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ABSTRACT 

An important anatomical feature of neuronal synapses is the presynaptic bouton, a structure 

that isolates synaptic vesicle recycling from constitutive membrane trafficking pathways. 

However, in some neurotransmitter-releasing cells this structure is not present and instead 

they develop active zones directly located at the cell soma (somatic active zones). This is the 

case for the auditory inner hair cells (IHCs), polarized cells responsible for sound encoding 

in mammals, with somatic active zones located at their basal pole. As most sensory 

synapses, IHCs present particularly high rates of synaptic vesicle release, which need to be 

compensated by equally efficient membrane retrieval mechanisms. Up to now, two models 

of synaptic vesicle recycling have been proposed in IHCs: 1) apical membrane retrieval that 

involves organelles of constitutive pathways in vesicle reformation (e.g. endoplasmic 

reticulum and Golgi apparatus), and 2) local basal recycling, in proximity to the vesicle 

release sites. Establishing which of these models is correct has been difficult, since 

conventional endocytosis markers have failed to accurately report membrane uptake events 

in these cells.  

In this study a new membrane-binding probe, called mCLING (membrane-binding 

fluorophore-Cysteine-Lysine-Palmitoyl Group), was developed to study membrane uptake 

and trafficking in IHCs, under high-resolution Stimulated Emission Depletion (STED) 

microscopy. mCLING is not toxic and does not affect membrane trafficking physiology. 

Moreover, mCLING can be fixed and combined with immunostaining, in order to establish 

the molecular composition of recycling organelles. mCLING uptake combined with 

immunostaining against vesicular markers confirmed that synaptic vesicle recycling in IHCs 

exclusively localizes at the cell base. Synaptic vesicles seem to reform from endocytic 

intermediates, such as membrane infoldings and cisterns that arise in the vicinity of 

synaptic active zones. mCLING labeling also revealed that constitutive recycling pathways 

take place at the top and nuclear IHC levels, in the form of large tubulo-cisternal structures 

related to recycling endosomes. These results indicate that IHCs functionally and spatially 

separate synaptic vesicle recycling from constitutive membrane traffic. Moreover, they 

evidence the importance of keeping synaptic vesicle recycling as a separate trafficking 

pathway, especially in the absence of a synaptic bouton. 
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The applicability of mCLING to other biological preparations was further explored. In 

hippocampal cultured neurons, mCLING allowed to answer still open questions on synaptic 

function and protein organization: 1) are the same synaptic vesicles undergoing active and 

spontaneous release? mCLING labeling combined with immunostaining revealed that 

actively and spontaneously released vesicles differ in molecular composition, being the 

latter more related to constitutive endosomal traffic. 2) What is the fraction of synaptic 

vesicle proteins that remains stranded on the plasma membrane as a potential readily 

retrievable pool of vesicles? This quantification has been difficult, since it has been 

estimated mainly by overexpression of different proteins fused with the pH sensor pHluorin. 

Surface labeling with mCLING combined with immunolabeling of endogenous synaptic 

proteins allowed to establish that ~12 to 22% of them remain stranded on the plasma 

membrane. 3) What is the organization of SNAP-25 and syntaxin 1 on intracellular 

organelles? So far clusters of these proteins have only been studied on the plasma 

membrane. Using mCLING as a surface marker, it was possible to establish that SNAP-25 

forms clusters of similar size on the plasma membrane and in intracellular organelles. In 

contrast, Syntaxin 1 forms larger clusters on the plasma membrane.  

Additionally, mCLING labeling and endocytosis were compatible with immunolabeling in 

COS7 cells, the Drosophila larva neuromuscular junction and yeast cells.  

I conclude that mCLING is the first fixable endocytosis marker that can be successfully 

combined with immunolabeling techniques, and is also compatible with a high-resolution 

microscopy technique. mCLING helped to answer long-standing questions in a conventional 

and a sensory synapse, and has a strong potential in the study of membrane traffic in any 

biological preparation, from cultured cells to complex tissues.  
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1 INTRODUCTION 

1.1 Constitutive endocytosis and the endocytic pathway 

In his theory on the origin of life (1957), Oparin suggested that for the early precursors of 

life (coacervates) to persist in time “the entry of substances into the system or their 

expulsion into the external medium must already have ceased to depend on the simple laws 

of permeability and adsorption”. He further highlighted that “it is precisely this sort of 

interaction with the external medium, though in a considerably more highly developed form, 

which is the characteristic of all contemporary living things”. With these words, Oparin 

defined the most important function of the cell plasma membrane.  

Establishing a barrier between the cell content and the environment, the plasma membrane 

can be considered as the main regulator of intracellular processes. While small hydrophobic 

molecules (e.g. CO2, N2 and O2) can passively diffuse across the membrane, small and large 

uncharged polar molecules can only diffuse very slowly. In the case of charged molecules 

(i.e. ions) the membrane is completely impermeable. Transport of ions and slow diffusing 

molecules along their electrochemical gradients can be performed by regulated opening of 

transmembrane channels. Moving molecules against such gradients requires active 

transport at an energy cost. For the entrance of even larger molecules, bulk internalization 

of solutes, uptake of degradation substrates, or the regulated internalization of signaling 

molecules and biosynthetic precursors, a specialized mechanism involving the retrieval of 

membrane-bound compartments is required. This is known as endocytosis (Alberts et al., 

2008). Throughout this study, the term constitutive endocytosis will be used to group the 

membrane retrieval events that take place regularly and preserve normal cell function. In 

particular, when referring to neurotransmitter-releasing cells, I will generalize as 

constitutive the endocytic processes not related with synaptic function. 

1.1.1 Modes of endocytosis 

1.1.1.1 Clathrin-mediated endocytosis (CME) 

This mode of endocytosis is responsible for the internalization of plasma membrane 
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molecules, including receptors and their ligands (e.g. the iron carrier transferrin, the 

cholesterol carrier low-density-lipoprotein (LDL), or the epidermal growth factor (EGF)). 

Hence, this pathway is essential for providing the cells with precursor molecules for 

biosynthetic pathways and for regulating signaling cascades. For many years, the 

conspicuous clathrin polymers seen in electron microscopy led to think of it as the major 

endocytic pathway taking place in cells, but recent research has unveiled more important 

roles for other endocytosis modes (Doherty and McMahon, 2009). CME is not only 

important for the retrieval of endocytic vesicles from the plasma membrane, but also for the 

formation of cargo vesicles from the trans-Golgi network. The term clathrin groups two 

different proteins, the 180 kDa clathrin heavy chain and the 30-40 kDa clathrin light chain. 

Six copies (3 of each) polymerize to form a three-legged structure called triskelion. While 

the heavy chain acts as backbone, the light chain helps in the trimerization (Pearse, 1975; 

Ungewickell and Branton, 1981; Winkler and Stanley, 1983; Huang et al., 1997; Edeling et 

al., 2006). 

The main purpose of CME is the regulated formation of a coat that provides cargo selectivity 

and mechanical support for membrane bending and vesicle budding. First, cargo proteins 

are recognized by an adaptor protein complex called AP2. This is a heterotetrameric 

complex, formed by the α, β, μ and σ adaptins, which serves as coat formation coordinator: it 

binds to dileucine motifs in the cargo, phosphoinositides PI(4,5)P2 and PI(3,4,5)P3 on the 

plasma membrane, accessory proteins, and clathrin (Collins et al., 2002). In the next step, 

AP2 recruits clathrin triskelions at the site of endocytosis, which interact between them to 

form a lattice that progressively grows into a polygonal cage around the future cargo vesicle 

(Kirchhausen and Toyoda, 1993). Epsin, which also binds to cargo and phosphoinositides, 

induces membrane curvature by inserting an amphipathic α-helix (Ford et al., 2002). 

Additionally, curvature can be aided by the N-BAR domain protein amphiphysin (Yoshida et 

al., 2004). At this point the vesicle is ready for fission. This is facilitated by dynamin, a 

GTPase that assembles into spirals around the neck of endocytic vesicles. Thanks to its 

catalytic activity, dynamin provides the energy required for membrane fission and release of 

the reformed vesicle (Baba et al., 1999; Hinshaw, 2000; Kessels et al., 2006).  In the final 

step, the clathrin-binding protein auxilin recruits ATP-activated molecules of the chaperone 

Hsp70 for catalyzing vesicle uncoating (Lemmon, 2001). Several other accessory proteins 

have been described, that give specificity to the cargo or the cell type.  
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1.1.1.2 Endocytosis of caveolae 

Caveolae are flask-shaped invaginations of the plasma membrane that can undergo 

endocytosis (Yamada, 1955; Palade and Bruns, 1968). They are involved in nitric oxide and 

calcium signaling, lipid homeostasis, transcytosis and mechanic sensation (Drab et al., 2001; 

Razani et al., 2002; Yu et al., 2006). By their composition, caveolae have been associated to 

plasma membrane microdomains rich in glycosphingolipids, cholesterol and 

glycophosphatidylinositol (GPI)-anchored proteins, called lipid rafts (Parton and Simons, 

2007). Three types of caveolin 1, 2 and 3 are the main players in caveolin formation and 

function. Caveolin 1 and 2 are expressed in non-muscle cells, while Caveolin 3 is enriched in 

muscle fibers (Parton et al., 1997). They contain a hairpin domain that inserts into the 

membrane and is flanked by the cytoplasmic N and C terminal domains. A model proposes 

that caveolin molecules induce membrane curvature thanks to oligomerization and the 

strong interaction with the membrane via cholesterol and palmitoylation (Dietzen et al., 

1995; Monier et al., 1996; Parton et al., 2006).  Fission of caveolae is performed by dynamin 

(Henley et al., 1998; Oh et al., 1998).   

1.1.1.3 Other mechanisms of membrane retrieval  

Several alternative modes of endocytosis have been described. One of them is coordinated 

by the proteins Flotillin 1 and 2. As caveolins, these proteins are found in membrane 

microdomains, and seem to be responsible for internalization of GPI-anchored proteins and 

proteoglycans (Frick et al., 2007; Payne et al., 2007; Doherty and McMahon, 2009). Other 

modes include the uptake of membranes into large compartments. This is the case of 

macropinocytosis, or generation of membrane ruffles for gross internalization of fluid 

without coat formation. This process is cholesterol dependent and involves the actin 

cytoskeleton (Grimmer et al., 2002; Doherty and McMahon, 2009). Another mode 

internalizes membrane in tubular or ring like structures and has been called Clathrin-

independent carrier (CLIC) endocytosis. Although its role remains elusive, it is regulated by 

caveolins and the small GTPase Cdc42 (Kirkham et al., 2005; Doherty and McMahon, 2009; 

Chaudhary et al., 2014). Finally, phagocytosis is the formation of large endocytic 

compartments called phagosomes, for the uptake of large particles, like microorganisms and 

dead cells (Alberts et al., 2008). 

1.1.2 Endosomal sorting 

After the process of endocytosis, a set of organelles coordinate the distribution of 



Introduction   

4 
 

endocytosed cargo molecules, sorting apart proteins that need to be recycled back to their 

original membranes, biosynthetic precursors and molecules that need to be degraded. 

Elucidating the different steps of the endocytic pathway has been challenged by highly 

active trafficking processes that constantly exchange cargo molecules and solutes between 

compartments. Despite this, a complex network of proteins orchestrating fusion and fission 

events could be unveiled. Furthermore, it was found that some of those proteins 

preferentially reside in or return back to a specific type of compartment, making easier to 

establish a classification, sometimes also supported by morphological hallmarks. An 

example of such molecules is the family of Rab GTPases. These are proteins that can 

transiently associate with membranes via a hydrophobic tail to specifically regulate fission 

and fusion of organelles (Pfeffer, 2001).  

The early endosome (also called sorting endosome) is the convergence point for endocytic 

vesicles taken up by clathrin-dependent and –independent mechanisms. Delivery of 

endocytic vesicles from the plasma membrane to early endosomes, as well as their 

homotypic fusion are regulated by Rab5 and the early endosome antigen 1 (EEA1) (Gorvel 

et al., 1991; Bucci et al., 1992; Mills et al., 1999). This organelle is responsible for the first 

steps of molecular sorting for proteins and lipids. Due to a low internal pH 6.3 most ligands 

are released from their receptors here (Sipe and Murphy, 1987). Output routes from early 

endosomes include recycling of molecules back to the plasma membrane, retrograde 

delivery to the trans-Golgi network or delivery of molecules to the recycling endosome. 

Additionally, the early endosome retains proteins destined for degradation and matures into 

a late endosome (Jovic et al., 2010). Sorting of molecules is facilitated by formation of 

membrane microdomains that, after cargo enrichment, turn into tubular appendages that 

are then detached and transported towards the plasma membrane or the recycling 

endosome, with the participation of Rab4 (van der Sluijs et al., 1992; Mayor et al., 1993).  

Some proteins are not recycled back to the plasma membrane directly from the early 

endosome; instead they are first delivered to the recycling endosome. The reason could be 

to prevent their entrance into the degradative pathway (Traer et al., 2007). The recycling 

endosome is a tubular network with pH 6.5, located close to the centriole and supported by 

microtubules (Yamashiro et al., 1984). As in the early endosome, sorting processes also take 

place here (Presley et al., 1993). Besides directing recycled molecules to the plasma 

membrane, it also participates in retrograde transport to the trans-Golgi network 

(Bonifacino and Rojas, 2006). This compartment is characterized by association with 
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syntaxin 13, actin and Rab11, the latter controlling the two output routes (Trischler et al., 

1999).  

Late endosomes, also known as multivesicular bodies (MVBs), contain all the integral 

membrane proteins, ligands and solutes that were not extracted during sorting (e.g. LDL and 

EGF receptors) and that are destined to degradation. The generation of late endosomes is 

controversial. One model proposes that Rab7 selectively forms vesicles from the early 

endosome, which later aggregate into a late endosome (Vonderheit and Helenius, 2005). A 

second model suggests that early endosomes undergo a maturation process into late 

endosomes, during which Rab5 is replaced by Rab7 (Rink et al., 2005; Poteryaev et al., 

2010). Late endosomes have a pH 5 and receive lysosomal hydrolases from the trans-Golgi 

network via Rab9 (Killisch et al., 1992; Lombardi et al., 1993; Gruenberg, 2001). The name 

MVBs comes from the presence of intraluminal vesicles inside the late endosome. These are 

formed by accumulation of proteins tagged with ubiquitin, a signal for degradation, on the 

surface of the late endosome. After assembly of a bilayered clathrin coat, protein 

accumulations are internalized by membrane inward invagination (Sachse et al., 2002; Piper 

and Katzmann, 2007). This is a pathway used for degradation of downregulated receptors, 

like the EGF receptor (Futter et al., 1996). MVBs targeting is also the preferred degradation 

pathway for old proteins coming from the trans-Golgi network (Piper and Katzmann, 2007).  

Lysosomes are the final destination organelles for molecules to be degraded. They fuse with 

late endosomes with the coordination of Rab7 to receive their accumulated cargo (Luzio et 

al., 2010). They have a pH below 5 and are rich in hydrolases (Futter et al., 1996). 
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1.2 Membrane trafficking at a specialized cell junction: the 

neuronal synapse 

The nervous system is responsible for the voluntary and involuntary actions of an animal, 

keeping basic physiological functions under regulation and gathering information about the 

individual’s environment, important for its survival. Hence, the nervous system relies on 

highly evolved modes of information reception, generation, assessment and delivery. At the 

cellular level, the basic unit of the nervous system is the neuron. Although along evolution 

neurons have adopted a plethora of morphologies to better fulfill their function, a basic 

architecture is preserved: a receptive region for information input (dendritic arbor); a cell 

soma, hosting biosynthetic and recycling processes; and a delivery component, specialized 

for information transfer and output (axon). As in most cells, a polarized electric potential of 

around -70 to -80 millivolts (mV) is present across the plasma membrane of neurons, 

generated by negative charges distributing along the cytosolic surface and positive charges 

on the extracellular surface. Neurons are excitable cells, meaning that they can modulate 

this potential in order to encode information. Incoming electric stimuli induce membrane 

depolarization. If certain threshold is reached, voltage-gated Na+ channels open to allow the 

influx of Na+ ions. This electric current further depolarizes the membrane towards positive 

values, which increase the outward electrochemical driving force for K+ ions, leading to their 

efflux via K+ channels. After the membrane potential reaches a maximum of around 40 mV, 

the K+ current brings it back to negative values, typically below the initial resting potential. 

Every cycle of depolarization and repolarization is called an action potential (AP). Action 

potentials are described as all-or-none events, since only by reaching the activation 

threshold potential of voltage-gated Na+ channels they can take place, and once started they 

will always have the same magnitude, independent of the stimulus strength. Instead, 

frequency and temporal patterning of APs are the parameters that encode information 

about the stimulus. Inactivation of Na+ channels and an ensuing refractory period avoid the 

reactivation of the same membrane regions, pushing the AP forward in only one direction 

(Bear et al., 2006; Kandel et al., 2013).  

Once APs reach the end of the axon, information needs to be transferred to the next cell. For 

this, neurons tightly appose their membranes in a specialized junction called synapse, with 

the delivering region called presynapse, and the receiving region postsynapse. There are 

two types of synapses: electrical synapses, in which protein channels inserted across both 

membranes allow the direct transfer of ionic currents; and chemical synapses, where 
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quantal amounts of a chemical signal are released by the presynapse into the intercellular 

space. This signal, called neurotransmitter, reaches the postsynaptic surface and 

specifically activates receptor ion channels (ionotropic receptors) that start a new round of 

APs in the second neuron. Alternatively, neurotransmitters can also activate 

transmembrane receptors that modulate ion channel opening through intracellular 

signaling cascades (metabotropic receptors). Although information transfer is faster in 

electrical synapses, the flow of ions is bidirectional. Chemical synapses are slower, but they 

ensure unidirectional transmission, signal amplification and modulatory plasticity (Bear et 

al., 2006).          

1.2.1 Synaptic transmission in chemical synapses 

The presynaptic region of chemical synapses, commonly called synaptic bouton or 

presynaptic terminal, is a highly specialized anatomical compartment that isolates the 

molecular machinery necessary for neurotransmitter release from other ongoing cellular 

processes. Small neurotransmitters are directly synthesized at the presynaptic terminal by 

enzymes produced in the cell body, which work on precursor molecules imported from the 

extracellular space by transmembrane transporters. These neurotransmitters are loaded 

into small, round organelles called synaptic vesicles, by specific antiporter transporters 

that couple neurotransmitter influx with proton (H+) efflux. An electrochemical proton 

gradient is created across the vesicular membrane by vesicular ATPases. In the case of 

glutamate, the most important neurotransmitter of the mammalian central nervous system, 

import is done by one of the so far known Vesicular Glutamate Transporters (VGLUT1, 2 or 

3). In contrast, peptide neurotransmitters are produced by the biosynthetic organelles 

(ER-Golgi) and transported in secretory vesicles towards the presynaptic terminal via fast 

axonal transport (Purves et al., 2004).  

Synaptic vesicles are among the smallest organelles found in eukaryotic cells (∼30 to 45 nm 

diameter in sensory receptors, neuronal and neuromuscular synapses) (Zhang et al., 1998; 

Hu et al., 2008; LoGiudice et al., 2008; Fuchs et al., 2014; Neef et al., 2014). They are the 

morphological substrate of what was described by Bernard Katz and José del Castillo (1954)  

as quantal release: fixed amounts of neurotransmitter evoke graded responses at the 

postsynaptic neurons in always equal steps. Upon arrival of APs to the presynaptic terminal, 

the presynaptic membrane is depolarized, activating voltage-gated channels that allow an 

inward Ca2+ current (Llinás and Nicholson, 1975). The increase in internal [Ca2+] can be of 

more than 1000-fold, from 100 nM to 100 µM. These rapid changes in Ca2+ concentration 
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trigger the exocytosis of neurotransmitter-filled synaptic vesicles preferentially at specific 

sites of the synaptic terminal called active zones, where the Ca2+ channels organize in 

clusters (Bear et al., 2006). 

Before exocytosis can happen, two preparatory events are required. Synaptic vesicles need 

to be placed at active zones and establish an anchor or tether with the plasma membrane in 

a process called docking. Subsequently, during priming, the docked vesicles are prepared 

to become fusion competent and sensitive to [Ca2+] changes (Geppert and Südhof, 1998; 

Klenchin and Martin, 2000). As in all membrane trafficking processes, the specificity and 

completion of vesicle fusion with the plasma membrane is tightly regulated by proteins 

located on both of the opposing surfaces (Takamori et al., 2006). The main players in 

synaptic vesicle exocytosis belong to the SNARE (SNAP (Soluble NSF Attachment Protein) 

Receptor) superfamily of proteins. SNAREs mediate vesicle fusion with the plasma 

membrane, other vesicles or organelles across the different trafficking pathways. Despite 

differences in their composition, some anchoring to membranes by transmembrane 

domains and others by lipidic post-translational modifications (e.g. palmitoyl), they all share 

a cytosolic domain called the SNARE motif. This is an unstructured stretch of 60-70 amino 

acids that upon approach to other three motifs, spontaneously assemble into a metastable 

four-α-helix bundle or complex. The free energy released during bundle formation fuels 

membrane fusion (Jahn and Scheller, 2006). Synaptic vesicle exocytosis is driven by a 

vesicular v-SNARE called synaptobrevin 2 (also known as Vesicle-associated membrane 

protein, VAMP2) and two plasma membrane (or target) t-SNAREs syntaxin 1 and SNAP-25, 

the last one providing two SNARE motifs (Südhof and Rizo, 2011). Fusion is completed with 

the help of another vesicular protein called synaptotagmin, which senses increases in 

[Ca2+] at AP arrival, thanks to two C2 (Ca2+ binding) domains. Upon binding to five Ca2+ ions, 

synaptotagmin increases its affinity for the SNARE complex and phospholipids at the plasma 

membrane, further helping membrane fusion and the formation of a pore between the two 

membranes (Südhof, 2013).       

1.2.2 Diversity among synaptic vesicles  

1.2.2.1 The three main synaptic vesicle pools: readily releasable, recycling 

and reserve 

It has been noted that not all the synaptic vesicles found in a synaptic terminal undergo 

exocytosis or have the same release probability. By different approaches such as 



  Introduction 

9 
 

electrophysiology, EM and fluorescence imaging, three different pools of vesicles have been 

defined (Figure 1.1): the readily releasable pool (RRP) includes vesicles that are close to 

the plasma membrane, in a docked configuration at the active zone, ready to undergo 

exocytosis. These vesicles are released at stimulation onset with fast kinetics. The recycling 

pool is formed by non-docked vesicles that eventually replenish the RRP after this is 

exhausted. They are detected in a second mode of exocytosis with slower kinetics. At 

physiological, moderate stimulation conditions, this pool is constantly replenished by 

synaptic vesicle recycling (endocytosis) for subsequent rounds of exocytosis. In contrast to 

the previous two pools, the reserve pool (also called as resting pool) is only mobilized for 

exocytosis at strong unphysiological stimulation. Surprisingly, this pool constitutes around 

80-90% of the total pool of vesicles found in the terminal (Schikorski and Stevens, 2001; 

Südhof, 2004; Rizzoli and Betz, 2005).  

Initially, it was thought that a difference between the three pools of vesicles would be their 

distance to the active zones, with vesicles from the RRP and recycling pool closer to active 

zones than those from the reserve pool. However, electron microscopy studies using 

endocytosis tracers revealed that they are highly intermixed (Akbergenova and 

Bykhovskaia, 2009; Denker et al., 2009, 2011a). In contrast, a molecular player called 

synapsin seems to differentiate between releasable vesicles (RRP and recycling) and 

reserve vesicles, by tethering only the latter to the actin cytoskeleton (Pieribone et al., 1995; 

Godenschwege et al., 2004; Cesca et al., 2010; Denker et al., 2011a; b). Accordingly, a novel 

role has been proposed for the large reserve pool of vesicles: it binds to proteins involved in 

vesicle recycling, acting as a buffer to keep them concentrated at the synaptic terminal. This 

indirect function of the reserve pool in synaptic activity would be of great importance, as 

transport of the recycling-involved proteins directly from the soma would delay RRP and 

recycling pool replenishment and increase energetic costs (Denker et al., 2011b). 

1.2.2.2 The spontaneously released pool of vesicles 

Fatt and Katz (1952) reported that resting preparations of muscle fibers would undergo 

spontaneous electric activity (Del Castillo and Katz, 1954). Later on, application of 

tetrodotoxin (TTX), an inhibitor of voltage-gated Na+ channels, also revealed that synaptic 

vesicles can be released spontaneously at a low rate, even in the absence of action potentials 

(Katz and Miledi, 1969). Since then, researchers have tried to establish the relation between 

spontaneously-released vesicles and those being released during electrical activity. Up to 

now, no definite conclusion has been reached (Figure 1.1). 
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Some studies have suggested that spontaneous activity relies on the same vesicles than 

stimulation-driven activity does. Therefore, the only difference between them is the release 

probability, which is increased at higher Ca2+ concentrations following AP arrival (Groemer 

and Klingauf, 2007; Hua et al., 2010; Wilhelm et al., 2010; Loy et al., 2014). Another line of 

evidence claims that spontaneously and actively-recycling vesicles actually belong to 

different pools that diverge not only in their release (Sara et al., 2005; Mathew et al., 2008; 

Fredj and Burrone, 2009; Chung et al., 2010) but also in their retrieval mechanisms (Mathew 

et al., 2008; Chung et al., 2010; Hua et al., 2011b). Some of these studies suggest that 

spontaneously released vesicles are mobilized from the reserve pool. Furthermore, 

spontaneously recycling vesicles have been suggested to preferentially contain molecular 

markers such as the endosomal SNARE proteins VAMP7 or Vti1a (Hua et al., 2011b; Ramirez 

et al., 2012).  Spontaneous synaptic transmission keeps drawing researchers’ attention, as it 

is believed to play an important role in the formation, maintenance and stabilization of 

synaptic contacts between the pre- and the post-synaptic terminals (McKinney et al., 1999; 

Verhage et al., 2000). Accordingly, spontaneous release seems to participate in the 

regulation of protein synthesis at postsynaptic dendrites (Sutton et al., 2007). Furthermore, 

spontaneous release can be regulated by reelin, a protein important in neocortex layering 

during development (Bal et al., 2013).  

1.2.2.3 The readily retrievable or surface pool of vesicles 

A mutant version of the fluorescent protein GFP was developed to sense changes in pH 

levels. The fluorescence of this protein, called pHluorin, is reversibly quenched at slightly 

acidic pH, with an increase in its quantum yield towards neutral pH. pHluorin can be fused 

to the luminal domain of synaptic vesicle proteins to study synaptic vesicle exo- and 

endocytosis (Figure 1.2). Its fusion with VAMP2 led to the name synaptopHluorin 

(Sankaranarayanan et al., 2000). It has been found that in neurons overexpressing pHluorin 

in tandem to different synaptic vesicle proteins, a fraction of the chimeric product remains 

stranded on the plasma membrane at all times. From these observations it was proposed 

that a readily retrievable pool of synaptic vesicle proteins sits at the membrane, probably 

already presorted and assembled within a clathrin coat, to be immediately endocytosed 

after stimulation-dependent exocytosis (Figure 1.1). This mechanism would speed up 

synaptic vesicle recycling while clathrin coats are still forming on the patches of recently 

exocytosed membrane (Gandhi and Stevens, 2003; Fernández-Alfonso et al., 2006; Wienisch 

and Klingauf, 2006; Hua et al., 2011a). The fraction of molecules remaining on the plasma 
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membrane has been calculated for different proteins using fluorescence imaging of pHluorin 

chimeras:  ~2% for VGLUT1 (Balaji and Ryan, 2007), ~8% for synaptophysin (Granseth et 

al., 2006), ~10-24% for synaptobrevin (Sankaranarayanan and Ryan, 2000; Granseth et al., 

2006) and ~22% for synaptotagmin (Fernández-Alfonso et al., 2006). Additionally, a study 

using antibodies against the intraluminal domain of synaptotagmin gave an estimation of 

19% (Opazo et al., 2010). However, the variability in these percentages raises questions on 

how the different molecules could be retrieved in the same stoichiometry of a release-

competent synaptic vesicle. 

 
Figure 1.1 Synaptic vesicle pools and mechanisms of synaptic vesicle recycling. 
Synaptic vesicles residing in a terminal can be classified into three main pools: the readily 
releasable pool (RRP) includes vesicles docked at the active zone, ready to undergo exocytosis 
at stimulus onset (green). The recycling pool is made of vesicles that replenish the RRP when 
this is exhausted and is constantly supplied by vesicle endocytosis (blue). The reserve pool 
consist of vesicles tethered to the actin cytoskeleton, reluctant to exocytose under physiological 
stimulation, and thought to concentrate proteins important for vesicle recycling at the terminal 
(orange). Upon exocytosis, synaptic vesicles can be recycled from the plasma membrane by 
different mechanisms: 1) Kiss-and-run, in which vesicles avoid complete fusion with the 
plasma membrane by forming a transient pore that is rapidly closed after neurotransmitter 
release. In the case of complete vesicle-membrane fusion, 2) clathrin-mediated endocytosis 
(CME) helps to selectively collect synaptic vesicle proteins from the membrane and retrieve 
them into a reformed synaptic vesicle by means of a proteic coat. Strong, unphysiological 
stimulation leads to intense exocytosis, which is compensated for by the formation of large 
membrane infolding, known as 3) bulk endocytosis. Synaptic vesicles can be reformed from 
those infoldings with the help of clathrin. Not all recycled vesicles go directly to the recycling 
pool of vesicles, some (particularly from the RRP) are “cleaned” from plasma membrane 
proteins in a 4) sorting endosome. Alternative pools of vesicles have been also described: a 5) 
spontaneously released pool, which undergo exocytosis in the absence of APs. It is not clear if 
these vesicles are the same that undergo active release or are rather recruited from the reserve 
pool. Finally, a 6) readily retrievable pool of vesicles has been proposed to remain stranded on 
the plasma membrane in a preassembled and precoated configuration, ready to undergo 
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endocytosis at stimulus arrival.   

 
Figure 1.2 SynaptopHluorin: a fluorescent tool for the of study synaptic vesicle recycling. 
pHluorin is a mutant version of the fluorescent protein GFP whose brightness varies according 
to surrounding pH levels. At the low intravesicular pH (∼6.5) created by the proton pump, 
pHluorin is quenched and therefore undetectable in microscopy imaging. After synaptic vesicle 
exocytosis, pHluorin faces the neutral pH of the extracellular medium (∼7.4), recovering its 
maximum fluorescence. The fusion of pHluorin with synaptic vesicle proteins has been called 
synaptopHluorin, and is used to monitor exo- and endocytosis kinetics. 

1.2.3 Synaptic vesicle recycling 

After synaptic vesicle exocytosis, compensatory endocytic mechanisms retrieve regions of 

membrane and their associated proteins from which synaptic vesicles are reformed. This 

process, called synaptic vesicle recycling, is important for replenishing the pool of vesicles 

that will undergo exocytosis upon subsequent stimulation rounds, and for keeping the 

surface area of the synaptic terminal constant (Südhof, 2004). Early evidence for synaptic 

vesicle recycling came from EM studies: stimulation strength correlates with the amount of 

HRP labeling taken up into synaptic terminals (Holtzman et al., 1971); the observation of Ω 

(omega) shapes arising from the plasma membrane and the formation of cisterns in 

stimulated synapses (Heuser and Reese, 1973); and the finding that synapses exhausted by 

strong stimulation can resume neurotransmitter release after a recovery period (Ceccarelli 

et al., 1973). Since then, three main mechanism of synaptic vesicle recycling have been 

postulated (Figure 1.1).   

1.2.3.1 Kiss-and-run 

This model suggests that synaptic vesicles do not undergo complete fusion with the plasma 
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membrane. Instead, they form a transient pore with the plasma membrane, through which 

neurotransmitter can exit. Thereafter, the pore closes and the synaptic vesicle can detach to 

be ready for a new round of neurotransmitter refilling. A variation of this model proposes 

that the vesicle could remain attached with the pore open for long periods, while being 

refilled with neurotransmitter, in what has been called “kiss-and-stay”. The pore could be 

walled by the fused lipid layers from both membranes, or by a protein complex similar to an 

ion channel (Ceccarelli et al., 1973, 1979; Fesce et al., 1994; Koenig et al., 1998; Sun et al., 

2002; Aravanis et al., 2003; Gandhi and Stevens, 2003). Vesicle fission could be helped by 

the action of endophilin or dynamin, recruited by synaptic vesicle molecules like 

synaptophysin (Daly et al., 2000; Llobet et al., 2011). Although this model was postulated 

several decades ago, undoubtful proof of its existence has been elusive (Rizzoli and Jahn, 

2007; Rizzoli, 2014). This model is attractive for the temporal and energetic benefits of not 

needing to reconstruct a synaptic vesicle from the membrane.  

1.2.3.2 Clathrin mediated endocytosis (CME) of synaptic vesicles 

A wealth of studies supports the idea that synaptic vesicles completely fuse with the 

presynaptic membrane. After exocytosis, the vesicular membrane patch could drift away 

from the active zone for its retrieval by endocytosis (Miller and Heuser, 1984; Roos and 

Kelly, 1999). Electron micrographs showing an increase in coated pits and coated vesicles 

following stimulation have suggested that clathrin-mediated endocytosis (CME) is 

responsible for vesicle reformation (discussed in section 1.1.1.1). Further studies have 

confirmed that this is the main endocytosis mechanism in conventional synapses (Heuser 

and Reese, 1973; Zhang et al., 1998; Granseth et al., 2006), being also found in sensory 

synapses of retinal bipolar cells (Jockusch et al., 2005; Logiudice et al., 2009), 

photoreceptors (Cooper and McLaughlin, 1983; Fuchs et al., 2014) and auditory cells (Siegel 

and Brownell, 1986; Lenzi et al., 2002; Duncker et al., 2013; Neef et al., 2014).   

The same molecules involved in CME supporting constitutive endocytic pathways have been 

found to play a role in synaptic vesicle recycling. Hence, synaptic vesicle reformation 

requires the action of the adaptor protein complex AP2 for coat formation, dynamin for 

vesicle fission, and amphiphysin for dynamin recruitment (Kosaka and Ikeda, 1983; Takei et 

al., 1995; Andrews et al., 1996; González-Gaitán and Jäckle, 1997; Shupliakov et al., 1997). 

But how is the clathrin machinery specifically recruited to a patch of synaptic vesicle 

proteins? Synaptotagmin 1 (Syt 1), the Ca2+ sensor triggering vesicle exocytosis, seems to be 

recognized as a cargo molecule by the µ2 and α subunits of the AP2 complex, leading to 
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coated pit nucleation. Stonin 2, a protein present in synaptic terminals, seems to facilitate 

the Syt1-AP2 interaction (Geppert et al., 1994b; Zhang et al., 1994; Haucke et al., 2000; Grass 

et al., 2004; Diril et al., 2006). In the following step of coat formation, another synapse-

specific protein called AP180 has been identified. AP180 interacts with inositides and 

clathrin, helping in the formation of triskelia. Moreover, AP180 seems to regulate the size of 

the resultant synaptic vesicles, keeping in this way pool homogeneity (Zhang et al., 1998; 

Morgan et al., 1999).   

Interestingly, it has been proposed that cycles of phosphoinositide 

phosphorylation/dephosphorylation may play an important role in synaptic vesicle 

recycling. This is supported by higher affinity of AP2 and AP180 for phosphorylated forms 

when anchoring to membranes, and by the presence of the inositol 5-phosphatase 

synaptojanin in vesicle endocytic intermediates (McPherson et al., 1994, 1996; Cremona and 

De Camilli, 1997). 

1.2.3.3 Bulk endocytosis 

Kiss-and-run and CME are the candidate modes of synaptic vesicle recycling happening 

during physiological stimulation conditions. However, in the early years of synaptic 

research, scientist often used unphysiological, intense stimulation protocols that revealed a 

third mode of membrane retrieval: after exhaustion of the RRP and recycling pool, strong 

stimulation mobilizes the reserve pool to also undergo exocytosis. Such rates of vesicle 

release outperform the endocytic machinery, creating bulging of the synaptic terminal and 

inducing deep membrane infoldings, known as bulk membrane retrieval (Ceccarelli et al., 

1973; Heuser and Reese, 1973; Fried and Blaustein, 1978; Miller and Heuser, 1984). 

Dynamin I dephosphorylation by the Ca2+ sensor calcineurin seems to be important for bulk 

retrieval activation.  After their formation, membrane infoldings detach from the membrane 

and form intracellular cisterns. During this step, syndapin and dynamin GTPase activity 

could be involved in membrane curvature and fission, respectively (Evans and Cousin, 2007; 

Andersson et al., 2008; Clayton and Cousin, 2009; Clayton et al., 2009; Nguyen et al., 2012). 

It is likely that infoldings and cisterns contain mixed amounts of synaptic vesicle and plasma 

membrane proteins, which are later on selectively segregated by clathrin coat formation and 

budding (Heuser and Reese, 1973; Richards et al., 2000; Teng and Wilkinson, 2000). In 

neuromuscular junctions, actin has been implicated in the initiation of bulk membrane 

retrieval, and together with dynamin in its maturation into cisternae (Nguyen et al., 2012). 
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Although bulk endocytosis is traditionally considered an emergency route to overcome 

unphysiological high rates of release, new studies have validated it in neuromuscular 

junctions and the large calyx of Held synapse within physiological stimulation rates 

(Richards et al., 2000; Wu and Wu, 2007; Clayton et al., 2008). As it will be shown in the 

results and discussion of this study, bulk endocytosis might have a great importance in 

synaptic vesicle recycling and normal function of the highly active ribbon-type sensory 

synapses.  

1.2.3.4 Endosomal sorting of recycled vesicles 

An additional step of synaptic vesicle processing has been proposed to take place 

intracellularly: after their retrieval and uncoating, synaptic vesicles from the RRP might 

rejoin the pool of vesicles waiting for next rounds of release or, alternatively, they might 

fuse with a sorting endosome. This compartment would fulfill the function of ridding 

synaptic vesicles of plasma membrane proteins that were fortuitously taken up along with 

the synaptic vesicle membrane patch. After sorting, regions with only synaptic vesicle 

proteins could bud, by a still unclear mechanism, in order to produce release-competent 

synaptic vesicles (Hoopmann et al., 2010). 
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1.3 Membrane trafficking at specialized sensory synapses 

Sensory perception relies on the transformation of physical stimuli into electrical signals in 

a process called transduction. A sensory receptor cell encodes the strength of the stimulus 

into changes in its plasma membrane potential, which in turn modulate opening probability 

of voltage-gated Ca2+ channels located at active zones, triggering the release of 

neurotransmitter in amounts correlated with the strength of the stimulus. Hence, sensory 

transduction does not rely on all-or-none action potentials, but on graded receptor 

potentials that modulate constantly ongoing synaptic transmission. Sensory receptors are 

embedded in specialized epithelia known as the sensory organs. Within a sensory organ, the 

population of receptors is not homogeneous, as subgroups of them are further specialized to 

encode a submodality or a range of energy from the stimulus spectrum. Such receptor 

tuning expands the perceivable dynamic range and its levels of discrimination (Kandel et al., 

2013). In the olfactory and somatosensory systems, reception is performed by neurons that 

directly deliver encoded sensory information to the CNS for further processing. In the 

auditory, vestibular, gustatory and visual systems, a cell of epithelial origin evolved the 

receptor and synaptic machinery required to release neurotransmitter at the synapse with 

neuronal postsynaptic afferents. These afferents belong to nerve fibers from the cranial 

nerves VII and IX for taste, or VIII for sound and balance, which directly connect to the CNS. 

In the visual system, postsynaptic boutons belong to a network of interneurons that bring 

encoded visual information to retinal ganglion neurons forming the optic nerve (Kandel et 

al., 2013).   

1.3.1 The highly efficient ribbon-type sensory synapses 

Some sensory modalities require sustained neurotransmitter release for long time periods, 

accompanied by high sensitivity for stimulus variations. To accomplish this task, vertebrates 

evolved a proteinaceous organelle that tethers synaptic vesicles and concentrates them at 

the active zone, boosting vesicle release rates. This structure has been called synaptic body 

or synaptic ribbon, and it can be found sitting at the active zones of pinealocytes, 

photoreceptors, and hair cells of the auditory and vestibular systems, of the fish lateral line, 

and of electroreceptors at the fish ampullae of Lorenzini (Sjöstrand, 1953; De Robertis and 

Franchi, 1956; Sjostrand, 1958; Smith and Sjöstrand, 1961; Sejnowski and Yodlowski, 1982; 

Zanazzi and Matthews, 2009). Thanks to a scaffolding protein called RIBEYE, ribbons can 

adopt a variety of shapes from planar to spherical. So far, RIBEYE has been only found in 

synaptic ribbons, being their most abundant component (Schmitz et al., 2000; Khimich et al., 
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2005; Magupalli et al., 2008; LoGiudice and Matthews, 2009). Ribbons are anchored to the 

plasma membrane of active zones by the cytomatrix protein bassoon, and associate with 

cytoskeletal molecules, phosphorylation enzymes, molecular chaperones, and proteins 

involved in vesicle handling (Kantardzhieva et al., 2012; Jing et al., 2013).  

Synaptic ribbons are important for fast, synchronous release (Matthews and Fuchs, 2010). 

Capacitance measurements recorded from hair cells and photoreceptors have revealed two 

kinetically different modes of exocytosis: a fast component, with time constant of a few 

milliseconds; and a slow component, which can sustain constant release rates for up to 150 

milliseconds in photoreceptors, or 1-2 s in hair cells (Parsons et al., 1994; von Gersdorff and 

Matthews, 1994; Mennerick and Matthews, 1996; Moser and Beutner, 2000; Spassova et al., 

2004). Fast transmission at these synapses is favored by the expression of L-type Cav1.3 or 

Cav1.4 calcium channels, which activate at more negative membrane potentials and have 

slow inactivation kinetics, and by their clustering of these channels under the ribbon 

(Kollmar et al., 1997; Bech-Hansen et al., 1998; Strom et al., 1998; Nachman-Clewner et al., 

1999; Zenisek et al., 2003; Sidi et al., 2004; Brandt et al., 2005).  

Electron microscopy and capacitance measurements of ribbon-containing synapses, have 

led to a reinterpretation of the synaptic vesicle pool concept. Three pools have been 

morphologically identified and associated with the two modes of exocytosis (Paillart et al., 

2003; Khimich et al., 2005; Nouvian et al., 2006; LoGiudice and Matthews, 2009): 

-  1) The pool of vesicles tethered to the base of the ribbon and docked to the plasma 

membrane. This pool has been interpreted as the RRP, since the membrane area 

provided by these vesicles correlates with capacitance changes during the initial fast 

round of exocytosis. This pool could be complemented by docked vesicles sitting on 

the plasma membrane, but not tethered to the ribbon. 

- 2) The remaining pool of ribbon-associated vesicles. Once the RRP is depleted, this 

pool could repopulate docking positions, explaining the slow phase of exocytosis. 

However, it is not clear if these vesicles slide down the ribbon to reach the plasma 

membrane, or they could fuse before release in what is called compound exocytosis. 

These two options for ribbon function are known as the conveyor belt and the safety 

belt hypothesis, respectively (Parsons and Sterling, 2003). It is also uncertain 

whether some of the vesicles in this pool could move down fast enough to participate 

in fast exocytosis. 

- 3) Free cytosolic vesicles that upon prolonged exocytosis refill the ribbon, being 
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considered as a reserve pool. These vesicles move freely in the cytoplasm as 

synapsin, the protein that tethers reserve pool vesicles to the actin cytoskeleton in 

conventional synapses, is not present (Favre et al., 1986; Mandell et al., 1990; Holt et 

al., 2004). It is not clear if these highly mobile vesicles simply collide with the ribbon, 

or are rather delivered to it by a controlled mechanism.  

1.3.2 Ribbon synapses in the auditory system 

1.3.2.1 The hearing process 

In mammals, sound stimuli first reach the animal trough the outer ear. This is composed of a 

funnel-shaped structure called the pinna, which collects the air vibrations, and an ear canal 

that conveys them to the middle ear. At this point, the tympanic membrane converts air 

vibrations into mechanic movements that are received and amplified by a complex of three 

ossicles aligned one after the other, the malleus, incus and stapes. The latter transfers the 

fine movements to a membrane-covered opening called the oval window. This is the 

entrance to the auditory part of the inner ear, a snail-shaped bony cavity also known as the 

cochlea. Inside the cochlea three cavities separated by membranes run along in a spiral. The 

upper cavity is called the scala vestibuli, the lower one scala tympani, and the middle one 

scala media. The scala vestibuli and scala tympani are filled with a solution called perilymph, 

containing 140 mM Na+ and 4-6 mM K+ (Wangemann, 2006). Mechanical deflections in the 

membrane of the oval window are transferred to the fluid perilymph, inducing vibrations of 

the basilar membrane, a pseudo-resonant structure that separates the scala media and 

tympani. Changes in stiffness and width allow the basilar membrane to preferentially 

vibrate with high-frequency sounds at the cochlea base, and with low frequency sounds at 

the cochlea apex, with a gradient of vibration between these two points. This topographic 

representation of tone frequency is called tonotopy (Rubel, 1984; Bear et al., 2006).  

Sitting on the basilar membrane from base to apex and facing the inner space of the scala 

media is the organ of Corti (Figure 1.3). This is an epithelial structure that during 

development gives rise to two types of polarized presynaptic cells (Fekete, 1996). The inner 

hair cells (IHCs), responsible for transduction of sound-elicited waves of the basilar 

membrane into and electric signal; and the outer hair cells (OHCs), an electromotile cell type 

that is controlled by efferents from the superior olivary complex in the brainstem, and 

whose contractions increase basilar membrane vibration to further amplify low-intensity 

sound stimuli (Cooper and Guinan, 2006). The organ of Corti is composed of one row of IHCs 
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and three rows of OHCs separated by the tunnel of Corti, which is lined up by the slender 

pillar cells. Additionally, IHCs and OHCs are surrounded by supporting cells (Bear et al., 

2006). The organ of Corti is bathed by endolymph, a solution filling the scala media, rich in 

K+ (157 mM) and low in Na+ (1.3 mM) (Wangemann, 2006). 

 
Figure 1.3 Structure of the organ of Corti. 
The organ of Corti is a specialized sensory epithelium sitting on the basilar membrane of the 
cochlea. It contains two types of hair cells: the inner hair cells (IHCs, purple), which are 
responsible for sound encoding and make synapses with afferents of the spiral ganglion 
neurons. The outer hair cells (OHCs, blue), which use electromotile activity for signal 
amplification and are controlled by the brainstem through efferent innervation. One row of IHCs 
and three rows of OHCs run along the organ of Corti. Supporting cells provide the stability and 
flexibility required for proper hearing function (e.g. pillar and phalangeal cells). The sensory 
transduction process starts at the apical stereocilia bundle of IHCs, which is deflected against the 
tectorial membrane at every vibration of the basilar membrane. This leads to cationic influx 
currents, cell depolarization and synaptic vesicle release at the active zones, located at the IHC 
base. Fast and synchronous exocytosis of synaptic vesicles is facilitated by synaptic ribbons 
sitting on the active zones.  

Besides the cochlea, the inner ear is also composed by the vestibular labyrinth, divided in 

the otolith organs (saccule and utricle) for gravity detection, and the semicircular canals, to 

sense head rotation. These structures are made of bony chambers and tubes carpeted with a 

sensory epithelium containing hair cells for stimuli transduction, similar to the cochlear 

IHCs and OHCs (Bear et al., 2006).   

Hair cells of the auditory and vestibular systems are similar in anatomy and function to 

those at the fish lateral line. A particular anatomical feature of all hair cells is the absence of 

a synaptic terminal, meaning that synaptic active zones are directly located at the cell soma 

(somatic active zones). As a result, synaptic vesicles intermix in the cytoplasmic volume 

with other organelles involved in constitutive membrane trafficking. With a polarized 

morphology, hair cells develop at their apical pole the hair bundle, a collection of 

actin-filled stereocilia organized in several rows of increasing heights (Furness and 
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Hackney, 2001). Right below the apical membrane, a dense mesh of actin filaments, called 

cuticular plate, anchors the rootlets of each stereocilia actin core providing them with 

support (DeRosier and Tilney, 1989).  Stereocilia from adjacent rows are connected by 

filamentous structures named ‘tip links’ (Corey, 2009). In the organ of Corti, IHCs and OHCs 

stereocilia are in close contact with an acellular gel-like structure composed of collagen and 

glycoproteins called the tectorial membrane (Goodyear and Richardson, 2002).  

1.3.2.2 The transduction process at IHCs 

The arrival of a sound stimulus induces vibration of the basilar membrane, which is further 

amplified by force generated by the OHCs. This vibration leads to movements of the fluid 

surrounding the IHC’s hair bundle, resulting in bundle deflection in the direction of the 

tallest stereocilia (Fridberger et al., 2006). The whole bundle moves as a unit thanks to the 

tip links. Deflection opens mechanoelectric transduction (MET) channels located at the 

tip of each stereocilia, helped also by the force imposed by the tip links (Beurg et al., 2009). 

An inward current of K+ (and in less extent Ca2+) enters the MET channels causing 

membrane depolarization and concomitant activation of voltage-gated calcium channels at 

the basal pole of the IHCs, where synaptic ribbons are located, triggering the release of 

glutamate-filled synaptic vesicles (Moser et al., 2006).  

Each hair cell can form 10 – 30 synapses with afferents from spiral ganglion neurons of the 

auditory nerve. Each afferent receives information from one active zone, normally occupied 

by one ribbon (Fuchs et al., 2003). Hair cells can release synaptic vesicles at rates several 

orders of magnitude higher than conventional synapses for long time periods, earning the 

name of indefatigable (Griesinger et al., 2005). At sustained depolarization, estimations in 

frog saccular hair cells report the release of around ∼10,000 vesicles/second per cell (∼500 

vesicles/second per ribbon), and in mouse 28,000 vesicles/second per IHC (Parsons et al., 

1994; Moser and Beutner, 2000). Such high rates of synaptic activity likely rely on synaptic 

ribbon function and tight coupling of synaptic vesicle release with Ca2+ influx at the active 

zone (Fuchs et al., 2003; Goutman and Glowatzki, 2007).     

The molecules involved in synaptic vesicle exocytosis in IHC ribbon synapses are not clear. 

In mouse IHCs, it was found that immature cells express the calcium sensors 

synaptotagmin 1 (Syt 1), Syt 2 and Syt 7 to drive spontaneous Ca2+-dependent vesicle 

release. With the increase in vesicle release during maturation (around postnatal day 4), 

they are replaced by a Ca2+-binding protein called otoferlin, which drives receptor 
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potential- and Ca2+-dependent vesicle release. After hearing onset (postnatal days 10-14) 

synaptotagmins expression stops (Safieddine and Wenthold, 1999; Beurg et al., 2010). 

Otoferlin is defective in a type of recessive deafness, DFNB9 (Varga et al., 2003). Moreover, 

knockout mice are profoundly deaf due to drastic reduction of exocytosis (Roux et al., 2006; 

Reisinger et al., 2011). Otoferlin has six C2 calcium-binding domains, five of which have been 

confirmed to bind Ca2+ and phospholipids (Goodyear et al., 2010; Johnson and Chapman, 

2010). This line of evidence has led to establish that otoferlin is the exclusive calcium sensor 

triggering synaptic vesicle exocytosis in mature IHCs (Roux et al., 2006; Pangršič et al., 

2012). Additionally, otoferlin also seems to play a role in replenishment of the RRP of 

vesicles, and could therefore be responsible for the fast replenishment rates seen in IHC, 

which are superior to other ribbons synapses (Pangršič et al., 2010).  

Surprisingly, although in vitro experiments show otoferlin binding to the neuronal t-SNARE 

proteins syntaxin 1 and SNAP-25 (Roux et al., 2006; Ramakrishnan et al., 2009), these 

proteins are not present in hair cells (Nouvian et al., 2011). Furthermore, other proteins 

important for synaptic function in neuronal synapses are also absent in IHCs, including 

synaptobrevin 1 (VAMP1), synaptobrevin 2 (VAMP2), synaptophysin, complexins and 

synapsin (Favre et al., 1986; Safieddine and Wenthold, 1999; Strenzke et al., 2009; Uthaiah 

and Hudspeth, 2010; Nouvian et al., 2011). Given the epithelial origin of IHCs, it is possible 

that they express other SNARE proteins not yet identified, which would interact with 

otoferlin during vesicle exocytosis. Importantly, IHCs rely on the vesicular glutamate 

receptor 3 (VGLUT3) for vesicle neurotransmitter refilling (Ruel et al., 2008; Seal et al., 

2008), in comparison to VGLUT1 and VGLUT2 used in conventional glutamatergic synapses 

(Bellocchio et al., 2000; Fremeau et al., 2001). 

1.3.2.3 Mechanisms of synaptic vesicle recycling in hair cells 

A major difficulty in interpreting synaptic vesicle recycling in hair cells is, as explained 

above, the lack of a synaptic bouton. The development of somatic active zones implies that 

synaptic vesicles distribute in the entire cytoplasm and intermix with other organelles 

involved in secretory and constitutive membrane trafficking pathways, including the 

endoplasmic reticulum (ER), the Golgi apparatus, endosomes of different types, and 

secretory, transport and endocytic vesicles. Hence, fluid phase tracers or membrane 

markers will indistinctly label organelles involved in synaptic vesicle recycling and in 

constitutive endocytosis (e.g. receptor retrieval). To date, two opposing models of synaptic 

vesicle recycling have been suggested for hair cells: the first one, based on electron 
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microscopy and membrane capacitance studies, suggests that membranes supplying 

synaptic vesicle reformation are retrieved at the cell base, in the local area of the active zone 

(Figure 1.4A); the second model, based on fluorescence microscopy studies, suggests that 

apical retrieval is the main membrane source for vesicle reformation (Figure 1.4B). 

Evidence supporting both models is presented below. 

 
Figure 1.4 Models of synaptic vesicle recycling in hair cells.  
A. The local recycling model proposes that synaptic vesicles are recycled at the cell base, in the 
vicinity of the ribbon-type active zones. It involves single unit retrieval and the formation of 
membrane infoldings and cisterns from which vesicles can be recycled. B. The apical recycling 
model suggests that in hair cells membranes are mainly retrieved at the apical pole. 
Endocytosed organelles are then delivered to the Golgi apparatus (GA), where synaptic vesicles 
are reformed as precursors for their later delivery to synaptic ribbons (SR).   

Local recycling model 

Already in the 80’s, Siegel and Brownell (1986) studied membrane recycling in IHCs of 

chinchillas. Horseradish peroxidase (HRP) was injected in the cochlea of anesthetized 

animals, in order to trace endocytic events. HRP uptake was revealed by diaminobenzidine 

(DAB) precipitation, visible in electron microscopy. Labeled organelles were found 

throughout the IHC cytoplasm. Interestingly, different types of labeled organelles were 

found in the vicinity of synaptic ribbons: coated and uncoated vesicles and short tubules, 

also with coated domains. Some of the uncoated vesicles where tethered to the ribbon. In 

the synaptic area they also found invaginations of the plasma membrane topped with coated 

pits, from which vesicles seemed to be formed. Coated pits were also seen at the plasma 
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membrane. These results suggested that mechanisms of membrane recycling take place at 

the cell base close to synaptic active zones, and that they not only involve vesicle retrieval 

through CME, but also tubules and membrane infoldings resembling the bulk endocytosis of 

conventional synapses, from which vesicles could be reformed (Figure 1.4A).  

A local model of synaptic vesicle recycling became more evident with studies by Lenzi and 

collaborators (1999, 2002), making electron tomograms of active zones from frog saccular 

hair cells. After depolarization with high K+ (30 to 45 mM, 15 to 30 minutes) they found a 

striking membrane remodeling process, in which the membrane area equivalent to synaptic 

vesicles exocytosed during stimulation was now contained in membrane infoldings, and 

cisterns surrounding the synaptic ribbon. Additionally, they found coated and uncoated 

vesicles and coated pits on the plasma membrane and on the infoldings. Expecting that 

infoldings and cisterns give rise to reformed synaptic vesicles, they suggested that this local 

recycling is responsible for ribbon reloading and a three- to 14-fold increase in vesicle 

abundance near the active zone. Similar cisterns decorated with several coats were also 

seen by Neef and collaborators (2014) at active zones of stimulated IHCs. 

Capacitance measurements of IHCs combined with application of inhibitory molecules for 

the endocytic proteins clathrin and dynamin, have associated two kinetically different 

modes of endocytosis to the organelles described above (Moser and Beutner, 2000; Beutner 

et al., 2001; Cho et al., 2011; Neef et al., 2014):  

- A slow mode, with linear kinetics of capacitance decline. This mode is clathrin- and 

dynamin-dependent, and probably corresponds to single vesicle retrieval directly 

from the plasma membrane by CME. It is present after short and long 

depolarizations. 

- A mode with exponential capacitance decay and time constant ~6 s. This mode was 

found to be clathrin- and dynamin-independent. It appears only after release of a 

number of vesicles equivalent to 3-4 times the RRP. It probably corresponds to bulk 

membrane retrieval (infoldings).  

A third fast mode, with time constant of ~250-300 ms and only active at cytosolic [Ca2+] 

above 15 µM has been also described. By its speed, it was carefully interpreted as 

kiss-and-run vesicle retrieval, and therefore its morphological correlate is not known. 

Apical recycling model 
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FM dyes are a family of styryl molecules that increase their fluorescence by 100-fold once 

they partition into membranes. They have been commonly used to track endocytosis in 

conventional neuronal synapses (Betz et al., 1992; Cochilla et al., 1999; Hoopmann et al., 

2012; Kavalali and Jorgensen, 2014). When FM 1-43, the most commonly used FM dye, was 

applied only to the apical region of OHCs and IHCs it labeled the hair bundles strongly. 

Within a few seconds labeling appeared in intracellular organelles with tubulo-cisternal 

morphology located under the cuticular plate (“apical aggregate”), and within 180 seconds, 

it was also seen in organelles located in the basolateral volume and in organelles located at 

the cell base, where active zones should be located (“basal aggregate”). All these structures 

were strongly labeled, and fluorescence accumulated progressively over time (Meyer et al., 

2001; Griesinger et al., 2002, 2004, 2005). From these observations Griesinger and 

collaborators (2002, 2004, 2005) proposed an apical mode of endocytosis supplying 

synaptic vesicle recycling (Figure 1.4B): first, membrane is taken up from areas surrounding 

the cuticular plate in a very fast mode of endocytosis (within seconds), likely clathrin-

independent. These endocytosed organelles would be equivalent to apical early endosomes 

described in other types of epithelial cells. Then, early endosomes are delivered to 

subcuticular organelles like the Golgi apparatus, from which synaptic vesicles are reformed 

as precursors and delivered to the synaptic ribbons for subsequent rounds of exocytosis.  

FM dyes permeate MET channels of hair cells 

The apical model has been challenged by a series of studies suggesting that FM 1-43 

molecules and similar small FM dyes are small enough to penetrate the MET channels 

located at the tips of stereocilia (Farris et al., 2004). Electrophysiological studies in cochlear 

hair cells have found that FM 1-43 is a permeant blocker of the MET channel inward current, 

probably competing with Ca2+ for binding sites at the core of the pore. Accordingly, 

application of high Ca2+ concentrations or pretreatment with EGTA, known to disrupt the tip 

links and therefore the gating of the channel, resulted in reduction of FM 1-43 labeling (Gale 

et al., 2001). Similarly, application of MET channel blockers (e.g. neomycin, gentamicin, 

streptomycin and amiloride) to hair cells of the fish lateral line also reduced FM 1-43 

fluorescence inside (Nishikawa and Sasaki, 1996). Further evidence came from incubation of 

FM 1-43 upon endocytosis inhibition by low temperature, where labeling was strong and 

comparable to the RT condition. Finally, FM 1-43 was compared to the larger FM 3-25, both 

with two hydrophobic tails of 4 and 18 carbons respectively. While FM 1-43 labeled the 

intracellular compartment within a few minutes, FM 3-25 was seen inside the cell only after 
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60 minutes, indicating that its large size hinders its MET channel permeation (Meyers et al., 

2003). Overall, these studies conclude that intense and fast FM dye uptake by hair cells does 

not correspond to endocytic processes, but rather to artifactual labeling from molecules 

permeating the MET channels. Such strong labeling masks the signal coming from truly 

endocytosed molecules. 

Towards novel approaches to clarify IHC membrane trafficking pathways  

After the studies described above established that FM 1-43 is not suitable for studying 

membrane recycling in IHCs, no other study attempted to use endocytosis tracers in hair cell 

preparations. Hence, it remained unclear which of the models, apical or basal, is the one 

taking place in physiological conditions.  

In order to answer this question, an alternative approach to circumvent FM 1-43 channel 

permeation was applied by our laboratory using dye photo-oxidation (Kamin et al., 2014). In 

this method cells are allowed to endocytose a fluorescent molecule and are immediately 

fixed. By continuous illumination at the corresponding excitation wavelength, fluorophores 

are induced to produce reactive oxygen species (ROS) that can oxidize a substrate molecule 

like DAB. Upon oxidation, DAB forms electron-dense precipitates only in endocytic 

compartments where the fluorophore was concentrated (Henkel et al., 1996). When this 

technique was applied to IHCs incubated with FM 1-43, molecules that entered the 

cytoplasm via MET channel permeation gave only a faint precipitate. In contrast, molecules 

in endocytic organelles produced a dark precipitate. This allowed the selective 

quantification of endocytosis levels at the apical, nuclear and basal levels of resting (0 mM 

Ca2+, 5 mM K+, 1 min) and stimulated (2 mM Ca2+, 65 mM K+, 1 min) IHCs. It was found that 

although endocytosis was abundant throughout the IHC, high K+ stimulation only increased 

endocytosis levels at the cell base, while they remained constant at the apical and nuclear 

regions. Tubular structures dominated the top and nuclear regions and endosome- and 

vesicle-like structures dominated the cell base. Interestingly, after a 5-minute or 30-minute 

recovery period following stimulation, most of the tubules and endosome-like structures 

were processes into smaller vesicles. However, vesicles located at the top and nuclear 

regions were significantly larger than those at the cell base. The latter were statistically 

equal in size to bona fide synaptic vesicles located at surrounding efferents. These results 

suggested that synaptic vesicle recycling indeed happens at the cell base, supporting the 

local recycling model, and that constitutive recycling is likely happening at the top and 

nuclear regions of IHCs (Figure 1.5) (Kamin et al., 2014). 
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Figure 1.5 FM 1-43 photo-oxidation supports the local model of synaptic vesicle recycling 
taking place at the IHC basal level. 
After FM 1-43 labeling and fixation, IHCs were incubated with DAB under constant illumination. 
This process, called photo-oxidation, created an electron-dense DAB precipitate only in 
organelles containing endocytosed dye molecules. In contrast, molecules permeating MET 
channels produced only a faint signal. Electron micrographs of treated cells were used to draw 
the perimeter of labeled endocytic organelles and render 3D reconstructions of A. resting cells, 
B. stimulated cells, and cells recovered after stimulation for C. 5 minutes or D. 30 minutes. Large 
tubulo-cisternal structures were found at the top and nuclear levels of resting and stimulated 
IHCs. The basal level was dominated in both cases by smaller endosome- and vesicle-like 
structures. After 5 minutes of recovery large labeled organelles were processed into smaller 
vesicles, still present after 30 minutes. Vesicles at top and nuclear levels were significantly larger 
than those at the cell base, more similar to bona fide synaptic vesicles (not shown) E. 
Quantification of intracellular area percentage occupied by labeled organelles revealed that high 
K+ stimulation triggered increases in endocytosis levels only at the cell basal level. These results 
suggest that local endocytosis and trafficking at the cell base is the synaptic vesicle recycling 
mechanism used by IHCs (Modified from (Kamin et al., 2014)). 

1.4 High-resolution STED microscopy for the study of 

membrane trafficking pathways 

Although our study (Kamin et al., 2014) represents a step forward towards the 

understanding of IHC physiology, further investigations would require the association of 

recycling organelles with synaptic vesicle markers in a high-resolution microscopy 

technique. That is the main aim of the project described in this thesis. Transmission electron 

microscopy (TEM) is the technique that has reached the highest resolution so far (<2 nm in 

biological samples) (Faas et al., 2012). However, immunolabeling techniques suitable for EM 

microscopy require laborious procedures that at the end offer poor epitope recognition and 

low labeling density. Therefore, a fluorescence microscopy technique would be more 

convenient for the easy sample preparation and high imaging throughput.  

A major drawback of light-based microscopy techniques is the diffraction of light when 

passing through the lenses of a microscope. The German physicist Ernst Abbe postulated 

(1873) that a beam of light with a wavelength λ, converging to a lens of refractive index n 

and aperture angle θ, will produce a focal spot with a full width at half maximum (FWHM) 

given by the formula ∆r = λ/2(nSinθ), where nSinθ is equivalent to what is nowadays known 

as the objective numerical aperture (NA) (Hell, 2007). This means that two point sources of 

light imaged with a conventional fluorescence microscope cannot be told apart if they are 

closer than approximately 200 to 300 nm, for emission wavelengths in the range of the 

visual spectrum. In the case of synaptic vesicles and trafficking organelles, typically in the 

size range of 30 nm to a few hundreds of nm, and densely packed in the cytoplasmic volume, 
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this is an important difficulty.  

In 1994 Stefan Hell and Jan Wichman postulated the principles of what would become the 

first far-field microscopy technique overcoming Abbe’s diffraction barrier: stimulated 

emission depletion (STED) microscopy (Figure 1.6) (Hell and Wichmann, 1994). Six years 

later, the first practical demonstration was published, imaging the plasma membrane of 

Saccharomyces cerevisiae and Escherichia coli cells (Klar et al., 2000). STED microscopy is 

based on sample laser scanning, as done in confocal microscopy. However, in this technique 

an excitation laser is spatially overlapped with a second depletion laser. The front wave of 

the latter is physically modified with a vortex plate so at to generate a toroid or doughnut 

shape with zero intensity in the center and maximum intensity at the borders. The 

wavelength of the depletion laser is chosen to match the red-side tail of the fluorophore’s 

emission spectrum. In the doughnut center, where only the excitation laser is present, 

fluorophores are allowed to emit photons spontaneously. In contrast, in the outer area were 

both lasers are present, fluorophores will reach the excited state but the depletion beam will 

induce them to emit photons at its same red-shifted wavelength. These photons (stimulated 

emission) can be filtered out to only detect those produced at the doughnut center, resulting 

in a narrower diffraction-unlimited point spread function (PSF) (Klar et al., 2000; Hell et al., 

2004). Abbe’s equation is therefore redefined as )/12/( SIINAr +≈∆ λ , where I is the 

maximum intensity of the depletion (STED) beam, and Is corresponds to the saturation 

intensity required to reduce fluorescence probability by half. Thereby, higher depletion 

laser intensities will render narrower imaged areas, increasing the resolution of the 

microscope (Nägerl et al., 2008; Moneron et al., 2010).  

In the past, STED microscopy has fostered important findings related to constitutive 

trafficking pathways and synaptic function: it was useful to establish the molecular players 

and steps required for cargo sorting and budding in early endosomes (Barysch, 2009). It 

validated the role of endosomal sorting in the segregation of plasma membrane proteins 

from recycled synaptic vesicles (Hoopmann et al., 2010). It revealed that only 40-50% of the 

SNARE proteins Syntaxin 1 and SNAP-25 are located at putative vesicle release sites, while 

the rest dispersed on the plasma membrane (Punge et al., 2008). It also helped to establish 

that synaptotagmin 1 remains clustered on the plasma membrane upon synaptic vesicle 

exocytosis (Willig et al., 2006). Among other studies, it also helped to put forward a novel 

hypothesis: the majority of synaptic vesicles found in the synaptic terminal (>80%) do not 

participate in neurotransmitter release, but rather act as a buffer for proteins involved in 
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vesicle recycling, keeping them concentrated for their eventual use (Denker et al., 2011b). 

Using a commercial STED microscopy setup, like the one I used in this study, resolution can 

go down to 30-40 nm in biological preparations. The relatively short image acquisition time 

and the instant delivery of diffraction-unlimited images, without the need for further signal 

computation, are the main advantages of STED microscopy over other high-resolution 

microscopy techniques.  

 
Figure 1.6 Working principle of high-resolution STED microscopy.  
A. Schematic representation of the basic elements in a STED microscope. An excitation beam 
(green) is spatially overlapped with a depletion beam (red) and scanned over the sample as in 
conventional confocal microscopy. The depletion beam is modified by a phase modulator to 
create a zero intensity region in its center, resulting in a toroid or doughnut-shaped front wave. 
Furthermore, the wavelength of the depletion beam is selected to fall in the red side tail of the 
fluorophore’s emission spectrum. In the sample, the fluorophores located at the center of the 
depletion doughnut are excited and allowed to emit photons spontaneously (yellow), which are 
collected by the detection device. In contrast, the excited fluorophores at the borders of the 
depletion doughnut are stimulated to emit photons in the red-shifted wavelength of the 
depletion beam, which is filtered out of the detection range. Hence, photons are only collected 
from a smaller subdiffraction-sized area. B. Example images of a neuronal soma and process 
imaged in confocal (left) and STED microscopy (right). Membrane labeling was performed with 
the novel endocytosis marker developed in this study (see section 3.2.3). Note that intracellular 
organelles are only distinguishable in the improved STED image. Scale bar, 2 μm. 
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1.5 Aims of this work 

Research on hair cell physiology, development and proteome has been essential for the 

treatment and prevention of congenital and acquired hearing impairment. In the biological 

aspect, it has helped to partially understand how an epithelial cell evolved into an 

extraordinarily efficient synaptic machine. However, despite decades of hair cell research, 

we still do not know what proteins drive synaptic vesicle fusion in these cells, or how they 

perform constitutive “housekeeping” processes in parallel to the demanding task of 

neurotransmission. As mentioned in the introduction, two main models of synaptic vesicle 

recycling have been proposed using different technical approaches: 1) local recycling at the 

cell base, with little involvement of other cell regions. 2) Apical recycling, with the 

participation of the biosynthetic pathways. Proving the validity of these models has been 

difficult, due to the somatic location of hair cell active zones, and the lack of suitable 

endocytosis tracers that do not permeate MET channels. Although with our previous study 

combining dye photo-oxidation and EM we made a safer step in understanding synaptic 

recycling as a local process (model 1) (Kamin et al., 2014), conclusive data will only come 

from molecular identification of the recycling organelles and the study of larger cell 

populations. 

The major aim of this project was to develop a novel endocytosis marker for the study of 

membrane recycling in auditory inner hair cells (IHCs). For this molecule to sort the caveats 

already presented, it should fulfill a series of requirements: 

- It should not permeate MET channels to undoubtedly see endocytic processes. 

- It should be suitable for high-resolution fluorescence microscopy in order to study 

recycling organelles, typically smaller than the diffraction barrier of light (200-300 

nm). Fluorescence microscopy is preferred over EM-based approaches, for the easier 

sample preparation, higher throughput and wider field of view.  

- It should be fixable and compatible with immunolabeling procedures, in order to 

assign synaptic or constitutive molecular identity to endocytic organelles.  

Once a successful molecule would be obtained from a pool of tested candidates, its uptake 

would then be compared with our previous findings using dye photo-oxidation (Kamin et al., 

2014). This novel tool should allow, for the first time, to establish the molecular identity of 

recycling organelles in IHCs, and to determine to what extent the constitutive pathways are 

involved in the synaptic vesicle recycling process.   
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If success would be met to this point, a further goal of this project would be to prove the 

applicability of the novel tool in other neuronal preparations. It could, for example, help to 

understand yet unanswered aspects of protein organization and synaptic function in the 

small boutons of hippocampal neurons: 

- Are spontaneously released synaptic vesicles identical in protein composition to 

actively released ones? 

- What is the fraction of synaptic vesicle proteins that remains stranded on the 

neuronal plasma membrane (known as “readily retrievable pool” of vesicles)? 

- Are the t-SNARE proteins Syntaxin 1 and SNAP-25 similarly organized on plasma 

membranes and intracellular organelles? 

Additionally, uptake of the novel probe could be also evaluated in other non-neuronal 

systems, like cultured cells.  

Obtaining a fixable endocytosis marker that remains on labeled membranes, even after 

permeabilization and immunostaining procedures, would not only be an achievement for 

studying IHCs, but also a valuable tool for describing membrane trafficking in virtually any 

cell type.  
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2 MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Reagents 

Table 2.1 List of reagents used in this study 

 Product Catalog 
Number 

Company 

Co
m

m
er

ci
al

 m
em

br
an

e 
m

ar
ke

rs
 FM 1-43 70020 Biotium, Hayward, CA, USA 

AM 1-43 70024 Biotium 

FM 4-64 70021 Biotium 

FM 4-64FX F34653 Molecular Probes, Life 
Technologies, Darmstadt, Germany 

FM 1-84 70047 Biotium 

FM 3-25 70048 Biotium 

5-Dodecanoylaminofluorescein 
(DCF) 

D109 Molecular Probes, Life 
Technologies 

Di-2-ANEPEQ D6923 Molecular Probes, Life 
Technologies 

D
ev

el
op

m
en

t o
f n

ew
 m

em
br

an
e-

bi
nd

in
g 

to
ol

s Transferrin – Alexa 594 T13343 Molecular Probes, Life 
Technologies 

Insulin human I2643 Sigma-Aldrich, Munich, Germany 

Atto 647N NHS ester AD 647N-31 ATTO-TEC GmbH, Siegen, Germany 

Palmitic acid N-hydroxysuccinimide 
ester 

P1162 Sigma-Aldrich 

Cholera Toxin Subunit B 
(Recombinant), Alexa Fluor® 594 
Conjugate 

C34777 Molecular Probes, Life 
Technologies 

Poly-L-hydrobromide 1000-5000 Da 
(PLL 1-5 kDa) 

P0879 Sigma-Aldrich 

Poly-L-hydrobromide 
4000-15000 Da (PLL 4-15 kDa) 

P6516 Sigma-Aldrich 

Disposable PD-10 desalting column 
(PD Mini Trap G-10) 

17-0851-01 GE Healthcare, Freiburg, Germany  
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mCLING  Designed by Prof. Silvio O. Rizzoli. 
Synthesized by Synaptic Systems, 
Göttingen, Germany 

Epidermal Growth Factor, 
Tetramethylrhodamine Conjugate 
(rhodamine EGF) 

E3481 Molecular Probes, Life 
Technologies 

En
do

cy
to

si
s 

re
po

rt
er

s Low Density Lipoprotein from 
Human Plasma, DiI complex (DiI 
LDL) 

L3482 Molecular Probes, Life 
Technologies 

Transferrin From Human Serum, 
Alexa Fluor 488 Conjugate 

T13342 Molecular Probes, Life 
Technologies 

Transferrin From Human Serum, 
Alexa Fluor 546 Conjugate 

T23364 Molecular Probes, Life 
Technologies 

Bromophenol blue B8026 Sigma-Aldrich 

m
CL

IN
G 

 v
al

id
at

io
n 

Propidium Iodide P1304MP Molecular Probes, Life 
Technologies 

SynaptopHluorin (VAMP2) construct  Kindly provided by Leon Lagnado, 
Medical Research Council, 
Cambridge, United Kingdom 

Dynasore hydrate D7693 Sigma-Aldrich 

Pitstop 2  ab120687 abcam, Cambridge, UK 

Tetrodotoxin (TTX) T8024 Sigma-Aldrich 

p-toluensulfonic acid monohydrate  402885 Sigma-Aldrich 

Em
be

dd
in

g 
 

m
ed

ia
 

2,4,6-
Tris[bis(methoxymethyl)amino]-
1,3,5-triazine (melamine) 

T2059 TCI Europe, Zwijndrecht, Belgium 

EpoFix kit (epoxy resin) 40200029 Struers A/S, Ballerup, Denkmark 
Mowiol 4-88 reagent 475904 Merck Millipore, Merck KGaA, 

Darmstadt, Germany 

2.1.2 Buffers and solutions 

Table 2.2 List of buffers and solutions used in this study 

Buffer Composition (concentrations in mM) 

Tyrode’s buffer for neuronal cultures 124 NaCl, 5 KCl, 2 CaCl2,1 MgCl2, 30 glucose, 25 
HEPES, pH 7.4 

Ringer’s buffer for COS7 cells 130 NaCl, 4 KCl, 5 CaCl2, 1 MgCl2, 48 glucose, 
10 HEPES, pH 7.4 

Hank’s Balanced Salt Solution without calcium 
(HBSS without Ca2+), for OC dissection and 
resting condition of IHCs 

141.7 NaCl, 5.36 KCl, 1 MgCl2, 0.5 MgSO4, 3.4 L-
Glutamine, 6.3 glucose, 10 HEPES, pH 7.4. 295-
300 mOsm 

Hank’s Balanced Salt Solution with high 135.1 NaCl, 10 KCl, 2 CaCl2, 1 MgCl2, 0.5 MgSO4, 
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potassium (HBSS high K+ 10mM), for mild 
stimulation of IHCs 

3.4 L-Glutamine, 6.3 glucose, 10 HEPES, pH 7.4. 
295-300 mOsm 

Hank’s Balanced Salt Solution with high 
potassium (HBSS high K+ 25mM), for 
stimulation of IHCs 

120.1 NaCl, 25 KCl, 2 CaCl2, 1 MgCl2, 0.5 MgSO4, 

3.4 L-Glutamine, 6.3 glucose, 10 HEPES, pH 7.4. 
295-300 mOsm 

Hank’s Balanced Salt Solution with high 
potassium (HBSS high K+ 65mM), for strong 
stimulation of IHCs 

79.7 NaCl, 65.36 KCl, 2 CaCl2, 1 MgCl2, 0.5 
MgSO4, 3.4 L-Glutamine, 6.3 glucose, 10 HEPES, 
pH 7.4. 295-300 mOsm 

Hank’s Balanced Salt Solution with calcium 
(HBSS with Ca2+) for recovery after 
stimulation of IHCs 

139.7 NaCl, 5.36 KCl, 2 CaCl2, 1 MgCl2, 0.5 
MgSO4, 3.4 L-Glutamine, 6.3 glucose, 10 HEPES, 
pH 7.4. 295-300 mOsm 

Fluorescence quenching solutions (Figure 
3.13) 

HBSS with Ca 2+ and HBSS high K+ 65 mM were 
supplemented with 0.75 mM BPB 

Hank’s Balanced Salt Solution with high 
potassium and no calcium (HBSS high K+ 

65mM, without Ca2+), for strong stimulation in 
absence of calcium, used as control (Figure 
3.13.) 

81.7 NaCl, 65.36 KCl, 1 MgCl2, 0.5 MgSO4, 3.4 L-
Glutamine, 6.3 glucose, 10 HEPES, pH 7.4. 295-
300 mOsm, 5 EGTA, 0.75 BPB 

Standard Drosophila stimulation buffer 130 NaCl, 36 sucrose, 5 KCl, 2 CaCl2, 2 MgCl2, 
5 HEPES, pH 7.3 (Jan and Jan, 1976) 

Yeast minimal medium 0.67 % Difco yeast nitrogen based w/o amino 
acids (Beckton, Dickison and company), 0.07 % 
complete supplement mix (MP biomedicals) 
and 2 % sucrose (Roth) 

Phosphate buffer saline (PBS) 150 NaCl, 20 Na2HPO4, pH 7.4 

High-salt PBS 500 NaCl, 20 Na2HPO4, pH 7.4 

Permeabilization solution for cultured 
neurons, mammalian cells and yeast cells 

0.1% Triton X-100 and 2.5% bovine serum 
albumin (BSA) in PBS 

Permeabilization solution for organs of Corti 
and Drosophila preparations 

0.5% Triton X-100 and 1.5% bovine serum 
albumin (BSA) in PBS 

Quenching solution (after fixation) 100 NH4Cl and 100 Glycine in PBS 
 

2.1.3 List of Antibodies 

Table 2.3 List of antibodies used in this study 

Antibody Catalog number, type Company/Source 

β-tubulin  single-chain recombinant 
antibody 

(Nizak et al., 2003) 

Bruchpilot  nc82, mouse monoclonal Developmental Studies 
Hybridoma Bank at University 
of Iowa, IA, USA 
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Calnexin ab22595, rabbit polyclonal abcam, Cambridge, UK 

Chromeo494-coupled goat anti-
Mouse IgG  

15032 Active Motif, La Hulpe, 
Belgium 

Chromeo494-coupled goat anti-
Rabbit IgG 

15042 Active Motif 

CtBP2 (also recognizing Ribeye 
A domain) 

612044, mouse monoclonal BD Biosciences, Heidelberg, 
Germany 

Cy2-coupled goat anti-mouse 
IgG  

115-225-146  Dianova GmbH, Hamburg, 
Germany 

Cy2-coupled goat anti-rabbit 
IgG 

111-225-144 Dianova GmbH 

GM130 610822, mouse monoclonal BD Biosciences,  

LAMP1 ab24170, rabbit polyclonal abcam 

Otoferlin  ab53233, mouse monoclonal abcam 

Rab3A  610379, mouse monoclonal BD Biosciences. IHCs. 

Rab3A  107 003, rabbit polyclonal Synaptic Systems, Göttingen, 
Germany. Hippocampal 
neurons 

Ribeye B domain  192 003, rabbit polyclonal Synaptic Systems 

SNAP-25  111 002, rabbit polyclonal Synaptic Systems 

Synapsin  106 002, rabbit polyclonal Synaptic Systems 

Synaptophysin   G96, rabbit polyclonal raised 
against synaptophysin 
purified from rat synaptic 
vesicles 

Kindly provided by Prof. 
Reinhard Jahn, Max Planck 
Institute for Biophysical 
Chemistry, Göttingen, 
Germany. (Jahn et al., 1985) 

Synaptotagmin 1  105 102, rabbit polyclonal Synaptic Systems 

Syntaxin 1  110 011, mouse monoclonal Synaptic Systems 

Syntaxin 6  610636, mouse monoclonal BD Biosciences 

Syntaxin 13  110 131, mouse monoclonal Synaptic Systems 

Syntaxin 16  rabbit polyclonal Kindly provided by Prof. 
Reinhard Jahn, Max Planck 
Institute for Biophysical 
Chemistry, Göttingen, 
Germany. Same as 110 162, 
from Synaptic Systems GmbH, 
Göttingen, Germany 

VAMP2 104 211, mouse monoclonal Synaptic Systems 

VAMP4 136 002, rabbit polyclonal Synaptic Systems 
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VGLUT1/2  135 503, rabbit polyclonal Synaptic Systems 

VGLUT3  135 203, rabbit polyclonal Synaptic Systems 

Vti1a 611220,  mouse monoclonal BD Biosciences 
 

2.1.4 Microscopes and equipment 

Table 2.4 List of microscopes and equipment used in this study 

Element Characteristics Company 

Leica SP2 upright 
confocal microscope 

- Water immersion objective (63×, 0.9 NA, 
HCX APO L U-V-I)  

Leica Microsystems 
GmbH, Wetzlar, 
Germany 

Leica pulsed STED 
microscopy setup 
based on a TCS SP5 
inverted confocal 
microscope 

- HCX PL APO Oil immersion STED 
objective (100× 1.4 NA)  

- HCX PL APO Oil immersion objective 
(63× 1.4 NA) 

- Excitation: pulsed diode laser (18 mW, 
80 MHz, 640 nm emission, PicoQuant, 
Germany)  

- Depletion: pulsed infrared 
Titanium:Sapphire (Ti:Sa) tunable laser 
(1W, 80 MHz, 720–1000 nm, Mai Tai 
Broadband; Spectra-Physics, Santa 
Clara, CA, USA).  

- Detection: two ultra-sensitive avalanche 
photodiodes and high sensitivity, low 
noise PMTs were used 

Leica Microsystems 
GmbH 

Olympus IX 71    
inverted 
epifluorescence 
microscope  

- Oil immersion objective (60× 1.35 NA) 
- TIRFM oil immersion objective (100× 

1.45 NA.  
- 100 W mercury lamp. 
- F-View II CCD camera (Soft Imaging 

System GmbH, Münster, Germany) 

Olympus, Hamburg,  
Germany 

Inverted 
epifluorescence Nikon 
Eclipse Ti-E 
microscope  

- CFI S Plan Fluor ELWD air objective 
(40× 0.60 NA)  

- Plan apochromat oil immersion 
objective (60×, N.A. 1.4)  

- HBO-100W Lamp  
- IXON X3897 Andor Camera 

Nikon GmbH,  
Düsseldorf, Germany 

NanoDrop 
Spectrophotometer 

- Model ND1000 Wilmington, DE, USA 

Leica Ultramicrotome - Model EM UC6 Leica Microsystems 
GmbH 
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2.1.5 Software  

Table 2.5 List of software used in this study 

Software Application Provider 

LAS AF Version 2.7.3.9723 Image acquisition software for 
Leica TCS SP5 STED 
microscope 

Leica Microsystems GmbH, 
Wetzlar, Germany 

Leica Confocal Software 
Version 2.61 

Image acquisition software for 
Leica SP2 confocal microscope 

Leica Microsystems GmbH 

Cell^P Version 3.4 Image acquisition software for 
Olympus IX 71 inverted 
microscope 

Olympus Soft Imaging 
Solutions GmbH, Hamburg,  
Germany 

NiS – Elements AR, Version 
4.20 

Image acquisition software for 
Nikon Eclipse Ti-E microscope 

Nikon GmbH,  
Düsseldorf, Germany 

ACD/C ChemSketch (Freeware 
version 12.01) 

Generation of chemical 
structures for mCLING and 
FM 1-43 

Advanced Chemistry 
Development Inc., Toronto, 
Canada 

PyMol (Version 1.6.0.0) Graphic rendering of 
molecular structures for 
mCLING and FM 1-43 

Schrödinger, Portland, OR, 
USA 

SigmaPlot Version 10.0 Statistical analysis, data 
plotting and graphs 
generation 

Systat Software, Inc., Erkrath, 
Germany 

Matlab Version 7.5.0.342 
(R2007b) 

Image analysis The MathWorks Inc., Natick, 
MA, USA 

Huygens Essential 4.4 Image deconvolution Scientific Volume Imaging 
B.V., Hilversum, The 
Netherlands 

Image J 1.47v Image processing and 
preparation for figures 

Wayne Rasband, US National 
Institutes of Health, 
http://rsb.info.nih.gov/ij/ 

Adobe Photoshop CS6 Version 
13.0 

Image processing and 
preparation for figures 

Adobe Systems Inc., San Jose, 
CA, USA 

Adobe Illustrator CS6 Version 
16.0.0 

Figures formatting and 
graphic design 

Adobe Systems Inc., San Jose, 
CA, USA 
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2.2 Methods 

2.2.1 Generation of tools for the study of membrane traffic 

2.2.1.1 Generation and dialysis of membrane-binding molecules  

Alternative fluorescent membrane-binding molecules were generated by coupling proteins 

to lipid tails and/or fluorescent molecules. For this purpose a standard protocol based on 

covalent conjugation was applied. Four different reactions were carried out:  

- 1) insulin, palmitic acid and the fluorophore Atto 647N bearing an N-

Hydroxysuccinimide (NHS) ester group for amine crosslinking;  

- 2) transferrin-Alexa 594 and palmitic acid;  

- 3) PLL 1-5 kDa and Atto 647N –NHS ester; and  

- 4) PLL 4-15 kDa and Atto 647N –NHS ester 

   

Briefly, 1 mg of protein was resuspended in 1 mL PBS solution (pH 7.4) containing 100 mM 

NaHCO3 (stock solution at pH 8.6), and later transferred to a small glass bottle. Apart, a 

solution of 10mg/ml palmitic acid and/or 10mg/ml fluorophore was prepared in 

dymethylformamide (DMF). 10 µL of this solution were slowly added to the protein solution 

while stirring and then mixed for 1 hour, protected from the light. The reaction was stopped 

with 20 µL of 1.5 M hydroxylamine (freshly prepared, pH 8.5) and the solution was stirred 

for other 5 minutes. The obtained mixture was loaded in a PD-10 desalting column, 

previously washed and loaded with PBS (pH 6.5). 5 fractions of approximately 500 µL were 

collected for later application to biological samples or dialyzed when necessary. PLL 1-5 kDa 

and PLL 4-15 kDa conjugated to Atto 647N were dialyzed against HBSS buffer without Ca2+ 

through 3500 MW-exclusion and 6000-8000 MW-exclusion membranes, respectively. The 

final products were aliquoted and stored at -80°C. 

2.2.1.2 mCLING generation and concentration estimation 

The design of mCLING as an oligopeptide containing seven lysine molecules, conjugated to a 

palmitic group and a molecule of the fluorophore Atto 647N, was an original idea of Prof. 

Silvio Rizzoli. Synthesis of the mCLING molecule was carried out by Synaptic Systems GmbH, 

Göttingen, Germany. To determine the concentration of the mCLING stock solution, 

fluorescence intensity of a dilution series was measured with a spectrophotometer 

(NanoDrop ND1000). Concentration values were calculated from a linear regression curve 
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obtained from fluorescence intensity values of increasing concentrations of an Atto 647N-

conjugated oligonucleotide (1:1 ratio Atto 647N:oligonucleotide, Eurofins MWG Operon, 

Ebersberg, Germany).  

2.2.2 Experiments performed with cultured mammalian cells  

2.2.2.1 Preparation of coverslips for cell culture seeding 

18 mm diameter coverslips (thickness Nr. 1:    0,13 - 0,16 mm; Menzel Gläser, Braunschweig, 

Germany) were thoroughly washed before use:  

- Incubation in 1M HCl overnight followed by 5 washes with Milli-Q-purified water 

- Wash with 1M NaOH for 1-2 hours followed by 5 or more washes with Milli-Q-

purified water until reaching a neutral pH 

- Wash and storage in 100% ethanol 

Coverslips were flamed, placed on 12-well plates and coated with a PLL solution (0.1 

mg/mL) for 1 hour. Excess of PLL was washed 3 times with distilled water. Plates were 

sterilized with UV light under a laminar flow hood and stored at 4°C until their use for cell 

culture. 

2.2.2.2 Endocytosis assays in COS7 cells 

COS7 cells (fibroblast-like cell line from monkey kidney) were cultured in Dulbbeco’s 

modified Eagle medium (DMEM with 4.5 g/L glucose; Lonza, Cologne, Germany) 

supplemented with 10% fetal calf serum (FCS; PAA Laboratories, Clöbe, Germany), 4 mM 

glutamine (Lonza) and 100 units/ml penicillin and streptomycin (Lonza).  

One day before the experimental procedure, cells were briefly washed with PBS and treated 

with trypsin EDTA (Gibco, Life technologies, Darmstadt, Germany) for 5 minutes at 37°C. 

After collection and wash, cells were resuspended in supplemented DMEM medium, plated 

on PLL-coated coverslips, and kept at 37°C and 5% CO2 culture conditions. Before 

performing the endocytosis assays, cells were washed with pre-warmed Ringer’s buffer, and 

then incubated for 5 minutes at 37°C with different membrane and/or endocytosis markers 

dissolved in pre-warmed Ringer’s buffer. A list of markers used and their concentrations is 

presented below:  

- 0.2-0.4 µM mCLING,  

- 5 µM FM 1-43, 
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- 5 µM AM 1-43,  

- 5 µM  FM 4-64FX, 

- 25 µg/ml Alexa 546-Transferrin, 

- 0.4 ng/ml tetramethylrhodamine-EGF, 

- or 15 µg/ml DiI-LDL 

When necessary, membrane/endocytosis labeling was followed by fixation with 4% PFA + 

0.2% glutaraldehyde for 20 minutes on ice and 20 minutes at RT.  Excess of aldehyde 

fixatives was quenched during 30 min at RT using quenching buffer (100 mM NH4Cl and 

100 mM glycine solution in PBS). Permeabilization was carried out in 3 rounds of 5 minutes 

with a 0.1% Triton X-100 + 2.5% BSA solution in PBS. Primary antibodies were incubated 

for 1 hour in permeabilization solution followed by 3 washes of 5 minutes with 

permeabilization solution. Secondary antibodies were incubated for 1 hour in 

permeabilization solution. After immunostaining, coverslips were washed 3 times for 5 

minutes with high-salt PBS and 2 times for 5 minutes with standard PBS. Coverslips were 

mounted on glass slides using Mowiol as embedding medium.  

For pictures in Figures 3.5, 3.7 and 3.8A, cells were imaged in live, fixed, or fixed and 

permeabilized conditions, in an Olympus IX 71 inverted microscope (60× 1.35 NA oil 

immersion objective, or 100× 1.45 NA TIRFM oil immersion objective) equipped with an F-

View II CCD camera (Soft Imaging System GmbH, Münster, Germany).  

For studying the effects of mCLING on membrane trafficking pathways, cells were first 

incubated for 5 minutes with mCLING and Alexa 546-Transferrin at 37°C, washed with 

Ringer’s buffer and incubated again at 37°C for 20 minutes in Ringer’s buffer. Cells were 

fixed and quenched as described above. For figures 3.6 and 3.8B-C, images were acquired in 

the confocal mode of a Leica TCS SP5 STED microscope using an HCX PL APO 63× 1.4 NA oil 

immersion objective. 

2.2.2.3 mCLING toxicity assay in COS7 cells 

A cell viability assay was performed to assess the concentration-dependent toxicity of 

mCLING labeling. COS7 cells were directly plated on a 24-well plastic plate. For the assay 

wells were first washed with pre-warmed Ringer’s buffer, incubated in Ringer’s buffer 

containing increasing concentrations of mCLING (in µM: 0, 0.21, 0.42, 0.85, 1.7, 3.4, 6.8) for 5 

minutes, washed, and incubated in Ringer’s buffer containing propidium iodide (Sigma). 

Cells were imaged after 5 minutes in an inverted epifluorescence Nikon Eclipse Ti-E 
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microscope (CFI S Plan Fluor ELWD 40× 0.60 NA air objective). Propidium iodide was 

imaged using the Cy3 filter set (excitation: 545/25, dichroic mirror: 565, barrier filters: 

605/70 BP). Imaging of mCLING was performed with the Cy5 filter set (excitation: 620/60, 

dichroic mirror: 660, barrier filter: 700/75 BP).  

2.2.2.4 Culture methods for rat hippocampal neurons  

The cultured hippocampal neurons were obtained from dissociated hippocampi of newborn 

rats (modified from (Banker and Cowan, 1977; Beaudoin et al., 2012)). Dissection 

procedures and culture methods were performed by our technical assistant Christina 

Schäffer. Briefly, brains were extracted from the skulls of P2 rat pups, and the hippocampi 

were isolated under a dissection microscope. The tissue was washed several times with 

HBSS (Invitrogen) to remove tissue debris and thereafter incubated for 1h in enzyme 

solution (10 ml DMEM, 2 mg cysteine, 100 mM CaCl2, 50 mM EDTA, and 25 units Papain 

sterile bubbled with carbogen for 10 minutes and sterile filtered). Neurons were washed 

thoroughly with HBSS and incubated for 15 min in inactivating solution (2 mg Albumin, 2 

mg Trypsin-Inhibitor in 10 ml of FCS containing DMEM medium) followed by mechanical 

dissociation. The coverslips on which neurons were seeded were prepared as explained in 

section 2.2.2.1 but PLL coating was done at higher concentration (1mg/ml) overnight. 

Neurons were seeded in plating medium (Eagle's Minimum Essential Medium, MEM, 

supplemented with 10% horse serum, 3.3 mM glucose, and 2 mM glutamine) and incubated 

for 1–4 hours at 37°C in a 5% CO2 humidified atmosphere to allow adhesion to the substrate. 

After adhesion the medium was changed to Neurobasal-A medium containing: 500 ml 

Neurobasal-A (Gibco, Life technologies, Darmstadt, Germany), 10 ml B27 supplement 

(Gibco, Life Technologies), and 5 ml Glutamax I stock. To avoid glial proliferation 5-fluoro-

2’-deoxyuridine (FUDR) was added to the culture after 2 DIV. The neurons were kept in 

culture at 37°C and 5% CO2 for 14 days before use. 

2.2.2.5 Neuronal transfection with SynaptopHluorin construct 

To study the effects of mCLING on synaptic vesicle recycling, neurons were transfected with 

a plasmid carrying SynaptopHluorin (VAMP2-pHluorin, see (Miesenböck et al., 1998; 

Sankaranarayanan and Ryan, 2000; Granseth et al., 2006). The synaptopHluorin insert 

(kindly provided by Dr. Leon Lagnado, University of Sussex, UK) was subcloned into a 

pEGFP-N1 plasmid (CMV promoter, Clontech, Mountain View, CA, USA) by PCR by inclusion 

of a KpnI restriction site in the forward primer (AAT-GGTACC-GCCGGTCGCCACC) and a NotI 
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restriction site in the reverse primer (AAT-GCGGCCGC-TTTAACCGGTTTTGTATAG). Ligation 

was confirmed by sequencing. Transfection was carried out using the calcium phosphate-

based ProFection Mammalian transfection system (E1200; Promega, Madison, WI, USA). 

Briefly, coverslips with neuronal cultures were transferred to a 12-well plate containing 

fresh DMEM (5 mL 1M MgCl2 and 2.5 mL 1M HEPES in 500 mL DMEM). The transfection 

reaction solution was prepared according to the amount of coverslips to be transfected, with 

the following amounts per well: 3.2 µL 2M CaCl2, 2 µg plasmidic DNA, Nuclease-free water to 

a final volume of 25 µL. This solution was mixed with 25 µL/well of HEPES-buffered saline 

and precipitates were allowed to form for 15-30 minutes at RT. 50µL of the transfection 

solution were applied drop-wise to every well and incubated for 15-30 minutes at 37°C. 

Wells were washed 3 times with fresh DMEM and kept in the last wash for 15 minutes at 

37°C. Coverslips were finally replaced to the original plate with the old medium and kept at 

37°C 5% CO2 until imaging was performed.  

2.2.2.6 SynaptopHluorin experiments in neuronal hippocampal cultures 

To test the innocuity of mCLING to neuronal cells and assess its possible effect on synaptic 

vesicle recycling, a fluorescent assay reporting synaptic vesicle release was designed. 8 days 

after SynaptopHluorin transfection coverslips with cultured neurons were placed in a 

stimulation chamber, labeled with 0.2 µM mCLING for 5 minutes and washed with Tyrode’s 

buffer. Spontaneous network activity was blocked after mCLING labeling using a solution 

containing 10 µM CNQX and 1 µM AP5 in Tyrode’s buffer. Neurons were stimulated with the 

same instruments described in section 2.2.2.7. 100-mA shocks were delivered initially in a 

short stimulus (60 AP, 3 seconds at 20 Hz) and 40 seconds later in a long stimulus (600 AP, 

30 seconds at 20 Hz). Control neurons were directly treated with CNQX and AP5 and imaged 

in absence of mCLING. Imaging was performed in the same Nikon setup described in section 

2.2.2.3. Synaptophluorin was imaged using the 60X oil immersion objective (plan 

apochromat, N.A. 1.4) and the filter set for EGFP (excitation: 470/40, dichroic mirror: 495, 

barrier filter: 525/50 BP). 

2.2.2.7 mCLING applications to cultured rat hippocampal neurons 

In order to label the recycling organelles and/or the plasma membrane of cultured 

hippocampal neurons, these were incubated in Tyrode’s buffer containing mCLING 

(0.68 µM). Three different types of labeling were performed: 

- Selective labeling of the actively released pool of synaptic vesicles: neurons were 
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prelabeled with mCLING for 5 minutes and then stimulated with 600 APs (30 

seconds, 20 Hz) in presence of mCLING. For electric stimulation a custom-made 

chamber holding two platinum electrodes was fixed on top of the cells culture. 100 

mA shock stimuli were delivered using an A385 stimulus isolator and an A310 

Accupulser stimulator (both from World Precision Instruments, Saratosa, FL, USA).  

- Selective labeling of the spontaneously released pool of synaptic vesicles: neurons 

were incubated in tetrodotoxin (1 µM) for 15 minutes in presence of mCLING. 

- Surface labeling of the neuronal plasma membrane: cells were preincubated in cold 

mCLING-free buffer for 5 minutes on ice. Keeping the cells on ice, an mCLING 

solution was added and further incubated for 5 minutes. 

 

After mCLING labeling neurons were fixed, permeabilized and immunostained, as described 

above for COS7 cells. After immunostaining, coverslips were mounted on glass slides using 

Mowiol as embedding medium. The following primary antibodies were used: VGLUT1/2, 

synaptophysin, synaptotagmin 1, VAMP2, synapsin, syntaxin 13, Vti1a, VAMP4, Rab3a, 

syntaxin, and SNAP-25. Chromeo494-coupled goat secondary antibodies were used 

accordingly.  

2.2.2.8 Preparation of Mowiol embedding medium 

24 g of glycerol and 9.6 g Mowiol 4-88 reagent were mixed with 62.4 mL distilled water and 

9.6 mL 1M Tris buffer in a glass beaker. The mixture was stirred for 5 to 7 days and 

occasionally heated at 40-50°C to help Mowiol dissolving. The mixture was let to settle and 

only the supernatant was aliquoted. Aliquots were kept at -20°C for long-term storage and 

at 4°C for daily use.  

2.2.3 Dissection and uses of the mouse organ of Corti 

2.2.3.1 Animals 

Wild-type mice (Mus musculus) from the substrains C57BL/6N and C57Bl/6J were obtained 

from the animal facility of the University Medical Center Göttingen or from Charles River 

Laboratories (Sulzfeld, Germany). Otoferlin knockout mice (Otof-/-, described in (Reisinger et 

al., 2011)) were kindly provided by Dr. Ellen Reisinger (Molecular Biology of Cochlear 

Neurotransmission Group, Department of Otolaryngology, University Medical Center 

Göttingen, Germany). Animals were handled according to the specifications of the University 

of Göttingen and of the State of Lower Saxony (Landesamt für Verbraucherschutz, LAVES, 
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Braunschweig, Germany).  

2.2.3.2 Dissection of the organ of Corti (OC) 

Male or female mice at ages between postnatal days 14 to 18 (P14-P18) were used for organ 

of Corti dissection. At this age mice can already hear (hearing onset occurs at P10) and their 

cochlear structure is still soft enough for an easy dissection. Animals were sacrificed by 

decapitation. After a sagittal cut of the head’s skin, this was removed up to the snout. The 

head was divided through the sagittal plane in two halves and preserved in ice-cold HBSS 

without Ca2+ until further dissection. The brain was removed to uncover the vestibular and 

cochlear organs, and these were detached from the temporal bone by gently pulling them 

out. The bony walls of the cochlea and the stria vascularis were carefully opened up to 

expose the organ of Corti. Using fine forceps, the apical turn of the organ of Corti was pulled 

out while breaking up the central column of the modiolus to release it. The dissected organs 

of Corti were used for experimental procedures within 5 to 10 minutes after dissection. 

2.2.3.3 Testing commercial fluorescent dyes in living IHCs  

Experiments were done as indicated in (Kamin et al., 2014). For dye labeling and imaging of 

IHCs at low temperature, I constructed a customized chamber suitable for imaging in an 

upright confocal microscope: the lid of a plastic petri dish was filled with the gel from a 

freezing pad, covered and sealed with PARAFILM, and topped with a 25-mm coverslip 

(Figure 2.1).  After dissection the apical turn of the OC was incubated for 5 minutes in ice-

cold HBSS without Ca2+, and placed on a previously cooled imaging chamber containing 

HBSS without Ca2+. The OC was clamped to the chamber’s coverslip using a metal harp with 

nylon strings. IHCs were then incubated with different fluorescent dyes from the FM family 

(FM 1-43, AM 1-43, FM 4-64, FM 4-64FX and FM 1-84) at a final concentration of 10 µM in 

HBSS without Ca2+. Other membrane-binding dyes like dodecanoylaminofluorescein (DCF, 

188 µM) and Di-2-ANEPEQ (JPW 1114, 100 µM) were also tested. IHCs were imaged along 

their longitudinal axis using the 63× water immersion objective of a Leica SP2 upright 

confocal microscope. FM dyes, DCF and Di-2-ANEPEQ were excited with the 488 nm line of 

an argon laser and their emission was detected in the range of 500-700 nm with a PMT.  
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Figure 2.1 Customized chamber for IHC imaging at low temperature.  
This chamber was designed to keep the OCs at low temperature while being imaged under the 
upright confocal microscope. This assay was important to study membrane labeling under 
inhibition of endocytosis by low temperature.  A. The lid of a plastic Petri is filled with freeze gel 
and covered with a layer of PARAFILM. This chamber is kept at -20°C for storage and at 4°C 
shortly before the experiment. Before imaging, a coverslip is placed on the PARAFILM-covered 
surface on top of which the dissected organ of Corti is placed, kept in place by a metallic harp. 
The organ of Corti is covered with the required buffer. B. Image of the assembled chamber. 

2.2.3.4 mCLING labeling and immunostaining of OCs  

The apical turn of the organ of Corti was dissected and directly placed in a Petri dish filled 

with ice-cold HBSS without Ca2+. Plasma membrane and endocytic events were labeled by 

incubating the OC in 1.7 µM mCLING. Incubation times were always of 3 minutes to ensure 

adequate probe penetration into the tissue. Fast transfer and good preservation of OCs 

through the different incubation steps was ensured by using 24-well plates and a fire-

polished glass pipette (See Figure 2.2). Three main stimulation conditions were applied at 

37°C: 

- Resting condition: the OC was incubated in HBBS without Ca2+ for 3 minutes in 

presence of mCLING. 

- Strong stimulation condition: the OC was first incubated for 2 minutes in HBSS 

without Ca2+ + mCLING and then transferred to a well containing HBSS high K+ 

(65 mM) + mCLING for 1 minute. The same treatment was applied at milder 

stimulation conditions of 10 and 25 mM K+. 

- Recovery after stimulation: after a strong stimulation treatment (65 mM K+), excess 

of mCLING was washed off from the OC using HBSS with Ca2+ and then incubated for 

5 minutes in dye-free HBSS with Ca2+.  
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All solutions were carbogen-charged for 30 minutes and pre-warmed at 37°C before the 

experiments. After labeling, samples were rapidly washed with HBSS without Ca2+, fixed in 

4% PFA + 0.2% glutaraldehyde for 30 minutes on ice followed by 30 minutes at RT, and 

quenched in 100 mM NH4Cl and 100 mM glycine in PBS for 30 minutes. Afterwards OCs 

were permeabilized in 3 rounds of 10 minutes with 0.5% Triton X-100 and 1.5% BSA in PBS, 

and incubated for 1 hour with primary antibody(ies) (diluted in permeabilization solution). 

After primary antibody incubation, 3 washes of 10 minutes with permeabilization solution 

were performed. Secondary antibodies were also incubated for 1 hour. Finally, organs were 

washed with high salt PBS (3 times for 10 minutes) and standard PBS (2 times for 10 

minutes), followed by embedding in plastic resin (see section 2.2.5.1). 

The primary antibodies used on IHCs in this study included different organellar markers: 

VGLUT3, Rab3, otoferlin, calnexin, GM130, syntaxin 6, syntaxin 16, Vti1a and LAMP1. As 

secondary antibodies Chromeo494-coupled goat anti-Rabbit IgG and Chromeo494-coupled 

goat anti-Mouse IgG were used accordingly. Chromeo494 is a long stokes shift dye that 

allows two-color STED imaging with only one depletion laser line when combined with Atto 

647N (present in mCLING).  

For identifying the synaptic ribbon (Figure 3.16) primary antibodies against CtBP2 (also 

recognizing Ribeye A domain) or Ribeye B domain, were combined with secondary 

antibodies Cy2-coupled goat anti-mouse IgG or goat anti-rabbit IgG. Ribbons were imaged in 

the confocal mode of the Leica STED setup described above using a He-Ne laser (488 nm) for 

excitation, and a very narrow detection window to be able to differentiate its signal from 

that one of Chromeo494 (495-520 nm).  

mCLING-labeled and immunostained samples were embedded in melamine resin, cut into 

200nm-thick sections and later on imaged in two-color STED microscopy using the Leica 

TCS SP5 STED microscope described in the Materials section. For images shown in Figure 

3.21, samples were cut into 50 nm-thick sections and imaged in the Olympus IX 71 

epifluorescence inverted microscope described in the Materials section. 
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Figure 2.2 Experimental workflow for the membrane labeling, immunostaining and 
plastic embedding of OCs 
The bony labyrinth and cochlea were dissected out of the mouse skull. The apical turn of the 
organ of Corti was carefully dissected out (1), and incubated with mCLING at different 
stimulation conditions to label IHCs plasma membrane and membrane uptake processes (2). 
After labeling, OCs were fixed and immunostained for different organellar protein markers (3).  
In order to obtain improved Z-resolution, OCs were embedded in a plastic resin (melamine, 4) 
and sliced with a microtome (5) for later imaging in two-color STED microscopy (6). The final 
outcome of this procedure is high-resolution images of endocytosed organelles and plasma 
membranes, with information on organellar identity and protein distribution for correlation 
analyses.  

2.2.3.5 Vesicle release estimation by cell surface quenching of mCLING in 

IHCs 

In the previous sections mCLING uptake was used to reveal endocytosed organelles and the 

cell plasma membrane. An assay to study the opposite process, mCLING release upon K+ 

stimulation, was designed. Given the non-washability of mCLING from plasma membranes, 

bromophenol blue (BPB) was used as surface fluorescence quencher to obtain a better 

signal of stimulation-dependent fluorescence loss.  

After a round of mCLING labeling (1.7 µM) in strong stimulation conditions at 37°C, i.e.  2 

min in HBSS without Ca2+ and 1 min in HBSS with 65 mM K+, the OC was placed in an 

imaging chamber containing mCLING-free HBSS with Ca2+ and 0.75 mM Bromophenol blue 
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(BPB) for recovery during 5 minutes. BPB quenched the mCLING on the cell surface, 

enabling the live imaging of endocytic organelles. IHCs were stimulated for a second time by 

replacing the solution with HBSS with 65 mM K+ and 0.75 mM BPB for 1 minute. For the 

control group, the second stimulation was performed in absence of Ca2+, in presence of 

0.75 mM BPB and 5 mM EGTA. Live imaging was performed using the water immersion 

objective (HCX APO L U-V-I ,63×, 0.9 NA) from the Leica SP2 upright confocal microscope 

described in the Materials section.  

2.2.3.6 Application of endocytosis inhibitors to IHCs 

OCs were incubated for 5 minutes in HBSS without Ca2+. Subsequently, OCs were kept for 25 

minutes in a 30 µM pitstop 2 or 100 µM dynasore solution in HBSS without Ca2+. Afterwards 

OCs were treated with the strong stimulation protocol described in section 2.2.3.4: first a 

two-minute incubation in a 1.7 µM mCLING HBSS without Ca2+ plus inhibitor (same 

concentrations), and then a one-minute stimulation in HBSS High K+ with 1.7 µM CLPF plus 

inhibitor (same concentrations). The entire procedure was performed at 37°C in the well of 

a plastic plate continuously supplied with carbogen to keep pH levels stable. Fixation, 

quenching and immunostaining for VGLUT3 were performed as described above. 

Quantification of endocytosis levels was compared to control IHCs, treated with the same 

buffers and incubation periods, in absence of the inhibitors. 500x dynasore and 500x 

pitstop 2 stock solutions were prepared in 100% DMSO and stored at -20°C. 

2.2.3.7 Experiments with otoferlin knockout (Otof -/-) mice 

Otof -/- mice were kindly provided by Dr. Ellen Reisinger (Molecular Biology of Cochlear 

Neurotransmission Group, Department of Otolaryngology, University Medical Center 

Göttingen) and described in (Reisinger et al., 2011). These knockout mice were generated by 

homologous recombination with a target plasmid to excise exons 14 and 15 of the otoferlin 

wild type gene. The deletion of this gene region leads to a frame shift and incomplete 

translation of the otoferlin protein. The recombinant sequence included a neomycin 

selection cassette flanked by floxP sequences. The targeting vector was electroporated into 

129ola embryonic stem cell colonies, which were then selected with G418 and ganciclovir. 

The positive clones, confirmed by Southern blot, were injected into mouse blastocysts to 

generate chimeric mice. Their heterozygous offspring was bred with cre-recombinase-

expressing mice, leading to excision of the neomycin cassette. Deletion of the neomycin 

cassette was confirmed by PCR and absence of otoferlin from inner hair cells was confirmed 
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by immunostaining. OCs obtained from P14-P18 Otof -/- mice were treated under the strong 

stimulation condition (65 mM K+), fixed and immunostained for VGLUT3, in the same way 

described in section 2.2.3.4. Endocytosis levels in Otof -/- IHCs were compared to values 

found in IHCs from wild-type animals. 

2.2.4 mCLING application on the larval neuromuscular junction (NMJ) 

of Drosophila 

2.2.4.1 Dissection of Drosophila larvae and mCLING labeling 

Third instar wildtype larvae were immobilized on Sylgard-coated plastic Petri dishes. Using 

fine scissors, larvae were dorsally opened along the middle line of the sagittal plane.  

Internal organs were removed and the skin sides pinned down to expose the ventral 

muscles. The preparation was preincubated during 2 minutes with 1.7 µM mCLING in 

standard Drosophila buffer (Jan and Jan, 1976). Next the preparation was electrically 

stimulated with 160 APs (20 Hz for 8 seconds) in Drosophila buffer (Jan and Jan, 1976) and 

in presence of mCLING (same concentration). 100 mA shock stimuli were delivered using an 

A385 stimulus isolator and an A310 Accupulser stimulator (both from World Precision 

Instruments, Saratosa, FL, USA). The preparation was immediately fixed and immunostained 

in the same way as for OCs (section 2.2.3.4). Active zones at the NMJs were identified by 

immunostaining with primary antibodies against Bruchpilot and Cy-3 labeled secondary 

antibodies. These preparations were embedded in melamine and cut into 200 nm sections 

with a Leica ultramicrotome (Leica Microsystems GmbH) for later imaging in the Leica TCS 

SP5 STED microscope described in section 2.2.5.2.  

2.2.5 Sample embedding, sectioning and imaging 

2.2.5.1 Melamine preparation, embedding and sectioning 

Embedding procedures of cells and tissues were performed as described previously (Punge 

et al., 2008). Melamine resin was freshly prepared the same day of the experiment. The 

following recipe was used to embed up to 7 samples. First 48 mg of resin catalyzer (p-

toluensulfonic acid monohydrate) were thoroughly dissolved in 0.576 ml distilled water in a 

15-mL conical tube. Next 1.344 g of melamine (2,4,6-Tris[bis(methoxymethyl)amino]-1,3,5-

triazine) were added to the solution and thoroughly mixed until all melamine was covered 

by the solution. The tube was agitated on a horizontal shaker at 250 rpm for 2 hours or until 

the melamine was completely dissolved (transparent homogeneous appearance). The two 
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reagents were kept dry and clean from other substances at 4°C to avoid coloration or 

polymerization defects in the final melamine product. After mCLING labeling and 

immunostaining, the OC or the Drosophila larva was placed on an 18-mm glass coverslip. I 

found out that at this point it is important to place the OC with the tectorial membrane 

facing down to the coverslip for better IHC preservation. A BEEM capsule (Beem Inc., West 

Chester, PA, USA), whose bottom had previously been cut, was placed with the opening 

down, surrounding the preparation. 200 µl of freshly prepared melamine were slowly 

poured inside the BEEM capsule, covering the tissue completely. The mounted sample was 

placed in a box containing silica beads for removing the environmental water, and left 

overnight at room temperature to allow penetration of melamine into the tissue. The box 

with the samples inside was transferred to an oven at 40°C for 24 hours. The BEEM capsule 

was filled to the top with Epoxy resin (Epo Fix kit) and then heated up at 60°C for 48 hours. 

The melamine around the OC or larval tissue was trimmed away with a razor blade and 

samples were again incubated at 60°C for 48 hours, for complete hardening. Melamine 

blocks were cut into thin sections with a Leica ultramicrotome. Sections were dried on a 

coverslip and embedded in Mowiol for two-color STED or epifluorescence imaging. 

2.2.5.2 STED and confocal microscopy 

A Leica TCS SP5 STED microscope equipped with a HCX PL APO 100× 1.4 NA oil STED 

objective and operated with the Leica LAS AF imaging software was used for performing 

one-color or two-color STED microscopy (Leica Microsystems GmbH). Atto 647N (present in 

mCLING) was excited with a pulsed diode laser (PDL 800-D, PicoQuant, Berlin, Germany) 

emitting at 640 nm and its fluorescence signal was detected with an avalanche photodiode 

(APD). Chromeo494, a long stokes shift dye, was used for the second STED channel. 

Chromeo was excited also with a PDL emitting at 531 nm, and detected with and APD. Both 

Atto 647N and Chromeo494 were depleted with a STED beam generated by a pulsed 

infrared titanium:sapphire (Ti:sa) tunable laser (1W, 80 MHz, 720–1000 nm) set at 750 nm 

(Mai Tai Broadband, Spectra-Physics, Santa Clara, CA, USA). This microscope was also used 

for combined STED/confocal or only confocal microscopy images. Excitation of the different 

dyes in confocal mode was performed with: a Helium-Neon laser emitting at 633 nm for 

mCLING; the 488 nm line of an argon laser for FM 1-43 and Cy2 (in secondary antibodies 

indicating the position of IHCs and Drosophila NMJs active zones); and a Helium-Neon laser 

emitting at 543 nm for LDL-DiI and Trasferrin-Alexa 546. An acousto-optical tunable filter 

(AOTF) was used to adjust the fluorescence detection window for each of these dyes. 
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Detection devices included low noise PMTs.  

2.2.5.3 Thin-section imaging 

Sample preparation and embedding was performed as for the 200-nm sections. Samples 

were cut into 20-nm thick sections using a Leica ultramicrotome (Leica Microsystems 

GmbH). Sections were imaged using an epifluorescence microscope from Olympus (IX71; 

Hamburg, Germany), with a 100× 1.45 NA TIRFM oil immersion objective (Olympus) and an 

F-View II CCD camera (1,376 × 1,032 pixels, pixel size of 6.45 × 6.45 μm; Olympus). FITC and 

RFP filter sets were used to image Cy2- and Cy3-labeled secondary antibodies, respectively. 

A Cy5 filter set was used for imaging mCLING  (AHF, Tübingen, Germany). 

2.2.6 Experiments with microorganisms 

2.2.6.1 mCLING validation on yeast cells 

Saccharomyces cerevisiae cells from the strain BY4742 were grown in yeast nitrogen base 

(YNB) medium overnight at 30°C. Before the experiments, glass coverslips were coated with 

PLL as explained in section 2.2.2.1. A cell suspension was poured on top of a PLL-coated 

coverslip an allowed to precipitate on it for 10 minutes. Excess of medium was removed and 

a solution of either 20 µM FM 4-64 (Biotium) or 0.4 µM mCLING in YNB medium was applied 

on top of the immobilized cells for 20 minutes. Some of the coverslips were later on fixed, or 

fixed and immunostained in the same way as for COS7 cells (section 2.2.2.2). Imaging was 

performed in the same Olympus microscope described in the previous section using a 100× 

1.45 NA TIRFM oil immersion objective combined with an optovar lens of 1.6× 

magnification.  

2.2.6.2 mCLING validation in bacteria 

For membrane staining of cells from the species Escherichia coli, a cell suspension was first 

pelleted by centrifugation (5 minutes, 4500 rpm) and resuspended either in a 5 µM FM 1-43 

(Biotium) or 0.4 µM mCLING solution (diluted in Lysogeny Broth, LB, medium).  Cells 

incubated in FM 1-43 were directly immobilized for 10 minutes on a PLL-coated coverslip. 

Cells labeled with mCLING were pelleted again, resuspended in dye-free LB medium and 

also immobilized on PLL-coated coverslips. The coverslips were mounted on glass slides 

using Mowiol. FM 1-43 and mCLING staining were imaged in the confocal and the STED 

mode, respectively, of the Leica TCS SP5 STED microscope described above.  
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2.2.7 Data analysis 

2.2.7.1 Image analysis and processing 

The analysis of the data presented in this study was entirely performed using custom-made 

Matlab routines (The Mathworks Inc., Natick, MA, USA), all written by Silvio O. Rizzoli. Four 

main types of analysis were performed, with variations according to the analysis needs. 

Type 1 analysis. This was a fluorescence intensity-based analysis applied on tif files 

generated by the Cell^P, Leica Confocal, or the Leica LAS AF software. A MatLab routine was 

used to determine the average fluorescence intensity of the pixels contained in a square (for 

IHCs) or hand-drawn ROI (for COS7 cells). The mean values were compared among the 

different treatments.  Figure 3.1, Figure 3.4, Figure 3.6, Figure 3.7 and Figure 3.27 contain 

data analyzed with this routine. 

Type 2 analysis. For calculating endocytosis levels (Figure 3.12, Figure 3.14 and Figure 

3.15) raw STED images from transversal cuts of mCLING-labeled IHCs were analyzed using a 

custom-made MatLab routine. First, the area occupied by the IHCs was defined by hand 

drawing the cell perimeter, helped by the mCLING signal from the plasma membrane. From 

this area the percentage occupied by intracellular mCLING-labeled organelles was 

calculated. mCLING-labeled organelles were defined as groups of pixels with fluorescence 

intensities above the mean mCLING background value. A similar routine was used in Figure 

3.13 taking into account the mCLING intensity levels, rather than the area occupied. Another 

variation was used to establish the percentage of signal located on the plasma membrane, 

from the total signal found in synaptic boutons and axonal processes (Figure 3.24).  

Type 3 analysis. To evaluate the presence of various proteins within mCLING-labeled 

organelles (Figure 3.17, Figure 3.18, Figure 3.19, Figure 3.20 and Figure 3.21), two-color 

STED or epifluorescence images taken from transversal cuts of mCLING-labeled and 

immunostained IHCs were analyzed. The self-written MatLab routine was used to calculate 

Pearson’s correlation coefficients between the mCLING and the immunostaining signals, 

within line scans (20 pixels long, 2 pixels wide, with a pixel size equivalent to 25.2 x 

25.2 nm) drawn specifically across mCLING labeled organelles.  

Type 4 analysis. This analysis was used to obtain averaged STED pictures of IHC active 

zones (Figure 3.16). For this purpose at least 20 regions of interest (5x5 µm2) centered on 

synaptic ribbons were selected for each condition. The self-written MatLab routine stacked 
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two of these areas and rotated them using the overlapped ribbons as rotation axis until 

perfect overlap between the images was found. To determine the cytoplasmic side of 

mCLING-labeled plasma membrane, the analysis was also based on a VGLUT3 image of the 

same region. Once the highest correlation between the images was found, the next area was 

added to the stack and processed until all the ROIs were aligned. A final image of the average 

fluorescence intensities was then generated from the stack of individual images. Similar 

routines were used to identify and average the neuronal organelles (Figure 3.23) or SNARE 

clusters (Figure 3.25). The complete MatLab script for this type of analysis can be found in 

the Appendix section at the end of this thesis.  

2.2.7.2 Statistical analysis 

All the histogram bars presented in this study correspond to mean values ± standard error 

of the mean (SEM), unless otherwise indicated in the figure legends. The student’s t-test 

(unpaired) was calculated using either the statistical package of MatLab (The Mathworks 

Inc.) or the in-built statistical function of Sigma Plot (Systat Software, Inc.). P values are 

indicated in the figure legends. No blinding was used for data analysis, as each data set could 

be easily recognized. 

2.2.7.3 Data presentation 

For presentation purposes the STED images presented in sections 3.3 and 3.4 were 

deconvolved using Huygens Essential 4.4, from Scientific Volume Imaging (Hilversum, The 

Netherlands). The deconvolution procedure run by this software is based on a Maximum 

Likelihood Estimation (CMLE) algorithm. The in-built deconvolution functions of the 

software were adapted to the imaging parameters of the STED microscope described above. 
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3 RESULTS 

3.1 Testing commercial membrane markers in IHCs 

3.1.1 FM dyes, their analogs and fluid phase markers fail to label 

endocytosis in IHCs 

As mentioned in the Introduction, the initial motivation to develop a customized 

membrane/endocytosis marker was the interest to study synaptic vesicle recycling and 

membrane trafficking in the auditory IHCs. Up to know this issue has been elusive due to the 

permeation of commonly used dyes through mechanoelectric transduction (MET) channels 

located at the hair bundle of these cells (Nishikawa and Sasaki, 1996; Gale et al., 2001; 

Meyers et al., 2003). Hence, incubation with these dyes results in a very strong cytoplasmic 

labeling (due to dye molecules permeating the MET channels) that masks the fluorescent 

signal contributed by truly endocytosed dye molecules. The first step in this project was to 

revisit the application of such dyes in our own working conditions and setups. Preliminary 

work was performed in a previous PhD project carried out in our laboratory (Kamin, 2011). 

Dr. Dirk Kamin applied a series of commercial dyes on the mouse organ of Corti (OC), the 

sensory epithelium that hosts IHCs, to evaluate their diffusion properties into such structure 

and their permeation into the IHCs. A list of the dyes he used can be found in Table 3.1. 

The first group included dyes from the FM family. These are styryl molecules that reversibly 

bind to membranes and have been widely used in the last two decades to study synaptic 

vesicle recycling in synaptic boutons (Betz et al., 1992; Hoopmann et al., 2012). Dr. Kamin 

found that except for FM 3-25, all other dyes from the FM family that were evaluated 

produced a strong and fast staining of the IHC cytoplasm, being much stronger than the 

intensity found in the surrounding cells (e.g. pillar and supporting cells). By its 

characteristics, this labeling is difficult to reconcile with an endocytosis-dependent pathway 

and suggests that the dye molecules rather reach the interior of the IHCs by permeating 

their MET channels. The same results were obtained using other small membrane-binding 

molecules like DCF and Di-2-ANEPEQ. The first conclusion of these results is that dyes in the 

size range of the 450-550 Daltons are small enough to pass through the MET channels. The 
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second conclusion is that a long and highly hydrophobic molecule like FM 3-25, with two 

octadecyl chains, is retained in the outermost regions of the tissue and therefore does not 

diffuse freely into the OC. In his study, Dr. Kamin also found that soluble compounds like 

calcein or fluorescein-coupled dextrans could successfully reach the fluid space around the 

IHCs without permeating them, but would not be taken up into endocytic organelles. Being 

calcein a relatively small molecule (622 Da), it was concluded that membrane binding is 

important for MET channels permeation, and efficient endocytic uptake (Kamin et al., 2014).  

Table 3.1 List of commercial dyes tested on IHCs 

 Dye Molecular Weight 

FM family 
of styryl 
dyes 

FM 1-43 451 

AM 1-43 (fixable version of FM 1-43) 454 

FM 4-64 448 

FM 4-64FX (fixable version of FM 4-64) 448 

FM 1-84 478 

FM 3-25 843 

Membrane- 
binding 
probes 

5-Dodecanoylaminofluorescein (DCF) 530 

Di-2-ANEPQ (also known as JPW1114) 549 

Fluid phase 
markers 

Calcein 622 

3000 Da Dextran - Fluorescein ~1500-3000 (range of sizes 
obtained through a viscosity-

based purification) 
 

To strengthen these results and prove that this fluorescence signal is mainly generated by 

artifactual labeling of the cytoplasm and in a less extent by dye endocytosis, I tested the 

probes that showed IHCs permeation (FM 1-43, AM 1-43, FM 4-64, FM 4-64FX, FM 1-84, DCF 

and Di-2-ANEPEQ) at low temperature, at which endocytic processes should be inhibited. I 

found that at such conditions all FM dyes permeated IHCs (Figure 3.1A), in a similar fashion 

that at RT and comparable to a previous study reporting FM 1-43 permeation at 4°C in 

bullfrog saccular hair cells (Meyers et al., 2003). The same strong labeling was also seen for 

DCF and Di-2-ANEPEQ (Figure 3.1B). Quantification of the fluorescence intensity levels for 

RT and low temperature incubations showed no significant difference in the amount of 

labeling, confirming that IHC staining cannot be exclusively explained by endocytic 

processes (Figure 3.1C).   
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Figure 3.1 Commercial membrane markers label IHCs in an endocytosis-independent 
process. 
A. Dyes from the FM family different in size and structure (450-480 Da) were incubated on IHCs 
at low temperature to inhibit endocytosis. Strong IHC labeling suggests permeation of the dyes 
through MET channels. Scale bar, 10 µm. B. Two membrane-binding probes, DCF and the voltage 
sensor Di-2-ANEPEQ, labeled the cytoplasm of IHCs in a similar fashion to FM dyes. Scale bar, 
10 µm. C. Analysis of fluorescence intensity for dyes that gave a strong labeling inside IHCs. ROIs 
were selected from the cell cytoplasm, avoiding the nuclear area. Fluorescence values are 
expressed as fold over background. The black bars represent experiments performed at RT. The 
gray bars represent experiments performed at low temperature (2-4°C). Data analysis was 
performed using the following numbers of  IHCs per condition. FM 1-43: 26 at RT, 19 on ice; AM 
1-43: 20, 16; FM 4-64: 13, 23; FM 4-64FX: 8, 20; FM 1-84: 7, 27; DCF: 8, 15; Di-2-ANEPEQ: 30, 35.  

From these results I concluded that none of the commonly used commercial dyes tested 

here is suitable for assessing endocytosis in IHCs, and that a better approach requires the 

design of customized membrane-binding fluorescent tools.  

I then set out to target the different parameters that would define a suitable endocytosis 
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marker for IHCs. In section 3.2 I will describe the steps that led me to successfully develop 

such marker, mainly based on the implementation of membrane labeling and uptake assays 

in cultured mammalian cells. In section 3.3 I will show how the obtained marker was 

applied to the study of membrane trafficking in IHCs.  
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3.2 Design, synthesis and evaluation of novel membrane-

binding probes 

3.2.1 Requirements for the generation of suitable membrane probes 

to study IHCs 

Based on the results described in the previous section and the aims of this study, a newly 

designed membrane-binding probe applicable to IHCs should meet the following 

requirements: 

- Size/structure: it has been proposed that permeant blockers of open MET channels 

of hair cells fulfill two requirements: electrochemical interaction with the channel 

pore via partially charged amine groups, and a molecular radius below the diameter 

of the MET channel pore at its narrowest point, estimated in 12.5±0.8 Å. Molecules 

interacting with the channel but that exceeded such diameter blocked cation 

currents but did not permeate into cells (Farris et al., 2004). From what was seen in 

the previous section, one could expect that molecules with sizes above 600-700 Da 

and that still reach the surface of IHCs, have a radius large enough to hinder open 

MET channel permeation, independent of their electrochemical interaction with the 

channel.  

- Binding: interaction with the plasma membrane seems to be important for efficient 

uptake of the probe into endocytic compartments. In this study lipid tails and charge-

based attachment were explored. 

- Tissue penetration: as seen for FM 3-25, penetration of the probe into a complex 

tissue like the OC is necessary to ensure that first, the probe reaches the surrounding 

space of the IHCs, and second, that it has the opportunity to be taken up along with 

all endocytic events. 

- Fixability: as described in the Introduction (section 1.3.2.3), different organelles have 

been involved in SV recycling in IHCs. However, these assumptions were made based 

on morphological descriptions in EM micrographs (Siegel and Brownell, 1986; Spicer 

et al., 2007) or by anatomical location using fluorescence images (Griesinger et al., 

2002, 2004, 2005). The best way to identity recycling SVs would be to use a tool that 

not only labels them during endocytosis, but that also allows their later identification 

by immunolabeling. This implies that such tool should be fixable to remain in the 

originally labeled structures, even after permeabilization procedures. 
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- STED-suitable fluorescence: up to know high-resolution images of the SV recycling 

process in IHCs are only available in electron microscopy and electron tomography 

(Siegel and Brownell, 1986; Lenzi et al., 2002; Kamin et al., 2014). Lenzi and 

collaborators (2002) provided important information about the plasma membrane 

remodeling upon stimulation-triggered vesicle release, although they did not use an 

endocytosis tracer. Siegel and Brownell used HRP as tracer, but its penetration 

requires long incubation times that still do not ensure the labeling of all recycling 

organelles. From our own work (Kamin et al., 2014), we established dye-

photo-oxidation EM of IHCs to distinguish FM 1-43 labeling contained in 

endocytosed organelles from the signal of cytoplasmic dye that permeated MET 

channels. However, combining this technique with immunolabeling EM techniques 

would be very laborious, and even this solution would difficulty multiple labeling for 

different proteins. Additionally, EM procedures require long sample preparation 

times. A fluorescence high-resolution technique like STED microscopy would 

overcome these difficulties while providing detailed images of subdiffraction-sized 

organelles like SVs and organelles of the endosomal trafficking pathway. STED 

microscopy requires dyes that are stable under increasing intensities of the 

depletion laser, have high quantum yield for enabling detection of the typically 

narrow detection areas and suitable fluorescence lifetimes that allow reasonable 

lengths of excitation-depletion cycles. One of the best dyes recommended for the 

STED setup used in this study is, for example, Atto 647N (Atto-Tech GmbH). 

These requirements should make the probe also valid for endocytosis studies in other tissue 

preparations and cultured cells, as it will be shown along the Results section of this study.  

3.2.2 Strategies for probe design 

As it will be seen along this section, refinement of the ideal probe properties was achieved 

along the experimental path. The initial strategy I started out with was to generate novel 

membrane-binding probes fulfilling the above mentioned requirements by conjugation of 

different elements into one molecule: 

- Fixable component: molecules ranging from short peptides to large proteins could be 

used as substrates for amine crosslinking by aldehyde fixatives. 

-  Membrane-binding component: lipid tails can be added to ensure partition of the 

molecule into the cell plasma membrane. Positively charged molecules could also 
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offer membrane binding capacity due to their interaction with negative charges 

present on the plasma membrane.  

- Fluorescent component: fluorescent molecules are available in different modification 

variants, like NHS ester groups for amine-specific crosslinking, or maleimide groups 

for reaction with sulfhydryl groups of proteins. 

3.2.2.1 Lessons from protein-based probes 

For a first exploration of membrane binding and fixability properties two chimeric 

membrane-binding molecules were synthesized: 

- Insulin-palmitoyl-Atto 647N (IPA): coupling of human insulin, palmitic acid and the 

dye Atto 647N-NHS ester. Estimated size 6.9 kDa.  

- Transferrin-palmitoyl-Alexa 594 (TfPA): coupling of human transferrin-Alexa 594 

with palmitic acid. Estimated size 80.6 kDa. 

Additionally, the B subunit of cholera toxin (CTB) conjugated to Alexa 594 (CTBA) was 

included in the experimental setup. While the cholera toxin A subunit is responsible for the 

pathogenic effects such as efflux of chloride ions and H2O release to the intestinal lumen via 

its catalytic activity on ADP-ribosylation, the B subunit facilitates the internalization of the 

toxin into cells of the host (Sanchez and Holmgren, 2011). CTB binds to the plasma 

membrane by recognition of the pentasaccharide chain of GM1 gangliosides (Eidels et al., 

1983). Although initial studies proposed an exclusive caveolar endocytosis pathway for CTB 

(Tran et al., 1987), more recent studies propose also uptake by clathrin-dependent, and 

caveolin- and clathrin- independent mechanisms (Torgersen et al., 2001). Thus, CTB has 

been used as endocytosis tracer to study early endosome sorting and budding (Barysch et 

al., 2009). At neutral pH the CTB subunit (11.4 kDa) can also exist as pentamers (57 kDa), 

ranging in size between IPA and TfPA. 

Cultured hippocampal neurons were incubated for 5 minutes with IPA, TfPA or CTBA and 

fixed for 30 minutes with a 4% PFA solution. After quenching with 100 mM NH4Cl, 

coverslips were placed on glass slides using Mowiol for embedding. Considering that the 

reaction performed to produce IPA and TfPA results in bulk labeling of the proteins with a 

variable number of fluorophore copies per molecule, it was difficult to determine the final 

concentration of the products in the output solution.  IPA, TfPA and CTBA were diluted in 

Tyrode’s buffer at different concentrations and evaluated under epifluorescence microscopy 

to establish a concentration giving appropriate fluorescence intensity. 
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Figure 3.2 Differences in fixability and labeling distribution among protein-based 
membrane-binding probes. 
Insulin and transferrin molecules conjugated to fluorescent and lipid molecules (IPA and TfPA, 
respectively), were compared to the fluorescently labeled cholera toxin B subunit (CTBA) in a 
membrane labeling assay. Probe incubations were performed on neuronal rat hippocampal 
cultures. Homogeneity of membrane labeling was found to be size-dependent and preserved 
upon fixation and embedding in Mowiol. Permeabilization, as used in immunostaining 
procedures, detached unfixed probe molecules and mobilized them into the cell interior. This 
effect was worsened by embedding with melamine resin after permeabilization. Improving 
fixation with glutaraldehyde helped to keep the probes bound to membranes. Scale bar, 10 µm.  

While IPA and CTBA gave a homogenous labeling of neuronal membranes, TfPA gave a 

dotted discontinuous labeling pattern (Figure 3.2, first column). This could be explained by 

the larger size of TfPA, which seems to precipitate on the cellular membranes forming 

protein clusters. These results already suggest the inconvenience of TfPA for 

homogeneously reporting all endocytic events happening at the cell surface. 
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It is also important to highlight that IPA and TfPA were normally found on the plasma 

membrane of the intact cells, and only rarely in endocytosed structures. This would suggest 

that their relatively large sizes, when compared to dyes from the FM family, might hamper 

their uptake, being this lower than the non-conjugated native molecules.  

When fixation was followed by a permeabilization procedure (0.1% Triton X-100 plus 2.5% 

BSA, 1.5 hours) and Mowiol embedding, IPA was found inside the cell soma and processes, 

indicating very poor fixability. TfPA and CTBA remained on the membranes (Figure 3.2, 

second column).  

As explained in the Methods section, the OC is a complex and thick tissue that would be 

difficult to study in detail under STED microscopy. For obtaining detailed images of 

recycling organelles, resin embedding followed by thin sectioning is a good option. 

Melamine is a non-fluorescent water-baser resin that offers good sample preservation. 

When labeled, fixed and permeabilized neurons were embedded in melamine instead of 

Mowiol, the probe molecules were mobilized into the cell somas and processes, with 

stronger effects again on IPA (Figure 3.2, third column). This effect was largely reduced by 

including a post-fixation step with 2.5% glutaraldehyde after the permeabilization, and 

before the Melamine embedding (Figure 3.2, fourth column). 

Important aspects of probe-membrane interaction can be deduced from these results: 

- Large probes like TfPA (80.6 kDa) have difficulties to homogeneously distribute 

along plasma membranes, reducing their ability to report endocytic events. 

- Although IPA has a smaller size (6.9 kDa) and offers a continuous membrane 

labeling, it was not properly fixed.  CTBA was better preserved on membranes, but 

after melamine embedding its staining appeared less continuous and punctuated. 

Deficient fixation of these molecules is probably due to concealing of amine groups 

by the protein’s tertiary and quaternary structures (in the case of CTBA), leaving 

only a few accessible groups for aldehyde crosslinking.  

- Permeabilization washes off probe molecules that are not properly fixed, and 

relocalizes them in structures or compartments that were not labeled initially (e.g. 

cytoplasm). 

- Resin diffusion into cells and its polymerization impose additional factors for probe 

mobilization from membranes, which can be partly compensated for by using more 

efficient fixation protocols (e.g. using glutaraldehyde). 
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The main conclusion of these experiments is that fixability and probe size are pivotal 

aspects for the successful labeling of cell membranes and its preservation for further sample 

processing (e.g. immunostaining). 

3.2.2.2 PLLs conjugated to Atto 647N fail to fix on membranes 

For the next step towards achieving an ideal probe for IHCs labeling, I generated two new 

probes based on commercial PLL homopolymers, which should offer abundant and freely 

available amine groups for aldehyde crosslinking. PLLs were coupled to Atto 647N by an 

NHS ester group. Membrane binding was expected to be facilitated by the binding of positive 

charges of the polymer chains to negative charges of the plasma membrane (Jacobson and 

Branton, 1977). Sigma-Aldrich offers PLLs in different size ranges, from which 1-5 kDa and 

4-15 kDa were selected. Their relatively small size should account for OC penetration, and 

interaction with membranes for their endocytic uptake. 

To analyze the capability of these dyes as endocytosis markers, OCs were incubated at RT 

with PLL-Atto 647N conjugates and imaged under an upright confocal microscope. 

Surprisingly, 1-5 kDa PLL-Atto 647N labeling was very similar to that seen with FM dyes. 

IHCs cytoplasm was strongly labeled, with much higher fluorescence levels than the 

surrounding cells. 4-15 kDa PLL-Atto 647N gave a dimmer staining than its smaller 

counterpart, with fluorescent signal inside IHCs but also with clearly labeled plasma 

membranes not only from IHCs but also from the synaptic boutons at their base, and other 

cells types like pillar cells (Figure 3.3 A left panels).  

The main explanation for the strong labeling with 1-5 kDa PLL-Atto 647N is that smaller PLL 

species (below 1 kDa) could be present in the mixture as conjugates and permeate the MET 

channels. According to the manufacturer’s specifications, provided PLL mixtures are 

purified through a viscosity-based selection procedure that does not ensure a sharp cut off 

of molecular sizes. To solve this difficulty I proceeded dialyzing the PLL-Atto 647N 

conjugates with a 3.5 kDa exclusion membrane for the 1-5 kDa variant and a 6-8 kDa 

exclusion membrane for the 4-15 kDa one. When dialysis products were applied to OCs, the 

1-5 kDa PLL-Atto 647N (now from 3.5 kDa up) gave a similar staining to the undialyzed 4-15 

variant although stronger. The dialyzed 4-15 variant (now from 6 kDa up) gave a very weak 

staining, indicating that molecules larger than 6 kDa have difficulties to penetrate into the 

OC, making impossible the labeling of endocytosis at IHCs and giving a very weak 

inhomogeneous signal (Figure 3.3 A middle panels). 
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Figure 3.3 PLL molecules conjugated to Atto 647N do not fix to membranes. 
A. Commercial 1-5 kDa and 4-15 kDa PLL mixtures contain small polymer species that permeate 
IHC MET channels. Left panels, OCs incubated at RT with Atto 647N-conjugated PLLs and 
imaged under confocal microscopy. The 1-5 kDa mixture labels IHCs in a similar way to FM dyes. 
Middle panels, Atto 647N-PLL mixtures were dialyzed and evaluated on IHCs showing a 
moderate labeling pattern. Right panels, OCs were fixed with a PFA/glutaraldehyde solution 
after labeling with dialyzed products. The strong labeling of IHCs suggest that Atto 647N-PLLs 
conjugates cannot be properly fixed B. OCs were incubated with dialyzed products and imaged 
at low temperature conditions. The lack of labeling inside IHCs indicates no permeation of MET 
channels and real endocytic nature of fluorescence seen in the middle panels of A. IHCs 
incubated with FM 1-43 at low temperature are presented for comparison. Scale bars, 10 µm.  

When OCs were incubated with dialyzed products and later fixed with a 4% PFA + 0.2% 

glutaraldehyde solution, very strong labeling was seen in IHCs cytoplasm for both the small 

and the large PLL variants (Figure 3.3A right panels). The most feasible explanation for 

these results is that PLL molecules are not as fixable as thought initially, probably due to 

preferential cis-crosslinking of amino groups of the same molecule over trans-crosslinking 

with proteins at the membrane. Moreover, in the conjugation protocol I used it is difficult to 

control the amount of Atto 647N molecules that covalently bind to the amine groups of the 

PLL molecule, likely making many of those groups unavailable for aldehyde fixation. 

Another factor that would add up to the strong post-fixation staining is the fact that the 

readily exposed membrane region of IHCs, the hair bundle, preferentially concentrated a 

large amount of PLL-Atto 647 conjugates, making them difficult to fix and prone to migrate 

into the cells during fixation. It is not clear however why the dye concentration happens 

exclusively inside IHCs.  
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Interestingly, incubations of living IHCs with dialyzed Atto 647N-conjugated PLLs at low 

temperature showed that the probes stay at the plasma membranes with no labeling inside 

IHCs (Figure 3.3B).  This indicates that fluorescent signals seen inside IHCs at RT (Figure 

3.3A middle panel) was endocytosis-dependent. 

The presented data suggest that the product obtained from dialyzing 1-5 kDa PLL Atto 647N 

conjugates could be used as endocytosis tracer in IHC live experiments, but it cannot be used 

for fixation and immunostaining assays. Moreover, I can conclude that using labeled lysine 

polymers is a valid direction towards the generation of the ideal endocytosis marker. 

However, their fixability and penetration need to be improved by: ensuring conjugation of 

one polymer molecule with only one fluorophore molecule; improving their membrane 

binding capacity by adding a lipid tail; and reducing their size to a range between 1 and 

6 kDa. 

3.2.3 mCLING, a novel membrane-binding fluorescent probe 

3.2.3.1 Design and validation of mCLING  

Taking into account the results of the previous section, a new molecule was designed that 

contained a seven-lysine polymer for easing aldehyde fixation, one palmitoyl tail for binding 

to cell membranes, and one molecule of the fluorescent dye Atto 647N conjugated to a 

cysteine residue through a maleimide group. This molecule was called mCLING (membrane-

binding fluorophore-Cysteine-Lysine-Palmitoyl Group). Its structure was suggested by my 

supervisor, Prof. Silvio O. Rizzoli, and its synthesis was carried out in the laboratories of 

Synaptic Systems GmbH, Göttingen, Germany. mCLING has a molecular weight of 2056 Da, 

including the Atto 647N moiety, being 4 to 5 times larger than FM 1-43 (Figure 3.4A). A 

great advantage of its modular design is that mCLING fluorescence properties can be easily 

adjusted to the experimenter’s needs, by replacing the Atto 647N molecule with any 

fluorophore available with a maleimide group.  

A series of experiments were conducted in order to validate mCLING as a probe that readily 

labels endocytosed organelles and is innocuous for the cells. One important step in the 

establishment of a labeling protocol with mCLING was the determination of a working 

concentration. To this end, the lyophilized conjugation product was resuspended in PBS and 

its concentration was established using a fluorescence vs concentration linear regression 

curve. The latter was obtained from a dilution series of an Atto 647N-conjugated DNA 

oligomer solution of known concentration labeling ration (1 dye molecule : 1 oligomer 
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molecule). Concentrations between 0.2 and 0.4 µM mCLING were found to offer sufficiently 

strong signal for fluorescence microscopy when tested in cultured cells.   

 
Figure 3.4 mCLING, a novel probe that successfully labels endocytosis. 
A. mCLING molecular structure. In this study the core components were coupled via a maleimide 
group to an Atto 647N molecule, but this could be exchanged by other fluorophores with 
maleimide modifications. The structure of the styryl dye FM 1-43 is presented for comparison. B. 
Outline of a cultured COS7 cell in bright-field microscopy (solid line). N marks the nucleus 
(dashed outline). C. The cell in B. was incubated with 0.2 µM mCLING in Ringer’s buffer.  mCLING 
homogeneously labeled the plasmalemma and was taken up into endocytic organelles. Confocal 
images were taken immediately after applying the probe to the cells (left panel), at 5 minutes 
after application (middle panel) and at 10 minutes after application (right panel). Scale bar, 10 
µm. D. mCLING wash-off kinetics. COS7 cells were incubated with 0.2 µM mCLING for 5 minutes, 
and then washed for different time periods. Bars represent mean fluorescence intensity 
normalized to first imaging point ± SEM. 24 to 28 cells were evaluated for every incubation time 
point. Note that mCLING is only slowly washed-off the membranes. 

mCLING was then applied to living COS7 cells and imaged under confocal microscopy. 

Plasma membrane labeling was homogeneous, probably due to its relatively small size. A 

few minutes after incubation onset, round bright organelles were seen freely moving inside 

the cells, indicating successful mCLING uptake along with endocytic events (Figure 3.4B). In 

contrast to styryl dyes of the FM family, mCLING is not washable and stays on plasma 

membranes of living cells, even after 30 minutes of incubation (Figure 3.4C). These results 

confirm that mCLING is a suitable tool for tracing endocytosis in cultured cells. 
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Figure 3.5 mCLING is not toxic for cells at working concentrations for membrane labeling. 
A. PI-based viability assay. Background fluorescence intensity in a control cell (no PI, left panel) 
is shown for comparison. Intact cells have low PI fluorescence values, comparable to those at 
control situation; a 0.2 µM mCLING-treated cell is shown as example of a viable cell (middle 
panel). Cells with disrupted membranes will allow PI to penetrate, showing high PI fluorescent 
values due to its binding to nucleic acids in the nucleus and cytoplasm; to represent this 
situation membrane pores for PI diffusion were induced in the plasma membrane of cells by 
aldehyde fixation (right panel). Scale bar, 10 µm. B. mCLING toxicity was evaluated based on a  
PI viability assay. COS7 cells were labeled with different amounts of mCLING (in µM: 0, 0.21, 
0.42, 0.85, 1.7, 3.4, 6.8), washed and then incubated with PI. After treatment, cells were imaged 
in an epifluorescence Nikon microscope. Quantification of the average PI fluorescence was 
normalized to the control treatment (no mCLING), as a function of mCLING fluorescence. PI 
fluorescence only increases above the cellular autofluorescence when mCLING surpasses 5 µM. 
The red dot indicates the concentration of mCLING I used in cellular experiments (0.2 µM). Data 
are plotted as normalized mean fluorescence ± SEM. C. Plot of mCLING fluorescence, in the same 
experiment. Data are plotted as mean fluorescence ± SEM. 

As next step, a cell viability assay based on nuclear staining with the DNA-intercalating 

agent propidium iodide (PI) was established to determine at what concentration mCLING 

becomes harmful for the cells, and what range of concentrations can be considered for 

future applications, e.g. endocytosis tracing in complex tissues (Figure 3.5A). COS7 cells 

were incubated in increasing concentrations of mCLING, washed and subsequently 

incubated with PI. As expected, high concentrations of mCLING caused cell damage and 

membrane lysis, due to a “detergent” effect exerted by its palmitoyl tail. While working 

concentrations (between 0.2 and 0.4 µM) did not have a negative impact on the cells, 

evidenced by PI fluorescence values comparable to control conditions (no mCLING). A 

concentration of 6.8 µM was found to significantly increase PI fluorescence (Figure 3.5B, C).  
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With the PI assay I confirmed that low concentrations of mCLING do not affect the plasma 

membrane integrity. This assay, however, does not provide information on the effects of 

mCLING on cell physiology and the general membrane trafficking dynamics.  To address this 

issue I performed an assay to evaluate the effects of mCLING on endosomal trafficking using 

transferrin as a marker. Transferrin is a protein important for iron systemic distribution and 

delivery to cells. The transferrin receptor is constitutively endocytosed via CME, and 

delivered to early/sorting endosomes. When a retrieved receptor is bound to diferric 

transferrin, loaded iron is released from transferrin by the lower pH of the endosome 

compartment. Then the receptor still bound to transferrin is recycled back to the plasma 

membrane (Maxfield and McGraw, 2004; Leonard et al., 2008).  

 
Figure 3.6 mCLING does not affect endosomal traffic in COS7 cells. 
A. COS7 cell were incubated with Alexa 546-Transferrin in presence or absence of mCLING for 5 
minutes to allow their uptake. Alternatively, incubation was followed by a 20-minute period at 
37°C to allow receptor recycling. The images in the upper panels show that in control cells 
transferrin is endocytosed within 5 minutes. If incubated for further 20 minutes (in absence of 
transferrin) the endocytosed transferrin can be recycled back to the plasma membrane and 
washed off as evidenced by the reduction in fluorescence. The lower panels show that uptake 
and recycling are unaltered when mCLING is added during the initial 5-minute incubation 
period. Scale bar, 10 µm. B. Quantification of Alexa 546-transferrin fluorescence levels after 
uptake (5 minutes, gray bars) or after traffic-dependent release (20 minutes, white bars) in 
mCLING-treated and untreated cells. Note that both transferrin uptake and release are normal in 
presence of mCLING, when compared to control cells. Error bars represent mean fluorescence 
intensity ± SEM for 40 to 44 cells per condition.  

In this assay COS7 cells were simultaneously incubated with mCLING and Alexa 546-

Transferrin at 37°C, to allow their uptake by endocytosis. Control cells were only incubated 

with Alexa 546-Transferrin. After 5 minutes, cells were washed with Ringer’s buffer and 

fixed directly (4% PFA plus 0.2% glutaraldehyde) to assess the levels of transferrin uptake. 

Alternatively, the 5-minute incubation period was followed by a 20-minute incubation in 

mCLING- and transferrin-free Ringer’s buffer at 37°C, wash and fixation. During those 20 
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minutes, transferrin receptors are expected to be recycled back to the plasma membrane 

releasing Alexa 546-transferrin molecules that can be then washed off. A comparison of the 

average Alexa 546 fluorescence intensity levels shows that mCLING does not affect 

transferrin uptake or its recycling towards the plasma membrane. These results confirm 

that mCLING does not have negative effects on cellular processes of membrane traffic 

(Figure 3.6).  

3.2.3.2 mCLING is superior in fixability to commercially available probes 

Additional validation of mCLING as endocytosis marker required its comparison to 

customarily used membrane probes. Here I used FM dyes as reference to evaluate mCLING 

uptake and fixability. As shown in Table 3.1, fixable versions of FM dyes are also available in 

the market. They typically carry an extra amine group in their polar head to offer a 

crosslinking target for aldehyde fixatives.  

Living COS7 cells were simultaneously incubated with mCLING and FM 1-43 and imaged 

with conventional fluorescence microscopy. The labeling pattern of mCLING was identical to 

that of FM 1-43, seen by good localization of both fluorescence signals in endocytosed 

organelles (Figure 3.7A). This observation confirms that mCLING indeed reports 

endocytosis and that it can be introduced to target the same endocytic processes studied 

before with FM dyes. 
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Figure 3.7 In contrast to fixable FM dyes, mCLING labeling is preserved after 
permeabilization. 
A. Epifluorescence imaging of living COS7 cells co-incubated for 5 minutes with 5 µM FM 1-43 
and 0.2 µM mCLING. Intracellular organelles containing both fluorescent signals confirm 
mCLING uptake by similar endocytic processes as for FM 1-43. Scale bar, 10 µm. B. Comparison 
between live (upper panels) and fixed (lower panels) COS7 cells, incubated with mCLING, 
FM 1-43, AM 1-43, and FM 4-64FX. Endocytosis and labeling of membranes was similar for all 
dyes in living cells. During fixation FM dyes were disengaged from the membranes and 
mobilized into organelles resembling mitochondria. In contrast, mCLING remained attached to 
the original cellular membranes that it labeled in living cells. Scale bars, 10 µm. C. Evaluation of 
the same four dyes by quantification of their fluorescence intensity in living, fixed, or fixed and 
permeabilized cells. Error bars represent mean fluorescence intensity normalized to the live 
values ± SEM from 21 to 37 cells per condition.  

mCLING labeling in living cells was comparable to that of AM 1-43 (fixable version of 

FM 1-43) and FM 4-64FX (fixable version of FM 4-64). Plasma membrane was 

homogeneously labeled and endocytosed organelles were seen inside the cells. However, 

once the cells were fixed the advantage of mCLING was evident. While mCLING remained 

bound to membranes and inside organelles, FM dyes were mobilized from their original 

locations and ended up concentrated in structures resembling mitochondria (Figure 3.7B).  
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In order to confirm this observation fluorescence levels were quantified in live, fixed or 

fixed and permeabilized cells for the different dyes. Areas around the nucleus, where the 

artifactual mitochondrial staining was present, were avoided and only membranes and 

organelles at the cell periphery were taken into account. mCLING labeling was preserved 

even after fixation and permeabilization, which goes in line with the slow wash-off kinetics 

described in Figure 3.4D.  In contrast, FM dye labeling was strongly affected. FM 1-43 was 

almost completely lost after fixation and permeabilization. AM 1-43 fluorescence was 

reduced by more than 50% already after fixation. FM 4-64FX labeling, although preserved in 

membranes and organelles after fixation, was also inside mitochondria-like structures, and 

reduced to ∼50% after permeabilization (Figure 3.7C). Hence, although fixable FM dyes 

were better preserved than FM 1-43 upon fixation, their labeling is not reliable and they still 

cannot be combined with immunostaining procedures.    

These results suggest that first, one amine moiety (as in AM 1-43 and FM 4-64FX) is not 

enough to provide optimal fixability, and second, that efficient fixability indeed requires the 

combination of several amine groups with a strong membrane binding capacity as in the 

mCLING structure. Therefore, I conclude that mCLING is likely the only available 

membrane-binding probe that is optimally fixable and therefore compatible with later 

immunostaining.  

3.2.3.3 mCLING is taken up into organelles involved in ligand trafficking 

An important requirement for a general endocytosis marker is that its structure and 

interaction with the plasma membrane do not hinder its uptake by any of the naturally 

occurring endocytic events. Hence, mCLING uptake was further characterized to assess 

whether it can be endocytosed along with receptor ligands commonly used as endocytosis 

and endosomal trafficking markers. 

Transferrin (Tf), low-density lipoprotein (LDL) and Epidermal Growth Factor (EGF) were 

selected as receptor ligands due to their wide use in endocytosis research and their essential 

role in cell function. Upon receptor binding, all three ligands are endocytosed by CME. 

However, EGF can be also endocytosed by alternative dynamin-dependent pathways not 

completely understood. Within a few minutes (3 to 6) after uptake ligands are delivered by 

the endocytic vesicles to the early endosomal compartments (Leonard et al., 2008; Barysch 

et al., 2009; Henriksen et al., 2013). 

Fluorescently labeled variants of these three ligands, Alexa546-Tf, DiI-LDL, and 
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tetramethylrodhamine EGF (TMR-EGF), were incubated in combination with mCLING on 

COS7 cells for 5 minutes at 37°C. Epifluorescence imaging of living cells showed that 

essentially all organelles labeled with any of the three markers colocalized with mCLING 

signal. Moreover, some of the mCLING-labeled organelles did not carry the ligand signal, 

confirming that mCLING labels different endocytic processes (Figure 3.8A). In another set of 

experiments, cells were fixed (4% PFA and 0.2% glutaraldehyde) after the initial 5-minute 

labeling period and imaged under confocal microscopy. Images revealed similar results to 

the live condition, with most ligand-labeled organelles carrying mCLING as well (Figure 

3.8B). These results confirm that mCLING can be used along with the standard protocols 

used for ligand labeling. Finally, cells labeled with either EGF or Tf in combination with 

mCLING were fixed, permeabilized (0.5% Triton-X 100 and 2.5% BSA) and immunostained 

for the endosomal marker Syntaxin 6 (Sx 6). Confocal microscopy images revealed 

organelles bearing the three signals from ligand, mCLING and Sx 6, confirming that mCLING 

remains bound to membranes even after permeabilization (Figure 3.8C). Due to its poor 

fixability, LDL signal was lost after permeabilization and therefore could not be included in 

this last assay.  

In summary, mCLING is indistinctly retrieved from the plasma membrane by different 

endocytic processes normally occurring in a healthy cell. Furthermore, I confirmed that, due 

to its fixability, mCLING has a marked potential in studies requiring determination of the 

molecular identity of recycling organelles.  
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Figure 3.8 mCLING labels endocytic organelles involved in ligand trafficking. 
A. COS7 cells were incubated during 5 minutes at 37°C with fluorescently-labeled Tf, LDL or EGF 
in presence of mCLING. Afterwards, living cells were imaged with a conventional 
epifluorescence microscope. Colocalization with mCLING is observed for all tested ligands. B. 
The correlation of mCLING with the ligands is also evident in fixed cells. Images were acquired in 
confocal microscopy. C. mCLING fixability was tested by permeabilization and immunostaining 
after fixation. Cells labeled with mCLING and transferrin or EGF were stained for the endosomal 
SNARE protein Syntaxin 6.  Note the correlation of mCLING not only with the ligand labeling but 
also with the endosomal marker. (LDL was not used due to its poor signal after 
permeabilization). Scale bars, 2 µm. 
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3.3 mCLING elucidates membrane trafficking pathways in 

IHCs 

3.3.1 Challenges in the study of endocytic events in IHCs 

To this point, the evidence collected in cultured cells confirms that mCLING outstands when 

compared to the traditionally used membrane-binding probes. mCLING is a non-toxic fixable 

endocytosis marker that offers a new way to look at the nature of recycling organelles.  

The next obvious challenge for mCLING labeling was its application to complex tissues, 

where probe diffusion and penetration can be easily limited. As already in section 3.1.1 I 

explained that mCLING design was first called for by the difficulty of studying synaptic 

vesicle recycling in the auditory inner hair cells (IHCs), which are embedded in the very 

specialized and complex epithelium called the Organ of Corti (OC).  

The study of membrane trafficking pathways in IHCs is not only challenged by the presence 

of mechanotransduction channels (MET) that allow the passage of small dye molecules (see 

section 3.1.1 and 3.2.1). The anatomy of IHCs also difficulties the separate study of synaptic 

vesicle recycling from the constitutive (housekeeping) membrane trafficking pathways (e.g. 

ER-to-Golgi transport, receptor endocytosis and endosomal trafficking). Most 

neurotransmitter-releasing cells, like neurons of the central and peripheral nervous systems 

or photoreceptors in the retina, enclose the processes of SV release and recycling in a 

compartment called nerve terminal or presynaptic bouton. Usually those boutons are 

anatomically separated from the cell soma and connected to it by a conveying process called 

fiber or axon (Heuser and Reese, 1973; Schaeffer and Raviola, 1978; Südhof, 2004; Bear et 

al., 2006). In contrast, IHCs managed to evolve an extremely efficient synaptic machinery in 

the “premises” of the cell soma, without developing a synaptic bouton. Thus, the specialized 

ribbon-type active zones that characterize IHCs can be found from the plasma membrane 

surrounding the cell nucleus to the cell base (Smith and Sjöstrand, 1961; Uthaiah and 

Hudspeth, 2010). A practical implication is that once a general endocytosis marker is 

applied, it is difficult to know whether it has been taken up by a compartment of the 

synaptic machinery, or one of a constitutive pathway, as they share the same cytoplasmic 

volume.  

Therefore, the study of membrane trafficking in IHCs requires the use of a relatively large 

probe that does not permeate the MET channels at the IHC stereocilia bundle, and that is 
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fixable to allow molecular identification of endocytosed structures by later immunolabeling.    

3.3.2 mCLING does not permeate the MET channels of IHCs 

mCLING penetration into the organ of Corti and its permeation through MET channels of 

IHCs were evaluated. The apical turn of the organ of Corti dissected from 14-18 day old wild 

type mice (substrains C57BL/6N, C57Bl/6J) was incubated with a 1.7 µM solution of 

mCLING in HBSS without Ca2+. Organs were imaged under an upright confocal microscope, 

focusing on the IHCs. The apical stereocilia bundle, which is the most exposed membrane of 

IHCs, was strongly labeled by mCLING (Figure 3.9, in red). However, and unlike FM 1-43 

(green insets), mCLING did not rapidly and diffusely stain the cytoplasmic compartment of 

IHCs. In contrast to FM 1-43 labeling, which is dense from the top to the base of the cells, 

mCLING labeled only a few organelles inside the cells, visible at the top, nuclear and basal 

cellular levels. Moreover, mCLING was also seen to reach the IHC plasma membrane from 

the bottom side of the organ of Corti, evidenced by the labeling of synaptic efferent and 

afferent terminals located at the base of IHCs. These results indicate that mCLING does not 

pass through the apical channels of IHCs and that it seems to be taken up into endocytosed 

organelles. 

 
Figure 3.9 mCLING does not permeate the MET channels of living IHCs. 

The apical turn of the mouse organ of Corti was incubated for 3 minutes with mCLING (1.7 µM) 
and imaged under confocal microscopy. Images at four different cell levels of a row of living IHCs 
were acquired: at the stereocilia bundle, at the cell top (supranuclear compartment), at the 
nuclear level, and at the basal level (infranuclear compartment). Although mCLING was found 
inside the cells, its labeling was not as diffuse and strong as for FM 1-43 (green, insets), 
suggesting that the mCLING-labeled structures are presumably endocytic organelles. Contrary to 
FM 1-43, mCLING does not seem to penetrate the MET channels of IHCs. The dashed line in 
every panel shows the profile of one IHC at the four different imaged planes. Scale bars, 10 µm. 

3.3.3 mCLING labeling and sample processing for the study of 

recycling organelles in IHCs at nano-resolution 

The images shown in Figure 3.9 strongly suggest that with mCLING a novel endocytosis 

marker that fulfills the requirement of IHCs has been found. However, achieving a detailed 
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study on membrane recycling organelles in IHCs meets other limitations:  

- The organ of Corti is a thick and complex tissue, where IHCs are surrounded by cells 

of other types (e.g. pillar cells and supporting cells), and covered on the apical side 

by the tectorial membrane. Although confocal microscopy has been useful to study 

the general labeling pattern of IHCs, endocytosis processes at smaller scales would 

be difficult to see. 

- The accumulation of mCLING at the plasma membrane gives a strong fluorescence 

signal that could mask the weaker signal coming from small endocytosed organelles, 

even in confocal imaging.  

- Electron microscopy studies have associated several types of  organelles to synaptic 

vesicle recycling in IHCs: synaptic vesicles of 31 nm average diameter, larger 

clathrin-coated vesicles of 54 nm average diameter, and large cisternae of  around 

100 to 200 nm that resemble bulk endocytosis (Lenzi et al., 2002; Kamin et al., 2014; 

Neef et al., 2014). Additionally, other structures that are presumably involved in 

constitutive membrane recycling include tubular structures with profiles of a few 

tens of nanometers distributed at the cell top and nuclear levels, as well as vesicles 

endocytosed right below the cuticular plate with sizes below 100 nm (Kachar et al., 

1997; Spicer et al., 1999; Kamin et al., 2014). The small size of these structures, many 

times far below the Abbe’s diffraction barrier of light (200-300 nm), requires the 

implementation of a high-resolution fluorescence microscopy method.  

These three difficulties were addressed by the implementation of an adapted protocol for 

sample preparation and imaging, described in the Methods section (2.2.5.1 and 2.2.5.2). A 

way to simplify the study of the organ of Corti and circumvent the first and second problems 

described above was to embed the mCLING-labeled organ of Corti in a water-based resin 

called melamine. When prepared, melamine resin is liquid and transparent, which is 

convenient for sample embedding and deep tissue penetration. After heating it up in steps of 

increasing temperature, melamine hardens and can be cut into sections as thin as 20 to 200 

nm with a conventional ultramicrotome. These sections offer a clearer view of single 

organelles and bring the advantage of avoiding scattering background fluorescence from 

other planes of the sample, or bleaching fluorophores in the areas adjacent to the focal 

plane. Hence, different volumes of the cells can be imaged independently with increased 

detail. Additionally, melamine is non-fluorescent and due to its hydrophilic properties does 

not require sample dehydration, therefore offering good ultrastructure preservation (Punge 
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et al., 2008; Punge, 2009).  

For studying organelles with sizes below the sub-diffraction limit, presented above as the 

third limitation, I relied on our laboratory expertise implementing high-resolution 

stimulated emission depletion (STED) microscopy to different biological preparations. Our 

laboratory has successfully used STED to study endosomal and synaptic vesicle trafficking in 

cultured cells and neurons (Barysch et al., 2009; Hoopmann et al., 2010; Opazo et al., 2010). 

As explained in the Introduction (section 1.4), in this technique the sample is illuminated 

with an excitation beam and a doughnut-shaped depletion beam spatially overlapped. As a 

result, in the doughnut center, where only the excitation light is present, photons will be 

collected as in conventional fluorescence microscopy. However, in the doughnut border, 

where both beams coincide, fluorophores will be excited and then stimulated by the 

depletion beam to emit photons at longer wavelengths than usual, far from the fluorescence 

detection window (Klar et al., 2000).  In this way, the effective excitation volume is 

modulated to achieve resolutions 16-fold higher in the planar axis than its confocal 

counterparts (Hoopmann et al., 2010). Moreover, STED microscopy is convenient over other 

high-resolution light microscopy techniques, because it instantly delivers sub-diffraction 

images without relying on further computational processing (Klar et al., 2000; Hell, 2007).  

One limitation of commercial STED setups, like the one I used for this study, is that 

resolution improvement is only achieved in the X-Y plane, while in the axial direction 

resolution is similar to that of conventional light microscopy (500-600 nm). Fortunately, this 

drawback is compensated for by the sectioning of the melamine embedded samples. 

Altogether, while STED microscopy provides lateral high-resolved images, melamine 

sectioning offers increased axial resolution, which can actually be modulated by the cutting 

thickness (See Figure 2.2).     

Since one of the main objectives of this study is to characterize synaptic vesicle recycling in 

IHCs, an adequate stimulation protocol was necessary. Previous studies have used K+ 

solutions at concentrations ranging from 30 to 80 mM with stimulation periods between 10 

and 30 minutes. We estimated that such incubation times are typically long and not 

comparable with the physiological situation. In a previous electron microscopy study we 

found that incubation of the OC in a 65 mM K+ solution for 1 minute, was enough to trigger 

important membrane recycling processes in IHCs (Kamin et al., 2014). With the present 

study I would like to not only confirm those results by high-resolution fluorescence 

microscopy, but also extend them with information on the molecular/organellar identity of 



  Results 

79 
 

the recycling structures.  

I proceeded incubating OCs with 1.7 µM mCLING for 1 minute. OCs were then fixed, 

embedded in melamine, and cut into 200 nm sections. When these sections were studied 

under epifluorescence microscopy, I found that mCLING penetration was poor, sometimes 

getting trapped in extracellular structures like the tectorial membrane (Figure 3.10A), or 

reaching only the membrane surrounding the hair bundle at the cell top, or the cell base 

with its neighboring afferents (Figure 3.10B). Extending the incubation period to 2-3 

minutes ensured good mCLING penetration and endocytic uptake, as seen in the following 

results sections. When stimulation was required, high K+ was applied only in the last minute.  

 
Figure 3.10 A 1-minute incubation period is not long enough for mCLING to penetrate into 
OCs and label IHCs homogeneously. 
Organs of Corti were incubated with 1.7 µM mCLING solution for 1 minute, fixed with 4% PFA 
and 0.2% glutaraldehyde, embedded in melamine resin and cut into 200 nm thick sections. 
Sections were imaged in epifluorescence microscopy. mCLING is shown in red. An 
autofluorescence picture (FITC channel in green) is presented as aid to determine the IHCs 
outline.  A. pictures an example in which mCLING is retained by the tectorial membrane (TM), 
reaching only the hair bundle at the IHC apical pole (white asterisk). At the cell base mCLING 
labeled some of the synaptic terminals (white arrowheads), confirming that it can also diffuse 
from the OC bottom. B. shows a case in which mCLING had better penetration into the OC but 
could not be taken up by endocytosis, evidenced by the absence of labeled organelles inside the 
IHC. These pictures also prove that even when mCLING reaches the hair bundle, it does not 
permeate the MET channels, since no apical staining is present.   

3.3.4 mCLING uptake is endocytosis-dependent and therefore 

inhibited by low temperature 

A final test was performed to verify that mCLING labeling inside IHCs, as seen in Figure 3.9, 

is indeed occurring via probe uptake through endocytic events. Using the improved labeling 
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protocol, OCs were incubated during 3 minutes with 1.7 µM mCLING in HBSS withouth Ca2+, 

either at physiological temperature (37°C) or on ice (2-4°C). After fixation and melamine 

embedding, OCs were cut into 200 nm sections and imaged. 

 
Figure 3.11 mCLING uptake into IHCs is endocytosis-dependent and therefore inhibited 
by low temperature. 
OCs were labeled for 3 minutes with 1.7 µM mCLING, fixed, embedded and sectioned. A-B. When 
incubated at 37°C, mCLING is found in abundant structures, homogeneously distributed 
throughout the IHCs. Transversal cuts were imaged in epifluorescence microscopy (A) and 
longitudinal cuts were imaged with STED microscopy for comparison (B). C-D. Incubation on ice 
(2-4°C) inhibited mCLING uptake, being only visible on the plasma membrane of all cell types. A 
few organelles seem to be stuck in the initial steps of endocytosis (C). Similar results were seen 
by STED microscopy (D). Scale bars: 5 µm in A. and C.; 2 µm in B. and D. 

In cells incubated at 37°C abundant organelles were seen inside the cells, evident in 

transversal cuts imaged in epifluorescence microscopy (Figure 3.11A), or in longitudinal 

cuts imaged with STED microscopy (Figure 3.11B). Labeled structures were distributed 

from top to base, sparing only the nuclear volume. On the contrary, most of the cells 

incubated on ice had mCLING exclusively on the plasma membrane, with a few exceptions 

showing labeled organelles trapped in the initial steps of endocytosis and apparently still 
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bound to the plasma membrane (Figure 3.11 C). A longitudinal section imaged in STED 

microscopy confirms these results, depicting a cell with visible labeling only at the plasma 

membrane (Figure 3.11D). These results contrast with the strong FM dye uptake at low 

temperature (Figure 3.1). 

These results ratify that once mCLING penetrates the OC and reaches the plasma membrane 

of IHCs, it is taken up by endocytic events. Moreover, the absence of label at low 

temperatures confirms that mCLING does not permeate the MET channels at the apical 

stereocilia bundle. Interestingly, mCLING not only reports endocytosis in IHCs but also in 

the surrounding supporting cells, at slightly lower levels. 

3.3.5 mCLING reveals that stimulation-induced synaptic vesicle 

recycling occurs at the IHC base 

As mentioned in the introduction, one of the most intriguing questions in the IHC field is the 

localization of membrane retrieval hotspots that could supply SV recycling. So far two 

possibilities have been derived from different technical approaches. On one hand, several 

EM studies have shown important processes of membrane recycling happening at the cell 

base upon stimulation, close to the synaptic active zones, suggesting a local recycling (Siegel 

and Brownell, 1986; Spicer et al., 1999, 2007; Lenzi et al., 2002; Kamin et al., 2014). On the 

other hand, studies using fluorescence imaging of FM 1-43 proposed a pathway starting 

with endocytosis at the apical pole of the cell, followed by membrane sorting in organelles at 

the cell top, like the Golgi apparatus or the ER, from where SVs are reformed and delivered 

to the active zones. (Griesinger et al., 2002, 2004, 2005). However, the already exposed 

concerns about the use of FM dyes in IHCs make this last model controversial. With the use 

of mCLING I expect to solve the long-standing question about the origin of recycling SVs in 

IHCs.  

Another unanswered question in IHC’s physiology is the nature of the tubular structures 

often described by EM in the literature, and sometimes proposed as source of SV 

reformation (Siegel and Brownell, 1986; Spicer et al., 2007). Their identity has been difficult 

to define because, as explained at the beginning of section 3.3, constitutive membrane 

recycling and synaptic vesicle recycling occur in the same cellular volume in IHCs. 

Therefore, mCLING is a potential tool to dissect the morphology and physiology of both 

constitutive and synaptic recycling, and to elucidate which of those are the tubules more 

related to.  
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In a first approach to answer these questions, transversal melamine sections of mCLING-

labeled IHCs were imaged to study the morphology and distribution of recycling organelles. 

With the aim to discriminate between constitutive- and synaptic-related events, different 

labeling strategies were used:  

- Resting condition: intended to evaluate only constitutive membrane recycling. OCs 

were incubated for 3 minutes at 37°C in HBSS without Ca2+ containing 1.7 µM 

mCLING. After incubation, OCs were briefly washed in mCLING-free buffer and 

directly fixed in 4% PFA and 0.2% glutaraldehyde. Embedding and sectioning were 

performed as described before. 

- Stimulation condition: intended to evaluate constitutive membrane recycling and 

synaptic vesicle recycling. OCs were incubated for 2 minutes at 37°C in HBSS without 

Ca2+ containing 1.7 µM mCLING. OCs were immediately transferred to HBSS high K+ 

(65 mM) with 1.7 µM mCLING for 1 minute, to stimulate synaptic vesicle exocytosis. 

After incubation OCs were briefly washed in mCLING-free HBSS without Ca2+ and 

directly fixed in 4% PFA and 0.2% glutaraldehyde. Embedding and sectioning were 

performed as described before. 

- Recovery condition: intended to follow how the endocytosed structures containing 

mCLING are later processed by the different trafficking pathways. The same protocol 

used in the stimulation condition was applied but after high K+ and before fixation 

the OC was incubated for 5 minutes at 37°C in mCLING-free HBSS with Ca2+. This 

buffer has only 5 mM K+ and allows the cells to recover after strong SV release before 

they are fixed. Embedding and sectioning were also performed.    

One of the first features I found when imaging melamine sections in high-resolution STED 

microscopy, was that the staining of the plasma membrane was not always uniform. It has 

been previously reported that during the fixation procedure some of the membrane 

phospholipids are solubilized by aldehyde fixatives, and removed by detergents when 

combined with immunostaining (Doggenweiler and Zambrano, 1981). Extracted 

phospholipids can leave behind pores that in sections look as discontinuities of the 

membrane. Such level of detail was not possible with conventional confocal microscopy. 

Evidence of these pores was already shown in Figure 3.5A, right panel, where fixed cells 

were easily permeated by PI. Similarly, discontinuous membranes were also seen in fixed 

and permeabilized cultured hippocampal neurons (see section 3.4).   

STED images from IHC transversal sections revealed abundant endocytosed structures in 
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both resting and stimulated conditions. This indicates that constitutive membrane traffic is 

relatively strong in IHCs (Figure 3.12A). The top and nuclear levels were dominated by large 

and elongated structures resembling tubules, with the presence of large and small round 

structures. In contrast, the cell base contained mainly small round vesicle-like structures 

and larger endosome-like ones of different sizes and shapes (from round to elongated). 

Stimulated cells seemed to have more endocytosed structures at the cell base than resting 

ones (Figure 3.12A). In the recovery condition, the sizes of the tubular structures at the cell 

top and nucleus, as well as the organelles seen at the cell base were reduced, likely due to 

processes of budding and vesicle reformation. This is also supported by a more 

homogeneous size and distribution of labeled organelles. These observations go in line with 

previous results obtained in our laboratory using FM 1-43 photo-oxidation combined with 

EM to track recycling organelles in IHCs (Kamin et al., 2014), as well as with other EM 

studies (Siegel and Brownell, 1986; Lenzi et al., 1999, 2002; Kamin et al., 2014). 

A MatLab script (written by Silvio O. Rizzoli) was used to quantify the percentage of area 

occupied by mCLING labeled organelles from the total area delimited by the plasma 

membrane in transversal sections. The analysis was divided in the aforementioned cellular 

levels (top, nuclear and basal) among the three different treatments.  While endocytic 

uptake at the top and nuclear levels of the IHC seemed to be not affected by synaptic 

stimulation, it was greatly increased by more than two-fold at the basal level, when 

compared to the resting condition (Figure 3.12C). In the recovery condition the area 

occupied by mCLING-labeled organelles was reduced, probably due to two reasons: the 

breaking up of endosome-like structures and tubules into small vesicles that are more 

difficult to detect by the analysis, and the recycling of labeled organelles back to the plasma 

membrane. 

Important aspects of IHC physiology can be derived from these results: first, even in resting 

conditions IHCs seem to have a very active membrane recycling activity, when compared, 

for example, with cultured COS7 cells incubated with mCLING for a longer period (5 

minutes, Figure 3.4C and Figure 3.7B). Second, that synaptic vesicle recycling seems to occur 

only in the basal region of the IHCs, and not at the top and nuclear regions as it was 

suggested before (Griesinger et al., 2002, 2004, 2005). Third, it is likely that the abundant 

membrane uptake at the IHC top and nuclear levels represents constitutive trafficking.  



Results   

84 
 

 
Figure 3.12 mCLING reveals recycling organelles in IHCs. 
A. When incubated at 37°C, mCLING was found in organelles of different shapes and sizes in 
both resting (top panels) and stimulated cells (lower panels). While the top and nuclear levels 
were dominated by tubular and round structures, the basal level was populated mostly by round 
organelles including vesicle-like ones. Stimulation increased mCLING staining mostly at the base 
of the cell. Scale bars, 2 µm. B. Zoom-ups corresponding to the dashed line squares depicted in A. 
The upper panel shows typical tubular-like structures found at the cell top and nuclear levels, 
while the lower panel shows the more homogeneous profile of the cell base. Scale bars, 500 nm. 
C. Endocytosis levels were quantified as the area occupied by mCLING-labeled organelles. 
Stimulation increases mCLING endocytosis only in the basal region of the cells. The bars show 
mean % normalized to the resting condition ± SEM, from 27, 22 and 57 cell top and nuclear 
regions (resting, stimulation and recovery, respectively), and from 25, 28 and 27 cell bases 
(resting, stimulation and recovery, respectively). n.s., no significant difference (t-test, P > 0.05). 
***, significant difference (t-test, P ≤ 0.001). 

3.3.6 mCLING unloading  reports SV exocytosis at the IHC base  

If synaptic vesicle recycling is indeed a local process occurring at the basal pole of the IHC, it 

would be logic to think that synaptic vesicle exocytosis is also happening in that cell region. 

This idea would be supported by the fact that in hair cells the active zones are distributed 

from the lower nuclear level down to the cell bottom. This assumption was confirmed by a 

recent study using VGLUT1-pHluorin as SV exocytosis indicator and specific localization of 

synaptic ribbons with a fluorescently-labeled peptide. SV exocytosis induced by Ca2+ influx 

was found to preferentially occur at the IHC active zones (Neef et al., 2014). 

One possible way to confirm that observation was to look at mCLING unloading in living 

IHCs cells. FM dyes have been often used in the past in loading-unloading experiments to 

reveal synaptic vesicle recycling in conventional synapses (Betz et al., 1992). First, cells are 

stimulated in presence of the dye to induce its uptake. Due to FM dyes washability, a dye-
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free solution can be perfused to wash off dye molecules from the plasma membrane to 

better reveal labeled SVs. Release of those SVs can be seen as reduction in fluorescence after 

a second stimulus.  

Since mCLING binds more strongly to membranes than FM dyes (Figure 3.4D), a different 

method for eliminating membrane fluorescence was necessary. Bromophenol blue (BPB) is 

a membrane-impermeant molecule that has been used in the past to quench cell surface 

fluorescence from molecules like FM 1-43, FM 3-25, GFP and synaptopHluorin, thus helping 

in the study of SV recycling (Harata et al., 2006b; Li et al., 2009; Wilhelm et al., 2010).  I 

established an assay using BPB to visualize SV exocytosis in IHCs. Briefly, SVs were loaded 

with mCLING by a first round of stimulation with 65 mM K+ for 1 minute. Then cells were 

allowed to recover for 5 minutes in HBSS with Ca2+ and 0.75 mM BPB, which quenched the 

fluorescence of the Atto 647N moiety in mCLING molecules at the plasma membrane. A 

second stimulus was applied to induce exocytosis of SVs, among them mCLING-labeled ones. 

Once these vesicles fuse and get exposed to the medium, the mCLING molecules associated 

to their membranes are also quenched (Figure 3.13A). By looking for areas where 

fluorescence levels declined after the second stimulation one could estimate where SV 

release took place. This assay is based on the fact that only synaptic vesicles are responsive 

to K+ stimulation, while the organelles involved in constitutive trafficking pathways are 

unaffected.  

While establishing this assay I observed that high concentrations of BPB (>1.5 - 2 mM) 

interfere with proper illumination of the sample and efficient detection of fluorescence. I 

found that 0.75 mM BPB was the most convenient concentration that efficiently quenched 

Atto 647N fluorescence from membranes and still allowed the imaging routine. 

Concentrations below 0.5 mM would not quench fluorescence significantly. Long 

illumination exposures of cells in presence of BPB seemed to be toxic. Therefore, laser light 

was strictly used for image acquisition and not for finding the imaging area. 
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Figure 3.13 mCLING unloading, evidenced by BPB fluorescence quenching, locates SV 
exocytosis exclusively at the IHC basal level.  
A. Experimental principle for mCLING loading and unloading using BPB as fluorescence 
quencher. IHCs were stimulated in presence of mCLING (65 mM KCl, 1 minute), labeling 
recycling organelles. Cells were then incubated in a recovery solution (HBSS with Ca2+) for 5 
minutes and BPB was added to quench the Atto 647N fluorescent molecules exposed at the 
plasma membrane (shown as gray molecules). A second round of stimulation in the presence of 
BPB (65 mM KCl, 1 minute) causes the exocytosis of labeled organelles, whose fluorescence is 
also quenched. B. Typical fluorescence images of top, nuclear and basal regions of IHCs treated 
with BPB, before (left panels) or after the second round of stimulation (right panels). 
Fluorescence reduction due to SV exocytosis is apparent only at the cell bases. Scale bar, 10 µm. 
C. Quantification of fluorescence intensity values at top, nuclear and basal levels, expressed as 
percentage of remaining fluorescence after the second round of stimulation (white bars). As a 
control, SV exocytosis was blocked by removal of Ca2+ during the second stimulus (gray bars). All 
measurements are normalized to their initial, before stimulation, intensity values. A significant 
decrease is only obtained for the basal level of the cells (t-test, P < 0.001; 2-6 independent 
experiments were performed, with 8-15 IHCs analyzed in each experiment).  

mCLING fluorescence coming from intracellular organelles was detected in all cell areas 

(top, nuclear and basal) after applying BPB to the solution. After the second stimulus (in 

presence of BPB), fluorescence appeared to be unchanged at the cell top and nuclear levels, 

while being reduced at the basal level (Figure 3.13B). A quantification of the fluorescence 

intensities confirmed this observation (Figure 3.13C, white bars). In control cells, where the 

second stimulation was performed in the absence of Ca2+ to inhibit exocytosis, no significant 

changes in fluorescence were detected at any level (Figure 3.13C, gray bars). This confirms 

that the reduction in fluorescence seen at the base of treated IHCs is directly related to SV 
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exocytosis. The results of this section again support the idea that SV recycling (exo- and 

endocytosis) is preferentially located at the IHC base, while the membrane recycling 

processes at the cell top and nuclear levels are unrelated to the synaptic function.  

3.3.7 Endocytic processes reported by mCLING are dynamin- and 

clathrin-dependent 

In Figure 3.11 I showed that incubation of IHCs with mCLING at low temperatures resulted 

in inhibition of its uptake. This important outcome suggests the potential of mCLING as 

marker for endocytic activity levels. Hence, I used mCLING to study the effects of inhibiting 

two important molecules previously involved in conventional endocytosis (see 

Introduction), and also in SV recycling at conventional synapses (Brodin et al., 2000): 

clathrin and dynamin. 

In order to inhibit clathrin-mediated endocytosis I used pitstop 2, a small molecule (473 Da) 

that binds to the terminal domain of the clathrin heavy chain and hinders its association 

with other proteins like amphiphysin, AP180 and Synpatojanin1, resulting in inhibition of 

clathrin coat formation (von Kleist and Haucke, 2011; von Kleist et al., 2011).  To inhibit 

dynamin activity I used dynasore, another small molecule (322 Da) that permeates the 

plasma membrane and acts as a noncompetitive inhibitor of the GTPase activity of dynamin 

(Macia et al., 2006; Newton et al., 2006). Dynasore has been used to inhibit synaptic vesicle 

recycling in conventional synapses (Chung et al., 2010; Hoopmann et al., 2010; Watanabe et 

al., 2013) and in cells containing ribbon-type synapses like photoreceptors (Van Hook and 

Thoreson, 2012; Wahl et al., 2013) and IHCs (Duncker et al., 2013).  

To study the effects of clathrin and dynamin inhibition in stimulated IHCs, OCs were treated 

during 25 minutes with either pitstop 2 (30 µM) or dynasore (100 µM) in HBSS without Ca2+. 

Afterwards an stimulation protocol was applied as described before: 2 minutes in HBSS 

without Ca2+ with 1.7 µM mCLING, in presence of the inhibitor (same concentration), 

followed by 1 minute HBSS high K+ (65 mM) with mCLING and the inhibitor (same 

concentrations). OCs were washed, fixed and immunostained for the standard vesicular 

marker of IHCs, the Vesicular Glutamate Transporter 3 (VGLUT3). OCs were embedded in 

melamine and cut into 200 nm sections. Control cells were incubated with mCLING using the 

same protocol and buffers, but in absence of the inhibitors. 

STED images of treated cells show that pitstop 2 reduced the amount of endocytosed 

organelles throughout the IHC. The tubular structures normally seen at the cell top and 
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nuclear levels were reduced in number. At the cell base very few structures were visible 

(Figure 3.14A). The same quantification analysis used in Figure 3.12C was applied to 

determine the area occupied by mCLING-labeled structures, reporting a reduction of 

endocytosis down to ∼33% at the cell top/nuclear levels when compared to untreated 

stimulated cells. Endocytosis levels at the cell base went down to ∼7% (Figure 3.14B).  

 
Figure 3.14 Effects of clathrin and dynamin inhibition visualized by mCLING labeling in 
IHCs. 

A. IHCs were incubated with the clathrin inhibitor pitstop 2 (30 µM) for 25 minutes, and were 
then stimulated using 65 mM KCl, for 1 minute in buffer containing mCLING. Endocytosed 
organelles were less abundant than in untreated cells (see Figure 3.12 for reference). Scale bars, 
2 µm. B. The amount of mCLING endocytosis at the top/nuclear and basal levels of pitstop 2 
treated cells was compared to the corresponding values in control cells.  Error bars represent 
mean percentage ± SEM from 63 cell top/nuclear areas and 52 cell bases treated with pitstop 2. 
C. IHCs were incubated with the dynamin inhibitor dynasore (100 µM) for 25 minutes and 
stimulated as described for pitstop 2. Here endocytosis was also reduced at all cell levels. Scale 
bars, 2 µm. D. Quantification of mCLING endocytosis in dynasore treated cells compared to 
control cells. Error bars represent mean percentage ± SEM from 54 cell top/nuclear areas and 
100 cell bases treated with dynasore. In general, clathrin and dynamin inhibition had stronger 
effects at the cell base of IHCs. E. Example of a dynasore-treated cell presenting mCLING-labeled 
structures accumulated at the cell base plasma membrane (white arrowhead). Right panels 
show a zoom in of the depicted area (white dashed-line square). Scale bars, 2 μm and 500 nm, 
respectively.  

Dynasore had the same effects on endocytosis as pitstop 2, with reduced amount of 

mCLING-labeled structures at all cellular levels (Figure 3.14C). Endocytosis levels were 
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reduced to 59% at the cell top/nuclear levels, and to 15% at the cell base (Figure 3.14D). 

Interestingly, while most of the dynasore-treated IHCs had reduced amount of organelles, a 

few cells presented large clumps of mCLING-labeled structures retained at the plasma 

membrane of the cell bottom (Figure 3.14E).  

These results show that inhibition of both, clathrin and dynamin, had stronger effects at the 

cell basal level than at the top and nuclear levels. Considering the data previously presented, 

I could suggest that these two proteins have an important role in SV recycling. The 

molecular mechanisms supporting the remaining endocytosis at the upper levels remain 

unclear, as they seem to be more clathrin- and dynamin-independent. 

3.3.8 Impairment of synaptic vesicle exocytosis reduces mCLING-

reported endocytosis 

The high rates of SV release found in IHCs have to be compensated by equally efficient 

mechanisms of membrane retrieval. The equilibrium between both processes is important 

to guarantee availability of synaptic vesicles and their proteins for future rounds of 

exocytosis, as well as to keep a constant surface area of the cell. One interesting question is if 

the impairment of SV release has also an impact in the levels of endocytosis. To answer this 

question I applied mCLING to OCs dissected from animals lacking the protein otoferlin, 

involved in SV exocytosis and priming (Roux et al., 2006; Pangršič et al., 2010). Otoferlin 

knockout mice (Otof-/-) have pronounced hearing impairment due to a drastic reduction of 

exocytosis levels (Roux et al., 2006). 

OCs from Otof-/- mice were incubated with mCLING in the same stimulation conditions 

described before (section 3.3.5). OCs were subsequently fixed, immunostained for VGLUT3, 

embedded in melamine and cut into 200 nm sections. STED images show an important 

reduction of endocytosed organelles, in a similar way to the inhibition of clathrin and 

dynamin (Figure 3.15A). When compared to wild type animals, endocytosis was reduced to 

∼32% at the cells top/nuclear levels, and to ∼8% at the cell base (Figure 3.15B).  

These data are consistent with the model of basal synaptic recycling, suggesting that an 

impairment in SV release entails reduction in compensatory endocytic processes. It is not 

clear, however, how the reduction on SV recycling would affect endocytosis at the top and 

nuclear levels of the IHCs. Overall, these experiments demonstrate that mCLING indeed 

reports endocytic membrane uptake and that it can be easily used for its quantification. 
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Figure 3.15 Impaired SV exocytosis by deletion of the protein otoferlin is accompanied by 
reduced levels of endocytosis in IHCs.  
A. IHCs from otoferlin-deficient animals (Otof-/-), in which exocytosis is completely abolished, 
were stimulated in the presence of mCLING. Endocytosis was reduced, especially at the base of 
the cell. Scale bars, 2 µm. B. The amount of endocytosis was compared to that in wildtype cells at 
the top/nuclear levels and at the basal level of Otof-/-. Error bars represent mean percentage ± 
SEM from 28 cell top/nuclear areas and 26 cell bases. Values are presented as percentage of the 
wildtype condition.  

3.3.9 Membrane recycling at the active zones of IHCs 

The evidence accumulated in the last sections confirms that SVs are not only released but 

also recycled in the basal region of the IHCs. My next objective was to test the ability of 

mCLING, combined with high-resolution STED microscopy, to dissect the membrane 

trafficking processes occurring right at the vicinity of the active zone. Although electron 

microscopy and tomography studies already proposed membrane infoldings and cisterns as 

SV recycling intermediates (Siegel and Brownell, 1986; Lenzi et al., 2002), vesicle 

reformation from those organelles has not been studied in fluorescence microscopy, and the 

temporal dynamics of the whole process are not yet clear.   

Due to the already exposed difficulty to perform high-resolution live imaging in a thick 

tissue, I attempted to describe the process of SV recycling by fixing IHCs after mCLING 

labeling along with different levels of stimulation (10, 25 and 65 mM K+). These were 

compared to the resting and recovered (after 65 mM K+) conditions. Active zones were 

identified by immunostaining against Ribeye, the most abundant protein of the synaptic 

ribbon, responsible for its structure (Schmitz et al., 2000; Khimich et al., 2005; Magupalli et 

al., 2008). mCLING labeling was imaged with STED microscopy and ribeye with confocal 

microscopy from 200 nm melamine sections.  
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mCLING-labeled organelles were studied in a region limited by the plasma membrane 

approximately 3.6 µm wide with center at the synaptic ribbon, and 1.8 µm deep into the 

cytoplasm. Resting cells (no Ca2+) contained sparse round organelles of heterogeneous sizes. 

After a mild stimulation with 10 mM K+, endosome-like structures appeared around the 

ribbon, sometimes making contact with it. The number and size of these structures 

increased with 25 mM K+ accompanied by the appearance of membrane infoldings. After 65 

mM K+ the labeled structures were even more abundant, 41 ± 4.2% (n = 4 independent 

experiments) of those being infoldings still connected to the plasma membrane. After 5 

minutes of recovery following the 65 mM K+ stimulation, the infoldings and endosome-like 

organelles disappeared, to be replaced by a more diffuse, punctate labeling characteristic of 

small organelles (Figure 3.16A). To confirm that the formation of infoldings and large 

endosome-like organelles is a wide spread feature among stimulated active zones, I used a 

MatLab routine to calculate average intensity images of 20-31 active zones for each 

treatment (See section 2.2.7.1 for a description of this analysis).  In the average images the 

same general trend was found: low labeling density at resting conditions, followed by 

gradual increase of objects density and fluorescence intensity as the stimulation grew 

stronger. After recovery, labeling is again homogeneous but brighter than the resting 

condition as result of stimulation-dependent mCLING uptake (Figure 3.16B). 

The previous results can be summarized in a series of events: first, stimulation triggers the 

formation of membrane infoldings around the synaptic ribbon. Eventually those infoldings 

detach from the plasma membrane and give rise to endosome-like structures (cisterns), 

which finally are broken up into reformed SVs. The latter appear to diffuse and intermix 

with other organelles. To determine if those reformed SVs are recruited again to the 

synaptic ribbon, I performed a 65 mM K+ stimulation, followed by a recovery period and a 

second round of stimulation. As a result, a dense layer of mCLING-labeled organelles formed 

around the ribbons. These organelles were smaller than the infoldings and cisterns, and 

sometimes they appeared to make contact with the ribbon. These results are confirmed in 

an average picture of several active zones (Figure 3.16C).  

 



Results   

92 
 

 
Figure 3.16 mCLING reveals the morphology of the organelles that locally recycle SVs at 
the IHCs active zone. 
A. mCLING uptake (red) was evaluated at the area surrounding the synaptic ribbon (ribeye 
immunostaining, green) of IHCs. The different panels show organelles appearing in stimulated 
cells (depolarization for 1 minute with 10, 25 or 65 mM KCl), and after recovery from 65 mM KCl 
depolarization (5 minutes in Ca2+-containing buffer). Endocytic intermediates form during 
stimulation and disappear during recovery, leaving behind smaller, synaptic vesicle-like 
organelles (bottom row). mCLING-labeled and internalized organelles are indicated by the 
dashed white lines. The plasma membrane is indicated by a similar white dashed line. Structures 
that appear to be connected to the plasma membrane (infoldings) are indicated by the dashed 
pink lines. Scale bar, 500 nm. B. Pseudocolor representation of average fluorescence images 
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obtained from 20-31 individual ribbon synapses in all conditions. Note the increase in average 
fluorescence and density around the ribbon upon stimulation (black arrowheads), and its 
redistribution after the recovery period. Scale bar, 1 µm. C. Active zones subjected to two rounds 
of stimulation (65 mM KCl, 1 min each), separated by a 5-minute recovery period. The double-
stimulated cells have, as expected, a denser cloud of labeled organelles around the ribbon 
(compare with bottom row of cells in panel A). This is confirmed by an average picture of 10 
ribbons (right panel). 

3.3.10 Organelles recycling at the basal levels of IHCs colocalize with 

vesicular markers 

The main advantage of using mCLING as endocytosis marker is that the organellar identity 

of recycling membranes can be determined by immunolabeling. This becomes useful to 

establish if the abundant membrane recycling occurring at the IHC base is indeed related to 

SV markers. In this context, I combined mCLING labeling under stimulation conditions 

(65 mM K+, 1 minute) with labeling against three important proteins involved in synaptic 

function: VGLUT3, a typical SVs marker in IHCs, responsible for their refilling with glutamate 

and whose impairment and absence have been involved in deafness (Ruel et al., 2008; Seal 

et al., 2008); Rab3, a small GTPase that recruits synaptic vesicles to the active zone in 

conventional synapses (Geppert et al., 1994a; Geppert and Südhof, 1998), and that has been 

found to co-precipitate with ribeye in sensory synapses, having a potential role in the 

attachment of SVs  to the ribbon (Uthaiah and Hudspeth, 2010); finally, otoferlin, the Ca2+ 

sensor involved in SV exocytosis and priming, previously described in section 3.3.8. After 

immunostaining, samples were embedded in melamine, cut into 200 nm sections and 

imaged under two-color STED microscopy. For quantifying the level of colocalization 

between mCLING and protein signal, Pearson’s correlation values were calculated from ROIs 

of 20×2 pixels located across mCLING-labeled organelles.  

VGLUT3 staining was abundant and present in vesicle-like organelles throughout the IHCs. 

Although this marker was excluded from the tubular structures at the cell top and nuclear 

levels, it colocalized with the organelles endocytosed at the cell base. These results are 

supported by negative Pearson’s correlation values at the top and nuclear levels, and 

positive values at the cell base (Figure 3.17A, D). Similar results were obtained for Rab3, 

which also showed better correlation with organelles at the cell base (Figure 3.17B, D). 
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Figure 3.17 mCLING-labeled organelles at the cell base show better colocalization with SV 
markers than those at the top and nuclear levels 
OCs were labeled with mCLING at stimulating conditions and then immunostained for SV 
markers. Samples were imaged using two-color STED. A. VGLUT3, the main SV marker in IHCs. 
B. Rab3, a second synaptic vesicle marker. C. Otoferlin, a Ca2+ sensing protein. Scale bars, 2 µm. 
D. Pearson’s correlation coefficients were determined for each protein at top, nuclear and basal 
levels. Coefficients are expressed as percent of the maximum expected correlation (% of 
control), obtained from VGLUT3 immunostained cells, incubated with two secondary antibodies, 
each coupled to either Atto 647N or Chromeo494. Error bars represent mean correlation 
coefficient ± SEM (from 66 to 161 mCLING-labeled organelles, from 17 to 48 cells for each 
marker protein).   

Otoferlin staining was abundant at all cell levels and present in organelles of different 

shapes and sizes. An important feature found from the melamine sections, which is not 

evident in confocal microscopy of whole cells, is that at the cell top this protein is mostly 

present in intracellular organelles; at the nuclear level it starts appearing also at the plasma 
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membrane, with an increasing gradient towards the cell bottom. Surprisingly, otoferlin was 

present not only in basal mCLING-labeled organelles, but also in the tubular structures at 

the cell top and nuclear levels. Correlation values were positive for all levels, but still higher 

at the cell base (Figure 3.17C, D).  Interestingly, otoferlin labeling had the highest correlation 

values among all proteins tested (including also the ones used in the two following sections).  

These results demonstrate that, even though synaptic vesicles are present in large numbers 

across the IHC, only those located at the cell base are released upon membrane 

depolarization and therefore recycled. Additionally, these results open new questions about 

the role of otoferlin in IHC physiology, since this is the first study showing the broad 

presence of otoferlin in endocytic organelles. 

3.3.11 Tubular structures at the top and nuclear levels of IHCs have an 

endosomal nature 

After confirming the basal location of SV recycling, I moved to the other pole of the IHC and 

focused on the nature of the tubular structures endocytosed at the top and nuclear levels. I 

set out to determine the organellar identity of those tubules by combining mCLING labeling 

with immunostaining against two organelles sharing the same location: the ER, identified by 

its luminal chaperone calnexin (Danilczyk et al., 2000); and the Golgi apparatus, identified 

by the cis-Golgi-network  organizer GM130 (Nakamura et al., 1995).  

Calnexin labeling was homogeneous throughout IHCs. Despite its sparse distribution, it 

always excluded mCLING labeling (Figure 3.18A), reflected in negative correlation values at 

all cell levels (Figure 3.18C).  In contrast, GM130 was only present at a reduced volume of 

the supranuclear compartment, in accordance to previous EM descriptions locating the Golgi 

apparatus exclusively in this cell region (Siegel and Brownell, 1986; Spicer et al., 1999, 

2007). GM130 poorly colocalized with mCLING-labeled structures (Figure 3.18B, C). From 

these results, I conclude that the tubular organelles are not related to ER or the cis-Golgi 

network, and that these organelles do not recycle on the time scale evaluated in this study (3 

minutes). 
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Figure 3.18 Tubular structures at top and nuclear level are not related to ER or cis-Golgi 
After labeling OCs with mCLING at stimulating conditions (65 mM K+), these were 
immunostained for ER and Golgi markers, given the location of these organelles at the IHC top. 
A. Calnexin, a common ER marker active as chaperone in its lumen B. GM130, a resident protein 
of the cis-Golgi network. Scale bars, 2 µm. C. Pearson’s correlation coefficients between each 
protein and mCLING were determined at the cell levels where the proteins were present. 
Calnexin anticorrelated with mCLING. GM130 had low correlation. Coefficients are expressed as 
percent of the maximum expected correlation (% of control) (See Figure 3.17). Error bars 
represent mean correlation coefficient ± SEM (from 211 to 414 mCLING-labeled organelles, from 
44 to 84 cells for each marker protein).   

Having ruled out an ER or Golgi identity, I next tested two SNARE proteins implicated in the 

retrograde traffic between early/recycling endosomes and the trans-Golgi-network, 

Syntaxin 6 (Sx 6) and Syntaxin 16 (Sx 16) (Mallard et al., 2002; Brandhorst et al., 2006; Jahn 

and Scheller, 2006). Both proteins were found in tubule-like structures and round 

organelles, mainly at the cell top and nuclear levels. At the cell base the staining was poor 

and only present in round structures (Figure 3.19A, B). Colocalization with mCLING was 

strong at the top and nuclear levels, confirmed by positive Pearson’s correlation values 
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(Figure 3.19C). For comparison, the SNARE protein Vti1a, which has been implicated in 

homotypic fusion between early endosomes (Brandhorst et al., 2006), was also tested. Vti1a 

distribution was similar to that of Sx 6 and Sx 16, present at the supranuclear level, and 

almost absent at the cell base. In contrast to Sx 6 and Sx 16, Vti1a had low correlation values 

with mCLING (Figure 3.19C).  

 
Figure 3.19 The tubular organelles endocytosed at the IHC top and nuclear levels have 
endosomal identity 
OCs labeled with mCLING at stimulating conditions (65 mM K+) were immunostained for three 
SNARE proteins. A. Syntaxin 6, and early endosome marker also implied in transport toward 
TGN. B. Syntaxin 16, implicated in transport from early/recycling endosomes to the TGN. Scale 
bars, 2 µm. C. Pearson’s correlation coefficients between Sx 6, Sx 16 and Vti1a, an early 
endosome marker, and mCLING were determined at top and nuclear levels depending on the 
location of each protein. While Sx 6 and Sx 16 had good correlation with mCLING, Vti1a had low 
correlation. Coefficients are expressed as percent of the maximum expected correlation (% of 
control) (See Figure 3.17). Error bars represent mean correlation coefficient ± SEM (from 313-
626 mCLING-labeled organelles, from 12-89 cells for each protein).   

The previous results indicate that the studied tubules participate in constitutive endosomal 
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traffic at a stage posterior to early endosomes, with its main location at the upper half of the 

IHCs. 

3.3.12 mCLING-labeled organelles surrounding the cuticular plate 

participate in constitutive traffic to lysosomes 

A collection of mCLING-labeled organelles was always seen in the area surrounding the 

cuticular plate. Very active processes of endocytosis in a ring of cytoplasm surrounding the 

IHC cuticular plate have been described before (Kachar et al., 1997).  Electron micrographs 

revealed abundant coated and uncoated vesicles in the pericuticular region, and 

mitochondria, microtubules and lysosomes in the subcuticular cytoplasm. All these 

organelles could be implicated in constitutive exchange of material between the IHC and the 

endolymph (Kachar et al., 1997; Spicer et al., 1999).  

To study the nature of this local recycling I focused on the lysosome membrane associated 

protein 1 (LAMP1), a glycoprotein responsible for selective fusion in late endosomes and 

lysosomes (Chen et al., 1985; Dunster et al., 2002). After mCLING labeling and 

immunostaining for LAMP1, 200 nm melamine sections were imaged with two-color STED 

microscopy. In agreement to previous fluorescence microscopy studies (Goodyear et al., 

2010), LAMP1 signal was found mainly located in the upper part of the IHC apical region, 

underlying the cuticular plate. Some of the mCLING-labeled organelles found at this region 

also contained LAMP1 (Figure 3.20A, and inset). Pearson’s correlation values between 

LAMP1 and mCLING labeling were relatively high at the subcuticular area, contrasted by 

poor correlation everywhere else (Figure 3.20B). An important conclusion of these data is 

that newly endocytosed material is delivered towards late endosomes and lysosomal 

compartments within a relatively short period (around 3 minutes). These findings not only 

support the existence of a very active local recycling process taking place right around the 

cuticular plate, but also add up to the idea that IHCs reserve their apical region for 

constitutive membrane trafficking pathways.  



  Results 

99 
 

 
Figure 3.20 mCLING-labeled organelles surrounding the cuticular plate contain the late 
endosome/lysosome marker LAMP1 
A. IHCs were labeled with mCLING, fixed and immunostained for the late endosome/lysosome 
marker LAMP1. Melamine sections were imaged in two-color STED microscopy. LAMP1 was 
abundant in the cytoplasmic volume that surrounds the cuticular plate, where it colocalized with 
some of the mCLING-labeled organelles (arrowheads). In other cell regions LAMP1 was not 
abundant and did not colocalize with the mCLING signal. Scale bar, 1 µm, zoom-up 0.5 µm. 
B. Pearson’s correlation coefficients for LAMP1 and mCLING were calculated as for Figure 3.17. 
Note correlation at the level of the cuticular plate. 125-403 organelles were analyzed for each 
cellular region, from two independent experiments. 

3.3.13 Functional separation of constitutive and synaptic recycling in 

IHCs is confirmed by multi-color epifluorescence imaging 

Taking into account the evidence presented so far, I can conclude that IHCs compensate for 

the lack of a synaptic bouton by functionally and spatially separating the housekeeping 

trafficking pathways from the synaptic function. Accordingly, the organelles involved in the 

constitutive membrane trafficking pathways (e.g. the tubular type of endosomes 

characterized here, late endosomes/lysosomes and Golgi apparatus) were found to reside 

mainly at the upper half of the IHC. Conversely, SVs undergoing exocytosis and the 

intermediate structures involved in their recycling were exclusively located at the basal half 

of the cell.  
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In order to strengthen this hypothesis, a multi-color analysis simultaneously showing 

endocytosed organelles and markers for both, constitutive and synaptic function, would be 

necessary. The main difficulty to image such experiment in high-resolution STED 

microscopy was the limitation of our setup to only two colors. To circumvent this drawback 

an inexpensive solution was found: melamine blocks containing treated OCs were cut into 

20-nm thick sections and imaged under a conventional epifluorescence microscope (instead 

of the 200-nm sections used so far for STED microscopy). In this way, high-resolution was 

achieved by physically reducing the axial dimension of the sample. The improved Z-

resolution (25 to 30-fold higher than for a confocal microscope) allowed me to perform 

correlation analyses between the few copies of primary antibodies contained in the 

ultrathin slices.  

OCs were labeled with mCLING at stimulation conditions (65 mM K+, 1 minute) and 

immunostained for two of the already used proteins in different combinations: VGLUT3 and 

otoferlin, VGLUT3 and syntaxin 6, otoferlin and syntaxin 16, and finally syntaxin 6 and 

syntaxin 16. When the two synaptic-related proteins VGLUT3 and otoferlin were labeled, 

triple colocalization with mCLING was only found at the basal level of the IHCs. In contrast, 

combination of VGLUT3 with the constitutive marker syntaxin 6 showed no coincidence of 

their signals at endocytic organelles, at any cell level. As expected, syntaxin 6 and syntaxin 

16 colocalized with endocytosed organelles at the cell top and nuclear levels. Finally, 

otoferlin was found to colocalize with syntaxin 16 and mCLING at the cell top and nuclear 

levels, given its broad distribution (Figure 3.21A). Pearson’s correlation values were 

calculated for the two immunostaining signals only in mCLING-labeled organelles. The 

obtained values go in agreement with the previous observations (Figure 3.21B).  

Overall, multi-color imaging confirmed that the top and nuclear levels of IHCs are dedicated 

to support constitutive membrane trafficking, while the cell base is mainly responsible for 

sustaining the synaptic function.  
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Figure 3.21 Separation of constitutive and synaptic recycling pathways is confirmed by 
multi-color imaging 
A. After mCLING labeling under stimulation conditions, OCs were immunostained for VGLUT3 
and otoferlin (first row of panels), for VGLUT3 and syntaxin 6 (second row), for otoferlin and 
syntaxin 16 (third row), and finally for syntaxin 6 and syntaxin 16 (fourth row). Samples were 
embedded in melamine, cut into 20-nm sections and imaged using a conventional 
epifluorescence microscope. Dashed white lines indicate the cell plasma membrane at every 
level. Note that synaptic markers (VGLUT3 and otoferlin) co-localize with mCLING only at the 
basal region (arrowheads), while VGLUT3 and syntaxin 6 do not co-localize at any cell level. The 
wide spread otoferlin co-localizes with syntaxin 16 at the top and nuclear levels. The two 
constitutive markers syntaxin 6 and syntaxin 16 also colocalize at those levels (arrowheads). 
Syntaxin 6 and syntaxin 16 were not abundant at the basal level. Scale bar, 2 µm. B. Pearson’s 
correlation coefficients for the two immunostained proteins were selectively calculated on 
mCLING-labeled organelles. The values confirm the colocalizations seen in A. Otoferlin and 
syntaxin 6 or syntaxin 16 correlate in the mCLING-labeled organelles at the top and nuclear 
levels. VGLUT3 correlates best with otoferlin at the basal level. At least 100 organelles were 
analyzed for each condition, at each cellular level.  

  



Results   

102 
 

3.4 Studies on synaptic vesicle recycling and protein 

distribution in hippocampal neurons using mCLING 

As presented in the Introduction and the Results sections, mCLING was initially designed as 

a tool to answer the long-standing questions regarding the location of SV recycling in IHCs. I 

hope that the presented work convinced the reader that mCLING not only answered these 

questions successfully, but also offered new insights into the functional adaptations that 

IHCs underwent to perform efficient membrane traffic. As to now, mCLING was tested in 

large cells, relatively easy to image and where membrane recycling processes were not 

spatially constrained. The next objective was to test mCLING uptake in smaller cellular 

compartments. For this purpose, I moved to the synaptic boutons of hippocampal neurons, a 

preparation that despite its intense investigation still hosts controversial debates about 

synaptic vesicle recycling and protein organization.  

Uptake into endocytic vesicles largely relies on the ability of a marker to distribute along the 

plasma membrane (see section 3.2). This becomes even more important in preparations 

were all events occur in a restricted membrane region, as is the case for the presynaptic 

terminal.  Incubation of neurons with 0.4 – 0.68 µM mCLING showed homogeneous labeling 

of the neuronal plasma membrane, not only in the cell soma, but also in the thin processes 

(Figure 3.22A). After showing that mCLING does not affect the plasma membrane integrity 

of COS7 cells at the concentrations required for appropriate membrane labeling and uptake 

(Figure 3.5), and that it does not disturb the recycling of organelles back to the plasma 

membrane (Figure 3.6), I complemented these assays with an experiment to evaluate the 

effect of mCLING on synaptic vesicle recycling in cultured hippocampal neurons. To this end, 

neurons were transfected with a VAMP2-pHluorin (synaptopHluorin) construct (see Figure 

1.2). After 5 minutes of mCLING application, neurons were stimulated with a train of 60 

action potentials (AP), and 40 seconds later with a train of 600 AP, while being imaged for 

pHluorin signal (See Methods sections 2.2.2.5 and 2.2.2.6). Fluorescence traces show that 

mCLING did not affect the amount of released synaptic vesicles or the kinetics of their 

recycling (Figure 3.22B). No significant differences in mean SV release were found between 

mCLING-treated and untreated cells (Figure 3.22C). The presented data confirm that 

mCLING does not have negative effects on the synaptic physiology of cultured neurons. 
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Figure 3.22 mCLING does not affect synaptic vesicle recycling in hippocampal neurons. 
A. mCLING (0.68 µM) labels the plasma membrane of hippocampal neurons in a similar fashion 
as FM 1-43, typically used to study SV recycling in these cells. B. Cultured hippocampal neurons 
were transfected with synaptopHluorin (Sankaranarayanan and Ryan, 2000). After 8 DIV, 
neurons were incubated for 5 minutes with mCLING and then stimulated at 20 Hz for 3 seconds 
(60 action potentials, AP), followed by a longer stimulus (30 seconds, 600 AP), with an interval 
of 40 seconds. SV exocytosis is seen as increases in synaptopHluorin fluorescence. The 
concomitant endocytosis is seen as fluorescence decay. Typical traces for a control cell (black) 
and a mCLING-labeled cell (red) are shown. The two stimulations are represented by the black 
bars over the traces. C. The mean amount of vesicles exocytosed after every stimulus is 
presented as normalized % of the total pool of vesicles. The latter was obtained by adding 
ammonium chloride at the end of the experiment to make all synaptopHluorin molecules visible. 
Exocytosis levels were comparable between mCLING-treated and untreated cells. Error bars 
represent mean percentage ± SEM. Control neurons: 6 experiments, 138 boutons analyzed. 
mCLING treated neurons: 5 experiments, 103 boutons analyzed. 

In the following three sections I will show the use of mCLING to study yet unanswered 

aspects of synaptic function. These experiments were performed in collaboration with my 

colleague Sven Truckenbrodt.  

3.4.1 Actively and spontaneously released synaptic vesicles differ in 

protein composition 

As explained in the Introduction, a topic of ongoing debate in the synaptic field is the nature 

of the spontaneously released synaptic vesicles. A first possibility is that they belong to the 

same pool of vesicles that normally serve stimulus-dependent neurotransmitter release, and 

are therefore recorded as fortuitous fusion events of readily releasable vesicles that are 

already primed (Groemer and Klingauf, 2007; Hua et al., 2010; Wilhelm et al., 2010; Loy et 

al., 2014). Another possibility is that spontaneously and actively-recycling vesicles actually 
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belong to different pools that diverge not only in their release (Sara et al., 2005; Mathew et 

al., 2008; Fredj and Burrone, 2009) but also in their retrieval mechanisms (Chung et al., 

2010; Hua et al., 2011b). Furthermore, it has been proposed that spontaneously and 

actively-released synaptic vesicles differ in their molecular composition (Hua et al., 2011b; 

Ramirez et al., 2012) (Figure 3.23A).    

The molecular composition of spontaneously recycled vesicles has been mainly studied by 

overexpressing fluorescently-tagged or truncated versions of synaptic and endosomal 

proteins (Hua et al., 2011b; Ramirez et al., 2012). The use of mCLING as fixable endocytosis 

marker offers the perfect alternative to look at endogenously expressed vesicular proteins 

without interfering with the normal synaptic physiology. For this purpose, we selectively 

labeled spontaneously or actively released synaptic vesicles and studied their molecular 

composition by subsequent immunostaining against different markers for SVs and proteins 

involved in constitutive trafficking. Actively released vesicles were labeled by incubating 

neurons in mCLING (0.68 µM) during the delivery of electric stimulation at 20 Hz, for 30 

seconds. After a recovery period of 5 minutes, neurons were fixed (4% PFA and 0.2% 

glutaraldehyde). Spontaneously released synaptic vesicles were labeled by incubating the 

neurons with mCLING for 15 minutes in presence of tetrodotoxin (TTX), a blocker of 

voltage-activated Na+ channels used to stop the network electric activity to only allow 

spontaneous vesicle release (Wilhelm et al., 2010). After this treatment, cells were directly 

fixed.  Separate immunostainings for five synaptic proteins (VGLUT1/2, synapthophysin, 

VAMP2, synaptotagmin 1 and synapsin) and three endosomal proteins (syntaxin 13, Vti1a 

and VAMP4) were performed. Neurons were embedded in melamine and sectioned at 40 to 

50 nm for two-color STED imaging.  

 



  Results 

105 
 

 
Figure 3.23 mCLING reveals differences in molecular composition between actively and 
spontaneously released SVs  
A. Experimental principle: neurons were incubated with mCLING in presence of either electrical 
stimulation or TTX, to label actively or spontaneously recycled SVs respectively. Neurons were 
then fixed, immunostained, embedded in melamine and cut into 40-50 nm thick sections. Two-
color STED microscopy of those sections was employed to estimate differences in molecular 
composition between the two types of recycling vesicles. B. Representative images for mCLING 
(red) and two proteins (green) of actively and spontaneously labeled synaptic boutons. Scale 
bar, 500 nm. C. A group of vesicles for every protein labeling and condition were stacked, aligned 
and averaged to determine the presence of the evaluated proteins in mCLING-labeled vesicles. 
Images in red show the average mCLING signal; green images show the corresponding average 
immunostaining signal. Dashed circles indicate the position of the average SV. Note that some, 
but not all proteins, coincide with the location of the average SV. The protein cloud at the upper 
left area of the green images corresponds to other mCLING-labeled and unlabeled vesicles in the 
surrounding area. Scale bar, 500 nm. D. Enrichment within mCLING-labeled vesicles was 
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calculated for all proteins, based on the basal fluorescence in the vicinity. The bars show means 
± SEM from 100-500 mCLING-labeled vesicles. n.s., no significant difference (t-test, P > 0.05). *, 
significant difference (t-test, P ≤ 0.05). **, significant difference (t-test, P ≤ 0.01). ***, significant 
difference (t-test, P ≤ 0.001).  

mCLING-labeled vesicles were visible inside synaptic boutons in both, inhibited and 

stimulated conditions. Immunostaining for synaptic and non-synaptic proteins was indeed 

also present inside boutons. As explained in section 3.3.5, plasma membranes appear 

discontinuous in these images due to lipid extraction during the fixation and 

permeabilization procedures (Figure 3.23B). mCLING and immunostaining images were 

analyzed to establish the presence of the different proteins in spontaneously and actively 

released synaptic vesicles. To this end, at least 100 SVs for every condition and every 

protein were overlapped and rotated until finding perfect matching between structures and 

membranes, in a similar analysis to the one used in Figure 3.16B, to generate average 

images for both the mCLING and the immunostaining channel. The average images give an 

idea of how abundant every protein is in the evaluated vesicles (Figure 3.23C). Using these 

average images, the levels of protein enrichment inside vesicles, normalized to background 

levels, were calculated. This analysis discloses quantitative differences in protein 

composition between the two pools. Spontaneously released vesicles had higher levels of 

the endosomal proteins syntaxin 13 and VAMP4, and significantly lower levels for the 

synaptic vesicle proteins synaptotagmin 1, VAMP2 (Synaptobrevin 2) and synapsin. 

Nevertheless, other synaptic vesicle proteins like the glutamate transporter VGLUT1/2 and 

synaptophysin were found in comparable levels.  These results indicate that spontaneously 

and actively released synaptic vesicles are indeed two different organelle populations.  

3.4.2 mCLING surface labeling for the study of membrane-associated 

proteins 

A readily retrievable pool of presorted and preassembled synaptic vesicle proteins has been 

suggested to remain stranded on the plasma membrane. Upon stimulation, this pool could 

drive a first wave of endocytosis upon stimulation, in order to compensate for the time that 

requires to create clathrin coats on recently exocytosed membranes (Sankaranarayanan and 

Ryan, 2000; Gandhi and Stevens, 2003; Fernández-Alfonso et al., 2006; Wienisch and 

Klingauf, 2006). This hypothesis would imply that in order to regenerate synaptic vesicles 

from this pool of molecules, the relative abundance of every protein should reflect that of 

the average synaptic vesicle. However, a variety of studies replicating pHluorin fusion for 

different synaptic proteins have reached varying values for the fraction of molecules 
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remaining at the membrane:  ~2% for VGLUT1 (Balaji and Ryan, 2007), ~8% for 

synaptophysin (Granseth et al., 2006), ~10-24% for synaptobrevin (Sankaranarayanan and 

Ryan, 2000; Granseth et al., 2006) and ~22% for synaptotagmin (Fernández-Alfonso et al., 

2006). These differences would suggest that the stranded pool is rather the result of varying 

post-exocytosis retrieval efficiencies among the different synaptic vesicle proteins. With the 

aim to study this question by an overexpression-independent method, we used mCLING 

labeling of the plasma membrane as reference point to discern between native 

immunostained proteins residing at intracellular organelles and those associated to the cell 

surface. Moreover, we included in the analysis Rab3 and synapsin, two cytoplasmic proteins 

that transiently associate with synaptic vesicles and therefore cannot be coupled to 

pHluorin. 

First, cultured hippocampal neurons were labeled with mCLING for 5 minutes at low 

temperature (2-4°C), to selectively label the plasmalemma and estimate the amount of 

proteins present on it at resting conditions. Neurons were subsequently fixed (4% PFA and 

0.2% glutaraldehyde) and immunostained for the synaptic proteins VGLUT1/2, 

synaptophysin, synaptotagmin 1, VAMP2, synapsin and Rab3 (Figure 3.24A). After 

immunostaining, cells were embedded in melamine, cut into 40-50 nm sections and imaged 

by two-color STED microscopy. Using a customized MatLab routine (by Silvio O. Rizzoli), the 

amount of protein signal contained in the plasma membrane was measured and compared 

to the total amount of protein found in the axons (see examples in Figure 3.24B). To avoid 

the quantification of proteins contained in docked synaptic vesicles, only the protein signal 

coming from the brighter core of the plasma membrane was taken into account. The results 

show that the fraction of proteins present in the plasma membrane ranged between ∼12 and 

~22% for all proteins, indicating that relatively high amounts may be participating in fast 

compensatory recycling of synaptic vesicles (Figure 3.24C). Although these results still 

report certain variability in membrane-associated protein levels across the evaluated 

candidates, this difference is narrower than that reported by pHluroin-based assays. This 

speaks for the high-throughput and fidelity of mCLING labeling coupled to immunostaining. 
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Figure 3.24 mCLING labeling allows the distinction between the organelle- and the 
membrane-associated fractions of synaptic vesicle proteins. 
A.  Experimental scheme: in contrast to conventional immunostaining procedures, were it is 
impossible to recognize the pool of proteins associated to the plasma membrane (right panel), 
surface staining at low temperature provides a reference point to easily identify them (left 
panel). B. Typical example pictures of boutons and axonal membranes labeled with mCLING 
(red) and containing the intracellular and surface fractions of immunostained proteins (green). 
Scale bar, 500 nm. C. Quantitative analysis of the percentage of protein associated with the 
plasma membrane from the total amount of protein. The bars show means ± SEM from 99 to 270 
mCLING-labeled membrane areas. 

3.4.3 Organization of t-SNARE proteins on the plasma membrane and 

organelles  

The diversity of membrane fusion processes taking place in a cell are largely mediated by 

SNARE proteins (Jahn and Scheller, 2006). In the case of synaptic vesicle release, for 

example, the t-SNAREs syntaxin 1 and SNAP-25 form a complex with the v-SNARE 

synaptobrevin, that upon Ca2+ influx leads to membrane fusion. Several studies based on 

diffraction-limited and –unlimited microscopy methods have proposed that syntaxin 1 

(Lang et al., 2001; Sieber et al., 2006, 2007; Bar-On et al., 2012; Pertsinidis et al., 2013) and 

SNAP-25 (Halemani et al., 2010; Rickman et al., 2010) form protein clusters on the axonal 

plasmalemma or the plasma membrane of neuroendocrine cells (PC12 cells), serving as 

membrane domains where synaptic vesicle fusion would preferentially happen.  In contrast, 

no information is available on how these proteins are organized in axonal organelles. As 

explained in the previous section, the difficutly to distinguish the plasmalemma and the 

membranes of intracellular organelles in immunostained preparations makes impossible to 

assign the labeled molecules to one or another. We combined mCLING labeling with 
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immunostaining against syntaxin 1 and SNAP-25 to address this question. 

 
Figure 3.25 Analysis of membrane-associated protein clusters at high resolution using 
mCLING 
A. Experimental principle: in the same way as in Figure 3.24, mCLING labeling performed at low 
temperature allows for the selective labeling of the plasma membrane. Combined with 
immunostaining against proteins of interest, this approach can be used to compare protein 
cluster located on the plasma membrane with those on organellar membranes. B.-C. Top left 
panels show example two-color STED images of mCLING membrane labeling (red)and 
immunostaining (green) against the two SNARE proteins of interest, SNAP-25 (B) and syntaxin 1 
(Sx 1, C). Scale bars, 500 nm. The bottom left panels show average images from 88-90 SNAP-25 
protein clusters, or 115-133 syntaxin 1 protein clusters, selected either from the plasma 
membrane or from the intracellular organellar signal. Scale bar, 500 nm. Right panels show 
average line scans through the protein clusters. Graphs show means ± SEM, from the same 
organelles. n.s., no significant difference in intensity between the peaks of the two distributions 
(t-test, P > 0.05). ***, significant difference (t-test, P ≤ 0.001). 

The same methodological approach used in the last section was adopted here. Cultured 

hippocampal neurons were labeled with mCLING at low temperature, to ensure surface-only 

staining (Figure 3.25A), and were immunostained, embedded, cut into 40-50 nm sections 

and imaged in two-color STED microscopy. This procedure allowed the visual separation 

between protein molecules associated to the plasma membrane and those inside the cell (as 

example see Figure 3.25B and C, left upper panels). Using a customized MatLab routine (by 

Silvio O. Rizzoli), several protein clusters identified in the immunostaining channels were 
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stacked, aligned by their center of mass and averaged (Figure 3.25B and C, left lower 

panels). The average size of the clusters was calculated by measuring fluorescence intensity 

distribution in line scans positioned across the selected clusters. The results show that 

clusters of SNAP-25 in the plasma membrane have comparable sizes to those found on the 

organelles (Figure 3.25B, right panel). On the other hand, syntaxin 1 clusters found on the 

plasma membrane were larger and brighter than their counterparts sitting on the organelles 

(Figure 3.25C, right panel).  
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3.5 Application of mCLING to other biological preparations 

3.5.1 mCLING uptake in stimulated neuromuscular junctions of the 

Drosophila larva 

Wanting to prove that mCLING can work in a wide range of applications, another 

conventional synapse was explored, the larval Drosophila neuromuscular junction (NMJ). 

Relying on the release of large amounts of neurotransmitter to keep up with constant 

muscle contraction, neuromuscular junctions represent an efficient and constantly 

functional synaptic vesicle recycling machinery. Although this synapse has been extensively 

studied (see for review (Rizzoli and Betz, 2005)), details on the morphology and location of 

stimulation-dependent endocytic processes could be further studied with a membrane 

marker like mCLING. 

Preliminary experiments in the third instar Drosophila larva NMJ were carried out. Larvae 

were dissected to expose the ventral muscles and pinned down to a silicone surface. Once 

open, the preparation was preincubated with a 1.7 µM mCLING solution during 2 minutes 

and electrically stimulated thereafter with 160 APs (20 Hz for 8 seconds) in presence of 

mCLING (same concentration). The preparation was immediately fixed in the same way as 

for the organ of Corti, and immunostained against the active zone organizing protein 

Bruchpilot (Kittel et al., 2006). mCLING not only labeled the intricate structure of the 

subsynaptic reticulum, but it also reached the plasma membrane of the presynaptic bouton. 

mCLING (red) was taken up into round and elongated endocytic structures, some of them 

apparently still connected to the plasma membrane. Many of the endocytosed structures 

were found surrounding the active zones (green) (Figure 3.26A, B).  

The image shown in Figure 3.26 confirms that mCLING easily diffuses into complex tissue 

preparations and that combined with immunostaining against the active zones, has a strong 

potential in the study of synaptic vesicle recycling.   
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Figure 3.26 mCLING uptake in the Drosophila larva neuromuscular junction.  
A.  Schematic representation of a single mCLING-labeled presynaptic bouton of the Drosophila 
larva NMJ, taking as example the first one on the left depicted in B. B. The preparation was 
electrically stimulated in presence of mCLING, was fixed and immunostained for the active zone 
protein Bruchpilot, using the nc82 antibody. Note the presence of mCLING uptake within the 
synapse, representing endocytosis, as in IHCs. Scale bar, 1 µm. Sample preparation, processing 
and imaging of the example shown in B. was performed by Goran Kokik, student at the MSc/PhD 
Molecular Biology Program (Göttingen), under my supervision. 

3.5.2 Membrane labeling in microorganisms with mCLING 

3.5.2.1 mCLING can be used to study membrane uptake in yeast cells 

With the advent of FM styryl dyes as fluorescent plasma membrane markers, the red-shifted 

FM 4-64 was established as a routinary endocytosis marker in Saccharomyces cerevisiae 

yeast cells (Vida and Emr, 1995). Being yeast cells a typical biological model for the study of 

membrane recycling and cell cycle, FM 4-64 became a key tool to study the sites of 

membrane uptake, the organelles involved in membrane trafficking between the plasma 

membrane and the vacuole, and the cell functional state. Accordingly, FM 4-64 uptake is a 

standard test to compare the endocytosis efficiency between cells expressing mutant 

versions of traffic-related proteins (see for example (Rieder et al., 1996; Tuo et al., 2013)).  
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Figure 3.27 mCLING is taken up in endocytic compartments in yeast cells. 
A.  S. ceverisiae yeast cells from the strain BY4742 were incubated with FM 4-64 for 20 minutes 
at room temperature and image with an epifluorescence microscope in different conditions: live 
(left panel), after fixation for 30 minutes with 4% PFA + 0.2% glutaraldehyde (middle panel), or 
after permeabilization and immunostaining for tubulin, using an anti-tubulin single-chain 
recombinant antibody (Nizak et al., 2003) (right panels). FM 4-64 labels endocytic organelles in 
living cells, but is lost after fixation and permeabilization. Scale bar, 2 µm. B. Cells were 
incubated with mCLING and processed in the same way as for FM 4-64. mCLING labeled 
endocytosis in the same way as the FM dye, but did not come off membranes after fixation, nor 
after permeabilization. Scale bar, 2 µm. C. Quantification of FM 4-64 fluorescence levels confirms 
its detachment from membranes after fixation and permeabilization.  Bars represent mean 
fluorescence ± SEM from 17 to 24 fields of yeast from every condition. Values are represented as 
percentage of the live condition. D. The same quantification for mCLING confirms its fixability, 
even after immunostaining. The analysis included 24 to 31 fields of yeast cells for each 
condition. 

Using S. cerevisiae cells (strain BY4742) I compared mCLING and FM 4-64 in their uptake, 

fixability and stability after permeabilization. Cells were immobilized on PLL coated 

coverslips and incubated for 20 minutes with either 20 µM FM 4-64 or 0.4 µM mCLING. Cells 

were imaged in epifluorescence microscopy live, fixed, or fixed and immunostained. 

FM 4-64 labeled endocytic organelles in living yeast cells, as described before. However, its 

fluorescence was strongly reduced after fixation and permeabilization, giving a very diffuse 

and poor labeling inside the cells (Figure 3.27A). mCLING also labeled membranes and 

endocytic structures in living cells, in a very similar pattern to FM 4-64. After fixation and 

permeabilization, the advantage of mCLING fixability was evident, since the plasma 

membrane and labeled organelles were still distinguishable with fluorescence intensities 
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similar to the living condition (Figure 3.27B). These observations were validated by a 

quantitative analysis evaluating the percentage of fluorescence loss at the different 

conditions (Figure 3.27C, D). 

 These results confirm that mCLING is compatible with live imaging of endocytic processes 

in yeast, offering an extra advantage of fixing the cells and looking at protein distribution by 

combination with immunostaining. 

3.5.2.2 High-resolution imaging of Escherichia coli membranes with mCLING 

In the past, the labeling of plasma membranes in different gram-negative bacterial species 

has been important to, for example, discover cell division defects and ampicillin resistance 

in mutant cells of Escherichia coli (Uehara et al., 2009); to identify membrane-associated 

proteins as virulence factors in  Pseudomonas aeruginosa (Luckett et al., 2012); or to 

discover important determinants for Vibrio cholerae biofilms formation  (Houot and 

Watnick, 2008). Membrane labeling has also allowed the visualization of chromosomal 

distribution in the gram-positive Staphylococcus aureus (Yu et al., 2010). What all these 

examples have in common is the use of the brightest member of the FM dyes family, 

FM 1-43. They also highlight the importance of simple membrane labeling procedures in the 

study of human pathogens. 

Given the already proved convenience of mCLING over FM dyes, I concluded this study by 

comparing the membrane labeling capacity of mCLING to that of FM 1-43 in cells of the 

species E. coli. In a fast and simple procedure, cells were incubated with either mCLING or 

FM 1-43 for 5 minutes. After a brief wash and immobilization on PLL coated coverslips cells 

were ready to be imaged. Since the fluorescent properties of FM 1-43 are not compatible 

with STED microscopy, its labeling was imaged with conventional confocal microscopy. In 

contrast, the conjugation of mCLING with the more stable dye Atto 647N allowed, as shown 

along this study, its imaging with the high-resolution technique. Both dyes labeled the 

plasma membrane of the bacteria, with no apparent interference from the cell wall 

encapsulating the plasma membrane. While confocal images of FM 1-43 appeared more 

homogeneous in distribution and intensity (Figure 3.28A), the STED images of mCLING 

revealed areas and dots of higher label intensity, in particular at the cell centers and places 

of division (Figure 3.28B).  
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Figure 3.28 High-resolution imaging of mCLING-labeled membranes of E. coli cells. 
A. E. coli bacteria were incubated with FM 1-43 for 5 minutes, washed and imaged using a 
confocal microscope. Scale bar, 1 µm. B. Alternatively, cells were incubated with mCLING in the 
same way as with FM 1-43, and were imaged using STED microscopy. Note the improved 
resolution and detail in membrane labeling pattern in these images. Although both dyes give an 
inhomogeneous labeling, mCLING could better show brighter areas in the central regions. This 
particular feature remains to be studied. Scale bar, 1 µm. 
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4 DISCUSSION 

With the advent of electron microscopy as the first high-resolution microscopy technique, it 

became clear that the plasma membrane not only constitutes a barrier (Robertson, 1960), 

but also an exchange platform between a cell and its environment (Fawcett, 1965; Heuser 

and Reese, 1973; Anderson et al., 1977; Heuser et al., 1979). Another great step in the 

understanding of subcellular composition came with the development of immunostaining 

procedures (Marrack, 1934; Coons et al., 1941; Coon et al., 1942). Moreover, the generation 

of fluorescent lipid-soluble molecules made possible to label membranes in living cells and 

follow physiological processes like organellar trafficking (Klausner and Wolf, 1980; Struck 

and Pagano, 1980; Spiegel et al., 1984; Honig and Hume, 1986). Combinations of these 

approaches have been devised to better understand endocytosis and membrane recycling. 

Photo-oxidation, for example, allows the transformation of an endocytosed fluorescent 

signal into an electro-dense precipitate (Sandell and Masland, 1988; Henkel et al., 1996; 

Gaffield and Betz, 2006). Labeling of antibodies with metallic particles paved the way to 

immunoelectron microscopy (immuno-EM), for the study of organelle molecular 

composition at high-resolution (Singer, 1959; Faulk and Taylor, 1971). Furthermore, photo-

oxidation and immuno-EM have been combined in an effort to establish the molecular 

identity of recycling organelles (Malatesta et al., 2013). This last approach, however, has 

several drawbacks: very low throughput due to laborious sample preparation and extensive 

imaging time; very low labeling density typical of immuno-EM procedures; and labeling of 

several proteins at a time limited by the use of metallic particles of different sizes.  

The main aim of this study was to establish a simpler, more efficient and more reliable 

method for the molecular characterization of trafficking organelles. The main motivation for 

developing such method is the discovery of differences in composition and therefore 

function among membrane-bound compartments making up, for example, diverse routes of 

endosomal trafficking or varying types of synaptic vesicles. These results go against that old 

premise among electron microscopy studies claiming that organelles that are 

morphologically indistinguishable should accomplish the same function. Surprisingly, in 

spite of decades of microscopy advances, the molecular study of trafficking organelles has 

been difficult until now. Although a wide offer of fixable membrane-binding fluorescent 
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molecules has been put in the market to address this question, none of them can be 

satisfactorily fixed. Moreover, their fluorescent properties are not compatible with the lately 

developed high-resolution fluorescence microscopy techniques.  

With this background in mind, the main strategy implemented was to design a fixable, 

fluorescent membrane-binding molecule that would allow the recognition of plasma 

membranes and endocytic organelles, and that could be combined with the identification of 

molecular markers by immunolabeling. Since molecular interactions and protein 

distributions deduced by colocalization under diffraction-limited confocal microscopy can 

be innacurate or misleading, I went for a high-resolution microscopy technique as a better 

way to understand the complexity of subcellular processes (Saka and Rizzoli, 2012). 

Stimulated Emission Depletion (STED) microscopy offers advantages over other far-field 

optical nanoscopy techniques (Hell, 2007), like instant delivery of diffraction-unlimited 

images without the need of further computation and relatively fast imaging times, with a 

resolution ranging from 40 to 100 nm in our own setup. 

The newly developed probe was applicable not only to cultured or isolated cells, but also to 

complex tissues. Indeed, the initial motivation of this study was the understanding of 

synaptic vesicle recycling in a cell type difficult to approach, the inner hair cell (IHC) of the 

mammalian inner ear. In the following sections I will discuss on the process of generating 

the ideal membrane-labeling probe and its successful application to a wide variety of 

biological preparations, with more detail on how the new probe solved long-standing 

questions related to IHC physiology. 
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4.1 The correct recipe for a fixable membrane probe 

I first approached the development of a novel membrane-binding tool by understanding the 

requirements of IHC labeling, as the initial focus of this study. As presented in sections 3.1.1 

and 3.2.1, there are two main difficulties imposed by the biology of IHCs for understanding 

their membrane trafficking processes. First, the presence of mechanoelectric transduction 

(MET) channels at their apical pole that allow the permeation of small molecules, like the 

typically used fluorescent membrane probes, giving an artifactual non-endocytic 

intracellular labeling (Nishikawa and Sasaki, 1996; Gale et al., 2001; Meyers et al., 2003). 

Second, the lack of a synaptic bouton that physically separates synaptic vesicle recycling 

from other constitutive membrane trafficking pathways, making difficult their isolated study 

(Siegel and Brownell, 1986; Lenzi et al., 1999).  

In order to solve the first issue I revisited data obtained previously in our laboratory 

indicating that, at least at room temperature, commonly used membrane/endocytosis 

markers, including styryl dyes from the FM family, entered IHCs through their MET channels 

(Kamin, 2011). By applying these dyes at low temperature (2-4°C) to inhibit endocytic 

processes, I found that they still penetrated the IHCs, confirming an endocytosis-

independent labeling mechanism (Figure 3.1). The previous results were pooled together in 

a publication (Kamin et al., 2014) that not only confirmed previous data on MET channels 

dye permeation (Nishikawa and Sasaki, 1996; Gale et al., 2001; Meyers et al., 2003), but also 

expanded it to other probes. These results highlighted the need of finding a proper marker 

for IHCs endocytosis, whose study was hampered since the last publication on this issue 

using FM dyes almost a decade ago (Griesinger et al., 2005). 

I next generated molecules that combined a protein source of amine groups, a lipidic tail 

and/or a fluorescent component, which would respectively allow aldehyde fixation, 

membrane binding and fluorescence microscopy imaging. When tested on cultured neurons, 

I found that large molecules (e.g. based on transferrin, ∼80 kDa) did not distribute 

homogeneously on the plasma membrane and were not taken up into endocytic structures. 

Smaller molecules (e.g. based on insulin, ∼6.9 kDa) could better distribute on membranes, 

but could not be efficiently fixed, probably due to concealing of their amine groups by the 

tridimensional structure of the proteins (Figure 3.2). On the other hand, however, molecules 

bearing abundant amine groups but not lipidic tails (e.g. fluorescently labeled PLLs) had 

poor fixability, probably due to preferential crosslinking between their own groups than 

with the proteins at the membranes (Figure 3.3). These results indicated that the ideal 
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fixable membrane-labeling probe should have a few amine groups easily accessible 

by aldehyde fixatives, a lipidic component that could help to strong binding and 

stability on membranes, and finally, it should only have a few kDa in mass for a better 

distribution and uptake. Moreover, we concluded that the lipidic component also 

contributes to endocytic uptake, since hydrophilic molecules in the fluid phase were not 

easily taken up, although it should not be too large to avoid trapping at membranous 

structures surrounding tissues (e.g. FM 3-25 with two tails of 18 carbons) (Kamin et al., 

2014). In the context of IHC labeling, application of FM dyes and fluorescently labeled PLLs 

to organs of Corti suggested that the ideal size of the probe should be between 0.7 and 6 kDa 

to compensate between MET channel permeation and efficient tissue penetration. Finally, I 

found that post-labeling procedures like permeabilization (required for later 

immunostaining) and plastic embedding worsened the fixability of all tested probes, 

improving only by the combination of PFA with a better fixative like glutaraldehyde. 

4.2 mCLING labels endocytosis and stays on membranes upon 

fixation and permeabilization 

mCLING was developed as the outcome of the exploratory phase described in the previous 

section. With seven amine groups provided by a lysine polypeptide, a hexadecanoic 

hydrophobic tail (palmityol-) and an exchangeable fluorophore (Atto 647N in this study), 

mCLING is a ∼2 kDa molecule that homogeneously distributes on plasma membranes and is 

efficiently taken up into endocytic organelles (Figure 3.4). When compared to non-fixable 

and fixable dyes from the FM family, this novel molecule was superior in fixability, even 

after permeabilization (Figure 3.7). Surprisingly, whereas mCLING stayed on plasma 

membranes and endocytosed organelles after fixation and detergent treatment, fixable FM 

dyes like AM1-43 and FM 4-64FX detached from those membranes and ended up collected 

in mitochondria-like structures. Taking into account that FM fixable dyes are coupled to only 

one amine group, claimed by the manufacturers to confer fixability, these observations 

confirmed that appropriate fixability of a molecule requires at least several amine groups, 

and that fixation procedures based only on PFA are not sufficient to keep these molecules in 

place.  In order to further confirm these results I searched for previous publications in which 

uptake of fixable FM dyes was combined with only fixation or fixation and immunostaining 

(Wegner et al., 2008; Sousa et al., 2009; Fuenzalida et al., 2011; Mlcochova et al., 2013). 

Remarkably, FM dye labeling ranged between diffuse, diffuse combined with punctae, and 

mitochondrial-like, instead of just punctated as it would be expected from endocytic uptake 
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of either single large organelles or in batch as in synaptic active zones. Interestingly, in one 

of these publications macrophages were labeled with either FM 4-64FX or CellMask 

(commercial name for another amphipathic membrane-binding molecule) and fixed, with 

both dyes giving a mitochondrial-like staining (Mlcochova et al., 2013). Even though the 

manufacturer declares that CellMask is suitable for fixation but not for permeabilization, the 

images show that only fixation already removes the molecule from the plasma membrane. 

This analysis evidences that artifactual labeling as a result of poor fixability has been 

continuously underestimated by researchers and product developers.  

Further experiments showed that in contrast to FM dyes, mCLING is not washable, probably 

due to a more stable inclusion in the membrane provided by its 16-carbon long tail, 

compared to the two shorter tails each of 2 or 4 carbons present in FM 4-64 and FM 1-43, 

respectively. mCLING was also found to be innocuous for the cells at the concentrations 

required for cell labeling and imaging (0.2-0.4 µM). This was concluded from the preserved 

membrane integrity and normal ligand-receptor endocytosis and trafficking in 

mCLING-treated cells (Figure 3.5 and Figure 3.6). Additionally, mCLING was taken up 

indistinctly by different endocytic processes, as evidenced by its colocalization with ligands 

like transferrin, EGF and LDL. mCLING stability after immunostaining also allowed to 

confirm its colocalization with the endosomal marker Syntaxin 6 (Figure 3.8). Altogether, 

mCLING promises to be a suitable pan-endocytosis marker with no toxic effects and 

probably the only one available that is compatible with immunostaining, perfectly fitting 

with the requirements for the molecular characterization of recycling organelles. 

4.3 Membrane trafficking in IHCs 

4.3.1 Technical improvements for the application of mCLING to the 

organ of Corti 

Application of mCLING to organs of Corti demonstrated that it does not permeate the MET 

channels at the apical pole of IHCs. Whereas FM dyes strongly and homogeneously labeled 

IHCs cytoplasm, mCLING labeling was not as strong, revealing the plasma membrane and 

some organelles inside the cells (Figure 3.9). Importantly, mCLING also labeled membranes 

and organelles of other cell types in a comparable intensity, which was not the case for FM 

dyes, whose labeling was much stronger in outer and inner hair cells. Incubation of mCLING 

at low temperature to inhibit endocytosis showed the lack of the dye from the cytoplasmic 

region, or even the arrest of endocytic processes, confirming that mCLING uptake by IHCs is 
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solely dependent on endocytosis (Figure 3.10). 

One major difficulty in the use of mCLING for the study of IHCs was the compact and 

complex structure of the organ of Corti. A physical barrier for mCLING diffusion into the 

tissue was imposed by the tectorial membrane. Due to its mesh-like structure and 

composition, the tectorial membrane worked as a trap for mCLING molecules. Although 

good dissections were important for IHC preservation, they also implicated a tighter contact 

of the cells with the tectorial membrane, reducing the space gap for mCLING passage. 

Diffusion of mCLING into the organ of Corti also took place from the side of the basilar 

membrane. I found that mCLING at a concentration of 1.7 µM (still in the non-toxic range of 

mCLING concentration) required 2 to 3 minutes to reach the IHCs homogeneously and be 

taken up. Labeling protocols were adjusted accordingly in order to stimulate synaptic 

vesicle recycling only in the last one of the 3 minutes of mCLING incubation.  

A second difficulty was the access to IHCs for high-resolution imaging when using the whole 

tissue. This issue was addressed by embedding the organ of Corti in a polymer resin called 

melamine, which was later on cut at convenient thicknesses between 20 to 200 nm. This 

method eased the access to the mCLING-labeled subdiffraction-sized organelles contained in 

the IHCs. Additionally, slicing provided an increased imaging resolution in the Z-axis, 

complementing the improved resolution in the X-Y plane provided by STED microscopy. In 

contrast to other resins, melamine embedding does not require tissue dehydration due to its 

hydrophilic nature, resulting in better tissue preservation. Resin embedding and sectioning 

is becoming a handy method to complement high-resolution microscopy techniques, as it 

allows a more precise study of protein distributions. Melamine can be applied not only in 

tissues but also in cultured cells, e.g. neurons, for estimating protein localization on synaptic 

vesicles (Opazo et al., 2010), or to render tridimensional cell reconstructions (Punge et al., 

2008). The more hydrophobic EPON resin has been also used to obtain thin tissue sections 

that can be later on treated for immunofluorescence labeling, as it was done in the mouse 

retina to study the molecular composition of ribbon synapses at photoreceptor active zones 

(Wahl et al., 2013).  

An important concern among scientist is the reduced accessibility to high-resolution 

microscopy techniques due to their extremely high cost. In this study I showed that just by 

sectioning the melamine-embedded samples into ultrathin sections of 20 nm, a normal 

epifluorescence microscope can be converted into a high-resolution one, since only a few 

copies of the fluorescently labeled antibodies can be captured in such reduced volume 
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(Figure 3.21). Even though the resolution in the X-Y plane remains the same (200-300 nm), 

the improved Z-resolution still allows a good estimation of protein presence on mCLING-

labeled organelles. Although one could think that the fluorescent signal contained in 20-nm 

sections is not enough to be detected, only imaging exposure times required adjustment, but 

not concentrations of mCLING or secondary antibodies.  

4.3.2 Endocytosis in IHCs 

mCLING labeling revealed an intense endocytic activity in IHCs. A significant part of this 

membrane turnover is likely related to constitutive membrane trafficking pathways, since 

abundant mCLING-labeled structures were already seen in non-stimulated cells. 

Interestingly, the labeled structures had a wide variability in morphology and size. Starting 

at the cell top and nuclear levels, long tubular structures seem to form a complex alternated 

by large round endosome- and small vesicle-like structures. At the cell base, the large and 

long tubular structures were not present, leaving only endosome- and vesicle-like organelles 

(Figure 3.12). These results are in agreement with a previous study performed in our 

laboratory, in which FM 1-43 labeling in IHCs was followed by photo-conversion and EM 

processing in order to discern between the truly endocytosed dye molecules, and those that 

permeated the MET channels (Kamin et al., 2014). Electron-dense signal was also found in 

tubular and round structures with similar distributions to the mCLING-labeled ones seen in 

this study (See Figure 1.5). Our results are also similar to those obtained by Siegel and 

Brownell (1986), who studied horseradish peroxidase (HRP) uptake by IHCs in anesthetized 

animals, later revealed by DAB oxidation and EM processing. After incubations for 15-30 

minutes, they found that at the cytoplasmic region surrounding the active zones, the HRP 

was taken up into coated and uncoated vesicles and short tubules, which could correspond 

to the endosome-like structures seen with mCLING. At the apical pole they also observed 

large quantities of tracer bound to short tubular structures, vacuoles, vesicles and 

sometimes cisterns of the trans-Golgi network.  

Siegel and Brownell proposed that all endocytic events in IHCs, constitutive and synaptic, 

happen at the basal pole, followed by upwards transport, based on the preferential labeling 

of basal structures in incubations as short as 3 minutes. Taking my results into account 

(Figure 3.3), I could think of this assumption as a misinterpretation of the poor diffusion of 

HRP into the organ of Corti, that due to its large size (∼44 kDa), could not reach the top of 

the cells to report apical uptake in such a short period. It is surprising that they did not 

report the long tubular structures at the apical and nuclear levels that we see with mCLING 
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(Figure 3.12) and FM 1-43 photo-oxidation (Kamin et al., 2014). One explanation could be 

that even after 15-30 minutes, HRP does not manage to homogeneously label the IHC 

surface, reporting only very few endocytic events. Moreover, due to those long incubation 

periods, it is likely that a large proportion of the vesicles they observed were the remnants 

of the originally endocytosed structures after their processing by the trafficking/recycling 

machinery, therefore underestimating the presence of larger, tubular endocytic 

intermediates. This assumption is based on our previous observations of fast post-endocytic 

processing (within 5 minutes) of membrane intermediates into smaller structures (Kamin et 

al., 2014). The small size of mCLING has therefore a technical advantage over larger tracers 

like HRP.  

Whereas both our previous study (Kamin et al., 2014) and the one from Siegel and 

Brownell(1986) could only analyze a few cells due to the technical challenges associated to 

EM, mCLING labeling combined with STED microscopy allowed me to image tens of cells per 

organ of Corti in a relatively short time. This adds to the reproducibility and reliability of the 

method developed in this study.  

4.3.3 Synaptic vesicle recycling in IHCs 

4.3.3.1 Synaptic-related membrane trafficking occurs at the IHC base 

mCLING was first envisioned to establish the origin of the membranes that supply synaptic 

vesicle recycling in IHCs. As mentioned above, Siegel and Brownell (1986) pointed to local 

recycling processes taking place in the area surrounding the ribbon type active zones at the 

cell base. Similar results were obtained by Lenzi and collaborators (2002), who described a 

strong membrane remodeling process in the vicinity of stimulated synaptic ribbons. A 

converse view proposed that apical endocytosis is the most important membrane source for 

vesicle reformation, based on FM 1-43 uptake and imaging (Griesinger et al., 2002, 2005). 

This latter theory, however, was challenged by a series of publications suggesting that 

FM 1-43 permeates the MET channels of different types of hair cells, resulting in a 

misleading labeling that is not endocytosis-dependent (Nishikawa and Sasaki, 1996; Gale et 

al., 2001; Meyers et al., 2003). Since then, no further study intended to trace endocytosis in 

hair cells. I aimed to solve this apical-basal recycling duality by quantifying the amount of 

mCLING endocytosed at the different IHC levels (top, nuclear and basal) in resting and 

stimulated conditions. I determined that compensatory endocytosis following synaptic 

vesicle release exclusively occurs at the cell base (Figure 3.12). Accordingly, experiments 
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using stimulated mCLING loading followed by stimulated unloading confirmed that mCLING-

labeled synaptic vesicles are only exocytosed at the cell base (Figure 3.13). These results 

agree with depolarization-evoked increases of VGLUT1-pHluorin signal preferentially 

localized at the IHC active zones (Neef et al., 2014), and refute the apical-endocytosis model 

of synaptic vesicle retrieval (Griesinger et al., 2002, 2005).  

Overall, it appeared clear that the IHC basal pole is dedicated to the membrane recycling 

processes associated with synaptic function. This assertion was further confirmed by 

correlation analysis between mCLING labeling and immunostaining against proteins 

associated to synaptic vesicles, like the glutamate transporter VGLUT3 and the exocytosis 

regulator Rab3. In accordance with the previous results, though IHCs are completely filled 

with synaptic vesicles from the cell top to the bottom, only the vesicles at the cell base were 

found to contain mCLING signal, meaning that only those participate in neurotransmitter 

release and are recycled back into the cell (Figure 3.17A, B, D). The role of the non-releasing 

vesicles remains unknown. Due to their proximity to the Golgi-apparatus could be possible 

that the vesicles located at the top and nuclear levels are the youngest and future releasing 

ones. Although otoferlin, the calcium sensor that triggers synaptic vesicle exocytosis in IHCs, 

was found in endocytic organelles throughout the cell, its correlation with mCLING signal 

was still higher at the cell base (Figure 3.17C, D). The function of otoferlin will be further 

discussed in section 4.3.3.3. The fact that the organelles endocytosed at the cell top and 

nuclear levels did not contain synaptic vesicle markers, indicates that they are implicated in 

other modalities of membrane trafficking related to cell constitutive function. In section 

4.3.4 this hypothesis is discussed in more detail. 

4.3.3.2 Dynamin and clathrin as molecular players of synaptic vesicle 

recycling  

Up to now, two modes of endocytosis have been postulated to sustain synaptic vesicle 

retrieval in conventional synapses at physiological stimulation conditions, CME and 

kiss-and-run. Whereas strong evidence among electron microscopy and electrophysiological 

studies support the existence of CME, kiss-and-run remains a controversial topic in the field, 

mostly sustained by the temporal and energetic advantages that it could theoretically 

contribute to synaptic physiology (Harata et al., 2006a; Wu et al., 2007; Smith et al., 2008). 

Hence, CME is likely the main mechanisms responsible for vesicle reformation in 

conventional neuronal boutons (Granseth et al., 2006). Its relevance has been also validated 

in ribbon type synapses by the presence of clathrin coated pits and coated vesicles in the 
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vicinity of active zones in hair cells (Siegel and Brownell, 1986; Lenzi et al., 2002), 

photoreceptors (Rea et al., 2004; Wu et al., 2007; Fuchs et al., 2014) and bipolar cells 

(Logiudice et al., 2009), and by capacitance measurements of pharmacologically treated 

synapses (Neef et al., 2014). Moreover, the presence of dynamin at active zones (Wahl et al., 

2013; Fuchs et al., 2014), the reduction of endocytosis rates after perturbing dynamin 

function by molecular blockers (Jockusch et al., 2005; Logiudice et al., 2009; Van Hook and 

Thoreson, 2012; Neef et al., 2014), and the visual and hearing impairments in a dynamin-1 

mutant (Boumil et al., 2010), support the role of CME and perhaps other 

dynamin-dependent mechanisms in the highly active ribbon synapse. Here, I studied the 

role of clathrin and dynamin in IHC endocytosis by inhibiting the formation of clathrin coats 

with the molecule pitstop 2, or by blocking the GTPase activity of dynamin with dynasore. 

Quantification of mCLING uptake levels in treated cells showed an overall reduction of 

endocytosis throughout the IHC. Especially, endocytosis at the cell base, which seems to 

correspond to synaptic vesicle recycling, was more dependent on these two molecules than 

the endocytosis at the cell top and nuclear levels (Figure 3.14). Interestingly, in some of the 

dynasore-treated cells membrane clumps sitting on the cell base plasma membrane where 

found. Similar structures have been described before by EM imaging of neuronal synaptic 

terminals from dynamin knockout mice (Milosevic et al., 2011; Ferguson and De Camilli, 

2012).  

It was surprising that dynasore, which should affect other dynamin-dependent endocytosis 

mechanisms besides CME, had milder effects than pitstop 2. This opened the question on 

whether the remaining endocytosis was the result of incomplete dynamin inhibition or the 

activity of other dynamin- and clathrin-independent modes of endocytosis. To evaluate the 

first possibility I also used Dyngo-4a, a more potent hydroxylated derivative of dynasore 

that has been replacing it in the last years (Howes et al., 2010; Harper et al., 2011; 

McCluskey et al., 2013; Neef et al., 2014). Although an apparent reduction of endocytosis 

was observed, Dyngo-4a gave a strong autofluorescent signal in the far-red range of the 

spectrum, making the imaging of mCLING impossible (640 nm excitation, data not shown). 

In the last years, dynasore and dyngo-4a became standard tools to perturb synaptic function 

at conventional (Newton et al., 2006; Hosoi et al., 2009; Chung et al., 2010; Harper et al., 

2011) and ribbon type synapses (Jockusch et al., 2005; Logiudice et al., 2009; Van Hook and 

Thoreson, 2012; Wahl et al., 2013; Neef et al., 2014). However, a recent study reporting 

off-target effects on other cellular processes (Park et al., 2013) calls for a careful 

interpretation when using these two drugs. Alternative approaches to study dynamin and 
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CME function in IHCs could include characterization of mutant protein versions (Neef et al., 

2014) and the use of peptides interfering with protein-protein interactions (Jockusch et al., 

2005).    

In summary, the results of this and previous studies confirm the relevance of dynamin and 

CME in IHC synaptic vesicle recycling.  

4.3.3.3 A local model for synaptic vesicle recycling 

Local membrane uptake in areas surrounding ribbon-type active zones has been reported in 

hair cells (Siegel and Brownell, 1986; Lenzi et al., 1999, 2002), retinal bipolar neurons 

(Logiudice et al., 2009) and photoreceptors (Fuchs et al., 2014), using electron microscopy 

techniques. I wanted to establish whether mCLING uptake, combined with STED 

microscopy, could also report such endocytosis processes in high detail. In this way, I could 

narrow down the location of the synaptic recycling processes seen at the IHC base. By 

looking at the morphology and distribution of mCLING-labeled organelles found in the 

vicinity of IHC synaptic ribbons, I concluded that synaptic vesicle recycling is indeed a local, 

multistep process. First, stimulation triggers synaptic vesicle exocytosis, which is 

compensated by the formation of membrane infoldings arising from the plasmalemma 

surrounding the synaptic ribbon. Eventually, the infoldings detach from the plasma 

membrane and give rise to large endosome-like structures (cisterns) of irregular shapes. 

Finally, in the recovery period after stimulation, infoldings and cisterns disappear leaving 

behind abundant vesicle-like structures that homogeneously distribute in the cytoplasm, 

probably intermixing with other vesicles. This simplified model suggests the requirement of 

endocytic intermediates for synaptic vesicle reformation. However, taking into account 

previous publications using capacitance measurements, fluorescence and electron 

microscopy, and the results from this study, it seems that synaptic vesicle recycling follows a 

more complex dynamic (summarized in Figure 4.1). 

Synaptic vesicle recycling not always recruits endosomal intermediates. In this study I 

found that membrane infoldings were small and uncommon in cells stimulated at mild 

conditions (10 mM K+). In contrast, infoldings were larger and frequent upon stronger 

stimulations (25 and 65 mM K+). These observations indicate that the presence, abundance 

and size of endocytic intermediates (i.e. infoldings and cisterns) correlate with the strength 

of stimulation (Figure 3.16A, B). Moreover, EM studies have shown coated pits and coated 

vesicles directly forming at the plasma membrane neighboring the ribbon, indicating that 
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single unit retrieval by CME is also happening in parallel to the formation of membrane 

infoldings (Siegel and Brownell, 1986; Lenzi et al., 1999, 2002). Capacitance measurements 

have also uncovered two types of endocytosis following membrane depolarization in IHCs: a 

slow one with linear decay kinetics of membrane retrieval, which is dynamin- and clathrin-

dependent, likely retrieving single vesicle units via CME; and a faster one, with exponential 

decay kinetics, time constant of ~6 s, and probably corresponding to retrieval in the shape 

of membrane infoldings that does not require clathrin or dynamin (Moser and Beutner, 

2000; Beutner et al., 2001; Neef et al., 2014). It was found that brief stimulation releasing 

the equivalent to one RRP was ensued only by the slow linear component, while 

stimulations releasing three to four RRPs evoked both, the linear and the exponential 

component. Interestingly, the amplitude of the exponential capacitance drop correlated with 

the amount of exocytosis (Neef et al., 2014), corresponding to my observations of denser 

and more abundant infoldings and cisterns as the K+ concentration increases. An 

explanation reconciling all the aforementioned observations would be that mild 

stimulations only recruit CME for single unit retrieval, while stronger stimuli induce, 

additionally, membrane retrieval in larger structures resembling bulk endocytosis (Neef et 

al., 2014). An even faster mode of endocytosis has also been found, with ~250-300 ms time 

constant and only active at cytosolic [Ca2+] above 15 µM. Its molecular players and 

physiological significance are poorly studied, and it has been cautiously interpreted as a 

kiss-and-run mode of vesicle retrieval (Moser and Beutner, 2000; Beutner et al., 2001; Cho 

et al., 2011; Neef et al., 2014).  

Similarly, slow (10 s time constant) and fast (1-2 s time constant) independent modes of 

endocytosis have been also measured in goldfish retinal bipolar cells (von Gersdorff and 

Matthews, 1994; Neves and Lagnado, 1999; Heidelberger et al., 2002). These modes differ, 

however, from those in hair cells in some important aspects: here both depend on dynamin, 

while only the slow one does on clathrin (Jockusch et al., 2005); brief stimuli releasing only 

the RRP are followed by the fast instead of the slow component (Neves et al., 2001); finally, 

the fast mode seems to retrieve single vesicle units in a clathrin-independent manner and 

not in bulk (Jockusch et al., 2005), as it could be hypothesized for hair cells. 

Bulk endocytosis appears to have an important role in ribbon synapse function. 

Membrane uptake into large membrane-bound structures after synaptic vesicle release is 

not exclusive of hair cells (this study; (Siegel and Brownell, 1986; Lenzi et al., 2002). 

Structures resembling bulk endocytosis have been described among ribbon-type synapses, 
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albeit differences in their general morphology. While in this study I found elongated 

infoldings and irregularly shaped cisterns for IHCs, large, round endosome-like structures 

were seen in goldfish retinal bipolar cells using FM dyes and dextran labeling (Holt et al., 

2003; Coggins et al., 2007), or ferritin uptake EM imaging (Paillart et al., 2003). Similar 

round structures were found containing the tracer HRP in chick photoreceptors, either 

bound to the plasma membrane or already free into the cytoplasm (Cooper and McLaughlin, 

1983). A more complex structure was revealed in mouse photoreceptors by EM, where large 

multivesicular clusters originated from the plasma membrane, although their nature might 

be different to conventional bulk endocytosis (Fuchs et al., 2014). The relevance of bulk 

endocytosis in ribbon synapses at physiological conditions is not yet clear. Assuming that 

the exponential mode of endocytosis in IHCs corresponds to bulk retrieval, this mode would 

be already triggered by 200-ms depolarizations releasing 3 to 4 RRPs (Neef et al., 2014), or 

by mild K+ stimulations (10 mM) lasting one minute, as found in this study (Figure 3.16). 

Although it is difficult to say if such treatments applied ex vivo are comparable to the 

intensity of real sound stimuli, bulk endocytosis was also seen in IHCs of anesthetized 

animals, stimulated with a tone-burst and monitored for cochlear viability throughout HRP 

perfusion (Siegel and Brownell, 1986). In the case of mouse photoreceptors, prolonged 

activity was simulated by keeping the animals in a dark environment for at least 3 hours. 

This situation, comparable to the physiological experience, triggered the formation of the 

aforementioned multivesicular clusters (Fuchs et al., 2014). In goldfish bipolar cells, bulk 

endocytosis has been more difficult to relate to a physiological condition, since it is not 

clearly related to the slow or fast modes of endocytosis (Holt et al., 2003; Jockusch et al., 

2005), although it has been seen in cells firing spontaneously in presence of Ca2+ (Paillart et 

al., 2003).  

Little is known about the molecules responsible for bulk membrane retrieval. In neuronal 

terminals, dynamin I dephosphorylation by calcineurin seems important for bulk retrieval 

activation, whilst syndapin and dynamin GTPase activity could be involved in membrane 

curvature and fission, respectively (Andersson et al., 2008; Clayton and Cousin, 2009; 

Clayton et al., 2009). In neuromuscular junctions, actin has been implicated in the initiation 

of bulk membrane retrieval, and together with dynamin in its maturation into cisternae 

(Nguyen et al., 2012). In ribbon synapses the only evidence comes from retinal bipolar cells, 

where actin polymerization was required for bulk endocytosis (Holt et al., 2003). As for 

IHCs, I found dynamin inhibition affecting endocytosis in general, but its direct effect on 

bulk retrieval was difficult to determine. Moreover, Neef and collaborators (2014) found 
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that mutation or inhibition of dynamin did not affect the exponential mode of endocytosis, 

thought to correspond to bulk retrieval.  

Although the physiological significance of bulk endocytosis is still debated in conventional 

synapses due to its dependence on strong stimulation (Richards et al., 2000; de Lange et al., 

2003; Rizzoli and Betz, 2005; Wu and Wu, 2007; Clayton et al., 2008), this kind of membrane 

retrieval could have a significant role in the normal function of ribbon-type synapses. With 

graded receptors potentials, instead of action potentials, regulating constant vesicle release 

and the presence of a ribbon favoring high rates of exocytosis, these synapses can offer a 

more favorable environment for emergence of bulk endocytosis. 

 
Figure 4.1 Local model of synaptic vesicle recycling in hair cells. 
Based on the results of this study and the data presented in previous publications (Siegel and 
Brownell, 1986; Lenzi et al., 1999, 2002; Kamin et al., 2014; Neef et al., 2014), it is possible to 
conclude that synaptic vesicle recycling in hair cells is a local process taking place in the vicinity 
of the ribbon-type active zones. A. At mild stimulation conditions, triggering only the release of 
1-2 times the RRP, compensatory endocytosis retrieves single vesicle units from the plasma 
membrane with the help of clathrin coat formation. B. At stronger stimulation conditions, 
releasing the equivalent to 3-4 times the RRP, membrane infoldings arise from the areas 
surrounding the synaptic ribbon (SR). This mode of endocytosis would be similar to the bulk 
endocytosis described in conventional synapses. Membrane infoldings seem to give rise to 
cisterns, from which synaptic vesicles can be reformed. CME of single vesicle units continues in 
parallel to bulk retrieval. C. Stronger stimulations will result in the generation of even larger 
infolding and cisterns. In this study dynamin was found to be important for the general synaptic 
vesicle recycling process. However, it is not clear if it only participates in the fission of clathrin 
coated vesicles, or also in the scission of membrane infolding from the plasma membrane.   

Local recycling seems to facilitate synaptic vesicle reformation and recruitment to the 

ribbon. Three aspects are particular among ribbon synapses: a large amount of synaptic 

vesicles, up to 600,000 in the saccular hair cell cytoplasm (Lenzi et al., 1999), and up to 

900,000 per goldfish retinal bipolar cell terminal (von Gersdorff et al., 1996; Holt et al., 

2004); the lack of synapsin (Favre et al., 1986; Mandell et al., 1990); and as a consequence, 

high synaptic vesicle mobility (Holt et al., 2004). These three points have led to the 
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hypothesis that collision of diffusing vesicles with the synaptic ribbon would be sufficient 

for its replenishment after exocytosis (Parsons and Sterling, 2003; Holt et al., 2004). 

Conversely, a local recycling model would suggest that ribbon reloading relies on fast vesicle 

reformation directly from exocytosed membranes. This alternative is supported by a 14-fold 

increase in vesicle abundance around the synaptic ribbon, the presence of tracer-labeled 

vesicles tethered to the ribbon, the appearance of membrane infoldings and cisterns around 

the active zone upon stimulation, and dye uptake specifically around synaptic ribbons 

(Siegel and Brownell, 1986; Lenzi et al., 1999, 2002; Logiudice et al., 2009; Neef et al., 2014). 

Furthermore, it has been proposed that the exocytic activity of a ribbon determines the 

abundance and distribution of vesicles and cisterns in a “sphere of influence” with 350nm 

radius around the active zone (Kantardzhieva et al., 2013). The results obtained in this study 

based on mCLING uptake can be associated with the local recycling model: abundant 

membrane retrieval into infoldings and cisterns in the vicinity of the ribbon, their efficient 

processing into synaptic vesicles within a few minutes (Figure 3.16A, B), and the apparent 

delivery of mCLING-labeled reformed vesicles back to the ribbon (Figure 3.16C). Here, 

mCLING was pivotal for the study of local recycling: its non-washability allowed the labeling 

of infoldings still open to the exterior. This would be impossible with washable molecules 

like FM dyes or the fluid phase markers HRP, which would be lost through the organelle’s 

opening.  

Local recycling would likely require a specialized molecular microenvironment surrounding 

the active zone, grouping important molecular players necessary for vesicle retrieval, 

reformation and tethering to the ribbon to fuel and speed up synaptic activity. This is true 

for mouse photoreceptors, where clathrin, dynamin, syndapin and amphiphysin 

preferentially locate close to the active zone (Wahl et al., 2013; Fuchs et al., 2014). In hair 

cells, the Ca2+ sensor otoferlin has been proposed to couple exo- and endocytosis based on 

its recruitment to the plasma membrane, its role in vesicle exocytosis, replenishment of the 

RRP, and its interaction with the adaptor protein AP2 (Roux et al., 2006; Pangršič et al., 

2010, 2012; Levic et al., 2011; Duncker et al., 2013). My results go in line with this idea, 

since otoferlin better correlated with the organelles endocytosed at the IHC base (Figure 

3.17C, D). In the case of otoferlin knockout cells, the reduction in endocytosis could be 

attributed to impaired exocytosis, but also to a need of otoferlin for proper membrane 

retrieval at this synapse (Figure 3.15).  

In the future, mCLING labeling could help to clarify yet open questions about local recycling. 
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mCLING could be used, for example, to study the role of synaptic ribbons in recruiting the 

recycling machinery, since it is known that their detachment from the plasma membrane 

results in disorganization of active zones and impaired vesicle replenishment (Frank et al., 

2010). Moreover, mCLING labeling combined with immunostaining in otoferlin knockout 

mice, could be used to establish if this protein recruits other proteins involved in clathrin 

coat formation, as it has been shown for synaptotagmin in conventional synapses (Haucke 

and De Camilli, 1999; Poskanzer et al., 2003).  

The role of otoferlin in IHC physiology. In this study I could show, for the first time, a 

remarkable abundance of otoferlin in endocytic compartments. Surprisingly, this protein 

was dominant not only in organelles recycling at the cell base, where it is supposed to act, 

but also in those at the upper IHC levels. There are two possible explanations for this 

finding: 1) uptake of otoferlin at top and nuclear levels is a passive, unspecific event, due to 

its enrichment at the plasma membrane; 2) besides playing an important role in synaptic 

vesicle priming and release, otoferlin is also involved in other mechanisms of membrane 

trafficking. The second option has been already considered, in view of otoferlin expression 

in different areas of the brain (cerebellum, hippocampus and cortex) and its interaction with 

proteins involved in endosomal traffic and CME (Schug et al., 2006; Heidrych et al., 2008; 

Zak et al., 2011). The interaction of otoferlin with myosin VI seems to be important for 

organelle targeting and delivery from the trans-Golgi network towards the basolateral 

region of IHCs (Heidrych et al., 2009; Roux et al., 2009). Additionally, otoferlin could 

participate in CME via its interaction with AP2 (Duncker et al., 2013). These claims, 

however, are partially based on colocalization analyses from diffraction-limited confocal 

pictures. Further confirmation could be obtained by two-color STED imaging of otoferlin 

and its possible interaction partners in ultrathin melamine sections.   

Synaptic vesicle reformation is an efficient process. Using long and strong stimulation 

(30 minutes, 45 mM K+), Lenzi and collaborators (2002) proposed that processing of 

cisterns into synaptic vesicles, but not clathrin uncoating or SNARE complexes formation, is 

a rate limiting factor for vesicle reformation in hair cells. In this study I could show that the 

endocytic intermediates formed in response to one-minute stimulation were efficiently 

broken into smaller organelles within 5 minutes, indicating that in a more physiological 

condition, vesicle reformation is not rate-limiting (Figure 3.16A). Since shorter recovery 

incubations were not tested, it is not clear whether this recycling could actually be faster. 

Evidence for very fast bulk endosome processing into vesicles has been found, for example, 
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in the snake neuromuscular junction (∼10 seconds), but its molecular bases are not clear 

(Teng et al., 2007). 

Based on the finding of coated pits on top of membrane invagination, and coated vesicles in 

their proximity (Siegel and Brownell, 1986; Lenzi et al., 2002), clathrin-mediated budding is 

thought to be the mechanisms whereby vesicles reform.  Similar clathrin coats have been 

seen decorating membrane infoldings and bulk endosomes in conventional synapses (Teng 

and Wilkinson, 2000).  Vesicle reformation could be accelerated by coating from different 

points of the endosomal intermediate, as seen with EM in stimulated IHCs (Neef et al., 2014). 

It is not clear, however, if the clathrin coated vesicles become ready-to-release synaptic 

vesicles, since the former are significantly larger, ∼53 nm vs ∼30nm average internal 

diameter (Neef et al., 2014). Moreover, it has not been investigated if vesicles generated 

from endosomal intermediates would be ‘contaminated’ with plasma membrane proteins, or 

if an endosomal sorting mechanism, as the one described in conventional synapses 

(Hoopmann et al., 2010), would be required in hair cells. The main difficulty to answer those 

questions is that the molecules participating in synaptic vesicle exocytosis in hair cells 

remain unknown, as they do not use the conventional neuronal SNAREs Syntaxin 1, SNAP-

25 or synaptobrevin (Nouvian et al., 2011).  

4.3.4 The constitutive recycling pathway in IHCs 

In comparison to synaptic vesicle recycling, constitutive recycling has been poorly studied in 

ribbon synapses. In the quest to understand their synaptic function, the compact anatomy of 

IHCs has been beneficial to elucidate the morphology and location of organelles involved in 

constitutive traffic, given their relatively close location to the synaptic machinery. 

Capacitance measurements, however, have only focused on the synaptic component of 

membrane traffic. The main motivation to study constitutive recycling in IHC is to 

understand how a cell with somatic active zones can accommodate in the same volume a 

demanding task, as it is synaptic activity, and still perform other processes required for its 

proper function. As mentioned in sections 4.3.2 and 4.3.3.1, mCLING revealed abundant 

membrane uptake in IHCs. After finding that endocytic processes at the IHC base support 

the synaptic activity, it can be deduced that membrane uptake happening elsewhere is 

involved in ‘housekeeping’ constitutive recycling. This assertion was confirmed using 

mCLING through different technical approaches. 
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4.3.4.1 The identity of constitutively recycling organelles 

In this study I found that constitutive recycling involves endocytic intermediates with a wide 

range of morphologies and sizes. A remarkable type of organelle was the tubular structures 

occupying the supranuclear and nuclear cytoplasmic volume (Figure 3.12). These structures 

were also tracked by FM 1-43 photo-oxidation electron microscopy in a previous study from 

our laboratory (Figure 1.5)(Kamin et al., 2014). A tridimensional reconstruction showed a 

more complex morphology, with elongated and sheet-like flattened regions that could 

actually correspond to a tubulo-cisternal network (Kamin et al., 2014). After a 5-minute 

recovery period, these structures were processed into smaller vesicle-like organelles 

significantly larger than bona fide synaptic vesicles, suggesting a role independent of 

synaptic activity (Kamin et al., 2014). Apparently, these tubules were also seen before in an 

EM study using a modified protocol with primary aldehyde-osmium tetroxide fixation and 

secondary osmium tetroxide-ferrocyanide fixation (Spicer et al., 1999). This method in 

particular revealed a cytoplasmic network of tubular structures, spanning from the 

subcuticular region down to the upper midlevel of the nucleus. This network was called the 

canalicular reticulum (CR) and was speculated to serve as an exit path for cations entering 

through the MET channels after a sensory input (Spicer et al., 1999). Based on the 

morphology and location of the mCLING-labeled tubules, the CR could correspond to the 

same structures. However, it is unknown whether these tubules represent trafficking 

organelles, as this EM method was never combined with tracer uptake.  

Using immunolabeling for different organellar markers I established that the tubules are not 

related to the cis-Golgi network or the endoplasmic reticulum (Figure 3.18). Interestingly, 

they contain the SNARE proteins Syntaxin 6 and Syntaxin 16, which have been involved in 

the retrograde transport from recycling endosomes towards the trans-Golgi network 

(Figure 3.19) (Mallard et al., 2002; Brandhorst et al., 2006; Jahn and Scheller, 2006). Vti1a, 

another SNARE protein involved in homotypic fusion of early endosomes (Brandhorst et al., 

2006), was not abundant in these structures. Two main conclusions can be drawn from 

these results:  

- 1) The endoplasmic reticulum and cis-Golgi network do not participate in membrane 

trafficking on the time scales investigated here (~3 minutes). In agreement, previous 

reports on the dynamics of plasma membrane-Golgi-ER retrograde traffic suggest 

time scales of at least 10-15 minutes to 60 minutes to reach the Golgi apparatus, and 

around 30 additional minutes to reach the ER (Sofer and Futerman, 1996; Johannes 
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et al., 1997; Barysch et al., 2009; Matsudaira et al., 2013).  

- 2) The tubular structures indeed participate in constitutive membrane trafficking, 

probably as recycling endosomes.  

Several questions related to these tubules remain open: how do they become labeled with 

mCLING in a time frame of only 3 minutes? Do they receive membranes directly from 

endocytic vesicles, or rather from sorted vesicles budding from early endosomes? What is 

their function? Membrane traffic studies in polarized epithelial cells have described a 

structure with recycling endosome properties, called the subapical compartment (SAC). This 

compartment, located in proximity to the trans-Golgi network, was suggested to play a role 

in the establishment of cell polarity, by coordinating the delivery of recycled or newly 

synthesized proteins and lipids to the apical or basolateral membranes (van IJzendoorn and 

Hoekstra, 1999; Fölsch, 2005; van Ijzendoorn, 2006). It could be possible that the tubules 

described here are part of a structure equivalent to the SAC in IHCs. Future experiments 

combining mCLING with immunolabeling for proteins related to epithelial recycling 

endosomes (i.e. Rab11a, Rab11b and Rab25), could help to confirm this hypothesis. 

In this study, sample slicing offered an improved view of immunostained proteins that are 

not only abundant in IHCs, but also in other cell types surrounding them. In this way, it was 

possible to locate the cis-Golgi network in the supranuclear volume, as described previously 

by EM (Siegel and Brownell, 1986; Spicer et al., 1999, 2007). In contrast to an infranuclear 

location suggested before, I found the endoplasmic reticulum distributed throughout the 

IHC (Siegel and Brownell, 1986; Spicer et al., 1999).  

4.3.4.2 Membrane traffic at the cuticular plate 

mCLING labeling revealed a collection of endocytic organelles localized in the IHC apical 

region, close to the membrane supporting the hair bundle. Some of those organelles had a 

late endosome/lysosomal identity (Figure 3.20). These results agree with a series of EM 

studies describing a very active membrane recycling process taking place at the apical 

membrane of cochlear and saccular hair cells. Coated pits, coated and uncoated vesicles, 

vacuoles and lysosomes accumulate beneath the plasma membrane, in the space 

surrounding the cuticular plate (Forge and Richardson, 1993; Kachar et al., 1997; 

Richardson et al., 1997; Spicer et al., 1999). These results confirm again that apical 

endocytosis is related to constitutive membrane trafficking pathways, and excludes the 

possibility that synaptic vesicles could be reformed from the apical membrane, as no 
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correlation with synaptic vesicle markers was found.  

4.3.4.3 Molecules driving constitutive membrane uptake 

By applying molecular inhibitors for the endocytic proteins clathrin and dynamin, I found 

that constitutive recycling is less dependent on these two molecules than synaptic vesicle 

recycling (Figure 3.14). In accordance, Siegel and Brownell (1986) reported the absence of 

coated pits and coated vesicles at the plasma membrane of the cell nuclear and supranuclear 

levels. The alternative molecules supporting the formation and fission of constitutively 

endocytosed vesicles remain to be studied. In the future, it will be also interesting to study 

the dependence of IHC apical recycling on the actin cytoskeleton, as it has been shown that 

endocytosis at the apical pole of polarized cells requires the recruitment of actin filaments to 

counteract higher membrane tension (Boulant et al., 2011). 

4.3.5 A membrane recycling model for IHCs 

Based on the findings discussed above, a final model of membrane trafficking pathways in 

IHCs can be put forward (Figure 4.2). This model proposes that IHCs functionally and 

spatially separate synaptic vesicle recycling from constitutive membrane trafficking. At the 

cell base, synaptic vesicles are released upon stimulation and then recycled in the vicinity of 

the ribbon-type active zones. Simultaneously, the cell top and nuclear levels host the 

membrane trafficking events related to the constitutive function of the cell.  
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Figure 4.2 Membrane trafficking pathways in IHCs. 
The data presented here show that in IHCs constitutive membrane trafficking pathways 
preferentially take place at the cell top and nuclear levels. This was confirmed by the presence of 
tubulo-cisternal structures containing the protein markers Syntaxin 6 and Syntaxin 16, which 
likely participate as recycling endosomes in the retrograde transport to the Golgi complex. 
Apical endocytosis around the cuticular plate was related to constitutive traffic towards late 
endosome/lysosome compartments, evidenced by LAMP1 labeling. In contrast, synaptic vesicle 
recycling is preferentially located at the cell basal level and it recruits endocytic intermediates, 
such as membrane infolding and cisterns, for the reformation of synaptic vesicles. This recycling 
seems to rely on clathrin and dynamin, although their role is not completely understood. The 
calcium sensor otoferlin was present in endocytic compartments throughout the IHC, suggesting 
that this protein might not only be involved in synaptic vesicle exocytosis but also in endocytic 
processes. Further research on otoferlin will help to better understand IHC physiology.    

The data presented in this study proved that the organelles involved in both pathways are 

functionally separated, despite their intermixing in the cytoplasmic volume. Hence, the 

participation of organelles related to constitutive function, like the Golgi apparatus, or 

organelles located at the IHC apical level, are excluded from the synaptic vesicle recycling 

process (Figure 3.21). The basal model for synaptic vesicle recycling is, at the end, a faster 

and more energetically economic route than the apical model proposed previously 

(Griesinger et al., 2002, 2005).  

An important implication of the proposed model is that, even in cells with somatic active 

zones, synaptic vesicle recycling is an exclusive pathway with its own molecular and 

organellar players. Such model was envisioned before by EM studies describing the 
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remarkable morphological changes of intracellular organelles from the cell top to the 

bottom (Siegel and Brownell, 1986; Spicer et al., 1999; Kamin et al., 2014). However, its 

confirmation was only possible until now, with the development of mCLING and its 

combination with molecular markers for different organelle types. 

4.4 New insights into neuronal function 

After proving the potential of mCLING to track endocytic organelles in the relatively large 

cytoplasmic volume of IHCs, a main concern was its ability to reveal membrane uptake in 

small synaptic boutons. To test this, mCLING was applied to cultured hippocampal neurons, 

finding no negative effects on plasma membrane integrity or synaptic vesicle recycling 

(Figure 3.22). Importantly, mCLING was efficiently taken up by recycling synaptic vesicles, 

allowing the study of their molecular composition by STED microscopy imaging. Moreover, 

incubations at low temperature (thereby inhibiting endocytosis) facilitated the distinction 

between immunostained proteins residing on intracellular organelles, and those sitting on 

the plasma membrane. These technical advantages were used to better understand aspects 

of the physiology and organization of conventional synapses, described below. 

4.4.1 Molecular differences between spontaneously and actively 

released synaptic vesicles 

In this study we combined mCLING labeling of spontaneously and actively released synaptic 

vesicles with immunostaining against synaptic- and endosomal-related proteins. The results 

suggest that these two groups of organelles differ in their molecular composition: 

- Spontaneously recycling vesicles presented higher levels of endosomal SNARE 

proteins, like syntaxin 13 and VAMP4.  

- The spontaneously released group presented significantly lower levels of three 

synaptic vesicle proteins, synaptotagmin 1, synapsin and the SNARE protein VAMP2.  

- The two groups had similar levels of other synaptic vesicle proteins, like VGLUT1/2 

and synaptophysin.  

Taken together, our results indicate that quantitative molecular differences between 

spontaneously and actively released synaptic vesicles not only reside in SNARE proteins, but 

also on other protein families (Figure 3.23). Additionally, they indicate that spontaneously 

released organelles might be more related to constitutive trafficking pathways, being “less 

vesicular” than their actively released counterparts.  
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Differences in protein make-up between spontaneously and actively released synaptic 

vesicles were suggested before. Chimeric constructs containing the pH-sensitive protein 

pHluorin and either VAMP7 or Vti1a, two endosomal SNARE proteins, preferentially located 

on the spontaneously recycling pool of vesicles (Hua et al., 2011b; Ramirez et al., 2012). 

Moreover, the involvement of different synaptic proteins in spontaneous release has been 

indirectly established upon their mutation or knocking down. Thus, the lower levels of 

synaptotagmin 1 found here for spontaneously recycling vesicles, would agree with 

previous reports on the independence of spontaneous release rates from synaptotagmin 1 

calcium-sensing activity (Geppert et al., 1994b). On the other hand, the low levels of VAMP2 

reported here for spontaneously released vesicles are difficult to reconcile with previous 

findings indicating a 6-fold reduction in spontaneous release in the absence of this protein 

(Sara et al., 2005).  

Even though spontaneous vesicle release has been related to synaptic development, 

maintenance and strength, the existence of a physiological role for such events is still 

debated. In the same context, it is difficult to establish whether the presence of glutamate 

transporters (VGLUT) and synaptophysin is associated to that theoretical function, or is 

rather the result of inefficient exclusion of protein components during endocytosis. 

Paradoxically, it has been the presence of transporters and neurotransmitter filling, 

measured through the concomitant miniature post synaptic currents (mEPSC and mIPSC), 

the standard tool to characterize spontaneous release (Van der Kloot, 1991; McBain and 

Dingledine, 1992). 

4.4.2 Synaptic vesicle proteins stranded on the plasma membrane 

mCLING surface labeling of isolated hippocampal neurons was combined with 

immunostaining against synaptic vesicle-associated proteins, in order to establish the 

percentage of molecules that remains stranded on the plasma membrane at resting 

conditions. The evaluated proteins included VGLUT1/2, synaptophysin, synaptotagmin 1, 

VAMP2, synapsin and Rab3.  

Overall, the fraction of proteins present in the plasma membrane ranged between ∼12 and 

~22% of the total amount (Figure 3.24). The relatively low variability among these values 

contrast with a wider range obtained by different groups using protein-pHluorin coupling: 

~2% for VGLUT1, ~8% for synaptophysin, ~10-24% for VAMP2 and ~22% for 

synaptotagmin (Sankaranarayanan and Ryan, 2000; Fernández-Alfonso et al., 2006; 
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Granseth et al., 2006; Balaji and Ryan, 2007). Therefore, the mCLING labeling and sample 

processing protocols used in this study represent a more reliable way to look at protein 

composition and distribution in synaptic terminals for the following reasons:  

- Our method quantifies the endogenously expressed proteins in their native form. In 

contrast, pHluorin experiments rely on the overexpression of proteins with a large 

tag at their intravesicular domain (238 aminoacids), likely affecting their targetting, 

function, clustering and retrieval efficiency from the plasma membrane (Opazo et al., 

2010). This is confirmed by similar values for synaptotagmin 1 surface pool of 

molecules found in this study (~18%) and in a previous report using antibodies 

against the luminal domain of this protein in resting cells (~19%) (Opazo et al., 

2010). 

- Immunostaining levels are similar among neurons cultured in the same coverslip. 

Transfection efficiency is, however, a more variable parameter that could affect the 

quantification of protein distributions. 

- More accurate quatifications can be obtained with high-resolution imaging, in 

contrast to confocal imaging performed in pHluorin analysis. 

- mCLING labeling and immunostaining are easier and more reproducible methods, 

enabling the study of several proteins in parallel.  

- In our study we also analysed cytoplasmic proteins that transiently associate to 

synaptic vesicles before vesicle release (Rab3 and synapsin). This would have been 

impossible with pHluorin coupling, since it can only be applied to integral membrane 

proteins. 

Among our results, the abundance of Rab3 (~22%) and synapsin (~13%) on the membrane 

is surprising, considering their disengagement from the vesicular membrane after 

exocytosis is accomplished (Fischer von Mollard et al., 1991; Tarelli et al., 1992). 

Nevertheless, synapsin molecules have been seen before on the plasma membrane by 

immuno-electron microscopy (Tarelli et al., 1992; Pieribone et al., 1995). This fraction, 

however, has been difficult to determine due to the difficulties imposed by immuno-EM. 

Similarly, a fraction of Rab3A molecules was also found on the plasma membrane of small 

rat brain synapses (Mizoguchi et al., 1990), as well as in the rat NMJ (Mizoguchi et al., 1992). 

The results presented here suggest that a relatively large fraction of synaptic vesicle 

proteins stays on the plasma membrane. It is not clear, however, if these molecules remain 

together as a vesicular patch, as suggested by STED-microscopy studies (Willig et al., 2006; 
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Opazo et al., 2010), or if they diffuse and intermix with plasma membrane resident proteins 

(Sankaranarayanan and Ryan, 2000; Li and Murthy, 2001; Wienisch and Klingauf, 2006). 

The latter hypothesis, however, is supported by studies using pHluorin expression, which 

has been shown to impair protein-protein interactions and clustering (Opazo et al., 2010). In 

the first case, the retrieval of synaptic vesicles as a unit would be facilitated, possibly making 

vesicle replenishment faster. In the second case, mechanisms of protein organization and 

clustering would be required either before vesicle retrieval, or by sorting through an 

endosome (Hoopmann et al., 2010), with expected delays in the recycling processes. The 

similar percentages found here for all proteins could suggest that their levels on the plasma 

membrane resemble the stoichiometry of an average synaptic vesicle, supporting their role 

as a readily retrievable pool of molecules that is eventually endocytosed as a reformed 

synaptic vesicle.  

4.4.3 Differences in protein clustering between SNAP-25 and 

Syntaxin 1 

In our last approach to hippocampal neurons we studied how the two membrane SNARE 

proteins, SNAP-25 and syntaxin 1, organize in intracellular organelles and on the plasma 

membrane. For this, mCLING surface labeling and immunostaining were combined in 

hippocampal neurons, in the same way as for the previous section. We found that, on 

average, the size of SNAP-25 clusters on the axolemma was similar to their counterparts 

from intracellular organelles (Figure 3.25B). In contrast, syntaxin 1 clusters found on the 

plasma membrane were larger and brighter than the syntaxin 1 staining from organelles 

(Figure 3.25C), suggesting that this protein forms relatively large molecular assemblies 

(Sieber et al., 2007; Bar-On et al., 2012) on the plasma membrane, but not on organelles.  

Syntaxin 1 clustering depends on homophilic interactions between SNARE motifs, as well as 

on electrostatic interactions with membrane phosphoinositides (Sieber et al., 2006, 2007; 

Khuong et al., 2013). Hence, it has been suggested that differences in phosphoinositide 

composition across organellar and plasma membranes could determine cluster size 

(Khuong et al., 2013), and therefore explain the results obtained here. SNAP-25 forms less 

dense and larger clusters than syntaxin 1, with no dependence on its SNARE motifs. Due to 

its palmitoyl anchoring to the membrane, SNAP-25 diffuses more easily than Syntaxin 1, 

which contains a C-terminal transmembrane domain, suggesting a less tight control of its 

cluster size (Halemani et al., 2010; Bar-On et al., 2012). Another important player 

determining cluster size on intracellular organelles could be cholesterol, as its effect has 
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been shown before on plasma membranes (Chamberlain et al., 2001; Lang et al., 2001). 

Overall, the results of this study are in line with the complex mechanisms by which syntaxin 

1 forms molecular assemblies, compared to the apparently simple membrane localization of 

SNAP-25. Further experiments using mCLING labeling could help to study clustering factors 

for these and other proteins by mutation in their structures or changes in membrane lipid 

composition.  

4.5 mCLING uses in other biological preparations 

4.5.1 Perspectives in Drosophila larva neuromuscular junction 

When applied to the neuromuscular junction of Drosophila larvae, mCLING labeled the 

subsynatic reticulum and reached the plasma membrane of the synaptic bouton, allowing its 

endocytic uptake upon electric stimulation. These results confirmed again that the palmitoyl 

tail of mCLING does not affect its diffusion into tissues. mCLING was endocytosed into 

elongated structures arising from different points of the bouton, sometimes in proximity to 

the active zone. Similar elongated membrane projections, likely corresponding to endocytic 

intermediates, were previously observed with electron microscopy in the Drosophila 

photoreceptor terminal (Koenig and Ikeda, 1996). In the future, mCLING could be used to 

study the effects of protein mutations (e.g. in shibire flies, carrying a mutant version of 

dynamin) on the mechanisms of synaptic membrane retrieval.   

4.5.2 Microorganisms 

mCLING was also applied to a simpler organism, the yeast cell. Endocytic events in yeast 

have been traditionally traced with the styryl dye FM 4-64. In vivo labeling was similar 

between mCLING and FM 4-64. After fixation and permeabilization, however, mCLING 

remained on endocytic organelles and plasma membranes, but FM 4-64 was removed to a 

large extent. Yeast cells are an important biological model for the study of membrane 

trafficking pathways, protein localization and cell division (Schekman, 1985), all of which 

could benefit from the application of mCLING and its associated high-resolution imaging.  

Another microorganism labeled with mCLING was the bacterium Escherichia coli. In 

comparison to a conventional membrane marker like FM 1-43, which only allows confocal 

imaging, mCLING imaging with STED microscopy gave a superior view on plasma membrane 

labeling and patterning. This proof-of-principle experiment opens new doors for mCLING 

use in the labeling of microorganisms, not only as a surface reference for in vivo samples, 
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but probably also in studies following its fixation and combination with proteins markers.  

4.5.3 Following endocytosis with mCLING in cells with permeable 

channels 

Due to their small size and elongated molecular structure, FM dyes have been reported to 

permeate a range of sensory ion channels, including mechanotransduction channels,  the 

capsaicin receptor TRPV1, and the purinergic receptor P2X2 (Nishikawa and Sasaki, 1996; 

Gale et al., 2001; Meyers et al., 2003; Farris et al., 2004; Drew and Wood, 2007; Crumling et 

al., 2009). In neonatal mice injected with AM 1-43, the dye was found 48h later labeling 

several cell types involved in sensory reception: cochlear and vestibular hair cells, as 

expected, as well as hair follicles, Merkel cells, spiral afferents of skeletal muscles, 

nociceptors, enteric neurons, taste receptors in foliate and circumvallate papillae, primary 

sensory neurons at cranial nerves (trigeminal, geniculate, petrossal, nodose), and dorsal 

root ganglia neurons (DRG) (Meyers et al., 2003). FM dye permeation was also confirmed by 

the discovery of unknown mechanoreceptor cells in the sensory Eimer’s organ at the nose of 

talpid moles (Marasco et al., 2006). Furthermore, FM 1-43 and FM 4-64 were shown to enter 

astrocytes by permeation of an aqueous pore, and once inside they led to an imbalance of 

Ca2+ homeostasis (Li et al., 2009).  

With this evidence in hand, it is obvious that trafficking studies in any of the aforementioned 

cell types have been hampered by FM dye permeation through a diversity of ion channels. 

With the development of mCLING, not only as endocytosis tracer, but also as cell surface 

marker, new investigations could be pursued to understand endocytosis, membrane traffic 

and protein distribution in a wide range of sensory/neuronal preparations.  
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5 OUTLOOK 

In the present study a novel fixable, membrane-binding probe called mCLING (membrane-

binding fluorophore-Cysteine-Lysine-Palmitoyl Group) was developed. From the results 

shown here I conclude that mCLING is currently the only fluorescent probe that allows 

morphological characterization of subdiffraction-sized endocytic organelles, something that 

was so far only possible with electron microscopy. Furthermore, combination of mCLING 

with immunostaining allowed, for the first time, the molecular characterization of recycling 

organelles in cultured cells and complex tissues. In contrast to conventional immuno-EM 

methods, the routine mCLING labeling – immunostaining – melamine embedding 

established here offers higher throughput and easier sample processing.  

Overall, the results obtained in this study illustrate the potential of mCLING in studying the 

organization of membrane proteins, which can be extended to a wide variety of endocytic 

organelles, cell types and tissues. mCLING incubations at low temperature have the 

advantage of labeling only the cell surface, while leaving intracellular organelles unlabeled. 

This is particularly useful to establish parallels for protein distribution between organelles 

and the plasma membrane, which is not possible in conventional immunostaining protocols. 

Great work on the distribution and organization of neuronal proteins in the axon or the 

synapse has been done, based on immunolabeling (Kittel et al., 2006; Willig et al., 2006; Dani 

et al., 2010; Denker et al., 2011b; Wahl et al., 2013). However, the ability to see the borders 

of the synaptic boutons would have added much more information, especially in what 

concerns the spatial distributions of the protein clusters. Therefore, membrane labeling will 

be an advantage both in synaptic systems, including cultured neurons, and in other cell 

types.  Interesting labeling targets will be receptors and channels. In this line, an additional 

application of mCLING will be the labeling of isolated organelles, for their molecular 

characterization in vitro. The fact that mCLING is compatible with live imaging (Figure 3.4, 

Figure 3.7, Figure 3.8 and Figure 3.9) further increases its range of applications.  

mCLING applicability is further broadened by its modular design that allows conjugation 

with any fluorophore containing a maleimide modification, making it adaptable to virtually 

any confocal or high-resolution microscopy technique. Furthermore, multicolor imaging of 

20 nm melamine sections using epifluorescence microscopy (Figure 3.21) is a simple and 
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inexpensive approach to perform multi-color super-resolution imaging adoptable by any 

laboratory.  

Exactly 20 years ago the seminal work on high-resolution light microscopy was published 

(Hell and Wichmann, 1994). Since then, numerous technical advances have been achieved, 

getting us closer to “see” the microscopic universe in high detail. However, the applicability 

of cutting-edge light microscopy on cellular systems has been hampered by the lack of 

suitable tools to reveal biological complexity. With the invention of mCLING and the 

foreseen advances in molecular labeling tools (e.g. nanobodies and aptamers, (Opazo et al., 

2012)) the gap between technique and cell biology will be even narrower.  
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APPENDIX 

MatLab routine for the generation of average mCLING intensity pictures from several 

ribbon-centered regions of interest (See Methods section 2.2.7.1, analysis type 4).  

The following MatLab package is based on 11 macros, presented here in the order they are 

required during the analysis. The start of every macro is marked with the symbols %% in 

bold. 

 

%% Program Start 

function vesan 
  
global movi rr xx yy filename chol b2 Movi3 pixel_size image_matrix 
positioner pixel_size limits 
global list mapname b rows cols A q s ijj jjj r1 firstred olds inner_radius 
outer_radius matrix backmatrix old_movi 
global alignsx alignsy rect fused not_fused sh hex hey rr1 imagenr 
  
% this set of macros allows the user to determine the positions of 
% structures of interest such as synaptic ribbons, and then to average the 
% areas of the cells that surround these structures. 
% The image is shown in full color: blue for the ribbons (first frame 
read), green 
% for the second image read, red for the third image read. The user selects 
a 
% region of interest of any shape desired, around ONE ribbon,  
% by using the left click (click and drag). The region of interest  
% is drawn on the image in yellow. 
% A new figure appears, showing: 
% top left: the selected area in the ribbon channel 
% top middle: the same area, in the green immunostaining channel 
% top right: the same area, in the red immunostaining channel 
% bottom left: the position of the ribbon selected 
% The user can check and/or change the selection of the ribbon by using the 
scroll bar at the bottom. 
% Upon satisfactory selection, the user presses the "calculate" button. 
% A square region, of 201 pixel width, is then selected for the region of 
% interest, and its values in all three channels (ribbon, green 
% immunostaining and red immunostaining) is saved in a .txt file 
terminating 
% with _spots 
% One such file is saved for each ribbon analyzed. 
% The next button moves the user to the next image, until all of the images 
% are analyzed. 
% The analysis is then repeated for all sub-folders containing such images. 
% When the analysis is finished, the path to the folder containing all of 
% the sub-folders that have been analyzed is written in the 
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% address_spots_1_by_both.m file 
% This macro can be allowed to operate offline, overnight. It will produce 
% averaged images for all channels: ribbon, green and red, and will save 
% them in individual .txt and .tif files, in each sub-folder. 
% The files contain the termination "_by_both", to indicate that both the 
% information in the green and red channels has been taken into account. 
  
cd 'C:\data_2012\data\New Folder';% the address of the folder to be worked 
on 
  
q=1; s=3; 
  
limits=[8 3 5]; 
  
positioner=0; 
  
imagenr=1; 
  
[stat, mess]=fileattrib('*_ch00.tif');% looks for the files to be analyzed; 
assumes that the ribbon images all end with a "_ch00.tif" termination 
% The "green" immunostaining images all end with a "_ch00.tif" termination. 
% The "red" immunostaining images (mCLING in our case) all end with a 
"_ch01.tif" termination.  
% Other terminations need to be chosen, according to the names of the files 
that should be analyzed 
  
dir *.tif; 
pixel_size=20.20; 
         
rr=mess(imagenr*2).Name 
r4=mess(imagenr*2-1).Name 
  
        r1=strcat(rr(1:numel(rr)-5),'0.tif'); 
         
        r2=strcat(rr(1:numel(rr)-5),'1.tif'); 
         
  
        filename=strcat(r4(1:numel(r4)-4)); 
        rr1=filename; 
        filename=strcat(r4(1:numel(r4)-4),'.txt'); 
         
movi=[]; 
  
movi(:,:,1)=imread(r4); 
movi(:,:,2)=imread(r2); 
movi(:,:,3)=imread(r1); 
  
old_movi=movi; 
  
over=[]; 
over(:,:,2)=movi(:,:,2)*1/max(max(movi(:,:,2))); 
over(:,:,1)=movi(:,:,3)*1/max(max(movi(:,:,3))); 
over(:,:,3)=movi(:,:,1)*1/max(max(movi(:,:,1))); 
  
  
sizz=size(movi); 
  
STED=image(over,'tag','him','cdatamapping','scaled'); colormap(summer); 
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axis square; 
  
 dd=uicontrol('string','Step',... 
       'style','pushbutton','callback','step',... 
       'position',[100 0 50 30],'tooltipstring','one by one'); 
 ee=uicontrol('string','Stepback',... 
       'style','pushbutton','callback','stepback',... 
       'position',[150 0 50 30],'tooltipstring','one by one back'); 
  
 m=uicontrol('style','pushbutton', 'callback','sroi_next',... 
      'position',[400 0 70 30],'string','Next'); 
   
  
chol=[]; 
inner_radius=10; 
outer_radius=30; 
image_matrix=[]; 
zz=[]; 
iii=0;jjj=1; 
ijj=1; 
backmatrix=[]; 
alignsx=[]; alignsy=[]; 
xx=[]; yy=[]; zz=[]; 
hex=[]; hey=[]; 
  
 fused=[]; 
 not_fused=[]; 
  
   
 set(gcf,'windowbuttondownfcn','sroi_00y'); 
 %sroi_align; 
 
%% Manual selection 
function sroi_00y; 
  
global movi rr xx yy filename chol b2 Movi3 pixel_size image_matrix 
global list mapname b rows cols A q s ijj jjj r1 
global alignsx alignsy rect fused not_fused hey hex counter xxes yyes 
  
  hfig=gcf; 
    button=get(hfig,'selectiontype'); 
        if (strcmp(button,'extend')) 
          
        
        l=get(gca,'currentpoint') 
         
        hex(ijj)=round(l(1)); 
        hey(ijj)=round(l(3)); 
         
        xes=[hex(ijj)-50 hex(ijj)+50 hex(ijj)+50 hex(ijj)-50 hex(ijj)-50]; 
        yes=[hey(ijj)-50 hey(ijj)-50 hey(ijj)+50 hey(ijj)+50 hey(ijj)-50]; 
         
        line(xes,yes,'color','g');    
         
        %figure; imagesc(movi(hey(ijj)-50:hey(ijj)+50,hex(ijj)-
50:hex(ijj)+50,ijj)); 
           step;  
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        elseif (strcmp(button,'alt')) 
  
  l=get(gca,'currentpoint') 
                
        
        alignsx(ijj)=round(l(1)); 
        alignsy(ijj)=round(l(3)); 
        
line(alignsx,alignsy,'linestyle','none','markeredgecolor','y','marker','o',
'markersize',5,'markerfacecolor','c');   
         
        elseif (strcmp(button,'normal')) 
             
            counter=1; 
               xxes=[]; 
            yyes=[]; 
            set(gcf,'windowbuttonmotionfcn','sroi_motion'); 
            set(gcf,'windowbuttonupfcn','sroi_2'); 
  
             
             
   %  
        end; 
%% Selection results (1) 
function sroi_2 
  
global counter xxes yyes ijj movi 
global rr hex hey positioner alignsx alignsy pixel_size matrix filename 
switcher pos1 small_movi 
  
set(gcf,'windowbuttonmotionfcn','sroi_3');  
set(gcf,'windowbuttonupfcn','sroi_3');  
  
line(yyes,xxes,'color','y'); 
  
    pols=roipoly(movi(:,:,ijj),yyes,xxes); 
  
  
         
        ccc=find(pols==1); 
        [x y]=ind2sub(size(pols),ccc); 
         
  
         
       pos1(1)=min(x); pos1(2)=max(x); pos1(3)=min(y); pos1(4)=max(y); 
        
        
        
       small_movi=[]; 
 siz=size(movi) 
 for i=1:siz(3) 
     i 
     movib=movi(:,:,i); 
     ccc=find(pols==0); movib(ccc)=0; 
     small_movi(:,:,i)=movib(pos1(1):pos1(2),pos1(3):pos1(4)); 
 end; 
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  sroi_choose_region_autocorr_only; 
%% Selection results (2): closing selection 
function sroi_3 
  
global movi rows cols A d c xx yy iii i bbb q s ijj  
  
%%Moving selection 
function sroi_motion 
  
global counter xxes yyes switcher 
  
  
  
 l=get(gca,'currentpoint'); 
          x=round(l(3)); 
          y=round(l(1)); 
          xxes(counter)=x;yyes(counter)=y; 
           
if counter>1 
      tx=[xxes(counter-1),xxes(counter)]; 
      ty=[yyes(counter-1),yyes(counter)]; 
  
      if switcher==1 
   line('Xdata',ty,'Ydata',tx,'color','b'); 
      else 
           
   line('Xdata',ty,'Ydata',tx,'color','r'); 
      end; 
  
 end; 
  
  
            counter=counter+1; 
  
 
%% Stepping through images 
function step 
  
global list mapname b movi rows cols A i xx yy zz iii bbb q s ijj jjj r 
firstred olds inner_radius outer_radius matrix 
global alignsx alignsy hex hey 
  
  
% ijj is the frame number  
  
ijj=ijj+1 
  
if ijj<s+1 
       if ijj==1 
        colormap(summer(250)); 
       elseif ijj==2 
              colormap(summer(250)); 
       elseif ijj==3 
          colormap(hot(250));  
       end; 
    himg=image(movi(:,:,ijj)); axis square; 
     
else ijj=q; 
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               if ijj==1 
        colormap(summer(250)); 
       elseif ijj==2 
              colormap(summer(250)); 
       elseif ijj==3 
          colormap(hot(250));  
       end; 
   
    himg=image(movi(:,:,ijj)); axis square; 
  
end; 
%  
% switch ijj; 
%     case 1 
%      textul=strcat('pHlourin'); 
%      text(15,35,textul,'FontSize',10,'color','g','BackgroundColor',[0.7 
0.7 0.7]); 
%     case 2 
%      textul=strcat('Cy3'); 
%      text(10,35,textul,'FontSize',10,'color','r','BackgroundColor',[0.7 
0.7 0.7]); 
%     case 3 
%      textul=strcat('647nC'); 
%      text(10,35,textul,'FontSize',10,'color','b','BackgroundColor',[0.7 
0.7 0.7]); 
%     case 4 
%      textul=strcat('STED'); 
%      text(10,35,textul,'FontSize',10,'color','r','BackgroundColor',[0.7 
0.7 0.7]); 
%  
% end 
try 
if numel(hex>1) 
             
        xes=[hex(ijj)-50 hex(ijj)+50 hex(ijj)+50 hex(ijj)-50 hex(ijj)-50]; 
        yes=[hey(ijj)-50 hey(ijj)-50 hey(ijj)+50 hey(ijj)+50 hey(ijj)-50]; 
         
        line(xes,yes,'color','g');    
end; 
catch 
end 
%% Stepping back through images 
function stepback 
  
global list mapname b movi rows cols A i xx yy zz iii bbb q s ijj jjj r 
firstred olds inner_radius outer_radius matrix 
global alignsx alignsy hex hey 
ijj=ijj-1 
if ijj>q-1 
             if ijj==1 
        colormap(summer(250)); 
       elseif ijj==2 
              colormap(summer(250)); 
       elseif ijj==3 
          colormap(hot(250));  
       end; 
    himg=image(movi(:,:,ijj)); axis square; 
  
 % set(himg,'cdata',movi(:,:,ijj)); 
else ijj=s; 
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             if ijj==1 
        colormap(summer(250)); 
       elseif ijj==2 
              colormap(summer(250)); 
       elseif ijj==3 
          colormap(hot(250));  
       end; 
    himg=image(movi(:,:,ijj)); axis square; 
 % set(himg,'cdata',movi(:,:,ijj)); 
end; 
  
%  
%    switch ijj 
%     case 1 
%      textul=strcat('pHlourin'); 
%      text(10,35,textul,'FontSize',10,'color','g','BackgroundColor',[0.7 
0.7 0.7]); 
%     case 2 
%      textul=strcat('Cy3'); 
%      text(10,35,textul,'FontSize',10,'color','r','BackgroundColor',[0.7 
0.7 0.7]); 
%     case 3 
%      textul=strcat('647nC'); 
%      text(10,35,textul,'FontSize',10,'color','b','BackgroundColor',[0.7 
0.7 0.7]); 
%     case 4 
%      textul=strcat('STED'); 
%      text(10,35,textul,'FontSize',10,'color','r','BackgroundColor',[0.7 
0.7 0.7]); 
%  
%    end 
  
   try 
   if numel(hex>1) 
             
        xes=[hex(ijj)-50 hex(ijj)+50 hex(ijj)+50 hex(ijj)-50 hex(ijj)-50]; 
        yes=[hey(ijj)-50 hey(ijj)-50 hey(ijj)+50 hey(ijj)+50 hey(ijj)-50]; 
         
        line(xes,yes,'color','g');    
   end; 
   catch 
   end 
%% Moving to the next image 
function sroi_next; 
  
global movi rr xx yy filename chol b2 Movi3 pixel_size image_matrix 
positioner pixel_size limits 
global list mapname b rows cols A q s ijj jjj r1 firstred olds inner_radius 
outer_radius matrix backmatrix old_movi 
global alignsx alignsy rect fused not_fused sh hex hey rr1 imagenr 
  
  
[stat, mess]=fileattrib('*_ch00.tif'); 
  
numel(mess) 
imagenr=imagenr+1 
positioner=0; 
 hex=[]; hey=[]; 
 values_matrix=[]; 
 movi=[]; 
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if numel(mess)>2*imagenr | numel(mess)==2*imagenr 
  
    imagenr 
    2*imagenr*100/numel(mess) 
  
[stat, mess]=fileattrib('*_ch00.tif'); 
  
dir *.tif; 
%rr=input('The first confocal file      ','s'); 
%rr1= input('The STED file      ','s'); 
pixel_size=20.20; %input('What is the pixel size ?'); 
         
%if rr1=='l' 
%    name=strcat(rr(1:numel(rr)-4),'.mat'); 
%   load(name); 
%else 
rr=mess(imagenr*2).Name 
r4=mess(imagenr*2-1).Name 
  
        r1=strcat(rr(1:numel(rr)-5),'0.tif'); 
         
        r2=strcat(rr(1:numel(rr)-5),'1.tif'); 
         
  
        filename=strcat(r4(1:numel(r4)-4)); 
        rr1=filename; 
        filename=strcat(r4(1:numel(r4)-4),'.txt'); 
         
movi=[]; 
  
movi(:,:,1)=imread(r4); 
movi(:,:,2)=imread(r2); 
movi(:,:,3)=imread(r1); 
  
old_movi=movi; 
  
sizz=size(movi); 
  
over=[]; 
over(:,:,2)=movi(:,:,2)*1/max(max(movi(:,:,2))); 
over(:,:,1)=movi(:,:,3)*1/max(max(movi(:,:,3))); 
over(:,:,3)=movi(:,:,1)*1/max(max(movi(:,:,1))); 
  
  
  
  
STED=image(over,'tag','him','cdatamapping','scaled'); colormap(summer); 
axis square; 
  
 dd=uicontrol('string','Step',... 
       'style','pushbutton','callback','step',... 
       'position',[100 0 50 30],'tooltipstring','one by one'); 
 ee=uicontrol('string','Stepback',... 
       'style','pushbutton','callback','stepback',... 
       'position',[150 0 50 30],'tooltipstring','one by one back'); 
  
 m=uicontrol('style','pushbutton', 'callback','sroi_next',... 



  Appendix 

183 
 

      'position',[400 0 70 30],'string','Next'); 
   
% sh=uicontrol('Style', 'slider','Callback',@lut,'Max', 255, 
'Min',0,'Value',255,... 
% 'SliderStep',[0.025 0.1], 'Position', [550 0 100 30]); 
  
  
chol=[]; 
inner_radius=10; 
outer_radius=30; 
image_matrix=[]; 
zz=[]; 
iii=0;jjj=1; 
ijj=1; 
backmatrix=[]; 
alignsx=[]; alignsy=[]; 
xx=[]; yy=[]; zz=[]; 
hex=[]; hey=[]; 
  
 fused=[]; 
 not_fused=[]; 
  
   
 set(gcf,'windowbuttondownfcn','sroi_00y'); 
 %sroi_align; 
else 
      close all; 
       
%      [stat, mess]=fileattrib('*_distances.txt'); 
  
end; 
%% Processing the selected area 
function automatic_sted_raj_cy3; 
  
global positioner old_movi old_small_movi small_movi orange green sted 
old_orange old_green pixel_size limits the_sizer pos1 
global contrastor1 contrastor2 contrastor3 old_sted rr1 hex hey xxes yyes 
background_orange background_green imagenr movi 
  
limit_orange=limits(2); 
limit_green=limits(1); 
limit_sted=limits(3); 
  
%limit_orange=3; 
%limit_green=8; 
%limit_sted=8;% 10 for normal old patches, 8 for new patches remaining, 6 
for new patches 
the_sizer=0; 
figure; 
% name the new area by increasing positioner 
positioner=positioner+1; 
  
% test whether the background is defined 
% if numel(hex)<4 
%     figure; text(0.3,0.5, 'Define background area'); 
%      pause(1); 
%      close; close; 
% end; 
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% name the new area by increasing positioner 
positioner=positioner+1; 
  
% % generate the background matrix 
% sub_back=[]; 
% for i=1:4 
%     sub_back(:,:,i)=old_movi(hey(i)-50:hey(i)+50,hex(i)-50:hex(i)+50,i); 
% end; 
%  
% background_orange=mean2(sub_back(:,:,2)); 
% background_green=mean2(sub_back(:,:,1)); 
  
% generate the selected area matrix, and a second copy in "old_small_movi" 
% with only the orange and STED images (atto confocal is by now irrelevant 
 old_small_movi=[]; 
 old_small_movi(:,:,1)=small_movi(:,:,1); 
 old_small_movi(:,:,2)=small_movi(:,:,2); 
 old_small_movi(:,:,3)=small_movi(:,:,3);  
  
 %%%%%% 
 small_movi_filtered=[]; 
    H=fspecial('average',3); 
    for i=1:3 
       small_movi_filtered(:,:,i)=medfilt2(old_small_movi(:,:,i)); 
       
small_movi_filtered(:,:,i)=imfilter(old_small_movi(:,:,i),H,'replicate'); 
    end; 
  
%%%%%%%%%%%%%%% the actual images to work with, orange and sted 
%      
     green=small_movi_filtered(:,:,1); 
     green=bpass(green,0,15); 
%     orange=small_movi_filtered(:,:,2); 
%     orange=bpass(orange,0,15); 
%     sted=small_movi_filtered(:,:,3);   
%      
%     old_orange=orange; 
%     old_sted=sted; 
    old_green=green; 
     
%%%%%%%%%%%%%%%%%%%%%% getting a bw image of the area, saved as "pols" 
pols=old_small_movi(:,:,1); 
ccc=find(pols>0); pols(ccc)=1; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
 ccc_pols=find(pols==1); 
%    contrastor1=uicontrol('tag','fff',... 
%       'style','slider','callback',{@sroi_levels1},... 
%       'position',[200 0 100 30],'min',0,'max',(max(orange(ccc_pols))),... 
%       'sliderstep',[0.0255 0.1]);     
% set(contrastor1,'value',(mean(orange(ccc_pols)) + limit_orange)); 
% sroi_levels1; 
%  
%  
%    contrastor2=uicontrol('tag','fff',... 
%       'style','slider','callback',{@sroi_levels2},... 
%       'position',[300 0 100 30],'min',0,'max',(max(sted(ccc_pols))),... 
%       'sliderstep',[0.0255 0.1]);     
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% set(contrastor2,'value',(mean(sted(ccc_pols)) + limit_sted)); 
% sroi_levels2; 
  
  
  
   contrastor3=uicontrol('tag','fff',... 
      'style','slider','callback',{@sroi_levels3},... 
      'position',[0 0 100 30],'min',0,'max',(max(green(ccc_pols))),... 
      'sliderstep',[0.0255 0.1]);     
set(contrastor3,'value',(mean(green(ccc_pols)) + limit_green)); 
sroi_levels3; 
  
  
  
cleaning=uicontrol('tag','clense','style','pushbutton', 
'callback',{@make_do},... 
      'position',[100 0 100 30],'string','Calculate'); 
 % cleaning2=uicontrol('tag','clense','style','pushbutton', 
'callback',{@make_do2},... 
 %     'position',[200 0 100 30],'string','Auto was 
OK','tooltipstring','erase all drawings'); 
  % cleaning2=uicontrol('tag','clense','style','pushbutton', 
'callback',{@show_do},... 
  %    'position',[400 0 100 30],'string','Show 
Auto','tooltipstring','erase all drawings'); 
   
  subplot(2,3,1); imagesc(small_movi(:,:,1)); axis equal; 
  subplot(2,3,2); imagesc(small_movi(:,:,2)); axis equal;  
  subplot(2,3,3); imagesc(small_movi(:,:,3)); axis equal; 
   
   
end 
% function sroi_levels1(source,eventdata) 
%  
% global  orange sted contrastor1 contrastor2 old_orange old_sted the_sizer 
%  
% orange=old_orange; 
% hh=get(contrastor1,'value'); 
%  
% ccc=find(orange<hh);orange(ccc)=0; 
%  
% %%%%%% orange 
%  
%  
%   
%      orange=imerode(orange,strel('disk',1)); 
%      orange=imdilate(orange,strel('disk',1)); 
%  
% %      pk=pkfnd(orange,0,6); 
% %      cnt=cntrd(orange,pk,6); 
% %      pos=cnt(:,1:2); 
% %      siz_pos=size(pos); 
% %       
% %     siz=size(pos) 
%  
%  
%  bworange=im2bw(orange); 
%  bwlorange=bwlabel(bworange); 
%   
%  for i=1:max(max(bwlorange)) 
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% ccc=find(bwlorange==i); 
%    if numel(ccc)<70 
%        bwlorange(ccc)=0;                  
%    end; 
%  end; 
%   
%   subplot(2,3,5);  
%   if the_sizer==1 
%    
%   imagesc(rot90(flipud(im2bw(bwlorange)),3));      axis equal; 
%   else 
%      imagesc(im2bw(bwlorange));      axis equal; 
%   end;   
%  hh 
% end 
% function sroi_levels2(source,eventdata) 
%  
% global  orange sted contrastor1 contrastor2 old_orange old_sted the_sizer 
%  
% sted=old_sted; 
% hh=get(contrastor2,'value'); 
%  
% ccc=find(sted<hh);sted(ccc)=0; 
%  
% %%%%%% orange 
%  
%   sted=bpass(sted,0,30); 
%   
%      sted=imerode(sted,strel('disk',1)); 
%      sted=imdilate(sted,strel('disk',1)); 
%  
%  
%        pk=pkfnd(sted,0,6); 
%        cnt=cntrd(sted,pk,6); 
%        pos=cnt(:,1:2); 
%  
%        
% sted2=rot90(flipud(sted),3); 
% if the_sizer==1 
%  subplot(2,3,6); imagesc(im2bw(sted2));     axis equal;   
%   
%  pk2=pkfnd(sted2,0,6); 
%        cnt2=cntrd(sted2,pk2,6); 
%        pos2=cnt2(:,1:2); 
%      siz=size(pos2) 
%       
%      colors='rgbcmyk'; 
%       
%        for k=1:siz(1) 
%            p=randperm(numel(colors)); 
%            
line(pos2(k,1),pos2(k,2),'linestyle','none','marker','o','markeredgecolor',
'none','markerfacecolor',colors(p(1))); 
%        end; 
%    
% else 
%     subplot(2,3,6); 
%   imagesc(im2bw(sted));     axis equal; 
%    
%   %      siz=size(pos) 
% %       
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%       colors='rgbcmyk'; 
%       siz=size(pos); 
%         for k=1:siz(1) 
%             p=randperm(numel(colors)); 
%             
line(pos(k,1),pos(k,2),'linestyle','none','marker','o','markeredgecolor','n
one','markerfacecolor',colors(p(1))); 
%         end; 
%     
%    
% end; 
%  
%  
%   
%  
%  
%  hh 
%  
%  
%  
%  
% end 
function sroi_levels3(source,eventdata) 
  
global  orange green contrastor3 old_orange old_green old_small_movi greenx 
greeny the_sizer 
  
green=old_green; 
hh=get(contrastor3,'value'); 
  
ccc=find(green<hh);green(ccc)=0; 
  
%%%%%% orange 
  
  
  
     green=imerode(green,strel('disk',1)); 
     green=imdilate(green,strel('disk',1)); 
  
%      pk=pkfnd(green,0,6); 
%      cnt=cntrd(green,pk,6); 
%      pos=cnt(:,1:2); 
%      siz_pos=size(pos); 
%       
%     siz=size(pos) 
  
  
 bwgreen=im2bw(green); 
 bwlgreen=bwlabel(bwgreen); 
  
 for i=1:max(max(bwlgreen)) 
ccc=find(bwlgreen==i); 
   if numel(ccc)<10 
       bwlgreen(ccc)=0;                  
   end; 
 end; 
  
bwlgreen=bwlabel(bwlgreen); 
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old_real_green=old_small_movi(:,:,1); 
  
greenx=[]; greeny=[]; 
  
  for i=1:max(max(bwlgreen)) 
ccc=find(bwlgreen==i); 
         siz=size(bwlgreen); 
         [xx yy]=ind2sub([siz(1) siz(2)],ccc); 
         mm=old_real_green(ccc); 
         greenx(numel(greenx)+1)=sum(xx.*mm)/sum(mm); 
         greeny(numel(greeny)+1)=sum(yy.*mm)/sum(mm); 
 end; 
  
  
       subplot(2,3,4); imagesc(im2bw(bwlgreen));     axis equal; 
  
   
  hh 
  
end 
function make_do(source,eventdata) 
  
global  orange sted green rr1 positioner small_movi xxes yyes pixel_size 
greenx greeny old_sted old_small_movi pos1 movi 
  
siz=size(movi);   a=zeros(siz(1)+200,siz(2)+200); 
for i=1:siz(3) 
     a(101:100+siz(1),101:100+siz(2),i)=movi(1:siz(1),1:siz(2),i); 
end; 
  
  
green=a(:,:,1); 
red=a(:,:,2); 
sted=a(:,:,3); 
  
  
  
  
    
gmatrix=green(round(greenx(1))+pos1(1):round(greenx(1))+pos1(1)+200,round(g
reeny(1))+pos1(3):round(greeny(1))+pos1(3)+200); 
    
redmatrix=red(round(greenx(1))+pos1(1):round(greenx(1))+pos1(1)+200,round(g
reeny(1))+pos1(3):round(greeny(1))+pos1(3)+200); 
    
stedmatrix=sted(round(greenx(1))+pos1(1):round(greenx(1))+pos1(1)+200,round
(greeny(1))+pos1(3):round(greeny(1))+pos1(3)+200); 
  
     
     
     
rmmm=[]; 
rmmm(:,:,1)=gmatrix; 
rmmm(:,:,2)=redmatrix; 
rmmm(:,:,3)=stedmatrix; 
  
 dlmwrite(strcat(rr1,'_',num2str(positioner),'_spots.txt'),rmmm); 
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figure; 
  subplot(1,3,1); imagesc(gmatrix); axis equal; 
  subplot(1,3,2); imagesc(redmatrix); axis equal;  
  subplot(1,3,3); imagesc(stedmatrix); axis equal; 
  
 pause(1); close; close; 
  
end 
 
%% Band pass filters 
function res = bpass(image_array,lnoise,lobject,threshold) 
%  
% NAME: 
%               bpass 
% PURPOSE: 
%               Implements a real-space bandpass filter that suppresses  
%               pixel noise and long-wavelength image variations while  
%               retaining information of a characteristic size. 
%  
% CATEGORY: 
%               Image Processing 
% CALLING SEQUENCE: 
%               res = bpass( image_array, lnoise, lobject ) 
% INPUTS: 
%               image:  The two-dimensional array to be filtered. 
%               lnoise: Characteristic lengthscale of noise in pixels. 
%                       Additive noise averaged over this length should 
%                       vanish. May assume any positive floating value. 
%                       May be set to 0 or false, in which case only the 
%                       highpass "background subtraction" operation is  
%                       performed. 
%               lobject: (optional) Integer length in pixels somewhat  
%                       larger than a typical object. Can also be set to  
%                       0 or false, in which case only the lowpass  
%                       "blurring" operation defined by lnoise is done, 
%                       without the background subtraction defined by 
%                       lobject.  Defaults to false. 
%               threshold: (optional) By default, after the convolution, 
%                       any negative pixels are reset to 0.  Threshold 
%                       changes the threshhold for setting pixels to 
%                       0.  Positive values may be useful for removing 
%                       stray noise or small particles.  Alternatively, can 
%                       be set to -Inf so that no threshholding is 
%                       performed at all. 
% 
% OUTPUTS: 
%               res:    filtered image. 
% PROCEDURE: 
%               simple convolution yields spatial bandpass filtering. 
% NOTES: 
% Performs a bandpass by convolving with an appropriate kernel.  You can 
% think of this as a two part process.  First, a lowpassed image is 
% produced by convolving the original with a gaussian.  Next, a second 
% lowpassed image is produced by convolving the original with a boxcar 
% function. By subtracting the boxcar version from the gaussian version, we 
% are using the boxcar version to perform a highpass. 
%  
% original - lowpassed version of original => highpassed version of the 
% original 
%  
% Performing a lowpass and a highpass results in a bandpassed image. 
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%  
% Converts input to double.  Be advised that commands like 'image' display  
% double precision arrays differently from UINT8 arrays. 
  
% MODIFICATION HISTORY: 
%               Written by David G. Grier, The University of Chicago, 2/93. 
% 
%               Greatly revised version DGG 5/95. 
% 
%               Added /field keyword JCC 12/95. 
%  
%               Memory optimizations and fixed normalization, DGG 8/99. 
%               Converted to Matlab by D.Blair 4/2004-ish 
% 
%               Fixed some bugs with conv2 to make sure the edges are 
%               removed D.B. 6/05 
% 
%               Removed inadvertent image shift ERD 6/05 
%  
%               Added threshold to output.  Now sets all pixels with 
%               negative values equal to zero.  Gets rid of ringing which 
%               was destroying sub-pixel accuracy, unless window size in 
%               cntrd was picked perfectly.  Now centrd gets sub-pixel 
%               accuracy much more robustly ERD 8/24/05 
% 
%               Refactored for clarity and converted all convolutions to 
%               use column vector kernels for speed.  Running on my  
%               macbook, the old version took ~1.3 seconds to do 
%               bpass(image_array,1,19) on a 1024 x 1024 image; this 
%               version takes roughly half that. JWM 6/07 
% 
%       This code 'bpass.pro' is copyright 1997, John C. Crocker and  
%       David G. Grier.  It should be considered 'freeware'- and may be 
%       distributed freely in its original form when properly attributed.   
  
if nargin < 3, lobject = false; end 
if nargin < 4, threshold = 0; end 
  
normalize = @(x) x/sum(x); 
  
image_array = double(image_array); 
  
if lnoise == 0 
  gaussian_kernel = 1; 
else       
  gaussian_kernel = normalize(... 
    exp(-((-ceil(5*lnoise):ceil(5*lnoise))/(2*lnoise)).^2)); 
end 
  
if lobject   
  boxcar_kernel = normalize(... 
      ones(1,length(-round(lobject):round(lobject)))); 
end 
   
% JWM: Do a 2D convolution with the kernels in two steps each.  It is 
% possible to do the convolution in only one step per kernel with  
% 
  % gconv = conv2(gaussian_kernel',gaussian_kernel,image_array,'same'); 
  % bconv = conv2(boxcar_kernel', boxcar_kernel,image_array,'same'); 
%  
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% but for some reason, this is slow.  The whole operation could be reduced 
% to a single step using the associative and distributive properties of 
% convolution: 
% 
  % filtered = conv2(image_array,... 
  %   gaussian_kernel'*gaussian_kernel - boxcar_kernel'*boxcar_kernel,... 
  %   'same'); 
% 
% But this is also comparatively slow (though inexplicably faster than the 
% above).  It turns out that convolving with a column vector is faster than 
% convolving with a row vector, so instead of transposing the kernel, the 
% image is transposed twice. 
  
gconv = conv2(image_array',gaussian_kernel','same'); 
gconv = conv2(gconv',gaussian_kernel','same'); 
  
if lobject 
  bconv = conv2(image_array',boxcar_kernel','same'); 
  bconv = conv2(bconv',boxcar_kernel','same'); 
  
  filtered = gconv - bconv; 
else 
  filtered = gconv; 
end 
  
% Zero out the values on the edges to signal that they're not useful.      
lzero = max(lobject,ceil(5*lnoise)); 
  
filtered(1:(round(lzero)),:) = 0; 
filtered((end - lzero + 1):end,:) = 0; 
filtered(:,1:(round(lzero))) = 0; 
filtered(:,(end - lzero + 1):end) = 0; 
  
% JWM: I question the value of zeroing out negative pixels.  It's a 
% nonlinear operation which could potentially mess up our expectations 
% about statistics.  Is there data on 'Now centroid gets subpixel accuracy 
% much more robustly'?  To choose which approach to take, uncomment one of 
% the following two lines. 
% ERD: The negative values shift the peak if the center of the cntrd mask 
% is not centered on the particle. 
  
% res = filtered; 
filtered(filtered < threshold) = 0; 
res = filtered; 
 
%% Post-processing of selection, to obtain average images 
function address_spots; 
  
cd 'C:\data_2012\sinem';% Folder containing sub-folders that have just been 
analyzed 
  
cellb={}; 
  
[dsstat, dmmess]=fileattrib('*'); 
for i=1:numel(dmmess) 
    if dmmess(i).directory 
        cellb{numel(cellb)+1}=dmmess(i).Name; 
    end; 
end; 
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for abcdef=1:numel(cellb); 
     
  
    abcdef 
    name=cellb{abcdef}; 
    cd(name); 
  
  
  
  
  
% global pixel_size; 
close all; 
pixel_size=20.2; 
  
[stat, mess]=fileattrib('*_spots.txt'); 
if stat==1 
redm=[]; 
greenm=[]; 
redm=zeros(201,201); 
greenm=zeros(201,201); 
matcounter=0; 
  
matrix=dlmread(mess(1).Name); 
az=matrix(1:201,1:201); green=matrix(1:201,202:402); 
red=matrix(1:201,403:603); 
counter=1; 
for klm=2:numel(mess) 
klm*100/numel(mess) 
     
     
matrix=dlmread(mess(klm).Name); 
az2=matrix(1:201,1:201); green2=matrix(1:201,202:402); 
red2=matrix(1:201,403:603); 
     %%%%%%%%%%%%%%%turn around 
      
for klmmm=1:72 
  
    aa=imrotate(red2,klmmm*5); siz=size(aa);half=round(siz(1)/2); 
aa=aa(half-100:half+100,half-100:half+100); 
    bb=imrotate(green2,klmmm*5); siz=size(bb);half=round(siz(1)/2); 
bb=bb(half-100:half+100,half-100:half+100); 
     
    
minima(klmmm)=corr2(aa(50:150,50:150),red(50:150,50:150))*corr2(bb(50:150,5
0:150),green(50:150,50:150));     
end; 
%%%%%%%%%%%%%%flip 
for klmmm=1:72 
  
    aa=imrotate(flipud(red2),klmmm*5); siz=size(aa);half=round(siz(1)/2); 
aa=aa(half-100:half+100,half-100:half+100); 
    bb=imrotate(flipud(green2),klmmm*5); siz=size(bb);half=round(siz(1)/2); 
bb=bb(half-100:half+100,half-100:half+100); 
    
minima(klmmm+72)=corr2(aa(50:150,50:150),red(50:150,50:150))*corr2(bb(50:15
0,50:150),green(50:150,50:150)); 
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end; 
  
  
ccc=find(minima==max(max(minima))); 
try 
pos=ccc(1); 
catch 
end; 
  
if pos<72 
    aa=imrotate(green2,pos*5); siz=size(aa);half=round(siz(1)/2); 
aa=aa(half-100:half+100,half-100:half+100); green2=aa; 
    aa=imrotate(red2,pos*5); siz=size(aa);half=round(siz(1)/2); aa=aa(half-
100:half+100,half-100:half+100); red2=aa; 
    aa=imrotate(az2,pos*5); siz=size(aa);half=round(siz(1)/2); aa=aa(half-
100:half+100,half-100:half+100); az2=aa; 
      
     
else 
     aa=imrotate(flipud(green2),pos*5); siz=size(aa);half=round(siz(1)/2); 
aa=aa(half-100:half+100,half-100:half+100); green2=aa; 
    aa=imrotate(flipud(red2),pos*5); siz=size(aa);half=round(siz(1)/2); 
aa=aa(half-100:half+100,half-100:half+100); red2=aa; 
    aa=imrotate(flipud(az2),pos*5); siz=size(aa);half=round(siz(1)/2); 
aa=aa(half-100:half+100,half-100:half+100); az2=aa; 
end; 
      
%turn_matrix=turn_matrix/2; 
counter=counter+1; 
green=(green+green2); 
red=(red+red2); 
az=(az+az2); 
  
end; 
% imagesc(turn_matrix); axis equal; drawnow; 
   
  
  
   
dlmwrite('ribbon_matrix_by_both.txt',az/counter); 
dlmwrite('green_matrix_by_both.txt',green/counter); 
dlmwrite('red_matrix_by_both.txt',red/counter); 
  
  
a=dlmread('ribbon_matrix_by_both.txt'); 
b=dlmread('green_matrix_by_both.txt'); c=dlmread('red_matrix_by_both.txt'); 
figure;  
  
imwrite(uint8(a),'ribbon_matrix_by_both.tif','tiff'); 
imwrite(uint8(b),'green_matrix_by_both.tif','tiff'); 
imwrite(uint8(c),'red_matrix_by_both.tif','tiff'); 
  
subplot(2,2,1); imagesc(a); axis equal; colormap(jet); 
subplot(2,2,2); imagesc(medfilt2(b)); axis equal; colormap(jet); 
subplot(2,2,3); imagesc(medfilt2(c)); axis equal; colormap(jet); 
  
  
  end; 
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end; 
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