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Summary 
 Fungal development is regulated by environmental stimuli via various 

signaling pathways. For instance, the cyclic AMP dependent protein kinase A 

(PKA) cascade is controlling development or pathogenesis in fungi as 

filamentous growth in backer yeast Saccharomyces cerevisiae or pathogenesis 

in plant pathogenic fungus Magnaporthe oryzae. The cAMP/PKA downstream 

target Flo8/Som1 containing a conserved LUG/LUH-Flo8-single-stranded DNA 

binding (LUFS) domain is required for morphological development and virulence. 

In this study the FLO8 homolog, AfusomA of the human opportunistic pathogenic 

fungus Aspergillus fumigatus was investigated. Heterologous expression of the 

AfuSomA encoding gene complemented invasive growth (cell-surface adhesion) 

or flocculation (cell-cell adhesion) in haploid or pseudohyphal growth in diploid 

∆flo8 S. cerevisiae yeast strains. AfuSomA and ScFlo8 regulate the expression 

of the ScFLO11 gene encoding flocculin as major component for adhesion by 

binding to similar regions on its promoter. These results indicate that AfuSomA 

and ScFlo8 share a similar function in yeast. Loss of the encoding AfuSomA 

resulted in a slow growth phenotype and a block in asexual development in A. 

fumigatus. Only aerial hyphae without further differentiation could be formed in 

AfusomA null mutant. An abolishment of conidiation was verified by a conditional 

expression of AfusomA using the inducible Tet-on system. Adherence to the host 

is an important step for pathogenesis. Adhesion assay with conditional 

expression strain indicated that AfuSomA is required for adherence to plastic 

surfaces. Infection of fertilized chicken eggs revealed that AfuSomA is required 

for pathogenicity. Transcription analysis showed that AfuSomA regulates 

expression of several transcription factors which have been shown to regulate 

conidiation and adhesion in A. fumigatus. GFP-Trap with AfuSomA leads to the 

identification of nucleolar proteins and PtaB (ScMfg1) which the yeast homolog 

forms complex with ScFlo8. Expression of putative adhesins was down regulated 

in AfusomA null strain. Single or multiple deletions of putative adhesins showed 

normal conidiation and pathogenicity.  



  Zusammenfassung 

2 
 

Zusammenfassung 

Die Pilz-Entwicklung wird durch Umwelt Stimuli über verschiedene Signal-

Wege reguliert. So kontrolliert die zyklische AMP abhängige Protein Kinase A 

Kaskade die Entwicklung und Pathogenität in Pilzen, wie zum Beispiel in der 

Bäckerhefe Sacharomyces cerevisiae das filamentöse Wachstum oder im 

Pflanzen pathogenem Pilz Magnaporthe oryzae die Pathogenität. Das unterhalb 

der cAMP/PKA Kaskade angesiedelte Zielprotein Flo8/Som1 ist notwendig für 

morphologische Entwicklung und Virulenz und besitz eine konservierte 

LUG/LUH-Flo8-single-stranded DNA bindende Domäne (LUFS). In dieser Arbeit 

wurde das Flo8 homologe Protein AfuSomA des opportunistischen 

humanpathogenen Pilzes Aspergillus fumigatus näher untersucht. Dabei konnte 

gezeigt werden, dass die heterologe Expression von AfuSomA in S. cerevisiae 

∆flo8 Mutanten invasives Wachstum (Zellen-Oberflächen Interaktion) und 

Flokkulation (Zellen Interaktion) wiederherstellt sowie in diploiden Mutanten 

Pseudohyphen Wachstum vermittelt. Beide, AfuSomA und ScFlo8 regulieren die 

Expression des Flocculins ScFLO11, einer Hauptkomponente für Adhesion, 

indem sie an ähnliche Promotor Bereiche binden. Aus den Ergebnissen ist zu 

schließen, dass AfuSomA und ScFlo8 eine ähnliche Funktion in Hefe 

übernehmen können. In A. fumigatus zeigte die Abwesenheit von AfuSomA ein 

langsames Wachstum und eine Blockade in der asexuellen Entwicklung. Nur 

Lufthyphen ohne jegliche Differenzierung wurden in der Null Mutante AfusomA 

gebildet. Zusätzliche wurde dieser Phaenotyp auch mittels des Tet-on 

induzierbaren Expressions-Systems in einer konditionalen Expressionsmutante 

bestätigt. Die Adhesion an den Wirt spielt eine wichtige Rolle in der Pathogenität 

von Krankheitserregern. Die Adhesionstudie der konditionalen 

Expressionsmutante zeigte, dass AfuSomA für die Adhesion an die 

Plastikoberfläche benötigt wird. Im Hühnerei-Infektionsmodell wurde der Einfluß 

von AfuSomA auf die Pathogenität nachgewiesen. AfuSomA reguliert 

verschiedene Transkriptionsfaktoren, die eine Rolle bei der Konidienbildung und 

Adhesion spielen. Dies wurde durch Transkriptionsanalysen gezeigt. Eine 
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Interaktion von AfuSomA mit nukleolaren Proteinen und dem aus Hefe 

bekannten Flo8 Interaktionspartner PtaB (ScMfg1) wurden mit dem "GFP-Trap" 

System gefunden. Weiterhin konnten putative Adhesine identifiziert werden, die 

durch AfuSomA reguliert werden. Die Deletionsmutanten dieser putative 

Adhesine zeigten normale Konidienbildung und Pathogenität. 
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1 Introduction 
1.1 Pathogenic fungi 
1.1.1 Fungal pathogens in plants and humans 

The fungal kingdom contains roughly 1.5 to 5.1 million species living on 

various environments on this planet (Hawksworth and Rossman, 1997; Blackwell, 

2011), and only 100.000 species are currently known. Among those fungi, only a 

small fraction are potential plant or human pathogens (Woolhouse and Gaunt, 

2007; Hube, 2009; Robert and Casadevall, 2009; Gauthier and Keller, 2013). 

However, the limited fungal pathogens can cause enormous yield losses in 

agriculture and high costs in medical treatments together with loss of lives. Being 

pathogenic, fungi have to acquire nutrient in their hosts and in order to be 

successful they have to finish their life cycle which includes germination, growth, 

colonization and reproduction (Sexton and Howlett, 2006). To obtain the nutrients 

from the hosts, plant pathogens can be either biotrophic or hemibiotrophic. The 

difference is the latter feeds on living plants for a period of time and kills the 

hosts for gaining nutrients from dead tissues, whereas the biotrophic fungus 

completes its life cycle on living hosts (Giraldo and Valent, 2013). For example, 

Magnaporthe oryzae is a hemibiotrophic fungus causes yield losses of rice 

worldwide by destroying its host, while Ustilago maydis can live along with its 

hosts without its death. Most of human pathogens are environmental fungi, which 

normally live in soil or compost, and acquire nutrient from decaying material. The 

infection is acquired via the lung when their abundant airborne spores are 

inhaled. In contrast to commensal fungi as Candida albicans colonize the 

mucous surfaces of human as natural habitat which can become infectious when 

the immune system of host goes down (Hube, 2009).  

 The Aspergillus genus is comprised of filamentous fungi, which play a role 

in recycling carbon and nitrogen from decaying plant materials and are usually 

found in soil or compost. Among 260 different species in Aspergilli (Geiser et al., 

2007), Aspergillus fumigatus is the most common agent of human invasive fungal 

infections whose mortality rate in immunocompromised individuals is more than 
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60 % (Tekaia and Latgé, 2005; Gauthier and Keller, 2013). As a saprophyte, A. 

fumigatus usually can be found in various habitats and produces ubiquitous 

conidia (asexual spores), which can be easily dispersed into the air (Morris et al., 

2000). The infection process can start when the airborne conidia are inhaled by 

immunocompromised humans. The inhaled conidia in healthy individuals can be 

removed by pulmonary defenses, which include mucociliary clearance of 

epithelial cells and alveolar macrophages and leukocytes (neutrophils and 

eosinophils) in the lung (Dagenais and Keller, 2009; Lilly et al., 2014). The 

conidia that evade from innate immunity germinate to form hyphae and penetrate 

into the barrier which is comprised of pulmonary epithelial cells and vascular 

endothelial cells between alveoli and blood vessels. The defense to this invasion 

is mainly mediated by neutrophils, dendritic cells and the adapted immunity. If the 

host is immunocompromised such as individuals with chronic pulmonary 

diseases or AIDS, this invasion is followed by dissemination of hyphal fragments 

via bloodstream and infection of deeper organs (Filler and Sheppard, 2006; 

Askew, 2008; Dagenais and Keller, 2009) (Figure 1).  

 

 

Figure 1.  Model of pathogenesis in Aspergillus fumigatus. 

Infection of A. fumigatus occurs when the inhaled conidia reach the alveoli in lung (left 
panel). The conidia can evade from the immune system and be able to germinate and 
damage the barrier between alveolus and an adjacent blood vessel (central panel). This 
barrier is comprised of pulmonary epithelial cells (pink) and vascular endothelial cells 
(red). Hyphal fragments which penetrate the barrier disseminate via bloodstream, 
adhere to the luminal endothelial cells and invade to deeper organs (right panel) 
(adapted from (Askew, 2008)).  
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 Most of fungal pathogens can only infect either plants or animals, however 

several species from ascomycetes are able to cause diseases in both kingdoms 

(Gauthier and Keller, 2013). This indicates that some mechanisms are specific 

for plant or animal infection, while others are conserved in fungal pathogens and 

are required for general pathogenesis. For example, plant pathogens secrete 

cutinases and cellulases to hydrolyze cutin and cellulose during infection, while 

these hydrolytic enzymes are not required in pathogenesis in human pathogens. 

In Fusarium oxysporum which can infect both plant and animal, the protein 

kinase Fmk1 which regulates surface hydrophobicity and root attachment (Di 

Pietro et al., 2001), is required for virulence in tomatoes but not in mice. In 

contrast, the transcription factor PacC, which controls pH homeostasis (Caracuel 

et al., 2003), is essential for mice infection but not for tomato infection (Ortoneda 

et al., 2004). Apart from the host specific virulence factors, some conserved 

mechanisms within different species are required for pathogenesis. In general 

organism needs a system that senses and transfers signals for nutrition, stress 

and environmental changes into cellular processes. The signal transduction 

pathway is a good example for a mechanism that is involved in pathogenicity.  

 

1.1.2 Signal transduction: the heterotrimeric G protein and downstream 
cAMP/PKA pathway  

The cyclic adenosine monophosphate (cAMP) dependent pathway is 

highly conserved from bacteria to mammals and plays an important role in 

pathogenesis in bacteria and fungi (McDonough and Rodriguez, 2012; Gancedo, 

2013). It has been shown that the cAMP dependent protein kinase A (PKA) 

signaling pathway plays a major role in morphological development and virulence 

in plant and animals for fungal pathogens as C. albicans, Cryptococcus 

neoformans, M. oryzae or U. maydis (Mitchell and Dean, 1995; Durrenberger et 

al., 1998; Hogan and Sundstrom, 2009; Kozubowski et al., 2009; Ramanujam 

and Naqvi, 2010; Fuller and Rhodes, 2012). In eukaryotic cells, the cAMP/PKA 

signaling pathway begins with the heterotrimeric G protein. The G protein is 
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comprised of α, β and γ subunits and this complex is usually associated with a G 

protein coupled receptor (GPCR) which contains seven trans membrane α helix 

structures (Li et al., 2007). Ligand bound GPCR replaces the GTP for GDP on 

the Gα subunit and liberates Gα protein from Gβγ dimer. Both Gα and the Gβγ 

dimer can regulate downstream signaling molecules which include adenylyl 

cyclases, phospholipases, phosphodiesterases, lipid kinases and ion channels 

(Neves et al., 2002; Dorsam and Gutkind, 2007). The cAMP/PKA signaling 

pathway is downstream of adenylyl cyclase which is activated by the G protein. 

The activated adenylyl cyclases convert ATP to cAMP. As a secondary 

messenger, cAMP binds to the regulatory subunits of PKA. The catalytic subunits 

of the enzyme are released and activate downstream transcription factors by 

phosphorylation (McDonough and Rodriguez, 2012). In the budding yeast 

Saccharomyces cerevisiae, the role of this pathway is nutrient sensing and 

regulates pseudohyphal growth as well as adhesion (Cullen and Sprague, 2012). 

In the opportunistic human pathogenic fungus C. albicans, this pathway is also 

activated by nutrient starvation and controls yeast to hyphae transition which is 

important for virulence (Hogan and Sundstrom, 2009; Inglis and Sherlock, 2013; 

Mayer et al., 2013). This is also the case in the plant pathogen U. maydis, where 

dimorphic transition from yeast to filaments is activated by the cAMP/PKA 

pathway (Bölker, 2001; Müller et al., 2004; Agarwal et al., 2013). Taken together, 

the cAMP/PKA pathway plays an important role in morphological development 

and pathogenesis in non-pathogenic and pathogenic fungi. 

 

1.1.3 The cAMP/PKA pathway in Aspergillus fumigatus  

The components of cAMP/PKA signaling pathway in A. fumigatus have 

been identified and characterized. The components are (1) the two G protein 

coupled receptors (GPCRs): GprC and GprD (Grice et al., 2013); (2) the 

heterotrimeric G protein: GpaA (α), GpaB (α), GanA (α), SfaD (β) and GpgA(γ) 

(Liebmann et al., 2003; Lafon et al., 2006); (3) the adenylyl cyclase AcyA 
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(Liebmann et al., 2003); and (4) the regulatory subunit and two catalytic subunits 

of PKA PkaR, PkaC1 and PkaC2 (Liebmann et al., 2004). Deletion mutants of 

the GPCR (∆gprC and ∆gprD) resulted in impaired growth. They had delayed 

mortality and reduced virulence in the animal model of aspergillosis respectively 

(Gehrke et al., 2010). In contrast to the GPCR deletion strains, the ∆gpaB mutant 

shows normal growth but had reduced conidiation, whereas the adenylyl cyclase 

deletion strain has not only decreased growth but also showed severely impaired 

sporulation (Liebmann et al., 2003). Further studies in the regulatory and catalytic 

subunits of PKA revealed that loss of PkaR results in reduced growth and 

germination rate as well as in conidiation. The ∆pkaC1 mutant has similar 

phenotypes as the ∆pkaR mutant (Liebmann et al., 2004; Zhao et al., 2006; 

Grosse et al., 2008; Fuller et al., 2011). All of the studies above show that 

deletions of component being part of the cAMP/PKA pathway lead to attenuated 

virulence of the pathogenesis of A. fumigatus.  

 

1.2 Adhesion 
1.2.1 Adherence is required for fungal pathogenesis 

 To establish infections in the host, the spores of both plant and animal 

fungal pathogens should require the ability to adhere to the host cells. To bind to 

different surfaces, spores requires adhesins or hydrophobins which are proteins 

with adhesive or hydrophbic function. For instance, the CalA adhesin of the 

conidial cell surface in A. fumigatus promotes binding to laminin. Hydrophobin 

Hyd2 in Beauveria bassian and Hyd3 in Clonostachs rosea are important for 

adhesion of conidia to epicuticle in insects and root colonization in plants 

(Upadhyay et al., 2009; Zhang et al., 2011; Dubey et al., 2014).  

Hydrophobins are small amphiphilic proteins comprised of approximately 

100 amino acids with eight conserved cysteine residues. They are less than 20 

kDa in size, and are only found in filamentous fungi (Jensen et al., 2010; Bayry et 

al., 2012). The function of hydrophobin includes formation of aerial hyphae which 
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are essential for sporulation and adherence to hosts cells in pathogenic fungi 

(Linder et al., 2005; Bayry et al., 2012). For example, hydrophobin Mpg1 in plant 

pathogen Magnaporthe grisea is involved in conidiation and appressorium 

formation. Loss of this cell wall protein reduces virulence in rice (Talbot et al., 

1993; Talbot et al., 1996).  

Yeasts lack hydrophobins, instead they use adhesins which are cell wall 

proteins for adherence to different surfaces. Typical adhesins are a glycosyl 

phosphatidyl inositol (GPI) linked cell wall proteins and consist of three different 

domains (Verstrepen et al., 2004) (Figure 2). The N-terminal domain plays an 

important role in binding of ligands and the amino acid sequences are highly 

conserved within the same family of adhesins. For instance, the N-terminal 

domain of four FLO (flocculins) genes in yeast have a PA14 and Flo5 domain 

(Brückner and Mösch, 2011). This ligand binding domain is followed by a serine 

and threonine rich region that contains many tandem repeats. The C-terminal 

region harbors a GPI anchor domain which is important for the attachment within 

the membrane (de Groot et al., 2003). To date, more than 20 different adhesins 

have been identified in fungi and they are required for adherence to abiotic and 

biotic surfaces, biofilm formation and pathogenesis (Dranginis et al., 2007; Linder 

and Gustafsson, 2008; de Groot et al., 2013). 

 

 

Figure 2.  Typical structure of fungal adhesin. 

The N-terminus contains the signal peptide and the ligand binding domain, which is 
required for adhesion. They are followed by the tandem repeats, which are rich in serine 
and threonine residues and are highly glycosylated. The C-terminus carries a signal for 
glycosyl phosphatidyl inositol (GPI) anchor (adapted from (Linder and Gustafsson, 
2008)).  
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1.2.2 Adhesion in yeasts 

 The current understanding of adhesion and adhesins is obtained from 

studies in dimorphic yeasts as S. cerevisiae or C. albicans. The budding yeast 

can perform a morphological change from single vegetative cells into multi-

cellular growth. This includes flocculation, biofilm formation and formation of 

filaments by activating the expression of specific cell wall associated adhesins 

that control cell-cell or cell-surface adhesion (Verstrepen and Klis, 2006; 

Brückner and Mösch, 2011) (Figure 3). S. cerevisiae contains five FLO genes 

encoding adhesins (FLO1, FLO5, FLO9, FLO10 and FLO11) that contribute to 

the adhesive phenotypes. In the laboratory strain Σ1278b the expression of 

FLO11 gene can be activated by nitrogen starvation while the other four FLO 

genes are transcriptionally silent (Dranginis et al., 2007; Brückner and Mösch, 

2011). In contrast, the other laboratory strain S288c FLO1 and FLO11 adhesins 

expression can only be activated when the transcription factor ScFLO8 is 

reintroduced (Fichtner et al., 2007) (Figure 3).  

 

 

Figure 3.  Adhesive phenotypes in Saccharomyces cerevisiae. 

(A) Flocculation of a flocculent strain (left) and a non-flocculent strain (right). (B) Biofilm 
formation on solid (top) and in liquid media (bottom). On solid media, the adherent strain 
forms biofilm and can not be washed away (w), while the non-adherent strain (∆flo11) 
can be removed by washing. In liquid media, the adherent strain forms a biofilm on 
plastic surfaces. (C) Filaments are observed on solid media the diploid FLO11 
expressing strain (left) is able to form filaments. No filaments are formed in a ∆flo11 
mutant (right) (modified from (Brückner and Mösch, 2011)). 
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The human pathogenic yeast C. albicans lives on mucosal surfaces such 

as oropharynx and vaginal tract (Southern et al., 2008). The adherence to cells 

or abiotic surfaces including polystyrene and medical devices are mediated by 

various adhesins such as Als (agglutinin-like sequence), Hwp1 (hyphal wall 

protein) and Iff/Hyr (hyphally upregulated protein) protein families (Dranginis et 

al., 2007; Hoyer et al., 2008; de Groot et al., 2013). These adhesins are highly 

expressed in hyphae growth and the transition from yeast form to hyphal form 

has been shown to be required for pathogenesis (Whiteway and Oberholzer, 

2004). Similar to S. cerevisiae, the Flo8 transcription factor in C. albicans is 

essential for hyphal formation and the CaFlo8 can restore filamentous growth in 

a ∆flo8 mutant in S. cerevisiae (Cao et al., 2006).  

Similar to C. albicans, the human pathogens Candida glabrata and C. 

neoformans regulate adhesion via its adhesins (de Groot et al., 2013). Epa 

(epithelial adhesin) protein family containing the conserved PA14 (anthrax 

protective antigen) domain which is responsible for ligand binding (Rigden et al., 

2004). These adhesins in C. glabrata are required for adherence to epithelia cells 

during infection (Dranginis et al., 2007; de Groot et al., 2008). To date, only one 

protein, Cfl1, was reported as adhesin in C. neoformans. This protein regulates 

cell adhesion and biofilm formation, while overexpression of this gene shows 

reduced virulence (Wang et al., 2012). 

 

1.2.3 The transcription factor Flo8 is a regulator for adhesion 

The ScFlo8 was first described as an essential gene for pseudohyphal 

growth in diploid and flocculation and invasive growth in haploid yeasts (Liu et al., 

1996). Further studies showed that this transcription factor is activated by Tpk2 

which is one of the three catalytic subunit of PKA. Loss of either ScFlo8 or Tpk2 

results in abolishment of pseudohyphal growth in S. cerevisiae (Pan and Heitman, 

1999). The ScFlo8 is one of various activating and repressing regulators of 

FLO11 expression which is essential for adhesive phenotype in budding yeast 
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(Rupp et al., 1999; Braus et al., 2003; Cullen and Sprague, 2012) (Figure 4). Also 

Flo8 in C. albicans can mediate adhesion and development (Cao et al., 2006). 

Both ScFlo8 and CaFlo8 contain a conserved LUFS (LUG/LUH-Flo8-singal-

stranded DNA binding) domain at the N-terminus. This indicate that ScFlo8 and 

CaFlo8 may share the same function. Further, CaFlo8 has been shown to be 

activated by CaTpk2 and regulates expression of virulence factors with another 

transcription factor Efg1 which belongs to APSES (Asm1, Phd1, Sok2, Efg1 and 

StuA) protein family (McDonough and Rodriguez, 2012) . 

 

 

Figure 4.  Expression of FLO11 is regulated by various signaling pathways.  

Flo11 is a major adhesin for adhesion in S. cerevisiae and its expression is controlled by 
different transcriptional activators or repressors. Mitogen activated protein kinase (MAPK) 
activates downstream targets (Ste12 and Tec1) to activate FLO11 transcription. 
cAMP/PKA pathway regulates Flo8/Mss11, Sfl1 and Phd1 for expression of FLO11. 
Protein kinase Snf1 inactivates Nrg1 which is repressor of FLO11 gene. Position of DNA 
binding sites for transcription factors on 3 kb FLO11 promoter are colored (Adapted from 
(Octavio et al., 2009)).  

 

1.2.4 Adhesion in filamentous fungi 

In comparison to yeast, little is known about adhesion in filamentous fungi. 

As a protein specifically expressed in filamentous fungi, hydrophobins are 

potential candidates for adhesion. Several studies have shown that these cell 

wall proteins is involved in adherence to hosts as well as development (Talbot et 

al., 1996; Kim et al., 2005; Linder et al., 2005; Klimes and Dobinson, 2006; 
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Zhang et al., 2011). Disruption of hydrophobins results in reduced virulence in 

pathogenic fungi (Talbot et al., 1993; Sevim et al., 2012). Recently, several 

adhesins have been identified to be responsible for adherence to different 

surfaces (Hung et al., 2002; Wang and St Leger, 2007; Upadhyay et al., 2009; 

Levdansky et al., 2010; Wang et al., 2012). In the entomopathogenic fungus 

Metarhizium anisopliae, the adhesin MAD1 is responsible for adherence to insect 

cuticle. Disruption of this gene results in reduced adherence and virulence in 

insects (Wang and St Leger, 2007). The Som1 protein, a Flo8 homolog in M. 

oryzae, is functional exchangeable with the yeast homologous protein. It can 

mediate adhesion by regulating hydrophobin Mpg1 expression and interacts with 

the APSES protein StuA. Deletion of som1 gene causes loss of asexual and 

sexual development and impaired pathogenesis (Yan et al., 2011). 

 

1.2.5 Adhesion in Aspergillus fumigatus 

 Conidial adhesion to host epithelial cells in alveoli is an initial step in 

pathogenicity in A. fumigatus (Filler and Sheppard, 2006). Hyphal adhesion also 

plays a role in invasive infection because it is required for angiogenesis of 

hyphae fragment and dissemination in blood vessels (Abad et al., 2010). It has 

been shown that cell wall proteins and carbohydrates play a role in adhesion 

(Figure 5).  

Typically for filamentous fungi, A. fumigatus contains 4-6 hydrophobins 

(Beauvais et al., 2007; Jensen et al., 2010) and two of them (RodA and RodB) 

have been characterized in more detail (Parta et al., 1994; Thau et al., 1994; 

Paris et al., 2003; Carrion Sde et al., 2013). RodA is present on the surface of 

conidia and is responsible for conidial adherence to albumin and collagen but not 

laminin and fibrinogen. ∆rodA mutant results in normal virulence in animal model 

of invasive aspergillosis (Thau et al., 1994; Sheppard, 2011). The ∆rodB mutant 

shows normal rodlet layer on conidia and a similar killing rate by alveolar 

macrophages in comparison to the wild type strain (Paris et al., 2003). Apart from 
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hydrophobins, studies in C. albicans and S .cerevisiae show that adhesins are 

required for fungal adhesion.  

 

 

Figure 5.  Adhesive molecule in Aspergillus fumigatus. 

Hydrophobin (RodA) is required for conidial adherence. Galactosaminogalactan and 
mannose are cell wall carbohydrates for adhesion. Aspergillus allergen (AspF2) and 
other cell wall proteins are responsible for adherence to different molecules (modified 
from (Sheppard, 2011)). 

 

By using bioinformatic tools, more than 100 proteins were predicted as 

putative adhesins in A. fumigatus (Upadhyay et al., 2009; Chaudhuri et al., 2011). 

One protein, CspA is involved in conidial adherence to extracellular matrix of 

A549 alveolar basal epithelial cells, but the deletion mutant showed no effect on 

virulence (Levdansky et al., 2007).  

More recently, several studies in cell wall carbohydrates, including chitin, 

galactomannan and galactossaminogalactan, indicate that these molecules play 

a role in adhesion. The UDP galactopyranose mutase converts UDP-

galactopyranose to UDP-galactofuranose which links to galactomannan and 

glycoproteins in cell wall. Loss of this proteins results in increased conidial 

adherence in A. fumigatus, but shows normal virulence compared to the wild type 

(Lamarre et al., 2009). Gravelat et al (2013) identified another protein Uge3 

which takes part in galactosaminogalactan formation and the disruption of uge3 

gene showed reduced adherence to plastic surfaces as well as fibronectin and 

A549 epithelial cells. Further, the ∆uge3 mutant is avirulent in mice model of 

invasive aspergillosis (Gravelat et al., 2013).  
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1.2.6 Asexual development  

 The asexual reproduction of Aspergilli has been well studied in the model 

fungus Aspergillus nidulans, and this cellular process can be divided into five 

steps while A. fumigatus has only four steps for asexual sporulation (Adams et al., 

1998; Yu, 2010). At the begin of asexual development, the vegetative hyphae 

form thick walled cells, the foot cells, at the interface of air and extend into air to 

produce aerial hyphae (stalk). A multinucleate vesicle is formed at the tip of aerial 

hyphae by swelling and followed by formation of metulae and phialides in A. 

nidulans or only phialides in A. fumigatus on the tip of vesicle using budding-like 

process. The first conidium is formed at the tip of phialides and long chains of 

uninucleate asexual conidiospores are formed by repeating conidium formation 

(Etxebeste et al., 2010; Yu, 2010; Park and Yu, 2012) (Figure 6).  

 

 

Figure 6.  Asexual development of Aspergillus nidulans and Aspergillus 
fumigatus. 

Conidiophores of A. nidulans and A. fumigatus. In contrast to A. nidulans, no metulae 
layers are formed in A. fumigatus (modified from (Yu, 2010)). 

 

 



  Introduction 

16 
 

1.2.7 Regulation of asexual development 

 Conidiation in Aspergilli is a precise program which requires temporal and 

spatial control of various regulatory proteins. Three transcription factors named 

BrlA (bristle), AbaA (abacus) and WetA (wet-white) have been shown to play a 

central role in asexual development and they are conserved in A. fumigatus and 

A. nidulans (Adams et al., 1998; Yu, 2010) (Figure 7). The BrlA is a C2H2 zinc 

finger transcription factor and is required for vesicle formation at the tip of aerial 

hyphae as well as the expression of abaA and wetA which are the downstream 

regulators. The ∆brlA mutant is impaired in conidiation and has longer stalks than 

wild type. The overexpression of brlA gene leads to conidiation from hyphae 

(Prade and Timberlake, 1993; Yu, 2010). The abaA gene encodes transcription 

factor containing a TEA (Tef-1 and Tec1, AbaA) DNA binding domain. The 

expression of abaA is activated by BrlA, and is required for differentiation of 

sterigmata which include metulae and phialides (Adams et al., 1998). The ∆abaA 

mutant produces metulae at the tip of vesicle but not phialide (Boylan et al., 1987; 

Tao and Yu, 2011). The last transcription factor WetA is required for 

conidiophores maturation and its expression is activated by AbaA. Loss of wetA 

gene results in normal conidiophores formation but not pigmentation on conidia 

(Marshall and Timberlake, 1991).  

 

 

Figure 7.  Central regulatory genes for asexual development in Aspergillus 
fumigatus. 

Central regulation of conidiation. BrlA activates the expression of abaA, which activates 
transcription of downstream target wetA.  
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 Besides the central regulatory proteins, other transcription factors can 

affect the expression of brlA, abaA, and wetA and are consequently required for 

normal asexual development. VosA is a transcription factor of the velvet family, 

which includes other velvet-domain proteins like VeA, VelB, and VelC, which is 

conserved in filamentous fungi (Bayram and Braus, 2012; Park et al., 2012). 

Deletion of vosA shows constitutive conidiation and increased brlA expression, 

whereas its overexpression blocks asexual development (Ni and Yu, 2007; Park 

and Yu, 2012). MedA (medusa) and the APSES protein StuA (stunted) are 

developmental modifiers and are required for spatial distribution of BrlA and 

temporal expression of brlA gene, respectively (Adams et al., 1998; Krijgsheld et 

al., 2013). Deletion of stuA gene results in abnormal conidiation which has no 

metulae and phialides (Wu and Miller, 1997; Sheppard et al., 2005). The ∆medA 

mutant in A. nidulans shows multiple layers of sterigmata, while the deletion of 

medA in A. fumigatus results in a similar phenotype as ∆stuA mutant showing the 

impaired formation of metulae and phialides (Sewall et al., 1990; Gravelat et al., 

2010).  

 

1.2.8 Upstream regulation of brlA expression 

 The heterotrimetric G protein and cAMP/PKA signaling pathway play a 

role in asexual development in Aspergillus. The Gα subunit FadA (fluffy autolytic 

dominant) of the G protein in A. nidulans negatively regulates asexual 

development. FadA activates the cAMP/PKA pathway and leads to vegetative 

growth and represses expression of the brlA gene (Yu et al., 1996). GpaA, the 

FadA homolog in A. fumigatus, has been shown to share similar function to FadA 

and cause reduced conidiation in its dominant active form (Mah and Yu, 2006). 

But in contrast to FadA, the other Gα subunit GanB in A. nidulans which inhibits 

expression of brlA and asexual development (Chang et al., 2004), the homolog in 

A. fumigatus promotes conidiation (Liebmann et al., 2004). Recently, the Gβ-like 

protein, CpcB (cross pathway control B), has been shown to be required for 

proper expression of brlA in both A. nidulans and A. fumigatus (Kong et al., 2013). 
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 Apart from the cAMP/PKA pathway, six upstream genes (fluG, flbA, flbB, 

flbC, flbD, and flbE) are also involved in the regulation of brlA transcription (Yu, 

2010). Among these genes, the ∆flbB, ∆flbC, ∆flbD and ∆flbE mutants show the 

fluffy phenotype, which shows undifferentiated hyphae, and a low brlA 

expression in A. nidulans (Wieser et al., 1994) (Figure 8). FlbB is a basic leucine 

zipper transcription factor (Etxebeste et al., 2008), and is usually localized at 

hyphal tips together with the transcription factor FlbE, which contains no 

conserved domain (Garzia et al., 2009). Further studies show that the expression 

of brlA is lost in either ∆flbB or ∆flbE mutant. These results indicate that FlbB and 

FlbE interact with each other and that this complex is required for conidiation 

(Garzia et al., 2009). In addition, FlbB has been shown to activate the expression 

of the flbD gene, which encodes a c-Myb transcription factor. FlbB is proposed to 

form a transcriptional complex with FlbD for regulation of brlA expression 

(Etxebeste et al., 2010; Garzia et al., 2010). In A. fumigatus, only FlbB and FlbE 

have been characterized. In contrast to A. nidulans, both deletion mutants show 

delayed brlA expression and reduced conidiation while the expression of flbD is 

absent in either ∆flbB or ∆flbE mutants (Kwon et al., 2010b; Xiao et al., 2010).  

 

 

Figure 8.  Model of regulation of brlA expression in Aspergillus fumigatus. 

Upstream regulatory and velvet family genes regulate the brlA expression. Dashed lines 
indicate that this regulation has been shown in Aspergillus nidulans but not shown in A. 
fumigatus (modified from (Yu, 2010; Park et al., 2012)).  
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1.3 Scope and aim of this study 

Signaling pathway is required for communication between environments 

and organisms. This cross talk is important for pathogens to adapt to the 

environment which has limited nutrients within the hosts. The conserved 

cAMP/PKA signaling pathway plays a role in nutrient sensing and consequently 

regulates morphological development and virulence in fungi (Fuller and Rhodes, 

2012). The downstream transcription factor Flo8 controls morphological transition 

and adhesion, which is required for pathogenesis, in dimorphic yeast C. albicans 

and S. cerevisiae (Brückner and Mösch, 2011; Mayer et al., 2013). Previous 

studies showed that defects of cAMP/PKA pathway result in an attenuation of 

virulence in A. fumigatus (Gehrke et al., 2010; Fuller et al., 2011). This indicates 

that components of this pathway are potential targets for antifungal strategy. 

However, the knowledge of downstream targets in A. fumigatus is limited. This 

raised the question whether the FLO8 homolog in A. fumigatus functions 

downstream of cAMP/PKA pathway and plays a role in development and 

adhesion.  

The first part of this study was to test whether FLO8/som1 homologs 

shared the similar function in S. cerevisiae. Flo11 adhesin is regulated by ScFlo8 

and is required for adhesion in yeast (Fichtner et al., 2007). The role of AfuSomA 

in adhesion and in activation of ScFLO11 expression will be verified. A functional 

complementation study by expressing AfusomA in S. cerevisiae ∆flo8 mutants 

and investigating the phenotypical changes in regard to adhesion and 

pseudohyphal growth. Further investigations on FLO11 promoter binding were 

followed. The second part of this study was to characterize AfuSomA in A. 

fumigatus. The Som1 in M. oryzae regulates asexual/sexual development (Yan 

et al., 2011). The function of AfuSomA was addressed by genetic studies. For 

this a deletion mutant and inducible down-regulation mutants were generated to 

test the ability of AfuSomA to regulate asexual development and adhesion. 

Transcription analysis will be performed to verify whether the regulatory genes in 

conidiation and adhesion are regulated by AfuSomA. Furthermore, the egg 
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model of invasive aspergillosis will be performed to test the role of AfuSomA in 

pathogenesis. The adhesins are the major component of adhesion in yeasts, and 

many putative adhesins were predicted by using bioinformatic tools (Upadhyay et 

al., 2009; Chaudhuri et al., 2011). Deletion strains of five putative adhesins were 

constructed and the phenotypical changes of these mutants will be characterized 

to address the question whether these proteins are required for adhesion. Flo8 

regulates expression of target genes by complex Flo8-Mss11-Mfg1 in yeasts 

(Ryan et al., 2012), and is activated by catalytic subunits of PKA (Pan and 

Heitman, 1999). The interaction partners of AfuSomA will be identified by a 

proteomic approach using GFP-Trap. This revealed the interesting question 

whether Flo8/Som1-Mss11-Mfg1 complex is conserved downstream of 

cAMP/PKA pathway. 
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2 Material and Methods 
2.1 Materials 
2.1.1 Growth media and growth conditions 

Chemicals for media, buffer and solutions were purchased from 

AppliChem GmbH (Darmstadt, D), Carl Roth GmbH and Co. KG (Karlsruhe, D), 

Merck (Darmstadt, D), SERVA Electrophoresis GmbH (Heidelberg, D), Invitrogen 

GmbH (Karlsruhe, D), Roche Diagnostics GmbH (Mannheim, D), BD Becton 

Dickinson GmbH (Heidelberg, D), Novozyme (Bordeaux, F) and Sigma-Aldrich 

Chemie GmbH (Steinheim, D). 

 

2.1.2 Media and conditions for Escherichia coli 

 Escherichia coli strains were grown in Lysogenic broth (LB) medium (0.5 

% yeast extract, 1 % bacto-tryptone, 1 % NaCl) (Bertani, 1951) at 37 °C. 2 % 

agar was added for solid medium. For selection, 100 µg/ml ampicillin was used. 

Liquid cultures were grown on a shaker.  

 

2.1.3 Media and conditions for Saccharomyces cerevisiae 

 Saccharomyces cerevisiae strains were cultivated at 30 °C in either non-

selective YEPD medium (1 % yeast extract, 2 % peptone and 2 % glucose) or in 

SC-3 medium (0.15 % yeast nitrogen base without amino acid and (NH4)2SO4, 

0.5 % (NH4)2SO4, 2 % glucose and 0.2 % amino acid mixture lacking uracil, L-

methionine and L-leucine). The appropriate amino acids were supplemented as 

required. 2 % agar was added for solid medium. Liquid cultures were grown on a 

rotating platform. 
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2.1.4 Media and conditions for Aspergillus fumigatus 

Aspergillus fumigatus strains were grown at 37 °C in minimal medium (MM) 

(10 g/l glucose, 1.84 g/l (NH4)2-tartrate, 0.52 g/l KCl, 1.52 g/l KH2PO4, 0.52 g/l 

MgSO4, and 1 ml of the trace element solution [17.9 mM FeSO4, 171.1 mM 

Na2EDTA, 76.5 mM ZnSO4, 177.9 mM H3BO3, 25.3 mM MnCl2, 6.7 mM CoCl2, 

10.7 mM CuSO4, and 0.9 mM (NH4)6Mo7O24 and pH 6.5], adjust pH to 6.5 with 

NaOH) (Käfer, 1977; Krappmann and Braus, 2005). 2 % agar was added for 

solid medium and 1 µg/ml pyrithiamine was used for selection of strains 

containing the ptrA resistance marker (Kubodera et al., 2000). To remove the 

pyrithiamine resistance marker from the strains carrying the recyclable marker 

system (Hartmann et al., 2010), MM was supplemented with 1 % xylose. For 

conditional expression experiments, either 1 % xylose or 5 mg/l doxycycline was 

added into MM. For egg infection experiment, strains were grown on malt extract 

agar (Oxoid, Basingstoke, UK). 

 

2.2 Strains, plasmids and primers 
2.2.1 Escherichia coli strain 

E. coli DH5α (F–, Φ80dΔ (lacZ) M15-1, Δ (lacZYA-argF) U169, recA1, 

endA1, hsdR17 (rK–, mK+), supE44, λ–, thi1, gyrA96, relA1) (Woodcock et al., 

1989) was used for general cloning.  

 

2.2.2 Saccharomyces cerevisiae strains 

 S. cerevisiae strains BY4742 (MATα, his3∆1; leu2∆0; lys2∆0; ura3∆0), 

Y16870 (MATα, his3∆1; leu2∆0; lys2∆0; ura3∆0; ∆flo1::kanMX4) (Euroscarf 

collection), RH2656 (MATa/α; ura3-52/ura3-52; trp1::hisG/TRP1) and RH2660 

(MATa/α;∆flo8::KanR/∆flo8::KanR; ura3-52/ura3-52; trp1::hisG/TRP1) (Braus et 

al., 2003) were used for heterologous expression of A. fumigatus protein. 

BY4742 and RH2660 were transformed with the plasmids pME2787, pME4194, 
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pME4195 or pME4197. RH2656 was transformed with pME2787 as control. 

BY16870 was transformed with the plasmids pME2786, pME4192, pME4193 or 

pME4196 and subsequently with plasmids containing the β-galactosidase 

reporter gene (Rupp et al., 1999). 

.  

2.2.3 Aspergillus fumigatus strains 

A. fumigatus strains which were used or generated in this study are listed in 

Table 1. Construction details are described below. 

Table 1. A. fumigatus strains used in this study. 

Strain Genotype Reference 
A1176 AfupyrG1; ∆AfubrlA::AfupyrG+ (Tao and Yu, 2011) 
AfS35 ∆akuA::loxP  (Krappmann et al., 2006) 
AfGB72 ∆akuA::loxP; ∆AfusomA::ptrA This study 
AfGB73 ∆akuA::loxP; 

∆AfusomA::[AfusomA]::ptrA 
This study 

AfGB74 ∆akuA::loxP; ptrA::pTet::AfusomA This study 
AfGB75 ∆akuA::loxP; AfusomA::sgfp::ptrA This study 
AfGB76 ∆akuA::loxP; pgpdA::sgfp::his2at, ptrA I. Liewert, p.c. 
AfGB77 ∆akuA::loxP; ∆AfusomA::six This study 
AfGB78 ∆akuA::loxP; ptrA::pxyl::AfusomA This study 
AfGB79 ∆akuA::loxP; ∆1g06480::six This study 
AfGB80 ∆akuA::loxP; ∆2g05150::six This study 
AfGB81 ∆akuA::loxP; ∆3g00880::six This study 
AfGB82 ∆akuA::loxP; ∆3g13110::six This study 
AfGB83 ∆akuA::loxP; ∆4g04070::six This study 
AfGB84 ∆akuA::loxP; ∆1g06480::six; 

∆2g05150::six 
This study 

AfGB85 ∆akuA::loxP; ∆1g06480::six; 
∆3g13110::six 

This study 

AfGB86 ∆akuA::loxP; ∆3g13110::six; 
∆2g05150::six 

This study 

AfGB87 ∆akuA::loxP; ∆3g13110::six; 
∆3g00880::six 

This study 
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Table 1. Continued. 
Strain Genotype Reference 
AfGB88 ∆akuA::loxP; ∆3g13110::six; 

∆4g04070::six 
This study 

AfGB89 ∆akuA::loxP; ∆4g04070::six; 
∆2g05150::six 

This study 

AfGB90 ∆akuA::loxP; ∆3g13110::six; 
∆3g00880::six; ∆4g04070::ptrA 

This study 

t: terminator; p: promoter; p.c.: personal communication 

 

2.2.3.1 Construction of Aspergillus fumigatus strains for AfusomA studies 

To construct the AfusomA deletion strain, wild type (AfS35) was 

transformed with 3 µg of deletion fragment which was isolated from pME4188 

using HindIII restriction enzyme. Transformants were selected with pyrithiamine 

to yield the ∆AfusomA::ptrA strain (AfGB72). Homologous integration was 

verified by Southern hybridization.  

Complementation of the AfusomA deletion mutant was performed by 

transforming the complement fragment into the ∆AfusomA::six strain where the 

ptrA resistance marker was removed. The ∆AfusomA::ptrA mutant harbors the 

5.3 kb recycle marker system containing a xylose driven β-recombinase, a ptrA 

resistance cassette and two flanking binding sites (six) for β-recombinase 

(Hartmann et al., 2010). To generate the ∆AfusomA::six strain, the 

∆AfusomA::ptrA mutant was streaked out on MM plates supplemented with 1 % 

xylose twice. Southern analysis was used to verify the ∆AfusomA::six mutant.  

For complementation, the ∆AfusomA::six strain was transformed with 3 µg 

of complement fragment isolated from pME4190 by HindIII digestion to generate 

the complemented strain (AfGB73) with ptrA resistance marker. Homologous 

integration was verified by Southern hybridization.  
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To construct the conditional expression AfusomA strains, the xylose 

promoter from Penicillium chrysogenum (Hartmann et al., 2010) and the Tet-On 

system (Helmschrott et al., 2013) were used. 600 bp in front of the AfusomA 

gene was replaced by either the xylose promoter or the Tet-On system. The wild 

type was transformed either with the Xyl-AfusomA or the Tet-AfusomA which 

were excised from pME4199 or pME4191 using HindIII restriction enzyme. 

Transformants were selected with pyrithiamine to generate the Xyl-AfusomA 

strain (AfGB78) and the Tet-AfusomA mutant (AfGB74). Homologous integration 

was examined by Southern hybridization.  

To generate the AfusomA-sGFP tagged mutant, the wild type strain was 

transformed with 3 µg of the sGFP fused fragment isolated from pME4198 using 

HindIII restriction enzyme and selected by pyrithiamine to yield the AfusomA-

sGFP mutant strain. Homologous integration was verified by Southern 

hybridization.  

 

2.2.3.2 Construction of single or multiple putative adhesin deletion mutants 
in Aspergillus fumigatus 

In order to generate multiple adhesins deletion strains, the recyclable 

marker system was used to construct the deletion fragments. To construct the 

single deletion strain of putative adhesins, the wild type strain was transformed 

with different deletion fragments and the transformants were selected by 

pyrithiamine. The ∆1g06480::ptrA mutant was generated by transforming the 

deletion fragment isolated from pME4200 using HindIII restriction enzyme into 

wild type (AfS35). Further, this deletion mutant was streaked out on MM plates 

supplemented with 1 % xylose twice to yield the ∆1g06480::six strain (AfGB79) 

for multiple deletion. Southern analysis with 5’ flanking region of 1g06480 as 

probe was used to examine homologous integration and marker recycle.  

To construct the ∆2g05150::ptrA mutant, the wild type strain was 

transformed with the deletion fragment which was excised from pME4201 by 
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HindIII digestion. The ptrA resistance cassette was removed by streaking the 

∆2g05150::ptrA mutant on xylose containing MM plates to generate the 

∆2g05150::six mutant (AfGB80). The same procedure was applied to construct 

the ∆3g00880, ∆3g13110 and ∆4g04070 mutant. The deletion fragment of 

3g00880 or 4g04070 was isolated from pME4202 or pME4204 using HindIII 

restriction enzyme, respectively. The deletion fragment of 3g13110 was amplified 

from pME4203 with the primers HO234/235. Homologous integration was verified 

by Southern hybridization.  

To generate double adhesin deletion mutants, those single deletion strains 

where the ptrA resistance marker was removed were transformed with the 

corresponding deletion fragments. The ∆1g06480::six mutant was transformed 

with the deletion fragment from pCL3 and pME4203 to generate 

∆1g06480::∆2g05150::ptrA and ∆1g06480::∆3g13110::ptrA double deletion 

strains. Similarly, the ∆3g13110::six mutant was used to construct three double 

adhesion deletion mutants including ∆3g13110::∆2g05150::ptrA, 

∆3g13110::∆3g00880::ptrA and ∆3g13110::∆4g04070::ptrA by transforming the 

corresponding deletion fragments excised from pME4201, pME4202 and 

pME4204, respectively. The ∆4g04070::∆2g05150::ptrA double deletion mutant 

was generated by transforming the deletion fragment isolated from pME4201 into 

the ∆4g04070::six strain. In the double deletion the ptrA resistance marker 

mutants was removed as previously described and resulted in 

∆1g06480::∆2g05150::six (AfGB84), ∆1g06480::∆3g13110::six (AfGB85), 

∆3g13110::∆2g05150::six (AfGB86), ∆3g13110::∆3g00880::six (AfGB87), 

∆3g13110::∆4g04070::six (AfGB88) and ∆4g04070::∆2g05150::six (AfGB89). 

The triple adhesion deletion strain was constructed by transforming the deletion 

fragment from pME4204 into the ∆3g13110::∆3g00880::six strain to yield the 

∆3g13110::∆3g00880::∆4g04070::ptrA mutant (AfGB90). Homologous integration 

was examined by Southern hybridization as previously described. 

 



  Material and Methods 

27 
 

2.2.4 Plasmids 

All plasmids used or constructed in this study are stated in Table 2. 

Construction details are given below. 

Table 2. Plasmids used in this study. 

Plasmid Description Reference 
A. fumigatus 
pJET1.2 Cloning vector Fermentas GmbH 

(St. Leon-Rot, D) 
pUC19 Cloning vector Fermentas GmbH 

(St. Leon-Rot, D) 
pCH008 Plasmid contains Tet-On system and 

ptrA marker 
(Helmschrott et al., 
2013) 

pSK485 Plasmid contains recyclable marker 
driven by xylose promoter 

(Hartmann et al., 
2010) 

pME4188 5’flankingAfusomA::recyclable 
marker::3’flankingAfusomA in pJET1.2 

This study 

pME4189 4.6 kb of 5’flanking::AfusomA in 
pUC19 

This study 

pME4190 5’flanking:: AfusomA::recycable 
marker::3’flanking in pUC19 

This study 

pME4191 5’flankingAfusomA::ptrA::Tet-On:: 
AfusomA in pUC19 

This study 

pME4198 5’flanking::AfusomA::sgfp::recyclable 
marker::3’flanking in pUC19 

This study 

pME4199 5’flankingAfusomA::ptrA::pxyl::AfusomA 
in pUC19 

This study 

pME4200 5’flanking1g06480::recyclable 
marker::3’flanking1g06480 in pUC19 

This study 

pME4201 5’flanking2g05150::recyclable 
marker::3’flanking2g05150 in pJET1.2 

This study 

pME4202 5’flanking3g00880::recyclable 
marker::3’flanking3g00880 in pUC19 

This study 

pME4203 5’flanking3g13110::recyclable 
marker::3’flanking3g13110 in pJET1.2 

This study 

pME4204 5’flanking4g04070::recyclable 
marker::3’flanking4g04070 in pUC19 

This study 
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Table 2. Continued. 
Plasmid Description Reference 
S. cerevisiae 
pME2786 pRS425 containing MET25 promoter 

CYC1 terminator, LEU2, 2µm, Amp, 
ori 

(Mumberg et al., 
1994) 

pME2787 pRS426 containing MET25 promoter 
CYC1 terminator, URA3, 2µm, Amp, 
ori 

(Mumberg et al., 
1994) 

pME2167 3 kb ScFLO11 promoter in YEp355 (Rupp et al., 1999) 
pFLO11-2/1 to 
pFLO11-15/14 

400 bp ScFLO11 promoter sequence 
fragments cloned into pLG669Z 

(Rupp et al., 1999) 

pME4192 AfusomA cDNA in pME2786 This study 
pME4193 AfusomA cDNA variant in pME2786 This study 
pME4194 AfusomA cDNA in pME2787 This study 
pME4195 AfusomA cDNA variant in pME2787 This study 
pME4196 ScFLO8 in pME2786 This study 
pME4197 ScFLO8 in pME2787 This study 
t: terminator; p: promoter 

 

2.2.4.1 Construction of plasmids for deletion and complementation of 
AfusomA 

The 5’ and 3’ flanking regions (1 kb) of the AfusomA gene were amplified 

with the corresponding primers HO499/500 or HO501/502 to construct the 

deletion fragment. These two products were fused by amplifying with the primer 

pair HO499/502 to yield a 2 kb fragment which contains a restriction site for SfiI 

in the middle and restriction site for HindIII at both ends. Then it was cloned into 

pJET1.2 Blunt cloning vector (Fermantas GmbH, St. Leon-Rot, D). The self 

excising marker system, which harbors a xylose driven β-recombinase, a 

pyrithiamine resistance cassette and two flanking binding sites (six), was isolated 

from pSK485 (Hartmann et al., 2010) with SfiI restriction enzyme. This 5.3 kb 

recyclable marker fragment was cloned into the corresponding restriction sites in 

the previous plasmid containing fused 5’ and 3’ flanking regions to generate 

pME4188 (Table 2).  
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For complementation, the 4.6 kb fragment, which harbors the AfusomA 

gene and the 2 kb upstream region was amplified with the primer pair 

HO603/601 and cloned into SmaI digested pUC19 (Fermantas GmbH, St. Leon-

Rot, D) using the In-fusion HD Cloning Kit (Takara BioEurope/Clontech, Saint-

Germain-en-Laye, F) to generate pME4189. Linear pME4189 was generated by 

amplifying with primers HO711/611. Using In-fusion Kit ,this linear plasmid was 

fused with the recyclable marker fragment isolated from pSK485 and the 3’ 

flanking fragment of AfusomA which was amplified with the primer pair 

HO677/501 to yield pME4190.  

 

2.2.4.2 Constructs for two conditional expression AfusomA and the 
AfusomA::sgfp plasmids 

To construct the conditional expression AfusomA gene, the xylose 

promoter and the Tet-On system were chosen. To generate xylose dependent 

expression of AfusomA, the xylose promoter (1.7 kb) and the ptrA resistance 

cassette (2 kb) were amplified with the corresponding primers HO608/609 and 

HO115/116 using pSK485 (Hartmann et al., 2010) as template. These two 

fragments were fused by amplifying with the primer pair HO115/609 to generate 

the ptrA-xyl promoter fused fragment (3.7 kb). This fragment replaced the 602 bp 

fragment in front of the AfusomA gene (position -602~-1) by cloning into linear 

pME4189 which was amplified with primers HO602/610 to yield pME4199.  

Similar procedure was used to generate the Tet-On system regulated 

AfusomA gene. The fragment (4.1 kb) containing the prtA resistance cassette 

and the Tet-On system was amplified with the primer pair HO116/675 using 

pCH008 (Helmschrott et al., 2013) as template. The Tet-On system fragment 

also replaced 602 bp fragment in front of the AfusomA gene (position -602~-1). 

This fragment was cloned into the linear pME4189 amplified with primers 

HO710/676 and resulted in the plasmid pME4191. 
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To construct C-terminus sGFP tagged AfuSomA, the sGFP gene was 

amplified with primers HO210/713 from pHI_4 (Table 2). The 3’ flanking region of 

the AfusomA gene was amplified with the primer set HO648/677. The sGFP and 

3’ flanking region were cloned into linear pME4189 amplified with primers 

HO611/712 using In-fusion Kit. This temporary plasmid contained AfusomA-

sGFP used gene together with 5’ and 3’ flanking regions. Then, the recyclable 

marker fragment isolated from pSK485 was cloned into the previous plasmid 

which was amplified with the primer HO697/501 to yield pME4198. 

 

2.2.4.3 Construction of plasmids for adhesins deletion  

To characterize five putative adhesins in A. fumigatus, plasmids 

containing deletion fragments were constructed. The 5’ and 3’ flanking regions (1 

kb) of the 1g06480 gene were amplified with the corresponding primers 

HO555/556 or HO557/558 to construct the deletion fragment. The flanking 

regions of 1g06480 and the recyclable marker fragment isolated from pSK485 

using SfiI restriction enzyme were cloned into SmaI digested pUC19 plasmid 

using In-fusion Kit to yield pME4200.  

To construct the 2g05150 deletion fragment, the 5’ and 3’ flanking regions 

(1 kb) were amplified with the corresponding primers HO503/504 and HO505/506. 

Two fragments were fused by amplifying with the primer pair HO503/506 

resulting in 2 kb fragment. This fragment contained a restriction site for SfiI in the 

middle and a restriction site for HindIII at both ends and was cloned into pJET1.2 

plasmid. Further, the recyclable marker fragment isolated from pSK485 was 

cloned into the previous plasmid which was digested with SfiI restriction enzyme 

to generate pME4201. 

To generate the 3g00880 deletion fragment, the 3.8 kb fragment 

containing 3g00880 and its 5’ and 3’ flanking regions was amplified with the 

primer set HO654/657. This fragment was cloned into SmaI digested pUC19 

using In-fusion Kit. The recyclable marker fragment was cloned into the previous 
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plasmid which was amplified with primers HO655/656 using In-fusion Kit to 

generate pME4202. 

To construct the 3g13110 deletion fragment, the 5’ and 3’ flanking regions 

(1 kb) were amplified with the corresponding primers HO234/482 and HO235/483. 

Two fragments were fused by amplifying with the primer pair HO234/235 

resulting in a 2 kb fragment which contains a restriction site for SfiI in the middle. 

This fragment was cloned into pJET1.2 plasmid. Further, the recyclable marker 

fragment isolated from pSK485 was cloned into the previous plasmid which was 

digested with SfiI restriction enzyme to generate pME4203. 

The 5’ and 3’ flanking regions (1 kb) of the 4g04070 gene were amplified 

with the corresponding primers HO559/560 or HO561/562 to construct the 

deletion fragment. The flanking regions of 4g04070 and the recyclable marker 

fragment isolated from pSK485 using SfiI restriction enzyme were cloned into 

SmaI digested pUC19 plasmid using In-fusion Kit to yield pME4204. 

 

2.2.4.4 Construction of heterogeneous expression plasmids 

 To complement flo8-deficient yeast, two AfusomA cDNA variants were 

amplified from the cDNA pool with primer HO441/442 introducing SpeI and 

HindIII restriction sites on 5’ and 3’ ends, respectively. These two AfuSomA 

cDNA fragments were digested by SpeI and HindIII and cloned into 

corresponding digested pME2786 and pME2787 under MET25 promoter 

resulting in pME4192, pME4193, pME4194 and p4195. For positive control, S. 

cerevisiae Flo8 (ScFlo8) was amplified with primer HO446/447 and cloned into 

SmaI digested pME2786 and pME2787 resulting in pME4196 and pME4197.  
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2.2.5 Primers 

The primers that were used for plasmid construction and quantitative real-

time PCR (qRT-PCR) are listed in Table 3. All primers were acquired from 

Eurofins MWG Operon (Ebersberg, D).  

Table 3. Primers used in this study.  

Primer Sequence (5’→3’) Description 
HO1 CTCTTCGAAGGCTGGACTTGC H2A qPCR Forward 
HO2 GGAGATGGCGAGGAATGATACG H2A qPCR Reverse 
HO41 TTGAGATGCGAAAGGATGTGGT vosA qPCR Forward 
HO42 GGCAAATGACCGAGAAAGGAAC vosA qPCR Reverse 
HO43 TGTAACTTCACTCCCGCCTCTG veA qPCR Forward 
HO44 TGATTCGTTTCCCACAATAGACG veA qPCR Reverse 
HO45 CTCCTACTTATCCCGCCTTCACA velB qPCR Forward 
HO46 GGCATCTGACCTCCAGCGTAAT velB qPCR Reverse 
HO47 CTCACCAGGGGGTCTCAAATG velC qPCR Forward 
HO48 CGGGGGTAGGGCTTGTATCA velC qPCR Reverse 
HO115 AATTGATTACGGGATCCCATTGGTAACG ptrA Forward 
HO116 TCTTGCATCTTTGTTTGTATTATACTGTC ptrA Reverse 
HO141 TCTATGCTCCACATCCCACCAA laeA qPCR Forward 
HO142 AAAGTCGCAATTTCTCGGGTGA laeA qPCR Reverse 
HO157 AAGCCTCATGTCTGCTGGGTTC brlA qPCR Forward 
HO158 CCGATAGTCCGGGTTGTAGTCG brlA qPCR Reverse 
HO210 CTACTTGTACAGTTCGTCCAT sGFP Reverse 
HO234 AAGAATCAAGCCCTCCAGGAGTCA 3g13110 5’flanking 
HO235 CCGTCGTCGGGACATCATCTGT 3g13110 3’flanking 
HO277 CCTGCCGTAACATTGCTTCTTG 3g13110 qPCR 

Forward 
HO278 CACAGTCATCATCCTCCGATCC 3g13110 qPCR 

Reverse 
HO441 ACTAGTATGAATCAGATGAATGTGACGG

GG 
AfusomA with SpeI site 

HO442 AAGCTTCTGAAGAACCGACGGACTCATT
TA 

AfusomA with HindIII 
site 

HO446 GGATCCATGAGTTATAAAGTGAATAGTT
CGTATCC 

ScFLO8 with BamHI 
site 

HO447 CTCGAGGACTTCAGCCTTCCCAATTAAT
AAA  

ScFLO8 with XhoI site 
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Table 3. Continued. 
Primer Sequence (5’→3’) Description 
HO482 CGCGTAATGGCCTGAGTGGCCGAGTTT

GTATTTGTGTTAGAGCGACAG 
3g13110 5’flanking with 
SfiI site 

HO483 ATTACGCGGCCATCTAGGCCTGTGCTTT
GTTCCGTCCCAACA 

3g13110 3’flanking with 
SfiI site 

HO499 AAGCTTCCGAACAAGCGATTTACGCC AfusomA 5'flanking with 
HindIII site 

HO500 GACCTATAGGCCTGAGGGTGGCACTGC
GAGGAGTTT 

AfusomA 5'flanking with 
SfiI site 

HO501 CATAATATGGCCATCTAATGAGTCCGTC
GGTTCTTCAGTT 

AfusomA 3'flanking with 
SfiI site 

HO502 AAGCTTAAGATAGGCTGTCAGGATTGTA
CGG 

AfusomA 3'flanking with 
HindIII site 

HO503 AAGCTTCCAGGTTACACTGCCATTGGG 2g05150 5’flanking with 
HindIII site 

HO504 GACCTATAGGCCTGAGTGGAGCAACCAA
ACGGTATCAG 

2g05150 5’flanking with 
SfiI site 

HO505 CATAATATGGCCATCTATGATCTGTCCG
AGCATGGAATG 

2g05150 3’flanking with 
SfiI site 

HO506 AAGCTTGGACGCCTGGATGGTCTTTCA 2g05150 3’flanking with 
HindIII site 

HO555 TCGAGCTCGGTACCCAAGCTTATCTAGG
CGATTCGCCTAA 

1g06480 5’flanking with 
pUC19 overhang 

HO556 TTGACCTATAGGCCTTTGAAAGATCGAC
GACAGCG 

1g06480 5’flanking with 
six overhang 

HO557 AGCATAATATGGCCATGTTAGATGGAGT
TAGGAGCCGG 

1g06480 3’flanking with 
six overhang 

HO558 CTCTAGAGGATCCCCTGGGTCTCTGCTC
GGCTTAT 

1g06480 3’flanking with 
pUC19 overhang 

HO559 TCGAGCTCGGTACCCAAGCTTTCCGAGC
AATGTCATCTGT 

4g04070 5’flanking with 
pUC19 overhang 

HO560 TTGACCTATAGGCCTGCTAGAGTTCGTA
GTGCCGCA 

4g04070 5’flanking with 
six overhang 

HO561 AGCATAATATGGCCACCTTGTACTCCTC
CCAGGAGAG 

4g04070 3’flanking with 
six overhang 

HO562 CTCTAGAGGATCCCCTACTTGCCTCGGC
TATCACA 

4g04070 3’flanking with 
pUC19 overhang 

HO601 CTCTAGAGGATCCCCTGAAGAACCGACG
GACTCATTTA 

AfusomA with pUC19 
overhanging 
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Table 3. Continued. 
Primer Sequence (5’→3’) Description 
HO602 TCCCGTAATCAATTGTTCGATGGGCGAC

ACGAA 
AfusomA 5’flanking with 
ptrA overhang 

HO603 TCGAGCTCGGTACCCAAGCTTCCTTCAA
AGATAACCCCTA 

AfusomA 5'flanking with 
pUC19 overhang 

HO608 AACAAAGATGCAAGATAATAGTTAACTG
CAGGCGGCC 

xylose promoter with 
ptrA overhang 

HO609 GTTGGTTCTTCGAGTCGATGAATG xylose promoter 
Reverse 

HO610 ACTCGAAGAACCAACATGAATCAGATGA
ATGTGACGGG 

AfusomA with xylose 
promoter overhang 

HO611 GGGGATCCTCTAGAGTTAACCTGCAG pUC19 Forward 
HO617 AACCGGTAATGCCCAGACAGAT AfusomA qPCR 

Forward 
HO618 GTGTCCGTTCATGTCCATGTCA AfusomA qPCR 

Reverse 
HO648 GAACTGTACAAGTAGAATGAGTCCGTCG

GTTCTTCAGTT 
AfusomA 3’flanking with 
sGFP overhang 

HO654 TCGAGCTCGGTACCCGGGTCTGAGGGC
TTCGATTCT 

3g00880 5’flanking with 
pUC19 overhang 

HO655 TTGACCTATAGGCCTGTGATAGCGAGTG
ATCGAATGTA 

3g00880 5’flanking with 
six overhang 

HO656 AGCATAATATGGCCAGCGTGAACCTTTT
GTCATCTCAG 

3g00880 3’flanking with 
six overhang 

HO657 CTCTAGAGGATCCCCGGGCCGCCAGAC
CATCAT 

3g00880 3’flanking with 
pUC19 overhang 

HO660 GCTCTGACTCTCACTGCCTTCG 3g00880 qPCR 
Forward 

HO661 AAGCTTGTTGACGGGAGGGTAG 3g00880 qPCR 
Reverse 

HO675 GGTGATGTCTGCTCAAGCGG Tet-On Reverse 
HO676 GCTTGAGCAGACATCACCATGAATCAGA

TGAATGTGACGGG 
AfusomA with Tet-On 
overhang 

HO677 CTCTAGAGGATCCCCAAGATAGGCTGTC
AGGATTGTACGG 

AfusomA 3'flanking with 
pUC19 overhang 

HO680 GTACCCATCAAAAGCCGTCCTC medA qPCR Forward 
HO681 TTCTGCATGCGAGTGAATTGAA medA qPCR Reverse 
HO682 CTCCTGAGCACGAGTCGGAATA stuA qPCR Forward 
HO683 CGTGGAGTCATACGTCCAGACC stuA qPCR Reverse 
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Table 3. Continued. 
Primer Sequence (5’→3’) Description 
HO684 CTCCAGAGCAAGCCTATCCACA flbB qPCR Forward 
HO685 TGCGGTACAGTTCGTGGTTCTT flbB qPCR Reverse 
HO686 GTGACGTTGAAGGGTGTGGAAG flbC qPCR Forward 
HO687 ACTCCTCCTCGCCACCAGATAC flbC qPCR Reverse 
HO688 AACCTGAAGCCCTCGTTGAATC flbD qPCR Forward 
HO689 TGGCCGAGAGACCTCTTCTCTT flbD qPCR Reverse 
HO697 TTGACCTATAGGCCTCTACTTGTACAGTT

CGTCCAT 
sGFP with six overhang 

HO710 AACAAAGATGCAAGATTCGATGGGCGAC
ACGAA 

AfusomA 5'flanking with 
ptrA overhang 

HO711 TTGACCTATAGGCCTTTATAAGCCATCTC
CGGCGC 

AfusomA with six 
overhang 

HO712 TCCTCCTGATCCTCCTAAGCCATCTCCG
GCGCC 

AfusomA witih linker 

HO713 GGAGGATCAGGAGGAATGGTGAGCAAG
GGCGAGGAGCTG 

sGFP with linker 
Forward 

HO788 CCTATGGCCGTACCAAATGGAT uge3 qPCR Forward 
HO789 GTGGGAGTCTGTCTGGGGTCTT uge3 qPCR Reverse 
 

2.2.6 Sequencing 

 To sequence the plasmid, 300 ng plasmid DNA and 5 pmol primer were 

applied in a total volume of 5 µl. Sequencing was performed by the Göttingen 

Genomics Laboratory. 

 

2.3 Molecular methods 
2.3.1 Computational analysis 

 Blast searches and protein conserved domain identification were 

conducted at the National center for Biotechnology Information 

(www.ncbi.hlm.hin.gov). Protein alignments and phylogenetic trees were made 

by Clustal Omega and ClustalW2 at European Molecular Biology Laboratory – 

European Bioinformatics Institute (www.ebi.ac.uk). Nuclear localization signal 

(NLS) was predicted at cNLS mapper (http://nls-mapper.iab.keio.ac.jp/). The 

http://www.ncbi.hlm.hin.gov/
http://www.ebi.ac.uk/
http://nls-mapper.iab.keio.ac.jp/
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protein name and gene number of A. fumigatus are according to the AspGD 

(http://www.aspergillusgenomes.org) (Arnaud et al., 2012). The yeast homolog is 

according to the SGD (http://www.yeastgenome.org/) (Cherry et al., 2012). 

Protein and DNA sequence analysis was performed using Lasergene software 

(Dna Star Inc., Madison, WI, USA).  

 

2.3.2 Recombinant DNA method 

 Recombinant DNA technologies were performed according to the 

standard methods (Sambrook et al., 1989). DNA fragments for plasmid 

construction, hybridization probes or sequencing were amplified by Polymerase 

Chain Reaction (PCR) with the Taq-(Fermentas GmbH/Thermo Fisher Scientific 

GmbH, St. Leon-Rot/Schwerte, D) or Phusion High-Fidelity (Finzymes/Thermo 

Fisher Scientific GmbH, Vantaa, FIN/Schwerte, D) polymerase. The PCR 

products were analyzed according to their size by agarose gel electrophoresis. 

Extraction of desired DNA fragment was performed using QIAquick Gel 

Extraction Kit (Qiagen GmbH, Hilden, D) following the user’s manual. Restriction 

enzymes and T4 ligase were obtained from Fermentas GmbH/Thermo Fisher 

Scientific GmbH (St. Leon-Rot/Schwerte, D). DNA was eluted in 30 µl H2O and 

stored at -20 °C. The DNA concentration was measured with the Nanodrop ND-

1000 (Peqlab Biotechnologie GmbH, Erlangen, D).  

 

2.3.3 Isolation of nucleic acids 
2.3.3.1 Isolation of plasmid DNA from Escherichia coli 

The E. coli strains were grown in 5 ml LB medium with 100 µg/ml 

ampicillin for 18 h at 37 °C for plasmid isolation. The purification of plasmid DNA 

was performed with the QIAprep Spin Miniprep Kit (Qiagen GmbH, Hilden, D) 

using the manufacturer’s instructions. The plasmid was eluted in 50 µl H2O and 

the concentration was determined by the Nanodrop ND-1000 (Peqlab 

Biotechnologie GmbH, Erlangen, D). Plasmid DNA was stored at -20 °C.  

http://www.aspergillusgenomes.org/
http://www.yeastgenome.org/
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2.3.3.2 Isolation of genomic DNA from Aspergillus fumigatus 

 Isolation of genomic DNA from A. fumigatus was performed as previously 

described (Lee and Taylor, 1990). About 106-107 conidia were inoculated in 200 

ml MM medium and incubated overnight at 37 °C on a shaker (180rpm). The 

mycelia were filtered with sterile miracloth (Merck KGaA, Darmstadt, D) and 

ground with a mortar in liquid nitrogen. 500 µl lysis buffer (50 mM Tris pH 7.5, 50 

mM EDTA pH 8.0, 3% SDS, 1 % β-Mercaptoethanol) was added to 500 µl 

ground mycelia in 2 ml tube and the samples were vortexed for 10 s. Further, 

500 µl phenol:chloroform solution (1:1) was added to the samples and vortexed 

for 5 min at 4 °C. After centrifugation for 15 min at 13000 rpm the supernatant 

was transferred to new 1.5 ml tube and mixed with 800 µl chloroform and 

vortexed. After another centrifugation for 15 min at 13000 rpm, the upper layer 

was transferred to new a 1.5 ml tube and mixed with 500 µl isopropanol. 

Afterwards, the samples were centrifuged for 5 min at 13000 rpm and the pellets 

were washed with 500 µl 70% ethanol. The samples were centrifuged for 2 min 

at 13000 rpm, then the pellets were dried for 25 min at 50 °C. Finally, the DNA 

was resuspended in 100 µl H2O, mixed with 2 µl RNaseA solution (10mg/ml 

RNaseA, 10 mM Tris pH 7.5, 15 mM NaCl) and incubated for 45-60 min at 37 °C. 

Genomic DNA was stored at 4 °C. The concentration was determined by the 

Nanodrop ND-1000 (Peqlab Biotechnologie GmbH, Erlangen, D).  

 

2.3.3.3 Isolation of RNA from Aspergillus fumigatus 

 The wild type, ∆AfusomA and AfusomA complemented strains were grown 

in 200 ml MM medium on a shaker (180 rpm) for 20 h at 37 °C. The harvested 

mycelium was ground in liquid nitrogen. Two spatulas of mycelia powder were 

mixed with 600 µl RLT buffer without β-mercaptoethanol. RNA isolation was 

performed using the RNeasy Plant Mini Kit (Qiagen GmbH, Hilden, D) referring to 

user’s manual. RNA was eluted in 40 µl H2O and stored at -20 °C. The 
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concentration was determined with the Nanodrop ND-1000 (Peqlab 

Biotechnologie GmbH, Erlangen, D).  

 

2.3.4 Quantitative real-time PCR (qRT-PCR) 

 To perform qRT-PCR, the cDNA was synthesized from total RNA of A. 

fumigatus using the QuantiTect Reverse Transcription Kit (Qiagen GmbH, Hilden, 

D) following manufacturer’s instructions. 800 ng RNA was used for cDNA 

synthesis and cDNA was stored at -20 °C. The qRT-PCR was performed using 

RealMaster SYBR Rox Kit (5 Prime GmbH, Hilden, D), 10 pmol of each primer 

and 1 µl 1:10 diluted cDNA in a total volume of 20 µl. The PCR was performed by 

the LightCycler 2.0 (Roche Diagnostics GmbH, Mannheim) using a twp step 

program with 33 cycles and 63 °C as annealing temperature. Each sample was 

performed in duplicates and the experiment was repeated three times. The 

histone H2A (3G05360) was used as endogenous reference. The relative 

expression of the gene of interest was calculated using the ∆CT method as 

previous described (Livak and Schmittgen, 2001). All the primers used for qRT-

PCR are listed in Table 3. 

 

2.3.5 Transformation methods 
2.3.5.1 Preparation of competent Escherichia coli cells (Inoue et al., 1990) 

E. coli strain DH5α was inoculated in 50 ml SOB (0.5% yeast extract, 2% 

tryptone, 2.5 mM KCl, 10 mM NaCl, 10 mM MgCl2, 10 mM MgSO4) and 

incubated overnight at 37 °C as pre-culture. Next day the O.D600 of 250 ml SOB 

was adjusted to 0.1 with the corresponding pre-culture and incubated at 37 °C 

until the O.D600 reached 0.6. Following, the cells were incubated on ice for 10 min 

and centrifuged at 3000 rpm and 4 °C for 10 min. The pellet was resuspended in 

80 ml ice-cold TB buffer (10 mM HEPES, 15 mM CaCl2, 55 mM MnCl2, pH 6.7) 

followed by 10 min incubation on ice and centrifugation. The cells were 

resuspended in 20 ml ice-cold TB buffer and gently mixed with 1.4 ml DMSO. 
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After 10 min incubation on ice, the cells were dispensed in 400 ml aliquots, 

frozen in liquid N2 and stored at -80 °C. 

 

2.3.5.2 Transformation of Escherichia coli (Inoue et al., 1990) 

For transformation, the competent cells were thawed on ice and 5-10 µl 

DNA was mixed with 100 µl of the cells followed by 30 min incubation on ice, 1 

min heat shock at 42 °C and 5 min incubation on ice again. Afterwards, 400 ml 

SOC (SOB with 20 mM glucose) was added and incubated for 15 min at 37 °C. 

The samples were spread on LB-plates containing 100 mg/l ampicillin and 

incubated overnight at 37 °C. 

 

2.3.5.3 Transformation of Saccharomyces cerevisiae (Ito et al., 1983) 

 For transformation, the S. cerevisiae strains were cultivated in 10 ml 

YEPD medium overnight at 30 °C. On the following morning, 1 ml of the 

overnight culture was inoculated in 10 ml YEPD medium as main culture and 

incubated for 5 hr at 30 °C. Afterwards, the cells were centrifuged at 2000 rpm 

and 4 °C for 3 min and washed in 10 ml LiOAC/TE buffer (100 mM LiOAC, 10 

mM Tris and 1 mM Na2-EDTA). The centrifugation and washing steps were 

repeated twice. Afterwards, the cells were resuspended in 400 µl LiOAC/TE 

buffer. 200 µl of the cell suspension was mixed with 20 µl carrier DNA (single 

stranded salmon sperm DNA), 500 ng plasmid and 800 µl 50% PEG 4000 

(polyethylene glycol). Afterwards, the cells were incubated for 30 min incubation 

at 30 °C and subjected to heat shock for 25 min at 42 °C. Then cells were 

centrifuged at 13000 rpm for 1 min, resuspended in 1 ml YEPD medium and 

incubated for 30 min at 30 °C. Finally, the cells were centrifuged at 13000 rpm for 

1 minute, the remaining cells were spread on corresponding selective SC 

medium plates and incubated for 2-3 days at 30 °C. 
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2.3.5.4 Transformation of Aspergillus fumigatus (Yelton et al., 1984) 

 A. fumigatus strains were inoculated in 200 ml MM medium and grown on 

the shaker (180 rpm) overnight at 37 °C. The mycelia were filtered with sterile 

miracloth (Merck KGaA, Darmstadt, D) and washed with citrate buffer (50 mM 

Na-Citrate, 150 mM KCl, 580 mM NaCl, pH 5.5). Washed mycelia were 

incubated in 20 ml of vinoflow solution (600 mg Vinoflow and 300 mg Lysozyme 

in 20 ml citrate buffer) with slow shaking (60 rpm) for 1-2 hr at 30 °C. Afterwards, 

the protoplasts were harvested by filtering the solution through miracloth into 50 

ml falcon, the total volume was brought to 50 ml with ice-cold STC1700 buffer 

(10 mM Tris pH 5.5, 35 mM NaCl, 50 mM CaCl2, 1.2 M Sorbitol) and kept on ice 

for 5-10 min. After the centrifugation for 12 min at 4 °C, 2500 rpm, the protoplasts 

were resuspended in 50 ml ice-cold STC1700 buffer and centrifuged for 12 min 

at 4 °C, 2500 rpm. Subsequently, the supernatant were discarded and the 

protoplasts were resuspended in the leftover. By transferring the protoplasts to 

15 ml tube, mixed with 3 µg linear DNA and incubated on ice for 25 min. PEG 

4000 solution (10 mM Tris pH 7.5, 50 mM CaCl2, 60% PEG 4000) was added to 

the samples in 250 µl, 250 µl, 850 µl by steps. The samples were mixed gently 

between step. Afterwards, the samples were incubated above ice for 20 min, the 

total volume was brought to 15 ml with ice-cold STC1700 buffer and centrifuged 

at 4 °C, 2500 rpm for 15 min. Finally, the samples were resuspended in leftover, 

added to two 5 ml top agar (LM medium supplemented with 1.2 M sorbitol and 

0.7 % agar) and plated on selective protoplast plates (MM medium with the 

addition 0.6 M KCl and 2 % agar). The plates were incubated for 3-4 days at 37 

°C.  

  

2.3.6 Southern analysis  
2.3.6.1 Probe preparation 

 To prepare the probe for Southern hybridization, the CPD-Star Kit (GE 

Healthcare Europe GmbH, Freiburg, D) was used according to user’s manual. 
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100 ng DNA fragment and 1 µl 1:1000 diluted 1 kb DNA marker (Fermentas 

GmbH/Thermo Fisher Scientific GmbH, St. Leon-Rot/Schwerte, D) were mixed in 

a total volume of 10 µl. The DNA mixture was boiled at 95 °C for 5 min and 

transferred to ice immediately. Afterwards, the sample was mixed with 10 µl 

reaction buffer, 1 µl labeling reagent and 10 µl cross linker working solution (1:5 

dilution) following by incubation for 30 min at 37 °C. The probe could be used 

immediately or stored at -20 °C.  

 

2.3.6.2 Southern blot hybridization (Southern, 1975) 

 20 µg genomic DNA was digested overnight by a specific restriction 

enzyme. Afterwards, samples were loaded on an agarose gel and DNA was 

separated by electrophoresis. The gel was washed in 0.25 M HCl for 10 min, 

denaturing buffer (0.5 M NaOH, 1.5 M NaCl) for 25 min and neutralization buffer 

(0.5 M Tris pH 7.2, 1.5 M NaCl) on the shaker for 30 min, respectively. 

Afterwards, DNA was transferred to a Amersham Hybond-N nylon membrane 

(GE Healthcare Europe GmbH, Freiburg, D) by dry-blotting for 2 hr. 

Subsequently, the membrane was washed in 2X SSC (15 mM NaCl, 30 mM Na3-

Citrate, pH 7) twice and dried for 7 min at 70 °C. DNA was cross linked to a 

membrane by UV light exposure (λ= 254 nm) for 3 min on each side and the 

membrane was incubated in 15 ml pre-warmed hybridization solution for 1 hr at 

55 °C. The DNA probe was added into hybridization buffer and incubated 

overnight at 55 °C. On the following day, the membrane was washed twice in 30 

ml washing buffer I (1 mM MgCl2, 3.5 mM SDS, 50 mM Na-Phosphate buffer, 

150 mM NaCl, 2 M Urea, 0.2 % blocking reagents) for 10 min at 55 °C. 

Afterwards, the membrane was washed twice in 50 ml fresh washing buffer II (2 

mM MgCl2, 50 mM Tris Base, 100 mM NaCl, pH 10) for 10 min at RT. 0.5 ml 

detection reagent (CDP-Star, GE Healthcare Europe GmbH, Freiburg, D) was 

distributed on the membrane for 5 min and the membrane was incubated with 

Hyperfilm ECL (GE Healthcare Europe GmbH, Freiburg, D) for 30 min. The 

signal from the DNA probe was visualized on the film.  
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2.4 Protein methods 
2.4.1 Protein isolation from Saccharomyces cerevisiae  

To isolate proteins from yeast, strains were inoculated in SC-ura-leu 

medium and incubated overnight at 30 °C as pre-culture. On the following 

morning, 2 ml of pre-culture was added to new SC-ura-leu-met medium as main-

culture and incubated for 6 hrat 30 °C. Afterwards, the cells were incubated on 

ice for 10 min and centrifuged for 5 min at 2000 rpm. The pellets were 

resuspended in 2 ml breaking buffer (1 mM Dithiothreitol (DTT), 100 mM Tris 

(pH8), 20 % glycerol) and centrifuged for 2 min at 2000 rpm. The supernatant 

was discarded, the cells were resuspended in 250 µl breaking buffer and 

transferred to a 1.5 ml tube. Glass beads were added into the tube and the 

sample was vortexed for 5 min at 4 °C. Then, 350 µl breaking buffer was added 

into the samples and the tubes were vortexed for shortly and centrifuged for 15 

min at 13000 rpm. The supernatant was transferred to new 1.5 ml tube. Protein 

concentrations were measured at O.D595 by Bradford assay (Bradford, 1976) 

using the Roti-Quant assay solution (Carl Roth GmbH and Co.KG, Karlsruhe, D).  

 

2.4.2 β-galactosidase assay  

 The assays were performed as previously described (Braus et al., 2003). 

Briefly, 200 µl Z-buffer (1 mM MgSO4, 10 mM KCl, 40 mM NaH2PO4, 60 mM 

Na2HPO4) was added into a 96-well plate and 10 µl protein extract was mixed 

with Z-buffer and incubated for 5 min at 30 °C. Afterwards, 40 µl ortho-

nitrophenyl-β-galactoside (oNPG) solution (10 mg/ml) was mixed with the 

samples at 30 °C. Then 100 µl Na2CO3 was added into the samples to stop β-

galactosidase reaction. When the color of solution starts to turn yellow and the 

time was recorded. The samples were measured at 420 nm.  
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 The activity of β-galactosidase was determined by the formula belowed 

(Rose and Botstein, 1983). 

Activity (
nmole

min ∙mg
)

=  
O.D420 × 0.35 nmole

0.0045 × Protein concentration �mg
ml � × 0.01 ml × Time (min)

 

 

2.4.3 Protein isolation from Aspergillus fumigatus  

The A. fumigatus strains were grown for 24 h in 200 ml MM. The mycelium 

was harvested with miracloth filters and ground in liquid nitrogen. Protein crude 

extracts were obtained by mixing ground mycelium with B* buffer (300 mM NaCl, 

100 mM Tris pH 7.0, 10 % glycerol, 2 mM EDTA, 0.02 % NP40, 2 mM DTT, 1 

mM PMSF, 2 protease inhibitor pills/100 ml (Complete, EDTA-free, Roche 

Diagnostics GmbH, Mannheim, D). 400 µl B* buffer was added to 1 ml mycelium 

power and was vortexed for 4 min at 4 °C. Afterwards, the samples were 

centrifugated for 30 min at 13000 rpm, 4 °C. The supernatant was transferred to 

a new tube. The protein concentration was measured with the Nanodrop ND-

1000 (Peqlab Biotechnologie GmbH, Erlangen, D).  

 

2.4.4 GFP-Trap purification 

The crude protein extracts of A. fumigatus strains were performed as 

previously described (Chapter 2.4.3). Crude extracts were mixed with 15 µl GFP-

Trap beads (Chromo Tek GmbH, Planegg-Martinsried, D), which has been 

washed with B* buffer, and incubated for 2 h on a rotating machine at 4 °C. After 

the incubation, the beads were washed twice with 1.5 ml and 1 ml of B* buffer. 

After the centrifugation for 1 min at 4500 rpm at 4 °C, the supernatant was 

removed. The beads were resuspended with 40 µl 6 X loading dye (250 mM Tris 
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pH 6.8, 15 % β-mercaptoethanol, 30 % glycerol, 7 % SDS, 0.3 % bromophenol 

blue) and boiled for 6-8 min at 95 °C to separate the proteins from the beads.  

 

2.4.5 Trypsin in-gel digestion  

Trypsin digestion was performed as previously described (Shevchenko et 

al., 1996; von Zeska Kress et al., 2012). Briefly, the GFP-trapped samples were 

applied to a 12% SDS-PAGE and ran until the bands moved 1 cm into the 

separating gel. The samples were cut out from the gel and incubated with 

acetonitrile for 10 min at RT. Further, acetonitrile solution was removed and the 

gel pieces were dried in the SpeedVac Concentrator (Thermo Scientific GmbH, 

Dreieich, D). 150 µl of 10 mM DTT in 100 mM NH4HCO3 was added to the 

samples and incubated for 1 h at 56 °C. The DTT solution was removed and 150 

µl of 55 mM iodoacetamide in 100 mM NH4HCO3 was added. The samples were 

incubated in the dark for 45 min at RT. Afterwards, the iodoacetamide solution 

was removed, the samples were washed with 150 µl 100 mM NH4HCO3 for 10 

min and with 150 µl acetonitrile for 10 min. This washing step was repeated once 

and the samples were dried again at 60 °C. The samples were incubated with 

trypsin digestion buffer (1:20 sequencing grade trypsin (V5111, Promega GmbH, 

Mannheim, D) on ice for 45 min. Excessive buffer was removed and the gel 

pieces were incubated with 60 µl 25 mM NH4HCO3 overnight at 37 °C. The next 

day, the gel pieces were centrifuged for 1 min at 13000 rpm and the supernatant 

was collected. The gel pieces were incubated with 60 µl 20 mM NH4HCO3 for 10 

min and the supernatant was also collected. Three elution steps were done. The 

gel pieces were incubated with 60 µl 50 % acetonitrile/5 % formic acid for 20 min, 

centrifugated for 1 min at 13000 rpm and the supernatant was collected. All 

collected supernatant were dried in the SpeedVac (Therrmo Fisher Scientific 

GmbH, Dreieich, D). The protein pellet was resolved in 20 µl 95 % H2O/5 % 

acetonitrile/0.1 % formic acid and applied to LC/MS analysis. Particles and 



  Material and Methods 

45 
 

precipitates were removed with Ultrafree-MC HV centrifugal filter units (Merck 

KGaA, Darmstadt, D) by centrifugation for 2 min at 10000 rpm. 

 

2.4.6 Protein identification by mass spectrometry 

Mass spectrometry analysis was performed as previously described (von 

Zeska Kress et al., 2012; Harting et al., 2013). Briefly, peptides in sample 

solution were trapped and washed with 0.05 % trifluoroacetic acid on an 

Acclaim® PepMap 100 column (75 µm x 2 cm, C18, 3 µm, 100 Å, P/N164535, 

Thermo Scientific GmbH, Dreieich, D) at a flow rate of 4 µl/min for 12 min. 

Peptide separation was performed on an Acclaim® PepMap RSLC column (75 

µm x 15 cm, C18, 3 µm, 100 Å, P/N164534, Thermo Scientific GmbH, Dreieich, 

D) running a gradient from 96 % solvent A (0.1 % formic acid) to 4 % solvent B 

(acetonitrile, 0.1 % formic acid) and to 50 % solvent B within 25 min at flow rate 

of 250 nl/min (solvents and chemicals: Fisher Chemicals).  

Peptides eluting from the chromatographic column were on-line ionized by 

nano-electrospray using the Nanospray Flex Ion Source (Thermo Scientific 

GmbH, Dreieich, D) and transferred into the mass spectrometer. Full scans 

within the mass range of m/z 300-1850 were recorded by the Orbitrap-FT 

analyzer at a resolution of 60.000 at m/z 400. Peptides were fragmented by 

collision-induced decay in the LTQ Velos Pro linear ion trap. LC/MS method 

programming and data acquisition was performed with the softward Xcalibur 2.2 

(Thermo Scientific GmbH, Dreieich, D).  

Orbitrap raw files were analyzed with the Proteome Discoverer 1.4 

software (Thermo Scientific, San Jose, Ca, USA) using the Mascot and Sequest 

search engines against the A. fumigatus protein database with the following 

criteria: peptide mass tolerance 10 ppm; MS/MS ion mass tolerance 0.8 Da, and 

up to two missed cleavages allowed. Methionine oxidation was considered as 

variable modification and carbamidomethylation was considered as fixed 

modification. For protein identification at least two different high ranking peptides 



  Material and Methods 

46 
 

were required after validation against a decoy database had a false discovery 

rate of 0.01 or less. High peptide confidence and a minimum of two peptides per 

protein were used as result filters. 

 

2.5 Phenotype characterization of Saccharomyces cerevisiae 
2.5.1 Flocculation assay 

 The flocculation assay was performed as previously described (Kobayashi 

et al., 1996). The strains carrying AfusomA, ScFLO8 or empty vector were 

incubated in SC selective medium for one day at 30 °C on a rotating platform. 

Afterwards, the cell pellets were disrupted by adding 1 ml Na2-EDTA (pH 8). The 

value of flocculation was determined by F = 1-B/A, where A is OD600 in solution 

without 0.1 % CaCl2 and B is OD600 in the presence of 0.1 % CaCl2. 

 

2.5.2 Adhesion assay 

To test whether the strains expressing AfusomA or ScFLO8 can invade 

into agar surface, an adhesion assay was performed. The corresponding strains 

were streaked out on selective medium plates and incubated for 3 days at 30 °C. 

Afterwards, the plates were photographed (pre-washed) and washed gently in 

water until the negative control was washed away. Then, the plates (washed) 

were photographed again. 

 

2.5.3 Pseudohyphal growth 

 To test the ability of diploid yeast strain to perform filamentous growth, a 

pseudohyphal growth test was performed. The corresponding strains carrying 

ScFLO8 or AfusomA were streaked out on synthetic low ammonium dextrose 

(SLAD) plates which contain 0.15 % yeast nitrogen base without amino acid and 
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(NH4)2SO4, 50 µM (NH4)2SO4, 2 % glucose and 3% agar for 6 days at 30 °C. 

Afterwards, the plates were photographed.  

 

2.5.4 Spotting assay 

 To test whether the expression of AfusomA and ScFLO8 results in 

reduced growth, the spotting assay was performed. Strains were spotted in 10-

times serial dilution either on SC-Ura or on SC-Ura-Met plates and incubated for 

3 days at 30 °C. Then, the plates were photographed.  

 

2.6 Phenotype characterization of Aspergillus fumigatus 
2.6.1 Growth test 

 Harvested conidia were diluted in NaCl-Tween solution (0.9 % NaCl, 0.02 

% Tween 20) to reach 105 spores/ml using a Thoma counting chamber (Paul 

Marienfeld GmbH and Co. KG, Lauda-Königshofen, D). 5 µl of this spore solution, 

which contained 500 spores, was spotted on MM plates and incubated for 5 days 

at 37 °C. The colony diameter was measured. For adhesin deletion strains, 

growth test was also performed on MM with 1.2 M sorbitol and MM with 0.6 M 

KCl. For two conditional expression AfusomA mutants and Xyl-AfusomA strain 

was spotted on MM supplemented with 1 % xylose, while Tet-AfusomA mutant 

was performed on MM with 5 mg/l doxycycline.  

 

2.6.2 Adhesion assay 

 To test whether AfuSomA or putative adhesins are responsible for 

adherence to plastic, the adhesion assay was performed. The harvested conidia 

of the corresponding strains were diluted in MM medium to reach 105 spores/ml. 

1 ml of this spores solution was added to 12-well culture plate (Greiner Bio-One 

GmbH, Frickenhausen, D) and incubated for 24 h at 37 °C. Afterwards, the 



  Material and Methods 

48 
 

medium was discarded by pipetting and the wells were washed with phosphate 

buffer saline (PBS) three times. The samples were dyed with 0.01% crystal violet 

and photographed. Addition of 5 mg/l doxycycline was applied to activate the 

expression of the Tet-AfusomA mutant.  

   

2.7 Microscopy  

 To analyze A. fumigatus asexual development, strains were grown on an 

agar-coated slide with a thin layer of MM agar or MM agar with 5 mg/l 

doxycycline for 28 h and then observed with the Axiolab microscope (Carl Zeiss 

GmbH, Jena, D) at 400-fold magnification. For aerial hyphae visualization, the 

corresponding strains were grown on agar slide with either MM agar or MM agar 

containing 5 mg/l doxycycline for 28 h, and observed with SZX-ILLB2-200 

binocular microscope (Olympus GmbH, Hamburg, D). Picture were obtained with 

a CS30 digital camera (Olympus GmbH, Hamburg, D) and with the cellSens 

software (Olympus GmbH, Hamburg, D).  

 

2.8 Egg infection model 
2.8.1 Conidia preparation 

 The strains were grown on malt extract agar for 7 days at 37 °C. On the 

day of infection, the conidia were freshly harvested in PBS with 0.1 % Tween 20 

solution. In order to perform egg infection, the harvested conidia were first diluted 

to 105 spore/ml in PBS-0.1 % Tween 20 solution and then diluted to 104 spore/ml 

in PBS solution for infection. 100 µl of final spore solution was used to infect an 

egg. The wild type and Tet-AfusomA mutant were grown on malt extract agar 

with 5 mg/l doxycycline.  
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2.8.2 Infection 

The egg infection model was performed as described (Jacobsen et al., 

2010; Jacobsen et al., 2012). Fertilized eggs were obtained from a farm before 

incubation. Eggs were incubated for 10 days (day 0 to day 9) in an egg incubator 

TC 2010F (J.Hemel Brutgeräte GmbH and Co. KG, Verl, D) with 60 % humidity 

at 37 °C. From day 3 until the day for infection, the eggs were turned lengthways 

every 6 h. At day 9, embryonic development and survival of incubated eggs were 

checked. In viable eggs, the blood vessel pattern of the chorioallantoic 

membrane (CAM) and natural air space could be visualized by candling eggs in a 

darkened box. The non-viable eggs were discarded. Viable eggs were numbered 

and the air cell was marked with a pencil.  

At day 10 (infection day), conidia of the corresponding strains were 

harvested and counted. 20 eggs were used to be inoculated with one strain. To 

inoculate the spore solution, two holes were made on the shell where one hole is 

at air cell and the other is on the lengthwise side (Figure 9). The air in the air cell 

was removed by rubber bulb and artificial air space was generated 

simultaneously. 1000 spore in 100 µl PBS solution was inoculated through the 

hole at the lengthways side. Afterwards, both holes of the egg were sealed by 

paraffin and eggs were moved back into the incubator. Survival of eggs was 

checked once to twice a day until day 17. At day 17, surviving eggs were killed 

by freezing.  
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Figure 9.  Scheme of egg infection. 

In order to infect an egg, two holes were created. One is on the side of the air cell and 
the other is on the lengthwise side. When the air was removed from the air cell, the 
artificial air space was constructed. The spore solution of the corresponding strain was 
inoculated into the artificial air space (modified from (Jacobsen et al., 2012)).
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3 Results 
3.1 The FLO8 homolog of Aspergillus fumigatus 

complements morphological defects in ∆flo8 yeast 
3.1.1 Identification of FLO8 homolog in Aspergillus fumigatus 

Flo8 is a transcription factor for yeast dimorphism in Saccharomyces 

cerevisiae and Candida albicans. This morphological transition between yeast 

and hyphal forms is required for adhesion and virulence (Kobayashi et al., 1996; 

Liu et al., 1996; Cao et al., 2006; Mayer et al., 2013). Adherence to the host cells 

is an important step for pathogenesis, but the knowledge is limited in filamentous 

fungi. The FLO8 homolog, SOM1, in the filamentous fungus Magnaporthe oryzae 

complements the adhesion in S. cerevisiae and is required for plant pathogenicity 

in rice (Yan et al., 2011). This indicates that Flo8/Som1 protein may be 

responsible for adherence and virulence in filamentous fungi.  

To identify the FLO8/SOM1 homolog in Aspergillus fumigatus, the amino 

acid sequences of Flo8 of S. cerevisiae and C. albicans were used for blast 

research. The AfuSomA (7G02260) showed 15.7 % and 20.5 % identity to the 

Flo8 of S. cerevisiae and C. albicans, respectively. Comparing the homologous 

proteins in filamentous fungi, AfuSomA shared 39.1, 36.8, 75.6, and 41.7 % 

identity to M. oryzae Som1, Neurospora crassa Som1, Aspergillus nidulans 

Som1 and Fusarium oxysporum Som1. However, further analysis showed that 

AfuSomA is closer related to Flo8 in yeasts than to Som1 in filamentous fungi 

(Figure 10). 
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Figure 10.  AfuSomA might share the same ancestor with Flo8.  

Phylogenetic tree of Flo8/Som1 family members. The phylogenetic tree was predicted by 
ClustalW2 at European Molecular Biology Laboratory – European Bioinformatics Institute 
(www.ebi.ac.uk). Abbreviations and accession numbers are as follows: ScFlo8, 
Saccharomyces cerevisiae Flo8 (NP_011034); CaFlo8, Candida albicans Flo8 
(XP_712106); AfuSomA, Aspergillus fumigatus SomA (XP_746706); AnSom1, 
Aspergillus nidulans Som1 (XP_682356); SsSom1, Sclerotinia sclerotiorum Som1 
(XP_001598877); NcSom1, Neurospora crassa Som1 (AAF75278); MoSom1, 
Magnaporthe oryzae Som1 (ELQ39413); FoSom1, Fusarium oxysporum Som1 
(EWZ81375); GzSom1, Gibberella zeae Som1 (XP_382826).  

 

Using computational tools conserved functional domains were predicted 

(Figure 11). The Flo8/Som1 proteins share with AfuSomA (7g02260) the LUFS 

domain, which contains a LisH (Lis homology) motif for protein dimerization and 

tetramerization at the N-terminus. In addition to the LisH domain, there is a 

conserved nuclear localization signal (NLS) PSPSKRPRLE, which is shared by 

the representatives of filamentous fungi (Figure 11). Both the LisH domain and 

the NLS have been shown to be responsible for developmental regulation and 

virulence in M. oryzae (Yan et al., 2011).  

 

http://www.ebi.ac.uk/
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Figure 11.  Partial sequence alignment of Flo8/Som1 proteins.  

(A) Sequence alignment of the LUFS and LisH domains of Flo8/Som1 homologs. (B) 
Sequence alignment of predicted NLS of Som1 proteins in filamentous fungi. Multiple 
alignment was performed by Clustal Omega at European Molecular Biology Laboratory – 
European Bioinformatics Institute (www.ebi.ac.uk). NLS was predicted at cNLS mapper 
(http://nls-mapper.iab.keio.ac.jp/). Abbreviation are as follows: Sc, Saccharomyces 
cerevisiae; Ca, Candida albicans; Afu, Aspergillus fumigatus; An, Aspergillus nidulans; 
Ss, Sclerotinia sclerotiorum; Nc, Neurospora crassa; Mo, Magnaporthe oryzae; Fo, 
Fusarium oxysporum; Gz, Gibberella zeae. Identical residues are highlighted in red, 
highly consensus residues in green and modestly consensus residues in blue. Numbers 
indicate the amino acid position of the first and the last residue. 

 

The AfusomA exons were identified by comparing the predicted mRNA 

sequence obtained from the Aspergillus Genome Database (AspGD 

http://www.aspergillusgenome.org) with cDNAs which were amplified from the 

total mRNA of wild type (AfS35) strain. The amplified AfusomA cDNAs were 

cloned into plasmid (pME2787) for sequencing. Sequencing of the resulting 

plasmid revealed that AfusomA carries five exons of a size of 486 bp, 152 bp, 

1279 bp, 267 bp and 171 bp (pME4192) resulted in a deduced protein of 784 

amino acids with a molecular weight of 84.59 kDa (Figure 12). An additional 

splice variant (pME4193) contained six exons with an additional small intron of 

54 bp within exon 3. This resulted in a smaller protein of 766 amino acid. Both 

splice variants of AfusomA were identified in wild type strain grown for 20 h 

A 

B 

http://www.ebi.ac.uk/
http://nls-mapper.iab.keio.ac.jp/
http://www.aspergillusgenome.org/
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(Figure 12). The multiple splice variants were also found in Som1 in N. crassa 

and M. oryzae (Yan et al., 2011; Broad Institute).  

 

 

Figure 12.  Structural organization of AfusomA.  

Genomic structure of AfusomA, two mRNA splice variants and the deduced protein with 
LisH and predicted NLS motifs. The LisH (red) and NLS (blue) are located in exon 1 (E1) 
and exon 3 (E3), respectively. Abbreviation are as follows: E, exon; I, intron.  

 

3.1.2 High expression levels of AfusomA inhibit growth and could not 

complement the defects in adhesive growth in ∆flo8 yeast 

Adhesive and filamentous growth in S. cerevisiae can be activated by 

limitation of ammonium or fermentable sugars such as glucose in the medium 

(Gimeno et al., 1992; Cullen and Sprague, 2000). In order to test whether 

AfuSomA could complement either adhesive or pseudohyphal growth in ∆flo8 

yeast mutant, both splice variants were cloned into the plasmid (pME2787) 

carrying the MET25 promoter. The normally high expression levels from this 

plasmid are repressed when methionine is present in the medium (Johnston and 

Davis, 1984; Sangsoda et al., 1985). The plasmids carrying the two spliced 

variants were transformed into in yeast ∆flo8 haploid strain BY4742. Then 

heterogeneous expression of AfusomA gene was performed in medium without 

methionine to activate its expression. AfuSomA was examined whether it can 

complement the defect in adhesive growth. In medium lacking methionine, 

neither AfusomA nor its splice variant (pME4194 and pME4195) could 

complement the invasive growth (cell-surface adhesion) on solid agar or 
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flocculation (cell-cell adhesion) in liquid medium in the ∆flo8 haploid mutant strain 

(BY4742). The plasmids carrying ScFLO8 (pME4197), which is also regulated by 

MET25 promoter, was used as positive control (Figure 13). The empty vector 

pME2787 was used as negative control.  

 

 

Figure 13.  High expression levels of AfusomA can not complement the defect in 
adhesive growth in ∆flo8 yeast. 

 (A) Invasive growth defects of ∆flo8 haploid mutant (BY4742) were not rescued by 
expressing either AfuSomA (pME4194) or its splice variant (pME4195). Representative 
pictures show that strains expressing both AfusomA variants are washed away on Sc-
Ura-Met plates. The experiments were carried out in triplicate. Strains, expressing 
ScFlo8 (pME4197) and empty vector (pME2787) were used as positive and negative 
controls. Strains were grown on SC-Ura-Met plates for 3 days at 30 °C, and the plates 
were photographed before and after washing under water tape. (B) AfuSomA and its 
splice variant revealed little flocculation at the bottom of the tubes compared to the 
positive control ScFlo8. The empty vector was used as a negative control. Flocculation 
quantification indicated that AfuSomA and splice variant showed similar flocculation rate 
with the empty vector. Strains were grown in 10 ml Sc-Ura-Met medium for one day. 
Graph indicates mean ± standard error and the experiments were performed in 
triplicates.  
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 High expression levels of heterogeneous protein might be toxic to S. 

cerevisiae (Mumberg et al., 1994). It was observed that both strains containing 

AfuSomA were growing less efficient. Therefore, the growth test was performed 

to determine the toxicity of both AfuSomA and its spliced variant in yeast. Strains 

carrying AfuSomA, AfuSomA splice variant, ScFlo8 and empty vector were 

grown on plates either with or without methionine. As shown in Figure 14, there is 

no significant difference between strains carrying AfuSomA, AfuSomA splice 

variant and ScFlo8 on plates with methionine (low expression levels). In contrast, 

growth inhibition was observed in strain carrying either AfuSomA or the splice 

variant on the plates without methionine (high expression levels). This result 

indicates that loss of adhesion or flocculation might be due to slow growth rate by 

high expression levels of AfuSomA in yeast.  

 

 

Figure 14. High expression levels of AfusomA results in growth inhibition in ∆flo8 
yeast.  

ScFlo8, AfuSomA or AfuSomA splice variant were expressed under MET25 promoter in 
the haploid ∆flo8 strain BY4742. Empty vector (pME2787) was used as negative control. 
Strains were spotted in 10-fold dilutions either on Sc-Ura (with methionine) at low 
expression level or on Sc-Ura-Met (without methionine) at high expression level. Plates 
were incubated for 3 days at 30 °C and photographed.  
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3.1.3 Low expression levels of AfusomA complements the morphological 

defects in ∆flo8 yeast 

Since MET25 promoter has low expression levels of the downstream gene 

in the presence of methionine (Mumberg et al., 1994). Heterogeneous 

expression of AfusomA gene was performed on plates or in liquid medium with 

methionine to allow the investigation of invasive growth or flocculation in haploid 

∆flo8 mutant. Low expression levels of both AfusomA and its splice variant 

(pME4194 and pME4195) could rescue invasive growth in the ∆flo8 haploid 

mutant on solid agar as well as flocculation in liquid medium similar to the ScFlo8 

(pME4197) (Figure 15).  

Apart from adhesive growth in haploid yeast, AfuSomA was examined 

whether it can complement pseudohyphal growth in diploid ∆flo8 yeast. Plasmids 

carrying AfusomA (pME9194), ScFLO8 (pME9196) and the empty vector 

(pME2787) were transformed into the ∆flo8 diploid strain (RH2660). The wild 

type (RH2656) was transformed with the empty vector as positive control. 

Expression of AfusomA and ScFLO8 in ∆flo8 diploid strain restored 

pseudohyphal growth (Figure 16). The data from haploid and diploid ∆flo8 

mutants support that the AfuSomA and ScFlo8 can fulfill similar cellular functions 

in yeast and might share a common ancestor gene with M. oryzae Som1 protein 

which was also shown to complement pseudoyphal growth in diploid yeast (Yan 

et al., 2011).  
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Figure 15. Low expression levels of AfusomA complements the defects in 
adhesive phenotypes in haploid ∆flo8 yeast.  

(A) Invasive growth defects of ∆flo8 haploid mutant (BY4742) were rescued by 
expressing either AfuSomA (pME4194) or its splice variant (pME4195). Representative 
pictures show that both AfuSomA variants expressing strains are not washed away on 
Sc-Ura plates. The experiments were carried out in triplicate. Expression ScFlo8 
(pME4197) and empty vector (pME2787) were used as positive and negative controls. 
Strains were grown for 3 days at 30 °C, and the plates were photographed before and 
after washing under water tape. (B) AfuSomA and its splice variant revealed similar 
levels of flocculation at the bottom of the tubes in comparison to strains carrying ScFlo8 
as positive control. Empty vector (pME2787) was used as negative control. Flocculation 
quantification indicated that AfuSomA and the splice variant showed similar flocculation 
with ScFlo8. Strains were grown in 10 ml Sc-Ura medium for one day. Graph indicates 
mean ± standard error and the experiments were performed in triplicate. 

 

 



  Results 

59 
 

 

Figure 16. AfuSomA restores pseudohyphal growth in ∆flo8 diploid yeast mutant.  

Pseudohyphal growth of diploid ∆flo8 mutant (RH2660) was rescued by expressing 
AfusomA (pME4194) and ScFLO8 (pME4197). Empty vector (pME2787) was used as 
negative control. Strains were grown on SLAD for 6 days at 30 °C and photographed. 
Wild type (RH2656) transformed with empty vector (pME2787) was used as positive 
control. Experiments were carried out in triplicates.  

 

3.1.4 AfuSomA and ScFlo8 recognize similar promoter sites for ScFLO11 
expression  

ScFlo8 is a transcription factor, which binds and starts transcription at the 

ScFLO11 promoter expressing the flocculin Flo11 (Bester et al., 2006; Fichtner et 

al., 2007). Flo11 mediates adhesion and represents the key determinant for 

haploid invasive growth or diploid pseudohyphal development in laboratory yeast 

strains where other FLO genes are silenced (Brückner and Mösch, 2011). 

ScFLO11 comprises one of the largest yeast promoters where ScFlo8 represents 

only one out of numerous transcription factors repressing or activating 

transcription (Brückner and Mösch, 2011). AfuSomA was examined whether it 

complements the adhesion in ∆flo8 yeast mutants by activating ScFLO11 gene 

expression (Figure 15 and 15). We performed β-galactosidase assays with the 3 

kb ScFLO11 promoter fused to the bacterial LacZ reporter gene (Rupp et al., 

1999). The reporter plasmid (pME2167) was co-transformed with the AfusomA 

expressing plasmids (pME4192 or pME4193), which are regulated under MET25 

promoter, into ∆flo8 yeast strain (Y16870). Plasmids carrying the ScFLO8 

(pME4196) or the empty vector (pME2786) were co-transformed with reporter 

plasmid into ∆flo8 yeast strain as positive and negative controls. To determine 
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the activity of β-galactosidase, transformed strains were grown in Sc-Ura-Leu 

medium overnight as pre-culture. Next day, samples were inoculated into Sc-

Ura-Leu-Met medium for 6 h to induce the expression of either AfusomA or 

ScFLO8. Both AfuSomA and its splice variant showed significantly increased 

ScFLO11 promoter driven LacZ activity in comparison to the mutant strain 

transformed with the empty plasmid (pME2786) (Figure 17).  

 

 

Figure 17. AfuSomA and ScFlo8 activate ScFLO11 expression.  

Expression of ScFLO11::LacZ was performed in haploid Y16870 strain (∆flo8). Co-
transformation of pME2167 carrying the ScFLO11::LacZ which encodes bacterial β-
galactosidase, with plasmid harboring ScFlo8, AfuSomA, AfuSomA splice variant or the 
empty vector pME2786 was performed. Strains were grown in Sc-Ura-Leu medium as 
pre-culture, then the samples were inoculated into Sc-Ura-Leu-Met medium as main 
culture for 6 h before determination of the β-galactosidase activities were determined. 
Graph indicates mean ± standard errors and experiments were repeated in triplicates. 

 

AfuSomA and its splice variant showed a difference in β-galactosidase 

activities compared to ScFlo8. Therefore, we took a more detailed look at the 

ScFLO11 promoter to determine whether AfuSomA and ScFlo8 bind to similar 

regions of ScFLO11 promoter. A set of 14 reporter constructs which contain 400 

bp ScFLO11 promoter fragments that overlap by 200 bp upstream of the 

CYC1::lacZ fused gene. This gene is comprised of E. coli lacZ gene and S. 

cerevisiae iso-1-cytochrome c (CYC1) gene (Rupp et al., 1999). The CYC1 
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fragment contains TATA box for expression of LacZ in yeast (Guarente and 

Ptashne, 1981) (Figure 18A). All transformants were first grown in Sc-Ura-Leu 

and transferred to Sc-Ura-Leu-Met to activate the expression of AfusomA and 

ScFLO8. As shown in Figure 18B, two promoter regions were affected by both 

ScFlo8 and AfuSomA. Comparison of Figure 18A and 18B indicated that these 

two regions are located at 1.8 kb and 1.2 kb upstream of the start codon of 

ScFLO11. AfuSomA seems to recognize two additional regions located at 1.4 kb 

and 1 kb upstream of the ScFLO11 open reading frame. These data corroborate 

that AfuSomA and ScFlo8 share molecular functions in recognizing and 

controlling similar regions of the ScFLO11 promoter and hence complemented 

adhesion and filamentous growth in ∆flo8 yeast strains.  
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Figure 18. AfuSomA and ScFlo8 act through similar regions of ScFLO11 promoter.  

(A) Schematic overview of 14 different 400 bp constructs of the ScFLO11 promoter 
region fused to CYC1::LacZ reporter which is a hybrid genes of E. coli lacZ gene and S. 
cerevisiae iso-1-cytochrome c (CYC1) gene (Guarente and Ptashne, 1981; Rupp et al., 
1999). (B) The expression of LacZ gene fused to different ScFLO11 promoter fragments 
was performed in Y16870 strain (∆flo8). Plasmids carrying ScFlo8, AfuSomA or 
AfuSomA splice variant, which were expressed under MET25 promoter, were co-
transformed with one of the 14 plasmids containing different 400 bp fragments of the 
ScFLO11 promoter fused to the CYC1::LacZ reporter gene. ScFLO11 promoter 
fragment dependent β-galactosidase activities of the strain harboring either ScFlo8 
(diamonds), AfuSomA (triangles) or AfuSomA splice variant (asterisks) are indicated as 
means ± standard errors. Experiments were repeated for three times. Strains were 
grown in 10 ml Sc-Ura-Leu medium as pre-culture, then 1 ml of each sample was 
inoculated into Sc-Ura-Leu-Met medium as main culture for 6 h before the β-
galactosidase activities were determined.  

 

 

 

 

A 
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3.2 AfuSomA is required for asexual development in 
Aspergillus fumigatus 

3.2.1 Deletion of the AfusomA gene blocks asexual development at aerial 
hyphae 

The Som1 proteins have been shown to be required for asexual/sexual 

development in M. oryzae and A. nidulans (Lee et al., 2005; Yan et al., 2011). To 

verify the function of AfuSomA in cellular development, the ∆AfusomA mutant 

strain was designed using the six recyclable marker system (Hartmann et al., 

2010) (Figure 19A). The deletion fragment was constructed in plasmid pME4188 

and transformed into the A. fumigatus strain AfS35. In this strain the Ku70 

component of nonhomologous end-joining machinery was deleted to facilitate the 

homologous recombination in A. fumigatus (Krappmann et al., 2006). 

Homologous integration was verified by Southern hybridization with a probe 

detecting the 5’ flanking region of AfusomA. Genomic DNA of wild type and 

AfusomA deletion strains were digested with XbaI restriction enzyme and 

showed a signal at about 4.5 kb for the wild type strain and 5.1 kb for the 

∆AfusomA::ptrA mutant (AfGB72) (Figure 19B). The deletion of AfusomA 

resulted in a distinct defect in asexual spore formation. The mutant could not be 

propagated by inoculating asexual spores but through small agar pieces, which 

had to be cut from previous plates for propagation. Cultivation on additional 

minimal medium (MM) plates revealed slow growth (2.7 mm colony radius/day) of 

the ∆AfusomA strain (AfGB72) in comparison to wild type (6.7 mm/day) 

combined with impaired asexual sporulation (Figure 20A). The defect in asexual 

spore formation of the ∆AfusomA mutant was also observed in a ∆brlA strain 

except of the growth retardation (Twumasi-Boateng et al., 2009) (Figure 20A). 

The observed ∆AfusomA phenotypes were verified by complementation with the 

respective wild type gene (Figure 19A). To perform the complementation, the 

∆AfusomA mutant was grown on MM plate with 1% xylose to remove the 

resistance marker resulting in ∆AfusomA::six strain (AfGB77) (Figure 19A). 

Southern hybridization with a probe detecting the 5’ flanking region of AfusomA 
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was used to examine the loss of resistance marker. Genomic DNA of wild type 

and ∆AfusomA::six strain were digested with XbaI restriction enzyme and 

showed a signal at about 4.5 kb for the wild type strain and 5.1 kb for the 

∆AfusomA::six mutant (AfGB77) (Figure 19B). This strain was transformed with 

complementation fragment from pME4190 to yield the complemented strain. 

Southern hybridization with a probe detecting the 3’ flanking region of AfusomA 

was performed to verify the complementation. Genomic DNA of the wild type and 

the complemented strains were digested with EcoRI restriction enzyme and 

showed a signal at about 3.8 kb for the wild type strain and 2.2 kb for the 

complemented mutant (AfGB73) (Figure 19C). The complemented strain 

(AfGB73) had improved growth rates (5.2 mm/day in comparison to 2.7 mm/day 

in the mutant) and normal conidiation, which is indistinguishable from the wild 

type (Figure 20A).  
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Figure 19. Scheme of the deletion and the complementation construct for 
AfusomA and Southern hybridization.  

(A) Wild type (AfS35) represents the original locus of AfusomA gene in the chromosome. 
Following are the ∆AfusomA::ptrA (AfGB72) strain, ∆AfusomA::six (AfGB77) strain, 
whose resistance marker is removed, and the complemented strain ∆AfusomA:: 
[AfusomA] (AfGB73). Green arrow represents AfusomA gene and blue rectangle is the 
recyclable marker system containing pyrithiamine resistance (prtA) cassette. The blue 
vertical bars present six recombination sites for marker recycling. Probes used for 
southern hybridization are indicated as horizontal black bars. Red and black vertical 
arrows indicate XbaI and EcoRI restriction site for DNA digestion, respectively. (B) 
Southern hybridization of wild type (Lane 1), ∆AfusomA::ptrA (Lane 2) and 
∆AfusomA::six, whose marker is removed (Lane 3). Genomic DNA was digested with 
XbaI restriction enzyme and 5’ flanking region of AfusomA was used as probe 1 for 
hybridization. The expected size of wild type, ∆AfusomA::ptrA and ∆AfusomA::six is 4.5 
kb, 5.1 kb and 3.5 kb, respectively. (C) Southern analysis of wild type (Lane 1) and the 
complemented strain (Lane 2). Restriction digestion was performed with EcoRI and 
signal detection was carried out with 3’ flanking region (probe 2). The expected size of 
wild type and the complemented strain are 3.8 kb and 2.2 kb, respectively. 
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Figure 20. AfuSomA is required for growth and conidiation.  

Colony morphology and growth rate of wild type (AfS35), the ∆AfusomA mutant 
(AfGB72), the complemented strain ∆AfusomA::[AfusomA] (AfGB73) and ∆brlA mutant 
(A1176). All strains were grown on MMs plate for 5 days at 37 °C. Values in the graph 
are indicated as means ± standard error. (B) Morphology of conidiation of wild type, the 
∆AfusomA mutant, the complemented strain ∆AfusomA::[AfusomA] and ∆brlA mutant. 
Upper panel: Strains were grown on MM agar-coated slide for 28 h at 37 °C. In wild type 
and the complemented strains, white arrows indicates conidiophores and black arrows 
represent the vesicle for sporulation. Neither vesicles nor conidiophores were found in 
∆AfusomA and ∆brlA mutant. Lower panel: Strains were grown on MM agar-slide for 28 
h at 37 °C. Conidiophores were observed at the tip of aerial mycelium in wild type and 
the complemented strain. The ∆AfusomA mutant as well as the ∆brlA mutant showed 
only aerial hyphae on MM agar. Scale bars represent 20 µm (upper panel) and 50 µm 
(lower panel).  

 

Asexual spores are produced at conidiophores consisting of aerial hyphae 

with a vesicle on top where the conidia are pinched off (Adams et al., 1998). The 

∆AfusomA strain as well as ∆brlA mutant formed exclusively aerial hyphae and 

was incapable to form conidiophores. To verify whether ∆AfusomA blocks 

A 

B 



  Results 

67 
 

asexual development at early stage as the ∆brlA mutant, conidiophore 

morphology was examined under microscope. Wild type (AfS35), the ∆AfusomA 

mutant, the complemented strain and ∆brlA mutant were inoculated on MM-agar 

coated object-slide or MM agar on object-slide and incubated for 28 h at 37 °C. 

As shown in Figure 20B, microscopic inspection demenstrated that ∆AfusomA 

mutant showed no mature conidiophore formation similar to ∆brlA mutant. In 

contrast, the wild type AfS35 and the complemented strain revealed 

conidiophores (white arrow) and vesicle formation (black arrow) on top of the 

aerial hyphae. Furthermore, macroscopic inspection indicated that wild type 

produces aerial hyphae as well as conidiophores on the surface of a MM agar 

similar to the complemented strain. In contrast, ∆AfusomA and ∆brlA mutant 

showed only aerial hyphae (Figure 20B). 

 

3.2.2 Xylose dependent expression of AfusomA shows different 

phenotypes compared to ∆AfusomA mutant and complemented 

strain 

The BrlA protein represents a central regulator of conidiation. Defects in 

the corresponding gene result in a bristle (brl) phenotype due to a developmental 

block of conidiophore formation at the stage of aerial hyphae. Similarly, the 

∆AfusomA mutant showed only aerial hyphae as brlA null strain, therefore we 

analyzed the AfuSomA dependent step in asexual development in more detail. A 

strain was constructed that could conditionally express AfusomA gene by xylose. 

The promoter region (602 bp) of AfusomA was replaced by inducible xylose 

dependent promoter (Figure 21A). The fragment containing the xylose driven 

AfusomA gene was transformed into wild type (AfS35) and the resulting Xyl-

AfusomA strain (AfGB78) was confirmed by Southern hybridization with a probe 

detecting the 859 bp (position 1~859) of the AfusomA gene. Genomic DNA of the 

wild type and the Xyl-AfusomA strain were digested with SphI restriction enzyme 

and showed a signal at about 2.8 kb for the wild type strain and 3.8 kb for the 

Xyl-AfusomA mutant (AfGB78) (Figure 21B). 
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Figure 21. Scheme of two constructs for conditional expression of AfusomA and 
Southern hybridization. 

(A) Wild type (AfS35) represents the original locus of AfusomA gene in chromosome. 
The follwing strains are the Xyl-AfusomA and the Tet-AfusomA. Green and red arrows 
represent AfusomA gene and pyrithiamine resistance (prtA) cassette. Xylose and 
tetracycline dependent promoters are shown with yellow and blue arrow, respectively. 
Probe used for Southern hybridization is indicated as horizontal black bar. Red and 
black vertical arrows indicate SacI and SphI restriction sites for DNA digestion, 
respectively. (B) Southern hybridization of wild type (Lane 1) and Xyl-AfusomA strain 
(lane 2). Genomic DNA was digested with SphI restriction enzyme and 859 bp of 
AfusomA gene was used as probe for hybridization signal. The expected size of the wild 
type and the Xyl-AfusomA mutant is 2.8 kb and 3.8 kb. (C) Southern hybridization of wild 
type (Lane 1) and Tet-AfusomA strain (lane 2). Genomic DNA was digested with SacI 
restriction enzyme and 859 bp of AfusomA gene was used as probe for hybridization 
signal. The expected size of the wild type and the Tet-AfusomA mutant is 2.5 kb and 1.9 
kb. 
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The wild type (AfS35) and Xyl-AfusomA (AfGB78) strain were cultivated 

for five days on MM plates with (+) or without 1 % xylose. The wild type showed 

the same growth rate in the presence or absence of xylose. However, the color of 

conidiation was different in the plates supplemented with xylose (Figure 22), this 

indicated that conidiation of wild type might be affected by another carbon source. 

The Xyl-AfusomA mutant had severely impaired sporulation as ∆AfusomA mutant 

when xylose was absent (Off state), but the Xyl-AfusomA strain grew as fast as 

the complemented strain on MM plates without xylose. Furthermore, the 

conididaiton was partially restored in Xyl-AfusomA mutant in the presence of 

xylose (Figure 22).  

 

 

Figure 22. Xyl-AfusomA mutant shows a different phenotype compared to 
AfusomA null mutant and the wild type. 

Colony morphology and growth rate of wild type (AfS35), ∆AfusomA mutant (AfGB72), 
the complemented strain ∆AfusomA::[AfusomA] (AfGB73) and Xyl-AfusomA mutant 
(AfGB78). All strains were grown on either MM plate (Off-state of the Xyl-promoter) or 
MM plate supplemented with 1 % xylose (On-state) for 5 days at 37 °C. Values in the 
graph are indicated as means ± standard error. Strains, grown on MM plate with 1 % 
xylose (On-state), are indicated with (+).  
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3.2.3 Doxycycline dependent expression of AfusomA shows a similar 

phenotype to ∆AfusomA mutant and the complemented strain 

A different carbon source may have effects on the growth rate in A. 

fumigatus (Oliver et al., 2002). In addition, doxycycline dependent conditional 

expression systems have been used and improved in A. fumigatus (Helmschrott 

et al., 2013). Due to the fact that Xyl-AfusomA mutant revealed different 

phenotype to ∆AfusomA mutant and complemented strain, another strain was 

constructed using Tet-On expression system for AfusomA gene. Similar to Xyl-

AfusomA strain, the promoter region (602 bp) of AfusomA was replaced by 

inducible Tet dependent promoter (Figure 21A). The fragment containing the Tet 

driven AfusomA gene was transformed into wild type (AfS35) and the resulting 

Tet-AfusomA strain (AfGB74) was confirmed by Southern hybridization with a 

probe detecting the AfusomA gene. Genomic DNA of the wild type and the Tet-

AfusomA mutant were digested with SacI restriction enzyme and had a signal at 

about 2.5 kb for the wild type strain and 1.9 kb for the Tet-AfusomA strain (Figure 

21C). The wild type (AfS35) and Tet-AfusomA (AfGB74) strain were cultivated for 

five days on MM plates with or without the inducer. The wild type showed the 

same growth and conidiation phenotype in the presence or absence of 

doxycycline, which indicates that the additional doxycycline has not effects in wild 

type (Figure 23A). The Tet-AfusomA strain grew as slowly as the ∆AfusomA 

mutant and had severely impaired sporulation when doxycycline was absent (Off-

state). In contrast, these impaired phenotypes were complemented when the 

promoter was induced by doxycycline (Figure 23A). Further observation showed 

that On-state of Tet-AfusomA strain revealed conidiophores (white arrow) and 

vesicle formation (black arrow) on top of the aerial hyphae as wild type; whereas 

the Tet-AfusomA strain in off state showed only aerial hyphae as ∆AfusomA 

mutant (Figure 23B).  
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Figure 23. Tet-AfusomA mutant shows a similar phenotype like the ∆AfusomA 
mutant and the wild type. 

(A) Colony morphology and growth rate of wild type (AfS35), ∆AfusomA mutant (AfGB72) 
and Tet-AfusomA strain (AfGB74). All strains were grown on either MM plate (Off-state 
of the Tet-promoter) or MM plate with 5 mg/l doxycycline (On-state) for 5 days at 37 °C. 
Values in the graph are indicated as means ± standard error. Strains, grown on MM 
plate with 5 mg/l doxycycline (On-state) are indicated with (+). (B) Morphology of 
conidiation in wild type, ∆AfusomA mutant and Tet-AfusomA strain. Upper panel: Strains 
were grown on MM or MM with doxycycline agar-coated slide for 28 h at 37 °C. In wild 
type and the Tet-AfusomA strain (On-state), white arrows indicate conidiophores and 
black arrows represent the vesicle for sporulation. Neither vesicles nor conidiophores 
were found in ∆AfusomA mutant and Tet-AfusomA strain without the inducer for 
AfusomA expression. Lower panel: Strains were grown on MM or MM with doxycycline 
agar-slide for 28 h at 37 °C. Conidiophores were observed at the tip of aerial mycelium 
in wild type and Tet-AfusomA strain in the On-state on MM containing doxycycline agar. 
∆AfusomA mutant and Tet-AfusomA strain in the Off-state showed only aerial hyphae on 
MM agar, when the activating drug was absent. Scale bars represent 20 µm (upper 
panel) and 50 µm (lower panel). Strains, grown on MM plate with 5 mg/l doxycycline 
(On-state) are indicated with (+). 
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The combined data of the deletion analysis and the doxycycline 

dependent promoter suggest that AfuSomA is a regulator of asexual spore 

formation and is controlling developmental steps after the formation of aerial 

hyphae during the asexual cycle. The similar developmental phenotypes 

between the ∆AfusomA (AfGB72) and the ∆brlA (A1176) strain suggest that 

AfuSomA and BrlA might be part of the same regulatory pathway. 

 

3.2.4 AfuSomA controls the expression of conidiation genes in 
Aspergillus fumigatus 

The AfuSomA cellular function as transcription factor involved in asexual 

sporulation was examined by transcript analysis of putative target genes. 

Expression of brlA marks an initial step in asexual development where BrlA 

master transcription factor is synthesized (Yu, 2010). The ∆AfusomA strain 

showed a similar colony phenotype as the ∆brlA mutant strain (Figure 20). This 

suggests that AfuSomA regulates the expression of brlA gene or its upstream 

regulatory genes. qRT-PCR was performed with cDNA from wild type, ∆AfusomA 

mutant and the complemented strain, which were grown for 20 h at 37 °C. 

Transcript analysis revealed that the ∆AfusomA mutant strain abolished brlA 

expression in contrast to the wild type (AfS35) or the complemented strain. In A. 

nidulans, the flbB, flbC, and flbD genes encode regulators which are upstream of 

the activation of brlA expression. Further, FlbB is required for flbD expression 

(Garzia et al., 2010; Kwon et al., 2010a). Similar to A. nidulans, FlbB is 

necessary for flbD expression and FlbD might be essential for expression of brlA 

in A. fumigatus (Yu, 2010). The expression of flbB and flbD was decreased in the 

∆AfusomA mutant whereas flbC expression was similar to the wild type control 

(Figure 24).  

Apart from the upstream regulatory protein, the two transcription factors 

MedA and StuA are also required for conidiation in both A. nidulans and A. 

fumigatus. Loss of either medA or stuA results in abnormal conididation (Adams 
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et al., 1998; Sheppard et al., 2005; Gravelat et al., 2010). The transcript levels of 

medA and stuA were significantly reduced in the ∆AfusomA strain suggesting 

that AfuSomA affects the expression of medA and stuA. Further, the velvet 

domain protein family and the non-velvet protein and master regulator of 

secondary metabolism LaeA, which are conserved in ascomycetes and 

basidiomycetes (Ni and Yu, 2007), also control fungal development and 

secondary metabolism in filamentous fungi including conidiation (Bayram and 

Braus, 2012; Park et al., 2012; Ahmed et al., 2013). The expressions of members 

of the velvet domain protein family was not significantly affected except for 

transcription of the velC gene which was impaired by the AfusomA deletion 

mutant (Figure 24).  
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Figure 24.  AfuSomA regulates genes for asexual development.  

Relative expression of genes encoding proteins that regulate conidiation and adhesion, 
and AfusomA gene determined by quantitative RT-PCR. The flbB, flbC and flbD are 
upstream regulatory genes and brlA is the first gene for sporulation. The vosA,veA, velB 
and velC are velvet genes that play a role in fungal development. The laeA is regulator 
for development. The medA and stuA encode two transcriptional factors which regulate 
conidiation. Graph indicates mean ± standard errors and experiments were repeated for 
two times.  

 

These data suggest that AfuSomA controls an entire network of conidiaton 

specific genes including flbB and flbD as early regulatory genes of asexual spore 

formation and medA and stuA, which are developmental modifier for spatial and 

temporal regulation of brlA expression .  
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3.2.5 AfuSomA interacts with PtaB in Aspergillus fumigatus 
 
Flo8/Som1 proteins have been shown to interact with various proteins 

including Mss11, Mfg1, catalytic subunits of PKA and transcription factors of the 

APSES proteins (Yan et al., 2011; McDonough and Rodriguez, 2012; Shapiro et 

al., 2012). These interactions between Flo8/Som1 proteins with its’ partner are 

required for regulating morphological development. We showed that AfuSomA 

activates ScFLO11 transcription in ∆flo8 S. cerevisiae (Figure 17). This result 

suggested that AfuSomA might be regulated by catalytic subunits of PKA and 

interact with Mss11 and Mfg1 in yeast. To identify whether AfuSomA interacts 

with the homologs of Mfg1 or catalytic subunits of PKA in A. fumigatus, a GFP-

Trap was performed with AfuSomA-sGFP tagged strain (AfGB75). The peptides 

from GFP-Trap were analyzed by LC-MS/MS. Data were collected at the highest 

expression levels of AfuSomA-GFP (24 h) from two independent samples from 

wild type (AfS35) expression sGFP protein as control and two independent 

AfuSomA-sGFP tagged strains. Proteins identified in sGFP control or only 

identified in one of AfuSomA-sGFP tagged strains were not included. All proteins 

that identified in GFP-Trap with AfuSomA are listed in Table 4. The protein name, 

gene number and function are according to the AspGD 

(http://www.aspergillusgenomes.org) (Arnaud et al., 2012). Yeast homolog is 

according to the SGD (http://www.yeastgenome.org/).  

http://www.aspergillusgenomes.org/
http://www.yeastgenome.org/
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Table 4. Proteins identified in the GFP-Trap. 

Gene 
number 

Protein name Function Yeast homolog Reference 

Afu7g02260 cAMP/PKA pathway (SomA) Unknown Flo8  
Afu2g12910 PtaB, putative Unknown Mfg1 (Conlon et 

al., 2001) 
Afu4g10460 Homocitrate synthase (HcsA) Homocitrate synthase 

activity 
Lys21 (Schobel et 

al., 2010) 
Afu1g14220 Nucleolar protein (NopA) rRNA methyltransferase 

activity1 
Nop1 (Tollervey et 

al., 1991) 
Afu3g09600 Pre-rRNA processing nucleolar protein 

Sik1, putative 
Unknown Nop56  

Afu4g09520 SNARE protein Ykt6, putative Palmitoyltrasferase 
activity1 

Ykt6 (Kweon et al., 
2003) 

Afu3g07830 T-complex protein 1, delta subunit, putative Unfolded protein binding1 Cct4 (Vinh and 
Drubin, 1994) 

Afu3g13400 Putative nucleolar protein (Nop5) Unknown Nop58  
Afu4g09740 T-complex protein 1, theta subunit, putative Unfolded protein binding1 Cct8 (Stoldt et al., 

1996) 
Afu8g04730 Oligopeptidase family protein Serine-type peptidase2 Ste13 (Hunter et al., 

2012) 
Afu6g12740 Dienelactone hydrolase family protein  Hydrolase activity2 Aim2 (Hunter et al., 

2012) 
Afu3g08380 Inorganic diphosphatase, putative (Ipp1) Inorganic diphosphatase 

activity1 
Ipp1 (Abadio et al., 

2011) 
1: The function is according to the homologs in yeast; 2: The function of proteins is based on the conserved domain.
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Twelve proteins including AfuSomA itself were identified that appear in 

both biological replicates, so very likely to interact with AfuSomA in A. fumigatus 

(Table 4). Two proteins (4g10460 and 3g08380) were also found in an 

independent GFP-Trap experiment using a different protein and might be 

considered as less likely for specific interaction. AfuPtaB (putative transcription 

activator) containing a LIM binding domain has a homolog in yeast called Mfg1 

(Conlon et al., 2001). It was identified as an interaction partner of Flo8 and 

Mss11 in both S. cerevisiae and C. albicans and this trimeric complex is required 

for activation of downstream targets (Ryan et al., 2012). This interaction suggests 

that a AfuSomA-AfuPtaB complex might be conserved in fungi and plays a role to 

regulate gene expressions in A. fumigatus. The other interaction partners from 

the list have not been described to be involved in interaction of Flo8 in yeast. 

Several proteins are putatively ribosome and Golgi apparatus associated or have 

protein folding activity. The binding of these proteins might be unspecific and 

further investigations have to be carried out.  

 

3.3 AfuSomA plays an important role in adhesion and 
virulence 

3.3.1 AfuSomA is required for adherence to plastic surfaces 

ScFlo8 as well as CaFlo8 regulates FLO genes or ALS genes encoding 

the corresponding adhesins in S. cerevisiae and C. albicans, respectively. 

Bioinformatic analysis predicted more than 100 proteins as putative adhesins in 

A. fumigatus (Upadhyay et al., 2009; Chaudhuri et al., 2011). Since AfuSomA 

could complement adhesion and activate ScFLO11 expression in ∆flo8 yeast 

mutant, we examined whether AfuSomA regulates adhesion in A. fumigatus. We 

compared adherence to plastic surfaces between the A. fumigatus wild type 

strain (AfS35) and the conditional Tet-AfusomA strain (AfGB74) where the 

promoter was either induced or shut off. As shown in Figure 25A, the wild type 

adhered strongly to plastic surfaces and this adhesion was not affected by the 

presence of doxycycline. The Tet-AfusomA strain resulted in similar adhesion as 
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wild type when the promoter was induced in MM with doxycycline. In contrast 

complete mycelium was washed off when the Tet-AfusomA strain was switched 

off in MM medium without the drug. This indicates that AfuSomA is part of the 

control for adherence to plastic in A. fumigatus.  

The Flo8/Som1 homologs have been shown to interact with proteins which 

belong to APSES family such as StuA, and function downstream of the 

cAMP/PKA signaling pathway (Harcus et al., 2004; Yan et al., 2011). This 

interaction regulates the expression of adhesin genes (Cao et al., 2006). The 

expression of medA and stuA had been shown to be regulated by AfuSomA 

(Figure 24). Gravelat et al. (2013) showed that the MedA and StuA proteins are 

required for adhesion and have also been shown to regulate putative adhesins 

by micro array and RT-PCR (Gravelat et al., 2013). Therefore, three genes 

(3g13110, 3g00880 and uge3) encoding possible adherence-associated proteins 

with high scores in bioinformatic prediction (Chaudhuri et al., 2011) were tested. 

The transcript levels of all three genes were reduced in the absence of AfuSomA 

(Figure 25B). This data suggests that AfuSomA controls StuA and MedA which 

regulate the expression of adhesins for adherence to plastic. 

 



  Results 

79 
 

 

Figure 25. AfuSomA is required for adherence to plastic surfaces and regulates 
expression of putative adhesins. 

(A) Adhesion assay of wild type and Tet-AfusomA mutant. Strains were grown in MM 
medium or MM with 5 mg/l doxycycline for 24 h. The wells were washed with PBS three 
times and mycelium was visualized by staining with 0.01 % crystal violet. Strains, grown 
in MM with 5 mg/l doxycycline are indicated with (+). (B) Relative expression of genes 
encoding proteins that regulate adhesion and AfusomA gene determined by quantitavie 
RT-PCR. The uge3, 3g13110 and 3g00800 are genes for UDP-Glucose epimerase and 
putative adhesins. Graph indicates mean ± standard errors and experiments were 
repeated two times.  

 

 

A 

B 
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3.3.2 AfuSomA is required for virulence in Aspergillus fumigatus 

MedA is involved in adhesion of A. fumigatus and ∆medA results in 

reduced virulence in mice model (Gravelat et al., 2010). We could show that 

AfuSomA is required for adhesion as well and also affects medA expression. 

Therefore we addressed whether AfuSomA plays a role in virulence. We 

compared the virulence of the wild type, the complemented strain and the Tet-

AfusomA strain (On- and Off-state) in an egg infection model. The ∆AfusomA 

mutant was not included due to the severely impaired conidiation. This model is 

similar to the pulmonary invasive aspergillosis model in mice by infecting eggs in 

the chorioallantoic membrane (CAM) (Jacobsen et al., 2010). The eggs infected 

with the inactive Tet-AfusomA strain without doxycycline had no significant 

difference compared to the PBS control. In contrast, the On state of the Tet-

AfuSomA strain which was induced by doxycycline, showed similar virulence to 

wild type or the complemented strain (Figure 26).  
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Figure 26. AfuSomA is required for virulence in an egg model of invasive 
aspergillosis.  

20 eggs per strain were inoculated with 1000 conidia in 100 µl PBS with 5 mg/l 
doxycycline. Conidia from wild type (AfS35), the complemented strain 
∆AfusomA::[AfusomA] (AfGB73), the Tet-AfusomA strain (AfGB74) and triple deletion of 
putative adhesins mutant (∆3g13110::∆3g00880::∆4g04070) were used to perform the 
egg infection. No conidia could be used from ∆AfusomA mutant. Addition of doxycycline 
was not performed in the complemented, Tet-AfusomA Off state and triple deletion 
mutant. PBS control, wild type, Tet-AfusomA Off (silenced), Tet-AfusomA On 
(expressed), the complemented strain and triple deletion strain are shown in dark blue, 
red, green, purple, light blue and orange, respectively.  

 

These data suggest that AfuSomA is contributing to virulence of the 

opportunistic fungal pathogen A. fumigatus in the egg model. Virulence features 

might be provided by the AfuSomA control of medA and stuA, which are required 

to promote the expression of adherence mediating genes like uge3. Consistently, 

the uridine diphosphate-glucose-epimerase Uge3, which is essential for 
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adherence through mediating the synthesis of galactosaminogalactan, has been 

shown to be essential for virulence in mice disease models (Gravelat et al., 2013).  

 

3.3.3 Triple deletion of putative adhesins has no effect on adhesion and 
virulence 

AfuSomA has been shown to regulate expression of putative adhesins 

including uge3, 3g00880 and 3g13110. Disruption of uge3 results in abolishment 

of adherence to plastic and human cells and reduced virulence in mice model of 

invasive aspergillosis (Gravelat et al., 2013). Therefore, five putative adhesins 

(1g06480, 2g05150, 3g00880, 3g13110 and 4g04070), which have a high score 

in bioinformatic prediction (Upadhyay et al., 2009; Ramana and Gupta, 2010; 

Chaudhuri et al., 2011), were deleted and were examined whether these putative 

adhesins plays a role in adherence to plastic. Single deletion mutants of each 

adhesin were attempted to be generated using the recyclable marker system. 

The mutants were constructed by transforming the corresponding deletion 

fragment, which was isolated from plasmids pME4200 to pME4204, into wild type 

strain (AfS35) to yield ∆1g06480 (AfGB79), ∆2g05150 (AfGB80), ∆3g00880 

(AfGB81), ∆3g13110 (AfGB82) and ∆4g04070 (AfGB83). To construct double or 

triple deletion mutants, the corresponding deletion fragment were transfored into 

the single deletion strain where the selective marker was removed, resulting 

∆1g06480::∆2g05150 (AfGB84), ∆1g06480::∆3g13110 (AfGB85), 

∆3g13110::∆2g05150 (AfGB86), ∆3g13110::∆3g00880 (AfGB87), 

∆3g13110::∆4g04070 (AfGB88), ∆4g04070::∆2g05150 (AfGB89) and 

∆3g13110::∆3g00880::∆4g04070 (AfGB90). Southern hybridization was used to 

verify all of the deletion strains. for multiple deletion. To verified the 1g06480 

deletion mutants, 5’ flanking region of 1g06480 as probe was used. Genomic 

DNA of wild type, ∆1g06480::ptrA and ∆1g06480::six strains was digested with 

NcoI restriction enzyme and showed a signal at about 4 kb for the wild type strain, 

5 kb for the ∆1g06480::ptrA mutant and 2.2 kb for the ∆1g06480::six mutant 

(AfGB79). Similarly, a probe detecting 5’ flanking region of the 2g05150 gene 
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was used to examine the deletion mutants. Genomic DNA of wild type, 

∆2g05150::ptrA and ∆2g05150::six strains were digested with SphI restriction 

enzyme and showed a signal at about 3.3 kb for the wild type strain, 5.3 kb for 

the ∆2g05150::ptrA strain and 2 kb for the ∆2g05150::six mutant (AfGB80).The 

same procedure was applied to test the ∆3g00880, ∆3g13110 and ∆4g04070 

mutants. To verify the ∆3g00880 mutants, genomic DNA was digested with 

EcoRV restriction enzyme. The 5’ flanking region was used as a probe and 

showed a signal at about 4.5 kb for the wild type strain, 8.5 kb for the 

∆3g00880::ptrA mutant and 3.7 kb for the ∆3g00880::six mutant (AfGB81). To 

examine the ∆3g13110 strains, 5’ flanking region was used as a probe. Genomic 

DNA of wild type, ∆3g13110::ptrA and ∆3g13110::six strains were digested with 

XmnI restriction enzyme and showed a signal at about 6.8 kb for the wild type 

strain, 3.3 kb for the ∆3g13110::ptrA and 2.7 kb for the ∆3g13110::six mutant 

(AfGB82). For ∆4g04070 mutants, genomic DNA of wild type, ∆4g04070::ptrA 

and ∆4g04070::six strains were digested with PvuII restriction enzyme. The 5’ 

flanking region was used as a probe and showed a signal at about 2.3 kb for the 

wild type strain, 1.4 kb for the ∆4g04070::ptrA mutant and 2.7 kb for the 

∆4g04070::six strain (AfGB83). 

 To test whether these putative adhesins play a role in cell wall integrity, 

growth test of the single, double and triple deletion mutants was performed. The 

MM plates and high osmolarity plates (MM with 1.2 M sorbitol or MM with 0.6 M 

KCl) were used to test these deletion mutants. Single adhesin deletion showed a 

similar phenotype compared to wild type as well as double deletion mutants. The 

triple deletion mutant (3g13110::∆3g00880::∆4g04070) revealed a slow growth 

rate on MM plates and on high osmolarity plates in comparison to wild type 
(Figure 27). Adhesins have been shown to be required for adhesion and 

virulence (de Groot et al., 2013). We compared adherence to plastic surfaces 

between the wild type and the deletion mutants. The deletion mutants showed 

similar adhesion to wild type (Figure 28). Further analysis in egg model indicated 

that triple deletion mutant have no effect on virulence (Figure 26). This data 
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suggested that these putative adhesins contribute neither adherence to plastic 

surfaces nor virulence.  
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Figure 27. Triple adhesins deletion mutant shows reduced growth rate in 
Aspergillus fumigatus. 

(A) Colony morphology and (B) growth rate of wild type (AfS35), single and multiple 
adhesins deletion mutants (∆1g06480, ∆2g05150, ∆3g00880, ∆3g13110, ∆4g04070, 
∆1g06480::∆3g13110, ∆1g06480::∆2g05150, ∆3g13110::∆3g00880, ∆3g13110::∆2g051
50, ∆3g13110::∆4g04070, 3g13110::∆3g00880::∆4g04070). All strains were grown on 
MM plate and MM plate with either 1.2 M sorbitol or 0.6 M KCl for 5 days at 37 °C. 
Values in the graph are indicated as means ± standard error. 
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Figure 28. Deletion of putative adhesins has no effect on adhesion. 

Adhesion assay for wild type (AfS35), single and multiple adhesins deletion mutants 
(∆1g06480, ∆2g05150, ∆3g00880, ∆3g13110, ∆4g04070, ∆1g06480::∆3g13110, 
∆1g06480::∆2g05150, ∆3g13110::∆3g00880, ∆3g13110::∆2g05150, ∆3g13110::∆4g040
70, 3g13110::∆3g00880::∆4g04070). Strains were grown in MM for 24 h. The wells were 
washed with PBS three time and mycelium were visualized by staining with 0.01 % 
crystal violet.  
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4 Discussion 
4.1 AfuSomA functions similar to ScFlo8 in Saccharomyces 

cerevisiae 
4.1.1 Flo8/Som1 proteins are conserved in fungi 

The cAMP/PKA pathway is conserved from fungi to mammals and 

regulates development and virulence in fungi (Lengeler et al., 2000). The 

Flo8/Som1 transcription factors is one of various targets which functions 

downstream of cAMP/PKA pathway. The current understanding of Flo8/Som1 

homologs and their role in adhesion and virulence is primarily based on yeasts 

with their dimorphic life style switching between a single cell yeast growth form 

and a pseudohyphal or hyphal growth mode (Liu et al., 1996; Cao et al., 2006). In 

addition, Som1 had been analyzed in plant pathogenic and saprophytic 

filamentous fungi that is responsible for development (Lee et al., 2005; Yan et al., 

2011).  

The Flo8/Som1 proteins share a conversed LUFS and LisH domains at 

their N-terminus. The LisH domain is responsible for protein dimerization and 

tetramerization (Cerna and Wilson, 2005). In yeasts, Flo8 binds to Mss11 protein 

which also contains LisH domain and this complex is required for activation of 

downstream genes (Kim et al., 2004; Su et al., 2009). Apart from Flo8/Som1 

proteins, the LUFS domain can be found in single-stranded DNA binding proteins 

(ssdp) in mammal and Drosophila or Arabidopsis LEUNIG protein. Ssdp binds to 

Ldb1/Chip proteins which contain nuclear localization signal (NLS) but have no 

LUFS domain. This interaction is required for correct localization to the nucleus 

and consequently for the normal wing development in Drosophila (van Meyel et 

al., 2003). Similarly, LEUNIG regulates flower development in Arabidopsis by 

interacting with SEUSS which shares similarity with Ldb1/Chip proteins (Franks 

et al., 2002). However, there are some differences between ssdp, LEUNIG and 

Flo8/Som1 proteins. Ssdp is rather small than Flo8/Som1 and contains proline, 

glycine and methione rich domain at C-terminus (van Meyel et al., 2003). 

LEUNIG is similar to Flo8/Som1 in size but harbors WD repeats which regulate 
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protein-protein interaction at C-terminus (Neer et al., 1994; Conner and Liu, 

2000). In contrast, there is no known conserved domain at the carboxyl site in 

Flo8/Som1 proteins. Furthermore, sequence of the NLS is conserved in Som1 

proteins from filamentous fungi (Figure 11) but not in ssdp and LEUNIG. Taken 

together, the proteins containing LUFS domain play a role in development, but 

Flo8/Som1 protein might be a specific protein in fungi. 

 

4.1.2 AfuSomA regulates adhesion in yeast 

The Flo8 is one of the most prominent yeast regulators of adhesion and it 

had been demonstrated that Flo8 functions downstream of the cAMP/PKA 

pathway (Pan and Heitman, 2002). The binding of Flo8 to target promoters is 

regulated in budding yeast by Tpk2 which is one of the catalytic subunits of PKA, 

and loss of either Flo8 or Tpk2 blocks pseudohyphal growth (Pan and Heitman, 

1999). Signal transduction through the PKA pathway is also functional when the 

yeast FLO8 gene is replaced by heterologous expression of MoSOM1 from the 

filamentous plant pathogen M. oryzae (Yan et al., 2011) or CaFLO8 and 

AfusomA from the opportunistic pathogen C. albicans (Cao et al., 2006) and A. 

fumigatus as shown in this study. Heterologous CaFlo8, MoSom1 or AfuSomA 

protein complement the defects of ∆flo8 yeast in haploid adhesive or diploid 

pseudohyphal filamentous growth. These developmental programs including 

adhesion and pseudohyphal or hyphal growth require specific target genes 

mediating cell-cell or cell-surface interactions as ScFLO11 or CaHWP1 (Cao et 

al., 2006; Hogan and Sundstrom, 2009; Brückner and Mösch, 2011; de Groot et 

al., 2013). Expression of ScFLO11 is regulated by numerous activating and 

repressing transcription factors in addition to Flo8 with Tup1, Hac1, Gcn4, Sfl1, 

Tec1 or Ste12 as prominent examples (Brückner and Mösch, 2011; Herzog et al., 

2013). Heterologous AfuSomA activates the expression of ScFLO11 by binding 

to similar regions on the promoter as ScFlo8. This data suggest that AfuSomA 

might be activated by PKA and interact with Mss11 in yeast that further supports 

a common molecular mechanism of gene activation between yeasts and 
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filamentous fungi.  

 

4.2 AfuSomA regulates asexual development at early stage in 
Aspergillus fumigatus 

4.2.1 AfuSomA is required for asexual development 

Asexual development in Aspergilli is a morphological change, which is 

reminiscent to the dimorphic life style of yeasts. Aerial hyphae are formed which 

can differentiate into conidiophores, containing many single cell conidia with a 

single nucleus per cell. These asexual spores are released into the air for 

dispersal of the fungus (Adams et al., 1998; Yu, 2010; Krijgsheld et al., 2013). 

Loss of AfusomA in A. fumigatus resulted in severely impaired conidiation, which 

suggests a function in the switch from the hyphae to the conidiophores 

development. This is consistent with earlier findings where lack of conidiation 

was also observed in M. oryzae and A. nidulans when Som1 is inactivated (Lee 

et al., 2005; Yan et al., 2011). 

The connection between Flo8/Som1 and the PKA pathway seems to be 

conserved between yeasts and filamentous fungi. The ∆AfusomA strain in A. 

fumigatus was reduced in its growth rate in comparison to the wild type and 

resembles the ∆acyA mutant phenotype, which is deficient in the adenylyl 

cyclase producing cAMP where growth was reduced and nearly no conidiation 

was observed (Liebmann et al., 2003). Furthermore, CaFlo8 and MoSom1 

interact with the Tpk2 and CpkA catalytic subunit of protein kinase A, respectively 

(Harcus et al., 2004; Yan et al., 2011). A. fumigatus pkaC1 and pkaC2 encode 

two cAMP dependent PKA catalytic subunits. PkaC1 belongs to the class I PKAs 

similar to Tpk proteins of S. cerevisiae. Whereas PkaC2 is dispensable for 

conidiation, while PkaC1 is responsible for conidiation and vegetative growth 

(Fuller et al., 2011). This suggests that AfuSomA controls asexual development 

in response to the protein kinase PkaC1. 

There is an important interplay between conidiation and cell-cell adhesion. 



  Discussion 

90 
 

The formation of aerial hyphae results in vesicles, which further differentiate by a 

polar budding process reminiscent to yeast (Gimeno and Fink, 1994; Adams et 

al., 1998). In A. nidulans, this results primarily in the formation of metulae cells 

which are absent in A. fumigatus where directly after vesicles formation the 

phialides are formed. Vesicles produce the elongated metulae and phialide cells 

in a process similar to pseudohyphae formation in yeast which requires adhesins 

such as Flo11, which mediate cell-cell adhesion (Brückner and Mösch, 2011). 

StuA controls metulae and phialide differentiation in A. nidulans and consistently, 

Phd1 as homolog of StuA, governs pseudohyphal growth in S. cerevisiae 

(Gimeno and Fink, 1994). Asexual spore formation also requires AbaA, which is 

located downstream of BrlA in the developmental cascade and is responsible for 

phialides formation. The corresponding yeast homolog Tec1, which is required 

for pseudohyphae formation can be replaced by A. nidulans AbaA to repair the 

defect of ∆tec1 S. cerevisiae mutant strain (Gavrias et al., 1996). This suggests 

that AfuSomA might also regulate phialide formation.  

 

4.2.2 AfuSomA controls expression of conidiation genes in Aspergillus 
fumigatus 

AfuSomA controls conidiation primarily by affecting the expression of the 

three regulatory genes flbB, stuA and medA and consequently regulates the 

major regulator brlA expression (Figure 29). FlbB is a bZIP transcription factor 

which controls together with the cMyb factor FlbD the expression of brlA. The 

resulting protein BrlA is a C2H2 zinc finger transcription factor which plays a key 

role in asexual development in the pathogen A. fumigatus and the model fungus 

A. nidulans (Twumasi-Boateng et al., 2009; Tao and Yu, 2011). Deletions of 

either flbB or flbD result in fluffy phenotypes resembling the ∆brlA mutant strain in 

A. nidulans (Garzia et al., 2009; Garzia et al., 2010). The FlbB impact on 

conidiation is similar in A. fumigatus, but the FlbD impact is less pronounced. A 

flbB deletion abolishes flbD expression and delays brlA expression. In A. 

fumigatus, expression of the flbD gene requires in addition to FlbB also FlbE as 
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further developmental regulator. Consequently, conidiation is delayed and 

reduced in a ∆flbB mutant (Xiao et al., 2010; Yu, 2010). However, conidiation is 

abolished in a ∆AfusomA mutant (Figure 23). This indicates that other 

developmental regulator might be required for normal conidiation.  

 

 

Figure 29.  Model of AfuSomA controls conidiation, adhesion and virulence in 
Aspergillus fumigatus. 

The model describes AfuSomA which might be activated by cAMP/PKA pathway 
activate the transcriptional network directly or indirectly. The flbB, medA, and stuA (red) 
are regulatory genes, which control conidiation and adherence. The flbE is regulator of 
flbD. Genes boxed in blue are presumably indirectly regulated by AfuSomA, whereas 
genes in green are not affected in their expression by AfuSomA. Solid blue arrows are 
further supported by previous studies (Garzia et al., 2010; Kwon et al., 2010b; Xiao et al., 
2010; Gravelat et al., 2013).  

 

AfuSomA controls expression of StuA and MedA encoding genes which 

regulate conidiation in A. fumigatus. StuA and MedA contribute to the proper 

spatial and temporal expression of brlA. Consistently, disruption of stuA and 
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medA result in abnormal conidiophores and reduced conidiation in A. nidulans 

and A. fumigatus (Adams et al., 1998; Sheppard et al., 2005; Gravelat et al., 

2010). The StuA binding sites (A/T)CGCG(T/A)N(A/C) had been defined (Dutton 

et al., 1997) and are present in the brlA promoter region (position -507, -753 and 

-3276 bp) (Figure 30) for asexual development, while the MedA binding sites are 

still unclear. Taken together, the severe impairment of conidiation in the AfusomA 

deletion mutant can be attributed to FlbB, StuA and MedA (Figure 29).  

 

 
Figure 30.  The StuA DNA binding sites in regulated genes. 

Positions of StuA binding sites (A/T)CGCG(T/A)N(A/C) (Dutton et al., 1997) in 3.5 kb 
promoter of brlA, uge3 and 3g00880 genes. 

 

 The velvet protein family and LaeA have been shown to regulate 

development in A. nidulans and A. fumigatus (Bayram and Braus, 2012; Park et 

al., 2012). However, only velC expression was regulated by AfuSomA (Figure 24). 

Recently, Park and his colleagues showed that VelC positively controls sexual 

development in A. nidulans (Park et al., 2014). This suggest that AfuSomA might 

play a role in sexual development in A. fumigatus.  

 

4.2.3 AfuSomA interacts with PtaB in Aspergillus fumigatus 

Flo8/Som1 is a transcription factor that regulates downstream targets 

together with other interaction partners (Yan et al., 2011; Ryan et al., 2012). Here 

we showed that AfuSomA interacts with AfuPtaB the Mfg1 homolog which is a 

highly conversed protein in eukaryotic cells. In S. cerevisiae Mfg1 forms a 
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complex with Mss11 and Flo8 leading to efficient Flo11 expression in this 

organism and hence mediating invasive growth and pseudohyphal formation 

(Ryan et al., 2012). Deletion of each partner leads to loss of this phenotype. Mfg1 

is a conversed protein containing LIM-binding domain, a protein binding domain 

that is found in proteins that are involved in development and cytoskeleton 

organization in yeast, fly and human (van Meyel et al., 2003; Koch et al., 2012; 

Shapiro et al., 2012). Although an interaction of AfuSomA occurs with AfuPtaB as 

shown in the GFP-trap, the situation is different in A. fumigatus compared to both 

yeast. Mss11, which contains like Flo8 a LisH domain to bind to each other has 

no homologous protein in filamentous fungi. Therefore three options are possible 

that occur in A. fumigatus: (1) an unidentified interaction partner overtake Mss11; 

(2) no additional binding protein is needed for function of adhesive and 

developmental growth; or (3) AfuSomA with the LisH domain binds twice to 

AfuPtaB, overtaking the function of Mss11 (Figure 31). Taken together, a 

heterocomplex of AfuSomA and AfuPtaB might play an important role in 

activation transcriptional network. 

 

 

Figure 31. Model of AfuSomA and PtaB complex. 

Three possible AfuSomA/PtaB complexes in A. fumigatus.  

 

  AfuSomA could complement the pseudohyphal growth and activate the 

ScFLO11 expression in ∆flo8 yeast. This indicates that AfuSomA interacts with 

catalytic subunits of PKA. However, neither PkaC1 nor PkaC2 were identified in 

mass spectrometry. Phosphorylation is required for ScFlo8 function in yeast, and 

is a transient action. MoSom1 has been shown to interact with CpkA catalytic 

subunits in the present of cAMP which liberates CpkA from its regulatory 
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subunits (Yan et al., 2011).  

 

4.3 AfuSomA plays an important role in adhesion and 
virulence 

Bacteria like Streptococci express different adhesins to bind to 

components of the extracellular matrix like collagen, fibrinogen, laminin or 

fibronectin (Rohde and Chhatwal, 2013). In Streptococcus pyogenes, the 

adhesins (M proteins) bind to plasminogen and plasmin. In addition, they also 

mediate invasion as the important step in the infection process and the resulting 

pathogenesis (Siemens et al., 2011). Adhesion to abiotic surfaces of medical 

devices can result in the formation of biofilms. This is a serious problem because 

it facilitates infection by the dimorphic ascomycetous yeast C. albicans as human 

pathogen (Uppuluri and Lopez-Ribot, 2010; Mayer et al., 2013). Adhesion and 

virulence have also been shown to be interdependent for the cell flocculin 1 of 

the dimorphic basidomycete yeast C. neoformans or the spherule outer wall 

glycoprotein of Coccidioides immitis which causes primary mycoses (de Groot et 

al., 2013). 

 

4.3.1 AfuSomA is required for adherence and virulence in Aspergillus 
fumigatus 

Two transcription factors, StuA and MedA, have been shown to regulate 

not only conidiation but also adherence in A. fumigatus (Sheppard et al., 2005; 

Gravelat et al., 2013). Uge3 is a UDP-glucose epimerase that interconverts UDP-

glucose and UDP galactose and mediates formation of galactosaminogalactan. 

This compound is part of the extracellular matrix and is required for biofilm 

formation as well as adherence and therefore plays a prominent role in 

pathogenesis of A. fumigatus (Loussert et al., 2010). Deletion of stuA or medA 

results in no biofilm formation and these two gene are required for uge3 

expresion. Disruption of uge3 in A. fumigatus shows reduced adherence to 
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plastic and attenuated virulence in mice model of invasive aspergillosis (Gravelat 

et al., 2013). Conditional expression AfusomA mutant showed no adherence to 

plastic and reduced virulence in egg model of invasive aspergillosis when 

AfusomA is inactivated. Further, the StuA binding sites are also present in the 

promoter regions of the uge3 (position -1651 and -1108 bp) or 3g00880 (position 

-3627 bp) genes for adhesion. This indicated that StuA has the dual role in 

directly activating the transcription of genes for adhesion and conidiation by 

binding to the corresponding promoters (Figure 29). Taken together, AfuSomA is 

required for the expression of stuA and medA and thereby plays an important 

role for adhesion as well as virulence.  

 

4.3.2 Putative adhesins are not required for either adhesion or virulence 

Several proteins which provide adherence in filamentous fungi have been 

identified. Galactosaminogalactan is known to be an adhesive compound 

produced by the A. fumigatus Uge3 epimerase, which is under AfuSomA control. 

Hydrophobin Mpg1 in plnt pathogen Magnaporthe grisea is responsible for 

appressorium development and subsequent entry into the plant host (Talbot et al., 

1993). RodA is a spore hydrophobin of A. fumigatus which provides adherence of 

conidia to collagen or albumin (Thau et al., 1994). The expression of the rodA 

gene depends on regulators as BrlA and AbaA (Yu, 2010). Therefore the rodA 

expression is probably affected by AfuSomA, since brlA expression is repressed 

in ∆AfusomA mutant.  

Although proteins mentioned above play a role in adherence to different 

surfaces, but the adhesins which is required for adhesion as ScFLO11 or 

CaALS1 are still not identified in A. fumigatus. Several bioinformatic tools have 

been developmed and used to identify putative adhesins containing GPI anchor 

and serine-threonine rich domain in A. fumigatus (Levdansky et al., 2007; 

Upadhyay et al., 2009; Ramana and Gupta, 2010; Chaudhuri et al., 2011). Two 

adhesins (CalA and CspA) have been characterized and shown to be 
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responsible for adherence to laminin and extracellular matrix of alveolar 

epithielial cells. In this study, five putative adhesins were deleted and examined 

whether them contribute to adherence or virulence. In single, double and triple 

adhesins deletion mutants, normal adherence to plastic in comparison to wild 

type were observed. This negative result indicates that either bioinformatic 

prediction of adhesin does not fit in A. fumigatus or the redundant genes can take 

over the function of deleted genes (Hartmann et al., 2011; Amich and 

Krappmann, 2012).  

 

4.4 Outlook 

In this study, we conclude that AfuSomA plays an important role in the 

transcriptional network that controls morphological development as well as 

adhesion which is important for pathogenesis in the opportunistic pathogen A. 

fumigatus. The molecular mechanism of asexual development in Aspergilli is well 

developed, especially how does the expression of brlA be activated (Krijgsheld et 

al., 2013). We showed that AfuSomA regulates brlA expression. Recently, NsdD 

protein has been shown to be a key repressor of asexual development in A. 

nidulans. Deletion of NsdD overcome the need for upstream regulators such as 

flbB and flbD in conidiation, but does not complement ∆brlA phenotype (Lee et al., 

2014). Due to the fact that flbB and flbD were regulated by AfuSomA in A. 

fumigatus. It would be interesting to examine whether the deletion of NsdD in 

∆AfusomA mutant where has no brlA expression can restore the defect of 

conidiation.  

The Flo8 forms a complex with Mss11 and Mfg1 in both S. cerevisiae and 

C. albicans to regulate morphological transition. Deletion of either gene abolishes 

the pseudohyphal or hyphal growth in yeasts (Shapiro et al., 2012). In this study 

we showed that AfuSomA interacts with PtaB which is the homolog of Mfg1. In 

future studies, It will be essential to test whether PtaB plays a similar role with 

AfuSomA in development and adhesion. Furthermore, both AfuSomA and PtaB 
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harbor predicted NLS signal. It would be interesting to test that these two 

proteins enter nucleus before or after forming the complex. We presented that 

AfuSomA and ScFlo8 act on similar region of FLO11 promoter in yeast. But the 

DNA binding motif of ScFlo8 does not present in the promoter of AfuSomA 

regulated genes. In order to know whether AfuSomA directly activates the 

transcription of conidiation genes. One possibility is electrophoretic mobility shift 

assay.  

Adhesins play a role in virulence in C. albicans (de Groot et al., 2013). In 

this study we showed that five predicted adhesins had no significant role in 

adherence to plastic surface and virulence in egg model of invasive aspergillosis. 

S. cerevisiae has been used as a tool to identify control genes of adhesion from 

filamentous fungus Verticillium longisporum (Tran et al., 2014). However, no 

adhesins were identified from the screening. In future studies, it would be 

possible to identify the adhesins which can be regulated by StuA, AbaA and 

AfuSomA. Because the homologs of these proteins are required for 

pseudohyphal growth in S. cerevisiae. Furthermore, phialides formation which is 

similar to pseudohyphal formation might also needs adhesins to perform cell-cell 

adhesion.  
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