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  Summary 1 

Summary 

In this thesis, a novel method for scale corrected comparisons of LD structure in dif-

ferent genomic regions is suggested. Several aspects of scale-caused problems – from 

precision of marker effect estimates to accuracy of predictions for new individuals - are inves-

tigated. Furthermore, based on a comparison of the performance of different approaches, 

recommendations on the application of examined methods are given.  

In the first chapter a general introduction to fundamental genetics and quantitative 

genetics methods is given. In the second chapter the impact of different marker density in 

terms of resulting higher LD between the markers on errors in estimates of marker effects is 

investigated. In order to quantify this impact, genotypes with a pre-defined LD structure are 

needed. For this purpose, four different simulation techniques were compared and the most 

reliable method - in terms of reproduction of sought LD structure in marker data - was used 

to generate a pool of genotype records with a pre-defined LD structure. The effect of the 

magnitude of LD between the markers on marker effect estimates was investigated in three 

linear models - Single Marker Regression (SMR), Multiple Marker Regression (MMR) and 

Linear Mixed Model (LMM) using different simulation scenarios that reflect differences in 

MAF (varying from 0.05 to 0.5 in steps of 0.025) and heritability fixed at 0.3, 0.5 or 0.7. A 

clear dependence was observed between the increase of LD in the data and the increase of 

errors in the effect estimates. A high amount of LD, above a threshold of harmful multicollin-

earity, had a large impact on the estimates of marker effects, whilst LD below this threshold 

had no influence on precision of estimates. The threshold of harmful multicollinearity was 

observed to depend on the model: in MMR a negative impact on the precision of estimates 

was observed when the amount of LD (measured in squared correlation,
2r ) exceeded a 

value of 0.7, while in LMM, an even higher negative impact was detected for values of 2r

0.6. Observed impact was more pronounced for SNPs with lower MAF and phenotypes with 

lower heritability. All in all, high LD level in marker data led to a bias in estimates from all the 

considered models that are routinely used when genomic data comprises thousands of 

markers.  

A further scale-caused problem lies in the varying degrees of relatedness in different 

species and populations. The accuracy of genomic prediction in three whole genome regres-

sion (WGR) methods, performing variable selection or penalized estimation of marker 

effects, is the subject of the third chapter. The Genomic Best Linear Unbiased Prediction 

(GBLUP) represents a classical infinitesimal model, where the trait is described as the 

weighted sum of SNP effects and where all marker effect estimates are penalized equally. 

We performed two GBLUP methods, which differ in the calculation of genomic relationship 
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matrix (Van Raden and LD-corrected matrices). The next evaluated model was the Bayesian 

hierarchical model Bayes A, where the prior distribution of marker effects (scaled-t distribu-

tion) induces differential shrinkage of marker effect estimates. Finally, in Bayesian Sparse 

Linear Mixed Models (BSLMM) the total effect at each SNP is the sum of a small and a po-

tential sparse large effect. The BSLMM is a general model: if the variance of sparse effects is 

close to zero and variance of small effects is large, an infinitesimal model is applied, howev-

er, if the variance of small effects is close to zero and only a few SNPs with sparse effects 

are present, the Bayesian Sparse Variable Selection model is applied. 

In order to investigate the accuracy of genomic predictions, extensive simulation stud-

ies that reflect different genetic architectures as well as the analysis of a real phenotype – 

human height – were performed. Data sets for both analyses were obtained from the GENE-

VA study, containing nominally unrelated individuals. After quality control the remaining 

673.197 SNPs were divided into two subsets: randomly sampled 350.000  SNPs were as-

signed as markers and from the remaining 323.197 SNPs, a quantity of 5.000 SNPs was 

sampled in each repetition as Quantitative Trait Loci (QTL). Five different scenarios were 

considered to reflect different genetic architectures. In further simulation scenarios, the distri-

bution of MAF in QTL and in markers was either identical or not. In all introduced scenarios, 

the genomic models were applied using different subsets of SNPs: 1) only markers or 2) 

markers and QTL or 3) only QTL. For the real data analysis as well as for the analysis of 

simulated data, 500 individuals were assigned randomly to the validation data set and the 

rest to the training, thus 30 replications were performed for each scenario. The correlation 

between true and predicted phenotype )ˆ( yy,cor  was used to quantify the predictive ability 

(PA). 

In each of the considered scenarios, the BSLMM outperformed both Bayes A and 

GBLUP methods and showed higher prediction accuracy. The averaged predictive ability of 

BSLMM ranged between 0.08 and 0.58 across the simulation scenarios and was in average 

16% higher than in Bayes A and 123% higher than in GBLUP. In contrast to GBLUP, the 

prediction accuracy in BLSMM and Bayes A was improved by 10% by including QTL in addi-

tion to markers in the data set. When only a few genes were involved in the manifestation of 

a trait, the BSLMM provided very good results (PA of 04.055.0  ) even when the degree of 

relatedness in the data set was low. The prediction accuracy corresponding to an infinitesi-

mal trait was low for all considered methods (averaged PA ranged from 0.07 to 0.18), 

however BSLMM delivered good results and did not perform worse than GBLUP. For the 

analysis of genomic data from less related individuals and pertaining to traits with unknown 

genetic architecture, BSLMM proved to be a more robust and effective approach. 
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In the fourth chapter the causes of the phenomena observed in studies described in 

the second and third chapters are investigated: the LD structures in different genomic re-

gions are explored. A method was introduced to enable a scale independent comparison of 

LD structure in different genomic regions. This method accounted not only for the MAF distri-

bution in the regions under comparison, but also for the distribution of pair-wise physical 

distances and the pair-wise differences in MAFs. In the present work, a comparison of LD 

structure between a genic region (G) and a non-genic region (IG) was performed as well as a 

control comparison between two similar non-genic regions IG and IG’. To quantify the ob-

served differences in all G/IG and IG/IG’ pairs, the medians of squared correlations 𝑟2 and 

standardized squared correlation 𝑟2/𝑟𝑚𝑎𝑥
2  were compared a) genome-wide as well as b) 

chromosome-wise by using Wilcoxon signed rank tests. Comparative studies were per-

formed in three different species: an Arabidopsis data set (A. thaliana, genotyped using 

Affymetrix 250K SNP-tiling array), a human data set (H .sapiens, genotyped using 780 K 

Affymetrix Genome-Wide Human SNP Array 6.0) from GENEVA study and a white layer data 

set (G. g. domesticus, genotyped using 600 K Affymetrix Axiom® Genome-Wide Chicken 

Genotyping Array) from the Synbreed project. After the quality control procedure, 199 double 

haploid Arabidopsis inbred lines with 216 K SNPs, 5.827 human individuals with 685 K SNPs 

and 673 chickens with 278 K SNPs were available. Gene annotations were based on „En-

semble genes 74“ for human and chicken data sets and on „Ensemble plant genes 21“ for 

the Arabidopsis data set. In total 3.721 genic regions in A. thaliana, 7.180 in H. sapiens and 

3.033 in G. g. domesticus were tested. Genome-wide comparison detected 31,2% more LD 

in genic compared to non-genic regions in A. thaliana, followed by 13,6% in H. sapiens and 

6,0% in G. g. domesticus. Chromosome-wide comparison discovered significant differences 

on all 5 chromosomes in Arabidopsis thaliana, on one quarter of the human and one third of 

the chicken chromosomes. The control comparisons of LD structure in similar non-genic re-

gions showed almost no significant differences in any species. 

Chapter five presents a discussion on the influence of LD on the performance of the 

considered models and possibilities for mitigating the severity of consequences. An addition-

al real data analysis of predictive ability of BSLMM is introduced, using British Cohort 1958 

data set, which consists of records of unrelated individuals born in one week in March 1958. 

Furthermore, the sensitivity of Bayesian methods to the choice of hyper parameters and 

number of iterations is discussed and results of sensitivity analysis are presented. 
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Zusammenfassung 

In dieser Arbeit wird eine neue Methode für den skalenunabhängigen Vergleich von 

LD-Strukturen in unterschiedlichen genomischen Regionen vorgeschlagen. Verschiedene 

Aspekte durch Skalen verursachter Probleme – von der Präzision der Schätzung der Marke-

reffekte bis zur Genauigkeit der Vorhersage für neue Individuen - wurden untersucht. 

Darüber hinaus, basierend auf den Leistungsvergleichen von unterschiedlichen statistischen 

Methoden, wurden Empfehlungen für die Verwendungen der untersuchten Methoden gege-

ben.  

Im ersten Kapitel wurde eine allgemeine Einführung in genetische Grundlagen und 

in die Methoden der quantitativen Genetik gegeben. Im zweiten Kapitel wurden die Auswir-

kungen der unterschiedlichen Markerdichten, in Form von daraus resultierenden höheren LD 

zwischen den Markern, auf Fehler bei der Schätzung der vorliegenden Markereffekte unter-

sucht. Um diese Auswirkungen zu quantifizieren, wurden Genotypen mit einer vorgegebenen 

LD-Struktur benötigt. Zu diesen Zweck wurden vier mögliche Simulationsmethoden vergli-

chen und die zuverlässigste Methode – im Sinne der Wiedergabe der gewünschten LD-

Struktur in Markerdatensatz - wurde genutzt, um einen Datenpool mit Genotypen in einem 

vordefinierten LD zu erstellen. Die Auswirkung des unterschiedlichen Ausmaßes von LD zwi-

schen den Markern auf die Schätzung der Markereffekte wurde in drei verschiedenen 

linearen Modellen - der Single Marker Regression (SMR), der Multiple Marker Regression 

(MMR) und der Linear Mixed Model (LMM) – untersucht. Dafür wurden Simulationsstudien 

mit Szenarien, die unterschiedliche MAF (zwischen 0.05 und 0.5 in 0.025 Schritten variie-

rend) und die Heritabilitätswerte von 0.3, 0.5 oder 0.7 wiederspiegeln, verwendet. Eine 

deutliche Abhängigkeit der Korrelation zwischen den größeren Schätzfehlern und einem hö-

heren Ausmaß von LD (oder Multikolliniarität) in den Daten konnte festgestellt werden. Ein 

höheres LD über einen Schwellenwert für unbedenklichen Multikollinearität im Datensatz 

hatte einen gravierenden Einfluss auf die Schätzungen von Markereffekten, wärend ein LD 

unterhalb dieses Schwellenwertes keine Auswirkung auf die Genauigkeit der Schätzung hat-

te. Eine Abhängigkeit dieses Schwellenwertes von dem Modell wurde beobachtet: für MMR 

wurde eine Verringerung der Schätzgenauigkeit für LD-Werte (gemessen als quadrierte Kor-

relation 
2r ) über 0.7 beobachtet, während für LMM größere Genauigkeitsverluste für LD-

Werte 2r 0.6 festgestellt wurden. Die beobachtete Auswirkung war stärker ausgeprägt für 

SNPs mit niedrigerem MAF und für Merkmale mit niedrigerer Heritabilität. 

.Zusammenfassend lässt sich sagen, dass ein höheres LD-Niveau in den Markerdaten zu 

einer Verzerrung der Schätzung der Markereffekte bei allen untersuchten Modellen, die übli-

cherweise bei den Analyse von genomischen Daten angewandt werden, führte. 
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Ein weiteres Skalenproblem liegt im unterschiedlichen Ausmaß von Verwandtschaft 

in unterschiedlichen Populationen und Spezies. Die Genauigkeit der genomischen Vorher-

sage in drei genomweiten Regressionsmodellen (WGR), die sowohl Modellselektion als auch 

unterschiedliche Penalisierung (Bestrafung) der Markereffekte durchführen,  war der Gegen-

stand des dritten Kapitels. Durch Genomic Best Linear Unbiased Prediction (GBLUP) wird 

ein klassisches, infinitesimales Modell repräsentiert: Hier wird das Merkmal als gewichtete 

Summe der SNP-Effekte dargestellt und die Bestrafung der Effektgröße ist für alle Marker 

gleich. Zwei verschieden GBLUP Methoden wurden betrachtet, die sich in der Berechnung 

der genomischen Verwandschaftsmatrix G unterscheiden (Van Raden G und LD-korrigierte 

Matrix G-ldak). Bei dem zweiten Modell handelt es sich um Bayes A, welches eine a-priori 

Annahme an die Verteilung von Markereffekte stellt (scaled-t Verteilung) und diese entspre-

chend ihrer Effektgröße bestraft. Im Bayesian Sparse Linear Mixed Models (BSLMM) wird 

der gesamte Effekt von jedem SNP durch die Summe von einem kleinen und - bei einem 

bestimmten Anteil der SNPs - einem zusätzlichen großen Effekt dargestellt, folglich ist 

BSLMM eine neue Implementierung von einem Spike-Slab Modell (SS). Bei dem SS handelt 

es sich um ein verallgemeinertes Modell: Ist der Anteil an SNPs mit zusätzlichem Effekt 

gleich Null, so liegt ein infinitesimales Modell vor, wenn die Varianz der kleinen Effekte ge-

gen Null geht und nur wenige SNPs mit großen Effekten vorhanden sind, so liegt ein 

Bayesian Sparse Variable Selection Modell vor. 

Um die Genauigkeit der genomischen Vorhersage zu untersuchen, wurden sowohl 

die Simulationsstudien, die unterschieche genetische Architekturen wiederspiegeln, als auch 

Analysen der realen Phänotypen (menschliche Körpergröße) durchgeführt. Für die Analysen 

standen die Humandaten aus der GENEVA Studie zur Verfügung, welche 5.758 nominal 

unverwandte Individuen umfassen. Nach der Qualitätskontrolle, wurden die verbliebenen 

673.197 SNPs in zwei Teildatensätze aufgeteilt: 350.000  SNPs wurden zufällig als Marker 

ausgewählt und aus den restlichen 323.197 SNPs wurden 5.000 SNPs bei jeder Wiederho-

lung als Quantitative Trait Loci (QTL) zufällig ausgewählt. Fünf unterschiedliche Szenarien 

spiegelten unterschiedliche genetische Architektur von Merkmal wieder. In einem weiteren 

Simulationsszenario waren die Verteilungen von Frequenzen der seltenen Allele (MAF) in 

QTL und Marker gleich oder unterschiedlich. Alle Szenarien wurden mit unterschiedlich zu-

sammengesetzten genomischen Datensätzen analysiert: 1) nur Marker, 2) nur QTLs und 3) 

Marker und QTLs. Sowohl für die Analyse von simulierten als auch für die Analyse von den 

realen Daten wurden 500 Individuen zufällig in die Validierungsgruppe eingeteilt und der 

Rest in die Trainigsgruppe; insgesamt wurden 30 Wiederholungen durchgeführt. Die Korrela-

tion zwischen den wahren und vorhergesagten Phänotypen )ˆ( yy,cor  wurde benutzt um die 

Vorhersagegenauigkeit (PA) zu quantifizieren. 
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In jedem der untersuchten Szenarien zeigte SS eine höhere Vorhersagegenauigkeit 

als Bayes A und GBLUP. Die mittlere PA von SS lag zwischen 0.08 und 0.58 über alle Simu-

lationsszenarien hinweg und war im Schnitt 16% höher als von Bayes A und 123% höher als 

PA von GBLUP. Im Gegensatz zu GBLUP war die Genauigkeit der Vorhersage in SS und 

Bayes A 10% höher, wenn zusätzlich zu den Markern die QTL im Datensatz enthalten wa-

ren. Im Falle, dass nur wenige Gene an der Ausbildung des Merkmals beteiligt waren, 

lieferte SS sehr gute Ergebnisse (PA von 04.055.0  ) auch für wenig verwandte Individuen. 

Unter einem infinitesimalen Modell, war die Vorhersagegenauigkeit war niedrig bei allen be-

trachteten Methoden (mittlere PA von 0.07 bis 0.18), aber SS lieferte gute Ergebnisse und 

war nicht schlechter als GBLUP. Für die Analyse von genomischen Daten von wenig ver-

wandten Individuen oder von Merkmalen mit unbekannter genetischer Architektur, erwies 

sich SS als eine besser geeignete und robustere Methode 

Im vierten Kapitel wurden die Ursachen der in Kapitel zwei und drei beschriebenen 

Phänomene detailliert untersucht: Vergleiche der LD-Strukturen in unterschiedlichen geno-

mischen Regionen wurden durchgeführt. Eine Methode wurde vorgestellt, die einen 

skalenunabhängigen Vergleich von LD-Strukturen in unterschiedlichen genomischen Regio-

nen ermöglicht. Diese Methode berücksichtigt nicht nur die Verteilung von MAF in den zu 

vergleichenden genomischen Regionen, sondern auch die Verteilung der paarweisen physi-

kalischen Distanz und Differenzen in den MAFs. Vergleiche der LD-Struktur wurden 

zwischen ähnlichen Gen- und Nicht-Genregionen (G und IG), sowie Kontrollvergleiche zwi-

schen zwei ähnlichen Nicht-Genregionen (IG und IG‘) durchgeführt. Um die beobachteten 

Unterschiede zu quantifizieren, wurden für die Mediane der quadrierten Korrelationen (𝑟2) 

und den Ausschöpfungskoeffizienten (𝑟𝑠
2 = 𝑟2/𝑟𝑚𝑎𝑥

2 ) aller G/IG und IG/IG‘ Paare a) chromo-

somenweise sowie b) genomweite Vorzeichenrangtests von Wilcoxon durchgeführt. 

Vergleichsstudien wurden in drei verschiedene Spezies durchgeführt: Arabidopsisdaten (A. 

thaliana, typisiert mit Affymetrix 250K SNP-tiling array), Humandaten (H. sapiens, typisiert 

mit 780K Affymetrix Genome-Wide Human SNP Array 6.0) aus der GENEVA-Studie und 

Weißlegerdaten (G. g. domesticus, typisiert mit 600K Affymetrix Axiom® Genome-Wide Chi-

cken Genotyping Array) aus dem Projekt „Synbreed“ wurden benutzt. Nach der 

Qualitätskontrolle standen für die folgenden Analysen 199 homozygote Arabidopsis-

Inzuchtlinien mit 216 K SNPs, 5,827 Menschen mit 685 K SNPs und 673 Hühner mit 278 K 

SNPs zur Verfügung. Genannotationen basierten auf der Version „Ensemble genes 74“ für 

die Human- und Hühnerdaten bzw. auf „Ensemble plant genes 21“ für die Arabidopsisdaten. 

Insgesamt wurden 3,721 Genregionen in A .thaliana, 7.180 in H. sapiens und 3,033 in G. g. 

domesticus getestet. In einem genomweiten Vergleich wurde in A. thaliana ca. 31,2% mehr 

LD in Genregionen als in Nicht-Genregionen entdeckt, in H. sapiens ca. 13,6% und in G. g. 

domesticus ca. 6,0%. In den chromosomweisen Vergleichen wurden signifikante Differenzen 
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an allen 5 Chromosomen in Arabidopsis thaliana entdeckt, an einem Viertel von den Chro-

mosomen in H. sapiens und an einem Drittel der Chromosomen in G. g. domesticus. Die 

Vergleiche von IG mit IG‘ zeigten so gut wie keine signifikanten Unterschiede. 

Das fünfte Kapitel beinhaltet eine Diskussion über die Auswirkung von LD auf die 

Leistungsfähigkeit der betrachteten Modelle und Möglichkeiten zur Begrenzung der negati-

ven Konsequenzen. Eine zusätzliche SS Analyse von neuen realen Merkmalen von British 

Cohort 1958 Datensatz, welcher Daten von unverwandten Individuen beinhaltet, die in einer 

einzigen Woche in März 1958 geboren sind. Darüber hinaus wurde eine Sensitivitätsanalyse 

bezüglich der Wahl der Hyperparameter in Bayesianischen Methoden und die Zahl der benö-

tigten Iterationen präsentiert. 
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Uniqueness of each individual, either human or animal, is created by small deviations 

in genetic materials inherited. The stature and performance as well as the susceptibility to 

particular diseases depend on a specific base pair manifestation in the deoxyribonucleic acid 

(DNA) chain. The ultimate goals of quantitative genetics are firstly, to identify regions that 

play an important role in the inheritance of particular traits and secondly, to predict those 

traits for new individuals using the available genomic information. Since the rapid develop-

ment of genome sequencing and genotyping techniques in the last decades, a variety of 

informative markers covering the whole genome are now available. These markers, which 

are specific variations in the sequence of the bases in the DNA, as well as the phenotypic 

records are the input used for statistical analysis. Many parametric and non-parametric sta-

tistical models and approaches have been proposed for assignment of genomic data to the 

phenotypes.  

Until a few years ago, only a small number of genetic variants were available for 

modeling but in the last few years, genotypes from thousands of individuals with hundreds of 

thousands of markers each have become available. However, computational and methodo-

logical problems arise and approaches functioning well with a small number of variants need 

to be verified and if necessary adapted to high-density data.  

Genomic data  

Molecular genetics background 

Firstly, a short introduction to some fundamental genetics is presented, based on ge-

netics book by Henning (2001).  

DNA contains genetic information, stored as a sequence of four nucleotides  

(Adenine, Cytosine, Guanine and Thymine), which build base pairs A with T and G with C. 

These base pairs are arranged in two strands that form a kind of spiral, called double helix. 

Due to pairing of complementary bases, the replication of DNA during the division of a cell is 

enabled. In higher organisms, the genome is organized in sets of chromosomes that repre-

sent DNA sections of different length, and the number of chromosomes varies across 

species. In general, in a diploid organism like humans or most animals, the genome consists 

of pairs of chromosomes that comprise two identical copies (autosomes) and two copies of 

non-identical sex chromosomes (allosomes) that determine the sex of the individual. For in-

stance, humans are diploid and possess 46 chromosomes: a double set of 22 autosomes 

and one set of allosomes XX (for female) and XY (male), while wheat is hexaploid and pos-

sesses 42 chromosomes in total with six copies each of 7 chromosomes. Hereafter only 

diploid organisms will be considered and the two copies of a chromosome will be referred to 
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as the inherited maternal or paternal chromosome. Since humans are diploid, there are 
232  

possibilities of combining the maternal and paternal haploid chromosome sets.  

A gene is a unit of heredity which carries the information for construction functional 

molecules, called proteins. The position of a specific location of a gene or a single base pair 

on the genome, called locus, is the analogue to a physical address. For instance, in sugar 

beet the base pair manifestations at about 98.7% of 
8105.5   loci are identical in humans and 

only 1.3% of loci have different variants, called alleles. Variation in the genome occurs spon-

taneously during cell division or as an error in genetic recombination. Errors in duplication of 

a DNA strand might result in changing a single nucleotide, which is called point mutation. In 

case a point mutation increases the fitness of the organism, it has a chance to remain in the 

population. If the new allele appears in up to 1% of individuals, it is called a rare variant. One 

or more extra nucleotides added during the replication process are called insertions, and 

extra nucleotides that are removed are called deletions. Structural variants that occur re-

peatedly, for instance insertion or deletion will occur one, two or three times in a population, 

the different numbers of structural variation are called copy number variations (CNV). The 

last structural rearrangement of DNA that we will mention here is crossing over, which refers 

to the exchange of genetic material between the paternal and maternal copies of a chromo-

some when the two sister chromatids overlap. This exchange alters the constellation of 

parental origin upstream and downstream of the site where the crossing over has taken 

place and thus is referred to as recombination. For instance, in human an average probability 

of occurrence of recombination is 
610
 (Malats and Calafell, 2003), although the recombina-

tion rate varies greatly across the genome.  

A locus with occurrence of different nucleotides among individuals is called single  

nucleotide polymorphism (SNP). Most commonly, SNPs have only two alleles, the less fre-

quent allele is called the minor allele. Accordingly, the frequency of the minor allele is 

referred to as the minor allele frequency (MAF). A set of SNPs at a single chromosome copy 

is referred to as a haplotype. The summaries of observed alleles at both copies, which are, 

e.g., AA, AG or GG, are called genotypes. At any given locus, genotypes with the same set 

of alleles (e.g. A/A or G/G) are referred to as homozygous and genotypes with different set of 

alleles (e.g. A/G or G/A) are referred to as heterozygous. Note that most modern genotyping 

methods cannot assign the realization of alleles to the original haplotype strand; however, 

plenty of approaches exist that can reconstruct haplotypes from the observed genotypes 

(e.g. Scheet and Stephens, 2006; Browning and Browning, 2009; Roach et al., 2011; 

Delaneau et al., 2012). 
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Without recombination, loci situated on one chromosome would be inherited together 

from generation to generation. Other evolutionary forces like random mating, selection or 

genetic drift also influence the linkage between two or more loci. The non-random associa-

tion between alleles at different loci is referred to as linkage disequilibrium (LD) (this 

association can be interpreted as a measure of correlation between pairs of loci), while two 

alleles occurring absolutely independently are in linkage equilibrium. 

Marker genotype data 

In our studies we restrict ourselves to the most common type of genomic polymor-

phism, the SNP, which is for our purpose the most informative of all markers (Middleton et 

al., 2004). The scientific importance of SNPs arises because of their high frequency, e.g. in 

human 
7108.3   SNPs exist, which corresponds to %3.1  of the total of 

9103.3   base pairs 

(Kersey, 2014), as well as their availability in a wide range of species at relatively low geno-

typing costs.  

In the present study, SNP chip arrays from Affymetrix Inc. were used. The information 

from the SNP chip, denoted for instance as A/B or as A/T/G/C, was re-coded numerically for 

the statistical analysis of a quantitative trait as 0, 1 or 2, according to the number of minor 

alleles. Affymetrix and Illumina are two largest commercial producer of the SNP arrays, 

whereby Affymetrix produced the first commercial SNP array containing 1494 SNPs  

(Wang et al., 1998). Albeit the differences in how both genotyping platforms are designed, 

both SNP arrays share the same basic principle of complementary binding of nucleotides, 

namely A to T and C to G. Both genotyping method utilize hybridization of single-strand DNA 

sequences to prepared arrays, containing plenty nucleotide probe sequences. The intensity 

of signal can be measured and, assuming that signal intensity depends on the amount of 

target DNA, translated to genotypes AA, AB or BB. Both manufactures report genotyping 

accuracy about 99.5 % (LaFramboise, 2009). A comparative study involving 12 different SNP 

arrays (Ha et al., 2014) have shown that performance in terms of coverage and cost-

efficiency of different population-optimized SNP arrays varies across populations and the 

choice of a SNP array should be done depending on genetic background of the sample. 

In recent years a new sequencing technique called next-generation sequencing 

(Mardis, 2008) has rapidly developed. The key aspect of the next-generation sequencing is 

the ability to simultaneously sequence millions of DNA fragments.  

Genomic predictions 

Prediction of phenotypes for new individuals proceeds in two steps: 1) a genomic 

model is fitted to the training data set and 2) the phenotype or the breeding value, often used 
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in animal breeding, for a new individual is predicted based on the genotype readings of this 

individual and the estimated marker effects from the fitted model. The evaluation of predic-

tion accuracy can be performed using training-testing validation design (Hastie et al., 2005). 

For this purpose the data set is split many times into training and testing data sets; the as-

signment of individuals to either one of the subsets occurs randomly. In each repetition of the 

design, the correlation between the predicted and true phenotype for individuals in the train-

ing subset is calculated. This allows us to obtain the distribution of correlation coefficients 

with corresponding confidence bounds (Fisher, 1915; Hawkins, 1989). 

 

Genomic models and approaches  

 

Genomic models are needed to create a link between the phenotype or trait of  

interest and the genomic marker data, in order to estimate the marker effects or to predict an 

unobserved phenotype for a new individual. Challenges in the study of association between 

genomic markers and traits of interest typically include computational problems associated 

with large datasets and the over parameterization of models due to the large number of  

genomic variants. The causal loci for a trait are referred to as quantitative trait loci (QTL); in 

the simplest case each causal locus affects the trait (positively or negatively) and the sum 

over effects of all QTL results in the observed manifestation of the trait. The relationship be-

tween the QTL may deviate from pure additive nature and the underlying genetic architecture 

of a complex trait may consist of an additive component as well as the interaction between 

different genomic regions. Although classical regression models like multiple regression are 

simple to perform, they can only assume additive effects and will fail in case the number of 

predictors is larger than the number of individuals in the sample, which is the so called  

small-n-large-p problem. Many regression models, based on different penalization proce-

dures of marker effect estimates, like ridge regression (Hoerl and Kennard, 1976) or LASSO 

(Tibshirani, 1996) cope with the small-n-large-p problem but still ignore the potential interac-

tion between genes or between genomic and environment data. To capture these potentially 

non-linear components arising from interactions within the genome, non-parametric methods 

like reproducing kernel Hilbert spaces regression (RKHS) (de los Campos et al., 2010;  

Ober et al., 2011), the radial basis functions model (Long et al., 2010;  

González-Camacho et al., 2012) or artificial neural networks (Ehret et al., 2014) are often 

used. The diversity of available approaches is considerable, most of these methods are par-

ametric. A short outline of the genomic models often used in quantitative genetics is 

presented below. 
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Linear Regression models 

The Single Marker Regression is a standard approach used in genome wide  

association studies (GWAS), where the observed phenotype is modeled against each indi-

vidual locus separately. Consequently, the problem of multiple testing of marker effects 

arises and the significance level needs to be corrected. For instance, one can apply the  

Bonferroni correction (Dunn, 1961), which is based on penalization of the global significance 

level by the number of comparisons. The Bonferroni correction is the simplest but most con-

servative approach to control the family-wise error rate. An alternative method to control the 

Type I error, the false discovery rate (FDR) (Benjamini and Hochberg, 1995), is character-

ized by less conservative behavior and consequently by higher statistical power. This method 

is based on considering the proportion of expected false discoveries, thus a posteriori adjust-

ing of the significance level as performed by Bonferroni correction is not needed. 

In multiple marker regression, marker effects can be assumed to be fixed and the 

phenotype is modeled as the weighted sum of genotypes, where the weights correspond to 

the marker effects (Meuwissen et al., 2001). This approach has no unique solution in situa-

tions where the number of predictors exceeds the sample size, which is a common situation 

in genomic analysis. To overcome this limitation, the Least-Square Regression proposed by 

Meuwissen et al. (2001) or the Least Angle Regression proposed by Efron et al. (2004) per-

form a stepwise forward selection procedure for inclusion of most informative SNPs. A similar 

approach, the Partial Least Square Regression (Helland, 1990), constructs orthogonal pre-

dictors by transforming the original genotype matrix. Another possibility to cope with this 

over-parameterization problem is to penalize the effect estimates. Plenty of penalized esti-

mation methods exist, and the main difference between these methods lies in the choice of 

penalty. Most of methods make predictions with the sum of estimated effects weighted by the 

new individual observed genotypes. The so called shrinkage methods, for instance ridge  

regression proposed by Hoerl and Kennard (1976) or LASSO proposed by Tibshirani (1996), 

tend to have less prediction error in comparison to model selection approaches. An approach 

proposed by Zou and Hastie (2005), called Elastic Net, suggests a compromise between 

model selection and shrinkage. Penalized estimation is a rapidly developing research field 

with many approaches being proposed (Shen et al., 2013; Burnaev and Vovk, 2014;  

Fan et al., 2014; Beran, 2014) 

The linear mixed model (Henderson, 1950; Henderson, 1963; Goldberger, 1962)  

simultaneously models fixed covariates as well as the random SNP effects. A widely used 

approach in animal breeding, the genomic best linear unbiased predictor (GBLUP)  

(Henderson, 1984; Meuwissen et al., 2001), is as special form of linear mixed model in which 

the covariance structure is modeled from the relatedness within the sample. This model can 
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be viewed as a ridge regression model when performing uniform shrinkage of estimates, with 

a shrinkage parameter equal to the ratio of residual and genetic variance components.  

Bayesian linear regressions 

A large number of Bayesian methods have arisen in the last decade; here, only a 

short outline is given that is not claimed to be complete. Bayesian variable selection and 

shrinkage estimation approaches require a priori assumptions on the distribution of marker 

effects. Different Bayesian approaches vary in their a-priori assumptions and in handling the 

hyperparameters of the prior distribution, which are a further hierarchical level in the model 

and can be modeled as either fixed or random. The prior beliefs specify whether variable 

selection, shrinkage or both – variable selection and shrinkage - will be performed. For  

instance, Bayes A and B proposed by Meuwissen et al. (2001) perform different regulariza-

tion of estimates: Bayes A performs a marker specific shrinkage of estimates, whilst Bayes B 

performs differential shrinkage and does variable selection in addition to the regularization 

procedure. New implementations of the spike-slab model (Mitchell and Beauchamp, 1988), 

which is equivalent to a wide class of Bayesian methods called the Bayes C, have been pro-

posed recently (Zhou et al., 2013; Goodfellow et al., 2013; Hernández-Lobato et al., 2013).  

In Bayes C, a two-point mixture distribution made up of a flat distribution and a distribution 

concentrated around zero, is assigned as a prior distribution of marker effects. Using this 

type of prior induces variable selection. Bayesian Lasso or Bayes L, proposed by Park and 

Casella (2008) presents an analogue to LASSO regression mentioned above. In contrast to 

the non-Bayesian version, it does not remove markers from the model; rather markers with 

small effects are regularized even stronger. In Bayes R, proposed by Erbe et al. (2012), a 

four component mixture distribution is assigned as a prior distribution of marker effects. In 

addition to the prior beliefs about the distribution of marker effects, an a priori assumption on 

genetic variance is made that leads to an improvement in predictive ability. The key aspect 

here is the usage of prior knowledge, gained from prior cross-validation study, for setting the 

prior genetic variance parameter. 

In all Bayesian settings, the impact of prior distribution decreases with the growing 

sample size (Gianola, 2013) but for small samples the choice of prior is crucial for the per-

formance of the model (Lehermeier et al., 2013). The estimates of unknown 

hyperparameters as well as the estimates of marker effects in all Bayesian approaches are 

sampled from a posteriori distribution, achieved in a sampling procedure. Some of the widely 

used Markov chain Monte Carlo (MCMC) methods are the Gibbs sampler (George and 

McCulloch, 1993) and Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) sampling 

algorithms. 
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Non-parametric methods 

Predictive functions are used in machine learning techniques to obtain genomic pre-

dictions. Such predictive functions result from a training process that is based on a 

generalization algorithm. The training set consists of phenotype and genotype records and is 

used to predict the phenotype of a new individual not included to the training set. In contrast 

to additive models described above, non-parametric methods provide an opportunity to  

capture both, additive as well as non-additive effects.  

For instance, in RKHS regression the effects are described by a real valued function 

of genotypes and a kernel defines an a priori correlation structure of outputs of this function. 

The choice of kernel is crucial for the performance of the model. In case a Gaussian kernel is 

chosen, RKHS regression is equivalent to the ridge regression and consequently equivalent 

to GBLUP method (de los Campos et al., 2010). An advantage of using RKHS method is the 

reduction of dimensionality from number of SNPs to the sample size, this method then mod-

els genetic values assigned to the individuals in the sample.  

A neural network (NN) (Hastie et al., 2005; Ehret et al., 2014) is made up of compo-

nents that are called layers in the context of NN: the input layer containing the genotype 

records, the output layer containing the phenotypes and hidden layers in-between them both. 

NN is as a system of interconnected neurons or nodes, where in the hidden layers at each 

node the inputs, weighted by connection specific constants are summed up. Thus hidden 

layers can be understood as a system of weighted paths between the inputs and outputs. 

Predictions performed using NN are based on predictive functions, which might be ex-

pressed analytically or result from approximation processes. NN can be viewed as a non-

linear regression model that is trained using Markov Chain Monte Carlo methods.  

The support vector machine (SVM) (Cortes and Vapnik, 1995; Long et al., 2011) is an 

algorithm developed from statistical learning theory that can be used for estimating unknown 

regression coefficients or unknown maker effects in context of quantitative genetics. Applying 

SVM regression, the relationship between the observed phenotypes and genotypes can be 

mapped using linear as well as the non-linear mapping functions. The regularization parame-

ter, which penalizes the complexity of the model, and the choice of loss function as a 

measure of quality of estimates defines the SVM model.  

A guide over this thesis 

Scale problems are omnipresent in quantitative genetic analysis; different scales in 

relatedness among individuals in the data set, different marker densities or different numbers 

of markers – from the single marker to the whole genome data - used as input in a genomic 
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model can have an impact on the performance of genomic models. In particular, the rapid 

development of molecular genetics, especially of high throughput sequencing and genotyp-

ing techniques, gives us a large amount of genotypes. Scale related problems arise with 

growing data sizes and the computational ability of classical approaches reaches its limits.  

A crucial point is whether the methods, which perform well in low-density data sets, will main-

tain the quality of estimation and prediction when applied to a high-density data set. 

This study aims at investigating the impact of different scales in genomic data as well 

as different scales in the input data of widely used methods on the precision of estimates of 

genomic effects and on the accuracy of genomic predictions.  

Chapter 2 reports the impact of multicollinearity on the performance of three  

different models: single marker regression, multiple marker regression and linear mixed 

model. A detailed insight into the nature of the problem is provided, and the conse-

quences of variation in the amount of LD on effect estimates at each single SNP are 

investigated. For this reason, a technique to simulate genotype data with a pre-defined 

LD structure is developed and compared with other approaches so as to assess the reliabil-

ity of generated LD structure. 

Chapter 3 deals with comparison of the accuracy of predictions in unrelated individu-

als, obtained from different statistical methods: GBLUP, Bayes A and a new implementation 

of the spike-slab model. Extensive simulations are designed to assess the effects of im-

portant factors such as the extent of LD between markers and QTL and trait complexity on 

prediction accuracy. Additionally, a real data analysis comparing the predictive performance 

of different methods on human height is performed.  

Chapter 4 introduces a new method for comparison of LD in different genomic re-

gions. This method enables us to control the differences in minor allele frequencies as well 

as the differences in spatial structures of genomic regions under comparison, thus a scale 

corrected comparison is performed. Further, an upper limit for squared correlation is 

achieved using known allele frequencies and boundaries for gametic frequencies, derived 

using the Fréchet-Hoeffding bounds. This upper limit is needed for construction of a MAF 

independent measure of LD. This method is used for the investigation of differences in mag-

nitude of the LD between genic and non-genic regions. A significantly higher LD level is 

detected in genic regions compared to non-genic regions in all considered data sets: in  

human, animals (chicken) and plants (Arabidopsis thaliana).  

In Chapter 5 comprises a general discussion on the impact of different marker densi-

ties and methods chosen on scales.  
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Introduction 

 

Due to rapid development of gene sequencing methods, a huge amount of genomic 

data is now available, accompanied by lower genotyping costs: for example, the Next-

Generation Sequencing technology allows the production of millions of DNA sequence reads 

in a single run. In animal breeding, until a few years ago, genomic data containing a few 

hundred microsatellites or low-density SNP-chips with about 3.000 markers were used 

(Beuzen et al., 2000) and were subsequently replaced by SNP-chips with about 54.000 

markers. Currently, high density SNP-chips comprising approximately between 600.000 and 

2 million SNPs, respectively, are used in in animal breeding and in human genetics, not to 

mention the growing number of sequence data sets across these and other species. This 

explosion of information leads to the question whether the performance of genomic models 

will change given the increase in marker density. High-density data provided by modern 

methods of high throughput sequencing or genotyping are characterized by a high degree of 

non-random association between the markers (de los Campos at al., 2009). This association 

is known as linkage disequilibrium (LD) and can be interpreted as a measure of correlation 

between pairs of loci.  

Modeling the relationship between the available genomic information and phenotypes 

of interest is one of the most important aspects of quantitative genetics. In animal breeding, a 

response or target variable, such as milk yield, fat percentage or the widely used breeding 

value, is described using a set of predictors. In genomics, these predictors are represented 

using molecular markers, usually SNPs. Multiple regression methods are powerful tools used 

for gaining quantitative insights into genetic research as long as the assumptions and limita-

tions of those methods are understood and recognized. One of the main assumptions is the 

independence of predictors, which is very hard to hold in practice given the redundancy of 

information from correlated predictors. This problem, called multicollinearity, is well-known in 

many scientific fields (Gunst and Webster, 1975; Kockläuner, 1984; Graham, 2003; Tu et al., 

2005; Wheeler and Tiefelsdorf, 2005). Lack of awareness of this fact can lead to wrong re-

sults; for instance, the estimated parameters are often of incorrect magnitude or sign. Most of 

the methods that deal with this multicollinearity problem are two-step procedures that include 

a diagnostic step and various ad hoc procedures. For instance, Slinker and Glantz (1985) 

discussed experimental designs that would minimize the extent of multicollinearity in the 

analysis of physiological data, Mason and Brown (1975) investigated the bias caused by  

multicollinearity upon performing ridge regression (RR) on sociological data, and Ofir and 

Khuri (1986) addressed the subject of handling multicollinearity in marketing data. However, 

all of these approaches used small data sets with few predictors and cannot be directly ap-
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plied to the problems in quantitative genetics where the number of predictors is in several 

hundreds of thousands.  

To develop approaches that resolve the problem of multicollinearity in quantitative 

genetics, the initial step is to understand whether methods that work reliably with low density 

SNP data give trustworthy results with high-density SNP data. Hence, this study investigates 

the impact of multicollinearity on the performance of linear models used in quantitative  

genetics. One of the major aims is to provide sufficiently detailed insight into the pattern and 

severity of consequences on the marker effect estimates caused by multicollinearity in  

genomic data. Impact of different levels of LD on each SNP effect estimate was investigated 

using three different models: Single Marker Regression (SMR), Multiple Marker Regression 

(MMR) and Linear Mixed Model (LMM).  

Material and Methods 

 

Linear Models 

How the genomic information (in our study, SNP data) is used in the estimation of 

marker effects and prediction depends on the choice of a model. For example, candidate 

gene approaches, which utilize only a pre-specified part of the genome, are based on 

knowledge from previous studies about the particular trait and are widely used in human  

genetics. For Mendelian traits with a simple genetic architecture (where genetic variance is 

explained by a small number of variants), such approaches are the method of choice.  

However, most productive traits (e.g. meat and milk yield) are not influenced by a small sub-

set of variants, rather a large number of genomic variants with moderate and small effects 

(Robertson, 1967). In practice, lack of knowledge about the genetic architecture of the  

majority of traits coerces us to use an infinitesimal model, which is based on the assumption 

that an infinitesimal number of small effects are widespread across the genome. The SNPs 

are coded as 0, 1, or 2, according to the number of minor alleles at each locus, which corre-

sponds to the additive modelling of marker effects. 

In our studies three common linear statistical models are compared: Single Marker 

Regression (SMR), Multiple Marker Regression (MMR) and Linear Mixed Model (LMM).  

Single Marker Regression  

Generally, in a linear model a response Y  is explained as a linear combination of 

predictors (or functions of them) and an error term containing unused or unknown information 

that is not included in the model as well as the remaining random effects on Y . In an SMR 
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model (Grapes et al., 2004), the response (in genetic context often a phenotype or trait) is 

individually fit against each SNP while the unknown marker effects are assumed to be fixed. 

For a specific SNP data set consisting of p  SNPs, p  different linear equations for the same 

n -dimensional vector of phenotypes Y  can be formed:  

ppp εβXY

εβXY






111

, for pj ,...,1 ,    (1) 

where a 2n  design matrix 
jX

 

contains, for all n  individuals, a vector of ones and  

genotype readings 
jZ for the 

thj
 

SNP, ),(~ jj N V0ε  is a vector of errors in each model and 

jβ  contains the population mean and effect of 
thj

 

SNP. A nn  matrix jV  is the residual 

variance-covariance matrix )(Var YV j  in the model for 
thj

 

SNP, which is also the pheno-

typic variance-covariance, since the effects are assumed to be fixed in SMR. The marker 

effect at the current SNP is estimated for each equation, independent of the results for the 

rest of SNPs. The information contained at other markers is aggregated into the error term; 

thus predictions from an SMR-model are not usually exact and just give a basic idea about 

the genetic effects. 

The impact of association between the markers on the precision of estimates can be 

comprehended using a simple example for 2p . In this case we would have two linear 

equations to describe the relationship between the vector of phenotypes and markers 1 and 

2 separately: 
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or in matrix notation 

111 εβXY   and 222 εβXY  . 

The effect of the 1st SNP is 11  and effect of the 2nd SNP is 12 ; the population mean, esti-

mated in each model, will have different estimates: 01̂  and 02̂  from models at SNPs 1 and 

2, respectively.  
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The fixed SNP-effects p111 ,,    are estimated by using the unbiased Generalized 

Least Squares (GLS) estimator, under the model assumption that it is the Best Linear Unbi-

ased Estimator (BLUE) (Henderson, 1984):  

  YVXXVX'β 1

1

1

'

1

1

1

'

1

1

11011 )ˆ,ˆ(ˆ         

            (2) 

  YVXXVX'β
'' 111

10 )ˆ,ˆ(ˆ  pppppppp  .     

This estimates are unbiased, jjE ββ )ˆ( .  

For evaluation of the performance of SMR, the correlation between the estimates of 

marker effects from different equations )ˆˆ(Cor 11 kj β,β  for pkj ,,1,  , can be calculated, 

using the covariance matrix of both estimates )ˆ,ˆ(Cov kj ββ . The variance-covariance matri-

ces )ˆ(Var jβ  estimates can be derived analytically, using the assumptions of the SMR-

model. For detailed derivation see Appendix A1.1. 

In Multiple Marker Regression (Cohen, 1968; Kearsey and Farquhar, 1998; Meu-

wissen et al., 2001 ), similar to SMR-Model, the unknown marker effects are assumed to be 

fixed, but in contrast to the SMR-Model, all SNPs are included into one linear equation: 

εXβY  , where the design matrix X  contains a vector of ones and genotype readings of 

all SNPs, β  is the vector of SNP effects: 
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The estimation of all SNP effects is done simultaneously and prediction makes use of the 

complete genomic information, thus errors in estimates and prediction in the MMR-model are 

expected to be lower than in the SMR-model.  

Both models SMR and MMR assume genomic effects to be fixed and both have  

similar model assumptions: residuals ),(~ V0ε N  and ),(~ jj N V0ε  are normally distribut-

ed. The residual variance-covariance matrices nIV
2  and njj IV

2  are assumed to be 
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diagonal matrices with identical 
2  and 

2

j on the diagonals, respectively. In the analysis of 

real data sets the unknown variance components 
2  and 

2

j  should be estimated from the 

data (mostly using maximum-likelihood procedures), while in the simulation studies we 

choose the magnitude of variance components. A further assumption is that design matrices 

jX  and X  are non-stochastic and non-singular, meaning the determinants 0' jj XX  and 

0' XX . Note, if some of the predictors are in perfect LD (or in mathematical terms in  

perfect collinearity), the rank of design matrix X  will be smaller than p and the determinant 

of XX'  will be equal to zero.   

Furthermore, a strong limitation of the MMR model is the restriction of the number of 

explanatory variables – in our case number of genomic markers p –  which must not exceed 

the number of individuals n. Nowadays, the genomic data sets are often very large, thus 

large-p-small-n problem ( np  ) is omnipresent in genomic analysis. In case the number of 

predictors p exceeds the number of observations n, this assumption is violated, a unique  

solution could not be obtained in this situation.  

Under the MMR model assumptions, the marker effects β  can be estimated by using 

BLUE 

   YVXXVXβ
111

10 '')'ˆ,,ˆ,ˆ(ˆ  p  .    (4) 

The expectation of these estimates is the vector of true effects ββ )ˆ(E  and the variance of 

estimates can be computed analytically, as long as the phenotypic variance-covariance ma-

trix V  is known:   11')ˆ(Var
 XVXβ . For fixed effects, the variance-covariance matrix of 

the error in estimates ββ ˆ  is equal to the variance-covariance of estimates itself, i.e. 

)ˆ(Var)ˆ(Var βββ  . For comparisons with other linear models the correlation matrix 

)ˆ(Cor β  was also calculated. For detailed derivation see Appendix A1.2. 

A Linear Mixed Model (Henderson, 1984) provides possibilities to model fixed  

effects as well as random genomic effects simultaneously:  
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or in matrix notation: 

   εZuXβY 
effects randomeffects fixed

,  

where β  contains fixed effects and X  is the corresponding design matrix of fixed effects and 

random marker effects are contained in vector u  and corresponding genotypes are contained 

in a pn  matrix Z .  

Application of LMM to genomic data opens up the opportunity to account for various 

confounding factors, such as genetic relatedness, population structure or familial related-

ness. For simplicity reasons just the population mean is modeled as fixed effects. Thus, in 

our studies, vector of fixed effects in LMM β  is one-dimensional. However it is possible 

to include more fixed covariates like age, gender, herd or time into the analysis.  

The assumptions of the LMM are following:  

 Variance matrices of random effects IGu
2)(Var u  

 

and for the error term 

IRε
2)(Var   are known.  

 Residuals ),(~ R0ε N  and marker effects ),(~ G0u N  follow normal distributions 

and are stochastically independent.  

Using these assumptions, the phenotypic variance matrix 
nnR  VY :)(Var can be derived 

analytically from the model: RZGZ'V  .  

While the fixed effects β  can be estimated by using BLUE:   YVXXVXβ
111 ''ˆ   

with expectation ββ )ˆ(E  and variance   11')ˆ(Var
 XVXβ  (e.g. Henderson, 1984), ran-

dom effects in the LMM can be predicted by using the Best Linear Unbiased Predictor 

(BLUP) (Henderson, 1953): 

QYVGZ'u 1ˆ  , with   111 '':  VXXVXXIQ    (6) 

Expectation of random marker effects u  and of its prediction û  is equal to zero and the  

variance-covariance matrix of predictions is of the form QZGVGZ'u 1)ˆ(Var   and is equal 

to the covariance between the true random marker effects and their predictions ),ˆ(Cov uu .  

In case number of parameters is large, BLUP can still be used instead of BLUE if there are 

indications for fixed SNP effects. Furthermore, BLUP is able to capture the relatedness in 

sample and improve in that way the accuracy of prediction (Piepho et al., 2008). 
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Applying these results, the variance-covariance of the difference uuˆ  between the 

true and predicted random effects QZGVGZ'Guu 1)ˆ(Var  , the covariance

0)ˆ,ˆ(Cov  uuu  between the random effects, prediction û , predictive error uuˆ , and the 

corresponding correlation matrices were derived. For detailed derivation see Appendix A1.3. 

Note, that the design matrices X  in SMR, MMR and LMM are different. 

 

Evaluation of performance of SMR, MMR and LMM in estimations and predic-

tions  

To quantify the impact of LD on effect estimates at each individual SNP, correlations 

)ˆ,ˆ(Cor 1 jββ  in SMR and )ˆ(Cor β  in MMR, and )ˆ(Cor uu   and )ˆ(Cor u  in LMM were applied. 

Correlation matrixes corresponding to the variance-covariance matrices in all models were 

obtained by standardizing the covariance by square root of product of the appropriate vari-

ances. 

The correlation between predicted and true phenotype )ˆ(Cor YY,  and the mean 

squared error  
2

1

1 ˆMSE  


n

i iin
YY  was used to evaluate the goodness of fit of considered 

models. 

 

Simulation of Genomic Data with a predefined LD structure  

To compare all three models introduced above we used simulations. A SNP data set 

with a predefined LD structure was required to investigate the impact of association between 

the SNPs on the estimates and prediction in different statistical models. The SNPs were 

generated for different values of minor allele frequency (MAF): MAFs were varied in steps of 

0.05 in the range from 05.0p  to 5.0p . For each combination of parameters we gener-

ated a data set Z of 100.000 independent individuals with a 15-SNP sequence per individual.  

The genotypes were generated so that LD estimates (measured in 2r ) between the 

first SNP and SNPs 2 to 15 were fixed; so that the highest LD was between the first and  

second SNP whereas the lowest LD was between the first and last (15th) SNP. 

The simulation of genomic data in our study was performed by using a method, based 

on interpretation of random uniformly distributed variable as a gamete. For a given squared 
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correlation between two loci ( 2r
 

) and known minor allele frequencies ( 1p  and 2p ) the  

resulting disequilibrium coefficient becomes   )1()1(,, 2211

22

21 pppprrppD  , which 

was used to generate genotypes in pre-defined LD. Further, a representation of gametic  

frequencies using a uniformly distributed random variable on a unit interval leads to the 

needed genotypes with a fixed degree of association  2

21 ,, rppD . In this way we generate 

two loci that are in pre-defined LD by using independent uniformly distributed random varia-

bles. We extend this method for more than 2 SNPs by shifting the limits on the unit interval. 

This method has been demonstrated as most reliable of four considered methods. 

To be sure that the desired LD structure was imparted to the simulated data, four dif-

ferent methods for generating SNP data were tested. Detailed description of all four 

simulation methods as well as the performance (in terms of correlation structure of generated 

SNPs) of simulation methods mentioned above is given in Appendix A2.1-A2.4. The methods 

for generating correlated genotypes were compared for their precision in reproducing the 

given correlation structure in simulated marker data sets.  

Simulation of Phenotypes 

The next step was to construct the phenotypes for comparisons of linear regression 

models. Two different true effect models were considered for the construction of phenotypes: 

a random homoscedastic (the variances 
2

j  at different SNPs are equal) true model (RAND) 

and a fixed true model (FIX). A heteroscedastic (variance components 
2

j  may vary across 

different loci) random model was also applied for the purpose of sensitivity analysis. Results 

of comparisons using this true model do not differ very much from RAND-scenarios. 

Random true model: Assuming that the SNP effects were random, we chose LMM 

as the true model. Using the R-package mvtnorm (Genz et al., 2014), a normally distributed 

vector of effects term ),(~ G0u N  and an independent vector of random errors ),(~ R0ε N  

were generated, where 15

2
IG u  

 

and 500

2
IR   are the variance-covariance matrices of 

SNP effects and error term, respectively. We added to the random effect at SNP 5 a value of 

1 . Finally we set fixed effect to 1 β , so that vector of phenotypes εZuXβY   

and its variance-covariance matrix RZGZ'VY )(Var  could be derived from the LMM 

according to equation (5).  

Fixed true model: In FIX-scenario the SNP-effects were assumed to be fixed, there-

fore MMR was stated as the true model. All marker effects were set to zero, except the effect 

at the SNP 5, which was set to 1 . Assuming a population mean 1 , vector of true 
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marker effects becomes   151'0,,0,1,0,0,0,0,1  Rβ . According to equation (3), vector of 

phenotypes εXβY   was constructed as a sum of the product of design matrix X  and the 

vector of true effects β , and the normally distributed vector of errors ),(~ V0ε N .  

For all scenarios, variance components were calculated based on the heritability: we 

chose 2

u  and 2

  so that heritability 
22

2
2








u

uh  took different values of 3.0 , 5.0  and 7.0

. In each simulation loop a sample of genotypes Z  of size 500n  was taken from the gen-

erated data set Z and phenotypes were calculated according to the true models. Then we 

estimated β  and u , the variance-covariance matrix of predictor )ˆ(Var u  and that of errors in 

prediction )ˆ(Var uu   in LMM, variance-covariance matrix of estimates )ˆ(Var β  in MMR, the 

covariance between the estimates of marker effects )ˆ,ˆ(Cov 1 jββ  for pj ,,1  in SMR, as 

well as the corresponding correlation matrices. Empirical sampling variance-covariance and 

correlation matrices for estimates β̂ , jβ1
ˆ  and predictions û  and %95  confidence intervals 

are obtained from 2500simn  repetitions (see in appendix A3) and compared with variance-

covariance and correlation matrices expected in each model.  

Statistical analysis as well as generation of genotype and phenotype data were  

performed using R (R Core Team, 2014). For generating multivariate normal distributed vec-

tors in normal-truncated method the R-package mvtnorm (Genz et al., 2014) was used and 

for creating genotypes in copula-based method the R-package copula (Hofert et al., 2014) 

was used. 

Results and Discussion 

 

Impact of LD on estimates and predictions of marker effects in different models 

In all considered models and across all scenarios, a clear impact of the amount of LD 

between the loci on precision of estimates of marker effects at each single locus was  

observed. The results achieved in a RAND scenario with heritability of 5.02 h  and 

05.0MAF  at all loci are represented in Figure 2.1.  
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Figure 2.1. Boxplots of correlation between estimates and between predictions of 

marker effects, achieved from SMR, MMR and LMM in the RAND scenario with 

05.0MAF  and heritability 5.02 h . The correlation coefficients between the estimates 

)ˆ,ˆ(Cor 1 jββ  in SMR and MMR, and correlation coefficients between the predictors 

)ˆ,ˆ(Cor 1 juu and errors in predictions )ˆ,ˆ(Cor 11 jj uuuu   in LMM at 1st locus and at jth locus, 

15,,2j  are plotted against the corresponding amount of LD denoted by 2r . 

In all models, no impact of LD was detected on the estimates and predictions of 

marker effects, as long as amount of LD did not exceed the level of 7.02 r . Depending on 

the model, LD higher than a model specific limit value had a noticeable effect on estimates 

and predictions and led to a decrease in their precision. The correlation between the  

estimates in SMR )ˆ,ˆ(Cor 1 jββ  and between the predictions in LMM )ˆ,ˆ(Cor 1 juu  on average 

took values of about 0.1 and seemed to capture LD structure in the data when the LD level 

exceeded 6.02 r . The correlation in MMR )ˆ,ˆ(Cor 1 jββ , which reflect errors in estimates, as 

well as the correlation of predictive errors )ˆ,ˆ(Cor 11 jj uuuu   in LMM turned negative as 

soon as the threshold of harmful LD level was exceeded. The negative correlation in errors of 

estimation and prediction indicate that the overestimation at one locus will be followed by 

underestimation at the second locus and vice versa. The thresholds for harmful LD levels 

were different in both multi-locus methods: in LMM the influence of collinearity between the 

loci was noted for 6.02 r , while in the MMR model this influence was observed when the 
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value of 8.02 r  was reached. While in the MMR model %95  of the correlation coefficients 

were situated between 03.0  and 18.0 , in the LMM about %95  of the correlation coeffi-

cients were observed between 25.0  and 8.0 .  

The correlations between estimates or predictions of marker effects, visualized in  

Figure 2.1, were derived based on assumptions in each model, discussed in Material and 

Methods section, and on utilization of the known phenotypic variances and its components 

(residual and random effects variances). Figure 2.2 displays the same boxplots as in Figure 

2.1 with the sample correlation coefficient and its confidence intervals drawn in addition.  

 

Figure 2.2. Boxplots of correlation between estimates and between predictions of 

marker effects, achieved from SMR, MMR and LMM and the sample correlation coeffi-

cients with corresponding 95 % confidence intervals. The correlation coefficients 

between the estimates )ˆ,ˆ(Cor 1 jββ  in SMR and MMR, and correlation coefficients between 

the predictors )ˆ,ˆ(Cor 1 juu  and errors in predictions )ˆ,ˆ(Cor 11 jj uuuu   in LMM at 1st locus 

and at jth locus, 15,,2j  are plotted against the corresponding amount of LD denoted by 

2r . Results are achieved in the RAND scenario with 05.0MAF  and heritability 5.02 h . 

The sample correlation coefficients and corresponding %95  confidence intervals are drawn 

in green. 
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The sample correlation coefficient and corresponding %95  confidence intervals are calcu-

lates using samples from 500,2simn  repetitions and known true marker effects (calculation 

procedure and more details in Appendix A2). In all regression models, the expected correla-

tion coefficients were confirmed by the empirical ones. For all models, the sample correlation 

coefficient was clearly scattered around zero and without exception, zero was included into 

the confidence intervals for all pairs of SNPs with values of 8.02 r .  

One of the parameters varied across the scenarios was the minor allele frequency, 

because MAF was expected to affect the severity of consequences of LD. Figures 2.1 and 

2.2 pertain to the simulation scenarios with MAF fixed at 0.05, whilst in our studies different  

scenarios with MAF increasing in steps of 0.05 from 0.05 to 0.5 were performed. In Figure 

2.3, results for MMR and LMM for scenarios with two extreme MAF values and heritability 

5.02 h  are shown, which are representative for the trends observed across all models and 

scenarios.  

 

Figure 2.3. Boxplots of correlation between estimates and between predictions of 

marker effects, achieved from MMR and LMM in the RAND scenario with heritability 

5.02 h  for 05.0MAF  and 5.0MAF . The correlation coefficients between the esti-

mates )ˆ,ˆ(Cor 1 jββ  in MMR, and correlation coefficients between the errors in predictions 

)ˆ,ˆ(Cor 11 jj uuuu   in LMM at 1st locus and at jth locus, 15,,2j  are plotted against the 

corresponding amount of LD denoted by 2r . 
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The extent of LD influenced the precision of estimates much more strongly in the  

lower MAF scenarios in all three models; also the threshold for the extent of harmful LD  

increased with increasing MAF. The %95  of correlation coefficients between the estimates 

from MMR were observed between 03.0  and 18.0  when MAFs were fixed at 0.05, while 

this interval shrunk to  035.0,01.0   when MAFs were fixed at 0.5. Same trends were  

observed also in the SMR model. While the impact of allele frequencies was less pro-

nounced in the LMM, the influence of LD on estimates was still high for common variants 

when MAFs were equal to 0.5, and %95  of correlations of predictive errors at two loci 

)ˆ,ˆ(Cor 11 jj uuuu   took values from 42.0  to 67.0 . However, for common variants, the 

threshold for harmful LD shifted to 8.02 r  in LMM and the intensity of dispersion was  

clearly lower than that when MAF=0.05. 

Another factor which may influence extent of losses in precision of effect estimates 

caused by multicollinearity in the data, is the heritability of the trait. We considered three  

different scenarios for heritability  7.0,5.0,3.02 h . In Figure 2.4, comparison of results for 

all values of heritability and MAF=0.05 is shown. In both regression models that assume the 

marker effects to be fixed - the SMR and MMR models - traits with higher heritability were 

less affected by the multicollinearity between the regressors. In MMR, the correlation 

between the estimators decreased with increasing heritability: for a trait with heritability of 

3.02 h , %95  of correlations between errors of estimates are located between 05.0  and 

35.0  with a mean at 18.0  (central panel of Figure 2.4, left), whereas for a trait with much 

higher heritability of 7.02 h , the correlations were observed between 005.0  and 09.0  

with a mean at 04.0  (central panel of Figure 2.4, right). Analogous results were observed 

in the SMR. In contrast to the MMR model, the correlation between the errors in prediction 

from the LMM model were not affected by the different heritabilities of the traits and remained 

at a high level: about 50% of correlation coefficients were situated between 4.0  and 6.0 . 
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Figure 2.4: Boxplots of correlation between errors in estimates and between predic-

tions of marker effects for different values of heritability. The correlation between errors 

in estimates )ˆ,ˆ(Cor 1 jββ  from SMR are shown in the upper panel and )ˆ,ˆ(Cor 1 jββ  from MMR 

in the central panel, in lower panel the correlations between predictive errors 

)ˆ,ˆ(Cor 11 jj uuuu   in LMM are presented. All results are achieved in a RAND scenario with 

05.0MAF  and values of heritability 3.02 h  (left), 5.02 h  (center) and 7.02 h  (right). 

)ˆ,ˆ(Cor 1 jββ and )ˆ,ˆ(Cor 11 jj uuuu   at 1st locus and at jth locus, 15,,2j  are plotted 

against the corresponding amount of LD denoted by 2r . 
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Until now only results from simulation studies based on RAND scenario were 

reported. In Figure 2.5 results based on RAND or on FIX scenarios are introduced.  

 

Figure 2.5. RAND versus FIX scenarios: boxplots of correlation between estimates of 

marker effects and error in predictions of marker effects from LMM, with heritability 

5.02 h  for 05.0MAF . The correlation between errors in estimates )ˆ,ˆ(Cor 1 jββ  from 

SMR are shown in the upper panel and )ˆ,ˆ(Cor 1 jββ  from MMR in the central panel, in lower 

panel the correlation between predictive errors )ˆ,ˆ(Cor 11 jj uuuu   in LMM are presented. 

)ˆ,ˆ(Cor 1 jββ and )ˆ,ˆ(Cor 11 jj uuuu   at 1st locus and at jth locus, 15,,2j  are plotted 

against the corresponding amount of LD denoted by 2r .  
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The scenario with MAF=0.05 and 5.02 h  was chosen as representative given that 

in other scenarios with different values of heritability or MAF the same trends were observed: 

no perceptible effect of a chosen true model on the performance of considered models was 

detected either in model derived correlations of estimates and predictions or in sample  

correlation coefficients 

Impact of LD amount in data on goodness of fit in different models 

In the interest of completeness, the potential impact of LD between the loci on 

goodness of fit of all three models under different simulation scenarios was investigated.  

In Figure 2.6 the MSE of predictions under a heritability 5.02 h  are plotted against MAF, 

the MSE in RAND scenario is illustrated in the upper panel, whilst MSE in FIX scenario is 

shown in the lower panel.  

 

Figure 2.6. Boxplots of MSE in RAND (upper panel) versus FIX (lower panel) true mod-

els. MSE was plotted against the MAF for SMR (left diagrams), for MMR (central diagrams) 

and for LMM (right diagrams). Scenarios with heritability 5.02 h  were considered.  

Obviously, allele frequency of markers had a strong impact on goodness of fit of all 

considered models: the MSE is smaller for infrequent variants compared to the MSE for 

common variants. While the magnitude of MSE in LMM and MMR models is comparable. 

The choice of the true model had an impact on goodness of fit of all regression models;  
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with fixed true effects up to two times higher MSE was measured across compared models 

and MAFs, in comparison to random true effects. 

Also, the dependence of MSE on heritability of a trait was investigated, which is illustrated in 

Figure 2.7 on behalf of an example of MMR as representative for all three models.  

 

Figure 2.7. Boxplots of MSE obtained from in RAND scenario in a MMR model, plotted 

against the MAF for heritability 3.02 h  (left), 5.02 h  (center) and 7.02 h (right).  

All three models showed similar trends for MSE in dependence on different MAFs, accompa-

nied by different absolute values of MSE across the range of MAFs. Obviously, the goodness 

of fit of all models is strongly influenced by the heritability of the trait: the higher the  

heritability of the trait, the smaller the MSE of predictions Ŷ . The goodness of fit improved in 

all compared models if the heritability of the trait was greater, however this effect was less 

pronounced in the SMR model compared to LMM and MMR models. 

Finally, the correlation between the true and predicted phenotype was investigated. 

The )ˆ,( YYCor , plotted against the MAF, for scenarios with heritability of the trait fixed to 0.5 

across models is represented in Figure 2.8 for RAND scenarios (upper panel) and FIX sce-

narios (lower panel). No differences between the RAND and FIX scenarios were observed in 

the SMR model: the SMR performed poorly, in contrast to comparable goodness of fit in 

LMM and MMR models. The whole genome models MMR and LMM showed small differ-

ences for MAFs up to a value of 0.2, for more frequent variants with MAF greater than 0.2 no 

differences in goodness of fit between RAND and FIX scenarios were detected.  
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Figure 2.8. Boxplots of correlation between true and predicted phenotypes in RAND 

(upper panel) versus FIX (lower panel) scenarios. MSE was plotted against the MAF for 

SMR (left diagrams), for MMR (central diagrams) and for LMM (right diagrams). Scenarios 

with heritability 5.02 h  were considered.  

Finally, the impact of different levels of heritability of the trait on correlation between 

true and predicted phenotype was considered. In Figure 2.9, the correlations )ˆ,( YYCor  for 

LMM at different values of heritability are plotted against the MAFs. The higher heritability 

had a positive effect on the goodness of fit and also minimized the dispersion of correlation 

coefficients: for heritability of 3.02 h  the %95  of correlations )ˆ,( YYCor  are observed from 

0.3 to 0.98, while for 5.02 h  this interval shrunk to 0.75 - 0.99.  
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Figure 2.9. Boxplots of correlation between the predicted and true phenotype obtained 

from LMM in RAND scenario, plotted against the MAF for heritability 3.02 h  (left), 

5.02 h  (center) and 7.02 h (right).  

The instability of estimations due to the degree of multicollinearity detected in the  

present study and consequently the integrity of estimated genomic models is a serious issue. 

The results of this simulation study suggest that the multiple marker regression model was 

more robust against the multicollinearity in the data, and marker effect estimates from MMR 

were less affected by increased LD than those from the LMM. Also in comparison to SMR, 

MMR provided more reliable estimates and the threshold of harmful LD level between the 

loci was much lower.  

This led to the conclusion that the MMR is a better approach to estimate the marker 

effects and consequently to map the quantitative trait loci (QTL). The main limitation of MMR 

that inhibited its application as a QTL mapping tool, is the restriction that the number of  

explanatory variables must be smaller than the sample size. 

Limitations of simulated genotype data 

The simulation method of our choice does have some minor limitations. In reality,  

minor allele frequencies aren’t the same at all loci. This assumption was made since a large 

impact of differences in MAFs on measures of LD will complicate the assignment of observed 

effects on estimates only to the association between the loci. Furthermore, it is well-known 

that MAF, especially the difference in MAFs, strongly influences the range of achievable LD. 

In our preliminary studies, a two-locus model was considered and also a scenario with differ-

ent MAF at both loci. No general difference was observed in comparison to scenarios with 

the same MAF at both loci, until the whole spectrum of 2r was not available. Another disad-

vantage of chosen simulation method is the unrealistic structure of the data: the wanted 

correlation structure between the markers is obtained by shifting the   parameter, so that 

genotypes at each individual are increasing (e.g. 0 0 0 0 0 1 1 1 1 1 2) or decreasing  
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(e.g. 2 2 2 1 1 0 0 0 0 0 0). This prompted us initially to look for a method for creating  

SNP-data that captures the pre-defined correlation structure and has a more realistic  

appearance of the genotypes. However, all other considered simulation methods showed 

less reliable results and did not capture LD structure as well as the method based on defini-

tion of gametic disequilibrium. Thus, we decided to use a method with less realistic 

appearance of genotypes, but with exactly reproduced LD structure. 

Implications 

While the rapid development of molecular genetics has resulted in high density ge-

nomic data, this is accompanied by methodological and computational difficulties associated 

with handling this amount of information. The other issue with high dimensionality of genomic 

data is multicollinearity, which plays a significant role in the performance of estimators of 

marker effects. The eigenvalues of the genotype matrix provide the possibility of not only 

detecting but also addressing the magnitude of multicollinearity in the real data sets. For in-

stance, the influence of multicollinearity in MMR can be examined by using eigenvalues or a 

ratio of eigenvalues, so-called condition numbers, of XX'  or XVX'
1

 (Wang et al., 1990). 

Several historical approaches, such as variable selection or principal components regression 

have been proposed to minimize and overcome the multicollinearity in the data. Methods 

aimed at reducing the model complexity could be summarized so as to help make a decision 

about which markers should be kept in the model. Therefore, there is a need to have a statis-

tical method which guarantees reliable effect estimates and predictions independent of the 

amount of multicollinearity present without ad-hoc adjusting.  

MMR has been shown to be a better approach than the SMR, which is a classical 

method for genome wide association studies (GWAS), as well as the LMM, which is often 

used for predictions for new individuals but not for QTL mapping. 

The main problem with applying MMR as a QTL mapping tool is the assumption 

np  . In most cases, this assumption cannot be fulfilled in a quantitative genetic context, 

where the data extends to several hundred thousands of markers and sample sizes of no 

more than a few thousand individuals. This so-called large-p-small-n problem and proposals 

for solutions are discussed by Ishwaran and Rao (2014). However, methods like ridge  

regression suggested by Hoerl and Kennard (1976), LASSO proposed by Tibshirani (1996) 

and hybrids of both like elastic net (Zou and Hastie, 2005) are able to cope with the multicol-

linearity problem and can be the method of choice for QTL mapping using the whole genome 

approach. However, further studies are needed to establish which of these methods is the 

most reliable.  
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It should be noted that the performance of estimators and predictors in linear  

regression models was examined only by using simulated data. The results of our studies 

indicate a strong impact of LD between the markers on predictions of random marker effects 

in linear mixed model. For instance, in a data set consisting on about 6,000 unrelated indi-

viduals of Caucasian origin the LD level at 95% of SNP pairs 47.02 r , while in a data set 

consisting on 673 individuals of a highly selected White Leghorn chicken line 30% of SNP 

pairs 60.02 r  and about 10% of SNP pairs 80.02 r . Additional research using real  

genomic data can help us establish this hypothesis.  

Appendix 

 

A1: Variance-covariance matrices and corresponding correlation matrices in 

linear models 

1.1. Variance-covariance matrices and corresponding correlation matrices derived 

from the SMR model  

In a simple case of 2p  two models for the same vector of phenotypes are  

described by: 
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The fixed SNP-effects 11  and 12  are estimated by  

  YVXXVXβ
1'

1
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1
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212022 )'ˆ,ˆ(ˆ   . 

The variance-covariance matrices for each estimate as well as covariance matrix of both 

estimates can be derived analytically, by using the assumptions of the SMR-model:  
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To get a measure which is standardized for variance in estimates, the correlation between 

the estimates was calculated as 
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The calculations for 15 SNPs are done analogously for )ˆ,ˆ(Cor ,11,1 j , where j,1̂   

correspond to the estimate of marker effect at jth SNP for 15,,1j : 
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1.2. Variance-covariance matrices and corresponding correlation matrices derived 

from the MMR model  

In a simple case of 2p , the marker effects β  could be estimated from linear equa-

tion εXβY   by using BLUE:   YVXXVXβ
111

210 '')'ˆ,ˆ,ˆ(ˆ   . The expectation of 

these estimates is the vector of true effects ββ )ˆ(E  and variance of estimates is available 

analytically, as long as the phenotypic variance-covariance matrix V  is known: 
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. 

For fixed effects, the variance-covariance matrix of the error in estimates ββ ˆ  is equal to 

the variance-covariance of estimates itself: 
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The correlation between the estimates was calculated similar to that in SMR: 
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where j̂  correspond to the estimate of marker effect at jth SNP. 
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1.3. Variance-covariance matrices and corresponding correlation matrices derived 

from the LMM  

In LMM fixed effects and random genomic effects are modeled simultaneously:

εZuXβY  , where β contains fixed effects and X  is the corresponding matrix of 

fixed effects and random marker effects are contained in vector u  and corresponding geno-

types are contained in a pn  matrix Z . Using known IGu
2:)(Var u  

 

and 

IRε
2:)(Var  , the phenotypic variance-covariance matrix could be derived analytically 

from the model: 
nnR  VRZGZ'εZuXβY :)(Var)(Var  

The fixed effects β  could be estimated by using BLUE:   YVXXVXβ
111 ''ˆ   with 

expectation ββ )ˆ(E  and variance-covariance matrix   11')ˆ(Var
 XVXβ , similar to MMR 

and SMR models. The random effects in the LMM could be predicted by using the Best  

Linear Unbiased Predictor (BLUP): 
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Expectation of random effect u  and consequently of its prediction û  is equal to zero and the 

variance-covariance matrix is of the form: 
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The covariance between the true random effects u  and its predictor û  is equal to the  

variance of predictor: 
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Applying these results, the variance-covariance of the difference uuˆ  between the 

true and predicted random effects 

QZGVGZ'Guuuuuu 1)',ˆ(Cov2)(Var)ˆ(Var)ˆ(Var   as well as the covariance 

between the random effects prediction û  and predictive error uuˆ
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The correlation matrixes )ˆ(Cor uu  and )ˆ(Cor u are obtained by standardizing with 

appropriate variances. In our studies, the fixed effects β  in LMM are represented only by 

population mean, correlation between the estimates of fixed effects )ˆ(Cor β  is not  

considered. 

 

A2: Simulation methods for generating SNP-data with pre-defined LD structure 

1.1. Simulation of SNP-data: definition of gametic disequilibrium-based method  

Two biallelic loci with minor allele frequencies 1p und 2p  are considered, which are in 

linkage disequilibrium with disequilibrium coefficient D. The gametic probabilities for all  

possible combinations of alleles at both loci are presented in Table A2.1:  
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Table A2.1. Gametic frequencies expressed by minor allele frequencies 1p  and 2p  and the 

disequilibrium coefficient D , the appearance of minor allele is coded as 1. 

The relationship bpa  1 , bpd  21  and bppdpc  1211  between 

the gametic frequencies dcba ,,,  and allele frequencies 1p  and 2p  represented in Table 

A2.1, can be used for rewriting the expression cbda   as  
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Thus, the squared correlation between both loci is expressed by  
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For a desired squared correlation between two loci 2r
 

and known minor allele fre-

quencies 1p  and 2p  the resulting disequilibrium coefficient can be expressed as 

  )1()1(,, 2211

22

21 pppprrppD  . 

For the purpose of simulation of genotypes, the gametic frequencies can be ex-

pressed in terms of uniformly distributed random numbers ]1,0[~ UnifU j
. To this end, the 

unit interval )1,0( was divided by thresholds for gametes in four disjunctive segments:  

 

Figure A2.1. Unit interval, divided in four segments according to gametic frequencies.  

 

The probability for a random variable 
jU  to take values between 0  and 1a  corre-

sponds to the gametic frequency of the gamete11: DppaP  211 0)11( . Thus, the 

threshold 1a  can be expressed by using disequilibrium coefficient  2

21 ,, rppD  and minor 

allele frequencies 1p  and 2p  as Dppa  211 . 

In analogy the thresholds 2a  and 3a  can be expressed by using D  and 1p  and 2p  as 

DppaaP  )1()10( 2112    12 pa   

DppaaP  2123 )1()01(    Dpppa  2113 )1(  

DppaP  )1)(1(1)00( 213    Dpppa  2113 )1(  

 

Depending on the value of a randomly sampled uniform variable, it is located in one 

of the segments of unit interval and in this way we specified the gamete as 11, 01, 10 or 00: 

two correlated haplotypes are obtained, viewed in genetic context as alleles at two different 

loci on one copy of the chromosome. Correlated haplotypes from the second chromosome 

copy could be obtained in the same way and the sum of minor allele counts at the two posi-

tions separately yields the desired genotypes with pre-defined correlation. 
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This procedure can be explained using a small example, where we assume that two 

loci are in LD so that 70.02 r  and MAFs at both loci are set to 4.021  pp .  

The first step is to calculate the disequilibrium coefficient   202.0,, 2

21 rppD  and the cor-

responding thresholds: 362.01 a , 4.02 a  and 439.03 a .  

In the second step two random uniform variable 21.01 U  and 47.02 U  are gener-

ated, the first one is smaller than 1a  which leads to the gamete 11 and the second random 

variable is larger than 3a , consequently the gamete 00 is obtained for the “second copy”. 

The genotype at locus 1 results in 101   and genotype at locus 2 results in 101  , both 

are in LD so that 70.02 r .  

 

Figure A2.2. Example for generation of more than two SNPs with the predefined LD by 

using two uniform distributed random variables 1U  and 2U . 

To extend this method to more than two SNPs, different thresholds 1a , 2a  and 3a  

should be applied to two fixed uniformly distributed random variables 1U  and 2U . In the  

example above, two genotypes: 1 at locus 1 and 1 at locus 2 are created using realizations 

of random variable 21.01 U  and 47.02 U , so that the squared correlation between the 

genotypes at both loci is equal to 36.02 r . We calculate new thresholds 304.01 a , 

4.02 a  and 496.03 a , corresponding to 36.02 r . Now 47.02 U  is located in the seg-

ment belonging to the gamete 01, thus the genotype at locus 3 is 211  , while the 

genotype at locus 1 remains 101  , both genotypes are in LD so the squared correlation 

between the genotypes at both loci is equal to 36.02 r . Obviously the genotype at the 1st 

SNP never changes; it is possible to generate any number of SNPs with a predefined corre-

lation with the 1st SNP.  
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Figure A2.3: Heatmap of predefined correlation matrix G (left), empirical correlation 

between generated genotypes (right) over 1000 independent samples, MAF=0.1 for all 

loci. 

In Figure A2.3 a comparison between the wanted correlation structure of data (left 

panel) and the realized correlation in simulated data. Simulation approach seems to be 

 reliable and creates a data set that is congruent to the pre-defined correlation structure. 

 

2.2. Simulation of SNP-data: truncated normal distribution method (TN) 

The main idea of this approach is to generate a vector of correlated random variables 

that follow a multivariate normal distribution in the first step and to transform those continu-

ous variables to discrete Bernoulli distributed variables by using quantiles of the normal 

distribution in the second step.  

Independent normal vectors ),(~ G0X pi N  for ni ,,1  were generated by using 

mvtnorm-R-package (Genz et al., 2014). 

The correlation structure between the entries in each vector is predefined by a matrix 

G . In Figure A2.4 the wanted correlation structure is presented in left panel and the realized 

correlation structure of a sample of 1000n  independent normal vectors )(Cor X  in the 

right panel. Obviously, data created using the mvtnorm package follows predefined correla-

tion structure. 
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Figure A2.4: Heatmap of predefined correlation matrix G (left), empirical correlation 

between the SNPs in a normal distributed random vector (right) over 1000 independent 

samples.  

Desired haplotypes (0/1 variables) are obtained from the normally distributed random 

vectors by applying a threshold, which corresponds to MAF 
jp  at each locus: 

)',,( 1 pzz z  is the vector of quantiles of normal distribution ),( G0pN , so that 

jjij pzXP  )( . We used the same MAF at each locus ),,1',( ' pjjpp jj  , but it is 

possible to generate loci with different MAFs. A haplotype could be viewed as a Bernoulli 

distributed variable )(~ j

TN

ij pBerY  with success probability equal to MAF (observation of a 

minor allele is defined as a success). Haplotypes variables are defined as 1TN

ijY  if 
jij zX 

, otherwise 0TN

ijY . The genotypes are obtained as a sum of two independent samples of 

TN

iY  – corresponding to two copies of a chromosome. 

In the Figure A2.5 the empirical correlation matrix of a sample of generated geno-

types 
pnTN R Y  (right panel) is compared with the desired correlation matrix G, which is 

represented in the left panel. It can be seen, that predefined correlation structure is not fully 

captured by random variables TN

iY . The reason for this is the loss of information due to 

transforming a continuous variable ijX  to a discrete variable 
TN

ijY .  

In this approach the discrete variable is created by considering a threshold, which in-

dicate the values of the 0/1 variable. A further possibility to truncate the normally distributed 

variables is to define the top 
2

jp
 and the lower 

2
jp

 as success and the rest in-between 
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these two thresholds as 0. This two-sided version of the truncated normal approach has the 

same loss of correlation in the generated data set. 

 

Figure A2.5. Heatmap of predefined correlation matrix G (left), empirical correlation 

matrix of generated genotypes TN

iY  (right) over 1000 independent samples. Minor allele 

frequencies of all SNP are equal to 1.0 .  

 

2.3 Simulation of SNP-data: Cholesky decomposition based method (Chol)  

To create binomial variables with a predefined correlation G, a vector iX  of  

independent identically distributed (iid) binomial variables pjpBinX jij ,,1),2,(~   was 

created in the first step. In Figure A2.6 the empirical correlation matrix of these iid binomial 

variables )(Cor X  is shown (upper panel, right). As expected, the correlations between the 

variables are very close to zero. In the second step iX  were transformed by using the 

Cholesky decomposition of correlation matrix QQ'G   to 
i

Chol

i XQ'Y  . The empirical  

correlation of transformed vectors 
pnChol R Y  is represented in Figure A2.6 (lower panel, 

right). Transformed variables seem to capture the desired correlation structure; through the 

transformation process, the initially natural number variables (or integers)  ijX  changed to 

floating point (or real) numbers. For our purpose, the simulated data should contain numbers 

of observed minor alleles at each locus, thus if the variables turned to be continuous, they 

should be rounded to 0, 1 and 2 in the last step. After the discretization process the empirical 

correlation of 
Chol

Y  shows losses in the amount of captured predefined correlation and is 

presented in Figure A2.6 (lower panel, right).  
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For the same reason as in the truncated normal approach, this simulation method 

cannot capture the predefined correlation structure of genotypes: the predefined association 

between the variables is stronger than measured empirical correlation. Losses in association 

actually incurred are caused by the loss of information due to the transformation of a contin-

uous variable to a discrete variable. 

 

 

Figure A2.6. Heatmap of predefined correlation matrix G (upper panel, left), empirical 

correlation matrix (over 1000 independent samples) of iid binomially distributed varia-

bles X  (upper panel, right), transformed continuous variables Chol
Y  (lower panel, left) 

and those rounded to integers (lower panel, right). Minor allele frequencies of all SNPs 

are equal to 1.0 .  
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2.4 Simulation of SNP-data: Normal-Copula based method (NC)  

Another possible method to construct correlated genotypes along a given correlation 

structure is the Gaussian Copula, which creates the joint distribution of the correlation struc-

ture if the marginal distributions are known. A copula C could be thought as a function that 

joins multivariate distribution ),,(),,( 11 pp YYFFFC    to their marginal distributions 

)( jj YFF  , pj ,,1 . In case the random variables describe genotypes, independent 

binomial distributions )2,( 11 pBinFF p   with equal success probabilities 

pppp  21
 are considered. However, it is also possible to choose different marginal 

distributions )2,( jj pBinF   if required. For the first step, an R-package copula (Hofert et al., 

2014) was used to obtain the margins with desired correlation structure. For the second step, 

the genotypes NC
Y  are sampled from the joint distribution. In Figure A2.7, the desired corre-

lation structure is shown on the left panel, while the realized amount of correlation in the 

generated data is shown on the right. Obviously there are very large losses in the correlation. 

This method performed the least well in capturing the pre-defined correlation structure com-

pared to the other methods considered.  

 

Figure A2.7: Heatmap of predefined correlation matrix G (left) and correlation in sam-

pled variables NC
Y  (right)  
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A3: Calculation of sample correlation coefficients and corresponding confi-

dence intervals 

Marker effects β , 
jβ1
 and u  were estimated in SMR and MMR and predicted in LMM 

repeatedly for 2500simn  random sampled genotype data sets with sample size 500n . 

For estimates β̂ , jβ1
ˆ  and for predictive error uu ˆ  empirical correlation coefficients as well 

as the corresponding %95  confidence intervals were calculated.  

For the 
thk  repetition, the estimates from SMR and MMR  'β pkkkk  ˆ,,ˆ,ˆˆ

10  . 

The empirical coefficient between the estimates at loci j and j’ was calculated according to 

following formula:  

  

     
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The empirical correlation coefficients for the predictive error uu ˆ  were obtained 

analogously. We define 
'

duu ),,(:ˆ
1 pkkkkk dd   as the deviation of predictions from 

LMM from true marker effects in the 
thk  repetition and the empirical correlation between the 

predictive errors at loci j and j’ is obtained thusly: 

  
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where   
2500

1 j2500
1

j k kdd  stay for the average over the deviations at jth locus. 

A confidence interval for sample correlation coefficient r̂  (e.g., )ˆ ,ˆCor(ˆˆ
j'j'  jjrr ) 

was obtained by using the Fisher transformation 













r

r
r

ˆ1

ˆ1
ln

2

1
)ˆ(:̂  (Fisher, 1915;  

Hawkins, 1989). For increasing sample size n , ̂  tends to very quickly converge to a 

normal distribution 








 3

1
,0
n

N . A two-sided confidence interval  uplow  ˆ,ˆ  for ̂  is  

obtained by applying the upper 2.5% quantile 975.0z  of standard normal distribution to  

calculate a lower limit 
3

1ˆˆ
975.0




n
zlow   and an upper limit 

3
1ˆˆ

975.0



n

zup  .  
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Finally, the calculated upper and lower limits are transformed back to derive the  

confidence limits for sample correlation coefficient r̂ : 

 
1

1ˆˆ
ˆ2

ˆ2
1




 

low

low

e

e
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1

1ˆˆ
ˆ2
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1




 
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e

e
r upup 



 . 
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SUMMARY. Genome-Wide Association Studies have detected large numbers of variants 

associated with complex human traits and diseases. However, the proportion of variance 

explained by GWAS-significant SNPs has been usually small. This brought interest in the 

use of Whole-Genome Regression (WGR) methods. However, there has been limited  

research on the factors that affect prediction accuracy (PA) of WGRs when applied to human 

data of distantly related individuals. Here, we examine, using real human genotypes and 

simulated phenotypes, how trait complexity, marker-QTL LD and the model used affect the 

performance of WGRs. Our results indicated that the estimated rate of missing heritability is 

dependent on the extent of marker-QTL LD. However, this parameter was not greatly  

affected by trait complexity. Regarding PA our results indicated that: (a) under perfect  

marker-QTL LD WGR can achieve moderately high prediction accuracy, and with simple  

genetic architectures variable selection methods outperform shrinkage procedures. (b) Under 

imperfect marker-QTL LD, variable selection methods can achieved reasonably good PA 

with simple or moderately complex genetic architectures; however the PA of these methods 

deteriorated as trait complexity increases and with highly complex traits variable selection 

and shrinkage methods both performed poorly. This was confirmed with an analysis of  

human height.  
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Introduction 

The availability of genomic data has revolutionized the statistical analysis of human  

diseases and traits. The development of methods that can accurately predict the genetic risk 

associated with these diseases and complex human traits can have a great impact on public 

health (e.g. Guttmacher et al., 2002; Simon-Sanchez et al., 2009). Modern genotyping and 

sequencing technologies can deliver massive amounts of information about the human  

genome, which are necessary for the prediction of genetic risk. However, the incorporation of 

genomic data into prediction remains challenging.  

In recent years, a large number of genome-wide association studies (GWAS) have been 

conducted (e.g. http://www.genome.gov/gwastudies/). These studies have identified  

unprecedented numbers of variants associated with important complex traits and diseases. 

In some cases the variants identified so far explain a sizable proportion of the variance of the 

trait or disease. Examples of these include Crohn’s disease, age-related macular degenera-

tion and Type I diabetes (Manolio et al., 2008). However, for the great majority of traits and 

diseases, the variance accounted for by GWAS hits is small, regardless of whether they are 

moderately or highly heritable (Allen et al., 2010). Consequently, the use of genomic infor-

mation for prediction of risk for diseases with complex genetic architectures remains limited. 

This problem, the so-called “missing heritability” of complex traits, has been discussed  

extensively by multiple authors (e.g. Maher, 2008; Manolio et al., 2009; Eichler et al., 2010).  

Although several factors contribute to the “missing heritability” problem, a major  

explanation resides in the lack of power of standard GWAS to detect small-effect variants. 

Recent studies have shown that prediction accuracy can be improved by including in risk 

scores information of allele content at variants that show suggestive, albeit not statistically 

significant, association with the trait or disease being studied (Allen et al., 2010). However, 

most risk score methods are still based on a limited number of loci and alleles at different loci 

that are either equally weighted or weighted using statistics derived from single-marker-

based association tests. Several authors (Yang et al., 2010) have suggested that a  

potentially better approach may consist of regressing phenotypes on whole-genome markers 

simultaneously using a Whole-Genome Regression (WGR) approach like the one originally 

proposed by Meuwissen et al. (2001). 

Whole-Genome Regression has been used with human data for estimation of the propor-

tion of variance that can be explained by regression of phenotype on markers  

(Yang et al., 2010; Speed et al., 2012) and for the assessment of prediction accuracy  

(Makowsky et al., 2011; de los Campos et al., 2013a). Using a GBLUP (Genomic Best Linear 

Unbiased Predictor) model and data from distantly related individuals, Yang et al. (2010) 

showed that simultaneous regression on a large set of ~300,000 common Single Nucleotide 
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Polymorphisms (SNPs) could explain roughly 50% of the heritability of human height.  

This encouraging result suggested that a large fraction of the missing heritability could be 

recovered by using regression methods based on large panels of whole-genome markers. 

Accuracy of prediction of yet-to-be observed phenotypic or disease outcomes is arguably 

one of the most important features of a model when it comes to potential use of the method 

for precision medicine. It is well established that prediction accuracy of WGR methods is 

highly affected by genetic relationships (e.g. Makowsky et al., 2011) and it is not clear 

whether WGR methods that have been proved accurate for prediction of complex traits with 

family data (VanRaden et al., 2009; Crossa et al., 2010; Makowsky et al., 2011) will also be 

effective when applied to distantly related individuals, which are often of interest in human 

genetic applications. 

According to Goddard (Goddard and Hayes, 2009), when WGR is applied to distantly  

related individuals, the prediction accuracy depends on two main factors: 1) the proportion of 

variance that can be explained by regression on the marker set (this depends largely on the 

extent of linkage disequilibrium (LD) between alleles at the markers and those at causal loci 

and, according to Yang et al. (2010) could be estimated using variance components), and 2) 

the accuracy of estimates of marker effects. These are two opposing forces: as we add more 

markers in the prediction equation the proportion of variance explained by markers potential-

ly increases; however, more marker effects need to be estimated and the individual accuracy 

of estimates of effects will typically decrease. Therefore, in finite samples is not exactly clear 

that methods that have a higher proportion of variance explained in the training data will also 

be best for prediction of yet-to-be-observed outcomes. For example, in a recent study on 

prediction of human height using GBLUP, de los Campos et al. (2013a) showed that, with 

distantly related individuals, prediction accuracy increased as markers were added to the 

model up to a saturation point beyond which it decreased. This result suggests that the  

analysis and prediction of complex traits may benefit from the use of models that combine 

variable selection and shrinkage within a single framework. 

In the last two decades, important developments in the area of penalized and Bayesian 

estimation procedures have led to a number of methods for implementing large-p-small-n 

regressions, including various methods that combine shrinkage estimation and variable  

selection. An overview of different penalized methods can be found in Hastie et al. (2005) 

and an overview of Bayesian methods for variable selection and shrinkage estimation (with a 

focus on genetic applications) is given by Gianola (2013) and de los Campos et al. (2013b). 

In animal and plant breeding, use of these methods has led to a substantial improvement in 

prediction accuracy (Habier et al., 2011; Heslot et al., 2012). Several studies have compared 

shrinkage and variable selection methods from a predictive perspective in animal and plant 
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breeding applications (e.g. Habier et al., 2007; Calus et al., 2008;Verbyla et al., 2009; Daet-

wyler et al., 2010; Gao et al., 2013; Wimmer et al., 2013). Simulation studies have suggested 

superiority of variable selection methods over shrinkage estimation procedures. However, 

real data have not always confirmed that (de los Campos et al., 2013b) and in  

empirical analyses the predictive performance of different regression methods has been very 

similar, perhaps reflecting the fact that the architecture of most traits is more complex than 

often assumed in simulation studies. Most of the studies in plant and animal breeding are 

based on family data. The few studies (e.g. Habier et al. (2007), Gao et al. (2013) in breeding 

populations and Makowsky et al. (2011) or de los Campos et al. (2013a) with human data) 

that have assessed prediction accuracy with distant relatives have found that the prediction 

accuracy of WGRs models deteriorates quickly as the genetic distance between training and 

testing populations increases. In principle, variable selection methods are better suited to 

detect variants that are in strong LD with QTL, and this should make these methods more 

robust with respect to the effects of genetic distance on prediction accuracy  

(e.g. Habier et al., 2007).  

However, the performance of these methods for prediction with human data so far has 

not been studied in detail. Indeed, in applications involving human data, most of the studies 

(Yang et al., 2010; Makowsky et al., 2011; de los Campos et al., 2013a) have used ridge-

regression type estimators that do not involve variable selection or differential shrinkage of 

estimated effects. Zhou et al. (2013) used WGR models that combine variable selection and 

shrinkage using data from distantly related individuals; unfortunately the study did not evalu-

ate the prediction accuracy. Importantly, the factors that affect prediction accuracy in the 

analysis of family data can be different than those that affect prediction accuracy when  

training and validation samples are distantly related. Indeed, with family data, co-segregation 

of alleles at markers and at quantitative trait loci (QTL) plays a major role, and can induce 

linkage between markers and QTL at distant positions. Under these conditions, variable  

selection is difficult to perform and may not be needed because signals generated by QTL 

can be tracked by markers that are far apart from a QTL. This type of linkage is not present 

when training and validation samples are distantly related, and we lack research about the 

relative effectiveness of shrinkage and variable selection methods with data from distantly 

related individuals. 

Therefore, the main goal of this study was to assess the predictive performance of differ-

ent types of WGR methods, including both shrinkage estimation procedures and methods 

that perform variable selection, when used for prediction of complex traits and with distantly 

related individuals. We considered three statistical methods that differ in the prior distribution 

of marker effects and consequently yield different types of estimates. Firstly, a model with 
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Gaussian distribution of marker effects (the GBLUP) was used; this ridge-regression-type 

method induces homogeneous shrinkage of marker effects. Secondly, a scaled-t prior for 

marker effects (labeled as Bayes A by Meuwissen et al. (2001)) was used; a method that 

induces an effect-size dependent shrinkage of estimates (Gianola, 2013). Finally, a  

Spike-Slab model (e.g. George and McCulloch, 1993; Ishwaran and Rao, 2005) was used, 

which combines variable selection and shrinkage. Recent methodological developments  

introduced by Zhou et al. (2013) allow implementation of a Spike-Slab model even with a 

very large numbers of markers.  

The performance of these methods was assessed with simulated and real data. Our sim-

ulation comprised different scenarios pertaining to the complexity of the trait (in terms of 

number of large-effect loci) and the pattern of linkage disequilibrium between markers and 

causal or quantitative trait loci. The results obtained from simulation studies were validated 

by analysis of human height measured on distantly related individuals. 

Materials and Methods 

In the classical quantitative genetic model, a continuous trait iy  is described as a sum of 

three components: the population mean (  ), a random component reflecting the genetic 

factors, the so-called genetic value iu , and a random model residual ( i ) usually assumed to 

be identically and independently normal distributed with zero mean and variance 2

 .  

In genomic models, the genomic values iu  are approximated using regressions on mark-

er genotypes. For instance, in an additive model one can set  


p

j jiji Xu
1

 , where 

 2,1,0ijX  represents the allele dosage at the jth locus of the ith individual and 
j  repre-

sents the corresponding marker effect. Thus, the model for p  markers can be expressed as: 

niXy i

p

j jiji ,...,1,
1

  
        (1) 

In WGR methods the number of effects to be estimated can vastly exceed the number of 

data points (i.e., p>>n). Thus, the estimation of effects in the model described above requires 

the use of some type of regularized regression procedure such as penalized or Bayesian 

regression. In Bayesian regressions, the type and extent of shrinkage of estimates of effects 

is controlled by the choice of prior for marker effects.  

To cover a wide range of methods, in this study we considered two extreme approaches 

(GBLUP a shrinkage estimation procedure and the Spike-Slab, a method that combines  
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variable selection and shrinkage) and an intermediate one (Bayes A) that induce differential 

shrinkage of estimates of effects.  

The GBLUP model is obtained by assigning independent identically distributed (IID)  

normal priors to the marker effects, that is: pjNj ,...1),,0(~ 2  . This approach yields 

estimates equivalent to those from ridge regression, where all effects are shrunk towards 

zero to a similar extent. Using the expectation of ith phenotype iy  (given the genotypes and 

marker effects), and the genomic value  


p

j jiji Xu
1

 , we rewrite equation (1) as 

niuy iii ,...,1,   . Thus the genomic value is also normal: ),(~ 2
G0u uN   with a ge-

nomic relationship matrix, which is obtained as a cross product of genotype readings 

  '
)1(2

1
XXG

 


j

jj

ik
pp

G  (
jp  is the minor allele frequency (MAF) at the jth locus) and a 

genomic variance component  


p

j jju pp
1

22 )1(2  . Therefore, the GBLUP could be  

implemented in Bayesian settings as a random effect model with a variance-covariance 

structure represented by IG
22

 u
, assuming for example a scaled inverse 2 -density as a 

prior distribution for variance components 2

u  and 2

 . 

Above we described the GBLUP model that one obtains by regressing phenotypes on 

markers using IID normal priors for marker effects. This model can be fitted by either  

regressing phenotypes on markers explicitly, or using an equivalent model based on a  

genomic relationship matrix 'XXG . Some authors (Speed et al., 2012) have proposed 

alternative ways of computing genomic relationships that account for LD; therefore, we also 

fitted the GBLUP model applying the method proposed by Speed et al. (2012) to compute G 

using the LDAK software (available at www.dougspeed.com); we refer to this method as to 

GBLUP-ldak. 

In Bayes A markers are assumed to follow IID scaled-t densities (an example for t-scaled 

prior with 5 degrees of freedom is given in Figure S1). In practice it is convenient to represent 

this density as an infinite mixture of scaled-normal densities: 

      2222 ,,0,
jjj

SdfNSdft jj    

 , where  2,0
jjN   is a normal density with 

null mean and variance 
2

j  and  Sdf
j

,22

   is a scaled-inverse 2 -density with degree 

of freedom df and scale parameter S (e.g. Gianola, 2013; Gianola et al., 2009). 

file:///D:/Birmingham/Dropbox/diss/final/www.dougspeed.com
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In the Spike-Slab model, the prior assigned to marker effects is a mixture of two distribu-

tions: one (the spike) with small variance concentrated around zero that corresponds to small 

or no effects and the other (the slab) is a flat distribution with large variance that is linked to 

large marker effects. The spike can be represented by a continuous distribution centered at 

zero and with very small variance or by a point mass at zero. We concentrate on the prior 

introduced by George and McCulloch (1993), a mixture of two normal distributions.  

Conditional on the proportion of large effects,  , and on variance parameters, the distribu-

tion of marker effects is given by   ),0()1(),0(,, 2222

2121   jjj NNp  , 

where 
2

1
  reflects the variability in large effects and 

2

2
  is the variance component of small 

effects. An example for 15.0  is represented in Figure S3.1.  

Recently, Zhou et al. (2013) proposed an efficient method to implement the Spike-Slab 

model. In their approach, called Bayesian Sparse Linear Mixed Model (BSLMM), they repre-

sent marker effects as the sum of two components: small effects ),0(~ 2

 jj N , assigned 

to all markers and sparse effects 0

2 )1(),0(~   jj N  (a mixture of a normal and a 

point-mass-at-zero distribution), which are assigned to a proportion of markers  , so that the 

total effect of the jth SNP jjj    is a mixture of normal distributions 

),0()1(),0( 222

  jj NN  . Zhou et al. (2013) specified this model using a re-

parameterization which greatly facilitates computations.  

All simulations as well as subsequent statistical analyses of simulated and real data were 

implemented in R (R Core Team, 2014). In this study, the GBLUP and Bayes A methods 

were fitted using the Gibbs Sampler algorithm implemented in the R package, BGLR  

(Pérez and de los Campos, 2014). The Spike-Slab model was fitted using the BSLMM  

method, which is included in the GEMMA software package 

(http://stephenslab.uchicago.edu/software.html ).   

Simulation and Real Data Analysis 

Data 

The genotypes used for simulation and in the real data analysis came from by  

NIH-funded Gene-Environment Association Studies (GENEVA, http://www.genevastudy.org), 

which is a consortium of sixteen genome wide association studies. We used a subset of  

GENEVA consisting of data from the Nurses’ Health Study and the Health Professionals’ 

Follow-up Study studies. Samples were genotyped using the Affymetrix Genome-Wide  

Human SNP Array 6.0 with about 780 K SNPs. The GENEVA data set contains phenotypic 

http://stephenslab.uchicago.edu/software.html
http://www.genevastudy.org/
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and genotypic records of n=5,961 individuals (3,391 women and 2,570 men) with average 

age of 57.2 years (SD=7.7 years) and average height 170.2 cm (SD=9.6 cm). For the real 

data analysis we used adult height (adjusted for age, sex and affiliation to case or control 

group) as the phenotype. 

Quality control procedures 

We removed all markers with proportion of missing genotypes per SNP 01.0  and all 

individuals with a proportion of missing genotypes per individual 05.0 . Further, on the basis 

of the available pedigree information, we also removed all nominally related individuals and 

individuals with a Hispanic genomic background such that only individuals of Caucasian 

origin remained in the data set. We also set a lower threshold of 0.01 for MAF, so that after 

quality control of the genomic data sample size was 5,758 individuals and 673,197 SNPs loci 

remained.  

Simulation 

We aimed at investigating the performance of three models, which apply different types 

of shrinkage of effect estimates, under different genetic architectures and varying levels of 

LD between markers and QTL. The simulation was conducted using true genotypes  

(see details above) and simulated phenotypes.  

Markers and QTL. SNPs were randomly divided into two subsets: 350K SNPs were  

designated as markers and the rest (~323K) were used as a pool for sampling subsets of 

QTL (5K, in each replicate). The 5K QTL were sampled from the pool of 323K loci either 

completely at random (RAND) or by oversampling among the loci with low minor allele  

frequency (LOW-MAF). In this case sampling probabilities were set to target 75% of the QTL 

with MAF < 0.05, 25% of the QTL with MAF between 0.05 and 0.15, no QTL had a  

MAF > 0.15. In the LOW-MAF scenario the distributions of allele frequencies at markers and 

at QTL were expected to be different, and this was expected to influence the extent of LD 

between markers and QTL. Therefore, for each replicate, we used PLINK  

(Purcell et al., 2007) to compute the pairwise squared correlation 
2r  between genotypes at 

the QTL and those at the two flanking markers. 

Genetic architecture. We assumed that only a subset of QTL had large effects, while 

the rest of them had small effects. We considered three different scenarios: in the first one all 

QTL effects were sampled from IID normal densities ),0( 2

j N . In the second and third 

scenarios we randomly chose p=50 or p=250 SNPs, respectively, and sampled their effects 

from a normal density with a large (see next) variance, the rest of the QTL effects were  

sampled from a normal density with a smaller variance. We set the variance parameters of 
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the two normal densities used to sample effects in scenarios 2 and 3 to target a heritability  

(
2h ) of 0.5 and a partition of the genetic variance (hereinafter called pve) where large effect 

QTL explain either 25% or 75% of genetic variance in scenarios 2 and 3. 

Simulation of phenotypes. The phenotypes were constructed according to an additive 

model 
ij jiji Zy   

5000

1
 for ni ,...,1 , where model error i and marker effects 

j   

follow normal distributions with zero mean and 
ijZ  are the genotype readings at causal loci. 

The variance of the residual term 5.0)( iV   was kept fixed across all scenarios, while the 

variance of marker effects )( jV   varied from scenario to scenario, depending on the  

number of large effect QTL, amount of genetic variance explained by these large effects 

QTL, and the distribution of MAFs in QTL. 

Data Analyses.  

We analyzed the simulated data using markers, QTL or markers and QTL. The first  

scenario involved imperfect LD between markers and QTL, the last two contained the causal 

variants in the panel and therefore were perfect LD scenarios. 

Genomic Heritability. For the GBLUP, the estimated genomic heritability 
22

2

2








g

g

Gh  was 

defined as the ratio between the variance explained by genomic factors, 
2

g , and the  

phenotypic variance, 
222

  gp ; in the G-BLUP 2

Gh  was estimated based on posterior 

samples collected using the BGLR-package. 

For Bayes A the BGLR-package did not provide the estimates of genomic heritability  

directly. In this model, a scaled-inverse  distribution is assigned to the variance of the  

effects j . Therefore, we have 
2

)( 02




df

S
E  ; using this we can define the genomic vari-

ance as follows:   


p

j jjg
df

S
pp

1

02

2
)1(2 ,where jp  stands for allele frequency at locus 

j. With this, the genomic heritability can be defined as 
2

1

0

1

0

2

2
)1(2
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)1(2
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h .  

We also estimated this parameter using posterior samples collected using the BGLR-

package.  
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GEMMA provided posterior samples of 
1

1

)(

)(
),,(













uXβ

uXβ
uβ

V

V
PVE   

(Zhou et al., 2013) which describes total proportion of variance in phenotype explained by 

the sum of the ‘sparse’ ( Xβ ) and random effect (u ). Essentially this quantity meets definition 

of genomic heritability, we used posterior mean of PVE to obtain the estimate of genomic 

heritability. In addition to estimates of genomic heritability we report the 
2R  between pheno-

types and predictions in the training data set as a measure of goodness of fit. This was only 

done for the GBLUP and Bayes A because GEMMA does not provide predictions for the 

training data set. 

Assessment of Prediction Accuracy.  

To assess prediction accuracy, in both the simulated and real data, we replicated 30 

times a training-testing (TRN-TST) validation design (Hastie et al., 2005). In each  

TRN-TST experiment, data were randomly split into two disjoint sets, 5,258 data points in the 

TRN and from the remaining 500 individuals, we retained for validation only the ones whose 

genomic pairwise relationships with individuals in the TRN group did not exceed 
8

1 ; these 

were typically ~400 individuals. In the analysis of real phenotype (adjusted human height) we 

used the same subset of SNPs that were used in the ‘only marker’ scenario in simulation 

studies and the same mapping of individuals to TRN/TST groups. We assessed prediction 

accuracy using the Pearson’s product-moment correlation between the true and predicted 

phenotypes )ˆ,( yycor  in the validation set. 

 

Results 

 

Results from simulation studies 

The empirical quantiles of the distribution of MAF at different sets of loci are given in 

Table 3.1. In the RAND scenario, the empirical distribution of the MAF at QTL and markers 

were very similar; this was expected because both sets of loci were sampled at random. 

However, as intended, the empirical distribution of MAF at QTL in the LOW-MAF scenario 

had, relative to the same distribution at the marker loci, an over representation of loci in the 

low MAF spectra. 
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Table 3.1. Empirical percentiles of the distribution of minor allele frequency for markers and 

for QTL in simulated data in both sampling scenarios. 

Set (Scenario) Quantiles of the distribution of minor allele frequency 

 5% 10%  25% 50% 95% 

Markers 0.0298 0.0498 0.1115 0.2268 0.4713 

QTL (RAND) 0.0302 0.0501 0.1117 0.2273 0.4713 

QTL (LOW-MAF) 0.0133 0.0169 0.0279 0.0461 0.1383 

The 5%, 10%, 25%, 50%, and 95% percentiles for marker data set and for QTL in both sam-

pling scenarios, averaged over 30 replicates. 

Linkage disequilibrium is allele-frequency dependent; therefore, based on results of Table 

3.1 one would expect that the extent of Marker-QTL LD will vary between scenarios. Table 

3.2 provides a summary of estimates of LD between QTL and the two flanking markers by 

scenario. 

Table 3.2. Summary statistics of pairwise LD measure in both sampling scenarios.  

Scenario 
Average 

2r  
Quantiles 

  5% 25% 50% 75% 95% 

RAND 0.624 (0.286) 0.223 0.344 0.609 0.941 0.996 

LOW-MAF 0.206 (0.333) 0.001 0.007 0.029 0.203 0.982 

Summary statistics of pairwise LD, measured as squared correlation 
2r  between the QTL 

and markers, flanking markers on either side in the RAND- and LOW-MAF- scenarios; 
2r  is 

averaged over 30 Monte-Carlo replicates, with standard deviation given in parentheses and 

5%, 25%, 50%, 75% and 95% quantiles. 

The average of 
2r  over 30 Monte-Carlo (MC) replicates in the RAND-scenario was 0.624 

with a standard deviation (SD) of 0.286. On the other hand, the average of pairwise 
2r  in the 

LOW-MAF-scenario was three times smaller. 

Estimated Genomic Heritability and Goodness of Fit 

The average (over MC replicates) estimated genomic heritabilities obtained by simulation 

scenario (RAND in the upper panel, LOW-MAF in the lower panel), statistical method (Bayes 

A, Spike-Slab, GBLUP and GBLUP-ldak), information used (markers, markers+QTL and 

QTL) and genetic architecture are shown in Figure 3.1. 
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Figure 3.1. Estimates of Genomic Heritability. Averages of estimates of genomic heritabil-

ity over Monte-Carlo (MC) replicates obtained by simulation scenario (RAND upper panel: a, 

b, c; LOW-MAF in lower panel: d, e, f), genetic architecture (p=number of large effect QTL, 

pve=proportion of genetic variance explained by large effect QTL), model (GBLUP, GBLUP-

ldak, Bayes A, and Spike-Slab) and data used (only markers, markers and QTL or only QTL). 

QTL-based analysis. When only QTL genotypes were used to fit models to data simu-

lated with the RAND scenario (Figure 3.1, panel c) the GBLUP and Spike-Slab models gave 

an average estimate of genomic heritability that was very close to the simulated heritability, 

suggesting that these two methods have almost no bias with the sample size used in this 

study. GBLUP-ldak generally under-estimated heritability and Bayes A yielded downwardly 

biased estimates when the genetic architecture had a few markers explaining a sizeable  

proportion of genetic variance (e.g., pve=0.75 p=50 in Figure 3.1 panel c). In the LOW-MAF 

scenario (Figure 3.1, panel f), GBLUP, Spike-Slab and GBLUP-ldak showed almost  

un-biased estimates, but Bayes A continued to deliver downwardly biased estimates in  
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scenarios where large-effect QTL explained a sizable fraction of genetic variance  

(e.g. pve=0.75 p=50 in Figure 3.1 panel f). 

Marker-based analysis. It is important to note that, due to imperfect marker-QTL LD 

when only markers are used in the analysis, the true proportion of variance that can be  

explained by regression on markers, the so-called genomic heritability (de los Campos et al., 

2014), can be lower than the trait heritability. Therefore, even in simulations, the population 

value of the genomic heritability is unknown and therefore we can compare results across 

models but we cannot assess bias. In the RAND scenario the estimates derived with the 

GBLUP models (see Figure 3.1 a) were very close to the simulated trait heritability. However, 

the estimates obtained with the Spike-Slab model suggested some extent (of the order of 

10%) of missing heritability. Bayes A yielded estimates similar to those of the Spike-Slab with 

complex genetic architectures but tended to over-estimate the genomic heritability with  

simpler genetic architectures.  

In the LOW-MAF scenario (See Figure 3.1 d) estimates of genomic heritability varied 

substantially between methods and genetic architectures: the GBLUP and Bayes A yielded a 

great extent of missing heritability. In comparison GBLUP-ldak yielded a much smaller extent 

of missing heritability and Spike-Slab estimated an extent of missing heritability that was 

small in scenarios in which large effect QTL contributed a sizeable proportion of variance and 

increased - to the point of getting very close to GBLUP- as trait complexity increased.  

Finally, as one could expect, the analysis based on markers and QTL (panels b and e in 

Figure 3.1) yielded estimates that were intermediate between the QTL only and marker only 

cases in the RAND scenario and were very close to the analysis based on markers in the 

LOW-MAF scenario. 

The 
2R  between true and the predicted phenotypes in the training data sets, averaged 

over 30 MC replicates, is represented in Figure S3.2. We do not present results for GEMMA 

because this software does not provide predictions for the training data set. In the perfect LD 

scenario (only QTL genotypes used, Figure S3.2, panels c and f) the 
2R  was between  

60-70%, suggesting some over-fitting (the simulated heritability was 0.5). The evidence of 

over-fitting increased slightly when markers were used. The clearest sign of over-fitting was 

observed with Bayes A in the LOW-MAF scenario. In the analysis based on markers only 

(Figure S3.2, panels a and d) the three models behaved very differently: GBLUP showed the 

lowest 
2R , and this statistic did not vary much between scenarios. On the other hand, 

GBLUP-ldak showed much higher 
2R  than GBLUP and the value of this goodness of fit  

statistics for this model was also very stable across simulation scenarios. Finally, Bayes A 

showed a pattern with higher 
2R  than GBLUP in scenarios involving large-effect QTL with 
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sizeable contribution to additive variance. However, the 
2R  in the training data set of Bayes 

A decreased as the genetic architecture of the simulated trait became more complex, to a 

point that the 
2R  of Bayes A approached GBLUP when there were no large effect QTL. 

Prediction accuracy 

Figure 3.2 displays the correlation (average over 30 MC replicates) between pheno-

types and predictions in testing data sets.  

 

Figure 3.2. Correlation between phenotypes and genomic predictions in training data 

sets. Correlation (average over MC replicates) between phenotypes and genomic predic-

tions in training data sets, by simulation scenario (RAND upper panel: a, b, c; LOW-MAF in 

lower panel: d, e, f), genetic architecture (p=number of large effect QTL, pve=proportion of 

genetic variance explained by large effect QTL) data used (only markers, markers and QTL 

or only QTL) and analysis method (GBLUP, GBLUP-ldak, Bayes A, and Spike-Slab). 



 3rd CHAPTER Accuracy of Predictions with Unrelated Individuals 72 

Plots were sorted, by simulation scenario (RAND or LOW-MAF), genetic architecture (num-

ber of large effect-QTL and proportion of genetic variance explained by large effect QTL), 

data used (QTL, markers or markers+QTL) and analysis methods (Bayes A, Spike-Slab, 

GBLUP and GBLUP-ldak).   

Impacts of LD. The comparison of the prediction accuracy achieved using only QTL 

(Figure 3.2, panels c and f) and those obtained using only markers (Figure 3.2, panels a and 

d) sheds light on the impacts of LD on prediction accuracy. As expected, the maximum pre-

diction accuracy across methods and simulation scenarios was achieved when only QTL 

genotypes were used for model fitting and prediction (perfect LD scenario). When markers in 

imperfect LD with QTL were introduced, prediction accuracy was reduced markedly.  

The adverse effects of imperfect LD between markers and QTL were more marked in the 

GBLUP and GBLUP-ldak and less adverse for model Spike-Slab and Bayes A and in sce-

narios with simpler genetic architectures; however as the genetic architecture of the trait 

become more complex, the superiority of these two methods, relative to GBLUP diminished. 

Statistical Method. Overall, GBLUP and GBLUP-ldak had the worst predictive perfor-

mance; this was particularly clear when only markers or markers and QTL were used.  

Bayes A performed considerably better than the GBLUP and the Spike-Slab performed even 

better than Bayes A indicating clear benefits of methods inducing differential shrinkage of 

estimates relative to methods like the GBLUP that induce homogeneous shrinkage of esti-

mates.  

 Genetic Architecture. The highest prediction accuracy was obtained in scenarios where 

a small number of QTL with large effects (p=50) explained a large proportion of the genetic 

variance (pve=75%). The superiority of the Spike-Slab or Bayes A over the GBLUP was 

maximum when the genetic architecture was simple; however the differences between the 

prediction accuracy of Bayes A and Spike-Slab, relative to GBLUP methods diminished as 

the trait architecture became more complex. Although, the prediction accuracy of the 

GBLUPs was not greatly affected by the genetic architecture of the trait, in analyses based 

on markers or markers and QTL, there was a small but systematic trend suggesting that 

GBLUP outperformed GBLUP-ldak in the RAND scenario and the opposite was true in the 

LOW-MAF scenarios. 

For each MC replicate we computed differences in prediction accuracy, measured by dif-

ferences in correlations )ˆ( yy,cor , between different simulations or data analysis scenarios 

and studied the distribution of these differences (boxplots with pairwise differences in predic-

tion accuracy (by method) are provided in Figure S3.3). In analyses including markers, 

(either markers only or markers+QTL), adding QTL to the set of loci used to compute the G 
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matrix increased prediction accuracy when Bayes A or Spike-Slab were used, while the 

GBLUP methods did not benefit from having the QTL loci within the set of markers used to 

compute the G matrix. As expected, the prediction accuracy obtained in the RAND scenario 

was higher than the one obtained in the LOW-MAF scenario; this pattern was observed 

across statistical methods.  

Figure 3.3 gives boxplots of the differences in prediction accuracy by pair of models, 

across simulation scenarios. The Spike-Slab models and Bayes A were significantly better 

than the GBLUP; the superiority of the Spike-Slab over Bayes A was also systematic, but 

very small in magnitude. 

 

Figure 3.3. Pairwise difference in prediction accuracy across methods. Boxplots of the 

pairwise differences (across MC replicates and simulation scenarios) in prediction accuracy 

by pair of models. 

 

Results from Real Data Analysis 

The estimates of genomic heritability and of prediction accuracy in testing data sets, av-

eraged over 30 training-testing partitions, are displayed in Table 3.3. The estimated genomic 

heritability ranged from 0.367 (Spike-Slab) to 0.561 (GBLUP-ldak). The GBLUP had an  

intermediate estimate of genomic heritability (0.435). Our estimates are in line with previous 

reports for human height using common SNPs (e.g. Yang et al., 2010; de los Campos et al., 

2013a). These results are also in agreement with what we observed in the LOW-MAF  

setting, in scenarios for traits without major QTL and using only marker genotypes for  
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computing G (see Figure 3.1 d for pve=0). The correlations between phenotypes and predic-

tions were low (0.16-0.17) for all methods, and only slightly higher for the GBLUP methods. 

These correlations are in agreement with what we obtained in the simulation study in the 

LOW-MAF scenario when QTL were not used in the model (see Figure 3.2 d). 

Figure 3.4 provides box-plots of the difference in prediction accuracy obtained, within 

each TRN-TST partition, between methods. Although the average difference in prediction 

accuracy between methods was small, the analysis of pair-wise differences in prediction  

accuracy (by using the Wilcoxon signed rank test) suggested a statistically significant, albeit 

small, superiority of the GBLUP methods over Bayes A; the differences between the  

Spike-Slab and GBLUP are non-significant. 

 

 

Figure 3.4. Pairwise difference in prediction accuracy across methods. Boxplots of the 

difference in prediction accuracy, within TRN-TST partition, between methods.  

 

Discussion 

In recent years, Genome Wide Association Studies have found an unprecedented  

number of variants associated with important human traits and diseases (http://gds.nih.gov/). 

However, for complex traits and diseases, the variants identified so far usually explain a 

small fraction of inter-individual differences in a trait or in disease risk, a problem referred to 

as the missing heritability of complex traits (Maher, 2008; Manolio et al., 2009; Eichler et al., 

http://gds.nih.gov/
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2010; Gibson, 2010; Makowsky et al., 2011). This problem has been partially attributed to the 

lack of power of GWAS to detect small-effect variants, and some studies (e.g. Allen et al., 

2010; Ober et al., 2012) have shown that the proportion of marker-driven variance and  

prediction accuracy could be improved when prediction models include variants that show 

strong, but not GWAS-significant association.  

Several authors (e.g. de los Campos et al., 2010; Yang et al., 2010) have suggested the 

use of Whole-Genome Regression methods (Meuwissen et al., 2001), where phenotypes are 

regressed on potentially hundreds of thousands of variants concurrently, for analysis and 

prediction of complex human traits and diseases. In human genetic applications, the most 

commonly used WGR method has been the GBLUP (Gondro et al., 2013). This method has 

been used primarily for the estimation of missing heritability (e.g. Eichler et al., 2010; Yang et 

al., 2010; Speed et al., 2012). Only a few studies have assessed these methods from a  

prediction perspective. These studies have reported poor prediction performance of GBLUP 

when training and validation samples were distantly related (e.g. de los Campos et al., 

2013a). This leaves open the question of what avenues should be pursued to improve the 

prediction performance of WGR methods when used for the prediction of phenotypes for  

distantly related individuals. 

The prediction accuracy of WGR is known to be affected by many important factors,  

including genetic relationship (e.g. VanRaden et al., 2009; Crossa et al., 2010), trait  

heritability (e.g. Hayes et al., 2009; Daetwyler et al., 2010), marker density (e.g. Vazquez et 

al., 2010; Makowsky et al., 2011; Ober et al., 2012; Erbe et al., 2013; Vazquez et al., 2010), 

the genetic architecture of the model (e.g. the number of QTL, the distribution of effects 

(VanRaden et al., 2009; Wimmer et al., 2013), the extent of LD between markers and QTL 

(Habier et al., 2007; Calus et al., 2008), the sample size (Hayes et al., 2009; Makowsky et 

al., 2011) and the method used (e.g. Habier et al., 2007; Hayes et al., 2009; VanRaden et al., 

2009; Verbyla et al., 2009; Gao et al., 2013; Wimmer et al., 2013; Zhang et al., 2014).  

The vast majority of studies that have compared the predictive performance of shrinkage and 

variable selection methods have used family data from populations with intensive history of 

recent selection. Indeed, there has been little, if any, assessment of the factors that affect the 

prediction accuracy of WGRs using human data from distantly related individuals. In this  

article we contributed towards filling this gap by conducting an extensive simulation study 

where we assessed the impact on estimated missing heritability and on prediction accuracy 

of: (a) the extent of LD between markers and QTL, (b) the complexity of the trait architecture, 

and (c) the statistical model used. 

Missing heritability can be attributed to imperfect LD between marker and QTL geno-

types (e.g. Goddard and Hayes, 2009; Yang et al., 2010; de los Campos et al., 2013a). 
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Therefore, in scenarios where QTL genotypes were used for analysis (either when QTL only 

or when both markers and QTL were used) there is no missing heritability because the  

causal loci were included in the set of genotypes used for data analysis. In these analysis 

scenarios (only QTL or markers and QTL), estimates of genomic heritability above or below 

the simulated heritability (0.5) reflect bias of the estimation method.  

When the analysis was carried out using QTL genotypes only, the Spike-Slab and 

GBLUP methods yielded estimates very close to the simulated heritability, while Bayes A and 

GBLUP-ldak yielded substantial biases. In the case of Bayes A the estimate was downwardly 

biased in scenarios where a few QTL made a substantial contribution to genetic variance 

(e.g., p=50, pve=0.75) and GBLUP-ldak showed a clearly downwardly biased estimate in the 

RAND scenario. 

When markers and QTL were used for analysis the results differed between the RAND 

and LOW-MAF scenarios: in the RAND scenario GBLUP and Spike-Slab yielded almost un-

biased estimates, while Bayes A and GBLUP-ldak yielded upwardly biased estimates under 

simple genetic architectures. In the LOW-MAF scenario, GBLUP, Spike-Slab and Bayes A 

yielded downwardly biased estimates while estimates from GBLUP-ldak were slightly biased 

upwards.  

Finally, in scenarios using only markers the estimated genomic heritability was very close 

to the trait heritability in the RAND scenario, while in the LOW-MAF scenario estimates re-

vealed a substantial extent of missing heritability. 

The observation that having a different distribution of allele frequencies at markers and at 

QTL can induce a large extent of missing heritability is in line with the reasoning and results 

presented in some studies (Goldstein, 2009; Yang et al., 2010; Lee et al., 2012; 

 de los Campos et al., 2013a). This result is also in agreement with the fact that the extent of 

LD between markers and QTL in the LOW-MAF scenarios was much weaker than in the 

RAND scenarios (see Table 3.2). It should be noted that in all simulation scenarios consid-

ered in our study, including the LOW-MAF scenario, the frequency of rare variants among 

the QTL was limited relative to what one could have with sequence data, because the geno-

types used in our study were all obtained from a panel of common SNPs. Therefore, one 

could speculate that the extent of differences in distribution of allele frequency between 

markers and causal loci and the corresponding extent of missing heritability may be even 

more extreme with real phenotypes than the one observed in our LOW-MAF scenario. 

Importantly, within any scenario we found remarkable differences in estimates of genomic 

heritability across models, and there was no single method with smallest bias across all  

genetic architectures and analysis scenarios (QTL, markers+QTL or only markers).  
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The GBLUP and Spike-Slab methods performed well in the RAND scenario, but had clear 

problems in the LOW-MAF scenarios (both had seriously downwardly biased estimates in the 

analysis based on markers and QTL). On the other hand, GBLUP-ldak exhibited some clear 

problems in the RAND scenarios (downwardly biased estimates when analysis was based on 

QTL only) or upwardly biased estimates in the LOW-MAF analysis based on markers and 

QTL). Finally, Bayes A showed somewhat erratic behavior, especially with simple genetic 

architectures (e.g., p=50, pve=0.75); we believe that this is not a limitation of the model per-

se but a consequence of the degree-of-freedom parameter being fixed. Estimating this pa-

rameter from the data, as done, for instance in (Yi and Xu, 2008), is likely to confer more 

flexibility to Bayes A to cope with different genetic architectures. 

Prediction Accuracy. When the analysis was carried out using only QTL genotypes 

(‘perfect LD’, panels c and f of Figure 3.2) all methods achieved relatively high prediction 

accuracy (correlation of about 0.5 or greater, that is an 
2R  50% or more of the trait heritabil-

ity); this indicates that if one is able to narrow down the influential genetic regions of a trait to 

a limited number (5,000 loci in our simulation) regularized regressions like the one used here 

can yield relatively high prediction accuracy. In these scenarios, the prediction accuracy of 

the GBLUP and GBLUP-ldak methods was not affected by the genetic architecture and 

tended to be poorer than that of Bayes A and the Spike-Slab methods. Bayes A and  

Spike-Slab performed similarly and clearly better than any of the GBLUP methods in scenar-

ios where a limited number of QTL (e.g., 50 or 250) explained a sizeable proportion of the 

genetic variance. However, with increase in trait complexity there was a decrease in predic-

tion performance of these two methods, to the point that the three methods performed very 

similarly when the most complex genetic architecture was considered (5,000 QTL without 

any ‘major effect’ one). Overall, our results are in agreement with previous studies in animal 

and plant breeding (Daetwyler et al., 2010 and Wimmer et al., 2013) that have reported that: 

(a) the prediction accuracy of GBLUP is largely independent of the genetic architecture of the 

trait, and (b) with simple genetic architectures there are benefits of using methods such as 

Bayes B, Spike-Slab, Bayes C or Bayes A, relative to ridge-regression type-methods. How-

ever as the trait architecture became more complex, these differences disappeared.  

When markers and QTL were jointly used (panels b and e of Figure 3.2) or when only 

markers were used (panels a and d in Figure 2), important changes in prediction accuracy 

were observed. The prediction accuracy of any of the GBLUP methods was reduced from 

correlation levels of the order of 0.45 (QTL-only analysis) to 0.15 when both markers and 

QTL were used, and to levels below 0.1 when only markers were used. This reflects the limi-

tations of using methods such as GBLUP or GBLUP-ldak where the effects of all predictors 
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are homogeneously shrunk, especially in situations where a large number of markers do not 

have effects.  

In scenarios where 50 or 250 QTL explained a sizeable proportion (e.g., 0.75) of the genetic 

variance, the benefits of using methods that perform variable selection (Spike-Slab) or differ-

ential shrinkage of estimated effects (Bayes A) relative to the GBLUP methods were 

pronounced. In the scenario with the simplest genetic architecture (50 QTL explaining 75% of 

the genetic variance) these methods, especially the Spike-Slab were able to achieve levels 

of prediction accuracy comparable to those obtained when only QTL genotypes were used, 

illustrating the ‘oracle’ property (e.g. Ishwaran and Rao, 2005; Scheipl et al., 2013) that these 

methods have. However, as the complexity of the trait increased, the predictive performance 

of these methods decreased and in the most complex scenario (5,000 small QTL) all meth-

ods performed similarly.   

Real data analysis. Human height is believed to be a trait affected by a very large num-

ber of small-effect QTL (e.g. Allen et al., 2010; Yang et al., 2010). The analysis conducted 

with human height data from the GENEVA data set very closely matched the results from the 

simulation for scenarios with large numbers of small effect QTL, where the distributions of 

allele frequency at markers and at QTL were different. We estimated a sizeable proportion of 

missing heritability, given a trait heritability of 0.8, the estimates of missing heritability ranged 

from 0.24 with GBLUP-ldak to 0.54 with Spike-Slab and very poor prediction accuracy (corre-

lation of about 0.16-0.17, and very similar across methods). 

Implications 

The results presented in this study have several implications. Firstly, estimates of missing 

heritability derived from distantly related individuals using WGR methods need to be treated 

with caution; although they are indicative of how imperfect LD between markers and QTL can 

limit the ability of a model to capture the genetic signal, some of the results presented here 

indicate that under some circumstances estimates can have a sizeable bias. Additionally, we 

observed that in some scenarios these estimates of heritability can vary significantly between 

methods. This is not surprising because the proportion of variance explained by a model de-

pends both on the input information (markers/QTL, etc.) and on the statistical model used. 

We believe that this model-genetic architecture dependency has been overlooked so far. 

Importantly, the model that yields the highest estimated genomic heritability is not necessari-

ly the one that yields the best prediction accuracy.  

Secondly, the assessment of prediction accuracy suggests that for traits in which a limited 

number of regions explain a sizeable proportion of genetic variance, the use of WGR meth-

ods that perform variable selection or differential shrinkage of estimates of effects is strongly  
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recommended over ridge-regression type methods such as the GBLUP. On the other hand, 

for very complex traits such as human height all the methods evaluated yield low prediction 

accuracy. It remains to be determined whether significant increases in sample size (which 

likely should be by orders of magnitude) will also yield substantial gains in prediction accura-

cy.  
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Figure S3.1. Prior distributions in Bayesian settings. Commonly used prior distributions 

for regression coefficients in Bayesian models (all with null mean and unit variance): Gaussi-

an, Bayes A (scaled-t) and Spike-Slab (mixture of two normal distributions) models. 
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Figure S3.2. R-squared statistic in training data sets. 
2R  (averaged over 30 MC repli-

cates) between phenotype and genomic predictions in training data sets, by simulation 

scenario (RAND upper panel; LOW-MAF in lower panel), genetic architecture (p=number of 

large effect QTL, pve=proportion of genetic variance explained by large effect QTL) data 

used (only markers, markers and QTL or only QTL) and analysis method (GBLUP, GBLUP-

ldak or Bayes A). 
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Figure S3.3. Difference in prediction accuracy in sampling scenarios and different 

types of data used. Difference in prediction accuracy obtained using markers and QTL mi-

nus that obtained using markers only (panel a) and the prediction accuracy obtained in the 

RAND scenario minus that obtained in the LOW-MAF scenario (panel b), by model.  

 

 

Figure S3.4. Differences between both GBLUP methods in the real data analysis of 

human height. Prediction accuracy, measured as the correlation between the true and pre-

dicted phenotype, Proportion of genetic variance explained as R-squared in TST and 

heritability estimates, obtained in GBLUP or in GBLUP-ldak.  
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Table S3.1. Heritability estimates 
2ˆ
gh  in GBLUP from 30 Monte Carlo replicates, across all 

configurations of effects in RAND scenario and genetic information used. 

Data 

used 

only markers markers and QTLs only QTLs 

LEQTLs

* 

50 250 none 50 250 none 50 250 none 

pve** 25% 75% 25% 75% - 25% 75% 25% 75% - 25% 75% 25% 75% - 

run 1  0.58

655

651

4 

0.43

016

506

5 

0.61

534

473 

0.49

329

364

1 

0.53

577

480

9 

0.59

401

079

5 

0.44

080

848

3 

0.62

734

380

4 

0.49

890

439

7 

0.54

973

495

2 

0.49

061

564 

0.50

412

256 

0.49

570

92 

0.53

454

544 

0.49

539

98 

run 2 0.53

287

836

5 

0.53

558

805

3 

0.55

241

863

7 

0.58

567

120

7 

0.58

860

447

9 

0.53

515

792

1 

0.54

392

730

3 

0.55

597

524

9 

0.58

765

338 

0.59

278

716

8 

0.50

907

393 

0.47

890

885 

0.47

667

901 

0.51

216

488 

0.48

740

111 

run 3 0.42

971

291

2 

0.64

468

343

5 

0.58

932

615

5 

0.41

163

648

4 

0.37

882

413 

0.43

818

572

8 

0.65

605

418

1 

0.59

111

111 

0.41

296

188 

0.38

202

675

1 

0.52

968

702 

0.50

144

414 

0.51

530

577 

0.51

293

921 

0.46

941

136 

run 4 

 

0.55

165

411

9 

0.42

078

100

5 

0.50

511

791

7 

0.54

288

639

3 

0.62

439

914

9 

0.54

818

018

6 

0.42

784

137

8 

0.51

039

490

3 

0.55

049

846

8 

0.62

996

373

3 

0.50

174

254 

0.50

439

296 

0.49

871

179 

0.48

256

575 

0.52

335

72 

run 5 0.53

207

138

1 

0.50

364

504

3 

0.47

801

304

5 

0.47

557

950

6 

0.52

281

667

7 

0.54

605

154

4 

0.51

582

768

8 

0.49

046

389

7 

0.48

575

951

3 

0.52

681

996

8 

0.47

921

724 

0.50

579

434 

0.47

390

503 

0.49

338

593 

0.48

323

192 

run 6 0.51

032

879

8 

0.64

323

031

4 

0.53

617

842

7 

0.49

849

582

4 

0.51

057

518

5 

0.51

081

815

7 

0.64

016

568

4 

0.53

380

893

2 

0.49

774

886

4 

0.51

745

667

7 

0.50

827

645 

0.49

901

04 

0.51

706

735 

0.49

148

487 

0.49

607

594 

run 7 0.50

038

773

1 

0.52

372

298

2 

0.52

912

593

7 

0.51

487

531

8 

0.48

929

778

3 

0.50

036

572

8 

0.52

705

704

9 

0.54

388

32 

0.51

852

223 

0.49

335

257

4 

0.51

055

052 

0.50

287

882 

0.50

213

576 

0.49

039

096 

0.50

110

716 

run 8 0.55

298

148

1 

0.39

770

446

4 

0.56

433

443

6 

0.52

985

333

4 

0.50

771

610

8 

0.55

633

586

3 

0.40

438

903

7 

0.57

061

080

2 

0.54

142

302

8 

0.51

238

333

4 

0.49

173

748 

0.47

443

241 

0.49

582

191 

0.50

513

994 

0.51

214

961 

run 9 

run 10 

0.50

916

523

7 

0.44

422

192

7 

0.44

411

428

6 

0.49

172

264

4 

0.54

638

638

3 

0.52

081

595

6 

0.45

352

904

1 

0.45

274

47 

0.49

379

298 

0.55

280

77 

0.53

733

266 

0.49

725

346 

0.50

921

313 

0.49

812

408 

0.49

034

242 

run 10 0.47

306

640

8 

0.64

590

894

4 

0.43

226

692

6 

0.63

744

086

3 

0.56

598

336

8 

0.49

047

732

7 

0.65

829

032 

0.43

181

196

4 

0.64

344

534

8 

0.57

779

902

1 

0.52

963

943 

0.52

898

773 

0.46

457

109 

0.51

933

323 

0.52

117

257 

run 11 0.51

578

468

1 

0.53

626

016

8 

0.43

565

657 

0.47

998

536 

0.49

760

224

4 

0.52

059

163

5 

0.53

013

899

4 

0.44

056

941

1 

0.48

770

418

8 

0.50

543

514

5 

0.49

649

229 

0.49

441

019 

0.45

215

274 

0.49

566

828 

0.45

196

404 

run 12 0.49

235

730

7 

0.53

936

123

5 

0.37

713

699

6 

0.60

705

362

7 

0.55

453

384

6 

0.50

224

408

2 

0.54

548

506 

0.38

479

667

1 

0.61

687

730

6 

0.56

664

617

4 

0.47

086

543 

0.50

557

337 

0.51

985

507 

0.50

879

779 

0.52

039

312 

run 13 0.41

490

620

8 

0.65

994

571

3 

0.63

500

024

9 

0.54

901

300

2 

0.51

038

588

3 

0.41

992

123 

0.66

659

467

4 

0.64

182

007

8 

0.55

153

739 

0.51

429

249

5 

0.51

851

759 

0.49

954

223 

0.51

738

194 

0.49

486

985 

0.50

761

809 

run 14 0.50

295

663

4 

0.44

186

407

8 

0.63

969

153

8 

0.41

799

893

5 

0.51

766

293

9 

0.50

765

571

3 

0.44

146

757 

0.64

689

567

5 

0.41

445

675

3 

0.52

303

537

1 

0.50

857

392 

0.53

548

298 

0.50

694

205 

0.50

335

022 

0.49

023

897 

run 15 0.49

907

118

1 

0.46

983

012

3 

0.48

123

471

1 

0.53

374

705

6 

0.61

744

563

8 

0.49

714

587

9 

0.48

085

575

8 

0.49

235

265

3 

0.53

440

001

6 

0.62

938

986

5 

0.49

691

849 

0.52

102

035 

0.52

588

06 

0.50

932

609 

0.50

780

268 

run 16 0.46

212

516

4 

0.51

467

325

8 

0.53

500

687

5 

0.48

285

040

7 

0.51

736

848

1 

0.46

710

343

4 

0.52

236

510

7 

0.54

037

94 

0.49

195

330

7 

0.52

769

445 

0.50

588

698 

0.51

391

545 

0.49

402

92 

0.49

765

33 

0.49

217

763 

run 17 0.52

280

580

5 

0.42

971

288

5 

0.49

965

661

1 

0.39

453

284

1 

0.51

683

908

4 

0.53

484

820

8 

0.43

541

903

1 

0.50

274

494 

0.40

635

532

4 

0.51

858

085

7 

0.50

440

984 

0.48

522

168 

0.47

219

512 

0.50

362

118 

0.48

705

808 

run 18 0.51

424

835

9 

0.60

308

229

8 

0.44

156

218

5 

0.51

276

333

5 

0.68

339

237

2 

0.51

958

013

1 

0.61

427

584

3 

0.44

528

158

9 

0.52

768

471

3 

0.69

511

061

8 

0.48

777

495 

0.50

746

709 

0.50

102

491 

0.49

692

261 

0.52

128

46 

run 19 0.51

546

036

6 

0.56

954

601

7 

0.46

438

52 

0.53

068

942

9 

0.57

561

613

3 

0.52

275

049

6 

0.59

457

233 

0.47

495

149

9 

0.53

526

792

9 

0.58

295

915

2 

0.51

135

694 

0.49

929

126 

0.49

396

446 

0.49

417

331 

0.50

465

994 

run 20 0.61

862

277

8 

0.50

349

346

4 

0.50

299

312

7 

0.49

092

515

5 

0.54

179

980

9 

0.63

800

879 

0.49

934

606

4 

0.51

518

401

5 

0.48

731

321

5 

0.54

637

009

9 

0.47

877

609 

0.51

309

887 

0.51

451

389 

0.52

178

86 

0.48

813

755 

run 21 0.42

264

471

2 

0.57

982

297

3 

0.61

026

802

6 

0.48

903

392

9 

0.54

590

442 

0.43

456

665

5 

0.57

892

418

2 

0.62

248

252

9 

0.48

951

423

1 

0.55

747

952

6 

0.47

304

7 

0.49

727

442 

0.48

821

514 

0.48

944

367 

0.51

082

585 

run 22 0.51

225

342

7 

0.50

114

578

7 

0.45

262

700

5 

0.45

749

832

5 

0.62

485

241

5 

0.52

266

246

9 

0.51

319

719

5 

0.45

194

879

1 

0.46

196

072 

0.63

536

617

1 

0.49

880

501 

0.50

898

445 

0.50

340

309 

0.48

651

929 

0.51

221

754 

run 23 0.45

262

392 

0.39

611

701

7 

0.47

287

801

3 

0.54

555

337

5 

0.53

264

506

6 

0.45

348

896

4 

0.38

903

127 

0.48

536

689

8 

0.55

555

171

4 

0.53

085

896

9 

0.49

402

892 

0.48

937

659 

0.51

480

298 

0.50

405

976 

0.53

420

784 

run 24 0.37

176

745

6 

0.62

174

730

2 

0.49

057

478

3 

0.57

861

373 

0.42

427

436

7 

0.37

423

687

8 

0.63

003

735

2 

0.49

164

256 

0.57

722

328 

0.42

763

729

9 

0.49

047

417 

0.47

022

492 

0.51

766

876 

0.49

636

542 

0.51

836

157 

run 25 0.50

457

221

2 

0.54

632

311

5 

0.45

392

435

1 

0.57

281

464

1 

0.48

824

195

6 

0.50

317

068 

0.54

512

477

9 

0.46

512

228

3 

0.57

748

029

5 

0.50

052

133

9 

0.47

700

581 

0.52

082

734 

0.48

453

761 

0.48

524

768 

0.51

545

363 

run 26 0.49

162

428

5 

0.43

129

628

6 

0.67

632

187

1 

0.44

459

376

4 

0.46

179

277

8 

0.49

649

625

9 

0.43

178

442

4 

0.68

627

791

2 

0.43

883

141

4 

0.46

832

739

2 

0.50

292

612 

0.50

800

267 

0.50

188

153 

0.51

105

642 

0.49

876

828 

run 27 0.53

605

464

6 

0.50

378

289

4 

0.49

044

452

1 

0.62

510

282

4 

0.40

957

274

3 

0.55

411

017

7 

0.50

367

143

8 

0.49

449

705

5 

0.62

497

654 

0.41

990

972

8 

0.49

491

07 

0.50

856

891 

0.52

032

801 

0.50

963

975 

0.51

086

595 

run 28 0.53

666

103

8 

0.47

821

490

1 

0.62

618

440

9 

0.42

457

882

9 

0.43

600

846

4 

0.54

611

118

7 

0.48

795

188 

0.63

239

518

4 

0.44

196

181

7 

0.43

573

146

2 

0.50

944

094 

0.51

262

312 

0.51

282

067 

0.49

451

086 

0.48

633

103 

run 29 0.52

994

446

6 

0.47

839

243

5 

0.44

639

345

2 

0.39

137

409

5 

0.42

668

325

8 

0.53

429

494

6 

0.48

178

057

5 

0.44

772

248

3 

0.39

993

239

1 

0.42

604

861

2 

0.53

466

684 

0.48

403

406 

0.51

332

571 

0.50

936

72 

0.51

258

207 

run 30 0.53

034

85 

0.60

971

402

2 

0.46

503

540

5 

0.48

857

114

6 

0.48

649

490

5 

0.53

167

534

7 

0.61

028

302

1 

0.47

707

475

3 

0.50

837

031

2 

0.49

304

516 

0.50

704

478 

0.51

915

201 

0.50

318

181 

0.48

483

12 

0.51

124

067 

aver-

age 

0.50

4 

0.52

0 

0.51

5 

0.50

7 

0.52

1 

0.51

1 

0.52

6 

0.52

2 

0.51

2 

0.52

8 

0.50

165

986 

0.50

304

392 

0.50

024

084 

0.50

124

289 

0.50

206

127 

sd 0.05 0.07 0.07 0.06 0.06

7 

0.05

1 

0.08 0.07 0.06 0.06

9 

0.01 0.01 0.02 0.01 0.01

7 
*:  Number of Large Effect QTL  **: % of Genetic Variance Explained by Large Effect QTL 
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Table S3.2. Heritability estimates 
2ˆ
gh  in GBLUP from 30 Monte Carlo replicates, across all 

configurations of effects in LOW-MAF scenario and genetic information used. 

Data 

used 

only markers markers and QTLs only QTLs 

LEQTLs

* 

50 250 none 50 250 none 50 250 none 

pve** 25% 75% 25% 75% - 25% 75% 25% 75% - 25% 75% 25% 75% - 

run 1  0.34

699

282 

0.19

930

061 

0.32

733

194 

0.32

719

934 

0.281

50596 

0.34

270

392 

0.19

725

232 

0.32

846

111 

0.33

333

278 

0.287

22224 

0.51

116

114 

0.48

537

207 

0.45

786

239 

0.46

237

448 

0.470

5372 run 2 0.35

631

155 

0.28

458

025 

0.25

359

844 

0.25

884

187 

0.366

94559 

0.35

194

403 

0.27

910

011 

0.25

332

687 

0.25

309

24 

0.372

37036 

0.45

517

372 

0.47

784

756 

0.47

834

33 

0.49

981

991 

0.469

86616 run 3 0.20

020

696 

0.38

122

198 

0.32

772

968 

0.20

038

752 

0.335

9239 

0.19

901

987 

0.38

373

98 

0.33

663

835 

0.20

223

206 

0.333

63561 

0.49

264

315 

0.47

398

075 

0.50

877

669 

0.48

982

018 

0.480

463 run 4 

 

0.32

155

404 

0.32

740

804 

0.29

430

457 

0.30

349

817 

0.416

20535 

0.32

502

859 

0.33

418

458 

0.29

296

061 

0.30

812

867 

0.413

16008 

0.50

416

48 

0.47

064

877 

0.49

802

485 

0.49

806

876 

0.484

21188 run 5 0.27

071

174 

0.29

990

706 

0.27

254

354 

0.39

440

54 

0.293

08545 

0.27

202

982 

0.30

286

739 

0.27

291

504 

0.39

623

297 

0.291

76924 

0.47

586

412 

0.50

552

77 

0.46

459

275 

0.49

738

236 

0.498

4041 run 6 0.36

399

508 

0.40

016

332 

0.34

787

004 

0.32

027

554 

0.236

59994 

0.36

796

728 

0.40

719

76 

0.34

598

479 

0.32

549

253 

0.240

48532 

0.51

488

388 

0.47

818

821 

0.48

410

997 

0.48

673

588 

0.520

64382 run 7 0.27

473

164 

0.32

965

447 

0.33

662

996 

0.37

206

514 

0.375

98444 

0.27

045

368 

0.33

167

003 

0.33

527

546 

0.37

356

089 

0.373

62156 

0.51

858

493 

0.48

317

379 

0.52

191

596 

0.50

151

715 

0.505

91691 run 8 0.36

794

66 

0.23

017

341 

0.26

408

454 

0.35

086

145 

0.462

39264 

0.36

813

687 

0.23

087

061 

0.26

500

749 

0.34

995

429 

0.463

11269 

0.49

969

373 

0.45

575

656 

0.48

310

283 

0.49

758

258 

0.495

03804 run 9 

run 10 

0.25

747

16 

0.30

860

286 

0.38

913

442 

0.27

017

756 

0.274

21757 

0.25

977

949 

0.31

358

466 

0.39

471

441 

0.27

026

424 

0.269

88441 

0.52

454

733 

0.51

598

698 

0.48

599

112 

0.47

840

411 

0.495

77288 run 10 0.31

308

347 

0.44

131

69 

0.29

858

834 

0.26

412

079 

0.325

5947 

0.31

330

936 

0.44

735

789 

0.29

562

628 

0.26

333

518 

0.320

73231 

0.49

568

066 

0.49

819

319 

0.47

279

836 

0.48

917

119 

0.470

0515 run 11 0.27

677

26 

0.27

358

459 

0.27

612

744 

0.21

309

822 

0.248

53633 

0.27

529

882 

0.27

123

733 

0.28

273

967 

0.20

779

087 

0.247

57782 

0.48

863

516 

0.48

419

03 

0.47

910

13 

0.49

061

715 

0.482

04722 run 12 0.26

638

403 

0.33

886

647 

0.27

536

071 

0.28

992

49 

0.435

42769 

0.26

683

797 

0.33

914

233 

0.27

628

71 

0.29

315

209 

0.436

01541 

0.46

059

732 

0.49

558

713 

0.47

120

516 

0.48

198

577 

0.492

64602 run 13 0.28

870

077 

0.26

944

965 

0.45

107

502 

0.32

200

115 

0.255

46126 

0.29

147

075 

0.27

646

083 

0.45

072

612 

0.31

999

633 

0.250

43858 

0.49

216

917 

0.48

270

237 

0.46

982

459 

0.43

961

471 

0.491

38942 run 14 0.28

660

369 

0.34

842

273 

0.24

931

526 

0.29

307

828 

0.428

76119 

0.28

697

152 

0.35

042

875 

0.25

150

499 

0.29

056

211 

0.427

85016 

0.47

826

905 

0.47

890

493 

0.48

239

746 

0.46

753

643 

0.511

6582 run 15 0.26

231

625 

0.34

122

918 

0.33

925

117 

0.34

870

059 

0.424

66427 

0.25

830

359 

0.34

086

254 

0.33

145

89 

0.34

256

495 

0.416

89712 

0.47

299

56 

0.47

034

556 

0.49

971

522 

0.50

447

431 

0.502

82972 run 16 0.22

406

491 

0.29

368

005 

0.37

966

083 

0.26

926

087 

0.332

03687 

0.22

439

924 

0.30

185

028 

0.37

055

69 

0.26

803

665 

0.343

63646 

0.51

073

138 

0.51

258

413 

0.48

333

117 

0.46

995

4 

0.475

93695 run 17 0.29

828

284 

0.35

133

379 

0.24

441

137 

0.41

002

083 

0.230

07285 

0.29

764

121 

0.35

820

987 

0.24

563

61 

0.40

799

901 

0.229

73039 

0.47

719

608 

0.48

473

5 

0.48

719

542 

0.48

823

008 

0.454

63644 run 18 0.25

891

033 

0.27

472

332 

0.22

610

083 

0.32

798

182 

0.288

16286 

0.26

853

358 

0.27

512

093 

0.23

521

582 

0.33

080

698 

0.284

90383 

0.48

279

604 

0.50

271

717 

0.50

626

038 

0.48

942

554 

0.443

72421 run 19 0.28

231

7 

0.34

462

347 

0.23

920

054 

0.27

567

273 

0.277

28298 

0.28

528

489 

0.34

256

341 

0.24

285

787 

0.27

745

596 

0.279

49331 

0.49

671

299 

0.46

710

462 

0.46

579

321 

0.46

131

28 

0.490

05432 run 20 0.38

722

866 

0.52

163

032 

0.26

831

61 

0.22

810

203 

0.292

8362 

0.38

903

372 

0.51

852

171 

0.27

342

891 

0.23

572

922 

0.291

54856 

0.48

814

36 

0.50

317

919 

0.47

708

718 

0.49

620

819 

0.472

80399 run 21 0.34

984

304 

0.36

892

556 

0.41

364

946 

0.35

765

179 

0.282

57243 

0.35

087

444 

0.36

806

976 

0.41

086

377 

0.35

008

161 

0.289

13785 

0.51

835

335 

0.48

043

452 

0.50

362

935 

0.45

068

35 

0.471

02915 run 22 0.22

788

359 

0.32

302

052 

0.23

910

139 

0.37

239

243 

0.406

21801 

0.22

456

563 

0.32

073

446 

0.24

527

644 

0.37

879

727 

0.408

92954 

0.46

588

771 

0.48

152

634 

0.48

006

057 

0.48

202

044 

0.505

7055 run 23 0.22

926

949 

0.25

636

147 

0.36

279

317 

0.33

258

598 

0.424

99204 

0.23

146

207 

0.26

169

733 

0.36

618

77 

0.32

716

081 

0.422

70528 

0.47

061

446 

0.45

723

318 

0.45

411

401 

0.49

875

747 

0.493

33469 run 24 0.23

851

454 

0.31

649

712 

0.27

451

648 

0.30

870

052 

0.196

04434 

0.24

545

86 

0.31

274

961 

0.27

260

694 

0.30

633

136 

0.196

49718 

0.47

182

789 

0.47

662

63 

0.50

313

82 

0.47

648

551 

0.463

87244 run 25 0.28

636

921 

0.30

790

327 

0.27

400

975 

0.29

441

468 

0.342

85294 

0.28

868

246 

0.30

951

866 

0.27

366

147 

0.29

567

795 

0.339

8191 

0.49

466

541 

0.47

945

032 

0.48

570

879 

0.47

951

021 

0.489

73852 run 26 0.36

470

437 

0.40

122

52 

0.40

127

401 

0.27

482

789 

0.337

92855 

0.36

428

286 

0.39

751

516 

0.40

001

721 

0.27

609

077 

0.335

78571 

0.47

410

47 

0.47

168

797 

0.46

933

229 

0.50

628

697 

0.484

69993 run 27 0.38

971

06 

0.26

882

868 

0.36

506

078 

0.34

007

722 

0.249

92236 

0.39

392

719 

0.26

854

553 

0.35

975

2 

0.34

254

315 

0.252

42023 

0.48

061

822 

0.48

431

628 

0.48

566

341 

0.48

622

502 

0.484

79049 run 28 0.33

505

686 

0.34

060

309 

0.34

670

365 

0.31

500

015 

0.260

21422 

0.34

178

245 

0.33

849

278 

0.35

033

472 

0.31

694

703 

0.260

18945 

0.48

161

988 

0.47

902

291 

0.49

744

854 

0.51

284

95 

0.472

43208 run 29 0.27

523

014 

0.34

207

859 

0.35

011

792 

0.31

934

604 

0.304

4072 

0.27

384

967 

0.34

227

394 

0.34

602

872 

0.31

678

799 

0.300

03737 

0.47

215

508 

0.46

074

178 

0.47

862

675 

0.50

376

64 

0.449

00258 run 30 0.31

871

714 

0.35

636

937 

0.22

909

385 

0.24

445

663 

0.231

39135 

0.31

906

429 

0.35

671

849 

0.23

149

308 

0.24

049

152 

0.233

61919 

0.47

431

514 

0.50

315

083 

0.49

397

36 

0.47

485

852 

0.517

55195 aver-

age 

0.29

732

952 

0.32

805

618 

0.31

056

517 

0.30

663

758 

0.320

60805 

0.29

826

993 

0.32

928

462 

0.31

125

15 

0.30

668

766 

0.320

44088 

0.48

816

019 

0.48

336

388 

0.48

430

416 

0.48

538

931 

0.484

69298 sd 0.05

1 

0.06

2 

0.06

0 

0.05

0 

0.072 0.05

1 

0.06

2 

0.05

8 

0.05

1 

0.072 0.01

8 

0.01

5 

0.01

5 

0.01

7 

0.019 

*:  Number of Large Effect QTL  **: % of Genetic Variance Explained by Large Effect QTL 

  



 3rd CHAPTER Accuracy of Predictions with Unrelated Individuals 87 

Table S3.3. Correlation between true and predicted phenotype )ˆ,( yycor : Average (SD) over 

all 30 replications. 

     Simulation Scenarios                   Data Analysis Method & Information Used       . 

Number 

of Large 

Effect QTL 

% of 

Genetic 

Variance 

Explained 

by Large 

Effect QTL 

Sampl-

ing of 

QTL 

         GBLUP        .     BayesA     .    Spike-Slab    . 

M
ar

ke
rs

 

M
ar

ke
rs

+
Q

TL
 

Q
TL

 

M
ar

ke
rs

 

M
ar

ke
rs

+
Q

TL
 

Q
TL

 

M
ar

ke
rs

 

M
ar

ke
rs

+
Q

TL
 

Q
TL

 

50 

25 

UNIF 0.174(
0.04) 

0.174 
(0.04) 

0.463 
(0.04) 

0.283 
(0.06) 

0.303 
(0.05) 

0.513 
(0.05) 

0.309 
(0.05) 

0.331 
(0.05) 

0.513 
(0.04) 

LOW-

MAF 
0.104 
(0.05) 

0.104 
(0.05) 

0.447 
(0.04) 

0.200 
(0.08) 

0.236 
(0.05) 

0.516 
(0.04) 

0.268 
(0.05) 

0.305 
(0.05) 

0.504 
(0.04) 

75 

UNIF 0.147 
(0.05) 

0.147 
(0.05) 

0.442 
(0.05) 

0.512 
(0.04) 

0.547 
(0.04) 

0.604 
(0.04) 

0.554 
(0.04) 

0.581 
(0.03) 

0.601 
(0.03) 

LOW-

MAF 
0.085 
(0.04) 

0.085 
(0.04) 

0.427 
(0.04) 

0.473 
(0.05) 

0.524 
(0.04) 

0.607 
(0.03) 

0.528 
(0.04) 

0.570 
(0.03) 

0.601 
(0.03) 

250 

25 

UNIF 0.158 
(0.05) 

0.157 
(0.05) 

0.459 
(0.04) 

0.178 
(0.06) 

0.193 
(0.05) 

0.492 
(0.04) 

0.209 
(0.06) 

0.227 
(0.05) 

0.488 
(0.04) 

LOW-

MAF 
0.086 
(0.05) 

0.085 
(0.05) 

0.429 
(0.04) 

0.110 
(0.05) 

0.111 
(0.06) 

0.485 
(0.05) 

0.155 
(0.06) 

0.175 
(0.06) 

0.465 
(0.04) 

75 

UNIF 0.153 
(0.04) 

0.154 
(0.04) 

0.434 
(0.04) 

0.330 
(0.06) 

0.376 
(0.05) 

0.550 
(0.04) 

0.443 
(0.05) 

0.483 
(0.05) 

0.565 
(0.04) 

LOW-

MAF 
0.105 
(0.04) 

0.106 
(0.04) 

0.440 
(0.04) 

0.286 
(0.05) 

0.325 
(0.03) 

0.564 
(0.04) 

0.420 
(0.05) 

0.470 
(0.04) 

0.564 
(0.04) 

None --- 

UNIF 0.155 
(0.06) 

0.153 
(0.06) 

0.445 
(0.05) 

0.143 
(0.07) 

0.162 
(0.06) 

0.447 
(0.04) 

0.161 
(0.06) 

0.179 
(0.06) 

0.464 
(0.05) 

LOW-

MAF 
0.094 
(0.05) 

0.094 
(0.05) 

0.449 
(0.04) 

0.069 
(0.05) 

0.077 
(0.05) 

0.475 
(0.04) 

0.080 
(0.05) 

0.095 
(0.05) 

0.476 
(0.04) 
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Table S3.4. R-squared in validation group: Average (SD) over 30 replications. 

     Simulation Scenarios    .                  Data Analysis Method & Information Used          . 

Number 

of Large 

Effect QTL 

% of 

Genetic 

Variance 

Explained 

by Large 

Effect QTL 

Sampl-

ing of 

QTL 

         GBLUP        .     BayesA     .    Spike-Slab    . 

M
ar

ke
rs

 

M
ar

ke
rs

+
Q

TL
 

Q
TL

 

M
ar

ke
rs

 

M
ar

ke
rs

+
Q

TL
 

Q
TL

 

M
ar

ke
rs

 

M
ar

ke
rs

+
Q

TL
 

Q
TL

 

50 

25 

UNIF 0.031 
(0.01) 

0.031 
(0.01) 

0.216 
(0.03) 

0.082 
(0.03) 

0.093 
(0.03) 

0.264 
(0.05) 

0.097 
(0.03) 

0.111 
(0.03) 

0.264 
(0.04) 

LOW-

MAF 
0.012 
(0.01) 

0.012 
(0.01) 

0.201 
(0.03) 

0.037 
(0.05) 

0.058 
(0.03) 

0.267 
(0.04) 

0.073 
(0.03) 

0.094 
(0.03) 

0.255 
(0.03) 

75 

UNIF 0.025 
(0.02) 

0.025 
(0.02) 

0.197 
(0.04) 

0.264 
(0.04) 

0.300 
(0.04) 

0.366 
(0.05) 

0.309 
(0.04) 

0.339 
(0.04) 

0.373 
(0.04) 

LOW-

MAF 
0.011 
(0.01) 

0.010 
(0.01) 

0.185 
(0.04) 

0.227 
(0.04) 

0.277 
(0.04) 

0.370 
(0.03) 

0.281 
(0.04) 

0.327 
(0.04) 

0.362 
(0.03) 

250 

25 

UNIF 0.027 
(0.01) 

0.026 
(0.01) 

0.212 
(0.04) 

0.304 
(0.02) 

0.039 
(0.02) 

0.244 
(0.04) 

0.046 
(0.02) 

0.054 
(0.02) 

0.240 
(0.04) 

LOW-

MAF 
0.009 
(0.01) 

0.009 
(0.01) 

0.185 
(0.04) 

0.014 
(0.01) 

0.014 
(0.02) 

0.235 
(0.05) 

0.027 
(0.02) 

0.033 
(0.02) 

0.217 
(0.04) 

75 

UNIF 0.025 
(0.01) 

0.026 
(0.01) 

0.189 
(0.04) 

0.111 
(0.04) 

0.144 
(0.04) 

0.304 
(0.04) 

0.198 
(0.04) 

0.235 
(0.05) 

0.321 
(0.05) 

LOW-

MAF 
0.016 
(0.01) 

0.016 
(0.01) 

0.197 
(0.03) 

0.086 
(0.03) 

0.108 
(0.02) 

0.321 
(0.04) 

0.180 
(0.05) 

0.224 
(0.04) 

0.321 
(0.04) 

None --- 

UNIF 0.026 
(0.02) 

0.025 
(0.02) 

0.199 
(0.04) 

0.013 
(0.04) 

0.028 
(0.02) 

0.200 
(0.04) 

0.028 
(0.02) 

0.034 
(0.02) 

0.216 
(0.05) 

LOW-

MAF 
0.011 
(0.01) 

0.011 
(0.01) 

0.203 
(0.03) 

0.005 
(0.01) 

0.007 
(0.01) 

0.227 
(0.03) 

0.008 
(0.01) 

0.010 
(0.01) 

0.229 
(0.03) 
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TableS3.5. Correlation and R-squared between human height and genomic predictions in 

testing data sets by method and testing set. 

 Correlation R-squared 

Method Bayes A Spike-Slab GBLUP Bayes A Spike-Slab GBLUP 

run 1 0.238 0.244 0.247 0.068 0.065 0.067 

run 2 0.107 0.106 0.109 0.001 0.003 0.007 

run 3 0.122 0.133 0.130 0.003 0.014 0.012 

run 4 0.153 0.155 0.180 0.021 0.025 0.034 

run 5 0.138 0.146 0.148 0.016 0.022 0.023 

run 6 0.254 0.269 0.261 0.061 0.058 0.057 

run 7 0.231 0.228 0.233 0.053 0.050 0.052 

run 8 0.131 0.137 0.146 0.011 0.019 0.021 

run 9 0.142 0.152 0.166 0.012 0.021 0.027 

run 10 0.205 0.232 0.219 0.045 0.053 0.049 

run 11 0.170 0.176 0.194 0.031 0.035 0.041 

run 12 0.157 0.158 0.160 0.029 0.033 0.034 

run 13 0.117 0.146 0.115 0.004 0.020 0.007 

run 14 0.128 0.126 0.133 0.010 0.014 0.016 

run 15 0.174 0.153 0.178 0.035 0.029 0.038 

run 16 0.143 0.155 0.164 0.024 0.033 0.036 

run 17 0.210 0.221 0.227 0.044 0.048 0.052 

run 18 0.199 0.214 0.217 0.040 0.045 0.047 

run 19 0.176 0.178 0.200 0.034 0.035 0.043 

run 20 0.083 0.103 0.109 -0.004 0.010 0.011 

run 21 0.089 0.096 0.105 -0.011 0.000 0.002 

run 22 0.126 0.128 0.141 0.005 0.012 0.016 

run 23 0.171 0.175 0.185 0.030 0.034 0.037 

run 24 0.209 0.195 0.204 0.043 0.037 0.041 

run 25 0.124 0.129 0.122 0.026 0.033 0.030 

run 26 0.120 0.136 0.145 0.010 0.020 0.023 

run 27 0.134 0.139 0.137 0.014 0.021 0.019 

run 28 0.160 0.166 0.160 0.021 0.027 0.025 

run 29 0.187 0.181 0.179 0.034 0.033 0.032 

run 30 0.174 0.172 0.163 0.033 0.034 0.031 

average 0.159 0.165 0.169 0.025 0.029 0.031 

sd 0.044 0.043 0.043 0.019 0.016 0.016 
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Abstract 

The understanding of non-random association between loci, termed linkage disequilibrium 

(LD), plays a central role in genomic research. Since causal mutations are generally not in-

cluded in genomic marker data, LD between those and available markers is essential for 

capturing the effects of causal loci on localizing genes responsible for traits. Thus, the inter-

pretation of association studies requires a detailed knowledge of LD patterns. It is well-known 

that most LD measures depend on minor allele frequencies (MAF) of the considered loci and 

the magnitude of LD is influenced by the physical distances between loci.  

In the present study, a procedure to compare the LD structure between genomic regions 

comprising several markers each is suggested. The approach accounts for different scaling 

factors, namely the distribution of MAF, the distribution of pair-wise differences in MAF, and 

the physical extent of compared regions, reflected by the distribution of pair-wise physical 

distances. In the first step, genomic regions are matched based on similarity in these scaling 

factors. In the second step, chromosome- and genome-wide significance tests for differences 

in medians of LD measures in each pair are performed.  

The proposed framework was applied to test the hypothesis that the average LD is different 

in genic and non-genic regions. This was tested with a genome-wide approach with data sets 

for humans (Homo sapiens), a highly selected chicken line (Gallus gallus domesticus) and 

the model plant Arabidopsis thaliana. In all three data sets we found a significantly higher 

level of LD in genic regions compared to non-genic regions. About 31% more LD was de-

tected genome-wide in genic compared to non-genic regions in Arabidopsis thaliana, 

followed by 13.6% in human and 6% chicken. Chromosome-wide comparison discovered 

significant differences on all 5 chromosomes in Arabidopsis thaliana and on one third of the 

human and of the chicken chromosomes. 
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Author Summary 

Non-random association between loci, termed linkage disequilibrium (LD), is a central pa-

rameter in genetic studies. Most LD measures are highly affected by the constellation of 

minor allele frequencies (MAF) and physical distances of the considered loci. In this study, 

we suggest a novel procedure to compare the LD structure between genomic regions com-

prising several markers each, which accounts for different scaling factors. To avoid a scale-

caused bias, the distribution of MAF, the distribution of pair-wise differences in MAF, and the 

distribution of pair-wise physical distances were considered. In the first step we matched ge-

nomic regions based on similarity in these scaling factors and in the next step we applied 

significance tests for differences in LD measures in each matched pair. We hypothesized a 

difference in LD average in genic compared to non-genic regions and tested this hypothesis 

with real data sets for humans, a highly selected chicken line and the model plant Arabidop-

sis thaliana. In genome-wide comparisons we detected 31% more genic LD in Arabidopsis 

thaliana, followed by 13.6% in human and 6% in chicken. In chromosome-wide comparisons 

we discovered significant differences on all chromosomes in Arabidopsis thaliana and on one 

third of the human and of the chicken chromosomes. 
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Introduction 

In genomic studies, associations between traits of interest and genomic polymorphisms are 

sought. In most whole genome marker data sets, the causal variants are generally not in-

cluded but the effects of quantitative loci are reflected by markers that are in linkage 

disequilibrium (LD) with the causal loci (e.g. Jorde, 1995). For this reason, LD has become 

particularly instrumental in mapping genes that cause diseases (McVean et al., 2004; Meyer-

Lindenberg et al., 2006; Lin et al., 2004). LD patterns also reflect the demographic develop-

ment and demographic processes like migration and admixture and can be used to infer 

respective parameters (e.g. McVean et al., 2004; Ardlie et al., 2002; Smith et al., 2005). 

Awareness of LD patterns in the genome is thereby essential for correctly interpreting results 

from Genome-Wide Association Studies (GWAS). Rare variants will only be captured if they 

are in high LD with observable markers, which is only possible if the MAF of the causal vari-

ant and the marker are of similar magnitude (Meuwissen et al., 2002; Zondervan and 

Cardon, 2004). In populations with a limited effective population size, such as breeding popu-

lations, high LD extends over long physical distances. In such cases, methods utilizing LD 

mapping allow for more efficient usage of low density single nucleotide polymorphism (SNP) 

chips already available for genomic selection (Meuwissen et al., 2002; Zhao et al., 2007; Xu 

et al., 2013). 

Large-scale data from high density SNP chips provide fine scale resolution LD maps for 

many species (Kruglyak, 1999; La Chapelle and Wright, 1998; Kim et al., 2007) and can be 

used to analyze the genome-wide LD structure. A wide range of scientific insights or ground-

breaking findings based on LD patterns has been gained in human genetics (Huttley et al., 

1999; Conrad et al., 2006; Smith et al., 2006) and in population genetics (La Chapelle and 

Wright, 1998; Hill, 1981; Mueller et al., 2005). 

Factors like mutation, recombination, selection, or genetic drift have a strong impact on the 

development and dynamics of the non-random association between loci. Influence of MAF 

on LD is disturbing the genetic analysis. Both, the decay of the non-random association be-

tween the SNPs with growing physical distance (e.g. La Chapelle and Wright, 1998) and the 

dependency of most measures of LD on minor allele frequency (MAF) are well known 

(Mueller, 2004). Hence, different remedies have been suggested. For instance, Garner and 

Slatkin (2003) used a subset of markers selected on the basis of allele frequencies for asso-

ciation studies, other methods (e.g. Lewontin, 1988; Morton et al., 2001) are based on 

various kinds of standardization to minimize the influence of MAF on LD measures. For ex-

ample, the dependency of the disequilibrium coefficient  𝐷 on MAF is reduced by 

standardizing with its maximum, but the resulting measure reaches its maximum value only if 

less than four gametes are observed. Other less MAF dependent methods need haplotype 



 4th CHAPTER  Scale corrected comparison of LD level 95 

data (e.g. index of association, homozygosity of haplotypes (Agapow and Burt, 2001), nor-

malized entropy difference (Zhao et al., 2005) or are of parametric nature (e.g. Kullback-

Leibler distance (Gianola et al., 2012))).  

Deeper insight into the LD structure of the genome, especially in genic regions, will also help 

to identify relationships between traits of interest and genetic variants, to improve the under-

standing of biological processes and also may increase the accuracy of estimating genomic 

effects. Many studies investigating the association between the loci compare the LD level in 

different populations (e.g. Conrad et al., 2006; Reich et al., 2001), but only a few studies 

compared the magnitude of the LD in genic versus non-genic regions. McVean et al. (2004) 

indicated higher recombination rates outside of genic regions in the human genome, sug-

gesting a higher rate of LD within genes. Smith et al. (2005) reported the proportion of genes 

in different quartiles of LD, while Kim et al. (2007) presented the proportion of genic markers 

in LD hotspots. Eberle et al. (2006) evaluated the decay of LD in genic and inter-genic re-

gions by assessing the number of perfectly correlated SNPs. To avoid the bias due to 

differences in MAF, the authors used only a small subset of available SNPs for the analysis 

that had identical MAF. Eberle et al. (2006) observed a higher fraction of perfectly correlated 

SNPs in genic regions compared to intergenic regions, however these observations are valid 

only for the specific subset of SNPs and cannot be automatically generalized to other not 

pre-selected sets of SNPs. So far, a general procedure for comparing LD levels between 

different genomic regions that uses the comprehensive information and accounts for various 

potential sources of bias is missing. A key challenge when comparing LD patterns between 

different regions in the genome is to eliminate the impact of MAF on LD. An additional diffi-

culty is that the density of markers varies across chromosomes and different SNP chips 

(Simianer and Erbe, 2014) and is different for genic and non-genic regions, which may lead 

to a structural bias on LD measures. 

To overcome the MAF driven limitations of LD measures and the bias caused by genome 

topology variations we propose a general framework for comparison of LD magnitude in dif-

ferent genomic regions by applying the following methodology, which is structurally similar to 

matched pairs design used in clinical studies (e.g. Laska et al., 1975): (a) identification of 

pairs of regions with most similar characteristics (MAFs, pairwise MAF differences, pairwise 

physical distances), (b) determination of the LD levels for each matched pair of regions, and 

(c) application of the Wilcoxon signed rank test to the paired LD measures at chromosome-

wide or genome-wide level. Best matching regions are identified by comparing the empirical 

cumulative distribution functions (ECDF) of the considered variables in both regions. To as-

sess the extent of linkage disequilibrium we used the squared correlation (𝑟2) derived from 

phased haplotypes, a widely used statistic describing the association between two loci 
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(Mueller, 2004). We rescaled 𝑟2 using the bounds given by VanLiere and Rosenberg (2008) 

to achieve a less MAF dependent measure of LD. The suggested approach was applied to 

test the hypothesis that the level of LD is higher in genic than in non-genic regions. We ap-

plied our approach to three real data sets: for humans (Homo sapiens), a highly selected 

chicken line (Gallus gallus domesticus) and the model plant Arabidopsis thaliana. 

 

Materials and Methods 

Statistical methods 

In a diploid organism, there are four possible combinations of alleles at two bi-allelic loci (lo-

cus 1 with major allele A or minor allele a and locus 2 with major allele B or minor allele b) 

called gametes AB, Ab, aB or ab. For ease of notation, only the frequencies of minor alleles 

𝑝1 at locus 1 and 𝑝2 at locus 2 were used, since the major allele frequencies can be ex-

pressed as 1-𝑝1 and 1-𝑝2, respectively. The coefficient of gametic (phase) disequilibrium D, 

also called disequilibrium coefficient, measures the differences between the observed fre-

quency 𝑝12 of gamete ab and its expectation under independence, yielding 𝐷 = 𝑝12 − 𝑝1𝑝2. 

The disequilibrium coefficient 𝐷 builds a basis for several measures of allelic association. 

Pearson’s correlation coefficient r  for a 2x2 contingency table representing gametic frequen-

cies can be rewritten as 𝑟 =
𝐷

√𝑝1(1−𝑝1)𝑝2(1−𝑝2)
. Note that the absolute value, but not the sign of 

r is insensitive to an arbitrary labeling of alleles, and thus the Pearson’s squared correlation 

coefficient 
2r  is an appropriate measure of LD which was first used by Hill and Robertson 

(1968) to describe the extent of LD in finite populations. The authors also recognized that the 

range (and other characteristics) of this statistic depend on the allele frequencies, which was 

intensively considered in later studies (e.g. Devlin and Risch, 1995; Hedrick, 2005; Wray, 

2005). VanLiere and Rosenberg (2008) suggested  𝑟𝑠
2 = 2

max

2 rr , where 
2

maxr  is the maximum 

possible value of 
2r  given the respective MAFs at the two loci considered. For our studies, 

squared correlations 
2r  as well as 2

Sr were used to determine the amount of LD in compared 

genomic regions.  

For the calculation of the upper limit 2

maxr  we extended the results presented by VanLiere and 

Rosenberg (2008) and provided a formal derivation of limiting bounds for gametic frequency 

𝑝12. For this reason the manifestation of different alleles at one locus was treated as a reali-

zation of a Bernoulli random variable, where the appearance of the minor allele was defined 

as a success. Thus, the bounds for 𝑝12 are obtained by applying Fréchet-Hoeffding bounds 
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(Fréchet, 1960; Rüschendorf, 1981) on Bernoulli distributed random variables 𝑋1~𝐵(𝑝1) and 

𝑋2~𝐵(𝑝2) with success probabilities 𝑝1 = 𝑃(𝑋1 = 1) and 𝑝2 = 𝑃(𝑋2 = 1), for details see Ap-

pendix 1.  

For known minor allele frequencies 𝑝1 and 𝑝2 with 𝑝2 ≥ 𝑝1 and the difference 𝛿 = 𝑝2 − 𝑝1, the 

upper limit for 
2r  was given by  

𝑟𝑚𝑎𝑥
2 (𝛿, 𝑝2) = 1 −

𝛿

𝑝2 (𝛿 + 1 − 𝑝2)
 

which equals to the upper limit suggested by VanLiere and Rosenberg (2008). Note that this 

upper limit equals the odds ratio, which is commonly used in the survey research or in case-

control studies in the human medicine.  

A more general upper limit, based only on the differences in MAFs 𝛿 (for details see Appen-

dix 1), is given by 

𝑟𝑚𝑎𝑥
2 (𝛿) = 1 −

4𝛿

2𝛿+1
. 

Accounting for scale effects 

We consider the general problem of testing whether the LD structure differs between certain 

genomic regions, such as genic vs. non-genic regions, each region being represented by a 

number of sets of SNPs (a set may e.g. represent all SNPs in a gene). The basic idea of our 

approach is, similar to the matched pairs design (Laska et al., 1975), for a given reference 

set of SNPs to find a best matching control set (a set may e.g. represent SNPs in a non-

genic chromosomal region) with the same number of SNPs that is most similar in all charac-

teristics known to affect the LD measures. For each pair of matching sets, LD measures 

were calculated and averaged. Finally statistical tests were performed across all pairs of sets 

to verify whether the median differences are significantly different.  

Identifying best matching sets. We denoted a reference set (for example a gene) consist-

ing of jm  SNPs as jR , and the best matching set of markers with the most similar 

characteristics on the chosen scales as the control set jC  (for example subset of markers 

from a non-genic region). We used MAFs, pairwise differences between the MAFs ( ), and 

pairwise physical distances (PWD) as most relevant characteristics to identify similarity be-

tween genomic regions. To identify this best matching control set jC , the control region was 

divided into jN  candidate subsets 
jjNjkj CCC  ,,,1
 by sliding windows of size jm  SNPs 

(see Fig. 4.1).  
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Figure 4.1. Work flow for identifying best matching sets 

The larger the reference set, the smaller the number of candidate subsets 
jN . To achieve 

stability of estimates, we excluded any reference sets with less than 10 SNPs or less than 50 

candidate subsets jkC  from further analysis, since a sufficient similarity between jR  and the 

best matching jC  might not be assured in these cases.  
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For each reference set 
jR  and candidate subset

jkC , the empirical cumulative distribution 

functions of MAFs, pairwise differences between the MAFs, and pairwise physical distances, 

were calculated separately. For each of the variables the area (A) between the ECDF curves 

for the reference set 
jR  and candidate subset 

jkC , (also called Wasserstein metric (Vaser-

stein, 1969; Dobrushin, 1970) was determined, which was denoted as )( jk

MAFA , )( jkA , and 

)( jk

PWDA , respectively (an example is given in Fig. S4.1). For selecting a control set 
jkC  which 

is most similar in all characteristics, we ranked firstly all )( jk

MAFA , )( jkA  and )( jk

PWDA  over 

jNk ,,1  in each characteristic separately. Finally an overall score 
jjNjkj TTT ,,,,1   

was built by summing up those three ranks for each 
jkC  to a total score .jkT  The candidate 

subset 
jkC  with the lowest overall score was linked as matching control set 

jC  to the refer-

ence set 
jR .  

Determining the differences in LD level and statistical significance testing. For all pairs 

of SNPs within each 𝑅𝑗  and each 𝐶𝑗 we calculated 
2r  and determined their medians 

jRm̂  

and 
jCm̂ , respectively. The Wilcoxon signed rank test was then applied to compare the LD 

level in both regions and to test the null hypothesis that the median difference between pairs 

of 
jRm  and 

jCm  is equal to zero against the alternative hypothesis that this median difference 

is not equal to zero (two-sided testing). The comparisons are performed chromosome-wise 

as well as at the genome-wide level. Similar calculations were performed for  𝑟𝑠
2. In all tests 

we used a 5% significance level.  

Data 

The LD structure in genic and non-genic regions was investigated using data from three dif-

ferent species: Arabidopsis thaliana, Homo sapiens and Gallus gallus domesticus (a 

summary for all three data sets is given in Table 4.1). 

Arabidopsis thaliana 

We used an A. thaliana data set published by Atwell et al. (2010). Data consisted of 199 

unique accessions, fully homozygous inbred lines, which had been genotyped using the 

Affymetrix 250 K SNP-tiling array (AtSNPtile1), and was downloaded from 

https://cynin.gmi.oeaw.ac.at/home/resources/atpolydb. We removed 14 SNPs with missing 

genotype rate greater than or equal to 0.01 and 170 SNPs with MAF less than 0.01. All indi-

viduals passed quality control and the missing genotypes rate per individual was less than 

0.0001 leaving 215,947 SNPs for downstream analysis. 

https://cynin.gmi.oeaw.ac.at/home/resources/atpolydb
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Gene annotations were drawn from http://plants.ensembl.org version ‘Ensembl plant genes 

21’ (Kersey, 2014), based on the current Arabidopsis Information Resource (TAIR) 2009-10-

TAIR 10 assembly (http://www.arabidopsis.org). Only genes annotated from chromosome 1 

to 5 were used, resulting in a total of 33,323 genes. All overlapping genes were merged to 

single gene regions. We selected for the analysis those genes that had at least 10 SNPs; in 

all 3,721 gene regions were considered.  

Human (Homo sapiens) 

The genotypes used for the data analysis in humans were taken from the Gene-Environment 

Association Studies (GENEVA, Cornelis et al., 2010, www.genevastudy.org). We used a 

subset of GENEVA consisting of data from the Nurses’ Health Study and the Health Profes-

sionals’ Follow-up Study. Samples had been genotyped using the Affymetrix Genome-Wide 

Human SNP Array 6.0 with about 780 K SNPs. The data set contained genotypic records of 

5,961 individuals. 

We removed all markers with a proportion of missing genotypes per SNP greater than or 

equal to 0.01 and all individuals with a proportion of missing genotypes per individual greater 

than or equal to 0.05. Furthermore, on the basis of available pedigree information, we also 

removed all nominally related individuals and individuals with a Hispanic genomic back-

ground so that only unrelated individuals of Caucasian origin remained in the data set. We 

also set a lower threshold of 0.01 for MAF. After quality control of genomic data sample size 

of 5,827 individuals genotyped at 684,990 SNPs loci remained.  

We used gene annotations from http://ensembl.org version ‘Ensembl genes 74’ (Flicek et al., 

2013). Only genes annotated from chromosome 1 to 22 were used, which resulted in a total 

of 54,849 genes that comprised 20,364 coding genes, 20,070 non-coding genes and 14,415 

pseudogenes. After merging overlapping genes and dropping out all genic regions with less 

than 10 SNPs, 7,180 genic regions were retained for further analysis.  

Chicken (Gallus gallus domesticus) 

We used 673 individuals of a highly selected White Leghorn chicken line from a Synbreed 

(www.synbreed.tum.de) data set. Samples had been genotyped using the Affymetrix Axiom® 

Genome-Wide Chicken Genotyping Array (Kranis et al., 2013) with about 600 K SNPs. None 

of the individuals showed a missing genotype rate greater than or equal to 0.05, while SNPs 

with missing genotype rate greater than or equal to 0.01 and MAF less than0.01 were re-

moved. After quality control a sample of size 673 individuals and 277,522 SNPs remained. 

We used gene annotations from http://ensembl.org version ‘Ensembl genes 74’ (Flicek et al., 

2013). 17,108 genes annotated from chromosome 1 to 28 (except chromosomes 16 and 24), 

were used. The SNP coverage of chromosomes 16, 24 and all small chromosomes greater 

http://plants.ensembl.org/
http://www.arabidopsis.org/
file:///C:/Users/gdeloscampos/Dropbox/predictionComplexTraitaWithUnrelated/www.genevastudy.org
http://ensembl.org/
file:///C:/Users/smiller.DATA01.000/Dropbox/LD_Structure/manuscript/www.synbreed.tum.de
http://ensembl.org/
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than 28 was not sufficient for the analysis. Upon merging the overlapping genes and remov-

ing genic regions with less than 10 SNPs, we were left with 3,033 genic regions for the 

analysis.  

Density of markers, expressed as the number of SNPs per physical distance unit, varied 

across species: in A. thaliana the SNP density was around 3.0 – 3.6 SNPs per kilo base pair 

(SNPs/kbp), while in H. sapiens 0.20 – 0.36 SNPs/kbp were available. In G. g. domesticus 

the density of markers varied across chromosomes: for chromosomes 1 to 8 the marker den-

sity was very similar to the one in the human data set, while on chromosomes 9 to 28 the 

density of SNPs was about 0.4 – 1.0 SNPs/kbp. For all data sets, additional information 

about the distribution of allele frequencies, marker densities in genic and non-genic regions 

is available in supplementary Fig. S4.2-S4.7.  

Table 4.1. Summary of data sets used across all species 

Species 

Sample 

size 

No. of 

chromo-

somes 

studied 

No. of  No. of SNPs 

genes 

annota- 

ted 

genic 

regions 

studied total genic 

non-

genic 

A. thaliana 199 5 33,323 3,721 215,947 135,768 80,179 

H. sapiens 5,961 22 54,849 7,180 684,990 391,576 293,414 

G. g. domesticus 673 26 17,108 3,033 277,522 146,963 130,559 

 

Data Analysis 

We used the framework described above to compare LD levels in genic and non-genic re-

gions in the human, chicken, and Arabidopsis genome. In addition, as a control, the 

comparison between two similar non-genic regions was performed. Imputing of missing gen-

otypes as well as haplotype-phasing was performed using the BEAGLE software (version 

3.3.2; Browning and Browning, 2009).  

Before starting the analysis, some data editing was necessary: overlapping genes were ob-

served in all species, meaning that a gene was either lying completely within another gene or 

two genes overlapped partially. All overlapping genes were merged to one ’genic region‘, 

since overlapping genes are inherited together with high probability (Normark et al., 1983; 

Krakauer, 2000).  

All markers in-between these genic regions were assigned to non-genic regions. For each 

genic region G we selected one most similar non-genic region IG, using the procedure de-



 4th CHAPTER  Scale corrected comparison of LD level 102 

scribed above. In an independent procedure we chose another IG set, termed IG’, as a con-

trol, which is most similar to the IG but does not overlap with IG. In general, we searched for 

the best matching IG and IG’ on the same chromosome as G. Due to the small size of chro-

mosomes in G. g. domesticus from chromosome 6 onwards, we joined these chromosomes 

to a single chromosomal region and searched for the best matching IG and IG’ in this chro-

mosomal region. 

We applied a two-sided Wilcoxon signed rank test with the null hypotheses 0:0 G/IGH  or 

0:0 IG/IG'H  versus alternatives 0:1 G/IGH  and 0:1 IG/IG'H , where G/IG  refers to 

median differences in G/IG pairs and IG/IG'  described median differences in IG/IG’ pairs. 

Tests are performed using chromosome- or genome-wide sets of G, IG and IG’. 

Depending on the region of the genome we looked at, we expected genic and non-genic re-

gions to differ not only in the extent of LD, but also in the haplotype frequencies. We used the 

haplotype diversity H  to describe the variation in haplotype frequencies in a region, which is 

defined as (Nei and Tajima, 1981): 

 1,01
1
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







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



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m

i

if
m

m
H  , 

 

where m  is the number of SNPs in the considered region (G, IG or IG’) and if  is the (relative) 

haplotype frequency of the ith haplotype out of the 
m2  possible haplotypes. The relative hap-

lotype frequency 
N

n
f i

i   describes the proportion of the ith haplotype in all existing 

haplotypes in the considered genomic region, 

We applied a two-sided Wilcoxon signed rank test with the null hypotheses 0:0 G/IGH  and 

0:0 IG/IG'H  versus alternatives 0:1 G/IGH  and 0:1 IG/IG'H  for the haplotype diversi-

ties in G/IG and IG/IG’ comparisons. The parameters G/IG  and IG/IG'  refer to median 

differences in haplotype diversity in G/IG and IG/IG’ pairs, respectively. 

The identification procedure for G/IG and IG/IG’ pairs as well as all statistical analyses were 

implemented in R (R Core Team, 2014). The smoothing curves of pair-wise measures, 

based on natural cubic splines, was prepared using R-package ggplot2 (Wickham and 

Chang, 2013). 
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Results 

A first comparison of the amount of the LD in genic and non-genic regions was done based 

on smoothed curves of 
2r  against the physical distance. Here we considered SNPs compris-

ing 99% of all SNP pairs, excluding the upper 1% of SNP pairs with large distances. At 

distances 7  kbp in A. thaliana and distances 400  kbp in H. sapiens and G. g. domesti-

cus, only a few pairs of SNPs existed (see Fig. S4.8) and therefore were excluded from the 

analysis. A kernel smoothing of pair-wise 
2r  and 2

Sr measures is displayed in Fig. 4.2.  

 

 

Figure 4.2. Smoothed curves of squared correlation coefficients 
2r (upper panel) and 

2

Sr  (lower panel), calculated for SNP pairs in genic regions (red lines) versus matching 

non-genic regions (blue lines) with confidence regions (shaded gray) in A. thaliana, H. 

sapiens and G. g. domesticus, plotted against the physical distance in kilo base pairs.  
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The amount of LD at very short distances in A. thaliana was comparable to that observed in 

H. sapiens, but the decay was much faster in A. thaliana: SNPs located more than 7 kbp 

apart have 
2r  measures around 0.12 in non-genic regions and around 0.17 in genic regions, 

while in H. sapiens 
2r  at this distance still is about 0.25 in both genic and non-genic regions. 

As expected, in the commercial chicken line we observed a high amount of LD in general, 

spanning over wide ranges. Regardless of the absolute levels of 
2r , higher levels of LD in 

genic regions in contrast to non-genic regions were detected across all three species, most 

clearly in A. thaliana. 

The much higher average level of LD in the highly selected White Leghorn chicken popula-

tion compared to the other species is reflected by an asymmetric distribution of pair-wise 
2r : 

the center of mass was shifted to the smaller values in H. sapiens and A. thaliana, while in G. 

g. domesticus center of mass was located in the area with high values (see Fig. S4.9). Thus 

we chose the median as an appropriate summary statistic to describe LD in explored genic 

and non-genic regions and to quantify observed differences. The significance tests for chro-

mosome-wise G/IG differences ( IGG LDLD  ) in medians of 
2r  and of 2

Sr  yielded coherent 

results in most cases. Fig. 4.3 shows the averaged percentage differences 

%100/)(  GIGG LDLDLDG/IG  with corresponding standard errors, which are plotted 

against the chromosome numbers for all species (for more details see Tables S4.1 – S4.9).  

In G. g. domesticus significant median differences in 2

Sr  at 7 chromosomes (Fig. 4.3, lower 

panel) were positive and thus confirmed the assumption of higher LD level in genic com-

pared to non-genic regions. This seems to be in conflict with the observation that over long 

distances the smoothed curve of pair-wise 2

Sr for non-genic regions is higher than that for 

genic regions (Fig. 4.2, lower panel). This might be due to the fact that an increased level of 

LD in genic regions is predominantly found in shorter chromosomes, while in some of the 

large chromosomes (1, 4) LD in genic regions is less than that in non-genic regions (Fig. 

4.3). 
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Figure 4.3. Comparison of genic (G) versus non-genic (IG) regions across chromo-

somes in A. thaliana, H. sapiens and G. g. domesticus. Chromosome-wise averaged 

percentage differences seG/IG
 between medians of 

2r  in G and medians in IG (upper 

panel) and chromosome-wise averaged differences seG/IG
 between 

2

Sr  in G and in IG 

(lower panel), where se  refer to standard errors of averages. Red filled symbols indicate 

significant differences in G/IG comparison. 

 

When fitting a linear regression within species, the coefficient of determination between av-

erages per chromosome calculated for 
2r  and chromosome-wide averages calculated for 2

Sr  

was high for all species: 0.75 in H. sapiens, 0.78 in G. g. domesticus and 0.79 in A. thaliana. 
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So, decisions of Wilcoxon signed rank test based on the LD measure 
2r  corresponded to 

the test decisions made for differences in a MAF independent measure 2

Sr . This consistency 

in test results has led to the conclusion that our framework was efficient in adjusting for spa-

tial and for MAF influences.  

In case of genome-wide comparison of medians of 
2r  about 31% more LD was detected in 

genic regions than in non-genic regions in A. thaliana, followed by 13.6% in H. sapiens and 6 

% in G. g. domesticus. The comparisons of IG/IG'  between matching non-genic regions IG 

and IG’ yielded no significant differences for 
2r  but for 2

Sr  a significant difference was found 

for one chromosome in A. thaliana and G. g. domesticus, respectively, which is in the ex-

pected range under the null hypothesis (Tables S4.1 – S4.9). The outcomes of chromosome-

wise and genome-wide comparisons are summarized in Table 4.2. 

Table 4.2. Number of chromosomes with significantly (p-value <0.05 ) increased LD level in 

the comparison of genic with matching non-genic regions (
G/IG ), number of chromosomes 

with significantly different LD levels for matching non-genic regions (
IG/IG' ), and the genome 

wide average difference in LD between genic and matching non genic regions in per cent (

G/IG  [%]) for the two LD measures 
2r  and 

2

Sr . Asterisks indicate the level of significance for 

the genome-wide differences. 

*: p-value <0.05   **: p-value <0.01   ***: p-value <0.001 

 

We expected a higher LD in genic regions compared to non-genic regions and performed 53 

chromosome-wide significance tests in total (Fig. 4.3), 18 chromosomes (34%) showed a 

significantly higher LD in genic regions. In two chromosomes (chromosome 4 and 13 in 

chicken) significantly higher LD in non-genic regions was observed. This corresponds to 

3,8% of all comparisons and is below the 5% significance level. Thus the unexpected results 

for chromosomes 4 and 13 might be the false positive test outcomes obtained just by 

chance. 

Species 

Chromosomes studied Genome-wide 

Total 
G/IG  IG/IG'  

G/IG [%] 

2r  
2

Sr  2r  
2

Sr  2r  
2

Sr  

A. thaliana 5 5 5 0 1 31.2*** 27.7*** 

H. sapiens 22 5 5 0 0    13.6* 8.0** 

G. g. domesticus 26 10 9 0 1      6.0**      0.5 
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The Wilcoxon signed rank test, applied chromosome-wise, detected significant differences 

between genic and non-genic regions on all 5 chromosomes of A. thaliana, on about 1/4 of 

the human chromosomes and on about 40 per cent of the chicken chromosomes. In Fig. 4.4 

chromosome-wise percentage differences in haplotype diversities 

%100/)(/  GIGGIGG HHHH  for the three species are presented. 

 

Figure 4.4. Chromosome-wise differences in haplotype diversity in G/IG comparisons, 

across species. Chromosome-wise haplotype diversity percentage differences seH IGG  /  

plotted against the chromosome number, where se  refers to standard errors of averages. 

Red filled symbols indicate significant (p-value <0.05) differences in G/IG comparison. 

The haplotype diversity in A. thaliana and H. sapiens were both relatively high, at a compa-

rable level: chromosome-wide averages ranged between 0.85 and 0.89 in genic regions, 

accompanied by significantly lower haplotype diversity in G compared to IG (see Fig. S4.10 

and Tables S4.10-S4.12). In A. thaliana we observed %5.3/  IGGH  less diversity in hap-

lotypes at the genome-wide level, while the loss of haplotype diversity in G varied between -

2% and -5% at the chromosome level. In H. sapiens, a small significant loss %7.0/  ICGH  

was observed at the genome-wide level, whereas significant ICGH /  varied between -0.7% 

and -2.6% at the chromosome level. In G. g. domesticus, haplotype diversity of %9.2  at 

the genome-wide level was significant, albeit smaller than that in A. thaliana, whereas the 

chromosome-wide averages in genic regions ranged between 0.40 and 0.61 and the signifi-

cant ICGH / between %3.4  and %2.23  at the chromosome level was the largest of all 

three species 
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Discussion 

Apart from the proportion of protein-coding DNA in the genome, the major question is wheth-

er the changes over generations are differently occurring in different genomic regions. We 

introduced a general comparison framework, which copes with difficulties arising while per-

forming comparison of LD levels between different genomic regions, such as the impact of 

the extent of compared regions on the genome (spatial bias) and the impact of allele fre-

quencies on LD (MAF caused bias). The retrieved knowledge about variation in genomic 

regions of interests could be used, for example, to estimate a measure for likelihood of fit-

ness consequences of involved populations proposed by Gulko et al. (2014).  

 

Impact of location of a region: genic versus non-genic regions 

The results obtained for A. thaliana were in contrast to those obtained by Kim et al. (2007), 

who suggested that LD hot spots in arabidopsis are situated preferentially outside genic re-

gions. On a genome-wide level, significantly more LD in genic regions was observed in all 

three species and thus the observation by Eberle et al. (2006) for the human genome was 

confirmed and quantified. The LD levels in genic regions at very short physical distances are 

similar in A. thaliana and H. sapiens with 
2r  being about 0.3 on average (see Fig. 4.2). In A. 

thaliana a clear gap between LD amount in genic and non-genic regions is seen while in H. 

sapiens almost no G/IG difference is recorded up to a distance of about 50 kilo base pairs, 

while in maize, which is in contrast to A. thaliana an outcrossing plant, or in self-pollinating 

barley a comparable decay of LD (up to 3 kbp) was observed by Caldwell et al. (2006). 

LD spans are so short and genic regions are more conserved in A. thaliana compared to 

humans presumably is due to the fact that A. thaliana is an ubiquitous plant and the sample 

used in our studies reflects a very large effective population size (Ne) that may explain the 

rapid decay of LD. Contemporary estimates of Ne of A. thaliana, based on sequence data of 

80 strains from a wide Eurasian region indicated Ne to lie between 250,000 and 300,000 

(Cao et al., 2011). The LD level observed in G. g. domesticus is twice as high as the LD level 

in H. sapiens and LD decays much slower than in humans. This higher LD level is observed 

in G. g. domesticus over all distances. The white layer data used originate from a commercial 

line, which has been intensively selected for egg laying in a closed nucleus breeding 

scheme. Thus the degree of relatedness among the individuals in the studied sample is rela-

tively high: average pedigree based relatedness was 07.0255.0   and the average 

inbreeding coefficient was 025.010.0  . The magnitude of relatedness in the population has a 

strong impact on the effective population size, which is very low in commercial lines of chick-

en (Caldwell et al., 2006; Chao et al., 2011). For pair-wise distances ≤ 25 kbp, Qanbari at al. 
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(2010) reported values of 
2r  between 0.60 and 0.74 in four different layer lines, which is 

concordant with the magnitude of LD detected in our study. Also the decay of LD observed in 

the white layer data set ( 37.02 r  for pairs of SNPs in about 400 kbp distance) was con-

sistent with results from previous studies ( 35.02 r  for pairs of SNPs in about 200 - 500 kbp 

distance (Qanbari et al., 2010)). Layer breeding schemes use a small number of highly se-

lected male individuals in each generation. 

A similar monopolization of reproductive function by one or few individuals is also given in 

eusocial insects (like e.g. ants) causing reduced effective population size and a high degree 

of conservation in coding genomic regions (Romiguier et al., 2014). 

Many statistical methods have been developed in the last decade to utilize high-throughput 

sequencing data for estimating population parameters (e.g. Quanbari et al., 2010; Li et al., 

2012), among them a maximum-likelihood estimator of recombination rates based on LD 

patterns (Johnson and Slatkin, 2009). Thus, stronger association observed between markers 

in genic regions than in non-genic regions might go along with a higher recombination rate in 

non-genic regions. Accordingly, a lower diversity of haplotypes is expected in genic regions 

compared to non-genic regions. Indeed significantly less diversity of haplotypes in genic re-

gions was noticed for all species, which confirms our results obtained for LD.  

Genic regions in general appear to be more conserved than non-genic regions (e.g. Eberle et 

al., 2006; Nachman and Payseur, 2012; Lohmueller et al., 2011). Higher haplotype diversity 

in non-genic regions may be explained by the fact that recombination in these regions may 

affect biological cycles or pathways to a lesser extent; thus most haplotypes resulting from 

recombination will be neutral with respect to fitness and will not be under selection. In con-

trast, recombination in genic regions may affect the biological function of the respective 

haplotype and consequently such haplotypes with reduced fitness will be less frequently 

found among the progeny, resulting in a reduced haplotype diversity in genic regions. Re-

gions with low recombination were found to contain highly conserved genes with essential 

cellular functions (e.g. Hussin et al., 2015). Furthermore, hitchhiking and background selec-

tion might generate a strong link between genetic diversity and recombination rate (Smith 

and Haigh, 2007; Gillespie, 1991; Lohmueller et al., 2011). Thus, the intensive anthropogenic 

selection in white layers may explain the pronounced differences between haplotype diversity 

in genic and non-genic regions in the white layer data. 

 

Impact of chromosome size or size of region on LD magnitude  

The suggested approach accounting for spatial and structural differences in genomic regions 

when comparing genic and non-genic regions provides new insights into the dependency of 
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LD levels on the size of chromosomes or regions. Assuming that the number of recombina-

tion events per chromosome is approximately equal, differences in recombination rates on 

chromosomes of different physical length are supposed (Kong et al., 2002; Smith et al., 

2005; Johnson and Slatkin, 2009) with a slower decay of LD in the larger chromosomes. In 

contrast to the findings of Smith et al. (2005) and Uimari et al. (2005) for the human genome 

and Hillier et al. (2004) and Groenen et al. (2009) for the chicken genome, we do not observe 

weaker LD in the smaller chromosomes and stronger LD in the large chromosomes (see Fig. 

S4.11 and Table S4.13). Even though the chromosome-wise averaged medians scattered 

more in G. g. domesticus, there was no clear association between the size of chromosomes 

and the level of LD. Considering the size of genic and non-genic regions across chromo-

somes, a weak but significant negative association between the size and the LD of a region 

was detected in all species. For instance, in G. g. domesticus larger regions showed a slight-

ly lower 
2r  (the slope of a fitted linear regression 002.0 ) and also slightly lower 2

Sr  (the 

slope of a fitted linear regression 001.0 , see Fig. S4.12). This size bias is expected since 

physically large genic regions have more pairs of physically distant SNPs, which in turn have 

a lower LD (see Fig. 4.2). There was no significant size bias for the differences in medians of 

2r  and of 2

Sr  since we corrected for the effect of the length of the region through comparing 

with a region of similar size. This is exemplarily visualized for G. g. domesticus in Fig. S4.13. 

Across all species the extent of LD measured in genic or non-genic regions did not depend 

on the size of the chromosome (see Table S4.13). Discrepancies between our results and 

results reported by Smith et al (2005) and Uimari et al. (2005) may have resulted either from 

the lower marker density, lower SNP call rates and smaller sample sizes in these older stud-

ies or due to bias caused by spatial differences or different distribution of allele frequencies.  

 

Conclusions 

Our study has shown that across the three considered species, the average level of LD is 

systematically higher in genic regions than in non-genic regions, confirming and quantifying 

the more qualitative result in the human genome of Eberle et al. (2006) for a wider range of 

species. This observed difference is not affected by other factors which might systematically 

differ between genic and non-genic regions, such as minor allele frequencies or SNP densi-

ties, since such differences were removed by comparing candidate sets with best matching 

counterparts. With this approach, it was also possible to exactly quantify the relative excess 

of LD on a chromosome-wise or genome-wide level. It was shown that the amount of excess 

LD in genic regions differs between species (with A. thaliana > H. sapiens > G. g. domesti-

cus) and varies substantially between the chromosomes within the considered species. 
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These observations found for the widely used LD-measure 
2r  in tendency were confirmed 

with the standardized LD-measure 2

Sr  and with haplotype diversity. Based on our findings we 

suggest that the excess of LD in genic region is a general phenomenon resulting from evolu-

tionary forces, since the patterns of genetic polymorphisms reflects evolutionary processes 

like recombination, genetic drift and selection.  

The suggested approach can be varied by replacing the squared correlation 
2r  by any other 

LD measure (e.g. D’ (Lewontin, 1964), homozygosity of haplotypes (Agapow and Burt, 

2001), normalized entropy difference (Zhao et al., 2005) or Kullback-Leibler distance (Giano-

la et al., 2012)), by accounting for more or different scaling factors or by varying the similarity 

score by using different weighting of those factors. The comparative assessment of the LD 

level in genic and non-genic regions might be used as a starting point for a more differentiat-

ed analysis of the LD structure in the genome. In our studies we applied just two categories 

of genomic regions: genic and non-genic regions, where genic regions were defined in ac-

cordance with annotations of known genes in Ensembl gene databases. This way of 

proceeding is coherent to the classification of genic regions used by Eberle et al. (2006) and 

provides us better comparability to their results. A promising area for improvement of our 

current approach  is the extension of considered genetic regions by a stratification in e. g 

exons, introns, 5k upstream or downstream regions, 5’ and 3’ UTRs etc. Such analyses 

might require higher marker densities (up to sequence level) and considerably enlarged 

sample sizes, though. An especially interesting subject for further research is the contribution 

of purifying and positive selection across breeding populations to differences in level of LD 

between coding and non-coding regions of the genes. The framework described here ena-

bles comparison of LD structure in arbitrary species and any genomic regions of interests. 
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Appendix 

Upper Limits for Squared Correlation 

Derivation of boundaries for gametic frequency. For known allele frequencies 𝜋1 at locus 

1 and 𝜋2 at locus 2 and gametic frequency 𝜋12, the Pearson’s correlation coefficient is ob-

tained by 

𝑟 =
𝜋12 − 𝜋1𝜋2

√𝜋1(1 − 𝜋1)𝜋2(1 − 𝜋2)
=

𝐷

√𝜋1(1 − 𝜋1)𝜋2(1 − 𝜋2)
 (1) 

We consider two cases, according to the value of the numerator 𝐷:  

1. Disequilibrium coefficient 𝐷 is positive (denoted as 𝐷𝑝𝑜𝑠). Consequently, a positive 

correlation coefficient 𝑟 =
𝐷𝑝𝑜𝑠

√𝜋1(1−𝜋1)𝜋2(1−𝜋2)
> 0 is yielded and 𝑟 becomes a maximum 

for the largest possible value of 𝐷𝑝𝑜𝑠. 

2. Disequilibrium coefficient 𝐷 is negative (denoted as 𝐷𝑛𝑒𝑔), this yields a negative cor-

relation 𝑟 =
𝐷𝑛𝑒𝑔

√𝜋1(1−𝜋1)𝜋2(1−𝜋2)
< 0, which is a minimum for smallest possible value of 

𝐷𝑛𝑒𝑔. 

For given allele frequencies only the value of gametic frequency 𝜋12 is variable and influ-

ences the value of disequilibrium coefficient 𝐷. VanLiere and Rosenberg (2008) investigated 

the maximum possible of 
2r  for a given pair of allele frequencies. In the following, we extend 

results presented by VanLiere and Rosenberg (2008) in order to obtain a general derivation 

of boundaries for gametic frequency 𝜋12: 

The largest possible value of 𝐷𝑝𝑜𝑠 and the smallest possible value of 𝐷𝑛𝑒𝑔 could be 

obtained by the application of Fréchet-Hoeffding bounds on the joint probability 𝜋12. For this 

reason, some measure theoretical ideas will be presented next. 

At first we define the Fréchet-Hoeffding bounds for a general case (proof is given in chapter 

3.6, (Rachev and Rüschendorf, 1998)). 

Theorem. For a probability space (𝛺, ℱ, 𝑃), where 𝛺 is a non-empty sample space, ℱ is a 𝜎-

algebra of subsets 𝐴𝑖 ∈ 𝛺 and 𝑃 is a probability measure on ℱ, Fréchet-Hoeffding bounds 

are defined as 

𝑚𝑎𝑥 (0, ∑ 𝑃𝑖 − 𝑛 + 1
𝑛

𝑖=1
) ≤ 𝑃(𝐴1, … , 𝐴𝑛) ≤ min(𝑃1, … , 𝑃𝑛) (2) 

for subsets 𝐴1, … , 𝐴𝑛 and their probabilities 𝑃𝑖 = 𝑃(𝐴𝑖), 𝑖 = 1 … , 𝑛   
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In order to apply the Fréchet-Hoeffding bounds, we treated the manifestation of different al-

leles at one locus as a realization of a Bernoulli random variable and we defined the 

appearance of one of the alleles as a success. For two loci, we have two Bernoulli distributed 

random variables 𝑋1~𝐵(𝜋1) and 𝑋2~𝐵(𝜋2) with success probabilities 𝜋1 = 𝑃(𝑋1 = 1) and 

𝜋2 = 𝑃(𝑋2 = 1) with 0 < 𝜋1, 𝜋2 < 1. Then the general form of Fréchet-Hoeffding bounds (2) 

applied to a two-dimensional case became 

𝑚𝑎𝑥(0, 𝜋1 + 𝜋2 − 1) ≤ 𝜋12 ≤ min(𝜋1, 𝜋2), 

representing lower and upper limits for the joint distribution 𝜋12 = 𝑃(𝑋1 = 1, 𝑋2 = 1). Now 

upper and lower limits for the gametic frequency 𝜋12 could be used to build upper bounds for 

the squared correlation 𝑟2.  

Calculation of upper limits for 𝐫𝟐. For all possible combinations of allele frequencies 𝜋1 

and 𝜋2, 𝑟2 reaches its maximum if the numerator, i.e. the squared disequilibrium coefficient 

𝐷2, is a maximum. Using 𝐷𝑛𝑒𝑔
2  as lower limit for 𝜋12 and 𝐷𝑝𝑜𝑠

2  as upper limit for 𝜋12, the high-

est possible value of squared disequilibrium coefficient 𝐷𝑚𝑎𝑥
2 = max (𝐷𝑛𝑒𝑔

2 , 𝐷𝑝𝑜𝑠
2 ) is yielded. 

Thus, an upper limit for the squared correlation 𝑟𝑚𝑎𝑥
2 (𝐷𝑚𝑎𝑥

2 ) is obtained at 𝐷𝑚𝑎𝑥
2 .  

Two-dimensional space of success probabilities 𝜋1 and 𝜋2 could be divided into eight 

sections (see Figure S4.13), according to relation of probabilities 𝜋1 and 𝜋2 to each other. 

For each section we derived squared disequilibrium coefficient 𝐷𝑝𝑜𝑠
2  and 𝐷𝑛𝑒𝑔

2  using limiting 

conditions, which are pre-defined by the values of allele frequencies. By using 

ty 𝐷𝑝𝑜𝑠
2 ≥ 𝐷𝑛𝑒𝑔

2 , we examined which one of two – squared positive disequilibrium coefficient 

𝐷𝑝𝑜𝑠
2  or squared negative disequilibrium coefficient 𝐷𝑛𝑒𝑔

2  - is greater and achieved expres-

sions for upper limit of squared correlation 𝑟𝑚𝑎𝑥
2 (𝜋1, 𝜋2) (see Table S4.14). These 

calculations confirmed results reported by VanLiere and Rosenberg (2008). 

As mentioned previously, in this study we use only minor allele frequencies, which 

take values less than 0.5. For this reason only the results from section 1 or 2 are relevant 

here. Without limiting the generality of foregoing, we will use the expression achieved in  

section 1, where  𝜋1  ≤ 𝜋2 ≤ 0.5 are the minor allele frequencies and are denoted as 𝑝1 and 

𝑝2. Thus the upper limit for squared correlation is given by 

𝑟𝑚𝑎𝑥
2 (𝑝1, 𝑝2) =

𝑝1 (1 − 𝑝2)

𝑝2 (1 − 𝑝1)
 (3) 

This expression is also known as odds-ratio and is used e.g. in epidemiological or in case-

control studies in human medicine.  
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The upper limit could be rewritten by using the difference between the minor allele 

frequencies 𝛿 = 𝑝2  − 𝑝1 ≥ 0. Then, the upper limit can be rewritten as 

𝑟𝑚𝑎𝑥
2 (𝛿, 𝑝2) = 1 −

𝛿

𝑝2 (𝛿 + 1 − 𝑝2)
 (4) 

In Figure A4.1 some examples of upper limit for a set of fixed values of 𝑝2 as well as the up-

per limits for all combinations of 𝑝1 and 𝑝2 are shown. 

 

Figure A4.1. Upper limits for squared correlation. Maximal accessible squared correlation 

𝑟𝑚𝑎𝑥
2  between two loci against the delta MAF (𝛿), 𝑝1  ≤ 𝑝2 are minor allele frequencies and 

𝛿 = 𝑝2  − 𝑝1 for fixed 𝑝2 (left) and for all combinations of 𝑝1 and 𝑝2. 

A more general result is achieved by using our knowledge about the range of minor 

allele frequencies: the absolute upper limit, depending only on the difference between the 

MAFs, is obtained by using the upper limit for MAFs 𝑝1  ≤ 𝑝2  ≤ 0.5:  

    𝑟𝑚𝑎𝑥
2 (𝛿, 𝑝2) = 1 −

𝛿

𝑝2 (𝛿+1−𝑝2)
≤ 𝑟𝑚𝑎𝑥

2 (𝛿) = 1 −
4𝛿

2𝛿+1
  

for all possible values of 𝑝1 and 𝑝2 .  

Thus, a general upper limit for 𝑟2, depending only on the differences in MAF, is given by  

  

𝑟𝑚𝑎𝑥
2 (𝛿) = 1 −

4𝛿

2𝛿 + 1
 (5) 
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Supporting Information 

 

Figure S4.1. Area between the Empirical Cumulative Density Functions. ECDFs for ref-

erence set (red) and for a candidate subset (blue), the 
)( jk

MAFA  (left), )( jkA
(center), and )( jk

PWDA

(right) are marked in grey. 

 

Figure S4.2. SNP-density for chromosomes 1 to 5 in A. thaliana. Red bars stand for den-

sity of SNPs in genic regions, blue bars stand for SNP-density in non-genic regions. 
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Figure S4.3 Distribution of minor allele frequencies in A. thaliana across the whole 

genome, in genic and in non-genic regions, respectively. 

 

 

Figure S4.4. SNP-density for chromosomes 1 to 22 in H. sapiens. Red bars stand for 

density of SNPs in genic regions, blue bars stand for SNP-density in non-genic regions. 
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Figure S4.5. Distribution of minor allele frequencies in H. sapiens across the whole 

genome, in genic and -non-genic regions, respectively. 

 

 

Figure S4.6. SNP-density for chromosomes 1 to 28 in G. g. domesticus. Red bars stand 

for density of SNPs in genic regions, blue bars stand for SNP-density in non-genic regions. 
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Figure S4.7. Distribution of minor allele frequencies in G. g. domesticus across the 

whole genome, in genic and in inter-gene regions, respectively. 

 

 

Figure S4.8. Distribution of pair-wise distances of SNP pairs in A. thaliana, H. sapiens 
and G. g. domesticus. The black vertical line refers to threshold cutting off the upper 1% of 
data points. 
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Figure S4.9. Distribution of pair-wise
2r . Distributions of squared correlations 

2r  in A. 

thaliana (upper panel), H. sapiens (central panel), and G. g. domesticus (lower panel) in 

gene (red) and non-genic (blue) regions. 
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Figure S4.10. Chromosome-wise haplotype diversity in genic and non-genic regions 

across species. Chromosome-wise haplotype diversity in G (red) and IG (blue)  

 

 

Figure S4.11. Medians of 
2r  in genic and non-genic regions vs. chromosome size in A. 

thaliana, H. sapiens, and G. g. domesticus. Slope of all regression lines does not differ signif-

icantly from zero.  
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Figure S4.12. Relationship between magnitude of LD and the size of regions measured 

in number of SNPs, across chromosomes in chicken. Genic regions are drawn in red and 

non-genic regions in blue, X-axis reflects number of SNPs per region, Y-Axis reflects medi-

ans of 
2r  (upper panel) or medians of 

2

Sr  (lower panel). The slope of the linear regression 

and its corresponding p-value are drown in each panel 

 

 

Figure S4.13. G/IG differences in medians of 
2r  (upper panel) or medians of 

2

Sr  (lower 

panel), against the size of regions (in number of SNPs) across chromosomes in chick-

en.  
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Figure S4.13 Two-dimensional probability space, divided in eight sections. X-axis und 

Y-axis describe the probabilities 𝜋1 and 𝜋2 . 
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Table S4.1. Chromosome-wise averaged medians of pair-wise
2r , calculated in each G, 

IG or IG’ region for chromosome 1 to 5 in A.thaliana. Difference abs is the absolute de-

viation of median in IG from median in G (or median in IG’ from median in IG) in 

corresponding regions, Difference % gives the percentage of deviation. p-Val is the p-value 

based on Wilcoxon signed rank test. Significant differences (p < 0.05) are marked in red. 

  Median Difference p-Val Median Difference p-Val 

chr #genes G IG abs %  IG IG‘ abs %  

1 858 0.167 0.111 0.055 49.7 0 0.114 0.103 0.011 9.7 0.094 

2 348 0.147 0.118 0.029 24.6 0.016 0.119 0.094 0.025 21.0 0.200 

3 695 0.136 0.100 0.035 35.4 0 0.100 0.089 0.011 11.0 0.529 

4 669 0.155 0.096 0.059 61.6 0 0.096 0.092 0.003 4.2 0.746 

5 943 0.153 0.106 0.046 43.5 0 0.107 0.111 -0.004 -3.7 0.254 

Genome-wide 0.154 0.106 0.048 31.2 2 10-16 0.106 0.099 0.007 6.6 0.2814 
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Table S4.2. Chromosome-wise averaged medians of pair-wise
2r , calculated in each G, 

IG or IG’ region for chromosome 1 to 22 in H.sapiens. Difference abs is the absolute de-

viation of median in IG from median in G (or median in IG’ from median in IG) in 

corresponding regions, Difference % gives the percentage of deviation. p-Val is the p-value 

based on Wilcoxon signed rank test. Significant differences (p < 0.05) are marked in red. 

 

 

  

chr #genes Median Difference p-Val Median Difference p-Val 

  G IG abs %  IG IG‘ abs %  

1 661 0.096 0.080 0.016 16.7 0.038 0.080 0.083 -0.003 -3.7 0.661 
2 571 0.103 0.089 0.014 13.6 0.037 0.089 0.089 0 0.0 0.657 
3 437 0.105 0.087 0.018 17.1 0.181 0.087 0.084 0.003 3.4 0.223 
4 410 0.101 0.096 0.005 4.9 0.372 0.096 0.092 0.004 4.2 0.195 

5 405 0.098 0.089 0.009 9.2 0.433 0.089 0.090 -0.001 -1.1 0.612 
6 406 0.090 0.081 0.009 10.0 0.991 0.081 0.083 -0.002 -2.5 0.103 
7 318 0.096 0.085 0.011 11.4 0.888 0.085 0.085 0 0.0 0.956 
8 322 0.110 0.089 0.021 19.1 0.064 0.089 0.082 0.007 7.9 0.497 
9 298 0.096 0.088 0.008 8.3 0.471 0.088 0.090 -0.002 -2.3 0.996 
10 344 0.121 0.096 0.025 20.7 0.070 0.096 0.092 0.004 4.2 0.553 

11 344 0.094 0.091 0.003 3.2 0.857 0.091 0.082 0.009 9.9 0.674 
12 395 0.086 0.085 0.001 1.2 0.930 0.085 0.075 0.010 11.8 0.192 
13 188 0.080 0.064 0.016 20.0 0.130 0.064 0.067 -0.003 -4.7 0.954 

14 244 0.097 0.085 0.012 12.4 0.134 0.085 0.078 0.007 8.2 0.196 
15 226 0.078 0.063 0.015 19.2 0.125 0.063 0.057 0.006 9.5 0.372 
16 206 0.083 0.073 0.01 12.0 0.867 0.073 0.077 -0.004 -5.5 0.856 

17 253 0.110 0.066 0.044 40.0 0.000 0.066 0.062 0.004 6.1 0.214 
18 178 0.086 0.074 0.012 14.0 0.468 0.074 0.075 -0.001 -1.4 0.511 
19 90 0.096 0.151 -0.055 57.3 0.097 0.151 0.119 0.032 21.2 0.378 

20 177 0.105 0.076 0.029 27.7 0.004 0.076 0.075 0.001 1.3 0.682 
21 89 0.086 0.080 0.006 7.0 0.584 0.080 0.088 -0.008 -10.0 0.743 
22 108 0.110 0.068 0.042 38.2 0.013 0.068 0.073 -0.005 -7.4 0.437 

Genome-wide 0.098 0.084 0.013 13.6 2 10-5 0.0844 0.0824 0.002 2.4 0.378 
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Table S4.3. Chromosome-wise averaged medians of pair-wise
2r , calculated in each G, 

IG or IG’ region for chromosome 1 to 26 in G. g. domesticus. Difference abs is the abso-

lute deviation of median in IG from median in G (or median in IG’ from median in IG) in 

corresponding regions, Difference % gives the percentage of deviation. p-Val is the p-value 

based on Wilcoxon signed rank test. Significant differences (p < 0.05) are marked in red. 

  Median Difference p-Val Median Difference p-Val 

chr #genes G IG abs %  IG IG‘ abs %  

1 531 0.625 0.630 -0.005 -0.8 0.532 0.630 0.630 0 0 0.711 
2 346 0.642 0.608 0.034 5.3 0.185 0.608 0.609 -0.001 -0.2 0.738 
3 310 0.651 0.620 0.031 4.8 0.176 0.620 0.623 -0.003 -0.5 0.525 
4 255 0.522 0.589 -0.067 -12.8 0.010 0.589 0.565 0.024 4.1 0.293 
5 183 0.664 0.618 0.046 6.9 0.185 0.618 0.644 -0.026 -4.2 0.669 
6 140 0.605 0.528 0.077 12.7 0.010 0.528 0.563 -0.035 -6.6 0.204 
7 141 0.576 0.621 -0.045 -7.8 0.195 0.621 0.574 0.047 7.6 0.082 
8 95 0.656 0.518 0.138 21.0 0.005 0.518 0.566 -0.048 -9.3 0.239 
9 83 0.711 0.564 0.147 20.7 0.002 0.564 0.551 0.013 2.3 0.772 
10 110 0.633 0.496 0.137 21.6 0.003 0.496 0.511 -0.015 -3.0 0.827 
11 52 0.701 0.585 0.116 16.6 0.007 0.585 0.604 -0.019 -3.3 0.797 

12 94 0.651 0.472 0.179 27.5 0.000 0.472 0.546 -0.074 -15.7 0.174 
13 72 0.517 0.664 -0.147 -28.4 0.022 0.664 0.722 -0.058 -8.7 0.350 
14 101 0.564 0.509 0.055 9.8 0.301 0.509 0.587 -0.078 -15.3 0.075 

15 75 0.644 0.554 0.090 14.0 0.098 0.554 0.551 0.003 0.5 0.790 
17 68 0.541 0.543 -0.002 -0.4 0.815 0.543 0.554 -0.011 -2.0 0.502 
18 57 0.730 0.606 0.124 17.0 0.024 0.606 0.587 0.019 3.1 0.757 

19 60 0.571 0.531 0.040 7.0 0.553 0.531 0.561 -0.030 -5.7 0.340 
20 39 0.651 0.546 0.105 16.1 0.324 0.546 0.492 0.054 9.9 0.831 
21 63 0.609 0.500 0.109 17.9 0.051 0.500 0.564 -0.064 12.8 0.174 

22 7 0.624 0.628 -0.004 -0.6 1.000 0.628 0.685 -0.057 -9.1 1.000 
23 39 0.524 0.604 -0.080 -15.3 0.277 0.604 0.562 0.042 6.9 0.438 
25 10 0.622 0.564 0.058 9.3 0.846 0.564 0.509 0.055 9.8 0.770 
26 26 0.814 0.589 0.225 27.6 0.012 0.589 0.631 -0.042 -7.1 0.354 
27 36 0.557 0.481 0.076 13.6 0.346 0.481 0.373 0.108 22.5 0.058 
28 39 0.660 0.552 0.108 16.4 0.121 0.552 0.520 0.032 5.8 0.805 

Genome-wide 0.621 0.584 0.037 6.0 0.008 0.584 0.591 -0.007 -1.2 0.57 
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Table S4.4. Chromosome-wise averaged medians of pair-wise
2

Sr , calculated in each G, 

IG or IG’ region for chromosome 1 to 5 in A.thaliana. Difference abs is the absolute de-

viation of median in IG from median in G (or median in IG’ from median in IG) in 

corresponding regions, Difference % gives the percentage of deviation. p-Val is the p-value 

based on Wilcoxon signed rank test. Significant differences (p < 0.05) are marked in red. 

  Median Difference p-Val Median Difference p-Val 

chr #genes G IG abs %  IG IG‘ abs %  

1 858 0.311 0.218 0.093 29.9 10-6 0.218 0.201 0.017 7.8 0.017 

2 348 0.278 0.233 0.045 16.2 0.0018 0.233 0.203 0.030 12.9 0.130 

3 695 0.275 0.194 0.081 29.5 10-6 0.194 0.185 0.009 4.6 0.411 

4 669 0.296 0.195 0.101 34.1 10-6 0.195 0.196 -0.001 -0.5 0.941 

5 943 0.290 0.221 0.069 23.8 10-6 0.221 0.225 -0.004 -1.8 0.284 

Genome-wide 0.292 0.211 0.081 27.7 2 10-16 0.211 0.203 0.008 3.7 0.1454 
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Table S4.5. Chromosome-wise averaged medians of pair-wise 
2

Sr , calculated in each 

G, IG or IG’ region for chromosome 1 to 22 in H.sapiens. Difference abs is the absolute 

deviation of median in IG from median in G (or median in IG’ from median in IG) in corre-

sponding regions, Difference % gives the percentage of deviation. p-Val is the p-value based 

on Wilcoxon signed rank test. Significant differences (p < 0.05) are marked in red. 

chr #genes Median Difference p-Val Median Difference p-Val 

  G IG Abs %  IG IG‘ abs %  

1 661 0.208 0.189 0.019 9.1 0.038 0.189 0.195 -0.006 -3.2 0.998 
2 571 0.213 0.201 0.012 5.6 0.037 0.201 0.193 0.008 3.9 0.168 
3 437 0.217 0.198 0.019 8.8 0.181 0.198 0.190 0.008 4.0 0.406 

4 410 0.202 0.216 -0.014 -6.9 0.372 0.216 0.202 0.014 6.5 0.084 
5 405 0.226 0.203 0.023 10.2 0.433 0.203 0.205 -0.002 -1.0 0.982 
6 406 0.200 0.193 0.007 3.5 0.991 0.193 0.201 -0.008 -4.2 0.136 
7 318 0.213 0.202 0.011 5.2 0.888 0.202 0.197 0.005 2.5 0.636 
8 322 0.231 0.211 0.020 8.7 0.064 0.211 0.192 0.019 9.0 0.116 
9 298 0.214 0.205 0.009 4.2 0.471 0.205 0.208 -0.003 -1.5 0.880 
10 344 0.243 0.221 0.022 9.1 0.070 0.221 0.220 0.001 0.5 0.966 
11 344 0.216 0.198 0.018 8.3 0.857 0.198 0.197 0.001 0.6 0.645 
12 395 0.196 0.195 0.001 0.5 0.930 0.195 0.189 0.006 3.1 0.830 
13 188 0.209 0.162 0.047 22.5 0.130 0.162 0.177 -0.015 -9.3 0.809 
14 244 0.213 0.208 0.005 2.3 0.134 0.208 0.190 0.018 8.7 0.382 
15 226 0.179 0.150 0.029 16.2 0.125 0.150 0.137 0.013 8.7 0.272 
16 206 0.183 0.165 0.018 9.8 0.867 0.165 0.170 -0.005 -3.0 0.771 
17 253 0.225 0.158 0.067 29.8 0.000 0.158 0.148 0.010 6.3 0.350 
18 178 0.182 0.169 0.013 7.1 0.468 0.169 0.169 0 0 0.690 
19 90 0.232 0.276 -0.044 -19.0 0.097 0.276 0.265 0.011 4.0 0.872 
20 177 0.224 0.177 0.047 20.9 0.004 0.177 0.179 -0.002 -1.1 0.642 
21 89 0.200 0.196 0.004 2.0 0.584 0.196 0.217 -0.021 -10.7 0.479 

22 108 0.237 0.166 0.071 29.9 0.013 0.166 0.187 -0.021 -12.7 0.260 

Genome-wide 0.2119 0.1949 0.017 8.0 3 10-6 0.1949 0.1923 0.0026 1.3 0.188 
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Table S4.6. Chromosome-wise averaged medians of pair-wise
2

Sr , calculated in each G, 

IG or IG’ region for chromosome 1 to 26 in G. g. domesticus. Difference abs is the abso-

lute deviation of median in IG from median in G (or median in IG’ from median in IG) in 

corresponding regions, Difference % gives the percentage of deviation. p-Val is the p-value 

based on Wilcoxon signed rank test. Significant differences (p < 0.05) are marked in red. 

  Median Difference p-Val Median Difference p-Val 

chr #genes G IG abs %  IG IG‘ abs %  

1 531 0.794 0.821 -0.027 -3.4 0.075 0.821 0.817 0.004 0.5 0.987 
2 346 0.799 0.770 0.029 3.6 0.050 0.770 0.773 -0.003 -0.4 0.933 
3 310 0.827 0.822 0.005 0.6 0.688 0.822 0.830 -0.008 -1.0 0.809 

4 255 0.723 0.808 -0.085 -11.8 0.000 0.808 0.783 0.025 3.1 0.241 
5 183 0.804 0.811 -0.007 -0.9 0.777 0.811 0.819 -0.008 -1.0 0.985 
6 140 0.809 0.755 0.054 6.7 0.037 0.755 0.767 -0.012 -1.6 0.470 
7 141 0.771 0.821 -0.050 -6.5 0.056 0.821 0.801 0.020 2.4 0.498 
8 95 0.803 0.758 0.045 5.6 0.109 0.758 0.782 -0.024 -3.2 0.527 
9 83 0.853 0.777 0.076 8.9 0.023 0.777 0.779 -0.002 -0.3 0.471 
10 110 0.791 0.726 0.065 8.2 0.022 0.726 0.740 -0.014 -1.9 0.457 
11 52 0.808 0.782 0.026 3.2 0.137 0.782 0.823 -0.041 -5.2 0.318 
12 94 0.800 0.731 0.069 8.6 0.067 0.731 0.768 -0.037 -5.1 0.226 
13 72 0.745 0.852 -0.107 -14.4 0.015 0.852 0.879 -0.027 -3.2 0.148 
14 101 0.764 0.742 0.022 2.9 0.533 0.742 0.792 -0.050 -6.7 0.122 
15 75 0.841 0.783 0.058 6.9 0.042 0.783 0.765 0.018 2.3 0.603 
17 68 0.768 0.774 -0.006 -0.8 0.724 0.774 0.777 -0.003 -0.4 0.949 
18 57 0.861 0.788 0.073 8.5 0.038 0.788 0.770 0.018 2.3 0.408 
19 60 0.786 0.759 0.027 3.4 0.271 0.759 0.805 -0.046 -6.1 0.348 
20 39 0.800 0.776 0.024 3.0 0.572 0.776 0.702 0.074 9.5 0.225 
21 63 0.809 0.741 0.068 8.4 0.094 0.741 0.818 -0.077 -10.4 0.126 
22 7 0.827 0.844 -0.017 -2.1 0.402 0.844 0.898 -0.054 -6.4 1.000 

23 39 0.718 0.792 -0.074 -10.3 0.225 0.792 0.761 0.031 3.9 0.380 
25 10 0.871 0.741 0.130 14.9 0.375 0.741 0.768 -0.027 -3.6 1.000 
26 26 0.895 0.840 0.055 6.2 0.034 0.840 0.851 -0.011 -1.3 0.681 

27 36 0.776 0.758 0.018 2.3 0.883 0.758 0.686 0.072 9.5 0.046 
28 39 0.852 0.803 0.049 5.8 0.395 0.803 0.771 0.032 4.0 0.674 

Genome-wide 0.795 0.791 0.004 0.5 0.059 0.791 0.794 -0.003 -0.4 0.438 
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Table S4.7. Chromosome-wise averaged means of pair-wise
2r , calculated in each G, 

IG or IG’ region for chromosome 1 to 5 in A.thaliana. Difference abs is the absolute de-

viation of mean in IG from mean in G (or mean in IG’ from mean in IG) in corresponding 

regions, Difference % gives the percentage of deviation. p-Val is the p-value based on Wil-

coxon signed rank test. Significant differences (p < 0.05) are marked in red. 

chr #genes Mean Difference p-Val Mean Difference p-Val 

  G IG abs %  IG IG’ abs %  

1 858 0.256 0.196 0.060 23.4 10-6 0.196 0.183 0.013 6.6 0.005 

2 348 0.235 0.207 0.028 11.9 0.003 0.207 0.190 0.017 8.2 0.049 

3 695 0.231 0.179 0.052 22.5 10-6 0.179 0.172 0.007 3.9 0.423 

4 669 0.240 0.166 0.074 30.8 10-6 0.166 0.170 -0.004 -2.0 0.437 

5 943 0.243 0.195 0.048 19.8 10-6 0.195 0.203 -0.008 -4.0 0.026 

Genome-wide 0.242 0.188 0.054 22.3 2 10-16 0.188 0.185 0.003 1.6 0.339 
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Table S4.8. Chromosome-wise averaged means of pair-wise
2r , calculated in each G, 

IG or IG’ region for chromosome 1 to 22 in H.sapiens. Difference abs is the absolute de-

viation of mean in IG from mean in G (or mean in IG’ from mean in IG) in corresponding 

regions, Difference % gives the percentage of deviation. p-Val is the p-value based on Wil-

coxon signed rank test. Significant differences (p < 0.05) are marked in red. 

chr #genes Mean Difference p-Val Mean Difference p-Val 

  G IG abs %  IG IG‘ abs %  

1 661 0.203 0.190 0.013 6.4 0.005 0.190 0.187 0.003 1.6 0.308 
2 571 0.199 0.191 0.008 4.0 0.150 0.191 0.186 0.005 2.6 0.308 
3 437 0.203 0.187 0.016 7.9 0.017 0.187 0.181 0.006 3.2 0.366 
4 410 0.199 0.202 -0.003 -1.5 0.206 0.202 0.195 0.007 3.5 0.175 
5 405 0.206 0.190 0.016 7.8 0.007 0.190 0.191 -0.001 -0.5 0.984 
6 406 0.188 0.186 0.002 1.1 0.646 0.186 0.192 -0.006 3.2 0.144 
7 318 0.197 0.194 0.003 1.5 0.580 0.194 0.188 0.006 3.1 0.138 
8 322 0.209 0.191 0.018 8.6 0.080 0.191 0.186 0.005 2.6 0.607 
9 298 0.198 0.192 0.006 3.0 0.765 0.192 0.191 0.001 0.5 0.534 
10 344 0.217 0.203 0.014 6.5 0.235 0.203 0.202 0.001 0.5 0.675 
11 344 0.201 0.193 0.008 3.9 0.393 0.193 0.189 0.004 2.1 0.564 

12 395 0.191 0.187 0.004 2.1 0.328 0.187 0.181 0.006 3.2 0.517 
13 188 0.193 0.169 0.024 12.4 0.001 0.169 0.175 -0.006 -3.6 0.953 
14 244 0.192 0.188 0.004 2.1 0.374 0.188 0.181 0.007 3.7 0.277 

15 226 0.179 0.163 0.016 8.9 0.128 0.163 0.153 0.010 6.1 0.051 
16 206 0.185 0.176 0.009 4.9 0.406 0.176 0.171 0.005 2.8 0.373 
17 253 0.204 0.166 0.038 18.6 0.000 0.166 0.158 0.008 4.8 0.136 

18 178 0.175 0.174 0.001 0.6 0.975 0.174 0.175 -0.001 -0.6 0.670 
19 90 0.206 0.230 -0.024 -11.7 0.351 0.230 0.223 0.007 3.0 0.636 
20 177 0.210 0.191 0.019 9.1 0.050 0.191 0.183 0.008 4.2 0.547 

21 89 0.195 0.188 0.007 3.6 0.740 0.188 0.188 0.000 0.0 0.825 
22 108 0.212 0.173 0.039 18.4 0.006 0.173 0.178 -0.005 -2.9 0.392 

Genome-wide 
0.199 0.188 0.011 5.3 6 10-8 

 

0.188 0.185 0.004 1.9 0.012 
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Table S4.9. Chromosome-wise averaged means of pair-wise
2r , calculated in each G, 

IG or IG’ region for chromosome 1 to 26 in G. g. domesticus. Difference abs is the abso-

lute deviation of mean in IG from mean in G (or mean in IG’ from mean in IG) in 

corresponding regions, Difference % gives the percentage of deviation. p-Val is the p-value 

based on Wilcoxon signed rank test. Significant differences (p < 0.05) are marked in red. 

chr #genes Mean Difference p-Val Mean Difference p-Val 

  G IG abs %  IG IG‘ abs %  

1 531 0.645 0.644 0.001 0.2 0.850 0.644 0.643 0.001 0.2 0.891 
2 346 0.648 0.622 0.026 4.0 0.046 0.622 0.627 -0.005 -0.8 0.615 
3 310 0.668 0.625 0.043 6.4 0.022 0.625 0.637 -0.012 -1.9 0.170 
4 255 0.559 0.602 -0.040 -7.7 0.013 0.602 0.586 0.016 2.7 0.177 
5 183 0.678 0.626 0.052 7.7 0.031 0.626 0.661 -0.035 -5.6 0.011 
6 140 0.629 0.593 0.036 5.7 0.095 0.593 0.600 -0.007 -1.2 0.542 
7 141 0.615 0.632 -0.020 -2.7 0.381 0.632 0.617 0.015 2.43 0.322 
8 95 0.687 0.570 0.117 17.0 0.000 0.570 0.568 0.002 0.4 0.825 
9 83 0.669 0.596 0.073 10.9 0.012 0.596 0.599 -0.003 -0.5 0.958 
10 110 0.660 0.545 0.115 17.4 0.000 0.545 0.550 -0.005 -0.9 0.732 
11 52 0.709 0.595 0.114 16.1 0.001 0.595 0.601 -0.006 -1.0 0.788 

12 94 0.677 0.552 0.125 18.5 0.000 0.552 0.572 -0.020 -3.6 0.205 
13 72 0.563 0.660 -0.100 -17.2 0.011 0.660 0.686 -0.026 -3.9 0.130 
14 101 0.609 0.569 0.040 6.6 0.227 0.569 0.604 -0.035 -6.2 0.015 

15 75 0.658 0.581 0.077 11.7 0.049 0.581 0.576 0.005 0.9 0.835 
17 68 0.598 0.590 0.008 1.4 0.939 0.590 0.590 0 0 0.959 
18 57 0.719 0.631 0.088 12.2 0.013 0.631 0.615 0.016 2.5 0.328 

19 60 0.598 0.581 0.017 2.8 

 

 

0.800 0.581 0.6 -0.019 -3.3 0.473 
20 39 0.686 0.602 0.084 12.2 0.171 0.602 0.567 0.035 5.8 0.117 
21 63 0.639 0.554 0.085 13.3 0.040 0.554 0.562 -0.008 -1.4 0.649 

22 7 0.619 0.65 -0.030 -5.0 0.578 0.650 0.653 -0.003 -0.5 0.578 
23 39 0.582 0.624 -0.040 -7.2 0.435 0.624 0.577 0.047 7.5 0.019 
25 10 0.616 0.543 0.073 11.9 0.557 0.543 0.560 -0.017 -3.1 1.000 
26 26 0.810 0.613 0.197 24.3 0.002 0.613 0.632 -0.019 -3.1 0.745 
27 36 0.567 0.511 0.056 9.9 0.279 0.511 0.476 0.035 6.9 0.131 
28 39 0.679 0.57 0.109 16.1 0.036 0.570 0.560 0.010 1.8 0.664 

Genome-wide 0.642 0.609 0.033 5.2 8 10-7 

 

0.6091 0.6124 -0.003 -0.5 0.290 

 

 

 

  



 4th CHAPTER  Scale corrected comparison of LD level 137 

Table S4.10. Chromosome-wise averaged haplotype diversity, calculated in each G, IG 

or IG’ region for chromosome 1 to 5 in A.thaliana. Difference abs is the absolute deviation 

of mean in IG from mean in G (or mean in IG’ from mean in IG) in corresponding regions, 

Difference % gives the percentage of deviation. p-Val is the p-value based on Wilcoxon 

signed rank test. Significant differences (p < 0.05) are marked in red. 

chr #genes Mean Difference p-Val Mean Difference p-Val 

  G IG abs %  IG IG’ abs %  

1 858 0.857 0.892 -0.034 -3.8 0 0.892 0.898 -0.006 -0.7 0.012 

2 348 0.865 0.883 -0.018 -2.0 0.007 0.883 0.891 -0.008 -0.9 0.083 

3 695 0.869 0.901 -0.031 -3.5 0 0.901 0.901 0 -0.1 0.832 

4 669 0.862 0.910 -0.048 -5.3 0 0.910 0.904 0.006 0.6 0.049 

5 943 0.866 0.889 -0.023 -2.6 0 0.889 0.886 0.003 0.4 0.268 

Genome-wide 0.864 0.895 -0.032 -3.5 0 0.895 0.896 -0.005 -0.1 0.747 
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Table S4.11. Chromosome-wise averaged haplotype diversity, calculated in each G, IG 

or IG’ region for chromosome 1 to 22 in H.sapiens. Difference abs is the absolute devia-

tion of mean in IG from mean in G (or mean in IG’ from mean in IG) in corresponding 

regions, Difference % gives the percentage of deviation. p-Val is the p-value based on Wil-

coxon signed rank test. Significant differences (p < 0.05) are marked in red. 

chr #genes Mean Difference p-Val Mean Difference p-Val 

  G IG abs %  IG IG‘ abs %  

1 661 0.861 0.870 -0.009 -1.1 0.059 0.870 0.868 0.002 0.2 0.930 
2 571 0.874 0.876 -0.002 -0.2 0.867 0.876 0.879 -0.004 -0.4 0.358 
3 437 0.872 0.884 -0.012 -1.4 0.036 0.884 0.889 -0.005 -0.5 0.611 
4 410 0.871 0.872 -0.001 -0.1 0.585 0.872 0.881 -0.009 -0.9 0.112 
5 405 0.868 0.878 -0.010 -1.1 0.122 0.878 0.872 0.007 0.8 0.304 
6 406 0.878 0.877 0.001 0.1 0.567 0.877 0.873 0.004 0.5 0.311 
7 318 0.874 0.878 -0.004 -0.5 0.577 0.878 0.880 -0.002 -0.2 0.283 
8 322 0.871 0.872 -0.001 -0.1 0.980 0.872 0.883 -0.011 -1.2 0.136 
9 298 0.875 0.877 -0.002 -0.2 0.464 0.877 0.881 -0.005 -0.5 0.550 
10 344 0.850 0.854 -0.004 -0.5 0.778 0.854 0.856 -0.002 -0.2 0.677 
11 344 0.878 0.884 -0.005 -0.6 0.325 0.884 0.876 0.008 0.9 0.347 
12 395 0.876 0.877 -0.001 -0.1 0.503 0.877 0.881 -0.004 -0.4 0.519 
13 188 0.863 0.882 -0.019 -2.2 0.013 0.882 0.874 0.008 0.9 0.839 
14 244 0.881 0.873 0.009 1.0 0.021 0.873 0.879 -0.006 -0.7 0.432 
15 226 0.882 0.902 -0.020 -2.2 0.006 0.902 0.903 -0.002 -0.2 0.676 
16 206 0.883 0.883 0 -0.1 0.760 0.883 0.891 -0.007 -0.8 0.531 
17 253 0.872 0.891 -0.019 -2.1 0.003 0.891 0.898 -0.007 -0.8 0.378 
18 178 0.889 0.895 -0.006 -0.7 0.940 0.895 0.893 0.002 0.2 0.474 
19 90 0.834 0.820 0.014 1.7 0.412 0.820 0.825 -0.005 -0.6 0.906 
20 177 0.854 0.865 -0.012 -1.4 0.100 0.865 0.873 -0.008 -0.9 0.756 
21 89 0.879 0.894 -0.015 -1.7 0.171 0.894 0.882 0.012 1.3 0.338 
22 108 0.847 0.869 -0.023 -2.6 0.007 0.869 0.859 0.01 1.2 0.398 

Genome-wide 
0.871 0.876 -0.006 -0.7 0.001 0.876 0.878 -0.001 -0.2 0.264 
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Table S4.12. Chromosome-wise averaged haplotype diversity, calculated in each G, IG 

or IG’ region for chromosome 1 to 26 in G. g. domesticus. Difference abs is the absolute 

deviation of mean in IG from mean in G (or mean in IG’ from mean in IG) in corresponding 

regions, Difference % gives the percentage of deviation. p-Val is the p-value based on Wil-

coxon signed rank test. Significant differences (p < 0.05) are marked in red. 

chr #genes Mean Difference p-Val Mean Difference p-Val 

  G IG abs %  IG IG‘ abs %  

1 531 0.495 0.460 0.035 7.1 0.000 0.460 0.456 0.005 1.1 0.918 
2 346 0.480 0.501 -0.021 -4.4 0.028 0.501 0.474 0.027 5.4 0.006 
3 308 0.502 0.491 0.011 2.2 0.573 0.491 0.470 0.022 4.5 0.002 
4 255 0.516 0.511 0.006 1.2 0.914 0.511 0.501 0.010 2.0 0.343 
5 181 0.472 0.480 -0.008 -1.7 0.537 0.480 0.433 0.047 9.8 0.000 
6 140 0.515 0.541 -0.026 -5.0 0.014 0.541 0.509 0.032 5.9 0.034 
7 141 0.551 0.525 0.026 4.7 0.494 0.525 0.491 0.034 6.5 0.124 
8 95 0.476 0.578 -0.102 -21.4 0.000 0.578 0.560 0.018 3.1 0.217 
9 83 0.436 0.561 -0.125 -28.7 0.000 0.561 0.529 0.032 5.7 0.128 
10 110 0.437 0.569 -0.132 -30.2 0.000 0.569 0.558 0.011 1.9 0.969 
11 45 0.400 0.491 -0.091 -22.8 0.012 0.491 0.488 0.003 0.6 0.858 
12 94 0.487 0.575 -0.088 -18.1 0.000 0.575 0.563 0.012 2.1 0.371 
13 72 0.535 0.499 0.036 6.7 0.125 0.499 0.490 0.009 1.8 0.656 
14 101 0.520 0.560 -0.040 -7.7 0.062 0.560 0.512 0.048 8.6 0.001 
15 75 0.516 0.572 -0.055 -10.7 0.013 0.572 0.571 0.000 0.0 0.851 
17 68 0.540 0.545 -0.005 -0.9 0.934 0.545 0.532 0.014 2.6 0.345 
18 57 0.514 0.535 -0.021 -4.1 0.249 0.535 0.542 -0.006 -1.1 0.639 
19 60 0.511 0.558 -0.047 -9.2 0.121 0.558 0.540 0.018 3.2 0.420 
20 39 0.469 0.550 -0.081 -17.3 0.032 0.550 0.548 0.002 0.4 0.704 
21 63 0.533 0.556 -0.023 -4.3 0.491 0.556 0.548 0.008 1.4 0.719 
22 7 0.506 0.505 0.001 0.2 1.000 0.505 0.532 -0.028 -5.5 0.578 
23 39 0.541 0.512 0.030 5.5 0.403 0.512 0.510 0.002 0.4 0.845 

25 10 0.616 0.525 0.092 14.9 0.106 0.525 0.586 -0.062 -11.8 0.160 
26 26 0.494 0.489 0.005 1.0 0.980 0.489 0.500 -0.011 -2.2 0.269 
27 36 0.537 0.575 -0.038 -7.1 0.293 0.575 0.579 -0.004 -0.7 0.379 
28 39 0.547 0.510 0.037 6.8 0.521 0.510 0.508 0.002 0.4 0.841 

Genome-wide 0.499 0.513 -0.015 -3.0 10-6 0.513 0.496 0.017 3.4 0.001 
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Table S4.13. Slopes and in regressions of chromosome-wise averaged 
2r and 

2

Sr me-

dians on size of the chromosomes. 

Species 

 Genic regions Non-genic regions 

slope p-value slope p-value 

A. thaliana 

2r  0.00111 0.4254 0.00058 0.6199 

2

Sr  0.00162 0.3280 0.00074 0.7249 

H. sapiens 

2r  0,00003 0.4210 0.00004 0.5870 

2

Sr  0.00001 0.9290 0.00011 0.2980 

G. g. domesticus 

2r  -0.00004 0.9030 0.00044 0.0360 

2

Sr  -0.00014 0.4460 0.00019 0.2190 
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Table S4.14. Upper Limit 𝒓𝒎𝒂𝒙
𝟐  under different limiting conditions 

Section Limiting conditions 𝒓𝒎𝒂𝒙
𝟐  

1 0 ≤  𝜋2  ≤ 𝜋1  ≤ 0.5 and 𝜋2  ≤ 1 − 𝜋1 
𝜋2 (1 − 𝜋1)

𝜋1 (1 − 𝜋2)
 

2 0 ≤  𝜋1  ≤ 𝜋2  ≤ 0.5 and 𝜋2  ≤ 1 − 𝜋1 
𝜋1 (1 − 𝜋2)

𝜋2 (1 − 𝜋1)
 

3 0 ≤  𝜋1  ≤ 0.5 ≤ 𝜋2  ≤ 1 and 𝜋2  ≤ 1 − 𝜋1 
𝜋1 𝜋2

 (1 − 𝜋1)(1 −  𝜋2)
 

4 0 ≤  𝜋1  ≤ 0.5 ≤ 𝜋2  ≤ 1 and 𝜋2  ≥ 1 − 𝜋1 
(1 − 𝜋1)(1 −  𝜋2)

 𝜋1 𝜋2
 

5 0.5 ≤  𝜋1  ≤ 𝜋2  ≤ 1 and 𝜋2  ≥ 1 − 𝜋1 
𝜋1 (1 − 𝜋2)

𝜋2 (1 − 𝜋1)
 

6 0.5 ≤  𝜋2  ≤ 𝜋1  ≤ 1 and 𝜋2  ≥ 1 − 𝜋1 
𝜋2 (1 − 𝜋1)

𝜋1 (1 − 𝜋2)
 

7 0 ≤  𝜋2  ≤ 0.5 ≤ 𝜋1  ≤ 1 and 𝜋2  ≥ 1 − 𝜋1 
(1 − 𝜋1)(1 −  𝜋2)

 𝜋1 𝜋2
 

8 0 ≤  𝜋2  ≤ 0.5 ≤ 𝜋1  ≤ 1 and 𝜋2  ≤ 1 − 𝜋1 
𝜋1 𝜋2

 (1 − 𝜋1)(1 −  𝜋2)
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Ever since Meuwissen et al. (2001) proposed use of genomic selection for improve-

ment in marker-assisted selection in animal breeding programs, it has established itself in 

many areas of breeding. Whole-genome data of important breeding species like cattle, 

chicken or pig is available for predicting breeding values and association analyses in animal 

breeding (Stock and Reents, 2013). With currently available genotyping methods, SNP  

arrays with up to one million genomic markers are used in animal breeding, while those with 

about 3.000 markers are still used in plant breeding. Steady progress in gene sequencing 

technologies that enable cost effective identification of millions of DNA sequence reads in  

a single run, has led to an increase in the usage of genomic data for prediction of genetic 

merit. In the last ten years the genome sequencing costs have reduced from about  

$1,100 per mega base pair in July 2004 to $0.05 in July 2014 

(http://www.genome.gov/sequencingcosts). The reduced genotyping costs allow increasing 

the sample size and consequently improving the power of the association analyses.  

For instance, in cattle, more than 90% of young dairy bulls from Holstein, Jersey and Brown 

Swiss breeds are genotyped (Schefers and Weigel, 2012). Also in the swine industry, the 

use of markers considerably improved the estimation of breeding values, even though the 

genotyping cost benefits are much lower as compared to dairy cattle (Van Eenennaam et al., 

2014). In addition, the growing number of sequenced genomes across other species has 

opened opportunities to get fresh insights into the inheritance of traits and diseases  

(e.g. Fan et al., 2010; Daetwyler et al., 2012; Erbe et al., 2012). This explosion of information 

begs the question of whether the performance of genomic models will change given the  

increase in marker density. High-density data provided by modern methods of genomic  

sequencing are characterized by the high degree of non-random association between the 

markers (e.g. de los Campos at al., 2009), called linkage disequilibrium (LD), a quantity that 

tends to decay with growing physical distance. The investigation of the magnitude and the 

patterns of non-random association between loci has been a central question in genomic 

research (Georges, 2007; Amaral et al., 2008; Goddard and Hayes, 2009; Megens et al., 

2009), mostly in the context of mapping genes causative for traits or diseases. In population 

genetics, the knowledge of LD structure helps to trace back the phylogenetic development of 

different species and offers fresh perspectives on evolutionary processes leading up to their 

development (Ardlie et al., 2002; Flint-Garcia et al., 2003; Wade et al., 2009; Qanbari et al., 

2010). 

In genomic models, the manifestation of a trait of interest is explained as the  

observed manifestation of genomic markers, while plenty of markers may be located in  

regions that do not contribute to genetic variance. Only markers that are in LD with an  

unknown quantitative trait locus (QTL) can capture the effects of causal loci. Adverse as well 

as beneficial effects of variation of LD level were investigated in the present work. The preci-
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sion of estimation procedures of linear regression models was the subject of chapter 2, while 

chapter 3 raised the issue of the predictive ability of commonly used quantitative methods 

applied to data from unrelated individuals. In chapter 4 the comparison of LD structure in 

genic and non-genic regions was made by using a new scale-corrected comparison method.  

Does too much LD in marker data affect the performance of genomic models? 

The instability of marker effect estimations due to the degree of multicollinearity in the 

marker data was examined in the present thesis. The performances of three linear regres-

sion models – Single Marker Regression (SMR), Multiple Marker Regression (MMR) and 

Linear Mixed Models (LMM) were compared after varying the magnitude of LD in the marker 

data.  

Simulation studies were used to examine the precision of effect estimates in models 

under comparison for traits with different genetic architectures (different heritability and minor 

allele frequency (MAF) distribution), using marker data with a predefined LD structure. To 

quantify the differences between the models, correlations between the estimates from SMR 

and MMR ( )ˆ(Cor β ), between the predictions ( )ˆ(Cor u ) and between predictive errors  

( )ˆ(Cor uu  ) in LMM were used. These correlations were derived analytically using the  

model assumptions and known variance structure of simulated data sets. Additionally,  

sample correlations were derived from 2500 replications in each scenario. 

The LD structure of marker data seemed to be reflected by correlations between  

estimates from SMR and LMM. Even more interesting was the observation about the error in 

estimates from MMR and LMM: for weak LD the values of correlation between the estimation 

errors scattered around zero and an increase in LD led to an increase in negative correlation 

between the errors in estimates at both loci. Thus, the reduction of error in the estimated  

effects jj ββ ˆ  as well as that in the predictions jj uu ˆ  at first locus may increase the error 

at the second. In contrast to MMR, predictions of marker effects in LMM seemed to be more 

sensitive to the LD in the data and were affected noticeably when LD in the data exceeded

6.02 r . The results of MMR and LMM in simulations scenarios with heritability fixed at 0.3, 

0.5 or 0.7 for LD varying between 0.01 and 0.81 and MAF varying between 0.05 and 0.5 are 

shown in Figure 5.1.  
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Figure 5.1. Medians of correlation of estimation errors (upper panel) in MMR (left), cor-

relation in predictive errors in LMM (right) and corresponding IQR (lower panel). Red 

filled points refer to scenarios with heritability equal to 0.3, yellow filled points refers to sce-

narios with heritability equal to 0.5 and blue filled points refers to scenarios with heritability 

equal to 0.7.  

In the upper panel are the medians of correlation of errors in prediction and in the 

lower panel are the corresponding interquartile range (IQR) that help visualize the dispersion 

of the data points. Clearly, the MAF in simulated marker sets influences the medians and the 

IQR of correlations among errors: larger values were observed for smaller MAF. About %95  

of the correlation coefficients ranged from 03.0  to 18.0  in the MMR model, and from 

25.0  to 8.0  in the LMM. Thus, LMM is strongly influenced by the high amount of LD in the 

marker data. Wang et al. (1998) reported the ability of LMM to capture not only the main ef-

fect QTLs, but rather estimates for epistatic and the gene-environment interaction effects are 

obtained. However, the marker data set used for these studies consist of a few hundreds 

markers and the amount of LD and related difficulty based on redundant information from 

markers was not relevant.  
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In all models, no impact of LD was detected on the estimates and predictions of 

marker effects as long as the amount of LD did not exceed 6.02 r  level. Depending on the 

model, LD above a model specific limit had a noticeable adverse effect on estimates and 

predictions and led to a loss in precision. In MMR this negative impact was more pronounced 

for traits with moderate to low heritability, like the productive or fitness traits (e.g. milk yield, 

litter size or hatchability). Obviously, the extent of LD influenced the precision of estimates 

much more strongly in the lower MAF scenarios in all three models; also the threshold for the  

extent of harmful LD increased with MAF. The impact of allele frequencies in the MMR, and 

in the LMM was in the same range, level of LD in the data influenced estimates less severely 

for common variants (threshold for harmful LD at 8.02 r ) and more severely for MAF=0.05 

(threshold for harmful LD at 6.02 r ).  

The intensity of dispersion was also clearly lower for common variants compared to 

low MAF data sets. In MMR the averaged IQR was larger for traits with moderate to low her-

itability, while in LMM the dispersion was in general larger than in MMR, albeit the heritability 

of the trait had no clear impact on IQR. 

 

Figure 5.2. Comparison of performance in MMR and LMM. Averaged differences 

 )ˆ,ˆ(Cor)ˆ,ˆ(Cor 111 jjj ββuuuuIQRdIQR   in inter quartile ranges (IQR) of correlations 

of predictive errors in LMM and estimates from MMR. Red filled points refers to scenarios 

with heritability equal to 0.3, yellow filled points refers to scenarios with heritability equal to 

0.5 and blue filled points refers to scenarios with heritability equal to 0.7. 

A strong impact of allele frequency of markers on goodness of fit was observed with 

all considered models. Generally, the magnitude of MSE in LMM and MMR models was 

comparable, whilst the amount of MSE in the SMR model was up to ten times higher.  
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MMR provided more reliable results compared to LMM and SMR and seems to be an 

appropriate approach for performing analysis in dense marker data sets. However, the main 

limitation of MMR that inhibits its application as a QTL mapping tool still remains the re-

striction that the number of explanatory variables must be smaller than the sample size. 

 

Is too little LD in marker data adverse for performance of genomic models? 

Whole-Genome Regression (WGR) methods (Meuwissen et al., 2001), where pheno-

types are regressed on all markers simultaneously, are widely used for prediction of traits of 

interest. The predictive performance of WGR methods when used for the prediction of phe-

notypes in distantly related individuals was investigated in our studies. The factors 

influencing prediction accuracy of WGR, such as trait heritability, marker density, the genetic 

architecture of the trait, the extent of LD between markers and QTL, the sample size and the 

method used have been intensively investigated and described in literature (Crossa et al., 

2010; Erbe et al., 2013; Wimmer et al., 2013;Gusev et al., 2013; Speed et al., 2012). In most 

of the available studies, family data from populations with intensive history of recent selection 

have been used. The accuracy of prediction depends on degree of relatedness between the 

individuals in the training data set and the new individual (Gao et al., 2013), especially if the 

method is able to capture the relatedness patterns in the sample. Gao et al. (2013) evaluated 

performance of five Bayesian methods and GBLUP for genomic predictions of milk, fat, pro-

tein, fertility and mastitis, applied to a Nordic Holstein high density marker data set. Four 

training data sets were considered, which differ in the degree of relatedness between the 

training and testing data sets. The influence of different methods and degree of relatedness 

was investigated, however the impact of different genetic architectures was not considered in 

these studies. 

In data from less related individuals, there is a lack of within-family disequilibrium 

(Muir and Aggrey, 2003) due to lack of relatedness in the training data set. We examined the 

factors that affect the prediction accuracy of WGRs using human data from distantly related 

individuals, considering the impact on missing heritability and on prediction accuracy of: (a) 

the extent of LD between markers and QTL, (b) the complexity of the trait architecture, and 

(c) the statistical model used (Bayes A, Spike-Slab and two Genomic Best Linear Unbiased 

Predictor (GBLUP) methods). 

In case only QTLs are used for the analysis, thereby without disturbing noise from 

numerous markers without effects, the prediction accuracy with the GBLUP was as good as 

those with Bayes A and Spike-Slab and the correlation between the true and predicted phe-

notype was on average, about 0.45. In the remaining scenarios, GBLUP performed the 
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poorest and its performance was not affected by the architecture of the trait. Bayes A and 

Spike-Slab performed clearly better than the GBLUP, when the trait complexity decreases 

and a small number of QTL explained the genetic variance. However, as the trait architecture 

became more complex, no differences between the methods were detected: all methods per-

formed equally poorly.  

The results achieved in this study have several implications. Firstly, estimates of 

missing heritability derived from data sets consisting of unrelated individuals using WGR 

methods need to be treated with caution. Although those estimates are indicative of how im-

perfect LD between markers and QTL can limit the ability of a model to capture genetic 

signals, they also indicate that under some circumstances estimates can have a sizeable 

bias. Additionally, we observed that in some scenarios these estimates of heritability can 

vary significantly between methods. This is not surprising because the proportion of variance 

explained by a model depends both on the input information (markers/QTL, etc.) and on the 

statistical model used. This inter-dependency between model used and present genetic ar-

chitecture a trait has been over-looked so far. For instance, Krag et al. (2013) evaluated 

estimation of heritability of two Bayesian and one restricted maximum likelihood methods, 

performing extensive simulation studies. Simulation scenarios, reflecting different marker 

densities and population structures, for heritability varying between 0.05 and 0.5 were per-

formed in this study, whereas the number of QTL was fixed across all scenarios. Importantly, 

the model that yielded highest estimated genomic heritability is not necessarily the one that 

yielded the best prediction accuracy. Thus, none of genomic methods is generally applicable, 

however a suitable method might be chosen for each specific question, depending on the 

type of genomic data available for the analysis. 

The prediction accuracy of Spike-Slab model and Bayes A was significantly higher 

than the GBLUP; the superiority of the Spike-Slab over Bayes A was also systematic, but 

very small in magnitude, which suggests that this implementation should be the approach of 

choice for quantitative genetic analysis, particularly for the traits with unknown genetic archi-

tecture.  

Furthermore, the computational time of the Spike-Slab implementation used in our 

studies (Zhou et al., 2013) was about 10 - 12 hours, which is four times faster than that for 

Bayes A (computational time of 2 days). The main limitation of this implementation is the re-

striction on the size of data. In our case the software was not able to cope with more than 

400K markers for 5,758 individuals.  

 One way to improve prediction accuracy using data from less related individuals, is 

the utilization of sequence data. In this way, some two-step estimation procedures, where a 
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subset of influential markers is chosen in the first step and used as weights in the second 

step, estimates of marker effects are obtained (e.g. de los Campos et al., 2013a; Zhang et 

al., 2014). Apart from that, the key aspect of the next-generation sequencing is the ability to 

simultaneously sequence millions of DNA fragments. The large amount of additional genomic 

information can be used not only as a source of a larger number of SNPs, but also as a 

source of insertions or deletions. For the present study, this novel source of genomic infor-

mation was not available. In general, sequence data are still very expensive and are not 

available in all species. A further difficulty of using sequence data for the estimation of effects 

and predictions is the small sample sizes; this is expected to affect the factors investigated in 

the present work to quite an extent. 

 

Real analysis for an additional data set: hopes and reality 

The results achieved for human height using GENEVA data set were very close to the 

results from the simulation for infinitesimal model scenarios with different distribution of MAF 

in markers and QTLs. Human height is believed to be a trait affected by a very large number 

of small-effect QTL (e.g. Allen et al., 2010; Yang et al., 2010). We estimated a sizeable pro-

portion of missing heritability and obtained very similar, albeit poor, prediction accuracies 

across methods (correlation of about 0.16 - 0.17). Thus, for very complex traits such as  

human height, all the evaluated methods yielded low prediction accuracy.  

Real analysis of a trait with a simple genetic architecture may confirm the results from 

simulation studies for scenarios where a small number of variants have impact on the trait. 

For this reason we were looking for a data set with phenotypic records for traits which may 

be influenced by a small number of genes. In the GENEVA data set most records are ordinal 

or nominal variables, based on questionnaires, thus not suitable for performing quantitative 

analysis with WGR. However, some appropriate traits seem to be included in the British Co-

hort 1958 data set (BC58), which consists of records of unrelated individuals born in one 

week in March 1958. Between September 2002 and December 2003 a follow-up biomedical 

survey of 9,377 individuals was undertaken (Power and Elliott, 2006). To a large extent, the 

traits recorded in the biomedical survey are nominal or ordinal variables, achieved using 

questionnaires. Thus, these records are less appropriate for the genomic estimation and 

prediction when applying GBLUP, Bayes A or Spike-Slab. After a thorough search, five met-

ric variables were chosen that are available in BC58 data set: the growth factor 1 (IGF1), 

total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL), low-density lipoprotein 

cholesterol (LDL) and triglyceride (TRIG) as phenotypes for an additional analysis. We used 

a subset of n = 2,997 individuals, genotyped with Affymetrix Genome-Wide Human SNP v6.0 
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DNA Array, after quality control p=737,837 SNPs remained for the analysis. The analysis 

was performed using the Spike-Slab implementation of (Zhou et al., 2013), which has been 

shown to be the best and fastest approach. Figure 5.3 shows the correlations between the 

true and estimated phenotypes and the estimates of heritability for the above-mentioned 

traits, averaged over 30 training-testing partitions.  

 

Figure 5.3. Correlation between phenotypes and genomic predictions in the BC58 data 

set (blue) and in the GENEVA data set (red). Correlation (averages over 30 replicates and 

corresponding standard errors) between phenotypes and genomic predictions using the 

Spike-Slab method. 

The hopes to confirm the observations from the simulation scenarios with traits of a less 

complex architecture were not fulfilled: the accuracy of predictions for new traits ranged from 

0.02 to 0.12, which was on average weaker than that for human height (average at 0.17) for 

individuals from GENEVA. This does not necessarily mean that these traits do not have the 

desired genetic architecture. We know from our studies presented in the second chapter that 

heritability of a trait has a strong impact on the performance of genomic  

approaches. The heritability estimates of CHOL and LDL were the lowest of all BC58 traits 

and were on average between 0.13 and 0.14, while the heritability estimates of IGF1, HDL 

and TRIG were very similar with values around 0.18. Thus the heritabilities of traits from 

BC58 are at least two times smaller than the heritability estimates of human height in  

GENEVA data set and also smaller than the heritability of the phenotypes ( 5.02 h ) in simu-
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lation scenarios. Even if these traits might be influenced by a small number of genes, it would 

be difficult to determine the differences in performance of methods due to general low predic-

tion accuracy.  

 

Does the parameter choice or length of MCMC chains in Bayesian analyses 

bring our results into question? 

The Bayesian methods applied in our studies on prediction accuracy in unrelated in-

dividuals are widely used in animal and plant breeding. The crucial point in the application of 

Bayesian WGR methods is the choice of priors and specification of hyperparameters. This 

point is intensively discussed in the scientific literature (e.g. Gianola, 2013). Lehermeier et al. 

(2013) reported a strong impact of the choice of hyperparameters in Bayesian methods, alt-

hough the impact of chosen prior is reduced by increasing sample size. Thus we decided to 

perform sensitivity analysis in order to examine how the change in the prior parameters influ-

ences the predictive ability.  

In the BGLR-package used for the analysis of simulated and real data, GBLUP is  

implemented as a Bayesian Reproducing Kernel Hilbert Spaces Regressions (RKHS) with a 

Gaussian kernel, where a scaled-inverse 2 density is assigned to the variance parameters. 

The default degree of freedom is set to df=5, which gives a relatively un-informative prior and 

should guarantee a finite prior variance. We performed analysis with df=15, predicted for the 

same testing-training data sets (TST-TRN) partitioning and calculated correlation between 

predictions from both setting: the correlations in both training and testing data sets were 

>0.99, showing that predictions were not sensitive to the choice of the degrees of freedom in 

the RKHS implementation in BGLR. 

For BGLR-implementations of Bayes A and GBLUP, we performed 50,000 MCMC it-

erations, whereby the first 10,000 iterations were considered as a “burn in” phase of the 

sampling algorithm and consequently discarded from the posterior distribution sampling. In 

the GEMMA software, used for performing the Spike-Slab model, default number of MCMC 

iterations is set to 1,000,000 which seems to be much too high. Thus, we reduced the num-

ber of iterations to 100,000. A convergence diagnostic carried out for all methods using the 

R-package coda (Plummer et al., 2010), which deliver detailed summary statistics of all mar-

ginal posterior distributions as well as traceplots and kernel density plots of all variables 

enabling the visual control of convergence behaviour. Furthermore, we performed sensitivity 

analyses to examine the convergence behavior of the algorithms for the different numbers of 
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iteration (nIter): GBLUP, Bayes A and Spike-Slab predictions in different simulation scenarios 

were obtained and visualized in Figure 5.4. 

 

Figure 5.4. Correlation between predictions in BC58 data set and in GENEVA data set 

for different hyperparameter. Averaged correlation between genomic predictions obtained 

in GBLUP (green), Bayes A (blue) and Spike-Slab (red) with default and deviating values of 

hyper parameters: degree of freedom (df) and number of iterations (nIter). 

 

For all methods, the correlations achieved from sampling algorithms with different 

numbers of iterations were relatively high and did not vary across simulation scenarios. In 

Bayes A the correlation between the predictions performed using 100,000 or 50,000 itera-

tions was   0003.09994.0ˆ,ˆ
000,50000,100 yyCor  and in GBLUP for the same settings, 

  0001.09993.0ˆ,ˆ
000,50000,100 yyCor . In Spike-Slab the correlation between predictions 

achieved using default nIter=100,000 or nIter=1,000,000 was 

  013.0984.0ˆ,ˆ
000,100000,000,1 yyCor  and thus the lowest of all. Nevertheless, the concord-

ance in predictions was high and we decided to keep the chosen parameters. 

 

To what extent does the degree of association between loci differ between gen-

ic and non-genic regions?  

In Chapter 4 a comparison method was developed which copes with difficulties aris-

ing while performing comparison of LD levels between different genomic regions such as the 

impact of the extent of compared regions on the genome (spatial bias) and the impact of al-
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lele frequencies on LD (MAF caused bias). The differences in LD structure between genic 

and non-genic regions in human, chicken and arabidopsis were examined using this method. 

In the first step, similar pairs from the genic and non-genic regions (G/IG) were identified.  

Applying the Wilcoxon signed rank test, we detected significant higher LD level in genic  

regions on about 30% of chromosomes in human (H. sapiens) and in chicken (G. g. domesti-

cus), while in arabidopsis (A. thaliana) about 20% higher LD in genic regions was observed 

on all chromosomes. As control, comparisons of pairs of similar non-genic regions (IG/IG’) 

were performed and, as expected, no significant differences between those regions were 

discovered. Even on a genome-wide level, significantly more LD was observed in genic re-

gions from all three species; thus the observations of higher LD in genic regions by Eberle et 

al. (2006) were confirmed and quantified.  

The LD levels at very short physical distances were similar in A. thaliana and  

H. sapiens with 
2r  being about 0.25 in average. However in A. thaliana a clear gap between 

LD amount in genic and non-genic regions was registered in that region while in H. sapiens 

almost no G/IG difference was recorded up to a distance of about 50 kilo base pairs.  

Why are the LD spans so short and why are genic regions more conserved in A. thaliana 

compared to humans? A. thaliana is a globally distributed plant and the sample used in our 

studies consists of inbred lines. This sample has a complex population structure and a very 

large effective population size which may explain the rapid decay of LD (Kim et al., 2007). In 

general, LD in plants vary depending on the choice of a population (Flint-Garcia et al., 2003): 

for instance, in barley Caldwell et al. (2006) reported 2.02 r  at a distance of about 212 

kbp. 

The LD level observed in G. g. domesticus was twice as high as the LD level in H. 

sapiens and decay was much slower than in humans. This higher LD level was observed in 

G. g. domesticus over all distances: the white layer data originated from a commercial breed 

that has been intensively selected for egg laying. Thus the degree of relatedness among 

those individuals was relatively high. The magnitude of relatedness in the population had a 

strong impact on the effective population size, which is very low in commercial lines of chick-

en (Qanbari et al., 2010; Li et al., 2012). Thus, it is not surprising that the individuals share 

long sequences of chromosomes and the total amount of LD in populations from breeding 

programs is relatively high. The natural decay of LD occurs at slower rate due to stronger 

and directed selection pressure.  

A framework that accounts for spatial and structural differences in genomic regions 

for comparing genic and non-genic regions gave us new insights into the dependency of LD 

levels on size of chromosomes or regions. In contrast to findings of Smith et al. (2005) and 

Uimari et al. (2005), we did not observe weaker LD in the small chromosomes and stronger 
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LD in the large chromosomes. Across all species, the extent of LD measured in genic or non-

genic regions does not depend on the size of the chromosome. These discrepancies from 

previous studies may be caused by lower marker density, lower SNP call rates (>80%) or 

smaller sample sizes in older studies. Differences detected in studies of Smith et al. (2005) 

and Uimari et al. (2005) may also be caused only by spatial differences or different distribu-

tion of allele frequencies. In order to gain a deeper insight into the relationship between LD 

and size of genomic regions, a detailed analysis in the chicken data set was performed:  

linear regression of the medians of both considered LD measures was performed against the 

size of genic and non-genic regions. Although for both LD measures the slopes of regression 

curves were negative and differed significantly from zero, all absolute values were very tiny 

and could be ignored. The differences in G/IG comparison did not depend on the size of re-

gions at all. 

The results of significance tests of haplotype diversity confirmed our observations of 

differences in LD levels: significantly less diversity of haplotypes in genic regions was noticed 

for all species. One possible reason may be the interferences of the molecular mechanisms 

responsible for survival of an organism and the resulting damage of vital processes. Another 

reason for more conserved variants in genic regions might be connection to the fertility dis-

rupters (e.g. Naz, 1999; Anway et al., 2005) in case of recombination in genic regions, which 

affect productivity capacity of living organisms. In such cases affected individuals are no 

longer available in the parental gene pools. 

Main Conclusions 

The presence of LD complicates modelling of genomic data, since in many models 

the assumption of independence of explanatory variables plays a central role. A unique solu-

tion for effect estimates is impossible if this restriction to the data is violated and the reliability 

of the marker effect estimates in different models is reduced. An increase in estimation errors 

was recorded if the LD level between the loci increased. According to Günther et al. (2011), 

SNPs located in genes and in particular in introns are significantly more frequently detected 

by GWAS. In combination with higher LD in genic regions, the precision of marker effect es-

timates for markers in those regions is seriously affected.  

The assessment of prediction accuracy suggests that for traits in which a limited 

number of regions explain a sizeable proportion of genetic variance, the use of WGR meth-

ods that perform variable selection or differential shrinkage of estimates of effects is strongly  

recommended over ridge-regression type methods such as the GBLUP. On the other hand, 

for very complex traits such as human height all the methods evaluated yielded low predic-

tion accuracy. It remains to be determined whether significant increases in sample size 



5th CHAPTER General Discussion 156 

(which likely should be by orders of magnitude) will also yield substantial gains in prediction 

accuracy. 

The strategy we proposed to account for scale effects in LD comparisons of different 

genomic regions proved to be efficient: using a haplotype based measure 
2r  we determined 

significantly higher extent of LD in genic regions compared to non-genic regions. In all prob-

ability, this is a general phenomenon since it was observed in the human, animal (chicken) 

and plant (arabidopsis) data sets we studied. Additional studies, especially the comparisons 

of different regions of the genome (coding, non-coding), are needed to confirm and refine our 

results. However, some issues pertaining to the nature of LD were identified and need further 

discussion. In particular, simulation studies based on related individuals for investigating the 

impact of LD level on single SNP effect might give new insights. 

The results of our studies indicate a strong impact of high LD between the markers on 

estimates of random marker effects in linear models. These results are especially relevant for 

the estimation of marker effects in animal and plant breeding, where the populations consist 

of closely related individuals and consequently the LD amount in the data is very high. In our 

studies we observed that 30% of SNP pairs 60.02 r  and about 10% of SNP pairs 

80.02 r  in a data set of a highly selected White Leghorn chicken, which might be crucial 

for the precision of estimates for a substantial part of markers. The degree of relatedness 

between the individuals in the sample, have been shown to have a strong impact on predic-

tion accuracy in particular for such methods as GBLUP, which is able to capture the 

relatedness patterns in the sample. Thus, the differential shrinkage methods like Bayes A 

and variable selection methods like the Spike-Slab model have proven to be more robust and 

reliable if there is a lack of within-family disequilibrium due to lack of relatedness in the train-

ing data set.  

Availability of high-density marker data set in many species and related increase of 

LD amount in data, which is an advantage on the one hand, is an inconvenience on the oth-

er:  the prediction accuracy in samples of less related individuals could be improved, while 

the estimates of maker effects would lose their precision. In this context, we provide a power-

ful tool for comparison of LD in different genomic regions, taking into account scale 

differences. 
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