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1 Introduction  

Microalgae are a highly heterogeneous group of organisms that can be found in diverse habitats 

ranging from snowy mountains to the deep sea. Their fundamental role in the respective 

ecosystems has been thoroughly studied and the elucidation of cellular processes such as 

photosynthesis has been greatly aided by the characterization of microalgae on a molecular scale. 

Some microalgal species accumulate high levels of the neutral lipid triacylglycerol (TAG) and 

store it within the cell as carbon and energy reserve. They have therefore gained attention as 

possible producers of biofuels (Shi et  a l . , 2011) or high value products such as polyunsaturated 

fatty acids (PUFAs) (Khozin-Goldberg et  a l . , 2011). Cultures of these oleaginous algae can be 

stimulated to upregulate TAG synthesis by exposing them to a range of abiotic stresses, 

deprivation of nitrogen being most effective in this respect. This stress response is accompanied 

by far-reaching changes in overall metabolism, including growth arrest (Cheng-Wu et  a l . , 2002; 

Davidi et  a l . , 2012; Msanne et  a l . , 2012; Tsai et  a l . , 2014), a drastic downregulation of 

photosynthesis on a transcript level (Miller et  a l . , 2010; Schmollinger et  a l . , 2014), degradation 

of chloroplasts (Allen et  a l . , 2015; Davidi et  a l . , 2012; Msanne et  a l . , 2012; Peled et  a l . , 2011; 

Schmollinger et  a l . , 2014) and a restructuring of the proteome towards a lower nitrogen content 

(Schmollinger et  a l . , 2014). Remarkably, these extensive adjustments are reversible by 

resupplying nitrogen to the growth media (Khozin-Goldberg et  a l . , 2005; Tsai et  a l . , 2014). 

Keeping in mind the potential application of TAG derived products, the fact that oleaginous 

microalgae are this responsive to manipulation makes them especially interesting for the study 

of lipid metabolism. 

1.1 TAG biosynthesis in algae 

TAG is a highly reduced molecule consisting of three acyl chains that are esterified to a glycerol 

backbone. A large part of our knowledge of algal TAG synthesis was initially derived from 

insights gained in plant research by inferring the function of many algal genes from homology 

with plant counterparts that had already been characterized as parts of lipid metabolism (Liu 

and Benning, 2013; Moellering et al., 2009). When the functions of numerous proteins encoded 

in the algal genomes were validated through reverse genetic studies, many similarities in 

fundamental processes leading up to the accumulation of TAG were confirmed and some 

features unique to algae were uncovered (Zienkiewicz et  a l . , 2016).  
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The assembly of acyl lipids requires fatty acids, which are synthesized in the chloroplast by the 

fatty acid synthase complex. Using pyruvate-derived malonyl-ACYL CARRIER PROTEIN 

(malonyl-ACP) as a building block, this enzyme complex generates 16:0 and 18:0 fatty acids 

bound to ACP through repeated cycles of condensation, reduction, dehydration and reduction 

as well as 18:1-ACP through a subsequent desaturation step. In Arabidopsi s thal iana  leaves, 

the majority of fatty acids is exported from the plastid following cleavage of ACP and is activated 

by addition of Coenzyme A (CoA). Acyl-CoAs can be used for the synthesis of glycerolipids via 

the Kennedy pathway at the endoplasmic reticulum (ER), which begins with the sequential 

addition of the acyl moieties to the sn-1 and sn-2 positions of glycerol-3-phosphate by 

acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT) and acyl-CoA:lysophosphatidic acid 

acyltransferase (LPAAT), respectively, resulting in phosphatidic acid. This molecule is 

subsequently dephosphorylated by phosphatidic acid phosphatase (PAP), forming 

diacylglycerol (DAG). DAG can then be used for the synthesis of membrane glycerolipids 

through the addition of a polar headgroup, or acylated at the sn-3 position to yield the neutral 

lipid TAG. This final step can be catalyzed by 2 different enzyme families that have been 

characterized in algae so far and which differ in the type of lipid they use as an acyl donor. 

Firstly, acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes catalyze the esterification of a 

fatty acid from acyl-CoA to DAG. Three types of DGAT, differing strongly in amino acid 

sequence and subcellular localization, have been identified in plants and two of them have been 

functionally characterized in algae. Secondly, the final acyl group for TAG synthesis can be 

transferred from membrane lipids to DAG by phospholipid:diacylglycerol acyltransferase 

(PDAT). This enzyme has been shown to contribute to TAG biosynthesis in C. re inhardti i , 

transferring acyl groups not only from phospholipids, as its plant homologs (Dahlqvist et  a l . , 

2000; Stahl et  a l . , 2004), but also from other lipid subclasses including DAG and galactolipids 

(Yoon et  a l . , 2012).  

In plants, approximately 40 % of fatty acids remain in the chloroplast and enter a “prokaryotic 

pathway” of lipid synthesis with high similarity to the extraplastidic Kennedy pathway. The 

subsequent addition of polar headgroups results in the formation of constituents of thylakoid 

and envelope membranes such as monogalactosyldiacylglycerol (MGDG). Plant lipids 

originating from the chloroplast may be distinguished from those derived from the ER by the 

acyl chain occupying the sn-2 position, as the LPAAT in the chloroplast exhibits a strong 

preference for 16:0, whereas the isozyme at the ER membrane preferentially incorporates 18 
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carbon fatty acids into lysophosphatidic acid. The observation that most TAG molecules in 

C. re inhardti i  carry a 16:0 fatty acid in this position hints at a possible plastidial origin of the 

storage lipid, presuming the sn-specificity of the LPAAT isoforms holds true for algae, which 

has not been demonstrated to date.  

1.2 TAG degradation in algae 

Rescuing microalgae after a phase of stress induces an adaptation of the overall metabolism, 

which undergoes a shift away from the accumulation of storage lipids towards growth fueled by 

photosynthesis. For this purpose, chloroplasts must be rebuilt, a process that can be quantified 

in terms of increased galactolipid and chlorophyll synthesis. Fatty acids from TAG are used as 

a source of carbon and energy for this drastic remodeling of cellular functions. This requires the 

action of TAG- DAG- and monoacylglycerol (MAG) lipases to cleave off fatty acids, which can 

then be degraded through β-oxidation. An enzyme with the latter two lipase activities has been 

characterized in C. reinhardti i  (LIPASE 1, CrLIP1) and appears to be linked to TAG 

hydrolysis, as reduced gene expression leads to a delay in TAG mobilization (Li et  a l . , 2012b). 

However, in contrast to plants, mammals or other microorganisms, a lipase catalyzing the first 

step in the mobilization of TAG has not been identified in C. reinhardti i  or any other 

microalga, with the exception of the diatom P. tri cornutum . In this organism, a protein 

belonging to the family of patatin domain lipases has recently been described (TAG LIPASE 1, 

TGL1, Barka et  a l . , 2016). This family of enzymes is named after a phospholipase A originally 

described in potato tubers (Andrews e t  a l . , 1988) and also comprises diverse lipases including 

the major TAG lipases in A. thal iana  seedlings (SUGAR DEPENDENT 1, AtSDP1, 

Eastmond, 2006) and Saccharomyces  c erev is iae  (ScTGL3-5, Athenstaedt and Daum, 2003, 

2005).  So far, the assumption of TAG lipase activity for P. tri cornutum  TGL1 is based on the 

recombinant protein exhibiting esterase activity on the substrate analog para-nitrophenyl 

butyrate as well as on increased TAG accumulation in knockdown mutants (Barka et  a l . , 2016). 

A study directly implicating the enzyme in the first step of TAG hydrolysis rather than 

subsequent degradation of DAG and MAG as demonstrated for CrLIP1 has not been published 

to date.  

While the enzymes that are directly involved in algal TAG metabolism are being characterized 

one by one, only very little information has been gathered on their transcriptional regulation. In 

C. re inhardti i , a putative transcription factor specifically involved in the response to nitrogen 
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starvation (Boyle e t  a l . , 2012) and a kinase that possibly regulates other transcription factors in 

nitrogen- and sulfur deplete conditions (Kajikawa et  a l . , 2015) have been identified but not 

characterized in more detail. 

Overall, despite vast overlaps between the features of acyl lipid metabolism in plants and algae, 

there seem to be differences. In addition to the discrepancies mentioned above, a high degree 

of variation can be found in the copy numbers of genes encoding acyltransferases of the 

Kennedy pathway between microalgae and plants as well as among algal species (Zienkiewicz et  

a l . , 2016). This observation indicates that the degree of complexity in glycerolipid synthesis may 

not be the same in all of these organisms, a notion that is supported by the fact that 

C. re inhardti i  lacks phosphatidylcholine (PC), in contrast to plants and many other algae 

(Giroud et  a l . , 1988). 

1.3 Diversity of lipid bodies 

TAG is an unpolar lipid molecule and therefore cannot be a constitutive part of a membrane, 

nevertheless it needs to be stored in a way that allows mobilization when necessary. This 

function is fulfilled by cytosolic lipid bodies (LBs). Early studies on the composition of LBs 

were carried out in onion, cabbage and cottonseed (Yatsu et  a l . , 1971), while their structure was 

first elucidated in peanut seedlings (Yatsu and Jacks, 1972). Since then, LBs have been found to 

occur in an astonishing range of organisms, tissues, developmental stages and environmental 

conditions. They can measure between 50 nm (in milk-secreting cells) and 200 µm (in mature 

adipocytes) in diameter (Murphy, 2001) and are generally composed of a core of neutral lipids 

surrounded by a monolayer of polar lipids with proteins directly or indirectly attached to the 

surface (Yatsu and Jacks, 1972).  

In mammals, LBs are being increasingly investigated as their relevance for human health and 

disease becomes more and more clear. They have been found in a large variety of cell types, 

where they are thought to fulfill a range of functions that are connected to the presence of 

different proteins on the LB surface. Adipocytes are naturally abundant in LBs, which carry 

enzymes involved in lipid metabolism and lipid secretion on their surface (Brasaemle et  a l . , 

2004; Love et  a l . , 2015). LBs in hepatocytes carry adipose TAG lipase on their surface 

(Eichmann et  a l . , 2015) among other proteins that are thought to be involved in fatty liver 

diseases (Carr and Ahima, 2015). Activated mast cells (Dichlberger et  a l . , 2015), a Chinese 

hamster ovary cell line (Bartz et  a l . , 2007), enterocytes (Beilstein et  a l . , 2015) and cells 
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originating from the skin (Dahlhoff e t  a l . , 2015) as well as the skeletal muscle (Bosma, 2015) 

have equally been investigated with regards to the LB proteome. LBs and their protein 

components have been established to play a major role in the inflammatory response of 

leukocytes through the synthesis and regulation of eicosanoids, fatty acid derived mediators of 

inflammation (Melo and Weller, 2015). Additionally, a subset of testicular cells accumulates LBs 

that are rich in cholesteryl esters, which are required as precursors for testosterone synthesis 

(Wang et  a l . , 2015) and LBs have even been identified within the nuclei of hepatic cells 

(Layerenza et  a l . , 2013; Uzbekov and Roingeard, 2013; Wang et  a l . , 2013). Despite this broad 

spectrum of tissue specific functions, all mammalian LBs that have been characterized so far 

possess structural proteins belonging to the perilipin (PLN) family, consisting of PLN1-5 

(Sztalryd and Kimmel, 2014), which regulate neutral lipid degradation by lipases (Sztalryd and 

Kimmel, 2014; Wang et  a l . , 2011). They need to be degraded in order for lipases to be able to 

access their substrate (Schweiger and Zechner, 2015) and pln  knockout mice are characterized 

by constitutive lipolysis (Martinez-Botas et  a l . , 2000). The determinant role of PLNs in LB 

structural integrity is further underlined by the observation that heterologous PLN expression 

alone is sufficient to induce the formation of LBs in neutral lipid-enriched yeast cells (Jacquier 

et  a l . , 2013; Mishra and Schneiter, 2015).  

A homolog of PLNs has been identified in analyses of the Drosophila melanogast er  fat body 

tissue LB proteome and was shown to fulfill a comparable function in the regulation of LB 

degradation (Beller, 2006; Grönke et  a l . , 2003; Teixeira et  a l . , 2003). In vi t ro  experiments with 

insect cells have shown that GPAT4, the first enzyme in the Kennedy pathway, relocalizes from 

the ER to a subset of LBs that then grow upon addition of exogenous fatty acid (Wilfling et  a l . , 

2013), an aspect of LB proteome dynamics that appears to be conserved in mammals (Wilfling 

et  a l . , 2013). In addition to merely storing carbon and energy in the form of neutral lipids, 

certain D. melanogast er  stem cell LBs seem to have a role in protecting membranes during 

oxidative stress by sequestering PUFAs, thus protecting them from harmful peroxidation 

(Bailey et  a l . , 2015).  

Not only mammals and insects have been the subject of studies focusing on LBs, but unicellular 

organisms are also of great interest regarding the composition, metabolism and function of this 

organelle where no specialized tissues exist. For many years, LBs in S. cerevis iae  have been 

studied and in contrast to other oleaginous organisms known so far, yeast LBs contain a large 

amount of sterol esters, comprising approximately half of the neutral lipids, the other half being 
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TAG (Clausen et  a l . , 1974). Both classes of neutral lipid serve as sources of acyl moieties for 

membrane lipid synthesis (Daum and Paltauf, 1980). In contrast to other organisms, no 

structural LB proteins have so far been identified in S. c erev is iae ,  but a number of other 

proteins has been reported to be associated with the LB surface (Athenstaedt et al., 1999; 

Grillitsch et al., 2011). TAG and sterol biosynthesis appear to take place at the LB as indicated 

by the presence of a DGAT (Oelkers e t  a l . , 2002; Sorger and Daum, 2002) and a sterol 

Δ24-methyltransferase (Zinser e t  a l . , 1993), as well as TAG degradation by TAG LIPASEs 3-5 

(TGL 3-5) (Athenstaedt and Daum, 2003, 2005).  

Plants have been studied intensively for their lipid metabolism, in part motivated by potential 

applications in the production of oil for food, feed and industrial applications. In this context, 

A. thal iana  has become a very useful model organism to study TAG metabolism in oilseeds 

and the findings made in analyses of seed LB protein composition in this organism (Jolivet et  

a l . , 2004; Vermachova et  a l . , 2011) have been confirmed as well as complemented with studies 

in crop plants such as rapeseed (Brass ica  napus ) (Jolivet et  a l . , 2009; Katavic et  a l . , 2006), 

maize (Zea mays) (Tnani et  a l . , 2011), sesame (Sesamum indi cum  L.) (Chen et  a l . , 1998), 

sunflower (Helianthus annuus  L.) (Thakur and Bhatla, 2016), peanut (Arachis hypogea ) 

(Jolivet et  a l . , 2013), cucumber (Cucumis sativus ) (Sturm et al., 1985) and  false flax (Camelina 

sativa ) (Jolivet e t  a l . , 2013).  

In all oilseed LB isolations so far, the most abundant protein was oleosin, originally identified 

in maize seeds (Vance and Huang, 1987). 16 members of this protein family are encoded in the 

A. thal iana  genome, of which 5 are specifically expressed in maturing seeds (Kim et  a l . , 2002). 

These proteins are now known to play an important role in the structural integrity of LBs, as a 

reduction in oleosin abundance drastically increases LB size in seeds, which has been correlated 

with a delay in germination (Siloto et  a l . , 2006). Oleosin degradation is required for LB 

breakdown (Deruyffelaere et  a l . , 2015) and the proteins have been assigned with a function in 

the freezing tolerance of seeds (Shimada et  a l . , 2008). An additional protein that is frequently 

found associated with seed LBs is caleosin (Chen et  a l . , 1998). The function of this protein, 

named after its ability to bind calcium and the structural similarity with oleosins (Chen et  a l . , 

1999), has not been exhaustively studied. It has been assigned peroxygenase activity in oat seeds 

(Hanano et  a l . , 2006) and a function in vacuolar degradation of LBs in A. thal iana  and 

B. napus  (Poxleitner et  a l . , 2006), while in A. thal iana  seeds a role the in abiotic stress 

response has also been postulated (Takahashi et  a l . , 2000). A third protein that is frequently 
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found at  the surface of plant seed LBs and bears structural resemblance to oleosins is 

steroleosin (Lin et  a l . , 2002). It exhibits hydroxysteroid dehydrogenase activity (d’Andréa et  a l . , 

2007) and based on overexpression and knockdown studies, a role in brassinosteroid-mediated 

signaling has been proposed for this protein (Baud et  a l . , 2009; Li et  a l . , 2007), however the 

exact nature of its role remains unclear. Other enzymatic activities at seed LBs have been more 

clearly characterized, such as a lipoxygenase (LOX) that acts on both TAG and the polar lipid 

surface of the LB in cucumber seedlings, thereby contributing to LB degradation during 

germination (Feussner and Kindl, 1992; Feussner et al., 1995; Sturm et al., 1985). Furthermore, 

the major TAG lipase in A. thal iana  seed germination, SDP1, is an LB protein (Eastmond, 

2006). AtSDP1 transcripts accumulate during seed maturation and the protein is responsible for 

bulk TAG degradation during postgerminative growth of the seedling (Eastmond, 2006), a 

function that is supported by its close homolog SDP1-LIKE (SDP1-L) (Kelly et  a l . , 2011). Yet 

another TAG lipase is associated with LBs in castor bean (Ricinus communis ) seeds (OIL 

BODY LIPASE 1, OBL1) (Eastmond, 2004). It has been classified as an acid lipase as it is most 

active at pH 4 (Eastmond, 2004), however its physiological role has not been elucidated so far. 

Furthermore, the activity of a phospholipase at the LBs in cucumber seedlings is thought to 

facilitate access to the core of the organelle for TAG degrading enzymes (Rudolph et al., 2011). 

LB associated proteins are not only important for germination processes in oilseeds, but also in 

pollen, although substantially less research has been carried out on LBs in reproductive tissues. 

The TAG lipase SDP1-L is more highly expressed in mature pollen than in any other 

A. thal iana  tissue (Kelly et  a l . , 2011), however it has not been shown whether the protein 

localizes to the LBs in this tissue and fulfills a function analogous to its homolog. In analogy to 

seeds, oleosins have also been reported to associate with the LB surface in developing pollen 

(Kim et  a l . , 2002) as well as the floret tapetum (Kim et  a l . , 2002; Lévesque-Lemay et  a l . , 2015).  

The fruit tissues of olive, avocado and oil palm are also abundant in LBs, however compared to 

seed LBs these are substantially larger and do not contain oleosins (Murphy, 2001). Instead, they 

harbor different structural surface proteins , which are termed LIPID DROPLET 

ASSOCIATED PROTEINs (LDAPs, Horn et  a l . , 2013) and do not resemble any known LB 

proteins in other organisms.  

Although the majority of TAG accumulation in plants takes place in the tissues mentioned 

above, LBs have also been detected in vegetative tissues. In A. tha l iana  sdp1  roots for 

instance, considerable amounts of LBs accumulate (Kelly et  a l . , 2013) and LBs have equally 
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been reported for leaf mesophyll as well as leaf epidermal tissues (Pautov e t  a l . , 2016; Shimada 

and Hara-Nishimura, 2015). 

Microalgal LBs are being characterized in a rapidly increasing number of species and parallels 

with plant LBs can be observed, however some striking differences have been revealed. Firstly, 

the accumulation of high levels of TAG is a stress response in most algae studied to date, as 

opposed to a part of regular developmental processes. Secondly, oleosins and perilipins are 

absent from all algal species that have been investigated. Instead, a family of proteins that forms 

a new clade of structural LB proteins seems to take over this function in many unicellular algal 

species. The MAJOR LIPID DROPLET PROTEIN (MLDP) of C. reinhardti i  was the first 

one of these to be identified (Moellering and Benning, 2010) and expression of the gene has 

been used as a marker for TAG accumulation in C. re inhardt i i  (Tsai e t  a l . , 2014). CrMLDP 

has been shown to recruit other proteins, especially tubulins, to the LBs during nitrogen 

starvation. Homologs have since been characterized in Nannochloropsi s  (LIPID DROPLET 

SURFACE PROTEIN, LDSP) (Vieler et  a l . , 2012), Haematococcus  pluvial is  (OIL 

GLOBULE PROTEIN, OGP) (Peled et  a l . , 2011) and Dunalie l la sal ina  (MLDP) (Davidi et  

a l . , 2012), while homologous genes are present in the genomes of further microalgae of the 

Volvocales and Chlorellales order (Davidi et  a l . , 2012). The most extensively characterized 

diatom, the oleaginous alga P. t ri cornutum , has been found to possess yet another type of 

structural LB protein that is different from all other LB proteins described above (Yoneda et  

a l . , 2016). Caleosin or steroleosin homologs have not been reported for any algal species, with 

the exception of a caleosin-like protein of unknown function in Chlorel la  (Lin et  a l . , 2012) and 

Auxenoch lore l la protothecoides  (Pasaribu et  a l . , 2014).  

Apart from these highly diverse structural proteins, algal LB proteomes also include enzymes 

with a broad range of predicted functions in lipid metabolism and other processes, as reflected 

in comprehensive datasets obtained in studies of C. reinhardti i  (Moellering and Benning, 2010; 

Nguyen et  a l . , 2011) and Dunalie l la bardawil  (Davidi et  a l . , 2015).  

1.4 Structural features of LB proteins 

Oleosins, constituting the most intensively studied plant structural LB protein family in plants, 

are relatively small proteins (15-30 kDa, Chapman et  a l . , 2012) and possess three features 

permitting them a direct and strong association with LBs (Tzen et  a l . , 1992). Firstly, a 

prominent sequence of hydrophobic residues allows the protein to become an integral part of 
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the LB surface. Caleosins and steroleosins harbor a similar domain, as do Nannochlorops is  

LDSP and the P. tri cornutum  structural LB protein, thus pointing to a functional conservation 

of this type of domain even in the absence of sequence homology. Secondly, a motif termed 

“proline knot” that consists of three proline residues within a sequence of 12 amino acids is 

located within the hydrophobic region of the protein (Abell et al., 1997). It protrudes into the 

TAG core of the LB and is thought to be crucial in anchoring the protein in the organelle. 

Interestingly, a hydrophobic domain containing this motif is also required for LB localization 

of Hepatitis C virus core protein in mammalian cells (Graham Hope e t  a l . , 2002). The proline 

knot is equally conserved in caleosins and present in modified form as a “proline knob” in 

steroleosins (Lin e t  a l . , 2002). Thirdly, two amphipathic helices flank the hydrophobic region 

of oleosins (Tzen et  a l . , 1992). The hydrophobic and polar faces of each helix associate with 

the acyl moieties and the polar headgroups of membrane lipids, respectively (Segrest et  a l . , 

1974), thus allowing proteins to bind to membranes or LBs. Mammalian and insect perilipins 

exclusively make use of this type of structural element to bind to LBs (Najt et  a l . , 2014; Rowe 

et  a l . , 2016), however the respective regions of the protein only assume a helical conformation 

in the presence of a lipid surface, a property that greatly impeded the elucidation of this feature 

of perilipins (Rowe e t  a l . , 2016). Not all known LB proteins however possess one or more of 

the above-mentioned features. The cucumber LB LOX for instance is targeted to the LB by 

means of its β-barrel domain (May et  a l . , 2000) and for other enzymes such as the lipases 

A. thal iana  SDP1 and R. communis  OBL1 or the structural LDAPs, the determinant for LB 

localization is currently unknown.  

LB proteins thus form a highly diverse group of proteins in terms of both function and 

mechanism of LB localization. As an increasing number of oleaginous organisms is being 

investigated with this regard, additional information will be gained and help to understand the 

complex functions of LBs. 

1.5 The oleaginous microalga Lobosphaera incisa  

Model organisms have helped to elucidate many basic processes in lipid metabolism, however 

the expanding scope of species analyzed has shown that new organisms from different 

ecological and evolutionary backgrounds are valuable for the discovery of novel mechanisms.  

In this study, a unicellular alga (strain SAG 2468) was investigated, which was originally isolated 

from a glacier in Japan, tentatively classified as Myrmecia  incisa  but later proposed to be named 
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Pari etochloris  in ci sa  (Watanabe et  a l . , 1996) and subsequently Lobosphaera  inc isa  (Karsten 

et  a l . , 2005). A closely related strain of M. incisa  originating from the Ötztal, Austria, has 

retained the original classification as assigned by Reisigl (Ouyang et  a l . , 2012; Reisigl, 1964). 

Both strains as well as Coccomyxa subel l ip soidea  strain C-169 belong to the class of 

Trebouxiophyceae within the phylum Chlorophyta and have been studied with regards to lipid 

metabolism.  

Several resources and molecular biology tools are available for the algal strains mentioned above, 

facilitating their experimental characterization. Within the European consortium Genetic 

Improvement of Algae for Value Added Products (GIAVAP), the L. inc isa  nuclear and 

plastidial genomes as well as the transcriptome of cultures subjected to 0 h, 12 h and 72 h of 

nitrogen depletion were sequenced using Illumina technology (unpublished data, Tourasse et  

a l . , 2014, 2015). The genome of C. subel l ipsoidea  and the transcriptome of M. incisa  are 

equally available (Blanc et  a l . , 2012; Ouyang et  a l . , 2013). Out of the three strains, L. inc isa  is 

the best characterized and a protocol for its stable transformation has been established (Zorin 

et  a l . , 2014), even though further optimization of this protocol is required to achieve efficient 

transformation for reverse genetic studies. Furthermore, the genome of this strain has been 

successfully altered by chemical mutagenesis resulting in a marked phenotype (Iskandarov et  

a l . , 2011), demonstrating the feasibility of knockout mutations for analyses of this organism. 

While the TAG accumulated by most algae that have been analyzed to date consists mostly of 

saturated or monounsaturated mid and long chain fatty acids (Hu et  a l . , 2008), the L. incisa  

strain analyzed in this study is one of the few species in which partitioning of the very long chain 

PUFA arachidonic acid (20:4 (n-6), ARA) into TAG has been reported (Bigogno et  a l . , 2002a). 

A higher abundance of this fatty acid has not been observed in any other plant or alga. During 

logarithmic growth, the alga produces TAG which then makes up 43 % of TFAs, ARA being 

the most abundant fatty acid in this lipid class (Bigogno et  a l . , 2002a). When the culture is 

deprived of nitrogen, TAG accumulates, comprising 87 % of TFAs after 14 d and the fraction 

of ARA in this lipid class increases to almost 2/3 of TFAs (Khozin-Goldberg et  a l . , 2002). In 

response to a temperature decrease from 25 °C to 12 °C or even 4 °C, ARA is mobilized from 

TAG and transferred to polar lipids (Bigogno et  a l . , 2002b), a process that may have evolved 

as part of the strain’s adaptation to its native glacial environment. When grown in nitrogen 

limiting conditions, chloroplasts are degraded and additional LBs are formed. The ratio of 

carotenoids and chlorophylls is altered during his process and has been demonstrated to closely 
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correlate with ARA content and thus with TAG accumulation, permitting a simple way of 

monitoring the overall physiological state of the culture (Merzlyak et  a l . , 2007). In a further 

study, the alga has been reported to respond to high light stress by depositing β-carotene in LBs 

(Solovchenko et  a l . , 2008a). 

Beyond these observations, several aspects of lipid metabolism in L. inci sa  and its close 

relatives have been elucidated. Biosynthesis pathways for ARA have been proposed based on 

pulse-chase experiments with radiolabeled acetate, demonstrating that Δ12 and Δ6 desaturation 

take place at fatty acids esterified to either PC or the betaine lipid 

diacylglyceryltrimethylhomoserine, while fatty acids need to be incorporated into PC or 

phosphatidylethanolamine for Δ5 desaturation to take place (Bigogno et  a l . , 2002c). This 

possible combination of pathways is distinct from other algal species (Bigogno et  a l . , 2002c; 

Nichols and Appleby, 1969), but has been in part confirmed by an analysis of expressed 

sequence tags in M. inc i sa  (Ouyang et  a l . , 2012). For both closely related strains, the C18 

Δ6 PUFA elongase involved in this pathway has been shown to be upregulated on a 

transcriptional level in response to nitrogen limitation and has been characterized by 

heterologous expression in yeast (Iskandarov et  a l . , 2009; Yu et  a l . , 2012). When ARA synthesis 

is disrupted by a mutation in the Δ5 desaturase rendering it inactive, TFAs still increase during 

nitrogen depletion to a comparable amount as in WT cultures and 18:1 (n-9) as well as 

20:3 (n-6), the substrate of the desaturase, become the major fatty acids (Iskandarov et  a l . , 

2011). The Kennedy pathway of glycerolipid synthesis has also been studied in the two strains. 

In L. incisa , an extraplastidial GPAT has been partially characterized by overexpression in 

C. re inhardti i , confirming its role as a part of the TAG biosynthesis pathway (Iskandarov et  

a l . , 2015). A DGAT1 and two DGAT2 enzymes have been identified in M. inc isa  and their 

function in catalyzing the last step of TAG synthesis was confirmed by heterologous expression 

in a neutral lipid deficient strain of S. cerevi s iae  (Chen et  a l . , 2015). Specificity for certain fatty 

acids could not be observed and a predominant activity during nitrogen starvation has not been 

reported to date.   

In summary, L. inc isa  is a promising organism for the investigation and manipulation of PUFA 

accumulation in algal neutral lipids. Further characterization of this organism with respect to 

TAG metabolism can help to elucidate in more detail the diversity of algal cellular processes. 
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1.6 Aims of this study 

The observation of LBs in a broad spectrum of cell types and conditions has led to an increasing 

fascination with the physiological relevance and molecular composition of these organelles. 

Unicellular algae are particularly interesting in this regard due to the capacity for high-level TAG 

and PUFA synthesis in some strains. While the mechanisms of algal TAG biosynthesis are 

relatively well understood owing to studies in higher plants and the model green alga 

C. re inhardti i , other aspects of LB biogenesis appear to be more variable between species and 

have not been studied as exhaustively. 

The main objective of this study was to investigate the storage and degradation of neutral lipids 

in the ARA-accumulating unicellular green alga L. inci sa . Here, the focus was primarily on 

proteins associating with LBs. Additionally, similarities to known model organisms were 

harnessed in the identification of enzymes possibly involved in LB degradation. 
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2 Methods 

All nucleotide and predicted amino acid sequences used in this study were obtained from the 

unpublished results of genome and RNA sequencing experiments carried out within the 

consortium Genetic Improvement for Value Added Products (GIAVAP) as part of the 7th 

Framework Programme for Research and Development of the European Commission. See 

appendix 0 for coding nucleotide sequences of genes used in this study.  

2.1 Cultivation of Lobosphaera incisa  

L. inci sa  strain SAG 2468 was kindly provided by Dr. Inna Khozin-Goldberg, Ben-Gurion 

University of the Negev, Israel, and cultivated in BG11 media (Stanier et  a l . , 1971) in 400 mL 

glass columns with an inner diameter of 3 cm (Ochs GmbH, Bovenden, Germany). Volumes 

of 300 mL were kept at 25 °C, continuously illuminated with 190 µmol photons m-2s-1 and 

aerated with a supplement of 1 % CO2. Cells were starved of nitrogen by washing and 

resuspending them in modified BG11 media, in which NaNO3 was omitted and ammonium 

ferric citrate was replaced with ferric citrate (Khozin-Goldberg et  a l . , 2002).  

2.2 Isolation of LBs 

All centrifugation steps were performed at 4 °C using an Eppendorf 5810R centrifuge for 

50 mL tubes, an Optima LE - 80K ultracentrifuge equipped with an SW40 rotor for 12 mL thin 

wall polypropylene tubes and an Optima TLX ultracentrifuge equipped with a TLS55 rotor for 

2.5 mL thin wall polypropylene tubes (all obtained from Beckman Coulter GmbH, Krefeld, 

Germany).  

Buffers used were ice cold and samples were kept on ice between centrifugation steps as well as 

during resuspension. 

An L. incisa  culture in the stationary growth phase was starved of nitrogen for 3 days to 

promote TAG formation, which was verified by Nile Red staining (see section 2.7.1). 50 mL of 

culture were centrifuged at 2500 x g for 10 min to sediment the cells, washed once with distilled 

water and ground in liquid nitrogen. LBs were then isolated according to (Sturm et al., 1985) 

with some modifications. The homogenized material was thawed in 60 mL centrifugation buffer 

containing 0.6 M sucrose and a 200 µL sample of the total extract was transferred to a Protein 

LoBind 2 mL reaction tube for later protein isolation.  
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The remaining cell extract was transferred to 12 mL ultracentrifugation tubes and cell debris 

was sedimented by centrifugation for 10 min at 10,000 x g. LBs floating on top along with the 

entire supernatant were transferred to 2 new ultracentrifugation tubes, each carefully overlain 

with 10 mL centrifugation buffer containing 0.4M sucrose and centrifugation was repeated in 

order to separate LBs from other cell components. LBs floating on top were collected using a 

spatula and transferred to a 30 mL Potter-Elvehjem tissue grinder for resuspension in 10 mL 

centrifugation buffer with 0.6 M sucrose using a PTFE pestle. The suspension was once again 

transferred to an ultracentrifugation tube, overlain with 8 mL centrifugation buffer with 0.4 M 

sucrose and centrifuged at 10,000 x g. The LB fraction was washed this way 2 more times. In 

the final washing step, LBs were resuspended in 1.5 mL centrifugation buffer with 0.6 M 

sucrose using a 5 mL Potter-Elvehjem tissue grinder, transferred to a 2.5 mL ultracentrifugation 

tube and overlain with centrifugation buffer with 0.4 M sucrose before centrifugation at 

100,000 x g for 60 min. 

50 mL of the supernatant from the previous separation step, containing membranes and soluble 

proteins, were transferred to 4 12 mL ultracentrifugation tubes and membranes were 

sedimented by centrifugation at 105,000 x g for 90 min. A 200 µL sample of the supernatant 

containing soluble proteins was transferred to a Protein LoBind 2 mL reaction tube and the 

sedimented membranes were combined in another one.  

2.3 Identification of LB proteins 

2.3.1 Protein isolation 

Proteins were isolated from the LB fraction as well as the 3 control samples obtained as 

described in section 2.2 according to (Feussner and Kindl, 1992; Valledor and Weckwerth, 2014) 

with some modifications. 1.5 mL ice cold 90 % ethanol were added to each sample and kept at 

-80 °C for 2 h in order to precipitate proteins, followed by centrifugation at 20,000 x g and 4 °C 

for 15 min. After removal of the supernatant the pellets were washed 3 times with ice cold 80 % 

ethanol and air dried. Proteins were solubilized by adding 100 µL denaturing protein 

solubilization buffer (Laemmli, 1970; Zienkiewicz et  a l . , 2014) and incubating at 37 °C for 2 h.  

2.3.2 Protein identification 

Proteins in each sample were analyzed 3 times. For each triplicate, 20 µL of the sample were 

loaded on a 10 % sodium dodecyl sulfate polyacrylamide gel (Davis, 1964; Kellenberger, 1968; 
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Laemmli, 1970; Ornstein, 1964) and a current of 30 Milliamperes was applied until the dye in 

the solubilization buffer had migrated approximately 1 cm into the running gel. The gel was 

stained for proteins using Coomassie Brilliant Blue G-250 (Meyer and Lamberts, 1965; Neuhoff 

et  a l . , 1988) and destained overnight in water before the entire band was excised and subjected 

to an in-gel tryptic digest as previously described (Shevchenko et  a l . , 2007). Briefly, gel pieces 

were transferred to Protein LoBind tubes and completely destained by incubating at 37 °C for 

30 min in 50 % (v/v) acetonitrile containing 200 mM ammonium bicarbonate. Water was 

removed from the gel by incubation in acetonitrile at room temperature for 10 min followed by 

air drying. Sulfide bonds were then reduced with 10 mM dithiotreitol (DTT) at 60 °C for 15 min 

and cysteine residues were blocked by incubation for another 15 min with iodoacetamide at 

room temperature in the dark. Gel pieces were then washed with 5 % acetonitrile and 50 mM 

ammonium bicarbonate and equilibrated 2 more times for 15 min with the same solution before 

removing the buffer with acetonitrile. Following removal of acetonitrile, samples were incubated 

over night at 37 °C with the following amounts of trypsin in 5 % acetonitrile and 50 mM 

ammonium bicarbonate: 1.2 µg (total extract), 0.9 µg (each, soluble protein and membrane 

fraction) and 0.2 µg (LB fraction). Supernatants were transferred to new Protein LoBind tubes. 

Tryptic peptides were extracted from the gel pieces with 1 % (v/v) formic acid in 60 % 

acetonitrile at room temperature for 15 min and for each sample the supernatant was combined 

with the one from the previous step. Remaining peptides were removed from the gel pieces by 

incubating them in acetonitrile for another 15 min at room temperature and combining the 

supernatant with the previous ones.  

The peptides were identified by Dr. Oliver Valerius, University of Göttingen, using liquid 

chromatography followed by tandem mass spectrometry. All equipment and software used were 

obtained from Thermo Fisher Scientific, Waltham, USA, unless otherwise stated. An Acclaim 

PepMap 100 pre-column was employed to wash the peptides (C18 packing material, dimensions: 

0.1 x 2 cm, 3 µm particle size, 100 Å pore size) with 98 % water, 2 % acetonitrile, 0.07 % 

trifluoroacetic acid at 25 µL/min for 6 min. Analytical separation of peptides was achieved by 

reverse phase chromatography using an Acclaim PepMap Rapid Separation Liquid 

Chromatography column (C18 packing material, dimensions: 0.075 x 15 cm, 3 µm particle size, 

100 Å pore size) with a solvent gradient from 98 % solvent A (99.9 % water, 0.1 % formic acid) 

and 2 % solvent B (80 % acetonitrile, 19.9 % water, 0.1 % formic acid) to 40 % solvent B within 

40 min at a flow rate of 0.3 µL/min. Online ionization took place in a Nanospray Flex Ion 
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Source at 2.4 kV. Mass over charge ratios of ionized peptides were determined using an Orbitrap 

Fourier Transform-analyzer (mass over charge range: 300-1850, resolution: 30000) with parallel 

collision-induced dissociation fragmentation in the Linear Trap Quadrupole Velos Pro ion trap. 

XCalibur 2.2 software was used for method programming and data acquisition. Identified 

peptides were searched against a database of predicted proteins generated by the GIAVAP 

consortium (see beginning of section 0) with mass tolerances of 10 parts per million for 

precursor ions and 0.6 Daltons for fragment ions. Proteome Discoverer software was employed 

to calculate the false discovery rate based on the number of hits to a decoy database consisting 

of reversed amino acid sequences of predicted proteins and to filter for a false discovery rate of 

no more than 1 %.  

2.3.3 Enrichment analysis of identified proteins 

Only proteins that were identified in all 3 technical replicates of the LB sample were considered 

from this point on. For each of these, enrichment compared to the total extract, the membrane 

fraction and the soluble fraction was determined by calculating its relative abundance in each of 

the samples based on the number of spectral counts. This requires normalization for protein 

size, as proteins with a longer amino acid sequence are likely to give rise to more tryptic peptides 

and thus more MS/MS spectra. The number of spectral counts (SpC) for each protein k was 

thus divided by the length of its amino acid sequence (L), resulting in the Protein Abundance 

Factor (PAF) (Powell et  a l . , 2004). As further normalization is necessary to allow comparison 

of PAFs between different samples, the PAF for each protein in a sample was divided by the 

sum of the PAFs for all N proteins detected in this sample, yielding the Normalized Spectral 

Abundance Factor (NSAF) as described previously (Zybailov et  a l . , 2006) (see equation 1). 

1 

(𝑁𝑆𝐴𝐹)𝑘 =
(
𝑆𝑝𝐶

𝐿
)𝑘

∑ (
𝑆𝑝𝐶

𝐿
)𝑖

𝑁
𝑖=1

 

 

NSAF scores were averaged over the 3 technical replicates and for each protein detected in the 

LB fraction the mean value was divided by its average NSAF score in each of the 3 control 

samples. The proteins that were highly abundant and strongly enriched in the LB fraction 

compared to at least one of the controls were selected for further analysis. 



 Methods 

17 

 

2.3.4 In s i l i co  analyses of putative LB proteins 

The list of identified proteins obtained as described in 2.3.3 was filtered by applying a hierarchy 

of criteria in order to determine the most promising candidate proteins for further analysis.  

Firstly, 2 different algorithms were used to predict the subcellular localization of each protein. 

TargetP searches for N-terminal presequences in the dataset to predict subcellular localization 

of the protein and has been tested with datasets from human and A. thal iana  samples 

(Emanuelsson et al., 2000). PredAlgo was specifically developed for datasets from green algae 

and the algorithm was trained using known transit peptide sequences from the chlorophyte 

C. re inhardti i  (Tardif et al., 2012). Proteins which were predicted by both algorithms to be 

localized in the mitochondria were not considered any further, whereas those predicted to enter 

the chloroplast or the secretory pathway as well as those without consensus between both 

methods were kept as possible candidates. 

The remaining amino acid sequences were submitted as queries to the protein Basic Local 

Alignment Search Tool (pBLAST, Altschul et al., 1990) provided by the National Center for 

Biotechnology Information (NCBI), Bethesda, USA. Sequences were first searched against a 

non-redundant database of known proteins from A. thal iana  and, where no homologs with at 

least 30 % identity could be found, the search was repeated against a C. reinhardti i  database. 

For sequences that showed no or only very low similarity with any entries in these databases, 

the searches were repeated against all amino acid sequences deposited in the NCBI database.  

Amino acid sequences were also searched for conserved domains using the Protein families 

(PFAM, Finn et al., 2014) database in order to obtain information on possible functions of 

candidate proteins for which no homolog could be found.  

2.4 Gene expression analysis 

Gene expression was analyzed in L. inci sa  for several genes of interest. The response of each 

transcript level to conditions favoring either TAG accumulation or degradation was investigated 

and the physiological state of the alga was monitored.  

2.4.1 L. inci sa  growth under conditions of nitrogen starvation and recovery 

A preculture of L. inci sa  was cultivated as described in section 2.1 and diluted with fresh media 

3 times during the 2 weeks preceding the experiment to ensure robust growth of the culture. 

Nitrogen starvation was applied by sedimenting the preculture, washing the cells twice with 
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modified BG11 lacking nitrate and ammonium (BG11 -N) and then resuspending them in 

BG11 –N. The culture was split into 3 main cultures of 300 mL each and cultivated under the 

same temperature and light conditions as described before. Following 7 d of nitrogen depletion, 

the 3 cultures were sedimented separately and resuspended in full BG11 media for another 3 d 

of growth in nitrogen replete conditions.  

During the course of the experiment, samples for pigment, lipid and RNA extraction were taken 

just before as well as 1, 3 and 7 d following the onset of nitrogen starvation and again 1 and 3 d 

after nitrogen resupply. Additional samples for expression analysis were taken 6 h after each 

change of media to account for rapid changes in messenger RNA (mRNA) levels. 

All samples were frozen in liquid nitrogen and freeze-dried. Pigments were extracted in dimethyl 

sulfoxide (DMSO) and chlorophyll as well as carotenoid concentrations were determined as 

described previously (Wellburn, 1994). Briefly, 1 mL DMSO was added to the sample, which 

was then heated to 70 °C for 5 min. Samples were cooled to room temperature, cell debris was 

sedimented by centrifugation at 3000 x g for 2 min and the supernatant was transferred to a 

microcuvette (Sarstedt AG & Co, Nümbrecht, Germany). Light absorption (A) of the extract 

was measured at 480, 649 and 665 nm using an Ultrospec 1100pro spectrophotometer (GE 

Health Care Life Sciences Ltd., Buckinghamshire, England), subtracting absorption by pure 

DMSO. Chlorophyll a (Chl a) and b (Chl b) as well as total carotenoid (Car) concentrations were 

calculated using equations 2 - 4 according to (Wellburn, 1994).  

2 
[𝐶ℎ𝑙 𝑎] = 12.19 × 𝐴665 − 3.45 × 𝐴649 

3 
[𝐶ℎ𝑙 𝑏] = 21.99 × 𝐴649 − 5.32 × 𝐴665 

4 

[𝐶𝑎𝑟] =
1000 × 𝐴480 − 2.14 × [𝐶ℎ𝑙 𝑎] − 70.16 × [𝐶ℎ𝑙 𝑏]

221
 

 

The ratio of total carotenoids and chlorophyll was thus calculated using equation 5. 

5 
[𝐶𝑎𝑟]

[𝐶ℎ𝑙]
=

1000 × 𝐴480 − 1535.44 × 𝐴649 + 347.16 × 𝐴665

1518.27 × 𝐴665 + 4097.34 × 𝐴649
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Accumulation and degradation of TAG in the course of the experiment were analyzed by 

quantifying fatty acids in total lipid extracts and in the TAG fraction as described in section 

2.9.2. 

2.4.2 Quantitative real-time PCR (qRT-PCR) 

RNA was isolated from samples obtained during the growth experiment and used as a template 

for complementary DNA (cDNA) synthesis as described in sections 2.5.1 and 2.5.3. The 

samples were checked for contamination by genomic DNA (gDNA) with RedTaq PCR (see 

sections 2.5.4 and 2.5.5) using primers specific for actin (gene accession g10221), which gives 

rise to an amplicon of 1134 base pairs (bp) when cDNA is amplified, but 1409 bp if gDNA 

serves as a template.  

To design primers for the detection of each transcript of interest, the coding nucleotide 

sequence was first entered into the Primer3Prefold interface (Markham and Zuker, 2008) so as 

to exclude parts of the sequence that are likely to form secondary structures and thus interfere 

with amplification. The modified sequence was then entered into the Primer3Plus interface 

(Untergasser et al., 2012) and oligonucleotides suitable for qRT-PCR were automatically selected 

considering an amplicon length of 70-150 bp, primer length between 18 and 23 bp and melting 

temperatures of 58-62 °C with a difference of less than 3 °C within the pair. For oligonucleotide 

sequences see section 3.6.  

The gene encoding ribosomal protein S21 was chosen as a reference gene. Normalization to 

this gene is required to account for changes caused by uneven efficiency of cDNA synthesis as 

well as alterations in overall transcription due to growth arrest. The gene was chosen based on 

the observation that its transcript abundance was not significantly changed after 12 or 72 h of 

nitrogen starvation according to an RNA sequencing experiment in which 2 biological replicates 

were measured 4 times each (GIAVAP consortium, unpublished data, see beginning of 

section 0).  

Quantitative real-time measurements were performed using an iQ5 qPCR cycler (BioRad 

Laboratories GmbH, München, Germany) and the Takyon No Rox SYBR Core Kit blue dTTP 

(Eurogentec Biologics Division, Seraing, Belgium) according to the manufacturers’ instructions. 
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2.5 Isolation and modification of nucleic acids 

Unless otherwise stated, all methods were carried out according to (Green and Sambrook, 2012) 

and all enzymes used were obtained from Thermo Fisher Scientific, Waltham, USA. 

2.5.1 Isolation of RNA from L. inc isa  

Algal material was lyophilized and ground in liquid nitrogen in a 2 mL reaction tube to ensure 

effective cell disruption. Total ribonucleic acid (RNA) was then isolated using Trizol extraction 

(Chomcyzynski and Sacchi, 1987). Briefly, 1 mL Trizol was added before the material was 

thawed while thoroughly mixing and incubated at room temperature for 5 min. Cell debris was 

sedimented by centrifugation at 20,000 x g and 4 °C for 10 min. The supernatant was transferred 

to a new 1.5 mL reaction tube and 200 µL chloroform were added. Tubes were shaken 

vigorously and incubated at room temperature for 2 minutes before centrifugation at 20,000 x g 

and 4 °C for 15 min. The aqueous upper phase containing RNA was once again transferred to 

a new reaction tube and ½ volume isopropanol as well as ½ volume high salt precipitation 

buffer were added to precipitate RNA. The tubes were gently inverted, incubated at room 

temperature for 10 min and centrifuged at 20,000 x g and 4 °C for 10 min. The supernatant was 

removed, the pellet was washed twice with 900 µL 75 % ethanol and dried at room temperature. 

RNA was dissolved in 20 µL RNase-free water. 

2.5.2 Isolation of RNA from Arabidopsi s thal iana  seeds 

RNA was isolated from dry A. tha l iana  seeds as described previously (Oñate-Sánchez and 

Vicente-Carbajosa, 2008). Briefly, 20 mg seeds were collected in a 1.5 mL reaction tube, cooled 

in liquid nitrogen and ground with a precooled pestle. 550 µL extraction buffer and 550 µL 

chloroform were quickly added, the samples were mixed thoroughly and centrifuged at 4 °C for 

3 min. The supernatant was transferred to a new tube, 500 µL phenol saturated with 0.1 M 

citrate was added followed by vigorous mixing and 200 µL chloroform was added before 

sedimenting again at 4 °C for 3 min. The supernatant was once again transferred to a new tube, 

1/3 volume 8 M LiCl was added to precipitate RNA at -20 °C for 1 h. 

Precipitated nucleic acids were sedimented by centrifugation at 18,000 x g and 4 °C for 30 min. 

The pellet was then dissolved in 26 µL RNase-free water and residual genomic DNA was 

removed by adding 1 µL DNaseI along with 3 µL DNase buffer (Thermo Fisher Scientific, 

Waltham, USA) and incubating at 37 °C for 30 min. Subsequently carbohydrates were 

precipitated by adding 470 µL RNase-free water, 7 µL 3 M sodium acetate (pH 5.2) and 250 µL 
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ethanol and incubating at 4 °C for 10 min. The supernatant was transferred to a new tube and 

RNA was precipitated by adding 43 µL sodium acetate (pH 5.2) and 750 µL ethanol, mixing and 

incubating at -20 °C overnight. RNA was then sedimented by centrifugation for 20 min at 

18,000 x g and 4 °C, the pellet was washed with 70 % ethanol and air-dried before resuspension 

in 20 µL RNase-free water.  

2.5.3 cDNA synthesis 

RNA concentrations were determined by measuring light absorption at 260 nm wavelength 

using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, USA). 

Residual DNA was removed by digesting with DNaseI according to the manufacturer’s 

instructions. The entire product of this reaction was then used for cDNA synthesis from 

messenger RNAs using RevertAid H Minus reverse transcriptase and oligodesoxythymine 

primers according to the manufacturer’s instructions.  

2.5.4 Polymerase chain reaction (PCR) 

DNA sequences were amplified by Polymerase Chain Reaction (PCR) according to (Mullis, 

1987). Varying DNA dependent DNA polymerases were used to amplify sequences of interest 

for different purposes. Phusion Polymerase (New England Biolabs, Ipswich, USA) was used to 

amplify sequences for further cloning, whereas GoTaq (Promega Corporation, Madison, USA) 

and RedTaq (Sigma-Aldrich Co., St. Louis, USA) were used to verify the presence of specific 

DNA sequences. Colony PCR, which serves to verify positive bacterial clones after 

transformation with a plasmid, was performed by picking a small amount of cells from an agar 

plate using a pipette tip and resuspending them in the reaction mixture. Reactions were set up 

according to the manufacturers’ instructions and Mastercycler Personal thermocyclers 

(Eppendorf AG, Hamburg, Germany) were used to ensure appropriate thermal conditions for 

cycles of DNA denaturing, oligonucleotide annealing and secondary strand elongation. 

Oligonucleotides used in PCRs for a range of purposes are listed in section 3.6.  

2.5.5 Agarose gel electrophoresis 

Products of PCR and restriction digests were separated in gels consisting of 1 % (w/v) agarose 

in Tris Acetic acid EDTA (TAE) buffer based on the methods described previously (Aaij and 

Borst, 1972; Thorne, 1967). For this purpose, products of Phusion PCR and restriction digests 

were supplemented with 1
5⁄  volume 6 x DNA loading dye. This was not necessary for GoTaq 

and RedTaq PCR products, as the respective reaction buffers already contain a loading dye. 
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Agarose gels were submerged in TAE buffer, samples were loaded along with a 1 kilobasepair 

GeneRuler DNA ladder (Thermo Fisher Scientific, Waltham, USA) and a voltage of 10 V/cm 

was applied for 20 min. Gels were then incubated in 2 µg/mL ethidium bromide in TAE buffer 

for 10 min before DNA bands were visualized using ultraviolet irradiation and an IDA or 

DIANA gel documentation system (Raytest Isotopenmessgeräte GmbH, Straubenhardt, 

Germany). 

2.5.6 Subcloning 

PCR products of the expected length were excised from agarose gels and extracted using the 

NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, Düren, Germany). Products 

synthesized by Phusion polymerase have blunt ends and could thus be directly ligated into the 

pJET1.2/blunt subcloning vector using the CloneJET PCR cloning kit (Thermo Fisher 

Scientific, Waltham, USA) according to the manufacturer’s instructions with minor 

modifications. Reactions were set up in a total volume of 10 µL and ligation was carried out for 

30 min at room temperature. The DNA fragment to be inserted and the vector were used in a 

molar ratio of 3:1 as calculated using the online tool provided by the Directed Evolution group 

of the University of Düsseldorf, Germany.  

The entire ligation mixture was used to transform 100 µL chemically competent Escheri chia  

col i  (E. col i) XL1-Blue cells (Agilent Technologies, Santa Clara, USA) by heat shock (for 

generation of competent cells see section 2.5.9). Briefly, the cells were incubated on ice with the 

ligation product for 30 min followed by a heat shock of 42 °C for 45 s. The mixture was then 

placed back on ice for another 2 min before 900 µL Lysogeny broth (LB) was added. The cells 

were shaken at 37 °C for 1 h and then plated on LB agar plates containing 100 µg/mL 

carbenicillin for selection of positive clones. Plates were incubated at 37 °C overnight and 

positive clones were verified by colony PCR followed by agarose gel electrophoresis (see 

sections 2.5.4 and 2.5.5).  

Positive bacterial clones were used to inoculate 4 mL LB containing 100 µg/mL carbenicillin 

and shaken over night at 37 °C. Plasmids were isolated using the GenElute HP Plasmid 

Miniprep kit (Sigma-Aldrich Co., St. Louis, USA) according to the manufacturer’s instructions. 

They were then subjected to control restriction digests (see section 2.5.7) followed by agarose 

gel electrophoresis to compare the lengths of the resulting DNA fragments with the expected 

restriction fragments. Verified plasmids were submitted to GATC Biotech AG, Konstanz, 
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Germany for sequencing. Sequencing results were compared with the expected sequence using 

Geneious R8 software (Biomatters Ltd., Auckland, New Zealand). 

2.5.7 Restriction cloning 

Restriction cloning was used to transfer DNA fragments of interest from the subcloning vector 

to other vectors for expression or Gateway cloning. Reactions were set up according to the 

manufacturer’s instructions either in a 50 µL volume overnight for preparative digests or in a 

10 µL volume for 1 h for control digests.  

For restriction cloning, the destination vector and the DNA fragment to be inserted into it were 

digested with enzymes resulting in the same or compatible overhangs. The products of 

preparative digests were separated by agarose gel electrophoresis and the band of expected size 

was excised. DNA was extracted, ligated to the destination vector and used for transformation 

of competent E. col i  XL1-Blue cells as previously described (see section 2.5.6).  

A higher concentration of plasmids was required for transformation of N. tabacum  pollen 

grains, thus for each plasmid 50 mL LB media with 100 µg/mL carbenicillin was inoculated 

with a positive E. col i  XL1-Blue clone and shaken at 37 °C overnight. High amounts of plasmid 

were then isolated using the GenElute HP Plasmid Midiprep kit (Sigma-Aldrich Co., St. Louis, 

USA) according to the manufacturer’s instructions. 

2.5.8 Gateway cloning 

The Gateway cloning system (Thermo Fisher Scientific, Waltham, USA) was used to introduce 

genes of interest into the relatively large vectors required for stable transformation of 

A. thal iana . For vectors used see section 9.3. 

Initially, DNA fragments of interest were inserted into Entry vectors as described in section 

2.5.7. The Entry vector pUC18-Entry was used for subsequent transfer of the DNA fragment 

into the expression vector pCambia 23.1, while pEntry-E was used for transfer into 

pCambia 43.0 by Gateway cloning according to the manufacturer’s instructions. Unmodified 

pEntry-E was used in Gateway reactions to generate pCambia plasmids lacking a coding 

sequence in the open reading frame. These plasmids were used to transform plants that served 

as empty vector controls. 

Briefly, 10 fmol Entry vector containing the gene of interest was mixed with 20 femtomol 

expression vector, 1 µL LR Clonase II enzyme mix and Tris EDTA buffer (TE buffer) in a total 

volume of 10 µL. The reaction mixture was incubated at 25 °C overnight and 1 µL Proteinase K 
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was added followed by incubation at 37 °C for 10 min to stop the reaction. The proteinase was 

inactivated by incubation at 70 °C for 10 min and the entire mixture was used in transformation 

of 100 µL competent E. col i  DH5-α cells (New England Biolabs, Ipswich, USA). 

Transformation of bacteria was carried out as described in section 2.5.6, except for a prolonged 

incubation of 90 min after heat shock transformation and LB agar plates containing 25 µg/mL 

kanamycin instead of carbenicillin for selection of positive clones. Following incubation on agar 

plates overnight, individual colonies were each transferred to a new LB plate containing 

kanamycin as well as a second plate containing carbenicillin. The following day, only those 

colonies that had grown on kanamycin but not on carbenicillin, and therefore did not contain 

the Entry plasmid anymore, were used in colony PCR (see section 2.5.4). 

2.5.9 Generation of chemically competent bacteria 

Bacteria were made competent for the uptake of plasmid DNA by chemical treatment. 

Overnight cultures of E. col i  XL1-Blue or DH5-α were used to inoculate a main culture which 

was shaken at 37 °C until an optical density at 600 nm (OD600) of 0.45 – 0.75 was reached. Cells 

were chilled on ice and sedimented at 1000 x g and 4 °C for 10 min. The supernatant was 

removed and the cells were resuspended in ice cold TFP buffer followed by an additional 10 min 

incubation on ice. This treatment was repeated once before dimethylsulfoxide (DMSO) was 

added to a final concentration of 7 % (v/v). Cells were incubated on ice for another 10 min, 

frozen in liquid nitrogen and stored at -80 °C. 

An A. tumefac iens  EHA 105 culture was shaken at 28 °C overnight and used to inoculate a 

main culture that was cultivated under the same conditions until an OD600 of 0.5 was reached. 

The cells were sedimented at 4000 x g and 4 °C for 15 min, the supernatant was removed and 

the cells were gently resuspended in ice cold 0.15 M NaCl. The cell suspension was centrifuged 

again, the supernatant was removed and the cells were resuspended in ice cold 75 mM CaCl2. 

They were then frozen in liquid nitrogen and stored at -80 °C. 

2.6 Transient gene expression in Nicotiana tabacum  pollen tubes 

LB localization of L. inci sa  proteins was confirmed by transiently expressing the corresponding 

genes fused to a fluorescent marker in N. tabacum  (ecotype SNN) pollen tubes. Using the 

methods described in sections 2.5.4 - 2.5.7, C-terminal fusions of algal coding sequences were 

created by removing the stop codon and inserting them into a pUC19 vector containing the 
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mVenus cDNA fragment and the pollen specific Lat52 promoter from Solanum lycopersicum  

(Mähs et  a l . , 2013; Twell et  a l . , 1989). Pollen grains were transformed as described previously 

(Read et  a l . , 1993). Briefly, 10 mg gold particles with a diameter of 1 µm (BioRad Laboratories 

GmbH, München, Germany) were washed repeatedly with ethanol and finally resuspended in 

sterile bidistilled water. The suspension was split into 8 aliquots of 50 µL that were coated with 

copies of one plasmid each. 

8 µg highly concentrated plasmid obtained as described in 2.5.7 were added to the gold particles 

to a final volume of no more than 55 µL and mixed vigorously. DNA was precipitated and 

coated onto the gold particles by adding 50 µL 2.5 M CaCl2 and then 20 µL 0.1 M spermidine 

while mixing thoroughly. The coated particles were washed 3 times with ethanol and 

resuspended in 60 µL ethanol. 

For each gene to be expressed, pollen from 6 to 8 N. tabacum  flowers were harvested by 

collecting stamens in a 15 mL conical tube (Sarstedt AG & Co, Nümbrecht, Germany). They 

were suspended in 2 mL pollen tube growth media (PT media) and quickly transferred to a 

cellulose acetate filter (Sartorius AG, Göttingen, Germany) by vacuum filtration, which was 

then placed on a piece of filter paper (GE Health Care Life Sciences Ltd., Buckinghamshire, 

England) soaked in PT media to avoid dehydration of the pollen grains. The PDS1000/He 

Biolistic Particle Delivery System (BioRad Laboratories GmbH, München, Germany) was used 

for particle bombardment according to the manufacturer’s instructions. 20 µL gold particle 

suspension were used for each bombardment and rupture discs that can withstand a pressure 

of 1350 pounds per square inch were used with a vacuum equivalent to 28 inches of mercury. 

Pollen grains were scraped off and resuspended in 250 µL PT media. 60 µL suspension were 

distributed onto each of 4 glass slides (Carl Roth GmbH & Co. KG, Karlsruhe, Germany), 

which were then incubated at room temperature and high humidity for 6 h before analysis. 

2.7 Microscopy 

2.7.1 Detection of neutral lipids in L. inci sa  cells and isolated LBs 

1 mL L. inc isa  culture that had been starved of nitrogen for 3 d was stained for neutral lipids 

according to (Greenspan et  a l . , 1985) by adding 1 µL of 1 mg/mL Nile Red in acetone, mixing 

carefully and incubating at room temperature for 5 min in the dark.  

For isolated LBs (see section 2.2), a 1 µL sample was carefully resuspended in 1 mL water using 

a Potter-Elvehjem tissue grinder and then stained in the same way. 
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Nile Red fluorescence was observed using a BX51 microscope equipped with a U-RFL-T 

mercury lamp. A U-MWB2 filter was used to allow excitation of the fluorescent dye at 460-

490 nm wavelength and detection of emission above 520 nm. Images were acquired using a 

ColorView II camera and analySis 3.2 software (all obtained from Olympus Corporation, 

Tokyo, Japan).  

2.7.2 Localization studies in N. tabacum  pollen tubes 

Subcellular localization of transiently expressed proteins in tobacco pollen tubes was analyzed 

by confocal fluorescence microscopy using a Laser Scanning Microscope 510 (Carl Zeiss 

Microscopy GmbH, Jena, Germany). For colocalization with Nile Red, the pollen tube 

suspension on the glass slide was supplemented dropwise with 20 µL fixation solution 

consisting of PT media with 4 % (w/v) formaldehyde and 1 µg/mL Nile Red in acetone. An 

argon laser and a helium-neon laser were used for excitation of mVenus and Nile Red at 488 

and 543 nm, respectively. A HFT 488/543 main dichroic beam splitter directed only the 

excitation light to the sample and a 505-530 nm bandpass filter was used for the detection of 

green fluorescence, while a 585 nm long pass filter was used to detect fluorescence emitted by 

Nile Red.  

2.7.3 Selection of Arabidops is  thal iana  seeds expressing the mCherry  gene 

Seeds expressing mCherry  as a reporter gene were identified using an M165C stereomicroscope 

equipped with an EL6000 mercury lamp, a M205FA/M165FC filter set and a DFC3000 G 

camera (all obtained from Leica Microsystems GmbH, Wetzlar, Germany).  
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2.8 Complementation of Arabidopsis thaliana  mutants 

Unless otherwise stated, the methods in this section were adapted from (Weigel and 

Glazebrook, 2002). For plant lines used, see section 3.6.1. 

2.8.1 Arabidopsi s thal iana  growth conditions 

For sterile culture seeds were surface sterilized by exposing them to chlorine gas for 3 h. In a 

desiccator under a fume hood, 50 mL 12 % (w/v) sodium hypochlorite was mixed with 5 mL 

32 % (v/v) hydrochloric acid. Immediately afterwards, open reaction tubes containing the seeds 

were placed in the desiccator and the lid was closed. After 3 h, the seeds were removed and 

placed in a laminar flow hood for several hours to remove residual gas that could inhibit 

germination. The seeds were subsequently taken up in 0.1 % microagar (Duchefa Biochemie 

B.V, Haarlem, The Netherlands) and spread on ½ Murashige-Skoog (including vitamins) 

(Murashige and Skoog, 1962) (½ MS) agar plates containing 1 % sucrose. Plates were allowed 

to dry before being sealed with surgical tape (3M Deutschland GmbH, Neuss, Germany) and 

stratified for 3 d at 4 °C in the dark in order to synchronize germination. The plates were then 

placed under constant illumination at room temperature until seedlings were large enough to be 

transferred to soil.  

Soil (Fruhstorfer Erde Typ T fein, Hawita Gruppe GmbH, Vechta, Germany) was steamed at 

80 °C for 8 h and then treated with 0.25 % (v/v) Previcur fungicide (Bayer AG, Leverkusen, 

Germany) before being used in non-sterile A. thal iana  culture. Seedlings were carefully placed 

in soil, covered with a plastic hood for several days and transferred to a climate chamber (York 

Industriekälte GmbH & Co. KG). Growth conditions were set to 22 °C, 16 h light/8 h dark 

and 60 % humidity. For plants that were to be transformed, the first inflorescence was cut off 

in order to induce the growth of further inflorescence meristems. Other plants were directly 

transferred to the greenhouse as soon as they started flowering.  

2.8.2 Transformation of Agrobacteria 

Agrobacterium tumefaci ens  EHA 105 cells were transformed by heat shock according to 

(Höfgen and Willmitzer, 1988) with minor modifications. Briefly, 200 µL competent cells were 

thawed on ice and 3 µg plasmid was added. The mixture was incubated on ice for 30 min, frozen 

at -80 °C for 3 min and incubated at 37 °C for 5 min before adding 800 µL LB media. The cells 

were incubated at 28 °C for 4 h and then spread on LB agar plates containing 50 µg/mL 

rifampicin (Duchefa Biochemie B.V, Haarlem, The Netherlands) and 25 µg/mL kanamycin for 
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selection of positive clones. Plates were sealed with Parafilm (Bemis Company Inc., Neenah, 

USA) and incubated at 28 °C for 2 d. Individual colonies were transferred to a new plate, 

incubated again for 1 d and stored at 4 °C. 

2.8.3 Agrobacterium-mediated transformation of Arabidopsi s thal iana  

Stable transformants of A. thal iana  were generated by flower dip with A. tumefac iens . A 

500 mL culture of transgenic Agrobacteria in LB media containing antibiotics as described in 

section 2.8.2 was shaken for 2 d at 28 °C until an OD600 of at least 0.8 was reached. Cells were 

sedimented by centrifugation at 7000 x g and 4 °C for 20 min using an Avanti J25 centrifuge 

with a JA-10 rotor (Beckman Coulter GmbH, Krefeld, Germany) and resuspended in 300 mL 

cold 5 % sucrose solution. 70 µL Silwet L-77 silicone surfactant (Momentive Performance 

Materials Inc., Waterford, USA) was added just before dipping the flowers in the bacterial 

suspension and gently agitating them for several seconds. Plants were then covered with a plastic 

hood overnight and transferred to the greenhouse. Transformation was repeated after 1 week 

to increase the number of transgenic seeds.  

2.8.4 Selection of transgenic plants 

Seeds expressing mCherry  as a reporter gene were identified using a fluorescence 

stereomicroscope as described in section 2.7.3.  

The sdp1/sdp1-L  line used in this study (see section 3.6.1) was originally generated by crossing 

the single knockout lines SALK_076697 (Eastmond, 2006) and European Arabidopsis Stock 

Center N873426 (Kelly et a l . , 2011) and is thus resistant to both glufosinate and kanamycin. 

Seeds from plants that had been transformed with a plasmid lacking the mCherry  reporter gene 

were therefore screened for functional complementation of the mutant etiolated seedling 

phenotype by the introduced algal gene (see section 2.8.5). Seedlings with elongated hypocotyls 

as compared to mutant seeds carrying only the empty vector were carefully transferred to ½ MS 

agar plates containing 1 % (w/v) sucrose and placed under constant illumination. Plants were 

then grown as described in section 2.8.1 and transgene insertion was confirmed by PCR 

following genomic DNA extraction according to (Doyle, 1987). Briefly, plant material was 

placed in a 1.5 mL reaction tube and ground in liquid nitrogen using a precooled plastic pestle. 

250 µL Cetyltrimethylammoniumbromide (CTAB) extraction buffer was added to the frozen 

material and incubated at 65 °C for 15 min. An equal volume of chloroform:isoamyl alcohol 

(24:1 v/v) was added and after thorough mixing phase separation was ensured by centrifugation 
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for 3 min at 7500 x g and room temperature. 200 µL of the aqueous phase was then transferred 

to a new tube, 200 µL isopropanol was added and the tubes were inverted several times. 

Following incubation at room temperature for 2 min, the extract was centrifuged at room 

temperature and 20,000 x g for 10 min to sediment DNA. The pellet was washed with 100 µL 

ethanol and then air-dried before redissolving in 70 µL water. Transgenes were detected by 

RedTaq PCR as described in section 2.5.4. 

2.8.5 Hypocotyl growth assay 

Functional complementation of postgerminative growth conferred by L. inci sa  genes 

heterologously expressed in the A. thal iana  sdp1/sdp1-L  mutant was tested by observing 

hypocotyl length of etiolated T2 seedlings as described previously (Kelly et  a l . , 2011). Initially, 

seeds from each independent line were selected for similar size (250-300 µm) by sifting through 

wash sieves (Advantech Manufacturing Inc., New Berlin, USA). Seeds were then surface 

sterilized and placed on ½ MS agar plates with and without 1 % sucrose as described in section 

2.8.1 before transfer to 4 °C to synchronize germination by stratification for 2 d. As the 

transgene is still segregating in this generation, red fluorescence of individual seeds was 

documented at this point for lines carrying the mCherry  reporter gene (see section 2.8.4). The 

plates were then exposed to light for another 30 min to induce germination and afterwards kept 

upright in the dark at room temperature for 5 d. Plates were documented using a CanonScan 

8000F scanner (Canon Incorporated, Tokyo, Japan) and the length of seedlings originating from 

fluorescing seeds was measured using ImageJ software (Rasband). For plant lines not carrying 

the fluorescent reporter, seedlings from agar plates without sucrose were individually transferred 

to plates with 1 % sucrose and cultivated for an additional week under continuous illumination. 

In this way, sufficient material was obtained to extract genomic DNA for a post eriori  

identification of transgenic and non-transgenic seedlings (see section 2.8.4). For each line, the 

hypocotyl length in 4 batches of at least 10 transgenic seedlings was determined. 

The fatty acid content of these seedlings was determined by gas chromatography as described 

in section 2.9.1. For each independent line, 4 samples of at least 10 seedlings were collected on 

ice and stored at -20 °C. In order to relate the fatty acid content of etiolated seedlings to that of 

seeds, 4 batches of 10 seeds were analyzed per line as well. 
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2.8.6 Lipase activity assay 

TAG lipase activity of L. incisa  putative lipases was tested as previously described (Eastmond, 

2006) by measuring the degradation of radioactively labeled TAG in crude cell extracts of 

germinated sdp1/sdp1-L  seedlings expressing the algal gene. Briefly, 6 mg seeds from each 

independent line were surface sterilized, taken up in sterile water and germinated on ½ MS agar 

plates with 1 % sucrose as described in section 2.8.1. After 3 d germination at room 

temperature, the seedlings were carefully scraped off the agar and collected in 1.5 mL reaction 

tubes on ice, ground in 250 µL grinding buffer using a precooled plastic pestle and the pestle 

was washed with an additional 250 µL grinding buffer. Cell debris was sedimented by 

centrifugation at 4 °C and 100 x g for 1 min before transfer of the supernatant to a new tube on 

ice.  

Total protein concentration was measured according to (Bradford, 1976). 5 µL sample were 

diluted 10-fold in Bradford reagent, incubated at room temperature for 10 min and absorbance 

was measured at 595 nm wavelength. Bovine serum albumin was used as a standard to calculate 

protein concentration in the sample.  

A volume of each sample corresponding to 40 µg total protein (or grinding buffer as a control) 

was diluted to a final volume of 250 µL with buffer at pH 6, 7 or 8 in glass vials. Carboxyl-14C-

triolein (PerkinElmer Inc., Waltham, USA) or 14C-palmitic acid (GE Health Care Life Sciences 

Ltd., Buckinghamshire, England) were each diluted 1:10 in ethanol, 2.5 µL was added and the 

reaction was incubated at room temperature for 2 h. The reaction was stopped by adding 200 µL 

hexane and mixing. The entire reaction was then transferred to 1.5 mL reaction tubes and 

centrifuged at 18,000 x g for 1 min to promote phase separation. The hexane phase was 

transferred to a new tube and the aqueous phase was re-extracted with 500 µL hexane. The 

supernatants were then combined and evaporated under a stream of nitrogen before dissolving 

the lipids in 50 µL hexane.  

The entire sample was applied to a TLC plate and a solvent system consisting of 

chloroform:acetone (96:4 v/v) was used as a mobile phase. The plate was air-dried, wrapped in 

cling foil and placed under a BAS-MP imaging plate (Fujifilm Corporation, Tokyo, Japan). The 

plate was exposed for 15 min to visualize radioactive radiation emitted by free fatty acids and 

TAG. It was read using a FLA-3000 fluorescent image analyzer (Fujifilm Corporation, Tokyo, 

Japan), the intensity of the band corresponding to TAG was measured using ImageJ and related 

to the sum of signals detected for the sample.  



 Methods 

31 

 

 

2.9 Analysis of fatty acids 

2.9.1 Analysis of fatty acids in Arabidopsi s  thal iana  seeds and seedlings 

Fatty acids in A. thal iana  material were quantified by gas chromatography (GC) following 

acidic methanolysis according to (Miquel and Browse, 1992). Water was removed from the 

samples by drying at 60 °C overnight (for seeds) or freeze-drying for 1 d using a Lyovac GT 3 

freeze dryer (GEA Lyophil GmbH, Hürth, Germany, for frozen seedlings). Varying amounts 

of tri-15:0 in toluol were added to the different types of samples as an internal standard: 20 µg 

(for seeds), 15 µg (for sdp1/sdp1-L  seedlings carrying only the empty vector), 8 µg (for 

seedlings of complemented lines) and 1.5 µg (for wildtype seedlings). Acidic methanolysis of 

fatty acids was achieved by adding 1 mL fatty acid methyl ester (FAME) solution and incubating 

at 80 °C for 1 h. The reaction was stopped by adding 200 µL 5 M NaCl and FAMEs were 

extracted with 2 mL hexane. Phase separation was promoted by centrifugation at 1000 x g for 

2 min, the hexane phase was transferred to a new glass vial and the remainder was extracted a 

second time with 2 mL hexane. The combined supernatants were dried under a stream of 

nitrogen, dissolved in 200 µL acetonitrile and transferred to the inlay of a GC vial. Lipids were 

once again dried under a stream of nitrogen, dissolved in 20 µL acetonitrile and quantified by 

gas chromatography. An Agilent Gas Chromatograph 6890 (Agilent Technologies, Santa Clara, 

USA) equipped with a capillary DB-23 column (30 m x 0.25 mm, 0.25 µm coating thickness, 

J&W Scientific, Agilent, Waldbronn, Germany) and a flame ionization detector (FID) were used 

with the following temperature gradient: 

150 °C for 1 min 

150 °C to 200 °C at 4 °C/min (12.5 min) 

200 °C to 250 °C at 20 °C/min (2.5 min) 

250 °C for 3 min. 

Samples were measured in sequence with a standard mixture of FAMEs with a known pattern 

of retention times (C14-C24, Sigma-Aldrich Co., St. Louis, USA) to allow identification of the 

fatty acids. For each fatty acid identified, the peak area was integrated using Agilent ChemStation 

software (Agilent Technologies, Santa Clara, USA). Peak area was normalized to account for 

differences in molecular weight, related to the amount of fatty acids derived from the internal 

standard and divided by the number of seeds or seedlings in the sample. In A. thal iana  seeds, 
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20:1 (n-9) is almost exclusively present in TAG (Lemieux et  a l . , 1990) and was therefore used 

as a marker for TAG levels.  

2.9.2 Analysis of fatty acids in TAG and total extracts of L. inci sa  

Lipids from L. inci sa  material were extracted prior to methanolysis and TAG was separated 

from other lipid classes by thin layer chromatography (TLC).  

Methyl tert-butyl ether (MTBE) extraction was performed according to (Matyash et  a l . , 2008). 

Briefly, 1 mL isopropanol at 75 °C was added to 10 mg lyophilized algal material along with 

50 µL tri-15:0 (1 mg/mL) and 100 µL di-17:0 phosphatidylcholine (1 mg/mL, Larodan Fine 

Chemicals AB, Limhamn, Sweden) as internal standards. The reaction was covered with argon 

to prevent oxidation and heated to 75 °C for 15 min. Isopropanol was allowed to evaporate, the 

reaction was cooled to room temperature and 750 µL methanol as well as 2.5 mL MTBE were 

added. Lipids were extracted by shaking at 4 °C for 1 h before sonifying the samples for 10 min 

in a Sonorex RK 510S sonification bath (Bandelin electronic GmbH & Co. KG, Berlin, 

Germany). 600 µL water was added, samples were mixed vigorously and incubated at room 

temperature for 10 min before centrifugation at 3000 x g for 15 min to promote phase 

separation. The MTBE-phase was transferred to a new glass vial and the aqueous phase was 

re-extracted with 700 µL methanol/water 3:2.5 (v/v) and 1.3 mL MTBE. The resulting MTBE 

phase was combined with the first one, dried under a stream of nitrogen and taken up in 100 µL 

chloroform. 

TAG was separated from other lipid classes in the extract by TLC according to (Blank and 

Snyder, 1975). 40 µL lipid extract was applied to a Silica gel 60 plate (Merck KGaA, Darmstadt, 

Germany) a solvent system consisting of hexane:diethyl ether:acetic acid (80:20:1, v/v/v) was 

used as the mobile phase. The plate was air-dried, sprayed with 0.2 % (w/v) 

8-anilinonaphthalene-1-sulfonic acid (ANS) and irradiated with UV light to visualize lipids. The 

TAG fraction was scraped out and fatty acids were derivatized by acidic methanolysis for gas 

chromatographic analysis as described in section 2.9.1. 

In addition to TAG quantification, total lipid extracts obtained by MTBE extraction were 

directly derivatized using the method described above (section 2.9.1), using the internal 17:0 

standard to quantify fatty acids. 
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3 Materials 

3.1 Equipment 

Table 1: Equipment used in this study. Listed below is the equipment used in this study, along with the 
supplier. 
 

  Supplier 

400 mL glass columns for algae cultivation  Ochs GmbH, Bovenden, Germany 

Agilent Gas Chromatograph 6890  Agilent Technologies, Santa Clara, USA 

Avanti J25 centrifuge Beckman Coulter GmbH, Krefeld, Germany 

BAS-MP imaging plate  Fujifilm Corporation, Tokyo, Japan 

BX51 microscope  Olympus Corporation, Tokyo, Japan 

CanonScan 8000F scanner Canon Incorporated, Tokyo, Japan 

climate chamber York Industriekälte GmbH & Co. KG 

ColorView II camera  Olympus Corporation, Tokyo, Japan 

DB-23 column for gas chromatography  J&W Scientific, Agilent, Waldbronn, Germany 

DFC3000 G camera Leica Microsystems GmbH, Wetzlar, Germany 

EL6000 mercury lamp Leica Microsystems GmbH, Wetzlar, Germany 

FLA-3000 fluorescent image analyzer  Fujifilm Corporation, Tokyo, Japan 

IDA and DIANA gel documentation 
systems 

Raytest Isotopenmessgeräte GmbH, 
Straubenhardt, Germany 

iQ5 qPCR cycler 
BioRad Laboratories GmbH, München, 
Germany 

JA10 rotor Beckman Coulter GmbH, Krefeld, Germany 

Laser Scanning Microscope 510  Carl Zeiss Microscopy GmbH, Jena, Germany 

Lyovac GT 3 freeze dryer GEA Lyophil GmbH, Hürth, Germany 

M165C stereomicroscope Leica Microsystems GmbH, Wetzlar, Germany 

M205FA/M165FC filter set  Leica Microsystems GmbH, Wetzlar, Germany 

Mastercycler Personal thermocycler Eppendorf AG, Hamburg, Germany 

Mini-PROTEAN3 electrophoresis system 
BioRad Laboratories GmbH, München, 
Germany 

NanoDrop 2000 spectrophotometer Thermo Fisher Scientific, Waltham, USA 

Optima TLX ultracentrifuge Beckman Coulter GmbH, Krefeld, Germany 

Optima LE - 80K ultracentrifuge  Beckman Coulter GmbH, Krefeld, Germany 

PDS1000/He Biolistic Particle Delivery 
System 

BioRad Laboratories GmbH, München, 
Germany 

Potter-Elvehjem tissue grinder (5 and 
30mL) and PTFE pestles Wheaton Industries Inc., Millville, USA 

Sonorex RK 510S sonification bath 
Bandelin electronic GmbH & Co. KG, Berlin, 
Germany 

TLS55 ultracentrifuge rotor Beckman Coulter GmbH, Krefeld, Germany 
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Table 1, continued  

Ultrospec 1100pro spectrophotometer 
GE Health Care Life Sciences Ltd., 
Buckinghamshire, England 

U-MWB2 filter for Nile Red Olympus Corporation, Tokyo, Japan 

U-RFL-T mercury lamp Olympus Corporation, Tokyo, Japan 

Wash sieves 
Advantech Manufacturing Inc., New Berlin, 
USA 

 

3.2 Software 

Table 2: Software and web-based services used in this study. Given below is a list of all software and 
web-based services used in this study, along with the associated reference. 
 

  Origin 

XCalibur 2.2 Thermo Fisher Scientific, Waltham, USA 

Proteome Discoverer  Thermo Fisher Scientific, Waltham, USA 

Geneious R8  Biomatters Ltd., Auckland, New Zealand 

analySis 3.2 Olympus Corporation, Tokyo, Japan 

ImageJ 1.48 National Institutes of Health, Bethesda, USA 

ChemStation Agilent Technologies, Santa Clara, USA 

Basic Local Alignment Search 
Tool  

National Center for Biotechnology Information 
(NCBI), Bethesda, USA (Altschul et al., 1990) 

TargetP 1.1 
Center for Biological Sequence Analysis, Technical 
University of Denmark (Emanuelsson et al., 2000) 

PredAlgo 
Institut de Biologie Physico−Chimique, Paris, France 
(Tardif et al., 2012) 
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3.3 Consumables 

Table 3: Consumables used in this study. Listed below are the consumables used in this study, along with 
the supplier. 
 

  Supplier 

CloneJET PCR cloning kit Thermo Fisher Scientific, Waltham, USA  

Filtropur S0.2 sterile filter  Sarstedt AG & Co, Nümbrecht, Germany 

Fruhstorfer Erde Typ T fein Hawita Gruppe GmbH, Vechta, Germany 

GenElute HP Plasmid Midiprep kit Sigma-Aldrich Co., St. Louis, USA 

GenElute HP Plasmid Miniprep kit Sigma-Aldrich Co., St. Louis, USA 

NucleoSpin Gel and PCR Clean-up kit Macherey-Nagel, Düren, Germany 

Protein LoBind 2 mL reaction tube  Eppendorf AG, Hamburg, Germany 

Silica gel 60 plate Merck KGaA, Darmstadt, Germany 

surgical tape 3M Deutschland GmbH, Neuss, Germany  

Takyon No Rox SYBR Core Kit blue 
dTTP Eurogentec Biologics Division, Seraing, Belgium 

3.4 Chemicals 

All chemicals were obtained from one of the following suppliers, unless stated otherwise: 

Merck KGaA, Darmstadt, Germany 

Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Thermo Fisher Scientific, Waltham, USA 

Sigma-Aldrich Co., St. Louis, USA 
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Table 4: Chemicals used in this study. Listed below are the chemicals used in this study, that were 
obtained from suppliers other than the ones stated above. 
 

 Supplier 

14C palmitic acid 
GE Health Care Life Sciences Ltd., Buckinghamshire, 
England 

Acetonitrile Fischer Chemical Co. Ltd., Hong Kong, China 

Carbenicillin Duchefa Biochemie B.V, Haarlem, The Netherlands 

Carboxyl-14C-triolein PerkinElmer Inc., Waltham, USA 

Di-17:0 phosphatidylcholine Larodan Fine Chemicals AB, Limhamn, Sweden 

Isopropanol Fischer Chemical Co. Ltd., Hong Kong, China 

Microagar Duchefa Biochemie B.V, Haarlem, The Netherlands 

Murashige-Skoog salts with 
modified vitamins Duchefa Biochemie B.V, Haarlem, The Netherlands 

Previcur fungicide Bayer AG, Leverkusen, Germany 

rifampicin Duchefa Biochemie B.V, Haarlem, The Netherlands 

Serva Blue G Serva Electrophoresis GmbH, Heidelberg, Germany 

Silwet L-77 silicone surfactant GE Specialty Materials, Meyrin, Switzerland 

 

3.5 Media and buffers 

3.5.1 Media 

Unless stated otherwise, media were sterilized by autoclaving at 121 °C for 20 min. 

 

Table 5: Blue-green algae media (BG11, Stanier et  a l . , 1971)  
 
 Final concentration [mM] 

NaNO3 17.6 

K2HPO4 0.2 

MgSO4 0.3 

CaCl2 0.25 

C6H8O7 0.03 

Ferric ammonium citrate 0.02 

EDTA 0.002 

Na2CO3 0.19 

H3BO3 0.046 

MnCl2 0.009 

ZnSO4 0.0008 

Na2MoO4 0.0016 

CuSO4 0.0003 

Co(NO3)2 0.0002 
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Table 6: Lysogeny broth (LB media, Bertani, 1951) 
 
 Final concentration 

Peptone 1 % (w/v) 

Yeast extract 0.5 % (w/v) 

NaCl 1 % (w/v) 

 

1.5 % (w/v) microagar (Duchefa Biochemie B.V, Haarlem, The Netherlands) was added before 

autoclaving for LB agar plates. 

 

Table 7: Pollen tube growth media (PT media, Read et  a l . , 1993) 
 
 Final concentration 

Sucrose 5 % (w/v) 

Polyethylene glycol (PEG)-6000 12.5 % (w/v) 

2-(N-morpholino)ethanesulfonic acid 
(MES)-KOH (pH 5.9) 

15 mM 

CaCl2 1 mM 

KCl 1 mM 

MgSO4  0.8 mM 

H3BO3 1.6 mM 

CuSO4 30 µM 

 

PT media was filter sterilized using a Filtropur S0.2 sterile filter (Sarstedt AG & Co, Nümbrecht, 

Germany). 

 

Table 8: ½ Murashige-Skoog media (½ MS media, Murashige and Skoog, 1962)  
 
 Final concentration 

Murashige-Skoog salts with modified vitamins 0.22 % (w/v) 

sucrose 1 % (w/v) 

 

pH was adjusted to 5.9 using 0.5 M KOH. 0.7 % (w/v) microagar was added for ½ MS plates.  
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3.5.2 Buffers for cell disruption  

 

Table 9: Centrifugation buffers for LB isolation from L. incisa (modified from Feussner and Kindl, 1992; 
Sturm et al., 1985) 
 
 Final concentration 

Sucrose 0.6 or 0.4 M 

Tris-HCl (pH 7.5) 100 mM 

Ethylenediaminetetraacetic acid 
(EDTA) 

3 mM 

Dithiotreitol (DTT) 10 mM 

Plant protease inhibitor cocktail 1 % (v/v) 

 

DTT and plant protease inhibitors were added shortly before use. 

Table 10: Grinding buffer for disruption of A. thaliana seedlings (modified from Hills and Murphy, 1988) 
 
 Final concentration 

sucrose 0.4 M 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) 

100 mM 

KCl 10 mM 

MgCl2 1 mM 

EDTA 1 mM 

DTT 10 mM 

Plant protease inhibitor cocktail 1 % (v/v) 

 

DTT and plant protease inhibitors were added shortly before use. 

 



 Materials 

39 

 

3.5.3 Buffers for SDS-PAGE 

 

Table 11: Denaturing protein solubilization buffer (modified from Laemmli, 1970; Zienkiewicz et  a l . , 
2014) 
 
 Final concentration 

Sodium dodecyl sulfate (SDS) 4 % (w/v) 

DTT 4 mM 

Glycerol 8 % (v/v) 

Tris-HCl, pH 6.8 80 mM 

Bromophenolblue 0.02 % (w/v) 

urea 7 M 

thiourea 2 M 

 

Table 12: Running buffer for SDS-PAGE (Davis, 1964; Laemmli, 1970; Ornstein, 1964) 
 
 Final concentration 

Tris-HCl 25 mM 

Glycine 200 mM 

SDS 0.1 % (w/v) 

 

Table 13: Running gel for denaturing SDS-PAGE (Davis, 1964; Laemmli, 1970; Ornstein, 1964) 
 
 Final concentration 

Tris-HCl, pH 8.8 375 mM 

SDS 0.1 % (w/v) 

Acrylamide/Bis-acrylamide 10 %/0.027 % (w/v) 

Ammonium persulfate (APS) 0.05 % (w/v) 

Tetramethylethylenediamine (TEMED) 0.0007 % (v/v) 

 

Table 14: Stacking gel for denaturing SDS-PAGE (Davis, 1964; Laemmli, 1970; Ornstein, 1964) 
 
 Final concentration 

Tris-HCl, pH 6.8 125 mM 

SDS 0.1 % (w/v) 

Acrylamide/Bis-acrylamide 4 %/0.1 % (w/v) 

Ammonium persulfate (APS) 0.05 % (w/v) 

Tetramethylethylenediamine (TEMED) 0.0007 % (v/v) 
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Table 15: Coomassie staining solution (Meyer and Lamberts, 1965; Neuhoff et  a l . , 1988) 
 
 Final concentration 

Serva Blue G 0.002 % (w/v) 

Ethanol 10 % (v/v) 

Acetic acid 5 % (v/v) 

 

3.5.4 Buffers for nucleic acid extraction 

 

Table 16: Trizol (Chomcyzynski and Sacchi, 1987) 
 
 Final concentration 

Guanidinium thiocyanate 0.8 M 

Ammonium thiocyanate 0.4 M 

Sodium acetate, pH 5 0.1 M 

Glycerol 5 % (v/v) 

Aqueous phenol 38 % (v/v) 

 

Table 17: High salt precipitation buffer for RNA (Chomcyzynski and Sacchi, 1987) 
 
 Final concentration 

Sodium citrate 0.8 M 

Sodium chloride 1.2 M 

 

High salt precipitation buffer was sterilized by autoclaving at 121 °C for 20 min. 

 

Table 18: Seed RNA extraction buffer (Oñate-Sánchez and Vicente-Carbajosa, 2008) 
 
 Final concentration 

LiCl 0.4 M 

Tris, pH 8 0.2 M 

EDTA, pH 8 25 mM 

SDS 1 % (w/v) 
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Table 19: CTAB buffer for extraction of genomic DNA (Weigel and Glazebrook, 2002) 
 
 Final concentration 

Cetyltrimethylammoniumbromide (CTAB) 2 % (w/v) 

Tris-HCl, pH 8 100 mM 

EDTA, pH 8 20 mM 

NaCl 1.4 M 

 

 

3.5.5 Buffers for agarose gel electrophoresis (Green and Sambrook, 2012) 

 

Table 20: Tris Acetic acid EDTA (TAE) buffer 
 
 Final concentration 

Tris 40 mM 

Acetic acid 20 mM 

EDTA 1 mM 

 

Table 21: 6 x DNA loading dye 
 
 Final concentration 

Bromophenol Blue sodium salt 0.25 % (w/v) 

Xylene cyanol 0.25 % (w/v) 

Glycerol 30 % (v/v) 

EDTA 10 mM 

 

3.5.6 TFP buffer for generation of competent E. col i  

 

Table 22: TFP buffer 
 
 Final concentration 

piperazine-N,N′-bis(2-ethanesulfonic acid) 
(PIPES) 

10 mM 

CaCl2 15 mM 

KCl 250 mM 

MnCl2 55 mM 
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3.5.7 Tris EDTA buffer (TE buffer) for Gateway cloning 

 

Table 23: TE buffer 
 
 Final concentration 

Tris-HCl 10 mM 

EDTA 1 mM 

 

3.5.8 Solutions for lipid extraction 

 

Table 24: Fatty acid methyl ester (FAME) solution for acidic methanolysis (Miquel and Browse, 1992) 
 
 Final concentration 

Methanol 63.7 % (v/v) 

Toluol 31.8 % (v/v) 

Sulfuric acid 2.5 % (v/v) 

Dimethoxypropane 2 % (v/v) 

 

3.5.9 Solutions for lipase activity assays 

 

Table 25: Bradford reagent (Bradford, 1976) 
 
 Final concentration 

Serva Blue G (0.14 % w/v in ethanol) 0.007 % (w/v) 

Phosphoric acid 8.5 % (w/v) 

 

Table 26: Buffer for lipase reaction, pH 6 
 
 Final concentration 

Citric acid 0.1 M 

DTT 2 mM 

Plant protease inhibitor cocktail 1 % (v/v) 

 

pH was set to 6 using KOH, DTT and Plant protease inhibitors were added just before use. 
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Table 27: Buffers for lipase reaction, pH 7 and 8 
 
 Final concentration 

Tris 0.1 M 

DTT 2 mM 

Plant protease inhibitor cocktail 1 % (v/v) 

 

pH was set to 7 or 8 using HCl, DTT and Plant protease inhibitors were added just before use. 

 

3.6 Organisms 

3.6.1 Algae and plant lines 

Lobosphaera  inci sa  strain SAG 2468 

Arabidopsi s thal iana Columbia-0 and sdp1-5/sdp1-L2  (Kelly et  a l . , 2011) 

Nicotiana  tabacum  SNN 

3.6.2 Bacterial strains  

Escheri chia  co l i  XL1-Blue (Agilent Technologies, Santa Clara, USA) 

Escheri chia  co l i  DH5-α (New England Biolabs, Ipswich, USA) 

Agrobacterium tumefaci ens EHA 105 
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3.7 Oligonucleotides 

All oligonucleotides were obtained from Sigma-Aldrich Chemie GmbH, Steinheim, Germany. 

Table 28: Oligonucleotides used in this study. Nucleotide sequences are given along with their general 
purpose and the target coding sequence. Added endonuclease restriction sites are indicated in capital 
letters. 
 

Target Primer nucleotide sequence General purpose 

g555.t1 

ataGGATCCatgggtgctgagccagtg 

Amplification of coding 
sequences from cDNA and 
addition of restriction sites 

ataGTCGACgtgagcgccgttcacctc 

ataGTCGACatgggtgctgagccagtg 

g2905.t1 

ggaGGATCCatgtactcagcgatgcagttg 

ggaGAATTCttagccctgcgggaacct 

ataGTCGACatgtactcagcgatgcagttg 

ataGGATCCttagccctgcgggaacct 

ataGTCGACgccctgcgggaacctggcat 

g9192.t1 (LiSDP1) 

atgaaacctctgacttaccaaacgggtcgc 

tcatggcgcgatgacgtccagcgcctggcc 

ggaGGATCCatgaaacctctgacttaccaaac 

ataGTCGACtcatggcgcgatgacgtc 

ataGTCGACatgaaacctctgacttaccaaac 

ataGGATCCtcatggcgcgatgacgtc 

ataGTCGACtggcgcgatgacgtccag 

g9582.t1 
ataGGATCCatgcaagacccgtaccaacg 

ataCTCGAGgggcaaaaacagctggtagt 

g13714.t1 
ataGGATCCatgcgtgccgcagcaagc 

ataCTCGAGtgccgccgctgtcaacgc 

g13747.t1 
agaGGATCCatgactaagtccacctcatccc 

ataGTCGACctgttcagcgctagcggc 

g13945.t1 

ataGGATCCatggcatctcatgacaacctg 

ataCTCGAGtttcatgtttaggccattgctg 

ataACATGTatggcatctcatgacaacctg 

g14373.t1 
ggcCTCGAGatgtctgtccgtcagccg 

ataCCCGGGtgccgctgcagtcgccggc 

g15430.t1 

ataGGATCCatgtataacgcagacgggtccat 

ataGTCGACccatccaaagctgaacgtgc 

ataGTCGACatgtataacgcagacgggtc 

mVenus ataGGATCCttacttgtacagctcgtcca 
Amplification of C-terminal 
mVenus fusions and addition 
of restriction site 
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Table 28 
continued 

  

A. thal iana  Actin 8 
atggccgatgctgatgacattcaacct 

Confirmation of gene 
expression 

ttagaagcattttctgtggacaatgcctg 

A. thal iana  SDP1 
accgtttgctccccaagaaa 

cttgagcctccgcatatggt 

A. thal iana  
SDP1-L 

tcattcctcggtgggttagc 

tacagaccccacgcttgaac 

g555.t1 
tgtctacagtactggcaagagc 

qRT-PCR 

tgttccatactcgctgactgtc 

g2905.t1 
ataccgcttgcgctattctc 

tcacatgcgcaaacacgatg 

g5830 (ribosomal 
protein S21) 

caacgtagacaaggccttttcc 

tctccttctggttgagcactc 

g9192.t1 (LiSDP1) 
ggtgttgtcaagacgctctttg 

ttggttgcgatgatggatgc 

g13945.t1 
atgctcacaaactcgtggac 

ttgccaatgcccttcttgac 

g15430.t1 
acatctttggcaaccacagc 

atcgctgatgtcacggactc 

 

3.8 Vectors 

Table 29: Vectors used for cloning and heterologous expression in this study. Listed below are vector 
names and their origin.  
 

  Origin 

pUC18-Entry 
Dr. Ellen Hornung, University of Göttingen (Hornung et  
a l . , 2005) 

pENTRY-E-napin::MCS 
Dr. Mareike Heilmann, University of Halle, formerly 
University of Göttingen (Heilmann et  a l . , 2012) 

pCambia 23.1 
Dr. Ellen Hornung, University of Göttingen  
(generated as described previously, Hornung et  a l . , 2005) 

pCambia 43.0 
Dr. Ellen Hornung, University of Göttingen  
(generated as described previously, Hornung et  a l . , 2005) 

pJET1.2/blunt Thermo Fisher Scientific, Waltham, USA 

pUC-Lat52::mVenus 
Prof. Dr. Jörg Kudla, University of Münster (Mähs et  a l . , 
2013) 

 

For features of pCambia vectors, see appendix 9.3. 
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3.9 Enzymes 

Table 30: Enzymes used in this study. Listed below are enzyme names and the supplier they were 
obtained from. 
 

  Supplier 

DNaseI Thermo Fisher Scientific, Waltham, USA 

GoTaq Polymerase Promega Corporation, Madison, USA 

LR Clonase II enzyme mix  Thermo Fisher Scientific, Waltham, USA 

Phusion Polymerase  New England Biolabs, Ipswich, USA 

Plant protease inhibitor cocktail Sigma-Aldrich Co., St. Louis, USA 

RedTaq Polymerase Sigma-Aldrich Co., St. Louis, USA 

restriction enzymes Thermo Fisher Scientific, Waltham, USA 

RevertAid H Minus reverse 
transcriptase  Thermo Fisher Scientific, Waltham, USA 

Trypsin Sigma-Aldrich Co., St. Louis, USA 
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4 Results 

L. inci sa  is a unicellular microalga that is of special interest due to its ability to accumulate large 

amounts of the PUFA ARA in LBs. In this study, lipid and protein analyses were carried out in 

order to elucidate the biogenesis of LBs in conditions of stress and recovery. 

4.1 Analysis of physiological responses to changes in nitrogen availability 

Physiological responses of L. incisa  strain SAG2468 were investigated during a 7 d period of 

nitrogen limitation followed by 3 d in nitrogen replete conditions.   

4.1.1 Determination of pigment and fatty acid content 

The ratio of carotenoids to total chlorophyll is a useful indication of the physiological state of 

L. inc isa  cultures (Solovchenko et  a l . , 2009). The ratio increases during the first 3 d of nitrogen 

limitation when it reaches a plateau and slightly increases once more upon nitrogen resupply  

before reaching a basal level (Figure 1). This pattern is also found in TAG fatty acids reaching 

56 % of the total after the first 3 d, albeit the increase observed 1 d after nitrogen resupply is 

more pronounced with a maximum of 90 % of the total (Figure 1, Supplemental figure 1). Total 

fatty acids (TFAs) do not undergo significant changes during the 7 d in growth limiting 

conditions, whereas they decrease when nitrogen is resupplied. The proportion of fatty acids 

sequestered in TAG molecules increases slightly to approximately 50 % during the first part of 

the experiment, however it is strongly affected by the change of growth media at day 7, 

increasing to approximately 90 % during 1 d.  

Nitrogen supply not only affects the total amount but also the profile of all fatty acids (Figure 

2) and those esterified in TAG (Figure 3). Comparing proportions in TFAs (Figure 2A), the 

saturated fatty acid species 16:0 and 18:0 show opposite trends over the course of the 

experiment: The relative amount of 16:0 is reduced after 3 d and only recovers to the initial level 

in the second half of the experiment, whereas 18:0, a minor species in L. incisa , doubles in 

relative amount during 7 d of nitrogen depletion and is diminished in the second half of the 

experiment. Neither of the two species is affected in the relative amount found in TAG (Figure 

3A).  
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In L. inci sa , two monounsaturated fatty acid species can be detected: 18:1(n-9) and 18:1(n-7). 

The former undergoes the most dramatic increase in response to nitrogen starvation out of all 

fatty acids analyzed (Figure 2A), reaching a maximum of 27 % of TFAs within 3 d and 

decreasing to its initial level of 17 % in the presence of nitrate. The latter does not appear to be 

affected by the changing growth conditions in this experiment.  

L. inci sa  is rich in PUFAs, particularly ARA (20:4 (n-6)), as shown in Figure 2B. 18:3 (n-6) 

and 20:5 (n-3) are of relatively low abundance and do not undergo significant changes. 

18:2 (n-6) is the only fatty acid observed in this experiment that decreases in relative 

abundance but then rises to its initial proportion within the first 7 d. The relative amount of 

18:3 (n-3) is strongly reduced from 12 to 2 % of TFAs and recovers completely within 3 d of 

nitrogen resupply. The same trend can be observed in TAG, however 18:3 (n-3) is only a 

minor species in this lipid (Figure 3B). ARA strongly accumulates in response to nitrogen 

starvation, accounting for almost 30 % of all fatty acids at day 3 of nitrogen limitation, and 

remains largely unchanged afterwards. Interestingly, the proportion of ARA in TAG follows 

 
Figure 1: Response of L .  incisa  to a sequence of nitrogen deplete and replete conditions. The TFA 
content and the amount of fatty acids in TAG as well as the ratio of carotenoids to total chlorophyll are 
shown. Error bars represent the standard error of the mean of three L .  inc isa  batches cultivated in 
parallel in a single experiment. 
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this trend in reverse order, so that no significant change can be observed under nitrogen 

limiting conditions, in contrast to a clear accumulation upon nitrogen resupply.  

 

 
Figure 2: Effect of nitrogen starvation and recovery on the TFA profile of L .  incisa . For each fatty acid 
species, the proportion relative to the total of fatty acids is shown and error bars represent the standard 
error of the mean of three L .  incisa  batches cultivated in parallel in a single experiment. A, Saturated 
and monounsaturated fatty acids. B, PUFAs. 
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Combined, nitrogen depletion leads to a reduction in C16 fatty acids in favor of C20 species, 

while the overall C18 content is not affected. Furthermore, the accumulation of TAG in 

L. inci sa  during cultivation in nitrogen deplete conditions can be largely attributed to an 

increase in 18:1 (n-9). This shift in the TAG fatty acid profile is not reflected in the distribution  

 
Figure 3: Effect of nitrogen starvation and recovery on the TAG fatty acid profile of L. incisa. For each 
fatty acid species, the proportion relative to the total of fatty acids in TAG is shown and error bars 
represent the standard error of the mean of three L. incisa batches cultivated in parallel in a single 
experiment. A, Saturated and monounsaturated fatty acids. B, PUFAs. 
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of TFAs, since the change in the monounsaturated fatty acid is outweighed by reductions in 

16:0 and 18:3 (n-3). Additionally, the ratio of ARA and 16:0 is altered in lipid classes other than 

TAG in this phase of the experiment.  

Following nitrogen resupply, the decrease in TFAs can be mostly attributed to 18:1 (n-9) being 

removed from TAG, while ARA accumulation alone leads to a TAG increase.  

4.1.2 Gene expression analyses 

In order to analyze the physiological changes in L. incisa  on the transcript level, the 

identification of an appropriate housekeeping gene to be used as a reference for normalization 

was necessary. The alga goes into growth arrest when nitrogen is not available and resumes 

growth upon resupply of nitrogen (Cheng-Wu et  a l . , 2002), which is a common response in 

microalgae and known to be associated with extensive changes in the transcriptome (Blaby et  

a l . , 2013; Miller et  a l . , 2010; Schmollinger et  a l . , 2014). Many housekeeping genes are likely to 

be affected by these global changes in gene expression and may therefore not be suitable as 

references.  

Initially, the published results of a set of RNA sequencing (RNAseq) experiments with 

C. re inhardti i  (Tsai et  a l . , 2014) were used to identify genes exhibiting constitutive expression 

independently of cell division. The authors had sequenced the transcripts of C. reinhardti i  

wildtype and the cht7 mutant, which is unable to resume growth after nitrogen resupply due to 

a defect in a central regulator of cellular quiescence. Transcriptomes of cultures growing in 

normal conditions or subjected to 48 h nitrogen starvation had been sequenced and for each 

treatment, the authors compared the expression changes between the genotypes. For the 

purpose of this study, genes with stable expression across both genotypes and treatments (log2 

of expression changes: -0.1 to 0.1) were selected and homologs in L. incisa  were identified by 

BLAST search. The candidate genes were then checked for stable expression in L. incisa  

following 12 or 72 h nitrogen starvation (unpublished RNA sequencing data) and several 

candidates were selected for quantitative real-time PCR (qRT-PCR) analysis. Samples from one 

culture that was part of the growth experiment described in section 4.1.1 were used for RNA 

extraction with additional samples taken 6 h after each change in growth media. The results of 

the qRT-PCR for RNA HELICASE (transcript accession g5223.t1, homologous to 

C. re inhardti i  Cre01.g051550), POLY(A) BINDING PROTEIN (g11952.t2, Cre17.g725300), 

NUCLEAR MATRIX PROTEIN (g4250.t2, Cre16.g695300) and a SPLICEOSOME 

COMPONENT (g7962.t1, Cre01.g051100) relative to time point 0 for three biological replicates 
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are shown in Figure 4. All candidates tested exhibited a marked reaction to the changes in 

nitrogen availability at the time points that were not covered by either RNAseq experiment. An 

additional gene was thus tested that exhibits only minor alterations in expression (log2 of 

expression changes: -0.1 to 0.1) in L. inci sa  cultures at 0, 12 and 72 h nitrogen starvation 

(unpublished RNAseq data). The gene putatively encodes RIBOSOMAL PROTEIN S21 

(L. inc isa  transcript accession g5830.t1) and is the most stably expressed one out of all 

candidates. It was therefore used as a reference gene for normalization in all further qRT-PCR 

experiments. 

  

 
Figure 4: Quantitative real-time PCR measurements of various housekeeping genes in response to 
changes in nitrogen supply. Transcript levels are shown relative to time point 0 and for the 
RIBOSOMAL PROTEIN S21 gene error bars represent the standard error of the mean for three batches 
cultivated in parallel in a single experiment. All other genes were tested using complementary DNA 
from one algal culture from the same experiment. The dotted line indicates nitrogen resupply. 
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4.2 Identification of L. incisa  LB proteins 

In many organisms, proteins are attached to the surface of LBs which can play a role in 

maintaining the structural integrity of the organelle or actively participate in lipid metabolism.  

The L. incisa  genome (unpublished data) was therefore searched for homologs of genes 

encoding known LB proteins. Oleosins, caleosins and steroleosins found in many oil seed plants 

were used as queries in BLAST searches along with mammalian perilipins and algal proteins 

including C. reinhardti i  Major Lipid Droplet Protein and the Lipid Droplet Surface Protein 

conserved in Nannochloropsis  species. None of these queries yielded any homologies, 

consequently LBs were isolated from L. inc isa  in order to identify new LB proteins.  

An L. incisa  culture that had been starved of nitrogen for 3 d in order to promote the 

formation of LBs was used for LB isolation (see 

Figure 5 A and B) and a range of cell disruption methods was tested to obtain intact LBs from 

the alga with as little contamination from other membranes as possible. This proved to be 

challenging as L. incisa  has an especially robust cell wall compared to other microalgae that 

have been used for this type of analysis in the past. Mechanical cell disruption was attempted 

using a Potter-Elvehjem tissue grinder, glass beads, pipetting, exposure to ultrasound using a 

sonification bath and a sonifier tip. In addition to this, a mix of cell wall degrading enzymes 

frequently used for the generation of A. thal iana  protoplasts, consisting of cellulase, 

hemicellulase and pectinase, was tested on L. incisa  cells alone and in combination with the 

Potter-Elvehjem tissue grinder. Efficient cell disruption was not achieved with any of these 

methods. A rapid pressure drop using a French press set to pressures up to 3000psi proved 

equally unsuccessful, whereas 4000psi were sufficient to break the algal cells, however intact 

LBs could not be retrieved from these cell extracts (data not shown). Cells were finally disrupted 

 
Figure 5: Detection of LBs with Nile Red. Scale bars = 10 µm. A and B, Brightfield and fluorescence 
images of L .  inc isa  cells starved of nitrogen for 3 d. C and D, Brightfield and fluorescence images of LBs 
that were isolated from L.  incisa  and used for protein extraction. 
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by grinding in liquid nitrogen and intact LBs were isolated as described in section 2.2 (see Figure 

5 C and D).  

Proteins isolated from the LB sample were identified by mass spectrometry, yielding a list of 

4105 proteins that were identified by more than one detected peptide with at least medium 

confidence. This list of putatively LB-associated proteins was compared to proteins identified 

that way in total protein extract, soluble and microsome fractions obtained from the same algal 

sample. Table 31 shows an excerpt from the list of identified proteins including the proteins 

that were characterized in more detail in this study. Among the most abundant proteins, several 

ones can be clearly assigned to other cellular compartments based on sequence homology with 

known proteins, such as VOLTAGE-DEPENDENT ANION CHANNEL PROTEIN 2 

(VDAC2), ATP SYNTHASE CF1 SUBUNIT β (ATPβ), PHOTOSYSTEM II OXYGEN-

EVOLVING ENHANCER PROTEIN (PSBQ) and LIGHT-HARVESTING COMPLEX II 

CHLOROPHYLL A/B BINDING PROTEIN 2 (LHCB2). Proteins were selected for further 

analysis based on the criteria outlined in section 2.3.4 and the coding sequences that could be 

successfully amplified from cDNA were studied in more detail. 
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Table 31: Proteins identified in L .  incisa  LB samples. Only proteins that were detected in all three 
technical replicates are shown. # denotes the rank in abundance as determined based on the protein’s 
average Normalized Spectral Abundance Factor (NSAF) in LB protein extracts. Coverage refers to the 
proportion of the amino acid sequence covered by peptides detected in all samples. SD, standard 
deviation of three technical replicates in a single experiment; VDAC2, voltage-dependent anion channel 
protein 2; ATPβ, ATP synthase CF1 subunit β; PSBQ, Photosystem II oxygen-evolving enhancer protein; 
LHCB2, light-harvesting complex II chlorophyll a/b binding protein 2; LiOGP, L .  inc isa  Oil Globule 
Protein. 
 

Protein 

name 

(accession) 

Average NSAF  

± SD 
# 

Coverage  

[%] 

Fold enrichment compared 

to 

Total 

protein 

extract 

Micro-

somes 

Soluble 

protein 

g12938.p1 0.01333 ± 0.0005 1 84.5 1.50 1.49 1.71 

VDAC2 
(g14145.p1) 

0.00988 ± 0.0006 2 84.0 2.02 2.58 3.03 

ATPβ 
(atpB.p1) 

0.00754 ± 0.0018 3 92.8 1.16 2.62 1.39 

g15892.p4 0.00749 ± 0.0019 4 67.5 7.09 9.67 10.82 

g15892.p2 0.00748 ± 0.0019 5 72.5 7.15 10.21 11.20 

g5834.p2 0.00671 ± 0.0003 6 87.9 2.41 6.55 3.26 

g5834.p1 0.00666 ± 0.0004 7 87.8 2.39 6.46 3.32 

PSBQ 
(g4252.p1) 

0.00656 ± 0.0030 8 53.9 1.67 2.10 2.89 

LHCB2 
(g4499.p1) 

0.00642 ± 0.0020 9 77.8 0.73 1.05 0.89 

g14820.p1 0.00642 ± 0.0002 10 58.6 2.79 1.22 2.56 

  
 
• 
• 
• 
 

    

LiOGP 
(g555.p1) 

0.00494 ± 0.0001 28 75.5 1.04 1.55 0.95 

  
 
• 
• 
• 
 

    

g13945.p1 0.00454 ± 0.0010 36 49.1 5.48 7.32 9.18 

  
 
• 
• 
• 
 

    

g15430.p1 0.00320 ± 0.0014 62 64.8 31.35 * 26.57 

  
 
• 
• 
• 
 

    

g13747.p1 0.00117 ± 0.0002 214 37.0 7.99 25.70 12.8 

  
 
• 
• 
• 
 

    

 

 



 Results 

56 

 

4.2.1 Characterization of L. inc isa  OIL GLOBULE PROTEIN (LiOGP) 

The protein encoded by the g555 gene was identified as a putative structural LB protein based 

on its relatively high abundance in LB protein extract (see Table 31) as well as the fact that the 

protein was found to exhibit some homology with a known LB associated protein from the 

unicellular green alga Haematococcus pluvial is .  The protein was thus termed L. incisa  

OIL GLOBULE PROTEIN (LiOGP) based on homology with H. pluvial is  OIL 

GLOBULE PROTEIN (HpOGP, see Figure 6A). 75.5 % of the LiOGP amino acid 

sequence is covered by tryptic peptides detected in the mass spectrometry experiment as shown 

in Table 31 and Figure 6A. Hydrophobicity of the amino acid sequences follows a highly similar 

pattern (Figure 6B) and it is notable that neither protein contains a distinct hydrophobic stretch 

as the one found in oleosins of higher plants (A. tha l iana  OLEOSIN1 is shown for 

comparison). No conserved domains collected in the PFAM database were detected and 

structural homologies to other proteins could not be found using the PHYRE2 server.  

The subcellular localization of the protein was confirmed by heterologous expression of a gene 

fusion with mVenus in N. tabacum  pollen tubes ( 

Figure 7). The fluorescence emitted by the mVenus tag shows a distinct punctate pattern typical 

of LBs ( 

Figure 7A) and overlaps with the neutral lipid stain Nile Red ( 

Figure 7B).  

In order to gain more information on the function of LiOGP, gene expression was analyzed in 

L. inci sa  cultures subjected to nitrogen starvation followed by a change to nitrogen replete 

media as described in section 4.1.2. Transcript levels closely track the accumulation of TAG 

during 7 d of nitrogen limitation and decrease to the initial value during recovery with a local 

minimum reached 6 h after the change in growth media (Figure 8). 
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Figure 6: Features of the L .  incisa  OIL GLOBULE PROTEIN (LiOGP) amino acid sequence. A, Similarities 
with the amino acid sequence of Haematococcus pluvialis OIL GLOBULE PROTEIN (HpOGP). Black and 
grey boxes highlight identical and similar residues, respectively. Sequences were aligned using MultAlin 
and ExPASy BoxShade software. Black bars indicate peptides that were detected with high confidence in 
mass spectrometry measurements of L .  incisa  LB protein fractions. B, Hydrophobicity of amino acid 
positions in the sequence of LiOGP compared to HpOGP and A.  thal ia na  OLEOSIN1. The 
hydrophobicity score was determined using ExPASy ProtScale software with the Kyte & Doolittle amino 
acid scale and a window size of 19 residues. 



 Results 

58 

 

 

 
Figure 7: Subcellular localization of L .  inc isa  OIL GLOBULE PROTEIN (LiOGP)-mVenus fusion in 
N. tabacum pollen tubes. Fluorescence was documented by confocal laser scanning microscopy after 6 h 
of pollen germination. Scale bars = 10µm. A, Unstained pollen tube expressing the LiOGP-mVenus fusion. 
From left to right: mVenus fluorescence, brightfield image, merged image. 8 out of 8 pollen tubes 
analyzed showed comparable results. B, Pollen tube expressing the LiOGP-mVenus fusion and stained 
for LBs with Nile Red. From left to right: Nile Red fluorescence, mVenus fluorescence, brightfield image, 
merged image. 9 out of 9 pollen tubes analyzed showed comparable results. 
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4.2.2 Characterization of the L. inci sa  g15430 protein 

Protein g15430 is highly enriched in LB extracts of L. incisa  and was therefore chosen for 

further analysis. The subcellular localization of g15430 at the surface of LBs was confirmed by 

heterologous expression in tobacco pollen tubes as described above (Figure 9).  

Peptides covering almost 65 % of the amino acid sequence contributed to the identification of 

the protein in the algal LB fraction (Table 31 and Figure 10A). Searches for homologous amino 

acid sequences or tertiary structures in other organisms yielded no results and a pronounced 

hydrophobic stretch of amino acids as found in AtOLEOSIN1 is absent from the sequence 

(Figure 10B). A conserved domain of unknown function (PFAM accession: DUF 4057) spans 

70 amino acids in g15430. This domain has also been identified in uncharacterized proteins of 

the lycophyte Selaginel la moe l lendorf i i , the moss Physcomitrel la patens , 27 species of 

flowering plant including A. thal iana  and other oil seed plants as well as the unicellular green 

algal species Micromonas pusi l la , Ostreococ cus tauri  and Ostreococcus lu cimarinus  (PFAM).  

Figure 8: Expression of the L .  inc isa  OIL GLOBULE PROTEIN (LiOGP) gene in response to changes in 
nitrogen supply. Transcript levels were determined by quantitative real-time PCR and normalized to 
RIBOSOMAL PROTEIN S21 transcripts. Expression is shown relative to time point 0 and error bars 
represent the standard error of the mean for three batches cultivated in parallel in a single experiment. 
The dotted line indicates nitrogen resupply and TAG levels are shown for comparison. 
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Figure 9: Subcellular localization of L .  incisa  g15430-mVenus fusion in N. tabacum pollen tubes. 
Fluorescence was documented by confocal laser scanning microscopy after 6 h of pollen germination. 
Scale bars = 10µm. A, Unstained pollen tube expressing the g15430-mVenus fusion. From top to bottom: 
mVenus fluorescence, brightfield image, merged image. Three out of three pollen tubes analyzed showed 
comparable results. B, Pollen tube expressing the g15430-mVenus fusion and stained for LBs with Nile 
Red. From top to bottom: Nile Red fluorescence, mVenus fluorescence, brightfield image, merged image. 
Four out of four pollen tubes analyzed showed comparable results. 
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Figure 10: Features of the L .  inc isa  g15430 amino acid sequence. A, The amino acid sequence with 
black bars indicating peptides that were detected with high confidence in mass spectrometry 
measurements of L .  inc is a  LB protein fractions. The grey bar represents the domain of unknown 
function (DUF 4057) detected using the PFAM server. B, Hydrophobicity of amino acid positions in the 
sequence of g15430 compared to A.  thal ia na  OLEOSIN1. The hydrophobicity score was determined 
using ExPASy ProtScale software with the Kyte & Doolittle amino acid scale and a window size of 19 
residues. 
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The g15430 gene undergoes a brief drop in expression during the first hours of cultivation 

without nitrogen before exhibiting a sharp increase at day 1 (Figure 11). From this point on, the 

level of transcripts mirrors that of TAG, remaining almost constant until nitrogen is resupplied, 

which is associated with a rapid reduction in g15430 gene expression. At 3 d of growth in full 

media, the transcripts once again reach their former plateau level as TAG is degraded. 

  

Figure 11: Expression of the L .  inc isa  g15430 gene in response to changes in nitrogen supply. 
Transcript levels were determined by quantitative real-time PCR and normalized to RIBOSOMAL 
PROTEIN S21 transcripts. Expression is shown relative to time point 0 and error bars represent the 
standard error of the mean for three batches cultivated in parallel in a single experiment. The dotted line 
indicates nitrogen resupply and TAG levels are shown for comparison. 
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4.2.3 Characterization of the L. inci sa  g13747 protein 

Protein g13747 was identified as a putatively LB associated protein as it is strongly enriched in 

the L. inci sa  LB fraction and a region of increased hydrophobicity was detected in a preliminary 

analysis. The tryptic peptides used to identify the protein in mass spectrometry cover 37 % of 

the amino acid sequence (Table 31). 

When heterologously expressed in the pollen tubes of N. tabacum , the g13747 protein exhibits 

the same distinct punctate pattern as for other LB localized proteins ( 

Figure 12). However, transformation efficiency was not sufficient to permit a colocalization 

assay with the neutral lipid specific dye Nile Red. 

The primary structure of the protein allows little speculation as to the protein’s function as the 

amino acid sequence is not similar to any other known proteins or conserved domains, however 

the N-terminus contains a marked hydrophobic section comparable to that found in 

AtOLEOSIN1 (Figure 13B).  

 

 

 

 
Figure 12: Subcellular localization of mVenus-L.  incis a  g13747 fusion in N. tabacum pollen tubes. 
Fluorescence was documented by confocal laser scanning microscopy after 6 h of pollen germination. 
From top to bottom: mVenus fluorescence, brightfield image, merged image. A pollen tube expressing 
the C-terminal fusion showed comparable localization. Scale bar = 10µm. 
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Figure 13: Features of the L .  inc isa  g13747 amino acid sequence. A, Black bars indicate peptides that 
were detected with high confidence in mass spectrometry measurements of L .  incisa  LB protein 
fractions. B, Hydrophobicity of amino acid positions in the sequence of L .  inc isa  g13747 compared to 
A.  thal ia na  OLEOSIN1. The hydrophobicity score was determined using ExPASy ProtScale software 
with the Kyte & Doolittle amino acid scale and a window size of 19 residues. 
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4.2.4 Characterization of the L. inci sa  g13945 protein 

LB localization of g13945 could be confirmed by heterologous expression in tobacco pollen 

tubes and colocalization with Nile Red (Figure 14).  

The amino acid sequence, 49 % of which were identified in the initial mass spectrometric 

analysis (Table 31), is characterized by a partial conserved lipase class 3 domain (PFAM 

accession PF01764, Figure 15). This domain is found in many lipases and contains the 

characteristic catalytic triad of serine, aspartate and histidine (Derewenda and Derewenda, 

1991). The serine residue is part of a nucleophilic elbow that consists of a highly conserved 

glycine-X-serine-X-glycine motif, with X representing any residue. This motif as well as the 

catalytic aspartate can be identified in the conserved domain in the g13945 amino acid sequence, 

whereas the C-terminal part of the protein lacks homology to any other known protein in both 

amino acid sequence and predicted structure (data not shown), so that the identity and location 

of the third catalytic residue cannot be predicted.  

Overall the g13945 protein does not exhibit a striking sequence similarity with any single known 

protein, however its predicted secondary structure closely matches that of a group of fungal and 

yeast secretory lipases, as determined by Phyre2 search. A representative of this group, 

Malassezia  g lobosa  LIPASE1 (MgLIP1) is included in Figure 15. These lipases are known to 

degrade mono-, di- and triacylglycerol, however MgLIP1 differs from its structural homologs 

in strictly not accepting TAG as a substrate (DeAngelis et  a l . , 2007). The crystal structure of 

this protein has been published (Xu et al., 2012) (PDB accession 3UUE) and the authors of the 

study suggest the presence of the relatively large tryptophane residue directly adjacent to the 

catalytic aspartate to be a determinant in this unusual substrate specificity. All other lipases that 

are highly similar in structure and do hydrolyze TAG have a smaller residue in this position, 

which is also the case for L. inci sa  g13945 (see Figures 15 and 17). 

In L. incisa  cells exposed to nitrogen limitation, g13945 transcript levels rapidly increase more 

than 10-fold during the first 3 d and undergo a sharp drop following nitrogen resupply, reaching 

the initial range within only 1 d (Figure 16). 

Protein g13945 was tested for TAG lipase activity by complementation assays in A. thal iana . 

The A. thal iana  sdp1/sdp1-L mutant lacks the lipases responsible for the bulk of TAG 

degradation in germinating seeds: SUGAR-DEPENDENT1 (SDP1) and SDP1-LIKE 

(SDP1-L) (Kelly et  a l . , 2011). Etiolated mutant seedlings have been shown to be limited in 

seedling growth in comparison with etiolated wildtype seedlings, a phenotype that can be 
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Figure 14: Subcellular localization of L .  incisa  g13945-mVenus fusion in N. tabacum pollen tubes. 
Fluorescence was documented by confocal laser scanning microscopy after 6 h of pollen germination. 
Scale bars = 10µm. A, Unstained pollen tube expressing the g13945-mVenus fusion. From top to bottom: 
mVenus fluorescence, brightfield image, merged image. 7 out of 7 pollen tubes analyzed showed 
comparable results. B, Pollen tube expressing the g13945-mVenus fusion and stained for LBs with Nile 
Red. From top to bottom: Nile Red fluorescence, mVenus fluorescence, brightfield image, merged image. 
Three out of three pollen tubes analyzed showed comparable results. 
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rescued by supplying an external carbon source such as sucrose. The algal g13945 gene was 

placed under the control of the seed specific Brass ica napus napin A (napA) promoter and 

expressed in the mutant background. Seeds were germinated in the dark for 5 d on solid media 

either without an added carbon source or supplemented with sucrose. As depicted in Figure 

18A, a minor but significant increase in the ratio of hypocotyl length between the treatments 

can be observed in the complemented lines in comparison with the double knockout mutant. 

Hypocotyl length after germination in the two different conditions is shown separately in 

Supplemental figure 2A. 

 

 
Figure 15: Features of the L. incisa g13945 amino acid sequence. Similarities with the amino acid 
sequence of M. globosa LIPASE 1 (MgLIP1) are shown with black and grey boxes highlighting identical 
and similar residues, respectively. Sequences were aligned using MultAlin and ExPASy BoxShade 
software. Components of the active site as determined by structural homology are marked in red and 
the residues of different sizes adjacent to the catalytic aspartate are highlighted in yellow and green for 
the algal and the fungal protein, respectively. The grey bar represents the conserved lipase class 3 
domain. Black bars indicate peptides that were detected with high confidence in mass spectrometry 
measurements of L. incisa LB protein fractions.  
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Figure 17: Expression of the L .  inc isa  g13945 gene in response to changes in nitrogen supply. 
Transcript levels were determined by quantitative real-time PCR and normalized to RIBOSOMAL 
PROTEIN S21 transcripts. Expression is shown relative to time point 0 and error bars represent the 
standard error of the mean for three batches cultivated in parallel in a single experiment. The dotted line 
indicates nitrogen resupply and TAG levels are shown for comparison. 

Figure 16: Predicted structural homology of L .  incisa  g13945 and M. globosa LIPASE 1 (MgLIP1). The 
amino acid sequence of g13945 from residue 190 - 447 (shown in orange) was modeled to the crystal 
structure of MgLIP1 (shown in blue) using the Phyre2 server and aligned to it. A, The entire alignment 
is shown with the catalytic serine and aspartate residues in both proteins depicted as red sticks. B, 
Magnification of the active site with the catalytic serine and aspartate residues shown in red. In addition, 
the tryptophane adjacent to the catalytic aspartate in the fungal lipase is depicted in green and the valine 
that occupies this position in the algal protein is shown in yellow. 
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The capacity of L. incisa  g13945 to hydrolyze TAG was additionally tested by supplementing 

crude cell extracts of 3 d old seedlings with radioactive triolein and monitoring its degradation. 

The fatty acid moieties of the molecule are labeled with the 14C isotope, permitting highly 

sensitive detection of TAG and free fatty acids in thin layer chromatography (TLC). Seedlings 

were allowed to germinate for 3 d before analysis, a developmental stage characterized by TAG 

degradation in the wildtype but not the sdp1/sdp1-L mutant (Kelly et  a l . , 2011). Crude extracts 

of the seedlings were incubated with the labeled substrate in buffers at pH 6, 7 and 8, accounting  
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for the range of physiological conditions in different cellular compartments, in three technical 

replicates each. Lipids were extracted from the reactions, separated by TLC (see Supplemental 

figure 3 for an example) and the ratio of residual radioactivity originating from the TAG and 

free fatty acid bands was calculated (Figure 18C), lower values thus reflecting a higher TAG 

turnover. The presence of lipid synthesizing enzymes in the cell extract only had a minor effect 

on free fatty acid and TAG amounts as demonstrated by supplementing sdp1/sdp1-L seedling 

extracts with radioactively labeled 16:0 (see Supplemental figure 3). Due to high background 

lipase activity in the crude cell extracts, a significant difference between TAG degradation in 

wildtype seedlings and the double knockout mutant could not be observed for reactions at pH 

7 or 8 and the values for the complemented lines are in the same range of the controls. At pH 

6 however, the mutant as well as the complemented lines are markedly reduced in their ability 

to hydrolyze TAG by comparison with the wildtype. 

Gene expression in all lines used for the lipase activity assays was confirmed in dry seeds as 

shown in Figure 18B. 

  

Figure 18: Lipase activity assays with L .  inc isa  g13945 in A.  thal ia na . Sdp1/sdp1-L seedlings with 
the Brassica napus napinA (napA) promoter controlling expression of the L .  incisa  g13945 gene in five 
independent lines are compared to the mutant carrying an empty vector as well as the wildtype (WT). 
A, Hypocotyl length of seedlings after 5 d of germination in the dark on ½ MS agar plates without sucrose 
relative to growth with sucrose. For each growth condition and independent line, three or four batches 
of at least 15 seedlings were measured in a single experiment and hypocotyl length of seedlings 
germinated without sucrose was divided by the average value for the same line with sucrose. Error bars 
represent the standard error of the mean. Asterisks denote measurements on transgenic lines deviating 
significantly from the mutant (two-sided Student’s T-test, α=0.05). B, Degradation of 14C labeled TAG in 
crude extracts of 3 d old seedlings. Following incubation in different buffers, the hexane extract of each 
reaction was separated by thin layer chromatography (TLC) and radioactivity was detected across the 
TLC plate. Relative radioactivity was calculated as the ratio of radiation emitted by TAG and free fatty 
acids as measured densitometrically. Error bars represent the standard deviation of three technical 
replicates in a single experiment. C, Confirmation of gene expression in dry seeds of independent lines. 
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4.3 Identification of enzymes involved in triacylglycerol degradation 

 

Further candidate genes possibly involved in the breakdown of the main storage lipid in 

L. inci sa  were sought in the genome sequenced by the GIAVAP consortium (unpublished 

data). 45 predicted genes were categorized as putative lipases based on a search using the 

InterProScan software tool (data not shown). The list of candidates was searched for homologs 

of known TAG lipases and two of these were selected for further analysis. 

4.3.1 Characterization of the putative lipase g2905 

The g2905 protein was identified as a putative TAG lipase based on sequence homology with 

human GASTRIC LIPASE A (HsLIPA) which has TAG hydrolyzing activity (Bodmer et  a l . , 

1987) (Figure 19). The protein contains an α/β fold domain characteristic of a broad range of 

hydrolases (Ollis et  a l . , 1992) which is preceded in the amino acid sequence by a domain of 

unknown function frequently found in this location in lipases (PFAM). A signal peptide 

spanning the first 20 amino acids was detected and predicted to target the protein to the ER 

using TargetP software. Based on the crystal structure of the human enzyme (PDB accession 

1HLG, Robinson and Schlösser, 1978) and the sequence alignment shown in Figure 19, the 

catalytic amino acid residues of g2905 could be identified as S192 (as part of the conserved 

glycine-X-serine-X-glycine motif), D373 and H404. An additional algal homolog was found in 

the genome of C. re inhardti i  (CrLIPG2). The expression of this gene is known to be induced 

in response to nitrogen limitation (Boyle et  a l . , 2012) and downregulated in heat stressed cells 

(Légeret et al., 2016). 

g2905 gene expression was analyzed in L. incisa  cultivated under nitrogen limited and replete 

conditions ( 

Figure 20). Transcript levels undergo a minor increase during 7 d of nitrogen starvation and 

increase approximately 2-fold in parallel to the TAG amount when nitrogen is resupplied.  

The g2905 protein was tested for TAG lipase activity by complementation of the A. tha l iana  

sdp1/sdp1-L mutant as described above. In these assays, minor enhancements of hypocotyl 

growth in etiolated seedlings could be observed in four out of five complemented lines in 

comparison with the mutant (Figure 22A, Supplemental figure 2B). Hydrolysis of 14C labeled 

TAG was comparable to both mutant and wildtype for reactions at pH 6, 7 and 8 (Figure 22B). 
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Gene expression in all lines used for the lipase activity assays was confirmed in dry seeds as 

shown in Figure 22C. 

Subcellular localization can help to elucidate possible functions of a protein, therefore the ability 

of g2905 to associate with LBs was investigated in the tobacco pollen tube system. The resulting 

pattern of fluorescence emitted by the mVenus tag (Figure 21) has little resemblance with LB 

localization as confirmed by the overlapping Nile Red signal (Figure 7,Figure 9,Figure 12). g2905 

was not detected in any sample in the mass spectrometric analysis of nitrogen starved L. incisa  

cells. 

 

 

 
Figure 19: Features of the L .  inc isa  g2905 amino acid sequence. Similarities with the amino acid 
sequences of Homo sapiens GASTRIC LIPASE A (HsLIPA) and the closest algal homolog, C .  reinha rdt ii  
putative TRIACYLGLYCEROL LIPASE 2 (CrLIP2), are shown with black and grey boxes highlighting 
identical and similar residues, respectively. Sequences were aligned using MultAlin and ExPASy 
BoxShade software. The GXSXG motif conserved in many serine hydrolases as well as the catalytic 
aspartate and histidine residues are marked in red. The dotted line indicates the signal peptide as 
predicted using TargetP software. The dark grey bar represents the conserved α/β hydrolase domain. 
The light grey bar represents a domain that is conserved at the N-terminus of the α/β domain in many 
lipases. 
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Figure 20: Expression of the L .  incisa  g2905 gene in response to changes in nitrogen supply. Transcript 
levels were determined by quantitative real-time PCR and normalized to RIBOSOMAL PROTEIN S21 
transcripts. Expression is shown relative to time point 0 and error bars represent the standard error of 
the mean for three batches cultivated in parallel in a single experiment. The dotted line indicates 
nitrogen resupply and TAG levels are shown for comparison. 
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Figure 21: Subcellular localization of mVenus-L.  inc isa  g2905 fusion in N. tabacum pollen tubes. 
Fluorescence was documented by confocal laser scanning microscopy after 6 h of pollen germination. 
From top to bottom: mVenus fluorescence, brightfield image, merged image. 9 out of 9 pollen tubes 
analyzed showed comparable results. Scale bar = 10µm.  
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Figure 22: Lipase activity assays with L .  inc isa  g2905 in A.  thal ia na . Sdp1/sdp1-L seedlings with the 
Brassica napus napinA (napA) promoter controlling expression of the L .  inc isa  g2905 gene in five 
independent lines are compared to the mutant carrying an empty vector as well as the wildtype (WT). 
A, Hypocotyl length of seedlings after 5 d of germination in the dark on ½ MS agar plates without sucrose 
relative to growth with sucrose. For each growth condition and independent line, three or four batches 
of at least 15 seedlings were measured in a single experiment and hypocotyl length of seedlings 
germinated without sucrose was divided by the average value for the same line with sucrose. Error bars 
represent the standard error of the mean. Asterisks denote measurements on transgenic lines deviating 
significantly from the mutant (two-sided Student’s T-test, α=0.05). B, Degradation of 14C labeled TAG in 
crude extracts of 3 d old seedlings. Following incubation in different buffers, the hexane extract of each 
reaction was separated by thin layer chromatography (TLC) and radioactivity was detected across the 
TLC plate. Relative radioactivity was calculated as the ratio of radiation emitted by TAG and free fatty 
acids as measured densitometrically. Error bars represent the standard deviation of three technical 
replicates in a single experiment. C, Confirmation of gene expression in dry seeds of independent lines. 
 

4.3.2 Characterization of the L. inci sa  SUGAR-DEPENDENT 1 lipase (LiSDP1) 

Another putative lipase encoded in the L. incisa  genome exhibits a high degree of homology 

with the A. thal iana  enzymes SUGAR-DEPENDENT 1 (AtSDP1) and SDP1-LIKE 

(AtSDP1-L) (Figure 23, Supplemental figure 4) and was therefore termed LiSDP1. The three 

proteins have a patatin domain in common, which contains a characteristic catalytic dyad of 

serine and aspartate, making them members of the diverse group of patatin domain lipases 

(Kienesberger et  a l . , 2009). 
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Figure 23: Features of the L .  inc isa  SUGAR DEPENDENT 1 (LiSDP1) amino acid sequence (partial). 
Similarities with the amino acid sequences of A .  thal ia na  SDP1 (AtSDP1) and SDP1-LIKE (AtSDP1-L) 
are shown with black and grey boxes highlighting identical and similar residues, respectively. Sequences 
were aligned using MultAlin and ExPASy BoxShade software and a section of the alignment is shown. 
Components of the active site are marked in red. The grey bar represents the conserved patatin domain. 
See Supplemental figure 4 for the full alignment. 
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In L. inc isa  cultures starved of nitrogen, LiSDP1  gene expression increases more than 2-fold 

during the TAG accumulation phase and undergoes an additional rapid increase upon resupply 

of nitrogen (Figure 24). 3 d afterwards when the storage lipid has been degraded, gene 

expression once again reaches a level comparable to the beginning of the experiment. 

Heterologous expression of the LiSDP1 gene with a fluorescent tag in N. tabacum  pollen tubes 

results in a pattern of fluorescence that is reminiscent of AtSDP1 in A. thal iana  seedlings 

(Figure 25, Eastmond, 2006). 

Considering the strong sequence homology with well characterized A. thal iana  TAG lipases, 

a possible functional complementation of a mutant line lacking these enzymes was investigated. 

As described above, the sdp1/sdp1-L mutant is hardly able to access its storage lipids to drive 

postgerminative growth. This phenotype becomes especially clear when depriving the mutant 

seeds of light and an external carbon source and comparing their hypocotyl elongation to that 

of wildtype seedlings. As shown in Figure 26, LiSDP1 can partially rescue 

 

 

 
Figure 24: Expression of the L .  inc isa  SUGAR DEPENDENT 1 (LiSDP1) gene in response to changes in 
nitrogen supply. Transcript levels were determined by quantitative real-time PCR and normalized to 
RIBOSOMAL PROTEIN S21 transcripts. Expression is shown relative to time point 0 and error bars 
represent the standard error of the mean for three batches cultivated in parallel in a single experiment. 
The dotted line indicates nitrogen resupply and TAG levels are shown for comparison. 
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postgerminative growth of the knockout mutant. The effect is more pronounced in lines 

constitutively expressing the algal gene under the control of the Cauliflower Mosaic Virus 35S 

promoter (35S, A) than with seed specific expression (B). Measurements for germination with 

and without sucrose are shown separately in Supplemental figure 5. 

 
Figure 25: Subcellular localization of mVenus-LiSDP1 fusion in N. tabacum pollen tubes. Fluorescence 
was documented by confocal laser scanning microscopy after 6 h of pollen germination. From top to 
bottom: mVenus fluorescence, brightfield image, merged image. Five out of five pollen tubes analyzed 
showed comparable results. Scale bar = 10µm.  
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Figure 26: Effect of L .  inc isa  SUGAR DEPENDENT 1 (LiSDP1) expression on seedling growth in 
A.  thal ia na . Sdp1/sdp1-L seedlings expressing the LiSDP1 gene in independent lines are compared to 
the mutant carrying an empty vector as well as the wildtype (WT). Following 5 d of germination in the 
dark on ½ MS agar plates without sucrose, hypocotyl length was determined relative to growth with 
sucrose. For each growth condition and independent line, three or four batches of at least 15 seedlings 
were measured and hypocotyl length of seedlings germinated without sucrose was divided by the 
average value for the same line with sucrose. Error bars represent the standard error of the mean in a 
single experiment. Asterisks denote measurements on transgenic lines deviating significantly from the 
mutant (two-sided Student’s T-test, α=0.05). A, Cauliflower Mosaic Virus 35S (35S) promoter 
controlling expression of the LiSDP1 gene. B, Brassica napus napinA (napA) promoter controlling 
expression of the LiSDP1 gene. 
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The TFA content per 5 day-old etiolated seedling was determined by gas chromatography and 

is depicted relative to the seed fatty acid content in Figure 27. Wildtype seedlings only contain 

10 % of the initial lipids in seeds as measured in TFA content, whereas the double knockout 

mutant retains 80 % of the seed amount. Five out of 7 lines analyzed show a clear reduction in 

fatty acid content when compared to the mutant. Among the plant lines constitutively 

expressing the algal gene, a higher degree of fatty acid breakdown appears to result in longer 

hypocotyls, a relation that cannot be seen as clearly for seed specific expression (Figures 26 and 

27). 

 

  

 
Figure 27: Effect of L .  inc isa  SUGAR DEPENDENT 1 (LiSDP1) expression on TFAs in A .  thal ia na  
etiolated seedlings. The TFA content per seedling is shown relative to the amount per seed and the 
sdp1/sdp1-L mutant expressing the LiSDP1 gene in independent lines is compared to the mutant 
carrying an empty vector as well as the wildtype (WT). Following 5 d of germination in the dark on ½ 
MS agar plates without sucrose, TFAs were derivatized by acidic methanolysis and analyzed by gas 
chromatography. For each independent line, three or four batches of 10 seeds and three or four batches 
of at least 9 seedlings were measured and the seedling fatty acid content was divided by the average 
value for seeds of the same line. Error bars represent the standard error of the mean in a single 
experiment. Asterisks denote measurements on transgenic lines deviating significantly from the mutant 
(two-sided Student’s T-test, α=0.05). 
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The effect of LiSDP1 activity on the composition of fatty acids in the seedlings was also 

investigated. For this purpose, the proportion of each fatty acid species in the seedlings was 

related to the proportion in seeds. Concerning the fate of saturated fatty acids, the endogenous 

A. thal iana  TAG lipases have the strongest effect on 20:0, as the difference between wildtype 

and mutant figures is largest for this fatty acid (Figure 28A). A similar observation cannot be 

made for LiSDP1 activity, since most complemented lines behave similarly with respect to the 

individual saturated fatty acid species. With regards to monounsaturated fatty acids, AtSDP1 

and AtSDP1-L activity appear to affect 20:1, a marker fatty acid of TAG in A. thal iana  seeds, 

to a larger extent than 18:1, a tendency that is not visible for the L. inci sa  homolog (Figure 

28B). Finally, the measurements of PUFAs do not point to a distinct effect of the A. thal iana  

or L. incisa  lipases (Figure 29).  
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Figure 28: Effect of L .  incisa  SUGAR DEPENDENT 1 (LiSDP1) expression on saturated and 
monounsaturated fatty acids in A.  thal ia na  etiolated seedlings. For each fatty acid, the amount per 
seedling is shown relative to the amount per seed and the sdp1/sdp1-L mutant expressing the LiSDP1 
gene in independent lines is compared to the mutant carrying an empty vector as well as the wildtype 
(WT). Following 5 d of germination in the dark on ½ MS agar plates without sucrose, TFAs were 
derivatized by acidic methanolysis and analyzed by gas chromatography. For each independent line, 
three or four batches of 10 seeds and three or four batches of at least 9 seedlings were measured and 
the seedling fatty acid content was divided by the average value for seeds of the same line. Error bars 
represent the standard error of the mean in a single experiment. A, saturated fatty acids. B, 
Monounsaturated fatty acids. 

 
Figure 29: Effect of L .  inc isa  SUGAR DEPENDENT 1 (LiSDP1) expression on PUFAs in A.  thal ia na  
etiolated seedlings. For each fatty acid, the amount per seedling is shown relative to the amount per seed 
and the sdp1/sdp1-L mutant expressing the LiSDP1 gene in independent lines is compared to the mutant 
carrying an empty vector as well as the wildtype (WT). Following 5 d of germination in the dark on ½ MS 
agar plates without sucrose, TFAs were derivatized by acidic methanolysis and analyzed by gas 
chromatography. For each independent line, three or four batches of 10 seeds and three or four batches 
of at least 9 seedlings were measured and the seedling fatty acid content was divided by the average 
value for seeds of the same line. Error bars represent the standard error of the mean in a single 
experiment. 
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In addition to the assessment of hypocotyl growth, fatty acid content and –composition, TAG 

hydrolysis was also investigated by monitoring 14C TAG degradation in crude extracts of 

 
Figure 30: Effect of L .  inc isa  SUGAR DEPENDENT 1 (LiSDP1) expression on TAG degradation in 
transgenic A .  thal ia na  seedlings. Sdp1/sdp1-L seedlings with the Brassica napus napinA (napA) 
promoter or the Cauliflower Mosaic Virus 35S (35S) promoter controlling expression of LiSDP1 are 
compared to the mutant carrying an empty vector as well as the wildtype (WT). Crude extracts of 3 d 
old seedlings were incubated with 14C labeled TAG in different buffers, the hexane extract of each 
reaction was separated by thin layer chromatography (TLC) and radioactivity was detected across the 
TLC plate. Relative radioactivity was calculated as the ratio of radiation emitted by TAG and free fatty 
acids as measured densitometrically. Error bars represent the standard deviation of three technical 
replicates in a single experiment. 
 

 
Figure 31: Confirmation of gene expression. Transcripts were detected in dry seeds of independent lines 
with the Brassica napus napin A (napA) promoter or the Cauliflower Mosaic Virus 35S (35S) promoter 
controlling expression of L .  inc isa  SUGAR DEPENDENT 1 (LiSDP1).  
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complemented A. thal iana  sdp1/sdp1-L seedlings as described in section 4.2.4 (Figure 30).  

Even though a pH optimum of 8 has been determined for AtSDP1 (Eastmond, 2006), the ratio 

of TAG and free fatty acids does not differ significantly between wildtype and mutant seedlings 

in this condition and the same is true for pH 7. The difference in TAG degradation is much 

more pronounced at a more acidic pH and for all three reaction conditions, total TAG lipase 

activity is in the range of the mutant. 

The same plant lines were used for all activity assays described in this section and gene 

expression was confirmed in dry seeds as shown in Figure 31. 
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5 Discussion 

In this study, the green microalga L. incisa  was analyzed with respect to accumulation and 

mobilization of ARA-rich TAG stored in LBs, processes that are strongly modulated by 

nitrogen availability. Special emphasis was placed on proteins that associate with LBs or may be 

involved in TAG hydrolysis. 

5.1 Lobosphaera incisa  physiology is strongly affected by nitrogen supply 

Removal of nitrogen from the growth media severely affects algal metabolism and induces 

growth arrest (Cheng-Wu et  a l . , 2002; Davidi et  a l . , 2012; Msanne et  a l . , 2012; Tsai et  a l . , 

2014). In the unicellular green microalga L. incisa , this radical change in cellular physiology is 

closely linked to an increase in the ratio of carotenoids to total chlorophyll (Simionato et  a l . , 

2013; Solovchenko et  a l . , 2008b). The shift in pigment composition was confirmed in this 

study, during which three L. inci sa  cultures were subjected to nitrogen starvation for 7 d 

(Figure 1). It can mostly be attributed to the degradation of chloroplast membranes linked to a 

reduction in chlorophyll, a phenomenon commonly observed in microalgae in nitrogen 

depletion (Allen et  a l . , 2015; Davidi et  a l . , 2012; Dong et  a l . , 2013a; Martin et  a l . , 2014; 

Msanne et  a l . , 2012; Peled et  a l . , 2011; Schmollinger et  a l . , 2014; Simionato et  a l . , 2013). The 

ratio has been established to closely correlate with ARA accumulation in this alga (Solovchenko 

et  a l . , 2009), a trend that could equally be observed in this study.  

During the first 3 d of nitrogen limitation, the alga accumulates TAG up to 56 % of TFAs, an 

intermediate level compared to what has been reported for the same strain in logarithmic and 

stationary growth (43 and 77 %, respectively, Bigogno et  a l . , 2002a) or an extended period of 

nitrogen depletion (Khozin-Goldberg et  a l . , 2002) and for other oleaginous microalgae 

cultivated in nitrogen limiting conditions (Allen et  a l . , 2015; Li et  a l . , 2014; Martin et  a l . , 2014; 

Moellering and Benning, 2010; Msanne et  a l . , 2012; Simionato et  a l . , 2013). The overall amount 

of fatty acids determined in this experiment (and another one, data not shown) of 75 µg/mg 

dry weight however is less than half of the values published for comparable growth conditions 

(Solovchenko et  a l . , 2008b) and remains constant during four more days of continuing nitrogen 

limitation, whereas it has been reported to double in this time in this strain (Solovchenko et  a l . , 

2008b), the closely related species C. subel l ip soidea  (Allen et  a l . , 2015) and other green algae 

(Dong et  a l . , 2013b; Msanne et  a l . , 2012; Simionato et  a l . , 2013; Xin et  a l . , 2010). Small 
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variations in cultivation conditions such as light quality and intensity, batch size or the exact 

state of the starter culture may be the cause for these deviations from data that have been 

previously published for L. inci sa . 

This alga is particularly interesting in terms of its fatty acid profile, as it has been accredited with 

the highest ARA content of any plant or alga (Bigogno et  a l . , 2002a). Indeed, in this study ARA 

initially makes up 22 % of the total and the proportion increases to 29 % after 3 d without 

nitrogen (Figures 2 and 3), a level that is superior to many other oleaginous algae (Bigogno et  

a l . , 2002a; Li et  a l . , 2014; Martin e t  a l . , 2014; Moellering and Benning, 2010; Msanne et  a l . , 

2012; Simionato et  a l . , 2013), nevertheless the amount previously described is not reached 

(Solovchenko et  a l . , 2008b). Although the ratio of carotenoids to chlorophyll as an indicator of 

the physiological state of the culture is in agreement with previously reported levels 

(Solovchenko et  a l . , 2008b), total lipid content and TAG accumulation may have been affected 

by slightly altered growth conditions in this study. A complete fatty acid profile has not been 

described for L. inci sa  under nitrogen starvation in a comparable time frame, but a general 

decrease in the ratio of C16 and C18 fatty acids has also been observed in the closely related 

alga Coccomyxa subel l ipsoidea  (Allen e t  a l . , 2015; Msanne et  a l . , 2012) and in C. reinhardti i  

neutral lipids (Moellering and Benning, 2010).  

In contrast to the effects of nitrogen limitation, the physiological response to nitrogen resupply 

after a period of nitrogen limitation has not been studied in many algae. In this study, the ratio 

of carotenoids and chlorophyll was found to no longer correlate with the total amount of fatty 

acids which decrease, but a similar trend as that of the storage lipid TAG can be observed. The 

amount of fatty acids sequestered in this lipid class rises to 90 % of overall fatty acids during 

1 d before decreasing, an observation that has not been made in C. subel l ipsoidea  or in 

C. re inhardti i ,  which experience a sharp drop in TAG level within 24 h (Allen et  a l . , 2015; 

Tsai et  a l . , 2014).  

This could be explained for instance by phospholipid:diacylglycerol acyltransferase (PDAT) and 

TAG lipase activities not responding to the change in growth conditions as rapidly as other 

cellular processes. This was not investigated in this study, but continued transfer of fatty acids, 

especially ARA, from membrane lipids to diacylglycerol (DAG) along with a lag in TAG 

hydrolysis would result in the observed accumulation of ARA enriched TAG. As the 

C. re inhardti i  PDAT has been shown to use not only phospholipids but also the thylakoid 

membrane lipid MGDG as an acyldonor to synthesize TAG (Yoon et  a l . , 2012), this delay in 
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adaptation could also explain the minor transient increase in the ratio of carotenoids and 

chlorophyll occurring simultaneously. Transcript data for C. re inhardt i i  indicate only a minor 

decrease in PDAT expression 48 h after nitrogen resupply (Tsai et  a l . , 2014 supplemental 

information), while earlier responses to the change in growth conditions have so far not been 

analyzed on a transcript level in this or any other alga. 

TAG levels in L. inci sa  have previously been shown to be reduced after 2 d of recovery in 

nitrogen replete media (Khozin-Goldberg et  a l . , 2005), but data for intermediate time points 

are not available. The reduction in 18:1 (n-9) in both TAG and overall fatty acids as well as the 

increasing proportion of ARA in TAG observed in this experiment is in line with the data 

published previously (Khozin-Goldberg et  a l . , 2005). 

5.2 Nitrogen supply affects expression of genes commonly used for 

normalization in qRT-PCR  

qRT-PCR requires normalization of transcript levels to a gene that is stably expressed across 

the tissues, developmental stages and treatments to be compared (Kozera and Rapacz, 2013; 

Løvdal and Lillo, 2009). For a unicellular organism that responds to a stress by entering a 

quiescent state, the choice of reference gene must be especially carefully taken, as even 

housekeeping functions may be affected (Schmollinger et  a l . , 2014). Indeed, the genes 

putatively encoding ACTIN and RECEPTOR FOR ACTIVATED PROTEIN KINASE C, 

which are frequently used to normalize transcript levels in studies of C. reinhardti i  under 

nutrient deprivation (Allen et  a l . , 2007; Boyle et  a l . , 2012; Tsai et  a l . , 2014), are differentially 

expressed (unpublished RNAseq data).  

Since RNAseq is not dependent on a single gene for normalization, previously published 

transcript data were used to identify stably expressed genes. To this end, a study in which the 

response of wildtype C. reinhardti i  cultures to nitrogen starvation was compared to that of a 

mutant impaired in the regulation of cellular quiescence was searched for stably expressed genes 

(Tsai e t  a l . , 2014 supplemental information). Using qRT-PCR, homologs of these genes in 

L. inci sa  were tested for expression at several time points during a 7 d period of nitrogen 

deprivation followed by 3 d in replete media (Figure 4). Variability among the three biological 

replicates is commonly observed in this type of experiment (Boyle et  a l . , 2012; Guihéneuf et  

a l . , 2011; Moellering and Benning, 2010) and can possibly be attributed to minor differences in 
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CO2 supply and evaporation caused by slightly uneven diameters of aeration tubes. Not having 

undergone normalization themselves, these data are a direct representation of the qRT-PCR 

results. For each gene investigated, the average transcript level was relatively stable after the first 

3 d in comparison to the onset of nitrogen starvation, thus being in accordance with the 

RNAseq data for C. reinhardti i . However, considerable variation occurred at intermediate and 

later time points as well as directly following the second change in growth media. Two possible 

explanations for this observation seem plausible:  

Firstly, stress-related differences in the physiological state of the cultures may have led to 

unequally efficient RNA extraction or cDNA synthesis. The former could be due to easier 

breakage of cells under certain conditions and the latter may have been affected by 

stress-induced accumulation of metabolites that inhibit reverse transcriptase activity. In this 

case, it can be assumed that all transcripts were equally affected and the genes analyzed here are 

appropriate for use as references. 

Secondly, the transitions into and out of cellular quiescence are likely to have had an effect on 

gene expression of the protein synthesis machinery. If this was the crucial underlying effect, 

normalization to these genes would not be valid, as not all transcriptional programs can be 

assumed to be affected in the same way. This notion is opposed by the observation that 

transcript levels for all genes analyzed in this study follow a comparable trend whether the data 

have been normalized or not (Supplemental Figures 6, 7, 8).  

The gene encoding RIBOSOMAL PROTEIN S21 was finally selected as a reference as it shows 

the least variability out of all candidates tested (Figure 4). Analysis of a large number of genes 

will be required in the future to identify stably expressed reference genes for nutrient deprivation 

experiments in unicellular algae. 

5.3 Several LB proteins were identified in this study 

Since LBs are no longer regarded as passive constituents of the cell, an interest in proteins 

associated with this organelle has arisen and is reflected in an increasing number of publications 

on the subject. The number and identity of proteins that are found to be associated with LBs in 

the same alga varies between studies. This becomes obvious when comparing LB proteomes 

that have been reported for C. reinhardti i , the microalga that has been most intensively studied 

in this regard. Different strains of C. re inhardt i i  were cultivated heterotrophically in the same 

media for these studies, however in one instance not a single LB protein could be identified 
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(Wang et  a l . , 2009), whereas 259 were detected by another group (Moellering and Benning, 

2010) and 248 by yet another, including 150 proteins that had not been reported before (Nguyen 

et  a l . , 2011). In one study, 124 proteins were co-immunoprecipitated with MAJOR LIPID 

DROPLET PROTEIN (MLDP) that had previously not been identified in LBs of the same 

strain by the same group (Tsai e t  a l . , 2015). These discrepancies underline the prominent effect 

of sample preparation on the loss of information or the occurrence of false positive detection 

in the identification of algal LB proteins. 

LB associated proteins that have been identified in algae so far include highly abundant 

structural proteins (Davidi et  a l . , 2012; Lin et  a l . , 2012; Moellering and Benning, 2010; Peled 

et  a l . , 2011; Sharma et  a l . , 2015; Vieler et  a l . , 2012; Yoneda et  a l . , 2016) and enzymes involved 

in lipid metabolism as well as lipid trafficking (Moellering and Benning, 2010; Nguyen et  a l . , 

2011).  

In this study, a large number of proteins was identified in samples derived from L. inci sa  LBs 

most likely due to the use of highly sensitive liquid chromatography coupled to tandem mass 

spectrometry (Table 31). The resulting list of putatively LB associated proteins contains a high 

proportion of proteins that obviously originated from membranes of other organelles 

contaminating the sample, a common aspect of LB isolation from microalgae (Ding et  a l . , 2012; 

Nguyen et  a l . , 2011; Nojima et  a l . , 2013; Tzen et  a l . , 1997; Zienkiewicz et  a l . , 2014). 

Alternatively, the occurrence of these proteins may suggest that organelle membranes indeed 

interact with LBs in algae. 

In addition to contamination from membranes, the LBs isolated by sucrose gradient 

centrifugation could also be mixed with plastoglobules, carotenoid-enriched smaller structures 

that derive from the thylakoids. So far they have been described for higher plants and the green 

alga Dunalie l la bardawil  (Bréhélin et  a l . , 2007; Katz et  a l . , 1995). The plastoglobule proteome 

has been analyzed in this alga (Davidi et  a l . , 2015) as well as in A. thal iana  (Lundquist et  a l . , 

2012) and exhibits only very little overlap with the LB proteome in the respective organism. To 

date plastoglobules have not been observed in electron microscopic analysis of L. inci sa  

(Merzlyak et  a l . , 2007) and a gene encoding a homolog of plastoglobulin, a protein that is 

characteristic for these structures (Bréhélin et  a l . , 2007), is absent from its genome (data not 

shown). Therefore it is not likely that the LB protein extracts analyzed in this study was 

contaminated with plastoglobule proteins.  
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5.3.1 LiOGP, g15430 and g13747 are LB associated proteins of unknown function 

The screen for L. incisa  LB associated proteins carried out in this study revealed three proteins 

that could be verified to localize to these specialized organelles in the tobacco pollen system.  

L. inci sa  OIL GLOBULE PROTEIN (LiOGP) shares homology with a protein that increases 

in abundance in LB fractions of nitrogen starved Haematococcus pluvial i s  cells, HpOGP 

(Peled et  a l . , 2011), but bears no other features that would hint at a possible function (Figure 

6). To date, the subcellular localization of the H. pluvial is  protein has not been confirmed, 

however its L. incisa  homolog clearly colocalizes with Nile Red stained neutral lipids in tobacco 

pollen tubes (Figure 7). LiOGP expression is induced in parallel with the formation of LBs 

(Figure 8), very much like HpOGP (Peled et  a l . , 2011) and C. reinhardti i  MLDP (Moellering 

and Benning, 2010). In conjunction with the protein’s relatively high abundance in LB fractions, 

this points to an involvement of the protein in LB homeostasis such as the functions that have 

been elucidated for A. thal iana  oleosins, the most extensively studied structural LB proteins 

(Deruyffelaere et  a l . , 2015; Lévesque-Lemay et  a l . , 2015; Shimada et  a l . , 2008; Siloto et  a l . , 

2006). In A. thal iana  seeds, OLEOSIN 1 prevents LBs from coalescing and thus ensures a 

high surface/volume ratio of the TAG storage organelles (Siloto et  a l . , 2006), a function that 

is also fulfilled by the major lipid droplet proteins in the microalgae C. reinhardti i  (Moellering 

and Benning, 2010) and Nannochlorops is  (Vieler et  a l . , 2012).  A comparable role for LiOGP 

was tested by heterologous seed-specific expression of the algal gene in the A. thal iana  

oleosin1  mutant, however an effect on LB size could not be observed in imbibed seeds or early 

stages of germination (data not shown).  

In contrast to LiOGP, for the g15430 protein a close relative could not be identified. The 

protein is clearly localized at the LBs when expressed in N. tabacum  pollen tubes (Figure 9). 

The domain of unknown function taking up a considerable fraction of the relatively small 

protein (85 of 287 amino acids, Figure 10) is only present in uncharacterized proteins of a small 

subset of green algae and might be implicated in a process that is distinct from other algae, 

however the nature of this function cannot be inferred from the information gained in this 

study. Expression of the g15430 gene is rapidly modified in response to both media changes 

during the growth experiment (Figure 11). It appears to take a course independent from TAG 

accumulation during the first phase, whereas it clearly follows a trend opposite of TAG in the 

recovery stage. 
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While members of the oleosin family are anchored in LBs via a hydrophobic domain that 

contains a proline knot motif (Tzen e t  a l . , 1992) and comprises a large part of the protein, these 

features cannot be found in LiOGP, g15430 or a range of other proteins for which LB 

localization has been established (Athenstaedt and Daum, 2003; Eastmond, 2006; Moellering 

and Benning, 2010). Tandem repeats possibly forming amphipathic helices, which are known 

to enable perilipins to attach to the LB surface in mammalian cells (Rowe et  a l . , 2016), could 

not be identified either based on the amino acid sequences using an in s i l i co  method as 

described previously (Rowe et  a l . , 2016, data not shown). It is therefore unclear by which 

mechanism LiOGP and g15430 attach to LBs. 

The g13747 protein is distinguished from the other LB proteins described above in being 

substantially larger (805 amino acids) and having a striking hydrophobic domain (Figure 13). 

This feature of the protein spans a part of the amino acid sequence that is even larger than the 

one described for plant oleosins (approximately 120 amino acid residues compared to 

approximately 70 residues). The proline knot motif required for anchoring oleosins in LBs 

(Abell et al., 1997) is not easily discernable in g13747, which is due to the lack of sequence 

homology with oleosin rather than a shortage of proline residues in the hydrophobic stretch. 

Each of the three LB associated proteins of unknown function that were isolated from nitrogen 

starved L. inci sa  cells could serve a function analogous to plant oleosins, protecting lipid 

droplets from premature degradation (Deruyffelaere et  a l . , 2015) and ensuring a high 

surface/volume ratio to facilitate access for lipases when rapid TAG hydrolysis is required 

(Siloto et  a l . , 2006). 

5.3.2 g13945 is an LB-localized putative lipase 

The g13945 protein is classified in this study as a putative lipase based on the presence of a 

partial lipase class 3 domain including a predicted active site (Figure 15). The L. inc isa  genome 

contains 53 genes harboring this domain, compared to 38 found in A. thal iana  (Li et  a l . , 

2012a). This discrepancy reflects the overall differences in genome size and putative number of 

open reading frames between the two organisms, as in A. thal iana  the latter is only two thirds 

of that predicted for L. incisa  (data not shown). Since the domain is conserved in a wide range 

of lipases (Li et  a l . , 2012a) including Ricinus communis  acid TAG lipase (Eastmond, 2004), 

the generally high number of lipase class 3 genes is hardly surprising. This diversity poses a 

difficulty in the functional annotation of lipases (Li et  a l . , 2012a), as recombinant expression 
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and activity assays with a wide range of substrates and conditions may be required before the 

enzymatic activity can be clearly defined.  

Irrespective of sequence similarities, structural homology to a lipase of known function can be 

a useful indicator of the reaction catalyzed by the protein. The predicted three-dimensional 

structure of g13945 is highly similar to that of a group of fungal and yeast secretory lipases, 

including Rhizomucor m iehei  lipase, the first lipase for which a crystal structure could be 

analyzed and in which a serine-histidine-aspartate catalytic triad was identified in the active site 

(Brady et  a l . , 1990). Another member of this group, M. globosa  LIPASE 1 (MgLIP1) is unusual 

in exclusively degrading mono- and diacylglycerols in contrast to its relatives that also accept 

TAG (DeAngelis et  a l . , 2007) and it has been proposed that relatively large hydrophobic 

residues in the vicinity of catalytic residues cause this distinction (Xu et al., 2012). Protein g13945 

can be modeled on the experimentally determined MgLIP1 structure and has no such amino 

acids in the respective regions that could cause a steric hindrance (Figure 17), TAG is therefore 

a possible substrate for this putative lipase.  

At first sight, the expression pattern of the g13945 gene may point to another direction (Figure 

16), as it does not seem plausible for a TAG lipase to be most highly expressed in a stage of the 

algal culture that is characterized by TAG accumulation. Nevertheless, the protein might be 

synthesized in inactive form during this stage, ready to be activated as soon as environmental 

conditions once again permit growth. A similar succession of mechanisms has been proposed 

for A. thal iana  SUGAR DEPENDENT 1 (AtSDP1), a lipase that is responsible for bulk TAG 

degradation during post-germinative growth of A. thal iana  seedlings (Eastmond, 2006).  

Even so, the L. incisa  putative lipase was only able to effect a very weak functional 

complementation of hypocotyl elongation in etiolated seedlings of an A. thal iana  mutant 

lacking both SDP1 and its paralog SDP1-L (Figure 18). There is a variety of possible reasons 

for this: For instance, g13945 protein biosynthesis may be taking place at a slow rate due to 

differences in codon usage. The algal coding sequence contains 61.7 % guanidine and cytosine 

nucleotides compared to an average of only approximately 44 % for A. thal iana  coding 

sequences (TAIR). Alternatively, posttranslational modifications (PTMs) of the recombinant 

protein may have differed from the protein modifications taking place in L. incisa , negatively 

influencing enzyme activity. While phosphorylation sites could not be predicted in the g13945 

amino acid sequence using algorithms trained on higher plants (data not shown), other PTMs 

may be essential for this protein to be active. PTMs in algae analyzed so far do not seem to 
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diverge from those in higher plants (Kurotani and Sakurai, 2015), but they have not been 

extensively studied, so that his explanation cannot be completely ruled out. Independently of 

these considerations, the enzyme may have a substrate specificity that differs from that of 

AtSDP1 and AtSDP1-L. TAG in A. thal iana  seeds mostly contains 18:1 (n-9), 18:2 (n-6), 

18:3 (n-3) and 20:1 (n-9) (Taylor et  a l . , 1995), whereas the strain of L. incisa  investigated in 

this study produces TAG that is especially rich in 18:1 (n-9) and ARA. It is also conceivable that 

g13945 does not primarily hydrolyze TAG but is rather active on mono- and diacylglycerol 

(MAG and DAG). The A. thal iana  sdp1/sdp1-L mutant retains most of the MAG and DAG 

lipase activity found in the wildtype (Kelly et  a l . , 2011), therefore the respective enzyme activity 

would not effect a clear functional complementation in the mutant background.  

The lipase assay in which the degradation of 14C labeled triolein was monitored remained equally 

inconclusive, as the complemented lines behaved similarly as the sdp1/sdp1-L mutant under all 

conditions and a distinct difference to the wildtype could not be observed at pH 7 or 8, the pH 

optimum for AtSDP1 activity (Eastmond, 2006). Reactions at pH 6 yielded different results, as 

the wildtype clearly exhibited higher TAG lipase activity than the mutant and complemented 

lines. This may be caused by one of two possible underlying processes: In 3 d old wildtype 

seedlings, the formation of DAG by AtSDP1 and AtSDP1-L may induce formation or activity 

of DAG and MAG lipases with a lower pH optimum, catalyzing TAG hydrolysis as a secondary 

function. Alternatively, gene expression of additional TAG lipases that are most active in slightly 

alkaline conditions in other cellular compartments may be induced in the mutant background, 

therefore contributing to TAG degradation in the crude cell extract but not during seedling 

post-germinative growth. For all plant lines used in this assay, overall TAG lipase activity was 

highest at pH 8, supporting the latter hypothesis. The lipase activity assay could be refined by 

using isolated LB membranes (Eastmond, 2006; Kelly et  a l . , 2011) instead of a crude extract, 

presuming that g13945 localizes to the LBs not only in L. inci sa  and N. tabacum  pollen tubes, 

but also in germinating A. thal iana  seedlings.  

Semi-quantitative enrichment analysis is a useful way of retrieving proteins that are in fact 

associated with LBs from complex proteomics data. This was demonstrated by confirming 

subcellular localization through heterologous expression in tobacco pollen tubes, a valuable 

system for this type of analysis (Dr. Till Ischebeck, personal communication). The dataset 

obtained in this study could be helpful in identifying additional LB proteins in L. inci sa . 
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5.4 g2905 is a putative lipase 

The L. incisa  g2905 protein has extensive sequence homology with human GASTRIC LIPASE 

A (HsLIPA, Bodmer et  a l . , 1987) and was therefore identified as a putative TAG lipase (Figure 

19). It contains an α/β hydrolase domain conserved across a wide range of enzymes (reviewed 

in Holmquist, 2000), including a catalytic triad typical of serine hydrolases (Brady et  a l . , 1990; 

Ollis et  a l . , 1992). Many lipases harboring this domain undergo a conformational change at the 

lipid/water interface termed interfacial activation (Brzozowski et  a l . , 1991). Studies on algal 

homologs of g2905 are limited to gene expression analyses of C. reinhardti i  putative 

TRIACYLGLYCEROL LIPASE 2 (CrLIP2) in different stress conditions, demonstrating 

upregulation under nitrogen starvation (Boyle et  a l . , 2012) and downregulation in response to 

heat stress, during which PUFAs are transferred from membrane lipids to DAG and TAG 

(Légeret et al., 2016). These findings do not seem to implicate the C. reinhardti i  protein in 

neutral lipid hydrolysis, but the different pattern of g2905 gene expression, reaching a maximum 

immediately prior to TAG degradation (Figure 20), hints at a possible role in storage lipid 

mobilization for the L. incisa  homolog. This notion is contradicted by the observation that 

g2905 was not detected in LB protein extracts of nitrogen starved L. inci sa  cells and did not 

localize to these organelles in tobacco pollen tubes (Figure 21). 

In two different TAG lipase activity assays with heterologous expression of g2905 in the 

A. thal iana  sdp1/sdp1-L mutant, similar results were obtained as for g13945 (Figure 22, see 

section 5.3.2). A TAG lipase activity could therefore not be determined for this protein despite 

the sequence homology with a human TAG lipase and the gene expression pattern, which is in 

line with the fact that it could not be observed to localize at the LBs in L. inc isa  or in 

N. tabacum  pollen tubes.  

5.5 LiSDP1 is a TAG lipase 

There is another family of lipases that is defined by a common patatin domain, named after a 

phospholipase A that is highly abundant in potato tubers (Andrews et al., 1988). The family of 

patatin domain lipases comprises diverse enzymatic activities including the yeast TAG lipases 

TGL3, 4 and 5 (Athenstaedt and Daum, 2003, 2005) and A. thal iana  SDP1 (Eastmond, 2006). 

The latter is involved in seedling establishment by hydrolyzing the majority of TAG in seedlings 

in conjunction with SDP1-L. An AtSDP1 homolog has recently been identified in the diatom 



 Discussion 

97 

 

P. t ri cornutum  (Barka et  a l . , 2016) and its ability to hydrolyze the TAG substrate analog 

para-nitrophenyl butyrate along with an observed TAG accumulation in knockdown mutants 

point to a TAG lipase activity. In this study, an L. incisa  homolog of AtSDP1 was functionally 

characterized by heterologous expression in the A. thal iana  sdp1/sdp1-L  background and 

was able to complement postgerminative seedling growth (Figure 26) as well as TAG hydrolysis 

as demonstrated by a reduced amount of 20:1 (Figure 28), a marker fatty acid of TAG in seeds 

(Taylor et  a l . , 1995). The algal lipase did not fully replace the endogenous SDP1 activity, which 

becomes evident when comparing with the sdp1-L  single knockout mutant (Kelly et  a l . , 2011). 

For complemented lines with constitutive expression driven by the Cauliflower Mosaic Virus 

35S promoter (Benfey e t  a l . , 1989), this is not likely to be caused by a lower level of gene 

expression, as the 35S promoter has been shown to be equivalent to the endogenous 

A. thal iana  SDP1 promoter in complementing the sdp1  mutant (Kelly et  a l . , 2011). Seed 

specific transgene expression driven by the Brass ica  napus  napA promoter (Ellerström et  a l . , 

1996; Soeda et  a l . , 2005) resulted in a less pronounced effect, which might result from transgene 

expression being limited to the mature seed stage, when seed storage proteins are accumulating, 

although napA expression has also been shown during germination in Brassica o leracea  (Soeda 

et  a l . , 2005). 

A broad substrate specificity of various TAG compositions has been determined for AtSDP1 

(Eastmond, 2006) and only minor differences in the abundance of individual fatty acid species 

were observed in this study (Figures 28 and 29), which could be related to SDP1-L activity or 

differential degradation of the fatty acids once removed from the glycerol backbone. A similarly 

broad spectrum of substrates appears to be turned over by the L. incisa  homolog, as the 

relative fatty acid amount in the complemented lines in comparison to the mutant is comparable 

across all fatty acids analyzed in this experiment. It is however conceivable that the algal enzyme 

is adapted to the ARA-rich TAG species present in its endogenous environment, resulting in 

reduced overall activity in the seedling as discussed above. 

Some similarities can also be seen in the expression patterns of the two SDP1 genes. AtSDP1 is 

most highly expressed during seed maturation (Eastmond, 2006), which is characterized by 

intense TAG accumulation (Hills, 2004), pointing to a regulation of enzymatic activity by 

post-translational mechanisms. LiSDP1 expression undergoes a less drastic increase during the 

TAG synthesis phase and strongly responds to the onset of growth conditions favoring 

degradation of the storage lipid (Figure 24). This observation further supports the functional 
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similarity of the enzymes, which is substantiated by the subcellular localization of recombinant 

LiSDP1 in tobacco pollen tubes resembling that of AtSDP1 in A. thal iana  seeds.  

LiSDP1 is only relatively weakly expressed in L. incisa  cells cultivated without nitrogen, which 

might explain why the protein was not detected in LB extracts in this study. The composition 

of the LB proteome is likely to undergo dramatic changes in response to nitrogen resupply as 

demonstrated for C. reinhardti i  (Tsai et  a l . , 2015) and it can be assumed that TAG lipases 

need to be recruited to the sites of neutral lipid storage to access the cell’s carbon and energy 

reserves. 

In summary, LiSDP1 is a functional lipase accepting TAG molecules with diverse fatty acid 

compositions as substrates. It cannot be excluded that it is also capable of hydrolyzing other 

lipids such as DAG or MAG which were not included in this study, however based on extensive 

similarity to the homologous A. thal iana  enzyme such an additional activity seems unlikely.  

 

5.6 Concluding remarks 

Oleaginous microalgae are a diverse group of organisms in terms of both their natural habitat 

and their phylogeny. Nonetheless, they share a remarkable trait that draws the attention of cell 

biologists as well as biotechnologists (Gimpel et  a l . , 2015; Vitova et a l . , 2015): The 

accumulation of large quantities of neutral lipids, in some cases rich in PUFAs.  

At present, a wide range of molecular biology tools and resources is only available for one 

species of microalga, C. reinhardti i . This chlorophyte has been very useful in elucidating 

cellular functions including algal lipid metabolism, however it is not ideally suited to studying 

the biogenesis of LBs. This is due to the fact that it is not per se  an oleaginous organism but 

rather needs to be stressed by nutrient deprivation or mutated in starch synthesis (Merchant e t  

a l . , 2012) in order to permit the observation of considerable LB formation.  

In this study, LB biogenesis was analyzed in L. inci sa , a strong producer of TAG abundant in 

ARA. The focus in this thesis was therefore on LB-associated proteins and putative TAG 

lipases. The data obtained in this work can be a promising resource for the future identification 

of additional LB proteins in this microalga and comparative proteomics of LBs from different 

growth stages could provide valuable insight into the dynamics of this organelle. Functional 

analysis of novel proteins will require refined assays, including a broader range of lipase activity 
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assays to accommodate for the variety of substrate specificities and subcellular localizations of 

these enzymes.  

The isolation of relatively pure organelles from this alga would be a very helpful advancement 

for the identification of LB proteins. This will only be possible if the cells can be easily ruptured, 

as is the case for the relatively fragile green microalga Dunalie l la sal ina  (Davidi et  a l . , 2012) 

and the C. reinhardti i  cell wall mutant cw-15  (Davies and Plaskitt, 1971) frequently used for 

cell fractionation. The isolation of an L. incisa  mutant deficient in cell wall synthesis would not 

only alleviate this obstacle but it could also contribute substantially to the development of more 

efficient transformation procedures and the establishment of selectable markers for this 

organism. These are prerequisites for studies of gene function in their endogenous environment 

by means of knockout, knockdown and overexpression studies. Such transformable strains 

could also allow L. incisa  to be included in the growing group of organisms that can be 

genetically manipulated with extraordinary precision by means of TALEN or CRISPR 

technology (Liu et  a l . , 2013), further improving the prospects of studying this unique organism. 
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6 Summary 

Microalgae hold great promise with regards to the production of valuable products such as 

PUFAs and biofuel. They are a highly interesting group of organisms for investigating lipid 

metabolism and while some insight has been gained from comparison of C. re inhardti i  to 

other well characterized model organisms, it is becoming increasingly clear that substantial 

diversity exists between algal species. Among them, the terrestrial green microalga L. incisa  is 

unique in its ability to accumulate high levels of ARA and sequester it in neutral lipids within 

LBs, especially when deprived of nitrogen. 

In order to understand the unique mechanisms of sequestering ARA in neutral lipids, LB 

biogenesis was analyzed on a protein level in L. incisa  strain SAG 2468. Following 3 d of 

nitrogen limitation, a state characterized by TAG and ARA accumulation, a multitude of 

proteins could be identified in LB isolates by means of LC-MS/MS. Semi-quantitative 

enrichment analysis through comparison with other cellular fractions was carried out and 

yielded a number of candidate LB associated proteins. For a subset of these candidates, the 

subcellular localization was confirmed by heterologous expression in tobacco pollen tubes along 

with confocal microscopy. Additionally, gene expression was analyzed in L. inci sa  cultures 

subjected to nitrogen starvation and subsequently rescued by nitrogen resupply, a time course 

during which TAG is first accumulated and then remobilized. 

The proteins g555, g15430 and g13747 were found to be putative structural components of the 

lipid storage organelle based on similarities to known algal proteins, strong enrichment in the 

L. inci sa  LB fraction and hydrophobicity of the amino acid sequence, respectively.  

Furthermore, two putative lipases were investigated in this study, one of them LB-associated. 

Even though TAG lipase activity could not be established for either of them in this study, they 

may still play a role in L. incisa  LB homeostasis.  

An additional lipase candidate, LiSDP1, was demonstrated to hydrolyze TAG when the gene 

was expressed in an A. thal iana  mutant lacking both plant homologs. The protein appears to 

localize to LBs in tobacco pollen tubes and is postulated to be involved in the degradation of 

L. inci sa  LBs during recovery from nitrogen starvation. 

Altogether, this study saw the successful isolation and confirmation of LB proteins from 

L. inci sa  as well as the identification of a TAG lipase that is most likely involved in storage 

lipid degradation, thereby contributing to the elucidation of LB biogenesis in this unique 

microalga. 
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8 List of Abbreviations 

°C Degrees Celsius 

% Percent 

1/2 MS media 1/2 Murashige-Skoog media 

A Light absorption 

APS Ammonium persulfate 

ARA Arachidonic acid 

cDNA Complementary desoxyribonucleic acid 

CTAB Cetyltrimethylammoniumbromide 

C-terminus Carboxyl-terminus of a peptide 

d Day 

DMSO Dimethyl sulfoxide 

DNA Desoxyribonucleic acid 

ER Endoplasmic reticulum 

FID Flame ionization detector 

g Earth's gravitational force 

GC Gas chromatography 

h Hour 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

L Length of a protein's amino acid sequence 

LB Lipid body 

LB media Lysogeny broth 

LDSP LIPID DROPLET SURFACE PROTEIN 

MCS Multiple Cloning Site 

MES 2-(N-morpholino)ethanesulfonic acid 

MGDG Monogalactosyldiacylglycerol 

min Minute 

MLDP MAJOR LIPID DROPLET PROTEIN 

mRNA Messenger ribonucleic acid 

MS/MS Tandem mass spectrometry 

MTBE Methyl tert-butyl ether 

napA Napin A 

N Number of proteins detected in a sample 

NCBI National Center for Biotechnology Information 

NSAF Normalized spectral abundance factor 

N-terminus Amino-terminus of a peptide 

OD600 Optical density at 600 nm  

OGP OIL GLOBULE PROTEIN 

PAF Protein Abundance Factor 

PAGE Polyacrylamide gel electrophoresis 

PCR Polymerase chain reaction 
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PDAT Phospholipid:diacylglycerol acyltransferase 

Pfam Protein families 

pH Power of hydrogen 

PT media Pollen tube growth media 

PTFE Polytetrafluoroethylene 

PTM Posttranslational modifications 

PUFA Polyunsaturated fatty acid 

qRT-PCR quantitative real time polymerase chain reaction 

RNA Ribonucleic acid 

SDP1 SUGAR DEPENDENT 1 

SDS Sodium dodecyl sulfate 

SpC Spectral count 

TAG Triacylglycerol 

TE buffer Tris EDTA buffer 

TEMED Tetramethylethylenediamine 

TFAs Total fatty acids 

TGL TRIACYLGLYCEROL LIPASE 

WT Wildtype 
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9 Appendix 

9.1 Supplemental figures 

 

 
Supplemental figure 1: Proportion of fatty acids accumulating in TAG during cultivation of L .  inc isa  in 
nitrogen deplete and replete conditions. For each of three L .  incisa  batches cultivated in parallel in a 
single experiment, the amount of fatty acids in TAG is shown relative to the TFA content and error bars 
represent the standard error of the mean. 
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Supplemental figure 2: Hypocotyl length of A.  thal ia na  seedlings after 5 d of germination in the dark. 
Seeds were germinated on ½ MS agar plates either with or without 1 % sucrose. Error bars represent 
the standard error of the mean of three or four batches of at least 15 seedlings each in a single 
experiment. A, sdp1/sdp1-L seedlings with the Brassica napus napinA (napA) promoter controlling 
expression of the L .  incisa  g13945 gene in five independent lines are compared to the mutant carrying 
an empty vector as well as the wildtype (WT). B, sdp1/sdp1-L seedlings with the napA promoter 
controlling expression of the L .  incisa  g2905 gene in five independent lines are compared to the mutant 
carrying an empty vector as well as the wildtype (WT). 
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Supplemental figure 3: Radioactivity detected on thin layer chromatography plates showing degradation 
of 14C labeled triolein in crude seedling extracts at pH 7. The asterisks denote samples that were 
supplemented with 14C labeled palmitic acid (16:0) instead of 14C-TAG. The result of a single experiment 
is shown. 
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Supplemental figure 4: Features of the L .  inc isa  SUGAR DEPENDENT 1 (LiSDP1) amino acid sequence. 
Similarities with the amino acid sequences of A .  thal ia na  SDP1 (AtSDP1) and SDP1-LIKE (AtSDP1-L) 
are shown with black and grey boxes highlighting identical and similar residues, respectively. Sequences 
were aligned using MultAlin and ExPASy BoxShade software. Components of the active site are marked 
in red. The grey bar represents the conserved patatin domain. 
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Supplemental figure 5: Hypocotyl length of A.  thal ia na  seedlings after 5 d of germination in the dark. 
Seeds were germinated on ½ MS agar plates either with or without 1 % sucrose. Error bars represent 
the standard error of the mean of three or four batches of at least 15 seedlings each in a single 
experiment. A, sdp1/sdp1-L seedlings with the Cauliflower Mosaic Virus 35S (35S) promoter controlling 
expression of the L .  incis a  SUGAR DEPENDENT 1 (LiSDP1) gene in three independent lines are 
compared to the mutant carrying an empty vector as well as the wildtype (WT). B, sdp1/sdp1-L 
seedlings with the Brassica napus napinA (napA) promoter controlling expression of the LiSDP1 gene in 
8 independent lines are compared to the mutant carrying an empty vector as well as the WT. 
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Supplemental figure 6: Comparison of gene expression as determined by qRT-PCR with and without 
normalization to RIBOSOMAL PROTEIN S21 transcript levels. Expression is shown relative to time point 
0 and error bars represent the standard error of the mean for three batches cultivated in parallel in a 
single experiment. The dotted line indicates nitrogen resupply. A, L .  inc isa  OIL GLOBULE PROTEIN 
(LiOGP). B, g15430. 
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Supplemental figure 7: Comparison of gene expression as determined by qRT-PCR with and without 
normalization to RIBOSOMAL PROTEIN S21 transcript levels. Expression is shown relative to time point 
0 and error bars represent the standard error of the mean for three batches cultivated in parallel in a 
single experiment. The dotted line indicates nitrogen resupply. A, g13945. B, g2905. 
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Supplemental figure 8: Comparison of LiSDP1 gene expression as determined by qRT-PCR with and 
without normalization to RIBOSOMAL PROTEIN S21 transcript levels. Expression is shown relative to 
time point 0 and error bars represent the standard error of the mean for three batches cultivated in 
parallel in a single experiment. The dotted line indicates nitrogen resupply.  
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9.2 L. incisa  coding sequences used in this study 

g555.t1 

atgggtgctgagccagtgaacaacgcctctggcgctgacctgaagcgcctggctttcgtccgctcttacagcgactactacttccagaaggg
ctatggcctcgcctcatctgtctacagtactggcaagagctatgcaccagatcgcttccacggcagcatcgccgctgtagagcagacagtca
gcgagtatggaacacccctggtcaccgcggtccaggacaaatctgaccaagtgctgcaccttgtggactccaaggttgacaccgctgtcact
tccgcctaccagttctacgaggacaagtccagcttcctggccagccaggtcgagaagcagaagaagtatcatgaaaagaacctggagcact
acaaggccagccgcgaaaactacctgaagaagatcgaggagagcgtggacttcctcaagaaggagggcctcaccggcagcgcgcggtac
gccgccgacgccgtgctggctcgcgtggatgatgccaagaagttgccgcccatgctggtggacgaggccaaggtggtggtcagcaaggtc
ggcgacgcctgggcctacctggcttcactgccagcagtccacaagctgctggagactgcacagccctcactggatctggcctggaagaagt
acctgatcgcccatgacagcctgctgtccacccccatctaccaccagatcgcccgggactccaccgctgtggtgggcaaggtccagcaga
cccccatctacaagaagatcacaacgacagtctaccccatcatctctccctacgctgaccccgccctggacacgatctaccagtcaagctac
tactctgctgtcaaggaccacctaaagcctgtggaggtgaacggcgctcactga  
 

g2905.t1 

atgtactcagcgatgcagttggcagtgcttgctgcaagcctgctaactgcagctgctttgaacagccagcaagtaggtatgcaactggctggt
acacaggcctacgcgatgcctgaggtgctgggcgctgatggttcccttcagcgcactcacagtatggcagagctggtgctgccagagggct
accttctggaagagcatgtcgttgagactgcagacggctacctcttgtccctgtaccgcatacccaagggccgctttgacgcaccgtccagt
cagccaactcacaggccggtcatctacctgcagcatgcactgctggactgcagtgccagctgggtcaacaacggcgcagatgccagcctg
gccttcatcctggccgacgcaggctatgacgtctggatgggcaacagccgtggcagcacgtacgccaggcgccacatcaatctgtcggtg
gactcgcctgagttctgggcattctcctgggacgagatggcagccttcgacctgccggccagcatagactttgcgctggcgacagcaaacc
agacaaagctggcgtacataggccactcacaaggcacaactattggcttggctgccctcagctctcagccagaattgcaagagaaggtgtc
cctggcagtgatgctggcaccggtcaccttcctgggccacatcgctagcaggccagtgcaagctcttgcgcgcatgcagactgatcagatat
tccagctgctgggtgtcaaggagtttctgccttcgcaagaggcgagcattgagatctatggggagatctgccgcacagcgcccagcacatg
cattagcgccattggcctgatttgcggctacaacccagacaacatcgaccagtcgcggctgccactgtacctgtcctacactcctgcaggta
ccagcgtacagaacatggtgcattggagccaaggggtgcgtcggccatatcccgcctttgcccggtttgactacggccacgactgcacaag
tccgcttgggctgccccaaaagtgcaaccagaatatgtatggcaccaatgaagtaccactgtacgacctgaagcagatacgcataccgcttg
cgctattctcaggtggacaagacatgctctctgatgctcaggacatcggtgtactgacttccgcgctgtccgcggagcacatcgtgtttgcgc
atgtgatcgatatctatgagcatttggactttacgtggggcatcaatgctcatgaactcgtgtacagggcgatcaagcagctgctgtggcagta
tgccaggttcccgcagggctaa  
 

g5830.t1 

atgctgcgccaggcggcctccagcagcttggcagctctcagagcaacgagcttgcaggcctgcggaaactcggcagcaagggacgctgg
cagtaatgttatggtcagctccaccatggcgcagcattgctggcaccagcagcgaggcctgaaggtgccagtgcagaacaacaacgtagac
aaggccttttcccagctgagcaggaagctgagggccgaaggcatgatcgacaagtggagggaccaggtggagttcaccaagccagccttg
aggcgagtgctcaaccagaaggagacagcgcacaggctgaaggtggagcggttcagggcactgatgagctgggttctcaagcgcaaagc
caggggcttctga  
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g9192.t1 (LiSDP1) 

atgaaacctctgacttaccaaacgggtcgcccaccagtctgccgaaccagttcgggacttcctggcgcaacagcactgctggacttgacctt
agtgcgcctggtcgccaccttgtcagtccccttccgcaagctacttgcattcaacctcttcatcggcagagcacccctgcaaatcttgcgttat
gctctctactggataggatggctatctgctccgcctcgcacgccgctgctgcgtcacctgggcacagactttctgcagacaaggcggtggca
ctttggcctaggcacggtcctcctggctgccgctgtctctgctgctcggcggaaatggctggaaactaccagcacagatgctcagctgcgca
aaaggctgcggcaagcaacagctacagccacgaactaccaggactggtcaatagcagcaacagctttagaccagctacagggcaacgact
ctctgagccgatggaagcgggagaccaggctgtacgatcgcaagctgctgcaggagcggctgtcccacttgcaggaagtgcgagctcgcg
gcgatgtgggggacatgatgtttgctgtgcgggcagacctgctgcgcaacctgggcaacatgaccaacagtgagttgcacgagcacttccc
gctggtgccggagccgatccgcgagtacattgcagaggtccgcctgaacctgcagatcatcaccaactatgagggcccagacataagtgc
ggcggagaagctgcagttcctgcaagaaacgcggcacgcttttgggcgcacagcgctggtgctgagtggtggtggcgcgctgggcgcttt
ccacctgggtgttgtcaagacgctctttgagcagaagctgttgccgcgcgtgttggcagggagcagtgtggggtcaatagtcgcatccatca
tcgcaaccaacgacgacgaccagctgcagaagctgtttgaccacatgcgcgagtttgacctgtccttcttcagcaacgcgacggccgcgca
gttcttcaaccacttcctggtcaacggcacgctgcaggacatggaggtgctccagaaccggctgcgccgcctgctgggcgatgagacgctg
ctgcaggcctacacacgcacaggccgggtgctgaacgtcgcggtcacggctgctgacaccaacgagcctccgcgcatcctcaactacctg
acggcgcccaatgtggtcatctggagcgcggtcgcctgctcctcagccttcccgctgctgtacacgcccggcaagctcttcgcaaaggaca
ccaagaagaacgtgctcgtgccgttcacggcggaggcgatgcgcacgagcgagcggcggtggcgggatggcagcctggaggaggacct
gccgatgcgcacgctgagcgagatgttcaacgtcaactacttcctggtcagccagaccaacccgcacatcgtgccggtgctcaacctcaaa
aagcgcttcaaccgcaagctgggcaacctgctggaggctgaatggaagcacaggtgtaagcagctggtggagatcctgccgactgggatg
ggcaagttcctcaaggtgttcagccaggtgtgggagggcgacgtcaccatggtgctgccctccaccttctggcagctacgcaaggccatca
ccaacccctccaaggacgacctggtagcagcctgccgccagggtgagcaggtgacatggtccaagctgagcgccatccaggccaactgt
ggcatagaaacgacgctggatgagtgcctcatcaagctgtcagagaccatgtttgcgcagaagcgccagcggagcgtgggcagcacggcc
agctcaccgatgaaggtcatgggcggggaccagttcccaggcccagggatggcgctggggaccagcgcgccgggcaccagtgcgtttgt
ggcggccggcggcagcgaggagccgttggcgtacagtgcaagcagtcgggctcggaacagcttgcggggtcgcaacggcatgggaggc
cgcataccctcgtggctccacctgccctcgctaggcatgcccacggtgccttcagacgagtcgctggacagctacagcctggcggtgcgtg
ccggctcgactgatgacctgcccggcttgcgtgccacggacagccccaccaaggccagcagcggcagcaagagtgacctcatctcagag
ctgatctccagctactccagccgacctttgccagaggtgccggaggtggaagccagcctggagggtctgccggcgcccgaggagttcccc
gagtggtcgggctccgcggcctttgactgctgcgatcgcagcgtcaacatctgggagacgctgctgccgctggcatcgtcgtccatggggg
gccaggcgctggacgtcatcgcgccatga  
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g13747.t1 

atgactaagtccacctcatcccgatcagcacgtgatgtggccttcagtgtcttcgaggtcacgacagcagtgatgtatggcgtgtacgagaac
actctggccggcgttgtgccctacttcgtcccggatcggacccgggaagccttgttccagctgttctgcgagctcaggaccaactctcccaa
ggacaagcggtttttgaaaaagcacctggcggcgttcgttcccgagaccgtcactggctggatcgccatcgcctccagtgctttgtatgctac
cagcgtagtcgccggcagcctgttcatgctggcgggcctggcatcagccgcgctgttcagttgcgtcggcatcgtactagttacaggcagct
ttgctggcgtagcgctggcgttcctggcactgggtctcctctgtgctgcgtgcatcacaggcgtcatgggaactgcgacagcgtttggctacc
tgtctgcgctcaccggcagcgctgcctggcagttcgtcagccagcatgtgtttggcggggcttcgctggtcccggactccattcgtgacctg
cccatttccaggcacgctggcaagatcttcggctctactgcttctgcgcacaagcagagtgacaccaagcgcgcctcagctcgcgcctcag
ctcaacagccaccctctgccccgcagccaccgaagcttcagcccctgagccagcaacaggcattcggctcaatgcagacccaggatgagg
ctcagtgcaccggcaagcagccaacagctggtcaggcacccagcgagccgcagcaggcaaagcatgcaaagcagccggcaccagcgg
agctgccacagccagtcagtagcgtggcctcagtgaaggcccctgatggccccacaacccctgcgccaagcgacaccaagcccgctgtg
gcgctgccgaccacagtgcctcagctcgcattgcccacacctggctcgcgcagcacagcggtgcagccgccttcaagcttcaggatttcaa
ttgactcagcgccaagcggcgactcggccgagacgggtgcatcatccagggcagcagacgcaaacgatgcaggccaggatgcacagcc
cgaaactgacgcccagcacgcgcagcatgtcaagcaacctgcaccagccgagctcgccaagcctcccacaaccgagcccacagctgagg
ttgtatctgagcagcccaaagcagcgcccaaggtcgcttttgctgacccacagcaggccatcactgctagcagtgcttctgctgaacagctg
taccaaatcaagccaagcgcggtggaccagcagcccgtgacagcccggcatggcacagcggccactgaggcgcagcaggccaagcatg
cacagcagccggcaccggcagagcctggcaagcctccccgcagcgagacgcctgctgcggccgctgcgcccgcagcgcagcagacac
agcgcagcgtgccagaacccatcgacgtgcacatcattggcgatgcggatgctgcacaggctggcccgccacctggcgcagcgcctgcc
acgcgctctaacgccagcaagtcacaggagctgtttgcggacctggccgacacagctgtggtggaagccatcgatgatgcgccgcacgag
atcgatgccagtgtggccctcaacagtgccctcaaaacaggcactgcacaggcggctgttgtggagggaccagcgcctgccatccaggcc
agcgcctcagcaacacacagcgatgatacgggcttcctgacaggtgctaagggtgtcgcaccgaactacctgagcacgcccgacagcaac
agcaagctgccagctggtctgcagacgtccctgccagccagcatcgacacgcagccggcgccgttctcctttgtggtgcctgagcctgcga
ctgctgctccacacaccagcagcgctgctgtgctgacgggcctacggtctgctgacgtggcacctcagggtccgcacctggctgcccatgc
ggaccagcctgcggcacccatctttggccacagcgcagcgcagcagcctcagcaggcagacacccaggcccctgcctcggccatggggt
tcagcgcccccagcgtgcatgacaacatccttttcgacctcccccgagcaggttcaaacacccctatgctcagcgacaccaagccgcccgt
cgcgctgagcgcgctgccacagcctaccgcggcgatccccgatgcgaccaccacaactgtgcagcccgtcacaagcttcaggatctcaat
tgatagcggggactcggcccacacaggcgcgtcagacccgctcgtgcgcagcgaaagtgagggcagtgaggtcagcgcgtccggcagg
ccaaagcgcatgtcgtccaagaaccggcggaaggcgcaggcggctgccctggccgctagcgctgaacagtga  
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g13945.t1 

atggcatctcatgacaacctgcgggccctgcgaggcccccgggagggccgcgtggacctgcgccgccccgagaactacgaaagcgtcta
tgacaagatggtggacgccttcgtctggctcgctcgcaccttctgcacctgggccgtcccacgcttccagcccctgctggacttcatcgtgc
accacatctgcgagcctgtcttcgcccgcctgactggcagcttctacccacccaaggcggtcctgcaccgcggccagcagccggtgtcctt
catcagcgtcaccgaccccgagtttggcgtgcctctgctggatggcaaaccgctgtacaaccccgccaacttcccctttgacgccacgcatg
ccgacgctcatgggttccatgagtgggtcgcccacttcctcatcctgtgcgccaaggtggcttacgagcgcgaggcgctgatcaagatggtc
gtcgacagggagttcaccggcatcaagtttgtcgacagcttccccacagagcccaaggaggctgccaacttgaccgtggaggagaaggcg
catgtgatgcaggaggcggccttcaatcggctcatggccggcgctgacacagcgaacccagcgatgatcaagcggcggctggggtctgag
caccagcagctggcgaacagagtcaccgcaaccctcatcccggacaccatggccttcatgatcaccaacgacaatgctgtcatcctgttctt
ccgcggcactgagccgcacaagctcgcccagtggtggtccgactgcgatctggagctggcggtgcggaccaacgccgccgggaaggtg
caccagggcttctgggaggcgctgttctacaaggcaccgcctgtcaatggcaagaaggagatccccagcgtcttcaaccgcatctgtgcgg
cactggagagggagacgaggggcaaccacaagcgcatctacgtcacgggtcactctctgggtggaggcctgactgccatgtttgcccaca
cgcttgctcaccctgacactgcaaagctgcccagcaccgttgggtacaaggatgctcacaaactcgtggaccgtgtgggcggggtgtacac
tttcgcgagccccacggctggcaaccatgccttctgtgatttccttgtctatacctatggcaagaatgtcaagaagggcattggcaaggacag
gcttttccgtgtcgcccactcatcggatgtggtcgtcaagataccttttgggcagggctaccgccaccacaagcttgagtactacatcaactac
aaaggcgacatccaccatgatccggaggacatcgaggcatggcgggtgtgcgagagcgaccagttcgacttcttctacctctgcaaggtcc
tggccggctggacccgttggtcgccctggggggcgcccaacggcagctggctgtggccggacttctgggtgttcttcatgcgctgctacct
gcacaccgtcattcgtgtggtcgcctatacgctggggcccctcatcccaggccatgtcatctccggcgtgcccgaccacttcccgtgcgact
acgaacgcaagatccgccgcgtagccgttgacctcggccgcgtgctcaaggcctcgcccgagcagcgtacccacatgcacacccatgtcc
tctcgcgttccgaggagcactgtgatgctgatgtcaacatccctgtgagcgtcaatggcggccacatccagagcagcaatggcctaaacatg
aaatga  
 

g15430.t1 

atgtataacgcagacgggtccatgcgggccatccgccgtcctgcgcactccagcggaggcggtcagtcaagctggagcgggggttgggc
agcagatgcaaaggagaatgagccccgcaacacggtcggctcaaactcaggcaacgttgctggcggtccgtcacctgctgcagctggtat
gaagtccaagagcgctggcgctgaggctggcaagggttcacgacagccagctgacgccaagatcaaggcgctgcaggggagcaacatct
ttggcaaccacagcgacgcggccactgtccaggacaccactgccaagctccagcaagtgcaggtgcaggacatgcctgccgcgggcagc
gccacaattgccaactccggcgagtcaggagtccgtgacatcagcgatgccaagcggcgcgcgctctaccagacaaacgtgttcacgcac
acggatgagcctgcaaactggcgctctgcagaggccattgccagcaagccagaggtccccgcggtcccagctggcagcgctgggcagtt
ccgggcagccgagccgggcgcgcgcgacatcagcgacgccaagaagaagtcgctctaccagacccgcgtctttggcacggccgatgctg
cctcgcccgcagcgcagcaggtgtccagcctgaagcacaaggagatgagcggccacaacatctttggcgctgctgaggagcctgcgccg
cgcgctgctggccagtcgggccggcgccccccaggaggtgccagcaccttcagctttggcaacagcggcgctgagagcgctgcggcccc
ctctcaggggggtagccggcagactgctggcggcagcagcacgttcagctttggatggtga  
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9.3 Vector maps 
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