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Die Anwendung des Selektionsindexes unter Verwendung genomischer Information 

auf Zuchtprogramme für Reitpferde und Schweine 

In der vorliegenden Arbeit werden drei Modellrechnungen vorgestellt, die auf dem Selekti-

onsindex basieren und mit denen der Nutzen genomischer Zusatzinformation auf aktuelle 

Selektionsstrategien für Reitpferde und Schweine ermittelt werden soll. In Kapitel eins wer-

den sowohl die klassischen Instrumente der Tierzucht, der Selektionsindex, die ökonomische 

Modellierung und die Genfluss-Methode, als auch die genomische Selektion dargestellt. Zu-

dem wird die Software ZPlan+, in welcher diese Instrumente miteinander kombiniert sind, 

kurz vorgestellt. 

Im zweiten Kapitel der Arbeit wird das Potenzial der genomischen Selektion für die 

Reitpferdezucht dargestellt. Der Zugewinn an Genauigkeit eines Zuchtwerts durch 

Hinzunahme genomischer Information wurde für drei praxisnahe Selektionsschritte betrach-

tet, nämlich für Pferde ohne Eigenleistung, Pferde mit Eigenleistung und Pferde mit Eigen- 

und Nachkommenleistungen. Die Modellrechnung zeigte, dass sich durch Hinzunahme 

genomischer Information besonders die Genauigkeit von Zuchtwerten junger Pferde ohne 

Eigen- oder Nachkommenleistung beträchtlich steigern ließe. Sobald 

Nachkommenleistungen unterstellt wurden war der Zugewinn an Genauigkeit durch 

genomische Information jedoch zu vernachlässigen. Für die praktische Pferdezucht ist die 

genomische Selektion daher vor allem für die Absicherung vorläufiger Zuchtzulassungen für 

junge Hengste nach der Körung und für leistungsgeprüfte Hengste ohne 

Nachkommenleistungen empfehlenswert.  

 Im dritten Kapitel der Arbeit wurde untersucht, wie sich die Art der berücksichtigten 

Informationsquellen (konventionell oder genomisch) auf die Interaktion der Parameter gene-

tische Korrelation, Heritabilität und ökonomische Gewichtung auswirkte. Als Vergleichspara-

meter wurde die Standardabweichung des jeweiligen Indexes herangezogen, welche sich 

direkt proportional zum Zuchtfortschritt verhält. Es wurden drei Indices mit zwei Zuchtziel-

merkmalen verglichen, deren Informationsquellen in Anlehnung an die Schweinezucht ge-

wählt wurden. Der erste Index wurde für ein Tier mit Eigenleistung aufgestellt, während im 

zweiten Index zusätzliche Vollgeschwisterleistungen angenommen wurden. Im dritten Index 

wurde die Eigenleistung mit genomischer Information für beide Zuchtzielmerkmale kombi-

niert. Die Genauigkeit der genomischen Zuchtwerte wurde durch Annahme unterschiedlich 

großer Referenzpopulationen variiert. Je mehr Information im Index berücksichtigt wurde, 

desto unabhängiger wurde die Standardabweichung des Indexes von den Parametern gene-

tische Korrelation, Heritabilität und ökonomische Gewichtung. Dabei wurden für den Vollge-

schwisterindex mit 7 Vollgeschwistern und den genomischen Indexes mit einer Referenzpo-
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pulation von 1.000 Tieren vergleichbare Ergebnisse gefunden. Die Anzahl von 1.000 Tieren 

in der Referenzpopulation kann somit als Mindestmaß für die Schweinezucht angenommen 

werden. Für geringere Heritabilitäten zeigte sich eine deutliche Überlegenheit des 

genomischen Indexes über den Vollgeschwisterindex.  

 Im vierten Kapitel der Arbeit wurde ein Schweinezuchtprogramm optimiert. Dazu wur-

den verschiedene Zuchtziele und Selektionsstrategien gegen Ebergeruch verglichen. Das 

Zuchtziel war entweder die Selektion gegen den Gehalt der chemischen Leitkomponenten 

des Ebergeruchs, Androstenon, Skatol und Indol oder die Selektion gegen den, von Testper-

sonen bestimmten, Human Nose Score. Innerhalb der Selektion gegen die chemischen 

Komponenten wurden drei verschiedene Informationsquellen miteinander verglichen, näm-

lich eine Feldprüfung in Form einer Biopsie am lebenden Eber, genomische Selektion sowie 

die Kombination beider Informationen. Innerhalb der Selektion gegen den Human Nose Sco-

re wurden als Informationsquellen eine Stationsprüfung von Voll- und Halbgeschwistern des 

Selektionskandidaten sowie genomische Selektion miteinander verglichen. Das komplexe 

Zuchtprogramm wurde deterministisch mit der Software ZPlan+ modelliert. Bei der Selektion 

gegen die chemischen Komponenten des Ebergeruchs war der Zuchtfortschritt am höchsten, 

wenn als Informationsquelle die Eigenleistung in Form einer Biopsie der männlichen Selekti-

onskandidaten genutzt wurde. Aufgrund der hohen Erblichkeit der Ebergeruchskomponenten 

war der Nutzen genomischer Zuchtwerte deutlich geringer und gleichzeitig teurer. Für die 

Selektion gegen den geringer erblichen Human Nose Score lieferte die genomische Selekti-

on einen höheren Zuchtfortschritt als die Stationsprüfung der Geschwister des Selektions-

kandidaten. Auch wenn der Human Nose Score als Zielmerkmal angesehen wurde, erwies 

sich eine Selektion gegen die chemischen Komponenten als zielführend, da der (korrelierte) 

naturale Zuchtfortschritt des Human Nose Scores bei Durchführung einer Biopsie deutlich 

höher war, als bei direkter Selektion gegen den Human Nose Score. 

 Im fünften Kapitel wird das Potential der genomischen Selektion für die Reitpferde- 

und Schweinezucht diskutiert. Dabei wird besonders auf Möglichkeiten für die Vergrößerung 

der Referenzpopulation und der Kostenreduktion eingegangen. Für die Reitpferdezucht wer-

den zusätzlich Möglichkeiten aufgezeigt, wie der Zuchtfortschritt mit konventionellen Metho-

den gesteigert werden könnte. 
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Application of selection index theory comprising genomic information to breeding 

programs of sport horses and pigs 

This thesis presents three model calculations based on selection index theory to evaluate the 

benefit of genomic information for the optimization of current breeding strategies in sport 

horses and pigs. In chapter one, an introduction is given to the classical breeding tools selec-

tion index theory, economic modeling and the gene-flow method, as well as to genomic se-

lection. Additionally, the software ZPlan+, which combines all of these tools, is introduced. 

 In chapter two of the thesis, the potential of genomic selection is evaluated for sport 

horse breeding. The increase in accuracy of selection due to inclusion of genomic infor-

mation was assessed for three practical selection steps: horses without own performance, 

horses with own performance and horses with own and progeny performance. The model 

calculation showed that by including genomic information a considerable increase in accura-

cy of selection could be achieved for young horses without own and progeny performance. 

For progeny tested horses, the gain in accuracy when including genomic information was 

negligible. For practical sport horse breeding, genomic selection is recommended for in-

creasing the accuracy of selection of young stallions at the time of stallion licensing and of 

already performance tested stallions without progeny records. 

 Chapter three of the thesis represents an investigation on how the kind of information 

(conventional vs. genomic) influences the interaction of the parameters genetic correlation, 

heritability and economic weighting. Three different indices were compared in regard to their 

standard deviation, which behaves directly proportional to response to selection. The indices 

had a two-trait breeding goal and information sources were chosen according to pig breed-

ing. The first index only incorporated an own performance, while the second index incorpo-

rated additional performances of full sibs. Within the third index, the conventional own per-

formance was combined with genomic information on both breeding goal traits. The accuracy 

of the genomic breeding values was varied by varying the size of the reference population. 

The standard deviation of an index became more independent of genetic correlation, herita-

bility and economic weighting, the more information was considered. Standard deviations of 

the index with 7 full sibs and the genomic index with 1’000 animals in the reference popula-

tion were found to be comparable. Based on these results, 1’000 animals can be considered 

a minimal size for reference populations in pig breeding. If the heritability of one breeding 

goal trait was reduced, the standard deviation of the genomic index was higher than the 

standard deviation of the full sib index. 

 The fourth chapter of the thesis represents an optimization of a practical pig breeding 

program. The aim was to compare different breeding goals and selection strategies against 
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boar taint in a sire line. Breeding goal traits were either the chemical compounds of boar taint 

(androstenone, skatole and indole) or the so-called human nose score of boar taint as meas-

ured by human panelists. Within the selection against chemical compounds, three different 

information sources were compared: a biopsy-based field test conducted in live boars, ge-

nomic selection, and the combination of both. Within the selection against the human nose 

score, station testing of full and half sibs was compared to genomic selection. The complex 

breeding program was modeled deterministically using ZPlan+. Due to high heritabilities, the 

annual genetic gain achieved in the chemical compounds was highest when conducting bi-

opsy-based performance testing of male selection candidates. Genetic gain arising from ge-

nomic selection was considerably smaller but breeding costs were higher. For selection 

against the lowly heritable human nose score, the potential of genomic information was high-

er than the potential of station testing of the selection candidate’s sibs. Even if the human 

nose score was assumed to be the target trait, the (correlated) response in units of the trait 

was highest when selecting against the chemical compounds by biopsy-based field testing of 

the selection candidate. 

 Chapter five presents a discussion of the prospects of genomic selection for sport 

horse and pig breeding programs in regard to possibilities of increasing the size of the refer-

ence population and possibilities of reducing variable breeding costs. Additionally, different 

options for increasing the response to selection with conventional methods are suggested for 

sport horse breeding. 
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Preface 

Animal breeding started with the domestication about 6’000 to 20’000 years ago most proba-

bly in the late Paleolithic (Old Stone Age) or early in the Neolithic (New Stone Age) (Lush, 

1945). However, most of the present livestock breeds were created during the 19th century 

(Simon and Buchenauer, 1993), providing a structure to the forthcoming selection proce-

dures. Animal breeding primarily relied on the phenotype of the individuals (Lush, 1945). An-

imals were selected on several traits from the beginning, but selection was not always effi-

cient. In the middle of the 20th century, animal breeding shifted from an appearance orienta-

tion to a performance orientation whereas the further evolution to an economic orientation is 

still incomplete (Harris and Newman, 1994). Although animal breeding often does not rely on 

sophisticated economic models, the productivity of livestock systems has considerably in-

creased within the last decades (Amer, 2011). In the following, the classical breeding tools as 

well as new methodologies introduced to animal breeding will be described. 

 

The classical breeding tools 

The selection index 

Selection originally relied on production (milk, meat) but one can reasonably assume that the 

temperament of the animals and their fertility were also criteria of choice. A first step to opti-

mize selection was thus to combine several traits to better select on all of them simultane-

ously. 

Hazel and Lush (1942) compared three methods of selection and found that selection 

on an index, that is a linear combination of the breeding values of each of the traits, was 

more efficient than selection for independent culling levels or tandem selection for one trait at 

a time. Hazel (1943) addressed the problem of maximizing the economic response for a mul-

tiple-trait selection. His objective was to increase the genetic gain of several traits differing in 

economic importance, heritability, variance and degree of genetic and environmental correla-

tion by combining them in an overall breeding goal. For that purpose, the aggregate geno-

type was defined as the sum of the breeding values (i.e. the additive genetic values) of all 

considered traits weighted by their relative economic importance: 

T = a1G1 + a2G2 + … + anGn, 

where T is the aggregate breeding value, Gi are the breeding values of the traits considered 

in the breeding goal and ai are the relative economic weights of the traits. Because true 

breeding values cannot be determined directly, selection had to be based on a correlated 

variable, the selection index (I): 
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I = b1X1 + b2X2 + … + bnXn, 

where Xi are the performances of an animal for each trait and bi are the regression coeffi-

cients, which are obtained from a multiple regression procedure to maximize the correlation 

between the index and the aggregate breeding value ( TIr ) while minimizing the residual vari-

ance. Required parameters are the phenotypic standard deviation of each trait, phenotypic 

and genetic correlations between each pair of traits, phenotypic correlations between the 

traits of relatives and the heritability of each trait. 

Selection index theory in this form had two main drawbacks. On one hand the impact 

of environmental effects that could not be corrected for, and on the other hand the varying 

amount of information between selection candidates. To better evaluate the genetic potential 

of an individual, Hazel (1943) recommended integrating performances of additional relatives 

into the index for instance because selection for certain traits cannot be accomplished on the 

breeding animal itself (e.g. carcass traits) and / or can only be measured in animals of one 

sex (e.g. prolificacy or milk production). Furthermore, he suggested a better control of the 

environment and correcting for known environmental effects. The author concluded that 

among the parameters affecting genetic gain, increasing the accuracy of the index, TIr , of-

fers the best prospects of turning selection more efficient. 

The problem of environmental effects, which often inhibited a correct comparison of 

animal data was addressed by Henderson (1949). He estimated breeding values combining 

least squares with selection index methods but later on discovered that they were biased by 

deficiencies of repeatability. For that purpose, a maximum likelihood method was applied to 

calculate annual correction factors for different dairy cattle herds. These correction factors 

were used to compute the genetic improvement of the herd and to estimate breeding values 

for cows. A further modification was separating the application of the selection index into two 

steps: (1) estimation of breeding values for each breeding goal trait and (2) application of the 

relative economic weights (Henderson, 1951 cited by Hazel et al., 1994). With this adjust-

ment economic weighting factors could be varied according to the selection objectives or 

production systems without having to recalculate breeding values at the same time. Moreo-

ver, this modification enabled the use of estimators for each index trait and to account for 

unequal amounts of information (Hazel et al., 1994). It therefore provided a solution to both 

problems of the selection index. A further development was the introduction of the so-called 

mixed-model equations by Henderson et al. (1959). They permitted simultaneous estimation 

of fixed effects and prediction of random genetic effects. Henderson (1973) proved the best 

linear unbiased predictor (BLUP) for random effects to be identical with the selection index 

criterion when using generalized least squares solutions as means for fixed effects. 
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In practical breeding, selection indices were not used until the 1970’s. In 1971, the United 

States Department of Agriculture introduced its first economic index comprising milk yield 

traits (Norman and Dickinson, 1971). Still, selection index theory remains an often used tool 

for the evaluation of breeding programs. The main advantages are its applicability to a wide 

range of problems in animal breeding and its small computing time compared to sophisticat-

ed empirical approaches. 

 

Economic modeling 

After the introduction of selection index theory by Hazel (1943), research had to focus on the 

definition of breeding goals, since the aggregate genotype basically represents the economic 

breeding objective on which breeders have to focus to achieve maximum profit. Willham 

(1979) proposed a system for sire evaluation programs where the breeders were allowed to 

choose their breeding direction according to their own ideas. However he suggested that the 

breeding organizations should provide the appropriate tools for that purpose by collecting 

and evaluating performance data. 

The first step towards an economic consideration of breeding programs was the de-

termination of the relative economic importance of different traits in the aggregate breeding 

value. Costs and returns from a breeding program have to be investigated in order to deter-

mine the economic weights of single traits. Gjedrem (1972) recommended including all crite-

ria which have a major impact on the efficiency of commercial production into the breeding 

objective. Costs to be considered are at least (1) feeding costs, (2) costs of labor and facility, 

(3) costs for the buildup and maintenance of breeding stock (Harris and Newman, 1994). 

Returns on the other hand are quantified through the value of products.  

For the set-up of valuable economic weightings, Hazel (1943) proposed the marginal 

utility which is defined as the net increase in profit for one unit of genetic change in the se-

lected trait independently of the effects from genetic changes in other traits. The economic 

values are hence considered as linear functions of the trait values, which is in practice often 

not true (Weller, 1994). Moav and Moav (1966) proposed the use of profit equations to com-

pare the economic efficiency of lines or crosses, which provided a non-linear approach. 

Moav and Hill (1966) underlined the relationship between economics and genetics by com-

puting economic values of traits as their partial differentials with respect to profit per unit of 

product. In order to overcome the issue of non-linearity, Harris (1970) discussed methods 

dealing with breeding objectives expressed by more complex functions. An approximation 

would be to divide a complex function into partial derivatives, which thus provides the rate of 

change of the profit function at the points of the population means. Melton et al. (1979) de-
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veloped a method to estimate economic values by combining a profit function and a produc-

tion function where every output is linked to the respective inputs. 

Yet, the economic weights derived from profit equations depended on the perspective 

taken for the evaluation and hence varied if they were calculated regarding the consumer’s 

interest, regarding the producer’s interest or per unit of investment made (Moav, 1973; 

Brascamp et al., 1985). The economic value of a trait thus differs depending on the perspec-

tive, e.g. between investors, farmers and consumers. Brascamp et al. (1985) showed that 

equal relative economic weights can be derived for all perspectives of evaluation if the deri-

vation is based on the so-called ‘normal profit’. This means considering profit as a cost of 

production and thus setting the profit equation to zero. Smith et al. (1986) discussed two 

conditions under which economic weights derived by different methods and considered from 

different perspectives are equivalent. The authors stated that profit from genetic change 

which is also achievable by changing the size of the production unit is not due to genetic im-

provement, and therefore should not be counted. Secondly, arguing that fixed costs depend 

on the level of output, the authors advised that ‘fixed costs, like variable costs, should be 

expressed per unit of output’. 

During the last decade, selection on functional traits like longevity and fertility moved 

into the focus of animal breeders. Fewson and Niebel (1986) concluded that the inclusion of 

functional traits into the breeding goal only marginally reduces genetic gain of production 

traits. Miesenberger et al. (1998) found that the overall profit of a breeding program can be 

even increased by including functional traits with their proper economic weighting. Assuming 

different market scenarios, Lind (2007) derived economic weights as well as optimal index 

weights for the aggregate breeding value for the selection of German and Austrian dairy- and 

dual purpose cattle. Wolfová et al. (2001) derived economic weights for crossbreeding sys-

tems in pigs. The position of the breed within the crossbreeding scheme was accounted for 

as a factor with an impact on economic weighting of the traits. The authors also found that 

traits should be weighted according to the kind of the breeding enterprise (multiplying of 

breeding animals versus fattening of end-products). Although numerous methods have been 

developed for designing economically precise breeding strategies, there are still shortcom-

ings. Amer (2011) stated that a basic understanding of economic principles would prevent 

animal breeders from ignoring existing inefficiencies in making use of previous genetic im-

provements. To take full advantage of the potential of existing livestock breeding programs, 

the author proposed contemplating factors like vertical integration, value capture versus effi-

ciency because of competition or intellectual property rights.  
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The gene flow method 

The genetic progress resulting from selection in the breeding nuclei affects commercial pro-

duction only after a time lag (Bichard, 1971). Costs and returns occur at different times and 

the realization of profit from one round of selection may be delayed according to the trait 

(Fewson, 1993). Especially in animals with long generation intervals, returns from a breeding 

program are realized long after the initial investment, which requires discounting of these 

parameters. The classical formula for annual improvement developed by Dickerson and Ha-

zel (1944) and Rendel and Robertson (1950) only accounts for the fact that the same selec-

tion scheme was practiced for many generations. Hinks (1971) and Hill (1971) pointed out 

that genetic improvement resulting from one cycle of selection is not expressed constantly in 

successive years, but rather erratically approaches an equilibrium many years after a selec-

tion round. 

Hill (1974) and Elsen and Mocquot (1974) concomitantly addressed the problem of 

how to predict rates of response to selection considering overlapping generations. The cen-

tral point was how to specify the passage of genes between different age groups and sexes 

by using matrix notations. 

The so-called P-matrix enables expressing the transmission of genes and the ageing 

of all selection groups. It is structured in four blocks which describe the four pathways of 

gene transmission being (1) males to breed males, (2) males to breed females, (3) females 

to breed males and (4) females to breed females (cp. Rendel and Robertson, 1950). Thus, 

the gene flow method offered a way to follow the genes deriving from a group of selected 

animals and to compute their contribution to subsequent generations. The genetic gain could 

be predicted as the summed products of the genetic selection differential and the proportions 

of genes deriving from sex-age groups. The gene-flow method permits to compute the time 

lag of improvement from nucleus to commercial stock and thus allows calculating discounted 

monetary returns from a breeding program. 

 

Genomic selection 

Since molecular technologies have been developed for determining the genotype of individu-

als at specific loci, attempts have been made to use this information for selection decisions. 

Fernando and Grossman (1989) proposed a method for combining information from a rele-

vant locus with a polygenic term when predicting EBVs. This procedure was referred to as 

marker assisted selection (MAS) and the number of considered markers was limited to one 

or just a few, like e.g. microsatellites. With further development in genotyping technologies, 

large numbers of single nucleotide polymorphisms (SNPs) became commercially available. 
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The idea of using many markers at a time was first mentioned by Van Arendonk et al. (1989) 

and Lande and Thompson (1990) first proposed a method for combining traditional infor-

mation sources with information on many markers. A simulation study conducted by 

Meuwissen et al. (2001) revealed the possibility of simultaneously using all markers for the 

prediction of breeding values, which was referred to as genomic selection (GS). The defini-

tion of GS incorporates the derivation of a prediction equation by means of a reference popu-

lation of animals with accurately predicted conventional breeding values. This equation is 

then used for predicting the GBVs of the selection candidates. Further methodological devel-

opments were proposed, like computations using the genomic relationship matrix 

(VanRaden, 2009) or single step approaches combining phenotypic, genotypic and pedigree 

information at once (Misztal et al., 2009). These were the basis for GS to become a routine 

procedure in many breeding programs, especially in dairy cattle. 

A strategy for incorporating GS in a practical dairy cattle breeding scheme was first 

presented by Schaeffer (2006). In comparison with a conventional progeny testing scheme, 

the author found a considerable increase in accuracy of selection early in life as well as an 

enormous reduction of breeding costs. Although these first prognoses were very optimistic, 

the advantages of GS over traditional selection schemes were confirmed especially for the 

selection on traits with a low heritability (e.g. functional traits) or traits that cannot be meas-

ured on the selection candidate itself (Dekkers, 2004; König and Swalve, 2009, König et al., 

2009). Due to the great potential of shortening generation intervals, routine estimation of ge-

nomic breeding values (GBVs) was first implemented in cattle. The possibility to increase 

accuracy of selection early in life and thus shorten generation intervals was also found for 

sport horse breeding, as presented in chapter two of this thesis. In contrast, the main pur-

pose of GS in pig breeding is enhancing the accuracy of selection. Model calculations 

showed the potential of GS with regard to fertility traits (Simianer, 2009; Cleveland et al., 

2010) and production traits (Haberland et al., 2010). 

The accuracy, with which a GBV can be estimated ( GBVr ), is affected by different fac-

tors. Daetwyler et al. (2008; 2010) derived a formula 

e
2

P

2
P

GBV
MrN

rN
r , 

where PN  is the size of the reference population, 2r  is the reliability of the conventional 

EBVs of the animals in the reference population and eM  is the effective number of chromo-

some segments segregating in the population, which again is a function of the effective 

population size, the average length of a chromosome and the number of chromosome pairs. 
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In dairy cattle breeding, breeding organizations for Holstein Friesian have started to cooper-

ate to increase the size of a common reference population and thus the accuracy of the es-

timated GBVs. For example, the reference population of the EuroGenomics project (Lund et 

al., 2010) is composed of currently 25’000 progeny tested bulls. The situation is different in 

pig breeding, where breeding programs are organized more regionally and the genetic ex-

change between different populations, even within the same breed, is low. The reproduction 

rate of boars and therefore 2r  is much lower compared to bulls. The buildup of reference 

populations larger than several hundreds of animals thus requires either cooperation of dif-

ferent organizations similar to dairy cattle or including sows in the reference population. 

Dekkers (2007) proposed a method for including marker information in selection index 

calculations. GBVs are considered as indicator traits with a heritability of 1, which are linked 

by genetic correlations to the breeding goal traits. This methodology was used in chapter 

three and four of this thesis and will be presented more in detail there. 

 

ZPlan+, a software to optimize breeding programs in livestock 

A preliminary concept for a software enabling the user to optimize breeding schemes with 

respect to investment parameters was developed by Niebel (1974). The program was used 

to perform model calculations on the optimization of purebreeding in dual purpose cattle 

(Niebel and Fewson, 1978) and of purebreeding in swine (Niebel and Fewson, 1979). A first 

version of ZPLAN combining the work of Niebel (1974) with the gene flow method (Hill, 1974, 

Elsen and Mocquot, 1974) was written by Karras (1984) and presented by Nitter and Graser 

(1994). The program is based on the classical tools selection index theory (Hazel, 1943) and 

gene flow method (Hill, 1974) and is a means to deterministically simulate breeding plans in 

any livestock species (Willam et al., 2008). Additionally, it allows economic modeling of 

breeding programs and thus offers a good basis for the optimization of selection schemes in 

livestock breeding. The program was used by Wünsch et al. (1999; 2000) to evaluate the 

response to selection for a three-way crossbreeding system in pigs. Economic weights of 

production and reproduction traits were optimized according to sex and breed. Additionally, 

the optimal reproductive life time was determined using ZPLAN. Wolfová et al. (2001) inves-

tigated the impact of different crossbreeding systems on economic weights in purebred pig 

populations. 

ZPLAN was originally written in FORTRAN and was rather demanding in its use. In 

the context of the project FUGATO+brain, the software was newly programmed incorporating 

a user-friendly interface. The main properties of the software remained in the new version, 

ZPlan+ (Täubert et al., 2010). In a basic run, a breeding scheme is defined and evaluated. 
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Subsequently, parameters can be varied in order to compare different alternatives of the 

breeding program in terms of output parameters like genetic gain, breeding return, costs, 

profit, generation intervals, and accuracies of selection. With its deterministic approach, the 

advantage of the program compared to stochastic simulations is the feasibility of multi-trait 

modeling and the requirement of much less computing time (Willam et al., 2008). 

In addition to the basic applications of the previous version, ZPlan+ incorporates the 

possibility to straightforwardly include genomic information following the approach proposed 

by Dekkers (2007) with slight modifications. GBVs can be added as genomic indicator traits 

with a heritability of 1. The accuracy of the GBVs can be determined by defining the parame-

ters PN , 2r  and eM , according to the formula proposed by Daetwyler et al. (2010). ZPlan+ 

thus allows for comparing conventional and genomic breeding strategies. 

 

Sport horse breeding in Germany 

In 1732, Frederick William I of Prussia founded the Prussian Stud Administration (Preußische 

Gestütsverwaltung) for providing the cavalry and agriculture with horses of good quality. Next 

to the foundation of state studs, a system of performance testing and selection of stallions 

was implemented (Graf, 2006). At the same time, facilities were constructed in East Prussia 

with the focus on improving the quality of the Trakehner horse, a light horse used by the cav-

alry. The availability of these institutions and genetic resources was later an important factor 

for Germany to become a leading horse breeding nation for the classical disciplines dres-

sage, show jumping and 3-day eventing. 

In the 1950’s, the importance of horses as means of transport and agricultural pro-

duction decreased due to the proceeding motorization and as a consequence, the number of 

horses in Germany declined dramatically. Horse breeding officials, e.g. Gustav Rau, made 

great efforts to promote the foundation of riding clubs and the organization of sport horse 

competitions (German Equestrian Federation, 2005). A major task for breeders at this time 

was changing the type of horses from the ancient working type to the now required modern 

type suitable for sport purposes. One advantage over other European countries was the al-

ready existing infrastructure of state controlled horse breeding institutions dating back to the 

18th century. Additionally, the Trakehner horse proved to be an important genetic resource for 

transforming the old working type into a modern sport horse. The importance of breeding 

sport horses as partners for leisure activities and riding competitions grew in the beginning 

1970’s and its organization by breeding organizations and the German Equestrian Federa-

tion (FN) proceeded. 
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Nowadays, sport horse breeding programs are conducted by 25 German breeding organiza-

tions which are members of the FN. About 7’800 stallions and 89’000 mares are registered 

as breeding animals. The number of matings has been declining within the last years and 

about 39’200 foals were born in 2012 (German Equestrian Federation, 2013). Stallions and a 

small percentage of mares are performance tested in eleven test stations. Within the last 

decade, German sport horse breeding is in increasing competition with other horse breeding 

countries like the Netherlands, Belgium, Denmark or Sweden. Due to an increasing genetic 

exchange between breeding organizations within Germany but also between countries 

(Koenen et al., 2004; Thorén Hellsten et al., 2009), what matters is no longer the availability 

of good genetics, but the quality of the breeding program. In this regard, the diversity of 

breeding organizations in Germany is sometimes challenging. Because the breeding goal is 

largely the same for most of the breeding organizations, there is competition for breeders 

and the development of common strategies together with the FN is often time consuming.  

In contrast to other livestock species, the breeding goal for the German sport horse 

includes important characteristics for different breeding directions, because several breeding 

directions even exist within one breed (e.g. dressage, show jumping, driving). There exists 

no precise determination of economic values for breeding goal traits (Koenen et al., 2004; 

Haberland and Simianer, 2009). An important development for approaching this problem was 

to gradually separate the breeding stock according to the main breeding directions dressage 

and show jumping within the last 20 years (Schade, 1996; von Lengerken and Schwark, 

2002, Niemann, 2009). 

 

Pig breeding in Germany 

Germany is the biggest producer of pork meat after China and the USA and the degree of 

self-sufficiency is around 100% (FAO, 2013). Within the last 20 years, the number of slaugh-

tered pigs increased from 43’700 to 59’700 and an annual consumption of about 55 kg pork 

meat per person illustrates the significance of pig breeding in Germany (BMELV, 2013). The 

German pig breeding industry is structured into regionally operating breeding organizations, 

which conduct their own breeding programs. A classical crossbreeding program incorporates 

a three-way cross of F1 sows (Landrace x Large White) with a sire line, mostly Piétrain. Other 

sire lines are e.g. Duroc or Hampshire (Willam and Simianer, 2011). In Switzerland, a Large 

White line especially selected for meat quality is used as sire line (chapter 4 of this thesis). 

Boars and gilts are usually selected according to their own-performance in a field test in 

combination with the performance data of their full and half sibs, as proposed by Niebel and 

Fewson (1979). The development of a 60K SNP array for Sus scrofa (Ramos et al., 2009) 

and investigations concerning linkage disequilibrium carried out by Uimari and Tapio (2011) 
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and Badke et al. (2012) permit to assess genomic information as an additional information 

source. Cleveland et al. (2010) found the accuracies of GBVs for female fertility traits to be 

higher than accuracies of conventional EBVs that are normally available at the time of selec-

tion.  

 A currently much debated issue in pig breeding is finding possibilities for the reduction 

of boar taint, an unpleasant odor expressed by uncastrated males. Due to an increasing dis-

approval of consumers, the practice of surgical castration without using anesthesia, as per-

formed in the past, is no longer an option (von Borell et al., 2009). Next to immunocastration 

(Prunier et al., 2006; Fàbrega et al., 2010; Rydhmer et al., 2010), which raises concerns of 

the retailers, fattening of intact boars is proposed as an option. However, reducing the occur-

rence of boar taint in the meat of the end-product is a prerequisite. Selection against the 

main components of boar taint seems promising due to high heritabilities (Sellier et al., 2000; 

Windig et al., 2012) and the availability of methods to assess their amount in carcasses or 

live boars (e.g. Baes et al., 2012). 

 

Scope of this thesis 

This thesis aims at assessing the prospects of GS for different applications in horse and pig 

breeding programs. Selection index theory is applied to compare currently practiced breeding 

schemes to breeding schemes incorporating genomic information, similar to the investiga-

tions carried out by König and Swalve (2009) for dairy cattle. Chapter one gives an introduc-

tion to classical and new breeding tools, which were used for the analyses. 

In chapter two, the additional gain in accuracy of selection when including genomic in-

formation is investigated for different selection steps of sport horse breeding. The focus is 

especially on possibilities to increasing the accuracy of selection for young horses with no 

riding performance available, as e.g. young stallions in the time of castrating decisions or 

stallions licensing. 

 In chapter three, the interplay between different factors, which have an impact on the 

response to selection, is evaluated. Those are the heritability, the genetic correlation and the 

relative economic weighting of traits. The aim was to assess, whether there are differences in 

the interplay of these factors, which depend on the kind of information (conventional vs. ge-

nomic). For this purpose, conventional and genomic indices with information sources chosen 

according to pig breeding were compared in regard of the standard deviation of the index. 

The standard deviation of the index is the product of accuracy and the standard deviation of 

the aggregate breeding goal, and therefore directly proportional to response to selection. 

Additionally, the required size of a reference population for GS in pig breeding is assessed in 

this context. 
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 In chapter four, the prospects of GS in pig breeding are evaluated in regard to the 

selection against boar taint. A complex breeding program of a Swiss sire line was modeled in 

ZPlan+, which is evaluated as a means to optimize breeding schemes with respect to the 

potential benefit of genomic selection. The efficiency of different information sources is com-

pared for the selection against the chemical compounds of boar taint, androstenone, skatole 

and indole, as well as for the selection against the human nose score of boar taint, as sub-

jectively assessed by test persons. The different breeding strategies are compared in terms 

of genetic gain and variable breeding costs per selection candidate. 

 A general discussion on the potential of genomic selection for sport horse and pig 

breeding programs is presented in chapter five. The main focus is on possibilities to increase 

the size of the reference population and to reduce breeding costs, as well as on options to 

optimize response to selection by conventional selection tools, especially in sport horse 

breeding. 
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Abstract 

Reliable selection criteria are required for young riding horses to increase genetic gain by 

increasing accuracy of selection and decreasing generation intervals. In this study, selection 

strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages 

of selection in Sport Horse breeding programs were analyzed by applying selection index 

theory. Results in terms of accuracies of indices ( TIr ) and relative selection response indi-

cated that information on single nucleotide polymorphism (SNP) genotypes considerably in-

creases the accuracy of breeding values estimated for young horses without own or progeny 

performance. In a first scenario, the correlation between the breeding value estimated from 

the SNP genotype and the true breeding value (= accuracy of genomic breeding value) was 

fixed to a relatively low value of rmg = 0.5. For a low heritability trait (h2 = 0.15), and an index 

for a young horse based only on information from both parents, additional genomic infor-

mation doubles TIr  from 0.27 to 0.54. Including the conventional information source ‘own 

performance’ into the before mentioned index, additional SNP information increases TIr  by 

40%. Thus, particularly with regard to traits of low heritability, genomic information can pro-

vide a tool for well-founded selection decisions early in life. In a further approach, different 

sources of breeding values (e.g. GEBV and EBVs from different countries) were combined 

into an overall index when altering accuracies of EBVs and correlations between traits. In 

summary, we showed that genomic selection strategies have the potential to contribute to a 

substantial reduction in generation intervals in horse breeding programs.  

 

 

Keywords: accuracy of selection, breeding strategies, generation interval, genomic selec-

tion, Sport Horse 
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Implications 

The availability of genomic information demands proper assessment of its impact on practical 

horse breeding programs. Accuracies of conventional breeding values do not increase signif-

icantly until a stallion is aged 8 to 12 years and his progeny enters competition. We showed 

that additional genomic information considerably increases the accuracy of breeding values 

estimated for foals, young horses without own performance, and horses without progeny per-

formance. Therefore genomic selection (GS) enables selection at an earlier stage, shorten-

ing generation intervals and opening room for increased genetic progress. Our results indi-

cate that horse breeding organizations could likely benefit from the application of GS. 

 

Introduction 

Sport horse breeding programs are characterized by long generation intervals and subopti-

mal selection intensities (Philipsson et al., 1990; Niemann, 2009) due to the lack of efficient 

selection criteria early in life. Estimated breeding values (EBVs) including information on own 

performance and on progeny performance are generally not available until a horse is 8 to 12 

yrs old (German Equestrian Federation, 2008). 

Genomic selection (GS) has the potential to substantially improve existing breeding 

strategies. The notion of GS was formulated by Meuwissen et al. (2001) and is being imple-

mented in dairy cattle breeding programs (Hayes et al., 2009). The benefit of GS to conven-

tional breeding programs has been demonstrated for dairy cattle (Schaeffer, 2006; König et 

al., 2009) and for pigs (Simianer, 2009). A substantial increase in genetic gain was found for 

breeding programs characterized by long generation intervals, and those focusing on lowly 

heritable, functional traits (König et al., 2009). Both findings support the demand to evaluate 

the potential of GS for horse breeding programs.  

 The aims of our study were to: i) evaluate the impact of genomic breeding values 

(GEBVs) on the accuracy of EBVs and on the relative selection response by applying selec-

tion index theory; ii) and develop a strategy to address the practical problem of how to com-

bine different types of EBVs (e.g. GEBV and EBVs available from different countries) in an 

overall breeding goal. 

 

Material and methods 

The methodology of combining phenotypic observations (y) and the SNP genotype as a 

marker trait (m) via selection index theory was developed by Dekkers (2007). Application of 

this methodology was put into practice by König and Swalve (2009) to evaluate genomic 
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breeding strategies in dairy cattle breeding programs. In the present study, this method was 

extended to specific scenarios relevant for selection decisions in horse breeding programs. 

Evaluation criteria were the correlation between aggregate genotype and selection index, 

referred to as accuracy of the EBV ( TIr ), as well as the relative selection response (RSR) 

which was calculated applying the formula 

index the in ninformatio  SNP  without

index the in ninformatio  SNP  including

ΔG

ΔG
RSR , 

with G being the selection response per generation. In order to assess the impact of GS on 

practical situations, all scenarios were investigated for a lowly heritable, functional trait and a 

trait of high heritability. As an example for a lowly heritable trait, susceptibility to 

osteochondrosis (OC) with a heritability of 0.15 (Schober, 2003; Pieramati et al., 2003), was 

chosen. OC can cause disorders of chondral growth. When diagnosed, it reduces the horse’s 

sales value considerably (Van Hoogmoed et al., 2003; Stock and Distl, 2007). The quality of 

trot (h2 = 0.52, Jaitner and Reinhardt, 2008) is highly correlated to the other gaits and to the 

rideability (Schade, 1996; Thorén Hellsten et al., 2006), and therefore represents an im-

portant high heritability trait not only for dressage horses.  

 

Scenario I: Genotyped young horse without own performance.  

Scenario I was designed considering animals without own performance according to the first 

step of selection in the breeding scheme of the German Riding Horse (Fig. 1). At the age of 6 

months, foals are inspected by the breeding associations. Many breeders decide whether or 

not to castrate the young stallion based on these first results, even though the correlations 

between results of foal inspection and subsequent studbook inspections are low (Schorm, 

1983). A high proportion of male foals is castrated at a very young age, resulting in low se-

lection intensities in subsequent steps of selection (Philipsson et al., 1990; von Lengerken 

and Schwark, 2002). Scenario I is also valid to achieve improvements in selection of young 

mares without own performance, e.g. to select mares as potential donors for embryo trans-

fer. Hence, we constructed a scenario for the genomic era where the SNP genotype of the 

foal as well as the performances of the dam and of the sire were used as information sources 

in the index.  

The (co)variance matrix P of index sources was: 

2
yam

2
yam

amam
2
m

σ0σ5.0

0σσ5.0

σ5.0σ5.0σ

P  
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The first line of P refers to the marker genotype of the foal, the second line refers to the phe-

notypic performance of the sire, and the third line corresponds to the phenotypic perfor-

mance of the dam. According to Lynch and Walsh (1998), the heritability of the SNP geno-

type was fixed to a value of 1, which entails identical values for both phenotypic and genetic 

variance of the marker trait ( 2
mσ ). Variances for m were calculated using equation [1]: 

2
a

2
mg

2
m σrσ ,       [1] 

where mgr  denotes the correlation between the breeding value estimated from the SNP gen-

otype and the true breeding value (= accuracy of genomic breeding value), and 2
aσ  is the 

additive-genetic variance of the trait. 2
yσ  is the phenotypic variance of the trait. The covari-

ance amσ  between marker genotype m and phenotype y is described by the general equa-

tion [2]: 
2
a

2
mgijam σraσ ,        [2] 

with aij being the coefficient of relationship between animal i used in the index and animal j in 

the aggregate genotype. For this scenario, the coefficient of relationship between foal i and 

its dam and sire j was 0.5.  

Covariances between traits in the index and traits in the breeding goals were included in ma-

trix G, which was defined as: 

2
a

2
a

am

am

am

2
m

σ5.0

σ5.0

σ

σ5.0

σ5.0

σ

G . 

The first line of G refers to the marker genotype of the foal, the second line refers to pheno-

typic performance of the sire, and the third line represents the phenotypic performance of the 

dam. The columns correspond to the genomic breeding value estimated from the marker 

genotype m and to the conventional breeding value of the phenotypic trait y. Matrix C was 

the matrix for variances and covariances of breeding values, i.e. 

2
aam

am
2
m

σσ

σσ
C . 

As the SNP genotype was considered as an auxiliary trait, the economic weight was put on 

the phenotypic performance, which resulted in vector w being 

1

0
w . 
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The variance of the aggregate genotype (T) was Cww' σ 2
T , and the variance of the index 

(I) was Gwb'2
Iσ . These variances are essential to calculate 

T

I
TI

σ

σ
r . 

 

 

 
Figure 1. Pyramid structure of the breeding program of the German riding horse (EBV = Es-
timated Breeding Value, PTS = Performance Test Stallions, PTM = Performance Test 
Mares). 
 

Scenario II: Genotyped horse with own performance.  

In scenario II, the selection index was extended for a genotyped horse with own perfor-

mance, but without progeny information. Such a scenario corresponds to step 3 of selection 

(Fig. 1), i.e. to young stallions or mares at the age of 4 to 7 years which have accomplished 

performance testing. Information for the dam and for the sire was considered as done in sce-

nario I. Matrix P of phenotypic (co)variances was: 

2
y

2
aam

2
y

2
aam

2
a

2
a

2
yam

amamam
2
m

σ0σ5.0σ5.0

0σσ5.0σ5.0

σ5.0σ5.0σσ

σ5.0σ5.0σσ

P , 
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and matrix G was written as: 

2
a

2
a

2
a

am

am

am

am

2
m

σ5.0

σ5.0

σ

σ

σ5.0

σ5.0

σ

σ

G . 

Equations [1] and [2] were applied to calculate variance and covariance components for ma-

trices P and G. The vector w of economic weights and the (co)variance matrix C for breeding 

values were identical to w and C in scenario I. 

 

Scenario III: Genotyped horse with own performance and performance of progeny.  

The fourth step of selection in a conventional breeding program is the estimation of breeding 

values (Fig. 1). In order to estimate highly reliable EBVs, progeny records are needed. 

Therefore, this scenario corresponds to stallions at the age of 8 to 12 years. As a conse-

quence, five index sources were considered in this scenario: records of a varying number of 

progeny (5, 50 or 100, respectively), the SNP genotype of the stallion, the own performance 

of the stallion, and again the performance of the dam and the sire. Hence, matrix P was:  

2
y

2
aam

2
a

2
y

2
aam

2
a

2
a

2
a

2
yam

2
a

amamam
2
mam

2
a

2
a

2
aam

2
y

2

σ0σ5.0σ5.0σ25.0

0σσ5.0σ5.0σ25.0

σ5.0σ5.0σσσ5.0

σ5.0σ5.0σσσ5.0

σ25.0σ25.0σ5.0σ5.0σ
n

)h25.0)1n(1(

P , 

and matrix G was: 

2
aam

2
aam

2
aam

am
2
m

2
aam

σ5.0σ5.0

σ5.0σ5.0

σσ

σσ

σ5.0σ5.0

G . 

Again, the vector w of economic weights and the (co)variance matrix C for breeding values 

were identical to w and C in scenario I. 

 

Scenario IV: Combination of breeding values into a combined index. 

Scenarios I, II, and III were constructed to evaluate the potential of additional SNP informa-

tion in terms of TIr  or relative selection response. The following approach addresses the 

question how to combine different EBVs with different accuracies and different correlations 
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among each other into a combined index which is constructed to match an overall breeding 

goal. This would be of use for example in case EBVs from different countries were available 

for a stallion. Another application would include the merging of conventional EBVs with 

GEBVs or joining EBVs measured at different stages of the horse’s life, as was assumed in 

this scenario. Methodology is also based on selection index calculations, but using EBVs 

rather than phenotypic observations.  

In this scenario, a combined index (T), illustrating an overall breeding goal, is com-

posed of three different EBVs (TBVs), which are considered as traits of T. Hence, the overall 

index of an animal k was: 

i

ni

1i

ik TBVbT . 

According to selection index theory, b-values were calculated as b = P-1Gw with matrices P 

and G as explained below. 

For each TBV, a separate type of EBV is available as information source: 1) an integrated 

breeding value (IEBV) incorporating all available information on relatives of a stallion as well 

as progeny information, which commonly has a high accuracy ( TIr ) and in this example is 

arbitrarily set to 0.85 for all runs. Because progeny information is considered, IEBVs are only 

available later in life; 2) an EBV including the result of the stallion’s performance test as well 

as the results of its performance tested male relatives (SEBV). Due to less information and 

estimation earlier in life, the accuracy of SEBVs are generally lower than for IEBVs and 

therefore we have chosen the values of 0.5 and 0.8, respectively; and 3) a GEBV with accu-

racy varying from 0.1 to 0.9. The correlation between IEBV and SEBV was set to 0.95, and 

for all TBVs, equal economic weights per genetic SD were assumed. In a second run, the 

correlation between IEBV and SEBV was reduced to 0.5. Notations for matrices were chosen 

in analogy to index calculations used above. The standard deviation of the EBV for a trait i 

was: 

iiii TBVTBV:EBVEBV σrσ  

where iTBVσ  denotes the standard deviation of the breeding value TBV i, which was used in 

the overall index, and 
ii TBV:EBVr is the correlation between EBV i and TBV i, or in other words 

the accuracy of the EBV i (
iTIr ). The correlation between an EBV i and an EBV j is: 

jiiijjji TBV:TBVTBV:EBVTBV:EBVEBV:EBV rrrr  
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This information is needed to compute matrix P, the variance-covariance matrix for n EBVs: 

2
EBV

EBV:EBV
2
EBV

EBV:EBVEBV:EBV
2
EBV

n

n22

n1211

σ.sym

σσ

σσσ







P . 

Covariances between an EBV i and an EBV j were calculated using the following formula: 

jijiji EBVEBVEBV:EBVEBV:EBV σσrσ . 

Matrix C, the quadratic variance-covariance matrix for m TBVs in the overall index was: 

2
TBV

TBVTBV
2
TBV

TBV:TBVTBV:TBV
2
TBV

m

m22

m1211

σ.sym

σσ

σσσ







C . 

Covariances between TBV i and TBV j were calculated by using the following formula: 

jijiji TBVTBVTBV:TBVTBV:TBV σσrσ . 

Matrix G of dimension n x m is the covariance matrix between the n EBVs used in the index, 

and the m TBVs used in the aggregate genotype (= breeding goal): 

mn1n

m222

m12111

TBV:EBVTBV:EBV

TBV:EBVTBV:EBV

TBV:EBVTBV:EBVTBV:EBV

σσ

σσ

σσσ









G . 

Those covariances in G were calculated by using the formula: 

ijjijjij TBVEBVTBV:TBVTBV:EBVTBV:EBV σσrrσ . 

Hence, the individual weighting factor b of an EBV i for an animal in the overall breeding goal 

depends on the accuracy of this EBV. Correlations among TBVs in the breeding goal, as well 

as economic weights w, are equal for all groups of animals. 

The accuracy of Tk was: 

Cww'

Pbb'
T̂T

r . 
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Results and Discussion 

Estimation of SNP effects within a calibration group, and transferring those estimates to ani-

mals in the whole population, is the key feature of GS methodology. The availability of 50K 

SNP chip technology, as well as the recent release of the horse genome sequence (Wade et 

al., 2009), provide the framework to estimate highly reliable genomic breeding values analo-

gous to dairy cattle (e.g. VanRaden et al., 2009). The extent of linkage disequilibrium (LD) 

was analyzed by Corbin et al. (2010) for the Thoroughbred horse. Due to the high LD, the 

authors concluded that GS could be applied in the observed population. However, strength of 

LD as a function of the effective population size (Ne) may be lower in European sport horse 

breeds compared to the Thoroughbreds (Ne= 100). For example in the Hanoverian Warm-

blood, Ne was estimated to be 372 (Hamann and Distl, 2008). Wade et al. (2009) found un-

usually high LD in Thoroughbreds compared to other horse breeds. Nevertheless GS should 

be feasible, because strength of LD across several horse breeds (Wade et al., 2009) is com-

parable to LD in Holstein cattle (Qanbari et al., 2010), where GS was implemented success-

fully. First practical investigations in terms of estimation of genomic breeding values in 

horses are carried out for Franches-Montagnes horses in Switzerland (Hasler et al., 2011). 

 

Scenario I: Genotyped young horse without own performance.  

Due to insufficient sources of information at this stage of selection, accuracies of breeding 

values estimated for young horses are particularly low, especially for low heritability traits. 

Selection of foals at this early point in time reduces generation intervals, but is associated 

with a higher risk for practical breeders. Model calculations by Schade (1996) showed that 

genetic gain is reduced by 70% if stallions are used for matings before being performance 

tested. This is probably due to the fact that the phenotype itself, i.e. riding quality, cannot be 

tested at this early point in time. Particularly with regard to castrating, there is a high risk of 

unfortunate selection decisions as long as there is no information on own performance avail-

able. 

Only including phenotypic records from the sire and the dam of the foal in the index 

results in TIr = 0.27 for OC (Fig. 2). As known from selection index theory, additional infor-

mation from further close relatives of the foal would increase TIr  only marginally. In contrast, 

a distinct gain of accuracies can be achieved when including the SNP genotype in addition to 

the sire’s and dam’s performance, even for low accuracies of GEBVs (rmg) in combination 

with a low heritability (Fig. 2). For rmg = 0.3, the additional information of the SNP genotype 

increases TIr  to 0.39. Extremely high rmg of 0.8, or even higher, enable similar TIr  for the low 

and the high heritability trait ( TIr = 0.81 to 0.91). However, when referring to other species, 
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e.g. dairy cattle, accuracies of GEBVs are substantially higher for production traits compared 

to fertility, somatic cell score, or longevity (VanRaden et al., 2009). Nevertheless, based on 

results from simulation studies or deterministic predictions (Calus et al., 2008, Daetwyler et 

al., 2010), a correlation of rmg = 0.5 should be feasible also for GS for functional traits in 

horses. Such a crucial value doubles TIr  at this very early point of selection (Fig. 2) com-

pared to the accuracy of the conventional index. 

 
Figure 2. Correlation between index and aggregate genotype ( TIr ) in dependency of accura-

cy of GEBV (rmg) for a genotyped horse without own performance (Scenario I). Dashed line 
with black triangles: Trot (h2 = 0.52); solid line with white squares: OC (h2 = 0.15). Parallel 
lines to x-axis: conventional accuracies not including GEBVs in the index i.e. dashed line for 
trot and solid line for OC. 
 

 
When additionally considering economic aspects, even rmg lower than 0.5 enable additional 

gain in terms of return of investment for pig breeding programs (Simianer, 2009), or in terms 

of breeding profit for dairy cattle breeding programs (König et al., 2009). Thus, pre-selection 

of genotyped foals can be used for the identification of promising selection candidates very 

early and therefore helps to avoid improper castrating decisions. Until further testing, the is-

sue of temporary breeding permissions may contribute to shorten generation intervals and is 

already practised by several organizations. Those breeding permissions are valid from the 

stallion’s licensing carried out at the age of two and a half years and allow a limited number 

of matings until the stallion is performance tested at the age of three or four years. However, 

the accuracy and effectiveness of this practice could be improved by considering GEBVs as 

additional information source. 
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According to Schaeffer (2006), more accurate breeding values on the dam side of selection 

can be achieved when genotyping females. This can be of economic importance when 

choosing young females without own performance as donors for embryo transfer (ET), which 

still is an expensive biotechnology. New commercial reproductive technologies such as ET 

have been adopted by some horse breeding associations. Long et al. (2003) focused on two 

examples, the American Quarter Horse Association, and the United States Polo Association. 

Advantages of embryo transfer will increase with decreasing generation intervals, provided 

that sufficiently reliable EBVs of young mares are available. For this specific case in horse 

breeding, the combination of both reproduction technologies and molecular genetic tools is a 

powerful approach to further increase selection response (e.g. Spelman and Garrick, 1998).  

 

Scenario II: Genotyped horse with own performance.  

The higher the basic result for TIr  without considering genomic information, the lower the 

gain in TIr  when including additional SNP information in the index (comparison of Fig. 2 and 

Fig. 3). The conventional index sources own performance, performance of sire and perfor-

mance of dam result in TIr = 0.45 for h2 = 0.15 (Fig. 3). Including additionally a GEBV with rmg 

= 0.5 in the index, TIr  increased by 40%. For rmg = 0.9, relative selection response (not 

shown) is doubled to a value of 2.03. Hence, in scenario II, the benefit of GS in terms of 

gains in TIr  is substantial, in particular for the lowly heritable, functional trait. 

 
Figure 3. Correlation between index and aggregate genotype ( TIr ) in dependency of accura-

cy of GEBV (rmg) for a genotyped horse with own performance and performance of parents 
(Scenario II). Dashed line with black triangles: Trot (h2 = 0.52); solid line with white squares: 
OC (h2 = 0.15). Parallel lines to x-axis: conventional accuracies not including GEBVs in the 
index i.e. dashed line for trot and solid line for OC. 
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Generally, TIr  cannot drop below rmg (König and Swalve, 2009). As a practical consequence, 

provided that rmg is 0.7 or higher, TIr  reaches at least the same level as can be obtained by 

running performance testing. For example for rmg = 0.8 and h2 = 0.15, TIr  for the combination 

of the SNP-genotype and own performance is 0.82. Formulas developed by Stricker and 

Fernando (2008) or by Daetwyler et al. (2008 and 2010) can be used to derive rmg dependent 

on the number of genotyped animals.  

However, reliable phenotypes are an essential pre-requisite to derive reliable SNP ef-

fects. The most effective source of data for genetic evaluation of young stallions and their 

parents is phenotyping carried out in the form of performance tests on station (Thorén 

Hellsten et al., 2006, Gerber Olsson et al., 2000). Continuous phenotyping in this format and 

frequent re-estimation of SNP effects within a calibration group are required because the 

accuracy of GEBVs is declining over generations as shown in simulation studies by Habier et 

al. (2007). This is due to a decreasing relationship between calibration group and selection 

candidates, as well as due to decay in LD between SNP-markers and surrounding QTL 

caused by recombination events (Sonesson and Meuwissen, 2009). Also, as priorities in 

breeding goals change or new assessment techniques become available, from time to time 

new phenotypes (e.g. König von Borstel et al., 2011) may be introduced into the breeding 

program, requiring estimation and calibration of SNP effects for these new traits. 

In order to keep generation intervals as short as possible, breeding organizations 

should encourage the use of young stallions. The accuracy of EBVs of performance tested 

stallions can still be enhanced by including genomic information. 

 

Scenario III: Genotyped horse with own performance and performance of progeny.  

Generally, for the estimation of highly reliable EBVs, the availability of progeny records is of 

major importance. This implies that stallions are at the age of 8 yrs or even older once their 

EBVs reach high accuracies of 0.92 to 0.99 (German Equestrian Federation, 2008). Dubois 

and Ricard (2007) focused on the problems of long generation intervals due to extended 

progeny testing systems, and they encouraged breeders to use younger stallions with a re-

duced number of progeny as a compromise. 

Additional gain in TIr  from GEBV is relatively low when performance of parents, own 

performance and progeny records are available as index sources. This finding is illustrated 

by the relative selection response (Figure 4). For the highly heritable trait and 50 or 100 

progeny records, the value of RSR is, independent from rmg, close to one. This implies negli-

gible gain when considering the GEBV as additional index information. For the lowly heritable 

trait and 50 or 100 progeny records, and for the highly heritable trait and 5 progeny records, 
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RSR ranged from 1.06 to 1.13 for rmg = 0.9. Substantial gain in TIr  in scenario III was found 

only for the lowly heritable trait and 5 offspring, leading to a RSR of 1.65. 

 
Figure 4. Relative selection response (RSR) for a genotyped horse with own performance, 
performance of parents, and a different number of progeny in dependency of accuracy of 
GEBV (rmg). Dashed lines with triangles: Trot (h2 = 0.52); solid lines with squares: OC (h2 = 
0.15). White triangles or squares: 5 progeny; grey triangles or squares: 50 progeny; black 
triangles or squares: 100 progeny. 
 

Methodology developed for scenario III can additionally be used to derive the optimal number 

of progeny records to achieve a pre-defined TIr . Additional progeny records contribute to 

realize a high TIr  for an index considering lowly heritable traits and genomic information with 

moderate rmg in the range from 0.4 to 0.7. 

 A crucial point for the practical implementation and ultimate success of GS will be the 

acceptance of GEBV by practical breeders, as well as the additional cost component for 

genotyping sport horses. Applied selection strategies in horse breeding programs traditional-

ly have a strong focus on phenotypic performances rather than EBVs (Koenen et al., 2004). 

Beyond dressage and show jumping, breeders have the opportunity to use GEBVs of health 

traits, e.g. OC, for selection decisions. Van Hoogmoed et al. (2003) showed that radiographic 

findings of OC severely reduce the sales value of a horse. Some further studies, e.g. Stock 

and Distl (2007) investigated the correlations between radiographic findings and performance 

traits in warmblood riding horses. They concluded that riding horse performance will likely 

benefit from the reduction of prevalence of radiographic findings. Hence, all available tools 

should be applied to reduce incidence of disorders.  
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Scenario IV: Combination of breeding values into a combined index. 

Application of scenarios I, II, and III is appropriate for such situations where detailed informa-

tion for selection index calculations are available, for example number of animals within se-

lection groups, phenotypic parameters, and genetic parameters. In general, availability of 

those parameters is guaranteed within an own breeding program or on the national scale. A 

major requirement for the practical implementation of GS in Sport Horse breeding programs 

is the set-up of a calibration group for the estimation of SNP effects. For achieving adequate 

accuracies of the GEBV it will be beneficial for breeding organizations to cooperate in this 

matter, like exemplified by the European breeding organizations of Holstein Friesian cattle 

(Lund et al., 2010). A calibration group composed of animals being registered in different 

breeding organization would be justified by the extensive genetic exchange between breed-

ing populations within Germany as well as between European countries (Koenen et al., 

2004). Scenario IV could be applied for the combination of single breeding values from dif-

ferent countries in an index constructed to match an overall breeding goal. There is also the 

possibility to use stallions from e.g. Sweden or The Netherlands in German breeding pro-

grams, and those stallions have different sources of EBVs. Hence, addressing the question 

of an optimal combination of EBVs is important. 

Results in terms of 
TT

r   and weighting factors (b-values) for the combination of GEBV, 

IEBV, and SEBV by altering rmg are depicted in Figure 5 and Figure 6, respectively. Inde-

pendently of the accuracy for SEBV, i.e. 0.8 versus 0.5, accuracy of the combined index 

substantially increases with increasing rmg. For different accuracies of SEBV, the gap in accu-

racies for the combined index decreases with increasing rmg (Fig. 5). This is due to the impact 

of highly accurate GEBVs explaining most of the genetic variance of the aggregate genotype. 

Hence, for high accuracies of GEBVs further correlated information sources only marginally 

improve the accuracy of the aggregate breeding value. 

However, in reality accuracies of GEBVs will be not high enough to justify the com-

plete abolishment of own-performance testing within horse breeding programs, such as the 

performance test for stallions. Moreover, performance testing provides phenotypic data 

which is of major importance for the re-estimation of marker effects in genomic breeding pro-

grams. For those reasons, the most likely breeding strategy remains a combination of both 

genomic selection and performance testing. Considerably earlier selection of male and fe-

male animals for breeding is possible due to the estimation of genomic breeding values for 

animals without phenotypic data. 
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Figure 5. Accuracy of the combined index including GEBV, IEBV, and SEBV in dependency 
of accuracies of GEBV (rmg) for equal economic weights per genetic SD (solid lines: correla-
tion between SEBV and IEBV = 0.95; dashed lines: correlation between SEBV and IEBV = 
0.50; black squares: accuracy of SEBV = 0.8; white triangles: accuracy of SEBV = 0.5; accu-
racy of IEBV = 0.85 for all scenarios). 
 
 

 
Figure 6. Weighting factors (b-values) for the combination of GEBV, IEBV, and SEBV in a 
combined index in dependency of accuracies of GEBV (rmg) for equal economic weights per 
genetic SD (white bars: accuracy of SEBV = 0.5; black bars: accuracy of SEBV = 0.8; accu-
racy of IEBV = 0.85 for all scenarios). The correlation between IEBV and SEBV was 0.95. 

 

0.45 

0.55 

0.65 

0.75 

0.85 

0.95 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

A
c
c
u
ra

c
y
 o

f 
c
o
m

b
in

e
d
 i
n
d

e
x
 

Accuracy of GEBV 



2nd chapter                       Genomic information in sport horse breeding                                39 

Conclusions 

Based on our results, application of genomic selection can contribute to well-founded selec-

tion decisions within several selection stages of equine breeding programs particularly with 

regard to lowly heritable (e.g. functional) traits. For animals with a large number of progeny 

records available, additional gain in accuracy from GEBV is small. Accurate selection of gen-

otyped young horses without own or progeny performance leads to a considerable reduction 

in generation intervals, and thereby increases the genetic response. In order to apply GS in 

practice, breeding organizations will have to convince horse breeders that GS can be a valu-

able tool to increase selection response. 

 

Acknowledgments 

We would like to thank the German ministry of education and research for the financial sup-

port of the program FUGATO+brain, which is also supported by the five horse breeding as-

sociations for Hanoverian, Trakehner, Oldenburger, Holsteiner and Westfalian horses. 

 



2nd chapter                       Genomic information in sport horse breeding                                40 

References 

Calus MP, Meuwissen TH, de Roos AP and Veerkamp RF 2008. Accuracy of genomic selec-

tion using different methods to define haplotypes. Genetics 178, 553-561. 

Corbin LJ, Blott SC, Swinburne JE, Vaudin M, Bishop SC and Woolliams JA 2010. Linkage 

disequilibrium and historical effective population size in the Thoroughbred horse. 

Animal Genetics 41, 8-15. 

Daetwyler HD, Villanueva B and Woolliams JA 2008. Accuracy of predicting the genetic risk 

of disease using a genome-wide approach. PLoS ONE 3, e3395. 

Daetwyler HD, Pong-Wong R, Villanueva B and Woolliams JA 2010. The impact of genetic 

architecture on genome-wide evaluation methods. Genetics 185, 1021-1031. 

Dekkers JCM 2007. Prediction of response to marker-assisted and genomic selection using 

selection index theory. J Anim Breed Genet 124, 331-341. 

Dubois C and Ricard A 2007. Efficiency of past selection of the French Sport Horse: Selle 

Français breed and suggestions for the future. Livest Sci 112, 161-171. 

Gerber Olsson E, Árnason Th, Näsholm A and Philipsson J 2000. Genetic parameters for 

traits at performance test of stallions and correlations with traits at progeny tests in 

Swedish Warmblood horses. Livest Prod Sci 65, 81-89. 

German Equestrian Federation (FN) 2008. Breeding program of the German Riding Horse. In 

Jahrbuch Sport und Zucht 2008, pp. 84. FN-Verlag, Warendorf, Germany. 

Habier D, Fernando RL and Dekkers JCM 2007. The impact of genetic relationship infor-

mation on genome-assisted breeding values. Genetics 177, 2389-2397. 

Hamann H and Distl O 2008. Genetic variability in Hanoverian Warmblood horses using 

pedigree analysis. J Anim Sci 86, 1503-1513. 

Hasler H, Flury C, Menet S, Haase B, Leeb T, Simianer H, Poncet PA and Rieder S 2011. 

Genetic diversity in an indigenous horse breed- implications for mating strategies and 

the control of future inbreeding. J Anim Breed Genet 128, 394-406. 

Hayes BJ, Bowman PJ, Chamberlain AJ and Goddard ME 2009. Invited review: Genomic 

selection in dairy cattle: Progress and challenges. J Dairy Sci 92, 433-443. 

Jaitner J and Reinhardt F 2008. Beschreibung Integrierte Zuchtwertschätzung Pferd. 

Retrieved February 24, 2011, from http://www.vit.de/index.php?id=zws-pferd. 

Koenen EPC, Aldridge LI and Philipsson J 2004. An overview of breeding objectives for 

warmblood sport horses. Livest Prod Sci 88, 77-84. 

König S and Swalve HH 2009. Application of selection index calculations to determine 

selection strategies in genomic breeding programs. J Dairy Sci 92, 5292-5303. 

König S, Simianer H and Willam A 2009. Economic evaluation of genomic breeding pro-

grams. J Dairy Sci 92, 382-391. 



2nd chapter                       Genomic information in sport horse breeding                                41 

König von Borstel U, Euent S, Graf P, König S and Gauly M 2011. Equine behaviour and 

heart rate in temperament tests with or without rider or handler. Physiology and 

Behavior 104, 454-463. 

Long CR, Walker SC, Wang RT and Westhusin ME 2003. New commercial opportunities for 

advanced reproductive technologies in horses, wildlife, and companion animals. 

Theriogenology 59, 139-149.  

Lund MS, de Roos APW, de Vries AG, Druet T, Ducrocq V, Fritz S, Guillaume F, 

Guldbrandtsen B, Liu Z, Reents R, Schrooten C, Seefried FR and Su G 2010. Improv-

ing genomic prediction by EuroGenomics collaboration. In Proceedings of the 9th 

World Congress on Genetics Applied to Livestock Production: 1-6 August, Leipzig, 

Germany. ISBN 978-3-00-031608-1. 

Lynch M and Walsh B 1998. In Genetics and analysis of quantitative traits. Sinauer Assoc. 

Inc., Sunderland, MA. 

Meuwissen THE, Hayes BJ and Goddard ME 2001. Prediction of total genetic value using 

genome-wide dense marker maps. Genetics 157, 1819-1829. 

Niemann B 2009. Untersuchungen zu Veränderungen im Zuchtgeschehen und deren Aus-

wirkungen auf die Hannoveraner Pferdezucht. PhD thesis, Goettingen Univ. 

Philipsson J, Árnason Th and Bergsten K 1990. Alternative selection strategies for 

Performance of the Swedish Warmblood horse. Livest Prod Sci 24, 273-285. 

Pieramati C, Pepe M, Silvestrelli M and Bolla A 2003. Heritability estimation of 

osteochondrosis dissecans in Maremmano horses. Livest Prod Sci 79, 249-255. 

Qanbari S, Pimentel ECG, Tetens J, Thaller G, Lichtner P, Sharifi AR and Simianer H 2010. 

The pattern of linkage disequilibrium in German Holstein cattle. Animal Genetics 41: 

346-356. 

Schade W 1996. Entwicklung eines Besamungszuchtprogrammes für die hannoversche 

Warmblutzucht. PhD thesis, Goettingen Univ. 

Schaeffer LR 2006. Strategy for applying genome-wide selection in dairy cattle. J Anim 

Breed Genet 123, 218-223. 

Schober M 2003. Schätzung von genetischen Effekten beim Auftreten von Osteochondrosis 

dissecans beim Warmblutpferd. PhD thesis, Goettingen Univ. 

Schorm G 1983. Analyse der phänotypischen Entwicklung des Warmblutpferdes von der 

Geburt bis zum 3jährigen Pferd und Einflüsse von genetischen und umweltbedingten 

Faktoren. PhD thesis, Leipzig Univ. 

Simianer H 2009. The potential of genomic selection to improve litter size in pig breeding 

programs. In Proceedings of 60th Annual Meeting of the European Association for An-



2nd chapter                       Genomic information in sport horse breeding                                42 

imal Production, Barcelona, Spain, August 24-27, 2009. Wageningen Academic Pub-

lishers, The Netherlands. 

Sonesson AK and Meuwissen THE 2009. Testing strategies for genomic selection in aqua-

culture breeding programs. Gen Sel Evol 41, 37. 

Spelman RJ and Garrick DJ 1998. Genetic and economic responses for within-family 

marker-assisted selection in dairy cattle breeding schemes. J Dairy Sci 81, 2942-

2950.  

Stock KF and Distl O 2007. Genetic correlations between performance traits and 

radiographic findings in the limbs of German Warmblood riding horses. J Anim Sci 85, 

31-41. 

Stricker C and Fernando RL 2008. Genomewide genetic evaluation: how many individuals to 

genotype? International postgraduate course and workshop "Whole Genome 

Association and Genomic Selection", September 1-8 in Salzburg, Austria. 

Thorén Hellsten E, Viklund Å, Koenen EPC, Ricard A, Bruns E and Philipsson J 2006. Re-

view of genetic parameters estimated at stallion and young horse performance tests 

and their correlations with later results in dressage and show-jumping competition. 

Livest Sci 103, 1-12. 

VanRaden PM, Van Tassel CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF and 

Schenkel FS 2009. Invited Review: Reliability of genomic predictions for North 

American Holstein bulls. J Dairy Sci 92, 16-24. 

Van Hoogmoed LM, Snyder JR, Thomas HL and Harmon FA 2003. Retrospective evaluation 

of equine prepurchase examinations performed. Equine Veterinary Journal 35, 375-

381. 

von Lengerken G and Schwark H-J 2002. Exterieur und Leistungen in der Pferdezucht – Al-

leskönner oder Spezialisten. Archiv für Tierzucht, Dummerstorf 45, 68-79. 

Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bai-

ley E, Bellone RR, Blöcker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, Mac-

Leod JN, Penedo MCT, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, 

Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guérin G, 

Hasegawa T, Hill EW, Jurka J, Kiialainen A, Lindgren G, Liu J, Magnani E, Mickelson 

JR, Murray J, Nergadze SG, Onofrio R, Pedroni S, Piras MF, Raudsepp T, Rocchi M, 

Røed KH, Ryder OA, Searle S, Skow L, Swinburne JE, Syvänen AC, Tozaki T, 

Valberg SJ, Vaudin M, White JR, Zody MC, Broad Institute Genome Sequencing Plat-

form, Broad Institute Whole Genome Assembly Team, Lander ES and Lindblad-Toh K 

2009. Genome sequence, comparative analysis, and population genetics of the do-

mestic horse. Science 326, 865-867. 



3rd chapter                       Indices with and without genomic information                                43 

 

 

 

 

 

3RD
 CHAPTER 

 

 

 

 

 

Interplay between heritability, genetic correlation and economic 

weighting in a selection index with and without genomic infor-

mation 

 

 

A.M. Haberland1, E.C.G. Pimentel2, F. Ytournel1, M. Erbe1 and H. Simianer1 

 

 

 

1Department of Animal Sciences, Georg-August-University Goettingen, Goettingen, Germany 
2Department of Animal Breeding, University of Kassel, Witzenhausen, Germany 

 

 

 

 

 

 

 

Published online in Journal of Animal Breeding and Genetics 

on 29th of August 2013 

© 2013 Blackwell Verlag GmbH 

doi:10.1111/jbg.12051 

 



3rd chapter                       Indices with and without genomic information                                44 

Summary 

The availability of genomic information demands proper evaluation on how the kind (pheno-

typic versus genomic) and the amount of information influences the interplay of heritability (

2h ), genetic correlation (
jiGGr ) and economic weighting of traits with regards to the standard 

deviation of the index ( I ). As I  is directly proportional to response to selection it was the 

chosen parameter for comparing the indices. Three selection indices incorporating conven-

tional and genomic information for a two trait ( i  and j ) breeding goal were compared. Infor-

mation sources were chosen corresponding to pig breeding applications. Index I incorporat-

ing an own performance in trait j  served as reference scenario. In index II, additional infor-

mation in both traits was contributed by a varying number of full sibs (2, 7, 50). In index III the 

conventional own performance in trait j  was combined with genomic information (GBVs) for 

both traits. The number of animals in the reference population ( PN = 1’000, 5’000, 10’000) 

and thus the accuracy of GBVs were varied. With more information included in the index, I  

became more independent of 
jiGGr , 2

jh  and relative economic weighting. This applied for 

index II (more full sibs) and for index III (more accurate GBVs). Standard deviations of index 

II with 7 full sibs and index III with PN = 1’000 were similar when both traits had the same 

heritability. If the heritability of trait j  was reduced ( 2
jh = 0.1), I  of index III with PN = 1’000 

was clearly higher than for index II with 7 full sibs. When enhancing the relative economic 

weight of trait j , the decrease in I  of the conventional full sib index was much stronger than 

for index III. Our results imply that PN = 1‘000 can be considered a minimum size for a refer-

ence population in pig breeding. These conclusions also hold for comparing the accuracies 

of the indices. 

 

Keywords: Genetic gain; economic weighting; genomic selection; pig breeding; selection 

index. 
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Introduction 

Accounting for the interrelationships between heritability, genetic correlation and economic 

weighting is essential for optimizing the response to selection in all traits of a multi-trait 

breeding goal. Accuracy of the selection index ( TIr ) is strongly influenced by the combination 

of these parameters. However, the standard deviation of an index ( I ) is more appropriate 

for comparison of indices with varying economic weights since I  shows more proportional-

ity to expected response to selection than accuracy. Smith (1983) investigated the influence 

of changing economic weights on efficiency of indices comprising two or more traits. He 

found the balance of traits considered in an index (measured as the product of economic 

weighting and heritability) to significantly influence its efficiency. Accordingly, an unbalanced 

index in which one or more traits dominate the index is more sensitive to changes in eco-

nomic weighting within these dominant traits. For example, genetic changes for functional 

traits in bull dam selection typically lean towards the undesirable direction when using current 

economic weighting which favors production traits (Hansen Axelsson et al., 2011). In order to 

meet the currently required balance between production and functional traits, the authors 

propose a readjustment of the economic weighting of breeding goal traits. Assessing the 

efficiency of an index by the balance of its traits, however, does not account for different in-

formation sources. 

The availability of genomic information sources raises the question whether the kind 

of information (phenotypic versus genomic) has an impact on the interaction of heritability, 

genetic correlation and economic weighting of traits concerning I  as an indicator for genetic 

gain. After this concept was formulated by Meuwissen et al. (2001) genomic selection (GS) 

has been demonstrated to be a valuable tool for increasing the accuracy of selection. Bene-

fits of GS are considered highest for dairy cattle due to the long generation interval, which 

can be shortened dramatically by increasing accuracy of breeding values early in life 

(Schaeffer, 2006). Moreover, genetic gain for functional traits has been found to be higher 

when selecting on the basis of genomic breeding values (GBVs) if the training population 

sizes are assumed to be equal for production and functional traits (König et al., 2009; König 

and Swalve, 2009; Buch et al., 2012). In this case GS enables more sustainable breeding 

strategies.  

The potential of shortening generation intervals due to high accuracy of selection at a 

young age as well as more efficient selection on functional traits was also found for sport 

horse breeding (Haberland et al., 2012). Studies considering the use of molecular data in 

beef cattle selection (Van Eenennaam et al., 2011; Pimentel and König, 2012) have con-
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firmed the potential for increasing the accuracy of the index, discounted return and genetic 

gain for different production systems and breeding goal traits, such as meat quality. Consid-

ering GBVs as an additional information source can also be beneficial in pig breeding. 

Simianer (2009) and Haberland et al. (2010) found increased accuracy and response to se-

lection which enables more intensive selection.  

Dekkers (2007) proposed an approach for combining conventional and genomic in-

formation using selection index theory. The studies mentioned above have applied this or 

similar approaches to a particular production system, assuming a specific configuration of 

genetic parameters. The aim of our study was a more general assessment of the impact of 

heritability, genetic correlation and relative economic weighting among breeding goal traits 

on I  in the presence of genomic information. Understanding this multidimensional interac-

tion is challenging, as it is additionally affected by the composition of the respective index, 

i.e., of the available information sources. 

We report results of a case study with a two trait breeding goal and information 

sources chosen according to a pig breeding scheme. We used the selection index approach 

proposed by Dekkers (2007) in order to account for genomic information. His formula for the 

correlation between GBVs of different traits was slightly modified so that the proportion of 

genetic variance captured by the markers can be assumed to be diverse for different traits. 

Specifically we were interested in the following questions: (i) How does the composition of 

information sources affect the impact of heritability, genetic correlation and relative economic 

weighting on the standard deviation of an index? (ii) How many animals are required for the 

setup of a reference population to achieve a meaningfully higher I  for the genomic index 

than for the conventional index? (iii) What is the influence of heritability on the relative per-

formance of a genomic and a conventional index? (iv) How can the correlation of prediction 

errors of GBVs and the expected genetic progress be affected by an overlap of the training 

sets used for different traits? 

 

Materials and Methods 

In order to assess the interrelationship between the parameters heritability ( 2h ), genetic cor-

relation (
jiGGr ) and economic weighting, three different indices were investigated according 

to selection index theory (Hazel, 1943), which is briefly summarized as follows: 

In general we consider a true breeding goal (T) which is a linear combination of n 

traits, i.e. uw'T  where w is a column vector of length n containing the economic weights, 

and u is a column vector of length n containing the true breeding values for trait 1, ..., n. T is 
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estimated by an index (I) which is a linear combination of m observations, yb'I , where b 

is a column vector of length m containing the unknown index weights and y is a column vec-

tor of length m containing the available phenotypic observations, which are pre-corrected for 

non-genetic effects. 

Index weights are estimated from the equation GwPb  as GwPb 1  which 

maximizes the accuracy of the index as a predictor of the breeding goal which is reflected by 

the correlation between T and I: 

2

2

T

I
TIr  

where Gwb'Pbb'2
I  and Cww' 2

T . Matrix P contains the phenotypic (co)variances 

of the tested traits. Matrix G includes the genetic covariances among m information sources 

(rows) and n breeding goal traits (columns). Matrix C comprises the covariances among true 

breeding values for breeding goal traits. 

Since we considered a two-trait situation, m = 2 and the relative economic weighting of the 

traits was 

iw

iw

_1

_
w . 

The weighting factor of trait i  ( iw _ ) was varied from 0 to 1. Relative economic weighting of 

trait j  equals 1- iw _ . 

 

Index I (own performance): As a reference scenario with minimal complexity a selection 

index was set up for two breeding goal traits i  and j . The only information source was an 

own performance in trait j . Hence, matrices P, G and C were: 

2

jPP , 

 

2

jjiji GGGGGrG  

and 

2

2

jjiji

jijii

GGGGG

GGGGG

r

r
C  

where 
iG  and 

jG  are the additive-genetic standard deviations of both traits. 
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Index II (own and full sib performance): Conventional performance of a varying number of 

full sibs (2; 7; 50) in both traits i  and j  was added to index I described above. Matrices P 

and G were set up as follows: 

2

2

2
2

22

)1(1
..

)1(
1)1(1

.

j

jijijijii

jjijij

P

j

GGGGPPPPP
i

GGGGGP

n

ahn
sym

arnr
nn

ahn

aar

P  

and 

2

2

2

jjiji

jijii

jjiji

GGGGG

GGGGG

GGGGG

aar

ara

r

G  

where n  denotes the number of full sibs and 5.0a  is the relationship coefficient between 

full sibs. 

The first line of P and G refers to the conventional own performance in trait j , the second 

and third line correspond to the performance of full sibs in traits i  and j , respectively. 

Matrix C is the same as in index I. 

 

Index III (conventional and genomic own performance): In addition to the conventional 

own performance in trait j , it was assumed that the selection candidate was genotyped and 

thus GBVs for both traits i  and j  were incorporated into the index considering them as auxil-

iary traits with a heritability of 1 (Dekkers, 2007). Genomic information on sibs, therefore, 

provides no additional information for the candidate as the genomic prediction accurately 

estimates one part of the genetic variance of the trait and no amount of correlated observa-

tions can improve its accuracy. Components of matrix P and G of index III were for the most 

part calculated following the selection index approach by Dekkers (2007). For this reason, we 

will restate the main points of his considerations. 

The path coefficient diagram depicted in Figure 1 shows the interrelationships between two 

traits i  and j , their corresponding GBVs and further components of the model. In brief, the 

phenotype P is dissected into an additive genetic component G and a residual E. G is con-

sidered to be the sum of a true genomic effect Q that is associated with the SNP array used, 
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and a remaining component H that is not associated with the SNP array. Q is predicted by Q̂  

and the corresponding residual is termed R. This scheme is set up for both traits, so that all 

corresponding components are linked by a correlation. 

 

 

 

Figure 1 Path coefficient diagram adapted from Dekkers (2007) showing the relationships 
between two traits and their genetic components. 
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Seven parameters are needed to set up the required matrices: the phenotypic standard de-

viation 
jP , the additive genetic standard deviations G  of both traits, the correlation 

QG
r ˆ  

between the true breeding value G  and the corresponding GBV Q̂  for both traits, the pheno-

typic correlation 
ji PPr , and the genetic correlation 

jiGGr . In the following, the calculations for 

the required parameters will be explained. 

As the heritability of the genomic traits iQ̂
 
and

 
jQ̂
 
was assumed to be 1, the pheno-

typic variance of the genomic traits corresponds to the genetic variance which was calculated 

following Dekkers (2007) as 

22
ˆ

2
ˆ GQGQ

r . 

For trait i , the genetic correlation between the true breeding value iG  and the corresponding 

GBV 
i

Q̂  is 

iiiii QQQG
rqr ˆˆ . 

The parameter 
2
iq  describes the proportion of genetic variance captured by markers for trait 

i ; and 
iiQQ

r ˆ  is the accuracy of 
i

Q̂  as a predictor of 
i

Q . This accuracy is assumed to be < 1 

because 
2q  depends on marker density and on the extent and pattern of LD (Dekkers, 

2007). Erbe et al. (2011) used cross-validated data to empirically determine q  for genotyped 

Holstein Friesian bulls and found it to be in the area of q 0.9 for the traits milk yield and 

somatic cell score. Due to the lack of such empirical data in pigs, we adopted this value of 

9.0q  for our calculations of 
QG

r ˆ  for both GBVs. 

The correlation between the phenotype 
i

P  and the GBV of trait i  is: 

iiiii QGQP
rhr ˆˆ  

For the calculation of the accuracy of 
i

Q̂  as a predictor of 
i

Q  we used a formula derived by 

Daetwyler et al. (2010): 

eP

P

QQ MhN

hN
r

i

i

ii 2

2

ˆ  

where PN  is the number of individuals in the reference population which was varied within 

our genomic index ( PN = 1’000; 5’000; 10’000). The heritability 2

i
h  was replaced with the 

reliability 2

i
r  of the quasi-phenotypes, i.e. of the conventional EBVs of the animals in the ref-
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erence population. We assumed 2r = 0.49 for both traits i  and j . eM  is the effective number 

of chromosome segments segregating in the population and can be approximated with 

)log(/2 LNLkN ee  as proposed by Goddard et al. (2011). eN  denotes the effective population 

size, L  is the average length of a chromosome in Morgans and k  is the number of chromo-

some pairs. Assuming eN = 100, k = 19 and L = 1.2 Morgans (the length of the porcine ge-

nome being ~23 Morgans, Rohrer et al., 1996) eM = 952.57 which we rounded to eM = 

1’000. 

The genetic correlation between the true breeding value of trait i  and the GBV of trait 

j  is 

jjjiji QGGGQG
rrr ˆˆ  

and the corresponding phenotypic correlation is 

jjjiiji QGGGQP
rrhr ˆˆ . 

Our formula to determine the genetic correlation 
jiQQ

r ˆˆ  between GBVs of two different traits 

differs from Dekkers (2007) in that it was derived assuming 
i

q and jq  not being necessarily 

identical (see Appendix). Dekkers (2007) assumed the proportion of genetic variance cap-

tured by the markers, 
2
iq and 

2
jq , to be the same in both traits. This might be the case with 

high density SNP-arrays (and ultimately with the whole genome sequence) where the propor-

tion of genetic variance captured by the markers should approach 1 for any single trait. In 

practice, SNP-arrays might not be dense enough to guarantee that the same amount of ge-

netic variance is captured for all traits. Our formula 

jjiijijjiijijiji QGQGGGQQQQGGQQ
rrrrrqqrr ˆˆˆˆˆˆ  

allows for choosing different proportions 
2q  for different traits, which might be useful when 

empirically determined values for 
2q  are available from studies like Erbe et al. (2011). 

Matrices P and G were set up as follows: 

2
ˆ

ˆˆˆˆ
2
ˆ

ˆˆˆˆ
2

..

.

j

jijii

jjjjijijj

Q

QQQQQ

QGQGQGQGP

sym

r

rr

P  
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and 

jjjjjiji

ijijiiii

jjiji

QGQGQGQG

QGQGQGQG

GGGGG

rr

rr

r

ˆˆˆˆ

ˆˆˆˆ

2

G  

Again, the first line of both matrices corresponds to the own performance in trait j . The sec-

ond and third line refer to the genomic own performance in traits i  and j , respectively. Ma-

trix C was the same as in index I. 

 

Index IV (commonly available conventional performance): To relate I  of index III to a 

more practical situation we set up an index comprising information sources commonly used 

in pig breeding. This index included an own performance in trait j  as well as parents’ per-

formance, performance of 5 full sibs and 80 half sibs in both traits (matrices not shown). 

 

Using this basic model, the following cases were studied: 

1) Variation of relative economic weighting 

Indices I, II and III were compared in terms of I . The impact of genetic correlation and rela-

tive economic weighting among traits i  and j  on the standard deviation of an index was 

analyzed by varying 
jiGGr  from -1 to 1 and iw _  from 0 to 1, both in steps of 0.01, respec-

tively. The heritability and the phenotypic standard deviation of both traits were assumed to 

be equal ( 2h = 0.3; P = 1) and the phenotypic correlation between the traits was assumed to 

be 
ji PPr = 0. 

2) Variation of heritability of one trait 

The heritability of trait j  was reduced to 0.1 while the heritability of trait i  remained 0.3. The 

genetic correlation and relative economic weighting for traits i  and j  were varied as in the 

first scenario, and the phenotypic correlation remained 0. Results were assessed in terms of 

I . Besides assuming equal reliabilities ( 22
ji rr  0.49) of the quasi-phenotypes in the ref-

erence population for both traits we also considered a scenario with different reliabilities of 

the conventional breeding values used as quasi-phenotypes ( 2

i
r = 0.49 and 2

j
r = 0.20). This 
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would e.g. reflect a situation where different numbers of offspring per boar are tested for the 

different traits. The effect of the heritability on I  was assessed in more detail by varying 2
jh  

from 0.1 to 1 in steps of 0.01 while keeping iw _  constant at 0.5 and varying 
jiGGr  as de-

scribed above. 

A crucial assumption in the genomic scenarios described so far is, that GBVs of the two traits 

are only correlated to an extent which results automatically from the genetic correlation be-

tween the two traits and the different accuracies, as described in the Appendix. In many 

cases, though, GBVs for the two traits are derived from the same training set, and this may 

cause the errors of the GBVs to be more (or less) correlated than expected in the closed set-

ting. Therefore, we also analyzed the case in which the correlation of the errors of the GBV 

differs from the result in eq. 4 in the Appendix by adding a constant  

 

Results and Discussion 

1) Variation of relative economic weighting 

To give a first impression on how the parameter’s relative economic weighting and genetic 

correlation of traits i  and j  interact, the standard deviation of index I has been displayed in 

Figure 2 using a three-dimensional graph. On the x-axis, 
jiGGr  varies from 1 to -1. The y-axis 

shows the variation of relative economic weighting, i.e. iw _ = 1 implies that economic 

weighting lies completely on trait i  and iw _ = 0 implies that economic weighting lies com-

pletely on trait j . The standard deviation of the index is shown on the z-axis. With P = 1 and 

2h = 0.3 for both traits, the maximum achievable I  for all indices is 0.548 (= 3.0 ). 
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Figure 2 The standard deviation ( I ) of index I as a function of the genetic correlation (
jiGGr ) 

between traits i  and j , and of relative economic weighting of trait i  ( iw _ ). 

Some general trends can be observed in all three indices. Depending on 
jiGGr , infor-

mation on one trait can contribute to the other trait. Thus, information on trait j  increases I  

even if economic weighting lies completely on trait i . This is true for conventional information 

sources as well as for genomic information, but the extent to which I  can be increased by 

the correlated trait differed between indices I, II and III. The maximal value of I  of all indices 

occurred at 
jiGGr = 1 for all iw _  as well as at 

jiGGr = -1 for iw _  being either 0 or 1. For 

jiGGr = -1, I  is a direct function of iw _ . In this case, I  and therefore expected genetic 

gain is maximal with iw _  being 0 or one, and I  is close to zero when iw _  approaches 

0.5. For exactly equal economic weights of both traits ( iw _ = 0.5) and 
jiGGr = -1, I  was 

zero in all scenarios considered, because the same weight is assigned to traits with an oppo-

site economic value. 
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A minimum of I  occurs for uncorrelated traits and iw _ = 1, because trait i  contributes less 

information to the index than trait j  (an own performance is only available for trait j ). We 

also compared indices I, II and III at 
jiGGr = 0 and iw _ = 0.75, as described below. 

Index I: The standard deviation of index I was maximal ( I = 0.3) for 
jiGGr = 1 irrespective of 

iw _  (Figure 2). This value was also reached for 
jiGGr = -1 and iw _  being either 1 or 0. 

Because no phenotypic information on trait i  is contributing to index I, I  was also maximal 

if economic weighting was assigned completely to trait j  irrespective of 
jiGGr .  

At iw _ = 1 and 
jiGGr = 0 no information on the only information source (own performance in 

trait j ) was contributed to the index resulting in I = 0. A minimum close to zero persisted if 

the economic weight of trait i  was lowered towards an equal economic weighting ( iw _ = 

0.5) while simultaneously shifting 
jiGGr  between traits i  and j  from zero to -1. This interac-

tion between genetic correlation and relative economic weighting of trait i  at minimum I  for 

iw _ > 0.5, can be expressed by 

iw

iw
r

jiGG
_

1_
. 

For iw _ = 0.25, 0.5 and 0.75, I  was 0.225, 0.150 and 0.075, respectively. 

 

Index II: The availability of full sib performance in both traits increased I  in all cases. Add-

ing performance of 2 (7; 50) full sibs in both traits to the own performance in trait j  resulted 

in a maximum I = 0.356 (0.390; 0.415) which was an increase of 19% (30%; 38%) com-

pared to index I. 

Figure 3A depicts I  of index I and II as a function of the economic weighting of trait i  for 

uncorrelated traits. Figure 3B depicts I  of index I and index III as a function of the genetic 

correlation (
jiGGr ) between traits i  and j  for iw _ = 1. The difference between minimum and 

maximum values of I  decreased as the number of full sibs increased. Hence, I  became 

more independent of iw _  and 
jiGGr  the more full sibs were included in the index. As in in-

dex I, I  decreased substantially for the combination of equal economic weighting and 

strongly negative
 jiGGr . 
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Figure 3 (A, B) Standard deviations ( I ) of indices I (grey) and II (black) for 2 full sibs 

(crosses); 7 full sibs (dashed); and 50 full sibs (diamonds) as a function of the economic 
weighting of trait i  ( iw _ ) for uncorrelated traits (A) and as a function of the genetic correla-

tion (
jiGGr ) between traits i  and j  for iw _ = 1 (B). 

Index III: Figure 4A depicts I  of index I and index III as a function of the economic weight-

ing of trait i  for uncorrelated traits. Figure 4B depicts I  of index I and index III as a function 

of the genetic correlation (
jiGGr ) between traits i  and j  for iw _ = 1. The maximum I  of an 

index which includes an own performance in trait j  as well as information on GBVs for both 

traits was 0.401 for PN = 1’000. This value was higher than that of index II with 7 full sibs, but 

somewhat lower than I  of index II with 50 full sibs. It would nearly correspond to the stan-

dard deviation of index II when assuming 12 full sibs. However, the availability of 12 or 50 full 

sib performances in pig breeding is unlikely, while a reference population of 1’000 animals 

seems far more realistic. With PN = 5’000, the maximum I  was 0.477, representing an in-

crease of 22% compared to index II (7 full sibs). This value could not be reached by index II 

regardless of how many full sibs were included as information sources (asymptotic value ~ 

0.420). For PN = 10’000 I  was further increased by 27% ( I = 0.496). 

The standard deviation of index III at 
jiGGr = 0 and iw _ = 0.75 was 0.231 ( PN = 1’000), 

which was slightly lower than I  of index II incorporating performance of 7 full sibs. For high 

genetic correlations, I  of index III ( PN = 1’000) was higher than I  of index II with 7 full 

sibs, whilst for a low 
jiGGr  the standard deviation of index II with 7 full sibs was larger than 

I  of the genomic index. This superiority of index II grew slightly with increasing iw _ . As for 

larger numbers of animals in the reference population, I  at iw _ = 0.75 reached 0.330 ( PN

= 5’000) and 0.356 ( PN = 10’000), respectively. Thus, the standard deviation of index III be-

came increasingly independent of 
jiGGr  and iw _  if more animals were included in the refer-
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ence population. This pattern is visualized by the flattening curves displaying I  in Figure 4A 

and 4B. Again, I  and therefore genetic gain was lowest when assigning similar economic 

weighting to traits with strongly negative 
jiGGr . 

  

Figure 4 (A, B) Standard deviations ( I ) of indices I (grey) and III (black) for PN 1’000 

(crosses); PN 5’000 (dashed); and PN 10’000 (diamonds) as a function of the economic 

weighting of trait i  ( iw _ ) for uncorrelated traits (A) and as a function of the genetic correla-

tion (
jiGGr ) between traits i  and j  for iw _ = 1 (B). 

Index IV: The standard deviation of index III was also compared to a more practical index 

comprising an own performance in trait j  as well as the performances of the parents, 5 full 

sibs and 80 half sibs in both traits, respectively. This conventional index resulted in maximum 

I = 0.402. For 
jiGGr = 0 and iw _ = 0.75, I  was 0.261. Thus, it slightly outperformed I  of 

index III with PN = 1’000 which therefore can be considered a minimum size for the reference 

population, if GS is to be beneficial for pig breeding programs. This threshold based on 

rather theoretical assumptions was also indicated by our model calculations carried out for a 

practical breeding scheme of a Swiss sire-line comprising ten breeding goal traits (data not 

shown). In this investigation, the consideration of information on GBVs for all breeding goal 

traits and PN = 1’000 resulted in higher accuracy than conventional information on own per-

formance and performance of parents, full and half sibs. In contrast, GBVs based on PN = 

500 did not outperform an index accounting for conventional information only. 

The results showed a tradeoff between economic weighting and genetic correlation of 

the traits. Standard deviations of the indices were highest when assigning economic weight-

ing mostly to trait j  for which an own performance was available. The more weight was as-

signed to trait i  implying less performance information in the index, the more information had 

to be contributed via a strong genetic correlation with trait j  in order to achieve high I . In 

the extreme case in which economic weighting was assigned to trait i  only while only infor-
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mation on trait j  was available in index I, trait j  became an auxiliary trait for i . Hence, in-

formation could only be contributed via the genetic correlation and I  increased from 0 (

jiGGr = 0) to the maximum value which was achieved for 
jiGGr  = -1 or 1 (Figure 2).  

In practical breeding programs this tradeoff was shown for instance by Pimentel and 

König (2012) who set up an index incorporating meat quality traits for beef cattle. When 

increasing economic weighting of a breeding goal trait for which no phenotypic information 

was available, accuracy of the index and genetic gain decreased. Hansen Axelsson et al. 

(2011) found that undesirable genetic changes in functional traits were caused by economic 

weights favoring highly heritable production traits in bull dam selection. 

As for the impact of an auxiliary trait on genetic gain, Buch et al. (2012) concluded 

that phenotypic as well as genomic information on an auxiliary trait further increases genetic 

gain. Investigating different selection indices in dairy cattle this finding was confirmed even in 

cases where both phenotypic and genomic information on the breeding goal trait was avail-

able. The authors assumed an accuracy of the GBV of 0.71, which in our investigations 

would correspond to PN  3’400. Comparing I  of index III and iw _ = 1 for uncorrelated 

traits with I  for strongly correlated traits (
jiGGr  = -1 or 1) showed the gain in I  contributed 

by the auxiliary trait j . Our results are in agreement with Buch et al. (2012) and indicate that 

additional genetic gain contributed by an auxiliary trait decreases with increasing accuracy of 

the GBV, i.e. increasing PN . This finding is also in agreement with the results of Pimentel 

and König (2012) who evaluated the additional genetic gain contributed by an indicator trait 

for meat quality in beef cattle. In their study, additional gain was small assuming a GBV for 

the breeding goal trait with more than 2’500 animals in the reference set. 

 

2) Variation of heritability 

For equal heritabilities we found a superiority of index II with 7 full sibs over index III 

with PN = 1’000 if traits were uncorrelated. However, when reducing 2
jh  from 0.3 to 0.1, we 

observed a clear advantage of index III. Although I  decreased for both indices, the superi-

ority of the genomic index over the full sib index, which was observed for strong correlations, 

further increased. Maximum I  was 0.331 for index II (7 full sibs) and 0.370 for index III ( PN

= 1’000). In Figure 5A, I  of index II and III is shown for uncorrelated traits and equal herita-

bilities of both traits, as well as for the case where 2
jh  was reduced. For an economic weight 

of iw _ = 0, the reduction of 2
jh  resulted in a decrease of I  by 60% for index II but only by 



3rd chapter                       Indices with and without genomic information                                59 

51% for index III. Up to iw _ = 0.65 the genomic index ( PN = 1’000) resulted in higher I  

than the full sib index. The advantage of index III with PN = 1’000 decreased, the more eco-

nomic weighting was shifted towards the trait with the higher heritability. To further analyze 

this matter, we also compared the accuracies of indices II (7 fullsibs) and III ( PN = 1’000) for 

uncorrelated traits, which is shown in Figure 5B. As the accuracy of an index cannot drop 

below the accuracy of the GBV used as information source (König and Swalve, 2009), 
QG

r ˆ  of 

0.516 was a minimum value for TIr  of index III. In contrast, the impact of low 2
jh  on TIr  was 

more direct when using the conventional full sib index, which led to a higher sensitivity to the 

reduction of 2
jh . Increasing the relative economic weighting of the low heritability trait in the 

conventional index with 7 full sibs led to substantial losses in TIr . In contrast, TIr  even rose 

when relative economic weighting of the lowly heritable trait was increased in index III with 

PN = 1’000. However, as I  better accounts for the economic variation in the aggregate 

breeding goal than TIr , comparison of I  shows more proportionality to expected response 

to selection. We also compared response to selection for the trait with low heritability, j , 

when I  of index II and III were the same assuming selection intensity of 1.4 and G  of 

0.32. At this point of equal I  and iw _  for both indices, the response to selection for the 

trait with low heritability was greater (0.081) using index III ( PN = 1’000) than using index II 

with 7 full sibs (0.053). Similar findings were also reported by Hayes et al. (2009), König and 

Swalve (2009) and Buch et al. (2012). Both findings are due to the fact that lower 2
jh  caused 

a decrease in I , but this effect was less pronounced in index III.  

 

Figure 5 (A, B) Standard deviations ( I ; A) and accuracies ( TIr ; B) of index II with 7 full sibs 

(grey) and of index III with PN  1’000 (black) as a function of relative economic weighting of 

trait i  ( iw _ ) for uncorrelated traits i  and j . Dashed lines: equal heritabilities of 0.3; solid 

lines: heritability of trait j  reduced to 0.1. 
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Reducing 
2
jr  from 0.49 to 0.20 resulted in comparable I  of index II (7 full sibs) and III ( PN = 

1’000) for 
jiGGr = 0 (results not shown). Maximum I  of index III remained higher than I  of 

index II. Consequently, the standard deviation of the genomic index with a reference popula-

tion of 1’000 animals remained in a comparable range with I  of the full sib index (7 full sibs) 

even if accuracy of the GBV for trait j  was low.  

The effect of the heritability on I  was also assessed by varying 2
jh  from 0.1 to 1. If more 

information was incorporated into the index, I  became increasingly independent of the 

heritability of trait j . Figure 6 shows I  of indices I, II (7 full sibs) and III ( PN = 1’000) for an 

equal distribution of economic weights ( iw _ = 0.5). Only for a strongly negative genetic cor-

relation (
jiGGr = -1) we observed almost identical I  of indices I, II and III (Figure 6C). 
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Figure 6 (A, B, C) Standard deviations ( I ) of index I (grey), index II with 7 full sibs 

(dashed), and index III with PN  10’000 (diamonds) for a genetic correlation (
jiGGr ) be-

tween traits i  and j  of 1 (A), 0 (B) and -1 (C) as a function of heritability of trait j  for equal 

economic weighting. 
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Finally we considered the case that the correlation of the prediction errors of the genomic 

component of the breeding value is inflated by adding a constant , so that eq. (4) of the 

Appendix becomes 

2
ˆ

2
ˆ 11

jjjiiijRiR QQjGGiQQ
rqrqrr . 

Solving eq. (6) of the Appendix under this assumption, the correlation between the GBVs of 

traits i  and j  becomes 

jj

jQjQ

ii

iQiQ

jjiiji
jQiQ

QQQQ

QQjQQiGG
r

r

r

r
rqrqrr

ˆ

2

ˆ

2

ˆˆ

ˆˆ

ˆˆ

11
. 

The first part of this equation is identical with our original result, and since the factor for  is 

by definition non-negative, 
jQiQ

r
ˆˆ

 is inflated (deflated) relative to 
jQiQ

r
ˆˆ

if  is positive (nega-

tive). 

To assess the effect of including  on I  and hence the expected genetic progress, we 

consider the case where the accuracy of the quasi-phenotypes, 
QQ

r ˆ , is 0.573 for both traits 

with PN = 1’000 and q= 0.9 for both traits. In this case 

297.1266.0
ˆˆ ji
jQiQ

GGrr . 

If we further assume that 5.0
jiGGr  and 2.0 , the correlation of the prediction errors 

when including  is inflated (
jRiR

r 0.373 vs.
ji RRr  0.173), and the same is true for the 

correlation between the GBVs (
jQiQ

r
ˆˆ

 = 0.393 vs. 
jiQQ

r ˆˆ  0.133). For an equal relative eco-

nomic weight of 0.5 for both traits, the standard deviation of the index, I , is now smaller 

(0.304) than without inclusion of  ( I = 0.320), which means that an inflated correlation of 

the prediction errors due to external factors will decrease the expected genetic progress. 

This also means that not accounting for the impact of correlated residuals due to external 

effects will lead to an overestimation of I  in the discussed scenario. 

The direction of the effect of including a biased correlation of prediction errors is de-

pending on three factors, namely the signs of , 
jiGGr , and iw _  (when assuming jw _ > 

0). This results in eight different combinations which were assessed with the parameters of 

the assumed scenario, and results are given in Table 1.  
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Table 1 Correlations of prediction errors and standard deviations of index III if not accounting 

for  (
ji RRr ; I ) and if accounting for  (

jRiR
r ; I ) for different combinations of , genetic 

correlation between the traits (
jiGGr ) and relative economic weighting of trait i ( iw _ ) 

Combination of 

; 
jiGGr ; iw _  ji RRr  

jRiR
r

 
I  I  

(1) 0.2; 0.5; 0.5 0.173 0.373 0.320 0.304 

(2) -0.2; 0.5; 0.5 0.173 -0.027 0.320 0.346 

(3) 0.2; -0.5; 0.5 -0.173 0.027 0.126 0.117 

(4) -0.2; -0.5; 0.5 -0.173 -0.373 0.126 0.142 

(5) 0.2; 0.5; -0.5 0.173 0.373 0.126 0.142 

(6) -0.2; 0.5; -0.5 0.173 -0.027 0.126 0.117 

(7) 0.2; -0.5; -0.5 -0.173 0.027 0.320 0.346 

(8) -0.2; -0.5; -0.5 -0.173 -0.373 0.320 0.304 

Combination (1) and (2) reflect the case where both 
jiGGr  and iw _  are positive. Combina-

tion (1) with a positive  is described above. In combination (2), the negative  implies a 

weaker correlation of prediction errors, 
jRiR

r , than if  is not accounted for (
ji RRr ). This 

leads to an underestimation of I . In combination (7) and (8) the signs of both 
jiGGr  and 

iw _  are negative. Again, as in combination (1), a stronger 
jRiR

r  compared to 
ji RRr  implies 

an overestimation of I . If 
jRiR

r  is weaker than when neglecting , as in combination (2), I  

is underestimated. 

In the cases where the signs of 
jiGGr  and iw _  are antagonistic (combinations (3) to (6)), a 

weaker 
jRiR

r  implies an overestimation of I  and a stronger 
jRiR

r  implies an underestimation 

of I . 

Conclusions 

As the amount of information increases, the standard deviation of an index, determining the 

expected genetic gain, is increasingly independent of genetic correlation, heritability and 

relative economic weighting among traits. This applies for both conventional and genomic 

information, e.g., more full sibs or GBVs with higher accuracies. 

The standard deviation of a conventional full sib index is more sensitive to a reduction 

of heritability than a genomic index. For a two-trait scenario where the economic importance 

is the same for both traits, the genetic gain of the trait with low heritability can therefore be 
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higher than genetic gain of the trait with a higher heritability when applying the genomic index 

rather than the full sib index. 

Based on our results, a reference population of 1’000 animals is a minimum 

requirement for GS to be competitive with a conventional selection scheme reflecting the 

practical situation in pig breeding (e.g. parent information, performance of 5 full sibs and 80 

half sibs). The standard deviation of a genomic index with a reference population of 5’000 

animals cannot be achieved by any realistic conventional index. Our conclusions also hold 

for the comparison of accuracies of the indices. 

Genomic breeding values for several traits might be correlated due to an overlap in 

the training sets used to derive the GBVs. We have shown that this will have an effect on 

expected genetic progress, and how this can be quantified as a function of a parameter  

reflecting the deviation of the correlation of prediction errors of GBVs from its expectation. 

The actual magnitude of  remains to be quantified in empirical studies. 
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Appendix 

According to Figure 1, we have for instance for trait i : iiii RQHG ˆ . From this, the fol-

lowing correlations can be derived  
21 jGGHG qrr

jiji
      (1) 

 
2

ˆ1
jjjiji QQjGGRG rqrr      (2) 

 

jiji GGjiHH rqqr 22 11      (3) 

 
2

ˆ
2

ˆ 11
jjjiiiji QQjGGiQQRR rqrqrr     (4) 

 
22

ˆ 11 jGGiQQHR qrqrr
jiiiji

    (5) 

 

Furthermore, one can express the covariance between iQ̂  and jQ̂  as: 

jjjiiiji RHGRHGQQ ,covˆ,ˆcov  

jijijijijiji HHGHRGHGGGQQ ,cov,cov,cov,cov,covˆ,ˆcov

jijijiji RRHRGRRH ,cov,cov,cov,cov  

 
One thus has: 
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(6) 

 
Using a regression, one can derive that 
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Including these equations and the equations (1) to (5) in (6) provides: 
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Abstract 

The breeding scheme of a Swiss sire line was modeled to compare different target traits and 

information sources for the selection against boar taint. The impact of selection against boar 

taint on production traits was assessed for different economic weights of boar taint 

compounds. Genetic gain and breeding costs were evaluated using ZPlan+, a software 

based on selection index theory, gene flow method and economic modeling. Scenario I 

reflected the currently practiced breeding strategy as a reference scenario without selection 

against boar taint. Scenario II incorporated selection against the chemical compounds of 

boar taint, androstenone (AND), skatole (SKA) and indole (IND) with economic weights of -

2.74, -1.69 and -0.99 Euro per unit of the log transformed trait, respectively. As information 

sources, biopsy-based performance testing of live boars (BPT) was compared with genomic 

selection (GS) and a combination of both. Scenario III included selection against the 

subjectively assessed human nose score (HNS) of boar taint. Information sources were 

either station testing of full and half sibs of the selection candidate or GS against HNS of 

boar taint compounds. In scenario I, annual genetic gain of log transformed AND (SKA; IND) 

was 0.06 (0.09; 0.02) Euro, which was due to favorable genetic correlations with lean meat 

percentage and meat surface. In scenario II, genetic gain increased to 0.28 (0.20; 0.09) Euro 

per year when conducting BPT. Compared with BPT, genetic gain was smaller with GS. A 

combination of BPT and GS only marginally increased annual genetic gain, whereas variable 

costs per selection candidate augmented from 230 Euro (BPT) to 330 Euro (GS) or 380 Euro 

(both). The potential of GS was found to be higher when selecting against HNS, which has a 

low heritability. Annual genetic gain from GS was higher than from station testing of 4 full 

sibs and 76 half sibs with one or two measurements. The most effective strategy to reduce 

HNS was selecting against chemical compounds by conducting BPT. Because of 

heritabilities higher than 0.45 for AND, SKA and IND and high genetic correlations to HNS, 

the (correlated) response in units of the trait could be increased by 62% compared with 

scenario III with GS and even by 79% compared with scenario III, with station testing of 

siblings with two measurements. Increasing the economic weights of boar taint compounds 

amplified negative effects on average daily gain, drip loss and intramuscular fat percentage.
 

 

Keywords: boar taint, biopsy, androstenone, genomic selection, skatole 
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Implications 

Because the European pig producers agreed to omit the practice of surgical castration by 

2018, new strategies for reducing the amount of tainted carcasses are required. Using the 

practical breeding program of a Swiss sire line as a reference, we compare different ap-

proaches to reduce the occurrence of boar taint by means of selection. Selection against the 

chemical compounds of boar taint as measured in liquid fat is compared with selection 

against boar taint as measured by test persons in the abattoir. The efficiency of different in-

formation sources, including genomic information, is evaluated in terms of genetic gain and 

breeding costs. 

 

Introduction 

Until recently, surgical castration as a reliable means for producing meat free of boar taint 

has been a common practice in pig production in many European countries. To improve ani-

mal welfare (von Borell et al., 2009), the European pig industry collectively and voluntarily 

agreed to discontinue surgical castration of piglets by 2018 (European Commission, 2010). A 

ban on surgical castration, including that performed using anaesthesia or analgesia, will likely 

be anchored in the legislation of many European countries in the foreseeable future; feasible 

alternatives are required as soon as possible.  

Alternatives to surgical castration have been the topic of intense research in Europe. 

Three main possibilities exist: (1) sexing semen, which would allow the production of only 

female animals, totally circumventing the problem of boar taint, (2) immunocastration, involv-

ing the immunization of young pigs against gonadotropin-releasing hormone (GnRH) (Prunier 

et al., 2006; Fàbrega et al., 2010; Rydhmer et al., 2010); and (3) raising intact boars. While 

common in cattle breeding, sexed swine semen is not likely to become available on a com-

mercial scale in the near future because of various technical limitations (Vazquez et al., 

2009). Although registered in most of Europe, immunocastration is not widely used, because 

of image concerns of retailers. Breeding against the main compounds of boar taint (skatole, 

androstenone and indole) seems promising because of high consumer acceptance, favor-

able effects on various production traits, high heritabilities and a more efficient food conver-

sion of intact male boars (Walstra, 1974; Sellier et al., 2000; Windig et al., 2012). Before in-

tact male boars can be produced on a large scale, however, the frequency of tainted car-

casses must be reduced and a reliable means of identifying carcasses with organoleptic 

anomalies must be implemented. Management practices adapted to rearing intact boars (i.e. 

feeding regimes, housing facilities, etc.) will also be necessary. 



4th chapter                           Selection strategies against boar taint                                        72 

Incorporating selection against boar taint into practical breeding programs requires a reliable 

system for recording the target traits. Those can be either the amount of boar taint com-

pounds, for example, in liquid fat, or the human nose score (HNS) being the intensity of odor 

as perceived by trained test individuals (Windig et al., 2012). Levels of chemical boar taint 

compounds can be measured either in the abattoir, for example, in siblings of the selection 

candidate, or by conducting a biopsy-based performance test in live boars, as proposed by 

Baes et al. (2013). Assessing the HNS requires a trained panel of testers (Mathur et al., 

2012). 

Accuracy of selection and therefore response to selection may be improved by addi-

tionally considering genomic information. The gain in accuracy will depend on whether boar 

taint compounds or HNS are considered in the breeding goal owing to the considerable dif-

ferences in heritability (Windig et al., 2012). Genomic selection (GS) is defined as the estima-

tion of breeding values based on genome-wide dense marker maps (Meuwissen et al., 

2001). The development of a 60K SNP array for Sus scrofa (Ramos et al., 2009) enables a 

routine assessment of a large number of markers that, in addition to conventional pedigree-

based information, should help to partition the genetic variance observed in the population.  

Estimation of linkage disequilibrium (LD) carried out by Uimari and Tapio (2011) and Badke 

et al. (2012) showed high values of r2 between adjacent SNPs in pigs; these r2 values were 

comparative with those in North American Holstein cattle, indicating that the estimation of 

accurate genomic breeding values (GBVs) for pigs should be feasible using a 60K SNP ar-

ray. Accuracies of GBVs for traits with low heritability (female reproduction traits) were found 

to be clearly higher than the accuracy of conventional information normally available at the 

time of selection (Cleveland et al., 2010). Next to LD, the number of animals in the reference 

population is an important factor determining the accuracy of GBVs. Haberland et al. (2013) 

estimated a lower limit of about 1’000 animals to increase genetic gain of a pig breeding pro-

gram using GS. 

The aim of this study was to model a terminal sire line breeding program to assess 

the potential of selection against boar taint as reflected in different target traits (HNS or 

chemical compounds) using selection index theory. The Swiss terminal sire line PREMO® 

was used as an example for comparing different information sources: (i) biopsy-based per-

formance testing (BPT) of live boars; (ii) assessment of HNS on station; and (iii) GS against 

either chemical compounds or HNS. The economic weights of boar taint components were 

varied to assess the effects on monetary genetic gain of production traits, and on time 

needed to reduce boar taint within the examined pig population. 
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Material and methods 

Within the three-way crossbreeding scheme of the Swiss pig production company SUISAG, 

the terminal sire line PREMO® is mated to F1 crossbreed sows (Swiss Large White x Swiss 

Landrace). In this study, we focus on the selection scheme of the sire line. Genetically, the 

breed originates from a Swiss Large White line and has been selected for high fattening per-

formance and meat quality for about 10 years. Because of the low average androstenone 

content in PREMO® boars compared with other breeds such as Duroc, Landrace or Large 

White (Grindflek et al., 2011; Windig et al., 2012; Baes et al., 2013), the use of this terminal 

sire line in a breeding program should provide a good starting point for reducing the number 

of carcasses with organoleptic anomalies. Heritabilities, phenotypic standard deviations and 

economic weights of the breeding goal traits in the current population are given in Table 1; 

phenotypic and genetic correlations are shown in Table 2.  

Table 1. Heritabilities ( 2h ), phenotypic standard deviations (σP) and economic weights (w ) 
per unit of considered traits (SUISAG, 2012) 

Trait 2h  Pσ  w  unit 

ADG_S 0.27 85.33 0.05 g/day 

FCR 0.35 0.16 -40.00 kg/kg 

SUR 0.61 4.08 0.7 cm2 

IMF 0.60 0.53 9.25 % 

pH1 0.17 0.19 20.00 pH 

PIGM 0.27 0.17 12.00 score 

DL 0.30 1.71 -3.30 % 

ADG_F 0.29 40.77 0.06 g/day 

BFT 0.40 2.46 - cm 

ADG_Sl 0.37 48.23 0.12 g/day 

LMP 0.34 2.45 1.65 % 

AND 0.45 0.95 -2.74 ln(µg/g liquid fat) 

SKA 0.49 0.73 -1.69 ln(µg/g liquid fat) 

IND 0.55 0.59 -0.99 ln(µg/g liquid fat) 

HNS 0.12 0.95 -2.93 score 

ADG_S= average daily gain (station test), FCR= feed conversion ratio, SUR= surface, IMF= 
percentage of intramuscular fat, pH1= acidity 1 hour after slaughtering), PIGM= pigmentation, 
DL= drip loss, ADG_F= average daily gain (field test), BFT= backfat thickness, ADG_Sl= 
average daily gain (at slaughtering), LMP= lean meat percentage, AND= androstenone, 
SKA= skatole, IND= indole. 
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Table 2. Heritabilities (diagonal), phenotypic (above diagonal) and genotypic (below diagonal) correlations between considered traits (SUISAG, 
2012; Frieden (personal communication), 2013; Windig et al., 2012) 
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ADG_S 0.27 -0.45 -0.09 0.06 0.04 -0.02 0.03 0.41 0.13 0.19 -0.06 Na Na Na Na 

FCR -0.32 0.35 -0.13 0.28 -0.01 0.04 -0.12 -0.10 0.23 -0.11 -0.29 0.13 0.14 0.16 Na 

SUR -0.05 -0.12 0.61 -0.12 -0.04 -0.10 0.08 -0.08 -0.20 0.00 0.25 -0.23 -0.16 -0.20 Na 

IMF 0.06 0.37 -0.07 0.60 0.02 -0.03 -0.21 -0.01 0.22 -0.04 -0.23 0.19 -0.04 0.14 Na 

pH1 -0.06 0.07 -0.13 0.23 0.17 -0.02 -0.47 0.01 0.03 0.04 -0.02 Na Na Na Na 

PIGM -0.13 0.05 -0.03 -0.11 0.02 0.27 -0.01 -0.03 0.06 -0.06 -0.04 Na Na Na Na 

DL 0.22 -0.32 0.27 -0.50 -0.59 -0.13 0.30 0.05 -0.08 -0.06 0.08 -0.05 0.06 -0.10 Na 

ADG_F 0.48 -0.13 -0.22 0.02 0.00 0.01 0.16 0.29 0.16 0.15 -0.08 0.19 -0.05 0.02 Na 

BFT -0.13 0.56 -0.13 0.31 0.05 0.12 -0.24 0.10 0.40 -0.09 -0.43 0.27 0.01 0.15 Na 

ADG_Sl 0.57 -0.33 0.02 -0.06 0.23 -0.14 -0.13 0.42 -0.17 0.37 -0.03 Na Na Na Na 

LMP -0.05 -0.51 0.28 -0.27 -0.07 -0.09 0.18 -0.16 -0.81 0.02 0.34 -0.22 -0.12 -0.21 Na 

AND Na 0.13 -0.23 0.19 Na Na -0.05 0.19 0.27 Na -0.22 0.45 0.28 0.26 0.27 

SKA Na 0.14 -0.16 -0.04 Na Na 0.06 -0.05 0.01 Na -0.12 0.11 0.49 0.74 0.36 

IND Na 0.16 -0.20 0.14 Na Na -0.10 0.06 0.15 Na -0.21 0.35 0.90 0.55 0.32 

HNS Na Na Na Na Na Na Na Na Na Na Na 0.65 0.90 0.84 0.12 

ADG_S= average daily gain (station test), FCR= feed conversion ratio, SUR= meat surface, IMF= percentage of intramuscular fat, pH1= acidity 
1 hour after slaughtering), PIGM= pigmentation, DL= drip loss, ADG_F= average daily gain (field test), BFT= backfat thickness, ADG_Sl= aver-
age daily gain (at slaughtering), LMP= lean meat percentage, AND= androstenone in liquid fat, SKA= skatole in liquid fat, IND= indole in liquid 
fat, HNS= human nose score, Na= not available 
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The breeding program was modeled using ZPlan+ (Täubert et al., 2010). This software com-

bines selection index theory (Hazel, 1943), gene flow method (Elsen and Mocquot, 1974; 

Hill, 1974) and economic modeling, enabling deterministic simulation of livestock breeding 

programs (Willam et al., 2008). Breeding schemes can be compared in terms of generation 

interval, monetary genetic gain, breeding costs, returns and discounted profit. The selection 

index is implemented in ZPlan+ as described by Hazel (1943). 

In the genomic scenarios, GBVs were integrated into the selection index considering 

them as auxiliary traits with a heritability of 1, as proposed by Dekkers (2007). Phenotypic 

and genetic correlations between these ‘genomic traits’ and the traits of the breeding goal 

were calculated in accordance with Dekkers (2007). Only our formula to determine the ge-

netic correlation between GBVs of two different traits differs from Dekkers (2007) in that it 

was derived assuming the proportion of genetic variance associated with markers ( 2q ) not 

being necessarily identical (Haberland et al., 2013). We adopted the value of 9.0q  sug-

gested by Erbe et al. (2011) who used cross-validated data to empirically determine q  for 

genotyped Holstein Friesian bulls. To the best of our knowledge, such empirical data are not 

yet available for pigs. The accuracy of the GBVs GBVr  was calculated using a formula derived 

by Daetwyler et al. (2010): 

eP

P
GBV

MrN

rN
r

2

2

 

where PN  is the number of individuals in the reference population. In our calculations, we 

assumed PN = 1,000, which may be assumed a minimum for GS in pigs (Haberland et al., 

2013). For the reliability of the quasi-phenotypes, that is, of the conventional EBVs of the 

animals in the reference population, we assumed 2r = 0.49 for all traits. eM  is the effective 

number of chromosome segments segregating in the population and can be approximated 

with )log(/2 LNLkN ee  as proposed by Goddard et al. (2011). eN  denotes the effective popu-

lation size, L  is the average length of a chromosome in Morgan and k  is the number of 

chromosome pairs. Assuming eN = 100, k = 19 and L = 1.2 Morgan (with length of the por-

cine genome being 23 Morgan, Rohrer et al., 1996), the value of eM  was ~1’000. 

The following scenarios were compared in terms of annual genetic gain of log-

transformed (ln) boar taint components AND, SKA and IND and in terms of variable breeding 

costs per selection candidate. To correct for skewness, boar taint phenotypes AND, SKA and 

IND were log transformed to achieve a normal distribution of the data (Baes et al., 2013). 

The monetary genetic gain per year was calculated as TiraG TTI // , where i  is the 

selection intensity, TIr  is the accuracy of the index, T  is the standard deviation of the breed-
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ing goal and T  is the generation interval. The expected change in the amount of boar taint 

prevalence per year was estimated using the average amount of boar taint compounds in the 

current PREMO® population (0.70, 0.03 and 0.03 µg/g liquid fat for AND, SKA and IND, re-

spectively) as a starting point. The selection was intensified by increasing the economic 

weighting factors for boar taint compounds in three steps. The scenarios were also assessed 

with respect to the impact on production traits, provided that the genetic correlation between 

production traits and boar taint compounds was known. Table 3 shows an overview over the 

scenarios and the respective information sources. 

Table 3. Breeding goals and information sources of the different scenarios 

 Breeding goal   Information sources 

  BPT GS BPT+GS 
Station 
testing 

Scenario I no selection against 
boar taint 
(reference scheme) 

    

Scenario II chemical compounds 
(AND, SKA, IND) 

a) b) c)  

Scenario III HNS  b)  a) 

BPT= biopsy-based performance testing; GS= genomic selection; AND= androstenone; 
SKA= skatole; IND= indole 

 

Scenario I, conservative scheme (base scenario) 

This base scenario models the current breeding program. The breeding nucleus consists of 

270 sows with an annual replacement rate of 75%. The breeding sows are mated to 60 AI 

boars, 35% of which are progeny tested. The rather large number of young boars is main-

tained to control inbreeding within the small breeding nucleus and to increase genetic gain 

more rapidly. Genetic gain is transferred to the production units by a larger pool of 150 AI 

boars, which is assumed to be selected with a lower intensity than the breeding boars, but in 

which the breeding boars are included. In ZPlan+, we split the breeding sows and breeding 

boars into two groups according to two selection steps. The first selection step is based on 

field performance testing of 1,200 male and 1,200 female selection candidates per year at a 

live weight of 100 to 130 kg. A total of 200 young breeding sows and 42 young boars are 

selected according to their own and 60 half sib performances in the traits average daily gain 

and backfat thickness (measured using ultra sound). In addition, two full sibs and 12 half sibs 

of every selection candidate are tested on station for average daily gain, feed conversion 

ratio, intramuscular fat, pH1, pigmentation, drip loss and lean meat percentage. The produc-

tive lifetime of the young breeding animals selected in the first selection step is 1 year. Field 

performance testing was assumed to cost 180 Euro. In the second selection step, 70 sows 

and 20 boars are selected to be kept for another two years according to their progeny re-
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cords. Progeny testing is carried out by testing six purebred progeny on station, and by re-

cording about 40 crossbred end-products for lean meat percentage and average daily gain. 

Progeny testing was assumed to cost 1535 Euro. The larger pool of boars used for matings 

within the production unit is also split into two groups, namely, 105 younger and 42 older 

boars with a productive lifetime of 1 or 2 years, respectively. Hence, including the production 

unit consisting of 60,000 crossbred sows, there are seven groups involved in the breeding 

program modeled in ZPlan+. The transmission matrix (gene flow) within the modeled popula-

tion is shown in Table 4. 

Fixed costs of the breeding program were not accounted for because of the complex-

ity of their determination and because only variable costs have an impact on the efficiency of 

the breeding strategy. Boar taint compounds were included in scenario I with an economic 

weighting of zero; this was done to assess the correlated response because of their correla-

tions with production traits. 
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        Table 4 Transmission matrix (gene flow) within the modeled pig population 

 Boars Sows (Breeding) Sows (Production) 

 1 2 3 4 1 2 3 1 2 3 4 5 

Boars             

1 0.1625 0.2063 0.0875 0.0438 0.3750 0.0313 0.0938 0 0 0 0 0 

2 1 0 0 0 0 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 0 0 0 0 0 0 

4 0 0 1 0 0 0 0 0 0 0 0 0 

Sows (Breeding)             

1 0.1625 0.2063 0.0875 0.0438 0.3750 0.0313 0.0938 0 0 0 0 0 

2 0 0 0 0 1 0 0 0 0 0 0 0 

3 0 0 0 0 0 1 0 0 0 0 0 0 

Sows (Production)             

1 0.1713 0.2106 0.0788 0.0394 0 0 0 0.2480 0.1080 0.0576 0.0648 0.0216 

2 0 0 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 0 0 0 0 0 1 0 0 0 

4 0 0 0 0 0 0 0 0 0 1 0 0 

5 0 0 0 0 0 0 0 0 0 0 1 0 
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Scenario II, breeding against boar taint compounds 

Log-transformed boar taint compounds AND, SKA and IND were included in the breeding 

goal. Because no genetic correlation between boar taint compounds and fattening traits were 

available, these relationship were partly adopted from the German Piétrain Herdbook Or-

ganisations (Tholen, personal communication). The underlying data set of these parameters 

comprises information from 1,010 station tested, Piétrain-sired commercial crossbreds 

(Tholen et al., 2011). AND and IND show favorable genetic correlations to lean meat per-

centage, meat surface and feed conversion ratio (Table 2). Undesirable correlations exist 

between AND and average daily gain as well as between intramuscular fat percentage and 

the boar taint compounds AND and IND. 

Three kinds of information sources for the selection index were compared: BPT in live boars 

(scenario IIa), GS (scenario IIb) or a combination of both (scenario IIc). 

(IIa) A biopsy was assumed to be taken from the neck region of 1,200 live male selec-

tion candidates during the field test (Baes et al., 2013). Thus, boar taint compounds could be 

quantified in addition to the currently measured traits average daily gain and backfat thick-

ness. Each selection candidate had information on boar taint compounds from itself (only if 

male), its sire and its 30 male half sibs. The regular costs of the field test (180 Euro) and the 

costs for biopsy and analysis (50 Euro) added up to 230 Euro per animal. Expected long-

term change in boar taint prevalence was calculated assuming different economic weighting 

factors of boar taint compounds. There is no established payment system for carcasses of 

intact male boars with respect to boar taint that would allow the derivation of economic 

weights. Therefore, we arbitrarily have defined relative weights for the three boar taint com-

ponents with 75% for SKA and IND relative to AND per genetic standard deviation of the 

trait, and all three components together accounting to 5% of the standard deviation of the 

overall breeding goal. These assumptions have resulted in economic weights of -2.74, -1.69 

and -0.99 Euro per unit of log-transformed AND, SKA and IND. To investigate the effect of 

higher economic weights of boar taint components on genetic gain, these values were in-

creased in such a way that they represented a proportion of 10%, 20% and 30% of the vari-

ance of the overall breeding goal. 

(IIb) For the genomic scenario, GBVs were assumed to be available for boar taint 

compounds AND, SKA and IND. The presumed genotyping costs were 150 Euro. Together 

with the regular field test, costs added up to 330 Euro. 

(IIc) In a third scheme, conventional information from the biopsy-based field test was 

combined with the genomic information. Consequently, information sources within the selec-

tion index were own and half sib performances from the field test, performance of two full 

sibs and 12 half sibs tested on station, information on the parent’s performance and on the 
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genomic traits. Costs of genotyping and performance testing added up to 380 Euro per se-

lection candidate. 

 

Scenario III, breeding against HNS 

The HNS was included in the breeding goal instead of boar taint compounds. Heritability, 

repeatability and phenotypic standard deviation, and phenotypic and genetic correlations 

between boar taint compounds and HNS of AND, SKA and IND were adopted from Windig et 

al. (2012) and are displayed in Tables 1 and 2. For the derivation of the economic weight of 

HNS, we first assumed a new trait H as an index of the chemical compounds AND, SKA and 

IND, each weighted by their respective index weights (b-values according to selection index 

theory). The phenotypic variance of H was calculated as Pbb'2
p , were b is a vector of 

the index weights of AND, SKA, IND and HNS (= 0) and P is the phenotypic (co)variance 

matrix of these traits. The phenotypic covariances between H and AND, SKA, IND and HNS, 

respectively, were calculated as Pb'covH . Subsequently, the economic weight of trait H 

was calculated as 2/ PHH covw'w , were w is a vector of the economic weights of AND, 

SKA, IND and HNS (= 0). The economic weight of HNS was then calculated by performing a 

regression of H on HNS and dividing the economic weight of H by the resulting regression 

coefficient, which resulted in -2.93 Euro per unit of the trait. 

A performance test on station (scenario IIIa) was compared with GS (scenario IIIb).  

(IIIa) Information sources for station testing were chosen in accordance with Windig et 

al. (2012). Hence, 4 full sibs and 76 half sibs of the selection candidate were slaughtered and 

tested by one trained test individual. Additionally, we assessed the effect of a second test 

individual. Information on station testing of siblings was assumed to cost 50 Euro per selec-

tion candidate.  

(IIIb) For the genomic strategy, the GBV of the HNS was included in the selection in-

dex according to the explanations above. 

 

Results and discussion 

Annual genetic gain 

Annual genetic gain in log-transformed AND, SKA and IND achieved in scenarios I and II is 

depicted in Figure 1. Even for the case where no information on boar taint was included in 

the index (scenario I), we observed a decrease in boar taint compounds. The genetic gain in 

log-transformed AND (SKA; IND) was 0.06 (0.09; 0.02) Euro per year. This correlated re-

sponse is because of the selection on favorably correlated production traits such as lean 
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meat percentage (cp. Table 2). Scenario I only involved the variable costs for regular field 

testing of 180 Euro per selection candidate (Figure 2). 

 

Figure 1. Annual genetic gain of boar taint compounds androstenone (AND), skatole (SKA) 
and indole (IND) for different information sources: scenario I (hatched); scenario II with bi-
opsy-based performance testing (dark grey); genomic selection (GS, light grey); and a com-
bination of biopsy and genomic selection (black). 

In scenario IIa, with information from BPT, genetic gain in AND (SKA; IND) was 0.28 

(0.20; 0.09) Euro per year. The high level of genetic gain is because of heritabilities greater 

than 0.45 and the availability of a high number of half sib performances in addition to an own 

performance of the selection candidate. Variable costs per selection candidate of scenario IIa 

were 230 Euro for the field test and the biopsy. When using genomic selection (scenario IIb), 

the genetic gain was reduced by 23% (14%; 17%) for AND (SKA; IND) compared with sce-

nario IIa. In contrast, variable costs per selection candidate for GS were 100 Euro higher 

than for BPT (Figure 2). When combining the information sources BPT and GS (scenario IIc), 

genetic gain only marginally exceeded the gain achievable from BPT alone, whereas variable 

costs per selection candidate added up to 380 Euro. Consequently, this economically de-

manding scheme with small additional gain may not be considered for practical application if 

only considering its benefits for the selection against boar taint compounds. However, the 

potential of GS with regard to production traits was found to be higher for the same popula-

tion of pigs (Haberland et al., 2010). If assuming the introduction of GS for selection on pro-

duction traits, the variable costs per selection candidate could be partly refunded by addi-

tional profit in the production traits. In this case, the consideration of genomic information on 

boar taint compounds in addition to BPT could be worthwhile. Nevertheless, the build-up of a 

reference population with PN  > 500 is challenging for regional lines such as PREMO®. One 
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possibility to increase PN  would be a joint analysis of genetically close lines within a larger 

reference population. Investigations of Badke et al. (2012) showed high prediction accuracies 

across breeds (Landrace and Yorkshire) if markers were not spaced more than 100 kb apart. 

For the PREMO® population originating from a Large White line, an even closer relationship 

with other Large White populations can be expected. Own calculations of the genetic differ-

entiation (Wright, 1951) between the PREMO® population and a German Large White line 

resulted in FST being in a range with populations that were selected separately for about 50 

years. An even more promising approach would be using progeny-tested sows of the same 

population for increasing PN . The common genetic background ensures high accuracies of 

the predicted GBVs. Nevertheless, breeding values for progeny-tested boars and sows will 

likely differ in accuracy. These differences have to be accounted for by approaches, for ex-

ample, as proposed by Garrick (2009), in which the residual term of the mixed model is 

weighted according to the difference in variance. 

 

  
Figure 2. Variable costs in Euro for the reference scenario (I), selection against boar taint 
compounds via biopsy-based performance testing (II a)), genomic selection (II b)) or both (II 
c)) as well as for the selection against the human nose score via test persons (III a)) or ge-
nomic selection (III b)). 
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GS is considered to be mainly beneficial if selecting for traits with a low heritability and those 

that cannot be measured in the animal itself (Goddard and Hayes, 2007). As HNS is a car-

cass trait, which can only be measured in sibs of the selection candidate, we expected a high 

potential for GS in scenario III. The annual genetic gain in units of the trait for scenario III is 

depicted in Figure 3. In comparison with station testing of 4 full and 76 half sibs with one or 

two measurements, annual genetic gain could be increased by factor 2.8 or 1.8, respectively, 

when using genomic information on the selection candidate. However, the variable costs of 

station testing are considerably lower than the costs of GS (Figure 2). We also assessed the 

correlated response of HNS when using scenario IIa, that is, when selecting against the 

chemical compounds of boar taint via BPT. Because of the high genetic correlations between 

boar taint compounds and HNS (cp. Table 2), the (correlated) response in HNS could be 

further increased by factor 2.6 compared with scenario IIIb (Figure 3). Thus, the best strategy 

for reducing the HNS was breeding against chemical compounds (scenario IIa). 

 

Figure 3. Annual genetic gain (ΔG/a) in units of the trait for the human nose score (HNS) for 
different information sources: station testing of siblings with one test individual (white); station 
testing of siblings with two measurements (black); genomic selection (light grey); biopsy-
based performance testing for boar taint compounds (correlated response, dark grey). 
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creased by 19% (41%; 21%) within ten years, because of favorable correlations to lean meat 

percentage and meat surface. 

Because genetic gain was found to be greatest for scenario IIa, the calculation of the 

following trends was only performed for this scenario. The amount of AND could be reduced 

by 50% within 7 years if assuming an economic weight of -2.74 Euro per unit of the trait (Fig-

ure 4a). Desmoulin and Bonneau (1982) proposed a threshold of 0.5 µg AND/g liquid fat, 

below which consumers found no more difference between boar meat and meat from gilts or 

castrates. The average amount of AND in the PREMO® population could be reduced to this 

threshold within 4 years, which is in accordance with Merks et al. (2009) and Windig et al. 

(2012). If selecting more intensively, that is, increasing the economic weight up to a propor-

tion of 10% or 20% of the variance of the overall breeding goal, this threshold could be 

reached even within 3 or 2 years. The average amount of SKA in the PREMO® population is 

currently 0.029 µg/g liquid fat, which is already very close to the threshold of 0.026 µg/g liquid 

fat proposed by Annor-Frempong et al. (1997). Assuming an economic weight of -1.69 Euro 

per unit of the trait, the amount of SKA could be reduced by 50% within 6 years (Figure 4b). 

A further increase in economic weighting only had marginal effects. The amount of IND could 

be reduced by 50% within 8 years with the original economic weighting of -0.99 Euro per unit 

of the trait (Figure 4c). If economic weighting was increased up to a proportion of 10% or 

20% of the variance of the overall breeding goal, the amount of IND could be halved within 6 

or 4 years. For all three chemical compounds, a further increase of economic weights only 

provided marginal improvements but amplified negative effects, which will be discussed in 

the following sections. 
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Figure 4. Expected changes in the prevalence of boar taint compounds androstenone (A), 
skatole (B) and indole (C) as a function of economic weighting: scenario I (solid line); sce-
nario II and biopsy-based performance testing with weighting of -2.74, -1.69 or -0.99 
(crosses); economic weighting increased up to a proportion of 10% (diamonds); 20% 
(dashed line); 30% (circles) of the variance of the overall breeding goal. 
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Correlated effects on other traits 

Figure 5 depicts the annual monetary genetic gain in the production traits for scenario I and 

scenario IIa. Some breeding goal traits were left out of the comparison because information 

on their genetic correlation with boar taint compounds was not available (Table 2). Scenario 

III had to be left out for the same reason. The initial economic weights for AND, SKA and IND 

of -2.74, -1.69 and -0.99 Euro per unit of the trait, respectively, were increased up to a pro-

portion of 10% and 20% of the variance of the overall breeding goal within this comparison. 

Selection against boar taint entailed positive effects on lean meat percentage, meat surface 

and feed conversion ratio because of favorable genetic correlations (cp. Table 2). For exam-

ple, when conducting scenario IIa with economic weights of -2.74, -1.69 and -0.99 Euro per 

unit of the trait for AND, SKA and IND, respectively, annual genetic gains in these traits in-

creased by 0.10 Euro, 0.12 Euro and 0.09 Euro, respectively, in comparison with scenario I 

(Figure 5). Negative effects were found for average daily gain (station test), drip loss and 

intramuscular fat percentage. When conducting scenario IIa with the initial economic weights, 

monetary genetic gain in these traits changed by -0.05 Euro, 0.06 Euro and -0.16 Euro, re-

spectively, in comparison with scenario I. The negative effects on these traits increased 

when the economic weighting of boar taint compounds increased (Figure 5). A negative trend 

for growth rate in a Large White line selected for low AND was also reported by Sellier and 

Bonneau (1988) and Sellier et al. (2000), but is in contrast to findings of Windig et al. (2012). 

The different information sources within scenario II had no noticeable impact on annual 

monetary genetic gain in the production traits (results not shown). 

Strong genetic correlations between AND and other sex steroids, like for example, 

testosterone have been reported by, for example, Willeke et al. (1987) and Grindflek et al. 

(2011). Moreover, the level of AND has been found to be strongly correlated with testes size 

(Sellier and Bonneau, 1988) and size of the bulbo-urethral gland (Sellier et al., 2000). There-

fore, selection against AND may entail problems such as delayed sexual maturity in male 

boars as reported for females (Willeke et al., 1987; Sellier and Bonneau, 1988). One possibil-

ity to prevent negative effects on other sex hormones would be assessing single genes 

rather than conventional selection without molecular information. A genome-wide association 

study by Grindflek et al. (2011) showed breed-specific QTL associated with SKA, but most 

QTL affecting AND also showed associations with other sex steroids. Contrary to these find-

ings, Sellier and Bonneau (1988), Bergsma et al. (2007) and Merks et al. (2010) found no or 

even positive effects of selection against boar taint compounds on male fertility traits. The 

relationship between boar taint and fertility is not yet conclusive and requires further investi-

gation. Nevertheless, our results show that breeding against chemical compounds measured 
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by BPT is an effective and powerful way to reduce the occurrence of boar taint in finishing 

pigs. 

 

Figure 5. Annual monetary genetic gain in the production traits lean meat percentage (LMP), 
surface (SUR), feed conversion ratio (FCR), average daily gain measured on station 
(ADG_S), drip loss (DL) and percentage of intramuscular fat (IMF) for the reference scenario 
(hatched) and scenario II a) with economic weights of -2.74, -1.69 or -0.99 Euro per unit of 
log transformed androstenone, skatole and indole, respectively (dark grey) and for economic 
weights increased up to a proportion of 10% (light grey); and 20% (black) of the variance of 
the overall breeding goal. 

 

Conclusions 

On the basis of our results, breeding against boar taint by conducting BPT is an effective 

method for optimizing both the selection against the chemical compounds AND, SKA and 

IND (scenario II), as well as the selection against HNS of boar taint (scenario III) in terms of 

genetic gain per year and variable costs per selection candidate. By using economic weights 

of -2.74, -1.69 and -0.99 Euro per unit of log transformed AND, SKA and IND, the average 

amount in the PREMO® population could be reduced by 50% within 7, 6 or 8 years, respec-

tively; an average amount of 0.5 µg AND/g liquid fat could be reached within 4 years. Despite 

these advantages, the introduction of boar taint as a selection trait should be undertaken with 

caution owing to possible negative effects on average daily gain, drip loss and intramuscular 

fat percentage, as well as possible negative effects on fertility traits. 
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Prospects of genomic selection for horse breeding 

Sport horse breeding is characterized by long generation intervals because riding perform-

ance can be tested at the age of three years at earliest. As the development of the bones 

only stops at the age of about five years (Voswinkel, 2009), selection early in life is to some 

extent unsure. Nevertheless, a large proportion of male selection candidates is already culled 

after a first selection step at the age of six months, on the occasion of the inspection of foals, 

long before their riding performance can be assessed (von Lengerken and Schwark, 2002). 

Results presented in chapter two of this thesis show that selection decisions at this young 

age could be carried out more accurately by genotyping the foals prior to castration. This 

strategy could save male selection candidates for a later, more accurate, selection step ac-

cording to the target traits (riding performance). 

The same applies for the second selection step, the licensing of stallions at the age of 

two and a half years. Riding performance still cannot be measured at this occasion and con-

formation traits only show low to moderate correlations to riding performance (Koenen et al., 

1995). Thus, the prospects of GS for increasing the accuracy of selection at this selection 

step are promising. Recently, a new procedure for licensing has been implemented by the 

breeding association of Oldenburger horses. Stallions are presented only at the age of three 

but therefore already ridden. This practice will most probably increase the accuracy of selec-

tion in regard to riding performance. 

The possible size of a reference population for the implementation of GS in German 

sport horses largely depends on the willingness of the different breeding associations to co-

operate in this matter. Research will be needed to investigate to which extent the accuracy of 

GBVs can be increased by assembling horses of different breeding organizations in one lar-

ger reference population. This will depend on the actual genetic exchange between different 

sport horse populations. McCue et al. (2012) calculated genetic distances, inbreeding coeffi-

cients and LD for 14 horse breeds, thereof two sport horse breeds (Hanoverian and Swiss 

Warmblood). The Hanoverian was one of the breeds with the lowest inbreeding coefficients 

and the largest genetic distances between pairs of individuals within the breed, which ac-

cording to the authors has resulted from admixture. This admixture could be explained by an 

interchange of genetic material between different German or European sport horse popula-

tions (Koenen et al., 2004; Thorén Hellsten et al., 2009). For example, the Holsteiner is often 

used for increasing the jumping ability of the Hanoverian, and several stallions with excellent 

dressage performance from the Netherlands are approved for matings within the Hanoverian 

population. Therefore, genetic distances between sport horse breeds in Germany or even 

within Europe might be shorter than the ones between diverse breeds like Icelandic, Arabian 
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or Quarter Horse, estimated by McCue et al. (2012). Studies will be needed to confirm (or 

not) this hypothesis. 

In German sport horse breeding, there is still unused potential of conventional selec-

tion strategies, which could be exploited before introducing genomic breeding strategies. The 

stationary performance test for stallions was shown to have high correlations with competi-

tion results (Huizinga, 1991; Thorén Hellsten et al., 2006; Olsson et al., 2008). In Germany, 

its value was further increased by estimating and publishing a breeding value (SEBV) based 

on the results of the selection candidates and their male relatives (Figure 1). Unfortunately, 

the concept of breeding values is not well accepted by horse breeders. 

Like in other livestock species, breeding values for horses are estimated using a mul-

tiple-trait repeatability model (von Velsen-Zerweck, 1998). But the integrated breeding values 

(IEBVs) incorporating all performances from station tests and riding competitions of all rela-

tives of a horse are only published when achieving a reliability of 0.7 ( TIr = 0.84) and when 

they are based on performance data of at least five progeny (Figure 1). 

 

 

Figure 1. Availability of different breeding values in sport horse breeding (PEBV= pedigree-
based breeding value; SEBV= breeding value for stationary performance testing of stallions; 
IEBV= integrated breeding value). 

 

This is clearly too late, as stallions are at the age of eight to twelve years when their 

IEBVs are published and a large proportion of matings is performed by young stallions (Nie-

mann, 2009). The generation interval of the Hanoverian has been decreasing within the last 

40 years (Niemann, 2009), which would be desirable if the selection at an earlier age would 

be conducted with the same accuracy. But the opposite seems to be true, as breeders tend 
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to choose the winners of stallions’ licensing or stallions’ performance tests, as well as stal-

lions with good results in popular competitions like the Bundeschampionat. One reasonable 

strategy would be to publish the IEBVs instead of the SEBVs on the occasion of the stallions’ 

performance test to provide breeders earlier with extensive information on performances of 

all relatives of a stallion. 

Another possibility for conventionally increasing response to selection would be to in-

crease the selection intensity of the mare side. As more than 90% of mares are registered as 

breeding animals in the studbook (Sitzenstock, 2012) and the traits measured during the 

studbook registration show very low correlations to competition later in life (Koenen et al., 

1995), selection occurring during this event has negligible effects. But from a commercial 

perspective, it is an important event for breeding associations in order to get breeders at-

tached to their organization. Nevertheless, an effective selection strategy is also in the 

breeders’ interest because only the best horses achieve high market prices. However, a 

large proportion of horse breeders does not focus on profit, but take horse breeding as their 

hobby (Klunker and Barth, 2008). Horse breeding organizations therefore are forced to meet 

the diverging interests of their breeders, which often involves suboptimal selection strategies 

compared to other livestock breeding programs. 

Linear scoring of conformation traits has been proposed for optimizing the assess-

ment of conformation traits in German sport horse breeding (von Lengerken and Schwark, 

2002; Hartmann, 2006). In horse breeding, this system has been successfully practiced in 

the Netherlands and in Switzerland. The three main advantages of the linear scoring system 

are: (1) a more objective assessment of traits; (2) mating decisions by the breeder can be 

based on precise information on the characteristics of their mares; (3) a more precise as-

sessment of definite traits, which is a prerequisite in regard to GS. 

Thus, prior to implementation of GS, there is still a great potential of conventional 

tools to increase response to selection in sport horse breeding. The implementation of GS is 

currently discussed in the Netherlands for the selection against osteochondrosis, which will 

force German breeding organizations to react in order to stay competitive. 
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Prospects of genomic selection for pig breeding 

Because the economic importance of traits is known in pig breeding, assessing the efficiency 

of selection strategies is much easier than in horse breeding. It was shown in chapter three 

of this thesis that the size of a reference population has to be at least 1’000 animals, if GS is 

to be beneficial in pig breeding. However, building up a reference population consisting of 

1’000 progeny tested boars cannot be accomplished by most of the breeding organizations. 

Mostly, the genetic exchange between the regionally operating enterprises is rare even 

within the breeds. FST-values, as a measure of genetic differentiation (Wright, 1951) between 

a German and a Swiss Large White population were in the range of FST-values between two 

simulated populations, which were selected separately for about 50 years (Wiebelitz and 

Erbe, 2012). For this reason, the benefit of combining different populations of the same 

breed within a larger reference set, similar to the EuroGenomics project in Holstein cattle 

(Lund et al., 2010), may be small with the currently available 60k chip for pigs. Badke et al. 

(2012) used the 60k chip to estimate LD in four US pig breeds and reported relatively low 

persistence of phase across breeds, and suggested limited use of multi-breed panels for ge-

nomic selection. Nevertheless, increased persistence of phase across populations may be 

achieved with higher marker densities in the future. De Roos et al. (2008) suggested that to 

achieve persistence of phase across breeds such as Holstein-Friesian, Jersey and Angus 

would require ~300k markers. 

 Considering the current marker density available, a more promising approach seems 

to be including sows with records on one or two litters in the reference population. Even if the 

accuracy of their EBVs is lower, the additional information is based on the same genetic 

background and therefore is more valuable than information on distantly related animals with 

a higher accuracy of their EBVs. A further strategy to enlarge the size of the reference popu-

lation could be to perform imputation of dams, as proposed by Pimentel et al. (2013). This 

approach focuses on the imputation of genomic information of un-genotyped dams based on 

the information on already genotyped progeny, their sires and maternal grandsires. Further 

research would be needed to investigate the feasibility and potential benefit of these ap-

proaches. Because the productive life time of sows is much shorter than of cows, there may 

be not enough progeny available, which are already genotyped. 

A further aspect to be considered in genomic selection programs for pigs is the fact 

that selection within the purebred lines should increase performance on their crossbred de-

scendants. Dekkers (2007) proposed a selection strategy where breed-specific marker ef-

fects on crossbred performance are estimated using a reference population of crossbred 

end-products. These effects would then be used to predict GBVs for crossbred performance 

of purebred animals. The number of end-product animals in the crossbred population should 
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usually be larger than the number of boars used for matings within the nucleus, which would 

result in larger reference populations. As the aim of purebreeding in pigs is to improve the 

performance of crossbred end-products, results by Dekkers (2007) showed that including 

information on crossbred relatives for the estimation of GBVs increases the response to se-

lection in the nucleus with regard to crossbreeding performance. Ibáñez-Escriche et al. 

(2009) compared two models for prediction of merit of purebreds for performance of their 

crossbred descendants: one model assumed breed specific marker allele effects and the 

other assumed the same marker effects across breeds. They concluded that with high 

marker density estimation of breed specific marker effects may not be necessary.  

Despite small reference populations of ~300 animals, high accuracies in the range of 

0.60 to 0.75 were found for GBVs estimated for the trait piglets born alive (Gertz et al., 2013; 

Simianer et al., 2013). As similar findings were reported for laying hens (Erbe, personal 

communication), the reason for these high accuracies may be due to LD patterns diverging 

from those in cattle populations. LD in pigs was found to be higher than in American Holstein 

cattle, especially for higher marker distances (Uimari and Tapio, 2011; Badtke et al., 2012). 

GS is known to be especially useful when selecting on traits with a low heritability 

(Lande and Thompson, 1990; Goddard and Hayes, 2007; König and Swalve, 2009). This 

finding was again confirmed by the results presented in chapter three. For traits with a low 

heritability, an index including genomic information was advantageous over an index incorpo-

rating the normally available conventional performances (own and parent performances as 

well as full and half sib performances). However, for some applications, classical selection on 

an indicator trait may be more efficient than GS as was found in chapter four. The best strat-

egy for selection against HNS of boar taint, which has a low heritability, was selecting against 

the chemical compounds AND, SKA and IND. The correlated response in units of the trait 

was higher than the response to selection when selecting directly on HNS. This was due to 

the strong genetic correlations between the breeding goal trait and the indicator traits, as well 

as to the high heritability of the indicator traits. Additionally, the variable costs per selection 

candidate were much higher for GS than for biopsy-based performance testing. 

For the same population of pigs, the potential of GS was found to be higher in regard 

to production traits (Haberland et al., 2010). If assuming the introduction of GS for selection 

on production traits, the variable costs per selection candidate could be partly refunded by 

additional profit in the production traits. In this case, the consideration of genomic information 

on boar taint compounds in addition to BPT could be worthwhile and yet increase response 

to selection. As long as castration is still in practice, another possibility for refunding of geno-

typing costs would be an earlier castration of a higher proportion of selection candidates 

based on their GBVs. Due to the lower risk of being tainted, prices for castrates are higher 
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than for entire boars. Apportioning this additional gain over all selection candidates consid-

erably lowers the genotyping costs per animal. Wellmann (2013) proposed to genotype the 

selection candidates with a low-density SNP chip of only 384 SNP markers and in a second 

step to use imputing procedures (as proposed by Weigel et al., 2010 for dairy cattle) to in-

crease the number of markers up to 60’000 SNPs. The authors found that SNPs for the re-

duced panel should be chosen with respect to an equal spacing across the genome rather 

than to their estimated effects. More selection candidates could be genotyped due to the 

reduced genotyping costs. On the other hand, the imputation on the basis of such a small 

number of known SNPs involves an error rate of around 18%. When using this strategy, the 

selected boars used for matings have to be genotyped again with a high-density SNP chip 

(60K), to prevent an accumulation of errors (Wellmann, 2013). 

Generally, GS seems to have good prospects for pig breeding. However, its potential 

for a special application has to be assessed in detail by considering all the interacting pa-

rameters. The potential of GS largely depends on the characteristics of the respective breed-

ing program. A software like ZPlan+ offers an effective way to increase the understanding of 

interactions occurring for specific selection applications. 



5th chapter                                         General Discussion                                                       
100 

References 

Badke YM, Bates RO, Ernst CW, Schwab C and Steibel JP 2012. Estimation of linkage dise-

quilibrium in four US pig breeds. BMC Genomics 13, 24. 

Dekkers JCM 2007. Marker-assisted selection for commercial crossbred performance. J 

Anim Sci 85, 2104-2114. 

de Roos APW, Hayes BJ, Spelman RJ and Goddard ME 2008. Linkage disequilibrium and 

persistence of phase in Holstein-Friesian, Jersey and Angus Cattle. Genetics 179, 

1503-1512. 

Gertz M, Edel C, Dodenhoff J, Götz K-U and Thaller G. Genomische Selektion bei Mutterli-

nien – Projekt FROGS. In: 9th Schweineworkshop Uelzen, DGfZ-Schriftenreihe Heft 

62, Bonn, Germany. 

Haberland AM, Ytournel F, Luther H and Simianer H 2010. Evaluation of selection strategies 

including genomic breeding values in pigs. In: Proc. of 61th Annu. Mtg. Eur. Assoc. 

Anim. Prod., Heraklion, Greece, August 23-27, 2010. Wageningen Academic Pub-

lishers, The Netherlands. 

Huizinga HA, van der Werf JHJ, Korver S and van der Meij GJW 1991. Stationary perfor-

mance testing of stallions from the Dutch Warmblood riding horse population. 1. Es-

timated genetic parameters of scored traits and the genetic correlation with dressage 

and jumping competition from offspring of breeding stallions. Livest Prod Sci 27, 231-

244. 

Ibáñez-Escriche N, Fernando RL, Toosi A and Dekkers JCM 2009. Genomic selection of 

purebreds for crossbred performance. Genet Sel Evol 41, 12. 

Klunker M and Barth I 2008. Wünsche der Praxis an eine Zuchtorganisation – Ergebnis einer 

Befragung. In: 5th Pferdeworkshop Uelzen, 14-21, Uelzen, Germany. 

Koenen EPC, Aldridge LI and Philipsson J 2004. An overview of breeding objectives for 

Warmblood sport horses. Livest Prod Sci 88, 77-84. 

Koenen EPC, van Veldhuizen AE and Brascamp EW 1995. Genetic parameters of linear 

scored conformation traits and their relation to dressage and show-jumping perfor-

mance in the Dutch Warmblood Riding Horse population. Livest Prod Sci 43, 85-94. 

Lande R and Thompson R 1990. Efficiency of marker-assisted selection in the improvement 

of quantitative traits. Genetics 124, 743-756. 

Lund MS, de Roos APW, de Vries AG, Druet T, Ducrocq V, Fritz S, Guillaume F, 

Guldbrandtsen B, Liu Z, Reents R, Schrooten C, Seefried M and Su G 2010. Improv-

ing genomic prediction by EuroGenomics collaboration. Proceedings of the 9th World 

Congress on Genetics Applied to Livestock Production. 1-6 August 2010, Leipzig, 

Germany. 



5th chapter                                         General Discussion                                                       
101 

McCue ME, Bannasch DL, Petersen JL, Gurr J, Bailey E, Binns MM, Distl O, Guérin G, Ha-

segawa T, Hill EW, Leeb T, Lindgren G, Penedo MCT, Røed KH, Ryder OA, Swin-

burne JE, Tozaki T, Valberg SJ, Vaudin M, Lindblad-Toh K, Wade CM and Mickelson 

JR 2012. A high density SNP array for the domestic horse and extant perissodactyla: 

utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genet 

8, e1002451. doi:10.1371/journal.pgen.1002451. 

Niemann B 2009. Untersuchungen zu Veränderungen im Zuchtgeschehen und deren Aus-

wirkungen auf die Hannoveraner Pferdezucht. PhD, Goettingen Univ. 

Olsson E, Näsholm A, Strandberg E and Philipsson J 2008. Use of field records and compe-

tition results in genetic evaluation of station performance tested Swedish Warmblood 

stallions. Livest Sci 117, 287-297. 

Pimentel ECG, Wensch-Dorendorf M, König S, Swalve HH 2013. Enlarging a training set for 

genomic selection by imputation of un-genotyped animals in populations of varying 

genetic architecture. Under revision (Genet Sel Evol).  

Simianer H, Bergfelder S, Haberland AM, Große-Brinkhaus C, Ni G, Lind B and Tholen E 

2013. Genomische Selektion bei Mutterlinien – das Projekt pigGS. In: 9th Schweine-

workshop Uelzen, DGfZ-Schriftenreihe Heft 62, Bonn, Germany. 

Sitzenstock F 2012. Genetic progress and inbreeding rate in complex breeding programmes 

- applications to sport horses and laying hens. PhD thesis, Georg-August University, 

Goettingen, Germany. 

Thorén Hellsten E, Viklund Å, Koenen EPC, Ricard A, Bruns E and Philipsson J 2006. Re-

view of genetic parameters estimated at stallion and young horse performance tests 

and their correlations with later results in dressage and show-jumping competition. 

Livest Sci 103, 1-12. 

Thorén Hellsten E, Näsholm A, Jorjani H, Strandberg E and Philipsson J 2009. Influence of 

foreign stallions on the Swedish Warmblood breed and its genetic evaluation. Livest 

Sci 121, 207-214. 

Uimari P and Tapio M 2011. Extent of linkage disequilibrium and effective population size in 

Finnish Landrace and Finnish Yorkshire pig breeds. J Anim Sci 89, 609-614. 

von Lengerken G and Schwark H-J 2002. Exterieur und Leistungen in der Pferdezucht – Al-

leskönner oder Spezialisten. Arch Tierz Dummerstorf 45, 68-79. 

von Velsen-Zerweck A 1998. Integrierte Zuchtwertschätzung für Zuchtpferde. PhD thesis, 

Georg-August University, Goettingen, Germany. 

Voswinkel L 2009. Einfluss der Bewegungsaktivität auf Wachstums- und Ausdauerparameter 

beim Pferd. PhD thesis, University of Kiel, Germany. 



5th chapter                                         General Discussion                                                       
102 

Weigel KA, de los Campos G, Vazquez AI, Rosa GJM, Gianola D and Van Tassell CP 2010. 

Accuracy of direct genomic breeding values derived from imputed single nucleotide 

polymorphism genotypes in Jersey cattle. J Dairy Sci 93, 5423-5435. 

Wellmann R, Preuß S, Tholen E, Wimmers K and Bennewitz J 2013. Genomic selection in 

pig breeding using low density marker panels. Under revision. 

Wiebelitz J, Erbe M and Simianer H 2012. Genauigkeit der genomischen Zuchtwertschät-

zung in unterteilten Populationen. In: Gemeinschaftstagung der Deutschen Gesell-

schaft für Züchtungskunde, 12th to 13th September in Kiel, Germany. 

Wright S 1951. The genetical structure of populations. Ann Eugen 15, 323–354. 

 



Acknowledgments                                                      103 

I would like to thank: 

 

Prof. Dr. Simianer 

Prof. Dr. König 

Prof. Dr. Thaller 

 

The financiers of the projects FUGATO+brain and pigGS 

 

Mrs. Döring 

Florian 

Manfred 

Malena 

 

Eduardo 

My family 

 

God

 



Curriculum vitae                                                      104 

 

- geboren 1981 in Berlin 

- nach dem Abitur Ausbildung zum Pferdewirt im Haupt- und Landgestüt Marbach 

- Bachelorstudium der Pferdewissenschaften an der Veterinärmedizinischen Universi-

tät Wien  

(Thema der Abschlussarbeit bei Prof. Dr. J. Sölkner: „Die Ausnutzung der Notenskala 

bei der Exterieurbeurteilung: Ein Vergleich zwischen Bonitursystem und Linearer Be-

schreibung“) 

- Masterstudium der Nutztierwissenschaften an der Georg-August-Universität Göttin-

gen  

(Thema der Abschlussarbeit bei Prof. Dr. S. König: „Evaluierung von Selektionsstra-

tegien in der deutschen Reitpferdezucht“) 

- 2009-2013 wissenschaftliche Mitarbeit und Promotion im Department für Nutztierwis-

senschaften, Abteilung Tierzucht und Haustiergenetik (Prof. Dr. H. Simianer) 

 


	Table of contents

