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Chapter 1

Introduction

1.1 Motivation

Cancer and breast cancer in particular has been studied in-depth during the

past decades. The disease has been mainly related to aberrant activity and

corresponding miscommunication of cellular components leading to abnormal

cell growth, proliferation and migration (Wieduwilt and Moasser, 2008).

Supported by the development of new technologies, individual molecular pat-

terns have been derived for the diverse types not only by organ (Giordano

et al., 2001) but even within the organ-specific types. According to gene ex-

pression profiles, breast cancer for example can be divided into five molecular

subtypes, namely luminal A, luminal B, basal-like, HER2-positive, and normal

breast-like phenotypes (Sorlie et al., 2003). Such molecular classifications paved

the way for targeted therapies, specifically tailored to the individual genomic

characteristics. Within such approaches particularly selected key factors of the

cell, mainly genes or proteins, are targeted by therapeutic agents (Hynes and

Lane, 2005). The monoclonal antibody drug trastuzumab is a role model for

targeted therapy. It is in use against HER2-positive breast cancer, a subtype

overexpressing the human epidermal growth factor receptor 2 (HER2) which is

targeted by trastuzumab (Tinoco et al., 2013).

Moreover, the success story of fighting cancer has not stopped there. Recent

research has revealed even more individual facets of the disease. Hence, we

nowadays do not just distinguish cancer types by organ or molecular subtype
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but also by the affected persons themselves. Within personalized medicine,

each patient should be treated with an individual therapy providing efficient

cure of dysfunctions while avoiding unnecessary overtreatment and side effects

(Tessari et al., 2013).

The days of treating breast cancer in a shotgun approach like chemotherapy

seem to be numbered. However, drug resistance casts a shadow on the achieve-

ments in so-called precision oncology (Workman et al., 2013). A major problem

occurs when cancer cells bypass blocked communication pathways via alterna-

tive molecular factors activating tumour progression (Valabrega et al., 2007).

This work aims to reveal drug resistance mechanisms in HER2-positive breast

cancer at the genomic and proteomic level in the context of personalized

medicine. This comprises the detection of genes and variations as well as protein

interactions contributing to drug resistance in targeted therapy. Supporting

the gain of these novel biological insights, this work further includes the

methodological improvement of a software tool for proteomic data processing

and analysis.

1.2 Theoretical background and prior research

1.2.1 The HER2-positive breast cancer subtype

Breast cancer represents the most common type of cancer among women (Ferlay

et al., 2010). The corresponding subgroups have different cellular properties and

prognoses. The HER2-positive subtype represents 10-20% of breast tumours.

It is associated with increased recurrence and mortality rates (Heil et al., 2012;

Jelovac and Wolff, 2012) and characterized by an overexpression of the protein

‘human epidermal growth factor receptor 2’ (HER2, also termed ErbB-2) due

to a gene mutation.

This receptor tyrosine kinase (RTK) is a member of the epidermal growth factor

receptor (EGFR) family, besides HER1 (EGFR, ErbB-1), HER3 (ErbB-3) and

HER4 (ErbB-4) (Roskoski, 2014). These receptors are located at the cell sur-

face, spanning the cellular membrane with an extracellular and an intracellular
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part (see Figure 1.1). Tyrosine kinases transfer phosphate groups to the amino

acid tyrosine on cell proteins. Via such phosphorylation events proteins can

communicate in the cell. In most cases the signal is an activating one. The

activated protein then forwards the signal by transferring the phosphate group

itself to another protein. This signal is further propagated until the actual

effector protein is reached. These effector targets are generally transcription

factors which regulate gene expression (Cooper, 2000; Chapter 13). Hence,

genes and proteins act together in a signalling network.

The signalling pathways in Figure 1.1 are adapted from Galvez-Contreras et al.

(2013), Scaltriti and Baselga (2006) and Kong and Yamori (2010). Additional

protein interactions were derived from Klos et al. (2006) and Kolch et al. (1993).

The scheme represents just an excerpt of dimer signalling. Sometimes inter-

mediate factors may be acting in between two displayed connected proteins in

the cascade. So the phosphorylation/activation does not necessarily have to be

interpreted as a direct one.

Apart from HER2, the family members have to be activated via growth factors

like EGF for EGFR or heregulin (HRG) for HER3 (Henjes et al., 2012). This

binding takes place at the extracellular part of the receptors. The activated

receptors then act in concert, forming homo- or heterodimers which get phos-

phorylated at their intracellular part and forward the activation signal into the

inner part of the cell. In a pathological situation, as it is the case for HER2

overexpression or other permanently (in-)activated signalling molecules, the

phosphorylation cascades become oncogenic, finally promoting uncontrolled

cell growth and hence tumourigenesis as well as tumour progression.

Different receptor dimers induce different signal transduction pathways, like the

major ones including phosphoinositide 3-kinase (PI3K) and mitogen-activated

protein kinase (MAPK), also to a different extent (Olayioye et al., 2000).

Overexpression of HER2 leads to a dysregulated protein signalling network

and subsequently to uncontrolled tumour growth, proliferation and migration.

The oncogenic potential of HER2 does not only lie in its quantity but beyond

in its outstanding role as an orphan receptor. This means that it does not

rely on growth factor activation but is constitutively active and the preferred
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FIGURE 1.1. Scheme of ErbB receptor induced cell signalling (repro-
duced according to Henjes (2010); von der Heyde and Beissbarth (2012);
http://openclipart.org/people/hs/hs DNA helix.svg).

dimerisation partner for the remaining EGFR family members (Olayioye et al.,

2000; Park et al., 2008; Heil et al., 2012; Jelovac and Wolff, 2012).

1.2.2 Drug action and resistance mechanisms in targeted therapy

The heterogeneity of breast cancer requires therapies tailored towards each

patient’s molecular profile. Such individual approaches are currently applied

within precision medicine. As molecular profiles change with tumour develop-

ment and under drug treatment, latest therapy approaches imply sequential

application of targeted therapies guided by biomarker changes (Sahin et al.,

2014). HER2 is such a biomarker including its downstream targets such as

mTOR.

Specific therapeutics were designed to prevent HER2 induced deregulated pro-

tein signalling, contributing to tumour progression. The monoclonal antibody

drugs trastuzumab and pertuzumab have especially been designed to target
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HER2 (Tinoco et al., 2013). Both bind to different extracellular domains of

HER2.

The approved humanized monoclonal antibody trastuzumab is part of the

adjuvant treatment of patients with HER2-positive (HER2+) early breast

cancer (Valabrega et al., 2007). So it is in general combined with chemotherapy.

The improved outcome due to the addition of trastuzumab is not completely

understood. Besides inhibition of HER2, its dimerisation and cleavage, it has

been associated with different mechanisms of action. These include inhibition

of downstream signal transduction pathways like PI3K, antibody-dependent

cellular cytotoxicity (ADCC), induction of cell cycle arrest and apoptosis or

inhibition of tumour angiogenesis (Valabrega et al., 2007; Arteaga et al., 2012).

Pertuzumab prevents the formation of HER2 dimers, especially the most potent

ones including HER3. The combination with trastuzumab-based chemotherapy

is synergistically associated with improved clinical outcomes and was approved

as neoadjuvant therapy for HER2-positive breast cancer in 2013 (Reynolds

et al., 2014).

The small-molecule inhibitor erlotinib targets the intracellular tyrosine kinase

domain of EGFR and is already in use against non-small cell lung cancer (Pallis

and Syrigos, 2013) and pancreatic cancer (Moore et al., 2007).

Figure 1.2 depicts the different targeting mechanisms of the therapeutics

trastuzumab (T), pertuzumab (P) and erlotinib (E). Furthermore, it shows

schematically the MAPK and PI3K pathways which are predominantly stimu-

lated by the different ErbB receptor dimers upon ligand binding to ErbB-1 and

ErbB-3 (Olayioye et al., 2000; Esteva and Pusztai, 2005; Mikalsen et al., 2006;

Chen et al., 2009; Dienstmann et al., 2012). These pathways are intended to

get inhibited by the mentioned drugs.

However, targeted therapeutics are limited in their success to inhibit the

oncogenic signalling of overexpressed or mutated ErbB receptors. Frequently,

therapy resistance occurs (Motoyama et al., 2002; Wilson et al., 2012; von der

Heyde and Beissbarth, 2012), often due to deregulated pathway activity (Wang

et al., 2011; Gallardo et al., 2012) or bypasses of pathway blockades via other
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FIGURE 1.2. Scheme of drug targets and ErbB pathway preferences (von der Heyde et al.
(2014a), reproduced according to Henjes (2010)).

RTKs, especially ErbB family dimers (Diermeier et al., 2005). EGFR in

particular plays a major role in overcoming HER2 targeting.

Resistance to trastuzumab is a major problem in treating HER2-positive breast

cancer. So-called intrinsic (also termed primary or innate) resistance is pre-

existent to drug treatment, e.g. due to mutations like PIK3CA (Kataoka et al.,

2010). Acquired resistance on the contrary is developed over time induced by

diverse mechanisms, e.g. due to molecular changes, despite initial drug response

(O’Brien et al., 2010). Possible resistance mechanisms involve overexpression of

EGFR, HER2 or HER3, which is accompanied by alternative cell signalling via

different ErbB dimers. Alternative signalling pathways can be further induced

by MET receptor or insulin-like growth factor 1 receptor (IGF-IR). Other

mechanisms include constitutive PI3K pathway activation due to mutations in

the PIK3CA gene or PTEN loss, steric hindrance of HER2-antibody interaction

or overexpression of transforming growth factor (TGF)-α, HRG or vascular
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endothelial growth factor (VEGF) (Valabrega et al., 2007; Arteaga et al., 2012).

To overcome resistance in the treatment of HER2-positive breast cancer, diverse

novel drugs are in development. The small molecule tyrosine kinase inhibitor

lapatinib and the HER2/3 antibody pertuzumab for example paved the way for

improved therapeutic strategies (Figueroa-Magalhães et al., 2013). However,

a need for a deeper understanding of the mechanisms of trastuzumab action

and resistance persists to predict prior to treatment which patients will likely

develop resistance and to develop improved agents or combinations.

1.2.3 Genomic and (phospho-)proteomic measurement techniques

Within the basic information flow in a cell, DNA is transcribed into mes-

senger RNA (mRNA) which is translated into proteins (Crick, 1970). The

corresponding cellular contents are distinguished by specific -omic terms (see

Greenbaum et al. (2001)) of which important ones are explained in the following.

The genome is represented by the DNA which consist of nucleotide sequences,

representing genes as well as non-coding regions. The exome is represented

by the DNA which is transcribed into mRNA, i.e. the protein-coding regions

which constitute approximately just one percent of the human genome (Ng

et al., 2009). The transcriptome defines the exome of a specified cell popu-

lation. The proteome is represented by all expressed proteins under defined

conditions. Both genomic/transcriptomic as well as proteomic information is

important to understand the networking in a cell and how it becomes deregu-

lated, pathologically causing cancer or drug resistance.

After the completion of the Human Genome project (2003), the Human Pro-

teome Organization focusses on the 20,300 human protein-coding genes. The

aim is the characterization of at least one protein product and post-translational

modifications, single amino acid polymorphisms and splice variant isoforms

from the protein-coding genes within the next 10 years (Wang et al., 2014).

Popular measurement techniques for genomic/transcriptomic information are

DNA microarrays and more recently emerging Next Generation Sequencing

(NGS), also termed high-throughput sequencing (HTS) (Malone and Oliver,

2011).
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Microarrays generally consist of genomic DNA snippets complementary to

transcripts of interest. Sample transcripts under investigation are fluorescently

labelled and hybridize to their complementary snippets. After a washing step

just hybridized transcripts remain. Via laser scanning the gene expression can

then be measured based on light intensity, leading to continuous values.

Deep sequencing of RNA (RNA-Seq) is not limited to immobilized oligonu-

cleotides which map to transcripts of interest. This NGS technology directly

detects the transcripts in the sample of interest and maps them to a reference

genome. The nucleotide sequences, so-called reads, which map to the reference

sequence, are counted, leading to non-negative integer expression values.

The HiSeq 2000 technology of Illumina Inc. (http://www.illumina.com) for

example works as follows to identify transcripts (resummarized according to

http://www.dkfz.de/gpcf/hiseq technology.html). If one is interested in

mRNA as protein draft, just mRNA is extracted from the sample under in-

vestigation. The mRNA is then translated into complementary DNA (cDNA)

(Wang et al., 2009) of which 100-300 base-pairs (bp) long DNA fragments

are created. The ends of these fragments are repaired and A-overhangs are

added at the 3’-strand-ends. Afterwards, adaptors are ligated to both ends and

fragments are selected according to size and purified. Illumina’s device cBot is

used then to attach the fragments to a flow cell with adaptor-complementary

oligonucleotides. Within so-called bridge amplification hundreds of millions

of unique clusters are generated. The last step before the actual sequencing

is to remove the reverse strands and to add the sequencing primer to the

DNA templates. In a base-wise manner, the templates are copied during the

sequencing procedure applying the four fluorescently labelled nucleotides. Each

synthesized base is then detected by a camera which captures its laser-induced

fluorescent signal.

In contrast to microarrays, RNA-Seq is not limited to the hybridized probes

but allows to measure genome-wide expression levels, independent of annotated

regions. Another advantage is the ability to detect polymorphisms and isoforms

(Malone and Oliver, 2011).

Single nucleotide polymorphisms (SNPs) represent sequence alternatives (alleles)

at single base pair positions in genomic DNA in non-diseased individuals in

population(s), wherein the least frequent allele has an abundance of at least
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1% (Brookes, 1999). According to Brookes (1999), this definition does not

hold for single base insertion/deletion variants (indels), but usually the term

SNP is used very loosely. Thus, single base variants in cDNAs (cSNPs) are

called SNPs as well, since they usually imply underlying genomic DNA variants.

Another problem of the SNP definition is related to the incidence frequency, as

in practice it is often not possible to attain representative global population

samples. To sum up, the term SNP is widely used for diverse types of sequence

variation.

SNPs are of special interest, as they are associated with heritable phenotypes,

multifactorial diseases as cancer and drug response (Gray et al., 2000). The

latter is especially interesting for approaches in personalized medicine. Due to

their importance, SNP data are deposited in public databases (Sherry et al.,

1999). The favoured method to identify SNPs is direct DNA sequencing (Gray

et al., 2000; Kwok and Chen, 2003) but RNA-Seq as well has been proven to

be a valuable method to identify SNPs (Quinn et al., 2013).

Popular gel-free proteomic measurement techniques are mass spectrometry

(MS)-based proteomics and antibody microarrays (Alvarez-Chaver et al., 2014).

The MS technique requires that the protein is digested into fragments (pep-

tides). Within liquid-chromatography coupled to tandem mass spectrometry

(LC-MS/MS) the peptides are at first separated via LC. Subsequently, they get

ionized, e.g. via matrix-assisted laser desorption/ionization (MALDI). Finally,

a dual stage MS is applied to identify/quantify the proteomic components by

their mass and charge.

Another established technique are protein microarrays for simultaneous analysis

of different proteins. Two types are distinguished, namely forward phase protein

arrays and reverse phase protein arrays (RPPAs). Forward phase protein arrays

resemble the DNA microarrays mentioned before, as they use immobilized

capture molecules like antibodies which bind specifically a target protein of

interest in a fluorescently labelled probe.

The RPPA approach works the other way around, i.e. here the samples are

immobilized and a primary antibody binds the protein of interest. A fluores-

cently labelled secondary antibody then binds to the primary antibody, so

that the continuous intensity values allow to quantify protein abundance or

posttranslational modifications such as phosphorylation.
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RPPAs were introduced by Paweletz et al. (2001) as a robust and reproducible

technology, enabling efficient proteomic quantitation across large sample sets.

According to Alvarez-Chaver et al. (2014), antibody microarrays are currently

seen as a valuable method for cancer biomarker discovery due to their low-

volume requirements, multiplexed detection capability, rapidness and automa-

tion. Indeed, the RPPA community is expanding with applications in the field

of biomarker discovery and systems biology (Paweletz et al., 2001; Hennessy

et al., 2010; Gonzalez-Angulo et al., 2011; Uhlmann et al., 2012; Federici et al.,

2013; Sonntag et al., 2014; Ummanni et al., 2014).

In more detail, the RPPA workflow starts with spotting just minimal amounts (1

nl volume) of cell lysate on nitrocellulose-coated glass slides via a printing robot.

Usually a serial dilution of control samples with defined protein concentrations

is printed in addition for normalization. One slide consists of several subarrays

which are then specifically incubated with the primary antibody for a protein

of interest. In the next step, the secondary antibody is applied which is labelled

with a near infrared (NIR) fluorescent dye. As it binds the primary antibody,

this allows to detect for each spot intensity values for protein abundance or

phosphorylation. Therefore, the slides are scanned and a microarray image

analysis software is applied. In such a workflow 20-200 slides can be processed

simultaneously in a parallelized high throughput fashion.

To account for technical spotting variance and corresponding deviant total

protein concentrations, the signal intensities can be normalized spot-wise by

using the dye Fast Green FCF (Loebke et al., 2007). A normalization slide

is stained with the dye and the total protein content of each lysate spot is

determined on which the correction factors are based. The signal intensities are

then divided spot-wise by these factors and multiplied by the median value of

the corresponding normalizer subarray to rescale the data to the native range.

Figure 1.3 shows the RPPA layout used in von der Heyde et al. (2014b). Here,

MET receptor signalling was analysed. A human alveolar adenocarcinoma cell

line (A549) was serum-starved for 24 hours and stimulated with six different

hepatocyte growth factor (HGF) concentrations ranging from 0 - 100 ng/ml.

The activity of (phospho-)proteins was measured at six time points between 0

and 120 minutes.
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6-fold dilution series of control samples starting at 2 µg/µl (A549, 0 min, 0 ng/ml HGF) 

6-fold dilution series of control samples starting at 2 µg/µl (A549, 10 min, 75 ng/ml HGF) 

6-fold dilution series of control samples starting at 2 µg/µl (Caki1, 0 min, 0 ng/ml HGF) 

6-fold dilution series of control samples starting at 2 µg/µl (Caki1, 10 min, 75 ng/ml HGF) 

measurement samples (A549 or Caki1, 0-120 min, 0 – 100 ng/ml HGF) 

1 FCF slide 8 slides for antibody incubation 

A 

B 

FIGURE 1.3. Example of a typical RPPA layout (von der Heyde et al., 2014b).
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The samples were spotted as technical and biological triplicates on four sub-

arrays of nine slides each. Control samples were spotted as 6-fold dilution

series covering 3.125% to 100% concentration. Eight slides were incubated

with target-specific antibodies per subarray. One slide was used for total

protein staining via Fast Green FCF. The layout in Figure 1.3 also includes

measurements for human clear cell renal cell carcinoma (Caki1). The bold

marked yellow control spots of the dilution series were the ones that were used

for normalization of the A549 measurements. The corresponding correction

method will be described in more detail in Chapter 4 in Section 4.2, as it was

part of the technical report about an extension of the R (R Core Team, 2013)

package RPPanalyzer (von der Heyde et al., 2014b), an open-source software

to process and analyse RPPA data, originally published by Mannsperger et al.

(2010). In short, smoothing splines are fitted through the dilution series to

estimate the intercept at concentration zero, representing background noise

which should be corrected for. Subsequently, a linear model is identified which

optimally predicts the intercept of the dilution series. This optimal model is

then applied to predict the intercept of the measurement sample of interest.

This intercept is finally subtracted from the sample signal intensity.

1.2.4 Boolean models of protein interactions

A prerequisite to counter deregulated protein signalling is to understand how

the molecular factors interact. This knowledge can be deduced from genomic

and proteomic measurements.

Diverse biochemical or biophysical methods exist and are emerging to infer

interactions between genomic and proteomic components, i.e. gene interactions

(Demuth and Wade, 2006), protein-DNA interactions (Rodriguez and Huang,

2005) or protein-protein interactions (Rao et al., 2014). Based on this knowledge

interaction pathways have been inferred. The known interactions are collected

in diverse databases which make this knowledge publicly available (Xenarios

et al., 2002; Schaefer et al., 2009; Hornbeck et al., 2012; Chatr-Aryamontri

et al., 2013; Croft et al., 2014).

Within a forward engineering approach, such derived biological signalling net-

works can then be translated into computational models which allow to simulate

the qualitative temporal system behaviour as well as cellular responses to per-
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turbances of the network (Oda et al., 2005; Feiglin et al., 2012; Wang et al.,

2012). Hence, we can predict how knock-outs, drugs or stimuli influence protein

interactions without the necessity for additional wet-lab experiments.

Within reverse engineering approaches, the regulatory relationships and sig-

nalling pathways are inferred from observed activity data (Bansal et al., 2007;

Roukos, 2011; Wang et al., 2012). This way, network models can be established

directly from measurement data through computational analysis.

1.2.4.1 Boolean models

If the system of interest has already been studied and chemical or kinetic

parameters are determined, a common approach is to make use of these details

within quantitative differential equation models with continuous protein con-

centration values (Schoeberl et al., 2002; Hatakeyama et al., 2003; Jones et al.,

2006; Chen et al., 2009). Lacking such detailed information, less complex but

more abstract qualitative Boolean models can be applied. Here, the activity

states of the network components, i.e. genes ore proteins, are modelled in a

discrete way as active (1) or inactive (0) (Sahin et al., 2009; Samaga et al.,

2009). This simplification is especially attractive for computationally extensive

large-scale systems (Wang et al., 2012).

Wang et al. (2012) provide a methodology overview of Boolean modelling in

systems biology. An excerpt, supplemented by information from the vignette of

the BoolNet (Müssel et al., 2010) R package which provides analysis tools for

Boolean networks, is described in the following. A Boolean network consists of

a set of nodes with binary states which are determined by other network nodes

through Boolean functions. For example, protein P1 is activated by phospho-

rylation by protein P2 or P3 and inhibited by protein P4. Such dependencies

between n variables are expressed via Boolean functions which map the set of all

n-tuples over {0, 1} to a binary output, i.e. {0, 1}n → {0, 1}. In the mentioned

example n equals four. Boolean functions are based on logical operations via

AND, OR and NOT. In the example the corresponding function to determine the

activity state of protein P1 would be P1 = (P1 OR P2 OR P3) AND NOT P4. In

general, a Boolean network model consists of n Boolean variables {σ1, σ2, ..., σn}
each assigned with a Boolean function B = {B1, B2, ..., Bn} which determines
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the value of the variable. Hence, the state of the network at time t can be

represented by the state vector σ(t) = (σ1(t), σ2(t), ..., σn(t)). The so-called

state space contains all possible 2n states.

Within the synchronous scheme, the subsequent state of the network σ(t+ 1)

is computed by applying all transition functions Bi(σ(t)), i = 1, 2, ..., n, simul-

taneously. Biologically this means that all genes are updated at the same time.

Within the asynchronous scheme, it is assumed that gene expression levels are

likely to change at different time points. A common stochastic asynchronous

scheme looks like the following. At each time point t only one transition

function Bi ∈ B is chosen randomly and the corresponding variable is updated.

In probabilistic Boolean networks (PBNs) more than one transition function

can be specified per variable. Each function is chosen with a specific probability,

and the probabilities of all functions for one variable sum up to one. A state

transition is performed by choosing one function for each variable according to

the probabilities and by applying the chosen functions synchronously.

State transition graphs represent all possible trajectories in the state space.

The corresponding nodes represent the system states and the edges represent

the state transitions which are allowed according to the updating scheme. The

subsequent state updates at each time step form a trajectory of states which

either leads to a steady state, which remains unchanged under further system

updates, or a set of recurring states. Such states are called attractors and

represent the stable states of cell function in which the network mostly resides.

Consequently, they reflect system phenotypes under specific perturbations. All

states that lead to a specific attractor form its so-called basin of attraction.

Apart from steady-state attractors, simple and complex attractors exist. Simple

attractors occur in synchronous Boolean networks and consist of a set of states

among which the system oscillates in a cycle. Complex or loose attractors

occur in asynchronous networks and consist of a set of states among which

the system oscillates irregularly. A state of this set can be reached from all

other states in the set. Wang et al. (2012) refer to several approaches for

attractor calculations. As the R package BoolNet was applied in the modelling

study of this dissertation, the following description is based on the methods of

this software. Within an exhaustive synchronous search, the software starts

from all possible network states and conducts synchronous state transitions

until a simple or steady-state attractor is reached. This approach is rather
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time and memory consuming with increasing network size. BoolNet supports

this method just for networks up to 29 genes due to memory restrictions in

R. However, BoolNet offers synchronous and asynchronous heuristic search

algorithms as well, which start from a subset of predefined or random states.

The asynchronous heuristic performs random transitions leading to an attractor

with high probability which is afterwards tested for being complex. Finally,

Markov chain simulations can be used to identify relevant states by calculating

the probability to reach a state after a predefined number of iterations. If the

number is large enough, it is very likely to reach an attractor.

A Boolean network can be expressed as a directed graph G(V,E) in which the

nodes V = {v1, v2, ..., vn} represent Boolean variables and the edge set E is

defined by Boolean functions. Edges can be activating or inhibiting according

to the node effects in the Boolean functions. Figure 1.4 shows an exemplary

Boolean network (a), related Boolean functions (b), truth tables mapping input

to output values (c) and the synchronous state transition graph (d).

FIGURE 1.4. Example of a simple Boolean network model (Wang et al. (2012), ©IOP
Publishing. Reproduced by permission of IOP Publishing. All rights reserved.).
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The R package BoolNet provides tools for assembly, analysis and visualization

of Boolean networks. Apart from synchronous, asynchronous and probabilistic

Boolean networks, so-called temporal Boolean networks are supported. Here,

the subsequent state σ(t + 1) may not only depend on the direct preceding

state σ(t) but on any predecessor state or the time step itself. The software

offers different methods for network assembly. Networks can be predefined and

loaded from files, reconstructed from time course data or generated randomly.

Furthermore, attractors can be calculated and perturbation simulations can

be conducted including overexpressed or knock-out genes, for example, to

test the robustness of networks to noise and mismeasurements. Above that,

visualization tools are offered. Boolean networks can be graphically represented

as graphs in which genes correspond to the vertices and the inputs defined by

the transition functions determine the edges. Transition states can be visualized

in table format with row-wise representation of the genes and column-wise

representation of the consecutive states until the attractor is reached. One can

also generate a transition graph of the network nodes and state transitions in

which attractors are highlighted in bold and different colours allow to distinguish

the basins of attraction. Simple attractors and the corresponding set of states

can be visualized as well in table format. Also a graph representation of

complex attractors is offered with nodes representing the related states and

arrows representing the state transitions.

Several import and export interfaces exist, but as the R package ddepn (Bender

et al., 2010, 2011) was chosen within this dissertation for network reconstruction,

it was especially extended to convert the resulting adjacency matrices to logical

rules which can be used as input for BoolNet.

1.2.4.2 Network reconstruction

Lee and Tzou (2009) reviewed different computational methods to infer gene

regulatory networks (GRNs) which is summarized in the following. In principle,

gene expression data are used to describe the phenotypic behaviour of a sys-

tem of interest. First an initial model is built which represents the system

behaviour under a specific condition. Then the model predictions for new

conditions are compared with corresponding experimental data. This allows to

validate the accuracy of the hypothetical model and to revise it accordingly.
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Within network reconstruction experimental data, such as gene expression

data from microarrays, are combined with prior knowledge to computationally

infer a suitable network structure, which is also termed reverse engineering.

Computational methods are applied to derive the network model parameters,

to build the model, to simulate the system behaviour and to evaluate it by

comparing it with the experimental data. Prior knowledge helps to narrow

down the search space in the network and hence to save time and computational

effort.

Lee and Tzou (2009) describe discrete models as well as models with continuous

variables based on differential equations. The discrete models include Boolean

network models, PBN models and Bayesian network models. As discrete net-

work models have been applied in this thesis, the focus is put on those.

For Boolean models literature- and data-based approaches are distinguished.

Within literature-based approaches the models are built from known gene

interactions which are translated into logical rules. Within approaches based on

experimental data two main classes of methods exist. One applies correlation

measurements such as the mutual information between genes. The other one

applies machine-learning approaches like the genetic algorithm (GA) which

is also available in the ddepn package. Such global methods can further be

combined with local search techniques to determine promising directions in the

search space.

Bayesian network models are directed graphs in which the edges describe the

conditional dependencies between the nodes. The modelling involves model

structure selection and parameter learning. A Bayesian scoring metric is applied

to evaluate the model. The aim is to infer a model which describes the data with

high probability. Heuristic strategies can be applied to enhance computational

performance.

Bansal et al. (2007) compared different software applications for reverse

engineering. In this context they introduced diverse algorithms for network

inference as well. They describe Bayesian networks more detailed as a graphical

model for probabilistic relationships among n random variables Xi, i = 1, ..., n.

These variables represent the nodes of a directed acyclic graph (DAG) G in
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static Bayesian networks (BNs). The relationships between the nodes are

expressed via a joint probability distribution

P (X1, ..., Xn) =
n∏
i=1

P (Xi = xi|Xj = xj for each Xj which is a parent of Xi)

with genes j (parents) as regulators of gene i on which the probability is con-

ditioned. Hence, the joint probability density can be described by a product

of conditional probabilities, assuming independence of probabilities and given

that the variables Xi are just depending on their direct parents according to

the Markov assumption.

Within network reconstruction, the DAG G is inferred whose network topology

describes the steady-state gene expression data D best according to a scoring

function. The score to be maximized can be expressed by the Bayes rule

P (G|D) = P (D|G)P (G)
P (D)

with P (G) as a constant or incorporating prior knowledge

of the network structure. One of the most popular scores is the Bayesian In-

formation Criterion (BIC) which also penalizes graph complexity to avoid

overfitting.

The evaluation of all possible network topologies and choosing the one with

maximum score is an NP-hard problem. Therefore, heuristic search methods

like the Markov Chain Monte Carlo (MCMC) approach are applied. A further

problem is that usually several high-scoring networks are inferred. Therefore,

bootstrapping can be applied to get confidence estimates for the network edges

and to select the most probable topology. Furthermore, prior knowledge can

be incorporated into network reconstruction to choose the most reliable model.

Anyhow, one has to be cautious interpreting reconstructed BNs, as they do not

necessarily represent direct gene interactions but probabilistic dependencies.

The parents of a node are not necessarily also the direct causes of its behaviour.

The main drawback of BNs is their acyclicity, as feedback loops cannot be

modelled but represent important biological network elements.

Dynamic Bayesian networks (DBNs) are not limited in this regard. They

extend BNs and can be specifically applied to temporal processes and hence to

time series data. An introduction is given by Friedman et al. (1998) and

Murphy and Mian (1999). In DBNs the values of the random variables

change over time which is denoted by Xi(t) with t = 0, 1, ..., T . The set
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of all variables Xi(t) is represented by X(t). Under the assumption that the

temporal process is Markovian, the transition probability can be expressed as

P (X(t+ 1)|X(0), ...,X(t)) = P (X(t+ 1)|X(t)). This is further assumed to be

independent of t. A prior network B0 specifies the distribution over the initial

states X(0). A transition network B→ over the variables X(0) ∪X(1) specifies

the transition probability P (X(t+ 1)|X(t)) for all t. The parents of Xi(0) are

those specified in B0. The parents of Xi(t+ 1) are the nodes in step t and t+ 1

corresponding to the parents of Xi(1) in B→. Friedman et al. (1998) define

the transition probability as PB→(x(1)|x(0)) =
n∏
i=1

PB→(xi(1)|pa(Xi(1))) with

pa denoting the parental nodes. The joint distribution over X(0), ...,X(T ) is

P (x(0), ...,x(T )) = PB0(x(0))
T−1∏
t=0

PB→(x(t+ 1)|x(t)).

To capture cell signalling dynamics over time, the input data for network

modelling ideally covers several time points at which the gene or protein activi-

ties are measured under defined conditions (Hill et al., 2012; Park and Bader,

2012). Such time series can be further combined with knock-out or stimuli

perturbation experiments to infer the interplay of the network components

(Bender et al., 2011; Penfold et al., 2012; Wagner et al., 2013).

In addition, it is advantageous to integrate prior literature knowledge about

protein interactions in the system of interest into the network model (Bender

et al., 2011; Eduati et al., 2012; McDermott et al., 2013). Such constraints

reduce the computational complexity and ensure that validated interactions

are contained in the model. Reverse engineering approaches as implemented in

R packages like ddepn or CellNOptR (Terfve et al., 2012) combine perturbed

time course input data and prior knowledge to reconstruct Boolean networks.

The R package ddepn offers a Boolean network reconstruction method which

is especially tailored to perturbed time course data and allows to integrate

prior knowledge. The abbreviation DDEPN stands for Dynamic Deterministic

Effects Propagation Networks. It is an extension of the DEPN (Deterministic

Effects Propagation Networks) approach (Fröhlich et al., 2009). The main

difference is that the version of Bender et al. (2010) is designed for longer time

series and does not require as many perturbations as the original version. The

approach models the protein networks as directed, transitively closed graphs
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in which proteins and external perturbations, like drugs or growth factors,

are represented by nodes. Their interactions form the edges. The method is

deterministic with regard to the perturbation effect propagation from parent

to child nodes.

Figure 1.5 shows a scheme of the inhibMCMC procedure of the ddepn package.

According to Bender et al. (2011), this reconstruction workflow which is based

on a stochastic MCMC approach looks like the following. The network is

represented by an adjacency matrix Φ in which the rows and columns are

defined by the network components, i.e. the nodes. The entries are assigned

according to the edge types. If the component of row i activates the component

in column j, the entry φij is set to 1. In case of an inhibition it is set to

-1. In case of no interaction between the components, the entry is zero. The

measurement data for the diverse time points and replicates are stored in a

separate matrix D. Within the MCMC approach a network structure is inferred

which optimally fits to the measurement data. Therefore, the space of possible

networks is sampled based on posterior probabilities. The posterior distribution

of a network Φ given the data D is

P (Φ|D) =
P (D|Φ)P (Φ)

P (D)
∝ P (D|Φ)P (Φ).

The prior probability distribution is represented by P (Φ). The likelihood of

the data given the network is represented by P (D|Φ). To calculate P (D|Φ),

the optimized system state matrix Γ∗ has to be estimated which contains

column-wise the measurement time points and row-wise the nodes. Its entries

are either one or zero, representing an active (1) or inactive (0) node state.

The estimation of Γ∗ starts with the computation of the matrix Γ which contains

all reachable system states. It is similar to Γ∗ but does not store the activity

states of the nodes per time point but per transition step of Boolean signal

propagation. The signalling starts when the network is perturbed by stimuli or

drugs. These perturbations are assumed to be permanently active and hence

set to an active state (1). The remaining nodes are initialised with inactive

states (0). The perturbation signal is propagated then from parent to child

nodes according to the transition rule that a child gets activated if at least one

activating parent node is active and all inhibiting parents are inactive.
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FIGURE 1.5. Workflow of the MCMC-based network reconstruction via ddepn (von der
Heyde et al. (2014a), reproduced according to Bender et al. (2010) and Bender et al. (2011)).
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To relate Γ∗ to the measured time points and estimate the optimized Γ∗ with

the true unknown state sequence per node over time, a hidden Markov model

(HMM) is applied. This leads to Γ̂∗ which indicates whether a data point ditr

for a node i at time point t for replicate r has an underlying active (1) or

passive (0) normal distribution

ditr ∼

N (µi0, σi0), if γ̂∗itr = 0

N (µi1, σi1), if γ̂∗itr = 1.

The distribution parameters for each node i are estimated as empirical mean

and standard deviation of all measurements for the nodes in the same class.

They are stored in the parameter matrix Θ̂ =
{
θ̂i0, θ̂i1

}
= {(µ̂i0, σ̂i0), (µ̂i1, σ̂i1)}.

This way the first part of P (Φ|D) ∝ P (D|Φ)P (Φ) is obtained, namely

p(D|Φ) = p(D|Γ̂∗, Θ̂) =
T∏
t=1

N∏
i=1

R∏
r=1

p(ditr|θ̂iγ̂∗itr),

assuming T time points, N nodes and R replicates.

Still the prior probability distribution P (Φ) has to be determined. For an edge

φij between nodes i and j it is defined as

P (φij|bij, λ, γ) =
1

2λ
e
−∆ij
λ

when choosing the Laplace prior model (laplaceinhib) of ddepn. The weighted

difference term ∆ij = |φij−bij|γ with γ ∈ R+ penalizes deviation of the network

structure Φ from a user-defined prior belief matrix B. Its continuous entries

can range from -1 to 1. The absolute values correlate with the confidence in an

edge. As independence of the edge probabilities is assumed, the prior belief for

a network structure Φ is simply the product of those over all nodes, i.e.

P (Φ|B, λ, γ) =
∏
i,j

P (φij|bij, λ, γ).

In Figure 1.5 the inhibMCMC procedure spans 50,000 iterations in 10 parallel

runs with a burn-in phase of 25,000 iterative steps each. All runs are initialized

with a starting network. The 10 x 25,000 networks resulting after the burn-in

phase are merged into one consensus network. Therefore, significantly occurring
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edges are identified by a Wilcoxon rank sum testing procedure in which the

amount of sampled activations and inhibitions per edge is counted for each

run and divided by the total number of sampled edges. The null-hypothesis is

tested, whether the means of the ten edge-specific confidence values are identical

for activation and inhibition. If the null-hypothesis is not rejected (adjusted

p-value > 0.05), no edge is assumed. Otherwise, the alternative determines

the interaction type. The procedure is embedded in a leave-one-out cross-

validation in which each of the ten MCMC chains is left out once. An edge is

included in the final consensus network if it occurred in all cross-validation runs.

After the data- and literature-based inference of the network model, it can

be used for perturbation simulations to predict the system response towards

stimuli, drugs or gene/protein knock-outs. The corresponding stable activity

states of the network components (attractors) under a given condition reflect

the long-term behaviour (homoeostasis) of the system. As the R package

BoolNet accepts networks in form of Boolean formulas as input, it can be

conveniently applied after network reconstruction.

1.3 Aim and concept of this work

The objective of this work is to shed light into the mechanisms of drug action

and resistance mechanisms in individual types of HER2-positive breast can-

cer. The cumulative dissertation consists of three manuscripts, of which two

are data-based research articles (von der Heyde et al., 2014a, 2015) and one

is a software extension for proteomic data analysis (von der Heyde et al., 2014b).

The research article Boolean ErbB network reconstructions and perturbation

simulations reveal individual drug response in different breast cancer cell lines

(von der Heyde et al., 2014a) is based on (phospho-)proteomic RPPA data of

three HER2-amplified human breast cancer cell lines with different resistance

phenotypes, namely BT474, HCC1954 and SKBR3. While BT474 and SKBR3

are sensitive to trastuzumab, HCC1954 harbours a mutation and is intrinsically

resistant. The activity of several (phospho-)proteins was measured after short-

and long-term treatment with the drugs trastuzumab, erlotinib and pertuzumab
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alone or in combination at 10 time points up to 60 minutes and 30 hours each.

Based on these data protein signalling networks were reconstructed to detect

protein interactions driving drug resistance and to reveal differences between

the cell lines in the context of personalized medicine. In this regard the models

were further used to simulate drug perturbations to predict optimal drug com-

binations for each cell line tailored to the individual phenotypes.

A more detailed description follows in Chapter 4 in Section 4.1.

The technical report RPPanalyzer Toolbox: An improved R package for analysis

of reverse phase protein array data (von der Heyde et al., 2014b) is related

to the analysis of RPPA data, as it describes a software extension of the R

package RPPanalyzer.

Important data preprocessing steps were merged into a single function to pro-

vide a more comfortable usage of the software. The analysis workflow was

streamlined, recommending at which step which function of the RPPanalyzer

should be applied. These functions also include improvements or novel develop-

ments. For example, a new method for background noise correction based on

dilution series was introduced as well as a new time course plotting function

for data transformed by new methods for noise estimation and averaging of

replicates.

The manuscript is presented in Chapter 4 in Section 4.2.

The research article mRNA Profiling Reveals Determinants of Trastuzumab

Efficiency in HER2-Positive Breast Cancer (von der Heyde et al., 2015) is

based on RNA-Seq data. Analogously to the research article described before,

measurement data of cell lines were used to reveal drug resistance mechanisms.

Two of the cell lines were identical, namely the trastuzumab sensitive BT474

cell line and the resistant HCC1954 cell line. While the previously mentioned

article further includes the trastuzumab sensitive cell line SKBR3, this article

includes a resistant version of BT474, i.e. BTR50, which represents acquired

resistance. Here, the focus was put on gene expression and mutations (SNPs),

potentially determining trastuzumab efficiency.

The manuscript is described more detailed in Chapter 4 in Section 4.3.
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Summary in German

(Zusammenfassung)

Gegenstand dieser Dissertation ist es, auf genomischer und proteomischer Ebene

Einsicht in die Wirkungsweise von Medikamenten zu gewinnen, die auf HER2-

positive Brustkrebs-Zelllinien mit unterschiedlichen Resistenz-Phänotypen an-

gewendet wurden. In der Ära der personalisierten Krebstherapie sind derartige

Einsichten von essentieller Bedeutung für die Weiter- und Neuentwicklung

oder Kombination von zielgerichteten Medikamenten und deren Anwendung in

individuellen Therapieansätzen.

Auf proteomischer Ebene wurden RPPA-Zeitreihen-Messungen als Grundla-

ge für Zelllinien-spezifische Boolesche Netzwerkrekonstruktionen genutzt, um

Modelle der Signalübertragung zwischen den gemessenen Proteinen unter Medi-

kamenteneinfluss zu entwickeln. Untersucht wurden die Wirkstoffe Trastuzumab

und Pertuzumab, welche gegen HER2 bzw. dessen Dimerisierung gerichtet sind,

sowie Erlotinib mit EGFR als Angriffspunkt. Die Zeitreihen umfassten einer-

seits eine Zeitspanne bis zu 60 Minuten und andererseits eine Zeitspanne bis

zu 30 Stunden.

Mit Hilfe der gewonnenen Modelle wurde simuliert, wie unterschiedliche Me-

dikamentenkombinationen auf die unterschiedlichen Zelllinien wirken. Hierzu

wurde der Aktivitätszustand gewählter (Phospho-)Proteine der PI3K- und

MAPK-Hauptsignalwege berechnet. Die Simulationsergebnisse deckten sich

weitestgehend mit den tatsächlichen Messungen, sind allerdings differenziert
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zu interpretieren, da die homöostatischen Zustände nicht zwingend nach den

gemessenen maximalen Zeitpunkten erreicht worden sein müssen. Die Simulatio-

nen zeigten auch, dass in den Kurzzeitmessungen unterschiedliche Medikamente

oder deren Kombinationen eine optimale Wirkung in den Zelllinien hatten,

wohingegen in den Langzeitmessungen größtenteils ähnliche Inhibitoren einen

optimalen Effekt erzielten. Dies betont die Notwendigkeit, bereits früh onkogene

Proteine im Signalweg zu hemmen. Im Hinblick auf die Trastuzumab resisten-

te Zelllinie HCC1954 wurde durch gesonderte Simulationen ermittelt, welche

Proteininteraktionen verstärkten Einfluss auf den ohnehin schon hyperaktiven

PI3K-Signalweg haben.

Zudem wurden die Modellstrukturen zwischen den Zelllinien verglichen, um

potentielle Resistenzmechanismen aufzudecken. Dies ergab Zelllinien-spezifische

Präferenzen für unterschiedliche Signalwege in Abhängigkeit des Brustkrebs-

Phänotyps, was individuelle Therapieansätze erfordert. Außerdem deuteten die

Modelle auf Rückkopplung, Signalweg-Interaktionen sowie hyperaktive Hetero-

dimere als Resistenzmechanismen hin.

Um die Analyse von RPPA-Daten zu erleichtern, wurde weiterhin eine beste-

hende Software konzeptionell und methodisch weiterentwickelt.

Die Mehrheit der verfügbaren Methoden für RPPA-Daten umfasst kommerzielle

oder nicht-standardisierte eigengefertigte Software-Lösungen. Zudem sind diese

in der Regel auf Präprozessierung und Normalisierung limitiert ohne weitere

Möglichkeiten zur grafischen und statistischen Analyse. Daher ist das Angebot

entsprechend erweiterter, Plattform-übergreifender und zudem frei verfügbarer

Alternativen für die Anwender der RPPA-Technologie von großer Wichtigkeit.

Die RPPanalyzer -Software stellt eine solche Alternative dar. Sie wurde um

neue Methoden erweitert, welche in einen standardisierten Programmablaufplan

integriert wurden. Dieser ermöglicht es dem Anwender, gewisse Routineschrit-

te der Präprozessierung komfortabel automatisiert durchzuführen. Die neuen

Funktionen dienen der Varianzschätzung, der Normalisierung und Visualisie-

rung von Zeitreihenmessungen. Gleichzeitig wurde der modulare Charakter der

Software bewahrt, welcher es je nach Bedarf des Anwenders gestattet, flexibel

Funktionen anzupassen oder hinzuzufügen.
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Auf genomischer Ebene wurden RNA-Seq-Daten verwendet, um Gene zu ermit-

teln, deren Expression entweder unter der Gabe von Trastuzumab variierte oder

aber Unterschiede zwischen den analysierten Zelllinien zeigte. Beide Arten der

differentiellen Expression deuten auf eine entscheidende Bedeutung dieser Gene

für die Wirkungsweise von Trastuzumab hin. Die Phänotypen der Zelllinien

umfassten Sensitivität, intrinsische und erworbene Resistenz. Die ermittelten

validierten Gene waren differentiell exprimiert zwischen der sensitiven Zelllinie

mit und ohne Trastuzumab-Behandlung sowie zwischen der sensitiven und der

intrinsisch resistenten Zelllinie. Bei letzterem Vergleich wurden überwiegend

Gene detektiert, denen bereits eine onkogene Wirkung sowie eine Behinderung

der Trastuzumab-Wirkung zugeschrieben wurde und von denen bekannt ist,

dass ihre Expression stark von Steroidrezeptoren beeinflusst wird. Dies stimmte

mit den hier gemachten Beobachtungen überein. Auch hier spielte der PI3K-

Signalweg eine bedeutende Rolle im Hinblick auf Medikamentenresistenz.

Des weiteren ergaben die Untersuchungen, dass die intrinsisch resistente Zell-

linie stärker von der sensitiven Zelllinie abwich als diejenige mit erworbener

Resistenz. Zudem wurde sie weniger stark durch Trastuzumab beeinflusst als

diejenige mit erworbener Resistenz.

Darüber hinaus wurden Mutationen in unbehandelten Zelllinien detektiert,

welche ebenfalls einen Einfluss auf die Wirksamkeit des Medikaments haben

könnten. In der intrinsisch resistenten Zelllinie wurden mehr Mutationen er-

mittelt als in derjenigen mit erworbener Resistenz, was die zuvor genannten

Ergebnisse bestätigt. Die Schnittmenge der Mutationen in den resistenten

Zelllinien beeinflusst sehr wahrscheinlich die Wirksamkeit von Trastuzumab.

Zusammenfassend konnten Einblicke in Resistenzmechanismen durch Modelle

und direkte Messungen gewonnen werden. Die Netzwerkmodelle lieferten Pro-

teininteraktionen als potentielle Resistenzmechanismen und erlaubten Simulatio-

nen, um optimale Medikamentenkombinationen zu ermitteln. Die genomischen

Messungen lieferten Gene und Mutationen als potentielle Resistenzmechanis-

men. Innerhalb beider Ansätze wurden zudem Vergleiche zwischen unterschied-

lichen Resistenz-Phänotypen angestellt, um Anwendungsmöglichkeiten in der

personalisierten Medizin aufzuzeigen.



Chapter 3

Summary

The intention of this dissertation is to gain deeper insight into mechanisms of

drug action on the genomic and proteomic level in HER2-positive breast cancer

cell lines with different resistance phenotypes. In the era of personalized cancer

therapy such insights are essential for the development and improvement of

(combined) targeted therapeutics and their application in individual therapy

approaches.

On the proteomic level, cell line specific Boolean networks were reconstructed

based on RPPA time course data to model signal transduction between the mea-

sured proteins under drug treatment. The drugs of interest were trastuzumab

and pertuzumab which target HER2 and its dimerisation, respectively. In

addition, erlotinib was analysed which targets EGFR. The time series covered

a range up to 60 minutes and 30 hours, respectively.

These models were used to simulate the effect of different drug combina-

tions on the different cell lines. Therefore, the activity states of selected

(phospho-)proteins in the PI3K and MAPK signalling pathways were computed.

The simulation results were mostly confirmed by the actual measurement data,

but still they have to be distinguished, as homoeostasis does not necessarily

have to be reached after the measured maximum time points. The simulations

further revealed a more diverse drug response in the short-term measurements

than in the long-term measurements. This underlines the importance of early

drug intervention at the top level layer of the signalling network. For the

trastuzumab resistant cell line HCC1954 additional simulations were performed.
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These revealed specific protein interactions reinforcing the hyperactive PI3K

signalling pathway in this cell line.

Furthermore, the model structures were compared between the cell lines to

detect potential resistance mechanisms. Indeed, cell lines with different breast

cancer and resistance phenotypes seem to prefer different signalling pathways,

requiring individual therapeutic strategies. In addition, the models hint at feed-

back loops, pathway crosstalk and hyperactive heterodimers as main resistance

mechanisms.

To facilitate the analysis of RPPA data, a corresponding software was concep-

tually refined and methodologically enhanced.

The majority of available tools for RPPA data comprises commercial or non

standardized in-house solutions. Above that, these software solutions are

generally limited to data preprocessing and normalization, lacking additional

functions for graphical and statistical analysis. Hence, the users of the RPPA

technology would benefit from improved and freely available alternatives which

also allow data comparison across different RPPA platforms. The RPPanalyzer

software represents such an alternative. It was extended by new functions

which were further integrated in a standardized workflow. This way, users

can conveniently conduct automated standard preprocessing steps. The novel

methods imply variance estimation, normalization and visualization of time

course data. At the same time, the modular character of the software was

preserved which allows users to flexibly integrate add-on functions and to choose

or adapt existing functions of the toolbox according to their specific needs.

On the genomic level, RNA-Seq data were used to detect genes whose expression

differed under trastuzumab treatment or between the analysed cell lines. Both

kinds of differential expression point to an essential role of these genes in the

action and for the efficiency of trastuzumab. The resistance phenotypes of the

cell lines covered sensitivity, intrinsic and acquired resistance. The detected and

validated genes were differentially expressed between the sensitive cell line and

its trastuzumab treated version as well as between the sensitive cell line and the

intrinsically resistant one. The latter comparison mainly revealed genes which

are already known in an oncogenic context or suspected to hinder trastuzumab
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efficiency. Their expression is strongly depending on steroid receptors which is

in line with the results presented here. Analogously to the proteomic analysis

mentioned before, also in this analysis the PI3K signalling pathway was ascribed

an important role in drug resistance.

Furthermore, the analyses revealed that the intrinsically resistant cell line

differs more from the sensitive one than it is the case for the one with acquired

resistance. The intrinsically resistant cell line was further influenced less by

trastuzumab treatment than the one with acquired resistance.

Additionally, mutations were detected in the untreated cell lines which also

potentially impact trastuzumab action and efficiency. In the intrinsically re-

sistant cell line more variations were detected than in the one with acquired

resistance. This highlights the afore mentioned results. The intersect of mu-

tations in the resistant cell lines very likely affects the efficiency of trastuzumab.

In conclusion, genomic and proteomic measurement data and corresponding

models provided an insight into resistance mechanisms. The signalling network

models unveiled protein interactions as potential resistance mechanisms and

allowed simulations to infer optimal drug combinations. Based on the genomic

measurements, genes and mutations were detected as potential resistance

mechanisms. Additionally, within both approaches the different resistance

phenotypes were compared to indicate prospective applications in personalized

medicine.



Chapter 4

Cumulative part of the

dissertation

4.1 Boolean ErbB network reconstructions and pertur-

bation simulations reveal individual drug response in

different breast cancer cell lines

The manuscript on which this chapter is based has already been published.

Silvia von der Heyde , Christian Bender, Frauke Henjes, Johanna Sonntag,
Ulrike Korf and Tim Beißbarth∗, Boolean ErbB network reconstructions and
perturbation simulations reveal individual drug response in different breast
cancer cell lines, BMC Systems Biology, 2014, 8:75.

∗Corresponding author

4.1.1 Summary and discussion

The intention of this work was to model the ErbB signalling network in dif-

ferent drug treated ErbB-1 expressing, ErbB-2 amplified breast cancer cell

lines in order to reveal individual drug response, synergistic benefits of drug

combinations and resistance mechanisms.

The network reconstructions via ddepn were based on longitudinal RPPA data
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(Henjes et al. (2012), GEO accession number GSE50109) of ErbB receptors

and downstream targets in the BT474, SKBR3 and HCC1954 cell lines with

differing resistance phenotypes. HCC1954 is trastuzumab resistant due to a

PIK3CA mutation, while BT474 is trastuzumab sensitive and exhibits wild

type behaviour (Kataoka et al., 2010). The SKBR3 cell line is supposed to be

pertuzumab resistant (Nahta et al., 2005; Henjes et al., 2012).

The cell lines were treated with erlotinib, trastuzumab and pertuzumab, alone

or combined, up to 60 minutes and 30 hours, respectively. Both, short- and

long-term data comprised ten time points each. In the short-term case, cells

were stimulated with the growth factors EGF and HRG, and 11 phosphopro-

teins were measured. In the long-term case, cells were incubated in full growth

medium, and 21 (phospho-)proteins were measured.

Besides the (phospho-)proteomic data, prior literature knowledge about protein

interactions was integrated as a further source of information into the recon-

struction algorithm. Two prior reference networks, i.e. one per time course,

were determined as initial joint hypotheses for all of the three breast cancer

cell lines. The impact strength of the prior networks was chosen in such a way,

that only strongly deviating data influence the network structure, since ErbB

signalling and especially the MAPK and PI3K pathways are well studied.

The Boolean models were inferred in a cell line and time course specific man-

ner. These were then used to simulate network response to drug combinations

which was represented by the attractor states of selected network components.

Therefore, BoolNet was applied. The perturbation simulations started with

predefined initial states of the network nodes. According to the experiment

to be simulated, the activity states of the drug nodes were fixed to zero or

one. The perturbations included all possible combinations of the three drugs,

leading to eight fixed input combinations. The stimuli nodes were permanently

fixed to one. The remaining protein activity start states were initialized with

zero but were flexible towards updates. The attractor calculations allowed to

predict optimal drug treatment customised to the topology of the different cell

line phenotypes.

A scheme of the modelling workflow is depicted in Figure 4.1. The network

reconstruction workflow is shown in Figure 1.5.
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FIGURE 4.1. Scheme of the ErbB network modelling approach (von der Heyde et al.,
2014a).
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The reconstructed short-term networks are displayed in Figure 4.2. The

reference network is marked in black, while the newly inferred edges are coloured

according to the cell line they belong to. The individual network structures were

compared to the reference network and between each other, respectively. The

comparisons in short-term signalling pointed to cell line specific preferences for

the MAPK and PI3K pathway, respectively. While BT474 showed a preference

for the PI3K pathway, the novel edges in SKBR3 contributed mainly to sig-

nalling via the MAPK pathway. In HCC1954, the inferred edges contributed to

both pathways to a similar extent. The different pathway preferences among

the cell lines were also reflected in pathway specific drug response, driven by

the type of growth factor stimulus.

In the perturbation simulations on the short-term networks, the PI3K and

MAPK key regulators AKT, ERK1/2 and p70S6K (see Figure 1.1) were

analysed. Main findings were that inhibition of PI3K signalling requires drug

combinations, whereas inhibition of MAPK signalling mainly relies on erlotinib

alone. Furthermore, the target p70S6K is influenced by both, PI3K and MAPK,

pathways.

Special focus was put on drug resistance mechanisms in HCC1954 regarding the

hyperactive PI3K pathway due to the known mutation. Indeed, feedback loops,

hyperactive ErbB-1/2 heterodimers and pathway crosstalk were uncovered, am-

plifying PI3K signalling in this cell line. In addition to node perturbations, also

edge perturbations were analysed in HCC1954 by removing each of the AKT

stimulating edges outgoing from p70S6K, PDK1, mTOR and ErbB-3, alone

or in combination. The resulting attractor states for the modified networks

hinted at a less strong impact of mTOR on AKT, but indicated synergistic drug

resistance potential of p70S6K, ErbB-3 and PDK1. Hence, one could regard

the PIK3CA mutation as an edgetic mutation leading to AKT gain-of-function

and contributing to trastuzumab inefficacy in HCC1954.

In the perturbation simulations on the long-term networks, RB and RPS6

as indicators for proliferation, cell cycle or tumour progression (Henjes et al.,

2012) were analysed besides AKT and ERK1/2. The optimal long-term drug

response for AKT and ERK1/2 mainly confirmed the short-term observations.

Furthermore, a quick drug response was observed for RPS6 while RB showed a

delayed response, which could be partially explained by newly inferred network

edges. Also the long-term networks revealed feedback mechanisms as well as
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novel edges or deletions which could contribute to drug resistance.

added SKBR3
added HCC1954
added BT474
equal (prior)

inhibition

EGF E T P HRG

ERBB1 ERBB2 ERBB3

AKT mTORERK1/2

MEK1/2

p70S6K

PLCγ PKCαPDK1

FIGURE 4.2. Reconstructed ErbB network models based on short-term measurements
(von der Heyde et al., 2014a).

To sum up, protein interaction models for three breast cancer cell lines as

representatives of different HER2-positive breast cancer phenotypes under short-

and long-term drug treatment were reconstructed from data and literature.

The conducted perturbation simulations to reveal optimal drug combinations

were mostly consistent with the experimental data. This confirms combined
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reverse and forward engineering techniques as valuable for drug discovery and

personalized medicine. The network structures unveiled deregulated protein

interactions in the ErbB signalling network, potentially contributing to drug

resistance.

As proteomic signalling directly effects tumour development, it represents a

promising target in targeted cancer therapy. Network models compose a first

step to gain insight into individual mechanisms of drug response or resistance

in breast cancer. Understanding such mechanisms in more detail will lead to

optimized (combined) therapy approaches.

The detailed work is published in BMC Systems Biology, 2014, 8:75, and

attached in Appendix A.

4.1.2 Declaration of my contribution

I initiated the simulation study concepts together with Tim Beißbarth. I further

carried out the literature research, the graphical and statistical analyses, the

network reconstructions as well as the perturbation simulations followed by

corresponding analyses.

Furthermore, I extended the ddepn software by an interface function called

adjacencyMatrix to logicalRules, to directly combine reverse engineering via

ddepn and forward engineering via BoolNet. The background was that BoolNet

expects networks represented in form of logical interaction rules as input,

whereas ddepn delivers the reconstructed networks in form of adjacency matrices.

The new function translates the adjacency matrices to logical interaction rules

of the network nodes.

Finally, I drafted the associated manuscript and made the data publicly available

in GEO.

Frauke Henjes performed the RPPA measurements under supervision of Ulrike

Korf and was mainly involved in target selection for the modelling approach.

Johanna Sonntag was involved in discussions about the conducted RPPA

experiments. Christian Bender and Tim Beißbarth developed the applied ddepn

network reconstruction algorithm and participated in planning the modelling

procedure. All authors edited, read and approved the final manuscript.
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4.2 RPPanalyzer Toolbox: An improved R package for

analysis of reverse phase protein array data

The manuscript on which this chapter is based has already been published.

Silvia von der Heyde , Johanna Sonntag, Daniel Kaschek, Christian
Bender, Johannes Bues, Astrid Wachter, Jens Timmer, Ulrike Korf and Tim
Beißbarth∗, RPPanalyzer Toolbox: An improved R package for analysis of
reverse phase protein array data, BioTechniques, 2014, 57(3):125-135.

∗Corresponding author

4.2.1 Summary and discussion

The intention of this work was to upgrade the RPPanalyzer open-source soft-

ware package, originally developed by Mannsperger et al. (2010), since the

analysis of proteomic large-scale RPPA data requires specialized software tools

which can be tailored towards individual requirements. More precisely, the

software extension arose out of practical user requirements at the German

Cancer Research Center during collaborations.

The RPPA technology has already proven its potential for clinical applications,

biomarker discovery and in systems biology (Hennessy et al., 2010; Gonzalez-

Angulo et al., 2011; Uhlmann et al., 2012; Sonntag et al., 2014; Ummanni et al.,

2014).

The R package RPPanalyzer provides functions for RPPA data preprocessing

followed by basic statistical analyses and data visualization. It was especially

designed for experimentalists to easily assess data quality and results. Its

successful application has already been documented (Jozefczuk et al., 2012;

Nelson et al., 2012; Sonntag et al., 2014; Ummanni et al., 2014). The en-

hanced version of the RPPanalyzer preserves its flexibility, but offers improved

and streamlined standard preprocessing functions as well as new methods for

variance estimation, normalization and visualization of time course data. The

recommended workflow how to apply the RPPanalyzer is depicted in Figure 4.3.
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file sample
description (txt)

file slide
description (txt)

output file (txt) 
processed data

image analysis

gpr files per slide

dataPreproc()

write.Data()

sample.median()

select.sample.group()

remove.arrays()

test.correlation()

rppa2boxplot()

rppaList2Heatmap()

plotTimeCourse()

dilution intercept
corrected and FCF
normalized data

getErrorModel()

averageData()

plotTimeCourseII()

selected data
(merged replicates)

quality check plots

graphical and statistical analysis tools

FIGURE 4.3. Workflow applying the RPPanalyzer Toolbox (von der Heyde et al., 2014b).

Initial data preprocessing steps were merged into the new wrapper function

dataPreproc leading to a standardized output.

In a first step, the raw data are imported from RPPA slide and sample descrip-

tion text files as well as image analysis result files in gpr format as obtained by
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the commercial software GenePix® Pro (http://www.moleculardevices.com).

The latter contain the spot-specific signal intensities as well as information

about the array layout. The slide and sample description text files have to be

provided by the user. They have to list the analysed target proteins and to

contain sample-specific information, respectively. More detailed information

about their set-up can be found in the corresponding user manual, i.e. the

vignette of the RPPanalyzer R package.

The next step of the data preprocessing is to correct the data for background

noise via the new method correctDilinterc. In detail, signal intensities are

corrected by subtracting an intercept which is estimated for a total protein

concentration of zero (0 µg/µl). This requires dilution series data. The main

advantage of the new method is the independence of sample-wise dilution series,

as correction factors are estimated based on just one representative. In the

exemplary data set described in Chapter 1 in Section 1.2 the representative

dilution series to normalize the A549 cell line includes triplicates of six con-

centrations starting at 2 µg/µl (100%, 50%, 25%, 12.5%, 6.25%, 3.125%) for

samples after 10 minutes of HGF (75 ng/ml) stimulation (see Figure 1.3 A).

The actual samples cover measurements at six different time points ranging

from 0 to 120 minutes, whereas the corresponding dilution series represents

time point 10 minutes only. The actual samples are defined as measurement in

the sampledescription text file while the serially diluted samples are defined as

control. Additionally, the dilution series which should be used for background

correction of certain samples of interest has to be flagged accordingly in this

file, as usually several dilution series are measured, representing different cell

lines or conditions. The selection of an appropriate dilution series strongly

depends on the experimental setup.

In a first step, smoothing splines are applied to extrapolate the dilution series

data to zero concentration. The uncertainty of this extrapolated intercept is

estimated by non-parametric bootstrapping. The function provides plots of the

dilution series and corresponding intercept estimations, as exemplarily shown

in Figure 4.4.
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FIGURE 4.4. Smoothing spline fit through dilution series data of the PRAS40 antibody
(supplier code 2691) in the A549 cell line for extrapolation to zero (according to von der
Heyde et al. (2014b)).

The estimated intercepts I are conditional on the detection antibody, the slide

and the user-defined grouping factor, e.g. the cell line, of the samples which

should be corrected by the same dilution series. Linear models are set up for

the following hypotheses.

I ∼ const. (1.1)

I ∼ const.+ antibody (1.2)

I ∼ const.+ antibody + slide (1.3)

I ∼ const.+ antibody + slide + group (1.4)
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The models are weighted by the estimated uncertainties of the intercepts. A

provided bar plot of the residual sum of squares (RSS) should be used to choose

the model with the smallest RSS and least complexity. For example, if model

1.3 and 1.4 have the same smallest RSS, model 1.3 should be preferred, as the

grouping factor in 1.4 does not provide additional information. Based on the

chosen model, the noise of the actual measurement data at concentration zero

is then predicted and subtracted from the raw intensities.

Subsequently, the background corrected signal intensities are normalized spot-

wise by total protein concentration via the Fast Green FCF approach (Loebke

et al., 2007) as explained in Chapter 1 in Section 1.2.

Apart from data-preprocessing the dataPreproc function generates plots to

assess data quality. Visualization of the raw signal intensities of serially diluted

control samples allows to check linearity of target protein detection. Fur-

thermore, background noise corrected and FCF normalized target signals are

plotted against the signal arising from the secondary antibody to detect bias

caused by the secondary antibody. Finally, a quantile-quantile plot is generated

to check whether the data are normally distributed.

The function returns matrices of the raw data, i.e. signal intensities as well as

information about the samples and the arrays, matrices of the corrected data via

correctDilinterc as well as matrices of the data additionally normalized by

total protein content via Fast Green FCF. The raw data are further exported to

a text file in table format. In general, data resulting from any of the processing

steps can be exported manually in such a way via the write.Data function.

After the data-preprocessing the next steps in the recommended workflow

are to merge technical replicates via the sample.median function, to select

data subsets of interest via the select.sample.group function and to remove

data of target proteins which are not considered for further downstream analy-

sis or data which did not pass the quality check via the remove.arrays function.

Data processed this way can then be analysed by applying diverse graphical and

statistical methods of the RPPanalyzer which is not restricted to the suggested

functions in Figure 4.3. The R package can be easily expanded and tailored to

the specific user requirements by new or modified functions. The available and

recommended methods are explained in the following.

The test.correlation function offers correlation plots to compare protein
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expression and a numeric sample attribute of interest combined with statistical

testing according to Pearson, Spearman or Kendall.

The function rppa2boxplot allows to visualize data as boxplots for sample

groups of interest. Furthermore, statistical rank sum tests are applied. In

case of testing against a reference group, two-sample Wilcoxon tests are per-

formed with p-value adjustment for multiple testing according to Benjamini

and Hochberg (1995). Otherwise, a Kruskal-Wallis rank sum test is applied

to test for a general difference between all samples. An example for the data

of MET receptor signalling described in Chapter 1 in Section 1.2 is shown in

Figure 4.5. Figure 4.5 A displays a boxplot of MET receptor phosphorylation

at site Y1349 at time point 15 minutes, depending on HGF concentration. The

p-value resulting from a Kruskal-Wallis rank sum test is marked in green and

indicates a significant difference between the signal intensities of the six sample

groups. Figure 4.5 B shows a time course plot of MET receptor phosphorylation

at site Y1349 over 120 minutes after HGF stimulation at different concentration

levels.

A B

FIGURE 4.5. Exemplary graphics created with the RPPanalyzer (according to von der
Heyde et al. (2014b)).

While the boxplot function was just optimized regarding visual appearance and

extended by the Wilcoxon testing, the time course plot was generated with the

completely new function plotTimeCourseII. It was added as an alternative
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to the already implemented function plotTimeCourse which offers different

options for plotting time courses such as smoothed spline fits through the

data. The new plotTimeCourseII function is applied after transformation of

the preprocessed data by the new getErrorModel and averageData functions.

This includes enhanced variance estimation which is appropriate for typical

RPPA triplicate measurements.

The getErrorModel function estimates signal variance by combining infor-

mation from triplicate measurements. Therefore, the parameters σ2
0 and σ2

rel

of the error model σ2 = σ2
0 + S2σ2

rel are estimated in a maximum likelihood

approach. The signal strength is represented by S. The variance at zero signal

is represented by σ2
0. The relative error is represented by σ2

rel. The error

model reflects the variance dependency on the signal strength. This further

implies dependency on the subarrays and detection antibodies, as slides probed

with different antibodies are scanned with different scanner settings to yield

an optimal image for data analysis. Furthermore, the signal normalization

via Fast Green FCF is related to the subarrays. Therefore, the parameter

estimation is done for data subsets per slide and antibody. The model covers

the situation when signal variances increase with signal strength as well as the

case of constant or (almost) zero variance at zero signal.

The averageData function averages biological replicates which implies that

lysate spots result from equal treatment of the samples. In contrast, technical

replicates denote that the identical lysate is spotted several times on the same

slide. The method assumes that a true signal dynamic ys(t) for a given stimu-

lation s exists. The observed signal Sjs(t) for each biological replicate j on a

specific slide under a specific stimulation s differs from ys(t) by a scaling factor

sj and biological variability. To estimate the true signal and the scaling factors

per detection antibody, the objective function

∑
i,j,s

(sjSijs − yis)2

s2j

[
σ2
ijs,0 + (yis

sj
)2σ2

ijs,r

]
is minimized for the measurement time points ti.

An already established method in the RPPanalyzer package to visualize clus-

ters of samples in a heatmap is the rppaList2Heatmap function. In advance,

the data can be logarithmized via the new logList function. Thus the data
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look more normally distributed as required by statistical tests and the com-

putation of distance measures. Furthermore, this leads to variance stabilization.

In conclusion, the upgrade of the RPPanalyzer package simplifies, enhances

and standardizes the analysis of RPPA data. It is more user-friendly than

the original version, as important functionalities for preprocessing are merged

now. Furthermore, it is recommended how to integrate relevant functions in a

standardized analysis workflow. This is concretely illustrated by an exemplary

RPPA data set of longitudinal measurements of targets involved in MET re-

ceptor signalling upon stimulation with different HGF concentrations. Above

that, the software has been extended by new functions and already established

ones have been improved.

The detailed work is published in BioTechniques, 2014, 57(3):125-135, and

attached in Appendix B.

4.2.2 Declaration of my contribution

I developed the new wrapper function for data preprocessing and implemented

all of the upgrades into the RPPanalyzer R package under supervision of Tim

Beißbarth. Therefore, the functions had to be adapted to the RPPanalyzer for-

mat and the vignette had to be updated. Especially the new correctDilinterc

function required a new default parameter in the sample description file to

match samples with a specific dilution series. This parameter also had to

be embedded in the function. I updated the boxplot function by a sorting

option as well as a Wilcoxon test. Furthermore, I added the new logList

function to logarithmize RPPanalyzer list elements. Above that, as one of the

software package maintainers at R-Forge (https://r-forge.r-project.org),

I corrected erroneous functions, solved compatibility problems and refined

graphical representations in plots regarding labels, axes and margins.

Johannes Bues developed the new time course plotting function under su-

pervision of Ulrike Korf. Daniel Kaschek developed the new functions for

background correction as well as variance estimation under supervision of

Jens Timmer. Johanna Sonntag, under supervision of Ulrike Korf, provided

the RPPA example data and drafted together with me and Tim Beißbarth
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the conceptual design of the software update. Christian Bender is the cur-

rent maintainer of the R package at CRAN (http://cran.r-project.org).

Astrid Wachter was involved in discussions and is currently one of the package

maintainers at R-Forge. All authors contributed to conception, writing and

editing of the manuscript.

4.3 mRNA Profiling Reveals Determinants of Trastuzumab

Efficiency in HER2-Positive Breast Cancer

The manuscript on which this chapter is based has already been published.

Silvia von der Heyde , Steve Wagner, Alexander Czerny, Manuel
Nietert, Fabian Ludewig, Gabriela Salinas-Riester, Dorit Arlt and Tim
Beißbarth∗, mRNA Profiling Reveals Determinants of Trastuzumab Efficiency
in HER2-Positive Breast Cancer, PLoS ONE, 2015, 10(2):e0117818.

∗Corresponding author

4.3.1 Summary and discussion

The intention of this work was to infer genes and genetic variations (SNPs)

affecting trastuzumab action and resistance in HER2-positive breast cancer

cell lines. Therefore, three cell lines with different resistance phenotypes were

analysed, namely BT474 as model of trastuzumab sensitivity, HCC1954 as

model of intrinsic resistance, and BTR50, derived from BT474, as model of

acquired resistance. Resistant BTR50 cells were developed by culturing parental

BT474 cells in the presence of trastuzumab for around six months.

Differential expression analyses were performed on RNA-Seq data of these

cell lines with and without trastuzumab treatment (GEO accession number

GSE55005). In detail, five separate two-sample tests were performed on six

samples, namely on the breast cancer cell lines with and without trastuzumab

treatment. Two tests compared the gene expression in the resistant and the

wild type cells, i.e. HCC1954 and BTR50 were compared to BT474. These
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revealed 46 genes which are expected to contribute to trastuzumab resistance.

The remaining three tests compared the gene expression in the untreated and

trastuzumab treated cells, i.e. each of the three cell lines was compared to

its trastuzumab treated version. The test for BT474 revealed 18 genes which

are expected to contribute to trastuzumab efficiency. In general, significant

(fdr < 0.05) differential expression was defined by a two-fold difference in gene

expression. To exclude false positives from the combined set of 64 candidate

genes, ten genes were excluded which were further differentially expressed in

the test for BTR50 under trastuzumab treatment, as no drug effect is expected

in the resistant cell line. The same would have held for HCC1954, but the

related test revealed no genes overlapping with the candidate set.

This led to 54 genes which are very likely to determine trastuzumab efficiency

in HER2-positive breast cancer. Many of these genes have already been dis-

cussed in the context of breast cancer and about ten percent especially in the

context of trastuzumab action. These genes could contribute to develop novel

strategies preventing trastuzumab resistance. 90% of 40 selected candidates

were validated by real-time quantitative PCR (RT-qPCR). More than 85% of

this validated selection of candidate genes were differentially expressed between

the sensitive cell line and the intrinsically resistant cell line HCC1954. The re-

maining ones were differentially expressed between BT474 and its trastuzumab

treated version.

The candidates of comparing BT474 and HCC1954 were mainly related to the

different steroid receptor status of the cell lines. While BT474 is known to be

positive for estrogen receptor (ER+) as well as for progesterone receptor (PR+)

(Knutson et al., 2012), HCC1954 is negative for both receptors. These candi-

dates included mainly tumour enhancers which were upregulated in HCC1954

and have already been ascribed to ER-negative (ER-) breast cancer subtypes.

GDF15, IL8, LCN2, PTGS2 and 20 other genes were significantly higher ex-

pressed in HCC1954 than in BT474, while NCAM2, COLEC12, AFF3, TFF3,

NRCAM, GREB1 and TFF1 were significantly lower expressed. Interestingly,

the ER+ cell line BT474 resembles a more favourable luminal subtype of breast

cancer, while the ER- cell line HCC1954 is similar to the more aggressive

basal-like one (Gonçalves et al., 2008; Di Cello et al., 2013). This was confirmed

by specific candidate genes, which have been reported in this context, such as

S100A9 (Gonçalves et al., 2008) and CLDN1 (Di Cello et al., 2013) which were
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overexpressed in HCC1954 and associated with basal subtypes.

ALPP, CALCOCO1, CAV1, CYP1A2 and IGFBP3 were significantly higher

expressed in the trastuzumab treated than in the untreated BT474 cell line.

Figure 4.6 and 4.7 show the expression fold changes of the validated genes.
A

K
R

1C
1

IL
8

C
E

S
1

K
R

T
81

M
Y

E
O

V
K

R
T

5
K

LK
6

K
LK

5
G

B
P

1
LI

F
T

G
M

2
C

T
G

F
K

R
T

17
P

T
G

S
2

K
LK

8
IF

IT
M

1
P

T
R

F
C

LD
N

1
IF

I2
7

T
IN

A
G

L1
F

X
Y

D
5

S
10

0A
9

G
D

F
15

LC
N

2
T

F
F

1
G

R
E

B
1

N
R

C
A

M
T

F
F

3
A

F
F

3
C

O
LE

C
12

N
C

A
M

2

BT474 vs. HCC1954

lo
g2

 F
ol

d 
C

ha
ng

e

RNA−Seq
RT−qPCR

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

14

Genes

FIGURE 4.6. Fold Changes (log2) of differentially expressed genes (BT474 versus
HCC1954) with positive values indicating an upregulation in BT474 (von der Heyde et al.,
2015).

Intensive literature research was performed to elucidate the role of the candidate

genes in affecting trastuzumab action. About 20% of the validated subset have

already been discussed in the context of breast cancer and trastuzumab action.

For example, IL8, PTGS2, GDF15 and LCN2 have already been reported to
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hinder trastuzumab action. Interestingly, the PI3K pathway was considered

to play a role in this context (Korkaya et al., 2012; Kumandan et al., 2013)

which is in line with the PI3K gain-of-function mutation in the resistant cell

line HCC1954. Furthermore, IL8 and LCN2 seem to cooperatively stabilize

the resistant phenotype (Lin et al., 2011). Also PTGS2 and HER2 seem to

cooperate within a positive feedback loop (Benoit et al., 2004; Wang et al., 2004).
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FIGURE 4.7. Fold Changes (log2) of differentially expressed genes (BT474 plus trastuzumab
versus BT474) with positive values indicating an upregulation upon drug treatment (von der
Heyde et al., 2015).

The two outstanding candidates revealed by comparing BT474 and its drug

treated version were CAV1 and IGFBP3. Both genes have already been re-



4.3 mRNA Profiling Reveals Determinants of Trastuzumab Efficiency in
HER2-Positive Breast Cancer 49

ported to influence trastuzumab efficacy. Trastuzumab action seems to be

supported by low CAV1 expression (Sekhar et al., 2013) but high IGFBP3

levels (Lu et al., 2001; Jerome et al., 2006; Dokmanovic et al., 2011).

A more general finding was a stronger discrepancy between HCC1954 and BT474

than between BTR50 and BT474. Furthermore, HCC1954 was influenced less

by trastuzumab than BTR50. Hence, intrinsic resistance might be harder

to overcome than acquired one. This has been deduced from the Principle

Component Analysis (PCA) depicted in Figure 4.8.

−1e+05 0e+00 1e+05 2e+05 3e+05

−
60

00
0

−
40

00
0

−
20

00
0

0
20

00
0

40
00

0

PCA plot

PC1

P
C

2

BT474

BT474plusT

BTR50

BT474

BTR50

BTR50plusT

HCC

BT474

HCC

HCCplusT

FIGURE 4.8. Principle Component Analysis (PCA) plot of all measured samples, in which
same colours denote that samples belong to the same conducted statistical test (von der Heyde
et al., 2015).



50 Cumulative part of the dissertation

Interestingly, also more SNPs were detected in the intrinsically resistant cell line,

which could contribute to the resistant phenotype. SNP calling and analysis

within literature research was performed in the untreated cell lines BT474,

HCC1954 and BTR50. Being aware of the definition mentioned in Chapter 1

in Section 1.2, the detected sequence variations which are potentially related

to trastuzumab efficacy are called ‘SNPs’ in the following.

The SNP analysis focused on the validated gene candidates of the comparison

between BT474 and its trastuzumab treated version (ALPP, CALCOCO1,

CAV1, CYP1A2, IGFBP3) as well as the candidates of the comparison be-

tween BT474 and HCC1954 which were already reported in the context of

trastuzumab efficacy, namely GDF15, IL8, LCN2 and PTGS2. Table 4.1 dis-

plays information about chromosomal location of the detected SNPs in the

candidate genes of interest as well as corresponding SNP ID numbers (Sherry

et al., 1999).

Gene Chromosome Position Variation Cell line

CAV1 7 116200554 rs374946197 HCC1954

IGFBP3 7 45952254 rs6670 BTR50

IGFBP3 7 45957678 rs3793345 HCC1954

IGFBP3 7 45960645 rs2854746 HCC1954

IL8 4 74609045 rs1126647 HCC1954

PTGS2 1 186641626 rs2853805 HCC1954

PTGS2 1 186642429 rs2206593 HCC1954

PTGS2 1 186643058 rs5275 HCC1954

TABLE 4.1. Table of detected SNPs in the candidate genes.

Additionally analysed genes were HER2 due to the HER2+ status of the cell

lines, PIK3CA due to the known mutation in HCC1954, as well as MAPK1

and AKT1 as main players in the MAPK and PI3K/AKT signalling pathway,

respectively. Table 4.2 displays information about the detected SNPs in the

additional genes of interest. In case of missing SNP ID numbers (‘-’), a novel

mutation could have been inferred.
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Gene Chromosome Position Variation Cell line

AKT1 14 105235824 rs58565216 HCC1954

AKT1 14 105236287 rs35416681 HCC1954

AKT1 14 105241304 rs2230506 HCC1954

HER2 17 37855834 rs4252596 HCC1954

HER2 17 37859083 rs34284966 BTR50

HER2 17 37869895 - HCC1954

HER2 17 37870378 rs2934967 HCC1954

HER2 17 37871081 - HCC1954

HER2 17 37876179 rs4252639 BT474, BTR50

HER2 17 37876835 rs2952156 BTR50, HCC1954

HER2 17 37877221 - BTR50

HER2 17 37877412 rs2952157 BT474, BTR50, HCC1954

HER2 17 37877447 rs11653998 HCC1954

HER2 17 37878113 rs115334808 BT474, BTR50

HER2 17 37878311 - BTR50

HER2 17 37878371 - BTR50, HCC1954

HER2 17 37878574 - BTR50, HCC1954

HER2 17 37878635 - BTR50, HCC1954

HER2 17 37878696 - BTR50

HER2 17 37879030 rs2088126 BTR50, HCC1954

HER2 17 37884037 rs1058808, HCC1954

rs370420724

HER2 17 37885332 rs2952158 BTR50, HCC1954

MAPK1 22 22115004 rs6928 BT474, BTR50, HCC1954

MAPK1 22 22115353 rs9340 BTR50, HCC1954

MAPK1 22 22115498 rs3810610 BT474, BTR50, HCC1954

MAPK1 22 22115886 rs13515 BT474, BTR50

MAPK1 22 22116202 rs13943 BT474, BTR50, HCC1954

MAPK1 22 22116467 rs1063311 BT474, BTR50, HCC1954

MAPK1 22 22162072 - BTR50

PIK3CA 3 178952085 rs121913279 HCC1954

TABLE 4.2. Table of detected SNPs in AKT1, HER2, MAPK1 and PIK3CA.
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For eight of the 13 genes of interest SNPs were detected according to pre-defined

filter criteria in HCC1954. About 80% of these variations have already been

listed in the dbSNP database (Sherry et al., 1999) but just about 40% of them

have been analysed more deeply in literature, even less in the context of breast

cancer. For HER2, 13 variations were inferred. Five variations were detected

for MAPK1. Three variations were found for PTGS2 and AKT1, respectively.

Two SNPs were called for IGFBP3, and one SNP was found for PIK3CA,

CAV1 and IL8 each. The SNP rs2854746 of IGFBP3 in HCC1954 seems to

influence IGFBP3 expression. It has already been reported that IGFBP3

is involved in breast carcinogenesis and associated with the SNP rs2854746

(Cheng et al., 2007; Patel et al., 2008; D’Aloisio et al., 2009; Su et al., 2010).

Interestingly, IGFBP3 also had a variation in BTR50, namely rs6670, but it

was not matching the ones of HCC1954, which points to a role in acquired

resistance. For PIK3CA, the SNP rs121913279 was inferred which is referring

to the known H1047R mutation in HCC1954 (Kataoka et al., 2010; Tong et al.,

2012). This result supports usage of RNA-Seq data for SNP detection.

The detected mutations in BT474 formed a subset of the ones in BTR50,

pointing at resistance related novel mutations in the cell line with acquired

resistance. The detected mutations in BT474 included three variations for

HER2 and five variations for MAPK1.

For three of the 13 genes of interest SNPs were detected in BTR50 which passed

the filter criteria. For HER2, 13 variations were detected. Seven variations

were inferred for MAPK1, and one variation was detected for IGFBP3. Two

third of the SNPs have already been listed in the dbSNP database but just

about 30% of those have been analysed more deeply in literature, even less in

the context of breast cancer. Interestingly, four annotated SNPs in BTR50,

which were not detected in BT474, overlapped with the SNPs in HCC1954.

Three of these SNPs belonged to HER2, namely rs2952156, rs2088126 and

rs2952158, and one belonged to MAPK1, namely rs9340. These could very

likely contribute to trastuzumab resistance.

In principal, all of the variations listed in Table 4.1 and 4.2 could contribute

to trastuzumab resistance and explain the different resistance cell phenotypes.

Some inferred SNPs are already in the focus of breast cancer research, but

mostly no influence on survival or risk has been detected for single ones. How-

ever, some seem to have an impact on the phenotype in combination with
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further variations.

In summary, these results provide a basis for a deeper analysis of candidate

genes and mutations within further experiments. More detailed information

about mechanisms of trastuzumab action and resistance could help to predict

the efficacy of trastuzumab therapy and hence improve stratification within

personalized medicine approaches for HER2-positive breast cancer patients.

The detailed work is published in PLoS ONE, 2015, 10(2):e0117818, and

attached in Appendix C.

4.3.2 Declaration of my contribution

Tim Beißbarth, Dorit Arlt and me did the conceptual design of the experiments

and data analysis. I performed the differential expression analysis on the RNA-

Seq data. Above that, I interpreted the corresponding results of this analysis

as well as of the SNP analysis, which was conducted by Alexander Czerny.

The interpretation required intensive literature research and comparisons with

external public data as well. Finally, I drafted the manuscript and made the

data publicly available in GEO.

Manuel Nietert managed the data acquisition and was involved in discussions on

differential expression analysis. Gabriela Salinas-Riester and Fabian Ludewig

generated the RNA-Seq data. Steve Wagner cultivated and treated the cell

lines and performed RT-qPCR validation.



Chapter 5

Outlook

Despite promising progress in precision oncology, intrinsic or acquired resis-

tance remains problematic in personalized medicine. Modern technology allows

to measure gene and protein expression in a way that becomes more and

more efficient, i.e. faster and cheaper. This provides deeper insights into the

molecular level of drug action and resistance mechanisms. The aim of the

three studies which are summarized in this work was to contribute to a better

understanding of such mechanisms in HER2-positive breast cancer by using

existing technologies as well as by upgrading established software solutions.

The first study presented in this dissertation was based on proteomic time course

measurements. Three HER2-positive breast cancer cell lines with different re-

sistance phenotypes were treated with the drugs erlotinib, trastuzumab and

pertuzumab alone or in combination, and the effect on several proteins of

interest was analysed.

The reconstructed protein signalling network models per cell line revealed novel

interactions which contributed to resistance mechanisms and partly explained

the different cell line phenotypes by different pathway influences. As Boolean

models represent a strong simplification of the actual underlying biology, the

hypothetical results should be evaluated by additional experiments like protein

knock-outs.

The network models were further used to simulate drug effects which were

mainly confirmed by the input data. Also these results could be investigated

further by additional experiments. For example, one could test whether other



Outlook 55

techniques than RPPA would lead to the same results, especially not measuring

drug influence over time but the homoeostatic state of the system which was

analysed in the simulations.

The second study presented in this thesis comprised a software extension for

RPPA data processing and analysis. The R package RPPanalyzer was upgraded

and streamlined leading to a more user-friendly handling.

Although a standardized workflow was suggested and key steps were applied

on an example data set, R packages can be extended by any functions tailored

to the specific needs of the users. Hence, the presented RPPanalyzer Toolbox

won’t be the final version of the software. The main functions for plotting and

basic statistical analysis are provided, but higher sophisticated functions can

be integrated at any time.

The third study presented in this dissertation was based on genomic measure-

ments, i.e. RNA-Seq data providing genome-wide information. Three cell lines

with different resistance phenotypes towards trastuzumab were analysed. Apart

from a sensitive cell line, two resistant cell lines were analysed, of which one was

intrinsically resistant due to a mutation, whereas the other one was cultured to

resistance and hence represented acquired resistance.

Differential gene expression was revealed in the cell lines with and without

trastuzumab treatment, leading to a set of candidate genes which are likely

involved in trastuzumab action and resistance. Although the differentially

expressed genes were mostly validated by RT-qPCR, it would be interesting to

confirm the results within further experiments. Especially, several hypotheses

were proposed regarding the genes’ role in trastuzumab efficiency, which were

mainly based on literature research and should be investigated in more detail.

Furthermore, SNPs were detected in the untreated cell lines which could also

play an important role for trastuzumab efficiency. As RNA-Seq data are usually

not used for SNP calling, it would be of special interest to validate the presented

results further.

Another interesting aspect of the study was the discrepancy between intrinsic

and acquired resistance, which should be investigated in more detail. Revealing

differences in drug susceptibility between specimens with intrinsic and acquired

resistance would lead to better stratification in individualized therapeutic ap-
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proaches to overcome resistance.

In conclusion, the presented studies in this thesis contribute to nowadays red-

hot topic of personalized medicine with special focus on HER2-positive breast

cancer and the corresponding therapeutic trastuzumab.

The related genomic and proteomic data analyses of different cancer phenotypes

would benefit from additional experiments, either on the same data basis or in

an analogous design, considering additional drugs or phenotypes, for example.

Also the established protein signalling network models could be further validated

and used for ongoing simulations. Finally, the provided software extension

should be continuously upgraded according to user requirements and technology

development.

Ever-expanding knowledge about molecular mechanisms of individual cancer

development and drug resistance is indispensable for patient stratification in

precision oncology and successful sequential application of biomarker-based

targeted therapies.
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Figueroa-Magalhães, M. C., Jelovac, D., Connolly, R. M., and Wolff, A. C.

(2013). Treatment of HER2-positive breast cancer. The Breast. PMID:

24360619.
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A., Adrover, E., Sánchez-Tejada, L., Giner, D., Ortiz-Mart́ınez, F., and Peiró,
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Gonçalves, A., Charafe-Jauffret, E., Bertucci, F., Audebert, S., Toiron, Y.,

Esterni, B., Monville, F., Tarpin, C., Jacquemier, J., Houvenaeghel, G.,

Chabannon, C., Extra, J.-M., Viens, P., Borg, J.-P., and Birnbaum, D. (2008).

Protein profiling of human breast tumor cells identifies novel biomarkers

associated with molecular subtypes. Molecular & cellular proteomics: MCP,

7(8):1420–1433.

Gonzalez-Angulo, A. M., Hennessy, B. T., Meric-Bernstam, F., Sahin, A., Liu,

W., Ju, Z., Carey, M. S., Myhre, S., Speers, C., Deng, L., Broaddus, R.,

Lluch, A., Aparicio, S., Brown, P., Pusztai, L., Symmans, W. F., Alsner, J.,

Overgaard, J., Borresen-Dale, A.-L., Hortobagyi, G. N., Coombes, K. R.,

and Mills, G. B. (2011). Functional proteomics can define prognosis and

predict pathologic complete response in patients with breast cancer. Clinical

Proteomics, 8(1):11.

Gray, I. C., Campbell, D. A., and Spurr, N. K. (2000). Single nucleotide

polymorphisms as tools in human genetics. Human molecular genetics,

9(16):2403–2408.

Greenbaum, D., Luscombe, N. M., Jansen, R., Qian, J., and Gerstein, M. (2001).

Interrelating different types of genomic data, from proteome to secretome:

’oming in on function. Genome Research, 11(9):1463–1468.

Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa,

M., Kim, J.-H., Saito, K., Saeki, M., Shirouzu, M., Yokoyama, S., and

Konagaya, A. (2003). A computational model on the modulation of mitogen-

activated protein kinase (MAPK) and Akt pathways in heregulin-induced

ErbB signalling. The Biochemical journal, 373(Pt 2):451–463.
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Abstract

Background: Despite promising progress in targeted breast cancer therapy, drug resistance remains challenging.
The monoclonal antibody drugs trastuzumab and pertuzumab as well as the small molecule inhibitor erlotinib were
designed to prevent ErbB-2 and ErbB-1 receptor induced deregulated protein signalling, contributing to tumour
progression. The oncogenic potential of ErbB receptors unfolds in case of overexpression or mutations. Dimerisation
with other receptors allows to bypass pathway blockades. Our intention is to reconstruct the ErbB network to reveal
resistance mechanisms. We used longitudinal proteomic data of ErbB receptors and downstream targets in the ErbB-2
amplified breast cancer cell lines BT474, SKBR3 and HCC1954 treated with erlotinib, trastuzumab or pertuzumab,
alone or combined, up to 60 minutes and 30 hours, respectively. In a Boolean modelling approach, signalling
networks were reconstructed based on these data in a cell line and time course specific manner, including prior
literature knowledge. Finally, we simulated network response to inhibitor combinations to detect signalling nodes
reflecting growth inhibition.

Results: The networks pointed to cell line specific activation patterns of the MAPK and PI3K pathway. In BT474, the
PI3K signal route was favoured, while in SKBR3, novel edges highlighted MAPK signalling. In HCC1954, the inferred
edges stimulated both pathways. For example, we uncovered feedback loops amplifying PI3K signalling, in line with
the known trastuzumab resistance of this cell line. In the perturbation simulations on the short-term networks, we
analysed ERK1/2, AKT and p70S6K. The results indicated a pathway specific drug response, driven by the type of
growth factor stimulus. HCC1954 revealed an edgetic type of PIK3CA-mutation, contributing to trastuzumab inefficacy.
Drug impact on the AKT and ERK1/2 signalling axes is mirrored by effects on RB and RPS6, relating to phenotypic
events like cell growth or proliferation. Therefore, we additionally analysed RB and RPS6 in the long-term networks.

Conclusions: We derived protein interaction models for three breast cancer cell lines. Changes compared to the
common reference network hint towards individual characteristics and potential drug resistance mechanisms.
Simulation of perturbations were consistent with the experimental data, confirming our combined reverse and
forward engineering approach as valuable for drug discovery and personalised medicine.
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Background
Longitudinal time course data are the basis for modelling
signalling networks in a holistic systems biology approach
in order to uncover mechanisms of signal transduction
dynamics [1,2]. Network models provide novel insight
[3,4] and allow us to perform efficiently simulations to
predict systems behaviour or evaluate certain hypotheses
[5]. Furthermore, combining perturbation experiments
with the measurements of system dynamics seems to
be even more efficient than time series data on their
own [6-8]. Knock-outs or stimuli as directed perturba-
tions support the systematic identification of regulatory
relationships.

Quantitative models, based on differential equations,
require explicit knowledge on the kinetics of the sys-
tem of interest [9-12]. In contrast, the qualitative Boolean
abstraction considers the components’ states as binary
variables, being either active (1) or passive (0), but nev-
ertheless encompasses the essential functionality [13,14].
Wang et al. stressed, that Boolean models have already
been successfully applied in reverse engineering of pro-
teomic signalling networks, and their reduced complexity
is considered to be especially advantageous for large-
scale systems [15]. To avoid the drawbacks of purely data-
or literature-driven algorithms regarding completeness,
generalisation or interpretability, combined approaches
become more and more prominent in the area of net-
work reconstruction [6,16,17]. Some reverse engineering
approaches, like ddepn [6] or CellNOptR [18], ideally join
perturbed time course input data and literature prior
knowledge in network reconstruction, while preserving
the simplicity of Boolean logic at the same time. Forward
engineering methods allow subsequent analysis of the sta-
ble states of the reconstructed system. Hence, this may
allow to deduce possible long-term behaviour of compo-
nents activity under perturbations. Such approaches are
integrated and freely available in the open source Python
software package BooleanNet [19] or in the R [20] pack-
age BoolNet [21], for example. As reviewed by Samaga
and Klampt [22], several software tools can be applied for
the dynamic modeling of logical signal transduction net-
works. Among others, they exemplarily mentioned GIN-
sim [23], SQUAD [24], BooleanNet [19], ChemChains [25],
Odefy [26], and BoolNet [21].

Here we focus on protein signalling networks in breast
cancer, representing the most common cancer type
among women [27]. Breast cancer, as a heterogeneous
disease, can be divided into subgroups, which differ in
cellular properties as well as in prognosis. This requires
individual therapy approaches, which are in the focus of
current research and have partially already been realised.

Here we are interested in the ‘HER2-positive’ subtype
of breast cancer, overexpressing the human epidermal
growth factor receptor 2 (HER2, also termed ErbB-2).

ErbB-2 is a receptor tyrosine kinase (RTK) and mem-
ber of the epidermal growth factor (EGF) receptor family,
consisting of three further RTKs, namely ErbB-1, ErbB-3
and ErbB-4. These receptors cooperatively function as
homo- or heterodimers after activation via growth fac-
tors like EGF for ErbB-1 or heregulin (HRG) for ErbB-3
[28]. This initialises signalling cascades, pathologically
contributing to tumourigenesis and tumour progression.
Interestingly, different dimer formations induce different
signalling pathways, like PI3K and MAPK, also with dif-
fering signalling strengths [29]. The role of the orphan
receptor ErbB-2 in dysregulation of the ErbB network
is of major interest, due to its overexpression in 10-
20% of breast tumours, diagnosed as HER2-positive.
Furthermore, its role as favoured dimerisation part-
ner independent on ligand-activation implies oncogenic
potential [30-32]. The therapeutic antibodies trastuzumab
and pertuzumab have especially been designed to target
ErbB-2 [33].

However, frequently occurring therapy resistance
reduces the efficiency of targeted therapeutics [34-36].
This resistance is often associated with deregulated path-
way activity [37,38] or bypasses via other RTKs, especially
ErbB family members [39]. Mainly ErbB-1 expression has
been anticipated as molecular cause to overcome impact
of ErbB-2 targeting drugs. Small-molecule inhibitors such
as erlotinib are already in use against non-small cell lung
cancer [40] and pancreatic cancer [41].

Here we aim as a first step at the identification of
individual drug response patterns and insights into drug
resistance in HER2-positive breast cancer. ErbB-2 ampli-
fied cell lines were therefore subjected to short- and
long-term drug treatment with erlotinib, pertuzumab and
trastuzumab, alone or in combinations. Samples were
analysed by reverse-phase protein arrays (RPPA) [42].
We were interested in synergistic benefits of combining
erlotinib, pertuzumab or trastuzumab in ErbB-1 express-
ing, ErbB-2 amplified tumours with differing resistance
phenotypes. Therefore three representative breast cancer
cell lines were selected as model systems, namely BT474,
SKBR3 and HCC1954, of which the latter is known to be
trastuzumab resistant due to a PIK3CA mutation, while
BT474 exhibits wild type behaviour [43]. The SKBR3 cell
line is supposed to be pertuzumab resistant [44].

ErbB dimers predominantly activate the MAPK and
PI3K pathway [29]. Therefore, we concentrated on the
involved key regulators in fast downstream signalling.
Among those were ERK1/2 and AKT, and also p70S6K,
which is upstream influenced by both of the signalling
axes. Phosphorylation of RPS6 and RB was used as long-
term indicator for proliferation, cell cycle or tumour
progression [28]. Prior literature knowledge on ErbB sig-
nalling was used as input for protein network reconstruc-
tion per cell line via ddepn. Beyond that, we inferred
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combined therapies that target ErbB family members, cus-
tomised to the topology of the different subtypes. BoolNet
was applied to compute stable cycles of protein activ-
ity states, so-called attractors, incorporating all possible
treatment combinations. This way, optimal drug treat-
ment to deactivate oncogenic proteins was identified.

Methods
Data
Protein abundance and phosphorylation measurements in
BT474, SKBR3 and HCC1954 cells were carried out as
described by Henjes et al. [28]. In principle, the RPPA pro-
tein array technology works as follows. Minimal amounts
(1 nl volume) of cell lysate are spotted along with a serial
dilution of control samples on nitrocellulose-coated glass
slides using a printing robot (Aushon 2470 arrayer). Sam-
ples are organised as ordered subarrays so that they are
addressable during the data analysis procedure, and a sin-
gle slide can accommodate one or more subarrays. Each
subarray is analysed using a highly specific detection anti-
body to measure the abundance of a certain protein or its
phosphorylation rate. For each spot, the ratio of bound
detection antibody is visualised using secondary antibod-
ies labelled with near infrared (NIR) fluorescent dyes.
Slides are scanned using the Odyssey scanner (LiCor Bio-
sciences). Spot intensities are determined using a microar-
ray image analysis software (GenePix).

Apart from the quantitative character, another advan-
tage of the technology is the handling of large sample sets
which protein abundance can be detected simultaneously
in a high throughput fashion. 20-200 identical slides can
be produced in parallel in a single print run.

In order to normalise the data spot-wise for deviant total
protein concentrations due to spotting variance, staining
with Fast Green FCF dye was employed [42]. There-
fore, one slide was stained with the dye to determine the
total protein content of each lysate spot and correspond-
ing signal intensity correction factors. The spots on the
remaining slides were divided by these correction factors
and afterwards multiplied by the median value to scale the
data back to the native range.

The RPPA data used here include data presented in
Henjes et al. [28]. Additionally, further targets have been
measured and were used for network reconstruction. The
complete data set has been submitted to the Gene Expres-
sion Omnibus (GEO) with accession number GSE50109.

Short-term measurements
In the short-term measurements, trastuzumab, per-
tuzumab and erlotinib were added to the cells in starva-
tion medium one hour before stimulation with the growth
factors EGF and HRG. All possible 24 combinations of
drugs and stimuli were measured. Application of the stim-
uli was defined as time point zero in the measurements.

The growth factors were chosen to activate explicitly the
MAPK and PI3K pathway. Lysate preparation was per-
formed at ten time points, namely after 0, 4, 8, 12, 16,
20, 30, 40, 50 and 60 minutes. The drug treatment exper-
iments comprised three biological replicates, whereas the
inhibitor-free experiments incorporated five biological
replicates. The experiments for the SKBR3 cell line com-
prised only two biological replicates of HRG stimulated
cells under the triple drug combination. Each biological
replicate was spotted in triplicate on the RPPA slides.
To obtain short-term signal intensities, eleven antibodies
for specific phosphorylation sites were selected according
to quality checks, including inspection of corresponding
dilution series and comparison to signals arising from sec-
ondary antibodies only. The chosen target proteins and
respective antibodies are listed in Additional file 1.

Long-term measurements
For long-term measurements, no explicit ligand stimu-
lation was performed. Instead, cells were incubated in
full growth medium for 24 hours prior to adding the
three mentioned therapeutics in double combinations or
as triplet. Single drug treatment was just conducted with
erlotinib. Full growth medium was used to avoid con-
founding effects of nutrient deficiency. Protein abundance
was also quantified without any drug application. The
measuring points included 0, 1, 2, 4, 6, 8, 12, 18, 24 and 30
hours with three biological and technical replicates each.
At time point 18, only two biological replicates were avail-
able. Additional file 1 displays the 21 targets of interest for
long-term signalling.

Statistical inference of drug effects
To determine, whether a specific drug treatment revealed
an inhibiting effect on the signal intensities of the proteins,
we applied the following method. Firstly, for each protein
and (combinatorial) drug treatment we linearly modelled
the signal intensities as depending on the factors time and
group, i.e. no drug treatment versus drug treatment. If the
interaction of both factors showed a significant (p-value <

0.05) influence on the signal intensity, we further applied
a Wilcoxon rank sum test for the measurements at time
point 60 minutes for the short-term data, or at time point
30 hours for the long-term data. Thereby, we tested for
significantly (p-value < 0.05) smaller intensity values in
the drug treated group. The drug treatments with a sig-
nificant test result were considered as efficient inhibitors.
The therapeutic (combination) with the smallest p-value
was defined as the optimal one.

Literature prior knowledge
We manually determined two reference networks, i.e. one
for each time course, as initial joint hypotheses for all
of the three breast cancer cell lines. Because emphasis
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was put on phosphoproteomic signalling, this was mainly
based on PhosphoSitePlus® [45]. Several publications con-
firm these assumptions, as depicted in Additional file 2.

Network reconstruction
For Boolean network reconstruction, we chose the
method of dynamic deterministic effects propagation net-
works (DDEPN) [6]. This method was particularly tailored
to perturbed longitudinal protein phosphorylation data.
It is based on the DEPN approach [46], which stands for
deterministic effects propagation networks. The deter-
minism is related to the way of perturbation effect prop-
agation in the networks from parent to child nodes,
implying transitively closed graphs. The dynamic version
of Bender et al. [6,47] differs with respect to the integra-
tion of perturbed time course measurements. While the
DEPN approach requires many perturbations, like knock-
downs, but only few time points, which are regarded as
independent measurements, ddepn is designed for longer
time series without the necessity of many or all network
nodes being perturbed. The latter situation, i.e. few per-
turbations by drug interventions, reflected the design of
the RPPA experiments under consideration here, hence
leading to the application of ddepn. Most network recon-
struction algorithms have been designed for gene expres-
sion data from microarray measurements [7], which differ
from (phospho-)protein data regarding the amount of
involved network nodes. Many current methods are tai-
lored to the inference of gene regulatory networks based
on static measurements at one time point, reflecting the
steady state of the system under consideration [48]. The
longitudinal time course data used here require a suitable
method, as provided by ddepn. The method of Bender
et al. was shown to outperform two dynamical Bayesian
network approaches, and to be capable of inferring known
signalling cascades in the ErbB pathway [47]. A further
advantage was the public availability of ddepn as an R [20]
package.

The reconstruction procedure is depicted in Additional
file 3, and the core elements are described according
to [6,47] in the following. The protein interaction net-
works are modelled as directed, possibly cyclic, graphs,
with nodes V = {vi : i ∈ 1, . . . , N} representing proteins
and edges representing interactions. Also the external per-
turbations, i.e. the drugs and growth factors in our case,
are modelled as nodes. The edge types can be either acti-
vating or inhibiting, denoted by 1 and -1, respectively,
in the adjacency matrix � = V × V → {0, 1, −1} of
the network. An entry of zero indicates no edge between
two nodes. So each edge incorporates a pair of nodes{
φij : i, j ∈ 1, . . . , N

}
. The measurement data, which form

the basis for the reconstruction, are stored in a matrix
D = {ditr : i ∈ 1, . . . , N , t ∈ 1, . . . , T , r ∈ 1, . . . , R}, consid-
ering T time points and R replicates.

For the inference of a network structure, optimally
fitting to the data, we applied the stochastic Markov
Chain Monte Carlo (MCMC) approach of ddepn, called
inhibMCMC, in which the space of possible networks
is sampled, based on posterior probabilities. It extends
a Metropolis-Hastings type of MCMC sampler by the
capability of sampling two edge types directly, i.e. acti-
vation and inhibition. The posterior distribution of a
network � given the data D, is defined as P(�|D) =
P(D|�)P(�)

P(D)
∝ P(D|�)P(�), with P(�) as the prior prob-

ability distribution and P(D|�) as the likelihood of the
data given the network. The latter is defined in [47]

as p(D|�) = p(D|�̂∗, �̂) =
T∏

t=1

N∏
i=1

R∏
r=1

p(ditr|θ̂iγ̂ ∗
itr

),

where �∗ = {
γ ∗

itr : i ∈ 1, . . . , N , t ∈ 1, . . . , T , r ∈ 1, . . . , R
}

denotes the optimized system state matrix, containing
active and passive states per protein and time point. It is
estimated in the following way. Assuming that the pro-
teins can be either active (1) or inactive (0), signalling
dynamics are modelled by Boolean signal propagation
for a given network. All nodes, except the permanently
active perturbations, are therefore initialised with inactive
states. The transition rule is that children nodes get acti-
vated if at least one activating parent node is active and
all inhibiting ones are inactive. In this way, all reachable
system states are computed and stored in a matrix � =
{γik ∈ {0, 1} : i ∈ 1, . . . , N , k ∈ 1, . . . , M}, holding column-
wise the activation states of all proteins at transition step
k. The amount of transitions is limited by 0 < M ≤ 2N .
This state matrix has to be optimized, as it is not related
to the measured time points yet. The true unknown state
sequence over time is represented by �∗, which is esti-
mated by a hidden Markov model (HMM). The resulting
�̂∗ indicates whether a data point ditr has an underlying
active (1) or passive (0) normal distribution

ditr ∼
{

N (μi0, σi0), if γ̂ ∗
itr = 0

N (μi1, σi1), if γ̂ ∗
itr = 1.

The distribution parameters are for each protein esti-
mated as empirical mean and standard deviation of all
measurements for the considered protein in the cor-
responding class, yielding the parameter matrix �̂ ={
θ̂i0, θ̂i1

}
= {

(μ̂i0, σ̂i0), (μ̂i1, σ̂i1)
} ∀i ∈ 1, . . . , N .

The prior probability distribution P(�) includes penali-
sation of differences between the network structure � and
a user-defined prior belief B = V × V →[−1, 1], where
the absolute value correlates with the confidence in an
edge. Here we chose B = V × V → {0, 1, −1}, assum-
ing in advance specific activating, inhibiting or missing
edges with maximum confidence. We made use of the
Laplace prior model (laplaceinhib), accounting for both
edge types, i.e. activation and inhibition. The prior belief
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for an edge is defined as P(φij|bij, λ, γ ) = 1
2λ

e
−
ij

λ , includ-
ing a weighted difference term 
ij = |φij − bij|γ with a
weight exponent γ ∈ R+. As the edge probabilities are
assumed to be independent, the prior belief for a net-
work structure � is derived as the product of those, i.e.
P(�|B, λ, γ ) = ∏

i,j
P(φij|bij, λ, γ ), i, j ∈ {1, . . . , N}. The

individual edge probabilities lie between 0 and 1
2λ

∀λ, γ ∈
R+. The protein interactions corresponding to our cho-
sen prior are displayed in Additional file 2. The prior’s
impact strength was emphasised in such a way, that only
strongly deviating data influence the network structure,
because the ErbB wiring as well as the MAPK and PI3K
pathways are well examined in literature. This prioritisa-
tion is reflected in the hyperparameter λ set to 0.0001. For
the parameter γ we chose one, neglecting extra penali-
sation of deviation from the prior. These settings should
preserve robustness, but at the same time allow enough
impact strength of strongly differing data values.

The network inference via inhibMCMC spanned 50,000
iterations with the first 25,000 iterative steps as burn-in
phase. To ensure convergence, ten parallel MCMC chains
were run, each initialised with a starting network. Con-
vergence was validated via Gelman diagnostic [49]. Nine
of the initial ten networks were randomly generated, i.e.
for the defined nodes activating, inhibiting or no edges
were sampled. The remaining network assumed no con-
nections between the nodes. These initial networks were
pruned to the following constraints. Firstly, the nodes
related to the growth factors and drugs must not have
any ingoing edges. Above that, the indegree of all nodes
was limited to four. Finally, no self-loops were allowed.
To find significantly occurring edges among the indepen-
dent runs, merging into a consensus network, a Wilcoxon
rank sum testing procedure was used. In detail, in each
run the amount of sampled activations and inhibitions per
edge was counted and divided by the total number of sam-
pled edges. Subsequently the null-hypothesis was tested,
whether the means of these ten edge-specific confidence
values equal the same for activation and inhibition. In case
of not rejecting the null-hypothesis, coming along with an
adjusted p-value exceeding the significance level α = 0.05,
no edge was assumed. Otherwise, the respective alter-
native determined the type of interaction. Adjustment
for multiple testing followed the method of Benjamini
and Hochberg, controlling the false discovery rate [50].
The whole procedure was embedded into a leave-one-
out cross-validation approach. So each of the ten MCMC
chains was left out once, and the testing algorithm was
applied to the remaining runs. An edge was included in
the final consensus network if it occurred in all of the
cross validation runs. Finally, to prevent excessive spuri-
ous or obsolete connections ascribable to transitivity, as
argued by Bo Na Ki et al. [51], newly reconstructed edges

were successively added to the prior network according to
ddepn significance and fit of resulting attractor states to
the observations of Henjes et al. [28].

Perturbation simulations
To figure out which input of drug combination leads to
a certain attractor state of the reconstructed network
system, the R package BoolNet [21] was applied. The moti-
vation was based on the assumption that attractors, rep-
resenting cycles of states, comprise the stable states of cell
function. In those states networks mostly reside. Hence,
they mirror system phenotypes, dependent on the pertur-
bation context. To the best of our knowledge, apart from
BoolNet, there are hardly any R packages offering attractor
calculations for Boolean networks. This package supports
import of networks in form of files containing Boolean
formulas. So it could be easily integrated in our workflow
as subsequent analysis step after network reconstruction.

We used its functionality to identify attractors in a syn-
chronous and an asynchronous way. The resulting attrac-
tors were steady-state attractors. These consist of only
one state, in which all transitions from this state result.
These attractors are identical for synchronous and asyn-
chronous updates. We focused on the steady-states, as
these should reflect the homoeostatic system state of the
cell lines. Intermediate transition states would be interest-
ing as well, but due to the large amount of the involved
targets, it would have been too complex to analyse those
here in detail.

The search started from predefined initial states of
the network nodes. The drug and growth factor nodes
were fixed to specific values, reflecting the conducted
experiment to be simulated. For short-term signalling,
perturbations included all possible combinations of the
therapeutics under the combined stimulus of EGF and
HRG. Although the data of separate stimulation with EGF
and HRG was used for network reconstructions, here we
focused on the combined treatment, representing a more
natural tumour environment than a single growth factor
alone. Two possible binary states, i.e. active (1) or pas-
sive (0), to the power of three different drugs led to eight
possible combinations. These were used as fixed input
conditions, as the effect was assumed to be continuously
valid. Analogously, the growth factors were permanently
fixed to one. The remaining protein activity start states
were initialised with zero. These components were flexi-
ble towards updates. In the long-term measurements, no
growth factors were involved but full growth medium.
This was defined as one stimulating input S, initially acti-
vating the ErbB receptors. This also led to eight fixed input
combinations.

BoolNet expects network representation in form of log-
ical interaction rules as input. In contrast, ddepn deliv-
ers network reconstruction output in terms of adjacency
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matrices. Therefore, we incorporated an interface func-
tion into the ddepn package, called adjacencyMa-
trix_to_logicalRules. In detail, the loadNetwork function
of BoolNet requires a file containing row-wise logical acti-
vation rules of each network node. Each row looks like
‘target node, (activator_1 | activator_2) & !(inhibitor_1 |
inhibitor_2)’, here exemplary for a node with two ingo-
ing activating and inhibiting edges each. The logical OR
operator is encoded by ‘|’, the logical AND is encoded
by ‘&’, and logical negation is represented by ‘!’. Accord-
ingly, all of the A inferred activating nodes V+ =
{va : a ∈ 1, . . . , A, A < N} of a target node vj, represented
by an adjacency matrix entry φaj = 1, and vj itself were
connected via OR operators. This ensured that at least one
of the activators or the target protein itself had to be active
to activate the target node. Analogously, the I inhibiting
nodes V− = {vi : i ∈ 1, . . . , I, I < N} with φij = −1 were
connected via OR operators. A logical negation opera-
tor was attached to ensure that the activity of one of the
nodes vi would result in an inactive node vj. Both sets
of activators and negated inhibitors were then connected
via a logical AND operator. After conversion of the adja-
cency matrices to logical rules, those were implemented
in BoolNet into a computational model, to perform per-
turbation simulations per cell line and time course as well
as subsequent analyses of the resulting attractor states.

Results and discussion
The complete workflow, holding for both, short- and
long-term analysis, is depicted in Figure 1. For a better
understanding of the discussion on MAPK and PI3K sig-
nalling, Figure 2 displays the interactions between the
main MAPK and PI3K targets of the ErbB prior net-
works. It shows the preferred pathway activations by all
possible homo- and heterodimers formed upon ligand
binding to the ErbB-1 and ErbB-3 receptors [9,29,52-54].
The confidence values, representing the likeliness of the
reconstructed network edges, are shown in Additional
file 4.

Short-term signalling network reconstruction
The short-term signalling networks, reconstructed by the
ddepn algorithm, are depicted in Figure 3. The equivalent
Boolean logical interaction rules are listed in Additional
file 5. In comparison to the prior network, newly inferred
edges were specific for each cell line, and all of them
were activating. For HCC1954 and BT474, seven addi-
tional edges were reconstructed, while in SKBR3 only two
new edges were reconstructed. No prior edge deletion or
type reversal took place.

HCC1954 is driven by the PI3K as well as the MAPK pathway
In HCC1954, the new edges contributed to both, PI3K
and MAPK, signalling. The interaction ErbB-1→ErbB-2

reflected a dominant role of heterodimerisation of both
receptors, as described by Henjes et al. [28]. The fact
that it was specifically inferred for HCC1954, pointed
to hyperactive ErbB-1/2 heterodimers here. These are
known to trigger the MAPK but also, to a lesser extent,
the PI3K pathway. The link PDK1→MEK1/2, supported
by Sato et al. [55], stressed crosstalk between these path-
ways, placing PDK1 into a key position in the PI3K
pathway, and MEK1/2 in the MAPK pathway, respec-
tively. Two of the new edges in HCC1954, PDK1→ErbB-2
and p70S6K→AKT, contributed to feedback loops, which
were not present in the other two cell lines. Such a
topological network element could stabilise the known
trastuzumab resistance by boosting the oncogenic effect
of ErbB-2 and the mutant hyperactive PI3K pathway. Evi-
dence for the feedback mechanism involving PDK1 was
provided by Maurer et al. [56] and Tseng et al. [57]. Vega
et al. noted an indirect activation of AKT by p70S6K via
mTOR [58].

BT474 is driven by the PI3K pathway, while SKBR3 is driven by
the MAPK pathway
Comparably to HCC1954, in BT474 an edge indicat-
ing hyperactive heterodimers was found, namely ErbB-
3→ErbB-2, here interestingly with a strong impact on
AKT [28]. BT474 is known to contain a rare type
of PIK3CA mutation [43]. Pathway crosstalk was also
observed in BT474, but here MEK1/2 activated PDK1, and
not vice versa like in HCC1954. This edge was supported
by Frödin et al. [59], underlining dominant PI3K signalling
in this cell line.

The newly detected interactions in SKBR3 started from
ErbB-3 and PDK1, and both activated ERK1/2. This
reflected a dominant MAPK pathway, in which ErbB-
3→ERK1/2 was interpretable as indirect stimulation of
ERK1/2 via MEK1/2, activated by ErbB-2/3 dimers [55].

Perturbation simulations on short-term networks
Perturbations included all possible combinations of
the therapeutics erlotinib, pertuzumab and trastuzumab
under combined stimulation of EGF and HRG. All
inferred attractors were simple and consisted of one
steady-state. This means that all transitions from this state
result in the state itself. Table 1 summarises all simula-
tion outcomes for the attractors of the AKT and ERK1/2
proteins, as those are key players in the PI3K (AKT) and
MAPK (ERK1/2) pathways. Additionally, the results for
p70S6K are listed there, as both pathways regulate this
protein [60].

Stimulation with EGF and HRG should result in acti-
vation of ErbB-1 and ErbB-3, followed by dimerisation
amongst ErbB members. This should initialise signalling
cascades in the MAPK and PI3K pathways (Figure 2).
Indeed, AKT, ERK1/2 and p70S6K got activated in
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Figure 1 Modelling workflow. The figure summarises the applied modelling approach. RPPA data of three individual breast cancer cell lines were
generated under short- and long-term drug treatment. They constituted the basis for network reconstruction in combination with prior literature
knowledge about protein wiring. The reconstructed networks per cell line and time course in turn underwent Boolean perturbation simulations to
reveal optimal drug treatments.

all cell lines, which was revealed by simulations as
well as observations in graphical analyses (Table 1,
Figures 4, 5, 6).

As we were interested in identifying optimal drug treat-
ments, Table 2 summarises the corresponding statistical
results. Most of them were supported by the perturbation
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Figure 2 Scheme of ErbB dimers related MAPK and PI3K pathway activation. The figure depicts the different homo- and heterodimers of ErbB
receptors, induced upon activation via the ligands EGF or HRG. The active dimers then initialise the MAPK and PI3K signalling cascades. The orange
(PI3K) and green (MAPK) arrows denote, which dimer activates which pathway.

simulation results, corresponding to attractor states of
AKT, ERK1/2 and p70S6K being zero. Four main con-
clusions were drawn from these results, which will be
discussed in detail in the following subsections. Firstly,
inhibition of PI3K signalling, reflected by downregulated
AKT, required the combined treatment with erlotinib,
pertuzumab and trastuzumab. Secondly, inhibition of the
MAPK pathway, represented by ERK1/2, was reached
with erlotinib alone in SKBR3 and HCC1954. BT474 addi-
tionally needed pertuzumab. Thirdly, the protein activity
of p70S6K was influenced by both, PI3K and MAPK,
pathways. The drug response differed between cell lines,
indicating both pathways contribute to a different extent.
Finally, the drug effect on PI3K signalling was much better
in SKBR3 than in HCC1954, pointing to resistance in the
latter cell line.

Inhibition of PI3K signalling requires drug combinations
In SKBR3, the triple drug combination was most effec-
tive in inhibiting AKT (Figure 4, Table 2). In BT474,

pertuzumab combined with erlotinib was most effi-
cient, but AKT signalling was not fully suppressed as
in SKBR3 (Figure 5). Statistically, we did not infer any
significant positive drug effect in this cell line. Obvi-
ously, erlotinib in synergistic combination with at least
pertuzumab was needed to block the ErbB-2 receptor
and its heterodimerisation, mainly with ErbB-1, but also
ErbB-3. The HRG activated ErbB-2/3 heterodimers and
PI3K pathway in BT474, as revealed by the network
reconstructions, might have prevented a potent drug
efficacy.

Interestingly, BT474 and SKBR3 required pertuzumab.
This drug was especially designed to prevent het-
erodimerisation with ErbB-2. The stimuli EGF and HRG
together activate PI3K signalling by ErbB-2/3, ErbB-
1/2 and ErbB-1/3 dimers (Figure 2). The need for
pertuzumab combined with erlotinib indicated an impor-
tant role of ErbB-1/2 dimers. This was supported by the
fact, that in HCC1954 with dominant heterodimers of
this type, as revealed by network reconstructions, none
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Figure 3 Reconstructed short-term signalling networks. The figure displays the reconstructed short-term signalling networks coloured
according to the preserved prior reference network (black) and newly inferred (added) individual edges per cell line. Target proteins are represented
as rectangles with stimuli and drugs coloured in red. The three drug names erlotinib, trastuzumab and pertuzumab are abbreviated via their first
letters. Solid arrows denote activating interactions while dashed ones represent inhibitions.

Table 1 Attractor states of short-term perturbation simulations

BT474 HCC1954 SKBR3

Simulation AKT ERK1/2 p70S6K AKT ERK1/2 p70S6K AKT ERK1/2 p70S6K

A E A E A E A E A E A E A E A E A E

X 1 1 1 1 1 1 1 1 1

E 0 1 1 0 1 0 1 0 1 0 1 0 0 1

P 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1

T 1 1 1 1 1 1 1 1 1

E, P 1 1 0 1 0 1 0 0 1 0 0 0 0 1

E, T 0 1 1 0 1 1 0 1 1 0 1 0 0 1

P, T 1 1 1 0 1 0 0 1 0 0 0 1

E, P, T 1 1 0 1 0 1 0 0 1 0 0 0

The therapeutics erlotinib, trastuzumab and pertuzumab, abbreviated by first letters, that were permanently active besides EGF and HRG in the simulated
perturbation conditions are stored in the column Simulation. No simulated drug treatment is denoted by ‘X’. The A columns hold the attractor states of the proteins
AKT, ERK1/2 and p70S6K, associated with the perturbations. The E columns contain the protein activity status, statistically deduced from the experimental data. In case
of a significant (p-value < 0.05) combined influence of both, drug treatment and time, on the protein signal intensity, a Wilcoxon rank sum test was conducted for the
measurements at time point 60 minutes. The drug treatments leading to significantly (p-value < 0.05) smaller intensity values compared to the control measurement
‘X’ were considered as efficient inhibitors, resulting in a table entry of zero. Consistency between simulations and experimental observations is printed in bold.
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Figure 4 SKBR3 short-term time courses of AKT, ERK1/2 and p70S6K. The figure shows splines and related standard error bars of the measured
RPPA data for AKT, ERK1/2 and p70S6K after combined EGF and HRG stimulation in the SKBR3 cell line. The measurements included ten time points
up to 60 minutes. The different drug treatments are marked by different colours with ‘X’ denoting no drug treatment.

of the drugs was likewise efficient in inhibiting AKT
(Figure 6). However, the optimal effect was revealed for
the triple drug combination (Table 2). The simulations
suggested pertuzumab alone or a combination of both
monoclonal antibodies (Table 1). It has to be kept in
mind, that the attractor states resembled a long-term
steady state, which can differ from observations up to 60
minutes.

The perturbation simulations in BT474 did not lead to
inactive AKT upon combined pertuzumab and erlotinib
treatment. Instead, erlotinib alone or combined with
trastuzumab was efficient (Table 1). Nevertheless, this
supported the need for the small molecule inhibitor
and a monoclonal antibody to suppress ErbB-2 induced
PI3K signalling. In SKBR3, the attractor states con-
firmed the described optimal drug treatment to deactivate
AKT. Trastuzumab, when applied alone, was the only
treatment without a positive effect in the simulations
(Table 1).

Inhibition of MAPK signalling requires erlotinib
Signalling through the MAPK pathway, represented by
ERK1/2 activation, was efficiently inhibited by erlotinib
alone in both, HCC1954 (Figure 6, Table 2) and SKBR3
(Figure 4, Table 2), cell lines. EGF activates the MAPK
pathway via ErbB-1 homodimers and ErbB-1/2 het-
erodimers (Figure 2). Both are prevented by ErbB-1 inhibi-
tion via erlotinib, which was especially designed to target
this receptor.

In BT474, pertuzumab plus erlotinib was required
(Figure 5, Table 2). This was analogous to the situation in
PI3K signalling.

HRG activates the MAPK pathway via ErbB-2/3 het-
erodimers (Figure 2). Obviously, BT474 needed the
addition of the monoclonal antibody due to dominant
ErbB-2/3 formation and activity. On the contrary, the
other two cell lines just needed erlotinib alone. Here, in
addition to the ErbB-1 dimers, the ligand-independent
ErbB-2 homodimers might have driven ERK1/2 activation
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Figure 5 BT474 short-term time courses of AKT, ERK1/2 and p70S6K. The figure shows splines and related standard error bars of the measured
RPPA data for AKT, ERK1/2 and p70S6K after combined EGF and HRG stimulation in the BT474 cell line. The measurements included ten time points
up to 60 minutes. The different drug treatments are marked by different colours with ‘X’ denoting no drug treatment.

and could be inhibited by the small molecule inhibitor.
Efficacy of erlotinib towards ErbB-2 dimers was previ-
ously mentioned by Schaefer et al. [61].

In BT474, the simulations resulted in active ERK1/2
states, resisting drug treatment (Table 1). In HCC1954
and SKBR3, the positive effect of erlotinib was supported
by the simulations. The attractor states were additionally
inactive for all other (combinatorial) drug treatments, but
not trastuzumab alone.

p70S6K is influenced by both, PI3K and MAPK, pathways
The target p70S6K is upstream influenced by the PI3K
as well as the MAPK pathway (Figure 2). Hence, p70S6K
merges both pathways, leading to activation of RPS6 [60].

The three cell lines showed different pathway prefer-
ences. BT474 required the combination of pertuzumab
and erlotinib to suppress p70S6K (Figure 5). On the con-
trary, in SKBR3 the triple drug combination was shown to
be optimal (Table 2). Obviously, the effect was driven by
erlotinib (Figure 4), which was supported by the attractor

states of p70S6K (Table 1). This resembled the drug
response of ERK1/2 and reflected a stronger influence by
the MAPK pathway. In HCC1954, deactivation of p70S6K
was reached via application of erlotinib combined with
pertuzumab (Table 2). The treatment with erlotinib alone
had a similar effect (Figure 6), while the simulations just
confirmed a positive effect of pertuzumab (Table 1). Thus,
this cell line seemed to be influenced by both, PI3K and
MAPK, pathways.

These results were in line with the newly inferred edges
in the network reconstructions. They pointed to a strong
influence of PI3K in BT474 in contrast to a dominant
MAPK pathway in SKBR3. HCC1954 was influenced by
both pathways to a similar extent.

To follow up on the hypothesis that different path-
ways contribute to a different extent in individual cell
lines, we tested correlation between the p70S6K time
course and the ones of AKT and ERK1/2, respectively.
In BT474, p70S6K correlated positively with AKT (p-
value 0.01, Kendall’s τ estimate 0.64). In HCC1954,
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Figure 6 HCC1954 short-term time courses of AKT, ERK1/2 and p70S6K. The figure shows splines and related standard error bars of the
measured RPPA data for AKT, ERK1/2 and p70S6K after combined EGF and HRG stimulation in the HCC1954 cell line. The measurements included
ten time points up to 60 minutes. The different drug treatments are marked by different colours with ‘X’ denoting no drug treatment.

p70S6K correlated positively with both, AKT (p-value <

2.22 · 10−16, Kendall’s τ estimate 0.69) and ERK1/2
(p-value < 2.22 · 10−16, Kendall’s τ estimate 0.87). In
SKBR3, p70S6K also correlated positively with both, AKT
(p-value 0.05, Kendall’s τ estimate 0.51) and ERK1/2
(p-value 0.02, Kendall’s τ estimate 0.6), with a stronger

tendency towards MAPK signalling. The correlation
was not as convincing as in the other two cell lines.
One could speculate, that the dominance of the MAPK
pathway in SKBR3 cells was not as strong as the domi-
nance of the PI3K pathway in BT474. This was supported
by the reconstructed networks. They revealed down-

Table 2 Optimal drug treatment in short-term signalling

Cell line AKT ERK1/2 p70S6K

BT474 - PE PE

HCC1954 PTE E PE

SKBR3 PTE E PTE

The table summarises the optimal drug treatments for the short-term data, leading to inactive AKT, ERK1/2 and p70S6K, respectively. In case of a significant (p-value <

0.05) combined influence of both, drug treatment and time, on the protein signal intensity, a Wilcoxon rank sum test was conducted for the measurements at time
point 60 minutes, testing for significantly (p-value < 0.05) smaller intensity values under the drug treatment compared to the control measurement. The drug
treatment with the smallest p-value was considered as the optimal inhibitor. No inferred significant positive drug effect is denoted by ‘-’. The therapeutics erlotinib,
trastuzumab and pertuzumab are abbreviated by their first letters. More than one letter denotes drug combinations. The growth factors EGF and HRG were added in
combination to the cell lines and permanently active in the simulated perturbation conditions. The column Cell line holds the cell lines under consideration. The
columns AKT, ERK1/2 and p70S6K hold the optimal drug combinations for each target. If those were confirmed by the attractor states (0) of perturbation simulations,
they are printed in bold.
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stream effects of MAPK signalling in SKBR3, while they
revealed hyperactive ErbB-2/3 dimers in BT474. The
dimers drive PI3K already at the receptor layer, and espe-
cially ErbB-2/3 dimers are regarded as the most potent
heterodimer [29].

Drug resistance in HCC1954 regarding the PI3K pathway
In HCC1954, the inferred optimal treatment against AKT
signalling with the triple drug combination was not con-
vincing (Figure 6). Analogously, Henjes et al. did not
monitor any positive drug effect on AKT under EGF appli-
cation alone [28]. However, the simulations suggested
pertuzumab alone or a combination of both monoclonal
antibodies to inhibit AKT phosphorylation. In principle,
divergence of simulations from experimental observations
can be expected, as the simulated steady state of the sys-
tem does not necessarily have to be reached after the
measured period of time. Anyhow, the apparent resis-
tance here pointed to a hyperactive PI3K pathway which
was explainable by the newly inferred HCC1954 edges
described in the previous subsection. They represented
feedback loops, hyperactive ErbB-1/2 heterodimers and
pathway crosstalk. On the contrary, in SKBR3, the triple
drug combination worked well, as described before. The
simulations even predicted efficacy of every other drug
(combination) apart from trastuzumab alone. The drug
efficacy towards AKT in this cell line could be explained
by the fact that the two reconstructed interactions in
SKBR3 mainly promoted the MAPK instead of the PI3K
pathway.

The regulation of AKT activity under drug influence,
highly diverging in HCC1954 and SKBR3, attracted our
attention. Therefore we intended testing for edgetic muta-
tions, as discussed by Zhong et al. [62], leading to AKT
gain-of-function in HCC1954. Such mutations, perturb-
ing not a node but an edge of a network, are speculated to
have deeper impact on phenotypic manifestation of a dis-
ease. In detail, we removed each of the AKT stimulating
edges outgoing from p70S6K, PDK1, mTOR and ErbB-
3, alone or in all possible eleven combinations. We then
computed the attractor states for the modified networks
in HCC1954.

Removal of the connections of mTOR, PDK1 and ErbB-3
alone or combined had no influence on improving drug
effects, i.e. AKT just got inactive under pertuzumab treat-
ment. Involvement of p70S6K→AKT in the withdrawal
process led to much better results. Removed alone or in
double combinations with the aforementioned edges, as
well as in the two triple combinations containing mTOR,
AKT was deactivated under all drug treatments, but not
yet trastuzumab alone. Finally, simultaneous removal of
the outgoing connections from p70S6K, ErbB-3 and PDK1
with or without mTOR, turned out as the only combina-
tion enabling potency of all possible drug combinations,

including trastuzumab alone. This hinted at a less strong
impact of mTOR on AKT here, but indicated synergistic
drug resistance potential of p70S6K, ErbB-3 and PDK1,
also due to the newly inferred edges.

Long-term signalling network reconstruction
The reconstructed long-term signalling networks per cell
line are displayed in the Additional file 6. Additional
file 5 lists the equivalent Boolean logical interaction
rules. Compared to the prior network, most of the
newly inferred edges were individual for each cell line,
but HCC1954 shared ErbB-1→ERK1/2 with SKBR3, for
example. This seemed to be an indirect edge via cRAF,
as represented in the prior network. Besides activat-
ing connections, also inhibiting ones and edge deletions
occurred. For HCC1954, ten new interactions were recon-
structed, while two were deleted. In BT474, nine new
links were added, and one edge was deleted. In SKBR3,
we inferred 20 new connections and one deletion, namely
the removal of p53 activation via p38, bearing oncogenic
risk [63,64].

In contrast to the short-term networks, new feedback
loops were reconstructed in every cell line, not exclu-
sively in HCC1954. In HCC1954, the mutual activation
between p53 and RB established such a feedback mecha-
nism. For SKBR3 we even inferred two edges, each form-
ing feedback loops. Contrary to HCC1954, p53 inhibited
RB. The second loop connection was inhibition of ErbB-
3 by AKT, pointing to a negative feedback against PI3K
signalling [65-67].

In HCC1954, the newly inferred edges Cyclin B1→AKT
and ErbB-3→ErbB-1 contributed to PI3K signalling, of
which the latter was explainable as heterodimers. The
newly inferred edge cJUN→ErbB-1 in HCC1954 also
indicated raised activity of ErbB-1. Interestingly, in SKBR3
we conducted an inhibiting edge from Cyclin B1 to AKT
but instead an activating one to ERK1/2, contributing to
MAPK signalling, which was also stated by Abrieu et al.
[68]. Another new edge in HCC1954 involved a cell cycle
player, i.e. activation of Cyclin D1 by p70S6K [69]. Accord-
ingly, we inferred RPS6→Cyclin D1 in BT474, with RPS6
as downstream target of p70S6K. In SKBR3, the edge
p70S6K→Cyclin B1 was reconstructed. A further inter-
esting new activating edge in HCC1954 led from RB to
TSC2, while we inferred a reversed inhibition in SKBR3.
Searle et al. discussed targeting RB deficient cancers by
deactivating TSC2 [70].

Two novel interactions in BT474 activated Cyclin B1,
arising from ErbB-1 and ErbB-3, respectively, which
meant that mitosis was driven by ErbB-1/3 dimers in this
cell line. This indicated a hyperactive PI3K pathway, as
revealed in the short-term case.

In SKBR3, we reconstructed an outgoing edge from
the artificial network stimulus S, representing full growth
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medium, activating AKT. This could be explained as
strong activation of AKT, driving PI3K signalling in
this cell line. The new edges ErbB-2→TSC2 and ErbB-
3→PRAS had to be interpreted as indirect effects, too.
They pointed to activity of ErbB-2/3 dimers, feeding
into both, MAPK and PI3K, pathways. The edge ErbB-
2→TSC2 could imply an oncogenic role of TSC2. Liu et al.
discussed a context dependent functionality of TSC2 [71].

Perturbation simulations on long-term networks
Similarly to the perturbation simulations for the short-
term networks, we performed those for the long-term
networks under all eight initial state combinations of the
therapeutics erlotinib, pertuzumab and trastuzumab. Also
here, all inferred attractors were simple and consisted of
one steady-state. Table 3 contains the simulation results
for the attractors of the RPS6 and RB proteins, as those
are key players in cell growth and proliferation and mainly
comparable to the experimental results of Henjes et al.
[28] for HCC1954 and SKBR3. We analysed the attractor
states of AKT and ERK1/2, too, but the results are not
explicitly listed, since they mostly resembled the ones of
RPS6.

The control measurements without any drug treatment
should result in activation of ErbB members and dimeri-
sation events, promoting cell growth and proliferation. In
fact, this was expressed as reasonable activation of AKT,
ERK1/2 and RPS6 in all cell lines, which held for simu-
lations as well as experimental observations. In contrast,
the attractor states of RB were inactive in all cell lines
(Table 3). Actually, a continuously rising stimulation effect
over 30 hours was not observed for HCC1954 and SKBR3
by Henjes et al. [28] either.

The attractor states of RPS6 and RB were identical in all
cell lines (Table 3). All drugs, except trastuzumab under
stimulation alone, led to inactive attractor states of RPS6.
This was also the case for ERK1/2 in all cell lines, as well
as AKT in BT474 and HCC1954. In SKBR3, the attractor
states of AKT were just inactive without the stimulus. All
therapeutics, including trastuzumab, resulted in deacti-
vated attractor states of RB. The statistically inferred drug
effects for AKT, ERK1/2, RB and RPS6 were slightly differ-
ent. Table 4 summarises the optimal drug combinations,
confirming and extending the observations of Henjes
et al. [28]. Most of them were supported by the perturba-
tion simulation results, corresponding to attractor states
of AKT, ERK1/2, RB and RPS6 being zero.

The optimal long-term drug response for AKT and ERK1/2
confirms short-term observations
As shown in Figure 7, the best drug response in BT474
and HCC1954 regarding AKT was yielded for a combina-
tion of trastuzumab and erlotinib. Statistically, we inferred
no positive effect in BT474 at all, which is explainable
by the fact that we just considered a combined effect of
drug treatment and time. Although the time courses of
AKT signalling with and without the drug treatment were
differing in the intensity strength, the signalling profiles
were similar. This parallel shift indicated no time effect.
Instead, the group effect was significant (p-value < 2 ·
10−16). This was also the explanation, why we detected
erlotinib, but not the combination with trastuzumab, as
the optimal treatment in HCC1954 (Table 4). In SKBR3,
we inferred the triple drug combination as the optimal
one, but the combination of both monoclonal antibodies
alone also had a significant effect over time (Figure 7).

Table 3 Attractor states of long-term perturbation simulations

BT474 HCC1954 SKBR3

Simulation RPS6 RB RPS6 RB RPS6 RB

A E A E A E A E A E A E

X 1 0 1 1 0 1 1 0 1

E 0 1 0 0 1 0 0 1 0

P 0 - 0 - 0 - 0 - 0 - 0 -

T 1 - 0 - 1 - 0 - 1 - 0 -

E, P 0 1 0 0 1 0 0 1 0

E, T 0 1 0 0 1 0 0 0

P, T 0 0 0 1 0 1 0 0

E, P, T 0 1 0 0 1 0 1 0 0

The therapeutics erlotinib, trastuzumab and pertuzumab, abbreviated by first letters, that were permanently active in the simulated perturbation conditions besides
the stimulus S, standing for the full growth medium, are stored in the column Simulation. No simulated drug treatment is denoted by ‘X’. The A columns hold the
attractor states of the proteins RPS6 and RB associated with the perturbations. The E columns contain the protein activity status, statistically deduced from the
experimental data. In case of a significant (p-value < 0.05) combined influence of both, drug treatment and time, on the protein signal intensity, a Wilcoxon rank sum
test was conducted for the measurements at time point 30 hours. The drug treatments leading to significantly (p-value < 0.05) smaller intensity values compared to
the control measurement ‘X’ were considered as efficient inhibitors, resulting in a table entry of zero. Lacking comparable experiments is labelled as ‘-’, while
consistency between simulations and experimental observations is printed in bold.
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Table 4 Optimal drug treatment in long-term signalling

Cell line AKT ERK1/2 RB RPS6

BT474 - TE E TP

HCC1954 E TE E -

SKBR3 PTE TE TE TE

The table summarises the optimal drug treatments for the long-term data,
leading to inactive AKT, ERK1/2, RB and RPS6, respectively. In case of a significant
(p-value < 0.05) combined influence of both, drug treatment and time, on the
protein signal intensity, a Wilcoxon rank sum test was conducted for the
measurements at time point 30 hours, testing for significantly (p-value < 0.05)
smaller intensity values under the drug treatment compared to the control
measurement. The drug treatment with the smallest p-value was considered as
the optimal inhibitor. No inferred significant positive drug effect is denoted by ‘-’.
The therapeutics erlotinib, trastuzumab and pertuzumab are abbreviated by
their first letters. More than one letter denotes drug combinations. The column
Cell line holds the cell lines under consideration. The columns AKT, ERK1/2, RB
and RPS6 hold the optimal drug combinations for each target. If those were
confirmed by the attractor states (0) of perturbation simulations, they are
printed in bold.

Hence, like in the short-term results, a drug combination
was required to suppress PI3K signalling, here with an
obvious need for trastuzumab. For BT474 and HCC1954,
this was supported by the simulation results, in which
trastuzumab alone had no effect, but was efficient within
drug combinations. In HCC1954, even the best drug

response was not convincing (Figure 7), pointing to a
dominant PI3K pathway, as revealed in the short-term
analysis.

Interestingly, SKBR3 showed a strong activation peak of
AKT phosphorylation between 8 and 18 hours (Figure 7),
which was just suppressed under combined application of
trastuzumab and pertuzumab. We revealed a positive cor-
relation with ERK1/2 (p-value 0.02, Kendall’s τ estimate
0.6) and RPS6 (p-value 0.01, Kendall’s τ estimate 0.64).
The reconstructed edges S→AKT and ErbB-1→ERK1/2
in SKBR3 indicated strong activation of AKT and ERK1/2.
In addition to the prior network, in which AKT and
ERK1/2 fed into RPS6 phosphorylation via p70S6K, some
of the novel edges pointed to a positive feedback from
p70S6K or RPS6 to ERK1/2. The feedback from p70S6K
via Cyclin B1, for example, was expressed by the edges
p70S6K→Cyclin B1 and Cyclin B1→ERK1/2. Compared
to the short-term results, indicating a dominant MAPK
pathway, this long-term observation indicated strong sig-
nalling via both, PI3K and MAPK, pathways in SKBR3.

As displayed in Figure 8, erlotinib alone or in combina-
tion with trastuzumab showed the optimal effect against
ERK1/2 in all of the three cell lines. This was in line
with the short-term observations, and confirmed by the

Figure 7 Long-term time courses of AKT for all cell lines. The figure shows splines and related standard error bars of the measured RPPA data for
AKT in all cell lines. The measurements included ten time points up to 30 hours. The different drug treatments are marked by different colours with
‘X’ denoting no drug treatment.
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Figure 8 Long-term time courses of ERK1/2 for all cell lines. The figure shows splines and related standard error bars of the measured RPPA data
for ERK1/2 in all cell lines. The measurements included ten time points up to 30 hours. The different drug treatments are marked by different colours
with ‘X’ denoting no drug treatment.

perturbation simulations. Statistically, the most potent
drug effect was yielded with the combination of erlotinib
and trastuzumab (Table 4).

Quick drug response for RPS6 and delayed response for RB
As shown in Figure 9, in BT474, the simulation based
predicted efficacy of erlotinib alone to counteract RPS6
(Table 3) was not as convincing as in case of drug combi-
nations. A combination of pertuzumab and trastuzumab
worked best (Table 4). For RB, the simulated drug
effects in BT474 resembled the observed ones (Table 3,
Figure 10), with a positive effect of all measured drug
treatments. Erlotinib was inferred as the optimal treat-
ment (Table 4). Though, the drug impact unfolded not
before 18 hours.

In HCC1954, it was the combination of both mon-
oclonal antibodies, that failed in deactivating RPS6
(Figure 9), while the simulations predicted trastuzumab
alone to fail (Table 3). The graphical observations were
similar for RB (Figure 10). The newly inferred edges ErbB-
3→ErbB-1 and cJUN→ErbB-1 in HCC1954 explained the
necessity for erlotinib against ErbB-1 dimers. The positive
impact of erlotinib, the optimal treatment against RB sig-
nalling (Table 4), was supported by simulations. However,
it did not unfold before 12-18 hours, in case of RB as

well as RPS6. Regarding RPS6, no significant effect was
detected for HCC1954 (Table 4).

According to Henjes et al. [28], in SKBR3 erlotinib and
all therapeutic combinations helped to suppress RPS6,
which was supported by the simulations (Table 3). As
shown in Figure 9, the combination of trastuzumab and
erlotinib was the only one, that revealed its continuous
inhibiting effect already after one hour. This combined
treatment was also statistically inferred as the optimal one
(Table 4). The same combination was optimal with respect
to RB activity, which was also in line with the simulations.
Here, analogously to BT474 and HCC1954, the drug effect
did not appear before 18 hours (Figure 10).

As the combination of trastuzumab and erlotinib was
efficient in all of the three cell lines against RPS6 as well
as RB phosphorylation, we further analysed target correla-
tions under this drug combination to explain the different
rapidness of drug responses.

In BT474, RB positively correlated with Cyclin B1 (p-
value 0.02, Kendall’s τ estimate 0.6), while RPS6 positively
correlated with ERK1/2 (p-value 0.02, Kendall’s τ esti-
mate 0.6). Obviously, RPS6 was mainly stimulated by
the MAPK pathway, which was efficiently inhibited by
the combination of trastuzumab and erlotinib in a fast
manner. On the contrary, RB seemed to be influenced
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Figure 9 Long-term time courses of RPS6 for all cell lines. The figure shows splines and related standard error bars of the measured RPPA data
for RPS6 in all cell lines. The measurements included ten time points up to 30 hours. The different drug treatments are marked by different colours
with ‘X’ denoting no drug treatment.

by Cyclin B1. The newly reconstructed edges ErbB-
1→Cyclin B1 and ErbB-3→Cyclin B1 supported hyper-
activity of Cyclin B1, driven by ErbB-1/3 heterodimers.
In SKBR3, RB negatively correlated with PRAS (p-value
0.05, Kendall’s τ estimate -0.51) and TSC2 (p-value 0.03,
Kendall’s τ estimate -0.56), while RPS6 positively corre-
lated with AKT (p-value 0.03, Kendall’s τ estimate 0.56)
and ERK1/2 (p-value 0.02, Kendall’s τ estimate 0.6). Obvi-
ously, like in BT474, RPS6 was mainly activated through
the MAPK pathway. Interestingly, RB seemed to require
inhibition via PRAS or TSC2. The latter was confirmed
via one of the novel edges in SKBR3, namely inhibition of
RB by TSC2. In addition, PRAS as well as TSC2 seemed to
be especially active in this cell line with regard to the new
edges ErbB-3→PRAS and ErbB-2→TSC2.

In HCC1954, the drug response was not only delayed
for RB, but also for RPS6, which was in line with the posi-
tive correlation with RB (p-value < 2.22 · 10−16, Kendall’s
τ estimate 0.73). Like in BT474, Cyclin B1 seemed to be a
driving force, since both, RPS6 (p-value 0.03, Kendall’s τ

estimate 0.56) and RB (p-value < 2.22 · 10−16, Kendall’s
τ estimate 0.82) positively correlated with this target. The
new edge Cyclin B1→AKT supported special activation
of RPS6 via PI3K signalling, leading to a delayed drug
response. Interestingly, we revealed negative correlations,

as observed for SKBR3. In HCC1954, RPS6 and RB corre-
lated with BAX (p-value 0.03, Kendall’s τ estimate -0.56)
and FoxO1/3a (p-value 0.05, Kendall’s τ estimate -0.51),
pointing to a delayed inhibition of RPS6 and RB via BAX
or FoxO1/3a.

Conclusions
Using a combination of reverse and forward engineer-
ing techniques, we focused on deregulated protein inter-
actions in the ErbB network in a Boolean modelling
framework. The reconstructed hypothetical networks
revealed individual protein interactions contributing to
signalling pathway preferences as well as drug resistance
via feedback loops, pathway crosstalk or hyperactive het-
erodimers. While this reverse engineering focused on
the network edges, we concentrated in the subsequent
forward engineering step on the network nodes. The per-
turbation simulations for AKT, ERK1/2, RB and RPS6
mainly confirmed our graphical and statistical analy-
ses as well as the observations of Henjes et al. [28]
regarding (combinatorial) drug efficacy. However they
have to be interpreted as an independent, more prospec-
tive investigation, because stable system states do not
necessarily have to be reached in temporally limited
observations.
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Figure 10 Long-term time courses of RB for all cell lines. The figure shows splines and related standard error bars of the measured RPPA data for
RB in all cell lines. The measurements included ten time points up to 30 hours. The different drug treatments are marked by different colours with ‘X’
denoting no drug treatment.

In the first step, the combined Boolean modelling
approach revealed the mechanisms underlying individual
drug response. In the second step, it predicted the net-
work propagation effects on protein activity, and hence
the drug response itself.

One major finding is, that different breast cancer pheno-
types seem to be driven by specific pathway preferences in
the ErbB network. This leads to individual drug response,
requiring different therapeutic treatments. The perturba-
tion simulations revealed a more diverse drug response
in short-term than in long-term signalling, which stresses
the importance of early intervention at the top level layer
of the signalling network.

Another interesting aspect is to combine edge and
node perturbations in Boolean network models to reveal
edgetic mutations, as we did in the HCC1954 cell line for
AKT.

Basic molecular research, embedded in a Boolean mod-
elling framework here, composes a first step to gain insight
into individual mechanisms of drug response or resistance
mechanisms in breast cancer. Especially, the proteomic
signalling interplay directly effects tumour development
and represents a promising target in cancer therapy, which
has to be understood in more detail in the future.

Additional files

Additional file 1: Proteins and phosphorylation sites involved in
RPPA measurements. The tables show the proteins and phosphorylation
sites involved in RPPA short- and long-term measurements. The antibody
catalogue numbers and providing companies are mentioned in brackets.
For BT474, no experimental short-term data under EGF or HRG stimulation
were available for PDK1. In case of total protein measurements, the column
Phosphosite remains empty (‘-’) apart from the antibody number and
supplier name.

Additional file 2: Literature references for the prior networks of
short- and long-term signalling. The interactions between proteins are
listed line by line in the tables. The column Protein denotes the source of
the connection with the sink called Target. The interaction (Type) is
encoded numerically, i.e. activation is marked by 1, while inhibition is
labelled with 2, e.g. AKT activates mTOR. The column Reference specifies
the supportive publication.

Additional file 3: Workflow of MCMC-based network structure
inference. The inhibMCMC procedure of the ddepn package was run with
maxIter = 50, 000 in 10 parallel runs. The results of the 25,000 iterations
after the burn-in phase were merged into one consensus network. It was
applied for short- and long-term data separately per cell line, leading to six
consensus networks. The figure is based on [6,47].

Additional file 4: Edge confidences for the reconstructed networks of
the three cell lines per time course. In each of the ten MCMC runs,
activation and inhibition edges were sampled. The percentage, i.e. the
confidence, of sampled activation (red) and inhibition (blue) edges in the
25,000 iterations after the burn-in phase are depicted in the boxes. The sink
nodes are displayed in each panel, while the activating, inhibiting or
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missing influence of the source nodes is shown column-wise in the red,
blue or missing boxes. The source node names are displayed at the x-axis
with additional indicators, where ‘-’ refers to an inhibiting influence and ‘+’
is related to activation. The x-axis of the short-term plots is labelled as ‘AKT,
E, EGF, ERBB1, ERBB2, ERBB3, ERK1/2, HRG, MEK1/2, mTOR, P, p70S6K, PDK1,
PKCα, PLCγ , T’. The x-axis of the long-term plots is labelled as ‘AKT, BAX,
cJUN, cRAF, CyclinB1, CyclinD1, E, ERBB1, ERBB2, ERBB3, ERK1/2, FOXO1/3a,
GSK3α/β , NF-κB, P, p38, p53, p70S6K, PRAS, PTEN, RB, S, RPS6, T, TSC2’. An
activating edge in the consensus network, as described in Additional file 3,
means that the sampled activating edges have a significantly higher
confidence value than the inhibiting ones. As self-loops and ingoing edges
to the drug or growth factor nodes were not allowed during inference, the
respective confidences are zero.

Additional file 5: Boolean interaction rules for the components of the
short- and long-term signalling networks. The tables contain the rules
that arose from network reconstructions based on short- and long-term
RPPA data of BT474, HCC1954 and SKBR3. The three drug names erlotinib,
trastuzumab and pertuzumab are abbreviated via their first letters. For the
long-term networks, the stimulus is denoted by S. Symbols are
interpretable in the following way: & ≡ AND, ∨ ≡ OR and ! ≡ NOT.

Additional file 6: Reconstructed long-term signalling networks. The
figure displays the reconstructed long-term signalling networks for BT474,
HCC1954 and SKBR3. Target proteins are represented as rectangles with
stimulus and drugs coloured in red. The three drug names erlotinib,
trastuzumab and pertuzumab are abbreviated via their first letters.
Stimulation via full growth medium is denoted by S. Solid arrows denote
activating interactions while dashed ones represent inhibitions.
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In principle, RPPAs are miniaturized 
dot blot immunoassays, enabling 
quantitative analysis of target protein 
abundance, including posttransla-
tional modif ications, across large 
sample sets. Originally introduced by 
Paweletz et al. as a robust and repro-
ducible proteomics resource (1), over 
the past decade the RPPA approach 
has become a valuable method for 
biomarker discovery and systems 
biology research (2,3). The RPPA user 
base is also increasing, as demon-
strated by recent publications in a 
number of fields (1,3–11). Thus, RPPA 
has real ized its ground-breaking 
potential for clinical applications as 
well as for the elucidation of signaling 

networks. Hence, RPPA technology 
would benefit from a robust, freely 
available software tool allowing data 
comparison across dif ferent RPPA 
platforms.

To date, the available analysis tools 
for RPPA have been mainly limited to 
non standardized in-house solutions 
or commercial platforms such as 
Microvigene (Vigene Tech, Carlisle, 
MA). A major drawback of open-source 
RPPA tools such NormaCurve (12), Reno 
(13), and others (14) is their limitation in 
data preprocessing because they are 
restricted to data normalization steps 
without offering additional functions to 
plot the resulting data or to carry out 
a statistical analysis. In contrast, the 

R (http://www.R-project.org) package 
RPPanalyzer (15) offers data prepro-
cessing in combination with graphical 
and statistical analysis options. Utili-
zation of RPPanalyzer is on the rise and 
has been documented already (4,5,16–
20).

Here we describe an expanded 
and improved toolbox for RPPanalyzer 
providing additional useful features 
including a standardized workflow 
of upgraded data preprocessing 
combined with fur ther improved 
graphical and statistical analyses. A 
novel background correction method 
has now been incorporated into the 
program. The main advantage of our 
background correction method is that 
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Analysis of large-scale proteomic data sets requires specialized software tools, tailored toward the 
requirements of individual approaches. Here we introduce an extension of an open-source software solution 
for analyzing reverse phase protein array (RPPA) data. The R package RPPanalyzer was designed for data 
preprocessing followed by basic statistical analyses and proteomic data visualization. In this update, we 
merged relevant data preprocessing steps into a single user-friendly function and included a new method 
for background noise correction as well as new methods for noise estimation and averaging of replicates 
to transform data in such a way that they can be used as input for a new time course plotting function. 
We demonstrate the robustness of our enhanced RPPanalyzer platform by analyzing longitudinal RPPA 
data of MET receptor signaling upon stimulation with different hepatocyte growth factor concentrations.

Reports

METHOD SUMMARY
We describe an improved version of RPPanalyzer that introduces a standardized workflow for RPPA data prepro-
cessing, a novel functionality for background noise correction, and optional graphical and statistical analysis 
methods for robust analysis of reverse phase protein array (RPPA) data sets.
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it does not require the printing of all 
samples as serial dilutions; instead, it 
estimates correction factors based on 
a single representative dilution series. A 
new time course plotting function is also 
incorporated that embeds enhanced 
variance estimations, which is useful 
for triplicate measurements as usually 
obtained from cell-based perturbation 
experiments.

Materials and methods
The application of the RPPanalyzer 
(workflow depicted in Figure 1) is 
demonstrated using a typical systems 
biology RPPA data set (Figure 2A and 
2B). The experimental setup was as 
follows: A549 cells, a human alveolar 
adenocarcinoma cell line, were serum-
starved for 24 hours and subsequently 
stimulated with 6 different hepatocyte 
growth factor (HGF) concentrations 
ranging from 0 to 100 ng/mL. Samples 
were obtained at 6 different time points 
between 0 and 120 min. All experiments 
were done as biological triplicates, and 
the samples were analyzed by RPPA 
using antibodies directed against 
proteins and phosphoproteins involved 
in MET receptor signaling. This example 
RPPA data set and the corresponding R 
script are provided as Supplementary 
Material. The R package is available at 
the Comprehensive R Archive Network 
(CRAN, http://cran.r-project.org/web/
packages/RPPanalyzer) and at R-Forge 
(https://r-forge.r-project.org/projects/
rppanalyzer).

Results and discussion
The general RPPanalyzer workflow is 
depicted in Figure 1. For this updated 
version, the in i t ia l data prepro-
cessing steps were bundled in the 
dataPreproc wrapper function, 
leading to standardized data output. 
Function tasks for dataPreproc 
include:

•	 Import of raw data from slide, 
sample description text files, and 
corresponding gpr f i les. In the 
text files, users provide sample-
speci f ic information and l ist 
the target proteins analyzed by 
RPPA. Instructions on the setup 
of slide and sample description 
files are provided in the RPPana-

lyzer vignette. The information in 
these files impacts all ensuing data 
processing steps. Hence, in case 
of any detected mistakes, f iles 
should be manually corrected and 
the workflow rerun. Spot-specific 
signal intensities obtained by image 
analysis using the commercial 
software GenePixPro are stored 
as gpr files that also contain infor-
mation on array layout. RPPana-
lyzer is tailored to this format. In 
cases in which a user does not 
work with gpr files, a workaround 
is to save result files from other 
scanning systems as text files and 
then adjust the format to the syntax 
of gpr files. After adding the suffix 
.gpr to the text file generated this 
way, the data analysis can proceed 
as when processing gpr files.

•	 Background noise correction using 
the new correctDilinterc 
function, as described next.

•	 Generation of plots to assess data 
quality. These include: ( i ) QC_
dilutioncurve_raw.pdf (raw signal 
intensities of serially diluted control 
samples to check linearity of target 
protein detection), (ii ) QC_target-
VSblank_normed.pdf (scatter plot 
of background noise corrected 
and normalized target signals 
versus “secondary antibody only” 
signal to asses bias caused by the 
secondary antibody), and (iii ) QC_
qqPlot_ normed.pdf (quanti le-
quantile plot to control whether 
data are normally distributed).

•	 Spot-specif ic normalization of 
signal intensities based on the total 
protein concentration determined 
by the FCF method (21). Replicate 
slides, usually 1 slide out of 8 to 
10, are stained with the dye Fast 
Green FCF to determine the total 
protein concentration of each 
individual lysate spot (Figure 2B). 
The signal intensity of FCF readout 
(fi) is determined for each individual 
spot. The target protein specific 
signal intensities (xi) obtained 
from slides probed with different 
detection antibodies are corrected 
for technical variance by dividing 
antibody signals by the factors 
f i. Afterward, the corrected spot 
intensities are multiplied by the 
median fm of the corresponding 
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Figure 1. RPPanalyzer Toolbox workflow. The recommended workflow for reverse phase protein array (RPPA) data analysis starts 
with the import of the image analysis output files as well as the slide and sample description files. The data preprocessing returns 
dilution intercept corrected data, which were normalized by total protein concentration using the Fast Green FCF approach (21). Data 
preprocessed this way can then be analyzed using diverse graphical and statistical methods implemented in the RPPanalyzer toolbox.
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Figure 2. Exemplary reverse phase protein array (RPPA) layout. (A) Samples (control and measurement) are spotted as four identical subarrays 
on a series of nitrocellulose coated glass slides. All samples are spotted as technical triplicates. Only control samples are spotted as 6-fold dilu-
tion series. (B) Slide numbers 1 to 8 are used for incubation with target-specific antibodies; 4 subarrays allow for using 4 different antibodies 

per slide. Slide number 9 is used for total protein staining using the Fast Green FCF method (21).

6-fold dilu�on series of control samples star�ng at 2 µg/µL (A549, 0 min, 0 ng/mL HGF) 

6-fold dilu�on series of control samples star�ng at 2 µg/µL (A549, 10 min, 75 ng/mL HGF) 

6-fold dilu�on series of control samples star�ng at 2 µg/µL (Caki1, 0 min, 0 ng/mL HGF) 

6-fold dilu�on series of control samples star�ng at 2 µg/µL (Caki1, 10 min, 75 ng/mL HGF) 

measurement samples (A549 or Caki1, 0–120 min, 0–100 ng/ml HGF)  

1 FCF slide 8 slides for an�body incuba�on 

A 

B 
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normalizer subarray to scale 
data back to the original signal 
range. This can be summarized 
as normalized spot intensity xFCF 
= xi/fi*fm.

•	 Returning a list of four items to 
users. The first item lists raw data, 
that is, matrices of foreground and 
background signal intensities as well 
as information describing sample 
localization and providing keywords 
to identify individual samples as 
part of the downstream analysis. 
The second item is analogously built 
up but lists corrected foreground 
signal intensities generated using 

the correctDilinterc function. 
If negative values are obtained after 
background subtraction applying 
the correctDilinterc function, 
the absolute minimum plus one 
is added, as for most applica-
tions (e.g., comparison of multiple 
conditions), a small positive value 
is required even for probes which 
are within the background levels. 
The third item is also structured 
as the first two but holds dilution 
intercept corrected and FCF 
normalized foreground data. The 
final item defines the directory for 
output storage.

•	 Raw data export to a text file in 
table format. Any other processed 
data (e.g., normalized data) can 
be exported manually using the 
write.Data function.

All output files are stored in a folder 
labeled with the date of analysis at the 
input files location.

After preprocessing, the next step is 
to merge technical replicates (sample.
median function), select data subsets 
of interest (select.sample.group 
function), and then remove arrays or 
target proteins that are not required during 
downstream analysis, or data that did not 
pass the quality check (remove.arrays 
function).

Finally, dif ferent R functions can 
be applied for statistical analysis and 
graphical representation of the prepro-
cessed RPPA data. According to the 
toolbox character, this output layer 
is not limited to the five implemented 
methods but can be easily expanded 
and tailored to a user’s specific needs 
by new or modified R functions. The 
methods currently available in the 
RPPanalyzer package are:

•	  test.correlation: A correlation 
plot to compare protein expression 

Figure 3. Examples of graphical output. (A) Boxplot of MET receptor phosphorylation (Y1349) signal intensity at the 15 min time point, revealing 
dependence on hepatocyte growth factor (HGF) concentration. The green number represents the P value result from a Kruskal-Wallis rank sum 
test, indicating significant difference between expression values of the six sample groups. (B) Time course plot of MET receptor phosphorylation 
(Y1349) over 120 min after HGF stimulation at different concentration levels.
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and a numeric sample attribute, 
inc lud ing s tat is t ica l  test ing 
according to Pearson, Spearman 
or Kendall.

•	  rppa2boxplot: Allows for visual-
ization of the data as boxplots 
for defined sample groups. In 
addition, statistical rank sum 
tests are applied. In case of a 
reference group to be tested 
against, two-sample Wilcoxon 
tests are performed, and the P 
values are adjusted for multiple 
testing according to Benjamini 
and Hochberg. To test for a general 
difference among all samples, a 
Kruskal-Wallis rank sum test is 
applied. The P values are displayed 
in the boxplot graph, as shown in 
the example data in Figure 3A.

•	  rppaList2Heatmap: Allows for 
the visualization of hierarchical 
clustering as a heatmap, adding 
specific column side colors to mark 
groups of selected phenodata. 
Before applying this function, the 
data should be logarithmized using 
the logList function. Scaling and 
viewing the data on a logarithmic 
scale have the effect of variance 
stabilization and are necessary for 
statistical tests and for the compu-
tation of distance measures that 
have the requirement that the data 
should look normally distributed.

•	  plotTimeCourse: Allows for the 
visualization of time course data. 
Different plotting options can be 
specified, such as smoothed spline 
fits through the data.

In addition to the dataPreproc 
function, four other functions have been 
added to this latest version of RPPan-
alyzer.

•	  correctDilinterc: Correction 
of background noise.
This function corrects signal 
intensities obtained for a protein 
of interest by subtracting an 
intercept estimated for a total 
protein concentration of 0 µg/µL.  
This function does require that 
the array contains a dilution series 
that passed the quality check 
mentioned before. The function 
is integrated in the data prepro-
cessing function dataPreproc. 
The y-intercepts of the dilution 

series for corresponding samples 
are derived using dilSeriesID, a 
parameter defined in the sample 
description file, subarray-specific 
information, detection antibody 
and spotting run as summa-
rized in the slide description file. 
Actual samples are defined as 
measurement in the samplede-
scription.txt, and serially diluted 
samples are specified as control.

A major advantage of this 
method is that it is independent 
of dilution series prepared from 
al l samples as descr ibed by 
the original RPPA approach (1). 
Correction factors are obtained 
f rom representative samples 
chosen ahead of array printing 
during design. In our example data 
set, actual samples represent 6 
different time points ranging from 
0 to 120 min, whereas the corre-
sponding dilution represents a 10 
min time point only, as highlighted 
in Figure 2A. To link a sample 

of interest with a certain control 
dilution series from a panel that 
mostly includes several dilution 
series (e.g., representing different 
cell lines or conditions), the corre-
sponding identif ier has to be 
entered in the column dilSeriesID 
of the sampledescription.txt. The 
selection of the sample to be used 
as dilution series strongly depends 
on the particular experimental 
setup.

Fo r  n e a r- i n f r a r e d  ( N I R ) 
detection, signal and protein 
concentration are detectable over 
a linear range for the majority 
of detection antibodies. Hence, 
intercept subtraction will produce 
a paral le l shi f t. For non-NIR 
f luorescence–based detection 
approaches, signals frequently 
saturate at higher protein concen-
trations. In this case, smoothing 
splines as nonparametric fits allow 
us to deal with several dif ferent 
RPPA detection methods and are 

Figure 4. Dilution series plot visualizing the signal intercept estimation. In this example, a y-
intercept of 453 a.u. was estimated as background noise for an antibody directed against PRAS40. 
Sample signal intensities will be background corrected by subtraction of this value.

S
ig

na
l i

nt
en

si
ty

 (
a.

u.
)

Total protein concentration (µg/µL)



133Vol. 57 | No. 3 | 2014

applied for extrapolation to zero concentration. The 
uncertainty of the extrapolated intercept is estimated 
by nonparametric bootstrapping.

The estimated intercepts I are conditional on the 
factors antibody, slide, and sample, of which the latter 
is defined by dilSeriesID. Linear models are established 
for the following hypotheses:

I ~ const.  [Eq. 1.1]

I ~ const. + antibody  [Eq. 1.2]

I ~ const. + antibody + slide  [Eq. 1.3]

I ~ const. + antibody + slide + sample  [Eq. 1.4]

The estimated uncertainties of the intercepts are used 
as weights. The provided bar plot of the residual sum of 
squares (RSS) (anovaIntercepts_Output.pdf ) should be 
used to choose the model with the smallest RSS favoring 
less complexity. For example, if the bars of model 1.3 
and 1.4 are the smallest and are equally high, model 1.3 
should be preferred because the sample in 1.4 does not 
provide additional information. Based on the chosen 
model, the measurement intercepts are  predicted and 
are then subtracted from the raw intensities. The function 
additionally generates plots of the dilution series and 
related intercept estimations (getIntercepts_Output.pdf ), 
as shown in Figure 4.

•	  getErrorModel: Estimation of signal variance.
Signal variance can be estimated from technical repli-
cates. The variance estimator for triplicates is generally 
very poor because it is c2 distributed with n-1 degrees 
of freedom. In the case of n = 3, this is an exponential 
distribution. Therefore, information from several different 
triplicates is combined to estimate parameters of an 
error model.

A variance versus signal plot characteristic for RPPA 
data reveals the following:

(i)	The signal dependency of the variance depends on the 
factors subarray, detection antibody, and median FCF 
normalizer value. Slides probed with different detection 
antibodies are scanned with different scanner settings 
to yield an optimal image for data analysis. Signals 
are scaled by the median FCF value.

(ii)	 Signal variances can increase with the signal strength, 
are constant, or have (almost) zero variance at zero 
signal.

The error model used to account for these observa-
tions is s2 = s2

0 + S2s2
rel, where S is the signal strength, s2

0 
denotes the variance at zero signal, and s2

rel reflects the 
relative error. To estimate s2

0 and s2
rel from the variance 

versus signal plot, a maximum likelihood approach, 
exploiting the c2 distribution of the variances, is applied. 
This is due to the strong nonnormality of the triplicate 
variance estimator.
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•	  averageData: Averaging biological 
replicates.
Frequently, experiments provide two 
kinds of replicates: technical and 
biological. In this context, biological 
replicate means that spotted lysates 
result from equal treatment, and 
technical replicate means that the 
identical lysate is spotted several times 
on the same slide.

Averaging is done for each 
detection antibody separately. It is 
based on the assumption that a true 
dynamic behavior ys(t) for a given 
stimulation s exists. The observed 
dynamics Sjs(t) for each biological 
replicate j, that is, factor (biological 
replicate + slide), and stimulation 
s dif fer systematically from ys(t) 
by a scaling factor sj. In addition, 
sj*Sjs(t) differs statistically from ys(t) 
because of biological variability. 
To estimate the true dynamics and 
the scaling factors, the objective 
function (see Equation 2 below) for 
discrete measurement time points 
ti is minimized. The response is 
weighted by the variance from the 
error model evaluated at the “true” 
value yis/sj. Strictly speaking, this 
is an approximation because each 
biological replicate has its own true 
dynamic behavior. A direct estimate 
of these signaling dynamics would 
be the mean of the technical repli-
cates for each biological replicate, 
that is, Sijs itself. Depending on the 
value of s2

r, erroneous estimates 
can have a huge impact because 
smaller values are automatically 
favored. In contrast, the approxi-
mation by yis/sj is more robust.

•	  plotTimeCourseII: Visualization 
of time course data.
This function is applied after trans-
forming the preprocessed data by the 
getErrorModel and averageData 
functions, and an example of this 
function is shown in Figure 3B.

In conclusion, we have simplified, 
enhanced and standardized RPPA data 
analysis by extending the functionality 
of the existing RPPanalyzer package 
through the introduction of new 
approaches for variance estimation, 
background noise correction, and time 
course data visualization. In addition 
to this new functionality, the package 
was also streamlined by easing and 
improving several already existing 
functions. Although we recommend 
the use of the standard preprocessing 
steps, the newly introduced toolbox 
approach described here does allow 
integration of add-on functions that 
can be tailored to the specific needs 
of users.
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Abstract
Intrinsic and acquired resistance to the monoclonal antibody drug trastuzumab is a major

problem in the treatment of HER2-positive breast cancer. A deeper understanding of the un-

derlying mechanisms could help to develop new agents. Our intention was to detect genes

and single nucleotide polymorphisms (SNPs) affecting trastuzumab efficiency in cell cul-

ture. Three HER2-positive breast cancer cell lines with different resistance phenotypes

were analyzed. We chose BT474 as model of trastuzumab sensitivity, HCC1954 as model

of intrinsic resistance, and BTR50, derived from BT474, as model of acquired resistance.

Based on RNA-Seq data, we performed differential expression analyses on these cell lines

with and without trastuzumab treatment. Differentially expressed genes between the resis-

tant cell lines and BT474 are expected to contribute to resistance. Differentially expressed

genes between untreated and trastuzumab treated BT474 are expected to contribute to

drug efficacy. To exclude false positives from the candidate gene set, we removed genes

that were also differentially expressed between untreated and trastuzumab treated BTR50.

We further searched for SNPs in the untreated cell lines which could contribute to trastuzu-

mab resistance. The analysis resulted in 54 differentially expressed candidate genes that

might be connected to trastuzumab efficiency. 90% of 40 selected candidates were validat-

ed by RT-qPCR. ALPP, CALCOCO1, CAV1, CYP1A2 and IGFBP3 were significantly higher

expressed in the trastuzumab treated than in the untreated BT474 cell line. GDF15, IL8,

LCN2, PTGS2 and 20 other genes were significantly higher expressed in HCC1954 than in

BT474, while NCAM2, COLEC12, AFF3, TFF3, NRCAM, GREB1 and TFF1 were signifi-

cantly lower expressed. Additionally, we inferred SNPs in HCC1954 for CAV1, PTGS2, IL8

and IGFBP3. The latter also had a variation in BTR50. 20% of the validated subset have al-

ready been mentioned in literature. For half of them we called and analyzed SNPs. These

results contribute to a better understanding of trastuzumab action and resistance

mechanisms.
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Introduction
The ‘HER2-positive’ subtype of breast cancer overexpresses the human epidermal growth fac-
tor receptor 2 (HER2). This receptor tyrosine kinase is part of the epidermal growth factor re-
ceptor (EGFR) family, further including HER1 (EGFR), HER3 and HER4 [1]. It is
overexpressed in 10–20% of breast tumors, and the related subtype is associated with increased
recurrence and mortality rates [2, 3].

The humanized monoclonal antibody trastuzumab targets specifically the extracellular do-
main of HER2 and is part of the adjuvant treatment of patients with HER2-positive (HER2+)
early breast cancer [4]. The improved outcome by adding trastuzumab to chemotherapy for ex-
ample is not completely understood. So far it has been associated with different mechanisms of
action apart from inhibiting HER2, its dimerization and cleavage [4, 5]. These mechanisms in-
clude inhibition of downstream signal transduction pathways like the PI3K pathway, antigen-
dependent cellular cytotoxicity (ADCC), induction of cell cycle arrest and apoptosis or inhibi-
tion of tumor angiogenesis.

Although trastuzumab provides clinical benefit to women with HER2+ breast cancer, not all
patients respond [6]. Primary or acquired resistance limits the success of trastuzumab. Diverse
possible mechanisms have been discussed [4, 5]. Among others, these include increased HER2,
HER1 or HER3 expression, steric hindrance of HER2-antibody interaction, constitutive activa-
tion of the PI3K pathway due to mutations in the PIK3CA gene or loss of PTEN, alternative
cell signaling induced by EGFR family members, MET receptor or insulin-like growth factor 1
receptor (IGF-IR), and overexpression of transforming growth factor (TGF)-α, neuregulin or
vascular endothelial growth factor (VEGF). Corresponding therapeutic strategies to overcome
or avoid resistance to trastuzumab have been developed, and several new agents are in clinical
development. Studies in metastatic disease led to the approval of new HER2-targeted therapies
using small molecule tyrosine kinase inhibitors such as lapatinib and HER2/HER3 antibodies
such as pertuzumab [7]. However, so far it is not possible to predict prior to trastuzumab treat-
ment which patients will develop resistance. A need for a better understanding of the mecha-
nisms of trastuzumab action and resistance persists.

This study aims at detecting genes and single nucleotide polymorphisms (SNPs) affecting
trastuzumab efficiency in three cell lines with different resistance phenotypes. These include
trastuzumab sensitivity, intrinsic resistance due to a mutated PIK3CA gene, and acquired resis-
tance. Ten percent of the candidate genes inferred via mRNA profiling have already been sup-
ported by literature. The remaining ones, partially known to be involved in breast cancer,
could also contribute to novel strategies preventing trastuzumab resistance.

SNPs are the most common genetic variations and can be associated with heritable pheno-
types. Related data is deposited in public databases [8]. SNPs are defined as single base pair po-
sitions in genomic DNA at which different sequence alternatives (alleles) exist in normal (non-
diseased) individuals in some population(s), wherein the least frequent allele has an abundance
of at least 1% [9]. According to this definition, Brookes concluded that single base insertion/de-
letion variants (indels) would not formally be considered as SNPs. However, he stated that in
practice the term SNP is used rather loosely. For example, single base variants in cDNAs
(cSNPs) are usually called SNPs, since most of them reflect underlying genomic DNA variants.
This could be misleading in case of disease predisposing single base variants, which occur in
some non-diseased individuals. Also Brookes warned that the ‘some population’ component of
the definition is limited by practical challenges of attaining representative global population
samples. He summarized that the term ‘SNP’ is being widely used as a label for many different
types of subtle sequence variation. Being aware of the definition mentioned before, we decided
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to call our detected sequence variations, which are potentially related to trastuzumab efficacy,
‘SNPs’ in the following.

SNPs may unravel multifactorial diseases such as most cancers or drug response, bearing
pharmacogenetic potential in the context of personalized medicine. Direct DNA sequencing is
the favored high-throughput method for SNP identification [10, 11]. However, Quinn et al.
evaluated the performance of different SNP calling methods by applying them to RNA-Seq
data and comparing results with sequence variation data from 1000 Genomes [12]. They regard
RNA-Seq SNP data as a useful by-product of sequence-based transcriptome analysis. Accord-
ing to their results, one can detect a high proportion of mutations of expressed genes via RNA-
Seq. We intended to reveal SNPs in our candidate genes which might determine trastuzumab
efficiency in the untreated cell lines. Above that we analyzed SNPs that affect cell signaling in
the MAPK and PI3K pathway. These variations could be responsible for the different resistance
cell phenotypes. Hence, the combination of differential gene expression and SNP analysis
could help to predict the efficacy of trastuzumab therapy. Consequently, the detection of corre-
sponding genes and their variations could contribute to an improved patient stratification.

Materials and Methods

Cell lines
Three human HER2-amplified breast cancer cell lines (BT474, HCC1954 and BTR50) were
chosen as model systems of trastuzumab sensitivity (BT474 [6]), intrinsic (HCC1954 [6, 13])
and acquired (BTR50) resistance. While HCC1954 is known to be trastuzumab resistant due to
a hotspot PIK3CA mutation (H1047R, PI3K gain-of-function), BT474 exhibits PIK3CA wild
type behavior [14]. The cell line BTR50 is a trastuzumab-conditioned version of BT474, as ex-
plained in the corresponding subsection.

The cells were grown in a monolayer and collected as a cell pellet after trypsin treatment.
RNA was harvested from cell pellet using the miRNeasy kit (Qiagen).

BT474
The human breast cancer cell line BT474 was directly obtained from the American Type Cul-
ture Collection (ATCC), catalogue no. HTB-20. It was cultured in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum, 0.01 mg/ml of insulin and 1%
penicillin/streptomycin. The cells were cultured at 37°C in an atmosphere containing 5% CO2.
Cells were harvested with trypsin-ethylenediamine tetraacetic acid (EDTA) (0.5 g/L trypsin;
0.2 g/L EDTA; Sigma). The cells were split three times per week.

HCC1954
The human breast cancer cell line HCC1954 was directly obtained from ATCC, catalogue no.
CRL-2338, and cultured in RPMI media (Gibco) supplemented with 10% fetal bovine serum
(Gibco). The medium was supplemented with 1% penicillin/streptomycin (Gibco). The cells
were cultured at 37°C in an atmosphere containing 5% CO2. Cells were harvested with EDTA
(0.5 g/L trypsin; 0.2 g/L EDTA; Sigma). The cells were split three times per week.

BTR50
Resistant cells (BTR) were developed by culturing the epithelial BT474 breast cancer cells (wild
type, wt) in the presence of 50 μg trastuzumab (Roche) for around six months. Parental cells
(wt) were cultured in parallel to resistant ones without the addition of trastuzumab (Fig. 1). Re-
sistance of the cells to trastuzumab was verified by cell viability assays (Fig. 2). Trastuzumab
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markedly reduced the growth of BT474 (wt) cells compared to trastuzumab resistant BT474
(BTR50) cells.

Cell viability assay and determination of trastuzumab sensitivity
For the measurement of cell viability, both parental BT474 and trastuzumab resistant BTR50
cells were seeded in 96 well plates. Cell viability was determined every day for in total 7 days
using Cell Titer Glo Luminescent Cell Viability Assay (Promega) following the manufacturer’s

Fig 1. Development of BTR50 cells. Trastuzumab resistant cells were developed by culturing parental BT474 cells in the presence of 20/50 μg trastuzumab
for around 6 months.

doi:10.1371/journal.pone.0117818.g001

Fig 2. BT474 cells have acquired resistance to trastuzumab. (a) Proliferation rate of BT474 (parental) and
trastuzumab resistant BT474 (BTR50) cells treated with 20 μg/ml trastuzumab. Proliferation rates were
measured daily over 7 days by a luciferase-based viability assay. (b) Sensitivity of BT474 (parental) and
trastuzumab resistant BTR50 cells towards increasing concentrations of trastuzumab. Cell viability was
determined by a luciferase-based viability assay after 7 days of treatment.

doi:10.1371/journal.pone.0117818.g002
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instructions (Fig. 2a). The sensitivity towards trastuzumab was defined by treatment of both
cell lines with increasing concentrations of trastuzumab and a subsequent measurement of cell
viability after 7 days (Fig. 2b).

Trastuzumab (Herceptin) treatment
For treatment experiments, 2 × 105 cells were seeded in T25 flasks and cultivated as described
before. Cells were treated with 20 μg/ml trastuzumab (Roche Diagnostics GmbH, Penzberg,
Germany) or grown in full growth media without inhibitors. Cell pellets were harvested after
72 h. The cells were incubated in the standard media 24 h before addition of trastuzumab or
fresh full growth media.

RNA sequencing
Total RNA was isolated from the cell lines BT474, HCC1954 and BTR50 using the Trizol (Invi-
trogen) method according to the manufacturer’s recommendations. Afterwards, the samples
were DNAse I (Sigma) treated in order to remove DNA contamination. RNA quality was de-
termined using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA)
microfluidic electrophoresis. Only samples with comparable RNA integrity numbers were se-
lected for deep sequencing.

Library preparation for RNA-Seq was performed using the TruSeq RNA Sample Prepara-
tion Kit (Illumina, catalog ID RS-122-2002) starting from 800 ng of total RNA. Accurate quan-
titation of cDNA libraries was performed by using the QuantiFluor™dsDNA System
(Promega). The size range of final cDNA libraries was determined applying the DNA 1000
chip on the Bioanalyzer 2100 from Agilent (280 bp). cDNA libraries were amplified and se-
quenced by using the cBot and HiSeq 2000 from Illumina (SR, 1 × 51 bp, 6 GB ca. 30–35 mil-
lion reads per sample).

Sequence images were transformed with Illumina software BaseCaller to bcl files, which
were demultiplexed to fastq files with CASAVA (version 1.8.2). Quality check was done via
FastQC (version 0.10.1, Babraham Bioinformatics).

The sequenced reads were hard (first five bases) and soft (last bases) trimmed as well as
trimmed for adapter sequences via Flexbar [15] (version 2.32). Afterwards they were mapped
to the human reference genome (GRCh37, Gencode [16] release 14) using STAR [17] (version
2.3.0), allowing maximal three mismatches. Conversion of SAM to BAM files and correspond-
ing sorting was done via SAMtools [18] (version 0.1.18). Counting the reads to each gene to
the UCSC gtf gene annotation file (March 2012) was done via HTSeq [19] (0.5.3p9, htseq-
count).

SNP calling
The reads were aligned against the Ensembl [20] reference genome release 71 (GRCh37) with
STAR (version 2.3.0), allowing for 5% mismatches of total read length. STAR was used with ad-
ditional splice junction annotation. Read group definition as well as removal of duplicates after
the alignment step was done via Picard command line tools (release 1.99, http://picard.
sourceforge.net). For calling variants from RNA-Seq data, the Genome Analysis Toolkit
(GATK) [21] (version 2.7.2) standard SNP best-practice protocol was used with the additional
option -U ALLOW_N_CIGAR_READS. Standard hard filtering was applied. Read quality was
reassigned from 255 to 60. Low quality reads were neglected. Just SNPs with a read depth� 10
were selected.

For the analysis of the derived SNP candidates by applying GATK we used the Variant Ef-
fect Predictor (VEP) [22].
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Differential expression analysis
Normalization of read counts to the library size, estimation of dispersions (method = ‘blind’,
sharingMode = ‘fit-only’) and testing for differentially expressed (DE) genes based on a statisti-
cal test assuming negative binomial data distribution was computed via the DESeq [23] (ver-
sion 1.12.1) R [24] package. Just genes exceeding 20 counts for at least one sample were kept
for further analysis. The numerator and denominator of fold changes (FC) were increased by
one to account for zero values. Significant genes were filtered to a minimum of 2xFC and fdr<
0.05 with multiple testing correction according to Benjamini and Hochberg [25].

Based on RNA-Seq data, we performed DE analyses on six samples, i.e. the breast cancer
cell lines BT474, HCC1954 and BTR50 with and without trastuzumab treatment. In detail, five
separate two-sample tests were performed and normalization was done per sample pair of con-
sideration. First we tested for DE between resistant and wild type cells, i.e. HCC1954 and
BTR50 vs. BT474, respectively. This revealed 46 significant genes which might contribute to re-
sistance. Next we tested for DE between untreated and trastuzumab treated cells, i.e. each of
the three cell lines vs. its trastuzumab treated version. The test for BT474 revealed 18 significant
genes which might contribute to trastuzumab efficiency. To exclude false positives from the
combined set of 64 genes, we removed ten genes that were also significant in the test for
BTR50. No trastuzumab effect was expected for the resistant cell line. The same would have
held for HCC1954, but the related test revealed no significant genes overlapping with our can-
didate set. This way we discovered 54 genes that might determine trastuzumab efficiency in
HER2+ breast cancer cell lines. Annotation and functional association of the candidate genes
to biological processes (BP, Gene Ontology annotation) was added via biomaRt [26] (version
2.16.0). The raw and normalized data have been submitted to the Gene Expression Omnibus
(GEO) with accession number GSE55005.

Real-time quantitative PCR
Out of the 54 candidate genes detected by mRNA profiling we chose 40 for validation via real-
time quantitative PCR (RT-qPCR). mRNA purification was performed at 4°C using the miR-
Neasy Kit (Qiagen, Hilden, Germany) according to the manufactures recommendation. cDNA
was generated using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems,
Darmstadt, Germany) from total RNA isolated from breast cancer cell lines. Primer combina-
tions for the respective genes were designed according to the Harvard Primer Bank (http://pga.
mgh.harvard.edu/primerbank) and are listed in S1 Table. 10 ng of each cDNA were used per ap-
proach. The final concentrations were 1x Applied Biosystems Power SYBR GreenMaster Mix
(Applied Biosystems, Darmstadt, Germany) and 10 μMof each primer. RT-qPCR was performed
in a total volume of 12μl. Glycerinaldehyd-3-phosphat-Dehydrogenase (GAPDH) was used as
reference gene. The ViiA 7 Real-Time PCR System (Applied Biosystems, Darmstadt, Germany)
was used for RT-qPCR analysis. Data analysis was performed as described in Livak and Schmitt-
gen [27] with two biological replicates. The corresponding data are listed in S2 Table.

Results and Discussion

mRNA profiling reveals genes associated with trastuzumab efficiency
The differential expression (DE) revealed by RNA-Seq analysis was confirmed via RT-qPCR
for 36 out of 40 candidate genes. The whole set consisted of 54 genes (S3 Table). The selection
criterion was mainly based on literature support for association of genes with trastuzumab effi-
ciency or breast cancer.
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Six of the candidate genes were selected from the gene set inferred by testing DE between
BT474 and its trastuzumab treated version. The whole subset consisted of eight genes. For the
selected ones (ALPP, CALCOCO1, CAV1, CYP1A2, IGFBP3, L1CAM) a significantly higher
expression after trastuzumab treatment of BT474 was validated apart from L1CAM.

Of the gene set inferred by testing DE between BT474 and HCC1954, 33 candidate genes
were selected. The whole subset consisted of 45 genes. For all of the selected ones (AFF3,
AKR1C1, CES1, CLDN1, COLEC12, CTGF, FXYD5, GBP1, GDF15, GREB1, IFI16, IFI27,
IFITM1, IL8, KLK5, KLK6, KLK8, KRT17, KRT5, KRT81, LCN2, LIF, MYEOV, NCAM2,
NRCAM, PGR, PTGS2, PTRF, S100A9, TFF1, TFF3, TGM2 and TINAGL1) the expected DE
was validated apart from PGR and IFI16. AFF3, COLEC12, GREB1, NCAM2, NRCAM, TFF1

Fig 3. Fold Changes of DE genes (BT474 plus trastuzumab vs. BT474). The barchart displays the log2
fold changes of validated candidate genes, which significantly changed their expression in BT474 after
trastuzumab treatment. The positive values indicate an upregulation upon drug treatment. Black bars denote
values resulting from RNA-Seq analysis. Gray bars denote values resulting from RT-qPCR analysis.

doi:10.1371/journal.pone.0117818.g003

Table 1. Upregulated genes in BT474 upon trastuzumab treatment.

HGNC Symbol Description Log2 FC FDR

ALPP alkaline phosphatase placental 2.94 1.7e-04

CALCOCO1 calcium binding and coiled-coil domain 1 1.48 3.0e-02

CAV1 caveolin 1 caveolae protein 22kDa 2.49 2.7e-02

CYP1A2 cytochrome P450 family 1 subfamily A polypeptide 2 2.57 8.1e-03

IGFBP3 insulin-like growth factor binding protein 3 2.36 5.9e-08

The table displays the results of the RNA-Seq data comparison between BT474 and its trastuzumab

treated version. It holds the description, log2 fold change (FC) and fdr of the differentially expressed genes.

The positive log2 fold changes indicate upregulated gene expression after trastuzumab treatment.

doi:10.1371/journal.pone.0117818.t001
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and TFF3 were significantly lower expressed in HCC1954 than in BT474, while the remaining
ones were significantly higher expressed.

One candidate gene (MALAT1) was inferred by testing DE between BT474 and BTR50. Its
significantly higher expression in BT474 was not validated.

Upregulated genes in BT474 upon trastuzumab treatment—indicators for drug
sensitivity
The validated candidate genes ALPP, CYP1A2, CAV1, IGFBP3 and CALCOCO1 had positive
log2 fold changes (FC) indicating an upregulation in BT474 when treated with trastuzumab.
Fig. 3 shows the log2 FC resulting from RNA-Seq and RT-qPCR analysis, respectively. Table 1
lists the gene descriptions as well as the log2 FC and fdr of the RNA-Seq analysis. It is an ex-
cerpt of S3 Table.

ALPP and CYP1A2 showed the highest FC, but no association with trastuzumab has been
reported so far. ALPP encodes placental alkaline phosphatase (PLAP) which is known as a
tumor marker in seminoma and ovarian cancer [28]. CYP1A2 (cytochrome P450, family 1,
subfamily A, polypeptide 2), which activity is known to be modulated by specific polymor-
phisms, is already supposed to influence breast cancer, as it is involved in breast carcinogen ac-
tivation on the one hand, but produces beneficial estrogen and anti-inflammatory acids on the
other hand [29].

IGFBP3 and CAV1 have already been reported in the context of trastuzumab efficacy. Re-
garding CAV1 (caveolin 1), Sekhar et al. discovered that although its tumor suppressor efficacy
may be related to a HER2 downregulation in breast cancer cells, CAV1 and caveolae deficiency
might be preferable under trastuzumab treatment [30]. Based on observations in the HER2+
human breast cancer cell line SKBR3, in which CAV1 was stably transduced, they speculated
that an attenuated ADCC effect might be contributing to trastuzumab resistance. They found
trastuzumab to be internalized and co-localized with CAV1, mediating endocytosis of HER2
by CAV1. Interestingly, in our study CAV1 was overexpressed upon trastuzumab treatment in
the sensitive cell line BT474. The RT-qPCR data further revealed a stronger upregulation of
CAV1 in HCC1954 compared to BT474, which was even stronger than the one in the trastuzu-
mab treated BT474 cell line (S2 Table), underlining the benefit of a reduced CAV1 expression
for drug efficacy. To further examine the role of CAV1 in trastuzumab treatment, we analyzed
its expression in public available data from the transNOAH breast cancer trial (GEO series
GSE50948) [31]. The original NeOAdjuvant Herceptin (NOAH) trial revealed the benefit of
trastuzumab addition to treatment with neoadjuvant chemotherapy in HER2+ breast cancer
patients [32]. We selected 11 patient samples with similar receptor status as BT474, i.e. estro-
gen receptor (ER)+/progesterone receptor (PR)+/HER2+ [33], of which four received neoadju-
vant doxorubicin/paclitaxel treatment followed by cyclophosphamide/methotrexate/
fluorouracil. The remaining seven patients received trastuzumab in addition for one year.
CAV1 was differentially expressed between the two groups (p< 0.05) with an approximately
two-fold upregulation in the trastuzumab treated group (Fig. 4) supporting our observation.
S1 Fig. shows the corresponding boxplots for all of the 54 candidate genes.

For IGFBP3, an insulin-like growth factor binding protein (IGFBP), several publications al-
ready hint at a positive association between its expression levels and trastuzumab efficacy. The
corresponding biological processes of the Gene Ontology (GO) annotation included regulation
of cell growth, negative regulation of signal transduction, protein phosphorylation and cell pro-
liferation as well as positive regulation of apoptotic process, IGF receptor (IGFR) signaling
pathway and MAPK cascade. According to Dokmanovic et al., trastuzumab enhanced IGFBP3
expression which in turn contributed to its sensitivity by growth inhibition [34]. They observed
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high IGFBP3 levels in the trastuzumab sensitive cell lines SKBR3 and BT474 and explained the
way of growth inhibition by blocking crosstalk between the IGF-IR and HER2 signaling path-
way. IGFBP2 and IGFBP3 were considered as potential predictive biomarkers for trastuzumab
resistance by them, since IGFBP3 interfered with IGF-I-mediated mitogenic signaling and re-
duced IGFBP2-induced HER2 activation. Jerome et al. also observed that recombinant human
IGFBP3 (rhIGFBP3) inhibited growth of HER2+ breast tumors and potentiated trastuzumab
activity [35]. They observed that IGF-IR activation countered early effects of trastuzumab on
HER2 signaling via AKT and ERK1/2. Downregulated phosphorylation of both proteins was
associated with rhIGFBP3 inhibition of tumor growth. That is why Jerome et al. suggested si-
multaneous blockade of HER2 and IGF-IR pathways via rhIGFBP3 plus trastuzumab for
HER2+ breast cancer patients. Lu et al. also reported a relation between IGF-IR signaling and
trastuzumab resistance in HER2+ breast cancer cell models [36]. Their explanation for en-
hanced trastuzumab-induced growth inhibition by IGFBP3 was that IGFBP3 interferes with li-
gand-IGFR interactions.

Differentially expressed genes between HCC1954 and BT474—indicators for
intrinsic resistance
Among the validated candidate genes, 24 had negative log2 fold changes (FC) and seven had
positive ones. A negative log2 FC indicated significantly higher expression in HCC1954 com-
pared to BT474. The genes with a positive log2 FC were significantly lower expressed in
HCC1954 compared to BT474 and might contribute to trastuzumab efficiency. Fig. 5 shows
the log2 FC resulting from RNA-Seq and RT-qPCR analysis, respectively. Table 2 lists the gene
descriptions as well as the log2 FC and fdr of the RNA-Seq analysis. It is an excerpt of S3 Table.

Due to the large amount of candidates in this DE analysis, we focused on the ones which
have already been mentioned in the context of trastuzumab efficacy, namely IL8, PTGS2,

Fig 4. CAV1 expression is raised upon trastuzumab treatment. The boxplot displays CAV1 gene
expression (log2) of seven patients treated with trastuzumab for one year in addition to neoadjuvant
chemotherapy (red) and four patients treated with neoadjuvant chemotherapy only (gray). The patient data
samples were selected from the transNOAH breast cancer trial (GEO series GSE50948).

doi:10.1371/journal.pone.0117818.g004
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GDF15 and LCN2, all of which were upregulated in HCC1954. We analyzed the remaining
genes of this group more generally in the context of breast cancer.

Upregulated genes in HCC1954 compared to BT474 IL8 (interleukin 8) is a chemotactic
and inflammatory cytokine, which is produced upon inflammatory stimulation [37]. IL8 is as-
sociated with biological processes such as positive regulation of neutrophil chemotaxis, neutro-
phil activation, inflammatory and immune response. It was overexpressed in the resistant cell
line HCC1954 compared to BT474. Korkaya et al. observed that PTEN downregulation and
HER2 overexpression synergize to increase the expression of IL8 and IL6. Both of them are
speculated to participate in an inflammatory loop, mediating trastuzumab resistance in HER2+
breast cancer by expanding the cancer stem cell population [38]. This loop implies AKT and
subsequent NF-κB activation. Interestingly, HCC1954 is already known for dysregulated PI3K/
AKT signaling due to its PIK3CA mutation. Our results point to an important role of IL8 in
driving trastuzumab resistance via a hyperactive PI3K pathway.

PTGS2 (cyclooxygenase prostaglandin-endoperoxide synthase 2), also known as COX2, was
upregulated in HCC1954 as well and is connected to inflammation and carcinogenesis. Ac-
cordingly, it is usually not detectable in healthy tissues but can be induced in response to proin-
flammatory cytokines, growth factors and tumor promoters [39]. Ristimäki et al. stated that
PTGS2 was detected in many breast tumors, correlated with poor patient prognosis, and its
overexpression was shown to correlate with HER2 oncogene amplification in breast cancer
[39]. Wang et al. also reported that nuclear HER2 bound at and transactivated the PTGS2 pro-
moter, determining PTGS2 gene expression [40]. They further showed that trastuzumab trig-
gered HER2 protein depletion and mitigated the association between nuclear HER2 and the
PTGS2 promoter. Flowers and Thompson treated SKBR3 with t10c12 conjugated linoleic acid

Fig 5. Fold Changes of DE genes (BT474 vs. HCC1954). The barchart displays the log2 fold changes of
validated candidate genes, which showed significant differences in their expression in BT474 and HCC1954,
respectively. Positive values indicate an upregulation in BT474. Negative values indicate an upregulation in
HCC1954. Black bars denote values resulting from RNA-Seq analysis. Gray bars denote values resulting
from RT-qPCR analysis.

doi:10.1371/journal.pone.0117818.g005
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(CLA) and observed a HER2 suppression as well as enhanced apoptosis [41]. This confirmed
the expected anti-tumor properties of t10c12 CLA via inhibition of NF-κB activity and PTGS2-
derived prostaglandin E2 (PGE2). Both factors play a role in resistance against HER2-targeted
therapy with trastuzumab, which usually improves disease-free survival (DFS) for women with
HER2+ breast cancers. In this context we derived the GO terms ‘response to fatty acid’, ‘posi-
tive regulation of NF-κB import into nucleus’ and ‘positive regulation of prostaglandin biosyn-
thetic process’. Regulation of HER2 oncogene expression by PTGS2 and PGE2 was analyzed by
Benoit et al. [42]. According to their study, high levels of the proinflammatory and antiapopto-
tic enzyme PTGS2 have already been detected in HER2+ tumors, linked to HER2-mediated in-
duction of PTGS2 gene transcription. In turn, PTGS2 expression and synthesis of its enzymatic
product PGE2 lead to enhanced HER2 expression, which is known to correlate with adverse

Table 2. Differentially expressed genes between HCC1954 and BT474.

HGNC Symbol Description Log2 FC FDR

AKR1C1 aldo-keto reductase family 1 member C1 -10.88 4.6e-02

CES1 carboxylesterase 1 -9.67 4.6e-02

CLDN1 claudin 1 -8.65 4.6e-02

CTGF connective tissue growth factor -9.28 4.6e-02

FXYD5 FXYD domain containing ion transport regulator 5 -8.47 4.6e-02

GBP1 guanylate binding protein 1 interferon-inducible -9.30 4.9e-02

GDF15 growth differentiation factor 15 -8.38 4.6e-02

IFI27 interferon alpha-inducible protein 27 -8.63 4.6e-02

IFITM1 interferon induced transmembrane protein 1 -8.94 4.6e-02

IL8 interleukin 8 -9.86 4.6e-02

KLK5 kallikrein-related peptidase 5 -9.32 4.6e-02

KLK6 kallikrein-related peptidase 6 -9.35 4.6e-02

KLK8 kallikrein-related peptidase 8 -8.99 4.6e-02

KRT17 keratin 17 -9.12 4.6e-02

KRT5 keratin 5 -9.41 4.6e-02

KRT81 keratin 81 -9.53 4.6e-02

LCN2 lipocalin 2 -8.34 4.6e-02

LIF leukemia inhibitory factor -9.29 4.9e-02

MYEOV myeloma overexpressed -9.44 4.6e-02

PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) -9.03 4.6e-02

PTRF polymerase I and transcript release factor -8.68 4.6e-02

S100A9 S100 calcium binding protein A9 -8.45 4.6e-02

TGM2 transglutaminase 2 -9.29 4.6e-02

TINAGL1 tubulointerstitial nephritis antigen-like 1 -8.55 4.6e-02

AFF3 AF4/FMR2 family member 3 9.70 4.6e-02

COLEC12 collectin sub-family member 12 9.79 4.6e-02

GREB1 growth regulation by estrogen in breast cancer 1 8.62 4.6e-02

NCAM2 neural cell adhesion molecule 2 9.83 4.6e-02

NRCAM neuronal cell adhesion molecule 8.73 4.6e-02

TFF1 trefoil factor 1 8.57 4.6e-02

TFF3 trefoil factor 3 (intestinal) 9.01 4.6e-02

The table displays the results of the RNA-Seq data comparison between BT474 and HCC1954. It holds the description, log2 fold change (FC) and fdr of

the differentially expressed genes. Positive log2 fold changes indicate higher gene expression in BT474, while negative log2 fold changes indicate higher

gene expression in HCC1954.

doi:10.1371/journal.pone.0117818.t002
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prognosis in breast cancers. Thus, HER2 and PTGS2 transcriptionally regulate each other in a
positive feedback loop. Indeed, PTGS2 inhibition reduced HER2 protein levels, increased can-
cer cells sensitivity to chemotherapeutic treatment and acted synergistically with trastuzumab.
The association between PTGS2 and HER2 overexpression was also analyzed by Howe et al.
[43]. They emphasize that PTGS2 or derived prostaglandins are known to promote angiogene-
sis and invasiveness of diverse cancer types. We inferred the GO term ‘positive regulation of
cell migration involved in sprouting angiogenesis’ in this context. Especially the HER2/HER3
signaling pathway was shown to regulate expression of PTGS2 and its associated pathway [44].
As the HER2/HER3 heterodimer is known to stimulate the PI3K pathway [45], it confirms our
observation that PTGS2 was overexpressed in the PIK3CA mutated HCC1954 cell line. Basu
et al. detected that PTGS2 inhibition decreased cell growth and promoted apoptosis in meta-
static breast cancer [46]. Indeed, PTGS2 is known to positively regulate apoptotic processes
and growth factor (GF) production, e.g. TGF-β, VEGF, fibroblast GF (FGF) and platelet-
derived GF (PDGF). As a link is assumed between overexpression of HER2 and PTGS2 activity
in breast cancer, Gianni speculated that a combination of PTGS2 inhibitors with trastuzumab
may be efficient in high-risk patients [47]. Within a corresponding phase II study, Dang et al.
tested a combined treatment of metastatic breast cancer patients who have progressed after
prior trastuzumab-based treatments with trastuzumab and celecoxib, a PTGS2 inhibitor [48],
which already showed promising results in colorectal cancer [49]. Unfortunately, they revealed
that the combination was not active in patients with HER2-overexpressing, trastuzumab-
refractory disease. Cho et al. suggested to combine the HIV protease inhibitor nelfinavir and
celecoxib or analogs to increase endoplasmic reticulum stress and toxicity in human breast
cancer cell lines that were resistant to trastuzumab [50]. The background was that moderate ac-
tivity of the stress response system exerts anti-apoptotic function, supporting tumor cell surviv-
al and chemoresistance, whereas more severe aggravation may turn on its pro-apoptotic
module. In this context PTGS2 was also associated with the GO term ‘positive regulation of cell
death’. Morrison et al. reported a marginal association of abnormal copy number of PTGS2
with objective trastuzumab response in metastatic breast cancer [51].

GDF15 (growth differentiation factor 15) was overexpressed in HCC1954, too. Hence, it
could contribute to trastuzumab resistance as well. According to GO annotation, it is associated
to cell-cell signal transduction, especially to the TGF-β signaling pathway. Indeed, Joshi et al.
observed GDF15-mediated HER2 phosphorylation reducing trastuzumab sensitivity of HER2+
breast cancer cells [52]. They regarded GDF15-mediated activation of TGF-β receptor-Src-
HER2 signaling crosstalk as a mechanism of trastuzumab resistance.

Another upregulated gene in HCC1954 was LCN2, encoding the chaperone protein lipoca-
lin 2. Kumandan et al. reported that LCN2 is known to be highly upregulated during the un-
folded protein response (UPR) in an NF-κB-dependent manner [53]. As UPR activates the
HER2/PI3K/AKT/NF-κB signaling pathway, LCN2 is assumed to play an important role as a
common downstream effector molecule. Kumandan et al. observed that trastuzumab inhibited
the expression of LCN2 in SKBR3 cells. The downregulation of LCN2 was abrogated by activa-
tion of the UPR. An increase of LCN2 transcription and secretion was observed. It was specu-
lated that UPR induction bypasses trastuzumab-mediated inhibition of the PI3K pathway. Lin
et al. observed that exposure of human endometrial carcinoma cells to LCN2 for more than
24 hours reduced LCN2-induced cell apoptosis, changed proliferation and upregulated,
amongst other cytokines, IL8 secretion [54]. Recombinant IL8 lead to decreased activity of the
apoptotic enzyme caspase-3. The addition of IL8 antibodies resulted in significantly increased
caspase-3 activity and decreased cell migration, indicating an important role of IL8 in the in-
duction of cell migration. Interestingly, we associated the GO term ‘regulation of apoptotic
process’ with LCN2 and UPR related GO terms with IL8, namely ‘activation of signaling
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protein activity involved in unfolded protein response’ and ‘endoplasmic reticulum unfolded
protein response’. Hence, IL8 does not only seem to be stimulated by UPR-induced LCN2, but
also participates in the activation of UPR. This points to a synergistic feedback mechanism in-
volving IL8 and LCN2, which could contribute to trastuzumab resistance.

Many of the remaining validated candidates which were differentially expressed between
BT474 and HCC1954 with overexpression in HCC1954 have already been mentioned in the
context of breast cancer, mainly as tumor promoters.

Regarding AKR1C1 (aldo-keto reductase family 1, member C1), a loss of expression and re-
lated decreased progesterone catabolism, leading to decreased growth in the presence of pro-
gesterone, has been observed in breast tumors by Ji et al. [55]. They speculated that loss of
AKR1C1 in combination with increased PR expression may enhance progesterone-dependent
PR activation, which plays an essential role in breast development and cancer formation. This
fits to our observation that AKR1C1 was downregulated in BT474 compared to HCC1954.
BT474 is known for its PR+ status [33], while HCC1954 is negative for expression of ER and
PR according to the manufacturer’s product information.

A relation to steroid receptors was also found for MYEOV (myeloma overexpressed), which
DNA amplification correlated with ER+ and PR+ cancer in a study of Janssen et al. [56]. Al-
though MYEOV is overexpressed in breast tumors, they did not detect its expression in BT474.
They showed that abnormal expression levels of the candidate oncogene correlated only par-
tially with DNA amplification and that overexpression could act independently or cooperative-
ly with the cell cycle regulator Cyclin D1 to favor tumorigenesis. Hence, overexpression of
MYEOV in HCC1954 underlined the outstanding role in tumor promotion of this cell line.

The keratin KRT5 (CK5) is related to progesterone as well, since CK5+ cells were shown to
lose ER and PR expression [57], fitting to our observation of overexpression in HCC1954 com-
pared to BT474. Furthermore Axlund et al. observed that cells overexpressing CK5 are more
invasive, sphere-forming, and quiescent with an increased resistance to endocrine and chemo-
therapy [57]. CK5 is a basal marker in breast carcinoma, related to poor prognosis and to unfa-
vorable overall survival (OS) as well as relapse-free interval [58]. Apart from KRT5, two further
keratins were overexpressed in HCC1954, namely KRT17 (CK17) and KRT81 (KRTHB1).
CK17 is a basal-type cytokeratin as well, and the expression of CK17 and CK5/6 appears to de-
fine a group of breast tumors with a poor clinical outcome, especially high mortality rates [59].

Another group of related genes was formed by the three kallikrein-related peptidases KLK5,
KLK6 and KLK8, all of them overexpressed in HCC1954. High KLK5 expression was found
more frequently in node-positive and ER-negative (ER-) patients [60], confirming our observa-
tion of upregulation in HCC1954. Yousef et al. showed that KLK5 overexpression was a predic-
tor of reduced DFS and OS in breast cancer, and hence a marker of poor prognosis. They
regarded KLK5 as a candidate that might stimulate cellular growth, angiogenesis or degrada-
tion of the extracellular matrix (ECM) [60]. Analogously higher KLK6 protein levels were
found to be associated with tumors which are negative for ER and PR [61], as it is the case for
HCC1954. Yousef et al. observed that the closely localized kallikreins KLK5, KLK6 and
KLK8 are in general downregulated with a similar pattern of differential expression in breast
cancer [62].

A promoting effect on tumorigenesis and metastasis of breast cancer via the AKT/mTOR
signaling pathway, independent of ER status, was detected for the multi-functional cytokine
protein LIF (leukemia inhibitory factor) by Li et al. [63]. We observed an upregulation of LIF
in HCC1954. Li et al. reported that its overexpression has been observed in several types of can-
cers including breast cancer and is associated with a poorer relapse-free survival. They showed
that LIF promotes cell proliferation and growth of breast cancer cells in vitro, and growth of
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xenograft breast tumors in vivo. Furthermore it promoted invasion and migration of breast
cancer cells in vitro and metastasis of breast cancer in vivo.

A further gene upregulated in HCC1954 was TGM2. As reviewed by Agnihotri et al., TGM2
is a stress-responsive gene, encoding the multifunctional ubiquitously expressed enzyme trans-
glutaminase 2 (TG2) which seems to play a crucial role in promoting an aggressive phenotype
in mammary epithelial cells [64]. Its expression is upregulated during inflammation and
wounding, as it crosslinks ECM component proteins and stabilizes the matrix for increased cell
attachment and motility. It has also been observed that anti-apoptotic TGM2 is upregulated in
cancer, especially those resistant to chemo- and radiation therapy and those isolated from met-
astatic sites. In mammary epithelial cells, chronic TG2 expression initiates signaling contribut-
ing to drug resistance and an invasive phenotype, and high expression levels are associated
with activation of indicators of aggressive tumors, such as AKT and NF-κB in a feedback loop.
Above that TG2 expression induces epithelial-to-mesenchymal transition and confers cancer
stem cell trait, both of which have been implicated in metastasis and resistance to standard
therapies. TG2 expression in tumor samples is associated with poor disease outcome, increased
(chemotherapeutic) drug resistance, and increased incidence of metastasis [64].

Another gene highly upregulated in HCC1954 was CTGF (connective tissue growth factor).
Although literature is ambivalent, assigning either a tumor suppressor or enhancer role to this
gene, the oncogenic character of CTGF seems to dominate. Its expression is elevated in ad-
vanced stages of breast cancer, and Chen et al. observed enhanced cellular migratory ability in
breast cancer cells overexpressing CTGF [65]. According to them, CTGF mediated ERK1/2 ac-
tivation and hence cellular migration. Additionally, CTGF mediated upregulation of the pro-
metastatic gene S100A4, dependent on ERK1/2. This points to an important role of CTGF in
migration and invasion, and supports other investigators who linked overexpression to tumor
size and lymph node metastasis or related CTGF to angiogenesis and bone metastasis in breast
cancer. Interestingly, Chen et al. detected extremely low or no levels of CTGF mRNA in
BT474, confirming our observation. Furthermore, the relation of CTGF and S100A4 is of spe-
cial interest, as we also detected a downregulation of the S100 calcium binding protein family
member S100A9 in BT474 compared to HCC1954. Gonçalves et al. found an association be-
tween S100A9, a protein expressed in invasive breast cancer, with basal subtypes as well as cor-
responding poor differentiation and prognosis value [66]. Most interestingly, they inferred
BT474 and HCC1954 as different molecular subtypes, i.e. BT474 as luminal-like, and
HCC1954 clustered together with basal-like cell lines, although no specific type was assigned.
S100A9 expression was, amongst others, tightly associated with high grade, negative ER and
PR status, and HER1 and HER2 expression. Furthermore, it was significantly associated with
reduced metastasis-free and overall survival.

PTRF (polymerase I and transcript release factor) was upregulated in HCC1954 as well in
our study. The RT-qPCR data of BT474 and HCC1954, respectively, revealed similar expres-
sion patterns for PTRF and CAV1 (S2 Table). Verma et al. detected that PTRF (cavin-1) and
caveolin 1 are lost coordinately in cancer cells [67]. Membrane recruitment of the cavin com-
plex requires caveolin 1, and PTRF is important for regulating caveolin 1 membrane dynamics.

Another upregulated gene in HCC1954 was CLDN1, encoding the tight junction protein
claudin 1. Di Cello et al. pointed out that CLDN1 may alternatively function as a tumor sup-
pressor or as an oncogene, but in breast cancer they assumed a tumor suppressor role, since
CLDN1 is frequently downregulated in this type of cancer, associated with recurrence, metasta-
sis, and reduced survival [68]. They explained its downregulation by epigenetic silencing via
DNAmethylation. Interestingly, they demonstrated this using amongst others the BT474 cell
line, which showed low CLDN1 expression. According to their results, in breast cancer,
CLDN1 expression varies according to the molecular subtype. While methylation of the
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CLDN1 promoter CpG island was frequent in ER+ breast cancer, it was not the case in most of
the ER- breast cancers samples, of which some overexpressed CLDN1. HCC1954 fell into a
cluster composed mostly of ER-, basal-like cell lines, which featured loss of methylation at sites
downstream of the CpG island. Lu et al. detected positive associations between claudin 1 and
CK5/6 and HER1 [69], which is of special interest, as HER1 and HER2 function as heterodi-
mers [45], and we detected CK5 as being overexpressed in HCC1954 as well. Above that they
found a negative association between CLDN1 and ER, fitting to our results of upregulation in
the ER- cell line HCC1954. Confirming the results of Di Cello et al., Lu et al. observed high lev-
els of CLDN1 in the basal-like subtype.

Like CLDN1, FXYD5 (FXYD domain containing ion transport regulator 5), also known as
dysadherin, is involved in cell-cell adhesion, which was downregulated in BT474 compared to
HCC1954 as well. Lee et al. detected no dysadherin expression in BT474, likely due to its ER+
status, as dysadherin is expressed in the more aggressive ER- breast cancer [70]. In their study
the introduction of dysadherin cDNA into BT474 enhanced levels of AKT phosphorylation.
Hence, they speculated that dysadherin, which overexpression is a predictor of metastasis, in-
vasion and poor prognosis, might contribute to breast cancer progression through ER-depen-
dent AKT activation.

Upregulated genes in BT474 compared to HCC1954Many of the remaining validated
candidates which were differentially expressed between BT474 and HCC1954 with overexpres-
sion in BT474 are induced by estrogen receptors (ER). This is explainable by the ER status
of the cell lines. While BT474 is known to be an ER+/PR+ cell line [33], HCC1954 is an ER-/
PR- one.

COLEC12 (collectin sub-family member 12) was highly overexpressed in BT474 and is like-
ly to be an ERβ primary target gene, indicating an antiproliferative role [71].

Analogously, TFF3 (trefoil factor 3) expression has been reported to correlate with ERα,
hinting at induction by this receptor subtype. Additionally, a positive correlation was observed
between PR and TFF3 protein expression by Ahmed et al. [72], confirming our observed TFF3
overexpression in the BT474 cell line. According to their results, TFF3 expression is induced by
estrogens and hardly detected in breast tumors which do not express ER. The luminal subtype
A, which is primarily composed of ER+ tumors, demonstrates a better prognosis than other
breast cancer subtypes and is characterized by overexpression of estrogen-related genes such as
TFF3 and ERα [73]. Ahmed et al. observed a higher TFF3 expression in well-differentiated tu-
mors and an association with low histological grade. Nevertheless, they speculated that in inva-
sive cancer the positive characteristics of TFF3 turn into oncogenic ones [72]. Obviously, the
ER+/PR+ cell line BT474 benefits from the estrogen-related positive TFF3 effects. The ERα-
responsive gene TFF1 is known to be coexpressed with TFF3 in ER+ malignant breast cancer
cells and is likewise upregulated by estrogens. Although TFF1 is a disseminated tumor cells de-
tection marker, TFF1 and TFF3 are components of a luminal epithelial signature defining a
well-differentiated, low-grade breast cancer subtype [74].

The upregulation of NRCAM (neuronal cell adhesion molecule) in BT474 can be ascribed
to the ER status, too. This gene was reported to be expressed in ER+ breast cancer cell lines but
not in ER- ones [75].

Another estrogen-induced, ER-responsive gene upregulated in BT474 was GREB1 (growth
regulation by estrogen in breast cancer 1). It is an important factor in ER induced proliferation
in breast cancer cells [76]. Liu et al. reported that overexpression of the ER cofactor GREB1
also increased the clonogenic ability in breast cancer cells and that overexpression was ob-
served in ER+ breast cancer patients compared to ER- ones [77]. They stressed that reduced
levels of GREB1 are predictive of worse disease outcome for breast cancer patients in general,
and for ER+ patients in particular.
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Interestingly, the RT-qPCR data of all genes overexpressed in BT474 compared to
HCC1954 revealed a three-fold overexpression in the trastuzumab treated version of BT474
compared to its untreated version (S2 Table). Evans et al. already speculated that in HER2+/
ER+ tumors increased TFF1 expression and estrogen signaling may occur as a result of inhibit-
ing the EGFR/HER2 signaling pathway [78]. Collins et al. confirmed that trastuzumab treat-
ment upregulated ER transcriptional activity and TFF1 expression [79]. However, they
reported a mostly poor response to trastuzumab treatment in HER2+ cells with co-expression
of the steroid pathway.

Furthermore, the RT-qPCR data also show that the mentioned genes are at least as strongly
expressed in the BTR50 cell line compared to BT474, and not downregulated as in HCC1954
(S2 Table). This hints at a strong discrepancy between expression profiles in the cell line mod-
els of intrinsic and acquired drug resistance. This could be explained by the individual charac-
teristics of the HCC1954 cell line, maybe also driven by specific SNPs, which are analyzed in
the following section. Also, the Principal Component Analysis (PCA) plot of the pairwise nor-
malized cell lines, considering all 23367 annotated genes, demonstrates that the intrinsically re-
sistant cell line HCC1954 differs much more from BT474 than BTR50, and that trastuzumab
treatment hardly influences expression in this cell line (Fig. 6).

SNP analysis of genes associated with trastuzumab efficiency
We searched for SNPs in the three untreated cell lines HCC1954, BTR50 and BT474. In the fol-
lowing, we describe the results for the validated gene candidates of the DE analysis on BT474
and its trastuzumab treated version (ALPP, CALCOCO1, CAV1, CYP1A2, IGFBP3) as well as

Fig 6. Principle Component Analysis (PCA) of all measured samples. The plot displays the result of a
PCA on the pairwise normalized RNA-Seq expression values of all 23367 annotated genes in the samples
BT474, BTR50 and HCC1954 with and without trastuzumab (T) treatment. Same colors denote that the
samples belong to the same conducted statistical test and thus were normalized in pair. The five two sample
tests included BT474 vs. HCC1954, BT474 vs. BTR50, HCC1954+T vs. HCC1954, BTR50+T vs. BTR50, and
BT474+T vs. BT474.

doi:10.1371/journal.pone.0117818.g006
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the candidates of the DE analysis on BT474 vs. HCC1954 which were already reported in the
context of trastuzumab efficacy, namely GDF15, IL8, LCN2 and PTGS2. Additionally we focus
on HER2 due to the HER2+ status of the cell lines, PIK3CA due to the known mutation in
HCC1954, as well as MAPK1 and AKT1 as main players in the MAPK and PI3K/AKT path-
way, respectively. S1 Variant Call Format File, S2 Variant Call Format File and S3 Variant Call
Format File store the SNPs called in the HCC1954 (S1 Variant Call Format File), BTR50 (S2
Variant Call Format File) and BT474 (S3 Variant Call Format File) sample.

SNPs in the HCC1954 cell line
S1 Variant Call Format File stores the SNPs called in the HCC1954 sample. For eight of the
13 genes of interest we detected SNPs in HCC1954 which passed our filter criteria.

We called 13 variations for HER2, five variations for MAPK1, three variations for PTGS2
and AKT1, respectively, two variations for IGFBP3 and one SNP for PIK3CA, CAV1 and IL8
each. The ALPP SNP at position 233243981 on chromosome 2 (rs13026692, COSM1162692)

Table 3. SNPs called in the HCC1954 cell line.

Gene Chromosome Position Variation

AKT1 14 105235824 rs58565216

AKT1 14 105236287 rs35416681

AKT1 14 105241304 rs2230506

CAV1 7 116200554 rs374946197

HER2 17 37855834 rs4252596

HER2 17 37869895 -

HER2 17 37870378 rs2934967

HER2 17 37871081 -

HER2 17 37876835 rs2952156

HER2 17 37877412 rs2952157

HER2 17 37877447 rs11653998

HER2 17 37878371 -

HER2 17 37878574 -

HER2 17 37878635 -

HER2 17 37879030 rs2088126

HER2 17 37884037 rs1058808, rs370420724, CM087578

HER2 17 37885332 rs2952158

IGFBP3 7 45957678 rs3793345

IGFBP3 7 45960645 rs2854746, CM057457

IL8 4 74609045 rs1126647, CR025956

MAPK1 22 22115004 rs6928

MAPK1 22 22115353 rs9340

MAPK1 22 22115498 rs3810610

MAPK1 22 22116202 rs13943

MAPK1 22 22116467 rs1063311

PIK3CA 3 178952085 rs121913279, COSM776, COSM775, COSM249874, COSM94987, COSM94986

PTGS2 1 186641626 rs2853805

PTGS2 1 186642429 rs2206593

PTGS2 1 186643058 rs5275

The table displays information about chromosomal location of the detected SNPs in the genes of interest as well as corresponding SNP ID numbers [8]. In

case of missing ID numbers (‘-’), we likely inferred a novel mutation.

doi:10.1371/journal.pone.0117818.t003
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had a read depth of nine, just slightly failing our filter criterion. The related locations and refer-
ence SNP ID numbers [8] are listed in Table 3. 80% of the SNPs have already been listed in the
dbSNP database but just 40% of those have been analyzed more deeply in literature, even less in
the context of breast cancer.

Regarding rs2952156 and rs4252596 of HER2, Einarsdóttir et al. did not observe an associa-
tion with breast cancer survival [80]. Analogously, Benusiglio et al. analyzed whether common
polymorphisms (frequency � 5%) in HER2 were associated with breast cancer risk in a white
British population [81]. Although they considered rs4252596 near the promoter as potentially
regulatory functional and the nonsynonymous coding SNP rs1058808 of HER2 potentially af-
fecting tyrosine kinase activity or protein structure, there was no evidence that these variations
were associated with breast cancer. Breyer et al. analyzed the role of genetic variation of the
HER2 gene in breast cancer risk in a study of invasive breast cancer cases from the Shanghai
Breast Cancer Study [82]. According to their results, HER2 resides within a locus of high link-
age disequilibrium, composed of three major ancestral haplotypes in the study population.
These haplotypes are marked by simple tandem repeat and SNPs including the missense vari-
ants I655V and P1170A (rs1058808). However, they did not observe an association of the SNP
haplotypes with breast cancer predisposition.

For PTGS2 we detected the polymorphism rs5275 in the 3’ untranslated region of the
PTGS2 gene. Festa-Vasconcellos et al. investigated the association between PTGS2 haplotypes
and histopathological parameters with prognostic value on clinical outcome, i.e. risk of tumor
recurrence, of breast cancer [83]. Their study involved women under treatment for non-meta-
static breast cancer who were genotyped for rs689465, rs689466, rs20417 and rs5275. Eight
haplotypes were inferred with a significant difference in their distribution as a function of
tumor size, ER and HER2 status. No associations were found between rs5275 solely and histo-
pathological features, which was in line with the observations of Gerger et al. [84] and Abra-
ham et al. [85] who found no associations between rs5275 and DFS or OS of breast cancer
patients. Above that two breast cancer meta-analyses indicated no strong risk association for
rs5275 [86, 87]. Though, Festa-Vasconcellos et al. observed an rs5275 dependent positive asso-
ciation between higher tumor size and the haplotype formed by rs689465G, rs689466A,
rs20417C and rs5275T. At least SNPs rs689465 and rs5275 were required to infer this haplo-
type, which was further positively associated with ER and PR negativity and HER2 positivity.
Moore et al. supported an important influence of rs5275, reporting it disrupts micro-RNA-me-
diated regulation of PTGS2 mRNA degradation, leading to increased mRNA stability and
PTGS2 protein levels [88]. Jung et al. analyzed polymorphisms of apoptosis-related genes and
their impact on the survival of patients with early invasive ductal breast cancer [89]. The
PTGS2 gene polymorphism rs5275 in a dominant model of the C allele was associated with a
higher distant DFS. Cox et al. genotyped the five most common PTGS2 polymorphisms
(rs20417, rs5277, rs20432, rs5275, and rs4648298) in the Nurses’Health Study to test for an as-
sociation with breast cancer risk [90]. The SNP rs5275 was associated with a decrease in breast
cancer risk and further genotyped in the Nurses’Health Study 2 and Harvard Women’s Health
Study. In pooled analyses, women homozygous for the T allele at rs5275 had a 20% lower risk
of breast cancer than those homozygous for the C allele. Cox et al. concluded that this poly-
morphism may be associated with a decrease in breast cancer risk among Caucasian women,
but is not associated with an increased risk of breast cancer.

We further identified the IGFBP3 SNP rs2854746. Qian et al. evaluated IGF-I and IGFBP3
genotypes in relation to their phenotypes in local breast tissues and in association with breast
cancer risk for Chinese women [91]. No association was found between breast cancer risk and
the IGFBP3 SNP rs2854746, but the genotype correlated with IGF-I phenotypes in tumor sam-
ples. Peptide levels of IGF-I were inversely correlated with age and menopause status. The
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homozygous variant genotype of rs2854746 had lower IGF-I compared to the wild type. This
suggested possible influences of the SNP on IGF-I activity in local tissues. IGF-I and its major
binding protein IGFBP3 were also analyzed by Su et al. due to their implication in breast carci-
nogenesis [92]. They examined associations between genetic variants and circulating levels of
IGF-I and IGFBP3 with proliferative benign breast disease (BBD), a marker of increased breast
cancer risk. Higher circulating IGFBP3 levels were significantly associated with increased risk of
proliferative BBD. The SNP rs2854746 was significantly associated with circulating IGFBP3 lev-
els. D’Aloisio et al. reported that IGFBP3 plasma levels, associated with common diseases, are
influenced by common IGFBP3 SNPs, especially rs2854746, among African American and Cau-
casian women [93]. Similar observations were made by Patel et al. [94] and Cheng et al. [95].
However, Tamimi et al. did not detect any significant association of the common haplotypes in
three haplotype blocks, of which one included rs2854746, spanning the genes encoding IGFBP1/
IGFBP3, with mammographic density, one of the strongest risk factors for breast cancer [96].

Regarding PIK3CA, we inferred the SNP rs121913279, which is referring to the known
H1047R mutation in HCC1954. Tong et al. detected this SNP in Chinese breast cancer patients
with invasive ductal carcinomas [97].

SNPs in the BTR50 cell line
S2 Variant Call Format File stores the SNPs called in the BTR50 sample. For three of the 13
genes of interest we detected SNPs in BTR50 which passed our filter criteria. We called 13

Table 4. SNPs called in the BTR50 cell line.

Gene Chromosome Position Variation

HER2 17 37859083 rs34284966

HER2 17 37876179 rs4252639

HER2 17 37876835 rs2952156

HER2 17 37877221 -

HER2 17 37877412 rs2952157

HER2 17 37878113 rs115334808

HER2 17 37878311 -

HER2 17 37878371 -

HER2 17 37878574 -

HER2 17 37878635 -

HER2 17 37878696 -

HER2 17 37879030 rs2088126

HER2 17 37885332 rs2952158

IGFBP3 7 45952254 rs6670

MAPK1 22 22115004 rs6928

MAPK1 22 22115353 rs9340

MAPK1 22 22115498 rs3810610

MAPK1 22 22115886 rs13515

MAPK1 22 22116202 rs13943

MAPK1 22 22116467 rs1063311

MAPK1 22 22162072 -

The table displays information about chromosomal location of the detected SNPs in the genes of interest

as well as corresponding SNP ID numbers [8]. In case of missing ID numbers (‘-’), we likely inferred a

novel mutation.

doi:10.1371/journal.pone.0117818.t004
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variations for HER2, seven variations for MAPK1 and one variation for IGFBP3. The related
locations and reference SNP ID numbers are listed in Table 4. Two third of the SNPs have al-
ready been listed in the dbSNP database but just 30% of those have been analyzed more deeply
in literature, even less in the context of breast cancer. Approximately 60% of the SNPs were
also detected in HCC1954 which would indicate that this intersection of mutations contributes
to resistance. Interestingly, the SNP of IGFBP3 in BTR50 was not matching the ones of
HCC1954.

SNPs in the BT474 cell line
S3 Variant Call Format File stores the SNPs called in the BT474 sample. For two of the 13
genes of interest we detected SNPs in BT474 which passed our filter criteria. We called three
variations for HER2 and five variations for MAPK1. All mutations form a subset of the corre-
sponding ones in BTR50. This makes sense, as BTR50 has been derived from BT474 and cul-
tured to resistance, which obviously led to additional mutations in the cell line. The related
locations and reference SNP ID numbers are listed in Table 5.

Conclusions
The aim of the study was to infer genes and corresponding variations, which influence trastu-
zumab action in HER2+ breast cancer. Comparing gene expression in three cell line models of
different drug response characteristics with and without trastuzumab treatment, we inferred 54
candidate genes. Most of them have already been reported in the context of breast cancer but
just a small proportion in the context of trastuzumab action.

The validated selection of the candidate genes was differentially expressed between the sen-
sitive cell line BT474 and its trastuzumab treated version, as well as between BT474 and the re-
sistant cell line HCC1954. The candidates of the latter comparison were mainly related to the
different steroid receptor status of the cell lines, mostly including tumor enhancers with upre-
gulation in HCC1954 which have already been ascribed to ER- breast cancer subtypes. Out-
standing candidates were IL8, PTGS2, GDF15 and LCN2, as those have already been reported
to hinder trastuzumab action. Interestingly, mechanisms involving the PI3K pathway have
been reported, which fits to the PI3K gain-of-function mutation in the resistant cell line
HCC1954. Furthermore, a cooperative functionality of IL8 and LCN2 would stabilize the resis-
tant phenotype. The two outstanding candidates revealed in the comparison of BT474 and its
drug treated version were CAV1 and IGFBP3, both of which have already been reported to

Table 5. SNPs called in the BT474 cell line.

Gene Chromosome Position Variation

HER2 17 37876179 rs4252639

HER2 17 37877412 rs2952157

HER2 17 37878113 rs115334808

MAPK1 22 22115004 rs6928

MAPK1 22 22115498 rs3810610

MAPK1 22 22115886 rs13515

MAPK1 22 22116202 rs13943

MAPK1 22 22116467 rs1063311

The table displays information about chromosomal location of the detected SNPs in the genes of interest

as well as corresponding SNP ID numbers [8].

doi:10.1371/journal.pone.0117818.t005
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influence trastuzumab efficacy. While low CAV1 expression seems to support trastuzumab ac-
tion, high IGFBP3 levels are associated with trastuzumab sensitivity.

We further detected that the intrinsically resistant cell line HCC1954 differs more from the
sensitive cell line BT474 than the cell line BTR50, representing acquired resistance. HCC1954
was also influenced less by trastuzumab treatment than BTR50. Thus, intrinsically resistant
specimens seem to respond less to trastuzumab treatment than those which acquired resis-
tance. This was supported by the fact that we called more SNPs in the intrinsically resistant
cell line.

All detected mutations in BT474 formed a subset of the ones detected in BTR50, pointing at
resistance related novel mutations in the cell line which acquired resistance. Four annotated
SNPs called in BTR50, which were not called in BT474, overlapped with the variations called in
HCC1954, i.e. rs2952156, rs2088126 and rs2952158 of HER2, as well as rs9340 of MAPK1.
Those SNPs could likely contribute to trastuzumab resistance. In general, some of the inferred
SNPs are already in the focus of breast cancer research, but mostly no influence on survival or
risk has been detected for single ones. However, some seem to have an impact on the pheno-
type in combination with further variations. Regarding the SNP rs5275 of PTGS2 in HCC1954,
we found hints at a relation to breast cancer risk. Additionally, the SNP rs2854746 of IGFBP3
in HCC1954 seems to influence IGF-I and IGFBP3 expression.

In conclusion, we applied successfully the RNA-Seq method to detect differentially express-
ed genes as well as SNPs in the context of trastuzumab resistance in different cell phenotypes.
A high proportion of validated genes by RT-qPCR confirmed our results. Based on literature
research, we elucidated the role of these candidate genes or mutations in influencing trastuzu-
mab action. A deeper analysis of single candidates, supported by additional experiments, could
reveal more detailed information about mechanisms leading to trastuzumab resistance. Hence,
our results provide a basis to improve personalized medicine for HER2+ breast cancer patients.

Supporting Information
S1 Table. Primers used for RT-qPCR validation. The table lists the used forward and reverse
primer sequences for the 40 candidate genes which were analyzed by RT-qPCR. Additionally,
the sequences for the normalizer GAPDH are listed.
(XLS)

S2 Table. RT-qPCR validation data. The table lists the RT-qPCR data of 40 selected genes
from the candidate set. The ViiA 7 Real-Time PCR System (Applied Biosystems, Darmstadt,
Germany) was used for RT-qPCR analysis. Data analysis was performed as described in Livak
and Schmittgen [27] with two biological replicates and GAPDH as reference gene.
(XLS)

S3 Table. DE genes revealed by RNA-Seq analysis. The table lists the genes which were signif-
icantly differentially expressed (DE), i.e. genes with a fold change (FC) of at least two and a
false discovery rate (column padj) of at least 0.05. Multiple testing correction of p-values (col-
umn pval) was done according to Benjamini and Hochberg. Genes are annotated with the
HUGO Gene Nomenclature Committee (HGNC) [98] symbol and identifier (ID), Ensembl ID
as well as Entrez ID [99]. Furthermore the table stores gene description as well as GO annota-
tion for corresponding biological processes (BP). The conducted statistical test is given in the
column Test (B vs. A). The five two sample tests included BT474 vs. HCC1954, BT474 vs.
BTR50, HCC1954+T vs. HCC1954, BTR50+T vs. BTR50, and BT474+T vs. BT474. The column
baseMeanA holds the base mean, i.e. the mean of the counts divided by the size factors, for the
counts of condition A. An analogous definition holds for baseMeanB. The column baseMean
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holds the mean of baseMeanA and baseMeanB. The FC, i.e. the ratio (baseMeanB+1)/(base-
MeanA+1) is stored in the column foldChange. Analogously, the log2 FC is stored in the col-
umn log2FoldChange.
(XLS)

S1 Fig. Expression data of the candidate genes in the transNOAH breast cancer trial. The
boxplot displays expression (log2) data of the 54 candidate genes from seven patients treated
with trastuzumab for one year in addition to neoadjuvant chemotherapy (red) and four pa-
tients treated with neoadjuvant chemotherapy only (gray). The patient data samples were se-
lected from the transNOAH breast cancer trial (GEO series GSE50948).
(PDF)

S1 Variant Call Format File. SNP calls in HCC1954. The VCF (Variant Call Format) file for-
mat is used by GATK for representation of variant calls. This file stores the SNPs called in the
HCC1954 sample.
(VCF)

S2 Variant Call Format File. SNP calls in BTR50. The VCF (Variant Call Format) file format
is used by GATK for representation of variant calls. This file stores the SNPs called in the
BTR50 sample.
(VCF)

S3 Variant Call Format File. SNP calls in BT474. The VCF (Variant Call Format) file format
is used by GATK for representation of variant calls. This file stores the SNPs called in the
BT474 sample.
(VCF)
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