression of

the let-7-C miRNAs in the gonads and more generally its

function in adult males and females.

Sex-biased let-7 miRNA expression in gonadal somatic
cells sustains germline differentiation

We analyzed let-7-C expression pattern in the adult Drosophila

gonads using Gal4 under the control of the intrinsic let-7-C

promoter. In the germarium, let-7-C is expressed in some of

the somatic escort (ECs) and cap cells (CpCs; Figure 3, A, B,

and D). The number of let-7-C-expressing cells and the activity

of the let-7-C promoter per se fluctuate in CpCs and ECs in

different germaria and within the same germarium (compare

Figure 3, D and D9), demonstrating that the expression pattern

of let-7-C is highly dynamic.

In testes, somatic cells, namely cyst stem cells (CySC’s),

and their lineage express let-7-C (Figure 3, E–E9). We find

consistently higher levels of let-7-C per cell and higher numbers

of let-7-C-positive cells per testicular apex compared to positive

cells in the germarium (compare Figure 3, D–D9 and E, green).

We confirmed by RT–qPCR the male-biased expression of

let-7 in the gonads. Let-7 levels are about eight times higher

in testes compared to those in ovaries (Figure 3C). In addi-

tion, let-7 is enriched in the gonads of both sexes compared

to carcasses. Together, these findings support the biased

expression of let-7-C and let-7 reported here by miRNA pro-

filing. Further, they establish a stronger transcriptional activ-

ity of the let-7-C promoter in the testicular soma compared to

the activity in the ovarian soma.

In addition, let-7 has been detected in the hub cells of old

male testes, demonstrating its responsiveness to aging in

males (Toledano et al. 2012). The dynamic expression of

let-7 and its responsiveness to external and internal conditions

(temperature—see below, aging) in both sexes prompted us to

ask whether let-7 regulates gonadal somatic cell behavior.

We analyzed the tissue architecture of the germaria and

testes upon let-7 depletion. In the ovary, ∆let-7 clones induced

specifically in somatic ECs result in a peculiar germarium

architecture where both the germline and soma are abnormal

(Figure 3G). Mutant germaria contain supernumerary single

spectrosome germline cells (arrows) and oddly shaped somatic

ECs expressing higher amounts of cell adhesion molecules

(Figure 3G). Let-7 deficiency results in excessive single spec-

trosome germline cells (GSCs, CBs) and reduced numbers of

differentiating cysts (compare Figure 3, F and G), reflective of

a delayed early germline differentiation. Altered ECs lacking

let-7 likely fail to protect the differentiating germline cysts

from the niche signaling. The phenotypes observed imply that

let-7 controls somatic ECs behavior, which in turn non-cell-

autonomously modulates the efficiency of early ovarian germ-

line differentiation.

In the testes too, let-7 deficiency affects somatic cell behav-

ior. Normally, two squamous cells encapsulate one gonioblast,

such that only small clusters of somatic cells (fewer than five

cells) marked by a nuclear marker can be detected (Figure 3, H

and I). Instead, CySC lineage cells lacking let-7 form large

aggregates of .10 cells (Figure 3, I, J, and J9). Interestingly,

these clustered cells accumulate the cell adhesion molecule

FasIII, indicative of a columnar epithelium that resembles the

miRNA Profiling in Males and Females 657



Figure 2 Effects of dosage compensation on X-linked miRNAs expression. (A) Compensasome association at the 27 X-linked miRNA loci vary, with 15

miRNAs located in regions highly populated by compensasomes (high), three miRNAs with low MSL coverage and seven miRNAs residing in regions

deprived of compensasomes. Two miRNAs loci in regions not covered by the arrays (undet.) could not be assessed. We observe no difference in MSL

occupancy for miRNAs residing in intronic or intergenic regions. The level of expression of miRNAs in the absence of a functional dosage-compensation

complex was examined in male salivary glands (green charts) and whole larvae (blue charts) mutant for msl3 (B) or mle (C). Of the six X-linked miRNAs

expressed in these tissues, mir-304, mir-12, and mir-13b show the expected twofold decrease in all mutant samples compared to controls. MiRNA levels

remain unchanged, however, for X-linked mir-979, mir-210, or mir-283. Autosomal mir-981, mir-100, or mir-1013 levels did not change. Mir-314 levels

increase in msl3 mutant salivary glands and decrease in whole larvae. All miRNAs were tested in triplicates on two independent biological replicates.

Values were normalized to the autosomal gene standard, Dspt4, whose levels remain unchanged between males, females, or compensasome mutants

(Chiang and Kurnit 2003). We observe similar trends between male and female salivary glands miRNAs in wild-type Oregon-R and msl3 heterozygous

mutant controls for all 10 miRNAs tested (mir-100, mir-979, mir-12, mir-314, mir-981, mir-210, mir-1013, mir-283, mir-13b, mir-304). Error bars

represent standard deviations. P-values: (*) P , 0.05; (**) P , 0.005; (***) P , 0.0005. Calculations are provided in Table S11, Table S12, Table S13,

Table S14, Table S15, and Table S16.
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Figure 3 let-7 deficiency affects somatic cells behavior in ovaries and testes, which cell-non-autonomously influences early germline differentiation. Drosophila

ovaries and testes present commonalities in their general organization and the type of cells they comprise (Fuller and Spradling 2007). The ovary is a paired organ

consisting of 16–20 ovarioles, each representing a string of progressively developing egg chambers. (A) At the apex of an ovariole, the germarium comprises

somatic cells (terminal filament, TF; cap cells, CpC’s; escort cells, ECs; follicle stem cells, FSCs; follicle cells, FCs) and germline cells (germline stem cells,

GSCs; cystoblast, CB; differentiating cyst, Cyst). GSCs are physically attached to the somatic cluster of cap cells that, with the terminal filament cells, represent

the GSC niche. GSCs divide into a differentiating cystoblast, which then divides four times with incomplete cytokinesis, producing a 16-cell cyst in which 1 cell

becomes the oocyte while the others develop as nurse cells. These different germline cell populations can be easily identified by their location and specific

markers in the germarium. For example, Drosophila adducin homolog antibody marks an actin-rich cellular organelle represented as a dot-like structure in single
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ovarian follicular epithelium. Such aggregates do not develop

in let-7-C rescue flies (Figure 3, H and I).

Let-7 levels are important to specify male and female
sexual identify

Let-7 levels fluctuate at each developmental transition

of the fly, including a major pulse in late pupae. During

development, let-7 miRNA first appears in L3 larvae and has

been detected in genital discs of L3 male and female larvae

(Sokol et al. 2008). Dsx levels vary as well during development

and are especially important from the L3 larval to the late

pupal stages to transform genital discs into adult genital and anal

structures. To ask whether let-7 influences the transformation of

these structures, we expressedUAS–let-7-C in patterns that mimic

pulses of the major controller of the sex-determination hierarchy

DSX using the dsx–Gal4 driver. Animals overexpressing let-7-C

in dsx-expressing cells develop severe phenotypes: males and

females fail to develop segments A8–A10 and lack a terminalia

(analia and genitalia) (Figure 4B). Overexpressing individual

miRNAs from the cluster alters the same segments (Figure 4, B

and C): females overexpressing mir-125 form additional vag-

inal teeth, up to a full second row of teeth, and a vulva over-

growth. Additional vaginal teeth appear toward the posterior

part of the vulva in females overexpressing let-7. Males over-

expressing let-7 show an overgrowth of the genital ring/arch.

In males overexpressing mir-125, this structure proliferates yet

collapses into a more compact bulged ring (Figure 4, B and C).

In addition, overexpressing let-7 or mir-125 in dsx-expressing

cells results in the overall reduction of the male external gen-

ital structures. Importantly, the external terminalia of males

and females lacking let-7 present similar defects (Figure 4C).

Finally, in animals overexpressing mir-125, the typical female

abdominal pigmentation darkens in the posterior stripes of

segments A3–A5 and in the terminal A6 and A7 segments

where it widens (Figure 4B). Females overexpressing the

whole let-7-C cluster show a similar increase in pigment, but

not those overexpressing let-7 alone, pointing at mir-125 as

the miRNA responsible for the pigment defects. Controls

expressing UAS–NLS–GFP or UAS–mir-100 constructs do not

present such phenotypes. Together, these results suggest that

the ectopic expression of let-7-C, let-7, or mir-125 in dsx-

expressing cells represses gene(s) necessary for pigmentation

in most abdominal segments and importantly, gene(s) critical

for the formation of the highly dimorphic segments A8–A10

in both sexes. The transformation of the genital disc into

a male or female adult terminalia and the sexually dimorphic

pigmentation pathway are both orchestrated by DSX during

the pupal stages. It is likely that the respective timing and

levels of expression of let-7-C miRNAs and dsx at this stage

are important. None of the miRNAs in the let-7-C cluster,

however, are predicted to target the dsx transcripts, suggesting

that the phenotypes reflecting alterations of the levels of DSX

or of the genes it acts with are generated upstream or in

parallel to DSX action rather than from a direct interaction.

To test whether sex determination is affected by let-7, we

quantified in animals lacking let-7 the male- (dsxM) and

female-specific transcripts (Sxl, tra) of the sex-determination

hierarchy and DSX downstream target Yp1 (Figure 5, A and

B). In let-7 mutant females, the levels of Sxl and tra remain

unchanged but Yp1 mRNA levels are significantly lower. The

background levels of dsxM remain stable in females lacking

let-7, implying that the levels of the direct activator of Yp1,

cells (GSCs and CBs) and as a branched fusome in the developing cysts. There is another class of somatic cells at the anterior of the germarium, called

the escort cells. These squamous cells are mitotically quiescent and envelop differentiating cysts to protect them from niche signaling, an important role

for germline differentiation (Chen et al. 2011). ECs guide differentiating cysts to the posterior end of the germarium, where the germline becomes

encapsulated by the follicular epithelium and pinched off from the germarium. (B) The Drosophila testes are a paired tubular organ that consists of

somatic and germline cells. Scheme depicting the testis apex somatic cells (hub cells, Hub; cyst stem cells, CySC’s; cyst stem cells lineage, CySC lineage)

and germline cells (germline stem cells, GSCs; gonioblast, GB; differentiating spermatocysts and spermatogonia). Attached to the stem cell niche,

termed the hub, reside two types of stem cells: GSCs and CySC’s. While the hub is made by a cluster of postmitotic somatic cells, both stem cell types

divide in synchrony to produce differentiating germline cysts, each of which is encapsulated by two somatic CySC’s lineage cells. This encapsulation is

critical for proper germline differentiation (Leatherman and Dinardo 2010). Similar to the ovarian GSC progeny, the germline gonioblast undergoes four

rounds of incomplete cytokinesis to produce 16 primary spermatocytes in a cyst, eventually generating 64 sperm cells. (C) The relative expression levels

of miRNA let-7 in female and male carcasses, ovaries, and testes show that let-7 miRNA is sex biased and expressed at the higher levels in testes (see also

Table S17). (D, D9, E, E9) Localization of let-7-C miRNAs in the ovaries and testes, detected via membrane GFP and nuclear lacZ expressed under the

control of the let-7-C promoter (let-7-CGK1
–Gal4/UAS–CD8-GFP::nuc–lacZ). In the ovary, let-7-C is expressed in the somatic cells of the germarium, CpCs

and ECs (D). (D9) More ECs express let-7-C, shown by the presence of lacZ (b-Gal, green) when adult flies were subject to a heat shock for 1 hr prior to

dissection. (E and E9) In the testis, let-7-C is broadly expressed in all somatic cells, CySC’s and their lineage and the hub cells (let-7-CGK1-Gal4/UAS-CD8-GFP::

nuc-lacZ). (F and F9) Control let-7-C rescue germaria (P{W8, let-7-C}/+; let-7-CGK1/KO1) show typical numbers of germline SSCs and developing cysts (marked

by the spectrosome and fusome marker Adducin, Add, red) as well as somatic ECs (marked by Traffic jam, Tj, green). The GSC niche (marked by Lamin C,

LamC, red) is outlined by yellow dashed lines. (G and G9) Somatic cell ∆let-7 clones (Ubi–GFP, FRT40A/ FRT40A, let-7 miR-125; bab1–Gal4, UAS–Flp/P{W8,

let-7-CDlet-7}) are marked by the absence of GFP and outlined by white dashed lines. Upon let-7 depletion in the soma of the germarium, the number of

somatic ECs and germline SSCs increases, while the number of fusome-containing cysts decreases. The magnification is the same in F and G. (H) The

testicular apex of a control let-7-C rescue (P{W8, let-7-C}; let-7-CGK1/KO1) displays typical numbers of germline CBs and cysts (marked by spectrosome and

fusome marker Add, red) and the CySC lineage cells (marked by Tj, green); yellow dashed lines outline the hub (marked by Fasciclin III, Fas3, red). (J) In

Dlet-7 mutant testis (let-7-CGK1/KO1; P{W8, let-7-CDlet-7}/+) the CySC lineage cells cluster in larger groups and express the ovarian follicular epithelium

marker, Fas3. These clusters (outlined by white dashed lines) can be found at the apex or the side of the testicular tube. (I) Percentages of mutant testes

containing large $5 or.10 somatic cell clusters in comparison to control let-7-C Rescue. Ten to 20 testes were analyzed for each genotype. Red: LamC +

Add in D, D9, F, F9, G, G9 ; Fas3 + Add in E, H, J, J9. Green: GFP + b-Gal in D and E; GFP in G, G9; Tj in F, F9, H, J, J9. White: GFP + b-Gal in E9. Blue: DAPI in D–H,

G–J9. D, E + E9, H, J + J9 are single confocal sections while D9, F + F9, and G + G9 are projections of several z-stacks.
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DSXF, but not its repressor DSXM, are compromised. A general

depletion of let-7 during development generates more dra-

matic effects in males. Specifically, males deficient for let-7

present a spurious expression of two genes normally re-

stricted to females, Sxl and Yp1. Altogether these results point

at a role of let-7 in modulating the sex-determination cascade

during development, at least during the late-larval to late-

pupal stages.

Ecdysone signaling via let-7 maintains sexual identity
during adulthood

We attempted to determine what signaling pathway acts

upstream of let-7 in the process of sexual identity establishment

but also its maintenance. Hormonal signaling is a strong can-

didate for this type of regulation, since it may coordinate the

sex-specific differentiation of different tissues in the whole or-

ganism. The ecdysteroid signaling cascade governs various

Figure 4 Let-7-C miRNAs abundance across tissues and overexpression. (A) The three miRNAs of the let-7-C locus are almost undetectable in salivary glands and

lymphoid cells and highly expressed in male and female heads and body. All let-7-CmiRNAs are highly expressed in testes compared to ovaries. Let-7 is consistently

more abundant than mir-125 in all tissues expressing let-7-C, while mir-100 remain comparably low. (B) Cuticle preparations of dsx–Gal4 . UAS–let-7-C males

(XY) and females (XX): both fail to transform A8–A10 segments into a proper genitalia and analia. Increased abdominal pigmentation in let-7-C and mir-125

overexpressing flies (compare UAS–let-7-C or UAS–mir-125 to UAS–NLS–GFP). (B and C) Terminalia phenotypes of flies overexpressing single miRNAs of the locus:

additional vaginal teeth toward the posterior section of the vulva in dsx–Gal4. UAS–let-7 females, similar to Dlet7 flies (arrows in closeups in C); additional row of

vaginal teeth and overgrowth of the anterior vulva in dsx–Gal4. UAS–mir-125 females; overgrowth of the genital ring/arch dsx–Gal4. UAS–let-7male genitalia;

dsx–Gal4. UAS–mir-125male genital ring collapses into a more compact bulged ring (lateral view in C). Note the reduced size of male external genital and anal

structures in UAS–let-7, UAS–mir-125, and Dlet7 males. Dsx–Gal4. UAS–NLS–GFP, and dsx–Gal4 . UAS–mir-100 males and females appear normal.
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biological responses during Drosophila lifetime. Its specificity

depends on the differential spatiotemporal expression of down-

stream components specific to various cell types and develop-

mental stages. Steroid-coupled regulation of let-7 expression

takes place during the developmental transition from larval-

to-reproductive animals (Sempere et al. 2002, 2003; Garbuzov

and Tatar 2010; Chawla and Sokol 2012; Kucherenko et al.

2012). During this period, DSX most actively controls the

Figure 5 Levels of sex-specific mRNAs are altered due to loss of function of steroid-dependent miRNA let-7 and ecdysone deficiency. (A and B) Relative

levels of sex-specific mRNAs in Dlet-7 mutant (let-7-CGK1/KO1; P{W8, let-7-CDlet-7}/+) and control rescue (P{W8, let-7-C}/+; let-7-CGK1/KO1) females (A) and

males (B). (C and D) Relative levels of let-7 miRNA expression in wild-type (Oregon-R) and ecd1ts mutants kept at permissive (18�) and restrictive (29�)

temperatures measured in the anterior parts of ovaries (C) and testes (D). (E and F) Relative levels of sex-specific mRNAs in wild-type (Oregon-R) and

ecd1ts females (E) and males (F) kept at permissive (18�) and restrictive (29�) temperatures. Samples at restrictive temperature were compared to the

respective genotype and sex at permissive temperature. Error bars represent the range of mRNA levels; P-values are calculated by Student t-test: (*) P ,

0.05, (**) P , 0.005, (***) P , 0.0005. See also Table S18, Table S19, and Table S20.
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transformation of the A8–A10 genital primordia into dimorphic

male and female terminal structures. In addition, we and others

have reported that a deficit in ecdysone signaling generates

non-cell-autonomous defects in early female germline differen-

tiation (König et al. 2011; Morris and Spradling 2012). These

defects resemble the let-7 loss-of-function defects described

here in ovaries. Moreover, we report similar germline differen-

tiation defects in let-7 mutant testes. Together, the steroid-de-

pendent onset of let-7 expression during development and the

similarity of the germline phenotypes observed in adult males

and females lacking let-7 converge toward a model in which

ecdysone signaling acts upstream of the let-7 miRNA to modu-

late (i) sex determination in tissues and (ii) germ-cell differen-

tiation via the gonadal soma.

Whether let-7 also depends on ecdysone signaling in adults

has not been addressed previously. To address this, we took

advantage of a temperature-sensitive ecdysoneless mutation,

ecd1ts, that blocks the production of ecdysone at restrictive

temperature (29�) (Garen et al. 1977). After impairing ecdy-

sone signaling specifically in adults, we analyzed let-7 levels

in germaria and testes of Oregon-R and ecd1ts flies. Shifting

Oregon-R male and female adults to 29� results in increased

let-7 levels, showing that let-7 expression is dependent on

temperature (Figure 5, C and D). Enhanced activity of the

let-7-C promoter is also visible at the cellular level in the

ovarian CpC’s and ECs upon heat shock (Figure 3D9). Con-

trary to wild-type flies, let-7 levels drop at the restrictive tem-

perature in ecd1ts mutant female and more significantly in

male gonads, demonstrating that let-7 expression depends

on ecdysone signaling in the adult germaria and testes (Figure

5, C and D).

While the signaling cascade that establishes sexual identity

has been studied extensively, the question of whether certain

cues are needed to actively maintain sexual identity through-

out the adult life has not been addressed. We quantified the

expression of female- and male-specific components of the

sex-determination hierarchy 3 days after inducing an ecdy-

sone deficit in mature adults. Females lacking ecdysone begin

to express the male-specific isoform of dsx, dsxM (Figure 5E).

In males lacking ecdysone, conversely, male-specific mRNA

levels of dsxM and escargot (esg) fall significantly while the

female Sxl, tra, and Yp1 transcripts undergo a dramatic burst

in expression (Figure 5F). Because Sxl and tra become aber-

rantly produced in males, and both are required to produce

the female-specific isoform of dsx, it is likely that Yp1 hyper-

activation in males is a consequence of the production of

DSXF when ecdysone signaling is disrupted.

Together, our data support the hypothesis that ecdysone is

required to maintain the sexual fate of adult cells. Interestingly,

ecdysone effect on sex-specific mRNAs expression is significantly

stronger than that of let-7 alone (compare Figure 5, A, B, E, and

F), indicating that this systemic hormonal signaling regulates in

addition to let-7 other key players in the maintenance of sexual

identity during adulthood. Critically, these data suggest that

ecdysone signaling plays an essential role in the maintenance

of sexual identity in the adult Drosophila, primarily in males,

and that this function is mediated at least in part by let-7

miRNA.

Ecdysone signaling via let-7 maintains male cell fate of
the testicular soma during adulthood

Ecdysone-deficient (ecd1ts) males have reduced fertility and

most become completely sterile after 3 days at restrictive

temperature (Garen et al. 1977). At the tissue level, ecdy-

sone signaling appears important to maintaining the proper

behavior and function of the somatic CySC’s lineage in the

adult testis (Figure 6, A–C). In adult males subject to ecdy-

sone deficiency, the CySC’s lineage overproliferates, expresses

epithelial markers, and non-cell-autonomously affects germ-

line differentiation. Massive clusters of somatic cells appear at

the testis apex, forming occasionally epithelial-like sheaths

surrounding the testicular tube (Figure 6, B and C). The ap-

pearance of aggregates coincides with defects in germline

differentiation at two levels. First, somatic cells clustering at

the apex displace germline stem cells from the hub, forcing

their premature differentiation (Figure 6B9). Second, somatic

cells accumulating in lateral sheaths further disrupt their pro-

gression through germline differentiation programs (Figure

6C9). Flies deprived of ecdysone for a longer period show

more severe phenotypes (Figure 6, D and E). Still, these alter-

ations remain partial sex transformations. We never observed

a full transformation resulting in the production of sperm or

egg in mutants of the opposite sex. These findings suggest

that sustained steroid activity is required to maintain let-7

levels within testicular somatic cells.

Taken together, our analyses show that steroid signaling

is involved in the maintenance of sexual identity in adult

flies and in the maintenance of germline differentiation pro-

grams in the gonads. This hormonal signal engages miRNAs

to execute this regulation in a gender-specific manner.

Therefore the maintenance of sexual identity in the adult life

requires a systemic signaling that strongly depends on the

general state of the organism and external conditions. This

type of regulation is common in higher vertebrates including

humans, implying that the analysis of sex-biased miRNAs and

their targets will be of great importance to better under-

standing of sexual identity safeguarding throughout life at the

cellular level in different organisms.

Evidence supporting the existence of a long-range gonadal

axis in flies has emerged recently. Ecdysone is metabolized

in the fat body in both sexes and is also present exclusively

in the female germline late follicles. As a result, ecdysone

titers are higher in females (Bownes et al. 1983; Parisi et al.

2010). Germline ablation largely decreases ecdysone titers

and affects sex-biased somatic genes, including ecdysone

biosynthesis genes exclusively in females (Parisi et al.

2004, 2010). In fact, half of the sex-biased genes in

the female soma are estimated to be germline-dependent

genes that respond to ecdysone, the other half comprising

germline-independent sex-biased genes regulated by the

sex-determination hierarchy. The absence of germline,

however, does not affect somatic expression of the canonical
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sex-determination genes in either sex. Our study shows

that sex-determination gene expression depends largely

on ecdysone-mediated let-7 signaling in the soma, primarily

in males. The pronounced effects on dsx and Sxl in males

suggest that ecdysone and let-7 constitute the system that

supports the expression of somatic sex-biased genes in

males.

The effects of let-7 depletion on Yp1 and, importantly, the

influence of ecdysone signaling on the sex-determination

hierarchy in males raise the possibility that, although more

weakly, all sex-biased genes eventually depend on hormones

in females as well. If true, their sex-biased expression would

result from two pathways regulated by ecdysone: a germline-

dependent influence of ecdysone known as the gonadal

sex hormone axis and a second pathway regulated by

the sex-determination hierarchy that is germline indepen-

dent but, as shown here, influenced mildly by hormones

and let-7. Supporting this view, females require ecdysone

receptor (EcR) expression in FRU expressing neurons to

modulate precopulatory behavior just like males (see be-

low), and ecdysone deficient females present male behav-

iors (Dalton et al. 2009; Ganter et al. 2012).

Intrinsic sex-specific specific factors and the proper sexual

identity of the fat body are important for courtship behavior

orchestrated by DSX and FRU in the brain, suggesting a fine

interplay between signaling from the fat body and the sex-

specific regulation of the nervous system (Lazareva et al.

2007; Camara et al. 2008). In particular, the EcR-A isoform

that may interact with let-7 signaling is required in the

FRUM neural circuit for male courtship behavior (Sanders

and Arbeitman 2008; Dalton et al. 2009).

FRUM and DSX establish neural circuits differentially in

each sex at mid-metamorphosis, a time at which they show

strongest expression. Let-7 pulses could affect the FRU and

DSX branches of the sex-determination hierarchy in the neu-

ral circuitry during this period. Let-7 may well contribute to

a feedback loop in the nervous system since FRU targets

include a preponderance of genes regulated by the steroid

Figure 6 Ecdysone signaling controls testicular soma behav-

ior and function. (A) In control (ecd1ts, 11 days at 18�), the

hub (outlined in yellow, A, A99) is surrounded by proportional

numbers of CySC’s and GSCs (outlined in white, A9). (B and

C) In mutants (ecd1ts, 11 days at 29�), somatic cells aggre-

gate in large epithelium-like clusters next to the hub (yellow

arrows, B, B99). In contrast, GSCs that would be seen as

germline cells with a single spectrosome are no longer at-

tached to the hub, indicating that they were pushed away

from the niche and their differentiation was induced. Differ-

entiating cysts are outlined in white, B9. Sometimes these

abnormal epithelial-like sheets are found around the whole

testicular tube (yellow arrows, C9, C99), affecting germline

differentiation: differentiating cysts that would be marked

by branched fusomes are not seen. Note that the aberrant

somatic cells express the Fas3 marker of hub cells and ovar-

ian follicular epithelium. (D and E) The frequency of testes

displaying clustering of the CySC lineage cells (D) and the

appearance of epithelium sheets (E) increase with the time

flies were deprived of ecdysone (5 or 11 days). See also Table

S21. Red: Fas3 + Add in A, A9, B, B9, C, C9. White: Vasa in A,

B; Fas3 + Add in A99, B99, C99. Green: Tj in A, A9, B, B9; Vasa

in C, C9. Blue: DAPI in A, B, C; Vasa in A9, B9, C9. All pictures

are single confocal sections.
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hormone ecdysone (Dalton et al. 2009, 2013; Neville et al.

2014). However, the reported FRUM and DSX binding sites

in Luo et al. (2011) do not include the let-7-C locus, sug-

gesting an indirect interaction.

In addition to ecdysone titers, let-7 levels and its mode of

action are particularly important to understanding the impact

of hormones in each sex and how they may regulate sex

determination. Let-7 expression is dependent on ecdysteroids

in both male and female adult gonads; however, ecdysone

signaling facilitates cell gender maintenance in the organism

via let-7 primarily in males, suggesting that let-7 response to

ecdysone signaling and/or its effectors differ between the

sexes. During metamorphosis, let-7 is induced by ecdysone

signaling to control the timing of neuronal differentiation by

way of BTB transcription factors. Two of them, Abrupt and

Chinmo, act as negative regulators of ecdysone signaling,

therefore creating a feedback loop (Zhu et al. 2006; Wu et al.

2012). By targetting repressors, let-7 finely modulates and

reinforces steroid hormone signaling pulses in the brain. In-

terestingly, Abrupt modulates ecdysone signaling in the ovary

as well (Jang et al. 2009). Increasing ecdysone titers estab-

lished during oocyte development coincide with the gradual

decrease of Abrupt concentration in the ovary. When ecdysone

signaling is very high, Abrupt fails to bind the EcR coactivator

Taiman, resulting in ecdysone signaling block. Whether let-7

controls Abrupt in the gonads and contributes to reinforcing

ecdysone signaling via a feedback loop has not been studied.

Nonetheless, naturally low levels of let-7 in the ovary where

ecdsyone levels are plenty, contrary to testes, allows let-7 to

generate in the germarium soma a sharper threshold re-

sponse to the systemic signaling only when ecdysone titers

are high (A. Konig and H. Shcherbata, unpublished results).

In turn, because ecdysone and let-7-deficient phenotypes

are just as strong in male and female gonads, higher levels

of let-7 seem required to respond to lower ecdysone titers

in males.

The two bona fide targets of let-7 in the brain present

intriguing parallels in the gonads. Under the control of ec-

dysone, Chinmo and Abrupt control the differentiation of

the gonadal soma specifically in one sex: Abrupt acts in the

germarium and Chinmo in testis (Jang et al. 2009; Flaherty

et al. 2010). Both are effectors of the JAK/STAT pathway,

known to act differently in male and female gonads (Decotto

and Spradling 2005). As examplified by the JAK/STAT path-

way in the gonads, sex-specific transcription factors controlled

by differential levels of let-7 may respond differently to ecdy-

sone signaling and lead to sex-specific functions. This may

hold true in the brain where Chinmo is a direct target of FruM

in males (Neville et al. 2014).

Another important aspect of our findings is the temporal

character of ecdysone-let-7 involvement in the gonadal soma.

It has been shown previously that there are differential re-

quirements for the miRNA pathway in preadult and adult

stages for the maintenance of germline stem cells (Shcherbata

et al. 2007). In addition, augmentation of JAK/STAT signaling

via let-7 miRNA in the testicular stem cell niche is essential for

male germline stem cell preservation in aging flies (Toledano

et al. 2012).

The temporal ecdysteroid–let-7 signaling cascade also coop-

erates with the JAK/STAT cytokine pathway in neuronal cell fate

determination (Kucherenko and Shcherbata 2013). One possibil-

ity is that the ecdysteroid–let-7 effect on somatic gender identity

also has a temporal character and incorporates JAK/STAT cyto-

kine signaling to control sex determination in the somatic cells.

Interestingly, one of the JAK/STAT pathway ligands, Un-

paired (Upd), is an X-linked signal element gene that affects

Sxl expression (Sefton et al. 2000). Upd is a genuine target of

miR-279 that regulates circadian rhythms (Luo and Sehgal

2012). Knockdown of Upd rescues the behavioral phenotype

ofmiR-279mutants. Further studies of the ecdysone–miRNA-

JAK/STAT signaling cascade will determine upstream and

downstream components sustaining cellular sexual identity

during the postembryonic stages, adulthood, and aging.

Finally, the significant upregulation of Sxl in both wild-type

and ecd1ts females upon temperature shift (Figure 5E) indi-

cates that Sxl expression is temperature dependent in flies

and also modulated by ecdysteroid hormones. This provides

a direct role for hormones in regulating sex determination in

females. Clearly our understanding of this unprecedented

complexity of sex determination requires both temporal and

cell-specific examinations of the interplay between miRNAs,

steroid hormones, and sex determination.

These results comprehensively demonstrate an important

role for miRNAs as regulators of sexual dimorphism and

identify several sets of candidate miRNAs to achieve differ-

ential functions in each sex. The function of let-7 provides

a proof of concept of the importance of sex-biased miRNA

expression in the developing and aging adult gonad and re-

productive apparatus. In mammals, sex hormones produced

in the gonads coordinate gene expression in distant tissues

and organs. The existence of a similar hormonal axis in

Drosophila has remained elusive. We show here for the first

time that ecdysone signaling controls sex-determination

genes in flies, via the miRNA let-7. Misregulation of let-7 in

mammals has been shown to impair differentiation and leads

to the development of diseases including cancer. Let-7

appears as a master regulator of the cell-proliferation path-

ways altered in lung, breast, colon, and prostate cancer

(Takamizawa 2004; Johnson et al. 2007; Trang et al. 2009;

reviewed in Lo et al. 2013). Notably, such cancer cells

present unusually low levels of let-7. In addition, connec-

tions between let-7 and hormone signaling have been

established in mammals. Let-7c plays an important role

in the regulation of androgen signaling in castration-resistant

prostate cancers, acting by downregulation of the androgen

receptor. In turn, androgen signaling further increases cellular

levels of miR-125b (Shi et al. 2007), suggesting that both mir-

125 and let-7 respond to hormonal imbalances. Whether sex

determination is affected in these contexts will require future

studies.

We provide an extensive repertoire of sex-biased and

gender neutral miRNAs that will help address the varied
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functions of miRNA activity across development and aging,

as well as in the context of human diseases.
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Soma influences GSC progeny differentiation via the cell
adhesion-mediated steroid-let-7-Wingless signaling cascade that
regulates chromatin dynamics

Annekatrin König and Halyna R. Shcherbata*

ABSTRACT

It is known that signaling from the germline stem cell niche is required

to maintain germline stem cell identity inDrosophila. However, it is not

clear whether the germline stem-cell daughters differentiate by default

(because they are physically distant from the niche) or whether

additional signaling is necessary to initiate the differentiation program.

Previously, we showed that ecdysteroid signaling cell non-

autonomously regulates early germline differentiation via its soma-

specific co-activator and co-repressor, Taiman and Abrupt. Now, we

demonstrate that this regulation is modulated by the miRNA let-7,

which acts in a positive feedback loop to confer ecdysone signaling

robustness via targeting its repressor, the transcription factor Abrupt.

This feedback loop adjusts ecdysteroid signaling in response to some

stressful alterations in the external and internal conditions, which

include temperature stress and aging, but not nutritional deprivation.

Upon let-7 deficit, escort cells fail to properly differentiate: their shape,

division, and cell adhesive characteristics are perturbed. These cells

have confused cellular identity and form columnar-like rather than

squamous epithelium and fail to send protrusions in between

differentiating germline cysts, affecting soma-germline communication.

Particularly, levels of the homophilic cell adhesion protein Cadherin,

which recruits Wg signaling transducer b-catenin, are increased in

mutant escort cells and, correspondingly, in the adjacent germline

cells. Readjustment of heterotypic (soma-germline) cell adhesion

modulates Wg signaling intensity in the germline, which in turn

regulates histone modifications that promote expression of the genes

necessary to trigger early germline differentiation. Thus, our data

first show the intrinsic role for Wg signaling in the germline and

support a model where the soma influences the tempo of germline

differentiation in response to external conditions.

KEYWORDS: Drosophila, Oogenesis, Germline Stemcell, Ecdysone,

miRNA let-7, Abrupt, Wingless signaling, Histone modifications,

H2Bub1, Differential cell adhesion, Differentiation niche, Cell fate

INTRODUCTION
In a multicellular organism all cells are united to provide the best

response to ever-changing internal and external cues, offering the

optimal conditions for organism welfare. This concerted action of

different cell types is regulated at different levels, for example,

hormones provide systemic signaling for the whole organism.

However, cells can communicate more locally within organs or

even talk to individual cells from other tissues using a lexicon of

different signaling pathways, the majority of which are highly

evolutionary conserved. In most cases, signaling molecules or

ligands are distributed in the extracellular matrix and are diffused

within few cell diameters (e.g. BMP, Hh, Wnt); sometimes, ligands

are directly transmitted between the neighboring cells (e.g. Notch

signaling). In addition, cells can converse via cell adhesion

contacts that adjust tissue maintenance, form and function. All

these communication modes are particularly important during

embryonic development, but also play an essential role during

adulthood for growth, homeostasis and tissue regeneration under

certain physiological and pathological conditions. Although a great

deal is known about the role of different signaling pathways for

development and maintenance of different cells and tissues, it

remains challenging to hierarchically connect different levels of

cell communication to clearly understand how signals received by

one cell type are transmitted to regulate the fate of another cell.

In all organisms, the mature egg production is known to be one

of the most highly regulated events; therefore, this process can

serve as a great paradigm to study the hierarchical signaling

cascade that involves communication between the two cell types

of extremely different origin: the germline and the soma. In

general, the decision to produce a mature egg is based on the

whole organism status and specific tissues, which greatly depend

on age, health, nutrition, etc. Currently the knowledge at the

molecular level of how germline differentiation is regulated in

adults is limited; therefore, it is important to identify the

extracellular ligands, membrane receptors and transcription

factors involved in the signal transduction pathways that

dynamically guide oocyte maturation to reach a consensus

between changing internal states and external environments.

In mammals, oocytes undergo an extensive maturation process

that is carefully controlled and recent progress highlighted that,

besides paracrine signals, cell to cell interactions with

surrounding somatic cells play important roles in oocyte

differentiation (Murray et al., 2010; Li and Albertini, 2013).

Somatic epithelial granulosa cells that surround the developing

oocytes are required to control oocyte meiotic arrest and growth

(Von Stetina and Orr-Weaver, 2011). Following puberty, the

luteinizing hormone acts on granulosa cells, stimulates the

activation of EGFR and subsequently MAPK kinase signaling,

which then causes reversal of the inhibitory signals that are sent

to the oocyte. In this manner, systemic signals are integrated in

somatic granulosa cells to regulate oocyte differentiation. In
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addition, multiple components of the Wnt/Wingless (Wg)
signaling pathway are expressed in the adult ovary. During

adulthood, the monthly fluctuations in Wnt/b-catenin signaling are
balanced by sex hormones in the endometrium (soma) to manage
estrogen-induced proliferation and progesterone-induced oocyte
differentiation (germline). Abnormal Wnt/b-catenin signaling

strength in gonads causes reproduction defects and cancer (van
der Horst et al., 2012). Wnt/Wg pathway is highly evolutionary
conserved and is considered as one of the most important

developmental pathways (Clevers and Nusse, 2012). A key Wnt/
Wg signaling mediator is the nuclear transcription factor b-catenin,
which also is a binding partner of the major component of adherens

junctions, E-Cadherin. b-catenin levels not only affect the cell
adhesiveness, but also the expression profile of multiple genes, as
Wnt/Wg signaling cell autonomously regulates gene expression via

interaction with chromatin modifying complexes (Liu et al., 2008;
Parker et al., 2008; Saito-Diaz et al., 2013). Slight variations in b-
catenin amounts and/or its cellular localization have a profound
effect on cell status. While functional studies indicate that Wnt/Wg

signaling has a role in several aspects of ovarian function including
folliculogenesis and steroidogenesis (Boyer et al., 2010; Usongo
et al., 2012), a number of questions regarding its functions in the

germline remain open.
Drosophila ovary provides an excellent system to study at the

molecular level how germline differentiation is adjusted in

response to dynamic internal and external conditions. Drosophila

oogenesis depends on the presence of adult germline stem cells
(GSCs) that continuously divide. Mostly, stem cells divide

asymmetrically when a mother cell gives rise to two daughter
cells with different fates – another stem cell and a differentiating
progeny (Gönczy, 2008). Alternatively, two daughters may be
identical at birth and their fate is established later on, for instance

through signaling from neighboring cells. Drosophila GSCs are an
example of the latter, since the stem cell fate of the newborn
germline cell depends on the signaling provided by the surrounding

soma called the GSC niche (Losick et al., 2011). It is known that
exit from the niche abolishes stemness, but it is not clear what
combination of signals promotes germline differentiation.

Physiologically, it seems likely that signaling that coordinates
the GSC progeny differentiation and egg maturation efficiency
with the whole organism needs and conditions exists. While a lot is
known about GSC maintenance and division regulation upon

different conditions, the questions what makes stem cell daughter
to differentiate and whether the differentiation process per se can
be regulated in response to physiological state of the whole

organism have not been analyzed in depth.
Our previous data provide evidence that ecdysone signaling

acts in the soma: (1) during pre-adult stages, to cell autonomously

regulate the size of the GSC niche, and (2) during adulthood, to
cell non-autonomously regulate the germline differentiation
speed via the somatic cells of the differentiation niche (König

et al., 2011). In this study we aimed to understand how
information is exchanged between the soma and germline,
specifically how changes in the somatic cells in the adult ovary
are communicated to the germline and regulate germline

differentiation. We found that ecdysteroids regulate cellular
identity of escort cells (ECs), comprising the differentiation
niche, which is juxtaposed to the GSC niche to coordinate the

speed of the early GSC progeny differentiation. Depending on the
ecdysone signaling strength, cell shape, proliferative ability and,
most importantly, adhesive characteristics of ECs are modified,

together resulting in squamous to cuboidal-like epithelium

transformation. The epithelial state depends on the function of
the BTB transcription factor, Abrupt (Ab), subcellular

localization of which is dose-dependent and is regulated by
ecdysone signaling. This regulation in addition is fine-tuned by
the steroid-induced miRNA let-7, which acts in a feedback loop
to reinforce ecdysone signaling via Ab downregulation, since Ab

also is a repressor of ecdysone signaling. Importantly, alterations
in the EC adhesiveness influence the presentation of the cell
adhesion proteins in the germline cells, because ovarian soma and

the germline are connected via homophilic cell adhesion
mediated by cadherins. As cadherin levels must match on the
membranes of both cell types, somatic and germline, an increase

or decrease of adhesion molecule amounts is immediately
communicated to the other cell type via direct cell-cell
contacts. Cadherins also have an ability to bind signaling

molecules, for example DE-Cadherin (DE-Cad) binds
Armadillo (Arm, Drosophila b-catenin), which in turn
modulates the Wg signaling strength. Thus, ecdysone signaling
in the soma influences Wg signaling in the germline via direct

cell-cell contacts. The role for the Wg pathway in the Drosophila

germline has not been reported previously, our data show that the
Wg signaling intensity positively affects the early germline

differentiation speed. Wg-mediated regulation of the GSC
progeny differentiation occurs at the chromatin modification
level that controls the initial steps of the GSC daughter decision

to enter the differentiation program. Upon decreased Wg
signaling, the GSC progeny is caught in the ‘‘pre-CB’’ state: it
is not a stem cell anymore, since it cannot perceive signaling from

the stem cell niche; however, it is not a differentiating CB yet,
since its chromatin remains in the ‘‘stem-cell-like’’ state and is
not properly modified to allow the expression of genes necessary
for differentiation (e.g. bam). In particular, histone H2B

monoubiquitination (H2Bub1) is affected upon ecdysone and
Wg deficit, postponing bam expression and the pre-CB entrance
into the differentiation program. In summary, we show that

systemic steroid hormone signaling fine-tunes the tempo of GSC
progeny differentiation in response to environmental fluctuations.
It acts in the somatic differentiation niche to cell non-

autonomously, via adjustment of cell adhesion complexes,
manage the Wg signaling strength in the germline cells, which
modulates their chromatin state, favoring differentiation.

MATERIALS AND METHODS
Fly strains and genetics
Flies were raised on standard cornmeal-yeast-agar-medium at 25 C̊ and

fattened on wet yeast paste one day before dissection unless otherwise

stated. w1118 and OregonR were used for controls. The two knockout

strains let-7-CGK1/CyO and let-7-CKO1/CyO lack the whole let-7-C, in

addition let-7-CGK1/CyO contains the transcriptional activator Gal4 under

the control of the let-7-C promoter (gift from Nicholas Sokol). Flies with

a transgene rescuing the whole let-7-C (let-7-C; let-7-CGK1/let-7-CKO1)

were referred to as ‘‘Rescue’’ (Sokol et al., 2008). The let-7-CDlet-7

construct restores expression of all let-7-C members except for let-7; let-

7-CGK1/let-7-CKO1; let-7-CDlet-7 flies, therefore, were, abbreviated as

Dlet-7 (Sokol et al., 2008). FRT 40A let-7 miR-125/CyO flies (Caygill

and Johnston, 2008) were used for clonal analysis. The following

additional fly stocks were used: ab1, abk02807, w1118; ab1D/CyO, y1

w67c23; bamEY04821, y1 w67c23; bamEY03755, w1118; UASab.B, ecd1ts,

EcRQ50st, FRT 101 arm2/FM7a, FRT 101 arm3/FM7a, usp4/FM7a,

hsbam/TM6, hsEcR.B1 (BDSC); UAStaiRNAi, UASabRNAi (VDRC),

bamGFP (gift from Dennis McKearin), FRT 101 sggD127/FM7, UASp

arm (gift from Andreas Wodarz), FRT 2A Bre1P1549 (gift from Sarah

Bray), FRT 19A usp4/FM7 (usp4 allele from BDSC, recombined in

this study), UAS Cad (109004) (DGRC). The VALIUM20 lines in
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which dsRNA expression system was constructed to work in both,

the soma and germline: UASarmRNAi (35004), UASfzRNAi (34321),

UASsggRNAi (38293), UASpanRNAi (40848) and UASBre1RNAi (35443),

UASRtf1RNAi (36586) (BDSC).

Perturbation of ecdysone signaling, the Wg pathway or H2B
monoubiquitination
The ecd1ts temperature-sensitive mutation is known to reduce ecdysone

levels at the non-permissive temperature. Fly stocks were kept at

the permissive temperature (18 C̊) and 2- to 4 day old adults were shifted

to the restrictive temperature (29 C̊) for 4 days in order to repress

ecdysone synthesis. As control, OregonR flies were kept at 29 C̊ for the

same time. To disrupt ecdysone signaling specifically in the somatic cells

of the germarium, UASab.B, UAS let-7 or UAStaiRNAi were expressed

using the soma-specific drivers bab1Gal4, ptcGal4 or let-7-CGK1

(contains Gal4). In addition, to disrupt ecdysone signaling during

adulthood only, the tubGal80ts system was used where the flies were

raised at 18 C̊ and switched to 29 C̊ for 3–5 days. Interaction of ecdysone

signaling pathway and Bam was analyzed by heat-shocking hsEcR.B1/+,

hsbam/+ and hsEcR.B1/+; hsbam/+ flies for 1 hour, 2 days in a row in a

37 C̊ water bath; not heat-shocked flies of the same genotypes were used

as controls.

To alter the strength of Wg signaling in the germline, UASarmRNAi,

UASfzRNAi, UASarm or UASpanRNAi flies were crossed to the germline

specific driver nosGal4 (NGT40/+; nanosGAL4/+). To analyze the

interaction between ecdysone signaling components and Cad or Arm,

dominant-negative mutations of EcR and usp were used: w1118; hs-Gal4-

EcR.LBD/+ or w1118; hs-Gal4-usp.LBD/+ flies were crossed to shgE17B/

SM6b, or FRT 101 arm2/FM7A. 1–3 day old adult progeny were heat-

shocked in empty vials for 60 min per day, 4 days in a row. To analyze

the interaction between ecdysone signaling components and Bre1,

EcRQ50st/+;FRT 2A Bre1P1549/+ flies were analyzed.

For perturbing H2B monoubiquitination in the germline, Bre1RNAi or

Rtf1RNAi were crossed to germline specific driver nosGal4 (NGT40/+;

nanosGAL4/+).

Clonal analysis
Germline and somatic cell clones were induced as described previously

(Shcherbata et al., 2004; Shcherbata et al., 2007) using the hsFlp/FRT

system for mitotic recombination. let-7 mutant clones in CpCs and ECs

were obtained via crossing FRT 40A let-7 miR-125/CyO; let-7-CDlet-7 to

FRT 40A Ubi-GFP/CyO; bab1Gal4:UASFlp/TM2 flies (gift from

Acaimo González-Reyes). Alternatively, the MARCM system was used

and FRT 40A let-7 miR-125/CyO; let-7-CDlet-7 flies were crossed to

hsFlp, FRT 40A tubGal80ts/CyO; tubGal4/TM6B. To induce usp4 mutant

clones, FRT 19A usp4/FM7 flies were crossed to w, FRT 19A tubGal80,

hsFLP; UASnucLacZ, UAS CD8GFP; tubPGal4/TM6B flies (gift from

Frank Hirth). Third instar larvae were heat-shocked for 2 hours, 2 days in

a row in a 37 C̊ water bath. To induce adult germline clones, FRT 40A

let-7 miR-125/CyO; let-7-CDlet-7 males were crossed to hsFlp; FRT 40A

GFP/CyO females.

To obtain adult Bre1 germline clones, FRT 2A Bre1P1549/TM3 flies

were crossed to hsFlp; FRT 2A GFP/TM3. For inducing arm2, arm3 and

sgg D127 mutant clones FRT 101 arm2/FM7a, FRT 101 arm3/FM7a or

FRT 101 sggD127/FM7 flies were crossed to FRT 101 GFP; hsFlp/CyO.

2–4 day old adult F1 females were heat-shocked in empty vials for

60 min, 2 days in a row in a 37 C̊ water bath.

The GSC loss per day is determined by division of the percentage of

clonal germaria with lost GSCs by the elapsed time after clonal induction

(5 days). For let-7 mutant clones, females were analyzed 7 and 14 days

after heat-shock, for Bre1P1549, arm2, arm3 and sgg D127 mutant clones-5

days after heat-shock. Parental FRT 40A, parental FRT 2A and parental

FRT 101 flies were used as controls. Mutant clones were identified by the

absence of GFP; or by the presence of GFP (MARCM).

Expression patterns of let-7 and Ab at different conditions
In situ hybridization was performed as described previously (Kucherenko

et al., 2012). To analyze let-7 levels at different conditions, germaria of

OregonR flies were dissected and analyzed using RT-qPCR: young (1–3

days) and old (21 days) flies were compared; flies were kept on rich food

or poor food (sugarfree) for 2 days; or were kept at 18 C̊ or 29 C̊ for 2

days. In order to measure the levels of Ab, OregonR and ecd1ts animals

were kept at 18 C̊ or 29 C̊ for 4 days and germaria were analyzed using

RT-qPCR; OregonR animals were heat-shocked for 1 h at 37 C̊ and

immediately dissected for immunostaining.

RT-qPCR
Ovaries were dissected to perform quantitative reverse transcription (RT-

qPCR). Eggs and follicles of later stages were removed and only ovary

tips containing germaria were used for analysis. RNA was extracted

using Trizol according to the manufacturers instructions. For let-7 RT-

qPCR, reverse transcription and qPCR were performed following the

manufacturers protocol using TaqManH MicroRNA assay for let-7 and

for S2 as endogenous control. For analysis of RpL32 levels as endogenous

control and esg, Imp, upd, ab, arm, sgg, pan and fz cDNA was generated

using the cDNA Reverse Transcription kit (Applied Biosystems)

according to the manufacturers instructions. qPCR was performed

using the fast SYBRH Green Master Mix (Applied Biosystems). A Step

One Plus 96 well system (Applied Biosystems) was used for all analysis,

all reactions were run in triplicates with appropriate blanks. The reactions

were incubated at 95 C̊ for 20 sec (RpL32) or 10 min (TaqManH
MicroRNA) followed by 40 cycles of 95 C̊ for 3 sec (RpL32) or 15 sec

(TaqManH MicroRNA) and 60 C̊ for 30 sec (RpL32) or 60 sec

(TaqManH MicroRNA). Primers were used as follows: RpL32 forward

– 59-AAGATGACCATCCGCCCAGC-39, RpL32 reverse – 59-GTCG-

ATACCCTTGGGCTTGC-39, esg forward – 59-CGCCCATGAGATCT-

GAAATC-39, esg reverse – 59-GGTCTTGTCACAATCCTTGC-39, Imp

forward – 59-GGTGGGCCGTATCATTGG-39, Imp reverse – 59-TCAC-

GCGCTGCAATTCC-39, upd forward – 59-TTCTGGCTCCTCTGCT-

GCTTCT-39, upd reverse – 59-TACCGCAGCCTAAACAGTAGC-39, ab

forward – 59-AGCACCCGATAGTCATCCTG-39, ab reverse – 59-

GGCCTTGGAATAGGGATAGC-39, arm forward – 59-CCACTGGGC-

TGCTGATCT-39, arm reverse – 59-ATGCTTGGACCAGAAGAAGC-

39, sgg forward – 59-ATCAACTTGGTGTCCCTGCT-39, sgg reverse –

59-GCACTAGGCTGGGCTGTATT-39, pan forward – 59-AGCGCAG-

GAACTTTCCATAA-39, pan reverse – 59-TTGATGTGTGCTTTG-

CTTCC-39, fz – 59-GCTGCTTGTTTACGGTGCT-39, fz reverse – 59-

CTGGGTGATGGTGGACAT-39. The DCT value was determined by

subtracting the CT value of the endogenous control from the experimental

CT value. DDCT was calculated by subtracting the DCT of the control

sample from the respective DCT value. The relative RNA levels were

calculated as 22DDCT.

Analysis of mitotic divisions in ECs
In order to determine whether ECs are mitotically active upon perturbed

ecdysone signaling, PH3 antibody was used to detect ECs in M phase and

EdU assay in S phase.

Immunofluorescence and antibodies
Ovaries were fixed in 5% formaldehyde (Polysciences, Inc.) for 10 min and

the staining procedure was performed as described (König and Shcherbata,

2013). For H2Bub1 staining: following fixation, ovaries were washed three

times for 15 min and ovarioles were separated using needles. After

permeabilization (performed in PBS with 2% Triton X) ovaries were

incubated in 2N HCl for 30 min at 37 C̊. The following primary antibodies

were used: mouse monoclonal anti-Adducin (1:50), anti-LaminC (1:50),

anti-Arm (1:50), anti-Engrailed; (1:50) (Developmental Studies

Hybridoma Bank); rat monoclonal anti-DE-Cad (1:50, Developmental

Studies Hybridoma Bank); mouse anti-MAP Kinase (1:500, Sigma);

mouse anti-H2Bub1 (1:500, Millipore); rabbit anti-pMad (1:5000, D.

Vasiliauskas, S. Morton, T. Jessell and E. Laufer); rabbit anti-Abrupt

(1:1000 S. Crews); rabbit anti-Vasa (1:5000, R. Pflanz); rabbit anti-b-Gal

and rabbit anti-PH3 (1:3000, Upstate Biotechnology); rabbit anti-

H3K4me3 (1:1000, Abcam), rabbit anti-H4K20me3 (1:1000), anti-

H3K36me2 (1:1000), anti-H3K9me2 (1:1000), anti-H4K20me1 (1:1000),

H4 hyperacetylation (1:1000), anti-H3K27me3 (1:1000) (Upstate
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Biotechnology) and guinea pig anti-Tj (1:3000, D. Godt). Secondary

antibodies were used: anti-GFP-directly conjugated with AF488 (1:3000,

Invitrogen), Alexa 488, 568, or 633 goat anti-mouse, anti-rabbit (1:500,

Molecular Probes) and goat anti-rat Cy5 (1:250, Jackson

Immunoresearch). The Click-iTH EdU Cell Proliferation Assay

(Invitrogen) was used according to the manufacturers instructions.

Images were obtained with a confocal laser-scanning microscope (Leica

SPE5) and processed with Adobe Photoshop.

Analysis and statistics
To determine the number of CpCs, LamC positive cells at the tip of the

germarium were counted. Germline cells that were touching CpCs were

counted as GSCs and pMad staining was used to prove stem cell identity.

To determine the intensity of pMad levels, the gray value of pMad

positive cells was measured using Zen Software. The gray value of the

background was determined and subtracted from the GSC pMad levels

for normalization. GSC maintenance was determined by comparing the

percentage of germaria with clonal GSCs between two different time

points after clonal induction. Cells that had a single spherical

spectrosome but were not in contact with the niche: pre-CBs/pro-CBs/

CBs were counted separately and GSCs and pre-CBs/pro-CBs/CBs were

added together to calculate the number of spectrosome-containing GCs

(SpGCs). In addition, the number of fusomes (indicating the number of

differentiating cysts) until region 2b, where follicle cells start cyst

encapsulation, was counted. To describe the differentiation efficiency in

a given germarium the number of cysts was divided by the number of

single spectrosome containing cells (ratio5cysts/SpSCs). In addition,

germaria containing clonal mutant germline cysts were analyzed: based

on the fusome morphology, the number of cells in a cyst and the location

in the germarium, it was compared whether clonal germline cysts were of

the same stage of differentiation as their non-clonal neighbors. MAP

Kinase, Tj, Cad and Arm staining was used to analyze EC morphology.

At least three independent biological replicates were done. The two tailed

Student’s t-test or two-way tables and X2 test were used to determine the

statistical significance.

RESULTS
Ecdysone signaling deficiency delays GSC progeny at pre-CB
stage by preventing histone modification (H2Bub1) that
triggers differentiation
In Drosophila, the oogenesis depends on the presence of GSCs
that reside in their stem cell niche, which is located at the apex of

the ovariole in the structure called the germarium (Fig. 1A). The
GSC niche consists of specialized somatic cells, namely terminal
filaments, cap cells and escort cells (TFs, CpCs and ECs,

Fig. 1A). These somatic cells make physical contacts with the
GSCs via tight, adherens, and gap junctions, the basement
membrane and extracellular matrix proteins that often regulate

transcription to ensure the stem cell fate maintenance (Song et al.,
2002; Gilboa et al., 2003; González-Reyes, 2003; Ward et al.,
2006; Hayashi et al., 2009). TGF-b signaling is clearly one of the

most important signaling pathways controlling the ovarian GSC
population (Chen and McKearin, 2003; Song et al., 2004); it is
activated in GSCs by the ligands Dpp and Gbb, which are sent
from the niche. As a consequence of this activation, the

differentiation factor Bag-of-marbles (Bam) is excluded from
the GSCs. Bam is a master differentiation factor that is both
necessary and sufficient to induce differentiation in the germline

and thus is only expressed in differentiating germline cysts or
cystoblasts (CBs) (McKearin and Ohlstein, 1995). In the
germarium, there are at least three categories of germline cells

(GCs) based on their differentiation state: the GSC maintains
undifferentiated stem cell characteristics, the pre-CB lingers in a
transient state between stemness and differentiation, and the

differentiating CB commits to the egg production program. These

germline cell types are proportionally represented in the normal
germarium: two to three GSCs, followed by one to three pre-CBs/

CBs and four to five differentiating cysts typically are situated in
the region 1–2A in the wild type germarium (Fig. 1A). Each
germline cell type can be identified using different markers,
among which are components of niche-derived TGF-b signaling.

Stem cells express the phosphorylated TGF-b transcription factor
Mad (pMad), which suppresses the differentiation factor bam

expression, which is present in the differentiating cysts. Transient

GSC progeny or pre-CBs express neither of these markers. In
addition, all single cell germline types (GSCs, pre-CBs and CBs)
have spherical fusomes (also called spectrosomes), while

multicellular cysts are marked with elongated (2- and 4-cell
cysts) and branched (8- and 10-cell cysts) fusomes (Lin et al.,
1994; McKearin, 1997). Upon ecdysone signaling deficit, the

differentiation index measured by the ratio between the numbers
of fusome-containing (cysts) to spectrosome-containing germline
cells (SpGCs) that do not express either stem cell or
differentiation factors is significantly decreased (König et al.,

2011). We named these supernumerary SpGCs as ‘‘limbo-GCs’’
due to their delayed in differentiation status (Fig. 1B).

The GSC ability to self-renew and differentiate is often

regulated at the level of chromatin structure (Xi and Xie, 2005;
Maines et al., 2007; Buszczak et al., 2009; Wang et al., 2011; Yan
et al., 2014). Therefore, we analyzed several histone modifications

that would be differentially displayed in GSCs vs differentiating
cysts (supplementary material Fig. S1). Our analysis shows that the
majority of histone modifications are present in both, the germline

and soma. H3K20me3, H3K4me3, H3K36me2 and H3K27me3 are
equally distributed among all somatic cell types in the germarium,
while H3K9me2, H4K20me1 and H3K27me3 show differential
expression in the CpCs, ECs and FCs. In the germline, 16-cell cysts

have higher levels of H3K4me3, H3K36me2 and H4K20me1
than all other differentiating GCs. Among analyzed histone
modifications, only monoubiquitination of the histone H2B

(H2Bub1) was present in the differentiating germline, but not in
stem cells (supplementary material Fig. S1; Fig. 1C). Previously,
we have demonstrated that H2Bub1 modification is one of the

events that precede entering the differentiation program (Karpiuk
et al., 2012). H2Bub1 resolves the bivalency state of numerous
genes, which are essential for stem cell progeny differentiation in
multiple systems (Johnsen, 2012). Interestingly, the limbo-GCs in

ecd1ts mutants are devoid of this histone modification and rather
exhibit the stem cell-like chromatin state (Fig. 1C). To prove that
this process is relevant to germline differentiation, we analyzed

mutants for Drosophila E3 ubiquitin ligase dBre1 required for the
histone H2B monoubiquitination (Bray et al., 2005; Mohan et al.,
2010). dBre1 was shown to be important intrinsically for GSC

maintenance and extrinsically for the germline differentiation
(Xuan et al., 2013). Since the differentiating cells in the germarium
showed H2Bub1, we considered that this histone modification

could be also required intrinsically for efficient germline
differentiation. Therefore, we induced dBre1 loss-of-function
clones and found that dBre1 deficient GSCs that were not lost
produced 1.8 times less progeny than control clonal GSCs

(supplementary material Fig. S2B,C). Similar delay was
observed when dBre1 or dRtf1, the subunit of the Paf1 complex,
which we found to be required for proper monoubiquitination of

histone H2B in the germline (supplementary material Fig. S2D),
were downregulated specifically in the germline (supplementary
material Fig. S2E,F). Together, these findings suggest that histone

H2B monoubiquitination via Bre1 or Rtf1 is important for

RESEARCH ARTICLE Biology Open (2015) 4, 285–300 doi:10.1242/bio.201410553

288

B
io
lo
g
y
O
p
e
n



Fig. 1. Ecdysone signaling cell non-autonomously regulates GSC progeny chromatin dynamics. (A) Control and ecdysone signaling mutant germaria are
compared. In controls, spectrosome-containing germline cells (SpGCs5GSCs+pre-CBs+pro-CBs+CBs) and fusome-containing differentiating cysts are
proportionally distributed and ECs form squamous epithelium. In the ecdysone-deficient germarium, supernumerary SpGCs and columnar epithelium-like ECs
appear. (B) Table with germline cell markers in wildtype and ecdysone signaling or bammutant germaria. (C) The limbo-GCs in ecdysone signaling mutants (pre-
CBs) do not show H2Bub1 staining (OregonR and ecd1ts 4 days at 29˚C). (D) Bre1 is required for H2Bub1 modification and, similarly to steroid signaling,
affects the efficiency of early germline differentiation (please see supplementary material Fig. S2). Bre1 genetically interacts with EcR, resulting in the decreased
differentiation index (Ratio: Cysts/SpGCs; Bre1P1549/+, EcRQ50st/+, EcRQ50st/+; Bre1P1549/+, supplementary material Table S1). (E) The Dbam

(bamEY04821/bamEY03755) supernumerary SpGCs (pro-CBs) are positive for H2Bub1. (F) Perturbation of ecdysone signaling via EcR overexpression (hsEcR.B1/
+, 261 h heat shock at 37˚C) leads to a differentiation delay in the GSC progeny, and forced expression of bam (hsbam/+, 261 h heat shock at 37˚C) causes
GSC loss by differentiation. Overexpression of both proteins (hsEcR.B1/+; hsbam/+, 261 h heat shock at 37˚C) overcomes the differentiation delay and
leads to the increased differentiation ratio (Ratio: Cysts/SpGCs, supplementary material Table S1). Ecdysone signaling temporally acts upstream of the
chromatin modification H2Bub1 and the germline differentiation factor Bam. (G) Similarly, soma-specific ecdysone signaling perturbation (ptcts.ab: ptcGal4/+;
tubGal80ts/UASab, 16 days at 29˚C) leads to the appearance of supernumerary pre-CBs negative for H2Bub1 and delayed differentiation (supplementary
material Table S2). Germaria are stained with H2Bub1 (red, C,E,G), Lamin C (LC red, D,F) to visualize TFs and CpCs and Adducin (Add red, D,F) to mark
spectrosomes and fusomes. Nuclei are stained with DAPI (blue, C–G). CpCs are outlined in yellow (C–G), SpGCs are outlined in white (C,G) or indicated with
arrows (D). p-values were calculated using the two tailed Student’s t-test and error bars represent S.E.M. *p,0.05, **p,0.005, ***p,0.0005. Scale bars, 5 mm.
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successful early germline differentiation. Additionally, we found a
genetic interaction between ecdysone signaling and dBre1 mutants,

showing that these pathways are functionally related (Fig. 1D).
Interestingly, H2Bub1 spatial and quantitative expression

pattern paralleled with Bam protein levels, implying a
correlation between H2Bub1 histone modification and the

differentiation factor bam expression (supplementary material
Fig. S2A). Absence of Bam, similarly to steroid deficit, makes
GSC progeny unable to differentiate, and bam mutant germline

cells also lack all of the before-mentioned markers (McKearin
and Ohlstein, 1995; Song et al., 2004). Despite this similarity in
TGF-b component expression patterns, there is a critical

difference between the limbo-GCs emerging due to bam- and
ecdysone signaling deficit. While bam mutant germline cells have
a differentiation block, ecdysone deficit merely causes a

differentiation delay. To understand the rationale of this
dissimilarity, we tested the H2Bub1 pattern in bam and ecd

mutants and found that ecd1ts limbo-GCs do not contain H2Bub1,
while bam limbo-GCs have this histone modification present, just

like all other differentiating cells (Fig. 1C,E). These data show
the clear distinction in the limbo-GC identity if caused by the
TGF-b or steroid hormone signaling mutations. Ecdysone

signaling mutant GSC progeny are kept at the pre-CB stage
[(König et al., 2011); Fig. 1B], where chromatin is not yet
properly modified to induce the differentiation program (e.g. bam

expression). bam mutant GSC progeny successfully transit
through the pre-CB stage (Fig. 1B), modifying chromatin into a
ready to differentiate state; however, due to the lack of the major

differentiation factor, Bam, these germline cells are not capable
of proceeding to the differentiation program. This proposes that
bam deficient germline cells are blocked in between the pre-CB
and CB stage, which we named the ‘‘pro-CB’’ stage (Fig. 1B,

GSCRpre-CBRpro-CBRCB). These data suggest that in the
hierarchical sequence of events that take place during the
transition from stemness to differentiation in the germline,

ecdysone signaling operates upstream of Bam. If this is true,
then the forced induction of bam expression should rescue the
delayed differentiation phenotype of ecdysone signaling mutants.

We simultaneously perturbed ecdysone signaling and promoted
Bam through a combination of heat shock-inducible transgenes,
EcRhs and bamhs. Forced EcR expression negatively regulates
ecdysone signaling and causes germline differentiation delay

(Schubiger and Truman, 2000; Schubiger et al., 2005; König
et al., 2011) and forced bam expression leads to stem cell loss by
differentiation (Ohlstein and McKearin, 1997) and enhances the

germline differentiation index (Fig. 1F). We found that the
germline differentiation delay caused by ecdysone signaling
deficit was released, if Bam was provided. In EcRhs/bamhs

germaria, the differentiation index was significantly increased in
comparison to EcRhs (Fig. 1F). This supports the idea that
ecdysone-regulated entrance into the differentiation program

operated at the level of chromatin modifications temporally
precedes Bam-induced onset of germline differentiation.

Moreover, soma-specific ecdysone signaling perturbation also
leads to the H2Bub1 absence in the limbo-GCs showing that

ecdysone signaling influences early germline differentiation cell
non–autonomously (Fig. 1G). Previously, we and others found
that ecdysone signaling is predominantly active in the somatic

cells of the germarium (Gancz et al., 2011; König et al., 2011;
Morris and Spradling, 2012), here we wanted to decipher the
mechanism of how steroids control germline differentiation

through the surrounding soma.

EC function and morphology are impaired by ecdysone
signaling perturbations
Ecdysone signaling is important for GSC niche formation during
development, but also, for proper EC function during adult stages
(Gancz et al., 2011; König et al., 2011; Morris and Spradling,
2012). We examined in a greater detail what happens with the

somatic cells in the germaria, depleted of ecdysone signaling
during adulthood. Somatic cells in the germarium are responsible
not only for germarium architecture organization, mechanical

support and physical protection of the germline cells, but they
also actively participate in signaling that organizes a
microenvironment for proper GSC maintenance and

differentiation. For example, the stem cell niche cells (CpCs
and, to a lesser extend, ECs) produce TGF-b ligands, required for
female germline stemness (Xie and Spradling, 1998; Xie and

Spradling, 2000; Eliazer et al., 2014). In contrast, somatic cells in
the differentiation niche (ECs) are required to spatially restrict the
stem cell niche activity and, as we propose here, to stimulate
germline differentiation. Normally, ECs are terminally

differentiated squamous epithelial cells that do not divide
(Kirilly et al., 2011; Morris and Spradling, 2011); our analysis
also revealed that less than 2% of control germaria contained an

EC in S-phase marked by EdU (Fig. 2A). In contrast, ecdysone
deficit stimulates ECs to proliferate; ecd1ts flies had 2.5 times
more germaria containing ECs in S-phase of the cell cycle

(Fig. 2A,B). The specificity of this systemic signaling in the
germarial soma is achieved via cell-specific cofactors, Taiman
(Tai) and Abrupt (Ab) (König et al., 2011). Tai is a co-activator

of the ecdysone receptor complex that can be inhibited by the
transcription factor Ab (Bai et al., 2000; Jang et al., 2009).
Importantly, EC division phenotype is also seen when ecdysone
signaling is perturbed in the soma only: Tai downregulation and

Ab upregulation in the somatic cells similarly stimulated
normally quiescent ECs to undergo divisions. Mutant ECs at
different cell cycle stages were observed (Fig. 2C–E shows cells

in S-, meta- and telophase, respectively). Moreover, these
changes in EC characteristics were seen when ecdysone
production and its signaling co-factors were altered during post-

developmental stages (adult-implemented temperature shift for
ecd1ts mutants and induction of temperature sensitive Gal4/

Gal80ts system for adult tai and ab misexpression). This suggests
that the EC destiny as a terminally differentiated squamous

epithelial cell is not permanently fixed. Instead, ECs can be
transformed under certain conditions during adulthood to exhibit
properties of active mitotic division. These cellular alterations

could also affect the ability of the cell to properly send and
receive signals necessary for early germline maintenance and
differentiation.

To prove this assumption, firstly, we tested whether disruption
of ecdysone signaling specifically in the stem cell niche cells
would affect the TGF-b signaling strength. Both downregulation

of ecdysone receptor co-activator tai and upregulation of its
repressor ab in CpCs resulted in a decrease in TGF-b signaling,
which could be directly measured via the intensity of antibody
staining against pMad. The pMad levels were significantly

decreased in GSCs that were located next to the stem cell niche,
mutant for ecdysone signaling (Fig. 2F–H). This result
demonstrates that upon ecdysone deficit, the GSC niche

functions with a reduced efficiency.
Secondly, we tested whether disruption of ecdysone signaling

specifically in the differentiation niche cells would affect the

strength of the major epithelial pathway, epidermal growth factor
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Fig. 2. EC function and morphology are impaired by cell-autonomous ecdysone signaling abolishment. (A,B) Perturbed ecdysone signaling induces
ECs to divide. In control, less than 2% of germaria exhibit at least one EC in S-phase (OregonR 18˚C: 1%, n599; ecd1ts 18˚C: 1.9%, n5106), in ecd1ts adult
animals, 4.7% of germaria contain ECs in S-phase (OregonR, 4 days at 29˚C: 0%, n569; ecd1ts 4 days at 29˚C: 4.7%, n5127). (B–B9) Note the appearance of
the EC in S-phase marked by EdU staining. (C–E) Adult specific ecdysone signaling disruption in the soma by ab overexpression or tai downregulation using
the soma-specific Gal4 drivers (ptcGal4 or bab1Gal4) together with the Gal4/tubGal80ts system alters EC characteristics (ptcts.taiRNAi: ptcGal4/taiRNAi;
tubGal80ts/+, bab1ts.ab: tubGal80ts/+; bab1Gal4/UASab, and ptcts.ab: ptcGal4/+; tubGal80ts/UASab, adults kept for 5 days at 29˚C). ECs are clustered,
resembling columnar epithelia (white line, C). Mutant ECs are also mitotically active; EdU staining shows the presence of ECs in S-phase of the cell cycle
(C), and PH3 staining - in M-phase [metaphase (D) and telophase (E)]. (F–H) Upon soma-specific perturbation of ecdysone signaling, the relative pMad levels
in the GSCs are decreased. pMad levels are measured by gray value (relative pMad levels, control: taiRNAi/+: 160.04, n523; bab1ts.taiRNAi: tubGal80ts/+;

bab1Gal4/taiRNAi: 0.5760.08, n510, p51.4861023; bab1ts.ab: tubGal80ts/+; bab1Gal4/UASab: 0.6560.08, n512, p57.0461023). Control (G) and
ecdysone signaling defective (H) germaria are shown to compare pMad levels in the GSCs (OregonR and bab1ts.ab: tubGal80ts/+; bab1Gal4/UASab, 14 days
at 29˚C). (I,J) In controls, Map Kinase (MAPK) stains nuclei and clearly defines cytoplasmic protrusions in ECs (arrowheads). In ecd1ts adults, ECs do not form
protrusions and show higher levels of MAPK (control: OregonR, 4 days at 29˚C and ecd1ts, 4 days at 29˚C). (K) MARCM analysis illustrates cytoplasmic
protrusions in ECs: clonal ECs are marked by GFP presence. Yellow arrowhead depicts control clonal EC (w2/+, FRT 19A tubGal80, hsFlp/FRT 19A parental;

UAS CD8GFP, tubGal4/+); white arrowheads mark EC homozygous mutant for usp, the hetero-dimerization partner of EcR (w2/+, FRT 19A tubGal80, hsFlp/
FRT 19A usp4; UAS CD8GFP, tubGal4/+). Note that protrusions of usp mutant ECs are less developed in comparison to control. (L,M) High levels of the
cell adhesion protein DE-Cad are present on the CpC membranes in the control germarium (OregonR, 4 days at 29˚C, L). In ecd1ts (4 days at 29˚C, M), higher
DE-Cad levels are also detected at the EC membranes. Note that ecd1ts germaria are filled with a large number of SpGCs delayed in differentiation (asterisks).
Germaria are stained with EdU to mark S-phase (red, B,C), PH3 to mark mitotic division (green, D) and LaminC (LC red, G,H,K–M) to visualize TFs and
CpCs and Adducin (Add red, G,H,K–M) to mark spectrosomes and fusomes. ECs are at the anterior of the germarium, and are positive for the somatic marker
Traffic jam (Tj, green, B, C, red D, E) and negative for Engrailed (En, cyan, B9). EC protrusions are visualized using MAPK staining (magenta, I,J). Cadherin
(Cad) marks cell adhesion complexes (green, E,L,M); pMad marks GSCs (green, G,H). ECs were marked with GFP+ clones (green, K). Nuclei are marked by
DAPI (blue, B–H and K–M, green, I,J). CpCs are outlined in yellow, GSCs in white. Atypical epithelium is highlighted with white lines; mitotically active ECs are
marked with white arrows (B–E), EC in telophase is outlined in pink (E). p-values were calculated using the two tailed Student’s t-test and error bars represent
S.E.M. *p,0.05, **p,0.005, ***p,0.0005. Scale bars, 5 mm.
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receptor (EGFR), that acts in the somatic cells to maintain
germline homeostasis. Importantly, compromised EGFR-

activated mitogen-activated kinase (MAPK) signaling in ECs
results in a similar increase in the SpGC number as is observed in
ecdysteroid-deficient germaria (Liu et al., 2010). In ecdysone
signaling mutant ECs, MAPK levels were dramatically elevated

(Fig. 2I,J; supplementary material Fig. S3A–C), causing aberrant
expression of its downstream targets (supplementary material
Fig. S3D), which plausibly leads to sexual identity confusion of

the somatic cells that compose the GSC and differentiation
niches.

The abnormal signaling and behavior causes alterations in EC

morphology. While in controls, ECs completely enfold germline
cells with protrusions to protect differentiating cysts from niche
signaling and guide them to the posterior end of the germarium,

where the germline becomes encapsulated by the follicular
epithelium, in ecd1ts mutants, these protrusions were not formed
and the normally squamous ECs look more like cuboidal
epithelial cells outlining the whole germarium (Fig. 2I,J;

supplementary material Fig. S3). To visualize EC shape, we
also induced MARCM single cell clones and found that in
controls, the EC formed multiple delicate protrusions, while the

EC, deficient for EcR co-receptor, ultraspiracle (usp) lacked
these fine cellular structures (Fig. 2K). In addition, ecdysone
signaling mutant ECs express higher amounts of cell adhesion

molecules, e.g. DE-Cad and Arm (Fig. 2L,M; supplementary
material Fig. S4), which is consistent with the alteration of their
epithelial status. Collectively, these data show that ecdysone

signaling deficit is sufficient to alter EC properties: they
transform their cell cycle status from quiescent to active and
take on a cuboidal rather than a squamous epithelial appearance.

Levels of Ab, a switch and a manager of epithelial gene
expression must be fine-tuned in the germarial soma
Next, we wanted to understand what molecular mechanism

induces transformation of epithelial somatic cells in the
germarium and how this transformation can affect early
germline differentiation. We turned our attention to the

negative regulator of ecdysone signaling, the BTB-zinc finger
transcription factor Ab, since it has been found to act even as a
potent transdetermination factor that, when misexpressed, is
capable of stimulating neuronal identity switch in the developing

Drosophila brain or induce homeotic arista-leg transformation
(Grieder et al., 2007; Kucherenko et al., 2012). In addition,
multiple epithelial cell fate regulators have been shown to be

direct targets of Ab global transcriptional regulation (Turkel
et al., 2013). Similar to other BTB-containing proteins, Ab acts in
a highly dosage-dependent manner; depending on the cellular

concentration, it can form homo- and heterodimers, which allows
for the establishment of both stable and transient interactions with
multiple proteins (Hu et al., 1995; Stogios et al., 2005). This

explains the ability of BTB-containing proteins to participate in
multiple processes and proposes that management of their proper
levels is of a particular significance (Kucherenko and Shcherbata,
2013). Previously, we showed that overexpression of Ab in the

somatic cells of the germarium recapitulates all of the germline
phenotypes associated with a deficit in ecdysone signaling (König
et al., 2011). Now, we analyzed the effects of reduced Ab levels

using different ab amorphic and hypomorphic allelic
combinations. Surprisingly, Ab downregulation results in the
same phenotypes as its upregulation: the SpGC number was

increased, while the ratio between differentiating cysts and

SpGCs was decreased (Fig. 3A), confirming that fine–tuning of
Ab levels is important for effective early germline differentiation.

An interesting question is therefore, how Ab levels are
regulated in the germarial soma and via which molecular
mechanisms its expression is coordinated with stress-responsive
ecdysone signaling. Previously, it has been shown that Ab

represses ecdysone signaling (Jang et al., 2009; König et al.,
2011); interestingly, now we found that Ab expression levels
itself depend on ecdysone signaling. In ecdysone-deficient flies,

ab mRNA levels were more than three times higher than in
controls (Fig. 3E). In addition, Ab protein cellular localization
was altered: in ecd1ts mutant, almost all somatic cells in the

germarium exhibited strong nuclear Ab pattern, while in controls,
only sparse cytoplasmic staining was detected in rare somatic
cells (Fig. 3B,C). This pattern changed upon stress; for example,

in the wild type germaria analyzed after heat-shock, the majority
of the somatic cells contained nuclear Ab, which was present in
similar amounts to those found in ecdysone-depleted germaria
(Fig. 3B–D). These data show that the BTB transcription factor

Ab not only acts as a negative regulator of ecdysone signaling but
that its levels are regulated by steroids and stress, which supports
the existence of a feedback regulatory loop. Ab was confirmed as

a let-7 target in vitro and in vivo during pre-adult stages and we
found that during metamorphosis, let-7 miRNA acts as a mediator
between Ab and ecdysone signaling in the nervous system

(Burgler and Macdonald, 2005; Caygill and Johnston, 2008;
Kucherenko et al., 2012). Therefore, we postulated that this
regulation might also occur in adult gonads (Fig. 3F).

Steroid-dependent miRNA let-7 targets Ab to adjust the
ecdysone signaling strength and mediates stress response
It has been shown before that steroid-coupled regulation of let-7

expression takes place during the developmental transition from
larval-to-reproductive animals and in adult gonads (Sempere et al.,
2002; Sempere et al., 2003; Garbuzov and Tatar, 2010; Chawla and

Sokol, 2012; Kucherenko et al., 2012; Fagegaltier et al., 2014). To
test whether let-7 is expressed in the correct cell type to act as a
transmitter of steroid-modulated response to stress to control

oogenesis in adults, we firstly assayed let-7 miRNA expression.
We performed in situ hybridization using let-7 LNA probe, which
confirmed that, like ecdysone signaling components, the miRNA
let-7 is present in the germarial somatic cells (Fig. 4A).

Secondly, we analyzed whether let-7 loss-of-function would
phenocopy the germline phenotypes associated with the ecdysone-
signaling deficit. We found that let-7 deficient mutants, analogously

to ecdysone signaling mutants, show retarded germline
differentiation that can be restored via exogenous expression of a
wild-type let-7 construct and abnormal EC morphology (Fig. 4B–

D). To prove that the let-7 effect on GSC progeny differentiation is
also cell non-autonomous, we induced let-7 somatic clones and
found that clonal ECs, similarly to ecdysone pathway mutants, have

a columnar instead of squamous epithelium shape and this affects
early germline differentiation (Fig. 4G). Consistent with the
somatic let-7 expression pattern, it does not have a cell
autonomous role for GSC maintenance and differentiation

(supplementary material Fig. S5A). Since let-7 loss mimics the
phenotypes associated with ecdysone signaling deficit, this implies
that ecdysone signaling acts via the miRNA let-7 to regulate the EC

morphology that in turn controls the GSC progeny differentiation.
Thirdly, we analyzed whether Ab is the bona fide target of let-7

in the ECs. We generated adult-induced let-7 clones and analyzed

the expression pattern and cellular localization of Ab protein
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Fig. 3. Levels of the transcription factor Abrupt depend on ecdysone signaling and stress and are critical for its subcellular localization.
(A) Decreased Ab levels result in the significantly increased number of SpGCs and lower Cysts/SpGCs ratio. Similar effects are observed upon soma-specific ab
downregulation or overexpression (ptcts.abRNAi: ptcGal4/abRNAi; tubGal80ts/+, bab1ts.abRNAi: tubGal80ts/abRNAi; bab1Gal4/+, let-7GK1 ts.ab: let-7GK1/+;
tubGal80ts/UASab and ptcts.ab: ptcGal4/+; tubGal80ts/UASab, 7 days at 29˚C, see supplementary material Table S2). (B) In controls (OregonR at 25˚C), Ab is
only found in the cytoplasm of few somatic cells. ECs are marked with white and CpCs with yellow dashed lines. (C) Ecdysone-depleted or (D) temperature-
stressed germaria show strong nuclear Ab staining in the somatic cells. Pink arrows depict strong nuclear and arrowheads cytoplasmic Ab staining in the
somatic cells (ecd1ts, 4 days at 29˚C and OregonR, 1 h hs at 37˚C). (E) The relative Ab mRNA levels are increased in WT flies kept at high temperature
conditions (OregonR, 4 days at 18˚C or 29˚C). This tendency is even more pronounced in ecd1ts flies (4 days at 18˚C or 29˚C, supplementary material Table S3).
(F) Hypothetical scheme of the interplay between ecdysone signaling and Ab in response to stress. miRNA let-7 ensures that the intensity of the steroid hormone
ecdysone signaling in adult ovaries is adjusted via downregulation of let-7 target Ab, which also is a negative regulator of ecdysone signaling. Germaria are
stained with Ab (red, B–D), nuclei are marked with DAPI (blue, B–D). p-values were calculated using the two tailed Student’s t-test and error bars represent
S.E.M. *p,0.05, **p,0.005, ***p,0.0005. Scale bars, 5 mm.
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using Ab specific antibody. let-7 deficient ECs and follicle cells

show high levels of nuclear Ab, indicating that Ab is a let-7 target
in these cells (Fig. 4E). Moreover, Ab overexpression explicitly
in let-7 expressing cells using let-7 endogenous promoter

recapitulates phenotypes associated with ecdysone signaling
deficit and results in altered EC shape and delayed GSC
progeny differentiation (supplementary material Fig. S4C,D),

showing that these two studied components interact in the same

cell type. Also, reducing Ab levels by one copy in the let-7

mutant background significantly rescued let-7 phenotypes in the
germarium (Fig. 4B), confirming the specificity of this regulation
in somatic ovarian cells.

Importantly, let-7 presence in these cells is affecting Ab
cellular localization. In control germaria, this transcription factor
is largely undetectable; only in ,10% of ECs a weak cytoplasmic

staining was observed. However, of the let-7 deficient cells,

Fig. 4. See next page for legend.
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,50% exhibit nuclear and ,30% cytoplasmic Ab staining
(Fig. 4E,F). As mentioned before, Ab is a potent regulator of cell
fate choices, in order to function as a transcription factor, Ab

must localize to the nucleus. Our analyses prove that let-7

miRNA is capable of targeting Ab in the germarial soma and
reveal that in the let-7 absence, Ab protein levels both increase

and undergo altered cellular localization. Recall that nuclear Ab
was also seen in ecdysone deficient and stressed wild type ovaries
(Fig. 3B–D). Therefore, we propose that upon stress and

ecdysone deficit, Ab acts as a regulator of gene expression to
adjust function and form of epithelial cells of the germarium,
which cell non-autonomously affects the germline differentiation
speed. These data are an example of the interesting phenomenon,

where transcription factor localization, hence activity, is
regulated via miRNAs and steroids in response to stress.

Since Ab subcellular localization is altered due to stress and

steroid deficit and ecdysone is considered as a stress hormone
(Schwedes and Carney, 2012), we hypothesize that the ecdysone/
let-7/Ab signaling cascade acts as a modulator of oogenesis in

response to different external conditions, where let-7 is capable of
generating a sharper threshold response to systemic signaling in
the germarial soma. To test this hypothesis, we analyzed let-7

levels in the germaria at different stress conditions (heat-shock,

aging, and starvation). Interestingly, let-7 levels were
significantly upregulated in the germaria in response to heat

stress and aging, but not to malnutrition, suggesting that miRNA
let-7 could be involved in a steroid-dependent adjustment of

oogenesis progression in response to some conditions (Fig. 4H).
Thus, depending on external conditions, ecdysteroid signaling
regulates the early germline differentiation speed via miRNA let-7

expression induction. Since this miRNA targets a negative

ecdysteroid signaling regulator Ab, it suggests a model in which
miRNA let-7 intensifies the ecdysone signaling strength. Notably,
stress (for example heat-shock) results in both, an increase in let-7

expression and activation (nuclear localization) of its target, Ab
(Fig. 3B,D and Fig. 4E,F). If there is more of let-7, Ab is
downregulated and ecdysone signaling is ‘‘ON’’; if there is more

of Ab, ecdysone signaling (and subsequently let-7) is ‘‘OFF’’
(Fig. 4I). Thus, let-7-modulated adjustment of the ecdysone
signaling strength in the germarial soma establishes a certain

state of epithelium, defined by the activity of BTB transcription
factor Ab. Therefore, we conclude that in the differentiation niche,
steroid-induced miRNA let-7 targets a key epidermal cell fate
regulator Abrupt and reinforces ecdysone signaling via a positive

feedback loop. We subsequently hoped to probe the mechanism
underlying how steroid effects on soma influence germline
differentiation.

Ecdysone signaling modulates differential cell adhesion
between the soma and germline that modulates Wg signaling
activity in the germline
We next wanted to understand what the nature of this cell non-
autonomous signaling between the soma and germline is and

when and under what conditions it actually functions. Since (1)
Ab is a global regulator of epithelial cell state that is often defined
by the specific cell adhesive characteristics and (2) abnormal

amounts of cell adhesion proteins, including Cadherin and b-
catenin (Fig. 1L,M; supplementary material Fig. S4A,B; Table
S3), were detected in ecdysone signaling mutants, we

hypothesized that the differential cell adhesion might be a
language used for the germline and soma communication.
Cadherins normally mediate homophilic adhesion between cells
of the same type; however, occasionally cadherins can also be

involved in heterotypic adhesion, such as between germline and
somatic cells, which occurs across a range of species, including
Drosophila (González-Reyes and St Johnston, 1998). As a signal

transducer, cadherin operates via its binding partner b-catenin,
which has a dual role as a mediator in the interplay of adherens
junction proteins with the actin cytoskeleton and as a critical Wg

signaling pathway component that has been shown to be involved
in chromatin remodeling (Liu et al., 2008; Parker et al., 2008;
Song et al., 2009; Mohan et al., 2010). A complex non-linear

relation between b-catenin and cadherin levels, their subcellular
distribution and Wg signaling has been shown in vitro and in vivo
(Wodarz et al., 2006; Somorjai and Martinez-Arias, 2008), and
proper balance between signaling vs adhesive functions is critical

for normal development (Gottardi et al., 2001; Brembeck et al.,
2006). Since it has been shown that in Drosophila, both Wg
signaling and cell adhesion mediated by cadherins in the soma

play a role in the earliest oogenesis stages (Forbes et al., 1996;
Gottardi et al., 2001; Song and Xie, 2003; Brembeck et al., 2006;
Sahai-Hernandez and Nystul, 2013) and our data demonstrate that

levels of cadherin/b-catenin complexes in the ovarian soma are
changed in response to ecdysteroid levels, we tested whether
ecdysone signaling via adjustment of cadherin and b-catenin
levels can cell non-autonomously modulate the Wg signaling

strength in the germline.

Fig. 4. miRNA let-7 targets Ab to modulate ecdysone signaling
response. (A) let-7 LNA in situ hybridization shows that the mature miRNA is
present in ECs of WT controls (arrowheads). (B) let-7 deficiency (Dlet-7: let-

7-CGK1/let-7-CKO1; let-7-CDlet-7) leads to delayed early germline
differentiation, defined by an increased number of SpGCs and a decreased
Cysts/SpGCs ratio. Restoring let-7 expression (let-7 Rescue: let-7-C;
let-7-CGK1/let-7-CKO1) or reducing Ab levels in the let-7 deficient background
(Dlet-7; ab1D/+: let-7, miR-125, ab1D/let-7KO1; let-7-CDlet-7) rescues this
phenotype (supplementary material Table S2). (C,D) In control OregonR,
single ECs (marked by absence of germline marker Vasa and CpC marker
En, depicted with yellow arrowhead) reside along the germarial side. In Dlet-

7 mutants, ECs (marked by the absence of germline marker Vasa and
CpC marker En, outlined in pink) clump together. (E) let-7 MARCM clonal EC
(marked by GFP presence, hsFlp UAS CD8GFP; tubGal80 FRT 40A/let-7

miR-125 FRT 40A; tubGal4/let-7-CDlet-7) shows high Ab levels (nuclear).
(F) The majority of control ECs (GFP-positive, green) are negative for Ab, a
high percentage of let-7 clonal ECs (GFP-negative, black, hsFlp/+; FRT 40A

GFP/FRT 40A let-7 miR-125; let-7-CDlet-7/+) display cytoplasmic or
nuclear Ab. Bar graph shows the percentages of ECs that are Ab-negative or
positive for cytoplasmic or nuclear Ab staining. About 50% of let-7 ECs
contain nuclear Ab in comparison to ,2% in controls (n596 and 116 in let-7

and control clonal ECs, respectively). (G) let-7 clonal ECs (marked by the
GFP absence, hsFlp/+; FRT 40A GFP/FRT 40A let-7 miR-125;

let-7-CDlet-7/+) form the columnar-like epithelium, outlining the anterior tip of
the germarium. (H) Germaria, kept at 29˚C or aged for 21 days have
increased let-7 levels. Different food conditions do not affect let-7 levels (see
supplementary material Table S4). (I) Scheme showing that in response to
stress conditions, let-7 is capable of generating a sharper threshold response
to systemic signaling in the germarial soma via fine-tuning levels of the
transcription factor Ab. ECs are located at the anterior of the germarium, and
are negative for the CpC marker Engrailed (En, red, C,D) and the germline
marker Vasa (green, C,D). Germaria are stained with Abrupt (Ab,E,F).
Adducin (Add) marks spectrosomes and fusomes (red, G). GFP presence
(E) or GFP absence (F,G) marks let-7 mutant clones. Nuclei are marked with
DAPI (blue, C–G). CpCs are outlined in cyan (C–E). Control ECs are marked
with yellow arrowheads (C), let-7 deficient EC epithelia are outlined in pink
(D,G). let-7 clonal ECs are outlined in white (F) and control sister ECs with
yellow (F) dashed lines. Pink arrows indicate let-7 deficient ECs with
nuclear Ab (E,F). p-values were calculated using the two tailed Student’s t-
test and error bars represent S.E.M. *p,0.05, **p,0.005, ***p,0.0005.
Scale bars, 5 mm.
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Fig. 5. Wg signaling cell autonomously influences the germline differentiation speed. (A) The defects caused by heat-shock induced overexpression
of uspDN or EcRDN (increased number of SpGCs and decreased Cysts/SpGCs ratio) can be significantly alleviated by reducing the dose of DE-Cad or arm (hs-
Gal4-usp.LBD/+, hs-Gal4-EcR.LBD/+, hs-Gal4-usp.LBD/shgE187, hs-Gal4-usp.LBD/arm2 and hs-Gal4-EcR.LBD/arm2, see supplementary material Table S2).
(B) Scheme shows the presumable consequences of Wg signaling perturbation on the germline differentiation speed. (C,C9) Downregulation of Wg signaling
activity in the germline (nos.fzRNAi: NGT40/fzRNAi;nanosGAL4/+ and nos.armRNAi: NGT40/armRNAi;nanosGAL4/+) increases the number of SpGCs delayed
in differentiation, marked by the presence of the spectrosomes (dot-like Adducin (Add)-positive structures) (see supplementary material Tables S1, S5).
(E,E9) Similarly, germline Bre1 mutant cysts (marked by the absence of GFP, hsFlp; FRT 2A Bre1P1549/FRT 2A GFP) show delayed differentiation (marked by
arrows). Additionally, 10% of germaria with Bre1 mutant germline cysts contain dying cysts, which was not observed in control (see supplementary material
Table S6). (D,D9) In contrast, upregulation of Wg signaling activity in the germline (nos.panRNAi: NGT40/panRNAi;nanosGAL4/+ and nos.arm: NGT40/

UASarm;nanosGAL4/+) leads to premature germline differentiation, 8–16-cell cysts are observed already in region 1 of the germarium (see supplementary
material Tables S1, S5). (F,F9) The same is observed in sgg germline clones (FRT 101 sggD127/FRT 101 GFP; hsFlp/+, clones are marked by the absence of
GFP). Note that sgg clonal germline cells containing a spherical spectrosome (pink arrowhead) and 16-cell cysts (yellow arrowhead) are found side by side
(supplementary material Table S6). (G,G9,H,H9) Similar defects in H2Bub1 modification pattern are observed in supernumerary pre-CBs caused by either
germline-specific Wg or soma-specific ecdysone signaling perturbations (Fig. 1G). Germaria are stained with LaminC (LC red, A,C–F) to visualize TFs and CpCs
and Adducin (Add red, A, C–F) to mark spectrosomes and fusomes. Vasa marks germline (green, A,C,D). Absence of GFP (green, E,F) marks clonal mutant
cells. Monoubiquitination of H2B is shown (red, G,H). Nuclei are marked with DAPI (blue, A,C–H). White dashed lines mark GSCs (D,F), differentiation delayed
GCs (E) or GSCs and additional SpGCs (G,H). Yellow dashed lines depict differentiating cysts (C,D) or clonal mutant differentiating cysts (E,F). p-values were
calculated using the two tailed Student’s t-test and error bars represent S.E.M. *p,0.05, **p,0.005, ***p,0.0005. Scale bars, 5 mm.
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Our data show that increased DE-Cad levels in ecdysone
signaling-deficient ECs correlate with pre-CB differentiation

delay (Fig. 2L–M; supplementary material Fig. S4). Importantly,
we found that soma-specific reduction of DE-Cad or Arm levels
in ecdysone mutant background rescues early germline
differentiation phenotypes (Fig. 5A), while overexpression of

DE-Cad in ECs phenocopies ecdysone signaling phenotype
(supplementary material Fig. S4E); together demonstrating that
ecdysone signaling and DE-Cad/Arm interact in the ECs. This

observation suggests that readjustment of cadherin and b-catenin
levels can mediate ecdysone-dependent cell adhesive
characteristics that influence the germline differentiation

progression.
One implication for this cell non-autonomous signaling is that

in response to increase in DE-Cad in the soma, more DE-Cad

would be recruited to adherens junctions in the germline. This
would affect the cellular Arm distribution in the germline cells,
tethering it to the cell membrane to be associated with DE-Cad
(Fig. 5B). Normally, in the absence of Wg ligands, the

cytoplasmic b-catenin pool is easily degraded by a complex
containing APC, CKI, Axin, and GSK3/Shaggy(Sgg) (Kim et al.,
2013). Upon Wg ligand binding to its receptors, such as Frizzled

(Fz), a protein called Dishevelled (Dsh) is activated and leads to
the Arm degrading complex inactivation. When the Arm
degradation is inhibited, it allows its entrance to the nucleus,

where Arm forms a complex with the Lef/TCF/Pangolin(Pan),
activating the transcription of target genes (Chien et al., 2009).
Without Arm, Lef/TCF/Pan together with their cofactors recruit

histone deacetylases, triggering chromatin modifications that
promote transcriptional silencing (Saito-Diaz et al., 2013). Upon
Arm binding, multiple co-activators involved in chromatin
remodeling are recruited, which stimulates transcription

(Valenta et al., 2012). Since Arm pools involved in cell
adhesion and Wg signaling exchange, we propose that
differential cell adhesion between the germline and somatic

cells affects the Wg signaling activity in the germline that
regulates the GSC progeny chromatin state. If this hypothesis is
right, we would expect that genetic manipulations that

downregulate Wg signaling in the germline would delay, while
Wg signaling overactivation would promote early germline
differentiation (Fig. 5B).

To test this, we first examined whether Wg signaling is acting in

the germline by specific Wg pathway components targeting in the
germline, using recently created VALIUM20 UAS RNAi library
and the germline specific nanosGal4 driver. Downregulating Wg

signaling (UASfzRNAi, UASarmRNAi) resulted in the appearance of
huge ecdysoneless-like germaria, containing supernumerary
limbo-GCs indicative of delayed differentiation (compare

Fig. 5C and Fig. 1D, Fig. 2M, Fig. 4C). In contrast, increasing
Wg pathway activity (UASarm, UASsggRNAi, UASpanRNAi)

accelerated germline differentiation. Precociously differentiating

8–16 cell cysts were seen already in region 1 (instead of 2B) of the
germarium (Fig. 5D). Similar phenotypes were observed when
germline clones lacking arm and sgg were analyzed; 6–13% of
clonal germaria contained arm germline cysts delayed in

differentiation, while 47% of clonal germaria contained sgg

germline cysts precociously differentiating, as judged by the
differentiation stage of non-clonal neighbors (Fig. 5F;

supplementary material Table S6). These data show that Wg
signaling acts in the germline to cell autonomously influence the
early germline differentiation tempo. Similarly to Wg

downregulation, germline-specific perturbations of H2Bub1

modification (UASBre1RNAi and UASRtf1RNAi) influenced the
efficiency of germline differentiation (supplementary material

Fig. S2; Table S1). Also, 20% of dBre1 clonal germaria contained
cysts that were delayed in differentiation (Fig. 5E; supplementary
material Table S6). Since Wg signaling has been shown to interact
with chromatin remodelers (Liu et al., 2008; Parker et al., 2008;

Song et al., 2009), we analyzed whether perturbed Wg signaling
would affect the chromatin status of the germline cells. As
expected, and in contrast to the cell non-autonomous function of

steroid signaling, Wg signaling controls this process cell
autonomously, since its germline-specific perturbation results in
the H2Bub1-negative pre-CB accumulation (Fig. 5G,H). This

supports the idea that intrinsic Wg signaling controls germline
differentiation at the level of chromatin modification.

Fig. 6. Model showing ecdysone signaling function in early germline
differentiation. The efficiency of early germline differentiation is managed by
multiple proteins involved in different signaling pathways, which act in both
the germline and soma. The GSC progeny differentiates in a sequential
manner via specific transitional steps (GSCRpre-CBRpro-CBRCB) that are
easily identified by the expression patterns of the specific markers.
Importantly, these transitions between the germline differentiation stages in
the germarium are controlled by signaling from the surrounding soma. As the
stem cell niche (CpCs) controls the stemness of GSCs, the differentiation
niche (ECs) coordinates the efficiency of GSC progeny differentiation with
the status of the whole organism via systemic signaling. The GSC maintains
its stem cell characteristics due to TGF-b signaling from the stem cell niche.
Upon GSC division, its daughter is pushed away from the stem cell niche
and, therefore, cannot receive sufficient TGF-b signaling to support the stem
cell identity. However, being away from the niche is not enough to start
the differentiation program. As the GSC progeny (pre-CB) is detached from
the niche, its adhesive connection to the soma weakens; Cad levels are
reduced. This releases Arm (b-catenin) from binding to Cad; instead, more
Arm becomes available for Wg signaling, as Arm is not only involved in the
cell adhesion in complex with Cad, but also, it is the transducer of Wg
signaling. As the germline and soma are connected via homophilic cell
adhesion, reduction of Cad levels results in strengthening of Wg signaling in
the germline. Combination of decreased TGF-b and increased Wg signaling
in the germline promotes chromatin modifications (e.g. H2Bub1) from the
stem cell state into the differentiation-ready state, which endorses expression
of the differentiation genes. The cell becomes the pro-CB, the key
differentiation factor Bam begins to be expressed, initiating the differentiation
processes in the germline. Importantly, the efficiency of these early germline
differentiation events is modulated by systemic signaling. Particularly,
ecdysone signaling cell autonomously alters somatic cell characteristics in
the differentiation niche in response to stress, affecting adhesive contacts
between the soma and germline, which, in turn, influences Wg signaling in
the germline (CB). Thus, steroids cell non-autonomously affect the early
steps of germline progression to coordinate the germline differentiation
speed with the status of the whole organism.
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Together these data demonstrate a communication flow, where
the signal from the soma (ecdysone signaling-cell adhesion)

induces in the germline a transition from stemness to
differentiation, which requires a specific histone modification
that promotes the expression of differentiation genes, enabling
efficient GSC progeny differentiation (cell adhesion-Wg

signaling-H2Bub1-Bam) (Fig. 6). Importantly, ecdysone and
Wg signaling alterations or H2Bub1 histone modification do
not cause a complete germline differentiation block, just a delay.

This supports the idea that described here mechanism provides an
additional layer of adult oogenesis regulation that is used to fine-
tune the GSC progeny differentiation tempo in response to

organism fitness fluctuations caused by internal and external
environment changes.

DISCUSSION
In summary, our results show a cooperative function between
hormonal steroid and Wg signaling in the fine-tuning of the early
germline differentiation speed in response to variations in the

organism physiology and environmental conditions. Ecdysone
signaling robustness is conferred via the let-7 miRNA feedback
loop: let-7 expression is ecdysone–dependent, while the let-7

target Ab is a negative ecdysone signaling regulator. This allows
upon let-7 expression to enhance the steroid signaling strength,
which then cell autonomously adjusts EC characteristics and cell

non-autonomously influences the early germline differentiation
speed. This regulation occurs via differential cell adhesion
between the germline and soma that, in turn, modifies the Wg

signaling strength in the germline (Fig. 6). The balance in Wg
pathway activity is important for normal germline differentiation,
since Wg overactivation stimulates premature germline
differentiation, while Wg downregulation slows-down the

process. These data for the first time reveal that Wg signaling
has cell autonomous role in the Drosophila germline. It is
important to stress that neither Wg signaling in the germline, nor

ecdysone signaling in the soma are absolutely required for
germline progeny differentiation, both pathways just add an
additional layer of regulation, possibly interacting with other

pathways, which would result in formation of a complex
regulatory network that fine-tunes the efficiency of egg
maturation in accordance with alterations in the external and
internal environment of the organism.

Multiple studies propose that the GSC progeny differentiates
by performing an orderly sequence of steps that are defined by
expression of multiple factors (Fig. 6). The GSC maintains its

stem cell identity due to signaling from the niche. Its daughter is
pushed away from the niche, does not receive the sufficient
amount of stem cell niche signaling and is transformed into the

pre-CB. The pre-CB starts to modify its chromatin and becomes
committed to differentiate, turning into the pro-CB. The pro-CB
has all the conditions necessary for expression of differentiation

genes. The key differentiation factor starts to be expressed and
the cell is transformed into the CB. Thus, complex sequences of
cellular transformation steps are required to produce the mature
egg, many of which are already happening in the germarium and

influenced by the surrounding soma that assembles the stem cell
and the differentiation niches that can sense and transduce the
extracellular signals to coordinate the tempo of germline

differentiation.
Principally, our data demonstrate that oogenesis is a highly

regulated process that depends on external and internal status of

the female and that systemic signaling coordinates the oogenesis

speed depending on these conditions. Steroids act in the soma and
cell non-autonomously and, via the direct cell adhesion-based

soma-germline communication, govern germline differentiation.
If conditions are unfavorable, insufficient steroid signaling can
delay the GSC progeny in the pre-CB state, meaning that the cell
is caught in the in-between stem cell and differentiating cell

transition. This delayed cell does not receive the stem cell niche
signaling anymore (because it is detached from the niche), but it
also does not receive the signal to differentiate that, as we

propose here, is generated in the differentiation niche (ECs) in
response to ecdysone signaling. This signal is extremely dosage-
dependent and, as we show here, multiple pathways can add to its

implementation (supplementary material Fig. S6). Biologically,
this makes sense, since this information controls the reproductive
efficiency and thus, the success of organism survival. However,

steroids are not the sole regulators of the process. It is known that
oogenesis is an energy demanding process and strongly depends
on the nutritional state. Kept on rich food, flies produce 60 times
more eggs than those on poor food (Drummond-Barbosa and

Spradling, 2001). Insulin signaling and other pathways were
shown to mediate the response to food availability; GSCs and
FSCs respond to the nutritional conditions by adjusting their

proliferative rate (Biteau et al., 2010). Two systemic signaling
pathways, insulin and ecdysone regulate the oogenesis efficiency,
however act upon different cell types and germline progression

stages. Interestingly, upon starvation, oogenesis is blocked at
stage 8 and most of the dramatically decreased egg production
rate seems to result from an increased degeneration of later egg

chambers (Drummond-Barbosa and Spradling, 2001). Ecdysone
is produced in older follicles that passed the stages 8–9 and is
required to progress past this master checkpoint (Buszczak et al.,
1999; Carney and Bender, 2000). Thus, there are two independent

checkpoints that control the oogenesis progression: at stage 8, an
insulin-dependent or ‘‘nutritional checkpoint’’ that influences the
GSC division speed, and at stage 8–9 an ecdysone-dependent

or ‘‘stress checkpoint’’ that influences the GSC progeny
differentiation speed. Ecdysone control of germline development,
therefore, presents a positive feedback mechanism with which

germline development in the germarium is synchronized with the
presence or absence of older follicles. Together, orchestrated
regulation of oogenesis executed by insulin and ecdysone
hormones reassures that the germline differentiation speed is

perfectly attuned to external and internal cues.
The cell is what it is because it expresses a certain combination

of genes that establish its form and function. Not surprisingly,

control of the quantity and quality of gene expression is key for
the cell morphology establishment and cellular signal
transduction. We show that in the ovary, the differentiation

niche, comprised of specifically shaped ECs exists and that the
shape of these cells regulates the differentiation ability of the
neighboring GSC progeny. The EC shape and function are

dramatically impaired in ecdysone signaling mutants: the
squamous ECs line the germarium and form long cytoplasmic
protrusions that envelop the developing germline cells. However,
if ecdysone signaling is perturbed, ECs form layers that resemble

columnar epithelium. In addition, thin cytoplasmic protrusions
are no longer present and the levels of cell adhesion proteins are
elevated. Earlier experiments already demonstrated how critical

EC protrusions are: if the protrusion formation is inhibited
specifically in the ECs – for example via interfering with the
cytoskeleton – the germline differentiation is affected and a larger

number of SpGCs was detected (Decotto and Spradling, 2005;
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Wang et al., 2008; Kirilly et al., 2011). A lack of EC protrusions
therefore can cause a differentiation delay in the germline and we

propose that EC malformation, and specifically the absence of
protrusions, contributes to the differentiation delay observed in
the germline. How exactly EC protrusions enable germline
differentiation has previously been poorly understood; it was

thought that they physically shield differentiating germline cells
against diffusible signals from the anterior CpCs, forming another
barrier to locally restrict TGF-b signaling. Now we show that the

EC’s ability to form protrusions depends on levels of cell
adhesion proteins. Due to homophilic cell adhesion rules,
alterations in cell adhesion protein quantities and qualities in

the soma lead to the readjustment of these in the adjacent
germline, as cadherin levels must perfectly match, this
information is conveyed to the germline. Cell adhesion proteins

are not only involved in establishment of cell connections, they
also participate in intercellular signaling (Edeleva and
Shcherbata, 2013), particularly, b-catenin is the binding partner
of a homophilic cell adhesion receptor DE-Cad and the effector of

the canonical Wg/Wnt signaling pathway (MacDonald et al.,
2009). Since b-catenin pools involved in both processes are
interchangeable, an increase or decrease in b-catenin involvement

in cell adhesion would affect pools available for Wg signaling,
subsequently readjusting the Wg pathway efficiency (Valenta
et al., 2012). This pathway is one of the key developmental

pathways that, via its interaction with the histone modification
machinery, globally regulates gene expression (Saito-Diaz et al.,
2013). Therefore, by simply changing one cell type’s

morphology, the transcriptional status of the juxtaposed cell
could be affected. This kind of regulation is especially attractive
for communication between cells of different types that are
joining together to build a tissue or an organ and have to

coordinate their signaling in order to function in unison. In
particular, such heterotypic cell interaction modes are interesting
in the regulation of stem cell maintenance and stem cell progeny

differentiation via niches in response to systemic organismal
demands.
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manuscript, Toni Bäumler for work on Wg experiments, the Herbert Jäckle
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3 Discussion

The present thesis describes how the steroid hormone ecdysone controls several
processes in the germarium of D. melanogaster : reduced ecdysone signaling leads
to the appearance of enlarged niches that facilitate a higher number of SSCs.
In addition, ecdysone controls the differentiation of the GSC progeny cell non-
autonomously via the surrounding ECs. Perturbing ecdysone signaling in the
ECs leads to altered cell-adhesion between ECs and the germline; the squamous
ECs adopt an epithelial-like fate and fail to envelope the differentiating germline
cells with cytoplasmic protrusions. The Cad associated protein Arm is trapped at
the adhesive complexes between germline and ECs, which alters the Arm pool in
the germline cells. Canonical Wg signaling, in turn, depends on the availability of
free cytoplasmic Arm and thus, the germline cells responsiveness to Wg signaling
is altered, resulting in differentiation delayed germline cells.

3.1 Ecdysone signaling is non cell-autonomously
acting on the germline

We showed that ecdysone signaling is predominantly active in the somatic cells
of the germarium, in CpCs and ECs (König et al., 2011). Interestingly, germline
cells show a dramatic differentiation delay if ecdysone signaling is disturbed. Con-
sequently, the ECs must convert the ecdysone signaling into another signal to
communicate with the germline cells. However, the range of TGF-β signaling, the
main pathway for GSC maintenance in D. melanogaster ovaries, is not enlarged
due to perturbed ecdysone signaling and, thus, it seems that ECs and GSCs com-
municate via alternative pathways. Not much is known about the communication
between ECs and differentiating germline cells (see Section 1.2.4, page 12) and
therefore, how the systemic hormonal ecdysone signal is transmitted to a signal
that cell non-autonomously acts on the germline, is a key question.

3.1.1 EC function is compromised upon loss of ecdysone
signaling

Interestingly, shape and function of the ECs are dramatically impaired in ecdysone
signaling mutants: the squamous ECs line the germarium and form long cyto-
plasmic protrusions that envelop the developing germline cells. However, if the
ecdysone signaling is perturbed, ECs form layers that resemble columnar epithe-
lium. In addition, the thin cytoplasmic protrusions are no longer present and the
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levels of cell adhesion proteins are elevated. Earlier experiments already demon-
strated how critical EC protrusions are: if the formation of protrusions is inhibited
specifically in the ECs – for example via interfering with the cytoskeleton – the
germline differentiation is affected and a larger number of SSCs was detected (De-
cotto and Spradling, 2005; Kirilly et al., 2011; Wang et al., 2008a). A lack of
EC protrusions therefore can cause a differentiation delay in the germline and
we propose that the EC malformation and specifically the absence of protrusions
contributes to the differentiation delay observed in the germline. How exactly EC
protrusions enable germline differentiation is poorly understood; it is thought that
they physically shield the differentiating germline cells against diffusible signals
from the anterior CpCs, forming another barrier to locally restrict TGF-β signal-
ing. Nevertheless, signaling processes most probably play a role in EC-germline
communication, and so far, only few were identified.

Ecdysone signaling was suggested to act on the GSCs directly A recent
report by Ables and Drummond-Barbosa, 2010 showed that ecdysone signaling
regulates GSC self renewal and proliferation by functional interaction with the
chromatin remodeling factors ISWI and NURF301. However, in contrast to our
findings, Ables and Drummond-Barbosa, 2010 suggest that the ecdysone signaling
is directly received by GSCs. While there are no conflicts regarding the results
of experiments that overlap between our studies, the conclusions are different.
Interestingly, Gancz et al., 2011 reported a non cell-autonomous effect of ecdysone
signaling on primordial germ cells – the germ line stem cell precursors. Upon
perturbing the ecdysone signaling in the soma, primordial germ cells are delayed
in differentiation and similar to what we observed in adult GSCs, do not display
Bam or pMad.

3.1.2 ECs form a differentiation niche for the germline progeny

The diverse signals and factors that are required for the maintenance of GSCs in
their somatic niche were examined by many studies in the past decades (reviewed
in Spradling et al., 2011). It was shown that the two daughters of a stem cell do
not differ inherently, but instead their fate is determined by their environment;
in order to be maintained as a stem cell, the germline cell has to be physically
attached to the niche and receive the signaling from the CpCs. However, due to
the limited size of the niche, stem cells compete for the available space and usually
only one stem cell daughter can be maintained in the niche. The other one was
thought to undergo differentiation simply because of the lack of niche contact and
signaling. Only recently it was suggested that differentiation is not the default
fate of cells that cannot be maintained as stem cells (Kirilly et al., 2011). Instead,
it seems that the germline cells need specific microenvironments – consisting of
signaling and cell contacts from the ECs – that enable differentiation to proceed.

The differentiation delayed germline cells in ecdysone signaling mutants lack
the differentiation factor Bam TGF-β signaling is clearly the most important
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signaling pathway controlling the stem cell population in the female GSC niche
(Song et al., 2004; Xie and Spradling, 1998). Activation of the TGF-β pathway
by the ligands Gbb and Dpp, that are secreted by CpCs and ECs, is crucial for
GSC maintenance. But is the loss of TGF-β signaling in CBs sufficient to in-
duce the differentiation program or is another ”pro-differentiation” signal from
the surrounding soma required? In wildtype germaria, expression of the differen-
tiation factor bam is repressed by pMad and, hence, Bam becomes excluded from
the GSCs and misexpression of bam is indeed sufficient to induce differentiation
throughout the germline (McKearin and Ohlstein, 1995; McKearin and Spradling;
Ohlstein and McKearin, 1997). Ecdysone-deficient germaria display a population
of differentiation delayed pre-CBs that – not surprisingly – do not express bam.
The pMad/Med complex that forms upon TGF-β activation is to date the only
known repressor of bam; it was, therefore, rather unexpected that the pMad ex-
pression radius is unchanged in ecdysone deficient germaria. Is bam expression not
allowed because of another yet unidentified factor? Or is an unknown activator
missing that would promote bam expression? Apart from intrinsic and extrin-
sic signaling pathways that control stem cell fate, chromatin modifying factors
have been shown to be indispensable for stem cell maintenance and differentia-
tion (reviewed in Buszczak and Spradling, 2006). Chromatin modifications are,
therefore, great candidates for a mechanistic link between ecdysone signaling and
Bam-driven differentiation.

Histone H2B ubiquitination precedes germline differentiation Which epige-
netic features define the stem cell state and how they change upon differentiation
are key questions that need to be resolved in order to fully understand and to po-
tentially manipulate stem cell maintenance and differentiation. Stem cells exhibit
a certain set of chromatin modifications, governing their unique gene expression
patterns (reviewed in Buszczak and Spradling, 2006). At the same time, the
epigenetic state has to be flexible enough to allow for differentiation (reviewed in
Buszczak and Spradling, 2006). A number of chromatin remodelers, like ISWI and
NURF301 were shown to be required for GSC maintenance (Buszczak et al., 2009;
Xi and Xie, 2005 and Section 1.6, page 30). The role of chromatin modifications
in germline differentiation is, however, far less understood. Many developmental
genes exhibit both ”active” and ”repressive” chromatin modifications at the same
time. Interestingly, the monoubiquitination of histone H2B was shown to parallel
resolving this bivalency during differentiation in human mesenchymal stem cells
and the patterns of H2Bub1 and bam correlate (Karpiuk et al., 2012). We therefore
suggest that the monoubiquitination of H2B precedes differentiation and bam ex-
pression. Furthermore, ecdysone deficient flies show non-differentiating germline
cells that lack H2Bub1, indicating that this epigenetic mark is regulated in re-
sponse to steroid hormone signaling. The exact mechanism by which H2Bub1 and
possibly other chromatin remodelers regulate bam expression, and thus germline
differentiation, is a key question that will be subject of further studies.
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Adhesion complexes are affected by hormonal ecdysone signaling DE-Cad
and Arm are normally found at high levels in the junctions between CpCs and
between CpCs and GSCs where they are necessary to maintain GSCs (Song et al.,
2002). More towards the posterior in CBs and ECs, Arm and DE-Cad levels
are strongly reduced in wildtype germaria. Adhesive junctions are critical for
germline-soma interaction: subtle differences in the adhesive strength determine
which GSCs are maintained and which ones are outcompeted (Jin et al., 2008).
The local levels of adhesion proteins are controlled by other signals like insulin
or JAK/STAT signaling and, thus, are adjusted to the overall body status (Hsu
and Drummond-Barbosa, 2009; Leatherman and Dinardo, 2010). The intensity
of the adhesive connections, therefore, provide a mechanism by which soma and
germline communicate and govern each other and serves as an interface for other
signaling pathways.

Increased levels of cell adhesion proteins affect EC protrusions We now de-
scribe, that the ecdysone signaling also affects the levels or turnover of the cell
adhesion proteins Arm and DE-Cad, that were found in abnormally high levels
between ECs and the germline. In order to escort the constantly moving germline
cells, ECs and germline cells have to attach and detach frequently, and especially
the formation and movement of cytoplasmic EC protrusions have to be highly
dynamic. During these rearrangements, the adhesive complexes between ECs and
the germline have to assemble and disassemble repeatedly and we suggest, that
ECs protrusions cannot form properly if this process is defective. The ecdysone
signaling pathway regulates the expression of various genes; in addition to di-
rectly acting on the levels of DE-Cad and Arm it may also interfere with their
turnover. Bai et al., 2000 observed elevated levels of DE-Cad in border cells in
which ecdysone signaling was reduced. Artificial overexpression of DE-Cad how-
ever did not phenocopy the ecdysone signaling mutant phenotype, nor did it lead
to visible accumulation of DE-Cad at the cell membrane, suggesting that the cell
can compensate for high DE-Cad and degrade it (Bai et al., 2000). Thus, ecdysone
signaling acts on the formation of adhesive complexes, which dampens EC abil-
ity to form cytoplasmic protrusions and ultimately affects germline differentiation
(see Figure 3.1, page 117).
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Figure 3.1: Ecdysone signaling acts on germline differentiation in a cell
non-autonomous way
(A) GSC division and germline differentiation are controlled by sys-
temic hormonal signaling: insulin signaling regulates GSC main-
tenance and division and integrates the overall nutritional status.
Ecdysone signaling controls a stress and starvation dependent check-
point at which egg chambers undergo apoptosis if applicable.
(B) Ecdysone signaling acts on the levels or turn-over of the cell
adhesion molecules DE-Cad and Arm and thereby also influences
EC shape and function. Altered Arm levels in the germline alter
the cells responsiveness to canonical Wg signaling. Thus, via the
ECs, ecdysone signaling cell non-autonomously regulates the differ-
entiation of the germline cells. The miRNA let-7 attenuates the cell
specific response to ecdysone.
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3.2 Wg signaling – a connection between ECs and
GSCs

As was mentioned, ECs are thought to mainly function by mechanically supporting
the differentiating germline and via physically shielding from ”self renewal” signal-
ing, coming from the niche. If this was the only function of ECs, one would expect
that a lack of EC protrusions would lead to more germline cells receiving TGF-β
signaling. However, our data show that the area in which TGF-β responsive cells
can be found is not enlarged upon perturbed ecdysone signaling, and thus altered
TGF-β signaling does not account for the observed germline differentiation de-
lay. Another mechanism must contribute to the EC mediated ecdysone signaling
mutant phenotype in the germline. The only so far characterized pathway that is
used by germline and ECs is the EGFR signaling, that was shown to be activated
in the ECs by germline-sent ligands. Activated EGFR-mitogen-activated protein
kinase signaling leads to the downregulation of the Dpp stabilizing glypican Dally.
EGFR signaling thus limits the diffusion of Dpp and, hence, TGF-β signaling (Liu
et al., 2010; Schulz et al., 2002; Yarden and Shilo, 2007). Whereas the phenotypes
caused by perturbing the EGFR in the soma are somewhat similar to the ones
that are caused by loss of ecdysone signaling (germline differentiation delay, lack
of cytoplasmic EC protrusions), an important difference is the spatially expanded
area of TGF-β receiving cells in EGFR signaling mutants. As it was discussed
previously, this is not the case if ecdysone signaling is perturbed and EGFR sig-
naling is, therefore, most likely not the downstream effector of ecdysone signaling
in the germarium that accounts for the observed phenotypes.

3.2.1 Arm levels in the germline are cell non-autonomously
affected by DE-Cad levels in the soma

We had observed higher levels of DE-Cad and Arm between ECs and GSCs of
ecdysone signaling mutants: since DE-Cad is a homophilic adhesion molecule,
we hypothesize that high levels of DE-Cad lead to the recruitment of additional
DE-Cad molecules to the membrane of the adjacent cell. Arm is bound to the
cytoplasmic domain of DE-Cad and, as expected, we also observed higher Arm
levels between ECs and GSCs. Arm is not only a structural component of cell
adhesion complexes, but also the effector of the canonical Wnt signaling path-
way. The Wnt signaling pathway is highly conserved and is required for cell fate
decisions: proliferation, cell death and polarity in all metazoans (reviewed in Mac-
Donald et al., 2009). In addition, a number of human diseases is associated with
Wnt signaling components. If Wnt signaling is not active, Arm is recruited to a
complex in the cytoplasm, that leads to its degradation. Upon binding of Wnt
ligands to the receptor, the Arm degrading complex becomes inactive, Arm accu-
mulates, translocates to the nucleus and acts on the transcription of target genes
(reviewed in Chien et al., 2009).
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3.2.2 Arm is at the intersection of Wnt signaling, cell adhesion
and other pathways

Due to the limited amount of Arm molecules in the cell and the exclusiveness of
Arm binding partners, the bifunctional Arm molecule serves as a link between Wnt
signaling and cell adhesion. Binding of β-Catenin (the human Arm homolog) to
Cad masks a PEST motif which is a hallmark for fast protein turnover on the Cad
molecule, protecting it from proteasomal degradation (Huber and Weis, 2001).
Vice versa, Arm is also stabilized by binding to Cad. A loss of Cad therefore leads
to the release of Arm, whereas high levels of Cad can titrate free cytoplasmic Arm
(Sanson et al., 1996). It was shown in several studies that artificial overexpression
of Cad leads to the translocation of Arm to the membrane, which reduces the pool
of Arm in the cytoplasm and inhibits Wnt target gene expression. Any changes in
cell-cell adhesion processes also influence the pools of free cytoplasmic and nuclear
Cad and, therefore, also the transcription of Wnt targets (reviewed in Somorjai and
Martinez-Arias, 2008). Interestingly, it was shown that proteases that cleave Cad
itself are targets of Wnt signaling, suggesting the existence of a positive feedback
loop with which the β-Catenin signal is amplified (reviewed in Valenta et al., 2012).
Wodarz et al., 2006 suggest the existence of a negative feedback loop in a tissue
culture system: upon activation of the Wnt signaling pathway the level of Cad
decreases first, but increases later, sequestering Arm and thereby attenuating Wg
transcriptional response. Furthermore, a variety of signaling pathways including
TGF-β and other growth factor pathways were shown to control Wnt controlled
transcription via altering the availability of Arm (reviewed in Valenta et al., 2012).
In summary, Arm/β-Catenin is an important molecule intersecting with canonical
Wnt signaling, cell adhesion and various other pathways.

Is the Wg signaling pathway in the germline affected by altered DE-Cad
levels? The question is, whether the transcriptional activity of Arm can be in-
fluenced by changes in DE-Cad levels in the D. melanogaster germarium. Can the
Wnt signaling pathway in the germline be influenced by higher somatic DE-Cad
levels? Indeed, we show that downregulation of Wg signaling in the germline also
leads to a germline differentiation delay while overactivation of Wg signaling has
the opposite effect: differentiating cysts are found close to the niche. Wg signal-
ing can, thus, cell autonomously influence germline differentiation. In addition, a
function for Wnt signaling in adult stem cell lineages is very well documented: de-
pending on the context, Wnt signaling can promote self renewal or control lineage
commitment (reviewed in Holland et al., 2013). In D. melanogaster, for example,
Wg signaling is required for the self renewal of midgut and hindgut stem cells
(reviewed in Saito-Diaz et al., 2013). We therefore propose, that cell autonomous
changes in the germline are caused by higher levels of DE-Cad, subsequent recruit-
ment of Arm and downregulation of the Wg signaling pathway (see Figure 3.1,
page 117).
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3.3 Ecdysone signaling links germline differentiation
to the overall body status

Kept on rich food, flies produce 60 times more eggs then on poor food (Drummond-
Barbosa and Spradling, 2001). Thus, oogenesis is a highly energy demanding
process that strongly depends on the flies nutritional situation.

3.3.1 Ecdysone signaling mediates effects of stress and
starvation

Insulin signaling and other pathways were shown to mediate the response to food
availability; GSCs and FSCs respond to the nutritional status: they adjust their
proliferative rate and the progression of germ cells is slowed down upon food
deprivation (reviewed in Jasper and Jones, 2010). However, the dramatically
decreased egg production rate seems to also result from an increased degener-
ation of egg chambers at stage 8–9 (Drummond-Barbosa and Spradling, 2001).
Ecdysone signaling is required to progress past this master checkpoint and we
now show, that perturbation of ecdysone signaling also affects germline develop-
ment in the germarium: if ecdysone signaling in the soma is altered, the interac-
tion between germline and ECs is affected and the germline development is slowed
down. Ecdysone is produced in older follicles that passed the stage 8–9 checkpoint
(see Section 1.3.3, page 19): ecdysone control of germline development, therefore,
presents a positive feedback mechanism, with which germline development in the
germarium is synchronized with the presence or absence of older follicles.

Ecdysone function in the adult is complex and poorly defined Understand-
ing the role of ecdysone signaling in oogenesis is complicated by several findings:
first, the levels of ecdysone in the adult were measured by multiple research groups
(Ishimoto et al., 2009; Schwartz et al.; Schwedes and Carney, 2012; Terashima and
Bownes, 2006; Tu et al., 2002). However, the results obtained are contradictory
and it is, for example, unclear whether ecdysone titers increase or decrease upon
starvation. Second, even though ecdysone signaling is clearly indispensable for
oogenesis (Buszczak et al., 1999; Carney and Bender, 2000), high ecdysone titers
also negatively affect oogenesis. Terashima et al., 2005 reported that ecdysone
injection – similar to starvation – induces apoptosis of nurse cells at stage 8 and
9 (Terashima and Bownes, 2006). Presumably, ecdysone function depends on
whether its levels are below or above a certain threshold. Supporting this hypoth-
esis, accumulating evidence suggests that – depending on ecdysone presence – the
EcR can carry out both, transcription activating and repressing functions, which
is further discussed in Section 3.3.2, page 122. Third, while ecdysone is a major
regulator at the larval–pupal transition, its role in the adult fly is remarkably
different: high ecdysone signaling activity was shown to promote stress resistance
and ecdysone levels are changed if flies are exposed to unfavorable conditions
like heat, food or sleep deprivation (Ishimoto and Kitamoto, 2010; Rauschenbach
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et al., 2000; Simon et al., 2003; Terashima and Bownes, 2005; Terashima et al.,
2005; Tricoire et al., 2009).

Ecdysone is a ”stress hormone” in the adult fly In adults, ecdysone signaling
controls various aspects of behavior, reproduction, body size, longevity and mem-
ory (see Section 1.3.3, page 19). Considering that the ecdysone titers, measured
by several research groups in differently treated flies are remarkably different, it
is reasonable to conclude that the ecdysone levels are highly dynamic and respon-
sive to external conditions. In addition, we could show that the levels of let-7, the
fine-tuner of ecdysone signaling, are increased upon food or temperature stress.
In addition to the ecdysone dependent checkpoint at stage 8-9, we showed that
ecdysone signaling also controls progression through the early stages of oogenesis
(Buszczak et al., 1999; Carney and Bender, 2000; Terashima and Bownes, 2006;
Terashima et al., 2005). Ecdysone functions independently from the GSC main-
tenance regulation by insulin signaling, suggesting that the hormones insulin and
ecdysone control the speed of oogenesis in parallel (see Figure 3.1, page 117).
We, therefore, suggest that ecdysone signaling is a master regulator or ”stress
hormone” that links vitellogenesis and the overall body status.

3.3.2 The tissue- and time-specific response to ecdysone
signaling is controlled by a complex network of
interacting partners

Given the diverse functions of ecdysone signaling in adults and larvae, it is under-
standable, that the time- and tissue-specific actions of ecdysone are mediated by
a variety of different interacting partners. EcR/Usp cofactors include chromatin
remodelers, histone modifier and transcriptional cofactors (see Section 1.3.2, page
18).

Ab is a potent transcription factor whose function depends of its concentra-
tion Ab inhibits the strength of the ecdysone signaling by interacting with the
cofactor Tai and interestingly, is targeted by the miRNA let-7 that is itself regu-
lated by ecdysone signaling. Based on the analysis of penetrance and severity of
ab mutant phenotypes, it was suggested that Ab controls dendrite branching and
formation of other adult structures in a dosage dependent way (Hu et al., 1995; Li
et al., 2004). Ab contains the BTB/POZ protein domain, that is highly conserved
among metazoans and defines a protein-protein interaction interface (Zollman
et al., 1994). Transcription factors containing BTB/POZ domains are involved
in diverse cellular functions including regulation of transcription and cytoskeleton
dynamics, ion channels and protein degradation (reviewed in Stogios et al., 2005).
Ab belongs to the ”tkk” subgroup that also contains Bab, Br, Pipsqueak, the
GAGA factor and Batman. Whereas the sequence homology between members
of the tkk subgroup and other BTB proteins is 24%, it is 49% on average within
members of the tkk subgroup (Bonchuk et al., 2011). Recently it was shown, that
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the BTB domains of the tkk subgroup members Batman, Mod(mdg4), Pipsqueak,
Tramtrack and GAF are able to form multimers (Bonchuk et al., 2011). Interest-
ingly, Bonchuk et al., 2011 performed cross-linking experiments that suggest that
the Ab BTB domain is also able to form major multimers. Given the similarity
between the members of the ttk subgroup, the reported interaction between BTB
domains of different proteins and the ability of Ab to form dimers, it is very likely
that the Ab BTB domain is able to mediate the formation of Ab multimers. This
provides a possible explanation for the observed dosage dependent action of Ab.
Importantly, Ab was shown to be a transdetermination factor, since overexpressing
Ab in antennal imaginal discs leads to the transformation of arista into putative
legs (Grieder et al., 2007). In addition, Ab is a global transcriptional regulator
in the epithelium (Turkel et al., 2013). Altogether, Ab is a potent transcription
factor that acts in a dosage dependent way to modulate the ecdysone signaling
response, explaining the necessity for its precise regulation by the miRNA let-7.
Apart from the various interacting factors, the EcR/Usp itself contributes to the
complexity of ecdysone signaling in D. melanogaster : the unliganded EcR/Usp
complex is not only transcriptionally inactive, but even repressive.

The unliganded EcR complex represses transcription Previously it was shown
that in the absence of ecdysone, the basal expression of a test vector was lower
in vectors containing ecdysone responsive elements compared to empty ones. In
addition, loss of Usp or EcR function was shown to lead to precocious differen-
tiation of sensory neurons and expression of Br-Z1 (an isoform of Br) even at
developmental stages with low ecdysone titers. Based on these results, it was
suggested that the EcR/Usp complex can repress the expression of target genes
if unliganded (Cherbas et al., 1991; Dobens et al., 1991; Schubiger and Truman,
2000; Schubiger et al., 2005), a phenomenon that has also been described for the
retonoid X and retinoic acid receptors (reviewed in Glass and Rosenfeld, 2000).
We observed that overexpression of the EcR and lowering the levels of ecdysone in
the adult led to similar phenotypes: an increased number of SSCs and a reduced
cysts/single spectrosome ratio. We, therefore, speculated that the similarity of the
phenotypes may arise because in both cases the activating function of the EcR
was inhibited: either because of an artificially high level of EcR that was shown
in vitro to form homodimers (Elke et al., 1997) or because of low ecdysone levels.
In order to prove this hypothesis, we fed ecdysone to EcR overexpressing flies: as
expected, this led to a partial rescue of the observed phenotypes. Our results,
therefore, support the hypothesis that unliganded receptor complexes can have a
repressive function. Indeed Gancz et al., 2011 also reported that the repressive
function of EcR/Usp in early third instar larvae – when ecdysone levels are low
– is required for the correct formation of the gonad. Later in mid and late third
instar larvae, active ecdysone signaling is required for niche formation and trig-
gers primordial germ cell differentiation (Gancz et al., 2011). Recently Johnston
et al., 2011 showed that in salivary glands the unliganded EcR does not repress the
transcription of target genes, but is localized to the cytoplasm. Rising ecdysone
titers lead to the translocation of the EcR/Usp complex to the nucleus, activating
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the transcription of target genes, for example E75A, a nuclear hormone receptor
itself. As ecdysone titers increase at the larval–pupal transition, E75A replaces
the EcR/Usp complex and represses the expression of target genes, including the
EcR itself. The results provided by Johnston et al., 2011 present an additional
mechanism by which tissue- and time-specific actions of the ecdysone regulated
networks could be provided.

3.3.3 Maintaining the sexual identity requires intact ecdysone
signaling

Steroid hormones are major regulators of mammalian sex determination and ga-
metogenesis (reviewed in Arnold, 2012; Sim et al., 2008). Interestingly, we and
others could show that ecdysone signaling regulates different aspects of gonadoge-
nesis and adult gonad function in female D. melanogaster (Buszczak et al., 1999;
Carney and Bender, 2000; Hackney et al., 2007; König et al., 2011; Morris and
Spradling, 2012). Data for a differential expression of ecdysone signaling pathway
genes between male and female gonads remain poor, but there is evidence for sex
specific differences of ecdysone levels (reviewed in Schwedes and Carney, 2012).
Morris and Spradling, 2012 recently reported that reducing ecdysone signaling in
the male testis for eight days does not lead to visible effects on GSCs, developing
cysts or primary spermatocyte clusters. In contrast, Garen et al., 1977 reported
that ecdysone is essential for male fertility. Our own analysis reveal that ecdysone
signaling mutant testes exhibit several severe phenotypes including a germline
differentiation delay and formation of somatic epithelia (Fagegaltier et al.). Im-
portantly, we have observed similar phenotypes in males lacking the miRNA let-7
that is a downstream effector of ecdysone signaling.

A confused sexual identity can contribute to the observed germline differen-
tiation delay The soma has an important function in controlling the germlines
sexual identity, but the genetic sex of the germline also is important. Interest-
ingly, germline differentiation defects and tumors can also be the consequence of
non-matching sexual identities in germline and soma; this happens for example if
XX:AA germline cells are transplanted into male soma. JAK/STAT signaling is
used by the male soma to masculinize the associated germline cells (reviewed in
Murray et al., 2010). Furthermore, mutants of the master differentiation factor
bam display a confused sexual identity as well: ovaries express a set of normally
testis specific markers (Chau et al., 2009; Staab et al., 1996; Wei et al., 1994).
We, thus, analyzed ovaries and testes with respect to the expression pattern of
sex specific transcripts. Interestingly, especially let-7 deficient males strongly up-
regulate transcripts of the opposite sex; however, the phenotypes observed upon
ecdysone signaling loss in testes and ovaries seem to be equally strong (Fage-
galtier et al.). The ecdysone signaling target let-7 is expressed at higher levels
in males, but whether ecdysone titers itself differ between sexes is not clear (re-
viewed in Schwedes et al., 2011). We, thus, speculate that downstream effectors of
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ecdysone signaling affect the maintenance of the sexual identity and that the im-
portance of these downstream effectors differs between sexes. The ecdysone/let-7
cascade cooperates with the JAK/STAT pathway in neuronal cell fate determina-
tion (Kucherenko and Shcherbata, 2013) and it is tempting to speculate and will
be subject of further analysis that the ecdysone/let-7 cascade may affect the male
sexual identity via JAK/STAT.

3.3.4 The ecdysone/let-7/Ab signaling cascade modulates
oogenesis in response to different conditions

The BTB protein Ab is not only the negative regulator of ecdysone signaling, its
levels itself are negatively regulated by steroids and stress. ab mRNA levels are
increased in ecdysone-depleted ovaries; in addition, the cellular localization of Ab
is variable, depending on ecdysone availability and external conditions. Given
the severity of phenotypes induced by alterations of Ab on the one hand and
the changes in localization that we observed upon stress on the other hand, it is
understandable that changes in level and localization of this potent epithelial reg-
ulator have to be robustly buffered, which is provided by the miRNA let-7. let-7
is induced by steroids in the D. melanogaster germarium and let-7 itself promotes
ecdysone signaling by reducing the levels of the ecdysone signaling inhibitor Ab.
We, thus, showed that the ecdysone signaling/let-7 /Ab cascade regulates oogene-
sis in response to stress. While the purpose of this regulation is to flexibly adjust
gene expression in response to external stimuli, ”overshooting” reactions have to be
prevented. miRNAs can ensure biological robustness and provide a buffer against
stochastic fluctuations or ”overshooting” gene expression in a system (reviewed
in Siciliano et al., 2013); which – considering the strong concentration dependent
effects of Ab – is extremely important.

3.4 The D. melanogaster germarium provides a
model to decipher the more complex
mechanisms of steroid hormone/let-7 action in
vertebrates

The studies presented in this thesis describe how steroid hormones (1) influence
the formation of the stem cell niche and (2) non cell-autonomously influence the
germline and lead to the expansion of a cell population that is delayed in dif-
ferentiation. Furthermore it is described how other factors act to fine-tune this
regulation. Whether events, similar to the ones described in the D. melanogaster
germarium, play a role during the development and adult function of human stem
cell niches or contribute to the development of cancers should be subject of further
analysis. However, in the light of several studies it seems likely that ecdysteroid
action in the D. melanogaster germarium may provide insights into some aspects
of steroid hormone signaling action in humans.
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3.4.1 Steroid action in D. melanogaster and humans show
some parallels

It was already shown that the steroids estrogen and progesterone, are critical for
the regenerative capability of mammary stem cells. Interestingly, it seems that,
like we could show for ecdysone regulating germline cells, this regulation may be
indirect via surrounding cells (reviewed by Joshi et al., 2012; Lydon, 2010).

Tai and its homolog AIB1 share important characteristics AIB1, the human
homolog of Tai, was shown to be elevated in breast cancer specimens. High AIB1
levels are associated with a poor prognosis and AIB1 acts as a coactivator of
estrogen and progesterone receptor. In addition to its rather well studied role in
breast cancer, it appears that AIB1 is also important for the development and
progression of other tumors, like ovarian and prostate cancer (reviewed in Chang
and Wu, 2012). Bai et al., 2000 showed that Tai is required for the migration
of border cells in D. melanogaster egg chambers and because of the similarities
that exist between migrating border cells and cancerous cells in the human ovary,
Yoshida et al. analyzed the role of AIB1 in human ovarian cancer cells and, indeed,
found that AIB1 regulates the migration of epithelial ovarian cancer cells. It is,
therefore, interesting, whether AIB1 function in humans resembles more features
of Tai action, such as indirectly influencing the germline via the surrounding niche
cells.

Steroid hormone pathways in D. melanogaster are far less complex than
in mammals Steroid hormones are of great importance for various aspects of
human life, including development, organogenesis, reproduction, and malignant
diseases. The diversity of human steroids, the immense number of factors in-
volved in the signaling process, and the complexity of the hormone controlled
networks complicate their analysis. The sophisticated genetic tools available in
D. melanogaster, the presence of only one major steroid hormone, and the exten-
sive knowledge about the GSC niche make D. melanogaster an invaluable model
system for deciphering details about steroid hormone function.

3.4.2 Various aspects of let-7 function are conserved in
bilateria

The miRNA let-7 was first described as a heterochronic gene in C. elegans and was
later shown to serve similar functions in D. melanogaster. Its loss of function leads
to the repeat of larval cell fates: hypodermal blast cells fail to differentiate and to
form adult structures, but instead undergo an additional round of replication in
C. elegans (Reinhart et al., 2000; Slack et al., 2000). In D. melanogaster, larval
muscles persist, while adult body wall muscles are smaller and neuromuscular
junctions are immature; in addition, cells in the wing disc do not exit the cell
cycle (Caygill and Johnston, 2008; Sokol et al., 2008). In summary, let-7 promotes
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differentiation and its loss of function leads to immature adult structures and
persisting larval tissues.

Germline differentiation delay as a heterochronic defect? The present thesis
describes that let-7 modulates the strength of ecdysone signaling in the germar-
ium and its absence cell non-autonomously causes a developmental arrest of the
germline cells. Considering that the production of eggs also has to be paused
before the flies hatch, this differentiation arrest in the germarium upon let-7
and/or ecdysone signaling deficiency could also be considered a heterochronic
defect. However, let-7 was also shown to play numerous other roles in the adult
animal or human: it regulates cancer, stem cells or aging (reviewed in Boyerinas
et al., 2010; Bussing et al., 2008; Mondol and Pasquinelli, 2012 and Toledano et al.,
2012). Supporting this, the ecdysone signaling pathway that acts in a feedback
loop with let-7, also is involved in numerous aspects of the adult life (reviewed in
Schwedes and Carney, 2012).

The steroid regulation of let-7 may represent a conserved mechanism Given
the importance of let-7 in cancer progression and development, it is critical to un-
derstand how its levels are regulated. In many organisms, including C. elegans,
D. melanogaster and D. rerio, let-7 is only found later in development. Mature
and pre-let-7 first appear at the same time in D. melanogaster, indicating that let-
7 expression is controlled at the transcriptional level. In other organisms, however,
it had been shown that let-7 expression can be regulated post-transcriptionally
as well (reviewed in Roush and Slack, 2008). Despite earlier reports that were
contradictory about this question, it seems to be clear now that the expression of
pre-let-7 is controlled at the transcriptional level by ecdysone (Bashirullah et al.,
2003; Garbuzov and Tatar, 2010; Sempere et al., 2002, 2003). C. elegans does not
have ecdysone, nevertheless let-7 expression is precisely regulated in the temporal
dimension and, like in D. melanogaster, let-7 appears first at the last larval stages.
Under good environmental conditions, C. elegans goes through four larval stages;
but in response to unfavorable conditions, it enters an alternative ”dauer” state.
This non-feeding stage can last up to 6 months, but as soon as the conditions are
improving, development is resumed. Initiation of the ”dauer” state is controlled
by the steroid hormone receptor DAF-12 (dauer formation 12). DAF-12 is bound
by the steroid hormone dafachronic acid; in the presence of dafachronic acid de-
velopment is promoted, while the absence of dafachronic acid induces ”dauer”
formation. DAF-12 is important for several other processes in development, re-
production and longevity and, thus, similar to ecdysone in D. melanogaster, it is
a master hormonal regulator of C. elegans (reviewed in Galikova et al.; Tennessen
and Thummel, 2011). Interestingly, in both, D. melanogaster and C. elegans,
the steroid hormone production is regulated by TGF-β and insulin signaling and
thus, several studies suggested that the EcR and DAF-12 pathways are functional
orthologs (reviewed in Sokol, 2012). Furthermore, like in D. melanogaster, let-7
expression is also regulated by steroid hormones in C. elegans: in the absence of
DA, DAF-12 represses the expression of let-7 family members while it activates
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let-7 expression if dafachronic acid is present (Bethke et al., 2009; Hammell et al.,
2009). Whether steroid hormone regulation of let-7 is a common motif also in
vertebrates is a very interesting question and should be subject of further studies.
let-7 was, indeed, found at certain developmental stages in the vertebrate clade,
where animals develop without molts. How the levels of let-7 family members
in humans are regulated and whether they even follow a distinct developmental
pattern was not described in detail (reviewed in Sokol, 2012). However, the re-
sults gained in D. melanogaster indicate, that steroid hormones are capable of
regulating let-7 and further analysis in model organisms and humans will help
deciphering let-7 regulation in more detail.

3.4.3 let-7 acts as a tumor suppressor in humans

Several cancers, including breast, prostate, endometrium, testis, ovary, thyroid,
and osteosarcoma are grouped as hormone-dependent cancers. Steroid hormones,
like estrogen and progesterone, are critical for the development, progression and
clinical prognosis of these cancer types and are thought to promote cell prolifer-
ation and, thereby, to increase the opportunity for random mutations to occur
and accumulate (reviewed in Henderson and Feigelson, 2000). Since cancers of
the reproductive system belong to the most common causes of cancer death in
the Western world, improving methods for their treatment and cure are critical
and require a better understanding of their development. There is evidence, that
tumors can arise from a rather small subset of cells – the so-called cancer stem
cells (reviewed in Elshamy and Duhe, 2013). Cancer stem cells share a number of
characteristics with adult tissue stem cells: they are able to both, self-renew and
to give rise to more or less differentiated progeny and, in addition, are located in
tissues that often develop cancer. It is believed that cancer stem cells can arise
from adult stem cells by escaping the niche-dependent and internal restrictions on
their self renewal. Cancer stem cells can become independent from niche signals
or recruit cells to form a niche. In addition, an enlarged niche is able to host a
larger number of normal and/or cancer stem cells (reviewed in Clarke and Fuller,
2006). Therapeutic approaches therefore should specifically consider and target
cancer stem cells, which makes it crucial to understand which factors and events
contribute to the generation of self renewing cancer stem cells.

Detailed analysis of let-7 function in D. melanogaster adult stem cells may
precede research in mammals It was shown that miRNAs in general are re-
quired for the maintenance of embryonic stem cells and several miRNAs are differ-
entially expressed in differentiated, cancer and adult stem cells (Croce, 2009; Qi
et al., 2009; Shcherbata et al., 2006). Given the multiple roles that let-7 carries out
for cell-fate decisions during development, it is not surprising that let-7 also plays
a role in cancer biology. let-7 suppresses pluripotency of embryonic stem cells
and enhances differentiation. Several studies indicate that let-7 acts as a tumor
suppressor, especially in lung and breast cancer (reviewed in Nimmo and Slack,
2009). Analysis in vertebrates are, however, complicated by the number of let-7
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family members that may serve redundant functions, with some of them being en-
coded by several loci. Consequently, not much is known about the developmental
role of let-7 in vertebrates. Studies in D. melanogaster often provide first hints
that lead to important findings in vertebrates and help to decipher complex mech-
anisms: the present thesis describes how let-7 acts on the differentiating progeny
of adult stem cells in the D. melanogaster germarium, not directly, but in a cell
non-autonomous way via surrounding ECs. Given the high conservation of let-7
sequence, temporal expression and function in C. elegans, D. melanogaster and
humans, it is very likely, that the let-7 function that is described in the present
thesis is also at least partially important in humans. Whether let-7 /steroid sig-
naling cascade may also cell non-autonomously act on the stem cell or progeny
differentiating niche of adult and/or cancer stem cells in vertebrates, is – especially
in the light of tumor development and progression – a critical question.
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Supplementary Figure Legends 

Supplementary Figure 1. PH3 staining reveals, that the high number of SSCs that is caused 

by EcR overexpression is not due to fusome breakdown.  

(A) Cells in developing germline cysts that are connected via a fusome are dividing 

simultaneously as shown here by PH3 mitotic marker. (B) The SSCs that are observed upon 

exogenous hsEcR.A expression do not have their division synchronized. Red, Adducin+LaminC; 

blue, DAPI; and green PH3. 

 

Supplementary Figure 2. Tai expression in escort cells. 

(A-B) To confirm the specificity of Tai antibody staining in escort cells we generated tai loss of 

function somatic clones (hs Flp; tai61G1 FRT40A/UbiGFP FRT40A) and observed that Tai 

staining is diminished in tai mutant cells. Compare levels of antibody staining in tai mutant 

escort cell (white arrows) and sister clones  (green arrows).  

Red, Taiman; blue, DAPI; and green, GFP.  

 

Supplementary Figure  3.  

Tai is not required for progressive oocyte development and GSC maintenance. 

(A) tai61G1 loss of function clones in the germarium do not affect the steady production of egg 

chambers, showing that loss of Tai does not affect GSC division or oocyte differentiation. 

(B) tai61G1 or taik15101 mutations do not affect the maintenance of GSC compared to parental GSC 

clones. 

Red, Adducin+LaminC; blue, DAPI; and green, GFP. 

 

Supplementary Figure 4.  ptcGal4 and bab1Gal4, the drivers used in this study drive UAS 

lacZ expression in the somatic cells of the germarium 

Whereas bab1Gal4 (UAS lacZ/+; bab1Gal4/+) drives expression in CpCs (pink arrowheads), 

ECs and FCs (A), ptcGal4 (UAS lacZ/ptcGal4) is only active in ECs and FCs, but not in the 

CpCs (pink arrowheads, B). 

(A, B) are projections of optical sections assembled through the germarial tissue. Red, 

Adducin+LaminC; blue, DAPI; and green, β-Galactosidase. 
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Supplementary Table S1. Loss of function of ecdysone receptor co-activator tai 
increases number of niche and germline stem cells  
 

Allele x taiG161 x tai k15101 

 

# of CpCs  
AVE±SEM  

# of GSCs  
AVE±SEM  

# 
o

f 
g

er
m

a
ri

a 
a

n
a

ly
ze

d
 # of CpCs  

AVE±SEM  
# of GSCs  
AVE±SEM  

# 
o

f 
g

er
m

a
ri

a 
a

n
a

ly
ze

d
 

p (compared to taiG161/ w1118) p (compared to tai k15101/ w1118) 

Control, 
w1118 

6.56±0.24 2.44±0.13 25 5.63±0.22 2.11±0.08 27 

tai G161  lethal  7.10±0.28 
p=2.08x10-4 

3.45±0.20 
p=1.52x10-7 

31 

tai 01315 10.50±0.61 
p=6.20x10-11 

4.00±0.25 
p=6.30x10-11 

11 6.33±0.53 
p=0.16 

3.22±0.32 
p=2.55x10-6 

9 

tai EY11718 7.40±0.51 
p=0.16 

3.67±0.26 
p=4.49x10-3 

5  N/A  

tai KG02309 9.40±0.70 
p=0.02 

3.40±0.54 
p=2.34x10-5 

10  N/A  

tai BG02711 10.56±0.60 
p=1.11x10-9 

5.11±0.39 
p=1.60x10-8 

10  N/A  

EcRQ50st 8.40±0.78 
p=5.08x10-3 

3.70±0.21 
p=1.30x10-5 

10 7.86±0.93 
p=1.31x10-3 

3.71±0.61 
p=3.88x10-5 

7 

usp4 9.00±0.85 
p=9.68x10-4 

3.67±0.27 
p=3.30x10-5 

12 8.07±0.38 
p=6.70x10-7 

2.79±0.19 
p=0.10 

14 

usp EP1193 8.13±0.31 
p=4.50x10-3 

3.50±0.51 
p=1.05x10-3 

8 5.92±0.36 
p=0.48 

2.25±0.13 
p=0.36 

12 

p-value was calculated using the two tailed Students t-test. 
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Supplementary Table S2. Reduction of ecdysone signaling via ecd1ts mutation or 
dominant negative EcR forms increases the number of single spectrosome cells 
and delays cyst differentiation  
 

Genotype 
Number of 
CpCs 
Ave ± SEM 

Number of 
GSCs 
Ave ± SEM 

Number of 
SSCs 
Ave ± SEM 

Number of 
Cysts 
Ave ± SEM 

Ratio 
Cyst/SSC 
Ave ± SEM 

# 
o

f 
an

al
yz

ed
 

g
e

rm
ar

ia
 

w 1118  

5d at 29°C 
5.78±0.25 2.18±0.12 3.91±0.31 4.82±0.38 1.30±0.12 11 

ecd 4210 ts  
1d at 29°C 

5.71±0.30  
(p=0.89) 

2.19±0.19 
(p=0.98) 

9.81±1.12 
(p=2.38x10-4)*** 

4.63±0.87 
(p=0.86) 

0.63±0.13 
(p=1.76x10-3)** 

16 

ecd 4210 ts 

3-5d at 29°C 
5.77±0.17 

(p=0.98) 
1.80±0.19 

(p=0.26) 
7.47±0.36 
(p=1.58x10-6)*** 

5.80±0.46 
(p=0.23) 

0.84±0.08 
(p=4.16x10-3)** 

30 

ecd 4210 ts 

7d at 29°C 
6.00±0.22 

(p=0.59) 
1.62±0.20 

(p=0.04)* 
7.23±0.99 

(p=0.01)* 
3.85±0.47 

(p=0.15) 
0.66±0.10 
(p=6.61x10-4)*** 

15 

hs-Gal4-
usp.LBD 
hs 30’ 1-3d 

6.20±0.30 
(p=0.47) 

3.20±0.37 
(p=4.73x10-3)** 

7.20±0.74 
(p=2.34x10-4)*** 

5.40±0.51 
(p=0.39) 

0.78±0.10 
(p=0.02)* 5 

hs-Gal4-
EcR.LBD 
hs 30’ 1-3d  

6.29±0.18 
(p=0.23) 

2.75±0.31 
(p=0.08) 

7.13±0.72 
(p=3.00x10-4)*** 

4.86±0.38 
(p=0.95) 

0.67±0.05 
(p=1.30x10-3)** 8 

 
p-value was calculated using the two tailed Students t-test. *p<0.05, **p<0.005. ***p<0.0005 
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Supplementary Table S3. Adult EcR overexpression causes germline 
differentiation delay in the germarium that can be recovered by supplying 20E  
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 ±
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# 
o

f 
a

n
al

y
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d
 

g
e
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ar

ia
 

w1118 

control 
25°C 

I 6.33±0.20 2.88±0.23 4.5±0.38 4.63±0.46 1.09±0.16 8 

20E 
25°C 

I 5.78±0.19 
a(p=0.27) 

2.26±0.24 
a(p=0.14) 

3.84±0.32  
a(p=0.24) 

4.16±0.24 
a(p=0.34) 

1.34±0.23 
a(p=0.51) 

19 

hsEcR.A/ 
+ 

control 
25°C 

I 6.00±0.22 
a(p=0.53) 

2.67±0.19 
a(p=0.50) 

4.80±0.31 
a(p=0.84) 

5.31±0.27 
a(p=0.20) 

1.13±0.16 
a(p=0.91) 

15 

II 5.58±0.26 2.42±0.15 4.50±0.38 5.76±0.28 1.35±0.11 12 

III 5.67±0.24 2.22±0.22 4.00±0.33 5.44±0.44 1.44±0.16 9 

20E 
25°C 

I 6.40±0.31 
a(p=0.91) 

2.50±0.17 
a(p=0.19) 

4.50±0.65 
a(p=1.00) 

5.40±0.40 
a(p=0.22) 

1.57±0.33 
a(p=0.25) 

10 

II 6.43±0.36 2.20±0.13 3.80±0.42 6.40±0.27 1.89±0.22 10 

III 5.67±0.27 2.44±0.18 5.44±0.73 5.33±0.33 1.27±0.29 9 

w1118 
control 
heat 

shock 

I 5.90±0.28 
a(p=0.44) 

2.50±0.27 
a(p=0.32)

4.50±0.56 
a(p=1.00)

5.80±0.36 
a(p=0.06) 

1.49± 0.22 
a(p=0.18) 

10 

III 6.13±0.26 2.30±0.15 4.90±0.55 5.80±0.44 1.32±0.19 10 

hsEcR.A/ 
+ 

heat 
shock 

I 
5.70±0.21 

b(p=0.57) 

c(p=0.36) 

2.90±0.28 
b(p=0.31) 

c(p=0.48) 

11.0±0.75 
b(p=1.68x10-6)*** 

c(p=5.24x10-9)*** 

2.30±0.67 
b(p=2.14x10-4)*** 

c(p=1.94 x10-4)*** 

0.19±0.05 
b(p=1.95 x10-5)*** 

c(p=1.49 x10-4)*** 
10 

II 6.09±0.28 
c(p=0.20) 

2.82±0.18 
c(p=0.10) 

13.8±1.40 
c(p=1.79 x10-6)*** 

2.6±0.29 
c(p=4.33 x10-7)*** 

0.17±0.03 
c(p=1.99x10-9)*** 11 

III 5.91±0.23 
c(p=0.48) 

3.15±0.19 

c(p=4.93x10-3)** 
13.46±1.26 

c(p=5.72x10-6)*** 
5.69±0.54 

c(p=0.74) 
0.50±0.10 

c(p=3.39x10-5)*** 13 

20E 
heat 

shock 

I 5.9±0.35 
d(p=0.63) 

3.6±0.22  
d(p=0.06)

10.2±0.87  
d(p=0.50)

4.70±0.50 
d(p=0.01)* 

0.50±0.08 
d(p=4.53x10-3)** 10 

II 6.00±0.21 
d(p=0.80) 

3.00±0.15 
d(p=0.44)

12.5±0.67 
d(p=0.44)

3.86±0.35 
d(p=0.02)* 

0.33±0.04 
d(p=0.01)* 

14 

III 5.92±0.22 
d(p=0.98) 

2.46±0.14 
d(p=7.96x10-3)*

9.62±0.74 
d(p=1.45x10-2)*

7.15±0.30 
d(p=2.52x10-2)* 

0.79±0.07 
d(p=2.00x10-2)* 13 

 
Adult hsEcR.A/+ or w1118 flies were treated as indicated. Heat shocks were performed twice per day for 30 

min each. 1 μM Ecdysone (20E) was diluted in 5% Ethanol. For control 5% Ethanol was used. 

p-value was calculated using the two tailed Students t-test. *p<0.05. **p<0.005. ***p<0.0005 
a Compared to w1118 flies that were kept without heat shocks on 5% Ethanol for control. 
b Compared to w1118 flies that were heat shocked for control. 
c Compared to hsEcR.A/+ flies of the respective experiment that were kept without heat shocks on 5% 
Ethanol for control. 
d Compared to hsEcR.A/+ flies of the respective experiment where overexpression of EcR.A was induced 
via daily heat shocks on 5% Ethanol. 
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Supplementary Table S4. Ecdysone receptor co-activator tai is not required for 
germline stem cell maintenance  

Genotype Experiment 

% of germaria with clonal GSCs   

Time-
point I 

(5d 
after 
hs) 

Time-
point II 
(12d 
after 
hs) 

Time-
point 

III 
(19d 
after 
hs) 

Time-
point 

IV 
(26d 
after 
hs) 

Average GSC 
loss per day 

+SD, % 

GSCs 
half-life, 

days 

Control, parental 
hsFLP; FRT40A  
/FRT40A GFP 

Exp I 
56.8% 
n=44 

35.7% 
n=28 

28.3 
% 

n=32 
ND   

Exp II 
42.1% 
n=38 

46.8% 
n=47 

51.6% 
n=31 

ND 1.74+2.82% 
≥ 3 

weeks 

Exp III ND 
47.3% 
n=55 

40.9% 
n=66 

29.1% 
n=86 

  

tai61G1 
hsFLP; FRT40A 

tai61G1/FRT40A GFP 
 

Exp I 
48.7% 
n=37 

30.8% 
n=26 

46.2% 
n=13 

ND   

Exp II 
59.5% 
n=37 

48.7% 
n=39 

66.7% 
n=15 

ND 1.83+2.08% 
≥ 3 

weeks 

Exp III ND 
39.8% 
n=103 

35.1% 
n=57 

29.0% 
n=100 

  

taik15101 
hsFLP; FRT40A 

taik15101/FRT40A GFP 

Exp I 
34.2% 
n=38 

38.5% 
n=39 

ND ND   

Exp III ND 
28.6% 
n=77 

26.9% 
n=67 

35.4% 
n=48 

-1.07+1.68% 
≥ 3 

weeks 
 
n=number of germaria analyzed 

GSC loss per day=(% of clonal GSC at time-point 1 -% of clonal GSC at time-point 2)x100%/ % of clonal 

GSC at time-point 1/elapsed time 

GSCs half-life=elapsed time x log[2]/log[% of clonal germaria at time-point1/% of clonal germaria at time-

point2] 
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Supplementary Table S5. Ecdysone signaling alteration in soma causes germline 
differentiation delay 
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Control* * 6.19±0.19 2.15±0.15 4.00±0.31 4.82±0.27 1.40±0.12 33 

tubGal80ts/+;  
UAS EcR RNAi97/ 
bab1Gal4 

7d 6.16±0.29 
(p=0.94) 

2.42±0.26 
(p=0.34) 

4.79±0.36 
(p=0.11) 

3.89±0.25 
(p=0.03)* 

0.88±0.09 
(p=5.18x10-3)** 

19 

tubGal80ts/+;  
UAS EcR RNAi97/ 
bab1Gal4 

21d 6.93±0.32 
(p=0.09) 

2.21±0.21 
(p=0.82) 

8.57±0.83 
(p=7.84x10-3)** 

4.57±0.37 
(p=0.60) 

0.62±0.09 
(p=3.41x10-4)*** 

14 

tubGal80ts/+; 
UAS EcR RNAi104 

/bab1Gal4 
7d  6.36±0.27 

(p=0.67) 
2.75±0.30 

(p=0.06) 
5.00±0.55 

(p=0.11) 
3.92±0.34 

(p=0.07) 
0.92±0.17 

(p=0.04)* 
12 

tubGal80ts/+; 
UAS EcR RNAi104/ 
bab1Gal4 

15d 5.86±0.44 
(p=0.52) 

2.07±0.16 
(p=0.76) 

11.0±3.90 
(p=0.01)* 

3.55±0.57 
(p=0.04)* 

0.55±0.11 
(p=3.34x10-4)*** 

14 

ptcGal4/+;  
UAS EcR RNAi97/ 
tubGal80ts 

14d 6.47±0.36 
(p=0.54) 

 2.80±0.34 
(p=0.05) 

6.00±0.59 
(p=2.30x10-3)* 

NC NC 14 

ptcGal4/+;  
UAS EcR RNAi97/ 
tubGal80ts 

21d  6.38±0.26 
(p=0.671) 

2.63±0.18 
(p=0.150) 

6.25±0.59 
(p=1.86x10-3)* 

NC NC 8 

 
Control*: tubGal80ts; UAS GFP/TM6, tubGal80ts; UAS GFP/bab1Gal4, tubGal80ts; UAS EcR RNAi 97/TM6, 
tubGal80ts; bab1Gal4/CyO; analyzed at different time points 
 
The expression of EcR RNAi during larval development is lethal. Therefore we used the tubGal80ts 
system. Flies were raised at 18°C where tubGal80ts suppresses the expression of Gal4. Transferring the 
adult flies to 29°C caused Gal4 and therefore UAS EcR RNAi expression in the soma. NC: Counting of 
cysts not possible due to strong morphological abnormalities. p-value was calculated using two tailed 
Students t-test. *p<0.05, **p<0.005. ***p<0.0005 
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Supplementary Table S6. Overexpression of EcR during niche development in 
larval somatic ovarian cells causes an increase in the number of CpCs  

 

Genotype 
Number of CpCs

Ave ± SEM 
Number of SSCs 

Ave ± SEM 
# of analyzed 

germaria 

pt
cG

al
4 

X
 

control 
UAS lacZ 

5.70±0.34 4.20±0.25 10 

UAS EcR.A 7.47±0.32 
a(p=1.63x10-3)** 

4.47±0.47 
a(p=0.68) 

17 

UAS EcR.B1 6.14±0.32 
a(p=0.41) 

4.00±0.35 
a(p=0.72) 

22 

ba
b1

G
al

4 
X

 

control 
UAS lacZ 

5.91±0.29 4.91±0.37 11 

UAS EcR.A 
9.31±0.42 

a(p=3.72x10-5)*** 

b(p=7.08x10-3)* 

7.38±0.49 
a(p=7.34-3)**  

b(p=3.91-4)*** 
32 

UAS EcR.B1 
9.29±0.53 

a(p=5.73x10-5)*** 

b(p=7.10x10-6)*** 

5.94±0.37 
a(p=0.07) 

b(p=5.99x10-4)** 
17 

W
11

18
 X

 control 
UAS EcR.A 

6.36±0.24 5.73±0.57 11 

control 
UAS EcR.B1 

6.83±0.50 5.00±1.00 12 

 
UAS EcR.A/bab1Gal4 and UAS EcR.B1/bab1Gal4 express exogenous EcR in the CpCs. ptcGal4/+; 
UAS EcR.A/+ and ptcGal4/+; UAS EcR.B1/+ express exogenous EcR in the other somatic ovarian 
cells, but not in CpCs (for expression patterns see Supplementary Figure S4). The stem cell marker 
pMad was used to confirm GSC identitiy if CpC number was increased. a ptcGal4/+; UAS EcR/+ and 
UAS EcR/bab1Gal4 were compared to ptcGal4/+; UAS lacZ/+ or bab1Gal4/UAS lacZ respectively. b 
UAS EcR.A or B1 driven by bab1Gal4 were compared to the UAS EcR.A or B1 driven by ptcGal4. The 
p-value was calculated using two tailed Student´s t-test. *p<0.05, **p<0.005. ***p<0.0005.  
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Figure S1 related to Figure 1 

 

 

Figure S1 

(A) Mouse neurospheres were differentiated as described in Supplemental Materials and Methods. 

Immunofluoresce staining against NeuN (green) was used to verify the differentiation. Nuclei were 

stained with DAPI. 

(B) hMSCs were differentiated to osteoblasts (OB) or adipocytes (Ad) for 2 d as described in 

Supplemental Materials and Methods. Protein extracts were analyzed by Western blot using 

antibodies against RNF40 and H2B (loading control). 

(C) hMSC were differentiated as in S1B. Westen blot against H2A was performed on protein 

extracts. H2Aub1 was visualized as a higher migraiting band. Low exposure of H2A is shown as a 

loading control. 



 

Figure S2 related to Figure 2 

 

 

 



 

 

 

 

 

 

 



 

 



 

 



 

 

 

 

 

 

 

 



Undiff. vs. 5 day osteoblast differentiation 

Focal adhesion (hsa04510); P = 1.49E-07
N 



 

siCont vs. siRNF40 5 day osteoblast differentiation

Focal adhesion (hsa04510); P = 8.47E-04
O 



 

Undiff. vs. 5 day adipocyte differentiation

Focal adhesion (hsa04510); P = 2.70E-11 
P 



 

siCont vs. siRNF40 5 day adipocyte differentiation

Focal adhesion (hsa04510); P = 6.66E-04
Q 



 

Undiff. vs. 5 day osteoblast differentiation 

Cell cycle (hsa04110); P = 2.89E-14
R 



 

Cont. vs. siRNF40 5 day osteoblast differentiation

Cell cycle (hsa04110); P = 1.21E-03
S 



 

Undiff. vs. 5 day adipocyte differentiation 

Cell cycle (hsa04110); P =3.10E-10
T 



 

Cont. vs. siRNF40 5 day adipocyte differentiation

Cell cycle (hsa04110); P = 1.72E-04
U 



 

Undiff. vs. 5 day adipocyte differentiation

Adipocytokine signaling pathway (hsa04920); P = 4.97E-7 
V 



 

siCont. vs. siRNF40 5 day adipocyte differentiation 

Adipocytokine signaling pathway (hsa04920); P = 2.84E-2 
W 



 

Undiff. vs. 2 day osteoblast differentiation

Pathways in cancer (hsa05200); P = 1.46E-10
X 



 

Cont. vs. siRNF40 2 day osteoblast differentiation

Pathways in cancer (hsa05200); P = 1.47E-05
Y 



Undiff. vs. 2 day adipocyte differentiation

Pathways in cancer (hsa05200); P = 7.81E-11
Z 



Cont. vs. siRNF40 2 day adipocyte differentiation

Pathways in cancer (hsa05200); P = 5.46E-04
AA 



 

 

 



 

 

Figure S2 

(A-C) hMSCs were transfected with control or RNF40 siRNAs (SmartPool) for 24 h and 

induced to differentiate into osteoblasts (B), adipocytes (C) or left undifferentiated (A) for 5 d. 

Protein extracts were analyzed by western blot using antibodies against RNF40, 

monoubiquitinated H2B (H2Bub1) and H2B as a loading control. 

(D) RNF40 knockdown (siRNA from Ambion, see List of siRNAs) was performed in 

undifferentiated hMSCs for 2 d. Proteins were analyzed by Western blot for RNF40 and 

Hsc70 (loading control). 

(E-F) hMSCs were transfected with control or RNF40 siRNAs (Ambion) for 24 h, induced to 

differentiate into osteoblasts (E) or adipocytes (F) for 5 d and then stained for alkaline 

phosphatase activity (E) or the presence of lipid drops (F) as described in Materials and 

Methods. 

(G) Electron microscopy of differentiated adipocytes treated with control siRNA (left) and 

RNF40 siRNA (right). Arrows indicate lipid droplets. 



(H-I) RNF40 knockdown was performed in hMSCs followed by osteoblast (H) or adipocyte (I) 

differentiation for 2 and 5 d. Expression of osteoblast (RUNX2; S2H) or adipocyte (CEBPB 

and CEBPG; S2I) marker genes was examined by qRT-PCR. Statistical analysis: * p<0.05; ** 

p<0.01; *** p<0.001. Mean ±SD, n = 3. 

(J) Transcriptome-wide gene expression microarray analysis of hMSC induced to 

differentiate into the osteoblast or adipocyte lineages for 2 d after RNF40 knockdown versus 

undifferentiated hMSC under the same siRNA treatment. Color code indicates 

downregulated genes in red and up-regulated genes in blue. Mean values, n = 3. 

(K) hMSCs were transfected with control or RNF40 siRNAs (SmartPool) for 24 h and induced 

to differentiate into osteoblasts or adipocytes for 2 and 5 d. Heat map was composed of the 

genes that were similarly regulated in both osteoblast and adipocyte differentiations. Color 

code indicates downregulated genes in red and upregulated genes in blue. Mean values, n = 

3. 

(L-M) Microarray analysis was performed as in (K). Genes that were specifically regulated in 

osteoblasts (L) or adipocytes (M) were used for the heat-maps. Color code indicates 

downregulated genes in red and up-regulated genes in blue. Mean values, n = 3. 

(N-AA) Pathway analysis was performed as indicated in Supplemental Materials and 

Methods using various comparisons from the hMSC differentiation microarray data with 

control or RNF40 siRNAs. Downregulated genes are shown in green squares, up-regulated 

in red squares. Red color for the text indicates significantly regulated genes. Mean values, n 

= 3. 

(AB-AC) hMSCs were transfected with control or RNF20 siRNAs (SmartPool) for 24 h and 

differentiated to either osteoblasts (OB) or adipocytes (Ad) for 2 d. Protein lysates were 

analyzed by Western blot for RNF20, monoubiquitinated H2B (H2Bub1) and H2B as a 

loading control. 

(AD-AE) Knockdowns and differentiation were performed as in (AB). The efficiency of 

knockdown and the changes in osteoblast (AD) and adipocyte (AE) gene expression were 

determined by qRT-PCR. Statistical analysis: * p<0.05; ** p<0.01; *** p<0.001. Mean ±SD, n 

= 3. 

(AF-AG) hMSCs were transfected with control or RNF40 siRNAs (SmartPool) for 24 h and 

induced to differentiate into osteoblasts (AF) or adipocytes (AG) for 2 or 5 d. qRT-PCR was 

used to monitor osteoblast (AF) and adipocyte (AG)-specific gene expression. Statistical 

analysis: * p<0.05; ** p<0.01; *** p<0.001. Mean ±SD, n = 3. 



Figure S3 related to Figure 3 

 

 



 

 



 

 

Figure S3 

 

(A) hMSCs were differentiated for 2 d to osteoblasts (OB) or adipocytes (Ad). Protein 

extracts were analyzed by Western blot for Ser2 phosphorylation of CTD (P-Ser2) and total 

polymerase II (loading control). 

(B-C) hMSCs were transfected with control or CDK9 siRNAs (Ambion) for 24 h and 

differentiated to either osteoblasts (OB) or adipocytes (Ad) for 2 d. Protein lysates were 

analyzed by Western blot with antibodies to CDK9, monoubiquitinated H2B (H2Bub1) and 

H2B as a loading control. 

(D) CDK9 knockdown was performed using an independent siRNA (Invitrogen, Inv) in 

undifferentiated hMSCs for 2 d. Proteins were analyzed by Western blot for CDK9 and H2B 

(loading control). 



(E-F) hMSCs were transfected with control or CDK9 siRNAs (Invitrogen) for 24 h and 

induced to differentiate into osteoblasts (E) or adipocytes (F) for 5 d and stained for alkaline 

phosphatase activity (E) or presence of lipid drops (F) as described in Materials and 

Methods. 

(G-H) Knockdowns with control or CDK9 siRNAs (Ambion) were performed in hMSCs for 24 

h. After that cells were induced to differentiate into osteoblasts (G) or adipocytes (H) for 2 d. 

qRT-PCR was used to monitor osteoblast (G) and adipocyte (H)-specific gene expression. 

Statistical analysis: * p<0.05; ** p<0.01; *** p<0.001. Mean ±SD, n = 3. 

(I-J) hMSC were transfected with siRNAs to RNF40 (SmartPool), RNF20 (SmartPool), CDK9 

(Ambion), WAC (SmartPool) and control siRNAs for 24 h and differentiate to osteoblasts (I) 

or adipocytes (J) for 2 d. Protein lysates were checked for the levels of Ser2 phosphorylation 

of CTD (P-Ser2), RNF40, RNF20, CDK9, monoubiquitinated H2B (H2Bub1) and H2B 

(loading control) by Western blot. 

(K-L) WAC knockdown (SmartPool) was performed in hMSCs for 24 h. After that cells were 

differentiated in either osteoblasts (K) or adipocytes (L). Protein extracts were analysed by 

Western blot for monoubiquitinated H2B (H2Bub1) and H2B as a loading control. 

(M) Undifferentiated hMSCs were transfected with control siRNA and siRNAs for WAC (#3 

and #4, Dharmacon) for 48 h. Protein extracts were examined for levels of monoubiquitinated 

H2B (H2Bub1) and H2B (loading control) by Western blot. 

(N) Knockdowns were performed as in (M). Knockdown efficiency was verified by WAC 

expression using qRT-PCR. Statistical analysis: * p<0.05; ** p<0.01; *** p<0.001. Mean ±SD, 

n = 3. 

(O-P) hMSCs were transfected with control siRNA and siRNAs for WAC (#3 and #4, 

Dharmacon) for 24 h and then differentiated to osteoblast (O) or adipocytes (P) for 5 d. Cells 

were stained for alkaline phosphatase activity (O) or presence of lipid drops (P). 

(Q-R) WAC knockdown (SmartPool) was performed in hMSCs for 24 h, followed by 

differentiation to osteoblasts (Q) or adipocytes (R). qRT-PCR was used to monitor 

expression of the osteoblast (Q) or adipocyte (R)-specific genes. Statistical analysis: * 

p<0.05; ** p<0.01; *** p<0.001. Mean ±SD, n = 3. 

 

 

 



Figure S4 related to Figure 4 

 

 

 

 

Figure S4 

 

hMSC were transfected with control, RNF40 (SmartPool) or RNF20 (SmartPool) siRNAs for 

24h and differentiated to adipocytes for 2d. Protein lysates were analyzed by Western blot 

using antibodies to H3K4me3 and H2B (loading control). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2) SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Cell culture, differentiation and knockdowns 

hMSC-Tert cells (Simonsen et al., 2002) were cultured in low glucose, phenol red free MEM 

(Invitrogen, Carlsbad, CA), supplemented with 10% bovine growth serum (BGS; HyClone, 

USA) and 1X penicillin/streptomycin (Invitrogen). For osteoblast differentiation growth 

medium was supplemented with 10 mM β-glycerophosphate, 0.2 mM ascorbate, 10-8 M 

calcitriol, and 10-7 M dexamethasone. For adipocyte differentiation normal growth 

medium containing 15% BGS was supplemented with 2 X 10-6 M insulin, 0.45 mM 

isobutylmethyl-xanthine, 10-5 M troglitazone, and 10-7 M dexamethasone. hFOB1.17 cells 

(Harris et al., 1995) were provided by Tom Spelsberg (Mayo Clinic, Rochester, Minnesota) 

and cultured at the permissive temperature (33ºC) in high glucose, phenol red free 

DMEM/F12 (Invitrogen) supplemented with 10% BGS (Hyclone) and 1X 

penicillin/streptomycin (Invitrogen). Osteoblast differentiation was induced by shifting to the 

restrictive temperature (39ºC) and growing for 7 d. Neurospheres were prepared from E17.5 

mouse brains according to standard procedures. Spheres were maintained in proliferation 

medium (NB with B27 and N2 supplement, 20 ng/ml FGF2, 20 ng/ml EGF). Spheres were 

differentiated by culturing in NB with B27 and N2 supplement containing 2% horse serum for 

5 d. Primary mouse oligodendrocyte cultures were prepared as described previously 

(Trajkovic et al., 2006). For differentiation the progenitors of oligodendrocytes were cultured 

for 5 d in MEM containing B27 supplement, 1% horse serum, L-thyroxine, tri-iodothyroxine, 

glucose, glutamine, penicillin, streptomycin, gentamycin, pyruvate, and bicarbonate (Sato-

B27) on poly-L-lysine-coated dishes or glass-coverslips. 

Knockdowns were performed using Lipofectamine RNAiMAX (Invitrogen) according to the 

manufacturer’s instructions. siRNAs utilized are listed in Table S1. 

 

Cell culture for microarray studies. Total RNA for microarray experiments was isolated 

from control or RNF40 siRNA transfected cells prior to differentiation or after differentiation 

for 2 or 5 d into osteoblasts or adipocytes. 

 

Chromatin immunoprecipitation (ChIP) and qPT-PCR 

ChIP was performed using a modified protocol based on (Gomes et al., 2006; Nelson et al., 

2006). Adherent cells were crosslinked for 10 min in PBS containing 1% formaldehyde. 

Crosslinking was quenched by adding glycine to a final concentration of 156 mM for 5 min. 



Fixed cells were washed twice with PBS and scraped in a buffer containing 150 mM NaCl, 5 

mM EDTA, 50 mM Tris (pH 8), 0.5% (v/v) NP-40, 1% (v/v) Triton X-100, 20 mM NaF and 

inhibitor cocktail (1 mM N-ethylmaleimide, 10 mM β-glycerophosphate, 1 ng/μl Aprotinin, 1 

ng/µl Leupeptin, 1 mM Pefabloc, 10µM iodoacetamide and 1 mM nickel chloride). The nuclei 

were pelleted and washed with the same buffer before lysing in 300 μl of Lysis Buffer (150 

mM NaCl, 1% (v/v) NP-40, 0.5% w/v sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl (pH 

8), 20 mM EDTA, 20 mM sodium fluoride and inhibitor cocktail). Pre-clearing was performed 

with 100 μl of Sepharose 4B (GE Healthcare, Uppsala, Sweden) in Lysis Buffer (50% slurry) 

for 1 hour at 4°C. After that chromatin was diluted with Lysis Buffer, aliquoted in 50 µl 

aliquots and stored at -80 C. After thawing, each 50 µl aliquot was brought to the final volume 

of 1 ml with Lysis Buffer and 2 µg of corresponding antibodies (Supplemental Table 4) were 

added. Samples were incubated with the antibodies overnight at 4°C before addingt 30 μl of 

Protein-G Sepharose slurry (GE Healthcare) and incubating for another 2 hours at 4°C. After 

centrifugation (2000g, 2 min, 4°C) beads were washed three times with Lysis Buffer, three 

times with Wash Buffer (100 mM Tris (pH 8,5), 500 mM LiCl, 1% (v/v) NP-40, 1% w/v sodium 

deoxycholate, 20 mM EDTA, 20 mM NaF and inhibitor cocktail), three additional times with 

Lysis Buffer and twice with TE-buffer. Reverse crosslinking was performed by adding 100 μl 

of 10% (w/v) Chelex 100 slurry (Bio-Rad) and incubating at 95 °C for 10 min. After that 2 μl of 

Proteinase K (20 μg/μl, Invitrogen) were added to each sample, followed by the incubation at 

55°C for 30 minutes and inactivation by heating to 95 °C for 10 min. Samples were 

centrifuged at 12,000 X g for 1 min at 4°C and the supernatant containing DNA was utilized 

for quantitative real-time PCR. The background binding was determined by performing a 

ChIP with a non-specific IgG antibody. To prepare inputs 5 µl (10% relative to ChIPs) of 

chromatin extracts were precipitated by adding 100% EtOH and 1 μl of Pink Precipitant (5 

mg/ml, Bioline, Luckenwalde, Germany) and incubating overnight at -20°C. The pellets were 

washed twice with 70% EtOH and processed as described above for ChIP samples. ChIP 

samples were normalized to input DNA samples, and displayed as “% of input”.  

RNA isolation, reverse transcription and quantitative RT-PCR was performed as described 

previously (Prenzel et al., 2011). All qRT-PCR samples were normalized to an internal 

reference gene (HNRNPK) and displayed relative to the control non-differentiated sample. 

Statistical analysis was done with ANOVA test. 

Primers utilized for gene expression and ChIP analyses are indicated in corresponding lists 

in Supplemental Materials and Methods. 

 



Immunofluorescence staining of Drosophila ovaries 

Drosophila melanogaster OregonR stocks were raised on standard cornmeal-yeast-agar-

medium at 25°C. Ovaries were fixed in 5% formaldehyde (Polysciences, Inc.) for 10 min and 

the staining procedure was essentially performed as described (Konig et al., 2011; 

Shcherbata et al., 2004). Additionally, after fixation ovaries were permeabilized (3 washes in 

PBT (PBS with 0.2% Triton X-100), followed by 30 min incubation in 2%Triton X-100 in PBS) 

and incubated in HCl to allow for access of the anti-H2Bub1 antibody to the chromatin. 

Samples were washed 3 times in PBT, then incubated in 2N HCl at 37°C for 30 min). The 

following antibodies were used: mouse monoclonal H2Bub1 (1:500, Millipore); rabbit 

polyclonal pMad (1:1000, D. Vasiliauskas, S. Morton, T. Jessell and E. Laufer), Alexa 488, 

568 goat anti-mouse, anti-rabbit (1:500, Molecular Probes). 

 

Immunofluorescence staining of oligodendrocytes 

Oligodendrocyte precursors or mature oligodendrocytes were fixed with 4% formaldehyde, 

0.2% glutaraldehyde in PBS for 15 minutes. After that cells were washed 3 times with PBS, 

permeabilized for 1 min with 0.1% Triton X-100, again washed 3x with PBS followed by 30 

min blocking with blocking solution (2% BSA, 2% Fetal Calf Serum Gold, 20 µl/ml fish 

gelatine in PBS). Then samples were incubated for 1h with MBP antibody (1:200, 

DakoCytomation, Carpinteria, CA, USA) in 10% blocking solution at room temperature, 

washed 3x with PBS and incubated with Alexa 488 goat anti-rabbit (1:200, Invitrogen) and 

Phalloidin rodamin (1:200, Invitrogen) in 10% blocking solution followed by 3x PBS wash and 

mounting in mounting media (0.4 g/ml Mowiol, Merck; 1 g/ml glycerol; 24 mg/ml Anti-fading 

reagent, DABCO in 0.1M Tris-HCl). 

 

Monolayer-embedding in Epon for electron microscopy 

For electron microscopy hMSCs were differentiated to adipocytes for 5 d. Cells were washed 

in 0.1 M phosphate buffer and fixed for 1h in 1% OsO4 in 0.1 M PB at 4°C. After that cells 

were washed (10 min each time) 3 times with DI water, twice with 50% EtOH and once with 

70% EtOH. Contrasting was done with 1.5 % uranylacetate and 1.5 % tungstophosphoric 

acid in 70 % EtOH for 90 min. Then cells were washed twice in 90% EtOH (for 10 min) and 5 

times in 99.9% EtOH (for 5 min). After that EtOH was replaced with Epon in EtOH (3 washes, 

30 min each): 1st wash – 1:2 Epon to EtOH, 2nd wash – 1:1 Epon to EtOH, 3rd wash – 2:1 

Epon to EtOH. Finally cells were incubated in 100% Epon for 1h and then enclosed in 



BEEM-capsules. After 24 h of Epon polymerization at 60°C BEEM-capsules were 

disassembled from the plates and prepared for ultrathin sectioning. Sections were prepared 

and imaged with a Leo 912AB electron microscope equipped with 

a CCD camera 2048 3 2048 (Proscan, Scheuring, Germany) as described (Aggarwal et al., 

2011). 

 

Pathway analysis 

Pathway analysis was performed to assess biological functions influenced by cell 

differentiations and knockdowns. All non-metabolic pathways of the KEGG database 

(www.genome.jp/kegg/) were tested for enrichment using a one-sided wilcoxon rank-sum 

test on the ranked p-values of differential gene expression analyses. Results were adjusted 

for multiple testing using Benjamini-Hochbergs method. All analyses were performed using 

the free statistical software R (version 2.14.1). 

 

Oil Red O staining  

Oil Red O staining was performed to visualize lipid drops accumulation. Oil Red O working 

solution was prepared by mixing 3 parts of Oil Red O stock solution (3mg/ml Oil Red O in 

99% isopropanol) and 2 parts of DI water followed by 10 min incubation at RT and filtering. 

Cells were fixed with 10% formaldehyde in PBS for 30 min, washed 3 times in DI water and 

incubated with 60% isopropanol for 5 min. After that cells were incubated with Oil Red O 

working solution for 5 min and rinsed in DI water. 

Quantification of Oil Red O and alkaline phosphatase staining 

Pictures of the stained plates were taken under microscope using 10x magnification. 

Each picture showed approximately 500-1000 cells.  The staining was quantified 

using the Threshold_Color plugin 

(http://www.dentistry.bham.ac.uk/landinig/software/software.html) of ImageJ software 

(http://rsb.info.nih.gov/ij/). For Oil Red O staining, the threshold was defined in RGB 

color space for each experiment (typically : R:150-255 ; G:0-140 ; B:0-140) and the 

positive area of each picture was measured. For alkaline phosphatase staining, the 

threshold was defined in CIE Lab color space for each experiment (typically : L*:5-

255 ; a*:125-255 ; b*:0-255) and the positive area of each picture was measured. 



List of siRNAs used in this study. 

Target Gene siRNA target sequence Source Cat.No. 

siGENOME Non-
targeting siRNA 
pool # 1 

- Dharmacon D-001206-13 

RNF20 si Genome 
(#1) 

CCAAUGAAAUCAAGUCUAA Dharmacon D-007027-01 

RNF20 si Genome 
(#2) 

UAAGGAAACUCCAGAAUAU Dharmacon D-007027-02 

RNF20 si Genome 
(#3) 

GCAAAUGUCCCAAGUGUAA Dharmacon D-007027-03 

RNF20 si Genome 
(#4) 

AGAAGAAGCUACAUGAUUU Dharmacon D-007027-04 

RNF40 UGAGGACAUGCAGGAACAGAA Ambion s18960 

RNF40 siGENOME 
(# 1) 

GAGAUGCGCCACCUGAUUAUU Dharmacon D-006913-01 

RNF40 siGENOME 
(# 2) 

GAUGCCAACUUUAAGCUAAUU Dharmacon D-006913-02 

RNF40 siGENOME 
(# 3) 

GAUCAAGGCCAACCAGAUUUU Dharmacon D-006913-03 

RNF40 siGENOME 
(# 4) 

CAACGAGUCUCUGCAAGUGUU Dharmacon D-006913-04 

CDK9 UGAGAUUUGUCGAACCAAAtt Ambion S2834 

CDK9 GUCAACUUGAUUGAGAUUUGU 
CGAA 

Invitrogen Val. 
Stealth 

 

WAC siGENOME 
(# 1) 

CAACAUAACGUCUCUGAUU Dharmacon D-013325-01 

WAC siGENOME 
(# 2) 

UAAGCACACCUCAAACUAA Dharmacon D-013325-02 

WAC siGENOME 
(# 3) 

GAGACAAACCCGUAUCACA Dharmacon D-013325-03 

WAC siGENOME 
(# 4) 

CGAUCCACGUGUUCAUUAA Dharmacon D-013325-04 

 



List of  antibodies used for ChIP and Western blot analysis.   

Target protein ChIP WB IF Clone Cat. No. Source 

CDK9  1:1000  C-20 sc-484 Santa Cruz 

H2B  1:3000   07-371 Millipore 

H2Bub1  1:100  7B4  (Prenzel et al., 2011) 

H2Bub1   1:500 56 05-1312 Millipore 

H2Bub1 2 µl   D11 5546 Cell Signaling 

H3K4me3 2 µg 1:1000   MAb-003-050 Diagenode 

H3K27me3 2 µg    pAb-069-050 Diagenode 

GFAP   1:400  MAB360 Chemicon International 

IgG 2 µg    ab46540-1 Abcam 

MBP   1:200  A0623 Dako 

NeuN   1:500  NUN Aves Labs 

pMAD   1:1000   D. Vasiliauskas, et al. 

P-Ser2 RNAPII  1:10  3E10  (Chapman et al., 2007) 

RNF40  1:1000  KA7-27 R9029 Sigma 

Goat anti-mouse 
IgG-HRP 

 1:5000   sc-2005 Santa Cruz 

Goat anti-rabbit 
IgG-HRP 

 1:5000   sc-2004 Santa Cruz 

Goat Anti-Rat IgG + 
IgM-HRP 

 1:10000   112-035-068 Jackson 
ImmunoResearch 

Goat anti-mouse 

Alexa 488 

  1:500   Molecular Probes 

Goat anti-rabbit 

Alexa 568 

  1:500   Molecular Probes 

Fluorescein-Labeled 
goat anti-Chicken 

  1:500  F-1005 Aves Labs 

Goat anti-Mouse 
568 

  1:500   Invitrogen 



Goat anti-rabbit  
488 

  1:200  A-11070 Invitrogen 

Phalloidin rodamin   1:200  R415 Invitrogen 

 

 



List of  qRT-PCR primers used in this study. 

Name Sequence Source 

ALPL F TGGGCCAAGGACGCTGGGAA This study. 

ALPL R AAGGCCTCAGGGGGCATCTCG This study. 

BGLAP F GCCCTCACACTCCTCGCCCT This study. 

BGLAP R CGGGTAGGGGACTGGGGCTC This study. 

CDK9 F AGAGGGTTTCCATGGGGTAG This study. 

CDK9 R TCAGCCCGAGAATAGGATTG This study. 

G6PD F CGACGAAGCGCAGACAGCGTCA This study. 

G6PD R CAGCCACATAGGAGTTGCGGGC This study. 

HNRNPK F ATCCGCCCCTGAACGCCCAT This study. 

HNRNPK R ACATACCGCTCGGGGCCACT This study. 

LPL F TCAGCCGGCTCATCAGTCGGT This study. 

LPL R AGAGTCAGCACGAGCAGGGCT This study. 

PDK4 F TTCACTCCGCGGCACCCTCA This study. 

PDK4 R TCGGAGCAGAGCCTGGTTCCG This study. 

PPARG F ACCTCCGGGCCCTGGCAAAA This study. 

PPARG R TGCTCTGCTCCTGCAGGGGG This study. 

RASD1 F CAAGACGGCCATCGTGTCGCG This study. 

RASD1 R GCTGCACCTCCTCGAAGGAGTCG This study. 

RNF20 F TGGCCAAGCAGGAAGAAG This study. 

RNF20 R ACGCTCTGACATGAGCTTGA This study. 

RNF40 F AGTACAAGGCGCGGTTGA (Prenzel et al., 2011) 

RNF40 R GAAGCAGAAAACGTGGAAGC (Prenzel et al., 2011) 

RPLP F GATTGGCTACCCAACTGTTG (Fritah et al., 2005) 

RPLP R CAGGGGCAGCAGCCACAAA (Fritah et al., 2005) 

WAC F AGTGGGTTTGCCAGTGGAATGGAAGA This study. 

WAC R ACAGTGCTTGGGGTAGCAGTTGGA This study. 

 



List of  ChIP primers used in this study 

Name Sequence Source 

HIST1H2AC F AAAAGCGGCCATGTTTTACA (Pirngruber et al., 2009) 

HIST1H2AC R AAAAATCACCAAAACCAGCG (Pirngruber et al., 2009) 

GAPDH +1061F  CCGGGAGAAGCTGAGTCATG (Shema et al., 2008) 

GAPDH +1111R TTTGCGGTGGAAATGTCCTT (Shema et al., 2008) 

PDK4-BV+468F GCGTCGAGGCTCCAGGGCT This study. 

PDK4-BV+570R GCCCAAGCTGGGTCCTAGGGTT This study. 

PDK4 +3831F CTCGGATGCTGATGAACCAGCACAGTAAG This study. 

PDK4 +3963R AGTACTATCACTGAGAATGTGACCCGCTGAT This study. 

PPARG-BV+655F AGCCGCTCCGGGGGAACTT This study. 

PPARG-BV+850R ACAGGGCCTGGCCAGCTACAA This study. 

PPARG +91888F GGCCCACCAACTTTGGGATCAGC This study. 

PPARG +91922R GAGTGGGAGTGGTCTTCCATTACGGAG This study. 

RASD1-BV +768R GATCTGCTGCCTGAGCCGCTG This study. 

RASD1-BV +666F CGGCCACCCTCACCTTCTCCT This study. 

TFF1 +6KB F CAGGCTTCTCCCTTGATGAAT (Pirngruber and Johnsen, 
2010) 

TFF1 +6KB R ACACCCACCTTCCACAACAC (Pirngruber and Johnsen, 
2010) 
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miRNA-Seq

qPCR

FIGURE S1: ƋPCR validaioŶ of the expƌessioŶ levels of 22 ŵiRNAs acƌoss all saŵples. The tƌeŶds of ŵiRNA eǆpƌessioŶ leǀels aŶd ƌelaiǀe 
aďuŶdaŶĐe aĐƌoss all saŵples ďǇ ŵiRNA-SeƋ ;AͿ aŶd ƋPCR ;BͿ aƌe siŵilaƌ foƌ ϭ6 ŵiRNAs. Fiǀe addiioŶal ŵiRNAs shoǁiŶg diffeƌeŶĐes ďetǁeeŶ 
ŵiRNA-SeƋ aŶd ƋPCR tƌeŶds iŶ oŶe oƌ ŵoƌe issues ;ŵiR-ϭϮ, ďaŶtaŵ, ŵiR-ϭϬϭϯ, ŵiR-Ϯ8ϯ, aŶd ŵiR-ϭϯaͿ aƌe deŶoted ǁith aŶ asteƌisk. 
The geŶoŵe pƌeseŶts seǀeƌal Đopies of ŵatuƌe ŵiR-ϭϯď uŶdisiŶguishaďle ďǇ ƋPCR: ŵiƌ-ϭϯď aŶd ŵiƌ-ϭϯď-ϭ oŶ ĐhƌϯR, aŶd ŵiƌ-ϭϯď-Ϯ oŶ ĐhƌX. 
MiRNA Ŷoƌŵalized ƌeads aƌe ƌepoƌted iŶ ;AͿ.  ƋPCR assaǇs ǁeƌe peƌfoƌŵed ǁith at least tǁo iŶdepeŶdeŶt ďiologiĐal ƌepliĐates aŶd gaǀe 
similar trends in (B). M: male ; F: female.

1

10

100

1,000

10,000

100,000

m
ir

-2
8

5

m
ir

-3
0

4

m
ir

-9
6

9

m
ir

-9
7

2

m
ir

-9
7

7

m
ir

-9
7

8

m
ir

-1
2

m
ir

-3
1

4

b
a

n
ta

m

m
ir

-9
8

1

m
ir

-1
0

0

m
ir

-2
1

0

m
ir

-9
7

9

m
ir

-1
3

7

m
ir

-9
8

9

m
ir

-3
1

8

m
ir

-i
a

b
-4

m
ir

-i
a

b
-4

a
s

m
ir

-1
0

1
3

m
ir

-2
8

3

m
ir

-1
3

a

m
ir

-1
3

b

m
ir

-1
3

b
-2

m
ir

-1
3

b
-1

chr3L chrX chrX chrX chrX chrX chrX chr3L chr3L chrX chr2L chrX chrX chr2R chr2R chr3R chr3R chr3R chr3R chrX chr3R chr3R chrX chr3R

m
iR

N
A

-S
e

q
 N

o
rm

la
iz

e
d

 C
o

u
n

ts

Lymphoid S2 Lymphoid Kc Saliv. Gland M Saliv. Gland F Head M Head F Body M Body F Testis Ovary

0

2

4

6

8

10

12

14

16

18

20

m
ir

-2
8

5

m
ir

-3
0

4

m
iR

-9
6

9

m
iR

-9
7

2

m
ir

-9
7

7

m
ir

-9
7

8

m
ir

-1
2

m
ir

-3
1

4

b
a

n
ta

m

m
ir

-9
8

1

m
ir

-1
0

0

m
ir

-2
1

0

m
ir

-9
7

9

m
ir

-1
3

7

m
iR

-9
8

9

m
ir

-3
1

8

m
ir

-i
a

b
4

-5
p

m
iR

-1
0

1
3

m
iR

-2
8

3

m
ir

-1
3

a

m
ir

-1
3

b

2
-

C
t 

re
la

ti
v

e
 t

o
 U

6
s

n
R

N
A

Lymphoid S2 Lymphoid Kc Saliv. Gland M Saliv. Gland F Head M Head F Body M Body F Testis Ovary

A

B

27 123==

* * * * *

D. Fagegalieƌ et al.
2 SI



1 3 3 1 1 chr2L mir-87

0 0 1 3 1 chr3R mir-1015

0 0 1 3 1 chr3R mir-2281

0 0 1 3 1 chr3R mir-iab-4as

1 1 1 3 1 chr3L mir-956

1 1 1 3 1 chr3L mir-958

1 1 1 3 1 chrX mir-981

1 3 1 3 1 chr3L mir-314

0 1 3 3 1 chr2L mir-100

0 1 3 3 1 chr2L mir-1004

0 1 3 3 1 chr3L mir-957

0 1 3 3 1 chrX mir-969

1 1 3 3 1 chr2R mir-137

1 1 3 3 1 chr3L mir-276b

1 1 3 3 1 chr2R mir-987

1 1 3 3 1 chr3R mir-993

3 1 3 3 1 chr2L let-7

3 1 3 3 1 chr3L mir-276a

3 1 3 3 1 chr3R mir-279

1 3 3 1 3 chrX mir-283

1 3 1 3 3 chr2R mir-986

3 0 1 3 3 chrX mir-31b

3 1 3 3 3 chrX mir-1007

3 1 3 3 3 chr2L mir-965

1 1 1 1 6 chr3R mir-318

1 3 1 1 6 chr2R mir-989

3 3 1 1 6 chrX mir-13b-2

1 1 3 1 6 chr3R mir-92a

1 1 3 1 6 chr2L mir-966

1 1 3 1 6 chr3R mir-994

1 3 3 1 6 chr2L mir-2a-1

1 3 3 1 6 chr3R mir-92b

1 2 3 4 6

0 0 0 2 2 chr2L mir-2280

0 3 3 2 2 chr3L mir-285

0 2 3 3 2 chr3L mir-219

2 2 3 3 2 chr2L mir-1005

2 2 3 3 2 chr2R mir-307

2 3 3 3 2 chr2L mir-263a

2 3 3 3 2 chr2L mir-2b-1

3 2 3 3 2 chr2L mir-133

0 0 0 2 3 chr3R mir-997

0 0 3 2 3 chr3R mir-2283

2 2 3 3 3 chr3R mir-252

2 3 3 3 3 chr3R mir-1012

2 3 3 3 3 chr2L mir-375

0 0 0 2 4 chrX mir-979

0 0 2 2 4 chrX mir-985

0 0 3 2 4 chr3R mir-1011

0 0 3 2 4 chr2L mir-959

0 2 3 2 4 chr2L mir-962

3 0 3 2 4 chrX mir-303

3 0 3 2 4 chr2R mir-313

2 0 3 3 4 chr2R mir-311

2 3 3 3 4 chr2L mir-125

3 2 3 3 4 chr2R mir-310

1 2 3 4 5

A! B! C!

Figure  S2:  Male‐enriched,  female‐enriched  and  X‐linked  tes:s‐enriched  miRNAs.  (A)  23  miRNAs  enriched  in  male  soma5c  5ssues  in 

pairwise comparisons of S2 vs. Kc cells (1), male vs. female salivary glands (2), heads (3), and decapitated body (4). Colors indicate male‐

enriched miRNAs (light blue), miRNAs present at similar  levels  in both sexes (grey), poorly expressed miRNAs (white) and whether these 

miRNAs are more abundant  in  the male body  (light blue) or  tes5s  (dark blue)  in  (5).  (B)  32  female‐enriched miRNAs  in  soma5c 5ssues. 

Colors  indicate  female‐enriched miRNAs (red), miRNAs present at similar  levels  in both sexes  (grey), poorly expressed miRNAs (white)  in 

soma5c 5ssues [5ssues (1) to (4) as in (A)], and whether these miRNAs are more abundant in the female body (red) or ovary (orange) in (6). 

(C) Rela5ve abundance across all sexed 5ssues of the 30 miRNAs enriched exclusively in tes5s compared to the male body and not enriched 

in ovaries  in females. 11 of the 30 tes5s‐enriched miRNAs reside on the X chromosome. These miRNAs are highly and almost exclusively 

expressed in tes5s. S2 cells (1), Kc cells (2), male (3) and female (4) salivary glands, heads [male (5), female (6)], body [male (7), female (8)], 

tes5s (9), ovary (10). 

D. Fagegal5er et al. 3 SI



TABLE S1: PCR primers used in this study 

 

2S rRNA depletion: 

5’-AGTCTTACAACCCTCAACCATATGTAGTCCAAGCAGCACT-3’ 

 

qPCR (miScript assay): 

bantam-fwd  5’-GAGATCATTTTGAAAGCTGATT-3’ 

miR-12-fwd  5’-GAGTATTACATCAGGTACTGGT-3’ 

mir-13b-1-2-fwd  5’-TATCACAGCCATTTTGACGAGT-3’ 

mir-13a-fwd  5’-TATCACAGCCATTTTGATGAGT-3’ 

mir-283-fwd  5’-TAAATATCAGCTGGTAATTCT-3’ 

mir-304-fwd  5’-AATCTCAATTTGTAAATGTGAG-3’ 

mir-210-fwd  5’-TTGTGCGTGTGACAGCGGCTA-3’ 

mir-iab-4-5p-fwd 5’-ACGTATACTGAATGTATCCTGA-3’ 

mir-iab-4-3p-fwd 5’-GTATACCTTCAGTATACGTAAC-3’ 

mir-318-fwd  5’-TCACTGGGCTTTGTTTATCTCA-3’ 

mir-985-fwd  5’-CAAATGTTCCAATGGTCGGGCA-3’ 

mir-979-fwd  5’-TTCTTCCCGAACTCAGGCTAA-3’ 

mir-981-fwd  5’-TTCGTTGTCGACGAAACCTGCA-3’ 

mir-977-fwd  5’-TGAGATATTCACGTTGTCTAA-3’ 

mir-285-fwd  5’-TAGCACCATTCGAAATCAGTGC-3’ 

mir-969-fwd  5’-GAGTTCCACTAAGCAAGTTTT-3’ 

mir-972-fwd  5’-TGTACAATACGAATATTTAGGC-3’ 

mir-978-fwd  5’-TGTCCAGTGCCGTAAATTGCAG-3’ 

mir-314-fwd  5’-TATTCGAGCCAATAAGTTCGG-3’ 

mir-100-fwd  5’-AACCCGTAAATCCGAACTTGTG-3’ 

mir-137-Fwd  5’-TATTGCTTGAGAATACACGTAG-3’ 

mir-989-fwd  5’-ATGTGATGTGACGTAGTGGAAC-3’ 

mir-1013-fwd  5’-AATAAAAGTATGCCGAACTCG-3’ 

mir-Spike-fwd  5’-CTCAGGATGGCGGAGCGGTGT-3’  external reference 

U6snRNA-fwd  5’-ATTGGAACGATACAGAGAAGATTAG-3’  reference 

Dspt-4-fwd   5’-TTGACGCGATACCCAAGGAT-3’   reference 

Dspt4-rev  5’-CTAGTGTGATCATAGACATTGTCCTTGTT-3’  

 

 

qPCR on sex-specific transcripts: 

RpL32-fwd   5’-AAGATGACCATCCGCCCAGC-3’ endogenous control 

RpL32-rev   5’-GTCGATACCCTTGGGCTTGC-3’ 

Esg-fwd   5’-CGCCCATGAGATCTGAAATC-3’ 

Esg rev   5’-GGTCTTGTCACAATCCTTGC-3’  (Chau et al. 2009) 

DsxM fwd  5’-TCCTTGGGAGCTGATGCCAC-3’ 

DsxM rev   5’-GGCTACAGTGCGATTTATT-3’ 

Yp1-fwd   5’-TGAGCGTCTGGAGAACATGAA-3’ 

Yp1-rev   5’-GCGACAGGTGGTAGACTTGCT-3’ 

tra1-fwd  5’-GGAACCCAGCATCGAGATTC-3’ 

tra1-rev   5’-ATCGCCCATGGTATTCTCTTTC-3’ 

Sxl-fwd   5’-ACAACGACAGCAGCAGGCCA-3’ 

Sxl-rev   5’-TTGTAACCACGACGCGACGAT-3’ (Hashiyama et al. 2011) 
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TABLE S2: Late embryo‐derived Lymphoid S2 (male) and Kc (female) cells biased miRNAs

S2 biased

chrom miRNA S2 reads Kc reads M/M+F F/M+F Sum reads % miRNA

chr3R dme‐mir‐252 13294 205 0.98479 0.01521 13499 1.1771

chr2R dme‐mir‐307 932 33 0.96584 0.03416 965 0.0841

chr2L dme‐mir‐263a 66 4 0.93623 0.06377 70 0.0061

chrX dme‐mir‐980 1534 453 0.77219 0.22781 1987 0.1732

chr3L dme‐mir‐282 13543 4622 0.74557 0.25443 18165 1.5839

chr2R dme‐mir‐311 8 3 0.72746 0.27254 11 0.001

chr3R dme‐mir‐1012 164 63 0.72266 0.27734 227 0.0198

chr2L dme‐mir‐2b‐1 498 207 0.70658 0.29342 705 0.0615

chr2L dme‐mir‐125 10 4 0.68986 0.31014 14 0.0013

chr2R dme‐mir‐286 43 21 0.67209 0.32791 64 0.0056

Kc biased

chrom miRNA S2  Kc reads M/M+F F/M+F Sum reads % miRNA

chrX dme‐mir‐971 0 52 0 1 52 0.0046

chrX dme‐mir‐973 0 12 0 1 12 0.001

chrX dme‐mir‐982 0 16 0 1 16 0.0014

chrX dme‐mir‐981 1 1427 0.00070 0.99930 1428 0.1245

chr3R dme‐mir‐1000 1 1299 0.00077 0.99923 1300 0.1134

chr3R dme‐mir‐92a 13 2215 0.00584 0.99416 2228 0.1943

chr3R dme‐mir‐1010 1 106 0.00931 0.99069 107 0.0094

chr2R dme‐mir‐989 3 237 0.01251 0.98749 240 0.0209

chrX dme‐mir‐977 1 66 0.01494 0.98506 67 0.0058

chr3L dme‐mir‐276b 5 187 0.02600 0.97400 192 0.0168

chrX dme‐mir‐304 34 1260 0.02627 0.97373 1294 0.1129

chr2L dme‐mir‐932 5 177 0.02750 0.97250 182 0.0159

chr2R dme‐mir‐278 47 1647 0.02775 0.97225 1694 0.1477

chr3R dme‐mir‐92b 20 670 0.02899 0.97101 690 0.0602

chr3L dme‐mir‐193 3 96 0.03033 0.96967 99 0.0086

chrX dme‐mir‐283 48 1394 0.03330 0.96670 1442 0.1257

chr3L dme‐mir‐958 1 28 0.03393 0.96607 29 0.0026

chr3R dme‐mir‐10 1 27 0.03575 0.96425 28 0.0024

chrX dme‐mir‐12 415 10569 0.03778 0.96222 10984 0.9578

chr2R dme‐mir‐986 3 43 0.06457 0.93543 46 0.0041

chr2L dme‐mir‐124 8 94 0.07812 0.92188 102 0.0089

chr4 dme‐mir‐954 11 91 0.10741 0.89259 102 0.0089

chr3R dme‐mir‐994 5 40 0.10998 0.89002 45 0.004

chr2R dme‐mir‐8 4003 27812 0.12582 0.87418 31815 2.7742

chr3R dme‐mir‐318 13 90 0.12632 0.87368 103 0.009

chr2L dme‐mir‐9b 2463 11885 0.17166 0.82834 14348 1.2511

chr2L dme‐mir‐2a‐2 2015 9699 0.17202 0.82798 11714 1.0214

chrX dme‐mir‐984 25 102 0.19700 0.80300 127 0.0111

chr2L dme‐mir‐966 15 58 0.20424 0.79576 73 0.0064

chr2L dme‐mir‐2b‐2 431 1648 0.20727 0.79273 2079 0.1813

chr2L dme‐mir‐2a 7839 29779 0.20838 0.79162 37618 3.2803

chr2R dme‐mir‐31a 5 18 0.21756 0.78244 23 0.002
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chr2L dme‐mir‐1 23 82 0.21817 0.78183 105 0.0092

chr3R dme‐mir‐13a 25 85 0.22641 0.77359 110 0.0096

chr3L dme‐mir‐276 4524 15417 0.22687 0.77313 19941 1.7389

chr2L dme‐mir‐305 3321 10310 0.24364 0.75636 13631 1.1886

chr2R dme‐mir‐312 3 9 0.25018 0.74982 12 0.001

chr2L dme‐mir‐9c 1896 5648 0.25132 0.74868 7544 0.6578

chr2R dme‐mir‐1008 94 262 0.26386 0.73614 356 0.0311

chr2L dme‐mir‐275 461 1247 0.26994 0.73006 1708 0.1489

chr3L dme‐mir‐190 171 462 0.27033 0.72967 633 0.0552

chr2L dme‐mir‐79 2043 5420 0.27374 0.72626 7463 0.6508

chr3L dme‐mir‐9a 49 124 0.28262 0.71738 173 0.0151

chr2L dme‐mir‐1006 58 145 0.28521 0.71479 203 0.0177

chr2L dme‐mir‐306 2500 6128 0.28977 0.71023 8628 0.7523

chr3R dme‐mir‐317 9157 21083 0.30281 0.69719 30240 2.6369

chr3R dme‐mir‐999 247 560 0.30590 0.69410 807 0.0704

chr2R dme‐mir‐1009 4 9 0.30790 0.69210 13 0.0011

chrX dme‐mir‐983 6 13 0.30790 0.69210 19 0.0017

chr2L dme‐mir‐2a‐1 173 388 0.30831 0.69169 561 0.0489

chr3R dme‐mir‐2c 9 19 0.31600 0.68400 28 0.0025

chr3L dme‐mir‐33 1927 4040 0.32294 0.67706 5967 0.5203

chr2L dme‐mir‐2b 9981 20837 0.32387 0.67613 30818 2.6874

chr2R dme‐mir‐184 54062 109778 0.32997 0.67003 163840 14.2868

At least 10 normalized reads in the summed normalized reads were required. S2: Male (M); Kc: Female (F).

A ratio (F/M+F) >=0.66 is female biased. A ratio (M/M+F) >=0.66 is male biased.
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TABLE S3: Male and female biased miRNAs in L3 larval salivary glands

Male biased

chrom miRNA Male S. Gland Female  S. Gland M/M+F F/M+F Sum Reads % miRNA

reads reads

chr2L dme‐mir‐275 21773 2588 0.89376 0.10624 24361 2.63097

chr2R dme‐mir‐1009 8 2 0.80000 0.20000 10 0.00108

chr2R dme‐mir‐278 1275 526 0.70797 0.29203 1801 0.19453

chr2L dme‐mir‐133 10 4 0.70588 0.29412 14 0.00147

chr2L dme‐mir‐1005 26 11 0.69945 0.30055 37 0.00395

chr3R dme‐mir‐252 1330 644 0.67369 0.32631 1974 0.21315

Female biased

chrom miRNA Male S. Gland Female  S. Gland M/M+F F/M+F Sum Reads % miRNA

reads reads

chr2L dme‐mir‐100 2 10 0.13793 0.86207 12 0.00125

chr3L dme‐mir‐282 6635 31936 0.17202 0.82798 38571 4.1657

chr2L dme‐let‐7 48 219 0.17978 0.82022 267 0.02884

chr3R dme‐mir‐279 514 1492 0.25608 0.74392 2006 0.21661

chr2L dme‐mir‐965 210 567 0.26989 0.73011 777 0.08387

chr2R dme‐mir‐987 14 36 0.28571 0.71429 50 0.00544

chr2L dme‐mir‐305‐as 3 7 0.31373 0.68627 10 0.0011

chr3R dme‐mir‐92a 3 7 0.31373 0.68627 10 0.0011

chr3L dme‐mir‐957 3 7 0.31373 0.68627 10 0.0011

chr2R dme‐mir‐307‐as 8 17 0.32000 0.68000 25 0.0027

chr3L dme‐mir‐276a 1853 3728 0.33200 0.66800 5581 0.60273

chr3L dme‐mir‐285 19 38 0.33566 0.66434 57 0.00618

At least 10 normalized reads in the summed normalized reads were required.  M: male ; F: female.

 A ratio (F/M+F) >=0.66 is female biased in salivary glands (S. glands).  A ratio( M/M+F) >=0.66 is male biased.
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TABLE S4: Male and female biased miRNAs in adult heads

Male biased

chrom miRNA Male Head Female Head M/M+F F/M+F Sum Reads % miRNA

reads reads

chrX dme‐mir‐974 9 2 0.81405 0.18595 11 0.000247

chr3L dme‐mir‐190 2189 634 0.77540 0.22460 2823 0.06472

chr2L dme‐mir‐305‐as 21 8 0.72426 0.27574 29 0.000665

chr3L dme‐mir‐276 119752 58112 0.67328 0.32672 177864 4.077941

chr2R dme‐mir‐1008 208 104 0.66707 0.33293 312 0.007162

Female biased

chrom miRNA Male Head Female Head M/M+F F/M+F Sum Reads % miRNA

 reads  reads

chr3L dme‐mir‐958 5 29 0.15336 0.84664 34 0.000785

chrX dme‐mir‐31b 12 44 0.21788 0.78212 56 0.00129

chr2L dme‐mir‐964 12 41 0.23015 0.76985 53 0.001221

chr3L dme‐mir‐956 7 20 0.25938 0.74062 27 0.000619

chrX dme‐mir‐980 611 1464 0.29450 0.70550 2075 0.047577

chrX dme‐mir‐981 404 968 0.29472 0.70528 1372 0.031468

chr3L dme‐mir‐274 24301 55708 0.30373 0.69627 80009 1.834398

chr3L dme‐mir‐314 32 72 0.30448 0.69552 104 0.002373

chr2L dme‐mir‐961 9 20 0.30448 0.69552 29 0.000659

chr2L dme‐mir‐963 9 20 0.30448 0.69552 29 0.000659

chr3R dme‐mir‐284 907 2009 0.31105 0.68895 2916 0.066857

chr2R dme‐mir‐286 7 15 0.31831 0.68169 22 0.000504

chr2L dme‐mir‐275 1170 2503 0.31849 0.68151 3673 0.084205

chrX dme‐mir‐13b‐2 47 101 0.31885 0.68115 148 0.0034

chr2R dme‐mir‐986 475 1006 0.32052 0.67948 1481 0.033945

chrX dme‐mir‐210 54115 106957 0.33597 0.66403 161072 3.692947

chr3R dme‐mir‐11 10872 21450 0.33637 0.66363 32322 0.741065

chr2L dme‐mir‐960 53 103 0.33776 0.66224 156 0.003566

chr2L dme‐mir‐133 8468 16473 0.33953 0.66047 24941 0.571834

At least 10 normalized reads in the summed normalized reads were required.

 A ratio (F/M+F) >=0.66 is female biased in the head. A ratio(M/M+F) >=0.66 is male biased. F: female; M: Male.
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TABLE S5: Male vs. female biased miRNAs in the adult body

Male body biased

chrom miRNA Male Body Female Body M/M+F F/M+F Sum Reads % miRNA

reads reads

chrX dme‐mir‐972 61 0 1 0 61 0.001355886

chrX dme‐mir‐975 33 0 1 0 33 0.000733512

chrX dme‐mir‐977 680 0 1 0 680 0.015114796

chrX dme‐mir‐979 21 0 1 0 21 0.00046678

chr3R dme‐mir‐997 184 0 1 0 184 0.004089886

chrX dme‐mir‐978 241 3 0.98597 0.01403 244 0.00543307

chrX dme‐mir‐974 236 3 0.98568 0.01432 239 0.005321932

chrX dme‐mir‐976 380 7 0.98227 0.01773 387 0.008598921

chr2L dme‐mir‐959 478 10 0.97894 0.02106 488 0.010853439

chrX dme‐mir‐303 142 3 0.97642 0.02358 145 0.003232534

chrX dme‐mir‐985 214 7 0.96895 0.03105 221 0.004909133

chrX dme‐mir‐983 724 24 0.96791 0.03209 748 0.016626275

chrX dme‐mir‐984 551 24 0.95826 0.04174 575 0.012780893

chrX dme‐mir‐973 76 3 0.95683 0.04317 79 0.00176551

chr2L dme‐mir‐963 368 21 0.94706 0.05294 389 0.008637026

chr2R dme‐mir‐991 120 7 0.94595 0.05405 127 0.002819735

chr2L dme‐mir‐960 1717 117 0.93642 0.06358 1834 0.040755964

chr2R dme‐mir‐992 45 3 0.92920 0.07080 48 0.001076453

chr2L dme‐mir‐964 437 34 0.92725 0.07275 471 0.010475569

chrX dme‐mir‐982 118 10 0.91982 0.08018 128 0.002851489

chr2L dme‐mir‐961 177 17 0.91170 0.08830 194 0.004315337

chr3L dme‐mir‐285 76 14 0.84713 0.15287 90 0.001994137

chr2R dme‐mir‐1009 38 10 0.78698 0.21302 48 0.001073277

chr3L dme‐mir‐193 12 3 0.77778 0.22222 15 0.000342941

chr2L dme‐mir‐962 401 134 0.74993 0.25007 535 0.011885434

chrX dme‐mir‐304 17186 7227 0.70396 0.29604 24413 0.542652738

chrX dme‐mir‐12 21306 9603 0.68930 0.31070 30909 0.687043433

chr2R dme‐mir‐313 59 27 0.68264 0.31736 86 0.001921103

Female body biased

chrom miRNA Male Body Female Body M/M+F F/M+F Sum Reads % miRNA

reads reads

chr2R dme‐mir‐989 44 45010 0.00098 0.99902 45054 1.001449337

chr3R dme‐mir‐318 4 261 0.01512 0.98488 265 0.005880792

chr3R dme‐mir‐994 4 261 0.01512 0.98488 265 0.005880792

chr3R dme‐mir‐92b 42 233 0.15265 0.84735 275 0.006115771

chr2L dme‐mir‐966 5 21 0.19553 0.80447 26 0.000568392

chr2L dme‐mir‐2a‐1 21 75 0.21778 0.78222 96 0.002143378

chr3L dme‐mir‐190 162 579 0.21850 0.78150 741 0.016480193

chr3L dme‐mir‐276 47955 128270 0.27212 0.72788 176225 3.917056396

chr2L dme‐mir‐275 1122 2616 0.30016 0.69984 3738 0.083086855

chr3R dme‐mir‐92a 254 579 0.30477 0.69523 833 0.018525136

chrX dme‐mir‐283 577 1245 0.31676 0.68324 1822 0.040489204

chrX dme‐mir‐13b‐2 92 189 0.32790 0.67210 281 0.006236436
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chr2L dme‐mir‐87 908 1834 0.33111 0.66889 2742 0.060954495

At least 10 normalized reads in the summed normalized reads were required.

A ratio (F/M+F) >=0.66 is female biased. A ratio (M/M+F) >=0.66 is male biased. F: female; M: male.
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TABLE S6: Testis and Ovary biased miRNAs

Testis biased

chrom miRNA Testes  Ovary  T/Ov+T Ov/T+Ov Sum Reads % miRNA

reads reads

chr2L dme‐mir‐1004 144 0 1 0 144 0.01472903

chr2R dme‐mir‐137 38 0 1 0 38 0.003886827

chrX dme‐mir‐210 10 0 1 0 10 0.001022849

chr3L dme‐mir‐263b 13 0 1 0 13 0.001329704

chr3L dme‐mir‐315 12 0 1 0 12 0.001227419

chr2L dme‐mir‐375 1491 0 1 0 1491 0.152506835

chrX dme‐mir‐971 33 0 1 0 33 0.003375403

chrX dme‐mir‐972 961 0 1 0 961 0.098295821

chrX dme‐mir‐973 51 0 1 0 51 0.005216532

chrX dme‐mir‐974 82 0 1 0 82 0.008387364

chrX dme‐mir‐975 2134 0 1 0 2134 0.218276047

chrX dme‐mir‐976 7525 0 1 0 7525 0.76969412

chrX dme‐mir‐977 8100 0 1 0 8100 0.828507956

chrX dme‐mir‐978 8457 0 1 0 8457 0.865023677

chrX dme‐mir‐979 497 0 1 0 497 0.050835612

chrX dme‐mir‐981 16 0 1 0 16 0.001636559

chr2R dme‐mir‐992 395 0 1 0 395 0.040402548

chr3R dme‐mir‐997 59 0 1 0 59 0.006034811

chr3R dme‐mir‐iab‐4as 16 0 1 0 16 0.001636559

chr2L dme‐mir‐959 17252 10 0.99943 0.00057 17262 1.765620246

chr2L dme‐mir‐964 10115 12 0.99879 0.00121 10127 1.035862826

chr3L dme‐mir‐274 7928 12 0.99846 0.00154 7940 0.812165678

chr2L dme‐mir‐963 926 2 0.99737 0.00263 928 0.094965994

chr2L dme‐mir‐960 5436 27 0.99508 0.00492 5463 0.558772501

chrX dme‐mir‐985 321 2 0.99244 0.00756 323 0.033083609

chr3L dme‐mir‐9a 6846 98 0.98591 0.01409 6944 0.710248489

chr2L dme‐mir‐124 151 2 0.98406 0.01594 153 0.015695171

chr3R dme‐mir‐277 9542 213 0.97819 0.02181 9755 0.997765528

chr2L dme‐mir‐961 477 12 0.97501 0.02499 489 0.050040643

chr3R dme‐mir‐1013 54 2 0.95667 0.04333 56 0.005773532

chr3R dme‐mir‐252 990 51 0.95068 0.04932 1041 0.106515149

chr2L dme‐mir‐133 38 2 0.93953 0.06047 40 0.004136973

chr2R dme‐mir‐991 127 10 0.92848 0.07152 137 0.01399077

chr2R dme‐mir‐988 6587 523 0.92640 0.07360 7110 0.727282088

chr2R dme‐mir‐310 3356 289 0.92082 0.07918 3645 0.372785458

chrX dme‐mir‐12 62228 5576 0.91776 0.08224 67804 6.935319591

chr2L dme‐mir‐932 45 5 0.90196 0.09804 50 0.005103114

chr3R dme‐mir‐1010 168 20 0.89569 0.10431 188 0.019185036

chr2R dme‐mir‐278 2426 286 0.89450 0.10550 2712 0.277410324

chr3R dme‐mir‐2c 19 2 0.88596 0.11404 21 0.00219356

chrX dme‐mir‐983 6732 1010 0.86954 0.13046 7742 0.791892449

chr2R dme‐mir‐311 3582 582 0.86022 0.13978 4164 0.425919368

chr2L dme‐mir‐962 471 81 0.85372 0.14628 552 0.05643102

chr2L dme‐mir‐125 3331 614 0.84439 0.15561 3945 0.403497747
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chr3L dme‐mir‐316 4417 814 0.84433 0.15567 5231 0.535091153

chr2L dme‐let‐7 11559 2179 0.84139 0.15861 13738 1.405191589

chr2R dme‐mir‐1008 11 2 0.81811 0.18189 13 0.00137528

chr3R dme‐mir‐999 673 179 0.79034 0.20966 852 0.087098415

chr3R dme‐mir‐317 4489 1294 0.77628 0.22372 5783 0.591484276

chr2L dme‐mir‐305 18583 6588 0.73826 0.26174 25171 2.574654122

chr3L dme‐mir‐956 54 22 0.71043 0.28957 76 0.0077747

chr2L dme‐mir‐100 226 93 0.70861 0.29139 319 0.032621941

chr3R dme‐mir‐13a 29 12 0.70341 0.29659 41 0.004216993

chrX dme‐mir‐31b 875 416 0.67790 0.32210 1291 0.132024129

Ovary biased

chrom miRNA Testes  Ovary  T/Ov+T Ov/T+Ov Sum Reads % miRNA

reads reads

chr2R dme‐mir‐989 6 111853 0.00005 0.99995 111859 11.44153945

chr3R dme‐mir‐318 20 44135 0.00045 0.99955 44155 4.516429825

chr3R dme‐mir‐994 19 18298 0.00104 0.99896 18317 1.873535481

chr2L dme‐mir‐2b‐1 2 460 0.00433 0.99567 462 0.04723201

chrX dme‐mir‐13b‐2 1 218 0.00457 0.99543 219 0.022365275

chr3R dme‐mir‐996 348 36033 0.00957 0.99043 36381 3.72124572

chr3L dme‐bantam 687 69609 0.00977 0.99023 70296 7.190174187

chr2R dme‐mir‐184 540 38992 0.01366 0.98634 39532 4.043561038

chr2R dme‐mir‐1009 5 220 0.02221 0.97779 225 0.023024561

chr2L dme‐mir‐965 9 355 0.02475 0.97525 364 0.037191728

chr2L dme‐mir‐79 219 8506 0.02510 0.97490 8725 0.892408047

chr2L dme‐mir‐263a 245 8899 0.02679 0.97321 9144 0.935340954

chr3L dme‐mir‐33 166 5092 0.03157 0.96843 5258 0.537783186

chr2L dme‐mir‐2b‐2 40 1091 0.03538 0.96462 1131 0.115656495

chr2R dme‐mir‐308 30 790 0.03659 0.96341 820 0.083865693

chr2L dme‐mir‐275 605 15923 0.03660 0.96340 16528 1.690582725

chr3L dme‐mir‐276 123 3194 0.03708 0.96292 3317 0.33927167

chr2R dme‐mir‐281‐2 21 430 0.04652 0.95348 451 0.046173672

chr3R dme‐mir‐995 228 4654 0.04670 0.95330 4882 0.499348725

chr2L dme‐mir‐1 241 3788 0.05981 0.94019 4029 0.41212676

chr2R dme‐mir‐307 42 599 0.06551 0.93449 641 0.065581727

chr3R dme‐mir‐998 84 986 0.07854 0.92146 1070 0.109400756

chr2L dme‐mir‐87 12 139 0.07926 0.92074 151 0.015485739

chr2L dme‐mir‐2a‐1 13 149 0.08016 0.91984 162 0.016588608

chr2L dme‐mir‐1005 3 34 0.08056 0.91944 37 0.003808898

chr2R dme‐mir‐281‐1 143 1277 0.10073 0.89927 1420 0.145202936

chr2L dme‐mir‐966 6 51 0.10461 0.89539 57 0.005866775

chr2L dme‐mir‐2a‐2 112 829 0.11902 0.88098 941 0.096255393

chr3R dme‐mir‐929 4 29 0.11995 0.88005 33 0.003410891

chr2R dme‐mir‐313 370 1538 0.19389 0.80611 1908 0.195187234

chrX dme‐mir‐1007 6 24 0.19701 0.80299 30 0.003115169

chr3R dme‐mir‐284 16 56 0.22146 0.77854 72 0.007389916

chr2R dme‐mir‐7 863 2981 0.22450 0.77550 3844 0.393199821

chr3L dme‐mir‐190 13 44 0.22799 0.77201 57 0.005832331

chr2L dme‐mir‐2b 6058 20095 0.23163 0.76837 26153 2.675091471
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chr2L dme‐mir‐2a 14216 47031 0.23211 0.76789 61247 6.264639548

chrX dme‐mir‐304 556 1817 0.23430 0.76570 2373 0.24272887

chr2L dme‐mir‐9c 2050 5715 0.26399 0.73601 7765 0.794275219

chr2L dme‐mir‐306 951 2472 0.27779 0.72221 3423 0.350170536

chr3R dme‐mir‐13b 5212 13392 0.28015 0.71985 18604 1.902908343

chr2R dme‐mir‐986 309 736 0.29566 0.70434 1045 0.106899978

chr3R dme‐mir‐1012 46 98 0.31984 0.68016 144 0.014710945

chr2R dme‐mir‐312 1704 3546 0.32457 0.67543 5250 0.537005167

chr2L dme‐mir‐9b 6727 13372 0.33469 0.66531 20099 2.055868849

At least 10 normalized reads in the summed normalized reads in male and female gonads are required.

A ratio (Testis/Ovary+Testis) >=0.66 is Testis biased. A ratio(Ovary/Ovary +Testis) >=0.66 is Ovary biased

T: Testis; Ov: Ovaries
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TABLE S7: miRNAs with testis vs. male body biases

Male Body (male somatic tissues) biased miRNAs

chrom miRNA Male Body Testis  BM/BM+T Testis/BM+T Sum reads % miRNA

 reads reads

chr3R dme‐mir‐1014 248 0 1 0 248 0.007666282

chr3L dme‐mir‐285 76 0 1 0 76 0.002349344

chr2R dme‐mir‐5 14 0 1 0 14 0.000432774

chrX dme‐mir‐927 41 0 1 0 41 0.001267409

chr3L dme‐mir‐957 839 0 1 0 839 0.025935526

chrX dme‐mir‐969 27 0 1 0 27 0.000834636

chr2L dme‐mir‐1 496888 844 0.99831 0.00169 497732 15.38608851

chr3R dme‐mir‐993 1448 4 0.99759 0.00241 1452 0.044869387

chr3R dme‐mir‐1000 875 4 0.99602 0.00398 879 0.027156567

chr3L dme‐mir‐958 7379 32 0.99575 0.00425 7411 0.229076539

chr3R dme‐mir‐929 1810 14 0.99232 0.00768 1824 0.056384267

chr3L dme‐mir‐314 11627 102 0.99135 0.00865 11729 0.362556399

chr3L dme‐mir‐276 47955 431 0.99110 0.00890 48386 1.495713233

chr3L dme‐bantam 244113 2405 0.99025 0.00975 246518 7.620454209

chr2L dme‐mir‐2b‐1 623 7 0.98889 0.01111 630 0.019474829

chr2R dme‐mir‐987 803 11 0.98709 0.01291 814 0.025147259

chr2R dme‐mir‐281‐2 5100 74 0.98579 0.01421 5174 0.159925441

chr3L dme‐mir‐276b 530 11 0.98057 0.01943 541 0.016708167

chr2L dme‐mir‐965 1129 32 0.97286 0.02714 1161 0.035873872

chr2R dme‐mir‐281‐1 17602 501 0.97235 0.02765 18103 0.559592219

chr3R dme‐mir‐10 19132 599 0.96967 0.03033 19731 0.609917652

chrX dme‐mir‐13b‐2 92 4 0.96335 0.03665 96 0.002952137

chr3L dme‐mir‐263b 1144 46 0.96175 0.03825 1190 0.036770333

chr3R dme‐mir‐996 29997 1218 0.96098 0.03902 31215 0.964931435

chr3L dme‐mir‐219 84 4 0.96000 0.04000 88 0.002704837

chr3L dme‐mir‐956 4342 189 0.95829 0.04171 4531 0.140064211

chr2L dme‐mir‐87 908 42 0.95579 0.04421 950 0.029366807

chr2R dme‐mir‐308 1864 105 0.94667 0.05333 1969 0.060866571

chr3L dme‐mir‐33 9633 581 0.94312 0.05688 10214 0.315739544

chr2L dme‐mir‐79 12143 767 0.94063 0.05937 12910 0.399063995

chr3R dme‐mir‐1001 106 7 0.93805 0.06195 113 0.003493104

chr2R dme‐mir‐307 2063 147 0.93348 0.06652 2210 0.068316467

chr2L dme‐mir‐263a 11829 858 0.93241 0.06759 12687 0.392170527

chrX dme‐mir‐210 409 35 0.92117 0.07883 444 0.013725119

chr2L dme‐mir‐1005 122 11 0.92075 0.07925 133 0.004095897

chr3L dme‐mir‐276a 90583 7868 0.92008 0.07992 98451 3.043359558

chr3R dme‐mir‐284 523 56 0.90328 0.09672 579 0.017898297

chr3R dme‐mir‐1015 62 7 0.89855 0.10145 69 0.002132958

chrX dme‐mir‐304 17186 1946 0.89829 0.10171 19132 0.591416607

chr2R dme‐mir‐184 15336 1890 0.89028 0.10972 17226 0.53249752

chr2L dme‐mir‐133 1065 133 0.88898 0.11102 1198 0.037033091

chr2L dme‐mir‐1006 415 53 0.88770 0.11230 468 0.014451561

chr3R dme‐mir‐13a 797 102 0.88703 0.11297 899 0.027774818

chr3R dme‐mir‐1017 25 4 0.87719 0.12281 29 0.000881004
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chr2R dme‐mir‐31a 24842 3969 0.86224 0.13776 28811 0.890618047

chrX dme‐mir‐980 2995 539 0.84748 0.15252 3534 0.109244532

chr2L dme‐mir‐124 2863 529 0.84417 0.15583 3392 0.104839511

chr2L dme‐mir‐2b‐2 615 140 0.81457 0.18543 755 0.023338886

chr3R dme‐mir‐iab‐4 94 25 0.79325 0.20675 119 0.003663123

chr3R dme‐mir‐998 1074 294 0.78509 0.21491 1368 0.042288209

chr3L dme‐mir‐190 162 46 0.78072 0.21928 208 0.00641433

chr2R dme‐mir‐1008 106 39 0.73356 0.26644 145 0.004466847

chr3R dme‐mir‐279 14571 5439 0.72819 0.27181 20010 0.618557825

chr2L dme‐mir‐2a‐2 1047 392 0.72759 0.27241 1439 0.044482994

chr3R dme‐mir‐iab‐4as 144 56 0.72000 0.28000 200 0.006182487

chr2R dme‐mir‐137 341 133 0.71941 0.28059 474 0.014652494

chr3L dme‐mir‐955 59 25 0.70659 0.29341 84 0.002581188

chr3R dme‐mir‐277 76053 33397 0.69487 0.30513 109450 3.383366128

chr2R dme‐mir‐8 447346 198170 0.69301 0.30699 645516 19.95447212

chrX dme‐mir‐1007 47 21 0.69118 0.30882 68 0.002102046

chr2R dme‐mir‐1009 38 18 0.68468 0.31532 56 0.00171564

chr2R dme‐mir‐989 44 21 0.67692 0.32308 65 0.002009308

Testis  enriched miRNAs

chrom miRNA Male Body  Testis  BM/BM+T Testis/BM+T Sum Reads % miRNA

reads reads

chrX dme‐mir‐975 33 7469 0.00440 0.99560 7502 0.231905256

chr2R dme‐mir‐310 55 11746 0.00466 0.99534 11801 0.36479791

chr2R dme‐mir‐311 68 12537 0.00539 0.99461 12605 0.389651525

chr2L dme‐mir‐959 478 60382 0.00785 0.99215 60860 1.881332152

chrX dme‐mir‐978 241 29600 0.00808 0.99192 29841 0.922443182

chrX dme‐mir‐979 21 1740 0.01193 0.98807 1761 0.054421381

chr2L dme‐mir‐964 437 35403 0.01219 0.98781 35840 1.107887009

chrX dme‐mir‐976 380 26338 0.01422 0.98578 26718 0.825903573

chr2R dme‐mir‐312 95 5964 0.01568 0.98432 6059 0.187298577

chr3R dme‐mir‐92b 42 2615 0.01581 0.98419 2657 0.082118942

chrX dme‐mir‐972 61 3364 0.01781 0.98219 3425 0.105859709

chrX dme‐mir‐977 680 28350 0.02342 0.97658 29030 0.897388622

chrX dme‐mir‐983 724 23562 0.02981 0.97019 24286 0.750739922

chr2R dme‐mir‐992 45 1383 0.03152 0.96848 1428 0.044127532

chrX dme‐mir‐971 4 116 0.03347 0.96653 120 0.003694039

chr2R dme‐mir‐988 876 23055 0.03661 0.96339 23931 0.739750538

chr2R dme‐mir‐313 59 1295 0.04357 0.95643 1354 0.041855466

chr3R dme‐mir‐92a 254 4984 0.04849 0.95151 5238 0.161919445

chr3R dme‐mir‐318 4 70 0.05405 0.94595 74 0.002287522

chr3R dme‐mir‐994 4 67 0.05674 0.94326 71 0.002179328

chr2R dme‐mir‐3 2 28 0.06667 0.93333 30 0.000927374

chrX dme‐mir‐984 551 7704 0.06675 0.93325 8255 0.255166864

chr2L dme‐mir‐1004 44 504 0.08029 0.91971 548 0.016940025

chr2L dme‐mir‐960 1717 19026 0.08277 0.91723 20743 0.641217054

chr3R dme‐mir‐1011 1 11 0.08696 0.91304 12 0.000355493

chrX dme‐mir‐12 21306 217798 0.08911 0.91089 239104 7.391291592

chr2L dme‐mir‐961 177 1670 0.09586 0.90414 1847 0.057079847
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chr2L dme‐mir‐963 368 3241 0.10197 0.89803 3609 0.111563048

chr3L dme‐mir‐274 3593 27748 0.11464 0.88536 31341 0.968827221

chr3R dme‐mir‐317 2370 15712 0.13107 0.86893 18082 0.558943528

chr2L dme‐mir‐9b 4263 23545 0.15330 0.84670 27808 0.859598032

chrX dme‐mir‐985 214 1124 0.16000 0.84000 1338 0.041345405

chr2L dme‐mir‐305 13965 65041 0.17676 0.82324 79006 2.442253734

chr4 dme‐mir‐954 50 217 0.18727 0.81273 267 0.008253625

chr3R dme‐mir‐34 9383 40124 0.18953 0.81047 49507 1.530382746

chr2L dme‐mir‐966 5 21 0.19231 0.80769 26 0.000803724

chr2L dme‐mir‐962 401 1649 0.19566 0.80434 2050 0.063355069

chr2R dme‐mir‐991 120 445 0.21258 0.78742 565 0.017450079

chr3R dme‐mir‐1013 52 189 0.21577 0.78423 241 0.007449901

chrX dme‐mir‐982 118 420 0.21933 0.78067 538 0.016630899

chr2L dme‐mir‐306 1152 3329 0.25711 0.74289 4481 0.13850323

chr3L dme‐mir‐316 5546 15460 0.26403 0.73597 21006 0.649331456

chrX dme‐mir‐303 142 396 0.26419 0.73581 538 0.016615442

chr3R dme‐mir‐2c 27 67 0.28877 0.71123 94 0.002890314

chrX dme‐mir‐973 76 179 0.29862 0.70138 255 0.007867218

chr3R dme‐mir‐11 14438 32372 0.30844 0.69156 46810 1.446996236

chr2L dme‐mir‐125 5238 11659 0.31000 0.69000 16897 0.522312177

chrX dme‐mir‐283 577 1257 0.31470 0.68530 1834 0.056677973

chr2L dme‐mir‐2a‐1 21 46 0.31579 0.68421 67 0.002055678

chr3L dme‐mir‐193 12 25 0.32877 0.67123 37 0.001128304

At least 10 normalized reads in the summed normalized reads were required. A ratio (BodyM/BodyM+Testis) >=0.66 is male

 body biased. A ratio (Testis/Body M+Testis) >=0.66 is testis biased. BM: Body Male; T: testis
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TABLE S8: Adult Female Body vs. Ovary biased miRNAs

Ovary 

reads

chr3R dme‐mir‐1000 0 1 0 206 0.016796842

chr3R dme‐mir‐1001 0 1 0 29 0.002364604

chr2L dme‐mir‐1004 0 1 0 13 0.001059995

chr3R dme‐mir‐1014 0 1 0 66 0.005381513

chr3R dme‐mir‐1015 0 1 0 15 0.001223071

chr2R dme‐mir‐137 0 1 0 80 0.006523046

chrX dme‐mir‐210 0 1 0 121 0.009866106

chr3L dme‐mir‐219 0 1 0 21 0.001712299

chr3L dme‐mir‐263b 0 1 0 263 0.021444512

chr3L dme‐mir‐276b 0 1 0 112 0.009132264

chr2L dme‐mir‐375 0 1 0 811 0.066127374

chr3L dme‐mir‐957 0 1 0 307 0.025032187

chr3L dme‐mir‐958 0 1 0 2103 0.171474559

chrX dme‐mir‐981 0 1 0 19 0.001549223

chr2R dme‐mir‐987 0 1 0 308 0.025113725

chr3R dme‐mir‐993 0 1 0 314 0.025602954

chr3R dme‐mir‐iab‐4as 0 1 0 28 0.002283066

chr2L dme‐mir‐124 2 0.99590 0.00410 472 0.038480513

chr2L dme‐mir‐133 2 0.99360 0.00640 302 0.024619041

chr3L dme‐mir‐314 31 0.99310 0.00690 4480 0.365284793

chr3L dme‐mir‐274 10 0.99187 0.00813 1189 0.096921485

chr3R dme‐mir‐277 168 0.99166 0.00834 20157 1.643577423

chr3L dme‐mir‐9a 77 0.99130 0.00870 8890 0.724899812

chr3L dme‐mir‐956 17 0.98766 0.01234 1410 0.115001112

chr3R dme‐mir‐10 79 0.98749 0.01251 6335 0.51656459

chr2L dme‐mir‐1 2994 0.98520 0.01480 202351 16.4993386

chr3R dme‐mir‐929 23 0.97246 0.02754 842 0.068671122

chr3R dme‐mir‐252 41 0.97221 0.02779 1461 0.119094084

chr3R dme‐mir‐13a 10 0.95434 0.04566 212 0.017258791

chr2R dme‐mir‐1008 2 0.94904 0.05096 38 0.003092991

chr2L dme‐mir‐932 4 0.94766 0.05234 74 0.006022905

chr3R dme‐mir‐iab‐4 2 0.94766 0.05234 37 0.003011453

chr3L dme‐mir‐276 2525 0.93678 0.06322 39937 3.256354306

chr3L dme‐mir‐955 2 0.93080 0.06920 28 0.00227761

chr2L dme‐mir‐1006 8 0.92889 0.07111 109 0.008865826

chr3R dme‐mir‐1013 2 0.92546 0.07454 26 0.002114534

chr3L dme‐mir‐276a 2710 0.92159 0.07841 34565 2.818378803

chr2R dme‐mir‐278 226 0.90020 0.09980 2266 0.184779232

chrX dme‐mir‐980 106 0.89518 0.10482 1014 0.082705681

chr2R dme‐mir‐31a 1703 0.86633 0.13367 12741 1.038880662

chr3R dme‐mir‐1010 15 0.85610 0.14390 107 0.008762464

chr3R dme‐mir‐999 141 0.84529 0.15471 912 0.074372131

chr2R dme‐mir‐281‐1 1009 0.84134 0.15866 6360 0.518587988

chr3R dme‐mir‐2c 2 0.83801 0.16199 12 0.000973001
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chr2R dme‐mir‐281‐2 340 0.83566 0.16434 2070 0.168802027

chr2L dme‐mir‐100 73 0.83285 0.16715 439 0.035832503

chr3L dme‐mir‐190 35 0.82926 0.17074 204 0.016617099

chr2L dme‐mir‐87 110 0.82922 0.17078 645 0.052607222

chr2L dme‐let‐7 1722 0.82326 0.17674 9745 0.794619587

chr2R dme‐mir‐8 44755 0.81024 0.18976 235856 19.23123099

chr2L dme‐mir‐125 485 0.77977 0.22023 2203 0.17964509

chr3R dme‐mir‐279 1208 0.77422 0.22578 5351 0.436324888

chr3L dme‐mir‐316 644 0.72686 0.27314 2357 0.192162262

chr3R dme‐mir‐284 44 0.72292 0.27708 160 0.013083682

Ovary

reads

chr3R dme‐mir‐318 34886 0.00217 0.99783 34962 2.850769902

chrX dme‐mir‐984 1378 0.00505 0.99495 1385 0.112954019

chr3R dme‐mir‐994 14463 0.00523 0.99477 14539 1.185511752

chr2R dme‐mir‐313 1216 0.00654 0.99346 1224 0.099795454

chrX dme‐mir‐303 128 0.00778 0.99222 129 0.010484476

chrX dme‐mir‐983 798 0.00869 0.99131 805 0.065667938

chr2R dme‐mir‐312 2803 0.01407 0.98593 2843 0.231810914

chr2R dme‐mir‐1009 174 0.01695 0.98305 177 0.014430438

chr2R dme‐mir‐311 460 0.02748 0.97252 473 0.038573619

chrX dme‐mir‐982 89 0.03264 0.96736 92 0.007495147

chr2R dme‐mir‐310 228 0.03796 0.96204 237 0.019333034

chr2L dme‐mir‐275 12586 0.05716 0.94284 13349 1.088479123

chr3R dme‐mir‐92b 990 0.06429 0.93571 1058 0.086246167

chr3R dme‐mir‐92a 1514 0.10044 0.89956 1683 0.137196605

chr3R dme‐mir‐995 3679 0.11093 0.88907 4138 0.337377347

chr2L dme‐mir‐966 41 0.12877 0.87123 47 0.003799254

chr2R dme‐mir‐989 88414 0.12929 0.87071 101542 8.279510048

chr2L dme‐mir‐9b 10570 0.13204 0.86796 12178 0.99298085

chr2L dme‐mir‐2a‐1 118 0.15723 0.84277 140 0.011408674

chr2L dme‐mir‐306 1954 0.20340 0.79660 2453 0.200041589

chr2R dme‐mir‐184 30821 0.20359 0.79641 38700 3.155536026

chr4 dme‐mir‐954 43 0.20550 0.79450 54 0.004364565

chr3R dme‐mir‐996 28482 0.22038 0.77962 36533 2.978840048

chrX dme‐mir‐13b‐2 172 0.24224 0.75776 227 0.018512798

chr2L dme‐mir‐79 6723 0.24621 0.75379 8919 0.727260898

chr2L dme‐mir‐2b‐2 862 0.27007 0.72993 1181 0.096309284

chr2L dme‐mir‐959 8 0.27953 0.72047 11 0.000875095

chr2R dme‐mir‐7 2356 0.28254 0.71746 3284 0.267806437

chr3L dme‐mir‐33 4025 0.32907 0.67093 5999 0.48912155

chr3R dme‐mir‐34 6344 0.33839 0.66161 9589 0.781900759

At least 10 normalized reads in summed normalized reads were required. A ratio (BodyF/BodyF+Ovary) >=0.66 is female body

 biased and a ratio (Ovary/Body M+Ovary) >=0.66 is ovary biased. BF: Body Female; Ov: Ovary.
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TABLE S9: Raw Counts miRNA-Seq

Chrom miRNA S2 (M) Kc (F) S. Glands M S. Glands F Head M Head F Body M Body F Testis Ovary

chr3L dme-bantam 35460 18240 12348 24423 103920 152727 244113 72941 28463 687

chr2L dme-let-7 5 5 30 219 20606 51163 28931 8023 891 11559

chr2L dme-let-7-as 0 0 0 0 0 0 0 0 0 0

chr2L dme-mir-1 23 55 679 1503 126814 175008 496888 199357 1549 241

chr3R dme-mir-10 1 18 199 395 3730 4794 19132 6256 41 171

chr2L dme-mir-100 0 0 1 10 1004 1527 1103 366 38 226

chr3R dme-mir-1000 1 867 13 27 18668 25776 875 206 0 1

chr3R dme-mir-1001 0 0 0 0 162 208 106 29 0 2

chr2L dme-mir-1002 0 0 0 0 0 0 0 0 0 0

chr3R dme-mir-1003 1487 902 34 30 107 228 124 34 16 63

chr2L dme-mir-1004 0 0 0 1 157 253 44 13 0 144

chr2L dme-mir-1004-as 0 0 0 0 1 0 0 0 0 0

chr2L dme-mir-1005 1 0 16 11 101 332 122 44 14 3

chr2L dme-mir-1006 58 97 71 107 315 519 415 101 4 15

chr2L dme-mir-1006-as 0 0 0 0 0 0 0 0 0 0

chrX dme-mir-1007 13 5 0 4 109 125 47 19 10 6

chr2R dme-mir-1008 94 175 8 9 119 104 106 36 1 11

chr2R dme-mir-1009 4 6 5 2 30 85 38 3 90 5

chr3R dme-mir-1010 1 71 1 0 851 1677 319 92 8 168

chr3R dme-mir-1011 0 0 0 0 8 19 1 0 0 3

chr3R dme-mir-1012 164 42 230 346 374 623 215 79 40 46

chr3R dme-mir-1013 1 4 3 4 90 131 52 24 1 54

chr3R dme-mir-1014 0 0 0 0 0 0 248 66 0 0

chr3R dme-mir-1015 0 0 0 0 0 1 62 15 0 2

chr2R dme-mir-1016 5 4 3 4 35 76 18 8 0 6

chr3R dme-mir-1017 0 0 0 0 183 278 25 6 0 1

chr3R dme-mir-11 15690 9328 5007 12439 6209 21450 14438 5606 3338 9249

chrX dme-mir-12 415 7053 16391 43021 1117 2682 21306 2801 2280 62228

chr2L dme-mir-124 8 63 10 16 29849 48896 2863 470 1 151

chr2L dme-mir-124-as 0 0 0 0 0 0 0 0 0 0

chr2L dme-mir-125 10 3 23 63 7175 20670 5238 1718 251 3331

chrX dme-mir-12-as 0 0 0 0 0 0 0 0 0 0

chr2L dme-mir-133 5 3 6 4 4836 16473 1065 300 1 38

chr2R dme-mir-137 0 2 0 1 701 1301 341 80 0 38

chr3R dme-mir-13a 25 57 11 17 5608 9074 797 202 5 29

chr3R dme-mir-13b 11557 9820 5207 12399 27953 34823 21017 7131 5476 5212

chr3R dme-mir-13b-1 0 0 7 9 14 22 4 1 0 0

chrX dme-mir-13b-2 299 300 62 70 27 101 92 55 89 1

chr2R dme-mir-14 182756 130160 2602 2658 31243 68581 26146 5504 1571 6722

chr2R dme-mir-14-as 0 0 0 0 2 1 0 0 0 0

chr2R dme-mir-184 54062 73256 810 1085 51441 89330 15336 7879 15944 540

chr3L dme-mir-190 171 308 130 168 1250 634 162 169 18 13

chr3L dme-mir-193 3 64 0 4 1978 4491 12 1 1 7

chr2L dme-mir-1-as 0 0 0 0 0 0 0 0 0 0

chrX dme-mir-210 1 1 31 29 30904 106957 409 121 0 10

chr3L dme-mir-219 0 0 1 0 259 437 84 21 0 1

chr2RHet dme-mir-2279 8 9 2 5 7 16 12 3 0 3

chr2RHet dme-mir-2279-as 0 1 0 1 0 0 0 0 0 0

chr2L dme-mir-2280 0 0 0 0 0 0 1 0 0 0

chr3R dme-mir-2281 0 0 0 0 0 1 4 1 0 0

chr3L dme-mir-2282 1 3 0 0 0 0 0 0 0 0

chr3R dme-mir-2283 0 0 0 0 3 3 4 0 0 1

chr3R dme-mir-252 13294 137 831 644 14416 37717 4036 1420 21 990

chr2L dme-mir-263a 66 3 27399 39275 17316 25950 11829 3892 3639 245

chr2L dme-mir-263a-as 0 0 0 0 0 0 0 0 0 0

chr3L dme-mir-263b 1 2 2 6 3141 6005 1144 263 0 13

chr3L dme-mir-274 1 0 12 16 13878 55708 3593 1179 5 7928

chr2L dme-mir-275 461 832 13608 2588 668 2503 1122 763 6511 605

chr2L dme-mir-275-as 0 0 0 1 1 1 0 0 0 0

chr3L dme-mir-276 4524 10288 1946 5840 68388 58112 47955 37412 1306 123

chr3L dme-mir-276a 9143 7257 1158 3728 73713 163232 90583 31855 1402 2248

chr3L dme-mir-276b 5 125 1 8 7324 16746 530 112 0 3

chr3R dme-mir-277 3703 1688 807 1660 59156 104947 76053 19989 87 9542

chr2R dme-mir-278 47 1099 797 526 2829 9122 4966 2040 117 2426

chr3R dme-mir-279 16526 10095 321 1492 8345 13021 14571 4143 625 1554

chr3R dme-mir-279-as 0 0 0 0 0 0 0 0 0 0

chr2R dme-mir-281-1 179 132 55 118 260 557 17602 5351 522 143

chr2R dme-mir-281-2 34 23 53 84 277 439 5100 1730 176 21

chr3L dme-mir-282 13543 3084 4147 31936 6842 6760 23325 12554 3427 11072

chr3L dme-mir-282-as 0 0 0 0 0 0 0 0 0 0

chrX dme-mir-283 48 930 4683 7791 370 448 577 363 133 359

chr3R dme-mir-284 0 5 2 1 518 2009 523 116 23 16

chr3L dme-mir-285 0 0 12 38 40821 63213 76 4 0 0

chr2R dme-mir-286 43 14 23 31 4 15 5 1 0 0

chr2L dme-mir-287 0 0 0 0 0 0 0 1 0 0

chr3L dme-mir-289 0 0 0 0 0 0 0 1 0 0

chr2L dme-mir-2a 7839 19872 7976 9677 40963 62518 42678 21855 19231 14216

chr2L dme-mir-2a-1 173 259 16 27 34 64 21 22 61 13

chr2L dme-mir-2a-2 2015 6472 112 164 1780 4486 1047 363 339 112

chr2L dme-mir-2b 9981 13905 6378 7854 43346 58488 18220 8986 8217 6058

chr2L dme-mir-2b-1 498 138 461 465 1684 1927 623 328 188 2

chr2L dme-mir-2b-2 431 1100 189 177 714 1184 615 319 446 40

chr3R dme-mir-2c 9 13 3 0 163 287 27 10 1 19

chr2R dme-mir-3 15 8 1 1 3 5 2 1 3 8

chrX dme-mir-303 7 8 0 0 1 3 142 1 66 113

chrX dme-mir-304 34 841 15014 30430 1286 2492 17186 2108 743 556

chrX dme-mir-304-as 0 0 0 0 0 0 0 0 0 0

chr2L dme-mir-305 3321 6880 7165 9763 11336 20428 13965 3692 2694 18583

chr2L dme-mir-305-as 0 3 2 7 12 8 0 1 1 0

chr2L dme-mir-306 2500 4089 1067 1144 752 2067 1152 499 1011 951

chr2R dme-mir-307 932 22 1 0 5587 15933 2063 482 245 42

chr2R dme-mir-307-as 1 0 5 17 0 3 6 1 0 0

Late Embryo Lymphoid Cells L3 Larvae Salivary Glands Adult Head Adult Body Adult Gonads
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chr2R dme-mir-308 1483 1685 2781 5046 1048 1674 1864 684 323 30

chr2R dme-mir-309 4 3 1 0 0 1 0 0 0 0

chr2R dme-mir-310 8 4 1 0 2 2 55 9 118 3356

chr2R dme-mir-311 8 2 0 0 1 2 68 13 238 3582

chr2R dme-mir-312 3 6 0 0 8 9 95 40 1450 1704

chr2R dme-mir-313 2 2 0 0 4 4 59 8 629 370

chr3L dme-mir-314 0 2 2 3 18 72 11627 4449 16 29

chr3L dme-mir-314-as 0 0 0 0 0 0 0 1 0 0

chr3L dme-mir-315 0 0 0 0 1204 2424 24 7 0 12

chr3L dme-mir-316 0 0 8 14 1119 3236 5546 1713 333 4417

chr3L dme-mir-316-as 0 0 0 0 0 0 1 0 0 0

chr3R dme-mir-317 9157 14069 718 1536 8974 14533 2370 561 529 4489

chr3R dme-mir-317-as 0 0 0 0 0 0 0 1 0 0

chr3R dme-mir-318 13 60 0 1 1 6 4 76 18047 20

chr2R dme-mir-31a 5 12 521 763 11606 22138 24842 11038 881 1134

chrX dme-mir-31b 3 3 0 0 7 44 2068 447 170 875

chr3L dme-mir-33 1927 2696 1239 2256 1864 3555 9633 1974 2082 166

chr3R dme-mir-34 13980 15190 1643 2983 45375 77345 9383 3245 3282 11464

chr2L dme-mir-375 1 0 18745 34030 57 182 4698 811 0 1491

chr2R dme-mir-4 6 2 1 6 3 5 2 0 0 0

chr2R dme-mir-5 14 9 18 26 7 22 14 4 4 0

chr2R dme-mir-6-1 7 1 0 0 0 0 0 0 0 0

chr2R dme-mir-6-2 1 1 0 0 0 0 0 0 0 0

chr2R dme-mir-6-3 2 1 0 0 0 0 0 0 0 0

chr2R dme-mir-6-3-as 0 0 0 0 0 0 0 0 0 0

chr2R dme-mir-7 332 243 176 270 13849 20729 3010 928 1219 863

chr2L dme-mir-79 2043 3617 1604 3518 7700 13318 12143 2196 3478 219

chr2R dme-mir-8 4003 18559 84972 180692 184826 244757 447346 191101 23152 56620

chr2L dme-mir-87 0 2 2 4 2344 4107 908 535 57 12

chrX dme-mir-927 0 1 0 0 662 994 41 9 0 0

chr3R dme-mir-929 1 2 20 39 12012 13343 1810 819 12 4

chr3R dme-mir-929-as 0 0 0 0 0 0 2 0 0 0

chr3R dme-mir-92a 13 1478 2 7 1421 2484 254 169 783 1424

chr3R dme-mir-92a-as 0 0 0 0 0 0 0 0 0 0

chr3R dme-mir-92b 20 447 31 64 54 68 42 68 512 747

chr2L dme-mir-932 5 118 4 2 3614 8766 276 70 2 45

chr4 dme-mir-954 11 61 1 1 59 124 50 11 22 62

chr3L dme-mir-955 0 0 0 0 54 84 59 26 1 7

chr3L dme-mir-956 0 1 0 1 4 20 4342 1393 9 54

chr3L dme-mir-957 0 0 2 7 6154 12255 839 307 0 0

chr3L dme-mir-958 1 19 0 1 3 29 7379 2103 0 9

chr2L dme-mir-959 0 0 0 0 7 18 478 3 4 17252

chr2L dme-mir-960 0 1 0 2 30 103 1717 34 11 5436

chr2L dme-mir-961 0 0 0 0 5 20 177 5 5 477

chr2L dme-mir-962 0 0 1 0 28 55 401 39 33 471

chr2L dme-mir-963 0 1 0 0 5 20 368 6 1 926

chr2L dme-mir-964 0 0 0 0 7 41 437 10 5 10115

chr2L dme-mir-965 559 608 131 567 361 613 1129 201 145 9

chr2L dme-mir-966 15 39 1 4 8 12 5 6 21 6

chr2L dme-mir-967 10 7 0 1 4 2 3 0 0 0

chr2L dme-mir-967-as 0 0 0 0 0 0 0 1 0 0

chr2L dme-mir-968 0 0 0 0 2 3 0 0 0 0

chrX dme-mir-969 0 0 0 2 194 192 27 6 0 0

chrX dme-mir-970 1140 1185 177 198 1442 3119 656 205 59 100

chrX dme-mir-971 0 35 0 1 40 70 4 0 0 33

chrX dme-mir-972 0 0 0 0 0 1 61 0 0 961

chrX dme-mir-973 0 8 0 0 0 0 76 1 0 51

chrX dme-mir-974 0 2 0 0 5 2 236 1 0 82

chrX dme-mir-975 0 3 0 0 0 0 33 0 0 2134

chrX dme-mir-976 0 1 0 0 0 2 380 2 0 7525

chrX dme-mir-977 1 44 0 0 3 4 680 0 0 8100

chrX dme-mir-978 1 4 0 0 2 3 241 1 0 8457

chrX dme-mir-979 0 0 0 0 0 0 21 0 0 497

chrX dme-mir-980 1534 302 3 3 349 1464 2995 908 55 154

chrX dme-mir-981 1 952 0 3 231 968 56 19 0 16

chrX dme-mir-981-as 1 4 0 0 1 1 0 0 0 0

chrX dme-mir-982 0 11 0 0 1 3 118 3 46 120

chrX dme-mir-983 6 9 0 0 9 16 724 7 413 6732

chrX dme-mir-983-1 0 0 0 0 0 0 1 0 2 1

chrX dme-mir-984 25 68 0 0 10 11 551 7 713 2201

chrX dme-mir-985 0 0 0 0 1 0 214 2 1 321

chr2R dme-mir-986 3 29 211 226 271 1006 1880 510 301 309

chr2R dme-mir-987 0 3 9 36 14710 16043 803 308 0 3

chr2R dme-mir-988 13800 15082 558 539 620 1460 876 280 214 6587

chr2R dme-mir-988-as 1 0 0 0 0 0 0 0 0 0

chr2R dme-mir-989 3 158 14 30 1 6 44 13128 45737 6

chr2R dme-mir-990 0 0 0 0 382 430 8 2 0 0

chr2R dme-mir-991 0 0 0 0 0 1 120 2 4 127

chr2R dme-mir-992 2 4 0 0 0 1 45 1 0 395

chr3R dme-mir-993 0 1 0 2 982 1433 1448 314 0 1

chr3R dme-mir-994 5 27 0 2 2 3 4 76 7482 19

chr3R dme-mir-995 3761 3754 1631 3220 2255 3287 909 459 1903 228

chr3R dme-mir-995-as 0 0 0 0 0 0 1 0 0 0

chr3R dme-mir-996 23117 10275 2982 6077 10447 27396 29997 8051 14734 348

chr3R dme-mir-997 0 0 0 0 0 0 184 0 0 59

chr3R dme-mir-998 3118 3965 2123 5021 4751 5610 1074 459 403 84

chr3R dme-mir-999 247 374 27 35 7193 10562 1464 771 73 673

chr3L dme-mir-9a 49 83 1540 2193 12061 32808 28787 8813 40 6846

chr2L dme-mir-9b 2463 7931 1257 1648 1557 3726 4263 1608 5468 6727

chr2L dme-mir-9c 1896 3769 737 920 2615 5475 5508 2430 2337 2050

chr3R dme-mir-iab-4 0 1 0 0 2 2 94 35 1 7

chr3R dme-mir-iab-4as 0 0 0 0 0 1 144 28 0 16

S. Glands: Salivary Glands; M: Male; F: Female 
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TABLE S10: Normalized read counts in libraries

Chrom miRNA S2  Kc  S. Glands M S. Glands F Head M Head F Body M Body F Testis Ovary  SUM

chr3L dme‐bantam 35460 27334 19757 24423 181971 152727 244113 250083 2405 55022 993293

chr2L dme‐let‐7 5 7 48 219 36082 51163 28931 27507 40457 1722 186142

chr2L dme‐let‐7‐as 0 0 0 0 0 0 0 0 0 0 0

chr2L dme‐mir‐1 23 82 1086 1503 222060 175008 496888 683509 844 2994 1583998

chr2L dme‐mir‐1‐as 0 0 0 0 0 0 0 0 0 0 0

chr3R dme‐mir‐10 1 27 318 395 6531 4794 19132 21449 599 79 53326

chr2L dme‐mir‐100 0 0 2 10 1758 1527 1103 1255 791 73 6519

chr3R dme‐mir‐1000 1 1299 21 27 32689 25776 875 706 4 0 61398

chr3R dme‐mir‐1001 0 0 0 0 284 208 106 99 7 0 704

chr2L dme‐mir‐1002 0 0 0 0 0 0 0 0 0 0 0

chr3R dme‐mir‐1003 1487 1352 54 30 187 228 124 117 221 31 3830

chr2L dme‐mir‐1004 0 0 0 1 275 253 44 45 504 0 1121

chr2L dme‐mir‐1004‐as 0 0 0 0 2 0 0 0 0 0 2

chr2L dme‐mir‐1005 1 0 26 11 177 332 122 151 11 27 857

chr2L dme‐mir‐1006 58 145 114 107 552 519 415 346 53 8 2316

chrX dme‐mir‐1007 13 7 0 4 191 125 47 65 21 19 493

chr2R dme‐mir‐1008 94 262 13 9 208 104 106 123 39 2 960

chr2R dme‐mir‐1009 4 9 8 2 53 85 38 10 18 174 400

chr3R dme‐mir‐1010 1 106 2 0 1490 1677 319 315 588 15 4514

chr3R dme‐mir‐1011 0 0 0 0 14 19 1 0 11 0 45

chr3R dme‐mir‐1012 164 63 368 346 655 623 215 271 161 77 2943

chr3R dme‐mir‐1013 1 6 5 4 158 131 52 82 189 2 630

chr3R dme‐mir‐1014 0 0 0 0 0 0 248 226 0 0 474

chr3R dme‐mir‐1015 0 0 0 0 0 1 62 51 7 0 121

chr2R dme‐mir‐1016 5 6 5 4 61 76 18 27 21 0 224

chr3R dme‐mir‐1017 0 0 0 0 320 278 25 21 4 0 648

chr3R dme‐mir‐11 15690 13979 8011 12439 10872 21450 14438 19221 32372 6453 154924

chrX dme‐mir‐12 415 10569 26226 43021 1956 2682 21306 9603 217798 4407 337984

chr2L dme‐mir‐124 8 94 16 16 52268 48896 2863 1611 529 2 106303

chr2L dme‐mir‐125 10 4 37 63 12564 20670 5238 5890 11659 485 56620

chr2L dme‐mir‐133 5 4 10 4 8468 16473 1065 1029 133 2 27193

chr2R dme‐mir‐137 0 3 0 1 1228 1301 341 274 133 0 3281

chr3R dme‐mir‐13a 25 85 18 17 9820 9074 797 693 102 10 20640

chr3R dme‐mir‐13b 11557 14716 8331 12399 48948 34823 21017 24449 18242 10586 205067

chr3R dme‐mir‐13b‐1 0 0 11 9 25 22 4 3 0 0 74

chrX dme‐mir‐13b‐2 299 450 99 70 47 101 92 189 4 172 1522

chr2R dme‐mir‐14 182756 195051 4163 2658 54709 68581 26146 18871 23527 3037 579498

chr2R dme‐mir‐184 54062 109778 1296 1085 90077 89330 15336 27014 1890 30821 420688

chr3L dme‐mir‐190 171 462 208 168 2189 634 162 579 46 35 4653

chr3L dme‐mir‐193 3 96 0 4 3464 4491 12 3 25 2 8099

chrX dme‐mir‐210 1 1 50 29 54115 106957 409 415 35 0 162012

chr3L dme‐mir‐219 0 0 2 0 454 437 84 72 4 0 1052

chr2RHet dme‐mir‐2279 8 13 3 5 12 16 12 10 11 0 91

chr2RHet dme‐mir‐2279‐as 0 1 0 1 0 0 0 0 0 0 2

chr2L dme‐mir‐2280 0 0 0 0 0 0 1 0 0 0 1

chr3R dme‐mir‐2281 0 0 0 0 0 1 4 3 0 0 8

chr3L dme‐mir‐2282 1 4 0 0 0 0 0 0 0 0 5

chr3R dme‐mir‐2283 0 0 0 0 5 3 4 0 4 0 16

chr3R dme‐mir‐252 13294 205 1330 644 25243 37717 4036 4869 3465 41 90843

chr2L dme‐mir‐263a 66 4 43838 39275 30321 25950 11829 13344 858 7035 172520

chr3L dme‐mir‐263b 1 3 3 6 5500 6005 1144 902 46 0 13610

chr3L dme‐mir‐274 1 0 19 16 24301 55708 3593 4042 27748 10 115438

chr2L dme‐mir‐275 461 1247 21773 2588 1170 2503 1122 2616 2118 12586 48183

chr2L dme‐mir‐275‐as 0 0 0 1 2 1 0 0 0 0 4

chr3L dme‐mir‐276 4524 15417 3114 5840 119752 58112 47955 128270 431 2525 385939

chr3L dme‐mir‐276a 9143 10875 1853 3728 129076 163232 90583 109217 7868 2710 528285

chr3L dme‐mir‐276b 5 187 2 8 12825 16746 530 384 11 0 30697

chr3R dme‐mir‐277 3703 2530 1291 1660 103586 104947 76053 68534 33397 168 395869

chr2R dme‐mir‐278 47 1647 1275 526 4954 9122 4966 6994 8491 226 38248
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chr3R dme‐mir‐279 16526 15128 514 1492 14613 13021 14571 14205 5439 1208 96716

chr2R dme‐mir‐281‐1 179 198 88 118 455 557 17602 18346 501 1009 39053

chr2R dme‐mir‐281‐2 34 34 85 84 485 439 5100 5931 74 340 12606

chr3L dme‐mir‐282 13543 4622 6635 31936 11981 6760 23325 43042 38752 6625 187220

chrX dme‐mir‐283 48 1394 7493 7791 648 448 577 1245 1257 257 21157

chr3R dme‐mir‐284 0 7 3 1 907 2009 523 398 56 44 3949

chr3L dme‐mir‐285 0 0 19 38 71480 63213 76 14 0 0 134840

chr2R dme‐mir‐286 43 21 37 31 7 15 5 3 0 0 162

chr2L dme‐mir‐287 0 0 0 0 0 0 0 3 0 0 3

chr3L dme‐mir‐289 0 0 0 0 0 0 0 3 0 0 3

chr2L dme‐mir‐2a 7839 29779 12762 9677 71729 62518 42678 74931 49756 37175 398844

chr2L dme‐mir‐2a‐1 173 388 26 27 60 64 21 75 46 118 997

chr2L dme‐mir‐2a‐2 2015 9699 179 164 3117 4486 1047 1245 392 655 22999

chr2L dme‐mir‐2b 9981 20837 10205 7854 75902 58488 18220 30809 21203 15884 269383

chr2L dme‐mir‐2b‐1 498 207 738 465 2949 1927 623 1125 7 363 8901

chr2L dme‐mir‐2b‐2 431 1648 302 177 1250 1184 615 1094 140 862 7704

chr3R dme‐mir‐2c 9 19 5 0 285 287 27 34 67 2 735

chr2R dme‐mir‐3 15 12 2 1 5 5 2 3 28 6 79

chrX dme‐mir‐303 7 12 0 0 2 3 142 3 396 128 692

chrX dme‐mir‐304 34 1260 24022 30430 2252 2492 17186 7227 1946 1436 88286

chr2L dme‐mir‐305 3321 10310 11464 9763 19850 20428 13965 12658 65041 5208 172008

chr2L dme‐mir‐305‐as 0 4 3 7 21 8 0 3 0 2 49

chr2L dme‐mir‐306 2500 6128 1707 1144 1317 2067 1152 1711 3329 1954 23008

chr2R dme‐mir‐307 932 33 2 0 9783 15933 2063 1653 147 474 31019

chr2R dme‐mir‐307‐as 1 0 8 17 0 3 6 3 0 0 38

chr2R dme‐mir‐308 1483 2525 4450 5046 1835 1674 1864 2345 105 624 21951

chr2R dme‐mir‐309 4 4 2 0 0 1 0 0 0 0 11

chr2R dme‐mir‐310 8 6 2 0 4 2 55 31 11746 228 12081

chr2R dme‐mir‐311 8 3 0 0 2 2 68 45 12537 460 13124

chr2R dme‐mir‐312 3 9 0 0 14 9 95 137 5964 2803 9034

chr2R dme‐mir‐313 2 3 0 0 7 4 59 27 1295 1216 2613

chr3L dme‐mir‐314 0 3 3 3 32 72 11627 15254 102 31 27126

chr3L dme‐mir‐315 0 0 0 0 2108 2424 24 24 42 0 4622

chr3L dme‐mir‐316 0 0 13 14 1959 3236 5546 5873 15460 644 32745

chr3R dme‐mir‐317 9157 21083 1149 1536 15714 14533 2370 1923 15712 1023 84200

chr3R dme‐mir‐318 13 90 0 1 2 6 4 261 70 34886 35333

chr2R dme‐mir‐31a 5 18 834 763 20323 22138 24842 37845 3969 1703 112439

chrX dme‐mir‐31b 3 4 0 0 12 44 2068 1533 3063 329 7055

chr3L dme‐mir‐33 1927 4040 1982 2256 3264 3555 9633 6768 581 4025 38031

chr3R dme‐mir‐34 13980 22763 2629 2983 79455 77345 9383 11126 40124 6344 266132

chr2L dme‐mir‐375 1 0 29992 34030 100 182 4698 2781 5219 0 77002

chr2R dme‐mir‐4 6 3 2 6 5 5 2 0 0 0 29

chr2R dme‐mir‐5 14 13 29 26 12 22 14 14 0 8 152

chr2R dme‐mir‐6 10 4 0 0 0 0 0 0 0 0 14

chr2R dme‐mir‐7 332 364 282 270 24251 20729 3010 3182 3021 2356 57796

chr2L dme‐mir‐79 2043 5420 2566 3518 13483 13318 12143 7529 767 6723 67511

chr2R dme‐mir‐8 4003 27812 135955 180692 323642 244757 447346 655203 198170 44755 2262335

chr2L dme‐mir‐87 0 3 3 4 4105 4107 908 1834 42 110 11116

chrX dme‐mir‐927 0 1 0 0 1159 994 41 31 0 0 2227

chr3R dme‐mir‐929 1 3 32 39 21034 13343 1810 2808 14 23 39107

chr3R dme‐mir‐92a 13 2215 3 7 2488 2484 254 579 4984 1514 14541

chr3R dme‐mir‐92b 20 670 50 64 95 68 42 233 2615 990 4845

chr2L dme‐mir‐932 5 177 6 2 6328 8766 276 240 158 4 15962

chr4 dme‐mir‐954 11 91 2 1 103 124 50 38 217 43 680

chr3L dme‐mir‐955 0 0 0 0 95 84 59 89 25 2 353

chr3L dme‐mir‐956 0 1 0 1 7 20 4342 4776 189 17 9354

chr3L dme‐mir‐957 0 0 3 7 10776 12255 839 1053 0 0 24933

chr3L dme‐mir‐958 1 28 0 1 5 29 7379 7210 32 0 14686

chr2L dme‐mir‐959 0 0 0 0 12 18 478 10 60382 8 60908

chr2L dme‐mir‐960 0 1 0 2 53 103 1717 117 19026 21 21040

chr2L dme‐mir‐961 0 0 0 0 9 20 177 17 1670 10 1902

chr2L dme‐mir‐962 0 0 2 0 49 55 401 134 1649 64 2353
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chr2L dme‐mir‐963 0 1 0 0 9 20 368 21 3241 2 3662

chr2L dme‐mir‐964 0 0 0 0 12 41 437 34 35403 10 35937

chr2L dme‐mir‐965 559 911 210 567 632 613 1129 689 32 280 5622

chr2L dme‐mir‐966 15 58 2 4 14 12 5 21 21 41 192

chr2L dme‐mir‐967 10 10 0 1 7 2 3 0 0 0 33

chr2L dme‐mir‐968 0 0 0 0 4 3 0 0 0 0 7

chrX dme‐mir‐969 0 0 0 2 340 192 27 21 0 0 581

chrX dme‐mir‐970 1140 1776 283 198 2525 3119 656 703 350 114 10864

chrX dme‐mir‐971 0 52 0 1 70 70 4 0 116 0 313

chrX dme‐mir‐972 0 0 0 0 0 1 61 0 3364 0 3426

chrX dme‐mir‐973 0 12 0 0 0 0 76 3 179 0 270

chrX dme‐mir‐974 0 3 0 0 9 2 236 3 287 0 540

chrX dme‐mir‐975 0 4 0 0 0 0 33 0 7469 0 7507

chrX dme‐mir‐976 0 1 0 0 0 2 380 7 26338 0 26728

chrX dme‐mir‐977 1 66 0 0 5 4 680 0 28350 0 29106

chrX dme‐mir‐978 1 6 0 0 4 3 241 3 29600 0 29857

chrX dme‐mir‐979 0 0 0 0 0 0 21 0 1740 0 1761

chrX dme‐mir‐980 1534 453 5 3 611 1464 2995 3113 539 106 10823

chrX dme‐mir‐981 1 1427 0 3 404 968 56 65 56 0 2980

chrX dme‐mir‐982 0 16 0 0 2 3 118 10 420 89 658

chrX dme‐mir‐983 6 13 0 0 16 16 724 24 23562 798 25160

chrX dme‐mir‐983‐1 0 0 0 0 0 0 1 0 4 4 8

chrX dme‐mir‐984 25 102 0 0 18 11 551 24 7704 1378 9812

chrX dme‐mir‐985 0 0 0 0 2 0 214 7 1124 2 1348

chr2R dme‐mir‐986 3 43 338 226 475 1006 1880 1749 1082 582 7383

chr2R dme‐mir‐987 0 4 14 36 25758 16043 803 1056 11 0 43726

chr2R dme‐mir‐988 13800 22601 893 539 1086 1460 876 960 23055 414 65683

chr2R dme‐mir‐989 3 237 22 30 2 6 44 45010 21 88414 133789

chr2R dme‐mir‐990 0 0 0 0 669 430 8 7 0 0 1114

chr2R dme‐mir‐991 0 0 0 0 0 1 120 7 445 8 580

chr2R dme‐mir‐992 2 6 0 0 0 1 45 3 1383 0 1440

chr3R dme‐mir‐993 0 1 0 2 1720 1433 1448 1077 4 0 5684

chr3R dme‐mir‐994 5 40 0 2 4 3 4 261 67 14463 14848

chr3R dme‐mir‐995 3761 5626 2610 3220 3949 3287 909 1574 798 3679 29411

chr3R dme‐mir‐996 23117 15398 4771 6077 18293 27396 29997 27603 1218 28482 182353

chr3R dme‐mir‐997 0 0 0 0 0 0 184 0 207 0 391

chr3R dme‐mir‐998 3118 5942 3397 5021 8319 5610 1074 1574 294 779 35128

chr3R dme‐mir‐999 247 560 43 35 12595 10562 1464 2643 2356 141 30647

chr3L dme‐mir‐9a 49 124 2464 2193 21120 32808 28787 30216 23961 77 141799

chr2L dme‐mir‐9b 2463 11885 2011 1648 2726 3726 4263 5513 23545 10570 68350

chr2L dme‐mir‐9c 1896 5648 1179 920 4579 5475 5508 8331 7175 4518 45229

chr3R dme‐mir‐iab‐4 0 1 0 0 4 2 94 120 25 2 247

chr3R dme‐mir‐iab‐4as 0 0 0 0 0 1 144 96 56 0 297

SUM_Norm_Reads_in_libr 476512 670269 419331 506593 2221284 2140318 1943944 2554945 1290996 481225
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TABLE S11: Abundance of miRNAs in msl3 mutant salivary glands  
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Dspt4 msl3-/msl3+ 1 23.5091 95.762 1.000 0.000 0.000 0.000 
 

  
2 23.7935 200.048 1.000 0.000 

   

 
msl3-/msl3- 1 23.2659 106.222 

     

  
2 23.2766 250.610 

     mir-283 msl3-/msl3+ 1 24.9728 89.769 0.514 -0.961 -0.901 0.086 0.00045 

  
2 24.7449 185.152 0.559 -0.840 

   

 
msl3-/msl3- 1 26.4340 57.172 

     

  
2 26.1674 129.580 

     mir-304 msl3-/msl3+ 1 29.9743 100.663 0.338 -1.564 -1.631 0.095 0.00070 

  
2 30.2644 203.835 0.308 -1.698 

   

 
msl3-/msl3- 1 32.2164 37.754 

     

  
2 32.3252 78.686 

     mir-12 msl3-/msl3+ 1 21.5294 88.515 0.406 -1.300 -1.284 0.022 0.00006 

  
2 21.8149 182.599 0.415 -1.269 

   

 
msl3-/msl3- 1 23.8153 39.885 

     

  
2 24.1442 94.941 

     mir-979 msl3-/msl3+ 1 36.2751 149.915 0.833 -0.263 -0.749 0.687 0.24047 

  
2 35.4645 209.309 0.425 -1.235 

   

 
msl3-/msl3- 1 36.5484 138.570 

     

  
2 37.5508 111.399 

     mir-210 msl3-/msl3+ 1 28.5830 100.340 1.425 0.511 0.384 0.180 0.07654 

  
2 29.1231 202.647 1.195 0.257 

   

 
msl3-/msl3- 1 27.8037 158.625 

     

  
2 28.3154 303.278 

     U6 msl3-/msl3+ 1 17.1883 100.088 0.611 -0.710 -0.627 0.117 0.01472 

  
2 17.7507 184.333 0.686 -0.544 

   

 
msl3-/msl3- 1 18.0034 67.880 

     

  
2 18.2684 158.374 

       
a. Dilution series were prepared in the control sample to construct standard curves for the Dspt4 
autosomal gene reference and for each miRNA. CT values measured in replicates for the target 
miRNA and Dspt4 reference in mutant and heterozygous mutant control samples respectively are 
averaged in individual experiments (Exp.1 and 2) and the corrected amount of target miRNA and 
Dspt4 reference inferred from the standard curve in b.  
c. The amounts of miRNA are normalized in the mutant sample and in the heterozygous mutant 
control sample by dividing the calculated amount of miRNA by the amount of the Dspt4 
reference. The fold difference (FD) or relative expression level of a miRNA corresponds to the 
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ratio of the normalized abundance of the miRNA in the mutant relative to the heterozygous 
mutant control sample, that is the ratio [miRNA/Dspt4] Mutant / [miRNA/Dspt4] Control; the 
average of the base 2 logarithm of the fold difference is plotted in Figure 2B,C. 
d. SD is the standard deviation of the difference. 
e. p-values are established in a two tailed Students t-test comparing the means of the normalized 
amounts of target miRNA in the mutant and in the heterozygous mutant control samples.  
*p<0.05, **p<0.005. ***p<0.0005 
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TABLE S12: Abundance of miRNAs in msl3 mutant L3 larvae 

   G
e
n

o
ty

p
e
 

E
x
p

. 

A
v

e
ra

g
e

 
C

t 
a
 

C
o

rr
e
c
te

d
 

a
m

o
u

n
t 

b
 

F
o

ld
 

D
if

fe
re

n
c
e
 

(F
D

)c
 

lo
g

2
 (

F
D

) 

A
v

e
ra

g
e

 
lo

g
2
(F

D
) 

S
D

 d
 

p
 v

a
lu

e
 e

 

Dspt4 msl3-/msl3+ 1 25.9974 34.628 1.000 0.000       

  
2 25.6265 92.801 1.000 0.000 

   

 
msl3-/msl3- 1 24.8854 54.398 

     

  
2 24.7720 132.066 

     mir-283 msl3-/msl3+ 1 26.9201 49.324 0.756 -0.403 -0.253 0.213 0.18885 

  
2 27.2713 98.504 0.932 -0.102 

   

 
msl3-/msl3- 1 26.3534 58.590 

     

  
2 26.1358 130.596 

     mir-304 msl3-/msl3+ 1 31.2445 57.627 0.356 -1.488 -1.475 0.019 0.03552 

  
2 31.5988 109.348 0.363 -1.462 

   

 
msl3-/msl3- 1 32.5782 32.271 

     

  
2 33.0699 56.492 

     mir-12 msl3-/msl3+ 1 22.7659 57.656 0.455 -1.136 -1.040 0.136 0.00881 

  
2 22.9153 134.505 0.520 -0.943 

   

 
msl3-/msl3- 1 23.7208 41.214 

     

  
2 23.9739 99.544 

     mir-979 msl3-/msl3+ 1 31.1498 1044.716 0.760 -0.396 -0.259 0.193 0.38647 

  
2 31.4659 927.357 0.918 -0.123 

   

 
msl3-/msl3- 1 30.6831 1247.539 

     

  
2 30.7420 1211.981 

     mir-210 msl3-/msl3+ 1 27.5383 185.744 1.197 0.259 0.065 0.275 0.38641 

  
2 27.5514 461.878 0.914 -0.129 

   

 
msl3-/msl3- 1 26.4166 349.245 

     

  
2 26.9873 600.996 

     U6 msl3-/msl3+ 1 17.1512 101.819 0.694 -0.526 -0.444 0.117 0.14280 

  
2 17.5728 194.135 0.778 -0.362 

   

 
msl3-/msl3- 1 16.9733 111.054 

     

  
2 17.2156 215.036 

      
 
a-e as in Table S11.  
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TABLE S13: Abundance of miRNAs in msl3 mutant salivary glands  

 G
e
n

o
ty

p
e
 

E
x
p

. 

A
v

e
ra

g
e
  

C
t 

a
 

C
o

rr
e
c
te

d
 

a
m

o
u

n
t 

b
 

F
o

ld
 

D
if

fe
re

n
c
e
 

(F
D

)c
 

lo
g

2
 (

F
D

) 

A
v

e
ra

g
e

 
lo

g
2
(F

D
) 

S
D

 d
 

p
 v

a
lu

e
 e

 

Dspt4 msl3-/msl3+ 1 24.216 100.872 1.000 0.000 0.000 0.000   

  
2 24.262 99.102 1.000 0.000 

   

 
msl3-/msl3- 1 23.663 124.744 

     

  
2 24.150 103.457 

     mir-314 msl3-/msl3+ 1 31.225 100.048 2.258 1.175 1.149 0.037 0.0667 

  
2 30.498 152.880 2.178 1.123 

   

 
msl3-/msl3- 1 29.463 279.422 

     

  
2 29.089 347.564 

     mir-981 msl3-/msl3+ 1 32.920 117.805 0.958 -0.061 0.197 0.366 0.2414 

  
2 33.704 84.927 1.372 0.456 

   

 
msl3-/msl3- 1 32.513 139.636 

     

  
2 32.844 121.608 

     mir-13b msl3-/msl3+ 1 23.450 122.437 0.411 -1.282 -0.884 0.564 0.0703 

  
2 24.218 81.676 0.714 -0.485 

   

 
msl3-/msl3- 1 24.733 62.257 

     

  
2 24.774 60.919 

     mir-100 msl3-/msl3+ 1 29.324 99.987 1.185 0.245 0.545 0.425 0.0596 

  
2 29.977 75.275 1.796 0.845 

   

 
msl3-/msl3- 1 28.447 146.492 

     

  
2 28.532 141.148 

     mir-1013 msl3-/msl3+ 1 31.660 84.010 1.176 0.234 -0.137 0.524 0.3233 

  
2 31.010 119.016 0.704 -0.507 

   

 
msl3-/msl3- 1 30.962 122.159 

     

  
2 31.585 87.439 

     U6 msl3-/msl3+ 1 18.097 100.004 0.726 -0.462 -0.418 0.061 0.0046 

  
2 18.127 98.736 0.771 -0.375 

   

 
msl3-/msl3- 1 18.352 89.811 

     

  
2 18.643 79.476 

      
 
 
a-e as in Table S11. 
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TABLE S14: Abundance of miRNAs in msl3 mutant L3 larvae 

   G
e
n

o
ty

p
e
 

E
x
p

. 

A
v

e
ra

g
e
  

C
t 

a
 

C
o

rr
e
c
te

d
 

a
m

o
u

n
t 

b
 

F
o

ld
 

D
if

fe
re

n
c
e
 

(F
D

)c
 

lo
g

2
 (

F
D

) 

A
v

e
ra

g
e

 
lo

g
2
(F

D
) 

S
D

 d
 

p
 v

a
lu

e
 e

 

Dspt4 msl3-/msl3+ 1 26.1455 48.078 1.000 0.000       

  
2 26.1633 47.750 1.000 0.000 

   

 
msl3-/msl3- 1 24.995 74.796 

     

  
2 25.335 65.635 

     mir-314 msl3-/msl3+ 1 21.1699 35123.558 0.350 -1.514 -1.441 0.104 0.0003 

  
2 21.2272 33969.861 0.388 -1.367 

   

 
msl3-/msl3- 1 22.213 19128.386 

     

  
2 22.307 18104.321 

     mir-981 msl3-/msl3+ 1 29.5758 476.005 0.655 -0.609 -0.290 0.452 0.1481 

  
2 30.2449 359.989 1.021 0.030 

   

 
msl3-/msl3- 1 29.529 485.377 

     

  
2 29.433 505.205 

     mir-13b msl3-/msl3+ 1 21.4858 344.693 0.540 -0.889 -0.905 0.022 0.0079 

  
2 21.5918 325.964 0.528 -0.921 

   

 
msl3-/msl3- 1 21.817 289.481 

     

  
2 22.199 236.640 

     mir-100 msl3-/msl3+ 1 26.8667 291.331 0.208 -2.262 -2.062 0.284 0.0032 

  
2 27.1654 255.822 0.275 -1.861 

   

 
msl3-/msl3- 1 29.455 94.471 

     

  
2 29.398 96.819 

     mir-
1013 msl3-/msl3+ 1 29.240 142.324 0.573 -0.803 -0.610 0.273 0.0861 

  
2 28.286 126.568 0.749 -0.417 

   

 
msl3-/msl3- 1 29.365 126.899 

     

  
2 29.391 130.301 

     U6 msl3-/msl3+ 1 17.259 307.518 0.601 -0.734 -1.024 0.410 0.0125 

  
2 17.538 512.989 0.402 -1.314 

   

 
msl3-/msl3- 1 17.532 287.625 

     

  
2 17.469 283.612 

      
 
a-e as in Table S11. 
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TABLE S15: Abundance of miRNAs in mle mutant salivary glands  

 G
e
n

o
ty

p
e
 

E
x
p

. 

A
v

e
ra

g
e
  

C
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a
 

C
o

rr
e
c
te

d
 

a
m

o
u

n
t 
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F
o

ld
 

D
if

fe
re

n
c
e
 

(F
D

)c
 

lo
g

2
 (

F
D

) 

A
v

e
ra

g
e

 
lo

g
2
(F

D
) 

S
D

 d
 

p
 v

a
lu

e
 e

 

Dspt4 mle-/mle+ 1 24.693 102.093 1.000 0.000       

  
2 24.533 100.668 1.000 0.000 

   

 
mle-/mle- 1 23.901 170.434 

     

  
2 23.827 158.044 

     mir-283 mle-/mle+ 1 25.142 100.816 0.740 -0.435 -0.430 0.008 0.0040 

  
2 24.812 102.914 0.745 -0.425 

   

 
mle-/mle- 1 24.788 124.474 

     

  
2 24.510 120.380 

     mir-304 mle-/mle+ 1 30.746 96.522 0.636 -0.652 -0.739 0.123 0.0031 

  
2 31.004 99.139 0.564 -0.826 

   

 
mle-/mle- 1 30.568 102.559 

     

  
2 31.168 87.778 

     mir-12 mle-/mle+ 1 21.652 101.133 0.532 -0.910 -0.946 0.051 0.0003 

  
2 21.533 100.745 0.506 -0.983 

   

 
mle-/mle- 1 21.869 89.833 

     

  
2 21.882 80.045 

     mir-979 mle-/mle+ 1 36.290 101.068 0.730 -0.454 -0.635 0.257 0.0203 

  
2 35.292 102.616 0.568 -0.817 

   

 
mle-/mle- 1 36.064 123.209 

     

  
2 35.753 91.460 

     mir-210 mle-/mle+ 1 29.642 107.507 0.782 -0.355 -0.182 0.244 0.2301 

  
2 29.573 109.561 0.994 -0.009 

   

 
mle-/mle- 1 29.288 140.360 

     

  
2 29.094 170.943 

     U6 mle-/mle+ 1 18.185 99.069 0.883 -0.180 0.098 0.393 0.3556 

  
2 18.095 99.106 1.298 0.376 

   

 
mle-/mle- 1 17.555 146.012 

     

  
2 17.022 201.962 

      
a-e as in Table S11. 
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TABLE S16: Abundance of miRNAs in mle mutant L3 larvae 

   G
e
n

o
ty

p
e
 

E
x
p

. 

A
v

e
ra

g
e
  

C
t 

a
 

C
o

rr
e
c
te

d
 

a
m

o
u

n
t 

b
 

F
o

ld
 

D
if

fe
re

n
c
e
 

(F
D

)c
 

lo
g

2
 (

F
D

) 

A
v

e
ra

g
e

 
lo

g
2
(F

D
) 

S
D

 d
 

p
 v

a
lu

e
 e

 

Dspt4 mle-/mle+ 1 25.034 81.970 1.000 0.000       

  
2 24.991 76.150 1.000 0.000 

   

 
mle-/mle- 1 25.047 81.265 

     

  
2 24.697 90.724 

     mir-283 mle-/mle+ 1 26.352 48.723 0.807 -0.309 -0.165 0.204 0.2143 

  
2 26.170 46.630 0.986 -0.021 

   

 
mle-/mle- 1 26.717 38.996 

     

  
2 25.887 54.769 

     mir-304 mle-/mle+ 1 33.859 16.253 1.264 0.338 0.117 0.313 0.2913 

  
2 33.412 15.797 0.930 -0.104 

   

 
mle-/mle- 1 33.445 20.368 

     

  
2 33.277 17.510 

     mir-12 mle-/mle+ 1 24.132 19.072 0.892 -0.165 -0.164 0.002 0.0126 

  
2 24.135 18.169 0.894 -0.162 

   

 
mle-/mle- 1 24.311 16.868 

     

  
2 24.037 19.341 

     mir-979 mle-/mle+ 1 32.007 1533.669 1.972 0.980 0.550 0.607 0.3187 

  
2 31.470 404.038 1.088 0.121 

   

 
mle-/mle- 1 30.972 2998.693 

     

  
2 30.760 523.538 

     mir-210 mle-/mle+ 1 26.990 1098.538 1.579 0.659 0.484 0.247 0.3002 

  
2 26.722 2357.685 1.239 0.309 

   

 
mle-/mle- 1 26.467 1719.262 

     

  
2 26.347 3479.985 

     U6 mle-/mle+ 1 16.909 227.810 1.506 0.591 0.559 0.046 0.3274 

  
2 16.978 208.576 1.440 0.526 

   

 
mle-/mle- 1 16.296 340.231 

     

  
2 16.160 357.836 

      
a-e as in Table S11. 
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Table S17: Levels of let-7 miRNA in adult females and males 

 

Tissue CTlet±7 

± StDev 

CT 2SrRNA  

± StDev 

∆CT (∆CT 

let-7 - ∆CT 

2SrRNA) a 

∆∆CT (∆CT- 

∆CT control) b 

Average  

∆∆CT ± 

StDev 

Fold  

Difference c 

F
e

m
a

le
 

c
a

rc
a

s
s
e

s
 

Exp 1 25.33±0.30 6.14±0.24 19.19±0.39 0.00±0.39 

0.00±0.28 1.00  

(0.82 - 1.22) 
Exp 2 26.35±0.30 8.29±0.36 18.06±0.47 0.00±0.47 

G
e

rm
a

ri
a

 Exp 1 22.18±0.18 6.29±0.09 15.90±0.20 3.29±0.20 

-2.24±0.11 
4.72 

(4.38  - 5.09) 

p=7.76x10
-6***

 Exp 2 22.35±0.05 7.72±0.11 14.63±0.12 3.43±0.12 

M
a

le
 

c
a

rc
a

s
s
e

s
 

Exp 1 22.71±0.11 7.10±0.03 15.61±0.12 3.58±0.12 

-1.92±0.09 
3.79 

(3.57 – 4.02) 

p=1.55x10
-6***

 Exp 2 23.68±0.08 7.80±0.12 15.88±0.14 2.18±0.14 

T
e

s
te

s
 Exp 1 21.14±0.26 6.56±0.03 14.58±0.26 4.61±0.26 

-2.89±0.12 
7.43 

 (6.84 - 8.07) 

p=7.73x10
-8***

 Exp 2 22.40±0.05 8.41±0.09 13.99±0.10 4.07±0.10 

 

a: ∆C T was determined by subtracting the average 2SrRNA CT value from the 
average Experimental CT value. The standard deviation of the difference is calculated 
from the standard deviation of the Experimental and 2SrRNA values using the 
formula s = √(s1

2 + s2
2) where s = standard deviation 

b: ∆∆CT is calculated by subtracting the ∆CT control value (∆CT of female carcasses). 
The standard deviation is the same as for ∆CT 
c: the fold difference between the Experimental Sample and the control is calculated 
by: 2±∆∆CT with ∆∆CT -s and ∆∆CT –s where s is the standard deviation of ∆∆CT value 
The fold difference of the experimental values was compared to the respective 
control. P-value was calculated using the two tailed Students t-test. *p<0.05. 
**p<0.005. ***p<0.0005 
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Table S18: Levels of sex specific mRNAs in Δlet-7 females and males 

 

Genotype 
CT SxlF  

± StDev 

CT RpL32   
± StDev 

∆CT (∆CT 

SxlF- ∆CT 

RpL32) a 

∆∆CT (∆CT-

∆CT control) b 
Fold Difference c 

F
e

m
a

le
s
 Control: 

let-7-C 

Rescue 

16.15±0.22 11.32±0.12 4.83±0.25 0.00±0.25 1.00 (0.840-1.190) 

Δ let-7 15.95±0.03 11.16±0.09 4.78±0.25 -0.05±0.09 
1.033 (0.969-1.102) 

p=0.70 

M
a

le
s
 

Control: 

let-7-C 

Rescue 

21.48±0.12 12.28±0.16 9.21±0.20 0.00±0.20 1.00 (0.872-1.147) 

Δ let-7 18.89±0.09 12.20±0.22 6.69±0.23 -2.51±0.23 
5.704 (4.853-6.705) 

1.73x10
-4

*** 

Genotype 
CT tra1 

± StDev 

CT RpL32   
± StDev 

∆CT (∆CT 

tra1- ∆CT 

RpL32) a 

∆∆CT (∆CT-

∆CT control) b 
Fold Difference c 

F
e

m
a

le
s
 Control: 

let-7-C 

Rescue 

21.30±0.13 11.32±0.12 9.98±0.17 0.00±0.17 1.00 (0.886-1.129) 

Δ let-7 20.72±0.14 11.16±0.09 9.56±0.16 -0.42±0.16 
1.334 (1.190-1.495) 

p=0.06 

M
a

le
s
 

Control: 

let-7-C 

Rescue 

29.84±0.03 12.28±0.16 17.57±0.16 0.00±0.16 1.00 (0.896-1.116) 

Δ let-7 29.66±0.09 12.20±0.22 17.46±0.23 -0.11±0.23 
1.079 (0.917-1.270) 

p=0.40 

Genotype 
CT DsxM  

± StDev 

CT RpL32   
± StDev 

∆CT (∆CT 

DsxM- ∆CT 

RpL32) a 

∆∆CT (∆CT-

∆CT control) b 
Fold Difference c 

F
e

m
a

le
s
 Control: 

let-7-C 

Rescue 

25.23±0.09 11.32±0.12 13.90±0.15 0.00±0.15 
1.00 (0.900-1.111) 

 

Δ let-7 25.69±0.05 11.16±0.09 14.52±0.10 0.62±0.10 
0.649 (0.605-0.697) 

 p=1.83x10
-3

** 

M
a

le
s
 

Control: 

let-7-C 

Rescue 

17.89±0.33 12.28±0.16 5.61±0.37 0.00±0.37 1.00 (0.950-1.052) 

Δ let-7 17.94±0.03 12.20±0.22 5.74±0.22 0.30±0.17 
0.914 (0.786-1.062) 

0.75 
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Genotype 
CT Yp1 

± StDev 

CT RpL32   
± StDev 

∆CT (∆CT 

Yp1- ∆CT 

RpL32) a 

∆∆CT (∆CT-

∆CT control) b 
Fold Difference c 

F
e

m
a

le
s
 Control: 

let-7-C 

Rescue 

10.33±0.07 11.32±0.12 -1.00±0.14 0.00±0.14 1.00 (0.908-1.101) 

Δ let-7 12.93±0.10 11.16±0.09 1.77±0.13 2.76±0.13 
0.147 (0.134-0.162) 

p=3.29x10
-6

*** 

M
a

le
s
 

Control: 

let-7-C 

Rescue 

25.99±0.05 12.28±0.16 13.71±0.16 0.00±0.16 1.00 (0.894-1.119) 

Δ let-7 25.01±0.13 12.20±0.22 12.81±0.25 -0.90±0.25 
1.867 (1.568-2.223) 

p=9.85x10
-4

** 

 

a: ∆CT was determined by subtracting the average RpL32 CT value from the average 

Experimental CT value. The standard deviation of the difference is calculated from 

the standard deviation of the Experimental and RpL32 values using the formula s = 

√(s1
2 + s2

2) where s = standard deviation 

b: ∆∆C T is calculated by subtracting the ∆CT control. The standard deviation is the 

same as for ∆CT 

c: the fold difference between the Experimental Sample and the control is calculated 

by: 2-∆∆CT with ∆∆CT +s and ∆∆CT –s where s is the standard deviation of ∆∆CT value. 

The fold difference of the experimental values was compared to the respective 

control. P-value was calculated using the two tailed Students t-test. *p<0.05, 

**p<0.005. ***p<0.0005 
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Table S19: let-7 expression depends on ecdysone signaling in adult ovaries and testes 

 

 

a: ∆C T values were determined by subtracting the average RpL32 or 2SrRNA CT 
value from the average Experimental CT value. The standard deviation of the 
difference is calculated from the standard deviation of the Experimental and RpL32 
or 2SrRNA values using the formula s = √(s1

2 + s2
2) where s = standard deviation 

b: ∆∆C T is calculated by subtracting the ∆CT control value (∆CT of the respective 

genotype at 18°C). The standard deviation is the same as for ∆CT 

c: the fold difference between the Experimental Sample and the control is calculated 

by: 2-∆∆CT with ∆∆CT +s and ∆∆CT –s where s is the standard deviation of ∆∆CT value.  

The fold difference of the experimental values was compared to the respective 

control. P-value between ∆CT values of the experiments was calculated using the two 

tailed Students t-test 

d: The relative changes of let-7 levels were calculated by dividing the fold difference 

ranges of ecd1ts and OrR. Students T-test was used to compare the relative changes 

*p<0.05, **p<0.005 

  

 

Genotype, 

conditions 

CT let-7 

± StDev
a
 

CT RpL32 

± StDev 

∆CT (∆CT 

let-7 - ∆CT 

RpL32)
 a
 

∆∆CT (∆CT-

∆CT
control 

)
b
 

Fold 

Difference
 c
 

Relative 

change 

of let-7 

levels 
d
 

F
e

m
a

le
s
 

OregonR, 
4d at 18°C 

25.88±0.16 14.13±0.21 11.74±0.06 0.00±0.06 
1.00 

(0.96-1.04) 
1.00 

(0.88-1.13) OregonR, 

4d at 29°C 
25.00±0.04 14.39±0.17 10.58±0.18 -1.16±0.18 

2.24 

(1.98-2.54) 

p=2.01x10
-5

*** 

ecd1ts 4210, 

4d at 18°C 
24.07±0.04 13.42±0.28 10.65±0.05 0.00±0.05 

1.00 

(0-97-1.03) 
0.38 

(0.37.0.38) 

p=2.44x10
-

4
*** 

ecd1ts 4210, 

4d at 29°C 
24.80±0.15 13.96±0.45 10.92±0.001 0.27±0.001 

0.84 

(0.84-0.84) 

p=0.14 

 Genotype, 

conditions 

CT let-7 

± StDev 

CT 

S2rRNA 

± StDev 

∆CT (∆CT 

let-7 - ∆CT 

S2rRNA)
 a
 

∆∆CT (∆CT-

∆CT
control 

)
b
 

Fold 

Difference
 c
 

Relative 

change 

of let-7 

levels 
d
 

M
a

le
s
 

OregonR, 

4d at 18°C 
22.90±0.03 8.41±0.11 14.49±0.13 0.00±0.13 

1.00 

(0.91-1.09) 
1.00 

(0.92-1.08) OregonR, 

4d at 29°C 
22.55±0.03 8.35±0.12 14.20±0.12 -0.29±0.12 

1.23 

(1.14-1.33) 

p=0.02* 

ecd1ts 4210, 

4d at 18°C 
22.13±0.55 8.33±0.09 13.80±0.15 0.00±0.15 

1.00 

(0.90-1.11) 
0.24 

(0.23-0.25) 

p=1.77x10
-

4
*** 

ecd1ts 4210, 

4d at 29°C 
23.49±0.02 7.87±0.11 15.64±0.08 1.85±0.08 

0.29 

(0.28-0.31) 

p=3.59x10
-4

*** 
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Table S20: Levels of sex specific mRNAs are misregulated upon ecdysone deficit 

 

Genotype, 

conditions 

CT DsxM  
± StDev 

CT Rpl32   
± StDev 

∆CT (∆CT 

DsxM- 

∆CT 

Rpl32) a 

∆∆CT 

(∆CT-∆CT 
control) b 

Fold Difference c 

F
e

m
a

le
s
 

Control: 

OrR 
18°C 26.20±0.07 15.40±0.20 10.80±0.21 0.00±0.21 1.00 (0.866-1.155) 

OrR 29°C 26.34±0.01 13.95±0.03 12.39±0.03 1.58±0.03 
0.334 (0.326-0.341) 

p=3.73x10
-3

** 

Control: 

ecd1ts 
18°C 26.41±0.07 13.69±0.07 12.72±0.10 0.00±0.10 1.00 (0.935-1.070) 

ecd1ts 29°C 25.88±0.12 14.36±0.07 11.52±0.14 -1.20±0.14 
2.299 (2.081-2.539) 

2.59x10
-4

*** 

M
a

le
s
 

Control: 

OrR 
18°C 17.84±0.04 15.67±0.15 2.17±0.16 0.00±0.16 1.00 (0.896-1.116) 

OrR 29°C 18.17±0.06 15.45±0.29 2.72±0.30 0.55±0.30 
0.681 (0.553-0.838) 

p=0.06 

Control: 

ecd1ts 
18°C 18.40±0.02 15.77±0.20 2.63±0.20 0.00±0.20 1.00 (0.868-1.152) 

ecd1ts 29°C 18.04±0.05 14.60±0.14 3.45±0.25 0.81±0.15 
0.569 (0.511-0.633)  

p=7.97x10
-3

* 

 

Genotype, 

conditions 

CT Esg 

± StDev 

CT Rpl32   
± StDev 

∆CT (∆CT 

Esg- ∆CT 

Rpl32) a 

∆∆CT 

(∆CT-∆CT 
control) b 

Fold Difference c 

F
e

m
a

le
s
 

Control: 

OrR 
18°C 29.30±0.09 15.40±0.20 13.90±0.22 0.00±0.22 1.00 (0.862-1.161) 

OrR 29°C 27.90±0.08 13.95±0.03 13.94±0.09 0.04±0.09 
0.970 (0.912-1.032) 

p=0.81 

Control: 

ecd1ts 
18°C 24.39±0.28 13.69±0.07 10.70±0.28 0.00±0.28 1.00 (0.821-1.218) 

ecd1ts 29°C 24.69±0.22 14.36±0.07 10.33±0.24 -0,37±0.24 
1.293 (1.097-1.523) 

p=0.07 

M
a

le
s
 

Control: 

OrR 
18°C 26.86±0.05 15.67±0.15 11.19±0.16 0.00±0.16 1.00 (0.894-1.119) 

OrR 29°C 
27.48±0.00

3 
15.45±0.29 12.03±0.29 0.84±0.29 

0.559 (0.456-0.685) 

p=0.55 

Control: 

ecd1ts 
18°C 25.89±0.02 15.77±0.20 10.12±0.20 0.00±0.20 1.00 (0.868-1.152) 

ecd1ts 29°C 25.34±0.13 14.60±0.14 10.75±0.20 0.63±0.20 
0.648 (0.566-0.742) 

p=8.77x10
-3

* 
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Genotype, 

conditions 

CT SxlFl1 

± StDev 

CT Rpl32   
± StDev 

∆CT (∆CT 

SxlFl1- 

∆CT 

Rpl32) a 

∆∆CT 

(∆CT-∆CT 
control) b 

Fold Difference c 

F
e

m
a

le
s
 

Control: 

OrR 
18°C 17.81±0.08 15.40±0.20 2.41±0.21 0.00±0.21 1.00 (0.864-1.158) 

OrR 29°C 15.96±0.16 13.95±0.03 2.00±0.16 -0.41±0.16 
1.330 (1.189-1.487) 

p=5.00x10
-2

* 

Control: 

ecd1ts 
18°C 16.02±0.04 13.69±0.07 2.33±0.08 0.00±0.08 1.00 (0.947-1.056) 

ecd1ts 29°C 16.18±0.16 14.36±0.07 1.82±0.17 -0.51±0.17 
1.424 (1.262-1.607) 

p=1.64x10
-3

** 

M
a

le
s
 

Control: 

OrR 
18°C 21.05±0.12 15.67±0.15 5.38±0.20 0.00± 1.00 (0.873-1.146) 

OrR 29°C 21.44±0.07 15.45±0.29 5.99±0.30 0.61± 
0.653 (0.530-0.805) 

p=0.15 

Control: 

ecd1ts 
18°C 22.24±0.12 15.77±0.20 6.47±0.24 0.00± 1.00 (0.848-1.179) 

ecd1ts 29°C 19.38±0.07 14.60±0.14 4.78±0.16 -1.69± 
3.222 (2.883-3.600) 

p=9.13x10
-3

** 

 

Genotype, 

conditions 

CT tra1 

± StDev 

CT Rpl32   
± StDev 

∆CT (∆CT 

tra1- ∆CT 

Rpl32) a 

∆∆CT 

(∆CT-∆CT 
control) b 

Fold Difference c 

F
e

m
a

le
s
 

Control: 

OrR 
18°C 21.04±0.05 15.40±0.20 5.64±0.20 0.00±0.20 1.00 (0.868-1.152) 

OrR 29°C 19.87±0.11 13.95±0.03 5.92±0.11 0.28±0.11 
0.826 (0.765-0.891) 

p=0.14 

Control: 

ecd1ts 
18°C 20.01±0.08 13.69±0.07 6.32±0.11 0.00±0.11 1.00 (0.927-1.079) 

ecd1ts 29°C 20.69±0.11 14.36±0.07 6.33±0.13 0.008±0.13 
0.994 (0.909-1.088) 

p=0.93 

M
a

le
s
 

Control: 

OrR 
18°C 28.84±0.09 15.67±0.15 13.18±0.18 0.00±0.18 1.00 (0.885-1.129) 

OrR 29°C 28.67±0.05 15.45±0.29 13.22±0.30 0.05±0.30 
0.969 (0.789-1.190) 

p=0.73 

Control: 

ecd1ts 
18°C 28.69±0.12 15.77±0.20 12.92±0.23 0.00±0.23 1.00 (0.850-1.176) 

ecd1ts 29°C 23.68±0.06 14.60±0.14 9.08±0.16 -3.84±0.16 
14.277 (12.801-15.924) 

p=1.76x10
-5

*** 
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Genotype, 

conditions 

CTYp1 

± StDev 

CT Rpl32   
± StDev 

∆CT (∆CT 

Yp1- ∆CT 

Rpl32) a 

∆∆CT 

(∆CT-∆CT 
control) b 

Fold Difference c 

F
e

m
a

le
s
 

Control: 

OrR 
18°C 12.33±0.14 15.40±0.20 -3.07±0.24 0.00±0.24 1.00 (0.846-1.182) 

OrR 29°C 11.21±0.23 13.95±0.03 -2.74±0.23 0.33±0.23 
0.794 (0.678-0.930) 

p=0.12 

Control: 

ecd1ts 
18°C 10.86±0.31 13.69±0.07 -2.82±0.32 0.00±0.32 1.00 (0.800-1.249) 

ecd1ts 29°C 11.24±0.20 14.36±0.07 -3.12±0.21 -0.30±0.21 
1.231 (1.061-1.428) 

p=0.15 

M
a

le
s
 

Control: 

OrR 
18°C 26.15±0.11 15.67±0.15 10.48±0.19 0.00±0.19 1.00 (0.876-1.142) 

OrR 29°C 25.57±0.03 15.45±0.29 10.12±0.29 -0.36±0.29 
1.285 (1.048-1.576) 

p=0.14 

Control: 

ecd1ts 
18°C 24.63±0.08 15.77±0.20 8.86±0.22 0.00±0.22 1.00 (0.86-1.163) 

ecd1ts 29°C 16.76±0.06 14.60±0.14 2.16±0.16 -6.702±0.16 
104.080 (93.395-115.987) 

p=3.22x10
-6

*** 

 

a: ∆CT was determined by subtracting the average RpL32 CT value from the average 

Experimental CT value. Since the same set of samples was used for all PCRs, the 

same RpL32 CT values are used as internal control. The standard deviation of the 

difference is calculated from the standard deviation of the Experimental and RpL32 

values using the formula s = √(s1
2 + s2

2) where s = standard deviation. 

b: ∆∆CT is calculated by subtracting the ∆CT control value (∆CT of the sample of the 

respective sex and genotype at 18°C). The standard deviation is the same as for 

∆CT. 

c: the fold difference between the Experimental Sample and the control is calculated 

by: 2-∆∆CT with ∆∆CT +s and ∆∆CT –s where s is the standard deviation of ∆∆CT value. 

The fold difference of the experimental values was compared to the respective 

control. P-value was calculated using the two tailed Students t-test. *p<0.05, 

**p<0.005. ***p<0.0005. 
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Table S21. Ecdysteroid deficit leads to differentiation defects in the CySC 

lineage cells in adult testes 

Genotype, 
conditions 

Clustering of somatic cyst 
cells 

Appearance of epithelium-like 
clusters 

< 5 
cells 

≥ 5 
cells 

> 10 
cells 

P 
value 

None Apical Lateral P value 

Control: 
ecd

1ts, 
5 days, 18° 

40% 60% 0%  100% 0% 0%  

ecd
1ts, 

5 days, 29° 
7%  57% 36% 0.0368* 43% 43% 14% 0.0137* 

Control: 
ecd

1ts, 
11 days, 

18° 

50% 50% 0%  83% 17% 0%  

ecd
1ts, 

11 days, 
29° 

17% 8% 75% 0.0113* 0% 50% 50% 0.0001*** 

 
To calculate the significance two-way tables and chi-squared test with 2 degrees 

of freedom were used. The frequencies of the testes with the somatic cell 

clustering phenotype (<5, ≥ 5 or >10 somatic cell in the cluster) and the 

frequencies of the testes with epithelial sheets (none, apical or lateral) acquired 

by induction of ecdysone deficit for 5d or 11d at the restrictive temperature (29°) 

were compared to the frequencies of the same phenotypes in flies with the same 

genotype but kept for the same periods of time (5d or 11d) at the permissive 

temperature (18°). N=10-20 testes for each genotype. *p<0.05, **p<0.005. 

***p<0.0005. 
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Chrom miRNA S2 M (%) miRNA Kc  F (%) miRNA

S. Gland M 

(%) miRNA

S. Gland  F 

(%) miRNA Head M (%) miRNA Head F ( %) miRNA Body M (%) miRNA Body F (%) miRNA

Testis         

(%) miRNA Ovary (%)

chr2R mir‐14 38.35286 mir‐14 29.10042 mir‐8 32.42188 mir‐8 35.66808 mir‐8 14.57004 mir‐8 11.43554 mir‐1 25.56082 mir‐1 26.75240 mir‐12 16.87054 mir‐989 18.37262

chr2R mir‐184 11.34536 mir‐184 16.37821 mir‐263a 10.45437 mir‐12 8.49222 mir‐1 9.99692 mir‐1 8.17673 mir‐8 23.01229 mir‐8 25.64450 mir‐8 15.35016 bantam 11.43364

chr3L bantam 7.44158 mir‐2a 4.44288 mir‐375 7.15235 mir‐263a 7.75277 bantam 8.19215 mir‐276a 7.62653 bantam 12.55761 bantam 9.78819 mir‐305 5.03802 mir‐8 9.30021

chr3R mir‐996 4.85129 mir‐8 4.14932 mir‐12 6.25415 mir‐375 6.71742 mir‐276a 5.81087 bantam 7.13572 mir‐276a 4.65975 mir‐276 5.02046 mir‐959 4.67717 mir‐2a 7.72512

chr3R mir‐279 3.46812 bantam 4.07801 mir‐304 5.72874 mir‐282 6.30407 mir‐276 5.39112 mir‐210 4.99725 mir‐277 3.91230 mir‐276a 4.27473 mir‐2a 3.85408 mir‐318 7.24950

chr3R mir‐11 3.29268 mir‐34 3.39610 mir‐275 5.19227 mir‐304 6.00679 mir‐277 4.66334 mir‐277 4.90334 mir‐276 2.46689 mir‐2a 2.93279 let‐7 3.13374 mir‐184 6.40474

chr3R mir‐34 2.93382 mir‐988 3.37195 bantam 4.71150 bantam 4.82103 mir‐184 4.05515 mir‐184 4.17368 mir‐2a 2.19543 mir‐277 2.68239 mir‐34 3.10799 mir‐996 5.91867

chr2R mir‐988 2.89604 mir‐317 3.14547 mir‐2a 3.04332 mir‐11 2.45542 mir‐34 3.57697 mir‐34 3.61372 mir‐996 1.54310 mir‐989 1.76169 mir‐282 3.00171 mir‐2b 3.30079

chr3L mir‐282 2.84211 mir‐2b 3.10880 mir‐305 2.73388 mir‐13b 2.44753 mir‐2b 3.41702 mir‐14 3.20424 let‐7 1.48826 mir‐282 1.68466 mir‐964 2.74226 mir‐994 3.00554

chr3R mir‐252 2.78986 mir‐276 2.30014 mir‐2b 2.43359 mir‐305 1.92719 mir‐2a 3.22916 mir‐285 2.95344 mir‐9a 1.48086 mir‐31a 1.48123 mir‐277 2.58692 mir‐275 2.61547

chr3R mir‐13b 2.42533 mir‐996 2.29723 mir‐13b 1.98678 mir‐2a 1.91021 mir‐285 3.21797 mir‐2a 2.92097 mir‐14 1.34500 mir‐2b 1.20586 mir‐11 2.50748 mir‐13b 2.19972

chr2L mir‐2b 2.09460 mir‐279 2.25699 mir‐11 1.91047 mir‐2b 1.55036 mir‐14 2.46292 mir‐2b 2.73268 mir‐31a 1.27792 mir‐9a 1.18265 mir‐978 2.29276 mir‐9b 2.19650

chr3R mir‐317 1.92167 mir‐13b 2.19551 mir‐283 1.78685 mir‐283 1.53792 mir‐210 2.43620 mir‐276 2.71511 mir‐282 1.19988 mir‐996 1.08039 mir‐977 2.19598 mir‐263a 1.46179

chr3L mir‐276a 1.91873 mir‐11 2.08551 mir‐282 1.58233 mir‐996 1.19958 mir‐124 2.35303 mir‐274 2.60279 mir‐12 1.09602 let‐7 1.07663 mir‐274 2.14935 mir‐79 1.39712

chr2L mir‐2a 1.64508 mir‐9b 1.77317 mir‐996 1.13781 mir‐276 1.15280 mir‐13b 2.20357 let‐7 2.39044 mir‐13b 1.08115 mir‐184 1.05731 mir‐976 2.04009 mir‐282 1.37663

chr3L mir‐276 0.94940 mir‐276a 1.62248 mir‐308 1.06112 mir‐308 0.99607 let‐7 1.62439 mir‐124 2.28452 mir‐10 0.98418 mir‐13b 0.95693 mir‐9a 1.85601 mir‐11 1.34088

chr2R mir‐8 0.84006 mir‐12 1.57688 mir‐14 0.99282 mir‐998 0.99113 mir‐1000 1.47162 mir‐252 1.76221 mir‐2b 0.93727 mir‐10 0.83951 mir‐983 1.82510 mir‐34 1.31839

chr3R mir‐995 0.78928 mir‐305 1.53819 mir‐998 0.81005 mir‐276a 0.73590 mir‐263a 1.36504 mir‐13b 1.62700 mir‐281‐1 0.90548 mir‐11 0.75229 mir‐9b 1.82375 mir‐305 1.08218

chr3R mir‐277 0.77711 mir‐2a‐2 1.44698 mir‐276 0.74252 mir‐79 0.69444 mir‐987 1.15961 mir‐9a 1.53286 mir‐304 0.88408 mir‐14 0.73860 mir‐14 1.82239 mir‐9c 0.93878

chr2L mir‐305 0.69694 mir‐306 0.91420 mir‐34 0.62690 mir‐995 0.63562 mir‐252 1.13643 mir‐996 1.28000 mir‐184 0.78891 mir‐281‐1 0.71807 mir‐988 1.78579 mir‐12 0.91588

chr3R mir‐998 0.65434 mir‐998 0.88647 mir‐995 0.62232 mir‐34 0.58884 mir‐274 1.09402 mir‐263a 1.21244 mir‐279 0.74956 mir‐314 0.59703 mir‐2b 1.64237 mir‐33 0.83634

chr2L mir‐306 0.52465 mir‐9c 0.84265 mir‐79 0.61202 mir‐14 0.52468 mir‐7 1.09173 mir‐1000 1.20431 mir‐11 0.74272 mir‐279 0.55596 mir‐960 1.47375 mir‐995 0.76444

chr2L mir‐9b 0.51688 mir‐995 0.83930 mir‐9a 0.58760 mir‐275 0.51086 mir‐9a 0.95078 mir‐31a 1.03433 mir‐305 0.71838 mir‐263a 0.52228 mir‐13b 1.41302 mir‐14 0.63107

chr2L mir‐79 0.42874 mir‐79 0.80867 mir‐9b 0.47962 mir‐33 0.44533 mir‐929 0.94692 mir‐11 1.00219 mir‐79 0.62466 mir‐305 0.49544 mir‐317 1.21701 mir‐1 0.62224

chr2L mir‐2a‐2 0.42286 mir‐282 0.68950 mir‐33 0.47275 mir‐9a 0.43289 mir‐31a 0.91492 mir‐7 0.96850 mir‐263a 0.60851 mir‐34 0.43546 mir‐316 1.19749 mir‐312 0.58247

chr3L mir‐33 0.40440 mir‐33 0.60276 mir‐276a 0.44185 mir‐277 0.32768 mir‐305 0.89363 mir‐125 0.96574 mir‐314 0.59811 mir‐12 0.37588 mir‐311 0.97111 mir‐276a 0.56319

chr2L mir‐9c 0.39789 mir‐277 0.37739 mir‐306 0.40712 mir‐9b 0.32531 mir‐996 0.82355 mir‐305 0.95444 mir‐33 0.49554 mir‐9c 0.32609 mir‐310 0.90984 mir‐276 0.52462

chrX mir‐980 0.32192 mir‐308 0.37672 mir‐252 0.31708 mir‐317 0.30320 mir‐317 0.70743 mir‐276b 0.78241 mir‐34 0.48268 mir‐79 0.29469 mir‐125 0.90306 mir‐7 0.48967

chr3R mir‐1003 0.31206 mir‐92a 0.33044 mir‐184 0.30906 mir‐1 0.29669 mir‐279 0.65784 mir‐133 0.76965 mir‐958 0.37959 mir‐304 0.28288 mir‐278 0.65771 mir‐306 0.40612

chr2R mir‐308 0.31122 mir‐970 0.26494 mir‐277 0.30792 mir‐279 0.29452 mir‐79 0.60700 mir‐987 0.74956 mir‐316 0.28530 mir‐958 0.28221 mir‐276a 0.60945 let‐7 0.35792

chrX mir‐970 0.23924 mir‐2b‐2 0.24593 mir‐278 0.30410 mir‐306 0.22582 mir‐276b 0.57736 mir‐307 0.74442 mir‐9c 0.28334 mir‐278 0.27375 mir‐984 0.59671 mir‐31a 0.35390

chr2R mir‐307 0.19559 mir‐278 0.24571 mir‐9c 0.28121 mir‐184 0.21418 mir‐999 0.56703 mir‐317 0.67901 mir‐125 0.26945 mir‐33 0.26490 mir‐975 0.57855 mir‐92a 0.31453

chr2L mir‐965 0.11731 mir‐981 0.21284 mir‐317 0.27396 mir‐9c 0.18161 mir‐125 0.56561 mir‐929 0.62341 mir‐281‐2 0.26235 mir‐281‐2 0.23215 mir‐9c 0.55577 mir‐304 0.29846

chr2L mir‐2b‐1 0.10451 mir‐283 0.20792 mir‐1 0.25908 mir‐31a 0.15061 mir‐282 0.53936 mir‐79 0.62224 mir‐278 0.25546 mir‐125 0.23054 mir‐312 0.46197 mir‐984 0.28641

chr2L mir‐275 0.09674 mir‐1003 0.20166 mir‐988 0.21291 mir‐252 0.12712 mir‐11 0.48946 mir‐279 0.60837 mir‐375 0.24167 mir‐316 0.22987 mir‐279 0.42130 mir‐313 0.25267

chr2L mir‐2b‐2 0.09045 mir‐1000 0.19384 mir‐31a 0.19879 mir‐965 0.11192 mir‐957 0.48513 mir‐957 0.57258 mir‐956 0.22336 mir‐9b 0.21578 mir‐375 0.40422 mir‐279 0.25106

chrX mir‐12 0.08709 mir‐304 0.18803 mir‐2b‐1 0.17590 mir‐988 0.10640 mir‐13a 0.44209 mir‐999 0.49348 mir‐9b 0.21930 mir‐252 0.19055 mir‐92a 0.38606 mir‐317 0.21250

chr2R mir‐7 0.06967 mir‐275 0.18601 mir‐279 0.12248 mir‐278 0.10383 mir‐307 0.44043 mir‐278 0.42620 mir‐252 0.20762 mir‐956 0.18693 mir‐31a 0.30744 mir‐281‐1 0.20969

chrX mir‐13b‐2 0.06275 mir‐965 0.13593 mir‐1012 0.08776 mir‐2b‐1 0.09179 mir‐133 0.38123 mir‐13a 0.42396 mir‐274 0.18483 mir‐274 0.15821 mir‐252 0.26840 mir‐92b 0.20567

chr3R mir‐999 0.05184 mir‐92b 0.09994 mir‐986 0.08051 mir‐10 0.07797 mir‐998 0.37453 mir‐932 0.40957 mir‐7 0.15484 mir‐7 0.12453 mir‐972 0.26054 mir‐2b‐2 0.17916

chr2R mir‐281‐1 0.03756 mir‐999 0.08362 mir‐10 0.07593 mir‐1012 0.06830 mir‐10 0.29404 mir‐282 0.31584 mir‐980 0.15407 mir‐980 0.12185 mir‐306 0.25782 mir‐983 0.16590

chr2L mir‐2a‐1 0.03631 mir‐190 0.06886 mir‐2b‐2 0.07211 mir‐7 0.05330 mir‐932 0.28490 mir‐263b 0.28057 mir‐124 0.14728 mir‐929 0.10990 mir‐963 0.25105 mir‐998 0.16189

chr3L mir‐190 0.03589 mir‐980 0.06752 mir‐970 0.06754 mir‐986 0.04461 mir‐263b 0.24761 mir‐998 0.26211 mir‐317 0.12192 mir‐375 0.10883 mir‐31b 0.23722 mir‐2a‐2 0.13618

chr3R mir‐1012 0.03442 mir‐13b‐2 0.06707 mir‐7 0.06715 let‐7 0.04323 mir‐278 0.22301 mir‐9c 0.25580 mir‐31b 0.10638 mir‐999 0.10346 mir‐7 0.23397 mir‐316 0.13377

chr2R mir‐1008 0.01973 mir‐2a‐1 0.05791 mir‐965 0.04998 mir‐970 0.03908 mir‐9c 0.20614 mir‐10 0.22399 mir‐307 0.10612 mir‐275 0.10239 mir‐92b 0.20252 mir‐308 0.12975

chr2L mir‐263a 0.01385 mir‐7 0.05433 mir‐190 0.04960 mir‐2b‐2 0.03494 mir‐87 0.18478 mir‐193 0.20983 mir‐986 0.09671 mir‐308 0.09179 bantam 0.18625 mir‐986 0.12091

chr2L mir‐1006 0.01217 mir‐1008 0.03913 mir‐2a‐2 0.04273 mir‐190 0.03316 mir‐995 0.17776 mir‐2a‐2 0.20960 mir‐308 0.09589 mir‐317 0.07528 mir‐999 0.18246 mir‐125 0.10083

chr3L mir‐9a 0.01028 mir‐989 0.03532 mir‐1006 0.02709 mir‐2a‐2 0.03237 mir‐193 0.15593 mir‐87 0.19189 mir‐929 0.09311 mir‐87 0.07179 mir‐275 0.16402 mir‐307 0.09842

chrX mir‐283 0.01007 mir‐2b‐1 0.03085 mir‐13b‐2 0.02366 mir‐281‐1 0.02329 mir‐33 0.14694 mir‐9b 0.17409 mir‐960 0.08833 mir‐986 0.06844 mir‐304 0.15074 mir‐311 0.09560

chr2R mir‐278 0.00986 mir‐252 0.03063 mir‐281‐1 0.02099 mir‐1006 0.02112 mir‐2a‐2 0.14032 mir‐33 0.16610 mir‐999 0.07531 mir‐306 0.06696 mir‐184 0.14640 mir‐988 0.08596

chr2R mir‐286 0.00902 mir‐281‐1 0.02951 mir‐281‐2 0.02022 mir‐281‐2 0.01658 mir‐2b‐1 0.13275 mir‐995 0.15358 mir‐993 0.07449 mir‐307 0.06468 mir‐979 0.13474 mir‐2b‐1 0.07552

chr2R mir‐281‐2 0.00714 mir‐276b 0.02795 mir‐1003 0.01297 mir‐13b‐2 0.01382 mir‐9b 0.12274 mir‐316 0.15119 mir‐306 0.05926 mir‐124 0.06307 mir‐961 0.12932 mir‐281‐2 0.07070

chrX mir‐304 0.00714 mir‐932 0.02638 mir‐210 0.01183 mir‐92b 0.01263 mir‐970 0.11367 mir‐970 0.14573 mir‐263b 0.05885 mir‐995 0.06159 mir‐962 0.12769 mir‐31b 0.06829

chr3R mir‐13a 0.00525 mir‐1006 0.02169 mir‐92b 0.01183 mir‐125 0.01244 mir‐92a 0.11202 mir‐12 0.12531 mir‐965 0.05808 mir‐998 0.06159 mir‐992 0.10709 mir‐965 0.05825

chrX mir‐984 0.00525 mir‐9a 0.01856 let‐7 0.01145 mir‐929 0.00770 mir‐304 0.10138 mir‐275 0.11695 mir‐275 0.05772 mir‐31b 0.05998 mir‐313 0.10031 mir‐283 0.05343

chr2L mir‐1 0.00483 mir‐1010 0.01587 mir‐999 0.01030 mir‐285 0.00750 mir‐190 0.09854 mir‐304 0.11643 mir‐100 0.05674 mir‐100 0.04911 mir‐283 0.09733 mir‐310 0.04740

chr3R mir‐92b 0.00420 mir‐984 0.01520 mir‐125 0.00878 mir‐987 0.00711 mir‐315 0.09491 mir‐92a 0.11606 mir‐998 0.05525 mir‐283 0.04871 mir‐996 0.09435 mir‐278 0.04700

chr2R mir‐3 0.00315 mir‐193 0.01431 mir‐286 0.00878 mir‐999 0.00691 mir‐316 0.08821 mir‐315 0.11325 mir‐133 0.05479 mir‐2a‐2 0.04871 mir‐985 0.08703 mir‐1009 0.03615

chr2L mir‐966 0.00315 mir‐124 0.01409 mir‐929 0.00763 mir‐286 0.00612 mir‐12 0.08805 mir‐306 0.09657 mir‐2a‐2 0.05386 mir‐2b‐1 0.04402 mir‐986 0.08377 mir‐13b‐2 0.03575

chr2R mir‐5 0.00294 mir‐954 0.01364 mir‐5 0.00687 mir‐1003 0.00592 mir‐308 0.08262 mir‐284 0.09386 mir‐995 0.04676 mir‐2b‐2 0.04281 mir‐263a 0.06642 mir‐277 0.03495

chrX mir‐1007 0.00273 mir‐318 0.01341 mir‐1005 0.00610 mir‐989 0.00592 mir‐100 0.07915 mir‐2b‐1 0.09003 mir‐87 0.04671 mir‐993 0.04214 mir‐1 0.06534 mir‐999 0.02932

chr3R mir‐318 0.00273 mir‐13a 0.01274 mir‐2a‐1 0.00610 mir‐210 0.00572 mir‐993 0.07741 mir‐1010 0.07835 mir‐988 0.04506 mir‐987 0.04133 mir‐995 0.06181 mir‐303 0.02651

chr3R mir‐92a 0.00273 mir‐1 0.01230 mir‐989 0.00534 mir‐1000 0.00533 mir‐1010 0.06709 mir‐308 0.07821 mir‐1000 0.04501 mir‐957 0.04120 mir‐100 0.06127 mir‐2a‐1 0.02450

chr4 mir‐954 0.00231 mir‐977 0.00984 mir‐1000 0.00496 mir‐2a‐1 0.00533 mir‐306 0.05928 mir‐100 0.07134 mir‐957 0.04316 mir‐133 0.04026 mir‐79 0.05937 mir‐970 0.02370

chr2L mir‐125 0.00210 mir‐1012 0.00939 mir‐274 0.00458 mir‐5 0.00513 mir‐2b‐2 0.05629 mir‐980 0.06840 mir‐987 0.04131 mir‐988 0.03757 mir‐10 0.04636 mir‐87 0.02290

chr2R mir‐6 0.00210 mir‐966 0.00872 mir‐285 0.00458 mir‐13a 0.00336 mir‐137 0.05526 mir‐988 0.06821 mir‐13a 0.04100 mir‐263b 0.03529 mir‐1010 0.04555 mir‐980 0.02209

chr2L mir‐967 0.00210 mir‐971 0.00783 mir‐13a 0.00420 mir‐307‐as 0.00336 mir‐275 0.05266 mir‐993 0.06695 mir‐983 0.03724 mir‐1000 0.02764 mir‐33 0.04500 mir‐982 0.01848

chr3R mir‐2c 0.00189 mir‐986 0.00648 mir‐124 0.00382 mir‐124 0.00316 mir‐927 0.05219 mir‐137 0.06079 mir‐977 0.03498 mir‐970 0.02751 mir‐980 0.04175 mir‐10 0.01647

chr2L mir‐124 0.00168 mir‐994 0.00604 mir‐987 0.00343 mir‐274 0.00316 mir‐988 0.04888 mir‐2b‐2 0.05532 mir‐970 0.03375 mir‐13a 0.02711 mir‐124 0.04094 mir‐1012 0.01607

chr2RHet mir‐2279 0.00168 mir‐281‐2 0.00514 mir‐1008 0.00305 mir‐316 0.00276 mir‐284 0.04083 mir‐986 0.04700 mir‐2b‐1 0.03205 mir‐965 0.02697 mir‐1004 0.03904 mir‐9a 0.01607

chr2R mir‐310 0.00168 mir‐307 0.00492 mir‐316 0.00305 mir‐1005 0.00217 mir‐990 0.03011 mir‐927 0.04644 mir‐2b‐2 0.03164 mir‐190 0.02268 mir‐281‐1 0.03877 mir‐100 0.01526

chr2R mir‐311 0.00168 mir‐958 0.00425 mir‐13b‐1 0.00267 mir‐100 0.00197 mir‐1012 0.02948 mir‐981 0.04523 mir‐283 0.02968 mir‐92a 0.02268 mir‐991 0.03443 mir‐962 0.01326

chrX mir‐303 0.00147 mir‐10 0.00402 mir‐133 0.00229 mir‐1008 0.00178 mir‐283 0.02917 mir‐190 0.02962 mir‐984 0.02834 mir‐210 0.01624 mir‐276 0.03335 mir‐284 0.00924

chr2R mir‐4 0.00126 mir‐286 0.00313 mir‐1009 0.00191 mir‐13b‐1 0.00178 mir‐965 0.02846 mir‐1012 0.02911 mir‐276b 0.02726 mir‐284 0.01557 mir‐982 0.03253 mir‐954 0.00884

chrX mir‐983 0.00126 mir‐2c 0.00291 mir‐307‐as 0.00191 mir‐276b 0.00158 mir‐980 0.02751 mir‐965 0.02864 mir‐284 0.02690 mir‐276b 0.01503 mir‐303 0.03064 mir‐252 0.00844

chr2L let‐7 0.00105 mir‐31a 0.00268 mir‐932 0.00153 mir‐305‐as 0.00138 mir‐1006 0.02483 mir‐281‐1 0.02602 mir‐959 0.02459 mir‐1006 0.01355 mir‐2a‐2 0.03036 mir‐966 0.00844

chr2R mir‐1016 0.00105 mir‐982 0.00246 mir‐1013 0.00114 mir‐92a 0.00138 mir‐281‐2 0.02184 mir‐1006 0.02425 mir‐964 0.02248 mir‐1010 0.01235 mir‐970 0.02711 mir‐190 0.00723

chr2L mir‐133 0.00105 mir‐2279 0.00201 mir‐1016 0.00114 mir‐957 0.00138 mir‐986 0.02136 mir‐283 0.02093 mir‐1006 0.02135 mir‐137 0.01074 mir‐998 0.02277 mir‐1003 0.00643

chr3L mir‐276b 0.00105 mir‐5 0.00201 mir‐2c 0.00114 mir‐263b 0.00118 mir‐281‐1 0.02050 mir‐281‐2 0.02051 mir‐210 0.02104 mir‐1012 0.01060 mir‐974 0.02223 mir‐314 0.00643

chr2R mir‐31a 0.00105 mir‐983 0.00201 mir‐980 0.00114 mir‐4 0.00118 mir‐219 0.02042 mir‐219 0.02042 mir‐962 0.02063 mir‐318 0.01020 mir‐1003 0.01708 mir‐1005 0.00562

chr2L mir‐932 0.00105 mir‐3 0.00179 mir‐2279 0.00076 mir‐2279 0.00099 mir‐981 0.01821 mir‐990 0.02009 mir‐976 0.01955 mir‐994 0.01020 mir‐954 0.01681 mir‐929 0.00482

chr3R mir‐994 0.00105 mir‐303 0.00179 mir‐263b 0.00076 mir‐1007 0.00079 mir‐969 0.01529 mir‐1005 0.01551 mir‐963 0.01893 mir‐932 0.00939 mir‐997 0.01600 mir‐960 0.00442

chr2R mir‐1009 0.00084 mir‐973 0.00179 mir‐284 0.00076 mir‐1013 0.00079 mir‐1017 0.01443 mir‐2c 0.01341 mir‐137 0.01754 mir‐92b 0.00913 mir‐1013 0.01464 mir‐1007 0.00402

chr2R mir‐309 0.00084 mir‐967 0.00157 mir‐305‐as 0.00076 mir‐1016 0.00079 mir‐2c 0.01285 mir‐1017 0.01299 mir‐1010 0.01641 mir‐1014 0.00886 mir‐956 0.01464 mir‐956 0.00362

chr3L mir‐193 0.00063 mir‐1009 0.00134 mir‐314 0.00076 mir‐133 0.00079 mir‐1001 0.01277 mir‐1004 0.01182 mir‐932 0.01420 mir‐13b‐2 0.00738 mir‐973 0.01383 mir‐1010 0.00321

chr2R mir‐312 0.00063 mir‐312 0.00134 mir‐87 0.00076 mir‐193 0.00079 mir‐1004 0.01238 mir‐1003 0.01065 mir‐92a 0.01307 mir‐1005 0.00590 mir‐1012 0.01247 mir‐13a 0.00201

chrX mir‐31b 0.00063 let‐7 0.00112 mir‐92a 0.00076 mir‐87 0.00079 mir‐1008 0.00938 mir‐1001 0.00972 mir‐1014 0.01276 mir‐312 0.00537 mir‐932 0.01220 mir‐274 0.00201

chr2R mir‐986 0.00063 mir‐1007 0.00112 mir‐957 0.00076 mir‐966 0.00079 mir‐1007 0.00859 mir‐969 0.00897 mir‐978 0.01240 mir‐962 0.00523 mir‐307 0.01139 mir‐961 0.00201

TABLE S22: Ranked abundance of miRNAs in each sexed library (Complete list)

Adult GonadsAdult BodyL3 Larvae Salivary Glands Adult HeadLate embryo  Lymphoid Cells
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chr2R mir‐989 0.00063 mir‐284 0.00112 mir‐100 0.00038 mir‐314 0.00059 mir‐1003 0.00843 mir‐375 0.00850 mir‐974 0.01214 mir‐1008 0.00483 mir‐2b‐2 0.01084 mir‐964 0.00201

chr2R mir‐313 0.00042 mir‐1013 0.00089 mir‐1010 0.00038 mir‐980 0.00059 mir‐1005 0.00796 mir‐1013 0.00612 mir‐1012 0.01106 mir‐iab‐4 0.00470 mir‐133 0.01030 mir‐1006 0.00161

chr2R mir‐992 0.00042 mir‐1016 0.00089 mir‐219 0.00038 mir‐981 0.00059 mir‐1013 0.00709 mir‐1007 0.00584 mir‐985 0.01101 mir‐1003 0.00456 mir‐137 0.01030 mir‐5 0.00161

chr3R mir‐10 0.00021 mir‐310 0.00089 mir‐276b 0.00038 mir‐1009 0.00039 mir‐954 0.00465 mir‐954 0.00579 mir‐997 0.00947 mir‐960 0.00456 mir‐971 0.00895 mir‐959 0.00161

chr3R mir‐1000 0.00021 mir‐978 0.00089 mir‐3 0.00038 mir‐932 0.00039 mir‐375 0.00449 mir‐1008 0.00486 mir‐961 0.00911 mir‐1001 0.00389 mir‐308 0.00813 mir‐991 0.00161

chr2L mir‐1005 0.00021 mir‐992 0.00089 mir‐307 0.00038 mir‐960 0.00039 mir‐92b 0.00426 mir‐960 0.00481 mir‐190 0.00833 mir‐iab‐4as 0.00376 mir‐13a 0.00786 mir‐3 0.00121

chr3R mir‐1010 0.00021 mir‐125 0.00067 mir‐309 0.00038 mir‐969 0.00039 mir‐955 0.00426 mir‐13b‐2 0.00472 mir‐iab‐4as 0.00741 mir‐955 0.00349 mir‐314 0.00786 mir‐932 0.00080

chr3R mir‐1013 0.00021 mir‐133 0.00067 mir‐310 0.00038 mir‐993 0.00039 mir‐971 0.00315 mir‐1009 0.00397 mir‐303 0.00730 mir‐1013 0.00322 mir‐281‐2 0.00569 mir‐983‐1 0.00080

chrX mir‐210 0.00021 mir‐2282 0.00067 mir‐4 0.00038 mir‐994 0.00039 mir‐1016 0.00276 mir‐955 0.00392 mir‐1003 0.00638 mir‐2a‐1 0.00295 mir‐318 0.00542 mir‐1008 0.00040

chr3L mir‐2282 0.00021 mir‐263a 0.00067 mir‐954 0.00038 mir‐1004 0.00020 mir‐2a‐1 0.00268 mir‐1016 0.00355 mir‐1005 0.00628 mir‐219 0.00282 mir‐2c 0.00515 mir‐1013 0.00040

chr3L mir‐263b 0.00021 mir‐305‐as 0.00067 mir‐962 0.00038 mir‐137 0.00020 mir‐1009 0.00236 mir‐314 0.00336 mir‐991 0.00617 mir‐1007 0.00255 mir‐994 0.00515 mir‐124 0.00040

chr3L mir‐274 0.00021 mir‐309 0.00067 mir‐966 0.00038 mir‐2279‐as 0.00020 mir‐960 0.00236 mir‐971 0.00327 mir‐982 0.00607 mir‐981 0.00255 mir‐284 0.00434 mir‐133 0.00040

chr2R mir‐307‐as 0.00021 mir‐31b 0.00067 let‐7‐as 0.00000 mir‐275‐as 0.00020 mir‐962 0.00221 mir‐92b 0.00318 mir‐1001 0.00545 mir‐1015 0.00201 mir‐981 0.00434 mir‐193 0.00040

chr2L mir‐375 0.00021 mir‐6 0.00067 mir‐1‐as 0.00000 mir‐284 0.00020 mir‐13b‐2 0.00213 mir‐2a‐1 0.00299 mir‐1008 0.00545 mir‐1004 0.00174 mir‐iab‐4as 0.00434 mir‐2c 0.00040

chr3R mir‐929 0.00021 mir‐975 0.00067 mir‐1001 0.00000 mir‐3 0.00020 mir‐314 0.00142 mir‐962 0.00257 mir‐312 0.00489 mir‐311 0.00174 mir‐1006 0.00407 mir‐305‐as 0.00040

chr3L mir‐958 0.00021 mir‐987 0.00067 mir‐1002 0.00000 mir‐318 0.00020 mir‐13b‐1 0.00110 mir‐31b 0.00206 mir‐iab‐4 0.00484 mir‐954 0.00148 mir‐190 0.00352 mir‐955 0.00040

chrX mir‐977 0.00021 mir‐137 0.00045 mir‐1004 0.00000 mir‐954 0.00020 mir‐305‐as 0.00095 mir‐964 0.00192 mir‐13b‐2 0.00473 mir‐2c 0.00134 mir‐263b 0.00352 mir‐963 0.00040

chrX mir‐978 0.00021 mir‐263b 0.00045 mir‐1004‐as 0.00000 mir‐956 0.00020 mir‐984 0.00079 mir‐958 0.00135 mir‐219 0.00432 mir‐964 0.00134 mir‐2a‐1 0.00352 mir‐985 0.00040

chrX mir‐981 0.00021 mir‐311 0.00045 mir‐1007 0.00000 mir‐958 0.00020 mir‐983 0.00071 mir‐13b‐1 0.00103 mir‐285 0.00391 mir‐310 0.00121 mir‐315 0.00325 mir‐iab‐4 0.00040

chr2L let‐7‐as 0.00000 mir‐313 0.00045 mir‐1011 0.00000 mir‐967 0.00020 mir‐1011 0.00063 mir‐5 0.00103 mir‐973 0.00391 mir‐927 0.00121 mir‐87 0.00325 let‐7‐as 0.00000

chr2L mir‐1‐as 0.00000 mir‐314 0.00045 mir‐1014 0.00000 mir‐971 0.00020 mir‐312 0.00063 mir‐956 0.00093 mir‐311 0.00350 mir‐1016 0.00107 mir‐1008 0.00298 mir‐1‐as 0.00000

chr2L mir‐100 0.00000 mir‐4 0.00045 mir‐1015 0.00000 let‐7‐as 0.00000 mir‐966 0.00063 mir‐961 0.00093 mir‐1015 0.00319 mir‐313 0.00107 mir‐210 0.00271 mir‐1000 0.00000

chr3R mir‐1001 0.00000 mir‐87 0.00045 mir‐1017 0.00000 mir‐1‐as 0.00000 mir‐2279 0.00055 mir‐963 0.00093 mir‐972 0.00314 mir‐315 0.00094 mir‐958 0.00244 mir‐1001 0.00000

chr2L mir‐1002 0.00000 mir‐929 0.00045 mir‐137 0.00000 mir‐1001 0.00000 mir‐31b 0.00055 mir‐1011 0.00089 mir‐313 0.00304 mir‐983 0.00094 mir‐965 0.00244 mir‐1002 0.00000

chr2L mir‐1004 0.00000 mir‐974 0.00045 mir‐193 0.00000 mir‐1002 0.00000 mir‐5 0.00055 mir‐959 0.00084 mir‐955 0.00304 mir‐984 0.00094 mir‐3 0.00217 mir‐1004 0.00000

chr2L mir‐1004‐as 0.00000 mir‐210 0.00022 mir‐2279‐as 0.00000 mir‐1004‐as 0.00000 mir‐959 0.00055 mir‐2279 0.00075 mir‐981 0.00288 mir‐1017 0.00081 mir‐193 0.00190 mir‐1004‐as 0.00000

chr3R mir‐1011 0.00000 mir‐2279‐as 0.00022 mir‐2280 0.00000 mir‐1010 0.00000 mir‐964 0.00055 mir‐983 0.00075 mir‐310 0.00283 mir‐963 0.00081 mir‐955 0.00190 mir‐1011 0.00000

chr3R mir‐1014 0.00000 mir‐927 0.00022 mir‐2281 0.00000 mir‐1011 0.00000 mir‐961 0.00039 mir‐286 0.00070 mir‐1013 0.00267 mir‐966 0.00081 mir‐iab‐4 0.00190 mir‐1014 0.00000

chr3R mir‐1015 0.00000 mir‐956 0.00022 mir‐2282 0.00000 mir‐1014 0.00000 mir‐963 0.00039 mir‐966 0.00056 mir‐954 0.00257 mir‐969 0.00081 mir‐1007 0.00163 mir‐1015 0.00000

chr3R mir‐1017 0.00000 mir‐960 0.00022 mir‐2283 0.00000 mir‐1015 0.00000 mir‐974 0.00039 mir‐984 0.00051 mir‐1007 0.00242 mir‐961 0.00067 mir‐1016 0.00163 mir‐1016 0.00000

chr2R mir‐137 0.00000 mir‐963 0.00022 mir‐275‐as 0.00000 mir‐1017 0.00000 mir‐286 0.00032 mir‐312 0.00042 mir‐992 0.00231 mir‐285 0.00054 mir‐966 0.00163 mir‐1017 0.00000

chr3R mir‐13b‐1 0.00000 mir‐976 0.00022 mir‐287 0.00000 mir‐219 0.00000 mir‐313 0.00032 mir‐305‐as 0.00037 mir‐1004 0.00226 mir‐5 0.00054 mir‐989 0.00163 mir‐137 0.00000

chr3L mir‐219 0.00000 mir‐993 0.00022 mir‐289 0.00000 mir‐2280 0.00000 mir‐956 0.00032 mir‐318 0.00028 mir‐989 0.00226 mir‐1009 0.00040 mir‐1009 0.00136 mir‐13b‐1 0.00000

chr2RHet mir‐2279‐as 0.00000 mir‐iab‐4 0.00022 mir‐303 0.00000 mir‐2281 0.00000 mir‐967 0.00032 mir‐989 0.00028 mir‐92b 0.00216 mir‐2279 0.00040 mir‐929 0.00108 mir‐210 0.00000

chr2L mir‐2280 0.00000 let‐7‐as 0.00000 mir‐311 0.00000 mir‐2282 0.00000 mir‐2283 0.00024 mir‐3 0.00023 mir‐927 0.00211 mir‐959 0.00040 mir‐1005 0.00081 mir‐219 0.00000

chr3R mir‐2281 0.00000 mir‐1‐as 0.00000 mir‐312 0.00000 mir‐2283 0.00000 mir‐3 0.00024 mir‐4 0.00023 mir‐1009 0.00195 mir‐982 0.00040 mir‐1011 0.00081 mir‐2279 0.00000

chr3R mir‐2283 0.00000 mir‐100 0.00000 mir‐313 0.00000 mir‐287 0.00000 mir‐4 0.00024 mir‐313 0.00019 mir‐975 0.00170 mir‐976 0.00027 mir‐2279 0.00081 mir‐2279‐as 0.00000

chr2L mir‐275‐as 0.00000 mir‐1001 0.00000 mir‐315 0.00000 mir‐289 0.00000 mir‐958 0.00024 mir‐977 0.00019 mir‐2c 0.00139 mir‐985 0.00027 mir‐276b 0.00081 mir‐2280 0.00000

chr3R mir‐284 0.00000 mir‐1002 0.00000 mir‐318 0.00000 mir‐2c 0.00000 mir‐977 0.00024 mir‐2283 0.00014 mir‐969 0.00139 mir‐990 0.00027 mir‐987 0.00081 mir‐2281 0.00000

chr3L mir‐285 0.00000 mir‐1004 0.00000 mir‐31b 0.00000 mir‐303 0.00000 mir‐310 0.00016 mir‐303 0.00014 mir‐1017 0.00129 mir‐991 0.00027 mir‐1001 0.00054 mir‐2282 0.00000

chr2L mir‐287 0.00000 mir‐1004‐as 0.00000 mir‐6 0.00000 mir‐307 0.00000 mir‐968 0.00016 mir‐307‐as 0.00014 mir‐315 0.00123 mir‐13b‐1 0.00013 mir‐1015 0.00054 mir‐2283 0.00000

chr3L mir‐289 0.00000 mir‐1005 0.00000 mir‐927 0.00000 mir‐309 0.00000 mir‐978 0.00016 mir‐968 0.00014 mir‐2a‐1 0.00108 mir‐193 0.00013 mir‐2b‐1 0.00054 mir‐263b 0.00000

chr2L mir‐305‐as 0.00000 mir‐1011 0.00000 mir‐955 0.00000 mir‐310 0.00000 mir‐994 0.00016 mir‐978 0.00014 mir‐979 0.00108 mir‐2281 0.00013 mir‐1000 0.00027 mir‐275‐as 0.00000

chr3L mir‐314 0.00000 mir‐1014 0.00000 mir‐956 0.00000 mir‐311 0.00000 mir‐iab‐4 0.00016 mir‐982 0.00014 mir‐1016 0.00093 mir‐286 0.00013 mir‐1017 0.00027 mir‐276b 0.00000

chr3L mir‐315 0.00000 mir‐1015 0.00000 mir‐958 0.00000 mir‐312 0.00000 mir‐1004‐as 0.00008 mir‐994 0.00014 mir‐5 0.00072 mir‐287 0.00013 mir‐13b‐2 0.00027 mir‐285 0.00000

chr3L mir‐316 0.00000 mir‐1017 0.00000 mir‐959 0.00000 mir‐313 0.00000 mir‐275‐as 0.00008 mir‐310 0.00009 mir‐193 0.00062 mir‐289 0.00013 mir‐219 0.00027 mir‐286 0.00000

chr2L mir‐87 0.00000 mir‐13b‐1 0.00000 mir‐960 0.00000 mir‐315 0.00000 mir‐303 0.00008 mir‐311 0.00009 mir‐2279 0.00062 mir‐3 0.00013 mir‐2283 0.00027 mir‐287 0.00000

chrX mir‐927 0.00000 mir‐219 0.00000 mir‐961 0.00000 mir‐31b 0.00000 mir‐311 0.00008 mir‐967 0.00009 mir‐990 0.00041 mir‐303 0.00013 mir‐983‐1 0.00027 mir‐289 0.00000

chr3L mir‐955 0.00000 mir‐2280 0.00000 mir‐963 0.00000 mir‐6 0.00000 mir‐318 0.00008 mir‐974 0.00009 mir‐307‐as 0.00031 mir‐305‐as 0.00013 mir‐993 0.00027 mir‐307‐as 0.00000

chr3L mir‐956 0.00000 mir‐2281 0.00000 mir‐964 0.00000 mir‐927 0.00000 mir‐982 0.00008 mir‐976 0.00009 mir‐286 0.00026 mir‐307‐as 0.00013 let‐7‐as 0.00000 mir‐309 0.00000

chr3L mir‐957 0.00000 mir‐2283 0.00000 mir‐967 0.00000 mir‐955 0.00000 mir‐985 0.00008 mir‐iab‐4 0.00009 mir‐966 0.00026 mir‐973 0.00013 mir‐1‐as 0.00000 mir‐315 0.00000

chr2L mir‐959 0.00000 mir‐274 0.00000 mir‐968 0.00000 mir‐959 0.00000 mir‐989 0.00008 mir‐1015 0.00005 mir‐13b‐1 0.00021 mir‐974 0.00013 mir‐1002 0.00000 mir‐375 0.00000

chr2L mir‐960 0.00000 mir‐275‐as 0.00000 mir‐969 0.00000 mir‐961 0.00000 let‐7‐as 0.00000 mir‐2281 0.00005 mir‐2281 0.00021 mir‐978 0.00013 mir‐1004‐as 0.00000 mir‐4 0.00000

chr2L mir‐961 0.00000 mir‐285 0.00000 mir‐971 0.00000 mir‐962 0.00000 mir‐1‐as 0.00000 mir‐275‐as 0.00005 mir‐2283 0.00021 mir‐992 0.00013 mir‐1014 0.00000 mir‐6 0.00000

chr2L mir‐962 0.00000 mir‐287 0.00000 mir‐972 0.00000 mir‐963 0.00000 mir‐1002 0.00000 mir‐309 0.00005 mir‐318 0.00021 let‐7‐as 0.00000 mir‐13b‐1 0.00000 mir‐927 0.00000

chr2L mir‐963 0.00000 mir‐289 0.00000 mir‐973 0.00000 mir‐964 0.00000 mir‐1014 0.00000 mir‐972 0.00005 mir‐971 0.00021 mir‐1‐as 0.00000 mir‐2279‐as 0.00000 mir‐957 0.00000

chr2L mir‐964 0.00000 mir‐307‐as 0.00000 mir‐974 0.00000 mir‐968 0.00000 mir‐1015 0.00000 mir‐991 0.00005 mir‐994 0.00021 mir‐1002 0.00000 mir‐2280 0.00000 mir‐958 0.00000

chr2L mir‐968 0.00000 mir‐315 0.00000 mir‐975 0.00000 mir‐972 0.00000 mir‐2279‐as 0.00000 mir‐992 0.00005 mir‐967 0.00015 mir‐1004‐as 0.00000 mir‐2281 0.00000 mir‐967 0.00000

chrX mir‐969 0.00000 mir‐316 0.00000 mir‐976 0.00000 mir‐973 0.00000 mir‐2280 0.00000 mir‐iab‐4as 0.00005 mir‐3 0.00010 mir‐1011 0.00000 mir‐2282 0.00000 mir‐968 0.00000

chrX mir‐971 0.00000 mir‐375 0.00000 mir‐977 0.00000 mir‐974 0.00000 mir‐2281 0.00000 let‐7‐as 0.00000 mir‐4 0.00010 mir‐2279‐as 0.00000 mir‐275‐as 0.00000 mir‐969 0.00000

chrX mir‐972 0.00000 mir‐955 0.00000 mir‐978 0.00000 mir‐975 0.00000 mir‐2282 0.00000 mir‐1‐as 0.00000 mir‐1011 0.00005 mir‐2280 0.00000 mir‐285 0.00000 mir‐971 0.00000

chrX mir‐973 0.00000 mir‐957 0.00000 mir‐979 0.00000 mir‐976 0.00000 mir‐287 0.00000 mir‐1002 0.00000 mir‐2280 0.00005 mir‐2282 0.00000 mir‐286 0.00000 mir‐972 0.00000

chrX mir‐974 0.00000 mir‐959 0.00000 mir‐981 0.00000 mir‐977 0.00000 mir‐289 0.00000 mir‐1004‐as 0.00000 mir‐983‐1 0.00005 mir‐2283 0.00000 mir‐287 0.00000 mir‐973 0.00000

chrX mir‐975 0.00000 mir‐961 0.00000 mir‐982 0.00000 mir‐978 0.00000 mir‐307‐as 0.00000 mir‐1014 0.00000 let‐7‐as 0.00000 mir‐275‐as 0.00000 mir‐289 0.00000 mir‐974 0.00000

chrX mir‐976 0.00000 mir‐962 0.00000 mir‐983 0.00000 mir‐979 0.00000 mir‐309 0.00000 mir‐2279‐as 0.00000 mir‐1‐as 0.00000 mir‐309 0.00000 mir‐305‐as 0.00000 mir‐975 0.00000

chrX mir‐979 0.00000 mir‐964 0.00000 mir‐983‐1 0.00000 mir‐982 0.00000 mir‐6 0.00000 mir‐2280 0.00000 mir‐1002 0.00000 mir‐4 0.00000 mir‐307‐as 0.00000 mir‐976 0.00000

chrX mir‐982 0.00000 mir‐968 0.00000 mir‐984 0.00000 mir‐983 0.00000 mir‐972 0.00000 mir‐2282 0.00000 mir‐1004‐as 0.00000 mir‐6 0.00000 mir‐309 0.00000 mir‐977 0.00000

chrX mir‐983‐1 0.00000 mir‐969 0.00000 mir‐985 0.00000 mir‐983‐1 0.00000 mir‐973 0.00000 mir‐287 0.00000 mir‐2279‐as 0.00000 mir‐967 0.00000 mir‐4 0.00000 mir‐978 0.00000

chrX mir‐985 0.00000 mir‐972 0.00000 mir‐990 0.00000 mir‐984 0.00000 mir‐975 0.00000 mir‐289 0.00000 mir‐2282 0.00000 mir‐968 0.00000 mir‐5 0.00000 mir‐979 0.00000

chr2R mir‐987 0.00000 mir‐979 0.00000 mir‐991 0.00000 mir‐985 0.00000 mir‐976 0.00000 mir‐6 0.00000 mir‐275‐as 0.00000 mir‐971 0.00000 mir‐6 0.00000 mir‐981 0.00000

chr2R mir‐990 0.00000 mir‐983‐1 0.00000 mir‐992 0.00000 mir‐990 0.00000 mir‐979 0.00000 mir‐973 0.00000 mir‐287 0.00000 mir‐972 0.00000 mir‐927 0.00000 mir‐987 0.00000

chr2R mir‐991 0.00000 mir‐985 0.00000 mir‐993 0.00000 mir‐991 0.00000 mir‐983‐1 0.00000 mir‐975 0.00000 mir‐289 0.00000 mir‐975 0.00000 mir‐957 0.00000 mir‐990 0.00000

chr3R mir‐993 0.00000 mir‐990 0.00000 mir‐994 0.00000 mir‐992 0.00000 mir‐991 0.00000 mir‐979 0.00000 mir‐305‐as 0.00000 mir‐977 0.00000 mir‐967 0.00000 mir‐992 0.00000

chr3R mir‐997 0.00000 mir‐991 0.00000 mir‐997 0.00000 mir‐997 0.00000 mir‐992 0.00000 mir‐983‐1 0.00000 mir‐309 0.00000 mir‐979 0.00000 mir‐968 0.00000 mir‐993 0.00000

chr3R mir‐iab‐4 0.00000 mir‐997 0.00000 mir‐iab‐4 0.00000 mir‐iab‐4 0.00000 mir‐997 0.00000 mir‐985 0.00000 mir‐6 0.00000 mir‐983‐1 0.00000 mir‐969 0.00000 mir‐997 0.00000

chr3R mir‐iab‐4as 0.00000 mir‐iab‐4as 0.00000 mir‐iab‐4as 0.00000 mir‐iab‐4as 0.00000 mir‐iab‐4as 0.00000 mir‐997 0.00000 mir‐968 0.00000 mir‐997 0.00000 mir‐990 0.00000 mir‐iab‐4as 0.00000

SUM_Norm_Reads_in_libr 476512.00 670268.57 419331.00 506593.00 2221284.28 2140318.00 1943944.00 2554945.07 1290996.29 481224.84

The number of reads matching each miRNA in a given library is given in decreasing order as a percentage of all reads in that library. miRNAs representing less than 0.01% of each library are shaded in grey. S. Glands: Salivary glands;  M: Male; F: Female.
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Fig. S1. Histones are differentially modified in somatic and germline cells in the germarium. Wildtype (OregonR) germaria are stained with several
histone modification antibodies (green); in addition, germaria are stained with LaminC (LC red) to visualize TFs and CpCs and Adducin (Add red) to mark
spectrosomes and fusomes. Nuclei are marked with DAPI (blue). In particular, H4K20me3, H3K9me3, H3K9me2, H3K27me3 and H4K20me1 are associated
with transcriptional repression, while H3K4me3, H4 hyperacetylation, H2Bub1 are known as active marks and often associated with ongoing transcription. Note
that some histone modifications show differential pattern in certain somatic cells and differentially staged GCs; importantly, H2Bub1 is present in the
differentiating cysts, but not in the GSCs. Scale bars, 5 mm.
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Fig. S2. H2Bub1-deficient germline cysts are delayed in differentiation. (A) In the control (OregonR) germarium, GSCs exhibit pMad staining. The
differentiation marker Bam (detected by the bamGFP transgene) is expressed in cysts. H2Bub1 is found in cysts that are also positive for Bam, but not in GSCs.
(B,C) Bre1 mutant (hsFlp; FRT 2A Bre1P1549/FRT 2A GFP) and control (hsFlp; FRT 2A parental/FRT 2A GFP) germline clones are analyzed 5 days after adult
clone induction. Germaria containing Bre1 germline clones frequently lack Bre1 clonal GSCs; bar graph shows that 79.2% (n524) of control germaria
contain one or more black GSCs, while Bre1 clonal GSCs are partially lost and only 35.0% (n520) of all clonal germaria contained one or more black GSCs
(B; see supplementary material Table S6). (C) Bre1 clonal cysts are delayed in differentiation. 4.16% (n524) of control and 20% (n520) of Bre1 germline clonal
cysts show the differentiation delay. (D) Analysis of H2Bub1 modification upon downregulation of Rtf1 or Bre1 using RNAi shows that Bre1 and Rtf1 are
specifically required for monoubiquitination of H2B in the germline, since their downregulation (nos.Bre1RNAi: NGT40/Bre1RNAi;nanosGAL4/+ and
nos.Rtf1RNAi: NGT40/Rtf1RNAi; nanosGAL4/+) results in the absence of this modification. (E,F) Germline-specific downregulation of Bre1 affects differentiation
(control: NGT40/+;nanosGAL4/+ and nos.Bre1RNAi: NGT40/Bre1RNAi; nanosGAL4/+); (E) reducing Bre1 levels in the germline leads to the appearance of
small germaria (red arrowheads mark beginning of region 2b) and the decrease in the differentiation index (Cysts/SpGCs, supplementary material Table
S1). (F) Expression of Rtf1RNAi in the germline (NGT40/+;nanosGAL4/Rtf1RNAi) leads to severe perturbations of germarial architecture and defects in germline
differentiation; SpGCs are found at arbitrary positions (arrows) far from the stem cell niche. pMad marks GSCs (cyan, A), bamGFP (green, A) differentiating
cysts. Monoubiquitination of H2B is shown (red, A,D), germline cells are Vasa-positive (green, E,F). Germaria are stained with LaminC (LC red, E,F) to visualize
TFs and CpCs and Adducin (Add red, E,F) to mark spectrosomes and fusomes. Nuclei are marked with DAPI (blue, D–F). GSCs are outlined in white,
CpCs in yellow (A). H2Bub1-positive CpCs are marked with white arrows (D), H2Bub1-positive ECs with yellow arrows (D). Region 2b is indicated by red
arrowheads (E) and SpGCs are depicted with white arrows (F). p-values were calculated using the two tailed Student’s t-test and error bars represent S.E.M.,
*p,0.05. Scale bars, 5 mm.
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Fig. S3. EC cellular identity is
affected upon soma-specific
perturbation of ecdysone signaling.
(A) ECs form long cytoplasmic
protrusions with which they envelope
the differentiating germline (control:
tubGal80ts/+; bab1Gal4/+).
(B,C) Somatic alteration of ecdysone
signaling during adulthood dampens the
ability of ECs to form protrusions. The
Gal4/Gal80ts system was used to
express taiRNAi or ab using bab1Gal4

somatic driver in adults (bab1ts.taiRNAi:
tubGal80ts/taiRNAi; bab1Gal4/+, 4 days
at 29˚C and bab1ts.ab: tubGal80ts/+;
bab1Gal4/UASab, 3 days at 29˚C).
MAP Kinase (MAPK) staining shows
cytoplasmic protrusions in ECs
(magenta). Note that MAPK levels are
increased in ecdysone signaling-
deficient ECs (D). Ecdysone signaling
affects the maintenance of cellular
sexual identity in adult D. melanogaster

gonads (Fagegaltier et al., 2014) and
multiple EGFR-MAPK downstream
targets are sexually biased. mRNA
levels of direct and indirect EGFR-
MAPK signaling pathway downstream
targets, escargot (esg), unpaired (upd)

and IGF-II mRNA-binding protein (Imp)

(López-Onieva et al., 2008; Chau et al.,
2009; Toledano et al., 2012) are
deregulated. In ecd1ts germaria, the
expression levels of the male-specific
mRNA esg increase ,5 fold and the
mRNA levels of JAK/STAT ligand upd

,1.5 fold, while the levels of Imp

decrease ,2 fold (supplementary
material Table S3). These data show
that upon defective ecdysone signaling,
EGFR signaling is impaired, resulting in
confused sexual identity in the somatic
cells of the germarium. MAPK staining
marks ECs and EC protrusions
(magenta, A–C), DAPI marks nuclei
(green, A–C). ***p,0.0005. Scale bars,
5 mm.
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Fig. S4. Soma-specific disruption of ecdysone signaling causes altered cell adhesion between ECs and the germline. (A,B) High levels of the cell
adhesion proteins DE-Cad and Arm are detected at the membrane of CpCs (control: OregonR). In ecd1ts adult flies kept at the restrictive temperature (29˚C) for
four days, high levels of Arm and DE-Cad are also found on the EC membrane (marked with brackets). (C,D) Downregulation of ecdysone signaling in the soma
by overexpressing its negative regulator Ab with the soma-specific driver (control: tubGal80ts/+; bab1Gal4/+ and bab1ts.ab: tubGal80ts/+; bab1Gal4/

UASab, 4 days at 29˚C) results in the increased Arm levels in the ECs, atypical ECs form epithelial layers (bracket). (E) Similarly, overexpression of DE-Cad with
the somatic driver (ptc/UAS Cad) leads to formation of EC epithelial layers (bracket). (F,G) Germline-specific overexpression of Cad (control: NGT40/+;

nanosGAL4/+ and nos.Cad: NGT40/UAS Cad;nanosGAL4/+) leads to a higher number of SpGCs (asterisks) and an increased Cysts/SpGCs ratio
(supplementary material Table S1). Cell adhesion complexes are marked by DE-Cad (red, A,B) and Arm (green, A–D). ECs are positive for Tj (red, C,D) and
negative for the germline marker Vasa (red, E). Germaria are stained with LaminC (LC red, F,G, green, E) to visualize TFs and CpCs and Adducin (Add red,
F–G, green, E) to mark spectrosomes and fusomes. Nuclei are marked with DAPI (blue, A–E). p-values were calculated using the two tailed Student’s t-test and
error bars represent S.E.M., **p,0.005. Scale bars, 5 mm.
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Fig. S5. let-7 is not required for GSCmaintenance, but together with Ab cell non-autonomously influences germline differentiation. (A,B) The hsFlp/FRT

system for mitotic recombination was used to induce let-7mutant germline cells (hsFlp/+; FRT 40A let-7 miR-125/FRT 40AGFP; let-7-C Dlet-7/+), clonal cells are
marked by the absence of GFP. Parental FRT 40A was used as control (hsFlp/+; FRT 40A/FRT 40A GFP). let-7 mutation does not affect the maintenance
of GSCs. The percentage of the germaria containing at least one Dlet-7 clonal GSC did not significantly change with the time (34.1462.24%, n584 and
45.6966.10%, n543 at 7 and 14 days after heat shock, respectively) in comparison to controls (46.67613.33%, n581 and 31.7162.57%, n562 at 7 and 14 days
after heat shock, respectively). (C) Wildtype (OregonR) germaria contain on average 4 SpGCs (supplementary material Table S2), (D,E) let-7mutants (let-7-CGK1/
let-7-CKO1; let-7-CDlet-7/+) contain a higher number of SpGCs; introducing a let-7 rescue construct (let-7-C/+; let-7-CGK1/let-7-CKO1) reverts the phenotype
(supplementary material Table S2). (F) Reducing Ab levels by combining hypomorphic and amorphic alleles leads to an increased number of SpGCs (ab1/abk0280,
supplementary material Table S2). (G) The let-7 mutant phenotype can be partially rescued by reducing ab levels [let-7, miR-125, ab1D/let-7KO1; let-7-CDlet-7/+,
compare to panel D, supplementary material Table S2]. (H) Downregulation of Ab using the somatic let-7GK1Gal4 driver causes an increased number of SpGCs (let-
7GK1/+; UASab/+, supplementary material Table S2). Spectrosomes are marked with Adducin (Add, red, A,C–H), CpCs with LaminC (LC, red, A,C–H), nuclei with
DAPI (blue, A,C–H), clones with GFP (green, A). Clonal germline cells are outlined in yellow, GSCs are outlined in white. Scale bars, 5 mm.
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Fig. S6. Scheme of extrinsic and intrinsic signaling controlling early germline differentiation. Control of germline differentiation is highly dependent on
precise levels of multiple proteins involved in different signaling pathways that act in the soma and the germline. Ecdysone signaling, miRNA let-7 and Ab
act in the ECs to regulate the adhesion strength between the soma and germline. This, via amounts of Cad/Arm complexes modulates Wg signaling activity in
the germline. The Wg pathway establishes specific chromatin status permissive for the differentiation factor Bam expression, leading to GSC progeny
differentiation.
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Supplementary Table S1. Histone modification (H2Bub1) and ecdysone and Wg signaling defects influence germline differentiation
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Supplementary Table S1. continued
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Supplementary Table S2. The speed of germline stem cell progeny differentiation depends on the levels of let-7, its target Abrupt,
and the cell adhesion proteins, DE-Cad and Arm
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Supplementary Table S2. continued
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Supplementary Table S3. mRNA levels measured by RT-qPCR in control and adult-induced ecdysoneless mutant
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Supplementary Table S3. continued
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Supplementary Table S4. let-7 levels vary upon different environmental conditions
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Supplementary Table S5. The efficiency of downregulation of Wg signaling components in the germline by used RNAi mutants
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Supplementary Table S6. Germline-specific clones of Bre1 and Wg signaling components result in differentiation defects

RESEARCH ARTICLE Biology Open (2015) 000, 1–16 doi:10.1242/bio.201410553

S15

B
io
lo
g
y
O
p
e
n





Acknowledgments

I would like to express my special appreciation and thanks to my supervisor
PD Dr. Halyna Shcherbata for giving me the exciting opportunity to join her
group and work on this project. Your constant support and advice were priceless.

The helpful questions, discussion and ideas provided by my thesis committee mem-
bers Prof. Dr. Andreas Wodarz and Prof. Dr. Jörg Großhans were of great value
for developing the project.

Furthermore, I would like to thank Prof. Dr. Steven Johnsen and Dr. Del-
phine Fagegaltier for fruitful collaborations.

In addition, I would like to thank all present and former members of the Gene
expression and signaling group and the members of the Jäckle Department for
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