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Zusammenfassung 

Fast alle Pflanzen in den gemäßigten und tropischen Klimazonen gehen 

eine symbiontische Beziehung mit Mykorrhizapilzen ein. Studien über die 

Symbiose von Mykorrhizen konzentrieren sich vor allem auf die gemäßigten 

Klimazonen der Erde und nur wenige Informationen über tropische 

Landnutzungssysteme stehen zur Verfügung. Die Assoziation von 

Pflanzenwurzel und arbuskulären Mykorrhizapilzen (AMF) ist von wesentlicher 

Bedeutung, da der Pilz eine Schlüsselrolle für die Funktionsfähigkeit und 

Nachhaltigkeit von Ökosystemen einnimmt. Es wurden zwei Experimente 

durchgeführt, um die Gesellschaften von AMF zu untersuchen, eines in der 

gemäßigten Klimazone in einem Dauergrünland im Solling, Deutschland und 

das andere in tropischen Transformationssystemen auf Sumatra, Indonesien. 

Das Ziel des Experiments im Grünland war es festzustellen, ob es Unterschiede 

in der Zusammensetzung von AMF-Gesellschaften gibt, die durch verschiedene 

Flächenbewirtschaftungen und Herbivorie verursacht werden. Es wurde 

angenommen, dass (i) Düngung die AMF-Gesellschaftszusammensetzung 

verändert und der AMF-Artenreichtum herabgesenkt werden kann, (ii) 

regelmäßiges Mähen und Herbivorie potentiell zur Reduzierung von 

photosynthetischem Kohlenstoff in den Pflanzengeweben führt. Da die AMF auf 

die Kohlenstoffzufuhr durch ihre Wirtspflanzen angewiesen sind, gehen wir 

davon aus, dass Herbivorie und Mähen die AMF-Abundanz senkt, (iii) bisher ist 

der Zusammenhang zwischen AMF-Gesellschaften und pflanzlicher Diversität 

unklar. Wir erwarten, dass die Manipulation des Artenreichtums der 

Graslandvegetation negativen Einfluss auf die AMF-Abundanz hat. Im zweiten 
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Experiment sollte der Einfluss der Umwandlung von Tieflandregenwald in 

Kautschuk- und Ölpalmplantagen auf die Struktur von AMF-Gesellschaften 

untersucht werden. In dieser Studie wurde angenommen, dass die veränderte 

Landnutzung hingehend zu intensive bewirtschafteten Plantagen einhergeht mit 

einem Verlust des AMF-Artenreichtums und dass die AMF-

Gesellschaftszusammensetzung verändert wird. 

 Die Graslandvegetation wurde durch die Anwendung von Herbiziden 

gegen entweder dikotyle oder monokotyle Pflanzen verändert um Unterschiede 

im Artenreichtum in den Flächen zu erlangen. Die so entstandenen 

unterschiedlichen Grünflächen wurden dann unterschiedlich durch Mähen, 

Düngung und dem Aussetzen von Fraßfeinden behandelt. Die Studie war ein 

Feldexperiment mit Latin Rectangle Design. Es beinhaltete drei 

Behandlungsfaktoren: Grünflächentyp, Anwendung und Nährstoffe. Der Faktor 

Grünflächentyp war durch drei Ausprägungen vertreten (unbehandelte 

Kontrollflächen [species richness], Flächen mit Reduktion von Dikotylen 

[monocots] und Flächen mit reduzierter Anzahl von Monokotylen [dicots]). Der 

Faktor Anwendung hatte zwei Level: einmalig gemäht und dreimal gemäht. Der 

Faktor Nährstoffe wurde ebenfalls durch zwei Level vertreten, zum einen durch 

die Düngung mit NPK und zum anderen durch den Verzicht auf Düngung. Um 

die AMF-Kolonisierung zu betrachten, wurde die relative Kolonisierungsrate 

durch Hyphen, die relative Abundanz von Vesikeln, sowie die relative Abundanz 

von Arbuskeln analysiert. Die Diversität von AMF OTUs (Operational 

Taxonomic Units) wurde anhand der Amplifikation der rDNA Region zum 

Sanger-Sequenzieren bestimmt. Die Ergebnisse zeigen, dass die 
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Hyphenkolonisierungsrate nicht durch die verschiedenen 

Flächenbewirtschaftungen beeinflusst wurde. Dünung als Einzelfaktor hat die 

relative Abundanz von Arbuskeln und Vesikeln sowie die AMF-Diversität 

signifikant herabgesetzt. Der Shannon Index für Diversität (H’) zeigt, dass 

ungedüngte Flächen diversere AMF OTUs aufweisen als gedüngte Flächen. 

Die relative AMF-Abundanz wurde nicht durch das Entfernen oberirdischer 

Pflanzenbiomasse, in Form von regelmäßigem Mähen und Herbivorie, 

beeinflusst. Auch die verschieden artenreichen Graslandvegetationen haben 

keinen Einfluss auf die relative AMF-Abundanz gezeigt. Dennoch hat die 

Interaktion von Grünflächentyp, Dünung und Schnittfrequenz zu einer 

signifikanten Veränderung der relativen Abundanz von Vesikeln und Arbuskeln 

geführt. Es wurden AMF OTUs innerhalb dreier Familien der Glomeromycota 

gefunden: Glomeraceae, Claroideoglomeraceae, und Archaeosporaceae wobei 

Glomus sp. am häufigsten gefunden wurde. Diese Ergebnisse weisen darauf 

hin, dass Dünung ein dominanter Faktor für die Veränderungen von AMF-

Gesellschaften in Graslandvegetationen sein könnte. 

 Das zweite Experiment wurde in zwei Landschaften auf Sumatra, 

Indonesien durchgeführt, zum einen im Gebiet des Bukit Duabelas Nationalpark 

und zum anderem im Gebiet des Harapan Regenwalds. Die AMF-

Artenabundanz in Wurzeln wurden untersucht, indem partielle rDNA-Fragmente 

amplifiziert wurde. Um die dazugehörigen Wirtspflanzenart zu identifizieren, 

wurde die pflanzliche DNA mit Hilfe der Marker rbcL und matK bestimmt. Es 

wurden insgesamt 112 Einzelwurzeln untersucht und 39 AMF OTUs gefunden. 

Die Rarefaction-Analysen zeigen, dass die Anzahl analysierter AMF Sequenzen 
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pro Probenahmestelle ausreichend waren, um eine Aussage über die AMF-

Diversität in den Wurzeln der Landnutzungssysteme treffen zu können. Die 

pflanzliche DNA konnte mit dem rbcL Marker identifiziert werden, während der 

matK Marker keine zufriedenstellenden Ergebnisse lieferte. Es wurden 20 AMF 

Wirtspflanzen in Bukit Duabelas beziehungsweise 31 in Harapan gefunden. Die 

Diversitätsindizes zeigen, dass durch die Umwandlung von Regenwald in 

Ölpalm- und Kautschukplantagen der Artenreichtum von AMF signifikant 

verringert wird. Der Effekt der Landnutzung wurde mithilfe von PERMANOVA 

ermittelt und zeigte, dass unterschiedliche Landschaften und Plots die 

Zusammensetzung der AMF-Gesellschaften signifikant beeinflussen. Dieser 

Effekt kann durch Umweltfaktoren erklärt werden. Es konnte gezeigt werden, 

dass die Struktur der AMF-Gesellschaften in Verbindung stehen mit 

Kohlenstoff-, Stickstoff- und Aluminiumkonzentration der Wurzeln sowie mit 

dem pH-Wert der BÖden. Im Gegensatz dazu, hat der Phosphorgehalt der 

Wurzeln keinen signifikanten Einfluss auf die Struktur der AMF-Gesellschaften. 

 Die Ergebnisse dieser Studien zeigen klar den Einfluss von spezifischer 

Flächenbewirtschaftung in Grünflächen der gemäßigten Zone sowie den der 

Umwandlung des tropischen Regenwaldes zu intensiv bewirtschafteten 

Plantagen. Die Untersuchungsgebiete des Dauergrünlandes in der gemäßigten 

Klimazone und der Transformationssysteme des Regenwaldes in den Tropen 

enthalten genügend Umweltfaktoren, um viele Effekte von 

Flächenbewirtschaftung und Landnutzungsveränderungen auf die 

Zusammensetzung von AMF-Gesellschaften zu erklären. 
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Summary 

Most plants in temperate and tropical regions form symbiotic association 

with mycorrhizal fungi. Studies on mutualistic association of mycorrhiza focus 

mainly on temperate regions of the world, whereas little information is available 

from the tropical land use systems. Associations between plant root and 

arbuscular mycorrhizal fungi (AMF) are essential components of ecosystems 

where the fungus plays a key role in the functioning and sustainability of the 

ecosystems. We conducted two experiments in a permanent temperate 

grassland in the Solling, Germany, and transformation systems in Sumatra, 

Indonesia, to examine the communities of AMF. The objective of the grassland 

experiment was to determine the changes within AMF community composition 

caused by management practices and herbivores. We hypostasized that: (i) 

fertilization will change the community composition the AMF and may reduce 

the species rich, (ii) frequent utilization by mowing and herbivore will potentially 

reduce the photosynthetic carbon in plant tissue. Since AMF required the 

carbon from their plant host, we expect that mowing and herbivore will decrease 

the AMF abundance (iii) AMF communities, so far, had unclear relation to the 

plant diversity. We expected that manipulating sward species richness will have 

negative impact on the AMF abundance. In the second experiment, we aimed to 

investigate the impact of transformation of tropical lowland rain forest into 

managed rubber tree and oil palm plantations on AMF community structure. 

The postulated hypothesis stated that land-use change into intensive agro 
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plantations will reduce the AMF species richness and alter its community 

composition.  

We manipulated grassland vegetation by applying herbicides against 

either monocots or dicots to modify the swards species composition. The 

resulting swards were then treated with mowing and fertilizer, and herbivores 

were allowed to feed on the grass. The study was field experiment with Latin 

Rectangle design. It includes three treatment factors: sward type, utilization, 

and nutrients. Sward type consisted of three levels: untreated control sward 

(species-rich), dicots reduced (monocots-dominated), and monocots reduced 

(dicots- dominated). Utilization consisted of two levels: mowed once and mowed 

three times, whereas nutrients consisted of two levels: with and without 

nitrogen, phosphorus, and potassium. To assess the AMF colonization rate, the 

relative hyphal colonization rate, the relative abundance of arbuscules, and the 

relative abundance of vesicles were analyzed. The diversity of the AMF 

operational taxonomic units (OTUs) were analyzed by amplification of the rDNA 

region using Sanger sequencing method. Our results showed that hyphal 

colonization rate of arbuscular mycorrhizal fungi were not affected by 

management practices. Fertilization as a single factor significantly reduced the 

relative abundances of arbuscule and vesicle and decreased the AMF diversity. 

The Shannon diversity index (H’) indicated that unfertilized swards had more 

diverse AMF OTUs compared to fertilized plots. The relative abundance of AMF 

was not affected by removing plant aboveground biomass through mowing 

frequency and herbivores. We also found that different species rich sward did 

not impact the relative abundance of AMF. However, the interaction between 
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sward, fertilization, and cutting frequency significantly changed the relative 

abundance of arbuscule and vesicle. AMF OTUs belonged to three families of 

Glomeromycota: Glomeraceae, Claroideoglomeraceae, and Archaeosporaceae 

and Glomus sp. was the most abundant among the AMF. These results 

suggested that fertilization is a dominant factor in changing the AMF community 

in grassland vegetation. 

The second set of experiments was carried out in two landscapes in the 

Bukit Duabelas National Park and Harapan Rainforest in Sumatra, Indonesia. 

The AMF species abundance in the roots was investigated by amplifying a 

partial rDNA fragment, and AMF host plant species were identified using DNA 

barcoding with markers rbcL and matK. A total of 112 single roots were 

analyzed and 39 AMF OTUs were detected. The rarefaction analysis indicated 

that the number of sequences analyzed per sampling site was sufficient to 

cover AMF diversity in the roots per land use system. Plant DNA barcoding was 

successful with rbcL marker, whereas matK had low species identification 

efficiency. We found 20 and 31 AMF host plant species in Bukit Duabelas and 

Harapan, respectively. Diversity indices showed that conversion of forest to oil 

palm and rubber tree plantations significantly decreased the AMF species 

richness. However, none of the AMF OTUs had strong host specificity. The 

effect of land use was determined by permutational multivariate analysis of 

variance, showing that different landscapes and plots significantly influenced 

the community composition of AMF, which effect was explained by 

environmental factors. We found that AMF community structures were related to 
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C, N, and Al concentrations in roots and soil pH. In contrast, P concentration in 

roots did not significantly affect the AMF community structure. 

The results presented here clearly demonstrate the influence of 

management practices in temperate grassland and conversion of tropical forest 

into agro plantation on the AMF community structure. The study area in 

temperate grassland and transformation systems of tropical lowland rain forest 

covers sufficient environmental factors to explain multiple effects of 

management practice and land-use change on AMF community composition.  
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Chapter 1 

General Introduction 

 

1.1. Functional diversity of mycorrhiza  

Majority of higher plants associate with mycorrhizal fungi (Smith 

and Read 2008). The term mycorrhiza was introduced by German scientist 

A. B. Frank more than 100 years ago. The term was defined as a 

mutualistic symbiosis between plant roots and fungi (Habte 2000). 

Mycorrhiza can improve nutrient uptake, water absorption, plant 

productivity, and protect the plant from soilborne pathogen (Smith and 

Read 2008). In exchange, the fungus receives nutrients from the plant 

host Among the different types of mycorrhizae, two common types of 

association are endomycorrhizal association of arbuscular mycorrhizal 

fungi (AMF, Figure 1.1) and ectomycorrhizal fungi (EMF, Figure 1.2) 

(Peterson et al. 2004, Smith and Read 2009, Bonfante and Genre 2010). 

AMF belong to the phylum Glomeromycota, and they develop intra-extra 

radical hyphae and produce highly branched nutrient-exchange structure 

in the roots called ‗arbuscule‘. EMF, which belong to Ascomycota and 

Basidiomycota, produce hyphal web to cover the root tips (Bonfante and 

Genre 2010).  

AMF form mutualistic associations with a broad spectrum of plant 

species. Studies have shown that the diversity of mycorrhizal fungi 

potentially influences to the ecosystem functioning by participating in 

phosphorous uptake (Cameron et al. 2007; Feddermann et al. 2010), 
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nitrogen metabolism (Cameron et al. 2006), and carbon storage (Moore et 

al. 2015). The role of plant community is also a determining factor that 

influences the AMF diversity (Burrows and Pfleger 2002). In ecosystems, 

AMF have been reported not only to assist the plant nutrient uptake but 

also contribute in plant diversity and ecosystem productivity (Klironomos et 

al. 2000; Lee et al. 2013).  

AMF species diversity can be determined using molecular data (Lee 

et al. 2008; Stockinger et al. 2010; Krüger et al. 2012). In relation to the 

functionality, AMF species determine various functions within the 

symbiosis (Smith and Read 2008). Functional diversity governs the 

contribution of organisms in communities and ecosystems (Petchey and 

Gaston 2006). Functional diversity of AMF refers to the function 

associated with the host plant growth (Johnson et al. 1997).   

Recent physiological and morphological study revealed that AMF 

play a major role in phosphorus uptake, which is required for plant growth 

(Smith et al. 2011). In return, AMF receive organic carbon (Smith and 

Smith 2012). Plant roots have the capacity to uptake inorganic phosphorus 

from soil (Gordon-Weeks 2003). Uptake of slowly diffused phosphorus in 

soil, is possible by plants associated with AMF since their hyphae increase 

the ability to explore soil pores (Smith and Read 2009; Schnepf et al. 

2011).  

Mutualistic interactions of AMF–host plant are based on the 

exchange of nutrients. Bonfante and Genre (2010) explained that 

specialized transporter in extra-radical mycelia of AMF translocates the 
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mineral organic nitrogen (ammonium, nitrate, and amino acids) and 

inorganic phosphorus (Pi) from soil into their host plant. As the feedback, 

plant delivers carbon to AMF via a hexose transporter (Figure 1.3). 

 

 

 

 

 

Figure1.1. a) Diagram showing root colonization structure in arbuscular 
mycorrhizal fungi (AMF) (Bonfante and Genre, 2010); b) extra-radical 
mycelia (arrowheads) and developing spores (arrows); c) intracellular 
hyphae (arrowhead) and arbuscules (arrows); d) fully developed 
arbuscules; e) vesicles of AMF (Peterson et al. 2004). 

a  b 

c 

d e 
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Figure 1.2. a) Diagram showing root colonization structure in 
ectomycorrhizal fungi (EMF) (Bonfante and Genre 2010); b) EMF mantle; 
c) Transverse section of EMF stained with fluorol yellow and examined by 
epifluorescence microscopy. Lipids (arrowheads) are present in the mantle 
hyphae (Peterson et al. 2004).    
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Figure 1.3. The diagram of the main nutrient exchange processes in 
mycorrhizal symbiosis (Bonfante and Genre 2010). 

 

In addition, AMF species exhibit different ability to take up nitrogen 

because of accessibility of inorganic forms of nitrogen in soil (Read and 

Perez-Moreno 2003; Lambers et al. 2008). AMF have been reported to be 

able to take up and transfer significantly higher concentrations of nitrogen 

to their host plant than the amount of nitrogen non-mycorrhizal plants are 

able to absorb from the soil (He et al. 2003). Since AMF dominate the 

plant root association where nitrogen sources are abundant, this fungi are 

able to take up NO3
- and NH4

+ (Hodge and Storer 2014). With the 

extensive hyphal network in soil, AMF hyphae are better suited to uptake 

nitrogen in NH4
+ form (López-Pedrosa et al. 2006). Using nanotechnology 

technique with quantum dots, (Whiteside et al. 2012) examined the 

organic nitrogen uptake by AMF in situ and found that AMF gained 
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recalcitrant and labile forms of organic nitrogen. Thus, plant productivity is 

supported by AMF when N availability is low.  

 

1.2. Arbuscular mycorrhiza across temperate and tropical 

ecosystems 

Arbuscular mycorrhizae are highly relevant in many ecosystems 

(Berruti et al. 2014). AMF generally occur in herbaceous species (Smith 

and Read, 2008), but they also present in trees (Wang and Qiu 2006). 

Moreover, it has been suggested that as many as 75% of plant species 

may form a symbiotic association with AMF (Tawaraya et al. 2003; Wang 

and Qiu 2006). AMF has been found in most of plant ecosytems, from 

meadows to woodland and agroplantation (Öpik et al. 2006). Mutualism 

between plant roots and mycorrhizal fungi is essential component in 

grassland communities. Moreover, Miller et al. (2012) indicated that most 

of the plants in grasslands form associations with AMF, but the symbiosis 

is dependent on plant taxa, soil fertility, and the season. Unlike the 

temperate region, many questions pertaining to mycorrhizal diversity and 

function in tropical forest remain unanswered. In tropical forests, majority 

of the trees are associated with AMF, whereas in temperate trees, the 

roots generally form ectomycorrhizal associations (Smith and Read 2008). 

However, little is known about basic biological information related to 

functional diversity of AMF particularly in Indonesian tropical rain forest.  

Grass is a predominant and the most widespread vegetation type 

worldwide (Lieth 1975). Generally, most of the plants in grassland 
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ecosystems form symbioses with AMF (Miller et al. 2012). There is 

evidence that grassland vegetation structure can be affected by AMF 

(Zobel et al. 1997; Šmilauer and Šmilauerová 2000). The study of 

seasonal variation in grassland population conducted by Escudero and 

Mendoza (2004) in temperate grasslands of Argentina showed that two 

species of AMF, Glomus fasciculatum and Glomus intraradices, dominated 

the colonization of grassland. Field studies showed that AMF are able to 

colonize grassland vegetation in different soil conditions (Gai et al. 2006; 

Hempel et al. 2007; Yang et al. 2013). It has been reported that the 

species composition of AMF corresponds to nitrogen enrichment in 

grassland as reported by Egerton-Warburton et al. (2007) and the 

changes in AMF communities can be affected by fertilizers (Miller et al. 

2012).  

In tropical rain forests and agroforestry, most of the plants are 

associated with AM (Hopkins et al. 1996; Bakarr and Janos 1996; 

Alexander and Lee 2005). Ectomycorrhizae (EM)–plant association has 

also been observed in humid tropics (Torti et al. 2001; Henkel et al. 2002). 

Tedersoo et al. (2008) found that host preferences of AMF are mediated 

by host plant identity. However, other factors such as host phylogeny 

(Morris et al. 2008) and environmental conditions also play important role 

in AMF community composition (Aponte et al. 2010).  

In tropical forest, AMF might exhibit a specific pattern of host 

association where AMF population shows a significant spatial 

heterogeneity and non-random association with different hosts and in 
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different environments (Klironomos 2000; Lovelock et al. 2003; 

Muthukumar et al. 2004).   

 

1.3. Management practices affected AMF 

In plant–fungal interaction, host plant and environmental factors are 

predicted to be the major driver of changes in AMF community. The AMF 

communities change when natural ecosystems are converted to managed 

vegetation by management practices (Oliveira and Sanders 1999; 

Mathimaran et al. 2007; Monreal et al. 2011), and nutrient and crop 

management can induce the diversity and change in function of AMF 

(Douds and Millner 1999; Plenchette et al. 2005).  

Generally, adding fertilizer is expected to maintain soil fertility and 

plant productivity. However, continuous fertilizer application for a long 

period of time will impact soil rigidity through rapid loss of soil organic 

matter and decrease the diversity of soil microorganisms (Plenchette et al. 

2005). The soil fertilizers, particularly phosphorous fertilizers, have a 

negative impact on the association between AMF and plants (Grant et al. 

2005). It has been reported that a decline of AMF community is induced by 

application of high levels of inorganic fertilizers (Mäder et al. 2000; 

Kahiluoto et al. 2001). Increased phosphorus concentration in plant 

tissues reduces root exudation of strigolactones (a group of 

apocarotenoids), signal molecules for spore germination and recognition of 

AMF hyphal branching (Akiyama et al. 2005; García-Garrido et al. 2009). 

In addition, nitrogen fertilizers decline the AMF community composition 
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during their prolonged application (Van Diepen et al. 2007; Antoninka et al. 

2011; Liu et al. 2014). 

Field studies showed that conversion of natural grassland to 

managed grassland changes AMF community structure (Oehl et al. 2003; 

Jansa et al. 2009). The diversity of AMF was reduced after 10 years of 

contamination by phosphate residual in calcareous grassland in Thuringia, 

Germany (Renker et al. 2005). Enrichment of grassland vegetation with 

nitrogen fertilizer also decreased the AMF colonization (Corkidi et al. 

2002). 

Community structure of AMF may change across different land use 

systems due to environmental factors and the diversity of host plants 

(Bedini et al. 2007, Ndoye et al. 2012, Belay et al. 2013, Dai et al. 2013). 

Thus, forest conversion to managed agricultural plantation alters the AMF 

community composition (Lakshmipathy et al. 2012; Sharma et al. 2012). 

 

1.4. Scope of the study 

Ecosystem changes in temperate permanent grassland and tropical 

rain forest are predicted to alter the community composition of AMF. This 

study therefore aims to understand the impact of management practices 

and land use change on AMF communities in these two ecosystems.   

The objectives of this study were to investigate: (i) the impact of land 

management and herbivory on AMF colonization and diversity in 

temperate grassland Solling, Germany as a model system; (ii) the 

community structure of AMF across a tropical land use gradient in lowland 
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rain forest transformation systems in Indonesia. The results of the study 

are presented in two corresponding chapters. This study, therefore, targets 

the following two questions:  

1. Are the colonization rate and AMF diversity altered by fertilizer 

application, swards species richness, mowing, and herbivory in upland 

permanent grassland? 

2. Does the conversion of rain forest into rubber tree and oil palm 

plantations change the community composition and reduce the 

species richness of AMF?  
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Chapter 2 

Impact of land management and herbivory on arbuscular 
mycorrhizae in upland permanent grassland 

 

2.1. Introduction 

Recently, there has been a growing interest in studying interactions 

between above and belowground organisms in grassland ecosystems, 

and especially in elucidating the role of each organism. One of the 

important groups of organisms are plant root associated mutualistic fungi, 

called arbuscular mycorrhizal fungi (AMF) (Klironomos 2003, Leake et al. 

2004, Bonfante and Genre 2010). These fungi form mutualistic association 

with a majority of vascular plants in which the fungi help their host to take 

up nutrients from the soil and in return, obtain photosynthetically derived 

carbon compounds from the host (Smith and Read 2008).  

AMF are present in a broad range of plant vegetation (Öpik et al. 

2009) and can tolerate various ecological conditions (Klironomos et al. 

2001; Entry et al. 2002; Finlay 2008). The AMF community composition is 

determined by the plant diversity (Lumini et al. 2010, van der Gast et al. 

2011) and management practices (Titus and Leps 2000; Mathimaran et al. 

2007). Nevertheless, identifying factors that regulate the community 

assemblages of AMF is challenging. To address the relationship between 

AMF community composition and management practices in permanent 

grassland vegetation, manipulations of plant species in a long-term 

experiment has been conducted in the Solling upland permanent 

grasslands.  
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Grassland, determined as an ecosystem covered with grass, 

legumes, and herbs, functions as a carbon sink, nitrogen fixation source, 

and a habitat for animals, and it prevents erosion (Carlier et al. 2009). 

Grassland also supports biodiversity, soil fertility, as well as environmental, 

economic, and social functions beyond the farm (Hopkins and Morris 

2002). Generally, permanent grassland comprises 40% of the terrestrial 

area (White et al. 2000), provides livelihood for more than 800 million 

people (Reynolds et al. 2005), and a habitat for animals (WallisDeVries et 

al. 2002). The Solling upland grasslands have been used traditionally as 

an extensive pasture and meadow since the end of the 19th century. 

However, it was reported as a nutrient-poor ecosystem dominated by 

Agrotis capillaris and Festuca rubra (Petersen et al. 2012).  

Management practices such as fertilization (Wu et al. 2011) and 

mowing (Titus and Leps 2000) can influence AMF abundance and 

diversity. It has been reported that changes in either type or amount of 

fertilizer can directly affect the AMF community (Bhadalung et al. 2005; 

Nijjer et al. 2010; Wu et al. 2011), although the effects of fertilizer on AMF 

communities is not well understood. Fertilizers decrease extraradical 

hyphae (Johnson 1993) and impact spore formation of certain AMF 

species  (Thomson et al. 1992, Egerton-Warburton and Allen 2000, 

Kahiluoto et al. 2001). In contrast, Nijjer et al. (2010) found an increase in 

hyphal colonization of AMF after the fertilization.  

Besides affecting plant performance, removal of above ground 

biomass by mowing, clipping, and grazing by herbivores are factors that 
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also alter the AMF colonization (Barto and Rillig 2010) by reducing the 

photosynthetic carbon stored in plant tissue as well as by triggering 

changes in plant physiology that arise after the removal of above ground 

biomass (Barto and Rillig 2010). A study on the effect of combination of 

mowing (simulated grazing) and fertilization in different seasons in a 

prairie significantly decreased the AMF abundance (Bentivenga and 

Hetrick 1992).  

Herbivores such as insects and snails have also been shown to 

variously impact mycorrhizal colonization of plant roots. It has been 

reported that herbivores did not significantly change the AMF colonization 

(Gange et al. 2002; Wamberg et al. 2003). In contrast, other studies 

reported that herbivores significantly decreased the AMF communities 

(Kula et al. 2005; Mueller and Gehring 2006; Currie et al. 2011). Gehring 

and Whitham (1994) hypothesized that mycorrhizal colonization decreases 

in response to increasing intensity of aboveground herbivory. Variation in 

AMF responses to herbivores have been attributed to the age of the plant 

host (Wamberg et al. 2003), the level of defoliation (Gange et al. 2002), 

and the timing of AM colonization (Currie et al. 2011). 

In the present study, manipulation of grassland vegetation was 

conducted using herbicides against either monocots or dicots. The 

resulting swards were then mowed and fertilized and herbivores were 

allowed to feed on the grass. This experiment can potentially assess the 

effect of land management practices and herbivory on AMF abundance 

and community composition in different swards. We hypothesized that: (1) 
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fertilization will change the community composition and may reduce the 

species rich of AMF, (2) frequent utilization by mowing and herbivore will 

potentially reduce the photosynthetic carbon in plant tissue. Since AMF 

required the carbon from their plant host, we expect that mowing and 

herbivore will decrease the AMF abundance, (3) AMF communities, so far, 

had unclear relation to the plant diversity. We expected that manipulating 

sward species richness will have negative impact on the AMF abundance. 

 

2.2. Materials and Methods 

2.2.1. Study site 

The research was performed in a permanent grassland in the 

Solling uplands, located between Silberborn and Neuhaus, Central 

Germany (51°44'53"N, 9°32'42"E, 490 m a.s.l). There has been moderate 

fertilization (80 kg N ha−1 yr−1), liming, and overseeding with high value 

forage species without plowing since 1966 (farm records Relliehausen). 

The fertilization was terminated 2 years prior to the experiment. According 

to the climate data from 1960 to 1991 (station Silberborn-Holzminden) the 

annual temperature and rainfall were 6.9°C and 1033 mm. The soil type is 

stony haplic Cambisol on middle Bunter sandstone with pH 5.2–5.6 

(Keuter et al. 2012). The vegetation in the study area belongs to Lolio-

Cynosuretum association with high abundance of Festuca rubra and 

Agrostis capillaris (Petersen et al. 2012). In 2008, before the start of the 

experiment, soil samples were collected throughout the grassland to 

analyze the nutrient contents (Petersen et al. 2012) for detail information). 
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2.2.2. Experimental design 

The study was field experiment with Latin Rectangle design (Figure 

S2.1). It includes three treatment factors: sward type, utilization, and 

nutrients. Sward type consisted of three levels: untreated control sward 

(species-rich), dicots reduced (monocots-dominated), and monocots 

reduced (dicots-dominated); utilization consisted of two levels: mowed 

once or mowed three times; and nutrients consisted of two levels: with and 

without nitrogen, phosphorus, and potassium (Table 2.1; for details see 

Petersen et al. 2012). These treatments were replicated six times in two 

different plots, of which one was subjected to grazing by herbivores 

(herbivory plot) and another where grazing was not allowed (control plot). 

Table 2.1. Experimental factors and treatment levels in this experiment.  

Treatment  Level Abbreviation 

Plot Control 
Herbivory 

 

Sward  Untreated control sward (species-rich) 

Dicots reduced (monocots-dominated) 

Monocots reduced (dicots-dominated)  

S 

M 

D 

Utilization Cut once (July) 

Cut three times (May, July, September) 

1 
3 

Nutrients No  

fertilization180/30/100 kg NPK ha−1 yr−1b 

-N 
+N 

bN fertilizer: calcium ammonium nitrate N27, P&K fertilizer: Thomaskali® 

(8% P2O5, 15% K2O, 20% CaO; Carten-Haage, Erfurt, Germany). 
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2.2.3. Plot installation, sampling, and quantification of mycorrhizal 

colonization 

In the herbivory plots, lysimeters were installed a year before 

herbivory experiment was carried out (August and September 2010). The 

lysimeter was constructed from transparent Plexiglass cylinders (height 30 

cm, inside diameter 14.4 cm, wall thickness 0.3 cm). Two weeks before 

the grass harvested, four grasshoppers (Chorthippus sp.) and one snail 

(Helix pomatia) were placed into each lysimeter located in herbivory plots 

and were allowed to feed on plants. Once a week, dead herbivores were 

replaced. The plant roots were harvested for AMF analysis. The root 

samples with soil were washed in a 500 μm sieve (Retsch GmbH, Haan, 

Germany) to keep all of the fine roots. The fine roots were divided in two 

portions. One portion was stored in an Eppendorf reaction vial with 70% 

ethanol (Carl Roth GmbH, Karlsruhe, Germany) and the remaining plant 

root samples were stored at -80°C without ethanol for molecular analyses. 

AMF hyphae were stained using a root clearing method described by 

Phillips and Hayman (1970) with modifications. Plant roots were cleared 

with 2.5% KOH at 90°C for 30 min and then rinsed three times with water. 

Dark colored roots were re-cleared with 2.5% KOH at 90°C for 15 min and 

soaked in 3% HCl for 15 min at room temperature, washed with water and 

finally stained using lactophenol blue (1 g L-1, pH 2.3). Excess dye was 

removed by soaking the root sample in acidic glycerol solution (50 mL 

glycerin, 45 mL H2O, 5 mL 1% HCl) for 60 min. Finally, the stained roots 

were preserved in 50% glycerol. The AMF root colonization was 
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determined using the magnified intersection method (Mc Gonigle et al. 

1990) under a compound light and fluorescence microscope (Axio 

Observer Z1, Carl Zeiss MicroImaging GmbH, Göttingen, Germany) at 200 

× magnification. The AMF structures observed were hyphae, arbuscules, 

and vesicles (Figure 2.1). Five root tips were observed per sample and 

100 intersections were examined for each root. Total hyphal colonization 

and arbuscule and vesicle abundance were calculated as follows: 

Hyphal colonization ( ) = 
total intersection with hyphae

total intersection with roots
     

 

Relative abundance of arbuscules ( ) = 
total intersection with arbuscules

total intersection with roots
     

 

Relative abundance of vesicles ( )= 
total intersection with vesicles

total intersection with roots
     

 

       

Figure 2.1. The arbuscular mycorrhizal structures in a root tip with hyphae 
(a), arbuscule (b), and vesicles (c). 

a b c 
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2.2.4. Molecular identification of arbuscular mycorrhizal fungi  

Each single root was ground individually in a ball mill (Retsch MM 

2000, Haan, Germany). Total DNA was extracted using an innuPREP 

plant DNA kit (Analytik Jena, Jena, Germany) following the manufacturer‘s 

instructions. DNA concentration was measured in an Eppendorf Bio 

photometer (Eppendorf, Hamburg, Germany). Free nuclease water 

(Sigma-Aldrich Corp., St. Louis, MO, USA) was used as a solvent to 

suspend the DNA. The DNA samples were diluted to 10fold for more 

accurate reading by the photometer. Each DNA sample (100 μL) was 

placed in a UV transparent cuvette (12.5 × 12.5 × 45 mm, Sarstedt, 

Nümbrecht, Germany) and measured in the photometer at optical density 

of 260 nm (OD260). At 1 cm path length, OD260 equals 1.0 for a DNA 

concentration of 50 μg mL-1. Two microliters of 50 ng DNA were used as a 

template for PCR reaction.  

A nested PCR was carried out to amplify 25S rDNA of general fungi 

with LR1 and FLR2 primer pair (Table 2.2). Each PCR reaction (25 µL) 

contained: 2.5 µL 1x PCR buffer with (NH4)2SO4 (Thermo Scientific Bio, 

Darmstadt, Germany), 2 µL 2 mM MgCl (Thermo Scientific Bio, Germany), 

0.5 µL 0.2 mM dNTPs mix (Thermo Scientific Bio, Germany), 1.25 µL 0.5 

mM of each primer, 0.125 µL 0.5 U Taq polymerase (Thermo Scientific 

Bio, Darmstadt, Germany), and 15.375 µL water (AppliChem GmbH, 

Darmstadt, Germany). The following PCR conditions were applied: initial 

denaturation at 94°C for 3 min, followed by 30 cycles at 94°C for 30 s, 

58°C for 1 min, and 72°C for 1 min, and a final extension cycle at 72°C for 
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10 min. Five microliters of the resulting PCR product were used as DNA 

template for the second PCR using specific primers for AMF, 28G1 and 

28G2 (Table 2.2). The volume and PCR mixture was the same as 

described above except that the volume of water was adjusted to 12.375 

μL. The PCR conditions for the second run were as follows: initial 

denaturation at 94°C for 3 min, followed by 30 cycles at 94°C for 1 min, 

55°C for 1 min, and 72°C for 1 min, and a final extension cycle of 10 min 

at 72°C. Positive and negative controls using PCR-positive template and 

sterile water, respectively, were also included in all amplifications. All PCR 

reactions were run on a Mastercycler gradient (Eppendorf, Hamburg, 

Germany). To confirm successful PCR reactions, the PCR products (5 μL) 

were mixed with 1 μL 6x DNA loading buffer (3 mL glycerol, 25 mg 

bromophenol blue, and water to 10 mL) and electrophoresed on 1.2% 

agarose gel (Makovets 2013) (Biozym Scientific GmbH, Oldendorf, 

Germany) containing 2% GelRed (Biotium, Hayward, USA) with 1x TBE 

electrophoresis buffer (10x TBE: 108 g Tris base [C4H11NO3.], 55 g boric 

acid in 900 mL deionized water, 40 mL of 0.5M ethylenediaminetetraacetic 

acid [EDTA, pH 8.0], adjusted to a final volume of 1 L with deionized 

water) at 120 V for 60 min. Those PCR products that showed a band were 

subsequently purified with an innuPREP PCRpure Kit (Analytik Jena, 

Germany) following manufacturer‘s protocol. 

 PCR products were cloned into pGEM-T Easy vector (Promega, 

Madison, USA) following manufacturer‘s instruction and transformed into 

electrocompetent E. coli top10F' cells made in-house (Department of 
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Forest Botany and Tree Physiology, Göttingen, Germany) using Bio-Rad 

E. coli pulser (Bio-RAD, Hercules, CA, USA). Eight positive transformants 

were analyzed from each sample used for cloning. Colony-PCR was 

performed using primer pair M13-20/M13RP (Table 2.2). The PCR mix 

and amplification conditions were the same as described above for the 

second PCR run, except that the annealing temperature was set to 55°C. 

The single clone-PCR product confirmed by the presence of single band 

on the gel was subsequently purified by adding 35 µL 99.8% isopropanol 

(Roth GmbH, Karsruhe, Germany), incubating at room temperature for 60 

min, and centrifuging for 30 min at 10,000× g. The supernatant was then 

removed and the pellet was resuspended in free nuclease water. 

Table 2.2. Details of primers used in this study 

Primer Sequence (5'–3') Target group Source 

LR1 GCATATCAATAAGCGGAGGA Fungi Trouvelot 

et al. 1999 FLR2 GTCGTTTAAAGCCATTACGTC 

28G1 CATGGAGGGTGAGAATCCCG LSU rRNA 

gene of AMF 

Silva et al. 

2006 28G2 CCATTACGTCAACATCCTTAACG 

M13-20 CGACGTTGTAAAACGACGGCCAGT General 

primer for 

AMF 

sequencing 

pGEM-T 

Easy 

vector 

primers 

M13 RP TTTCACACAGGAAACAGCTATGAC 

LSU: large subunit; AMF: arbuscular mycorrhizal fungi. 

In order to estimate DNA polymorphisms in the clones, restriction 

fragment length polymorphisms (RFLP) analysis was conducted with HinfI 

or BsuRI (HaeIII) following the manufacturer protocol (Life Technologies 
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GmbH, Darmstadt, Germany). The RFLP mixtures were incubated 

overnight at 4°C. To observe the different DNA band pattern, all RFLP 

products were separated on a 3% agarose gel at 90 V for 20 min followed 

by 120 V for 90 min as described above. Three samples for each different 

DNA band pattern were sequenced by a company (SEQLAB Sequence 

Laboratories Göttingen GmbH, Göttingen, Germany). 

 

2.2.5. Sequence analysis    

 Sequences were edited with the open access program BioEdit (Hall 

1999) and aligned in MEGA 6 (Tamura et al. 2013). BLAST searches for 

AM fungal species were performed against the MaarjAM data base (Öpik 

et al. 2010) and NCBI Reference Sequence Database (Robbertse and 

Tatusova 2011). Phylogenetic trees were constructed using maximum 

parsimony method implemented in MEGA 6 and the close-neighbor-

interchange algorithm. The bootstrap values were estimated with 1000 

replicates. The deletion option in MEGA 6 was used for eliminating gaps 

and missing data.  

Arbuscular mycorrhizal operational taxonomic units (OTUs) were 

defined on the basis of sequence similarities as surrogates for species. A 

threshold of 97% similarity was selected as the minimum value to assign a 

sequence to the same OTU since this value has been commonly used by 

various authors (Haug et al. 2013; Toju et al. 2014). The AMF sequences 

have been submitted to NCBI (accession numbers: KT223123-KT223132).   
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2.2.6. Data analysis 

General linear model (GLM) was conducted using the software R 

3.0.2 (The R Foundation for Statistical Computing) with Ime4 package 

(Bates et al. 2015). GLM was used to determine the significance of 

herbivore, sward types, utilization, and nutrient on AMF abundances. The 

hyphal colonization rate, relative abundances of arbuscule and vesicle 

were used as dependent variable while herbivore, sward types, and 

utilization were used as explanatory variables. The interactions of 

herbivore, sward types, and utilization were also analyzed. In addition, row 

and column of the Latin Square were included as fixed effect to 

incorporate the spatial heterogeneity of the study site. Tukey-Kramer, a 

multiple comparison test, was used to determine whether three or more 

means differ significantly. The AMF diversity index was calculated as 

Shannon index (H’) using the equation:  

H‘ = -pi(lnpi)   

Where pi is the proportion of individuals in the ith species. 

A multivariate principal component analysis (PCA) was performed 

to examine whether the sward type, mowing frequencies, and fertilizer 

could differentiate AMF diversity. We used AMF raw species richness 

matrices to analyze the ordination (Table S2.1). The PCA was done using 

R 3.0.2.  
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2.3. Results 

AMF hyphae colonized > 50% of grass roots in all treatments in 

both control and herbivory plots (Figure 2.2). The factor nutrient 

significantly decreased the relative abundance of arbuscules and vesicles 

(Figures 2.3 and 2.4). In contrast, hyphal colonization rate and the relative 

abundances of arbuscules and vesicles were not affected by both 

herbivory and sward species richness, nor were they affected by utilization 

(Table 2.3). Combination of sward type and utilization significantly 

influenced the relative abundance of arbuscules and vesicles. 

Combination of nutrient and herbivore significantly changed the hyphal 

colonization rate (P = 0.02), and combination of all treatments affected the 

relative abundance of arbuscules (P = 0.04) but not vesicles (P = 0.66). 

The row and column that were taken as fixed effects to for potential 

inhomogeneity of the study site had significant effect on the hyphal 

colonization rate (P = 0.05 and 0.003 respectively). 
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Figure 2.2. Effect of sward type (S: species-rich, M: monocot-dominated, 
D: dicot-dominated), utilization (1: mowing once, 3: mowing three times), 
and nutrients (-N: unfertilized, +N: fertilized) on hyphal root colonization in 
control and herbivory plots. Data are mean ± SE (n = 6). For statistical 
results, see Table 2.3.  

 

Figure 2.3. Effect of sward type (S: species-rich, M: monocot-dominated, 
D: dicot-dominated), utilization (1: mowing once, 3: mowing three times), 
and nutrients (-N: unfertilized, +N: fertilized) on arbuscules relative 
abundance in control and herbivory plots. Data show means ± SE (n = 6). 
For statistical results, see Table 2.3. 
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Figure 2.4. Effect of sward type (S: species-rich, M: monocot-dominated, 
D: dicot-dominated), utilization (1: mowing once, 3: mowing three times), 
and nutrients (-N: unfertilized, +N: fertilized) on vesicles relative 
abundance in control and herbivory plots. Data show means ± SE (n = 6). 
For statistical results, see Table 2.3. 
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Table 2.3. ANOVA of the effects of treatments on relative abundance of hyphae, arbuscules, and vesicles. Statistics was 
performed with general linear model (GLM). Numbers in bold indicate significant differences at P ≤ 0.05 (n = 6). 

Source 
Hyphae     Arbuscule   Vesicle     

MS F P MS F P MS F P 

Row 1.093 2.270 0.052 3.091 1.810 0.117 2.081 0.580 0.713 

Column 1.888 3.920 0.003 5.630 3.300 0.008 2.074 0.580 0.714 

Sward 0.548 1.140 0.324 1.608 0.940 0.393 4.460 1.250 0.291 

Utilization 0.151 0.310 0.577 0.000 0.000 0.987 1.703 0.480 0.491 

Sward * Utilization 0.269 0.560 0.574 17.443 10.220 <0.001 13.089 3.670 0.029 

Nutrient 0.992 2.060 0.154 16.806 9.850 0.002 15.915 4.460 0.037 

Sward * Nutrient 0.984 2.050 0.134 1.505 0.880 0.417 2.888 0.810 0.448 

Utilization * Nutrient 0.051 0.110 0.746 0.389 0.230 0.634 3.129 0.880 0.351 

Sward * Utilization * Nutrient  0.452 0.940 0.394 1.386 0.810 0.447 14.510 4.070 0.020 

Herbivore 0.187 0.390 0.534 2.031 1.190 0.278 3.331 0.930 0.336 

Sward * Herbivore 0.022 0.050 0.955 0.090 0.050 0.949 0.288 0.080 0.923 

Utilization * Herbivore 0.025 0.050 0.821 0.413 0.240 0.624 0.248 0.070 0.793 

Sward * Utilization * Herbivore 0.063 0.130 0.877 0.173 0.100 0.904 4.065 1.140 0.324 

Nutrient  * Herbivore 2.417 5.020 0.027 4.172 2.440 0.121 6.934 1.940 0.166 

Sward * Nutrient * Herbivore 0.755 1.570 0.213 0.035 0.020 0.980 1.227 0.340 0.710 

Utilization * Nutrient  * Herbivore 0.012 0.030 0.874 1.148 0.670 0.414 2.420 0.680 0.412 

Sward * Utilization * Nutrient  * Herbivore 0.293 0.610 0.546 6.446 3.780 0.026 1.378 0.390 0.681 
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The community composition of AMF was analyzed only in the 

control plot because there was no significant difference between the effect 

of control and herbivory plots on hyphal colonization rate and the relative 

abundances of arbuscules and vesicles. AMF OTUs were assigned to 

three families of Glomeromycota: Glomeraceae, Claroideoglomeraceae, 

and Archaeosporaceae (Figure 5). Of all identified AMF OTUs, five OTUs 

belonged to Glomeraceae, three OTUs belonged to 

Claroideoglomeraceae, and two OTUs belonged to Archaeosporaceae 

(Table 2.4). The Shannon diversity index was calculated to compare the 

diversity of AMF in fertilized and unfertilized grasslands. Paired t-test 

indicated that unfertilized grasslands had more diverse AMF OTUs than 

the fertilized plots (Hunfertilized = 1.54, Hfertilized = 0.61, p = 0.003). The 

number of OTUs in unfertilized and fertilized plots is illustrated in Figure 

2.6. The most abundant family was Glomeraceae with Glomus sp. 

(36.5%), Glomus OTU26 (18.8%), and Glomus Li14 Glo7 (16.7%). 

Interestingly, all detected AMF OTUs were found in unfertilized grassland 

vegetation, whereas Claroideoglomus OTU52, Claroideoglomus 

claroideum, and Archaeospora Li14 Arc2 were absent in fertilized 

grassland vegetation.  

PCA was used as a linear ordination method to illustrate the 

community composition of AMF in this experiment (Figure 2.7). The 

cumulative percentage of variance of AMF OTUs data showed that the first 

two PCA axes explain 57.76% of the variability of AMF OTUs. This result 

indicated that Glomeraceae family was found in most of the treatments. 
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Claroideoglomeraceae family was associated only with swards rich in 

species and monocot-dominated that were mowed once and were not 

amended with fertilizers. AMF family of Archaeosporaceae was detected 

mostly in unfertilized treatment in different sward types and mowing 

treatment   

 
Table 2.4. Molecular identification of arbuscular mycorrhizal fungi based 
on BLASTN queries against NCBI database. 

OTUs ID 

GenBank 
accession 
No. Closest blast match  

Query 
Length 

E-
value 

Max 
identity 

Glo-Ire KT223123 Glomeraceae Glomus irregulare 594 0 97% 

Glo26 KT223124 Glomeraceae Glomus OTU26 514 0 97% 

Glo KT223125 Glomeraceae Glomus sp. 522 0 98% 

GloGL05 KT223126 Glomeraceae Glomus An08 GLO5 582 0 97% 

Glo07 KT223127 Glomeraceae Glomus Li14 Glo7 480 0 97% 

Arch1 KT223128 
Archaeosporaceae Archaeospora 
Li14 Arc1  

395 0 98% 

Arch2 KT223129 
Archaeosporaceae Archaeospora 
Li14 Arc2 

537 0 97% 

Cla52 KT223130 
Claroideoglomeraceae 
Claroideoglomus OTU52 

548 0 97% 

Cla  KT223131 
Claroideoglomeraceae 
Claroideoglomus claroideum  

578 0 98% 

Cla16 KT223132 
Claroideoglomeraceae 
Claroideoglomus OTU16 

538 0 97% 
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Figure 2.5. The most parsimonious tree inferring phylogenetic relationship 
between arbuscular mycorrhizal OTUs in grassland vegetation.  Numbers 
above branches indicate bootstrap values (1,000 replicates). 

 

 

Figure 2.6. Species richness of arbuscular mycorrhizal OTUs in fertilized 
and unfertilized plots. For OTU abbreviations refer to Table 2.4. 
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Figure 2.7. Principal component analysis of arbuscular mycorrhizal OTUs 
(red letters) in treatment plots (black letters). For OTUs code refer to Table 
2.4. 
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2.4. Discussion 

This study showed that species-rich swards and monocots- and 

dicots-dominated plots did not significantly influence the AMF hyphal root 

colonization. These results were expected since most of the vascular 

plants can be colonized by AMF (Schüβler et al. 2001). Arbuscules and 

vesicles, the key structures for plant-fungal nutrient exchange and storage, 

respectively, were more responsive to the applied treatments than the 

hyphae. Increasing the nutrient input by applying nitrogen, phosphorus, 

and potassium fertilizer reduced the number of arbuscules and vesicles 

and thus affected the AMF symbiosis. In this study, the relative 

abundances of arbuscules and vesicles in unfertilized sites were the 

highest when the site was not mowed. Previous studies have shown that 

AMF support plant growth and reproduction without fertilizer application 

(Johnson 1993; Titus and Leps 2000) and fertilization suppressed the 

development of extramatrical hyphae of AMF (Eom 2009) and spore 

abundance (Mårtensson and Carlgren, 1994).  

Utilization as an independent factor had a negative effect on AMF 

abundance. However, interaction between the sward type and utilization 

positively affected arbuscules abundance in both control and herbivory 

plots. Management practices may affect AM abundance (Sieverding 1990; 

Miller et al. 1995). In relation to this, we found no significant effect on AMF 

colonization through mowing treatments.  
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Removing aboveground biomass can also be caused by herbivores. 

It has been reported that Helix pomatia (Ledergerber et al. 1998) and 

grasshoppers (Branson and Sword 2009) are potential herbivores in 

grassland. Both of these herbivores have been used in this experiment. 

The herbivory had no effect on AMF hyphal root colonization and the 

relative abundances of arbuscules and vesicles. Many studies reported the 

effects of insect herbivores on AMF–plant association (Gehring and 

Whitham 2003; Gange 2007; Gehring and Bennett 2009). However, they 

did not report the variation in the response of AMF colonization affected by 

insect herbivores. Recent meta-analysis found that the effect of insect 

herbivore on AMF status depends on the feeding mode and diet breadth of 

the insect (Koricheva et al. 2009). Additionally, removing the above ground 

biomass by herbivores leads to carbon limitation that influence alters the 

AMF status (Barto and Rillig 2010).  

The combination between the sward type and utilization affected 

the relative abundance of arbuscules and vesicles. The interaction among 

the nutrients, sward type, and utilization also influenced the vesicle 

abundance, whereas interactions between all treatments affected 

arbuscule abundance. These interactions may be due to species richness 

of swards and fertilization. The interaction of treatments in this study is 

difficult to interpret as AMF arbuscule abundance interacted with all 

factors, whereas vesicle abundance was not affected. All of the treatments 

alter the arbuscular mycorrhizalmutualism. AMF are affected by 
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management practices such as fertilization, mowing, and plant diversity 

(Titus and Leps 2000; Mathimaran et al. 2007). 

In the present study, changes in the AMF community composition 

were detected among fertilization treatments. It is noteworthy that most of 

the AMF OTUs were present in unfertilized grassland and their number 

was higher than that in fertilized grassland, as shown in Figure 2.6. It has 

been reported that limited content of nitrogen and phosphorous in soil is 

the key determinant factor to AMF diversity in montane grasslands 

(Karanika et al. 2008). Long-term nitrogen and phosphorus fertilization 

also decreased the AMF species diversity and relative frequency and 

abundance (Bhadalung et al. 2005; Šmilauerová et al. 2012; Liu et al. 

2012).  

The results presented herein support the hypothesis that fertilization 

alters the community composition of AMF. The sward type, utilization, and 

grazing by herbivores as single factor did not influence the AMF hyphal 

colonization. However, combination of all these treatments influeced the 

arbuscule abundance.   
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Figure S2.1. Experimental design of Latin rectangle with 12 treatments and 6 replications. M: monocot-dominated, D: dicot-
dominated, S: sward species richness, +: fertilized, blue box: 3 times cutting, and white box is one time cutting. 
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Table S2.1. AMF abundance in grassland vegetation of different swards, utilization and nutrient treatments. For AMF OTUs 
abbreviations refer to Table 2.4. 

Treatment AMF OTUs 

Sward Utilization Nutient Abreviation Glo_Ire Arch1 Glo26 Glo GloGL05 Glo07 Cla52 Cla  Arch2 Cla16 

Speciesrichness  1 × cut Unfertilized  S1-N 1 1 1 1 0 1 1 1 0 1 

Speciesrichness 3 × cut Unfertilized  S3-N 1 0 1 3 1 2 0 0 0 0 

Monocots 1 × cut Unfertilized  M1-N 1 1 1 2 0 1 1 1 0 0 

Monocots  3 × cut Unfertilized  M3-N 0 1 1 3 0 2 0 0 0 1 

Dicots 1 × cut Unfertilized  D1-N 0 3 2 2 0 0 0 0 1 0 

Dicots 3 × cut  Unfertilized  D3-N 0 2 3 1 0 1 0 0 0 1 

Speciesrichness  1 × cut NPK S1+N 0 2 6 0 0 0 0 0 0 0 

Speciesrichness 3 × cut NPK S3+N 0 0 0 4 2 2 0 0 0 0 

Monocots 1 × cut NPK M1+N 0 0 0 5 3 0 0 0 0 0 

Monocots  3 × cut NPK M3+N 0 0 0 4 0 4 0 0 0 0 

Dicots 1 × cut NPK D1+N 0 0 4 4 0 0 0 0 0 0 

Dicots 3 × cut  NPK D3+N 0 0 0 0 0 8 0 0 0 0 
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Chapter 3 

Arbuscular mycorrhiza affected by land use in lowland rain forest 
transformation systems in Sumatra Indonesia 

 

3.1. Introduction 

Deforestation by replacing natural forest to non-forestry-related land 

uses (Margono et al. 2012) is one of the main causes of changes in 

ecosystem‘s functions (Costa and Pires 2010; Butt et al. 2011). Currently, 

in Indonesia, expanding oil palm and rubber tree plantations have 

changed the rainforest and decrease the biodiversity (Koh and Wilcove 

2008; Margono et al. 2014). Generally, rainforests are replaced by 

monoculture vegetation (Carnus et al. 2006; Stephens and Wagner 2007), 

oil palm plantations (Koh and Wilcove 2008), rubber tree plantations or 

they are modified for agroforestry (Ketterings et al. 1999). According to the 

United Nations Food and Agricultural Organization (UNFAO), tropical rain 

forests in Indonesia are destructed at a tremendous speed compared to 

that in the rest of the world (UNFAO, 2010). In total, over 6.02 million ha of 

Indonesian primary forest cover was lost from 2000 to 2012, and the loss 

continues to dramatically increase on average by 47,600 ha per year 

(Margono et al. 2014). Global production of palm oil in 2009 was 43.4 

million tons, of which, Indonesia contributed 47% (USDA-FAS 2010). 

Moreover, Indonesia is the second largest rubber producing country after 

Thailand, contributing 27.3% (UNFAO 2013) of the total rubber produced 

in the world. Currently, rubber tree plantations occupy 3.5 million ha in 
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Indonesia (Indonesian Minister of Agriculture 2015). A number of studies 

have reported on the impact of land use changes in responses to 

ecosystem services (Lambin and Meyfroidt 2010; Polasky et al. 2010) and 

above-ground biodiversity (Chemini and Rizzoli 2003; Butler et al. 2010). 

Investigating land use change is of a continuous concern in biodiversity 

including the changes in soil microbial communities.  

Common beneficial soil fungi are arbuscular mycorrhizal fungi 

(AMF). They form a mutualistic symbiotic association with the root systems 

of a majority of higher plants. The intra-extra radical hyphal networks 

formed by the fungi help the absorption of mineral nutrients from soil and 

deliver them to the host plant (Cheng and Baumgartner 2006; Camenzind 

and Rillig 2013), particularly phosphorus (Smith and Smith 2012) and 

nitrogen (Veresoglou et al. 2012). In return, AMF receives 

photosynthetically derived carbon compounds from the host plant (Smith 

and Read 2008). Besides their role in promoting plant growth, AMF are 

also reported to play an important role in protecting the host plant against 

the soil borne pathogens (Wehner et al. 2010) and environmental stress 

(Smith et al. 2009, Zhu et al. 2009, Grover et al. 2010). They may also 

increase organic carbon decomposition (Cheng and Baumgartner 2006). 

Because of their various beneficial impacts on ecosystems, AMF 

have attracted continuous attention of the researchers. Land use change 

may also drive a change in the AMF communities. Here, we study the 

impact of forest conversion into rubber tree and oil palm plantations on the 

AMF communities. Investigation of the AMF affected by land use 
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transformation from natural forest to managed agro-plantation, particularly 

in the tropical region, is still lacking. Therefore, our objective was to study 

the AMF communities in different transformation systems and to observe if 

the environmental factors affect the AMF communities.  

Our previous study was conducted in two landscapes, Bukit 

Duabelas National Park (hereafter referred as Bukit Duabelas) and 

Harapan rain forest, in Sumatra, Indonesia. Each landscape comprises 

three different systems (rain forest, rubber tree plantation, and oil palm 

plantation). We found that arbuscular mycorrhizal root colonization was 

abundant and generally unaffected by the land use system. However, root 

vitality was lower and spore abundance higher in oil palm plantations than 

in the forest and rubber tree plantation (Sahner et al. in press). In the 

present study, we continue the research in the same sites to observe the 

community composition in different land use systems. We hypothesized 

that transformation of rainforest into managed rubber tree and oil palm 

plantations will reduce species richness of AMF communities. To test this 

hypothesis, we conducted molecular identification of plant hosts and 

associated AMF in a single root.  
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3.2. Materials and Methods 

3.2.1. Study sites  

The study was carried out in two land use systems of Bukit 

Duabelas and Harapan rainforest landscapes located in Jambi province, 

Sumatra, Indonesia. Both landscapes have tropical climate with > 2000 

mm rain fall annually. The annual mean temperature and precipitation in 

Bukit Duabelas are 26.8°C and 2860 mm, respectively (location: Lubuk 

Kepayang, http://en.climate-data.org/location/587840/), whereas in 

Harapan, they are 26.9°C and 2332 mm, respectively (location: Dusun 

Baru, http://en.climate-data.org/location/ 595657/). Three different land 

use systems were selected in each landscape: rain forest, oil palm 

plantation, and rubber tree plantation (detailed plot information is provided 

in Table 3.1) and three sub plots were selected in each land use systems 

(designated as a, b, and c).   

3.2.2. Sampling and export permission 

The entry permit to conservation area was issued by the National 

Park of Bukit Duabelas Office (Balai Taman Nasional Bukit Duabelas: 

Surat Izin Memasuki Kawasan Konservasi [SIMAKSI], number: 

SI.71/BTNBD-1/2013). The entry to Harapan rain forest was approved by 

the PT. Restorasi Ekosistem Indonesia (REKI) via email communication 

between Collaborative Research Center (CRC) office in Universitas Jambi 

and PT. REKI. The Research Center for Biology of the Indonesian Institute 

of Science (LIPI: Lembaga Ilmu Pengetahuan Indonesia, Jakarta, 

http://en.climate-data.org/location/587840/
http://en.climate-data.org/location/%20595657/
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Indonesia) issued a sample collection permit (Rekomendasi Ijin 

Pengamblian dan Angkut [SAT-DN] Sampel Tanah dan Akar, number: 

2696/IPH.1/KS:02/XI/2012) for domestic transportation. Recommendation 

for export permit (number: S.16/KKH-2/2013, Rekomendasi Ijin Membawa/ 

Mengirim Sampel Tanah dan Akar ke Jerman [SAT-LN], number: 

2538/IPH.I/KS.01/XII/2013) was also issued by LIPI. Export permit 

(reference number: 48/KKH-5/TRP/2014) for all samples from the plot 

(Table 3.1) was issued by the Directorate General of Forest Protection and 

Nature Conservation PHKA (Perlindungan Hutan dan Konservasi Alam, 

Jakarta, Indonesia) under the Ministry of Forestry of the Republic of 

Indonesia. The agency for Agricultural Quarantine under the Ministry of 

Forestry of the Republic of Indonesia certified the samples with 

―phytosanitary certificate‖ (reference number: 2013.2.10.03. 

K10.E000014). The Chamber of Agriculture of Lower Saxony (Plant 

Protection Office, Hannover, Germany) issued the import permits (Letter of 

Authority, numbers: DE-NI-12- 69 -2008-61-EC, DE-NI-14- 08 -2008-61-

EC). 
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Table 3.1. Plot location in Bukit Duabelas and Harapan land use systems. 

Transformation 

systems 

Plot 

code Latitude Longitude 

Altitude 

(m) 

Landscape: Bukit Duabelas 

Rain forest  BF1 S 01°59'42.5'' E 102°45'08.1'' 83 

Rain forest BF2 S 01° 58'55.1'' E 102°45'02.7'' 77 

Rain forest BF3 S 01°56'33.9''‘  E 102°34'52.7''‘ 87 

Rain forest BF4 S 01°56'31.0''‘  E 102°34'50.3'' 87 

Oil palm plantation BO1 S 02°04'26.1'' E 102°48'55.1'' 75 

Oil palm plantation BO2 S 02°04'32.0'' E 102°47'30.7'' 84 

Oil palm plantation BO3 S 02°04'15.2'' E 102°47'30.6'' 71 

Oil palm plantation BO4 S 02°03'01.5'' E 102°45'12.1'' 34 

Rubber tree plantation BR1 S 02°05'30.7'' E 102°48'30.7'' 71 

Rubber tree plantation BR2 S 02°05'06.8'' E 102°47'20.7'' 95 

Rubber tree plantation BR3 S 02°05'43.0'' E 102°46'59.6'' 90 

Rubber tree plantation BR4 S 02°04'36.1'' E 102°46'22.3'' 51 

Landscape: Harapan 

Rain forest  HF1 S 02°09'09.9'' E 103°21'43.2'' 76 

Rain forest HF2 S 02°09'29.4'' E 103°20'01.5'' 75 

Rain forest HF3 S 02°10'30.1'' E 103°19'57.8'' 58 

Rain forest HF4 S 02°11'15.2'' E 103°20'33.4'' 77 

Oil palm plantation HO1 S 01°54'35.6'' E 103°15'58.3'' 81 

Oil palm plantation HO2 S 01°53'00.7'' E 103°16'03.6'' 55 

Oil palm plantation HO3 S 01°51'28.4'' E 103°18'27.4'' 64 

Oil palm plantation HO4 S 01°47'12.7'' E 103°16'14.0'' 48 

Rubber tree plantation HR1 S 01°54'39.5'' E 103°16'00.1'' 77 

Rubber tree plantation HR2 S 01°52'44.5'' E 103°16'28.4'' 59 

Rubber tree plantation HR3 S 01°51'34.8'' E 103°18'02.1'' 90 

Rubber tree plantation HR4 S 01°48'18.2'' E103°15'52.0'' 71 
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Figure 3.1. Overview map of research area in two landscapes: Bukit 
Duabelas National Park (B) and Harapan rain forest (H) in Sumatra 
Indonesia (modified after Kreft et al. 2011).   

 

 

3.2.3. Sampling and root selection 

Three soil cores (0.04 m diameter and 0.20 m depth) were collected 

per sub-plot at a distance of 1 m from the tree. Each soil core was placed 

in a zip plastic bag and stored in a cooling box (Sarstedt, Nümbrecht, 

Germany) to be transported to laboratory of University of Jambi where 

they were stored at 4°C. From each soil core, one single root was 

collected (three single roots per sub-plot = nine roots per plot). Each single 

root was washed with tap water, placed in a water-filled Petri dish (92 × 16 

mm, Sarstedt, Germany) and observed under the stereo microscope 

(Leica EZ4HD, Wetzlar, Germany) at 35 × magnification. Root colonized 

by ectomycorrhiza (EM) was distinguished from non-EM root tips by the 

presence of typical mantle of the fungus that covers the roots (Peterson et 

al. 2004; Smith and Read 2009). An example of EM roots is show in 

Figure 3.2A, non-EM roots in Figure 3.2B, and dead root in Figure 3.2C. 
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Roots were documented with the camera attached to the microscope. The 

root samples were preserved by freeze drying (Benchhtop K, VirTis, SP 

Industries, Gardiner, NY, USA): the samples were frozen overnight at -

80°C and then dried at -72°C for 30 hours. Subsequently, each single root 

was stored in a 2-mL reaction tube (Sarstedt, Nümbrecht, Germany) and 

shipped to University of Göttingen, Germany, in a reaction tube box 

(Sarstedt, Germany) filled with silica gel (Sarstedt, Germany). 
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Figure 3.2. Ectomycorrhizal root tips (A), non-ectomycorrhizal root tips (B) 
and dead root tips(C). 

A 

B 

C 
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3.2.4. Molecular identification of arbuscular mycorrhizal fungi  

DNA was extracted using the same method described in Chapter 2. 

A nested PCR was carried out to amplify the partial small subunit rDNA 

with NS1 and NS4 general fungi primers and the amplicons were used as 

DNA templates in the amplification with specific primers for AMF, AML1, 

and AML2 (Table 3.2). The PCR reactions and conditions, cloning, 

restriction fragment length polymorphism (RFLP), gel electrophoresis, and 

sequencing were conducted as described in Chapter 2. For PCR 

conditions, the first and second annealing temperature were adjusted to 

40°C and 50°C respectively. 

Table 3.2. Details of primers used in this study. 

Primer Sequence (5'–3') Target group Source 

NS1 GTAGTCATATGCTTGTCTC Fungal (18S rRNA 

gene) 

White et al. 

(1990) 
NS4 CTTCCGTCAATTCCTTTAAG 

AML1 ATCAACTTTCGATGGTAGGATAGA All AMF groups Lee et al. 

(2008) 
AML2 GAACCCAAACACTTTGGTTTCC 

M13-20 CGACGTTGTAAAACGACGGCCAGT General primer for 

AMF sequencing 

pGEM-T 

Easy vector 

primers 
M13 RP TTTCACACAGGAAACAGCTATGAC 

rbcLaf ATGTCACCACAAACAGAGACTAAAGC Land plants 

(ribulose-

bisphosphate 

carboxylase gene) 

Kress et al. 

(2009) 

rbcLar2 GAAACGGTCTCTCCAACGCAT 

MatKnewF GTTCAAACTCTTCGCTACTGG Land plants 

(chloroplast 

maturase K gene) 

Kress et al. 

(2009), Yu et 

al. (2011) 
MatKnewR GAGGATCCACTGTAATAATGAG 

3FKim(MatK) CGTACAGTACTTTTGTGTTTACGAG 

1RKim(MatK) ACCCAGTCCATCTGGAAATCTTGGTTC 

AMF: arbuscular mycorrhizal fungi 
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3.2.5. Molecular identification of mycorrhizal host plants 

In total, 112 single roots were analyzed including 72 single roots 

from the forest plots (36 single roots from each), 20 single roots from oil 

palm plantations in two landscapes (10 single roots from each), and 20 

single roots from rubber tree plantations in two landscapes (10 single roots 

from each). 

All PCR-sequencing and chemicals needed were conducted and 

provided by the Department of Forest Genetics and Tree Breeding, 

University of Göttingen. The DNA extracted from the single roots as 

described above was used for plant identification with markers rbcL and 

matK. These two markers were recommended by the Consortium for the 

Barcode of Life (CBOL) plant working group because of the 

straightforward recovery of the rbcL region and the discriminatory power of 

matK (CBOL Plant Working Group 2009).  

The PCR mixture kit (HOT FIREPol®, Tartu, Estonia) contained 1.5 

μL 1x PCR buffer with B2 (Mg2+ free), 1.5 μL 2 mM MgCl2, 1 μL 0.2 mM 

dNTPs mix, 0.2 μL 0.5 U DNA polymerase, 1 μL 0.5 mM of each primer, 

6.8 μL water (Roth GmbH, Germany), and 1 μL 10-fold diluted DNA. The 

PCR conditions were as follows: initial denaturation at 95°C for 3 min, 

followed by 35 cycles at 94°C for 1 min, 50°C for 1 min, and 72°C for 1.5 

min, and a final extension cycle at 72°C for 10 min. One set of rbcL 

primers and three sets of matK primers were tested for plant identification. 

The three sets of matK primer amplified the same region at different 
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binding sites. This three primer sets were tested individually for 

amplification efficiency.  

 PCR products were cleaned using innuPREP Gel Extraction Kit 

(Analytik Jena, Germany). Two microliter of the resulting PCR products 

were used for sequencing in a total volume of 10 µL of the reaction mix 

with BrightDye® Terminator Cycle Sequencing Kit (Nimagen, Carlsbad, 

CA, USA) following manufacturer‘s instructions. Sequencing conditions 

were the same as for the plant DNA amplification described above. PCR 

products were purified with DyeEx Kit (Qiagen, Hilden, Germany) following 

manufacturer‘s protocol. The sequence reactions were read on an Applied 

Biosystems 3130xl Genetic Analyzer (Life Technologies GmbH, 

Darmstadt, Germany) in the Department of Forest Genetics and Tree 

Breeding, University of Göttingen). 

3.2.6. Sequence analysis    

 AMF and plant sequences were edited following the protocols  

described Chapter 2. BLAST searches of AM fungal species were 

performed against the MaarjAM data base (Öpik et al. 2010) and NCBI 

(Sequeira 2013). Plant sequences were BLAST searched against NCBI 

database and confirmed with BOLD Systems (Ratnasingham and Hebert 

2007). Phylogenetic trees were constructed using maximum parsimony 

method implemented in MEGA 6 and the close-neighbor-interchange 

algorithm. The bootstrap values were estimated with 1000 replicates. The 



 61 

deletion option in MEGA 6 was used for eliminating gaps and missing 

data.  

Arbuscular mycorrhizal operational taxonomic units (OTUs) were 

defined on the basis of sequence similarities as surrogates for species. A 

threshold of 97% similarity was selected as the minimum value to assign a 

sequence to the same OTU since this value has been commonly used by 

various authors (Haug et al. 2013; Toju et al. 2014). Phylogenetic trees of 

AM fungi and their host plants are provided in supplementary Figures S3.1 

and S3.2, respectively. The AM fungal sequences have been deposited in 

NCBI (accession numbers: KR822761 to KR822799). 

3.2.7. Statistical analyses 

A data set of matrix representing  symbiosis of AMF and host plant 

with environmental variables was used for the analyses (Table S3.3). The 

environmental variables used were carbon in the root, phosphorus in the 

root, nitrogen in the root, aluminum in the root, and soil pH (Sahner et al. 

2015 in press; Allen et al. 2015).  

To obtain an overview on the AMF species richness from the results 

of sampling, the AMF OTUs abundance in each host plant was used to 

develop a rarefaction curve (Gotelli and Colwell 2011). This analysis was 

conducted in ‘vegan‘ package of R version 3.0.3 (Oksanen et al. 2013). 
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Species richness (S) was calculated as the number of AMF OTUs 

per land use system. Diversity indices were calculated using the following 

equations (Buzas and Hayek 2005; Keylock 2005). 

 

 Simpson index (D)     (equation 3.1) 

   ∑
  (    )

 (   )
 

 Shannon index (H')     (equation 3.2) 

     ∑       

 Buzas and Gibson's evenness    (equation 3.3) 

                            
  

 
 

where ni is the number of individuals of a taxon i, pi is the proportion of the 

i-th species, N is the total number of species in the dataset, e is evenness, 

H is Shannon‘s H, and S is the number of species in the community. 

Simpson index ranges from 0 (all taxa are equally present) to 1 (one taxon 

completely dominates the community). In the Shannon index, H' varies 

from 0 for communities with a single taxon to high values for communities 

with many taxa.  

To calculate the number of AM OTUs shared among different types 

of land uses, Venn diagrams were created using ―Venny 2.0‖ (Oliveros, 

2007-2015). The distribution of AM OTUs among distinct host plant 
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species was visualized using the network analysis of the AMF abundance 

data (Table S3.3). The analysis was conducted in R (R Development Core 

Team, 2014) using ―bipartite‖ v2.05 package with ―plotweb‖ function in R 

(Dormann et al. 2009). The specificity of AMF OTUs to the plant host was 

calculated with the d‘ index of specialization (Blüthgen et al. 2007) 

Two-way permutational multivariate analysis of variance 

(PERMANOVA; Anderson et al. 2011) was used to analyze the variance in 

AMF community composition in correlation to the landscape and plot. 

Bray-Curtis dissimilarity was used to calculate the distance between pairs 

of AMF communities using the following equation: 

   ∑  |       |

 

   

 ∑(       )

 

   

 

where i and j are different samples, k indicates different virtual taxa, and x 

is the proportional composition for a given sample and taxon. The 

significance of factors was estimated with 999 permutations. 

PERMANOVA was conducted in PAST 2.17c (Hammer et al. 2001). A 

non-metric multidimensional scaling (NMDS) was used to elucidate 

dissimilarities in AMF community composition in different land use 

systems. To compare the AMF community between rubber tree, oil palm, 

and forest roots, we only selected tree roots from each system. Because 

each of rubber tree and oil palm plantations had 10 samples, only 10 trees 

were also selected from each forest system of Bukit Duabelas and 

Harapan. AMF OTUs abundances in each host plant were used for NMDS 
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analysis (Table S3.3). Environmental variables were also included in the 

analysis. Each plant and their associated AMF were treated as one 

replication. The NMDS plot was created in PAST using the Bray-Curtis 

similarity index. To calculate the influence of environmental factors on the 

AMF OTU community, the plant hosts and environmental factors were 

fitted onto NMDS and subjected to goodness-of-fit statistics (R2) using 

‘envfit‘ function in the vegan package 2.2-1 in R (Oksanen et al. 2013). P 

values were based on 999 permutations (Oksanen et al. 2013). 

 

3.3. Results 

3.3.1. AMF and host plant species   

From 112 single roots (clone library), we screened 896 clones for 

AMF OTUs identification. On average, eight clones were analyzed per 

sample. A total of 39 different AMF OTUs were detected. Rarefaction 

curves were calculated in order to estimate AMF species richness in the 

sampling results. The rarefaction curve showed that most of the curves 

reached saturation point at the chosen sequencing depth (Figure 3.3). The 

number of sequences analyzed per sampling site was sufficient to cover 

the AMF diversity in a single root per land use system. 

 BLAST search revealed that 25% of OTUs had a high degree of 

similarity (100%), 10.7% of OTUs had 99% similarity, 21.4% OTUs had 

98% similarity, and 42.9% OTUs had 97% similarity to taxa belonging to 

AMF. The AMF OTUs that were abundant both in Harapan rain forest and 
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Bukit Duabelas belonged to the families of Acaulosporaceae, 

Ambisporaceae, Archaeosporaceae, Claroideoglomeraceae, 

Diversisporaceae, Gigasporaceae, and Glomeraceae. The AMF OTUs 

detected in Bukit Duabelas and Harapan transformation systems are 

provided in Tables S3.1 and 3.2.  The most abundant genus of AMF OTUs 

was Glomus. Sequences of 11 OTUs were presented for the first time, and 

phylogenetic analysis revealed that these unknown OTUs were related to 

Archaeosporaceae (Figure 3.4). We referred to them as unknown 

Glomeromycota in our further analysis. 

The identity of the plant host of the AMF was assessed using two 

markers, rbcL and matK. The rbcL marker successfully amplified all plant 

DNA samples (Tables S3.4 and S3.5), whereas matK could amplify only a 

very low number of samples. Therefore, only the data from rbcL marker 

was used in this study.  The 36 roots analyzed from the forest in Bukit 

Duabelas belonged to 20 plant species in 16 families. The 36 roots from 

the forest in Harapan belonged to 31 plant species in 17 families. All single 

roots obtained from rubber tree and oil palm plantations belonged to 

rubber and oil palm trees, respectively. Plant functional groups included 5 

herbs, 1 shrub, and 50 trees as inferred from all 56 single roots obtained 

from the Bukit Duabelas land use systems. In Harapan systems, 4 shrubs, 

and 52 trees were identified from 56 single roots (Table 3.3).   
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Figure 3.3. Sampling effort for the arbuscular mycorrhizal (AM) community 
in a single plant root from the forest in Bukit Duabelas (BF, n = 36), oil 
palm plantation in Bukit Duabelas (BO, n = 10), rubber tree plantation in 
Bukit Duabelas (BR, n = 10), forest in Harapan (HF, n = 36), oil palm 
plantation in Harapan (HO, n = 10), and rubber tree plantation in Harapan 
(HR, n = 10). Eight AM fungal clones were analyzed from each single root. 

 

The diversity indices were calculated to compare the diversity of 

AMF in different land use systems. The species richness of AM was 

significantly higher in the rain forest than in the oil palm and rubber tree 

plantations, which was further corroborated by the diversity indices 

(Simpson, Shannon, and evenness, Table 3.4).    

 
Table 3.3. Plant functional groups in Bukit Duabelas National Park and 
Harapan inferred from rbcL sequencing marker. 

  Family Species Grass Herb Shrub Tree 

Bukit Duabelas 16 20 0 5 1 50 

Harapan 17 31 0 0 4 52 
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Table 3.4. Arbuscular mycorrhizal diversity across land use systems in 
Bukit Duabelas National Park and Harapan transformation systems.  

Diversity 

indices BF   BO   BR   HF   HO   HR   P 

Species 

richness 31 b 10 a 12 ab 21 b 10 ab 9 ab 0.007** 

Simpson 0.844 b 0.738 a 0.803 ab 0.850 b 0.791 ab 0.806 ab 0.005** 

Shannon 1.917 b 1.486 a 1.761 ab 1.951 b 1.679 ab 1.741 ab 0.005** 

Evenness 0.970 b 0.900 a 0.940 ab 0.971 b 0.927 ab 0.954 ab 0.019* 

BF: forest in Bukit Duabelas, BO: oil palm plantation in Bukit, BR: rubber 

tree plantation in Bukit Duabelas, HF: forest in Harapan, HO: oil palm 

plantation in Harapan, and HR: rubber tree plantation in Harapan. 

Significance levels: *P < 0.05, ** P < 0.01, ***P < 0.001. 
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Figure 3.4. Phylogenetic tree of arbuscular mycorrhizal fungi isolated from 
the roots in Bukit Duabelas and Harapan transformation systems based on 
maximum parsimony. Numbers above branches indicate bootstrap values 
(1,000 replicates). 
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3.3.2. AMF communities across land use systems 

To characterize the AMF community composition, we determined 

the number of unique and shared AMF OTUs in different land use 

systems. Venn diagrams showed eight AMF OTUs shared across the land 

use system in Bukit Duabelas and there were 24 and two unique AMF 

OTUs in forest and rubber tree plantation respectively, but no unique AMF 

OTU in oil palm plantation. Similar to the Bukit Duabelas, oil palm and 

rubber tree plantations in Harapan also showed lower number of unique 

AMF OTUs, two in oil palm and one in rubber tree plantation. There were 

five AMF OTUs shared across the Harapan transformation systems 

(Figures 3.5A and 3.5B). The forest in the Bukit Duabelas showed a higher 

number of AMF OTUs compared to Harapan forest (Figure 3.5C). In oil 

palm plantation, two unique AMF OTUs originated from the Bukit Duabelas 

system and five from the Harapan system and both shared eight AMF 

OTUs (Figure 3.5D). Rubber tree plantation shared 10 AMF OTUs 

whereas five unique OTUs were in Bukit Duabelas and two AMF OTUs 

belonged to Harapan rubber tree plantation (Figure 3.5E). Rubber tree and 

oil palm shared only few AMF species from the genera Glomus, 

Acaulospora, and Gigaspora (Tables S3.3 and S3.4). The most abundant 

OTUs were Glomus sp. VTX00363 (10.6%), Glomus VTX00149 (10.3%), 

Glomus VTX00126 (7.5%), and Glomus intraradices (6.8%) (Table S3.6).  

In both transformation systems, Glomeraceae was the most 

dominant family of AMF OTUs. The abundance and distribution of AMF in 

their host plants was visualized in a bipartite network plot (Figure 3.6). ). 
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Plant–AMF association indicated that higher percentage of plant roots in 

forest communities associated with AMF. In contrast, oil palm and rubber 

tree roots were less associated to the AMF. Blüthgen (d‗) index (Blüthgen 

et al., 2006) indicates the host specificity of AMF OTUs and it ranges from 

0 (generalization) to 1 (specialization). Association specificity analysis 

found that none of the AMF OTUs were host-specific (d‗ index ranged from 

0.019 to 0.509, Table S3.6).  

Multivariate analysis (PERMANOVA) revealed that AMF 

communities significantly differed between the landscapes (Bukit Duabelas 

and Harapan) and among land use systems (forest, rubber tree, and oil 

palm; Table 3.5). This finding was further corroborated by NMDS. Carbon, 

nitrogen, phosphorus, and aluminum in roots, soil pH, and available 

phosphorus in soil were used as environmental variables to assess the AM 

community structure along a land use gradients and between plant hosts 

(Figure 3.7). The NMDS stress (0.21) was within the accepted values 

since lower number implies low error of the distance between sample and 

low similarity between the groups that were compared. These results 

indicate that AMF community structures were related to different 

environmental factors such as C, N, and Al in roots and soil pH (P = 

0.001). In contrast, P in roots was not significantly related to the AMF 

community structure (P = 0.173, Table 3.6).  
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Table 3.5. Permutational multivariate analysis of variance of arbuscular 
mycorrhiza in plant hosts along a transformation systems and land use 
gradient.  

Source df 

Sum of 

square 

Mean 

square F P  

Landscape 1 0.645 0.645 6.214 0.001 *** 

Plot 2 4.804 2.402 23.142 0.001 *** 

Interaction 2 1.817 0.909 8.754 0.001 *** 

Residual 54 5.605 0.104 

  

 

Total 59 12.872 

   

 

Significance levels: *P < 0.05, ** P < 0.01, ***P < 0.001. 
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Figure 3.5. Venn diagrams showing unique and shared arbuscular 
mycorrhizal OTUs in A) Bukit Duabelas National Park transformation 
systems (BF: Forest, BO: Oil palm, BR: Rubber tree); B) Harapan 
transformation systems (HF: Forest, HO: Oil palm, HR: Rubber tree); C) 
Forest in Bukit Duabelas (BF) and Harapan (HF); D) Oil palm in Bukit 
Duabelas (BO) and Harapan (HO); Rubber tree in Bukit Duabelas (BR) 
and Harapan (HR). Numbers indicate unique and shared AM OTUs. 
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Figure 3.6. Network structure of plant hosts and arbuscular mycorrhizal 

(AM) OTUs in all transformation systems. Red bars represent host plants 

and blue bars represent AM OTUs. The bar thickness indicate generalist 

(thick bars) to specialist (thin bars) of AMF-host plants association.  
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Figure 3.7. Differences in land use systems (in Bukit Duabelas: forest is in 
dark green, rubber tree in dark blue, oil palm in red; in Harapan: forest in 
light green, rubber tree in light blue, oil palm in pink) and environmental 
factors (carbon concentration in roots [C_roots], nitrogen concentration in 
roots [N_roots], phosphorus concentration in roots [P_roots], aluminum 
concentration in roots [Al], and soil pH [pH]) affected community 
composition of arbuscular mycorrhizal fungi. 

 

Table 3.6. Goodness of fit statistics (R2) of host plants and environmental 
factors fitted to the nonmetric multidimensional scaling (NMDS) ordination 
of arbuscular mycorrhizal community structure. The significance was 
based on 999 permutations.  

Variables R2 P 

 Carbon in root 0.374  0.001 *** 

Nitrogen in root 0.103  0.001 *** 

Phosphorous in root 0.059   0.173 

 Aluminum in root 0.349  0.001 *** 

Soil pH 0.250   0.001 *** 

Significance levels: *P < 0.05, ** P < 0.01, ***P < 0.001. 
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3.4. Discussion  

The present study examined the effect of transformation systems 

on AMF communities in lowland tropical rain forest in Sumatra, Indonesia. 

Our study in three different land use systems showed that transformation 

of rain forest into rubber tree and oil palm plantations altered the 

community composition and decreased species richness of AMF. The 

AMF species richness in rain forests was significantly higher than that 

found in managed plantations. Consequently, very low AMF species 

richness was found in managed rubber tree and oil palm plantations. 

Interestingly, 11 AMF OTUs were not assigned to any of the previously 

sequenced taxa and thus remain unknown. Of all AMF OTUs found, 

Glomus showed higher dispersal potential compared to other genera 

found in all land use systems since they are associated to the majority of 

identified plant species. 

Assessing AMF community structure in relation to the land use 

changes is one of the objectives of this study. The results of this study 

support our hypothesis that transformation of rain forest into managed 

rubber tree and oil palm plantations reduces species richness of AMF 

communities. AMF community structure is related to the host plant 

diversity and environmental resources (Carrenho et al. 2002; Hart et al. 

2003; Yang et al. 2015). A number of studies have reported that selectivity 

of AMF for host plants may affect the AMF community structure (Grime et 

al. 1987; Miller and Kling 2000; Carrenho et al. 2002; Bever 2002; Zhang 

et al. 2010). Specificity of AM is also related to environmental factors such 
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as soil nutrients and water availability (Martínez-García and Pugnaire 

2011).  

In tropical lowland rain forest of Bukit Duabelas and Harapan, most 

of identified AMF OTUs formed symbioses with detected plant species. 

This finding suggests that a host preference is not likely to be a prime 

determinant of the AMF assemblage in forest plant communities. Host 

preference is used to describe the intricate relationship between AMF and 

their specific host plant (Gadkar et al. 2001) and may play important role in 

relation to plant community (Klironomos 2000; Kernaghan 2005). Previous 

studies have shown that AMF lack host specificity (Clapp et al. 1995; 

Santos et al. 2006; Torrecillas et al. 2012), but meta-analysis suggest that 

AMF may have a preference for certain plant communities (Hoeksema et 

al. 2010; Yang et al. 2012). 

The preferences of AMF do not depend on a single factor such as 

host plant. Various environmental factors including nitrogen, phosphorus, 

and soil properties potentially influence the AMF preference (Bohrer et al. 

2001; Wang et al. 2006; Carrenho et al. 2007; Hoeksema et al. 2010). 

Environmental heterogeneity, land management practices, and geographic 

distance were found to be the determinant factors affecting AM species 

richness at the landscape scale of farming practices (van der Gast et al. 

2011). Low input in agricultural management was related to high diversity 

of AMF through a land use gradient (Lumini et al. 2010). Soil type and land 

use intensity were also important in predicting AMF community 

composition (Oehl et al. 2010; Stürmer and Siqueira 2010). Low AMF 
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species richness was found in managed land systems (Lumini et al. 2010), 

and limited resources, particularly nitrogen and phosphorus, are a factor 

for adaptation in symbioses (Johnson et al. 2010). In the present study, 

nitrogen, carbon, and aluminum in fine roots and soil pH were factors with 

a significant effect on the AM community structures. Unexpectedly, 

phosphorus in roots was not significantly related to the AMF community, 

which may be due to many factors that contribute in the uptake of 

inorganic phosphorus (Smith and Read 2008). In mycorrhizal roots, 

demands for phosphorus is regulated by the activity of the transporter for 

phosphorus in fungus (Schachtman et al. 1998; Bonfante and Genre 

2010). However, increasing polyphosphate levels in mycorrhizal roots 

resulted in similar levels of vacuolar inorganic phosphorus in mycorrhizal 

and non mycorrhizal plants (MacFall et al. 1992), indicating that the role of 

phosphorus in regulation of AMF–plant symbiosis is still poorly 

understood.  

Nitrogen and phosphorus are two essential elements for plant 

growth (Whiting et al. 2004; Smith and Read 2008). AMF can enhance 

plant acquisition of phosphorus and take up nitrogen from soil (Treseder 

2004, Smith and Smith 2012). The availability of nitrogen, phosphorus, 

and carbon is required for mycorrhizal fungi and it controls their 

abundance (Treseder 2004). In contrast, AMF are involved by plant in 

nutrient balance during the nutrient uptake from soil (Clarkson 1985; 

Marschner 1995). For example, the amelioration of aluminum by 

mycorrhizal fungi in Liriodendron tulipifera was associated with acquisition 
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of inorganic phosphorus (Lux and Cumming 2001), and AMF may 

suppress aluminum when present at toxic levels in the soil (Cumming and 

Ning 2003). 

Changes in the AMF community structures are also triggered by the 

land use change (Dai et al. 2013). In the present paper, we have found 

that the structure of AMF communities differs between the forest and 

managed oil palm and rubber tree plantations. In Borneo, Indonesia, forest 

clearance for oil palm plantations can reduced fungal community 

composition (Kerfahi et al. 2014). In response to land use change, 

conversion of tropical forest to oil palm plantation in Malaysia altered 

fungal community composition (McGuire et al. 2015) and similarly, 

conversion of tropical rain forest to rubber tree and oil palm plantation 

modified the AMF communities in Jambi, Indonesia (Krashevska et al. 

2015). The differences in plant vegetation and environmental factors 

across land use systems likely explain the differences observed in AMF 

community in this study. AMF species richness is higher in diverse 

vegetation compared to that in conventional mono-cropping vegetation 

(Bainard et al. 2012). (Krashevska et al. 2015) found that AMF community 

in the forest was more pronounced compared to other land uses. 

Additionally, the effects of ecosystem, biogeographical, and climatic 

factors might be mediated by host plants (Yang et al. 2012). It can 

therefore be assumed that the plant diversity drives the species richness 

of AMF communities. This finding supports our hypothesis that conversion 
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of forest to managed oil palm and rubber plantations resulted in altered 

community structure and decreased species richness of AMF.    
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Table S3.1. Molecular identification of arbuscular mycorrhizal fungal OTUs in Bukit Duabelas National Park transformation systems.  

OTU ID 
Query 

length  

                              Based on MarJam database Based on NCBI database  

Accession Closest blast match  

Query 

coverage 

E-

value 

Max 

identity Accession Closest blast match  

Query 

cover 

E 

value 

Max 

identity 

Forest            

   Acaulosporaceae     Acaulosporaceae    

OTU_1 558 FR719957 Acaulospora lacunosa VTX00024 99% 0 99% KR822761.2 Acaulospora lacunosa  100% 0.0 99% 

OTU_2 562 HE610427 Acaulospora lacunose 2 99% 0 99% HE610426.1 Acaulospora lacunosa  100% 0.0 99% 

   Ambisporaceae     Ambisporaceae    

OTU_3 536 AB015712 Ambispora leptoticha 100% 0 100% KR822763. 

Archaeospora leptoticha clone 

A2 100% 0.0 100% 

OTU_4 635 AJ301861 Ambispora leptoticha VTX00242 100% 0 100% KR822764.1 

Archaeospora leptoticha clone 

pWD147-1-1 100% 0.0 100% 

   Archaeosporaceae     Archaeosporaceae    

OTU_5 487 AF452635 Archaeospora PODO18.1 97% 0% 97% AB047306.1 

Archaeospora leptoticha 

MAFF520057 100% 0.0 97% 

OTU_6 618 JF414172 Archaeospora sp. VTX00005 95% 0 97% JF414182.1 Glomeromycota sp. MIB 8442  100% 0.0 94% 

   Claroideoglomeraceae     Claroideoglomeraceae    

OTU_7 577 EU340321 Claroideoglomus NF25 VTX00193 97% 0 97% KR822767.1 

Uncultured Glomus clone 

PAF376  100% 0.0 97% 

OTU_8 601 HE614986 

Claroideoglomus Torrecillas12b 

Glo G1 VTX00193 99% 0 99% HE614989.1 

Uncultured Glomus partial 

isolate CIR, clone 1-10 100% 0.0 99% 

OTU_9 634 HE615004 

Claroideoglomus Torrecillas12b 

Glo G3 VTX00056 97% 0 97% KR822769.1 

Uncultured Glomus isolate 

ANA, clone 4-4 100% 0.0 97% 

   Diversisporaceae     Diversisporaceae    

OTU_10 581 HE615041 

Diversispora Torrecillas12b Div2 

VTX00380 98% 0 98% KR822770.1 

Uncultured Diversispora isolate 

STI, clone 1-28 100% 0.0 99% 

OTU_11 588 HE615058 

Diversispora Torrecillas12b Div3 

VTX00354 99% 0 99% KR822771.1 

Uncultured Diversispora isolate 

BRA, clone 1-4 100% 0.0 100% 

   Gigasporaceae     Gigasporaceae    

OTU_12 609 FR774917 

Scutellospora heterogama 

VTX00255 97% 0 97% AB041344.1 

Scutellospora cerradensis 

clone:SC21 100% 0.0 97% 
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Table S3.1. Continued   

OTU ID 
Query 

length  

Based on MarJam database  Based on NCBI database  

Accession Closest blast match  

Query 

coverage 

E-

value 

Max 

identity Accession Closest blast match  

Query 

cover 

E 

value 

Max 

identity 

OTU_13 527 FR750215 Scutellospora pellucida 100% 0 100% JN644450.1 

Uncultured Gigasporaceae 

clone 251AM1_7  100% 0.0 99% 

   Glomeraceae         

OTU_14 592 FR821564 

Glomus Alguacil12a Glo G9 

VTX00280 100% 0 100% KR822774.1 

Uncultured Glomus isolate C4-

3 100% 0.0 100% 

OTU_15 523 HE576928 

Glomus Alguacil12b GLO G11 

VTX00149 100% 0 100% KR822775.1 

Uncultured Glomus clone 

S10.28 100% 0.0 100% 

OTU_16 674 FR750212 Glomus constrictum VTX00064 97% 0 97% Y17635.3 

Glomus caledonium isolate 

BEG20, clone pWD135-1 100% 0.0 95% 

OTU_17 591 FR750209 Glomus intraradices VTX00100 100% 0 100% GU140042.1 Glomus intraradices strain GA5  100% 0.0 99% 

OTU_18 589 DQ336493 Glomus Kottke08-7 VTX00069 98% 0 98% KR822778.1 

Uncultured Glomus clone 

K171c6  100% 0.0 100% 

OTU_19 651 AB546401 Glomus sp. VTX00084 100% 0 100% KR822779.1 Uncultured Glomus clone: C1-6 100% 0.0 100% 

OTU_20 656 AB546133 Glomus sp. VTX00194 100% 0 100% KR822780.1 Uncultured Glomus clone: P2-1 100% 0.0 100% 

OTU_21 584 AB220173 Glomus sp. RF1 VTX00090 100% 0 100% JF414187.1 Glomeromycota sp. MIB 8366  99% 0.0 98% 

OTU_22 651 EU169414 Glomus sp. VTX00064 100% 0 100% KR822782.1 Uncultured Glomus ID28  100% 0.0 100% 

OTU_23 591 FR821538 

Glomus Alguacil12a Glo G8 

VTX00363 98% 0 98 KR822783.1 

Uncultured Glomus isolate R2-

24 100% 0.0 98% 

OTU_24 593 AB555664 Glomus sp. VTX00291 98% 0 98% KR822784.1 

Uncultured Glomus clone: 

K2H1-2 100% 0.0 99% 

OTU_25 561 AJ430853 

Glomus Voyria symbiont type 2 

VTX00126 100% 0 97% KJ952239.1 Glomeromycota sp. AI6n-3  100% 0.0 100% 

   Paraglomeraceae     Paraglomeraceae    

OTU_26 594 HE576915 

Paraglomus Alguacil12b PARA2 

VTX00350 98% 0 98% KR822786.1 Uncultured clone S12.29 100% 0.0 99% 

OTU_27 592 FR693458 Paraglomus Para2 VTX00308 98% 0 98% KR822787.1 

Uncultured Paraglomus clone 

C2-19 100% 0.0 99% 
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Table S3.1. Continued   

OTU ID 
Query 

length  

Based on MarJam database  Based on NCBI database  

Accession Closest blast match  

Query 

coverage 

E-

value 

Max 

identity Accession Closest blast match  

Query 

cover 

E 

value 

Max 

identity 

OTU_28 594 FR848081 Paraglomus sp. VTX00349 98% 0 98% KR822788.1 

Uncultured Paraglomus clone 

1-5  100% 0.0 99% 

            

OTU_29 506  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_30 437  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_31 488  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_32 695  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_33 472  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_34 497  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_35 665  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_36 514  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_37 684  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_38 571  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_39 515  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   Oil palm            

   Acaulosporaceae     Acaulosporaceae    

OTU_1 558 FR719957 Acaulospora lacunosa VTX00024 99% 0 99% KR822761.2 Acaulospora lacunosa  100% 0.0 99% 

OTU_2 562 HE610427 Acaulospora lacunosa 2 99% 0 99% HE610426.1 Acaulospora lacunosa  100% 0.0 99% 

   Ambisporaceae     Ambisporaceae    

OTU_4 635 AJ301861 

Ambispora leptoticha VTX00242 

100% 0 100% KR822764.1 

Archaeospora leptoticha clone 

pWD147-1-1 100% 0.0 100% 

   Glomeraceae         

OTU_20 656 AB546133 Glomus sp. VTX00194 100% 0 100% KR822780.1 Uncultured Glomus clone: P2-1 100% 0.0 100% 

OTU_25 561 AJ430853 

Glomus Voyria symbiont type 2 

VTX00126 100% 0 97% KJ952239.1 

Glomeromycota sp. AI6n-3  

100% 0.0 100% 

OTU_29 506  Unknown Glomeromycota     Unknown Glomeromycota    
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Table S3.1. Continued   

OTU ID 
Query 

length  

Based on MarJam database  Based on NCBI database  

Accession Closest blast match  

Query 

coverage 

E-

value 

Max 

identity Accession Closest blast match  

Query 

cover 

E 

value 

Max 

identity 

OTU_30   Unknown Glomeromycota     Unknown Glomeromycota    

OTU_34 437  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_37 684  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_39 515  Unknown Glomeromycota     Unknown Glomeromycota    

Rubber            

   Acaulosporaceae     Acaulosporaceae    

OTU_1 558 FR719957 Acaulospora lacunosa VTX00024 99% 0 99% KR822761.2 Acaulospora lacunosa  100% 0.0 99% 

OTU_2 562 HE610427 Acaulospora lacunosa 2 99% 0 99% HE610426.1 Acaulospora lacunosa  100% 0.0 99% 

   Glomeraceae         

OTU_15 523 HE576928 

Glomus Alguacil12b GLO G11 

VTX00149 100% 0 100% KR822775.1 

Uncultured Glomus clone 

S10.28 100% 0.0 100% 

OTU_20 656 AB546133 Glomus sp. VTX00194 100% 0 100% KR822780.1 Uncultured Glomus clone: P2-1 100% 0.0 100% 

OTU_23 591 FR821538 

Glomus Alguacil12a Glo G8 

VTX00363 98% 0 98 KR822783.1 

Uncultured Glomus isolate R2-

24 100% 0.0 98% 

OTU_25 561 AJ430853 

Glomus Voyria symbiont type 2 

VTX00126 100% 0 97% KJ952239.1 

Glomeromycota sp. AI6n-3  

100% 0.0 100% 

            

OTU_29 506  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_30 437  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_31 488  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_32 695  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_33 472  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_34 497  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_36 514  Unknown Glomeromycota     Unknown Glomeromycota    
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Table S3.1. Continued   

OTU ID 
Query 

length  

Based on MarJam database  Based on NCBI database  

Accession Closest blast match  

Query 

coverage 

E-

value 

Max 

identity Accession Closest blast match  

Query 

cover 

E 

value 

Max 

identity 

OTU_37 684  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_39 515  Unknown Glomeromycota     Unknown Glomeromycota    

 

Table S3.2. Molecular identification of arbuscular mycorrhizal fungal OTUs in Harapan transformation systems.  

OTU ID 
Query 

length  

Based on MarJam database  Based on NCBI database  

Accession Closest blast match  

Query 

coverage 

E-

value 

Max 

identity Accession Closest blast match  

Query 

cover 

E 

value 

Max 

identity 

Forest            

   Acaulosporaceae     Acaulosporaceae    

OTU_1 558 FR719957 Acaulospora lacunosa VTX00024 99% 0 99% KR822761.2 Acaulospora lacunosa  100% 0.0 99% 

OTU_2 562 HE610427 Acaulospora lacunosa 2 99% 0 99% HE610426.1 Acaulospora lacunosa  100% 0.0 99% 

   Ambisporaceae     Ambisporaceae    

OTU_4 635 AJ301861 Ambispora leptoticha VTX00242 100% 0 100% KR822764.1 

Archaeospora leptoticha clone 

pWD147-1-1 100% 0.0 100% 

   Archaeosporaceae     Archaeosporaceae    

OTU_5 487 AF452635 Archaeospora PODO18.1 97% 0% 97% AB047306.1 

Archaeospora leptoticha 

MAFF520057 100% 0.0 97% 

OTU_6 618 JF414172 Archaeospora sp. VTX00005 95% 0 97% JF414182.1 Glomeromycota sp. MIB 8442  100% 0.0 94% 

   Claroideoglomeraceae     Claroideoglomeraceae    

OTU_7 577 EU340321 Claroideoglomus NF25 VTX00193 97% 0 97% KR822767.1 

Uncultured Glomus clone 

PAF376  100% 0.0 97% 

OTU_9 634 HE615004 

Claroideoglomus Torrecillas12b 

Glo G3 VTX00056 97% 0 97% KR822769.1 

Uncultured Glomus isolate 

ANA, clone 4-4 100% 0.0 97% 

   Diversisporaceae     Diversisporaceae    
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Table S3.2. Continued   

OTU ID 
Query 

length  

Based on MarJam database  Based on NCBI database  

Accession Closest blast match  

Query 

coverage 

E-

value 

Max 

identity Accession Closest blast match  

Query 

cover 

E 

value 

Max 

identity 

OTU_10 581 HE615041 

Diversispora Torrecillas12b Div2 

VTX00380 98% 0 98% KR822770.1 

Uncultured Diversispora isolate 

STI, clone 1-28 100% 0.0 99% 

OTU_11 588 HE615058 

Diversispora Torrecillas12b Div3 

VTX00354 99% 0 99% KR822771.1 

Uncultured Diversispora isolate 

BRA, clone 1-4 100% 0.0 100% 

   Gigasporaceae     Gigasporaceae    

OTU_12 609 FR774917 

Scutellospora heterogama 

VTX00255 97% 0 97% AB041344.1 

Scutellospora cerradensis 

clone:SC21 100% 0.0 97% 

OTU_13 527 FR750215 Scutellospora pellucida 100% 0 100% JN644450.1 

Uncultured Gigasporaceae 

clone 251AM1_7  100% 0.0 99% 

   Glomeraceae         

OTU_15 523 HE576928 

Glomus Alguacil12b GLO G11 

VTX00149 100% 0 100% KR822775.1 

Uncultured Glomus clone 

S10.28 100% 0.0 100% 

OTU_17 591 FR750209 Glomus intraradices VTX00100 100% 0 100% GU140042.1 Glomus intraradices strain GA5  100% 0.0 99% 

OTU_18 589 DQ336493 Glomus Kottke08-7 VTX00069 98% 0 98% KR822778.1 

Uncultured Glomus clone 

K171c6  100% 0.0 100% 

OTU_20 656 AB546133 Glomus sp. VTX00194 100% 0 100% KR822780.1 Uncultured Glomus clone: P2-1 100% 0.0 100% 

OTU_24 593 AB555664 Glomus sp. VTX00291 98% 0 98% KR822784.1 

Uncultured Glomus clone: 

K2H1-2 100% 0.0 99% 

   Paraglomeraceae     Paraglomeraceae    

OTU_27 592 FR693458 Paraglomus Para2 VTX00308 98% 0 98% KR822787.1 

Uncultured Paraglomus clone 

C2-19 100% 0.0 99% 

            

OTU_29 506  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_32 695  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_33 472  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_34 497  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_36 514  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_37 684  Unknown Glomeromycota     Unknown Glomeromycota    
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Table S3.2. Continued   

OTU ID 
Query 

length  

Based on MarJam database  Based on NCBI database  

Accession Closest blast match  

Query 

coverage 

E-

value 

Max 

identity Accession Closest blast match  

Query 

cover 

E 

value 

Max 

identity 

OTU_39 515 KR822799 Unknown Glomeromycota     Unknown Glomeromycota    

Oil palm            

   Acaulosporaceae     Acaulosporaceae    

OTU_1 558 FR719957 Acaulospora lacunosa VTX00024 99% 0 99% KR822761.2 Acaulospora lacunosa  100% 0.0 99% 

OTU_2 562 HE610427 Acaulospora lacunosa 2 99% 0 99% HE610426.1 Acaulospora lacunosa  100% 0.0 99% 

   Glomeraceae     Glomeraceae    

OTU_23 591 FR821538 

Glomus Alguacil12a Glo G8 

VTX00363 98% 0 98 KR822783.1 

Uncultured Glomus isolate R2-

24 100% 0.0 98% 

OTU_25 561 AJ430853 

Glomus Voyria symbiont type 2 

VTX00126 100% 0 97% KJ952239.1 Glomeromycota sp. AI6n-3  100% 0.0 100% 

   Unknown Glomeromycota     Unknown Glomeromycota    

OTU_29 506  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_30 437  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_31 488  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_33 472  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_34 497  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_35 665  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_36 514  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_37 684  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   OTU_39 515  Unknown Glomeromycota 

    

Unknown Glomeromycota 

   Rubber            

   Acaulosporaceae     Acaulosporaceae    

OTU_1 558 FR719957 Acaulospora lacunosa VTX00024 99% 0 99% KR822761.2 Acaulospora lacunosa  100% 0.0 99% 

OTU_2 562 HE610427 Acaulospora lacunosa 2 99% 0 99% HE610426.1 Acaulospora lacunosa  100% 0.0 99% 

   Gigasporaceae     Gigasporaceae    

OTU_13 527 FR750215 

Scutellospora pellucida 

100% 0 100% JN644450.1 

Uncultured Gigasporaceae 

clone 251AM1_7  100% 0.0 99% 
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Table S3.2. Continued   

OTU ID 
Query 

length  

Based on MarJam database  Based on NCBI database  

Accession Closest blast match  

Query 

coverage 

E-

value 

Max 

identity Accession Closest blast match  

Query 

cover 

E 

value 

Max 

identity 

   Glomeraceae         

OTU_15 523 HE576928 

Glomus Alguacil12b GLO G11 

VTX00149 100% 0 100% KR822775.1 

Uncultured Glomus clone 

S10.28 100% 0.0 100% 

   Glomeraceae     Glomeraceae    

OTU_23 591 FR821538 

Glomus Alguacil12a Glo G8 

VTX00363 98% 0 98 KR822783.1 

Uncultured Glomus isolate R2-

24 100% 0.0 98% 

OTU_25 561 AJ430853 

Glomus Voyria symbiont type 2 

VTX00126 100% 0 97% KJ952239.1 

Glomeromycota sp. AI6n-3  

100% 0.0 100% 

   Unknown Glomeromycota     Unknown Glomeromycota    

OTU_29 506  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_30 437  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_34 497  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_37 684  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_38 571  Unknown Glomeromycota     Unknown Glomeromycota    

OTU_39 515  Unknown Glomeromycota     Unknown Glomeromycota    
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Table S3.3. Matrix of symbiosis of AMF and host plants in Bukit Duabelas and Harapan transformation systems. 

No 
Plot ID 
 

Phost plants 
 

Environmental variables     AMF Abundance                                                                   

C 
roots 
(mg/g) 

N 
roots 
(mg/g) 

Al 
roots 
(mg/g) 

P 
roots 
(mg/g) 

Soil 
pH 

 A
c
a
u
lo

s
p

o
ra

 l
a
c
u
n

o
s
a

 V
T

X
0

0
0

2
4
  

 A
c
a
u
lo

s
p

o
ra

 l
a
c
u
n

o
s
a

 2
  

 A
m

b
is

p
o

ra
c
e
a

e
 l
e

p
to

ti
c
h
a

  

 A
m

b
is

p
o

ra
 l
e
p
to

ti
c
h
a
 V

T
X

0
0
2
4

2
  

A
rc

h
a

e
o
s
p
o

ra
 P

O
D

O
1
8
.1

 

 A
rc

h
a
e
o

s
p

o
ra

 s
p
. 

V
T

X
0
0
0

0
5

  

 C
la

ro
id

e
o
g
lo

m
u
s
  
V

T
X

0
0
1

9
3

 

 C
la

ro
id

e
o
g
lo

m
u
s
 T

o
rr

e
c
ill

a
s
 V

T
X

0
0
1

9
3

 

 C
la

ro
id

e
o
g
lo

m
u
s
 T

o
rr

e
c
ill

a
s
 V

T
X

0
0
0

5
6

 

 D
iv

e
rs

is
p

o
ra

 T
o
rr

e
c
ill

a
s
 V

T
X

0
0

3
8

0
  

 D
iv

e
rs

is
p

o
ra

 T
o
rr

e
c
ill

a
s
 V

T
X

0
0

3
5

4
 

 S
c
u
te

llo
s
p

o
ra

 h
e
te

ro
g
a

m
a

 V
T

X
0

0
2

5
5

 

 S
c
u
te

llo
s
p

o
ra

 p
e
llu

c
id

a
  

 G
lo

m
u
s
 A

lg
u

a
c
il 

V
T

X
0
0

2
8

0
  

 G
lo

m
u
s
 A

lg
u

a
c
il 

V
T

X
0
0

1
4

9
  

 G
lo

m
u
s
 c

o
n

s
tr

ic
tu

m
 V

T
X

0
0

0
6

4
  

 G
lo

m
u
s
 i
n
tr

a
ra

d
ic

e
s
  

 G
lo

m
u
s
 K

o
tt
k
e
0

8
-7

 V
T

X
0
0

0
6
9

  

G
lo

m
u
s
 s

p
. 
V

T
X

0
0
0
8

4
 

G
lo

m
u
s
 s

p
. 
V

T
X

0
0
1
9

4
 

 G
lo

m
u
s
 s

p
. 
V

T
X

0
0
0

9
0
  

 G
lo

m
u
s
 s

p
. 
V

T
X

0
0
0

6
4
  

 G
lo

m
u
s
 s

p
. 
V

T
X

0
0
3

6
  

 G
lo

m
u
s
 s

p
. 
V

T
X

0
0
2

9
1

 

G
lo

m
u
s
 s

p
.V

o
y
ri
a

 V
T

X
0

0
1

2
6

 

 P
a
ra

g
lo

m
u
s
 A

lg
u

a
c
il1

2
b

  
V

T
X

0
0

3
5
0

  

 P
a
ra

g
lo

m
u
s
 P

a
ra

2
 V

T
X

0
0
3

0
8
  

 P
a
ra

g
lo

m
u
s
 s

p
. 
V

T
X

0
0

3
4
9

 

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
  

1
  

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
 2

 

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
 3

 

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
  

4
 

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
  

5
 

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
  

6
 

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
  

7
 

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
  

8
 

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
  

9
 

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
  

1
0

 

U
n
k
n

o
w

n
 G

lo
m

e
ro

m
y
c
o

ta
  

1
1

 

1 BF1 a-1 
Trachelospermum 
jasminoides 450.59 14.61 7.67 0.67 4.3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 

2 BF1 a-2 
Trachelospermum 
jasminoides 450.59 14.61 7.67 0.67 4.3 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 BF1 a-3 Galearia celebica 450.59 14.61 7.67 0.67 4.3 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 

4 BF1 b-1 Galearia celebica 482.33 11.52 7.67 0.53 4.3 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

5 BF1 b-2 Terminalia guyanensis 482.33 11.52 7.67 0.53 4.3 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 

6 BF1 b-3 Micropholis longipedicellata 482.33 11.52 7.67 0.53 4.3 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 2 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 BF1 c-1 Ficus fulva 469.21 13.83 7.67 0.73 4.3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 BF1 c-2 Ficus fulva 469.21 13.83 7.67 0.73 4.3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

9 BF1 c-3 Terminalia guyanensis 469.21 13.83 7.67 0.73 4.3 0 0 1 2 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 BF2 a-1 Ficus subpisocarpa 465.92 10.91 6.24 0.41 4.2 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

11 BF2 a-2 Ficus subpisocarpa 465.92 10.91 6.24 0.41 4.2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 

12 BF2 a-3 Selaginella roxburghii 465.92 10.91 6.24 0.41 4.2 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

13 BF2 b-1 Butea monosperma 480.98 10.78 6.24 0.40 4.2 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 BF2 b-2 Acacia tenuifolia 480.98 10.78 6.24 0.40 4.2 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

15 BF2 b-3 Butea monosperma 480.98 10.78 6.24 0.40 4.2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 

16 BF2 c-1 
Plectocomiopsis 
geminiflora 464.42 15.66 6.24 0.64 4.2 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

17 BF2 c-2 Acacia tenuifolia 464.42 15.66 6.24 0.64 4.2 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 BF2 c-3 Ficus subpisocarpa 464.42 15.66 6.24 0.64 4.2 0 0 0 2 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 

19 BF3 a-1 Canarium ovatum 469.81 11.04 5.26 0.52 4.2 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 2 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

20 BF3 a-2 Cola acuminata 469.81 11.04 5.26 0.52 4.2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

21 BF3 a-3 Cola acuminata 469.81 11.04 5.26 0.52 4.2 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

22 BF3 b-1 Micropholis longipedicellata 502.73 12.00 5.26 0.42 4.2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

23 BF3 b-2 Micropholis garciniifolia 502.73 12.00 5.26 0.42 4.2 2 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 BF3 b-3 
Trachelospermum 
jasminoides 502.73 12.00 5.26 0.42 4.2 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

25 BF3 c-1 Micropholis garciniifolia 486.54 16.21 5.26 0.51 4.2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 

26 BF3 c-2 Micropholis garciniifolia 486.54 16.21 5.26 0.51 4.2 4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

27 BF3 c-3 Micropholis garciniifolia 486.54 16.21 5.26 0.51 4.2 2 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

28 BF4 a-1 Diospyros sp. 478.23 16.52 5.42 0.53 4.1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 2 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 BF4 a-2 Canarium ovatum 478.23 16.52 5.42 0.53 4.1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

30 BF4 a-3 Selaginella roxburghii 478.23 16.52 5.42 0.53 4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

31 BF4 b-1 Terminalia guyanensis 506.28 17.52 5.42 0.50 4.1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

32 BF4 b-2 Canarium ovatum 506.28 17.52 5.42 0.50 4.1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

33 BF4 b-3 
Reinwardtiodendron 
kinabaluense 506.28 17.52 5.42 0.50 4.1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 2 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

34 BF4 c-1 Strombosia pustulata 493.72 18.99 5.42 0.59 4.1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

35 BF4 c-2 Dapania racemosa 493.72 18.99 5.42 0.59 4.1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 3 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

36 BF4 c-3 Bhesa paniculata 493.72 18.99 5.42 0.59 4.1 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

37 BO1 a-1 Elaeis guineensis 383.65 6.48 18.87 0.37 4.3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

38 BO1 b-4 Elaeis guineensis 432.91 7.10 18.87 0.32 4.3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 

39 BO1 c-5 Elaeis guineensis 436.40 7.15 18.87 0.29 4.3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40 BO1 c-3 Elaeis guineensis 436.40 7.15 18.87 0.29 4.3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

41 BO2 b-1 Elaeis guineensis 429.75 8.18 13.92 0.43 4.5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

42 BO2 c-2 Elaeis guineensis 429.27 7.42 13.92 0.23 4.5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

43 BO3 a-5 Elaeis guineensis 429.56 7.11 12.74 0.31 4.5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

44 BO3 b-2 Elaeis guineensis 423.44 6.32 12.74 0.32 4.4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table S3.3. Continued. 
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45 BO3 c-1 Elaeis guineensis 429.45 6.20 12.74 0.51 4.4 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

46 BO4 b-5 Elaeis guineensis 406.47 5.78 19.92 0.23 4.5 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 

47 BR1 b-4 Hevea brasiliensis 446.83 8.64 9.94 0.25 4.6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 

48 BR1 c-2 Hevea brasiliensis 460.63 5.21 9.94 0.16 4.6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

49 BR2 b-3 Hevea brasiliensis 426.69 12.45 14.22 0.39 4.5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 

50 BR2 c-1 Hevea brasiliensis 424.74 12.86 14.22 0.33 4.5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

51 BR3 a-5 Hevea brasiliensis 433.43 11.38 16.37 0.35 4.5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

52 BR3 b-3 Hevea brasiliensis 418.83 11.83 16.37 0.33 4.5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

53 BR3 c-1 Hevea brasiliensis 430.11 11.46 16.37 0.37 4.5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

54 BR4 a-2 Hevea brasiliensis 412.68 9.82 16.39 0.41 4.4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

55 BR4 b-4 Hevea brasiliensis 421.47 11.10 16.39 0.46 4.4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

56 BR4 c-2 Hevea brasiliensis 440.09 9.63 16.39 0.42 4.4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 1 

57 HF1 a-1 
Pimenta 
pseudocaryophyllus 494.24 14.53 3.37 0.38 4.4 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

58 HF1 a-2 Syzygium sp. 494.24 14.53 3.37 0.38 4.4 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 

59 HF1 a-3 Nephelium mutabile 494.24 14.53 3.37 0.38 4.4 0 1 0 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

60 HF1 b-1 Shorea talura 511.14 9.82 3.37 0.26 4.4 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

61 HF1 b-3 Platanus orientalis 511.14 9.82 3.37 0.26 4.4 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

62 HF1 b-4 Dacryodes sp. 511.14 9.82 3.37 0.26 4.4 0 0 0 0 0 2 0 0 0 0 0 0 1 0 2 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

63 HF1 c-1 Dapania racemosa 498.93 12.93 3.37 0.30 4.4 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

64 HF1 c-2 Dapania racemosa 498.93 12.93 3.37 0.30 4.4 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

65 HF1 c-3 Gnetum diminutum 498.93 12.93 3.37 0.30 4.4 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 

66 HF2 a-1 Nephelium mutabile 500.64 11.61 4.53 0.27 4.3 0 0 0 0 0 0 0 0 0 0 1 0 2 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

67 HF2 a-2 Santiria trimera 500.64 11.61 4.53 0.27 4.3 0 0 0 0 0 1 0 0 0 0 1 0 2 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

68 HF2 a-3 Canarium ovatum 500.64 11.61 4.53 0.27 4.3 2 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

69 HF2 b-1 
Micropholis 
longipedicellata 502.74 10.20 4.53 0.24 4.3 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 2 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

70 HF2 b-2 Micropholis garciniifolia 502.74 10.20 4.53 0.24 4.3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 

71 HF2 b-3 Dacryodes sp. 502.74 10.20 4.53 0.24 4.3 0 0 0 0 0 0 0 0 0 1 1 0 1 0 2 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

72 HF2 c-1 Mitrella kentii 510.29 13.11 4.53 0.31 4.3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 1 0 0 1 1 0 0 0 0 0 0 

73 HF2 c-2 
Artocarpus 
heterophyllus 510.29 13.11 4.53 0.31 4.3 0 0 0 0 0 0 0 0 0 0 1 0 1 0 3 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

74 HF2 c-3 Manilkara zapota 510.29 13.11 4.53 0.31 4.3 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

75 HF3 a-1 Shorea acuminata 522.19 12.21 4.07 0.25 4.3 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 

76 HF3 a-2 
Agrostistachys 
borneensis 522.19 12.21 4.07 0.25 4.3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 

77 HF3 a-3 Prunus brittoniana 522.19 12.21 4.07 0.25 4.3 0 0 0 0 0 1 0 0 0 0 2 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

78 HF3 b-1 Castanopsis lucida 474.42 13.39 4.07 0.28 4.3 0 0 0 0 1 0 0 0 0 0 1 1 2 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

79 HF3 b-2 Manilkara zapota 474.42 13.39 4.07 0.28 4.3 0 0 0 0 0 1 0 0 0 0 1 0 2 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

80 HF3 b-3 Casearia nitida 474.42 13.39 4.07 0.28 4.3 0 0 0 0 0 1 0 0 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 

81 HF3 c-1 
Maesobotrya 
vermeulenii 509.39 11.38 4.07 0.25 4.3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 1 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

82 HF3 c-2 Shorea tumbuggaia 509.39 11.38 4.07 0.25 4.3 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

83 HF3 c-3 Trattinnickia demerarae 509.39 11.38 4.07 0.25 4.3 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

84 HF4 a-1 Syzygium cumini 492.41 10.06 4.39 0.22 4.2 0 0 0 0 0 0 0 0 0 0 1 0 1 0 3 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

85 HF4 a-2 Syzygium rowlandii 492.41 10.06 4.39 0.22 4.2 0 0 0 0 0 0 0 0 1 0 0 0 2 0 1 0 1 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

86 HF4 a-3 Syzygium rowlandii 492.41 10.06 4.39 0.22 4.2 0 0 0 0 0 0 0 0 1 0 1 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

87 HF4 b-1 Spatholobus sp.  503.53 13.49 4.39 0.25 4.2 0 0 0 0 0 2 0 0 0 0 1 0 3 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

88 HF4 b-2 Canarium oleiferum 503.53 13.49 4.39 0.25 4.2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 
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Table S3.3. Continued. 
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89 HF4 b-3 Canarium zeylanicum 503.53 13.49 4.39 0.25 4.2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 

90 HF4 c-1 Protium gallicum 507.39 13.09 4.39 0.28 4.2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 

91 HF4 c-2 Nephelium mutabile 507.39 13.09 4.39 0.28 4.2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

92 HF4 c-3 Shorea tumbuggaia 507.39 13.09 4.39 0.28 4.2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 3 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

93 HO1 a-3 Elaeis guineensis 404.83 7.14 6.74 0.34 4.7 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

94 HO1 b-2 Elaeis guineensis 411.46 7.63 6.74 0.32 4.7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 2 1 0 0 0 0 0 0 0 0 

95 HO1 c-2 Elaeis guineensis 416.77 7.37 6.74 0.35 4.7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 1 1 0 0 0 0 0 0 0 1 

96 HO2 a-4 Elaeis guineensis 450.80 6.58 9.58 0.17 4.7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 

97 HO2 b-3 Elaeis guineensis 411.11 6.93 9.58 0.22 4.5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

98 HO2 c-2 Elaeis guineensis 434.53 5.76 9.58 0.20 4.5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

99 HO3 a-2 Elaeis guineensis 433.98 6.56 12.94 0.27 4.4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

100 HO3 b-1 Elaeis guineensis 430.58 8.30 12.94 0.41 4.4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 1 0 1 0 0 0 

101 HO3 c-3 Elaeis guineensis 444.71 8.56 12.94 0.82 4.4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 1 0 0 0 1 1 0 0 0 

102 HO4 a-1 Elaeis guineensis 457.89 6.90 13.31 0.29 4.5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 

103 HR1 b-3 Hevea brasiliensis 384.74 11.67 15.09 0.40 4.8 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 

104 HR1 c-3 Hevea brasiliensis 393.87 13.09 15.09 0.51 4.8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

105 HR2 a-3 Hevea brasiliensis 445.52 11.19 6.74 0.43 4.8 1 1 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

106 HR2 c-4 Hevea brasiliensis 466.85 10.53 6.74 0.36 4.5 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

107 HR3 a-1 Hevea brasiliensis 422.80 13.93 9.58 0.62 4.4 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

108 HR3 b-2 Hevea brasiliensis 457.98 15.92 9.58 0.79 4.4 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

109 HR3 c-1 Hevea brasiliensis 461.67 14.66 9.58 0.69 4.4 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

110 HR4 a-2 Hevea brasiliensis 442.83 13.01 12.94 0.39 4.3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

111 HR4 b-2 Hevea brasiliensis 460.33 13.97 12.94 0.38 4.3 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

112 HR4 c-1 Hevea brasiliensis 467.03 13.59 12.94 0.42 4.3 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Data with grey background color were used for NMDS analysis (10 trees per system). 
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Table S3.4. Molecular identification of arbuscular mycorrhizal plant host species 

in Bukit Duabelas National Park transformation systems. 

Plot ID Family Genus Species E-Value Similarity 

Forest      

BF1 a-1 Apocynaceae Trachelospermum jasminoides 0 98.93 

BF1 a-2 Apocynaceae Trachelospermum jasminoides 0 98.93 

BF1 a-3 Pandaceae Galearia celebica 0 99.77 

BF1 b-1 Pandaceae Galearia celebica 0 99.77 

BF1 b-2 Combretaceae Terminalia guyanensis 0 100 

BF1 b-3 Sapotaceae Micropholis longipedicellata 0 100 

BF1 c-1 Moraceae Ficus fulva 0 100 

BF1 c-2 Moraceae Ficus fulva 0 99.83 

BF1 c-3 Combretaceae Terminalia guyanensis 0 100 

BF2 a-1 Moraceae Ficus subpisocarpa 0 100 

BF2 a-2 Moraceae Ficus subpisocarpa 0 100 

BF2 a-3 Selaginellaceae Selaginella roxburghii 0 99.47 

BF2 b-1 Fabaceae Butea monosperma 0 98.71 

BF2 b-2 Fabaceae Acacia tenuifolia 0 99.47 

BF2 b-3 Fabaceae Butea monosperma 0 98.92 

BF2 c-1 Arecaceae Plectocomiopsis geminiflora 0 100 

BF2 c-2 Fabaceae Acacia tenuifolia 0 99.47 

BF2 c-3 Moraceae Ficus subpisocarpa 0 100 

BF3 a-1 Burseraceae Canarium ovatum 0 99.83 

BF3 a-2 Malvaceae Cola acuminata 0 100 

BF3 a-3 Malvaceae Cola acuminata 0 100 

BF3 b-1 Sapotaceae Micropholis longipedicellata 0 99.8 

BF3 b-2 Sapotaceae Micropholis garciniifolia 0 100 

BF3 b-3 Apocynaceae Trachelospermum jasminoides 0 98.93 

BF3 c-1 Sapotaceae Micropholis garciniifolia 0 100 

BF3 c-2 Sapotaceae Micropholis garciniifolia 0 100 

BF3 c-3 Sapotaceae Micropholis garciniifolia 0 100 

BF4 a-1 Ebenaceae Diospyros sp 2.58E-133 100 

BF4 a-2 Burseraceae Canarium ovatum 0 99.83 

BF4 a-3 Selaginellaceae Selaginella roxburghii 0 99.47 

BF4 b-1 Combretaceae Terminalia guyanensis 0 100 

BF4 b-2 Burseraceae Canarium ovatum 0 99.83 

BF4 b-3 Meliaceae Reinwardtiodendron kinabaluense 0 100 

BF4 c-1 Erythropalaceae Strombosia pustulata 0 100 

BF4 c-2 Oxalidaceae Dapania racemosa 0 99.27 

BF4 c-3 Centroplacaceae Bhesa paniculata 0 100 
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Table S3.4. Continued   

Plot ID Family Genus Species E-Value Similarity 

Rubber      

BR1 a-1 Euphorbiaceae Hevea brasiliensis 0 100 

BR1 b-1 Euphorbiaceae Hevea brasiliensis 0 100 

BR2 a-2 Euphorbiaceae Hevea brasiliensis 0 100 

BR2 c-1 Euphorbiaceae Hevea brasiliensis 0 99 

BR3 a-1 Euphorbiaceae Hevea brasiliensis 5.42E-176 100 

BR3 b-1 Euphorbiaceae Hevea brasiliensis 2.64E-161 99.73 

BR3 c-1 Euphorbiaceae Hevea brasiliensis 1.00E-145 99 

BR4 a-2 Euphorbiaceae Hevea brasiliensis 0 100 

BR4 b-1 Euphorbiaceae Hevea brasiliensis 0 99 

BR4 c-2 Euphorbiaceae Hevea brasiliensis 0 100 

Oil palm      

BO1 a-1 Arecaceae Elaeis guineensis 0 99.63 

BO1 b-3 Arecaceae Elaeis guineensis 0 99.63 

BO1 c-1 Arecaceae Elaeis guineensis 2.00E-92 98 

BO2 a-1 Arecaceae Elaeis guineensis 0 99 

BO2 b-1 Arecaceae Elaeis guineensis 0 99 

BO2 c-2 Arecaceae Elaeis guineensis 0 99 

BO3 a-1 Arecaceae Elaeis guineensis 3.00E-127 99 

BO3 b-2 Arecaceae Elaeis guineensis 4.00E-105 100 

BO3 c-1 Arecaceae Elaeis guineensis 0 99 

BO4 b-1 Arecaceae Elaeis guineensis 0 99 
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Table S3.5. Molecular identification of arbuscular mycorrhizal plant host species 
in Harapan transformation systems. 

Plot ID Family Genus Species E-Value Similarity 

HF1 a-1 Myrtaceae Pimenta pseudocaryophyllus 0 99.83 

HF1 a-2 Myrtaceae Syzygium sp. 0 99.82 

HF1 a-3 Sapindaceae Nephelium mutabile 0 99.66 

HF1 b-1 Dipterocarpaceae Shorea talura 0 99.48 

HF1 b-3 Platanaceae Platanus orientalis 1.00E-120 98 

HF1 b-4 Burseraceae Dacryodes sp. 0 99.5 

HF1 c-1 Oxalidaceae Dapania racemosa 0 99.32 

HF1 c-2 Oxalidaceae Dapania racemosa 0 99.26 

HF1 c-3 Gnetaceae Gnetum diminutum 0 99.33 

HF2 a-1 Sapindaceae Nephelium mutabile 0 99.66 

HF2 a-2 Burseraceae Santiria trimera 0 95.11 

HF2 a-3 Burseraceae Canarium ovatum 0 99.83 

HF2 b-1 Sapotaceae Micropholis longipedicellata 0 100 

HF2 b-2 Sapotaceae Micropholis garciniifolia 1.21E-129 100 

HF2 b-3 Burseraceae Dacryodes sp. 0 99.49 

HF2 c-1 Annonaceae Mitrella kentii 0 99.65 

HF2 c-2 Moraceae Artocarpus heterophyllus 0 100 

HF2 c-3 Sapotaceae Manilkara zapota 0 99.47 

HF3 a-1 Dipterocarpaceae Shorea acuminata 0 99.81 

HF3 a-2 Euphorbiaceae Agrostistachys borneensis 0 99.3 

HF3 a-3 Rosaceae Prunus brittoniana 0 99.83 

HF3 b-1 Fagaceae Castanopsis lucida 0 99.83 

HF3 b-2 Sapotaceae Manilkara zapota 0 100 

HF3 b-3 Flacourtiaceae Casearia nitida 0 99 

HF3 c-1 Phyllanthaceae Maesobotrya vermeulenii 0 99.48 

HF3 c-2 Dipterocarpaceae Shorea tumbuggaia 0 89.26 

HF3 c-3 Burseraceae Trattinnickia demerarae 0 99.12 

HF4 a-1 Myrtaceae Syzygium cumini 0 99.83 

HF4 a-2 Myrtaceae Syzygium rowlandii 0 99.82 

HF4 a-3 Myrtaceae Syzygium rowlandii 0 100 

HF4 b-1 Fabaceae Spatholobus sp.  0 99.63 

HF4 b-2 Burseraceae Canarium oleiferum 0 100 

HF4 b-3 Burseraceae Canarium zeylanicum 0 99.64 

HF4 c-1 Burseraceae Protium gallicum 0 99.29 

HF4 c-2 Sapindaceae Nephelium mutabile 0 99.66 

HF4 c-3 Dipterocarpaceae Shorea tumbuggaia 0 89.26 
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Table S3.5. Continued   

Plot ID Family Genus Species E-Value Similarity 

Rubber 
     

HR1 b-3 Euphorbiaceae Hevea brasiliensis 0 99 

HR1 c-3 Euphorbiaceae Hevea brasiliensis 0 99 

HR2 a-3 Euphorbiaceae Hevea brasiliensis 0 99 

HR2 c-4 Euphorbiaceae Hevea brasiliensis 0 99 

HR3 a-1 Euphorbiaceae Hevea brasiliensis 0 100 

HR3 b-2 Euphorbiaceae Hevea brasiliensis 0 100 

HR3 c-1 Euphorbiaceae Hevea brasiliensis 0 99 

HR4 a-2 Euphorbiaceae Hevea brasiliensis 0 100 

HR4 b-2 Euphorbiaceae Hevea brasiliensis 0 100 

HR4 c-1 Euphorbiaceae Hevea brasiliensis 0 100 

Oil palm      

HO1 a-3 Arecaceae Elaeis guineensis 2.00E-180 99 

HO1 b-2 Arecaceae Elaeis guineensis 0 99 

HO1 c-2 Arecaceae Elaeis guineensis 5.00E-78 100 

HO2 a-4 Arecaceae Elaeis guineensis 1.00E-116 98 

HO2 b-3 Arecaceae Elaeis guineensis 0 99 

HO2 c-2 Arecaceae Elaeis guineensis 0 99 

HO3 a-2 Arecaceae Elaeis guineensis 6.00E-170 99 

HO3 b-1 Arecaceae Elaeis guineensis 0 99 

HO3 c-3 Arecaceae Elaeis guineensis 0 99 

HO4 a-1 Arecaceae Elaeis guineensis 0 99 
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Table S3.6. Arbuscular mycorrhizal species rich and frequency detected in Bukit 
and Harapan land use systems. 

OTU ID AMF OTUs 
Species 
richness 

Frequency 
(%) 

Association 
specificity (d') 

OTU_1 Acaulospora lacunosa VTX00024 78 8.71 0.21 

OTU_2 Acaulospora sp. VTX00227  41 4.58 0.15 

OTU_3 Ambispora leptoticha 3 0.33 0.34 

OTU_4 Ambispora leptoticha VTX00242 18 2.01 0.23 

OTU_5 Archaeospora PODO18.1 7 0.78 0.27 

OTU_6 Archaeospora sp. VTX00005 20 2.23 0.27 

OTU_7 Claroideoglomus NF25 VTX00193 8 0.89 0.28 

OTU_8 Claroideoglomus Torrecillas12b Glo G1 VTX00193 5 0.56 0.37 

OTU_9 Claroideoglomus Torrecillas12b Glo G3 VTX00056 8 0.89 0.30 

OTU_10 Diversispora Torrecillas12b Div2 VTX00380 13 1.45 0.21 

OTU_11 Diversispora Torrecillas12b Div3 VTX00354 25 2.79 0.28 

OTU_12 Scutellospora heterogama VTX00255 11 1.23 0.25 

OTU_13 Scutellospora pellucida 57 6.36 0.19 

OTU_14 Glomus Alguacil12a Glo G9 VTX00280 8 0.89 0.31 

OTU_15 Glomus Alguacil12b GLO G11 VTX00149 92 10.27 0.30 

OTU_16 Glomus constrictum VTX00064 7 0.78 0.44 

OTU_17 Glomus intraradices VTX00100 61 6.81 0.24 

OTU_18 Glomus Kottke08-7 VTX00069 28 3.13 0.28 

OTU_19 Glomus sp. VTX00084 6 0.67 0.35 

OTU_20 Glomus sp. VTX00194 50 5.58 0.15 

OTU_21 Glomus sp. RF1 VTX00090 9 1.00 0.33 

OTU_22 Glomus sp. VTX00064 7 0.78 0.26 

OTU_23 Glomus Alguacil12a Glo G8 VTX00363 95 10.60 0.17 

OTU_24 Glomus sp. VTX00291 5 0.56 0.51 

OTU_25 Glomus Voyria symbiont type 2 VTX00126 67 7.48 0.39 

OTU_26 Paraglomus Alguacil12b PARA2 VTX00350 5 0.56 0.41 

OTU_27 Paraglomus Para2 VTX00308 43 4.80 0.37 

OTU_28 Paraglomus sp. VTX00349 4 0.45 0.32 

OTU_29 Unknown OTU1 25 2.79 0.10 

OTU_30 Unknown OTU2 8 0.89 0.04 

OTU_31 Unknown OTU3 9 1.00 0.02 

OTU_32 Unknown OTU4 2 0.22 0.30 

OTU_33 Unknown OTU5 8 0.89 0.07 

OTU_34 Unknown OTU6 15 1.67 0.09 

OTU_35 Unknown OTU7 4 0.45 0.16 

OTU_36 Unknown OTU8 4 0.45 0.09 

OTU_37 Unknown OTU9 9 1.00 0.20 

OTU_38 Unknown OTU10 3 0.33 0.14 

OTU_39 Unknown OTU11 28 3.13 0.08 
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Figure S3.1. Phylogenetic tree of host plants of arbuscular mycorrhizal fungi in 

Bukit Duabelas National Park transformation systems based maximum 

parsimony. 
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Figure S3.2. Phylogenetic tree of host plants of arbuscular mycorrhiza in Harapan 

transformation systems based on maximum parsimony. 
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Chapter 4 

Conclusion and Outlook 

 

4.1. Conclusion 

This study was set out to explore the community structure of AMF 

influenced by management practice in temperate grassland and tropical 

land use systems. The experiment in temperate grassland was sought to 

know whether fertilization, cutting frequency, and herbivore in different 

swards (species rich, dicots, and monocots) result in change of AMF 

community structure and species richness. In tropical land use systems, 

the impact of conversion of rainforest to oil palm and rubber plantations on 

AMF community structure and species richness was observed.  

The main empirical findings are presented as specific chapters and 

were summarized within the following respective chapters. In the chapter 

two, the impact of land management and herbivory on AMF in uplands 

permanent grassland has been described. This section answered the 

question that whether fertilization and combination management practices 

altered pattern of AMF community structure in grassland ecosystem. 

Under fertilization, arbuscules and vesicles as key structures for nutrient 

exchange between plant and fungus were decreased. Land management 

of different sward, fertilization, and utilization also significantly decreased 

the relative abundance of arbuscule.  This funding suggests that 

mycorrhizal growth and storage reserves are unsettle caused by 

fertilization and combination treatments of land management practice. The 
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study has offered a perspective that management practices could negate 

the disadvantages on AMF. 

In the chapter three, we studied the impact of forest transformation 

to managed oil palm and rubber plantations. Land use change by forest 

conversion also altered the AMF community structures. In Indonesia, oil 

palm and rubber plantations puts pressure on natural resources. These 

mono plantations are often planted into area which were forest previously. 

Change of land use, consequently alters the plant ecosystem and soil 

properties. In this study, forest conversion into oil palm and rubber 

plantations resulted in change of AMF community structure and decreased 

the species richness. The different environmental variables in plant roots 

and soil appear as the most likely factor shaping the structure of AMF 

community in transformation of lowland rainforest Sumatra.   

 

4.2. Outlook 

The AMF community structure is now being recognized, particularly 

with respect to management practices in grassland and land use change 

in tropical rainforest. Relation between management practice and land use 

change on AMF community structure suggest a feedback that plant and 

AMF association in different ecosystems may play a fundamental role in 

determining the AMF species composition and diversity. However, the 

interpretation of functional AMF community in ecosystem is still limited by 

lack of knowledge. The conclusion of relationship between management 
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practices and land use change on AMF will be more possible if future work 

include the study of functional diversity of AMF in relation to their 

symbioses. The use of high throughput sequencing will be more reliable in 

covering the abundance of AMF.    
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Abstract 

Conversion of tropical forests into intensely managed plantations is a 

threat to ecosystem functions. On Sumatra, Indonesia, oil palm (Elaeis 

guineensis) plantations are rapidly expanding, displacing rain forest and 

extensively used rubber (Hevea brasiliensis) agro-forests. The effect of 

forest transformation on root traits is unknown. Here, we hypothesized that 

chemical and performance traits of root communities vary with forest 

transformation and that degradation of traits is linked with loss of 

ecosystem functions. To test these hypotheses root functional traits were 

determined as root community functional parameters (RCFP). Carbon and 

nitrogen in soil and litter, phosphorus availability, base cations and pH 

were determined as proxy for ecosystem functions. The study was 

conducted in secondary lowland rain forests and in secondary forests 

enriched with rubber (jungle rubber) as well as in rubber and oil palm 

plantations in two landscapes (Bukit Duabelas and Harapan, Sumatra). 

Ectomycorrhizas were rare and only detected in jungle rubber and lowland 

rain forest. Arbuscular mycorrhizal root colonization was abundant and 

generally unaffected by the land use system. Root vitality was lower and 

spore abundance higher in oil palm plantations than in other land use 

systems. Multivariate analysis with RCFPs uncovered ordering of the sites 

according to land use (oil palm plantation < rubber plantation < jungle 

rubber < rain forest) with aluminium, iron, mortality and soil spores as 

negative and root mass, root carbon, nitrogen and base cations as major 

positive loadings. The ordination scores were used as transformation 



 112 

indices and showed significant correlation with ecosystem properties 

(positive: soil nitrogen and litter carbon, negative: soil pH). As the 

transformation indices were determined by contrasting behavior of RCFPs 

and not by the loss of traits abundance per se our results suggest that any 

measure that improves root vitality may enhance the ecological functions 

of intense tropical production systems. 

  

Introduction 

Globally, tropical rain forests are rapidly converted to plantation agriculture 

(Hansen et al. 2008). In Indonesia, which is together with Malaysia the 

world´s largest producer of palm oil (Carrasco et al. 2014), 40% of the 

forest (64 Mio ha) was lost since the countries´ independence in 1945 

(FAO 2010). In the 1950s rubber (Hevea brasiliensis) was introduced as a 

crop tree and is currently cultivated in two systems, in intense 

monocultures often with high yielding clones (rubber plantation) or as 

jungle rubber. Jungle rubber is a complex, extensive form of agro-forestry, 

usually established after swidden agriculture, where rubber trees are 

grown together with naturally established secondary forest (Guoyon et al. 

1993, Tata et al. 2008). Tree species richness is slightly lower, but the 

forest structure of jungle rubber is similar to that of unmanaged lowland 

rain forests (Guoyon et al. 1993, Murdiyarso et al. 2002, Tata et al. 2008). 

Pristine lowland rain forests exists only in fragments and most of 

unmanaged forests, even in protected areas, are secondary forests. Since 
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the 1990s with the introduction of oil palms (Elaeis guineensis), expansion 

of plantation area at the expense of primary and secondary forests has 

drastically increased (Ministry of Agriculture, 2010), with particularly high 

rates (> 2% per year) on Sumatra (Erasmi et al. 2010). Because of the 

world´s increasing demand for biofuel, chemical raw materials and edible 

oil, palm oil production is now a major driver for tropical forest conversion 

(Carrasco et al. 2014). The ecological consequences of this rapid 

transformation process are severe, including for example massive loss in 

biodiversity, soil degradation, reduction in carbon storage, decreased 

energy flux, increases in greenhouse gas emissions, etc. (Dechert et al. 

2004, Wilcove et al. 2010, Carlson et al. 2012, Barnes et al. 2014). While 

the alterations of above-ground ecosystem properties and processes have 

been intensively studied, much less is known about the below-ground 

plant responses to these massive changes.        

Roots and associated mycorrhizal fungi play a central role for nutrient 

uptake and allocation to the above-ground parts; they further mediate 

carbon transfer to the soil, thereby, eventually affecting biogeochemical 

cycles (Godbold et al. 2006, Forana et al. 2009, Orwin et al. 2010, 

Clemmensen et al. 2013). In tropical forests, most tree species including 

the introduced rubber and oil palms form symbioses with arbuscular 

mycorrhizal (AM) fungi, but in lowland tropical forests also a number of 

native species occur, e.g. dipterocarps and Fagaceae that associate with 

ectomycorrhizal (EM) fungi (Habib et al. 2013).  
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The ability of tree roots to form mutualistic AM or EM associations is a 

typical species-related trait that can mediate differences in plant nutrition, 

especially of phosphorus and nitrogen (Smith and Read 2008). Root 

functional traits have often been studied in agroecological systems 

(Garnier and Navas 2012), but only little information is available for forest 

trees, especially regarding the chemical root traits. In tropical ecosystems 

with potentially 100s of species per hectare (Murdiyarso et al. 2002, Tata 

et al. 2008) in situ root traits are difficult to measure, because a trait is 

defined as a feature of a species (Violle et al. 2007). Instead, information 

on root traits can be gathered at the community level of the co-occurring 

species and is then defined as a ―root community functional parameter‖ 

(RCFP) according to Violle et al. (2007). Only few studies addressed the 

variation of RCFPs . Prieto et al (2014) found that RCFPs related to 

resource acquisition (root morphology) and conservation (degradability) 

co-varied with land use across tropical, mediterranean and montane 

climate. In grassland ecosystems RCFPs were correlated with plant 

productivity and ecosystem functions (Fornara et al. 2009, Orwin et al. 

2010). We, therefore, anticipated that RCFPs were useful indicators of 

land transformation and of functional ecosystem properties in response to 

tropical forest conversion. However, these relationships have not yet been 

investigated. 

Here, we expected profound effects of forest transformation on functional 

traits of the root communities and that RFPCs were linked with ecosystem 
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properties such as soil fertility. Specifically, we hypothesized that (i) 

chemical and performance parameters of root communities vary with 

forest transformation, that (ii) the RCFPs can be used to derive 

transformation indices and that (iii) the transformation indices are 

correlated with ecosystem functional properties. To test our hypotheses 

we selected four forest types (oil palm plantations, rubber monoculture, 

rubber jungle and rain forest) in two landscapes on Sumatra and 

investigated root functional parameters at the community level (root 

element composition, root vitality, EM and AM colonization and function 

[AM vesicles, AM arbuscules, AM spores]) in addition to ecosystem 

functions related to soil fertility (soil and litter carbon and nitrogen 

concentrations, available phosphorus, base cations, and soil pH). 

Multivariate analyses extracted informative RCFPs as indicators for forest 

transformation (higher root nutrient concentrations and higher fine root 

mass in forest plots opposed to higher root concentrations of Al and Fe, 

higher root mortality and high spore number of AM fungi in soil in oil palm 

plots) and ordered them according to land use (oil palm < rubber 

plantation < rubber jungle < rain forest). A general linear model with the 

ordination scores of the RCFPs as dependent variables identified 

significantly correlated ecosystem properties (positive: soil nitrogen and 

litter carbon, negative: soil pH). 
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Materials and Methods 

Site description  

The study sites were located on Sumatra, Province of Jambi (Indonesia) in 

two landscapes, i.e., the area of Harapan Rainforest and the area of the 

National Park Bukit Dua Belas (Fig. 1A,B). In each landscape four forest 

types were selected: secondary rain forest, jungle rubber, rubber 

plantations and oil palm plantations. The study areas were in the lowlands 

(below 100m a.s.l.) on deep, well drained, acid soil with low fertility 

(Murdiyarso et al. 2002). The climate is tropical with annual precipitation > 

2000mm and only two months with less than 100 mm rain fall. In the 

Harapan area  the annual mean temperature is 26.9 °C and the annual 

precipitation 2332mm (location: Dusun Baru, http://en.climate-

data.org/location/595657/); in the Bukit Duabelas area the mean annual 

temperature is 26.8°C and the precipitation sum is 2860mmm (location: 

Lubuk Kepayang, http://en.climate-data.org/location/587840/).  

  

Sampling and export permission 

Research permit (Kartu Izin Peneliti Asing, permission number: 

333/SIP/FRP/SM/IX/2012) was issued by the Ministry of Research and 

Technology RISTEK (Kementrian Ristek dan Teknologi, Jakarta, 

Indonesia). The Research Center for Biology of the Indonesian Institute of 

Science LIPI (Lembaga Ilmu Pengetahuan Indonesia, Jakarta, Indonesia) 

recommended issuing a sample collection permit (Rekomendasi Ijin 

Pengamblian dan Ankut (SAT-DN) Sampel Tanah dan Akar, number: 

http://en.climate-data.org/location/595657/
http://en.climate-data.org/location/595657/
http://en.climate-data.org/location/587840/
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2696/IPH.1/KS:02/XI/2012). Collection permit (number: S.16/KKH-2/2013) 

and export permit (reference number: 48/KKH-5/TRP/2014) were issued 

by the Directorate General of Forest Protection and Nature Conservation 

PHKA (Perlindungan Hutan dan Konservasi Alam, Jakarta, Indonesia) 

under the Ministry of Forestry of the Republic of Indonesia. The Chamber 

of Agriculture of Lower Saxony (Plant Protection Office, Hannover, 

Germany) issued the import permits (Letter of Authority, numbers: DE-NI-

12- 69 -2008-61-EC, DE-NI-14- 08 -2008-61-EC). 

 

Sampling design 

In each of the two landscapes and in each forest type four plots (50m x 

50m) were installed resulting in 32 sampling sites (Table 1). Oil palm, 

rubber plantations and rubber jungle were sampled in October and 

November 2012 and rain forest in November and December 2013. In each 

plot, subplots of 5m x 5m were defined and soil samples were collected in 

three of these subplots (designated as a,b,c).  In each subplot five soil 

cores (0.04 m diameter and 0.20 m depth) were extracted (four towards 

the corners and one in the centre of the subplot) at a distance of more 

than 1m. Leaf litter was removed before soil sampling and kept separately. 

In total 480 soil cores were taken in both landscapes (2 landscapes x 16 

plots x 3 subplots x 5 soil cores). Soil cores and litter samples were stored 

individually in plastic bags in cool bags and transported to the University of 

Jambi, where they were stored at 4°C until processing. 
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Sample preparation 

Each soil core was weighed, sieved subsequently through two sieves with 

10 and 5 mm mesh size and separated into roots and bulk soil. The five 

samples from the same subplot were pooled and well mixed yielding one 

root and one bulk soil sample per subplot. Litter samples of a subplot were 

also pooled yielding a total number of 96 pooled samples per fraction. 

Fresh bulk soil samples (about 20 g) were initially air dried and then oven 

dried (105°C for 48h) to determine the soil water content according to the 

following equation: 
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Pooled root samples were washed and patted dry with tissue paper. The 

fresh root mass of the sample was weighed. The roots were separated into 

coarse and fine roots according to the root diameter. Fine roots (diameter 

≤ 2 mm) were weighed, stored in wet tissue paper at 4°C, used for root 

vitality and mycorrhizal analysis, and were subsequently oven-dried at 

60°C for 48h. Fine root dry mass was calculated as: 
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Litter samples were dried in an oven at 80°C for 48h. Dry aliquots of soil, 

roots and litter were stored in 50ml reaction tubes (Falcon tube 50ml, 115 

x 28mm, Sarstedt, Nümbrecht, Germany).  Before closing the screw cap, a 

small reaction tube (Eppendorf micro tube, 1.5ml, Sarstedt, Nümbrecht, 

Germany) with perforated walls containing silica gel (10 g (40 x 90 mm) 

desiccant bag silica gel orange, Carl Roth, Karlsruhe, Germany) was 

added.  The samples were shipped to the University of Göttingen 

(Göttingen, Germany), IBP Bogor Agricultural University (Bogor, 

Indonesia) and Tadulako University (Palu, Indonesia) for further analysis. 

 

Analysis of root vitality and ectomycorrhizal (EM) colonization 

 

The root tips of fresh fine roots were inspected using a dissecting 

microscope with an integrated camera (Leica EZ4HD, Wetzlar, Germany) 

at 35-fold magnification. Aliquots of fine roots were placed in a water-filled 

Petri dish (Petri dish 92 x 16 mm, Sarstedt, Nümbrecht, Germany). In 

general, 250 roots tips were counted and scored as vital and dead root 

tips after colour of vascular tissue, strength and flexibility as described by 

Allen et al. (2000). On the vital root tips the number of EM root tips was 

counted. EM root tips were recognized by presence of ―a sheath or mantle 

of fungal tissue which encloses the root‖ and hyphal elements (Smith and 

Read, 2008). Dead, non-EM, and vital EM root tips were documented by 

photos taken with the microscope camera.  
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Arbuscular mycorrhizal (AM) colonization 

Up to 25 fine root fragments per subplot with a length of 20 to 30 mm 

measured from the root tip were stored in reaction tubes (Eppendorf micro 

tube 2ml, Sarstedt, Nümbrecht, Germany) containing 70% ethanol 

(Rotisolv HPLC Gradient, Carl Roth, Karlsruhe, Germany). Roots were 

stained following the method of Vierheilig et al. (1998). The root segments 

were washed several times with ultra-purified water (ultra-pure water 

system, Arium 611, Sartorius, Göttingen, Germany), briefly surfaced-dried 

on tissue paper and then bleached in 2 ml of 10% potassium hydroxide 

(KOH, Merck, Darmstadt, Germany) for 90 min at 90°C. Because not all 

roots were bleached after one KOH treatment, this step was repeated with 

variation of the incubation time and temperature until the objective was 

achieved. The bleached roots were carefully washed up to three times with 

ultra-purified water to remove the KOH and then stained  in 2 ml of a 

vinegar-ink-solution (10% acetic acid (Merck, Darmstadt, Germany), black 

ink (Sheaffer Skrip, Shelton, USA) and ultra-purified water with a ratio of 

1:1:8 for 45 min at room temperature. The stained roots were washed with 

ultra-purified water to remove superfluous dye. Roots were preserved up 

to eight weeks in lactoglycerol consisting of 86% Glycerol (Carl Roth, 

Karlsruhe, Germany),  80% lactic acid (Carl Roth, Karlsruhe, Germany) 

and ultra-purified water with a ratio of 1:1:1 before preparing microscope 

object slides. 

For microscopic analysis, roots were cut into small segments (10 mm) and 

arranged with forceps in a drop of lactoglycerol as the mountant on a 
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microscope object slide. Cover slides were gently pressed on root 

segments and flattened overnight using a lead weight (weight between 40 

and 50 g). Subsequently, the cover slides were sealed with colorless nail 

polish to protect the specimen from drying. Three slides per sample were 

prepared and analyzed.  

The gridline intersection method after McGonigle et al. (1990) was used to 

determine AM colonization. The slides were placed under a compound 

microscope (Axio Observer Z.1, Zeiss, Jena, Germany). With the 

computer program AxioVision LE (Zeiss, Jena, Germany) a gridline was 

generated on the considered section (magnification 400x, distance 

between the intersects 100µm) and the presence or absence of the 

following structures was recorded in 120 intersects per sample: AM 

hyphae, arbuscules, and vesicles. For each recorded arbuscule and 

vesicle, a hypha was also counted because these structures are always 

co-occurring. For each sample 120 intersects were counted. AM 

colonization was calculated as: 

 

                ( )    
                

                          
        

         

The relative abundance of arbuscules and vesicles was calculated 

correspondingly. 
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Determination of arbuscular mycorrhizal spore abundance 

Air dried samples of bulk soil were stored in sealed plastic bags at 4ºC. 

Spores from each soil samples (n = 480) were isolated as described by 

Gerdemann and Nicolson (1963).  Twenty gram of soil of each sample 

was suspended in 500 ml of water, stirred manually with hand for 10 

minutes.  The suspension was passed through sieves, which were 

arranged in a descending order from 250 μm, 125 μm and 63 μm and 

washed with  tap water. The material retained on the sieves were layered 

onto a a water-sucrose solution (50%) gradient and centrifuged at 900 x g 

for 2 min (Ohms, 1957). The supernatant was washed with tap water for 3 

minutes in a 63 μm sieve, filtrated onto a gridded filter paper, than placed 

in a 90 mm diameter Petri dish. The spores obtained from all sieves were  

counted under a binocular stereomicroscope with 100- 400 magnification 

(Olympus SZ61, Osaka, Japan). The number of spores were expressed as 

spores per 20 g soil sample. 

 

Element analyses in plant and soil fractions 

Dry samples of soil, roots and litter were ground to a fine powder in a ball 

mill (MM 2000, Retsch, Haan, Germany).  Aliquots of 0.7 to 0.9 mg per 

sample were weighed into tin capsules (5 x 9mm, HEKAtech, Wegberg, 

Germany) and used for carbon and nitrogen analyses in an Elemental 

Analyzer (EA 1108, Carlo Erba Instruments, Milan, Italy). Acetanilide (C: 

71.09 %,  N: 10.36 %, HEKAtech, Wegberg, Germany) was used as the 

standard. 
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For analyses of further elements Al, Ca, Fe, K, Mg, Mn, Na, P and S 

(aluminum, calcium, iron, potassium, magnesium, manganese, sodium 

and sulfur) a milled aliquot of 50 mg of dry soil or fine roots of each sample 

was digested in 2 ml of 65% nitric acid (HNO3, Merck, Darmstadt, 

Germany) for 14h at 200°C (Heinrichs et al. 1986). Afterwards each 

extract was completely transferred into an Erlenmeyer flask. The 

polytetrafluoroethylene tubes (Loftfields Analytische Lösung, Neu 

Eichenberg, Germany) used for the extraction were washed with HPLC 

grade water (Chromanorm, VWR, Darmstadt, Germany), the washing 

solution was filtered through black ribbon filter paper (filter papers MN 

640w, ᴓ 90mm, ashless, Macherey-Nagel, Düren, Germany) into the 

Erlenmeyer flask and the volume was adjusted to 25 ml with HPLC grade 

water. Then elements in the extract were analysed by Inductively Coupled 

Plasma Optical Emission Spectrometry (ICP OES, iCAP 6300 Series, 

Thermo Fischer Scientific, Dreieich, Germany).  

 

                        (   )  ⁄   
                 (   )         (  )⁄

                    ( )
 

 

To calculate the sum of base cations, the concentrations of potassium, 

magnesium and calcium were converted from mg g-1 into µmol g-1 and 

then added. 

For the extraction of available phosphorus in soil the method of Bray and 

Kurtz (1945) was used. Air dried soil samples were sieved through a 2mm 

mesh. Two grams of soil from each sample were mixed with 15ml of Bray 
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solution containing 0.03N NH4F and 0.025N HCl and were shaken 

(Finofors AG, Basel, Switzerland) for 5 min at 180 rmp at room 

temperature. After shaking, the suspensions were filtered through a 

phosphorus-free folded filter (filter papers MN 280 ¼ 125mm, Macherey-

Nagel, Düren, Germany). Phosphorus concentrations of the filtrates were 

analysed by ICP OES (iCAP 6300 Series, Thermo Fischer Scientific, 

Dreieich, Germany). 

 

Determination of soil pH 

Soil pH was determined at a depth of 0.01m. Soil was mixed with 

deionized water (1:4) and used for pH measurements. 

 

Data analysis 

The samples of each subplot (3 per plot) were analyzed individually. In 

rare cases (4 of 96 only 1 or 2 samples per subplot) were available. All 

data were included. Means per subplot were calculated (supplement Table 

S1) and used as input parameters to construct the data matrices for 

principle component analysis (PCA) and non-metric multidimensional 

scaling (NMDS, similarity measure: Gover). Multivariate analyses were 

conducted with the PAST free software package 2.17c 

(http://folk.uio.no/ohammer/past/, Hammer et al., 2001). The data were 

subjected to test the requirement of normal distribution by the Shapiro 

Wilks test (P ≥ 0.05). When the P value of the Shapiro Wilks test was < 

0.05, data were ln- or (-1/square-root)-transformed to achieve normal 

http://folk.uio.no/ohammer/past/
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distribution. In one case (ectomycorrhizal colonization), it was not possible 

to satisfy this criterion. The data were nevertheless included, but their in- 

or exclusion did not affect the final result. Because the data had different 

units and were subjected to different transformation procedures, the 

resulting matrix was z-score normalized and then used for the analyses. 

Because of the use of normalized data, the relative importance of 

individual factors was not considered, but their correlation coefficient R² 

with the PCs. To link root community functional parameters with 

environmental properties, general linear models (GLM) were tested with 

the first NMDS coordinate as dependent variable and soil and litter 

properties as independent variables. ANOVA were conducted using the 

plots (one-way ANOVA) or landscape and forest type (two-way ANOVA) 

as factors. When the ANOVA indicated significant differences among the 

means with P < 0.05, a post-hoc test (Tukey HSD) was conducted.        

 

Data deposition and availability 

The raw data of this study are deposited and available in the Dryad 

repository under 

doi:10.5061/dryad.qf362 
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Results 

 

Carbon and nitrogen in fine roots, litter and soil differ among forest 
types  

To test our underlying assumption that forest transformation leads to 

changes in ecologically relevant biotic and abiotic properties, we 

measured the concentrations of carbon and nitrogen in fine roots, litter and 

soil in four forest types in two landscapes on Sumatra (Figure 2). The 

carbon concentrations of fine roots were lower in oil palm and rubber 

plantations than in rain forest or jungle rubber (Fig. 2A). Less carbon was 

also present in litter in oil palm plantations than in that of other (agro)-

forest types (Fig. 2B). Total soil carbon was lower in oil palm and in rubber 

plantations than in jungle rubber (Fig. 2C). In Harpan, the carbon content 

in the rain forest soil was higher than in the agro-systems, while in Bukit 

Duabelas no difference to those systems was found (Fig. 2C). The carbon 

content in the standing fine root biomass was low compared with total soil 

carbon (Fig. 2C, grey stacked bars). 

The fine root nitrogen concentration in oil palm plantations was almost 

twice lower than in fine roots of other forest types (Fig. 2D). Nitrogen in 

litter showed no clear change with forest type (Fig. 2E). Nitrogen in soil 

was unaffected by forest type within each landscape with the exception of 

jungle rubber in Bukit Duabelas, where nitrogen was enriched compared 

with the other forests (Fig. 2 C,F). The nitrogen content in the standing fine 
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root biomass was low compared with total soil nitrogen (Fig. 2C, grey 

stacked bars). 

Both landscapes differed in total carbon and nitrogen contents of the soil, 

with higher values in Bukit Duabelas than in Harapan (28 and 19 g carbon 

kg-1 soildw, F1,16 = 23.1, P < 0.001, 2.4 and 1.5 g nitrogen kg-1 soildw, F1,16 = 

37.6, P < 0.001). 

 

Root community functional parameters reflect forest type 

We determined chemical traits (C, N, base cations (= sum of Mg, Ca and 

K), Mn, Na, Fe, Al, P, S) and performance traits (fine root mass, 

colonization by ectomycorrhizal and AM fungi, AM vesicles, AM arbuscles, 

AM spores in soil, dead root tips) of the roots at the plot level (supplement 

Table S1). On all plots the roots were a mixture of the vegetation present. 

Thus, our measurements represent RCFPs, but in oil palm and rubber 

plantations the roots were mainly from the crop trees because weeds or 

other vegetation were sparse and therefore also represent traits according 

their original definition (Violle et al. 2007). To find out whether RCFPs 

varied with forest types or landscapes a PCA was conducted (Fig. 3). 

Broken stick analysis indicated that only the first two PCs, which explained 

together 56.9% of the variance, were significant (not shown). PC1 (35.1%) 

separated the forest types along a gradient with the rain forests exhibiting 

the most positive and oil palm plantations the most negative scores (one-
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way ANOVA on PC1 scores of plots, F7,24 = 46.7, P < 0.001). Positive PC1 

loadings with correlations of R ≥ 0.5 were C, N, S, base cations, Mn, and 

fine root mass (Table 2). Negative PC1 loadings with R ≤ -0.5 were AM 

spores, dead root tips, Al and Fe (Table 2). The plot means of different 

forest types showed highest values for AM spores, dead root tips, Al and 

Fe in roots of oil palm plantations, and highest values for root mass and 

root nutrient concentrations for rain forest (Table 3, Fig. 2). RCFPs related 

to mycorrhizal colonization or function (arbuscules and vesicles) and to 

phosphorus were not strongly correlated with PC1 (Fig. 3, Table 2). 

PC2 (21.8%) separated the two landscapes for oil palms and rain forests 

(F7,24 = 3.6, P < 0.01, Fig. 3), but any kind of rubber cultivation showed 

strong overlap with both oil palm and rain forest. Therefore, the loadings 

on PC2 (P concentrations, AM colonization, AM vesicles) were not useful 

to distinguish forest types (Fig. 3, Table 2). 

The low significance of the mycorrhizal colonization-related traits was 

unexpected. However, mean AM colonization across all forest types was 

relatively stable 74.4 ± 1.7% with the exception of the oil plantations in 

Harapan (51.8 ± 7.5%) (Supplement Table 1). EM colonization was 

detected in some plots in Harapan rain forest (1.2% of the root tips with 

the maximum of 6% in one plot) and in rubber jungle systems in both 

landscapes (0.9 and 1.7% of the root tips in Bukit Dualbelas and Harapan, 

respectively), but the overall abundance was rare (Supplement Table 1).     
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Root community functional parameters are linked with ecosystem 
properties  

 

We used eight environmental properties (the sum of base cations in soil, 

available phosphorus, soil pH and soil water content, soil carbon, soil 

nitrogen, litter carbon, litter nitrogen) as a proxy for ecosystem function 

and explored their response to forest transformation. We used the RCFPs 

that were informative for forest transformation (RCFPs with -0.5 > R > 0.5 

on PC1, Table 2, Table 3) to conduct an NMDS and plotted the 

environmental variables as explanatory vectors (Fig. 4). As expected, the 

NMDS scores showed a separation of the forest types similar to that of the 

PCA (Fig. 3), but more succinct because of the exclusion of uninformative 

traits (Fig. 4). The separation of the forest types and, thus, land 

transformation systems was significant for the NMDS scores of coordinate 

1 (Table 4). The environmental variables (which are not part of the 

calculation of the NMDS scores) indicated that soil pH was related to the 

negative scores of oil palm and rubber plantations, while litter and soil 

carbon and nitrogen were related to the positive scores of rain forest and 

jungle rubber (Fig. 4). It should be noted that the pH of forest plots (4.25 ± 

0.03) was lower (P = 0.002) than that of the other plots (oil 

palm/rubber/jungle rubber 4.50 ± 0.05 / 4.47± 0.04 / 4.40 ± 0.04). Overall, 

the pH differences between the plots were small. Low scores on 

coordinate 1 were obtained for available phosphorus (scores on 

coordinate 1/coordinate 2: 0.06/-0.36), base cations in soil (0.12/-0.42) 



 130 

and soil water content (0.21/-0.35) suggesting that these variables were 

not linked with the scores for forest types. 

To test whether coordinate 1 scores represent transformation indices that 

can be quantitatively related to ecosystem functions, we conducted GLM 

analyses. Coordinate 1 scores were used as dependent variable and the 

eight environmental properties independent variables, allowing models 

with up to five environmental variables. This resulted in 219 models among 

which a model with three environmental properties exhibited the lowest 

AIC value (-4.63). The significant components in this model were soil 

nitrogen concentration, soil pH and litter carbon concentration. The model 

explained 67% (R² adjusted for d.f.) of the variation (Table 5). The P-value 

of the Durbin-Watson statistic was > 0.05 and therefore the model was not 

significantly affected by serial autocorrelation in the residuals.  

 

Discussion 

Root community functional parameters and soil properties vary with 
forest transformation 

Recent studies highlight the importance of functional structures of 

communities rather than their biodiversity for ecosystem functioning 

(Moulliot et al. 2011, Katabuchi et al. 2012, Finegan et al. 2014). Our study 

clearly demonstrates a decline of positive RCFPs such as high root mass 

and high nutrient concentrations in mono-culture oil palm plantations 

compared with rain forest. Based on our design we cannot distinguish 



 131 

whether the enhanced properties of the root communities in the rain forest 

were the result of tree phylogenic diversity or of trait-enrichment due to the 

presence of distinct forest tree species. We expected that the impact of 

dominant trees might have been traced by an effect of the associated EM 

on RCFPs, because the root nutrient status of forest trees is affected by 

symbioses with AM or EM fungi and fungal species identities (Lang and 

Polle 2011, Seven and Polle 2014, Pena and Polle 2014). However, our 

data did not reveal on influence of the mycorrhizal life traits on RCFPs. In 

contrast to the relatively stable AM colonization, AM spore abundance 

varied strongly with transformation system. Fungi are propagated by 

spores, but spores are also resting structures, by which the fungi survive 

unfavorable conditions (Wyatt et al. 2013). In tropical systems increased 

spore abundance correlated with decreased soil fertility (Lovelock et al. 

2003). The increased AM spore abundance in oil palm and rubber 

monocultures, thus, points to a negative influence of these agricultural 

systems on ecologically important life traits.   

A negative impact of monoculture oil palms was also evident on 

ecosystem properties such as soil carbon and nitrogen contents. 

Conversion of tropical forests into agricultural production systems has 

often been shown to result in decreased soil carbon and nitrogen pools 

(van Noordwick et al. 1997, Murty et al. 2002,  Schroth et al. 2002, Smiley 

and Kroschel 2008, Leuschner et al. 2013). The magnitude of this effect in 

our study was similar to that in other tropical transformation system, e.g. in 
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cash crops such as maize on Central Sulawesi (Indonesia) (Dechert et al. 

2004). In comparison with agricultural land use, agro-forestry systems 

recovered soil fertility (Dechert et al. 2004). Such a beneficial effect was 

also confirmed in our study for jungle rubber because the carbon and 

nitrogen concentrations in soil of this agro-forest system were even higher 

or, at least, as high as in rain forest soil. This finding is important because 

soil fertility has direct consequences for ecosystem services such biomass 

production, carbon cycling and carbon sequestration and has been 

identified as the major regulator of forest carbon balance (Fernandéz-

Martínez et al. 2014).  

 

The transformation index of root community traits is linked with 

ecosystem properties 

Soil properties and vegetation mutually influence each other because both 

compartments are connected by matter flux. Alterations in plants traits are 

transmitted to the soil by the input of degrading leaf and root litter as well 

as by root physiological activities (exudation of carbohydrates, organic 

acids, nutrient uptake) (Mellilo et al. 1989, Prescott 2010). Therefore, 

RCFPs and soil properties are to some extent inter-dependent. Our study 

provides some insights into the nature of the links between soil properties 

and RCFPs for tropical forest transformation: (i) The ordination scores of 

RCFPs varied with the extent of forest transformation in the order rain 

forest > jungle rubber > rubber plantation > oil palm plantation. This finding 
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suggests that multiple RCFPs rather than single parameters were useful 

indicators of forest transformation and aggregate the functional and 

metabolic trait diversity of the community of different species. (ii) The 

scores can be regarded as transformation indices because they were 

quantitatively correlated with functional ecosystem properties, in particular 

with soil pH, litter carbon and soil nitrogen concentrations. The latter two 

parameters are especially interesting because litter carbon is the result of 

litter degradability, which in turn is driven by plant functional traits 

(Cornwell et al. 2008); soil nitrogen is important for soil fertility and forest 

productivity and therefore, eventually has strong impact on forest carbon 

cycling (Fernandéz-Martínez et al. 2014). Our findings, thus, link functional 

structures of root communities with ecosystem functions, notably those 

functions that are more important for carbon sequestration than climate or 

the rising atmospheric CO2 concentration (Cornwell et al. 2008, 

Fernandéz-Martínez et al. 2014). This finding implies that RFCPs could be 

an important indicator for the functionality of above- and below-ground 

ecosystem interactions. Based on the present data, the cause-effect 

relationships remains unknown because mono-culture species with 

unfavorable root traits could affect soil properties or management could 

alter soil properties with negative consequences for root traits. Regardless 

the ultimate reason, our results suggest that the loss in ecosystem 

functionality in mono-cultures was related to complex and not to single-

factor alterations of the root functional structures. One may have expected 

that negative transformation indices were driven by diminished nutrient 
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concentrations (carbon, nitrogen, cations) and low root mass in 

monocultures, but here we demonstrated concomitant increases in 

potentially phytotoxic metals (Al, Fe) and root tip mortality. The 

transformation indices were, thus, determined by contrasting behavior of 

RCFPs and not by the loss of traits abundance per se. Consequently, we 

may expect that any measure that improves root vitality may, eventually, 

enhance the ecological functions of tropical production systems. It will be 

important to investigate this suggestion in future studies    

 

Degradation of root health is related to accumulation of plant toxic 
elements   

Chemical root traits that distinguished the monocultures, especially the oil 

palms, from ecosystems with higher tree diversity were the enrichments in 

Fe and Al. Excess Al accumulation is known to limit plant performance and 

affects root growth (Delhaize and Ryan 1995, Kochian et al. 2005, Horst et 

al. 2010). In fact, the morphological appearance of the oil palm roots on 

our plots resembled the symptoms of Al toxicity such as stubby root 

systems lacking fine root branches with many brownish, distorted root tips 

(Rout et al. 2001). Plant availability of Al is modulated by soil acidity 

(Brunner and Sperisen 2013). The soils in the Jambi lowland region are 

oxisols and ultisols (Tata et al. 2008), i.e., acid soil classes that are 

commonly used for oil palm cultivation (Corley and Tinker 2003). In oil 

palm plantations a negative correlation between exchangeable Al in soil 

and root density was found (Cristancho et al. 2007). Controlled studies 
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confirmed the negative impact of Al on oil palm roots, especially on the 

length of the lateral roots and number of root tips (Cristancho et al. 2011). 

Cristancho et al. (2011) further showed that Al-stressed oil palms excreted 

significant concentrations of oxalic acids. Plant exudation of organic acids 

influences the availability of other soil elements and mobilizes for example 

phosphorus and Fe (Ma et al. 2001, Jones 1998). Here, we found high Fe 

concentrations in roots, whereas soil phosphorus availability was low and 

root phosphorus concentrations unaffected by the forest type. Excess Fe 

causes oxidative stress leading to cell destruction (Jones 1998) and may 

have caused here together with Al enhanced root mortality. It is important 

to note that the pH across all forest types was low, but not lower in 

plantations than in forest soil. Therefore, low pH may be pre-requisite, but 

was not the immediate reason for the observed decline in root health.  

Currently, we can only speculate about the reason for root distortion in oil 

palm plantations. One possibility is that mono-cultures alter the soil 

microbial flora with negative effects on Al or Fe solubilization and plant 

availability as found in other countries (Fankem et al. 2006). AM 

colonization protects plant roots from Al stress (Seguel et al. 2013), but 

here variation in AM abundance was unrelated to Al concentrations. 

Phylogenetic analyses have shown high Al tolerance in tropical forest 

trees (Masunaga et al. 1998, Nguyen et al. 2003, Jansen et al. 2004, Ryan 

and Delhaize 2010). Therefore, it is also possible that introduced crop 

trees are not well-adapted to the prevalent soil conditions and accumulate 
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phytotoxic concentrations of Al and Fe over the years. As a consequence, 

roots will be damaged, soil exploration will decline and root litter input 

decrease, thereby, eventually leading to alterations in soil properties. To 

disentangle the underlying mechanisms, experimental studies with 

mixtures of oil palm, rubber and native forest species are necessary. 

Thereby, feed-back effects between ecosystem functions and functional 

traits of distinct tree species and their communities can be uncovered and 

used to develop improved management strategies. 
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Table 1: Geographic location of the research plots in two landscapes and four forest types on Sumatra (Indonesia). O = oil palm 

plantation, R = rubber plantation, J = jungle rubber, F = secondary rain forest. 

  Bukit Dua Belas     Harapan     

plot latitude longitude 
altitude          
(m asl) plot latitude longitude 

altitude           
(m asl) 

BF1 S 01°59'42.5'' E 102°45'08.1'' 83 HF1 S 02°09'09.9'' E 103°21'43.2'' 76 

BF2 S 01° 58'55.1'' E 102°45'02.7'' 77 HF2 S 02°09'29.4'' E 103°20'01.5'' 75 

BF3 S 01°56‘33.9'' E 102°34‘52.7'' 87 HF3 S 02°10'30.1'' E 103°19'57.8'' 58 

BF4 S 01°56‘31.0'' E 102°34‘50.3'' 87 HF4 S 02°11'15.2'' E 103°20'33.4'' 77 

BJ1 S 02°08'25.6'' E 102°51'04.3'' 74 HJ1 S 01°55'40.0'' E 103°15'33.8'' 51 

BJ2 S 02°01'49.7'' E 102°46'16.7'' 76 HJ2 S 01°49'31.9'' E 103°17'39.2'' 84 

BJ3 S 02°03'46.7'' E 102°48'03.5'' 89 HJ3 S 01°50'56.9'' E 103°17'59.9'' 95 

BJ4 S 02°00'57.3'' E 102°45'12.3'' 60 HJ4 S 01°47'07.3'' E 103°16'36.9'' 57 

BR1 S 02°05'30.7'' E 102°48'30.7'' 71 HR1 S 01°54'39.5'' E 103°16'00.1'' 77 

BR2 S 02°05'06.8'' E 102°47'20.7'' 95 HR2 S 01°52'44.5'' E 103°16'28.4'' 59 

BR3 S 02°05'43.0'' E 102°46'59.6'' 90 HR3 S 01°51'34.8'' E 103°18'02.1'' 90 

BR4 S 02°04'36.1'' E 102°46'22.3'' 51 HR4 S 01°48'18.2'' E103°15'52.0'' 71 

BO1 S 02°04'26.1'' E 102°48'55.1'' 75 HO1 S 01°54'35.6'' E 103°15'58.3'' 81 

BO2 S 02°04'32.0'' E 102°47'30.7'' 84 HO2 S 01°53'00.7'' E 103°16'03.6'' 55 

BO3 S 02°04'15.2'' E 102°47'30.6'' 71 HO3 S 01°51'28.4'' E 103°18'27.4'' 64 

BO4 S 02°03'01.5'' E 102°45'12.1'' 34 HO4 S 01°47'12.7'' E 103°16'14.0'' 48 
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Table 2. PCA loadings for correlations of root traits with PC1 and PC2  

________________________________________________________ 

Trait name   Abbreviation PC1  PC2 

________________________________________________________ 

Sulfur    Sroot  0.8349  0.03783 

Nitrogen   Nroot  0.8156  0.1825 

Carbon   Croot  0.7011  -0.6564 

Manganese   Mnroot  0.6661  0.5824 

Fine root mass  FiRdw  0.6551  0.1073 

Base cations    CatBroot 0.6232  0.5343 

AM arbuscules  AMarb  0.4189  -0.1070 

AM root colonization  AMR  0.3733  0.6448 

Phosphorus   Proot  0.3470  0.5011 

Ectomycorrhizal root tips EMRT  0.3024  -0.3330 

AM vesicles   AMves  0.0615  0.7670 

Sodium   Naroot  -0.0807 -0.0838 

Iron    Feroot  -0.5489 0.7291 

Dead root tips   DeadR  -0.6545 -0.3144 

Aluminium   Alroot  -0.7411 0.5369 

AM spores in soil   AMspore -0.8318 0.2911 

______________________________________________________________ 
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Table 3: Means of root community functional parameters (RCFP ± SE) in four 

forest types (F = rain forest, J = jungle rubber, R = rubber plantation, O = oil palm 

plantation). Abbreviations for FCRF as in Table 2, P of one-way ANOVA with 

forest types as factor (n = 8). If not indicated otherwise data were expressed per 

gram of root dry mass. 

________________________________________________________________ 

RCFP  F  J  R  O  P 

________________________________________________________________________________________ 

Sroot (mg g
-1
) 1.67 ±0.14 1.17± 0.07 1.12± 0.06 0.89± 0.06 < 0.001 

Mnroot(mg g
-1
) 0.23 ±0.03 0.22± 0.05 0.18± 0.03 0.08± 0.01   0.019  

FiRdw (g kg
-1
)
a
 3.31 ±0.32 3.16± 0.61 1.89± 0.15 1.72± 0.30   0.009  

CatBroot (µmol g
-1
)  232 ± 31  272 ± 36  249 ± 25  136 ± 6    0.008  

Feroot (mg g
-1
) 2.99 ±0.40 3.67± 0.48 7.54± 1.10 7.05± 0.87 < 0.001 

DeadR (%)
b
 55.3 ±2.1 4 5.5± 3.8  48.7± 4.2 8 6.3± 0.7  < 0.001 

Alroot (mg g
-1
)  5.12 ±0.48 7.11± 0.93 12.54± 1.23 14.90± 1.18 < 0.001 

AMspore
c
  18.9 ±4.8 3 8.5± 2.5  77.0± 8.1  82.8± 5.8  < 0.001 

_______________________________________________________________________________________ 
a kg of dry soil,b % of all root tips,c number per 20 gram of air dried soil 
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Table 4: Mean NMDS scores of the forest types. Different letters in columns 

indicate significant differences with P < 0.05 (one way ANOVA, n = 4 per forest 

type). B = Bukit Duabelas, H = Harapan, O = oil palm, R = rubber plantation, J = 

jungle rubber, F = forest.  

____________________________________________  

Forest type Coordinate 1  Coordinate 2  

____________________________________________ 

BO  -0.226 a  0.000 abc 

HO  -0.198 a  0.078 c 

BR  -0.086 b  -0.097 a 

HR  -0.002 c  -0.060 ab 

HJ  0.060 d  0.047 bc 

BJ  0.096 d  -0.029 abc 

HF  0.168 e  0.082 c 

BF  0.188 e  -0.022 abc 

____________________________________________ 
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Table 5: Best general linear model (GLM) for the relationship of RCFP with 

ecosystem properties. 

______________________________________________________________ 

Analysis of Variance for RCFP      

Source  Sum of  Df Mean Square F-Ratio  P-Value 
  Squares 
______________________________________________________________ 

Model  0.511  3 0.170  22.47  <0.0001 

Residual 0.212  28 0.007   

Total (Corr.) 0.723   31    

 

Nsoil  0.062  1 0.063    8.31    0.0075 

pH  0.102  1 0.103  13.56    0.0010 

Clitter  0.249  1 0.249  32.88  <0.0001 

Residual 0.212  28 0.007   

Total (corr.) 0.723  31    

______________________________________________________________ 
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Figure 1. Maps of the landscapes Bukit Duablas (A) and Harapan (B) in 

the province Jambi on Sumatra (Indonesia). The locations of the research 

plots are indicated.  

 

Figure 2. Carbon (A,B,C) and nitrogen concentrations (D,E,F) in roots, 

litter and soil in two landscapes and four forest types on Sumatra 

(Indonesia). To obtain the carbon or nitrogen content of fine roots, the root 

mass (g kg-1 soil) was multiplied with the fine root carbon or nitrogen 

concentration (g g-1 root mass). The carbon or nitrogen contents are 

shown by the grey stacked bars in panel C and F, respectively. Data 

indicate means (± SE). Different letters indicate significant differences at P 

< 0.05 (Tukey HSD test). ). B = Bukit Duabelas, H = Harapan, O = oil 

palm, R = rubber plantation, J = jungle rubber, F = forest 

 

Figure 3. Principle component analysis of root community functional 

parameters. The parameters and their abbreviations are listed in Table 2. 

B = Bukit Duabelas, H = Harapan, O = oil palm, R = rubber plantation, J = 

jungle rubber, F = forest 

 

Figure 4. Non metric multidimensional scaling (NMDS) of root community 

functional parameters (RCFP). RCFP with R>0.5 and R< 0.5 from Table 2 

were used for NMDS. The following environmental variables were plotted 

as explanatory variables: nitrogen and carbon concentrations in soil and 

litter (Nsoil, Csoil, Clitter, Nlitter), available phosphorus in soil (Pavailsoil), 

soil water content (H2Osoil) and soil pH (pHsoil). B = Bukit Duabelas, H = 

Harapan, O = oil palm, R = rubber plantation, J = jungle rubber, F = forest 
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