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Abstract 

 

The adaptor protein 1 (AP-1) complex of clathrin-coated vesicles (CCVs) mediates 

protein transport between the trans-Golgi-network and endosomes. It consists of the 

two large adaptins γ1 and β1, both of which bind clathrin and accessory proteins, and 

the two smaller adaptins, μ1 and σ1, both of which bind cargo proteins. Three σ1 

adaptin isoforms, A, B, and C, are encoded by separate genes. σ1B is the brain specific 

isoform and σ1A is the ubiquitous isoform, this also explains the viability of the mice.  

σ1B -/- mice have impaired spatial memory and AP-1/σ1B deficient humans have a 

severe mental retardation.  σ1B -/- mice have fewer synaptic vesicles (SV), reduced 

SV recycling, but more synaptic CCV and large endosomes. In this study I analyzed 

the CCV accumulation in ‘ko’ synapse in order to understand how and why they are 

formed due to the σ1B-adaptin deficiency. First we found out that the accumulating 

CCV are endocytotic AP-2 CCV, although it was expected that this class of CCV is 

reduced, due to the reduction of SV recycling. Moreover, the coat composition of 

these AP-2 CCVs is altered, and thus, they represent a subpopulation of AP-2 CCVs. 

Based on these data we developed a model where the accumulation of the AP-2 

CCVin ‘ko’ is due to an up-regulated CME or a slow uncoating, suggesting that there 

could be different sub-populations of AP-2 CCV. We were able to isolate a 

subpopulation, and it turned out to be a ‘stable’ AP-2 CCV pool, with higher coat 

stability and thus slower or delayed uncoating. 

Furthermore, we found that the AP-1/σ1B deficiency leads to alterations in the 

endosomal Rab5 pathway. AP-1 σ1A and σ1B adaptins regulate the Rab5 cycle, by 

interacting with several Rab5 effector proteins. This interaction is altered in “ko” 

synapse, leading to enhanced Rab5 activation and thus enhanced early endosome to 

endolysosome protein transport and SV protein degradation.  

These findings demonstrate that AP-1/σ1B deficiency strongly effects the AP-2 CCV 

endocytotic pathway and its functions indicating an interdependent regulation of AP-1 

and AP-2 mediated synaptic vesicle recycling and that AP-1 complexes also regulate 

the endosomal sorting of SV proteins.  
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Introduction 
 
The eukaryotic cell contains several membrane-enclosed compartments: the 

endoplasmic reticulum, the Golgi apparatus, lysosomes, peroxisomes, endosomes, 

secretory granula, nucleus and mitochondria. Newly synthetized proteins have to be 

transported to these organelles, because they are synthesized only in the cytoplasm or 

at the rough endoplasmic reticulum (ER). Proteins synthetized in the endoplasmic 

reticulum are targeted to the Golgi complex, where they are processed and 

glycosylated and afterwards processed, phosphorylated, sulfated etc. by Golgi and 

trans-Golgi network specific enzymes. These modifications are generally used to 

activate their biological functions and to target them to their final cellular 

compartment. Proteins, which have reached the cis-Golgi complex, will be either 

targeted to the medial and late Golgi complex or they will be sent back to the ER, if 

they are ER resident proteins or if they are not properly processed and non-functional. 

Once the proteins are correctly processed in the trans-Golgi-Network (TGN), they 

are sorted (Ferreira & Veldhoen, 2012) to organelles of the so-called ‘late secretory 

pathway’ and finally to either the plasma membrane or lysosomes. Proteins destined 

to regulated exocytotic release are transported to secretory granula, which are 

targeted to the plasma membrane. The trafficking is also retrograde, eg receptors that 

recycle between compartments. Exo- and endocytotic pathways are the connections 

of the cells with the environment. Plasma membrane and extracellular proteins enter 

the cells through a membrane-mediated process. The endocytotic membranes are 

targeted to the early endosomes, where recycling proteins are separated from those 

destined for degradation. All these steps are mediated by transport vesicles, able to 

target cargo proteins to all of the various compartments of the organelle network. 

 

1.1 Coated vesicles 

 

The transport vesicles are formed by a cytoplasmic protein coat and coated-vesicle 

biogenesis is orchestrated by those proteins. Coat complexes mediate two essential 

steps during coated vesicle formation: physical rearrangements of the membrane into 

highly curved areas that result in a membrane bud, and cargo protein recruitment. At 

the same time, they bind to membrane lipids, cargo protein and interact with co-
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adaptor proteins and other components of the coated vesicles. Therefore, role cannot 

be simply reduced to the membrane budding and cargo protein recruitment. Once the 

coat polymerization is completed, the bud undergoes a scission event, separating it 

from the membrane and releasing the coated vesicle. 

The trafficking among all the organelles is mediated by three categories of coated 

vesicles, distinguished by their different coats: COP, adaptin-complexes with 

clathrin-basket and adaptin-complexes without clathrin. 

 

 

Fig. 1. Newly synthesized proteins are transported between the organelles of the 

biosynthetic/secretory pathway by different categories of coated vesicles: COPI,COPII, and 

CCV. (AP coats without clathrin are not indicated in this scheme) (taken from Bonifacino and 

Glick 2004).  

 

The targeting of the proteins from the endoplasmic reticulum to the cis-Golgi 

compartment is mediated by COP-II vesicles, while COP-I vesicles shuttle the 

proteins from the Golgi complex compartments back to earlier organelles of the 

pathway. The last stage of this network is orchestrated by the clathrin-coated-vesicles 

(CCV), shuttling the proteins from the trans-Golgi network (TGN) to early 

endosomes and vice-versa. Furthermore, they mediate the endocytosis of plasma 

membrane proteins. Formation of all of these three vesicles categories has in 

common also the type of regulatory mechanisms acting in their formation. The 

timing is regulated by small GTP-binding proteins. The vesicle formation is initiated 

by activation of a small GTPase, which upon GTP-binding exposes an N-terminal 

amphipathic helix that anchors the protein to the outer leaflet of the membrane. The 

GTPase protein then supports the recruitment of coat protein complexes that in turn 

recruit the other coat protein components and the cargo proteins through a peptide-
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motif specific interaction. In the clathrin-dependent endocytosis (explained in details 

further below) the GTP-binding protein is not necessary to support coat formation 

and complexes are recruited to the membrane solely by membrane lipids and cargo 

proteins. 

 

1.1.1 COP-II vesicles shuttle the protein from the ER to the Golgi complex 

 

The COP-II vesicles mediate the protein shuttling from the endoplasmic reticulum 

(ER) to the Golgi complex. The coat assembles sequentially; the GTP-binding 

protein is Sar1. As shown in Fig. 2, once that Sar1 is activated by the ER membrane 

glycoprotein Sec12, it recruits the adaptor heterodimeric complex Sec23-24 of about 

200 kDa. Sec23-24 binds cargo proteins via several binding motifs distributed on its 

membrane-binding surface. Sec23-24 recruits the additional coat-protein Sec13-31 

complex, recognizing its prolin-rich domain. Sec13-31 forms cage-like structures 

that impose membrane curvature and confer structural rigidity to the COP-II coat. 

The interaction between the two complexes activates the Sar-1 GAP activity of 

Sec23 and the GTP-GDP switch leads the membrane-associated coat to be rapidly 

disassembled. However the last step, the fission of the vesicle, is driven by the N-

terminal helix of Sar1-GTP, inserted in the membrane, that induces surface 

asymmetry between the outer and inner membrane layers promoting curvature and 

subsequently the hemi-fusion of the lipid layers and then the fission of the 

membranes (Venditti, Wilson, and De Matteis 2014) 

 
Fig. 2. COPII vesicle cycle is driven by the coat-complexes Sec23-24, Sec13-31 and the small 

GTP-binding protein Sar1 (taken from Venditti et al. Cell review 2014)  
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1.1.2 Retrograde transport from ER to the Golgi complex is mediated by COP-I 

vesicles. 

 

The COP-I vesicles mediate the retrograde transport through the Golgi complex and  

back to the ER. The COP-I coat comprises a 600 kDa coatomer, composed of seven 

subunits (Kirchhausen et al., 2000). Unlike the COP-II and also the CCV coats, the 

COP-I coatomer is recruited ‘en bloc’ as a single complex. However, two 

subcomplexes can be distinguished: the adaptor subcomplex (γ-β-δ-ζ COPs), 

comparable to the Sec23-24, and the cage-like subcomplex (α-β´-ε COPs). The 

adaptor subcomplex (γ-ζ- COPs) interacts with the small GTP-binding protein Arf1, 

at a stoichiometric ratio of 1:2 Arf1:COPs. Arf1 binds the membrane through its 

myristoylated helix, which is free in the GTP-bound state; at the same time Arf1-

GTP recruits and binds the COP-I coatomer leading to the membrane curvature (Fig. 

3). The motif-specific (FFXXKKXX) for cargo recruitment competes with the Arf1 

GTP-GDP switch (inactivation). This mechanism mediates the timing and regulation 

of the cycle.  

 

   
Fig. 3. COP-I coat is composed of only one heteroeptomeric complex that with the Arf1-GTP 

drives the vesicle cycle (cargo recruitment, membrane curvature, vesicle release). The complex 

however can be subdivided in two subcomplexes: adaptor subcomplex (γ-ζ COPs) and the cage-

like subcomplex (α-β´-ε COPs)(taken from Kirschausen Nature Review 2000). 
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1.2 Clathrin-coated vesicles and Adaptor-Protein Complexes. 

 

Clathrin-coated-vesicles (CCV) are the most prominent of the carrier vesicles. They 

mediate the transport between the TGN and the early endosomes, and the clathrin-

mediated endocytosis (CME). CCV are mainly composed of two distinct complexes: 

the clathrin cage and the adaptor-protein complexes. There are 5 different, 

homologous adaptor-protein complexes (APs): AP-1, AP-2, AP-3, AP-4 and AP-5 

differing in their localization and function. Of these only AP-1 and AP-2 form CCV, 

whereas clathrin-binding by the others could not be demonstrated. The CCV cycle is 

orchestrated by several different regulatory proteins: proteins sensing the membrane 

curvature, small GTP-binding proteins, kinases and phosphatases and CCV 

uncoating chaperons. 

Although the five AP complexes have different localization and function, their main 

structure is the same (AP-1/AP4 showed in Fig. 4). They are all hetero-tetrameric 

complexes composed of two bigger subunits, whose N-terminal domains bind the 

medium and the small subunit, forming the core of the complex. The C-terminal 

domains of both large subunits, or adaptins, protrude out of the complex and are 

called appendage/ear domains. The cargo recruitment is mediated by the medium (µ) 

and the small adaptins (σ); the appendage domains are involved in the binding of co-

adaptor proteins and the so called ‘auxillary proteins’ and the clathrin-heavy-chain, 

which in addition can be bound by the N-terminal core domains of the large adaptins 

of AP-1 and AP-2 (McMahon et al.) 
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Fig. 4. APs complexes and their adaptin subunits have high structural homologies. The degree 

in homologies is indicated by the colors and their intensities (taken from McMahon, 

Endocytosis.org). 
 

1.2.1 AP-3, AP-4, AP-5 complexes 

 

The clathrin cage and the adaptor complexes have to interact directly and 

simultaneously with several of these regulatory proteins, with the cargoes and with 

the membrane. AP-1 and AP-2 depend on clathrin for vesicle formation, whereas 

AP-3, AP-4 and AP-5 appear to be clathrin-independent.  While the roles of APs-1-3 

are well established, less is known about AP-4 and AP-5. However mutant and 

patient phenotypes indicate that both are involved in a cargo-specific trafficking in 

the endosomal systems. Deficiency in one of these two complexes leads to spastic 

paraplegia, suggesting that AP-4 and AP-5 play a fundamental role in neuronal 

development and homeostasis (Hirst, Irving & Borner, 2013) 

The AP-3 adaptor complex is implicated in the transport of lysosomal membrane 

proteins to lysosome-related organelles, like α-granules, melanosomes etc. 

Deficiencies in AP-3 subunits lead to the Hermansky-Pudlak syndrome, a disease 

characterized by impaired biogensis of lysosome-related organelles (Dell'Angelica 

2009) 

The AP-2 adaptor localizes to the plasma membrane, where it mediates clathrin-

dependent endocytosis. AP-2 has been studied in most detail and is the best 

characterized adaptor complex, because endocytosis is more readily measured then 
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intracellular vesicle modeling events. AP-1 mediates the shuttling between the TGN 

and early-endosomes (details in the next paragraphs).  

 

1.2.2 AP-2: Clathrin-mediated endocytosis (CME) 

 

The best-characterized sorting process by the endosomal system is the rapid 

internalization of selected trans-membrane proteins within clathrin-coated-vesicles 

(CCV). Endocytotic signals consist of linear motifs, conformational determinants, or 

covalent modifications in the cytosolic domains of trans-membrane cargo. These 

signals are interpreted by a diverse set of clathrin-associated sorting proteins 

(CLASPs) that translocate from the cytosol to the inner face of the plasma membrane 

(Traub & Bonifacino, 2013). 

Selection of trans-membrane proteins (referred to as ‘cargo’) for internalization by 

CME involves recognition of endocytotic signals in the cytosolic domains of the 

proteins by adaptors located in the inner layer of clathrin coats. Signal-adaptor 

interactions lead to concentration of the trans-membrane proteins within clathrin-

coated pits that eventually bud into the cytoplasm as CCV. The identification of 

endocytic signals requires extensive molecular dissection of the receptor sequences 

using a combination of mutational and functional analyses (Kirchhausen, Owen & 

Harrison, 2014). This effort led to the current understanding of endocytic signals as a 

highly diverse set of structural features in the cytosolic domains of trans-membrane 

proteins, which can be grouped into three functionally analogous but structurally 

distinct classes: (1) linear motifs, (2) conformational determinants, and (3) covalent 

modifications. Linear motifs are short arrays of invariant and variant amino acids, 

including ‘tyrosine-based’ YXXØ (Collawn et al., 1990; Jadot, Canfield, Gregory & 

Kornfeld, 1992), [FY]XNPX[YF] motifs (Chen, Goldstein & Brown, 1990; Collawn, 

Kuhn, Liu, Tainer & Trowbridge, 1991), and ‘dileucine-based’ [DE]XXXL[LI] 

motifs (Letourneur & Klausner, 1992; Pond et al., 1995). A variation of the dileucine 

motif is formed in the sortilin receptor, which is specifically bound by σ1B (Baltes et 

al., 2014). In this notation, amino acids are represented in single-letter code, X 

indicates any amino acid, Ø indicates an amino acid with a bulky hydrophobic side 

chain, and the brackets mean that either amino acid is allowed at that position. Not 

all signals, however, are linear sequences or fit a canonical motif. There are now 
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many examples of folded domains that contain information for endocytosis (Miller et 

al., 2011; Pryor et al., 2008; Yu, Xing, Harrison, & Kirchhausen, 2010). This 

information consists of conformational arrays of amino acids on the surface of the 

folded domains. Unlike linear motifs, which are common to many proteins, each 

conformational array described to date appears to be unique for a specific cargo. 

Finally, covalent modifications such as phosphorylation of hydroxyl amino acids (Di 

Fiore & von Zastrow, 2014; Ferguson et al., 1996) or poly-ubiquitination on the ε-

amino group of lysine residues (Hicke & Riezman, 1996; Piper, Dikic, & Lukacs, 

2014) in the cytosolic domains can also function as endocytic signals. 

 

Fig. 5. The endocytic cargo–adaptor interaction network. (A) Schematic representation of 

selected sorting signal-recognition partner relationships for endocytic trafficking. Both protein-

protein and protein-lipid (PtdInsP) interactions among the cargo-selective machinery are 

highlighted with connection lines. The solid lines indicate documented physical interactions, 

whereas dashed lines connote either interactions possible based on properties of other domain 

relatives (IDOL) or known (AP-1), but still of unclear functional necessity. Adaptors, CLASPs, 

and regulators (Idol) discussed explicitly are double circled. (B) Representative modular domain 

architecture classes of selected endocytic proteins. Heterotetrameric complex is AP-2; dimeric 

examples are Fcho1, Syp1p, and eps15; and monomeric CLASPs include ARH, Dab2, Numb, 

CALM, AP180, epsin, and β-arrestin. Tertiary-structured domains are indicated by geometric 

shapes, and intrinsically disordered protein segments by a line (taken from Traub & Bonifacino 

2013). 
 

The recognition of such a wide diversity of endocytic and intracellular sorting signals 

obviously necessitates the existence of multiple adaptors. Indeed, many proteins 
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located in the inner layer of protein coats, including proteins that were initially 

categorized as ‘accessory’, are now known to function as sorting adaptors (Fig. 5) 

Depending on the identity of the scaffolding protein that forms the outer layer, coats 

are classified as clathrin coats or non-clathrin coats. Coats involved in rapid 

internalization from the plasma membrane contain clathrin as their main constituent 

and a set of adaptors known as ‘clathrin-associated sorting proteins’ (CLASPs) (Fig. 

5A). Clathrin coats containing different sets of CLASPs, as well as non-clathrin 

coats, mediate intracellular sorting events. CLASPs are recruited to membranes 

primarily via interactions with specific phosphoinositide lipids, small GTPases of the 

Arf family, and/or other CLASPs, or AP-1 and AP-2. Clathrin then binds to the 

CLASP armature and polymerizes into an overlying polyhedral scaffold. 

Concomitantly, CLASPs engage sorting signals in the cytosolic domains of 

transmembrane cargo, leading to cargo capture and stabilization of the coats. Both 

CLASP-clathrin (Dell'Angelica, Klumperman, Stoorvogel, & Bonifacino, 1998; 

Drake & Traub, 2001)  and CLASP-CLASP interactions (Brett, Traub, & Fremont, 

2002) involve linear motifs (analogous to, but distinct from, cargo sorting signals) 

binding to folded domains, highlighting the general role of this binding mode in the 

assembly and function of clathrin coats. Most interactions among components of 

clathrin coats are of moderate to low affinity (typically in the 1-100 µm range), 

making this mechanism of sorting a highly cooperative and dynamic process. From a 

structural standpoint, CLASPs can be categorized as (1) oligomeric (tetrameric or 

dimeric), and (2) monomeric (Fig. 5B) (Traub & Bonifacino 2013). The main 

endocytic adaptor is the clathrin-associated, heterotetrameric adaptor protein 2 (AP-

2) complex. This complex is composed of two large ‘adaptin’ subunits (α and β2), 

one medium-sized subunit (μ2), and one small subunit (σ2). AP-2 binds the cargoes, 

the PtdIns(4,5)P2 on the membrane and the clathrin heavy chain. The binding module 

in the ‘ear’-domains overlap and bind several regulatory proteins, therefore in 

substochiometric ratios. The cargo interaction and recruitment is mediated by the µ2 

and σ2 adaptins. μ2 binds to the Yxxφ motifs (φ – bulky hydrophobic) and σ2 binds 

to the dileucine based [DE]XXXL[LI] motifs presented by the membrane bound 

cargo proteins. At this stage of the cycle there are different accessory adaptors, for 

the specific recruitment of several cargoes not bound by AP-2. For example Stonin2 

recruits Synaptotagmin 1 and AP180 recruits SNARE proteins. All these co-adaptors 
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have a membrane binding domain (AP180 has an ANTH domain, epsin an ENTH 

domain, FCHO a F-BAR domain) that work also as membrane curvature effector. As 

the cargo is recruited (by AP-2 or co-adaptors), the clathrin coat assembly processes. 

Accumulating evidence suggests that the spatial and temporal regulation of clathrin 

and AP-2 assembly is coordinated by cycles of phosphorylation and 

dephosphorylation. In fact AP-2 recruitment to the plasma membrane appears to be 

modulated, negatively and positively, by phosphorylation. Phosphorylation of the β2 

subunit prevents AP-2 recruitment to clathrin cages in vitro. On the other side, μ2 

phosphorylation, mediated by the specific serine/threonine-kinase AAK1 increases 

the binding affinity of AP-2 for tyrosine-based-internalization motifs (Conner, 

Schroter, & Schmid, 2003). Furthermore, this phosphorylation is crucial for the AP-2 

complex-membrane binding. In fact when µ2 is not-phosphorylated, the adaptor 

complex is in the closed conformation, exhibiting only the one membrane binding 

site for PI-4,5-P2 in the α-adaptin. The phosphorylation of Thr156 of µ2 stabilizes the 

open conformation of the complex, in which the second PIP2 binding site is able to 

reach the membrane. In addition, the steric block of the YxxØ-binding site is 

released (Collins, McCoy, Kent, Evans, & Owen, 2002). This strongly increases the 

stability of the coat.  

The AP-2 complex recruits the clathrin triskelia, the structural subunits of the 

clathrin-cage, directly from the cytosol.‘Knock down’ of AP-2 does not block the 

nucleation of the membrane, but blocks the clathrin coat assembly (Boucrot, 

Saffarian, Zhang, & Kirchhausen, 2010). As shown in Fig. 6, the clathrin triskelion is 

composed by 2 sub-domains: clathrin light chain (CLC) and clathrin heavy chain 

(CHC). CHC of 180 kDa is the major component of clathrin-coated vesicles, and 

there are two CLC classes, CLCa and CLCb with a 1:1 stoichiometric ratio 

(Ungewickell & Ungewickell, 1991). 
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Fig. 6. The protein structure of clathrin and its assembly into clathrin coats. 

(A) Scheme of a clathrin triskelion comprised of three heavy chains and three light chains. 

(taken from Poupon et al. 2008). Schematic representation of a clathrin cage. Individual 

triskelia are highlighted in different colors. 

 

The CLCb phosphorylation-dephosphorylation cycle orchestrates the regulation of 

different mechanisms in the clathrin-mediated endocytosis and CCVs cycle.  

Protease treatment, removing the CLCs and parts of the CHC, revealed that the core 

of CHC is still capable of self-assembly into baskets. Adding back CLCs to isolated 

CLC-free CHC triskelia impaired self-assembly, leading to the notion that CLCs are 

important negative regulators of assembly. Furthermore the CLC:CHC ratio is 1:1 

only in the brain, in the liver it is 1:5 and is also low in all other organs tested. This 

altered ratio suggests a brain specific role of CLC in the regulation of coat-assembly. 

This hypothesis is supported by a CLC role in actin assembly regulation. CLC binds 

directly huntingtin-interacting protein 1-related protein (HIP1R) (Ferreira & 

Veldhoen, 2012), which is required for productive interactions of CCVs with the 

actin cytoskeleton (Poupon et al., 2008). Furthermore, it has been shown that the 

endocytosis of GPCR, a G protein-coupled receptor, is regulated by differential 

phosphorylation of CLCb. CLC phosphorylation at S204 is required for efficient 

uncoating. Mutation of this site effects the interactions between clathrin and 

uncoating effectors (Ferreira & Veldhoen, 2012). The complete formation of the 

clathrin coat results in stabilization of the curvature and the displacement of some 

accessory proteins as EPS15 and epsins.  

The scission and the release of the vesicles depend on the mechanochemical GTP- 

enzyme dynamin, recruited by BAR domain-containing proteins, which have a 

preference for the high membrane curvature present at the vesicle neck (Fig. 7). 
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Fig. 7. the narrowing of the vesicle is mediated by the GTPase dynamin, that is recruited by the 

BAR proteins endophilin and amyphiphysin and sorting nexin 9 (SNX9) (taken from MBInfo 

Wiki, Retrieved).  

 

 

The BAR-domain proteins amphiphysin, endophilin and SNX9 have SRC homology 

3 (SH3) domains able to recognize the Pro-rich domain of dynamin. Polymerization 

around the neck of the nascent vesicle favors GTP hydrolysis, dynamin 

conformational changes and, as consequence, the membrane fission (Neumann et al., 

2013). The precise steps of the GTP hydrolysis-dependent conformational change are 

not clear. Once detached from the donor membrane, the vesicle has to fuse with the 

acceptor membrane, but before the clathrin coat has to disassemble. After uncoating 

the newborn vesicle is able to fuse with the acceptor compartment. The clathrin 

subunits; adaptor proteins are released in the cytosol and are thus available for a new 

cycle of transport vesicle formation. The uncoating reaction is mediated by the 

Hsc70 chaperone and its cochaperones auxilin 1 and auxilin 2 (or G-associated 

kinase GAK). As already mentioned above, the CHC is ‘constitutively’ able to make 

empty clathrin-baskets in the cytoplasm and in fact the primary function of the 

Hsc70 chaperone system is to ensure the availability of clathrin subunits for CCV 

formation. 
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Fig.  8. The uncoating is mediated by the ATPase Chaperon Hsc70 and its cochaperonin Auxilin. 

The clathrin triskelion is highlighted in blue. Auxilin (in red) binds the clathrin triskelion, 

leading displacements of ankle segments; then Auxuilin recruits Hsc70 (in orange) that through 

ATP hydrolysis changes its conformation pushing against the C-terminal domain of the 

trinskelion. This process destabilizing the lattice and leads the shedding oft he clathrin 

coat( taken from Böcking et al., Nature 2011). 

 

Auxilin 1 is recruited after CCV formation, by binding to the terminal domains and 

ankles of clathrin triskelia, and it localizes under the ‘hub’ of a neighboring 

triskelium. Auxilin1 binding, which brings up to three J-domains into the 

neighborhood of each vertex, favors local displacements of the ankle segments, 

leading to expansion of the tunnel and allowing Hsc70 to access its target segment. 

Hsc70–ATP binds the peptide in a groove on its substrate-binding domain where it 

recognizes the QLMLT motif at the C-terminus domain of CHC (Fig. 8). ATP 

hydrolysis, stimulated by encounter with the target and the J-domain of Auxilin, 

clamps the groove in the closed state and releases the J-domain contact. 

Exchange of ATP for ADP reopens the groove, liberates the substrate and resets the 

cycle (Bocking, Aguet, Harrison, & Kirchhausen, 2011). It is important to specify 

that, when CCV scission takes place, it is unlikely that the clathrin cage is completed 

across the zone where the neck was attached, thus leaving a defect in the clathrin 

cage, that allows the uncoating apparatus to start the uncoating process with ease. 

Synaptojanin 1, a PIP2-specific 5-phosphatase, is recruited by endophilin A1. 

Through dephosphorylation of PIP2 to PI-4-P, synaptojanin 1 promotes the 

dissociation of the AP-2 complex from the vesicle membrane. Genetic disruption of 

synaptojanin 1, or of endophilin, produces a striking accumulation of CCV in nerve 

terminals and delayed protein recycling (Cremona et al., 1999; Dickman et al., 2005; 

Hayashi et al., 2008; Milosevic et al., 2011; Schuske et al., 2003; Verstreken et al., 

2003) 
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1.2.3 AP-2 CCV in the synapse 

At synapses the number of synaptic vesicles that undergo exocytosis over a given 

time period greatly exceeds the supply of synaptic vesicle precursors delivered from 

the cell body. Thus, nerve terminals have developed efficient endocytic mechanisms 

to recapture and reuse membranes that have fused with the plasma membrane to 

release neurotransmitters. Although the exocytosis and endocytosis that occur at rest 

or during modest activity does not involve major structural perturbations of nerve 

terminals, intense activity induces major and reversible structural changes that vary 

dependent on the type of stimulation. There are numerous studies demonstrating the 

importance of CME in the internalization of synaptic vesicle proteins and there is 

also strong evidence for the hypothesis that synaptic vesicles can derive directly from 

the uncoating of AP-2 CCV (Saheki & De Camilli, 2012). However, clathrin may not 

be absolutely essential for synaptic vesicle reformation in lower eukaryotes, as a 

recent study in Caenorhabditis elegans has suggested (Sato et al., 2009). There are at 

least three different mechanisms through which endocytosis occurs. In response to a 

very strong exocytotic burst, a different endocytotic mechanism, called bulk 

endocytosis, comes into play. Bulk endocytosis leads to the generation of 

endocytotic vacuoles that are subsequently converted into synaptic vesicles that 

involve AP-2. A third form of ‘endocytosis’, the rapid closure of a vesicles fusion 

pore without a collapse of the vesicle membrane into the plasma membrane, termed 

‘kiss and run’, remains an attractive model to explain electrophysiological and 

dynamic imaging data that are difficult to reconcile with full vesicle cycles and 

endocytotic mechanisms. Large organelles were observed after the intense induction 

of SV cycling in large neuromuscular synapses and thus CCV after their uncoating 

are thought to fuse with early endosomes.  However as explained above, the direct 

reformation of SV from the uncoating CCV is also a plausible pathway in SV 

recycling (Fig. 9). 
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Fig. 9. There are different pathways of synaptic vesicles recycling.  The schematic picture of 

membrane traffic in axon terminals illustrating endocytosis of synaptic vesicle (SV) membranes 

via clathrin-coated pits (CCP) (1), “kiss and run” (2) and bulk endocytosis (3) that leads to 

vesicle formation via unknown mechanisms from endocytic intermediates. This recycling traffic 

is interconnected with housekeeping membrane recycling (4) involving clathrin-mediated 

endocytosis and canonical early endosomes (EE) as well as with traffic to the cell body (5) via 

late endosomes (LE)  and multivesicular bodies (MVBs) (taken from Saheki & De Camilli 2012). 

  

 

1.2.4 AP-1 CCV: early-endosomes and CCV biogenesis 

 

Adaptor protein complex AP-1 mediates protein sorting between the trans-Golgi 

network (TGN) and early-endosomes (EE) (Meyer et al., 2000, Ghosh & Kornfeld 

2003). It consists of four adaptins: γ1 and β1 of 100 kDa and 90 kDa respectively, 

which interact with the clathrin cage. γ1 binds the membrane via PI4P binding, and 

μ1 and σ1, 45 kDa and 20 kDa respectively, that recruit the cargoes through motif 

specific interaction via motifs conserved in AP-2 and AP-1 adaptins. Thus μ1 is 

essential for high affinity membrane binding, but it does not contain, unlike μ2, a 

PIP-binding motif, PI4P indifferent cases (Di Paolo & De Camilli, 2006; Medigeshi 

et al., 2008; Ricotta, Hansen, Preiss, Teichert, & Honing, 2008; Rohde, Wenzel, & 

Haucke, 2002). In addition, μ1 is involved in the regulation of AP-1 membrane 

dissociation and binds the cytoplasmic protein PREPL (prolyl-oligopeptidase-like 

protein), which stimulates AP-1 membrane release (Pepperkok et al., 2000; Malsam 

et al., 1999; Lanoix et al., 1999; Nickel et al., 1998). The AP-1 core has a 

phosphoinositide-binding site for phosphatidylinositol-4-phosphate [PI-4-P] on its γ1 
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adaptin, at a similar location to the PI-4,5-P2-binding site on AP-2 α adaptin 

(Heldwein et al., 2004; Wang et al., 2003). PI-4-P is enriched within domains of the 

TGN and endosomes, and PI4IIβ-kinase is recruited by μ1-binding to the site of 

vesicle formation, supporting rapid recruitment of AP-1 to the site of CCV formation 

(Wieffer et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Left: mediated Arf 1 and tyrosinbased, sorting signal bearing (YXXΦ), binding of the 

AP-1 complex to the membrane. The recognition of YXXΦ signals by AP-1 is only possible with 

a simultaneous PI-4-P binding(Krauss & Haucke, 2007). Right: the interaction of AP-1 hinge 

and ear domains associated with accessory proteins and clathrin (taken from McPherson and 

Knight, 2005). 
 

In contrast to AP-2 membrane recruitment, phosphoinositides and cargo alone are 

insufficient to recruit AP-1 to its sites of action. AP-1 targeting to membranes also 

requires its interaction with a member of the ADP ribosylation factor (Arf) family of 

small GTPases, Arf1 (Fig. 10). Arf1 binds the β1 subunit through its domains called 

Switch I and Switch II while the “back” of the Arf1 protein binds the γ1 subunit, the 

stoichiometric ratio AP-1:Arf1 is 2:2 (Ren et al., 2013) (Fig. 11). Conversion to the 

GTP-bound form requires a guanine nucleotide exchange factor (GEF) (BIG1/BIG2), 

whereas conversion to the GDP-bound form is catalyzed by a GTPase activating 

protein Arf-GAP1. Loading with GTP causes Arfs to undergo a conformational 

change, exposing a myristoylated N-terminal amphipathic helix that inserts into the 

membrane while reconfiguring its switch I-II and interswitch regions to allow the 

binding of effector proteins (Donaldson & Jackson, 2011). Arf-GAP1 activates the 

GTP hydrolysis and thus contributes to AP-1 CCV uncoating (Lanoix et al., 1999; 

Malsam, Gommel, Wieland, & Nickel, 1999; Nickel et al., 1998; Pepperkok, 
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Whitney, Gomez, & Kreis, 2000). The GTP hydrolysis mediated by Arf-GAP1 

promotes the release of the AP-1 from its CCV. Arf-GAP1 is in turn regulated and 

inhibited by the phosphorylation of the serine/threonine kinase LRRK2, that 

phosphorylates Arf-GAP1 in S155, S246, S284 T189, T216, T292. Mutations of any 

of these amino acids enhanced dramatically the Arf1 GTP hydrolysis mediated by 

Arf-GAP1, confirming that the phosphorylation inhibits its GAP activity. In turn 

Arf-GAP1 regulates the activity of LRRK2, which also contains a GTPase domain. 

Arf-GAP1 inhibits auto-phosphorylation and then activation of LRRK2. LRRK2 

phosphorylates the BAR domin of endophilin 1A preventing its membrane binding 

and thus is able to inhibit CCV uncoating. (Xiong, Yuan, Chen, Dawson, & Dawson, 

2012).  

 
 
Fig. 11 (A) A model of AP-1 recruited by two myristoylated Arf1-GTP molecules in cooperation 

with PI(4)P on a membrane. The Μ- and LL-bearing cargos further bind and stabilize AP-1. (B) 

The closed conformation of AP-1 is sterically compatible with the simultaneous binding of Arf1 

to β1 and to the recruitment site on γ. Therefore, the docking of AP-1 to a membrane via the 

simultaneous binding to these two Arf1 molecules does not, by itself, appear to be sufficient for 

activation. (C) The crystallized AP-1:Arf1 dimer can be docked onto a cargo-bearing membrane 

such that the Arf1 myristate moieties, the ends of transmembrane helices of cargo proteins, and 

PI(4)P all lie in the plane of the membrane surface (taken from Ren et al., 2013). 

 

However the regulation of the AP-1 CCV release is also modulated by the 

phosphorylation/dephosphorylation cycle of the complex. AP-1 is selectively 

phosphorylated on the hinge of its β1 subunit, which impairs its binding to clathrin. 
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When AP-1 is recruited from Arf1-GTP to the TGN, the β1 subunit is 

dephosphorylated by PP2A phosphatase, whereas in contrast the μ1 subunit is 

phosphorylated by AAK1 (Wilde & Brodsky, 1996). When AP-1 is on the membrane, 

it recruits the clathrin and facilitates clathrin assembly, which proceeds to the 

formation of a CCV. However AP-1 and AP-2 CCV differ in their set of co-adaptor 

and auxiliary proteins with which they interact. As mentioned above the AP-1 CCVs 

release is promoted by GTP hydrolysis of Arf1-GTP mediated by Arf-GAP1 (Fig. 

12). It has been found that AP-1 activates the Arf-GAP1 induced GTP hydrolysis on 

Arf1. The interaction observed in vitro between the appendage domain of γ1 adaptin 

and the C-terminal catalytic domain of Arf-GAP1 (Hirst, Motley, Harasaki, Peak 

Chew, & Robinson, 2003) is not responsible for GAP stimulation by AP-1. It means 

that there should be a second activating interaction residing in the catalytic part of 

Arf-GAP1 that is activated by AP-1/cargo oligomers. This activation is weaker in 

order to provide more time to complete coat formation. It has recently been shown 

that positive membrane curvature as at the neck of the budding vesicle strongly 

stimulates Arf-GAP1 recruitment to the membrane and most importantly its GAP-

activity (Bigay, Gounon, Robineau, & Antonny, 2003).  

 

Fig. 12. A model for AP-1/clathrin coat recruitment and the role of GTP hydrolysis. Gray 

arrows indicate recruitment of AP-1 to the membrane via Arf1-GTP and either a cytosolic 

factor (CF) or directly to cargo proteins with tyrosine motifs (Μ). On interaction with cargo, 

AP-1 oligomerizes. GTP hydrolysis induced by ArfGAP1 (not drawn for simplicity) causes AP-1 

dissociation unless the clathrin layer has been assembled. Arf1-GTP hydrolysis by ArfGAP1 is 

differentially stimulated by the AP-1/CF complex, the AP-1/cargo oligomers, and by membrane 

curvature limiting the time available for the next step in productive coat formation and 

preparing the adaptor layer for subsequent disassembly, respectively (taken from Bigay et al., 

2003). 
 

The disassembly of the clathrin coat of AP-1 CCV is not different from the already 

described AP-2 CCV disassembly. AP-1 coat release is promoted by PP2A 

phosphatase that dephosphorylates the µ1 subunit. An AP-1 role in the SV cycle has 
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been demonstrated by the analysis of our mouse model deficient in the small adaptin  

σ1B (Glyvuk et al., 2010). 

1.3 AP-1/σ1B-adaptin mediates endosomal synaptic vesicle recycling, learning 

and memory 

 

As already explained above, the AP-1 complex consists of four adaptins: γ1 and β1, 

which interact with membrane and clathrin, the μ1 and the σ1 involved in the motif-

specific-cargo recruitment. In vertebrates, three genes encode the σ1-adaptins: A, B 

and C. One characterized function of σ1-adaptins and their homologous of the other 

AP-complexes is cargo binding (Doray et al., 2007; Janvier et al., 2003)  

However, σ1-adaptins differ from σ2 and σ3 in a C-terminal extension, indicating 

that σ1-adaptins might have additional functions specific for AP-1 mediated protein 

sorting and CCV formation.  

 

Fig. 13. Comparison of σ1A (gold) and σ2 adaptin (yellow) structures as determined by 

Heldwein et al. 2004 PNAS and Collins et al. 2002 Cell; demonstrating the extended C-terminal 

helix in σ1A-adaptin. Amino acids 150-158 of σ1A are unstructured and are not shown (taken 

from Glyvuk et al., 2010) 

 

Several mouse AP-1-adaptin mouse ‘ko’ models have been established by our group, 

which demonstrated that AP-1 is essential for in-utero development. The γ1-deficient 

embryos cease development at embryonic day 3.5 pc, whereas µ1A-deficient 

embryos cease development at mid-organogenesis (day 13.5 pc). The observation 

that µ1A-deficient embryos reach organogenesis is probably due to the homologous 

µ1B isoform, expressed exclusively in polarized epithelial cells (Meyer et al, 2000). 

We generated a targeted mouse ‘knock-out’ of the X-chromosomal σ1B-adaptin 

(Glyvuk et al. 2010). We found that σ1B-adaptin deficient mice are viable and fertile, 

but they were hypoactive. Analysis of hippocampal SV recycling revealed impaired 

SV recycling and the accumulation of endocytotic membranes, indicating for the first 
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time, AP-1 dependent SV recycling through endosomal intermediates in small 

hippocampal boutons. Clathrin-dependent protein sorting has been demonstrated to 

mediate in general basolateral protein sorting, but the pre-synapse corresponds to the 

apical domain (Deborde et al., 2008). Thus, this was the first demonstration of an 

apical function of AP-1 and also a new function of AP-1 in protein sorting. It 

demonstrates SV recycling in small synapses through endosomes that might originate 

from bulk endocytosis. These data also revealed the molecular mechanism for a 

severe human X-chromosome-linked mental retardation. Patients with premature 

STOP-codons in the σ1B gene have a severe mental retardation (Tarpey et al., 2006). 

Tissue-specific mRNA expression of σ1 isoforms was analyzed by northern blot 

analysis and RT–PCR. The σ1A mRNA is ubiquitously expressed and is readily 

detected in all tissues analyzed, but expression is significantly higher in the brain. 

Expression levels of σ1B and σ1C are highly variable and tissue specific, with most 

tissues expressing σ1A and only one of the other isoforms. A genomic fragment of 

the X-chromosomal σ1B locus was isolated, mutated, and introduced into the 

129SV/J mouse line and crossed with C57/B16 animals. The σ1B-deficient mice are 

viable, growth and development is normal, but they are hypoactive, have impaired 

motor coordination and a severely impaired spatial memory. The mice phenotypes 

match the disease in humans. Patients learn to walk only at 4-6 years and they do not 

develop any intelligible language capabilities and require lifelong comprehensive 

care (Tarpey et al 2006). The viability of the σ1B-deficient mice and the tissue-

dependent σ1B expression pattern demonstrate that σ1B is not required for 

ubiquitous, ‘house-keeping’ AP-1 functions, but is expected to mediate tissue-

specific (brain-specific) AP-1 functions. Through 4Pi microscopy it has been 

revealed that AP-1 has a pre-synaptic localization indeed, in line with the mice 

phenotypes in the pre-synaptic membrane organization(Glyvuk et al., 2010). 

In hippocampal synapses number and distribution of SV were determined at resting 

conditions and after stimulation by 900 AP/10 Hz. Although resting synapses from 

controls contained ∼ 230 SVs per µm
2, 

σ1B -/- synapses contained only ∼ 135 SVs 

per µm
2
. After stimulation, the SV density was reduced to ∼ 105 SVs per µm

2
 in wt 

synapse, whereas in σ1B the reduction was to 47 SVs per µm
2
. This could be caused 

by defects in SV recycling or by defect in SV biogenesis, generating vesicles with 

impaired recycling rates.  In addition, SV from σ1B deficient neurons were enlarged, 
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at rest, with diameters of ∼41 nm compared with ∼38 nm in controls and were more 

heterogenous (Fig. 14 right panel). This indicates that σ1B deficiency reduces the 

fidelity of SV formation already at resting conditions. 

 

 
 

Fig. 14. Quantification of synaptic vesicles (SV) number (left panel) and of the accumulation of 

membranous  structures with diameters larger than 60 nm (Central panel). Distribution of SV 

diameters at resting condition in the synapse (Right panel) (taken from Glyvuk et al 2010) 

 

 

Subsequently the targeting of SV to the active zone and their docking to the plasma 

membrane was analyzed and it turned out to be very efficient in σ1B -/- synapses, 

able to partially compensate for the reduced SV numbers. 

On the other side, stimulation of SV recycling increased the number and size of 

organelles (Fig. 15, 3D reconstruction) with a diameter larger than 60 nm (central 

panel Fig. 14). These organelles were isolated and have been biochemically 

characterized as classic, PI-3-P and Rab5-positive early-endosomes (Kratzke et al. 

2014). 
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Fig. 15. 3D reconstruction of synapses from wt (A,B) and “ko” (C,D). In (A) and (C) synaptic 

vesicles are excluded for a clear view of the other organelles. “ko” synapse shows an 

accumulation of large membrane enclosed organelles, characterized as Early-Endosomes (taken 

from Glyvuk et al., 2010). 

 

These data suggest an AP-1/σ1B dependence of SV recycling through early 

endosomes, where most of the AP-1 complexes have been detected. Thus, AP-1/σ1B 

mediated SV formation from endosomal intermediates could contribute to SV 

recycling at high SV turnover rates. However, despite the absence of the AP-1/σ1B 

and the reduced SV recycling, EM images also showed an increase in CCV. The 
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most likely explanation for their existence would be the formation of functionally 

impaired AP-1/σ1A CCV, due to the absence of the second AP-1 complex. 

 

 

1.3.1 Early-endosome functions in SV protein recycling. 

 

Early endosomes are the first and major sorting compartment for endocytosed 

proteins. Proteins can recycle back to the plasma membrane, but can also be 

transported to late, recycling endosomes or even back to the TGN, where the proteins 

would join again the late biosynthetic pathway. Alternatively proteins are sorted to 

late endosomes/lysosomes for their degradation. Association of proteins from the 

cytosol to the cytosolic surface of the EE membrane indicate their major function in 

endosomal protein sorting. Proteins mediating protein sorting in those various 

pathways bind to PI-3-P, enriched in the early endosome membrane. This PI-3-P 

pool is largely generated from PI by the phosphatidylinositol 3‐ kinase Vps34p 

(Schu et al., 1993). Vps34p forms on the membrane a complex with the Ser/Thr 

kinase Vps15p (p150), this complex and the PI3-kinase activity is stimulated by 

Rab5, the marker protein of early endosomes (Stack et al., 1993). Rab5 regulates 

endocytotic vesicle to early endosome as well as homotypic early endosome fusion 

(Fig. 16).  

Analysis of the SV protein content of the endosome/SV pool revealed that about one 

third of the SV proteins are degraded in σ1B -/- synapses. This degradation is 

mediated by their sorting into the multi-vesicular-body late endosome pathway, 

which requires Rab5 and PI-3-P formed by Vps34p (Glyvuk et al., 2010, Kratzke et 

al., 2014).  
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Fig. 16. Rab proteins are members of the Ras superfamily of monomeric GTPases. Different 

Rabs regulate many facets of membrane trafficking, including vesicle formation and movement 

and membrane fusion, and are localized to distinct endosomal compartments. Rab5 regulates 

the fusion and the tethering of the Early-Endosome (taken from Gwyn et al., 2009). 

 

The regulatory principle of Rab proteins, as for other GTPases, lies in their ability to 

function as molecular switches that oscillate between GTP- and GDP-bound 

conformations. The GTP-bound form is considered the ‘active’ form. However, with 

respect to the physiology of the regulated process, the most important feature is the 

ability of GTPases to cycle regularly between GTP- and GDP-bound states. The 

Rab5-GTP bound state is promoted by its specific guanosine nucleotide exchange 

factor Rabex-5. The switch, Rab5-GTP Rab5-GDP, is mediated by the Rab5-specific 

GAP protein Rab-GAP5. Rab5 is localized mainly to the sorting endosome, though it 

is also present on the plasma membrane and on endocytotic vesicles. Its membrane 

association depends on a hydrophobic isoprenoid moiety close to its C-terminus 

domain, but is also regulated by a GTPase cycle.  

Thus, in its GTP-bound state Rab5 is membrane-associated, while GDP-bound Rab5 

is found in a cytosolic complex with the Rab guanine nucleotide dissociation 

inhibitor (GDI). Rab-GDI serves to release Rab5-GDP from membranes, to maintain 

cytosolic Rab5 in a soluble state and to recruit Rab5 efficiently to the endosomal 
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membrane in a reaction accompanied by nucleotide exchange (Ullrich, Horiuchi, 

Bucci, & Zerial, 1994). Rab5-GTP promotes endosome fusion by recruiting  

cytosolic components of the fusion apparatus. The first effector identified was 

Rabaptin-5α, a homodimer with an extended structure consistent with a role in 

membrane docking. Rab5 binds close to the C-terminus domain of Rabaptin-5, in 

order to expose the bulk of Rabaptin-5α to other binding partners (Stenmark, Vitale, 

Ullrich, & Zerial, 1995). In fact Rabaptin-5α binds also Rab4, through its N-terminal 

domain, implicated in the recycling of membrane from the sorting endosome to the 

cell surface. Rabaptin-5α is also directly involved in the GTP-GDP cycle of Rab5, it 

inhibits RabGAP1 and activates, through interaction, Rabex-5 (Zhang et al., 2014). 

In this way the Rab5/Rabaptin5α interaction creates a positive feedback loop in order 

to have a local area of the membrane rich in active Rab5 (Woodman, 2000). 

Rabaptin5α is also bound by the AP-1 γ1-adaptin ‘ear’-domain and this interaction is 

able to control Rabaptin5α functions in early endosome membrane dynamics 

(Deneka et al., 2003). 
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Fig.16 Models representing the essential components of the Rab and SNARE machineries 

involved in homotypic fusion of early endosomes. (Kümmel and Ungermann Current Opinion in 

Cell Biology, 2014) 

 

However the EEA1 ability to bind simultaneously the two Rab5s, one from the donor 

compartment and the other one from the acceptor compartment, is essential for the 

tethering (fig.x) and the fusion. The accumulation of early-endosomes in “ko” 

synapses could be the consequence of an altered CCVs cycle caused in turn by the 

AP1/σ1B “ko”, as alteration in the CCVs composition and regulation could leads a 
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delay in the SV reformation mediated by Early-endosomes. On the other side the 

early-endosomal accumulation could be the reason of CCV cycle alteration: the σ1B 

“ko” could effect the Rab5/endosomal cycle leading changes in shape, size and 

release of clathrin vesicles, in turn this could cause the SV-proteins redistribution. 

Nothing is known about the apical role, in synapses, of endosome and AP1 CCV, 

however all the data coming from the σ1B “ko” revealed that early endosomes 

mediate synaptic vesicle biogenesis and that the AP-1 CCV cycle and the AP-2 SV 

re-uptake are somehow interdependently regulated. 

 

 

 

 

 

 

 

 

 

Aim of the study 

The adaptor complex AP-1 participates in the clathrin vesicles formation mediated  

by Early-endosome. Although nothing is known about the  apical role of AP-1 

complex in synapse, AP-1/σ1B deficient mice showed mental retardation and an 

impaired spatial learning. This phenotype reflects alterations in the synaptic vesicles 

cycle: biogenesis and reuptake. The “ko” synapses is characterized, mainly, by an 

accumulation in Early-endosome and CCV.iswild typehave to 

First of all, we wanted to characterize the accumulated CCV in the “ko” synapse in 

order to understand the reason of this accumulation.  

These accumulated CCV, have proved to be AP-2 CCV thus the next goal is to 

understand what kind of AP-2 CCV accumulate in the σ1B “ko”  synapse and what 

are the differences from the “canonical” AP-2 CCV. 
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Furthermore we want to understand the molecular mechanism linking the AP-

1/endosomal sorting and the rearrangement of the CCV in the other SV pools like the 

SV recycling, were AP-2 CCV are involved. 

Another important goal of the project is to clarify how and why the AP-1/σ1B “ko” 

leads alterations in the Early-endosomal cycle 
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2. Materials and Methods 
 

2.1.1 Specific laboratory equipment 

 

Confocal Scanner Scanning Microscope                                Leica, Bensheim 

Sonicator 220F                                                              Heat System Ultrasonic,      

                                               QC Canada 

Intelligent Dark Box II, LAS-1000                                         Fujifilm, Japan 

Gradient Station IP                                                 Biocomp, NB Canada 

 

All solutions used were, except as otherwise specified, with Ultrapuredeionized 

water applied. This was made using the ultrapure water GenPure Recovered (TKM 

Niederelbert) 

 

2.1.2 Buffers 

 

PBS 
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(phosphate-buffered saline):       140 mM NaCl (AppliChem, Darmstadt) 

                                                    2.5 mM KCl                        (Carl Roth GmbH, Karlsruhe) 

                                                    6.5 mM Na2HPO4                        (Carl Roth GmbH, Karlsruhe) 

1.5 mM KH2PO                  (Carl Roth GmbH, Karlsruhe) 

pH 7.5 

 

TBS 

(tris-buffered saline):  100 mM Tris/HCl              (Carl Roth GmbH, Karlsruhe) 

100 mM NaCl                    (AppliChem, Darmstadt) 

                                                     pH 7.5 

 

TBS-T:    100 mM Tris/HCl               (Carl Roth GmbH, Karlsruhe) 

100 mM NaCl                     (AppliChem, Darmstadt) 

0.05 % Tween 20                (AppliChem, Darmstadt) 

pH 7.5 

 

 

 

 

 

 

CCV Buffer:                10 mM MES                                (SERVA GmbH, Heidelberg)/   

                          (AppliChem, Darmstadt) 

             0.5 mM EGTA                            (Sigma, Steinheim) 

            0.5 mM MgCl2                                                (Merck, Darmstadt)   

             320 mM Sucrose                         (Carl Roth GmbH, Karlsruhe) 

             1 mM Na3VO4                             (Sigma, St. Louis, USA)            

             10 mM NaF                                 (Sigma, St. Louis, USA) 

             10 nM  Calyculin A                     (Axxora, Lörrach) 

                

 

        

 

 

 

 

 

2.2 Cellular Culture Methods 

 

Tab. 2-1: Cell lines used, deriving from WT, AP-1 / σ1B-deficient mice  and  

AP-1 /µ1A-deficient mice  
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Cell line Description Reference 

S1B111 D5 MEF, σ1B +/+  Baltes 2008 

S1B111 E8 MEF, σ1B  -/-  Baltes 2008 

24 A MEF, μ1A +/+  Meyer 2000  

24 MEF, μ1A -/-  Meyer 2000 

 

 

Solutions and Media: 

 

PBS:         150 mM NaCl            (AppliChem, Darmstadt) 

     120 mM KCl            (Carl Roth GmbH, Karlsruhe)

      10 mM Na2HPO4/KH2PO4                      (Carl Roth GmbH, Karlsruhe) 

      0.1 g Phenol red                             (Carl Roth GmbH, Karlsruhe) 

                                             pH 7,4 

 

Trypsin-EDTA Solution:     0.5 g/L Trypsin 

                                             0.2 g/L EDTA            (Gibco Invitrogen, Karlsruhe) 

 

Medium:                              4.5 g/L Dulbecco´s Modified  

                                             Eagle Medium, (DMEM)               (Gibco Invitrogen, Karlsruhe) 

                                             10% (v/v) Fetal Calf Serum 

                                             (FKS)                                              (PAN, Aidenbach) 

                                             1% (v/v) Penicillin/Strepto- 

      mycin (100x Stock solution)          (Gibco Invitrogen, Karlsruhe) 

     1% (v/v) Glutamine 

     (200 mM, 100x Stocksolution)       (Gibco Invitrogen, Karlsruhe) 

 

 

Freezing Medium:        4.5 g/L DME                                      (Gibco Invitrogen, Karlsruhe) 

                                         10% (v/v) FCS                                   (PAN, Aidenbach) 

                                         5% (v/v) Dimethylsulfoxide               (Fluka, Schweiz) 

                                         1% (v/v) Penicillin/Strepto- 

      mycin(100x Stocksolution)            (Gibco Invitrogen, Karlsruhe) 

                                         1% (v/v) Glutamine 

                                         (200 mM, 100x Stocksolution)           (Gibco Invitrogen, Karlsruhe) 

 

  

 

 

 

2.2.1 Mouse embryonic fibroblast´s culture 

 

Mouse embryonic fibroblast (MEF) were incubated under a water-saturated 

atmosphere at 37°C and with a 5%(v/v) CO2 concentration, in plastic flasks (25 cm
2
). 

After reaching confluence the cells were split under sterile conditions; washed with 
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PBS and then treated with trypsin-EDTA solution (0.5 mL), 5 minutes at RT in order 

to detach from the bottom of the flask. The cells were resuspended in 4.5 mL of fresh 

medium,thus the total volume was 5 ml. Only 500 µl of the newly resuspended cells 

were placed in the flask with 4.5 ml of new medium in order to have a 1:10 split ratio 

(250µl in 4.75 ml for 1:10 split ratio). Cells reached again the confluence after 3-4 

days. 

 

2.2.2 Freezing and thawing of cells 

 

For long-term storage, the cells were stored in liquid nitrogen. For this purpose, the 

cells were detached from the bottom of the cell culture flasks as described in 2.2.1. 

The cells were centrifuged at room temperature for 5 min at 300g. The supernatant 

was removed; the cells were resuspended in freezing medium (1mL). Aliquots of 

150-200µl were transferred in 1mL cryotubes and stored at -20 for 3 hours and then 

in liquid nitrogen for long-term storage. Dimethyl sulfoxide in the freezing medium 

is used to avoid the formation of deleterious ice crystals. 

 

To avoid cell damage during thawing, is necessary to work speedily. The cells were 

thawed in a water bath at 37°C and 10 mL of pre-warmed medium was added. The 

cells were centrifuged at 300g for 10 min. The pellet was dissolved in fresh medium 

and the cells were plated in a cell culture flask and incubated as in 2.2.1 

 

 

2.3 Molecular biology 

 

2.3.1 Cloning Procedures 

Bacterial strains 

The following baterial strains were used: 

Strain Application Source 

DH5 α Plasmid amplification Invitrogen 

BL21D3 High level expression of recombinant proteins Stratagene 
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Vectors 

The following vectors were used: 

Plasmid Description Tag Resistance Source 

pGEX4T1 Bacterial expression vector GST Ampicillin GE Healthcare 

pKM260 Bacterial expression vector 6HIS Ampicillin GE Healthcare 

pEGFP Mammalian expression vector GFP Kanamycin  Invitrogen  

 

 

Costructs 

The following contruts were used: 

Construct Amino acids  Mutation Vector  Origin 

Arf-GAP1 Ubiquitous Full length  pKM260 D. Cassel 

Arf-GAP1 Brain iso. Full length  pKM260 D. Cassel 

GFP-Arf-GAP1 Ubiq.   pEGFP D. Cassel 

GFP-Arf-GAP1 Brain   pEGFP D. Cassel 

Rab-GAP1 578-760  pGEX4T1  

Rabex5 396-491  pGEX4T1  

Rabex5 I 396-491 402 <E/A pGEX4T1  

Rabex5 II 396-491 484 <L/A pGEX4T1  

 

DNA Restriction Digest 

DNA fragments were digested, from original vectors, using Fast Digestion Enzymes 

from Thermo Scientific with the relative buffers. 1-4 μg of plasmid DNA was 

digested in a mix containing 10x Fast Digest buffer and 1 unit of restriction enzimes 

per 1 μg of DNA, in a final volume of 30 μl. After 1 μ incubation at 37°C, the DNA 

fragments were loaded in an agarose gel for analysis or for extraction and digestion. 

 

Fragments digestion from agarose gel 

Fragments digestion from agarose gel was performed using the Wizard® SV Gel and 

PCR Clean-Up System kit from Promega and following the relative instructions 
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Ligation 

Ligation reaction was performed using the RapidDNA Ligation Kit from Thermo 

Scientific and following the relative instructions 

Vector:                             100ng 

Construct:                                        5:1 molar excess over vector    

T4 DNA Ligase:                                1µl per reaction                

5X Rapid Ligation Buffer:                                 4µl 

Water, nuclease-free:                                          in order to have a 10µl final volume 

 

 

Bacteria transformation  

Luria Bertani (Wang et al.) medium:                 0.5% yeast extract, 

           1% trypton,  

          0.5% NaCl 

LB plates:          LB medium,  

          1,5% Agar 

 

For heat shock transformation aliquots of chemically competent E.coli were thawed 

on ice. 40-70 ng of plasmid DNA, or 6-7 µl of the ligation reaction were added to the 

cells, incubated on ice for 30 min. For the heat shock, cells were incubated at 42°C 

for 1 min and immediately afterwards 1 ml of LB medium was added and they were 

incubated  for 60 min at 37°C to induce antibiotic resistance. Afterwards, cells were 

pelleted (few seconds, 13000 rpm) and plated on LB-agar plates supplemented with 

the corresponding antibiotic. The plates were incubated overnight at 37°C. The next 

day, colonies were picked and inoculated into LB medium with corresponding 

antibody for further proceedings. 

 

Plasmid DNA Preparation 

For small scale purification of plasmid DNA, E.coli cells were grown overnight in 3 

ml LB medium plus the antibiotic (3 µL from 100 µg/µL stock solution) at 37°C and 

purified using the Wizard® SV Genomic DNA Purification System kit (Promega) 

following the manufacturer’s instructions. 
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2.4 Biochemical Methods 

 

2.4.1 Overexpression of recombinant proteins in E.Coli 

 

LB medium 

 

Expression of recombinant proteins were induced in BL21D3 E. coli strain with 0.5 

mM IPTG for 4 hours at 37°C. Cells were then harvested and washed with ice-cold 

PBS buffer (140 mM NaCl, 2.5 mM KCl, 6.5 mM NaHPO4, 1.5 mM KH2PO, 1 mM. 

PMSF, pH 7.4). Cells were incubated on ice 30 minutes with lysing buffer (PBS pH 

7.4, Lysozime 0.1%, Proteinase Inhibitors) and sonicated 3 minutes at 4°C. After 

lysis, cells  proteins were collected by centrifugation at 4,000 rpm for 25 minutes at 

4°C. Pellet was resuspended in PBS with 7.2 M Urea and sonicated  3 minutes at 4°C 

to dissolve inclusion bodies.The recombinant proteins were then purified by 

Gluthation Sepharose Beads (GST-tagged recombinant proteins) or by Ni-NTA 

beads (6-His-Tagged recombinant proteins) 

 

 

 

 

2.4.2 GST-tagged protein purification 

 

Gluthatione Sepharose Beads:                                        (Amershem, Freiburg) 

 

60 µl of Gluthatione Sepharose Beads were washed with PBS Buffer in order to 

equilibrate the beads and remove the ethanol beads are 75% of the total volume, 25% 

left is ethanol). GST-tagged-recombinant proteins were incubated, for purification, 

with 45 µl of Gluthatione-sepharose beads over night at 4°C with up-down gentle 

rotation. The resin was harvested by  500 x g centrifugation for 20 min at RT,  and 

washed with 10 volumes PBS buffer 5 times.  

 

2.4.3 6-His-Tagged protein purification  
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Ni-NTA-beads:                                                                 (Qiagen, Düren) 

 

The 6-His-Tagged protein purification was performed exactly as the GST-tagged 

protein purification; the only difference is the beads incubation. In this case Ni-NTA-

agarose beads were used to bind the 6-His tag. 

  

 

2.4.4 Pulldown of proteins from brain cytosol by recombinant proteins 

 

Brain cytosol preparation 

 

σ1B-/- and wt brains were sliced with a scalpel in 1.5 mL of lysing buffer (PBS pH 

7.4 with Proteinase Inhibitors), the cut cortex was placed in a glass potter and 

homogenized by 20 strokes (up-and-down) with a “loose” piston and subsequently 

with a “tight” piston (40 strokes). The homogenate cortex was centrifuged at 1000 x 

g for 10 min. The supernatant (S1) was decanted in a new tube, the pellet (P1) was 

washed with lysing buffer and centrifuged again at 1000 g for 10 min; the 

supernatant (S2) was added to S1 and centrifuged at 9200 g for 15 min. The 

supernatant (S3) was discarded and the pellet (P3) resuspended in 1,5 mL of lysing 

buffer and centrifuged at 10200 g for 15 min. According to the size, the pellet (P10), 

containing the synaptosome was resuspended in 500-600 µL of lysing buffer and 

homogenized with a ball homogenizer with a clearance of 12 µm (Isobiotec, 

Heidelberg, Germany) through 40 passages. The homogenized synaptosome was 

centrifuged at 25000 x g for 20 min and the supernatant containing the synaptic 

cytosol was stored. The protein concentration was determined by Bradford assay.  

 

 

2.4.4.1 Incubation of the  synaptic cytosol with beads binding the recombinant 

proteins‘Pull-down’ experiments 

 

Beads with the purified recombinant proteins (6His-tagged or GST-tagged) were 

harvested, after the overnight incubation, and washed with lysi buffer 5 times. 

Subsequently the beads were incubated with the synaptic cytosol for 4 hours at RT. 
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The resin containing the recombinant protein bound to the cytosolic protein, was 

washed with lysi buffer 5 times, resuspended in 45-50 µl (the same volume of the 

beads) of 3x SDS loading buffer and loaded into polyacrylamide gel for western blot 

analyses. 

 

2.4.5 Transient transfection 

 

MATra Transient Transfection  

 

DMEM:                      (Gibco Invitrogen, Karlsruhe) 

MATra Beads:    Magnetic Beads                                           (iba, GmbH, Goettingen) 

Mounting Glass Slide:                (Roth GmbH Karlsruhe) 

 

 

 

Cells have beenwere plated on a 24 multi-well plate, 24-36 hours before the transient 

transfection, in order to have a final confluence of 40-50%. Cells were incubated at 

37°C in a 5% CO2 in 500 µl (each well) of growth medium. 

The transfection was performed with the MATra magnetic beads: 

0.6 µg of GFP-tagged plasmid was incubated for 20 min at RT with 0.6 µl of MATra 

reagent and with DMEM to an end volume of 50 µl per cells slide (growth medium 

change was performed before the transfection). The solution containing the MATra 

reagent and the plasmid was added to the cells and the multi-well plate was placed 

immediately on a suitable Magnet Plate for 15 min at RT. Cells were incubated at 

37°C in a 5%CO2 incubator for at least 48 hours before the immunofluorescence 

assay.  

 

 

 

 

2.4.6 Protein extraction from MEF 

 

Proteinase-Inhibitor-Cocktail (PIC):                      Roche, Mannheim  
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MEF were incubated in 150 mmtissue culture  dishes and after reaching confluence 

were washed with PBS, they were detached with a cell scraper and transferred in a 2 

mL tubes; the cells were centrifuged at 200 g 4 C°, the pellet was washed with PBS 

and centrifuged again at 500g 4 C°. The pellet was resuspended and homogenized 

through a 22G needle. 

 

 

2.4.7 Differential centrifugation for Clathrin Coated Vesicles isolation, from 

brain cortex. 

 

Membrane-bound and soluble proteins from cell disruption are separated through 

differential centrifugation. Mouse cortex from wt and “ko” were sliced with a scalpel 

in 1.5 mL of CCV Buffer, the cut cortex was placed in a glass potter and 

homogenized by 10 strokes with a “loose” piston and subsequently with a “tight” 

piston. The homogenate cortex was centrifuged at 1000 g for 10 min. The 

supernatant (S1) was decanted in a new tube, the pellet (P1) was washed with CCV 

buffer and centrifuged again at 1000 g for 10 min; the supernatant (S2) was added to 

S1 and centrifuged at 9200 g for 15 min. The supernatant (S3) was discarded and the 

pellet (P3) resuspended in 1,5 mL of CCV buffer and centrifuged at 10200 g for 15 

min. According to the size, the pellet (P10) was resuspended in 500-600 µL. The 

solution containing the synaptosome was lysed by 40 passages through a ball 

homogenizer (Isobiotec, Heidelberg, Germany) with a clearance of 12 µm.  This 

extract was centrifuged at 25000 g for 20 min. The pellet (P20) was resuspended in 

500 µL of CCV buffer, the protein concentration was determined by Bradford assay 

and wt and “ko” concentration were normalized; the solution was layered over 20-

50% Sucrose gradient (3.5 mL) and centrifuged at 145000 g for 1.5 hours. The 

gradient (in total 4 mL) was fractionated in 10 fractions of 400 µL. CCV distribution 

was identified through Western Blots. 

 

2.4.8 Hsc-70 Immunoprecipitation  

 

Protein G Sepharose 4 Fast Flow                             (GE Healthcare, Uppsala Sweden) 
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Hsc70 Antibody Mouse Monoclonal                       (SY SY, Göttingen) 

 

Fractions containing the purified CCV were pooled together, for a 1 mL final volume, 

and incubated with 50 µl of protein G sepharose bead slurry (previously washed x3 

with CCV buffer to remove ethanol and equilibrate the beads) for a pre-clear 

procedure, and incubated at 4°C for 1 hour with upside down gentle rotation. The 

beads were spun out with a 30 sec centrifugation at 2000 rpm and flow through 

containing the CCV was saved. 5µg of Hsc70 antibody were added to the pre-cleared 

CCV and incubated overnight. The protein G sepharose beads were washed 3 times 

with CCV buffer and added to the Hsc70-conjugated CCV and incubated with gentle 

upside down rotation at 4°C for 4 hours. The beads were collected through 2000 rpm 

centrifugation and washed 5 times with 1 mL of CCV buffer. Finally the beads were 

resuspended in 60 µl of 3X SDS loading buffer and incubated at 90°C for 5 minutes, 

the supernatant was stored as Elution1, then the beads were resuspended again in 60 

µl of 3X SDS loading buffer for a second elution cycle and thus incubated at 90°C 

for 5 minutes, the supernatant was stored as Elution2. The beads were resuspended in 

40 µl of 3X SDS loading buffer and stored. Elution 1, Elution2, and beads were 

loaded in a polyacrylamide gel for western-blot analyses or submitted for mass 

spectrometry analyses.  

 

2.4.8.1 Immunoprecipitation with 4G10® Platinum-Anti-Phosphotyr-Agarose 

Conjugated-beads 

 

As for the Hsc70 immunoprecipitation, fractions containing CCV were pooled and 

250µg were incubated with 10 µl of 4G10® Platinum-Anti-Phosphotyr-Agarose 

Conjugated-beads, overnight at 4°C. The beads were collected and eluted exactly as 

in 2.4.8 and analyzed by western-blots and mass spectrometry analyses    

 

 

 

2.4.9 Protein Concentration Determination by Bradford Assay 

 

To determine the protein concentration of cell lysates or purified protein a 
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Bradfordassay was performed. 200 μl of 5x Bradford solution was added to 1- 5 μl of 

protein solution in 800 μl water. After 3 min incubation at room temperature the 

absorption at 595 nm was measured. 1x Bradford solution served as a blank. The 

protein concentration from samples was calculated from a reference curve generated 

using BSA as standard. 

 

2.4.10 Semi-quantitative Western blot Analyses  

 

Polyacrylamide gel electrophoresis (SDS-PAGE) 

 

The SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) is a 

biochemical method widely used for the separation of proteins according to their 

electrophoretic mobility; the technique is based upon the principle that a charged 

molecule will migrate in an electric field towards an electrode with opposite sign. 

Mobility is a function of the length, conformation and charge of the protein. SDS is a 

chemical anionic detergent added to linearize proteins and to impart an overall 

negative charge, thereby resulting in a fractionation solely by approximate size 

during electrophoresis. Samples were boiled in the presence of a reducing agent as 

dithiothreitol (DTT) or 2-mercaptoethanol (BME), which further denatures the 

proteins  by reducing disulfide linkages of the tertiary protein folding. 

Proteins samples run in a polyacrylamide matrix with N, N´-Methylenebisacrylamide. 

The polymerization of acrylamide and methylene bisacrylamide proceeds via a free-

radical mechanism. The most common system of catalytic initiation involves the 

production of free oxygen radicals by ammonium persulfate (APS) in the presence of 

the tertiary aliphatic amine N,N,N',N'-tetramethylethylenediamine (TEMED).  Tris-

HCl buffer (containing also SDS) is added for pH adjustment. The gel used is 

divided in two parts, an upper “stacking” gel and a lower “running” gel. The stacking 

gel has a low percentage of acrylamide (with large pore size) and low pH (6.8), so 

that the proteins get squeezed down in a thin layer at the interface between the 

“stacking” and the “running” gel. The running gel has a pH 8.8 and the acrylamide 

percentage is set to 5%-12.5% according to the size range of the proteins to be 

detected. 

 

https://nationaldiagnostics.com/electrophoresis/product/ammonium-persulfate-ultra-pure
https://nationaldiagnostics.com/electrophoresis/product/temed-ultra-pure
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Tab. 2-2: Compositions of gels of different acrylamide concentrations 

The amounts are related to a minigel (55mm x 85mm) 

 

Acrylamide % Stacking gel 

4.5 

Running gel 

  5        7.5        10        12.5        15      

Rotiphorese®-Gel30/mL 

Tris/SDS Buffer/mL 

H2O/mL 

TEMED/µL 

10% APS/µL 

0.45 

0.75 

1.75 

3 

30 

1.3        1.8       2.7        3.3          4 

 2           2          2            2           2 

4.6        3.9       3.2        2.6        1.9 

 8           8          8            8           8 

80          80        80         80         80 

 

 

 

Rotiphorese®-Gel30:     Acrylamide-/Bisacrylamide                 (Carl Roth GmbH, Karlsruhe) 

Stacking gel Buffer:        0,5 M Tris/HCl                                    (Carl Roth GmbH, Karlsruhe) 

                                        0,4% (μ/v) Sodiumdodecylsulfate       (SERVA GmbH, Heidelberg) 

                                        pH 6,8 

Running gel Buffer:        1,5 M Tris/HCl                                    (Carl Roth GmbH, Karlsruhe) 

                                         0,4% (μ/v) Sodiumdodecylsulfate     (SERVA GmbH, Heidelberg) 

                                         pH 8,8 

10% APS:                        10% (μ/v) Ammonium persulfate       (Merck, Darmstadt) 

TEMED:                          N,N,N′,N′- Tetramethylethilene-         (SERVA GmbH, Heidelberg) 

                                         1,2-diamine 

 

Running Buffer:               50 mM Tris                                        (Carl Roth GmbH, Karlsruhe) 

                                         400 mM Glycin                                  (Carl Roth GmbH, Karlsruhe) 

                                         0,1%(μ/v) Sodiumdodecylsulfate      (SERVA GmbH, Heidelberg) 

                                         pH 8,6 

6x reducing          

sample buffer:                  750 mM Tris/HCl                               (Carl Roth GmbH, Karlsruhe) 

                                          9% (μ/v) Sodiumdodecylsulfate       (SERVA GmbH, Heidelberg) 

                                          1% (v/v) Bromophenol blue              (Merck, Darmstadt) 

                                          60% (v/v) Glycerol                            (Sigma-Aldrich, Steinheim) 

                                          300 mM DTT                                      (AppliChem, Darmstadt)  

                                           pH 6,8 

                                            

Protein molecular  
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weight marker:                 Precision Plus Protein Standard          (Bio-Rad, München) 

                                 All Blue 

 

 

 

Protein samples were boiled at 95 C° with  6x reducing buffer (6:1) and fresh DTT 

(50mM) for 5 min. After loading the samples in the gel pockets (minigel), was 

applied a constant current of 15mA. Subsequently, when the samples reached the 

running part, the current was increased at 30mA.  

 

2.4.11 WesternBlot & Immunostaining 

After the electrophoretic separation in the SDS-polyacrylamide gel, the proteins were 

transferred to a support membrane of nitrocellulose or polyvinyl-nylidenfluorid 

(PVDF). The proteins have a negative charge (treated with SDS) and migrate in the 

electric field to the anode. The PVDF membrane has been activated in methanol (1 

min) and then equilibrated in anode buffer. The “transfer sandwich” was assembled 

as shown in the Fig. 2.1. 

                       

 

 

   

 

 

 

 

Fig. 2.1. Schematic representation  of a semy-dry Western Blot “sandwich”. The Anode, 

positively charged, is in the lower part, the Cathode, negatively charged, in the upper part: the 

proteins, negatively charged, migrate downwards, from the gel to the transfer membrane 

 

The three lower filter papers, the gel and the supporting membrane were wetted in 

anode buffer, the 3 upper filter papers with cathode buffer. An electric field of 1mA 

x mm
2
 was applied for 0.5-2 hours according to the size of the proteins to detect. 

Non-specific binding sites on the membrane were saturated by incubation with 

blocking buffer (1 μ), subsequently the primary antibody was incubated over-night (4 

C°). Membrane was washed with blocking solution, three times 10-15 min and 

incubated with secondary antibody (1 μ) at RT. Then membrane was incubated with 

horse radish peroxidase(HRP)-coupled secondary antibody, diluted 1:10000 in 

Cathode  

3x filter papers 

Gel  
transfer membrane 

3x filter papers 

Anode 
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blocking buffer, for one hour at room temperature. 

The blot was washed three times 10-15 min with TBS-T and incubated with 

chemiluminescence substrate solution. Intelligent Dark Box II Camera was used for 

signal detection. 

 

Anode Buffer: 75 mM Tris/HCl                                (Carl Roth GmbH, Karlsruhe) 

 20 % Methanol                                  (AppliChem, Darmstadt) 

 pH 7,4 

Cathode Buffer:               40 mM Aminocaproic Acid               (Carl Roth GmbH, Karlsruhe) 

                                         20 mM Tris/HCl                                (Carl Roth GmbH, Karlsruhe) 

                                         20 % Methanol                                  (AppliChem, Darmstadt) 

 pH 9,0 

PVDF-Membrane:                                      (Millipore, Billerica, USA) 

Nitrocellulose membrane:                                      (Whatman GmbH, Dassel) 

Filter paper,330 g/m
2
:                                                                  (Satorius Stedim Biotech   

                        GmbH, Göttingen) 

 

 

2.4.12 Stripping of transfer membranes.  

Removal of antibodies from a blot was done under mild conditions, if it should serve 

to reduce the background for incubation with another primary antibody, either from a 

different species or for a protein of clearly distinct size than in the first decoration. 

After washing the membrane in TBST, it was incubated 5-20 min in glycine 

stripping solution. The solution was neutralised with 1 M Tris-Cl pH 8.5, followed 

by several washes in TBST. 

 

2.4.13 Mass spectrometry 

All the mass spectrometric measurements were performed by Dr. Olaf Jahn, MPI for 

experiemental Medicine, Göttingen (iTRAQ labelling) and by the Dr. Bernhard 

Schmidt Group in our institut (peptide detection and quantification). 

 

Washing solution:                   25mM Ammonium carbonate              (Sigma, Steinheim) 

Acetonitrile 50:                       50%(v/v) Acetonitrile                          (Merck, Darmstadt) 

            25mM Ammonium carbonate       (Sigma, Steinheim) 
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Reducing reagent:                   10mM DTT        (Applichem, Darmstadt) 

            25mM Ammonium carbonate              (Sigma, Steinheim) 

Carbamidomethyl reagents:    25mM Iodacetamide        (Sigma, Steinheim) 

            25mM Ammonium carbonate              (Sigma, Steinheim) 

Trypsin solution:               20ng/µl trypsin                                  (Promega, Mannheim) 

Extraction solution:                 1% trifuoloracetic acid                      (Fluck, Buchs) 

Releasing buffer:           0.1% trifuoloracetic acid         (Fluck, Buchs) 

 

In order to reduce the number of proteins that were simultaneously processed and 

then measured for mass spectrometry, the samples containing the proteins were 

separated electrophoretically. Subsequently there was the gel digestion (Rose et al 

field. 1992). It essentially consists of the following four steps: destaining of the gel 

pieces; reduction and alkylation of Cysteines to irreversible cleavage of disulfide 

bonds; obtain an optimal unfolding of the proteins;  proteolytic cleavage and 

extraction of the resulting peptides. Proteolyisis was performed using Trypsin, a 

Serine-protease, which specifically cleaves the peptide bonds at the carboxyl 

terminus of the basic amino acids arginine and lysine.  

Each gel slice was incubated in 100 µl of wash solution for 15 min at 37°C with 

gentle shaking, the supernatant was discarded and incubated twice for 30 min at 

37°C with gentle shaking in acetonitrile solution 50. The supernatant was removed 

and incubated for 10 min at 37°C with gentle shaking in 100% acetonitrile, the 

supernatant was removed and dried for 5 min at room temperature in an open 

reaction-chamber. To break the disulfide bridges the gel slice was incubated with 

reducing reagent for 1 hour at 56°C, cooled on ice and the supernatant was removed. 

For the alkylation of cysteines the gel slices were incubated in 10µl of 

Carbamidomethyl reagents for 30 min at room temperature, in the dark with gentle 

shaking. The supernatant was incubated at 37°C for 10min with gentle shaking with 

reducing reagent. 

The gel slices were resuspended in 100µl of acetronitrile 50 solution and incubated 

for 30 minutes at room temperature, subsequently were incubated with 100µl of 

acetonitrile 100% for 10 min at 37°C with gentle shaking and the supernatant was 

removed. The slice was dried for 5 min at room temperature. 

The digestion started adding 6µl of trypsin solution and incubating 15 min on ice and 

subsequently incubating at least 4 hours at 37°C. The supernatant was removed and 
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the gel incubated with 20µl of extraction solution for 20 min at 37°C with gentle 

shaking. The extraction solution was removed and combined with the supernatant of 

the digestion. The extracted peptides were dried in a vacuum centrifuge and 

resuspended in 10µl of dissolving buffer by vortexing and treating with ultra-sounds. 

Peptide were dissolved and measured for mass spectrometry or stored at -20°C. 

 

Mass spectrometry of the trypsin-digested peptides 

Peptides were either directly applied onto a MALDI Anchor chip target (Bruker 

Daltonics GmbH, Bremen) or separated via a NANO-LC, EASY-nLC II (Proxeon, 

Thermo Fisher Scientific, Dreieich) and fractionated on an LC-MALDI Fraction 

Collector, PROTEINEER fc II (Bruker Dal-tonics GmbH, Bremen, Germany) was 

applied to a MALDI Anchor chip target. MALDI mass spectrometry experiments in 

which the peptide mixtures were pre-fractionated in this manner are hereinafter 

referred to as LC-MALDI.  

All steps were performed according to protocols of Bruker Daltonics GmbH 

(Bremen) and Proxeon, Thermo Fisher Scientific (Dreieich).  

 

2.4.14  iTRAQ™- Mass spectrometry 

 

SDS loading buffer: 

(O. Jahn, Göttingen):               106 mM Tris HCl  

141 mM Tris base  

2% Lithium lauryl sulfate  

10% Glycerol  

0,51 mM EDTA  

0,22 mM Coomassie G250  

0,175 mM Phenol red  

50 mM 1,4-Dithiothreitol  

pH = 8,5 

 

Gel digestion: 

Ultrapure water                                                                (LiChrosolv ® ). 

Acetonitrile                                                                      (ACN, LiChrosolv ® ). 
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50 mM triethylammonium bicarbonate TEAB,               (Sigma-Aldrich,  

pH 8.0, prepared fresh                                                      Steinheim, Germany) 

10 mM (m/v) dithiothreitol in 50 mM TEAB.  

prepared fresh 

55 mM (m/v) iodoacetamide in 50 mM TEAB.  

prepared fresh 

5% (v/v) formic acid (FA, p.a.) 

prepared fresh 

Trypsin, sequencing grade, 0.1 μg/μL.                      (Roche) 

Buffer 1: 50 μL H2O, 50 μL 50 mM TEAB, 

15 μL trypsin. Prepared fresh 

 

Buffer 2: 50 μL H2O, 50 μL 50 mM TEAB.  

Prepared fresh 

 

iTRAQ-Labeling: 

100mM TEAB, pH≥8.0 prepared fresh 

iTRAQ-reagents: iTRAQ ™ Reagent Multi-Plex Kit           (Applied Biosystems,    

Foster City USA)  

 

Samples were quantified by iTRAQ (Isobaric tags for relative and Absolute 

Quantitation). 15 µg of Wt and “ko” samples were loaded for a SDS1D PAGE 

separation and subsequent gel digestion. The following workflow has been used:  

1. Separation of purified protein complexes by 1D PAGE on pre-cast gels 

 (8 x 8 cm x 1 mm);  

2. Cutting the entire sample lanes into pieces of exactly the same size;  

3. Digestion of proteins with the endoproteinase trypsin; 

4. iTRAQ labeling of extracted peptides;  

5. Pooling of the differentially labeled samples and subsequent 

LC-MS/MS analysis (ESI MS);  

Wt and “ko” samples have been marked separately to obtain a relative-difference 

information about the quantity of all the proteins and peptides.  The iTRAQ method 

involves protein reduction and alkylation, enzymatic digestion, labeling up to four 
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different samples (or nowadays eight samples) with heavy and light isotope-labeled 

reagents, sample pooling, HPLC (high performance liquid chromatography) 

separation, and finally detection and quantification by tandem MS. The iTRAQ 

reagent is an amine-specific reagent that labels peptide amino termini and lysine side 

chains with multiplex (4-plex or 8-plex) mass tags: i.e., tags with identical masses. 

These tags are isobaric (i.e., they have the same mass of 144.1 Da), but their 

fragmentation patterns differ, allowing species bearing them to be distinguished after 

fragmentation. Upon fragmentation, every isobaric tag produces a specific marker 

ion (114.1, 115.1, 116.1, and 117.1 Da, respectively) and a corresponding neutral 

fragment, which is not detectable (28, 29, 30, and 31 Da, respectively). 

 

Fig. 2.2. Overall workflow of in-gel digestion and subsequent labeling with iTRAQ TM reagents. 

Entire gel lanes of different samples to be analyzed and quantified are cut into gel slices of equal 

size resulting in X samples per lane. Each gel slice further manually cut into small pieces and 

proteins within gel pieces are digested with trypsin. Extracted peptides are re-dissolved in 20 μL 

100 mM TEAB and an internal standard is prepared by pooling 5 μL of each sample. Samples 

and internal standard are labeled with iTRAQ TM reagents 114, 115, 116, respectively. After 

pooling, the samples are analyzed by LC-MS/MS and quantitation is done by calculating the 

peak areas of individual reporter ions (114, 115, 116, and 117) in MS/MS. 
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2.4.15 Immunofluorescence 

MEF cells were plated in a 24 multi-well plate (on 10mm coverslip) and incubated 

with growth medium at 37 C°, 24-36 hours before the experiment in order to reach a 

70% confluence. 

Cells were washed with PBS and fixed in fresh 4%-paraformaldehyde (PFA) for 10-

15 min at RT.  PFA was removed by aspiration and the cells were washed with PBS. 

The unreacted PFA was blocked adding 50 mM NH4Cl for 10 min at RT.  NH4Cl 

was removed by aspiration and the cells were washed with PBS. Cells were 

permeabilised by adding 0.5% saponin in PBS, 3x 5 min (prepared fresh). Primary 

antibody was added diluted in 0.5% saponin and incubated for 45min-1h. Cells were 

washed and the appropriate secondary antibody was added diluted in 0.5% saponin, 

and incubated for 45min-1h. Cells were washed 3x 5min with 0.5% saponin, 3x 5min 

with PBS and once with ddH2O. Drops of water were dried off and the slides were 

mounted upside-down on a microscope glass slide adding a drop of mounting 

medium (used at RT). The mounted slides were left at RT in the dark 4h-overnight 

until the mounting medium has set and analyzed at the confocal microscope. 

 

PBS:      150 mM NaCl                     (AppliChem, Darmstadt) 

  120 mM KCl                     (Carl Roth GmbH, Karlsruhe)  

  10 mM Na2HPO4/KH2PO4                    (Carl Roth GmbH, Karlsruhe) 

  0.1 g Phenol red                             (Carl Roth GmbH, Karlsruhe) 

                                         pH 7,4 

Paraformaldahyde: 

Saponin:                       (Sigma, St. Louis, USA)  

NH4Cl:            (Merck, Darmstadt) 

 

24 multi-well plate                                                 (Greiner Bioone) 

12 mm round coverslips                                             (Marienfeld) 

Mounting medium:        Fluorescent Mounting Medium        (DAKO, Hamburg)                                

Mounting Glass Slide:                 (Roth GmbH Karlsruhe) 

 

 

2.4.16 Proximity Ligation Assay 
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Cells have been plated, fixed and permeabilised as in the Immunofluorescence assay. 

The antibodies of interest have been diluted in 0.5% saponin at optimized 

concentration. Samples were washed x2 with saponin. The two PLA probes, Plus 

and Minus (mouse and rabbit respectively), were diluted 1:5 in 0.5% saponin and 

applied to samples; samples were incubated for 60min at 37C° and washed with 

BufferA 2 x 5 min.  

Ligation solution was prepared as follows: 5X ligation Buffer + Ligase (40:1 

dilution) + ddH2O; ligase was added in the end just before the incubation. Samples 

were incubated with Ligase solution 30 min at RT and then washed x2 with BufferA. 

Amplification solution was prepared as follows: 5X Amplification Buffer + 

Polymerase + ddH2O; samples were incubated at 37°C for 100 min and washed 2 x 

10min with Wash Buffer B and with 0.01x Wash Buffer B 2 min. samples were 

mounted upside-down on a microscope glass slide adding fluorescence mounting 

medium (DAKO) and sited overnight in the dark at RT. 

 

PBS:         150 mM NaCl                   (AppliChem, Darmstadt)           

                              120 mM KCl                                     (Carl Roth GmbH, Karlsruhe)  

                              10 mM Na2HPO4/KH2PO4     (Carl Roth GmbH, Karlsruhe)

         0.1 g Phenol red                               (Carl Roth GmbH, Karlsruhe) 

                               pH 7,4 

Saponin:                      (Sigma, St. Louis, USA)  

NH4Cl:                                 (Merck, Darmstadt) 

Buffer A:              10 mM Tris/HCl                                (Carl Roth GmbH, Karlsruhe) 

                              500 mM NaCl             (AppliChem, Darmstadt) 

        50 mM Tween 20                              (AppliChem, Darmstadt) 

 

Buffer B:               100 mM NaCl                                   (AppliChem, Darmstadt) 

                   200 mM Tris/HCl                             (Carl Roth GmbH, Karlsruhe) 

 

PLA Probes;          Plus and Minus                  (Sigma, St. Louis, USA) 

 

Ligation solution:  ligase, oligonucleotides                    (Sigma, St. Louis, USA) 

 

Amplification  

solution:          polymerase,                                     (Sigma, St. Louis, USA) 

          fluorescent dNTPs 
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2.4.17 Primary antibody: 

 

 

 

Antibody Epitope Species Source Dilution 

AAK1 C-term aa 724-863 Rabbit Santa Cruz 1:100 WB 

ACK1/TNK2 peptide Rabbit Proteintech 1:200 WB 

Arf1 peptide Rabbit Felix Wieland 1:2500 WB 

Arf-GAP1 peptide Rabbit Felix Wieland 1:3000 WB 

Arf-GAP1 brain peptide rabbit Dan Cassel 1:3000 WB 

Arf-GEF2 C-Term Rabbit Sigma 1:500 WB 

-adaptin  aa 38-255  Mouse BD  1:2000 WB 

1:100 IF 

1-adaptin C-term/ear-domain Mouse BD 1:2000 WB 

1:75 IF 

-adaptin peptide Rabbit AG Schu 1:1000 WB 

µ2-adaptin Thr-156 Rabbit S. Höning 1:500 WB 

µ2-adaptin-P Thr-156 Rabbit S.Höning 1:500 WB 

1A-adaptin aa SCHVLE Rabbit Davids 1:100 WB 

1A-adaptin-P aa SCHLQE Rabbit Davids 1:100 WB 

2-adaptin peptide Mouse AG Schu 1:500 WB 

Amphiphysin aa 258-414 Mouse BD 1:5000 WB 

Amphiphysin aa 2-15 Rabbit SY SY 1:1000 WB 

Anti-PhosphoTyr Tyr-phosphorylated Mouse Millipore 1:500 WB 

AP180 258-414 Mouse BD 1:5000 WB 

Auxilin 1 peptide Rabbit Camilli 1:1000 WB 

Auxilin 1 peptide Rabbit Protein Tech 1:600 WB 

CaMKII- peptide Mouse  Millipore 1:1000 WB 

CaMKII- peptide Mouse Santa Cruz 1:1000 WB 

CHC aa 4:171 Mouse BD 1:2000 WB 

CLC aa 156-173 Mouse SYSY 1:5000 WB 

Calmodulin aa 128-148 Mouse Millipore 1:1000 WB 

CSP a aa 182-198 Rabbit SYSY 1:1000 WB 

Dynamin 1 (2,3) aa 2-17 Rabbit SYSY 1:1000 WB 
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EEA1 C-term domain Goat Santa Cruz 1:100 WB 

EAAT1 aa 1-50 Rabbit Santa Cruz 1:200 WB 

Endophilin1 aa 256-276 Rabbit SYSY 1:1000 WB 

Epsin-2 peptide Rabbit Camilli 1:1000 WB 

Epsin-1 peptide Rabbit Abcam 1:500 WB 

GAK/Auxilin 2  aa 1-360 Rabbit Santa Cruz 1:200 WB 

GST GST-tag Goat Santa Cruz 1:200 WB 

6His Poly-his-tag Rabbit Santa Cruz 1:200 WB 

Hsc70 peptide Rat GeneTex 1:100 WB 

Hsc70 aa 391-546 Mouse SYSY 1:500 WB 

5µg IP 

Hsp90 peptide Rabbit Bioss 1:100 WB 

NECAP1 peptide Rabbit Priteintech 1:200 WB 

PACS1 aa 300-350 Rabbit Proteintech 1:200 WB 

 Pacsin1-P Ser-346-P Rabbit Millipore 1:2000 WB 

PICALM-CALM C-term Goat Santa Cruz 1:100 WB 

PPP2R2C peptide Rabbit Proteintech 1:200 WB 

PPP2R2C peptide Rabbit Proteintech 1:200 WB 

Rab 5 PKNEPQNPGANSA Rabbit Abcam 1:2000 WB 

1:80 IP 

Rabex-5 peptide Rabbit Proteintech 1:200 WB 

1:35 IP 

Rab-GAP5 peptide Rabbit Proteintech 1:1000 WB 

1:30 IP 

Rabaptin 5  aa 812-862 Rabbit NBP1 1:2000 WB 

SMAP2 peptide Rabbit Novus 1:1000 WB 

Stonin 2 peptide Rabbit Haucke 1:500 WB 

Synaptotagmin1 aa 120-131 Rabbit SYSY 1:1000 WB 

Synaptotagmin2  aa 406-422 Rabbit SYSY 1:500 WB 

Synaptogyrin-1 aa 220-234 Rabbit SYSY 1:1000 WB 

VAMP2 aa 2-17 Mouse SYSY 1:100 WB 

 

2.4.18 Secondary antibody: 

Antibody Specification Purchased from Dilution 
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anti-rabbit Alexa 

Fluor 
®488 

Goat 

polyclonal 

Invitrogen 

 

1:400 IP 

 

anti-mouse Alexa 

Fluor 
®596 

Goat 

polyclonal 

Invitrogen 

 

1:400 IP 

 

anti-mouse Alexa 

Fluor 
®633 

Goat 

polyclonal 

Invitrogen 

 

1:400 IP 

 

Anti-rabbit HRP  

conjugated 

Goat  

polyclonal 

Jackson  

ImmunoResarch 1:10000 WB 

Anti-mouse HRP 

conjugated 

Goat  

polyclonal 

Jackson  

ImmunoResarch 1:10000 WB 

Anti-rat HRP 

conjugated 

Goat 

polyclonal 

Jackson  

ImmunoResarch 1:10000 WB 

Anti-goat HRP 

conjugated 

Donkey 

polyclonal 

Jackson  

ImmunoResarch 1:10000 WB 
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3. Results 
 

3.1.1 The synaptic AP-1 and AP-2 Clathrin-Coated-Vesicles (CCV) 

 

AP-1/σ1B deficient mice have impaired spatial memory, and σ1B-deficient humans 

have a severe mental retardation. The phenotype reflects the alterations in the 

synaptic vesicle cycle. AP-1/σ1B -/- synapses have fewer synaptic vesicles under 

resting conditions and this SV pool is further reduced after stimulation of SV 

exocytosis and recycling. This reduction in the SV is accompanied with an 

accumulation of endosomes and of clathrin-coated-vesicles (CCV) (Glyvuk et al. 

2010). In order to define these σ1B  -/- “bulk” endosomes and to classify them as 

well as to determine their functions in SV recycling, we had developed, in a previous 

study of our group, a protocol to separate them from the majority of the neuronal 

endosomes. The σ1B -/- ‘bulk’ endosomes proved to be classic early endosomes with 

an increase in the phospholipid phosphatidylinositol 3-phosphate (PI-3-P) and a 

second population as late endosomes (Kratzke et al. 2014).  AP1/σ1B -/- synapses 

showed also a totally unexpected accumulation of CCV. This was unexpected firstly, 

because there is one AP-1 complex missing forming CCV and secondly, SV protein 

recycling is reduced and thus SV protein endocytosis via CME should be decreased 

as well. Therefore, the most likely explanation for the increase in CCV was that they 

are functionally impaired AP-1/σ1A CCV due to the loss of the AP-1/σ1B complex. 

In order to clarify their origin and whether they are AP-1, AP-2 or entirely aberrant 

CCV and to identify the molecular mechanisms, leading to their accumulation, these 

synaptic CCV were isolated from wt and mutant mice synapses, separated on 

sucrose-density gradients, as described in 2.4.7 Material and Methods (McPherson et 

al 2010, Borner et al 2010, modified) and the protein compositions of CCV isolated 

from wt and ‘ko’ synapses were compared. 
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Fig 3.1. 

Upper 

panel: 

protein 

distribution in the gradient fractions. Most proteins are concentrated in fractions 6 to 9 in wt 

and ‘ko’ extracts. Lower panel: representative Western-Blots of CCV proteins from the  

sucrose-gradient centrifugation fractions. 

 

  

First of all, to verify normal CCV formation, the CCV distribution over all the 

fractions of the sucrose-density gradient centrifugation was analyzed by semi-

quantitative Western-Blots. The distribution of AP-1 CCV was detected by the 

distribution of its γ1-adaptin and of AP-2 by the α-adaptin subunit. Clathrin-heavy-

chain (CHC) distribution served as the marker for clathrin-cages. The distribution of 

AP-1/γ1, AP-2/α and CHC revealed the presence of the CCV mainly within fractions 

6 to 9, as shown in Fig 3.1 (lower panel). CHC has a broader distribution than both 

adaptins, because CHC tends to aggregate and to form also empty clathrin cages 

without a vesicle membrane and adaptor-protein complexes. In cells, these cages are 

rapidly disassembled by Hsc70 and its co-chaperones auxilin-1 and -2. There were 

no differences in the CCV distribution on the gradients between CCV isolated from 

wt and ‘ko’ synapses. Although the gradient does not has a high resolution, this 

indicates that σ1B-deficiency does not induce the formation of aberrant CCV.  

 

3.1.2 iTRAQ
TM

 analyses 

 

In order to compare the protein content of CCV fractions isolated from wt and ‘ko’ 

              CHC 

 

AP-2 α adaptin 

 

AP-1 γ adaptin 

 

   Fractions           1      2     3     4      5     6     7     8     9    10 
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mice, they were analyzed by isobaric iTRAQ mass spectrometry first. The iTRAQ 

analyses identified 668 proteins from the CCV. 470 of them were valid for 

quantitative analyses. As summarized in Tab. 3.1, 32% of the proteins are SVs 

proteins, including vesicle cargo proteins and coat-proteins like the subunits of the 

adaptor-protein complexes. 26% are cargo proteins like channel and receptors, eg the 

glutamate receptor NMDA or the voltage-gated potassium channel. Reorganization 

of the cytoskeleton is also a key factor in the CCV cycle, in fact 23% of the 

identified proteins are cytoskeleton factors like spectrin (both subunits), myosin, or 

the nerve terminal-specific protein Bassoon. 

PScape 

approved 

SV, 

Adaptin 

Receptors, 

Channels 
Cytoskeleton Kinases, P´ases 

Chaperones 

(Hsp; 14-3-3 etc) 

Protein 

turnover 

470 149 120 107 37 29 28 

 32% 26% 23% 8% 6% 5% 

Table 3.1 proteins identified by iTRAQ analyses: on average 10% in each 

group are changed in the “ko” CCV 

 

The remaining 20% consists of regulatory proteins like kinases and phosphatases 

(8%), 14-3-3 proteins and Hsp chaperone proteins (6%), and finally turnover protein 

factors (5%). This indicates that the pool of CCV isolated from ‘ko’ mice is mainly 

formed at the plasma membrane and next to active zones, retrieving SV proteins and 

membrane like the majority of the CCV from wt synapses.   

 

 

Fig. 3.2. Box plots of ko/wt ratio for AP-2 subunits α and β2, clathrin (CHC), chaperon proteins 

DnaJC5, Hsc70 and cargo protein VAMP-2. Statistical calculation were performed on results 

coming from iTRAQ quantitative spectrometry mass analyses 

 

The iTRAQ analyses revealed significant increases of several proteins in “ko” CCV. 

The data of some of them are presented in the Fig. 3.2. Two subunits of the AP-2 



Results 

 

 

 56 AP-1/γ1 adaptin  

   wt                                   σ1B -/-        

Fractions       6     7     8     9    10          6     7     8     9    10 

complex are increased in “ko” CCV and they show exactly the same increase, thus 

the ratio is unaltered confirming the validity of the analyses. Clathrin-Heavy-Chain 

(CHC) is also increased as are the uncoating proteins DnaJC5 (CSP) and Hsc70. The 

data did not indicate clear and significant changes in AP-1 proteins. These data 

strongly indicate that the AP-1/σ1B deficiency significantly leads alterations in the 

synaptic CCV pool and an increase in the amount of endocytotic AP-2 CCV. These 

proteins listed here, were the first ones whose content in CCV fractions were 

analysed by semi-quantitative Western-blot analyses (shown in the following 

paragraphs). All these changes indicated by the iTRAQ analysis of CCV isolated 

from just one wt and one ‘ko’ mouse brain had to be verified. Thus we can assume 

that the changes in the CCV pool composition as indicated by iTRAQ are correct. 

Firstly, we determined changes in the content of AP-1 and AP-2 in CCV fractions 

isolated from multiple wt and ‘ko’ mice and the respective co-adaptor and accessory 

proteins by semi-quantitative Western-blot to characterize changes in the CCV in 

‘ko’ mice in greater detail. 

 

3.1.3 AP-1 CCV levels and AP-1 distribution in σ1B -/- synapses 

 

First, I determined the total level of AP-1/γ1 CCV in wt and σ1B-/- synapses. This 

was done by semi-quantitative western-blots and iTRAQ quantitative mass 

spectrometry (for details see Material and methods 2.4.13). In σ1B -/- synapses the 

AP-1 CCV showed a significant reduction by 20% compared to the wt. Western-

blots of sucrose-density gradient fractions and their quantifications are shown in 

figure 3.2. This reduction was expected due to the absence of AP-1/σ1B complexes, 

but it also indicates that the deficiency in this AP-1 complex, does not induce an 

accumulation of functionally impaired AP-1 CCV formed by the ubiquitous AP-1 

complex. Several attempts in the past to generate σ1-isoform specific antibodies to 

quantify their relative expression levels failed and thus these data are used to 

estimate the σ1A/σ1B ratio in synapses. The reduction of AP-1 CCV by 20 % 

indicates a 4:1 ratio of AP-1/σ1A to AP-1/σ1B complexes. Although CCV and 

synapses have a clear reduction of AP-1 complexes, AP-1 association with the 

accumulating endosomes is increased, indicating that AP-1/σ1A is enriched on these 
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membranes (endosomal characterization performed by Dr. M Kratzke(, (Kratzke et al. 

2014))).  

 

                  

         

 

 

 

 

 

 

 

 

Fig. 3.3. Upper panel: representative semi-quantitative Western-blot of AP-1/γ1 adaptin. Lower 

panel: statistical analyses: boxplots of ko/wt ratio for AP-1/γ1 adaptin expression (cortex), 

distribution (Synapse) and association with early (ld low-density) and late (hd high-density) 

endosomes. Wt levels were set as 100%, numbers above the boxes indicate the numbers of 

quantifications performed with wt/ko animal pairs. 

 

This accumulation on endosomes is in line with microscopic data, which showed 

enhanced co-localization of AP-1 with the SV protein synaptotagmin-1 upon 

stimulation of SV exocytosis and recycling (Glyvuk et al. 2010). AP-1 binding is 

increased despite the fact that the amount of endosomal PI-4-P, required for high 

affinity AP-1 membrane binding, is decreased. On the other hand, the amount of 

ArfGAP1, which induces GTP hydrolysis of Arf1 and thus weakens AP-1 membrane 

binding, is reduced. Accumulating cargo proteins could contribute to the Arf1-

dependent stable AP-1 membrane binding. Thus the molecular mechanisms leading 

to the endosomal accumulation of AP-1/ σ1A is not known and has to be analyzed in 

greater detail. As we are detecting signals of purified CCV we can not use canonical 

quantitative controls in the Western-analyses, however in order to have a statistical 

validity, at least 4 different proteins were detected from the same blot.  

 

3.1.4 AP-2 CCV levels and AP-2 distribution in σ1B-/- synapses 

 

The amount of AP-2 CCV is with 200 % strongly increased in “ko” synapses (fig 
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AP-2/α adaptin   

   wt                                   σ1B -/-        

Fractions       6     7     8     9    10          6     7     8     9    10 

6 7 10
3 

7 5
5
3 

3.4). AP-2 concentration is also increased in these synapses.  

 

 

             

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4. Upper panel: representative semi-quantitative Western-blot of AP-2/α adaptin. Lower 

panel: statistical analyses: box-plots of ko/wt ratio for AP-2/α adaptin expression (cortex), 

distribution (Synapse) and association with early (ld low-density) and late (hd high-density) 

endosomes. Wt levels were set as 100%, numbers above the boxes indicate the numbers of 

quantifications performed with wt/ko animal pairs. 

 

This increase is very surprising because in the “ko” synapse the SV recycling is 

reduced, and thus, also the AP-2 CCV mediating SV protein endocytosis should be 

reduced as well. However the double amount in the “ko” synapse could be due to an 

enhanced Clathrin mediated endocytosis (CME) indipendent of SV recycling, or to 

an altered regulation of AP-2 CCV uncoating, these two possibility are not mutually 

exclusive. 

 

3.1.5 AP-2 CCV coat-protein composition and CCV stability 

 

3.1.5.1 The clathrin cage 

We determined an accumulation of endocytotic AP-2 CCV and thus the next 

question to answer is the reason for their accumulation. In order to test for the model 

of delayed AP-2 CCV un-coating as the reason for this accumulation, first I 

characterized their content in proteins known to affect clathrin cage stability.  

First, I 

CHC 

 

CLC 

   wt                                   σ1B -/-        

Fractions       6     7     8     9    10          6     7     8     9    10 
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determined the ratio of the clathrin subunits, the clathrin-light-chain (CLC) and 

clathrin-heavy-chain (CHC).  

 

          

  

 

 

 

 

 

 

 

 

 

 

Fig. 3.5. Upper panel: Representative semi-quantitative Western blot of CHC and CLC. Lower 

panel: Statistical analyses; box plot of ko/wt ratio for CHC and CLC in the different 

“compartments”: Cortex, Synapses, Late endosome (Gravotta et al.), Early endosome (hdE)  
 

CLC regulates several steps in CCV formation as well as the stabilization of the 

clathrin basket. Furthermore the CHC:CLC ratio is 1:1 only in the brain, whereas 

CLC expression is lower in other tissues, indicating a crucial role especially in the 

cycle of brain CCVAs shown in the Fig. 3.5 (confirmed by iTRAQ analyses), the 

amount of CHC in “ko” extracts is increased by 50%. The CLC is increased as well 

by 60%, meaning that their ratio is not changed, and their increase is in line with the 

increase of the CCV in the “ko” synapse. Therefore, from this analysis, it seems that 

the relative clathrin cage composition is not altered and thus does not account for the 

CCV accumulation. 

3.1.5.2 Association of clathrin cage disassembly proteins 

 

Another reason for a delayed AP-2 CCV disassembly in “ko” synapses could be a 

reduction in proteins of the cage disassembly machinery. Three proteins have been 

demonstrated to take part in the uncoating reaction. Hsc70 and the two co-

chaperones auxilin-1 and auxilin-2 also known as GAK (G-protein receptor 

associated kinase), its kinase acitivity appears to be dispensable for clathrin cage 
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disassembly. First I compared the levels of Hsc70 in the cortex and in the 

synaptosome between wt and ‘ko’ brains. As shown in the Fig 3.6 (a), the Hsc70 

levels are not changed in the cortex and in the synaptosome as well, indicating that 

expression and distribution of the protein are not altered in “ko” synapse. However, 

there is a strong increase in the “ko” CCV pool, indicating that the targeting of the 

protein to the CCV pool is not impaired and is even increased in line with the 

increase in CCV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3.6. (A) left: representative Semi-quantitative Western-blot of Hsc70 in wt and “ko” cortex, 

synaptosome; right: box plot of ko/wt ratio for Hsc70 expression (cortex), distribution 

(synaptosome) and association with CCV. (B) Upper panel: representative semi-quantitative 

Western-blot of Hsc70, Auxilin1 Auxilin2 (GAK). Lower panel: “ko”/wt ratio in CCV for Hsc70. 

Auxilin, GAK1. 
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The increased targeting of Hsc70 in the “ko” CCV pool could be caused by a 

hypothetic altered coat composition of the AP-2 CCV that requests higher level of 

Hsc70 for the uncoating of the clathrin cage. The level of Hsc70 is doubled in the 

“ko” CCV and the co-chaperons auxilin1 and auxilin2 (GAK1) are increased as well, 

indicating that the level of the uncoating proteins are not limiting the reaction. Thus, 

if delayed uncoating contributes to the accumulation of AP-2 CCV, the activities of 

the uncoating proteins could be inhibited, eg by modifications like phosphorylation. 

 

 

 

 

 

3.1.6 AP-2 CCV coadaptor proteint composition 

 

The CCV coat is mainly formed by the heterotetrameric AP-complexes, but it also 

contains numerous monomeric co-adaptor proteins, which recognize cargo proteins 

not efficiently bound by the AP-complexes. In addition, the coat contains so called 

‘auxillary’or ‘accessory’ proteins, which play a role in the regulation of transport 

vesicle formation. Many of these proteins are bound by the so called ‘ear’-domains 

of γ1- (AP-1) and α-adaptins (AP-2)., which have different structures and thus AP-1 

and AP-2 CCV have specific sets of coat proteins. Next Therefore, I investigated the 

CCV coat composition because also an altered composition of the coat could be 

responsible for an eventual slower CCV uncoatingto characterize the accumulated 

AP-2 CCV pool in greater detail. I tested for AP180, epsin1/2, NECAP1 and stonin 2 

expression and distribution, because they are the major co-adaptors of AP-2. In 

addition, AP180 is a pre-synapse-specific AP-2 co-adaptor, that binds CHC with an 

even higher affinity than AP-2 and also binds PIP2, like AP-2. It contributes to 

VAMP/synaptobrevin-2 sorting and possibly takes part in the regulation of SNARE 

protein complex assembly. Due to the near doubling of AP-2 CCV, the AP180 

content in the “ko” CCV fraction should be increased as well and an increase could 

even contribute to increased clathrin cage stability. Surprisingly, I found AP180 to be 

reduced not only in CCV, but also its expression level (cortex) and its amount in 
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synapses (fig 3.7). I and its reduction could make the clathrin cage even less stable. 

Its ubiquitously expressed isoform PICALM (also known as CALM), which is 10 

times less abundant in the brain than AP180, is not increased in the CCV and thus 

does not compensate for the reduced amount in AP180. Stonin 2 is also a cargo co-

adaptor, which has a μ-adaptin homology domain, which binds synaptotagmin-1 

mediating its sorting. In a stonin 2 “ko” mouse, AP-1 CCV and SV numbers are 

increased in pre-synapses, presumably due to enhanced CCV formation from ‘bulk’ 

endosomes (Kononenko et al., 2013). Thus, the decrease in AP-1 CCV in the ‘ko’ 

synapses should lead to an increase in stonin 2, if the same molecular mechanisms 

are altered. However, also stonin 2 is decreased in cortices, in synaptosomes and in 

CCV, just like AP180 (Fig3.5). 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7. Upper panel: representative western blots of wt and “ko” fractions containing CCV. 

Lower panel: ko/wt ratio of cargo-specific co-adaptors. a) AP180 expression and distribution in 

synapse, endosomes and CCV. b) Stonin2 expression (cortex) and distribution in synapse and 

CCV.  

 

The co-adaptors epsin1/2, which fulfill redundant functions in CCV protein sorting, 

a                            b 
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are, unlike AP180 and stonin 2, not reduced in ‘ko’ cortices and are even enriched in 

synaptosomes. However, their association with CCVs from ‘ko’ synapses is 

nevertheless reduced by 45% (Fig. 3.8). Currently, we can not explain this 

distribution, but it indicates differences in the recycling of epsin1/2 between CCV 

and the cytoplasmic pool (notice that their association with endosomes is not 

increased as well). Thus its distribution differes from that of the AP-1/ σ1A 

complexes in the ‘ko’ synapses. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 3.8. Upper panel: representative western blots of wt and “ko” fractions containing CCV. 

Lower panel: ko/wt ratio of Epsin2 expression (Cortex), distribution in synapse, and association 

with endosomes and CCV.  

 

The only AP-2 specific co-factor that follows the AP-2 “behavior” is NECAP1(Fig. 

3.9). NECAP1, binding the α-ear of AP-2 competes with clathrin for access to the 

AP-2 β2-linker, n this way, NECAP1 mediates the coordination of accessory protein 

recruitment and clathrin polymerization at sites of vesicle formation, representing a 

organiz control vesicle size, number and cargo recruitment. Thus NECAP1 increase 

indicates proper quality control of the AP-2 CCV. 
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Fig. 3.9. Upper panel: representative Western blots: stonin2, NECAP1 and epsin2 are 

represented only from 6
th

 to 9
th

 fractions as the signals is totally blank in the 10
th

 fraction. The 

distribution of CCV on the sucrose-density gradient is variable ± 1 fraction from experiment to 

experiment. Lower panel: “o”/wt ratio comparison, between AP2/α adaptin and its specific co-

adaptors, AP-2/α adaptin is reported again for a clear comparison with the other proteins. 

NECAP1 is the only co-adaptor that follows the AP-2 “behavior” 
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I   the levels of some cargo proteins like VAMP2 and synaptotagmin1 because they 

are major components of SVs. Dramatic changes could indicate alteration 

in their trafficking and release, however there are no significant changes 

in the ‘ko’ CCV VAMP2 is increased by 10% in all the fractions 

analysedF. Synaptotagmin1 expression and distribution is not changed 

as well, however  decreased by 20% in the CCV poolF 10result is in 

line with the AP-1 reductionSs-  

 

 

 

 

 

 

Fig. 3.10. Left panel, “ko”/wt ratio of cargo proteins; VAMP2 (left panel) and synaptotagmin-1 

(right panel)  
Synaptotagmin1 might thus be stranded in the plasma membrane or other synaptic 

membrane compartments, which we will have to identify. It is in fact slightly 

increased in the high-density endosome fraction, which is enriched in late 

endosomes,. There it might be bound by AP-1 and colocalize with AP-1 as already 

discussed. AP-1 binding could even prevent its sorting into the endolysosomal 

pathway and its degradation 

3.1.7 Dynamin recruitment to CCV 

 

Dynamin is a large GTPase and mechanoenzyme essential for plasma membrane 

endocytosis. It mediates the narrowing of the budding vesicle neck through a GTP 

hydrolysis induced conformational change. It is recruited late in the CCV budding 

reaction to the neck. This binding is facilitated by BAR domain proteins like 

Endophilin and Amphiphysin, but alsod remains associated with the CCV. I 

investigated the levels of all these proteins to see if there are alterations, in the 

vesicle scission process, in “ko” CCV. 
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Fig. 3.11. Upper 

panel: representative Western blots of CCV fractions. Lower panel: “Ko”/wt ratio of vesicle 

scission effector proteins in CCV 

 

The amount of dynamin was not changed in the “ko” CCV and also the amounts of  

amphiphysin and endophilin were not altered, suggesting that the neck scission 

pathway is not modified for AP-2 CCV in the “ko” synapse.  Endophilin is also 

important for the CCV un-coating. endophilin deficient cells accumulate CCV, 

because endophilin binds synaptojanin, which turns PI-4,5-P2 into PI-4-P. AP-2 

requires PIP2 for high affinity membrane binding and thus synaptojanin is required 

for fast and efficient AP-2 CCV uncoating. Thus another CCV uncoating factor is 

present in normal amounts. However, phospho-PACSIN1/Syndapin was increased by 

50% in “ko” CCV. This protein binds simultaneously synaptojanin, and dynamin and 

at the same time the Wiscott-Aldrich syndrome protein (WASP), which promotes 

actin-depolymerization. Actin reorganization is involved in CCV formation and thus 

the phospho-PACSIN1 increase supports the model of enhanced and faster CME 

(Qualmann et al. 1999). 
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3.1.8 Stability of AP-2 CCV and μ2-adaptin phosphorylation 

 

Phosphorylation of the AP-2 complex on its µ2-adaptin on Thr156 occurs in the 

linker domain of its N-terminal β2-adaptin-anchor domain and the C-terminal cargo 

binding domain. This phosphorylation stabilizes the open, cargo binding 

conformation of the AP-2 complex. The induced conformational change of μ2 brings 

the cargo binding motif and the second PIP2 membrane-binding motif (the other one 

is in α-adaptin) close to the membrane and thus increases the stability of AP-2 

membrane binding by two binding modescoat. Thus one reason for the AP-2 CCV 

accumulation could be a hyper-phosphorylation of μ2 mediated by the AAK1 kinase. 

I determined the level of the phosphorylated µ2 by semi-quantitative western-blots 

(Fig. 3.12) using a phospho-site specific antibody that specifically recognizes the 

phosphorylation in Thr165 (Miller et al.). However, the increase of AP-2 CCV is 

higher than the increase in phosphorylated µ2, indicating that the accumulation of 

AP-2 CCV is not caused by a hyper-phosphorylation leading an increased stability of 

the AP-2 coat. Also the binding of the modifying kinase AAK1 to the CCV is not 

increased, but even slightly decreased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.12. Upper panel, representative semi-quantitative Western-blot of fractions containing 

CCV. Lower panel, “Ko”/wt ratio of phopshoporylated μ2 adaptin and its specific kinase AAK1 

AP-2 α adaptin 

Phospho-μ2 

AAK1 

PPP2R2C 

PPP2R2B 

   Fractions       6     7     8     9    10          6     7     8     9    10 
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and phosphatases subunits of PP2A, PPP2R2C and PPP2R2B 
 

Although the amount of the catalytic and the regulatory subunit of the de-

phosphorylating phosphatase PP2A, PPP2R2C and PPP2R2B, were not altered, 

excluding a reduced de-phosphorylation rate of μ2. 

 

3.1.9 Arf-GAP1 distribution in the synapse and synaptic CCV and 

redistribution also in the other pools (Both isoforms 

Arf-GAP1 is the GTPase-activating protein for the small Arf1 G-protein, which is 

required for high affinity membrane binding of AP-1. Arf-GAP1 activity induces 

membrane dissociation of AP-1. Arf-GAP1 is however also found in AP-2 CCV 

although its GAP-activity is not required for the AP-2 CCV cycle. Overexpression of 

Arf-GAP1 even induces AP-2 CME, but the molecular mechanism for this effect is 

not known (Bai et al. Nature Cell Biology 2011). They proposed that it is a co-

adaptor for the transferrin-receptor in CME. Arf-GAP1 consists of the N-terminal 

GAP-domain and a C-terminal tail with two lipid-sensor motifs (ALPS1 and 2), 

which adopt a helical conformation upon membrane lipid contact. In brain, a splice-

variant is expressed with a deletion-insertion modification changing the ALPS2 

motif. Functional consequences of this modification are not known. Arf-GAP1 has 

been shown to bind via its GAP-domain the ‘ear’-domains of AP-1 γ1 and of AP-2 α 

and additional motifs have been identified in the tail sequence, but whether these 

interactions have an in-vivo function is not known. The first important results came 

from the distribution analyses of the ubiquitous Arf-GAP1 (Fig. 3.13). The 

expression (cortex) of either isoform is not drastically changed, however their 

concentration in the synapse is increased by 30% in “ko” mice. On the other side, 

their association with early and late endosomes is dramatically reduced. As explained 

before, the “ko” synapse showed the presence of enlarged endosomes, and as the 

ALPS domains of Arf-GAP1 are curvature sensing, these endosomal rearrangements 

in shape and size could affect their binding to the endosomal membrane.   

Both, the Arf-GAP1 increase in the “ko” synapse and the reduced association with 

the endosomes would explain the strong and surprising increase of Arf-GAP1 in the 

“ko” CCVor better their increased formation, if membrane pool dynamics alone 

determine their functions. 
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Fig. 3.13. Upper panel, representative semi-quantitative Western-blot of fractions containing 

CCV. Lower panel, “Ko”/wt ratio of Arf-GAP1 ubiquitous isoform(left) and brain isoform 

(Poupon et al.), expression (cortex), distribution (synapse),  endosomes association (ld E, hd E), 

CCV association. 
 

The only significant difference found between the two Arf-GAP1 isoforms is a lower 

increase of the brain isoform in the CCV pool from ‘ko’ synapses. The induction of 

CME should be mediated by functions of the C-terminal domain, because the GAP-

activity is dispensable for this function. Thus the altered tail sequence of the brain 

isoform could be responsible for this difference. 

These data all-together make Arf-GAP1 one of the potential candidates as molecular 

mechanism linking the AP-1/σ1B-dependent SV exocytotic route and the AP-2-

dependent endocytotic pathway. 
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3.2 AP-2 CME up-regulation and CCV stability 

 

These results indicated that CME is indeed up-regulated, but this can not account for 

the doubling in synaptic AP-2 CCV. SV protein CME is by far the most active 

synaptic pathway and it is difficult to imagine that CME of non-SV proteins could be 

up-regulated to a level well above that of SV protein CME. Thus both, up-regulation 

of CME and also a delayed CCV un-coating should contribute to the increase in 

synaptic AP-2 CCV. We reasoned that an increased stability of CCV might be 

associated with alterations in Hsc70 binding to these CCV, because its uncoating 

activity appears to be blocked. Stable CCV might bind less Hsc70, but might also 

bind it more stable, because it does not disassemble the clathrin-cage by binding-

dissociation cycles. In addition, it could be modified by phosphorylation impairing 

ATP-binding or hydrolysis. We thus tested, whether  anti-Hsc70 

immunoprecipitation of the density-gradient purified CCV fractions is able to isolate 

a CCV subfraction with specific properties and whether such a CCV pool from σ1B -

/- synapses differs from the respective CCV pool from wt synapses.  

 

 

3.2.1 Hsc70 and co-chaperonines distributions in the CCV pools 

 

The anti-Hsc70 antibody was indeed able to isolate CCV from the pooled sucrose-

density fractions derived from ‘ko’ as well as from wt synapses. First, I looked for 

differences in the levels of the uncoating machinery proteins. Hsc70 is doubled in the 

total “ko” CCV pool relative to the total CCV pool from wt synapses (par. 3.1.4.2), 

but its amount does not differ between the Hsc70-isolated CCV pools of ‘ko’ and wt 

synapses (Fig. 3.14). Comparison of CHC input and isolate indicates that the anti-

Hsc70 CCV pool represents 20% of the total pool. However, the 

immunoprecipitation may not isolate 100% of this sub-fraction and thus this number 

can only be a rough estimate.Interestingly, the amounts of the two co-chaperons 

auxilin1 and auxilin 2 (GAK1), which are also increased in the total CCV pool from 

‘ko’ synapses, are even further increased in this pool. This questioned the theorie that 

this is in fact a more stable CCV pool. The SV and CCV chaperone CSP, which.is 
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also increased in the total ‘ko’ CCV pool is only slightly further increased in the 

“ko” Hsc70-pooled CCV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14. Left, representative semi-quantitative Western-blot of wt and “ko” Hsc70-pooled 

CCV. Right, comparison of “ko”/wt ratios between total-CCV pool (white) and Hsc70-IP CCV 

(blue). All the experiments, for a statistical validity, have been performed at least 3 times, the 

representative western-blot of different proteins are from one membrane  
 

These data strongly indicated that “ko” synapse differ from wt synapses in their two 

AP-2 CCV populations. The fact that the Hsc70 ‘ko’/wt ratios differ between the 

total CCV pool and the anti-Hsc70 enriched CCV pool supports the model of a 

“stable” AP-2 CCV population. However, these data do not clearly show, whether 

this pool is the less or the more stable CCV pool. The same amount in Hsc70 

indicates that it might be the ‘normal’ CCV pool, which is not changed in the ‘ko’ 

synapse, but the alterations in the co-chaperones indicate the opposite.Hsc70 is 

hidden or however not properly bound and activated, in fact the ratio should not 

change. This could be the principle reason of a delayed uncoating of the AP-2 CCV 

in the “ko” synapse  
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3.2.2 Clathrin cage proteins in the CCV pools 

 

As already discussed, the amount of CLC bound to CHC influences the stability of 

the clathrin cage and therefore I determined whether CHC/CLC ratios differ between 

the total and the isolated CCV pools (par 3.1.4.1). As shown in the Fig 3.15, the 

CHC is increased in the Hsc70-IP CCV by 35% compared to wt, in line with the 

increase observed in the total CCV pool (by 50%). CLC increase, instead, is much 

stronger in the Hsc70-IP CCV pool (by 230%), compared to the increase observed in 

the total synaptic CCV total pool (by 50 %) (Fig. 3.15).  

 

 

  

  

 

 

 

 

  

 

Fig. 3.15. Left, representative semi-quantitative Western-blot of wt and “ko” Hsc70-pooled 

CCV. Right, comparison of “ko”/wt ratios between total-CCV pool (white) and Hsc70-IP CCV 

(blue). 
 

This dramatic change in the CHC:CLC ratio strongly indicates that the anti-Hsc70 

CCV pool indeed is a “stable” AP-2 CCV pool. Hsc70 binding to these vesicles 

obviously makes it more accessible to the antibody and in addition it might be bound 

more tightly, allowing the isolation of Hsc70-antibody complexes and the attached 

CCV.  

 

3.2.3 AP-2 and µ2 phosphorylation 

 

To obtain additional data allowing to determine, whether this second AP-2 CCV pool 

is indeed a pool with an increased stability, I looked for differences in the amount of  

µ2-adaptin phosphorylation (Thr156). This was increased by 50%, while AP-2  

adaptin was doubled, thus the µ2-phospho: adaptin ratio was 0.5 meaning that there 

CHC 

CLC 
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µ2-Phospho 

AP-2 () 

were no hyper-phosphorylation of the AP-2 complex. First, I investigated the levels 

of the kinase AAK1 and then the levels of its reaction product µ2-phospho adaptin in 

the Hsc70-IP CCV. AAK1, which was slightly reduced in the total “ko” CCV, is 

doubled in the “ko” Hsc70-IP CCV (Fig. 3.16), compared to the anti-Hsc70 isolated 

CCV from wt. Also the µ2-phospho adaptin is increased by 200%. The level of the 

AP-2  subunit is increased, as in the total pool, by 100%, thus the AP-2 amount is 

not changed. Therefore the µ2-phospho: adaptin ratio is 1.5 demonstrating hyper-

phosphorylation of the AP-2μ2-adaptin in this CCV poolincreased. Therefore, the 

anti-Hsc70 isolated CCV represents a more stable CCV pool supporting the model 

about a delayed AP-2 CCV uncoating as a mode to couple SV protein exo- and 

endocytotic pathways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.16. Left, representative semi-quantitative Western-blot of wt and “ko” Hsc70-pooled 

CCV. Right, comparison of “ko”/wt ratios between total-CCV pool (white) and Hsc70-IP CCV 

(blue).  
 

 

3.2.4. ‘Accessory’ coat proteins in the CCV pools 

 

As shown in the paragraph 3.1.5, “ko” CCV have significant alterations in coat 

protein composition that could of course, effect the dynamics of coat assembly and 

disassembly. In the total CCV pool AP180 and stonin2 were decreased in “ko” 
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versus wt CCV, despite they are very specific AP-2 co-adaptors. The only cofactor 

that followed the AP-2 “behaviour” was NECAP1. Therefore I looked for differences 

in the association of these AP-2 co-adaptors and ‘accessory’ proteins between “ko” 

and wt Hsc70-IP CCV.  AP-2 ratios are not changed as shown above.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.17. Left, representative semi-quantitative Western-blot of wt and “ko” Hsc70-pooled 

CCV. Right, comparison of “ko”/wt ratios between total-CCV pool (white) and Hsc70-IP CCV 

(blue).  
 

First, is important to specify that AP-2 increase in the “ko” Hsc-70 pooled down 

CCV is the same observed in the total CCV pool (Fig 3.16). AP180 was slightly 

reduced in the “ko” CCV pool, but ‘ko’/wt ratios are unaltered also in the Hsc70-

pooled CCV, (Fig. 3.17 blue plot). On the other hand Stonin2 that was also reduced 

in the total “ko” CCV pool is drastically increased (250%) in the “ko” Hsc70-pooled 

CCV compared to wt. Epsin that was also decreased in the “ko” CCV (by 40%) and 

it is increased by 30% in Hsc70 pooled “ko” CCV. NECAP1 showed the opposite 

“behavior”. In the total CCV pool, it was doubled in ‘ko’ CCV. In the Hsc-70 pooled 

CCV there are no differences between wt and ‘ko’ CCV. The AP-2:NECAP1 ratio in 

the “ko” total CCV pool was ≈ 1 indicating a proper cargo and size quality control 

mediated by NECAP1. In the “ko” Hsc70-pooled CCV the ratio is dramatically 

reduced, suggesting a reduced “quality control” by NECAP1. There are no data 

about co-adaptors and coat stability in the literature besides AP180 binding affinities 

for clathrin and thus these changes can not be discussed. However, they show again 

that the Hsc70 IP CCV pool represents a specialized AP-2 CCV pool, whose 
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formation is induced by the σ1B-deficiency. 

 

3.2.5 Arf-GAP1 protein distributions in the CCV pools 

Arf-GAP1 redistribution in “ko” remains one of the most striking data of this 

analysis. Both isoforms, brain and ubiquitous, are significantly increased in the 

synapse and at the same time drastically reduced in the early and late endosomes and 

increased in the total CCV pool; this strongly suggested a redistribution to the 

plasma membrane and in the CCV. The ubiquitous expressed Arf-GAP1 is increased 

to the same level in ‘ko’ Hsc70-IP CCV as in the total CCV pool. Interestingly, the 

brain isoform has an even higher increase in the Hsc70-IP “ko” CCV compared to 

the increase observed in the total CCV pool (Fig. 3.18). These data strongly suggest 

that the increased association of Arf-GAP1 with the CCV in ko, is not CCV pool 

specific. This is exciting as it suggests that CME of the stable CCV pool as well as 

CME of a normal CCV pool is upregulated by the σ1B-deficiency, supporting the 

model of delayed AP-2 CCV uncoating and upregulation of CME of non-SV proteins 

as mechanisms for the increase in synaptic AP-2 CCV. How Arf-GAP1 proteins 

fulfill there specific role in AP-2 CME and whether the isoforms really differ in this 

respect has to be addressed in the futureCV.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.18. “ko”/wt ratio box plots representing the Arf-GAP1 ubiquitous (left) and brain(Poupon 

et al.) isoforms expression e distribution.  Lower panel, representative semi-quantitative western 

blot of Hsc70-pulled CCV for Arf-GAP1 ubiquitous (left) and brain (right) isoforms.  
 

3.3. Analyses of the CCV Phosphoproteome  
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Isolation and characterization of the stable pool revealed important alterations in the 

phosphorylation state of the AP-2 complex. Furthermore, it is known for a subset of 

coat proteins that their phosphorylation status differs between their cytoplasmic and 

membrane bound pools. Thus, the activation and inactivation of the regulatory 

proteins and co-adaptors is most likely controlled through phosphorylation/de-

phosphorylation cycles. Therefore, we decided to determine differences in the 

phosphorylation/dephosphorylation status between ‘ko’ and wt CCV proteins. This is 

currently being done by phospho-peptide proteomics that yielded promising results, 

which however have to be confirmed and verified by different methods.  

This time we tried to isolate the CCV with a phosphorylated-tyrosine IP. Fractions 

containing the CCV were incubated with 4G10 platinum Anti-Phosphotyrosine beads 

and then we compared the tyrosine-phosphorylation status through semi-quantitative 

western blot, using anti-phosphotyrosine antibody. As shown in the Fig.3.19,, the 

strongst signal is at 50 kDa which correspond to the µ2 adaptin size. There is a 

significant increase in the “ko” P-tyr isolate signal, indicating regulation of CCV 

coat dynamics by tyrosine-phosphorylation in addition to the already established 

Ser/Thr phosphorylation of several AP-adaptins and other coat proteins (the same 

amount of proteins was incubated with the p-tyr-conjugated beads, see M&M 

paragraph 2.4.8.1). 

 

 

 

 

 

 

 

           

Fig 3.19. Semi-quantitative western-blot of 4G10 platinum Anti-Phosphotyrosine 

immunoprecipitated CCV. 250µg of pooled CCV from wt and “ko” were incubated with 4G10 

platinum Anti-Phosphotyrosine beads. 
 

Furthermore the intensity is much higher in “ko” compared to wt by 200%. A clear 
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signal is also preset at 75 kDa that is the size of the bigger subunits of the APs 

complexes, γ1 and α adaptin, and there is a smearing signal in the CLC range size.  

Thus we decided to analyze the phosphor-tyrosine-immunoprecipitated pool through 

Mass-Spec analyses and Semi-quantitative western blot 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.20. Phospho-tyr-immunoprecipitated CCV. (A) Semi-quantitative western-blot of µ2 

adaptin and CLC. (B)Blue coomassie gel used for Mass-Spec analyses (Performed by Olaf 

Reinhard).  
 

Very surprisingly the “ko” phospho-tyrosine-immunoprecipitated CCV have higher 

level of µ2 at the very same position thaen the anti-phospho-tyrosine blots. This is 

surprising as, the phosphorylation of μ2 adaptin on Thr156 has been well 

characterized, but nothing is known about tyrosine-phosphorylation. Furthermore the 

smear observed at 25 kDa, with the phosphotyrosine staining(Fig.3.19) appears again 

with the CLC staining and is much stronger in “ko”. As already explained the 

stability of the clathrin cage is regulated by phosphorylation/dephosphorylation of 

the CLC.  

Proteins contained in the three intense protein bands at 50 kDa were also analyzed by 

Mass-spectrometry. Besides μ2 this analysis identified also Pacsin1 as a presumably 

tyrosine-phosphorylated protein and which is increased in “ko”. This is in line with 

the identified increase of phospho-Pacsin in the “ko” total pool (paragraph 3.1.6).  

Pacsin1/Syndapin negatively regulates endocytosis by binding dynamin (Modregger 

et al 2000), in line with the decreased CME in “ko” synapse. RabGDI β is, on the 

other hand, decreased in “ko”; GDI proteins inhibit the activation of Rab proteins. 

A  B 

μ2 adaptin 
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The decrease of GDI in “ko” reinforces and confirms the model of an accelerated 

Rab5 cycle in “ko” synapse (for further details see also paragraphs 1.3.1 and 3.4). β 

and δ isoforms of the CaMK-II kinase, showed different behavior in wt and “ko” 

phospho-tyr-immunoprecipitated CCV. The β isoform showed a significant shift in 

the migration, indicating additional post-translation modifications. The δ isoform is 

found only in “ko” CCV. They are both ser/thr kinases with autophosphorylation/de-

phosphorylation activity and nothing is known about their regulation and activity by 

tyrosine-phosphorylation or their functions in the CCV cycle. However, as these 

kinases have a central role in the long-term potentiation (LTP) by the Ca
2+

 influx, it 

is important to investigate in detail the molecular mechanism leading to these 

differences between wt and “ko” CCV.  Finally and most importantly, Arf-GAP1 

was detected in the mass-spec analyses of the tyrosine-phosphorylated CCV. One of 

the reported Arf-GAP1 tyrosine-phosphorylation sites is exactly in the middle of the 

ALPS1 domain, Tyr208. As already explained (in the paragraph 3.1.9.1), the ALPS1 

domain forms a helix upon membrane lipid contact and thus mediates the binding to 

membranes. In concert with the ALPS2, membrane binding is also influenced by 

membrane curvature. We found decreased levels of Tyr-phosphorylated-Arf-GAP1 

in “ko” CCV. Nothing is known, so far, about the link between the phosphorylation 

in Tyr208 of Arf-GAP1 and its membrane binding, however the phosphorylation of 

the residue could affect it by blocking either lipid binding or APLS1 helix formation 

(Bigay et al., 2005). Thus the tyrosine-phosphorylation in wt would indicate that Arf-

GAP1 is associated with, but is not bound to the CCV membrane, while in the “ko” it 

is bound to AP-2 CCV membranes. However, this preliminary analysis has to be 

confirmed through different biochemical approaches to characterize it in greater 

detail.  
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3.4 Membrane dynamics of early endosomes and AP-1 complexes 

 

In our previous study we characterized the endosomes accumulating in AP-1/σ1B -/- 

synapses as PI-3-P positive early endosomes and showed that proteins accumulating 

in these endosomes either enter endolysosomal, multi-vesicular-body (MVB) 

pathways or that they are being stored in them for further use. Other PI-3-P 

dependent protein sorting pathways are not up-regulated. Endosomal PI-3-P is 

mainly generated by the class III PI3-kinase Vps34p (PI3KC3), the only member of 

this class, and a minor fraction is formed by the de-phosphorylation of PI-3,4-P2 (J. 

M. Backer, Biochem J 410, 1 (2008)). The increase in PI-3-P and the endosomal 

accumulation of AP-1/σ1A complexes suggested that the regulation of neuronal 

Vps34p-activity might involve also AP-1/σ1B and thus both AP-1 complexes. M. 

Kratzke thus measured whether these endosomes also contain more Vps34p, but this 

is not the case (Kratzke & Schu, unpublished). This indicated that Vps34p activity is 

stimulated on these endosomes. Vps34p catalytic activity is highest in a complex 

with Vps15p (Schu et al. 1991, Stack et al. 1992). The Vps34p C-terminal domain 

blocks the active center and Vps15p binds to this Vps34p domain releasing this 

block. In non-neuronal cells both proteins recycle between the cytoplasm and 

endosomes regulating PI-3-P synthesis. In neurons, Vps34p/Vps15p complexes 

appear to be stably bound to endosomes and their activity is regulated by Rab5, 

which activates Vps34p activity via an unknown molecular mechanism. Thus we 

reasoned that σ1B might bind the complex inhibiting its activity or that it regulates 

effector proteins of the Rab5 cycleWe demonstrate a novel molecular mechanism by 

which AP-1 regulates protein sorting, besides its well known function in CCV 

pathways. 
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3.4.1 AP-1 adaptin binding of Rab5 effector proteins 

 

We tested whether σ1B binds the Rab5 effectors Rabex-5 (GDP-GTP exchanger) and 

RabGAP5 (GTPase activator) using the Yeast-3-Hybrid System in which protein 

binding to γ1/σ1 hemi-AP complexes can be tested (performed by S. Zafar). Rabex-5 

has a Vps9-GEF domain and it binds ubiquitinated proteins and also has E3-ligase 

activity (Mattera et al. 2008, Zhu et al. 2007, Pagano et al. 2004, Esters et al 2001, 

Lippe et al 2001, Lee et al 2006). We tested specifically for σ1B-binding to the 

Rabex-5 C-terminal domain of aa 396-491, which was shown to mediate binding to 

early endosomes independent of the linker protein Rabaptin-5α (Mattera et al. 2008, 

Zhu et al. 2007, Lee et al- 2006). We detected binding of Rabex-5 to σ1B, but not to 

σ1A (Fig. 3.18). RabGAP5 consists of the catalytic TBC domain, a SH3-domain and 

a C-terminal RUN-domain, present in several proteins linked to the functions of 

GTPases. Therefore, we tested the RUN-domain (aa 578-760) for specific γ1/σ1 

binding. Also RabGAP5 bound to σ1B, but not to σ1A (Fig.3.21). We reasoned that 

both proteins might use similar motifs for σ1B binding and sequence alignment 

revealed two conserved motifs in both: P_E_A:E_C:L_L and 

P_L_Q:K_P:E_Q:G_V. After exchange of the E and L residues following the P‘s in 

both sequences by A in Rabex-5, binding to γ1/σ1B was abolished, confirming the 

specificity of σ1B binding (Fig. 3.21). This result also indicates that one of the 

motifs stabilizes the second one enabling σ1B binding. 

 

      a 

 

 

 

 

 

 

      b 
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Fig 3.21 a) Yeast-3-hybrid (Y3H) assays (performed by S. Zafar). γ1 was cloned into pGADT7, 

σ1-adaptins were cloned in the MSC-II and proteins to be tested for binding into the MSC-I site 

of pBridge (InVitrogen). Plasmids were transformed for interaction assays into the yeast strain 

AH109. Upper panel, Rabex-5 and RabGAP binding to AP-1/σ1B complexes from wt and to the 

AP-1/σ1A complex from σ1B -/- brain. Central panel, 3-AT was added for negative control. 

Right panel, histidine was added for positive control. Lower panel, mutated Rabex5 binding to 

AP-1/σ1B and AP-1/σ1A;  point mutation in PEACL > E/A and in PLQPQVY >L/A. 

b) Sequence alignment of Rabex-5 and RabGAP 

 

Next, I tested if the σ1B binding specificity occurs also in the brain and by pull-down 

experiments. Thus I expressed the protein fragments in E. coli as GST-tagged 

proteins: the mmRabex-5 fragment (aa 396-491) wt and the mutated forms, PEACL 

> E/A (named Rabex5 I) and PLQPQVY > L/A (named Rabex5 II), and the 

mmRabGAP5 (aa 578-760) (see details in mat & meth x.μ.z).  Rabex-5 recombinant 

protein and the RabGAP5 protein were incubated with synaptic cytosol from wt and 

σ1B -/- mice. Very surprisingly the σ1B binding specificity is reverted in these 

experiments. Rabex-5 pull down experiments of AP-1 revealed an higher affinity for 

the AP-1 complex in ‘ko’ extracts, meaning that the Rabex-5 affinity for AP-1/ σ1A 

is higher than the affinity for AP-1/σ1B present in wt extracts (Fig.3.22). RabGAP5 

binding affinity for the AP-1 complex was also increased, but to a much lesser 

degree, indicating that the GAP binds the AP-1/σ1A complex with the lower affinity 

(Fig. 3.19). These data are in conflict with the Y3H experiments, indicating that σ1 

modifications are involved or that a third protein is involved binding both proteins 

simultaneously. 

 

 

 

 

 

 

 

 

 

Fig. 3.22. Left, representative Western-blot of AP1-γ1 pulled down by Rabex-5 and RabGAP5. 

In the lower panel GST as control. Right, ko/wt ratio of the binding specificity of Rabex-5 and 

RabGAP5, experiments have been repeated at least 3 times for statistic validity.   
 

This dramatic difference between theY3H results and the pool-down results would 

wt   ko 

AP1/γ1 by Rabex-5 

AP1/γ1 by RabGAP5 

GST 
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be explained by the presence of a binding-mediating effector, meaning that Rabex-5 

binds not directly the AP-1 complex. Mutated forms, Rabex-5 I and Rabex-5 II, that 

in the Y3H showed no binding activity to AP-1/σ1A and AP-1/σ1B, showed in the 

pulldown experiments no reliable binding activity, suggesting that the mutations 

decrease the stability of the protein conformations. This is actually in line with the 

Y3H-data, which showed that mutation of either motif abolishes σ1-binding. The 

most plausible candidate for a third protein was Rabaptin-5α. Rabaptin-5α is an 

important effector of the Rab5 cycle, it activates, by interaction, the GEF activity of 

Rabex-5. Rabaptin-5α binds Rabex-5 through its CC2-1 domain (551-656), and 

binds the AP-1 γ1-adaptin ‘ear’domain through its FGPLV motif (aa 301-449) 

(Fig.3.23). 

 

 

 

 

 

 

 

Fig. 3.23. Rabaptin 5 α domains. 

 

However, Rabex-5 did not isolate more Rabaptin-5α, but even slightly less, from 

‘ko’ brain extracts, excluding Rabaptin-5α as linker for Rabex-5 and AP-1. Thus 

analysis of the protein composition of the pulldown fractions has to reveal the 

identity of the linker protein. 

We thought that a promising candidate could be ArfGAP-1: it is an endosomal 

protein, which also binds to the C-terminal “ear”-domain of γ1 of AP-1 and it exists 

like σ1 in a brain specific isoform, allowing tissue-specific regulations; furthermore 

Arf-GAP1 showed a very significant redistribution in the different compartments, 

synapse, endosomes, CCV and Hsc70-IP CCV, last not least Arf-GAP1 has also 

regulatory activity, independent of its GAP activity, is interesting to see first of all if 

it binds Rabex-5 and then if there are differences in wt and “ko”. As shown in the fig 

3.21 Rabex-5 binds Arf-GAP1, this was very exciting as we found the interactions 

between the two proteins for the first time. Even more exciting is the difference 
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   wt   ko 

Rabaptin 5 α by Rabex-5 

Arf-GAP1 by Rabex-5  

between wt and “ko”; as shown in the box plot of the fig. 3.21 the binding activity is 

much stronger in “ko”, and exactly correspond to the binding activity of AP-1 with 

Rabex-5, strongly suggesting that Arf-GAP1 could be the candidate mediating the 

binding between Rabex-5 and AP-1 complex. 

 

 

 

 

 

 

 

 

 

 

Fig 3.21. Left, representative Western-blot of Rabaptin 5 α and Arf-GAP1 pulled down by 

Rabex-5. Right, ko/wt ratio of the binding specificity of Rabex-5 to AP-1γ1 (showed again for 

easy comparison), Rabaptin 5 α and Arf-GAP1. For statistic validity experiments have been 

repeated at least 3 times.  

 

 

 

 
 

3.4.2 Membrane distributions of Rab5-effector proteins and co-localization with 

AP-1 

As the pull-down results seemed to contradict the Y3H data we tested for co-

localization of the Rab5-effector proteins and AP-1 complexes on membranes in-

vivo with the Proximity-Ligation-Assay (PLA), whose details are described in 

Mat2.4.16.  

 

Briefly, two proteins are being labeled in fixed cells with their respective primary 

antibodies. These are derived from two different species. These complexes are 

labeled with specie-specific secondary antibodies and in turn conjungated with 

oligonucleotides. If these complexes are in close proximity, primers can use the 

oligonucleotides as templates allow the PCR amplification of DNA. The 

incorporation of fluorescently labeled nucleotides demonstrates DNA synthesis. Due 
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AP-1/Rabex-5 

wt 

wt 1B -/- 

B 

1B -/- 

wt 1B -/- 

A 

C AP-1/RabGAP5 

to the PCR amplification and the incorporation of many fluorescent molecules, this is 

a highly sensitive method to determine protein-protein complexes in fixed cells by 

micrsocopy. We used MEF cell lines for these experiments, because their endosomes 

are larger than synaptic endosomes providing  a higher spatial resolution. We used 

wt and σ1B -/- MEF cell lines and their endogenous Rab5/Rab5 effectors and AP-1 

proteins.Primary antibodies detected AP-1/1-adaptin and Rab5, Rabex-5 and Rab-

GAP5, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AP-1/Rab 5 



Results 

 

 

 85 

Fig. 3.24. Co-localization of AP-1/1 adaptin with Rab5, Rabex-5 and RabGAP5 was detected by 

in situ PLA.  Scale bar 50μm. Wt and 1B-/-MEF cells were stained with anti-AP-1/1adaptin 

and anti-Rab5(A), Rabex-5 (B), Rab-GAP5 (C). Left, representative confocal microscopy 

images: the fluorescent spot signals are generated when the stained proteins are in proximity 

(<40 nm). Right, statistical analyses of the co-localization (white plots) and area size (green 

plots) 
 

As shown in the Fig. 3.24, in σ1B -/- cells more AP-1/Rabex-5 and more AP-1/Rab5 

complexes are formed confirming the Rabex-5 pull-down results and indicating an 

accelerated Rab5 activation, which would also activate the Vps34p-activity. The area 

of the co-localization is reduced in σ1B -/- cells for AP-1/Rab5 and also for AP-

1/Rabex5 indicating a specific co-localization and concentration of Rabex5 with 

Rab5. I found also more RabGAP5 to be co-localized with AP-1, which is also in 

line with the pulldown experiments. However, those complexes were not confined to 

small areas, indicating reduced co-localization with Rab5
 
and thus reduced inhibition 

of Rab5-activity. These data are also in line with our biochemical analysis of σ1B -/- 

neurons, which showed increased Rabex-5 association with early endosomes 

(Kratzke et al 2014).As negative control cells were treated with only the γ1 adaptin  

primary antibody and then stained with both the secondary antibodies to confirm that 

the observed spots are exclusively  generated when AP-1 co-localizes with Rab5 

effectors.Thus AP-1/σ1A stimulates Rab5 and thus Vps34p activation, whereas it 

appears to be less efficient in the presence of the AP-1/σ1B complex. Therefore, 

Rab5-effector protein binding by σ1B, as demonstrated by the Y3H experiments, 

appears to prevent AP-1/σ1A plus protein-X mediated Rabex-5 and Rab5 

concentration in endosomal microdomains This model is close to be verified as we 

are going to identify the AP-1/σ1A Rabex-5 linker protein.  
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4 Discussion  

 

Thus far, three mouse AP-1 adaptin ‘knock-out’ models have been established in our 

group. However, only the 1B ‘knock-out’ mouse is viable and fertile, whereas 

‘knock-outs’ of the ubiquitously expressed 1 and μ1A isoforms are embryonic lethal 

at early stages. Viability of σ1B-deficient mice and the tissue-dependent σ1B 

expression pattern demonstrate that σ1B adaptin is not required for ubiquitous 

“house-keeping” AP-1 functions, but is expected to mediate tissue-specific and due 

to its highest expression in brain, especially brain-specific AP-1 functions.  

The σ1B deficient mice are hypoactive, display deficits in neuromotor learning and 

spatial learning and memory tasks. These data support a genetic screen in humans for 

analyzing X-chromosome-based diseases that link the σ1B locus to severe mental 

retardation. Patients with pre-mature STOP-codons in the σ1B adaptin gene develop 

X-linked mental retardation (XLMR) and they showed also hypotonia and delay in 

walking and lipodystrophy. The hypotonia is infrequent in XLMR patients with an 

unaltered σ1B gene (Glyvuk et al. 2010, Tarpey et al. 2007). A lipodystrophy has 

been detected also in σ1B deficient mice, with a reduction of adipose tissue mass on  

average by 20% and of epididymal adipose tissue by 50% (Baltes et al. 2014). This 

phenotype is caused by the overexpression of the adipogenesis inhibiting receptor 

DLK1, which is not sorted directly by AP-1/σ1B complexes but by sortilin, a 

neurotrophin and receptor binding receptor. Previous analyses of sorting motifs did 

not reveal σ1-isoform specifi cargo proteins  Sortilin is the first cargo protein 

identified to be specific for σ1B and is overexpressed in σ1B-deficient adipocytes, 

thereby preventing DLK1 downregulation. However sortilin and DLK1 are not 

overexpressed in these brains, indicating that σ1B sorting functions in the trans-

Golgi network - endosomal pathways appear to be tissue specific  (Baltes et al. 2014). 

The previous analysis of the brains of AP-1/σ1B -/- mice revealed reduced numbers 

of synaptic vesicles under resting condition, but also after stimulation of SV 

exocytosis and recycling. The delayed synaptic vesicle recycling is accompanied by 

the accumulation of membrane enclosed organelles as endosomes and Clathrin-

Coated-Vesicles (CCV) in hippocampal synapses.  

 

4.1 AP-1 CCV reduction and AP-2 CCV accumulation in the σ1B -/- synapse 
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We isolated the synaptic CCV from wt and “ko” brains by differential and density-

gradient centrifugations. There are no differences in the migration behavior of the 

CCVs in the density-gradient centrifugation, indicating that CCV size and physical 

properties are not altered in the CCV isolated from AP-1/σ1B -/- synapses. The main 

goal of this study was to characterize the accumulated CCV pool and thus to 

understand the reason for their accumulation and the molecular link to the defects in 

SV recycling and the animals phenotypes and the human disease.  

Firstly, we looked for differences between wt and ‘ko’ brains in the adaptor protein 

complex AP-1 CCVs, because its σ1B subunit is “knocked out”. As expected, there 

is a significant reduction by 20% in “ko” synapse AP-1 CCV. The AP-1 CCV 

reduction confirms the impaired endosome-mediated SV biogenesis and the AP-1 

function in an apical endosome-plasma membrane recycling pathway, which was the 

first apical AP-1 pathway to be reported (Glyvuk et al. 2010). However, it also 

demonstrates that the accumulating CCV are not functionally impaired AP-1 CCV 

and thus this result does not explain why there is an CCV accumulation in the σ1B -

/- synapse. The further analysis of the synaptic CCVs revealed with 200% a very 

strong increase in AP-2 CCV in “ko” synapses. This is surprising, because due to the 

reduced SV recycling in the “ko”, one would expect that fewer AP-2 CCV are 

formed because of the reduced AP-2 clathrin-mediated-endocytosis (CME). We 

reasoned that their accumulation could be due to an enhanced CME, independent of 

SV protein recycling or to an altered and delayed AP-2 CCV uncoating. We decided 

to study their composition in terms of coat proteins, clathrin cage proteins, regulatory 

proteins and all the cofactors having a role in the AP-2 CCV cycle, in order to obtain 

data pointing to the molecular mechanisms that link the σ1B-/- and SV recycling 

alterations, with the AP-2 CCV accumulation.  

 

4.1.1 Accumulating AP-2 CCV have an altered coat composition 

 

One reason for the accumulation could be the alteration of the clathrin cage itself. 

The ratio between the two clathrin subunits forming the basket, CLC and CHC, is 

only in the brain 1:1, while it is lower in other tissues. As CLC regulates many 

aspects of the formation and stabilization of the clathrin basket, its functions might 
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be especially important in the brain and synaptic CCV. Both the subunits are 

increased by 50% in the “ko” CCV and thus the relative amount of the clathrin 

basket components is not changed and does not explain the increased AP-2 CCV 

pool.  

The accumulation of the AP-2 CCV could also be caused by a delayed uncoating. 

However all the currently known proteins composing the uncoating machinery, the 

chaperon Hsc70 and its cochaperonins auxilin 1, auxilin 2 and CSPα are enriched in 

the CCV fractions meaning that at least their levels, are not limiting for the uncoating 

reaction.  

Analyzing the inner coat layer, we found that “ko” CCV have a significant alteration 

in their coat composition. Although AP-2 is doubled in “ko” CCV, the very specific 

AP-2 co-adaptors are not increased, but are even slightly reduced. The reduction in 

AP180 is especially remarkable, because it is a pre-synapse-specific AP-2 CCV 

adaptor protein. Its binding affinity to the clathrin cage is higher than the affinity of 

AP-2 and thus its increase could have contributed to the increased stability of the 

vesicles. However, it is not only reduced in the “ko” CCV, but also in all other sub-

fractions of “ko” brains, suggesting that AP180 might be a co-adaptor of AP-1 CCV 

as well. There are indeed some data in the literature, which link it to AP-1 (Maritzen 

et al., 2012, Petralia et al., 2013). Stonin2, which participates in synaptotagmin-1 

sorting, is also slightly reduced. Its reduction in CCVs suggests a reduced 

requirement for SNARE sorting in line with reduced SV recycling. Interestingly, in 

Stonin2 “ko” synapses, SVs and AP-1 CCV are reduced as well, and synaptotagmin-

1 distribution is not altered, although transport kinetics are, and thus the SV and 

CCV phenotypes in both model systems are based on different molecular 

mechanisms. The simplest explanation for the reduction in co-adaptors would be that 

they sort cargo proteins, which are also sorted by AP-1/σ1B into the SV recycling 

pool. Their absence would lead to a reduced recruitment of these co-adaptors to 

clathrin-coated pits at the PM. However, this does not explain the increase in AP-2 

CCVs. If an SV recycling-independent CME would be up-regulated, those CCV 

should be enriched in the respective cargo proteins. We did not detect specific cargo 

proteins, which are dramatically enriched in the AP-2 CCV. The SV recycling-

independent CME model is also supported by the increase of phospho-PACSIN1, 

that couples the vesicles scission machinery and the cytoskeleton reorganization 
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proteins. Although scission machinery proteins as dynamin, amphiphysin, endophilin 

are not increased, phospho-PACSIN1/syndapin was increased by 50% in “ko” CCV. 

This protein binds dynamin and at the same time the Wiscott-Aldrich syndrome 

protein (WASP), which promotes the actin-depolymerization. Actin reorganization is 

involved in CCV formation and thus the phospho-PACSIN1 increase supports the 

model of an enhanced CME pathway. The increase of NECAP1, a factor mediating 

the size and cargo recruitment “quality control”, is exactly in line with the AP-2 

increase (also doubled in “ko”), indicating a proper control of the CCV formation. 

The accumulation could be caused also by an increased stability of the coat, in turn 

caused by a hyper-phosphorylation of the AP-2 complex. The phosphorylation on 

AP2/µ2 subunit leads an open conformation and thus the release of the second 

membrane-binding domain (Conner et al., 2003). The levels of the phosphorylated 

µ2 adaptin are increased in “ko” CCV, however the AP-2 adaptin increase is much 

higher and the phospho-µ2 adaptin/AP-2 ratio is 0.5, indicating that there is no 

hyper-phosphorylation of the AP-2 complex and thus the accumulation of AP-2 CCV 

is caused by some other molecular mechanism. However, there is one co-adaptor of 

AP-2 that is surprisingly enriched, ArfGAP1. Besides its function as an Arf1 GTPase 

activator, and thus a regulator of AP-1 membrane binding and CCV formation, 

ArfGAP1 is a co-adaptor of AP- 2 CCVs for the transferrin receptor (Ren X et al., 

2012, Bai et al., 2011). We did not detect this receptor in the CCVs, and other cargo 

proteins have not been described. ArfGAP1 is redistributed from endosomal 

membranes into AP-2 CCVs, and its enrichment in synaptosomes suggests that it is 

even trapped in these CCVs. Based on this first data set, we propose a model that 

AP-1/σ1B-dependent SV formation and AP-2 endocytosis are interdependently 

regulated, possibly via Arf-GAP1 or AP180.  

 

4.1.2 Characterization of a ‘stable’ CCV pool in σ1B -/- synapses 

 

The iTRAQ and the semi-quantitative western-blot analyses revealed an 

accumulation of AP-2 CCV and significant changes in the AP-2 CCV coat 

composition.  However it is also possible that there are two different pools of AP-2 

CCV, one “normal” and one with a more “stable” coat. The stable one might bind 

less Hsc70, but might also bind it more stable, because it does not disassemble the 
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clathrin-cage. Indeed, we were able to isolate this second stable pool of AP-2 CCV 

through a Hsc70 IP (see details in 3.2, and 2.4.8 paragraphs). This ‘stable’ CCV pool 

from σ1B-/- differs in the Hsc70/co-chaperonins ratios from the total σ1B-/- CCV 

pool. While auxilin 1 and 2 are even further increased, Hsc70 is not. In the total CCV 

pool from σ1B -/- synapses there was more Hsc70 compared to wt CCV. The Hsc70-

IP CCV contain however the same amount of Hsc70, than the IP CCV fraction from 

wt syanpses. Importantly, only the Hsc70-IP CCV pool from σ1B synapse shows 

hyper-phosphorylation of μ2 adaptin Thr156, whereas the IP pool from wt does not. 

Also more of the responsible kinase, AAK1, is associated with this fraction. 

Phosphorylation of μ2 adaptin enhances cargo binding and PIP2 binding by the 

second PIP2 motif of AP-2 contained within μ2 subunit. This protects PIP2 from the 

phosphates synaptojanin1 and thus stabilizes the CCV coat. Thus, only the Hsc70-IP 

CCV from σ1B synapses contains more stable CCV pool, whereas the corresponding 

fraction from wt is not stabilized, although both CCV have Hsc70 bound in a manner 

enabling their immunoprecipitation. The inability of co-chaperonines/Hsc70 

interactions could be caused by a multitude of factors: first of all an altered 

composition of the clathrin cage. In the “ko” total CCV pool the CHC:CLC ratio was 

not changed as both are increased by 50% (Fig. 3.5). However in the “ko” Hsc70-IP 

CCV the ratio is dramatically changed and the CLC showed an increase compared to 

the increase in the total “ko” pool. Hsc70 is recruited by auxilin 1 to a CCV, where it 

has to bind, first of all, the QLMLT motif in the C-terminal domain of CHC. The 

strong increase of CLC in the “ko” stable pool could limit this interaction and thus 

the triggering of the uncoating. The coat composition of the stable CCV pool shows 

yet a different coat-composition than the majority of the σ1B-/- synaptic CCV. 

AP180 and Stonin2 were decreased in the “ko” total CCV pool, despite they are very 

specific AP-2 co-adaptors. In the stable CCV pool the AP180 “ko”/wt ratio is 

unaltered, but stonin 2 is dramatically increased in the stable “ko” CCV. NECAP1, 

responsible for the cargo and size quality control, was increased in the “ko” total 

pool as is AP-2, but in the stable “ko” CCV pool the NECAP1/AP-2 ratio is 

dramatically reduced suggesting a reduced “quality control” by NECAP1. Nothing is 

known until now about the correlation of the co-adaptor/coat composition and the 

coat stability and this has to be analyzed in the future using this mouse model 

however Hsc70-pooled CCV represent a specialized AP-2 pool, whose composition 
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is influenced by the σ1B-deficiency. Based on this set of data, we can develop a 

model, in which the increased stability of the ko “stable” CCV pool, and thus the 

delayed uncoating is caused by an hyper-phosphorylation of the AP-2 complex, that 

binds with higher affinity to the membrane, and by a dramatic alteration of the 

clathrin cage composition that in turn lead to a disturbed activation of Hsc70 

mediated uncoating.  

 

4.2 The phosphoproteome of CCV from σ1B -/- synapses 

Several CCV proteins and associated proteins, are activated/inactivated according to 

their phosphorylation/dephosphorylation status. Thus we are characterizing the 

phosphorylation status of proteins like the clathrin proteins, coat proteins and of the 

regulatory proteins. Our preliminary studies reveal in “ko” CCV, a general increase 

in tyrosine-phosphorylation. The first candidates, which were analyzed, were of 

course the adaptor complex adaptins. Interestingly, AP-2/μ2 adaptin showed an 

increased tyr-phosphorylation in “ko” CCV, but so far nothing is known about 

phospho-tyr regulation of μ2 function. On the other hand, the phospho-tyr regulation 

of the CLC has been well characterized. The stability of the clathrin basket and the 

CLC-mediated regulation of endocytosis involve its tyrosine-phosphorylation. The 

strongly increased levels of CLC in “ko” CCV indicate significant alteration in the 

clathrin cage stability. CaMK-II isoforms shifted in the electrophoretic migration, 

between “ko” and wt CCV, suggesting that some post-translational modifications 

could be induced by the σ1B deficiency. It is important to investigate these 

modifications and thus the regulation of kinase activities, because CaMK-II is 

involved in LTP, a key factor in memory formation. Finally and most importantly 

with respect to AP-1 and AP-2 CCV dynamics, less Arf-GAP1 is isolated by the 

anti-phospho-tyr antibody from “ko” CCV. One of the reported tyrosine 

phosphorylation occurs in the middle of the ALPS1 domain, which is a key structure 

of the geometrical-stoichiometric-binding to the membrane. Thus the 

phosphorylation could reduce the membrane binding; the binding to the CCV would 

be mediated by protein-protein interaction, like the already demonstrated binding to 

the γ1 and α adaptins ‘ears’. 

The tyrosine-phosphorylation of CCV coat and associated proteins has to be studied 

in more detail in the future, however it is already clear that the σ1B-deficiency  
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induces alterations of the tyrosine phosphorylation of proteins, that in turn 

orchestrates the CCV cycle. 

 

4.3 Reorganization of the Rab5 cycle by AP-1/σ1B deficiency  

 

In AP-1/σ1B -/- synapses endosomes accumulate and in our previous study, we 

characterized these endosomes as PI-3-P and Rab5 positive early endosomes. 

(Kratzke et al., 2014). Endosomal PI-3-P is mainly generated by the class III PI3-

kinase Vps34p (PI3KC3), the only member of this class, and a minor fraction is 

formed by the de-phosphorylation of PI-3,4-P2. The increase in PI-3-P and the 

endosomal accumulation of AP-1/σ1A complexes in the “ko” synapses, suggested 

that the regulation of neuronal Vps34p-activity might involve AP-1/σ1B and thus 

both AP-1 complexes. Vps34p activity is stimulated by complex formation with the 

Ser/Thr kinase Vps15p (p150). In neurons, Vps34p/Vps15p complexes appear to be 

stably bound to endosomes and the activity of the complex is regulated by Rab5, 

which activates Vps34p activity via an yet unknown molecular mechanism. Thus we 

reasoned that σ1B might bind Vps34p inhibiting its activity or that it regulates 

effector proteins of the Rab5 cycle. Y3H assays revealed a specific binding activity 

of σ1B adaptin with the Rab5 effectors, Rabex-5 and RabGAP5. The ubiquitous σ1A 

is not able to bind both the effectors in this experiment (Fig. 3.21), however in “ko” 

brains the AP-1/σ1A complex showed a higher affinity for Rabex5, indicating that a 

protein(s) mediating complex formation is up-regulated or modified in “ko” brains. 

One potential candidate was Rabaptin-5α as this protein is able to bind the γ1-‘ear’ 

of the AP-1 complex and Rabex5, however, the Rabaptin-5α levels are not increased 

in pull down fraction from “ko”. The protein/s mediating this binding is close to be 

identified. 

 

 

 

 

 

4.4 Model of AP-1 functions in SV recycling 
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In this study we found that the AP1/σ1B deficiency strongly affects the endosomal 

protein sorting and the SV recycling mediated by CCV; the model is summarized in 

the Fig. 4.1. The alterations in the endosomal protein sorting are mediated by both 

synaptic AP-1 complexes and their binding to Rab5 effector proteins. In the absence 

of AP-1/σ1B, AP-1/σ1A activates the Rab5 cycle and thus the Rab5-dependent late 

endosome recycling. SV proteins accumulating in these endosomes are therefore 

readily transported into endolysosomes and are degraded.  

EE	
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AP-1 CCV	

CME	

Uncoating	

Arf-GAP1	
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Fig. 4.1. Final model. Early endosomes (EE) with accelerated Rab5 and alterations in the shape 

and size accumulate in the σ1B -/- synapse. Several proteins, like Arf-GAP1 showed a drastic 

redistribution in  the synaptic compartments. The redistribution effects the stability and the 

efficiency of the uncoating, leading an accumulation of the AP-2 CCV. This in turn leads less SV 

proteins available for the SV turnover and then a reduction of SV in the “ko” mice. 

 

The synaptic AP-2 CCV pool is increased in σ1B -/- synapses. Analysis of two CCV 

pools indicate up-regulation of clathrin mediated endocytosis of non-SV proteins, 

which remain to be identified, and also an extended life time of AP-2 CCV due to 

their slower un-coating. Analysis of AP-2 μ2-adaptin phosphorylation revealed its 

enhanced phoshorylation as one of the stabilizing mechanisms, mediated by an 

increased association of the respective kinase, AAK1. Also the family of co-adaptor 

proteins present in the CCVs differs between the two pools, suggesting that adaptor 

composition of the CCV determines the dynamics of the CCV cycle. Delayed AP-2 

CCV uncoating limits protein transport to the endosomes and thus prevents sorting of 

the CCV cargo proteins into degradative pathways. Thus, these CCV might represent 

a buffer reservoir for SV proteins. Fewer proteins are degraded and a sufficient 

number of SV proteins are present in the synapse, enabling the synapse to rapidly 
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response to different signaling requirements. This model can explain why SV 

numbers are decreased in the σ1B -/- synapses and why the pools of AP-2 CCV and 

endosomes are increased instead. 

The identification of the regulatory molecular mechanisms operating in these 

pathways is under way and they will be identified in future studies. 
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