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1 Abstract 

Roughly 8% of the human genome consists of human endogenous retroviruses (HERVs). They are 

believed to be remnants of ancient retroviral infections of the germline that were passed on from one 

generation to the next over millions of years. While initially regarded as „junk DNA“, it has become 

increasingly clear that HERV elements exert defined functions in their hosts. In 2011, our group 

reported the discovery of an isoform of the tumor suppressor p63 that is expressed under the control 

of a long terminal repeat (LTR) of the endogenous retrovirus family 9 (termed LTR12). Due to its 

expression in the spermatogonia of the testis, this isoform was called Germ cell-associated TAp63 

(GTAp63). Transcription of GTAp63 was found to be silenced in testicular cancer cells. However, it 

could be restored by treatment with histone deacetylase inhibitors (HDACi). Moreover, a recent 

approach identified a set of 17 cellular genes driven by an LTR12 whose transcription can be enhanced 

by HDACi treatment in testicular cancer cells. Among these genes was TNFRSF10B, which encodes for 

Death Receptor 5. 

Following up on these previous findings, the main goals of this study were to verify TNFRSF10B as a 

novel candidate gene that is driven by an LTR12, to elucidate the functional implications of this 

regulation in tumor cells and to clarify the mechanisms behind the localized activation of these specific 

promoter sites. 

We identified at least three LTR12-driven transcripts of TNFRSF10B whose expression is inducible by 

HDAC inhibitor treatment. Insertion of the solitary LTR12 upstream of the TNFRSF10B gene occurred 

roughly 18 million years ago. Combined treatment of HDAC inhibitor Trichostatin A (TSA) and 

TNFRSF10B’s ligand TRAIL resulted in an enhanced apoptotic response in testicular cancer cells. 

Moreover, we observed enhanced LTR12 promoter activity upon treatment with HDAC inhibitors in a 

variety of human cancer cell lines. Apart from TSA, induction of LTR12 promoter activity was also 

observed with the FDA-approved HDAC inhibitor SAHA as well as Entinostat and Mocetinostat, which 

are currently undergoing phase II clinical trials for cancer therapy. Regarding the mechanisms 

underlying the specific activation of LTR12-driven gene transcription, we identified increased binding 

of nuclear transcription factor Y at LTR12 genomic loci upon TSA treatment. The specific activation of 

LTR12-driven expression of putative tumor suppressor genes like TP63 and TNFRSF10B suggests a 

novel mechanism of how inhibition of HDACs can exert anti-cancer effects. 

Taken together, we present an example of how co-evolution of transposable elements with the host 

might have been beneficial for the host and therefore be rendered active in the human genome instead 

of being eliminated as “junk DNA”. Furthermore, LTR12 activation represents a plausible mechanism 

of how HDAC inhibitors exert anti-cancer activity in human cells.
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2 Introduction 

2.1 Endogenous retroviruses in the human genome 

In the late 1960s researchers made an observation that seemed utterly impossible at the time – the 

existence of virus elements, which were not the result of a recent infection, but nonetheless resided 

within their host’s genomes [1]. One of the first observations was the production of a viral envelope 

protein by normal, uninfected chicken cells and the inheritance of a group-specific antigen of the avian 

leucosis virus [1-3]. Since reverse transcriptase had not been discovered yet [4, 5], it took a few years 

before the existence of viruses “endogenously” residing in genomic DNA was widely accepted. 

However, it was only when the human genome was fully sequenced that the extent of virally inherited 

DNA was revealed. While protein-coding exons cover only about 1% of the human genome, 

endogenous retroviruses (ERVs) account for roughly 8% of it [6, 7]. 

 

2.1.1 Transposable elements and their activity 

ERVs are classified as transposable elements (TE), i.e. DNA sequences that can change their position 

within the genome through excision and insertion events [8]. In total, TEs comprise at least 45% of the 

human genome [6]. A more recent evaluation in 2011 by de Koning et al. sets the number at 66-69% 

[9]. Transposable elements are roughly divided into class I, retrotransposons, and class II, DNA 

transposons. The main difference between these two classes is in their mechanism of transposition. 

Retrotransposons are first transcribed into RNA. This intermediate is reverse transcribed into cDNA by 

a reverse transcriptase and is then inserted into a new position in the genome. In each cycle of 

transposition, its content is copied. DNA transposons on the other hand are first “cut” from the DNA 

by various transposases and then inserted elsewhere. Additionally, rolling-circle DNA transposons 

(helitrons) and self-synthesizing DNA transposons (polintons/mavericks) have also been characterized 

[10, 11]. Among the retroelements, a further distinction is made based on the presence or absence of 

long terminal repeats. Long (LINE) and short (SINE) interspersed elements are examples of non-LTR 

retrotransposons [12]. On the other hand, human endogenous retroviruses are characterized as LTR 

transposons. 

Mobility of genetic elements is of great interest, since insertion within or near a gene may alter its 

function and can cause diseases [13-15]. While DNA transposons seem to have been rendered 

completely inactive, a small number (<0.05%) of retrotransposons have retained the ability to mutate 

their host’s genomes [6, 16, 17]. Among these mobile elements are subfamilies of SINE and LINE (Alu, 

LINE-1 and SVA elements), as well as HERV-K elements [16, 17]. Mills et al. described a set of 10,719 

transposon insertions that are present only in the human or chimpanzee genome [16]. Since their last 
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common ancestor existed about six million years ago, the presence of these genetic elements in only 

one or the other genome suggests that they are the result of recent transposition events. Interestingly, 

these recent “endogenous” mutations are far more abundant in the human genome (72.5% of all 

identified insertions) than in the chimpanzee’s [16]. 

 

2.1.2 Genomic organization of human endogenous retroviruses 

A closer look at the genomic organization of LTR transposons provides further insight into their origins. 

During their replication cycle, retroviruses integrate as proviruses into the host’s genome after reverse 

transcription of their RNA genome into DNA [18, 19]. Several million years ago, germ-line cells were 

infected by such exogenous retroviruses [3, 20]. Subsequently, the integrated viruses were passed on 

in a stable manner according to Mendelian Laws. Today’s human endogenous retroviruses are believed 

to be “fossils” of these ancient infections [1, 18]. For a while, the “endogenized” retroviruses retained 

their ability to proliferate and spread– through both vertical and horizontal transmission. Therefore, 

multiple copies of a single founder virus arose at different chromosomal locations [20]. 

 

 

Figure 2-1. Exemplified genomic structure of a HERV 

Three viral genes flanked by two long terminal repeats (LTR). The LTRs can act as promoters of RNA 
transcription. 3 major open reading frames are depicted: gag encoding structural proteins, pol 
encoding the viral enzymes and env encoding the retroviral envelope proteins. A magnified view of the 
5‘-LTR is shown. Both LTRs consist of U3, R and U5 regions and harbor promoter, enhancer and 
polyadenylation sequences. Transcription starts in the R region of the 5‘-LTR. Adapted from Stoye, J. 
P. [18]. 

 

LTR transposons exist either as part of full-length endogenous retroviruses or as solitary LTRs. Full-

length ERVs resemble the genome of exogenous retroviruses. They basically encode the retroviral gag, 

pol and env genes, flanked by two LTRs [18, 20, 21]. The gag gene encodes the structural proteins 

matrix, capsid and nucleocapsid. The pol gene encodes the viral enzymes protease, reverse 

transcriptase and integrase. The env gene encodes the proteins responsible for receptor binding and 

membrane fusion. However, env genes are only rarely present [12]. A possible explanation for the 

frequent loss of env genes is provided by Magiorkinis et al. who compared ERV sequences from 38 
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mammalian species and found enhanced spreading of the viral sequences within the genome upon 

env gene loss [22]. 

The flanking LTRs in an ERV are between 300 and 1,200 nucleotides in length [18]. They consist of U3, 

R and U5 regions and harbor promoter, enhancer and polyadenylation sequences [18, 20, 23]. 

Transcription starts in the R region of the 5’-LTR, and the polyadenylation signal is located at the end 

of the R region in the 3’-LTR [20]. 

Most ERV sequences are inactive due to accumulated mutations and deletions in their coding 

sequences [18]. However, some HERV still contain an intact open reading frame (ORF) and can be 

translated into protein. One of these functional genes is syncytin-1, the HERV-W env gene encoded by 

the ERVWE1 locus on chromosome 7 [20, 24]. Interestingly, syncytin-1 seems to have a physiological 

role during placenta morphogenesis, where it is implicated in the fusion of cytotrophoblast cells to 

form syncytiotrophoblasts [24]. Though such individual intact endogenous viral ORFs exist, viral 

particles are rarely observed in humans. So far only one subtype of HERV-K was shown to be able to 

produce viral particles [12, 25]. 

Solitary LTRs are the result of homologous recombination between two LTRs which results in the loss 

of the retroviral genes between them [12, 26]. Solitary LTRs in the human genome outnumber full-

length ERVs by at least 10-fold [18]. Interestingly, key regulatory elements such as transcription factor 

binding sites, splice sites etc., are usually retained after such LTR-LTR recombinations [10]. Solitary 

LTRs have been shown to impact gene expression and can function as an alternative, or in some cases 

the primary promoter, of various cellular genes [27]. Regulation of gene expression by LTRs is an 

emerging field and we are only now beginning to appreciate the importance of these genetic elements 

in the regulation of cellular gene expression [10, 28]. The regulation of cellular genes by solitary LTRs 

is described in detail in section 2.3. 

 

2.1.3 ERV classification and nomenclature 

There are various approaches to name and classify ERVs. Traditionally, the letter referring to the amino 

acid specificity of the tRNA, which is predicted to prime reverse transcription of the viral mRNA, was 

used to name HERVs [3]. Members of the HERV-W group, for example, contain a primer binding site 

complementary to tryptophan-tRNA [21]. Aside from this, phylogenetic comparisons were conducted, 

comparing HERV sequences to the 7 known retroviral genera [19, 29]. A more recent approach 

categorized transposable elements based on their similarity to consensus sequences [30]. This 

nomenclature is used by the Repbase database (http://www.girinst.org/repbase/) for repetitive 

elements and was also applied in this study to name the respective HERV families and LTRs. The long 
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terminal repeats of the endogenous retrovirus HERV-9, which is a major focus of this work, are listed 

as “LTR12” in Repbase. 

 

 

2.2 Silencing of endogenous retroviral elements in the human genome 

As mentioned previously (see 2.1.1), the mobility of transposable elements can potentially be harmful 

to the host. Accordingly, various mechanisms evolved in order to restrict TE activity. These strategies 

include DNA methylation, small inhibitory RNAs and DNA-modifying proteins [31, 32]. 

 

2.2.1 Silencing of transposable elements by DNA methylation 

One well-studied mechanism of TE silencing is through methylation of DNA. Herein DNA 

methyltransferases (DNMTs) catalyze the addition of a methyl group to the fifth carbon of a cytosine 

base [33]. This results in 5-methylcytosine (5mC). DNMTs either catalyze de novo methylation 

(DNMT3A and DNMT3B) or maintain existing patterns of methylation by recognizing hemi-methylated 

DNA (DNMT1) [34, 35]. Methylated DNA is recognized by specific proteins with a methyl-CpG-binding 

domain (MBD). Subsequently, these proteins, as for example methyl-CpG-binding protein 2 (MeCP2), 

can recruit co-repressor complexes which ultimately results in transcriptional silencing [36-38]. 

Moreover, methylation of DNA can directly interfere with transcription factor binding [39] and was 

once believed to have a long-term silencing effect. It was previously reported that DNA methylation 

and transcriptional silencing is initially established by de novo DNMTs during the blastocyst stage of 

embryonic development and maintained thereafter in differentiated cells [40-42]. However, more 

recent reports have shown that DNA methylation levels can also rapidly change, especially during DNA 

methylation reprogramming in early development [42, 43]. 

The recent discovery of Ten-eleven translocation (TET) enzymes has provided some mechanistic insight 

into the dynamics of DNA demethylation. TET1 was shown to catalyze the conversion of 5mC to 5-

hydroxymethylcytosine (5hmC) in cultured cells [44]. Moreover, purified TET enzymes can catalyze 

further oxidation to 5-formylcytosine and 5-carboxylcytosine [45]. However, the consequences of 

these modifications are not yet fully understood. In a genome-wide screen of methylation patterns in 

mouse embryonic stem cells (mESC), 5hmC was found to be mostly associated with euchromatin and 

enriched at CpG islands [46]. There are different hypotheses on how oxidized 5mC might influence 

gene regulation and possibly DNA demethylation. 5hmC might be further converted to cytosine, 

resulting in a loss of DNA methylation at the respective site [45, 47]. Another possibility is the 

interference of 5hmC with DNMT1 activity [48]. This might result in the passive loss of DNA methylation 
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after multiple replication cycles. Moreover, MBD proteins, as for example MeCP2, are unable to bind 

to 5hmC [49], thereby abolishing their silencing effects. Aside from these activating functions, TET1 

was also reported to mediate transcriptional repression by association with the SIN3A co-repressor 

complex [48]. 

Similar to other TE classes, silencing for HERV through epigenetic modification of DNA has previously 

been described whereas the removal of such modifications relieved this suppression. In germ cell 

tumors for example, hypomethylation of the HERV-K promoter results in overexpression of the HERV-

K (HML-2) provirus [50, 51]. Furthermore, TET1 might be recruited by ERVs and promote their 

transcriptional derepression [52]. However, extensive studies in mESCs revealed that ERV transcription 

can remain silenced upon loss of DNMT1 [53] indicating the presence of DNA methylation-independent 

mechanisms of ERV silencing in undifferentiated cells [52, 53]. Further studies have implicated 

numerous histone-modifying enzymes in these silencing processes [43, 52]. 

 

2.2.2 Silencing of transposable elements by histone-modifying enzymes 

Histones are proteins that take part in the higher organization of genomic DNA. 145-147 bp of DNA are 

wrapped around octamers consisting of two H2A, H2B, H3 and H4 subunits each [54, 55]. This basic 

unit of DNA packaging is called the nucleosome. The N-terminal tails of histones can be post-

translationally modified [55]. The covalent addition of methyl, acetyl and phosphorylation groups, as 

well as ubiquitin or SUMO, allows for the tight regulation of gene expression [55, 56]. This occurs either 

through recruitment of factors that specifically recognize certain histone modifications or through 

changes in DNA dynamics [54]. For endogenous retroviral elements, silencing was proposed to arise 

through histone methylation or deacetylation in early mouse embryos [43, 52]. 
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Figure 2-2. Histone-modifying enzymes and dynamic changes in DNA methylation involved in 
silencing of transposable elements 

KRAB-associated protein 1 (KAP1) is recruited by KRAB-zinc finger transcription factors (KRAB ZFPs) 
and in turn scaffolds recruitment of silencing factors. These silencing factors include Lysine (K)-specific 
demethylase 1A (KDM1A) [which removes the active histone mark H3K4me1/me2] or histone 
methyltransferase SET domain, bifurcated 1 (SETDB1) [required for the establishment of inactive 
histone mark H3K9me3]. Depending on the ERV subfamily, they act alone or together to silence these 
endogenous retroviral sequences. Moreover, PIWIL1 might restrict ERV activity by demolishing 
transcripts of TEs through piRNAs. Another level of control is reached through the turnover of DNA 
methylation at proviral elements. ERVs might recruit Ten-eleven translocation (TET) proteins which 
process silencing 5mC marks on DNA. In turn these marks have to be reestablished by de novo DNA 
methyltransferases (DNMTs). Abbreviations: 5mC – 5-methylcytosine; K – lysine; me1 – methyl; me2, 
dimethyl; me3, trimethyl. Adapted from Leung, D. C. and Lorincz, M. C. [52] and Rowe, H. M. and Trono, 
D. [43]. 

 

One of the factors involved in this silencing is KRAB-associated protein 1 (KAP1). Upon recruitment by 

Krüppel-associated box domain-zinc finger proteins (KRAB-ZFPs), KAP1 can in turn act as a scaffold for 

the assembly of silencing complexes [57, 58]. These complexes can contain heterochromatin protein 

1 (HP1), the NuRD histone deacetylase complex, Lysine (K)-specific demethylase 1A (KDM1A) or SET 

domain, bifurcated 1 (SETDB1) [43, 58]. SETDB1 adds one, two or three methyl groups to histone 3 

lysine residue 9 (H3K9) [59]. H3K9me2 and H3K9me3 generally correlate with heterochromatin 

formation and gene silencing [60]. Depletion of SETDB1 was shown to result in an upregulation of ERVs 

and the loss of H3K9me3 in mESCs [61]. KDM1A, on the other hand, removes methyl groups from 

histone 3 K4. Methylation of H3K4 is generally correlated with active genes [60]. The expression of 

MERV-L elements has been shown to increase upon loss of KDM1A in mESCs [62]. This is accompanied 

by increased methylation of H3K4 and acetylation of H3K27 as well as decreased methylation of H3K9 

[62]. 
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Taken together, KAP1 confers chromatin silencing through the recruitment of factors that establish 

inhibiting marks or remove activating marks from histones. Depletion of KAP1 from murine blastocysts 

and embryos has been shown to result in a strong upregulation of intracisternal type A particle (IAP) 

LTR transposons [63]. Interestingly, KAP1 is the sole factor whose depletion was proven to exert an 

effect on ERV transcription in human cells [64]. For all other enzymes, data was predominantly 

obtained in mice. 

 

2.2.3 Silencing of transposable elements by small RNAs 

An increasing set of data indicates the involvement of small-RNAs, such as endogenous small 

interfering RNAs (endo-siRNAs) and PIWI-interacting RNAs (piRNAs), in the silencing of TEs [31, 43, 65]. 

Both, endo-siRNAs and piRNAs are defined by their short length of 21-35 nucleotides as well as their 

interaction with members of the Argonaute protein family [66]. Argonaute proteins are involved in the 

guidance of small RNAs to their targets. Endo-siRNAs were first detected in plants and Caenorhabditis 

elegans [67, 68]. They are selectively incorporated into Ago-class Argonaute-containing RNA-induced 

silencing complexes (RISC) [31, 66]. On the other hand, piRNAs were initially identified in Drosophila 

melanogaster [69]. They are mainly expressed in the germline and bind to PIWI-class Argonaute 

proteins [70, 71]. Upon transcription from TE-containing regions, the small RNAs mature in multiple 

processing steps [31]. Guided by Argonaute proteins, the single-stranded RNA can then bind 

complementary sequences in mRNA derived from TEs and lead to their degradation [31]. Herein, 

transcription of a TE locus can result in its own silencing. 

While post-transcriptional control of TEs by piRNAs was first observed in Drosophila, PIWI homologues 

and corresponding TE silencing mechanisms have been identified in mammals. In mice, the loss of MILI 

(also known as PIWI-like protein 2) and MIWI2 (also known as PIWI-like protein 4) results in the 

decrease in piRNA expression. This led to changes in DNA methylation of regulatory elements of LINE-

1 and IAP LTR transposons [72] which correlated with transcriptional activation of these TE in male 

germ cells [73]. The human homolog of Drosophila PIWI is HIWI (also known as PIWI-like RNA-mediated 

gene silencing 1 or short PIWIL1) [69]. However, its potential role in TE silencing remains unknown 

[74]. 

 

2.2.4 Silencing of transposable elements by cytosine deaminases and DNA repair factors 

Aside from DNA methylation, histone modifications, and small RNAs, enzymes involved in DNA repair 

and metabolism can also influence TE activity. Members of the apolipoprotein B mRNA-editing 

enzyme 3 (APOBEC3) family convert cytidine to uridine (or deoxycytidine to deoxyuridine) [75]. 



  Introduction 

21 

Therein, deamination of cytosines in newly synthesized cDNA from LTR retrotransposons can result in 

either its degradation or deleterious mutations [31, 75, 76]. Moreover, DNA repair mechanisms have 

been shown to restrict retrotransposition. Overexpression of 3′-repair exonuclease 1 resulted in a 

reduced retrotransposition efficiency for LINE and murine IAP LTR transposons [77]. 

 

 

2.3 Effects of HERV elements on host genome function 

Apart from the expression of viral proteins or deleterious transposition events, TEs may also function 

as promoters and enhancers for cellular genes [10, 27, 78]. Interestingly, about 31% of all transcription 

start sites (tss) were found to be located within sequences of transposable elements [79]. Thus, it 

comes as no surprise that the list of cellular genes whose expression is regulated by TEs is constantly 

increasing. Regarding human endogenous retroviruses in particular, the regulatory elements within 

LTRs can influence gene expression in multiple ways (see Figure 2-3) [19, 27]. Since LTRs harbor 

promoter, enhancer and polyadenylation sequences, they can influence gene transcription through 

the binding of specific transcription factors. Moreover, they can interfere with signaling of enhancer 

elements located further upstream or promote the formation of heterochromatin [10]. One 

transcription factor whose binding was shown to modulate the enhancing properties of an LTR is 

nuclear transcription factor Y (NF-Y). NF-Y is a trimeric transcription factor consisting of the three 

subunits alpha, beta and gamma. While NF-YA appears to confer sequence-specificity for the DNA 

motif CCAAT, NF-YB and NF-YC exert histone-like structural features [80, 81]. A solitary LTR of the 

endogenous retrovirus family 9 has been found to be inserted upstream of the beta-globin locus 

control region [82]. Further studies revealed that NF-Y bound to this LTR12 recruits GATA-2 and MZF1 

in erythroid cells, assembling an active enhancer complex [83]. Moreover, mutations in the NF-Y DNA 

binding motif CCAAT were shown to reduce the enhancer activity and render the downstream globin 

promoter inaccessible [83]. 

Apart from this example, where a retroviral LTR serves as an enhancer for a nearby cellular gene, LTRs 

can also serve as alternative promoters. One example of an LTR serving as an alternate promoter for 

an adjacent gene is the HERV-E element upstream of apolipoprotein C1 (APOC1) on chromosome 19 

[84]. APOC1 has a function in lipid metabolism and is mostly expressed in the liver, and transcription 

from the LTR shows the same tissue-specificity [27]. 
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Figure 2-3. Regulatory sites of LTR retrotransposons and putative influences on host genes 

Schematic of the genomic insertion of an endogenous retrovirus (ERV) upstream of a host gene and 
potential ways how the LTR can influence transcription of the adjacent gene. Rounded arrows 
represent putative consequences of LTR activity. Since LTRs harbor promoter, enhancer and 
polyadenylation sequences, they can influence gene transcription through binding of specific 
transcription factors. Moreover, they can interfere with signaling of enhancer elements located further 
upstream or promote the formation of heterochromatin. Alternative splice sites within the ERV 
sequences can further result in new or elongated exons (exonization) by influencing the splicing 
system. Adapted from Rebollo, R. et al. [10]. 

 

But aside from such LTRs with only minor effects on host genes, LTRs can also diversify or limit tissue 

specificity and, in some cases, even act as the primary promoter. One example for the latter is the host 

gene guanylate-binding protein 5 (GBP5). An LTR12 of the HERV-9 family, which is positioned upstream 

of this gene, functions as the primary promoter and is active primarily in endothelial cells and 

lymphocytes [27, 85]. 

Elements from the HERV-9 family were first identified by La Mantia et al. [86, 87]. Overall, LTR12 are 

significantly longer than other human LTR types and have a higher abundance of CpG [10, 19]. 

Moreover, these LTRs contain a variable copy number for tandemly repeated subelements of 41 and 

72/80 bp [87, 88]. According to Repbase, about 5,817 regions in the human genome harbor an LTR12. 

Interestingly, LTR12s were shown to drive expression of a variety of human genes with no predominant 

tissue-specificity. Aside from GBP5, LTR12-driven gene expression has also been reported for SEMA4D 

and DHRS2 in a variety of tissues, ADH1C in the liver, ZNF80 in leukocytes, and TP63 specifically in the 

testis (see next chapter) [27, 89-92]. 
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2.3.1 An LTR12 serves as alternative promoter for TP63 

In 2011, our group reported that the expression of the cellular gene TP63 is controlled by an 

endogenous viral LTR [90]. The gene product p63 shows a high sequence and structural homology to 

p53 with all classical features of a transcription factor: An N-terminal transactivation domain, core DNA 

binding domain and a C-terminal oligomerisation domain [93, 94]. Two distinct transcription start sites 

had been known for TP63, resulting in a protein with or without a transactivation (TA) domain. 

Accordingly, the two protein products were termed TAp63 and deltaNp63 [93, 94]. The latter was 

known to be expressed in multilayered epithelia [95, 96]. For TAp63 a strong expression in mouse 

oocytes was shown, where it supposedly protects the female germ line by inducing apoptosis upon 

genotoxic stress [97]. Analysis of TAp63 expression in human cells led to the identification of a novel 

isoform of p63, Germ cell-associated TAp63 (GTAp63) [90]. Expression of this isoform is driven by an 

LTR12. Insertion of this LTR12 upstream of the TP63 gene took place around 15 million years ago, 

resulting in its presence in the genomes of only humans, chimpanzees, gorillas and orangutans. 

Interestingly, transcription of GTAp63 was found to be largely confined to the human testis, whereas 

TAp63 is expressed in a broad variety of tissues [90]. Compared with normal human testis, GTAp63 

mRNA transcription is strongly reduced in cell lines derived from human testicular cancers [90]. One 

possible mechanism for transcriptional silencing is deacetylation of histones (see also 2.2.2). Promoter 

regions of active genes usually display high levels of histone acetylation (see Figure 2-4) [60]. The 

enzymes involved in the addition and removal of acetyl groups to and from histones are histone 

acetyltransferases (HAT) and deacetlyases (HDACs) respectively [98]. Since HDACs were shown to 

remove acetyl groups from proteins other than histones, they are alternatively named Lys deacetylases 

[99, 100]. HDACs are divided into four classes. Class I (HDAC1, 2, 3 and 8), class IIa (HDAC4, 5, 7 and 9), 

class IIb (HDAC10 and 6) and class IV (HDAC11) have a common active site [98, 101, 102]. Their catalytic 

pocket is formed by a hydrophobic channel with a zinc atom (Zn2+) at its end [101]. 

 

 

Figure 2-4. Influence of acetylation and deacetylation on chromatin structure and gene 
transcription 

Simplified scheme of post-translational modification of histone tails and their influence on 
transcriptional activity. The chromatin structure of DNA wrapped around histones (light orange) can 
change between an open (left) and closed (right) conformation. While acetylation of histones by 
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histone acetyltransferases (HATs) is believed to relax the chromatin and render it more accessible to 
transcription machinery, deacetylation by histone deacetylases (HDACs) opposes these effects. 
Inhibitors of HDACs such as Trichostatin A (TSA) can inhibit HDAC activity. Abbreviations: Ac – acetyl 
group. Adapted from Johnstone, R. W. [103]. 

 

To shed further light on how LTR12-driven GTAp63 expression is silenced in testicular cancer cells, the 

involvement of HDACs in this process was assessed by treating cells with an HDAC inhibitor [90]. 

Inhibition of HDAC enzymes by treatment with Trichostatin A (TSA) restored GTAp63 expression in 

testicular cancer cell lines. Upon treatment with TSA, an over 1,000-fold increase in GTAp63 

transcription was observed [90]. 

 

 

2.4 Comprehensive identification of genes driven by LTR12 

In order to identify further human transcripts that originate from an LTR12 and are inducible by HDAC 

inhibition, two initial experiments were performed. First, testicular cancer cells were treated with the 

HDAC inhibitor TSA and total mRNA levels were compared to the transcriptome of untreated control 

cells by microarray analysis. Thereby, genes were identified which are upregulated by HDAC inhibition 

in a fashion similar to GTAp63. In a second approach, LTR12-containing transcripts were specifically 

identified by combining 3’-RACE and next-generation sequencing (NGS). As a first step, the 

transcriptome of normal testes tissue as well as testicular cancer cells after treatment with TSA, was 

reverse transcribed into cDNA using a modified Oligo(dT)-primer that introduces a SMART adaptor 

sequence (see Figure 2-5). Next, transcripts with LTR12 sequences at their 5‘-end were specifically 

amplified in a RACE-PCR using a set of forward primers within the LTR12 and the reverse Universal 

Primer Mix, which recognizes the SMART adaptor. The resulting pool of PCR products was then 

analyzed by NGS. The 3’RACE, NGS and microarray experiment was designed and performed by Dr. 

Ulrike Beyer (Dept. of Molecular Oncology, UMG, Göttingen; currently MHH, Hannover). 
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Figure 2-5. 3‘RACE to identify human transcripts that originate from a LTR12 

First, the transcriptome was reverse transcribed into cDNA using a modified Oligo(dT)-primer which 
introduces a SMART adaptor sequence. Next, transcripts with LTR12 sequences at their 5‘-end were 
specifically amplified in a RACE-PCR using a set of forward primers within the LTR12 and the reverse 
Universal Primer Mix, which recognizes the SMART adaptor. The resulting pool of PCR products was 
then analyzed by next generation sequencing (NGS). Primers contained a Junior454-specific sequence 
(light grey box) and multiple identifier (MID) (dark grey box) to distinguish between RACE products 
from normal human testis (MID1) and TSA-treated testicular cancer cells (MID2). The experiment was 
designed and performed by Dr. Ulrike Beyer (Dept. of Molecular Oncology, UMG, Göttingen; currently 
MHH, Hannover). 

 

The genes identified with both approaches are suitable candidates for being under the control of an 

LTR12 and reactivatable by HDAC inhibitor treatment. The 18 genes, whose expression was at least 5-

fold upregulated in the microarray and which were found to contain an LTR12 sequence in their 

transcript by NGS, are shown in Table 2-I. Since we were especially interested in genes, whose altered 

expression might result in tumor cell death, we were intrigued to identify TNFRSF10B and IER3 among 

these candidates. TNFRSF10B encodes for the protein death receptor 5 (DR5). Upon binding of its 

ligand TNF-related apoptosis-inducing ligand (TRAIL), the receptor undergoes trimerization [104]. 

Next, the adaptor molecule FAS-associated death domain protein is recruited, as well as pro-caspase-

8 and/or pro-caspase-10. This so-called death-inducing signaling complex then results in apoptosis 

through cleavage of downstream caspases-3 and -7 [105-107]. 
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Gene symbol Gene name 
Array 
FC>5 

NGS 
normal 
testis 

NGS 
tumor 
cells 

Gene ontology 

NR1H4 
nuclear receptor subfamily 1, group 
H, member 4  

274.4 2 4 
transcription regulation; 
regulation of metabolic processes 

C9orf53 
chromosome 9 open reading frame 
53  

222.9 1118 1946 unknown 

CPED1 
Cadherin-like and PC-esterase 
domain-containing protein 1 

106.9 2 2 endoplasmatic reticulum 

C9orf85 
chromosome 9 open reading frame 
85 

   unknown 

CCR4 
chemokine (C-C motif)  
receptor 4  

91.1 22 15 
chemokine-mediated signaling; 
immune reponse 

ACSBG1 
acyl-CoA synthetase bubblegum 
family member 1  

45.3 4 5 
long-chain fatty acid metabolic 
process; ovarian follicle atresia 

KCNN3 
potassium intermediate/small 
conductance calcium-activated 
channel, subfamily N, member 3  

40.0 407 377 
synaptic transmission; potassium 
channel activity 

CSF3 
colony stimulating factor 3 
(granulocyte)  

31.1 53 38 
cytokine-mediated signaling; 
immune response; cell 
proliferation 

TMOD1 tropomodulin 1  15.2 7 2 formation of actin filament 

SLC36A2 
solute carrier family 36 
(proton/amino acid symporter), 
member 2  

14.8 4 37 
amino acid transport; ion 
transport 

IER3 immediate early response 3  14.3 12 2 
apoptosis; regulation of DNA 
repair; regulation of 
inflammatory response 

PIK3C2G 
phosphoinositide-3-kinase,  
class 2, gamma polypeptide  

10.6 19 90 
chemotaxis; phosphatidyl-
inositol-mediated signaling 

TENM1 
teneurin transmembrane  
protein 1 

10.4 2 5 
immune response; cell 
proliferation; regulation of MAP 
kinase activity 

LINC01194 
long intergenic non-protein coding 
RNA 1194 

8.3 31 3 unknown 

PTPN13 

protein tyrosine phosphatase, non-
receptor type 13  
(APO-1/CD95 (Fas)-associated 
phosphatase)  

7.3 16 2 
protein dephosphorylation; 
regulation of apoptotic signaling 

TP63 tumor protein p63 6.3 15 2 
DNA damage response; 
apoptosis; regulation of DNA 
repair; cell aging 

TNFRSF10B 
tumor necrosis factor receptor 
superfamily, member 10b  

5.7 7 119 apoptotic signaling  

RADIL Ras association and DIL domain 7.6 3 6 signal transduction; cell adhesion 

Table 2-I. HDAC inhibitor-responsive LTR12-driven genes 
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2.5 Scope of the thesis 

Endogenous retroviruses and their promoter elements are present in abundance in the human 

genome. However, their influence on gene expression remains to be fully understood. The discovery 

of LTR12-driven pro-apoptotic GTAp63 and its strong inducibility by HDAC inhibitor treatment in 

testicular cancer cells raised the possibility of inducing cancer cell death by targeting LTR12s. 

Furthermore, in a combined approach of RACE and microarray analysis, additional LTR12-driven genes 

were identified that are inducible in a similar fashion as GTAp63 in testicular cancer cells. Following up 

on these previous findings, the main goals of this study were to (1) verify TNFRSF10B as a novel 

candidate gene that is driven by an LTR12, (2) to elucidate the functional implications of this regulation 

in tumor cells, and (3) to clarify the mechanisms behind the localized activation of these specific 

promoter sites. Accordingly, we analyzed the presence of the LTR12 upstream TNFRSF10B in different 

species and narrowed the time of insertion down to about 18 million years ago. Furthermore, we 

tested the transcription of LTR12-driven TNFRSF10B upon treatment with HDAC inhibitors and verified 

their inducibility in testicular cancer cells. Moreover, we subjected testicular cancer cells to combined 

treatment with TNFRSF10B’s ligand TRAIL and HDACi, asking whether the combination gives rise to 

enhanced cell death. 

To clarify the mechanism behind the HDACi-mediated activation of LTR12 promoter activity, we tested 

a range of different HDACis, assessing whether enhanced transcription occurs upon treatment with 

HDACi from different chemical classes. Moreover, we applied HDACis to a panel of human cancer cell 

lines and quantified LTR12-driven gene transcription. Thereby, we investigated whether transcriptional 

activation of LTR12-driven gene expression upon HDACi treatment is limited to testicular cancer cells 

or whether it applies to tumor cells of different origin as well. We also tested the influence of various 

known factors involved in ERV silencing and performed an in-silico analysis of putative transcription 

factor binding sites within the LTR12 sequence. In particular, we asked if NF-Y represents a possible 

mediator of the localized activation of LTR12 promoters in the human genome. By chromatin 

immunoprecipitation (ChIP)-analysis with specific antibodies against NF-Y subunits alpha and beta we 

analyzed the association of NF-Y with LTR12s upon treatment with HDACi. 
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3 Materials 

3.1 Human cell culture 

3.1.1 Cell types 

Cell line Origin of cells Culture 
media 

GH Testicular teratocarcinoma cell line DMEMfull 

H1299 Non-small cell lung carcinoma cell line DMEMfull 

HEK293 Embryonic kidney cell line DMEMfull 

HeLa Cervical carcinoma cell line DMEMfull 

HH Cutaneous T-cell lymphoma cell line RPMIfull 

HuT-78 Cutaneous T-cell lymphoma cell line RPMIfull 

K562 Leukemia/lymphoma cell line RPMIfull 

Ovcar-3 Ovarian carcinoma cell line RPMIfull 

U2OS Osteosarcoma cell line DMEMfull 

Table 3-I. Human cell lines 

 

Testicular tumor cell line was obtained from Roswitha Löwer, Paul-Ehrlich-Institut Erlangen/Frankfurt, 

Germany. 

 

3.1.2 Culture media 

Human cells were either cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM) (see Table 3-XIII) 

enriched with 10% FCS, 50 U/ml Penicillin/Streptomycin and 200 µM L-Glutamine – referred to as 

DMEMfull. Alternatively, they were grown in RPMI 1640 medium enriched with 10% FCS, 50 U/ml 

Penicillin/Streptomycin and 200 µM L-Glutamine – referred to as RPMIfull. For transient transfections, 

DMEM was also used without any additions – referred to as DMEMnull. 

For cryopreservation of human cells a freeze medium was used, consisting of FCS with 10% DMSO. 

 

 

3.2 Nucleic acids 

3.2.1 Oligonucleotides 

3.2.1.1 Oligonucleotides for PCR for amplification of DNA fragments 

Name Sequence (5’ 3’) 

LTR12 upstream 
TNFRSF10B 

for GTGTCCCTGCACCNTTGCTAC 

rev GAACATCAGAAGGAACAAACTCC 

TNFRSF10B exon 5 for GTA CNC CCT GGA GTG ACA TC 

rev ATG ATG ATG CCT GAG ANN G 

Table 3-II. Oligonucleotides for PCR 



  Materials 

29 

3.2.1.2 Oligonucleotides for quantitative real-time PCR (cDNA) 

Name Sequence (5’ 3’) 

RPLP0 for GATTGGCTACCCAACTGTTG 

rev CAGGGGCAGCAGCCACAAA 

GTAp63 for ATTCCGGACACCCTATCAGAG 

rev CCCAGATATGCTGGAAAACCT 

TAp63 total for GTTATTACCGATCCACCATGTCC 

rev GCGGATACAGTCCATGCTAATC 

TNFRSF10B LTR12 
transcript 1 

for CGAGGCTTCATTCTTGAAGGCAG 

rev CGGCGCGGCTGTACTTTCAC 

TNFRSF10B LTR12 
transcript 2 

for CCAAGTGCCTCCCTCAACTCA 

rev CGGCGCGGCTGTACTTTCAC 

TNFRSF10B LTR12 
transcript 2+3 

for TTGCTACTGCTCACTCTTTGGGT 

rev CGGAACTAACCTTCGCCCTG 

TNFRSF10B total for TTCTGCTTGCGCTGCACCAGG 

rev GTGCGGCACTTCCGGCACAT 

KDM1A for TACAGCAGTGCGACAGGTTCG 

rev TGCTGCTTCAGCACACCCAG 

HDAC1 for CCAGGAACTGGGGACCTAC 

rev TCATCAATCCCGTCTCGGAG 

HDAC2 for GACAAACCAGAACACTCCAG 

rev CTTCTCCATCTTCATCTCCAC 

HDAC3 for CTGACTCTCTGGGCTGTG 

rev GAGGGATATTGAAGCTCTTG 

HDAC4 for CGAAGAAGCCGAGACGGTC 

rev CAGGGGCGGCTCCTCTTC 

HDAC5 for GCTGTTGCTGGAGCAGGC 

rev CTTGCCTACCGTCCGCATG 

HDAC6 for CAGGCAGCGAAGAAGTAGGC 

rev GCTAGATTGGGGATAGAGCG 

HDAC7 for CGCATCCAGAGCATCTGGTC 

rev CTCAGAGTGGACCGACTGC 

HDAC8 for CTCCAGAAGGTCAGCCAAG 

rev TCCTATAGCTGCTGCATAGTC 

HDAC9 for GCCAACTGGAAGTGTTACTG 

rev GAATTAGAATGCGTTGCTGTG 

HDAC10 for GCTCCTGTACCTCTTAGATGG 

rev GCAGCAGAGGCTGGAGTG 

HDAC11 for CAGGCACCGACATCCTCGA 

rev CACCATAAGGATGGGCACC 

NF-YA for GGTACTGGAGCCAATCAGCG 

rev CTGGAGATCCTAGAAGGCTGTG 

NF-YB for GCCATACCTCAAACGGGAAAG 

rev CTCTTGATGGCACCTTTCAC 

NF-YC for CTGAAACCTCCAAAGCGTCAG 

rev CCCTGGACTTGGACAGCGGTG 

ADH1C total for CCACAAGTACTCACCAGCCTC 

rev GAGGTGCAACCTCTACCTC 

GBP5 total for CTGCTTGACACCGAGGGC 

rev GAGTGCCAGTGCAAAGATC 
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SEMA4D LTR12 for CACCGGGAGGAACGAACAA 

rev CCATCAGTGTCGTCAAACATTTCA 

DHRS2 LTR12 for CACCAAGCGGTGAGACTATCAC 

rev CGGGCAACTGCTGACAGCATAG 

APOC1 HERV-E LTR for CAAGCCCTCCAGCAAGGATTCAG 

rev GTGTGTTTCCAAACTCCTTCAG 

GSDMB HERV-H LTR for CTGAAATTGGCTTCTGTTTCTGAG 

rev CCAGAATTTGAAACTCAGCC 

DNAJC15 HERV-H LTR for CCACCAAACAGGCTTTGT 

rev CAGATCCGAAATGCGTAGCG 

IL2RB MaLR LTR for ATGTGGAACCGGCTTCCTT 

rev GCAGATGCCCAAGAGGTAGC 

HERV-K envelope [108] for ATTGGCAACACCGTATTCTGCT 

rev CAGTCAAAATATGGACGGATGGT 

HERV-W envelope 
[109] 

for ATGGAGCCCAAGATGCAG 

rev AGATCGTGGGCTAGCAG 

Table 3-III. Oligonucleotides for qRT-PCR (cDNA) 

 

3.2.1.3 Oligonucleotides for quantitative real-time PCR (ChIP) 

Name Sequence (5’ 3’) 

Myoglobin for CTCATGATGCCCCTTCTTCT 

rev GAAGGCGTCTGAGGACTTAAA 

CCNB1 [110] for CCCCGCCCCTCTCGAAC 

rev TTAAACCCCGCACTGCTCCC 

DHRS2 LTR12 for GGACCAATCAGCTCTCC 

rev GAACCAGAGCAGGTTGCTGC 

PGPEP1L LTR12 for CACCCACATCCTGCTGATT 

rev TCCAGCTCCAGGATTGTAAAC 

TNFRSF10B LTR12 for CGCTGATTGGTGGTTTACAATC 

rev GAATGCACCAATTGACACTC 

GTAp63 LTR12 for CAGACCACTCGGCTCTACCAATC 

rev GTGTGCACCCAAAGAGTGAG 

Table 3-IV. Oligonucleotides for qRT-PCR (ChIP DNA) 

 

All oligonucleotides were purchased from Metabion. 

 

3.2.2 Small interfering RNAs (siRNAs) 

Target siRNA ID Sequence 

Negative 
Control #1 

4390843 undisclosed  

Negative 
Control #2 

4390846 undisclosed 

HDAC1 s73 sense: CUAUGGUCUCUACCGAAAAtt 
antisense: UUUUCGGUAGAGACCAUAGtt 

HDAC2 s6493 sense: GGGUUGUUUCAAUCUAACAtt 
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antisense: UGUUAGAUUGAAACAACCCag 

HDAC3 s16877 sense: CCAAGAGUCUUAAUGCCUUtt 
antisense: AAGGCAUUAAGACUCUUGGtg 

HDAC8 s31698 sense: GGUCCCGGUUUAUAUCUAUtt 
antisense: AUAGAUAUAAACCGGGACCag 

KDM1A#1 s617 sense: GGUCUUGGAGGGAAUCCUAtt 
antisense: UAGGAUUCCCUCCAAGACCtg 

KDM1A#2 s618 sense: GAGCAAGAGUUUAACCGGUtt 
antisense: ACCGGUUAAACUCUUGCUCta 

KDM1A#3 s619 sense: CUGCAGUUGUGGUUGGAUAtt 
antisense: UAUCCAACCACAACUGCAGtg 

TNFRSF10B#1 s16756 sense: CUGAUAAAGUGGGUCAACATT 
antisense: UGUUGACCCACUUUAUCAGCA 

TNFRSF10B#2 s225038 sense: UGCUGUUGGUCUCAGCUGATT 
antisense: UCAGCUGAGACCAACAGCAGG 

NFYA#1 s9529 sense: AAACCAAGCCGAUGAAGAAtt 
antisense: UUCUUCAUCGGCUUGGUUUgg 

NFYA#2 s9530 sense: GGAGCACAGAUUGUUCAAAtt 
antisense: UUUGAACAAUCUGUGCUCCtg 

NFYB s9531 sense: CAAUCAAUGGAGAAGAUAUtt 
antisense: AUAUCUUCUCCAUUGAUUGtt 

NFYC#1 s9534 sense: GGAAUUUAACAGUGAAAGAtt 
antisense: UCUUUCACUGUUAAAUUCCgg 

NFYC#2 s9535 sense: GGCUCGUAUUAAGAAGAUUtt 
antisense: AAUCUUCUUAAUACGAGCCag 

Table 3-V. Small interfering RNAs 

 

All siRNAs are “silencer select” and were purchased from Ambion® Life Technologies. 

 

 

3.3 Proteins 

3.3.1 Antibodies 

Name Source Company (Cat.No.) 

NF-YA Mouse, monoclonal Santa-Cruz (sc-17753) 

NF-YB Rabbit, polyclonal Genespin (PAb001) 

IgG, ChIP grade Rabbit Abcam, Cambridge, UK (ab46540) 

Table 3-VI. Antibodies for ChIP 
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Name MW [kDa] Source Dilution Company (Cat.No.) 

Hsc-70 70 kDa Mouse  Santa-Cruz (sc-7298) 

PARP 89, 116 kDa Rabbit 1:1000 Cell Signaling (9542) 

Caspase-3 17, 19, 35 kDa Rabbit 1:1000 Cell Signaling (9662) 

Cleaved 
Caspase-3 

17, 19 kDa Rabbit 1:500 Cell Signaling (9664) 

Hsp90 84 kDa Rabbit 1:1000 Chemicon (AB3468) 

HDAC1 55 kDa Rabbit 1:1000 Diagenode (pAB-053-050) 

HDAC2 60 kDa Mouse 1:1000 Cell Signaling (5113) 

Table 3-VII. Primary antibodies for Western blot 

 

Name Dilution Company (Cat.No.) 

HRP-coupled AffiniPure F(ab')2 
fragment, anti-mouse IgG (H+L) 

1:15,000 Jackson Immunoresearch, Europe, 
Newmarket, UK; 711-036-152 

HRP-coupled AffiniPure F(ab')2 
fragment, anti-rabbit IgG (H+L) 

1:15,000 Jackson Immunoresearch, Europe, 
Newmarket, UK; 715-036-150 

Table 3-VIII. Secondary antibodies for Western blot 

 

3.3.2 Enzymes and other proteins 

Reagent Company 

M-MuLV Reverse transcriptase (RT) New England Biolabs 

Rnase inhibitor New England Biolabs 

Taq DNA polymerase (Taq) for PCR Fermentas, Thermo Scientific 

Taq DNA polymerase (Taq) for qPCR Primetech LTD, Minsk, Belarus 

TRAIL (in sterile H2O) Gibco 

Table 3-IX. Enzymes and other proteins 

 

 

3.4 Consumables 

Product Company 

12-well plates for Celigo Corning, Corning, NY, United States 

96-well plates for qPCR 4titude, Wotton, United Kingdom 

Cell culture flasks (25 cm², 
75 cm²,125 cm²) 

Greiner, Frickenhausen, Germany 

Cell culture plates (6-well, 12-well) Greiner 

Cell scraper (16 cm, 25 cm) Sarstedt 

Cryo tubes Cryoline Nunc, Thermo Scientific 

Filter tips (10 µl) Starlab, Hamburg, Germany 

Filter tips (20 µl, 200 µl, 1,000 µl) Sarstedt 

Parafilm Brand 

Pipet tips (10 µl, 20-200 µl, 1,000 µl) Greiner 

Protran nitrocellulose transfer 
membrane 

Whatman, Dassel, Germany 

Reaction tube (0.2 ml) Sarstedt 

Reaction tube (0.5 ml, 1.5 ml, 2.0 ml) Eppendorf 
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Reaction tube (15 ml, 50 ml) Greiner 

Safe-lock reaction tube (1.5 ml) Eppendorf 

Sterile filter Millipore, Merck 

Syringe Henke-Sass, Wolf, Tuttlingen, Germany 

Syringe canula (different sizes) B.Braun, Melsungen, Germany 

Transparent sealing foil for 96-well plate Sarstedt 

Whatman paper Whatman 

Table 3-X. Consumables 

 

 

3.5 Kits 

Name Company 

BCA Protein Assay Kit Thermo Scientific 

Immobilon Western HRP Substrate 
Peroxide Solution  

Millipore, Merck 

SuperSignal West Femto Maximum 
Sensitivity Substrate 

Thermo Scientific 

Mini Elute Kit Qiagen 

Table 3-XI. Kits 

 

 

3.6 Chemicals and reagents 

Substance Company 

Acetic acid Roth, Karlsruhe, Germany 

Acrylamide-bisacrylamide Roth 

Agarose Roth 

Albumin Fraction V (Bovine Serum 
Albumine, BSA) 

Roth 

Ammonium persulfate (APS) Roth 

Ammonium sulfate ((NH4)2SO4) Roth 

Aprotinin Applichem 

Bromophenol blue Sigma-Aldrich 

Calcium chloride dihydrate (CaCl2 x 2H2O) Roth 

Chloroform Roth 

Complete Mini, EDTA-free Protease 
Inhibitor Mix tablet 

Roche 

Deoxyribonucleotide triphosphates 
(dNTPs) in single tubes 

Primetech 

Dimethyl sulfoxide (DMSO) AppliChem 

Dithiotreitol (DTT) Sigma-Aldrich 

DNA stain clear G (39804) Serva 

DMEM, powder Gibco, Life Technologies 

DNA ladder Fermentas, Thermo Scientific 

Ethanol 99.8% Roth 
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Ethylene diamine tetraacetatic acid 
(EDTA) 

Roth 

Ethylene glycol tetraacetic acid (EGTA) Roth 

Fetal Calf Serum (FCS) Gibco, Life Technologies 

Formaldehyde, 37% solution Roth 

Glycerol Roth 

Glycine Roth 

Glycogen Fermentas, Thermo Scientific 

Glycogen blue Ambion, Life Technologies 

HEPES Roth 

Hydrogen chloride (HCl) Roth 

Isoamyl alcohol Roth 

Isopropanol Th. Geyer, Renningen, Germany 

L-Glutamine Gibco, Life Technologies 

Leupeptin Hemisulfate Applichem 

Lithium chloride (LiCl) Roth 

Lipofectamine 2000 Invitrogen, Life Technologies 

Magnesium chloride (MgCl2) for PCR, 25 
mM 

Fermentas, Thermo Scientific 

Magnesium chloride hexahydrate (MgCl2 
x 6H2O) 

Roth 

Methanol >99% (MetOH) Roth 

Milk powder Roth 

Nonidet P-40 substitute (NP-40) Sigma Aldrich 

Nuclease free water Ambion, Life Technologies 

PBS, tablets Gibco, Life Technologies 

Pefabloc SC  Roth 

Penicillin/Streptomycin Gibco, Life Technologies 

Pepstatin A Applichem 

Ponceau S Roth 

Potassium chloride (KCl) Roth 

Potassium hydrogenphosphate (KH2PO4) Roth 

Prestained Protein Ladder Fermentas, Thermo Scientific 

Protein A/G PLUS-Agarose Santa Cruz 

RNase inhibitor Fermentas, Thermo Scientific 

RPMI Medium Gibco, Life Technologies 

Sodium acetate (NaAc) Roth 

Sodium bicarbonate (NaHCO3) Roth 

Sodium chloride (NaCl) Roth 

Sodium deoxycholate (NaDOC) Applichem 

Sodium dodecyl sulfate (SDS) Roth 

Sodium hydrogenphosphate 
heptahydrate (Na2HPO4 x 7H2O) 

Roth 

Sodium hydroxide (NaOH) Sigma-Aldrich 

Sucrose Sigma-Aldrich 

SYBR® Green-containing qPCR mix for 
ChIP analysis 

Thermo Scientific 

SYBR® Green Invitrogen, Life Technologies 

Taq buffer + KCl, 10x Fermentas, Thermo Scientific 

Tetramethylethylenediamine (TEMED) Roth 

Trasylol Bayer, Leverkusen, Germany 
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Trehalose Sigma-Aldrich 

Trisamine (Tris) Roth 

Triton X-100 Applichem 

TRIzol® Invitrogen, Life Technologies 

Trypsin/EDTA Gibco, Life Technologies 

Tween-20 Applichem 

β-Mercaptoethanol Roth 

Table 3-XII. Chemicals and reagents 

 

 

3.7 Buffers and solutions 

Buffer / Solution Components 

ChIP buffer A 0.1 M NaCl 
1 mM EDTA, pH 8.0 
0.5 mM EGTA, pH 8.0 
50 mM HEPES, pH 7.6 
dissolved in H2O 

ChIP buffer B 0.25% Triton X-100 
10 mM EDTA, pH 8.0 
0.5 mM EGTA, pH 8.0 
20 mM HEPES, pH 7.6 
dissolved in H2O 

ChIP buffer C 0.15 M NaCl 
1 mM EDTA, pH 8.0 
0.5 mM EGTA, pH 8.0 
50 mM HEPES, pH 7.6 
dissolved in H2O 

ChIP washbuffer 1 0.1% SDS 
0.1% NaDOC 
1% Triton X-100 
0.15 M NaCl 
1 mM EDTA, pH 8.0 
0.5 mM EGTA, pH 8.0 
20 mM HEPES, pH 7.6 
dissolved in H2O 

ChIP washbuffer 2 0.1% SDS 
0.1% NaDOC 
1% Triton X-100 
0.5 M NaCl 
1 mM EDTA, pH 8.0 
0.5 mM EGTA, pH 8.0 
20 mM HEPES, pH 7.6 
dissolved in H2O 

ChIP washbuffer 3 0.25 M LiCl 
0.5% NaDOC 
0.5% NP-40 
1 mM EDTA, pH 8.0 
0.5 mM EGTA, pH 8.0 
20 mM HEPES, pH 7.6 
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dissolved in H2O 

ChIP washbuffer 4, 10x 10 mM EDTA, pH 8.0 
5 mM EGTA, pH 8.0 
200 mM HEPES, pH 7.6 
dissolved in H2O 

ChIP elution buffer 1% SDS 
0.1 M NaHCO3 

dissolved in H2O 

ChIP incubation buffer with SDS, 5x 0.75% SDS 
5% Triton X-100 
0.75 M NaCl 
5 mM EDTA, pH 8.0 
2.5 mM EGTA, pH 8.0 
100 mM HEPES, pH 7.6 
dissolved in H2O 

ChIP incubation buffer without SDS, 5x 5% Triton X-100 
0.75 M NaCl 
5 mM EDTA, pH 8.0 
2.5 mM EGTA, pH 8.0 
100 mM HEPES, pH 7.6 
dissolved in H2O 

DNA gel loading buffer 40% Sucrose 
10% Glycerin 
0.25% Bromphenol blue 
Dissolved in H2O 

Dulbecco’s Modified Eagle’s Medium 10 g/l DMEM, powder 
3.7 g/l NaHCO3 
5.96 g/l HEPES 
dissolved in H2O 

Formaldehyde-mix 0.5 ml 37% formaldehyde 
1.18 ml buffer A 
15 ml PBS 

Laemmli buffer, 6x 0.35 M Tris, pH 6.8 
30% Glycerin 
10% SDS 
9.3% DTT 
0.02% Bromphenol blue 
dissolved in H2O 

PBS, pH 7.4 24 mM NaCl 
0.27 mM KCl 
0.81 mM Na2HPO4 x 7H2O 
0.15 mM KH2PO4  
dissolved in H2O 

PBS/T, pH 7.4 24 mM NaCl 
0.27 mM KCl 
0.81 mM Na2HPO4 x 7H2O 
0.15 mM KH2PO4  
0.1% Tween-20 
dissolved in H2O 

PIC, 25x 1 tablet complete Protease Inhibitor 
Mix 
dissolved in 2 ml H2O 
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Ponceau S solution 0.5% Ponceau S 
1.0% Acetic acid 
dissolved in H2O 

qRT-PCR reaction buffer, 10x 750 mM Tris-HCl, pH 8.5 
200 mM (NH4)2SO4 
0.1% Tween-20 
dissolved in H2O 

RIPA lysis buffer, pH 7.5 1% Triton X-100 
1% Na deoxycholat  
0.1% SDS 
150 mM NaCl 
10 mM EDTA 
20 mM Tris, pH 7.5 
50.000 KIU Trasylol 
dissolved in H2O 

SDS running buffer 25 mM Tris 
86.1 mM Glycine 
3.5 mM SDS 
dissolved in H2O 

SYBR® Green-containing qPCR mix 1x qRT-PCR reaction buffer 10x 
3 mM MgCl2 
1:75.000 SYBR® Green 
0.2 mM dNTPs 
20 U/ml Taq polymerase 
0.25% Triton X-100 
300 mM Trehalose in 10mM Tris, pH 8.5 
dissolved in H2O 

TAE buffer 40 mM Tris 
20 mM Acetic acid 
2 mM EDTA 
dissolved in H2O 

Western blot blocking solution 5% milk powder 
dissolved in PBS/T 

Western salts, pH 8.3 0.25 M Tris, pH 8.3 
0.19 M Glycine 
0.02% SDS 
dissolved in H2O 

Western blot transfer buffer 1x Western salts 10x 
20% MeOH 
dissolved in H2O 

Table 3-XIII. Buffers and solutions 
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3.8 Pharmacological inhibitors 

Chemical Stock Solvent Company 

Trichostatin A (TSA) 6 mM DMSO Sigma-Aldrich 

Suberoylanilide hydroxamic acid (SAHA) 10 mM DMSO Selleckchem 

Mocetinostat 5 mM DMSO Selleckchem 

Entinostat 5 mM DMSO Selleckchem 

PCI-34051 5 mM DMSO Selleckchem 

Droxinostat 6 mM DMSO Selleckchem 

Tubastatin A hydrochloride 5 mM DMSO Selleckchem 

Table 3-XIV. Pharmacological inhibitors 

 

 

3.9 Technical devices 

Device Company 

Blotting chamber  Biozym, Hessisch Oldendorf, Germany 

Cell counting chamber Neubauer 
improved 

Brand, Wertheim, Germany 

Centrifuge 5415R Eppendorf, Hamburg, Germany 

Centrifuge 5810R Eppendorf 

Centrifuge Megafuge 1.0R Heraeus, Thermo Scientific, Waltham, 
MA, United States 

Chemiluminescence imager Chemocam 
HR 16 3200 

Intas Science Imaging Instruments, 
Göttingen, Germany 

Cytometer Celigo Cyntellect, San Diego, CA, United States 

DNA gel chamber Biotech Service Blu, Schauenburg, 
Germany 

Electrophoresis system, for SDS-PAGE Amersham Biosciences, GE Healthcare, 
Little Chalfont, United Kingdom 

FACS machine Guava PCA-96 Base 
System 

Millipore, Merck, Darmstadt, Germany 

Foil swelding machine Vacupack plus Krups, Groupe SEB, Lyon, France 

Freezer -20°C Liebherr, Bulle, Switzerland 

Freezer -80°C Heraeus, Thermo Scientific 

Gel Jet Imager Intas Science Imaging Instruments 

Heating Block Grant Instruments, Hillsborough, NJ, 
United States 

Heating Block HLC HLC Biotech, Ditabis, Pforzheim, 
Germany 

Ice-machine B100 Ziegra, Isernhagen, Germany 

Laminar flow cabinet Hera Safe Heraeus, Thermo Scientific 

Liquid nitrogen tank LS 4800 Taylor-Wharton, Theodore, AL, United 
States 

Magnetic stirrer MR Hei-Standard Heidolph, Schwabach, Germany 

Magnetic stirrer MR3001 Heidolph 

Microscope Axovert 40C Zeiss, Oberkochen, Germany 

Microscope, Axioscope 2 Plus Zeiss 

Microwave  Cinex, Lippstadt, Germany 
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Mini Centrifuge MCF-2360 LMS, Tokyo, Japan 

PCR machine for qRT-PCR Chromo4 Bio-Rad Laboratories 

PCR machine Thermocycler T personal Biometra, Göttingen, Germany 

pH-meter WTW-720 WTW, Weilheim, Germany 

Pipet Multipette Eppendorf 

Pipet, electric Portable-XP Drummond, Broomal, PA, United States 

Pipets Eppendorf Research Series 2100 
(0.1-2.5 μl; 0.5-10 μl; 10-100 μl; 100-
1000 μl) 

Eppendorf 

Pipette, multichannel Research Plus Eppendorf 

Power supply unit Powerpack P25T Biometra 

Refrigerator 4°C Liebherr 

Roller RM5 V-30 CAT, Staufen, Germany 

Rotator PTR 300 Grant Instruments 

Scales Acculab ALC-6100.1 Sartorius, Göttingen, Germany 

Scales LE623S Sartorius 

Scanner CanoScan 8600F Canon, Tokyo, Japan 

Sequencer, automated ABI 3100 Applied Biosystems, Life Technologies 

Shaker PROMAX 2020 Heidolph 

Sonication device Bioruptor® Diagenode, Liège, Belgium 

Spectrophotometer NanoDrop ND-1000 PeqLab, Erlangen, Germany 

Thermomixer comfort Eppendorf 

Vacuum pump IBS Integra Biosciences, Fernwald, 
Germany 

Vortex Genie 2 Scientific Industries, Bohemia, NY, 
United States 

Water bath TW 20 Julabo Labortechnik, Seelbach, 
Germany 

Table 3-XV. Technical devices 

 

 

3.10 Software and databases 

3.10.1 Software 

Name Company 

Adobe Photoshop CS5 Adobe Systems, San Jose, CA, United 
States 

BioEdit v.7.0.5. Tom Hall, Ibis Therapeutics, Isis 
Pharmaceuticals, Carlsbad, CA, United 
States 

CFX Manager Software for qPCR cycler  Bio-Rad 

Excel Microsoft, Redmond, WA, United States 

INTAS lab ID  Intas Science Imaging Instruments 

NanoDrop Software Peqlab 

Office Picture Manager Microsoft, Redmond, WA, United States 

UV imager software Intas Science Imaging Instruments 

Table 3-XVI. Software 
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3.10.2 Databases and online tools 

Database Web adress 

ClustalW2 http://www.ebi.ac.uk/Tools/msa/clustal
w2/ 

Ensembl Genome Browser http://www.ensembl.org/index.html 

Galaxy/Cistrome http://cistrome.org/ap/root 

Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/ 

IDT OligoAnalyzer 3.1 https://eu.idtdna.com/calc/analyzer 

In-Silico PCR tool by UCSC http://genome-euro.ucsc.edu/cgi-
bin/hgPcr?hgsid=201706450_nHXcVWr
MGyrI7f8PZ95EjikMtMNu 

Primer-BLAST tool by NCBI http://www.ncbi.nlm.nih.gov/tools/pri
mer-blast/ 

PROMO MultiSiteSearch http://alggen.lsi.upc.es/cgi-
bin/promo_v3/promo/promoinit.cgi?dir
DB=TF_8.3 

Repbase CENSOR http://www.girinst.org/censor/ 

Repbase Update http://www.girinst.org/repbase/update
/browse.php 

SnapGene Viewer 2.6.2 http://www.snapgene.com/products/sn
apgene_viewer/ 

UCSC genome browser genome.ucsc.edu 

Table 3-XVII. Databases and tools 



  Methods 

41 

4 Methods 

4.1 Cell biology 

All cell culture work was performed under sterile conditions. The used solutions and media were pre-

heated at 37°C before usage. 

 

4.1.1 Culturing of human cells 

After thawing, adherent and suspension cells were cultivated at 37°C, 5% CO2 in coated cell culture 

dishes or flasks, respectively -covered with either DMEMfull or RPMIfull (see Table 3-I). Culture media 

was renewed every 3-4 days and cells were subcultured to avoid hyperconfluent growth. For 

subcultivation of adherent cells, first the culture medium was removed. Cells were washed once with 

pre-warmed 1x PBS and then incubated with trypsin/EDTA until detachment from the dish became 

visible. Then fresh culture medium was added for inactivation of trypsin and a fraction of the cells was 

transferred to a new dish, medium volume was filled-up with fresh culture medium and incubation 

continued at 37°C, 5% CO2. For subcultivation of suspension cells, the cell suspension was transferred 

to 15 ml falcon tubes, spun down at 1,000 g for 5 min, supernatant was removed and cells re-

suspended in fresh culture medium. Accordingly, a fraction of the cells was then transferred to a new 

flask under addition of fresh culture medium. Cells were subcultured for a maximum of 30 passages. 

 

Depending on the given objections, specific cell numbers had to be seeded in 6-, 12- or 24-Well dishes. 

For this purpose cells of about 70-80% confluency were subjected to the same steps as for 

subcultivation. However, instead of transferring a cell fraction to a new dish, the cell suspension was 

transferred to a falcon tube and counted in a Neubauer counting chamber. The amount of cells x in 

one of the outer squares gives the cell concentration as x ∙ 104 cells/ml. Accordingly, the needed cell 

amount can be subtracted from the cell suspension and be seeded. 

 

4.1.2 Freezing and thawing of cells 

For cryopreservation, a 10 cm-dish with about 80% confluent cells was washed once with PBS and then 

incubated with 1.5 ml trypsin/EDTA until detachment from the dish. Then 8.5 ml fresh culture medium 

was added and the cell suspension was transferred to a 15 ml falcon tube. Then the cells were 

separated from the medium by centrifugation at 1,000 g for 5 min, the supernatant was removed and 

cells were resuspended in 3 ml freeze medium. The cell suspension was then evenly distributed to 3 

cryotubes and stored at -80°C for 2 days before being transferred to liquid N2 for long-term storage. 
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For thawing of the cells, an aliquot was rapidly warmed and transferred to a 15 ml falcon tube with 

5 ml culture medium. Cells were centrifuged to separate the DMSO-containing supernatant at 1,000 g 

for 5 min. Then the cell pellet was resuspended in fresh culture medium and transferred to a coated 

cell culture dish. The following day, medium was changed to remove dead cells. 

 

4.1.3 Transient transfection of human cells with siRNAs 

To deplete specific proteins, cells were transiently transfected with siRNA. For preparation of a siRNA 

solution, Lipofectamine 2000 was mixed with DMEMnull by vortexing – depending on the experimental 

set-up different amounts were used (see Table 4-I). For depletion of different HDAC isoforms or NF-Y 

subunits, the used siRNA mix consisted of 3 different siRNAs per Well. The total siRNA concentration 

was kept constant by adding the respective amount of scrambled control siRNAs (SSC). For HDAC 

depletion the total siRNA concentration was 15 nM per Well (5 nM of each siRNA). For NF-Y depletion 

the total siRNA concentration was 45 nM per Well (15 nM of each siRNA). 

 

The mix was incubated for 5 min at RT for micelles to be formed. Next the lipofectamine mix was added 

to siRNA suspended in DMEMnull and mixed gently. Subsequently, this siRNA-lipofectamine solution 

was incubated for 20 min at RT for the siRNA to be incorporated into the pre-formed micelles. In the 

meantime, a suspension of the target cells was prepared in DMEMfull. Then the siRNA-lipofectamine 

solution was distributed into 6- or 12-Well plates. Next, the respective amount of cells was added. 

Depending on the used cell line, different cell amounts were seeded. For the transient transfection 

with siRNAs targeting histone deacetylases (HDAC), 1.8·105 U2OS cells/Well were seeded in 6-Well 

dishes. For transient transfection with siRNAs targeting either NF-Y subunits alpha, beta or gamma, 

TNFRSF10B or KDM1A transcripts 1·105 GH cells/Well were seeded in 12-Well dishes. The cells were 

then incubated at 37°C, 5% CO2 for 24 h. After this incubation period, the transfection medium was 

replaced by fresh DMEMfull and incubation was continued for another 24 h. 

 

For depletion of HDAC isoforms, NF-Y subunits and KDM1A all transfection steps were repeated 48 h 

after the initial transfection. During this transfection, the siRNA-lipofectamine solution was added 

directly onto the adherent cells. The second transfection was necessary to maintain a constant 

siRNA/cell ratio in the dividing cells. 24 h after this second transfection, the transfection medium was 

replaced again and cells were harvested for subsequent analysis 96 h after initial transfection. 
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Reagent per 6-Well 
HDACs 

per 12-Well 
NF-Y subunits 

per 12-Well 
TNFRSF10B, 
KDM1A 

Lipofectamine 2000 5 µl 2.5 µl 2.5 µl 

DMEMnull (for mix with Lipofectamine 2000) 250 µl 125 µl 125 µl 

siRNA (Stock: 50 µM) 0.75 µl 0.9 µl 0.3 µl 

DMEMnull (for suspension of siRNA) 250 µl 125 µl 125 µl 

Volume of cell suspension 2 ml 750 µl 750 µl 

Total volume per Well 2,500 µl 1,000 µl 1,000 µl 

Table 4-I. Volumes for transient transfection with siRNAs 

 

The used siRNA sequences are listed in Table 3-V. 

 

4.1.4 Treatment with chemicals 

Depending on the used cell line, different cell densities were seeded in either 6- or 12-Well dishes (see 

4.1.1). Cells were incubated for 18-24 h at 37°C, 5% CO2 to allow adherent cells to settle. Then the drug 

was either added directly or the culture medium was replaced by fresh culture medium containing the 

respective amount of chemical. Then incubation was continued for 10-18 h depending on the 

experimental setup. To identify unspecific effects, at least one set of cells was treated with the solvent 

of the used drug alone. 

 

4.1.5 Confluency measurement 

Using the Celigo® Imaging Cytometer microscopic bright field pictures were taken 24, 48, 72, 96 and 

120 h after initial transfection of GH cells with siRNA targeting either TNFRSF10B transcripts or 

scrambled controls. These pictures were analyzed regarding the confluency of the cells in each Well 

with the Celigo® software. The confluency was then plotted over the 5 day time course to visualize the 

growth rate. 

 

 

4.2 Molecular biology 

4.2.1 Extraction of RNA using TRIzol® 

To extract full RNA from adherent human cells, the culture medium was replaced by 1 ml/6-Well or 

0.5 ml/12-Well TRIzol®. For extraction of RNA from suspension cells, they were spun down at 1,000 g 

for 5 min and the supernatant was replaced by the respective amount of TRIzol®. Next, the samples 

were pipetted up and down several times to enhance cell lysis, transferred to 1.5 ml reaction tubes 

and incubated for 10 min at RT. Then 200 µl chloroform/1 ml TRIzol® was added and mixed thoroughly 
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by vigorous shaking. After 3 min incubation at RT, the suspension was subjected to phase separation 

by centrifugation at 12,000 g for 30 min at 4°C. The aqueous upper phase, containing the RNA, was 

carefully transferred to a fresh 1.5 ml reaction tube. Purification was achieved by precipitation with 

500 µl isopropanol/1 ml TRIzol®. Therefore, the mix was shaken, incubated at RT for 15 min and 

centrifugated at 12,000 g for 60-90 min at 4°C. Subsequently, the RNA-containing pellet was washed 

twice with 70% Ethanol and then air-dried for 30 min. Depending on the size of the pellet it was then 

resuspended in 20-50 µl nuclease-free water and heated to 55°C for 5 min. Subsequently, RNA was 

stored at -80°C until further analysis. 

 

4.2.2 Determination of nucleic acid concentrations 

The concentration and purity of RNA was determined using the NanoDrop spectrophotometer. At a 

wavelength of 260 nm the concentration was measured. To identify DNA or protein contaminations, 

the 260/230 nm and 260/280 nm ratios were analyzed and considered favorable when above 1.80. 

 

4.2.3 Reverse transcription of RNA 

For further analysis of the transcriptome, messenger RNA was reversely transcribed into cDNA. 

Therefore, 1 µg of RNA was mixed with 2 µl of a primer mix consisting of (15 µM) random nonamer 

primers and (50 µM) anchored oligo-dT primers dT23VN. Further 0.5 µl dNTP mix (20 mM of each 

deoxyribonucleotide triphosphate) was added. The mix was filled-up with water to a total volume of 

16 µl and heated at 70°C for 5 min to demolish secondary structures. Subsequently, 4 µl of a master 

mix was added per reaction (see Table 4-II). 

 

Reagent Volume 

Reaction buffer 10x 2 µl 

RNase inhibitor 0.25 µl 

M-MuLV Reverse Transcriptase 0.125 µl 

RNase-free water 1.625 µl 

Table 4-II. Master mix for reverse transcription of RNA 

 

Each sample was prepared in duplicates – one where the enzyme reverse transcriptase, derived from 

moloney murine leukemia virus (M-MuLV), was added and one mock with water added instead. The 

latter serves to exclude contaminations with genomic DNA. The samples were incubated at 42°C for 

1 h. Then the enzyme was deactivated by incubation at 95°C for 5 min. Afterwards, the cDNA was 

diluted by addition of 30 µl nuclease-free water and stored at -20°C until further analysis. 
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4.2.4 Primer design 

Genomic sequences of the respective genes or genomic regions were retrieved from the UCSC Genome 

Browser. Transcript sequences were retrieved from the Ensembl database. All primers were designed 

manually and checked for the likelihood of hairpin secondary structures and dimer formation using the 

OligoAnalyzer 3.1 tool provided by Integrated DNA Technologies (IDT). Primer sequences were only 

considered with a ΔG of more than -10 kcal/mole. Subsequently, their specificity was checked using 

the Primer-BLAST tool provided by National Center for Biotechnology Information (NCBI) and the In-

silico PCR tool provided by University of California Santa Cruz (UCSC). 

 

Oligonucleotides to be used for quantitative real-time PCR for amplification of cDNA were 

preferentially placed in different exons with a product size of 300 base pairs at most. This allows to 

distinguish between cDNA and genomic DNA since the latter contains introns. All primer sizes must 

not exceed 24 nucleobases and a GC content of 60%. Melting temperatures were preferentially about 

60°C. 

 

4.2.5 In-silico transcription factor binding site prediction 

First, sequences of LTR12 upstream of the cellular genes were retrieved from UCSC Genome Browser 

(see Table 4-III). These LTR12 were either previously described to drive expression of the adjacent gene 

[27] or were identified as candidates to drive gene expression in our recent approach (Table 2-I). 

Identification of each LTR12 was conducted by the CENSOR software tool [111] and complementing 

information was retrieved from the Repbase Update database [112]. Next, the LTR12 sequences were 

analyzed by PROMO, which uses the 8.3 version of TRANSFAC, for common transcription factor binding 

sites [113, 114]. Factor’s and site’s species was defined as human only. Dissimilarity margin was set to 

be equal as or less than 5%. 
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Gene name Gene position (hg19) location of LTR12 (hg19) 

ADH1C chr4:100,257,649-100,273,917 chr4:100274696-100275434 

GBP5 chr1:89,724,634-89,738,544 chr1:89738137-89739573 

SEMA4D chr9:91,992,152-92,094,611 chr9:92094404-92095897 

TNFRSF10B chr8:22,877,648-22,926,700 chr8:22927451-22928865 

TP63 chr3:189,507,449-189,615,068 chr3:189313733-189314949 

DHRS2 chr14:24,105,573-24,114,848 chr14:24104837-24105861 
chr14:24106921-24107605 

NR1H4 chr12:100,897,138-100,957,645 chr12:100823898-100825322 

C9orf53 chr9:21,967,138-21,967,753 chr9:21959077-21960418 

CPED1 chr7:120,628,751-120,937,498 chr7:120699844-120701243 

C9orf85 chr9:74,526,423-74,588,371 chr9:74578275-74579651 

CCR4 chr3:32,993,066-32,996,403 chr3:32980994-32982647 

ACSBG1 chr15:78,473,097-78,527,049 chr15:78537615-78539044 

KCNN3 chr1:154,669,942-154,842,754 chr1:154650332-154651788 

CSF3 chr17:38,171,614-38,174,066 chr17:38167005-38169009 

TMOD1 chr9:100,263,462-100,364,025 chr9:100336320-100337735 

SLC36A2 chr5:150,694,539-150,727,151 chr5:150786356-150787204 

IER3 chr6:30,710,976-30,712,327 chr6:30774508-30775782 

PIK3C2G chr12:18,414,474-18,801,352 chr12:18652900-18654112 

TENM1 chrX:123,509,756-124,097,666 chrX:124390314-124390725 

CT49/ 
LINC01194 

chr5:12,574,969-12,805,295 chr5:12661848-12663161 
chr5:12796289-12796978 

PTPN13 chr4:87,515,468-87,736,328 chr4:87468293-87469596 

RADIL chr7:4,836,687-4,923,335 chr7:4832980-4834366 

Table 4-III. LTR12 locations in the human genome (hg19) 

 

4.2.6 Polymerase chain reaction (PCR) 

4.2.6.1 PCR for amplification of DNA fragments 

To determine the existence of LTR12 sequences upstream of TNFRSF10B in difference species, a 

specific forward primer within LTR12 and a reverse primer upstream exon 1 of TNFRSF10B were used 

(see Table 3-II). If the LTR12 was present, amplification occurred which could be detected through 

subsequent DNA gel electrophoresis (see 4.2.7). 

 

Reagent (Stock conc.) Final concentration 1x 

10x Taq buffer + KCl 1xl 5 µl 

MgCl2 stock (25 mM) 3 mM 6 µl 

dNTP mix (20 mM each) 0,2 mM each 0.5 µl 

Taq DNA-Polymerase 1,25 units 0.25 µl 

water  36.95 µl 

Primer (100 µM) 300 nM each 0.15 µl each 

Genomic DNA (100ng/µl) 100 ng 1 µl 

Table 4-IV. Volumes for PCR reactions 
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95°C 3 min  Denaturation 

95°C 20 sec 

32 cycles 

Denaturation 

56°C 25 sec Annealing 

72°C 25 sec Elongation 

72°C 5 min   

8°C ∞   

Table 4-V. PCR protocol 

 

4.2.6.2 Quantitative real-time PCR for amplification of cDNA 

To determine relative gene expression [115], quantitative real-time PCR was performed in a 96-Well-

scale using SYBR® Green. The total volume per Well was 25 µl. The reaction mix consisted of 14 µl 

SYBR® Green-containing qPCR mix (see Table 3-XIII), 0.3 µM forward primer, 0.3 µM reverse primer, 2 

µl cDNA (as described in 4.2.3), filled ad 25 µl with water. After pipetting on ice, the plate was sealed 

with plastic foil, shortly spun down at 800 g for 1 min and analyzed immediately. To diminish the 

influence of technical impreciseness, each sample was measured in triplicates. For each primer 

combination, samples without reverse transcriptase and samples with H2O instead of cDNA served as 

negative controls. Moreover, the reference gene RPLP0 was always measured in parallel, to allow for 

samples from different plates to be comparable. 

 

95°C 2 min  Denaturation 

95°C 15 sec 
40 cycles 

Denaturation 

60°C 1 min Annealing & Elongation 

Plate read   

Melting curve 60°C to 95°C, every 0.5°C, hold 1 sec  

Table 4-VI. qRT-PCR protocol 

 

Relative gene expression was calculated using a variation of the ΔΔCt-method [116]. Herein the ΔCt-

value was calculated by normalizing the cycle threshold (Ct)-value of the gene of interest to the 

reference gene by subtraction. Since the amount of DNA is assumed to double in every cycle, Ct-values 

represent logarithmic values to the base of 2. Accordingly, 2- ΔCt-value characterizes the relative 

normalized expression ratio for each sample. Two samples, e.g. an inhibitor-treated sample and a 

control sample, can further be compared by calculating their ratio (=fold change). 

For all shown figures, biological replicas from at least 3 independently performed experiments were 

subjected to quantification. 
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4.2.6.3 Quantitative real-time PCR to analyze ChIP samples 

To analyze DNA sequences, which were bound to specifically immunoprecipitated proteins (see 4.3.3), 

quantitative real-time PCR was conducted. Hereby, protein-DNA interactions can be identified and 

quantified as well as changes thereof. First a series of input dilutions was prepared (1:10 – 1:1000). 

This dilution series was then used to test all primer before measuring the ChIP samples. In disparity to 

the amplification of cDNA (see 4.2.6.2), a commercially available SYBR® Green-containing qPCR mix 

was used (Thermo Scientific) and 5 µl DNA template. This qPCR mix contains a Maxima Hot Start Taq 

DNA Polymerase which is inactive at RT. Upon incubation at 95°C for at least 4 min, its activity is 

restored (see Table 4-VII). 

 

95°C 10 min  Denaturation 

95°C 15 sec 
40 cycles 

Denaturation 

60°C 1 min Annealing & Elongation 

Plate read  
 

 

72°C 5 min  

Melting curve 50°C to 95°C, every 0.5°C, hold 1 sec  

Table 4-VII. qRT-PCR ChIP protocol 

 

Due to the limited availability of template DNA, samples were measured in duplicates instead of 

triplicates. For each primer combination, samples with H2O instead of template DNA served as negative 

controls. Moreover, 1:10-diluted input samples were always measured in parallel. All ChIP samples of 

one experiment (input, IgG-ChIP, NF-YA-ChIP, NF-YB-ChIP) were always analyzed on the same plate to 

eliminate errors in the analysis due to varying PCR conditions. 

 

Samples were analyzed as percentage of input chromatin, which characterizes the recovery. First the 

cycle threshold (Ct)-value of an IP sample was normalized to the corresponding input sample by 

subtraction (“ΔCt-value”). Corresponding to chapter 4.2.6.2, the 2- ΔCt-value was calculated. Next, this 

normalized value was divided by a dilution factor of 100. This dilution factor takes into account the 

1:10-less concentrated input sample (12 µl input chromatin versus 120 µl chromatin subjected to 

specific IP) and the 1:10 dilution of the input sample with water prior to the PCR. To obtain a value in 

percentage, last the value was multiplied by 100. 

 

 ΔCt-value = CtIP sample – CtInput sample 

 Recovery (% of input) = 2- ΔCt-value/100 * 100 
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For all shown figures, biological replicas from at least 3 independently performed experiments were 

subjected to quantification. 

 

4.2.7 DNA gel electrophoresis 

To visualize DNA fragments, agarose gels were used. Therefore, 0.6 g agarose was mixed with 60 ml 

TAE buffer for a 1% gel and boiled until a homogenous solution resulted. Then 3 µl DNA stain clear G 

was added to the liquid gel and casted in a casting chamber with a plastic comb. After incubation for 

30 min at RT the gel polymerized. DNA samples were mixed with 1:6 DNA gel loading buffer and 10 µl 

was loaded per pocket. Agarose gel electrophoresis was performed at 100 Volt for 30-40 min. Finally, 

DNA fragments were visualized on a Gel Jet Imager by UV light. 

 

 

4.3 Protein Biochemistry 

4.3.1 Cell lysates for SDS-PAGE analysis 

For analysis of protein expression, cells were lysed. Therefore, cells were scraped directly in the culture 

medium with a rubber spatula on ice. Then the cell suspension was homogenized by pipetting up and 

down several times and transferred to a 1.5 ml reaction tube. Next the supernatant was separated 

from the cells by centrifugation at 1,000 g for 5 min at 4°C. Supernatant was removed and cells were 

lysed by addition of 100 µl RIPA lysis buffer and incubated on ice for 30 min. Every 10 min the cell 

lysate was thoroughly mixed. After 30 min, the cell lysate was subjected to sonication using the 

Bioruptor® at high power (30 sec on; 30 sec off) for 5 min. Then samples were stored at -80°C until 

further analysis. 

 

4.3.2 Separation of proteins by SDS-PAGE and Immunoblot analysis 

4.3.2.1 SDS-PAGE 

To separate proteins according to their molecular mass, sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) was used [117, 118]. Herein, SDS confers an overall negative charge to the 

proteins, resulting in their movement towards the anode upon applying an electric field. Their 

electrophoretic mobility is proportional to their molecular weight, resulting in a separation according 

to it. First, samples of lysed human cells (see 4.3.1) were thawed on ice and 20 µl Laemmli sample 

buffer was being added, containing the reducing agent dithiothreitol. Samples were heated to 95°C for 

5 min, followed by mixing and brief centrifugation. To estimate protein sizes, 7 µl of a standard protein 

marker was loaded in parallel. The used polyacrylamide gels had an acrylamide/bisacrylamide 
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concentration of 12% (resolving gel) and 5% (stacking gel). Gel electrophoresis was performed at 

constant voltage initially at 100 Volt for 15 min, followed by 150 Volt for 2 h. 

 

Reagent (Stock conc.) Stacking gel Resolving gel 

Acrylamide-bisacrylamide 500 µl 4 ml 

0.5 M Tris-HCl, pH 6.8 380 µl  

1.5 M Tris-HCl, pH 8.8  2.5 ml 

10% SDS 30 µl 100 µl 

10% APS 30 µl 100 µl 

TEMED 3 µl 4 µl 

water 2.1 ml 3.3 ml 

Table 4-VIII. Composition of gels for SDS-PAGE 

 

4.3.2.2 Immunoblotting 

To visualize specific proteins, those separated by their molecular masses by electrophoresis were 

transferred from the polyacrylamide gel to a membrane. The transfer of the proteins, called blotting, 

was conducted by assembling a tight contact between the polyacrylamide gel and a nitrocellulose 

membrane with a pore size of 0.2 μm within a plastic carrier. This so called “tank-blot technique” was 

introduced by Bittner et al. [119]. Excessive space is filled with 3 sponges and 6 Whatman paper, which 

were equilibrated in transfer buffer before usage. Upon applying an electric field, the proteins then 

travel towards the anode due to their overall negative charge resulting from the SDS. Accordingly, the 

nitrocellulose membrane was placed on the anode side, resulting in protein transfer from the gel onto 

the membrane. 

 

Blotting occurred on ice in the cold room in transfer buffer at 90 Volt for 100 min. The completeness 

of the protein transfer was monitored by staining of the membrane with ponceau S solution. To 

saturate unspecific binding sites, the membrane was incubated for 2 h in blocking solution. 

 

4.3.2.3 Immunostaining 

After blotting onto a membrane, specific antibodies can bind to the proteins and be visualized. Primary 

antibodies (see Table 3-VII) were diluted in 5 ml blocking solution and the membrane was incubated 

with the antibody solution over-night in a rolling 50 ml falcon tube in the cold room. 

 

The following day, the membrane was washed three times with blocking solution for 10 min each. 

Then the membrane was incubated with a secondary antibody (see Table 3-VIII) diluted in blocking 

solution for 2 h at RT in a rolling 50 ml falcon. Next, the membrane was washed three more times with 

PBS/T for 10 min each. Afterwards, binding of antibodies was detected using enhanced 
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chemiluminescence immune detection (ECL). ECL-advanced solution was prepared freshly and the 

membrane was incubated with it for 1 min. The secondary antibody was linked to a horseradish 

peroxidase, which oxidizes the luminol in the ECL-solution. When luminol falls back to its unexcited 

state, electromagnetic waves are being emitted, which can be visualized by camera. The light signal 

indicates the position and quantity of the protein of interest on the membrane [120]. The exposition 

times varied between 10 sec and 10 min, depending on the signal intensity. 

 

4.3.3 Chromatin harvest and chromatin immunoprecipitation 

Interactions of proteins with specific target sites in the genome can be fathomed by 

immunoprecipitation (IP) of target proteins with specific antibodies. Following, the precipitated DNA, 

which had been bound to the protein, can be analyzed by qRT-PCR. The protocol used for chromatin 

harvest and the IP was modified after Denissov et al. [121]. 

 

4.3.3.1 Chromatin harvest for ChIP 

At about 80% confluency, cells were washed once with PBS. Supernatant was removed completely. 

Cells from one 15 cm plate were cross-linked for 20 min by addition of 2.5 ml formaldehyde-mix. Next, 

cross-linking was stopped by addition of 250 µl 1.25 M glycine and a 5 min incubation time. From now 

on all steps were performed on ice and all centrifugations were carried out at 4°C. All liquid was 

removed and fixed cells were washed twice with pre-cooled PBS. Next, 2 ml cold buffer B was added 

to lyse the cells, followed by an incubation at 4°C for 10 min. Cells were scraped in buffer B and spun 

down at 2000 rpm for 5 min. This was followed by washing of the pellet with 4 ml cold buffer C and 

centrifugation at 2000 rpm for 10 min. After discarding the supernatant, cells were resuspended in 

about 700 µl 1x incubation buffer with SDS for sonication. The stock buffer was diluted with water and 

1x PIC and 22.5 µl/ml 10% SDS were added prior to usage. Then chromatin was subjected to sonication 

using the Bioruptor® at high power (30 sec on; 30 sec off) for 10 min, 10 min and finally 5 min to shear 

the chromatin. Before each step, the cold water was replaced and a handful ice was added. After 

sonication, the suspension was spun down at 13,000 rpm for 5 min to pellet remaining unsheared 

chromatin. The supernatant was aliquoted and stored at -80°C until immunoprecipitation. 

 

Before further usage of the chromatin, its quality was tested. 40 µl of the chromatin was mixed with 

40 µl water and 2 µl 5 M NaCl. The solution was boiled at 99°C for 15 min. After cooling on ice, 1 µl 10 

mg/ml RNase A was added and samples were incubated at 37°C for 10 min. Next, DNA was purified by 

phenol-chloroform purification. Therefore, 80 µl Phenol was mixed to the solution and then 

centrifuged at 13,000 rpm for 1 min. The colorless DNA-containing upper phase was transferred to a 
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fresh reaction tube and 80 µl chloroform was added to it. The mix was vortexed and then centrifuged 

at 13,000 rpm for 1 min. The upper phase was transferred to another fresh reaction tube and mixed 

with 8 µl 60% Glycol solution for further gel analysis (see 4.2.7). If the resulting fragments are between 

50 and 300 bp in length, the sheared chromatin was used further. 

 

4.3.3.2 Chromatin immunoprecipitation 

For the immunoprecipitation of specific target proteins, Protein A/G PLUS-Agarose with 1:5 IgG:IgA 

was used, referred to as “beads”. First the beads were equilibrated by two washing steps with 1x 

incubation buffer without SDS, enriched with 40 µl/ml 5% BSA and centrifugated at 4000 rpm for 2 

min. Per reaction 50 µl bead suspension was used. After the last washing step, supernatant was 

removed completely and beads were resuspended in 25 µl per reaction. Then the immunoprecipitation 

mix was prepared according to Table 4-X. For the mix it was important to pipette the beads first, 

followed by the master-mix (see Table 4-IX), then the chromatin and last the antibody. 

 

Reagent (Stock conc.) 1x 

5% BSA 6 µl 

25x PIC 12 µl 

5x incubation buffer without 
SDS 

36 µl 

Water Ad 148 µl 

Table 4-IX. Chromatin IP master mix 

 

Reagent (Stock conc.) 1x 

Chromatin IP master mix 148 µl 

Equilibrated beads 30 µl 

Chromatin 120 µl 

Antibody (1 µg/µl) 2 µl 

Table 4-X. Volumes for IP 

 

The immunoprecipitation mix was then rotated over-night in the cold room at 4°C. In parallel another 

12 µl of each chromatin was aliquoted and rotated with the IP mixes overnight. This sample represents 

the input sample, containing 1:10 of the chromatin that was subjected to the immunoprecipitation. 

Furthermore, for each chromatin sample an IP with an isotype IgG control antibody was performed in 

parallel. 

 

The next morning, beads were centrifuged at 4000 rpm for 2 min at 4°C and the supernatant was 

discarded. Hereby, only the specifically immunoprecipitated proteins and their cross-linked DNA was 
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retained. Next, the beads were washed on ice with 400 µl of each wash buffer – two times with 

washbuffer 1, one time with washbuffer 2, one time with washbuffer 3 and two times with washbuffer 

4 (diluted 1:10 with water). After addition of the respective wash buffer, samples were inverted 4x4 

times with small breaks in between, allowing the beads to settle. Then the beads were centrifuged at 

4000 rpm for 2 min at 4°C. After the last wash step, supernatant was removed completely and beads 

were resuspended in 200 µl elution buffer. In parallel the input samples were mixed with 188 µl elution 

buffer. IP and input samples were then rotated for 20 min at RT. Next, they were centrifuged at 

maximum speed for 1 min at RT and the supernatant was transferred to fresh reaction tubes. 

 

Next, decross-linking of protein and DNA was initiated by addition of 8 µl 5 M NaCl, followed by 

incubation in a shaker at 65°C for 4 h. Last, the co-immunoprecipitated DNA was purified using the 

Mini Elute kit (Qiagen) according to the manufacture’s protocol. Elution was performed with 100 µl 

1:10 diluted EB buffer and samples were stored at 4°C until further analysis by qRT-PCR (see 4.2.6.3). 

 

 

4.4 Bioinformatic analyses of ChIP-seq data 

In order to identify NF-Y binding sites within LTR12 sequences, publicly available ChIP-sequencing 

(ChIP-seq) data was retrieved and analyzed. Data was obtained for genomic DNA extracted from 

chromatin immunoprecipitation with specific antibodies against either NF-Y subunit alpha or beta 

[122]. First, NARROWPEAK-files were downloaded from the Gene Expression Omnibus website [123]. 

An overview of the downloaded files is shown in Table 4-XI. Next, these files were uploaded to the 

Galaxy/Cistrome platform, which provides multiple bioinformatic tools to analyze ChIP-Seq data [124]. 

 

Cell line File name 

K562 GSM935433_hg19_wgEncodeSydhTfbsK562NfyaStdPk.narrowPeak 

GSM935429_hg19_wgEncodeSydhTfbsK562NfybStdPk.narrowPeak 

HeLa-S3 GSM935508_hg19_wgEncodeSydhTfbsHelas3NfyaIggrabPk.narrowPeak 

GSM935408_hg19_wgEncodeSydhTfbsHelas3NfybIggrabPk.narrowPeak 

GM12878 GSM935506_hg19_wgEncodeSydhTfbsGm12878NfyaIggmusPk.narrowPeak 

GSM935507_hg19_wgEncodeSydhTfbsGm12878NfybIggmusPk.narrowPeak 

Table 4-XI. Overview ChIP-seq data files 

 

The information contained in the NARROWPEAK-files was then reduced by cutting columns c1, c2 and 

c3 as delimited by tab spaces. Next a bed-file containing information about the locations of LTR12 of 

interest was uploaded to the same platform (see Table 4-III). This bed-file contained 6 columns with 

information about chromosome, sequence start position, end position, name of adjacent gene, a 
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fictive score and the strand orientation (+ or -). Next, a VENN diagram was created for each cell line to 

identify the overlap between NF-Y binding sites and LTR12 locations. The respective command on the 

Galaxy/Cistrome platform can be found within the section “Integrative Analysis” and further 

“CORRELATION”. Interval 1 was selected as LTR12 locations, Interval 2 the NF-YA binding sites and 

interval 3 the NF-YB binding sites. The VENN diagram, however, provides only information about the 

total overlap, but not the involved genomic loci. Therefore, the tool “Intersect” was used to obtain 

information about the overlapping locations. 

 

 

4.5 Statistical analysis 

Results were analyzed for their statistical significance by the unpaired, two-tailed student’s t-test as 

provided by Microsoft Excel. A p-value below 0.05 indicated a significant difference between two data 

sets, e.g. inhibitor-treated samples compared to samples treated with the solvent of the inhibitor 

alone. All data sets were obtained in at least 3 independently performed experiments. Error bars are 

depicted as standard deviation (SD). To visualize p-values, asterisks were used: 

* p<0.05 

** p<0.01 

***  p<0.001 
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5 Results 

5.1 TNFRSF10B has previously unknown LTR12-driven isoforms 

As we were especially interested in LTR12-driven gene transcripts that might be involved in cell death 

and therefore potentially influence the survival of transformed cells, TNFRSF10B was an interesting 

candidate. TNFRSF10B encodes for the protein death receptor 5. The gene TNFRSF10B is located on 

the minus strand of chromosome 8. A long terminal repeat of the HERV-9 family is inserted 757 bp 

upstream of the transcription start site of exon 1.  

 

Figure 5-1. TNFRSF10B has previously unknown LTR12-driven isoforms 

[A] Architecture of the TNFRSF10B gene locus on the reverse strand on chromosome 8. The newly 
identified LTR12 (black box) starts 757 bp upstream of the formerly known transcription start site of 
ENSEMBL transcript ENST00000276431 (light grey box). The transcription start site (TSS) within the 
LTR12 is shown with an arrow. Three transcripts originate from the LTR12 through alternative splicing 
(indicated by the dotted line). Primer locations of oligonucleotides to identify the different isoforms 
are shown. LTR transcript 1 is specifically amplified with LTR +339_for and ex1_rev; LTR transcript 2 
with LTR +1006_for and ex1_rev; LTR transcripts 2+3 with LTR +41_for and upstr_ex1_rev. Translation 
of the newly identified transcripts results in the synthesis of the same protein as ENST00000276431. 
[B] GH cells (testicular cancer cell line) were treated with increasing concentrations of the HDAC 
inhibitor Trichostatin A (TSA) for 18 h followed by isolation of total RNA which was reverse transcribed 
into cDNA. Next, relative gene expression levels of the newly identified TNFRSF10B LTR transcripts 
were assessed by qRT-PCR. Treatment resulted in a significant increase for all three transcripts. mRNA 
levels were normalized to RPLP0. Control cells were treated with the TSA-solvent DMSO alone. Error 
bars represent SD (n=3). * = p<0.05, ** = p<0.01, *** = p<0.001; Transcripts were initially identified by 
Dr. Ulrike Beyer (Dept. of Molecular Oncology, UMG, Göttingen; currently MHH, Hannover). qPCR 
studies were conducted by Sonja Krönung (UMG, Göttingen). 
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5.1.1 Identification of three LTR-driven isoforms of TNFRSF10B 

At least three different transcripts arise from the transcription start site within the LTR through 

alternative splicing (Figure 5-1A), as identified by RT-PCR. LTR transcript 1 is spliced from a splice donor 

site 31 bp downstream of the LTR12 onto an acceptor site 67 bp downstream of the previously known 

tss. The second LTR transcript is spliced 18 bp downstream of the LTR tss onto a second exon starting 

373 bp upstream of the previously known tss. The third LTR transcript is spliced after 167 bp onto a 

second exon 92 bp upstream of the previously known tss. All three LTR transcripts contain the start 

codon ATG within exon 1 and result in translation of the same protein. The initial identification of the 

transcripts was done by Dr. Ulrike Beyer (Dept. of Molecular Oncology, UMG, Göttingen; currently 

MHH, Hannover). qPCR studies were conducted by Sonja Krönung (Dept. of Molecular Oncology, UMG, 

Göttingen). 

 

5.1.2 Transcription of all three LTR-driven isoforms is induced by HDAC inhibitor treatment 

TNFRSF10B transcription was previously shown to be upregulated in GH cells (testicular cancer cells) 

upon treatment with the HDAC inhibitor Trichostatin A (TSA) by microarray analysis (Table 2-I). 

Moreover, LTR-containing transcripts of TNFRSF10B were identified by 3’RACE followed by next 

generation sequencing (NGS) in TSA-treated GH cells and normal testis (Table 2-I). To verify these 

findings, GH cells were treated with increasing concentrations of TSA (0.5 µM, 1 µM and 2 µM) for 18 

h after which total RNA was extracted and reverse transcribed into cDNA. Next, relative gene 

expression of the three newly identified TNFRSF10B LTR transcripts and TNFRSF10B total was analyzed 

by qRT-PCR (Figure 5-1B). For the assessment of the total level of TNFRSF10B transcription, primers 

were located in exon 3 and exon 4 of transcript ENST00000276431, thus including all known 

transcription start sites. Transcription of TNFRSF10B total was higher than of each LTR transcript in 

DMSO-treated cells. Treatment with TSA resulted in a significant increase in the level of total 

TNFRSF10B and all three LTR transcripts. However, the increase was more prominent for the LTR 

transcripts. Since transcription was overall highest for LTR transcript 2, it was representatively analyzed 

for TNFRSF10B LTR transcripts in the subsequent experiments. 
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Figure 5-2. Insertion of LTR12 upstream TNFRSF10B occurred roughly 18 million years ago 

[A] To determine the presence of LTR12 sequences upstream of TNFRSF10B in different species, a 
specific forward primer within LTR12 (LTR12 upstream TNFRSF10B_for) and a reverse primer upstream 
of exon 1 (Upstream TNFRSF10B_rev) were used. Genomic DNA from different species was subjected 
to PCR analysis. LTR12-containing transcripts were only amplified in genomic DNA from homo sapiens, 
pan troglodytes, gorilla gorilla, pongo pygmaeus and hylobates. [B] Insertion of the LTR12 upstream of 
TNFRSF10B occured in higher primates after the split of Hominoidea from Cercopithecoidea roughly 
18 million years ago. 
 

 

5.2 Insertion of LTR12 upstream TNFRSF10B occurred roughly 18 million years ago 

To determine the presence of LTR12 sequences upstream of TNFRSF10B, a specific forward primer 

within LTR12 (LTR12 upstream TNFRSF10B_for) and a reverse primer upstream of exon 1 (Upstream 

TNFRSF10B_rev) were used. A schematic representation of the primer binding sites is shown in Figure 

5-2A, upper panel. Primer sequences are given in Table 3-II. Genomic DNA from different primates was 

subjected to PCR analysis. Specifically amplified products were subsequently visualized by agarose gel 

electrophoresis. LTR12-containing transcripts were only amplified in genomic DNA from human (homo 

sapiens), chimpanzee (pan troglodytes), gorilla (gorilla gorilla), orangutan (pongo pygmaeus) and 
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gibbon (hylobates) (Figure 5-2A, lower panel). These results were also obtained upon aligning genomic 

sequences of various primate species using the Clustal algorithm (Figure 5-3), strongly indicating that 

insertion of the LTR12 upstream TNFRSF10B occurred in higher primates after the split of Hominoidea 

from Cercopithecoidea roughly 18 million years ago [125] (Figure 5-2B). 
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Figure 5-3. Insertion of LTR12 upstream TNFRSF10B in primates 

Aligning genomic sequences of various primate species using the Clustal algorithm reveals the 
presence of LTR12 in homo sapiens to hylobates. The LTR12 sequence stained in light grey. However, 
it is not present in macaca mulatta and papio. Genomic sequences for all species were retrieved from 
the UCSC genome browser. 
 



Results 

60 

5.3 TNFRSF10B expression is high in testis and reduced in testicular cancer 

5.3.1 TNFRSF10B transcripts are ubiquitously expressed in different human tissues, but 

differ in their use of transcription start sites 

To gain insight into usage of the different transcription start sites for TNFRSF10B, we quantified its 

transcription in different human tissues. Therefore, a panel of RNA from normal human tissues 

(Ambion) was reverse transcribed to cDNA and analyzed by qRT-PCR. First, we quantified transcription 

of TNFRSF10B in total (Figure 5-4A) with primers located in exon 3 and 4. TNFRSF10B total mRNA was 

ubiquitously expressed in all tissues. Its transcription was highest in the small intestine. Next, we 

quantified transcription of TNFRSF10B LTR12 transcript 2 (Figure 5-4B). Transcription of the LTR-driven 

transcript was largely confined to the testicular tissue and the small intestine. 

 

5.3.2 Protein levels of TNFRSF10B are reduced in testicular tumor cells in comparison to 

normal testis 

Since GTAp63 is also specifically expressed in the human testis and its expression is lost in transformed 

testis tissue [90] (see 2.3.1), we were interested if a similar pattern existed for TNFRSF10B. We 

retrieved immunohistochemistry staining information from the Human Protein Atlas database. 

Staining intensities for TNFRSF10B were strong in normal testis tissues (Table 5-I). However, the 

staining intensity was consistently weaker in different testicular tumor cells. This indicates that protein 

levels of TNFRSF10B are indeed reduced upon transformation of testicular tissue. 

 

 

Table 5-I. TNFRSF10B protein expression is weaker in testicular cancer cells than in normal human 
testis 

To compare the protein level of TNFRSF10B in normal and transformed tissue cells, staining intensities 
were obtained from the Human Protein Atlas database (www.proteinatlas.org). The 
immunohistochemistry stainings were classified as strong, moderate, weak or negative. The fraction 
of positive cells is given in the last column as „quantity“. 
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Figure 5-4. Examination of TNFRSF10B expression in normal human tissues 

Transcription of TNFRSF10B was quantified in a panel of RNA samples from normal human tissues 
(Ambion) by qRT-PCR. Depicted is [A] the transcription of TNFRSF10B total and [B] transcription of 
TNFRSF10B LTR12 transcript 2. While total TNFRSF10B mRNA was ubiquitously expressed in all tissues, 
the LTR-driven transcript was largely confined to testicular tissue and the small intestine. mRNA levels 
were normalized to RPLP0. 
 

 

5.4 Combinatorial treatment with TRAIL and TSA enhances apoptosis in testicular 

cancer cells 

We next sought to determine whether the strong induction of LTR-driven TNFRSF10B expression 

influences the survival of transformed cells. We induced LTR12 transcription in GH cells by treatment 

with the HDAC inhibitor TSA. In parallel, we treated cells with TNFRSF10B’s ligand TRAIL and 

combinations thereof. After treatment, the cells were harvested and total protein was isolated. In 

another set of experiments, the incubation was continued over five consecutive days and cell growth 

was assessed. 
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Figure 5-5. Combinatorial treatment with TRAIL and TSA enhances apoptosis in testicular cancer 
cells  

GH cells  were treated with either 0.5 µM TSA or 50 ng/ml TRAIL or a combination thereof for 12 h or 
10 h. Cells treated with DMSO, the solvent of TSA, were used as controls. To assess the influence of 
Death Receptor 5 (TNFRSF10B) on cell viability, it was depleted by transfection with two different 
siRNAs (TNFRSF10B#1/DR5#1 and TNFRSF10B#2/DR5#2) 24 h prior to treatment. [A] + [B] After 
treatment, cells were harvested and [A] total protein was isolated and separated by SDS-PAGE 
followed by immunoblotting with specific antibodies against poly-(ADP-ribose)-polymerase 1 (PARP1), 
caspase-3, cleaved caspase-3 and beta-actin. Upon programmed cell death, caspase-3 is activated by 
cleavage and in turn cleaves various substrates including PARP1. Treatment with TRAIL or TSA alone 
results in cleaved caspase-3, however, the effects are stronger upon combinatorial treatment with 
both substances [lane 10]. Depletion of TNFRSF10B reduces this additive effect [lane 11 + 12]. [B] Total 
RNA was isolated and reverse transcribed into cDNA. Next relative gene expression of TNFRSF10B was 
assessed by qRT-PCR to monitor the efficiency of its depletion. mRNA levels were normalized to RPLP0. 
Error bars represent SD (n=3). * = p<0.05, ** = p<0.01, *** = p<0.001. [C] Treatment was terminated 
by replacing the culture medium and cell confluency was quantified (t=0). Then cell confluency was 
monitored consecutively for another 4 days. Prior to each measurement, culture medium was renewed 
to remove dead cells. Treatment with TRAIL alone did not affect cell growth. However, treatment with 
TSA alone led to a slight reduction in cell growth. Combinatorial treatment of cells transfected with 
scramble control siRNA,   with TSA and TRAIL, resulted in strongly reduced growth. This growth defect 
was not observed in cells depleted of TNFRSF10B. 
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5.4.1 Combinatorial treatment with TRAIL and TSA diminishes cell growth by enhancing 

apoptosis in testicular cancer cells 

After separation by SDS-PAGE, proteins were detected with specific antibodies against poly-(ADP-

ribose)-polymerase 1 (PARP1), caspase-3, cleaved caspase-3 and beta-actin. Upon programmed cell 

death, caspase-3 is activated by cleavage and in turn cleaves various substrates including PARP1 [126, 

127]. Treatment with DMSO alone did not result in apoptosis (Figure 5-5A, lane 1). Treatment with 50 

ng/ml TRAIL for 10 h resulted in cleavage of caspase-3 and PARP1 (Figure 5-5A, lane 4). These effects 

were intensified upon treatment with 0.5 µM TSA for 12 h (Figure 5-5A, lane 7). However, 

combinatorial treatment with both substances enhanced apoptosis as indicated by diminished levels 

of unprocessed caspase-3 and PARP1 (Figure 5-5A, lane 10). 

In addition to staining for apoptosis markers, cell growth was assessed by cell confluency 

measurements. Here, treatment with TSA and/or TRAIL was terminated by replacing the culture 

medium and cell confluency was quantified (t=0). Cell confluency was then monitored consecutively 

for another four days. Prior to each measurement, culture medium was renewed to remove dead cells. 

Upon treatment with DMSO, control cells reached 80% confluency one day after the treatment was 

ended (Figure 5-5C, upper left panel, black curve). The same effect was observed for treatment with 

50 ng/ml TRAIL for 10 h (Figure 5-5C, lower left panel, black curve). Cells that were treated with 0.5 

µM TSA for 12 h only reached 80% confluency after three days (Figure 5-5C, upper right panel, black 

curve). However, upon combined treatment with TSA and TRAIL, cells did not reach 80% confluency 

within the monitored time period (Figure 5-5C, lower right panel, black curve) indicating that the 

growth of these cells was severely defective. 

In conclusion, the addition of TRAIL aggravates TSA-induced cell death. This at least suggests that TSA-

induced DR5 may transmit the death signal from TRAIL. 

 

5.4.2 Depletion of TNFRSF10B by siRNA rescues the detrimental effects of combined 

treatment with TSA and TRAIL on cell survival 

To assess the influence of Death Receptor 5 (TNFRSF10B) on cell viability, it was depleted by 

transfection with two different siRNAs (TNFRSF10B#1/DR5#1 and TNFRSF10B#2/DR5#2) 24 h prior to 

treatment. Total RNA was isolated and reverse transcribed into cDNA. Next, relative gene expression 

of TNFRSF10B was assessed by qRT-PCR to monitor the efficiency of its depletion (Figure 5-5B). 

Depletion of TNFRSF10B reduced the additive effects of combined treatment with TSA and TRAIL 

(Figure 5-5A, lane 11+12). 

Moreover, the growth defect upon treatment with TSA and TRAIL, observed in cells transfected with 

scramble control siRNA (5.4.1), was not observed in cells depleted of TNFRSF10B (Figure 5-5C, lower 

right panel, grey curves). 
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5.5 HDAC inhibitors from different chemical classes induce LTR12 transcription 

All observations regarding the induction of LTR12-driven gene transcription so far were based on the 

use of TSA. This hydroxamate HDAC inhibitor binds Zn2+ which is an important cofactor for the eleven 

zinc-dependent HDACs. To examine if the observed effects are restricted to TSA, we tested a panel of 

HDAC inhibitors from different chemical classes for possible influences on LTR12 promoter activity (see 

Table 3-XIV). 

 

5.5.1 Treatment with HDAC inhibitors from different chemical classes induces LTR12-driven 

gene expression in testicular cancer cells 

GH cells were treated with increasing concentrations of HDAC inhibitors (0.5 µM, 2 µM, 8 µM) for 18 h. 

Next, total RNA was isolated and reverse transcribed into cDNA. Relative gene expression was then 

assessed by qRT-PCR. Aside from TSA, the hydroxamic acid histone deacetylase inhibitors Droxinostat 

and PCI-34051 were tested. Moreover, benzamide histone deacetylase inhibitors Entinostat, 

Mocetinostat and Tubastatin A hydrochloride were studied. Transcription of GTAp63 was significantly 

increased upon treatment with Trichostatin A, Entinostat, Mocetinostat and Tubastatin A (Figure 

5-6A). The same observation was made for the LTR12-driven transcript of TNFRSF10B (Figure 5-6B). 

Entinostat and Mocetinostat are selective for HDAC1, HDAC2 and HDAC3. Tubastatin A is a selective 

inhibitor of HDAC6 (IC50 15 nM). However, Droxinostat that selectively inhibits HDAC3, 6 and also 8 

does not show an increase in LTR12-driven gene transcription. Thus, inhibition of HDACs 1-3 appears 

to make the largest contribution to the activation of LTR12. 
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Figure 5-6. HDAC inhibitors from different chemical classes induce LTR12 transcription 

GH cells were treated with HDAC inhibitors from different chemical classes. Cells were treated with 
increasing concentrations of each inhibitor (0.5 µM, 2 µM, 8 µM) for 18 h. After this incubation time, 
total RNA was isolated and reversely transcribed into cDNA. Next, relative gene expression was 
assessed by qRT-PCR. [A] The transcription of GTAp63 and [B] transcription of TNFRSF10B LTR 
transcript 2 is depicted. A significant increase in transcription of the LTR12-driven isoforms of TP63 and 
TNFRSF10B was observed upon treatment with Trichostatin A, Entinostat, Mocetinostat and 
Tubastatin A. mRNA levels were normalized to RPLP0 and are shown as a fold change of DMSO-treated 
control cells. Error bars represent SD (n=3). * = p<0.05, ** = p<0.01, *** = p<0.001. 
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Figure 5-7. Treatment with HDAC inhibitors induces transcription of LTR12 in human cell lines 
derived from different tissues 

Human cell lines derived from different tissues were treated with with HDAC inhibitors Trichostatin A 
(TSA) or suberoylanilide hydroxamic acid (SAHA). Cells were treated with increasing concentrations of 
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each inhibitor (1 µM, 2 µM for TSA and 1 µM, 5 µM for SAHA) for 18 h. After this incubation time, total 
RNA was isolated and reverse transcribed into cDNA. Next, relative gene expression was assessed by 
qRT-PCR. The transcription levels of LTR-driven isoforms of [A] GTAp63 and [B] TNFRSF10B LTR 
transcript 2 are depicted. Except for HH cells, a significant increase in transcription for both LTR-driven 
transcripts was observed in all tested cell lines. mRNA levels were normalized to RPLP0. Cells treated 
with DMSO were used as controls. The tested cell lines were GH (testicular cancer cell line), H1299 
(lung carcinoma cell line), K562 (leukemia cell line), U2OS (osteosarcoma cell line), HeLa (cervical 
carcinoma cell line), Ovcar-3 (ovarian carcinoma cell line), HEK293 (embryonic kidney cell line), HH and 
HuT-78 (cutaneous T-cell lymphoma cell line). Error bars represent SD (n=3). * = p<0.05, ** = p<0.01, 
*** = p<0.001. 
 

 

5.6 Treatment with HDAC inhibitors induces transcription of LTR12 in human cell 

lines derived from different tissues 

As previously stated, we observed that LTR transcription is present in normal testis and is lost in 

testicular cancer cells [90]. However, treatment with HDAC inhibitors from different chemical classes 

can restore the transcription of LTR12-driven genes. This led us to hypothesize that the mechanism 

behind the de-repression of LTR12 transcription might also be accessible in cell lines derived from 

other tissues than testis. 

Therefore, we treated a panel of human cell lines with HDAC inhibitors increasing concentrations of 

TSA (1 µM, 2 µM) and suberoylanilide hydroxamic acid (SAHA) (1 µM, 5 µM). After 18 h, total RNA was 

isolated and reverse transcribed into cDNA. Next relative gene expression was assessed by qRT-PCR. 

Except for HH cells, a significant increase in the transcription of both GTAp63 (Figure 5-7A) and LTR-

driven TNFRSF10B (Figure 5-7B) was observed in all cell lines tested which includes H1299 (lung 

carcinoma cell line), K562 (leukemia cell line), U2OS (osteosarcoma cell line), HeLa (cervical carcinoma 

cell line), Ovcar-3 (ovarian carcinoma cell line), HEK293 (embryonic kidney cell line), and HuT-78 cells 

(cutaneous T-cell lymphoma cell line). In HH cells, which were derived from a cutaneous T-cell 

lymphoma, only LTR12-driven gene transcription of TNFRSF10B was significantly increased. 

These results show that LTR12 promoter activity can be induced by treatment with HDAC inhibitors in 

cancer and non-cancerous cell lines derived from a broad variety of tissues. 
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5.7 HDAC inhibitors do not induce the transcription of all endogenous retroviral 

elements in the human genome 

Since HDAC inhibitors can promote LTR12 promoter activity in cells derived from different tissues, we 

wanted to understand if this regulation was specific for the LTR12 promoter or a hallmark for all 

endogenous retroviral promoter elements in the human genome. 

5.7.1 All tested LTR12-driven genes are responsive to HDAC inhibitor treatment 

Initially, we designed primers for four cellular genes whose expression was shown to be partly 

regulated by an adjacent LTR12 (see 2.3) [27]. If possible, these primers were located exclusively in the 

LTR-driven isoforms. However, for ADH1C and GBP5, only total gene expression could be assessed. 

GH cells and U2OS cells were then treated with increasing concentrations of TSA and SAHA. After 18 h, 

total RNA was extracted and reverse transcribed into cDNA. Next, gene expression of the four 

previously described LTR12-driven transcripts as well as GTAp63 and TNFRSF10B LTR12 transcript 2 

was assessed by qRT-PCR. A significant increase for all six LTR12-driven transcripts was observed in GH 

cells (Figure 5-8A) and U2OS cells (Figure 5-9A). As compared to DMSO-treated control cells, the 

increase differed between the individual transcripts. Treatment of GH cells with 1 µM TSA  increased 

ADH1C transcription  12-fold, GBP5 transcription 86-fold, LTR12-driven SEMA4D transcription 161-

fold, TNFRSF10B 136-fold, GTAp63 2,050-fold, and DHRS2 up to 4,637-fold. Hence, LTR12 functions as 

a TSA-responsive promoter regardless of its integration site. 

 

5.7.2 LTR-driven isoforms from different HERV families are not globally induced by HDAC 

inhibitor treatment 

Next, we assessed the transcription of cellular genes driven by LTRs from ERV families other than HERV-

9 and envelope genes of endogenous retroviruses HERV-K and HERV-W. Transcription of the MaLR-

driven isoform of IL2RB and HERV-H LTR-driven GSDMB was increased upon treatment with TSA and 

SAHA in both cell lines, but less-than-tenfold (Figure 5-8B, Figure 5-9B). Transcription levels of the 

HERV-E LTR-driven isoform of APOC1, HERV-H LTR-driven isoform of DNAJC15, and also the HERV-K 

envelope transcript were decreased. Transcription of the HERV-W envelope was slightly increased in 

GH cells (up to 2.5-fold), and decreased in U2OS cells (down to 53% of transcription in DMSO-treated 

cells). Overall, endogenous retroviral promoter elements other than HERV-9 were not activated by 

HDAC inhibitor treatment to an extent that would be comparable to LTR12. We conclude that HDAC 

inhibitor treatment does not lead to a de-repression of ERV transcription in general. 
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Figure 5-8. HDAC inhibitors do not induce the transcription of all endogenous retroviral elements 

GH cells were treated with HDAC inhibitors Trichostatin A (TSA) or suberoylanilide hydroxamic acid 
(SAHA). Cells were treated with increasing concentrations of each inhibitor (0.5 µM, 1 µM, 2 µM for 
TSA and 1 µM, 5 µM for SAHA) for 18 h. After this incubation time, total RNA was isolated and reverse 
transcribed into cDNA. Next, relative gene expression was assessed by qRT-PCR. The transcription 
levels of [A] LTR12-driven isoforms of different cellular genes and, [B] cellular genes driven by LTRs 
from other ERV families and envelope genes of endogenous retroviruses HERV-K and HERV-W are 
depicted. A significant increase in the transcription of the LTR-driven isoforms was observed for all 6 
cellular genes driven by an LTR12 (HERV-9 LTR). Transcription of the MaLR-driven isoform of IL2RB was 
also significantly increased upon treatment with TSA and SAHA. Transcription of the HERV-E LTR-driven 
isoform of APOC1, HERV-H LTR-driven isoform of DNAJC15 and also the HERV-K envelope transcript 
was significantly decreased. mRNA levels were normalized to RPLP0. Cells treated with DMSO, the 
solvent of TSA and SAHA, were used as controls. Error bars represent SD (n=3). * = p<0.05, ** = p<0.01, 
*** = p<0.001. 
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Figure 5-9. HDAC inhibitors do not induce the transcription of all endogenous retroviral elements 

U2OS cells were treated with HDAC inhibitors Trichostatin A (TSA) or suberoylanilide hydroxamic acid 
(SAHA). Cells were treated with increasing concentrations of each inhibitor (0.5 µM, 1 µM, 2 µM for 
TSA and 1 µM, 5 µM for SAHA) for 18 h. After this incubation time, total RNA was isolated and reverse 
transcribed into cDNA. Next, relative gene expression was assessed by qRT-PCR. The transcription of 
[A] LTR12-driven isoforms of different cellular genes and [B] cellular genes driven by LTRs from other 
ERV families and envelope genes of endogenous retroviruses HERV-K and HERV-W is depicted. A 
significant increase in transcription of the LTR-driven isoforms was observed for all 6 cellular genes 
driven by an LTR12 (HERV-9 LTR). Transcription of the HERV-H-driven isoform of GSDMB was also 
significantly increased upon treatment with TSA. mRNA levels were normalized to RPLP0. Cells treated 
with DMSO, the solvent of TSA and SAHA, were used as controls. Error bars represent SD (n=3). * = 
p<0.05, ** = p<0.01, *** = p<0.001. 
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5.8 Depletion of various HDAC isoforms does not lead to a strong induction of 

LTR12 transcription 

Since treatment with various HDAC inhibitors resulted in the activation of the LTR12 promoter, we 

sought to determine which HDAC isoform was primarily involved in this regulation. Since TSA inhibits 

only zinc-dependent HDAC isoforms, we focused on those. 

 

5.8.1 HDAC isoforms 1, 2, 3 and 8 are most abundantly expressed in the cell lines used in 

this study 

First, we determined the expression level of all eleven zinc-dependent HDAC isoforms in the cell lines 

we used. Total RNA from GH cells and U2OS cells was isolated, reverse transcribed into cDNA and then 

expression of all isoforms was quantified by qRT-PCR. In both cell lines, HDAC isoforms 1, 2 and 3 are 

most abundantly expressed, followed by HDAC8 (Figure 5-10A). 

 

5.8.2 Depletion of the most abundantly expressed HDAC isoforms alone and in different 

combinations has only minor effects on LTR12 transcription 

Aside from TSA, the HDAC inhibitors Entinostat and Mocetinostat led to the strongest increase in LTR12 

transcription (Figure 5-6). Entinostat and Mocetinostat are rather selective inhibitors for HDAC 

isoforms 1, 2 and 3. In order to determine if HDAC1, HDAC2 and HDAC3 are the key enzymes for LTR12 

regulation, we depleted them in U2OS cells by siRNA. Furthermore, combinations with HDAC8 were 

also tested. Total RNA and protein was isolated 96 h after the initial siRNA transfection (see 4.1.3). 

Massive cell loss was observed upon depletion of HDAC3. RNA was reverse transcribed into cDNA and 

relative gene expression was quantified by qRT-PCR. Transcription of GTAp63 was increased up to 4-

fold upon combinatorial depletion of HDAC1+2, up to 3-fold upon depletion of HDAC1+2+3 and over 

6-fold upon depletion of HDAC1+2+8 (Figure 5-10B, upper left panel). Transcription of the LTR12-

driven TNFRSF10B isoform was not induced in a similar pattern. Depletion of HDAC3 alone and in 

combination with HDAC1 led to a 3-fold increase in transcriptional activity. Combined depletion of 

HDAC2+3, HDAC1+2+3 and HDAC1+2+8 also resulted in a slight induction (Figure 5-10B, upper right 

panel). Efficient silencing was shown at the mRNA level (Figure 5-10B, lower panel) as well as protein 

level for HDAC1+2 (Figure 5-10C). While treatment with HDAC inhibitors resulted in an over 200-fold 

increase in transcription of LTR12-driven TP63 (GTAP63) and TNFRSF10B (Figure 5-6), depletion of the 

most abundantly expressed HDAC isoforms did not mimic these effects (Figure 5-10B). 
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Figure 5-10. Depletion of various HDAC isoforms does not lead to a strong induction of LTR12 
transcription 

[A] Total RNA from GH cells and U2OS cells was isolated, reverse transcribed into cDNA and expression 
of the 11 zinc-finger-dependent HDAC isoforms quantified by qRT-PCR. In the cell lines used, HDAC 
isoforms 1, 2 and 3 are the most abundantly expressed while HDAC8 also shows robust expression. [B] 
In U2OS cells, HDAC isoforms 1, 2, 3 + 8 were depleted alone or in combinations by transfection with 
siRNAs. Cells were harvested 96 hours after initial transfection and total RNA was isolated and reverse 
transcribed into cDNA. Next, relative gene expression of GTAp63, TNFRSF10B LTR transcript 2 (upper 
panel) as well as the different HDAC isoforms (lower panel) was assessed by qRT-PCR. mRNA levels 
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were normalized to RPLP0 and are shown as a fold change compared to control cells which were 
transfected with scrambled control siRNA. Depletion of these 4 isoforms did not result in a comparable 
induction of LTR12 transcription as observed upon treatment with HDAC inhibitors. Error bars 
represent SD (n=3). * = p<0.05, ** = p<0.01, *** = p<0.001; [C] In parallel total protein was isolated 
and separated by SDS-PAGE followed by immunoblotting with specific antibodies against HDAC1, 
HDAC2 and Hsp90 to demonstrate efficient protein depletion. 
 

 

5.9 Assessment of different known ERV-regulating proteins in LTR12 regulation 

In order to understand the underlying mechanism of HDAC inhibitor induced activation of LTR12-driven 

transcripts, we tested the influence of various ERV-regulating factors (see 2.2). First, we verified the 

expression of the respective factors in our cell lines. Next, we depleted each factor by siRNA 

transfection and analyzed if its absence influenced LTR12 transcription per se or its activation through 

HDAC inhibition. However, depletion of neither KRAB-associated protein-1 (KAP1), Piwi-like protein 1 

(PIWIL1) nor ten-eleven translocation protein 1 (TET1) had any significant effect on LTR12 transcription 

(data not shown). 

 

5.9.1 Depletion of KDM1A results in a slight induction of LTR12 transcription 

Another potential target was Lysine (K)-specific demethylase 1A. Transcription of KDM1A was silenced 

in GH cells by independent treatment with three different siRNAs over 96 h (see 4.1.3). 18 h prior to 

harvesting, cells were treated with 0.5 µM TSA or its solvent DMSO. Total RNA was isolated and reverse 

transcribed into cDNA. Next, relative gene expression was assessed by qRT-PCR. Depletion of KDM1A 

resulted in a slight induction of LTR12 transcription in DMSO-treated control cells (Figure 5-11A). This 

induction varied between 2- to 19- fold for GTAp63 and 2- to 6- fold for TNFRSF10B LTR transcript 2 

for the three siRNAs and experiments. Treatment with TSA resulted in an increase in LTR12 

transcription which was not obstructed or enhanced by depletion of KDM1A. 

 

KDM1A transcription was significantly reduced by all three siRNAs used as determined by qRT-PCR 

(Figure 5-11B). Moreover, treatment with TSA resulted in a significant reduction of KDM1A 

transcription in control cells, an effect also observed in the previously mentioned microarray (see 2.4). 



Results 

74 

 
Figure 5-11. Depletion of KDM1A results in a slight induction of LTR12 transcription 

Lysine (K)-specific demethylase 1A (KDM1A) was depleted in GH cells by independent transfection with 
3 different siRNAs. Cells were incubated with either 0.5 µM Trichostatin A (TSA) or DMSO 18 h prior to 
harvesting. Cells were harvested 96 hours after initial transfection and total RNA was isolated and 
reverse transcribed into cDNA. Next, relative gene expression of [A] LTR12-transcripts GTAp63 and 
TNFRSF10B LTR transcript 2 as well as [B] KDM1A was assessed by qRT-PCR. mRNA levels were 
normalized to RPLP0 and are shown as a fold change compared to control cells which were transfected 
with scrambled control siRNA. Depletion of KDM1A resulted in a slight induction of LTR12 transcription 
in DMSO-treated control cells. This induction varied between 2- to 19- fold for GTAp63 and 2- to 6- 
fold for TNFRSF10B LTR transcript 2 between the three siRNAs and experiments. Treatment with TSA 
resulted in a significant increase in LTR12 transcription. This induction was not obstructed by depletion 
of KDM1A. Transfection with siRNA resulted in a significant reduction in KDM1A transcription for all 
three siRNAs used. Treatment with TSA resulted in a significant reduction of KDM1A transcription in 
control cells. Error bars represent SD (n=3). * = p<0.05, ** = p<0.01, *** = p<0.001 relative to DMSO-
treated SSC control cells. 
 

 

5.10 Identification of specific LTR12-binding transcription factors 

None of the previously described ERV-regulating factors showed a strong impact on LTR12 

transcription (see 5.9). Moreover, we observed no broad strong transcriptional activation of ERV 

promoter elements upon treatment with HDAC inhibitors, but a rather restricted activation of ERV9 

LTR transcription (Figure 5-8, Figure 5-9). Therefore, we sought to determine if a specific LTR12-binding 

transcription factor was involved in its regulation. 

 

5.10.1 In-silico analysis of known and suggested LTR12-driven cellular genes reveals 13 

transcription factors that might be involved in their regulation 

To identify putative transcription factor binding sites involved in the HDAC activity-dependent 

activation of LTR12 transcription, we performed an in-silico analysis using the PROMO tool (see 4.2.5). 

Herein we compared the sequences of 24 ERV9 LTRs for shared binding sites. The analyzed sequences 

were either described previously to harbor alternative promoters for the transcription of adjacent 
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genes (ADH1C, GBP5, SEMA4D and DHRS2) or were identified as potential gene-regulating elements 

by us (Table 2-I). The LTR12 sequences adjacent to TP63 and TNFRSF10B were also included in the 

analysis. Overall, the LTR12 sequences shared binding sites for 13 transcription factors (Table 5-II). 

Since we were especially interested to elucidate the mechanism behind HDAC inhibitor-induced LTR 

promoter activity, we performed a similar search with control LTR sequences. These sequences 

corresponded to the LTRs that were previously tested non- or only slightly responsive to HDAC 

inhibition (Figure 5-8 and Figure 5-9). Only factors that were predicted to bind in all LTR12, but not in 

the non-responsive LTR sequences (as indicated by “NO” in Table 5-II) were suitable candidates to be 

involved in the specific regulation. These factors were FOXP3 (forkhead box P3), GR (glucocorticoid 

receptor), PR A and PR B (progesterone receptors A and B), c-Ets-2 (cellular E-twenty-six) and NF-Y 

(nuclear transcription factor Y). Next, we sought to elucidate if one of these factors had been described 

in the regulation of endogenous retroviral elements before. 

 

 
Table 5-II. In-silico analysis of LTR12 sequences in different loci reveals a set of transcription factors 
possibly involved in LTR12 regulation 

The sequences of 24 LTR12s in the human genome were analyzed for putative transcription factor 
binding sites by the PROMO MultiSearchSites tool. The LTR12 sequences were identified previously as 
candidates to drive the transcription of an adjacent cellular gene. The table sums up 13 transcription 
factors that might bind within the LTR12 sequences and be involved in their regulation. The consensus 
sequence of the binding motif is also given. As a control, a corresponding in-silico analysis was 
conducted with LTR sequences from different HERV families, that were tested in Figure 5-8 and Figure 
5-9.  If the respective transcription factor was also predicted to bind in these non-responsive 
sequences, it is indicated in the last column as “Yes”. R: purine base; Y: pyrimidine base; X: either 
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5.10.2 NF-Y is frequently bound at LTR12 sequences in the human genome 

In late 2013, John D. Fleming et al. reported that a bulk of NF-Y binding sites in human K562 cells 

overlapped with endogenous retroviral LTRs [122]. The majority of these LTRs were of the MLT1 and 

LTR12 type, which pointed towards a selective binding of NF-Y to these LTR families. We were intrigued 

by these findings and sought to determine, if NF-Y binding was also present on the LTR12 we studied. 

 

  

Figure 5-12. Overlap of NF-Y binding sites with 
LTR12 locations 

 
 

ChIP-seq data for binding of the NF-Y subunits 
alpha (NF-YA) and beta (NF-YB) was retrieved from 
GEO and analyzed for overlapping binding sites 
with LTR12 locations. Shown here are the results in 
[A] HeLa-S3 cells, [B] K562 cells, and [C] GM12878 
cells. The total binding sites for NF-YA and NF-YB as 
well as their overlap are also depicted. Note that 
not all locations are bound by both subunits. The 
analyzed LTR12 locations (red) correspond to the 
ones used for the in-silico prediction of 
transcription factor binding sites (Table 5-II). The 
binding of NF-Y to LTR12 differs between the three 
cell lines. In total 17% - 92% of the analyzed LTR12s 
were bound by NF-Y in cells. Detailed results are 
shown in Table 8-I. 
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5.10.3 NFY-binding sites overlap with LTR12 whose transcription is enhanced by HDAC 

inhibition 

We retrieved information about NF-Y binding sites in HeLa-S3 cells (cervical carcinoma cell line), K562 

cells (leukemia cell line), and GM12878 cells (lymphoblastoid cell line) from GEO (see 4.4) [122]. NF-Y 

is composed of three subunits – alpha, beta and gamma. Binding data was available for NF-Y alpha (NF-

YA) and NF-Y beta (NF-YB). Next, we created a bed-file with the LTR12 locations, which we had 

previously subjected to an in-silico prediction of transcription factor binding sites (see 5.10.1). These 

LTR12s had in common, that they were proven or strongly suggested to drive transcription of adjacent 

cellular genes in an HDAC-dependent manner. Subsequently, we analyzed the overlap between NF-Y 

binding sites and LTR12 locations. In HeLa-S3 cells, 4 of the 24 LTR12s were bound by either NF-YA 

and/or NF-YB (Figure 5-12A). Table 8-I shows a summary of the respective LTR12s and subunits. 

Interestingly, 92% of the analyzed LTR12s showed NF-Y occupancy in K562 cells (Figure 10B) and in 

GM12878 cells 63% (Figure 5-12C). This showed that the predicted binding of NF-Y to LTR12s in-silico 

was actually present in cells. 

 

5.10.4 NF-Y is expressed in our cell lines with levels differing between testis and testicular 

cancer cells 

To determine, if NF-Y was also present in a testicular context, we assessed transcription of its three 

subunits. Therefore, total RNA from GH cells was isolated, that were either treated with 0.5 µM TSA 

for 18h or DMSO. Next, the RNA from GH cells and RNA from normal human testis tissue (Ambion) 

were reverse transcribed to cDNA and analyzed by qRT-PCR. Transcripts of all three subunits were 

present in normal testis tissue (Figure 5-13A, black bar). Interestingly, transcription was reduced in 

testicular cancer cells (Figure 5-13A, grey bars). Furthermore, transcription of subunits beta and 

gamma was further reduced upon treatment with TSA. 

 

5.10.5 Knock-down of NF-Y results in moderate induction of LTR12-driven transcription 

To determine whether the presence of NF-Y influences the promoter activity of LTR12 elements, we 

depleted NF-Y in GH cells by siRNA transfection. Cells were harvested 96 h after initial transfection and 

total RNA was isolated and reverse transcribed into cDNA. Relative gene expression of GTAp63n 

TNFRSF10B LTR transcript 2 as well as the three NF-Y subunits was assessed by qRT-PCR. Depletion of 

NF-YA and NF-YB resulted in a slight induction of GTAp63 (up to 5-fold) and LTR12-driven TNFRSF10B 

(Figure 5-13B, upper panel). Combined depletion of all three subunits increased these effects. 

However, large variations were observed between the different experiments. For example, induction 

of GTAp63 after depletion with siRNA combination NFYA#1 + NFYB + NFYC#2 varied between 13-fold 



Results 

78 

in experiment one, 6-fold in the second experiment and 18-fold in the third. Moreover, no efficient 

knock-down could be achieved at the transcriptional level for NF-YA nor NF-YB (Figure 5-13B, lower 

panel). We observed increased transcription of one subunit upon depletion of the other (single knock-

downs data not shown). This effect was also observed for the NF-Y subunit gamma upon depletion of 

alpha and beta (Figure 5-13B, lower panel). 

Overall, a slight tendency for LTR12 induction upon depletion of NF-Y subunits was observed, which 

was stronger than upon depletion of KDM1A (Figure 5-11A). However, further analysis must be 

conducted to confirm the significance of these results. 

 

 
Figure 5-13. NF-Y expression pattern and possible involvement in LTR12 regulation 

[A] Total RNA from GH cells was isolated, reverse transcribed into cDNA and expression of the three 
subunits of transcription factor NF-Y (alpha, beta, gamma) quantified by qRT-PCR. In parallel, an RNA 
sample from normal human tissue (Ambion) was analyzed. [B] In GH cells, NF-Y subunits alpha (NF-
YA), beta (NF-YB) and gamma (NF-YC) were depleted in various combinations by transfection with 
siRNAs. Cells were harvested 96 hours after initial transfection and total RNA was isolated and reverse 
transcribed into cDNA. Next relative gene expression of GTAp63, TNFRSF10B LTR transcript 2 (upper 
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panel) as well as the different subunits (lower panel) was assessed by qRT-PCR. mRNA levels were 
normalized to RPLP0 and are shown as a fold change compared to control cells which were transfected 
with scrambled control siRNAs. Depletion of all three subunits resulted in a slight induction of LTR12 
transcription. The induction varied between 4- and 35-fold for GTAp63 and 2- and 11-fold for 
TNFRSF10B LTR transcript 2. Transcriptional silencing was only efficient for NF-YC and NF-YB in 
combination with NF-YA#2. Error bars represent SD (n=3). * = p<0.05, ** = p<0.01, *** = p<0.001. 
 

5.11 LTR12-binding pattern of nuclear transcription factor Y changes upon 

treatment with HDAC inhibitor 

5.11.1 Identification of genomic regions with strong NF-Y binding 

Since NF-Y was shown to bind to LTR12 in different cell lines, we sought to determine if this was also 

true for testicular cancer cells. Moreover, we were interested in determining whether binding of NF-Y 

to LTR12 changes upon treatment with HDAC inhibitors. With the help of Prof. Roberto Mantovani 

(Department of Biomolecular Sciences and Biotechnology, Milan, Italy), we retrieved the coordinates 

of NF-Y peaks within LTR12 sequences (Table 5-III). According to these peaks, we designed primers for 

the subsequent analysis of chromatin immunoprecipitation of NF-Y in GH cells. Primers for LTR12 

adjacent to DHRS2, PGPEP1L, TNFRSF10B and TP63 gave rise to the expected PCR products when 

tested on genomic DNA. 

 

 
Table 5-III. Location of NF-Y bound to LTR12 in the human genome 

The coordinates of NF-Y peaks within LTR12 sequences upstream of cellular genes obtained by ChIP-
seq analysis are presented. The names of the cellular genes adjacent to the LTR12s are given in the 
table. The signals were obtained either with specific antibodies for NF-Y subunit alpha „YA“ or beta 
„YB“. For the subsequent analysis of ChIP data from GH cells, oligonucleotide sequences were chosen 
within the NF-Y coordinates shown here. Cell types: K – K562; G – GM12878; H – HeLa-S3. The ChIP-
seq experiment was published by Fleming J.D. et al. [122] and the table prepared by Prof. R. Mantovani 
(Department of Biomolecular Sciences and Biotechnology, Milan, Italy). 
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5.11.2 Increased occupancy of LTR12 with NF-Y after treatment with HDAC inhibitor 

GH cells were treated with 0.5 µM Trichostatin A 18 hours prior to chromatin harvesting. Next, the 

chromatin was immunoprecipitated with specific antibodies against NF-YA and NF-YB. As a control, 

chromatin was also immunoprecipitated with IgG. The maximum recovery with IgG at all target sites 

was at 0.02% of input (data not shown). The recovery as percentage of input of the respective target 

site was determined. The inactive promoter region of myoglobin was analyzed as a negative control. 

Thereby, unspecific binding of the antibodies to the DNA was eliminated. Cyclin B1 was analyzed as a 

positive control [110]. Both antibodies resulted in an efficient recovery of Cyclin B1 (Figure 5-14A+B). 

However, the signals at the LTR12 sites upon precipitation with the antibody against NF-YA were only 

slightly above background (Figure 5-14A). Signals for NF-YB were generally stronger than for NF-YA 

(Figure 5-14B). NF-YB interaction with the LTR12 upstream of PGPEP1L was significantly increased 

upon treatment with TSA. On average, this increase was about 2.4-fold. The same tendency was also 

observed at the LTR12 upstream of DHRS2 (p-value 0.236), TNFRSF10B (p-value 0.081) and TP63 (p-

value 0.118). Binding of NF-YB at these promoter regions was increased by an average of 2.8-fold at 

the LTR12 upstream of DHRS2, 3.2-fold upstream of TNFRSF10B and 2.2-fold upstream of TP63. These 

data indicate that NF-Y is not only present at the endogenous retroviral promoter elements, but its 

binding pattern also changes in response to treatment with TSA. 
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Figure 5-14. Chromatin immunoprecipitation reveals increasing occupancy of LTR12 with NF-YB 
after HDAC inhibitor treatment 

GH cells were treated with 0.5 µM Trichostatin A (TSA) 18 hours prior to chromatin harvesting. Next 
chromatin was immunoprecipitated with specific antibodies against [A] NF-YA or [B] NF-YB. The 
recovery (% of input) for each subunit at different LTR12 locations is depicted. Signals for NF-YB were 
generally stronger than for NF-YA. As a positive control, Cyclin B1 was analyzed. The inactive promoter 
region of myoglobin served as an internal negative control. NF-YB interaction with the LTR12 upstream 
of PGPEP1L was significantly increased upon treatment with TSA. The same tendency was also 
observed at the LTR12 regions upstream of DHRS2, TNFRSF10B and TP63. As a control, an 
immunoprecipitation with IgG was performed. IgG recovery rates were under 0.02% for all tested 
target sites. Error bars represent SD (n=3). * = p<0.05, ** = p<0.01, *** = p<0.001. 
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6 Discussion 

6.1 Identification of TNFRSF10B as a novel gene driven by LTR12 and re-

activatable mediator of testicular cancer cell death 

TNFRSF10B is well known for its involvement in programmed cell death. The protein encoded by this 

gene contains an intracellular death domain and is activated by TRAIL to transduce apoptosis signals. 

Transcription of TNFRSF10B is enhanced upon DNA damage in a p53-dependent manner [128] and 

contributes majorly to germ cell death in humans as well as rodents [129, 130]. Sensitization of human 

cancer cell lines to TRAIL-mediated apoptosis by treatment with HDAC inhibitors was first observed 

over a decade ago [131-134]. Nakata et al. and others suggested, that the upregulation of 

TNFRSF10B/DR5 by histone deacetylase inhibitors was causing the enhancement of apoptosis [135, 

136]. Since observed in leukemia cells with inactive p53, this induction was most likely p53-

independent [136] and may instead have been driven by LTR12 activity. 

Since TNFRSF10B was among the candidate genes whose transcripts contained an LTR12 and that were 

induced by HDAC inhibitor treatment (Table 2-I), we sought to determine if the upstream located 

LTR12 was indeed acting as an alternative promoter for TNFRSF10B transcription and whether this 

contributed to cell death in germ cells. 

 

6.1.1 A transcript encoding death receptor 5 originates from an LTR12 

We confirmed the presence of a solitary LTR of the endogenous retrovirus family 9 (ERV9) upstream 

of TNFRSF10B in the human genome (Figure 5-2A). Since the LTR12 upstream TNFRSF10B was only 

present in the genomes of humans, chimpanzees, gorillas, orangutans and gibbons, the transposition 

occurred roughly 18 million years ago in a common ancestor (Figure 5-2 and Figure 5-3). We identified 

three distinct transcripts of TNFRSF10B originating from the LTR12 (Figure 5-1A). Transcription of all 

three transcripts was significantly enhanced by treatment with the HDAC inhibitor TSA (Figure 5-1B). 

Interestingly, LTR12 promoter activity was only observed in the small intestine and testis (Figure 5-4B). 

This indicates that the LTR12 serves as tissue-specific promoter for TNFRSF10B. These data fit with 

previous results obtained for an LTR12 that drives transcription of the TP63 gene in a tissue-specific 

manner [90]. Transcription of the LTR12-driven transcript of TP63, GTAp63, was found to be largely 

confined to the human testis [90]. However, no GTAp63 expression was detected in the small intestine. 

The reasons for differing results regarding transcription of TNFRSF10B and TP63 in the small intestine 

might be due to sequence variations in the two LTR12s. Mutations accumulated in the LTR12 upstream 

of TNFRSF10B might have given rise to binding sites for intestine specific transcription factors. While 

no such factors were identified by in-silico predictions (data not shown), their binding in vivo cannot 

necessarily be excluded. 
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6.1.2 HDAC inhibitor treatment sensitizes testicular cancer cells to TRAIL-mediated 

apoptosis 

We observed enhanced cell death upon combinatorial treatment of testicular cancer cells with HDAC 

inhibitor TSA and DR5 ligand TRAIL (Figure 5-5). These synergistic effects depended on TNFRSF10B 

expression as demonstrated by its siRNA-mediated depletion (Figure 5-5B). These results are in line 

with previous findings of enhanced apoptosis upon combinatorial treatment with TSA and TRAIL in 

other cancer cell lines, thus providing further evidence that HDAC inhibitors are important in the 

regulation of TNFRSF10B-dependent cell death. 

 

6.1.3 Promoter activity of LTR12 is enhanced in a range of human cancer cell lines 

Interestingly, transcription of LTR12-driven TNFRSF10B was enhanced by HDAC inhibitors not only in 

testicular cancer cells, but also in various other cancer cell lines (Figure 5-7B). These results 

demonstrate that LTR12 promoter activity can be specifically modulated in a wide range of human 

cancer cells. This observation fits with previous reports of increased TNFRSF10B expression upon 

treatment with HDAC inhibitors in various human leukemia, colon adenocarcinoma and other cell lines 

[135-137]. The strong increase in LTR12 promoter activity might markedly contribute to the observed 

increase in TNFRSF10B protein levels. Moreover, LTR12 promoter activity seems to be p53-

independent, since the cell lines tested included cell lines lacking p53 such as H1299 cells. Thus, these 

findings add to the growing body of data indicating that upregulation of TNFRSF10B can occur in a p53-

independent manner [136] and provide evidence for an alternative pro-apoptotic pathway.  

 

 

6.2 Global TE silencing factors have little influence on LTR12 transcription 

As described above (see 2.1.1), mobilization of transposable elements helps to drive evolution but can 

also be harmful to the host [14, 43, 138]. Therefore, the spreading of TEs has to be controlled tightly 

[43]. In depth studies have identified various mechanisms for TE silencing in the genome (see 2.2). 

These include DNA methylation, histone modifications and post-transcriptional silencing by small 

inhibitory RNAs [31, 32, 52]. DNA methylation is a well-established method of TE silencing and it has 

been suggested that this process originally evolved primarily for this purpose [139]. Paternal and 

maternal DNA undergo de-methylation in early stages of embryonic development [42, 140]. This 

implies the necessity of additional TE silencing strategies to avoid their uncontrolled spreading [43, 

52]. Accordingly, numerous studies to identify TE silencing factors were carried out in stem cells and 

embryos, predominantly from mice. Among the identified silencing factors were the scaffold protein 

KAP1 and the histone demethylase KDM1A [62, 63]. KAP1 is recruited to TE sequences by KRAB-ZFP 
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transcription factors, where it functions to recruit additional TE silencing factors. For example, KAP1 

directs the NuRD (nucleosome remodeling and histone deacetylase) complex, as well as KDM1A, to 

chromatin [43, 58, 62]. The NuRD complex consists of six core subunits, including ATPases MI-2 alpha 

and Mi-2 beta as well as HDACs 1 and 2 [141, 142]. It couples chromatin remodeling ATPase and 

deacetylase activity, providing the ability to render chromatin inactive [143]. KDM1A functions to 

remove methyl groups from H3K4, resulting in gene silencing. Interestingly, KDM1A was shown to 

associate with the NuRD subunits HDAC1 and HDAC2 in mESC [144]. Moreover, acetylated histones 

were reported to repress its H3K4 demethylase activity [145, 146]. 

 

Promoter activity for the different solitary LTR12s in the human genome seems to be regulated in a 

tissue-specific manner [10]. Moreover, it can be repressed upon transformation [90]. To identify 

silencing mechanisms involved in LTR12 regulation in human cells, we depleted various TE silencing 

factors and monitored transcription originating from LTR12s in their absence. Since LTR12 promoter 

activity can be restored by treatment with HDAC inhibitors (Figure 5-7), we initially focused on factors 

that were previously linked to histone acetylation and deacetylation. 

 

Depletion of the histone demethylase KDM1A resulted in a slight induction of LTR12 transcription in 

testicular cancer cells (Figure 5-11) and did not interfere with the induction of LTR12 by HDAC 

inhibition. Thus, removal of the activating histone 3 lysine residue 4 methylation might contribute to 

LTR12 silencing, but is not a predominant factor required for its repression. Moreover, KDM1A does 

not seem to be an essential factor in the directed activation of LTR12 upon HDACi treatment. However, 

KDM1A knock-down efficiency, though significant at the mRNA level, could not be verified at the 

protein level and might therefore have been incomplete. 

 

Furthermore, no changes in LTR12 promoter activity were observed upon depletion of KAP1, TET1 and 

PIWIL1 (data not shown). However, given that LTR12s are not present upstream TP63 and TNFRSF10B 

in mice, the previous observations of ERV de-repression upon depletion of the respective factors do 

not necessarily contradict our findings, since previous studies were mostly carried out in mice and 

accordingly did not focus on HERV-9 LTRs. Initial experiments with the DNA de-methylating agent 

5’Azacytidine did not result in alterations in GTAp63 transcription (personal communication from Dr. 

Ulrike Beyer). Therefore, we focused on mechanisms other than DNA methylation. Additionally, MeDIP 

with methyl-DNA-antibody resulted in no signal for LTR12s upstream of TP63 and TNFRSF10B in 

testicular cancer cells (data not shown), indicating the absence of DNA methylation at these LTR12s. 

While these preliminary findings do not exclude the possibility that alterations in DNA methylation are 

responsible for the changes observed in LTR12 activity upon HDAC inhibitor treatment, they do argue 
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strongly against it. Studies with genome wide bisulfite sequencing of untreated and TSA-treated cancer 

cells might shed light on putative DNA methylation changes at LTR12 promoter sites. 

Overall, analysis of the effects of HDAC inhibition on various LTR-driven cellular genes revealed a rather 

specific induction of genes controlled by TEs of the LTR12 family (Figure 5-8, Figure 5-9). Therefore, 

while the orchestrated activation of LTR12s may in part be regulated by the aforementioned silencing 

mechanisms, such as KDM1A-confered histone demethylation, our data indicated the involvement of 

LTR12-specific factors. Based on this evidence, we decided to focus on TE silencing factors with 

putative affinity for specific binding sites within LTR12 promoter sequences. 

 

 

6.3 NF-Y binding to LTR12 increases in TSA-treated cells 

In-silico prediction of potential transcription factor binding sites shared by all LTR12s, whose promoter 

activity was increased in TSA-treated cells (Table 2-I, Figure 5-8, Figure 5-9), identified NF-Y as a 

putative regulator (Table 5-II). NF-Y is a trimeric transcription factor (TF) that consists of three subunits 

- alpha appears to confer sequence-specificity for the DNA motif CCAAT while beta and gamma exert 

histone-like structural features [80, 81]. Binding of NF-Y was observed both in core promoters and 

enhancer elements [147]. Various studies identified NF-Y to be crucial in the regulation of cell growth, 

promoting transcription of various cell cycle genes [148-150]. Moreover, NF-Y binding in the promoter 

region of various cellular genes was shown to be essential for their transcriptional activation by HDAC 

inhibitors [151-153]. However, NF-Y might not only enhance gene transcription but also repress it [154, 

155]. The mechanisms underlying these contradictory outcomes are not fully understood yet. Apart 

from transactivating gene transcription, NF-Y might also serve as a promoter organizer – e.g. 

cooperating with neighboring TFs and recruiting histone-modifying enzymes [147, 155]. In line with 

these hypotheses, NF-Y was found to be associated with histone acetyl transferases as well as 

deacetylases [149, 151, 154, 156, 157]. Apart from the recruitment of acetyltransferases and 

deacetylases, NF-Y may also be post-translationally modified itself by ubiquitination, phosphorylation 

and acetylation [81, 158, 159]. These modifications might further alter the functional implications of 

NF-Y bound to a genomic region [155]. In one study, acetylation of NF-Y subunit alpha was shown to 

increase its stability and transactivation activity [158]. Recently, a genome-wide study of NF-Y binding 

sites in three human cell lines revealed, that a bulk of these sites overlapped with endogenous 

retroviral LTRs [122].  
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We thus sought to determine if NF-Y was indeed present at these LTR12s and elucidate the impact of 

its binding on LTR12 promoter activity. We observed the presence of NF-Y at all 4 genomic LTR12s that 

we tested in GH cells. These LTR12s were located upstream of the cellular genes DHRS2, PGPEP1L, 

TNFRSF10B and TP63 (Figure 5-14). We noted marked differences in the binding intensities of the alpha 

and beta subunit. This corresponds to previous observations by Fleming et al. in K562 cells, GM12878 

cells and HeLa-S3 cells. This difference could be due to target loci bound exclusively by NF-YB. However, 

Fleming et al. hypothesized that, in comparison to the NF-YA antibody, the NF-YB antibody was more 

“immune-efficient”, rendering some NF-YA peaks below the detection limit rather than reflecting an 

actual abundancy of exclusive NF-YB sites [122]. Binding of NF-YA and NF-YB to the different LTR12s 

was increased in TSA-treated GH cells (Figure 5-14). Preliminary data showed the same increase in NF-

YB binding in HeLa and U2OS cells (data not shown). The increase in LTR12 promoter activity upon 

HDAC inhibitor treatment might therefore be accompanied by a general increase in NF-Y binding. Thus, 

NF-Y might positively regulate LTR12 promoter activity. 

 

However, experimental assessment of NF-Ys role in regulating the promoter activities of LTR12s has 

produced contradictory results. For example, lentiviral depletion of NF-Y subunit alpha with shRNAs in 

H322 cells resulted in a slight transcriptional repression of TP63, an effect not observed in HeLa-S3 

cells, providing evidence that NF-Y positively regulates LTR12 promoter activity (personal 

communication from Prof. Roberto Mantovani). On the contrary, our preliminary results showed that 

depletion of NF-Y by siRNAs, while not as efficient as depletion by lentivirally delivered shRNAs, 

resulted in an increase in LTR12 transcription (Figure 5-13) which rather points towards a repressive 

function for NF-Y present at the retroviral promoter elements.  

 

These seemingly contradictory findings can be reconciled by the fact that NF-Y has already been 

described to exert dual functions at promoters. Peng et al. observed cell-specific interactions of NF-Y 

with promoter elements and other proteins that modulate its transcriptional activity [154, 160].  
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Figure 6-1. Possible influence of NF-Y on LTR12 promoter activity 

Depending on their genomic locations LTR12s seem to be transcriptionally active in specific tissues. 
NF-Y is present at LTR12s regardless of their activity. Additional factors as well as post-translational 
modifications might alter complex formation and thereby chromatin activity. [A] In most tissues a 
factor X might be present, strengthening interaction of NF-Y with HDACs, thus leading to 
transcriptional repression. Upon transformation, factor X might be upregulated in testicular cancer 
cells. [B] Upon absence of factor X or treatment with HDAC inhibitors, NF-Y associates with HATs, 
resulting in an upregulation of LTR12 promoter activity in various human cell lines. Herein, acetylation 
of NF-Y itself might alter its interaction with factor X. 
 

Thus, one could speculate that NF-Y present at LTR12 promoter elements might recruit HDACs 

resulting in transcriptional repression (Figure 6-1). This interaction could be strengthened by another 

“factor X”, which might be absent or altered in germ cells. Upon treatment with HDAC inhibitors, 

acetylation of NF-Y itself might enhance its affinity for LTR12 and abolish the interaction with the 

repressive factor X. Moreover, upon release from HDAC complexes, the available NF-Y might interact 

with HATs instead [160]. These changes might be quite dynamic, fitting to the observation that 

interactions of HDACs with transcription factors exist in “rapid equilibrium” [161]. Thus, NF-Y may have 

a dual function as activator or repressor of LTR12 promoter activity, depending on the cellular context. 

 

In the present study, we only analyzed the binding pattern of NF-Y at four LTR12 genomic loci. Thus, 

further studies are required to clarify the role of NF-Y in HDACi-mediated activation of a broader range 

of LTR12 promoters. ChIP-seq analysis of TSA-treated cancer cells could on the one hand reveal if all 

LTR12s, that drive the expression of adjacent cellular genes in a HDACi-responsive manner, show 

increased NF-Y binding. On the other hand, genomic loci of HERV elements that were shown to be non-

responsive to treatment with HDACi (Figure 5-8, Figure 5-9) could be analyzed as controls. 

To identify cofactors in LTR12-regulation, the proteome of normal testis could be compared to 

testicular cancer cells. Since LTR12 promoter activity is markedly reduced in the latter, a possible 
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repressive “factor X” might be exclusively present in transformed cells. Moreover, Co-IP experiments 

with NF-Y in untreated versus TSA-treated cancer cells followed by mass spectrometry could help to 

identify binding partners and shed light on a possible interaction of NF-Y with a repressive cofactor. 

 

 

6.4 New perspectives for anti-cancer effects of HDAC inhibitors 

Histone acetylation and deacetlyation is a well-established epigenetic mechanism involved in 

transcriptional regulation [54, 60, 103]. Promoter regions of active genes usually display high levels of 

histone acetylation [60]. The maintenance of adequate acetylation levels at active and low acetylation 

levels at inactive gene promoters might be quite dynamic [162]. The enzymes involved in the addition 

and removal of acetyl groups to and from histones are histone acetyltransferases and deacetlyases 

respectively [98]. However, the molecular targets of HDACs also include nonhistone substrates [100]. 

The latter include transcription factors, HATs themselves, alpha-tubulin and chaperone proteins – 

influencing the stability, interactions or, for example, localization of the acetylated proteins [100, 163]. 

The molecular responses to HDAC activity range from apoptosis, migration and differentiation to 

angiogenesis [163, 164]. Since cancer cells are characterized by six principle hallmarks, including the 

induction of angiogenesis and active invasion and metastasis [165, 166], a link between HDAC activity 

and cancer treatment is not farfetched. Although the data is still rudimentary, certain HDAC isoforms 

were found to be overexpressed in many cancers supporting this potential link [164]. The anticancer 

effects of HDAC inhibitors are well documented, which is exemplified by the abundance of HDAC 

inhibitors in clinical trials as well as the approval of SAHA and romidepsin by the US Food and Drug 

Administration for the treatment of cutaneous T-cell lymphoma (CTCL) [102, 163]. SAHA is a 

hydroxamic acid HDACi, binding to zinc ions in the active site of HDACs [102]. While Panobinostat is in 

phase III clinical trials for CTCL, ongoing phase II are being conducted for Belinostat, Entinostat, 

Mocetinostat, Givinostat, Pactinostat, Chidamide, Quisinostat and Abexinostat for different cancer 

types, including lymphomas and solid tumors [163]. 

 

Given that we observed strong upregulation of LTR12 promoter activity upon treatment with HDAC 

inhibitors, we sought to determine the molecular grounds of this HDAC-dependent regulation and how 

the LTR12-driven upregulation of anti-tumor proteins might be exploited. 

 

Interestingly, treatment with HDAC inhibitors did not only induce LTR12-driven gene expression in 

testicular cancer cells as reported previously [90], but also in a set of human cancer cells derived from 

different tissues (Figure 5-7). Moreover, we observed an increase in LTR12 promoter activity upon 
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treatment with HDAC inhibitors from different chemical classes (Figure 5-6). Thus, the possibility of 

these changes arising as a mere off-target effect of TSA is rather unlikely. The strongest LTR12 

induction was observed upon treatment with TSA, Entinostat and Mocetinostat. In a recent 

reclassification of inhibitor-specificities, these three inhibitors were shown to exert high specificity for 

HDAC1, HDAC2, HDAC3 as well as the CoREST, NuRD and NCoR complexes [163, 167, 168]. However, 

they were shown to have little affinity for Sin3 as well as HDAC isoforms 8, 6 and 10. This fits with the 

observation that depletion of HDAC8 had little effect on LTR12 activity (Figure 5-10). Since depletion 

of HDAC1, 2 and 3 also resulted in only minor changes (Figure 5-10), the regulation is most likely to be 

mediated by HDAC-containing protein complexes rather than single HDAC proteins. HDACs in these 

complexes might be harder to deplete by siRNAs as most HDAC interactions in complexes such as NuRD 

are highly stable [161, 169]. Moreover, effects on gene expression upon depletion of HDACs versus 

inhibitor treatment were reported to show only about 4% overlap [170]. Dejligbjerg et al. hypothesized 

that depleting HDACs might alter rather than disrupt multi-protein complexes and therefore result in 

aberrant cellular responses [170]. Accordingly, the minor changes in LTR12 transcription we observed 

upon depletion of HDAC1, 2 and 3 might not necessarily indicate that these isoforms are not primarily 

involved in LTR12 silencing. 

 

The identification of multiple LTR12-driven cellular genes that are involved in the apoptotic response 

and can be upregulated by HDAC inhibitor treatment is an exciting finding. The strong upregulation of 

LTR12s in a variety of cancer cell lines might result in cancer cell death by upregulation of anti-

apoptotic proteins as observed for TNFRSF10B. This provides another explanation as to how HDACis 

might exert their anticancer effects and also argue for combinatorial treatment of cancer with, for 

example, TRAIL, as previously suggested [136]. 

 

 

6.5 Conclusions and future perspectives 

In this work, we characterized an additional LTR12-driven pro-apoptotic gene besides TP63. LTR12-

driven transcripts of TNFRSF10B were detected in the human testis and small intestine and we 

observed a dramatic increase in LTR12 promoter activity upon treatment with HDAC inhibitors. This 

induction was not limited to one specific inhibitor, but was observed upon the application of inhibitors 

of different chemical classes. Interestingly, among these inhibitors were the FDA-approved SAHA as 

well as Entinostat and Mocetinostat, which are currently undergoing phase II clinical trials. Though 

upregulation of TNFRSF10B protein levels after treatment with HDACi was previously reported in a 

range of tumor cells, their mechanistic basis – LTR12-driven transcription – has been unknown. We 
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show for the first time, that LTR12 promoter activity is linked to TNFRSF10B expression. Aside from 

linking this activation to LTR12 promoter activity, we also provide further evidence that combinatorial 

treatment with TSA and TRAIL additively augments cell death as shown here for testicular cancer cells. 

Since the increase in LTR12 promoter activity upon treatment with HDACi was not limited to testicular 

cancer cells, one may speculate that the specific upregulation of LTR12 largely contributes to mediating 

the observed apoptotic effects. 

Regarding the underlying mechanisms of LTR12 regulation of TNFRSF10B, we showed that NF-Y is 

abundantly present at LTR12 genomic loci and its binding increases upon application of HDACi. 

Therefore, we propose a crucial role for NF-Y in the orchestrated repression and activation of LTR12 

promoter elements in the human genome. 

The specific activation of LTR12-driven transcription of putative tumor suppressor genes like TP63 and 

TNFRSF10B suggests a novel mechanism of how inhibition of HDACs can exert anti-cancer effects. 

Further analysis of NF-Y and identification of potential cofactors in LTR12-regulation might enable us 

to understand resistance to HDACi treatment and overcome it in a variety of tumors. Moreover, the 

contribution of LTR12 activation implies that biological effects of HDAC inhibitors, as observed in 

mouse models, might not necessarily reflect the situation in humans, since the distribution of retroviral 

elements differs greatly between these two species. Furthermore, we present yet another example of 

how co-evolution of TE with the host might have been beneficial for the host and therefore be 

rendered active in the human genome instead of being eliminated as “junk DNA”. 
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8 Appendix 

Detailed summary of the LTR12 locations which were found to be bound by NF-Y subunit alpha and/or 

beta in three human cell lines. The overlapping sites are also visualized in Figure 5-12. 

Cell line NF-Y 
subunit 

LTR12 location (hg19) Adjacent cellular 
gene 

chromosome start end 

HeLa-S3 NF-Y alpha chr8 22927451 22928865 TNFRSF10B 

chr6 30774508 30775782 IER3 

NF-Y beta chr8 22927451 22928865 TNFRSF10B 

chr17 38167005 38169009 CSF3 

chr6 30774508 30775782 IER3 

chr5 12796289 12796978 CT49 

K562 NF-Y alpha chr8 22927451 22928865 TNFRSF10B 

chr1 89738137 89739573 GBP5 

chr14 24104837 24105861 DHRS2 

chr3 32980994 32982647 CCR4 

chr6 30774508 30775782 IER3 

chr4 87468293 87469596 PTPN13 

NF-Y beta chr3 189313733 189314949 GTAp63 

chr8 22927451 22928865 TNFRSF10B 

chr4 100274696 100275434 ADH1C 

chr1 89738137 89739573 GBP5 

chr9 92094404 92095897 SEMA4D 

chr14 24104837 24105861 
DHRS2 

chr14 24106921 24107605 

chr12 100823898 100825322 NR1H4 

chr7 120699844 120701243 CPED1 

chr9 74578275 74579651 C9orf85 

chr3 32980994 32982647 CCR4 

chr15 78537615 78539044 ACSBG1 

chr1 154650332 154651788 KCNN3 

chr17 38167005 38169009 CSF3 
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chr9 100336320 100337735 TMOD1 

chr5 150786356 150787204 SLC36A2 

chr6 30774508 30775782 IER3 

chr12 18652900 18654112 PIK3C2G 

chr5 12661848 12663161 
CT49 

chr5 12796289 12796978 

chr4 87468293 87469596 PTPN13 

chr7 4832980 4834366 RADIL 

GM12878 NF-Y alpha chr1 89738137 89739573 GBP5 

NF-Y beta chr3 189313733 189314949 GTAp63 

chr8 22927451 22928865 TNFRSF10B 

chr1 89738137 89739573 GBP5 

chr14 24104837 24105861 
DHRS2 

chr14 24106921 24107605 

chr7 120699844 120701243 CPED1 

chr3 32980994 32982647 CCR4 

chr15 78537615 78539044 ACSBG1 

chr17 38167005 38169009 CSF3 

chr9 100336320 100337735 TMOD1 

chr5 150786356 150787204 SLC36A2 

chr6 30774508 30775782 IER3 

chr5 12796289 12796978 CT49 

chr4 87468293 87469596 PTPN13 

chr7 4832980 4834366 RADIL 

Table 8-I. Binding of NF-Y subunits to LTR12 in three human cell lines 
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