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Chapter 1

Introduction

(a) Gravel (b) Spherical beads (c) Tetrahedra particles

Figure 1.1: Real granulate versus two experimental model granulates: (a) Gravel
sample: cm-sized stones obtained from Naturbad Grone (b) Spherical beads (man-
ufacturer MoSci), picture courtesy of Guido Schriever (c) Tetrahedra particles with
7 mm side length, the main subject of this study.

Granular materials are ubiquituous in nature, and utilized in many in-
dustrial procedures, for example in pharmaceutical production, or the han-
dling of bulk commodities like grains or coal. The constituents of granular
materials vary widely in their size and shape, ranging from fine sand with
grain sizes of less than 1 mm to meter-sized boulders, or from spherical pep-
per to polyhedral salt grains. A key property of static granulates is the
packing fraction1 Φ, which is the fraction of space occupied by grains within
a defined volume. In many cases, high packing fractions are desirable, for
example the economic transport of goods. In practice, empiric filling pro-
tocols are used [74]. However, optimization of these procedures requires a
deeper understanding of how packing works. This can only be achieved by
abstraction from the engineer’s perspective, and more closely examining in-
dividual parameters, such as the link between particle shape and observed
packing fractions. This question is not settled yet, although an abundance
of polyhedral shapes has been investigated computationally [17]. Thus, the
practical questions how much grain a barrel can hold, or how much coal fits

1Also termed volume fraction or packing density
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8 CHAPTER 1. INTRODUCTION

in a transport wagon are quite intricate. Moreover, the dynamic behaviour
of granulates is not understood completely, leading e.g. to the recurring
collapse of grain silos [33, 11].

There is still a mismatch between real granulates and modeling ap-
proaches, attributable to the “spherical cow” simplification:2 Fig. 1.1 illus-
trates the difference between a real gravel granulate, mono-sized spherical
glass beads as typical grains-in-the-lab and the tetrahedral particles used
in this work. In theoretical and numerical studies, particles are commonly
approximated by frictionless spheres [45, 58]. Only in the past decade, gran-
ulates composed of non-spherical particles have been systematically inves-
tigated through experiments, like the packing structure of ellipsoidal M&M
candies [18, 19] or the mechanical response of various 3D-printed particle
assemblies[4]. Considering polyhedral particles, experiments on tetrahedral
dice have been limited to the analysis of packing fractions [6, 96], or the
packing structure of a single sample [34].

The following sections present two different perspective on granulates:
The first is the mechanical perspective, which tackles questions of mechani-
cal stability in the context of the Jamming paradigm (Sec. 1.1). The second
interprets a “grain” as a ideal geometric object and puts it in the context
of mathematical packing problems (Sec. 1.3). In particular, the regular
tetrahedron has interesting features both from the mechanical and the ge-
ometrical viewpoint. In Sec. 1.2, the analysis of local packing fractions is
motivated briefly by the statistical mechanics approach to granular matter.

1.1 Mechanical stability of granulates

Grains are essentially non-deformable particles without cohesion, which can
interact and transmit forces through mechanical contacts [32]. A pile of
sand appears like a solid; it is mechanically stable in the presence of gravity,
because the thermal energy is much smaller than the energy needed to lift a
particle.3 When external agitation like tapping or vibration is applied, the
resting grains are temporarily fluidized and settle to a different arrangement.

The mechanical stability of granulates is mainly determined by the aver-
age contact number Z, which counts the mechanically contacting neighbors
per particle. First contact numbers of sphere packings were determined more

2The joke refers to the abstracted, simplified assumptions made in theoretical models
and goes like this: The agricultural ministry wants to increase milk production and asks
the best mathematicians and physicists of the country to come up with a practical solution.
After a few days, they proudly present it: “We have found a solution, but it works only
for a spherical cow in a vacuum.”

3At room temperature of T = 300 K, compare the thermal energy of Eth = kBT ≈
10−21 J to the potential energy Epot needed to lift a grain with mass 1.3 · 10−6 kg
(spherical glass bead with diameter 1 mm and density 2500 kg/m3), by only 0.1 mm:
Epot = mgh ≈ 10−9 JEth.
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than 50 years ago in the pioneering work of Bernal [9]. A packing of steel
balls in a container was flushed with paint, then drained, with the paint
remaining and allowed to dry at the contacting spots. After disassembling
the packing, the number of paint spots per particle was counted manually,
and ascribed to the contact numbers of Z = 5.5 and Z = 6.5 are in line
with current tomographic experiments [3]. More recent techniques involve
local force measurements [46], which allow the non-intrusive distinction of
real contacts to close neighbors. There is a subtle difference in these anal-
ysis techniques: Tomographic analysis, as employed in this work, does not
provide contact forces, but instead the geometric contact number, which is
motivated in Sec. 3.2 and evaluated in Sec. 4.2.

Experiments show that the internal distribution of contact forces in a
granular pile varies widely, depending on the way the pile was prepared [5].
This feature is commonly observed in experimentally prepared granulates,
and is rooted in their dissipative property: When grains are poured into
a container, they lose their energy quickly by collisions, and settle due to
gravity and inter-particle friction, before exploring all mechanically possible
configurations. Even in the simple case of a ball settling into a groove, the
distribution of normal and tangential forces at the contacts is indeterminate
and depends on the movements just prior to settling [28]. The prepara-
tion protocol (or history) is therefore an important control parameter in
granular experiments. In this work, the influence of different experimental
preparation protocols (Sec. 2.2) on tetrahedra packings is analysed explicitly
in Sec. 4.1.

The minimum number of contacts Z, which renders a granulate me-
chanically stable, can be determined via constraint counting: By the iso-
static conjecture (ascribed to Maxwell), the number of contacts must be
equal to twice the degrees of freedom (DOF) per particle. Frictionless
spheres with 3 translational DOF therefore have a isostatic contact num-
ber of ZJ = Ziso = 2 · 3 = 6. Generally, a packing is termed hyperstatic, if
Z > Ziso and hypostatic if Z < Ziso.

1.1.1 Jamming of spheres

Frictionless case

The Jamming paradigm provides a unifying framework for the static and dy-
namic behaviour of disordered systems, including glasses, emulsions, foams
and granular matter. All these particulate systems can undergo a transi-
tion from a unjammed or fluid-like regime with lower density, to a jammed,
solid-like state with higher density. This is termed the Jamming transition
or J ; properties like the packing fraction Φ at Jamming are denoted by the
subscript ΦJ . In the model of frictionless sphere packings, the Jamming
transition occurs at the well-defined density ΦJ = 0.639± 0.001 [58], which
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coincides with the so-called random close packing limit (RCP). Recent re-
sults suggest that this limit is actually composed of multiple transitions,
pushing the RCP limit to Φ = 0.65[7]. Above RCP, packings start to crys-
tallize locally in fcc (face-centered-cubic) patches, which finally lead to the
maximum packing fraction of Φ ≈ 0.74.

Numerical simulations have revealed that mechanical properties (e.g.
bulk modulus or elastic energy) scale with the density difference to the
Jamming point as ∼ (Φ − ΦJ)β. Here, β depends on the type of employed
inter-particle potential, and ranges from 2 to 5/2 [58]. In particular, for the
so-called “excess” contact number Z −ZJ , where is the ZJ contact number
at point J , a universal square-root dependence in Φ− Φ− J is found:

Z − ZJ ∼ (Φ− ΦJ)1/2 (1.1)

Here, the excess contacts and the higher density Φ > ΦJ are reached by
compression of the particles.

Note that Z is not necessarily positively correlated with Φ: For example,
Jiao et. al.[36] numerically constructed packings of frictionless spheres with
densities as low as 0.49 (“Tunneled Crystals”). Particularly, for a subset
of packings between Φ = 0.602 and Φ = 0.663, the contact number even
decreases from 6.3 to 6.1.

A note of caution here regarding the “soft” potentials employed in sim-
ulation: Real granulates are composed of hard particles, which can not
interpenetrate each other, but deform slightly under compression. For ease
of computation, model particles are usually treated as non-deformable, but
“soft”, which means that they can overlap each other, and follow a repulsive
contact law, e.g. an elastic Hertzian law [58].

Frictional case

When friction is introduced, isostatic contact numbers can take a range of
values from Ziso = 4 (for infinite friction) to Ziso = 6 for the frictionless case.
In practice, the observed contact number at Jamming depends on the prepa-
ration history and the particles’ friction coefficient µ, so that isostaticity and
Jamming do not coincide anymore [77, 29]. With friction, less contacts are
needed for mechanical stability, because each point contact imposes three
constraints: one normal force (as in the frictionless case), and two addi-
tional tangential forces due to friction. Numerics and experiments [8, 3, 77]
confirm that contact numbers of frictional spheres are observed within these
bounds. Accordingly, the range of mechanically stable packings extends to
looser packings (i.e. lower range of Φ) in frictional sphere packings: The
lower bound of Φ, termed random loose packing (RLP), is presumably at
ΦRLP = 0.550± 0.001, as investigated by fluidized bed experiments [35].

A comprehensive survey on numerical studies on Jamming of soft par-
ticles, which covers also features of frictional and non-spherical particles, is
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given by M. van Hecke [90].

1.1.2 Jamming of tetrahedra

Figure 1.2: Scaling of contact number Z with distance to Jamming by the excess
density ∆φ = Φ− ΦJ . Jamming thresholds of Platonic bodies are obtained by
extrapolation of square-root fits (Eq. 1.1) to ∆φ = 0. Taken from Ref. [80]

Non-spherical particles like tetrahedra [34, 52], reach higher packing den-
sities than spheres, both in disordered and ordered configurations. However,
the contact number is insufficient to characterize mechanical stability or dis-
tance to isostaticity as in Eq. 1.1. Instead, the different contact geometries
(face-face, edge-face, vertex-face or edge-edge configurations) need to be con-
sidered: they are associated with a different number of forces which affect
the total number of mechanical constraints. The solution to this problem
is presented in Sec. 3.3: The contact number Z is replaced by a general-
ized constraint number C, which accounts for the different contact geome-
tries. In this way, one can still define a meaningful distance to isostaticity.
Sec. 4.2.3 presents and discusses the experimentally observed relationship
between constraints and packing fraction in the context of Jamming.

Smith et al. showed in numerical simulation of soft frictionless Platonic
solids, that the contact number Z still follows a square-root scaling when
Φ exceeds the Jamming threshold (Fig. 1.2). There is however a subtlety
involved in these simulations: Above the jamming point, particles are com-
pressed, and the soft potential allows for substantial overlaps, hence the
packing fractions and contact numbers are likely to differ from experimental
results. Additionally, when approaching the Jamming threshold from above,
stable packings are not found anymore due to numerical instabilities, which
explains the need for an extrapolation to ΦJ and ZJ in Fig. 1.2.

Again, the monotonic increase of Z with Φ is not set in stone; a coun-



12 CHAPTER 1. INTRODUCTION

terexample is the lattice packing of tetrahedra, which has the lowest density
of Φ ≈ .367, but the highest contact number of Z = 14. Nevertheless, the
lattice packing is supposedly unstable in practice, because only point con-
tacts are present. Ref. [15] contains a sketch of the actual lattice packing,
Fig. 1.3b illustrates only a regular arrangement of tetrahedra.

1.2 Statistical mechanics of granular matter

A more fundamental question is: Can we find a thermodynamic description
of granular matter in the framework of statistical mechanics [14]? Such a
theory would permit to describe mechanically stable granulates by only a
few parameters. Results from numerical simulation support this approach
[47], but the validity of such a statistical theory is still under debate.

1.2.1 Voronoi volumes

In Edwards’ formulation [21] of the statistical theory, the particles’ “effec-
tive volume” plays a crucial role.4 The effective volume is the region of
space, which is closer to a given particle than to any other, and hence is
uniquely attributed to this particle. The Voronoi decomposition achieves
this by tesselating space into Voronoi regions (cells), and can be general-
ized for arbitrary particle shapes as the “navigation map” or “set Voronoi
diagram” [71]. The technical implementation is outlined in Sec. 3.4, and all
results considering local packing fractions are based on the Voronoi volumes
(Sec. 4.4).

1.3 Packing problems

We all are familiar with packing problems: cramming bought groceries into
a bag, packing suitcases tightly into a car trunk, or the economically rele-
vant question of maximizing transportation of bulk goods in containers. In
all granular applications, the particle shape and the container (boundary
effects) play a role for efficient storage.

1.3.1 Tetrahedral packaging

In the 1940s, when milk was sold in heavy glass bottles, the Swedish busi-
nessman Ruben Rausing invented and patented a tetrahedron shaped carton
for packaging liquids under the name “Tetrapak”®. The company Tetra-
pak AB was established in 1951, but the commercial break-through was
only reached with the “Tetra Brik” (1963), which is the commonly known

4Edwards’ chose this wording to differentiate from the “free volume” which had been
commonly used in liquid and glass theory.
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milk package today (a parallelepiped). The original tetrahedral shape is
aestethically appealing and gives rise to interesting packing structures, as
advertising pictures from the company show (Fig. 1.3).

(a) (b) (c)

Figure 1.3: Tetrapaks® in different configurations. (a) Bust of Plato, and manual
demonstration of the production process by sealing a paper tube in alternatingly
orthogonal directions (b) Production line, resembling a lattice packing (c) Storage
in hexagonal baskets. All pictures by the company under creative commons licence
[84].

1.3.2 From Hilbert to the New York Times: Pursuing the
perfect packing

The relationship between particle shape and optimal packing density is part
of Hilbert’s famous list of problems: In 1900, the mathematician David
Hilbert held a famous speech in Paris, where he listed 23 unsolved mathemat-
ical problems which he considered the most important for future progress.
Among others, the 18th problem concerns the packing of identical objects:

Hilbert’s 18th problem, Paris, 1900
... Ich weise auf die hiermit im Zusammenhang stehende, für
die Zahlentheorie wichtige und vielleicht auch der Physik und
Chemie einmal Nutzen bringende Frage hin, wie man unendlich
viele Körper von der gleichen vorgeschriebenen Gestalt, etwa
Kugeln mit gegebenem Radius oder reguläre Tetraeder mit gegebener
Kante (bez. in vorgeschriebener Stellung) im Raume am dicht-
esten einbetten, d.h. so lagern kann, daß das Verhältnis des
erfüllten Raumes zum nichterfüllten Raume möglichst groß ausfällt.
[30]

In short: What is the closest packing of identical objects in space –
explicitly mentioning spheres or regular tetrahedra?5 More than 100 years

5In a sidenote, Hilbert also raises the question of the densest lattice packing of tetra-
hedra, an arrangement where all tetrahedra have the same orientation.
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later, K. Chang from the New York Times used a slighty more popular
wording:

”Scientists Take On Tetrahedral Packing Puzzle”
NYT January 4, 2010

Now, in the past year, a flurry of academic activity is suddenly
zooming in on an answer to a problem akin to wondering how
many people can fit into a Volkswagen Beetle or a phone booth.
Except here mathematicians have been thinking not about the
packing of people, but of geometric solids known as tetrahedrons.

For spheres, the densest packing resembles the stacked arrangement
of oranges at a grocery store, corresponding to the face-centered-cubic or
hexagonal-close-packing with 0.740 . . . volume fraction. Kepler conjectured
this in 1611 to be densest packing, but only in 1998, Hales succeeded with a
computer-assisted proof [27]. The puzzle of perfect packings of tetrahedra is
not yet settled conclusively, and its history has been full of wrong assump-
tions. In ancient times, Aristotle mistakenly assumed that tetrahedra would
pack perfectly, i.e. there existed a space-filling structure, a misconception
which persists until today.

(a) Dimer (b) Pentamer (c) Nonamer (d) Icosahedron

Figure 1.4: Suggested building blocks of dense tetrahedra packings (models stuck
together with putty). (a) Dimer: Pair of tetrahedra aligned face-face (b) Pen-
tamer, also termed “wagon-wheel”[86, 85] or “pentagonal dipyramid”[26]: 5 tetra-
hedra arranged around a common edge (c) Nonamer (9 tetrahedra), composed of
two orthogonally interpenetrating pentamers [13] (d) Icosahedral structure with 20
tetrahedra [15]

The manual construction of clusters with putty is a playful yet effective
starting point to the packing problem of tetrahedra. Fig. 1.4 illustrates
different possible “building blocks” for dense packings which are referred
to later. Note that these clusters are not even locally space-filling: The
pentamer is not a closed ring, but has a gap of 7.36◦ between the last
and the first tetrahedron, and the icosahedral cluster has a gap of 1.54
steradians. The putty distributes these gaps between the particles. Only
a dimer configuration (two tetrahedra aligned face-to-face) is locally space-
filling, because it occupies 100% of its convex hull.
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Figure 1.5: The quest for the densest packing of tetrahedra

The pursuit for the perfect packing of tetrahedra was picked up again
in 2006 by Conway and Torquato, who presented a packing structure filling
nearly 72% of space [15], based on an icosahedral arrangement as in Fig. 1.4d.
Fig. 1.5 illustrates that this was the starting shot for a 4-year long quest
for the optimal packing, with accelerating pace until the presumable upper
bound in 2010. They concluded with a bold prediction:

Conway and Torquato:
“However, it appears unlikely that the density of the optimal
packing of regular tetrahedra will exceed the optimal density
of 74.048... for congruent spheres. (...) The regular tetrahedron
might even be the convex body having the smallest possible pack-
ing density.”[15]

This conjecture was soon disproven by E. Chen[13], who analytically
constructed a dense packing of regular tetrahedra with φ ≈ .7786, composed
of a nonamer unit cell as in Fig. 1.4c. Later, Torquato and Jiao performed
Monte Carlo (MC) simulations, which lead to a packing fraction of φ =
.782 [86]; a different preparation procedure yielded even φ = .8226 [85].
They termed these packings “disordered wagon-wheels”, a configuration of
percolated pentamers or “wagon-wheels” (see Fig. 1.4b).

This was soon surpassed by Haji-Akbari et al., who observed a quasi-
crystalline arrangement in Monte-Carlo simulations, and by compressing
an approximant of that structure, they found a density of Φ = 0.8503.
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Kallus[39] finally proposed a family of double-dimer configurations (see up-
per right corner in Fig. 1.5), composed of 4 tetrahedra in a unit cell. Small
changes in these configurations led to a rapid succession towards the sup-
posed upper limit: From Φ = .8547[39] to Φ = .8555[87] and finally to
Φmax = .8563 [12]. Maybe this discovery paves the way for a revival of the
original Tetrapak®?

In short, a rich variety of dense tetrahedra packings, ranging from the
double-dimer up to the quasi-crystal comprising 82 particles in a unit cell,
have been revealed by analytical construction or numerical simulation. But
these approaches do not account for mechanical forces, leaving a crucial
question open:

Which packing fractions and geometric structures are
accessible and mechanically stable in experiments?

The answer is not trivial – for example, one might intuitively suspect that
the “simple” dimer packing is favoured over the “complicated” quasicrystal.
However, the dimer structure is thermodynamically unstable at all practical
pressures, as a proposed phase diagram of hard tetrahedra reveals (isochoric
and isobaric MC simulations by Haji-Akbari et al.[25]). By construction, all
of these packings have repeating unit cells and are therefore highly ordered.
In the present experiments, different metrics for characterization of the dis-
ordered packing structure are employed (Sec. 4.3). In analogy to a local
crystallization in sphere packings above the RCP limit, tetrahedra packings
might exhibit ordered patches of (yet) unknown structure. This leads to
another question of practical relevance:

Which metrics characterize order in disordered tetrahe-
dra packings?

1.3.3 Characterization of order

Bond-order parameters have been successfully employed to characterize ori-
entational order in sphere packings [3]. The notion of “orientational” order
refers here to the angular distribution of vectors connecting a sphere to its
surrounding neighbors. Application of this order metric to non-spherical
particle packings is restricted by two limitations: First, the measured pa-
rameters (particularly Q4 for four-fold and Q6 for six-fold symmetries) are
always characterized relative to signatures from known crystal structures,
like the hcp (hexagonal close packing) arrangement. As we have seen, tetra-
hedra do not possess a single crystal structure, but a variety of dense pack-
ings exists instead. The second limitation concerns the shape difference:
The bond-order parameters are computed only from the centroid positions
of spheres, which are invariant to rigid-body rotations. In contrast, the
orientational alignment is a key feature of non-spherical particles.
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Therefore, the translational and orientational order correlations, which
successfully characterize the maximum random jammed packing of spheres
[88], are of limited use for jammed tetrahedra packings. Significant correla-
tions extending further than the nearest neighbor are only found for highly
ordered structures like the wagon-wheels at Φ = .782[86] or the quasicrystal
at Φ > .832[26], as a recent comparison study points out[76]. This effect is
probably ascribed to the radial averaging in g(r) and F (r), which does not
account for the angular neighbor arrangements of non-spherical particles.

A systematic study of jammed packings of platonic bodies revealed that
increasing sphericity leads to an increase of translational order, but a de-
crease of orientational order [37]. The g(r) of an icosahedron packing re-
sembles a dense, disordered sphere packing (Ψ = 1). On the other hand,
correlations in C(r) (resp. F (r)) extend furthest for tetrahedra, whereas
orientational correlations of the icosahedron decay immediately. This trend
is expected: Approaching the sphere limit with an infinite number of facets,
C(r) becomes meaningless. The relation between sphericity and packing
fraction is illustrated in Tab. 1.3.

1.3.4 Perfect vs. physical tetrahedra

Only few experiments have been done on packings of tetrahedral particles
up to now: Baker and Kudrolli[6] performed fluidized bed experiments on
ceramic tetrahedra with a friction coefficient µ ≈ 0.480, resulting in a low-
est packing fraction of Φmin = 0.48 ± 0.026. They also found that plastic
tetrahedra with lower friction (µ ≈ .375) reached Φmin = 0.51 ± 0.01, and
on the upper end of the range, Φ = 0.64 was reported.. For packings of
tetrahedral dice, densities up to φ = 0.73 were reached (single dataset, to-
mographically measured [34]), and supported recently by Zhao et al. [96]
with φ = 0.715. Both authors claim even higher values of φ = 0.76± 0.02
resp. φ = 0.749± 0.004, if the densities are extrapolated to infinitely large
containers. The physical tetrahedra are not ideal geometric particles, re-
garding roundness of edges and corners, flatness of faces and frictional prop-
erties. How comparable are the packings of physical tetrahedra to the ones
constructed by numerics or analytically? One possibility is to use more re-
alistic models of the particle shapes in simulations. In table 1.1, studies on
packings of “imperfect”, physical tetrahedra models are compiled.

This involves the construction of the densest unit cell of tetrahedral
“puffs”[38], Monte Carlo simulations of truncated tetrahedra[17], and DEM
simulations of spherotetrahedra[96, 62, 61]. The different particle shapes
and the obtained range of densities are illustrated in Tab. 1.1. In order to
draw meaningful analogies between numerics and experiment – apart from
the geometric shape – the technical details of the simulations (ensemble,

6The large error is due to the determination of Φ via the packing height.
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Shape Description,
Reference

Parameter,
Range

Obtained Φ

Tetrahedral puff,
numerical search[38]

Asphericity
1 (sphere)
3 (ideal tet.)

[0.74 . . . 0.856]

Spherotetrahedron,
DEM simulation[61, 96]

Sharpness
0 (sphere)
∞ (ideal tet.)

[0.59 . . . 0.72]

Truncated tetrahedron,
MC simulation[17]

Truncation
0 (ideal tet.)
1 (octahedron).

[0.856 . . . 1.0]

Table 1.1: Overview of “physical” tetrahedra models used in numerical simulation.
Packing fractions vary along the specific shape parameter. Tetrahedral puffs: Lower
bound of Φ corresponds to the crystalline sphere packing, upper limit concides with
the dense dimer packing[12]; Spherotetrahedra: Lower range of φ due to friction,
which is an additional control parameter; Truncated tetrahedra: Truncation of 1/3
allows space-filling structure (β-tin crystal[17])

potential, pressure...) are crucial. The tetrahedral puffs model nicely the
transition from a sphere(φmax = 0.74) to a tetrahedron (φmax = 0.856)[38].
The effect of decreasing packing fraction when the sphericity increases has
been confirmed recently [96]. However, the packings of puffs are constructed
numerically without considering mechanical stability, similarly to the fric-
tionless truncated tetrahedra from MC simulations [17]. The DEM sim-
ulations of spherotetrahedra [61] with appropriately defined sharpness pa-
rameter resemble the experiments (both with dice and our particles) best:
They explicitly incorporate friction, gravity and an experimentally moti-
vated preparation technique (pouring+shaking). In Sec. 4.5, packing frac-
tions and contact numbers of the DEM model of spherotetrahedra are com-
pared to our experiments.

1.4 Geometry of platonic bodies

This section summarizes the relevant geometric properties of the regular
tetrahedron and the octahedron, the objects which are investigated in this
study. These polyhedra are two of the five platonic bodies, comprising
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tetrahedron (4 faces), cube (6 faces), octahedron (8), dodecahedron (12) and
icosahedron (20). They share the follwing properties: All platonic solids are
composed of congruent regular polygons, and their vertices lie on a sphere,
which is the circumsphere with radius Rout (= centroid-vertex distance).
Accordingly, the insphere with radius Rin touches all faces, and corresponds
to the minimal centroid-face distance. Fig. 1.6 illustrates the geometry of
the regular tetrahedron with inradius and circumradius. Selected geometric
properties of tetrahedron and octahedron are shown in Table 1.2, where the
parameter a denotes the side length (edge length).

Particle Inradius Ri Circumradius Ro Volume

Tetrahedron 1
2
√

6
a 3

2
√

6
a = 3Ri Vtet =

√
2

12 a
3

Octahedron 1√
6
a a√

2
=
√

3Ri Voct = 2
3a

3

Table 1.2: Selected geometric properties of regular tetrahedron and octahedron

Figure 1.6: Regular tetrahedron with circumsphere of radius Ro = 3Ri (blue arrow)
and inscribed sphere of radius Ri (green arrow).

A general distinction criterion between spheres and non-spherical parti-
cles is the sphericity Ψ, which is derived from the ratio of sphere volume
Vs = 4

3πr
3 to surface As = 4πr2. For a arbitrary object with surface A and

volume V , sphericity is computed as:

Ψ =
π

1
3 (6V )

2
3

A
. (1.2)

The sphericities of tetrahedron, octahedron and icosahedron compared
to the sphere(Ψ = 1), with their maximum packing density are listed in
Tab. 1.3. Ulam’s conjecture7 states that the sphere should have the lowest

7Appeared as a footnote in Martin Gardner’s “Colossal Book of Mathematics” (Norton,
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Particle Sphericity Ψ ΦJ Φmax

Tetrahedra 0.67 0.61∗ 0.856†

Octahedra 0.85 0.68∗ 0.947‡

Icosahedron 0.94 0.73∗ 0.836‡

Sphere 1.0 0.639◦ 0.740

Table 1.3: Overview of selected platonic bodies with their asphericity, Jamming
threshold, and densest known geometric packings. ∗ from Ref. [80], † from Ref. [12],
‡ from Ref. [85], ◦ from Ref. [58]

packing density of all convex bodies, which holds also for the platonic bodies.
However, maximum packing density Φmax does not decrease monotonely
with sphericity, as Tab. 1.3 points out.

2007)



Chapter 2

Experimental setup

The setup description covers first the different techniques for preparation
of tetrahedra packings, and then outlines the stages of image acquistion by
X-ray tomography.

2.1 Particle characterization

The tetrahedra particles with a side length of 7.0 mm are produced by in-
jection moulding of polypropylene by Neu & Biermann GmbH, and have
a density of 0.96 g/cm3. The close-up photograph in Fig. 2.1b shows that
the particles’ surface is not smooth, and therefore substantial friction is ex-
pected. The friction coefficient (inter-particle friction) is determined by a
tilting plane setup: A set of tetrahedra is fixed with one corner onto the
tilting plane with putty, the others are placed face-down on top. From the
distribution of tilting angles γ, when the particles slide past each other, the
friction coefficient µ = tan γ = 0.87± 0.03 is computed.

The deviations from the ideal regular tetrahedron are characterized by
inspecting cuts of mold imprints in silicone rubber (Smooth-On) with a op-
tical microscope1. The typical corner and edge radii of the polypropylene
particles was measured to be in the range of 150± 50µm, which is approx-
imately 2 − 3% of the side length. Fig. 2.1a depicts a comparison to the
tetrahedral dice used in the study by Jaoshvili et al. [34]. These dice have
a side length of 20 mm and a corner radius of 1.5 mm, which amounts to a
relative curvature of 7− 8%.

2.2 Packing preparation – shaken, not stirred

A commonly used method to explore the configurational space of granulates
is a constant input of energy, which brings the granulate from the static

1This imprinting method is also used to create high-quality replicas of fossiles.

21
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(a) (b)

Figure 2.1: Photographs of tetrahedral particles. (a) Front: our particles, back:
tetrahedral dice [34] with side length 20 mm. (b) Close-up photograph of tetrahedral
particle (side length 7 mm) used in this study

to fluidized state. This can be achieved by mechanical vibration [68, 66]
or fluidization by water [73, 35]. The present shaker setup applies vertical
pulses or continuous vibration to a cylinder which holds the granulate sam-
ple. Fig. 2.2 shows a scheme of the complete setup, comprising a control unit
(PC, signal generator and amplifier), the shaker, and measurement devices
for acceleration and height of the packing. The different parts are shortly
explained in the following.

2.2.1 Electromagnetic vibration exciter (Shaker)

The shaker model (LDS V555) is a electromagnetic exciter with the same
working principle as a loudspeaker: According to Maxwell’s equations, a
varying current İ induces a magnetic flux B. Thus, a sinusoidally changing
input signal I(t) induces a periodic variation of B, which is employed to
transduce a magnetic force to the exciter table, where the vibration sample
is mounted. Fig. 2.3 shows a sketch of the internal design.

The control parameters are amplitude and frequency, and the signal
output can be chosen as continuous vibration or as a train of pulses. The
transduced acceleration is measured at the exciter table (3-axis acceleration
sensor: Kistler 8763B) and reported in terms of the dimensionless shaking
intensity Γ = Aω2/g with peak displacement A[m], angular frequency ω =
2πf , gravitational acceleration g = 9.81 ms−2 and frequency f [ Hz]. The
above expression for the shaking intensity Γ is derived by a simple harmonic
ansatz :
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Translation stage

Laser distance sensor

Shaker

Signal 
generator

Amplifier

PC

Acceleration sensor

Oscilloscope

Acceleration [m/s²]

Labjack USB
interface

height [mm]

Figure 2.2: Experimental setup for shaker control and measurement: The signal
generator is controlled via PC, and passes its signal through the amplifier to the
shaker. Acceleration is measured directly at the exciter table and monitored on the
osczilloscope. When the sample is at rest (before/after shaking), the laser distance
sensor performs a line scan of the surface, driven by the translation stage.

h(t) = A sin(ωt) ⇒ h′′(t) = −ω2A sin(ωt) .

The peak acceleration apeak = max{h′′(t)}t is reached if sin(ωt) = 1.
After normalization by g, the above expression follows:

Γ :=
|apeak|
g

=
Aω2

g
. (2.1)

2.2.2 Laser height sensor

The laser distance sensor (ILD1302 by MicroEpsilon, Ortenburg) works by
the triangulation principle: The device projects a laser spot onto the object
surface and records the diffuse reflection simultaneously with a CCD line. If
the object distance varies, the projection of the spot on the CCD is shifted,
which allows computation of the distance by trigonometric relationships.
The quality of the obtained data is influenced by the surface properties of
the object. For example, specular reflections on metallic, shiny surfaces
hamper the correct measurement; the ideal surface is flat, white, opaque,
and diffusely reflecting. If the laser spot is occluded due to the presence
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Figure 2.3: Working principle of a electromagnetic exciter (Brüel & Kjaer hand-
book): The transduced force F on the exciter table is proportional to the magnetic
flux B, the coil length L and the input current I.

of large height differences (trenches or protusions), no distance data can be
acquired. The present model has a distance range of 100 − 200 mm with a
resolution of 50µm. Exemplary height profiles of the initial sample and after
appyling 1600 taps are depicted in Fig. 2.4a. The standard deviation of the
height profile decreases from the loose pile (5.1 mm2) to the compactified
surface (2.6 mm2). When the absolut distance to the container bottom and
the volume occupied by grain particles are known, the height measurement
is a useful estimator of the packing fraction. Fig. 2.4b shows how the ap-
proximate Φheight from the height measurement is calibrated with accurate
packing fractions Φtomo from tomographic imaging.
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Figure 2.4: (a) Surface profile of packing as recorded by laser distance sensor for
loose packing (red) and after applying 1600 taps at Γ = 2. Dotted lines are average
heights used for calibration. (b) Calibration of packing fraction measurement: The
accurate Φtomo from tomographic reconstruction is proportional to the approxi-
mate Φheight from height measurement (red line: linear fit, blue dotted line: ideal
behaviour of Φtomo = Φheight for comparison)
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2.2.3 Preparation protocols

Four different preparation protocols are used to explore a wide range of pack-
ing fractions and investigate a possible protocol dependency of the packing
structure. Fig. 2.5 gives an overview of the different protocols, namely Loose,
TAP, RAMP and VIB and the corresponding range of Φ.

Preparation Description Accessible packing 
fractions

Loose Gentle deposition of particles into a hollow 
cylinder, which is slowly removed upwards 

0.47

TAP (default) Sine pulses at 2G acceleration, 1...100K taps 0.47-0.60

TAP (high Γ) Strong taps (Γ=3...7), 10K taps applied 0.54-0.59

RAMP (Γ=5) High end of RAMP protocol at 5.0 G 0.55-0.57

RAMP (Γ=025) Low end of RAMP protocol at 0.25 G 0.59-0.62

VIB Filling in particles under continuous vibration 0.60-0.62

Figure 2.5: Overview of all protocols for preparation of tetrahedra packings, with
the accessible range of packing fractions.

2.2.4 Initial (loose) preparation

The aim of this preparation technique is to find the mechanically stable pack-
ing with the lowest density, in analogy to the random loose packing density of
spheres. A loose packing is prepared by inserting a hollow cardboard cylinder
into the container, and filling in the particles through a funnel (Fig. 2.6a).
The cardboard cylinder is then slowly lifted, to allow a gentle relaxation of
the particles (Fig. 2.6b). This procedure creates loose tetrahedra packings
(Fig. 2.6c), with reproducible packing fractions of Φ = 0.472± 0.003, which
are prone to accidental rearrangements, and thus must be handled with care.

2.2.5 Compaction by tapping (TAP)

In the spirit of tapping experiments [55, 66], the protocol TAP is defined by
a train of separated sine pulses with a duration of 50 ms and a repetition
rate of 3 Hz. The pulse duration is chosen sufficiently long to minimize
the distortion between input signal and transduced mechanical excitation
(Fig. 2.7). On the other hand, the pulse length is limited by the mechani-
cal limit of the shaker elongation: A longer pulse has a lower frequency f ,
hence a desired intensity Γ can only be achieved by increasing the ampli-
tude, according to Eq. 2.1. Higher repetition rates would decrease overall
acquistion time, but do not allow the packing to come to rest between the
pulses, leading to unwanted effects such as surface waves.
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(a) (b) (c)

Figure 2.6: Preparation of loose tetrahedra packings

The input signal and the corresponding accelerometer signal are com-
pared in Fig. 2.7. The movement of the exciter table does not follow the
input signal immediately, but heads first towards the opposite direction and
responds to the pulse with a phase delay of approx. π/2. After the tap, the
table recovers its equilibrium position within 20-30 ms. These differences
between signal and mechanical excitation are attributed to the inertia and
the non-smooth input signal (discontinouity of the first derivative). If the
intensity is sufficiently high (Γ ≥ 4), a strong, noisy signal is detected after
the pulse, because the packing takes off from the bottom shortly and crashes
down again [66].

2.2.6 Annealing procedure (RAMP)

The RAMP protocol follows closely the “Annealing” procedure originally
introduced in the seminal paper by Nowak et al.[55]. It is intended to study
the possible range of steady state packing fractions Φ∞. Following Nowak
et al.[55], the tap intensity Γ is increased stepwise from 0.25 to 5, decreased
back to 0.25, and increased to 5 again. At each step, 104 taps are applied
and the resulting Φ∞ is measured via laser triangulation. Fig. 2.8 sketches
the evolution of the control parameter vs. runtime of the experiment for a
complete RAMP cycle.
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Figure 2.7: (Original sine pulse signal from function generator (duration 50 ms,
amplitude 232 mVpp) and acceleration (“Peak accel.”) measured simultaneously at
the shaker table.
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Figure 2.8: Protocol RAMP: Acceleration is first increased step-wise from Γ = 0.25
to Γ = 5, then alternately ramped down and up between these bounds. One full
cycle is shown, with a total runtime of 70 hours. On each plateau of the steps, 104

taps at the current Γ, with a repetition rate of 3 Hz are applied.

2.2.7 Vibration protocol (VIB)

The possible configurations of packings prepared by the above protocols are
limited, because particles get jammed due to gravity. While the surface
particles are still mobile, possible rearrangements in the bulk region are
restricted by geometric frustration and pressure of the pile.

Therefore, the protocol VIB is introduced, which is inspired by epitaxial
growth. Epitaxy is a commonly used technique for semiconductor produc-
tion and refers to the growth of a crystalline film from a gas/liquid phase on
a substrate with fitting lattice parameters [93]. To this aim, it is necessary
to heat the substrate for enhanced surface diffusion and hence growing of
crystalline layers. The growth rate is limited by the temperature-dependent
reaction kinetics and the diffusion constant of the gas phase. In analogy,
growing a crystal from granular matter needs constant mechanical agitation
while the grains are deposited by gravity. The deposition rate needs to be
sufficiently low, so that dense configurations can arrange layer by layer. Us-
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ing this preparation technique, crystalline packings of spherical beads [60]
or dense ellipsoid packings were found [18]. Even the growth of a quasicrys-
tal [26] is possible, if a appropriate seed layer is prepared at the container
bottom 2. In the protocol VIB, tetrahedra particles are poured manually at
a rate of approximately 15 particles/sec into the container, while continuous
vibration is applied. The VIB parameters are a frequency f = 100 Hz and
a intensity of Γ = 5.

2.3 X-ray tomography

After X-rays were discovered by Wilhelm Röntgen in 1895 [70], they were
soon applied for imaging internal structures, such as bones or for the “shoe-
fitting fluoroscopes”. Apart from medical X-ray usage, the development of
X-ray tomography in the last decades has opened another field of applica-
tions for the non-destructive 3D analysis in material science or archeology
[83, 50]. Here, an X-ray computed tomography system is employed to record
a tomographic 3D representation of the granular tetrahedra packings.

2.3.1 Nanotom setup

The present X-Ray tomography device is a commercially available “Nan-
otom” manufactured by General Electric (formerly phoenix x-ray). Fig. 2.9
depicts a schematic overview of the setup, consisting of the X-ray tube, the
sample table and the detector unit. The X-rays emitted from the tung-
sten target (anode) have a polychromatic spectrum, that is composed of
Bremsstrahlung and the characteristic radiation. While the packing sample
is turned on a CNC table in small angle increments (∼ 0.15◦), a large number
of absorption images (radiograms) is recorded, which are later reconstructed
as a volume dataset (tomogram).

2.3.2 Choice of optimal tomography parameters

In the following section, four different aspects (I-IV) of the tomographic
acquisition are outlined. I draw an analogy to classical photography, where
a good picture relies on the optimal choice of:

I) Lighting conditions ⇔ X-ray photon flux

II) Perspective/zoom on the motif⇔ Acquisition geometry/magnification

III) Exposure and aperture ⇔ Detector timing

IV) Development of negatives ⇔ Tomographic reconstruction

2Pablo Damasceno, private communication
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Figure 2.9: Nanotom setup (from left to right): The filament voltage Uh controls
thermionic emission of electrons from the filament. The gate voltage is biased
to a negative potential relative to the catode (filament), and serves as a Wehnelt
cylinder for controlling and focusing the electron cloud. X-radiation is created
by guiding the electron beam onto a tungsten transmission target (anode), from
where radiation spreads (“fan-beam geometry”). The ratio Zd/Z determines the
geometric magnification.
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Between initial X-ray generation and tomographic reconstruction of the
volume, different parameters need to be optimized for the best radiogram
and tomogram quality.

Stage I: X-ray settings and resolution

The diameter of the focal spot on the target, where radiation is emitted, is
the lower limit of the attainable voxel resolution. Four different “modes”
(0,1,2,3) are available in the control software, ranging from 0 with a focal
spot of ∼ 3µm, to the “nanofocus” mode 3 with a spot size of ∼ 1µm.
However, the highest focus mode comes at the cost of total X-ray bright-
ness, because it limits the maximum power to avoid burn-ins at the target.
Therefore, for a typical granulate sample with a relatively large diameter of
1− 10 cm and grain sizes > 100µm, mode 0 is preferred.

The optimal combination of acceleration voltage U and filament current
I depends on the sample material and its X-ray transmission characteristics.
In general, samples with high absorption coefficient (like glass, plastic, or
iodine contrast agent) need higher voltages (120 − 170 kV) than biological
samples (< 80 kV) to achieve the same tomogram quality. A commonly used
metric for evaluation of image quality is the contrast K, measured on the
distribution of grey values g:

K =
max(g)−min(g)

max(g) +min(g)
(2.2)

From a practical point of view, a wide range of grey values is desirable,
which implies a high brightness and a large difference between material
and background absorption. The following scan procedure of the optimal
U, I settings for tetrahedra packing samples (material: polypropylene) was
devised: Firstly, calibration images (“Gain”) in the voltage range from 80 kV
to 170 kV are taken without the sample. At each voltage step, the current
I is adjusted so that the measured average grayvalue 〈g〉 is constant and
roughly in the middle of the dynamic range of 0 . . . 4095 (here, 〈g〉 = 2300
was chosen). Fig. 2.10a shows the relationship between U and I; the kink at
120 kV can be attributed to the emergence of characteristic radiation in the
spectrum. Secondly, the sample is mounted and radiograms are recorded in
the same range of voltages U as calibrated by the gain images. The current I
is adjusted to yield constant power P = UI at the target (here, P = 22.4 W
was set).

In principle, the range of recommended power settings has two limita-
tions, which concern filament wear-off and occurence of X-ray breakdowns:
Increasing the current creates more X-ray photons and improves overall im-
age quality (unless oversaturation of the detector is reached), but on the
other hand, the lifetime of the filament decreases faster than linear. At
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high voltages > 175 kV (close to the maximum of 180 kV), the probabil-
ity of breakdowns (short-circuit in the vacuum tube, or in the high-voltage
generator) increases. Breakdowns cause the system to immediately shut
down X-radiation and ramp it up slowly again, which may lead to sub-
stantial brightness variations between radiograms, deteriorating the final
reconstruction.
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Figure 2.10: (a) Dependency of filament I current vs. acceleration voltage U for
constant average brightness 〈g〉 = 2300. (Gain calibration images without sample).
(b) Determination of optimal acceleration voltage: Radiograms of the samples are
recorded for a range of acceleration voltages U , under the condition that the power
P = UI is fixed at (that is I = Pconst/U). The optimal brightness and contrast
is found for U = 160 kV. The increase between 120 and 130 kV is caused by the
emergence of the characteristic tungsten peaks.

Stage II: Sample and detector position

The geometric magnification G in the fan-beam setup is determined by the
ratio between detector distance Zd and sample distance Z to the X-ray
source as shown in Fig. 2.9: G = Zd/Z. That implies that the same magni-
fication (e.g. G = 2) can be achieved by different absolute positions, like the
ratios 400 mm/200 mm or 500 mm/250 mm. In this case, the closer (smaller
value) of the detector position should be chosen, because of the larger photon
flux.

Stage III: Detector settings (image acquisition)

At the detector, X-ray photons are converted by a scintillator layer into
visible light, which is then recorded by a CCD chip. The detector has the
dimensions of 115× 115 mm2, and a resolution of 2304× 2304 pixels with a
pixel size of 50µm. In principle, the photon flux P (number of photons per
time unit) determines the overall image quality, because the noise level de-
creases with 1/

√
P . The detector settings offers two possibilites to increase
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the number of incoming photons: Firstly, by binning neighboring pixels into
2×2 or 4×4 super-pixels, which increases brightness 4-fold resp. 16-fold, but
reduces resolution (µm/voxel) by a factor of 2 resp. 4. Secondly, the expo-
sure time for a single radiogram can be varied between 1/8 s and 4 s. Further
reduction of the noise level is achieved by averaging over a number of single
exposures (“Averages”) for each radiogram. The “virtual sensor” allows to
move the detector in horizontal and vertical direction during tomography,
so that the detector size can be extended by 3x3 tiles (VirtualSensor and
MultiScan options). Lastly, the total number of radiograms determines the
angle increment of the rotation: As a guideline, the number of radiograms
should be at least the image width of the radiogram in voxels.

All in all, the specific choice of settings depends on these four goals:
high resolution (=small field of view), low noise, short acquisition time and
low material wear-off. For the tetrahedra packings with a cylinder diameter
of 11 cm, a large field of view, respectively a low geometric magnification
of G = 2 is needed. A detector binning of 2 × 2 is chosen, which yields a
resolution of 50µm per voxel at this magnification. The detector tiling is set
to 2× 2, so that the imaged part of the sample amounts to approx. 11 cm×
11 cm × 10.3 cm. In the following reconstruction step, a downsampling to
50µm is performed, so that the final size of the volume is 1107×1107×1026
voxels. The lower height dimension is due to a necessary overlap between
tiles for stitching the images taken at the different virtual positions (tiles).
The optimal X-ray settings are determined as U = 160 kV and I in the range
of 140− 160µA.

Stage IV: Tomographic reconstruction

The reconstruction of a tomographic volume is a typical inverse problem:
We want to obtain the density distribution f(x), f ∈ R, x ∈ R3 of an 3D
object, but only the radiographic absorption images (shadow projections)
from different angles are known. The mathematical foundations are based
on the Radon transformation [65], which is a set of line integrals of a func-
tion along different angles. For illustration, consider the two-dimensional
problem first: The X-ray path is a line passing through the sample with
varying density f(x, y), and is parametrized by the distance D to the origin
and the angle θ, as sketched in Fig. 2.11. The actual X-ray absorption de-
pends exponentially on the path length (Beer-Lambert law), but this effect
is neglected here. The Radon transform g(D, θ) is formulated as follows:

g(D, θ) =

∫ 2

R
f(x, y)δ(θ − (x cos θ + y sin θ))dxdy (2.3)

A commonly used technique for tomogram reconstruction is the filtered
backprojection [10]. A “naive” or direct backprojection would just overlay
the recorded Radon transforms from Fig. 2.12b and recreate the image.
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Figure 2.11: The radon transformation g(D, θ) corresponds to a radiogram recorded
under the angle θ and at the beam offset resp. detector position D. The sample
has a arbitrary density distribution f(x, y).

However, the outcome is a strongly blurred version (Fig. 2.12c) of the
original image (Fig. 2.12a). It can be shown that the direct backprojection
convolutes convolves any point in the image f(x, y) with a point-spread
function of the form 1/|(x, y)|. The filtered back-projection accounts for this
problem by filtering in frequency space. A common filter is the Ram-Lak
filter, which has a frequency response of |f |, that is, low image frequencies
are suppressed. In such a way, the original image can be reconstructed
(Fig. 2.12d). The ramp filter induces artefacts (here: caused by the sharp
edges), which can be reduced with more sophisticated filtering techniques
(windowing).

Further details on reconstruction algorithms in 2D and 3D can be found
in the Refs. [10, 50]. For the practical reconstruction of radiograms, a propri-
etary algorithm based on a cone beam filtered backprojection [22] is provided
by with the Nanotom software.



34 CHAPTER 2. EXPERIMENTAL SETUP

(a) (b)

(c) (d)

Figure 2.12: (a) Binary image as sample distribution f(x, y) (b) Radon transform
g(D, θ) (c) “Naive” backprojection of g (d) Filtered backprojection using a ramp
filter. Strong contrast enhancement to make the sharp edge artefacts visible



Chapter 3

Processing of tomographic
volumes

The tomographic acquisition is the beginning of an image processing chain
with increasing complexity and information level, while the amount of data
is reduced by 3 orders of magnitude. Fig. 3.1 illustrates this process, start-
ing from a simple photograph (Fig. 3.1a). The first part of this chapter
describes the workflow from the tomographic density data (Fig. 3.1b) to the
geometric representation of tetrahedra (Fig. 3.1c). The latter parts focus on
the analysis of these geometric tetrahedra with respect to contact numbers,
constraints and Voronoi volumes.

The reconstructed volume has the dimensions of 1107×1107×1026 vox-
els, a spatial resolution of 100µm/voxel, and a gray value range of 16bit,
resulting in a file size of ∼ 2.5 GByte per sample. At the end of the pro-
cessing chain, the structured variable TCSet contains all particle centroids,
vertices and their associated edges and face normals (∼ 3 MB per sam-
ple). This data structure is suitable for analysing local contacts and contact
geometries (see Appendix A.2).

(a) (b) (c)

Figure 3.1: (a) Photograph of a packing surface, no 3D information. (b) Tomo-
graphic volume, 3D material density information (c) After particle registration, the
geometric representation of the particles is obtained (colored by orientation)

35
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3.1 Particle detection

Since polyhedra packings pose specific challenges to the particle detection,
a complete image processing workflow was designed and implemented in
MATLAB. The following notation uses the terms “image” and “volume”
interchangably for the 3D-dataset, whereas 2-dimensional cuts, fixing one
coordinate (e.g. the z-coordinate) are denoted as “slices” (e.g. “slice at
z = 200”). Subsets of a image are typically referred to as “Region Of
Interest” (ROI) within the image. All coordinates are given in voxel units,
with a isotropic voxel spacing of 100µm. The physical particles (tetrahedra
and octahedra) have a sidelength of a = 7 mm or 70 voxels. In binary
images, by convention, white (foreground) corresponds to the particle phase,
and black (background) to the air phase. The reader is referred to Appendix
A.1 for an introduction to morphological image operations.

3.1.1 Algorithm overview

Figure 3.2 outlines the image processing workflow from the reconstructed
tomographic volume to the particle representation by geometric tetrahedra.
It consists of four main stages, with increasing complexity and information
level:

I) Grey-value based segmentation: Reduction to 8-bit, binarization
→ binary volume

II) Region-based segmentation: Watershed labeling
→ segmented regions

III) Registration: Numerical maximization
→ registered particles

IV) Contact detection: Computational geometry
→ packing structure

3.1.2 Preprocessing and filtering

The Nanotom acquisition software datosx-acq 1.6 offers a “Multiscan”
option, which creates two tomography datasets, representing a lower and a
upper part of the cylindrical sample. The optimal vertical stitching position
of these subvolumes, is determined by the vertical shift between the two
tomographies, and is verified by maximizing the cross-correlation between
associated image slices of the two subvolumes (accuracy: 1 voxel).

The first processing step reduces the dynamic range from 16bit to 8bit in
order to save storage and processing time. However, a direct mapping (divi-
sion by 256) does not approximate the original dynamic range [0 . . . 65535]
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0) Preprocessing

I) Gray-value segmentation

II) Region-based segmentation

Grey-scale volume (16-bit, raw) [.vol]

Grey-scale volume, 8bit, MATLAB format [.volume.mat]

Binary volume [.binary.mat]

Label image [.WatershedLabels.mat]

III) Particle registration

Registered particles [.PosAngBigFinal.mat]

Tomographic reconstruction (software datosx|rec)

X-Ray radiograms (16bit, grayscale) [.tif]

Stitching of Multiscans, Reduction to 8bit

Region labeling
(EDT, Watershed)

Binarization (radial,local threshold)

Registration of position and orientation
(Angle sweep. match maximization)

IV) Contact analysis,
Correlation functions

Geometric intersections

Contacts [.Contacts.ParticleIDs.mat]
-Contact types [.ContactGeometry.mat]

Figure 3.2: Schematic image processing workflow. Intermediate output files are
shown as blue boxes, data processing steps as orange ellipses.
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Figure 3.3: (a) Original 16-bit histogram, lines indicate cutoff values at 0.1 and
99.9% of the cumulative histogram. (b) Transformed 8-bit histogram

well, because the grey-values are not evenly distributed in the interval. In-
stead, the cumulative original histogram is analysed and a cutoff interval
[0.1%, 99.9%] is chosen, corresponding to low resp. high grey value cutoffs
of ∼2000 resp. 6000 (effectively 12-bit). Mapping this range linearly to the
8-bit interval [0 . . . 255] preserves the dynamics well, as Fig. 3.3 shows.

3.1.3 Grey-scale based segmentation

Introduction and related work

The process of partitioning an image in disjoint sub-regions is generally re-
ferred to as segmentation. Typically the first segmentation task involves
binarization, that is the distinction between foreground and background
pixels according to the brightness (grey-value) of a voxel x. The human
eye performs this segmentation easily, but automated and robust image seg-
mentation is generally not a trivial task. Binarization reduces the dynamic
range from a range of grey-values to 1-bit, but many processing steps like
the identification of connected components or distance transformations rely
on the binary image (see Sec. 3.1.4.)

Otsu’s global threshold

The segmentation threshold can be computed globally or locally. A still
widely used global binarization method was proposed by Otsu [57]: It as-
sumes a bimodal grey-value distribution and finds the optimal threshold Θ
by maximizing the variance σB between both classes. If l discrete gray-
value levels are present, we denote the distribution by p(l) with its mean µ,
and the subsets of foreground pf (l) = p(l|l >= Θ) and background voxels
pb(l) = p(l|l < Θ) with the corresponding mean values µf and µb. The dis-
tributions are normalized by their total number of voxels so that

∑
i pi = 1.

The optimal threshold Θ is then found by maximizing the following expres-
sion for the intra-class variance:
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Figure 3.4: Left: Selected ROI of tetrahedra packing, 8-bit grey-scale (Sample
TAP100000), units in voxels (slice at z=200). Red cross marks the radial center,
upper left corner shows the cylinder wall. Right: Histogram of grey-values in central
region of volume, red line: Otsu’s threshold

σB =

(∑
l<Θ

pb(l)(µb − µ)2 +
∑
l>Θ

pf (l)(µb − µ)2

)
(3.1)

In the case of a 8-bit image with 256 grey-values, the threshold is simply
determined by evaluating σB for all Θ ∈ 0 . . . 256 and choosing the maxi-
mum. A iterative algorithm for maximizing σB by the above expression was
tested as well (Mardia-Hainsworth), but results were equivalent to those of
Otsu’s method, in accordance with other experimental results [89]. Fig. 3.4
shows a selected grey-value slice of a tetrahedra packing, and the correspond-
ing histogram of the volume. The two peaks are identified as foreground and
background and are clearly separated by Otsu’s threshold.

Radially varying threshold

Depending on the beam energy, the tomograms may exhibit a pronounced
radial brightness variation due to beam hardening artefacts: The path length
dependent X-ray absorption is highest for rays passing through the sample
center, and lowest for the cylinder wall, so that the apparent absorption is
higher in the center. Since the grey-value representation maps apparent den-
sity to brightness, the brightness decreases radially. This can be accounted
for by a radially varying threshold, where each local threshold is chosen by
Otsu’s criterion. The area of each ring is kept constant, leading to radially
decreasing step sizes, as Fig. 3.5 illustrates.

Local threshold

A close look at the volume slices reveals that substantial local brightness
variations are present in the tomographic volume, which are probably at-
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Figure 3.5: Radial rings for local thresholding

tributable to material density variations and

These figures indicate that both the global and the radially dependent
threshold do not perform well in segmenting foreground from background.
A better approach is the computation of local thresholds Θ(x), in a window
W of appropriately chosen size. This technique was popularized as Niblack’s
method [53] and an efficient implementation for arbitrary window sizes is
available [75]. While Niblack’s method determines the local threshold from
mean and variance within the window, a modified version has better perfor-
mance and is comparably accurate [49]. The latter version only estimates
the mean grey-value µW within the sliding window W and sets the voxel
value to 0 if it is at least t percent below the mean, and to 1 otherwise. In
addition to the window size W , the parameter t influences how much of the
fuzzy object boundary is assigned to the object or background. A drawback
of the local binarization is the manual choice of window size and threshold.

Optimal filter parameters were determined by inspecting the final seg-
mentation quality and minimizing over- and undersegmentation across tetra-
hedra, octahedra and mixed samples. It is recommended to chose the win-
dow size according to the typical size of particles in the volume, which is
approximately 57 voxels for tetrahedra (particle diameter estimate: dis-
tance from face to opposite corner). We found however more robust results
with a smaller window of size W = [25, 25], and a threshold of t = 10%.
Smaller window sizes or lower threshold values tend towards oversegmenta-
tion, whereas a too large window does not account for the particle brightness
variations in the mixed samples, resulting in undersegmentation (merging)
of particles.

The local thresholding is known to assign voxels in extended background
regions wrongly to the foreground, because they fulfil the threshold criterion
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(a) Grey-scale (8-bit) (b) Radially binarized IradB

(c) Locally binarized I locB

(d) Masked binary image I locB ∩
IradB

Figure 3.6: Two-stage binarization: (a) Original grey-scale image slice, left upper
corner shows outside part of cylinder. (b) Radial binarization (IradB ) with Otsu’s
threshold in each ring leads to merging of particles (threshold too low). (c) Locally
binarized image I locB preserves foreground details, but actual background pixels are
assigned to foreground (d) Masked binary image I locB ∩IradB yields good binarization
quality, compared to the grey-scale image
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locally. A straightforward solution is to mask the locally binarized imaged
I locB with the radially binarized version IRadB , that is: I locB ∩ IRadB , thus re-
moving the spurious pixels in the background regions while preserving the
details of I locB in the foreground, as Fig.3.6 illustrates.

3.1.4 Region-based segmentation

Contrary to segmentation by grey-value, region-based techniques construct
segments of interest according to connectedness or neighborhood relations1.
The present implementation process-flow is outlined in Fig. 3.7 and referred
to in the subsequent sections.

Figure 3.7: Schematic process flow of region segmentation.

Hole removal

The polypropylene particles contain shrinkage cavities, which are inherent
to injection molding, and vary widely in size and geometry. Tetrahedra
particles have average hole volumes of (650 ± 80) voxel3, while the cavities
inside octahedra are typically in the size range of [100 . . . 400] voxel3. Further
particle detection steps assume solidity of foreground objects, necessitating
the removal of these holes.

This is achieved by labeling the foreground regions of the inverted binary
image IB (Fig. 3.8a) via the union-find algorithm, and then excluding the
largest region, corresponding to the percolated background (see Fig.3.8b).
The union of IB and H then gives the hole-filled image Iclean.

However, the assumption that the largest region percolates throughout
the volume, may not be fulfilled everywhere. In particular, thin separating
lines or single voxels, occuring at face-to-face configurations may be filled as
well, causing the merging of neighbors in IC .

Euclidean Distance transform (EDT)

The Euclidean distance transform (EDT) is the method of choice for the
separation of connected objects [16, 42]. It is particularly suitable for image
segmentation in connection with a subsequent watershed transform (Sec.

1For a comprehensive survey on different techniques and their performance, see [95]
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(a) (b) (c)

Figure 3.8: Hole filling procedure. (a) Inverted binary image IB (selected ROI),
(b) Hole image H: all regions with volume < 80000 voxels, (c) Resulting “clean”
image IC = IB ∪H.

3.1.4). In short, a distance map D is created by assigning to each voxel
of the foreground voxels the distance of the nearest background voxel. For
the present datasets, the EDT is performed on the inverted clean image
IC , and then for each voxel the distance to the background is computed,
as Fig. 3.9a shows. The algorithm used in the MATLAB implementation
bwdist is based on a optimized nearest neighbor search [23].

Watershed transform

The watershed transformation (WST) is a indispensable and versatile tool
for image segmentation, for a current review see [69].

The working principle is best illustrated by the “flooding” analogy: Con-
sider the gray-scale level of a voxel as a height, then the image can be
interpreted as a topological relief. Now holes are pierced into each local
minimum, and the relief is immersed into water. Starting from the minima,
water progressively floods the so-called catchment basins, and whenever wa-
ters from two basins meet, a dam is constructed. These dams are called
watershed ridges, dividing the input image into nR disjunct regions, each
being assigned a unique label. Internally, the MATLAB implementation of
the Fernand-Meyer labeling algorithm [48] is employed for the watershed
transform. Basically, the algorithm starts from the local minima and itera-
tively adds the neighboring pixels with the smallest geodesic distance, which
depends on their grey-value (resp. their height in the relief picture).

In the following, the nR watershed regions are just referred to as “labels”.
The obtained label matrix L is of same size as IC , but with the voxel values
x ∈ (1 . . . nR). (Important implementation issue: the class of L must cover
the expected number of labels resp. particles, here the unsigned 16bit integer
(uint16) is sufficient).
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(a) (b)

Figure 3.9: Sample of distance transformation (a) Small ROI of EDT shown as
height map, (b) Assigned label matrix L from watershed algorithm.

h-minima transform

Application of the WST is hampered by its tendency of oversegmentation,
that is the errornous splitting of a region containing actually one particle
into smaller subregions. This problem is inherent to the algorithm, because
each local minimum may be potentially assigned to a region, and each local
maximum to a watershed ridge. Therefore, pre-processing is necessary to
remove local minima while retaining the particle structure. Smoothing the
gradient image by anistropic diffusion yields good results, but comes at the
expense of losing image details and a high computational cost ([91, 94]). A
better solution is to process the EDT by the h-minima transform, which
merges shallow regions with their neighbor regions before the subsequent
WST (pre-flooding) [56]. A threshold of hmin = 2.0 was chosen here, mean-
ing that all basins which are locally separated by weak watersheds of 2.0
or less in altitude, are merged into one basin. A higher setting of hmin in-
creases undersegmentation (merging) of regions, because more watersheds
are flooded. However, the exact parameter choice depends on the distri-
bution of wrongly assigned background/foreground voxels of the binarized
image, which feed through the EDT and create more local minima in the
WST. Therefore, instead of fine-tuning hmin, the binary image should be
controlled first for solidity of foreground objects and a low background noise
level, and the binarization parameters be changed, if necessary. Fig. 3.10 un-
derlines the importance of the h-minima transform in the segmentation of a
tomography of polydisperse gravel (the same gravel as depicted in Fig. 1.1a).

Separation of merged labels

Large labels, identified by a size threshold, are likely to contain two or more
particles. Fig. 3.11 shows a typical distribution of label sizes (=number
of label voxels), normalized to the average label size of 〈VR〉 = 3.2 · 104
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(a) (b) (c)

Figure 3.10: Outcome of Watershed labels for different parameters of the h-minima
transformation on a tomography of gravel (a) hmin = 0 (no transformation): mas-
sive oversegmentation (b) hmin = 2: reduced oversegmentation, green region at top
possibly merged (undersegmented) (c) hmin = 4: optimal segmentation

Figure 3.11: Distribution of label sizes VR in a segmented packing (totalling 9293
labels). The region sizes containing doublettes is enclosed by the red lines at
V = 4

3VR and V = 8
3VR.

voxels. The first peak represents labels containing one particle, the second
peak corresponds to doublettes (and so on). All regions (labels) with size
VR ∈ [4

3〈VR〉 . . .
8
3〈VR〉] are classified as doublet regions, as illustrated in

Fig. 3.11.

In the densest samples, the first Watershed segmentation leaves up to
0.5% of all labels as dublettes (total number: ∼ 60). The following procedure
separates roughly 80% of these regions, which is a prerequisite for the high
detection rate (> 99.80%) of the final registration algorithm.

In order to split the merged labels, the grey-scale volume is reprocessed
by locally enhancing the edges. Edges (respectively planes in 3D) are char-
acterized by a large gradient perpendicular to the edge, and numerous tech-
niques for their detection exist, which vary mainly in the shape of the filter
kernel. We employ a 3D version of the Sobel filter here to create a edge
image E from the original grey-value volume. E is iteratively binarized
with decreasing threshold, producing a sequence of binary edge images EB
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Figure 3.12: From left to right: binarized edge image EB ; subtracted EB from
binary image; Euclidean Distance transform; Watershed labels image. First row:
Original (weak) edge enhancement leads to merging particles, so that correct label-
ing fails. Second row: Strong edge enhancement allows separation via local maxima
in EDT and Watershed labeling.

with increasing edge strength. In each iteration, the edge image is sub-
tracted from the binary image as IC ∩ EB, and fed through the EDT and
Watershed transform, until separation in at least two regions is achieved.
Fig. 3.13 shows the successful separation of a merged pair of tetrahedra in
a face-to-face contact configuration.

3.1.5 Object registration

The task of object registration (or recognition) involves the assignment of a
object (sample) with respect to known reference objects (model). In the case
of tetrahedra, the model is known, and the remaining parameter space has 6
dimensions: three translational and three rotational degrees of freedom must
be determined for each object. The centroids of the labeled regions from the
preceding segmentation step provide a good estimate for the translational
coordinates. Determining the orientation of a known object in 3D is a task
for which different computational approaches exist [24, 40]. In general, an
algorithm converging to the optimal sample-model transformation is needed.
The orientational registration can be simplified in certain cases:

. In a 2-dimensional angle space, the Hough transform is an established
method to find prevalent line directions in images [31].

. If particles have a anisotropic shape (principal axes), the orientation
vector is equivalent to the largest eigenvector, which can be obtained
via a singular value decomposition of the segmented voxels. This
method is employed here for the registration of rod particles (see
Sec. 5.2.3).
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(a) (b)

Figure 3.13: (a) Volume rendering of dublette label (b) Separated in two regions
after edge enhancement

. Spherical harmonics are used for pattern detection and structural anal-
ysis [40], but these are – by construction – insensitive to a specific
orientation.

. The point-set registration [1] is formulated as follows: Define the sam-
ple by a set of n voxels vn ∈ R3, and a model by another set mn ∈ R3

Then find the rotation R and translation T (transformations matrices)
that minimize the error d =

∑n
i=1 ||vi−TRmi||. Here, d is the summed

distance of all points between model and image. A drawback is that
the sets vn and mn must be “linked” to corresponding voxels first, that
is, the sets must be ordered so that the distance between vj and mj is
the shortest for all points j. Another complication arises if the voxel
sets differ in their size, which is the typical case in experimental data.

Therefore, a two-step registration procedure for packings of the spheri-
cally symmetric platonic bodies was developed. It was implemented w.r.t.
the following design specifications. The performance of the procedure re-
garding these points is discussed in the next Sec. 3.1.6.

1. High accuracy (alignment of particles)

2. High detection rate (> 99.80%), no false positives

3. Reasonable processing speed

4. Robustness to noisy input data (e.g. brightness variations)

5. Parallelization
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6. Extension to other particle shapes

First, a matching criterion m ∈ [0 . . . 1] is defined by the number of
foreground (white) voxels inside a translated and rotated reference model2,
normalized by the maximum possible number of enclosed voxels nmax ≈ VTet

(resp. VOct). As a pre-check, all region labels smaller than 2
3VTet voxels are

immediately discarded, because they are probably oversegmented and no
sufficient match is possible. (CalcOverlapOffsetAngles.m). The optimiza-
tion task is then formulated as follows: For each watershed region, maximize
the matching function m(x),a w.r.t. three translational and three rotational
degrees of freedom, denoted by x = (x, y, z) and a = (Ψ,Θ,Φ), respectively.
We denote the final match value by m∗ with the final parameters x∗ and a∗.

A established quasi-Newton method, the so-called Limited-Memory-Broyden-
Fletcher-Goldfarb-Shannon-Algorithm (in short: LBFGS) is chosen for this
optimization problem due to its robustness and fast convergence [41]. The
following pseudocode outlines the structure of the two-step registration al-
gorithm, which we refer to in the following sections.

Figure 3.14: Schematic process flow of particle registration
(FindOrientation WS.m)

2Currently, reference models are restricted to convex polyhedra
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Orientation estimation by sampling

The first step of the object registration of particles is the choice of appro-
priate initial conditions, which are supposedly close to the global match
optimum. This rules out the possibility of getting trapped in local minima3

and provides a substantial performance boost. To this aim, a sweep search
over the full rotation space of Euler angles (SweepEulerAngles.m) is per-
formed, and the best match is chosen as initial condition of the subsequent
maximization. Since the voxel-based match computation is computation-
ally quite expensive (one call to CalcOverlap.m takes 6 ms on a IntelCore 2
Duo @ 3Ghz), a speed-up-method is employed: Instead of rotating the full
voxel sample, only a point-based “spine” model S, connecting each corner
to the particle centroid, is rotated and the point-wise match is computed.
In contrast to the full voxel model with VTet = 40422 voxels, this requires
only 4 ∗Ro = 172 voxels to be checked, resulting in a substantial speed-up.
The centroid position x of the spine model is set to the centroid of the corre-
sponding label. Fig. 3.15a shows an example of match values of the rotated
spine model in the 3D-space of Euler angles, where the maxima are selected
by thresholding the highest 1% and then clustered by a distance cutoff.
Fig. 3.15b depicts the best-fit spine model in red, the foreground voxels in
grey, and the estimated model in blue shading. The similarity to the final
registration by the LBFGS algorithm (Fig.3.16) is already evident. If more
than one maximum is found in angle space (depending on particle symmetry
axes), all maxima are evaluated using the voxel match computation, then
the angles corresponding to the best match are chosen for initialization of
the LBFGS optimization.

Match maximization

LBFGS belongs to the family of Quasi-Newton methods, which are directed
at iteratively finding extrema of functions using local derivatives. New-
ton’s original method assumes the scalar function f(x) : Rn 7→ R to be
of quadratic form, so that first and second derivatives f ′ and f ′′ are valid
approximations in the vicinity of the extremum. In multidimensional op-
timization, this generalizes to the computation of the gradient ∇ and the
Hessian H.

Consider the Taylor expansion of a function f around the ith iteration
point xi with the finite difference ∆x:

f(xi + ∆x) ≈ f(xi) +∇f(xi)∆x +
1

2
∆xH∆x (3.2)

⇒ ∇f(xi + ∆x) = ∇f(xi) + H ·∆x (3.3)

3Minimization or maximization of a function are trivially related since min(f(x)) =
max(−f(x)).
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(a) (b)

Figure 3.15: (a) Normalized match value in sampled 3D-Euler-angle space
a = (Ψ,Θ,Φ) (units in degree). (b) Orientation of model corresponding to highest
match of m∗ = 0.88, at a∗ = [111◦, 9◦77◦], see bottom right corner of Fig. (a).

The necessary condition for a extremum is that the gradient vanishes:
∇f(xi + ∆x) = 0, so the Newton step ∆x is obtained from Eq. 3.3 as:

∆x = −∇f(xi) ·H−1 (3.4)

Eq. 3.4 shows that first and second derivatives are needed to compute the
step ∆x, which is essentially the direction towards the extremum. However,
there is no analytical expression for f in the present problem of match
maximization, calling for numerical approximations of ∇ and H−1. The
gradient ∇ is approximated by the finite forward difference:

∇ ≈ f(x + ∆gx)− f(x)

∆gx
(3.5)

Note that this finite difference ∆gx is not to be confused with the actual
Newton step ∆x!

Approximation of the inverse Hessian H−1 is performed by construction
of a matrix Jk, with the property limk→∞ Jk = H−1, where k is the number
of iterative approximations. The various Quasi-Newton methods mainly dif-
fer in the way Jk is constructed, but the explicit expressions are lengthy and
therefore omitted here for clarity [64]. In short, the current Jk is a function
of the preceding Jk−1, the current and previous gradient ∇k resp. ∇k−1 and
the current Newton step ∆x. In practice, the limk→∞ Jk is replaced by a
sufficient number of iterations, this implementation uses 5 iterations.
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Figure 3.16: Example of registered particle after match maximization

Figure 3.17

Figure 3.18: Match valuem vs. iteration step i, averaged over 30 registered particles

Parameter scaling

Convergence of the algorithm is generally reached if ∆x < εx with the
parameter tolerance εx = 10−6 or ∆f(x) < εf with the function tolerance
εf = 10−6. Recalling that the maximum value of the overlap function equals
the tetrahedra volume of Vtet = 4.0422 · 104 voxels, an approximation error
of less than one voxel is expected. In practice, the maximum match value is
lower due to a mismatch between ideal model and physical particle geometry
(see Fig. 3.19) and the specific choice of the local binarization parameters.

If a particle is successfully registered, the corresponding voxels are re-
moved from the binary image and the final match parameters x∗,a∗ and m∗

are stored (variable PosAng).

Parameter scaling

What is a good choice of the finite difference ∆gx used for gradient ap-
proximation in Eq. 3.5? Initially, ∆g = 10−6 is set and the approximation
of ∇ is obtained from Eq. 3.5. The next gradient approximation step ∆g
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is then computed as ∆g = ||∇||−1 (with the Euclidean norm ||). How-
ever, the match function m(x,a) is not continuous, but takes only discrete
values (number of voxels m ∈ N) This implies that for sufficiently small
values of ∆g, no change in m is observed and the gradient approximation
m(x, a) = m(x + ∆gx, a + ∆ga) is zero. Furthermore, the positions x have
voxel units, whereas the angles a are defined in radians ([0 . . . 2π]), so two
step sizes ∆a

g and ∆x
g need to be defined.

Therefore, the following cutoff ranges for the angle parameter
∆a
g ∈ [0.015 . . . 0.25] and for the position parameter ∆x

g ∈ [0.125 . . . 2.0] are
chosen. These values were obtained by a extensive parameter sweep, iterat-
ing towards the highest accuracy (see Sec. 3.1.6). The lower bound of the
range ensures that the gradient does not vanish before actual convergence,
and the upper bound limits overshooting of the parameters near extrema.
Note that this intricacy occurs only because the objective function m is not
continuous. A possible solution is to smooth the segmented binary volume
with a gaussian filter before registration. However, this filtering does not
improve exact alignment, but broadens the range of the acceptance criterion
m∗.

3.1.6 Performance

In this section, we discuss the performance of the present registration algo-
rithm w.r.t to the desired specifications (see Sec.3.1.5).

Accuracy

A good agreement between model and images is already apparent from
Fig. 3.16. Additionally, more quantitative measures are available, such as
the distribution of the final match values m∗ (see Fig. 3.19), with a mean of
0.975± 0.013.

The deviation from the expected value m∗ = 1.0 is mostly attributable to
the imperfect geometry of the physical particles. Experimentally, the corner
and edge curvature of the tetrahedra was determined4 to (150 ± 50)µm.
For comparison, a synthetical voxel model of a tetrahedron was created by
appropriate scaling and dilation. The maximum match value of this model is
msyn = 0.980± 0.005, which is in good agreement with the observed upper
bound of m∗ in Fig.3.19a.

A more sophisticated quality measure is provided by the analysis of the
contact number scaling (CNS) model in the reconstructed particle packing;
see Sec. 3.2 for physical motivation and details of the model. The number
of intersections n as a function of the scaled side length av is given by:

n(av) = ZNaµ,σCNS + Θ(av − aµ) · s · (av − aµ) (3.6)

4Inspection of imprints on rubber silicone with a optical microscope.
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(a) (b)

Figure 3.19: (a) Histogram of final matches m∗ (N = 32555 particles, data summed
over 3 different samples). (b) Synthetical binary volume of tetrahedron with
rounded edges, inscribed into exact tetrahedron (black line)

with the side length av, (average) contact number Z, cumulative nor-
mal distribution N(aµ, σCNS =, and estimated (average) side length aµ.
The parameter σz, corresponding to the width of the cumulative Gaussian,
is a direct measure for the cumulated errors caused by imperfect particle
shape, imaging artefacts and particle misalignment due to finite registration
accuracy.

In order to investigate the accuracy of the particle detection, we run the
LBFGS registration algorithm on a identical dataset with different down-
sampling factors. This downsampling reduces the number of voxels nmatch

for the match computation by the factor mySpeedup ∈ [1, 2, 4, 8]: For a value
of mySpeedup = 2, only every 2nd voxel is considered, so
nmatch = Vtet/2 = 40422/2 = 20211 voxels. Downsampling by 8 is equiva-
lent to resizing the volume by half in each dimension (8 = 23).

Downsampling [particles/h] Accuracy σz Contact number Z

1 1200 .213 8.11
2 1800 .213 8.15
4 2100 .217 8.13
8 2700 .226 7.76

Table 3.1: Effect of speedup on performance (registered particles/hour), accuracy
(σCNS), and determined contact number Z

Table 3.1 clearly shows that downsampling increases processing speed
at the expense of accuracy. However, the best obtained σz = 0.213 mm is
close to the corner curvature (0.15 ± 0.05) mm and does not improve for
a factor lower than 2. This indicates that the residual error is likely to be
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(a) (b)

Figure 3.20: Sketch of intersection between tetrahedra: (a) Rounded particles are
in contact, but models intersect (b) Reduced sidelength: No intersection

attributed to the particle geometry. This is an inherent approximation error,
as already pointed out in Fig. 3.19b: The registration model assumes ideal
geometric tetrahedra, whereas the physical particles have a finite radius of
curvature. Fig.3.20 depicts an exemplary corner-to-face contact: the red and
blue rounded tetrahedra are actually contacting, but the registered models
exhibit intersection. Note that the sketch exaggerates the actual radius of
curvature by a factor of 3 for illustrative purposes.

Detection rate

The detection rate P is defined as the percentage of the detected particles in
relation to all particles present in the sample. The current implementation
reaches typically a detection rate of P > 99.80%, provided the image quality
is sufficiently good throughout the sample, which can be verified by visual
inspection ReconstructImageOverlay.m. That is, at maximum 20 particles
of 10000 are not detected (false negatives). Near the vertical and radial
borders of the sample, image quality decays, therefore the ROI of analysis is
restricted to a smaller cylinder. Due to the acceptance threshold for region
sizes and the construction of the match criterion, false positives (matches
where no particles are present) are not observed.

Robustness

The parameters in the image processing chain were tuned to yield the best
results for the given datasets. Generally, for application to other experimen-
tal data, evaluating the segmentation quality in each image processing stage
is recommended, and if necessary, parameters should be tuned according
to the following list. Quality inspection concerns after stage I) the binary
image IC , in stage II) the label image L and in stage III) the reconstructed
packing (ReconstructTetOct Overlay.m) and the width of the CNS curve.
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Processing speed

The runtime of the preprocessing and binarization stage (I) amounts only to
a few minutes and is therefore negligible compared to the subsequent parts.
Most processing time is spent in the segmentation part (II), particularly for
the EDT (bwdist) and the WST (watershed). A complete sample of the
order of 103 × 103 × 103 = 109 voxels (=1 Gvoxel) is segmented within 90
minutes, thus reaching a processing speed of 0.2 Mvoxels/s.

The registration throughput in stage (III) (at a downsampling factor
mySpeedup = 2) is of the order of 2000 particles/h on a IntelCore 2 Duo @
3Ghz (see Tab. 3.1).

Parallelization

The bottleneck of segmentation in stage II) could be resolved by paralleliza-
tion. There exists a highly optimized parallel solution for segmentation with
a processing speed of > 10 Mvoxels/s [94], but at the time of writing, this
was not available for 3D datasets.

The registration stage is easily parallelized by serial registration (node 1
processes the subset of labels [1 . . . li], node 2 the labels [li + 1 . . . 2li] and so
on), thus runtime is only limited by the number of available cluster nodes
(plus negligible runtime for initialization and consolidation of the results).

Parameter tuning instructions

I Undersegmentation of IC ?
→ Decrease window size W , then threshold t.

II Undersegmentation of L ?
→ Decrease h-minima threshold in steps of 1.

III Convergence problems?
→ Try to adapt the termination criteria εf , εx, range of finite differ-
ence values ∆min

g ,∆max
g . Other approach: Make the match function m

continuous.

For the opposite problem of oversegmentation, parameters need to be
changed vice versa. The first stages are crucial for the success of the reg-
istration algorithm: starting with a good binarization (solidity of particles,
low noise), both segmentation and final registration are likely to achieve a
high detection rate and accuracy.
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3.1.7 Future extensions, appendix

Octahedra and mixtures

The watershed-based segmentation is not restricted to a certain particle
shape, but works also for particle mixtures (bidisperse or polydisperse pack-
ings). This holds under the constraint that particles can be separated well
enough via the EDT and the additional separation step. Fig. 3.21b shows
a slice of a mixed packing, where particles tetrahedra (red) and octahedra
(blue) are successfully registered and distinguished.

(a) (b)

Figure 3.21: (a) Grey-value histogram of tetrahedra-octahedra mixture (b) Z-slice
of mixed packing, registered tetrahedra in red and octahedra in blue.

Analysis of other mono- or multidisperse packings of polyhedra is possi-
ble by entering the model vertices into Init Watershed.m. For any multidis-
perse packing, a clear distinction criterion is needed for efficient registration.
In the case of tetrahedra and octahedra, this criterion is the label volume,
which is on average 3.2 · 104 for tetrahedra and 1.6 · 105 for octahedra,
providing a clear size threshold. The brightness variation, due to different
material density, is not sufficient to classify tetrahedra or octahedra, as is
evident from the overlapping peaks in Fig. 3.21a.

A side note: The side length of the current models is set to 70 voxels
(=physical sidelength of 7mm). If the particle sizes are distributed in a size
range, the sidelength needs to be added as additional optimization parameter
for the match maximization (see MaximimizeOverlap.m), fminlbfgs2.m

and CalcOverlapOffsetAngles).
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3.2 Determination of contact numbers

The geometric representation of the tetrahedra particles is a prerequisite for
examining packing structures, contact numbers and Voronoi volumes. To
begin with, the problem of contact number counting is addressed.

Inter-particle contacts cannot be determined directly from tomographic
data because the result is affected by particle polydispersity, imaging arte-
facts and the finite accuracy of particle detection. However, Aste et al. [3]
introduced a method that can provide a physically justified average contact
number for spheres of diameter d, under the assumption that experimen-
tal errors are distributed gaussian. It defines the number of neighboring
particles n(r), which includes all particles with a center to center distance
smaller or equal to r. In the case r < d, n(r) can be described by multiply-
ing the average contact number Z with the cumulative normal distribution
Nµ, σ(r):

Nµ,σ(r) =
1

σ
√

2π

∫ r

−∞
exp

(
−(x− µ)2

2σ2

)
dx (3.7)

The mean µ provides an estimate for the bead diameter d, and the vari-
ance σ corresponds corresponds to the combined effects from polydispersity
and uncertainty of tomography and particle detection.

For r > d, there is an additional term to ZNµ,σ(r) which describes the
growing contribution from spurious contacts, near neighbors which are close
but not in contact. The latter part can be approximated (in lack of deeper
knowledge) by a linear function flin(r) = m · (r− d) with slope m combined
with the Heaviside step function Θ(r − d), leading to the complete model
for n(r):

n(r) = Z ·Nd,σ + Θ(r − d) · flin (3.8)

Figure 3.22 shows an illustration of the model for spheres with a contact
number Z = 6.

We transfer the model to tetrahedra packings as follows: Instead of
counting neighbors within a distance r, particles are scaled by a “virtual”
side length av and the number of intersections n(av) is counted5, as shown
in Eq. 3.9:

n(av) = ZNaµ,σ + Θ(av − aµ) ·m · (av − aµ) (3.9)

with the estimated sidelength aµ.

This model is termed “contact number scaling function”, in short CNS
function, because it maps the particles [72]

5A substantial speedup of the analysis is reached by using neighbor cell lists and testing
only particles within a diameter of the circumsphere.
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Figure 3.22: Model for the number of apparent neighbors n as a function of the
center-to-center-distance r in a packing of spheres with diameter d and contact
number Z = 6. The resulting contact number can be read off after deconvoluting
the function by the scaled cumulative normal function Nd,σ.

Exemplary contact curves for loose and dense packings are presented in
Fig. 3.23. Firstly, the side length aµ, the contact number Z, the variance
σ and the linear slope m are fitted to the data, using the gnuplot imple-
mentation of the non-linear least-squares Levenberg-Marquardt algorithm.
Since particles and experimental setup are identical for all 25 samples, we
determine the average sidelength āµ = (7.02 ± 0.03) mm and the average
variance σ̄ = (0.206± 0.015) mm from all fits ( ± errors are standard devia-
tions). In a second step, these parameters are fixed, leaving Z and m as the
only free parameters.

3.2.1 Estimation of error bars

The error estimate ∆Z of the contact number Z can be calculated by the
propagation of error principle (Gauss’sche Fehlerfortpflanzung). Z is a func-
tion of the estimated sidelength āµ and the distribution width σ̄, with the
variances ∆āµ and ∆σ̄. We denote the errors of the mean values with ãµ
and σ̃. The error of the mean value, ãµ, is computed by ts · ∆āµ√

n
(with the

Student-t-distribution factor ts = 2.13 according to n=20 samples and 95%
confidence), respectively for σ̃.

The error of Z is then computed as follows:

∆Z =

√(
∂Z

∂āµ
· ãµ
)2

+

(
∂Z

∂σ̄
· σ̃
)2

(3.10)

where the partial derivates are approximated by the difference quotient
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Figure 3.23: Contact number analysis of tetrahedra packings for (a) loose and (b)
dense packing. The data from the samples (red triangles) is well approximated by
the model n(av) (solid red line) using only Z and m as fit parameters. Deconvo-
lution into the cumulative gauss N(aµ, σ) (dotted blue line) and the contribution
flin allows to read off the contact number Z (dash-dotted grey line).

approximation:

∂Z

∂σ̄
≈ Z(σ̄)− Z(σ̄ + ∆σ̄)

∆σ̄
. (3.11)

and the analogous expression for σ̄µ.

3.3 From contacts to constraints

Four different contact geometries are observed in tetrahedra packings, as
table 3.2 illustrates: face-face (FF) contacts, edge-face (EF) contacts and
the point contacting configurations of vertex-face (VF) and edge-edge (EE).
Vertex-Vertex or Vertex-Edge contacts are not observed in practice.

Mechanical stability of a granulate packing implies force balance at the
contacts – that means, the number of mechanical constraints C imposed by
a contact must be equal (isostatic) or larger (hyperstatic) than the degrees
of freedom (DOF) per particle. For frictionless spheres having only single
point contacts, one obtains the isostatic contact number Ziso = 2 ·DOF = 6.
However, this does not hold for tetrahedra packings, because the number of
mechanical constraints fixed by a contact depends on the specific contact
geometry. Evaluating the number of constraints per contact type is best
visualized by keeping one tetrahedron as “fixed”, and considering the re-
stricted DOF of a second contacting “probe” tetrahedron. In the presence
of friction, all contact types block three translational degrees of thie probe
tetrahedron by introducing one normal and two tangential forces. That
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means, sliding of particles past each other is not allowed without external
force. The contact types do however differ in the amount of blocked ro-
tational degrees: A frictional face-to-face contacts blocks 3 rotations: one
around the surface normal (by friction) and 2 rotations around the two
axis standing perpendicular on the surface normal (by non-overlap). An
EF contact blocks only one rotations perpendicular to the surface normal.
Lastly, the point contacts VF and EE do not block any rotation at all. As
these constraints are always shared between the “fixed” and the “probe”
tetrahedron, we obtain the constraint multipliers CFF = 3.0, CEF = 2.5,
and CV F = CEE = 1.5. Multiplying these numbers with the according
type-specific contact numbers in a specific configuration gives the number
of constraints per particle C.

In previous work, the generalized isostastic number was given as C = 12
[34, 37], but this refers to a particle pair. For consistency with the contact
number Z, defined per particle, the same notion should be adopted for the
constraint number.

Type face-face edge-face vertex-face edge-edge

Example

Constrained
DOF 3 trans.+ 3 rot. 3 trans.+ 2 rot. 3 trans. 3 trans.

Constraints
per Particle 3.0 2.5 1.5 1.5

Table 3.2: From top to bottom: Contact geometries (real classifications from a
experimental sample); constrained DOF; constraint multipliers CFF , CEF , CV F ,
CEE ;

3.3.1 Analysis of the contact geometry

In order to determine local contact geometries, all tetrahedra of one sample
are scaled to the “contacting” side length ac, so that the corresponding
n(ac) = Z is consistent (see Fig. 3.24). Then the contact geometry of all
particles with their intersecting neighbors is analysed. These intersections
are not physical, but appear due to the corner curvature and the larger side
length ac.

The classification algorithm is based on a iterative procedure: First the
face-face angle αFF between normals of adjacent faces is computed; this is
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Figure 3.24: The side length ac with n(ac) = Z is given by the intersection of the
model n(av) with Z.

180° at perfect alignment. Because of the finite resolution of tomography
and particle detection, a contact is classified as FF if αFF > αminFF . The
procedure for determination of αminFF is outlined in the following section.

In the absence of a calibration method for edge-face contacts, the FF
threshold also applies for the classification of edge-face (EF) contacts. That
means, a contact is classified as EF if the edge is collinear with the face:
αEF < 180◦ − αminFF .

Finally, the configuration is checked for vertex-face contacts (VF) by eva-
luting if one vertex of a tetrahedron is inside the contacting neighbor6. Any
remaining contacts are then attributed to edge-edge contacts. This proce-
dure was verified by constructing test cases and additional visual inspection
of the resulting classification.

3.3.2 Threshold choice for FF and EF contacts

It has been shown[80] that an arbitrary choice of αminFF can lead to a physi-
cally infeasible constraint number[34], therefore the threshold must be cho-
sen carefully. To this aim, five different samples containing only face-to-face
contacts (“Face-to-Face sample”) are prepared by glueing one tetrahedron
corner-down to a plate and adding another tetrahedron face-down on the
top face of the first. A tomographic reconstructions of one of the samples is
shown in Fig. 3.25a and the according cumulative distribution of αFF from
all samples (containing 90 tetrahedra pairs) is presented in Fig. 3.25b.

A cumulative normal function as in Eq. 3.7 with mean µ = 1.8° and
variance σ = 1.3° is a good model for the distribution of the face-face angle
αFF .

6This needs to be checked vice versa: Is any vertex of A inside B or any vertex of B
inside A?
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Figure 3.25: Calibration sample containing only face-face contacts for determina-
tion of threshold αminFF . (a) Tomographic reconstruction of the calibration sample
(b) Cumulative distribution of the number of face-face contacts ZFF per tetrahe-
dron. Chosen threshold of µ+ 1σ is marked by the dotted grey line.

According to the face-face calibration sample, the threshold
αminFF = µ− σ = 176.9° is selected.

3.4 Analysis of Voronoi volumes

The distribution of Voronoi volumes plays a central role for the statistical
description of granular matter (e.g. employed in tomography of sphere pack-
ings [2]). In order to obtain the set Voronoi diagram of the packings [71],
the so-called feature transformation (function bwdist) is utilized here on the
image: This transformation assigns each voxel in the tomographic volume
to the label of the nearest particle, and is therefore a discretized version of
the set Voronoi diagram. An advantage of this version is that it can process
arbitrary shapes of the regions or particle with a accuracy of 1 voxel. An
illustration of the resulting decomposition is presented in Fig. 3.26.

Results on tetrahedra packings are discussed in detail in 4.4.1.
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Figure 3.26: Exemplary part of z-slice (sample: initial, Φ = 0.470), showing
coloured Voronoi cells and particles overlayed in half-transparent view.
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Chapter 4

Results and Discussion

This chapter presents and discusses the geometric structure of disordered
tetrahedra packings, addressing the following central questions:

. Which global packing fractions are accessible by different preparation
protocols? (Sec. 4.1)

. What is the contribution of different contact types to mechanical sta-
bility? (Sec. 4.2)

. What are appropriate metrics to characterize order in tetrahedra pack-
ings? (Sec. 4.3)

. What is the relation between local packing densities and local geomet-
ric structures? (Sec. 4.4)

To begin with, the influence of different preparation techniques on the
global packing fraction is presented. This includes also the spatial distribu-
tion of local packing fraction in order to assess the packing homogeneity.

Mechanical stability in the context of the Jamming paradigm is char-
acterized by global contact numbers and contact types (face-face, edge-face
and point contacts).

The translational order is measured globally by the pair correlation func-
tion, and the orientational order via the face correlation function. Deeper
insight about local configurations at different densities is then obtained by
mapping local contact geometries to local packing fraction via their Voronoi
volumes. Both the observed contact geometries and the Voronoi volumes
suggest that locally dense arrangements of tetrahedra involve many face-face
contacts. In this context, the shape of clusters with low Voronoi volume and
the distribution of face-face contacting clusters are investigated further.

Finally, our experiments are compared to previous work, including other
experiments on tetrahedral particles [34, 96, 6], Monte-Carlo (MC) simula-
tions [86, 37, 26] and distinct element method (DEM) simulations [62, 61].

65
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4.1 Protocol dependency of packing fractions

The first section discusses the accessible range of packing fractions Φ for
the different preparation protocols. This comprises the loose preparation,
the gentle pulse protocol TAPΓ=2, the RAMP (annealing) protocol, and
the continuous vibration (VIB). In addition, the influence of higher tapping
intensity is analysed for protocol TAPΓ=3...7.

4.1.1 Initial preparation

The “initial” preparation is designed to find the loosest mechanically stable
tetrahedra packings in the present setup, and moreover, to create a repro-
ducible initial state for the subsequent compaction experiments (TAP and
RAMP). Using the manual pouring + relaxation technique as presented in
Sec. 2.2.3, packing fractions in the range of Φ = 0.469− 0.477 are achieved.
Even looser packings could be supposedly created by air- or water-fluidized
beds at slow sedimentation speed, which have been employed for creating the
loosest known sphere packing with ΦRLP = 0.550±0.001[35]. This technique
is difficult to adapt for tomographic analysis, because at the onset of mechan-
ical stability, particle arrangements during imaging are very likely, causing
erroneous regions in the reconstructed volume. As preliminary experiments
with wetted tetrahedra show, water (with or without wetting agent) creates
liquid bridges between particles, hampering the particle detection.

The lowest packing fractions using the “initial” protocol match the re-
sults from Baker and Kudrolli [6], who found Φmin = 0.48± 0.02. Thus the
current limit of mechanically stable tetrahedra packings is supposedly near
Φmin ≈ 0.47, yet particles with higher friction are expected to reach even
lower densities.

4.1.2 Protocol TAP (Γ = 2)

As Fig. 4.1a and Fig. 4.1b show, successive gentle taps with intensity Γ = 2
compact the pile slowly, and Φ reaches a steady state after approximately
1 − 5 · 104 taps. This behaviour is consistent with a stretched exponential,
the so-called KWW (Kohlrausch-Williams-Watts) function, which is widely
employed to describe the relaxation of out-of-equilibrium systems like glasses
(see e.g. [20]):

Φ(t) = Φ∞ − (Φ∞ − Φ0) exp(−(t/τ)β) (4.1)

with the initial packing fraction Φ0, the steady-state Φ∞, the character-
istic time τ and the fit parameter β. The final parameters are determined
by averaging from three such compaction experiments: Φ0 = 0.459 ± 0.011
,Φ∞ = 0.595± 0.004, β = 0.34± 0.06 and τ = 600± 60. The values of Φ∞
and τ are sketched as dotted lines in Fig. 4.1a. The packing fractions from
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height measurements are corrected by the linear calibration from 2.4b. Note
that each sample in Fig. 4.1b is independently created by starting from a
initial packing, then applying the defined number of taps and recording a
tomography at the end.

(a) (b)

Figure 4.1: (a) Tapping at Γ = 2 compacts the sample until it reaches a steady state
packing fraction Φ∞ between 104 and 105 taps, two independent runs are shown,
lines are fits to Eq. 4.1. Φ approximated by laser height measurement as described
in Sec. 2.2.2. Vertical dotted line corresponds to τ = 600, horizontal dotted line to
Φ∞ = 0.595. (b) Packing fractions of 13 samples after a number of applied taps, Φ
computed from tomographic reconstruction in central ROI. Packing fractions are
slightly higher than in the full volume due to lower density at the cylinder borders.

Confinement effects play an important role for the compaction dynamics
and the range of attainable packing fractions. A selection of compaction
experiments is listed for comparison in the following Tab. 4.1. Consider the
compaction experiments by Nowak et al. [55]: These were performed in a
long narrow tube with a cross-section of only 10 particle diameters and a
vertical aspect ratio of approx. 50:1. This geometry prevents convection
rolls, and allows a local measurement of the packing fraction, but induces
crystallization from the boundary layers, leading to values of Φ clearly above
the random close packing limit. A different relaxation law (the “Chicago”-
fit) was proposed for this setup, where the fit parameters where found to
depend only on Γ. In the following sections, the protocol dependency of
Φ∞, is discussed with respect to the RAMP and TAPΓ=3...7 protocols.

4.1.3 Annealing procedure (RAMP)

The evolution of Φ∞ is depicted in Fig. 4.2, and comprises the following
regimes: The loose packing irreversibly compacts when Γ is increased from
0.25 to 1.5, but dilates again when the acceleration is further ramped to
Γ = 5, leading to Φ∞ ≈ 0.56. Subsequently, decreasing the tap intensity
down to Γ = 0.25 ends up at Φ∞ ≈ 0.61 (sample RAMPΓ=0.25). Increasing
the intensity again to Γ = 5.0 demonstrates that no hysteresis is observed
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Ref. Bead
diameter
dparticle

dcylinder/dparticle hcylinder/dcylinder Φ

Nowak[55]
(Chicago)

2 mm 9.4 53 .59-.66

Richard[68]
(Rennes)

0.2− 0.4 mm 27 10 .57-.64

Ribiere[66]
(Rennes)

1 mm 100 1 .58-.63

Tetrahedra
(this work)

7 mm∗ 15-18 1-1.5 .47-.62

Table 4.1: Survey of compaction experiments on bead packings: particle di-
ameter dparticle, ratio of cylinder diameter (cross-section) to grain diameter
dcylinder/dparticle; height-to-diameter aspect ratio of cylinder hcylinder/dcylinder; all
numbers rounded to two-digit precision. ∗Sidelength of tetrahedra

in the reversible branch. Only the end points of the reversible branch, i.e.
RAMPΓ=0.25 and RAMPΓ=5 are analysed tomographically. The accurate
packing fractions in the ROI are then used for a new calibration of the height
measurement, and packing fractions in between are linearly interpolated.

Ribiere et al. have ascribed the initial irreversible compaction – also
observed in the RAMP experiments by Nowak et. al – to a transient effect
[66, 67]: At low Γ, the compaction dynamics are exceedingly slow and τ
diverges, but the packing can still reach a stationary state, if it is tapped
long enough. In this case, only the “reversible branch” is recovered, which
indicates that the stationary state with Φ∞ does not depend on history,
but only on the preparation protocol. The packings prepared by Ribere
et. al are supposedly in a dynamical equilibrium between compaction and
convection, with the steady state packing fraction Φ∞ depending only on Γ.
In the following Section, the question of protocol and history dependency is
tackled by establishing a link between the TAP and RAMP protocol.

4.1.4 Protocol dependency of Φ∞

The development of the reversible branch in Fig. 4.2 raises a question: Is
it possible to reach the steady states at RAMPΓ=1...5 directly, without the
preceding annealing history? To this aim, starting from a initially loose
packing, 104 taps for a range of intensities Γ are applied, and the obtained
packing fraction is compared to the steady state of the RAMP protocol.
Fig. 4.3 presents compaction curves for Γ = (1 . . . 7); each sample is tomo-
graphically recorded after 104 taps. For tapping at Γ = 1, the exceedingly
slow compaction dynamics are apparent, and the packing is far from reach-
ing the steady state (top line in Fig. 4.3). For higher Γ, the applied number
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Figure 4.2: Protocol RAMP: At each acceleration step, the packing is tapped 104

times. Open circles (green): initial, irreversible compaction. Open downward tri-
angles (orange): decreasing acceleration. Filled upward triangles (violet): increas-
ing acceleration on the reversible branch. Packings at points RAMPΓ=0.25 and
RAMPΓ=5 are analyzed via tomography. All error bars are averaged over 4 inde-
pendent runs.

of 104 taps seems to be barely sufficient to reach a steady state Φ∞ close to
the respective RAMP states. Given the variations between samples, as de-
picted in Fig. 4.4, the final packing fractions do not depend on the annealing
history (RAMP), but only on the intensity Γ. However, strong fluctuations
are observed, and more ensemble averages are needed for a conclusive inter-
pretation.

In addition to that, an interesting feature emerges: Φ∞ is inversely re-
lated to Γ. MOreover, if Γ ≥ 3, the density reaches an intermediate maxi-
mum, occuring earlier for higher Γ. For longer tapping series up to 105 taps,
Φ fluctuates and does not recover the intermediate maximum anymore. Up
to now, the physical reason behind the decompaction after 100-1000 taps
is still unclear. The slight increase of TAPΓ=5 or TAPΓ=7 towards the end
could point to a long-term convection cycle. Another possibility is that
static charging between the plastic tetrahedra or the plexiglas container sets
in at higher shaking amplitudes, which would induce repulsive forces and
thus lower the packing fraction. To investigate the latter effect, a constant
flow of ionized air was directed into the cylinder during preparation, but
the feature was repeatably observed. Fig. 4.4 shows the compaction of three
independent samples using protocol TAPΓ=5, with and without ionized air
flow. All samples share the feature of the intermediate maximum and a
following decompaction, but have a low overall repeatability.
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Figure 4.3: Evolution of packing fraction for different acceleration intensity Γ,
tapped 104−5 ·104 times. (color map: Γ increasing from bright to dark). The lines
correspond to the steady states of the RAMP protocol, the non-existent RAMPΓ=7

state (dotted line) is extrapolated from the higher packing fractions.

4.1.5 Vibration protocol (VIB)

Among all preparation protocols, slow manual pouring of particles under
constant vibration of 100 Hz and Γ = 5 (VIB) yields the densest packings
with Φ > 0.62. Fig. 4.5 shows a layer near the bottom of a VIB sample
(binary image), where possible pentamer arrangements are marked with
circles, roughly connecting the involved centroids. Some pentamers seem
to form a interconnected network, but these interpretations from a single
volume slice are not conclusive. Due to the manual pouring, samples created
with the VIB protocol are generally difficult to reproduce.

4.1.6 Comparison to previous work

All in all, the range of mechanically stable packings between Φ = 0.469 and
0.622 is in accordance with the range of Φ = 0.48 to 0.64 found previously
for tetrahedral dice and ceramic tetrahedra particles, prepared by shaking
and by water-fluidization[6]. However, it differs widely from Jaoshvili’s or
Zhao’s claimed values of Φ ≈ 0.72 [34, 96]

What are possible explanations for these significant differences in packing
fraction? One possibility is the shape difference: The corners of tetrahedral
dice are less acute than our injection-moulded particles, as Fig. 2.1a already
illustrated. However , shape fails to conclusively explain the differences be-
tween packing fractions of tetrahedral dice and our particles. Following the
numerical results, the larger corner radius of the dice as used by Jaoshvili[34]
or Zhao[96] should cause a lower packing fraction. Therefore, a more likely
explanation for the relatively low Φ found in the present work is the high
friction coefficient of µ ≈ 0.8 compared to µ ≈ 0.2 of the dice. Higher fric-
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Figure 4.4: Variation of compaction behaviour between different compaction runs:
Tapping at Γ = 5 (run #1 and #2), run #3 with continuous flow of ionized air
directed inside the cylinder to eliminate static charging.

tion causes the packings to become jammed earlier, because less contacts
are needed for mechanical stability [77].

Please refer to Tab. B.1 in the Appendix for a comprehensive overview
of the differences between Ref. [34] and this study.

4.1.7 Spatial distribution of φlocal

How homogeneous are the global packing densities w.r.t. different prepara-
tion techniques? The local packing fractions φlocal, as computed from the
particles’ Voronoi volumes V by φlocal = VTet/V , allow an analysis of the
spatial distribution. Fig. 4.6a shows vertical density profiles from a loose
(0 taps) to a dense sample with 50000 taps. Judging from the vertical dis-
tribution for 1600 and 50000 taps, relative compaction is more prominent
near the bottom of the container, probably due to higher pressure. The
radial averaging is performed over constant-area rings, thus the binning
width decreases with radial distance (similar to the radial binarization in
Sec.3.1.3). One observes that the initial, loose packings have a lower den-
sity near the cylinder walls, due to the gentle outwards relaxation when the
cardboard tube is removed. The gradient levels off during long tapping pro-
cedures. Fig. 4.7a shows the same analysis for exemplary samples prepared
by the other protocols. For the strongly shaked RAMPΓ=5, a relative decom-
paction in the bottom part of the cylinder occurs. This might be explained
by the complete lift-off of the packing during a single tap, and the following
instantaneous “crash” to the bottom, restricting further rearrangements.
Moreover, a strong radial decrease when approaching the cylinder wall is
observed, but not accounted for in the analysis region. The VIB protocol
shows extraordinarily high packing fraction near the bottom, where dense
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Figure 4.5: This VIB sample exhibits a higher structural order than other sam-
ples, which is apparent by visual inspection of the volume slices. Many pentamer
structures are seen (marked as red circles), of which some are interconnected. The
image is a Z-slice at z = 7 mm above the cylinder bottom, hence only pentamers
oriented approximately in this plane are spotted.

clusters form (see also Fig. 4.5). Such locally high packing fractions are not
found for any of the other protocols.
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Figure 4.6: Spatial distribution of packing fraction for TAPΓ=2, with 0 to 50000
applied taps. Data points represent the center of bins where φlocal is averaged (slid-
ing mean); each bin contains a few hundred particles. (a) Vertical density profile
in analysis region (ROI), dotted lines represent the average Φ. (b) Corresponding
radial distribution of packing fraction in the cylinder with radius of 52 mm, the
radius of the analysis region analysis is indicated as a grey line.
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Figure 4.7: Spatial distribution of packing fraction for other preparation protocols.
(a) The strongly shaken RAMPΓ=5 protocol shows a significant gradient from bot-
tom(loose) to top(dense). RAMPΓ=0.25 is clearly more homogeneous. The VIB
sample exhibits a extraordinarily high density near the bottom, which decays to-
wards the top surface. This particular sample contains less particles than the others,
so that the ROI is smaller. (b) The radial analysis confirms that RAMPΓ=5 has the
most inhomogenous distribution of φlocal, but the restriction to the inner analysis
region with 38 mm radius discards the gradient near the outer wall.
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4.2 Mechanical stability

4.2.1 Contact numbers

The global contact number Z is determined from the model-based CNS
method as described in Sec. 3.2. This approach accounts specifically for
the finite resolution of tomography and detection, but yields only a globally
averaged contact number. Fig. 4.8 shows the results of different preparation
protocols and packing fractions. Contact numbers of protocol TAP start at
the loose, initial packing with Z between 6.5 and 7, then increase monotoni-
cally with Φ and level off at Φ ≈ 0.6. The two densest packings, RAMPΓ=0.25

and VIB do not show a further increase of Z. However, the packings pre-
pared by RAMPΓ=5 deviate distinctly: For comparable Φ, contact numbers
are approx. 1.0 lower, underlining the influence of the preparation protocol.
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Figure 4.8: Global contact number Z vs. packing fraction Φ for different prepara-
tion protocols. Contact numbers of TAPΓ=2 samples vary smoothly from the initial
packing to the densest packing (105 taps).

The value of Z and Φ at high packing fractions in Fig. 4.8 compare
surprisingly well to the Jamming density ΦJ = 0.61 and contact number
ZJ = 8.6, which were found in simulations of frictionless tetrahedra (Fig. 1.2,
[80]).
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4.2.2 Protocol dependency of contact numbers

RAMP

Increasing number of taps

Figure 4.9: Contact number Z of packings after 10000 applied taps with different
tap intensity Γ (circles with Γ increasing from bright red to dark). TAP samples
at Γ = 2 (green dots) and similar packing fraction and RAMPΓ=5 samples (violet
triangles) are shown for comparison. Colored regions are guides to the eye, referring
to the TAP(Γ = 2) and RAMP datapoints. Note that the range of Φ covered here
is smaller than in Fig. 4.8.

For a systematic study of the deviations and a potential history depen-
dency of protocol RAMP5, samples were tapped for 104 times with varying
Γ = 3 . . . 7, and then tomographically analysed. The contact number of
these samples (last datapoints in Fig. 4.3) decreases strongly with Γ and de-
velops an additional branch in the Z(Φ)-diagram. Apart from possible static
charging effects (Sec. 4.1.4), the higher intensity might indeed create differ-
ent structures, which have the same Φ, but different Z. The left-skewed
distribution of φlocal (4.23) shows that strong shaking at Γ = 7 causes a
broader distribution of local packing fractions, compared to a TAPΓ=2 sam-
ple, even if the global Φ is the same.

4.2.3 Global contact types and constraints

The contact number Z of tetrahedra packings is not sufficient to character-
ize its distance to isostaticity. Contrary to sphere packings, the number of
imposed mechanical constraints depends on the specific contact geometry,
as outlined in Sec. 3.3. Fig. 4.10 shows that the number of all four types
of contacts increases with Φ. More specifically, the growth of the EF con-
tacts contributes about half of the total increase in Z. Together, the num-
ber of constraints per tetrahedra is between 12 and 18 as Fig. 4.11 shows,
and therefore much higher than the isostatic limit of 6. While this result
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does not contradict the isostatic packings found in simulations of frictionless
tetrahedra [79, 80, 37], there is a clear disagreement with the experiments
using frictional dice reported in [34]. There, however, the authors use the
contact-specific constraint numbers pertinent to frictionless particles. If the
frictional multiplication factors are assumed, the resulting constraint num-
ber in Ref. [34] is also hyperstatic. On the other hand, if frictionless factors
are used for the analysis of our data, the loosest packings become hypostatic
which does not agree with the observed mechanical stability.

Frictional tetrahedra packings are therefore hyperstatic, as measured by
the generalized constraint number C. For a given packing fraction, a range
of contact and constraint numbers is compatible with mechanical stability,
and depends on the preparation protocol. These new observations challenge
contemporary theoretical approaches to static granular media – e.g. the
proposed inverse relationship between mean free volume and contact num-
ber, which is independent of preparation details [82]. Similarly, the jamming
paradigm [44, 90] is based on a single power law relationship between Z and
Φ and does not account for protocol dependent variations or friction [77].
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Figure 4.10: Number of contact types (global average) of all samples with different
Φ, namely face-face contacts ZFF , edge-face contacts ZEF , vertex-face contacts
ZV F and edge-edge contacts ZEE .

Distribution of contact types

Fig. 4.12 show the distribution of face-face contacts and point contacts (sum
of vertex-to-face and edge-to-edge contacts) for selected samples, with con-
sistent symbol and color encoding. While the loose (initial) sample has a low
probability of only 20% to find a face-face contact, the densification process
by the TAP(Γ = 2) or the VIB protocol increases the number of particles
with at least one face-face contact (=dimers or larger) strongly (Fig. 4.12a).
It is noteworthy that the distribution of ZFF for the strongly shaken sample
TAPΓ=7 closely resembles that of a initial (loose) packing; it even has the
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dependent variation as in Z(Φ) persists (Fig. 4.8), but whereas the contact number
Z levels off at Φ ≈ 0.60, the constraint number C increases further.

same probability of p = 0.06, despite a much higher global density (Φ = 0.53
vs. Φ = 0.47).

If ZFF is interpreted as a random variable, the probability of a tetrahe-
dron having k face-face contacts can be modeled by a binomial distribution
B(n, k, p), where the number of trials is n = max(k) = 4 and p is a sample-
dependent probability. The lines in Fig. 4.12a, where p is determined as fit
parameter to the data points, show that the binomial distribution models
the number of face-face contacts very well.

This leads to the conclusion that the formation of face-face contacts fol-
lows a independent random process. In other words, the probability for
additional FF contacts does not change, once a dimer or trimer has been
formed; the process depends only on the probability of a single face-face
contact to occur. When considering the dense analytically or numerically
constructed packings (??), the random model obviously breaks down, be-
cause these packings have a deliberately fixed number of face-face contacts.
Indeed, the onset of deviations from the random model could serve as the
key criterion for characterizing the transition between disorder and order in
tetrahedra packings.

The distribution of point contacts, as the sum of ZV F (vertex-face) and
ZEE (edge-edge), is shown in Fig. 4.12b. These contacts are not modeled
by a Binomial as above, because the maximum number of point contacts
(resp. bonds in the lattice) and geometric relations or restrictions between
ZV F and ZEE are unclear.

Percolation theory provides further insight about the structure of face-
face contacting clusters: the face-face geometry of tetrahedra is appropri-
ately modeled by a diamond lattice in 3D, where every site can have between
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Figure 4.12: (a) Observed probability face-face contact number ZFF in three pack-
ing samples with different preparation protocol (data points). The lines are bino-
mial distributions, with the face-contact probability p as a fit parameter (Details see
text). All samples are far from percolation, because the distribution for pc = 0.39
deviates distinctly (dotted red line). (b) Distribution of “lower order” point con-
tacts (sum of vertex-to-face and edge-to-edge contacts): Minor deviations between
initial (loose) packing and sample TAP(Γ = 7) are found, the denser samples have
more point contacts.

0 and 4 bonds – respectively F2F contacts – to its neighbors. Each bond is
assigned the probability p to be present, respectively 1 − p to be missing.
If p is larger than the bond-percolation threshold pc, a connected cluster
emerges1, which spans the full system size. For the diamond lattice, the
threshold was numerically determined to pc = 0.390 [92]. Therefore, perco-
lation of face-face contacts in tetrahedron packings is expected if the average
face-face contact number 〈ZFF 〉 exceeds 4 · pc = 1.56.

1pc is defined as the value, where percolation occurs in more than 50% of all system
realizations.
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4.3 Characterization of geometric order

4.3.1 Translational order
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Figure 4.13: (a) Pair correlation function g(r) for 4 different packing fractions.
Offsets are added for clarity (lower three samples: initial and TAP protocol, highest:
VIB protocol). (b) Peak height as indicated by dotted line in (a) at r = 1.08rmin
(all samples)

A measure commonly used for characterizing order in disordered mat-
ter, like granulates, glasses or liquids is the pair correlation function g(r). It
counts the number of particles in the radial distance shell [r, r+δr], normal-
ized by the binning volume and the average density. This implies that g(r)
equals 1, if no significant density variations are present. If g(r) exhibits peaks
exceeding 1, particles arrange denser than on average, which points to a close
arrangement of neighbors at the distance r. Fig. 4.13a shows g(r) for samples
with different density Φ. The first peak is located at r = 0.44a = 1.08rmin
(dashed line) and grows monotonically towards denser packings. The grow-
ing peak height can be explained by an increasing alignment of face-face or
acute edge-face contacts. The peak position is slightly offset from the mini-
mal possible distance of twice the inradius (2Rin = rmin ≈ 0.408a), because
the probability to observe acute face-to-edge or laterally shifted face-face
configurations is higher than for perfectly aligned faces. g(r) decays quickly
after the first peak, showing no long-range translational ordering. This is in
contrast to the g(r) obtained from Monte Carlo (MC) simulations of tetra-
hedra [26, 37] which revealed long-range structure at densities as low as
Φ = 0.46. The difference is due to the preparation technique: the MC sim-
ulations do not account for gravity or friction, but compress a gas or liquid
phase of tetrahedra particles in an isotropic way. In contrast, the packings in
the experimental setup jam due to gravity already at Φ ≈ 0.47, after which
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geometric frustration and pressure in the pile restrict further alignment.
The left shoulder in g(r) has a finite slope, because tetrahedra can be in

contact for a range of distances, from twice the inradius to twice the circum-
radius, in contrast to mono-sized spheres. This has implications regarding
the Jamming transition: Simulations of soft frictionless spheres have re-
vealed that the first neighbor peak in g(r) scales as g(r) ∼ 1√

r−1
(for spheres

with radius 1) [90, 78]. Thus, when approaching the Jamming point from
below, that is, r → 1, a divergence of the g(r) peak is found.2 However, the
broadness of the g(r)-peaks in Fig. 4.13a – a consequence of the variation
in contact distances – suggests that packings of soft tetrahedra under com-
pression will differ from this scaling behaviour and not show this singularity
near Jamming.

4.3.2 Orientational order

Figure 4.14: Face correlation F (r), normalized to the minimal possible distance of
twice the inradius (rmin = 2Rin). Loose samples (initial preparation) shows a quick
decay of orientational ordering after the first neighbor. Correlations in the dense
sample (protocol VIB) level off after the next-nearest neighbor at r/rmin ≈ 3.

An estimator for orientational order is the angular correlation function
F (r), which measures the average relative orientation of face normals in the
distance r.[34]. F (r) is computed by averaging Fql for all pairs of tetrahedra
q and l whose centroids ~cq and ~cl are a distance r apart. Fql is then defined
as the minimum of the pairwise dot product of the 4 face normals ~nq,1...4
and ~nl,q...4:

F (r) = 〈Fqlδ(|~cq − ~cl| − r)〉ql with

Fql = min(~nq,1...4 · ~nl,1...4) .

2One should note that these simulations are implemented by “inflating” all spheres
simultaneously, which is not reproducible experimentally for hard tetrahedra particles.
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Thus, the ideal face-face alignment corresponds to F (r) = 180◦, whereas
a completely random configuration has F (r) = 150◦. Fig. 4.14 compares the
face alignment of a loose and a dense packing. Orientational order extends
slightly further than translational order, which is in good accordance with
previous experiments [34] and numerical results [79]. The development of
a shoulder for the densest packing, starting at r ≈ 1.6rmin indicates the
emergence of trimers (3 tetrahedra aligned face-face), which have a (ideal)
centroid distance of r = 1.63rmin.

One should note that F (r) only accounts for the pair-wise alignment of
face normals, but not for in-plane rotations of the faces against each other.
This is considered in the correlation function C(r), which is averaged radially
over particles pairs q, l as above:

C(r) = 〈Cql〉 =

〈
1

4

4∑
i=1

~nq,i · ~nl,i)

〉
. (4.2)

Here, the normal vectors ~nqi and ~nli are ordered in the sense that always
the corresponding pair of vectors are computed; these are the vectors which
maximize the pair-wise scalar product. Thus, C(r) tells us if particles in
a distance r are superposable i.e. are identically oriented. For tetrahedra
packings, C(r) matches closely the signature and correlation length as in
F (r) (see e.g. [34, 37, 76]). In conclusion, neither of these radially averaged
correlation functions is sensitive enough to establish a clear link between
local structures and global packing fractions.

4.3.3 Densest arrangements

The key questions addressed in this section are: Which dense structures are
attainable experimentally in disordered tetrahedra packings? How do they
possibly relate to structures which are known from analytical or numerical
work? In the recent sections, we have already seen indications for an in-
creasing formation of dimers, trimers and pentamers, which are all face-face
connected clusters.

Face-face contacting clusters

A face-face configuration is preferred for two reasons: Firstly, packing frac-
tion is locally maximized when the centroids are closest to each other, which
is the case for an aligned dimer. While these are probably the globally
densest configurations, it is very unlikely to observe the dimer crystal in
experiments, because it occurs only at extremely high pressures in MC sim-
ulations. Secondly, face-face contacts maximize mechanical stability by fix-
ing more constraints at once than any other contact. Fig. 4.15 shows the
distribution of face-face cluster sizes for a loose (initial preparation) and a
dense sample (105 taps at Γ = 2). The distribution is exponential in good
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approximation, and in the denser sample, more larger clusters are found.
Exemplary clusters containing 5 or 6 tetrahedra are illustrated in Fig. 4.16.

(a) (b)

Figure 4.15: Distribution of face-face-contacting cluster sizes (logarithmic scale) for
(a) Loose packing at φ = 0.470 (b) Dense packing (TAP) at φ = 0.612, showing the
increasing number of clusters larger than 3 particles (trimers). The total number
of particles in the ROI is comparable (≈ 3500-4000).

These pentamer clusters could be interpreted as “local crystallites” in
disordered tetrahedra packings, and dense packings strongly resemble the
disordered wagon-wheel-packing [86]. A general criterion for detecting pen-
tamers would be desirable, but this requires a certain acceptance threshold.
In MC simulations from Haji-Akbari et al. , tetrahedra under compression
increasingly arrange into pentamers[26], but the absolute number found in
these clusters varies strongly, depending on the chosen threshold. Therefore,
only the relative occurence of pentamers for a fixed (arbitrary) threshold can
be analysed.

Furthermore, the visual inspection of connected clusters revals that clus-
ter geometries range from compact pentamers to extended face-face-connected
chain, as is illustrated in Fig. 4.17.

In one of the VIB samples, local icosahedral order is observed, as depicted
in Fig. 4.18. It is practically difficult to grow dense structures further than
the first layers on the bottom, because convection sets in easily and destroys
the order again. A fixed bottom layer in the shape of a quasicrystal unit
cell [26] might serve as a seed for growing a quasicrystal experimentally3.

Smallest Voronoi volumes

Another possibiliy to find the dense building blocks of disordered tetrahedra
packings is the investigation of cells with the smallest Voronoi volume V .
From a geometric argument, the densest local structure is achieved if each
face of a tetrahedron is covered by 4 perfectly aligned facets of the neighbors.

3Discussion with P. Damasceno
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(a) (b)

Figure 4.16: Observed clusters containing both 6 FF-jointed tetrahedra in sample
VIB #1 (φ = .622). (a) Pentamer with an additional FF contact (b) Extended FF
chain consisting of two connected, imperfect pentamers. Coloring is arbitrary for
better visibility.

This is the case e.g. for the one tetrahedron being enclosed in the nonamer
structure and shared between two pentamers (see Sec.1.3 for illustrations).

A search for tetrahedra with the highest φlocal among all samples re-
vealed that a nonamer structure exists in one of the globally densest pack-
ings (RAMPΓ=0.25), see Fig. 4.19. The coloring is according to local packing
fraction, mapped relative to the specific sample distribution. The central
tetrahedron with φlocal = 0.82 is occluded, because it is covered from four
sides by the two intertwined pentamers.
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Figure 4.17: A large face-face-cluster spanning 24 tetrahedra is detected in sample
TAP, 105 taps applied, Φ = 0.610

(a) (b)

Figure 4.18: Distorted icosahedral arrangement of tetrahedra as observed in sample
VIB, 1 cm above the cylinder bottom. (a) Side view (b) Top view

(a) (b)

Figure 4.19: Nonamer structure, shown from two perspectives: Central tetrahedron
(φlocal = 0.82) is shared between two pentamers. Coloring relative to distribution
of local packing fraction [φmin . . . φmax]. (a) First pentamer (marked green) (b)
Second pentamer, from a different perspective, approx. 90◦ turned (marked green)
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Cluster participation ratio

Recently, Li et al. proposed the participation ratio ρ as an order parameter
for tetrahedra packings [76]. ρ is defined as the fraction of tetrahedra with at
least one “face-face joint” (face-face contact), and is therefore a lower bound
for the average number of face-face contacts. They showed that the packing
density Φ is proportional to ρ for a variety of different numerically prepared
packings (among others, the disordered wagon-wheels, the quasicrystal and
the dimer packings). If extrapolated to ρ = 0, the lower bound of Φ = 0.625
is proposed as the densest disordered packing fraction, in analogy to the
random close packing limit of spheres (RCP)4. A linear extrapolation to
ρ = 1 coincides with the maximum packing density of Φ = 0.856 for the
dimer packing[12].

The participation ratio in our experimental tetrahedra packings varies
between 0.14 and 0.6, but no clear trend with packing fraction is observed.
However, the difference between the global face-face contact number ZFF
and the participation ratio (see Fig. 4.20) exhibits a jump at Φ ≈ .62 for the
VIB samples. This supports the idea that under compaction, samples un-
dergo a transition from the formation of separated dimers, where ZFF ≈ ρ,
to the growth of larger face-face-clusters. This is corroborated by the cluster
size distributions in Fig. 4.15. The process of face-face contact formation re-
minds of a classical nucleation and growth process. In this context, modeling
approaches could possibly compute nucleation barrier energies for different
geometric configurations.

The strong increase of ZFF − ρ at Φ ≈ .62 supports the hypothesis
by Li et al., that the amount of FF clusters is a valid order parameter –
despite the large differences between experiment and numerical simulation,
regarding particle shape, preparation or friction. In principle, the face-face
contact number is more sensitive to structural changes, because it accounts
for multiple face-joints per tetrahedron, and should therefore be favoured
over the suggested participation ratio [76].

4.4 Local properties

The variation in contact and constraint number at the same global packing
fraction might be explained by different internal packing structures. There-
fore, a analysis of local structures is needed, covering local packing fractions,
local contact geometries, and analysis of contacting clusters (see e.g. [76]).

4In contrast, Torquato[86], who proposed the “maximum random jammed” (MRJ)
state for the densest disordered sphere packing, claims that disordered tetrahedra pack-
ings have ΦMRJ = 0.763. A different conception of “order” or “disorder” is the most
likely explanation for these vastly differing values, which emphasizes again the difficulty
in finding good order metrics.
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Figure 4.20: Difference between average face-face contact number ZFF and par-
ticipation ratio ρ. For the TAP samples, a slow increase with packing fraction is
observed, but the VIB samples above Φ ≈ .62, deviate strongly.

4.4.1 Local packing fraction from Voronoi volumes

The local packing fractions φlocal are accessible via the associated Voronoi
volume V of each particle (Sec. 1.2) and the known (fixed) tetrahedra volume
of Vtet = 40.42 mm3 as φlocal = Vtet/V . The globally averaged Φ is computed
as the ratio between the volume occupied by all particles and the total
Voronoi volume5: Φ =

∑
i V

i
p/
∑

i V
i.

Fig. 4.21 shows the distribution of the local packing fractions φlocal of a
loose and a dense sample, fitted by a Gaussian distribution. Whereas the
Gaussian matches the experimental distribution on first sight, a closer look
reveals that V is not distributed symmetrically, but skewed to the right.
The skewness6 increases systematically from 0.5 to 2.2 between φ = 0.47
and φ = 0.62. This means that compaction causes the number of locally
dense structures to increase stronger than the number of loose structures is
reduced – otherwise, we would observe a shifted Gaussian. A consequence of
the increasing skewness is that a rescaling of the distributions to a Gaussian
by mean and variance is likely to fail.

A different distribution was suggested and theoretically motivated by
Aste et al. [2]: They showed that the distribution of free (or excess) vol-
ume V − Vmin in sphere packings, when normalized appropriately, follows a
Gamma-distribution. The probability density function has two parameters,
k (”shape”) and Θ (scale) and follows the functional form (for k ∈ Z):

f(x|k,Θ) =
xk−1e−x/Θ

Θk(k − 1)!
(4.3)

5A common pitfall is the assumption that Φ = 〈φlocal〉
6third moment of the distribution
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Figure 4.21: Distribution of local packing fraction for loose (initial) and dense
sample prepared by the TAP protocol (blue and red steps), the legend denotes the
global Φ. Gaussian fits (lines), with parameters µ = 0.473 , σ = 0.05 (loose) and
µ = 0.608 , σ = 0.06 (dense).

For the special cases of k = 1, the exponential distribution is obtained,
and for k →∞, the Gamma distribution converges to a Gaussian, changing
its shape smoothly between these two limiting cases. The choice of this
distribution is motivated by the assumption that each Voronoi cell can be
decomposed into a certain number of sub-cells, which follow an exponential
size distribution. If that holds, the summed volume of k randomly picked
sub-cells should follow a universal Gamma-distribution, with the shape pa-
rameter k and the scale parameter θ = (V − Vmin)/k.

Regarding the tetrahedra volume (resp. packing fraction) distributions
in Fig. 4.21, the asymmetric Gamma distribution is expected to capture the
skewness feature better. For a accurate comparison, the aggregated Voronoi
volume distribution of all samples is normalized and fitted separately by a
Normal (Fig. 4.22a) and a Gamma distribution (Fig. 4.22b). Judging from
two statistical test (the Kolmogorov-Smirnov-test and the squared sum of
residuals), the Normal distribution remains slightly superior, but significant
deviations remain for both models. More specifically, the symmetric Gaus-
sian deviates equally on both tails of the data distribution. In contrast, the
Gamma distribution is off-centered and overestimates the number of larger
volumes (resp. low packing fractions). Furthermore, a universal k-value
cannot be established, because it decreases systematically from k = 26 for
the loosest packing to k = 18 for the densest packing.

How can we interpret the mismatch with the models? Firstly, the orig-
inal assumptions might be violated, e.g. the choice of the Gamma func-
tion. This choice was motivated by the exponential size distribution of the
sub-volumes – which in turn, is a consequence of the Poisson statistics of
randomly distributed point clouds. Since the Voronoi volumes from Aste
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et al. collapse to a Gamma distribution, the generalization from points to
mono-sized spheres in mechanical contact appears still valid. In contrast to
sphere packings, tetrahedra do not have a “typical” centroid distance, but
this varies by a factor of 3 between twice the inradius 2Rin and twice the cir-
cumradius 2Rout = 2 · 3Rin. Thus, the model is pushed even further: From
points (no restriction on the pair-wise distance) to spheres (fixed distance
at contact) and to tetrahedra (range of distances at contact)

Secondly, the random drawing of Voronoi volumes assumes statistically
independent sets; if spatial correlations are present, this assumption is vio-
lated. For example, correlations of the Voronoi volumes in binary disc pack-
ings extend as far as 5 particle diameters (Zhao and Schröter[97]). Even if
the structural order of the experimental tetrahedra packings is much shorter-
ranged than for sphere packings, spatial correlations are supposedly still
relevant.

(a) (b)

Figure 4.22: Aggregated Voronoi volume distributions of all packings, rescaled
by minimum possible volume Vmin = VTet and average volume 〈V 〉. (a) Fit of
Gauss distribution with µ = 0.98 , σ = 0.21 (b) Fit of Gamma distribution with
k = 20 , θ = 0.05.

Influence Γ on volume distribution

The distribution of φlocal could shed light onto the protocol-dependent differ-
ences between the gently tapped sample TAPΓ=2 and the vigourously shaken
samples RAMPΓ=5 or TAPΓ=7. Fig. 4.23 illustrates a difference between the
TAPΓ=7 sample and a TAPΓ=2 sample with comparable Φ. Although the
global packing fractions are very close (Φ = .537 resp. Φ = .541), the distri-
butions differ significantly: The TAPΓ=7 packing has more very loose regions
down to φlocal ≈ 0.37 and the overall distribution is broader, as measured
by the standard deviation of the fitted Gaussian. Is only the larger inho-
mogeneity of φlocal in the TAPΓ=7 sample responsible for this deviation? A
contraindication to this explanation is however the robustness of the feature
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throughout the sample, e.g. for different radial or vertical analysis subsets.
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Figure 4.23: Distribution of φlocal for 400 taps at Γ = 2 (red) and 104 taps at Γ = 7,
with comparable global Φ = 0.537 resp. Φ = 0.541. The standard deviations of the
fitted Gaussians are denoted by φσ.

4.4.2 Local contact types

The mapping between local contact types and local packing fractions re-
veals which geometric configurations are preferred for a dense local packing.
We assume that the maximum density of φlocal = 1.0 is obtained for one
tetrahedron being covered on all faces by 4 perfectly aligned face-face con-
tacts. On the other hand, a high number of point contacts is expected to
leave larger voids and result in a smaller φlocal (consider the extremum, the
lattice packing with Φ = 0.36 and 14 point contacts). This trend is visible
in Fig. 4.24: face-face and edge-face contacts are more prevalent at higher
packing fraction, on the cost of lower order point contacts. This trend looks
more pronounced for the globally densest packings. It is noteworthy that
the globally loose packing shows a substantial increase of the local constraint
number from 11 to 14, leveling off only at φlocal ≈ 0.54. The local packing
fractions below 0.47 are probably close to mechanical instability, and the
computed (average) numbers have larger errors due to the low number of
occurrences. In the globally dense packing however, the local constraints
increase only slightly from 15 to 16, and saturate at a similar φlocal ≈ 0.53.
This data is inconclusive to decide whether this packing fraction is associ-
ated with any physical meaning, e.g. a structural rearrangement, or within
insignificant data scatter. For conclusive results, the significance of the
datasets should be improved by averaging over a set of identically prepared
packings at the same global Φ.

An important question remains: What is the connection between the
distribution of Z(φlocal) and the globally averaged Z(Φ)? Intuitively, one
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assumes that the contact number of a single particle depends only on the
local, but not on the global packing fraction. If this is the case, metrics like
the face-face contact number ZFF or the constraint number C should only
vary with φlocal (resp. the Voronoi cell volume), but not with the global
packing density the cells were picked from. A preliminary analysis did not
confirm this hypothesis: for example, the number of contraints for selected
values of φlocal depend also on the global Φ. If that relation turns out
to be robust, φlocal would be insufficient to characterize the distribution of
contacts, and different values of Φ would imply also different local structures.
A systematic variation of the “local” notion by spatial coarse-graining of
φlocal towards Φ could possibly link to a cross-over distance to resolve this
discrepancy.
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Figure 4.24: Local contact types vs. φlocal for (a) loose packing with global φ = .472
(initial) (b) intermediate packing with global φ = .542 (TAP). As a consequence of
increasing face-face contacts, which cover a large part of the solid angle, the number
of point contacts decreases.

4.4.3 Local angle distributions

Smith et. al.[80] have discussed angle distributions between faces by com-
parison to randomly arranged faces and edges. The probability of finding a
random edge-face-contact with angle αEF is weighted towards small align-
ment angles: p(αEF ) ∼ cos(αEF ), and therefore expected to be ubiquituous
in jammed packings of polyhedra. On the other hand, face-face contacts are
expected to be very rare in random configurations, because the probability
vanishes for ideal alignment: p(αFF ) ∼ sin(αFF ). Note that αFF denotes
the angle between faces and is therefore 0◦ for perfect alignment.

The experimental distribution of angles between “directed” face normals
αfn is depicted in Fig. 4.25 for a loose (initial) and a dense (VIB) sample.
αfn is computed for a pair of tetrahedra q, l by choosing the pair of faces
that are directed at each other, that is, enclosing the smallest angle with the
distance vector ~cq−~cl. Only local arrangements within an empirically chosen
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cutoff of |~cq − ~cl| < 2.1rmin are regarded for the distribution in Fig. 4.25.
The sharp peak near 180◦ corresponds to dimers (face-face contacts), which
are more prominent in the dense samples than in the loose ones. During
compaction of the packings, an additional broad peak emerges around the
tetrahedral angle of 109.4◦, setting in already at φ > 0.52. This peak can be
clearly attributed to the formation of trimers (three tetrahedra face-face in a
row), because the outer particles enclose this angle. Trimers have a centroid
distance of 1.63rmin, which matches the shoulder in F (r) (Fig. 4.14). Here,
the complete angle distribution Fig. 4.25 offers more insight than F (r) and
is also easily interpreted with respect to geometric configurations.
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Figure 4.25: Distribution of angles between face normals αfn, restricted to particles
within a centroid distance r < 2.1rmin (conjectured next-nearest neighbor shell).
Inset shows a zoom-in of the acute angle region at αfn > 173◦: face-face calibration
sample is overlayed (violett), the dotted line depicts the threshold for acceptance
of face-face contacts.

4.5 Comparison to DEM simulations

L. Pournin developed an effective discrete element method (DEM) code, and
performed simulations on spherotetrahedra, varying the particle sharpness,
friction, and preparation protocol [62, 61]. The following results are collab-
orative work: The packing configurations were kindly provided by Lionel
Pournin, and I employed the CNS model for analysis of contact numbers
and structures.

The model of a spherotetrahedron is defined by dilation (Sec. A.1) of
a sphere with radius rc on a “skeleton” tetrahedron with circumradius
(centroid-vertex distance) l, with the sharpness parameter s = l/rc (see
Fig. 4.26 for illustration). The spherotetrahedron varies its shape smoothly
from the sphere (s = 1) to the ideal geometric tetrahedron (s =∞).
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Figure 4.26: Geometric relations between side length a of the spherotetrahedron,
inradius l of the skeleton, and corner curvature rc in the spherotetrahedron model
(2D sketch).

The physical tetrahedra particles are characterized by the “outer” side
length a and the corner curvature rc. These parameters are related by
rc = Rout/(s + 2), where Rout = 3a/(2

√
6) is the circumradius of the outer

tetrahedron with sidelength a. Thus, the physical tetrahedra with side
length a = 7 mm and corner curvature rc = 0.15 − 0.20 mm are approxi-
mated best by spherotetrahedron models with sharpness s = 19 − 26. The
relevant simulations performed by L. Pournin comprise three datasets with
s = [9, 20, 30] and friction µ being either 0.4 or 0.8, as compiled in Tab. 4.2.

Figure 4.27: Pack-
ing of spherotetrahe-
dra, friction µ = 0.4,
sharpness σ = 20

For the presented protocols, spherotetrahedra are
poured into a cylindrical container under the influence
of gravity, either quickly (duration: 2s) or slowly (du-
ration 12s). Optionally, constant vertical vibration is
applied during fast pouring. In contrast to typical
MC simulations, these simulations agree with our ex-
perimental protocol closely, particularly with the ini-
tial preparation and the VIB protocol. In a range of
parameters comparable to experiments, packing frac-
tions between 0.61 and 0.71 are reproduced. This
allows also to validate the model-based contact num-
ber counting against an independent set of simulation
data. As Tab. 4.2 shows, contact numbers obtained
for the DEM data agree with the experimental con-
tact numbers. Furthermore, the width of the CNS
step, as measured by σCNS (see Sec. 3.2), increases
with the corner radius (resp. inverse sharpness), as
expected from the model. It is remarkable that the
contact numbers seem to saturate near Z = 9 for φ as
high as 0.637, which supports the experimental obser-
vation up to φ = 0.622 (see Fig. 4.8). Moreover, even if the DEM packings
are slightly denser than the experimental packings, contact numbers are in
excellent accordance with the highest values of Z ≈ 8.8. Note that these
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values coincide remarkably well with the Jamming threshold from simula-
tions on frictionless tetrahedra [79], where ΦJ = 0.61 and ZJ = 8.6 was
determined. These results suggest that there an universal upper limit for
Z exists, which is independent of simulation or experimental details. Thus,
a purely geometric argument (volume exclusion) is the most likely explana-
tion. For example, each face of a tetrahedron could be covered by a dimer in
an edge-face contact geometry, which yields Z = 8 and a constraint number
of C = 8 · · · 2.5 = 20. However, in lack of deeper insight from computational
geometry, this question remains presently open.

Another notable consequence is that the CNS model can be applied to
numerically created packings, and it is superior to an arbitrary threshold
for contact acceptance. Fig. 4.28 depicts the CNS fits corresponding to the
contact numbers in Tab. 4.2.

Φ friction µ sharpness s radius rc [mm] Z σCNS

.617 0.4 30 .23 8.6 .09

.636 0.8 9 .80 6.8 .21

.637 0.4 20 .35 8.5 .12

Tetrahedra: .622 0.8 26 .15 8.9 .22

Table 4.2: Parameters of selected spherotetrahedra packings in DEM
simulations[61]: Packing fraction Φ, friction µ, sharpness s and corner curvature
equivalent to our physical tetrahedra; resulting contact number Z computed via
CNS model and accuracy of model σCNS .

 0

 2

 4

 6

 8

 10

 12

 14

6.4 6.8 7.2 7.6

in
te

rs
e

c
ti
o

n
s
 n

(a
v
)

virtual side length av [mm]

Model n(av)

Sample
Z·N (a

µ
,σ)

Z

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 6.4  6.8  7.2  7.6

in
te

rs
e

c
ti
o

n
s
 n

(a
v
)

virtual side length av [mm]

Model n(av)

Sample
Z·N (a

µ
,σ)

Z

(b)

Figure 4.28: Counting contacts of spherotetrahedra packings with the CNS model.
(a) For low sharpness (s = 9), the step is much broader (σCNS = 0.21) than for (b)
high sharpness (s = 30), where σCNS = 0.09.
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Chapter 5

Packings of octahedra and
spaghetti

This chapter summarizes work that has been done in collaboration with
co-workers.

5.1 Octahedra

This work was done in collaboration with Nirmal N. Thyagu. In addition
to tetrahedra packings, also octahedra particles with 7 mm side length were
analysed by tapping experiments and tomography. In contrast to tetrahe-
dra, octahedra do readily crystallize when packings are prepared by the VIB
procotol or by long tapping experiments. Crystallization is heterogenous,
that is, it proceeds from the bottom and from the cylinder walls. Fig. 5.2
shows different views of a reconstructed Octahedra (VIB) packing, illus-
trating the competing ordering effects from bottom and side walls (coloring
according to orientation).

A mixture of octahedra and tetrahedra can form a space filling crystal.
Crystallization emerges layer-wise, when particles are mixed in the appro-
priate ratio of 1:2 (octahedra:tetrahedra), and poured in under constant
vibration (using any protocol similar to VIB). If the mixture is first filled in
and then continuously tapped, size segregation and convection rolls appear,
which inhibit layer-wise crystallization, as Fig. 5.3 illustrates. Octahedra
aggregate in the upper part, and tetrahedra seem to upwell in the middle of
the container.

95
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(a) (b)

Figure 5.1: Dense packing of octahedra particles (a) Photograph of partly crys-
talline surface of octahedra VIB packing (b) Crystallization from the wall

(a) (b) (c)

Figure 5.2: Reconstructed octahedra particles (VIB protocol), colored by orienta-
tion: Maximum alignment of a face towards the bottom plane = red, minimum =
blue. (a) Bottom view: Crystallization of faces towards the cylinder bottom (b)
Side view, half-cut: Crystallization from the bottom decays towards the top (c)
Top view
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Figure 5.3: Observed size segregation of a tetrahedra-octahedra mixture (tetrahedra
colored red, octahedra blue).
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5.2 Spaghetti packings

Figure 5.4: Experimental
setup: Packing of spaghetti
(rods) in a cylinder.

The idea to investigate the packing properties of
spaghetti as a model for rods or filaments origi-
nates from Claus Heussinger and my supervisor
Matthias Schröter. From 2011 to 2013, I super-
vised Sebastian Pitikaris (BSc thesis), Christian
Brosowski (BSc thesis), both at the Theory de-
partment of the Faculty of Physics, Göttingen,
and Cyprian Lewandowski from Imperial Col-
lege, London (RISE exchange program), and as-
sisted in sample preparation, tomographic ac-
quistion, particle detection and further analysis.
Here, only a brief overview of the experiment
is given and selected results are highlighted; for
further details the reader is referred to the re-
spective BSc theses. Additionally, Cyprian de-
veloped a Matlab interface for 3D visualizaion
with Povray and Blender, with a detailed docu-
mentation [43].

5.2.1 Motivation

Philipse [59] predicted a universal scaling law for the random packing of
rods with length L and diameter D. According to the model, the contact
number Z scales with packing fraction Φ and the aspect ratio L/D, that is:

Z ∼ Φ
L

D
(5.1)

The tomography of spaghetti packings was chosen as an experimental
model system for verifying this theory. Technical prerequisites are an ac-
curate particle detection algorithm and the accurate counting of contact
numbers, which is achieved here with a modified CNS model.

5.2.2 Preparation

Barilla Spaghettini (Diameter D = 1.39 mm) were cut to different length
(L = 2, 3, 4 cm) using a common paper-cutter. The cut pieces were filled in
with various techniques (e.g. using a rough bottom), in order to minimize
alignment effects. The main experimental challenge is to create a disordered
packing, where alignment effects from walls can be minimized.
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5.2.3 Particle detection

As mentioned in Sec. 3.1.5, the task of registering particles with pronounced
shape anisotropy can be solved via a singular value decomposition (SVD).
This is a factorization of a transformation matrix M, decomposed into a
sequential rotation V, a diagonal scaling S and another rotation U, so that
M = USVT . Fig. 5.5a illustrates the decomposition by transforming a
unit circle into a rotated and sheared ellipse. Here, the largest eigenvalue
σ1 is the half-axis of the ellipse, and the eigenvector ~u1 is aligned with the
principal axis.

Fig. 5.5b shows the result of applying the SVD successfully for registra-
tion of a arbitrarily oriented spaghetti in the packing.

(a)

(b)

Figure 5.5: (a) Illustration of SVD decomposition; (b) Registration of rod pack-
ings (tomograph of Barilla Spaghettini): binarized foreground particles (yellow);
erosion operator applied for segmentation (red); SVD applied on eroded image and
reconstructed by largest eigenvalue max(σi)

5.2.4 Analysis

The direction vector from the SVD analysis Fig. 5.5b is a direct metric for
the orientational alignment, as Fig. 5.6 illustrates.

Preliminary results on the verification of the Philipse scaling law (Eq. 5.1)
look promising: With increasing aspect ratio L/D, the ratio of Z/Φ in-
creases proportionally. The deviations from the scaling model are mainly
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Figure 5.6: Orientation of spaghetti particles according to their azimuthal angle
(inclination): Prevalence of vertical alignment

attributable to orientational alignment effects from the walls. The tendency
for vertical alignment during tapping is also observed in DEM simulations
on spherocylinders [63].

Besides the contact number, also Voronoi volume distributions of spaghetti
packings can be examined. Fig. 5.7 shows an exemplary set of spaghetti with
their associated Voronoi volumes.

Figure 5.7: Selected spaghetti with their associated Voronoi volumes in the core
region of a packing. Rendered using POVRay, coloring from blue (largest volume)
to red (lowest volume)



Chapter 6

Conclusion and Outlook

6.1 Tetrahedra packings are hyperstatic

In this study, the geometric structure of frictional, disordered tetrahedra
packings was analysed in detail. The choice of the granulate was motivated
by moving away from the ”spherical cow” paradigm towards more realistic
models.

In the first part, we showed that different preparation protocols can be
utilized to create packings with a wide range of packing fractions
(Φ = 0.47 . . . 0.62). A comparison between the annealing procedure RAMP
and tapping with varying intensity Γ revealed that the steady state density
Φ∞ is very likely history independent and negatively correlated with Γ.

The spatial distributions of packing fractions showed that gentle tapping
causes a more homogenous distribution than vigourous shaking. Moreover,
the VIB protocol exhibits the highest packing fraction among all samples.

The second part tackled mechanical stability in the context of the Jam-
ming paradigm. The generalized constraint number C, which depends on
the contact geometries, was found to reach values between 12 and 18, sub-
stantially larger than the isostatic limit of 6 constraints per particle. Exper-
imentally prepared, frictional tetrahedra packings are therefore hyperstatic,
in contrast to previous studies claiming isostaticity [34, 85]. Depending on
the protocol, packings with the same Φ, but different contact number Z can
exist. The distribution of the number of face-face contacts was found to fol-
low a random process with a sample-dependent probability, which increases
with higher packing fraction. The break-down of the random, uncorrelated
probability was suggested as a possible distinction criterion between disorder
and order.

Subsequently, we addressed the question of order or disorder in tetrahe-
dra packings. To this aim, we employed the translational and orientational
correlation functions g(r) and F (r), and discussed the applicability of dif-
ferent order metrics. Since sensitivity to structural features was insufficient,
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we turned to more specific metrics based on face-face contact numbers. The
outcome was that a) dense local structures have a abundance of face-face
contacts, b) face-face-connected clusters grow strongly with increasing Φ,
and c) the face-face contact number suggests itself as an order parameter
which is superior to the participation ratio [76].

On a local level, the distributions of local Voronoi volumes (effective vol-
umes) were computed and compared to Gaussian and Gamma distribution
models. It turned out that both distributions have limitations, rooted in
the model assumptions, that cause a mismatch between observed volumes
and model distributions.

The mapping of local contact types to φlocal revealed that increasing
global packing fraction is locally realised by point contacts with low φlocal
turning into edge-face or face-face contacts with higher φlocal.

Results contained in this thesis were published in Ref. [52], and the
complete packing configurations are available for download at the dryad
repository [51].

A collaboration with Nirmal N. Thyagu covered preparation and analysis
of octahedra packings, where a interesting crystallization behaviour could
be observed. Tetrahedra-Octahedra mixtures showed size segregation (TAP
protocol) or partly crystallization (VIB). A second collaboration with C.
Heussinger dealt with packings of rods (Spaghetti), which showed the broad
applicability of the CNS method, and even a quantitative agreement with
the proposed scaling law for the contact number.

6.2 Outlook

A key question to be addressed in future work is the transition between
order and disorder. To this aim, experimental protocols for creating denser
packing structures are needed. Cyclic shear has been successfully applied to
surpass the random close packing limit for sphere packings [54], and should
be transferable to tetrahedra. Currently, preliminary results on octahedra in
a shear cell are acquired by my colleague Nirmal N. Thyagu. The preparation
of a quasi-crystal might be possible if a seed layer is constructed at the
bottom (private communication with P. Damasceno). Dense packings could
also be created with addition of attractive forces, like adding water with a
wetting agent.

Regarding the TAP protocol, the dynamics of the pore space could be
analysed and compared to the compaction of spheres, which exhibit an ex-
ponential decay of pore volumes [68]. Computationally, the pore space could
be computed from a tomography as follows: Binarize the tomogram, com-
pute the Euclidean distance transform on the background phase, and extract
pore the radii directly from the value of the local maxima.

The question how contacts or constraints depend on the local and/or
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global scale of packing fractions is not answered conclusively. Further anal-
ysis should address the influence of spatial coarse-graining and perform more
ensemble averages for a given packing fraction.

The collaboration with L. Pournin should be continued, as both model,
preparation technique and results compare well to the present experiment,
and a possible extension to other preparation techniques or particle shapes
is straightforward.

In addition, I hope that the publication of the packing configurations on
the dryad repository [51] facilitates further progress in the field of disordered
packings of non-spherical particles.
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Appendix A

Image processing

A.1 Morphological image processing

The reconstructed tomographic volume is a three-dimensional grey value
image I, where lmax discrete grey-levels are observed at x ∈ Z3 discrete
coordinates. In analogy to pixels (picture elements) in a 2D image, the
discrete coordinates in 3D images are termed voxels (volume elements).

A binary image is defined as I 7→ {0, 1}, so that a voxel either belongs
to a background (0) or foreground (1) segment. The corresponding inverted
image is denoted by I and maps the values {0, 1} to {1, 0}, which is equiv-
alent to a elementwise logical NOT. If I and J are two binary images, the
elementwise union and intersection operators ∪ and ∩ are defined as [81]:

(I ∪ J)(x) = max[(I(x), J(x)]

(I ∩ J)(x) = min[(I(x), J(x)]

(a) Binary image I (b) Binary image J (c) I ∪ J (d) I ∩ J

Figure A.1: Elementary set operators on images

Here the basic concepts and operations of morphological image process-
ing, which are relevant in the image processing workflow, are outlined.

1. The dilation of the image I by the structure element S is the Minkowski
addition between the two sets: I ⊕ S.

2. The erosion of the image I by S is the corresponding Minkowski sub-
traction: I 	 S.

Fig. A.2 illustrates the result of dilation and erosion with a disk-shaped
structuring element:
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(a) (b)

Figure A.2: Dilation and erosion operators. (a) Dilation: White square I dilated by
the blue disk S results in the larger grey rounded square I ] S (b) Erosion: Large
grey square I eroded by the blue disk S results in the smaller white square.

A.2 Data structures

Internally, the platonic bodies with v vertices, f faces and e edges per face
are represented by the following data structure: Vertex Coordinates and
other particle specific properties are stored in the first hierarchic layer. In
the second layer, for each face, the indices of the corresponding vertices (e.g.
1,3,4) and edges are stored (linked list). This structure is easily accessible
for the reader and appropriate for execution of geometric queries (adapted
from http://www.qhull.org).

TCSet =

11071x1 struct array with fields:

vertex % Set of vertices [4x3 double]

centroid % Centroid coordinates in image [1x3 double]

side % side length in voxels [double]

border % particle outside ROI, near border? [logical]

overlap % match value of registration m* [double]

face:

1x4 structure: % Linked list with indices of

vertex % vertices, edges and normal vector

edge

normal

Each face is associated with its 3 vertices, the 3 edges and the face normal
vector (pointing outwards).

TCSet(1).face(1)

vertex: [1 2 4] % indices of vertices

edge: [3x2 uint8] % list of edges (here: [1 2],[2 4],[4 1])

normal: [1x3 double] % normal vector

http://www.qhull.org


Appendix B

Neudecker vs. Jaoshvili

The following table B.1 shows a comprehensive side-by-side comparison be-
tween this study and the single comparable experiment by Jaoshvili et.
al.[34]. In particular, the smaller tetrahedral particles, higher resolution
of X-ray CT, and analysis via the physically motivated CNS function allow
for a much more accurate and detailed analysis. All measured properties
(range of φ, Z, ZFF , C) differ strongly between these experiments.
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Author Jaoshvili[34] This work

Particles

Slice view

Side length a 20 mm 7 mm
Corner radius
(as % of a)

r = 1.5 mm (7-8%) r = 0.15 mm (2-3%)

Friction µ = 0.22± 0.04 µ = 0.87± 0.03

Preparation particles sequentially
added + shaken

4 different preparation
methods

Exp. Setup MRI @ 0.5mm/voxel X-ray CT @
0.1mm/voxel

Statistics 311 particles > 4000 particles in each
sample

Packing fraction φ = [0.65 . . . 0.74]
(only 1 sample analysed)

φ ∈ [0.469 . . . 0.622] (22
samples)

Contact
numbers

Z = 6.3± 0.5 Z ∈ [6.6 . . . 9.0]

Face-face
contacts

ZFF = 2.2 ZFF ∈ [0.2 . . . 0.7]

Constraints
(per particle)

Cfrictionless = 6.0± 0.8 Cfrictionless ∈ [4.3 . . . 6.6]
Cfrictional ∈ [12 . . . 18]

Table B.1: Direct comparison between tomographic analysis of tetrahedral dice
packing[34] and this work.



Appendix C

Variable listing

a side length of particle
αFF Angle between two tetrahedra faces (in degree)
αfn Angle between two tetrahedra face normals (in degree)
C Generalized constraint number per particle
Φ globally averaged packing fraction
φlocal = Vtet/V local packing fraction
Rin Inradius of tetrahedron or octahedron: touches all faces
Rout Circumradius: passes all vertices
V Voronoi volume of particle
Vtet Volume of tetrahedron
Voct Volume of octahedron
Z Contact number (per particle)
ZFF , ZEF , ZV F , ZEE Number of face-face, edge-face,vertex-face and edge-edge

contacts (per particle)
ROI Region Of Interest, sub-volume used for analysis
Voxel Coordinate in 3D with assigned intensity value

ll
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Schröder-Turk GE, and Schröter M. Tomographic analysis of jammed
ellipsoid packings. AIP Conf. Proceedings, 1542:377, 2013.
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