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1. Introduction 

1.1 Genome x Environment interactions: Uncovering the 
etiology of neuropsychiatric disorders 

 
Complex neuropsychiatric diseases such as schizophrenia are multifactorial and 

cannot be solely explained by genetic risk. Thus, it is now clear that the pathogenesis 

of such diseases arise on the background of genome-environment interactions (GxE). 

The precise mechanisms involved are however poorly defined and a better 

understanding of such mechanisms holds great potential to eventually develop 

surrogate- and biomarker for neuropsychiatric diseases as well as novel therapeutic 

approaches. The determinants that define an individual’s state of health and disease 

have been investigated for a long time by epidemiologists. One of the first 

epidemiologists was Hippocrates who established a relation between the occurrence 

of a disease and environmental influences 1,2. The importance of genetics in human 

diseases for epidemiological studies was recognized over 30 years ago, creating a new 

discipline termed Genetic Epidemiology “…. that focuses on joint effects of genes 

and the environment and incorporates disease biology into conceptual models…” 
3,4. With the completion of the Human Genome Project 5 and the HapMap project 6 as 

well as the rapid advances in Next-Generation-Sequencing technologies 7, genetic 

epidemiological studies increased and revealed hundreds of genetic loci for traits and 

diseases with public health significance 3,8. Hence, genetic epidemiological studies 

identified genetic differences among individuals of a population that may be linked to 

disease susceptibility 3,9,10. Yet genetics alone cannot explain the onset of 

neuropsychiatric disease on an individual basis. As mentioned above, mental 

disorders such as depression, addiction, schizophrenia and anxiety disorders are 

complex multifactorial neurological syndromes with genetic heterogeneity and high 

heritability with non-mendelian pattern of inheritance. Genetic studies on 

concordance among monozygotic twins suggest that genetics account for ~ 50% of 

the disease risk 11–16. 

Thus, Genome Wide Association Studies (GWAS), studies investigating Single 

Nucleotide Polymorphisms (SNPs) and Copy Number Variations (CNVs) did not 

fulfill the hope to identify and validate key susceptibility genes. Such data clearly 
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indicated the involvement of non-genetic processes in disease pathogenesis 17. In line 

with this assumption, traditional epidemiological studies revealed several 

environmental risk factors for neuropsychiatric disorders, such as early life stress, 

parental age, maternal infection during pregnancy, nutritional deficiency and 

migration 17–25. However, these environmental risk factors are, as in the case for 

genetics, considered to be only contributory, since exposure to those factors does not 

lead necessarily to disease onset 17. Hence, epidemiological and medical genetic 

studies together have provided mounting evidence that genome and environmental 

interactions (GxE) play a key role in the etiology of neuropsychiatric disorders 26,27. 

Research of last decades identified molecular mechanisms that mediate GxE 

interactions, among which the most prominent are so-called epigenetic mechanisms. 

Moreover, deregulation of epigenetic mechanisms has been implicated with the 

pathogenesis of neuropsychiatric disorders 28–30. 

 

1.1.1 Epigenetics 

 
The developmental biologist Conrad H. Waddington coined the term “Epigenetics” 

and defined it as “the branch of biology which studies the casual interactions 

between genes and their products which bring the phenotype into being” 31,32. 

In more detail, Waddington´s definition referred to an “epigenetic landscape” to 

describe the process of cellular decision-making during development in a 

multicellular organism 33. Here, each cell shares an identical genome but differentiate 

into specific cell types by activation or repression of particular gene-networks, 

resulting into a distinct gene-expression profile 34,35.  
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Figure 1 Differentiation and epigenetic states in “Waddington´s Epigenetic Landscape”. 

A model of Waddington´s epigenetic landscape showing cell populations at different 
developmental states (left) and their corresponding epigenetic states (right). The model is 
representing cellular decision-making during development. The cell (presented by a ball) rolls 
down the landscape into one of several valleys that represent cell fates with distinct gene-
expression profiles. Adapted and modified from 36. 
 

Such distinct gene-expression profiles reflect cell-type specific population identities 

that are transmitted to daughter cells and maintained during many cell divisions, 

generating a so-called cellular memory 37,38. An evolved and more up-to-date 

definition of epigenetics these days is, “…the study of mitotically and/or meiotically 

heritable changes in gene function that cannot be explained by changes in DNA 

sequence.” 39. Thus, in order to be defined as an epigenetic trait or epigenetic 

mechanism, the conventional definition requires heritability of these traits. However, 

the necessity of heritability for a mechanism to be accepted as epigenetics is debated 
40,41. Epigenetic research in the last decades consisted of examining the classical 

epigenetic mechanisms that regulate gene-expression (without affecting DNA-

sequence) by analyzing higher-order structure chromatin, DNA and histone-tail 

modifications, transcriptional effects of RNA interference and how extracellular 

stimuli affect gene-expression through chromatin signaling, leading to long-lasting 

changes in phenotypes that are not necessarily transmitted to the next generation 40,42–

49.  
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Thus, the concept of cellular memory and epigenetics has emerged as a new research 

field in molecular and behavioral neurobiology, creating the field of neuroepigenetics 

that promised to further elucidate learning and memory processes in the brain under 

physiological and pathological situations. 

 

1.1.2 Epigenetic mechanisms 

 
Local chromatin structure plays a crucial role in regulating gene-expression. 

Two of the most described epigenetic mechanisms implicated in the organization of 

chromatin structure are covalent methylation of DNA and post-translational 

modifications of histone-tails.  

 

1.1.3 DNA-Methylation 

 
Methylation of DNA in eukaryotes was first described in 1948 by Hotchkiss 50 and 

was associated about 20 years later with transcriptional regulation 43,51,52. In 

mammals, DNA methylation is catalyzed by enzymes called DNA methyltransferases 

(DNMTs) that transfer methyl-groups to cytosine residues specifically at the 5-

position of the pyrimidine ring (5mC), a process that always occurs on CG 

dinucleotides. Almost 70-80% of CG dinucleotids are methylated in mammalian 

genome 53.  Remaining non-methylated CG dinucleotides are most often found in or 

closed to gene promoters possessing CG dinucleotide clusters called CpG islands 

(sequence of at least 200bp) 54,55. Since promoters of silenced genes have been shown 

to exhibit more methylated cytosines compared to actively transcribed genes, 

methylation of DNA is in general associated with transcriptional repression 56,57. 

However, recent reports indicated that DNA methylation at gene-bodies correlates 

with increased gene activity 58–61. DNMTs are categorized in de novo DNMTs 

(DNMT3a and DNMT3b) that establish DNA methylation in early embryogenesis 

during implantation 62–64 and in maintenance DNMTs (DNMT1) that show affinity 

towards hemi-metyhlated DNA that restore and preserve the fully methylated state 

during DNA replication 65.   
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The role of DNA-methylation was not subject of this work and is therefore not going 

to be further explained. 

 

1.1.4 Modification of Histone-tails 

 
In eukaryotic cells, DNA is packed into Chromatin, a highly organized, functional and 

fundamental structure of the genome 66–68. The basic repeating subunit of chromatin is 

the nucleosome, consisting of approximately 146 bp of DNA wrapped around a core 

of histone proteins, the so- called histone-octamer. Each histone-octamer contains two 

copies of the core histones H2A, H2B, H3 and H4. Each nucleosome is connected 

through linker DNA with the linker Histone H1, allowing the formation of higher 

order structure chromatin 67,69. Histone-tail modifications affect global gene-

expression profiles through two general mechanisms: 1.Alteration of chromatin 

structure to influence binding accessibility and recruitment of the transcriptional 

machinery and 2.Recruitment of ATP- dependent chromatin remodeling complexes 70. 

Thus, histone-marks function as a signal platform to recruit different proteins, such as 

chromatin readers and modifiers that recognize and bind specific histone tails and 

direct downstream biological processes 71. 

There are at least eight distinct types of histone-tail modifications (acetylation, 

methylation, phosphorylation, ubiquitination, sumoylation, ADP ribosylaion, 

deamination, proline isomerization) 72. The specific combination and timing of 

histone tail modifications is finely orchestrated in response to different stimuli and 

build up the histone code – a combinatorial pattern of modifications – priming 

transcriptional programs 73.  
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Table 1. Different Classes of Histone-tail Modifications Identified 

Histone-tail Modification Residue Modified Functions Regulated 

Acetylation K-ac Transcription, Repair, 
Replication, Condensation 

Lysine Methylation K-me1, K-me2, K-me3 Transcription, Repair 

Arginine Methylation R-me1, R-me2, R-me3 Transcription 

Phosphorylation S-ph, T-ph Transcription, Repair, 

Condensation 

Ubiquitylation K-ub Transcription, Repair 

Sumoylation K-su Transcription 

ADP Ribosylation E-ar Transcription 

Deimniation R> Cit Transcription 

Proline Isomerization P-cis > P-trans Transcription 

K : Lysine; R: Arginine; S: Serine; E: Glutamate; Reproduced and modified from Kouzarides et 

al., 2007 

 

In general, the overall function of histone-tail modifications is the orchestration of 

DNA based biological tasks such as transcription, DNA replication, DNA repair and 

establishment of global chromosome environments such as silent heterochromatin or 

active euchromatin 72. 

 

1.1.4.1 Histone-acetylation 
 
Acetylation of histone-tails is mediated by enzymes called histone-acetyltransferases 

(HATs) that transfer an acetyl group from acetyl-coenzyme A to the ε-NH+-group of a 

lysine residue 74. Increased acetylation of histone-tails is predominantly associated 

with transcriptional activation of genes by neutralizing the positively charged lysine-

residues 75. The resulting decreased electrostatic binding between lysine-residues and 

negatively charged phosphate-groups along the DNA backbone leads to locally less 

condensed chromatin accessible for transcriptional machinery 68,76–79. 

The process of histone-acetylation is reversible and catalyzed by histone-deacetylases 

(HDACs) that remove acetyl from lysine residues. De-acetylation of lysine-residues is 

mainly correlated with transcriptional repression of gene-expression 80–82. 

Nevertheless, the concept of histone-deacetylases acting solely as transcriptional co-



 

18 
 

repressors and hypoacetylation of histones being associated with transcriptional 

repression is an oversimplified view 83. Thus, several studies reported the contribution 

of histone-deacetylase activity with transcriptional activation of specific complicating 

the interpretation of histone acetylation -mediated signal transduction genes 84–88. 

 

1.2 Histone-deacetylases: Classification, localization, 
mechanisms of action and tissue distribution 

 
In mammals, the two protein families that possess histone-deacetylase activity are the 

Histone-deacetylases (HDACs) and the Silent information regulator 2 proteins 

(Sirtuins). They belong to an ancient protein superfamily found in plants, fungi and 

prokaryotic organisms such as the archaea and eubacteria, indicating HDACs to have 

additional physiologically important substrates next to histones 89–91. 

Members of the mammalian histone-deacetylase families are grouped into Class I-IV 

HDACs based on subcellular localization, mechanism of action and DNA-sequence 

homologies to their respective yeast histone-deacetylase orthologous Rpd3, HdaI and 

Sir2 91–94 .Class I, II and IV HDACs are referred to as classical HDACs and comprises 

in total 11 family members (HDAC1-HDAC11) 95. Sirtuins are grouped into class III 

HDACs consisting of seven family members (Sirt1-Sirt7) and are structurally 

unrelated to the classical HDACs 96–98. Classical HDACs differ from Sirtuins in their 

mechanism of catalytic action. Classical HDACs require a Zn2+-Ion as an essential 

cofactor for their catalytic activity, while Sirtuins are NAD+- dependent enzymes. 

Zinc-chelating compounds such as hydroxamic acids inhibit the enzymatic activity of 

HDACs 99.  

 

The remaining of this section will focus on Class I HDACs as they were analyzed 

during the course of this work. 
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1.2.1 Class I HDACs 

 
The first human HDAC, HDAC1, was isolated and cloned in 1996 by the Schreiber 

laboratory 100. Class I HDACs consists of HDAC1, HDAC2, HDAC3 and HDAC8. 

These HDACs share high DNA-Sequence homology with the global transcriptional 

repressor Rpd3p in yeast Saccharomyces Cervisiea 101. Members of the class I HDAC 

lack a DNA-binding motif and require the interaction with different multi-protein 

complexes targeting chromatin to help HDACs to exert their catalytic function. 

HDAC1, HDAC2 and HDAC3 associate with different so-called transcriptional co-

repressor complexes such as Sin3, Mi-2/NuRD, REST/ CoREST and NCoR/SMRT 
102–108. The exact composition of these HDAC complexes depends on the cellular 

context and may differ at specific developmental stages 106,109. To date, HDAC8 was 

not found to be part of any co-repressor complex and is the only class I HDAC that 

can perform its enzymatic function in isolation90,102. Class I HDACs are 

predominantly localized in the nucleus where their main substrates, the histones, are 

found. Nuclear localization is ensured via a nuclear localization signal (NLS) or 

through co-localization with proteins of the transcriptional repressor complexes. 

Under physiological conditions, HDAC1 and HDAC2 are particularly nuclear 

proteins due to the lack of a nuclear export signal (NES) 95. HDAC3 carries a NLS 

and a NES and can therefore shuttle between the nucleus and cytoplasm 90,110. 

Localization of HDAC8 occurs to be cell type dependent and can be therefore found 

in the nucleus as well as in the cytoplasm 111,112. In mammals, class I HDACs are 

expressed ubiquitously in all tissue types with different expression levels, based on 

the Serial Analysis of Gene Expression database (SAGE) and the Human 

Transcriptome Map 95. 

 

HDAC1 and HDAC2 share approximately 82% overall amino acid sequence 

homology and originated from a common ancestor via gene duplication 90. Their N-

terminus comprises a dimerization domain and the conserved catalytic domain with 

92% sequence identity. The C-terminal tail contains the nuclear localization domain 

and two casein kinase-2 (CK2) phosphorylation sites with 72% identity. Both proteins 

are strongly involved in development, especially in cellular proliferation, cell cycle 

and apoptosis 113. Besides high structural similarity, HDAC1 and HDAC2 are usually 
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co-expressed and posses redundant functions 114. For instance, conditional deletion of 

either HDAC1 or HDAC2 in different organ systems such as heart, epidermis, 

adipose tissue or hematopoietic system did not lead to an overt phenotype 115–118. 

Further, targeted depletion of HDAC1 or HDAC2 have shown a compensatory up-

regulation of HDAC1 or HDAC2, respectively 119–121. Importantly, simultaneous 

knock-out of HDAC1 and HDAC2 has drastic effects on proliferation, differentiation 

and cell survival 122,123. Nevertheless, while HDAC1 and HDAC2 share many 

functions in various biological processes, they also have distinct roles.  Global 

germline deletion of HDAC1 in mice lead to severe proliferation defects and 

retardation in development, causing embryonic lethality before E9.5 that cannot be 

compensated by concomitant up-regulation of HDAC2 or HDAC3, suggesting 

HDAC1 having a special role in embryonic stem cell regulation 114,119,124. HDAC2-

deficient mice are partially viable but die mostly due to cardiac defects in the 

perinatal period 115,121,125. The molecular rational of when and why HDAC1 and 

HDAC2 have overlapping versus specific functions is still unclear but supposed to 

rely most likely on the cell or tissue type in which different signaling pathways trigger 

and regulate the activity of HDAC1 or HDAC2 113. HDAC1 and HDAC2 enzyme 

activity are regulated by post-translational modifications (PTMs) such as 

phosphorylation, acetylation, ubiquitination, SUMOylation, nitrosylation and 

carbonylation 113,126–133. Interestingly, the majority of PTMs occurs in the less 

conserved C-terminal domains on serine-lysine sites and were shown to appear in 

response to extracellular signals such as hypoxia and hormone stimulation 134,135. 

Moreover, the C-terminal part is speculated to be pivotal for fine-tuning and 

differential regulation of these two highly related proteins 113. The highly conserved 

catalytic domain is exposed to PTMs on tyrosine-cysteine sites undergoing mostly 

nitrosylations and carbonylations in response to stress stimuli such as cigarette smoke 

and oxidative stress 113,131,132. Thus, whereas HDAC1 and HDAC2 have similar and 

even redundant functions, evidence indicates that they have biological relevant and 

context dependent non-overlapping functions. 

 

HDAC3 exhibit 68% sequence identity with the catalytic domain of HDAC1 and 

HDAC2 and posses its catalytic domain in the less conserved C-terminal part 136,137. 

HDAC3 associates together with members of class II HDACs, HDAC4, 5 and 7 

through complex-formation with the co-repressors N-CoR and SMRT 95,138,139. 



 

21 
 

HDAC3 is thought to be essential for DNA replication, DNA damage control, proper 

cell cycle progression and apoptosis 114,140–142. HDAC3-KO mice die before E9.5 due 

to gastrulation defects during early embryonic development 143,144. Cardiac specific 

deletion of HDAC3 is lethal within 3-4 months after birth. Liver-specific loss of 

HDAC3 causes aberrant lipid and cholesterol biosynthesis shortly after birth 142. 

Serine-phosphorylation (Ser24) on HDAC3 by CK2 increases its enzymatic activity 

and dephosphorylation on the same residue by protein phosphatase 4 complex (PP4C) 

reduces HDAC3 deacetylase activity 137. 

 

HDAC8 was the last class I HDAC member to be discovered and is most similar to 

HDAC3 with 34% overall sequence identity. In contrast to the other class I HDACs, 

HDAC8 carries no CK2 phosphorylation site but a conserved motif for protein kinase 

A (PKA) phosphorylation. Phosphorylation of HDAC8 by PKA inhibits its enzymatic 

activity 145. HDAC8 function has been strongly involved in tumorigenesis, telomerase 

activity and skull morphogenesis 146. HDAC8-KO mice are viable but show 

craniofacial defects due to repression of transcriptional factors in cranial neural crest 

cells 122. 

 

1.3 HDAC inhibitors (HDACi) 

 
Given the central role of histone acetylation-dependent signaling in cellular function 

and the deregulation under pathological conditions, the development of drugs that 

could alter the fine balance of histone acetylation and deacetylation soon became a 

priority. Hence, so-called HDAC inhibitors (HDACi) were developed, their potential 

first being discovered as a result of their ability to induce cellular differentiation 
147,148. HDACi are grouped into four major classes, based on their chemical structure: 

hydroxamates (e.g. TSA and SAHA), benzamides (MS-275), cyclic peptides (e.g. 

Depsipeptide) and aliphatic acids (e.g. Valproic acid and Phenylbutyrate) 149–151.  
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Figure 2 Structure of HDAC inhibitors of the four major classes. 

Structures adapted from Grayson et al., 2010 
 
All HDACi contain a zinc-binding group and achieve HDAC inhibition by chelating 

the zinc ion in the HDAC catalytic pocket structure 152–155. As previously stated, these 

Zn2+-chelating HDACi do not inhibit the activity of the NAD+- dependent Sirtuins 95. 

HDACi alter gene expression by inhibiting the classical HDACs resulting in increased 

histone-acetylation that affect the transcriptional regulatory network, via chromatin 

structure relaxation 156–158. Aberrant histone-acetylation levels and gene-expression of 

HDACs themselves have been frequently reported in various cancer types. Thus, 

HDACs are considered to be promising targets in drug development for cancer 

therapy and HDACi have been shown to reverse aberrant epigenetic regulation of 

gene-expression associated with cancers 159–161. HDACi were shown to induce cell 

growth arrest, terminal differentiation, apoptosis and inhibition of angiogenesis in 

cancer cells 162. Thus, HDAC inhibitors such as Vorinostat are already approved for 

the treatment of distinct types of cancer 163. To date, the majority information 

obtained about HDACi is from clinical trials of cancer therapy where they increase 

the expression of genes involved in growth arrest and promote apoptosis of cancer 

cells 157,164.  
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Table 2. Examples of HDACi in clinical trials 

Class Compound HDAC Target Potency in vitro Phase Company Ref. 

Hydroxamate SAHA Classes I, II μM FDA 

CTCL 

Merck Marcks 2007 

Cyclic 
peptide 

FK228 HDAC1, 2 nM Phase II Novartis Bhalla 2005 

Benzamide MS-275 HDAC1, 2, 3 μM Phase II Schering AG Bolden 2006 

Aliphatic 
acid 

VPA Classes I, IIa mM Phase II NCI Bolden 2006 

Partially reproduced from 162 Abbrevations: FDA, Food and Drug Administration; CTCL, cutaneous T-
cell lymphoma; HDACi, Histone deacetylase inhibitor; NCI, National Cancer Institute; SAHA, 
suberoyl anilide hydroxamic acid 
 
 
However, recent animal studies implicated that HDACi have great therapeutic 

potential for the treatment of various neurodegenerative and neuropsychiatric 

disorders and cognition per se.  

 For instance, administration of the HDACi TSA, SAHA and VPA enhanced 

cognitive function in aging mice and various mouse models of neurodegenerative 

disorders 165–168.  Thus, HDACi have been shown to have neuroprotective effects in 

animal models of Alzheimer´s disease, Huntington´s disease, spinal muscular atrophy, 

ischemia, Parkinson´s disease and amyotrophic lateral sclerosis 169–175. In Cognition, 

the HDAC inhibition induced increase in hippocampal histone-acetylation has been 

demonstrated to be required for proper memory formation in normal mice 176. 

Moreover, SAHA and MS-275 has been shown to induce elevated histone-acetylation 

and consequently increase gene-expression of neuron-specific genes, promoting 

neural differentiation 177. 

VPA is already employed in psychiatry as an antimanic and mood-stabilizing drug for 

the treatment of bipolar disorder and acute depression 178–180. Moreover, in a mouse 

model for schizophrenia, VPA was shown to potentiate the antipsychotic effects of 

Clozapine, a drug commonly used in the treatment of schizophrenia 181. However, 

VPA has only recently discovered to have HDAC inhibition effects 180,182,183. 

 

The following sections will focus on the hydroxamate derived HDACi SAHA 

(Suberoylanilide Hydroxamic Acid) and the benzamide-based HDACi MS-275, 

which were used in this study. 
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1.3.1 Hydroxamates 

Hydroxamate-based HDACi are the most widely analyzed group of HDACi 148. 

Trichostatin A (TSA) was the first natural hydroxamate discovered to inhibit HDACs 
184. In 2006, Suberoylanilide Hydroxamic Acid (SAHA; commercial name Vorinostat 

or Zolinza) was the first HDACi approved by the Food and Drug Administration 

(FDA) for the treatment of cancer patients with subcutaneous T-cell lymphoma 185. 

TSA and SAHA are considered to be class I and II pan-HDAC inhibitors 186. 

However, it was currently suggested that SAHA has only a weak inhibitory effect on 

class IIa HDACs and act rather as a class I HDAC inhibitor with some activity 

towards HDAC6 148,172,187.  Nearly all clinical trials conducted with SAHA are 

directed to cancer therapy (www.clinicaltrials.gov). In addition to its approved action 

towards T-cell lymphoma, SAHA is currently under investigation in phase I and II 

clinical trials for other types of cancers such as solid tumors and hematologic 

malignancy 188–193. Although SAHA was in general well tolerated in humans in such 

studies when used as monotherapy, SAHA showed either modest activity or no 

efficacy and is therefore suggested to be employed as combination therapy for such 

types of cancers 188,191,193. The maximal tolerated dose (MTD) for SAHA given orally 

is 400 mg per day. The most common drug-related adverse reactions are diarrhea, 

fatigue, hyperglycemia, hepatic impairments, nausea, thrombocytopenia, anorexia and 

dysgeusia 185,193.  

 

In animal models for neurodegenerative disorders, SAHA have been shown to be 

neuroprotective and to ameliorate impairments learning and memory 165,168,194–197. 

Moreover, SAHA have been shown to have anti-depressant effects in a mouse model 

for depression and to reduce side-effects of atypical antipsychotic drugs such as 

clozapine in mice 178,198. 

 

1.3.2 Benzamides 

MS-275 (commercial name: Entionstat) is a benzamide derivative that has been used 

for the treatment of leukemia, lymphomas or solid tumors and is currently 

investigated under phase I and II clinical trials showing potent anti-proliferative 

activity 193,199–202. MS-275 inhibits preferentially class I HDACs with highest 
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specificity against HDAC1 at nanomolar range with a 100-fold lower EC50 (half 

maximal effective concentration) towards HDAC2/HDAC3 and shows no activity 

towards the other HDACs 160,203,204. Applied as single agent, MS-275 had limited 

effects on acute leukemias 205. However, in myeloid malignancies, combination 

therapy with MS-275 and the FDA approved DNMT inhibitor 5´AZA revealed 

greater clinical response 148,206,207. Depending on the cancer types treated in clinical 

trials, the MTD of MS-275 was between 8-10 mg /m2 with a biological half-life of 30-

50 hours. Side effects of MS-275 are mostly gastrointestinal side effects or fatigue 
199,200,205. Many different Phase II clinical trials with MS-275 in cancer therapy are 

still ongoing. 

 

To date, the effect of MS-275 on cognition, neurodegenerative and neuropsychiatric 

disorders is poorly investigated. Moreover, MS-275 has been shown to exhibit poor 

blood-brain-barrier penetration 208. However, MS-275 was reported to be a potent and 

brain-region selective inhibitor of HDAC1 and to reverse transcriptional repression of 

schizophrenia susceptibility genes in mice 209,210. Further on, MS-275 reset the gene-

expression profile observed in an animal model for depression similar to the 

antidepressant drug fluoxetine 178.  

 

1.4 Schizophrenia: Nomenclature, clinical Symptoms, 
criteria of Diagnosis and Etiology? 
Schizophrenia is a severe brain disorder with high phenotypic complexity that affects 

approximately 1% of the world population 211. Patients with Schizophrenia may suffer 

from various symptoms ranging from features of psychosis (e.g. delusions and 

hallucinations), alterations in neurocognition (e.g. deficits in attention and working 

memory) and affective dysregulation (e.g. affective flattening, lack of motivation) 212. 

Resulting difficulties in perception and emotional stability hinder diseased patients 

from proper functioning of every day life tasks, affecting their social interactions. 

Schizophrenia affects men and woman equally in all ethnic groups around the world 
213. 

The age of onset of the disease is typically between late adolescence and early 

adulthood (app. 16 – 25), whereas women develop symptoms several years later. The 
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later disease onset in women is thought to be due to protective effects of estrogen and 

hormone replacement therapy with estrogen is discussed as possible treatment for 

women with schizophrenia 214,215. Interestingly, the risk to develop schizophrenia over 

the age of 45 is extremely low 216,217. Childhood onset schizophrenia (under the age of 

18) is observed very rarely, especially in children below 7-8 years old 213. The sooner 

onset of schizophrenia has been associated with more sever-impairments 218. 

Moreover, schizophrenia is marked by high mortality rate due to suicide of patients 
219. Schizophrenia itself does not present one defined clinical picture .It rather reflects 

and consists of a variety of appearances that are summarized as the group of 

Schizophrenias (e.g. paranoid Schizophrenia, catatonic Schizophrenia). Hence, 

Schizophrenia comprises a heterogeneous group of patients with diverse symptoms 

and none of the symptoms are unique to Schizophrenia 220–222. This hampers the 

process of reliable diagnosis and development of optimized and functional therapeutic 

treatments of patients 223,224. While the etiology of Schizophrenia remains elusive, 

disrupted brain region connectivity, deregulated neurotransmission, non-mendelian 

genetic heritability and various environment factors such as drug abuse, prenatal 

infections and early life stress are thought to contribute to the pathogenesis of 

Schizophrenia 19,225–227 . 

 

1.4.1 Symptom based diagnosis of Schizophrenia 

In clinics, Schizophrenia is currently diagnosed based on the 4th Diagnostic and 

Statistical Manual of Mental Disorders IV (DSM-IV and DSMIV-TR) and the 10th 

International Classification of Diseases (ICD-10) (American Psychiatric Association, 

1994; World Health Organisation, 1992) (see Table 3.) 228,229. It is important to 

mention, that the concept of Schizophrenia has changed from the first to the current 

revised editions of DSM and ICD, reflecting the difficulties in understanding and 

defining the clinical picture of Schizophrenia (American Psychiatric Association 

1959,2000; World Health organisation 1949,1992) 220,221,230,231. Depending on the 

predominant symptomology, DSM-IV defined subtypes of Schizophrenia (e.g. 

paranoid, disorganized, catatonic, undifferentiated and residual Type). ICD-10 

defined two additional subtypes, namely Post-schizophrenic depression and Simple 

schizophrenia.   
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Table 3. Diagnostic Criteria for Schizophrenia according to DSM-IV and ICD-10 

Diagnostic Criteria DSM-IV Diagnostic Criteria ICD-10 

A. Characteristic symptoms 

Delusions, hallucinations, disorganized 
speech,  
catatonic behavior, negative symptoms 

Characteristic symptoms 

At least on of: Thought echo, thought  
insertion/withdrawl, passivity, 
delusional  
perception, third person auditory 
hallucination, 
running commentary, persistent bizarre 
delusions 

B. Social/occupational dysfunction 

For a significant portion of the time since  
the onset of the disturbance, one or more  
major areas of functioning such as work, 
interpersonal relations, or self-care, are 
markedly below the level achieved prior to 
the onset. 

Two or more of: Persistent 
hallucinations,  
thought disorder, catatonic behavior,  
negative symptoms, significant behavior 
change 

Duration:  
Continuous signs of the disturbance persist 
for at least six months. This six-month 
period must include at least one month of 
symptoms (or less, if symptoms remitted 
with treatment). 

Duration: More than 1 month 

 Exclusion criteria: 

Mood disorder, schizoaffective 
disorder,  
Overt brain disease, drug intoxication or 
withdrawal 

Modified from DSM-IV and ICD-10 

 

The above-mentioned table shows, that diagnosis of schizophrenia is to date only 

based on symptom profiles. One major resultant problematic is that those symptoms 

are shared by other disorders and do not present discrete entities with natural 

boundaries that separate them from other syndromes 220,232.  Thus, both classificatory 

systems are discussed to lack reliability and fail to be validated 222,230,233. General 

criticism of both diagnostic systems concerns therefore the shortage of 

neurobiological markers and thus demands a more etiopathological based diagnostic 

system 220,234. However at present, there are no robust available biological marker or 

psychological tests for diagnosis, classifying and subtyping the Schizophrenia 

Syndrome 235.  
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1.4.2 Nomenclature 

 
The current classification systems of Schizophrenia are in general formulated on the 

basis of historical definitions of Schizophrenia from Emil Kraepelin, Eugen Bleuler 

and Kurt Schneider 221,236,237. However, while the term Schizophrenia coined 

originally by Dr. Eugen Beuler in 1908 means “split-mind” (schizein = σχίζειν = "to 

split" and phrēn = φρήν = "mind"), Schizophrenia does not represent a multiple 

personality disorder 238. Consequently, the term Schizophrenia has been problematic. 

The ambivalence of the term and the common misunderstanding of the disorder in the 

public, causing a stigma, lead the Japanese Society of Psychiatry and Neurology to 

replace the Japanese term for Schizophrenia “Seishin Bunretsu Byo” (i.e. mind-split-

disease) by “Togo Shitco Sho” (i.e. integration disorder),239. Additionally, due to poor 

diagnostic validity of Schizophrenia, it has been stated that the current definition of 

Schizophrenia is based on approximate assumptions. Thus, a polydiagnostic approach 

for classification of Schizophrenia has been proposed 240,241. The polydiagnostic 

approach aims to use alternative definitions of Schizophrenia and to apply different 

sets of criteria for a given diagnostic category to the same group of patients 230,242. 

Nowadays a debate exists, whether the term Schizophrenia should be further retained 

in the DSM-V and ICD-11. 

 

1.4.3 Neuropathology and Etiology 

 
The fact that Schizophrenia is a brain disorder was primarily demonstrated by 

noninvasive structural neuroimaging techniques (e.g. computerized tomography (CT)) 

that showed brain abnormalities such as ventricular enlargement in schizophrenia 

patients 243,244. Magnetic resonance imaging studies (MRI) revealed reduction in gray 

matter volume in the temporal lobe and in medial lobe structures (hippocampus, 

parahippocampal gyrus, amygdala) 245–248. These structural abnormalities seem to be 

consistent findings in schizophrenia, as shown by family studies and twin studies, in 

which the affected twin has larger ventricles and smaller cortical and hippocampal 

size 249–253. Further structural abnormalities have been reported as well in the thalamus 

and cerebellum 254,255. Young adults and adolescents yet not diseases buts at high risk 
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for developing schizophrenia based on their family history, display the observed brain 

abnormalities suggesting that the neuropathology precedes the onset of symptoms 
248,256,257. Interestingly, progression of brain pathology was not observed, excluding a 

neurodegenerative process. This is supported by the findings that no overall neuronal 

loss and gliosis could be observed in post-mortem tissue 257–260. Positron emission 

tomography (PET) and functional magnetic resonance imaging (fMRI) studies in 

schizophrenia showed derangements in interaction-patterns among brain regions with 

abnormal connectivity especially within the neocortical- limbic neuronal network and 

altered distributed activity 261–265. Furthermore, cytoarchitectural abnormalities have 

been investigated in post-mortem tissue of schizophrenia patients, however, whereas 

most of the findings were not clearly reproduced, smaller neuronal cell bodies, 

decreased presynaptic and dendritic markers, reduced dendritic spine density, 

reduction in cortical thickness and cell migration in the hippocampus and dorsolateral 

prefrontal cortex (DLPFC) have been more consistent 257,266–270. 

The above-mentioned neuropathological findings and the observation that symptoms 

of schizophrenia generally appear during late adolescence lead and supported the 

prevailing neurodevelopmental hypothesis of schizophrenia 257,260,261,271,272. In general, 

the neurodevelopmental hypothesis suggests that disruption in early brain 

development, caused by environmental and genetic factors, would increase the risk of 

later developing schizophrenia. Thus, neurodevelopmental abnormalities remain 

relatively unapparent in early life until they manifest themselves in diagnostically 

recognizable symptoms later in life, when complete brain maturation, involving 

synaptic pruning, a process that eliminates superfluous synapses and connections and 

is finished for example in the prefrontal cortex with approximately 16, is reached 273–

276. 

According to a large body of epidemiological studies, environmental factors 

frequently found in schizophrenia causing neurodevelopmental abnormalities are 

obstetric complications 24,256,277. Most significant obstetric complications found are 

complications of pregnancy (e.g. bleeding, pre-clampsia, diabetes, rhesus 

incompatibility), abnormal fetal growth and development (e.g. low birth weight, 

congenital malformations), complications of delivery (e.g. asphyxia, hypoxia, uterine 

atony, Cesarean section) and viral infections during pregnancy 278–282. While obstetric 

complications affect early developmental stages, later development is as well 

susceptible to environmental factors, such as migration, urban environment, substance 
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abuse, urban environment, severe emotional stress (e.g. early childhood trauma) that 

contribute to the development of schizophrenia 283–286. In addition, linkage and 

association studies have identified chromosomal abnormalities (e.g. chromosome q42, 

11q43, 22q11) and candidate genes (e.g. BDNF, COMT, DTNBP1, NRG1, RGS4, 

DISC1, G72, GAD1) associated with schizophrenia 287–290 . Some of these genes were 

found to be regulated by hypoxia, NRG1, COMT, RELN, RGS4 and GAD1 291. These 

susceptibility genes have been implicated with specific developmental correlates and 

show brain region specific expression pattern at different neurodevelopmental stages. 

However, none of the identified susceptibility genes have been replicated in every 

study 282,292.  

Taken together, it has been suggested that the onset of schizophrenia is triggered 

when individuals with genetic susceptibility are exposed to specific environmental 

risk factors, forming the basis of the two-hit hypothesis 226,276,293. The first hit 

represent a dysfunctional gene as predisposition that are involved in abnormal brain 

development and the second hit comprises environmental factors occurring later in 

life that modulate the function of susceptibility genes and/or developmental processes 

resulting into vulnerability of schizophrenia 293,294. 

For many years, researches suggested that the etiology of schizophrenia involves 

deregulated neurotransmission, in particular alterations in dopaminergic, 

glutamatergic, serotnonergic and GABAergic systems. But although abnormalities in 

these neurotransmittion systems have been observed and reported, there is still no 

consensus whether the neurochemical findings are causative or reflect rather 

secondary pathology as a result of compensatory mechanisms and are not going to be 

reviewed further in this chapter 257,295–297. 
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1.4.4 Cognitive Dysfunction in Schizophrenia: Core feature 
and Endophenotype 

 

“My whole mental power has disappeared, I have sunk intellectually below the level 

of a beast” 

(Schizophrenia patient quoted by Dr. Emil Kraepelin 298) 

 

An organism’s ability to acquire new knowledge, skills and behaviors is defined as 

learning. As such, organisms can alter and adapt their behavior to their environmental 

context. Memory is an organism’s ability, to store information and refers to the 

process of recalling acquired information. Cognition defines a collection of ways in 

which organisms perceive, reason, understand, diagnose and solve problems, thereby 

relying on learning and memory processes. Cognition represent to this end an 

umbrella term for all higher mental processes 299. Symptoms of Schizophrenia, 

especially negative symptoms are suggested to be based on cognitive impairments 

observed in patients 300–302.  

Emil Kraepelin named Schizophrenia originally as “Dementia praecox”, reflecting 

cognitive abnormalities in schizophrenia patients, and stated that “…patients are 

distracted, inattentive…they can not keep the thought in mind. ”  303. Cognitive 

dysfunctions such as deficits in attention, global verbal memory, working memory, 

episodic memory, language function, inhibition and sensory processing, and executive 

function (e.g. reasoning, problem solving, organizational flexibility) have been 

reported frequently in schizophrenia patients. Thus, cognitive dysfunction became a 

core feature and focus of investigation for therapeutic treatments in schizophrenia 
304,305. Importantly, cognitive impairments often predate the illness onset and are also 

present during periods of remission 306. Thus, neurocognition functioning in 

schizophrenia is suggested to be a robust predictor for the long-term functional 

outcome of the disease 302. Unfortunately, existing antipsychotics do not ameliorate 

cognitive deficits in schizophrenia 307,308. 

 

While in classical Mendelian diseases causative genes are in direct connection to the 

disease phenotype, in the case of schizophrenia, that harbors genetic heterogeneity 

and vulnerability to environmental factors, a linear relation between genotype and 
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phenotype cannot be drawn. This is especially hampered due the shared 

symptomology between neuropsychiatric disorders. Furthermore, symptoms may only 

represent compensatory behaviors and change during the course of illness 309.  

Thus another approach in psychiatry aims to reduce the complex symptomology 

observed in schizophrenia into different components such as neuroanatomical, 

biochemical or cognitive units to investigate the genetic basis of the disease and better 

understanding of its etiology 310. This approach refers to the endophenotype concept 
311,312. In order to be defined as an endophenotype, following criteria have to be 

fulfilled: 

1. Association with the illness in a population 

2. Heritable 

3. State-independent and thus visible in an individual whether illness is active or 
not 
 

4. Cosegregates within families 

5. Found at higher rates in unaffected relatives than in the general population. 

 

Cognitive dysfunctions that are based on brain abnormalities are thought to be more 

stable markers that can be genetically examined. 

Among all cognitive dysfunctions observed in schizophrenia, deficits in sensorimotor 

gating function and impairments in working memory performance are suggested to be 

the most promising endophenotypes. 

 

1.4.5 Working memory impairments 

 
In general, working memory refers to the concept of a flexible and dynamic memory, 

that actively maintain, temporarily store and manipulate limited amount of 

information during the performance of cognitive tasks in order to guide thought 

processes or sequences of behavior 235,313,314. We use our working memory in every 

day life for example when remembering a phone number between the time of hearing 

and dialing it, solving a math calculation in mind or executing driving directions 
315,316. Thus, working memory can be understood as a temporary workspace such as 

the “random-access memory” (RAM), the working memory of a computer that 
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accesses and stores information while it is working with it 315,317. The strength of 

working memory capacity is strongly associated with cognitive skills needed in 

efficient and effective performance in professional live and impairments in working 

memory are often responsible for learning disabilities 318.  

 

Today´s concept of working memory is based mainly on the multicomponent model 

of working memory introduced by Baddeley and Hitch in 1974 319. It comprises a 

control system, the so-called central executive, which is assisted by two subsidiary 

short-term storage components (slave systems), the so-called phonological loop 

(“verbal-auditory memory”) that is based on sound and language and the visuospatial 

sketchpad (“visual-spatial working memory”). The central executive has a limited 

attentional capacity, is flexible and manipulates the information stored in the slave 

systems and coordinates between them. It is responsible for directing attention to 

relevant information and suppressing irrelevant information. Baddeley extended the 

system with a third slave system, the episodic buffer 320. The episodic buffer serves as 

an interface between the phonological loop and visuospatial sketchpad in order to 

integrate visual, spatial and verbal information in a time-dependent manner and is 

regarded as a crucial feature of working memory capacity 320. It is known that 

working memory capacity increases gradually during childhood and declines 

gradually during aging 321–323. 

Working memory deficits have been highlighted in schizophrenia patients. For 

instance, several studies reported impaired performance of schizophrenia patients in a 

variety of working memory tasks 324,325. In addition, working memory deficits have 

been reported in un-affected relatives of schizophrenia patients and are thought to be 

heritable 326,327. Impaired working memory has been shown to be associated with the 

negative symptoms and contribute to many cognitive deficits observed in 

Schizophrenia 328,329. It was suggested that, schizophrenia patients have difficulties 

with processes attributed to the central executive component of working memory 330. 

Thus, profound working memory deficits reflects in impaired behavioral flexibility, 

strategy shifting and response to environmental feedback. The most widely used tasks 

analyzing working memory function in humans showing behavioral flexibility, and 

strategy shifting are the Wisconsin Card Sorting Test, the Category Test and the 

Tower of Hanoi Task 331–333.  
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The dorsolateral prefrontal cortex circuitry (DLPFC) mediates working memory 

processes and shows altered activation in schizophrenia patients during performance 

of working memory tasks 334,335. As such, dysfunction specifically in the DLPFC has 

been shown to be associated with working memory deficits in schizophrenia patients 
336. Interestingly, prefrontal cortex dysfunction was shown to be specific to 

schizophrenia patients with first episode psychosis, never medicated, and not present 

in individuals with other psychotic disorders 235,337.  

Additionally, the prefrontal cortex plays a key role in decision-making, executive 

functions, emotional perception, memory encoding and retrieval that have been 

reported to be to be affected in schizophrenia patients 261,338. Animal studies have 

shown as well the importance of the hippocampus for working memory performance 
339. Especially the interplay between the prefrontal cortex and the hippocampus is 

suggested to be essential for normal working memory function 340–343. Disconnection 

lesions in the hippocampal-prefrontal cortex pathway by transient inactivation of the 

ventral hippocampus and the contralateral prelimbic cortex resulted into impairments 

in working memory performance 339,344. Thus numerous studies in individuals with 

schizophrenia as well as in animal models of schizophrenia have demonstrated altered 

hippocampal-prefrontal connectivity during the working memory performance 345–347.  

However, while the exact neural circuitry of hippocampal-prefrontal cortex 

interaction underlying working memory is still under investigation, it is hypothesized 

that the involvement of the hippocampus during working memory performance is its 

maintenance rather then its encoding 343. The most widely used tasks analyzing 

working memory function in humans is the Wisconsin Card Sorting Test (WCST), the 

Category Test, Delayed Response Task and the Rey Verbal Learning Test 
324,332,333,348,349.  

 

1.4.6 Sensorimotor gating function 

 
Sensorimotor gating function is a fundamental component for information processing 

in the brain. It refers to the ability, to filter out or “gate” un-necessary information 

from all possible environmental stimuli in order to prevent sensory overload in the 

brain 350–352. Thus, impairments in sensorimotor gating function leads to sensory 



 

35 
 

overload and is thought to result in cognitive fragmentation and disorganization as 

observed in schizophrenia 353–356. Impairments in sensorimotor gating function have 

been frequently reported in individuals with schizophrenia and unaffected relatives 
355,357,358. An operational measure of sensorimotor gating function that is homologous 

in humans and rodents is the prepulse inhibition of the acoustic startle response (PPI) 
355. PPI refers to a neurobiological paradigm in which a weak stimulus (“Prepulse”) 

presented typically 30 to 500 milliseconds before a stronger startling stimulus 

(“Pulse”) suppresses or inhibits the startle reflex.  

 

Figure 3 Scheme of Prepulse inhibition of acoustic startle response.  

Top: A startling stimulus (“Puls”), typically at 120db sound intensities, elicits a startle reflex. 
Bottom: A weaker stimulus (“Prepulse”) presented shortly before the startling stimulus inhibits 
startle reflex. Adapted and modified from 
http://en.wikipedia.org/wiki/File:Prepulse_Inhibition_schematically.png 
 

Disrupted sensorimotor gating in schizophrenia is presented in reduced PPI in 

comparison to normal controls 355,359,360. Similarly, reduced PPI is as well observed in 

various animal models of schizophrenia 361–363. Neuroimaging studies in humans with 

schizophrenia and rodents reported that deficits in PPI were associated with 

abnormalities in the hippocampus, prefrontal cortex, amygdala, nucleus accumbens or 

ventral tegmental area 364–368. Thus, the neural circuitry of PPI is thought to rely on 

limbic structures.  
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1.5. Neurobiology of learning and memory 
 
Neuronal plasticity is the ability of the brain to undergo reversible morphological and 

functional changes in response to activity, in order to adapt to the environment, and 

thus to mediate proper cognition processes 369,370. These activity-dependent 

morphological changes of the nervous system represent structural plasticity of 

synapses, changing the strength and number of synaptic connections resulting in 

altered synaptic transmission 371–373. This phenomenon is referred as synaptic 

plasticity and its key implication is to alter synaptic connectivity within a neuronal 

circuit to form memory. Thus, synaptic plasticity reflects the cellular correlate of 

memory formation. The concept that memory results from activity-dependent changes 

in synapses was established by Donald O. Hebb. Hebb postulated that if two neurons 

in close proximity are repeatedly activated “… some growth process or metabolic 

change takes place in one or both cells…” so that at a later time point the activation of 

one neuron leads to the activity of another neuron 374. His theory is generalized with 

“Cells that fire together, wire together” 375 and referred as the Hebbian plasticity.  

Memory represents a multicomponent process and is divided into short-term memory 

and long-term memory based on the duration in which information is stored and 

accessed to recall. Short-term memory can last from seconds to hours whereas long-

term memory can persist from hours to days, even to long-lasting memory over 

lifetime 376–378.  

In order for new acquired memories to become persistent, long-term, memory needs 

to be ‘fixed’ or become resistant to disruption 379,380. Thus, consolidation describes the 

process in which short-term memory is stabilized into long-term memory after initial 

acquisition 376,377,381. The retention of memory is brain region specific as lesion 

studies in rodents and humans demonstrated that new memories are encoded in the 

hippocampus and transferred to distal cortical regions for permanent 379,382–384. 

Hippocampal lesions in patients caused severe short-term memory deficits and 

inhibited the transfer of the new acquired memory to the neocortex, avoiding the 

formation of hippocampus dependent long-term memories 383,385,386. On the molecular 

level, separation of memory into short-term and long-term memory originates from 

studies investigating the role of transcription and translation processes. Hence, animal 

studies showed that injection of protein synthesis inhibitors (e.g. anisomycin, 
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puromycin) in the hippocampus immediately after training in behavioral learning 

tasks disrupted the formation of long-term memories but did not interfere with the 

acquisition or retention of short-term memory 387–390. Next, application of RNA 

synthesis inhibitors (e.g actinomycin D, dichloro-1-β-D- ribofuranosylbenzimidazole) 

impaired memory formation when injected around the time or 3-6 hours after training, 

but has no effect when injected after 24 hours 389,391. Thus, while the short-term phase 

of the memory is transcriptional and translational independent, the long-term phase of 

memory is sensitive to inhibition of transcription and translation processes. As 

synaptic plasticity is underlying the formation of new memories, neurobiologists 

established two cellular artificial models for long-term memory, namely long-term 

potentiation (LTP) and long-term depression (LTD) 371,372. As memory is divided into 

two phases with short-term and long-term memory, LTP consists as well of two 

phases based on its persistence: the early phase LTP (E-LTP; ranging from seconds to 

hours) and the late phase LTP (L-LTP; ranging from hours to days and months) 392,393. 

On the cellular and molecular level, E-LTP and L-LTP represent short-term and long-

term memory, respectively. It was shown, that E-LTP and short-term memory depend 

on post-translational modification of post-synaptic proteins, whereas L-LTP and long-

term memory being mediated by de novo transcription of specific genes and 

translation of respective proteins 394–397. However, in general, short-term and long-

term synaptic plasticity share the same initial signaling cascades, but while the signal 

required to cause short-term memory is bordered at the synapse vicinity, for long-term 

memory to occur, the signal needs to be transferred from the synapse to the nucleus in 

order to induce transcription and translation processes 398.  

In summary, it is well established that the formation of long-term memory, unlike 

short-term memory, requires gene-expression and de novo protein synthesis 
388,390,399,400. 

 

In this aspect, the importance of epigenetic mechanisms was brought onto focus 

regarding the control of gene-expression and accumulative data demonstrated that 

epigenetic changes are involved in the successful transcription of genes required for 

long-term memory, mediating cognitive processes. In particular, histone-acetylation 

has been shown to be essential for memory formation and the application of histone-

deacetylase inhibitors (HDACi) enhanced long-term memory processes. Moreover, 
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deregulation of histone-acetylation is implicated in various neurodegenerative and 

neuropsychiatric disorders. The involvement of epigenetic mechanisms in memory 

formation is going to be described in following chapter. 

 

1.5.1 Epigenetics in learning and memory 

 
Several studies indicated the contribution of deregulated epigenetic gene-expression 

to the etiopathogenesis of neurodegenerative disorders such as Rubinstein-Taybi 

Syndrome, Rett Syndrome, Friedrich´s ataxia, Chorea Huntington and Alzheimer´s 

disease. The common feature of all these neurodegenerative disorders is cognitive 

decline with severe memory loss 29,59,401–403. 

Epigenetic mechanisms regulate gene-expression during mammalian development 

forming cellular memories 31,38. As it is known that the formation of long-term 

memories requires gene-expression, the idea that epigenetic mechanisms are involved 

in learning and memory is not surprising 404. Histone-acetylation is among all histone-

tail modification sites the best-studied modification to be involved in learning and 

memory. Various behavioral learning tests in rodents demonstrated the importance of 

epigenetic mechanisms in memory formation 165,168,175,176,405. For instance, associative 

learning that is assessed in rodents using contextual fear conditioning, is specifically 

accompanied with an increase of acetylation at multiple Histone H3 and Histone H4 

lysine sites in the hippocampus of mice and remain unchanged in the absence of 

learning 168,176. Moreover, interference with the NMDA-receptor-dependent synaptic 

transmission and the ERK/MAPK signaling, that is required for the formation of long-

term memory, inhibits the induction of memory-associated increase in histone-

acetylation 176. Administration of global HDACi such as TSA or sodium butyrate was 

shown to up-regulate histone-acetylation and to increase LTP and enhance long-term 

memory. Age-associated memory decline in elderly mice were found to be caused by 

specific deregulation of H4K12 acetylation, failing to up-regulate its acetylation 

during fear conditioning in order induce gene-expression necessary for memory 

consolidation. Treatment of aged-mice with the HDACi SAHA reinstated H4K12 

acetylation and learning-induced gene-expression, resulting into improved associative 

memory 168. In rodents, environmental enrichment that refers to special housing 
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conditions providing additional sensory, feeding and social stimuli, have been shown 

to facilitate learning and memory 406–408. Fischer and colleagues demonstrated that 

environmental enrichment in a mouse model for neurodegenerative diseases reinstated 

and reestablished the access to long-term memory that was correlated with increased 

histone-acetylation in the hippocampus 166. Furthermore, administration of HDACi 

restored the capacity to form long-term memories and induced increased histone-

acetylation in these mice, mimicking the effect of environment enrichment 166. 

Several studies have displayed the potential of HDACi enhancing memory formation 

by increasing histone-acetylation 166,168,176,409–414. Thus, consolidation of long-term 

memory correlates with increased histone-acetylation. The importance of learning-

associated increase in histone-acetylation was as well demonstrated in animal models 

with disrupted histone-acetylase (HAT) activity. For example, knockdown or 

mutations in the CREB binding protein (CBP), a transcriptional co-activator that 

possesses endogenous HAT activity, lead to long-term memory impairments in mice 

tested in different behavioral experiments such as cued fear conditioning, novel object 

recognition and Morris water maze 415–417. Notably, these memory deficits correlated 

with severe impairments in hippocampal histone-acetylation 165,194,412. Other HATs, 

including P300 and p300/CBP-associated factor have been suggested to play an 

important role in memory consolidation 418,419. Attempts have been made to identify 

which HDACs are specifically important for the formation of long-term memories. It 

was discovered that mice overexpressing HDAC2 exhibited impaired learning and 

memory in the fear conditioning and morris water maze test, whereas knockout of 

HDAC2 improved memory formation 196). Likewise, hippocampus specific deletion 

of HDAC3 resulted into facilitated long-term memory formation in mice during the 

object location test 420. Recently published data demonstrated that endogenous 

knockdown of HDAC6 restored memory deficits observed in a mouse model for 

Alzheimer´s disease 421. Additionally, inhibition of HDAC6 mediated 

neuroprotection- and regeneration 422. Thus it has been suggested that targeting 

HDAC2, HDAC3 and HDAC6 might be suitable drug targets to treat cognitive 

decline 196,405,421–423. 

 

Taken together, these findings highlight the importance of epigenetic mechanisms 

such as histone-acetylation in learning and memory and the potential of epigenetic 

therapy with HDACi for the treatment of neurodegenerative disorders. 
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1.6 Epigenetics of Neuropsychiatric disorders 
 

Neuropsychiatric disorders such as schizophrenia are characterized by multifactorial 

mode of inheritance and influenced by environmental risk factors such as early life 

stress. Nevertheless, current genetic approaches failed to identify the diseases 

underlying mechanism and environmental factors independently are not sufficient to 

cause psychosis 30,424,425. To date, the etiology of major psychiatric disorders is 

hypothesized to rely on the interplay between genetic and environmental risk factors 
28,29,426,427. Epigenetic mechanisms mediate GxE interactions and deregulated 

epigenetic gene-expression have been frequently reported in post-mortem tissue 

samples of patients and in animal models of major psychiatric disorders such as fear-

related anxiety disorders, schizophrenia, depression and drug-addiction 176,181,183,428–

438.   

In rodents, the most representative study demonstrating how epigenetic mechanisms 

mediate GxE interactions underlying psychosis stems from Michael Meaney and 

colleagues. Thus it was demonstrated in rats, that low maternal care measured by 

licking and grooming of the offspring, caused exaggerated anxiety later in life 429 . 

The poor maternal care of pubs induced greater activity of the hypothalamic-piutiary-

adrenal (HPA) axis and decreased expression of hippocampal glucocorticoid receptors 

(GRs). The activation of HPA axis in response to stress and the function of GRs as 

central mediators of stress is a validated paradigm in rodents and humans 439,440. As 

such, individuals with depression that were subjected to abuse during childhood 

displayed increased methylation, down-regulation of hippocampal GRs and long-term 

vulnerability to stress 30,432. Likewise, decreased hippocampal GRs expression in rats 

with less maternal care was mediated by increased DNA methylation and decreased 

H3 acetylation at the GR1 promoter. Strikingly, treatment with the global HDACi 

TSA reversed the anxiety phenotype 429.  

Additionally, application of HDACi showed to facilitate fear extinction, paradigm 

used in rodents to treat anxiety diseases similar to exposure therapy 410,414,441. 

 

 



 

41 
 

1.6.1 DNA Methylation in Schizophrenia 

 
To date, the majority of studies focused on the role of DNA methylation in 

schizophrenia. The hypothesis that deregulated DNA methylation is involved in the 

disease´ etiology exists since clinical studies from Osmond and Smythies in 1952 442. 

Chronic treatment of schizophrenia patients with L-methionine, a precursor of S-

adenosylmethionine (SAM) biosynthesis that serves as a methyl donor for DNMT´s, 

resulted into worsening of symptoms 443,444. Almost 40 years later, the methionine-

induced exacerbated symptoms in schizophrenia patients were reproduced in mice 
183,445–447. Thus, methionine treated mice exhibited endophenotypes of schizophrenia 

such as deficits in prepulse inhibition and impaired attention 183,446,447. It was 

observed, that increased levels of SAM by L-methionine treatment caused an increase 

in DNA methylation and down-regulation of schizophrenia GABAergic susceptibility 

genes such as Reelin and GAD67 210,446. Interestingly, administration of the global 

HDACi Valproate (VPA) diminished methionine-induced schizophrenia like 

symptoms in mice and increased GAD67 gene expression 448. Moreover, treatment of 

mice with VPA and the atypical antipsychotic drug Clozapine decreased promoter 

methylation of GABAergic candidate genes accompanied with improved symptoms 
181. Importantly, increased SAM levels and promoter hypermethylation of GABAergic 

genes have been reported in the prefrontal cortex of patients with schizophrenia 449–

452. Subsequently, hypermethylation was associated with reduced GABAergic cortical 

gene-expression 449,450,453. Consistently, high levels of DNMT1 and DNMT3a mRNA 

expression have been found in schizophrenia post-mortem cortical GABAergic 

neurons 454–460. Moreover, monozygotic twins discordant of schizophrenia display 

significant difference in methylation pattern 461. Fascinatingly, it has been shown that 

the schizophrenia-affected twin shared higher epigenetic marking with a non-related 

individual with schizophrenia than to his own un-affected sibling 30,461.  

 

Taken together, preclinical animal studies and post-mortem tissue analysis suggested 

that deregulated DNA methylation leading to aberrant cortical gene-expression might 

underlie the etiopathogenesis of schizophrenia.  
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1.6.2 Histone-modifications in Schizophrenia 

 
Deregulation of histone-tail modifications resulting into aberrant gene-expression has 

been associated with the etiopathogenesis in schizophrenia. For instance, tri- 

methylation of histone 3 lysine 4 (H3K4me3) that serves as a marker for active 

transcription was found to be reduced at the promoter of cortical GABAergic genes in 

schizophrenia patients mediating transcriptional repression. Consistently, the 

transcriptional repressor mark, H3K27me3, was increased at the promoter of 

repressed GABAergic genes 462. Furthermore, higher levels of the repressive 

chromatin mark H3K9me2 in lymphocytes of living patients have been correlated 

with earlier disease onset 463,464.  

Additionally, transcriptional repression of schizophrenia candidate genes has been 

associated with reduced acetylation of H3K14 465. Further post-mortem studies 

identified aberrant gene-expression of HDACs in schizophrenia patients. Thus, 

HDAC1, 3 and 4 mRNA levels have been reported to be over- expressed in 

schizophrenia patients, correlating with decreased expression of GABAergic genes 
433,435. Interestingly, inhibition of HDAC1 enzyme activity by MS-275 induced 

transcriptional activation of the schizophrenia susceptibility genes Reelin in GAD67 

in mice. This gene-expression activating effect of MS-275 on Reelin and GAD67 was 

demonstrated to be more efficient than with VPA 209,446. In striatal neurons, the 

antipsychotic drugs haloperidol and raclopride that act as dopamine D2 receptor 

antagonists induce Histone H3 phosyphoacetylation 466. Interestingly, the 

antipsychotic effect of another drug were potentiated if co-administered with VPA 181.  

Additionally, clozapine induced increased Histone H3 acetylation in the frontal cortex 

of mice at the promoter of GABAergic genes 181.   

 

Thus, the present data indicate the importance of deregulated histone-modification in 

the etiopathogenesis of schizophrenia and that HDACi might have beneficial effect in 

the treatment of patients. 

However, the function of histone-acetylation and HDACs in the etiopathogenesis of 

schizophrenia remains elusive. 
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2. Objectives 

The etiology of neuropsychiatric disorders such as schizophrenia is thought to rely on 

genome and environmental (GxE) interactions. Epigenetic mechanisms such as 

histone-acetylation regulate gene-expression in response to environmental stimuli and 

are considered as key processes that mediate GxE interactions. The role of histone-

acetylation and histone-deacetylases (HDACs) in the etiopathogenesis of 

schizophrenia are to date only poorly investigated. Recent human post-mortem studies 

have reported elevated HDAC1 expression in the hippocampus and prefrontal cortex 

of individuals with schizophrenia 433,435. Moreover, HDAC1 mRNA expression was 

upregulated in neurons exposed to hypoxia, an identified environmental risk factor for 

schizophrenia, associated with obstetric complications 467. Additionally, HDAC1 has 

been shown to regulate the expression of the schizophrenia susceptibility genes 

Gad67 and Reelin, mediating transcriptional repression and inhibition of HDAC1 by 

MS-275 reversed HDAC1 induced down-regulation of these genes 210.  

Thus, the aim of my work was to use mice as model organism in order to elucidate the 

role of HDAC1 in cognitive function and to the etiopathogenesis of schizophrenia. 

Mores specifically I asked the following questions: 

  

1. Does HDAC1 contribute to the etiopathogenesis of schizophrenia?  

In order to address this question, I designed a gain-of-function model using a viral-

system to overexpress neuronal HDAC1 specifically in the dorsal hippocampus and 

medial prefrontal cortex of mice. This analysis was combined with loss-of-function 

models using siRNA-mediated knockdown of HDAC1 or pharmacological inhibition. 

The corresponding animals were subjected to molecular and behavioral analysis.  

2. Do environmental risk factors for schizophrenia influence the expression of 

HDAC1? 

The present data suggested that up-regulation of HDAC1 in schizophrenia patients is 

unlikely due to genetic effects. Thus, I planed to investigate the expression of HDAC1 

and the associated molecular and behavioral underpinnings in response to 

environmental risk factors for schizophrenia. Here I to subjected mice to early life 

stress by maternal separation and social isolation, as they are well-documented 

environmental risk factors of schizophrenia.  
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3. Materials and Methods 

 

3.1 Technical Equipment 
 
Benchtop centrifuge     Eppendorf 
Benchmark Sterotaxic Intrument   Myneurolab 
Bilateral guide cannulae    Bilaney Consultants 
Bioanalyzer 2100     Agilent 
Biorupter Standard Sonication Device  Diagenode 
Computerized fear conditioning system  TSE 
Confocal microscope     Leica 
Cryotome      Leica 
Digital Stereotaxic Control Panel   Myneurolab 
End-over-end shaker     Stuart 
Eppendorf Pipettes     Eppendorf 
Glass Capillaries     World Precision Instruments 
Hamilton Syringes     Hamilton Company 
LightCycler 480 Real-time PCR system  Roche Applied Science 
Magnetic stirrer     Heidolph 
Mastercycler ep gradient    Eppendorf 
Microsyringe pump     World Precision Instruments 
Microcentrifuge     Eppendorf 
Mini Trans-Blot Cell     BIO-RAD  
Nanoliter 2000 Injector    World Precision Instruments 
NanoDrop 1000     Thermo Scientfic 
Odyssey infrared imaging system   LI-COR Biosciences 
Peristaltic perfusion pump    Heidolph  
Programmable Multipipetter Puller   World Precision Instruments 
Power supply      Sigma-Aldrich 
Spectra-Por MWC 1000 membranes   Spectrumlabs 
Startle Response System    TSE 
VideoMot2 tracking system    TSE 
Vortex mixer      Eppendorf 
Water bath      Lauda 
Weighing machine     Sartorius 
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3.2 Reagents 
 
Acetic acid      Roth 
Acrylamide      Roth  
Agarose      Roth 
Ammonium persulfate    Roth  
Ampicillin      Applichem  
Ampuwa      Fresenius AG   
BSA       Roth     
Bromophenol blue     Roth  
Chloroform      Applichem  
DAPI       Vectarshield 
DEPC       Sigma  
DNA Marker      Fermentas  
DTT       Roth  
EDTA       VWR 
Ethanol      Roth  
Ethidium bromide     Roth  
Formaldehyde      Applichem  
Glycerol      Roth  
Glycine      Applichem  
Guanidine hydrochloride    Roth 
Isoamylalcohol     Applichem 
β-Mercaptoethanol     Roth 
Methanol      Roth 
Milk powder      Roth 
NaOH       Roth 
NaCl       Applichem 
Proteinase K      Roth 
Paraformaldehyde     Roth 
PBS       Roth 
Penicillin/Streptomycin    Roth 
Phenol       Applichem 
Sucrose      Applichem 
TEMED      Roth 
Tris       Applichem 
Triton-X-100      Roth 
TRI-reagent      Sigma 
Tween-20      Roth 
Yeast extract      Applichem   
 

3.3 Kits 
 
Transscriptor First Strand cDNA Synthesis Kit Roche 
One Day ChIP Kit     Diagenode 
Shearing Optimization Kit    Diagenode 
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QIAquick Gel Extraction Kit    Quiagen 
QIAquick

 
PCR Purification Kit   Quiagen 

ProteoExtract Subcellular Fractionation Kit  Calbiochem 
 
 

3.4 Buffers and Solutions 
 
Gel-electrophoresis buffers 
 
APS solution (10%): Ammonium persulfate in H2O 
 
Laemmli Buffer: 312.50 mM Tris-HCl pH 6.8 150 mM DTT 
 
Running buffer (5x) for 5 L: 75.5 g Tris/HCl (pH 8.3), 360.0 ml Glycine, 25.0 g 
SDS pH 8.3 
 
Sample buffer (2x): 0.5 M Tris/HCl (pH 6.8), 20% Glycerol, 10% β-
Mercaptoethanol, 4% SDS 
 
Separating gel (12%) per ml: 1.6 µl H2O, 1.3 µl of 1.5 M Tris/HCl (pH 8.3), 0.05 
µl of 10% SDS and 10% APS, 2.0 µl of 30% acrylamide mix and 0.002 µl of TEMED 
 
Stacking gel (5%) per ml: 0.68 µl H2O, 0.13 µl of 1.0 M Tris/HCl (pH 6.8), 0.01 µl 
of 10% SDS and 10% APS, 0.17 µl of 30% acrylamide mix and 0.001 µl of TEMED 
 
50 X Tris-Acetate-EDTA (TAE): 242 g Tris base, 57.1 mL Acetic acid, 100 mL 0.5 
M EDTA (before use shake vigorously). Add H2O to 1 L and adjust pH to 8.5 using 
KOH 
 
Transfer buffer: 5.8 g Tris-HCl, 2.92 g Glycine, 20% Methanol, 3.7 ml 10% SDS, 
ddH2O to 1000 ml 
 
 
For Immunohistochemistry 
 
Blocking Buffer: 5% goat serum 0.3 % Tx-100 0.01 M PBS 
 
 4% Fixation Buffer: 4 g PFA in PBS dissolved with few drops of 10 M NaOH, pH 
7.4, PBS to 100 ml 
 
Mounting Medium: 0.1 % gelatine 10 % Ethanol 27 
 
30% Sucrose: 30 g of Sucrose dissolved in 100 ml of PBS, pH 7.4 
 
Washing Buffer: 1 % goat serum 0.1 % Tween 0.01 M PBS 
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Other Buffers and Solution 
 
PBS buffer: 8 mM Na2HPO4, 140 mM NaCl, 2 mM KH2PO4, 2.7 mM KCl, pH 7.4 
 
TBST (10x): 12.11g Tris, 87.66g NaCl, 5ml Tween 20, 1g NaN3, Water up to 1L 
 
3M Sodium Acetate (80ml): 19.69 g anhydrous sodium acetate, pH 5.2  
 
 

3. 5 Animal Surgery and Injections 
 

3.5.1 Animals 

 
All animals used in this study were male C57 /B6J mice and group-housed in 

individually ventilated cages (IVC; 365 x 207 x 140 mm) until behavioral 

experiments. Mice were housed under a 12 hours light/dark cycle with food and water 

ad libitum. All animal surgery and behavioral test were performed in accordance to 

the national German law protection of animals and approved animal experimental 

protocols Az: 10/0186 and Az: G63.39630. 

 

3.5.2 Transcardial perfusion of mice 

 
Rapid fixation of biological tissue is essential for anatomical, histological and 

molecular studies. Transcardial perfusion with aldehyde-based fixatives is a common 

method in order to preserve the morphology and to interrupt biochemical processes 

that would lead to autolysis of the cells. Fixation of mice was performed by perfusion 

of 4 % paraformaldehyde (PFA) in PBS through the vascular system, using a 

peristaltic pump. Mice were anesthetized with an intraperitoneal injection of 0.1 mg 

/kg Temgesic. After opening the abdominal skin by a longitudinal incision and its 

removal, the thoracic diaphragm was cut laterally on both sides across the ribs with a 

sharp scissor. The heart was exposed and a perfusion needle was inserted into left 

ventricle of the heart in the ascending aorta. Shortly after inserting the needle, a small 

cut in the right auricle allowed the outflow of return circulation of the heart. Perfusion 
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was first performed with ice-cold sterile PBS for 3 min in order to wash out blood 

from the circulatory system. Subsequently, fixation was performed with perfusion of 

ice-cold 4% PFA in PBS for 6-8 min until optimal perfusion was indicated by the 

twitching of the tail and blood-less, white appearing liver. After decapitation and 

opening of the skull, the brain was isolated and post-fixed in 4 % PFA in PBS for 24 

hours at 4  °C under gentle agitation.  Subsequently, brains were stored for 2-3 days in 

30 % sucrose in PBS at 4 °C for dehydration. Finally, brains were frozen over liquid 

nitrogen and stored at – 80 °C for further processing. 

 

3.5.3 Brain sectioning 

 
PFA-fixed brains were embedded in cryomatrix and placed in a LEICA cryotome for 

25- 40 μm thick coronal and sagittal sections and collected as free floating sections in 

PBS with Stretpomycin/Penicilin and stored at 4 °C. 

 

3.5.4 Stereotaxic implantation of bilateral-guide 
microcannulae 

 
Three days before stereotaxic surgery, mice received drinking water containing 3ml/L 

of Sodium metamizol for advanced pain treatment. On the day of stereotaxic surgery, 

mice were anaesthetized with a mixture of 120 mg/kg ketamine and 8 mg/kg of 

xylazine.  The eyes of the mice were covered with bepanthen to protect eyes against 

drying-out. After fixing the head of mice in a Benchmark stereotaxic instrument, the 

head of mice was disinfected with 70 % Ethanol and the skin and connective tissue 

above the skull carefully removed and cleaned with PBS.. The coordinates for drilling 

holes were set according to the region desired for implantation. Using an electrical 

drill with a 0.5 mm driller, two holes were drilled bilaterally on the skull. For 

intrahippocampal injections in the dentate gyrus of the dorsal hippocampus, bilateral-

guide cannulae were inserted at following coordinates: anterior/posterior -1.70 mm 

relative to bregma; medial/lateral ± 1.00 mm and dorsoventral – 2.00 mm. After 

insertion, cannulae were mounted and fixed on the skull by dental cement. 
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Afterwards, mice were place on a warming plate at 37 °C and kept until they woke up 

and returned to their cages. To minimize pain, 10 mg/kg of rymadil were injected 

subcutaneously. Sodium metamizol containing drinking was further administered for 

additional 4 days. Microcannulae implanted mice were subjected to behavioral test 

one week after recovery from stereotaxic surgery. 

3.5.5 Bilateral injections of MS-275, SAHA and siRNA 

 
MS-275was prepared as a 10 mg/ml stock solution in DMSO. For intra- hippocampal 

injections, MS-275 was diluted to a concentration of 750 ng/μl, and a total amount of 

375 ng injected per hemisphere. Controls were injected with DMSO mixed with 

artificial cerebrospinal fluid (aCSF). Intrahippocampal injections with SAHA were 

performed as described before 168. Briefly, a stock solution of SAHA was prepared in 

DMSO. Before the experiment SAHA (40µg/µl) was dissolved in aCSF and 5 µg/µl 

bilaterally injected in the dorsal hippocampus in order to have a total amount of 10 

µg. Controls were injected with aCSF. For siRNA injections, siSTABLE Control 

siRNA from Thermo Scientific Dharmacon targeted against HDAC1 was diluted in 

PBS and prepared with the HiPerfect transfection reagent from Qiagen to a final 

concentration of 500 µM according to a protocol previously described 468. siSTABLE 

Non-targeting siRNA was used as a negative control (scramble). 

3.5.6 Stereotaxic injection of AAV using glass capillaries  

 
For stereotaxic injections of AAV particles in the prefrontal cortex and dorsal 

hippocampi of mice, treatment with painkillers and anesthesia was performed similar 

to the stereotaxic implantation of microcannulae. After fixation of the mouse in the 

stereotaxic instrument, the head of mice was cleaned and disinfected with 70 % 

Ethanol. A longitudinal cut was made on the head from between the eyes and until 

between the ears of mice, exposing the bregma and lambda of the skull. After removal 

of the skin and connective tissue on the skull, two holes were drilled according to the 

desired coordinates. In the case of the prefrontal cortex, the two holes were drilled 

according to the following coordinates: anterior /posterior + 1.40 mm respective to 

bregma; medial/lateral ± 0.45 mm. In the case of dorsal hippocampus: 
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anterior/posterior 1.70 mm relative to bregma; medial/lateral ± 1.00 mm. Glass 

capillaries filled with mineral oil on the top, a small air bubble in the middle and 

respective AAV particles in the bottom were placed on a nanoliter 2000 

microinjector. The microinjector was connected to an ultra microsyringe pump in 

order to control the speed and volume of injection. For injections with HDAC1-GFP-

AAV or GFP-AAV 1 μl with 1.0* 108 transducing units were injected per 

hemisphere. After injections, the skin of mice was joined together using histoacryl. 

Mice were kept on warming pads at 37 °C until they woke up and returned to their 

home-cages. To minimize pain, 10 mg/kg of rymadil were injected subcutaneously 

and received for additional 4 days sodium metamizol containing drinking water.  

  

3.5.7 Intraperitoneal Injections of MS-275 

 
For intraperitoneal injections with MS-275, a protocol previously described in 

Engmann et al., was applied 469. MS-275 stock-solution (100 μg/μl) was diluted 1:80 

in DMSO and PBS in order to have a 1.25 μg/μl working-solution. Mice were then 

injected intraperitoneally with 12.5 mg/kg of MS-275 for 10 days. Control mice 

received a PBS- DMSO mixture. 

 

3.6 Behavioral experiments  

3.6.1 Open field test (OF) 

 
General exploration activity, locomotion and basal anxiety of mice were analysed in 

the Open field test. Each mouse was placed to the centre of a square open arena 

(length 1 m; width 1 m; side walls 20 cm height) and behavioural activity was 

recorded for 5 min using the VideoMot2 tracking system (TSE). The total distance 

travelled and relative time spent in the centre of the open field was quantified to 

address explorative activity. 
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3.6.2 Novel-object-recognition-test (NOR) 

 
Recognition memory of mice was addressed by using the novel-object recognition 

(NOR) test. It was first proposed by Ennaceur and Delacour 470 and is based on the 

spontaneous behaviour of rodents to spend more time in exploring a novel object than 

a familiar object. The test is usually conducted subsequent to the open field (OF) test 

and contains in general three phases: habituation, training and testing. During the 

training phase, mice are introduced to explore two identical objects whereas in the 

testing phase, a novel one replaces one of the two objects. However, depending on the 

time of delay in which the novel object is presented to asses recognition memory, the 

testing phase involves two trials of the object recognition task: 1. Working memory 

with presenting the novel object at the same day of training and 2. Long-term memory 

with a 24 hours delay before presenting the novel object to the mice. After the OF 

test, mice were habituated to the open arena for 5 min on two consecutive days. 

Twenty-four hours after this additional habituation period, mice were exposed for 5 

min to the familiar arena with two identical objects placed at an equal distance (18 cm 

from the sidewalls). Habituation to the two identical objects was carried out for two or 

three days until anxiety levels of mice in approaching the objects were reduced. 

Twenty- four hours after, mice were subjected to the object recognition task for the 

working memory test involving the introduction of two new identical objects in the 

training phase and the exchange of one of the two identical objects to a new object in 

the testing phase. To this end, mice were allowed to explore the open arena in the 

presence of two new identical objects for 5 min in the training phase, followed by a 

retention period in the home cage for 5 min. Meanwhile, one of the two identical 

objects was replaced with a new object. During the testing phase, mice were exposed 

to this situation and working memory assessed by scoring exploration of the new 

object on the basis of sniffing and direct contact with the object. Twenty- four hours 

after the working memory test, the new object was replaced again by another new 

object to test long-term memory. The index for object preference was calculated as 

per cent of time spent with novel object using following formula: (time spent with 

novel object/ time spent with both objects)*100%. 
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6.3.3 Cross-maze exploration test (X-maze) 

 
The Cross-maze (X-maze) exploration test originates from the same principle as the 

Y-maze and was performed in order to analyse the spatial working memory in mice. 

The X-maze protocol used here was based on previously published protocol from 

Jawahr et al 471 with minor modifications. The X-maze was built from light grey 

plastic material consisting of four arms arranged in 90°C position (arm sizes: 30 cm 

length, 8 cm width, and 15cm height) rising from a central square measuring 8 x 8 

cm. The walls of each arm contained a slot in which paperboard with different 

geometrical patterns were inserted to facilitate discrimination and recognition of each 

arm for the mice. During a 10 min. test session, each mouse was placed in the central 

square of the maze and allowed to move freely through the maze. Arm entries were 

recorded using the VideoMot2 tracking system (TSE Systems). Percentage of arm-

entry alternation was used as readout for memory strength. One successful alternation 

was defined as sequential entries into the four arms in overlapping quadruple sets (e.g. 

2,4,3,1 or 1,3,2,4 but not 1,2,3,1 or 3,4,2,4). The alternation percentage was calculated 

as the percentage of actual alternations to the possible number of arm entries. 

 

3.6.4 Elevated Plus-Maze (EPM) 

 
The elevated plus-maze was conducted as an additional test to analyze basal anxiety. 

The maze consisted of a plus-shaped arena with two open and two enclosed arms with 

an open roof. The plus-shaped arena itself was elevated in a height of 53 cm from the 

ground. Each arm measured 45 x 10 x 30 cm and a central field was a square with 10 

cm. Each mouse was placed in the central square and allowed to explore the maze for 

5 min and the activity recorded using the VideoMot2 tracking system (TSE Systems). 

Percentage of time spent in close and open arms was taken as a measure of basal 

anxiety level. Increased time spent in the open arms of the plus-maze indicated 

heightened anxiety levels. 
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3.6.5 Porsolt forced swim test (FST) 

 
The Porsolt forced swim test was carried out in order to analyze depressive-lile 

behavior in mice. Mice were placed in a vertical plastic cylinder (20 cm diameter) 

filled with room temperature warm water. Swimming activity was grouped into 

periods of immobility and time of floating measure for 5 min with a stop-watch. 

Floating time in seconds was used as an index to show depressive-like behavior. 

 

3.6.6 Prepulse inhibition of startle response (PPI)  

 
Sensorimotor gating function was measured by the prepulse inhibition of startle 

response (PPI) on the basis of a previously described protocol from Radyushkin et al., 

using an apparatus from TSA 472. Mice were placed individually in a small cylindrical 

cage with an integrated stainless floor grid (80 x40 x 45 cm) to restrict major 

movements that was placed on a sensitive transducer platform in a sound-attenuating 

cabinet. Acoustic stimuli were delivered through loudspeakers above the cage and 

startle response signals presented by the TSA startle response software. During one 

test session, mice were habituated first for 3 min to 65 db background noise followed 

by a 2 min baseline recording. After baseline recording, mice were exposed to six 

pulse-alone trials with each consisting of 120 db startle stimuli intensity for 40 ms 

duration in order to decrease the influence of within-session habituation and to scale 

down the initial startle response to a stable plateau. Startle reaction to acoustic stimuli 

was recorded with the presentation of the startle stimuli for a time window of 100 

milliseconds. PPI of startle activity was conducted by trials presenting startle stimuli 

of 120 db for 40 ms alone or pre-ceeding non-startling prepulses of 5, 10, 15, 20 and 

25 db above the 65 db background noise ( 70 db, 75 db, 80 db, 85, 90 db). An interval 

of 100 ms with background nose was introduced between each prepulse and pulse-

alone stimulus. Each trial (startle pulse alone, pulse preceded by 70, 75, or 80 dB, or 

no stimulus) was presented in a pseudorandom order with intertrial intervals ranging 

from 8 to 22 s. The startle response amplitude was defined as the average of the 

maximum force (Max G) detected during a reaction to a 120 db startle stimulus. 

Percentage of prepulse inhibition of startle response was calculated using the 
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following formula: (%)= 100 - [(startle amplitude after prepulse and pulse)/(startle 

amplitude after pulse only)° *100]. 

 

3.6.7 Morris Water Maze (MWM) 

 
The Morris water maze test was carried out in order to analyze spatial learning and 

memory of mice. The MWM test was conducted in a circular tank (diameter 1.2 m) 

filled with opaque water and with a platform hidden below the surface. The 

swimming path of mice was recorded using the VideoMot2 tracking system.  

One training session consisted of four trials in which mice were put into the water 

maze subsequently from different locations presented by different spatial cues and 

allowed to swim for maximal 60 seconds. If the mouse did not find the hidden 

platform within 60 s, it was gently guided to it and placed on it for 10 seconds. The 

MWM training consisted of approximately 10 sessions. Twenty-four hours after the 

last training session, mice were subjected to the probe test that represents a memory 

test in which the platform was removed and each mouse was left in the maze for 1 

min. The relative time spent in the quadrant where the platform was previously 

located and the number of crosses through the region outlining the former location of 

the platform were used as a read-out for spatial memory strength. 

 

3.6.8 Contextual Fear Conditioning and Extinction (FC-
Ext) 

 
Mice were subjected first to contextual FC in order to analyze associative learning 

and memory. The fear conditioning test consisted of a training session and the 

memory test. The test was carried out in an automated fear conditioning system of 

TSE in which a computer was connected to a control unit including a shock and a 

tone generator, and a white plastic box [58 cm (length) × 30 cm (width) × 27 cm 

(height)] with a 12 V light at the ceiling, inside which the training chamber was 

located. Training was performed in a plexiglass chamber [35 cm (length) × 20 cm 

(width) × 20 cm (height)] placed on a removable metallic grid made of stainless steel 
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rods (diameter 4 mm; bars spaced 0.9 cm apart), through which an electrical shock 

could be conducted. During contextual fear conditioning, a neutral conditioning 

stimulus (CS) presented by the training chamber, is associated with an aversive 

unconditional stimulus (US) that is presented by an electrical foot shock. Thus during 

the training session, animals were placed into the training chamber, that represented 

the context, and were allowed to explore the chamber for 3 minutes, followed by an 

mild electrical foot shock for 2s with 0.7 mA. Twenty-four hours after the training 

session, mice were subjected to the memory test and associative memory measured as 

context-dependent freezing, defined as the absence of movements other than those 

required for breathing. Associative memory was expressed by calculating the number 

of measurements when the mouse showed freezing behavior, divided by the total 

number of measurements. (% Freezing = Freezing counts/18 *100). If 24 hours later 

followed by repeated exposure to the same context (chamber), the memory test was 

called as extinction day 1 (E1). Thus, extinction of contextual fear memory was 

performed on consecutive days consisting of reexposure to the context for 3 min until 

freezing behavior of mice significantly declined compared to E1.  

 

3.7 Molecular biology and biochemical techniques 
 

3.7.1 Isolation of total RNA and Proteins from brain tissue 

 
Total RNA isolation of brain tissue was conducted using the TRI-reagent from 

Sigma-Aldrich and adjusted the manufacture´s protocol to our purposes. The TRI-

reagent is a mixture of phenol and guanidine-isothiocyanate that enables the 

researcher to isolate RNA, DNA and protein simultaneously from one sample 473.  

Depending on the brain region, volumes of used TRI-reagent varied between 200-500 

μl. Frist, frozen or fresh isolated brain tissue was homogenized in TRI- reagent using 

sterile micropstiles or an electric homogenizer. After complete homogenization, 

additional TRI-reagent was added and incubated for 5 min at room temperature (RT). 

Afterwards, 200-400 μl of chloroform was added to the suspension, shortly vortexted 

(3 sec) and incubated for additional 5 min at RT. The mixture was centrifuged for 5 

min at 4°C at 12000 g for 15 min in order to accelerate the full separation of the 
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organic, aqueous and inter-phase. The aqueous phase, containing the RNA was 

transferred to a new tube, while the inter- and organic phase containing DNA and 

proteins respectively were stored at – 80 °C for later processing. Isopropanol was then 

added to the RNA-containing aqueous phase, mixed vigorously and incubated at -20 

°C for 30 min or over night for precipitation of the RNA. After incubation at -20 °C, 

mixture was centrifuged and at 12000 g for 30 min at 4°C. The supernatant was then 

carefully discarded by decantation and the RNA pellet washed twice with 75 % 

Ethanol and dissolved in 20-50 μl of DEPC-H2O. In order to isolate proteins, 100% 

Ethanol was added to the inter-phase containing DNA, incubated for 5 min on a 

rotation-wheel and centrifuged for 5 min at 2000 g at 4°C. The supernatant containing 

proteins were transferred to a Spectra-Por MWC 1000 membrane for dialysis against 

0.1 % SDS in H2O in a big beaker under agitation over night. The next day, a globular 

white mass containing proteins were then transferred to a 1.5 ml eppendorf tube and 

resuspended in 4 M Urea/0.5 % SDS and warmed up at 70 °C under agitation to 

resolve the protein pellet completely.  

 

3.7.2 Subcellular Fractionation 

 
Subcellular fractionation was performed by using the Proteo Extract® Subcellular 

Proteome Extraction Kit from Calbiochem according to the manufacture´s 

instructions in order to isolate cytosolic, membrane and nucleus protein fractions. 

Brain samples were homogenized in 500 µL of ice-cold Extraction buffer I with 2,5 

µL Protease Inhibitor Cocktail and incubated for 10 min at 4 °C with gentle agitation 

on a rotation-wheel. After centrifugation for 10 min at 4°C at 750 g, supernatant 

containing the cytosolic fraction (Fraction I) were removed and stored on ice. Pellet 

was resuspended again with 500 µl ice cold Extraction Buffer II and 2,5 µL Protease 

Inhibitor Cocktail. After incubation at 4°C for 30 min by gentle agitation, insoluble 

material were pelleted at 5500 rcf for 10 min. Supernatant containing the membrane 

fraction (Fraction II) were removed and stored on ice. Nuclear pellet were 

resuspended with 250 µL Extraction Buffer III and 2,5 µL Benzonase® Nuclease by 

gentle flicking of the tube and incubated for 10 min at 4 °C by gentle agitation. After 

centrifugation at 4 °C for 10 min at 7500 g, the supernatant containing the nuclear 
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fraction (Fraction III) were removed and stored on ice. Subcellular fractions were 

analyzed via immunoblot. 

3.7.3 Determination of Nucleic Acid and Protein 
Concentrations 

 

Concentrations and quality of DNA, RNA was determined using a NanoDrop 1000 

spectrophotometer by measuring the absorption of DNA and RNA samples at A260 

nm and proteins at A280 nm according the manufacture´s instructions. The sample 

purity was determined by the 260/280 ratio. 

 

3.7.4 In silico design and synthesis of Oligonucleotides 

 

In order to design oligonucleotides for polymerase chain reaction (PCR), gene-region 

specific sequences were selected using the Gene database of the National Center for 

Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/) and 

oligonucleotides sequences in silico designed using the Primer3 online tool 

(http://frodo.wi.mit.edu/). Oligonucleotides were then ordered from Sigma-Aldrich. 

Lyophilised oligonucelotides were then reconstituted in sterile H2O to a stock 

concentration of 100 μM and further diluted to a concentration of 10 μM for PCR 

reactions. 

3.7.5 Semi-quantitative Polymerase Chain Reaction (PCR) 

 
The amplification of specific DNA sequences for cloning was carried out by using 

semi-quantitative PCR. A standard PCR reaction mixture was prepared as follows: 

 
Table 4. Standard PCR-reaction mixture 

10 x Dream Taq Buffer (Green)  2.5   µl 
dNTP Mix ( 2.5 mM) 2.0   µl 
Forward Primer (10 μM) 1.0   µl 
Reverse Primer (10 μM) 1.0   µl 
Dream Taq Polymerase  0.2   µl 

http://www.ncbi.nlm.nih.gov/�
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Template DNA 1.0   µl 
PCR-grade H2O 17.3 µl 

 
PCR reaction was performed in a Masertcycler ep gradient from Eppendorf with 

following general program: 

 
Table 5. PCR-Program 

Step Temperature Duration 
Initialization 95 °C 5 min 
Denaturation 95°C 30 sec 
Annealing 55-70 °C 30 sec 
Elongation 72 °C 1 min 
Final Elongation 72 °C 7 min 
Final Hold 4 °C ∞ 

 
  
 
After PCR, 5 µl of amplification product tested by agarose gel electrophoresis and 

remaining PCR reaction mixture purified using the PCR purification Kit from 

Quiagen. 

 

3.7.6 DNA agarose gel electrophoresis  

 

Agarose gel electrophoresis was conducted in order to analyze the quality and size of 

DNA fragments after enzymatic digestion of plasmid DNA or of PCR amplification 

products. In general during gel electrophoresis, macromolecules such as DNA, RNA 

and protein are separated in an electrical field according to their size and charge 

resulting into different migration of macromolecules. Depending of the size of the 

expected DNA fragments, different quantities of agarose was dissolved in 1x TAE 

buffer and boiled in the microwave to dissolve agarose. After cooling down of the 

agarose solution to approximately 50°C, 1 μl of ethidium bromide per 50 ml of 

solution was added and the mixture pored into a horizontal gel trey containing a comb 

for polymerization at room temperature. Polymerized gel was placed into an 

electrophoresis chamber filled with 1x TAE buffer as running buffer and DNA 

samples mixed with 5 x loading dye loaded into the wells of the gel. After loading a 

DNA marker, electrophoresis was carried out for 45-60 min at 80- 120 V. After gel 

30x 
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electrophoresis, agarose gel was photographed using a UV-light gel documentation 

system. 

 

3.7.7 Isolation and purification of DNA fragments from 
Agarose gel 

 

The isolation and purification of DNA fragments such enzymatically digested and 

linearized DNA fragments were conducted after DNA agarose gel electrophoresis 

using the QIAquick gel extraction kit from Quiagen. The DNA band of interest was 

cut out of an agarose gel and transferred to a 1.5 ml eppendorf tube and weighted. 

Three volumes of QG buffer was added to the gel slice and incubated at 50 °C until 

the gel slice was melted (approximately 5-10 min.). 

Subsequently, one volume of isopropanol and 1/10 volume of 3 M sodium acetate 

was added, mixed and transferred to a QIAquick spin column placed in a 2 ml 

collection tube. After centrifugation of 1 min at 13000 rpm, the outflow was discarded 

and 0.75 ml of PE buffer added and centrifuged again at 13000 rpm. The column was 

transferred to a 1.5 ml eppendorf tube and sterile water added in order to elute bound 

DNA. The quality and concentration of eluted DNA was analysed with the NanoDrop 

spectrometer. 

3.7.8 Purification of PCR Products 

 
Purification of PCR products were conducted using the QIAquick

 
PCR purification 

kit from Quiagen according to the manufactures instructions. Five volumes of buffer 

BP was added to one volume of PCR product and mixture transferred to a QIAquick 

column placed into a collection tube and centrifuged shortly for 30-60 seconds. After 

discarding the flow-through, QIAquick column was placed into a new collection tube 

and 20-50 µl H2O added to the center of the QIAquick without touching the 

membrane with the tip of the pipette and incubated for 1 minute. Purified PCR 

product was then subjected to enzymatic digestion for cloning purposes. 
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3.7.9 Enzymatic restriction of DNA 

 

Plasmid DNA or PCR products were digested using restriction Enzymes for 1 hour to 

over night at 37°C in order to ensure complete digestion. The required units of 

restriction enzymes for proper digestion were calculated according following formula: 

Y= X μg of DNA * 6. For cloning purposes, 2-4 μg of DNA was mixed with 10x 

restriction buffer and restriction enzyme and brought to a volume of 50 μl sterile H2O. 

For control digestion, 500 ng of DNA was mixed with 10x restriction buffer and 

restriction enzyme and brought to a volume of 30 μl sterile H2O.  The reaction was 

loaded on a agarose gel for determining the success of restriction and the desired 

target DNA fragment excised and subjected to purification using the QIAquick gel 

extraction kit from Quiagen. 

 

3.7.10 DNA Ligation 

 

During a ligation reaction, a T4 DNA Ligase joins two DNA fragments with 

compatible ends by catalyzing a phosphodiester bond, forming a circular DNA. 

Ligation reaction mixture was set up in a volume of 20 µl with a 3:1 ratio of Insert 

DNA and vector DNA respectively, 10 x ligation buffer and 400 units T4 DNA 

ligase. Ligation reaction mixture were then incubated over night at 16 °C in a water-

bath. As a negative control, a ligation reaction mixture without adding the Insert DNA 

was used.  

3.7.11 Transformation of Escherichia coli (E.coli) by 
electroporation 

 

Transformation of E.coli was conducted by electroporation of competent SURE or 

DH5α cells. Electrocompetent DH5α or SURE cells were thawed on ice and 1 -10 µl 

of DNA ligation mixture was added. After incubation of 5 min, cell-mixture was 

transferred to a pre-cooled electroporation cuvette. Electroporation was carried out 

using the electroporator 2510 device (1800V). Immediately after electroporation, 500 
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µl of warm LB medium without antibiotics were added to the cells and 50 µl, 100 µl, 

and 200 µl of the suspension were plated on an agar plate containing the appropriate 

antibiotic. Next, agar plates were incubated for 10-15 hours at 37°C. 

 

7.4.12 Isolation of plasmid DNA from E.coli 

 

Isolation of plasmid DNA was performed by an alkaline lysis method 474 using P1,P2 

and P3 buffers from Quiagen. Single bacteria colonies were inoculated in 5 ml LB 

medium containing the appropriate antibiotic and incubated over night at 37°C. Next, 

E.coli cells were centrifuged at 7000 x g for 7 minutes at RT in order to harvest the 

cells. The bacterial pellet was resuspended in 300 µl buffer P1 and transferred to a 

new 1.5 ml Eppendorf tube (Eppendorf AG, Germany). After adding 300 µl of buffer 

P2 to the mixture and incubation for 5 min at RT, cells were mixed with additional 

300 µl of P3 buffer and centrifuged for 15 min at 16000 rpm at 4°C. The supernatant 

were transferred to a new tube and incubated for 5 min at 50°C in order to remove the 

RNA. DNA was then additionally purified by phenol/chloroform extraction by adding 

phenol:chloroform:isoamylalcohol (25: 24:1) in a 1:1 ratio. Mixture were transferred 

to a PhaseLock Gel Heavy tube (Eppendorf, Germany) and centrifuged for phase 

separation at 16000 rpm for 1 min at RT. The upper phase was transferred in a new 

1.5 ml tube and mixed with an equal volume of chloroform. After 1 min 

centrifugation, the upper phase was collected and DNA precipitated with 0.7 volume 

isopropanol. After centrifugation for 15 min at 16000 rpm at 4°C, the DNA pellet was 

resuspended in 30 µl of PCR-grade H2O. 

 

3.7.13 Adeno-associated-Virus (AAV) production 

 
The AAV infectious particles used in this study were produced by a Viral Vector 

platform in Dr. Sebastian Kügler´s laboratory. Recombinant AAV vectors were 

prepared according to standard protocols. Serotype 2 and 6 vectors were propagated 

in HEK293 cells, purified by iodixanol step gradient ultracentrifugation and heparin 

affinity FPLC, followed by extensive dialysis against PBS. Genome copies were 
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determined by quantitative real time PCR and purity > 99% by SDS gel 

electrophoresis and silver staining. Virus production was conducted by Dr. Sebastian 

Kügler at the University Medicine Göttingen, Department of Neurology..  

3.7.14 Reverse Transcription PCR (RT-PCR) 

 
Complementary DNA (cDNA) was synthesized from messenger RNA (mRNA) using 

the Transscriptor First Strand cDNA Synthesis Kit from Roche according to the 

manufacture´s protocol. A reverse transcription reaction mixture consisted of 1 µg of 

RNA, random hexamer primers (600 pmol/µl) and PCR-grade H2O in a total volume 

of 13 µl. For denaturation of RNA secondary structure, the mixture was incubated at 

65 °C for 10 min in a Mastercycler ep gradient. Afterwards, 20 U/µl reverse 

transcriptase, deoxynucelotide mix (10 mM each), 5 x transcription buffer and 40 

U/µl of protector RNase transcriptase was added to the mixture. The final mixture 

was incubated for 10 min at 25 °C followed by incubation at 55 °C for 30 minutes. 

The reverse transcriptase was inactivated by incubating the mixture for 5 min at 85 

°C. The generated cDNA was stored at -20 °C or further processed for quantitative 

real time PCR. 

3.7.15 Quantitative real time PCR (qPCR) 

 
Quantitative real time PCR (qPCR) was conducted in order to investigate differential 

gene-expression or analysis of chromatin immunoprecipitated (ChIP) DNA fragments 

using a Roche 480 light cycler. For gene-expression analysis, gene specific primers 

and respective universal library probes were mixed with cDNA and a light cycler pcr 

mix. Data was normalized to the housekeeping gene hypoxanthine-gianine 

phosphoribosyltransferase (Hprt). For ChIP analysis, gene-region specific primers 

were mixed with ChIPed DNA and SYBR Green Master Mix from Roche. For ChIP 

data analysis, data was normalized to the corresponding input. 
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3.7.16 Chromatin Immunoprecipitation (ChIP) 

 
In order to analyze protein-DNA interactions, we applied Chromatin 

Immunoprecipitation (ChIP), a technique that allows localization of proteins such as 

transcription factors or histone-tail modifications to a specific genomic region. Two 

methodologies exist for carrying out ChIP. While XChIP protocols involve fixation of 

chromatin in which protein-DNA complexes are cross-linked using formaldehyde and 

fragmentation by sonication, NChIP relies on native chromatin prepared by enzymatic 

digestion using micrococcal nuclease. In general, XChIP is more suitable when 

studying DNA binding of non-histone proteins or not direct DNA interacting proteins. 

However, XChIP includes the risk of creating artificial protein-DNA interactions 475. 

This risk is higher when working with human post mortem tissue, which is in 

generally not fresh 476. In my experimental settings, I worked with freshly isolated 

hippocampal tissue that were directly subjected to XChIP-experiments, using a 

standardized protocol from Diagenode (Diagenode, Belgium). 

For preparing sheared chromatin followed by immunoprecipitation, the DNA-

shearing and One-Day ChIP Kit from Diagenode (Diagenode, Belgium) was used 

according to the manufactures protocol with minor modifications. After 

homogenization of tissue using polypropylene pestles (Bioquote, UK) in PBS 

containing a mixture of protease inhibitors, cells were fixed using formaldehyde with 

a final concentration of 1% for 10 min on a rotation wheel. Fixation was stopped 

using 1.25M Glycine and homogenates were further processed with Buffer A, B and 

C from the DNA-shearing Kit. For chromatin fragmentation, shearing was conducted 

in Buffer D and samples were placed in a Bioruptor (Diagenode, Belgium) connected 

to a water cooler, in order to keep the temperature constantly at 4°C. To obtain 

chromatin fragment size between 200-500 bp, Bioruptor work settings were used as 

followed: 20 cycles, power setting high, 30 sec ON, 30 sec OFF. For 

immunoselection, sheared chromatin was incubated with 3-10 µg of antibody for 1h 

in an ultrasonic cleaner to increase antibody-binding kinetics 477. Sheared chromatin 

incubated with non-immune IgG served as negative control. Immunoprecipitation 

were conducted by incubating the chromatin-antibody complex with pre-blocked 

protein A agarose-beads for 60 min on a rotating wheel at 4°C. Chromatin-antibody-

bead complex was washed with ChIP buffer and after Proteinase K digestion for 1h at 
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55°C, DNA was isolated using DNA purifying slurry. Precipitated DNA was 

analyzed in a Bioanalyzer (Agilent, Germany) and amplified by quantitative real-time 

PCR using SYBR Green and gene-region specific primers. 

 

3.7.17 Sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) 

 
SDS-PAGE was conducted in order to separate proteins electrophoretically according 

to their molecular weights in the presence of denaturating SDS detergent using the gel 

electrophoresis system from BIO-RAD. Depending on the protein size later desired to 

analyze by immunoblotting, 8 %, 10% and 12 % resolving gels with pH 8.8 were 

polymerized. Stacking gels with pH 6.8 were polymerized over the resolving gel to 

collect proteins of any given size to move through the gel at the same rate. Protein 

lysates were mixed with 5x Laemmli buffer and denaturated for 5 min at 95 °C. Then 

20-40 µg of protein samples were loaded on the gel. Electrophoresis carried out at 60 

V for 30-35 min through the stacking gel and 120 V for 2 h in the resolving gel. 

 

6.4.18 Immunoblotting 

 
After gel electrophoresis, proteins were transferred (blottet) to a nitrocellulose 

membrane using the transfer system from BIO-RAD filled with transfer-buffer. 

Transfer of proteins were performed by applying a current at constant voltage of 45 V 

for maximal 18 hours at 4 °C. After blotting, nitrocellulose membranes were blocked 

in 3 % milk in 1x PBS for 1 hour at RT. Afterwards, membranes were incubated with 

primary antibodies for over night at 4 °C and washed subsequently three times for 10-

15 min with 1x PBS containing 0.1 % Tween. Protein bands were detected with 

secondary Alexa800- 30 labeled goat anti-rabbit or anti-mouse antibody using the 

Odyssey Infrared Imaging System (Licor). Levels of detected proteins were 

normalized to the total amounts of their corresponding loading controls. 
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3.7.19 Immunohistochemistry 

 
For immunohistochemistry (IHC), brain sections were washed three times with TBS 

for 5 min, permeabilized and blocked against non-specific binding sites by incubation 

for 2 hours with blocking buffer at RT. Immunostaining was performed by incubating 

brain sections in primary antibody diluted in blocking buffer at 4 °C overnight. 

Afterwards, brain sections were washed three times for 10-15 min at RT with washing 

buffer before incubating with secondary anti-rabbit Cy3- labeled or anti-mouse 

Alexa488-labeled antibody for 2 hours at RT. Finally, the sections were incubated 

with 4',6-diamidino-2-phenylindole (DAPI) for nuclear staining and then mounted 

with Mowiol and coverslips. 

 

3.7.20 Confocal microscopy 

 

Confocal microscopy was carried out using the Leica SP2 AOBS confocal 

microscope and Leica confocal Software (LCS). Alexa488 and Cy3 conjugated 

secondary antibodies were excited using 488 nm and 561 nm lasers respectively 

 

3.8 Statistical Analysis 
 
All data was analyzed with the Prism software.  Significance was evaluated using 

unpaired student´s t-test, Mann-Whitney test or one-or two-way analysis of variance 

(ANOVA) including repeated measures when appropriate. Bonferroni post-hoc test 

was performed after ANOVA analysis when applicable. Significance was set at p≤ 

0.05 for all tests. Errors are shown as average ± SEM in figures and text if not 

otherwise stated. 
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4. Results 

4.1 HDAC1 mediates fear extinction learning 
 

4.1.1 HDAC1 expression in the adult mouse hippocampus 
and different brain regions in schizophrenia 

 

In order to study the role of HDAC1 in the etiopathogenesis of schizophrenia, I chose 

the mouse as a model organism and decided first to analyze HDAC1 expression in 

different brain regions in the adult mouse brain, namely the Hippocampus (Hip), 

Hypothalamus (Hy), Septum (Sep), Prefrontal Cortex (PFC) and Striatum (Str). 

Immunoblot analysis showed robust HDAC1 expression in the selected brain regions 

(Fig. 4A).  Subcellular fractionation and immunohistochemical analysis of the 

hippocampus displayed prominent HDAC1 localization in neuronal nuclei compared 

to the cytosolic compartment (Fig. 4B, C). The robust expression and primarily 

nuclear localization of HDAC1 is in line with previous data 478. 

Next, I wondered whether HDAC1 expression would show a similar pattern in the 

human brain. Immunoblot analysis of post-mortem tissue obtained from individuals 

that did not suffer from any neuropsychiatric disorder revealed that HDAC1 protein 

expression was present in all brain regions selected with higher levels in the 

hippocampus and prefrontal cortex (Fig. 4D).  

HDAC1 mRNA was reported to be elevated in the hippocampus and prefrontal cortex 

of schizophrenia patients 433,435However, since the analysis of post-mortem tissue 

often result into deviant observed results in different laboratories, I analyzed HDAC1 

mRNA expression in hippocampal and prefrontal cortical post-mortem tissue 

available in our laboratory. Quantitative real-time PCR (qPCR) revealed significantly 

increased HDAC1 expression in the hippocampus and prefrontal cortex of 

schizophrenia patients compared to age-matched control samples (Fig 4E). Thus, I 

was able to reproduce the finding of Benes and Sharma showing elevated HDAC1 

expression levels in the hippocampus and prefrontal cortex of individuals with 

schizophrenia. 
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Figure 4: Expression of HDAC1 in the adult mouse and human brain. 

A. Robust HDAC1 expression in the adult mouse brain. Representative immunoblot pictures showed 
HDAC1 protein and the loading control Gapdh in the hippocampus (Hip), hypothalamus (Hy), septum 
(Sep), prefrontal cortex (PFC) and striatum (Str). B. Representative immunoblot analysis of 
hippocampal subcellular fractionation showed enriched HDAC1 in the nuclear fraction. Synaptophysin 
and NeuN (Neuronal Nuclei) served as loading controls for the membrane and nuclear fraction, 
respectively. C. Representative confocal images showed HDAC1 protein in the entire mouse 
hippocampus and in NeuN-positive neurons of the dentate gyrus. . Scale bars for confocal images: Top, 
200 μm; bottom 20 μm; hippocampal subfields CA1, CA2,CA3; corpus callosum (cc); dentate gyrus 
(DG); pyramidal cell layer (Py). D. Representative immunoblot analysis showed HDAC1 protein in the 
prefrontal cortex, hippocampus, entorhinal cortex (Ecx) and septum of postmortem human brain tissue 
of patients that did not suffer from any neuropsychiatric disorder. The image depicts the representative 
pattern observed in 4 individuals. E. Elevated Hdac1 mRNA expression levels in the hippocampus and 
prefrontal cortex of post-mortem human brain tissue of individuals with schizophrenia (n= 8/group). 
Control C, Schizophrenia SZ (A, B, D). 30 μg of protein were subjected to SDS-PAGE); **p≤ 0.01; 
students two-tailed t-test. Error bars represent ± SEM. 
 

4.1.2 Adeno-associated virus (AAV) mediated neuronal 
overexpression of HDAC1 in the adult mouse hippocampus 

 

I could reproduce elevated HDAC1 mRNA levels in the hippocampus and prefrontal 

cortex of individuals with schizophrenia. However since over-expression of HDAC1 

from early developmental stages did not cause any overt phenotype in mice 196) I 

hypothesized that increased HDAC1 levels might not reflect a developmental but 

rather a genome-environment effect during the pathogenesis of schizophrenia. Thus, 

acute overexpression of HDAC1 in the adult mouse brain would help to better 
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understand the role of increased HDAC1 levels observed in the diseased brain, 

simulating cognitive endophenotypes of schizophrenia. 

To this end, I generated an Adeno-associated virus (AAV) that expressed HDAC1 

fused with GFP (HDAC1-GFP AAV) under the neuron-specific synapsin 1 promoter 

in order to allow neuron-specific expression of HDAC1 479. AAVs expressing GFP 

alone (GFP-AAV) served as controls. To address the question whether elevated 

HDAC1 levels would lead to cognitive endophenotypes of schizophrenia, I first 

focused on the hippocampus, a brain region affected in schizophrenia and important 

for cognitive processes. 

AAV particles expressing HDAC1-GFP or GFP alone were injected into the dorsal 

hippocampus of mice and AAV the corresponding expression was tested by qPCR 

and immunoblot analysis after 6 or 14 days of injection (Fig. 5A). qPCR analysis 

revealed a six-fold increased expression of HDAC1 after 14 days of injection 

compared to mice injected with GFP. This six-fold increase expression of HDAC1 

resulted in a two-fold increase of hippocampal HDAC1 protein compared to 

endogenous HDAC1 protein when measured 14 days after injection by immunoblot 

analysis (Fig. 5 A, D). No significant differences in HDAC1 mRNA expression were 

observed after 6 days of injection (Fig. 5B). Additionally, confocal microscopy of 

injected hippocampal sections could not detect HDAC1-GFP expression in the dorsal 

hippocampus after 6 days of injection (Fig. 5D). After 14 days of injection, HDAC1-

GFP expression was localized to neuronal nuclei within the dorsal hippocampus (Fig. 

5D). Moreover, injection of the dorsal hippocampus did not affect the ventral 

hippocampus as shown by the lack of GFP expression (Fig. 5D). Also other brain 

regions such as cortex, cerebellum and cortex were not affected (data not shown). 

Importantly, significant overexpression of HDAC1 did not alter mRNA and protein 

expression levels of other Class I HDAC members (Fig. 5C; Fig. 6C).  
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Figure 5: AAV-mediated overexpression of HDAC1 in the dorsal hippocampus of mice.  

A. Experimental Design. AAV particles were injected in the dorsal hippocampus of mice and HDAC1-
GFP expression analyzed 6 and 14 days after injection. B. Quantitative real-time PCR analysis showed 
a six-fold increase in Hdac1 mRNA levels after 14 days of injection in HDAC1-GFP-AAV mice (n= 
3/group). C. The expression of other Class I HDACs after 14 days of AAV injection was unchanged. 
D. Representative confocal imaging of hippocampal sections confirmed that nuclear HDAC1-GFP was 
not detectable in mice 6 days after injection but after 14 days. No GFP fluorescence was visible in the 
ventral hippocampus of mice after 14 days of HDAC1-GFPAAV (n=4 /group). At 14 days left panel: 
Colocalization of endogenous HDAC1 with HDAC1-GFP in the dorsal hippocampus. Scale bar 200 
μm. Middle panel: high-magnification images of the dorsal dentate gyrus of HDAC1-GFP AAV 
injected mice. Scale bar: μm. At 14 days right panel: Ventral hippocampus of HDAC1-GFP AAV 
injected mice. Error bars represent ± SEM 
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Figure 6: HDAC1 protein expression in HDAC1-GFP-AAV mice. 

A. Immunoblot analysis of hippocampal protein lysates after 14 days of AAV injection. Proteins 
lysates were isolated from the same samples in which qPCR analysis was performed using TRI-
reagent. B. Quantification of immunoblot analysis in A. Mice injected with HDAC1-GFP AAV 
showed a two-fold increase in HDAC1 protein levels when compared to endogenous HDAC1.C. 
Quantification of immunoblot analysis of same lysates described in A were used to analyze protein 
levels of HDAC2, 3 and 8. No alteration in other Class I HDAC proteins levels was observed among 
groups. 30 μg of protein was used for immunoblot analysis n= 4/ group. Error bars indicate ± SEM. 
 

 

Taken together, we conclude that using the AAV expression system was suitable to 

achieve spatially restricted and time-dependent HDAC1 overexpression in the adult 

mouse brain in order to study its impact on cognitive function in mice. 

 

4.1.3 Cognitive function in mice overexpressing 
hippocampal neuronal HDAC1 

 

In order to investigate whether elevated hippocampal HDAC1 levels in the adult 

mouse brain would lead to cognitive impairments seen in schizophrenia patients, I 

injected mice with HDAC1-GFP or GFP alone viral particles in the dorsal 
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hippocampus and subjected them to behavioral test addressing explorative and 

depressive-like behavior, spatial, associative and working memory as well as 

sensorimotor gating function. 

When subjected to the open field test, HDAC1-GFP-AAV and GFP-AAV mice spent 

similar time in the center of the open field and showed no alter in their explorative 

activity indicating that basal anxiety was not affected (Fig. 7A). The same mice were 

subjected to the Porsolt Forced Swim test, a commonly used paradigm to address 

depressive-like behavior in rodents. However, no differences in the floating time of 

mice were observed (Fig. 7B). During working memory performances using the 

cross-maze and novel object recognition test, HDAC1-GFP and GFP-AAV mice 

again did not show significant differences (Fig. 7C, D). The consolidation of long-

term memories was analyzed by subjecting mice to the long-term memory test of the 

novel object recognition test, the morris water maze and contextual fear conditioning 

that all depend on proper functioning of the hippocampus. However, no significant 

differences in the consolidation of long-term memories were observed among groups 

(Fig. 7E, F, G).  Additional mice were exposed to the prepulse inhibition of startle 

response test, a paradigm that is used to address sensorimotor gating function that is 

impaired in schizophrenia patients and animal models of schizophrenia 480,481. As no 

overall effect of virus expression was revealed in the two-way analysis of variance 

(ANOVA), HDAC1-GFP-AAV mice did not show altered prepulse inhibition (PPI). 

However, student t-test of PPI at 70 db revealed significant increased PPI in HDAC1-

GFP-AAV mice (Fig. 8A). Baseline startle response of HDAC1-GFP and GFP-AAV 

mice was similar (Fig. 8B). 
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Figure 7: Behavioral characterization of mice overexpressing neuronal HDAC1 14 days after 
injection.  

A. Open field analysis of basal anxiety. No differences were observed in the time spent in the center of 
the open field or exploration activity among groups. B. Analysis of depressive-like behavior during the 
forced swim test. No differences in floating time were observed among groups. C. Working memory 
performance of mice during the cross-maze test was not affected among groups. D. Working memory 
performance of mice during the novel object recognition test. Mice showed similar object preference. 
E. Long-term memory performance during the novel object recognition test. No differences in long-
term memory were observed among groups. F. Spatial memory of mice during the morris water maze 
(MWM) test. Left panel: No significant differences in escape latency were observed during MWM 
training among groups. Right panel: Probe test 24 hours after the last training session with no 
differences among groups. G. Associative memory during contextual fear conditioning test. n= 9-10 
/group. Error bars represent ± SEM. 
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Figure 8: Sensorimotor gating function in mice overexpressing neuronal HDAC1 in the dorsal 
hippocampus.  

A. Overexpression of HDAC1 in the dorsal hippocampus did not affect Prepulse inhibition of startle 
response. Two-way ANOVA of repeated measures revealed no significant effect of virus expression [F 
(1, 16)= 1.018, p = 0.03280] while prepulse intensity had still a significant effect [F (2, 32)= 1.391, p = 
0.2635]. However, students two-tailed t-test revealed a mild significant difference between HDAC1-
GFP and GFP-AAV mice at 70 db of prepulse intensity (p= 0,0403). B. The acoustic startle response to 
120 db sound did not differ between GFP-AAV and HDAC1-GFP-AAV mice (p = 0,7137, Mann-
Whitney test). Error bars represent ± SEM; = 12 GFP-AAV/ 17 HDAC1-GFP. n= 9 GFP-AAV/ 10 
HDAC1-GFP AAV. 
 
 

In summary, AAV-mediated neuronal overexpression of HDAC1 in the adult 

hippocampus of adult mice did not result into schizophrenia-like symptoms such as 

increased anxiety, depressive-like behavior, memory impairments or disrupted 

sensorimotor gating function. 

 

4.1.4 AAV-mediated neuronal overexpression of HDAC1 
in the adult mouse hippocampus facilitates fear extinction 
learning 

 
The finding that AAV mediated over-expression of HDAC1 in the hippocampus of 

adult mice did not cause cognitive endophenotypes of schizophrenia or lead to 

obvious detrimental behaviors was surprising but in line with previous results from 

Guan et al 196, in which overall overexpression of HDAC1 in transgenic mice did not 

affect memory formation in the morris water maze and conditional fear conditioning 

test. 
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Nevertheless, as a nuclear protein deacetylating histones and member of different co-

repressor complexes mediating transcriptional repression, HDAC1 is suggested to be 

a master regulator of gene-expression 482. Moreover, HDAC1 have been shown to be 

essential in neuroprotection and neuronal development 483,484. On this basis, I assumed 

that HDAC1 might have a specialized function in memory formation. Differential 

regulation of hippocampal histone acetylation is known to be required for memory 

formation and studies investigating the impact of HDACi in the fear extinction 

indicated that histone-acetylation may also play an important role in the extinction of 

fear memories 410,414,485. 

Fear extinction is a specific form of learning, a so-called inhibitory learning and 

emotional memory that represents a decline in excessive fear response by repeated 

exposure to the fear-triggering stimulus in the absence of the aversive event. The 

paradigm of fear extinction as exposure therapy is typically employed in the treatment 

of anxiety disorders such as post-traumatic stress disorder (PTSD) 486,487.  Notably, 

fear extinction has been reported to be affected in individuals affected by 

schizophrenia 488.  

In rodents, hippocampus-dependent fear extinction is assessed on the basis of 

contextual fear conditioning following repeated re-exposure to the context. In the 

contextual fear conditioning test, rodents are exposed to a novel context followed by 

an electric foot shock eliciting the consolidation of fear memory 24 hours after 

receiving the foot shock, measured as the amount of freezing, a behavior that rodents 

express upon threatening situations. During fear extinction training, rodents are re-

exposed to the conditioned fear without receiving the foot shock again (extinction 

trial, E). Repeated re-exposure to the context is conducted until freezing response of 

mice decline in order to achieve successful fear extinction 441,489,490.   

 

In order to investigate the impact of AAV mediated hippocampal overexpression of 

HDAC1 during contextual fear extinction of mice, it is from utmost importance not to 

interfere with the acquisition and consolidation of fear memories. Thus, the AAV-

mediated overexpression of HDAC1 represented a suitable approach to design an 

experiment in which HDAC1-GFP was specifically overexpressed during fear 

extinction without affecting the process of memory consolidation. 

Mice were subjected to contextual fear conditioning 4 days after HDAC1-GFP-AAV 

injection (Fig. 9A), a time-point with no detectable HDAC1-GFP expression in the 
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dorsal hippocampus as outlined in Figure 2. Control mice were injected with GFP-

AAV and treated in similar manner. Twenty-four hours after fear conditioning 

training, mice were subjected to the memory test by re-exposure to the context that is 

referred here to as extinction day 1 (E1) (Fig. 9A). Thus, the acquisition and 

consolidation of fear memories occurred in the absence of HDAC1 overexpression. 

Eight days after E1, when HDAC1-GFP is strongly overexpressed, mice were 

subjected to extinction training (E2-E5) until the freezing response was significantly 

reduced (Fig. 9A). Interestingly, HDAC1-GFP-AAV mice showed significantly 

facilitated extinction when compared to GFP-AAV injected mice (Fig. 9A). 

 

 
Figure 9: AAV-mediated overexpression of HDAC1 accelerates fear extinction learning. 

A. Experimental design. Mice were subjected to contextual fear conditioning (FC) training 4 days after 
AAV injections in the dorsal hippocampus and 24 hours later to E1 (Extinction day 1) that corresponds 
to the memory test of FC. After exposure to E1, mice were kept for 8 days in their home cages and 
subjected to fear extinction training from E2-E5 when HDAC1-GFP was robustly overexpressed in the 
dorsal hippocampus of mice. B. Contextual fear extinction in HDAC1-GFP AAV and GFP-AAV mice. 
While mice showed similar freezing behavior at E1, HDAC1-GFP AAV mice showed significantly 
enhanced fear extinction learning displayed by accelerated reduction in freezing behavior compared to 
GFP-AAV mice. Two-way ANOVA of repeated measures: significant main effect of virus [F (1, 12) = 
8.635, p = 0.0124], significant main effect of fear extinction training [F (4, 48) = 132.7, p < 0.0001]; 
significant virus x fear extinction interaction [F (4, 48) = 6.507, p = 0.0003];(n=10/group). ;  *p≤ 0.05; 
**p≤0.001; ***p≤0.0001; students t-test; Error bars represent ± SEM. 
 
 

Thus, AAV-mediated neuronal overexpression of HDAC1 in the hippocampus 

facilitated fear extinction indicating that HDAC1 may regulate the extinction of 

hippocampus-dependent fear memories. 
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4.1.5 Inhibition and knock-down of hippocampal HDAC1 
impairs fear extinction in mice 

 
While the AAV-mediated overexpression of HDAC1 represents a gain-of function 

model, I wanted to apply a loss-of function model in order to further investigate the 

involvement of hippocampal HDAC1 during fear extinction. To this end, I used two 

approaches: 1. Administration of the HDAC inhibitor (HDACi) MS-275 that inhibits 

HDAC1 enzyme activity at nanomolar concentrations 203,204,491 and 2.  Injection of 

siRNA targeting HDAC1 in order to knock-down hippocampal HDAC1. 

After stereotaxic implantation of bilateral cannulae in the dorsal hippocampus and one 

week recovery of surgery, mice were subjected to fear conditioning followed by 

extinction training (Fig. 10A). Immediately after each extinction trial, mice received 

intra-hippocampal injections of MS-275 (Fig. 10A). The control group received a 

vehicle solution and was treated in the same manner as the MS-275 injected group. 

Notably, freezing response of MS-275 injected mice did not decline during extinction 

training, while freezing behavior of the vehicle treated group was significantly 

reduced (E1 vs. E5). Thus, inhibition of hippocampal HDAC1 activity by MS-275 

blocked the extinction of fear memories. I also tested the effect of MS-275 on 

memory acquisition. Therefore mice were injected with MS-275 immediately after 

contextual fear conditioning. Inhibition of hippocampal HDAC1 activity did not 

affect freezing during the memory test suggesting that the acquisition of fear 

memories is independent of HDAC1 (Fig. 10B). 
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Figure 10: Inhibition of HDAC1 activity by MS-275 impairs fear extinction without affecting the 
acquisition of fear memories 

A. Top panel: Wild-type mice implanted with bilateral guide microcannulae in their dorsal 
hippocampus were subjected to FC and received intrahippocamapl injections of MS-275 immediately 
after each extinction trial. Bottom: MS-275-treated mice displayed significantly impaired fear 
extinction compared to vehicle treated mice. B. Top panel: Wild-type mice received immediately after 
FC training a single intrahippocampal injection of MS-275 and were subjected to the memory test 24 
hours after. Bottom:  Freezing behavior during the memory test was similar between MS-275 and 
vehicle injected-mice. ;  *p≤  0.05; **p≤0.001; ***p≤0.0001; students t -test; Error bars represent ± 
SEM. 
 

While MS-275 has highest affinity towards HDAC1 showing a 100-fold higher EC50 

(half maximal effective concentration) compared to HDAC2 and HDAC3, the 

possibility that the inhibition of HDAC2 and HDAC3 activity is affecting fear 

extinction cannot be excluded. I therefore chose the siRNA approach using previous 

validated siRNA targeting HDAC1 to affect hippocampal HDAC1 levels and exclude 

the involvement of HDAC2 and HDAC3 during fear extinction 468,492. Mice received 

intra-hippocampal siRNA injections starting immediately after E1. Within 48 hours, 

mice were injected with HDAC1 siRNA 4 times every 12 hours before exposure to 

E2 and continued after each extinction trial until E5 performed on consecutive days 

(Fig. 11A). Mice injected with scrambled siRNA served as a control group. Mice 

injected with siRNA targeting HDAC1 demonstrated significantly impaired fear 

extinction compared to the control group. Furthermore, injection of HDAC1 siRNA 

resulted into significantly reduced hippocampal HDAC1 mRNA and protein levels 

compared to the control group correlating with impaired fear extinction in HDAC1 

siRNA mice (Fig. 11B, C, D). 
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Figure 11: siRNA-mediated knockdown of HDAC1 impairs fear extinction learning.  

A. Experimental design. Immediately after fear conditioning training, wild-type mice received 
intrahippocampal injection of siRNA and subjected to E1 24 hours later. After E1, mice received 
siRNA injections every 12 hours and were subjected to E2 48 hours after E1. Extinction training was 
continued on subsequent day every 12 hours and siRNA injections were continued until E5 every 12 
hours. B. Fear extinction learning. Intrahippocampal injections of HDAC1 siRNA impaired fear 
extinction learning when compared to the control group that received scrambled siRNA. n= 6 /group. 
C. qPCR analysis showed significantly reduced hippocampal Hdac1 mRNA levels in HDAC1 siRNA 
injected mice when compared to the control group. n= 6/ group. D. Quantitative immunoblot analysis 
showed significantly reduced HDAC1 protein levels in HDAC1 siRNA injected mice when compared 
to the control group injected with scrambled siRNA. n= 6/ group;  *p≤ 0.05; **p≤0.001; ***p≤0.0001; 
students t-test; Error bars represent ± SEM. 
 

In sum, inhibition of hippocampal HDAC1 activity by MS-275 and knockdown of 

HDAC1 using HDAC1 specific siRNA impaired fear extinction learning, while 

neuronal overexpression of HDAC1 in the hippocampus enhanced fear extinction. 

Taken together, these results indicated a specific role of HDAC1 in the process of 

hippocampus-dependent fear extinction. 

 

4.1.6 Recruitment of HDAC1 to c-Fos promoter and 
decreased c-Fos expression during fear extinction 

 

Since HDAC1 activity is strongly associated with transcriptional repression of 

neuronal genes 90,163,493,494, I wondered whether HDAC1 affects hippocampal-

dependent fear extinction by transcriptional repression of learning induced genes. 

The expression of the immediate early gene (IEG) c-Fos is known to be transiently 

upregulated after contextual fear conditioning and respective c-Fos protein levels are 
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reduced during fear extinction learning 168,490,495–497. Moreover, HDAC1 activity has 

been implicated in the regulation of c-Fos gene-expression 498–500.  

Thus, I decided to monitor transcriptional regulation of hippocampal c-Fos during 

fear extinction in order to explore the mechanism by which endogenous HDAC1 

mediates the extinction of fear memories under physiological conditions. 

 

To this end, I subjected wild-type mice to our fear extinction paradigm. After 

successful fear extinction learning, in which each mice showed reduced fear response 

throughout extinction training  (Fig. 12A), hippocampi were isolated 1 h after each 

extinction trial from randomly selected mice in order to carry out molecular analysis. 

Hippocampi from one hemisphere were subjected to qPCR and immunoblot analysis 

while hippocampi of the second hemisphere were chosen to perform chromatin 

immunoprecipitation (ChIP) followed by qPCR analysis. As such, I was able to 

monitor transcriptional changes and HDAC1 binding on the c-Fos gene 

simultaneously in the same mice. Naïve animals that did not undergo contextual fear 

extinction served as control group and were treated in the same way. All data revealed 

from qPCR, immunoblot and ChIP analysis were normalized to naïve mice.  

Analysis of c-Fos mRNA levels using qPCR revealed significantly increased c-Fos 

expression after exposure to E1 but progressively declined throughout fear extinction 

training from E1-E5, being significantly reduced at E5 compared to E1 going back to 

baseline levels observed in naïve mice (Fig. 12B). Thus, decreased c-Fos mRNA 

levels throughout extinction training correlates with previous finding reporting 

decreased c-Fos protein levels after fear extinction learning 490.  

 

To further investigate whether transcriptional repression of c-Fos during extinction is 

mediated by HDAC1, I performed ChIP analysis in the hippocampi of the same mice 

with greater focus on E1, E3 and E5. For HDAC1 binding analysis on the c-Fos 

promoter, I preferably selected the cAMP responsive element (cre) binding region of 

the promoter (Appendix Fig. 1), a well analyzed region that is known to be bound by 

various transcription factors such as CREB (cAMP responsive element binding 

protein) resulting into transcriptional activation of c-Fos 501  

Strikingly, ChIP analysis showed significantly increased HDAC1 binding at the c-Fos 

promoter 1h after E5 compared with E1 or E3, a time-point of decreased c-Fos 

expression (Fig. 12C).  



 

80 
 

 

 
Figure 12:  Recruitment of HDAC1 to the promoter of c-Fos and transcriptional repression 
during contextual fear extinction.  

A. Freezing behavior of wilt-type mice during contextual fear extinction (n= 45) for molecular analysis 
(n= 5/ group). B. qPCR analysis of hippocampal tissue isolated 1 hour after each extinction trial. Data 
was normalized to naïve control mice. c-Fos expression levels decreased transiently during fear 
extinction training and was significantly reduced at E5 compared to E1. C. HDAC1 ChIP on c-Fos 
promoter 1hour after E1, E3 and E5 showed significantly increased HDAC1 binding at E5 compared to 
E1. D. HDAC2 and HDAC3 ChIP showed no changes in the binding to the c-Fos promoter between E1 
and E5. *p≤ 0.05; students t-test; Error bars indicate ± SEM 
 

However, increased HDAC1 protein binding at the c-Fos promoter was not due to 

altered HDAC1 mRNA or protein levels when compared hippocampal lysates 1h after 

E1 and E5 (Fig. 13A, B). Moreover, the other class I HDACs, HDAC2 and HDAC3 

that are also act as transcriptional repressors did not show altered binding on the c-

Fos promoter (Fig. 12D) or altered hippocampal mRNA expression during fear 

extinction (Fig. 13C). 
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Figure 13: HDAC1 expression during fear extinction. 

A. Immunoblot analysis of HDAC1 at extinction day E1 and E5. Left panel: Quantitative immunoblot 
analysis showed no differences in HDAC1 protein levels during fear extinction learning at E1 and E5. 
Right panel: Representative immunoblot images showing HDAC1 immunoreactivity at E1 and E5. 
Actin served as a loading control. B. qPCR analysis of Hdac1 mRNA levels showed no differences 
between E1 and E5. C. qPCR analysis of other class I HDACs Hdac2, Hdac3 and Hdac8 showed no 
differences in expression levels between E1 and E5. 30 μg of hippocampal protein was loaded per lane. 
Data was normalized to naïve control mice. Error bars indicate ± SEM. 
 

However, the question remained whether the decrease of c-Fos expression and 

HDAC1 recruitment to the corresponding promoter might be due to the passing of 

time. In order to address this question, I performed a control experiment (Fig. 14A) 

consisting of three experimental groups. One group of mice were subjected to 

contextual fear conditioning and sacrificed one hour after the memory test at E1. The 

second group consisted of mice that were exposed to extinction day E2 3 days after 

E1 exposure (E1-3 days group) and were thus not exposed to extinction training, 

being kept at their home cages in the meantime. The third experimental group 

consisted of mice that were subjected to extinction training on 4 consecutive days 

(E1-E5 group). Interestingly, while the E1-E5 group showed successful fear 

extinction learning displaying significantly reduced fear response compared to E1, the 

E1-3days group did not show altered freezing behavior compared to the E1, 

remaining at significantly high freezing levels in contrast to the E1-E5 group. 

Analysis of hippocampal c-Fos expression revealed that while c-Fos expression levels 

declined in the E1-E5 group when compared with E1, c-Fos mRNA expression was 
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not altered in the E1-3 days group (Fig. 14B,C). Thus, c-Fos expression levels 

corresponded to freezing levels observed in mice (Fig. 14B,C). Similarly, HDAC1 c-

Fos promoter binding did not show differential binding levels between the E1 and E1-

3days group but were significantly increased after E5 in the E1-E5 group (Fig. 14D). 

 

 
 
 

 
 

Figure 14: Fear extinction training-dependent recruitment of HDAC1 to the c-Fos promoter.  

A. Experimental design showing three different experimental groups. One group of mice was subjected 
to contextual fear conditioning (FC) followed by exposure to E1 (E1 group). The second group of mice 
were subjected to FC followed by E1 but were kept on the subsequent 3 days in their home cages 
before exposure to E2 that corresponds on the basis of the number of days to E5 (E1-3days group). The 
third group was subjected to E1 and underwent fear extinction training on subsequent days from E1-E5 
(E1-E5 group). B. Freezing behavior of mice. The E1-3 days group that did not undergo extinction 
training on subsequent days from E1-E5, showed significantly higher freezing behavior when 
compared to E1-E5 (n=5/group). C. qPCR analysis showed significantly higher c-Fos expression levels 
in the E1-3 days group compared to mice of the E1-E5 group (n=5/group). D. HDAC1 ChIP on the c-
Fos promoter showed increased binding in the E1-E5 group (n=5/group). All data was normalized to 
naïve control mice. *p≤ 0.05; students t-test; Error bars indicate ± SEM. 
 

 

Taken together, these results suggested that the downregulation of c-Fos and 

recruitment of HDAC1 to the corresponding promoter during fear extinction reflects 

an active process. 
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4.1.7 HDAC1-mediated transcriptional repression during 
fear extinction learning 

 

To further address the hypothesis that HDAC1 mediates transcriptional repression 

during fear extinction, we compared hippocampal histone modifications at the c-fos 

promoter 1 h after E1 and E5. Thus, the same samples obtained in the previous 

experiment (Fig. 12) were subjected to ChIP analysis in order to monitor changes of 

hippocampal histone-modifications. However, in order to ensure that the region 

selected on the c-Fos promoter is suitable to investigate transcriptional repression of 

c-Fos during fear extinction, I performed a control ChIPs analysis for the binding of 

CREB phosphorylated at Serine 133 (pCREB(Ser133)) and phosphorylation of 

Histone3-Serine10 (H3S10P).  

Phosphorylation of CREB at Serine 133 is activity dependent, involved in the 

formation of long-term memories and known to be required for CREB induced 

transcriptional activation of c-Fos 502–505 Phosphorylation of H3S10P has been shown 

to be important in transcriptional activation of genes and has been associated as well 

with the transcriptional activation of c-Fos and other IEG´s 45,506. Moreover, 

phosphorylation of H3S10P at the c-Fos promoter was shown to depend on the 

presence of pCREB(Ser133) binding at the cre-element of the c-Fos promoter 507.  

ChIP analysis of pCREB(Ser133) binding and H3S10P levels at the c-Fos promoter 

revealed significantly reduced phospho-CREB and phosphorylated H3S10 levels at 

E5 when compared to E1, correlating with decreased c-Fos mRNA expression at E5 

(Fig. 15A). Moreover, elevated H3S10P and increased binding of pCREB(Ser133) at 

E1 is in line with previously reported data that contextual fear conditioning induces 

phosphorylation of CREB and increases phosphorylation of H3S10 in the 

hippocampus 87,508.  
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Figure 15:  Phospho-CREB and phospho-H3S10 during fear extinction. 

A. ChIP analysis of hippocampi in wild-type mice showed significantly decreased phospho-CREB at 
Serine 133 (pCREB (Ser133)) and B. phosphorylated H3S10 (H3S10P) at the c-Fos cre-element 
promoter region at E5 when compared to E1. *p≤ 0.05; students t-test; Error bars represent ± SEM. 
 

 

Since HDAC1 is a histone-deacetylase, I focused on changes in histone-acetylation 

sites. Among all histone-acetylation sites analyzed (H3K9ac, H3K14ac, H4K5ac), 

acetylation of H3K9, a histone-modification associated with active gene expression 

and HDAC1 activity 163,168 was significantly decreased at the c-Fos promoter in the 

E5 group when compared to the E1 group (Fig. 17C).  

Deacetylation of H3K9 is known to serve as a prerequisite for H3K9 trimetyhlation 

(H3K9me3) 509, a histone-modification enriched at heterochromatin regions marking 

transcriptional repression 510, I analyzed levels of H3K9me3 on the c-Fos promoter at 

E1 and E5. Notably, levels of H3K9me3 were elevated at E5 at the c-Fos promoter 

(Fig.17C). 

As an additional control experiment, I analyzed levels of H3K9 acetylation and 

trimethylation at a region more upstream to the TSS of the c-Fos promoter, hereafter 

termed the “no promoter region” based on sequence homology analysis using the 

ECRbase (database for evolutionary conserved regions, promoters, and transcription 

factor binding sites in the vertebrate genome) 511 revealing a non- conserved region in 

the c-Fos gene among species (Appendix Fig.1). 

Importantly, no differences in H3K9 modifications were observed between the E1 and 

E5 groups (Fig.16).  

 



 

85 
 

 
Figure 16:  ChIP-analysis of H3K9 acetylation and trimethylation at c-Fos “no-promoter” 
region. 

ChIP analysis of H3K9 acetylation and trimethylation revealed no differences during fear extinction in 
binding of the c-Fos promoter in a less-conserved region approximately 1200bp upstream of the 
transcriptional start site (TSS), defined here as “no-promoter” region. Error bars represent ± SEM. 
 

 

One of the key enzymes that regulate H3K9 trimethylation is the histone methyl-

transferase suppressor of variegation 3-9 homolog (SUV30H1) 509. In turn, SUV39H1 

is activated via deacetylation by SIRT1 (silent mating type information regulation 2 

homolog), a Sirtuin belonging to Class III histone deacetylases, thereby regulating 

heterochromatin formation 509. Additionally, SUV39H1 is known to interact with 

HDAC1 and can act together in concert with the HDAC1/mSIN3b co-repressor 

complex to mediate transcriptional repression of genes 106,500,512. Taking these 

findings into account, I decided to investigate the levels of mSIN3b, SUV39H1 and 

SIRT1 at the c-Fos promoter during fear extinction. Remarkably, mSIN3b, SUV39H1 

and SIRT1 showed significantly increased binding similar to HDAC1 at the c-Fos 

promoter at E5 compared to E1 (Fig. 17D, B). 
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Figure 17: HDAC1 mediated chromatin remodeling at the c-Fos promoter during fear extinction.  

A. Wild-type mice were subjected to fear extinction training and hippocampal tissue isolated 1 hour 
after E1 and E5 and processed in ChIP experiments. B. HDAC1 ChIP showed significantly increased 
HDAC1 binding on the c-Fos promoter at E5 compared to E1. C. ChIP analysis of different histone-
modification sites.  H3K9 acetylation was significantly decreased at E5 and H3K9 trimethylation 
significantly increased at E5 on the c-Fos promoter when compared to E1. D. Increased binding of 
transcriptional repressor proteins mSIN3b, SUV39H1 and SIRT1 at E5 compared to E1. n= 5/group; 
*p≤ 0.05; students t-test; Error bars represent ± SEM. 
 

In conclusion, these data suggested that transcriptional repression of c-Fos observed 

at E5 of fear extinction is mediated via a mechanisms including deacetylation of 

H3K9 by HDAC1 in concert with the co-repressor protein mSIN3b and subsequent 

trimethylation of H3K9 via SUV39H1 and SIRT1 at the c-Fos promoter (Fig. 14 and 

Fig.17). 

 

In order to test directly whether HDAC1 regulate specifically H3K9 acetylation and 

indirectly trimethylation of H3K9me3 at the c-Fos promoter and c-Fos expression 

during fear extinction, I further assessed chromatin modifications and c-Fos 

expression levels during fear extinction in our gain-of –function model 

overexpressing HDAC1-GFP and in the loss-of function systems in which mice either 

received intrahippocampal injections of MS-275 or HDAC1 siRNA. 

 

To investigate chromatin modifications in HDAC1-GFP-AAV mice during fear 

extinction, I similarly conducted the experiment as described (Fig. 18A, 10, 11). 

However this time, I chose to sacrifice and isolate hippocampal tissue of HDAC1-

GFP and GFP-AAV injected mice already at E3 rather than E5, since freezing levels 
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of HDAC1-GFP-AAV mice were already significantly reduced at this time point 

when compared to GFP-AAV mice (Fig. 18B). 

Quantitative real-time PCR of c-Fos mRNA levels at E3 showed significantly reduced 

c-Fos expression in HDAC1-GFP-AAV injected mice compared to the GFP-AAV 

group of mice (Fig. 18C). Notably, the levels of H3K9 acetylation at the c-Fos 

promoter were significantly reduced in HDAC1-GFP mice when compared to the 

GFP-control group (Fig. 18C). Conversely, trimethylation of H3K9 levels were 

strongly increased (Fig. 18D). In agreement with the recruitment of HDAC1, 

mSIN3b, SUV39H1 and SIRT1 to the promoter of c-Fos at E5 when mice display 

successful fear extinction learning (Fig. 9,7), I detected increased levels of HDAC1, 

mSIN3b, SUV39H1 and SIRT1 on the c-Fos promoter at E3 in the HDAC1-GFP-

AAV group (Fig. 18D). 

 

 
 
Figure 18: HDAC1 mediated regulation of H3K9 modifications and c-Fos expression during fear 
extinction.  

A. Experimental design for B, C and D. B. Fear extinction performance of HDAC1-GFP and GFP-
AAV mice. While freezing levels of HDAC1-GFP and GFP-AAV mice were similar at E1, HDAC-
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GFP AAV mice display significantly reduced fear extinction upon fear extinction at upon E2-E3. C. 
qPCR showed significantly reduced hippocampal c-Fos expression levels in HDAC1-GFP AAV mice 
at E3 compared to GFP-AAV mice. D. ChIP analysis of the c-Fos promoter with HDAC1, H3K9 
acetylation (H3K9ac), H3K9 trimethylation (H3K9me3), SUV39H1, SIRT1 and mSIN3b. n= 10/ 
group; *p≤ 0.05; **p≤0.001; students t-test; Error bars represent ± SEM. 
 

Next, I analyzed these chromatin modifications in the two loss-of-function models 

and conducted the experiments similarly as previously described  (Fig. 18B, 19). In 

line with my previous described results, inhibition of hippocampal HDAC1 enzyme 

activity by MS-275 and knockdown of hippocampal HDAC1 protein by 

administration of HDAC1 siRNA impaired fear extinction learning (Fig. 19, 10A, 

11B). Notably, c-Fos mRNA expression at E5 in both experiments was consistently 

increased in MS-275 and HDAC1 siRNA injected mice compared to c-Fos expression 

in the corresponding control groups at E5 (Fig. 19B, D). Using ChIP analysis, I 

observed significantly increased H3K9 acetylation and decreased H3K9 

trimethylation levels at E5 in the loss-of gain models, correlating with increased 

hippocampal c-Fos mRNA expression in MS-275 and HDAC1 siRNA treated mice at 

E5 when compared to the corresponding control groups (Fig. 19 B,C,D,E). 

Furthermore, HDAC1 c-Fos-promoter binding was significantly reduced when 

analyzed in HDAC1 siRNA injected mice compared to the control group (Fig. 19E). 
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Figure 19: Inhibition of HDAC1 prevents transcriptional repression of c-Fos and deacetylation of 
H3K9 at the c-Fos promoter.  

A. Mice that received intrahippocampal injections of MS-275 after each extinction trial showed 
impaired fear extinction when compared with vehicle-treated mice. B. qPCR analysis showed increased 
hippocampal c-Fos expression levels at E5 in MS-275-treated mice when compared to the vehicle 
group. C. ChIP analysis on the c-Fos promoter revealed increased H3K9 acetylation and reduced 
H3K9 trimethylation in MS-275-injected mice when compared with the vehicle group at E5. D. qPCR 
analysis in mice that received intrahippocampal injections of HDAC1 siRNA showed significant 
reduction in hippocampal c-Fos expression when compared to the control group injected with 
scrambled siRNA. E.  HDAC1 siRNA-treated mice showed reduced HDAC1 levels and increased 
H3K9 acetylation and decreased H3K9 trimethylation at the c-Fos promoter when compared to 
scrambled siRNA-treated mice. n= 5/ group; *p ≤ 0.05; students t-test; Error bars represent ± SEM. 
 

In conclusion, while AAV-mediated overexpression of neuronal HDAC1 in the 

hippocampus of adult mice after 14 days did not led to an overt detrimental phenotype 

(Fig. 7, 8), hippocampal HDAC1 was shown to be involved in hippocampus-

dependent fear extinction learning since elevated hippocampal HDAC1 facilitated 

extinction of fear memories and inhibition of HDAC1 using the HDACi MS-275 and 

HDAC1 specific siRNA impaired fear extinction. Furthermore, qPCR and ChIP 

analysis suggested that HDAC1-dependent transcriptional repression of gene-

expression is required for the extinction of fear memories by the deacetylation and 

subsequent trimethylation of target genes.  
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4.2 Elevated HDAC1 in the prefrontal cortex of mice 
induces schizophrenia-like symptoms and cognitive 
endophenotypes 
 

4.2.1 AAV-mediated neuronal overexpression of HDAC1 
in the Prefrontal Cortex of adult mice results in cognitive 
schizophrenia endophenotypes 

 
Two studies have reported elevated HDAC1 mRNA expression in post-mortem brain 

tissue of individuals diagnosed with schizophrenia. The first identified elevated 

HDAC1 expression in microdissected GABAergic neurons of the CA2/CA3 region in 

the hippocampus of schizophrenic subjects 433, and the second reported increased 

HDAC1 expression in the prefrontal cortex of individuals with schizophrenia 435. 

However in in the first part of my study, when HDAC1 was overexpressed in the 

hippocampus of adult mice, no cognitive endophenotypes of schizophrenia were 

observed. Based on the study from Sharma et al, reporting elevated HDAC1 levels in 

the prefrontal cortex, the possibility remained that virus-mediated overexpression of 

HDAC1 in the prefrontal cortex of adult mice would result into schizophrenia-like 

symptoms and cognitive endophenotypes. 

 

To test this possibility, I used the same AAV generated and applied in the first part of 

my thesis and injected it in the prefrontal cortex of adult mice. Mice expressing GFP 

alone served as controls. HDAC1-GFP AAV and GFP AAV-injected mice were then 

subjected again to behavioral tests that assess anxiety and depressive-like behavior 

(OF, FST), sensorimotor gating function (PPI), working memory and formation of 

long-term memories (NOR, FC-Ext) (Fig. 20A). Behavioral tests were again 

conducted after 14 days of injection, since we defined this time-point for optimal 

virus expression as detected by molecular analysis (Fig. 5,6).  

Interestingly, HDAC1 overexpression in the prefrontal cortex caused schizophrenia-

like behaviors and cognitive schizophrenia endophenotypes (Fig. 20,21,22,23). Thus, 

mice injected with HDAC1-GFP AAV in the prefrontal cortex showed increased 

basal anxiety in the open field test (OF) when compared to control mice, while 
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explorative activity was not affected (Fig. 20B). In the forced swim test (FST), 

HDAC1-GFP-AAV mice showed increased depressive-like behavior as the floating 

time of these mice was significantly less than the control group (Fig 20C). Working 

memory performance in the novel object recognition test (NOR), which is impaired in 

patients with schizophrenia and unaffected relatives, and constitutes as a well-defined 

cognitive endophenotype of schizophrenia, was significantly impaired in HDAC1-

GFP mice when compared to GFP-AAV mice (Fig. 20D). Moreover, working 

memory performance was below the 50 % chance level for new object preference in 

the HDAC1-GFP-AAV group, indicating that HDAC1-GFP mice could not 

discriminate between the new object presented and the old object. Additionally, in the 

long-term memory test of the novel object recognition test, HDAC1-GFP-AAV 

subjects also performed below 50% chance level, though it did not reach significance 

vs. GFP AAV controls (Fig. 20E). Importantly, GFP-AAV mice showed higher than 

50% preference for the new object in both short- and long-term memory tests, 

indicating that they could properly learn the test and discriminate the old from the 

new object (Fig. 20D, E). 
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Figure 20: Neuronal over-expression of HDAC1 in the PFC induces anxious and depressive-like 
behavior and working memory impairment in adult mice. 

A. HDAC1-GFP AAV were injected in the medial prefrontal cortex of 10 weeks old C57/B6J mice and 
subjected to behavioral characterization 14 days after injection, a time-point where HDAC1-GFP-AAV 
is strongly expressed. B. Basal anxiety, locomotor and explorative activity were tested using the Open 
Field test. Left panel: HDAC1-GFP mice spent significantly less time in the center of the OF and 
showed increased basal anxiety compared to control GFP-AAV mice. Right panel: HDAC1-GFP and 
GFP-AAV mice show similar locomotor and exploratory activity in the OF. C. Increased depressive-
like behavior of HDAC1-GFP-AAV mice assessed in the Porsolt-Forced-Swim Test (FST). HDAC1-
GFP-AAV mice stayed significantly longer in an immobile state compared to GFP-AAV. D. HDAC1-
GFP-AAV mice showed significantly less preference for the novel object in the working memory test 
compared to GFP-AAV mice. E.  Long-term memory in the NOR was not significant different among 
groups. *p≤ 0.05, ** p≤ 0.01; students two-tailed t-test vs. GFP-AAV mice. Error bars represent ± 
SEM; n= 12 GFP-AAV/ 17 HDAC1-GFP. 
 

In another group of mice injected with HDAC1-GFP-AAV and GFP-AAV I tested 

sensorimotor gating function using the prepulse inhibition of startle response test 

(PPI). HDAC1-GFP-AAV mice displayed reduced PPI compared to GFP-AAV mice, 

which is also observed in schizophrenia patients, indicating disrupted sensorimotor 
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gating function (Fig. 21A). No significant difference was observed in the startle 

response of mice (Fig. 21B).  

 

 
Figure 21: Impaired sensorimotor gating of the acoustic startle response in mice over-expressing 
neuronal HDAC1 in the PFC of adult mice. 

A. Percentage of PPI in GFP-AAV and HDAC1-GFP-AAV mice is shown for each prepulse intensity. 
HDAC1-GFP-AAV mice are impaired in the prepulse inhibition test, showing decreased PPI at 75, 80 
and 90 db. Two-way ANOVA of repeated measures showed a significant effect of Virus expression [F 
(4, 27)= 5.640, p = 0.0249] and significant effect of Prepulse Intensity [F (4, 108)= 2.123, p = 0.0829]. 
Bonferroni post-hoc test revealed significant impaired PPI in HDAC1-GFP mice at 75 db, 
(p=0,0432507), 80 db (p=0,010581), 85 db (p= 0,0242066), 90 db (p= 0,0242066). B. The acoustic 
startle response to 120 db sound did not differ between GFP-AAV and HDAC1-GFP-AAV mice (p = 
0.3093, Mann-Whitney test). Error bars represent ± SEM; = 12 GFP-AAV/ 17 HDAC1-GFP. 
 
Notably, the same group of mice was subjected again to the PPI test 9 months later (at 

12 months of age) and showed still impaired PPI compared to GFP-AAV mice (Fig 

22). 

 
Figure 22: Sensorimotor gating function is still impaired in mice overexpressing HDAC1 in the 
prefrontal cortex of mice at 12 months of age, 

A. HDAC1-GFP AAV mice at 12 months of age show significantly reduced PPI when compared to the 
control group. Two-way ANOVA of repeated measures showed a significant effect of Virus expression 
[F (1, 12)= 6.192, p = 0.0285], significant effect of Prepulse Intensity [F (4, 48)= 37.35,p≤ 0.0001] and 
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significant virus x prepulse intensity interaction [F (4, 48)= 2.706, p = 0.0411]. Bonferroni post-hoc 
test revealed significant impaired PPI in HDAC1-GFP mice at 75 db, (p=0,369385), 80 db 
(p=0,00564202), 85 db (p= 0,0110542). B. The acoustic startle response to 120 db sound did not differ 
between GFP-AAV and HDAC1-GFP-AAV mice (p = 0,9083, Mann-Whitney test). Error bars 
represent ± SEM; n = 7 GFP-AAV/ 6 HDAC1-GFP. Error bars represent ± SEM. 
 
 
AAV-injected mice that were previously subjected to OF, NOR, and FST were later 

subjected to fear conditioning (FC) followed by fear extinction training. HDAC1-

GFP-AAV mice showed impaired associative memory in the FC test, showing 

significantly reduced freezing response to the context (Fig. 23A). Subsequently, 

during fear extinction training, fear response of HDAC1-GFP AAV mice did not 

decline over the course of extinction training and remained close to that displayed at 

E1 (Fig. 23B). On the contrary, GFP-AAV mice underwent successful fear extinction 

learning as their freezing response at E5 was significantly reduced compared to E1 

(Fig. 23B right panel). Thus, HDAC1-GFP-AAV mice showed significantly higher 

freezing levels at E5 compared to GFP-AAV mice at E1 (Fig. 23B right panel). 

 

 
 
Figure 23; Impaired associative memory and fear extinction in mice over-expressing neuronal 
HDAC1 in the PFC. 

A. Impaired associative memory of HDAC1-GFP-AAV mice in the contextual fear-conditioning test. 
HDAC1-GFP-AAV mice display significantly lower freezing level upon re-exposure to the context 24 
hours after receiving an electrical foot-shock of 0.7 mA compared to GFP-AAV mice. B. Fear 
extinction learning performance of HDAC1-GFP-AAV and GFP-AAV mice. Left panel: Freezing of 
control GFP- AAV mice declines during the course of fear extinction training, while freezing levels of 
HDAC1-GFP-AAV mice remain nearly unchanged from E1 to E5. Right panel: HDAC1-GFP-mice 
display significantly lower freezing levels at E1 and E5 compared to GFP-AAV mice at E1 and E5. 
GFP-AAV mice undergo successful fear conditioning learning with significantly decreased freezing 
levels from E1 to E5. *p≤; students two-tailed t-test vs. GFP-AVV. Error bars represent ± SEM; n = 8 
GFP-AAV/ 7 HDAC1-GFP. 
 

In summary, AAV-mediated neuronal overexpression of HDAC1 in the prefrontal 

cortex of mice resulted in schizophrenia-like symptoms, such as increased anxiety and 
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depressive-like behavior and impaired fear extinction and cognitive endophenotypes 

such as impaired working memory performance and deficits in sensorimotor gating 

function. Thus, elevated HDAC1 in the prefrontal cortex might contribute to the 

pathogenesis of schizophrenia. 

 

4.2.2 Early life stress and social isolation rearing in mice 
mediate cognitive endophenotypes of schizophrenia and 
regulate expression of HDAC1 in the prefrontal cortex 

 
Considering my findings that elevated HDAC1 levels in the prefrontal cortex mimic 

schizophrenia-like behaviors in mice and the fact that HDAc1 is overexpressed in the 

prefrontal cortex of schizophrenia patients, I wondered about the cause of elevated 

HDAC1 levels in patients.  

Exposure to adverse events early in life and chronic psychological stress have been 

identified by epidemiological studies as environmental risk factors and suggested as 

“second hits” in the development of neuropsychiatric disorders. According to the 

neurodevelopmental hypothesis of schizophrenia from Weinberger, certain 

environmental factors early in life influence developmental processes in the brain that 

develop into a phenotype once the brain reaches full maturation 513,514.  

Thus, such events are thought to negatively affect neurodevelopmental processes and 

interact with genetic predisposition factors, triggering the outcome of 

neuropsychiatric disorders such as schizophrenia. The prefrontal cortex reaches 

anatomical and functional maturity in early adulthood, and abnormalities in the 

prefrontal cortex are typically implicated in schizophrenia 334,515,516.   

Among most of the early life stress procedures applied in rodents in laboratories, 

maternal deprivation by separating the mother from the offspring and social isolation 

rearing are the most studied. Thus, maternal separation and social isolation rearing are 

considered to be valuable paradigms in order to investigate pathophysiological 

changes observed in schizophrenia and I decided to test the hypothesis that early life 

stress induced by maternal separation could be one cause that mediates elevated 

HDAC1 levels 517–519.  

However, while it is impossible to model the whole disease, including positive and 

negative symptoms of schizophrenia, some cognitive deficits such as working 
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memory and sensorimotor gating function deficits are tractable in rodents. As such, 

maternal separation and social isolation rearing have been shown to disrupt prepulse 

inhibition, causing working memory deficits and increased anxiety- and depressive-

like behavior 361,520–523. Nevertheless, the majority of these studies have been carried 

out in the rat and to date, there have been few investigations of the effects of maternal 

separation and social isolation rearing in the mouse. Moreover, most of the maternal 

separation protocols applied in mice resulted in anxiety and depressive-like behavior 

but not in deficits in PPI 524–526.  

However, it has been recently suggested that combining maternal separation with 

other stressors, such as social isolation rearing and modifications in the period and 

extension in which maternal separation takes place, could contribute to more robust, 

long-lasting changes that further resemble schizophrenia-like symptoms 527–529. 

Thus, recent published data from Niwa et al, combining maternal separation during 

the third postnatal week (postnatal day 15-21) together with social isolation rearing in 

mice, demonstrated schizophrenia-like symptoms such as increased anxiety, 

depressive-like behavior and deficits in working memory performance and prepulse 

inhibition of startle response 362. 

 

Therefore, in order to further investigate the effect of environmental risk factors of 

schizophrenia on the expression of HDAC1, I decided to subject mice to the protocol 

applied in the study of Niwa et al., which I named hereafter as “Social Disturbance”. 

In agreement with previous published data of Niwa et al 362, mice subjected to social 

disturbance showed increased basal anxiety in the open field test, as they spent 

significantly less time in the center of the open field when compared to control mice 

(Fig. 24B). Explorative activity, measured by the distance travelled in the open field 

arena was not affected between the groups (Fig. 24B, left panel). When subjected to 

the elevated-plus-maze (EPM), another paradigm to address anxious behavior in 

rodents, SD mice also showed increased anxiety compared to control mice (Fig. 24C). 

Furthermore, SD mice displayed depressive-like behavior in FST, floating 

significantly less time then control mice (Fig. 24D). Moreover, working memory 

performance of SD mice was significantly impaired in the NOR test when compared 

to control mice. However, SD mice performed significantly over the 50% chance 

level, indicating that SD mice learned to discriminate between the old and the new 
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object presented (Fig. 24E).  No significant differences were observed among groups 

when tested for long-term memory of the NOR test (Fig. 24F).  

 

 
Figure 24: Mice subjected to social disturbance show anxious-and depressive-like behavior and 
working memory impairments. 

A. Experimental design of the social disturbance protocol acquired and modified from Niwa M et al., 
2011, followed by behavioral characterization. From postnatal day (PND) 15, pubs were removed from 
their mothers and home cages and kept isolated from littermates into individual cages. After 6 hours, 
pubs were returned together with littermates to their mothers. Social disturbance (SD) protocol was 
performed between PND 15 and 21. On PND 23, pubs were weaned and kept isolated until sampling 
after behavioral characterization with. Control mice were grouped housed and separated from their 
mothers for 10 min each day (handling). B. Left panel: Mice subjected to social disturbance show 
increased basal anxiety in the open field test. Right panel: Mice show no difference in distance 
travelled. C. Percent time spent the in open arms of the elevated plus maze (EPM). SD mice show 
increased anxiety spending significant less time in the open arms of the EPM compared to control mice 
.D. Performance of mice in the FST with decreased active floating of SD mice showing depressive-like 
behavior. E. Working memory performance of mice in the NOR test.  SD mice show significant less 
preference to the new object compared to control mice. F. Object recognition of mice in the long-term 
memory test of the NOR experiment. No significant difference between control and SD mice was 
displayed during the long-term memory test of NOR. *p≤ 0.05, ** p≤ 0.01, *** p≤ 0.001; students 
two-tailed t-test vs. controls. Error bars represent ± SEM; n= 15/ group. 
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Further on, social disturbance in mice significantly reduced PPI without affecting the 

baseline startle amplitude (Fig. 25 A, B). 

 

 
Figure 25: Sensorimotor gating deficits in mice subjected to social disturbance 

A. Social disturbance in mice significantly reduced PPI. Two-way ANOVA of RM showed a 
significant effect of SD [F (4, 41)= 5.341, * p = 0.0259] and significant effect of Prepulse Intensity [F 
(4, 164)= 2.123, ***p < 0.0001]. Bonferroni post-hoc test revealed significant impaired PPI at 75 db 
(p= 0.0089), 80 db (p=0.0356) and 85 db (p= 0.0389). B. Startle response of mice. Social disturbance 
in mice did not affect baseline startle amplitude (p= 0.3682; Mann-Whitney-test). Error bars represent 
± SEM; n= 21/group. 
 

Taken together, I was able to reproduce the phenotype induced by the protocol 

applied in the study of Niwa et al in mice of our laboratory, showing cognitive 

endophenotypes and schizophrenia-like symptoms with increased anxiety and 

depressive-like behavior (OF, EPM, FST), impaired working memory (NOR) and 

reduced sensorimotor gating function (PPI). 

 

Based on the results presented above, I decided to apply the protocol of Niwa et al, as 

a valuable paradigm to model cognitive deficits of schizophrenia in mice and to 

further investigate if the expression of HDAC1 is influenced by environmental risk 

factors of schizophrenia. 

Interestingly, mice subjected to SD had significantly increased HDAC1 mRNA 

expression levels in the prefrontal cortex compared to control mice, similar to the 

elevated HDAC1 mRNA levels observed in post-mortem prefrontal cortex samples of 

schizophrenia subjects from our laboratory and Sharma et al. (Fig. 26B, D).  
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Figure 26: HDAC1 expression in human PFC post-mortem tissue and in PFC of mice subjected 
to social disturbance. 

A. Experimental design. Social disturbance mice underwent behavioral characterization and 
hippocampal and prefrontal cortical tissue isolated 24 hours after the last behavioral test for molecular 
analysis with qPCR and WB. B. qPCR (right panel) and quantitative immunoblot analysis (left panel) 
revealed significantly increased HDAC1 expression in the prefrontal cortex of SD mice when 
compared to the control group (n= 5/group). C. Quantitative immunoblot analysis of H3K9 acetylation 
showed a significant reduction in mice subjected to SD compared to control mice (n= 5/group). D. Left 
panel: qPCR analysis in human post-mortem prefrontal cortex samples showed elevated Hdac1 mRNA 
expression in schizophrenia compared to control subjects. Right panel: Quantitative immunoblot 
analysis revealed increased HDAC1 protein levels in individuals with schizophrenia when compared to 
age-matched controls (n=6/group). E. Significantly reduced bulk changes in H3K9 acetylation in the 
prefrontal cortex of schizophrenia compared to control subjects (n=6/group). *p≤ 0.05, ** p≤ 0.01; 
students two-tailed t-test vs. controls. Error bars represent ± SEM. 
 

Interestingly, SD did not significantly affect the expression levels of other class I 

HDACs, in line with the observations inhuman post-mortem samples (Fig. 27).  
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Figure 27: Class I Hdac expression in the prefrontal cortex of mice subjected to social 
disturbance and individuals with schizophrenia. 

A. qPCR analysis of class I Hdacs in the prefrontal cortex of mice showed significant increased Hdac1 
mRNA levels while the other class I HDACs Hdac2, HDAC3 and HDAC8  revealed no differences 
(n=5/group). B. qPCR analysis displayed elevated Hdac1 mRNA levels in the prefrontal cortex of 
human post-mortem samples (n=6/group). ** p≤ 0.01, *** p≤ 0.001; students two -tailed t-test vs. 
controls. Error bars represent ± SEM. 
 

Moreover, the increase in HDAC1 mRNA expression was specific to the prefrontal 

cortex of mice, since no significant change was observed for HDAC1 expression in 

the hippocampus of SD mice (Fig. 28A).  
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Figure 28: Class I Hdac expression in the hippocampus of mice subjected to social disturbance 
and individuals with schizophrenia. 

A. qPCR analysis of class I Hdacs in the hippocampus showed no differences in expression levels 
(n=5/group). B. qPCR analysis displayed elevated Hdac1, Hdac3 and Hdac8 mRNA levels in the 
prefrontal cortex of human post-mortem samples (n=6/group). *p≤ 0.05; ** p≤ 0.01, students two -
tailed t-test vs. controls. Error bars represent ± SEM. 
 

The increase of elevated HDAC1 mRNA expression was as well observed on the 

protein level, showing increased HDAC1 protein expression in the prefrontal cortex 

of schizophrenia subjects and mice subjected to SD (Fig. 26 B, D right panel). 

HDAC1 activity has been previously linked to the regulation of H3K9ac 168,209,530 and 

shown to mediate transcriptional repression of the susceptibility genes Gad67 and 

Reelin through binding to the corresponding promoters 210. Furthermore, ChIP-Seq 

analysis in neurons and stem cells has revealed a specific enrichment of H3K9 at gene 

promoters and is thought to be a marker of active gene expression 168,531. In light of 

the results of from the first part of my thesis showing HDAC1 deacetylating H3K9 

through the course of fear extinction (Fig. 17C; 19C, E), I wondered whether there 

would be changes in H3K9 acetylation in the prefrontal cortex of SD mice and 

schizophrenia subjects. Interestingly, immunoblot analysis revealed a significant 

reduction in the bulk levels of H3K9ac in the prefrontal cortex of SD mice and human 

schizophrenia samples (Fig. 26C, E). Thus, the increase in HDAC1 protein expression 

correlated with reduced H3K9 acetylation in the prefrontal cortex of SD mice and 

schizophrenia subjects (Fig. 26B, C, D, E). 
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In conclusion, exposing mice to social disturbance as an early environmental risk 

factor induced cognitive endophenotypes of schizophrenia and mediated the up-

regulation of prefrontal cortical HDAC1 mRNA and protein levels. This data mimics 

the situation observed in post-mortem brain samples of schizophrenia patients. 

 

4.2.3 Chronic administration of the HDAC inhibitor MS-
275 rescues deficits in prepulse inhibition of startle 
response in mice subjected to social disturbance 

 
Recently, a study from Engmann et al showed that chronic administration of MS-275 

alleviated schizophrenia-like symptoms in transgenic mice lacking the protein p35, a 

neuron-specific activator of CDK5 (cyclin-dependent kinase 5) 532. In detail, 

intraperitoneal injections of MS-275 over 10 days rescued deficits in PPI observed in 

p35 knockout mice 532 Additionally, subcutaneous injections of MS-275 in naïve mice 

induced a brain region-specific increase in H3 acetylation 209. As such, low doses (15 

μmol/kg) of MS-275 induced maximal H3 acetylation in the frontal cortex, whereas 

higher doses (60 μmol/kg) were required in order to induce H3 acetylation in the 

hippocampus. No induction was observed in the striatum. Importantly, the MS-275-

induced increase in histone-acetylation was specific to H3 and did not affect Histone 

H4 acetylation (Simonini et al., 2006). The reported MS-275 specificity is supported 

by another study from our laboratory, showing that intrahippocampal injections of 

MS-275 increased H3K9 but not H4K12 acetylation 168 

Based on these findings and my results, showing increased HDAC1 expression levels 

and decreased H3K9 acetylation in the prefrontal cortex of mice subjected to social 

disturbance, I decided to treat SD mice with intraperitoneal injections of MS-275 to 

see if this could induce functional recovery. As an initial characterization, I designed 

a pilot experiment in which I injected naïve mice intraperitoneally with MS-275 for 

10 days according to the protocol described in the study of Engmann et al (Fig. 29A), 

in order to test whether HDAC1 inhibition in naïve mice would alter PPI. This 

experiment would also serve to test whether I would observe changes in H3 

acetylation levels specifically in the prefrontal cortex of mice, as reported by 

Simonini et al 209.  
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Intraperitoneal administration of MS-275 in mice did not affect PPI or startle response 

of mice, as two-way ANOVA did not reveal a significant overall effect of drug 

injection (Fig. 29B, C). Interestingly and in line with the data reported by Simonini et 

al, administration of MS-275 induced an increase in H3K9 acetylation in the 

prefrontal cortex of mice, while no significant change was observed in H3 acetylation 

in the hippocampus (Fig. 29 D,E). 

 

 
Figure 29: Prepulse inhibition of startle response in wild-type mice subjected to chronic MS-275 
treatment. 

A. Experimental design. Wild-type mice received intraperitoneal injections of MS-275 for 10 days and 
subjected to PPI immediately after the last injection.  Following PPI, mice were sacrificed and 
hippocampal and prefrontal cortex tissue isolated for immunoblot analysis. B. Mice treated with MS-
275 or Vehicle for 10 days did not show differences in PPI. C.  Baseline startle response was not 
altered among groups. D. Quantitative immunoblot analysis showed significant increase in H3K9 
acetylation in the prefrontal cortex of MS-275 treated mice. E.  No differences in bulk acetylation 
levels of H3K9, H3K14 and H3K18 were detected in hippocampi of Vehicle and MS-275 treated mice. 
n=6/group; *p≤ 0.05; students two-tailed t-test vs. controls. Error bars represent ± SEM. 
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Thus, I went on and subjected mice that previously underwent the social disturbance 

protocol and were characterized for cognitive endophenotypes in the OF, NOR and 

PPI, to intraperitoneal injections of MS-275 for 10 days (Fig.30A). Immediately after 

the last injection, mice were subjected to PPI. Four hours after PPI, mice were 

sacrificed and prefrontal cortices isolated for molecular analysis using qPCR and 

ChIP. While SD mice treated with vehicle still displayed significantly reduced PPI 

compared to control mice treated with Vehicle (Fig. 30B), SD mice injected with MS-

275 showed significantly increased PPI when compared to SD mice treated only with 

vehicle (Fig. 30C). No significant changes in startle response were observed among 

experimental groups (Fig. 30E).  

 

 
Figure 30: Chronic administration of MS-275 rescues sensorimotor gating deficits in social 
disrupted mice.  

A. Experimental Design. Mice subjected to SD underwent first behavioural characterization with OF, 
NOR and PPI in order to assess cognitive endophenotypes before MS-275 treatment. 30 days after 
behavioural characterization, one group of SD and control mice were injected intraperitonealy for 10 
days with MS-275 and a second group of SD and control mice with Vehicle. 24 hours after the last 
injection, mice were subjected to PPI and sacrificed afterwards for molecular analysis with ChIP and 
qPCR. B. SD subjected mice treated with vehicle showed reduced PPI compared to control vehicle 
treated mice demonstrating still impaired sensorimotor gating function. Two-way ANOVA of RM 
revealed significant effect of SD [F (1, 66)= 5.265, * p = 0.0250] and of Prepulse Intensity [F (4, 264)= 
6014, *** p < 0.0001]. Bonferroni post-hoc test revealed significant reduced PPI for 70 db (p= 0.0442), 
75 db (p= 0.0189), 80 db (p= 0.0191) and 85db (p= 0.0267). Chronic administration of MS-275 in SD 
subjected mice ameliorates PPI deficits compared to SD mice treated with Vehicle. Two-was ANOVA 
demonstrated a significant effect of drug treatment [F (1, 66)= 5.265, * p = 0.0250] and of Prepulse 
Intensity [F (4, 264)= 6014, *** p < 0.0001] as well as a significant drug x prepulse intensity 
interaction [F (4, 84)= 3.322, * p = 0.0141]. Bonferroni post-hoc test showed significant reduced PPI 
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of SD vehicle treated mice at 70 db (p = 0.0078), 75 db (p= 0.0031), 80 db (p= 0.0365) compared to 
SD MS-275 treated mice. B. Startle response among all experimental groups was similar [F (3, 84)= 
0.1454, p = 0.9321; One-way ANOVA]. Error bars represent ± SEM. n= 15-20/group. 
 

In summary, intraperitoneal injections of MS-275 rescued PPI deficits in mice 

subjected to social disturbance. 

Thus in agreement with previously published data 209,210,469, this data suggest that a 

selective HDAC1 inhibitor should be a suitable therapeutic strategy to treat negative 

symptoms of schizophrenia.  
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5. Discussion 

The aim of the study was to explore the role of HDAC1 in the etiopathogenesis of 

Schizophrenia. Two studies have reported elevated HDAC1 expression in brain 

regions with higher vulnerability in schizophrenia, namely the hippocampus and the 

prefrontal cortex 433,435. Using post-mortem tissue samples of the hippocampus and 

prefrontal cortex from schizophrenia patients and age-matched controls I was able to 

reproduce these findings. I observed a significant up-regulation of HDAC1 mRNA in 

the hippocampus. The 3-fold up-regulation of HDAC1 mRNA in the prefrontal cortex 

of schizophrenia patients was however much more robust. In order to better 

understand the role of elevated HDAC1 in these brain regions, I employed a gain-of-

function model in which I overexpressed HDAC1 in a spatial and temporal-restricted 

manner using an adeno-associated viral system and a loss of function approach by 

using a selective HDAC1 inhibitor and HDAC1 siRNA. Interestingly, manipulating 

HDAC1 specifically in the dorsal hippocampus or in the medial prefrontal cortex 

resulted into distinct phenotypes, indicating brain-region specific functions of 

HDAC1 in mediating memory formation and emotional behavior. 

 

5.1 Role of elevated HDAC1 in the hippocampus of mice 

5.1.1 AAV-mediated overexpression of neuronal HDAC1 
in the dorsal hippocampus of adult mice 

 

In order to better understand the role of elevated HDAC1 expression in the 

hippocampus of individuals with schizophrenia, I decided to design a gain-of-function 

model in which HDAC1 would be overexpressed in a spatial and temporal-specific 

manner. 

To this end, I generated an adeno-associated virus (AAV) expressing a fusion protein 

of HDAC1-GFP (HDAC1-GFP-AAV) under the neuron-specific human synapsin 1 

promoter in order to ensure neural-specific expression 479. HDAC1-GFP-AAV 

particles were then injected in the dorsal hippocampus of adult mice and functionality 

of the virus was tested using immunoblot, immunohistochemistry and qPCR analysis. 
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Thus, injection of HDAC1-GFP-AAV in the dorsal hippocampus showed robust 

overexpression after 14 days of injection, resulting into a 6 –fold increase of HDAC1 

mRNA expression and a 2-fold increase in the corresponding HDAC1 protein. 

Importantly, overexpression of HDAC1 by HDAC1-GFP-AAV did not affect mRNA 

or protein levels of other Class I HDACs, HDAC2, 3 and 8. It was important to 

address that other class I HDACs would not be affected by HDAC1-GFP-AAV 

overexpression, since HDAC2 and HDAC3 has been shown to act in concert together 

with HDAC1 in various transcriptional co-repressor complexes 104–106,533. 

Additionally, overexpression of HDAC1 in the dorsal hippocampus did not affect the 

ventral hippocampus as no GFP fluorescence could be detected by confocal 

microscopy. This could be due to the serotype of the AAV used in this study, AAV6. 

AAV6 is known to have poor transduction efficiency over a greater volume of tissue 

and thus our virus might not been able to transduce the cells of the ventral 

hippocampus 534. Moreover, not all neurons that showed endogenous HDAC1 

expression was transduced with HDAC1-GFP-AAV, as observed in the dentate gyurs 

of the dorsal hippocampus. No HDAC1-GFP expression was detected when analyzed 

6 days after injection. Thus, our virus-system allowed us to specifically investigate 

the role of elevated HDAC1 in the hippocampus of adult mice. Although my 

approach allowed me to express HDAC1 specifically in neurons, one potential 

drawback is the fact that overexpression is achieved in all neuronal subtypes. To 

circumvent this problem a future approach should employ mice that express CRE 

recombinase either in excitatory or inhibitory neurons. Injection of such transgenic 

mice with a HDAC1-GFP virus in which HDAC1 expression is controlled by floxed 

STOP codon will allow cell type specific overexpression.  

 

5.1.2 Cognition in mice with neuronal overexpression of 
HDAC1 in the dorsal hippocampus 

 
Overexpression of neuronal HDAC1 in the dorsal hippocampus did not led to an overt 

phenotype. Thus, mice did not show significant alterations in basal anxiety and 

explorative behavior, depressive-like behavior, working memory performance, long- 

term memory or sensorimotor gating function. The finding that neuronal 

overexpression of hippocampal HDAC1 did not alter the formation of long-term 
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memories is in line with previously reported data of Guan et al., in which forebrain 

specific neuronal overexpression of HDAC1 from developmental stages on did not 

affect long-term memories of contextual fear conditioning or morris water maze 196. 

Additionally, conditional deletion of HDAC1 in other organ systems was not reported 

to result into an obvious detrimental phenotype 115–117,535. This observation was 

suggested to result from compensatory mechanisms, in which HDAC2 was shown to 

be upregulated when HDAC1 was conditionally depleted. Although it is known that 

HDAC1 and HDAC2 share many redundant functions in various biological processes 
119–121, no compensatory down-regulation of HDAC2 was observed in my 

experiments. Taken into account that altered hippocampal-dependent consolidation of 

memories is observed in mice in which HDAC2 was conditionally overexpressed or 

deleted in neurons of the forebrain and that such phenotypes could not be 

compensated by HDAC1 196, my findings further suggest distinct roles of HDAC1 and 

HDAC2 in hippocampal-dependent memory formation. In fact, hippocampal HDAC1 

seems to be expendable for the consolidation of memories. Another class I HDAC 

that has been shown to facilitate memory formation was HDAC3. Specific deletion of 

HDAC3 in the dorsal hippocampus of mice using AAV-Cre recombinase led to 

facilitated long-term memory formation in the novel object recognition task 405.  

Thus, while inhibition of HDAC2 and HDAC3 facilitates hippocampal memory 

formation and are thought therefore to be negative regulators of memory formation, 

my results indicate that hippocampal HDAC1 may regulate the fine-tuning of 

cognitive function but is not essential for memory formation per se. However it 

remains elusive, if temporal-extended AAV-mediated HDAC1 overexpression in the 

dorsal hippocampus of mice, for instance after 10 months, would lead to memory 

impairments. In this case, overexpression of dorsal hippocampal HDAC1 could have 

a detrimental effect when combined with the well-known aging-associated memory 

impairments in mice. However, aging did not alter HDAC1 protein levels in the rat 

hippocampi, arguing against an age-related effect of HDAC1 on memory formation 
536. Moreover, altered HDAC1 mRNA or protein levels have not been reported to date 

in human hippocampal post-mortem tissue of aged individuals and were not changed 

in hippocampi of Alzheimer patients 423. On the contrary, HDAC2 protein levels were 

elevated in aged rat hippocampi and post-mortem tissue of Alzheimer patients, being 

in agreement with impaired memory formation in mice overexpressing HDAC2 196,536. 
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In conclusion, the current experimental evidence suggests that hippocampal HDAC1 

is not essential for memory consolidation. However, the possibility remains that 

HDAC1 affects hippocampal plasticity in a subregion specific manner. In my 

experiments, HDAC1 was over-expressed in the dorsal hippocampus.  The absence of 

altered emotional behavior such as anxiety and depressive-like behavior in mice 

overexpressing HDAC1 in the dorsal hippocampus could be due to the reason that the 

ventral hippocampus is more susceptible in the modulation of emotional behavior 

such as anxiety and depressive-like behavior. The dorsal and ventral hippocampus has 

been shown to be anatomically and functionally distinct areas 537. In rodents, lesions 

of the ventral hippocampus but not that from the dorsal hippocampus were shown to 

reduce anxiety in behavioral tests 538. Thus it is in general suggested, that the dorsal 

hippocampus (ventral in humans) is implicated in the regulation of learning and 

memory, while the ventral hippocampus (dorsal in humans) is involved in the 

regulation of stress response and anxiety 539–541. In rodents, the ventral hippocampus 

directly projects to the medial prefrontal cortex, amygdala, nucleus accumbens shell 

and hypothalamus 542–544. Thus, regulation of stress and anxiety response by the 

ventral hippocampus has been shown to arise from projections to hypothalamic and 

limbic forebrain structures 545. The hypothalamus in turn plays a central role in 

controlling stress and anxiety in humans and rodents by regulating the neuroendocrine 

system, especially in regulating glucocorticoids, through the hypothalamic-pituitary-

adrenal (HPA) axis 440,546,547 The hippocampus contains a high density of 

glucocorticoid receptors (GRs) and is thus part of the feedback system that modulates 

the activation of the HPA axis 548,549. Interestingly, HDAC1 has been reported to bind 

to the promoter of the GR resulting surprisingly in transcriptional activation of GR 
550,551. In general, stressful events induce the release of glucocorticoids and increased 

GR expression is associated with stress and anxiety 552.  
My data showed that overexpression of HDAC1 in the dorsal hippocampus of mice 

did not lead to general impairments in sensorimotor gating function, which is often 

reduced in schizophrenia patients. This could as well be due to the reason, that 
hippocampal modulation of sensorimotor gating function during prepulse inhibition of 

startle response is thought to rely more on the ventral hippocampus than the dorsal 

hippocampus 363,368. Additionally, lesions in the ventral hippocampus disrupt the 

reciprocal interaction of the hippocampal-prefrontal cortex circuitry and were shown 

to impair working memory 225,553–555. 
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Thus in conclusion, one can speculate that overexpression of HDAC1 in the ventral 

hippocampus would more likely result into schizophrenia-like symptoms and 

cognitive endophenotypes. Moreover, while it is not obvious if Benes et al., examined 

the dorsal or ventral hippocampi of schizophrenia subjects, elevated HDAC1 

expression was found specifically in GABAergic neurons of the stratum oriens of the 

CA2/CA3 region of the hippocampi of schizophrenia. Thus furthermore, cell-type 

specific overexpression of HDAC1, namely in GABAergic neurons of the ventral 

hippocampus in mice, might lead to the phenotypes observed in schizophrenia. 

Importantly, elevated hippocampal HDAC1 levels in the study from Benes et al., were 

observed only in schizophrenia subjects but not in hippocampi of individuals with 

bipolar disorder, indicating possible HDAC1 specificity to schizophrenia 433.  

Further on, the involvement of other HDACs cannot be excluded and need further 

investigations. For instance, qPCR analysis of post-mortem hippocampal tissue 

available in our laboratory revealed significant elevated HDAC3 and HDAC8 levels 

in schizophrenia compared to control subjects. However, additional genome-wide 

association studies with bigger sample size as well as samples from different 

populations will be necessary in order to reveal greater significance for the 

involvement of HDACs in schizophrenia.  

Further studies investigating HDACs in a brain-region and cell-type specific manner, 

combined with Next-Generation-Sequencing, will identify target genes of HDAC1 

and contribute to a better understanding of the molecular underpinnings of 

neuropsychiatric disorders such as schizophrenia and anxiety disease. 

To date, none of the HDACs have been reported in genome-wide association studies 

for psychiatric diseases. This might also indicate that de-regulation of HDACs does 

not compromise a genetic but rather en environmental risk, potentially as a initial 

compensatory response that becomes eventually detrimental. Similar observations 

have been made in the case of neurodegenerative diseases where the compensatory 

induction of plasticity mechanisms eventually drives neurodegenerative processes 

when chronically activated 556,557. 
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5.1.3 Neuronal overexpression of HDAC1 in the dorsal 
hippocampus regulates fear extinction in mice 

 
While the overexpression of HDAC1 in the dorsal hippocampus did not affect the 

consolidation of memories or emotional behavior, the possibility that HDAC1 would 

have a specific role in cognition under physiological conditions was not ruled out. 

Fear extinction is a specific form of emotional memory, reflected in the reduction of 

fear response and was interestingly shown to be impaired in schizophrenia 488. The 

extinction of fear memories represent an active learning process, a so-called 

inhibitory form of learning allowing the adaptive control of conditioned fear 

responses rather than an erasure of the original fear memory 558. In general, fear 

extinction is highly context dependent 486,559. Neuronal networks engaged in the 

process of extinction of contextual fear involve the amygdala, hippocampus and 

prefrontal cortex 559. Although in general the amygdala is the thought to be mainly 

involved in the conditioning of fear responses, the hippocampus mediates the 

encoding of contextual fear conditioning 489,560. Hippocampal lesions were shown to 

severely impair the extinction of fear memories 561.  While the ventral hippocampus is 

more susceptible to anxiety and fear, pharmacological interventions in the dorsal 

hippocampus have been shown to be as well important for contextual fear extinction 
441,562,563. Moreover, dorsal intrahippocampal injections of HDAC inhibitors such as 

TSA and VPA were repeatedly reported to facilitate the extinction of fear memory, 

demonstrating the implication of HDACs in epigenetic control of gene-expression 

during the process of fear extinction 410,414,485. 

Indeed, in my experimental settings I was able to show that dorsal hippocampal 

HDAC1 regulates fear extinction, using our gain-of-function model overexpressing 

HDAC1 via AAV and by loss-of-function models, in which I specifically knocked-

down HDAC1 protein with siRNA or inhibited its enzyme activity by 

intrahippocampal injections of MS-275. Thus mice that overexpressed HDAC1 

displayed enhanced fear extinction, while inhibition of HDAC1 by HDAC1 targeted 

siRNA and MS-275 impaired the extinction of contextual fear memories. Importantly, 

in my experimental paradigms I paid great attention not to interfere with the 

acquisition and consolidation of memories in order to analyze the role of HDAC1 in 

the extinction of contextual fear memories. As such, our viral-system enabled me to 

generate an acute HDAC1 overexpression after the consolidation of fear memories 
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occurred. Interestingly, intrahippocampal injections of MS-275 after fear conditioning 

training did not affect associative memory. Overexpression of HDAC1 in the dorsal 

hippocampus before fear conditioning training similarly did not affect associative 

memory in contextual fear conditioning. The fact that inhibition or overexpression of 

HDAC1 in the dorsal hippocampus does not affect acquisition and consolidation of 

contextual fear is in line with another study reporting that intraperitoneal injections of 

MS-275 even for 10 days did not alter fear conditioning 564. Interestingly in this study, 

the effect of MS-275 on associative learning in the contextual fear conditioning was 

concentration dependent. As such, mice treated with 25 mg/kg MS-275 over 10 days 

reduced freezing behavior indicating impaired associative memory, while 12.5 mg/kg 

did not affect associative memory as mentioned above 564. The different effects of 

other HDAC inhibitors on fear extinction in contrast to MS-275 could be explained by 

the fact that they are rather unselective, inhibiting more or less all HDAC proteins 
414,485. On the other hand, the beneficial effect of the pan HDAC inhibitor TSA on fear 

extinction could be partially explained based on the observation that administration of 

TSA on neuronal cells increased the expression of HDAC1 565. Interestingly, when I 

injected the unselective Class I and II HDAC inhibitor SAHA in the dorsal 

hippocampi of mice, extinction of contextual fear was significantly improved when 

compared to vehicle treated mice (Appendix Figure 3). The beneficial effect of SAHA 

on memory formation is shown as well in another study in which intrahippocampal 

injections of SAHA improved contextual fear conditioning and impaired associative 

memory in aged mice 168. Additionally, administration of SAHA in a mouse model for 

Huntingtons´disease decreased HDAC2 protein levels in the cortex, improving motor 

impairments in those mice 197. These data support the idea of specific roles of 

individual HDACs during memory formation. As such it is currently suggested, that 

HDAC2 and HDAC3 act as negative constraints of memory formation, since the 

deletion of the respective proteins were shown to improve memory formation 
196,566,567. In conclusion, these data indicate that HDAC1 plays a specific role in 

memory formation, namely in the extinction of fear memories, while the other class I 

HDACs HDAC2 and 3 are involved in the acquisition and consolidation of fear 

memories. However, further investigations are needed to address the role of other 

HDACs during memory formation. 
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5.1.4 Transcriptional repression during fear extinction 

 
HDAC1 activity is in general associated with transcriptional repression of genes. 

Several studies, especially studies involving HDAC inhibitors, have indicated the 

importance of transcriptional repression of specific subset of genes during contextual 

fear extinction 410,414,490,563,568. In line with previous observations 490,569,570 I found that 

during the course of contextual fear extinction, hippocampal expression of c-Fos 

gradually declined when measured 1 h after exposure to each extinction trial. 

Importantly, the decline in c-Fos expression represented an active was not simply due 

to the passing of time but was specific for extinction training. Thus, transcriptional 

repression of c-Fos at E5 was regulated through the recruitment of HDAC1 together 

with its co-repressor mSIN3b to the promoter of c-Fos, leading into reduced 

acetylation of H3K9, while no other histone-acetylation sites such as H3K14 and 

H4K5 were altered. Furthermore I observed an increase of H3K9 trimethylation 

through the H3K9 specific histone-metyhltransferase SUV39H1 and its activator 

SIRT1 accompanied the decrease of H3K9 acetylation at E5. The parallel increase in 

H3K9 trimethylation is in full agreement with the general observation, that 

deacetylation of H3K9 serves as prerequisite for the trimetyhlation of H3K9 and that 

H3K9me3 is known to be enriched at heterochromatin regions marking, 

transcriptional repression 509,510. Thus, my data showed the recruitment of HDAC1 

together with other repressor proteins to the c-Fos promoter to mediate transcriptional 

repression of c-Fos in order to achieve successful extinction of contextual fear 

memories, which was inhibited by intrahippocampal injections of MS-275 and 

HDAC1 specific siRNA. Thus, inhibition of HDAC1 during fear extinction impaired 

the process of transcriptional repression of c-fos mediated by HDAC1, whereas 

overexpression of HDAC1 enhanced transcriptional repression of c-fos during fear 

extinction. In order to further confirm the formation of a chromatin–silencing 

complex during successful fear extinction learning mediated by HDAC1, co-

immunoprecipitation experiments during the course of extinction would reveal 

additional support. Furthermore, HDAC1 regulated transcriptional repression required 

for successful fear extinction was as well monitored on another immediate early gene, 

egr-2. Thus, HDAC1 was shown to mediate as well transcriptional repression of egr-2 

during the course of fear extinction (Appendix Fig. 2). Transcriptional repression of 
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c-fos and egr-2 during successful fear extinction learning was supported by another 

study from our lab, in which gene array analysis of hippocampi 1 hour after E1 and 

after fear extinction training displayed reduced c-fos and egr-2 expression 563. 

Interestingly, in our experimental settings as well as in other studies, the expression 

levels of the immediate early genes c-fos and egr-2 were both upregulated after the 

contextual fear conditioning or respectively E1 or in more general, when fear 

response was high 490,563,568,571,572. Thus immediate early genes such as c-Fos and Egr-

2 are transcriptionally activated upon fear conditioning 573–575. Furthermore it is in 

general accepted, that the consolidation of fear memories requires brain region 

specific transcriptional activation and protein synthesis 490,576,577. 

Thus one could speculate, that successful fear extinction learning requires 

transcriptional repression of genes that are activated after contextual fear 

conditioning, presenting different molecular pathways. HDAC1 could be therefore 

involved in transcriptional repression of genes that are especially upregulated after 

contextual fear conditioning. ChIP-Sequencing analysis of hippocampal HDAC1 after 

E1 and E5 could reveal further inside for this hypothesis. 

Taken together, my data suggest that HDAC1 is critical for the extinction of 

contextual fear memories and may provide a novel therapeutic avenue to treat anxiety 

diseases. However, it has been suggested that successful therapy in anxiety disorders 

such as PTSD would rather require the erasure of fear memories, since the extinction 

of fear memories were shown to be labile due to the spontaneous re-occurrence of 

fear 578,579. The renewal of fear memories was shown to rely on the interactions 

between the ventral hippocampus the amygdala and prefrontal cortex. Thus, 

disconnections from the ventral hippocampus from either the amygdala or prefrontal 

cortex eliminated the renewal of fear memories 572,579.   

Therefore it would be interesting to investigate, whether pharmacological or genetic 

modulations of HDAC1, and thus HDAC1 mediated regulation of gene-expression 

specifically in the ventral hippocampus would be involved in the process of renewal 

of fear memories and thus extinction of fear memories in order to present an 

therapeutic target for the treatment of anxiety disorders. 
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5.2 Role of elevated HDAC1 in the prefrontal cortex of mice 

5.2.1 Cognitive endophenotypes and schizophrenia-like 
symptoms in mice with elevated HDAC1 levels in the 
prefrontal cortex 

 
The AAV-mediated overexpression of HDAC1 in the dorsal hippocampus of mice did 

not result in cognitive endophenotypes of schizophrenia. However, in agreement with 

previously reported data, we found elevated HDAC1 levels in the prefrontal cortex in 

schizophrenia subjects. Moreover, immunoblot analysis of the same samples revealed 

a 1.7-fold increase in the corresponding protein levels. Interestingly in our samples, 

no alterations in the expression of other class I HDACs were observed. Notably, 

overexpression of HDAC1 in the prefrontal cortex of mice resulted into elevated 

anxiety and depressive-like behavior, working memory deficits, disrupted 

sensorimotor gating and impaired associative fear memory with subsequent deficits in 

extinction of fear memories, similar to the phenotypes observed in schizophrenia 

patients. 

Deficits in sensorimotor gating and working memory performance have been 

repeatedly reported in schizophrenia patients and in animal models of schizophrenia 
24,326,327,580–582. Impaired sensorimotor gating and working memory deficits are as well 

present in unaffected relatives of individuals of schizophrenia and defined therefore as 

the most promising cognitive endophenotypes of schizophrenia. However it is 

important to mention, that these deficits are not only unique to schizophrenia patients. 

For instance, deficits in sensorimotor gating assessed by PPI is as well present in 

patients with Huntington´s disease, Parkinson´s disease, Tourette Syndrome and 

Alzheimer´s disease 583,584. It is therefore interesting to note that all these disorders 

can be accompanied by psychosis. Thus one can speculate, that HDAC1 function in 

the prefrontal cortex might in general be involved in the process of working memory 

and sensorimotor gating. Altered prefrontal cortical circuits are strongly associated 

with cognitive impairments that are nowadays recognized as the core-feature 330,585–

587. Thus the prefrontal cortex is found to be the key mediator of working memory 

performance and sensorimotor gating 353,368,588,589. Altered prefrontal cortex circuitry 

is associated with abnormalities in neurotransmission signaling such as for example 

the dopaminergic, glutamatergic, serotonergic and GABAergic signaling pathways 
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590–594. Regarding the role of HDAC1, the GABAergic signaling pathways seems to 

provide the most promising targets for HDAC1 mediated regulation of gene-

expression underlying schizophrenia. As such, elevated HDAC1 expression correlates 

with the down-regulation of GABAergic genes in the prefrontal cortex 209,210,595. 

Furthermore, ChIP experiments in a mouse model for schizophrenia have shown that 

HDAC1 regulates transcriptional repression of the schizophrenia GABAergic genes 

Gad67 and Reelin through increased binding at the respective promoters which was 

reversed by administration of the HDAC1 selective HDAC inhibitor MS-275 210. 

 

Taken these data into consideration, cognitive endophenotypes in mice 

overexpressing HDAC1 in the prefrontal cortex might be due the downregulation of 

GABAergic genes mediated by HDAC1. Besides Gad67 and Reelin, Calbindin and 

Parvalbumin would possibly represent additional target genes, since they were 

reported to be as well downregulated in schizophrenia 297,453,596. 

 

5.2.2 Elevated prefrontal cortical HDAC1 expression in 
response to environmental risk factors of schizophrenia 

 

Various studies in humans and animals have demonstrated stress-induced prefrontal 

cortical impairments, resulting into working memory deficits and sensorimotor gating 

disruption 597–600. Furthermore, severe and chronic stressful events are considered to 

be environmental risk factors, contributing to the development of neuropsychiatric 

disorders. Therefore, since environmental risk factors are known induced dysfunction 

in prefrontal cortex circuitries associated with severe memory impairments, I 

wondered whether these factors would influence the expression of HDAC1 in the 

prefrontal cortex.  

 

To this end, I first subjected mice to maternal separation and social isolation rearing 

which I classified as social disturbance mice (SD). In line with previous data, SD 

mice displayed increased anxiety-and depressive like behavior, working memory 

deficits and impaired prepulse inhibition. Noteworthy, this stress procedure induced 

elevated HDAC1 mRNA and protein levels in the prefrontal cortex of SD mice in 
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comparison to the control group, while HDAC1 levels in the hippocampus where not 

significantly altered. Moreover, the stress-induced increase in HDAC1 expression was 

specific to the prefrontal cortex, as it was not observed in the hippocampi of the same 

mice. However, based on our previous assumptions and the knowledge that the 

ventral hippocampus in rodents is highly involved in the modulation of prepulse 

inhibition and working memory through its efferent projections to the prefrontal 

cortex, it would be interesting to investigate whether social disturbance would 

influence HDAC1 expression levels specifically in the ventral hippocampus of mice. 

The possibility remains namely, that altered HDAC1 levels in the ventral 

hippocampus would not be accessible for detection or result into insignificance due to 

a dilutionary effect of the dorsal hippocampus. Nevertheless, SD in mice simulated 

cognitive endophenotypes and elevated HDAC1 mRNA and protein levels in the 

prefrontal cortex of mice as similarly observed in individuals with schizophrenia. 

 

It was previously reported, that early life stress does not induce deficits in prepulse 

inhibition of startle response before early adulthood in rodents, resembling the time 

course of schizophrenic symptomatology showing appearance after puberty, when the 

prefrontal cortex reaches maturation. Thus for example in rats subjected to maternal 

deprivation, deficits in PPI only started at post natal day (pnd) 69 but were not present 

at pnd 34 361,520. Similarly, I was able to reproduce this observation in mice in which 

no significant alterations of PPI were visible when tested at pnd 34. Thus, two-way 

ANOVA analysis revealed that there was no significant main effect of the social 

disturbance protocol on mice at pnd 34 during PPI, in contrast to PPI conducted in SD 

mice during adulthood (3 months old or approximately pnd 96). Thus it would be 

interesting to investigate HDAC1 expression levels in the prefrontal cortex (and 

ventral hippocampus) of SD mice at pnd 34, when no deficits in sensorimotor gating 

function is visible. If this would be the case, elevated prefrontal cortical HDAC1 

would present a sort of molecular endophenotype reflecting sensorimotor gating 

functions. 

 

When subjected SD mice to intraperitoneal injections with MS-275 for 10 days, 

deficits in sensorimotor gating function were ameliorated in SD mice. Thus while SD 

mice treated only with vehicle displayed reduced PPI, SD mice treated with MS-275 

showed PPI responses that were similar to control mice not subjected to SD. This data 
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indicates that MS-275 injections improved sensorimotor gating deficits. The 

beneficial effect of MS-275 in sensorimotor gating function in our mouse model is in 

agreement with previously reported data, in which 10 days of intraperitoneal 

injections of MS-275 in heterozygous knock-out mice improved earlier observed PPI 

deficits in these mice 469. Importantly, the effect of MS-275 on cognition was shown 

to be concentration dependent 564.  

 

Early life stress or chronic stress in rodents and humans induces altered activity of the 

HPA axis and many of the behavioral consequence such as depression or cognitive 

impairments are mediated through HPA-axis induced increase in glucocorticoid 

secretion and subsequent activation of glucocorticoid receptors, resulting into altered 

gene-expression 437,549,601–603. Altered HPA axis has been observed in schizophrenia 

patients 604. Interestingly, activation of glucocorticoid receptor expression was shown 

to be mediated by HDAC1 promoter binding 550,551 and glucocorticoid receptors in the 

prefrontal cortex were shown to regulate stress-induced alterations in dopaminergic 

neurotransmission. Analysis of HDAC1 mediated transcriptional activation of 

glucocorticoid receptors in the prefrontal cortex, leading to cognitive impairments, 

would be an additional interesting hypothesis. Additionally, HDAC1 has been shown 

to act together in concert with DNA methyltransferases DNMT1, 3a and 3b in order 

to form a repressor complex to downregulate GABAergic susceptibility genes 210. 

DNMT1 and 3 a have been shown to be upregulated in GABAergic neurons of 

schizophrenia patients 457. Moreover, DNA methylation has been shown to play an 

important function in response to early life stress and HPA-axis regulating the 

expression of glucocorticoid receptors in rodents 429,437,605,606. Thus the involvement of 

DNA methylation involved in prefrontal cortex induced cognitive endophenotypes 

would present an additional interesting case. 

Interestingly, genome-wide mapping of HDACs and HATs using ChIP experiments 

followed by next-generation sequencing revealed that both, HDACs and HATs were 

preferentially found at the promoters of active genes by phosphorylated RNA 

polymerase II 607. It was suggested, that the in general known transcriptional 

repression activity of HDACs takes mostly place in order to reset the chromatin state 

by deacetylating histones at active genes 566,607. 

Since social disturbance mediated the HDAC1 expression in the prefrontal cortex of 

mice, it would be interesting to see, whether beneficial environmental factors such as 
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“good” maternal care or environmental enrichment in mice result as well in altered 

HDAC1 expression in the prefrontal cortex. Furthermore, it would be interesting to 

investigate through which upstream molecular pathways social disturbance regulates 

HDAC1 levels in the prefrontal cortex of mice. Since long-lasting changes in gene-

expression are often linked to altered DNA-methylation which affects the binding of 

transcription factors 608, one future experiment is to study the promoter and enhancer 

regions linked to HDAC1 gene-expression with respect to the DNA-methylation 

status.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

120 
 

6. Summary 

 
Schizophrenia is a severe neuropsychiatric disorder with high phenotypic complexity 

and multifactorial inheritance. Cognitive dysfunctions have been identified as the core 

feature of the disease and they are resistant to treatment with available antipsychotics. 

Impaired working memory and disrupted sensorimotor gating, which refers to the 

improper filtering or “gating” between irrelevant and relevant information leading to 

sensory overload, are the cognitive hallmarks of schizophrenia. Both of these 

cognitive dysfunctions are defined as cognitive endophenotypes that present a 

biomarker and guidepost for identification of the cause and course of schizophrenia. 

The etiopathogenesis of schizophrenia is thought to rely on genome and environment 

(GxE) interactions. Epigenetic enzymes such as histone-deacetylases (HDACs) are 

key mediators of GxE interactions. HDACs remove acetyl-groups of histone-proteins 

in response to environment stimuli, thereby changing the chromatin structure resulting 

into differential gene-expression important for cognition. Deregulated histone-

acetylation leads to impairments in learning and memory. Two independent human 

post-mortem studies have reported elevated HDAC1 levels in the hippocampus and 

prefrontal cortex of individuals with schizophrenia, with both brain regions being 

important for the regulation of cognitive endophenotypes of schizophrenia.  

 

The goal of this study was to investigate the role of HDAC1 in cognitive function and 

its contribution to the etiopathogenesis of schizophrenia in mice using both gain- and 

loss-of-function models. In the gain-of-function model, HDAC1 was specifically 

overexpressed in the dorsal hippocampus and prefrontal cortex of mice using an 

adeno-associated-viral (AAV)-system. The loss-of-function model consisted of 

pharmacological inhibition of HDAC1 using the HDAC1-specific inhibitor MS-275 

and siRNA-mediated knockdown of HDAC1. Moreover, the effect of early life stress, 

an environmental risk factor for schizophrenia on HDAC1 expression was also 

examined. 

 

My results showed, that overexpression of neuronal HDAC1 in the prefrontal cortex 

of adult mice resulted in schizophrenia-like symptoms such as increased anxiety, 
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depressive-like behavior, impaired fear extinction and cognitive endophenotypes such 

as impaired working memory performance and deficits in sensorimotor gating 

function. Inhibition of HDAC1 ameliorated such phenotypes. Moreover, 

environmental risk factors for schizophrenia such as early life stress induced cognitive 

endophenotypes of schizophrenia and mediated the up-regulation of prefrontal 

cortical HDAC1, simulating the situation observed in the post-mortem prefrontal 

cortex tissue of individuals with schizophrenia. A role of HDAC1 in early life stress- 

induced schizophrenia-like behavior was suggested by the finding that 

pharmacological inhibition of HDAC1 ameliorated such phenotypes.  

Interestingly, while manipulating neuronal HDAC1 levels in the prefrontal cortex of 

mice caused schizophrenia-like phenotypes, affecting neuronal HDAC1 levels in the 

dorsal hippocampus had no impact on such behaviors. 

Instead I demonstrated that under physiological conditions, HDAC1 in the dorsal 

hippocampus regulated the extinction of fear memories in mice. Using a combination 

of molecular and behavioral technologies, I found that HDAC1 regulated fear 

extinction via a mechanism that involved H3K9 deacetylation and subsequent 

trimethylation on the promoter of the immediate early genes (IEG´s) c-fos and egr-2, 

resulting into transcriptional repression. Inhibition of HDAC1 by MS-275 or siRNA 

impaired fear extinction and inhibited transcriptional repression of IEG´s during fear 

extinction.  

 

In conclusion, these data indicate a brain-region specific function of HDAC1 in 

cognition and emotional behavior and provide important knowledge on the role of 

HDAC1 in the adult brain. Especially, the role of HDAC1 in the prefrontal cortex is 

of particular interest and suggests that a selective HDAC1 inhibitor might be suitable 

to treat cognitive endophenotypes in schizophrenia patients. Part of this results have 

been published recently in the Journal of Neuroscience and another manuscript 

describing the results related to the role of HDAC1 in the prefrontal cortex is 

currently under preparation.  
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8. Appendix 

8.1 Appendix Figures 

 

Appendix Figure 1:Analysis of the c-Fos and Egr-2 promoter.  

The genomic region of the c-Fos (Top) and Egr-2 (Bottom) promoter was analyzed for homology 
between mouse and human using the Evolutionary Conservation of Genomes (ECR) browser tool 
(http://ecrbrowser.dcode.org/). High homology in the promoter regions indicates conserved regions 
most likely implicated with gene-regulation. The primers used to analyze epigenetic modifications of 
the c-Fos and Egr-2 promoter span the conserved cAMP-response element (cre) that is required for c-
Fos and Egr-2 expression. The schematic drawing also indicate the genomic region and the 
corresponding primer pairs we used to analyze “no promoter regions” which were selected on the basis 
of low homology between species. 
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Appendix Figure 2: Fear extinction-dependent recruitment of HDAC1 to the Egr-2 promoter 

Fear extinction training (see Fig. 13, 15) was performed in the mice (n= 40) that were used for the 
molecular analysis in A and B. A, Egr-2 expression was analyzed via qPCR in hippocampal tissue 
isolated 1 h after exposure to extinction trials. The data are normalized to tissue obtained from a naive 
control group. B, HDAC1 ChIP was performed from hippocampal tissue 1 h after exposure to E1, E3, 
and E5. Note that the downregulation of Egr-2 correlates with recruitment of HDAC1 to the Egr-2 
promoter. C, We used the same samples described in Figure 5D to analyze Egr-2 expression and 
HDAC1 recruitment to the Egr-2 promoter in the E1, the E1–3 d, and the E1–E5 group. We would like 
to reiterate that freezing behavior in the E1–3 d group was significantly higher when compared with the 
E1–E5 group. Egr-2 expression was measured 1 h after extinc- tion trials. Egr-2 levels were 
significantly higher in the E1–3 d group when compared with E1–E5 group. (*p 􂀀 0.05 vs E1 and E1–
3 d). D, HDAC1 ChIP was performed from hippocampal tissue 1 h after exposure to extinction trial in 
the E1, E1–3 d, and E1–E5 groups. Note that the increased Egr-2 expression in the E1–3 d group 
correlates with reduced HDAC1 level at the Egr-2 promoter. *p 􂀀 0.05 vs E1 and E1–3 d. Error bars 
indicate SEM. 
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Appendix Figure 3: Intrahippocampal injections of the pan-HDAC inhibitor SAHA facilitate 
fear extinction learning. 

A. Experimental design. Intrahippocampal injection of the pan-HDAC inhibitor SAHA immediately 
after each extinction trial significantly facilitated fear extinction when compared to control mice on 
individual extinction trials (*P<0.05 vs. vehicle) or by repeated measurements (p<0.05; F= 6.345). 

 
 

 
Appendix Figure 4: Effect of social disturbance on sensorimotor gating in mice at postnatal day 
(PND) 34.  

A.  Social disturbance did not alter PPI in mice when tested at PND 34. No significant effects was 

observed among groups. Two-way ANOVA or repeated measures revealed no significant main effect 

of social disturbance at PND 34 [F (1, 21)= 0.1711, p = 0.6834] while the main effect of prepulse 

intensity remained significant, indicating functional sensorimotor gating [F (4, 84)= 4.702, p = 0.0018]. 

B. Startle response did not show differences among groups. n= 11/group.  Error bars represent ± SEM 
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