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1. Introduction 

Manipulation of objects and interaction with our environment by means of our hands is an essential 

part of our everyday lives. How much we actually rely on the use of our hands becomes most 

apparent when we lose the ability to perform hand and arm movements. Consequently, it comes as 

no surprise that the recovery of exactly these functions ranges as number one on the list of abilities 

which are wished to be regained by affected people (Anderson 2004). Hand and arm functions are 

essential to fulfil our physical and emotional needs as well as to establish and maintain an 

independent and self-directed life and are thus a significant contributor to the quality of life. 

In order to restore the skill of everyday hand movements in patients who have lost this function 

due to spinal cord injuries, loss of limbs or other motor diseases, the development of 

neuroprostheses has come more and more into focus. The goal of these devices is the translation of 

neural activity arising during attempted movement generation into an output for controlling an 

external actuator like a robot hand as a hand and arm replacement.  

However, grasping is a highly evolved behaviour, and the underlying mechanisms both on the 

mechanical and brain level are highly complex. The generation of movement and especially of 

finger kinematics is distributed across many areas within the cortex and subcortical structures. 

Besides the actual control of muscles to perform a movement, these areas code a variety of other 

aspects involved in the planning and execution of hand movements, such as features of the 

environment in which the action is going to take place in, features about the object the action is 

directed at, internal states like current hand position, muscle fatigue or motivational states, 

mechanical restrictions of the environment and the body, knowledge and expectations about the 

action to be performed, etc. All of these aspects need to be brought together in order to generate a 

movement plan which then can be executed.  

Also on the mechanical level, the human hand shows a lot of complexity. Almost 40 muscles are 

engaged in the movement of the hand, acting to both extend and flex as well as stabilizing 
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individual joints (Lemon 1999, Raos et al 2006). In conjunction with several proximal muscles, the 

human hand and wrist are able to exhibit a total number of 27 degrees of freedom (DOF) (Lin et al 

2000, Rehg and Kanade 1994). So far, neuroprosthetic devices have only been able to reproduce a 

fraction of this number.  

This thesis is devoted to addressing this and other problems which are faced in the development 

of neuroprosthetics. However, before describing these challenges in more detail, I will first give an 

overview of the cortical mechanisms involved in the planning and execution of grasps (section 1.1). 

We will focus particularly on three different areas in the neocortex (M1, F5, and AIP, sections 

1.1.2-1.1.4), which play important roles in this process, and describe their particular contributions to 

the planning and execution of hand movements (section 1.1.5). 

Following, I will give an introduction to the state of the art of neuroprosthetics restoring hand 

and arm movements (section 1.2). Strengths and achievements of this technology are discussed, but 

also problems which have not been solved yet are addressed (section 1.2.1). Finally, I will delineate 

which of the current problems I will address in this thesis and give an outline of the structure of the 

thesis (section 1.3). 

 

1.1. Cortical mechanisms involved in the planning and execution of grasping 

Although the generation of hand and arm movements seems trivial to us while we perform hundreds 

of them every day, they involve a highly complex network of brain areas and computations carried 

out in those areas.  

Imagine for example the mundane action of picking up a cup of coffee from the table. In order to 

bring the hand to the cup and grasp it, a visuomotor transformation needs to be performed in the 

brain in order to convert visual information about the object to be grasped or manipulated into a 

movement plan which then can be executed. We will now follow the processing of visual 

information through the brain and its transformation into a movement. 
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1.1.1. Dorsal and ventral stream. First, the gaze fixates onto the cup so that the image of the cup 

and its environment falls onto the retina. From there, information about the image is forwarded via 

the optic tract, through the lateral geniculate nucleus to primary visual cortex (V1) where features 

like the orientation of edges are detected (Hubel and Wiesel 1968). From there, information is 

forwarded into two major processing pathways, the ventral (temporal) and the dorsal (parietal) 

stream. These pathways are hierarchically organized: information from lower visual areas (early on 

within the stream) is projected to higher ones and this way integrated there into representations of 

more complex and abstract features (e.g. information of orientation of individual edges is combined 

into the representation of a geometric shape).  

The two pathways differ from each other in terms of information they code: whereas the ventral 

pathway is concerned with object recognition (what do I see? a cup with delicious coffee!) and thus 

associated with perception, the dorsal pathway deals with information relevant to action generation, 

like the location or shape of the object to be grasped (where is the object? on the table in front me! 

what shape does it have? it is a cylinder with a circular extension on the right side!) (Goodale and 

Milner 1992, Norman 2002).  

The significance of these two pathways and the information they code becomes apparent in the 

following two patient cases, described by Goodale et al (1994) and Goodale et al (1991), in which 

either of the streams was disrupted: in the first case, patient DF suffering from a lesion from a 

bilateral damage in the ventrolateral occipital region interrupting the ventral visual pathway, was 

not able to visually discriminate irregularly shaped objects, but could shape her hand according to 

the respective objects in order to grasp them with her fingers. In contrast, patient RV who suffered 

from a lesion of the occipitoparietal cortex disrupting the dorsal visual pathway, was able to 

visually discriminate the objects, however could not grasp those objects properly. In the following, 
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we will therefore focus on the latter of the two pathways, the dorsal stream, in our journey of 

tracing the generation of hand movement through the brain.  

The dorsal pathway extends to the posterior parietal cortex (PPC) which contains several brain 

areas involved in the planning of movement: neurons in the lateral intraparietal area (LIP) become 

active during planning of saccadic eye movements (Andersen et al 1990b, Gnadt and Andersen 

1988, Pesaran et al 2002), the parietal reach region (PRR) (medial and posterior to LIP; Snyder et al 

1997) has been shown to be modulated during planning of reaching movements as well as to be 

tuned to the direction of reaches (Batista and Andersen 2001, Snyder et al 1997), and the medial 

intraparietal sulcus (MIP) (part of PRR; Musallam et al 2004) has been shown to encode the 

location of a reach target in an eye-centred reference frame (Pesaran et al 2006). The anterior 

intraparietal area (AIP) has been found to be specialized for the visual guidance of hand movements 

(Gallese et al 1994, Murata et al 2000, Sakata et al 1995) and forms the fronto-parietal grasping 

network, together with area F5 in the premotor cortex and primary motor cortex (M1) (Jeannerod et 

al 1995). Therefore, in the following three chapters, we will take a closer look at areas AIP, F5, and 

M1 and their contributions to the generation of grasping movements. Afterward, we will summarize 

the major points and shed more light on the fronto-parietal grasping network itself (section 1.1.5).  

 

1.1.2. Area AIP in the parietal cortex. Area AIP plays an important role in the visuomotor 

transformation for grasping. It receives input from the caudal intraparietal area (CIP) (Borra et al 

2008, Sakata et al 1999, Sakata et al 1995) which has been shown to be involved in the integration 

of information about texture and gradient signals of a stimulus in order to produce a representation 

of surface orientation in 3D space (Sakata et al 1997, Sakata et al 1999, Tsutsui et al 2001, Tsutsui 

et al 2002), as well as from areas PG and PFG (Borra et al 2008). PG and PFG, located in the 

rostral part of area 7a and the caudal part of 7b, have been shown to be involved in the execution of 

goal-directed hand and mouth movements (Fogassi and Luppino 2005). Information about eye 
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movements is sent to AIP from the rostral part of LIP (Andersen et al 1990a, Borra et al 2008) as 

well as from the ventral part of the frontal eye field (FEF) (Borra et al 2008). Furthermore, AIP 

shows strong reciprocal connections to the secondary somatosensory area (SII) (Borra et al 2008), a 

higher order somatosensory area involved in tactile object exploration and recognition as well as in 

expectation of a tactile stimulus (Carlsson et al 2000, Reed et al 2004).  

Although the ventral and dorsal visual streams are considered as separate pathways encoding 

different aspects of visual information (see section 1.1.1), there is also evidence that areas within 

the streams communicate with each other across the two pathways. AIP is one of these brain 

regions (Borra et al 2008), suggesting that AIP receives information about object recognition and 

discrimination and at the same time contributes to the representation of 3D objects and surfaces in 

the inferotemporal cortex (Janssen et al 2001). In addition, AIP is reciprocally connected with area 

12 (Borra et al 2008, Schwartz and Goldman‐Rakic 1984) and area 46 (Borra et al 2008, Petrides 

and Pandya 1984, Schwartz and Goldman‐Rakic 1984) in the prefrontal cortex. Wilson et al (1993) 

showed that area 12 acts as a working memory for keeping a representation of spatial stimuli. 

In conclusion, as an area integrating information about eye position, object surface information, 

expected tactile sensation, object meaning, goal-directed hand movements, and with access to the 

representation of objects in the working memory, AIP seems to play a significant role in the 

generation of hand movements. Indeed, inactivation and lesions of area AIP in monkeys or humans 

resulted in deficits of hand preshaping and mismatch of hand orientation when grasping an object 

(Binkofski et al 1998, Faugier-Grimaud et al 1978, Gallese et al 1994). 

Murata et al (2000) and Sakata et al (1995) studied the response of single units recorded in 

macaque area AIP while monkeys performed a delayed reach and grasp task in which different 

objects were presented to the animals one at a time. After a short delay period, the monkeys reached 

to the object and grasped it. The grasping was either performed in light or in dark. In addition, in a 
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separate task condition, the monkeys only fixated on the presented object without performing the 

motor action.  

Depending on their response throughout the different task conditions, Murata, Sakata and 

colleagues assigned neurons in AIP into five different categories: the first class of cells consisted of 

“object-type visual-motor” neurons that responded to the presentation of objects regardless of 

subsequent movement or not, and that were also active during movement execution. However, 

activity was decreased if the movement was performed in the dark compared to movement 

performed in the light (Baumann et al 2009, Lehmann and Scherberger 2013, Townsend et al 

2011). The same effect of illumination was also present in the activity of the second class of 

neurons, the “nonobject-type visual-motor” cells, however the response during presentation of the 

object was only present if a movement followed. Neurons of the third and fourth class, the “object-

type” and “nonobject-type visual-dominant” cells, respectively, showed activity during movement 

execution only if the movement was performed in the light. “Object-type visual-dominant” neurons 

did not require a subsequent motor execution to become active during object presentation whereas 

“nonobject-type visual-dominant” cells did. According to Borra et al (2008), the visual response of 

these four neuron types could be driven by projections from the lateral superior temporal sulcus 

(lSTS). Last but not least, the neurons of the fifth category, the “motor-dominant” cells, were active 

during movement execution and did not exhibit any difference in activity if the movement was 

performed in the light or in the dark. Together with the “object-type visual-motor” neurons, these 

cells were the most common ones.  

Furthermore, neurons in AIP have been shown to be selective in their response for object shape 

(Murata et al 2000, Sakata et al 1995, Schaffelhofer et al 2015), object size (Murata et al 2000, 

Schaffelhofer et al 2015), and object orientation (Baumann et al 2009, Murata et al 2000). 

However, not only visual features of objects to be grasped were found to be encoded in AIP, but 

also aspects of the performed hand action like grip types and target position in space (Baumann et 
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al 2009, Jeannerod et al 1995, Lehmann and Scherberger 2013, Murata et al 2000, Sakata et al 

1995). 

Based on these findings, it has been suggested that activity in AIP could already reflect a motor 

plan based on visual and somatosensory information (Borra et al 2008, Debowy et al 2001, Murata 

et al 2000) instead of solely extracting visual cues relevant for grasping.  

Information is then projected from AIP to area F5 in the premotor cortex where a pattern of hand 

movements or grip type is selected. The chosen action command is sent back to AIP as an efference 

copy where it can be compared to spatial features of the object and the initial motor plan and be 

upgraded if necessary (Borra et al 2008, Murata et al 2000, Sakata et al 1995).  

 

1.1.3. Area F5 in the premotor cortex. Area F5 is located rostrally in the ventral premotor cortex 

(PMv) and as already mentioned above, is strongly connected with area AIP in a reciprocal way 

(Borra et al 2008, Gerbella et al 2011, Luppino et al 1999). Similarly to area AIP (as described in 

the previous section 1.1.2), F5 receives input from areas PFG, SII, and area 12 (Gerbella et al 2011) 

providing F5 with information about the goal of a hand action (Fogassi and Luppino 2005), the 

tactile expectation of a stimulus (Carlsson et al 2000, Reed et al 2004), and access to upheld 

information about spatial stimuli (Wilson et al 1993), respectively. Furthermore, area 46v in the 

prefrontal cortex coding goals of a motor action (Mushiake et al 2006, Saito et al 2005) is 

projecting to F5 and area GrFO in the granular postarcuate cortex has been suggested to convey 

motivational information to F5 (Gerbella et al 2011). Connections from area F6/pre-SMA in the 

medial rostral premotor cortex provide F5 with higher order aspects of motor control (Gerbella et al 

2011) like temporal sequencing of a motor action (Rizzolatti and Luppino 2001, Saito et al 2005). 

F5 can be divided into three anatomically distinct parts: the first part lying in the posterior (and 

dorsal) part of the postarcuate bank (F5p), the second one in the anterior (and ventral) part of the 

postarcuate bank (F5a), and the third located on the postarcuate convexity cortex (F5c). The three 
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parts are strongly interconnected (Belmalih et al 2009, Gerbella et al 2011, Rizzolatti and Luppino 

2001). 

The different parts of F5 also show functional differences: cells in the convexity become active, 

when the subject is observing someone else’s hand actions (“mirror” neurons), whereas cells in the 

bank of F5 respond to the presentation of 3D objects and while the subject is grasping an object 

(“canonical” neurons) (Rizzolatti and Fadiga 1998). More precisely, “canonical” neurons have been 

shown to code the goal of an action rather than the individual components comprising an action. 

Examples are “Grasping-with-the-hand neurons”, “Holding neurons” or “Tearing neurons” 

(Rizzolatti et al 1988). These neurons have also been shown to exhibit selectivity for different grip 

types and hand shapes involved in a hand action (Fluet et al 2010, Lehmann and Scherberger 2013, 

Raos et al 2006, Rizzolatti et al 1988, Rizzolatti and Fadiga 1998, Schaffelhofer et al 2015). 

Furthermore, wrist orientation has been found to be coded as part of the hand configuration in F5 

neurons (Kakei et al 1999, 2001, Raos et al 2006). 

Raos et al (2006) and Murata et al (1997) recorded grasping neurons in macaque brains while 

animals performed a delayed grasping task and examined the responses of the cells more 

thoroughly. Similarly to the experiment performed by Murata et al (2000) and Sakata et al (1995) 

with which the activity of AIP neurons was investigated (see section 1.1.2), animals were trained to 

grasp different objects that were presented in front of them either in the light or in the dark. In 

addition, in a separate task condition, the animals were only required to observe the presented 

object without grasping it. 

Based on these experiments, Raos, Murata, and colleagues grouped the neurons into “motor” and 

“visoumotor” cells: both neuron types were active during movement execution. However 

“visuomotor” cells also responded before movement onset while the object was presented to the 

animal regardless if an actual movement was following or not (Murata et al 1997), whereas “motor” 

neurons only discharged during movement execution. Interestingly, “visoumotor” cells showed 
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tuning towards certain objects. However, the selectivity did not appear to correspond to visual 

features of the object as was observed in AIP, but rather to the type of grip used to grasp the object 

(Raos et al 2006, Schaffelhofer et al 2015). 

According to Raos et al (2006), the number of recorded “motor” and “visuomotor” cells in F5 

was about the same. Compared to AIP, the amount of motor-dominant cells was higher in F5 

(Murata et al 2000). 

Based on these findings, it has been concluded that sensorimotor information projected from the 

parietal cortex to F5 is integrated with higher order motor information in order to select an action 

plan, motor pattern, or grip type (Belmalih et al 2009, Fluet et al 2010, Gerbella et al 2011, Kakei et 

al 2001, Murata et al 1997, Raos et al 2006, Rizzolatti et al 1988, Rizzolatti et al 1987, Stark et al 

2007). This information is then forwarded to the hand field in primary motor cortex (Borra et al 

2010, Dum and Strick 2005, Matelli et al 1986, Muakkassa and Strick 1979), layers of the superior 

colliculus, sectors of the mesencephalic, pontine, the bulbar reticular formation, and hand muscle 

motoneurons in the spinal cord (Borra et al 2010, Dum and Strick 1991, Galea and Darian-Smith 

1994, He et al 1993) as well as back to area AIP as already mentioned above (Borra et al 2008, 

Murata et al 2000, Sakata et al 1995).  

In conclusion, area F5 plays an important role for movement generation. Patient studies in which 

recovery of independent finger movement impairments due to a lesion in M1 or its corticospinal 

projections could be attributed to F5, support the notion that this area is highly involved in the 

generation of hand movements (Fridman et al 2004, Nudo 2007). Indeed, studies in which area F5 

was inactivated confirm that the ability to shape the hand in order to grasp an object was severely 

impaired (Fogassi et al 2001). 

 

1.1.4. Primary motor cortex M1. Area M1 is located rostral to the central sulcus and is 

somatotopically organized: experiments conducted as early as 1870 demonstrated that electrical 
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stimulation of the motor cortex was able to elicit muscle twitches and movements in different parts 

of the contralateral side of the body. Which exact region was excited was determined by the 

location of stimulation within the motor cortex – stimulation from medial to lateral in M1 elicited 

movements in the lower body parts up to the trunk, to the head and the face. Conversely, patients 

with lesions in primary motor cortex experience a complete loss of the ability to perform voluntary 

movements with the respective contralateral body part (Kandel et al 2000). For example, differently 

to the inactivation of ventral premotor cortex, where the ability of proper hand shaping to perform 

grasp is impaired, a lesion of the M1 hand and digit area results in the inability to perform 

independent finger movements or finger movements at all (Fulton 1949, Travis 1955). 

M1’s hand area receives its strongest input from area F5 to which it is reciprocally connected 

(Dum and Strick 2005, Matelli et al 1986, Muakkassa and Strick 1979) and the neurons located 

there have been subject to extensive studies in the past. They have been found to be modulated by 

various aspects of motor actions like joint angles and muscle activation (Bennett and Lemon 1996, 

Holdefer and Miller 2002, Morrow and Miller 2003, Rathelot and Strick 2006, Thach 1978, Umilta 

et al 2007) together with more abstract kinematic features like movement direction (Ashe and 

Georgopoulos 1994, Georgopoulos et al 1986, Kakei et al 1999, Thach 1978), position of the wrist 

(Ashe and Georgopoulos 1994, Kakei et al 1999, 2001, Thach 1978), and force (Ashe 1997, Cheney 

and Fetz 1980, Taira et al 1996).  

Contrary to area F5, where elevated activity is present already in pre-movement periods, cells in 

M1 only become active shortly before movement onset and during movement execution. 

Furthermore, M1 neurons are modulated by different motor components of a performed action, i.e. 

they exhibit different activity patterns for reaching, grasping, holding and releasing an object, 

whereas units in F5 show a continuous tuning throughout the entire movement execution (Umilta et 

al 2007). In conclusion, while F5 seems to represent an action plan or grip type as already described 
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above (section 1.1.3), cells in M1 seem to code individual steps of movement execution in order to 

realise the movement plan or hand shape.  

Information is then projected from M1 via the pyramidal tract to motor neurons and interneurons 

in the spinal cord. Interneurons are interposed to motor neurons which then in turn innervate 

respective muscle fibres in order to execute a movement (Bennett and Lemon 1996, Dum and Strick 

1991, Holdefer and Miller 2002, Morrow and Miller 2003, Rathelot and Strick 2009). Rathelot and 

Strick (2009) discovered that area M1 can be partitioned into two subdivisions with different 

influences on motor output based on their connections to the spinal cord: one part (termed “old” M1 

and located in the rostral region of M1) contains cells that contact spinal interneurons and is 

therefore considered to have a mainly indirect influence on motor commands. In contrast, neurons 

making direct, monosynaptic connections with motoneurons in the spinal cord (CM cells) are 

almost exclusively located in the caudal region of M1 (termed “new” M1). It has been suggested 

that the latter type of cells is necessary for primates to execute highly developed muscle activity 

patterns like precision grips (Rathelot and Strick 2009).  

 

1.1.5. The fronto-parietal grasping network. In 1998, Fagg and Arbib proposed a computational 

model to describe the cortical involvement in grasping, termed the FARS model (Fagg 1996, Fagg 

and Arbib 1998). Based on previous findings (Jeannerod et al 1995), this model attempted to depict 

the roles of areas AIP and F5 and their contribution to the generation of grasping movements.  

According to the FARS model, visual input is projected via the dorsal stream to area AIP in 

which visual dominant neurons extract 3D features of the object to be grasped. Then, specific, 

grasping relevant features (object affordances) are selected by visuomotor cells and forwarded to 

visuomotor neurons in area F5. According to Fagg and Arbib (1998), multiple visual descriptions 

are delivered by AIP in order to provide a selection of possibilities of how an object may be 

grasped. Coming back to our example of the coffee mug, the cup may be grasped for example with 
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all fingers clasped around the cup’s body or only with thumb and index finger held at the cup’s 

handle. The most appropriate choice depends on different aspects, such as the goal of the action (is 

the cup to be moved on the table or to be brought to the mouth for drinking, etc.) or external factors 

(is the cup empty or filled, is the content hot or cold, etc.). All these aspects are brought together in 

area F5 which receives input from prefrontal and premotor cortex like areas as F6 and area 24 (see 

section 1.1.3 for a more detailed description) including for example the meaning of the object to be 

grasped which is delivered to the prefrontal cortex by the inferotemporal lobe (IT) (ventral stream). 

Visuomotor cells in F5 choose one of the grasping prototypes provided by AIP that satisfies the 

requirements best. Motor neurons in F5 then dissect this prototype into temporally segmented 

sequences which are forwarded to M1 and the spinal cord. In M1, movement execution is initiated 

and detailed execution information is projected to the spinal cord (Fagg 1996, Fagg and Arbib 1998, 

Rizzolatti and Luppino 2001). In addition, F5 sends information about motor prototypes to motor 

dominant neurons in area AIP where it is stored in a working-memory-like fashion and can be 

compared to the affordances of the object. 

The computational implementation of the FARS model and its comparison to actual observed 

data was able to rectify the general layout of the model. Based on later studies and observations, 

modifications have been suggested to it: since area AIP exhibits stronger connections to the 

prefrontal cortex than F5, additionally to receiving projections directly from IT, it has been 

proposed that the appropriate object description is not chosen in F5, but instead already selected in 

AIP and forwarded to area F5 where it is translated into the respective motor prototype by 

visuomotor neurons (Rizzolatti and Luppino 2001). 

In conclusion, together with the hand area of M1, areas F5 and AIP form the fronto-parietal 

grasping circuit in which visual information is utilized and transformed into a grasping plan 

(visuomotor transformation) which then can be executed by projections to the spinal cord to 

adequately innervate muscles in the arm and hand. Finally, after briefly looking at our cup filled 
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with hot coffee, we stretch our arm and grasp it to reward ourselves after this long and complex 

journey through the brain. 

 

1.2. Neuroprosthetics 

In order to translate neural activity into a motor command to control a robot hand or another 

actuator, two different approaches have been pursued depending on the medical condition of the 

subject causing the motor impairment. In the case of remaining functioning nerves in the peripheral 

nervous system (e.g. in a stump of an arm or the trunk), neural activity formerly activating muscles 

in the hand and arm can be recorded from the peripheral nerves and used to control a prosthetic, 

robotic limb (Raspopovic et al 2014, Rossini et al 2010). However, in patients in which the 

communication between the central and peripheral nervous system is interrupted (e.g. due to a 

spinal cord injury), peripheral activity cannot be accessed. Instead, neural activity is recorded 

directly from the brain. 

Reading activity from the brain can be done in multiple ways: the least invasive method to 

record neural activity are electroencephalogram (EEG) recordings carried out by scalp electrodes 

attached to the skull by means of a head cap. Although 3D arm position in space (Bradberry et al 

2010, Kim et al 2014) has been successfully predicted from EEG signals, the method also contains 

several disadvantages: depending on the parameters to be decoded, the neural signals originally 

encoding these parameters might not be accessible to the EEG electrodes or the recorded neural 

signals might be disturbed by brain activity encoding unrelated parameters (Kim et al 2014). 

Therefore, brain activity unrelated to the actual parameters to be predicted often has to be used for 

prediction instead (Hochberg and Donoghue 2006). Consequently, the patient needs to learn to 

modulate his or her brain activity accordingly (Hochberg and Donoghue 2006), which in some 

cases requires extensive training (Neumann and Kubler 2003, Wolpaw and McFarland 2004). 

Furthermore, since the information transfer of EEG signals is limited (Hochberg and Donoghue 
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2006, Lal et al 2005), the complexity of the output into which the EEG activity is to be translated, is 

limited as well. Naturalistic hand movements that are composed of a high number of degrees of 

freedom and show a high kinematic variability can therefore not be predicted accurately by means 

of EEG signals (Bradberry et al 2010). 

Electrocorticographic (ECoG) recordings obtained by an electrode grid placed on top of the 

cortex underneath the dura mater deliver a volume-averaged neural signal similarly to EEG, but 

have a much higher spectral and spatial resolution (Hochberg and Donoghue 2006, Liu et al 2010). 

The ability to decode hand and finger movements from ECoG signals is subject to ongoing 

research. For example, patients with temporally implanted subdural electrode arrays due to other, 

unrelated medical reasons were instructed to perform individual finger movements. Researchers 

were able to read out from the brain activity when fingers were moved and could distinguish which 

finger was moved (Kubanek et al 2009, Liu et al 2010). In other studies, movements performed 

with a joystick or reaches to lift a cup were successfully detected (Pistohl et al 2013, Wang et al 

2012) or grip types to grasp a cup were decoded (Pistohl et al 2012).  

However, in none of the mentioned studies has the detected or decoded movement been 

translated into an actual movement of a robot arm so far. Instead, this has been realised with neural 

activity recorded by electrode arrays implanted into the cortex. With this method, action potentials 

from individual cells can be picked up and activity from multiple, up to several hundred neurons 

can be recorded simultaneously (Maynard et al 1997, Williams et al 1999). This technique provides 

the highest spatial and temporal resolution compared to the recording methods described above. As 

a consequence, the “original” neural signal from areas involved in the generation of arm and hand 

movements can be utilized to control a prosthetic limb, ideally similarly as a healthy person would 

use his or her brain activity to move the arm and hand. Furthermore, the control signal for prosthetic 

control is separated (at least to a certain extent) from brain activity involved in other tasks of motor 

control like talking or looking around. Therefore, these tasks can be carried out by the subject at the 
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same time as moving the prosthetic without affecting the control of the artificial limb (Hochberg 

and Donoghue 2006). 

First successful studies have been conducted with monkeys in which neural activity was 

translated into movements of a virtual or robot arm. The animals were able to perform reaching 

movements without using their own limbs or even managed to perform self-feeding actions 

(Velliste et al 2008, Wessberg et al 2000).  

Recently, this method was also transferred to human patients. Chadwick et al (2011) recorded 

spiking activity in the arm area of primary motor cortex of a tetraplegic person which was translated 

into arm movements in a virtual environment. The movements were restricted to elbow and 

shoulder joints in the horizontal plane (2 DOF in total) with which the subject performed reaches to 

virtual objects. 

In a study conducted by Hochberg et al (2012), two tetraplegic participants were able to control 

the arm endpoint position of a robot arm to perform reaches towards an object and grasp it. These 

movements included 4 DOF in total. The number of parameters controlled by neural activity was 

increased in study carried out by Collinger et al (2013) in which a tetraplegic patient performed 

reaching, grasping and manipulative movements with a robot arm. A total number of 7 DOF were 

controlled by the patient and allowed more natural and flexible actions with the neuroprosthesis. 

 

1.2.1. Limitations and restrictions of previous decoding studies. In the electrophysiological 

decoding studies described above, four major problems arise which need to be addressed in order to 

develop more natural and robust neuroprosthetics in the future. 

First, as already described above, the number of DOF decoded from or controlled by neural 

signals remained relatively low. Human online control achieved 7 DOF (Collinger et al 2013) and 

only one monkey study so far was able to predict an almost full description of hand and arm 

movements offline continuously over time: there, 18 DOF of the hand and fingers were decoded 
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together with 7 other wrist and arm joints. Additionally, arm endpoint position and grasp aperture 

was reconstructed (Vargas-Irwin et al 2010). However, the human hand and wrist alone exhibits a 

total number of 27 DOF (Lin et al 2000, Rehg and Kanade 1994). A neuroprosthetic needs to offer 

the possibility of a variety of hand and arm movements to achieve versatile and natural hand 

movements.   

Second, most of the decoding studies with humans and monkeys so far have focused on utilizing 

neural activity from M1 (Ben Hamed et al 2007, Carmena et al 2003, Chadwick et al 2011, 

Collinger et al 2013, Hochberg et al 2012, Vargas-Irwin et al 2010, Velliste et al 2008) and 

premotor cortex or F5 for their predictions (Aggarwal et al 2013, Bansal et al 2012). Most of the 

studies recording from primary motor cortex used activity from the rostral part of M1. However, as 

already mentioned in section 1.1.4, neurons in this area of M1 might only have an indirect influence 

on motor control as opposed to cells in the caudal region with direct connections to motoneurons in 

the spinal cord (Rathelot and Strick 2009). Higher decoding performance might therefore be 

achieved if activity from the latter part of M1 was used for decoding. 

Furthermore, other areas than M1 and F5 might have the potential to be suited for prediction of 

hand and arm movements. As described in section 1.1.2, area AIP in the parietal cortex is also 

highly involved in the generation of hand and arm movements and has been found to carry motor 

related information. Nevertheless, so far only very few studies investigated the suitability of AIP for 

decoding of grasping kinematics: Townsend et al (2011) as well as Lehmann and Scherberger 

(2013) were able to decode two different grip types with an accuracy of ~70% and 75% (averaged), 

respectively. However, the result was considerably lower than for decoding from area F5 

(performance: >90%). A similar result was obtained by Schaffelhofer et al (2015) who predicted 20 

different grip types with both F5 and AIP and obtained higher decoding accuracy with F5 than with 

AIP. In contrast, decoding the grip type together with object position in space or object orientation 

could be performed with higher accuracy with AIP than F5 (Lehmann and Scherberger 2013, 
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Townsend et al 2011). However, all of these studies only decoded grip types and hand shape 

categories from activity in AIP. A prediction of continuous kinematics is still lacking. So far, only 

signals from the posterior part of parietal cortex (PPC) like the parietal reach region (PRR) and area 

5d have been used for predicting hand positions in 3D space (Hauschild et al 2012, Wessberg et al 

2000).  

The third problem concerns the decoding scheme of the neuroprosthesis. All decoding studies 

mentioned above used a continuous kinematic decoding scheme, i.e. a motor output was 

continuously decoded and translated into robot movement over time. However, in phases of resting 

or no movement many decoding algorithms still have been found to produce a noisy, jittering output 

resulting in a slight tremble of the hand. Furthermore, it might be advantageous to the patient to be 

able to turn the prostheses on or off depending on whether the patient wants to engage in a motor 

action or not. Therefore, it has been suggested to combine the continuous kinematic decoding with a 

state decoder working in parallel monitoring the cognitive state the patient is in (Achtman et al 

2007, Darmanjian et al 2003, Ethier et al 2011, Hudson and Burdick 2007, Kemere et al 2008). 

Depending on the predicted state, the robotic arm could be turned on or off or switched into other 

configurations needed to perform a specific task. 

In monkeys, state decoding has already begun to be explored. Typically, either different epochs 

related to the specific course of a behavioural task have been decoded (Achtman et al 2007, 

Aggarwal et al 2013, Kemere et al 2008), or more general behavioural states like “movement” or 

“no movement” (Aggarwal et al 2008, Ethier et al 2011, Lebedev et al 2008, Velliste et al 2014). 

Again, all these studies recorded activity from motor and premotor cortex to make state predictions. 

In parietal cortex, only area PRR has been used to decode behavioural categories during reaching 

movements (Hudson and Burdick 2007, Hwang and Andersen 2009, Shenoy et al 2003); no 

comparable investigation has been conducted with area AIP so far. 



1. Introduction  

20 
 

The fourth and final point concerns the feedback the patient receives from the prosthetic. By 

visually inspecting the decoded hand actions, errors can be counteracted by the patient and control 

can be maintained. However, without tactile feedback the ability to perform natural movements is 

greatly diminished (Flanagan and Wing 1993, Johansson and Westling 1984, Johansson and 

Flanagan 2009). Currently, methods to deliver haptic information from the prosthesis back to the 

brain are being investigated in monkeys (O'Doherty et al 2009, O'Doherty et al 2011) but at the 

moment any elicited haptic sensations still remain far from natural experience. 

 

1.3. Motivation and overview of thesis 

This thesis aims to address the first three points described in the previous section. To do so, we 

recorded spiking activity simultaneously from the three areas AIP, F5, and M1 which are involved 

in the fronto-parietal grasping network (see section 1.1). The electrode arrays located in the hand 

area of M1 were placed into the anterior bank of the central sulcus ("new" M1, Rathelot and Strick 

2009) to be able to record from CM cells.  

Using a delayed grasping task which aimed to elicit a variety of different hand and finger 

movements, we decoded 27 DOF of reaching and grasping kinematics from the recorded spiking 

activity. To our knowledge, this is the most complete decoding of finger, wrist, and arm joints so 

far. Furthermore, we predicted two different behavioural states, resting and movement, with activity 

from the three brain areas. For the first time, decoding could be carried out with simultaneously 

recorded spiking activity from areas M1, F5, and AIP. This provided the unique opportunity to 

investigate the areas’ suitability for decoding and their information content with respect to grasping 

kinematics comparatively. 

Due to the two different types of decodings carried out in this study, this thesis is divided into 

two major chapters: in the first part (chapter II), the continuous decoding of 27 DOF of the hand 

and arm is presented. It is composed of a section describing the materials and methods (section 2), a 
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section in which the results are illustrated (section 3) as well as a section in which the results are 

interpreted and discussed in the context of previous research findings (section 4). The results 

presented in this chapter have also been submitted for publication (Menz et al 2015) and are 

currently under review. 

 The second part, chapter III, consists of the materials and methods (section 5), results (section 

6), and discussion (section 7) of the state decoding. Finally, in chapter IV, section 8, the results of 

both individual decodings are brought together and an outlook towards future research is given 

based on the findings presented in this thesis. A summary of all the findings of this study is 

presented at the end of this thesis in section 9.  
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2. Materials and Methods  

In the following sections, the basic procedures, experimental setup, behavioural paradigm, signal 

procedures and imaging, recording of the hand kinematics, neural recordings, and the decoding are 

described.  

Animal training (as described in section 2.1), neural and kinematic recordings during 

experimental sessions (as described in sections 2.2 and 2.3) were performed by Stefan Schaffelhofer 

and were partly assisted by me. The processing of the kinematic and neural data (except for the 

principal component analysis shown in figure 1 (e), as well as the filtering of neural signals and 

spike sorting as described in section 2.6, which was also carried out by Stefan Schaffelhofer), the 

implementation of decoding algorithms and procedures, the decodings (both kinematic decodings as 

described in this chapter and state decodings as described in chapter III), performance evaluations 

of decodings and all further analyses were performed by me. 

Furthermore, although the results presented in section 3 and parts of the discussion in section 4 

were submitted for publication (Menz et al 2015), they were entirely written by me. 

 

2.1. Basic procedures 

For decoding hand movements, two purpose-bread macaque monkeys (Macaca mulatta, animal Z: 

female, 7.0 kg; animal M: male, 10.5 kg) were trained to grasp a wide range of different objects 

while wearing an instrumented glove (Schaffelhofer and Scherberger 2012). After training was 

accomplished, both animals were implanted with head holders on the skull and with microelectrode 

arrays in cortical areas AIP, F5, and M1. In the following recording sessions, spiking activity was 

recorded from these electrodes together with the kinematics of the primate hand.  

Animal care and all experimental procedures were conducted in accordance with German and 

European law and were in agreement with the Guidelines for the Care and Use of mammals in 

Neuroscience and Behavioral Research (National Research Council 2003).  
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2.2. Experimental setup 

During training and experimental sessions the animals were sitting upright in a customized animal 

chair with their head fixed. In order to protect the instrumented glove, we constrained the passive 

(non-grasping) hand with a plastic tube that encompassed the forearm in a natural posture. A 

 
Figure 1. (a) 48 different objects were presented on a turntable in front of the monkey. Each turntable held a 

set of six different objects as shown in columns in (b) which had to be grasped, lifted, and held for 500 ms 

(Turntable task). Furthermore, the turntable could be replaced by a handle box (rightmost object in (b)) on 

which the animal had to perform precision or power grips (Grasping Box task). Hand kinematics were 

monitored by a data glove as shown in (c). Array implantation locations are illustrated in (d) (IPS, 

intraparietal sulcus; CS, central sulcus; AS, arcuate sulcus). 1st and 2nd principal components of recorded 

kinematics (recording Z032012) are shown in (e). Each marker corresponds to the first two principal 

components of the 27 DOF averaged across a hold epoch while the monkey was holding a specific object. 

Symbols correspond to objects as depicted in (b), marker size reflects object size. 
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capacitive switch at the side of the active (performing) hand allowed detecting the animal’s hand 

position at rest. All graspable objects (figure 1 (b)) were placed at a distance of ~25 cm in front of 

the animal at chest level. We used a PC-controlled turntable (figure 1 (a)) to pseudo randomly 

present the objects. Light barriers on top of the ceiling and a step motor ensured precise object 

positioning. Additional light barriers beneath the turntable detected when the monkey lifted the 

displayed object.  

Eight exchangeable turntables allowed presentation of a total of 48 objects. To obtain a high 

variation of hand kinematics, we designed the objects to have different shape and size (figure 1 (b)) 

including rings (outer diameter: 10 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm), cubes (length: 

15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm), spheres (diameter: 15 mm, 20 mm, 25 mm, 

30 mm, 35 mm, 40 mm), cylinders (length: 140 mm; diameter: 15 mm, 20 mm, 25 mm, 30 mm, 

35 mm, 40 mm), and bars (length: 140 mm; height 50 mm; depth: 15 mm, 20 mm, 25 mm, 30 mm, 

35 mm, 40 mm). Furthermore, a mixed turntable was used, holding mid-sized objects of various 

shapes for fast exchange (sphere 15 mm, horizontal cylinder 30 mm, cube 30 mm, bar 10 mm, ring 

50 mm), as well as a special turntable that contained objects of abstract forms (figure 1 (b)). All 

objects had a uniform weight of 120 g, independent of their size and shape.  

In addition to these 48 objects, we also trained the monkeys to grasp a handle object in two 

different ways, either with a precision grip (using thumb and index finger) or with a power grip 

(enclosure of handle using all digits). These grip types were detected by sensors in cavities the 

middle of the handle and a light barrier behind the handle, respectively. 

Eye position was measured with an optical eye tracker (ISCAN, Woburn, MA, USA), and hand 

kinematics were recorded by a custom-made hand tracking device (Schaffelhofer and Scherberger 

2012; see section 2.5.). To avoid interference with the electro-magnetic based hand tracker, no 

ferromagnetic materials were used in the experimental setup, including animal chair, table and 

manipulanda (Kirsch et al 2006, Raab et al 1979). All task relevant behavioural parameters (eye 
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position, stimulus presentation, switch activation) were controlled by custom-written behavioural 

control software that was implemented in LabView (National Instruments). 

 

2.3. Behavioural paradigm 

Monkeys were trained to perform grasping actions in the dark in order to observe motor signals in 

the absence of visual information. To realize this approach, a delayed grasping paradigm (Turntable 

task) was implemented (Schaffelhofer et al 2015): monkeys initialized a trial by pressing a 

capacitive switch in front of them. This action turned on a red LED that the animals had to fixate. 

After fixating for 500-800 ms, a target object located next to the fixation LED was illuminated for 

700 ms (cue epoch), followed by a waiting period in the dark (planning epoch, 500-1000 ms) in 

which the animals had to withhold movement execution but continue to fixate until the fixation 

LED blinked (“go” signal). Then, the animals grasped the object and held it up for 500 ms (hold 

epoch).  

Grasp movements performed on the handle (Grasping Box task, see figure 1 (b) “Handle”) were 

executed with the same paradigm with the exception that one of two additional LEDs instructed the 

monkeys during cue period to perform either a precision grip (yellow LED) or a power grip (green 

LED).  

Incorrect trials were aborted immediately; correct trials were rewarded with juice. 

 

2.4. Signal procedures and imaging 

Prior to surgery, we performed a 3D anatomical MRI scan of the animal’s skull and brain to locate 

anatomical landmarks (Townsend et al 2011). For this, the animal was sedated (10 mg/kg ketamine 

and 0.5 mg/kg xylazine, i.m.), placed in the scanner (GE Signa HD or Siemens TrioTim; 1.5 Tesla) 

in a prone position, and T1-weighted images were acquired (iso-voxel size: 0.7 mm3).   
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Then, in an initial procedure, a head post (titanium cylinder; diameter 18 mm) was implanted on 

top of the skull (approximate stereotaxic position: midline, 40mm anterior, 20° forward tilted) and 

secured with bone cement (Refobacin Plus, BioMed, Berlin) and orthopedic bone screws (Synthes, 

Switzerland). After recovery from this procedure and subsequent training with head fixation, each 

animal was implanted in a second procedure with six floating microelectrode arrays (FMAs; 

MicroProbes for Life Science, Gaithersburg, MD, USA). Specifically, two FMAs were inserted in 

each area AIP, F5, and M1 (see figure 1 (d)). FMAs consisted of 32 non-moveable monopolar 

platinum-iridium electrodes (impedance: 300-600 kΩ at 1 kHz) as well as two ground and two 

reference electrodes per array (impedance < 10 kΩ). Electrode lengths ranged between 1.5 and 

7.1 mm and were configured as in Townsend et al (2011).  

Electrode array implantation locations are depicted in figure 1 (d). In both animals the lateral 

array in AIP was located at the end of the intraparietal sulcus at level of PF, whereas the medial 

array was placed more posteriorly and medially at the level of PFG (Borra et al 2008). In area F5, 

the lateral array was positioned approximately in area F5a (Belmalih et al 2009, Borra et al 2010), 

whereas the medial array was located in F5p in animal Z and at the border of F5a and F5p in animal 

M. Finally, both arrays in M1 were positioned in the hand area of M1 (anterior bank of the central 

sulcus at the level of the spur of the arcuate sulcus and medial to it) (Rathelot and Strick 2009).  

All surgical procedures were performed under aseptic conditions and general anaesthesia (e.g. 

induction with 10 mg/kg ketamine, i.m., and 0.05 mg/kg atropine, s.c., followed by intubation, 

1-2% isofluorane, and analgesia with 0.01 mg/kg buprenorphene, s.c.). Heart and respiration rate, 

electrocardiogram, oxygen saturation, and body temperature were monitored continuously. 

Systemic antibiotics and analgesics were administered for several days after each surgery. To 

prevent brain swelling while the dura was open, the animal was mildly hyperventilated (end-tidal 

CO2 < 30 mmHg) and mannitol kept at hand. Animals were allowed to recover for at least 2 weeks 

before behavioural training or recording experiments recommenced. 
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2.5. Hand kinematics 

To monitor the animal’s movements, an instrumented glove for small primates was used that 

allowed recording the animal’s finger, hand and arm movements in 27 DOF (Schaffelhofer and 

Scherberger 2012). The glove was equipped with 7 electro-magnetic sensor coils that enabled hand 

and arm movement tracking at a temporal resolution of 100 Hz without depending on light or sight 

to a camera (figure 1 (c)). In this way, finger movements could be tracked continuously even when 

the sensors were behind or below objects. The method has been described in detail in Schaffelhofer 

and Scherberger (2012). In short, the technique exploits the anatomical constraints of the primate 

hand and the 3D position and orientation information of the sensors located at the fingertips, the 

hand’s dorsum and the lower forearm.  

Recorded 3D positions of the finger, hand, and arm joints were compared to the animal’s 

anatomy. Rarely occurring errors (e.g. due to short freezing of the kinematic tracking) were set to 

NaN. Then, each joint angle was calculated for every recorded time step and afterward linearly 

resampled to exactly 100 Hz. This way, also recorded and previously added NaNs were eliminated 

by linear interpolation. 

Specifically, the following 27 joint angles were extracted: spread (extension/flexion), 

carpometacarpal (CMC), metacarpophalangeal (MCP), and interphalangeal (IP) joint of the thumb; 

spread (adduction/abduction), metacarpophalangeal (MCP), proximal interphalangeal (PIP), and 

distal interphalangeal (DIP) joint of index, middle, ring, and little finger; radial/ulnar deviation 

(yaw), flexion/extension (pitch), and pronation/supination (roll) of the wrist; flexion/extension of 

the elbow; as well as adduction/abduction (yaw), flexion/extension (pitch), and lateral/medial 

rotation (roll) of the shoulder.  

Furthermore, the speed of every DOF at each time sample was calculated and added to the 

kinematics. This resulted in a 54xT-matrix with T as the total number of samples. Note, that only 



2. Materials and Methods of kinematic decoding 

31 
 

data recorded while the monkey was exposed to the handle or turntable task was used and 

concatenated into one matrix, including both correctly and incorrectly performed trials, reward 

epochs, as well as the time between trials (inter-trial intervals). Data recorded while turntables or 

the Grasping Box were exchanged by the experimenter were not included.  

For illustration purposes, the 27 DOF were averaged during the hold epoch of each successful 

trial of recording Z032012, and a principal component analysis was performed. The first two 

principal components of the kinematics of each trial are illustrated in figure 1 (e), demonstrating 

that we were able to cover a wide range of hand configurations together with sampling very small 

differences in hand kinematics. 

 

2.6. Neural recordings 

Extracellular signals were simultaneously recorded from six FMAs (6 x 32 channels) that were 

permanently implanted into area AIP, F5, and M1 (two arrays in each area). Raw signals were 

sampled at a rate of 24 kHz with a resolution of 16 bit, and stored to disk together with the 

behavioural and the kinematic data using a RZ2 Biosignal Processor (Tucker Davis Technologies, 

FL, USA). Offline, the raw data was bandpass filtered (0.3-7 kHz) and spikes were detected 

(threshold: > 3.5 standard deviation). Spike sorting was performed with WaveClus (Quiroga et al 

2004) for automatic sorting and OfflineSorter (Plexon TX, USA) for subsequent manual inspection 

and revision. Only single and multiunits were considered for further analyses. 

 

2.7. Decoding 

2.7.1. Decoding algorithm. For offline prediction of the hand and arm kinematics, we employed a 

Kalman filter (Kalman 1960) as described in Wu et al. (2006, 2004). A Kalman filter assumes a 

linear relationship between the kinematics at time instant k and the following time instant k+1 (step 

size: 10 ms), as well as between the kinematics and the neural data at time k: 
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xk+1 = Axk + wk, 

zk = Hxk + qk. 

Here, xk+1 is the 54x1-vector of the 27 angles and their velocities at time k+1, A a 54x54-matrix 

relating the kinematics of one time step to the following one, zk a vector of length N containing the 

neural data at time k where N denotes the total number of recorded units, H a Nx54-matrix relating 

the kinematics at time k to the corresponding neural information at time k, and wk and qk noise terms 

that are assumed to be normally distributed with zero mean, i.e. wk ~ N(0,W) and qk ~ N(0,Q), with 

W ∈ℝ54×54 and Q ∈ℝN×N covariance matrices. 

 

2.7.2. Decoding procedure. For decoding a complete recording session, we used 7-fold cross-

validation. For this, the recording session was divided into seven data sets of equal length and 

composition: each task type (i.e. Grasping Box task and data from each turntable) was divided into 

seven parts of equal length and these parts were randomly attributed to the seven sets, so that 

eventually each set contained data of each turntable and the Grasping Box task. 

To decode the kinematics of the i-th of the seven sets, the parameters of the Kalman filter, 

namely A, H, W, and Q, were calculated by using the neural and kinematic data of the remaining six 

sets (decoder training). Then, the kinematic data of the i-th set (27 DOF and their respective 

velocities) were iteratively predicted by the Kalman filter. The initial value of each DOF (and 

velocity) was randomly set within the observed range of the respective DOF/velocity during the 

recording (interval between the smallest and highest value). For each subsequent time step, the 

Kalman filter first calculated an a-priori estimation of the kinematics based on the kinematic state of 

the previous time step. Then, an update of this prediction based on the corresponding neural activity 

was performed (a-posteriori estimation) (Welch and Bishop 2006).  
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This procedure was carried out for each of the seven data sets, hence leading to the decoding of 

the entire recording session. The decoding procedure was implemented in a custom-written 

software in Matlab (MathWorks Inc., Natick, MA, USA). 

 

2.7.3. Variation of decoding parameters. The neural data used for decoding was varied in the 

following way in order to systematically investigate the impact on decoding performance:  

(1) For each unit, spike times were binned in specific time intervals, i.e. the number of occurring 

spikes in a specific time bin was counted. Since the kinematic data was predicted by the 

Kalman filter with a frequency of 100 Hz, the bins for counting the spikes were shifted in 

time steps of 10 ms which resulted in overlapping bins if the window length was larger than 

10 ms. To test the impact of bin length on the decoding performance, it was systematically 

varied. 

(2) In addition to bin length, we tested whether the introduction of a time lag (gap) between the 

time series of the kinematics and the series of spike counts would lead to changes in 

decoding performance. We therefore systematically varied gap length (using both positive 

and negative values). Using a gap length g < 0 and a bin length b > 0 translated into 

predicting the kinematics at time point tk with the spike count in the time window 

[tk+g-b tk+g] in the a-posteriori step of the Kalman filter, meaning that neural activity 

preceded the kinematics. Positive gap lengths where the neural data used for decoding 

succeeded the kinematic prediction were tested as well. A positive gap length g > 0 and bin 

length b > 0 would then take the spikes in the time window [tk+g tk+g+b] into account. For 

the purpose of clarity, we used the notation g = -0, b > 0 to refer to the time window [tk-b tk] 

and g = (+)0, b > 0 for the time window [tk tk+b] of spike counting.  
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For each recording and area/combination of areas, we tested different combinations of bin and gap 

lengths, ranging from 0 to ±180 sec for gaps and 10–250 ms for bin lengths, and evaluated them 

with respect to their decoding performance.  

 

2.7.4. Evaluation of decoding performance. To assess decoding performance, we calculated both 

Pearson’s correlation coefficient (CC) and the relative root mean squared error (rRMSE) for each 

DOF across the entire decoded recording session to compare the measured trajectory of a joint 

angle with the decoded trajectory as predicted by the Kalman filter.  

CC was defined as  

CC = �∑ (𝑥𝑘 − 𝑥̅)(𝑥�𝑘 − 𝑥̅�)𝑁
𝑘=1 � ⋅ ��∑ (𝑥𝑘 − 𝑥̅)2 ∙𝑁

𝑘=1 ∑ (𝑥�𝑘 − 𝑥̅�)2𝑁
𝑘=1 �

−1

 , 

where N is the total number of samples, 𝑥𝑘 and 𝑥�𝑘 denote the true and decoded DOF at time k, 

respectively, and 𝑥̅ and 𝑥̅� are the means across all N samples of the true and decoded DOF, 

respectively. 

rRMSE was determined by calculating the root mean squared error (RMSE)  

RMSE =�
1
N

� (xk-x�k)2
N

k=1
  

for each DOF and then normalizing it by the range of the respective DOF: 

rRMSE = RMSE/(d95 - d5), 

where d5 and d95 are the 5th and 95th percentile of all recorded data samples of the respective DOF. 

The normalization allowed us to compare prediction errors of joint angles that differed in their 

operational range.  

For each neuronal dataset we determined the optimal gap and bin length combination that 

maximized CC and minimized rRMSE. Most of the times, the optimal combinations matched for 

CC and rRMSE. Both CC and rRMSE are important measures for performance, however, a 
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trajectory prediction that captures the movement shape with an offset bias might have a high CC, 

but will also have a high rRMSE. In cases where the optimal parameter combination did not match 

for CC and rRMSE, we therefore favoured the parameter combination yielding better rRMSE, 

which generally also had a high CC. The optimal parameter combination was selected to evaluate 

the information content that can be utilized by the Kalman filter to predict continuous movements. 

 

2.7.5. Chance decoding performance. Since the Kalman filter used the previous kinematic state as 

the first part of its prediction (a-priori estimation), in case of very regular movement, the filter 

might be able to already achieve a high performance simply by utilizing the regularity of the 

oscillatory kinematics, i.e. without having to rely on the neural information at all. In such a case, a 

high decoding performance might then be falsely attributed to the neural data. To avoid such an 

effect, we included both correct and incorrect trials (where the kinematics often did not follow the 

typical temporal structure of the correct trials) in the decoding.  

Furthermore, we calculated a chance level performance to get an estimation of how much the 

filter was utilizing potentially encoded information in the neural data to predict the continuous 

kinematics, as opposed to relying solely on the inherent kinematic information. For this, we 

removed any potential task-relevant information contained in the spike train population by applying 

the following random shift method: We shifted the spike sequence of each unit individually by a 

random gap length of at least 20 sec in either positive or negative time direction. Neural data that 

was shifted beyond the end or the beginning of the kinematic data was circularly reinserted at the 

beginning or end, respectively. This way, we destroyed any potential relationship between the 

kinematics of the limb and spike sequence, while keeping the inherent temporal structure of the 

spike sequence intact. Importantly, we used different randomly determined gap lengths for each 

unit, thus destroying also any potential correlations in the neuronal population. Using this 
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temporally reshuffled neural data, we carried out decodings and calculated the performance 

measures, CC and rRMSE, from which we determined the chance level performance as follows: 

By repeating this surrogate method ten times, we established the probability distribution of CC 

and rRMSE during chance performance for each area and recording session. To test if the CC or 

rRMSE obtained from the respective standard decoding differed significantly from chance, we 

compared the respective CC or rRMSE value to the median of the chance probability distribution by 

means of a two-sided sign test. If p < 0.05, we considered the performance of the standard decoding 

to be significantly different from chance. 

When comparing the mean performance across all ten recording sessions to chance (as in the 

analysis of decoding performance for proximal and distal groups of joints, figure 6), a chance 

distribution across recording sessions was composed out of the means of the chance distributions of 

each recording. Then, a two-sided sign test was performed to determine whether the median of that 

chance distribution differed significantly from the mean performance of the standard decoding 

across all ten recording sessions. 
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3. Results  

We recorded 27 DOF of the hand, wrist, and arm simultaneously over time together with single and 

multiunit spiking activity in the hand areas of primate motor (M1), premoter (F5), and parietal 

cortex (AIP). In total, ten recording sessions were analyzed for this study (monkey Z: six sessions, 

monkey M: four sessions). Table 1 provides an overview of the number of single and multiunits 

recorded during each session in the cortical areas M1, F5, and AIP. 

 

3.1. Kinematic and neuronal data 

Representative example trajectories of the 27 DOF from recording Z032012 while the monkey 

grasped and lifted a horizontal bar, a cube, and a small ball are shown in figure 2 . As can be clearly 

observed, different hand and arm configurations occurred for grasping the objects which was an 

important goal of the task design. In total, 49 distinct objects in various sizes and shapes were tested 

(see section 2.2) covering a wide range of hand configurations and hence allowed to sample very 

 
Table 1. Number of single and multiunits recorded in each brain area in each 
recording session as well as the mean and standard deviation (std) across 
recordings. 
 M1 F5 AIP 

M
on

ke
y 

Z 

Z120511 66 88 45 
Z011312 61 71 64 
Z012312 70 77 52 
Z030212 64 76 67 
Z032012 79 75 61 
Z033112 64 74 60 

 mean ± std 67.3 ± 6.4 76.8 ± 5.8 58.2 ± 8.2 
 

M
on

ke
y 

M
 

M110813 148 112 97 
M111913 164 114 82 
M112013 176 119 81 
M112113 153 119 90 

 mean ± std 160.3 ± 12.4 116.0 ± 3.6 87.5 ± 7.5 
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small differences in hand kinematics (see also figure 1 (e) in Materials and Methods). 

In addition to the kinematic data, neural activity of the recorded units is shown at the bottom of 

figure 2 (rasterplot). As expected, units in M1 displayed a clear modulation of firing rate during 

movement execution, whereas they exhibited a decreased activity during periods with no 

movement. An increase of spiking activity was also observed during movement periods for units in 

F5 and AIP. The extent however was smaller than in M1 and was smallest in AIP. In contrast, AIP 

showed a higher firing rate during periods where the object was presented to the monkey and while 

the animal was planning the movement. A similar behaviour could be observed for F5 although the 

planning activity was decreased compared to AIP. Such activity patterns have been reported 

previously for single units in M1 (Bansal et al 2011, Poliakov and Schieber 1999, Umilta et al 

2007, Vargas-Irwin et al 2010), F5 (Fluet et al 2010, Lehmann and Scherberger 2013, Murata et al 

1997, Raos et al 2006, Rizzolatti et al 1988, Umilta et al 2007), and AIP (Baumann et al 2009, 

Lehmann and Scherberger 2013, Murata et al 2000, Townsend et al 2011), hence confirming the 

validity of the observed patterns within these areas. 

 

3.2. Decoding of 27 DOF 

Since a clear relationship between neural activity and kinematics could be observed, we decoded 

27 DOF of the hand, wrist and arm continuously over time using single unit activity from areas M1, 

F5, and AIP. Figure 3 shows example trajectories from recording Z032012 of hand, wrist and 

shoulder joints over a time course of 80 sec while the monkey was lifting objects of the mixed  

 

Figure 2. Joint angle kinematics of all recorded 27 DOF of recording Z032012 during 3 trials. Hand, wrist, 

and arm DOF are shown while the monkey grasped a horizontal bar, a cube, and a small ball (objects on top). 

Task epochs are marked by black vertical lines and labelled (“C”, cue; “P”, planning; “G”, “go” signal; “H”, 

hold epoch). Simultaneously recorded neural activity from M1, F5, and AIP is presented as a rasterplot below. 

Each unit is represented by one row of dots, and each dot represents the occurrence of a spike. Colour code 

indicates the firing rate of a unit in Hz. 
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turntable. Both the true and the predicted joint angles are shown. Decodings were performed with 

either single units from area M1 (figure 3 (a)), F5 (figure 3 (b)), or AIP (figure 3 (c)). For all three 

areas, the estimated trajectory followed the real one accurately: the timing of both movement onset 

and termination were captured in a very precise way. The movement amplitude seemed to be 

reproduced best when decoding with data from area M1 and was slightly diminished when 

predicting from areas F5 or AIP, respectively. Furthermore, in time periods without movement 

(inter-trial intervals) the predicted trajecory contained more jittering when decoding from AIP than 

when decoding with M1 or F5.  

tdiv = 1761.5 sec (marked with a pink triangle on top) is one of the time instants when the data 

was divided in order to carry out the 7-fold cross-validation: here the Kalman filter was re-trained 

and decoding was restarted with new initial values within the range of the respective DOF (see 

section 2.7.2 in Materials and Methods). This led to discontinuities in most curves, since the 

decoding trajectory was placed far off the actual trajectory at this time instant. However, the 

Kalman filter managed to bring the trajectory back close to the true amplitude within 300-400 ms, 

hence illustrating the power of the algorithm. 

 

 

Figure 3. Examples of real and decoded trajectories of four example DOF (thumb MCP, index DIP, wrist 

yaw, and shoulder roll) are shown over a duration of 80 sec (recording Z032012). Blue lines: recorded 

trajectories, red lines: decoded kinematics using neural activity from (a) area M1 (bin length 10 ms, gap 

length -50 ms, 79 single units), (b) area F5 (bin length 10 ms, gap length -30 ms, 75 single units), and (c) area 

AIP (bin length 10 ms, gap length -10 ms, 61 single units). Decoding performance (CC and rRMSE) during 

these 80 sec is indicated separately for each trajectory. Pink triangle: time point when data was divided for 

7-fold cross-validation, leading to brief (re-)initialization errors in the decoded trajectories. Decoding 

performance across the entire recording session and across all 27 DOF are shown in (d) for CC and (e) for 

rRMSE for individual areas or combinations thereof. Orange lines and errorbars in (d)-(e) indicate chance 

level and standard deviation (see section 2.7.5 in Materials and Methods). 
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3.3. Decoding performance of different areas 

To quantify the decoding performance of the different areas more precisely, we calculated the CC 

and rRMSE for each DOF over the entire recording session (Z032012) and averaged the CCs across 

all 27 DOF (figure 3 (d)-(e)). As expected, decoding with neural signals from area M1 yielded the 

best decoding performance in comparison to decoding from F5 or AIP. However, there was no 

significant difference in mean between M1 and F5, neither for CC nor rRMSE (one-way ANOVA 

and Tukey-Kramer multicomparison test, p > 0.05). The similar CC shows that the actual 

movement could be captured similarly precisely when decoding from M1 or F5. Still, predictions 

made with F5 did not seem to capture the amplitude of the movement as well as when decoding 

with M1, and there was more noise during resting phases (see also figure 3 (a)-(b)), which was 

reflected in a higher rRMSE for F5. AIP yielded good performance values as well which did not 

differ significantly from those obtained with area F5. However, when comparing AIP and M1, a 

significant difference was found in the mean correlation coefficients (p < 0.05). 

In addition to predicting from one brain area alone, we also decoded with pairs of areas 

(AIP&F5 and M1&F5) and with all three areas combined to investigate if the decoding performance 

could be improved by combining information from different brain areas. Decoding from M1 and F5 

in combination increased the mean CC and decreased the mean rRMSE slightly, but not 

significantly in comparison to decoding with M1 alone. Similarly, there was no significant 

improvement when decoding from F5 and AIP in combination compared to decoding from F5 

alone. As expected, decoding performance was best when all three areas were used for decoding. 

However, there was no significant improvement in comparison to using only data from M1. 

We were curious to evaluate to which extent the decoding performance could be attributed to 

movement information contained in a brain area as opposed to information inherent in the 

kinematics themselves. In other words, we wanted to determine a decoding performance based on 

neural information that did not contain any meaningful information with respect to movement. If 
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the resulting decoding accuracy was comparable to the performance presented in bars in 

figure 3 (d)-(e), the performance must have been obtained by the Kalman filter solely relying on the 

information within the kinematics (a-priori estimation, see section 2.7.2 in Materials and Methods). 

In contrast, if the decoding performance was significantly lower when using meaningless spiking 

activity, additional movement information must have been present in the brain areas which the 

decoder was able to translate into kinematic predictions in order to yield the accuracy in figure 3 

(d)-(e). Therefore, we performed simulated decodings with randomly reshuffled spiking activity in 

which neural information is unrelated to movement kinematics to determine a chance level 

performance, (random shift method, see section 2.7.5 in Materials and Methods for further 

explanation). This method was repeated ten times for each neuronal dataset (area or combination of 

areas), and CC and rRMSE were calculated for each DOF and then averaged across all 27 DOF. 

Mean and standard deviation (across ten repetitions) are shown in figure 3 (d)-(e) (orange lines). 

Clearly, decoding with the original neural data significantly outperformed chance performance both 

in terms of CC and rRMSE (two-sided sign test, see section 2.7.5 in Materials and Methods, 

p < 0.002). This demonstrated that significant movement information was present in these brain 

areas that the decoder was able to translate into accurate movement predictions. 

Figure 4 illustrates the combined results across all recording sessions (six sessions for monkey 

Z, four sessions for monkey M; see also table 1). Overall, they confirm the findings of the example 

recording shown in figure 3 (d)-(e). When decoding with neural activity from a single area, M1 

yielded best results, followed by F5 and AIP, all differing significantly from each other in their 

accuracies (one-way ANOVA and Tukey-Kramer multicomparison analysis; p < 0.05). Combining 

two or three areas for decoding improved the decoding performance only slightly (but not 

significantly) compared to using only the better performing single area.  

Finally, we also compared the performances between monkeys for each area. There were no 

differences in means or variances for M1 and F5 (two-sample t-test, p > 0.10, and Bartlett’s test, 
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p > 0.05, respectively). However for area AIP, the variances differed significantly between 

monkeys (Bartlett’s test, p < 0.04). 

In conclusion, we were able to perform accurate movement prediction with all three areas with 

significantly better precision than chance. Combining areas increased accuracy to a small extent 

compared to decoding with the respective best performing area but improvements were not 

significant. With the exception of area AIP, decoding results were highly comparable between 

monkeys. 

 

3.4. Influence of number of units on decoding performance 

Since the amount of units was lowest for area AIP (see table 1), we wanted to rule out that AIP’s 

lower decoding performance was simply due to a lower number of recorded units. To address this 

question, we randomly selected a fixed number of units from each area M1, F5, and AIP and 

decoded with this data set. This was done repeatedly (ten times) for each area and resulting 

performances were averaged across all 27 DOF and repetitions. Figure 5 shows the mean decoder 

 
Figure 4. Decoding performance of individual recording sessions (as in figure 3 (d)-(e)) was averaged across 

all 10 sessions  for CC (a), (c) and rRMSE (b), (d), separately for monkey Z (a)-(b) and M (c)-(d). Bars and 

errorbars indicate mean and standard deviation.  
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performance across all recording sessions for randomly selecting 5, 15, 25, and 35 units. In 

addition, the rightmost bars (“max”) show the decoding performance when, for each recording 

session, the maximum amount of units available in all of the areas, i.e. the smallest of the three set 

sizes of units in M1, F5, and AIP, was randomly selected for each session (i.e. 45 units for session 

Z120511, 61 units for session Z011312, etc., see table 1).  

Regardless of the actual number of units, M1 yielded the best decoding performance for both CC 

and rRMSE, followed by F5 and AIP. The ranking of areas in decoding performance therefore did 

not depend on the number of available units. Furthermore, as expected, decoding performance 

increased with the number of units used for decoding, and in individual recording sessions (data not 

 
Figure 5. CC and rRMSE was determined for decoding with a fixed number of randomly selected units (5, 

15, 25, and 35 units) from each area and averaged across all DOF. This procedure was repeated 10 times for 

each recording session and mean CC and rRMSE was determined across all repetitions and recording sessions 

(bars and errorbars: mean and standard deviation). Different colours indicate the three recording areas (M1, 

F5, and AIP). In the rightmost group of bars (“max”) the number of randomly selected units in the three areas 

was maximized for each session (i.e. the minimum number of available units in M1, F5, and AIP). 
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shown) the standard deviation of CC and rRMSE decreased with growing number of units, hence 

demonstrating that results became more consistent.  

Remarkably, performance already lay above chance when choosing only a small number of 

single units (like five). For each recording, we compared the distribution of performance levels 

obtained by ten repetitions of the random selection of five units with the distribution of chance 

levels obtained by ten repetitions of the random shift method obtained by using all available units in 

an area (Mann-Whitney U-test): when using M1 for decoding, the performances (both CC and 

rRMSE) differed significantly from chance for all ten recording sessions (p < 0.001). For F5, there 

was a significant performance difference to chance in 9 and 10 of 10 recordings for CC and rRMSE, 

respectively (p < 0.05). For area AIP, decoding with five units was able to yield a significantly 

better performance than chance level in eight out of ten recordings for CC (p < 0.05) and in all 

recordings for rRMSE (p < 0.05). 

Thus we can conclude that all areas carry substantial amount of information about hand and arm 

kinematics which enabled kinematic prediction that was better than chance already with a small 

number of units. Decoding accuracy improved monotonically with increasing number of units used 

for decoding whereas the ranking of areas in decoding performance was independent of the amount 

of recorded units. 

 

3.5. Decoding performance of proximal and distal movements  

Decoding performance for different groups of joints was compared in figure 6. Although the 

electrode arrays were carefully placed in the hand area of motor, premotor, and parietal cortex, 

decoding of elbow and shoulder joints (“arm joints” in figure 6) generally performed best for all 

areas. Decoding performance was significantly higher than for all other groups of DOF except for 

wrist angles when decoding with AIP and using rRMSE for judgement (one-way ANOVA and 

Tukey-Kramer multicomparison analysis, p < 0.05). The high decoding accuracy is likely due to the 
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task design which concentrated on eliciting a high variability in finger kinematics but showed a 

more stereotypical demand on elbow and shoulder movements. Therefore, these trajectories were 

easier to predict. Recordings of those angles also contained less noise which might have affected the 

decoding performance. However, as this group consisted of only 4 of all 27 total DOF, bias towards 

high prediction accuracy in the overall result, as presented in figure 4, was only marginal.   

Besides the difference between proximal and distal joint angles, there was only little variation in 

the decoding performance between hand and wrist joints. Thumb and little finger joints tended to be 

predicted with slightly less accuracy than the other DOF of the wrist and hand. Thumb performance 

could be attributed to the fact that the thumb was the finger with most variation in movement and 

therefore was also most prone to (kinematic) recording noise. Compared to middle and ring finger, 

which tended to move in correlation (sometimes also together with the index finger), both thumb 

 

 

 
Figure 6. Mean CC’s and rRMSE’s were averaged across groups of joints (thumb joints, index finger joints, 

middle finger joints, ring finger joints, little finger joints, wrist joints, and arm joints including shoulder and 

elbow joints) and recording sessions separately for M1, F5, and AIP. Bars and errorbars: mean and standard 

deviations. Orange lines and errorbars: chance decoding mean and standard deviations (see section 2.7.5). 
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and small finger movements were more independent. When grasping, the little finger often did not 

clasp the object as the other fingers did, but was positioned more loosely next to the object. It 

therefore exhibited, similarly to the thumb, a movement pattern with higher variation across the 

tested grip types.  

In addition, figure 6 shows the respective chance performance levels. As it is clearly visible, 

decoding performance of all joint groups was significantly better than chance level (two-sided sign 

test, see section 2.7.5 in Materials and Methods, p < 0.002). 

 

3.6. Optimal decoding parameters 

As mentioned above, different parameter combinations (varying gap and bin lengths) were tested 

for decoding and evaluated in terms of CC and rRMSE. Bin lengths of 10-250 ms were 

systematically combined with gap lengths ranging from 0 to ±180 sec and the best combination 

with respect to CC and rRMSE was determined. This procedure was repeated for all recording 

sessions and areas. In 95% of these optimal combinations a bin length of 10 ms was the best 

duration for counting spikes. Gap lengths, however, varied more strongly between areas and 

recordings. Figure 7 (a)-(b) illustrates the decoding performance of M1, F5, and AIP as a function 

of gap lengths while bin length was kept constant at 10 ms. Furthermore, the cumulative 

distribution of optimal gap lengths (across recording sessions) for each area is provided in 

figure 7 (c)-(d).  

For area M1, the gap lengths yielding the best decoding performance for each recording 

clustered around durations from -70 to 10 ms. A two-sided sign test showed that the median of these 

gap lengths (-10 ms) was not significantly different from zero for CC (p = 0.07), but was for 

rRMSE (median:  -50 ms, p = 0.04). For area F5, the optimal gap lengths were shifted more into the 

negative range, indicating that neural data used for decoding preceded the kinematic prediction: for 

both CC and rRMSE, the median (-40 ms for CC, -60 ms for rRMSE) was significantly different 
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from zero (p = 0.002 for both CC and rRMSE). However, this was not true for AIP: there, the 

median of optimal gap lengths was not at all significantly differing from zero (p = 1 for CC, 

median: -0 ms; p = 0.45 for rRMSE, median: -15 ms). Together, optimal gap lengths for decoding 

with area M1 were close to zero with a shift into the negative range, which became even larger for 

decoding with F5. Optimal gap lengths for decoding with AIP however clustered around zero. This 

becomes also apparent in figure 7 (c)-(d) where the lines for F5 are shifted furthest to the negative 

range, followed by the lines for M1 and AIP.  

Moreover, these plots demonstrate that there was much more variation in optimal gap length for 

area AIP than for the other two areas: for CC the respective standard deviation of optimal gap 

 

 
Figure 7. CC (a) and rRMSE (b) is plotted as a function of gap lengths (bin length: 10 ms). Lines show the 

mean value averaged across all ten recordings, shaded regions depict the respective standard deviation. Gap 

lengths yielding the highest CC/rRMSE were determined for each recording and area and cumulative 

distributions of the optimal gap lengths are shown for CC (c) and rRMSE (d).  
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length distributions were 30.62 ms (M1), 29.83 ms (F5), and 83.11 ms (AIP). This difference was 

significant (non-parametric Levene’s test, p < 0.03). Similar results were observed for rRMSE with 

standard deviations of 37.06 ms (M1), 38.89 ms (F5), and 452.86 ms (AIP), also significantly 

different (non-parametric Levene’s test, p < 0.01).  

Furthermore, when decoding with data from AIP, a second, but smaller peak in performance 

appeared for gap lengths around -1700 ms (figure 7 (a)-(b)). The ranking of the three areas in terms 

of decoding performance was reversed for these long gap lengths. Contrary to AIP, the 

performances for F5 and M1 improved steadily the closer the neural data used for decoding lay in 

time compared to the kinematics to be predicted. For gap lengths longer than 

approximately -600 ms, F5 still yielded higher decoding accuracy than M1. For positive gap 

lengths, decoding performance monotonically decreased and there was no second peak in either 

area. 

In conclusion, while consistently observing a bin length of 10 ms as optimal throughout areas, the 

impact of specific gap lengths on decoding performance varied largely. Consequently, the gap 

lengths yielding highest decoding performance differed to a great extent for M1, F5, and AIP.   
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4. Discussion 

Our goal was to investigate the possibility of decoding complete hand, wrist, and arm movements 

(represented by 27 DOF) from single and multiunit activity in the hand areas of motor (M1), 

premotor (F5), and parietal cortex (AIP) in a comparative way. To our knowledge, this is the first 

study that combines and compares these three grasping areas for prediction of versatile, continuous 

hand kinematics. Simultaneous recordings of population activity from three areas by multi-electrode 

arrays gave us the possibility to examine differences between these areas and evaluate the 

information content with respect to hand and arm kinematics in these areas. 

Our task design required the monkey to grasp a high number of distinct objects of different sizes 

and shapes. Our goal was to elicit versatile hand and finger movements to investigate the 

information content in each of the brain areas by means of decoding naturalistic grasping 

movements with a high number of dimensionalities. Brochier et al (2004) demonstrated with a 

similar, smaller set of objects that for each of them distinctive patterns of EMG activity in shoulder, 

arm, hand, and digit muscles and thus different kinds of hand movements and configurations were 

elicited. By including similar and more objects in our study, we hoped to achieve distinctive and 

various hand movements and shapes. The PCA analysis of the performed kinematics in each trial 

demonstrated that we succeeded in covering a wide range of hand configurations while also 

sampling small differences in hand kinematics (see figure 1 in Materials and Methods). 

 

4.1. Movement reconstruction with primary and premotor cortex  

Continuous trajectories of 27 joint angles could be reconstructed accurately over time by using 

single and multiunit activity from M1, F5, or AIP. However, decoding performance varied between 

the areas. Highest performance was achieved when using M1 for decoding, followed by F5 

(figures 3 and 4). These results were very consistent between monkeys.  
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It is known that various parameters regarding hand and arm movements such as joint and muscle 

representations, wrist position, and grasp configurations are encoded in both M1 (Ashe 1997, Ashe 

and Georgopoulos 1994, Georgopoulos et al 1986, Kakei et al 1999, Rathelot and Strick 2006, 

Taira et al 1996, Thach 1978, Umilta et al 2007) and F5 (Fluet et al 2010, Kakei et al 2001, Raos et 

al 2006, Rizzolatti et al 1988). Furthermore, F5 has strong projections to the digit area of M1 (Borra 

et al 2010, Dum and Strick 2005, Matelli et al 1986, Muakkassa and Strick 1979) as well as direct 

connections to motoneurons in the spinal cord (Galea and Darian-Smith 1994, He et al 1993). F5 

has therefore been considered to operate – to some extent – at the same hierarchical level as M1 

(Dum and Strick 2005). Based on these findings, it is not surprising that both M1 and F5 were able 

to predict joint kinematics in a precise way (figures 3 and 4). Resting epochs were reconstructed 

better with activity from M1 than when using F5. This might be connected to the fact that contrary 

to units in M1, a group of neurons in F5 already responded to object representation as shown 

previously (Lehmann and Scherberger 2013, Murata et al 1997, Raos et al 2006) which might have 

mistakenly been interpreted by the decoder as movement information.  

The suitability of areas M1 and F5 for decoding of continuous arm and hand kinematics has 

previously been investigated (Aggarwal et al 2013, Bansal et al 2012, Ben Hamed et al 2007, 

Carmena et al 2003, Vargas-Irwin et al 2010). However, different decoding algorithms, task types 

and parameters for decoding (such as bin and gap lengths) were employed which makes it difficult 

to compare these results to ours. Furthermore, the number of decoded DOF was much lower in most 

of these studies. However, the three following studies were closest related to ours: first, Aggarwal et 

al (2013) trained two monkeys to grasp four different objects in different locations in front of them 

and decoded 18 DOF (15 DOF of the hand and three DOF of the wrist) additionally to the hand 

endpoint position with a Kalman filter. For prediction, they used single and multiunit activity 

simultaneously recorded from M1, dorsal premotor cortex (PMd), and ventral premotor cortex 

(PMv). Very similarly to our results, they obtained a CC of 0.76 (averaged across all sessions and 
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DOF) when combining both M1 and F5 for decoding which fits very well with our respective CC of 

0.75 when averaging across monkeys (figure 4 (a), (c)). When decoding kinematics with brain areas 

separately, both their and our studies came to similar conclusions as well: decoding with area M1 

produced a higher CC than when using activity from premotor cortex and combining both areas 

barely improved the decoding performance compared to using only M1 (Aggarwal et al 2013).  

Second and third, Vargas-Irwin et al (2010) and Bansal et al (2012) trained two monkeys to 

grasp six to nine different objects that swung on a string in front of the animals. Vargas-Irwin and 

colleagues recorded single unit activity from the hand regions of M1 and decoded 25 DOF (3 DOF 

of the shoulder, 1 elbow DOF, 3 wrist DOF, 18 hand DOF) with a linear state-space model. Their 

mean CC across all these decoded joint angles reached a value of 0.72 which corresponds to our CC 

of 0.72 for kinematic reconstruction with M1 averaged across all sessions.  

Bansal and colleagues additionally recorded from PMv (F4/F5 boundary) but reconstructed only 

eight kinematic DOF (3D hand position, 3D velocity, aperture and speed of the hand) with a 

Kalman filter. In their study, no significant difference in decoding accuracy between M1 and PMv 

was observed and the average CC (across brain areas) had a value of 0.66 (Bansal et al 2012).  

Note that all three studies included circumstances not present in our study that might have 

influenced the decoding performance in the positive direction: first, in all three studies, the number 

of objects used for grasping was substantially lower than in our task. It is therefore likely, that we 

were able to elicit more versatile grasping kinematics and finger configurations. However, more 

variance in the kinematics will increase the difficulty for precise decoding and is therefore likely to 

affect the decoding performance in a negative way.  

Second, Aggarwal and colleagues only decoded time periods from cue onset to beginning of 

holding the object during correct trials. No other epochs of the task or inter-trial intervals were 

considered and incorrect trials were discarded. In contrast, in our study all occurring movement and 

resting kinematics were included. We deliberately chose to do so in order to mimic a more natural 
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behaviour, where also unexpected movements could occur in addition to the ones demanded by the 

task design. Again, this introduced variance in the kinematics in our study and increased the 

difficulty for precise decoding.  

Third, in Bansal et al’s study the decoding was performed using only a specific subset of units. 

The units were selected by a greedy selection algorithm aiming to improve the CC. Bansal and 

colleagues showed in their paper that this method indeed outperformed an average selection 

approach (Bansal et al 2012). Similarly, Vargas-Irwin and colleagues chose a subset of units for 

decoding that was selected by a greedy selection algorithm evaluating the correlation between firing 

rate and kinematics. Moreover, each DOF was decoded separately enabling the selection the most 

suitable subset of units for each DOF individually. Additionally, the optimal time lag between each 

unit and a specific DOF was determined. In our study none of these optimization steps were carried 

out, only a general optimal bin and gap length was selected for an entire neuronal population. 

Evaluation of unit contribution to kinematic features was left to the automated training of the 

Kalman filter. Despite all these points, our decoding accuracy was the same, or even higher, than 

reported in those studies.  

On the one hand, this might be contributed to the mathematical power of the Kalman filter. On 

the other hand, our decoding results might have benefited from the fact that our M1 electrodes were 

located in the anterior bank of the central sulcus (“new” M1) as opposed to the surface anterior to 

the central sulcus (“old” M1) where Aggarwal’s and Bansal’s arrays were placed. Rathelot and 

Strick (2009) demonstrated that units in the “old” M1 project to spinal interneurons and therefore 

might only have an indirect influence on motor execution. In contrast, cells in the “new” M1 part 

were found to make monosynaptic connections with motoneurons in the spinal cord (and were 

hence termed cortico-motoneuronal cells, in short CM cells). It has been suggested that these cells 

enable primates to execute highly developed muscle activity patterns (Rathelot and Strick 2009). 

Information coded by these cells therefore might contain a more direct motor control signal than the 
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information encoded in cells in the rostral region of M1 and might therefore be particularly 

beneficial for the decoding of hand kinematics. 

 

4.2. Movement reconstruction with parietal cortex 

Decoding with AIP yielded the lowest decoding performance even though it was significantly 

above chance (figures 3 and 4), suggesting that AIP carries substantial information about movement 

kinematics that can be decoded. The signals in AIP do not necessarily have to be movement 

commands, but could also represent other information related to movement execution like object 

features relevant for grasping. However, the temporal characteristics of movement appeared to be 

precisely captured by AIP, which supports the notion that motor related information in AIP is not 

exclusively categorical information, like visual features, but also includes temporal aspects of 

movement execution.  

Predicted trajectories during resting periods often showed undesired jittering when decoding 

from AIP. This might be accounted for by the fact that AIP responded to the visual presentation of 

objects and therefore exhibited higher activity already much before the actual movement execution 

(Baumann et al 2009, Lehmann and Scherberger 2013, Murata et al 2000, Sakata et al 1995, 

Townsend et al 2011). This visual activity could have affected the decoder and might have caused 

noisy movement residuals during periods of resting.  

To our knowledge, this is the first study investigating area AIP as a potential brain region for 

continuous decoding of versatile hand and finger movements. Previously, other areas in the parietal 

cortex have been subject of decoding studies, mostly with emphasis on arm and reaching 

movements: the parietal reach region (PRR), area 5d (Hauschild et al 2012) and posterior parietal 

cortex (PPC) (Wessberg et al 2000) have been used for prediction of hand position in 3D space. 

Hauschild et al (2012) obtained respective CC values that were very close to ours when decoding 

from AIP (figure 4), whereas Wessberg et al (2000) reported that PPC and M1 performed equally 
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well and were only outperformed in accuracy when decoding from PMd. Carmena et al (2003) 

predicted 2D cursor position elicited by hand manipulations of a vertical pole from neuronal firing 

rates in the medial intraparietal area in PPC and compared them to trajectories reconstructed from 

other brain areas, such as M1 and PMd. Similarly to our results, they found M1 to deliver the best 

decoding results (same CC as in our results) followed by PMd and PPC. However, the decoding 

performance of cursor position predicted from PMd and PPC did not reach the performance levels 

we were able to obtain for prediction of 27 joint angles of the arm and the hand with areas F5 and 

AIP, respectively. 

Other studies focusing directly on areas AIP and F5 for decoding only predicted categorical 

variables like grip types: Lehmann and Scherberger (2013), Schaffelhofer et al (2015) as well as 

Townsend et al (2011) found that F5 was better suited for decoding of grip types than AIP. 

Furthermore, Townsend and colleagues were able to observe that decoding from combined activity 

of F5 and AIP did not increase decoding performance significantly in comparison to F5 alone. Both 

points correspond well with our results (figures 3 and 4). The fact that decoding performance did 

not improve when neural activities from F5 and AIP were combined suggests that AIP largely 

shares its kinematics-related information with area F5. 

Another point we noticed in our results was that the decoding performance of AIP was not as 

consistent between monkeys as it was for M1 and F5. Monkey Z showed a higher variability in 

prediction accuracy than monkey M when decoding from AIP. One reason could be that two more 

recording sessions were used for monkey Z (six sessions) which were spread over a longer time 

duration (3.5 months) than for monkey M (four sessions in one month). However, this difference in 

recording numbers and periods did not seem to affect the decoding performance of M1 and F5 as 

much. Also, high variability in decoding performance could not be observed in monkey M for any 

of the three tested areas. Therefore we suspect that the observed prediction variance for AIP in 

monkey Z could have been associated with the array implanted in AIP in that monkey. For example, 
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the array could have changed its position over time. An indication for this could be the number of 

units recorded in AIP in each session (see table 1) and its variability from session to session. As we 

were able to observe in the random neuron selection procedure (figure 5) and others have shown 

before with neuron dropping analyses (Aggarwal et al 2013, Bansal et al 2012), decoding accuracy 

increases with number of neurons and saturates after a certain amount of units. Therefore changes in 

number of recorded units do not affect the decoding performance largely as long as the overall 

number of neurons stays on a high level. This was the case for both monkeys for M1 and F5 as well 

as in AIP for monkey M (see table 1). However, for lower numbers of recorded units as in area AIP 

in monkey Z, the effect of a small change in unit number on decoding performance is bigger and 

thus might have introduced a higher variability between decodings. 

 

4.3. Influence of unit number on decoding performance  

We demonstrated that differences in decoding performance between AIP, F5, and M1 did not 

primarily depend on the number of neurons available for decoding, but strongly reflected the type of 

information encoded in these areas (figure 5).  

Furthermore, we found that already a very small number of randomly selected single units raised 

decoding accuracy above chance. As suggested previously (Vargas-Irwin et al 2010), neurons in 

M1 and F5 do not seem to be reflect a specific kinematic variable but instead carry information 

about a broader range of movement parameters, which would allow reasonable movement 

reconstruction even with a few neurons. This seemed to hold true also for units in AIP.  

Neuron dropping analyses in previous studies suggested that only a limited amount of units is 

necessary for making accurate predictions of hand and arm movements: Ben Hamed et al (2007) 

concluded that 30-40 neurons from M1 were enough to discriminate finger movements and Vargas-

Irwin et al (2010) found 10-30 cells from primary motor cortex to be enough to decode continuous 

joint kinematics. However, as already mentioned above (section 4.1), Vargas-Irwin and colleagues 
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had selected neurons according to their decoding performance. Thus, the subset of aforementioned 

10-30 neurons contained only cells that were optimally suited for movement prediction. A random 

selection of units as performed in our study therefore most likely requires a higher number of units 

to provide a comparable amount of information to the decoder and achieve a similarly high 

decoding accuracy. Indeed, a random selection of 35 units produced an average decoding 

performance of ≈ 90% of the accuracy obtained when using all available units for prediction. 

 

4.4. Reconstruction of proximal and distal joints  

Although the task demanded a wide variety of finger movements and hand configurations, no 

substantial difference was found between decoding finger and wrist joints (figure 6). However, a 

slight tendency towards a higher decoding performance for index, middle, and ring finger was 

observed. These fingers showed higher synergies in their movements. Since the Kalman filter used 

combined state information of all DOF for predicting a single joint (a priori estimate), more 

information was available for joints moving in a correlated fashion and therefore the algorithm 

could predict such DOF more accurately. In contrast, thumb movements were more independent 

from the other fingers and showed more variation and were therefore harder to predict by the 

decoder. Furthermore, the little finger was not actively used for grasping in many conditions and 

played a rather subordinated role. The finger tended to be moved along with the other fingers but 

often did not clasp the object properly as the other fingers did. Since it was used more passively, its 

movement intention might have been underrepresented in the brain activity, which might explain 

the slightly reduced decoding performance. For a few objects like the ones from the “special” 

turntable (see figure 1 (b) in Materials and Methods) where the grasp was mainly carried out with 

fingers 2-4 (similarly to the “spherical power grasp” described in Cutkosky and Wright (1986)), this 

was also true for the thumb. 
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In contrast, shoulder and elbow movements were predicted with significantly higher accuracy. 

Since our task was designed to focus on eliciting dexterous grasping kinematics, arm movements 

were more stereotypical than those of finger and wrist kinematics. Therefore, they also might have 

been less prone to noise in the kinematic tracking. This might have facilitated the prediction of 

shoulder and elbow movements. Nevertheless, by including incorrect trials that were often aborted 

in the middle or contained unexpected movements (due to the monkey moving its arm away from 

the object instead of towards it, or executing no movement at all), we tried to prevent the 

occurrence of a stereotypical temporal structure in the kinematics. However, since we recorded 

from highly trained animals, the number of incorrect trials was generally low. 

In conclusion, although the arrays were carefully placed in the hand areas of primary, premotor, 

and parietal cortex, both distal and proximal joints could be predicted with high accuracy. This 

finding is supported by the observation of Vargas-Irwin et al (2010) that individual neurons in 

primary motor cortex encode information about both proximal and distal kinematics. McKiernan et 

al (1998) showed that a large portion of CM cells have muscle fields in both distal and proximal 

muscles. Since we recorded in the “new” part of M1 (Rathelot and Strick 2009), it is likely that our 

recorded population contained a considerable portion of such cells. Furthermore, neurons in both F5 

and M1 have been found to be tuned not only to hand kinematics but also to different wrist postures 

although the percentages of tuned units was lower in F5 than in area M1 (Kakei et al 1999, 2001). 

In F5, the wrist orientation seems to be encoded as an additional feature of the grip configuration 

(Raos et al 2006) and populations of units tuned to reaching movements have been identified in 

both F5 and AIP (Lehmann and Scherberger 2013, Rizzolatti et al 1988). 

Moreover, our results go hand in hand with the finding that also on the mechanical level 

proximal and distal kinematics can hardly be disentangled (Jeannerod 1988, Lemon 1999): Stark et 

al (2007) measured EMG activity during reach and grasp movements in shoulder, elbow, wrist, and 
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extrinsic digit muscles and found that distal muscle activity cannot be exclusively related to either 

reaching or grasping movements, respectively, but are rather biomechanically dependent. 

 

4.5. Optimal decoding parameters and their network implications   

In our study, a bin length of 10 ms yielded the highest decoding performance in 95% of the tested 

data sets, regardless of which brain area was used for prediction. Previous decoding studies used bin 

lengths of 100-150 ms, however without explaining their choice (Aggarwal et al 2013, Bansal et al 

2012, Vargas-Irwin et al 2010). Long time windows will likely include the time point when 

information content is highest, but they also act like low-pass filters. In contrast, with a short 

window, changes in firing rate can be detected with higher temporal precision, which is 

advantageous especially for brain areas with lower tuning strength, like AIP. However, it is also 

crucial to combine the bin length with an adequate time lag to find the optimal relation between 

brain activity and actual movement execution. Indeed, we found the time point from which data was 

used for decoding to show high impact on decoding performance and the optimal time lag varied 

considerably for the three areas (figure 7). 

When decoding from M1, we found the highest amount of information being present when 

neural data preceded the hand kinematics by 0-50 ms. Previous studies investigating the temporal 

lag between neural activity in primary motor cortex and movement execution reported a wide range 

of gap lengths both supporting and opposing our results: 

Ashe and Georgopoulos (1994) decoded different movement parameters like direction, position, 

velocity, and acceleration of reaching movements to instantaneous single unit activity in primary 

motor cortex using a multiple linear regression method. They varied the time lag from 0 up to 

±200 ms systematically for each individual unit and described the median optimal time lag 

as -90 ms, although the distribution of optimal time lags of all cells covered the entire tested range 

of gap lengths. However, it is noteworthy to mention that contrary to our study, only time periods 



4. Discussion of kinematic decoding 

61 
 

during onset of target (i.e. immediately before movement onset) and 500 ms after reaching the 

target were decoded. These time periods did not include incorrect trials, inter-trial intervals or any 

other phases in which movement was withheld and/or planned.  

A similarly broad result was obtained by Paninski et al (2004) who used a center-out-task to 

investigate M1 cells. They evaluated different time lags with respect to mutual information between 

firing rate and position in 2D space and obtained a heterogeneous range of optimal gap lengths 

(spanning the entire range of ±1 sec). In contrast, Humphrey et al (1970) correlated spike 

frequencies of M1 cells to wrist movements and exerted force and reported a very specific time lag 

of -100 ms to yield the highest correlation. 

Morrow and Miller (2003) decoded muscle activity from neurons in primary motor cortex by 

means of linear regression. 15 out of 50 recorded units were randomly selected for decoding and 

different delays were systematically tested for the respective subset of units with respect to their 

decoding performance. This method was repeated 50 times and a delay of -50 ms was determined to 

yield the highest decoding performance. In addition, they reported the CC of the decoding 

depending on the different tested gap lengths. Their findings are comparable to our results (figure 7 

(a)) with small differences: their peak performance exceeded ours and dropped faster the more the 

gap lengths deviated from the optimal one, until levelling off at a time lag of around ±250 ms to a 

CC of approximately 0.6. In contrast to our study however, they predicted only four distal muscles 

(i.e. four DOF of the hand only instead of a complete kinematic representation of both the hand and 

the arm as in our study) which showed very stereotypical behaviour since the monkey was only 

required to perform one type of grip. Therefore, a higher decoding accuracy was probably achieved. 

The faster drop of decoding accuracy for time lags around the optimal length could either be due to 

the fact that Morrow and colleagues used a different decoding algorithm than we did or that 

sequentially recorded neuronal activity was used for decoding (or both). Additional information 

encoded in the coherence or phase synchrony within the neuronal population (Averbeck and Lee 
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2004) was therefore not contained in their data. In our study however, this information was 

available to the decoder due to simultaneous array recordings and might have helped to maintain a 

relatively high decoding performance for gap lengths around the optimal ones. For a time gap of 

around ±500 ms however, their decoding performance is comparable to ours. Unfortunately, no 

longer time gaps were tested in their study.  

A similar optimal time lag as presented by Morrow and Miller (2003) was reported by Cheney 

and Fetz (1980) who investigated CM cells in precentral cortex and their relationship to EMG 

activation of forearm muscles. They found an average latency of -60 to -70 ms prior to EMG 

activation for most of the units; however the whole range of time lags from -200 ms to +80 ms with 

respect to EMG activity onset was present in the investigated sample of units. In contrast, 

McKiernan et al (1998), determining the latency between spikes of CM cells in primary motor 

cortex and the onset of muscle activity of elbow, wrist, digit, and intrinsic hand muscles, reported 

an onset of postspike effects around 8 ms and a peak of around 11 ms after neuronal activity. 

Similar results were obtained by Fetz and Cheney (1980), Kasser and Cheney (1985), as well as by 

Lemon et al (1986).  

Our results fit well in this broad range of temporal relationships. Since we did not test for an 

optimal time lag for each recorded unit individually, but sought for a gap length accounting for the 

neural signal as a population, our result represents more an average across the population. We were 

recording in the anterior bank of the central sulcus, therefore it is very likely that our neuronal 

population contained CM cells which have direct projections to motoneurons in the spinal cord 

(Rathelot and Strick 2009). This might explain why we found a tendency towards shorter gap 

lengths as described by McKiernan et al (1998) to yield higher decoding accuracy in contrast to the 

other studies mentioned above which recorded almost exclusively from the “old” part (Rathelot and 

Strick 2009) of M1. 
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Optimal time gaps for F5 exhibited the same temporal order as M1 (namely neural activity 

preceding movement), but were longer than for M1. This indicates that information about grasping 

is present earlier in F5 than in primary motor cortex. Furthermore, F5 yielded higher decoding 

accuracies compared to M1 if neural activity preceding the movement with long time lags was used. 

However, for very short gap lengths (i.e. close to movement execution and during movement 

execution), M1 exceeded F5 in prediction strength (figure 7 (a)-(b)). These findings go hand in 

hand with the results of Schaffelhofer et al (2015) who found (using the same task design as 

described in our study) that grip type classification during planning epoch yielded higher decoding 

accuracy when using activity from F5 for prediction than when using M1, whereas during the hold 

epoch (i.e. during movement execution) M1 was better suited for decoding. Furthermore, these 

findings are supported by a study conducted by Umilta et al (2007) in which F5 units showed 

grasp/object related tuning earlier than units in M1. The preference index (PI), indicating the degree 

of selectivity for a certain object, was higher in F5 during periods immediately before and at the 

beginning of the movement, whereas peak selectivity in M1 occurred during grasping execution and 

holding of an object.  

Furthermore, our time lag results are in line with the fronto-parietal grasp network hypothesis 

(Jeannerod et al 1995 and section 1.1.5), which states that visual information about an object to be 

grasped is projected from AIP to F5, where a grip type is selected. Grip type information is then 

forwarded to both M1 and the spinal cord. Neurons in M1 translate the grip type into a motor 

command which is projected to the spinal cord as well. According to this idea, the temporal peak of 

neural information with respect to grasping should be found in F5 earlier than in M1, which goes 

hand in hand with our results. 

However, the role of AIP in this process seems to be more intricate. Decoding performance 

peaked for gap lengths close to zero and optimal gap lengths showed a much higher variance than 

when decoding with M1 or F5. Additionally, we found a smaller peak in decoding performance for 
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time lags around -1700 ms preceding movement. It is very unlikely that in natural grasping 

movements, AIP represents movement intentions more than 1.5 sec before execution. Instead, this 

second peak could be caused by the visual task instruction: the object is illuminated approximately 

1.5 sec before movement onset (variable time duration due to a variable length of the planning 

epoch), which is known to cause a visual activation in AIP (Sakata et al 1995, Schaffelhofer et al 

2015). Furthermore, Schaffelhofer et al (2015) showed that object information (and to a less extent 

grip type) could be decoded from single and multiunit activity during the cue epoch of the task. 

Clearly, object features and hand configurations were coupled in our task; therefore cue information 

could have been used by the decoder for movement prediction. However, an object can be grasped 

in different ways. Therefore, visual information could only be used as a rough guideline for the 

prediction of individual movement kinematics. Accordingly, decoding performance was lower for 

these long gap lengths compared to the accuracy peak when decoding with very short time lags. 

Previous studies testing the temporal delay between activity in parietal cortex and movement 

found similar short durations for optimal time lags: the study by Ashe and Georgopoulos (1994) 

described above did not only test single unit activity in primary motor cortex, but also in the arm 

area of area 5. They obtained a median optimal time lag of +30 ms (neuronal activity following 

movement), although again the distribution of time lags of all investigated cells covered the entire 

tested time range from -200 to +200 ms. In contrast to M1, where 50% of the units showed an 

optimal gap length between -200 and approximately -100 ms, 50% of the units from the arm region 

in area 5 showed highest performance for time lags between approximately 20 to 200 ms. A 

different result was reported by Hauschild et al (2012) who evaluated time lags from -45 to -125 ms 

for prediction of arm endpoint position in 3D space from spiking activity in PRR and area 5d and 

found a gap length of ≈ -80 ms to be optimal (with a bin length of 90 ms).  

The closest experimental result to our findings was reported by Mulliken et al (2008) who 

performed a center-out-task with and without obstacles and recorded individual PPC neurons. 
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Based on mutual information, Mulliken and colleagues determined the optimal time lag between 

neural activity and movement angle for neurons which exhibited tuning to this movement 

parameter. The distribution of optimal time lags had a median ± interquartile range of 0 ± 90 ms and 

-30 ± 90 ms for the center-out task with and without obstacles, respectively (lags were tested 

approximately between ±180 ms), showing again a wide spread across the entire tested gap length 

range. The authors argued that a motor command in PPC would require at least 90 ms to be 

translated into movement. Furthermore, a proprioceptive feedback would take at least 30-90 ms to 

reach PPC. Thus, the authors concluded that the information in parietal cortex at time lags close to 

zero could encode a forward estimate of movement and neurons in PPC were therefore not only 

involved in movement planning, but also in movement control by utilizing an efference copy from 

premotor and motor cortices and projections to and from the cerebellum (Mulliken et al 2008). The 

same is likely the case for AIP. It has been suggested that so-called motor neurons in AIP could 

represent a copy of the motor plan in F5 in order to compare it to the visual object properties. 

Depending on the result, a positive or negative feedback could be sent to the premotor cortex in 

order to facilitate or modify the motor command (Murata et al 2000, Sakata et al 1997, Sakata et al 

1999, Sakata et al 1995). Our results are compatible with this hypothesis. 

 

4.6. Conclusion  

We were able to show for the first time that high-dimensional reaching and grasping movements 

could be decoded continuously over time with high precision not only from areas M1 and F5 but 

also from area AIP in the parietal cortex. Although the decoding performance from AIP was inferior 

to that from motor and premotor cortex, our results support the idea that AIP not only encodes 

categorical visual information, as shown previously by other studies, but that AIP also contains 

temporal movement information, at least to some extent. However, kinematic information in AIP 

seems to be redundant to movement intentions encoded in area F5.  
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In this chapter the decoding of two different behavioural states, resting and movement, from neural 

activity in areas M1, F5, and AIP is be presented. The chapter is structured in the following way: In 

section 5, we will describe the respective materials and methods, which are followed by the 

presentation of the results (section 6). In the end, the results will be discussed put into the greater 

scientific context (section 7). 

 

5. Materials and Methods 

The basic procedures, experimental setup, behavioural paradigm, signal procedure, imaging, 

kinematic and neural recordings were identical for state decoding as described in chapter II, 

sections 2.1-2.6. Methods and analyses that differed from the kinematic decoding such as decoding 

algorithm, decoding procedure, variation of decoding parameters, evaluation of decoding 

performance, and chance decoding performance are described below. 

 

5.1. Decoding algorithm  

In addition to the prediction of continuous kinematics, we performed a separate decoding to classify 

kinematic states. For this, we employed a weighted Support Vector Machine (wSVM) (Huang and 

Du 2005) to distinguish between movement and resting states based on neural activity.  

A Support Vector Machine (SVM) is a binary, linear classification algorithm which constructs a 

hyperplane between two populations of vectors corresponding to two different classes (decoder 

training). The hyperplane can be described by points p satisfying 

w⋅p - b = 0 

with w normal vector of the plane and b
‖w‖ offset of the hyperplane from the origin along w. To 

separate the two populations of data samples, the plane is required to fulfil w⋅xi - b ≥ 1 for all data 

points xi belonging to class one and w⋅xi - b ≤ -1 for all data points xi belonging to class two. For 



5. Materials and Methods of state decoding 

70 
 

data sets, in which these requirements cannot be fulfilled because the two populations are not 

cleanly separated, a non-negative slack variable 𝜉𝑖 can be introduced. In this way, the requirements 

become w⋅xi - b ≥ 1 - 𝜉𝑖 and w⋅xi - b ≤ -1+ 𝜉𝑖 for data points xi belonging to the two classes, 

respectively (Cortes and Vapnik 1995). In our decoding, we chose this “soft margin” approach. By 

means of quadratic programming methods, the variables w, b, and 𝜉𝑖 can be optimized with subject 

to the described requirements while at the same time maximizing the distance between the 

hyperplane to the data points of the two populations (Platt 1999). 

By mapping the vectors into a (higher dimensional) feature space with an appropriate kernel, the 

construction of the hyperplane can be carried out even for data points which are not linearly 

separable in the input space (Cortes and Vapnik 1995, Smola and Schölkopf 2004). For our 

decoding, we used a radial basis function kernel (RBF) defined by 

K �xi, xj� = e -γ� xi − xj�
2
, 

with xi and xj data points, and γ free parameter, γ > 0 (Chang et al 2010, Hsu et al 2003). 

After the hyperplane has been determined, the class of a given test vector x can then be decoded 

by simply calculating on which side of the hyperplane the vector is located, i.e. if  w⋅x - b greater or 

smaller than zero. 

However, the standard SVM has been found to produce a prediction bias toward the class with 

the larger training sample size (Chew et al 2000). In our study, due to the task design, 

approximately two thirds of the neural data corresponds to resting as opposed to movement. Thus, 

to avoid the aforementioned bias, a weighted SVM was used for state prediction since it 

compensates for uneven sizes of training samples and minimizes misclassification errors (Huang 

and Du 2005). 
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5.2. Decoding procedure  

The kinematic data was prepared for state decoding by calculating the speed of each kinematic 

dimension and smoothing each of the velocities with a Gaussian kernel (width: σ = 0.05 sec). Next, 

each data sample of a DOF was classified as either movement and marked with “1” if the absolute 

speed exceeded an empirically set threshold of 0.9 °/sec, or as resting and marked with “0” if 

otherwise. This yielded a kinematic state information vector for each individual DOF. To obtain a 

general kinematic state information vector, a time sample was classified as movement if more than a 

third of the individual movement vectors displayed a “1” at that time instant, otherwise it was 

classified as resting. This threshold was empirically determined. In a last step, very short sequences 

of movement or resting were deleted by reversing the state class if the sequence was shorter than 

nine time samples (i.e. shorter than 90 ms). 

This way, the neural activity of each time step was assigned to a state of either resting or 

movement. Using both the neural activity and the kinematic state information, a wSVM was trained 

and employed to predict the kinematic state of the entire recording session by means of a 7-fold 

cross-validation as already described in the Methods and Materials section of the Kalman filter (see 

section 2.7.2). However, in contrast to the Kalman filter decoding, state decoding was not 

performed with a sampling rate of 100 Hz but with a rate of 20 Hz. Since the computational load for 

training the SVM is much higher than for the Kalman filter, computational time was saved using 

only every fifth time sample of the training data to calibrate the SVM. Similarly, prediction of the 

kinematic states was also performed only every 50 ms. 

The decoding procedure was implemented with custom-written software in Matlab (MathWorks 

Inc., Natick, MA, USA) using the c-code library LIBSVM for Support Vector Machines (Chang 

and Lin 2011). 
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5.3. Variation of decoding parameters  

Similar to the decoding of continuous kinematics, we varied parameters of the neural data such as 

bin length and gap length to test the impact on state prediction accuracy. At the same time, we 

optimised two SVM parameters with respect to decoding accuracy, which needed to be chosen by 

the experimenter prior to training of the algorithm, namely the regularization parameter C (Cortes 

and Vapnik 1995, Smola and Schölkopf 2004) and the free parameter γ of the RBF kernel (see 

section 5.1). We fixed the bin and gap length to specific initial values based on previous decoding 

results and tested combinations of exponentially growing sequences of C and γ for decoding 

(typically C = 20, 21, 23, …, 29 and γ = 2-2, 2-1, …, 22 following Hsu et al (2003)). The combination 

of C and γ yielding the highest decoding accuracy was determined and kept fixed. Then, various 

combinations of bin and gap lengths were tested (similarly as described in section 2.7.3) ranging 

from -1000 to 200 ms for gap lengths and 10-1400 ms for bin lengths (same notation as in section 

2.7.3). Now, the best combination of bin and gap lengths was determined and kept fixed while again 

different combinations of C and γ were tested as described before. After that, keeping the resulting 

optimal combination of C and γ, again bin and gap lengths were optimised. This process was 

repeated iteratively until either none of the parameters were modified any more or decoding 

accuracy only changed marginally from one iteration to the next. The resulting set of four 

parameters was then considered as the optimal parameter combination. 

 

5.4. Evaluation of decoding performance  

To measure decoding performance, the accuracy was calculated as percent of correctly decoded 

samples: 

percent of correctly decoded samples = # correctly predicted samples
# total testing samples

 ⋅100 % . 
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“# of total testing samples” referred to either the total number of predicted samples in a decoding 

(as in figure 10) or the total number of decoded samples in specific kinematic classes (as in figure 

11) or trial/inter-trial epochs (as in figure 12). 

 

5.5. Accuracy of movement onset prediction  

To assess how precisely movement onset was detected by the decoder, we defined a window wi 

centered around each true movement onset at time ton
i , with i = 1,…,Non and Non number of 

movement onsets in a recording, i.e. wi = [ton
i  - 400 ms, ton

i  + 400 ms]. Each sample within a 

window was checked for its state information so that for each window wi a respective state 

information vector si = [si
1, si

2, …, si
N] could be created, si

n ∈ {0, 1} state information, n = 1,…,N, and 

N = 17 number of samples in wi (N = 17 because the sample of movement onset is added to two 

times the number of samples in a 400 ms window corresponding to eight samples each). Then, an 

averaged state information vector s̅ = [s̅1, s�2, …, s̅N] across all windows in a recording was 

calculated with  s�n = 1
Non

∑ si
nNon

i=1 , n = 1,…,N. The parameters  s�n represented the probability of 

movement occurring relative to movement onset. By definition,  s�9, representing the likelihood at 

the time instant in which movement onsets took place, had a 100% probability to belong to the 

movement state, whereas the time sample directly before had a 0% probability of movement. 

The probability of movement depending on the time relative to movement onset was then 

averaged across recordings and the mean values were fitted by a logistic curve with a vertical offset 

 p(t) = a
1 + e-b(t-c)  + d ,   (1) 

with p probability of movement, t time relative to movement onset, and four fitting parameters a, b, 

c, and d, . 

Next, the probability of decoded movement in a 800 ms time window around each true 

movement onset was determined in the predicted data sets separately for each area used for 
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decoding in the same way as described above. Again, a logistic curve was fitted. The fit parameters 

b and c in equation (1), describing the slope and the horizontal shift of the respective functions, 

were analysed to assess the accuracy of movement onset prediction compared to true movement 

onset. 

 

5.6. Chance level performance  

In contrast to kinematic decoding with the Kalman filter, state prediction with the wSVM does not 

infer any information from the temporal structure in the data since the wSVM is not an iterative 

algorithm. Instead, each data sample is an independent vector in the input space and its 

classification does not depend on previous predictions. To assess chance level accuracy, it is 

therefore legitimate to assign the given distribution of states randomly to the neural data to create 

“meaningless” neural data. 

In a decoding based on a data set like that, one could imagine a classifier that matches the 

frequency distribution of the states in the training data in its prediction. Average chance level 

decoding accuracy can then be calculated as the percentage of correctly classified samples in the 

following way:  

Be s the total number of samples, pR and pM the probability in the true data set for a sample to 

belong to the resting or movement state, respectively (i.e. s = s⋅pR+ s⋅pM). The number of correctly 

classified samples will then (on average) be the sum of number of samples belonging to movement 

that are correctly classified as movement and the number of samples belonging to resting that are 

correctly classified as resting. The number of samples belonging to movement is s⋅pM and since the 

decoder has learned the distribution of classes, it will (on average) classify these samples as 

movement with a probability of pM, assuming the classifier is an unbiased estimator. Therefore, the 

number of correctly classified samples will be s⋅pM⋅pM. The same is true for the number of 

correctly classified resting samples, namely s⋅pR⋅pR. The total proportion of correctly classified 
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samples is thus �s⋅pR⋅pR + s⋅pM⋅pM�/s = pR⋅pR + pM⋅pM. Knowing that pR = 1 − pM, the formula 

can be rewritten as 

 1 - 2 pRpM , (2) 

which has its minimal value of 0.5 for the balanced case of  pR=  pM = 0.5 (see green line in figure 

8). 

Another possibility of a classifier that predicts the kinematic state without reliable neural 

information is a decoder that always picks the most common class in the training set as its 

prediction. This way, a decoding accuracy of the percentage of the most common class is ensured. 

In our case, this would be the resting state and decoding accuracy would therefore be pR. For 

pR ≥ 0.5, this would yield a higher decoding accuracy than the chance level described in equation 

(2) (see figure 8) and would therefore be a more conservative chance level estimation. However, 

this decoder would never predict the movement state, which is not desirable in a neuroprosthetic 

application. Therefore, we did not consider this decoder scenario further but chose the one 

described in the previous paragraph and determined average chance level performance for each 

recording session (as shown in figure 10) by evaluating equation (2). For chance level estimation 

for prediction of individual states (as shown in figure 11 and figure 12), the respective probabilities 

 

 

 

 

Figure 8. Proportion of correctly decoded samples 

as a function of pR, the probability of resting in the 

true data set. The blue line depicts the accuracy of 

the chance decoder as described by equation (2), 

the green line shows the accuracy of a classifier 

always predicting the most common class in the 

training set. 
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of a class (i.e. pR and pM, respectively, in figure 11 for example) were used. 
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6. Results 

In figure 3 (a)-(c) in chapter II, section 3.2, four example trajectories of the 27 decoded DOF were 

illustrated. As already described before, the Kalman filter was able to predict movement kinematics 

accurately with spiking activity from each of the three areas. However, during resting phases 

between trials and during fixation, cue, and planning epochs, the prediction of the Kalman filter did 

not exactly match the original trajectories. Instead, the decoded DOF exhibited jittering and 

undesired movement.  

To address this problem, we performed a separate continuous prediction of the kinematic state, 

namely movement or resting states to distinguish between phases with and without movement. If 

information about the condition of the movement could be inferred from the neural data in addition 

to actual kinematic movement trajectories, this could enable the kinematic decoder to adjust its 

prediction during states of resting to prevent undesired movement by either pausing the decoding of 

the joint trajectories or overwriting its prediction with a desired stationary value.  

 

6.1. State detection performance of different areas 

Figure 9 illustrates state predictions from recording M110813 over a time course of 55 sec. The 

trajectory of the index MCP joint is shown additionally as a reference to indicate when the monkey 

was resting or performing a movement. Decodings were carried out with units from either area M1 

(figure 9 (a)), F5 (figure 9 (b)), or AIP (figure 9 (c)). For all three areas, the state prediction agreed 

largely with the trajectory: Each time the monkey reached to an object to grasp it, the decoder 

classified the state as movement. Even during phases after the monkey had lifted the object and held 

it for a few hundred milliseconds the decoder often detected the resting state. When decoding with 

AIP however, the classifier sometimes assigned the movement state to periods where the monkey 

was clearly resting. Furthermore, the onset of movement was not always detected exactly on time 

but showed a short delay. 
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Figure 9. Examples of decoded kinematic states are shown over a duration of 55 sec (recording M110813) 

together with the kinematic trajectory of the index MCP joint as a reference (black line). Background colours 

indicate the decoded state using neural activity from (a) area M1 (bin length 300 ms, gap length -0 ms, 148 

units), (b) area F5 (bin length 250 ms, gap length -0 ms, 112 units), or (c) area AIP (bin length 450 ms, gap 

length -0 ms, 97 units) for prediction: red colour represents resting state, green colour represents movement 

state. State decoding accuracy during these 55 sec is indicated at the top right of each subfigure. 

 

To quantify the state decoding performance of the different areas more precisely, we calculated 

the percentage of correctly decoded samples of each recording session. The mean performances 

averaged across sessions are shown in figure 10 separately for each monkey.  

Similar to the results obtained by the Kalman filter decoding, M1 yielded highest decoding 

performance, followed by F5 and AIP. However, the means of M1 and F5 did not differ 

significantly from each other. Only the state decoding accuracy of AIP was significantly different 

from M1 and F5 (one-way ANOVA and Tukey-Kramer multicomparison analysis, p < 0.05). This 

was true for both monkeys.  

Moreover, chance level performance was determined for each recording (see Materials and 

Methods, section 5.6) and the resulting chance level distribution across recordings was compared to 

(a) 

(b) 

(c) 
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the performance distribution obtained by the standard decodings of each area. All areas yielded 

significantly better performance than chance (paired t-test, p < 0.0001). 

Furthermore, we compared the performance between monkeys for each area. There were no 

differences in means or variances for M1 (two-sample t-test, p > 0.05, and Bartlett’s test, p > 0.05). 

Similarly, for AIP there were no differences in variance (Bartlett’s test, p > 0.05) but means differed 

significantly (two-sample t-test, p < 0.001). Finally, for F5 variances differed significantly between 

monkeys (Bartlett’s test, p < 0.05). In the following, we will therefore present the results for each 

animal separately. 

 

6.2. Detection performance for individual states 

Since the overall percentage of correctly predicted samples as presented in figure 10 only gives a 

coarse overview of the decoding performance, we examined the decoding accuracy of the individual 

kinematic states in more detail. Figure 11 illustrates the percentage of correctly decoded samples of 

each state separately, averaged across recording sessions of each monkey. For all three areas, 

 

 

Figure 10. State detection performance averaged across all recordings sessions, shown separately for monkey 

Z (six sessions, see table 1 in chapter II, section 3.1) and M (four sessions, see table 1). Bars and errorbars 

indicate mean and standard deviation. Orange lines and errorbars indicate mean chance level and standard 

deviation, also averaged across recording sessions (see section 5.6 in Materials and Methods). 
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resting state was detected with a higher accuracy than movement. Medians of decoding performance 

differed significantly between both states, independent of which area was used for decoding (Mann-

Whitney U-test, p < 0.03). 

However, prediction accuracy of both states lay substantially above chance level: for each 

recording, average chance level for predicting each state correctly was calculated (as described in 

Materials and Methods, section 5.6) and then chance levels were averaged across recordings. 

Median decoding performances of standard decodings differed significantly from the respective 

medians of the chance level distributions for all conditions (Mann-Whitney U-test, p < 0.03). 

 

 

 

Figure 11. Decoding performance of individual states averaged across all recordings sessions, shown 

separately for monkey Z (upper row) and M (lower row) as well as for the different areas (columns). Bars and 

errorbars indicate mean and standard deviation. Orange lines and errorbars indicate mean chance level and 

standard deviation also averaged across recording sessions (see section 5.6 in Materials and Methods). 
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Comparing different brain areas for decoding yielded very similar results as already obtained for 

the overall decoding performance in figure 10: mean decoding accuracy for both resting and 

movement state did not differ significantly between M1 and F5, as well as not between F5 and AIP. 

However, there was a significant difference between AIP and M1, except for resting state detection 

in monkey Z, where medians did differ significantly between F5 and AIP (Kruskal-Wallis test and 

Tukey-Kramer multicomparison test, p < 0.05). 

Finally, we compared individual state detection accuracy between monkeys: Median 

performances did not differ significantly between animals (Mann-Whitney U-test, p > 0.05) except 

for resting state prediction decoded from F5 and AIP where means were significantly different 

(p < 0.05). 

In conclusion, we were able to predict two separate kinematic states with single and multiunit 

activity from either of the three tested brain areas. Performance ranking of the areas corresponded to 

the ranking obtained for the continuous kinematic decoding with the Kalman filter except for the 

fact that the differences between M1 and F5 were non-significant. 

 

6.3. Resting state detection during passive resting phases and active hold epochs 

Since the movement and resting state was defined based on a velocity threshold, the resting state 

included on the one hand passive waiting phases between trials as well as during fixation, cue, and 

planning epochs, and on the other hand phases during hold epochs where the monkey was holding 

the grasped object without moving its hand and arm. Although kinematically similar, these phases 

might be different in terms of neural coding. Whereas the monkey is passively resting its hand 

while waiting for the go signal to perform its next movement, it is actively engaged by tensing 

muscles in the arm and hand while holding an object. In the following, we will therefore distinguish 

these two different categories of resting by the terms passive and active resting.  
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We were curious to see whether these two different resting states could be decoded with 

comparable accuracy or if a tentative change in neural and muscular state would be reflected in the 

decoding performance. To do so, we calculated the percentage of correctly decoded samples 

specifically during passive resting and compared it to the percentage of correctly decoded samples 

during active resting state in each recording session.  

Figure 12 illustrates the respective means and standard deviations averaged across recording 

sessions separately for each monkey and each area used for decoding. Clearly, samples during 

passive resting phases, i.e. while the monkey was waiting to perform the next hand movement and 

the arm was lying on the hand rest button, could be detected with a much higher accuracy than 

 

Figure 12. Decoding performance of active and passive resting state, averaged across all recording sessions 

and shown separately for monkey Z (upper row) and monkey M (lower row) as well as for the different 

areas used for decoding (columns). Bars and errorbars: mean and standard deviation. Orange lines and 

errorbars indicate mean chance level and standard deviation also averaged across recording sessions (see 

section 5.6 in Materials and Methods). 
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samples during hold phases (active resting). Medians differed significantly in both monkeys and 

independent from which area was used for decoding (Mann-Whitney U-test, p < 0.03). 

The performances of the three areas did not differ from the previous results: when comparing the 

decoding accuracy of passive resting among the areas, there was no significant difference in means 

between M1 and F5, but AIP was differing significantly from both M1 and F5 (Kruskal-Wallis test 

and Tukey-Kramer multicomparison test, p < 0.05). The same was true when comparing the 

accuracy of predicting active resting between areas. 

All decoding performances were significantly better than their respective chance level: again, for 

each recording, chance level for predicting active or passive resting were separately calculated (see 

section 5.6) and averaged across recordings. Median decoding performances of standard decodings 

differed significantly from the respective medians of the chance level distributions (Mann-Whitney 

U-test, p < 0.03). This was true for both passive and active resting. 

Finally, decoding results were compared between monkeys: there were no significant differences 

in the median decoding accuracies between monkeys for any conditions (Mann-Whitney U-test, 

p > 0.05). 

 

6.4. Decoding of movement onset 

For a neuroprosthetic application, it is not only important to correctly distinguish between 

movement and resting phases but to catch the timing of movement onset precisely. As described in 

Materials and Methods (see section 5.5), we calculated the probability of true and decoded 

movement around each actual movement onset. Figure 13 shows the mean probabilities together 

with their standard deviations averaged across recordings. The results were fitted with logistic 

curves which are shown in addition.  

As expected, there was a stepwise transition from resting to movement in the real data (figure 13 

(a), (e)): by definition, since movement always started at t = 0 ms, the probability of movement was 
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at a 100% level for this time point, whereas the preceding time sample at t = -50 ms had a 

probability of 0%. For the decoded data sets however, the transition happened much more 

smoothly. The fit parameter b (see equation (1) in section 5.5 in Materials and Methods) describing 

the slope of the fitted function (larger values of b correspond to steeper graphs) decreased 

drastically from 3.5 and 1.8 in the actual data set (for monkeys Z and M, respectively) to 0.05 and 

0.07 when decoding with M1 (figure 13 (b), (f)), 0.03 and 0.05 when decoding with F5  

(figure 13 (c), (g)), and 0.02 and 0.02 when decoding when AIP (figure 13 (d), (h)). The 

decreasing values also indicate that decoding with M1 showed the most precise transition from 

resting to movement, whereas in state reconstruction with F5 and AIP more samples both before 

and after movement onset were incorrectly classified. 

Next, we looked at the average time of movement onset prediction represented by the fit 

parameter c. Unfortunately, in the fit of the true data, this parameter cannot account for true 

movement onset: since we used discrete time samples with a sampling rate of 20 Hz for fitting the 

sigmoidal function, any number between -50 and 0 ms would have been a legitimate fitting value 

for c. Therefore, the actual value of c in the fit of the true data is meaningless to us. 

This holds true to a certain extent also for c in the fitted functions of the decoded data. 

Nevertheless, we found that c, when decoding with either M1 or F5, also fell within this time 

window of -50 to 0 ms suggesting that movement onset could be captured on average within the 

precision of 50 ms (c = -15.5 ms and -16.0 ms when decoding from M1, c = -10.4 ms and -6.4 ms 

when decoding from F5, for monkey Z and M, respectively). In contrast, when decoding with AIP, 

we obtained values of c = 13.4 ms and 41.9 ms for monkey Z and M, respectively, suggesting that  

 

Figure 13. Probability of true and decoded movement states in a 800 ms time window around each actual 

movement onset (see Materials and Methods, section 5.5). Dots illustrate mean probability of true (a), (e) and 

predicted (b)-(d), (f)-(h) movement averaged across recordings, separately for monkey Z (a)-(d) and monkey 

M (e)-(h) whereas shaded regions show standard deviations. Red lines depict the respective fits.  
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movement onset prediction with AIP was delayed in comparison to the real movement onset. 

In summary, movement onset was decoded on average most precisely with area M1: the 

distribution of time shifts compared to the real onset had the least variance and were therefore most 

reliable. Also, the average onset of predicted movement was very precise with respect to the 

resolution of the data. For F5, this was also the case; however, the predicted onsets also contained a 

higher variance and were therefore more inconsistent. AIP yielded again the lowest prediction 

accuracy: movement onset varied the most with respect to real onset and on average lagged behind 

true onset. 

 

6.5. Optimal decoding parameters 

As described in section 5.3, we tested various combinations of gap and bin lengths for decoding and 

evaluated the results with respect to decoding performance. For each recording, gap lengths 

from -1000 to 200 ms were examined together with bin lengths from 10-1400 ms and the 

combination yielding the highest percentage of correctly classified samples was determined 

(figure 14). 

The cumulative distribution of optimal parameters is illustrated in figure 15 separately for bin 

(figure 15 (a)-(b)) and gap lengths (figure 15 (c)-(d)). In contrast to the Kalman filter decoding of 

continuous kinematics, optimal bin length varied among areas and was much longer than 10 ms. For 

all three areas, the median optimal bin lengths (pooled across all ten recordings) were significantly 

greater than zero (two-sided sign test, p < 0.002). On average, they were similar for areas M1 and 

F5 (mean and standard deviation: 270 ± 71.49 ms and 295 ± 79.76 ms, respectively), whereas 

optimal bin lengths for decoding with AIP tended to be even longer (mean and standard deviation: 

580 ± 198.89 ms). Similarly, the medians between M1 and F5 (median: 250 ms for both areas, 

respectively) did not differ significantly, whereas there was a significant difference between the  
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median of optimal bin lengths for AIP (median: 475 ms) and the medians of the other two areas 

(Kruskal-Wallis test and Tukey-Kramer multicomparison test, p < 0.05). 

In contrast, optimal gap lengths were mostly very short (figure 15 (c)-(d)), especially when 

decoding with M1 or F5: for M1, optimal gap length was always -0 ms which was very similar to 

F5 with an average optimal gap length of -10 ms (standard deviation: 31.62 ms; median: -0 ms). 

Accordingly, neither of the median values was statistically different from zero (two-sided sign test, 

respectively, p = 1). In contrast, when decoding with AIP, results were more mixed. Both gap 

lengths of -0 ms, as well as longer time lags were optimal for AIP (mean ± standard 

deviation: -160 ± 222.11 ms; median: -0 ms). However, the median optimal gap length also did not 

differ significantly from zero (two-sided sign test, p = 0.125). Furthermore, the variances of the 

distributions of optimal gap lengths were significantly different across the three areas (non-

parametric Levene’s test, p < 0.0001). 

 

 

Figure 14. Scatterplot of optimal parameter combinations of each recording session and each area used for 

decoding. Blue stars, green dots, and red circles denote optimal parameter combinations for decoding with 

M1, F5, and AIP, respectively. Size of marker corresponds to number of recordings with respective optimal 

parameter combination. 
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Figure 15. Bin (a)-(b) and gap (c)-(d) lengths yielding the highest decoding accuracy were determined for 

each recording and are shown as cumulative distributions separately for monkey Z (a), (c) and monkey M (b), 

(d). For monkey M, the optimal gap length was -0 ms for each area and recording. Therefore, only the line for 

area AIP is visible in (d). 

 

In summary, results for M1 and F5 were comparable: bin lengths between 100 and 400 ms 

combined with no or only very short time lags yielded highest decoding performance. For decoding 

with AIP however, longer bin lengths of durations from 350 ms up to 900 ms were preferable 

combined with either also very short or long gap lengths of -200 to -500 ms.  

(a) (b) 

(c) (d) 
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7. Discussion 

In addition to decoding 27 joint angles continuously over time, we predicted two different 

kinematic conditions (resting and movement) describing the state of the kinematics from single unit 

activity in M1, F5, and AIP. To our knowledge, this is the first study testing not only motor and 

premotor areas for state prediction, but also area AIP in the parietal cortex. 

In short, we found that all three areas were well suited for state decoding. M1 and F5 yielded 

very similar results whereas prediction accuracy with activity from AIP was most often 

significantly lower. However, all areas exceeded chance level by far. 

 

7.1. State reconstruction with primary and premotor cortex 

Compared to Kalman filter decoding of 27 joint angles, we found very similar results for the 

prediction of states for the three different areas: we obtained best decoding performance with neural 

activity from M1, followed by F5 and AIP. All three areas were able to predict the state with high 

accuracy (figure 10), which was significantly better than chance level. Comparing the reconstructed 

state with actual trajectories (figure 9) confirmed that the predicted states matched the monkey’s 

behaviour well. However, in contrast to the Kalman filter decoding, the differences in prediction 

accuracy were smaller between the three areas and were never significant between F5 and M1. 

Previously, the motor and premotor cortices have been subject to investigations of their 

suitability for decoding kinematic and task-related categories. A variety of decoding algorithms 

have been employed to detect kinematic states (Aggarwal et al 2008, Darmanjian et al 2003, Ethier 

et al 2011, Lebedev et al 2008, Velliste et al 2014) or different kinds of trial epochs (Achtman et al 

2007, Aggarwal et al 2013). However, in a neuroprosthetic application, detection of specific trial 

epochs will keep the patient restricted to a limited amount of motor actions within the respective 

task scheme, whereas the detection of kinematic states as resting or movement will provide the 

freedom of more natural and general ways to perform movements. To put this into practice, we 
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aimed to detect kinematic categories not only during correct trials but also during inter-trial periods 

and error trials.  

So far, only one other study followed the same approach recently: Velliste et al (2014) 

distinguished between idle and active neural states during both trials and inter-trial intervals. In 

contrast to our definition of resting and movement state, their idle state corresponded only to our 

passive resting state, whereas our active resting state belonged to their active neural state. By 

utilizing a linear discriminant analysis (LDA) they were able to predict these states from spikes in 

M1 with a precision of approximately 98%. This was slightly higher than our average decoding 

performance of 94% when decoding from M1 (figure 10) and might be due to their different 

definition of states (see also discussion in section 7.4). Another study that decoded states only 

during correct trials used a more similar definition to our classification of kinematic states: Ethier et 

al (2011) set a velocity threshold to define data samples recorded during a centre-out reaching task 

performed with a cursor on a screen as resting or movement and achieved a prediction accuracy of 

approximately 90% when decoding from M1. There, LDA was used for state classification as well. 

Other studies were only able to produce lower performances than the ones mentioned above or 

presented in this study: Aggarwal et al (2008) decoded resting and movement state of individual 

finger movements with a gating classifier (committee of neural networks) from neural activity in 

M1 and achieved an accuracy of about 85%. However, they only used sequentially recorded units 

for decoding which might have been disadvantageous compared to our simultaneous recordings 

from multiple arrays, in which additional information might have been encoded in the coherence or 

phase synchrony within the neuronal population (Averbeck and Lee 2004). Furthermore, their 

classifier might have been inferior to our wSVM method. This might also be the reason why 

Darmanjian et al (2003) only achieved a performance of approximately 80% when predicting 

stationary and moving states from M1 with a hidden Markov model. SVMs have been shown to 

outperform hidden Markov models in some cases (Miao et al 2007, Wissel et al 2013).  
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Aggarwal et al (2013) did not only decode from M1, but also included single and multiunit 

activity from premotor cortex (PM) into the data set for prediction of four different kinematic states 

during correct trials of a reach and grasp task. With LDA, they were only able to achieve a 

performance of about 70%. However, none of their states included our passive resting condition, 

since the monkey never placed its hand in a resting position during the task. Instead, as baseline 

state, the monkey had to actively pull a lever to initiate a trial before performing a reach and grasp 

to another object. This made their baseline state more comparable to our active resting state. The 

other states of their task (reaction, move, hold) also corresponded more to our active resting or 

movement state. As we showed in figure 11, active resting state was more difficult to distinguish 

from movement than passive resting, which could explain why Aggarwal and colleagues had more 

difficulty with distinguishing their four states with their decoder.  

When comparing decoding performance separately for M1 and PM, Aggarwal and colleagues 

found that detection of states was more accurate with M1 than with PM. However, the difference 

was only significant for baseline state. These findings correspond well with our results where M1 

performed insignificantly better in prediction than F5. 

Lebedev et al (2008) also compared kinematic state prediction from spiking activity of M1 and 

PMd. Their two states of button press and release were comparable to the definition of our passive 

resting and movement, respectively. They predicted a value corresponding to the probability of a 

state and compared it to the true occurrence of states. By doing so, similarly to our results, they 

obtained a higher decoding performance for M1 (CC ≈ 0.93) than for PMd (CC ≈ 0.87). 

 

7.2. State reconstruction with parietal cortex 

So far, this is the first study to investigate AIP as a potential area for detection of kinematic states as 

well as to compare the resulting decoding performance to other areas. Previously, only PRR in the 

parietal cortex encoding reaching movements has been subject to this analysis: Hudson and Burdick 
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(2007) decoded baseline and reach state with hidden Markov models from single and multiunits in 

PRR while a monkey was performing a delayed centre-out reaching task. Again, baseline state 

consisted of an active hand positioning over a centre target, which made it similar to our active 

resting state. Furthermore, Hudson and Burdick only demanded the decoding of reach state 

between go signal and beginning of hold phase during correctly performed trials in order to classify 

the prediction as successful. No attention was paid to the actual duration of predicted reach states as 

long as it stayed within the described interval. Furthermore, no comparison was made to the length 

of actual reaching movements. This way, they were able to decode with almost 80% accuracy. 

Assessment of the performance with our methods would most likely have yielded a substantially 

lower accuracy. 

Shenoy et al (2003) also predicted the onset of movement during a delayed centre-out reaching 

task from activity in PRR. Similarly as in Hudson’s and Burdick’s study, all possible kinematic 

states again corresponded to either our active resting or movement state. There was no condition in 

their task comparable to our passive resting state. In approximately 85% of the trials, their decoder 

issued a movement command within the allowed time slot, however, again there was no direct 

comparison to actual movements. 

In conclusion, we were able to show that not only motor and premotor areas are suited to predict 

kinematics states during reaching and grasping movements, but also area AIP in the parietal cortex 

seems to be an appropriate candidate. Although performance was inferior to the ones obtained by 

M1 or F5, it was still substantially higher than results reported previously in any other study 

utilizing signals from parietal cortex for state prediction. 

 

7.3. Reconstruction of individual states 

For all three areas, resting state could be predicted more accurately than movement (figure 11). It is 

known that standard SVMs show a classification bias towards the category with the larger data set, 
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resulting in a classification bias towards that class (Chew et al 2000): since the upper limit of the 

classification error rate of a class is inversely proportionally related to its size (Huang and Du 

2005), data sets with larger sizes will show a smaller classification error. To prevent this from 

happening in our decoding where resting state made up approximately two thirds of the data set, we 

employed a weighted SVM instead (Huang and Du 2005) to counter a potential bias towards that 

class (see also section 5.1 in Materials and Methods). In short, a weighted SVM introduces two 

different penalty parameters C for the two different classes (instead of one constant value for all 

training samples as in the standard SVM). Their values are set to the inverse ratio of the respective 

training class size. This way, the influence of data set size can be cancelled resulting in the same 

upper limit of classification error rate for each class. As a consequence, the boundary (hyperplane) 

separating the training samples of both classes is chosen in a way that more samples belonging to 

the smaller class are correctly assigned to their respective class (compared to the non-weighted 

SVM), with the potential risk of a higher misclassification of the samples of the opposite, now less 

important category. However, even with this modification, we still observed a prediction bias 

towards resting state.  

Other studies in which resting and movement states were predicted did not find a bias towards 

one of the states (Darmanjian et al 2003, Ethier et al 2011, Velliste et al 2014). However, the two 

different states seemed to be more equally distributed within the data sets in at least two of the 

studies (Darmanjian et al 2003, Velliste et al 2014), which might be a reason why a bias did not 

occur. Furthermore, different algorithms were used for decoding (LDA and a hidden Markov 

model). The influence of decoding algorithm on the decoding performance of specific states needs 

to be tested in more detail in the future.  

In a neuroprosthetic application, a potential bias of the wSVM could be accounted for from the 

theoretical side by adjusting the penalty parameters of both states even further as part of the training 
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step. This would modify the bias within the decoder and make the algorithm more sensitive towards 

the movement state (Huang and Du 2005). 

Another way of sensitizing the decoder for movement state, which was not tested here, could be 

to decrease the velocity threshold determining which data sample is classified as movement in the 

training data. This way, more samples during transition periods from resting to movement and vice 

versa would be defined as movement and could produce a “counter-bias” in the training step 

towards movement. However, this could also lead to a misclassification of resting samples that were 

classified correctly before. The impact of this trade-off needs to be tested further in the future. 

Moreover, our definition of resting and movement might have influenced the decoding 

performance of each state. As described in Materials and Methods (section 5.2), we first determined 

a kinematic information vector for each DOF by assigning each data sample to one of the two 

categories based on the respective velocity at a time instant. Then, a general kinematic information 

vector was constructed out of the individual ones by defining a time sample as movement if at least 

one third of the individual kinematic information vectors were categorized as movement at that 

time. This way, we classified samples with less than nine joints displaying movement as a general 

resting sample. The neural state for these samples however might have been (at least to some 

extent) a movement state. Thus, the decoder might have learned that some data samples are to be 

classified as resting although their neural state represented movement. In the decoding step, actual 

movement samples therefore might have been incorrectly classified as resting which, thus decreased 

the prediction accuracy of the movement state. 

 

7.4. Active and passive resting 

Although kinematically similar (i.e. velocity below a certain threshold), we found that there were 

differences in prediction accuracy within the resting state category: Phases in which the monkey 

was waiting to perform the next movement could be decoded with higher precision (passive resting) 
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than phases in which the monkey held its hand and arm still while holding the grasped object 

(active resting). A reason for the lower precision during hold epochs could be that these phases of 

no movement were much shorter and embedded within a movement. Since our criterion to 

distinguish resting and movement was based on an empirically set velocity threshold, the state in 

transition phases from movement to no movement and vice versa is highly dependent on the defined 

threshold. Subsequently, this would impact the prediction accuracy within these phases (cf. above, 

section 7.3). Previous studies classifying resting and movement states also found transition periods 

from one state to the other to be the phases exhibiting the most prediction errors (Ethier et al 2011). 

Another possibility for the difference in decoding accuracy could be that the actual neural state 

differed between periods of relaxed resting and periods of still hand position during a movement 

(Darmanjian et al 2003, Velliste et al 2014). Velliste et al (2014) recently showed that the neural 

activity of M1 between passive and active resting exhibited different tuning models and thus 

differed significantly. During active resting, the activity pattern of the recorded units resembled the 

pattern during movement state instead of the one during passive resting. This suggests that a 

division of data samples into resting and movement based on a mere velocity threshold without 

taking muscle activation into account (as in our study and several previous studies (Achtman et al 

2007, Aggarwal et al 2013, Ethier et al 2011, Shenoy et al 2003)) does not necessarily reflect the 

actual difference in neural coding. Velliste and colleagues therefore divided their neural activity 

into idle (during passive resting) and active (during active resting and movement) state instead. 

Since the amount of passive resting was much higher in our data than active resting, the decoder 

probably associated resting state to a large extent with the neural tuning during passive resting and 

therefore classified phases in which the monkey was holding the object (active resting) to the 

opposite state, namely movement. In our definition of resting and movement states this resulted in 

low prediction accuracy during holding. However, if we had considered idle and active state as the 
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two different kinematic categories, the decoding performance might have been higher during hold 

phases. 

In a neuroprosthetic application (where state and continuous kinematic prediction is combined) 

in which detection of resting state would mean overwriting any kinematic prediction with zero 

velocity, it might be even more desirable to keep the controlled actuator within an active (i.e. “on” 

state) state while the patient is engaged in an action even during phases of zero velocity (imagine 

for example holding a cup still while pouring coffee into it). This might help to improve the feeling 

of control over the prosthetic. A prosthetic that switched between resting and movement (i.e. 

switched “off” and “on”) during movement execution could confuse the patient and worsen the 

control. In contrast, during phases of relaxed resting (for example while watching tv) in which the 

prosthetic is not needed, it might be helpful to turn the prosthetic “off” by putting it into a resting 

state. This way the patient is not required be constantly engaged in prosthetic control to keep the 

arm and hand still. 

 

7.5. Decoding of movement onset 

Prediction of movement onset was on average very precise and close to the actual movement onset: 

whereas decoded onsets obtained with activity from F5 and M1 lay very close to the actual 

movement onset (within the resolution accuracy of the data), predicted onsets with AIP came 

slightly after real onsets.  When looking at the variance of delay between real and decoded onsets, 

M1 performed better than F5, whereas decoding from AIP delivered the most variability in onset 

detection. 

To our knowledge, this study compares the precision with which a decoder predicts movement 

onset for the first time comparatively for areas M1, F5, and AIP. The accuracy of state transition 

prediction has in general been barely described in the literature for any of the three areas. In the 

study of Aggarwal et al (2013), four different epochs of a behavioural reach and grasp task were 
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decoded from single and multiunit activity recorded in M1 and PM with LDA. To assess the latency 

of state transition prediction, the following method was employed: being in the current correct state, 

the decoder needed to have predicted the correct following state at least three out of five times. 

Only then, a transition into the next state was carried out. Furthermore, only transitions into the 

subsequent epoch (following the order as defined by the task) were allowed to take place. Most 

comparable to our transition from resting to movement (i.e. movement onset) was their transition 

from reaction state to move. There, Aggarwal and colleagues obtained an average delay of predicted 

transition of about 75 ms for M1, and 75 and 50 ms for PM for two monkeys, respectively. Since 

we did not impose any restrictions on the transition from resting to movement, as opposed to 

Aggarwal and colleagues, our transitioning times are much shorter and appear earlier. 

In contrast, Kemere et al (2008) predicted transitions from planning to movement around 150 ms 

after an instructed go signal, which was 100 ms before actual movement onset. They decoded with 

spiking activity from caudal dorsal premotor cortex while the monkey was performing a reaching 

task. Here, a hidden Markov model was utilized for decoding.  

The precision of transition prediction depends highly on the definition of when a respective 

prediction is allowed to occur. If a certain degree of certainty needs to be achieved as in Aggarwal 

and colleagues’ study (where a subsequent state had to be predicted for a specific number of times 

before a state transition was allowed to happen), longer delays are likely to be introduced. In 

contrast, if the emphasis is laid on precision of onset prediction, an approach as presented in our 

study might be more appropriate. 

Certainly, the selected decoding algorithm also plays a role in the precision of movement onset 

prediction. A decoder that takes into account the history of states for its prediction (like a hidden 

Markov model (Eddy 1996, Rabiner 1989)) might produce a different time lag than a predictor that 

treats each data sample independently (like an SVM (Huang and Du 2005)). However, the impact of 

decoding algorithm on performance needs to be further investigated in the future. 
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7.6. Optimal decoding parameters 

Optimal bin and gap lengths overlapped to a great extent for M1 and F5: windows with a length of 

up to 450 ms directly preceding the kinematic state sample to be predicted yielded highest decoding 

accuracies. On average, bin lengths were slightly longer for F5 than for M1. In contrast, when 

decoding with AIP, optimal parameter combinations showed much more variation. On the one 

hand, bin lengths of 350 to 400 ms directly preceding the kinematic state produced highest decoding 

accuracies, on the other hand bin lengths of 700-900 ms with times lags of -200 to -500 ms were 

optimal. 

To our knowledge, no study so far has systematically reported the impact of bin and gap lengths 

on state decoding performance. Typically in decoding studies, the gap length was set to zero and a 

bin length preceding the time instant to be decoded was chosen without further justification or 

explanation. The bin lengths used for decoding with M1 ranged from 30 ms (Velliste et al 2014) up 

to 100 ms (Aggarwal et al 2008, Aggarwal et al 2013, Darmanjian et al 2003) and 500 ms (Ethier et 

al 2011) to predict kinematic or behavioural states. Contrary to our findings where bin lengths of 

slightly longer duration where optimal for F5 than for M1, most studies decoding from M1 and PM 

used the same parameters for both areas (Aggarwal et al 2013, Lebedev et al 2008). For state 

prediction from activity recorded in PM, we find bin lengths of 100-500 ms (Achtman et al 2007, 

Aggarwal et al 2013, Lebedev et al 2008) in the literature, for decoding with activity from parietal 

cortex (PRR) we find a bin of 250 ms (Shenoy et al 2003). These values correspond roughly with 

our findings, however we cannot decide if these values truly correspond to optimal bin lengths (and 

thus contradict or support our findings) or if they were chosen based on other, non-reported reasons. 

However, the bin and gap lengths found to be optimal for state decoding differ from the ones 

found for the Kalman filter decoding in chapter II, section 3. There, highest prediction 

performances were obtained for very short bins (10 ms) preceding the kinematics in combination 
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with different gap lengths. Since the Kalman filter decoded continuous kinematics, where fast 

changes occurring in short time windows needed to be predicted, instantaneous monitoring of firing 

rates was important. This justifies the necessity of very short time windows. However for decoding 

kinematic states, which are categorical variables, small changes in neural activity were less 

important and therefore did not need to be strictly monitored by the decoder. Instead, categorical 

changes in neural patterns are better reflected in longer time intervals and thus longer bin lengths 

improved discrimination of kinematic states over short ones. 

In general, our findings correspond to the general framework of the fronto-parietal network 

hypothesis (Jeannerod et al 1995 and section 1.1.5): visual information about the object to be 

grasped is first present in AIP, forwarded to F5 where a grip type is selected, which is then 

projected to M1. There, a motor command is issued and sent to the spinal cord. The optimal bin 

length, representing at what time most information with respect to the kinematic state is encoded in 

an area, follows this order for the three tested areas: bin lengths were longest for AIP, then F5, and 

shortest for M1. According to earlier studies and as discussed in section 4.5, AIP receives an 

efference copy from premotor and motor cortices, which can serve as a tool for the online control of 

movement (Mulliken et al 2008). This could explain why we did not only find bins to be optimal 

for AIP that were longer than the ones for M1 and F5, but we also obtained bin lengths that were 

similar to the ones for M1 and F5. 

 

7.7. Conclusion 

Although we included both correct and incorrect trials as well as inter-trial intervals and did not 

restrict the decoder to any given structure of the task, we were able to achieve higher decoding 

accuracy with activity from AIP, F5, and M1 than most of the previous comparable studies could. 

Furthermore, our decoding paradigm allowed for unexpected and thus more natural behaviour (by 

including incorrect trials and inter-trial intervals) and it may therefore contribute towards the 
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development of neuroprosthetics that are not only usable in artificial lab conditions, but also in an 

everyday environment. 

Contrary to our classification of resting and movement states based on a velocity threshold, 

further improvement of prediction performance might be achieved by classifying data samples into 

categories based on the active or passive engagement of the subject. 

Moreover, the impact of decoding algorithms on prediction accuracy is not entirely clear at this 

stage. After the identification of the behavioural states that can be distinguished best based on their 

neural activity, the contribution of decoding algorithms to the accuracy of prediction should be 

assessed more precisely in the future. 

Our results fit well into the framework of the fronto-parietal network hypothesis. For the first 

time, we were able to show the suitability of area AIP for predicting kinematic states and to put the 

respective decoding performance into context by comparing it to different cortical areas like motor 

and premotor cortex, which have already been accepted broadly as potential candidates for 

kinematic decoding (Schaffelhofer et al 2015). These findings contribute to the development and 

realization of future neuroprosthetic applications by providing information about the contribution of 

different cortical areas to motor coding as well as by providing information about their suitability 

for prediction of kinematic and behavioural states.  



 

 
 

 

Chapter IV 
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8. Conclusions and Outlook 

In this study, we were able to show for the first time that continuous decoding of hand, wrist, and 

arm kinematics over time was possible not only from areas M1 and F5, but also from parietal area 

AIP. Furthermore, our study presents the most complete decoding of finger, wrist, and arm joints so 

far. In addition, we not only predicted continuous movement, but were also able to detect in which 

behavioural state the animal was in. More precisely, we were able to decode resting and movement 

states with high precision from spiking activity in all three areas.  

However, in this study we only tested the feasibility of both kinematic and state prediction 

separately. The next step would be the combination of decoding methods into one decoder, in which 

both state and kinematic prediction run in parallel and are able to influence each other.  

The need for a combined decoder has already been expressed earlier by several researchers 

(Achtman et al 2007, Darmanjian et al 2003, Ethier et al 2011, Hudson and Burdick 2007, Kemere 

et al 2008). Since cortical activity patterns have been shown to be dependent on the cognitive state 

of the subject (Kemere et al 2008, Velliste et al 2014), it might be advantageous to detect those 

states in order to adjust the kinematic decoder to these changes and prevent or counteract false 

movement predictions. 

Indeed, previous studies have shown that combined decoders have the potential to deliver 

predictions with higher accuracies than kinematic decoders without state detection: Aggarwal et al 

(2013) improved their decoding of 18 joint angles of the hand and wrist with a Kalman filter using 

from M1 and PM when they combined it with a state predictor detecting four different states of the 

behavioural task. However, the increase in performance was small and only observed if more than 

approximately 45 units were used for decoding. 

In contrast, Ethier et al (2011) achieved a significant increase of decoding performance when 

they combined their prediction of 2D velocity of arm movements from activity in M1 with a state 

classifier detecting resting or movement. Similarly, Velliste et al (2014) combined a Laplace 
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Gaussian Filter decoding of 3D position, 3D velocity, and speed of the arm endpoint of a monkey 

performing reaching movements with an LDA detecting idle and active neural states with activity 

from M1. This way, they increased their prediction accuracy significantly compared to only using 

the Laplace Gaussian Filter for decoding. Also Darmanjian et al (2003) were able to improve their 

prediction of 3D arm position from M1 when they combined their kinematic decoder with a hidden 

markov Model for state detection. 

However, the question of how to combine state and kinematic decoding is not trivial and offers 

many possible answers. If resting and movement states are detected by a state decoder to prevent 

unwanted movement predictions during phases of posture, a simple low-pass filtering during 

detected resting state could avoid noisy jittering in the kinematic prediction. Ethier et al (2011) 

tested this method for decoding 2D velocity from M1 in a centre-out reaching task using Wiener 

cascade model and an LDA for prediction. However, no significant increase of decoding 

performance was achieved this way. Instead, this was accomplished when two separate movement 

decoders were built with training data consisting of kinematics during either movement or resting 

state. In the decoding step, movement prediction was performed by switching between the two 

movement decoders based on the classification of the state decoder. The latter approach has also 

been successfully realized in combination with other state decoding algorithms like a hidden 

Markov model (Darmanjian et al 2003). 

An additional way to combine decoders could be such that the kinematic prediction is stopped 

(kinematic output is kept constant or decoded velocity is overwritten with zero) if the state classifier 

detects a resting state (Velliste et al 2014, Wood et al 2005) or a corresponding task epoch 

(Aggarwal et al 2013). 

Furthermore, the combination of a kinematic decoder with a state detector also offers the 

possibility to switch between different motor action patterns: whereas standard kinematic 

movement prediction is carried out during movement state, the kinematic decoding could pause 
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when a second behavioural or cognitive state is detected. Then, the prosthesis could perform a 

predefined grasp, a click (if the movement is performed on a virtual platform like a computer or 

smartphone), or another predefined action customized to the patient’s needs. Moreover, the number 

of possible states could be increased to offer more flexibility in automated actions to be carried out.  

These and other possibilities will have to be explored in the future. Our results contribute to the 

basic understanding about how well different brain areas in the fronto-parietal grasping network are 

suited for neuroprosthetic applications and how different types of decodings can be carried out with 

signals from these areas. In the future, these findings can contribute to the development and 

exploration of sophisticated types of neuroprostheses.  
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9. Summary 

In this study, we performed two different kinds of decodings: first, we investigated the possibility of 

decoding complete hand, wrist, and arm movements that were represented by 27 DOF from single 

and multiunit activity in the hand areas of motor (M1), premotor (F5), and parietal cortex (AIP) in a 

comparative way. Second, we performed a detection of kinematic states, namely resting and 

movement, from the spiking activity in the same three cortical areas. To mimic more natural 

behaviour in which also unexpected movements could occur, we decoded both correct and error 

trials as well as inter-trial intervals and did not restrict the decoders to any given structure of the 

task. 

To our knowledge, this is the first study that combines and compares areas M1, F5, and AIP for 

prediction of versatile, continuous hand kinematics as well as detection of respective behavioural 

states. Simultaneous recordings of population activity from the three areas by multi-electrode arrays 

gave us the possibility to examine the differences between the areas and evaluate the information 

content with respect to hand and arm kinematics in these areas.  

We found that continuous trajectories of 27 joint angles could be reconstructed accurately over 

time by using single and multiunit activity from M1, F5, or AIP. The highest performance was 

achieved when using M1 for decoding, followed by F5 and area AIP. The same order of decoding 

accuracy was also true for the detection of kinematic states. All three areas were able to predict both 

joint angles and kinematic states significantly better than chance level. Furthermore, performances 

were similar to or even higher than reported in previous studies. 

When combining activity from two or more areas for decoding of 27 joint angles, no significant 

increase of decoding performance was achieved. Furthermore, the differences in decoding 

performance between the three areas did not primarily depend on the number of neurons available 

for decoding, but strongly reflected the type of information encoded in these areas. No substantial 
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difference was found between decoding finger and wrist joints, whereas shoulder and arm 

movements were predicted with significantly higher accuracy. 

For the decoding of joint angles, we found neural data from very short time bins preceding the 

kinematics to be suited best for decoding. However, the bin needed to be combined with an 

adequate time lag to find the optimal relation between brain activity and movement execution. 

These optimal gap lengths differed substantially between areas. Shorter gap lengths were ideal 

when decoding from M1, whereas optimal time gaps for F5 were longer than for M1, indicating that 

information about grasping is present earlier in F5 than in primary motor cortex. When decoding 

from area AIP, best decoding performance was obtained for gap lengths close to zero (with neural 

activity preceding kinematics) supporting the idea that AIP could represent a copy of the motor plan 

in F5 in order to compare it to the visual properties. All these findings are in line with the fronto-

parietal grasp network hypothesis (Jeannerod et al 1995). Similar results were obtained for the 

decoding of kinematic states, however, optimal bin lengths were longer than when predicting 27 

joint angles. 

Resting state could be detected with higher accuracy than movement. In addition, there was a 

difference in decoding accuracy between passive resting, when the monkey was waiting to perform 

the next movement, and active resting, when the animal held its hand still while holding the object: 

passive resting was detected by the classifier with higher precision than active resting. 

Nevertheless, movement onset was on average detected very precisely and the time lag between 

true and predicted movement onset lay within the resolution accuracy of the data when decoding 

from M1 and F5. When AIP was used for classification, movement onsets were detected shortly 

after real movement beginnings. 

In conclusion, we found that all three areas were suited for decoding of both high-dimensional 

kinematics and kinematic states. Our findings contribute to the development of more sophisticated 

neuroprosthetics that will operate in a natural and intuitive way. 
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Abbreviations 

AIP  anterior intraparietal area 

AS  arcuate sulcus 

CIP  caudal intraparietal sulcus 

CS  central sulcus 

DLPF  dorsolateral prefrontal cortex 

DO  dorsal opercular area 

DOF  degree of freedom 

DP  dorsal prelunate area 

ECoG  electrocorticogram 

EEG  electroencephalogram 

F1  primary motor cortex (M1) 

F5  rostral part of ventral premotor area 

F5a  anterior (and ventral) part of the postarcuate bank in F5 

F5c  postarcuate convexity in F5 

F5p  posterior (and dorsal) part of the postarcuate bank in F5 

FEF  frontal eye field 

GrF  granular frontal area 

IAS  inferior arcuate sulcus 

IFS  inferior frontal sulcus 

IPD  inferior precentral dimple 

IPS  intraparietal sulcus 

IT  inferotemporal lobe 

LDA  linear discriminant analysis 

LGN  lateral geniculate nucleus 
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LIP  lateral intraparietal area 

LS  lateral sulcus / lunate sulcus 

lSTS  lateral superior temporal sulcus 

M1  primary motor cortex 

MIP  medial intraparietal sulcus 

MT  middle temporal area 

PM  premotor cortex  

PMd  dorsal premotor cortex 

PMv  ventral premotor cortex 

PPC  posterior parietal cortex 

PRR  parietal reach region 

PS  principle sulcus 

S  spur of the arcuate sulcus 

SII  secondary somatosensory area 

SAS  superior arcuate sulcus 

SMA  supplementary motor area 

STS  superior temporal sulcus 

SVM  Support Vector Machine 

V1  primary visual cortex 

VIP  ventral intraparietal area 

wSVM  weighted Support Vector Machine 
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