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1 Introduction

Motivated by recent developments in topological persistence for assessment of the im-
portance of features in data sets, we study the ideas of persistence homology for one-
dimensional digital signals and its application in signal and image denoising. The notions
of persistence homology and persistence pairs were introduced in [24] for measuring the
topological complexity of point sets in R3. Persistence pairs and corresponding persis-
tence diagrams are well suited to quantify the topological significance of data structures
and to develop a formalism for topological simplification [9, 14–16, 42]. In case of one-
dimensional digital signals the idea of topological persistence boils down to the problem
of pairing suitable local minima and maxima of the signal. Considering the persistence
pairs and the corresponding persistences not only for the signal f but also for −f , we pro-
pose the new notion of persistence distance of f . Transferring from f to −f switches the
roles of the sets of local minima and local maxima of f . A comparison of the persistence
pairs obtained for f and for −f already provides us with an important categorization
tool. Persistence pairs occurring for both, f and −f , are less significant than those
occurring only once, for f or for −f .

We show that the persistence distance has a lot of favorable properties. Particularly, we
show that the persistence distance is very closely related to the discrete total variation
of f . This relation motivates us to employ the new notion of persistence distance for
signal and image denoising.

Let u be a finite digital signal that is corrupted with white noise, i.e., we have given the
data

f(xj) = u(xj) + n(xj), j = 0, . . . , N

for a partition a = x0 < x1 < . . . < xN = b, where n has zero mean and (unknown)
deviation σ. Using the celebrated discrete ROF-model, a reconstruction of u can be
obtained as the minimizer of the functional

J(u) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +

N−1∑
`=0

|u(x`+1)− u(x`)|,

where the second term denotes the discrete total variation of u. We propose in this
thesis to replace this second term using the persistence distance of u that inherits the
topological properties of the signal u. In contrast to the discrete total variation, the
persistences |u(x)− u(x̃)| corresponding to persistence pairs (x, x̃) contain direct struc-
tural information on u. Small persistences |u(x)−u(x̃)| being related to pairs with small
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1 Introduction

distances |x − x̃| correspond to oscillatory behavior like noise while large persistences
describe important features of the signal. Therefore we will propose to apply suitably
weighted persistences and show that the obtained new functional can be also regarded
as a weighted ROF-functional of the form

Jw(u) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +
N−1∑
`=0

w`(u) |u(x`+1)− u(x`)|,

where the weights w`(u) depend on local chains of persistence pairs. In particular, the
weights are taken in a way such that the denoised signal obtained by minimization of
Jw(u) preserves the essential peaks (discontinuities) of u well and yields good denoising
performance at smooth subregions of u. By simply treating the rows and columns of an
image as vectors, we can apply the one-dimensional persistence-weighted ROF scheme
to image denoising. Furthermore, a two dimensional persistence-weighted ROF model
can be established where the weights are determined according to the one dimensional
persistence information.

Topological persistence and its application to extract important topological features
from data has been extensively studied within the last years, see e.g. [9, 14–16, 24, 42]
and references therein. In [15], it has been shown that persistence diagrams of real-
valued functions are stable with regard to noise, i.e., for two functions f and g with
corresponding persistence diagrams D(f) and D(g) one finds

dB(D(f), D(g)) ≤ ‖f − g‖∞,

where dB denotes the bottleneck distance and ‖ · ‖∞ the L∞-norm. In [14], the p-norm
of the persistence diagram and its changes under diffusion of f using a convolution with
a Gaussian kernel with enlarging parameter is studied.

Though, for application of persistence in signal denoising we are only aware of the results
in [5], where topological denoising methods have been proposed employing a persistence-
based simplification and a so-called filling-based simplification of the signal. The latter
method mimics the construction of cancelation of persistence pairs, where instead of the
filling level the filling volume is increased, thereby taking into account both, the dis-
tance between points in one persistence pair and the distance of corresponding function
values. This last approach is slightly related to the watershed transform, a frequently
used tool in image segmentation, see e.g. [6, 36] and references therein. In a recent
preprint [4], the problem of estimating the number of local maxima of a signal given
by noisy measurements has been considered using persistence barcodes and Kolmogorov
signatures.
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Regarding weighted TV-minimization for signal and image denoising we refer to [1, 21,
26, 38,39] etc. In the continuous setting, the adaptive TV denoising approaches usually
consider the minimization functionals of the form

1

2

∫
Ω
|u(x)− f(x)|2dx+

∫
Ω
α(x)|Du(x)|dx

over u ∈ BV (Ω), the space of functions of bounded variation, where
∫

Ω |Du(x)|dx denotes
the total variation of u. The parameter α(x) is adaptively chosen depending on geometric
properties of signal features [38, 39], and can be further improved using noise statistics
and robust adjustment [21].

This thesis is organized as follows.

Chapter 2 gives a short introduction to persistent homology. Based on simplicial com-
plexes, the necessary background concepts of homology are introduced. At the end of
Chapter 2, we explain the connection of persistent homology for simplicial complexes
and triangulation of topological spaces, and notice that one-dimensional piecewise lin-
ear functions can itself be viewed as simplicial complexes. Particularly, the procedure
of computing persistence using lower-star filtration is closely related to the notion of
persistence for Morse functions.

In Chapter 3, we recall the discrete ROF model, based on the celebrated Rudin-Osher-
Fatemi approach [37] for signal denoising, and present iterative numerical procedures
to minimize the discrete ROF functional. Further, we summarize the properties of the
discrete total variation in the one-dimensional case.

In Chapter 4 we introduce our new concept of persistence distance based on persistence
pairs and corresponding persistences of function values for one-dimensional signals on
an interval. We show some favorable properties of the persistence distance and the close
relation between persistence distance and discrete total variation for one-dimensional
piecewise linear functions.

In Chapter 5, we apply the new notion of persistence distance to signal denoising. We
propose a new weighted functional, where the regularization term is based on the persis-
tence of the signal. We show that this functional can also be regarded as a weighted ROF
functional. Furthermore, we present a numerical algorithm for the proposed weighted
TV minimization based on persistence. At the end of this chapter, some denoising
experiments are shown.

In Chapter 6, we apply the one-dimensional persistence distance to image denoising in
two ways. One is based on a separable scheme. The second approach is based on a two-
dimensional ROF model which can be understood as a weighted 2D ROF model. As
before, image denosing experiments are given, where we compare our proposed method
with the four-pixel scheme in [41], shearlet shrinkage [30], and with the BM3D denoising
method [18].

3



1 Introduction

The results obtained in Chapters 4 and 5 of this thesis are summarized in a preprint [35]
that has been submitted for publication.
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2 A short introduction to persistent
homology

This chapter introduces necessary background knowledge on persistent homology which
forms a concrete basement for our further discussion.

The first section shows how some topological properties can be characterized alge-
braically using the notion of of homology groups. Then, filtration is introduced for
simplicial complexes and for real-valued functions. Based on filtration, we can define
persistence of topological features. With the help of so-called persistence pairs we can
describe how long a topological property, more specifically classes of a homology group
(connectivity, holes etc.), sustains during a filtration. Depending on the application,
the filtration process and the corresponding definition of persistence of certain topo-
logical features can be suitably defined. We will concentrate on lower-star filtration for
one-dimensional piecewise linear functions. As we will see, the computation of the persis-
tence of topological properties does not require the complete knowledge of the homology
groups. Instead, we are interested in the change of the rank of the homology groups, the
so-called Betti numbers. A powerful tool for computing the persistence using boundary
matrices is also introduced.

Being interested in the application of persistent homology to special one- and two-
dimensional functions, we concentrate in later chapters on computing of persistence
pairs and corresponding persistence diagrams in a way that does not involve the theory
on homology groups. However, we will refer to the close connection to these topological
notions.

2.1 Topological Homology

2.1.1 Simplicial Complex

Simplicial complexes form the fundament of the homology theory. Intuitively, they can
be constructed using simplices, i.e., points, line segments, triangles, tetrahedra etc., [32].

5



2 A short introduction to persistent homology

Definition 2.1:
A set {a0, . . . , an} of points in RN is called geometrically independent if for any
(real) scalars ti, the equations

n∑
i=0

ti = 0 and

n∑
i=0

tiai = 0

imply that t0 = t1 = . . . = tn = 0.

Obviously, {a0, . . . , an} are geometrically independent if and only if the vectors a1 −
a0, . . . , an − a0 are linearly independent.

Definition 2.2:
Let {a0, . . . , an} be a geometrically independent set in RN . We define the n-simplex σ
spanned by a0, . . . , an to be the set of all points x of RN such that

x =

n∑
i=0

tiai and

n∑
i=0

ti = 1

and ti ≥ 0 for all i.

We denote the simplex as 〈a0, . . . , an〉. The points a0, . . . , an that span σ are called the
vertices of σ; the number n is called the dimension of σ. Any simplex spanned by a
subset of {a0, . . . , an} is called a face of σ.

Definition 2.3:
A simplicial complex (abbreviation: complex) K in RN is a collection of simplices in
RN such that
(1) Every face of a simplex of K is in K.
(2) The intersection of any two simplices in K is a face of each of them.

2.1.2 Homology Group of a simplicial complex

Definition 2.4:
Let K be a simplicial complex. We denote the set generated by p-simplices of K over
the binary field as Cp = Cp(K). It consists of all p-chains defined as

c =
∑
j

γjσj ,

where γj are 0 or 1 and σj are p-simplices in K.

We can add two p-chains together componentwise. For example, if c0 =
∑

j δjσj is a
second p-chain, its addition with c is c+ c0 =

∑
j(γj + δj)σj , where the coefficients are

integers modulo 2. The p-chains in Cp with endowed addition over the binary field as
above form a group which we call the group of p-chains denoted as (Cp,+).

6



2.1 Topological Homology

The set of p-chains in Cp can also be interpreted as follows: We consider all subsets of
p-simplices in Cp(K), and the addition of two sets is then equivalent with the symmetric
difference of these sets.

Homology wants to distinguish different types of chains. For that purpose, we first need
the definition of the boundary of a p-simplex which is the sum of all its (p − 1)-faces.
Then we can define the boundary of a p-chain by linearity according to the definition.

Definition 2.5:
Let σ = 〈a0, . . . , an〉 be a p-simplex. We define its boundary as

∂pσ =
n∑
i=0

(−1)i〈a0, · · · , âi, · · · , an〉 =
n∑
i=0

〈a0, · · · , âi, · · · , an〉,

where âi means that ai is dropped. The operator ∂p is called boundary operator.

Observe that (−1)i = 1 in the binary field, such that the boundary operator can be
simplified as given above. We can define now the boundary of a p-chain by its linearity.

Definition 2.6:
Let c =

∑
j γjσj be a p-chain. We define its boundary as the linear combination of

boundaries of its p-simplices

∂pc =
∑
j

γj∂pσj .

The boundary operator ∂p maps a p-chain group Cp to a (p−1)-chain group Cp−1. Thus,
the boundary operator connects different dimensional chain groups in the following chain
complex

· · ·
∂p+2−→ Cp+1

∂p+1−→ Cp
∂p−→ Cp−1

∂p−1−→ · · · .

Moreover, ∂p : Cp −→ Cp−1 is a homomorphism since ∂p(c+ c0) = ∂p(c) + ∂p(c0) holds.

Before we can define a homology group, we need to distinguish two special kinds of
chains. A p-cycle is a p-chain with empty boundary, i.e., ∂pc = 0. Since the operator
∂pc commutes with addition of p-chains, all p-cycles form a subgroup Zp of Cp, denoted
by Zp 6 Cp. In other words, Zp = ker ∂p.

A p-boundary c is a p-chain which is the boundary of a (p + 1)-chain d, i.e., c = ∂d.
Similarly, all p-boundaries form a subgroup Bp of the chain group Cp. Thus, we have
Bp 6 Cp. More specifically, Bp = Im ∂p+1.

The fundamental property for the homology procedure is the following.

7



2 A short introduction to persistent homology

Lemma 2.7:
For all integers p and every (p+ 1)-chain d, we have ∂p∂p+1d = 0.

This lemma tells us that a p-boundary is necessarily a p-cycle. Using group language
and the notation above, a p-boundary group Bp is a subgroup of the p-cycle group Zp,
i.e. Bp 6 Zp.

Thus, we have now that Bp 6 Zp 6 Cp. A p-boundary is necessarily a p-cycle, but the
reverse does not hold, i.e., a p-cycle is not necessarily a p-boundary. To distinguish those
non-boundary p-cycles, the notion of homology group is a powerful tool as follows.

Definition 2.8:
Using the above notations, we define the p-homology group as Hp := Zp/Bp.

Each element in Hp, which we call a class of Hp, is a collection of p-chains obtained by
adding p-boundaries from Bp to a given p-cycle, c + Bp with c ∈ Zp. We use c as the
representative of this class. Since we had considered the p-simplices over the binary
field, the rank of the considered groups Zp, Bp and Hp is the base 2 logarithm of their
cardinality, i.e., we have rank(Hp) = log2(cardHp). The rank of the p-homology group,
rank(Hp), is called the p-Betti number of Zp. We have the following relation,

rank(Hp) = rank(Zp)− rank(Bp).

Example 1:
Let K be given as K = {〈a1〉, 〈a2〉, 〈a3〉, 〈a1, a2〉, 〈a1, a3〉, 〈a2, a3〉} ∈ R2. Then we obtain
the following groups. For p = 0,

C0(K) = {∅, 〈a1〉, 〈a2〉, 〈a3〉, 〈a1〉+ 〈a2〉, 〈a1〉+ 〈a3〉, 〈a2〉+ 〈a3〉, 〈a1〉+ 〈a2〉+ 〈a3〉},
Z0(K) = C0(K),

B0(K) = {∅, 〈a1〉+ 〈a2〉, 〈a1〉+ 〈a3〉, 〈a2〉+ 〈a3〉},

and hence rank H0(K) = 1. The 0-Betti number measures the number of unconnected
parts of the complex K. For p = 1, we find

C1(K) = {∅, 〈a1, a2〉, 〈a1, a3〉, 〈a2, a3〉, 〈a1, a2〉+ 〈a1, a3〉, 〈a1, a2〉+ 〈a2, a3〉,
〈a1, a3〉+ 〈a2, a3〉, 〈a1, a2〉+ 〈a2, a3〉+ 〈a1, a3〉},

Z1(K) = {∅, 〈a1, a2〉+ 〈a2, a3〉+ 〈a1, a3〉},
B1(K) = ∅.

Indeed, K possesses one non-boundary 1-cycle.

8



2.2 Persistent homology

2.2 Persistent homology

The homology group describes properties of a simplicial complex statically, but it cannot
quantify the topological changes in a certain kind of evolvement. In order to investigate
the properties of homology groups dynamically the notion of filtration has been intro-
duced in [24]. Filtration considers a sequence of subcomplexes of the simplicial complex
K. By examining the corresponding homology groups at each stage, we can describe
how long certain properties (classes) of the complex survive in the sequence of homology
groups during the filtration. Usually, we do not need to know the exact structure of
every homology group in the filtration. What we need to know is how the number of
homology classes (the Betti number) changes during the filtration. Hence, a closer look
to a p-simplex that creates a new class and to a (p+1)-simplex that destroys an existing
class is sufficient to figure out the topological changes. The main procedure consists in
recording, when a new homology class appears (“is born”) at a certain stage, and when
it becomes trivial or merges with another class. This information can be collected by a
pairing procedure. An algorithm for pairing based on boundary matrices is introduced
at end of this subsection.

2.2.1 Filtration of a simplicial complex and persistent homology

The filtration is based on ordering of subcomplexes Ki of a simplicial complex K such
that

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Kn = K.

see [24].

Definition 2.9 (Filtration and filter):
The sequence of subcomplexes {K0,K1, · · · ,Kn} is called a filtration of the complex
K, where K0 = ∅. The corresponding sequence of sets {c0, · · · , cn−1} with the property
that Kj+1 = Kj ∪ cj for j = 0, . . . , n− 1 is called a filter. If at each stage j, the set cj
consists of only one simplex σj , we call the filtration complete.

By definition, for a simplex σ ∈ Ki it follows that σ ∈ Kj for j = i, . . . , n. Let now
the birth time α(σ) of the simplex σ in the filtration be the smalls index i such that
σ ∈ Kα iff α ≥ α(σ).

Example 2:
We can construct a filtration of the simplicial complex in Fig. 2.1 by using the following
filter: c0 = 〈a1〉, c1 = 〈a2〉, c2 = 〈a3〉, c3 = 〈a2, a3〉, c4 = 〈a1, a3〉, c5 = 〈a4〉 and
c6 = 〈a2, a4〉. Its corresponding filtration can be easily obtained as Ki =

⋃i−1
k=0 ck for

i = 1, · · · , 7 and K0 = ∅. In this filtration, the filter contains only simplices ci = σi at
each stage, i.e., it is complete.

9



2 A short introduction to persistent homology

a1

a3

a2

a4

Fig. 2.1: 1D Filtration example.

a1 a1

a2

a1

a2

a1

a2
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a1

a2

a3

a1

a2

a3

a1

a2

a3

Fig. 2.2: 2D simplex Filtration example.
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2.2 Persistent homology

Example 3:
The simplicial complex K in Fig. 2.2 can be filtered by the sequence c0 = σ0 = 〈a1〉,
c1 = σ1 = 〈a2〉, c2 = σ2 = 〈a1, a2〉, c3 = σ3 = 〈a3〉, c4 = σ4 = 〈a1, a3〉, c5 = σ5 = 〈a2, a3〉
and c6 = σ6 = 〈a1, a2, a3〉. Its corresponding filtration is given by Ki =

⋃i−1
k=0 σk for

i = 1, · · · , 6 and K0 = ∅. Let us further examine the boundary groups, cycle groups and
the rank of the homology group at each stage Kj .

For K1 = {〈a1〉} we have C0(K1) = Z0(K1) = {∅, 〈a1〉}, B0(K1) = ∅ and hence
rank(H0(K1)) = 1.

For K2 = {〈a1〉, 〈a2〉} it follows that C0(K2) = Z0(K2) = {∅, 〈a1〉, 〈a2〉, 〈a1〉 + 〈a2〉},
B0(K2) = ∅ and thus rank(H0(K2)) = 2.

For K3 = {〈a1〉, 〈a2〉, 〈a1, a2〉} it follows that

C0(K3) = Z0(K3) = {∅, 〈a1〉, 〈a2〉, 〈a1〉+ 〈a2〉},
B0(K3) = {∅, 〈a1〉+ 〈a2〉 = ∂〈a1, a2〉},

and thus rank(H0(K3)) = 1. We can now consider also the twodimensional Betti number,
since the simplex 〈a1, a2〉 came into the filtration. We have C1(K3) = {∅, 〈a1, a2〉},
Z1(K3) = {∅} and B1(K3) = {∅}. It follows rank(H1(K3)) = 0, i.e., there is no “hole”
in K3.

For K4 = {〈a1〉, 〈a2〉, 〈a1, a2〉, 〈a3〉} it follows that

C0(K4) = Z0(K4) = {∅, 〈a1〉, 〈a2〉, 〈a3〉, 〈a1〉+ 〈a2〉, 〈a1〉+ 〈a3〉, 〈a2〉+ 〈a3〉,
〈a1〉+ 〈a2〉+ 〈a3〉},

B0(K4) = {∅, 〈a1〉+ 〈a2〉 = ∂〈a1, a2〉}

and thus rank(H0(K4)) = 2. For dimension one, we have C1(K4) = {∅, 〈a1, a2〉},
Z1(K4) = {∅} and B1(K4) = {∅}. It follows rank(H1(K4)) = 0, i.e., there is still
no “hole” in K4.

For K5 = {〈a1〉, 〈a2〉, 〈a1, a2〉, 〈a3〉, 〈a1, a3〉} it follows that

C0(K5) = Z0(K5) = {∅, 〈a1〉, 〈a2〉, 〈a3〉, 〈a1〉+ 〈a2〉, 〈a1〉+ 〈a3〉, 〈a2〉+ 〈a3〉,
〈a1〉+ 〈a2〉+ 〈a3〉}

B0(K5) = {∅, 〈a1〉+ 〈a2〉 = ∂〈a1, a2〉, 〈a1〉+ 〈a3〉 = ∂〈a1, a3〉,
〈a2〉+ 〈a3〉 = ∂(〈a1, a2〉+ 〈a1, a3〉)}

and thus rank(H0(K5)) = 1. For dimension one, we have

C1(K5) = {∅, 〈a1, a2〉, 〈a1, a3〉, 〈a1, a2〉+ 〈a1, a3〉},
Z1(K5) = {∅},
B1(K5) = {∅}.

11
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It follows rank(H1(K5)) = 0, i.e., there is still no “hole” in K5.

For K6 = {〈a1〉, 〈a2〉, 〈a1, a2〉, 〈a3〉, 〈a1, a3〉, 〈a2, a3〉} it follows that

C0(K6) = Z0(K6) = {∅, 〈a1〉, 〈a2〉, 〈a3〉, 〈a1〉+ 〈a2〉, 〈a1〉+ 〈a3〉, 〈a2〉+ 〈a3〉,
〈a1〉+ 〈a2〉+ 〈a3〉},

B0(K6) = {∅, 〈a1〉+ 〈a2〉, 〈a1〉+ 〈a3〉, 〈a2〉+ 〈a3〉 = ∂(〈a2, a3〉)}

and thus rank(H0(K6)) = 1. For dimension one, we have

C1(K6) = {∅, 〈a1, a2〉, 〈a1, a3〉, 〈a2, a3〉, 〈a1, a2〉+ 〈a1, a3〉, 〈a1, a2〉+ 〈a2, a3〉,
〈a2, a3〉+ 〈a1, a3〉, 〈a1, a2〉+ 〈a1, a3〉+ 〈a2, a3〉},

Z1(K6) = {∅, 〈a1, a2〉+ 〈a1, a3〉+ 〈a2, a3〉}

and B1(K6) = {∅}. It follows rank(H1(K6)) = 1, i.e., we get one “hole” in K6.

Finally, for K7 = {〈a1〉, 〈a2〉, 〈a1, a2〉, 〈a3〉, 〈a1, a3〉, 〈a2, a3〉, 〈a1, a2, a3〉} it follows that

C0(K7) = Z0(K7) = {∅, 〈a1〉, 〈a2〉, 〈a3〉, 〈a1〉+ 〈a2〉, 〈a1〉+ 〈a3〉, 〈a2〉+ 〈a3〉,
〈a1〉+ 〈a2〉+ 〈a3〉},

B0(K7) = {∅, 〈a1〉+ 〈a2〉, 〈a1〉+ 〈a3〉, 〈a2〉+ 〈a3〉 = ∂(〈a2, a3〉)}

and thus rank(H0(K7)) = 1. For dimension one, we have

C1(K7) = {∅, 〈a1, a2〉, 〈a1, a3〉, 〈a2, a3〉, 〈a1, a2〉+ 〈a1, a3〉, 〈a1, a2〉+ 〈a2, a3〉,
〈a2, a3〉+ 〈a1, a3〉, 〈a1, a2〉+ 〈a1, a3〉+ 〈a2, a3〉},

Z1(K7) = {∅, 〈a1, a2〉+ 〈a1, a3〉+ 〈a2, a3〉}
B1(K7) = {∅, 〈a1, a2〉+ 〈a1, a3〉+ 〈a2, a3〉 = ∂(〈a1, a2, a3〉)}.

It follows rank(H1(K7)) = 0 which indicates that the “hole” in K6 disappears in K7.
This phenomenon will be elaborated in Example 5. Furthermore, also dimension two
can be considered in K7, and we find C2(K7) = {∅, 〈a1, a2, a3〉}, Z2(K7) = B2(K7) = {∅}
and thus rank(H2(K7)) = 0.

For our purposes, we also need description tools of a “neighborhood” since a simplicial
complex can be viewed as the triangulation of a topological space (see Subsection 2.2.5
for more details). Star and link are the analogy concepts for describing neighborhood
in a simplicial complex.
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Definition 2.10 (Star and Link [23,25]):
For a set of vertices U of the simplicial complex K, we define its star w.r.t K as the
set of simplices that have at least one vertex in U , and its link is the set of faces of
simplices in star that do not also belong to star:

St U := {σ ∈ K|∃u ∈ U, u ∈ σ},

Lk U := {τ ∈ K|τ ⊆ σ ∈ St U, τ /∈ St U}.

Remark:
If U consists in only one vertex 〈u〉, then we simply write St u and Lk u.

Example 4:
Considering Example 3 with U = {〈a2〉}, we find

St a2 = {〈a2〉, 〈a1, a2〉, 〈a2, a3〉, 〈a1, a2, a3〉}
Lk a2 = {〈a1, a3〉, 〈a1〉, 〈a3〉}.

If endowing the vertices u inK with real values f(u) of a function f (see also triangulation
in Subsection 2.2.5), we can sort the vertices and the neighborhood vertices in its star
according to their endowed values. Let f be a function being defined and non-degenerate
for all vertices u of a given complex K, i.e., we assume that the function values are
different at all vertices, [25].

Definition 2.11 (Lower-star [23,25]):
The lower-star of a vertex u is the set of simplices in St u for which u has the maximum
function value over all vertices. The lower-link of u is the set of faces of simplices in
the lower-star of u that do not also belong to the lower-star:

St u := {σ ∈ St u|v ∈ σ ⇒ f(v) 6 f(u)},

Lk u := {τ ∈ Lk u|v ∈ τ ⇒ f(v) 6 f(u)}.

Remark 1:
With the lower-star definition for a given simplicial complex with all vertices endowed
with real values, we will be able to endow the filter with more information which forms
the called lower star filtration. In Algorithm 4.3 we will drop the assumption that the
function values for all vertices have to be non-degenerate. Instead, we will give a unique
procedure, which function value has to be taken for computing persistence pairs.

Definition 2.12 (Lower-star filtration [25]):
For a simplicial complex K with endowed real function values f(vi) for each vertex,
we consider the sequence of all vertices {v0, · · · , vn−1} being ordered according to their
increasing function values. Then the sequence of subcomplexes {St v0, · · · , St vn−1}
generates a filter that forms a filtration that is called lower-star filtration of f .
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Remark 2:
Let us reconsider Example 2 as follows. The simplicial complex K in this example
can also be interpreted as the graph of a piecewise linear function. Assuming that
aj = (xj , yj), j = 1, . . . , 4 and yj = f(xj), we can also consider the vertices xj ∈ R1

endowed with the function values yj = f(xj). We order the vertices xj according to the
size of their function values and obtain {x1, x2, x3, x4}. The corresponding lower-star
sets are

St x1 = {〈x1〉},
St x2 = {〈x2〉},
St x3 = {〈x1〉, 〈x2〉, 〈x3〉, 〈x2, x3〉, 〈x1, x3〉},
St x4 = {〈x2〉, 〈x4〉, 〈x2, x4〉}.

The corresponding lower-star filtration is obtained with K0 = ∅, and Kj = Kj−1∪St xj .
We obtain a complete lower-star filtration by first sorting the simplices in each set accord-
ing to their dimension and then concatenating them (disregarding multiple appearance)
to obtain a full filter sequence {〈x1〉, 〈x2〉, 〈x3〉, 〈x2, x3〉, 〈x1, x3〉, 〈x4〉, 〈x2, x4〉}. The cor-
responding filtration coincides with the filtration considered in Example 2.

2.2.2 Pairing of simplices and persistence

In persistent homology, we are not interested in the exact structure of every homology
group corresponding to a filtration but we want to know, how the Betti numbers of
the homology groups change within each stage of a given filtration. Let us assume
that we have a complete filtration of K, i.e., each subcomplex Ki+1 in the filtration
is obtained from Ki by adding exactly one simplex σi. The p-Betti number of a p-
homology group increases by 1 when a new p-homology class is created, i.e., when a
p-simplex σi with a certain property (called positive) is added in the filtration. The p-
Betti number of the p-homology group decreases by 1 when a (p+ 1)-simplex of certain
property (called negative) is added in the filtration that “destroys” a p-homology class.
Those properties are investigated by examining how the new simplex is connected with
preceding subcomplex. For a given p-homology class that is created by a positive p-
simplex at a certain stage i of the filtration and is destroyed by a (p + 1)-simplex at a
later stage j of the filtration, the corresponding p-simplex and the (p + 1)-simplex can
be “paired”. Their birth time difference in the filtration is called their persistence.
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Definition 2.13 (Positive and negative simplex):
In a complete filtration {Kj , j = 1, · · · , n}, with Kj+1 = Kj ∪σj , a p-simplex σi is called
positive, iff it forms, together with some other p-simplices in Ki, a new p-cycle c in
Ki+1 with respect to Ki. Then the p-Betti number increases by one, and we call c being
created by σi. A (p+ 1)-simplex σj is called negative, iff it destroys an existing p-cycle
c in Kj by turning this cycle from a non-boundary p-cycle into a boundary. Then the
p-Betti number decreases by one, i.e., ∂σj = c. In this case, we say that c is destroyed
by σj .

Remark:
The definition here is given by checking the relationship of a newly added simplex with
the existing subcomplex Kj according to the definition of boundary operator, i.e., how
the new σj is connected with Kj .

Example 5:
1. We again examine Example 2, together with the complete lower-star filtration given
in Remark 2 resp. in Example 2.
At the first stage, σ1 = 〈x1〉 creates a new 0-cycle in K1, i.e. rank (H0(K1)) = 1, and
σ1 is positive.
At the second stage, σ2 = 〈x2〉 creates a second new 0-cycle in K2, i.e., it is positive.
At the third stage, σ3 = 〈x3〉 creates a third new 0-cycle in K3, i.e., it is positive.
At the fourth stage, σ4 = 〈x2, x3〉 is a 1-simplex with boundary 〈x2〉 + 〈x1〉 that does
not create a new 1-cycle. But it destroys the zero cycle 〈x3〉 that appeared at stage 2.
Alternatively we could say that the zero cycle 〈x2〉 is destroyed that appeared at stage
2. But in such a case, we always consider the cycle as “destroyed” that was born latest.
Thus σ4 is negative.
Analogously, σ5 = 〈x1, x3〉 destroys the 0-cycle in K2 that was born after the 0-cycle in
K1.
The 0-simplex σ6 = 〈x4〉 again creates a new 0-cycle in K5, i.e., it is positive.
Finally, σ7 = 〈x2, x4〉 again destroys the newest 0-cycle, i.e., it is negative.

2. Considering Example 3 with the filtration given there involving also a 2-simplex, σ5

creates and represents the 1-cycle 〈a1, a2〉 + 〈a2, a3〉 + 〈a1, a3〉 which is later destroyed
by σ6 = 〈a1, a2, a3〉 as ∂σ6 = 〈a1, a2〉 + 〈a2, a3〉 + 〈a1, a3〉. Thus, σ5 is positive since it
creates a new 1-cycle, and σ6 is negative since it destroys a 1-cycle.

The idea of persistence is the realization that the creation of classes in a homology group
corresponding to one stage of the filtration can be related to the destruction of classes in
a homology group corresponding to a later stage of the filtration [23]. During a filtration,
the creation and destruction can be reflected by the change of Betti numbers at every
filtration stage, i.e., adding a positive p-simplex σj increases the p-Betti number by one
while adding a negative (p + 1)-simplex σj decreases the p-Betti number by one. We
thus can define the persistence as follows.
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Definition 2.14 (Persistence and pair of simplices [24]):
The persistence of a p-cycle c is defined as the difference of the birth times of the
two related simplices α(σj) − α(σi) with i ≤ j, where σj destroys the p-cycle c that
was created by σi. The corresponding p-simplex σi and the (p + 1)-simplex σj form a
persistence pair. We say that α(σj)− α(σi) is the persistence of the pair (σi, σj).

Remark: 1. Persistence describes, using birth times of σj and σi, how long c sustains in
the filtration. Since a p-cycle always represents a homology class and this p-cycle can be
represented by the positive simplex σ that creates the p-cycle, we can say the homology
class is represened by σ. Due to the unique correspondence of the homology class and
the simplex that creates it, we can claim that persistence of a homology class is also the
persistence of its corresponding pair. The persistence definition can also be given by
birth and death of a certain class in homology groups obtained during a filtration [24].
Those two definitions are in fact equivalent, since the birth of σj in the filtration means
the death of the homology class which has been created by σi. We will further extend
the persistence definition to be given by critical points.
2. Coming back to Example 2, see also Example 5, we find the persistence pairs (σ3, σ4),
(σ2, σ5), (σ6, σ7) for dimension 0.

We now describe a formal algorithm for pairing of simplices as follows [24], where βjk is
the kth Betti number of Kj .

Algorithm 2.15 (Pairing of simplices):

Input: Ki and σi, for i = 1, · · · , n.

Initialize: C = ∅, Pk = ∅, for all possible k.
For j = 1, . . . , n do

If σj with dim σj = k is positive and creates the cycle cj
then add cj into C, i.e., C = C ∪ cj .

elseif σj with dim σj = k + 1 is negative and σj destroyes ci0 in C,
then form the pair (ci0 , cj) and add this pair in to Pk.

end
end

Output: Pk (as a multiset) of persistence pairs of dimension k in the given
filtration.

Example 6:
In Example 3, we get for k = 1 one simplex pair (σ5, σ6).

2.2.3 Pairing of vertices using lower-star filtration

As described above, the creation and destruction of classes in homology groups of sub-
complexes Kj+1 (resp. the change of Betti numbers of Kj+1), can be computed from
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those of Kj merely by looking at the type of σj and how it is connected with Kj , [20,23].
Let us again look more closely at the (non-complete) lower-star filtration of a simplicial
complex. We will now simplify the procedure of pairing for persistence computation. In
Subsection 2.2.5 we will explain in more detail the importance of the lower-star filtration
in our context.

Definition 2.16 (Local and non-local pairs [25]):
Assume that (σ, τ) is a pair of simplices given by Algorithm 2.15, where σ ∈ St σs and
τ ∈ St σt. We say that σ and τ are locally paired if s = t and they are non-locally
paired if s 6= t.

Example 7:
We go back to Example 2, where we have computed already the lower-star filtration in
Remark 2 and the persistence pairs for the complete filtration in Example 5, namely
(σ3, σ4), (σ2, σ5), (σ6, σ7) for dimension 0. Now, with the lower-star filtration

K0 = ∅, K1 = {〈x1〉}, K2 = {〈x1〉, 〈x2〉},
K3 = K2 ∪ {〈x3〉, 〈x1, x3〉, 〈x2, x3〉},
K4 = K3 ∪ {〈x4〉, 〈x2, x4〉},

we observe that (σ3, σ4) = (〈x3〉, 〈x2, x3〉) is locally paired (with vertex x3) and similarly,
also (σ6, σ7) = (〈x4〉, 〈x2, x4〉) is locally paired (with vertex x4). The only non-local pair
is (σ2, σ5) = (〈x2〉, 〈x1, x3〉).

A pair whose both simplices exist in a same lower-star is called trivial, since when using
the (non-complete) lower-star filtration, the corresponding cycle is created and destroyed
simultaneously when the lower-star set of the vertex is added in the filtration. In other
words, we cannot figure out the existence of this class within the “resolution” of the
lower-star filtration we designed. This leads us to consider only the nontrival pairs, i.e.,
nonlocal pairs, and in the following, we will pair vertices instead of pairing simplices.

Definition 2.17:
Let (σ, τ) be a non-locally paired simplex pair, where σ ∈ St σs and τ ∈ St σt. We
define the corresponding persistence pair of vertices as (s, t).

Example 8:
In Example 2, see also the example above, we obtain the simplex pair (σ2, σ5), thus the
vertices pair (x2, x3).

In Subsection 2.2.5, we will see that this definition is closely related with the idea of
pairing of critical points of a function. A similar concept will be applied for piecewise
linear functions on an interval later in Chapter 4, see e.g. Algorithm 4.3.
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2.2.4 Boundary matrix and matrix-based persistence computation

The boundary matrix is used to describe the relation between a simplex and all its faces.
It can be also used as a powerful tool for computing persistence pairs.

As indicated by Definition 2.5, we know that a (p+ 1)-simplex can have some p-simplex
as its faces. In other words, a p-simplex can either be a face of a (p+ 1)-simplex or not.
This relationship between p-simplex and (p + 1)-simplex of a simplical complex can be
described by a binary matrix given in the following definition.

Definition 2.18 (Boundary matrix [22,42]):
For a given filter {σ0, · · · , σn−1} for a simplical complex K as in Definition 2.9, the
binary matrix M is called the boundary matrix of K, if M satisfies that M(i, j) = 1
⇐⇒ σi is a face of σj .

Example 9:
We consider the simplicial complex K in Figure 2.1 and its filter in Example 2 as follows,

σ1 σ2 σ3 σ4 σ5 σ6 σ7

〈a1〉 〈a2〉 〈a3〉 〈a2, a3〉 〈a1, a3〉 〈a4〉 〈a2, a4〉
.

Then K has the following boundary matrix according to Definition 2.18,

M =



σ1 σ2 σ3 σ4 σ5 σ6 σ7

σ1 0 0 0 0 1 0 0
σ2 0 0 0 1 0 0 1
σ3 0 0 0 1 1 0 0
σ4 0 0 0 0 0 0 0
σ5 0 0 0 0 0 0 0
σ6 0 0 0 0 0 0 1
σ7 0 0 0 0 0 0 0


.

The boundary matrix has some nice properties. It can be used as a boundary operator
if a p-chain is expressed in vector form.

Example 10:
We take the simplicial complex K in Figure 2.1 and the setup in Example 9. We compute
the boundary of the 1-chain c = 〈a1, a3〉+ 〈a3, a2〉 = σ4 + σ5 using the boundary matrix
M in Example 9. We first see that this 1-chain can be expressed as the vector below
according the given fixed filter,

v =
(σ1 σ2 σ3 σ4 σ5 σ6 σ7

0 0 0 1 1 0 0
)
,
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where the binary values 1 at 4th and 5th index indicate that the corresponding simplices
exist in the 1-chain. By multiplying M with vT , we obtain the following vector ṽ which
corresponds to c’s boundary σ1 + σ2 = 〈a1〉+ 〈a2〉 = ∂(〈a1, a3〉+ 〈a3, a2〉),

ṽ =



σ1 σ2 σ3 σ4 σ5 σ6 σ7

σ1 0 0 0 0 1 0 0
σ2 0 0 0 1 0 0 1
σ3 0 0 0 1 1 0 0
σ4 0 0 0 0 0 0 0
σ5 0 0 0 0 0 0 0
σ6 0 0 0 0 0 0 1
σ7 0 0 0 0 0 0 0


·



0
0
0
1
1
0
0


=



1
1
0
0
0
0
0


.

With the help of the boundary matrix and the lowest index definition below, we can
now describe Algorithm 2.15 in a matrix-based form.

Definition 2.19 (Lowest index [22]):
For a given binary matrix M with the jth column being denoted by Mj , we define the
lowest index δj(M) of Mj as the row index of the lowest non-zero element of Mj :

δj(M) =

{
k, Mj 6= 0, k is the index of lowest non-zero element of Mj ,

0, otherwise.

For example, the matrix M in Example 9 yields δ4(M) = 2, δ5(M) = 1 and δ7(M) = 2,
while for the zero columns we have δ1(M) = δ2(M) = δ3(M) = δ6(M) = 0.

In matrix form, Algorithm 2.15 can be written as follows, [22].

Algorithm 2.20 (Matrix-based simplices pairing):

Input: M of size n by n.

Initialize: M (1) = M .
For j = 1, . . . , n do

For k = 1, . . . , j do

If δk(M
(j)) = δj(M

(j)) then

M
(j)
j = M

(j)
j +M

(j)
k .

end

Set M (j+1) = M (j).
end

end

Output: M (n) contains information on all simplex pairs:

for each column index p, if δp(M
(n)) = q, then (σp, σq) is a pair.
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Example 11:
We apply Algorithm 2.20 to M in Example 9 and obtain

M (1) :



σ1 σ2 σ3 σ4 σ5 σ6 σ7

σ1 0 0 0 0 1 0 0
σ2 0 0 0 1 0 0 1
σ3 0 0 0 1 1 0 0
σ4 0 0 0 0 0 0 0
σ5 0 0 0 0 0 0 0
σ6 0 0 0 0 0 0 1
σ7 0 0 0 0 0 0 0


→ M (2) :



σ1 σ2 σ3 σ4 σ5 σ6 σ7

σ1 0 0 0 0 1 0 0
σ2 0 0 0 1 1 0 1
σ3 0 0 0 1 0 0 0
σ4 0 0 0 0 0 0 0
σ5 0 0 0 0 0 0 0
σ6 0 0 0 0 0 0 1
σ7 0 0 0 0 0 0 0


.

Repeating the procedure yields no further change, i.e., M (2) = M (3) = . . . = M (8). In
the resulting matrix M (2), we have δ4(M (2)) = 3, δ5(M (2)) = 2 and δ7(M (2)) = 6 which
indicate the persistence pairs of simplices (σ3, σ4), (σ2, σ5) and (σ6, σ7), respectively.
By Definition 2.17, we obtain the persistence pairs of vertices are (a3, a3), (a2, a3) and
(a4, a4). When taking again the interpretation as in Remark 2, this is equivalent with the
persistence pairs of vertices (x3, x3), (x2, x3) and (x4, x4), where only the pair (x2, x3)
is non-local according to Definition 2.16.

2.2.5 Triangulation

All our discussion above was based on simplicial complexes. But functions are usually
defined in a multidimensional real space Rd with d > 1, on manifolds, or even gen-
erally in a topological space. The theory which studies the homology properties of a
topological space is called singular homology theory. We refer to [32] for more details.
Singular homology groups are usually hard to compute. A possible way for simplying
the computation of singular homology groups is to simplify the topological space itself
to a simplicial complex while keeping some properties. Assuming that this simplification
preserves the wanted topological properties of the space suitably, one can make use of
the homology theory on simplicial complexes.

The simplification of a topological space is called triangulation. Let us first recall the
definition of a homeomorphism.

Definition 2.21 (Homeomorphism):
A function h : X −→ Y between two topological spaces (X, TX) and (Y, TY) is called a
homeomorphism if it satisfies following properties.

(1) h is a bijection.
(2) h is continuous.
(3) h is invertible and the inverse function h−1 is also continuous.

Definition 2.22 (Triangulation):
A triangulation of a topological space X is a simplicial complex K, homeomorphic to
X, together with a homeomorphism h : K −→ X.

20



2.2 Persistent homology

Considering one-dimensional functions, the triangulation is simple and the procedure of
computing persistence using the lower-star filtration is closely related to the notion of
persistence for Morse functions, see [22].

We will not concentrate on triangulation too much but notice the following special one-
dimensional case whose triangulation can be itself.

Persistence for piecewise linear functions

Let f : R → R be a piecewise linear function, given by the sequence of knots (xk)k∈I
and with f(xk) = yk for k ∈ I, where I denotes a finite index set. As before in example
2, the connected points ak = (xk, yk) can be interpreted as a 0-simplicial complex. We
assume that f is non-degenerate, i.e., f(xk) 6= f(xj) for k 6= j. Applying the lower-star
filtration, each vertex xk will be connected to a filter set St xk. This set contains either
only the vertex xk itself, if it is a local minimum of f , or it contains beside the vertex xk
further 1-simplexes (edges), namely exactly one edge if xk is neither a local minimum
nor a local maximum, and two edges if it is a local maximum. In the latter two cases,
there will be always local persistence pairs (namely xk together with the one edge in
St xk if xk is neither a local minimum nor a local maximum, or xk together with one of
the two edges in St xk if xk is a local maximum of f).

Therefore, we can simply find the important (non-local) persistence pairs that relate a
local minimum vertex with a local maximum vertex.

The following persistence for Morse functions is equivalent to the above pairing proce-
dure, see [22]. We consider all critical points of f , i.e., the vertices xk that are either
local minima or local maxima of f , and order them according to the size of function
values starting with the global minimum. Now for the obtained order of corresponding
function values ykl = f(xkl), we consider the sublevel sets Rt = f−1(−∞, t]. Increasing
t, the connectivity of Rt will change at each value ykl . A new component will be added
at a local minimum value, and two components will merge at a local maximum value.
The pairing procedure can now be done according to the following rule. When a new
component is introduced at a local minimum value t = yj = f(xj) then xj is said to
represent this component. If we pass a local maximum value yk = f(xk) then we pair xk
with the younger (higher) of the two local minima that represent the two components
being merged.

A similar procedure will be applied in Section 4 to define the new notion of persistence
distance of piecewise linear functions on an interval.
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3 Discrete total variation and the discrete
1D denoising problem

The total variation model is originally designed for continuous functions with bounded
total variation.

3.1 Classical continuous TV restoration model

We first recall the origin of the TV restoration idea for continuous functions [13,37].

Let f(x) be the measured noise contaminated version of the clean signal u(x), i.e.,

f(x) = u(x) + n(x), (3.1)

where the noise n(x) possesses mean 0 and variance σ2,

En(x) = 0, En2(x) = σ2. (3.2)

Rudin, Osher and Fatemi [37] invented the TV denoising model which minimizes the
total variation

TV (u) =

∫
Ω
|∇u(x)|dx, (3.3)

where Ω is the domain of a continuous function u and where

∇u(x) =
(
(ux1(x))2 + (ux2(x))2

)1/2
is the gradient of u at x = (x1, x2). Here we have assumed for simplicity that the original
signal u is differentiable, i.e., that the partial derivatives in x1- and x2-direction indeed
exist. Otherwise one needs to employ a more general definition for TV (u), see e.g. [11].

Then, the assumption (3.2) on noise results in two constraints for the minimization of
of the TV norm,

23



3 Discrete total variation and the discrete 1D denoising problem

∫
Ω
u(x)dx =

∫
Ω
f(x)dx,

1

|Ω|

∫
Ω

(u(x)− f(x))2dx = σ2.

With the constraints above, we can finally turn the TV minimization problem (3.3) into
the following energy functional by introducing a Lagrange multiplier λ,

J(u) =

∫
Ω
|∇u(x)|dx+

λ

2

∫
Ω

(u(x)− f(x))2dx. (3.4)

The Euler-Lagrange equation of J is given by

−∇ ·
( ∇u
|∇u|

)
+ λ(u− f) = 0, (3.5)

and steepest descent marching gives

∂u

∂x
= ∇ ·

( ∇u
|∇u|

)
+ λ(f − u).

By setting λ = 0, one obtains the Osher-Rudin TV diffusion

∂u

∂x
= ∇ ·

( ∇u
|∇u|

)
.

It is easy to observe that |∇u| in (3.5) can have singularities in flat regions and at
extrema. Due to those singularities, |∇u| in (3.5) is regularized to

|∇u|a =
√
|∇u|2 + a

with some small positive parameter a.

Then one can show that the solution u(x) of the regularized Euler-Lagrange equation
(3.5) (with |∇u| replaced by |∇u|a) minimizes the following regularized version of (3.4)

Ja(u) =

∫
Ω
|∇u(x)|adx+

λ

2

∫
Ω

(u(x)− f(x))2dx. (3.6)

3.2 The discrete TV model

In this subsection, we introduce first the discrete TV model on graphs and the cor-
responding nonlinear restoration minimization algorithm due to [13]. As a fundament
of the next chapter, we also elaborate the one-dimensional discrete TV minimization
restoration functional and its minimization algorithm.
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3.2 The discrete TV model

Our following considerations summarize the approach by Chan, Osher and Shen [13]
to transfer the TV restoration model of Rudin, Osher and Fatemi [37] to the discrete
setting.

3.2.1 Digital TV filters on graphs

The necessity of modeling a general digital domain by a graph was proposed by Osher
and Shen, Alpert et al. in [2, 33].

A general digital domain can be modeled as a graph [Ω, E], with a finite set Ω of nodes
and an edge dictionary E. If the nodes α and β are linked by an edge, we write α ∼ β.
We consider now digital signals u being functions defined on Ω,

u: Ω −→ R.

The function value at node α is written as uα or u(α). The local variation at a node
α ∈ Ω is defined as

|∇αu| :=
√∑
β∼α

(uβ − uα)2. (3.7)

For a small positive real number a, the regularized local variation at a node α is

|∇αu|a :=

√∑
β∼α

(uβ − uα)2 + a2. (3.8)

The edge derivative is defined by discretization of the directional derivative in the
continuous case. The edge derivative of u along e at α is determined by

∂u

∂e

∣∣∣∣
α

:= uβ − uα, (3.9)

where the edge e connects node α with node β, i.e., α ∼ β. This simple determination
of the discrete edge derivative is especially senseful if all edges have the same length.
Otherwise, one should think about normalizing by edge length, similarly as for first order
approximations of derivatives by divided differences. One should notice that the edge
derivative of u along e at β is

∂u

∂e

∣∣∣∣
β

= uα − uβ.

Then it becomes obvious that
∂u

∂e

∣∣∣∣
α

= − ∂u

∂e

∣∣∣∣
β

.
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3 Discrete total variation and the discrete 1D denoising problem

The discrete gradient in (3.7) can be expressed as

|∇αu| =
√∑

e`α

( ∂u

∂e

∣∣∣∣
α

)2
, (3.10)

where e ` α means that the sum is taken over all edges possessing the node α.

Given a noisy signal f on Ω,

fα = uα + nα, α ∈ Ω, (3.11)

which has been contaminated by noise n, Chan et al. [13] proposed a non-linear data-
dependent digital TV filter

F λ,a : u −→ v,

where v is the output signal on Ω, λ is the parameter to balance approximation and
smoothing, and a is the regulation parameter in (3.8), which can be of the order 10−4

for a typical signal. For simplicity, we denote F λ,a by F . For each node α ∈ Ω the filter
is given by

vα = F λ,a
α (u) :=

∑
β∼α

hαβ(u)uβ + hαα(u)u0
α. (3.12)

The adaptive filter coefficients in (3.12) are defined by

hαβ(u) :=
wαβ

λ+
∑

γ∼αwαγ
,

hαα(u) :=
λ

λ+
∑

γ∼αwαγ
,

wαβ(u) :=
1

|∇αu|a
+

1

|∇βu|a
. (3.13)

It is easy to verify that for any node α

hαα(u) +
∑
β∼α

hαβ(u) = 1.

In this sense, F is a lowpass filter. The proposed algorithm now reads as follows.
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3.2 The discrete TV model

Algorithm 3.1:

Input: noisy signal f , parameters λ, a, Niteration

1) Initialize u0 = f .

2) For k = 0, . . . , Niteration do

For j = 0, . . . , N do

Compute vj = Fλ,α
j (uk) =

∑
β∼α hαβ(uk)uβ + hαα(uk)u0α

end

Put uk+1 := v.

end

Output: u = uNiteration+1.

The iteration sequence uk obtained in this algorithm has a fixed point that minimizes a
digital version of the functional

Ja(u) =

∫
Ω
|∇u(x)|adx+

λ

2

∫
Ω

(u(x)− f(x))2dx.

in (3.6), where
∫

Ω |∇u(x)|adx is replaced by the sum of all local variations for all nodes,
which is usually defined as discrete total variation.

The discretized minimization problem can be minimized by Algorithm (3.1) according
to the following theorems, see [13].

Theorem 3.2:
If the filtering process in Algorithm 3.1 converges to some signal u, then u satisfies∑

e`α

∂

∂e

−1

|∇u|a
∂u

∂e

∣∣∣∣
α

+ λ(u0
α − uα) = 0, for all α ∈ Ω. (3.14)

Proof: The limit signal u satisfies

uα = Fα(u), α ∈ Ω.

According to (3.12) and (3.13) it can be written as(
λ+

∑
β∼α

wαβ

)
uα =

∑
β∼α

wαβuβ + λu0
α, α ∈ Ω,

which equals to ∑
β∼α

wαβ(uβ − uα) + λ(u0
α − uα) = 0.
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3 Discrete total variation and the discrete 1D denoising problem

Thus, the proof is done if we can show that∑
β∼α

wαβ(uβ − uα) =
∑
e`α

∂

∂e

−1

|∇u|a
∂u

∂e

∣∣∣∣
α

holds true. We compute the right-hand side of the above equation according to the
definition of edge derivative (3.9) and find for the edge e linking α to β,

∂

∂e

−1

|∇u|a
∂u

∂e

∣∣∣∣
α

=
( −1

|∇u|a
∂u

∂e

)∣∣∣∣
β

−
( −1

|∇u|a
∂u

∂e

)∣∣∣∣
α

=
−1

|∇βu|a

(∂u
∂e

)∣∣∣∣
β

+
1

|∇αu|a

(∂u
∂e

)∣∣∣∣
α

=
−1

|∇βu|a
(uα − uβ) +

1

|∇αu|a
(uβ − uα)

=
( 1

|∇βu|a
+

1

|∇αu|a

)
(uβ − uα).

Noticing that the last term is exactly wαβ(uβ − uα) according to (3.13), we finish the
proof.

Remark: Formula (3.14) can be seen as a digital version of (3.5) on Ω,

∇ ·
( ∇u
|∇u|

)
+ λ(f − u) = 0,

where we take the negative on both sides of (3.5).

Theorem 3.3:
If the TV filtering process in Algorithm 3.1 converges, then the limit signal u is the
unique minimizer of the digital TV energy functional

J̃a(v) =
∑
α∈Ω

|∇αv|a +
λ

2

∑
α∈Ω

(vα − u0
α)2.

Proof:
It is easy to notice that the left-hand side of (3.14) is exactly the negative gradient of
J̃a(u) at node α. On the other hand, it has been shown that J̃a(u) is strictly convex,
see [11,33]. Thus, the assertion holds true.

3.2.2 One-dimensional discrete TV

In this section, we specialize the general digital domain Ω to the one-dimensional discrete
case and redescribe briefly the corresponding theorem and algorithm.

28



3.2 The discrete TV model

Let X be a partition of the interval [a, b] of the form a = x0 < x1 < · · · < xN = b.
Further, let us consider a sequence y = {yj}Nj=0 of measured data that corresponds to
the partition X. Then (xj , yj), j = 0, . . . , N , uniquely define a linear spline function
f : [a, b] → R with f(xj) = yj . We denote the space of linear splines with respect to
the partition X by S1(X). In this special case, we hence have Ω = {x0, . . . , xN} and
neighboring nodes xi and xi+1 are linked by an edge, i.e., xi ∼ xi+1 for i = 0, . . . , N − 1.

Analogously to (3.11), let u = (u(xj))
N
j=0 be a finite digital function on X that is

corrupted with white noise, i.e., we have the given data

yj = f(xj) = u(xj) + n(xj), j = 0, . . . , N (3.15)

for a partition X, where n has zero mean and (unknown) deviation σ. Using the cele-
brated discrete ROF-model, a reconstruction of u with respect to X can be obtained as
the minimizer of the functional

J(u) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +
N−1∑
`=0

|u(x`+1)− u(x`)|, (3.16)

where the second term denotes the one-dimensional discrete total variation of u. It is
defined generally as follows.

Definition 3.4 (Discrete total variation):
With partition X defined above, the discrete total variation of f (resp. y) is defined
as the absolute sum of all changes of function values, i.e.,

TV (f) :=
N−1∑
j=0

|f(xj+1)− f(xj)| (3.17)

resp.

TV (y) :=
N−1∑
j=0

|yj+1 − yj |.

Let us shortly summarize some well-known properties of TV (f) (resp. TV (y)), for a
proof, we refer e.g. to [10], where a more general discrete TV is defined based on the
discrete co-area formula.
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3 Discrete total variation and the discrete 1D denoising problem

Theorem 3.5:
Let TV (y) with y = (f(xj))

N
j=0 ∈ RN+1 be the discrete total variation of f ∈ S1(X).

Then we have:

(1) TV (y) is nonnegative and TV (y) = 0 if and only if y = c·1 with 1 := (1, . . . , 1)T ∈
RN+1 and c ∈ R.

(2) TV (y) is positively homogeneous, i.e., TV (λ · y) = λTV (y) for any λ ≥ 0.

(3) TV (y) is invariant by addition of a constant, i.e., TV (y + c · 1) = TV (y).
(4) TV (y) : RN+1 → R is a continuous functional.

(5) TV (y) is submodular, i.e., for any two functions f, g ∈ S1(X) with y = (f(xj))
N
j=0

and z = (g(xj))
N
j=0, we have

TV (y) + TV (z) ≥ TV (max(y, z)) + TV (min(y, z)),

where max(y, z) := (max{yj , zj})Nj=0 and min(y, z) := (min{yj , zj})Nj=0.

(6) The discrete total variation is a semi-norm, i.e., for y, z ∈ RN+1,

TV (y + z) ≤ TV (y) + TV (z).

Proof:

For completeness we give the proof for these properties of the discrete TV that can in
our case be partially simplified compared to [10].

(1) TV (y) = 0⇐⇒ |yj − yj−1| = 0, for j = 1, · · · , N ⇐⇒ y = c · 1.

(2) The property holds true, since |(λ · y)j − (λ · y)j−1| = λ · |yj − yj−1| holds for all
j = 1, · · · , N .

(3) The property holds true, since |(y + c · 1)j − (y + c · 1)j−1| = |yj − yj−1| holds for
all j = 1, · · · , N .

(4) Assume that ‖y − z‖∞ < ε for some ε > 0, i.e., |yj − zj | < ε for j = 0, . . . , N .
Then

TV (z) =
N∑
j=1

|zj − zj−1| ≤
N∑
j=1

(|yj − yj−1|+ 2ε) = TV (y) + 2Nε,

and thus |TV (y)− TV (z)| < 2Nε.

(5) For a fixed node j ∈ {1, . . . , N}, we consider locally all possible cases for y and z.
Without loss of generality we can assume that yj−1 = min{yj−1, yj , zj−1, zj}. (Oth-
erwise we exchange y and z or replace y by −y.) Now we have to check the
following six cases.
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3.2 The discrete TV model

a) For yj−1 < zj−1 < zj < yj , we have

|yj − yj−1|+ |zj − zj−1| = |yj − zj−1|+ |zj − yj−1|
= |max{yj , zj} −max{yj−1, zj−1}|+ |min{yj , zj} −min{yj−1, zj−1}|.

b) For yj−1 < zj < zj−1 < yj , we have

|yj − yj−1|+ |zj − zj−1| > |yj − zj−1|+ |zj − yj−1|
= |max{yj , zj} −max{yj−1, zj−1}|+ |min{yj , zj} −min{yj−1, zj−1}|.

c) For yj−1 < zj−1 < yj < zj , we have

|yj − yj−1|+ |zj − zj−1| = |zj − zj−1|+ |yj − yj−1|
= |max{yj , zj} −max{yj−1, zj−1}|+ |min{yj , zj} −min{yj−1, zj−1}|.

d) For yj−1 < zj < yj < zj−1, we have

|yj − yj−1|+ |zj − zj−1| > |yj − zj−1|+ |zj − yj−1|
= |max{yj , zj} −max{yj−1, zj−1}|+ |min{yj , zj} −min{yj−1, zj−1}|.

e) For yj−1 < yj < zj−1 < zj , we have

|yj − yj−1|+ |zj − zj−1| = |zj − zj−1|+ |yj − yj−1|
= |max{yj , zj} −max{yj−1, zj−1}|+ |min{yj , zj} −min{yj−1, zj−1}|.

f) For yj−1 < yj < zj < zj−1, we have

|yj − yj−1|+ |zj − zj−1| = |zj − zj−1|+ |yj − yj−1|
= |max{yj , zj} −max{yj−1, zj−1}|+ |min{yj , zj} −min{yj−1, zj−1}|.

We thus have

|yj − yj−1|+ |zj − zj−1| >
|max{yj , zj} −max{yj−1, zj−1}|+ |min{yj , zj} −min{yj−1, zj−1}|

holds true for all j. By summing up those inequalities for all j = 1, · · · , N , we
obtain TV (y)+TV (z) ≥ TV (max(y, z))+TV (min(y, z)). Another general proof
of this property based on ”co-area formula” can be found in [10].

(6) It is obvious that

|(y + z)j − (y + z)j−1| = |yj − yj−1 + zj − zj−1| 6 |yj − yj−1|+ |zj − zj−1|
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3 Discrete total variation and the discrete 1D denoising problem

holds for j = 1, · · · , N . Summing up both sides of the inequality over all j, we get
TV (y + z) ≤ TV (y) + TV (z).

Let us first derive a very simple first-order iteration filter in order to minimize the discrete
ROF functional (3.16) above. For any function u defined with respect to partition X,
let u = (uj)

N
j=0 = (u(xj))

N
j=0.

We consider the Euler-Lagrange equation and find for j = 1, . . . , N − 1,

λ(uj − fj)− sign(uj+1 − uj) + sign(uj − uj−1) = 0,

and at the boundary,

λ(u0 − f0)− sign(u1 − u0) = 0,

λ(uN − fN ) + sign(uN − uN−1) = 0,

where we define

sign(x) =

{ x
|x| x 6= 0,

0 x = 0.

Using the definitions

g1,j(u) :=

{
1

|uj−uj−1| for uj − uj−1 6= 0

0 else,

g2,j(u) :=

{
1

|uj−uj+1| for uj − uj+1 6= 0

0 else,

we can write the Euler-Lagrange equation above for j = 1, . . . , N − 1 as follows,

uj(g1,j(u) + g2,j(u) + λ) = gj,1(u)uj−1 + gj,2(u)uj+1 + λfj ,

and derive a simple iteration scheme in the form

uk+1
j =

gj,1(uk)ukj−1 + gj,2(uk)ukj+1 + λfj

g1,j(uk) + g2,j(uk) + λ
.

At the boundary we obtain the simplifications

uk+1
0 =

g2,0(uk)uk1 + λf0

g2,0(uk) + λ
, uk+1

N =
gN,1(uk)ukN−1 + λfN

g1,N (uk) + λ
.

An alternative to compute a minimizer of the discrete ROF functional is the application
of the non-linear filter proposed by Chan, Osher and Shen in [13].
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3.2 The discrete TV model

In this case, the local variation |∇ju| at xj is defined by

|∇ju| :=


√(

uj − uj−1

)2
+
(
uj − uj+1

)2
, j = 1, · · · , N − 1,√(

uj − uj+1

)2
, j = 0,√(

uj − uj−1

)2
, j = N.

Analogously, we define the regularized version with a small positive number a by

|∇ju|a :=


√(

uj − uj−1

)2
+
(
uj − uj+1

)2
+ a2, j = 1, · · · , N − 1,√(

uj − uj+1

)2
+ a2, j = 0,√(

uj − uj−1

)2
+ a2, j = N.

(3.18)

For the given noisy signal u0 = f , we again consider the non-linear data-dependent
digital TV filter by Chan et al.,

F λ,a : u −→ v

where u is a given signal on X, v is the output signal on X, λ is the parameter in (3.16)
to balance approximation and smoothing, and a is the regulation parameter in (3.18),
which can be of the order 10−4 for a typical signal. For simplicity, we denote F λ,a by
F . For a fixed node xj ∈ X, we apply the the TV filter

vj = F λ,a
j (u) = hj,j−1(u)uj−1 + hj,j+1(u)uj+1 + hj,j(u)u0

j , (3.19)

where we let the item(s) vanish if the the indices j − 1 or j + 1 is not in {0, . . . , N}. In
the following context, we always assume that an item vanishes if its any index is out of
{0, . . . , N}.

The adaptive filter coefficients in (3.19) are now given by

hj,k(u) =
wj,k(u)

λ+ wj,j−1(u) + wj,j+1(u)
, for k = j − 1 and k = j + 1

hj,j(u) =
λ

λ+ wj,j−1(u) + wj,j+1(u)
,

wj,k(u) =
1

|∇ju|a
+

1

|∇ku|a
, for k = j − 1 and k = j + 1.

It is easy to check that for any index j

hj,j(u) + hj,j−1(u) + hj,j−1(u) = 1.

In this sense, F is a lowpass filter. The complete denoising algorithm in the one-
dimensional case applied to the noisy signal f is thus as follows.
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3 Discrete total variation and the discrete 1D denoising problem

Algorithm 3.6:

Input: noisy signal f , parameters λ, a, Niteration.

1) Initialize u0 = f .

2) For k = 0, . . . , Niteration do

For j = 0, . . . , N do

Compute vj = Fλ,a
j (uk) = hj,j−1(uk)ukj−1 + hj,j+1(uk)ukj+1 + hj,j(u

k)u0j
end

Put uk+1 := v.

end

Output: u = uNiteration+1.

Theorem 3.7:
If the TV filtering process in Algorithm 3.6 converges, then the limit signal u is the
unique minimizer of the TV energy functional (3.16)

J(u) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +

N−1∑
`=0

|u(x`+1)− u(x`)|.

3.2.3 Primal-dual minimization method for the one-dimensional ROF model

We briefly summarize the primal-dual minimization method by Chambolle and Pock [12]
specilized to the one-dimensional ROF-model.

It has been shown in [12] that the minimization problem of (3.16) can be rewritten as
the following primal-dual problem

min
u∈RN+1

max
w∈RN+1

(wTDu +
λ

2

N∑
j=0

|u(xj)− f(xj)|2 − PY ∗(w)), (3.20)

where Y ∗ = {p ∈ RN+1 : ‖ p ‖∞6 1}, and

PY ∗(w) :=

{
0 w ∈ Y ∗,
+∞ w /∈ Y ∗.
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3.2 The discrete TV model

Further D is the (N + 1)× (N + 1) matrix

D =


−1 1 · · · 0 0

−1 1 · · · 0
· · ·

−1 1
0


such that the total variation of u can be written as the 1-norm of Du, i.e., TV (u) =
‖Du‖1.

The saddle-point problem in (3.20) can now be solved using the following iterative pro-
cedure, see [12].

Algorithm 3.8:

Input: noisy signal f , parameters λ, τ, σ > 0, θ ∈ [0, 1], Niteration.

1) Initialize ū0 = y, w0 = 0.

2) For k = 0, . . . , Niteration do

Let wk+1 = (wk + σDūk)/(max(1, abs(wk + σDūk)))

uk+1 = 1
1+τλ (ūk − τDTwk+1 + τλf)

ūk+1 = uk+1 + θ(uk+1 − uk)

end

Output: uNiteration+1 approximates the minimizer of (3.16).

In the above algorithm 3.8, the operators “/”, “abs(·)” and “max(·)” have to be applied
componentwisely.

In our numerical experiments in Chapter 5, we will take θ = 1. The benefit of this
setup is that one can show the convergence of the iteration procedure, see [12] for more
details.
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4 Persistence distance and its relation to
discrete total variation

In this chapter, we introduce the new concept of persistence distance based on per-
sistence pairs and the corresponding difference of function values of a one-dimensional
spline function f on an interval. The persistence distance consists of a sum of distances
of function values of f being local extrema of the function f . We will show that the
persistence distance possesses a lot of favorable properties. In particular, we show that
there exists a close relationship between the persistence distance and the discrete to-
tal variation of a continuous one-dimensional function. However, differently from the
discrete total variation, where just the absolute differences of neighboring function val-
ues are accumulated, the new persistence distance contains more information about the
topological structure of the function. The persistence distance and its relation to discrete
total variation will be used for establishing a new signal denoising model in Chapter 5.
This model can be also described as a new weighted ROF model.

4.1 Persistence distance and its properties

We have already seen in Subsection 2.2.5 that the extremal values (vertices) of a one-
dimensional piecewise linear function f play an important role in investigating the topo-
logical persistence properties of f . Now we want to derive the notion of persistence
distance, based on persistence pairs. We want to get rid of the restriction that f has
to be non-degenerate and do not longer assume that the function values yj = f(xj),
xj ∈ X := {x0, . . . , xN} are pairwise different.

For the one-dimensional signal y = (f(xj))
N
j=0 on the partition X we first define the

(one-sided) local maxima and minima as follows.
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4 Persistence distance and its relation to discrete total variation

Definition 4.1:
A knot xl ∈ X \ {x0, xN} is called (left-sided) local minimum knot of y = (f(xj))

N
j=0

on X with the local minimum value yl = f(xl), if yl−1 = f(xl−1) > f(xl), and if there
exists a ν ∈ N0 such that l + ν + 1 ≤ N and

f(xl) = f(xl+1) = · · · = f(xl+ν) < f(xl+ν+1).

Analogously, a knot xl ∈ X \ {x0, xN} is called (left-sided) local maximum knot of
y = (f(xj))

N
j=0 on X with the local maximum value yl = f(xl), if yl−1 = f(xl−1) < f(xl),

and if there exists a ν ∈ N0 such that l + ν + 1 ≤ N and

f(xl) = f(xl+1) = · · · = f(xl+ν) > f(xl+ν+1).

The boundary knot x0 ∈ X is called (left-sided) local minimum (resp. maximum) knot
of y = (f(xj))

N
j=0 on X with the local minimum (resp. maximum) value y0 = f(x0), if

there exists a ν ∈ N0 with ν ≤ N − 1 such that

f(x0) = f(x1) = · · · = f(xν) < f(xν+1)

(resp. f(x0) = f(x1) = · · · = f(xν) > f(xν+1)). The boundary knot xN ∈ X is called
local minimum (resp. maximum) knot of y = (f(xj))

N
j=0 on X with the local minimum

(resp. maximum) value yN = f(xN ), if f(xN−1) > f(xN ) (resp. f(xN−1) < f(xN ))
holds.

We now consider the subsets of {yj : j = 0, . . . , N},

Ym := {yk = f(xk) : yk is a local minimum value of y},

Y m := {yk = f(xk) : yk is a local maximum value of y},

as well as the corresponding subsets of the partition X,

Xm := {xk : f(xk) ∈ Ym},

Xm := {xk : f(xk) ∈ Y m}.

Further, let xmax := max{Xm, X
m} be the extremum knot with highest index occurring

in the setXm∪Xm. Observe that xmax not coincides with xN if f(xν) = . . . = f(xN−1) =
f(xN ) for some ν < N . For the number of elements in Ym and Y m we obviously have
the relation

#Ym −#Y m ∈ {−1, 0, 1},

since after ordering the knots xk ∈ Xm∪Xm by size, a local minimum (maximum) knot
always possesses a local maximum (minimum) as its neighbor.
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4.1 Persistence distance and its properties

Definition 4.2:
The knot xl ∈ Xm is called global minimum knot of y = (f(xj))

N
j=0 on X with the global

minimum value f(xl) if xl = argmin
x∈Xm

f(x). The knot xl ∈ Xm is called global maximum

knot of y = (f(xj))
N
j=0 on X with the global maximum value f(xl) if xl = argmax

x∈Xm
f(x).

If the global maximum (or minimum) knot is not uniquely determined by Definition 4.2
then we take the knot xl with smallest index l. In this way we allow also functions where
the global minimum or the global maximum is taken at more than one knot.

We want to derive an algorithm for finding the persistence pairs that simplifies Algorithm
2.15 and particularly does not involve the construction of homology groups. The idea is
closely related to the persistence of Morse functions, see [22]. The pairing procedure for
a one-dimensional function can be done by investigating of its local maxima and local
minima and by pairing them using the following idea: a (local) minimum at t creates
and represents a new component of the level set Rt = f−1(−∞, t]. At a (local) maximum
two components of the level set are merged and we pair the higher representer of these
two components with the maximum. The new merged component is then represented
by the lower minimum. An equivalent description is: when passing a maximum, we pair
the maximum with the higher neighboring minimum and pull out the paired values from
the set of local extrema, see [22].

We now construct persistence pairs (xk, xl) of y = (f(xj))
N
j=0 over the partition X by

the following algorithm according to the idea described above. In this algorithm, we no
longer require the function to be non-degenerate, since we always can pair a minimum
knot with the left maximum knot such that the ambiguity of pairing can be eliminated
when two local maximum knots possess the same function value. We pair a maximum
knot with the neighboring minimum knot on the right-hand side if the two minima share
the same function value.
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4 Persistence distance and its relation to discrete total variation

Algorithm 4.3:

Input: Ym, Y m, Xm, Xm for y = (f(xk))Nk=0.

1) Let r := #Y m, P1 := ∅ and Xm,0 := Xm.

Fix the ordered set K0 := {f(xk1) ≤ · · · ≤ f(xkr )} of all local maximum values in Y m

using the convention that for f(xk) = f(xl) ∈ Y m we take f(xk) first if xk < xl.

2) For l = 1, . . . , r do

Consider the l-th entry f(xkl) in the ordered set K0.

If xkl /∈ {x0, xmax} then find the two spatial neighbors x̃1, x̃2 ∈ Xm,l−1 of xkl .

Put x̃ := argminx∈{x̃1,x̃2} | f(xkl)− f(x) | , where in case of

| f(xkl)− f(x̃1) |=| f(xkl)− f(x̃2) | we take x̃ = max{x̃1, x̃2}.
Then (x̃, xkl) resp. (xkl , x̃) is a persistence pair of f , and we set

P1 = P1 ∪ {(x̃, xkl)} and Xm,l := Xm,l−1 \ {x̃}.
Here we apply the convention that the knots in the persistence pairs

are ordered by size, i.e. we write (x̃, xkl) if x̃ < xkl and (xkl , x̃) if

x̃ > xkl .

Output: P1 containing all persistence pairs of y (resp. f).

With the above procedure, we obtain at least #Y m − 2 persistence pairs, since each
local maximum knot of f (resp. y) that is not at the boundary (i.e. not in {x0, xmax})
is paired with one local minimum knot by the above algorithm. Observe that in this
way also each local minimum knot being not the global minimum knot, is contained in
exactly one persistence pair while the global minimum knot is not paired. A boundary
knot (i.e., x0 or xmax) occurs as a knot in a persistence pair if it is a local but not
the global minimum knot, and it is not contained in any persistence pair if it is a local
maximum knot or the global minimum knot.

Remark:
It is easy to see that Algorithm 4.3 applied to Example 2 gives the same pairing result
(x2, x3) as Algorithm 2.15 with the simplification obtained by the lower-star filtration
where only non-local simplex pairs are considered, compare Example 8.

Example 12:
Let us consider the vector y = (0, 2, 1, 3, 1, 4,−1, 0, 1) on the equidistant partition X =
{xj}Nj=0 with xj = j, j = 0, . . . , N , where N = 8, see Figure 4.1 (left).

According to the definition, we find the sets

Y m = {2, 3, 4, 1}, Ym = {0, 1, 1,−1}
Xm = {x1, x3, x5, x8}, Xm = {x0, x2, x4, x6}.

40



4.1 Persistence distance and its properties

1 2 3 4 5 6 7 8
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1

2

3
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Fig. 4.1: Spline function f in Example 12 (left), corresponding persistence diagram (right).

Algorithm 4.3 provides now with K0 = {1, 2, 3, 4} = {f(x8), f(x1), f(x3), f(x5)} the set
of persistence pairs

P1 = {(x1, x2), (x3, x4), (x0, x5)}.

The global minimum knot x6 and the local maximum knot x8 at the boundary do not
occur in any persistence pair.

Example 13:
Let us consider a second example with degenerate local extrema. Consider the vector
y = (1, 0, 1, 0, 1, 0, 1, 0, 1) on the equidistant partition X = {xj}8j=0 with xj = j.

According to our definition, we find now for this degenerate case the sets

Y m = {1, 1, 1, 1, 1}, Ym = {0, 0, 0, 0}
Xm = {x0, x2, x4, x6, x8}, Xm = {x1, x3, x5, x7}.

Algorithm 4.3 provides now with K0 = {1, 1, 1, 1, 1} = {f(x0), f(x2), f(x4), f(x6), f(x8)}
the set of persistence pairs

P1 = {(x2, x3), (x4, x5), (x6, x7)}.

The minimum knot x1 and the local maximum knots x0 and x8 at the boundary do not
occur in any persistence pair.

Remark 3:
In computational topology, the persistence pairs are usually visualized by barcodes [9]
or by a persistence diagram, see e.g. [15, 42]. Each persistence pair (xk, xl) corresponds
to the point (f(xk), f(xl)) in the persistence diagram, and the distance of this point to
the line y = x, i.e., the distance |f(xk) − f(xl)| gives us some information about the
“topological relevance” of these two local extrema of f . Important features correspond
to points being further away from the diagonal, i.e., to persistence pairs (xk, xl) with
significant distances |f(xl) − f(xk)|. In Figure 4.1 (right) the persistence diagram for
Example 12 is illustrated.
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4 Persistence distance and its relation to discrete total variation

Now, we want to construct a second set of persistence pairs for f (resp. for y) on X. For
that purpose, we apply Algorithm 4.3 also to the sequence {−f(xj)}Nj=0 = {−yj}Nj=0,
and obtain a set P2 of persistence pairs.

Obviously, the transfer from {f(xj)}Nj=0 to {−f(xj)}Nj=0 switches the roles of the sets
Ym and Y m (and of Xm and Xm), i.e., using the notations

Ym(−f), Y m(−f), Xm(−f), Xm(−f)

for the sets of extremal values of {−f(xj)}Nj=0 and their corresponding knots {xj}Nj=0,
we have

f(xj) ∈ Ym ⇐⇒ −f(xj) ∈ Y m(−f),

f(xj) ∈ Y m ⇐⇒ −f(xj) ∈ Ym(−f),

and Xm(−f) = Xm, Xm(−f) = Xm.

Considering again the Example 12 with −y = (0,−2,−1,−3,−1,−4, 1, 0,−1), we then
obtain a second set of persistence pairs

P2 = {(x1, x2), (x3, x4), (x6, x8)}.

In particular, we observe that the global maximum knot x5 of Xm does not occur in
any persistence pair of P2. Analogously, applying the procedure to Example 13 with
−y = (−1, 0,−1, 0,−1, 0,−1, 0,−1), we obtain the second set of persistence pairs

P2 = {(x1, x2), (x3, x4), (x5, x6), (x7, x8)}.

Comparing the sets P1 and P2, we note that the persistence pairs found in P1 and P2

partially coincide, but usually P1 and P2 are not equal. Further, the boundary extremum
knots x0 and xmax are included in at most one persistence pair, either in one from P1 or
in one from P2, since they are not regarded when being a local maximum knot. Indeed,
x0 (resp. xmax) will not occur in any persistence pair, i.e., neither in P1 nor in P2, if it
is a global extremum knot. We are now ready for the following new definition.

Definition 4.4 (Persistence distance):
For a given function f ∈ S1(X) respective the vector y = (f(xj))xj∈X , we define the

persistence distance by

‖f‖per = ‖y‖per = ‖y|X‖per :=∑
(xk,xl)∈P1

|f(xl)− f(xk)|+
∑

(xk,xl)∈P2

|f(xl)− f(xk)|,

i.e., as the sum over all distances of function values for the persistence pairs in P1 and
P2.
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4.1 Persistence distance and its properties

Observe that for persistence pairs that occur twice, i.e., are contained in P1 ∩ P2, the
corresponding absolute difference of function values is added twice. We call a set in
which an element can appear more than one time as multiset.

Remark 4:
As far as we know, the persistence distance as given in Definition 4.4 has not been
regarded before in the homology literature. The idea to consider a so-called p-norm of
the persistence diagram of a function ft : R2 → R that is obtained by convolving the
original function f : Ω → R with the isotropic Gaussian kernel with scale t > 0 (in the
two-dimensional case), can be found already in [14]. This p-norm takes the p-th root of
the sum of the p-th powers of all persistences. In contrast to the p-norm definition of
the persistence diagram, we consider the persistence pairs for a function on a bounded
interval and have to treat extremal values at the boundary with special care. Further,
we consider the persistences for f and for −f .

Let us derive some properties of the persistence distance ‖f‖per = ‖y‖per.

Theorem 4.5:
Let f ∈ S1(X) be a spline function with y = (f(xj))

N
j=0 on the partition

X = {x0, . . . , xN} of [a, b]. Then the persistence distance ‖f‖per = ‖y|X‖per = ‖y‖per
satisfies the following properties.

(1) ‖y‖per ≥ 0. We have ‖y‖per = 0 if and only if y = (yj)
N
j=0 is monotone.

(2) For each c ∈ R, we have ‖cy‖per = |c| · ‖y‖per.
(3) The persistence distance is invariant under addition of a constant function,

‖y + c1‖per = ‖y‖per,

where 1 = (1, . . . , 1)T ∈ RN+1 and c ∈ R. In particular, ‖c1‖per = 0.

(4) The persistence distance ‖y‖per : RN+1 → R is a continuous functional.

(5) The persistence distance ‖y‖per is submodular, i.e., for f, g ∈ S1(X) with y =

(f(xj))
N
j=0 and z = (g(xj))

N
j=0 we have

‖y‖per + ‖z‖per ≥ ‖max(y, z)‖per + ‖min(y, z)‖per,

where max(y, z) := (max{yj , zj})Nj=0 and min(y, z) := (max{yj , zj})Nj=0.

(6) There exist y, z ∈ RN+1 such that the persistence distance ‖y‖per does not satisfy
the triangle inequality, i.e.,

‖y + z‖per ≤ ‖y‖per + ‖z‖per.

Hence, ‖y‖per is not convex.
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4 Persistence distance and its relation to discrete total variation

Proof:

(1) The property ‖y‖per ≥ 0 is obvious by definition, where ‖y‖per = 0 can only
occur if there are no persistence pairs, neither for f nor for −f , i.e., P1 ∪ P2 = ∅.
According to Algorithm 4.3, we have P1 = ∅, if and only if the set Y m is a subset of
{f(x0), f(xmax)}, i.e., there are local maxima only at the boundary. Analogously,
P2 = ∅, if and only if Ym ⊂ {f(x0), f(xmax)}, i.e., there are local minima only at
the boundary. Hence, P1 ∪ P2 = ∅ is true if and only if y is monotone.

(2) This property is obvious, where for c < 0 the roles of Xm and Xm and hence of
P1 and P2 are exchanged.

(3) All persistence pairs and hence the persistence distance are invariant under addi-
tion of a constant.

(4) Since f is a tame function, this assertion is a direct consequence of the stability
of persistence diagrams, see e.g. [15]. In the special case considered here, we can
also derive this property directly. Assume first, that the vector y = (f(xj))

N
j=0 is

non-degenerate, i.e., that yj 6= yk for j 6= k. Then, there exists an ε > 0 such that
for each ỹ with ‖y− ỹ‖∞ < ε the sets of minimum and maximum knots for y and
ỹ coincide, i.e., Xm = X̃m and Xm = X̃m, and such that the order of maximum
and minimum values (i.e., the order of the values f(xk1), . . . , f(xkr) in the set K0

in Algorithm 4.3) does not change, and hence all persistence pairs (xk, xl) remain
the same for y and ỹ. Hence

|‖y‖per − ‖ỹ‖per| ≤
∑

(xk,xl)∈P1

|(|yl − yk| − |ỹl − ỹk|)|

+
∑

(xk,xl)∈P2

|(|yl − yk| − |ỹl − ỹk|)|

≤
∑

(xk,xl)∈P1

|(yl − ỹl)− (ỹk − yk)|+
∑

(xk,xl)∈P2

|(yl − ỹl)− (ỹk − yk)|

≤ 2Nε.

The last inequality follows from the fact that #P1 ≤ #Y m and #P2 ≤ #Ym, where
Y m resp. Ym contain the maximum resp. minimum values of y.

In the case of equal function values in y, the sets P̃1 and P̃2 may enlarge for
the perturbed vector ỹ. However, for each pair (xk, xl) ∈ P1 ∪ P2 there exists a
persistence pair (xk′ , xl′) ∈ P̃1∪ P̃2, with yk−yk′ = 0, yl−yl′ = 0 and yk− ỹk′ < ε,
yl − ỹl′ < ε. Further, the new sets P̃1 and P̃2 of ỹ may contain new persistence
pairs, but these are due to components in ỹ that correspond to equal neighboring
values in y and hence have a distance of at most 2ε. Thus the same estimate as
in the first case applies also here.

(5) The proof of submodularity is postponed to Remark 5.

44
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(6) We give a counterexample, where the triangle inequality is not satisfied. Choose
X = (x0, x1, x2, x3) with xj = j, and let y and z be determined by the vectors
y = (0, 1,−1, 0)T and z = (0.6, 1.2, 1.8, 2.4)T . For y we find the sets of persistence
pairs P1 = {(x0, x1)}, P2 = {(x2, x3)} and hence ‖y‖per = |y1− y0|+ |y3− y2| = 2.
Since z is monotone, we find P1 = ∅ and P2 = ∅ and hence ‖z‖per = 0. Finally,

for the sum y + z = (0.6, 2.2, 0.8, 2.4)T we obtain P1 = {(x1, x2)}, P2 = {(x1, x2)}
yielding ‖y + z‖per = 2.8. Hence, y and z do not satisfy the triangle inequality.

4.2 Relation between discrete total variation and persistence
distance

While being not a semi-norm, the persistence distance (together with the sets of persis-
tence pairs) contains a lot of information about the structure of a function f ∈ S1(X).

In this section, we show the following close relation to the discrete total variation TV (f).

Theorem 4.6:
Let X be a partition of the form a = x0 < x1 < · · ·xN = b. Then, for each function
f ∈ S1(X) we have

‖f‖per + max
x,y∈X

|f(x)− f(y)| = TV (f),

where TV (f) is defined in (3.17). Analogously, for each sequence y ∈ RN+1, we have

‖y‖per + max
j,k∈{0,1,··· ,N}

|yj − yk| = TV (y).

The proof of Theorem 4.6 is based on an iterative topological simplification technique as
used e.g. in [5]. Before we can prove this Theorem 4.6, we need the following Lemmata.
In the first lemma we show a nesting principle for persistence pairs.

Lemma 4.7:
Let P1 and P2 be the two sets of persistence pairs of f ∈ S1(X). Let (xk, xl) be a
persistence pair in P1 ∩ P2. Then, for all x ∈ Xm ∪Xm with xk < x < xl, there exists a
further knot x̃ ∈ Xm ∪Xm with xk < x̃ < xl such that (x, x̃) or (x̃, x) is also contained
in P1 ∩ P2.

Proof:
The above assertion is in fact a direct conclusion from Algorithm 4.3. Let (xk, xl) be a
persistence pair in P1 with xk < xl, and let us assume without loss of generality, that
xk ∈ Xm, and xl ∈ Xm, i.e., xk is a local minimum knot and xl is a local maximum knot
of f . Recalling Algorithm 4.3 it follows that in the iteration step, where f(xl) ∈ Y m is
considered, the knot xk is a direct neighbor of xl, i.e., there is no other minimum knot
x ∈ Xm,ν left in the interval between xk and xl. Hence, if there exists a local maximum
knot x ∈ Xm with xk < x < xl, then it had been paired with a minimum knot contained
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in (xk, xl) and pulled out already in an earlier step of the iteration. In particular, it
hence corresponds to a local maximum value smaller than (or equal to) f(xl).

Analogously, since (xk, xl) ∈ P2, the arguments can be repeated for −f(xk) ∈ Ỹm and
−f(xl) ∈ Ỹ m. Hence, each knot x ∈ Xm with xk < x < xl is paired with some
x̃ ∈ Xm with xk < x̃ < xl, and vice versa. Moreover, it cannot happen that one such
x ∈ Xm ∩ (xk, xl) is paired with different knots x̃1 6= x̃2 in P1 and P2, since the pairing
procedure in Algoritm 4.3 is defined uniquely.

Lemma 4.8:
Let f ∈ S1(X) with the sets P1 and P2 of persistence pairs, where P1 ∩ P2 = ∅. Then,
for each persistence pair (xk, xl) ∈ P1 ∪ P2, the values xk and xl are neighbor knots in
Xm ∪Xm.

Proof:
Assume by contrast that there is a persistence pair (xk, xl) ∈ P1∪P2 that does not satisfy
this assertion. Without loss of generality let xk ∈ Xm and xl ∈ Xm and (xk, xl) ∈ P1.
Since xk and xl are no neighbor knots in Xm∪Xm, there exist (by Lemma 4.7) x̃0 ∈ Xm

and x̃1 ∈ Xm with xk < x̃1 < x̃0 < xl that also form a persistence pair (x̃1, x̃0) in P1

and such that according to Algorithm 4.3 f(x̃0) ≥ f(xk) and f(x̃1) < f(xl). Hence,
for {−f(xk)}Nk=0, we find similarly as in the proof of Lemma 4.7 that (x̃1, x̃0) is also a
persistence pair in P2, contradicting the assumption P1 ∩ P2 = ∅.

Proof: (of Theorem 4.6)

1. Let f ∈ S1(X) be given with local minima and maxima sets Xm, Ym , Xm, Y m and
sets P1 and P2 of persistence pairs. We order all persistence pairs (xk, xl) ∈ P1 ∪ P2 by
their distances |f(xl) − f(xk)| starting with the smallest. Now we apply the following
iterative simplification algorithm to f0 := f . If (xk, xl) is the persistence pair in P1 ∩P2

of f0 with smallest absolute difference |f0(xl)− f0(xk)|, we determine f1 ∈ S1(X) by

f1(x) =


f0(xk) + f0(xl)

2
, x ∈ X ∩ [xk, xl],

f0(x), x ∈ X \ [xk, xl].

Hence, since f0 is monotone in [xk, xl], we have changed the total variation by 2|f0(xk)−
f0(xl)|, i.e.,

TV (f1) = TV (f0)− 2|f0(xk)− f0(xl)|.

Consider now the change of persistences of f1. Obviously, since |f0(xl) − f0(xk)| was
the smallest absolute difference, f1(xk) and f1(xl) are no longer extremal values of f1

while all other extremal values remain the same compared to f0. Due to Algorithm 4.3
and Lemma 4.7, f1 possesses the same persistence pairs as f0 up to (xk, xl), i.e.,

‖f1‖per = ‖f0‖per − 2|f0(xk)− f0(xl)|.
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4.2 Relation between discrete total variation and persistence distance

This simplification can now be applied to f1 removing the next persistence pair (x1
k, x

1
l )

of f1 with smallest absolute difference |f(x1
k) − f(x1

l )| to obtain f2 etc. If m is the
number of persistence pairs in P1 ∩ P2, then, after m simplification steps we obtain
fm ∈ S1(X) with

‖fm‖per = ‖f0‖per − 2
∑

(xk,xl)∈P1∩P2

|f0(xk)− f0(xl)|

=
∑

(xk,xl)∈P1\P2

|f0(xk)− f0(xl)|+
∑

(xk,xl)∈P2\P1

|f0(xk)− f0(xl)|

and with
TV (fm) = TV (f0)− 2

∑
(xk,xl)∈P1∩P2

|f0(xk)− f0(xl)|. (4.1)

Hence, it remains to consider the relation between ‖f‖per and TV (f) for a function
f = fm ∈ S1(X) with persistence sets P1, P2 satisfying P1 ∩ P2 = ∅.

2. Assume now that we have P1∩P2 = ∅ for f ∈ S1(X). By construction of P1 and P2 in
Algorithm 4.3, we know that each local extremum knot xk that is not a global extremum
and not a boundary knot (i.e., x0 < xk < xmax), occurs in two persistence pairs, one
in P1 and one in P2. By assumption and Lemma 4.8, these two persistence pairs are
different and connect xk with its two spatial extremum knot neighbors. Further, each
boundary knot (x0 and xmax) that is not a global extremum, occurs in one persistence
pair, namely in P1 if it is a local minimum and in P2 if it is a local maximum. This
persistence pair connects the boundary knot with its spatial extremum knot neighbor.
If xk is a global extremum (maximum or minimum) knot of f and not a boundary knot,
then it occurs in only one persistence pair (in P1 if being the global maximum or in
P2 otherwise). By Lemma 4.8, this persistence pair connects xk with one of its spatial
extremum knot neighbors.

But since all other knots are already connected with their spatial extremum knot neigh-
bors by persistence pairs, there is only one “connection” missing, namely between the
global minimum knot and the global maximum knot. Hence, we obviously have

‖f‖per = TV (f)− max
(x,y)∈X

|f(x)− f(y)|.

Finally, if xk is a global extremum of f and a boundary knot, then it does not occur in
any persistence pair. Also in this case, we can repeat the argument, observing that only
the connection between the global minimum knot and global maximum knot is missing.
Together with (4.1) the assertion of the theorem follows.
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4 Persistence distance and its relation to discrete total variation

Example 14:
We consider X = {xj}8j=0 with xj = j, and let f ∈ S1(X) be given by the vector

{f(xj)}8j=0 = (1, 0, 3, 2, 5, 1, 4, 0, 2), see Figure 4.2 (a). We obtain the sets

Xm = {x1, x3, x5, x7}, Xm = {x0, x2, x4, x6, x8},
P1 = {(x2, x3), (x5, x6), (x4, x7)},
P2 = {(x2, x3), (x5, x6), (x7, x8), (x0, x1)},

Hence, we find the persistence distance ‖f‖per = (1+3+5)+(1+3+2+1) = 16, and the
discrete total variation TV (f) = 21. After simplification of f according to the procedure
described in the proof of Theorem 4.6, where the persistence pairs (x2, x3) and (x5, x6)

in P1 ∩ P2 are removed, we obtain f2 with {f2(xj)}
8
j=0 = (1, 0, 2.5, 2.5, 5, 2.5, 2.5, 0, 2)T ,

see Figure 4.2 (b). For f2, we regard

Xm = {x1, x7}, Xm = {x0, x4, x8}
P1 = {(x4, x7)}, P2 = {(x0, x1), (x7, x8)},

such that ‖f2‖per = 5 + 1 + 2 = 8 and TV (f2) = 13.
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Fig. 4.2: (a) Illustration of the spline functions f and (b) of f2 in Example 14.

Remark 5:
The submodularity of the persistence distance stated in Theorem 4.5 follows now directly
from the submodularity of the discrete total variation in Theorem 3.5. For all y, z ∈
RN+1 we find with ym := max{yj : j = 0, . . . , N}, ym := min{yj : j = 0, . . . , N}, and
zm := max{zj : j = 0, . . . , N}, zm := min{zj : j = 0, . . . , N},

‖y‖per + ‖z‖per = TV (y) + TV (z)− (ym − ym)− (zm − zm)

≥ TV (max(y, z)) + TV (min(y, z))− ym + ym − zm + zm

= TV (max(y, z)) + TV (min(y, z))− (max{ym, zm}
−max{ym, zm})− (min{ym, zm} −min{ym, zm})

= ‖max(y, z)‖per + ‖min(y, z)‖per.
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4.3 Persistence based simplification

4.3 Persistence based simplification

The iterative simplification procedure that has been applied in the proof of Theorem 4.6
iteratively removes local minima and maxima of the function f (respective the vector
y = (f(xj))

N
j=0). Thus, this procedure simplifies the topological structures of f in

a simple manner. At each iteration step, the persistence pair corresponding to the
smallest distance of function values is removed, and at the same time, the function will
be smoothed by inserting a plateau part, i.e., a piecewise constant part. Comparing the
sequence of obtained simplified functions f j , j = 0, 1, . . . with f0 = f , the corresponding
change of the norm ‖fj − fj+1‖ does only depend on the distance of the function values
that corresponds to the persistence pair that has been removed at that iteration step.
Thus the procedure can be also seen as a smoothing procedure, where the most significant
parts will be removed only at the end. Inserting a suitable stopping criteria and removing
only the persistence pairs corresponding to a persistence (distance of function values)
being smaller that a fixed threshold ε > 0, the idea can be taken already as a denoising
method, see e.g. [7, 23,27].

The simplification approach for functions on surfaces considered in [3] is optimal in the
sense that the obtained simplification fδ has a minimum number of critical points and
satisfies the condition ‖fδ − f‖∞ ≤ δ.

We pay special attention to the simplification of one-dimensional piecewise linear func-
tions f in [5] for the purpose of comparison. The simplification procedure in [5] suc-
cessively removes the persistence pairs of the set P1 whose persistence is under certain
threshold ε by setting values of all relevant points in the persistence interval to an average
of the function values of the pair. A further idea in [5] replaces the persistence pairs by
so-called filling pairs and the the average of the two function values (f j(xk)− f j(x`))/2
by the filling volume.
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5 Application of persistence distance to
signal denoising

Having found the close relationship between persistence distance and discrete total vari-
ation, we want to explore some ideas of how this relationship can be applied to signal
denoising.

We connect Theorem 4.6 with one of the most famous and successful models for sig-
nal denoising —the celebrated Rudin-Osher-Fatemi model [37]— by noticing that its
regularization term is the discrete total variation.

Considering the discrete setting, let f ∈ S1(X) be the noise contaminated version of a
clean signal u ∈ S1(X), i.e.,

f(xj) = u(xj) + n(xj), xj ∈ X,

where (n(xj))xj∈X denotes a vector of i.i.d. random variables simulating white noise,
with mean value zero and variance σ2. In order to reconstruct u = (u(xj))

N
j=0, it is

proposed to minimize the functional

J(u) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +

N−1∑
j=0

|u(xj+1)− u(xj)|,

where the second term coincides with the discrete total variation TV (u) in Definition
(3.17). The above functional J(u) is strictly convex but not differentiable. The param-
eter λ > 0 balances the regularization term TV (u) and the data fitting term, and a
suitable choice of λ is crucial for the success of the method.

The main advantage of the ROF model in comparison to other models involving a
smoother regularization term is its ability to preserve sharp changes in the data.
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5 Application of persistence distance to signal denoising

From Theorem 4.6 it follows that the ROF functional can also be written as

J(u) =
λ

2

N∑
j=0

|u(xj)− f(xj)|2 + ‖u‖per + max
x,x̃∈X

|u(x)− u(x̃)|

=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +
∑

(x,x̃)∈P1

|u(x)− u(x̃)|

+
∑

(x,x̃)∈P2

|u(x)− u(x̃)|+ max
j,k∈{0,...,N}

|u(xj)− u(xk)|.

In contrast to the total variation TV (u), the persistence distance consists of a sum
of distances of function values being local extrema of the function u, i.e., describing
the topological properties of the function u, where small distances |u(x) − u(x̃)| (being
related to small pairs (x, x̃)) correspond to oscillatory behavior like noise while the
large distances |u(x) − u(x̃)| describe the important features of the function u. Let for
simplicity

P (u) = P = P1 ∪ P2 ∪ {(x, x̃)}

be the set of all (persistence) pairs, where (x, x̃) denotes the pair of knots whose corre-
sponding function values are the global minimum and the global maximum of f . Here,
as before, pairs in P1 ∩ P2 occur twice in the multiset P (u).

5.1 Weighted ROF-model based on the persistence distance

We propose to consider the new weighted functional

J̃(u) =
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +
∑

(xj ,x̃j)∈P (u)

αj(u)|u(xj)− u(x̃j)|, (5.1)

where αj = αj(u) = α(u, xj , x̃j) depends on the persistence |u(xj)−u(x̃j)|. It should be
large for small distances |u(xj)−u(x̃j)| and rather small for large distances |u(xj)−u(x̃j)|.
A suitable choice of weights αj enables us to ensure that the denoised signal u obtained
by minimization of J̃(u) keeps the essential features of f = (f(xj))

N
j=0, and in particular

preserves the significant extremum values of f . From Lemma 4.7 and Lemma 4.8 it
follows that there is a special structure of persistence pairs of a function u ∈ S1(X). We
regard persistence pairs that occur only once, i.e., being not contained in P1(u)∩P2(u), as
single persistence pairs, while persistence pairs in P1(u)∩P2(u) are denoted as double
persistence pairs. Single persistence pairs have a special importance for the function
structure, and the corresponding function values can be seen as significant extremum
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5.1 Weighted ROF-model based on the persistence distance

values of u. The pair (argminx∈Xm
u(x), argmaxx∈Xmu(x)) of global minimum and

maximum knots will be handled like a single persistence pair by introducing the set

S(u) := P (u) \ (P1(u) ∩ P2(u)).

We observe that for each interval [xl, xl+1] formed by neighboring knots in the knot set
X, there exists a unique chain of interlacing intervals corresponding to persistence pairs,
such that

[xl, xl+1] ⊆ [xl1, x̃
l
1] ⊂ . . . ⊂ [xlr(l), x̃

l
r(l)], (5.2)

where (xlν , x̃
l
ν) ∈ P1(u) ∩ P2(u) for ν = 1, . . . , r(l) − 1 and (xlr(l), x̃

l
r(l)) ∈ S(u). If

already (xl, xl+1) ∈ S(u) then the chain collapses to this one interval and we have
[xl, xl+1] = [xl1, x̃

l
1], i.e., r(l) = 1. Analogously, for each double persistence pair (xj , x̃j),

there exists a unique chain of interlacing persistence intervals that contains [xj , x̃j ]. We
say that this double persistence pair has the order k = k(xj , x̃j) if there are k further
“persistence” intervals containing the interval [xj , x̃j ]. In particular, all pairs in S(u)
are of order k = 0. We call (5.2) a pair chain with an abuse of pair notation (·, ·) and
its corresponding closed interval [·, ·].

Example 15:
Considering again Example 14, see also Figure 4.2, with

Xm = {x1, x3, x5, x7}, Xm = {x0, x2, x4, x6, x8},
P1 = {(x2, x3), (x5, x6), (x4, x7)},
P2 = {(x2, x3), (x5, x6), (x7, x8), (x0, x1)},

P (f) = P = P1 ∪ P2 ∪ {(x1, x4)},
P1 ∩ P2 = {(x2, x3), (x5, x6)},

S(f) = S = {(x0, x1), (x1, x4), (x4, x7), (x7, x8)}.

Then we obtain the following simple chains of interlacing persistence intervals

l r(l) chain of [xl, xl+1]

0 1 [x0, x1]

1 1 [x1, x2] ⊂ [x1, x4]

2 2 [x2, x3] ⊆ [x2, x3] ⊂ [x1, x4]

3 1 [x3, x4] ⊂ [x1, x4]

4 1 [x4, x5] ⊂ [x4, x7]

5 2 [x5, x6] ⊆ [x5, x6] ⊂ [x4, x7]

6 1 [x6, x7] ⊂ [x4, x7]

7 1 [x7, x8] ⊆ [x7, x8]

Table 5.1: Pair chains of the intervals in Example 15.
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5 Application of persistence distance to signal denoising

For the smoothing algorithm, we want to consider not only the local behavior of the
function around the interval [xl, xl+1] but also the function structure in the correspond-
ing chain. We may have some a-priori information on the structure of the original signal
regarding the number of levels in the above chains in order to judge which persistence
pairs indeed represent important features. Note that our theoretical observations in The-
orem 5.1 will be true for arbitrary choices of the weights αj(u) in (5.1). One possibility
is to choose for every (persistence) pair (xj , x̃j) ∈ P (u) the weight

αj(u) =
1

1 + η|u(x̃j)− u(xj)|
(5.3)

with some suitable η > 0. In this way, the weight is rather small for large distances
|u(x̃j) − u(xj)| and approximately 1 for small distances. On the other side, we choose
the weights in a way such that weights are numerically stable for the whole range of
possible distances for a given function. We will obey the above principles to set up also
other weight formulas in our experiments.

The proposed new functional J̃(u) in (5.1) is highly nonlinear. For the numerical eval-
uation, we show that J̃(u) can also be seen as a weighted ROF-functional.

Theorem 5.1:
Consider for each interval [xl, xl+1], l = 0, . . . , N − 1, the corresponding complete chain
of persistence intervals of u such that [xl, xl+1] ⊆ [xl1, x̃

l
1] ⊂ . . . ⊂ [xlr(l), x̃

l
r(l)], and denote

by αlν(u) = αlν , ν = 1, . . . , r(l), the weight in the functional J̃(u) in (5.1) corresponding
to the persistence pair (xlν , x̃

l
ν). Then the weighted functional J̃(u) in (5.1) is equivalent

to the weighted ROF functional

Jw(u) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +

N−1∑
l=0

wl(u)|u(xl+1)− u(xl)|, (5.4)

where

wl(u) = wl :=

r(l)∑
ν=1

(−1)ν−1αlν . (5.5)

Proof:
The following considerations can be carried out for each single pair (x, x̃) in S(u) sep-
arately in order to compute the weights wl(u) for all [xl, xl+1] ⊆ [x, x̃]. Therefore we
restrict ourselves to one interval I = [x, x̃] with (x, x̃) ∈ S(u).

For each [xl, xl+1] ⊂ I we consider the corresponding chain [xl, xl+1] ⊆ [xl1, x̃
l
1] ⊂

. . . ⊂ [xlr(l), x̃
l
r(l)] = [x, x̃] and apply the following procedure. If r(l) = 1, we find

wl(u) = αlr(l) = αl1 as the weight corresponding to (x, x̃) that has to be assigned to

the term |u(xl+1) − u(xl)|. For r(l) ≥ 2, we consider the adjacent smaller persistence
interval [xlr(l)−1, x̃

l
r(l)−1] being a subinterval of [xlr(l), x̃

l
r(l)] = [x, x̃]. By construction of
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5.2 Numerical algorithm

the persistence pairs it follows that either u(xlr(l)) > u(x̃lr(l)) and u(xlr(l)−1) < u(x̃lr(l)−1)

or vice versa. Hence, since |u(xlr(l)) − u(x̃lr(l))| > |u(xlr(l)−1) − u(x̃lr(l)−1)| we obtain for

x = xlr(l) < xlr(l)−1 < x̃lr(l)−1 < x̃lr(l) = x̃ that

|u(x)− u(x̃)| = |u(xlr(l))− u(x̃lr(l))|

= |u(xlr(l))− u(xlr(l)−1)| − |u(xlr(l)−1)− u(x̃lr(l)−1)|

+|u(x̃lr(l)−1)− u(x̃lr(l))|. (5.6)

Multiplying αlr(l)(u) on both sides of (5.6) it follows that

αlr(l)(u)|u(xlr(l))− u(x̃lr(l))|

= αlr(l)(u)|u(xlr(l))− u(xlr(l)−1)| − αlr(l)(u)|u(xlr(l)−1)

−u(x̃lr(l)−1)|+ αlr(l)(u)|u(x̃lr(l)−1)− u(x̃lr(l))|

thereby showing how the weighted difference αlr(l)(u)|u(xlr(l))−u(x̃lr(l))| can be rewritten

for the three subintervals of [xlr(l), x̃
l
r(l)]. Hence, the new coefficient corresponding to

the term |u(xlr(l)−1)− u(x̃lr(l)−1)| is now the sum of its original coefficient αlr(l)−1(u) and

−αlr(l)(u). In case of r(l) = 2 we thus obtain the weight wl(u) = αlr(l)−1(u)− αlr(l)(u).

For r(l) > 2, the same argument can be applied to the persistence pairs (xlr(l)−1, x̃
l
r(l)−1)

and (xlr(l)−2, x̃
l
r(l)−2), and we find the new coefficient for the term |u(xlr(l)−2)−u(x̃lr(l)−2)|

as the sum of αr(l)−2 and −(−αr(l)(u) + αr(l)−1(u)). We repeat this argument until the

smallest interval [xl1, x̃
l
1] in the chain of [xl, xl+1] is reached and obtain the coefficient

wl(u) of |u(xl1)− u(x̃l1)| of the form

wl(u) =

r(l)∑
ν=1

(−1)ν−1αlν . (5.7)

This is exactly the weight that we have to assign to |u(xl+1)− u(xl)|.

5.2 Numerical algorithm

In this section, we propose a numerical scheme to minimize the nonlinear weighted TV-
functional Jw(u) in (5.4). Let X be an equidistant partition of the interval [a, b], i.e.
xj := a + (b − a)j/N , j = 0, . . . , N . Let fj := f(xj) be the given noisy values and let
uj := u(xj) be the values of the wanted denoised signal for j = 0, . . . , N .

We now generalize the simplified first-order iteration filter described in Chapter 2 to the
weighted TV-functional Jw(u) in (5.4).
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5 Application of persistence distance to signal denoising

Starting with u0 = (u0
j )
N
j=0 := (fj)

N
j=0, we iteratively apply the following data-dependent

filter

uk+1
j =

λfj + g1,j(u
k)ukj−1 + g2,j(u

k)ukj+1

λ+ g1,j(uk) + g2,j(uk)
(5.8)

for j = 1, . . . , N − 1, where the filter coefficients g1,j(u
k) and g2,j(u

k) are given by

g1,j(u
k) :=

{
wj−1(uk)/|ukj − ukj−1| for |ukj − ukj−1| 6= 0,

0 else,

g2,j(u
k) :=

{
wj(u

k)/|ukj − ukj+1| for |ukj − ukj+1| 6= 0,

0 else.

For j = 0 and j = N , the filter (5.8) is simplified by assuming that uk−1 = ukN+1 = 0 and

g1,0(uk) = g2,N (uk) = 0.

Here wj(u
k), j = 0, . . . , N − 1, are the weights of the functional Jw(u) in (5.5). In order

to stabilize the procedure and to reduce the computational costs, we will compute the
weights wj(u

k) not in each iteration step but employ an outer iteration to recompute the
persistence weights and an inner iteration, where we apply several filtering steps with
fixed weights. The complete algorithm is given as follows.

Algorithm 5.2:

Input: noisy vector f , parameters λ and η.

1) Initialize u0 = f .

2) For k = 1, . . . , nouter do

Compute the persistence weights wj(u
k) in (5.5) and (5.3) for j = 0, . . . , N − 1.

Initialize uk,0 := uk, i.e., uk,0j := ukj for j = 0, . . . , N .

For ` = 1, . . . , ninner do

Compute for j = 0, . . . , N

uk,`+1
j =

λfj+g1,j(u
k,`)uk,`

j−1+g2,j(u
k,`)uk,`

j+1

λ+g1,j(uk,`)+g2,j(uk,`)
,

where as before g1,j(u
k,`) := wj−1(uk)/|uk,`j − u

k,`
j−1|

for |uk,`j − u
k,`
j−1| 6= 0 (and g1,j(u

k,`) := 0 else)

g2,j(u
k,`) := wj(u

k)/|uk,`j − u
k,`
j+1| for |uk,`j − u

k,`
j+1| 6= 0

(and g2,j(u
k,`) := 0 else).

end

Put uk+1 := uk,ninner .

end

Output: u = unouter+1 approximates the minimizer of min
u

Jw(u).

Observe that the functional Jw(u) is not necessarily convex. Within the inner iterations,
where the weights in the second term of the functional are fixed, we have applied a simple
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5.3 Numerical experiments

gradient method that is justified by the next theorem. Of course, the filter in (5.8) for

computing uk,`+1
j in Algorithm 5.2 can be also be replaced by slightly smoother versions

as e.g. in [13].

Theorem 5.3:
Let X = {xj}Nj=0 with xj = a + (b − a)j/N . For given f ∈ S1(X) and uk ∈ S1(X), let

Jw(u,uk) be the weighted ROF-functional

Jw(u,uk) :=
λ

2

N∑
j=0

|u(xj)− f(xj)|2 +
N−1∑
l=0

wl(u
k)|u(xl+1)− u(xl)| (5.9)

with fixed weights wl(u
k). If the sequence (uk,`)∞`=0 of function vectors obtained by the

inner iteration in Algorithm 5.2 converges to some function vector u, then u satisfies

∂Jw(u,uk)

∂u(xj)
= 0 for j = 0, . . . , N. (5.10)

Proof:
We first consider j = 1, . . . , N − 1. The limit u of the sequence (uk,`)∞`=0 given by the
inner iteration in Algorithm 5.2 satisfies

[λ+ g1,j + g2,j ]uj = λfj + g1,juj−1 + g2,juj+1

with g1,j := wj−1(uk)/|uj − uj−1| for |uj − uj−1| 6= 0 (and g1,j = 0 else) as well as
g2,j = wj(u

k)/|uj − uj+1| for |uj − uj+1| 6= 0 (and g2,j = 0 else). Hence

λ(uj − fj) + g1,j(uj − uj−1) + g2,j(uj − uj+1) = 0.

Incorporating the definitions of g1,j and g2,j we find

λ(uj − fj) + wj−1(uk)sign(uj − uj−1)

+wj(u
k)sign(uj − uj+1) = 0

and the assertion follows, where for uj − uj−1 = 0 (resp. uj − uj+1 = 0) the definition
of a subdifferential has to be applied. The special cases j = 0 and j = N are obtained
analogously.

5.3 Numerical experiments

In this section, we study the performance of our proposed method which in the fol-
lowing is called persistence denoising method. We employ the two test signals consist-
ing of piecewise smooth functions in Figure 5.1 taken from the WaveLab toolbox (see
http://statweb.stanford.edu/∼wavelab), where the original signals of length 1000

57



5 Application of persistence distance to signal denoising

are shown in the first row, and the noisy signals (perturbation with white Gaussian noise
and uniform noise) are shown in the second row and third row of Figure 5.1, respectively.

In the experiments, we would like to investigate the performance of the new denoising
scheme, thereby comparing different setups with respect to noise type and weight strat-
egy. We employ different strategies of setting up the weights, besides the one used in
(5.3), and consider two different kinds of noise – Gaussian noise and uniform noise. The
following subsections will be arranged according to weight choosing strategies.

We compare the denoising performance of our method (using the persistence-weighted
ROF functional minimized with the first-order iteration filter, called persistence de-
noising) with the non-weighted ROF model minimized by the first-order iteration filter
(called FOF method), and with the denoising algorithm proposed in [5] (called persis-
tence simplification). As an alternative minimization method for the ROF model, we also
compare with the performance of the primal-dual method by Chambolle and Pock [12].

As mentioned above, we are faced with the problem how to make use of the additional in-
formation contained in the hierarchical structures in the pair chains and the persistences
corresponding to every pair.

5.3.1 Weight strategy 1 (WS1) of persistence denoising

As already proposed in (5.3), we choose the weights

αj(u) =
1

1 + η|u(x̃j)− u(xj)|
.

We can assume that pairs with large persistence |u(x̃j) − u(xj)| usually belong to the
main structures of a function u that we want to keep during the iteration while pairs with
small persistence are likely caused by noise. Therefore, we set smaller weights αj(u) in
(5.1) for persistence pairs with larger persistence and larger weights for noise-like pairs
as in (5.3). Furthermore, in (5.3) the importance of persistences is weighted by η. We
call αj(u) = 1

1+η|u(x̃j)−u(xj)| persistence factor.

We would like to comment on the principle of setting the regularization parameters λ
in (5.1) and η in αj(u). For decreasing η also the influence of the different persistences
decreases. For η = 0, we simply have αj(u) = 1 and thus w`(u) = 1 for odd r(`) and
w`(u) = 0 for even r(`). Considering e.g. again Example 15, see also Figure 4.2, this
means that we consider the total variation of the simplified function f2 instead of the
total variation of f in the ROF-functional. Thus, for small η we again obtain similar
results as for the usual ROF-model. In this case we need to increase λ to maintain the
values of peaks.

58



5.3 Numerical experiments

5.3.2 Weight strategy 2 (WS2) of persistence denoising

Notice that noise is usually of higher oscillation and corresponds to pair chains with
higher order while persistence pairs with a lower order indicate the more important
structure of the function. We want to make use of the hierarchical information contained
in the pair chains in (5.2) and propose to choose the weight for a pair (xj , x̃j) as follows

αj(u) = (kj + 1)τ
1

1 + η|u(x̃j)− u(xj)|
, (5.11)

where k = kj = k(xj , x̃j) is the order of the pair (xj , x̃j) in its chain of pairs and τ > 1.
We call the new factor (kj + 1)τ hierarchical factor. By this strategy, a persistence
pair with a higher order k achieves a larger factor (k + 1)τ (and thus a larger weight)
than a persistence pair with lower order k even though those two pairs may share the
same persistence. This scheme makes sure that the function values corresponding to
the noise-like small pairs with higher order chains can be flattened more effectively and
faster during the iteration. In our numerical experiments, τ = 3 has been used, i.e.,
αj(u) = 3(kj + 1) 1

1+η|u(x̃j)−u(xj)| . By fixing τ we reduce the complexity of optimization

problem. Of course, one can choose other values for τ .

5.3.3 Denoising results for Gaussian noise contaminated signals

For signals contaminated by Gaussian noise, Figures 5.2(a) and (b) show the denoising
results obtained by the FOF method with 70000 iterations using λ = 0.04 for the first
and λ = 0.15 for the second test signal. Despite its denoising performance, there remain
small oscillations in smooth parts of the signal. Taking a smaller parameter λ, one
obtains a stronger smoothing effect while the significant peaks of the signals will be
smoothed out even further. Figures 5.2(c) and (d) are obtained by using the persistence
simplification in [5] with thresholds 23.2 and 31.5, respectively. It performs well in some
constant regions but suffers from strong oscillations at other smooth parts of the signals.
This procedure keeps the significant peaks of the signal well and even overshoots, i.e.
does not denoise at peak points.

The results obtained by the primal-dual method are shown in Figures 5.2(e) and (f) with
λ = 0.03 and λ = 0.15, respectively.

The results of our persistence denoising approach with WS1 using Algorithm 5.2 are
presented in Figures 5.3 (a) and (b). Figure 5.3(a) is obtained with λ = 0.02, η = 0.003
and using 100 outer iterations and 700 inner iterations. Figure 5.3(b) is found with
λ = 0.006, η = 0.57 with 100 outer and 700 inner iterations. The results of persistence
denoising with WS2 are shown in Figures 5.3 (c) and (d) with parameters given in Table
5.3.
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5 Application of persistence distance to signal denoising

Furthermore, we employ the weighted primal-dual method in Algorithm 3.8 with WS1
to denoise the first and the second signal, respectively. Figure 5.7 (e) is obtained with
λ = 0.012 and η = 0.013. Figure 5.7 (f) is obtained with λ = 0.0795 and η = 0.021.

As desired, the new algorithm keeps the significant features of the test signals very well
and performs better for denoising in flat regions than the persistence simplification.
Unfortunately, some isolated noisy points near jumps remain after denoising. This phe-
nomenon is caused by significant persistence pairs (single pairs) that occur by pairing
of local minima and maxima of the noisy function that are beyond the genuine local
minima and maxima of the function. The denoising performance of the new algorithm
can be strongly improved by application of a local median filter in a post-processing
step.

For a better comparison, Figure 5.4 shows the results of the six methods for local regions,
particularly for flat regions (see (a) and (c)) and for peak denoising (see (b) and (d)).
These illustrations nicely show that our new method is able to perform better than the
other two methods regarding denoising in flat regions as well as regarding correct peak
preservation.

We summarize the denoising parameters and results for Gaussian noisy signals in Tables
5.2 and 5.3.

Method iteration λ η threshold PSNR

Noisy signal 26.18

FOF 70000 0.04 33.79

Persistence simplification 23.2 32.08

Primal-dual method 70000 0.03 38.41

Persistence denoising with WS1 70000 0.002 0.003 37.11

Persistence denoising with WS2 70000 0.016 0.014 37.90

Weighted Primal-dual with WS1 70000 0.012 0.013 38.43

Table 5.2: Denoising parameters and denoising results for the first signal with Gaussian noise.

Method iteration λ η threshold PSNR

Noisy signal 24.77

FOF 70000 0.15 31.21

Persistence simplification 31.5 30.95

Primal-dual 70000 0.015 32.50

Persistence denoising with WS1 70000 0.006 0.57 32.56

Persistence denoising with WS2 70000 0.3 0.0001 32.22

Weighted Primal-dual with WS1 70000 0.0795 0.021 32.65

Table 5.3: Denoising parameters and denoising results for the second signal with Gaussian noise.
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(a) Piece-Polynomial (b) Piece-Regular
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(c) Piece-Polynomial: Gaussian noise, (d) Piece-Regular: Gaussian noise,

PSNR 26.18 PSNR 24.77
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(e) Piece-Polynomial: uniform noise, (f) Piece-Regular: uniform noise,

PSNR 27.44 PSNR 26.05

Fig. 5.1: First row: two test signals; Second row: Gaussian noise; Third row: Uniform noise.

Red lines represent original signal, the blue ones represent noisy signals.
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(a) FOF method, PSNR 33.79 (b) FOF method, PSNR 31.21
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(c) persistence simplification, PSNR 32.08 (d) persistence simplification, PSNR 30.95
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(e) Primal-dual denoising, PSNR 38.41 (f) Primal-dual denoising, PSNR 32.56

Fig. 5.2: Denoising results for signals with Gaussian noise.

First row: denoising results of FOF method,

Second row: denoising results of persistence simplification,

Third row: denoising results of primal-dual method.

Red lines represent the original signals, blue lines are the denoised results.

62



5.3 Numerical experiments

0 100 200 300 400 500 600 700 800 900 1000

-100

-50

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000

-30

-20

-10

0

10

20

30

40

50

(a) WS1 , PSNR 37.11 (b) WS1 , PSNR 32.56
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(c) WS2, PSNR 37.90 (d) WS2, PSNR 32.22
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(e) Weighted PD with WS1, PSNR 38.43 (f) Weighted PD with WS1, PSNR 32.65

Fig. 5.3: Denoising results for signals with Gaussian noise.

First row: Persistence denoising with WS1,

Second row: Persistence denoising with WS2,

Third row: Weighted PD with WS1.

Red lines represent the original signals, blue lines are the denoised results.
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5.3.4 Denoising results for uniform noise contaminated signals

For signals contaminated by uniform noise, Figures 5.5(a) and (b) show the denoising
results obtained by the FOF method with 70000 iterations using λ = 0.05 for the first
and λ = 0.15 for the second test signal. Figures 5.5(c) and (d) are obtained by using
the persistence simplification with thresholds 11 and 10, respectively.

The results obtained by the primal-dual method are shown in Figures 5.2(e) and (f) with
λ = 0.027 and λ = 0.14, respectively.

The results of our method with WS1 using Algorithm 5.2 are shown in Figures 5.6(a) and
(b). Figure 5.6 (a) is obtained with λ = 0.015, η = 0.0009 and using 100 outer iterations
and 700 inner iterations. Figure 5.6(b) is found with λ = 0.019, η = 0.0004 with 100
outer and 700 inner iterations. The parameters and result for persistence denoising with
WS2 are shown in Figure 5.6 (c)(d), Table 5.4, and 5.5.

For a better comparison, Figure 5.7 shows the results of the six methods for local regions,
particularly for flat regions (see (a) and (c)) and for peak denoising (see (b) and (d)).

For quicker accessibility, the parameters and results are summarized in Tables 5.4 and
5.5.

Method iteration λ η threshold PSNR

Noisy signal 27.44

FOF 70000 0.05 35.04

Persistence simplification 11 29.25

Primal-dual method 70000 0.027 40.01

Persistence denoising with WS1 70000 0.015 0.0009 36.41

Persistence denoising with WS2 70000 0.09 0.001 37.80

Table 5.4: Denoising parameters and denoising results for the first signal with uniform noise.

Method iteration λ η threshold PSNR

Noisy signal 26.05

FOF 70000 0.075 31.87

Persistence simplification 10 33.56

Primal-dual method 70000 0.14 33.43

Persistence denoising with WS1 70000 0.019 0.0004 30.02

Persistence denoising with WS2 70000 0.3 0.0001 33.39

Table 5.5: Denoising parameters and denoising results for the second signal with uniform noise.

Notice that η in WS2 is much smaller than that in WS1 in Table 5.5, it is reasonable since
the hierarchical factor plays a more important role in WS2 while persistence factor is still
non-neglectable. But this phenomenon is not always true, i.e., the reverse phenomenon
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5.3 Numerical experiments

can happen in some other cases. We believe that the massive change of η and λ for
different noisy signals reflects the ratio of persistence of noise pairs and the persistence
of the pairs which represent the main structure of signal.
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Fig. 5.4: Denoising results for signals with Gaussian noise.

Comparison of the denoising performance of the six methods in flat regions and peak

regions; (a) and (b) are subregions of the first test signal, (c) and (d) are sub-

regions of the second test signal; for all subfigures the denoising performance (left to

right) is given for noisy signal, FOF denoising, persistence simplification [5], primal-dual, our

persistence denosing with WS1 and WS2, and weighted primal-dual with WS1.

Red lines represent the original signal, blue lines are the denoised results.
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(a) FOF method, PSNR 35.04 (b) FOF method, PSNR 31.87
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(c) persistence simplification, PSNR 29.25 (d) persistence simplification, PSNR 33.56
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(e) Primal-dual denoising, PSNR 40.01 (f) Primal-dual denoising, PSNR 33.43

Fig. 5.5: Denoising results for signals with uniform noise.

First row: denoising results of FOF method,

Second row: denoising results of persistence simplification,

Third row: denoising results of primal-dual method.

Red lines represent the original signals, blue lines are the denoised results.

67



5 Application of persistence distance to signal denoising

0 100 200 300 400 500 600 700 800 900 1000

-100

-50

0

50

100

150

200

0 100 200 300 400 500 600 700 800 900 1000

-30

-20

-10

0

10

20

30

40

50

(a) WS1, PSNR 36.41 (b) WS1, PSNR 30.02
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(c) WS2, PSNR 37.80 (d) WS2, PSNR 33.39

Fig. 5.6: Denoising results for signals with uniform noise.

First row: persistence denoising with WS1,

Second row: persistence denoising with WS2.

Red lines represent the original signals, blue lines are the denoised results.
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Fig. 5.7: Denoising results for signals with uniform noise.

Comparison of the denoising performance of the six methods in flat regions and peak

regions; (a) and (b) are subregions of the first test signal, (c) and (d) are sub-

regions of the second test signal; for all subfigures the denoising performance (left to

right) is given for noisy signal, FOF denoising, persistence simplification [5], primal-dual, and

our persistence denosing with WS1 and WS2,

red lines represent the original signal, blue lines are the denoised results.
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6 Application of persistence distance to
image denoising

In this chapter, we want to apply the idea of one-dimensional persistence denoising to
image denoising in two ways. One is treating the rows and columns of the image as digital
signals and denoising them with our one-dimensional persistence denoising scheme that
has been derived in Chapter 5. Another way is utilizing a two-dimensional weighted
ROF model where the weights are given using one-dimensional persistences pairs.

Let us first fix the following notations for a discrete image. A matrix I ∈ R(P+1)×(Q+1) is
called a discrete image, where the gray values at the index (i, j) with i ∈ {0, · · · , P} and
j ∈ {0, · · · , Q}, are described by real values in a certain range, e.g. in [0, 1]. Often, the
range in quantized to 255 different gray values. We denote the i-th row of the matrix
I by Ir(i) and the j-th column by Ic(j). Furthermore, the k-th element of Ir(i) and
Ic(j) are denoted by Ir(i)(k) = I(i, k) and Ic(j)(k) = I(k, j), respectively. The index set
{0, · · · , P} × {0, · · · , Q} of the image is denoted by Ω.

Remark: For abbreviation, we sometimes denote the double index (i, j) by a greek
letter, such as α, β and γ, according to the context.

We assume that the given image Ĩ is contaminated with noise, and we can write

Ĩ(α) = I(α) + n(α), α ∈ Ω, (6.1)

where the noise n possesses mean 0 and (unknown) variance σ2, and where I is the
original image. Our goal is to recover the clean image I from the contaminated version
Ĩ.

We show in the following sections that this goal can be achieved e.g. by a separable
scheme which is based on one-dimensional persistence denoising or by a two-dimensional
persistence-weighted ROF model.

6.1 Separable scheme for image denoising

Notice that the rows and columns of the given image Ĩ are in fact digital signals, and we
can directly apply our one-dimensional persistence denoising approach to those digital
signals. For that purpose, we apply Algorithm 5.2 separately first to all rows then to all
columns of Ĩ to recover the clean image I.
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6 Application of persistence distance to image denoising

To reduce the large effort caused by persistence weights updating, we do not update the
persistence weights after every iteration. Instead, we use again an outer-inner iteration
structure. More explicitly, we perform as follows. Every outer iteration step contains
two stages. Assume that we have obtained the image I(k) after the k-th outer iteration,
where we take the initialization I(0) = Ĩ.

At the first stage, we apply Algorithm 5.2 to all rows I
(k)
r (i), i = 0, · · · , P . That means,

we take each row separately. We first compute the persistence weights wj(I
(k)
r (i)) for the

i-th row, i = 0, . . . , P , and then apply a fixed number of iteration steps to approximate
a signal that minimizes the weighted ROF-functional in (5.4) with these persistence
weights. The new row signals that we obtain in this way are taken together to form an
“intermediate” image being denoted by Î(k+1).

At the second stage, we proceed now with the columns, i.e., we apply Algorithm 5.2 to

all columns Î
(k+1)
c (j), j = 0, · · · , Q of the previously obtained image Î(k+1). Now, we

first compute the persistence weights wj(Î
(k+1)
c (j)) for the j-th row and then again apply

a fixed number of iteration steps to approximate a signal that minimizes the weighted
ROF-functional in (5.4) with these persistence weights. The new column signals obtained
in this way are taken together to form I(k+1).

For the inner iterations to solve the one-dimensional weighted ROF model, we use here
the filter described in Section 5.2 based on a simple iteration scheme. Alternatively, one
could use a generalization of the approach of Chan et al. [13] as given in Section 3.2,
to the weighted case, or another iterative method as e.g. the primal-dual method by
Chambolle and Pock [12].

According to the non-linearity of the problem, it is difficult to derive a general proof
of convergence for this algorithm. Taking just the inner iterations, convergence can
be shown for fixed weights under certain restrictions. There are several papers using
weighted ROF methods with locally adapted weights, some of them with convergence
proofs, see e.g. [21, 26,38,39].

In our experiments, we apply again the weight strategy 1, i.e., for a given signal u =
(u(`))N`=0 we take the weights

αj(u) =
1

1 + η|u(j̃)− u(j)|

corresponding to the persistence pair (j̃, j) in (5.1), and compute the corresponding
weights of the weighted ROF functional according to Theorem 5.1.

In particular, we have to fix the regularization parameter λ that determines the influence
of the approximation term and the smoothing term in the functional Jw in (5.1) resp.
(5.4), the parameter η in the definition of the weights αj(u).

The following algorithm shows the approach in details.
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6.2 2D persistence-weighted ROF model

Algorithm 6.1:

Input: noisy vector Ĩ, parameters λ and η.

1) Initialize I0 = Ĩ.

2) For k = 1, . . . , nouter do

For i = 0, . . . , P do

Compute the persistence weights wj(I
k
r (i)) in (5.5) and (5.3) for j = 0, . . . , Q− 1.

Initialize Ik,0r (i) := Ikr (i), i.e., Ik,0r (i)(j) := Ikr (i)(j) for j = 0, . . . , Q.

For ` = 1, . . . , ninner do

Compute for j = 0, . . . , Q− 1

Ik,`+1
r (i)(j) =

λIk,`
r (i)(j)+g1,j(I

k,`
r (i)) Ik,`

r (i)(j−1)+g2,j(Ik,`
r (i)) Ik,`

r (i)(j+1)

λ+g1,j(I
k,`
r (i))+g2,j(I

k,`
r (i))

,

where g1,j(I
k,`
r (i)) := wj−1(Ik,`r (i))/|Ik,`r (i)(j)− Ik,`r (i)(j − 1)|

for |Ik,`r (i)(j)− Ik,`r (i)(j − 1)| 6= 0 (and g1,j(I
k,`
r (i)) := 0 else)

g2,j(I
k,`
r (i)) := wj(I

k,`
r (i))/|Ik,`r (i)(j)− Ik,`r (i)(j + 1)|

for |Ik,`r (i)(j)− Ik,`r (i)(j + 1)| 6= 0 (and g2,j(I
k,`
r (i)) := 0 else).

end

end

Initialize matrix Ik := ((Ik,ninner+1
r (0))T , · · · , (Ik,ninner+1

r (P ))T )T ,

For j = 0, . . . , Q do

Compute the persistence weights wi(I
k
c (j)) in (5.5) and (5.3) for i = 0, . . . , P − 1.

Initialize Ik,0c (j) := Ik,0c (j) for j = 0, . . . , Q.

For ` = 1, . . . , ninner do

Compute for i = 0, . . . , P

Ik,`+1
c (j)(i) =

λIk,`
c (j)(i)+g1,i(I

k,`
c (j)) Ik,`

c (j)(i−1)+g2,i(Ik,`
c (j)) Ik,`

c (j)(i+1)

λ+g1,i(I
k,`
c (j))+g2,i(I

k,`
c (j))

,

where as defined g1,i(I
k,`
c (j)) := wi−1(Ik,`c (j))/|Ik,`c (j)(i)− Ik,`c (j)(i− 1)|

for |Ik,`c (j)(i)− Ik,`c (j)(i− 1)| 6= 0 (and g1,i(I
k,`
c (j)) := 0 else)

g2,i(I
k,`
c (j)) := wi(I

k,`
c (j))/|Ik,`c (j)(i)− Ik,`c (j)(i+ 1)|

for |Ik,`c (j)(i)− Ik,`c (j)(i+ 1)| 6= 0 (and g2,i(I
k,`
c (j)) := 0 else).

end

end

Put Ik+1 := (Ik,ninner+1
c (0), · · · , Ik,ninner+1

c (Q)).

end

Output: I = Inouter+1 approximates the minimizer of min
u

Jw(u).

6.2 2D persistence-weighted ROF model

We want to propose a second scheme that uses a two-dimensional approximation of the
discrete total variation but applies again the persistence weights based on the persistence
pairs and their structure along rows and columns of the image.
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6 Application of persistence distance to image denoising

For a fixed (inner) index α := (i, j) in the index set Ω of the image I, we consider its
four neighbors (i− 1, j), (i+ 1, j),(i, j − 1) and (i, j + 1). We call this set of indices the
neighborhood of α = (i, j), denoted by NB(α) = NB(i, j), i.e.,

NB(α) = NB(i, j) = {β|β ∼ (α)} = {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)}.

For boundary indices α = (i, j), where i ∈ {0, P} or j ∈ {0, Q} we will have only three (or
at the corners even only two) neighbor indices and just say NB(i, j) = {β|β ∼ (i, j)} =
{(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)} ∩ Ω. Now, we consider the intervals generated
by (i, j) and its neighbor indices. It is easy to see that the indices (i, j − 1), (i, j + 1)
are in the same row Ir(i) with (i, j) and the indices (i− 1, j), (i+ 1, j) are in the same
column Ic(j) with (i, j). The two indices (i, j − 1) and (i, j + 1) in the i-th row Ir(i) of
the image I generate two intervals with (i, j), respectively, namely [(i, j − 1), (i, j)] and
[(i, j), (i, j+1)]. Applying our weighted ROF approach based on persistence pairs to the
i-th row Ir(i), we assign the weights wj−1(Ir(i)) and wj(Ir(i)) derived in Theorem 5.1
(see (5.5)) to these two intervals. Similarly, we compute the weights for the two intervals
generated in the column Ic(j). We summarize this idea in the following.

Definition 6.2:
For any index α := (i, j) in the index set Ω of a given image I, α is contained in at most
four intervals being defined as follows. The left interval and right interval are the
horizontal intervals [Ir(i)(j − 1), Ir(i)(j)] and [Ir(i)(j), Ir(i)(j + 1)], respectively, in row
Ir(i). The up interval and down interval are the vertical intervals [Ic(j)(i−1), Ic(j)(i)]
and [Ic(j)(i), Ic(j)(i+ 1)], respectively, in row Ic(j). If NB(α) contains less entries, we
have only three (or two) intervals corresponding to α.

The persistence weights for the above intervals can be given as follows.

Definition 6.3:
For each index α := (i, j) ∈ Ω of a given image I, we assign the following persistence
weights to the interval [α, β], where β ∈ NB(α),

zαβ(I) :=


wj−1(Ir(i)) for [α, β] = [Ir(i)(j − 1), Ir(i)(j)] and (i, j − 1) ∈ Ω,
wj(Ir(i)) for [α, β] = [Ir(i)(j), Ir(i)(j + 1)] and (i, j + 1) ∈ Ω,
wi−1(Ic(j)) for [α, β] = [Ic(j)(i− 1), Ic(j)(i)] and (i− 1, j) ∈ Ω,
wi(Ic(j)) for [α, β] = [Ic(j)(i), Ic(j)(i+ 1)] and (i+ 1, j) ∈ Ω,

where the weights wj(Ir(i)), j = 0, . . . , Q − 1, for the rows and columns of I (taken as
one-dimensional signals) are computed as given in Theorem 5.1.

Remark: We need not to distinguish the ordering of subindices, since zαβ = zβα always
holds true. This can be checked in the following way. For the horizontal interval case,
it is easy to see that the interval [α, β] formed by α and its east neighbor β coincides
with the interval [α, β] formed by β and its west neighbor α. The same holds true for
the vertical interval case.
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6.2 2D persistence-weighted ROF model

Considering the local variation of I at node α = (i, j) given by (3.7)

|∇αI| =
√∑
β∼α

(I(α)− I(β))2,

we apply now the persistence weights to obtain the persistence-weighted local vari-
ation of the image

|∇̃αI| :=
√∑
β∼α

zαβ(I)(I(α)− I(β))2,

where the additional (positive) weights zαβ give more structural information about the
intervals [α, β]. The regularized version is

|∇̃αI|a =

√∑
β∼α

zαβ(I)(I(α)− I(β))2 + a2.

Comparing this new definition with the local variation in (3.7) and the corresponding
discrete edge derivative in (3.9), we now determine the weighted edge derivative
determined by

∂wI

∂we

∣∣∣∣
α

:= zαβ(I)(I(β)− I(α)) (6.2)

for the edge interval [α, β].

Formally, we can now define the persistence-weighted digital TV filter as

F̃ λ,a
α (Ik) =

∑
β∼α

tαβ(I)I(β) + tαα(I)I0(α), α ∈ Ω,

where parameters are given by

tαβ(I) =
pαβ(I)

λ+
∑

γ∼α pαγ(I)
, for α,β ∈ Ω

tαα(I) =
λ

λ+
∑

γ∼α pαγ(I)
,

pαβ(I) = zαβ(I)
( 1

|∇̃αI|
+

1

|∇̃βI|

)
, for α,β ∈ Ω

It is easy to check that for any index α

tαα(I) +
∑
γ∼α

tαγ(I) = 1.
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6 Application of persistence distance to image denoising

With the new TV filter, Algorithm 3.1 with additonal outer iteration can thus be mod-
ified as follows.

Algorithm 6.4:

Input: noisy signal Ĩ, parameters λ, a = 0.0001.

1) Initialize I0,0 = Ĩ.

2) For j = 0, . . . , Nouter do

Update tαβ(Ij,0)

For k = 0, . . . , Ninner do
For α ∈ Ω do

Compute Ij,k+1(α) = F̃λ,a
α (Ij,k) =

∑
β∼α tαβ(Ij,0)Ij,k(β) + tαα(Ij,0)I0,0(α)

end

end
Let Ij+1,0 = Ij,Ninner+1

end

Output: I = INiteration+1 approximates the minimizer of min
u

J(u) in (6.3).

For the inner iteration of above algorithm for the weighted ROF-model we can show
similar results as for the COS-filter in Subsection 3.2.1, see also [13].

Theorem 6.5:
If the TV filtering process in Algorithm 6.4 converges, then the limit signal I is the
unique minimizer of the TV energy functional

Jα(I) =
∑
α

|∇̃αI|a +
λ

2

∑
Ω

(I(x)− Ĩ(x))2. (6.3)

Theorem 6.6:
If the filtering process in Algorithm 6.4 converges to some image I, then I satisfies∑

e`α

∂

∂e

−1

|∇̃I|a
∂wI

∂we

∣∣∣∣
α

+ λ(̃Iα − Iα) = 0, α ∈ Ω. (6.4)

Proof: The limit satisfies
Iα = Fα(I), α ∈ Ω.

It represented as (
λ+

∑
γ∼α

pαγ

)
I(α) =

∑
β∼α

pαβI(β) + λĨ(α),

which equals ∑
β∼α

pαβ(I(β)− I(α)) + λ(̃I(α)− I(α)) = 0.
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6.3 Comparison with other image denoising methods

Thus, the proof is done if we can show that∑
β∼α

pαβ(I(β)− I(α)) =
∑
e`α

∂

∂e

−1

|∇̃I|a
∂wI

∂we

∣∣∣∣
α

holds true. We compute directly the right-hand side of the above equation according
to the definition of the edge derivative (3.9) and the weighted edge derivative (6.2) and
find for the edge α ∼ β

∂

∂e

−1

|∇̃I|a
∂wI

∂we

∣∣∣∣
α

=
( −1

|∇̃I|a
∂wI

∂we

)∣∣∣∣
β

−
( −1

|∇̃I|a
∂wI

∂we

)∣∣∣∣
α

=
−1

|∇̃βI|a

(∂wI

∂we

)∣∣∣∣
β

+
1

|∇̃αI|a

(∂wI

∂we

)∣∣∣∣
α

=
−1

|∇̃βI|a
zαβ(I)(I(α)− I(β)) +

1

|∇̃αI|a
zαβ(I)(I(β)− I(α))

= zαβ(I)
( 1

|∇̃βI|a
+

1

|∇̃αI|a

)
(I(β)− I(α)).

Noticing that the last term is exactly pαβ(Iβ−Iα), we have pαβ(I) = zαβ(I)
(

1
|∇̃αI|

+ 1
|∇̃βI|

)
which finishes the proof.

We will show the performance of this persistence-weighted ROF-model in experiments
with weight strategy 1 in Section 6.4.

6.3 Comparison with other image denoising methods

We want to compare the performance of our weighted ROF model for image denoising
with some other models that have been used in the literature. Beside the usual (un-
weighted) ROF approach being an example for an image denoising method based on vari-
ational methods, we consider for comparison one method based on the anisotropic nonlin-
ear diffusion, namely the four-pixel scheme proposed by Welk, Weickert and Steidl, [41],
one method based on computational harmonic analysis, namely shearlet shrinkage, and
one of the actually best performing image denoising methods, the hybrid method BM3D
proposed by Dabov, Foi, Katkovnik & Egiazarian, [17,18].

6.3.1 Four-Pixel scheme

There exist several approaches for image denoising that are based on partial differential
equations, particularly on nonlinear diffusion, see e.g. [34,40] and references therein. For
our comparisons, we consider the four-pixel scheme in [41] that is based on a nonlin-
ear diffusion process where the corresponding diffusivity function is singular. Singular
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6 Application of persistence distance to image denoising

diffusivities, as e.g. the TV-diffusion g(|∇u|) = |∇u|−1, have the advantage that no fur-
ther contrast parameter needs to be fixed, but a suitable numerical implementation of
the obtained singular differential equation is difficult. Therefore, in [41] a new numeri-
cal method is proposed for the 2D-case, using local analytical solutions of the diffusion
equation on 2 × 2-images. These local solutions serve as building blocks for generating
a solution for general 2D-images, where operator splitting methods are employed. The
local analytical solutions for the 2 × 2-images can also be related to a Haar-wavelet
shrinkage procedure with shift-invariant Haar wavelets.

In the experiments, we choose the diffusion funtion as g(|∇u|) = |∇u|−1.

6.3.2 Shearlet-Shrinkage

The shearlet shrinkage procedure for image denoising is based on the representation of
the image in the redundant shearlet frame. Shearlets can be seen as a generalization
of two-dimensional wavelet approaches, where the elements of the shearlet frame are
generated by dilation, shearing and translation of one “mother shearlet”. Similarly as
for curvelet constructions [8], the dilation is taken differently in x- and y-direction using
e.g. a dilation matrix of the form

A =

(
2 0

0
√

2

)
.

This construction enables us to recognize directional structures in images using the
shearlet representation. Earlier shearlet constructions are based on frame functions
being compactly supported on “wedges” in Fourier domain. For a suitable choice of the
mother shearlet, the set of all shearlet functions can form even a Parseval frame, see
e.g. [30].

Recently, special shearlet frame constructions have been proposed whose frame elements
have compact support in spatial domain. These shearlet frames admit a very efficient
implementation of the shearlet transform that can be also generalized to 3D, [28,29,31].

Similarly as for wavelet denoising techniques, shearlet shrinkage is based on the restric-
tion of the image representation to only the most important shearlet coefficients, while
small shearlet coefficients are taken as “noise”. For shrinking the shearlet coefficients we
have used the usual soft-threshold function.

The experiment code with shearlet shringkage used in this thesis is ShearLab (Version
1.0), [43].
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6.4 Numerical results

6.3.3 BM3D

BM3D is one of the state-of-the-art algorithms for image denoising. Originally proposed
by Dabov at al., see [17,18], this hybrid method has been continuously developed further
since that time, see e.g. [19].

The method unifies different denoising strategies. In a first step, certain reference image
blocks are fixed, and all image blocks being similar to the reference block are grouped
together to obtain a 3D block. In the second step a so-called “collaborative filtering” is
employed. Here, a 3D-transform is applied together with a shrinkage procedure. The 3D-
transform can exploit correlations inside of each of the image blocks but also between the
image blocks. As a 3D-transform, one can use a wavelet transform e.g. with a Daubechies
or biorthogonal filters. Since the reference blocks are usually overlapping, one can get
a first improved denoising result by weighted averaging of the obtained denoised blocks.
In a last step, an improved denoising result is obtained by a second block grouping and
the application of a Wiener filter procedure.

6.4 Numerical results

This section is contributed to show the performance of our proposed two-dimensional
persistence-weighted schemes. We employ the cameraman and peppers images of size
256 × 256 to illustrate the denoising results for different methods. The original images
are presented in the first row of Figure 6.1. The images are contaminated with Gaussian
noise where we consider the two different noise levels σ = 0.1 and σ = 0.15 (see second
and third rows of Figure 6.1, respectively) with corresponding PSNR values. Here the
PSNR value is determined by

PSNR(I, Ĩ) = 10 log10

1
1

(P+1)·(Q+1)

∑
α∈Ω

(I(α)− Ĩ(α))2
,

where I ∈ R(P+1)×(Q+1) and α ∈ Ω. Here we have assumed that the gray values of
the images are normalized to the range [0, 1]. For computing the PSNR value, I is the
original image and Ĩ is either the noise contaminated image or the denoised image.

The denoising results for noisy cameraman image with σ = 0.1 and the corresponding
parameters used for the various methods are shown in Table 6.1 and in Figure 6.2.

For the second noise level σ = 0.15, the denoising results and parameters are given in
Table 6.2 and Figure 6.3.

It is worth pointing out how the persistence weights updating is done. For a fixed number
of total iterations, the updating of persistence weights is done at most 100 times, i.e.,
after each hundredth of the number of iterations. Taking e.g. a total of 5000 inner
iterations, the updating of persistence weigths is performed after 50 inner iterations. In
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6 Application of persistence distance to image denoising

our numerical examples below we have used only 60 iterations, and persistence weights
updating actually takes place for every iteration.

We observe that our non-separated persistence-weighted ROF model with weight strat-
egy 1 (WS1) works slightly better than the separable scheme with the same weight
strategy WS1. The achieved PSNR value of or persistence-weighted ROF scheme with
WS1 also slightly outperforms the results of the four-pixel scheme and the shearlets
denoising result. The higher PSNR achieved by our persistence-weighted ROF scheme
benefits from the better contrast at the boundaries which is the expected advantage of
taking for significant pairs smaller persistence weights. The obvious drawbacks of the
new persistence-weighted ROF scheme and separable scheme are the emerging blocking
effects and the more expensive computation of persistence weights. The blocking effects
can be reduced either by employing a different smoothing filter for the inner iterations
or by applying a smoothing filter in a post-processing step.

The performance of the various methods for denoising the peppers image are similar. The
obtained results and parameters for the first noise level σ = 0.1 are shown in Table 6.3
and in Figure 6.4. For the higher noise level σ = 0.15, the PSNR values and parameters
are summarized in Table 6.4 and in Figure 6.5.

Again, the performance of our persistence-weighted ROF approach is similarly good as
that of the four-pixel scheme, and both schemes, the separable scheme with WS1 and
the 2D persistence weighted ROF model outperform the shearlet denoising result. For
the peppers image, the less good performance of the persistence-weighted ROF scheme
in comparison to the four-pixel scheme may be caused by less strong contrast within the
image such that keeping the boundaries nicely is less important than approximating the
smooth regions.

Method Parameters PSNR

Noisy image 19.97

Four-pixel scheme 73 iterations, τ = 0.001 27.64

Shearlets θ = 0.01, others default 26.07

BM3D block size 8× 8, others default 29.36

Separable scheme WS1 60 iterations, λ = 0.015, β = 0.006 27.28

Persistence-weighted ROF WS1 60 iterations, λ = 0.06, β = 0.0012 27.72

Table 6.1: Denoising parameters and denoising results (cameraman, σ = 0.1).
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6.4 Numerical results

(a) Cameraman (b) Peppers

(c) Cameraman, σ = 0.1, PSNR 19.97 (d) Peppers, σ = 0.1, PSNR 19.97

(e) Cameraman, σ = 0.15, PSNR 16.45 (f) Peppers, σ = 0.15, PSNR 16.45

Fig. 6.1: (Gaussian noise)First row: Original images

Second row: noisy images with σ = 0.1

Third row: noisy images with σ = 0.15.
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6 Application of persistence distance to image denoising

(a) Four-pixel scheme, PSNR 27.64 (b) Shearlets, PSNR 26.07

(c) BM3D, PSNR 29.36 (d) Separable scheme, PSNR 27.28

(e) Persistence-weighted ROF, PSNR 27.72

Fig. 6.2: Denoising results for cameraman image with σ = 0.182



6.4 Numerical results

(a) Four-pixel scheme, PSNR 25.73 (b) Shearlets, PSNR 24.23

(c) BM3D, PSNR 27.50 (d) Separable scheme, PSNR 25.24

(e) Persistence-weighted ROF, PSNR 25.78

Fig. 6.3: Denoising results for cameraman image with σ = 0.15 83



6 Application of persistence distance to image denoising

(a) Four-pixel scheme, PSNR 28.26 (b) Shearlets, PSNR 26.82

(c) BM3D, PSNR 30.22 (d) Separable scheme, PSNR 27.45

(e) Persistence-weighted ROF, PSNR 28.23

Fig. 6.4: Denoising results of peppers image with σ = 0.184



6.4 Numerical results

(a) Four-pixel scheme, PSNR 26.13 (b) Shearlets, PSNR 25.04

(c) BM3D, PSNR 28.18 (d) Separable scheme, PSNR 25.08

(e) Persistence-weighted ROF, PSNR 26.01

Fig. 6.5: Denoising results for peppers image with σ = 0.15 85



6 Application of persistence distance to image denoising

Method Parameters PSNR

Noisy image 16.45

Four-pixel scheme 122 iterations, τ = 0.001 25.73

Shearlets θ = 0.01, others default 24.23

BM3D block size 8× 8, others default 27.50

Separable scheme WS1 60 iterations, λ = 0.01, β = 0.002 25.24

Persistence-weighted ROF WS1 60 iterations, λ = 0.04, β = 0.0015 25.78

Table 6.2: Denoising parameters and denoising results (cameraman, σ = 0.15).

Method Parameters PSNR

Noisy image 19.97

Four-pixel scheme 76 iterations, τ = 0.001 28.26

Shearlets θ = 0.01, others default 26.82

BM3D block size 8× 8, others default 30.22

Separable scheme WS1 60 iterations, λ = 0.015, β = 0.005 27.45

Persistence-weighted ROF WS1 60 iterations, λ = 0.055, β = 0.002 28.23

Table 6.3: Denoising parameters and denoising results (peppers, σ = 0.1).

Method Parameters PSNR

Noisy image 16.45

Four-pixel scheme 124 iterations, τ = 0.001 26.13

Shearlets θ = 0.01, others default 25.04

BM3D block size 8× 8, others default 28.18

Separable scheme WS1 60 iterations, λ = 0.01, β = 0.001 25.08

Persistence-weighted ROF WS1 60 iterations, λ = 0.035, β = 0.001 26.01

Table 6.4: Denoising parameters and denoising results (peppers, σ = 0.15).
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