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Abstract 

Successful reproduction of all sexually reproducing organisms mainly depends on 

the viability of the oocyte. The making of the oocyte is regulated at multiple level to ensure 

its quality where it carries the information from mother to the next generation. During 

oogenesis, apart from meiotic maturation cytoplasm also changes dynamically. The cellular 

transport pathways play an essential role in importing molecules from the mother and 

positioning them, which creates the polarity, axis and germplasm for future embryo. 

Vesicle trafficking is a vital transport process in all cells to import and deliver molecules to 

interact with the surrounding environment. This cellular mechanism is necessary for many 

biological processes like signal transduction, cytokinesis, polarity and lysosomal 

degradation. The discovery of many regulators (Rabs and SNAREs) in unicellular 

organisms showed the requirement of tight regulation in vesicle fission and fusion process. 

However, a forward genetic screen for yolk endocytosis in C.elegans discovered many 

novel regulators and a novel compartment, which are specific to multi-cellular organisms 

suggesting the presence of more complex regulation in vertebrates. Hence, finding new 

regulators are necessary to understand the process in vertebrates.  

We aimed at identifying novel, vertebrate regulators of oogenesis in zebrafish 

oocytes using a maternal-effect mutagenesis screen. We isolated a group of mutants, which 

lays opaque rather than transparent embryos. One of the mutants named soufflé (suf) has 

been mapped to a FYVE- Zinc finger protein by positional cloning. This FYVE domain 

binds to PI3P lipids, which are predominantly found on endosomal membranes. 

Biochemical analysis revealed that these mutants have a defect in yolk cleavage during 

oocyte maturation, which leads to the observed opaqueness (Dosch et al., 2004). 

Furthermore, electron microscopy analysis revealed that suf accumulates smaller 

endosomes, whereas in wild types they mature into functional yolk globules in the oocyte. 

These preliminary results raised the question that how does soufflé regulate trafficking 

during oogenesis and what is the molecular mechanism behind the defect in suf mutant. 

Endosomal analysis showed accumulation of Rab11 and fragmented lysosome. In-vivo 

trafficking assay showed no defect in endocytosis and endosomal recycling. Rab11 

localizes to secretory granule and suf mutant accumulates immature secretory granule 

(ISG). In-vivo assay showed that suf fail to elevate the chorion after fertilization indicating 

a defect in exocytosis of dense core vesicle (DCV). Further analysis showed that suf mutant 

accumulate secretory granule without dense core resulted from defective sorting and 

vesicle fission from ISG. Surprisingly, we discovered the vesicle in cortical region with 
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many clathrin buds without fission accumulating in suf mutant using electron microscopy, 

consistent with accumulation of ISG marker VAMP4. Remarkably, chemical inhibition of 

dynamin function in the wild-type egg mimics suf mutant phenotype in cellular level and 

failed in chorion elevation. In addition, mis-organised F-actin showed the failure in 

exocytosis of vesicle. Rescue analysis with mutant construct showed that suf allele is a 

hypo morph. These results show that suf is necessary for sorting and fission during DCV 

formation. 

Sorting from ISG during DCV formation is also necessary for lysosomal biogenesis. 

We found that suf mutant lysosome did not receive cathepsin B, F and L, yolk-degrading 

proteases, explaining the opaque phenotype. Furthermore, vATPase subunit d1 is also 

missing in the vesicle of suf mutant oocytes. Analysis of lysosomal sorting receptors and 

adaptor revealed that suf mutant does not have a defect in M6PR and sortilin mediated 

pathway, but they show reduced LAMP carrier intermediate mediated by VPS41 and AP3. 

In addition, AP3 positive vesicles are reduced while AP3 accumulates more on secretory 

granule consistent with reduced VPS41 recruitment on secretory granule. VPS41-AP3 

mediated lysosomal transport carries lysosomal enzymes, SNAREs and other membrane 

proteins. The VPS41 and AP3 mutant phenotype explains the reason for fragmented 

lysosome and failure in DCV formation phenotype in suf mutant. Bioinformatics prediction 

shows that suf has a clathrin heavy chain domain, which can form clathrin like coat like in 

VPS41. Suf interaction with AP5 further suggesting that suf may work as a coat protein 

like VPS41 for lysosomal transport. We discovered a novel function for suf in sorting of 

lysosomal cargo sorting from ISG results in successful DCV formation and lysosomal 

function, in the absence of suf both lysosome and DCV formation is affected.  

Interestingly, souffle mutation has been identified to cause progressive motor neuro-

degeneration in human. This defect in DCV formation could be one reason for why the 

long motor neuron loses its connection and causes spasticity, since DCV is necessary for 

long-term potentiation. Hence, souffle mutant egg is an excellent model to study the 

molecular mechanism and disease pathology. 
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1. Introduction 

1.1 Reproduction 

Reproduction is essential process for any species to propagate and sustain. 

Reproduction is a biological process where the offspring is produced from their parents. 

Among the two types of reproduction, most prokaryotes reproduce by asexual method by 

fission in bacteria while the eukaryotes uses sexual reproduction. Sexual reproduction is the 

primary method for propagating ones genes in almost all animals and plants. The sexual 

reproduction involves two main steps, Meiosis where the chromosomal numbers are 

reduced to half (n) and then fertilization where the gametes from two parents fuse and 

restore the original number of chromosomes (2n) (Fig.1). During these two processes, the 

DNA is exchanged by recombination between the homologoues pairs and which is thought 

to adapt to the new environment, remove the mutations and competitions.   

 

Figure 1. Sexual reproduction. 

Cartoon shows the division in DNA during meiosis and addition during fertilization. 

(http://en.wikipedia.org/wiki/Sexual_reproduction) 
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1.2 Gametogenesis  

The success of sexual reproduction mainly depends on the viability of the two 

gametes from the parents carrying haploid chromosomes. Gametogenesis is a process of 

gamete formation from primordial germ cells (PGC). The two processes of gametogenesis, 

which are spermatogenesis and oogenesis, vary in many ways in producing gametes from 

PGC. The spermatogonium can produce four functional sperm from each cell while the 

oogonium will generate one ovum by removing just polar bodies during the two meiotic 

division processes to accumulate maternal components (Fig. 2). The spermatogenesis is a 

continues process whereas the oogenesis starts even before birth and blocked in prophase I 

until it receives the ovulation signal later. The contribution from sperm is mainly the DNA 

and centrosome while the ovum brings most of the factors, which are necessary during 

oogenesis like, food and genetic factors that are required for early embryonic development. 

Hence, production of viable and quality egg is crucial for sexual reproduction and is an 

energy consuming process. 
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Figure 2. Gametogenesis in animals. 

The picture shows the DNA content reduction in spermatogenesis and oogenesis. The process of 

making sperm and oocyte from their progenitors 

(http://web2.mendelu.cz/af_291_projekty2/vseo/stranka.php?kod=285). 

1.3 Ovary 

The ovary is one of the most complex organ, both structurally and physiologically 

with many different somatic and follicle cells containing different stages of developing 

oocytes. It is amply supplied with connective tissue, blood vessels, nerves, and smooth 

muscle and is surrounded by a surface (coelomic) epithelium and its stroma is 

differentiated into a cortex (with developing follicles) and a medulla (with blood vessels). 

The ovary is a major endocrine organ interacting with the pituitary gland and the uterus 

during each menstrual cycle and is regulated by gonadotropins and steroid hormones 

(Sathananthan AH. et al, 2006). The ovary plays two main roles in female reproductive 

system by acting as both glands and gonad. As a gland, it produces estrogen and 

progesterone, which are necessary for reproduction. As a gonad, ovary holds the follicle 

cells for the whole lifetime and few start to develop into an oocyte during menstrual cycle 

but one finally mature into ovum.  

1.4 Oogenesis 

The egg is the supreme precursor of the newly developing embryo. Therefore, the 

making of a viable egg is the most crucial event for sexual reproduction. Oogenesis is a 

very dynamic process in the ovaries, in which the oocyte passes through various phases of 

development. The oogonia differentiate from the PGC and the ovary provides nests of 

oogonia associated with developing follicle cells in the cortex. Every oogonium is 

surrounded by follicle cells and they are connected to the developing oogonium. Oogonia 

have vesicular nuclei with 1-3 nucleoli and small cytoplasm for few cellular organelles. 

The oogenesis consists of two phase oocyte growth and oocyte maturation. 

1.4.1 Oocyte growth 

1.4.2 PGC to Oogonium 

Animal kingdom has two kinds of diploid cells, one is somatic where they develop 

into a whole organism and stay diploid while the germ cell goes through reduction division 

to form gametes for reproduction (Wallace and Selman, 1981 & Selman et al., 1993). The 
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gradual transformation of PGC into oogonium follows with the increase in size of the cell 

and nuclei. The endoplasmic reticulum and Golgi are accumulated and „nuages‟ of 

mitochondria are numerous and bigger. The cell starts to divide faster mitotically and 

surrounded by pre-granulosa cells. The cytoplasm contains few ribosomes and reduced 

electron density in the electron micrograph compared to PGC (Brusle, 1982).  

1.4.3 Oogonium to primary oocyte 

The diploid oogonia after number of mitotic divisions undergo their first meiotic 

division to differentiate into primary oocytes. Initially, the oogonium carries two copies of 

the chromosomes from both parents. During the interphase after the mitotic division, the 

cell prepares for its first meiotic division. DNA replication happens during this stage and 

produce sister chromatids for RNA synthesis which is specific for primary oocyte (Grier, 

2000). Once the meiotic division is initiated, then they are called primary oocyte, which is 

surrounded by theca cells and granulosa cells constituting ovarian follicle. Granulosa cells 

are specialized somatic cells around oocyte, which secrete basement lamina (Nagahama, 

1997). The development of the primary oocyte stage is divided into four stages. Stage I 

oocytes are characterized by formation of chromatids. During stage II or pre-vitellogenesis 

stage, the molecules required during later stages are synthesized and yolk precursors start 

to enter. Furthermore, the newly synthesized RNP granules accumulate. Stage III or 

vitellogenesis stage is characterized by accumulation of yolk, lipids and formation of zona 

radiata (ZR). Stage IV is the maturation process where the first meiotic division is 

completed. This first meiotic division remains arrested at the end of prophase stage until 

they get the next signal to proceed. During this period, the oviparous animals accumulate 

essential components and nutrients for the embryo development by a process called 

vitellogenesis. At the end of vitellogenesis, the primary oocyte resumes their first meiotic 

division and continues maturation. 

1.4.4 Primary oocyte to secondary oocyte 

 During stage IV the primary oocyte resume the meiotic division, undergoes 

germinal vesicle beak down (GVBD) followed by release of first polar body. Then the 

oocyte enters the second meiotic division without a break in interphase and being arrested 

in metaphase until fertilization (James E Ferrell, 1999). This maturation is induced by the 

hormone progesterone and can be divided into nuclear and cytoplasmic maturation. 
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Figure 3. Meiotic maturation of oocyte. 

Oocytes from most species undergo a first arrest at prophase I (PI) that is maintained for a few days 

(Drosophila) or for decades (humans). On hormonal or developmental stimulation, oocytes undergo 

meiotic maturation, release the primary arrest, and enter a second arrest at metaphase I (MI), 

metaphase II (MII), or post meiotic G1 depending on the species. Fertilization triggers the release 

from the second arrest and the completion of meiosis in vertebrates (Xenopus and mammals). 

Drosophila releases the secondary arrest in a sperm-independent manner. GV, germinal vesicle; PI, 

prophase I; GVBD, germinal vesicle breakdown; MI, metaphase I; PB1, polar body 1; MII, 

metaphase II; PB2, polar body 2. 

 

1.5 Oocyte maturation  

Oocytes gradually acquire nuclear and cytoplasmic maturation during growth. 

Meiotic competence, which is the capacity of the oocyte to resume meiosis and become 

nuclearly matured, is acquired during folliculogenesis. Developmental competence is 

related to cytoplasmic maturity of the oocyte and refers to the capacity of the oocyte to be 

fertilized and develop into a healthy embryo capable of continuing its development to term 

and producing a live birth. Cytoplasmic maturation is acquired after the oocyte becomes 

meiotically competent and involves an accumulation of transcripts and other factors (Flor 

Sánchez and Johan Smitz, 2012). 
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1.5.1 Nuclear / Meiotic maturation   

Nuclear maturation refers to the meiotic process of chromosomal reduction to a 

haploid content, so as to produce a diploid organism upon fusion with sperm. The oocyte 

achieves nuclear maturation when they are still developmentally not competent. This stage 

has to be paused until the cytoplasmic maturation is complete to develop further. This 

arrest is maintained by the oocyte by elevated levels of cyclic adenosine monophosphate 

(cAMP) produced by cumulus cells or endogenous production by the oocyte. Oocyte 

meiotic maturation involves a cascade of processes that is initiated with the pre-ovulatory 

LH surge, leading to the progression of the oocyte to the metaphase II stage and ending 

with the extrusion of the first polar body. 

Oocyte meiotic maturation is defined by the transition between diakinesis and 

metaphase of meiosis I and is accompanied by nuclear envelope breakdown, where 

rearrangement of the cortical cytoskeleton and meiotic spindle assembly takes place (Fig. 

3).   

Before maturation starts, the oocyte contains a germinal vesicle (GV) with a large 

nucleolus. The chromosomes in the GV are mostly decondensed, dispersed, and 

transcriptionally active (reviewed in Smith and Richter, 1985; Wassarman, 1983). With the 

initiation of maturation, transcription ceases and, the chromosomes begin to condense, the 

GV breaks down, and nucleoli disperse (Masui and Clarke, 1979). As maturation 

progresses, the paired homologous chromosomes align in the middle of the forming meiotic 

spindle during metaphase I. Separation of the paired homologous chromosomes is followed 

by the first polar body formation. Then the chromosomes remaining in the oocyte are 

rearranged again on meiotic spindles at metaphase II. With the second meiotic division, 

chromatids separate and the second polar body is formed. Finally, the chromatids 

remaining in the oocyte decondense and a pronucleus forms (Fig.3). Both polar bodies 

persist during early cleavage in the PVS and will eventually degenerate. They are miniature 

eggs having some of the organelles found in oocytes. While PB1 has CGs, PB2 is usually 

devoid of or has few CGs. Recently, polar bodies have been used for pre-implantation 

genetic diagnosis. The PB1 can be penetrated by sperm and behave exactly like the oocyte 

by releasing its CGs (Sathananthan et al, 2006). PB1 could also cleave since it inherits a 

sperm centrosome. The meiotic cells of different organisms become fertilizable at different 

stages along the process of meiosis. For example, the eggs of most vertebrate species arrest 

at the second metaphase, and await fertilization to release them into embryonic 
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development, while sea urchin eggs proceed through meiosis to completion, and are stored 

as cells with haploid pro-nuclei. 

The timing of the meiotic divisions with respect to fertilization varies among 

species, likely reflecting the diversity of reproductive strategies observed in nature. Despite 

these differences in timing, extensive studies reveal striking conservation in the molecular 

underpinnings of oocyte meiotic maturation among different animals. It was classic studies 

of oocyte meiotic maturation in amphibian oocytes that led to the discovery of the 

Maturation Promoting Factor (MPF; Masui and Markert, 1971; reviewed by Masui, 2001). 

Genetic and biochemical analysis of the cell cycle, together with MPF purification, 

subsequently demonstrated that cyclin-dependent protein kinases are universal regulators of 

mitotic and meiotic cell cycle progression in eukaryotes (reviewed by Morgan, 1995). 

 

1.5.2 Cytoplasmic maturation of the oocytes 

 Cytoplasmic maturation involves the cytoplasmic changes required to prepare the 

cell for fertilization, activation, and embryo development. In various model organisms, it 

includes acquisition by the female germ cell of competence to fuse with sperm, decondense 

sperm chromatin, form pronuclei, and prevent polyspermy. 

 The process of cytoplasmic maturation is accompanied by changes in cellular 

organelles. Oocytes possess a variety of organelles typical of most cells (such as Golgi 

apparatus, mitochondria, endoplasmic reticulum) as well as oocyte-specific (yolk globules, 

cortical granules). Some of these organelles do not undergo any transformations during 

maturation (mitochondria, yolk), while others (such as cytoskeletal elements, cortical 

granules, and endoplasmic reticulum) exhibit dramatic changes and are hallmarks of 

meiotic progression. 

 

1.5.2.1 Microtubules  

The execution of meiotic events depends on the oocyte cytoskeleton. The growing 

oocyte is characterized by elongated, labile cortical microtubules that undergo dramatic 

changes during oocyte maturation. Microtubules progressively disassemble in the cortex, 

and the meiotic microtubule spindle then forms in the maturing oocyte to mediate 

chromosome segregation during both divisions of meiosis. During meiosis, eggs of most 

animals lose their microtubule-organizing center or centrosome, so that they rely on 

fertilization and the parental centrosome for further cleavage. 

 

http://www.wormbook.org/chapters/www_controloocytematuration/controloocytematuration.html#bib50
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1.5.2.2 Cortical Granules  

The cortical granules accumulated in the oocytes acquire the capacity for exocytosis 

during maturation. Their function is to secrete their contents at fertilization and modify the 

extracellular matrix of the egg, such that it does not support binding and fusion of extra 

sperm. It is critical for the cell to rapidly exocytose its cortical granules at fertilization to 

block polyspermy, but also to prevent precocious exocytosis of these cortical granules, 

otherwise the extracellular matrix would be irreversibly modified and the cell would not be 

receptive to sperm. The oocyte synthesizes and accumulates large numbers of cortical 

granules throughout oogenesis. In oocytes where cortical granules have been quantified, 

they reach 8,000 in mice and 15,000 in sea urchin. During oocyte maturation, cortical 

granules move to the periphery. This change in distribution is linked to the acquisition of 

the capacity of these granules to exocytose upon fertilization. Cortical granules 

rearrangements depend on de novo formation of microfilament during maturation.  

 

1.5.2.3 Actin filaments  

Microfilaments form the scaffold for organelle movement during oocyte maturation. 

Actin reorganization during maturation is not connected to GVBD although the function in 

GVBD is not clear. In vertebrate oocytes, actin polymerization appears to be required for 

the translocation of the meiotic spindle from the center of the cell to an asymmetric cortical 

location, and as a consequence for the first polar body extrusion. Recent work identifies the 

microfilament-binding protein formin as a necessary molecular regulator of this process, as 

the spindle does not migrate and polar bodies are not extruded in oocytes from formin 

knockout mice (Leader et al., 2002). The other transport event that actin microfilaments are 

required for is translocation of cortical granules (Wessel et al., 2002). 

 

1.5.2.4 Endoplasmic reticulum  

ER in many organisms undergoes significant change during maturation. The 

changes in the ER structure are of particular interest as this organelle releases calcium at 

fertilization mediating egg activation, and this ability to release calcium develops during 

oocyte maturation. Immature oocytes of all species studied possess relatively uniform three 

dimensional networks of ER tubules with some individual cisternae and annulate lamellae 

(accumulations of cisternae) deep in the cytoplasm (Babinnec et al., 2003).The detected 

changes of the ER in the course of oocyte maturation include reorganization, or formation 

of circular structures around the yolk platelets (Terasaki et al., 2001). Changes in the 

structure of the ER, especially dispersion of the nuclear envelope, and fragmentation of ER 
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tubules, are due to the cell cycle progression, and have been documented for mitosis as 

well. However, several features of ER behavior are unique for meiosis. In maturing 

oocytes, the ER is not associated with the meiotic spindle, while such association is 

detected in mitotic cells. Furthermore, the formation of cortical clusters is specific for 

oocyte maturation and is ultimately required for formation of calcium release mechanisms 

in the egg at fertilization. These clusters disappear sometime after fertilization and are not 

detected in mitotic embryonic cells (FitzHarris et al., 2003).  

 

1.5.2.5 Mitochondria 

Mitochondria are the most prominent organelles in the ooplasm. They are 

predominantly spherical to oval with dense matrices and few arch-like or transverse cristae 

presenting an inert appearance. Some mitochondria may present clear vacuoles within their 

matrices and a few are extremely large („„giant mitochondria‟‟). Mitochondria do not seem 

to form during early embryogenesis (Sathananthan and Trounson, 2000). They usually 

show an even distribution throughout the ooplasm in MI, MII, and early-fertilized oocytes. 

Significant changes in mitochondrial distribution and structure have been reported in 

pronuclear embryos, morulae and blastocysts (Motta et al., 2000).  

 

1.5.2.6 Lysosomes  

These organelles exist in a variety of forms, depending on their activity and stage of 

maturation. The primary lysosome is a small (0.1 lm) vesicular membrane bound organelle 

containing a dense core. Lysosomes are acid phosphate positive and probably arise from 

Golgi membranes (Sathananthan et al., 1993). They are sparse in mature oocytes but 

increase in numbers in ageing oocytes and embryos. Secondary and tertiary lysosomes are 

commonly found in GV oocytes and present bizarre images, a sign of atresia. Occasionally 

lysosomes may be found associated with dense phagosomes or located in multivesicular 

bodies. Multivesicular bodies show myriads of minute vesicles similar to pinocytotic 

vesicles found at the surface, while lipofuscin bodies are probably advanced lysosomes 

containing lipid inclusions. These increase with ageing in culture, a feature of ageing 

somatic cells. 

 

1.5.2.7 Changes in mRNA and Protein patterns  

Oocyte is heavily engaged to transcription during their growth and mRNA content 

of the oocyte changes during maturation. This switch in mRNA populations is brought 

about by both general termination of transcription at GVBD, and degradation of the select 



                                                                                                                           Introduction  

29 

 

subset of transcripts. Generally, oocyte maturation does not require transcription except 

sheep where transcription is necessary (Moor and Crosby, 1986). In most cases, mature 

eggs are not transcriptionally active, as they are arrested in the metaphase of the second 

meiotic division. The sea urchin egg, however, is an exception, in that it is arrested before 

fertilization with a haploid pro-nucleus, which is transcriptionally active and selectively 

accumulates histone mRNA before fertilization (Venezky et al., 1981). 

Protein synthesis patterns change significantly during the transition from an oocyte 

to a mature egg. Certain mRNAs are translationally activated while others become 

repressed (reviewed in Hake and Richter, 1997). Translational repression results in part 

from the degradation of mRNAs, but also from selective mRNA deadenylation. In sea 

urchins for example, production of yolk (Wessel et al., 2000b) and cortical granule content 

(Laidlaw and Wessel, 1994) proteins is extremely active in the primary oocyte, but ceases 

at the beginning of oocyte maturation, due to mRNA degradation. In Xenopus and mouse, a 

specific class of maternal mRNAs is deadenylated and translationally repressed during 

oocyte maturation (Paynton and Bachvarova, 1994). Translational activation of select 

mRNAs during oocyte maturation is achieved by regulated elongation of their poly (A) tail 

(Hake and Richter, 1997), and normally leads to a several-fold increase in the rate of 

overall protein synthesis (Wasserman et al., 1986). Translational regulation of Cyclin B has 

been studied during maturation constantly. The level of translational activity might vary in 

different species depends on their meiotic stage.  

 

1.6 Hormonal induction of oocyte maturation 

The hormonal signaling induces the oocyte maturation. Ovarian follicles synthesize 

the two major steroidal mediators, estradiol-17β and 17α, 20β-dihydroxy-4-pregnen-3-one 

(17α, 20β-DP) during oocyte growth and final maturation in response to FSH and LH, 

respectively. Unlike estradiol-17β (genomic action), 17α, 20β-DP binds to a novel, G-

protein-coupled membrane receptor (non-genomic action) (Fig. 4), leading to the de novo 

synthesis of cyclin B, the regulatory component of maturation-promoting factor (MPF), 

which activates a preexisting cdc2 kinase via phosphorylation of its threonine 161 by a 

threonine kinase, thus producing the 34 kDa active cdc2. Upon egg activation, MPF is 

inactivated by proteosomal-mediated degradation of cyclin B.  
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An endocrine-disrupting chemical, diethylstilbestrol (DES), a nonsteroidal estrogen, 

triggers oocyte maturation in fish. The morphology (the time course of the change in 

germinal vesicle breakdown) and an intracellular molecular event (the de novo synthesis of 

cyclin B) induced by DES were indistinguishable from those induced by 17α, 20β-DP. A 

synergistic action of DES on 17α, 20β-DP-induced oocyte maturation was observed. An 

antibody against the 17α, 20β-DP receptor, inhibited both 17α, 20β-DP- and DES-induced 

oocyte maturation. These results suggest that DES may act on the 17α, 20β-DP receptor as 

an agonist of 17α, 20β-DP (Fig. 4). 

 

 

Figure 4. Hormonal regulation of oocyte maturation. 

The sterol binds to the G-protein receptor, which activates the MPF (cdc2 and cyclinB) activation 

leads to reduction in cAMP and oocyte maturation. After egg activation, the cyclin B is degraded to 

keep the MII arrest. 

 

1.7 Essential developmental events during oogenesis.  

1.7.1 Oocyte polarity and germ plasm assembly 

Oocyte being the base for the developing embryo considering the required changes 

in nuclear and cytoplasmic changes. The oocyte also involves in deciding some of the early 
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necessary events like setting polarity, early axis specification and forming germplasm 

(Bontems et al., 2009; Marlow et al., 2008) which are crucial for proper embryonic 

development. Oocyte animal-vegetal polarity and dorsal-ventral axis is determined by 

localization of group maternal mRNA molecules and by balbiani body (Yvette G. Langdon 

and Mary C. Mullins, 2011). Germ cells are the immortal cells, which give rise to the next 

generation unlike somatic cells, and they are pre-formed in the oocytes by localizing group 

of mRNA, proteins and cellular organelles like mitochondria. During embryonic cleavage, 

they are taken up by few cells that will develop as germcells. Also germplasm organizer 

protein Oskar regulates rab11 polarization in Drosophila and trafficking in oocyte 

(Gretchen Dollar.2002). Hence, the transport pathway within the oocyte cell plays crucial 

role in positioning molecules in the proper place and separating every cellular compartment 

physically but connected through other processes. 

1.7.2 Accumulation of maternal factors  

The reduced DNA content and other cytoplasmic changes needs to store the 

necessary factors to regulate early development and nutrients to feed the developing 

embryo in oviparous animals while in the mammals the developing embryo is fed through 

the placenta. The embryo is dependent on stored maternal mRNA till at least the maternal-

zygotic transition, when transcription of embryonic genes begins in earnest, with a major 

burst of transcription occurring after mid blastula transition. The nutrients are taken up by 

the oocyte from the blood flow through receptor-mediated endocytosis or bulk endocytosis. 

So endocytosis is crucial for accumulation yolk protein in the oocyte. 

1.7.3 Vitellogenesis 

Vitellogenesis is a process of vitellogenin synthesis and deposition in the oocyte. 

The central nervous system induces secretion of gonadotropin-releasing hormone (GnRH) 

by specialized neurons. The GnRH acts on pituitary cells, which secrete the follicle-

stimulating hormone (FSH) which leads to the synthesis of sexual steroid hormones, such 

as 17β-estradiol. In response to the sterol signals, specific receptors in hepatocytes mediate 

the synthesis and release them into the blood of vitellogenins (Vtgs), the main yolk 

precursors in plasma (Fig.5). These are specifically incorporated by the oocytes via 

receptor-mediated endocytosis. (Stifani et al., 1990; Hiramatsu et al., 2004) These yolk 

proteins are stored in the inactive lysosome until they are required, then the yolk proteins 

are cleaved enzymatically once the oocyte matured for ovulation. Thus, cellular trafficking 

is necessary during oogenesis and early embryogenesis. 
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Figure 5. Vitellogenesis.  

The cartoon shows synthesis of the yolk protein precursor in liver upon estrogen signal from the 

follicle cells. The vitellogenins are delivered in the blood flow and taken up by the oocyte through 

endocytosis. Yolk globule in red shows the lysosome with yolk. 

1.8 Vesicle trafficking during oogenesis  

Receptor-mediated endocytosis is a critical process utilized by oocytes of non-

mammalian species, such as insects and frogs, to import yolk protein precursors (Opresko 

& Wiley 1987). Import of vitellogenin occurs during oocyte growth through clathrin-

mediated endocytosis following binding to a receptor. Although mammalian oocytes do not 

produce yolk, it is possible that endocytosis could be important during oocyte growth. In 

addition, endocytosis of cell surface receptors could be important for the regulation of 

meiosis. Indeed, receptor trafficking is critical for the regulation of meiotic maturation in 

oocytes of Caenorhabditis elegans (Cheng et al. 2008). Thus, endocytosis is crucial for 

oocyte growth and storing essential components. Exocytosis is opposite to endocytosis by 

the process. Exocytosis plays important role after fertilization in avoiding polyspermy by 

the event of chorion elevation or cortical reaction.  

http://www.reproduction-online.org/content/141/6/737.full#ref-10
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1.8.1 Endocytosis 

 Endocytosis is a vital process for every cells to intake molecules from outside and 

interact with the environment. Endocytosis plays a crucial role in many cellular events 

during developmental processes from oogenesis until the aging adult. Endocytosis is 

activated once the ligand binds to its receptor on the plasma membrane and then they are 

internalized into a vesicle mediated by clathrin. The clathrin-mediated vesicle matures into 

an early endosome regulated by Rab5 protein and then they are sorted into a multi vesicular 

body where different cargos are separated from their receptor and grouped based on their 

destination to lysosome or back to the plasma membrane. The multi vesicular body is 

regulated by Rab7 protein. Finally the lysosomal destined vesicles reach the lysosome by 

fusion while the plasma membrane targeted cargos are recycled back to the membrane 

through the recycling endosome regulated by Rab11 (Fig. 6). The lysosome is the main 

degrading organelle to clean cellular debris by enzymatic cleavage (Gary J. Doherty and 

Harvey T. McMahon, 2009). The lysosome is involved in many different processes like 

autophagy, mitochondrial degradation, and lipid transport to mitochondria etc.  

Endocytic membrane trafficking involves the cellular internalization and sorting of 

extracellular molecules, plasma membrane proteins and lipids. Endocytosis is required for a 

vast number of functions, including nutrient uptake, cell adhesion and migration, receptor 

signaling, pathogen entry and cell polarity. It is well established that endocytosis regulates 

receptor-mediated signaling. In single cell organisms, the process of endocytosis has been 

studied and discovered many novel regulators like rab proteins. However, a genetic screen 

in C.elegans a multicellular organism discovered novel regulators and novel cellular 

compartment suggesting that higher organisms and vertebrates need a sophisticated, tighter 

level of regulation than single cell organisms (Barth D. Grant & Julie G. Donaldson, 2009).  

Figure 6. Endocytosis. 

Endocytic vesicles that are formed by invagination and pinching of clathrin-coated pits become 

uncoated in the cytoplasm and fuse with specialized membrane organelles known as endosomes, 

from which receptors and their ligands are sorted to various intracellular destinations. The cargos 

go through early, late endosome to reach lysosome while internalized molecules can be recycled 

back from early endosomes or a late recycling compartment to the plasma membrane and, 

therefore, participate in several rounds of endocytosis. Endocytosed receptors can also be 

sequestered in endosomes for a long time or transported to late endosomes and lysosomes, in which 

they are proteolysed. Late endosomes are referred to as multivesicular bodies (MVBs) because of 
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their intra luminal vesicle. Lysosomal enzymes and other molecules are delivered from the Golgi 

apparatus to endosomes and plasma membrane by means of clathrin-mediated or other types of 

membrane transport (Sorkin and Von Zastrow.2002). 

 

1.8.2 Exocytosis  

 Exocytosis is an opposite process to endocytosis by which the cell directs the 

secretory vesicle content out of the cell by fusing with the plasma membrane. There are 

two types of exocytosis. 1. Constitutive exocytosis- which is delivering the content 

irrespective of any outside signal like cell wall proteins or extra cellular matrices.2. 

Regulated exocytosis- process needs an external signal to induce the vesicle fusion in 

specialized cell types like neuron or oocytes (Fig.7). This is a five-step process. Vesicle 

transport, tethering, docking to the membrane, vesicle priming and fusion. Lot of study has 

been done to understand the process of exocytosis and fusion in neuron in vivo and in vitro. 

Many SNARE proteins have been discovered to play a role in fusion during exocytosis 

(Reinhard Jahn & Dirk Fasshauer). The process is involved in many biological processes 

such as turnover of plasma membrane, secretion of enzymes, neurotransmitter release, 

acrosome reaction during fertilization and chorion elevation / cortical reaction in human 

during fertilization. During oogenesis a type of secretory granule are produced by the Golgi 
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and stored until the time of fertilization. Immediately after fertilization, they are activated 

to fuse with the plasma membrane and deliver their cargos, which elevate the chorion 

membrane and modify the zona pellucida to avoid polyspermy that block the entry of more 

sperm into the oocyte, which is detrimental to the embryo. Hence, both endocytosis and 

exocytosis plays essential role during oogenesis and fertilization. 

Figure 7. Exocytosis. 

Many soluble proteins are continually secreted from the cell by the constitutive secretory pathway, 

which operates in all cells. This pathway also constantly supplies the plasma membrane with newly 

synthesized lipids and proteins. Specialized secretory cells have, in addition, a regulated exocytosis 

pathway, by which selected proteins in the Trans Golgi network are diverted into secretory vesicles, 

where the proteins are concentrated and stored until an extracellular signal stimulates their 

secretion. It is unclear how aggregates of secretory proteins are segregated into secretory vesicles. 

Secretory vesicles have unique proteins in their membranes; perhaps some of these proteins act as 

receptors for secretory protein aggregates in the Trans Golgi network (Essential cell biology, 2004, 

Garlend Science). 
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1.9 Investigating the event of yolk endocytosis in invertebrates 

 The yolk protein endocytosis has been mostly studied in-vivo in C.elegans oocytes. 

The yolk proteins of C. elegans are lipid transport proteins homologous to the ApoB-100 

component of mammalian low-density lipoprotein complexes (LDL). Yolk in worms is a 

lipoprotein complex composed of yolk proteins, cholesterol, phospholipids, and 

triglycerides. Yolk storage vesicles in oocytes are considered to be functional analog of 

lysosomes, except that they lack high-level hydrolytic activity during oocyte growth, as the 

embryos mature, some yolk granules acquire hydrolytic activity and digest their contents. 

In Xenopus oocytes, yolk granules stochastically acquire a reduced lumenal pH, which 

presumably activates acidic hydrolases. In C. elegans, yolk proteins bind directly to 

cholesterol, as demonstrated by cross-linking studies with photo-activatable cholesterol 

analogs. Animals with mutant oocytes that are unable to take up the yolk accumulate the 

yolk protein and cholesterol complexes in the pseudocoelom. Yolk granules of the oocyte 

and embryo contain little cholesterol; rather, internalized cholesterol appears to be 

distributed among intracellular membranes. Presumably, soon after uptake into the 

endosomal system, the cholesterol is stripped from the yolk particles and transported 

throughout the cell. Yolk transport particles and their cognate receptors in oocytes probably 

represent the evolutionary precursors of the LDL transport and uptake systems of 

mammals.  

At a specific time-point in C. elegans embryogenesis, all of the remaining yolk 

particles are resecreted into the perivitelline space, quickly followed by their accumulation 

in endocytic vesicles of the embryonic intestine. After hatching, a significant proportion of 

the yolk remains in the intestine, where it presumably provides a nutrient source for 

foraging larvae. A number of endocytosis assays have been developed to study the 

mechanisms of endocytosis in C.elegans. One of these follows the trafficking of a chimeric 

yolk protein (yolk protein fused to green fluorescent protein) (YP170::GFP) in transgenic 

strains. YP170::GFP synthesis, secretion, and endocytosis recapitulate the transport steps 

taken by endogenous yolk as judged by immunofluorescence and immune-EM studies; 

thus, YP170::GFP represents an excellent tool for assaying secretion and endocytic 

trafficking in a live metazoan animal. The YP170::GFP reporter has been used in reverse 

genetic studies in C. elegans to probe the function of known or candidate endocytosis 

factors identified in the complete genome sequence of C. elegans. Genetic screens for 

mutants defective in receptor-mediated endocytosis and trafficking using the YP170::GFP 

assay yielded 12 rme genes (rme - receptor mediated endocytosis). Extensive analysis has 
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been performed on a yolk uptake-specific mutant rme-2, as well as two mutants with 

widespread defects in endocytic trafficking, rme-1 and rme-8. rme-2 encodes a member of 

the LDLR family of lipoprotein receptors, while rme-1 and rme-8 encode new cytosolic 

factors associated with endosomes. rme-2 mutants lack any detectable yolk in their oocytes 

and embryos and have severely reduced brood sizes. Several lines of evidence indicate that 

the RME-2 receptor is both necessary and sufficient for yolk endocytosis in C. elegans and 

therefore is the sole yolk receptor of C. elegans. RME-2 expression is restricted to oocytes. 

RME-2 colocalizes with its putative ligand YP170::GFP within putative sorting endosomes 

when an intermediate step in endocytic trafficking is blocked. Furthermore, forced 

expression of RME-2 in ectopic cell types is sufficient to induce YP170::GFP 

accumulation in those cells. First, immunoelectron microscopy revealed that most RME-2 

is found in subsurface vesicles and not in pit structures or plasma membrane clusters. 

Second, functional studies that blocked the early steps in endocytosis caused RME-2 to 

accumulate on the plasma membrane in a diffused pattern and showed a strongly reduced 

accumulation in these subsurface vesicles, indicating that they are derived thruogh 

endocytosis and not by secretion. Finally, RME-2-positive vesicles do not accumulate the 

ligand (yolk). Thus, in the oocyte, RME-2 represents an important marker for recycling 

endosomes, indicating necessity of high-level regulation in multicellular organisms (Hanna 

fares and Barth Grant, 2001).  

1.10 Discovering novel regulators of oogenesis in vertebrate  

 The oocyte is a special cell type in which complex and dynamic cellular events take 

place during oogenesis to prepare the oocyte for embryogenesis. The process is tightly 

regulated. Many important events like polarity, embryonic axis and germplasm 

specification take place during oogenesis and more efforts have been put to find and 

understand the process in invertebrates like C.elegans and Drosophila.The genetic screen in 

C.elegans found novel regulators and compartment for early recycling compartment (ERC), 

which led to the belief of novel regulators in vertebrates. (Grant and Hirsh.1999; Shaw et 

al.,2001; Balklava et al.,2007) beyond the yeast studies (Grant and Donaldson, 2009). So, 

our lab was interested to find novel regulators during oogenesis in vertebrates using 

maternal effect genetic screen in zebrafish as a vertebrate model. 

1.11 Zebrafish-vertebrate model  

Zebrafish has been used as a model organism in developmental biology since the 

1950 and has become increasingly popular in research during the last 30 years to study 
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cellular, molecular, and genetic interactions (Streisinger et al.,1981). This success is related 

to several attributes of the zebrafish. Zebrafish is easy to maintain and mature females are 

able to lay several hundred eggs per week. In contrast to other vertebrate model organism, 

embryos develop rapidly and the generation intervals take three to four months compared 

to the mouse. Furthermore, zebrafish embryos are transparent and simple organized. Based 

on the optical clarity and the large size, the developing embryo can be observed using 

standard dissecting microscopes. 12 hours post fertilization (hpf), the body axis and the 

overall body plan is apparent and after 24 hpf all the major organ primordia are formed 

(Kimmel et al.,1995). Since mutations are easy to induce, large-scale screens have been 

carried out to identify mutations causing defects in particular biological processes. 

Moreover, embryological techniques used in Xenopus can be applied in the zebrafish 

including transplantation experiments, microinjections of sense mRNA for overexpression 

studies or of antisense oligo-nucleotides (morpholinos) for knockdown analysis also 

economically feasible.  

1.12 Zebrafish oogenesis  

During oogenesis, the oocyte passes through four different stages of differentiation: 

The primary growth stage (Stage IA+IB), the cortical alveolus stage (Stage II), the 

vitellogenesis stage (Stage III), the oocyte maturation (Stage IV), and the ovulated, mature 

egg (Stage V). 

Figure 8. Zebrafish oogenesis. 

This picture shows the stages of zebrafish oogenesis. They are arranged in a progressive order, 

which is not the case in the ovary. The drawing is not scaled to the size. a. the germcells. b. In stage 

1B, notice the germplasm components in red localized just below the nucleus. c. In stage II the the 

animal pole markers localized in green.  The transparent circular vesicles are cortical granules or 

cortical aveoli. d. Dark grey vesicles are the yolk-filled lysosome, which creates the opaqueness in 

stage III. Notice the nucleus in the middle in stage I to stage III. e. and f. Stage IV and V is 

transparent after maturaion and also the germplasm components moved to the cortex and ready to 

fertilize. g. The fertilized embryo where the cytoplasm is at the top in green with animal pole 

components and red arrows show the transport (Selman et al., 1993). 
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 During the prefollicle stage of the primary growth phase (stage IA, oocyte diameter 

7-20 µm) the oocyte undergoes chromosome condensation reflecting the entry into the first 

meiosis. At the same time, numerous nucleoli begin to accumulate in both the periphery 

and inner membrane of the nucleus. During the follicle stage (Stage IB, follicle diameter 

20-140 µm) chromosomes decondense and the oocyte increases the transcription of 

maternal genes. The follicle cells and the oocyte extend microvilli to contact each other and 

components of the vitelline envelope accumulate between the follicle cells and the oocyte. 

Subcellular structures like endoplasmatic reticulum, Golgi, and mitochondria become 

abundant and the Balbiani body develops adjacent to the nuclear envelope. The second 

stage (follicle diameter 140-340 µm) is characterized by the formation of bound vesicles, 

the cortical alveoli. During egg activation, these vesicles will become anchored at the 

cortex and undergo exocytosis to modify the vitelline membrane. During the vitellogenesis 

stage (Stage III, follicle diameter 340-690 µm) the oocyte acquires large amounts of 

vitellogenin by endocytosis, which serve as an energy source for the developing embryo. 

The oocyte maturation (Stage IV, follicle diameter 690-730 µm) is characterized by the 

movement of the nucleus towards the animal pole of the egg, the breakdown of the nuclear 

envelope, and the arrest of meiosis at the second meiotic metaphase. At this stage, the 
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III.6.2. Germ plasm localization during oogenesis in zebrafish 

 

Figure 8. Schematic representation of germ plasm localization during the five stages of oogenesis 

in zebrafish. The center of the schema points to the vegetal pole; the germ plasm in red, localized 

in the vegetal part, is always orientated towards the centre of the figure; the animal marker, in 

green, is always localized at the exterior. Note that that in an ovary all stages are intermingled and 

the oocytes in this scheme are not drawn to scale. The diameter of oocytes at specific stages is 

indicated. (Figure adapted from (Bally-Cuif et al., 1998; Clelland et al., 2007; Selman et al., 

1993)). 
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oocyte enlarges about 10-15% probably by the proteolytic cleavage of yolk proteins and the 

endocytosis has finished. The final stage (Stage V, egg diameter 730-750 µm) involves the 

release of the oocyte from the oocyte/follicle complex into the lumen of the ovary (Fig.8) 

(Nazan Deniz Koç et al., 2008). 

A fish oocyte increases its volume a few hundred fold within 10 days. This massive growth 

is based on the uptake of yolk proteins that represents the nourishment store for the 

developing embryo (Pelegri.2003). The primary component of the yolk proteins, 

vitellogenin, is exogenously synthesized by the liver of the mother and is internalized into 

the oocyte by clathrin-dependent endocytosis, then enzymatically cleaved and stored 

(reviewed in Romano et al.,2004). Thus, the oocyte is probably the most active cell in the 

female zebrafish for endocytosis and hence an excellent model to study its regulation in a 

vertebrate. 

 

1. 13 Genetic screen in zebrafish oocyte 

In contrast to the limitations of transient depletion, mutants embryos with genetic 

lesions caused by chemical mutagens, radiation, retroviral insertion, or zinc finger 

nucleases disrupting genes required maternally for development of oocytes or early 

embryos allow perturbation of gene function at the earliest stage when it is required 

without causing off-target effects. Such maternal-effect mutants have been discovered in 

large-scale mutagenesis screens in model organisms including Drosophila melanogaster 

(flies), C. elegans (worms), Danio rerio (fish) and made by homologous recombination to 

disrupt candidate genes in Mus musculus (mouse) (Pelegri , 2003 & Pelegri and Mullins, 

2004). Though maternal-effect screens have only recently been carried out in vertebrates, 

such mutants have already identified novel maternal-effect functions for genes with 

essential maternal roles during early embryonic development. The maternal-effect screens 

in zebrafish yielded the largest collection of maternal-effect mutants in vertebrates; 

nevertheless, only a fraction of the total expected were identified, based on the number of 

genomes screened and estimates from previous large-scale zygotic screens (Mullins et al., 

1994; Solnica-Krezel et al., 1994; Driever et al., 1996). The zebrafish maternal-effect 

screens combined to date approach these numbers; however, these screens select against 

maternal genes that also have essential zygotic functions (Dosch et al., 2004; Pelegri et al., 

2004). The genetic screen for maternal effect mutants in zebrafish oocyte produced 

different group of mutants having a defect during oogenesis and early embryogenesis 
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before mid-blastula transition (MBT) (Dosch et al., 2004). I am interested in one group 

called opaque egg mutants. 

1.14 Opaque egg mutants 

These mutants lay opaque egg instead of their normal transparent eggs in wildtype. 

Also they don‟t segregate their cytoplasm from the yolk towards animal pole. These 

mutants show this symptom irrespective of the male parent genotype, thus confirming the 

presence of mutated maternal gene. This group consisted of four mutants with similar 

phenotype, which were mapped to four different chromosomes, so they are four different 

genes, which suggests that they could work in a same biological process since they produce 

similar phenotype (Fig.9).  

The opaque phenotypes suggest that these mutant having a defect in endolysosomal 

degradation of yolk proteins in the oocyte lysosome. During the oocyte maturation from 

stage III opaque oocyte to stage IV transparent oocyte, the stored yolk protein in lysosomes 

are cleaved enzymatically by a group of cathepsin and cystein proteases which changes 

their opaqueness to transparent. This indicates that opaque egg mutants are blocked before 

the enzymatic degradation takes place. Hence, the protein profile of stage V mutant oocytes 

were compared to premature stage III and mature stage V wild-type oocytes using 

Coomassie-stained SDS-gels (Fig. 10). The mutant oocytes are characterized by a protein 

pattern similar to stage III immature wild-type oocytes that suggests; in the mutants, the 

enzymatic degradation has not occured. This suggested that these mutants have a role in 

endosomal trafficking and yolk degradation. 

Figure 9. Opaque eggs mutant phenotype. 

(A) Live, wild-type embryo 30 minutes post fertilization (mpf). (D) Stage IV wild-type oocyte. (B, 

C, E, F) Opaque egg mutant‟s ruehrei, over easy, soufflé and sunny side up at 30 mpf in incident 

light. Oocytes from mutant females are more similar to immature oocytes (changed after Dosch et 

al, 2004).  
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Figure 10. Yolk protein profile of opaque egg mutants. 

Coomassie-stained SDS page of yolk proteins of stage III and V wild-type (wt) eggs compared to 

stage V mutant eggs ruehrei (rei), over easy (ovy), soufflé (suf) and suny side up (ssu). Mutant eggs 

display a stronger band of the larger molecular-weight yolk protein, similar to stage III wt eggs. All 

other protein bands seem to be identical except of one protein band in sunny side up eggs (strippled 

oval) (changed after Dosch et al, 2004). 

1.15 Souffle encodes zebrafish homolog of SPASTIZIN  

Based on the strongest phenotype in all assays the suf mutant seems to be the most 

interesting candidate for further investigations. To characterize the molecular mechanism 

of the defect, we positionally cloned the disrupted gene in suf mutants. We previously 

located the suf mutation on chromosome 13 of the zebrafish genome. Genotyping 1183 
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females identified 5 recombinants with the SSLP marker z25580/G47633 and another 5 

recombinants with z21403/G41743 restricting the critical interval with the suf mutation to 

1.22 Mb (Fig. 11a). Generating novel SSLP markers AL13-10 and AL13-13, we reduced 

the interval to 270 kb. Within this genomic region, we sequenced the cDNAs of arginase, 

vti1b (t-snare), rdh12 (retinoldehydrogenase 12), zfyve26 (spastizin), galectin and 

pleckstrin2 (Fig. 11b). The zfyve26 gene consists of 41 exons and encodes a predicted 

mRNA of 7798 bp (Fig. 11c). Comparing the zfyve26 cDNA-sequence between wild type 

and the p96re allele of suf mutants showed a 25 bp deletion at the 3‟-end of exon 35 (Fig. 

11d). However, the genomic sequence revealed a single point mutation in a splice donor, 

which probably results in cryptic splice donor selection 25 bp upstream of the wt splice site 

(Fig. 11d). The deletion of 25 bp results in a frame shift, which creates a termination codon 

after six aberrant amino acids (Fig. 11e). The premature STOP deletes 282 of the 2552 

amino acids in the predicted Zfyve26 protein resulting in a shortened protein of 2270 

amino acids (Fig. 11f). Searching for protein motifs with the Prosite database (Sigrist et 

al.,2010) and MyHits (Pagni et al.,2007) revealed a bipartite nuclear localization signal 

(amino acid 714-730), a serine rich domain (aa 1251-1342) and a zinc finger FYVE domain 

(aa 1807-1865). FYVE domains bind to the lipid phospatidylinositol-3-phosphate (PI3P) 

predominantly present on endosomes (Stenmark et al.,1996; Burd and Emr.1998; Gaullier 

et al.,1998; Patki et al.,1998). Phylogenetic analysis detected one homolog in most 

metazoan genomes and a similar gene in Drosophila melanogaster (CG5270), albeit no 

homolog in the C. elegans genome (Fig. 1Ig). Remarkably, although teleosts underwent an 

additional genome duplication compared to tetrapods (Postlethwait.2007), all ten teleosts 

genomes available at the Ensembl-database (http://www.ensembl.org) contain a single 

paralog of Suf/Spastizin, which we confirmed for zebrafish by BLAST searches with full-

length Suf. Alignment of the vertebrate protein sequences discovered a highly conserved C-

terminus, which we termed Suf-domain. Scanning the zebrafish genome with the Suf-

domain did not detect other proteins with a similar amino acid motif. This motif is also 

conserved in plants, but the protein does not contain a FYVE-domain (data not shown). In 

human tissue culture cells, this domain in SPASTIZIN interacts with BECLIN1, KIF13A 

and TTC19 (Sagona et al.,2010; Sagona et al.,2011) and is predicted to form alpha-helical 

solenoids as found in Clathrin heavy chain (Hirst et al.,2013a). Since the Suf domain is 

deleted in the p96re allele, it is essential for the Suf function during zebrafish oogenesis. 

Together, these data identified souffle as the zebrafish homolog of SPASTIZIN. 

 

http://www.ensembl.org/
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Figure 11. Cloning of suf mutation. 

a. Genetic map of the suf-locus on chromosome 13. Meiotic mapping located the mutation between 

the markers z25580/G47633 (0.4 cM, centiMorgan; 5 recombinants/1183 females) and 

z21403/G41743 (0.4 cM) corresponding to a physical interval of 1.22 Mb (megabases). Fine 

mapping of the suf-locus identified markers AL13-10 (0.08 cM) and AL13-13 (0.2 cM), which 

physically represents 280 kB. b. Among other genes, this interval contains the ArgII, vti1b, rdh12, 

galectin and pleckstrin2 genes, whose cDNA sequence did not display mutations in comparison to 

the database genome (http://www.ensembl.org/Danio_rerio/Info/Index). c. Exon-intron structure of 

the suf gene. d. The p96re allele carries a G-A transition at the genomic level destroying a splice 

donor site in the transcribed RNA. e. The selection of an alternative, upstream splice donor leads to 

a deletion of 25 nucleotides causing a frame shift in the cDNA encoding six aberrant amino acids 

and eventually creating a premature STOP-codon (asterisk). f. The mutant protein is predicted to 

lack 282 amino acids at the C-terminus including the conserved SUF domain from amino acid 2375 

to 2552. g. Phylogenetic diagram displaying the conservation of Souffle proteins among 

vertebrates. The Anopheles and Drosophila proteins were used to root the tree. Numbers indicate 

bootstrap-values and the scale the number of substitutions per amino acid residue. 

 

http://www.ensembl.org/Danio_rerio/Info/Index
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1.16 Souffle is maternally expressed 

 Although suf gene has been shown to express in different tissue during 

development, we see the mutant phenotype in oocyte. Hence, we investigated whether the 

Suf/Spastizin gene is expressed at the appropriate time to control oogenesis in zebrafish. 

Real-time PCR analysis of isolated follicles at selected stages showed that Suf/Spastizin 

mRNA is expressed during oogenesis with a slight increase at the onset of vitellogenesis 

(stage II) and another increase after ovulation (stage V) (Fig. 12a). This expression profile 

is consistent with a role during zebrafish oogenesis.  

During embryogenesis, Suf/Spastizin mRNA decreased after 4 hpf (hours post 

fertilization) similar to other maternal genes (Fig. 12b). At 30 hpf Suf/Spastizin showed a 
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small peak of expression. Later during larval stages, the expression steadily increases 

consistent with microarray data in the Espresso database (http://zf-

espresso.tuebingen.mpg.de; Unigene ID: Dr.21642). To analyze sex-specific expression of 

suf/spastizin, we compared mRNA levels in whole females, females without ovaries and 

males. Contrary to its specific phenotype in the oocyte, Suf/Spastizin was strongly 

expressed in males and even outside the female germline suggesting that it also acts in 

somatic cells (Fig. 12c).  

 

Figure 12. Suf mRNA expression. 

The diagram shows the suf mRNA expression analysis in quantitative realtime PCR. a. suf mRNA 

level in percentage during oogenesis. Suf in red and gdf 9 in grey as a control. b. Suf expression 

during embryogenesis from 1 cell to 42 dpf. Dpf- Day post fertilization. c. Suf expression in adults. 

d. Suf expression in ovaries I different genotype. +-indicates the presence wt allele and – indicates 

the suf mutant allele. 

The higher expression of Suf in males can be explained by two non-exclusive 

reasons. A simple explanation might be technical i.e. the genes gapdh and odc1, which we 

used to normalize mRNA levels, are differentially expressed between males and females as 

reported for ef1α Groh et al. (2013). Alternatively, Suf is indeed higher expressed in males, 

http://zf-espresso.tuebingen.mpg.de/
http://zf-espresso.tuebingen.mpg.de/
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possibly in one of the non-reproductive organs with sex-specific gene expression such as 

the brain or the liver (von Hofsten and Olsson.2005). However, the p96re allele clearly 

demonstrates that Suf is required in the oocyte, but does not exclude that it has critical role 

in other organs, which we did not observe. 

Since we did not observe a mutant phenotype outside the germline, we addressed 

whether the p96re mutation causes a complete loss-of-function null-allele or forms a hypo 

morph. Comparison of Suf/Spastizin mRNA levels between +/+, +/- and -/- ovaries showed 

a strong reduction after loss of one Suf/Spastizin copy in heterozygous adults, but no 

phenotype (Fig. 12d). By contrast, -/- mutant females showed only a minor reduction of 

mRNA compared to +/- heterozygotes, but eggs displayed the mutant phenotype. These 

data suggest that suf might also have a function in somatic tissue. 

1.17 Electron microscopy in oocyte shows endosome accumulation  

As mentioned above suf encodes a zinc finger FYVE-domain suggesting a crucial 

role in endocytic membrane trafficking. To investigate the role of Suf in vesicle trafficking, 

electron microscopy on the suf mutant and wild-type oocytes was performed (Fig. 13). In 

wild type oocytes (Fig. 13, left panel) vesicles fuse to make large yolk globules. These yolk 

globules are dormant lysosomes and can be characterized by a crystallized structure of 

stored yolk proteins when analyzed in higher magnification ((Fabra et al.,2006). In suf 

mutants, vesicle formation can be seen, but they accumulate immature without reaching the 

yolk globule stage (Fig. 13, right panel). This analysis indicates that the mutant oocytes are 

blocked in endosomal trafficking between the steps of vesicle formation and lysosomal 

degradation, which is also consistent with the results of the performed SDS-PAGE (see Fig. 

10) and the observed opaque phenotype (see Fig. 9), probably caused by the lack of the 

proteolytic cleavage of yolk proteins.  
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Figure 13. Suf is crucial for endosomal vesicle trafficking. 

Electron micrograph of wild-type (wt) and Suf mutant oocytes. (Left panel) In wild types vesicles 

fuse to form large yolk globules (big grey vesicles). These vesicles are known to be dormant 

lysosomes. (Right panel) In mutants, the formation of vesicles can be seen but do not mature into 

yolk globules. Scale bar = 10 µm.  

1.18 Souffle mutataion causes hereditary spastic paraplegia in human.  

 Interestingly, the suf mutation in human causes a genetic neuro degenerative disease 

called hereditary spastic paraplegia (HSP) (Hanein et al., 2008). This is a progressive motor 

neuron degenerative disease. It‟s a genetically heterogenous group of diseases with a 

symptom of lower limb spasticity and weakness. Hereditary Spastic Paraplegia or 

Strumpell–Lorrain syndrome was first described at the end of the 19th century. Human 

voluntary movements are under the control of the pyramidal motor system and. This 

system involves multiple steps: (1) signals originating from upper motor neurons, whose 

cell body is in the cerebral motor cortex region; (2) travel of this signal via corticospinal 

tract axons toward the anterior horn of the spinal cord; (3) synapses of these axons to 

interneurons or lower motor neurons; (4) lower motor neurons projections outside the 

central nervous system to the neuromuscular junctions, where they regulate skeletal muscle 

contraction. Thus, the impulse signal must travel a very long distance at high velocity and 

the cortical motor neurons need to support the very long axon with all the required 

components, such as proteins, lipids, mRNAs and organelles. Analysis showed that the 

most distal end of axon is most affected, which is most probably due to the loss of 

connection between upper and lower motor neurons. Moreover, the lower limbs show the 

symptom since they are connected through the longest axons. There are many modes of 
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inheritance, with X-linked, maternal transmission (mitochondrial), autosomal recessive, 

autosomal dominant and de novo and the age of onset varies from early childhood to 70 

years old. An uncomplicated form defined pure HSP, where lower limb spasticity occurs in 

isolation, frequently with bladder spasticity and mild impaired sense of vibration. 

Complicated HSP has prominent lower limb spasticity that is always accompanied by other 

neurological or non-neurological finding such as seizures, dementia, amyotrophy, ataxia, 

intellectual disability, deafness, extrapyramidal disturbance, thin corpus callosum, visual 

dysfunction, peripheral neuropathies, facial dysmorphism, persistent vomiting, orthopedic 

abnormality, skin lesions and much more (Noreau et al.,2014). Currently total of 54 loci 

has been found to cause this disease and the known genes are involved many different 

biological and cellular processes making more difficult to find the reason or cause for this 

disease (Fig.14). This tissue specific and late onset of phenotype makes it difficult to create 

any disease models to study the function of these disease-causing genes. The fibroblast 

from the patient does not show any defect while the motor neuron shows severe defects and 

spasticity. Many studies are aiming for identification of new HSP genes to identify the 

cause of the many remaining unexplained cases, as well as the downstream ones that are 

clinically relevant applications, such as improved diagnosis and treatments. There are 

several labs and organizations, which are working to (1) improved diagnostic and patient 

evaluation algorithms for clinician; (2) establishing national databases, registries and 

biobank of HSP patients; and (3) developing better treatments. So the defect in suf mutant 

oocyte provides an excellent tool or model to study the role of souffle in trafficking and 

will help to understand the disease pathology. Notably, the p96re allele is almost identical 

to one of the HSP mutations in human (Hanein et al.,2008).  

Figure 14. Pathogenic mechanisms involved in hereditary spastic paraplegia (HSP). 

This representation is a motor neuron showing where the HSP-predisposing genes are involved. 

These proteins can be grouped into nine different cellular functions: endosomal trafficking; DNA 

repair; ATP metabolism and mitochondrial localization; Fatty-acid, phospholipid and cholesterol 

metabolism; Autophagy and lysosomal metabolism; Gap junction; Axonal transport; Myelination 

and ER morphogenesis (Noreau et al.,2014). 
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1.19 Souffle interacts with AP5 adaptor complex in human  

Although, suf has not been studied in a model organisms, recent studies from 

human cells showed that suf proteins interact with newly discovered adaptor protein 

complex 5 (AP5) with all the sub unit of the AP5 complex together with SPG11 another 

HSP gene. Localization analysis showed that these proteins localize to lysosome or late 

endosome (Fig.15) and knockdown any of these genes causes accumulation of mannos 6- 

phosphate receptor in endosomes. Based on bioinformatics prediction, they suggest that 

SPG15 protein acts as a scaffold to keep the AP5 on membrane and involves in sorting of 

cargos (Hirst et al.,2013a). Also the AP5 subunit has been found mutated in HSP patients. 

The understanding of this complex is hampered with its low abundance and absence in 

many model organisms. Furthermore, the depletion of SPG15 leads to disassembly of AP5 

complex suggesting that SPG15 holds the complex with the membrane like a scaffold. 

SPG15 has been shown to localize in endosomes, ER, central nervous system, lysosome, 

mitochondria, centrosome and midbody (Sagona et al., 2010, 2011 & Marmu et al., 2011). 

These multiple localization results also makes it hard to predict its role. However, the 

adaptor protein complexes are known to involve in sorting and budding of cargo from one 
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compartment to another. Interaction between SPG15 and AP5 indicate their role in sorting 

of cargos. However, the origin and the destination of the complex is still unknown. With 

the suf mutant oocyte, we aim to find the function of SPG15 in endosomal trafficking to 

understand this complex disease. 

 

 

Figure 15. Adaptor protein complex 5. 

The cartoon shows the localization of different adaptor proteins known and the newly discovered 

AP5 in late endosome. AP1 is in red in TGN, AP2 in green on plasma membrane, AP3 is in blue on 

tubular endosome, AP4 in yellow on TGN, GGA1 on TGN and retromer in brown on early 

endosome and COP1 on Golgi. 

 Based on the suf mutant morphological phenotype and cellular phenotype in 

electron micrograph indicates that suf might play crucial role in endosomal trafficking. 

Furthermore, suf has been shown to interact with the novel adaptor protein complex AP5 

and the mutation in suf causes a genetic neuro-degenerative disease called hereditary 

spastic paraplegia in human signifying the essential role of suf in cellular trafficking in 

other tissues as well. Using the above cellular and genetic evidences represented from other 

studies and the preliminary data from suf mutant oocytes, I decided my following 

objectives.  
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1.20 Objectives of this study 

1. Characterizations of the soufflé mutation phenotype, 

2. Discovering the role of Soufflé in endocytosis during oogenesis, 

3. Understanding the role of soufflé in HSP disease using suf mutant oocyte as a 

model.
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2. Materials and Methods 

2.1 Model Organism-Zebrafish 

Zebrafish (Danio rerio) were maintained under standard laboratory conditions 

(Chapter 1, Nüsslein-Volhard and Dahm.2002). Fishes of the AB/TLF and Tubingen strain 

were used as wild type fishes. In vivo experiments were performed in Zebrafish oocyte and 

embryos according to Goettingen university Medical school animal husbandry rules and 

regulations. Stages of the developing embryo were determined according to (Kimmel et al, 

1995). 

2.2 Bacteria 

E.coli strain XL1-Blue (RecA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, 

lac[F‟proAB, ZΔM15, Tn10(Tetr)]
c
 (Stratagene)) was used during this study.  

2.3 Cell lines 

The following cell lines were used: 

Human skin fibroblast cells were used for analysis and cancer cells were used for 

expression of Suf-GFP and mutant suf expression  

2.4 Chemicals, Buffers and Media 

2.4.1 Chemicals 

The chemicals were purchased from the following companies: Roth (Karlsruhe), 

Sigma (Munich), Biomol (Hamburg), Applichem (Darmstadt), Invitrogen, Sigma and 

Biochrom (Berlin).  

2.4.2 Buffers and Media 

The buffers were prepared using deionized water (MiliQ). 

 

Alkaline phosphatase buffer (APB): 100 mM Tris-HCl (pH 9.5), 50 mM MgCl2, 100 mM 

NaCl, 0.1% Tween20  

 

Blocking solution: 1x PBS, 5% non fat dry milk and 0.1% Tween20  

 

CoIP buffer for II: 50 mM Tris-HCl, pH 7.5; 150 mM NaCl, 0.5% NP-40, protease 

inhibitor cocktail (1 tablet per 50 ml of the buffer, Roche) 

Cystein solution: 2% L-Cystein hydrochloride, pH 8.0 
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Laemmli running buffer (10x): 250 mM Tris-base, 2.5 M Glycine, 0.1% SDS 

 

Laemmli loading buffer (6x): 350 mM Tris-HCl pH 6.8, 9.3% Dithiotreit, 30% (v/v) 

Glycerol, 10% SDS, 0.02% Bromphenolblue  

 

Luria-Bertani (LB)-Medium: 1% (w/v) Bacto-Trypton (DIFCO), 0.5% (w/v) yeast 

extract (DIFCO), 1% (w/v) NaCl, pH 7.5 

 

LB-Agar: 1.5% (w/v) agar (DIFCO) in liquid LB-medium 

 

MEM: 100 mM MOPS, 2 mM EGTA, 1 mM MgSO4 

 

MEMFA: 1x MEM with 3.7% (v/v) Formaldehyde 

 

Nile blue: 0.01% (w/v) Nile blue in 0.1x MBS 

 

PBS (10x): 8% (w/v) NaCl, 2% (w/v) KCl, 65 mM Na2HPO4, 18 mM KH2PO4, pH 7.4  

PBST buffer: 1xPBS with 0.1% Tween20 

 

SSC: 150 mM NaCl, 15 mM Sodium citrate, pH 7.4 

 

TAE (Tris/Acetat/EDTA): 40 mM Tris-Acetate (pH 8.5), 2 mM EDTA 

 

TE-Buffer: 10 mM Tris-HCl pH 8.0, 1 mM EDTA 

 

Tris-HCl (pH 6.8, 7.5, 8.2, 8.8, or 9.5): 1 M Tris-HCl, pH adjusted with 37% HCl  

 

Western blotting buffer: 3.03 g Tris-base, 14.4g Glycine, 200 ml methanol, 800 ml H2O 

Blue juice (gel loading buffer) (10x): 50% glycerol, 10 mM (5%) bromophenol blue  

Cell culture medium: Dulbecco‟s modified Eagle Medium (DMEM) (Biochrom), 10% 

(v/v) FCS (Biochrom), 100 U/ml penicillin (Gibco Invitrogen), 100 µg/ml streptomycin 

(Gibco, Invitrogen). 
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Oocyte Ringer's Solutions: 

Normal 

116 mM NaCl 

2.9 mM KCl 

1.8 mM CaCl2 

5 mM HEPES, pH 7.2. 

High calcium 

116 mM NaCl 

2.9 mM KCl 

10 mM CaCl2 

5 mM HEPES, pH 7.2. 

Calcium free 

116 mM NaCl 

2.9 mM KCl 

5 mM HEPES, pH 7.2.  

Hank's Stock Solutions (HBSS) 

Hank's buffered salt solution (HBSS) is a complicated solution to make which is 

why many people just buy it. First, you make each solution, the premix, and then the final 

solution. All solutions should be stored at 4
o
C.  

Stock #1 

1. Dissolve the following in 90ml of distilled H2O  

 8.0 g NaCl 

 0.4 g KCl 

 1.0 g glucose 

2. qs to 100 ml with distilled H2O 

Stock #2 

1. Dissolve the following in 90ml of distilled H2O  

 0.358 g Na2HPO4 (anhydrous) 

 0.60 g KH2PO4 

2. qs to 100 ml with distilled H2O 

Stock #3 

1. Add 0.72 g CaCl2 to 50ml of distilled H2O  
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Stock #4 

1. Add 1.23 g MgSO4x7H2O to 50ml of distilled H2O  

Stock #5 

1. Add 0.35 g NaHCO3 to 10ml of distilled H2O 

Hank's Buffered Salt Solution (HBSS) Premix 

Combine the solutions in following in order: 

10.0 ml Solution #1 

1.0 ml Solution #2 

1.0 ml Solution #3 

86.0 ml distilled H2O 

1.0 ml Solution #4 

Hank's Buffered Salt Solution (HBSS) full strength (mix prior to use) 

9.9 ml Hank's Premix 

0.1 ml Stock #5 

Hank's Buffered Salt Solution (HBSS) (Full Strength with carbonate) composition 

0.137 M NaCl 

5.4 mM KCl 

0.25 mM Na2HPO4 

0.1g glucose 

0.44 mM KH2PO4 

1.3 mM CaCl2 

1.0 mM MgSO4 

4.2 mM NaHCO3 

 

E3 medium: 300 mM NaCl, 10.2 mM KCl, 19.8 mM CaCl2, 19.8 mM MgSO4 

PCR buffer (10x): 100 mM Tris-HCl, pH 8.3, 500 mM KCl, 15 mM MgCl2, 0.01 mM 

EGTA 

TBE buffer (10x): 0.9 M Tris-base, 0.9 M boric acid, 0.02 M EDTA, pH 8.0 

Lysis-Buffer (10x): 2,5 ml 2M Tris, pH 8.4; 8,3 ml 3M KCl, 0,75 ml 1M MgCl2,  
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Table 1. Lysis and PCR buffers 

Lysis and PCR buffers: 

Stock  solutions 10x lysis buffer 10x PCR buffer Final concentration. 

 

2M Tris 8.4 

3M KCl 

1M MgCl2 

1% gelatin 

20% BSA (200 mg/ml) 

mQ H2O complete 

2.5 ml 

8.3 ml 

0.75 ml 

- 

- 

to 50 ml 

2.5ml 

8.3ml 

0.75 ml 

0.5 ml 

250 µl 

to 50 ml 

100 mM Tris 8.4 

500 mM KCl 

15 mM MgCl2 

0.01% gelatin 

1 mg/ml BSA 

 

Proteinase K: 

Stock solution: 20 mg/ml. Store at –20°C. 

Working solution: 0.2 mg/ml of lysis buffer. 

Stock solutions 100µl Lysis buffer 1x 1 ml Lysis buffer 1x 

10x Lysis buffer 

Prot. K 20 mg/ml 

mQ H2O 

10 µl 

1 µl 

90 µl 

100 µl 

10 µl 

890 µl 

 

Bromophenol blue: 

10x stock solution: 4% BP blue in H2O. Store at –20°C. 

Stock solutions 10x Loading buffer (10 ml) Final concentration 

4% BP blue 

Glycerol 

mQ H2O 

1 ml 

5 ml 

4 ml 

0.4% BP blue 

50% Glycerol 

Load on gel 10 µl PCR reaction + 2 µl 10x LB. 
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dNTPs:  

Prepare 500 µl of 5 mM dNTPs. 

Each dNTP stock solution is 100 mM. 

Stock solutions 5 mM dNTPs (500 µl) 

dATP 100 mM 

dGTP 100 mM 

dTTP 100 mM 

dCTP 100 mM 

mQ H2O 

25 µl 

25 µl 

25 µl 

25 µl 

400 µl 

  

50 bp Ladder:  

The stock solution is 50 ng/µl: mix 100 µl of it + 10 µl of 10x LB. Use 3 µl on gel. 

 

Primers: 

1 pair of primers: 1 forward primer + 1 reverse primer = 1 genomic marker  

The mapping pairs of primers stock are 100 µM and stored at –80°C. 

The working solution of genomic marker is 10 µM. 

 

Stock solutions 10 µM marker (100 µl) 

Forward primer 100 µM 

Reverse primer 100 µM 

mQ H2O 

10 µl 

10 µl 

80 µl 

 

2.5 Constructs 

2.5.1 Vectors 

pCS2+ vector (Stratagene) 
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The pCS2+ vector is a multipurpose expression vector, which can be used in the 

zebrafish model system. It contains a strong promoter/enhancer region (simian CMV IE94) 

followed by a polylinker and SV40 viral polyadenylation signal. An SP6 viral promoter is 

localized to the 5´-untranslated region (UTR) of the vector and enables in vitro of 

transcription sense mRNA for microinjection derived from of sequences cloned into the 

polylinker. The inserted T7 viral promoter localized to the 3´ UTR allows in vitro 

transcription of antisense RNA for in situ hybridization. The vector backbone is from the 

pBluescript II KS+ vector and includes the ampicillin resistance gene and an f1 origin for 

producing single stranded DNA. 

pBluescripts KS (-) vector (pBS) (Stratagene) 

The pBluescript vector is a phagemid vector designed for DNA cloning and 

sequencing procedures. KS represents the orientation of the MCS in which lacZ 

transcription proceeds restriction sites from SacI to KpnI. The phagemid contains the 

intergenic region of phage f1 required for packaging of DNA into bacteriophage particles, 

the T3 and T7 promoter for in vitro transcription, the bla (ApR) – gene, coding for beta-

lactamase, that confers resistance to ampicillin, lacZ – the 5´-terminal part of the lacZ gene 

encoding the N-terminal fragment of beta-galactosidase. This fragment allows blue/white 

screening of recombinant phagemids 

 

pCS2+_YFP_rab4a 

pCS2+_YFP_rab4a is a pCS2+ vector variant containing the open reading frame of 

YFP fused to the open reading frame of rab4a for the expression of a reporter gene. 

 

pCS2+_CFP_rab5a 

This vector harbors the open reading frame encoding for CFP fused to the N-

terminus of rab5a for the expression of a reporter construct.  

 

pCS2+_YFP-rab7 

The coding sequence of YFP linked with that of rab7 is inserted into the pCS2+ 

vector for the expression of a fusion protein. 

 

pCS2+_CFP_rab11a 
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This vector is a variant of the pCS2+ vector containing the cDNA sequence of CFP 

connected to the cDNA sequence of the dog rab11a for the expression of a reporter gene. 

 

pCS2+_eGFP_cellubrevin 

The pCS2+ vector harbors the open reading frames of eGFP and cellubrevin fused 

with each other for the expression of a reporter construct.  

2.5.2 Gateway vectors 

The gateway vectors were used to transfer suf clone from pUC57 to these 

expression vector using recombination. In addition, we used to fuse GFP or mCherry in 

both ends using company recommended procedures (Invitrogen). 

 pCS2+ Dest egfp 

 pCS2+ Dest  

 pCS2+ Dest mCherry 

 

2.6 Oligonucleotides  

The oligonucleotides (primers) were purchased from Sigma-Aldrich Chemie and 

Eurogentec. They were dissolved in HPLC H2O to a concentration of 100 µM.  

 

2.6.1 Sequencing primers 

The sequencing primers used during this study are listed in Table 1.  

 

Table 2. Sequencing primers 

Construct/Vector Name Nucleotide-  

pBS T3 AATTAACCCTCACTAAAGGG 

 T7 TAATACGACTCACTATAGGGCGA 

pCS2+ T3 AATTAACCCTCACTAAAGGG 

 T7 (pCS2+) TCTACGTAATACGACTCACTATAG 

 Sp6 TAATACGACTCACTATAGGGCGA 

soufflé zn_finger_fw TGAGGTCAGACATCTTTGAG 

suf_new_fw TCATGCACCCGTTCGGCCGTGAA 
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suf1_fw TCATCCAGCACCTCACAGAG 

suf2_fw GGTCAGACAGGTCTGGTGCT 

z1_millieu_fw GGATTTTGGGATGTCTGCTG 

suf2_rev TTTCTGGAGCAGCAGGTTTTGCT 

suf1_rev CTGAGTTCCAGCCTTTGTCC 

suf3_fw CAAGTGGACTCCCCTAGCAG 

suf3_rev GAAGGTTTGGAGGGTGTGTG 

z2_fw CGCAGAGGCAACTACATTGA 

z2_suite_fw ACAGTCTGGTGGGAAGCAAT 

z2_bis_fw TTCATCCTCCCCTTCCTCTT 

zn_finger_3_fw CAGACCGAACACCTGCTGTA 

z35_fw CTCTGTCATTAGTCTGCAAGATGC 

EST_AL33_fw AATCTGAGTGGTGCCATGGA 

z3_bis_fw CCTGTTCACATACGGCACAC 

fc33a033_rev TCGGATGATGTGTTTCTGGA 

sufexonmut_fw TCGGATGATGTGTTTCTGGA 

EST_AI9_fw TTACACCGCTGTGAAAGCTC 

z1_check_rev AAGAGGACGAGACAGCTGAA 

z2_new_seq TCATCTTCAGAGGGTCTGGG 

z2_suite_rev CTGATGGTGCTCCTGACAGA 

z2_rev CTGGAGGCTCTCTCTGACTCA 

z3_check_rev ATTATCAGCTGGCTGTGGAG 

EST_AI33_rev TGGGTGCTTTACAAGGTCTG 

z35_rev TACCACTCTCTGTACCAACTCCAG 

sufexonmut_rev CCAACTCCAGCAGTTCATGA 

EST_AI9_rev ACAAGAAGTGATGCGAGCAG 

suf_new_rev GAGCATCAAGAGCCATCATCAAAACA 

zn_finger_rev TCCTGATTCTGATTGGTGAGTG 

 

2.6.2 Morpholino oligonucleotides 

Antisense Morpholino oligonucleotides (Morpholinos, MO) were purchased from 

Gene Tools, LLC (Philomath, USA). Morpholinos were dissolved in RNAse-free water to a 
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1µM concentration. The sequences of the Morpholinos used in this study are presented in 

Table 2. 

 

Table 3. Antisense Morpholino oligonucleotides for suf 

Morpholino 

name 

Target 

gene 

Sequence 5’→3’ Working 

concentration 

Suf Suf ATG AUGMO-

GCCGAACGGGTGCATGATCCTCAAA 

5-10 

ng/embryo 

Control No target Control MO-

GCCcAACcGcTGCATcATgCTCAAA 

5-10 

ng/embryo 

 

2.7 DNA methods 

2.7.1 Plasmid DNA preparations 

Isolation of plasmid DNA in analytical amounts was performed using Illustra
TM

 

Plasmid Prep Mini Spin Kit (GE Healthcare). For the isolation of plasmid DNA in 

preparative amounts Illustra
TM

 Plasmid Prep Midi Flow Kit (GE Healthcare) was used. The 

DNA isolation was performed according to the manufacturer‟s instructions. DNA 

concentrations were measured using the ND-1000 Spectrophotometer, Coleman 

Technologies Inc. 

 

2.7.2 DNA restriction digestion 

DNA restriction digestion was performed with restriction endonucleases purchased 

from MBI Fermentas according to manufacturer‟s instructions. 

 

2.7.3 Agarose gel electrophoresis 

DNA or RNA fragments were separated in a horizontal electrical field into agarose 

gel (Sharp et al.,1973). The electrophoresis was run in the standard TAE-running buffer at 

100-120 V in horizontal electrophoresis chamber. Depending on the expected sizes of 

DNA/RNA fragments, 0.8 to 2% (w/v) agarose gels were prepared in TAE buffer. Gels 

always contained 0.5 μg/ml ethidium bromine to visualize nucleic acids. Before loading 

samples into the gel slots, nucleic acids were mixed with DNA loading dye (6x, Ambion). 

After the electrophoresis, DNA bands were visualized with the UV-transilluminator 
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(Herolab) and documented with the ChemiDoc video documentation system (EASY view). 

Standard DNA ladders were used to determine the sizes of DNA fragments (High, Middle 

or Low Range, Fermentas). 

2.7.4 Purification of DNA fragments from agarose gel or restriction digestion mixture 

The purification of DNA fragments from agarose gels or restriction digestion 

mixture was performed with the Illustra
TM

 GFX PCR DNA and Gel Band Purification Kit 

(GE Healthcare) according to manufacturer‟s instructions.  

 

2.7.5 Polymerase chain reaction (PCR) 

A standard PCR reaction was used to amplify desired DNA fragments (Mullis et al.,1986).  

The PCR reaction mixture: 

Matrix DNA – 50 ng 

10x buffer – 5 µl  

dNTP (10mM each, Fermentas) – 2 µl 

DNA polymerase – 1 µl 

10 µM forward primer – 1 µl 

10 µM reverse primer – 1 µl 

HPLC water (Roth) – up to 50 µl 

 

DreamTag
TM

 polymerase (5 U/µl) (Fermentas) was used for analytical PCR. High 

fidelity Pfu polymerase (2.5 U/µl, Fermentas) was used for the PCR followed by molecular 

cloning of the amplified fragments. 

The following program was used for DNA fragments amplification: 

 

1 cycle: 

Initial denaturation step – 95°C, 2 min  

30 cycles: 

Denaturation – 95°C, 45 sec 

Primer annealing – the temperature depends on primer GC content, 45 sec 

Elongation step – 68°C for Pfu polymerase, 72°C for DreamTag
TM

 polymerase, 

1min/1000bp of target DNA fragment 

1 cycle: 

Final elongation step – 68°C or 72°C depending on the polymerase used, 10 min 
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2.7.6 DNA ligation 

T4 DNA ligase (Fermentas) was used according to manufacturer‟s instructions. For 

the ligation, a vector and an insert were taken in 1 to 3 molar ratio. The total amount of 

vector DNA was 50 ng. For 20 µl of a single reaction, mixture 2 µl of T4 DNA ligase (5 

U/µl) was used. The ligation was performed 1 hour at room temperature for inserts shorter 

than 1000 bp or overnight at 16°C for inserts longer than 1000 bp. The ligase was 

inactivated 10 min 65°C before the transformation of E.coli Xl1blue strain. 

 

2.7.7 Chemical transformation and electro-transformation of bacterial cells 

For chemical transformation 100 μl of chemically competent E.coli XL1blue cells 

were thawed on ice, mixed with 1 or 2 μl of the ligation mix or 100-500 ng of plasmid 

DNA, incubated for 10 min on ice and heat-shocked for 2 min at 41°C, then left for 2 min 

on ice. 1 ml of warm LB medium was added to the cells and the mixture was incubated at 

37°C for 1 hour (Mandel and Higa.1970). For electro-transformation 40 μl of electro-

competent cells were thawed on ice, mixed with 1 or 2 μl of the ligation mix, transferred 

into a yellow 2 mm electroporation cuvette (Thermo Electron) and incubated for 1 min on 

ice. After application of an electrical pulse of 1.8 kV and 25 μF, the transformation reaction 

was mixed with 0.5 ml of LB-medium (Dower et al.,1988). Bacterial pellets were seeded 

on LB agar plates supplemented with appropriate antibiotics for the selection of 

transformed cells (0.1 mg/ml ampicillin (Biomol), 0.05 mg/ml kanamycin (Biomol). 

Colonies were grown overnight at 37°C (Mandel and Higa.1970).  

 

2.7.8 DNA sequencing analysis 

Dye-termination sequencing method, which is the modification of Sanger chain-

termination sequencing, was used (Sanger et al.,1977). The Big Dye
TM

 Terminator Kit 

(Applied Biosystems) was used for preparation of the sequencing PCR according to the 

manufacturer‟s instructions.  

 

The sequencing PCR mixture: 

DNA matrix – 200-400 ng 

Seq mix – 1.5 µl 

Seq buffer – 1.5 µl 



                                                                                                         Materials and Methods  

65 

 

Primer – 8 pmole 

HPLC water – up to 10 µl 

 

 

The sequencing PCR 

25 cycles: 

96 °C, 10 sec 

55°C, 15 sec 

60°C, 40 sec 

 

To purify the sequencing reaction the following components were added to the PCR 

mixture: 1 µl of 125 mM EDTA (pH 8.0), 1µl of 3 M sodium acetate (pH 5.4) and 50 µl 

100% ethanol. The sample was incubated 5 min at room temperature, and then centrifuged 

15 min at 14000 rpm. The pellet was washed with 70 µl of 70% ethanol, dried and diluted 

in 15 µl of HiDi
TM

 buffer (Applied Biosystems). The automated sequencing was performed 

by in-house sequencing lab using the ABI 3100 Automated Capillary DNA Sequencer 

(Applied Biosystems). 

 

2.8 RNA methods 

2.8.1 In vitro synthesis of capped sense mRNA 

Prior to capped sense mRNA synthesis 15 µg plasmid DNA were digested at 37 °C 

overnight in 40 µl total volume via FastDigest
®

 KpnI  (1 FDU/µL, Fermentas). The 

linearized plasmid was either purified using Invisorb
®

 Fragment CleanUp (Invitek) (Exp. 

2) or extracted with phenol/chloroform/isoamyl alcohol (Roth) (Exp.1). Prior to the 

extraction the linearized plasmid was treated with 0,3 µg proteinase K (20mg/ml, MP) for 

30 min at 55°C. Thereafter, phenol/chloroform/isoamyl alcohol (1:1) was added, the tube 

was vortexed and centrifuged for one min at 16.000 rcf. The upper phase was precipitated 

with ½ volume 5M NH4Ac and two volumes 100% ethanol via centrifugation for 15 min at 

16.000 rcf at RT. Afterwards, the supernatant was removed and the pellet was washed with 

70% ethanol for five min at 16.000 rcf. Finally, the Pellet was re-suspended in nuclease 

free H2O. 

In vitro synthesis of capped sense mRNA for microinjections into Zebrafish 

embryos was performed using the Sp6 mMESSAGE mMACHINE SP& kit (Ambion) 
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according to the manufacturer‟s instructions. For a 20 µl reaction 0.5 µg of the linearized 

plasmid was used as template DNA. The reaction took place for 2 hours at 42 °C. 

Subsequently, 1 µl of TURBO DNase (2U/µl, Ambion) was added to remove the template 

DNA. Synthesized RNA was purified via the Illustra
TM

 ProbeQuant
TM

 G-50 Micro 

Columns kit (GE Healthcare) 

2.8.2 Measurement of the RNA concentrations 

RNA concentrations were measured using ND-2000c Spectrophotometer (PEQLAB 

Biotechnologie GmbH). For RNA, an optical density (OD) of 1 corresponds to 40 µg/ml. 

2.9 Zebrafish embryo culture and microinjections 

2.9.1 Setting up pair crosses 

Male and female Zebrafish pairs were set up in mice cages in the afternoon using 

the same conditions under which the fish are otherwise maintained. Males were separated 

from the females by an inserted mating box containing a mesh divider to obtain precise 

staging of the embryos. The following morning, upon light cycle activation, the pairs were 

put together into the mating boxes, and the females were stimulated to release mature eggs. 

Embryos were run through the mesh divider and could thus easily separated from their 

parents and collected. Embryos were raised in E3 buffer.  

2.9.2 Embryo microinjection of capped sense mRNA 

2.9.2.1 Needle preparation  

The injection needles were made from Borosilicate glass with firepolished ends 

with filament (GB100F-8P, SCIENCE PRODUCTS GmbH) on Magnetic Glass 

Microelectrode Horizontal Puller (Model PN-30, Narishige). The pulling parameters were 

empirically determined. A commonly used set was as follows: Heater level (61.2), Magnet 

main level (70.6), and Magnet sub level (27.6). The needles were further cut with a 

razorblade in order to make fine wedge-shaped tips. 

2.9.2.2 Preparation of injection dishes 

To facilitate injection procedure, embryos were held in wedge-shaped troughs. For 

the preparation of these troughs, liquid 1% agarose/E3 buffer was poured into 100 x 15 mm 

petri dishes and plastic molds (chamfer down) were set to agarose/E3 overlay. Once 

agarose/E3 was solidified, the plastic molds were removed and the petri dishes were kept 

under 4 °C cold conditions to prevent bacteria growing.  
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2.9.2.3 Microinjection into 1-cell stage embryos 

Before injection, the synthesized capped sense mRNA was diluted with 0.05% 

phenol red solution (Sigma) and 0.1 M KCl to the final concentration. This solution was 

loaded into the needles. The microinjection was performed as described in „Zebrafish – A 

practical approach: chapter 5‟ (Nüsslein-Volhard and Dahm, Chapter 5, 2002). The 

following RNAs were injected: YFP-rab4, CFP-rab5a, YFP-rab7, CFP-rab11a, eGFP-

cellubrevin, mcherry, mcherry-soufflé_A3. 

 

2.9.2.4 Morpholino injection of one cell embryo 

One cell embryo was injected with previously described amount in Martin et al., 

2012. Injected embryos were cultured for two days and chcked for their development and 

sored for the phenotype observed. 

2.10 Oocyte methods  

2.10.1 Oocyte isolation and culture 

The gravid females were anesthetized and ovary were dissected using thin blade 

under the belly. Keep the ovaries in OR2 buffer without disturbing and pas through the 

filters to isolate individual oocytes. Then slowly move the column up and down inside the 

buffer to collect the single separated oocytes from the ovary. We can also use enzymes 

which digest the ovaries (Collagenase 1A 15 µg/ml in R2 buffer) or Liberase (9 µl of 14 

wünsch/ml) for shorter time, followed by washing to remove the enzymes then collect the 

single oocytes. But don‟t destroy or damage the oocytes by doing faster. Then wash the 

oocytes twice with R2 buffer or 60% L-15 media. The oocytes are selected based on their 

size using the filters with different sizes according to different stage of the oocytes in 8 

well plates (Available in the lab). Isolated oocytes can be used further for injection or drug 

treatment followed by culture or imaging purpose. 

2.10.2 In-vivo Trafficking assay 

The oocytes were dissected out from the female from wild type and suf mutant  in 

OR2 buffer and Incubated with 125 µg/ml of Transferrin Alexa594 (Molecular probes) in 

OR2 buffer for 10 and 25 minutes at room temperature followed by 30 minutes of chasing 

in OR2 buffer alone. The oocytes were fixed after washing twice with OR2 and twice with 

PBT and stained with antibodies or fluorescent dyes.  The oocytes were isolated from wild 

type and suf mutant females and incubated with 10 µg/ml of LDL Dil (Molecular probes) 
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in OR2 buffer for 10 minutes then the oocytes were fixed after washing twice with OR2 

and twice with PBT followed by lysotracker staining.  

2.10.3 Chorion elevation assay 

2.20.3.1 Chorion elevation assay in egg 

The fish were set in mating box but the male and female were separated by a mesh 

to prevent mating in previous day evening. The fish were anesthetized using tricane 

solution and the ovulated eggs were squeezed out from wild type, suf heterozygous and suf 

homozygous female in OR2 buffer or hank solution. The eggs were activated by adding E3 

medium and left it for 30 mins. The eggs were imaged after 30 minutes of activation. The 

images were used to measure the chorion elevation level using Fiji software.  

2.10.3.2Chorion elevation assay in embryo 

The fish were set for mating but the male and female were separated by a mesh in 

previous day evening. The fish were put together in the morning for mating. After 20 mins 

of undisturbed mating time, the embryos were collected from wild type, suf heterozygous 

and homozygous female. The embryos were imaged after 30 minutes post fertilization and 

measured their chorion elevation using Fiji software.  

2.10.4 Dynasore teatement 

The live oocytes or eggs were collected in OR2 buffer and incubated with 500 

µg/ml of Dynasore for required time at room temperature. The control oocytes were 

incubated with the carrier DMSO. Then, the oocytes were washed thrice and processed 

further for staining as mentioned in immunofluorescence staining or functional assay for 

chorion elevation. 

2.10.5 Electron Microscopy 

Electron Microscopy on oocytes was done in collaboration with Dr. Dietmar Riedel 

Max Planck institute of Biophysical Chemistry, Goettingen.  The Diameter was measured 

in nm and standard deviation was used to put error bar in the graph and t-test was done in 

MS-Excel and WWW.graphpad.com.  

For high-pressure freezing EM, living oocytes were placed in aluminum platelets of 

150 µm depth containing 1hexadecen (Studer et al.,1989). The platelets were frozen using a 

Leica Em HPM100 high-pressure freezer (Leica Mikrosysteme Vertrieb GmbH, Wetzlar, 

Germany). The frozen oocytes were transferred to an automatic Freeze Substitution Unit 

Leica EM AFS2. The samples were substituted at -90 °C in a solution containing 
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anhydrous acetone, 0.1% tannic acid for 24 h and in anhydrous acetone, 2% OsO4, 0.5% 

anhydrous glutaraldehyde (EMS Electron Microscopical Science, Ft. Washington, USA) 

for additional 8 h. After a further incubation over 20 h at -20 °C, samples were warmed up 

to +4 °C and washed with anhydrous acetone subsequently. The samples were embedded at 

room temperature in Agar 100 (Epon 812 equivalent) at 60 °C over 24 h. Images were 

taken in a Philips CM120 electron microscope (Philips Inc.) using a TemCam 224A slow 

scan CCD camera (TVIPS, Gauting, Germany). 

2.10.6 Oocyte injection with RNA or DNA 

 For plasmid injection, isolated stage III oocytes were injected with 1 ng of 

pCS2+wt-suf or pCS2+mut-suf encoding the p96re allele as described (Clelland et 

al.,2007). After injection oocytes were incubated for 12 hrs at 28ºC in 90% L-15  medium 

(0.5% BSA; 100 µg/ml Gentamycin) and then scored for chorion elevation as described 

before (Nair et al.,2013). 

2.10.7Microinjection and Oocyte Maturation 

Zebrafish oocytes were injected RNAs or DNAs in a volume of 1 nL (0.017 fmol) 

per oocyte. After 1 h of culture, healthy injected oocytes were cultured in 60% L-15 

medium with 10 μg/ml 17α, 20β-dihydroxy-4-pregnen-3-one (Sigma) at 28°C for 4–6 h. 

Oocytes that became translucent after this treatment were harvested as mature oocytes. 

Those matured oocyte can be used for eg activationto check chorion elevation. 

2.10.8 Mitochondrial staining of oocytes (Nora). 

Place the ovary in 60% L-15 medium (see Materials and methods, Buffers). Add 

0,1 mg/ml liberase for 10 minutes at RT. Wash with enzyme-free L15 medium twice, 

Pipette the ovary up and down gently. Place samples in proteinase K lysis buffer (see 

Materials and methods, Buffers) for 3 minutes at RT. Wash twice with L-15 medium. 

Add the corresponding dye: TMRE (Tetramethylrhodamine ethyl ester perchlorate, 

Life technologies) for 10 minutes concentration 1 μM, JC-1 (Life technologies) for 45 

minutes concentration 5 μM. For the CCCP (Carbonyl cyanide m-chlorophenyl 11 

hydrazone, Life Technologies) treatment add 5 M for 30 minutes before adding the dye 

and do not remove during the staining. Wash twice with L-15 for 20 minutes at room 

temperature. Image immediately, while the oocytes are still alive.  
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2.10.9 Confocal Microscopy 

Images were captured at room temperature using LSM780 confocal microscope 

(Carl Zeiss) with a Plan Apochromat 63x/1.4 NA and 25x/0.8 NA oil-immersion and a 

digital microscope camera (M27; Carl Zeiss). After washing the oocytes with PBT, yolk 

was cleared with Murray‟s solution (Benzylbenzoate (66%)/ Benzylalcohol (33%)) during 

imaging. A multiple wavelength laser was used to visualize red (561) fluorescence, green 

(488, 405) and blue (405) and images were acquired and processed using ZEN 2011 

software (Carl Zeiss).  

2.10.10 Immunostaining of oocytes 

 The oocytes were isolated from gravid females and prepared further for taining 

using following protocol. 

Day 1: 

Fixation: 

– Place oocytes in glass vials and add ProteinaseK solution. Incubate for 3min @ RT 

– Remove ProteinaseK solution and wash twice with 1ml MEMFA 

– Rock vials for 1h @ RT in 1ml MEMFA 

– Remove MEMFA and add 1ml PBT, rock @ RT for 15min, wash twice with PBT 

– Replace PBT with 500μl fresh PBT + 2%BSA, 2% horse serum, and rock for 2hrs @ 

RT 

Antibodies: 

– Replace with 500μl PBT + 2%BSA, 2% horse serum and th e appropriate dilution of 

the primary antibody 

– Rock o/n @ 4°C 

day2: 

– Replace primary antibody solution with 500μl PBT and rock @ RT for 1.5hrs, wash 

twice with PBT 

– Replace with PBT + 2%BSA, 2% horse serum and the appropriate solution of the 

secondary antibody 

– Rock vials o/n @ 4°C 

day3: 

– Replace solution with 500μl PBT and rock @ RT for 1.5hrs, wash twice with PBT 

– For counterstaining (DAPI, lysosomal marker), replace with PBT + 2% BSA + 2% horse 

serum and appropriate amount of DAPI and/or marker 
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– Rock @ RT for ~1h 

– Rock with PBT for some time, wash 2x with PBT 

 

 

Dehydration: 

– Replace half of the volume and replace with MeOH 3x (equal to 50%, 75%, 87.5% of 

MeOH) 

– Remove all of the solution and replace with MeOH 

– Wash with MeOH 

– Oocytes can be stored @ -20°C until ready to image 

Imaging: 

– Place Murray's Clearing Medium into a Fluorodish 

– Transfer oocytes from glass vials onto imaging dish, with as little MeOH as possible 

Murray's Clearing Medium: 2:1 Benzyl Benzoate: Benzyl alcohol 

For double staining, the oocytes were incubated with Suf labeled with ATTO590 

(SySy, Goettingen) for 2hrs at room temperature. The DNA was stained with 1 µM of 

Hoechst 33342. The cortical granule was stained with 50 µg/ml of Lectin PHA-L Alexa 

488 (Molecular probes) or MPA Lectin Texas Red (EY Labs Inc).  The Cathepsin D 

Proteases were stained with 1µM Pepstatin A BODIPY FL conjugate (Molecular Probes) 

and Lysotracker DND-99 Red (Mol. Probes) at 70 nm concentration. After washing the 

oocytes with PBT, yolk cleared with Murray solution and imaged on a Zeiss LSM 710. 

Confocal data were analyzed using ZEN2010 software. 

Table 4. Antibodies used in this study 

Antibody Host Company 

Rab5A (S-19) (sc-309) 

Rab7 (ab50533) 

Rab11b (GTX127328) 

Suf (Fish) 

Suf Human  

Clathrin LC1 (3F133) 

TGN38 

Caveolin1 

Rabbit 

Mouse 

rabbit 

Rabbit 

Rabbit 

Mouse 

Rabbit 

Rabbit 

SCB 

abcam 

GENETEX 

Biogene (Custom) 

Stevanin gift 

abcam 

SCB 

 abcam 
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VTG 

Rab9a(ZF127768) 

Rab35 (ZF125343) 

Rab4a (ZF127780) 

Rab4b (ZF125364) 

Rab3ab (GTX127329) 

ATP6V0d1(GTX125970) 

LC3(GTX48634) 

Rab35 (GTX120294) 

DNM2 

Znp-1 

Zn-1 

SV-2 

Zn-8 

FD59 

Islet 1&2 

Vamp4 

Beta catenin 

Lamp-1 

V-ATPase a1 

Cat b 

Cat F 

Cat L 

Cat D 

Ac45 

POMC 

GGA1 

VAMP7 

M6PR 300 

M6PR 46 

M6PR 300 

BCN1 

AP1G1 

Sortilin 

Mouse 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

rabbit 

rabbit 

rabbit 

Rabbit 

Rabbit 

Mouse 

Mouse 

Mouse 

Mouse 

Mouse 

Mouse 

Rabbit 

Mouse 

Mouse 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Rabbit 

Genetex 

genetex 

genetex 

genetex 

Genetex 

Genetex 

Genetex 

Genetex 

Genetex 

DSHB 

DSHB 

DSHB 

DSHB 

DSHB 

DSHB 

SySy 

Sigma 

Genetex 

SCB 

Dr. Joan Cerda Gift 

Dr. Joan Cerda Gift 

Dr. Joan Cerda Gift 

Carlo, France 

Dr. Eric Jansen Netherlands 

Dr. Eric Jansen Netherlands 

LS bioscience 

Novus Bilogicals 

Cologne 

Cologne 

Cologne 

Genetex 

Genetex 

abcam 

Avia sys. biology 
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ap3m 

vps41 

lamp1 

Secondary Antibody 

Anti Rabbit alexa 488 or 594 

Anti Mouse alexa 488 or 594 

Rabbit 

Rabbit 

Mouse 

 
 

Avia sys. biology 

DSHB 

 

Molecular Probes 

Molecular Probes 

 

 For staining the oocytes with different dyes, the oocytes were fixed and blocked 

same way as described for immunostaining and incubated with required amount of dye in 

blocking solution under dark. After that, the oocytes were washed and used for imaging. 

Table 5. Dyes used in this study 

 

Dyes used Company Purpose 

Cholera Toxin subunit B alexa 594 

Dil LDL  

FM4-64 FX Fixable (F34653) 

Pepstatin A, BODIPY FL conjugate 

Transferrin Alexa 594 

Mito tracker FM green 

Lysotracker DND Red 

NBD-PZ- Lysotracker green 

MPA texas Red 

BSA texas Red 

Bungaratoxin alexa 594 

MPA lectin alexa 488 

Jc-1 

Firefly latern extract 

rhodamine 2 AM 

ER tracker green 

TMRE 

Ros detector DHR 123 

Cholesterol alexa 594 
 

Mol. Probes 

Mol. Probes 

Mol. Probes 

Mol. Probes 

Mol. Probes 

Mol. Probes 

Mol. Probes 

TCI Europe 

EY Lab INC 

Mol. Probes 

Mol. Probes 

Mol. Probes 

Mol. Probes 

Sigma 

Mol. Probes 

Mol. Probes 

Mol. Probes 

Mol. Probes 

Mol. Probes 
 

Lipid raft 

Trafficking assay In vivo 

Membrane labeling 

Cat D labelling 

Trafficking assay in vivo 

Mitochondria dye 

Lysosome dye 

Lysosome dye 

Cortical granule cargo 

Endocytosis assay 

AchR binding 

Cortical granule cargo 

Mitochondrial activity 

ATP assay 

Ca2+ binding 

ER dye 

Mito. membrane potential 

ROS dye 

Cholesterol dye 
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2.11 Motor neuron staining of zebrafish larvae 

2.11.1 Genotyping of fish  

 The 3 dpf fish were selected and the ones that were unhatched were dechorinated 

manually with two forceps or the adult fish were selected for genotyping. They were 

anesthetized in a tricaine (3-amino benzoic acid ethyl ester also called ethyl 3-

aminobenzoate) solution (see Materials and methods, Buffers).When the fish were asleep 

(when they stopped oving) their heads were cut off with a scalpel, leaving the remaining 

yolk sac intact. The heads were placed in a 96-well PCR plate and the body in the 

corresponding well of a 96-well ELISA plate with fixative solution MEMFA (see Materials 

and methods, Buffers) and leave them at 4ºC until the staining. The PCR plate with the 

heads is used for genotyping. 

DNA isolation: we lyse the heads with 200 μg/ml of proteinase K in lysis buffer 

(see Matherials and methods, Buffers) and 45 minutes at 55ºC. Then we inactivate the 

proteinase K for 5 minutes at 95ºC. PCR reaction: the PCR plate is centrifuged shortly to 

pellet the debris. For the PCR reaction, two different pairs of primers are needed (21403 

and 25580). Each pair amplifies a marker genetically linked to soufflé mutation. Each 

marker amplifies two bands when the genotype is heterozygous and one if it is 

homozygous. Prepare PCR reactions in PCR buffer (see Materials and methods, Buffers): 

200μM dNTPs, 400 nM forward-reverse primer mixture, 40 U/ml homemade Taq 

polymerase. Add 10 μl to 1 μl of DNA. Set PCR reaction (table 2). Add 1 µl of loading dye 

to each sample. The PCR reactions were run and loaded in 3% agarose (50% Metaphor 

agarose and 50% regular agarose) in TBE buffer at 300 volts for approximately 4 hours. 

Images were taken in a trans illuminator (Bio Rad). 

 

Table 6. Suf genotyping primers 

Primers Sequence 

Z 21403 Forward TTGCAATGTTGCATCAGGAT 

Z 21403 Reverse TTTGGGGAGAAATGGAGATG 

Z 25580 Forward TGACTCTGGGCAACAACTGT 

Z 25580 Reverse TGGAAACCTATGGAATGGCT 
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Table 7. PCR reaction setup for genotyping suf 

Substance Volume [µl] 

H2O 7.8 

10x PCR buffer 1.0 

dNTP 5mM 0.4 

primers fw+bw 10 µM 0.4 

home made Taq 0.4 

DNA 1.0 

 

Table 8. PCR program for suf genotyping 

Steps Temp. 

[°C] 

Time 

[min/sec] 

Cycles 

Initial 

Denaturation 

95 3 min  

Denaturation 95 15 sec 39 

Annealing 55 45 sec 

Extension 72 1 min 

Final 

Extension 

72 3 min  

Pause 12 pause  

 

2.11.2 Motor neuron staining 

They are already fixed in MEMFA, and stored at 4ºC. Block for 1 hour at RT. Add 

the primary antibodies in blocking solution and leave overnight at 4ºC. Motor neuron 

antibodies (mouse IgG): zn-1-s (30 μg/ml, 1:200), znp-1 (41 μg/ml, 1:200), zn-8-s (57 

μg/ml, 1:200), sv2-s (50 μg/ml, 1:100), 39.4D5-s (Islet1, 44 μg/ml, 1:200), F59-s (25 

μg/ml, 1:10). Wash with PBT for 90 minutes at room temperature with rocking. For those 

with soufflé staining. Add soufflé antibody (rabbit IgG) 1:200 for 2 hours at room 

temperature in blocking solution.Wash with PBT for 1 hour at RT. Wash samples twice 

with PBT for 5‟ at RT. Add the secondary antibodies 1:200 in blocking solution: goat anti-

mouse conjugated with AlexaFluor 488 (2mg/ml, Molecular Probes) and/or goat anti-rabbit 

conjugated with AlexaFluor 594 (2mg/ml, Molecular Probes). Leave overnight at 4ºC. 

Wash 90 minutes in PBT at RT. For the samples stained with α-bungarotoxin (conjugated 
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with AlexaFluor 594, Invitrogen, Molecular Probes 1mg/ml): add to a final concentration 

of 10 μg/ml 45 minutes at room temperature. Wash with PBT for 15 minutes at RT. Wash 

with PBT for 15 minutes at RT. Dehydrate and store following the same procedure as for 

the oocyte immunostaining.  

2.12 Cell culture techniques 

 

2.12.1 Propagation of cell lines 

Cells were cultured in DMEM medium (Biochrom) supplemented with 10% fetal 

calf serum (FCS), 100 units/µl penicillin and 100 µg/ml streptomycin (full DMEM). Cell 

lines were maintained at 37°C, 95 % humidity, 5 % CO2.  

 

2.12.2 Subculturing of cell lines  

The cells in 75 cm
2
 flask were rinsed with 1x PBS and incubated with 2 - 3 ml of 

0.25% (w/v) trypsin 10 - 20 min at 37°C until the cell layer was dispersed. The reaction 

was stopped with 5 ml of DMEM medium. The appropriate number of cells was transferred 

into a fresh 75 cm
2
 flask containing 15 ml of fresh full DMEM medium. 

 

2.12.3 Cryo-preservation of cells 

In order to store cell lines for a longer period of time cells were trypsinized and re-

suspended in pre-warmed DMEM medium. The cell-suspension was transferred into a 50 

ml falcon tube and centrifuged for 5 min at 1000 rcf. The supernatant was removed and the 

cells were re-suspended in cold FCS medium containing 10% DMSO. This suspension was 

transferred into cryo vials (Greiner Labortechnik), put on ice for 15 min and then stored at -

80 °C. After one day cryo-cultures were transferred to liquid nitrogen (-196 °C). 

 

2.12.4 Thawing of cryo-preserved cells 

500 µl of pre-warmed DMEM medium were added to the frozen cells in the cryo 

vials. The solution was pipetted up and down and then transferred into 50 ml falcon tube 

filled with 10 ml of fresh DMEM. These steps were repeated until all cells were thawed. 

Afterwards, the cells were centrifuged for 5 min at 1000 rcf, the supernatant was removed, 

the cell pellet was re-suspended in fresh culture medium, and finally transferred into a fresh 
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75 cm
2
 flask containing 10 ml of fresh DMEM medium. Cells were maintained at 37 °C, 

95% humidity, and 5% CO2.  

2.12.5 Transfection of cells 

HEK293 cells were transfected with Lipofectamine2000
TM

 (Invitrogen) according 

to the manufacturer‟s instructions. Cells were plated 24 hours before transfection in 

DMEM containing 10% FCS but no antibiotics. The amounts of DNA and 

Lipofectamine2000
TM

 as well as the seeding density of cells are calculated according to the 

procedure. DNA and Lipofectamine2000
TM

 were diluted in OptiMem (Gibco), incubated 5 

minutes at room temperature, then DNA and Lipofectamine samples were combined and 

incubated 15 min at room temperature. The mixture was applied on the cells for 4 hours, 

after which the plating medium was changed for fresh full DMEM. 

 

2.12.6 Fixation of transfected HeLa cells 

48 hours after transfection, the cells were washed two times with 1x PBS and then 

fixed for 15 min using 4% (w/v) paraformaldehyde. Thereafter, cells were washed two 

times with 1x PBS. Meanwhile DAPI (20mg/ml, Sigma) was diluted (1:1000) with 

mounting medium (Dako) and one drop of this dilution was put onto a glassslide. 

Subsequently, the coverslip with the fixed cells (cell side towards the drop) was put onto 

the drop. For drying of the mounting medium, the cover slip was stored at 4°C.  

 

2.12.7 Immunofluorescent staining of cells (Susanne Schlick) 

Cell were grown in 75cm2 flasks to 90- 100% confluence, and then transferred to 6- 

well plates (Nunc) with 4 coverslips (Marienfeld or Menzel) each. Cells were grown in 1:1 

old filtered medium: fresh medium. Immunostaining was carried out in 24- well plates 

(Sarstedt). Cells grown on coverslips were washed in warm PBS and then transferred into 

24- well plates with warm 4% PFA. Fixation lasted 20min. Subsequently cells were washed 

3 times with PBS for 5min, followed by permeabilization in PTX (PBS with 0,5% Triton) 

for 5min and then blocking for 30min in PTX+ 0,5% BSA. Cells were then incubated 

overnight at +4°C with the primary antibody in blocking solution or for controls only in 

blocking solution. The following day they were washed 3 times for 5min in PBS and then 

incubated with the secondary antibody for 1 hour in fresh blocking solution. Following 

incubation cells were washed 3 times with PBS followed by staining with DAPI (1μg/ml) 
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in blocking solution. Cells were kept in Millipore water afterwards and then mounted onto 

objective plates with either Mowiol or AquaPolymount (Polysciences). Coverslips were 

sealed with nail polish. Slides were stored in the dark at +4°C.  

2.12.8 In-vivo trafficking assay   

Trafficking assay, adopted after Rapaport et al., 2010.  

Following proteins were used: Transferrin from human serum conjugated with Alexa 594 

at a working concentration of 25μg/ml, cholera toxin subunit b conjugated with Alexa 594 

at a working concentration of 0,5μg/ml, Lectin DHA- L conjugated with Alexa 488 at a 

working concentration of 10μg/ml and low- density lipoprotein (LDL) (human plasma), 

DIL complex, 10μg/ml (all Invitrogen). Dilution of working solutions into serum- free 

RPMI- 1640 (Biochrom AG), containing 20mM HEPES and 0, 1% BSA. Cells were 

serum- starved in RPMI- 1640 with 20mM HEPES and 0,1% BSA for 30min at 37° C, 5% 

CO2. The protein suspension was added and cells were incubated for 1h at +37°C, 5% 

CO2. Cells were then rapidly chilled on ice, washed 3 times 5min with cold PBS (kept on 

ice at all times) and then fixed in 4% PFA for 20min. After a quick wash in cold PBS, cells 

were mounted with Mowiol and coverslips were sealed with nail polish. Slides were stored 

in the dark at +4°C. 

2.13 Protein techniques 

2.13.1 Suf antibody production 

 Antibody against suf was made using two selected peptides covering one in N-

Terminal and one in C-terminal. The antibody was produced in two rabbits by a company 

Biogene, Germany. The serum was column purified and tested in ELISA for their specific 

binding to the protein or peptide.  

Two selected peptides are 

187-200:C-TEQVKVPAKDRNRE 

1012-1025:C-LNKTSTNKGMSKTD 

The antibody was checked in western blot for their binding using extract from wt and suf 

mutant consract overexpressed cell. 
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2.13.2 Harvest of cells for Western Blotting  

Cell lysate preparation was done on ice. Cells adherent to the surface of the plate 

were scraped off into the medium and transferred into an Eppendorf tube. Cells were 

pelleted down by centrifuging at 4000 rpm for 3 min at 4°C. Media was removed and 1X 

PBS was added for washing the cells. Cells were resuspended in appropriate amount of 

lysis buffer; depending on the pellet size, for a 6-well plate, 100-120 µl while for a 12-well 

plate, 50-60 µl of lysis buffer was used. Cells were briefly vortexed and kept on shaking at 

4°C for 20 min for efficient lysis of the cells. Cell lysate was then centrifuged at 13,000 

rpm for 10min to let DNA settle down.  

Bicinchoninic acid assay (BCA assay) kit was used to normalize the concentration 

of proteins. In this assay, total concentration of protein is exhibited by a color change of 

sample solution from green to purple in proportion to protein concentration, which can then 

be measured by colorimetric techniques. According to user´s manual, BCA reagents were 

mixed in the ratio A: B = 98: 2 and 5 µl of protein were added to this mixture, incubated at 

37°C for half an hour. Using Nanodrop spectrophotometer, a standard curve was prepared 

with different dilutions of BSA (provided with the kit); concentration of proteins was then 

measured using this standard curve. To the normalized amount of protein, 6X Laemmli 

buffers was added to the final concentration of 1X and samples were boiled at 95°C to 

reduce the disulfide bonds and denature the proteins.  

2.13.3 Protein electrophoresis under the denaturating conditions (SDS-PAGE) 

The proteins were separated by SDS polyacrylamid gel electrophoresis 

(Laemmli.1970). Gels of the different acrylamid percentages were used for the analysis of 

the proteins with distinct molecular weights according to the Table 14. 

 

Table 9. The sizes of separated proteins and the percentages of the correspondent 

acrylamid gels 

Protein size, kDa % of acrylamide 

36 - 205 5% 

24 - 205 7.5% 

14 - 205 10% 

14 - 66 12.5% 

10 - 45 15% 
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The protein samples were diluted 1:5 with 6x Laemmli loading buffer and boiled for 

5 min at 95°C, then applied on the gel. The gel running was performed in the BioRad
TM

 gel 

chambers in 1x Laemmli running buffer. At first the voltage of 70 V was applied, and once 

the bromphenol-blue front reaches the separating gel, the voltage was raised to 120 V. 

 

2.13.4 Western Blotting  

The technique (also known as Protein Immunoblotting) allows detection of specific 

proteins in a cell lysate. The method was introduced by Towbin et. al. (1979) (Harry 

Towbin.1979) and is now a routine technique for protein analysis. The proteins separated 

by electrophoresis are transferred to a nitrocellulose or polyvinylidene difluoride (PVDF) 

membrane. Membrane is then incubated with an antibody (called as primary antibody) 

against the epitope of a specific protein, followed by addition of another antibody (called as 

secondary antibody) which can bind to the species-specific region of the primary antibody 

and is conjugated to an enzyme like Horseradish peroxidase. The enzyme can convert its 

substrate into a product that produces luminescence, the light output is directly proportional 

to the amount of protein and can be captured by using film, a CCD camera or a 

phosphorimager designed for chemiluminescent detection. 

Once proteins were separated by SDS-PAGE, a sandwich of gel and membrane was 

prepared for electroblotting of proteins from gel to membrane. Transfer was performed at 

constant voltage of 100 V for 120 min (for the transfer of big proteins, PVDF membrane 

was used and transfer was done at constant voltage of 40 V for 24 h). After transfer was 

finished, membrane was stained with Ponceau S to check whether transfer was uniform and 

proteins were equally loaded. For blocking the unspecific sites on the membrane, where 

antibodies can bind, blocking buffer was added to the membrane for 45 min. It was 

followed by overnight incubation with appropriate dilution of primary antibody at 4°C, 

washing of the primary antibody with washing buffer (PBST or TBST) and addition of 

secondary antibody (1:10,000 dilution; for both primary and secondary antibody blocking 

buffer was used for making dilutions) for 1 h at room temperature. Membrane was then 

once washed with blocking buffer, followed by washing buffer. For visualizing the amount 

of protein, suitable amount of substrate solution (Immobilon Western HRP Substrate 

Peroxide Solution) was applied and luminescence was detected using a Chemocam HR 16 

3200 imager. For weak signals, the more sensitive substrate solution SuperSignal West 

Femto Maximum Sensitivity Substrate was used. 
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2.14 Statistics 

In all experiments, error bars indicate the standard deviation of the average (at least 

three independent experiments). The statistical significance (p-value) of two groups of 

values was calculated using a two-tailed, two-sample unequal variance t-test calculated in 

MS-Excel or www.graphpad.com. The graph was drwn using MS-Excel. 

2.15 Bio-informatic analysis 

 The bioinformatics prediction were done for Suf and VPS41 using 

http://toolkit.tuebingen.mpg.de/. HHpred - Homology detection & structure prediction by 

HMM-HMM comparison was used to predict the protein domain in both proteins. 

http://www.graphpad.com/
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3. Results 

3.1 Soufflé localizes to vesicles 

 Soufflé mutants seed opaque egg instead of transparent eggs and fail to develop 

further. Suf protein contains the FYVE domain, which binds to PI3P on endosomal 

membranes, and the morphological phenotype of the mutant egg suggests that the protein 

plays a vital role in vesicle trafficking processes. Therefore, to find if the soufflé protein 

localizes to vesicles, I generated an antibody against two peptides covering N-terminal and 

C-terminal region of zebrafish Suf protein and used it for immunization of two rabbits. The 

purified antibody has been ELISA tested for the interaction with the specific peptide. 

Immuno-staining of wild-type oocytes for Suf proteins confirmed that it indeed localizes to 

vesicles as predicted. Surprisingly, the mutant oocyte also showed similar localization 

pattern like wild type which suggests that the suf mutant protein still localizes with its 

intact FYVE domain properly (Fig.1).This results show that the Suf protein localizes to 

vesicle in both wildtype and mutant signifying the importance of the deleted region (SUF 

domain) in Suf protein for its role in vesicle trafficking during oogenesis.  

 

Figure 16. Suf protein localizes to vesicles. 

a. Immuno-staining for suf protein in wild-type oocytes with wild-type oocyte structure in cartoon 

below. Suf in green and yolk globule/Lysosomes in red. b. Immuno-staining for suf and lysosome 

in suf mutant oocytes. CM- Chorion membrane, FC- Follicle cells, Scale-50 µm.  
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3.2 Soufflé mutation produces truncated Suf protein 

 Mutation in Soufflé gene in human causes progressive motor neuron degeneration 

while we did not see this defect in the adult fish possessing the zebrafish soufflé mutation. 

This raises the question that suf might have tissue specific variants and functions or the 

mutant protein still has a reduced function, which is sufficient to takeover zygotic function 

but fails during oogenesis. 

 

Figure 17. Suf p96re mutation creates truncated suf protein. 

a. Cartoon showing the amplified region of exons 34, 35 and 36 in suf gene with corresponding 

introns, red line next to exon 35 shows the p96re mutation. b. Agarose gel picture showing the PCR 

amplified product-covering exon 34, 35 and 36. The expected bad size with exon 35 is 650bp, 

without exon 35 is 413bp. All the stages shows 650bp band in all stages while heterozygous and 

homozygous mutant showing one additional shorter transcript due to the mutation, arrowhead 

shows the mutant version of the suf transcript. EF1α used as PCR and loading control. c. Western 

blot for suf protein in tissue culture cell lysate using anti-suf antibody. Suf-GFP shows the wt band 
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at above 300 KDa (Black arrowhead) while mutant version shows the truncated version at 250 KDa 

(Red arrowhead). 

To examine whether an alternatively spliced Suf/Spastizin mRNA hides a potential 

zygotic mutant phenotype in other tissues or in males, we analyzed the expression of exon 

35 carrying the p96re mutation during zebrafish embryogenesis and oogenesis. But, we did 

not observe a shorter transcript lacking exon 35, which would generate a 413 bp product. 

However, in hetero- or homozygotes we detected the predicted 25 bp shorter transcript 

consistent with the mutation in splice donor site (Fig. 2a & b). Since Suf/Spastizin 

expression at the mRNA level was not completely eliminated, the residual protein might 

have sufficient activity to compensate for Suf/Spastizin requirement in somatic cells. 

Although the quantitative RT-PCR suggested that the mRNA is degraded or reduced in the 

mutant, the immuno-staining showed Suf protein localization in the mutant oocyte. To 

check if the suf mutant protein also expresses and the antibody specifically detects the 

zebrafish Suf protein, I overexpressed the zebrafish Suf gene in tissue culture cells and 

observed the suf protein in the western blot. To differentiate the wild-type protein from 

mutant version, I fused GFP N-terminally with Suf, which increases the chance of 

differentiating the protein size in the western blot. The suf antibody detected wild-type full 

length and truncated Suf protein in the mutant version while non-transfected cells did not 

show any band (Fig.2c).These results show that the mutated exon is present during all 

stages of development in all tissues and the mutant transcript still produces sufficient 

amount of truncated protein which localizes to membrane and vesicles, might still have a 

reduced function. Notably, the p96re allele is almost identical to one of the HSP mutations 

in human (Hanein et al.,2008) and probably encodes a hypo morph, whose reduced 

function becomes apparent in the oocyte of zebrafish with its high vesicle trafficking 

activity. 

3.4 Suf mutants oocytes show endo-lysosomal defect 

 Suf mutant‟s opaque phenotype suggested that there is a defect in yolk degradation 

in the endo-lysosomal pathway. The preliminary studies from the lab using electron 

microscopy showed that the suf mutants accumulate smaller endosomes compared to 

endosomes in the wildtype. Also in tissue culture cells, the FYVE domain of Suf/Spastizin 

interacts with the endosomal lipid PI3P indicating a role in endosomal trafficking (Sagona 

et al.,2010). Moreover, in human and mouse cells Spastizin binds to the novel AP5 
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complex regulating endosomal transport (Hirst et al.,2011; Hirst et al.,2013a; Hirst et 

al.,2013b; Khundadze et al.,2013). 

3.4.1 Suf mutant oocytes accumulates Rab11 positive vesicle  

To examine genetically in zebrafish oocytes, whether Suf/Spastizin is involved in 

endocytosis during oogenesis and at which step of the endocytotic pathway is affected in 

suf mutant, I used live imaging analysis with the oocyte injected with fluorescently labelled 

marker proteins (Rab5-CFP, Rab7-CFP and Rab11-CFP). So that I can also track the 

vesicle transport in-vivo. But unfortunately, the results suggested that the auto-fluorescence 

from the yolk protein of oocyte gave a high background that hindered proper visualization 

of the vesicle (Fig.3a). Hence, I decided to use immuno-staining for the marker proteins 

and compared endosomal compartments between wild-type and mutant oocytes (Fig.3b). 

The gross morphology of oocyte vesicles showed no difference in early endosomes (Rab5) 

or late endosomes (Rab7) (Fig. 4). In contrast, Rab11b-positive recycling endosomes 

showed a remarkable transformation of their tubular shape in wt to patches accumulating 

below the nuclei of the surrounding follicle cells in mutant oocytes (Fig.4).  

 

Figure 18. Immuno-staining of oocytes. 
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a. Confocal picture of fluorescent marker protein injected oocytes. Rab5, Rab7 and Rab11 

in Cyan. Big yolk globules also give auto fluorescence. b. Antibody staining for the 

endosomal marker proteins in fixed oocytes. Rab5 and Rab11 in green. The vesicular 

structure of early endosome (Rab5) and the tubular structure of recycling endosome 

(Rab11) is also visible clearly. Sclae-50 µm. 

To quantify the defect in Suf/Spastizin mutants, I counted the Rab positive foci in 

optical sections in deeper layers of the oocyte cytoplasm, where single, small vesicles are 

separated well and easier to discriminate than the large compartments at the cortex (Fig.5). 

Rab5 (early endosomes) showed no significant change (1.09 fold; p=0.35; Fig.5a), whereas 

Rab7 positive endosomes increased moderately (1.78 fold; p=0.0001; Fig.5b). However, 

Rab11 staining increased dramatically (3.82 fold; p= 0.0001; Fig.5c) confirming the initial 

observation that Suf/Spastizin controls trafficking of recycling endosomes in zebrafish 

oocytes, though other endosomal compartments are not affected in suf mutants. 

 

Figure 19. Rab11 accumulates in the cortex of suf mutant oocyte. 

Top panel shows staining for rab proteins in wild-type oocytes and bottom panel shows the 

staining from suf mutant oocytes. Rabs in green and nuclei of the follicle cells in blue. 

Small cartoon at the left top shows the optical section plane in the confocal microscopy 

where the image was taken. Scale- 50 µm. 
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3.4.2 Suf mutant oocyte accumulate immature small lysosomes 

The accumulation of rab11 positive recycling endosome does not explain why the 

yolk protein is not degraded. The yolk proteins reaches the lysosome during oogenesis and 

they are cleaved by different Cathepsin proteases which makes the opaque egg into a 

transparent one. To check if the lysosomes are formed properly in the suf mutant, the 

oocytes are stained with lyso-tracker red and the results showed that the suf mutant 

accumulates smaller fragmented yolk globules or lysosomes. This result confirms that the 

smaller endosome accumulation detected in electron microscopy are immature lysosomes, 

consistent with previous reports in cell culture and mouse mutant studies. This defect in the 

lysosome explains that preventing the yolk proteolysis in the egg and causing the opaque 

cytoplasm phenotype (Fig. 5 & Fig. 13).  
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Figure 20. Rab11 and Rab7 accumulate in suf mutant oocytes.  

a. Staining for lysosome in red and rab proteins in green. Top panel from wild-type oocytes 

and bottom panel from suf mutant oocytes. Cartoon at the left top shows the position of the 

optical section of the oocyte. Scale- 50 µm. b, c and d. The bar diagram shows the 

quantification individual vesicle positive for respective marker proteins Rab5, Rab7 and 

Rab11 in wildtype and mutant oocytes. In y-axis the mean number of endosomes and NS-

non significant, ***- extremely significant. e. Bar diagram shows the change in the number 
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of endosomes in the suf mutant compared to wildtype. Y-axis shows the ratio of mutant to 

wt.  

3.5. Recycling endosome is not affected in the suf mutant 

To analyze functionally during oogenesis whether the observed accumulation of the 

compartment-specific Rab proteins reflects a defect in the corresponding transport route as 

described for tissue culture cells, I established an in-vivo cargo trafficking assay in the 

zebrafish oocyte. 

Transferrin follows the recycling route through recycling endosome (Karin and 

Mintz.1981; Willingham et al.,1984; Yamashiro et al.,1984). The zebrafish Transferrin-

receptor is maternally expressed and the Transferrin recycling assay was previously applied 

to Xenopus oocytes (El-Jouni et al.,2007; Chen et al.,2013). Notably, contrary to the 

accumulation of Rab11 vesicles, fluorescent Transferrin did not accumulate in Suf/Spastizin 

oocytes during different time point analysis (Fig.6). More interestingly, I found partial 

overlap of Transferrin with Rab11 suggesting that the Rab11b antibody and Transferrin 

label two different compartments in zebrafish oocytes. The in-vivo analysis indicates that 

suf mutant does not have a defect in recycling endosomes. 
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Figure 21. Tfn recycling is not affected in the suf mutant.  

The picture shows the confocal image of oocytes loaded with transferrin in Red and Rab11 

in green at two different time points. Left panel shows the recycling assay from wild-type 

oocytes and right side panel shows from suf mutant oocytes. Top two images from oocytes 

after 35 mins of transferrin recycling and bottom images from after 55 mins of recycling 

Cartoon shows the optical section plane. Scale- 50 µm. 

3.6 Suf localizes to Rab5, Rab11 positive endosome and lysosome 

To analyze whether Suf/Spastizin directly controls the trafficking of endosomes or 

whether the accumulation of Rab11b-positive vesicles is a secondary defect, we 

investigated Suf/Spastizin and Rab proteins co-localization in the oocyte. Although early 

endosomes did not show a defect in Suf/Spastizin mutants, we also discovered co-

localization of Suf/Spastizin with Rab5 as shown in the mouse (Khundadze et al.,2013), but 

not with Rab7 (Fig.7a and b). Although Rab11b and Suf/Spastizin mostly overlapped in 

their localization, some Rab11b vesicles were negative for Suf/Spastizin (Fig.7a and b). 

Also suf localize to the lysosomes consistent with previous reports (Khundadze et 

al.,2013). This finding in the zebrafish oocyte indicates that Suf/Spastizin is not involved in 
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all processes regulated by Rab11b. In summary, the loss of Suf leads to an accumulation of 

Rab11b positive vesicles, which in zebrafish oocytes are not involved in Transferrin 

recycling. 

3.7 Role of Suf on Rab11 positive vesicles 

3.7.1 Rab11 and Suf localizes to Secretory granule (Cortical Granule) 

Cell culture studies implicate Rab11 endosomes in additional transport processes 

besides recycling (reviewed in Taguchi.2013)e.g. Rab11 localizes on secretory vesicles of 

mammalian cells (Urbe et al.,1993). Yeast, tissue culture cells and C. elegans oocytes 

require Rab11 for exocytosis of secretory vesicles (Benli et al.,1996; Jedd et al.,1997; Chen 

et al.,1998; Khvotchev et al.,2003; Sato et al.,2008), which are also labeled by Rab11b 

(Ullrich et al.,1996). The plant cells use Rab11 positive secretory vesicles during 

cytokinesis in the cell plate (ref). Moreover, in epithelial cells, Rab11a and –b localize to 

distinct compartments (Lapierre et al.,2003b).In oocytes of many organisms including 

humans, secretory vesicles are also designated as cortical granules (reviewed in Wessel et 

al.,2001; Liu.2011). They are very similar to large, dense-core vesicles found in secretory 

cells in humans e.g. neurons or pancreatic ß-cells (Tooze et al.,2001; Meldolesi et al.,2004; 

Kim et al.,2006). 

To determine in fish oocytes, whether Rab11b marks secretory granules, we double-

labeled them with the cortical granule marker MPA-lectin and Rab11 (Becker and 

Hart.1999). Rab11b co-localized with MPA-lectin identifying the Rab11 vesicles of the 

zebrafish oocyte as secretory, that is cortical granules (Fig. 8a, a‟). Moreover, Suf/Spastizin 

protein also co-localized with MPA on cortical granules (Fig. 8b, b‟). Since not all MPA-

vesicles were positive for Rab11b or Suf, we hypothesized that co-labeling is only 

observed at the vesicle surface. In contrast, if the optical section is more central in the 

vesicle, the green Rab11b or Suf-signal was encompassing the luminal MPA-positive 

cargo. Since Suf was highly enriched in the cortex and hence, co-localization might be 

caused by protein abundance, we analyzed optical sections in deeper layers of the oocyte 

with less Suf signal (Fig. 8c-e). Indeed, Rab11b and Suf mostly localized outside the 

granule-lumen (Fig. 8c, d). Higher magnifications showed a vesicle with surface staining 

(Fig. 8e upper row) and another example with an extra luminal micro domain (Fig. 8e 

lower row), which was observed for Rab11b and Suf. Taken together, the co-localization 



                                                                                                                               Results 

92 

 

with Rab11b and MPA-lectin support a role of Suf/Spastizin in the formation of cortical 

granules during zebrafish oogenesis. 
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Figure 22. Suf colocalize with Rab5, Rab11 and lysosome.  

a. Double staining of suf in red with endosomal markers in green. b. Separated individual 

channel of two proteins and merged picture. Scale – 50 µm. The venn diagram shows the 

amount co-localization between suf and other rab proteins. Cartoon shows the optical 

plane. 
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Figure 23. Rab11b and suf localizes to secretory granules in zebrafish oocyte.  

a. Rab11b in green co-localize with secretory granule in red. Insert is magnified in a‟ and b. 

shows the co-localization between suf in green and secretory granule in red and the insert is 

magnified in b‟. Panel c and d shows the differential staining pattern of rab11 on the 

surface of the vesicle which is magnified in panel e and suf staining small micro domains 

on secretory vesicle also magnified and in individual channel in panel e. Scale – 50 µm 

(Panel a, b, c and d), scale – 20 µm (panel e). Cartoon shows the optical section. 

3.7.2 Secretory granule accumulates in suf mutant oocytes 

Since the Rab11 positive vesicles accumulate in suf mutant, to analyze the role of 

Suf/Spastizin in cortical granule formation during oogenesis, we compared wildtype and 

mutant oocytes using electron microscopy. More cortical granules were visible in 

Suf/Spastizin oocytes (Fig. 9a). Interestingly, their electron dense core was not visible, 

which is a remarkably strong phenotype compared to other factors involved in dense-core 

vesicle maturation (Asensio et al.,2013). To verify an increase in cortical granules, we 

stained oocytes with MPA-lectin (Becker and Hart.1999). Wild type zebrafish oocytes 

showed a few, large cortical granules in the cytoplasm and numerous, smaller vesicles at 

the cortex. Conversely, the mutants also appeared to be filled with MPA-lectin indicating 

that Soufflé/Spastizin is involved in cortical granule formation during oogenesis (Fig. 9b). 

Although the number of granules are more but the quantification of cortical granule size 

from the electron microscopy image showed no difference between wild type and mutant 

(Fig. 9c). These results suggest that suf regulates the secretory granule formation. 

Figure 24. Suf mutant accumulates secretory granule.  

a. Electron micrograph showing cortex region of the oocyte with lysosome in dark 

indicated by arrow and grey secretory granule with white arrowhead showing the dense-

core region in the middle which is absent in the suf mutant oocyte. b. Confocal image of the 

oocyte before activation (Top panel) and after activation (Lower panel). Secretory granules 

are in red. Left panel is from wild type and right panel from mutant showing accumulation 

of secretory granule even after egg activation. Scale – 50 µm. c. Bar diagram shows the 

mean diameter of the secretory granule from wild type and mutant oocytes measured using 

electron microscopy picture. N-Number of oocyte sections counted, NS-Non significant.  
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3.8 Suf mutant failed to elevate the chorion 

3.8.1 Role of cortical granule during fertilization 

The secretory granules are secreted from Golgi and they are transported to oocyte 

cortex hence called cortical granules. Immediately after fertilization, the granules fuse with 

oocyte membrane and deliver their cargo into the perivitelline space. The most prominent 

cargoes of cortical granules are carbohydrates, which after secretion increase their volume 

by hydration leading to chorion elevation and thereby create the perivitelline space between 

oocyte and chorion (Fig.10a). As in mammals, cortical granules are secreted after 

fertilization during a process termed “cortical reaction” and the induced chorion elevation 

is important to inhibit lethal polyspermy and mechanical damage to the embryo (reviewed 

in Wessel et al.,2001; Liu.2011). 

3.8.2 Suf mutant eggs fail to elevate the chorion after activation 

The observed additional granules in zebrafish mutants could be generated by two 

alternative mechanisms. Either Suf/Spastizin could regulate the formation of granules, 
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which in the mutant leads to an increase of immature, non-fusogenic vesicles. 

Alternatively, Suf/Spastizin could regulate the sorting of the MPA epitope, which in the 

mutant oocyte leads to an increased number of MPA-positive vesicles. To check if the 

accumulated granules are functional and if they are functional, the mutant should have a 

bigger chorionic space than wild type. However, after triggering exocytosis in wild type 

and Suf/Spastizin stage V eggs by H2O exposure, we observed no chorion elevation 10 min 

after egg activation in mutants (Figure 10b). Furthermore, in embryos from mutant mothers 

30 mpf (minutes post fertilization) the chorion was weakly elevated (Fig. 10c), although the 

regular exocytosis process is completed within six minutes after sperm entry (Hart and 

Yu.1980). I quantified chorion and embryo diameters to exclude growth defects during 

oogenesis as cause for the size differences. Embryo size in wild type and mutants were 

similar, while chorion diameters were reduced in embryos from mutant mothers, which was 

also apparent in eggs activated without sperm, supporting the idea that chorion elevation is 

impaired (Fig. 10d, e, f and g). These results indicate that Suf/Spastizin controls the sorting 

of MPA-positive cargo, whose failure leads to the accumulation of immature vesicles in the 

mutant egg. This hypothesis predicts that immature cortical granules in the mutant egg do 

not secrete their cargo. Indeed, after activation, mutant eggs still contained numerous 

cortical granules; whereas wild type lost their vesicles close to the cortex with a few left in 

the inner cytoplasm (see Fig. 9b). These results together confirm that the suf mutant 

accumulate non- functional secretory granules and failed to complete exocytosis. 

Figure. 25 Suf mutant fail to elevate the chorion.  

a. Cartoon showing cortical reaction/Chorion elevation event. Secretory granule in red in 

the oocyte in left panel and right panel showing after activation where chorionic space is 

elevated. b & c shows light microscopy image of activated egg and embryo respectively. 

Left panel from wt and right panel from suf mutant. d, e, f & g shows the diameter of the 

whole embryo, only chorionic space, only embryo without the chorion and only egg size. 

Small cartoon at the top shows how the measurement was made in different color. Panel d 

and e shows the difference in chorion elevation in the embryo and panel g shows the 

chorion elevation difference in the egg. Scale – 50 µm. 
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3.8.3 Re-organization of F-actin did not happen in suf mutant. 

To directly visualize the fusion of the vesicles, I analyzed the kinetics of exocytosis 

by labeling cortical f-actin (Becker and Hart.1999).The actin network reorganizes to allow 

exocytosis of vesicle and  60 seconds after activation fusing cortical granules generate 
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negatively stained crypts in the wildtype actin meshwork, whereas suf mutants show no 

vesicle exocytosis (Fig. 11). 180 seconds after activation the collapsing crypts form scars of 

accumulating actin in wild-type oocytes, while the cortex of suf mutants still did not 

change. These experiments demonstrate that in the suf mutant cortical granules are not 

fusogenic and support the hypothesis that Suf controls their maturation.  

 

Figure 26. Suf mutant fail to reorganize the cortical F-actin.  

Confocal image shows the F-actin distribution after egg activation from wild type and suf 

mutant eggs at different time points. Left panel is from wild type and right panel is from 

mutant. F-actin in green. Wild type shows the dynamic change in actin distribution during 

egg activation and exocytosis of the vesicle at 60s and presence of scar after exocytosis at 

180s which did not happen in suf mutant eggs. Scale – 50 µm.  

 

 



                                                                                                                               Results 

100 

 

3.9 Suf regulates secretory granule maturation into dense-core vesicle 

(DCV) 

3.9.1 Secretory granule maturation 

 The immature secretory granule (ISG) goes through cargo sorting and removes 

some of the cargos, which are destined to other internal compartments like lysosome by 

vesicle fission that matures into fusion competent dense core vesicle (Fig.12a). 

3.9.2 Suf mutant accumulates immature secretory granule (ISG) 

In cell culture, immature secretory granules remove specific SNARE proteins from 

their cytoplasmic surface to acquire the competence to fuse with the plasma membrane 

(Steegmaier et al.,1999; Eaton et al.,2000; Ahn et al.,2010). For instance, depletion of 

GGA3 in neuroendocrine cells inhibits sorting of VAMP4 away from the neuroendocrine 

secretory granules, which needs to be removed to permit a vesicle to mature and fuse with 

the membrane (Kakhlon et al.,2006). To investigate if the suf mutant oocytes sorted out 

VAMP4 from ISG to mature into dense core vesicle, I analyzed VAMP4 in zebrafish 

oocytes. Suf mutants accumulated this VAPM4 SNARE protein compared to the wild type 

oocytes (Fig. 12b). These results show that in zebrafish oocytes Suf/Spastizin is essential 

for removing other cellular organelle cargoes for the maturation into fusion-competent 

cortical granules. This result also suggested that the suf mutant also fails to sort some of the 

cargo. To check if the sorting process finished successfully, I used electron microscopy. 

Surprisingly, the secretory granules missed inner dense core in the suf mutant (Fig.12c), 

confirming that suf mutants failed to complete the sorting process successfully. Taken 

together, all these results confirmed that suf regulates cortical granule maturation by 

successful sorting of the cargoes to form the dense core vesicle. 
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Figure 27. Suf mutant oocyte accumulates immature secretory granule.  

a. Cartoon shows the three possible ways of the pathway from Golgi. Green marks the 

constitutive secretory pathway and their cargos from Golgi, red indicates regulated 

secretory pathway and their cargos from Golgi while blue indicates constitutive like 

pathway which are vesicle budded from immature secretory granule during maturation into 

dense-core vesicle which indicates the successful maturation and sorting of their cargos. 

These vesicles are delivered to either endosomes or secreted out like constitutive pathway 

by which it connect the secretory pathway to endo-lysosomal system. b. Antibody staining 

for immature secretory granule marker VAMP4 in green. Left panel from wild type and 

right panel from suf mutant. Scale – 50 µm. c. Electron micrograph from wt and mutant 

oocytes showing secretory granule with dense core in the wild type and without in suf 

mutants. Dashed circle in the bottom panel marks the dense-core region in wt. Left side 

image from wt and right side image from suf mutant. 

 

3.10 Suf is necessary for vesicle fission from immature secretory granule 

(ISG) during secretory granule maturation 

3.10.1 Suf mutant accumulates cortical compartment with clathrin buds 

In cell culture experiments, VAMP4 is removed from immature secretory granules 

after it is sorted into Clathrin-coated buds, which finally pinch off (Orci et al.,1985; Tooze 

and Tooze.1986; Steegmaier et al.,1999). The localization of Suf to compartmental micro-

domains also supports a role for Suf in sorting. Consistent with my previous results, tissue 

culture experiments proposed a role for Suf in sorting (Hirst et al.,2013a), which is also a 

prerequisite for vesicle abscission. To analyze in zebrafish oocytes whether Suf/Spastizin 

mutants show a defects in vesicle abscission, I returned to the EM analysis and investigated 

mutants at higher magnification. Interestingly, close to the cortex of mutant oocytes we 

discovered compartments, which were covered with Clathrin-coated buds, which appeared 

to not complete budding and abscission (Fig. 13 (white arrowheads)). In wild type oocytes 

these prominent compartments with Clathrin-buds were never observed suggesting that 

Suf/Spastizin controls a step such as sorting to initiate vesicle budding and fission. 
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Figure 28. Suf mutant oocyte accumulates Clathrin buds on the vesicular 

compartment. 

Electron micrograph showing the ultra-structures of oocyte cortex region from wild type 

(Left panel) and suf mutant (Right panel). Notice the big vesicle with lot of clathrin buds on 

the membrane, which are not cleaved yet in the mutant oocytes. Arrowhead indicates the 

clathrin bud. Scale – top panel - 0.5 µm, left middle and bottom – 1 µm and right middle 

and bottom – 2 µm.  

 

3.10.2 Dynamin accumulates on secretory granule in suf mutant 

To confirm that Clathrin-coated buds accumulate, we compared the localization of 

Clathrin in wild type and mutant oocytes. Clathrin accumulated in mutants corroborating 
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the EM data (Fig. 14a). The compartments accumulating in mutant oocytes looked similar 

to cisternae formed in the temperature-sensitive Dynamin mutant shibire in Drosophila 

(Pelissier et al.,2003). Dynamin exerts the ultimate step after sorting and budding during 

the fission process (Praefcke and McMahon.2004; Schmid and Frolov.2011; Ferguson and 

De Camilli.2012). To analyze if Dynamin also accumulates in the suf mutant, I checked 

Dyanmin in suf mutant oocytes and indeed, I observed an accumulation of Dynamin on 

cortical granules suggesting that Suf/Spastizin controls a molecular step, which permits 

Dynamin mediated fission in oocytes (Fig.14b). These results together confirm that suf 

regulates cargo sorting coupled with fission, which leads to cortical granule maturation. 

 

Figure 29. Suf mutant oocytes accumulate clathrin and Dynamin. 

a. Double staining for secretory granule in red with Clathrin and Dynamin in green in wild-

type oocytes. Confocal image shows positive for both proteins on secretory granule. b. 

Staining for clathrin in green from wild type and suf mutant oocytes showing accumulation 

of clathrin in the mutant oocytes. c. Staining for Dynamin in green in wild type and suf 

mutant oocytes showing accumulation of dynamin on secretory granule in the suf mutant. 

Small cartoon on the top of the image shows the optical section. Scale – 50 µm.  
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3.11 Chemical inhibition of Dynamin function mimics suf mutant 

phenotype  

If fission by Dynamin is essential for cortical granule maturation, treatment of 

zebrafish oocytes with the Dynamin-specific inhibitor Dynasore should mimic the mutant 

phenotype, if Suf is required genetically upstream of vesicle fission. Fascinatingly, wt 

oocytes accumulated the cortical granule marker MPA similar to mutants after Dynasore 

treatment (Fig. 30a). However, we also noted differences such as mature cortical granules 

in Dynasore-treated wt oocytes, which probably formed during oogenesis before the drug 

treatment (Fig. 30b). Although Dynamin is involved in additional processes as revealed by 

the Dynasore inhibition, these data confirm that Dynamin mediated fission is required 

during maturation of secretory granules in the zebrafish egg. 
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Figure 30. Dynasore treated oocyte mimics soufflé phenotype. 

a. Staining for secretory granule (Red) in the oocyte from wt, suf mutant and dynasore 

treated from wt and suf mutant. b & c shows the change in the structure of the secretory 

granule in DMSO and dynasore treated oocytes from wildtype and suf mutant at different 

optical plane. The insert in panel c is magnified in panel d showing the cargo accumulating 

at the margin of the vesicle instead of accumulating in the middle. e. Shows the difference 

in the cortex region of suf oocytes treated with DMSO and dynasore. Arrow indicates many 

vesicle like shown in panel d accumulating in dynasore treated suf mutant oocytes. Scale – 

50 µm. 

3.11.1 Inhibition of Dynamin obstructs chorion elevation in wildtype eggs  

Cortical granule formation was previously considered to be an ongoing process 

during oogenesis, but whether it continued after ovulation remained unclear (Wessel et 

al.,2001). To analyze whether cortical granule maturation still continues in ovulated, fully 

matured stage V eggs, and also to check in-vivo if dynamin inhibition can inhibit chorion 

elevation, we treated the wild-type ovulated eggs for 5, 15 and 30 min with Dynasore and 

examined chorion elevation. Indeed, the level of chorion elevation corresponded well with 

the duration of Dynasore treatment (Fig. 31a & b). Remarkably, the 30 min treatment with 

Dynasore inhibited chorion elevation completely. Most importantly, Dynasore also reverted 

the transparency of the egg cytoplasm back to opaqueness similar to suf mutant egg. The 

transparency of the egg cytoplasm is caused by changes in yolk globules, which are 

considered dormant lysosomes (Yamamoto and Oota.1967; Wallace and Selman.1990; Le 

Menn et al.,2007). These intriguing results suggest that cortical granule maturation is 

critical for the function of lysosomal yolk globules during all stages of oogenesis. In 

summary, our results show that Suf/Spastizin is a key regulator of secretory vesicle 

maturation during zebrafish oogenesis, probably before the fission of Clathrin-coated buds 

through Dynamin. 

3.11.2 Dynasore treated eggs phenocopy soufflé mutant at molecular level 

 To investigate if dynasore treated wild-type egg also show soufflé like phenotype at 

molecular level, I analyzed the dynasore treated eggs for cortical granule and immature 

secretory granule marker VAMP4 since both accumulates in the suf mutant. Indeed the 

dynasore treated wild-type eggs accumulates both MPA-lectin and VAMP4 (Fig.31c) 

confirming that inhibiting dynamin mimics soufflé phenotype at morphological and 

molecular level.  
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Figure 31. Dynasore treated egg mimics suf mutants functionally. 

a. Light microscopy image showing chorion elevation of wild-type eggs treated with 

dynasore or DMSO treated for specific time as indicated in the image. Top panel from wild 

type from DMSO treated and bottom panel from wild type treated with dynasore. b. Bar 

diagram shows the mean size of the embryo after chorion elevation at different time points 

from DMSO and dynasore treated eggs. c. Staining for VAMP4 in green and secretory 

granule in red shows the accumulation both in dynasore treated wt eggs similar to suf 

mutant oocytes and eggs. Scale – 50 µm. 

3.12 Suf is required for mitosis but not for meiosis 

3.12.1 Suf/Spastizin is not required during meiosis 

 Since recycling was not disrupted in suf oocytes, we examined additional processes 

requiring recycling endosomes during oogenesis. Endosomal recycling is involved in 

meiotic maturation in C. elegans (Cheng et al.,2008) and Xenopus laevis (El-Jouni et 

al.,2007), which is induced in teleost oocytes by 17α, 20β-dihydroxy-4-pregnen-3-

one(DHP) (Jalabert et al.,1978; Nagahama.1985; Selman et al.,1994). Staining of the 

germinal vesicle with fluorescent Phalloidin by Dr. Amandine-Stein revealed that 
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Suf/Spastizin oocytes underwent GVBD (germinal vesicle breakdown) in response to DHP 

(93%, n=28) similar to wild-type oocytes (82%, n=17), whereas ethanol-treated control-

oocytes retained their germinal vesicle (suf: 64%, n=11; wt: 57%, n=28) (Fig. 32a, b). This 

finding was also confirmed by following the dynamics of GVBD in vivo with a transgenic 

H2A-GFP (Histone2A-GFP) reporter line (Pauls et al.,2001) (Fig. 17c). We also examined 

polar body extrusion (Fig. 32d) and spindle formation (Fig. 32e) during oocyte maturation, 

but observed no difference between wild type and mutant. These results show that Suf is 

not required for meiotic maturation in the zebrafish oocyte. 
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Figure 32. Suf is not required for meiosis. 

a. Cartoon shows the meiotic maturation process during oogenesis from prophase I to 

metaphase II. Zebrafish oocytes are arrested in prophase I (PI) of the first meiotic cell cycle 

indicated by the huge germinal vesicle (red). Maturation initiates with germinal vesicle 

breakdown (GVBD) and the first meiosis leads to the formation of a polar body (red 

circle). The egg arrests again in metaphase of the second meiotic cell cycle (MII), ready to 

be fertilized. b & c shows the germinal vesicle break down in wild type and suf mutant 

oocytes. b. Phalloidin staining in green from the oocytes treated with either ethanol or 

DHP. Bottom panel shows the disappearance of germinal vesicle after DHP treatment 

contrary to ethanol treatment in the top panel. Scale - 100µm. c. Living stage III oocytes 

from wt and Suf/Spastizin mothers treated with carrier or DHP. The chromatin is 

highlighted by a Histon2A-GFP transgene (green) showing that GVBD occurs at the same 

time in mutant oocytes as in wt, whereas the cytoplasm stays opaque in Suf/Spastizin 

oocytes. Scale -100 µm.  d. Panel d shows the polar body extrusion from wt and suf mutant 

oocytes. Actin in green to mark the polar body, nuclei in blue (DAPI) and merge at the 

bootom. e. Panel e shows the spindle formation in the oocyte from wt and suf mutant. 

Nuclei in blue and b-tubulin in green, which marks the spindle and merge at the bottom. 

Scale – 25 µm. 

3.12.2 Soufflé embryos show defect in cytokinesis 

In eukaryotes, Golgi derived vesicles and Rab11 are involved in cytokinesis during 

mitosis (reviewed in Barr and Gruneberg.2007; Simon and Prekeris.2008; Schiel et 

al.,2013; Hehnly and Doxsey.2014). Consistently, after RNAi depletion of the Suf-homolog 

FYVE-Cent in HeLa cells, a cytokinesis defect was observed (Sagona et al.,2010). To 

analyze cytokinesis in embryonic cells with defective maternal Suf protein, I analyzed 

embryos from suf mutant mothers and the embryos showed defect in cleavage (Fig.33a). 

Amandine also labeled the cell cortex of 32-cell embryos with Phalloidin and their nuclei 

with DAPI (Fig.33b). Whereas embryos from wild-type mothers showed one nucleus per 

cell, age-matched embryos from suf mutants exhibited multinucleated cells. This result 

suggests that the maternally controlled cell cycles require Suf/Spastizin similar to the 

cytokinesis defect discovered in HeLa cells. There by, these results support the role of Suf 

in secretion in zebrafish oocytes. 
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Figure 33. Suf mutant embryos shows a defect in cytokinesis. 

a. Light microscopy image showing the defective cleavage in suf mutant embryo compared 

to the wild-type embryo in the left. b. Suf/Spastizin is required for cytokinesis. Embryos at 

32-cell stage from heterozygous wt (top panel) or homozygous (bottom panel) Suf/Spastizin 

mothers with labeled nuclei (DAPI; blue) and plasma membranes (Phalloidin; green). In 

contrast to wt, few eggs from mutant mothers initiate cell division after fertilization, but 

then show cells with multiple nuclei (arrowhead).  

3.13 Injecting suf DNA in the mutant oocyte rescues the mutant 

phenotype 

3.13.1 Suf DNA injection rescues chorion elevation phenotype 

Since chorion elevation provided a sensitive read-out for Suf functionality in 

zebrafish oocytes, I analyzed whether injecting wild-type Suf gene rescues the mutant 

phenotype. However, the length of the suf gene with almost 8 kb made it difficult to obtain 

sufficient in-vitro transcribed RNA for injection and hence, I injected plasmid DNA into 

oocytes (Clelland et al.,2007; Bontems et al.,2009; Nair et al.,2013). Furthermore, we used 

stage III oocytes, since they can be incubated for longer periods to allow for protein 
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expression than matured stage V eggs. After 12 hrs, the majority of wt oocytes elevated 

their chorion (84.3%±6.9), whereas suf mutant oocytes rarely showed a perivitelline space 

(7.3%±2.9) also after injection of control plasmid. Wild type Suf plasmid partially rescued 

chorion expansion in mutant oocytes (58.5%±19.0), but the chorion was not elevated to the 

same extend as seen in the wild type. Interestingly, when I overexpressed the p96re allele, I 

also observed partial rescue, but at a lower percentage (40.0%±13.4) (Fig.34 a&b). This 

result confirms that the suf gene could rescue the mutant phenotype partially and the suf 

mutant allele behaves as a hypo morph allele consistent with reduced chorionic space in the 

embryo after 30 mpf. 

 

Figure 34. Suf DNA injection rescues suf mutant. 

a. Stage III oocytes from +/− (wt) or −/− Suf/Spastizin mutants (mut) after 12–16 h 

incubation in L-15 medium in the top panel. Bottom panel shows stage III oocytes from 

−/− Suf/Spastizin mutants after injection of plasmid encoding wt or mutant Suf (p96re 

allele). Note that the mutant Suf
p96re

 injected oocytes also show chorion elevation similar to 

wt Suf injected oocytes to some extent. Scale - 50 µm. b. Bar diagram showing the 

percentage of the embryos with elevated chorion. Mutant oocytes injected with wt and the 

suf mutant construct rescue the chorion elevation.  

3.13.2 Suf gene injection also rescues the molecular phenotype 

To confirm the rescue with molecular markers, I stained the injected oocytes with 

MPA-lectin and VAMP4. Both markers were reduced in mutant oocytes after injection of 

plasmid encoding wild-type Suf or Suf
p96re

, but the control plasmid did not change anything 

(Fig. 35 a&b). This result upholds the phenotypic rescue and confirms our previous 
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hypothesis that the zebrafish p96re allele encodes a hypo morph with reduced activity. 

Taken together these data demonstrate that Suf controls secretory vesicle maturation 

probably by sorting during zebrafish oogenesis. 

3.13.3 Soufflé regulates cortical granule/ secretory granule maturation  

 Considering the above results, which leads to the conclusion that soufflé regulates 

cargo sorting from immature secretory granule and only successful sorting results in fusion 

competent dense core vesicle. These matured dense core vesicles are essential after 

fertilization for chorion elevation and modifying the membrane to avoid deadly polyspermy 

effect. The proposed model (Fig.36) shows the role of soufflé during secretory granule 

maturation and chorion elevation. 

 

Figure 35. Suf DNA injection rescues the mutant phenotype at molecular level. 

Morphological phenotype (upper row) of chorion elevation in activated wt (wt + co 

plasmid) (100%; n = 55), but not in mut oocytes after injection with control DNA (suf + Co 

plasmid) (0%; n = 56). Mutant oocytes injected with plasmid encoding wt Suf (mut + wt 

Suf) (87.5%; n = 56) or mut Suf
p96re

 (mut + mut Suf
p96re

) (67.9%; n = 53) show chorion 

elevation. Rescue of MPA-lectin (middle row) and VAMP4 (lower row) accumulation on 

immature secretory granules after injection of plasmid encoding wt Suf (mut + wt Suf) or 

mut Suf
p96re

 (mut + mut Suf
p96re

) into mutant oocytes. Notice the reduction the accumulation 
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of VAMP4 and secretory granule after the injection of wt or suf mutant construct. Scale - 

50 µm. 

 

 

Figure 36. Soufflé regulates sorting and fission during secretory granule maturation. 

a. Model for Soufflé (red) function on immature secretory granules (ISG). Suf/Spastizin is 

necessary for the abscission of Clathrin-coated buds. Whereas the compartment matured 

into secretory, cortical granules (CG) with a dense-core, the Clathrin-coated vesicles enter 

the endolysosomal transport route probably to lysosomes. b. The drawing illustrates the 

defect in the suf mutant and the role of souffle during secretory granule maturation, which 

leads to successful sorting into formation of dense-core vesicle.  Left panel shows in the 

wild type and right side panel shows in the suf mutant oocytes. 

3.14 Role of soufflé in lysosomal biogenesis and function 

 The Soufflé mutant was discovered in maternal a screen by its phenotype opaque 

egg instead of transparent eggs (Dosch et al.,2004). This defect suggested that the suf 

mutant has a defect in endo-lysosomal pathway, which fails to degrade yolk proteins in the 

oocyte, which creates the opaqueness. Surprisingly, we discovered an unknown role for suf 

in the secretory pathway but the question is still unanswered, why the suf oocytes are 
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opaque. The defect in the lysosomal pathway is directly influenced by soufflé mutation or 

is it an indirect consequence of the defect in the secretory pathway? (Fig. 37). 

 

Figure 37. Soufflé mutant lays opaque egg. 

a. light microscopy image of wt mature oocyte/egg. b. Image of wild-type immature oocyte 

with opaqueness. c. image of suf mutant mature oocyte/egg looking similar to wild-type 

immature oocyte. Scale – 50 µm. 

3.14.1 Suf mutant shows defect in yolk degradation 

 As the suf mutant was discovered for their opaque phenotype and the defect in yolk 

degradation during oocyte maturation in zebrafish, yolk profiling revealed that the yolk 

protein is not processed in the suf mutant compared to the wild type (Dosch et al., 2004). 

3.14.2 Suf mutant shows defect in lysosomal maturation 

 The maternally delivered yolk protein is taken up by the oocyte through 

endocytosis. The yolk proteins are processed/degraded in lysosomes. Endosomal 

compartment analysis showed that suf mutant accumulates smaller/fragmented lysosome 

(Fig.20). To further analyze the lysosomal defect, I used cryo-electron microscopy and the 

analysis showed that the suf mutant accumulates smaller lysosomes consistent with 

Immuno-staining (Fig.38 a-e).The quantification of the lysosomal size showed that the suf 

mutant lysosome is 3µm smaller than the wild type (Fig.38 f). These results indicate that 

suf is necessary for lysosomal maturation. 

Figure 38. Soufflé mutant shows defect in yolk degradation. 

a. Electron micrograph showing fragmented lysosome in suf mutant mature oocyte. b. High 

resolution image showing the presence of yolk crystal still in the suf mutant oocyte 

lysosomal structure which is absent in the wildtype. c. Image from immature oocyte 
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showing the crystal yolk in wt and mutants and mutants accumulating small yolk vesicles. 

d. Showing magnified view of the yolk crystal from wt and suf mutant oocyte lysosome. e. 

Cryo-electron micrograph from wt and suf mutant oocytes showing fragmented lysosome, 

which are used for quantification of the lysosomal size. f. Bar diagram shows the mean size 

of the lysosome in wt and suf mutant oocytes. Notice the difference in the size of lysosome 

in the suf mutant compared to wildtype. 

 

3.15 Yolk endocytosis is not affected in suf mutant 

3.15.1 Yolk reaches the lysosome  

 Although the defect in lysosome maturation explains the opaque phenotype, but it 

still does not address whether the yolk endocytosis is functioning properly and has arrived 

in the smaller lysosome or not in the suf mutant. Immuno-staining for the yolk protein 

showed it reaches the lysosome in the suf mutant consistent with Rab5 and Rab7 immuno-

staining showing no defect (Fig.39a). 
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3.15.2 In-vivo endocytosis assay for LDL 

LDL follows the degradative transport route to lysosomes and the yolk-receptor 

belongs to the LDL-receptor superfamily (Goldstein et al.,1985; Schneider.1996). Adding 

fluorescent LDL to the culture medium labeled yolk globules in zebrafish oocytes, which 

correspond to lysosomes in somatic cells (Sire et al.,1994). However, we observed no 

difference in the LDL transport to wild type or suf mutant lysosome, suggesting that 

transport along the degradative pathway has not been disrupted (Fig.39b).  

 

Figure 39. Yolk reaches the lysosome in suf mutant oocyte. 

a. Immuno-staining for the yolk protein vitellogenin in green and lysosomes in red showing 

that in both wt and suf mutant the yolk reaches the lysosome. Top panel from wild type, 
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bottom panel from suf mutant in separated individual channel, and merge. b. In-vivo 

endocytosis assay using LDL cargo in red shows that LDL reaches lysosome in the suf 

mutant like in the wild type after 10 mins of intake consistent with yolk staining. Small 

cartoon at the left top shows the optical section. Scale – 50 µm.  

3.16 Vitellogenin processing enzyme Cathepsin D is not affected in suf 

mutant 

 Cathepsin D processes the vitellogenin into yolk proteins and then they are 

degraded by other group of Cathepsins (Cathepsin B, F and L) in the lysosome. If the yolk 

protein reaches the lysosome in the suf mutant, why the yolk proteins are not processed? 

Does the lysosome have all the proteolytic enzymes for the degradative function? To 

address the question, I wanted first to check the vitellogenin processing enzyme Cathepsin 

D. The immuno-staining showed that the Cathepsin D is present in the lysosome in the suf 

mutant (Fig.40) consistent with the presence of different yolk proteins in the suf mutants, 

suggesting that the lysosomal physiology is still suitable for the Cathepsin D activity. 

 

Figure 40. Cathepsin D protease reaches the lysosome in suf mutant oocyte. 

Confocal image shows the presence of cathepsin D proteases in red in the lysosome of wt 

and suf mutant oocytes. Fragmented lysosomes are well visible in the suf mutant oocyte. 

Scale – 50 µm. Cartoon shows the optical section plane. 
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3.17 Yolk protein degrading cathepsins are not delivered to lysosomes in 

the suf mutant 

3.17.1 Cathepsin B, F and L not delivered to lysosome 

 The yolk proteins are processed two times and he second processing is considered 

as a degradative process. The primary processing enzymes, Cathepsin D is present in the 

lysosome and processes the VTG into different yolk proteins. I wanted to check if the 

degrading enzymes are delivered to lysosome and used immuno-staining for three different 

Cathepsins. Interestingly, the staining showed that the degrading Cathepsins (Cathepsin B, 

F and L) are not delivered to the lysosome in the suf mutant (Fig. 41a & b; Fig.42a). I also 

discovered that the Cathepsins were trapped in the secretory granules, suggesting that they 

are not sorted to lysosomal pathway. The amounts of enzymes are drastically reduced 

inside the oocyte that accumulated very strongly on outside membrane. To check if the 

reduction in the enzymes amount is because of less protein production or they are degraded 

or secreted out, I analyzed early oocytes before the yolk accumulation takes place (Stage 

Ib) and on staining it showed that the enzymes were present in the secretory granule similar 

to the wild-type oocytes (Fig.42b). These results prove that the degrading Cathepsins are 

not delivered to the lysosome and hence the yolk accumulates thus creates the opaqueness 

in the suf mutant. This also gives an indication that the lysosomal defect is a consequence 

of the sorting defect in the secretory granule. 

 

Figure 41. Cathepsin B and L are not delivered to the lysosome in suf mutant oocyte. 

a. Double staining for cathepsin B in green and lysosomes in red in single channels and the 

merge at the right side. Top panel from wildtype and bottom panel from suf mutants. 

Notice that in the suf mutant absence of cathepsin B in the lysosome and accumulation in 

the secretory granule, which are negative for the lysosome staining in the suf mutant only. 

b. Double staining for cathepsin L in green and lysosome in red showing the absence of 

cathepsin L in the suf mutant oocyte lysosome like cathepsin B. Top panel from wt and 

bottom panel from suf mutants. Scale – 50 µm.  
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Figure 42. Cathepsin F is not delivered to the lysosome in suf mutant oocyte. 

a. Similar to cathepsin B and L cathepsin F also fails to reach the lysosome in the suf 

mutant. Cathepsin F in green and lysosome in red in single channels and merge at the right 

side. Top panel from wt and bottom panel from suf mutants. Notice the accumulation of 

cathepsin f in the secretory granule in suf mutant similar to cathepsin B. b. Stage 1b 

oocytes before vitellogenesis from suf mutants shows normal distribution of Cathepsin F 

like wild type. Notice the cathepsin F in green in the secretory granule before yolk arrival 

in the lysosome. Scale – 50 µm.  

3.18 Lysosomal receptors M6PR and Sortilin transported correctly 

 Non-delivered lysosomal enzymes are trapped in the secretory granule indicating 

that the transport from secretory pathway to lysosomes is defective in suf mutant. This 

result also confirms that the lysosomal defect in suf mutant is a consequence of sorting 

defect in the secretory granule during maturation. The lysosomal cargos are transported 

from secretory granule through receptor mediated sorting and vesicle fission (Fig.43a). 

Two of the well-studied and most used pathways for lysosomal sorting is Mannose-6-

Phosphate receptor (M6PR) and Sortilin. These two receptors are known to sort different 



                                                                                                                               Results 

121 

 

cathepsins in different cell types. To check if these receptors are sorted to lysosome in the 

suf mutant, I looked for these receptors in the mutant oocyte using antibody staining and 

the analysis revealed that both the receptors reached lysosome in the suf mutant oocyte 

(Fig.43 b & c). Consistent with the presence of Cathepsin D in the suf mutant lysosome, 

thus suggesting that suf might regulate pathway independent of these receptors. 

 

Figure 43. M6PR and Sortilin reaches endo-lysosomal system  

a. Cartoon shows the connection between secretory pathway and endosomal system from 

immature secretory granule. Budding vesicle from immature secretory granule delivered to 

the endo-lysosomal system through receptors mediated sorting. b. Immuno-staining for 

sortilin in green shows the presence of sortilin in lysosomal system in suf mutant similar to 
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wild type. c. Staining for M6PR in red shows the presence the receptor in endo-lysosomal 

system like wild type. Left panel from wt and right panel from suf mutant. Scale - 50 µm.   

3.19 Endo-lysosomal sorting adaptor protein complexes (AP1 &GGA1) 

 The sorting process consists of three different functions and they are connected. 

First, the cargo binds to its receptor followed by finding the right adaptor protein complex 

and the coat proteins (Fig.44 a). Since, the receptors reach lysosome in the suf mutant 

oocytes and suf was discovered to interact with newly discovered adaptor protein complex 

5 (AP5), I wanted to analyze if the other adaptors are known to involve in sorting cargos to 

the endo-lysosomal system are, also properly sorted. Immuno-staining for both adaptors 

(AP1G1 & GGA1) showed no difference compared to the wild type (Fig.44 b), suggesting 

that the regular M6PR dependent lysosomal pathway is not affected in the suf mutant 

oocytes.  

Figure 44. Adaptor protein complexes AP1 and GGA1. 

 

3.20 Lysosomal membrane proteins (LAMP1 and V-ATPase) 

 Lysosome function depends on membrane proteins and soluble proteins. The 

membrane proteins give the integrity and protect the cellular organelles from the acidic 

lysosome. To investigate if the membrane proteins are intact and functional in the suf 
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mutant lysosome, I investigated LAMP1 and proton pump v-ATPase d1 subunit. The 

LAMP1 reaches the lysosome in the mutant but the LAMP1 positive intermediate from 

secretory pathway is reduced (Fig.45a, b & c). Surprisingly, v-ATPase subunit d1 was not 

found inside the oocyte and strongly accumulated outside on the membrane similar to 

Cathepsins, suggesting that the particular subunit is not delivered to lysosome (Fig.46). The 

reduction in the LAMP1 positive vesicles suggests that suf mutant might possess a defect in 

LAMP carrier pathway (Pols et al.,2013), which was recently discovered. 

 

Figure 45. LAMP carriers are reduced in suf mutant oocytes. 

a. Confocal image shows the LAMP1 in red reaches the lysosome in wt and suf mutant. b. 

But the LAMP carrier intermediates derived from secretory granules are severely reduced 

which are LAMP1 positive in red but not positive for lysosome staining (in green). Bottom 

panels shows different focal planes of the oocyte. Left panel from wt and right panel from 

suf mutants. Scale – 50-µm. c. Bar diagram shows the mean number of LAPM carrier 
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intermediates from wt and suf mutant oocytes counted using confocal images. p value 

shows the significant difference. Error bar indicates the standard deviation.  

 

Figure 46. V-ATPase subunit d1 does not arrive in suf mutant lysosome. 

a. Image showing V-atpase subunit d1 in green in wt and suf mutant oocytes. Notice the 

absence of d1 subunit in the lysosome of suf mutant oocyte. Left panel from wt and right 

panel from suf mutant. b. Double staining for V-atpase in green and secretory granule in 

red showing co-localization of both on secretory granule in wt oocytes. Cartoon shows the 

optical section. Scale – 50 µm.  

3.21 LAMP carrier pathway is affected in suf mutant 

 Commonly used receptor pathways did not show any defect and reduction in 

LAMP1 positive vesicles raising the question if VPS41 mediated Lamp carrier pathway is 

affected in the suf mutant. VPS41, a subunit of vacuolar/lysosomal homotypic fusion and 

vacuole protein sorting (HOPS) tethering complex originally discovered for its role in 
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lysosomal fusion with different compartments. HOPS deficit yeast and other model 

organisms have fragmented lysosome, but VPS41 was discovered to have role in sorting 

lysosomal cargo with AP3 adaptor protein complex acting as a coat protein apart from its 

role in lysosomal fusion (Asensio et al.,2013). To investigate if VPS41 and AP3 were 

sorted properly, I did an immuno-staining for both VPS41 and AP3M2. Interestingly, suf 

mutant oocyte show much reduced VPS41 positive intermediate vesicles similar like 

LAMP1 positive vesicles (Fig.47 a & b). But, AP3 did not show much difference or change 

in AP3 positive vesicle number (Fig.48 a & b). These results shows that the suf mutant has 

a defect in VPS41 mediated LAMP carrier pathway to lysosome. 
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Figure 47. VPS41 positive Lamp carriers are reduced in the suf mutant. 

a. immune-staining for VPS41 in green and lysosome in red in wt and suf mutant oocytes.  

Top panel from wt and bottom panel from suf mutants. Notice the reduction of green 

positive vesicles in the suf mutant similar to LAMP carrier. b. Diagram shows the 

quantification of VPS41 positive vesicles only from wt and suf mutant oocytes. Bar shows 

the significant reduction in the number of VPS41 positive vesicles. P value shows the 

significance and error bar indicates the standard deviation. Scale – 50 µm. 
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Figure 48. AP3 accumulates in secretory granule in suf mutant. 

a. The image shows AP3 in green and lysosomes in red. Left panel from wt and right panel 

from suf mutants. Arrow indicates AP3 presence in secretory granule and white arrowhead 

indicates separated small AP3 positive vesicles in different focal plane of the oocyte. Scale 

– 50 µm.  b. Diagram shows the quantification AP3 positive secretory granule in red bars 

and separated individual AP3 vesicle in blue bars. The red bar shows an increase in AP3 

positive secretory granule in suf mutant compared to wt and blue bar shows the reduction in 

the separated individual AP3 positive vesicle in suf mutant. P value shows the significance 

and error bar indicates standard deviation.  

3.22. Blocking secretion causes opaque egg phenotype 

 The further experiment on the lysosomal pathway confirmed that the defect is a 

consequence of secretory granule maturation defect. To check in-vivo whether the blocking 

of chorion elevation in zebrafish egg will show a lysosomal defect, the wild type eggs were 

treated with dynasore and control. The Dynasore treated wild-type eggs and secretion 

delayed by Hanks buffer both showed no chorion elevation (Fig.31a) and surprisingly, 

these eggs also showed opaque egg phenotype like suf mutant eggs (Fig.49a). If this 

opaqueness of the egg is because of the defect caused by the block in the secretion, I 

analyzed the yolk degradation profile in the treated eggs and yolk profiling confirmed that 

there is accumulation of bigger yolk protein in the secretion blocked sample (Fig.49b). This 

bigger yolk protein normally presents in the immature oocyte and they disappear during 

maturation by degradation but when we block the secretion, the egg starts accumulating 

this particular yolk protein, which corresponds well with their opaqueness and duration of 

treatments. This in-vivo functional experiment confirms that the lysosomal defect is indeed 

the consequence of secretory granule maturation defect. 

Figure 49. Delaying secretion inhibits lysosomal function. 

a. Image of the wt egg shows the opaqueness after delay in the chorion elevation process by 

dynasore treatment. First panel from wt mock treated and second from wt egg dynasore 

treated for 30 mins then activated for 5 mins and third panel from wt eggs not activated for 

30 mins. Notice the failure of chorion elevation in both dynasore treated and chorion 

elevation delayed by Hank‟s buffer for 30 mins and also showing opaqueness like suf 

mutant oocytes. b. SDS gel for yolk profiling shows protein pattern in the oocyte, egg 

before and after activation followed by dynasore treated eggs of wt. Red rectangle box 
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showing the reappearance a particular band at the top indicated by arrow similar to oocyte, 

which disappear in the egg.  

 

3.23 Bioinformatics analysis of Soufflé and VPS41 protein 

 The defect in the Lamp carrier pathway shows that suf might play role in VPS41 

mediated lysosomal pathway. VPS41 deficit leads to fragmented lysosome and fails to 

form a dense-core vesicle with a defect in sorting of lysosomal cargos from the secretory 

granule (Asensio et al.,2013). This similar phenotype of VPS41 like suf mutant phenotype 

in zebrafish oocyte support the role of Soufflé in VPS41 mediated sorting. VPS41 has been 

shown to form Clathrin like coat with Clathrin Heavy Chain (CHC) domain (Fig. 50a) and 
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Coatomer ß sub unit. To understand if Soufflé plays a similar role like VPS41 as a coat 

protein, I performed bioinformatics analysis for both the proteins. Analysis predicted both 

CHC and beta- Coatomer sub unit in multiple places of Soufflé protein (Fig. 50b, Appendix 

4 & 5) consistent with the recent publication predicting that suf might play as coat protein 

with its solenoid like structure (Hirst et al., 2013). Moreover, Suf protein contains mostly a 

helical structure suggesting that this might provide as big scaffold protein (Fig. 50 c). The 

two different phenotype of suf mutant in lysosome and secretory granule maturation into 

dense core vesicle and their bioinformatics analysis further supports the novel role for 

Soufflé in VPS41 mediated lysosomal transport as a coat protein or a similar role like 

VPS41. Also for the first time we provide evidence that the defect in secretion causing the 

lysosomal defect which is mot observed phenotype in many neuro-degeneration diseases.  

Figure 50. Suf protein predicted to have Coat protein sub unit and CHC like VPS41. 

a & b shows the predicted protein domain in VPS41 and soufflé with their corresponding 

region. Prediction shows that suf protein also has clathrin heavy chain homology and β 

subunit of coat protein similar to VPS41. c. Graph shows the predicted secondary structure 

of the suf protein. The helices in red and sheets in green. Bottom panel shows the 

probability of forming coiled –coil structure. Suf protein shows the possibility of being a 

scaffold protein with its lot of helical structure. 

3.24 Motor neuron analysis in suf mutant 

 The soufflé gene is conserved in all vertebrates and expresses in all tissues. The 

soufflé mutation (p96re) causes specific phenotype during oogenesis in zebrafish, but 

similar mutation (c.6702_6771 del) in this gene in human cause‟s progressive motor neuron 

degeneration called Hereditary Spastic Paraplegia (HSP). This tissue specific phenotype 

and late appearance creates difficulty to study the disease and to create models. Since we 

study the function of the protein in the oocyte where we see the phenotype, I wanted to 

study if suf mutant zebrafish larva or adult show any defect in movement or any motor 

neuron developmental defect (Nora Crascanta, IMPRS masters in molecular biology, Lab 

rotation project). Morphologically the larva or adult homozygous fish did not show any 

difference to its heterozygous siblings or wild type. Analysis of the motor neuron and 

muscle protein showed no difference compared to the heterozygous siblings (Fig. 51). This 

result confirmed that the suf p96re mutation causes a specific phenotype during oogenesis 

and does not show any other defect during development in any other tissues, suggesting 

that the suf mutant oocyte provides fitting model to study the Soufflé function. 
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Figure 51. Motor neuron analysis of suf mutant fish. 

a. Antibody staining for zn-8 on 3 day old fish. Zn-8 in green and the picture shows the 

trunk region of the spinal. The head is on the left side and tail is on the right of the image. 

Left panel is from suf heterozygous and right panel is from suf homozygous fish. b. 

Staining for SV-2 in suf hetero and homozygous mutant fish. SV-2 in green and the picture 

shows the trunk region of the spinal. The head is on right and tail is on left side. Both 

staining showed no difference in the motor neuron.  
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3.25 Suf protein knockdown by morpholino shows defect in notochord 

formation 

 Since the suf p96re allele is a hypo morph, I wanted to see if full protein gets knock 

down on using a morpholino reported (Martin et al., 2012). It is also to check any 

additional defect during early development. The knockdown showed 50% twisted tail 

phenotype, 30 % normally developed animal (Fig. 52 a, b & c). Further analysis for 

motility did not show any defect in the normally developed animal and immuno-staining 

for motor neuron marker also showed no defect in development, but interestingly the 

twisted tail animals showed enlarged vacuoles/Lysosome structure in the notochord (Fig. 

52 d). The serially arranged lysosomes in the notochord are known to play essential role in 

spinal development. This result suggests that the suf might have a role during notochord 

development in the zebrafish.  

Figure 52. Suf morpholino knockdown shows defect in notochord lysosome. 

a. Morphological image of wt embryo injected with a control morpholino. b. Images show 

the three different phenotype of the wt embryo injected with the suf morpholino. c. 

Quantification of the suf knockdown phenotype. Around 30 % shows normal development, 

around 42 % shows twisted tail phenotype and 15 % embryos not hatched. d. Immuno-

staining for ZNP-1 on control morpholino and suf morpholino injected fish. ZNP-1 in 

green shows no difference in motor neuron in normal developed suf morphant but the 

twisted tail fishes show that their lysosomal size is enlarged compared to the control 

morphant. 
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3.26 Analysis of SPG15 mutant patients fibroblast 

 Consistent with our results in zebrafish oocyte, the mutation in human does not 

cause any defect in any other tissues but motor neuron. To analyze further if the human 

SP15 patient fibroblast (c.6702_6771 del) showed a similar defect which I discovered in 

the suf mutant oocyte, we stained for several marker proteins and did live imaging for 

endocytosis, vesicle fission and other vesicle trafficking proteins (Susanne Schlick, IMPRS 

masters in molecular biology, Lab rotation project). The analysis showed no defect in any 

of the analyzed processes, which had showed a defect in the suf mutant oocytes (Fig. 53), 
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consistent with earlier reports and disease pathology. These results from fibroblast and 

motor neuron analysis shows that the specific defect in the oocyte is similar to the motor 

neuron defect in humans, suggesting a similarity or high sensitivity of the zebrafish oocyte 

and the motor neuron for suf p96re mutation. Hence, the Soufflé mutant provides an 

excellent experimental model to understand this tissue specific disease phenotype and 

molecular mechanism. 

Figure 53. Analysis of spg15/spastizin mutant fibroblast cells. 

a. Confocal image of antibody staining for cellular trafficking protein marker involving 

endocytosis (Rab5, Rab7 and Rab11 in green and nuclei in blue). TGN38 in green as a 

marker for Golgi secretion and LAMP1 in green as marker for lysosome. SPG15 human 

antibody and zSuf antibody against zebrafish suf protein. Left panel is from wt cells and 

right side is from spg15 mutant cells. b. In-vivo analysis of endocytosis, secretion, lipid raft 

and recycling using fluorescent cargos. LDL in red shows no defect in endocytosis, tfn in 

red shows no difference in recycling, CTxB – Cholera toxin B in red shows no difference 

in lipid raft and Lectin in green shows no difference in secretion. Left panel is from wt cells 

and right side panel from spg15 mutant cells. 
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3.27 Mitochondrial defect in suf mutant oocyte 

 Mitochondria is one of the sensitive organelle of the cell and a defect in 

mitochondria causes neuron degeneration and cell death. Suf is also known to localize to 

the mitochondria. The Lysosome and mitochondria are connected for transport of lipids and 

the lysosome is necessary for removing defective mitochondria by mitophagy to keep the 

cell healthy. Therefore, I wanted to see if the mitochondria were normal in the suf mutant 

oocyte since the maternal mitochondria is stored in the oocyte (Nora Crascanta, IMPRS 

masters in molecular biology, Lab rotation project). Staining for mitochondria with 

different membrane potential based dyes revealed that the structure and organization is 

disrupted in the suf mutant, also we observed accumulated mitochondria via electron 

microscopy (Fig. 54 a & b). This result suggests that suf might have role in mitochondrial 

function directly or indirectly through the lysosome. 

Figure 54. Suf mutant show disturbed mitochondrial network. 

a. Mitochondria are stained with TMRE. Mitochondria are in red. Left panel from wt 

oocyte and right panel from suf mutant oocytes. First two rows shows the overall 

distribution of the mitochondria around the nucleus in the wt and suf mutant shows 

disturbed distribution. Third and fourth rows shows the mitochondria in the Baliani body 

structure. The last row shows the cortex region of the oocyte. b. Electron micrograph 

showing mitochondrial accumulation in the suf mutant compared to the wt distribution. 

Scale - 50 µm for panel a and 2 µm for panel b. 



                                                                                                                               Results 

137 

 

 

3.28 Cloning other opaque egg mutants 

 Suf is one of the opaque egg mutants, which show same phenotype, suggesting all 

have a defect in yolk degradation. The mutants might interact with suf or work in same 

pathway. So finding the gene mutated in other mutanst would provide as new candidate for 
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HSP. To analyse if other mutants have lysosomal defect, lysosome were stained in sunny 

side up mutant ooctyes and electron microscopy was used to study the ruehrei mutant 

oocyte. Interestingly, both mutants show fragmented oocyte like suf mutant (Fig. 55). 

Parellely, ruehrei mutant has been positionally cloned as TOMM70a using RNA 

sequencing, suggesting a connection between mitochondria and lysosome biogenesisn and 

function. Recent interactome study predicted that TOMM70a will be a HSP causing gene 

in human consistant with our study. It will be interesting to know if these mutants also 

having defect in secretory pathway. So, these opaque egg mutants will be a good model to 

study the HSP disease genes and function. 
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Figure 55. Other opaque egg mutants also show fragmented lysosome. 

a. Picture shows electron micrograph from ruehrei mutant oocyte compared to wildtype. b. 

Staining for lysosome in red in sunny side up mutant oocytes compared to wild type 

oocyte. Scale – 50 µm.
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4. Discussion 

Oogenesis is an essential part of any sexually reproducing organism‟s life to 

propagate the next generation. During oogenesis, the oocyte undergo many dynamic 

changes and maturation after growth from the follicle cells. Most importantly, they 

accumulate nutrients and essential factors from the mother, which are necessary during 

fertilization and early development. During this process, the oocyte actively use 

endocytosis and other transport pathways to attain the the required maturation. Many 

regulators have been identified in the yeast and other invertebrates but the genetic screen in 

C. elegans discovered a novel factors and cellular compartments specific to the multi 

cellular organism, suggesting that the vertebrates require many more essential factors 

compared to single cell organisms for oocyte maturation. So a genetic screen for maternal 

effect mutants in zebrafish was carried out (Dosch et al.,2004) and many mutants were 

discovered having a defect in oogenesis. Thus providing a valuable tool to study the 

functions of those genes in vertebrates. 

Here, we take advantage of zebrafish genetics and its oocyte with their high vesicle 

trafficking activity to describe novel role for the SPASTIZIN homolog Souffle. The present 

study shows that during zebrafish oogenesis Suf/Spastizin is essential for the maturation of 

secretory granules by sorting lysosomal cargos from immature secretory granules. 

Suf/Spastizin colocalizes with Rab11b to an intermediate compartment during the 

formation of dense-core vesicles (DCV) which are competent to fuse with plasma 

membrane during exocytosis after fertilization. Our results show that suf plays crucial role 

in sorting of cargos and vesicle fission from immature secretory granule (ISG) during 

secretory granule maturation in zebrafish oocytes (Kanagaraj et al.,2014). Also, the current 

study shows the defect in lysosomal biogenesis and degradative function is a consequence 

of the sorting defect in ISG. Furthermore, this study explains the role of suf in sorting 

lysosomal cargos like cathepsin proteases from immature secretory granule to lysosome 

through VPS41 an AP3 mediated transport pathway. In conclusion, we discover the novel 

role of suf in sorting of lysosomal cargos from the secretory pathway which leads to form 

dense core vesicle which are competent to fuse with plasma membrane.  

4.1 Souffle regulates Rab11b positive secretory vesicle. 

A striking phenotype in suf oocytes is the accumulation of Rab11b positive vesicles. 

However, the recycling is not affected in suf mutants. Nevertheless, in fibroblasts it is 
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unusual that transferrin does not colocalize with Rab11b and consistently, none of the other 

phenotypes besides the defect in cytokinesis supports a role for Suf/Spastizin in endosomal 

recycling. Interestingly, in certain human cell types, secretory cargoes also pass through 

Rab11-positive endosomes (reviewed in Taguchi.2013). Polarized tissue culture cells 

spatially and functionally separate Rab11a/Transferrin and Rab11b (Wang et al.,2000; 

Lapierre et al.,2003a) This remarkable separation of Rab11a and –b is mostly observed in 

polarized epithelial cells, which form the Rab11-positive sub apical compartment 

(SAC)/common endosome as a central sorting hub for recycling (reviewed in Hoekstra et 

al.,2004). Although the zebrafish oocyte is highly polarized along the animal-vegetal axis, 

polarity at the level of vesicle transport has not been previously described. Therefore, the 

Rab11b positive compartment in the zebrafish oocyte requires further analysis to confirm 

its homology to the sub apical compartment of human epithelial cells. Furthermore the 

Rab11 has been shown to regulate secretory granule transport and exocytosis during 

oogenesis in C.elegans (Sato et al.,2008) and they are regulated by cell cycle components 

during cell division (Bembenek et al.,2007). 

Another study performed in rat neuroendocrine PC12 cell cultures implicated, 

Rab11b in the formation of dense-core vesicles (Khvotchev et al.,2003; Mikhail 

Khvotchev.2003). This report demonstrated that Rab11b, but not Rab11a and Rab25 of the 

Rab11 protein family, are involved in secretion. Moreover, Rab11b was suggested to 

control sorting of secretory cargo in neuroendocrine cells. This result in rat tissue culture 

also provides an insight into the molecular mechanism for Suf/Spastizin function, which is 

consistent with our results in the zebrafish oocyte. On repeating their experiments in 

unpolarized human fibroblasts (e.g. HeLa cells) showed different effects with Rab11b 

(Khvotchev et al.,2003). This might explain why the Spastizin homolog was not implicated 

in regulated secretion before our study, since it was mostly analyzed in unpolarized human 

fibroblasts (Sagona et al.,2010; Hirst et al.,2011; Hirst et al.,2013a). It remains to be 

determined to which degree our results from the zebrafish oocyte is comparable to 

mammalian tissue culture experiments, though we have shown that the oocyte behaves like 

polarized and neuroendocrine cells for active secretion. 

4.2 Souffle localizes to secretory granule and endosomal compartment. 

 Our current study discovered that suf localizes to endosomal compartments and 

secretory granules. Recent studies in other systems showed multiple localization places in 

different cellular organelle, which includes endosomal compartment consistent with our 
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studies. Immuno-staining and electron microscopy studies showed that suf localizes to 

neuronal tissues but not in astrocytes, spinalcord, motor cortex, cerebellum and also 

expressed ubiquitously in embryonic tissue. Spastizin localizes to both cytoplasmic and 

nucleus in cellular level. Further studies at a subcellular level showed that spastizin 

localizes to microtubules, trafficking vesicles, ER, mitochondrial membrane. Interestingly, 

they did not observe any co-localization with early endosomal marker EEA1, lysosomal 

marker LAMP2 and Golgi (Murmu et al.,2011), contrast to the strong vesicular localization 

shown in previous study (Hanein et al.,2008). Although the localization of spastizin in 

many organelles is evident including the present study, they all have few common 

localization signals in lysosome and vesicular structures. In addition, studies in patient 

fibroblast showed accumulation of enlarged lysosome but their degradative function was 

not impaired (Renvoise et al.,2014). These multiple results suggest that suf play important 

role in endolysosomal system consistent with their defect in lysosome. 

 Another study in cultured cells showed the role of suf in cytokinesis by their 

localization in the midbody as well as in centrosome (Sagona et al.,2010; Sagona et 

al.,2011). However, other studies did not find in any other cells except that our study 

showed defect in maternal cleavage after fertilization. Furthermore, they also showed that 

suf interacts with KIF13a to reach the midbody, where KIF13a has been earlier known to 

play role in secretion of Mannose 6-phophate receptor to plasma membrane 

(Nakagawa.2000a; Nakagawa.2000b)(Nakagawa et al., 2000) indicating their possible role 

in secretion. Although the current study has genetic evidence for the role of suf in secretory 

granule maturation using electron microscopy and defect in lysosomal biogenesis, but the 

connection remains to be explored. 

4.3 Suf regulates secretory granule maturation. 

Our functional and confocal imaging studies show that suf is necessary for secretory 

granule maturation. Furthermore, electron microscopy study showed that sorting and 

fission is necessary for the dense-core vesicle (DCV) formation during maturation. The 

data from human fibroblasts showed that Suf/Spastizin interacts with the novel AP5 

complex and depletion causes defect in formation of multi vesicular-bodies (MVB) and 

generates empty MVBs (Hirst et al.,2011; Hirst et al.,2013a). Consistently, the mouse 

knock out demonstrates genetically that Spastizin is critical in vivo during formation of 

lysosomes (Khundadze et al.,2013). In zebrafish, we also detected fragmented lysosomes in 

Suf/Spastizin mutant oocytes in addition to the defect in secretion. Moreover, mutations in 
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AP5 and SPASTIZIN cause HSP in humans confirming genetically that both proteins are 

involved in the same process. However, Suf/Spastizin also binds to Kif13a, which was 

implicated by tissue culture overexpression experiments to regulate secretion (Nakagawa et 

al., 2000). Since all these studies were carried out in different organisms and different 

tissues, it is difficult to extract the precise function of Suf/Spastizin. 

A major question arising from our work is that how the various observed 

phenotypes are could be reconciled. Two alternative scenarios integrate all results: 

Suf/Spastizin primarily acts in MVB/lysosomes and the maturation defect of secretory 

vesicles is secondary e.g. through retrograde transport to the Trans-Golgi-Network 

(reviewed in Bonifacino and Rojas.2006). Alternatively, Suf/Spastizin primarily acts in 

immature secretory granules and the lysosomal defect is secondary e.g. through sorting of 

the mannose-6-phosphate receptors transporting hydrolytic enzymes in clathrin coated 

vesicle to the lysosomes. (Fig.56) (Morvan and Tooze.2008). Currently, we favor the 

second model, since defects in retrograde transport were never reported to affect the 

formation of the dense core in secretory granules as in the suf mutant. This model would 

also predict that cargo sorted away in immature secretory granules is necessary for 

homotypic lysosome fusion as described in other cells (Pillay et al.,2002). Failure in 

forming dense core region confirms the role of suf in secretory granule maturation. Two 

main models have been proposed to explain how the appropriate cargos are sorted into 

newly generated DCVs: sorting by entry and sorting by retention. The sorting by entry 

model assumes the existence of sorting signals and receptors that would actively sort cargo 

into forming DCVs (Arvan & Castle, 1998; Borgonovo et al, 2006; Kim et al, 2006; Tooze 

et al, 2001). Such short signal motifs have been identified in DCV cargos such as pro-

vasopressin, pro-oxytocin, pro-opiomelanocortin, CgA, and CgB, which are sufficient for 

DCV targeting (Cool et al, 1995; Glombik & Gerdes, 2000; Huttner et al, 1991; Tooze, 

1998). In contrast, the sorting by retention model suggests that DCV cargo could passively 

enter maturing DCVs and then be retained during DCV maturation either by active 

retention in lipid domains or by its aggregation within iDCVs under low pH and high Ca
2+

  

concentration (Glombik & Gerdes, 2000; Hosaka & Watanabe, 2010 (Hannemann et 

al.,2012)). Furthermore, it has been shown in the case of secretogranin III (SgIII) that there 

are direct interactions between aggregated DCV cargos and cholesterol-rich membrane 

domains of DCVs (Hosaka & Watanabe, 2010). Interestingly, study in C.elegans also 

showed Rab2 involvement in retaining DCV cargo proneuropeptide NLP-21 in the 

aggregation, depletion of Rab2 leads to mis-targeting of those cargos to lysosome 



                                                                                                                               Discussion 

144 

 

(Hannemann et al.,2012). Also the current study found the defect in CCV fission as shown 

in the picture the fission is a necessary from immature secretory granule to remove the non-

aggregated cargos which are destined to somewhere else than the plasma membrane. 

Previous studies have shown that removal of VAMP4 and Syntaxin 6 is necessary for 

dense core vesicle maturation and mutation in AP1 binding motif of VAMP4 leads 

accumulation of VAMP4 in mature granules (Eaton et al.,2000). This clathrin-dependent 

membrane remodeling process functions as a proof reading mechanism to ensure proper 

DCV content and correct membrane composition of mDCVs (Morvan and Tooze.2008). 

This is necessary, since it has been shown that only mDCVs are able to undergo efficient, 

stimulus-dependent exocytosis (Eaton et al.,2000). The final steps of DCV maturation, 

prior to fusion, are condensation of cargo molecules by further acidification and removal of 

water (Kim et al.,2006). Furthermore, study has shown that retrograde transport also 

essential to make functional DCV (Hannemann.2012; Hannemann et al.,2012). Another 

study in Tetrahymena showed that the lysosomal receptor is necessary for sorting the 

lysosomal cargo during the secretory granule maturation (Briguglio et al.,2013). Although 

interaction with AP5 with current study showing the failure in dense core formation 

confirms that suf is essential in sorting and maturation, but it is necessary to find the cargo 

and receptor which are sorted by suf in case if they play role in sorting lysosomal cargo. 

These open questions makes it clear that additional studies are necessary to determine the 

precise role of Suf/Spastizin and whether a defect in lysosome formation or secretion or 

even another process leads to neuronal degeneration in HSP patients.  
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Figure 56. Key steps in secretory granule biogenesis. 

Step 1 depicts the formation of ISGs from the TGN, Step 2 the homotypic fusion event 

between ISGs, and Step 3 the clathrin-mediated membrane remodeling event which leads 

to formation of matured secretory granule(Morvan and Tooze.2008). 

4.4 Suf is essential for early mitotic cytokinesis  

Notably, our data implicates Spastizin/Suf for the first time in the maturation of 

secretory granules. Comprehensive studies already have described different roles for 

Spastizin/Suf, e.g. as FYVE-CENT in cytokinesis (Sagona et al.,2010; Sagona et al.,2011) 

and as Spastizin binding to AP5 in the formation of multi vesicular-bodies (Hirst et 

al.,2011; Hirst et al.,2013a). We could genetically confirm a previously described role for 

Spastizin/Suf in cytokinesis during the maternally controlled cell divisions, but the question 

remains how these different functions can be reconciled. However, we don‟t find any 

cytokinesis defect in the adult homozygous suf mutant fish and the suf mutant oocytes also 

succeed in meiotic division indicating the need of suf in cytokinesis only during early 

maternal period of development in zebrafish or the function is taken over by other proteins 

in the adult although the mutant allele is present in all the tissues during development. 

Furthermore, morpholino mediated knockdown of suf also showed no defect in cytokinesis 
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consistent with the previous results that this specific mutation affects early mitotic division. 

Remarkably, a study in Drosophila showed that dynamin is necessary for budding of 

vesicle from rab11 positive compartment during cllularizaion, a process similar to maternal 

cleavage and genetic mutant for dynamin called shibire shows same cellular phenotype in 

electron microscopy like soufflé mutant accumulating clathrin buds (Pelissier et al.,2003). 

Excitingly, secretory granules are also required during cytokinesis in tissue culture cells 

(Bukoreshtliev et al.,2012) and plants for adding new membrane during cell plate 

formation (Reichardt et al.,2007). The possible role of secretory vesicles during cytokinesis 

would be to deliver new membrane to the daughter cell and recruiting the necessary 

components to complete the abscission. Although the recycling endosome has been 

suggested to play this transport based on presence of Rab11 and Rab35 on the vesicle but 

would be necessary to identify their origin to differentiate from secretory vesicle 

involvement (Kouranti et al.,2006; Polevoy et al.,2009; Bembenek et al.,2010; Neto et 

al.,2013; Sechi et al.,2014). Current study also showed defect in Dynamin which also 

shown to be necessary for cytokinesis (Konopka et al.,2006; Gonzalez-Jamett et al.,2013). 

The current study finds that suf is necessary for maternal cleavage consistent with other 

studies in other organisms. Therefore, it would be interesting to investigate the zygotic role 

of Spastizin/Suf on secretory vesicles during cytokinesis in adult.  

4.5 Souffle is necessary for lysosomal biogenesis and function. 

 The current study discovered that suf mutant accumulates fragmented lysosomes 

and failed to degrade the yolk protein, which creates the opaqueness. The fragmented 

lysosome is a classical phenotype of class C VPS mutants from yeast screen indicating a 

connection to HOPS complex role in lysosomal fusion. Is suf mutant failing to recruit 

HOPS on lysosome? Or are they not delivered to lysosomes? Or something else is missing 

to complete the fusion. Also other studies in ZFYVE26 mutant mice showed a similar 

defect in the lysosome and also failed to degrade lipid accumulation which are LAMP1 

positive confirming that the suf is necessary for lysosomal function in two different genetic 

mutants (Khundadze et al.,2013). In addition, they also notice a reduction in neuronal cells 

in cerebellum region in adult and defect in hind leg balance relating their symptom to 

Spastizin mutant HSP patients. In human as well as in this mouse model the symptom only 

appears at very late age while some studies in fibroblast showed that the spg15 mutant has 

a defect in lysosomal function contrast to our study as well as the human symptom 

(Renvoise et al.,2014). Further studies using cell culture suggested suf role also in 
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autophagy supporting previous study of Beclin1 and spastizin interaction during 

autophagosome maturation in cell culture. Moreover, they also showed that Beclin1-

UVRAG-Rubicon complex forms in the absence of spastizin and the mutant spastizin loose 

the connection to this complex resulting in accumulation immature autophagosome (Chiara 

Vantaggiato.2013; Vantaggiato et al.,2013). It would be interesting to know if they fail to 

fuse with lysosome, which will connect the defect in lysosome and accumulation of 

autophagosome; a possible consequence of fusion defect than spastizin direct role in 

autophaosome formation.  

 HOPS complex plays crucial role in all lysosomal fusion with other compartments. 

Previously VPS41, a HOPS subunit showed similar defect of fragmented lysosome as well 

as defect in sorting multiple lysosomal enzymes (DEREK C. RADISKY.1997). 

Meanwhile, AP3 an adaptor protein has been shown to transport lysosomal cargos from 

Golgi to vacuole and requires VPS41 to fuse with vacuole. This pathway transports t-

SNARE VAMP3 to lysosome, which is necessary for the fusion. So loss of this transport 

will affect the homotypic lysosomal fusion and the cargo vesicle fusion with lysosome 

causing fragmented lysosome and defect in lysosomal transport (Cowles.1997). Another 

study also showed that AP3 transports VAMP7, which is necessary for lysosomal fusion 

(Kent et al.,2012). AP3 and VPS41 exhibits similar lysosomal phenotype and in addition 

fails to form a dense core vesicle, leads us to think that suf might play together in this 

pathway or similar pathway. 

 

 

 

Figure 57. Notochord vacuoles in zebrafish. 
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(A) 24 h post fertilization (hpf) zebrafish embryo expressing membrane GFP in the 

notochord. Anterior is left, posterior is right, dorsal is top, and ventral is down. (B) Higher 

magnification of notochord. (C) Cartoon shows notochord structure of inner vacuolated 

cells surrounded by an epithelial-like sheath of cells (Kathryn Ellis.2013). 

 Surprisingly, suf morphant embryos show defect in the lysosome during notochord 

development. It is known that the proper lysosomal organization within notochord is 

essential for spinalcord development (Fig. 57) and defect in lysosome arrangements or 

morphology creates twisted tail phenotype in zebrafish (Ellis et al.,2013). The picture 

shows proper large lysosome arrangement in the notocord of zebrafish in green (Fig. 57 

Panel B). Suf knockdown in embryo shows same tail twisted phenotype and misshapen 

lysosome in the notochord further confirming role of suf in lysosomal biogenesis. 

Furthermore, LIMP2 mutant zebrafish shows fragmented lysosome in notochord and the 

whole body bends upwards due to failure in spinal cord development similar to suf 

knockdown embryo. LIMP2 is a lysosomal membrane protein and involves in transport of 

beta glucocerebrosidase enzymes from secretory pathway to lysosome independent of 

Mannose 6-phophate receptor supporting the role of suf in transporting cargos from 

secretory pathway (Abigail Diaz-Tellez et al.,2012). Also lysosomal receptor VPS10/ 

Sortilin transport is necessary for DCV formation in Tetrahymena (Briguglio et al.,2013). 

Interestingly, mutants of VPS41, AP3 and LIMP2 show cellular defect in lysosome and 

DCV formation similar to suf mutant indicating that suf involves in lysosomal cargo 

transport and the lysosomal defect might be consequence of sorting defect in secretory 

pathway. As suf mutant show fragmented lysosomes, it is likely that AP3, VPS41 and Suf 

involves in transport of similar cargo to the lysosome. 

4.6 Suf transport cathepsin proteases enzyme to lysosome. 

 Suf mutants fail to degrade the yolk although the yolk reaches the fragmented 

lysosome suggesting that the lysosome is missing something or the fusion is necessary to 

activate the function. Acidification is another essential event in lysosome for the enzymatic 

activity, although suf mutants show positive for lysotracker eliminating acidification issues 

but still the lysosotracker sometimes does not show minor changes below pH 5.5. The main 

enzymes involved in yolk degradations are cathepsin D, B, F and L (Lubzens et al.,2010) 

and vacuolar ATPase function is essential for activation of these enzymes in the lysosome 

by reducing the pH. Further studies on inhibition of vATPase showed defect in yolk 

degradation and oocyte maturation (Selman.2001). Cathepsin L has been shown to play 
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role in yolk processing in C.elegans (Murray.2004). Also these cathepsin enzymes are 

transported differently and function in different time during oogenesis (Lubzens et 

al.,2010). Current study shows that cathepsin B, F and L is not delivered to the lysosome 

while cathepsin D is in lysosome in suf mutant. These enzymes are transported from 

immature secretory granule using multiple receptors in different way depending on the cell 

or animal model. Cathepsin D has been shown to transport mostly by M6PR and sortilin 

consistent with our results where both receptors reach lysosome and cathepsin D also in the 

lyososme (Judith Klumperman.1998). But Cathepsin B, F and L accumulates in secretory 

granule and some of them are secreted out indicated by the strong staining on outside 

membrane and follicle cells. Interestingly M6PR knockout mice shows normal distribution 

of these enzymes in the lysosome suggesting alternative pathway by sortilin.  

The oligosaccharide chains of the lysosomal hydrolases acquire terminal mannose-

6-phosphate (M6P) residues as they pass through the Golgi complex. These M6P tags bind 

to MPRs, which contain cytosolic sorting motifs for packaging into transport vesicles. 

Specifically, M6PRs contain „acidic cluster dileucine (AC-LL) signals‟ that are recognized 

by GGA (Golgi-localizing, γ-adaptin ear domain homology, ARF-binding protein) adaptor 

proteins. Upon binding the AC-LL signal, GGA adapter proteins recruit clathrin from the 

cytoplasm and a clathrin coat is assembled at the TGN. After coat formation, the vesicles 

pinch off from the TGN and fuse with endosomal intermediates where the low internal pH 

(pH 5.5) triggers dissociation of lysosomal enzymes from M6PRs.(Kienzle and von 

Blume.2014). Inhibition of vATPase causes defect in lysosomal cargo segregation with 

secretory granule cargo creating mixed organelle and also inhibited regulated secretion 

(Sobota JA.2009). Although acidification is required in both endocytosis and the secretory 

pathway, they are regulated differently to differentiate the level of acidification by 

regulating number of vATPase on the membrane (Dettmer et al.,2006). Although, a block 

in cathepsin and vATPase subunit„d‟ transport is seen in suf mutants, M6PR and sortilin are 

transported properly to the lysosome suggesting that suf might function in a different 

pathway. Further, it will be necessary to know if LIMP2 is sorted properly in suf mutant 

since the notochord phenotype looks similar to limp2 mutant and limp2 is another receptor 

mediating lysosomal transport although only involved in beta- Glucocerebrosidase 

transport independent of M6PR (Reczek et al.,2007; Zeigler et al.,2014). But, a recent 

study showed that LIMP2 is transported with M6PR pathway (Zhao et al.,2014). Also the 

function of GGA1 and AP1 is intact in suf mutant since cathepsin D reaches lysosome and 
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initial processing of vitellogenin yolk precursor into yolk protein happens in suf mutant, 

further supporting that M6PR and Sortilin mediated pathway is intact in suf mutant. 

In yeast, apart from sortilin mediated transport, lysosomal cargos are transported in 

ALP pathway, which is mediated by VPS41 and AP3. Furthermore, HSP in human is 

caused by mutation in VPS41 or AP3 or Suf or AP5 rather than mutation in M6PR or 

VPS10, indicating that these proteins are required in specific conditions or for sorting 

specific cargos compared to M6PR and sortilin. In secretory granules they fail to form 

dense cores and in the lysosome some of the cargos are missing like cathepsin and 

vATPase subunit„d‟. Furthermore, the secretory granule marker transported to other 

compartments in suf mutant including the lysosome suggesting that acidification is also 

affected in this line. Since DCV formation requires acidification to aggregate the cargos, 

which leaves the lysosomal cargo available for sorting to lysosome. If the dense core did 

not form then the lysosomal cargo will mix with secretory granule cargo and fail to 

transport to lysosome creating mixed organelle as reported earlier. Maintaining acidic pH is 

critical for the proper association of granulogenic proteins with lipid rafts and formation of 

DCVs. Taupenot et al. (Taupenot et al.,2005)reported that treatment of PC12 cells with the 

V-ATPase blocker, Bafilomycin A1, resulted in the significant reduction in sorting of 

chromogranin A to DCVs. Furthermore, electron microscopic analyses of these 

Bafilomycin A1-treated PC12 cells, as well as AtT-20 cells, revealed reduced numbers of 

secretory granules with dense cores (Tanaka et al.,1997), suggesting that the acidification 

mediated by V-ATPase is crucial for the formation of DCVs. Initial processing of 

prohormones, for example, proinsulin, POMC, and secretogranin II, begins in the ISGs. 

Continued acidification in the ISGs is necessary to activate the PCs and processing of the 

prohormones and proneuropeptides. Indeed, when the pH gradient was abolished by a V-

ATPase blocker in AtT-20 cells, processing of POMC was severely inhibited, and it was 

secreted through the constitutive secretory pathway. If the condensation fails the regulated 

cargo will take constitutive path and get secreted out. These studies support that the defect 

in lysosome is a consequence of sorting and budding of cargos from immature secretory 

granule by lysosomal transport pathway independent of M6PR and Sortilin.  

The yolk degradation in oocytes has been studied extensively, still the activation of 

these cathepsin proteases are unclear. Yolk degradation is necessary but only defect in yolk 

degradation does not affect the development as noticed in other mutant dp14nb (Dosch et 

al.,2004) where the egg cytoplasm is opaque but they further develop, suggesting that other 
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opaque egg mutants having multiple defects or the yolk degradation is a consequence 

consistent with suf function in secretory granule maturation. Cathepsin D involves in 

primary yolk cleavage and other cathepsin B, F and L involves in secondary processing 

consistent with the presence of different yolk protein in suf mutant which are processed 

from vitellogenin by cathepsin D which is inhibited when function of vATPase is blocked 

(Raldua.2006). Previous studies by Carnevali et al. (1999a) (carnevali.1999) on the sea 

bream (Sparus aurata) have found high levels of cathepsin D and B activities in isolated 

early vitellogenic oocytes, whereas cathepsin L activity is higher than that of cathepsin B 

and D in follicles at mid-vitellogenesis stage and the authors suggested that cathepsin L is 

necessary during oocyte maturation. In benthophil teleosts, however, the enzymatic 

machinery involved in yolk protein processing during oocyte maturation appears to be 

different. In the killifish, the enzyme activity of cathepsin L shows a dramatic decrease 

during oocyte maturation both in vivo and in vitro (LaFleur et al., 2005). By contrast, the 

activity of cathepsin B increases transiently during maturation, coincident with the time of 

maximum degradation of the 122 kDa LvH1 (LaFleur et al.,2005). These observations 

suggest that cathepsin B, rather than cathepsin L, is the major protease involved in LvH1 

degradation in killifish oocytes. Interestingly, a similar pattern of cathepsin B and L 

enzyme activities has been reported during late maturation of zebrafish oocytes in vivo 

(Carnevali et al.,2006). During this process, Vgs are cleaved into smaller molecular weight 

polypeptides, known as the yolk proteins, lipoproteins (lipovitellins (Lvs)), highly 

phosphorylated proteins (phosvitin and phosvetes) and β′component that will be stored in 

the oocyte throughout the growth period. During oocyte maturation in marine teleosts, a 

second proteolytic event on yolk proteins is activated by the MIS before ovulation, which 

signifies the source of FAAs for oocyte hydration. During maturation the ordered 

crystalline structures within the globules generally disassemble, which confers on such 

oocytes their characteristic transparency in zebrafish (Fig. 59). The cartoon picture shows 

the different yolk protein generated by processing vitellogenin at different time points and 

when they are degraded during oocyte maturation (Fig.58). The time of acidification and 

yolk processing coincides in xenopus oocyte (Maxfield.1994). Since, cathepsin D is 

transported to the lysosome in suf mutants, it will be interesting to know, how cathepsin D 

is differentiated from other cathepsins by suf for sorting. 
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Figure 58. Yolk processing during oogenesis. 

Schematic drawing of the flowchart describing molecular alterations of Vg1, Vg2, and Vg-

derived YPs during oocyte growth (vitellogenesis) and maturation in pelagophil (A) and 

benthophil (B) teleosts. Lipovitellin heavy chains (LvH), lipovitellin light chains (LvL), 

phosvitins (Pv), and β′ components (β′-C) derived from each Vg are indicated. Dotted lines 

indicate hypothetical pathways (LaFleur et al.,2005).  

 

 

 



                                                                                                                               Discussion 

153 

 

Figure 59. Morphological and ultra-structural changes of yolk inclusions during 

oocyte maturation in Danio rerio. 

(A–B) Picture of immature (A) and mature (B) oocytes (Bars, 200 μm). (A’–B’) Low 

magnification electron micrographs of yolk globules (yg) in immature (A′) and mature (B′) 

oocytes. The crystalline nature of the yolk bodies is not apparent at this magnification 

(Bars, 5 μm). (A’’–B’’) Higher magnification micrographs of crystalline (A′′) or 

homogeneous (B′′) yolk in immature and mature oocytes, respectively (Bars, 0.2 μm). 

 

4.7 Acidification is required for DCV formation and Yolk degradation 

The role of acidification in endocytosis and the secretory pathway is essential and 

regulated differently to maintain their pH. The pH level plays crucial role in many protein 

interactions, ligand-cargo separation in endosome and formation of dense core aggregation 

in secretory granule maturation. Vacuolar ATPases is a multi-subunit proton pump 

acidifying various intra cellular organelles. Depletion of an individual sub unit shows 

different effect on different cellular functions. Inhibiting V-ATPase by Bafilomycin A1 

leads sorting of POMC and secretogranin into constitutive secretory pathway in pituitary 

cells of xenopus, also reduces the number of secretory granule with dense core region 

(Schoonderwoert.2000). This reports suggests that the protein aggregation require low pH 

in immature granule and further low in mature granule to keep them together, if the pH is 

high then they don‟t form dense core similar to what is observed in suf mutant oocytes. The 

aggregation of proteins can happen by self-interaction or with other cargos and lipid raft. 

 A variety of proteins destined to be sorted into secretory storage granules form large 

complexes and aggregates within the lumen of the TGN; the low pH (∼6.4) of this 

compartment favors the formation of these clusters, which segregates them from other 

soluble proteins in the TGN. So-called immature secretory granules (ISG) bud from the 

TGN and transform into mature secretory granules (MSG) that contain a proteinaceous 

dense core. Mis-sorted non-granule proteins are progressively withdrawn by clathrin-

coated vesicles, eventually leaving the correct cargo protein in the MSGs. The ability of 

regulated secretory cargo, such as granins, to form aggregates is often an intrinsic feature 

of their protein structures. For example, they contain numerous acidic amino acids that 

drive clustering in the presence of millimolar Ca
2+

 and the slightly acidic pH of the TGN. 

These granin complexes interact directly or indirectly with cholesterol- and sphingolipid-

rich luminal membrane domains in the TGN. This interaction provides a driving force to 
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induce budding from the TGN membranes to form ISGs. (Kienzle and von Blume.2014). 

Also some cargos bind to its receptor and bind to lipids for aggregation, CPE act as a 

receptor for POMC and pro-BDNF(Kienzle and von Blume.2014). Furthermore, 

continuous acidification of DCVs activate the enzymes (PCs, CPE), which are required for 

processing of proneuropeptides. The pH decrease from the TGN (pH ~6.5-6.2) via iDCVs 

(pH ~6.3-5.7) to mDCVs (pH ~5.5-5.0) is achieved by increases in the density of V-

ATPase pumps and by decreases in H
+
 permeability through the membranes (Wu et al, 

2001a) (Hutton.1982). It has been shown that an acidic pH is not only crucial to activate 

processing enzymes, but also required for the formation of DCVs (Fig.60) (Tanaka et 

al.,1997; Wu et al.,2001; Taupenot et al.,2005). 

Figure 60. Aggregation of protein at low pH in DCV. 

After the secretory granule is established as an independent compartment, mature 

hormones and granin fragments move from the periphery to the inside of the secretory 

granules where they are further concentrated to form a dense core aggregate. Within the 

mature aggregate, neuropeptides/hormones are ready to be released upon a membrane 

fusion event (Watanabe.2010). 

 

 

Taupenot et al., (2005) reported that treatment of PC12 cells with the V-ATPase 

blocker, Bafilomycin A1, resulted in the significant reduction in sorting of chromogranin A 

to DCVs. Furthermore, electron microscopy analysis of these Bafilomycin A1-treated 

PC12 cells, as well as AtT-20 cells, revealed reduced numbers of secretory granules with 

dense cores consistent with our electron microscopy studies, suggesting that the 

acidification mediated by V-ATPase is crucial for the formation of DCVs. So, we propose 
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based on our study that suf regulates sorting in ISG by removing lysosomal cargos 

resulting in DCV formation. 

Yolk proteins are stored within yolk globules under mildly acidic conditions 

maintained by a V-ATPase (Sathish mallya.1992). In the embryo of most animals, a second 

V-ATPase mediated acidification of yolk inclusions triggers further digestion of the stored 

proteins. These are initially neutral, but they become acidic during development, causing 

maturation and/or activation of the pro-enzymes, pro-cathepsin L or pro-cathepsin B, and 

yolk degradation. The activation of oocyte maturation in vitro by the MIS potentiates the 

activation of pro-cathepsin B into active enzyme and accelerates the hydrolysis of the 122 

kDa LvH1(Fabra et al.,2006). Bafilomycin A1-induced increase of internal pH during 

oocyte maturation in vitro inhibits cathepsin B activation and enzyme activity, preventing 

yolk proteolysis, thus confirming that this protease is most likely the enzyme regulated by 

V-ATPase responsible for LvH1 degradation in killifish. However, it is unknown whether 

cathepsin B is located in the ooplasm or within yolk structures, as cathepsin D, where it 

might be activated through maturation of the pro-enzyme by the action of another cysteine 

proteinase or simply by changes in pH (auto processing). Cathepsins are normally delivered 

to lysosomes as proenzymes and since Bafilomycin A1 has been found to suppress 

indirectly the fusion of lysosomes into target vacuoles (Pillay et al.,2002), an inhibition of 

the delivery of cathepsin B to yolk globules during MIS-stimulated oocyte maturation is 

another potential mechanism (Babin.2007b; Babin.2007a). Hence, the details of cathepsin 

B and L regulation in fish oocytes, including the mechanism by which the V-ATPase 

becomes activated by hormonal stimulation, yet to be explained. 

4.8 Souffle regulate VPS41 mediated LAMP carrier pathway 

 The commonly used lysosomal transport by M6PR and Sortilin are normal in suf 

mutant, but the lysosome misses cathepsin for yolk degradation and SNARE, which is 

necessary for their fusion. VPS41 and AP3 mediated LAMP carrier pathway also transport 

cargos to the lysosome directly and a defect in this pathway makes fragmented lysosomes 

and dense cores missing in the secretory granules (Pols et al.,2013) (Takeda et al.,2008) 

and defect in sorting of many lysosomal hydrolases (Radisky.1997). The AP3 and VPS41 

mutants show similar phenotype like suf mutants. AP3 is known to function with VPS41 as 

an adaptor for lysosomal transport. Apart from its role VPS41 in lysosomal fusion event 

with HOPS complex it is also necessary for sorting cargo with AP3 which is required for 

DCV formation. Biochemical study showed that VPS41 binds to δ-adaptin sub unit of AP3 
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in transporting lysosomal cargo (Cowles.1997). Furthermore, when they used mutants for 

Vam3, the AP3 positive cargo accumulate suggesting that they need this SNARE on AP3 

vesicle for the fusion with lysosome. But, when they used VPS41 and AP3 mutants they 

fail to form these intermediate vesicles indicating they are involved in sorting and budding 

of these vesicles (Fig. 61) (Peter rehling.1999).  

Figure 61. VPS41 and AP3 mediated transport. 

The AP-3-dependent ALP pathway bypasses the endosome and is independent of most 

CPY pathway components. Both of the known protein cargoes of pathway-ALP and Vam3-

contain di-leucine sorting signals, which direct their sorting into AP-3-coated vesicles that 

form at the trans-Golgi. Formation of these AP-3-coated vesicles, but not AP-3 association 

with this compartment, requires the function of Vps41. Vam3 is required at the vacuole for 

fusion of ALP pathway intermediates. Inhibition of the fusion reaction in vam3 
tsf

 cells 

leads to accumulation of AP-3-coated ALP pathway intermediates (Peter rehling.1999). 

 

 

 

 Suf mutants showing less LAMP carrier intermediates suggest that suf might be 

necessary to make LAMP carriers. Remarkably, the suf mutant has more AP3 on secretory 

granule and less intermediate vesicle while in wildtype there are more intermediate vesicle 
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and very less in secretory granule indicating that the AP3 positive vesicle did not leave 

from secretory granule in suf mutant. Surprisingly, the presence of VPS41 positive vesicles 

are strongly reduced in suf mutant suggesting that the accumulation of AP3 on secretory 

granule is because of absence of VPS41, since VPS41 is necessary to make AP3 vesicle 

from secretory granule. Absence of VPS41 on secretory granule reduces AP3 intermediate 

vesicle and accumulate AP3 on secretory granule as shown by previous studies (Peter 

rehling.1999). VPS41 has been recently shown to play as coat protein for AP3 vesicles 

apart from their sorting and fusion role. The study showed that VPS41 with its clathrin 

heavy chain domain makes clathrin like coat for AP3 vesicles to facilitate formation of 

large dense core vesicle (LDCV) for regulated secretory pathway (Asensio et al.,2013). In 

neuro-endocrine PC12 cells, loss of AP-3 disrupts sorting to the regulated secretory 

pathway, dis regulates the release of soluble cargo, and indeed impairs the formation of 

LDCVs (Asensio et al.,2010) Reduced in number and larger than normal, LDCVs still form 

in the absence of AP-3, but show different composition (such as the calcium sensor 

synaptotagmin) required for regulated exocytosis (Asensio et al., 2010). AP-3 thus directs 

formation of the regulated secretory pathway. So, VPS41 is necessary to form AP3 vesicle, 

essential to form DCV in regulated secretory pathway with AP3 and function in lysosomal 

fusion as HOPS complex. Thus, the role of VPS41 in different places almost mimics the 

defect in suf mutant oocyte, fragmented lysosome suggesting defect in fusion, defect in 

DCV formation in regulated secretory pathway and reduced AP3 positive LAMP carrier 

showing that suf is necessary in LAMP carrier pathway. 

 The bioinformatics prediction shows that suf has domain for clathrin heavy chain 

(CHC) and beta coatomer domain of COPI which forms the clathrin like coat in VPS41. 

Interestingly, another study also predicted that suf might act as a coat protein (Hirst et 

al.,2013a). Although CHC can form coat like clathrin in VPS41, further structural study has 

to be done to confirm the coat formation in suf and its exact mechanism. Does suf and 

VPS41 act together in forming coat or function independently, remains elusive. 

Nevertheless, the failure of VPS41 recruitment on secretory granule suggests that suf is 

necessary to recruit VPS41 on secretory granule membrane. Because, in the suf mutant 

VPS41 localization is strongly reduced on secretory granule, which affects the formation of 

AP3 vesicle. Still LAMP1, VPS41 and AP3 reaches lysosome in suf mutant as it is shown 

before, it only delay or reduces but do not abolish the LAMP transport suggesting multiple 

route for LAMP1 cargos. 
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Although few studies suggests its role of AP5 in lysosomal sorting, the origin of the 

cargo is not known, as AP5 localization is not clear. Since it interacts with suf and if suf 

plays with VPS41 and AP3 to sort cargo, where does AP5 interact with suf? Does suf uses 

AP5 as an adaptor while VPS41 uses AP3 as an adaptor, alternatively suf uses AP5 as an 

adaptor for cargo sorting and a defect in this pathway hinders the sorting of AP3 vesicle 

with VPS41. This reasoning is because both have a similar role and might be involved in 

sorting related cargos. Interestingly, VPS41, Suf, AP3 and AP5 mutation causes HSP in 

human. The vesicle formation starts with receptor binding to cargo and adaptor complex, 

which then recruit the coat to complete the budding with fission machinery (Fig. 62). 

Biochemical analysis on AP5 and suf would unearth their interactions with the adaptor, 

cargo (Cathepsins) and receptor for sorting. 

 

 

Figure 62. Sorting and budding of new vesicle. 

The sorting of a cargo onto a vesicle requires receptor binding to cargo and an adaptor 

followed by the coat protein which might be clathrin or some other coat to complete the 

fission (http://animalcellbiology.wordpress.com). 

Recently, a study used RNAi screen to identify the role for hetero tetrameric 

adaptor protein AP-3 in regulated secretion and in particular, LDCV formation. They found 

that depletion of AP3 causes defect in regulated secretory pathway. Indeed, mocha mice 

lacking AP-3 have a severe neurological and behavioral phenotype, but this has been 

attributed to a role for AP-3 in the endolysosomal rather than the biosynthetic pathway. 
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But, they found that adrenal chromaffin cells from mocha animals show increased 

constitutive exocytosis of both soluble cargo and LDCV membrane proteins, reducing the 

response to stimulation (Sirkis et al.,2013). 

4.9 Mitochondrial defect in suf mutant 

The current study finds that the suf mutant accumulates more mitochondria and 

abnormal distribution. Suf has been shown to localize on mitochondrial membrane 

although the function is still not clear. Mitochondrial fission and lipid molecules transport 

is dependent on the physical contact with ER using complex called ERMES, so the defect 

in this connection also might cause defect in mitochondria (Rowland and Voeltz.2012). 

Recent study also showed that the mitochondria connected physically to lysosome for lipid 

transport via vCLAMP complex and both ER and Lysosome connection to mitochondria is 

co-regulated (Fig. 63 a), since removal of one connection is compensated by increasing the 

connection area with another. Removal of both connections is lethal to the cell indicating 

their necessity for cell survival (Elbaz-Alon et al.,2014; Honscher et al.,2014). Hence, the 

defect in the mitochondria in suf mutant might be because of the non-functional lysosome.  

Mitochondrion is very sensitive organelle, which also indicates the state of the 

health of the cell. Any defect in mitochondria leads to multiple diseases including neuron 

degeneration in many different mutations (Rawson et al.,2014). Transport of mitochondria 

in neuron is also crucial and defect in transport would cause accumulation and results in 

neuron degeneration. Furthermore, mitochondrial biogenesis and their fission-fusion 

process have more similarity to vesicular membrane fission and fusion process. So, defect 

in the lysosome and ER biogenesis and their function will affect mitochondrial functions. 

The Mitochondrial defect also causes HSP in human (Schapira.2006; Sheng and Cai.2012; 

Archer.2013; Noreau et al.,2014).  

 

 

 

 

 

 

 

a b 
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Figure 63. Mitochondrial connections to lysosome and ER. 

Cartoon shows the connection of lysosome and ER with mitochondria wit involved known 

molecule. b. Electron micrograph of zebrafish oocyte showing dark yolk globule/lysosome 

connected to ER and ER connection to mitochondria. 

Mitochondrial defect in suf mutant might be direct based on its localization but suf 

function in mitochondria is not clearly known. Interestingly, one of the other opaque egg 

mutant ruehrei has mutation in TOMM70a, (mitochondrial outer membrane receptor). 

ruehrei egg shows defect in the lysosome and display fragmented lysosomes like the suf 

mutant indicating the connection between lysosome defect in suf mutant and mitochondria. 

In zebrafish oocyte, we also notice strong connection of ER with lysosome and 

mitochondria (Fig.63 b). Does TOMM70a have any role in lysosome-mitochondrial 

connection? In addition, why mutation in TOMM70a causes fragmented lysosome is 

unclear and study on ruehrei will help to understand the role of suf on lysosome and 

mitochondria. 

4.10 Suf mutation causes HSP in human 

 HSP is a heterogenetic group of motor neuron degenerative disease in human. It is a 

progressive neuron degenerative disease and shows multiple symptoms in brain, spasticity 

in lower limb and mental disorder. Until now, the possible hypothesis for causing this 

disease is the defect in long motor neuronal connection to lower neurons, which retract 

their connections at the later stages. The human patients do not show any developmental 

defect consistent with fish and mouse models (Khundadze et al.,2013; Kanagaraj et 

al.,2014). In humans, Suf/Spastizin encodes one of the more than 54 loci involved in the 

neurodegenerative disorder HSP. The mutated genes encode regulators of diverse cellular 

processes (Blackstone.2012) with many different genes, but most of the animal model and 

cell culture studies show a defect in the lysosome including the current study. However, the 

origin of the defect is not characterized since the function of those genes are unknown or 

even for known genes the connection to lysosome has not yet been made. Present study 

shows the genetic evidence for the defect in lysosome and secretory granule maturation for 
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the first time, which was never considered in HSP. Interestingly, defects in regulated 

secretion may explain some of the HSP symptoms. Cortical granules appear identical to 

large dense-core vesicles (LDCV)(Arvan and Castle.1998; Tooze et al.,2001; Meldolesi et 

al.,2004; Kim et al.,2006), which store neurotropic factors at the synapse(Poo.2001). 

Neurotropic factors are responsible for the dynamics and maintenance of synaptic 

connections (Minichiello.2009; Caroni et al.,2012). In contrast to neurotransmitter vesicles, 

DCV needs to be transported from the cell body to the synapse. Synaptic vesicles are used 

to make connections with other neurons but to maintain a strong connection stronger for a 

long time they need dense core vesicles. If there is a defect in dense core vesicle then they 

withdraw their connections, referred as „dying back‟ symptom. Dying back symptom was 

hypothesized as a main symptom in HSP while the cell body is still active; suggesting that 

DCV function might be necessary to keep the long motor neuron connection and defect in 

this will cause HSP symptoms (Caroni et al., 2012). The DCV formation requires proper 

removal of endolysosomal cargos using VPS41, AP3, AP5 and Suf, if these proteins are not 

functional in the cell, there will be a defect in the lysosome since the cargo will not be 

delivered (Hirst et al.,2013a; Khundadze et al.,2013; Renvoise et al.,2014). The current 

study proposes that the lysosomal defect in suf might be because of the defect in sorting in 

secretory pathway, which affects both lysosome and DCV formation. This model would 

resolve why in HSP preferentially the longest axons first degenerate from their synapses. In 

addition, a defect in long-term potentiation would explain, why HSP phenotypes become 

apparent in juveniles and adults, but not in embryos.  

Interestingly, these mutants also do not show any defect in any other cells or tissue 

except motor neuron. The current study also observed that suf adult fish do not show any 

defect but the oocytes from those mothers show a defect consistent with mouse knock out 

showing only defect in neuron after one year. Although, many studies in cell culture shows 

defect in lysosome, autophagy, ER and mitochondria but, why the human patient does not 

show any defect in the development is still unaddressed (Murmu et al.,2011; Renvoise et 

al.,2014). In zebrafish it has been shown that the spastizin and spatacsin required for motor 

neuron axonal outgrowth during development which might show the role of these proteins 

but does not explain the progressive degeneration symptom in human patients (Martin et 

al.,2012). Still why the oocyte shows specific symptom is unclear, except that they are very 

active and require fast endocytosis during oogenesis. If, the efficiency of trafficking is the 

main reason for showing a defect in motor neuron, zebrafish oocyte will explain the role of 

those genes with their high efficient endocytosis during oogenesis. Investigating the 
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molecular network regulated by Suf/Spastizin in zebrafish oocytes as well as transferring 

these results to the nervous system as described for Atlastin (SPG3A) in zebrafish (Fassier 

et al.,2010) and Drosophila (Orso et al.,2009) could provide novel insights into the 

biochemical etiology of HSP and bring us closer to a therapeutic treatment for patients.  

4.11 Proposed model for Suf functions in secretory granule and lysosome 

 Suf mutants accumulates dense core vesicle without dense core and fragmented 

lysosomes. Functionally they fail to degrade the yolk in lysosome and fail to exocytose 

during chorion elevation. The current study further showed that the lysosomal enzymes 

accumulate in secretory granule and secretory granule shows defect in sorting and fission. 

The sorting event in immature secretory granule is necessary to remove lysosomal 

enzymes, other cargos like lysosomal SNAREs, VAMP4 and Syntaxin by AP1, GGA1, 

AP3-VPS41 mediated transport to lysosome. Interestingly, the current study showed that 

suf is necessary for VPS41-AP3 mediated lysosomal transport. As prediction reveals that 

Suf has CHC domain like VPS41, it might act as coat protein and use AP5 as adaptor 

complex. Depletion of any components causes defect in dense core vesicle formation and 

defective in lysosomal enzymes sorting and function. In suf mutant loss of dense core and 

defect in sorting lysosomal enzymes explains its role in separating lysosomal vesicle from 

secretory pathway and causes the fragmented lysosome (Fig. 64 a). VPS41 forms clathrin 

like coat in vitro and in vivo. In immature secretory granules the proteins aggregate under 

low pH regulated by vATPase and the soluble cargos are sorted out by receptors then 

binding to an adaptor proteins, finally recruiting the coat. In VPS41 pathway, VPS41 act as 

coat and AP3 is an adaptor. Suf can use AP5 as an adaptor for sorting (Fig. 64 b). If suf act 

as a coat as proposed along with AP5 as an adaptor, then how suf is involved in AP3-

VPS41 mediated vesicle formation needs to be understood.  

Figure 64. Proposed model for suf function  

a. Cartoon shows the defect in suf mutant and red lines indicates the block in suf mutant. b. 

Proposed role for suf in sorting lysosomal cargo with or similar to VPS41-AP3 pathway. 

AP3-VPS41 vesicle in blue sorted to lysosome, vesicle in black sorted by suf-AP5 to 

lysosome. The vesicle in red in between DCV and Lysosomal vesicle shows the 

constitutive secretion vesicle, which originates from both ISG, further defective in sorting 

results in change of regulated secretion and lysosomal vesicle into constitutive secretion. 
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The arrow with question mark indicates the unknown connection between Suf- AP5 and 

VPS41-AP3 vesicle transport. 

 

4.12 Opaque egg mutants might provide as a novel HSP candidate genes. 

 As previously described, there are four mutants showing the opaque egg phenotype 

and shows fragmented lysosome. Newly discovered TOMM70a mutation ruehrei mutant 

has been predicted as HSP genes in a recent study using interactome of known HSP genes 

and further studies showed Suf, AP5, AP3, VPS41 and Dynamin in the list of HSP genes, 

which are found defective in suf mutants. In addition, they validated some of them in 
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zebrafish (Novarino et al.,2014). Interestingly in the huge list of possible candidate genes, 

M6PR and sortilin were absent indicating the unique role for these mutated proteins.  

 The other opaque egg mutants would provide as novel candidate genes for HSP and 

might function together with suf or in a pathway since all shows same phenotype. It is also 

possible that they are AP5 subunits or receptor for suf mediated pathway. With the huge 

list of known genes mutated in patients but struggling to study their function and disease 

causing defect without a genetic model, these genetic mutants with the visible phenotype 

would provide as tool to study further if they will be discovered as HSP genes. Also these 

groups of mutant would explain more about their function in lysosomal biogenesis and 

elucidate the role of suf in secretory granule maturation as well. 

4.13 Suf mutant is fitting model for HSP and vesicle trafficking 

HSP is a progressive neuron degenerative disease in human. They show only 

symptom in the motor neuron and it is an age dependent. This tissue and time dependent 

phenotype makes it difficult to make an animal model or to use tissue culture to study the 

functions of these mutated genes to understand the disease pathology. Even the fibroblast 

from the patient does not show any defect consistent with their disease symptom. Further, 

even animal models mutated for these genes do not show any symptom during 

development, which again creates problem to study HSP.  

suf mutant which was discovered in a forward genetic screen shows this specific 

phenotype in the oocyte. This mutation in zebrafish is very similar to mutation in human 

HSP patients as reported by Hanein et al., 2008. Still it is unclear why the oocyte is very 

sensitive for this mutation like motor neuron in humans affected by HSP. However, this 

gives an opportunity to study the role of suf function in trafficking and to understand the 

HSP disease. Zebrafish oocyte with its huge vesicle size (Lysosome: 5-6 µm and secretory 

vesicle: 5-6 µm) and very active and efficient for vesicle trafficking like long neurons 

provides fitting system to study these genes (Fig.65). Furthermore, zebrafish also provide 

many possible ways for making mutants and other genetic and cell biological studies. Thus, 

suf mutant oocytes are suitable model for investigating genes involved in HSP disease. 
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Figure 65. Suf mutant oocyte is a fitting model for HSP. 

Staining for lysosome in red and follicle cell nuclei in blue. Left panel wt and right panel 

from mutant. Notice the huge lysosome also secretory vesicle in the cortex of the oocyte in 

the top panel (Black circle hole). Sclale-50 µm. 

4.14 Prospective 

 The present study proposes a role for suf as a coat protein during sorting in 

secretory granule, it is necessary to find the receptor for sorting and the adaptor protein. 

Since it interacts with AP5, it could be that AP5 is an adaptor for suf but it is essential to 

analyze further on reduction in AP3 vesicles in suf mutant. Further study would be required 

on interaction between suf and VPS41 to explain whether they work together or parallel. 

Finally, understanding the other opaque egg mutant‟s role in lysosome biogenesis and 

secretion will help to understand HSP disease better in humans and shed lights on 

therapeutic strategies for patients. 
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5. Conclusions 

 The current study is aimed at identifying novel regulators of oogenesis in vertebrate. 

A group of opaque egg mutants was discovered in a maternal screen in zebrafish. The 

present study takes the advantage of genetics to study one of the mutant called soufflé. The 

gene was positionally cloned as zfyve26/spastizin and preliminary studies showed that 

these mutants have a defect in endolysosomal pathway. Therefore, the aim was set to study 

soufflé role in endosomal trafficking during oogenesis. 

 Endosomal analysis revealed that suf mutant has a defect in lysosomal function with 

fragmented lysosome and rab11 postive vesicle. In-vivo transferrin assay showed that the 

recycling is not affected. Immunostaining analysis showed that the rab11 positive vesicle is 

secretory granule and suf mutant accumulate immature secretory granule. Electron 

microscopy studies revealed that the dense core vesicle formation is affected and immature 

secretory granule failed in sorting and budding of the vesicle. In-vivo functional assay 

confirmed that the secretory granules are not functional and they fail to elevate the chorion 

after fertilization. Moreover, F actin staining showed that they failed in exocytosis since the 

vesicle is not matured. Dynamin inhibition in wild type phenocopies the suf mutant 

functionally and at cellular level. In summary, suf is essential for secretory granule 

maturation to form dense core vesicle successfully. 

 The fragmented lysosome and missing of lysosomal enzymes cathepsin explains the 

opaque phenotype. The lysosomal transport pathways mediated by M6PR and Sortilin are 

not affected but AP3 positive LAMP carrier intermediates were reduced while AP3 

accumulate more in secretory granule. AP3 vesicle requires VPS41 as a coat and they are 

reduced on secretory granule in suf mutant, suggesting that suf is needed to recruit VPS41 

on secretory granule. Suf with clathrin heavy chain motif could act as a coat protein like 

VPS41. Suf interaction with AP5 supports further that it might be a coat protein for AP5. 

But why AP3 vesicles are affected still need further investigation. It could be that the 

sorting defect causes both defect or suf and VPS41 dually act as a coat for both AP5 and 

AP3. In conclusion, Suf is necessary for sorting at immature secretory granule level during 

secretory granule maturation to form dense core vesicles and transport the lysosomal cargo 

with VPS41 as a coat protein. 

 Interestingly, function of suf in dense core vesicle formation suggests the role in 

neuronal transmission and the reason for HSP. The dense core vesicle are necessary to 
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maintain the neuronal connection for a longer time but, in their absence the previously 

made connection will start to die back, which is one of the symptom of HSP. This made the 

suf mutant a suitable model to study the HSP genes and to understand the disease 

pathology.  
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