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1 Introduction 

 

 

Proteins as well as nucleic acids play a crucial role in many cellular processes. Hence, chemists in 

collaboration with biologists and physicists are involved in the development of new methods to study 

these biomolecules in their native environment.[1] To investigate their locations, structures and distinct 

processes they are involved in, fast, sensitive and reliable detection methods are needed.[2] 

Additionally, reporter groups need to be attached to the protein of interest (POI), e. g. by radioactive 

labelling or the introduction of isotope markers, in order to track these molecules.[3] One of the most 

common methods is the labelling with fluorophores. It has several advantages over other labelling 

techniques such as its non-destructive nature and high sensitivity, which allows even single molecule 

detection.[4] Furthermore, fluorophores are available in multiple colours enabling the simultaneous 

detection of different processes and proteins.  

 

Modern fluorescent probes that are introduced to the POIs range from small organic fluorophores, 

which are widely applied for chemical labelling, to fluorescent proteins of larger size. Since the first 

fluorescent labelling of proteins in vivo with the green fluorescent protein (GFP) in 1994, an increasing 

number of fluorescent proteins have been developed, such as the cyan fluorescent protein or the 

yellow fluorescent protein as well as new fluorescent proteins derived from other bioluminescent 

species.[5,6] These fluorescent proteins are attached to POIs on DNA level and introduced into the 

required system by recombinant expression. Although, this method of fluorescent labelling is widely 

applied, limitations are the size of the fluorescent protein (GFP contains 238 amino acids) and thereby 

its influence on function, movement and activity of POIs.[6] Due to these disadvantages of fluorescent 

proteins, a number of small synthetic fluorescent probes have been investigated for in vivo labelling. 

Synthetic fluorescent probes are variable in properties and functionalities and can be derivatised with 

a number of reactive groups in order to link them to POIs. Even though labelling with synthetic 

fluorescent probes in vivo might be difficult, as reactivity and specificity towards POIs must be high to 

avoid background labelling, the introduction of bioorthogonal groups into POIs by recombinant 

expression is one way to realize it. Furthermore, synthetic fluorescent probes are combined with 

proteins that target membrane proteins on the cell surface. This chemical labelling prior to the 

application in imaging studies offers a higher variability in the proteins that are labelled with a 
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fluorescent marker. The POIs may even be synthetically modified by the introduction of additional 

functionalities. 

 

Ion channels are a class of membrane proteins, which are widely investigated and represent interesting 

targets for labelling studies. They are pore forming proteins, which allow the inward and outward flux 

of ions across the cell membrane and consequently distribute to electrical potential generation and 

action potential propagation.[7] The ion channel distribution and localisation along cell membranes are 

of high interest for researches to clarify the picture of how they establish their mode of action during 

stimulus conduction. In order to label ion channels, specific binding tools need to be acquired, which 

bind selectively and are easily modified in order to attach a fluorescent probe. Nowadays, a number 

of specific binding neurotoxins, derived from animal venoms, have been identified which interact with 

specific ion channels or even ion channel subtypes. 

 

In this thesis a number of novel labelled neurotoxins (conotoxin, pompilidotoxin and iberiotoxin) for 

the selective binding to specific ion channels will be presented. Following an in-depth structural 

analysis of functional residues important for the ion channel/neurotoxin interaction, an adjusted 

synthetic strategy is developed to prevent reduced binding affinities. For one of the synthesized 

neurotoxins (conotoxin), bearing three disulphide bridges, an elaborate synthetic pathway is 

developed to induce the correct disulphide linkages and therefore, enforce the structure necessary for 

binding to the specific ion channel. The selective introduction of a fluorescent marker will be 

accomplished by bioorthogonal strategies making use of synthetically inserted alkyne or thiol 

functionalities or natural occurring amines. These novel synthesized labelled neurotoxins, which retain 

their activity, allow the investigation of ion channels regarding their quantification, distribution and 

localisation by our cooperation partners ANDREAS NEEF and co-workers, and the SCHILD research group 

(see Scheme 1). Furthermore, a photocleavable protecting group is introduced into a conotoxin on 

functional residues, which are important for binding. Thereby, a neurotoxin will be available, which 

can be switched from the inactive state (no binding affinity) to the active state (binding and thereby 

blocking ion channels) by light providing an additional tool for ion channel investigations. 
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Scheme 1: Overview of the synthetic approach for labelling neurotoxins. The first step is the synthesis of a 

linear peptide containing either alkyne, thiol or amine functionality for bioorthogonal labelling. For 

neurotoxins containing disulphide bridges, multiple synthetic steps are necessary to consecutively form the 

complex structure. Subsequently, the labelling reaction is performed without affecting the binding side of the 

neurotoxin, thereby, enabling investigations on specific ion channels. 

     

In a second project in cooperation with MARCO TARANTOLA and co-workers, the labelling of a nucleotide 

will be described. Cyclic adenosine-3’,5’-monophosphate (cAMP) acts as a chemoattractant for the 

amoeboid Dictyostelium discoideum, which migrates in a cAMP gradient towards the highest 

concentration. With the intention of labelling cAMP, an alkyne moiety will be introduced in two 

different positions. By the introduction of a bioorthogonal group, such as an alkyne, a number of 

different groups and functional tools can be linked to cAMP via copper-catalysed azide-alkyne 

cycloaddition of functionalised azides e. g. different fluorescent probes. In this thesis two azide 

functionalised fluorophores (either Alexa Fluor® 555 or 488) will be attached and these labelled cAMP 

derivatives may help to elucidate the cAMP dependent chemotaxis of the amoeboid Dictyostelium 

discoideum. This offers a tool for the quantification and visualisation of cAMP concentrations 

(monitored by a confocal laser scanning microscope), which are necessary for an induction of 

chemotaxis, and furthermore, it may contribute to the precise analysis of chemotaxis parameters.   
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2 Fluorescent labelling 

 

 

Fluorescent labelling is generally performed by linking a reactive derivative of the fluorophore to a 

protein of interest (POI) containing the corresponding reactive functionality. Combination of 

fluorescent labelling methods with advanced fluorescence microscopy allows to investigate in vivo/in 

vitro protein distribution, translocation and interaction. The different methods, by which labelling is 

mostly accomplished, are further described in section 2.1. Certain requirements must be considered 

before selecting one of the methods provided. On the one hand, the size of the fluorescent probe and 

its stability towards different environments need to be reflected in order to avoid changes in the mode 

of action and to maintain the activity of the POI. On the other hand, the efficiency and applicability of 

the labelling reaction to the POI, with a preference for covalent linkage, needs to be considered.[3]  

2.1 Fluorescent labelling techniques 

Fluorescent labelling methods can be divided into four main strategies: genetic, enzymatic, tag or 

chemical labelling, as described in a review by SAHOO (see Figure 1).[3] One of the most applied tools 

for genetic labelling, which is used in vivo, is the recombinant expression of POI together with 

fluorescent proteins. Due to the large size of fluorescent proteins of approximately 27 kDa, proteins 

such as GFP easily influence the structure and activity of POIs.[8] Additionally, unnatural fluorescent 

amino acids are incorporated into proteins via tRNA that has previously been aminoacylated with an 

unnatural amino acid, such as 7-methoxycoumarine modified aspartic acid.[9] For the introduction of 

commercially available fluorophores, unnatural amino acids with non-proteinogenic reactive groups 

like azide, alkyne or ketone may be introduced into POIs, which are derivatised with the respective 

fluorophores. Due to the low yields of this labelling technique, this method is seldom utilised. The 

direct labelling of tRNA for the study of its dynamics on ribosome during translation is accomplished 

via selective reduction of dihydrouridine followed by an attachment of dihydrazide modified 

fluorophore (see Figure 1: genetic).[10] These genetic labelling methods are frequently used for in vivo 

labelling. Nowadays, enzymatic labelling attracts even more attention for both in vivo and in vitro 

labelling. Enzymatic reactions are generally fast, efficient and selective, though the limitations are, that 

usually a large peptide is attached to the POI for the recognition by the respective enzyme. For the 
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application of Sortase A, the most commonly used enzyme for labelling reactions, two motifs are linked 

to the POI and fluorophore, respectively: on the one hand, a Leu-Pro-X-Thr-Gly (LPXTG) motif at the 

C-terminus of the POI or fluorophore and on the other hand, a polyglycine sequence at the N-terminus 

of either.[11] Sortase A recognises the LPXTG motif, cleaves the Thr-Gly peptide bond and forms a bond 

to the N-terminus of the polyglycine sequence. Sortase A has been widely used and allows even 

unnatural moieties beyond the LPXTG or polyglycine motif.[12] The disadvantage is its characteristic to 

hydrolyse intrinsic peptide bonds, whenever the LPXTG motif is present.  

 

 

Figure 1: Overview of the various approaches for labelling proteins (figure adapted from the review by 

SAHOO).[3] Genetic labelling is achieved by the introduction of a fluorescent protein (e. g. GFP) or unnatural 

fluorescent amino acids or a modification of tRNA. Chemical labelling is conducted by the application of 

unnatural amino acids, for reactions via copper(I)-catalysed azide-alkyne cycloaddition and inverse-demand 

DIELS-ALDER reactions, or natural amino acids via activated ester or maleimide functionalities. Enzymes such as 

Sortase A or lipoic acid ligase or self-modified enzymes such as intein are utilised for enzymatic labelling. 

Specific tags for instance His tag, the tetracysteine motif or Asp tag are recognized through physical or chemical 

interactions by specific ligands such as Ni(II) complexes, bisarsenical ligands or Zn(II) complexes. 



Fluorescent labelling 

 

7 

Recently, FERNÁNDEZ-SUÁREZ et al. developed a method for labelling POIs with small fluorescent probes 

by means of lipoic acid ligase (LplA).[13] LplA facilitates the addition of small molecules, which is lipoic 

acid in nature but may be substituted e. g. with functionalized octanoic acid, to an amine side chain 

functionality of the 22 amino acid containing LplA acceptor peptide (LAP). Generally, the labelling is 

enabled by the LplA catalysed reaction with an alkyl azide, which is selectively functionalised with a 

fluorophore bearing a cyclooctyne moiety. In contrast to the previously discussed enzymes, intein is a 

self-modifying enzyme, which was first utilised by MUIR et al. as a tool for protein semisynthesis.[14] To 

introduce intein it is expressed at the C-terminus of the POI. After the formation of a thioester between 

C-terminus of the POI and linked intein, thiol exchange reaction with any cysteine containing moiety 

occurs, to which a fluorophore is attached, affording the desired labelled POI.[15,16] The major 

disadvantage of these described enzymatic labelling methods (see Figure 1: enzymatic) is the disability 

to label a protein of interest in the middle of its sequence.  

 

The tag labelling is an approach, which allows labelling at different sites (N-terminal, C-terminal and 

internal) combined with the introduction of only small artificial sequences, which thereby have a 

smaller influence on the function and activity of POIs, and with high selectivity of the labelling 

process.[3] Of the large diversity of different tags, only the three most commonly utilised will be 

introduced here (see Figure 1: tag). GRIFFIN et al. introduced the cysteine tag (Cys-Cys-X-X-Cys-Cys), 

which is addressed by a biarsenical ligand (such as FlAsH-EDT2 = 4’,5’-bis(1,3,2-dithioarcolan-2-

yl)fluorescein).[17] This bisarsenical ligand is membrane permeant and non-fluorescent until it binds 

with high affinity to the tetracysteine sequence. One of the drawbacks of this method is background 

labelling, which occurs as single or multiple cysteines also interact with these dyes, even though in a 

smaller amount. A second tag technique worth mentioning is the histidine tag, an oligohistidine 

sequence of six histidines or more, which selectively coordinates nickel ions, as discovered by HOCHULI 

et al. in 1987.[18] GUIGNET et al. applied this method for labelling by introducing a fluorescent probe to 

complexes such as Ni(II) nitrilotriacetic acid (Ni(II)NTA).[19] With these complexes genetically encoded 

His tags of membrane proteins are labelled in vivo. Besides the histidine tags, an aspartate tag (Asp-

Asp-Asp-Asp), which coordinates Zn(II) ion is utilised for in vitro and in vivo labelling. OJIDA et al. showed 

a high selectivity and affinity for the binuclear Zn(II)-Dpa (2,2’-dipicolylamine) complex based on a 

tyrosine scaffold, where a fluorophore probe is attached to tyrosine.[20] Comparable to the His tag, this 

method provides a system for the labelling of membrane proteins acting orthogonal to His tags without 

having the disadvantages included by Cys tag labelling.  

 

Another approach, which includes the introduction of small fluorescent probes, but provides covalent 

linkages in contrast to tag labelling, is chemical labelling. It is mostly applied in vitro rather than in vivo 
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and either utilises natural occurring amino acids or the introduction of unnatural amino acids. A 

detailed overview of the different bioorthogonal methods, which are applied for chemical labelling is 

given in the following chapter. 

2.2 Chemical labelling – bioorthogonal reactions 

The easiest chemical labelling approach comprises the reaction of activated fluorophores with side 

chains of intrinsic proteogenic amino acids. The amino acids mostly addressed are lysine and cysteine. 

A great number of amine labelling reactions (of either the ε-amino group of lysine or N-terminal amino 

group) are facilitated by the reaction with N-hydroxysuccinimide ester (NHS-ester) activated 

fluorophores (Scheme 2, A). This reaction occurs fast, in high yields and forms a stable amide bond. 

Due to the high occurrence of lysine in almost all proteins, the labelling reaction is not specific enough 

for most systems.[3] In comparison, cysteine is less prevalent and is at a pH range of 6.5-7.5 specifically 

labelled by a MICHAEL addition with maleimide activated fluorophores (Scheme 2, B). At higher pH 

values, unwanted side reactions with amines take place.[21] Labelling reactions with the remaining 18 

proteogenic amino acids have only been minimally exploited, and will not be further discussed here. 

In addition to side chain modifications, the N-terminus is also available for labelling reaction e. g. by 

NATIVE CHEMICAL LIGATION (in the presence of a N-terminal cysteine).[22]  

 

In addition, the introduction of unnatural amino acids for application in bioorthogonal labelling 

reactions is widely utilised. The breakthrough in bioorthogonal chemistry was the development of the 

copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) independently by SHARPLESS et al. and MELDAL 

et al. in 2002 (Scheme 2, C).[23,24] The copper(I) catalyst strongly enhances the reaction of an azide with 

a terminal alkyne. While CuAAC is widely applied in vitro, the cell toxicity of copper(I) minimises its 

applicability in vivo. The strain-promoted azide-alkyne cycloaddition (SPAAC) obviates the need for 

copper(I), by utilising reactive cyclooctyne scaffolds.[25] The drawback of this method is the quick 

reaction of cyclooctyne and its derivatives with cellular nucleophiles, e. g. thiols. The reaction rate of 

CuAAC is enhanced by the introduction of tris(triazolylmethyl)amine ligands (including TBTA and its 

derivatives), which also protect copper(I) from oxidation.[26] Furthermore, BROTHERTON et al. described 

an azide substrate containing an auxiliary ligand (such as picolyl azide) and thereby increasing the 

reaction rate, by directing copper to the azide moiety.[27] By the combination of these techniques, the 

reaction of azides and alkynes is accomplished even in vivo. 
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Scheme 2: Overview of chemical labelling techniques frequently applied. A) and B): reactions with natural 

occurring amino acids, C): copper(I)-catalysed azide-alkyne cycloaddition, D): STAUDINGER ligation, E) inverse 

electron demand DIELS-ALDER reaction. 

 

An additional method making use of azide functionality is the STAUDINGER ligation (Scheme 2, D). The 

reaction of an azide with a triaryl phosphine is a popular choice for in vivo labelling owing to its 

selectivity and compatibility with cells and tissues although being slower than most other 

bioorthogonal techniques.[28] Furthermore, DIELS-ALDER cycloadditions are being employed for 

chemical labelling. BLACKMAN et al. described the reaction of tetrazines with trans-cyclooctene 

derivatives in water and cell media, tolerating a broad range of functionalities (Scheme 2, E).[29] As this 

is one of the fastest bioorthogonal reactions so far, it was immediately applied to a number of 

investigations.  

 

In this thesis labelling was performed either directly, meaning the target was labelled (see chapter 6 

“Labelling of cyclic adenosine-3’,5’-monophosphate”), or indirectly, meaning the targets, being ion 

channels in this thesis, were addressed by specific, labelled compounds. In order to address ion 

channels specifically, neurotoxins are being widely applied, which will be discussed in the following 

section. 
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2.3 Labelling of ion channels using neurotoxins 

Ion channels are pore-forming transmembrane proteins, which are responsible for signal translation 

and propagation in excitable cells, such as muscle or nerve cells. They play key roles in the generation 

and shaping of action potentials.[7] In order to study their localisation and distribution, two major 

methodical approaches have been pursued. The first approach is the application of the patch-clamp 

technique to detect ion currents across membranes, which allows the monitoring of channel activity 

in localised regions of plasma membranes. However, the distribution of ion channels in whole cell 

membranes of living cells cannot be assigned by applying this method.[30] The second approach is 

specific labelling by immunostaining, in which labelled antibodies are applied for the direct imaging of 

specific proteins. Although a number of antibodies for ion channels are commercially available, most 

of these address intracellular epitopes, generating the need for cell fixation and permeabilisation prior 

to labelling experiments. While there are some antibodies on the market addressing extracellular 

epitopes, the selectivity towards specific ion channels is limited due to the high sequence homology 

between the extracellular domains of different ion channels.[31] 

 

These problems are overcome by the implementation of labelled neurotoxins. Neurotoxins, derived 

from animal venoms, are potent tools for distinguishing the various isoforms of channels. Recently, 

toxin labelling was extended from radiolabelling, which has the disadvantage of working with 

radioactivity, to the labelling with fluorophores, which are attached by the application of 

bioorthogonal strategies (described in chapter 2.2). The site-specific introduction of fluorophores has 

already been described for a few toxins, including hongotoxin, stichodactyla toxin, α-conotoxin and 

iberiotoxin.[32–36] These labelled toxins have a broad applicability, e. g. labelled hongotoxin is utilised 

to investigate the localisation of potassium channels in different brain sections.[32] Due to the high 

diversity of different ion channels and their existing subtypes, the need for specific binding toxins 

bearing a fluorescent marker is still great.  

 

This thesis focusses on three major neurotoxins: µ-conotoxin SIIIA, pompilidotoxin and iberiotoxin, 

whose targets are specific ion channels such as voltage-gated sodium channels and large conductance 

calcium- activated potassium channels.  

 

The first targets of this study are voltage-gated sodium channels (VGSCs), which control the flux of 

sodium ions across cell membranes. When the cell interior is at a potential much more negative than 

the exterior (-80 mV), VGSCs are in a closed state. Upon depolarization, e. g. to -40 mV, VGSCs open. 

The resulting sodium influx is the basis of action potential generation and propagation in excitable 

cells. Activation of the channels is followed by a transition into an inactivated, closed state, which 
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renders the cells refractory for new stimuli. Subsequent de-inactivation makes the channels available 

again.[37] Structurally, VGSCs consist of a core protein (α-subunit), enabling sodium ion permeability, 

and one or more regulatory subunits. Until now, nine mammalian α-subunit isoforms (NaV1.1-NaV1.9) 

are known. Our cooperation partners NEEF and co-workers are interested in visualising sodium 

channels NaV1.2 and NaV1.6, which are mainly expressed in the central nervous system. Up to now, 

there is a long-standing discussion about the local density of these sodium channels in the axon-initial 

segment of pyramidal cells. COLBERT and PAN observed via patch-clamp experiments a low density 

comparable to that of the somatic membrane, whereas immune-histochemistry studies, for instance 

by WOLLNER and CATERALL, suggested a high density.[38,39] To clarify the local density of these channels 

advanced single-molecule imaging can be used. The visualisation of NaV1.2 and NaV1.6 may be 

accomplished by synthesis of labelled neurotoxins that bind specifically to these channels. The toxin 

of choice was µ-conotoxin SIIIA, a 20 amino acid peptide with a rigid structure stabilized by three 

disulphide bridges. The synthesis and labelling will be discussed in chapter 3: “Labelling and caging of 

conotoxin”. Within this topic a caged conotoxin will also be presented, which might be used to further 

investigate sodium channels.  

 

Neurotoxins are also used to influence the gating properties of ion channels. Pompilidotoxin, a small 

linear peptide, slows or abolishes the inactivation of VGSCs. This neurotoxin is less specific than 

µ-conotoxin as it binds to NaV1.1-1.3 and NaV1.6-1.7 although, NaV1.2 and NaV1.6 are the isoforms with 

the highest affinity.[40] However, it is much easier to synthesize and label because of the lack of 

disulphide bridges. The SCHILD research group was interested in a labelled pompilidotoxin to study the 

involvement of VGSCs in odour sensing in olfactory receptor neurons. The synthesis and labelling of 

pompilidotoxin will be discussed in chapter 4: “Labelling of pompilidotoxin”. 

 

Additionally, large conductance calcium-activated potassium channels (also known as big potassium 

channels = BK channels) were targeted. These channels, together with voltage-gated calcium channels 

(VGCCs), are involved in the fine tuning of action potentials in many neurons. Upon depolarization as 

a result of a stimulus, VGCCs are activated. The following influx of Ca2+ further depolarizes the cell and 

the local Ca2+ concentration is increased. This leads to an activation of BK channels congregating with 

VGCCs. The outward flow of K+ repolarizes the cell, resulting in the closing of VGCCs and priming the 

cell for another cycle of oscillation.[41] The involvement of these channels in odour sensing in olfactory 

receptor neurons (ORNs) is being investigated by BAO in the SCHILD research group. Recent studies by 

BAO show a co-localisation of VGCCs and BK channels on the surface of ORNs of Xenopus laevis (see 

Figure 2).[42] In these studies, localisation of VGCCs is accomplished by using Fluo-5F, a fluorescent 

calcium indicator exhibiting a hundredfold increase in fluorescence upon the binding of calcium. 
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BK channels are visualized by labelling iberiotoxin (Ibtx), a BK channel specific toxin, with Alexa Fluor® 

488 or 546 protein labelling kit. As these kits specifically label amines and Ibtx contains 5 (+1, if the 

N-terminus is free) amine groups, multiple labelling may occur. A quantification study on the number 

of fluorophores per Ibtx reveals that three to four fluorophores are attached to one Ibtx, making a 

further quantification study of BK channels impossible.[42] For a precise quantification of BK channels 

present in VGCC/BK channel clusters mono-labelled Ibtx need to be developed. This will be discussed 

in chapter 5 “Labelling of iberiotoxin”. 

 

 
 

Figure 2: Co-localisation of BK channels and VGCCs (scale = 5 µm). (A) Image of BK channels stained with Alexa 

Fluor® 488 labelled Ibtx. (B) Image after washing for 30 min after staining. (C) Image of VGCCs during 

depolarization stained with Fluo-5F. (D) Images (A) and (C) merged together, arrows indicate co-localisation.[42] 
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3 Labelling and caging of conotoxin 

 

 

Conotoxins were first isolated and characterized almost four decades ago. Rapidly, they have emerged 

as valuable neuroscience probes and drug leads because of their unparalleled potency and selectivity 

for ion channels and membrane receptors.[43,44] Conotoxins are produced by cone snails together with 

a mixture of other conopeptides to paralyze their prey. Up to now, around 700 species of cone snails 

have been discovered, each of them expressing an extensive variety of conopeptides. This leads to an 

enormous diversity of conotoxins with around 1700 toxins researched so far.[45,46] These toxins act on 

a wide range of ion channels such as voltage-gated sodium-, potassium- and calcium-channels as well 

as ligand-gated ion channels, for instance nicotinic acetylcholine receptors and serotonin receptors.[47] 

Additional targets are the adrenergic receptor and the norephinephrine transporter.[48,49] Having such 

a variety of targets, conotoxins are used to gain further information about them at the 

pharmacological, physiological or structural level.[50–53] Besides, they serve as drug candidates such as 

Prialt®, a -conotoxin, which is the first marine drug approved by the US Food and Drug Administration 

(FDA) having potent and selective calcium channel activity and therefore is used to treat chronic 

pain.[54] 

 

Structurally, conotoxins are mainly small peptides composed of 10 to 45 amino acid residues.[47] They 

contain multiple disulphide bonds and post-translational modifications (PTMs) accounting for the high 

diversity of conotoxins found in nature. The disulphide bonds are important for the structure and 

thereby function of conotoxins as they constrain and define the three-dimensional structure. In vivo 

conotoxins are first translated as a precursor. The N-terminal propeptide then facilitates protein-

disulphide-isomerase (PDI)-catalysed folding of the conotoxin precursor (see Scheme 3). Whether 

posttranslational modification occurs before, concurrent with, or after the formation of disulphide 

bonds is not yet determined.[55] Identified modifications include N-terminal modifications, C-terminal 

modifications, hydroxylation, γ-carboxylation, sulphation, bromination, O-glycosylation, and 

epimerization.[56] In contrast, the in vitro synthesis of conotoxins is more challenging because of a 

missing complex folding apparatus present in vivo.  
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Scheme 3: Native folding of the conotoxin precursor. The N-terminal propeptide facilitates binding of PDI 

catalysing the folding process.[55] 

 

3.1 Synthesis of disulphide rich peptides 

Today two approaches are being employed for the synthesis of conotoxins. The first one is using 

recombinant expression in heterologous expression systems such as E. coli which is applied for a 

number of conotoxins.[57–59] Introducing unnatural amino acids, which is sometimes needed for the 

attachment of labels and incorporation of a variety of PTMs, is still a challenging task using 

recombinant expression. Due to the small size of conotoxins a second approach using chemical 

synthesis is applied. This method eliminates undesired (host) protein contamination by the use of 

recombinant expression and facilitates more control over disulphide bridging as well as the 

introduction of modifications.[47] The first step of the synthesis of conotoxins is solid phase peptide 

synthesis (SPPS) using the Boc/Bzl or Fmoc/tBu strategy.[60–63] Difficulties concerning aggregation, 

secondary structure formation, incomplete coupling/Nα-deprotection, and racemisation are 

overcome by using an optimized Boc in situ neutralization protocol coupled with SPPS if necessary.[64] 

The second step of the synthesis is oxidation of cysteine amino acids forming distinct disulphide 

bridges and thereby inducing a folding of the conotoxin. Correct oxidative folding is important for the 

formation of secondary structures such as α-helices, β-sheets and turns which are crucial for receptor 

recognition, potency and selectivity. The number of possible isomers during this step depends on the 

number of cysteine residues present in the peptide explicitly: (2n)!/(2nn!) with n being the number of 

disulphide bonds, resulting in e. g. 15 possible isomers for three disulphide bridges excluding 

topological isomers.[47] Thus far, conotoxins have been known to have five disulphide bridges at the 

most, therefore, correct formation of all disulphide bridges is highly important.[45,46] In the following 

section the oxidative folding will be described using firstly random oxidation of the fully deprotected 

peptide and secondly regioselective oxidation using different protecting groups and strategies. 
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Additionally, chemical modifications will be shown that simplify the synthesis of conotoxins and 

expand their stability. 

3.1.1 Direct oxidative folding 

Direct oxidative folding has the advantage of limited steps, as few, if any, different protecting groups 

need to be applied. As described above either the fully deprotected peptide is used or the cysteine 

residues are protected e. g. using the acetoamidomethyl (Acm) or tert-butylthio (StBu) group. These 

groups are orthogonal to both Fmoc/tBu and Boc/Bzl strategies and thereby purification of the crude 

peptide is possible prior to deprotection of the cysteine residues and oxidative folding. 

Chromatographic purification of peptides containing free cysteine residues may lead to partial 

oxidation, which hinders efficient chromatography.[65] The free cysteine containing peptide is then 

employed for oxidative folding involving several processes namely oxidation, reduction, isomerization 

or scrambling.[66] Oxidative folding is conducted using either disulphide-containing small molecules 

(e. g. oxidized glutathione or cystine), electron accepting reagents (e. g. molecular oxygen or dimethyl 

sulphoxide) or a recently investigated selenoxide reagent.[67,68] Disulphide containing small molecules 

reversibly react with cysteine residues initially forming mixed disulphide species. The rate of this step 

depends on the pKa of the thiol and therefore on the environment of the thiol as well as on the pH of 

the solvent. Afterwards the asymmetric disulphide is attacked by another peptide thiolate generating 

the desired disulphide bridge and correct folding at the same time. In the second approach using 

electron accepting reagents, the first step is oxidation of peptide thiolate to a peptide sulphenic acid 

which is attacked by a second thiolate leading to the formation of the disulphide bridge (see Scheme 

4A).[67] The recently investigated selenoxide reagent 1 reacts with the peptide thiolate to form an 

unstable Se-S-intermediate which is rapidly attacked by another peptide thiolate to form the 

disulphide bridge and 2 as a byproduct (see Scheme 4B). This method accepts a wide pH range of 

3-9.[68] 

 

 

Scheme 4: Oxidative folding using A: disulphide containing small molecules or electron accepting reagents or 

B: recently investigated selenoxide reagent 1.[67,68] 
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In all these methods the disulphide bridge can be formed either intra- or intermolecular dictating the 

need to work under high dilution in order to prevent the formation of oligomeric side products.[67] 

Moreover, an already formed disulphide bridge may be attacked by another peptide thiolate from the 

same molecule, leading to a reshuffling of disulphide bridges.[67] This process allows the formation of 

the more thermodynamically stable disulphide isomers. Random oxidative folding is influenced by 

proximity, reactivity, accessibility and concentration of thiolate groups with accessibility of thiol groups 

to the intermediate species being the most important.[69,70] Additionally, the relative position of 

cysteine residues of peptides determine the kinetic of folding, namely those furthest away from each 

other slow down the folding process the most.[71] In order to obtain the native peptide in good yields 

different conditions have to be tested for each disulphide-rich peptide e. g. changing temperature, 

concentration of the peptide, ionic strength of the solvent, pH, electron-accepting reagent or redox 

species, and folding additives (e. g. surfactants or organic cosolvents).[67] Nevertheless, random 

oxidative folding is mostly applied for natural peptides and has the disadvantage of the formation of 

different disulphide connectivities leading to several products being hard to purify.[72]       

3.1.2 Regioselective oxidation using different protecting groups 

To overcome the problem of having products with different disulphide connectivities, regioselective 

oxidation is employed. Therefore, the peptide is protected with orthogonal protecting groups for each 

disulphide bridge permitting a stepwise formation of cystines. The disulphide bridges are formed 

either on solid support using the pseudo-dilution effect preferring intramolecular disulphide bridges, 

or by a mixture of formation on solid support and in solution, or by forming all disulphide bridges in 

solution applying different protecting groups. During all steps of deprotection and disulphide bridging 

it is highly important to keep a slightly acidic pH to prevent thiol-disulphide exchange reactions leading 

to reshuffling and scrambling of the disulphide bridges.[47]  

 

As the field of different cysteine protecting groups is immense, only an outline of most common 

protecting groups and those utilised in this work is given below (see Table 1). Most of the thiol 

protecting groups employed today are acid sensitive. Hence, Fmoc/tBu rather than Boc/Bzl strategy is 

mostly applied to synthesize fully protected peptides.[73] Only the 2-pyridinesulphenyl (SPyr) protecting 

group is not stable to basic conditions as it activates the cysteine thiol group to facilitate an attack of 

another free thiol.[74] Thus, this protecting group is implemented into peptides after SPPS to prepare 

disulphide linkage. For syntheses of multiple disulphide bridges containing peptides the order of 

cleavage/deprotection of cysteines is highly important. For example the tert-butylthio (StBu) group is 

cleaved reductively, therefore the resulting disulphide bridge has to be formed first, as otherwise 

already formed disulphide bridges will be reduced during this deprotection step. Additionally, 
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sensitivity of deprotected functional groups towards sequential deprotection conditions has to be 

evaluated before considering disulphide bridges formation strategy. For instance, the commonly used 

Acm group is usually cleaved by iodine which possibly leads to an oxidation of methionine, histidine, 

tryptophan, or tyrosine residues, or a shift of Acm towards serine or threonine.[47,75,76] To prevent these 

problems the group of ALBERICIO proposed the new protecting group phenylacetoamidomethyl 

(Phacm) having the same stability as Acm. However, this protecting group is cleaved using the enzyme 

penicillin G acylase (PGA) offering mild deprotection conditions.[77,78] The enzyme is highly specific for 

the phenylacetyl residue, retaining Acm groups during Phacm cleavage.  

   

Table 1: Thiol protecting groups for peptide synthesis.[78–83] 

Protecting group Structure Stability Removal 

Triphenylmethyl (Trt) 

    

base, 

nucleophiles 

diluted TFA/scavenger, I2, 

Ag(I), Hg(II), Ti(III), RSCl 

Dimethoxytrityl (Dmt) 

    

base diluted TFA/scavenger 

Acetoamidomethyl (Acm) 

    

TFA, HF (0 °C), 

base 

I2, Hg(II), Ag(I), Ti(III), RSCl, 

Ph2SO/MeSiCl3 

tert-Butylthio (StBu) 
    

TFA, HF (partial), 

base, RSCl 

RSH, Bu3P, (HOOCCH2CH2)3P 

tert-Butyl (tBu) 
    

TFA, HF (0°C), 

Ag(I), I2 

HF (20 °C), Hg(II), RSCl, 

Ph2SO/MeSiCl3 

2-Pyridinesulphenyl (SPyr) 

    

acid RSH, thiocarboxylic acid, DTT 

Phenylacetoamidomethyl 

(Phacm) 
    

TFA, HF, base penicillin aminohydrolase, 

Hg(II), Ti(III), I2 

4-Methylbenzyl (Mbzl) 

    

TFA, Ag(I), base, 

RSCl 

HF (0 °C), Ti(III), 

Ph2SO/MeSiCl3 

   

The disulphide bridge formation strategies being mostly applied are shown in Table 2. The first 

disulphide bridge is protected using either Trt or StBu offering the possibility to decide whether to 

purify the peptide prior to regioselective oxidation (StBu). Furthermore, the Acm, tBu and Mbzl groups 

are common protecting groups for the 2nd and 3rd disulphide bridge formation. To carry regioselective 
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oxidation to the extreme CUTHBERTSON et al. synthesized an α-conotoxin dimer peptide containing four 

disulphide bridges using Trt, Acm, tBu and Mbzl successively. This is the first example of using four 

distinct protecting groups to produce conotoxin analogues.[84] 

 

Table 2: Common regioselective oxidation protocols for peptides containing 1-3 disulphide bridges using 

Fmoc/tBu strategy.[73] 1Deprotection and cleavage from the resin using TFA. 2I2/AcOH/H2O, Cys(Acm) and 

Cys(Trt) are oxidized in different rates in chloroform, dichloromethane and 2,2,2-trifluorethanol. 3Phosphine-

mediated reductive cleavage. 4DMSO/TFA at rt or PheS(O)Phe/MeSiCl3/TFA. 5DMSO/TFA at 60 °C. 

1st disulphide 2nd disulphide 3rd disulphide 

Trt1 Acm2  

StBu3 Acm2  

StBu3 Trt2 Acm2 

Trt1 Acm2 tBu4 

Trt1 tBu4 Mbzl5 

 

In addition to the influence of employing different protecting groups, the distribution of these groups 

along a peptide sequence strongly affects the outcome of the synthesis.[85,86] Despite the 

regioselectivity of sequentially synthesized disulphide rich peptides the formation of multiple products 

is still possible. For instance, two topological isomers are isolated during the synthesis of enterotoxin 

with the incorrectly folded isomer being completely converted into native conformation using redox 

reagents (e. g. glutathione). The folding of the topological isomer appears to be regulated by the last 

disulphide bond formation defining the conformation of final product which is either a right-handed 

(native isomer) or left-handed spiral (topological isomer).[87,88] In addition to using different protecting 

groups regioselectivity is reached by the introduction of modifications, e. g. selenocysteines. This topic 

will be discussed further in the next chapter.  

3.1.3 Synthetic modifications of conotoxins 

Due to the drug potential of conotoxins many modifications are investigated to increase their stability 

and activity. Until now the peptidomimetic strategy, developing a rational design of organic scaffolds 

and thereby topographically mimicking key binding elements of native conotoxins, resulted in losses 

of activity.[89] Another commonly used technique is to slightly alter native conotoxins to improve their 

properties as drugs (see an overview in Figure 3). Owing to high lability of cystine frameworks to 

reducing environment disulphide isosters, such as diselenide, dicarba, cystathionine as well as lactam 

bridges were introduced instead of disulphide bridges.[90–93] Especially the selenoconotoxins are being 

widely used as these analogues showed an improved stability to reductive conditions.[94]   
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Figure 3: Overview of synthetic modifications applied to conotoxins. Unstable residues such as methionine 

(M), which is easily oxidized in nature, are substituted in modified peptides. a) cystine isosters (e. g. 

selenocystine) b) inversion of selected residues c) side chain modification d) N- and C-terminal capping 

e) backbone cyclization f) truncation of N- and C-termini.[95] 

 

Another way of increasing stability is sequence modification. Several amino acids such as methionine 

or arginine residues are easily degraded (e. g. by oxidation); hence, these residues are being replaced 

if possible.[96,97] Additional attempts to reduce proneness towards proteolytic degradation are the 

substitution of L- versus D-amino acids, being employed for -conotoxins MVIIA and CVID.[98,99] Further 

approaches include side chain modifications such as adding lipid tags or introducing additional post-

translational modifications either on the side chains or the C- and N-termini improving bioavailability 

and stability.[100–104] Besides, the structure is simplified e. g. by inserting flexible spacer as backbone 

replacement or truncation of the peptide sequence.[105–107] The stability of conotoxins towards 

degradation may be improved by cyclization joining the C- and N-termini using amino acid linker.[108,109] 

To conclude, many modifications of conotoxins are known today to increase stability of these peptides. 

For every peptide evaluations have to be made of the influence on potency, as some modifications 

might reduce, increase or modulate the affinity towards special targets. 

3.2 Synthesis of labelled µ-conotoxin SIIIA 

The main target of this thesis was the synthesis of labelled µ-conotoxin SIIIA (short µ-SIIIA) which is 

one of the µ-conotoxins selectively inhibiting voltage-gated sodium channels (VGSC). VGSCs are 

responsible for the influx of sodium ions during action potentials.[110] The recent determination of 
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crystal structures of bacterial VGSCs offers the opportunity for simulations of mammalian VGSCs 

leading to molecular dynamics studies of binding of µ-conotoxins.[111–115] Exemplarily, the docking of 

µ-GIIIA to VGSC NaV1.4 directly blocking the pore of the channel is shown below (Figure 4). The outer 

pore of VGSCs mostly consists of electronegative residues such as aspartic acid or glutamic acid, which 

are addressed by positively charged residues like lysine or arginine of the µ-conotoxin. In contrast to 

potassium channels where one lysine is sufficient to block the channel at least two basic residues are 

required to achieve the same in sodium channels.[116] In comparison to non-peptidic toxins blocking 

the VGSCs, like saxitoxin (STX) or tetrodotoxin (TTX), µ-conotoxins distinguish between the different 

subtypes of VGSCs and are modifiable by introducing different amino acid residues thereby inducing 

different selectivities.[117–119] This difference in selectivity is due to the fact that the binding sites of TTX 

and µ-conotoxins overlap only partially and more residues of the VGSCs are involved in the binding of 

µ-conotoxins (additional to the four residues shown here for µ-GIIIA).[119] Furthermore, ZHANG et al. 

discovered conotoxin µ-KIIIA and TTX binding simultaneously to VGSC NaV1.2 with µ-KIIIA having higher 

off-rates in presence of TTX due to a repulsive interaction of positively charged residues offering even 

further applications for labelled µ-conotoxins.[120]  

 

                    

Figure 4: Docking of conotoxin µ-GIIIA (purple) to a homology model of NaV1.4 (grey): side view (left) and top 

view zoomed in on the binding site (right). The interacting residues of µ-GIIIA (R13, K11, K16) and NaV1.4 (E403, 

E758, D1241, D1532) are presented as sticks (PDB file provided by MAHDAVI et al.).[116] 

 

One of the smallest conotoxins and thereby a good target for labelling is conotoxin µ-SIIIA, comparable 

with µ-KIIIA it displays a strong selectivity towards mammalian neuronal sodium channel NaV1.2 

leading to nearly irreversible blocking of the channel. In addition, it blocks skeletal muscle subtype 

NaV1.4 (reversible blocking) and neuronal NaV1.6 (partially reversible).[121] µ-KIIIA and µ-SIIIA differ only 

in a few residues, with µ-SIIIA having four additional residues. These findings implicate that the 

additional residues do not disturb the overall activity and might be easily used for modification and 

labelling.  
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3.2.1 Structural and functional analysis of µ-conotoxin SIIIA 

Conotoxin µ-SIIIA is a short conotoxin, 20 amino acids in length, containing three posttranslational 

modifications: N-terminal cyclization forming pyroglutamate, C-terminal amidation, and disulphide 

bridging. Pyroglutamate (pGlu) causes N-terminal blockage of peptides protecting them from 

enzymatic digestion by exopeptidases.[122] Comparable to the N-terminal pyroglutamate the C-terminal 

amidation affects the overall isoelectric point and overall charge state (net charge of µ-SIIIA = +2), 

which may influence three-dimensional structure and is important for binding to the negative surface 

of VGSC.[123,124] Additionally, amidation protects µ-SIIIA against carboxypeptidase activity.[125] Three 

disulphide bridges are formed which are buried in the core of the molecule. The structure is further 

defined by an α-helix including residues 11-16 determining the arrangement of side chains along this 

motif (see Figure 5). 

 

            

 

Figure 5: Average ribbon structure of µ-conotoxin SIIIA (top): The α-helical motif is seen across residues 11-16. 

The three disulphide bonds are highlighted in yellow. The important residues for the affinity are highlighted 

in purple. See BMRB accession code 20025.[126] One letter code of µ-conotoxin SIIIA (3) (bottom): Z = pGlu, the 

C-terminus is amidated. 

 

The key binding determinants are distributed across this motif (Lys11, Trp12 and Arg14) and along it 

(Arg18). Each is contributing similarly to the binding affinity of µ-SIIIA.[126] Furthermore, substitution of 

His16 by alanine leads to a strong decrease in affinity, with αH-chemical shifts changes indicating 

perturbation of backbone structure.[126] YAO et al. conducted further temperature dependent 

backbone dynamic calculations revealing high flexibility of pGlu1, Asn2 and Ser9.[127] Additionally, a 

substitution of Asn5, Ser9 and Ser10 of the related µ-KIIIA does not change blockage of the 

channels.[121] 
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3.2.2 Modifications of µ-conotoxin SIIIA and their influence on activity 

In order to develop possible positions for labelling preliminary considerations have to be made based 

on already existing modifications known for µ-SIIIA and related compounds (µ-KIIIA, truncated µ-SIIIA 

missing pGlu1, Asn2, Gly6 and Gly7; and µ-SIIIB, differing in two residues: Lys14 and Gly15 compared 

to Arg14 and Asp15 for µ-SIIIA).[45,46] Many investigations have been carried out to improve the 

synthesis of µ-SIIIA and related compounds. To stabilize the structure of µ-SIIIA and enhance the 

oxidative folding rate WALEWSKA et al. and STEINER et al. installed diselenide bridges instead of 

disulphide bridges replacing either C3-C13, C4-C19 or C8-C20 disulphide bridge. The oxidative folding 

is enhanced using this method but a small decrease in overall blocking is observed.[128,129] Comparable 

results are obtained for modified µ-KIIIA, removing one disulphide bridge and substituting another 

disulphide bridge with a diselenide bridge does not lead to an enhanced affinity.[130,131] In contrast, 

deletion of one single disulphide bridge leads to significantly larger off-rates when compared to native 

µ-KIIIA.[132] Besides, disulphide depletion and N-terminal truncation of µ-KIIIA stabilizing the α-helical 

motif by one lactam bridge results in similar structures and good binding affinities for the lactam 

between positions Asp9 and Lys13. However, the high binding affinities of natural µ-KIIIA are not 

reproduced.[133] Another approach, namely backbone prosthesis, was applied by GREEN et al. to µ-SIIIA 

substituting non-essential residues such as the two Gly residues in the first loop or the N-terminal Asn 

and pGlu by non-peptidic spacers like amino-3-oxapentanoic acid or 6-aminohexanoic acid. Structural 

analysis reveals similar structural conformations of these analogues and activity essays are 

promising.[105] In contrast, replacing pGlu with Glu in µ-SIIIB reduces affinity of NaV1.2 compared with 

natural µ-SIIIB.[134] [pGlu1Arg]-µ-SIIIA has slightly increased VGSC affinity, with a change in selectivity 

from NaV1.2 to NaV1.4. SCHROEDER et al. synthesized even more N- and C-terminal extended µ-SIIIA and 

µ-SIIIB. C-terminal elongation of µ-SIIIA using Ala residues as well as N-terminal elongation of µ-SIIIB 

using Glu does not change the potency strongly. Furthermore, an increase in potency and neuronal 

selectivity is seen for µ-SIIIA substituting Asp15 by an alanine.[134] Based on this finding AKONDI et al. 

reengineered loop 1 using the [Asp15Ala]-mutant altering the overall charge and size of this loop. An 

increase in affinity is seen for the [Asn5Lys]-mutant being truncated at the N-terminus. Additionally, 

the deletion of Gly6 does not influence the affinity strongly.[135]  

 

STEVENS et al. synthesized a number of very small (13 residues) µ-KIIIA/µ-BuIIIC analogues having the 

first disulphide bridge and one of the Ser residues deleted. Even though an α-helix is not observed, the 

analogue has nearly similar potency as the native peptide.[136] A totally different approach is the design 

of organic scaffolds topographically mimicking key binding elements of native peptides, which is 

employed for µ-KIIIA.[89] BRADY et al. synthesized a diketopiperazine carboxamide scaffold 
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functionalized with Lys, Trp and His and a benzamide functionalized twice with Arg; both showing only 

very small sodium channel affinities.[89,137]  

3.2.3 Synthesis and labelling of alkyne modified µ-conotoxin SIIIA 

Following this detailed analysis of µ-conotoxin analogous a strategy for labelling µ-SIIIA was proposed. 

The sequence of native µ-SIIIA contains acid, amine and thiol functionalities, hence, introduction of a 

label could only be accomplished employing an orthogonal reaction or an elaborate protecting 

scheme. As previously described (see section 2.2) the copper(I)-catalysed azide-alkyne cycloaddition 

(CuAAC) provides this kind of orthogonally. Following this approach an azide or alkyne moiety should 

be introduced into the peptide. As a result of the introduction of an azide into peptides might possibly 

be the reduction to the corresponding amine during cleavage, an alkyne moiety should be 

incorporated into µ-SIIIA.[138] As truncated analogues of µ-SIIIA mainly show smaller affinities and 

adding residues to already very short analogues may have a great impact on overall structural 

properties, native µ-SIIIA should be modified bearing an alkyne moiety. As described in literature, the 

alkyne moiety was introduced by side chain propargylation of Boc protected serine 4 using sodium 

hydride and propargyl bromide, followed by Boc-deprotection and Fmoc-protection of 5 to form 

Fmoc-L-Ser(2’-propyne)-OH (6) in good yields (see Scheme 5).[139–141] Providing an alkyne in a position 

far away from the backbone should allow CuAAC to take place even in folded peptides. Additionally, 

the polar side chain of serine prevents formation of aggregates during peptide synthesis.[141] 

 

 

Scheme 5: Synthesis of Fmoc-L-Ser(2’-propyne)-OH (6). 

 

By analysing µ-SIIIA analogous possible modifiable positions were ascertained. As mentioned above 

the C-terminal and N-terminal extensions of µ-SIIIA/B do not change the ability to bind to VGSCs.[134] 

Additionally, Gly6 and Ser9 are removed without a strong decrease in affinity.[135,136] Therefore, four 

peptides were postulated for synthesis (7-10, see Figure 6).   
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Figure 6: Alkyne modified peptides postulated for synthesis. Z = pGlu, the C-terminus is amidated. 

 

First of all, direct oxidative folding was performed as described before (see 3.1.1) using trityl protecting 

group for cysteine residues. As described by BULAJ et al., the linear precursor was synthesized on rink 

amide MBHA resin as solid support preloaded with Fmoc-L-Cys(Trt)-OH according to Fmoc based SPPS 

protocols providing a C-terminal amide after cleavage.[110] Artificial amino acids 

Fmoc-L-Ser(2’-propyne)-OH (6) as well as H-L-pGlu-OH were coupled using lower temperatures and 

longer reaction times, as racemisation rates were unknown. Initial occurrence of aspartimide 

formation (m/z = -18) was circumvented by adding 0.1 M 1-hydroxybenzotriazole (HOBt) to the 

deprotection solution.[142] The racemisation of cysteine and histidine was suppressed using lower 

reaction temperatures (50 °C) during coupling. This reduces the amount of D-amino acid from >8.00% 

to 1.59% for histidine and >3.96% to 3.16% for cysteine respectively.[143] Linear [Gly6Ser(2’-propyne)]-

µ-SIIIA and [Ser9Ser(2’-propyne)]-µ-SIIIA precursor were obtained in good yields and purity. Direct 

oxidative folding of native µ-SIIIA using different reagents has been covered in literature. The following 

methods were tested for the alkyne modified µ-SIIIA analogues: 

 

 Linear µ-SIIIA was dissolved in high dilution in aqueous solution of 0.1 M Tris/HCl solution, 1 mM 

oxidized and 1 mM reduced glutathione and 0.1 mM EDTA (pH 7.5). 

 Linear µ-SIIIA was dissolved in high dilution in aqueous NH4HCO3-solution (pH 9.1). 

 Linear µ-SIIIA was dissolved in high dilution in aqueous NH4HCO3-solution, 1 mM oxidized and 

1 mM reduced glutathione and 0.1 mM EDTA (pH 7.1). 

 Linear µ-SIIIA was dissolved in high concentrations in an ionic liquid. 
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The first method was described by GREEN et al. and STEINER et al. testing different reaction times, 

pH-values, molar ratios of glutathione in the oxidized and reduced form and different 

temperatures.[105,144] The high dilution is necessary to prevent polymerization and aggregation. Herein, 

the described conditions were used differing reaction times and work-ups. The reaction mixtures were 

either directly subjected to freeze-drying or water was removed using rotary evaporator. Diverse 

efforts were made to desalinate crude products using either reverse phase column chromatography 

or dialysis membranes with different pore sizes (molecular weight cut of: 100-500 D or 500-1000 D). 

Albeit obtaining small amounts of desired product HPLC diagrams showed a scrambling indicating 

formation of multiple disulphide bond and topological isomers. The second method was previously 

performed by AVRUTINA to fold cystine-knot microproteins and the third method was a combination of 

the first and second method.[145] An advantage of using ammonium bicarbonate as buffer solution is 

its removability by freeze-drying making extensive desalination steps superfluous. By these two 

methods no product was obtained. Applying the fourth method renders the need to use high dilution 

obsolete as MILOSLAVINA et al. found 1-ethyl-3-methylimidazolium acetate [C2mim][OAc] to be able to 

solubilise and stabilise secondary structure by providing hydrogen bonds between anions of 

imidazolium salt and hydroxyl groups of the solute.[146] Thereby, the formation of correctly folded 

product is favoured and amount of misfolded peptides reduced. Even though correct mass was 

detected, a separation of ionic liquid from the peptide was impossible. A recent investigation by HEIMER 

et al. scaling up the previously performed reaction resulted in a significant loss of inhibiting effect on 

NaV1.4 channels, attributed to an adherence of ions from [C2mim][OAc] to peptides, with connectivity 

of disulphide bridges and HPLC profile being in accordance to conventionally oxidized µ-SIIIA 

versions.[147] Due to the formation of multiple isomers using glutathione in Tris buffer another strategy 

was applied for the synthesis of labelled µ-SIIIA. Although previously described regioselective oxidation 

(see section 3.1.2) of three disulphide bridges might be time-consuming it has the advantage of 

selectively formed bridges reducing the amount of different isomers to a few topological isomers.[148]  

 

Regioselective oxidation of µ-SIIIA was based on a strategy proposed by LINDNER et al. in 2012 (see 

Scheme 6).[81] Peptides are synthesized on 2-chlorotrityl chloride resin using RAMAGE-linker providing 

C-terminal amides.[149] Thereby, peptides can be cleaved from the resin using very low acidic conditions 

before deprotecting side chain protecting groups. As the first disulphide bridge usually is the hardest 

to form a method previously exercised in interchain disulphide bridge formation is used to increase 

the yield; the first cysteine residue is activated for subsequent reaction with the second cysteine.[65] 

Thiols are activated by introducing an electron-withdrawing substituent e. g. 2-thiopyridine. This 

residue is introduced using 2,2’-dithiodipyridine. In order to have a good activation of thiols using 

mixed disulphides a deactivated leaving group is highly important to prevent thiol/disulphide exchange 
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reactions; in the case of SPyr the leaving group is 2-thiopyridine which immediately tautomerizes to 

inactive 2-thiopyridone.[150,151] As the cysteine activation group SPyr is not stable during coupling 

conditions StBu is introduced into the peptide being cleaved of using 2-mercaptoethanol followed by 

a reaction with 2,2’-dithiodipyridine. After cleavage from the resin the fully protected peptide 

containing activated thiol then reacts with a second thiol, which has been Dmt protected beforehand. 

Following the formation of the first disulphide bridge, all protecting groups are deprotected including 

Trt protected cysteine. LINDNER et al. proposed a one-pot iodine oxidation forming the second 

disulphide bridge, deprotecting Acm-groups and forming the third disulphide bridge.[81] The 

advantages of this regioselective strategy by LINDNER et al. are: 

 

 High dilution during formation of the first disulphide bridges prevents polymerization reaction. 

 Unprotected peptide containing one disulphide bridge and the following steps are handled in 

acidic medium preventing shuffling of the disulphide bridges. 

 Regioselective disulphide bridge formation in acceptable yields. 

 

 

Scheme 6: Regioselective approach proposed for µ-SIIIA as described by LINDNER et al.[81] 

 

As Fmoc-L-Cys(Dmt)-OH (11) is not commercially available, it was synthesized in two steps following a 

procedure of LINDNER et al. (see Scheme 7).[81] Unprotected cysteine (12) was treated with 

4,4’-dimethoxytrityl chloride to form a thioether (13) followed by N-terminal Fmoc-protection using 

Fmoc-Cl. Flash chromatography was carried out quickly and without acid to prevent Dmt-deprotection 

on the slightly acidic silica yielding the product (11) in good yields. 
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Scheme 7: Synthesis of Fmoc-L-Cys(Dmt)-OH (11). 

 

2-Chlorotrityl chloride resin was then preloaded with the Fmoc protected RAMAGE-linker using DIPEA 

for activation. An excess of 2-chlorotrityl chloride resin, reduced reaction times and capping with 

methanol and DIPEA were necessary to reduce the loading density from 1.5 mmol/g for 2-chlorotrityl 

chloride resin to 0.30-0.40 mmol/g of preloaded resin. A low loading density was used to prevent 

aggregation during solid phase peptide synthesis. After Fmoc deprotection the first amino acid 

Fmoc-L-Cys(Trt)-OH was coupled using N,N’-diisopropylcarbodiimide (DIC) and HOBt, thereby 

preventing base-catalysed racemisation during activation and coupling of Trt protected cysteine.[152,153] 

Furthermore, linear C-terminal modified µ-SIIIA-[Ser(2’-propyne)] precursor 14 was synthesized 

according to Fmoc based SPPS protocols reducing the temperature as 2-chlorotrityl chloride resin is 

sensitive to high temperatures. As previously described the StBu protecting group was cleaved by 20% 

2-mercaptoethanol as the reducing agent. Subsequent reaction with 2,2’-dithiodipyridine yielded the 

activated disulphide bridged Cys(SPyr) derivative 15. Cleavage from the resin was performed using 

mild acidic conditions yielding 16 (see Scheme 8).  
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Scheme 8: First deprotection steps performed on linear µ-SIIIA-[Ser(2’-propyne)] precursor 14: StBu 

deprotection was followed by activation of the free thiol to Cys(SPyr) and subsequent cleavage from the resin 

yielding peptide 16. Z = pGlu. 

  

Further acidification under high dilution using low concentrations of TFA yielded Dmt deprotected 

peptide which was transferred to a solution of triethylamine (10%) to form the first disulphide bridged 

peptide 17 by deprotonating the free thiol group which then reacted with activated Cys(SPyr). After 

precipitation the crude product was directly deprotected utilising triisopropylsilane (TIS) and water as 

scavengers obtaining crude peptide 18 in an overall yield of 64% (see Scheme 9). Neither deletion 
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sequences nor disulphide depleted side products were detected by mass analysis. The Acm protecting 

group remained stable under these conditions. 

 

 

Scheme 9: Formation of the first disulphide bridge of µ-SIIIA-[Ser(2’-propyne)] followed by deprotection of all 

side chain protecting groups except the Acm group. Z = pGlu, the C-terminus is amidated. 

 

The one-pot oxidation proposed by LINDNER et al. for native µ-SIIIA did not lead to any product 

formation in the following steps of disulphide formation, Acm deprotection and disulphide formation 

of Acm deprotected thiols.[81] Therefore, a stepwise procedure was undertaken firstly to form the 2nd 

disulphide bridge and secondly to deprotect the Acm groups and to generate the 3rd disulphide bridge. 

Alternatively to oxidation by atmospheric oxygen being a relatively slow process or by mild oxidizing 

agents such as potassium ferricyanide which may lead to side products such as oxidation of Met and 

Trp residues and has an additional step of removing the oxidizing reagent, DMSO-promoted oxidation 

is frequently utilised.[65,154,155] It can be applied over an extended pH range of 1 to 8.[156] In general, 

acidic media induces faster oxidation rates and it also prevents shuffling of already formed bridges. 
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However, low pH (pH < 3) accelerates oxidation of other side chains, such as methionine. Following a 

procedure of TAM et al. disulphide formation to peptide 19 was carried out at pH 6 with 20% DMSO in 

high yields (see Scheme 10).[156]  

 

 

Scheme 10: Formation of the second and third disulphide bridge of µ-SIIIA-[Ser(2’-propyne)] (7). Z = pGlu, the 

C-terminus is amidated. 

 

For the deprotection of Acm groups and simultaneous disulphide bridge formation a method described 

by LINDNER et al. was first applied utilising iodine in a solution of acetic acid/water with anisole as 

scavenger for 2 h leading to no product formation.[81] As oxidation by iodine is known to cause serious 

side reactions on several amino acids such as Tyr, Met, His and Trp extensive efforts have been made 

in the past to optimize reaction conditions.[75] To prevent side reactions with Trp residues 

Ac-L-Trp-OMe is added as scavenger.[157,158] Additionally, disulphide exchange reactions may occur by 

an electrophilic attack of sulphenyl iodide, which usually reacts with free cysteines to produce the 

desired disulphide, on preformed disulphides. This will lead to shuffling und scrambling of disulphide 

bridges. Although, KAMBER et al. described this reaction to be a minor side reaction (5% side product 

after 4 h) being reduced by reduction of reaction time.[75] In this thesis, additional tests were performed 
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to analyse the stability of the alkyne moiety to the conditions of LINDNER et al. taking the Fmoc 

protected amino acid as starting material which resulted in the formation of diiodated product. To gain 

knowledge whether Acm deprotection and disulphide formation or iodination occurred first or if these 

reactions happened at the same time, LC-MS was performed. Thus, the reaction mixture (acetic 

acid/water, Ac-L-Trp-OMe, iodine) was quenched with aqueous ascorbic acid solution after 0, 5, 10, 

20, 30, 40, 50 and 60 min. The desired product 7 was already seen when the reaction mixture was 

quenched directly after iodine addition (0 min). After 5 min the starting material 19 was consumed and 

first traces of iodated side product were seen after 20 min. Therefore, this reaction was carried out for 

10 min to have a complete conversion to the desired product 7.  

 

In a second approach deprotection was analysed using silver(I) trifluoroacetate followed by oxidation 

with 10% DMSO in 1 M hydrochloric acid. By this approach the formation of oxidised and iodated 

products should be minimised. With this method no product was obtained, possibly due to problematic 

destruction of the silver-peptide complex using DMSO in hydrochloric acid as described by HARRIS 

et al.[159] Other possible methods to release peptides would also reduce already formed disulphide 

bridges.  

 

Therefore, the previously described iodine method, followed by a direct purification of the quenched 

reaction mixtures on preparative HPLC, was utilised. HPLC purification yielded three main products 

having the same mass but different retention times (see Figure 7). Due to the regioselective formation 

of disulphide bridges different products could only be topological isomers (see section 3.1.2). Because 

of small amounts of obtained product no NMR analysis was performed which would give detailed 

information about the structure of each isomer. Instead, collected peaks were directly given for 

analysis by whole-cell patch-clamp but were not measured yet. 

 

 

Figure 7: HPLC trace of crude µ-SIIIA-[Ser(2’-propyne)] (7). Three topological isomers (marked by an arrow) will 

be analysed by whole-cell patch-clamp. 
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The whole sequence of reactions was repeated to synthesize [pGlu1Ser(2’propyne)]-µ-SIIIA (8). The 

first and second disulphide bridged peptide was obtained in good yields (1st 46%, 2nd 67%) but 

formation of the third disulphide bridge gave four topological isomers. Two of them could be purified 

in an adequate amount and inhibition rates are now being measured using patch-clamp. 

 

[Gly6Ser(2’-propyne)]-µ-SIIIA (9) was prepared using the same reaction method yielding 75% crude 

product for the formation of the 1st disulphide bridge and 98% crude product for the 2nd disulphide 

bridge. Formation of the 3rd disulphide bridge yielded three topological isomers which were analysed 

using patch-clamp experiments1. Inhibition studies were conducted at 1 µM in HEK293 cells that 

expressed voltage dependent sodium channels from rat, rNaV1.2. The two DNA-plasmids encoding 

green fluorescent protein (GFP) and rNaV1.2 (ratio 1:3), respectively, were delivered into cells by 

electroporation. During inhibition tests cells were held at -60 mV. Every 10 s sodium channel 

availability was monitored with a pulse, consisting of a brief hyperpolarization to -100 mV and a 

depolarization to 0 mV. Maximal block of sodium current observed for [Gly6Ser(2’-propyne)]-µ-SIIIA 

(9) was 90% (see Figure 8). The other topological isomers showed no visible inhibition.  

 

Therefore, labelling was performed with this isomer. As pure peptide was only obtained in yields of a 

few nanomoles, labelling studies were initially made with one of the isomers formed during direct 

oxidative folding. After consulting with the ENDERLEIN research group Alexa Fluor® 647 azide was used 

as the fluorophore. CuAAC was investigated utilising different methods. In comparison to CuAAC using 

small molecules CuAAC with peptides generates several problems as prolonged reaction times are 

needed. To preserve catalytic active copper(I) species during long reaction times reactions must be 

conducted under exclusion of oxygen and reducing agent, furthermore, copper (I) stabilizing agents 

such as tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) need to be applied.[141] First of all a 

method by CORTEKAR, namely using copper(I) (as copper(I) iodide (CuI) or copper(I) iodide-triethyl 

phosphite (CuIP(OEt)3)) together with TBTA and 2,6-lutidine in DMF to couple cysteine knot 

microproteines to cyclic β-peptides, was tested.[141]    

 

                                                           
1 All patch-clamp experiments of µ-conotoxin derivatives were conducted by TING WANG, PhD student in the BCCN 
group (Biophysics of neural computation), supervised by ANDREAS NEEF. 
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Figure 8: HPLC trace of crude [Gly6Ser(2’-propyne)]-µ-SIIIA (9). Three topological isomers were analysed by 

whole-cell patch-clamp (block levels of each isomer is assigned with an arrow). 

  

Reactions of modified, folded conotoxin and fluorophore using these methods were analysed after 3, 

4 and 5 days by LC-MS showing no product formation. Furthermore, these reaction conditions were 

unsuccessfully applied to the reaction of Fmoc-L-Ser(2’propyne)-OH (6) with the fluorophore. As these 

shortcomings might also be due to misfolding of peptides, which might reduce accessibility of alkyne, 

or solubility problems in case of the single amino acid, further CuAAC studies were made on 

[Gly6Ser(2’-propyne)]-µ-SIIIA (9) (90% block). The following methods for CuAAC were investigated to 

attach Alexa Fluor® 647 azide or Alexa Fluor® 647 picolyl azide, respectively:   

 

 Copper(I) iodide, sodium ascorbate in DMF. 

 Copper(II) sulphate pentahydrate, ascorbic acid, ethylenediaminetetraacetic acid (EDTA) in 

phosphate buffer. 

 Pentamethylcyclopentadienylbis(triphenylphosphine)ruthenium(II) chloride in dioxane. 

 Click-iT® Plus Alexa Fluor® 647 Picolyl Azide Toolkit including Alexa Fluor® 647 picolyl azide, 

copper(II) sulphate pentahydrate, copper protectant and reaction buffer. 

 

The first method was recently used by PANSE linking two different peptide strands together having 

alkyne and azide moieties.[160] Due to the fact that thiols have a high affinity for copper two other 

methods were tested (2nd and 3rd in the list). The second method was utilised by LI et al. for linkage of 

azide modified bovine serum albumin (BSA, containing 17 disulphide bridges) to alkyne modified 

monomethyl poly(ethylene glycol) and the third method included employment of a ruthenium catalyst 

leading to 1,5- instead of 1,4-disubstituted 1,2,3-triazoles.[161,162] In contrast to CuAAC ruthenium(II)-

catalysed alkyne-azide cycloaddition (RuAAC) allows a wide range of alkynes and is even performed 

with internal alkynes. The fourth method investigated was to utilise an activated azide, namely picolyl 

azide, containing an internal copper-chelating moiety, which raises the effective copper concentration 
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at the reaction side.[163] As these four methods were unsuccessful a 5th method was investigated: the 

use of DIPEA to overcome difficulties forming the active copper acetylide complex (see Scheme 11). 

Addition of base to increase formation of copper acetylide complex is usually applied in case of 

reactions in organic solvents, where this formation is unfavourable and deprotonation is required.[164] 

Recently, KOLMAR et al. described a method for CuAAC using DIPEA in water as well, which was 

employed herein.[165]   

 

 

Scheme 11: Synthesis of labelled [Gly6Ser(2’-propyne)]-µ-SIIIA 20 by addition of DIPEA. Z = pGlu, the 

C-terminus is amidated. 

 

After two days the formation of labelled [Gly6Ser(2’-propyne)]-µ-SIIIA 20 was seen albeit incomplete 

(see Figure 9). Due to small amounts of starting material an optimization of reaction conditions were 

not done, the alkyne was recovered and the reaction repeated.   
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Figure 9: HPLC traces (intensity at 650 nm and 215 nm) of crude reaction mixture of Alexa Fluor® 647 labelled 

[Gly6Ser(2’-propyne)]-µ-SIIIA (20) (90% block). 

 

Labelled [Gly6Ser(2’-propyne)]-µ-SIIIA 20 was analysed using patch-clamp experiments as 

aforementioned. Depolarization-activated sodium currents were measured before and after toxin 

application showing a strong decrease in sodium current within seconds (see Figure 10). 

 

 

Figure 10: Inhibition of rNaV1.2 by Alexa Fluor® 647 labelled [Gly6Ser(2’-propyne)]-µ-SIIIA (20). Superimposed 

depolarization-activated sodium currents in the absence and presence of labelled toxin. HEK293 cells were 

held at -60 mV; every 10 s sodium channel availability was monitored with a pulse (hyperpolarisation 

to -100 mV and depolarisation to 0 mV). Application of 1 µM toxin induces a decrease in sodium channel 

current.   

 

[Ser9Ser(2’-propyne)]-µ-SIIIA (10) was synthesized following the previously described method 

obtaining the 1st disulphide bridge in 72% (crude peptide) and the 2nd in 97% yield (crude peptide). 

Synthesis of the 3rd disulphide bridge yielded three topological isomers which were analysed by patch-

clamp experiments. Maximal block of sodium current (85%) was observed for the isomer having a 

retention time of 16.9 min. Labelling according to the previously described method yielded two 
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products (see Figure 11 (left)) having the same mass (analysis by MALDI). These were separated, 

obtained in good purity (see Figure 11 (right)) and will be analysed by patch-clamp experiments. 

 

 

Figure 11: HPLC traces of crude reaction mixture (left) and purified products (right) of Alexa Fluor® 647 labelled 

[Ser9Ser(2’-propyne)]-µ-SIIIA (21) (85% block) (for the structure of 21 see Figure 27). 

 

To conclude, labelled µ-SIIIA was synthesized by introducing an amino acid modified with an alkyne 

moiety into the peptide sequence, which was subsequently labelled with a fluorophore bearing an 

azide moiety. Additional patch-clamp experiments are currently under investigation to further analyse 

the properties of labelled µ-SIIIA and imaging experiments will be conducted in near future.  

3.2.4 Synthesis of thiol modified µ-conotoxin SIIIA 

Owing to small yields in forming the last disulphide bridge using an alkyne moiety another method was 

executed introducing a further cysteine, which might later on react with a maleimide activated 

fluorophore, protected by the Mbzl group (see chapter 3.1.2), which might be cleaved after the three 

disulphide bridges were formed. The Mbzl group is often used in Boc/Bzl strategy to protect cysteine. 

The group is usually cleaved by hydrofluoric acid (HF) but can also be cleaved using milder conditions, 

e. g. tetrafluoroboric acid in triflouroacetic acid or hydroboric acid in acetic acid eliminating the need 

of special HF apparatuses.[166–168] Mbzl protected cysteine was introduced as beforehand in Gly6 

position and alternatively an N-terminal polyethylene glycol (PEG) linker was utilised to further attach 

one Mbzl protected cysteine at the N-terminus directing away from the active binding site. In contrast 

to N-terminal elongated alkyne modified µ-SIIIA 8 the N-terminal pGlu was preserved, to protect 

peptides from proteolytic digestion. The linear precursor of [Gly6Cys(Mbzl)]-µ-SIIIA 22 was synthesized 

using previously described method, followed by sequential synthesis to the mono- and two-disulphide 

bridge containing peptide 23 and 24, in good yields. In the absence of an alkyne moiety quenching was 

unnecessary during the last step, therefore, it was conducted for a prolonged time and peptide 25 was 

obtained by precipitation rather than direct HPLC purification (see Scheme 12). Similar conditions were 
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applied in the synthesis of N-terminal elongated peptide 26 (see Figure 12). In comparison with alkyne 

modified µ-SIIIA several topological isomers were seen on HPLC.  

 

 

Scheme 12: Synthesis of [Gly6Cys(Mbzl)]-µ-SIIIA (25). Z = pGlu, the C-terminus is amidated. 
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Figure 12: Synthesized N-terminal elongated Cys(Mbzl) modified µ-SIIIA 26. Z = pGlu, X as described, the 

C-terminus is amidated. 

 

Deprotection of crude or purified peptide was investigated firstly using hydroboric acid in acetic acid 

containing pentamethylbenzene and thioanisole as scavengers. These reaction conditions were 

unsuccessfully applied to these peptides. A deprotection of Fmoc protected amino acid also showed 

only a small amount of deprotected amino acid. Further investigation on the deprotection of Fmoc 

protected amino acid using boiling triflouroacetic acid with anisole as a scavenger did not lead to the 

desired compound. Good turnover was seen applying tetrafluoroboric acid diethyl ether complex with 

thioanisole in trifluoroacetic acid. However, reinvestigating this method with synthesized modified 

peptides did not yield desired unprotected products. Due to successful inhibition studies of labelled 

alkyne modified µ-SIIIA no further investigations were made on the introduction of a seventh cysteine 

residue for labelling.  

3.3 Validation of folding pattern of µ-conotoxin SIIIA 

Due to the fact that recent studies on µ-SIIIA related µ-KIIIA presented by POPPE et al. and KHOO et al. 

suggested a different disulphide connectivity (1-5/2-4/3-6) compared to previously published data by 

KHOO et al. (1-4/2-5/3-6), the disulphide pattern of µ-SIIIA was validated in this thesis.[132,169,170] This 

validation is important to prove that the amount of different topological isomers formed is not caused 

by wrong disulphide connectivity. Reevaluation of disulphide bridged peptides such as µ-KIIIA is 

performed on the on hand, by an NMR based methodology, where disulphide connectivities are 

obtained by applying BAYESIAN rules of inference to the local topology of cysteine residues.[169] On the 

other hand, direct mass spectrometric collision-induced dissociation (CID) fragmentation is utilised, 

where the peptides are firstly digested by trypsin followed by a thorough mass analysis of formed 

tryptic peptides.[170] Previously, structures were derived by NMR spectroscopy including distance 

restraints on disulphide bridges based on an alignment with closely related µ-conotoxins, which was 

also done by YAO et al. for µ-SIIIA .[127] Even though SCHROEDER et al. probably included no distance 

restraints evaluating µ-SIIIA by NMR; the close relation of µ-SIIIA to µ-KIIIA suggests a similar disulphide 

connectivity. Comparison of the structure of µ-SIIIA (connectivity 1-4/2-5/3-6) by SCHROEDER et al. with 

the reevaluated structure of µ-KIIIA (connectivity 1-5/2-4/3-6) by KHOO et al. shows high similarity for 
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the α-helical motif and for important residues (see Figure 13); additionally, high inhibition rates are 

seen for both.[126,170] 

 

                    

Figure 13: Comparison of average ribbon structure of µ-SIIIA (left) (disulphide pattern 1-4/2-5/3-6) and µ-KIIIA 

(right) (disulphide pattern 1-5/2-4/3-6) showing the α-helical motif across residues 11-16. The three disulphide 

bonds are highlighted in yellow. The important residues for the affinity are highlighted in purple. See BMRB 

accession code 20025 and PDB code 2LXG, respectively.[126,170]  

 

Due to the uncertainty of structure of µ-SIIIA two peptides were synthesized by the previously 

described method with distinct disulphide pattern 1-4/2-5/3-6 (3) and 1-5/2-4/3-6 (27) (see Figure 14). 

Yields were comparable to previous syntheses and formation of different topological isomers was 

detected by HPLC (see Figure 15). Two main isomers were isolated for the 1-5/2-4/3-6 disulphide 

pattern and three for the 1-4/2-5/3-6 pattern. These results prove distinct isomer formation was not 

due to the modification of µ-SIIIA, but resulted from the disulphide formation using the regioselective 

approach. Comparison to commercially available µ-SIIIA, which should have the same retention time 

as native µ-SIIIA, did not lead to conclusions about disulphide pattern as one isomer of each pattern 

co-eluted with commercially available µ-SIIIA. Therefore, these two isomers were analysed by patch-

clamp experiments as described beforehand showing 65% of sodium current to be blocked for µ-SIIIA 

27 having 1-5/2-4/3-6 disulphide pattern and 80-100% for µ-SIIIA 3 having 1-4/2-5/3-6 pattern.    

 

 

Figure 14: Synthesized µ-SIIIA with 1-4/2-5/3-6 (3) and 1-5/2-4/3-6 (27) disulphide pattern. 
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Figure 15: HPLC trace of µ-SIIIA with 1-4/2-5/3-6 (3) and 1-5/2-4/3-6 (27) disulphide pattern. Diverse set of 

topological isomers were formed. Isomers having same retention time on the HPLC as commercially available 

µ-SIIIA (highlighted with an arrow) were analysed by patch-clamp. 

 

These results supported previous assessments of disulphide bridges of µ-SIIIA indicating 1-4/2-5/3-6 

disulphide pattern to be the native conformation comparable to longer µ-conotoxins such as 

µ-conotoxin BuIIIB (disulphide connectivity determined through direct mass spectrometric CID 

fragmentation).[171]   

3.4 Synthesis of caged µ-conotoxin SIIIA 

In addition to the synthesis of labelled µ-SIIIA, a modified µ-SIIIA was synthesized bearing a 

photoremovable protecting group (PPG) on a residue important for binding to sodium channels. This 

caged molecule might be used for consecutive cell-attached patch-clamp experiments measuring the 

current before (no inhibition) and after (inhibition of NaV1.2) uncaging.  

3.4.1 Characteristics and applications of photolabile compounds 

Photoremovable protecting groups are utilised to temporarily block a number of functionalities e. g. 

acids, alcohols or amines.[172] Their characteristic feature is the spatially and temporally controlled 

cleavage upon photo-irradiation excluding the need for additional reagents which may interact with 

sensitive groups present in a molecule.[173] PPGs are commonly applied to explore diverse biological 

processes: biologically active molecules are rendered inactive by masking their functional groups with 

PPGs (leading to a caged compound) and subsequent photo-excitation results in an uncaging releasing 

the active compound with free functional groups.[174] KAPLAN et al. synthesized and analysed the first 

so called “caged molecule”: a phosphate PPG protected adenosine triphosphate (ATP) derivative.[175] 

Protected ATP does not act as a substrate of renal Na/K-ATPase, whereas after irradiation unprotected 

ATP regains its property of activating the Na/K-pump. In addition to small caged molecules this concept 
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has been extended to peptides and proteins. Photocaged amino acids are introduced either by SPPS 

or by genetically encoding using evolved aminoacyl-tRNA synthetase-tRNACUA pairs.[176] PPGs have 

already been broadly applied in the field of neural sciences and many photoactivable derivatives of 

neurotransmitters and neurotransmitter agonists are available. Thereby, precise analysis of the 

kinetics and mechanism of chemical synaptic transmission is possible. An example is the induction of 

whole cell current in HEK293 cells upon photolysis of nitrobenzyl N-protected glycine acting as a 

neurotransmitter in its uncaged form.[177]  

3.4.2 Photolabile nitrobenzyl protecting groups: mechanism and derivatives   

The photoremovable protecting groups mostly applied are based on the 2-nitrobenzyl PPG (NB). The 

mechanism of its cleavage has been widely studied using different spectroscopic tools.[178–183] Initially, 

photo-irradiation of 28 converts the nitro group into its excited state 29. Intramolecular hydrogen 

abstraction of the benzylic hydrogen by the excited nitro group then leads to the formation of the aci-

nitro intermediate 30, being resonance stabilized. Successive cyclization to 31 and ring opening results 

in the formation of hemiacetal 32 being hydrolysed to form the aldehyde or ketone 33 (depending on 

the residue) and releases the target molecule (TM) (see Scheme 13). A diverse range of target 

molecules can be used e. g. phosphates, carboxylates, carbonates, carbamates, thiolates and 

phenolates. Alcohols and amines are protected as a carbonate or carbamate; consecutive 

decarboxylation leads to liberated alkoxides or amines.[184] Substituents in the benzylic positions might 

be introduced to prevent reactions of formed aldehydes (R = H) with amines forming imines. An 

additional problem concerning the nitroso byproduct is its strong absorbance above 300 nm, which 

decreases the photoreaction efficiency.[179]  

 

 

Scheme 13: Photo-induced uncaging of the 2-nitrobenzyl protecting group. TM = target molecule.[184,185]  
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Various modifications of the aromatic ring are reported in literature, which are employed to improve 

the photochemical properties (quantum yield, cleavage efficiency and cleavage wavelength). The most 

frequently used NB analogues 6-nitroveratryl (also named 3,5-dimethoxy-o-nitrobenzyl = DMNB) and 

6-nitroveratryloxycarbonyl (NVOC) have two additional methoxy groups, which are added to shift the 

absorption maxima from 265 to 365 nm.[186] Under these conditions even the most light-sensitive 

amino acid, tryptophan, is not effected.[185] Due to the wide applicability of these groups they were 

used in this work.  

3.4.3 Structural analysis of µ-conotoxin SIIIA regarding the introduction of a 

caging group 

In the structural analysis of µ-SIIIA (see section 3.2.1 and 3.2.2) the important residues for binding, 

namely Lys11, Trp12, Arg14 and Arg18, were already described. The most frequently employed and 

easiest synthesizable caged amino acid out of this three is Fmoc-L-Lys(NVOC)-OH (34). Commonly used 

caged arginine is not incorporated into the peptide sequence by means of SPPS. Instead, an ornithine 

is integrated into the peptide sequence, which is guanylated by a special reagent, prepared from 

S-methylisothiourea and 6-nitroveratryl chloroformate, yielding an arginine after uncaging.[187] Owing 

to the fact that this guanylation reagent is reactive towards amines, it also reacts with unprotected 

lysine, and subsequently gives an arginine in this position after uncaging. Additionally, SCHROEDER et al. 

detected an enhanced affinity by substituting Asp15 with alanine, whereby the substitution of Asp15 

by either lysine (positive charge) or tyrosine (aromatic residue) strongly decreases the affinity towards 

NaV1.2.[126] These results suggest that only a small side chain is preferred in this position making it an 

optimal target for caging. Furthermore, the [His16Ala] substitution of µ-SIIIA drastically lowers the 

affinity to NaV1.2, which is probably due to structural changes. Therefore, histidine should not be 

caged, as a cage in this position might also influence the overall structure formation. Following this 

structural analysis two peptides were postulated for synthesis: one bearing a caged lysine and the 

other one bearing a caged aspartic acid (see Figure 16).  
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Figure 16: Average ribbon structure of µ-conotoxin SIIIA showing the α-helical motif across residues 11-16. The 

three disulphide bonds are highlighted in yellow. The important residues for the affinity are highlighted in 

purple, the residues available for modification are shown in green, respectively. See BMRB accession code 

20025.[126]  

3.4.4  Synthesis of caged µ-conotoxin SIIIA 

For the synthesis of caged lysine, 4-nitrophenyl chloroformate (35) was reacted with 4,5-dimethoxy-2-

nitrobenzyl alcohol (36) to form an activated carbonate ester 37 as described by FOMINA et al.[188] In 

the following reaction with Fmoc protected lysine, previously described by DE GRACIA LUX et al., caged 

lysine 34 containing a carbamate function was obtained (see Scheme 14).[189] 

 

 

Scheme 14: Synthesis of Fmoc-L-Lys(NVOC)-OH (34). 

 

Synthesis of caged aspartic acid 38 was accomplished based on a procedure described by BOURGAULT 

et al. starting from Fmoc and tBu protected aspartic acid 39. [190] Instead of 

1,3-dicyclohexylcarbodiimide (DCC) 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was used 
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as the carboxyl activating agent as separation of byproduct N,N’-dicyclohexylurea (DCU) was not 

possible either by precipitation or column chromatography. Byproducts of esterification with EDC were 

easily separated as these were water soluble.[191] Subsequent deprotection of the tBu protected 

carboxylic acid 40 by trifluoroacetic acid resulted in the caged aspartic acid 38 (see Scheme 15).   

 

 
Scheme 15: Synthesis of Fmoc-L-Asp(ODMNB)-OH (38). 

 

After preparation of the caged amino acids, they were integrated into the peptide sequence of µ-SIIIA 

as described earlier (see chapter 3.2.3). Test cleavage of linear peptide 41 containing caged lysine 

proved that the integration of this amino acid was successful. Formation of the 1st and 2nd disulphide 

bridge was accomplished in good yields (64% and 70% crude peptide 42 and 43, see Scheme 16). 

Purification of crude peptide 43 by HPLC was necessary after the formation of the 2nd disulphide bridge 

yielding one major product. As previously described, the 3rd disulphide bridge was synthesized using 

iodine but stirring was continued for 2 h due to the absence of a reactive alkyne moiety. Precipitation 

yielded the crude product 44, which was purified by HPLC. As the yield of the formation of the 3rd 

disulphide bridge was very poor (8%), another protecting strategy was investigated employing the 

enzyme labile cysteine protecting group Phacm instead of Acm (see chapter 3.1.2). Even though 

peptide synthesis and formation of the 1st and 2nd disulphide bridges were accomplished, the 3rd 

disulphide bridge was not formed by applying resin bound PGA as previously described by GÓNGORA-

BENÍTEZ et al.[77]  

 

Additionally, caged aspartic acid 38 was incorporated into the peptide sequence of µ-SIIIA. The peptide 

was synthesized as previously mentioned (see chapter 3.2.3). Mass analysis after a test cleavage of the 

resulting peptide did show a mass difference (m/z = -213), which corresponds to an aspartimide of 

uncaged peptide. Even though this was prevented for OtBu protected aspartic acid by applying HOBt 

into the deprotection solution, this reaction could not be prevented for the good leaving group 

ODMNB. However, BOURGAULT et al. observed problems with this protecting group for aspartic acid as 

well, directing the need for aspartimide suppressing conditions, which were used here.[190] As these 

conditions did not reduce aspartimide formation, future protection of aspartic acid should be 
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conducted using 3-(4,5-dimethoxy-2-nitrophenyl)-2-butyl (DMNPB), which is stable during coupling/ 

deprotection conditions.[192,193]  

 

 

Scheme 16: Synthesis of [Lys11Lys(NVOC)]-µ-SIIIA (44). 

 

Initial uncaging experiments of µ-SIIIA 44 containing caged lysine were conducted in a mixture of 

acetonitrile/water by applying a 1000 W Hg(Xe) lamp as UV light source and irradiating at 650 W at 
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300-400 nm as previously described by PANSE.[160] Probes were taken after 1, 2 and 3 min and analysed 

by HPLC indicating a reduction of starting material but no product formation. Therefore, a milder light 

source, specifically a transilluminator for visualizing DNA bands in gels, was utilised, which was used 

beforehand by MÜLLER and PANSE for uncaging.[160,194] UV light with a wavelength of 365 nm was applied 

for 90 min. Every 15 min a probe was taken and analysed by LC-MS. Similar conditions were applied to 

uncage Fmoc-L-Lys(NVOC)-OH (34), which was completely deprotected after 30 min, and to native 

µ-SIIIA. For native µ-SIIIA, the formation of an additional peak at longer retention times was observed 

after 60 min (m/z = +2), which was probably due to the destruction of one disulphide bridge. Photolysis 

of disulphide bonds were already described by ZHOU et al. for a lower wavelength of 254 nm.[195] For 

caged µ-SIIIA first uncaging was observed after 30 min and after 75 min the starting material was 

consumed. Even though no product peak formation was detected by LC-MS at 215 nm after the 

uncaging process, the correct mass was seen at an earlier retention time compared to caged peptide. 

As these long cleavage times are incompatible with cell-attached measurements further investigations 

have to be made in the future. Possible side reactions such as destruction of disulphide bridges or 

imine side product formation might be prevented by changing the caging group. Furthermore, patch-

clamp experiments need to be conducted with caged µ-SIIIA 44 to investigate whether the introduction 

of a caged lysine impedes its binding affinity. Otherwise an option would be the introduction of several 

caged amino acids in one µ-SIIIA. Currently, investigations are carried out by JUNIUS synthesizing a caged 

arginine, which might possibly be integrated in the synthesis of caged µ-SIIIA. 
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4 Labelling of pompilidotoxin 

 

 

4.1 Characteristics and applications of pompilidotoxin 

Pompilidotoxins (Pmtxs) are toxins derived from the venoms of the spider wasps (Pompilidae) Anoplius 

samariensis (α-Pmtx) and Batozonellus maculifrons (β-Pmtx), which paralyse their prey instead of 

killing it, in order to feed their larvae with living prey.[40] After their first identification by KONNO et al., 

pompilidotoxins have been widely applied on different tissues to analyse their impact on ion 

channels.[196,197] SAHARA et al. discovered a slowing of the sodium channel inactivation process in TTX-

sensitive voltage-gated sodium channels (VGSCs) of rat trigeminal neurons by PMTX.[198] Further 

studies proved its selectivity to target rNaV1.2 over rNaV1.5 (rat sodium channels), showing its 

preference of neuronal over cardiac sodium channels.[199] Additionally, SCHIAVON et al. analysed its 

effect on eight different VGSC isoforms for their selective response to Pmtx.[40] NaV1.2 and NaV1.6 are 

the isoforms with the highest affinity, followed by NaV1.7 and NaV1.3. NaV1.4 and NaV1.5 does not 

induce any effect. The described absence of affinity for NaV1.4 and NaV1.5 is attributed to a Glu  Gln 

mutation between segment 3 and 4 of domain IV of the sodium channel, where the active binding site 

of Pmtx is incorporated.  

4.2 Structural analysis of pompilidotoxin 

α-Pmtx as well as β-Pmtx are composed of 13 amino acids, which differ only at position 12, where 

α-Pmtx has a lysine and β-Pmtx an arginine residue (see Figure 17). This small change induces a fivefold 

higher potency for β-Pmtx over α-Pmtx. Structure-activity relationships of synthetic analogues of 

α-Pmtx were conducted by SAHARA et al.[198] Deletion of the C-terminal amidation, or the first five or 

last four amino acids leads to a loss of activity. Furthermore, a [Ile2Phe] or [Phe7Tyr] replacement 

abolishes the activity. Additionally, 23 analogues were synthesized by KONNO et al. and compared to 

α- and β-Pmtx.[200] Substitution of basic amino acids of α-Pmtx such as lysine or arginine (forming 

mutants [Arg1Lys]-α-Pmtx or [Lys3Arg]-α-Pmtx) causes an increased activity comparable to that of 

β-Pmtx. However, double or triple mutants (based on α-Pmtx) do not have an increased potency 

compared to β-Pmtx. Modification of the position of the basic residues, such as a shift of lysine in 



Labelling of pompilidotoxin 

 48 

position 3 to position 4 or 5 leads to a loss of activity. Only the [Ser11Ala]-α-Pmtx mutant does not 

show a decrease in affinity.   

 

α-Pmtx RIKIGLFDQLSKL* 

β-Pmtx RIKIGLFDQLSRL* 

 

Figure 17: One letter code of α-Pmtx and β-Pmtx for comparison. The difference in position 12 is highlighted 

in green. The important residues for the affinity are highlighted in purple. The C-terminus is amidated 

(indicated by an asterisk). 

 

4.3 Synthesis of modified and labelled pompilidotoxin 

Following this detailed structural analysis, two alternatives were proposed in order to label 

β-pompilidotoxin (having higher activity than α-Pmtx): substitution of the serine at position 11 and 

elongation of the N-terminus, as there were no results on an elongation in this position. Introduction 

of a label in these positions might be accomplished either by a substitution with cysteine, which offers 

the opportunity to use a maleimide functionalized fluorophore, or with serine(2’-propyne), which can 

react with an azide functionalized fluorophore via CuAAC. Fmoc-L-Ser(2’-propyne)-OH (6) was 

synthesized according to the previously mentioned method (see Scheme 5). Syntheses of four peptides 

bearing either alkyne substituted serine or a cysteine in position 0 or 11 were performed on rink amide 

MBHA resin as solid support preloaded with Fmoc-L-Leu-OH according to Fmoc based SPPS protocols 

providing a C-terminal amide after cleavage (see Figure 18). In a first approach, aspartimide formation 

was reduced by adding 0.1 M 1-hydroxybenzotriazole (HOBt) to the deprotection solution, but 

standard coupling conditions (75 °C) were utilised.2 As aspartimide formation was still detected 

(m/z = -18), the temperature for all steps was reduced to 50 °C. Test cleavages of all protected peptides 

confirmed the formation of peptides 45-48.  

 

 

Figure 18: Synthesized alkyne or cysteine modified β-pompilidotoxins 45-48. 

                                                           
2 SPPS of 45 and 47 applying standard coupling conditions (75 °C) were carried out by SELDA KABATAS. 
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Alkyne modified peptide 45, resin loaded and fully protected, was subjected to copper(I)-catalysed 

azide-alkyne cycloaddition (CuAAC). Conversion with copper(I) iodide, sodium ascorbate as reducing 

agent and Alexa Flour® 488 azide, which was used in agreement with the SCHILD research group, was 

followed by cleavage and subsequent HPLC purification. Even though product was detected, it was 

obtained in a mixture with unreacted alkyne, which was not separable via HPLC. Therefore, the 

unlabelled alkyne modified peptides 45 and 47 were only submitted to patch-clamp analysis. The 

advantage of an alkyne moiety instead of a cysteine moiety for patch-clamp analysis was the avoidance 

of side effects, which might occur due to dimerization via disulphide bond formation in case of cysteine 

modified β-Pmtx. After deprotection of peptides 46 and 48, they were purified by HPLC. Subsequent 

conversion to labelled β-pompilidotoxins was achieved by reaction with Alexa Fluor® 488 C5 maleimide 

at a neutral pH (see Scheme 17). Tris(2-carboxyethyl)phosphine (TCEP) was utilised to reduce existing 

disulphide bridged compounds. Labelled peptides 49 and 50 were purified by HPLC in yields of 34% 

and 10%, respectively. Synthesized Alexa Fluor® 488 labelled β-pompilidotoxins were than analysed by 

GUOBIN BAO in the SCHILD research group to investigate sodium channels in olfactory receptor neurons 

(ORNs). 

    

 

Scheme 17: Syntheses of Alexa Fluor® 488 labelled β-pompilidotoxins 49 and 50. 
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4.4 Analysis of modified and labelled pompilidotoxin 

Firstly, unlabelled alkyne modified peptide 45 was studied by patch-clamp experiments.3 Without toxin 

application sodium current was detected at depolarisation pulses of -30 mV and above. Even though 

the first sodium current for β-Pmtx was seen with a depolarisation pulse of -30 mV as well, the 

amplitude for -30 mV was increased compared to the control experiment, indicating an inhibition of 

sodium channel inactivation by β-Pmtx. Similar results were obtained by modified peptide 45, 

suggesting that the modified β-Pmtx was also able to inhibit or slow down sodium channel inactivation 

(see Figure 19).  

 

  A     B  

 

 

C     D 

    

Figure 19: Inhibition of sodium channels of ORNs by unmodified β-Pmtx and modified β-Pmtx 45. In the whole 

cell configuration patch-clamp recording was conducted with ORN cells, which were held at -70 mV and 

depolarized to -60 – 10 mV. Sodium currents were measured before (A and C) and after treatment with 

unmodified β-Pmtx (B) or modified β-Pmtx 45 (D). Application of 50 µM toxin induces a slowed inactivation. 

 

The effect of the toxins in terms of the additional current during depolarization with different voltages 

was further analysed with additional channel current/voltage (IV) curves before and after treatment. 

As shown in Figure 20 (left), after 45 treatment, sodium channel inactivation slows down, which 

                                                           
3 All patch-clamp experiments of β-pompilidotoxin derivatives were conducted by GUOBIN BAO in the SCHILD 
research group. 
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resulted in an additional current during the different depolarisation pulses. For 45, the additional 

sodium current was seen even at low depolarisation pulses (start at -50 mV) compared to natural 

β-Pmtx (see Figure 20 (right)), which showed the same effect after depolarisation pulses of -30 mV. A 

complete wash-out of 45 was detected after 3 min. However, 47 as well as related labelled 

pompilidotoxin 50 did not have any effect on the sodium current (see Figure 20 (right)). 

 

    

Figure 20: Sodium current/voltage curves for natural and modified β-Pmtx. Curves for modified β-Pmtx 45, 

after wash-out for 3 min and for modified β-Pmtx 47 are seen in the left diagram. A comparison of unmodified 

β-Pmtx and fluorophore labelled β-Pmtx 50 is shown in the right diagram.  

 
Initial fluorescence staining of ORN was conducted by GUOBIN BAO with fluorophore labelled β-Pmtx 49 

(see Figure 21). In the first image the autofluorescence of the cell is seen, in which two surface dead 

cells show a high autofluorescence. The second and third image shows the staining after three and ten 

minutes, respectively, whereas an accumulation of Alexa Fluor® 488 at the cell membrane was 

detected. A five minutes wash was performed as a control experiment, which removed staining by 

Alexa Fluor® 488. Therefore, only the autofluorescence was detected after wash-out.    

Figure 21: Staining sodium channels with 49 in ORN at a low concentration of 10 µM. Maximum intensity 

projection in Z is shown. Images were taken before and after staining for three and ten minutes. After washing 

for five minutes, only the autofluorescence was observed.
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5 Labelling of iberiotoxin 

 

 

5.1 Characteristics and applications of iberiotoxin 

Since the first isolation of iberiotoxin (Ibtx) in 1990 from the venom of the scorpion Buthus tamulus by 

GALVEZ et al., it has become an interesting target for addressing calcium-activated potassium channels 

(BK channels).[201] Ibtx is composed of 37 amino acids containing three disulphide bridges. In 

comparison with charibdotoxin (Chtx), another scorpion-derived BK channel blocker having 68% 

sequence homology with Ibtx, Ibtx is more selective for BK channels. In contrast to Chtx, iberiotoxin 

distinguishes between BK channels and other voltage-gated ion channels, especially other potassium 

channels.[202] Ibtx binds to the external vestibule of the channel interacting with surface charges 

located there.[202]  

 

Owing to its high selectivity, several labels have been introduced to Ibtx. First labelling was performed 

by KNAUS et al. introducing a radiolabel utilising N-[3H]ethylmaleimide to react with recombinant 

[Asp19Cys]Ibtx.[203] In comparison, the double mutant [Asp19Tyr/Tyr36Phe]Ibtx, where tyrosine is 

specifically labelled with 125I, has improved radiolabel properties displaying high specific activity.[204] 

Therein, double mutation is necessary because direct labelling of Tyr36 reduces the binding affinity. 

This radiolabel method provides the tool to detect the coassembly of BK channels and L-type voltage-

gated calcium channels in rat brain.[205] The introduction of a fluorophore is accomplished on the one 

hand, by labelling free amines of Ibtx with rhodamine redTM succinimidyl ester to analyse Xenopus 

neurons in different embryonic stages.[36] On the other hand, recombinant [Asp19Cys]Ibtx is labelled 

with Alexa Fluor® 488 maleimide in order to directly visualize localisation of BK channels in mammalian 

cochlear hair cells.[206] The synthesis of a biotin derivative of Ibtx and its binding to Alexa Fluor® 488 

streptavidin conjugate was accomplished by BINGHAM et al. to image the surface distribution of BK 

channels on a transfected human cell line, revealing a patch-like surface distribution.[207] The 

positioning of labels on Ibtx was clearly dependent on the structural analysis of iberiotoxin, which will 

be discussed in the next section. 
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5.2 Structural analysis of iberiotoxin 

Structural analysis of Chtx as well as Ibtx reveals, that the 37 amino acids form a short triple-stranded 

β-sheet (residues 1-3, 26-29, 32-35), an α-helix (residues 10-19), and an extended fragment (residues 

5-7) (see Figure 22). These motifs are linked together by three disulphide bridges. A hydrophobic 

cluster is formed in the centre of the molecule by two groups of well-defined, low-accessible side 

chains (Thr3, Val5, Val16, Leu20, Cys33 and Leu2, His21, Thr23, Cys17 and Cys35) stabilizing the overall 

structure.[208] MILLER et al. provided further insights into the structure-activity relationship by point 

mutation of a number of amino acids for Chtx.[209,210] While mutation of certain charged residues has 

only small impact on the binding affinity (Lys11, Glu12, Arg19, His21, Lys31, Lys32), eight residues are 

highly important (Ser10, Trp14, Arg25, Lys27, Met29, Asn30, Arg34, Tyr36). These residues are located 

on the surface of the β-sheet. Even though, most point mutations induce a decrease in binding affinity, 

[Thr8Ser]Chtx has an increased binding affinity with twofold reduction in off-rate. However, 

iberiotoxin, which has a thirteenfold lower off-rate than Chtx, contains a serine in this position. 

 

 

Chtx ZFTNVSCTTSKECWSVCQRLHNTSRGKCMNKKCRCYS* 

Ibtx ZFTDVDCSVSKECWSVCKDLFGVDRGKCMGKKCRCYQ* 

 

Figure 22: Average ribbon structure of iberiotoxin related charybdotoxin (top): The three disulphide bonds are 

highlighted in yellow. The important residues for the affinity are highlighted in purple. See PDB code 2CRD.[208] 

One letter code of Chtx and Ibtx for comparison (bottom): Z = pGlu, the C-terminus is amidated (indicated by 

an asterisk). 
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Further differences between these two toxins are the presence of four additional negatively charged 

amino acids in iberiotoxin inducing a net charge of +1 (if Lys, Arg, Asp and Glu are ionised) in contrast 

to +5 of Chtx. These differences may be responsible for a fivefold lower on-rate compared to Chtx as 

the pore of the channel has a negative charge. The increase in off-rates must therefore be due to 

electrostatic asymmetry, Ibtx has a larger dipole moment because of the asymmetrical substitution of 

four additional aspartates, or specific interactions between residues.[211]  

5.3 Synthesis of labelled iberiotoxin 

As previously described (see section 5.1), many labelled iberiotoxins have already been researched. 

Even though solid phase peptide synthesis of Ibtx is possible and can be improved by applying NATIVE 

CHEMICAL LIGATION, most of the applied iberiotoxins are gained by recombinant expression.[212] 

Described labels are usually attached in the Arg19 position, as this residue is located in the α-helical 

motif, on the side of the molecule opposite to the binding site. Introducing a label in this position 

requires a change in amino acid backbone, usually a cysteine is introduced to have a target for 

maleimide reagents. A much simpler approach is the labelling of free amines of commercial available 

Ibtx with the fluorophore succinimidyl ester (see chapter 5.1). Even though Lys27 is highly important 

for the inhibition, specific labelling of ion channels is possible after labelling Ibtx with eight equivalents 

of rhodamine redTM succinimidyl ester.[36] Therefore, this method is applied in the SCHILD research 

group to label iberiotoxin. The amount of labels per Ibtx is estimated to be three to four labels per Ibtx 

(see section 2.3).[42] In this thesis, a tool for the exact quantification of BK channels was developed 

utilising commercially available recombinant Ibtx (51), missing cyclization at the N-terminus, which as 

stated by ALOMONE LABS does not have an influence on inhibition (see Scheme 18). Mono-labelling to 

52 was accomplished by utilising 0.7 eq. of Alexa Fluor® 546 carboxylic acid succinimidyl ester and was 

confirmed by mass analysis after HPLC purification. Further quantifications studies on BK channels 

forming clusters with VGCCs are yet to be made by BAO in the SCHILD research group. 
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Scheme 18: Synthesis of mono-labelled Alexa Fluor® 546 iberiotoxin (52). The fluorophore was attached to one 

of the lysine residues or the N-terminus. 
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6 Labelling of cyclic adenosine-3’,5’-
monophosphate 

 

 

6.1 Role of cyclic adenosine-3’,5’-monophosphate in the chemotaxis of 

Dictyostelium discoideum 

Chemotaxis is defined as the directed migration of cells in chemical gradients.[213] It plays an important 

role in many eukaryotic processes, e. g. the healing process of wounds, which is facilitated by 

neutrophils (white blood cells) removing bacteria from the wound.[214] Furthermore, in cancer 

metastasis malignant cells move away from the tumour and towards blood vessels, directed by 

gradients of growth factors.[215] A widely applied model system for eukaryotic chemotaxis is the 

migration of the amoeboid Dictyostelium discoideum.[216] D. discoideum is an organism possessing a 

social cycle, where it is able to switch between proliferating as single amoeba and when starved 

aggregating into a cellular slime mould existing of approximately 105 cells.[217] This aggregation is driven 

by a spontaneous production and emission of cyclic adenosine-3’,5’-monophosphate (cAMP), which 

acts as a signal for neighbouring cells. Due to the fact, that D. discoideum cells are chemotactic towards 

cAMP, they come into close contact and aggregate.[218] Aggregation is followed by several 

morphological changes leading to the formation of a fruiting body, with stalk cells that carry spore 

cells, which survive unfavourable conditions. Following the release of the spore cells, they spread and 

the cycle is closed when they reach the amoeboid stage again.[219]  

 

The response of D. discoideum to cAMP is initiated by cAMP receptors (cAR), which are linked to a 

heterotrimeric G-protein.[216] A downstream signalling cascade eventually leads to a polarisation of the 

cell with an actin polymerisation in the front and a contracting acto-myosin network at the back of the 

cell.[220] For the quantification and visualization of cAMP concentration during experiments concerning 

the motility of D. discoideum, labelled cAMP is of great interest for researchers. Already, UEDA et al. 

utilised labelled cAMP to reveal the binding of individual cAMP receptors on the surface of living cells 

by single-molecule imaging techniques.[221] 
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6.2 Structural analysis of cyclic adenosine-3’,5’-monophosphate with 

regard to the binding to cAMP receptors of D. discoideum cells 

Binding studies of a number of cAMP derivatives to the surface of D. discoideum cells give a hint about 

the important functions involved in the interaction with cAR.[222–224] The binding affinity is strongly 

reduced when the cAMP derivative is no longer able to form hydrogen bonds at N6 or at 3’O (see Figure 

23). Though, substitution of N6H2 by chlorine has a stronger influence on affinity than a substitution 

with benzylamine, indicating that one hydrogen in this position is sufficient for hydrogen bond 

formation. Furthermore, the activation of the receptor requires a stereospecific interaction between 

cAR and the phosphate moiety of cAMP. Modifications at the 2’O- or 5’O-position, preventing 

hydrogen bonds in these positions, reduces the binding affinity only slightly.  

 

 

Figure 23: Structure of cyclic adenosine-3’,5’-monophosphate (53). Residues, important for binding to the 

cAMP receptor of D. discoideum cells, are indicated with an arrow. 

 

Resulting from these findings and synthetic considerations, two positions were proposed for labelling. 

On the one hand modification on N6, while preserving one hydrogen for the hydrogen bond, or on the 

other hand modification at the 2’O-position. 

6.3 Syntheses of labelled cyclic adenosine-3’,5’-monophosphates 

Labelling was performed utilising the bioorthogonal copper(I)-catalysed azide-alkyne cycloaddition 

(CuAAC). This will offer the possibility of further applications of functionalized cAMP, which will be 

discussed at the end of this chapter. For the synthesis of an N6-labelled cAMP a procedure described 

by KATAOKA et al., published in 1988, was followed.[225] Therein, a series of N6-alkyladenosine-3’,5’-cyclic 

phosphates are synthesized via a single step reductive alkylation starting from cAMP and the 

corresponding aldehydes. In this thesis, an aldehyde and an alkyne functionality were combined in one 

molecule, as this was needed for the CuAAC with an azide functionalized fluorophore. Therefore, 

commercially available 5-hexynol (54) was oxidized to 5-hexynal (55) by pyridinium chlorochromate 
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(PCC) as described by KOCSIS et al. (see Scheme 19).[226] Application of DESS-MARTIN periodinane instead 

of PCC did not increase the yield of the reaction. The small yield was probably a result of the low 

melting point of 55, leading to an evaporation during purification. For the following reaction with cAMP 

the tri-n-butylammonium salt of cAMP (56) was prepared according to the procedure of KATAOKA et al. 

to increase its solubility.[225] The product 57 of the following reductive amination was purified by HPLC 

utilising aqueous triethylammonium acetate solution as the solvent (see Scheme 19).  

 

 

Scheme 19: Syntheses of N6-hex-5-yn-1-yladenosine-3’,5’-cyclic monophosphate tri-n-butylammonium salt 

(57). 

 

The N6-alkyne functionalized cAMP 57 was labelled with Alexa Fluor® 488 azide, in agreement with our 

cooperation partner MARCO TARANTOLA. The reaction was performed based on a procedure by SEELA 

et al. performing CuAAC on functionalized nucleosides, and the manual for Alexa Fluor® 488 azide (see 

Scheme 20).[227] N6-Labelled cAMP 58 was purified by HPLC and verified by mass analysis.  
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Scheme 20: Synthesis of N6-labelled cAMP 58. 

 

Chemotaxis assays, conducted with N6-labelled cAMP 58, did not show any directed migration of 

D. discoideum upon the application of 58.4 The bulky fluorophore in N6-position probably hindered the 

development of the hydrogen bond, which is necessary for the receptor binding. 

 

For the labelling of cAMP in 2’O-position, a synthetic pathway was considered, which included ester 

formation followed by an amide bond formation based on an approach by UEDA et al. (see Scheme 

21).[221] In the first step, cAMP (53) was reacted with succinic anhydride at a pH of 9.6 to form 59. The 

reaction was performed in both, water or aqueous sodium bicarbonate solution, while adjusting the 

pH with an aqueous sodium hydroxide solution. The reaction could not be conducted to completion 

and starting material 53 was not separable from the product by HPLC purification. In a subsequent 

conversion of the mixed products with 3-butyn-1-amine utilising 1-ethyl-3-

(3-dimethylaminopropyl)carbodiimide (EDC) as the carboxyl activating reagent, desired product 60 

was only found in traces during mass analysis. Consequentially, this synthetic pathway was no longer 

pursued.   

 

                                                           
4 All chemotaxis assays of Dictyostelium discoideum are based on gradient-mixer microfluidic devices and were 
performed under linear cAMP gradients by either NICK SCHOLAND or CHRISTOPH BLUM, both co-supervised by MARCO 

TARANTOLA and EBERHARD BODENSCHATZ. 
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Scheme 21: Retrosynthetic analysis of 2’O-modified cAMP 60 based on a procedure of UEDA et al.[221] 

 

The 2’O-labelling of cAMP was therefore not based on esterification but on nucleophilic substitution, 

leading to a more flexible attachment of the linker. Additionally, this procedure has the advantage of 

being a one-step reaction. Published in 1990, KATAOKA et al. prepared 2’O-alkyl cAMP derivatives by 

reacting cAMP with alkyl bromides in the presence of potassium hydroxide and 18-crown-6 in a 

water/dioxane mixture.[228] The 2’O over N6-selectivity of the reaction can be seen by 1H-NMR and by 

determination of the absorption maximum, which is not changed in the case of the 2’O-derivative 

compared to unsubstituted cAMP. 

 

Firstly, the reaction was conducted utilising commercially available 4-bromo-1-butyne, which should 

give 2’O-modified cAMP 61. Because this reaction was unsuccessful, probably due to the neighbouring 

alkyne, and the introduction of a longer alkyne chain would be more comparable to the synthesized 

N6-modified cAMP 57, 6-bromo-1-hexyne was synthesized according to a procedure of SHARMA and 

OEHLSCHLAGER.[229] Subsequent reaction with cAMP (53) under the reaction conditions discussed above, 

yielded the 2’O-alkyne functionalized cAMP 62 in 50% (see Scheme 22). The product was purified by 

HPLC, leading to the tri-n-ethylammonium salt, and the product formation verified by NMR and mass 

analysis. The absorption maximum of 2’O-alkyne functionalized cAMP 62 was comparable to 

unmodified cAMP 53 (258 nm).  
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Scheme 22: Synthesis of 2’O-hex-5-yn-1-yladenosine-3’,5’-cyclic monophosphate tri-n-ethylammonium salt 

(62). 

 

The subsequent copper(I)-catalysed azide-alkyne cycloaddition of 62 was performed similar to the 

previous CuAAC labelling N6-alkyne functionalized cAMP 57. HPLC purification yielded the desired 

2’O-labelled cAMP as the tri-n-ethylammonium salt 63 (see Scheme 23). In Figure 24, showing the 

corresponding HPLC traces, the good separability of the 2’O-alkyne functionalized cAMP 62 and the 

product 63 is shown. 

 

 

Scheme 23: Synthesis of 2’O-labelled cAMP 63. 
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Figure 24: HPLC traces (intensity at 258 nm and 555 nm) of purified unlabelled (62) and labelled 2’O-alkyne 

functionalized cAMP (63). 

 

Chemotaxis assays by NICK SCHOLAND and CHRISTOPH BLUM, conducted with 2’O-labelled cAMP 63, did 

show directed migration of D. discoideum upon application of 63. The chemotactic index (CI), which is 

a measurement of the directness of a cell towards the chemoattractant, for 63 was comparable to the 

CI when applying unmodified cAMP. In Figure 25 the directed migration of D. discoideum cells towards 

the side with highest concentration of 2’O-labelled cAMP was visualized by showing the trajectories 

over time. The successful synthesis of 2’O-labelled cAMP clears the way to new applications. Recently, 

WESTENDORF et al. utilised a caged cAMP, which, upon irradiation with a laser beam, releases cAMP, to 

analyse chemotaxis of D. discoideum.[230] A combination of this approach with a modified labelling 

approach (where the label bears a caging unit as well), will offer the opportunity to have modified 

cAMP, that is activated by a laser beam and at the same time the fluorescence is released. 

 

Figure 25: Trajectories of D. discoideum over time, when 2’O-labelled cAMP 63 is applied. The distribution of 

63 is seen by the difference in background brightness (highest concentration in the upper-left corner).
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7 Conclusion 

 

 

The development of new methods and tools for in vivo/in vitro labelling helps to elucidate structures, 

localisation and distinct processes of biomolecules in their native environment. Fluorescence labelling 

and detection provides researchers with a highly sensitive, non-destructive method to visualize 

biomolecules even on the nanometre scale. This thesis comprises two different approaches for 

fluorescent labelling. The first approach includes the indirect labelling of ion channels, in which ion 

channels are addressed by specific binding fluorescently labelled neurotoxins. The second project 

comprises a direct labelling approach, where a nucleotide is functionalized with a fluorophore for 

direct investigation of its concentration and localisation.  

 

Ion channels are membrane proteins, which are substantial for the signal translation and propagation 

in excitable cells by generating and shaping action potentials.[7] Although, the patch-clamp technique 

allows the monitoring of channel activity in localised regions of plasma membranes, limitations occur 

in the assignment of the distribution of ion channels in whole cell membranes of living cells.[30] 

Therefore, fluorescent labelling is applied by addressing ion channels with specifically binding 

neurotoxins, which, in comparison to most antibody labelling approaches, have high selectivity for the 

ion channel extracellular domains distinguishing between different ion channels and their subtypes.[31] 

The first neurotoxin labelled in this study was µ-conotoxin SIIIA, a disulphide rich peptide. The 

disulphide bridges were established by a consecutive approach. To validate the disulphide connectivity 

of native µ-conotoxin SIIIA, two isomers, discussed in literature, were synthesized (see Figure 

26).[127,170] Isomer 3 with a 1-4/2-5/3-6 disulphide pattern induced highest inhibition during patch-

clamp analysis by TING WANG.  

 

Figure 26: Synthesized disulphide bridge variations of µ-conotoxin SIIIA. 
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Four analogues of µ-conotoxin SIIIA were synthesized by the introduction of artificial H-L-Ser(2’-pro-

pyne)-OH in four different positions. Different topological isomers were isolated of each analogue and 

those modified in position Gly6 and Ser9 were already analysed by TING WANG on sodium channels 

determining two isomers with good binding affinities. In the key step, these were labelled via copper(I)-

catalysed azide-alkyne cycloaddition (CuAAC) with DIPEA as an additive (forming 20 and 21, see Figure 

27). For the Alexa Fluor® 647 labelled [Gly6Ser(2’-propyne)]-µ-SIIIA analogue 20 patch-clamp 

experiments were conducted, proving its strong remaining activity after labelling. In the near future, 

further analysis of its labelling properties will be followed by imaging experiments. In addition to the 

synthesis of labelled µ-conotoxin SIIIA a caged compound was presented, bearing the photocleavable 

protection group 6-nitroveratryloxycarbonyl (NVOC) on the ε-amine of lysine (see Figure 27, 44). 

Uncaging was accomplished only after illumination for a long time with a mild light source. 

Supplementary studies of the uncaging process and patch-clamp experiments of caged compound will 

reveal its potency as a light-sensitive inhibitory switch for sodium channels. Additionally, the caging 

group may be changed from an aldehyde to a ketone releasing, thereby avoiding the imine formation 

by the reaction of free aldehydes of the caging group (upon uncaging) with free amine groups present 

in µ-conotoxin SIIIA. Furthermore, multiple caging groups may be incorporated to facilitate a greater 

reduction of activity before uncaging.    

 

 
Figure 27: Synthesized labelled analogues of µ-conotoxins SIIIA modified in position Gly6 (20) and Ser9 (21) 

and the caged µ-conotoxin SIIIA 44, modified in position Lys11. 
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The functionalization of two other neurotoxins, β-pompilidotoxin and iberiotoxin, with fluorescent 

labels was successfully developed. While β-pompilidotoxin slows the inactivation of voltage-gated 

sodium channels, iberiotoxin blocks calcium-activated potassium channels.[40,41] Structural analysis led 

to the successful labelling of linear β-pompilidotoxin on the N-terminus and at position Ser11, since a 

[Ser11Ala] modification has no influence on the overall activity (see Figure 28, 49 and 50). 

Bioorthogonal linkage was accomplished by the use of the cysteine/maleimide reaction. Patch-clamp 

experiments with unlabelled 49 and imaging experiments with labelled 49 conducted by GUOBIN BAO 

of the SCHILD research group indicated this compound to be a good tool for labelling sodium channels. 

The task of labelling iberiotoxin was approached by the amine/succinimidyl ester reaction. To avoid 

consecutive disulphide bridge formation, commercially available iberiotoxin was labelled directly. 

Mono-labelling was successfully achieved by applying an excess of iberiotoxin in the reaction (see 

Figure 28, 52). Subsequent co-localisation and quantification studies with voltage-gated calcium 

channels in olfactory receptor neurons will be conducted in the near future. 

 

 
Figure 28: Structural conformation of novel Alexa Fluor® 488 labelled pompilidotoxins (49, 50) and Alexa Fluor® 

546 labelled iberiotoxin (52). 

 

A further approach was the labelling of cyclic adenosine-3’,5’-monophosphate (cAMP), which acts as 

a chemoattractant for the amoeboid Dictyostelium discoideum, to investigate cAMP concentration 

dependent migration of these amoeboids. CuAAC was utilised for the linkage of fluorescent probes in 

the N6- and 2’O-position (forming 58 and 63, Figure 29), offering, with the alkyne modified cAMP, a 

tool for further applications. The 2’O-labelled cAMP 63 was successfully employed for migration 

studies of D. discoideum, while N6-labelled cAMP 58 did not induce migration. In the future, a 

combination of this labelling approach and the caging approach described by WESTENDORF et al. might 

be conducted.[230] Therefore, a caging compound will be attached to the phosphate or N6-position 
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suppressing its binding to the cAMP receptor and additionally, a caging moiety will be introduced to 

the fluorophore, quenching its fluorescence. Upon uncaging, this would lead to a fluorescent cAMP, 

which regains its activity to induce migration of amoeboids. 

 

 
Figure 29: Synthesized N6- and 2’O-labelled cyclic adenosine-3’,5’-monophosphates (58, 63).  
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8 Experimental part 

 

 

8.1 General 

Solvents 

Technical solvents were purified by distillation prior to use. Solvents of analytical or HPLC grade were 

used as supplied from FLUKA, FISHERSCIENTIFIC GMBH, SIGMA ALDRICH, VWR INTERNATIONAL, ROTH and ACROS 

ORGANICS. Dry solvents were stored over molecular sieves (4 Å). Ultra-pure water was obtained by 

purifying distilled water with the purification device SIMPLICITY (MILLIPORE). 

 

Reagents 

All reagents were of highest grade available and used as supplied. Amino acids and amino acid 

derivatives as well as resins, linker and coupling reagents for solid phase synthesis were obtained from 

NOVABIOCHEM, IRIS BIOTECH, GL BIOCHEM, BACHEM, MERCK, VWR INTERNATIONAL, ROTH and SIGMA ALDRICH. All 

other chemicals were purchased from FISHER SCIENTIFIC GMBH, ALOMONE LABS, SPRIN-TECHNOLOGIES, ALFA 

AESAR, SIGMA ALDRICH, MERCK, ACROS ORGANICS, ROTH, RIEDEL-DE HAËN, IRIS BIOTECH, FLUKA and VWR 

INTERNATIONAL. 

 

Reactions 

Air and/or water sensitive reactions were carried out under argon atmosphere using standard SCHLENK-

technique. The glass apparatus was heated with a heat gun under reduced pressure and flushed with 

argon (3 x).  

 

Freeze-drying 

Lyophilisation from aqueous solutions and aqueous mixtures containing minor amounts of acetonitrile 

or tert-butanol was performed using a CHRIST Alpha-2-4 lyophiliser equipped with a high vacuum pump. 

Small samples were lyophilized using an evacuable CHRIST RVC 2-18 centrifuge connected to the 

lyophilisation device. 
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Thin layer chromatography (TLC) 

Analytical TLC was performed on MERCK silica gel 60 F254 (layer thickness 0.25 mm) aluminium backed 

plates. The plates were visualized under UV fluorescence (254 nm) or developed using ninhydrin 

(0.30 g ninhydrin, 100 mL EtOH) and charring to detect amines. 

 

Column chromatography 

Flash column chromatography was carried out using MERCK silica gel 60 (40-63 µm) at 0.4-1.0 bar. 

Columns were packed with wet silica gel (50-100 fold weight excess) and the sample loaded onto silica 

or loaded as a concentrated solution. 

 

High performance liquid chromatography (HPLC) 

Reverse Phase (RP)-HPLC analyses were performed using a system from JASCO equipped with two 

pumps PU-2080Plus, a multi wavelength detector MD-2010Plus either with an analytical or preparative 

cell, a 3-line degasser DG-2080-53 and interface LC-Net II/ADC. Substances were analysed or purified 

with a linear gradient of A (water or triethylammonium acetate (TEAA) buffer) to B (solvent containing 

mainly MeCN) using the following columns: 

 Analytical: MN Nucleodur® 100-5-C18, 250 mm x 4.6 mm, 5 µm, flow rate: 1 mL/min. 

 Semipreparative: MN Nucleodur® 100-5-C18, 250 mm x 10 mm, 5 µm, flow rate: 3 mL/min. 

 Preparative: MN Nucleodur® 100-5-C18, 250 mm x 21.0 mm, 5 µm, flow rate: 10 mL/min. 

 

Liquid chromatography-mass spectrometry (LC-MS) 

For LC-MS analyses the mass spectrometer from FINNIGAN (LCQ), the detector from FINNIGAN (Surveyor 

PDA), pumps from FLUX INSTRUMENTS (rheos 400), the degasser from KONTRON (degasser 3492) and the 

auto-sampler from JASCO (AS-1555) were used. A C-18 column (MN Nucleodur® 100 mm x 2 mm, S-

3 µm, 11 nm, flow 0.3 mL/min) was utilised using a linear gradient of A (99.95% water + 0.05% formic 

acid) to B (99.95% MeOH + 0.05% formic acid).  

 

Solid phase peptide synthesis (SPPS) 

Manual SPPS was conducted on solid support using PE-frit equipped BD discardit syringes as reaction 

vessel and the “Discover” microwave (CEM). Peptides were automatically synthesized using the 

“Liberty” microwave peptide synthesizer (CEM) equipped with a “Discover” microwave reaction cavity 

(CEM). 
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8.2 Characterisation 

Nuclear magnetic resonance spectroscopy (NMR) 

NMR spectra were recorded on a VARIAN spectrometer (Unity 300, Mercury 300, Mercury-Vx 300, 

VNMRS-300, Inova 500, and Inova 600). The sample temperature was 298 K except stated otherwise. 

The chemical shift are quoted in ppm downfield on a δ-scale. As internal standards the resonances of 

the residual protons of the deuterated solvents were used.[231] The abbreviations for the multiplets 

are: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants are 

nJX,Y in Hertz (Hz) where n is the order of coupling and X and Y the coupling partners. 13C-spectra and 

31P-spectra were measured as 1H-broadband decoupled or as APT-spectra (13C only). 

 

Mass spectrometry 

Electrospray-ionisation (ESI) and high resolution ESI (HR-MS (ESI)) spectra were obtained with BRUKER 

devices (maXis or MicrOTOF). Matrix assisted laser desorption/ionisation (MALDI) spectra were 

obtained with BRUKER devices (MALDI-TOF) using 2,5-dihydroxybenzoic acid as the matrix. 

 

UV/Vis spectroscopy 

UV spectra for estimation of occupancy were measured using the JASCO UV/Vis spectrophotometer 

V550. Peptide concentrations were estimated using a THERMO SCIENTIFIC nanodrop ND-2000c 

spectrophotometer and calculated by using LAMBERT-BEER’s law (for extinction coefficients see Table 

3). The molecular absorption coefficients were calculated by summation of the single coefficients at a 

set wavelength. For fluorescently labelled molecules the absorption was measured for the maximum 

absorption of the labels.  

 

Table 3: Extinction coefficients for tryptophan (Trp) and disulphide bonds (average values in folded proteins), 

caged lysine and of Alexa Fluor® dyes.[232–234] 

 Absorption Max  

[nm] 

Extinction Coefficient 

[cm-1M-1] 

Trp 280 5500 

S-S 280 125 

Caged lysine 350 5485 

Alexa Fluor® 488 495 73000 

Alexa Fluor® 546 556 112000 

Alexa Fluor® 555 555 155000 

Alexa Fluor® 647 650 270000 
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8.3 Standard operating procedures (SOPs) 

8.3.1 SOP1: Preloading resin with linker 

2-Chlorotrityl chloride resin (385 mg, 0.58 mmol, 100-200 mesh, 1.50 mmol/g) was swollen in a BD 

discardit syringe with PE frit in dry DCM (6 mL) for 2 h. RAMAGE-linker (176 mg, 348 µmol, 0.60 eq.) and 

DIPEA (237 µL, 1.39 mmol, 2.40 eq.) were dissolved in dry DCM (4 mL), a small amount of dry DMF was 

added to dissolute the acid. This solution was added to the resin and the mixture shaken for 30 min. 

The resin was washed with DCM/MeOH/DIPEA (17:2:1, v/v/v, 3 x 6 mL), DCM (3 x 6 mL), DMF (2 x 6 mL), 

DCM (2 x 6 mL) and dried under reduced pressure. 

8.3.2 SOP2: Loading resin with first amino acid 

Either 2-chlorotrityl chloride or rink amide MBHA resin were used in this work. Loading of the resins is 

described here exemplarily for the rink amide MBHA resin. The rink amide MBHA resin (345 mg, 

0.10 mmol, 1.00 eq., 0.29 mmol/g) was swollen in DCM (6 mL) for 2 h. The Fmoc-protecting group was 

cleaved microwave assisted (30 s, 50 °C, 25 W) by 20% piperidine in NMP (4 mL). The resin was washed 

with NMP (5 mL) and the second cleavage (20% piperidine in NMP) was performed using a microwave 

(3 min, 50 °C, 25 W). After washing with NMP (3 x 5 mL), DCM (5 x 5 mL) and NMP (5 x 5 mL) coupling 

of the first amino acid cysteine was performed using Fmoc-L-Cys(Trt)-OH (293 mg, 0.50 mmol, 

5.00 eq.), DIC (76.0 µL, 4.90 mmol, 4.90 eq.), HOBt (66.2 mg, 4.90 mmol, 4.90 eq.) in NMP (3 mL) for 

10 min at 40 °C and 20 W. Final washing was performed using NMP (3 x 5 mL), DCM (5 x 5 mL), NMP 

(5 x 5 mL) and DCM (3 x 5 mL) and the resin was dried under reduced pressure. 

8.3.3 SOP3: Determination of the occupancy 

The resin load was estimated using UV absorption measurements. To a small amount of resin 

(approximately 5 µmol with respect to Fmoc) in a graduated flask (10 mL) 2% DBU in DMF (2 mL) were 

added. After agitating for 30 min the solution was diluted (to 10 mL) with MeCN. Another dilution with 

acetonitrile (1/12.5) was applied before UV absorption was recorded in a 1 cm cuvette. The absorption 

was measured at 304 nm, as reference solution everything was performed without addition of the 

resin. Fmoc loading was estimated using following equation:[235] 

Fmoc loading [
mmol

g
] =

(Abssample-Absref)∙16.4 mmol

mresin[g]∙1000
 

8.3.4 SOP4: Automated SPPS 

Peptides were synthesized by standard Fmoc/tBu peptide synthesis on solid support. Side chain 

protection groups were tert-butyl (tBu) for Asp and Ser; tert-butyloxycarbonyl (Boc) for Lys and Trp; 
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trityl for Asn, Gln and His; 2,2,4,6,7-pentamethyldihydrofurane-5-sulphonyl (Pbf) for Arg and trityl, 

StBu, acetylaminomethyl (Acm), dimethoxytrityl (Dmt), 4-methylbenzyl (Mbzl) and 

phenylacetylaminomethyl (Phacm) for Cys. NMP was used as the solvent. The resin (0.10 mmol) was 

swollen in DMF (4 mL) for 2 h prior usage. Deprotection was performed using piperidine (20% in NMP 

+ 0.10 M HOBt, 2 x 2.5 mL, 3 min, 50 °C, 20 W  3 min, 50 °C, 35 W). Fmoc protected amino acids were 

used as a 0.20 M solution in NMP except for Fmoc-L-Cys(Dmt)-OH, Fmoc-L-Cys(StBu)-OH, 

Fmoc-L-Cys(Acm)-OH, H-L-pGlu-OH, Fmoc-L-Ser(2’-propyne)-OH, Fmoc-L-Lys(NVOC)-OH and 

Fmoc-L-Asp(ODMNB)-OH, which were dissolved in DMF. Double coupling was conducted microwave-

assisted (all amino acids: 10 min, 40 °C, 20 W; Arg: 25 min, rt, 0 W  10 min, 40 °C, 20 W; His: 1 h, rt, 

0 W) using activation with HBTU/HOBt (0.5 M/0.45 M in DMF) and DIPEA (2.00 M in NMP). After the 

synthesis was completed the resin was transferred into a BD discardit syringe with PE frit, washed with 

NMP (3 x 6 mL), DCM (3 x 6 mL), DMF (3 x 6 mL) and DCM (3 x 6 mL) and dried under reduced pressure.  

8.3.5 SOP5: Manual SPPS 

The peptides were synthesized using the same protection groups as for the automated SPPS. The 

preloaded resin (0.10 mmol) was swollen in NMP (6 mL) for 2 h. The Fmoc-protecting group was 

cleaved microwave assisted (30 s, 50 °C, 25 W) by 20% piperidine, 0.10 M HOBt in DMF (4 mL). The 

resin was washed with NMP (5 mL) and the second cleavage (20% piperidine, 0.10 M HOBt in DMF, 

4 mL) was performed on a microwave (3 min, 50 °C, 25 W). After washing with NMP (3 x 5 mL), DCM 

(5 x 5 mL) and NMP (5 x 5 mL) coupling of the first amino acid was performed using a solution of the 

amino acid in NMP (0.20 M, 2.50 mL), HBTU/HOBt (0.50 M/0.45 M in DMF, 1 mL) and DIPEA (2.00 M in 

NMP, 0.50 mL) for 10 min at 40 °C and 20 W. After washing with NMP (3 x 5 mL), DCM (5 x 5 mL) and 

NMP (5 x 5 mL) the coupling was repeated followed by the next Fmoc-deprotection. Final washing was 

performed using NMP (3 x 5 mL), DCM (5 x 5 mL), NMP (5 x 5 mL) and DCM (3 x 5 mL) and the resin 

was dried under reduced pressure. 

 

8.3.6 SOP6: Cleavage 

Cleavage from resin and simultaneous removal of most side chains (depending on the protecting 

strategy) was performed using A (reagent K (TFA/H2O/1,2-ethanedithiol/phenol/thioanisole 

82.5:5:2.5:5:5 v/v/v/v, 10 mL/g resin) or B (TFA/H2O/TIS 95:2.5:2.5, v/v/v, 10 mL/g resin) and shaking 

for 2 h. After cleavage the solution was concentrated under nitrogen stream. The crude peptide was 

precipitated from -20 °C cold diethyl ether, isolated by centrifugation (9000 rpm, 2.5 min, -10 °C), 

washed three times with cold diethyl ether followed by centrifugation and dried overnight under 

reduced pressure. 



Experimental part 

 

74 

8.3.7 SOP7: Synthesis of µ-conotoxin SIIIA: formation of the first disulphide 

bridge and deprotection of acid-labile protecting groups 

The resin was swollen in DMF (6 mL) for 2 h. Then following steps were performed (exemplarily shown 

for 6 mL in steps 1-4, 205 mL in step 4 and 100 mL in step 5): 

1. The StBu-protecting group of cysteine was cleaved using 20% 2-mercaptoethanol and 1% DBU 

in DMF (6 mL, 3 x 2 mL, 20 min each) followed by washing with DMF (3 x 6 mL), DCM (2 x 6 mL), 

DMF (2 x 6 mL) and DCM (3 x 6 mL). 

2. The free thiol was activated using 2,2’dipyridyl disulphide (135 mg, 0.61 mmol) in DCM (6 mL) 

(6 mL, 3 x 2 mL, 20 min each) followed by washing with DCM (3 x 6 mL), DMF (3 x 6 mL) and 

DCM (3 x 6 mL). 

3. Cleavage from the resin was performed using 10% AcOH and 20% TFE in DCM (6 mL, 3 x 2 mL, 

20 min each). 

4. Under argon atmosphere this solution (6 mL) was added dropwise to a solution of 0.1% TFA 

(205 µL) and 0.2% TES (410 µL) in DCM (204 mL). The reaction mixture was stirred overnight 

at rt. 

5. Under argon atmosphere this solution was added dropwise over 1 h to a solution of 10% NEt3 

(10 mL) in DCM (90 mL). The solution was concentrated to 10 mL under reduced pressure. The 

peptide was precipitated from -20 °C cold diethyl ether (50 mL), isolated by centrifugation 

(9000 rpm, 10 min, -10 °C), washed three times with cold diethyl ether followed by 

centrifugation and dried overnight under reduced pressure.  

6. Deprotection of acid-labile protecting groups was performed for 2 h using TFA/H2O/TIS 

(95:2.5:2.5, v/v/v) (6 mL). The solution was concentrated under nitrogen stream. The crude 

peptide was precipitated from -20 °C cold diethyl ether, isolated by centrifugation (9000 rpm, 

10 min, -10 °C), washed three times with cold diethyl ether followed by centrifugation and 

dried overnight under reduced pressure to yield a colourless solid. 

 

8.3.8 SOP8: Synthesis of µ-conotoxin SIIIA: formation of the second disulphide 

bridge 

Based on a procedure of TAM et al., crude peptide (23.4 µmol) was added to a solution of 5% acetic 

acid (2.50 mL) in water (47.5 mL) (pH was adjusted with (NH4)2CO3 to pH 6).[156] DMSO (12.5 mL) was 

added and the solution was stirred for 4 h at rt, the solvent was removed under reduced pressure and 

co-evaporated with DMF. The crude peptide was dissolved in a small amount of TFA and precipitated 

with cold diethyl ether, isolated by centrifugation (9000 rpm, 2.5 min, -10 °C), washed three times 
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with -20 °C cold diethyl ether followed by centrifugation and dried overnight under reduced pressure 

to yield a colourless solid. 
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8.4 Syntheses 

8.4.1 Syntheses of the unnatural amino acids 

Boc-L-Ser(2’-propyne)-OH (5) 

 

 

 

According to the procedure of CORTEKAR, NaH (921 mg, 23.0 mmol, 2.70 eq., 60% dispersion in mineral 

oil) was suspended in dry DMF (7 mL) under argon atmosphere and cooled to 0 °C, followed by addition 

of Boc-L-Ser-OH (4) (1.75 g, 8.54 mmol, 1.00 eq.) dissolved in DMF (28 mL).[141] After 10 min 

propargylbromide (1.58 g, 10.7 mmol, 1.25 eq., 80% in toluene) was added dropwise to the mixture 

and the reaction stirred for 4 h at rt. The reaction was quenched with water and evaporated under 

reduced pressure. The resulting residue was dissolved in water (70 mL) and the reaction mixture 

adjusted to pH = 3 with 12 M HCl, extracted with EtOAc (3 x 50 mL), dried over MgSO4 and evaporated 

under reduced pressure. The crude product was purified by flash column chromatography 

(EtOAc/MeOH/AcOH 8.5:1.5:0.1, v/v/v) to yield the product 5 as a yellow oil (2.07 g, 8.52 mmol, 99%). 

The NMR data is in accordance to the literature.[236] 

 

TLC (EtOAc/MeOH/AcOH 8.5:1.5:0.1, v/v/v): Rf = 0.68. 

1H-NMR (300 MHz, CDCl3): δ (ppm) = 1.42 (s, 9H, C(CH3)3), 2.45 (t, 4JH,H = 2.4 Hz, 1H, CCH), 3.78-4.01 

(m, 2H, β-CH2), 4.12-4.19 (m, 2H, OCH2), 4.43-4.45 (m, 1H, α-CH), 5.46 (d, 3JH,H = 8.2 Hz, 1H, NH), 11.03 

(s, 1H, COOH). 

13C-NMR (126 MHz, CDCl3): δC (ppm) = 28.2 (C(CH3)3), 53.6 (α-CH), 58.6 (OCH2), 69.5 (β-CH2), 75.2 (CCH), 

78.8 (CH2CCH), 80.2 (C(CH3)3), 155.6 (Fmoc-CO), 174.2 (CO2H). 

HR-MS (ESI): calc. for [C11H17NNaO5]+ ([M+Na]+): 266.0999, found: 266.1001; calc. for [C11H16NO5]- 

([M-H]-): 242.1034, found: 242.1036. 
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Fmoc-L-Ser(2’-propyne)-OH (6) 

 

 

 

According to the procedure of CORTEKAR, TFA (16 mL) was added to Boc-L-Ser(2’-propyne)-OH (5) 

(2.07 g, 8.52 mmol, 1.00 eq.) at 0 °C, stirred for 30 min and evaporated under reduced pressure.[141] 

The resulting residue was dissolved in 10% Na2CO3 (aq) (23 mL) at 0 °C. 9-Fluorenylmethoxycarbonyl 

chloride (2.43 g, 9.39 mmol, 1.10 eq.) dissolved in dioxane (20 mL) was added to the solution and the 

mixture stirred for 1 h at 0 °C, 1 h at rt and quenched with water (21 mL). The reaction mixture was 

washed with diethyl ether (2 x 40 mL), the aqueous phase was adjusted to pH = 1 with 12 M HCl, 

extracted with EtOAc (2 x 60 mL) and the combined organic phases were evaporated under reduced 

pressure. The crude product was purified by flash column chromatography (pentane/EtOAc/AcOH 

6:4:0.1, v/v/v) to yield the product 6 as a colourless solid (2.08 g, 5.70 mmol, 67%). The NMR data is in 

accordance to the literature.[141] 

 

TLC (Pentane/EtOAc/AcOH 6:4:0.1, v/v/v): Rf = 0.20. 

1H-NMR (300 MHz, [D6]DMSO): δ (ppm) = 3.43 (t, 4JH,H = 2.4 Hz, 1H, CCH), 3.72 (d, 3JH,H = 5.4 Hz, 2H, 

β-CH2), 4.16 (d, 4JH,H = 2.4 Hz, 2H, OCH2), 4.19-4.30 (m, 4H, α-CH, Fmoc-CH2, Fmoc-CH), 7.33 (dt, 

3,4JH,H = 7.4, 1.3 Hz, 2H, Fmoc-CH), 7.42 (dt, 3,4JH,H = 7.5, 1.2 Hz, 2H, Fmoc-CH), 7.59 (d, 3JH,H = 8.2 Hz, 1H, 

NH), 7.74 (d, 3JH,H = 7.4 Hz, 2H, Fmoc-CH), 7.89 (d, 3JH,H = 7.5 Hz, 2H, Fmoc-CH), 12.72 (s, 1H, CO2H). 

13C-NMR (126 MHz, CDCl3): δC (ppm) = 46.6 (Fmoc-CH), 53.9 (α-CH), 57.6 (OCH2), 65.7 (Fmoc-CH2), 68.6 

(β-CH2), 77.3 (CCH), 79.8 (CCH), 119.9, 125.1, 126.9, 127.4 (Fmoc-CH), 140.5, 143.6 (Fmoc-C), 155.8 

(Fmoc-CO), 171.1 (CO2H). 

HR-MS (ESI): calc. for [C21H19NNaO5]+ ([M+Na]+): 388.1155, found: 388.1150; calc. for [C21H18NO5]- 

([M-H]-): 364.1190, found: 364.1189. 
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 Fmoc-L-Cys(Dmt)-OH (11) 

 

 

 

According to the procedure of LINDNER, H-L-Cys-OHH2OHCl (1.00 g, 5.69 mmol, 1.00 eq.) was co-

evaporated with pyridine (3 x 4 mL) and dissolved in pyridine (4 mL) under argon atmosphere.[81] After 

addition of 4,4’-dimethoxytrityl chloride (1.83 g, 5.41 mmol, 0.95 eq.) the reaction mixture was stirred 

for 48 h at 50 °C and the reaction process monitored by TLC (DCM/MeOH 10:0.2, v/v). The solvent was 

evaporated under reduced pressure. The resulting residue was suspended in 20% Na2CO3 (aq) 

(12.5 mmol, 6.63 mL, 2.20 eq.) at 0 °C. (9-Fluorenylmethoxycarbonyloxy)succinimide (1.73 g, 

5.12 mmol, 0.90 eq.) dissolved in dioxane (6 mL) was added to the solution and the mixture stirred for 

15 min at 0 °C, followed by 4 h at rt. The mixture was adjusted to pH = 5 with citric acid, extracted with 

EtOAc (3 x 10 mL) and the combined organic phases were evaporated under reduced pressure. The 

crude product was purified by flash column chromatography (DCM/MeOH 10:0.2  10:0.5, v/v) to 

yield the product 11 as a yellow solid (2.20 g, 3.41 mmol, 60%). 

 

TLC (DCM/MeOH 10:0.5, v/v/v): Rf = 0.33. 

1H-NMR (600 MHz, [D6]DMSO): δ (ppm) = 2.48-2.56 (m, 2H, β-CH2), 3.71 (s, 6H, OCH3), 3.88-3.91 (m, 

1H, α-CH), 4.21-4.28 (m, 3H, Fmoc-CH, Fmoc-CH2), 6.85 (d, 3JH,H = 8.5 Hz, 4H, Dmt-CH), 7.18 (d, 

3JH,H = 8.5 Hz, 4H, Dmt-CH), 7.19-7.31 (m, 8H, Dmt-CH, Fmoc-CH, NH), 7.38-7.41 (m, 2H, Fmoc-CH), 7.73 

(d, 3JH,H = 7.5 Hz, 2H, Fmoc-CH), 7.88 (d, 3JH,H = 7.5 Hz, 2H, Fmoc-CH).   

13C-NMR (126 MHz, CDCl3): δC (ppm) = 34.1 (β-CH2), 46.6 (Fmoc-CH), 54.1 (α-CH), 55.0 (OCH2), 65.6 

(Fmoc-CH2), 113.1 (Dmt-CH), 120.0, 125.2 (Fmoc-CH), 126.4 (Dmt-CH), 127.0, 127.5 (Fmoc-CH), 127.8, 

128.9, 130.2 (Dmt-CH), 136.7 (Dmt-C), 140.6, 143.7 (Fmoc-C), 145.2 (Dmt-C), 155.5 (Fmoc-CO), 157.6 

(Dmt-C), 172.6 (CO2H). 

HR-MS (ESI): calc. for [C39H39N2O6S]+ ([M+NH4]+): 663.2523, found: 663.2500; calc. for [C39H34NO6S]- 

([M-H]-): 644.2112, found: 644.2105. 
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4,5-Dimethoxy-2-nitrobenzyl(4-nitrophenyl)carbonate (37) 

 

 

 

According to the procedure of FOMINA et al., 4,5-dimethoxy-2-nitrobenzyl alcohol (36) (2.50 g, 

11.7 mmol, 1.00 eq.) and 4-nitrophenyl chloroformate (35) (PNPCl) (4.70 g, 23.5 mmol, 2.00 eq.) were 

dissolved in DCM (25 mL) under argon atmosphere and exclusion of light.[188] DIPEA (4.18 mL, 

23.5 mmol, 2.00 eq.) and DCM (25 mL) were added and the solution stirred overnight at rt. The solvent 

was removed under reduced pressure, the resulting residue washed with hot EtOH (3 x 20 mL) and 

dried under reduced pressure to yield the product 37 as a yellow solid (2.56 g, 6.77 mmol, 58%). The 

NMR data is in accordance to the literature.[188,237] 

  

1H-NMR (300 MHz, CDCl3): δ (ppm) = 3.99 (s, 3H, OCH3), 4.02 (s, 3H, OCH3), 5.71 (s, 2H, CH2), 7.11 (s, 

1H, DMNB-H6), 7.41 (d, 3JH,H = 9.2 Hz, 2H, PNP-H2,H6), 7.77 (s, 1H, DMNB-H3), 8.30 (d, 3JH,H = 9.2 Hz, 

2H, PNP-H3,H5). 

13C-NMR (126 MHz, CDCl3): δC (ppm) = 56.6 (OCH3), 56.7 (OCH3), 67.9 (CH2), 108.6 (DMNB-C3), 110.8 

(DMNB-C6), 121.9 (PNP-C2,C6), 125.2 (DMNB-C1), 125.5 (PNP-C3,C5), 140.2 (DMNB-C2), 145.7 

(PNP-C1), 149.0 (DMNB-C5), 152.2 (CO), 153.8 (DMNB-C4), 155.5 (PNP-C4). 

HR-MS (ESI): calc. for [C16H14N2NaO9]+ ([M+Na]+): 401.0592, found: 401.0578. 
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Fmoc-L-Lys(NVOC)-OH (34) 

 

 

 

According to the procedure of DE GRACIA LUX et al., Fmoc-L-Lys-OH (2.50 g, 6.79 mmol, 1.00 eq.) was 

dissolved in toluene (122 mL) and added to a suspension of 4,5-dimethoxy-

2-nitrobenzyl(4-nitrophenyl)carbonate (37) (2.56 g, 6.79 mmol, 1.00 eq.) and DIPEA (24.4 mL) in DMF 

(41 mL) under argon atmosphere and exclusion of light.[189] The reaction mixture was stirred overnight 

at rt and the solvent removed under reduced pressure. The resulting yellow oil was purified by flash 

column chromatography (DCM/MeOH/AcOH 10:0.5:0.1  10:1:0.1, v/v/v) to yield the product 34 as 

a slightly yellow solid (2.64 g, 4.34 mmol, 64%). The NMR data is in accordance to the literature.[189] 

 

TLC (DCM/MeOH/AcOH 10:0.5:0.1, v/v/v): Rf = 0.19. 

1H-NMR (300 MHz, [D6]DMSO): δ (ppm) = 1.26-1.49 (m, 4H, δ-CH2, γ-CH2), 1.59-1.72 (m, 2H, β-CH2), 

2.98-3.05 (m, 2H, ε-CH2), 3.84 (s, 3H, OCH3), 3.87 (s, 3H, OCH3), 3.89-3.95 (m, 1H, Fmoc-CH), 4.17-4.29 

(m, 3H, α-CH, Fmoc-CH2), 5.31 (s, 2H, DMNB-CH2), 7.14 (s, 1H, DMNB-H6), 7.30 (t, 3JH,H = 7.3 Hz, 2H, 

Fmoc-CH), 7.39 (t, 3JH,H = 7.3 Hz, 2H, Fmoc-CH), 7.53 (d, 3JH,H = 7.9 Hz, 1H, NH), 7.66 (s, 1H, DMNB-H3), 

7.69 (d, 3JH,H = 7.3 Hz, 2H, Fmoc-CH), 7.85 (d, 3JH,H = 7.3 Hz, 2H, Fmoc-CH).   

13C-NMR (126 MHz, [D6]DMSO): δC (ppm) = 23.0 (γ-CH2), 29.0 (δ-CH2), 30.5 (β-CH2), 40.1 (ε-CH2), 46.8 

(Fmoc-CH), 53.9 (α-CH2), 56.2, 56.3 (OCH3), 62.3 (DMNB-CH2), 65.7 (Fmoc-CH2), 108.3 (DMNB-C3), 

110.6 (DMNB-C6), 120.1, 125.3, 127.1, 127.7 (Fmoc-CH), 128.0 (DMNB-C1), 139.4 (DMNB-C2), 140.8, 

143.9 (Fmoc-C), 147.8 (DMNB-C5), 153.4 (DMNB-C4), 155.8, 156.3 (CO), 174.0 (CO2H). 

HR-MS (ESI): calc. for [C31H33N3NaO10]+ ([M+Na]+): 630.2058, found: 630.2039; calc. for [C31H32N3O10]- 

([M-H]-): 606.2093, found: 606.2097. 
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Fmoc-L-Asp(ODMNB)-OtBu (40) 

 

 

 

Fmoc-L-Asp-OtBu (39) (912 mg, 2.20 mmol, 1.00 eq.), 4-(dimethylamino)pyridine (156 mg, 1.10 mmol, 

0.50 eq.), 4,5-dimethoxy-2-nitrobenzyl alcohol (562 mg, 2.64 mmol, 1.20 eq.) was dissolved in DCM 

(30 mL) under argon atmosphere and exclusion of light. The reaction mixture was stirred for 10 min at 

0 °C and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (460 mg, 2.40 mmol, 

1.09 eq.) were added. Further stirring for 2 h at 0 °C and overnight at rt was followed by solvent 

removal under reduced pressure. The resulting residue was dissolved in EtOAc (25 mL) and water 

(5 mL). The organic phase was washed with saturated NaHCO3 (aq) (2 x 15 mL), water (2 x 15 mL), dried 

over Na2SO4 and the solvent removed under reduced pressure. The resulting yellow oil was purified by 

flash column chromatography (pentane/EtOAc 2:1, v/v) to yield the product 40 as a yellow solid (1.04 g, 

1.71 mmol, 78%). 

 

TLC (pentane/EtOAc 2:1, v/v): Rf = 0.60. 

1H-NMR (600 MHz, [D6]DMSO): δ (ppm) = 1.36 (s, 9H, C(CH3)3), 2.78-2.82 (m, 2H, β-CH2), 3.85 (s, 3H, 

OCH3), 3.90 (s, 3H, OCH3), 4.20 (t, 3JH,H = 7.0 Hz, 1H, Fmoc-CH), 4.30-4.32 (m, 2H, Fmoc-CH2), 4.37-4.41 

(m, 1H, α-CH), 5.43 (s, 2H, DMNB-CH2), 7.17 (s, 1H, DMNB-H6), 7.29-7.32 (m, 2H, Fmoc-CH), 7.40 (t, 

3JH,H = 7.5 Hz, 2H, Fmoc-CH), 7.67-7.69 (m, 3H, DMNB-H3, Fmoc-CH), 7.75 (d, 3JH,H = 8.4 Hz, 1H, NH), 

7.87 (d, 3JH,H = 7.5 Hz, 2H, Fmoc-CH). 

13C-NMR (126 MHz, [D6]DMSO): δC (ppm) = 27.4 (C(CH3)), 35.9 (β-CH2), 46.6 (Fmoc-CH), 51.0 (α-CH), 

56.0 (OCH3), 56.1 (OCH3), 62.8 (DMNB-CH2), 65.7 (Fmoc-CH2), 81.1 (C(CH3)), 108.1 (DMNB-C3), 111.2 

(DMNB-C6), 120.0, 125.0 (Fmoc-CH), 125.9 (DMNB-C1), 126.9, 127.5 (Fmoc-CH), 139.6 (DMNB-C2), 

140.6, 143.7 (Fmoc-CH), 147.9 (DMNB-C5), 153.2 (DMNB-C4), 155.8 (Fmoc-CO), 169.6, 169.7 (CO). 

HR-MS (ESI): calc. for [C32H34N2NaO10]+ ([M+Na]+): 629.2106, found: 629.2107. 
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Fmoc-L-Asp(ODMNB)-OH (38) 

 

 

 

According to the procedure of BOURGAULT et al., Fmoc-L-Asp(ODMNB)-OtBu (40) (1.02 g, 1.69 mmol) 

was dissolved in TFA/water (36 mL, 19:1, v/v) and stirred for 90 min.[190] The solvent was removed 

under reduced pressure, the resulting residue was dissolved in DCM (50 mL), washed with 5% KHSO4 

(aq) (3 x 20 mL) and dried over Na2SO4. The solvent was removed under reduced pressure and the 

resulting yellow oil was purified by flash column chromatography (DCM/MeOH/AcOH 9:1:0.1, v/v/v) 

to yield the product 38 as a yellow solid (863 mg, 1.57 mmol, 93%). The NMR data is in accordance to 

the literature.[190] 

 

TLC (DCM/MeOH/AcOH 9:1:0.1, v/v/v): Rf = 0.69. 

1H-NMR (300 MHz, [D6]DMSO): δ (ppm) = 2.77-3.00 (m, 2H, β-CH2), 3.85 (s, 3H, OCH3), 3.90 (s, 3H, 

OCH3), 4.17-4.21 (m, 1H, Fmoc-CH), 4.27-4.30 (m, 2H, Fmoc-CH2), 4.41-4.48 (m, 1H, α-CH), 5.42 (s, 2H, 

DMNB-CH2), 7.16 (s, 1H, DMNB-H6), 7.30 (t, 3JH,H = 7.5 Hz, 2H, Fmoc-CH), 7.40 (t, 3JH,H = 7.5 Hz, 2H, 

Fmoc-CH), 7.66-7.71 (m, 4H, DMNB-H3, Fmoc-CH, NH), 7.87 (d, 3JH,H = 7.5 Hz, 2H, Fmoc-CH). 

13C-NMR (126 MHz, [D6]DMSO): δC (ppm) = 36.0 (β-CH2), 46.6 (Fmoc-CH), 50.5 (α-CH), 56.0 (OCH3), 56.3 

(OCH3), 62.7 (DMNB-CH2), 65.7 (Fmoc-CH2), 108.1 (DMNB-C3), 110.9 (DMNB-C6), 120.0, 125.1 (Fmoc-

CH), 126.3 (DMNB-C1), 127.0, 127.6 (Fmoc-CH), 139.5 (DMNB-C2), 140.7, 143.7 (Fmoc-CH), 147.9 

(DMNB-C5), 153.4 (DMNB-C4), 155.8 (Fmoc-CO), 169.9 (γ-CO), 172.3 (CO2H). 

HR-MS (ESI): calc. for [C28H26N2NaO10]+ ([M+Na]+): 573.1480, found: 573.1471; calc. for [C28H25N2O10]- 

([M-H]-): 549.1515, found: 549.1517. 
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8.4.2 Syntheses of µ-conotoxin SIIIA derivatives 

Synthesis of a linear µ-conotoxin SIIIA-[Ser(2’propyne)] (disulphide connectivity: 1-4/2-5/3-6) 

precursor (14) 

 

 

 

2-Chlorotrityl chloride resin (0.70 g, 0.70 mmol, 1-1.50 mmol/g) was preloaded following SOP1. The 

occupancy was tested following SOP3 and determined to be 0.29 mmol/g. The resin (345 mg, 

0.10 mmol) was loaded with the first amino acid Fmoc-L-Ser(2’propyne)-OH following SOP2. The 

peptide was synthesized following SOP4. Test cleavage was performed using SOP6/A yielding the Acm 

and StBu protected peptide 64. 

 

 

 

HR-MS (ESI): calc. for [C99H156N36O31S7]2+ ([M+2H]2+): 1284.4886, found: 1284.4881; calc. for 

[C99H157N36O31S7]3+ ([M+3H]3+): 856.6615, found: 856.6629. 
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Synthesis of µ-conotoxin SIIIA-[Ser(2’propyne)] (disulphide connectivity: 1-4/2-5/3-6): formation of 

the first disulphide bridge and deprotection of acid-labile protecting groups 

 

 

 

The formation of the first disulphide bridge using the linear precursor 14 (279 mg, 34.2 µmol) was 

performed following SOP7 (24 mL in steps 1-3, 820 mL in step 4, 400 mL in step 5) yielding the product 

18 as a colourless solid (54.2 mg, 21.9 µmol, 64%). 

 

HR-MS (ESI): calc. for [C95H146N36O31S6]2+ ([M+2H]2+): 1239.4634, found: 1239.4627; calc. for 

[C95H147N36O31S6]3+ ([M+3H]3+): 826.6447, found: 826.6437. 

 

Synthesis of µ-conotoxin SIIIA-[Ser(2’propyne)] (disulphide connectivity: 1-4/2-5/3-6): formation of 

the second disulphide bridge  

 

 

 

The second disulphide bridge using the crude peptide 18 (54.4 mg, 21.9 µmol) was performed following 

SOP8 yielding the product 19 as a colourless solid (49.3 mg, 19.9 µmol, 91%). 

 

HR-MS (ESI): calc. for [C95H144N36O31S6]2+ ([M+2H]2+): 1238.4556, found: 1238.4532; calc. for 

[C95H145N36O31S6]3+ ([M+3H]3+): 825.9728, found: 825.9725. 
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Synthesis of µ-conotoxin SIIIA-[Ser(2’propyne)] (7) (disulphide connectivity: 1-4/2-5/3-6): formation 

of the third disulphide bridge  

 

 

 

The Acm-groups were removed and the last disulphide bridge formed by dissolving the crude peptide 

19 (31.8 mg, 12.8 µmol, 1.00 eq.) in AcOH/water (2:1, v/v, 9.6 mL), adding Ac-L-Trp-OMe (33.3 mg, 

128 µmol, 10.0 eq.) and a solution of iodine (162 mg, 640 µmol, 50.0 eq.) dissolved in acetic acid 

(6.4 mL) and stirring for 15 min. The reaction was quenched using a solution of L-ascorbic acid in water 

(495 mg in 1.5 mL water) and directly purified by preparative HPLC yielding four differently folded 

peptides 7. 

 

HPLC (preparative, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

0-40% B, 30 min) was utilised for all products. 

 

1. Colourless solid (63.1 µg, 27.1 nmol). 

HPLC: Rt = 22.3 min. 

HR-MS (ESI): calc. for [C89H132N34O29S6]2+ ([M+2H]2+): 1166.4106, found: 1166.4111; calc. for 

[C89H133N34O29S6]3+ ([M+3H]3+): 777.9428, found: 777.9435; calc. for [C89H134N34O29S6]4+ 

([M+4H]4+): 583.7090, found: 583.7091. 

2. Colourless solid (95.0 µg, 40.7 nmol). 

HPLC: Rt = 23.4 min. 

HR-MS (ESI): calc. for [C89H132N34O29S6]2+ ([M+2H]2+): 1166.4106, found: 1166.4094; calc. for 

[C89H133N34O29S6]3+ ([M+3H]3+): 777.9428, found: 777.9431; calc. for [C89H134N34O29S6]4+ 

([M+4H]4+): 583.7090, found: 583.7098. 

3. Colourless solid (143 µg, 61.4 nmol). 

HPLC: Rt = 24.1 min. 

HR-MS (ESI): calc. for [C89H132N34O29S6]2+ ([M+2H]2+): 1166.4106, found: 1166.4113; calc. for 

[C89H133N34O29S6]3+ ([M+3H]3+): 777.9428, found: 777.9438; calc. for [C89H134N34O29S6]4+ 

([M+4H]4+): 583.7090, found: 583.7095. 

4. Colourless solid (106 µg, 45.5 nmol). 

HPLC: Rt = 25.9 min. 
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HR-MS (ESI): calc. for [C89H132N34O29S6]2+ ([M+2H]2+): 1166.4106, found: 1166.4113; calc. for 

[C89H133N34O29S6]3+ ([M+3H]3+): 777.9428, found: 777.9441; calc. for [C89H134N34O29S6]4+ 

([M+4H]4+): 583.7090, found: 583.7109. 

 

Synthesis of a linear [pGlu1Ser(2’propyne)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6) 

precursor (65) 

  

 

 

2-Chlorotrityl chloride resin (0.70 g, 0.70 mmol, 1-1.50 mmol/g) was preloaded following SOP1. The 

occupancy was tested following SOP3 and determined to be 0.29 mmol/g. The resin (345 mg, 

0.10 mmol) was loaded with the first amino acid Fmoc-L-Cys(Trt)-OH following SOP2. The peptide was 

synthesized following SOP4. Test cleavage was performed using SOP6/A yielding the Acm and StBu 

protected peptide 66. 

 

 

 

HR-MS (ESI): calc. for [C94H151N35O29S7]2+ ([M+2H]2+): 1228.9725, found: 1228.9698; calc. for 

[C94H152N35O29S7]3+ ([M+3H]3+): 819.6508, found: 819.6502; calc. for [C94H153N35O29S7]4+ ([M+4H]4+): 

614.9899, found: 614.9899. 
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Synthesis of [pGlu1Ser(2’propyne)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): 

formation of the first disulphide bridge and deprotection of acid-labile protecting groups 

 

 

 

The formation of the first disulphide bridge using the linear precursor 65 (279 mg, 34.7 µmol) was 

performed following SOP7 (24 mL in steps 1-3, 820 mL in step 4, 400 mL in step 5) yielding the product 

67 as a colourless solid (38.3 mg, 16.1 µmol, 46%). 

 

HR-MS (ESI): calc. for [C90H141N35O29S6]2+ ([M+2H]2+): 1183.9474, found: 1183.9471; calc. for 

[C90H142N35O29S6]3+ ([M+3H]3+): 789.6340, found: 789.6346. 

 

Synthesis of [pGlu1Ser(2’propyne)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): 

formation of the second disulphide bridge  

 

 

 

The second disulphide bridge using the crude peptide 67 (38.3 mg, 16.1 µmol) was performed following 

SOP8 yielding the product 68 as a colourless solid (25.5 mg, 10.8 µmol, 67%). 

 

HR-MS (ESI): calc. for [C90H139N35O29S6]2+ ([M+2H]2+): 1182.9396, found: 1182.9393; calc. for 

[C90H140N35O29S6]3+ ([M+3H]3+): 788.9621, found: 788.9623. 
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Synthesis of [pGlu1Ser(2’propyne)]-µ-conotoxin SIIIA (8) (disulphide connectivity: 1-4/2-5/3-6): 

formation of the third disulphide bridge  

 

 

 

The Acm-groups were removed and the last disulphide bridge formed by dissolving the crude peptide 

68 (20.9 mg, 8.83 µmol, 1.00 eq.) in AcOH/water (2:1, v/v, 6 mL), adding Ac-L-Trp-OMe (23.0 mg, 

88.3 µmol, 10.0 eq.) and a solution of iodine (112 mg, 442 µmol, 50.0 eq.) dissolved in acetic acid (4 mL) 

and stirring for 15 min. The reaction was quenched using a solution of L-ascorbic acid in water (495 mg 

in 1.5 mL water) and directly purified by preparative HPLC yielding four differently folded peptides 8. 

 

HPLC (preparative, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

0-40% B, 30 min) was utilised for all products. 

 

1. Colourless solid (92.6 µg, 41.7 nmol). 

HPLC: Rt = 22.4 min. 

HR-MS (ESI): calc. for [C84H127N33O27S6]2+ ([M+2H]2+): 1110.8946, found: 1110.8938; calc. for 

[C84H128N33O27S6]3+ ([M+3H]3+): 740.9322, found: 740.9323; calc. for [C84H129N33O27S6]4+ 

([M+4H]4+): 555.9509, found: 555.9498. 

2. Colourless solid (148 µg, 66.7 nmol). 

HPLC: Rt = 23.5 min. 

HR-MS (ESI): calc. for [C84H127N33O27S6]2+ ([M+2H]2+): 1110.8946, found: 1110.8936; calc. for 

[C84H128N33O27S6]3+ ([M+3H]3+): 740.9322, found: 740.9325; calc. for [C84H129N33O27S6]4+ 

([M+4H]4+): 555.9509, found: 555.9508. 

3. Colourless solid (115 µg, 51.7 nmol). 

HPLC: Rt = 24.2 min. 

HR-MS (ESI): calc. for [C84H127N33O27S6]2+ ([M+2H]2+): 1110.8946, found: 1110.8938; calc. for 

[C84H128N33O27S6]3+ ([M+3H]3+): 740.9322, found: 740.9300. 

4. Colourless solid (131 µg, 58.8 nmol). 

HPLC: Rt = 24.7 min. 

HR-MS (ESI): calc. for [C84H127N33O27S6]2+ ([M+2H]2+): 1110.8946, found: 1110.8938; calc. for 

[C84H128N33O27S6]3+ ([M+3H]3+): 740.9322, found: 740.9319; calc. for [C84H129N33O27S6]4+ 

([M+4H]4+): 555.9509, found: 555.9497. 
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Synthesis of a linear [Gly6Ser(2’propyne)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6) 

precursor (69) 

 

 

 

2-Chlorotrityl chloride resin (0.70 g, 0.70 mmol, 1-1.50 mmol/g) was preloaded following SOP1. The 

occupancy was tested following SOP3 and determined to be 0.38 mmol/g. The resin (263 mg, 

0.10 mmol) was loaded with the first amino acid Fmoc-L-Cys(Trt)-OH following SOP2. The peptide was 

synthesized following SOP4. Test cleavage was performed using SOP6/A yielding the Acm and StBu 

protected peptide 70. 

 

 

 

HR-MS (ESI): calc. for [C97H153N35O30S7]2+ ([M+2H]2+): 1255.9778, found: 1255.9778; calc. for 

[C97H154N35O30S7]3+ ([M+3H]3+): 837.6543, found: 837.6546. 
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Synthesis of [Gly6Ser(2’propyne)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): 

formation of the first disulphide bridge and deprotection of acid-labile protecting groups 

 

 

 

The formation of the first disulphide bridge using the linear precursor 69 (213 mg, 30.9 µmol) was 

performed following SOP7 (24 mL in steps 1-3, 820 mL in step 4, 400 mL in step 5) yielding the product 

71 as a colourless solid (56.3 mg, 23.2 µmol, 75%). 

 

HR-MS (ESI): calc. for [C93H143N35O30S6]2+ ([M+2H]2+): 1210.9527, found: 1210.9523; calc. for 

[C93H144N35O30S6]3+ ([M+3H]3+): 807.6375, found: 807.6379. 

 

Synthesis of [Gly6Ser(2’propyne)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): 

formation of the second disulphide bridge  

 

 

 

The second disulphide bridge using the crude peptide 71 (56.3 mg, 23.2 µmol) was performed following 

SOP8 yielding the product 72 as a colourless solid (55.1 mg, 22.8 µmol, 98%). 

 

HR-MS (ESI): calc. for [C93H141N35O30S6]2+ ([M+2H]2+): 1209.9448, found: 1209.9414; calc. for 

[C93H142N35O30S6]3+ ([M+3H]3+): 806.9657, found: 806.9669. 
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Synthesis of [Gly6Ser(2’propyne)]-µ-conotoxin SIIIA (9) (disulphide connectivity: 1-4/2-5/3-6): 

formation of the third disulphide bridge  

 

 

 

The Acm-groups were removed and the last disulphide bridge formed by dissolving the crude peptide 

72 (21.3 mg, 8.80 µmol, 1.00 eq.) in AcOH/water (2:1, v/v, 6 mL), adding Ac-L-Trp-OMe (22.9 mg, 

88.0 µmol, 10.0 eq.) and a solution of iodine (112 mg, 440 µmol, 50.0 eq.) dissolved in acetic acid (4 mL) 

and stirring for 15 min. The reaction was quenched using a solution of L-ascorbic acid in water (495 mg 

in 1.5 mL water) and directly purified by preparative HPLC yielding three differently folded peptides 9. 

 

HPLC (preparative, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

0-40% B, 30 min) was utilised for all products. 

 

1. Colourless solid (219 µg, 96.1 nmol). 

HPLC: Rt = 23.7 min. 

HR-MS (ESI): calc. for [C87H129N33O28S6]2+ ([M+2H]2+): 1137.8999, found: 1137.8996; calc. for 

[C87H130N33O28S6]3+ ([M+3H]3+): 758.9357, found: 758.9366; calc. for [C87H131N33O28S6]4+ 

([M+4H]4+): 569.4536, found: 569.4546. 

2. Colourless solid (204 µg, 89.6 nmol). 

HPLC: Rt = 24.5 min. 

HR-MS (ESI): calc. for [C87H129N33O28S6]2+ ([M+2H]2+): 1137.8999, found: 1137.9006; calc. for 

[C87H130N33O28S6]3+ ([M+3H]3+): 758.9357, found: 758.9371; calc. for [C87H131N33O28S6]4+ 

([M+4H]4+): 569.4536, found: 569.4554. 

3. Colourless solid (484 µg, 213 nmol). 

HPLC: Rt = 26.5 min. 

HR-MS (ESI): calc. for [C87H129N33O28S6]2+ ([M+2H]2+): 1137.8999, found: 1137.9003; calc. for 

[C87H130N33O28S6]3+ ([M+3H]3+): 758.9357, found: 758.9369; calc. for [C87H131N33O28S6]4+ 

([M+4H]4+): 569.4536, found: 569.4552. 
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Alexa Fluor® 647 labelled [Gly6Ser(2’propyne)]-µ-conotoxin SIIIA (20) 
 

 

 

Based on the procedure of EMPTING et al., to [Gly6Ser(2’propyne)]-µ-SIIIA (9) (Rt = 24.5 min, 12.5 µg, 

5.50 nmol, 1.00 eq.) and Alexa Fluor® 647 azide triethylammonium salt (4.68 µL, 5.50 nmol, 1.00 eq., 

0.50 mg in 500 µL degassed and argon-flushed water) the catalyst solution (27.5 µL, 1.90 mL degassed 

and argon-flushed water, 0.40 mg copper (II) sulphate pentahydrate (final amount: 189 nmol, 4.00 eq.), 

100 µL 4 mM sodium ascorbate solution (final amount: 5.50 nmol, 1.00 eq.), 0.55 µL DIPEA (final 

amount: 378 nmol, 8.00 eq.)) was added and the reaction mixture shaken at rt for 2 d. The reaction 

mixture was directly purified via analytical HPLC yielding the product 20 as a colourless solid 

(1.00 nmol, 18%). 

 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

0-100% B, 30 min): Rt = 14.4 min. 

MS (ESI): calc. for ([M+3H]3+): 1014.4 (based on the Alexa Fluor® 647 azide HR-MS(ESI) ([M-1H]-): 

765.3), found: 1014.4; calc. for ([M+2H+Na]3+): 1021.7, found: 1021.7. 

 
Synthesis of a linear [Ser9Ser(2’propyne)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6) 

precursor (73) 

 

 

 

2-Chlorotrityl chloride resin (0.70 g, 0.70 mmol, 1-1.50 mmol/g) was preloaded following SOP1. The 

occupancy was tested following SOP3 and determined to be 0.38 mmol/g. The resin (263 mg, 

0.10 mmol) was loaded with the first amino acid Fmoc-L-Cys(Trt)-OH following SOP2. The peptide was 
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synthesized following SOP4. Test cleavage was performed using SOP6/A yielding the Acm and StBu 

protected peptide 74. 

 

 

HR-MS (ESI): calc. for [C96H151N35O29S7]2+ ([M+2H]2+): 1240.9725, found: 1240.9721; calc. for 

[C96H152N35O29S7]3+ ([M+3H]3+): 827.6508, found: 827.6512. 

 

Synthesis of [Ser9Ser(2’propyne)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): 

formation of the first disulphide bridge and deprotection of acid-labile protecting groups 

 

 

 

The formation of the first disulphide bridge using the linear precursor 73 (213 mg, 31.3 µmol) was 

performed following SOP7 (24 mL in steps 1-3, 820 mL in step 4, 400 mL in step 5) yielding the product 

75 as a colourless solid (53.6 mg, 22.4 µmol, 72%). 

 

HR-MS (ESI): calc. for [C92H141N35O29S6]2+ ([M+2H]2+): 1195.9474, found: 1195.9463; calc. for 

[C92H142N35O29S6]3+ ([M+3H]3+): 797.6340, found: 797.6350. 
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Synthesis of [Ser9Ser(2’propyne)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): 

formation of the second disulphide bridge  

 

 

 

The second disulphide bridge using the crude peptide 75 (53.6 mg, 22.4 µmol) was performed following 

SOP8 yielding the product 76 as a colourless solid (52.2 mg, 21.8 µmol, 97%). 

 

HR-MS (ESI): calc. for [C92H139N35O29S6]2+ ([M+2H]2+): 1194.9396, found: 1194.9381; calc. for 

[C92H140N35O29S6]3+ ([M+3H]3+): 796.9621, found: 796.9619. 

 

Synthesis of [Ser9Ser(2’propyne)]-µ-conotoxin SIIIA (10) (disulphide connectivity: 1-4/2-5/3-6): 

formation of the third disulphide bridge  

 

 

 

The Acm-groups were removed and the last disulphide bridge formed by dissolving the crude peptide 

76 (20.3 mg, 8.49 µmol, 1.00 eq.) in AcOH/water (2:1, v/v, 6 mL), adding Ac-L-Trp-OMe (22.1 mg, 

84.9 µmol, 10.0 eq.) and a solution of iodine (108 mg, 425 µmol, 50.0 eq.) dissolved in acetic acid (4 mL) 

and stirring for 15 min. The reaction was quenched using a solution of L-ascorbic acid in water (495 mg 

in 1.5 mL water) and directly purified by preparative HPLC yielding three differently folded peptides 

10. 

 

HPLC (preparative, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

0-40% B, 30 min) was utilised for all products. 

 

1. Colourless solid (371 µg, 165 nmol). 

HPLC: Rt = 23.9 min. 
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HR-MS (ESI): calc. for [C86H127N33O27S6]2+ ([M+2H]2+): 1122.8946, found: 1122.8946; calc. for 

[C86H128N33O27S6]3+ ([M+3H]3+): 748.9322, found: 748.9334; calc. for [C86H129N33O27S6]4+ 

([M+4H]4+): 561.9509, found: 561.9524. 

2. Colourless solid (497 µg, 221 nmol). 

HPLC: Rt = 24.1 min. 

HR-MS (ESI): calc. for [C86H127N33O27S6]2+ ([M+2H]2+): 1122.8946, found: 1122.8946; calc. for 

[C86H128N33O27S6]3+ ([M+3H]3+): 748.9322, found: 748.9337; calc. for [C86H129N33O27S6]4+ 

([M+4H]4+): 561.9509, found: 561.9526. 

3. Colourless solid (499 µg, 222 nmol). 

HPLC: Rt = 26.2 min. 

HR-MS (ESI): calc. for [C86H127N33O27S6]2+ ([M+2H]2+): 1122.8946, found: 1122.8950; calc. for 

[C86H128N33O27S6]3+ ([M+3H]3+): 748.9322, found: 748.9333; calc. for [C86H129N33O27S6]4+ 

([M+4H]4+): 561.9509, found: 561.9527. 

 

Alexa Fluor® 647 labelled [Ser9Ser(2’propyne)]-µ-conotoxin SIIIA (21) 

 

 

 

Based on the procedure of EMPTING et al., to [Ser9Ser(2’propyne)]-µ-SIIIA (10) (Rt = 23.9 min, 106 µg, 

47.3 nmol, 1.00 eq.) and Alexa Fluor® 647 azide triethylammonium salt (40.2 µL, 47.3 nmol, 1.00 eq., 

0.50 mg in 500 µL degassed and argon-flushed water) the catalyst solution (237 µL, 1.90 mL degassed 

and argon-flushed water, 0.40 mg copper (II) sulphate pentahydrate (final amount: 189 nmol, 4.00 eq.), 

100 µL 4 mM sodium ascorbate solution (final amount: 47.3 nmol, 1.00 eq.), 0.55 µL DIPEA (final 

amount: 378 nmol, 8.00 eq.)) was added and the reaction mixture shaken at rt for 2 d. The reaction 

mixture was directly purified via analytical HPLC yielding two products 21 with identical mass. 

 

1. Blue solid (1.18 nmol, 3%). 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

10-40% B, 30 min): Rt = 25.2 min. 

MS (MALDI): calc. for ([M+H]+): 3011.1 (based on the Alexa Fluor® 647 azide HR-MS(ESI) 

([M-1H]-): 765.3), found: 3011.2. 
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2. Blue solid (4.03 nmol, 9%). 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

10-40% B, 30 min): Rt = 25.8 min. 

MS (MALDI): calc. for ([M+H]+): 3011.1 (based on the Alexa Fluor® 647 azide HR-MS(ESI) 

([M-1H]-): 765.3), found: 3011.2. 

 

Synthesis of a linear [Gly6Cys(Mbzl)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6) 

precursor (22) 

 

 

 

2-Chlorotrityl chloride resin (0.70 g, 0.70 mmol, 1-1.50 mmol/g) was preloaded following SOP1. The 

occupancy was tested following SOP3 and determined to be 0.47 mmol/g. The resin (213 mg, 

0.10 mmol) was loaded with the first amino acid Fmoc-L-Cys(Trt)-OH following SOP2. The peptide was 

synthesized following SOP4. Product 22 was directly used for the next step. 

 

Synthesis of [Gly6Cys(Mbzl)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): formation of 

the first disulphide bridge and deprotection of acid-labile protecting groups 

 

 

 

The formation of the first disulphide bridge using the linear precursor 22 (172 mg, 26.6 µmol) was 

performed following SOP7 (24 mL in steps 1-3, 820 mL in step 4, 400 mL in step 5) yielding the product 

23 as a colourless solid (33.7 mg, 13.5 µmol, 51%). 
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HR-MS (ESI): calc. for [C98H149N35O29S7]2+ ([M+2H]2+): 1251.9647, found: 1251.9641; calc. for 

[C98H150N35O29S7]3+ ([M+3H]3+): 834.9789, found: 834.9802; calc. for [C98H151N35O29S7]4+ ([M+4H]4+): 

626.4860, found: 626.4871. 

 

Synthesis of [Gly6Cys(Mbzl)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): formation of 

the second disulphide bridge  

 

 

 

The second disulphide bridge using the crude peptide 23 (67.4 mg, 26.9 µmol) was performed following 

SOP8 yielding the product 24 as a colourless solid (24.1 mg, 9.63 µmol, 36%). 

 

HR-MS (ESI): calc. for [C98H147N35O29S7]2+ ([M+2H]2+): 1250.9569, found: 1250.9569; calc. for 

[C98H148N35O29S7]3+ ([M+3H]3+): 834.3070, found: 834.3081. 

 
Synthesis of [Gly6Cys(Mbzl)]-µ-conotoxin SIIIA (25) (disulphide connectivity: 1-4/2-5/3-6): formation 

of the third disulphide bridge  

 

 

 

The Acm-groups were removed and the last disulphide bridge formed by dissolving the crude peptide 

24 (10.0 mg, 4.00 µmol, 1.00 eq.) in AcOH/water (2:1, v/v, 3 mL), adding Ac-L-Trp-OMe (10.4 mg, 

40.0 µmol, 10.0 eq.) and a solution of iodine (50 mg, 200 µmol, 50.0 eq.) dissolved in acetic acid (2 mL) 

and stirring for 1 h at rt. The solvent was removed under reduced pressure. The crude peptide was 

dissolved in a small amount of TFA and precipitated with cold diethyl ether, isolated by centrifugation 

(9000 rpm, 2.5 min, -10 °C), washed three times with cold diethyl ether followed by centrifugation and 

dried overnight under reduced pressure to yield the crude product 25 as a colourless solid (2.11 mg, 

0.89 µmol, 22%). 

 

HR-MS (ESI): calc. for [C92H135N33O27S7]2+ ([M+2H]2+): 1178.9120, found: 1178.9124; calc. for 

[C92H136N33O27S7]3+ ([M+3H]3+): 786.2771, found: 786.2783. 
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Synthesis of a linear C-terminal elongated µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6) 

precursor (77) 

 

 

 

2-Chlorotrityl chloride resin (0.70 g, 0.70 mmol, 1-1.50 mmol/g) was preloaded following SOP1. The 

occupancy was tested following SOP3 and determined to be 0.47 mmol/g. The resin (213 mg, 

0.10 mmol) was loaded with the first amino acid Fmoc-L-Cys(Trt)-OH following SOP2. The peptide was 

synthesized following SOP4. Product 77 was directly used for the next step. 

 

Synthesis of C-terminal elongated µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): 

formation of the first disulphide bridge and deprotection of acid-labile protecting groups 

 

 

 

The formation of the first disulphide bridge using the linear precursor 77 (279 mg, 34.7 µmol) was 

performed following SOP7 (24 mL in steps 1-3, 820 mL in step 4, 400 mL in step 5) yielding the product 

78 as a colourless solid (50.4 mg, 18.6 µmol, 54%), which was directly used for the next step. 
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Synthesis of C-terminal elongated µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): 

formation of the second disulphide bridge  

 

 

 

The second disulphide bridge using the crude peptide 78 (101 mg, 37.3 µmol) was performed following 

SOP8 yielding the product 79 as a colourless solid (8.20 mg, 3.47 µmol, 9%). 

 

HR-MS (ESI): calc. for [C106H161N37O33S7]2+ ([M+2H]2+): 1352.0046, found: 1352.0041; calc. for 

[C106H162N37O33S7]3+ ([M+3H]3+): 901.6721, found: 901.6722. 

 

Synthesis of C-terminal elongated µ-conotoxin SIIIA 26 (disulphide connectivity: 1-4/2-5/3-6): 

formation of the third disulphide bridge  

 

 

 

The Acm-groups were removed and the last disulphide bridge formed by dissolving the crude peptide 

79 (8.20 mg, 3.03 µmol, 1.00 eq.) in AcOH/water (2:1, v/v, 4.50 mL), adding Ac-L-Trp-OMe (7.80 mg, 

30.3 µmol, 10.0 eq.) and a solution of iodine (38.5 mg, 150 µmol, 50.0 eq.) dissolved in acetic acid 

(3 mL) and stirring for 15 min. The solvent was removed under reduced pressure. The crude peptide 

was dissolved in a small amount of TFA and precipitated with cold diethyl ether, isolated by 

centrifugation (9000 rpm, 2.5 min, -10 °C), washed three times with cold diethyl ether followed by 

centrifugation and dried overnight under reduced pressure. The crude peptide 26 was purified by 

preparative HPLC yielding a colourless solid (0.10 mg, 39.1 nmol, 1%). 
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HPLC (preparative, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

5-50% B, 30 min): Rt = 26.8 min. 

HR-MS (ESI): calc. for [C100H149N35O31S7]2+ ([M+2H]2+): 1279.9596, found: 1279.9580; calc. for 

[C100H150N35O31S7]3+ ([M+3H]3+): 853.6422, found: 853.6428. 

 

Synthesis of a linear µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6) precursor (80) 

 

 

 

2-Chlorotrityl chloride resin (0.70 g, 0.70 mmol, 1-1.50 mmol/g) was preloaded following SOP1. The 

occupancy was tested following SOP3 and determined to be 0.36 mmol/g. The resin (278 mg, 

0.10 mmol) was loaded with the first amino acid Fmoc-L-Cys(Trt)-OH following SOP2. The peptide was 

synthesized following SOP4. Test cleavage was performed using SOP6/A yielding the Acm and StBu 

protected peptide 81. 

 

 

 

HR-MS (ESI): calc. for [C93H149N35O29S7]2+ ([M+2H]2+): 1221.9647, found: 1221.9652; calc. for 

[C93H150N35O29S7]3+ ([M+3H]3+): 814.9789, found: 814.9795; calc. for [C93H151N35O29S7]4+ ([M+4H]4+): 

611.4860, found: 611.4863. 
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Synthesis of µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): formation of the first 

disulphide bridge and deprotection of acid-labile protecting groups 

 

 

 

The formation of the first disulphide bridge using the linear precursor 80 (495 mg, 28.9 µmol) was 

performed following SOP7 (6 mL in steps 1-3, 205 mL in step 4, 100 mL in step 5) yielding the product 

82 as a colourless solid (55.1 mg, 23.4 µmol, 81%). 

 

HR-MS (ESI): calc. for [C89H139N35O29S6]2+ ([M+2H]2+): 1176.9396, found: 1176.9403; calc. for 

[C89H140N35O29S6]3+ ([M+3H]3+): 784.9621, found: 784.9614. 

 
Synthesis of µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): formation of the second 

disulphide bridge  

 

 

 

The second disulphide bridge using the crude peptide 82 (55.1 mg, 23.4 µmol) was performed following 

SOP8 yielding the product 83 as a colourless solid (40.4 mg, 17.2 µmol, 73%). 

 

HR-MS (ESI): calc. for [C89H137N35O29S6]2+ ([M+2H]2+): 1175.9317, found: 1175.9323; calc. for 

[C89H138N35O29S6]3+ ([M+3H]3+): 784.2902, found: 784.2913; calc. for [C89H139N35O29S6]4+ ([M+4H]4+): 

588.4695, found: 588.4698. 
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Synthesis of µ-conotoxin SIIIA 3 (disulphide connectivity: 1-4/2-5/3-6): formation of the third 

disulphide bridge  

 

 

 

The Acm-groups were removed and the last disulphide bridge formed by dissolving the crude peptide 

83 (11.4 mg, 4.85 µmol, 1.00 eq.) in AcOH/water (2:1, v/v, 3.60 mL), adding Ac-L-Trp-OMe (12.5 mg, 

48.5 µmol, 10.0 eq.) and a solution of iodine (60.9 mg, 240 µmol, 50.0 eq.) dissolved in acetic acid 

(2.40 mL) and stirring for 15 min. The reaction was quenched using a solution of L-ascorbic acid in water 

(495 mg in 1.5 mL water) and directly purified by preparative HPLC. The peak having the same retention 

time as commercially available µ-SIIIA was collected yielding the product 3 as a colourless solid 

(0.25 mg, 115 nmol, 2%). 

 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 0-40% B, 

30 min): Rt = 18.2 min. 

HR-MS (ESI): calc. for [C83H125N33O27S6]2+ ([M+2H]2+): 1103.8868, found: 1103.8872; calc. for 

[C83H126N33O27S6]3+ ([M+3H]3+): 736.2603, found: 736.2612; calc. for [C83H127N33O27S6]4+ ([M+4H]4+): 

552.4474, found: 552.4470. 

 

Synthesis of a linear µ-conotoxin SIIIA (disulphide connectivity: 1-5/2-4/3-6) precursor (84) 

 

 

 

2-Chlorotrityl chloride resin (0.70 g, 0.70 mmol, 1-1.50 mmol/g) was preloaded following SOP1. The 

occupancy was tested following SOP3 and determined to be 0.36 mmol/g. The resin (278 mg, 

0.10 mmol) was loaded with the first amino acid Fmoc-L-Cys(Trt)-OH following SOP2. The peptide was 

synthesized following SOP4. Test cleavage was performed using SOP6/A yielding the Acm and StBu 

protected peptide 85. 
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HR-MS (ESI): calc. for [C93H149N35O29S7]2+ ([M+2H]2+): 1221.9647, found: 1221.9621; calc. for 

[C93H150N35O29S7]3+ ([M+3H]3+): 814.9789, found: 814.9779. 

 

Synthesis of µ-conotoxin SIIIA (disulphide connectivity: 1-5/2-4/3-6): formation of the first 

disulphide bridge and deprotection of acid-labile protecting groups 

 

 

 

The formation of the first disulphide bridge using the linear precursor 84 (515 mg, 31.6 µmol) was 

performed following SOP7 (6 mL in steps 1-3, 205 mL in step 4, 100 mL in step 5) yielding the product 

86 as a colourless solid (53.0 mg, 22.5 µmol, 71%). 

 

HR-MS (ESI): calc. for [C89H139N35O29S6]2+ ([M+2H]2+): 1176.9396, found: 1176.9397; calc. for 

[C89H140N35O29S6]3+ ([M+3H]3+): 784.9621, found: 784.9614. 

 
Synthesis of µ-conotoxin SIIIA (disulphide connectivity: 1-5/2-4/3-6): formation of the second 

disulphide bridge  

 

 

 

The second disulphide bridge using the crude peptide 86 (53.0 mg, 22.5 µmol) was performed following 

SOP8 yielding the product 87 as a colourless solid (39.8 mg, 16.9 µmol, 75%). 

 

HR-MS (ESI): calc. for [C89H137N35O29S6]2+ ([M+2H]2+): 1175.9317, found: 1175.9319; calc. for 

[C89H138N35O29S6]3+ ([M+3H]3+): 784.2902, found: 784.2909; calc. for [C89H139N35O29S6]4+ ([M+4H]4+): 

588.4695, found: 588.4701. 
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Synthesis of µ-conotoxin SIIIA 27 (disulphide connectivity: 1-5/2-4/3-6): formation of the third 

disulphide bridge  

 

 

 

The Acm-groups were removed and the last disulphide bridge formed by dissolving the crude peptide 

87 (11.8 mg, 5.02 µmol, 1.00 eq.) in AcOH/water (2:1, v/v, 3.60 mL), adding Ac-L-Trp-OMe (13.1 mg, 

50.2 µmol, 10.0 eq.) and a solution of iodine (63.7 mg, 251 µmol, 50.0 eq.) dissolved in acetic acid 

(2.40 mL) and stirring for 15 min. The reaction was quenched using a solution of L-ascorbic acid in water 

(495 mg in 1.5 mL water) and directly purified by preparative HPLC. The peak having the same retention 

time as commercially available µ-SIIIA was collected yielding the product 27 as a colourless solid 

(0.52 mg, 234 nmol, 5%). 

 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 0-40% B, 

30 min): Rt = 18.2 min. 

HR-MS (ESI): calc. for [C83H125N33O27S6]2+ ([M+2H]2+): 1103.8868, found: 1103.8876; calc. for 

[C83H126N33O27S6]3+ ([M+3H]3+): 736.2603, found: 736.2619; calc. for [C83H127N33O27S6]4+ ([M+4H]4+): 

552.4474, found: 552.4479. 

 

Synthesis of a linear [Lys11Lys(NVOC)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6) 

precursor (41) 

 

 

 

2-Chlorotrityl chloride resin (0.70 g, 0.70 mmol, 1-1.50 mmol/g) was preloaded following SOP1. The 

occupancy was tested following SOP3 and determined to be 0.39 mmol/g. The resin (256 mg, 

0.10 mmol) was loaded with the first amino acid Fmoc-L-Cys(Trt)-OH following SOP2. The peptide was 
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synthesized following SOP4. Test cleavage was performed using SOP6/A yielding the Acm and StBu 

protected peptide 88. 

 

 

 

HR-MS (ESI): calc. for [C103H158N36O35S7]2+ ([M+2H]2+): 1341.4862, found: 1341.4878; calc. for 

[C103H159N36O35S7]3+ ([M+3H]3+): 894.6599, found: 894.6607. 

 

Synthesis of [Lys11Lys(NVOC)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): formation of 

the first disulphide bridge and deprotection of acid-labile protecting groups 

 

 

 

The formation of the first disulphide bridge using the linear precursor 41 (225 mg, 30.8 µmol) was 

performed following SOP7 (18 mL in steps 1-3, 309 mL in step 4, 148 mL in step 5) yielding the product 

42 as a colourless solid (51.0 mg, 19.7 µmol, 64%). 

 

HR-MS (ESI): calc. for [C99H148N36O35S6]2+ ([M+2H]2+): 1296.4611, found: 1296.4596; calc. for 

[C99H149N36O35S6]3+ ([M+3H]3+): 864.6431, found: 864.6418. 

 

Synthesis of [Lys11Lys(NVOC)]-µ-conotoxin SIIIA (disulphide connectivity: 1-4/2-5/3-6): formation of 

the second disulphide bridge  

 

 

 

The second disulphide bridge using the crude peptide 42 (51.0 mg, 19.7 µmol) was performed following 

SOP8 yielding the product 43 as a colourless solid (35.6 mg, 13.7 µmol, 70%). 
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HR-MS (ESI): calc. for [C99H146N36O35S6]2+ ([M+2H]2+): 1295.4532, found: 1295.4540; calc. for 

[C99H147N36O35S6]3+ ([M+3H]3+): 863.9712, found: 863.9717. 

 

A small amount of crude peptide was purified by preparative HPLC to yield a colourless solid (2.4 mg, 
0.92 µmol). 
 
HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

10-60% B, 30 min): Rt = 19.4 min. 

HR-MS (ESI): calc. for [C99H146N36O35S6]2+ ([M+2H]2+): 1295.4532, found: 1295.4541; calc. for 

[C99H147N36O35S6]3+ ([M+3H]3+): 863.9712, found: 863.9713. 

 
Synthesis of [Lys11Lys(NVOC)]-µ-conotoxin SIIIA (44) (disulphide connectivity: 1-4/2-5/3-6): 
formation of the third disulphide bridge  
 

 

 

The Acm-groups were removed and the last disulphide bridge formed by dissolving the purified 

peptide 43 (2.40 mg, 0.93 µmol, 1.00 eq.) in AcOH/water (2:1, v/v, 696 µL), adding Ac-L-Trp-OMe 

(2.41 mg, 9.26 µmol, 10.0 eq.) and a solution of iodine (11.8 mg, 46.3 µmol, 50.0 eq.) dissolved in acetic 

acid (464 µL) and stirring for 2 h. The solvent was removed under reduced pressure and co-evaporated 

three times with toluene. The resulting residue was dissolved in a small amount of TFA and precipitated 

with cold diethyl ether, isolated by centrifugation (9000 rpm, 2.5 min, -10 °C), washed three times with 

cold diethyl ether followed by centrifugation and dried overnight under reduced pressure. The crude 

product was purified by preparative HPLC to yield the product 44 as a colourless solid (187 µg, 

75.5 nmol, 8%). 

 

HPLC (preparative, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

10-60% B, 30 min): Rt = 23.8 min. 

HR-MS (ESI): calc. for [C93H134N34O33S6]2+ ([M+2H]2+): 1223.4083, found: 1223.4108; calc. for 

[C93H135N34O33S6]3+ ([M+3H]3+): 815.9413, found: 815.9428; calc. for [C93H134N34NaO33S6]3+ 

([M+2H+Na]3+): 823.2686, found: 823.2700. 
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8.4.3 Syntheses of modified pompilidotoxins 

[Ser11Ser(2’-propyne)]-β-pompilidotoxin (45) 

 

 

 

[Ser11Ser(2’-propyne)]-β-pompilidotoxin (45) was synthesized on rink amide MBHA resin (loading 

0.57 mmol/g). Therefore, the resin was preloaded following SOP2 using Fmoc-L-Leu-OH as the first 

amino acid followed by capping with 10% acetic anhydride in NMP (3 x 6 mL). The occupancy was 

determined by SOP3 (0.31 mmol/g). The peptide was synthesized with automated SPPS following 

SOP4. Cleavage was performed following SOP6/B. The crude product was dissolved in water and 

purified by preparative HPLC to yield the product 45 as a colourless solid (22.4 mg, 14.0 µmol, 14%). 

 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

30-50% B, 30 min): Rt = 18.9 min. 

HR-MS (ESI): calc. for [C74H127N22O17]+ ([M+H]+): 1595.9744, found: 1595.9752; calc. for 

[C74H128N22O17]2+ ([M+2H]2+): 798.4908, found: 798.4909; calc. for [C74H129N22O17]3+ ([M+3H]3+): 

532.6630, found: 532.6625. 

 
[Ser11Cys]-β-pompilidotoxin (46) 

 

 

 

[Ser11Cys]-β-pompilidotoxin (46) was synthesized on rink amide MBHA resin (loading 0.57 mmol/g). 

Therefore, the resin was preloaded following SOP2 using Fmoc-L-Leu-OH as the first amino acid 

followed by capping with 10% acetic anhydride in NMP (3 x 6 mL). The occupancy was determined by 

SOP3 (0.31 mmol/g). The peptide was synthesized with automated SPPS following SOP4. Cleavage was 

performed following SOP6/B. The crude product was dissolved in water and purified by preparative 

HPLC to yield the product 46 as a colourless solid (15.4 mg, 9.78 µmol, 10%). 
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HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

30-50% B, 30 min): Rt = 19.5 min. 

HR-MS (ESI): calc. for [C71H125N22O16S]+ ([M+H]+): 1573.9359, found: 1573.9354; calc. for 

[C71H126N22O16S]2+ ([M+2H]2+): 787.4716, found: 787.4724; calc. for [C71H127N22O16S]3+ ([M+3H]3+): 

525.3168, found: 525.3167. 

 

Alexa Fluor® 488 labelled [Ser11Cys]-β-pompilidotoxin (49) 

 

 

 

Based on the procedure of LUMIPROBE, [Ser11Cys]-β-pompilidotoxin (46) (1.97 mg, 1.25 µmol, 0.90 eq.) 

was dissolved in 50 mM degassed phosphate buffer (2.78 mL, pH = 7.08) under argon atmosphere.[238] 

TCEP solution (77 µL, 10.0 µmol, 8.00 eq., 0.13 M solution in 50 mM degassed phosphate buffer) was 

added and the solution stirred for 5 min. Under exclusion of light Alexa Fluor® 488 C5 maleimide 

(139 µL, 1.39 µmol, 1.00 eq., 10 mM solution in DMF) was added and the reaction mixture stirred for 

2 h at rt and stored overnight at 4 °C. The solution was diluted 1:1 with acetonitrile and purified by 

preparative HPLC to yield the product 49 as an orange solid (0.97 mg, 426 nmol, 34%). 

 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

25-55% B, 30 min): Rt = 22.6 min. 

HR-MS (ESI): calc. for [C101H152N26O28S3]2+ ([M+2H]2+): 1136.5210, found: 1136.5172; calc. for 

[C101H153N26O28S3]3+ ([M+3H]3+): 758.0164, found: 758.0153. 
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[Ser(2’-propyne)]-β-pompilidotoxin (47) 

 

 

 

[Ser(2’-propyne)]-β-pompilidotoxin (47) was synthesized on rink amide MBHA resin (loading 

0.57 mmol/g). Therefore, the resin was preloaded following SOP2 using Fmoc-L-Leu-OH as the first 

amino acid followed by capping with 10% acetic anhydride in NMP (3 x 6 mL). The occupancy was 

determined by SOP3 (0.31 mmol/g). The peptide was synthesized with automated SPPS following 

SOP4. Cleavage was performed following SOP6/B. The crude product was dissolved in water and 

purified by preparative HPLC to yield the product 47 as a colourless solid (15.1 mg, 8.97 µmol, 9%). 

 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

30-50% B, 30 min): Rt = 17.8 min. 

HR-MS (ESI): calc. for [C77H132N23O19]+ ([M+H]+): 1683.0064, found: 1683.0060; calc. for 

[C77H133N23O19]2+ ([M+2H]2+): 842.0069, found: 842.0069; calc. for [C77H134N23O19]3+ ([M+3H]3+): 

561.6737, found: 561.6735. 

 

[Cys]-β-pompilidotoxin (48) 

 

 

 

[Cys]-β-pompilidotoxin (48) was synthesized on rink amide MBHA resin (loading 0.29 mmol/g). 

Therefore, the resin was preloaded following SOP2 using Fmoc-L-Leu-OH as the first amino acid. The 

peptide was synthesized with manual SPPS following SOP5. Cleavage was performed following SOP6/A 

for 3 h. The crude product was dissolved in water and purified by preparative HPLC to yield the product 

48 as a colourless solid (45.3 mg, 27.3 µmol, 27%). 

 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

20-50% B, 30 min): Rt = 23.3 min. 
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HR-MS (ESI): calc. for [C74H130N23O18S]+ ([M+H]+): 1660.9679, found: 1660.9654; calc. for 

[C74H131N23O18S]2+ ([M+2H]2+): 830.9876, found: 830.9832; calc. for [C74H132N23O18S]3+ ([M+3H]3+): 

554.3275, found: 554.3268. 

 

Alexa Fluor® 488 labelled [Cys]-β-pompilidotoxin (50) 

 

 

 

Based on the procedure of LUMIPROBE, [Cys]-β-pompilidotoxin (48) (0.66 mg, 0.40 µmol, 0.80 eq.) was 

dissolved in 50 mM degassed phosphate buffer (1 mL, pH = 7.08) under argon atmosphere.[238] TCEP 

solution (40 µL, 8.00 µmol, 16.0 eq., 0.20 M solution in 50 mM degassed phosphate buffer) were added 

and the solution stirred for 5 min. Under exclusion of light Alexa Fluor® 488 C5 maleimide (50 µL, 

0.50 µmol, 1.00 eq., 10 mM solution in DMF) was added and the reaction mixture stirred for 2 h at rt 

and stored overnight at 4 °C. The solution was diluted 1:1 with acetonitrile and purified by preparative 

HPLC to yield the product 50 as an orange solid (0.09 µg, 39.0 nmol, 10%). 

 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

20-50% B, 30 min): Rt = 26.5 min. 

HR-MS (ESI): calc. for [C104H157N27O30S3]2+ ([M+2H]2+): 1180.0370, found: 1180.0364; calc. for 

[C104H155N27Na2O30S3]2+ ([M+2Na]2+): 1202.0190, found: 1202.0190; calc. for [C104H158N27O30S3]3+ 

([M+3H]3+): 787.0271, found: 787.0285. 

 

 

 

 

 


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8.4.4 Synthesis of labelled iberiotoxin (52) 

 

 

 

Based on the procedure in the molecular probes® handbook, iberiotoxin (51) (RTI400 ALOMONE LABS, 

0.10 mg, 23.5 nmol, 1.00 eq.) was centrifuged at 10000 x g for 2 min and under an argon blanket DMF 

(34.0 µL), triethylamine (0.69 µL, 100 mM, 3.00 eq.) and a solution of Alexa Fluor® 546 carboxylic acid, 

succinimidyl ester (reactive towards amines) (0.02 mg, 16.1 nmol, 0.70 eq. in 16 µL DMF) were 

added.[233] The solution was stirred overnight at rt and evaporated under reduced pressure. The 

resulting residue was dissolved in an appropriate amount of MeCN/H2O (1:4, v/v) and purified by HPLC 

yielding the product 52 as a pink solid. 

 

HPLC (analytical, A (99.9% H2O, 0.10% TFA), B (79.9% MeCN, 20.0% H2O, 0.10% TFA), gradient 

25-50% B, 30 min): Rt = 24.5 min. 

HR-MS (ESI): calc. for [C219H321Cl3N53O67S10]3+ ([M+3H]3+): 1729.9866, found: 1729.9980; calc. for 

[C219H322Cl3N53O67S10]4+ ([M+4H]4+): 1297.7417, found: 1297.7464; calc. for [C219H323Cl3N53O67S10]5+ 

([M+5H]5+): 1038.3948, found: 1038.4042. 
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8.4.5 Syntheses of modified cyclic adenosine-3’,5’-monophosphates 

5-hexynal (55) 

 

 

 

According to the procedure of KOCSIS et al., pyridinium chlorochromate (9.28 g, 43.0 mmol, 2.00 eq.) 

was dissolved in DCM (85 mL) under an argon atmosphere.[226] 5-Hexynol (54) (2.4 mL, 2.11 g, 

21.5 mmol, 1.00 eq.) was added and the mixture stirred for 2 h. Diethyl ether (70 mL) and silica (25.9 g) 

were added and the mixture stirred for 30 min. After filtration over silica and washing with diethyl 

ether, the solution was evaporated under reduced pressure. The crude product was purified by flash 

column chromatography (pentane/diethyl ether 10:1, v/v) to yield the product 55 as a slightly yellow 

solid (528 mg, 5.49 mmol, 26%). The NMR data is in accordance to the literature.[239]  

 

1H-NMR (300 MHz, CDCl3): δ (ppm) = 1.76-1.85 (m, 2 H, CH2CH2CHO), 1.95 (t, 4JH,H = 2.6 Hz, 1H, CCH), 

2.23 (td, 3,4JH,H = 6.0, 2.7 Hz, 2H, CH2CCH), 2.57 (td, 3,3JH,H = 7.2, 1.3 Hz, 2H, CH2CHO), 9.76 (t, 3JH,H = 1.3 Hz, 

1H, CHO). 

 

N6-Hex-5-yn-1-yladenosine-3’,5’-cyclic monophosphate tri-n-ethylammonium salt (57) 

 

 

 

Based on the procedure of KATAOKA et al., adenosine-3’,5’-cyclic monophosphate (53) (0.50 g, 

1.52 mmol, 1.00 eq.) was dissolved in water (2.5 mL) and ethanol (2.5 mL), tri-n-butylamine (356 µL, 

1.52 mmol, 1.00 eq.) was added and the mixture stirred until the residue was dissolved (1 h).[225] The 

solvent was evaporated under reduced pressure, co-evaporated with dioxane and the residue dried 

under reduced pressure. Adenosine-3’,5’-cyclic monophosphate tri-n-butylammonium salt (56) 

(0.50 g, 972 µmol, 1.00 eq.) was dissolved in acetic acid (9 mL), heated to 50 °C and 5-hexynal (55) 
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(528 mg, 5.49 mmol, 5.65 eq.) was added. After 30 min sodium cyanoborohydride (305 mg, 4.86 mmol, 

5.00 eq.) was added and the reaction mixture stirred overnight at 50 °C. The reaction was quenched 

with water and the solvent was evaporated under reduced pressure. HPLC purification yielded the pure 

product 57 as a colourless solid (34.8 mg, 68.2 µmol, 7%). 

 

HPLC (semipreparative, A (0.10 M TEAA buffer pH 7), B (70% MeCN, 30% 0.10 M TEAA pH 7), gradient 

5-60% B, 25 min): Rt = 19.3 min. 

1H-NMR (300 MHz, D2O, 35 °C): δ (ppm) = 1.31 (t, 3JH,H = 7.3 Hz, 9H, CH3), 1.53-1.65 (m, 2H, 

CH2CH2CCH), 1.69-1.78 (m, 2H, NHCH2CH2), 2.23 (td, 3,4JH,H = 6.9, 2.6 Hz, 2H, CH2CCH), 2.37 (t, 

4JH,H = 2.6 Hz, 1H, CCH), 3.23 (q, 3JH,H = 7.3 Hz, 6H, CH2CH3), 3.49 (t, 3JH,H = 6.8 Hz, 2H, NHCH2), 4.41-4.84 

(m, 5H, H2’, H3’, H4’, H5’), 6.10 (s, 1H, H1’), 8.14 (s, 1H, H8), 8.16 (s, 1H, H2). 

13C-NMR (126 MHz, D2O, 35 °C): δC (ppm) = 5.6 (CH3), 14.7 (CH2CCH), 22.4 (CH2CH2CCH), 25.0 

(NHCH2CH2), 37.6 (NHCH2), 44.0 (CH2CH3), 64.5 (d, 2JC,P = 6.9 Hz, C5’), 65.3 (CCH), 69.0 (d, 2JC,P = 4.3 Hz, 

C3’), 69.6 (d, 3JC,P = 7.9 Hz, C2’), 74.5 (d, 3JC,P = 4.5 Hz, C4’), 83.0 (CH2CCH), 88.6 (C1’), 115.9 (C5), 136.0 

(C8), 144.2 (C4), 150.0 (C2), 151.4 (C6). 

31P-NMR (122 MHz, D2O, 35 °C): δP (ppm) = -2.85. 

HR-MS (ESI): calc. for [C16H21N5O6P]+ ([M+H]+): 410.1224, found: 410.1226; calc. for [C16H20N5NaO6P]+ 

([M+Na]+): 432.1043, found: 432.1043; calc. for [C16H19N5O6P]- ([M-H]-): 408.1078, found: 408.1077. 
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Alexa Fluor® 488 labelled N6-hex-5-yn-1-yladenosine-3’,5’-cyclic monophosphate tri-n-

ethylammonium salt (58) 

 

 

 

Based on the procedure of SEELA et al. and the manual for Alexa Fluor® 488 azide, Alexa Fluor® 488 

5-carboxamido-(6-azidohexanyl), bis(triethylammonium salt) (0.50 mg, 581 nmol, 1.06 eq.) was 

dissolved in DMF (9 µL) and combined with N6-hex-5-yn-1-yladenosine-3’,5’-cyclic monophosphate tri-

n-ethylammonium salt (57) (0.28 mg, 548 nmol, 1.00 eq.) dissolved in DMF (8 µL).[227] Sodium ascorbate 

(1.74 µL, 0.1 M solution in water, 174 nmol, 0.32 eq.) and copper (II) sulphate pentahydrate (1.03 µL, 

0.05 M solution in DMF, 51.3 nmol, 0.09 eq.) were added, the solution was centrifuged shortly and 

stirred for 16 h at rt. The solvent was evaporated under reduced pressure, the residue dissolved in 

0.1 M TEAA buffer and purified by HPLC to yield the product 58 as an orange solid (0.08 mg, 65.8 nmol, 

12%). 

  

HPLC (analytical, A (0.10 M TEAA buffer pH 7), B (70% MeCN, 30% 0.10 M TEAA buffer pH 7), gradient 

0-40% B, 30 min): Rt = 23.4 min. 

HR-MS (ESI): calc. for [C43H45N11O16PS2]- ([M-H]-): 1066.2230, found: 1066.2247; calc. for 

[C43H44N11NaO16PS2]- ([M-2H+Na]-): 1088.2050, found: 1088.2049; calc. for 

[C43H43N11Na2O16PS2]- ([M-3H+2Na]-): 1110.1869, found: 1110.1867. 
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1-Bromo-5-hexyne (89) 

 

 

 

According to the procedure of SHARMA et al., phosphorus tribromide (1.71 mL, 18.2 mmol, 2.80 eq.) 

was added dropwise to 5-hexynol (54) (5.62 mL, 50.9 mmol, 1.00 eq.) in anhydrous diethyl ether 

(18 mL) at -5 °C.[229] The reaction was stirred for 2 h at -5 °C, warmed to rt and quenched with cold 

saturated NaHCO3 (aq) (10 mL). The organic phase was washed with saturated NaHCO3 (aq) (10 mL) 

and the combined aqueous phases were extracted with diethyl ether (10 mL). The solvent was 

removed under reduced pressure and the crude product distillated (70 °C, 23 mbar) to yield the 

product 89 as a colourless liquid (1.89 g, 11.7 mmol, 23%). 

 

1H-NMR (600 MHz, CDCl3): δ (ppm) = 1.61-1.70 (m, 2H, Br (CH2)2CH2), 1.96-2.00 (m, 3H, CH, BrCH2CH2), 

2.23 (td, 3,4JH,H = 7.0, 2.7 Hz, 2H, CH2CCH), 3.43 (t, 2H, 3JH,H = 6.7 Hz, BrCH2). 

13C-NMR (126 MHz, CDCl3): δC (ppm) = 17.7 (CH2CCH), 26.9 (Br(CH2)2CH2), 31.7 (BrCH2CH2), 33.2 (BrCH2), 

69.0 (CH), 83.7 (CCH). 

 

2’O-Hex-5-yn-1-yladenosine-3’,5’-cyclic monophosphate tri-n-ethylammonium salt (62) 

 

 

 

Based on the procedure of KATAOKA et al., adenosine-3’,5’-cyclic monophosphate (53) (110 mg, 

333 µmol, 1.00 eq.) was added to a stirred solution of KOH (149 mg, 2.66 mmol, 8.00 eq.) in water 

(3 mL).[228] A solution of 18-crown-6 (264 mg, 999 µmol, 3.00 eq.) in dioxane (3 mL) was added, followed 

by 1-bromo-5-hexyne (89) (322 mg, 2.00 mmol, 6.00 eq.). The mixture was stirred at 50-60 °C for 2 d. 

After 1 d additional dioxane (12 mL) was added. The mixture was adjusted to pH 7 with 2 N HCl (aq) 
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and the solvent removed under reduced pressure. HPLC purification yielded the pure product 62 as a 

colourless solid (94.2 mg, 185 µmol, 55%). 

 

HPLC (analytical, 0.95 mL/min, A (0.10 M TEAA buffer pH 7), B (70% MeCN, 30% 0.10 M TEAA buffer 

pH 7), gradient 5-50% B, 25 min): Rt = 18.8 min. 

1H-NMR (300 MHz, [D6]DMSO, 35 °C): δ (ppm) = 1.09 (t, 3JH,H = 7.2 Hz, 9H, CH3), 1.47-1.68 (m, 4H, 

OCH2CH2CH2), 2.18 (td, 3,4JH,H = 6.9, 2.6 Hz, 2H, CH2CCH), 2.69 (d, 4JH,H = 2.6 Hz, 1H, CCH), 2.80 (q, 

3JH,H = 7.2 Hz, 6H, CH2CH3), 3.51-3.72 (m, 2H, OCH2), 3.87-4.19 (m, 3H, H3’, H5’), 4.41 (d, 3JH,H = 5.2 Hz, 

1H, H2’), 4.77-4.83 (m, 1H, H4’), 6.02 (s, 1H, H1’), 7.28 (s, 2H, NH2), 8.16 (s, 1H, H2), 8.27 (s, 1H, H8). 

13C-NMR (126 MHz, [D6]DMSO, 35 °C): δC (ppm) = 9.8 (CH3), 17.4 (CH2CCH), 24.6 (CH2CH2CCH), 28.3 

(OCH2CH2), 45.5 (CH2CH3), 65.6 (d, 2JC,P = 6.6 Hz, C5’), 69.4 (OCH2), 71.1 (CCH), 72.4 (d, 2JC,P = 3.4 Hz, 

C3’), 77.0 (d, 3JC,P = 4.5 Hz, C4’), 79.2 (d, 3JC,P = 7.4 Hz, C2’), 84.3 (CH2CCCH), 89.6 (C1’), 119.1 (C5), 139.6 

(C8), 148.7 (C4), 152.8 (C2), 156.0 (C6). 

31P-NMR (122 MHz, [D6]DMSO, 35 °C): δP (ppm) = -4.02. 

HR-MS (ESI): calc. for [C16H19N5O6P]- ([M-H]-): 408.1078, found: 408.1071. 

 
Alexa Fluor® 555 labelled 2’O-hex-5-yn-1-yladenosine-3’,5’-cyclic monophosphate tri-n-

ethylammonium salt (63) 

 

 

 

Based on the procedure of SEELA et al. and the manual for Alexa Fluor® 555 azide, Alexa Fluor® 555 

azide triethylammonium salt (0.50 mg, 588 nmol, 1.00 eq.) was dissolved in DMF (9 µL) and combined 

with 2’O-hex-5-yn-1-yladenosine-3’,5’-cyclic monophosphate tri-n-ethylammonium salt (62) (0.36 mg, 

706 nmol, 1.20 eq.) dissolved in DMF (8 µL).[227] Sodium ascorbate (1.76 µL, 0.10 M solution in water, 

174 nmol, 0.30 eq.) and copper (II) sulphate pentahydrate (1.04 µL, 0.05 M solution in DMF, 51.3 nmol, 

0.09 eq.) were added, the solution was centrifuged shortly and stirred for 16 h at rt. The solvent was 

evaporated under reduced pressure, the residue dissolved in 0.10 M TEAA buffer and purified by HPLC 

to give the product 63 as a pink solid (113 nmol, 19%). 
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HPLC (analytical, 0.95 mL/min, A (0.10 M triethylammonium acetate buffer pH 7), B (70% MeCN, 30% 

0.10 M triethylammonium acetate buffer pH 7), gradient 5-50% B, 25 min): Rt = 21.8 min. 

HR-MS (ESI): calc. for ([M-2H]2-): 573.6999 (based on the Alexa Fluor® 555 azide MS(ESI) ([M-1H]-): 

739.2919), found: 573.7013.  
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    Abbreviations 

 

 

Acm Acetoamidomethyl 

AcOH Acetic acid 

ATP Adenosine triphosphate 

BK channel Big potassium channel 

Boc Tert-butyloxycarbonyl 

BSA Bovine serum albumin 

Bzl Benzyl 

cAMP Cyclic adenosine-3’,5’-monophosphate 

cAR cAMP receptor 

CD Circular dichroism 

Chtx Charibdotoxin 

CI Chemotactic index 

CID Collision-induced dissociation 

CuAAC Copper(I)-catalysed azide-alkyne cycloaddition 

DBU 1,8-Diazabicyclo[5.4.0]undec-7-en 

DCC 1,3-Dicyclohexylcarbodiimide 

DCM Dichloromethane 

DCU N,N’-Dicyclohexylurea 

D. discoideum Dictyostelium discoideum 

DIC N,N’-Diisopropylcarbodiimide 

DIPEA N,N-Diisopropylethylamine 

DMF Dimethylformamide 

DMNB 3,5-Dimethoxy-o-nitrobenzyl 

DMNPB 3-(4,5-Dimethoxy-2-nitrophenyl)-2-butyl 

DMSO Dimethyl sulphoxide 

Dmt Dimethoxytrityl 

Dpa 2,2’-Dipicolylamine 
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EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

EDTA Ethylenediaminetetraacetic acid 

ESI Electrospray-ionisation 

EtOAc Ethyl acetate 

EtOH Ethanol 

FDA Food and Drug Administration (US) 

FlAsH-EDT2 4’,5’-Bis(1,3,2-dithioarcolan-2-yl)fluorescein 

Fmoc Fluorenylmethyloxycarbonyl 

GFP Green fluorescent protein 

HBTU N,N,N′,N′-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate 

HF Hydrofluoric acid 

HOBt 1-Hydroxybenzotriazole 

HPLC High performance liquid chromatography 

HR-MS High resolution mass spectrometry 

Ibtx Iberiotoxin 

LC-MS Liquid chromatography mass spectrometry 

LplA Lipoic acid ligase 

LAP LplA acceptor peptide 

MALDI Matrix assisted laser desorption/ionisation 

Mbzl 4-Methylbenzyl 

MeCN Acetonitrile 

MeOH Methanol 

MS Mass spectrometry 

NB 2-nitrobenzyl (a PPG) 

NHS-ester N-Hydroxysuccinimide ester 

NMP N-Methyl-2-pyrrolidone 

NMR Nuclear magnetic resonance 

NTA Nitrilotriacetic acid 

NVOC 6-nitroveratryloxycarbonyl 

ORN Olfactory receptor neuron 

Pbf 2,2,4,6,7-Pentamethyldihydrofurane-5-sulphonyl 

PCC Pyridinium chlorochromate 

PDI Protein-disulphide-isomerase 

PEG Polyethylene glycol 

PGA Penicillin G acylase 
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pGlu Pyroglutamate 

Phacm Phenylacetoamidomethyl 

Pmtx Pompilidotoxin 

PNPCl 4-Nitrophenyl chloroformate 

POI Protein of interest 

PPG Photoremovable protecting group 

PTM Post-translational modification 

RP-HPLC Reverse phase HPLC 

RuAAC Ruthenium(II)-catalysed alkyne-azide cycloaddition 

SOP Standard operating procedure 

SPAAC Strain-promoted azide-alkyne cycloaddition 

SPPS Solid phase peptide synthesis 

SPyr 2-Pyridinesulphenyl 

StBu tert-Butylthio 

STX Saxitoxin 

TBTA Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine 

tBu tert-Butyl 

TCEP Tris(2-carboxyethyl)phosphine 

TEAA Triethylammonium acetate 

TES Triethylsilane 

TFA Trifluoroacetic acid 

TFE 2,2,2-Trifluoroethanol 

TIS Triisopropylsilane 

TLC Thin layer chromatography 

TM Target molecule 

Trt Trityl 

TTX Tetrodotoxin 

VGCC Voltage-gated calcium channel 

VGSC Voltage-gated sodium channel 

v/v Volume to volume 
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