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Abstract 

 

Synaptic modulation requires fast recruitment of neuronal dense core vesicles (DCVs) 

containing various neuropeptides and neurotrophins at nerve terminals. DCVs undergo 

long-range trafficking in axons to deliver cargoes at release sites. However, the question of 

whether and how specific sites capture these transiting vesicles upon neuronal activity is 

open. In this study, we have used a Synaptotagmin (Syt) isoform, Syt4, as a DCV marker to 

investigate trafficking and activity-dependent capture of DCVs in hippocampal neurons. We 

found that Syt4-harboring vesicles are highly mobile on microtubules and switch directions 

only at the distal end of axons in hippocampal neurons. We examined the effects of 

phosphorylation of Syt4 at S135 on trafficking, capture and fusion of DCVs in mature 

neurons. We found that phosphomimetic Syt4 vesicles traffic less and are more 

concentrated at synapses. Conversely, phosphodeficient Syt4 vesicles had the most 

processivity and were least localized at synapses. We also found that disrupting actin, 

which is enriched at pre-synaptic sites, enhances the mobility of phosphomimetic vesicles. 

We found that the motor protein Kif1A is associated with Syt4 vesicles but phosphomimetic 

vesicles had less interaction with Kif1A. Over-expression of Kif1A rescued the trafficking of 

phosphomimetic Syt4 vesicles. In addition, we found that c-Jun N-terminal kinase (JNK) 

phosphorylates Syt4 at S135 specifically causing decreased motility of transiting DCVs. 

Furthermore, increased neuronal activity promoted capture of transiting vesicles at 

synapses via a JNK phosphorylation dependent mechanism. Phosphorylation of Syt4 did 

not affect the fusion of vesicles at synaptic and non-synaptic sites in hippocampal neurons. 

Together, this study reveals a JNK-dependent phosphorylation mechanism involved in 

trafficking and capture of Syt4 harboring DCVs in hippocampal neurons. We propose a 

mechanism whereby JNK at active synapses phosphorylates Syt4 at S135 on transiting 

DCVs, promoting destabilization of Syt4-Kif1A binding and allowing capture of DCVs at 

synapses by actin. This mechanism would potentially allow fast recruitment of dense core 

vesicles to active synapses, ensuring the efficient delivery of neuropeptides and 

neurotrophins to specific sites in hippocampal neurons whenever needed. 
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1. Introduction 

1. 1 Neurons – “building blocks” of the nervous system 

The study of the nervous system encompasses multiple levels ranging from cellular and 

molecular levels to systems and cognitive aspects. A nervous system is an assembly of 

neurons connected to each other performing different functions in a regulated and 

coordinated way. Neurons are the core component of the nervous system and of the brain 

in particular. They are electrically excitable cells that process and transmit information by 

electrochemical signalling. A typical neuron possesses three major compartments - a cell 

soma (the bulbous cell body which contains the cell nucleus, protein synthesis machinery 

and other organelles), dendrites (long, filaments attached to the cell body in a complex 

branching “dendritic tree”) and an axon (a single specialized, extra-long, branched cellular 

filament that acts as the output of the neuron) (Jessell and Kandel, 1993). 

Every neuron maintains a voltage gradient across its membrane, due to metabolically 

driven differences in sodium, potassium, chloride and calcium ions within the cell, each of 

which has a different charge. An electrochemical pulse called the action potential is 

generated in response to a significant change in the voltage across the membrane (Hodgkin 

and Huxley, 1952; Jessell and Kandel, 1993). This pulse travels rapidly along the cell’s axon 

to specialized connections known as synapses. 

1. 2 Synapse- the “gap” that connects two neurons 

Neurons communicate with each other through a unique structure called the synapse. 

Synapses are fundamentally classified into electrical or chemical sub-types (Pereda, 2014). 

Electrical synapses consist of gap junctions that connect the pre- and postsynaptic 

membrane. Gap junctions contain precisely aligned ionic channels that span synaptic cleft 

between two neurons. Signal is sent in the form of voltage changes across these gap 

junctions, which are bi-directional in nature. The main advantage of an electrical synapse 

is the rapid transfer of signals from one cell to the next (Hormuzdi et al., 2004; Pereda, 

2014). 
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In a chemical synapse, the pre-synaptic site contains neurosecretory vesicles harbouring 

chemical messengers called neurotransmitters or neuromodulators. During synaptic 

neurotransmission, an action potential reaches the pre-synaptic bouton (club-shaped 

enlargements present in axons) resulting in the opening of voltage-gated Ca2+ channels. 

This allows Ca2+ influx, which triggers the release of cargoes from neurotransmitter-

containing vesicles into the synaptic cleft. These cargoes bind to their respective receptors 

on the post-synaptic side of the synapse, which enables transmission of signal between 

neurons (Jessell and Kandel, 1993; Murthy and De Camilli, 2003) 

Both the presynaptic and postsynaptic sites contain extensive arrays of molecular 

machinery that link the two plasma membranes together and carry out signalling between 

them (Burns and Augustine, 1995; Murthy and De Camilli, 2003). Although axon-dendrite 

synaptic connections are the norm, other variations like dendrite-dendrite, axon- axon and 

axon-soma are also possible. 

1. 3 Neurosecretory vesicles – “vehicles” for neurotransmission  

There are two major types of neurosecretory vesicles present in chemical synapses: 

synaptic vesicles (SVs) and dense core vesicles (DCVs), which store and release distinct 

cargoes upon stimulations. These two types of neurosecretory vesicles co-exist (Fig 1.1) 

and perform different functions in neurons (De Camilli and Jahn, 1990; Kelly, 1991; 

Scalettar, 2006; Gondre-Lewis et al., 2012). While release of cargo from SVs is important 

for classical neurotransmission across the synapse, DCVs modulate this transmission by 

releasing cargoes that either increase or decrease neurotransmission. Thus, the co-

existence of SVs and DCVs is required for both robust neurotransmission and its 

modulation, which is essential for regulating various neuronal functions and survival. 

1.3.1 Synaptic vesicles (SVs) 

Found specifically in neurons, synaptic vesicles (SVs) are homogenous circular vesicles with 

a diameter of ~ 40-50 nm. These vesicles store and release classical neurotransmitters 

classified as amino acids including glutamate, g-aminobutyric acid (GABA), and 

acetylcholine (ACh), or monoamines including dopamine, serotonin, epinephrine, and 

norepinephrine (Naito and Ueda, 1985; Fykse and Fonnum, 1988; Maycox et al., 1988; De 

Camilli and Jahn, 1990; Gondre-Lewis et al., 2012). The function of the nervous system 

https://en.wikipedia.org/wiki/Molecular_biology
https://en.wikipedia.org/wiki/Molecular_biology
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relies on the release of NTs from these vesicles repeatedly and reliably with every action 

potential.  

 

Figure 1.1 Co-existence of SVs and DCVs in the chemical synapse. 

Electron micrograph of different synaptic terminals from DIV 14-16 hippocampal neurons harbouring both 

SVs and DCVs.  Black pointed arrows indicate dense core vesicles and small clear core synaptic vesicles fill the 

pre-synaptic terminal. Scale bar = 100 nm. (van de Bospoort et al., 2012). 

1.3.1.2 Synaptic vesicle cycle 

The number of vesicles that fuse and their properties of fusion at pre-synaptic sites 

determines the efficacy and sustainability of signal transduction between neurons 

(Kononenko and Haucke, 2015). To fulfil the demand and support rapid and repeated 

rounds of release to continually supply neurotransmitter-filled vesicles to the pre-synaptic 

bouton, SVs are replenished via a highly regulated trafficking sequence called the “synaptic 

vesicle cycle” (Heuser and Reese, 1973; Rizzoli, 2014). 

Before synaptic vesicles enter into this cycle, the components of SVs are transported from 

the cell soma, where the majority of proteins are synthesized, to the synapse (Taylor et al., 

2013; Rizzoli, 2014). Once SV precursors reach the pre-synaptic site, they enter the 

“synaptic vesicle cycle” to reform SVs locally within the bouton. The steps involved in this 

cycle are as follows: 1) SVs are filled with NTs by active transport of neurotransmitter 

transporters (for example, vGluT for glutamate transport and vGAT for GABA transport) 

and a vacuolar-type proton pump ATPase that provides a pH and electrochemical gradient, 
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2) Filled SVs are then brought closer to active zones, which are specialized regions of pre-

synaptic plasma membrane containing molecular machinery important for SV recruitment 

and recycling (Jin and Garner, 2008; Owald and Sigrist, 2009; Sudhof, 2012), 3) SVs dock at 

the active zone and, 4) are primed by an ATP-dependent process that enables these vesicles 

to respond to a Ca2+ signal, 5) When an action potential depolarizes the pre-synaptic 

membrane, Ca2+ influx through voltage-gated Ca2+ channels triggers exocytosis of SVs. Ca2+ 

dependent exocytosis involves sensing of Ca2+ by Synaptotagmin 1, an integral membrane 

protein on SVs. Synaptotagmin 1 binds the soluble NSF-attachment protein receptor 

(SNARE) proteins synaptobrevin on SVs, and SNAP-25 and syntaxin on the pre-synaptic 

plasma membrane in a Ca2+-dependent manner, which promotes SV fusion and release of 

neurotransmitter, 6) After exocytosis, SV membranes are retrieved by endocytosis; there 

are various endocytic pathways that retrieve SV components, including clathrin-mediated 

endocytosis, kiss and run, ultrafast and bulk endocytosis (Jung and Haucke, 2007; 

Watanabe et al., 2013; Wu et al., 2014; Kononenko and Haucke, 2015), 7) SVs are reformed 

by re-acidifying and refilling of these endocytosed vesicles with NTs either directly or after 

passing through an endosomal intermediate (Sudhof, 2004, 2012; Kononenko and Haucke, 

2015). This local synaptic vesicle cycle at the synapse ensures that the demand and supply 

of neurotransmitter release from the pre-synaptic terminal is met, leading to efficient 

neurotransmission. 

1.3.2 Dense core vesicles (DCVs) 

While much has been investigated about SVs, very little is known about DCVs in neurons 

by comparison. Several studies have focused on neuroendocrine cells to investigate DCVs 

because of their abundance in these cells. But the regulation of DCV synthesis, transport 

and availability to release sites in neurons has many open questions. 

Dense core vesicles or granules (DCVs) are prominently present in neurons as well as 

neuroendocrine tissues like pituitary, adrenal glands, endocrine pancreas and gonads (Gorr 

et al., 2001; Gondre-Lewis et al., 2012). DCVs vary from 100-300 nm in diameter and are 

more heterogeneous than SVs. They transport, store and release various neuropeptides 

and neurotrophins like brain derived neurotrophic factor (BDNF), Neurotrophin-3, 

Neurotrophin-4/5, and Nerve Growth Factor (NGF) (Bean et al., 1994; Poo, 2001; Lessmann 

et al., 2003; Dieni et al., 2012). While SV fusion results in regular neurotransmission across 
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the synapse, release from DCVs modulates that transmission. This neuro-modulation 

facilitates a spectrum of processes including neuronal survival and differentiation, synaptic 

plasticity and higher cognitive functions. DCVs are synthesized in the cell body of neurons 

and are then transported to release sites for fusion (Burgoyne and Morgan, 2003; Kim et 

al., 2006; Wong et al., 2012). The major differences in SVs and DCVs in neurons are 

highlighted in the following Table 1. 

Table 1 The difference between SVs and DCVs. 

Properties Synaptic Vesicles (SVs) Dense core vesicles (DCVs) 

Appearance Small, clear, 

homogenous, diameter: 

~ 40-50 nm 

Large, dense core, 

heterogeneous, diameter: 

100-300 nm 

Numbers at synaptic 

boutons 

Highly enriched in 

synaptic terminals. 100-

200 vesicles at a single 

pre-synaptic site (Ikeda 

and Bekkers, 2009; Alabi 

and Tsien, 2012) 

Number ranges from 1-10 at 

pre-synaptic sites (Sorra et 

al., 2006) 

Cargoes Neurotransmitters like 

Glutamate, GABA, 

Acetylcholine, 

Dopamine, Serotonin 

Neuromodulators like BDNF, 

NT-3, NT-4, NGF, 

neuropeptide Y (NPY) 

Assembly and delivery to 

release sites 

Locally recycled at pre-

synaptic terminals. 

Undergo highly 

organized “synaptic 

vesicle cycle”. 

Synthesized in cell body and 

are then transported along 

microtubules to release 

sites. 

Stimuli causing release Lower frequency stimuli 

are sufficient to induce 

release. Duration of 

cargo release is short 

(ms). 

High frequency stimuli are 

required for release. 

Duration of cargo release 

can be long (seconds to 

minutes). 
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Functions Core component of 

classical synaptic 

neurotransmission. 

Modulates classical synaptic 

transmission by SVs. 

 

1. 4 Biogenesis of DCVs  

There are various steps involved in forming mature dense core vesicles, which are common 

to both neurons and neuroendocrine cells (Kim et al., 2006). Unlike SVs, DCVs are generally 

packed with their cargoes in the cell soma. They do not undergo formation or recycling at 

the synaptic terminal like SVs.  Cargoes likes neuropeptides or neurotrophins are generated 

as large precursors at the rough endoplasmic reticulum (rER) and are then inserted in ER 

cisternae to be properly folded. Subsequently, they are transported to the Golgi apparatus 

for further sorting, modification and packaging.  In the trans-golgi network, cargoes 

destined for DCVs are sorted away from other proteins by aggregating at an acidic pH in 

the presence of calcium. These aggregated proteins are then engulfed in budding vesicles 

to form immature dense core vesicles (Orci et al., 1987). The further acidification of vesicles 

to approx. pH 5.5 and progressive processing of cargoes in the regulated secretory pathway 

converts these immature vesicles to mature, exocytosis competent vesicles (Borgonovo et 

al., 2006) (Gondre-Lewis et al., 2012). Mature DCVs synthesized are then transported long-

distances to release sites in the axon via cytoskeletal components (Goldstein and Yang, 

2000; Rudolf et al., 2001; Rudolf, 2003; Neco et al., 2003; Smith et al., 2003; Guzik and 

Goldstein, 2004)  

1. 5 Intracellular transport of DCVs  

1.5.1 Cytoskeletal elements 

The neuronal cytoskeleton consists of three major components - actin filaments (F-actin), 

microtubules and neurofilaments. Septins have been proposed recently to represent a 

fourth cytoskeleton element (Mostowy and Cossart, 2012). All of these components 

provide intrinsic structural support and control growth and migration of neurons and 

neuronal processes (Coles and Bradke, 2015). In axons and dendrites, microtubules are the 

major longitudinal cytoskeletal filaments whereas actin filaments are enriched in synaptic 



1. Introduction  7 

regions at pre-synaptic terminals and post-synaptic spines and as cortical rings that may 

provide support along the shafts of long neurites (Fig 1.2) (Hirokawa et al., 2010; Zhong et 

al., 2014).  

 

Figure 1.2 Actin and microtubule architecture in a neuron 

DCVs are synthesized in the cell soma and are transported in axons and dendrites by cytoskeletal elements. 

Cartoon represents a mammalian hippocampal neuron in vitro. Boxed and expanded view of the boxes 

highlights the actin and microtubules architecture in each compartment. (A) and (B) show cortical actin rings 

and microtubule arrangement in an axon. Cortical actin rings display a periodicity of approximately 190 nm 

and may provide support along the shafts of long neurites. Microtubules in axons, on the other hand, serve 

as long tracks arranged with a single polarity; the + end is always oriented away from the cell soma. (C) F-

actin is arranged in a meshwork like structure at pre-synaptic sites in an axon. (D) In dendrites, there is mixed 

polarity of microtubules. (Adapted from (Coles and Bradke, 2015).  

 

Microtubules (MTs) serve as tracks for long-range transport in the neuron (Maeder et al., 

2014). MTs are polarized tubulin polymers (protofilaments made up of heterodimers of α-

tubulin and β-tubulin arranged in head to tail fashion) with fast growing plus ends and more 

stable minus ends (Maday et al., 2014). MTs undergo assembly and disassembly (through 

GTP hydrolysis), also known as dynamic instability, at the plus end, which allows the 

expansion and retraction of MTs in a cell (Howard and Hyman, 2009; Kapitein and 

Hoogenraad, 2015). In axons, MTs form a unipolar array with plus end oriented outwards 

towards the growth cone (Ahmad, 1992; Stepanova et al., 2010) while in dendrites they are 
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found in mixed polarity (Baas et al., 1988; Kwan et al., 2008; Kleele et al., 2014). MT based 

long-range transport is essential for neuronal survival and function both during 

development and in the adult brain (Franker and Hoogenraad, 2013). 

For short range trafficking and local delivery of cargoes to synapses and growth cones, actin 

filaments are crucial. F-actin assembles from globular actin monomers (G-actin) into a two-

stranded helical structure. It also possesses an intrinsic polarity by having two distinct ends 

termed as a barbed or plus end responsible for actin growth and a pointed or minus end 

for dissociation (Pollard and Cooper, 2009; Kapitein and Hoogenraad, 2011). Actin 

undergoes ATP hydrolysis upon polymerization. Actin filaments and microtubules together 

orchestrate cytoskeletal dynamics in neurons (Coles and Bradke, 2015).  

Newly synthesized DCVs in the cell soma are trafficked to axons and dendrites along these 

cytoskeletal components. DCVs are highly mobile and show distinct trafficking properties 

in axons and dendrites, likely due to differences in cytoskeletal components in these two 

regions (Overly et al., 1996; de Wit et al., 2006; Kwinter et al., 2009). DCVs travel long 

distances on MTs and short intra-bouton distances on F-actin with the help of associated 

motor proteins in axons. In dendrites, DCVs traffic slowly and cover less distance compared 

to in axons. 

1.5.2 Motor proteins for vesicle trafficking  

The mechanism of delivering specific organelles or vesicles in neurons primarily depends 

on molecular motor proteins that move along the cytoskeletal elements. The molecular 

motor kinesin, dynein and myosin super families have been identified to transport various 

cargoes in the neuron (Hirokawa, 1998; Karki and Holzbaur, 1999; Vallee et al., 2009; 

Hirokawa et al., 2010). Actin filaments facilitate the motility of myosin family motor 

proteins. These proteins use ATP hydrolysis energy as the means for generating movement 

on actin filaments. Among the 35 known myosin proteins, myosin Va and b, myosin II and 

myosin VI are majorly involved in activity-dependent synaptic trafficking (Kneussel and 

Wagner, 2013). 

Myosin Va stands out among the myosins in the context of dense core vesicles, as it plays 

important roles in DCV biogenesis, transport along actin filaments and regulation of 

exocytosis in PC-12 cells, neuroendocrine cells and neurons (Kogel et al., 2010). Myosin Va 
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drives directional motility on actin filaments, ensuring the delivery of cargoes at the 

synaptic terminals (Ali et al., 2007). 

Kinesins and dynein move towards the microtubules plus-end or minus-end, respectively, 

to transport cargoes longitudinally in axons and dendrites (Kardon and Vale, 2009; 

Hirokawa et al., 2010; Kneussel and Wagner, 2013; Maeder et al., 2014). The kinesin 

superfamily of 45 genes is subdivided into 14 subfamilies based on the homology of their 

motor domain, structural and functional similarities out of which kinesin-1, kinesin-2 and 

kinesin-3 families contribute to axonal transport in neurons (Lawrence et al., 2004; Maday 

et al., 2014). On the contrary, one single gene encodes the motor subunit of dynein 

(Roberts et al., 2013). While kinesin controls anterograde movement, cytoplasmic dynein 

drives retrograde transport.  

Dense core vesicles undergo both anterograde and retrograde movement in the neuron. 

DCVs travel extremely long distances, emphasizing the need of microtubule-based motors 

kinesins and dyneins (Zahn et al., 2004; Barkus et al., 2008; Kwinter et al., 2009).  

1. 6 Kinesin-3 family, Unc-104/Kif1A: a motor protein for DCVs 

The kinesin-3 family is one of the largest among the kinesin superfamily that functions as 

the “marathon runners of the cellular world” (Soppina et al., 2014). For long range 

trafficking of dense core vesicles, the kinesin-3 family member Unc-104/Kif1A is required 

for transport along MTs in both invertebrate and mammalian neurons (Bloom, 2001; Kim 

et al., 2006; Barkus et al., 2008; Lo et al., 2011; Soppina et al., 2014). Conventional kinesins 

such as kinesin-1 and most other kinesin superfamily proteins (Kifs) possess a two-headed 

dimer structure that moves in a “hand over hand” pattern. However, the kinesin-3 family 

protein KIf1A is a neuron specific monomeric motor protein characterized by a single motor 

domain, a forkhead-associated domain and a C-terminal lipid-binding domain (pleckstrin 

homology domain) (Soppina et al., 2014). Thus, the hand over hand model doesn’t explain 

the motility of Kif1A due to the lack of a second hand or natural dimer structure.  

Previous studies have reported a diffusive motility of Kif1A by weak electrostatic 

interaction between its positively charged K-loop and the C-terminal negatively charged E-

hook of microtubules (Okada and Hirokawa, 2000). Since then it was shown that Kif1A is 

regulated by a unique mechanism in which non-cargo bound motors are monomeric and 
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inactive whereas cargo-bound Kif1A are dimeric resulting in long processive motion for 

transport of cargoes at speeds of ~ 2 μm/ sec (Hammond et al., 2009; Soppina et al., 2014). 

The key mechanism regulating this monomer to dimer transition involves regulating the 

neck coil (NC) and coiled coil 1 (CC1) region present in front of FHA domain in the Kif1A 

moiety. In the absence of cargo, an intramolecular NC-CC1 parallel conformation maintains 

Kif1A in a monomeric inactive state that is removed when cargo binds to the motor. Cargo 

binding favours an intermolecular NC-NC interaction resulting in dimerization and high 

processivity of Kif1A. The FHA and CC domains are important for auto-inhibition of Kif1A, 

which blocks interaction with microtubules (Huo et al., 2012). The C-terminal pH domain is 

crucial for recognition of phospholipids in cargo vesicle membranes (Fig 1.3) (Klopfenstein 

et al., 2002; Lee et al., 2003; Al-Bassam et al., 2003). Liprin-alpha or synapse defective 2 

(SYD 2) is reported to bind to the tail region of Kif1A and is a multimodular scaffolding 

protein that acts as a Kif1A receptor on cargo vesicles as well as a stabilizer of Kif1A dimers 

(Shin et al., 2003). 

The high processivity of Kif1A ensures the long-range anterograde trafficking of DCVs from 

the cell soma to release sites in neurons. Kif1A controls the anterograde trafficking of DCVs 

both in axons and dendrites in hippocampal neurons. In dendrites, Kif1A shows limited 

movements compared to the fast and processive movement observed along axonal 

microtubules (Lee et al., 2003; Shin et al., 2003). 
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Figure 1.3 Molecular mechanism of Kif1A activation on cargo binding 

Kif1A exists in both monomeric and dimeric states. It employs a unique mechanism of regulation by forming 

dimers upon cargo binding. In the absence of cargo, intramolecular NC-CC1 region of Kif1A is proposed to 

form a parallel conformation leading to inactive Kif1A. Cargo binding increases the effective concentration of 

Kif1A because of intermolecular NC-NC and CC1-CC1 interactions leading to dimerization and high 

processivity on microtubules. MD: motor domain, NC: neck coil region, CC1: Coiled coil region1, FHA: fork 

head associated and PH: pleckstrin homology. (Adapted from (Soppina et al., 2014) 

Apart from DCVs, unc-104/Kif1A is majorly responsible for anterograde transport of 

synaptic vesicle precursors both in C.elegans and in mammals (Okada et al., 1995; Okada 

and Hirokawa, 2000) (Hall and Hedgecock, 1991). Defects in the transport regulated by 

Kif1A lead to impairment in synapse development and accumulation of synaptic precursors 

in the soma (Yonekawa et al., 1998; Maday et al., 2014). Conversely, overexpression of 

Kif1A promotes synapse formation (Kondo et al., 2012). 

 1. 7  “Sushi-model” for dense core vesicle transport 

The one-way model of anterogradely transporting cargo-filled dense core vesicles from the 

cell soma to release sites doesn’t fulfil the possibility of equal distribution of vesicles to all 

en passant boutons in neurons. Previous work in the Drosophila neuromuscular junction 

has shown that DCVs follow the “sushi-model” or “conveyer belt model” of DCV transport 
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in which there is a continuous circuitous trafficking of DCVs throughout the axon driven by 

molecular motors just like a conveyer belt in a sushi restaurant (Fig 1.4). Transiting DCVs 

from the cell soma are routed first to go to the most distal bouton where they switch 

directionality to move retrogradely and then fulfil the demand of proximal boutons (Wong 

et al., 2012; Moughamian and Holzbaur, 2012).  

 

Figure 1.4 “Sushi-Model” or “Conveyer-belt” model for efficient delivery of dense core vesicles at 

synapses 

Dense core vesicle delivery to release sites is analogous to people at a conveyer belt in a sushi restaurant. 

Each plate of sushi is like a DCV with cargo and patrons are synapses. As the sushi travels around the conveyer 

belt and patrons take plates from the belt whenever they want, similarly, dense core vesicles traffic in neuron 

in a circuitous manner and synapses take DCVs from the transiting pool whenever required. As the conveyer 

belt model fulfils the demand of every patron sitting around the table equally, in the same fashion, dense 

core vesicles demand of all synapses are fulfilled (Adapted from (Moughamian and Holzbaur, 2012) with 

permission from publisher) Elsevier License number 3810860661881. 

This circuitous trafficking pattern of DCVs from the soma to distal axonal sites and back 

again ensures the continuous trafficking of cargo-filled vesicles in axons. These transiting 

DCVs are captured at synapses in an activity-dependent manner, where the efficiency of 

capture determines the size of the accessible pool of vesicles at individual sites 

(Shakiryanova et al., 2006; Wong et al., 2012; Bulgari et al., 2014). The probability that 

transiting vesicles are captured depends on the demand of the release site.  However, 

whether the circuitous trafficking of DCVs is a general phenomenon that also occurs in 

mammalian neurons to ensure the uniform presynaptic distribution of neuropeptide stores 

is still unknown. 
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1. 8 Synaptotagmin 4: a membrane protein of DCVs 

The synaptotagmin (Syt) protein family consists of 17 members that play an important role 

in regulating a variety of membrane trafficking events in the cell. Many Syts share a 

common structure consisting of five major domains: an intravesicular NH2-terminal 

domain, a single trans-membrane domain, a spacer domain and two homologous C2 

domains (C2A and C2B) located in the cytoplasmic COOH-terminal region (Yoshihara and 

Montana, 2004; Bhalla et al., 2008; Mori and Fukuda, 2011). C2 domains in most Syts act 

as calcium sensors which promote membrane fusion by penetrating lipid bilayers and 

binding to soluble NSF attachment protein receptors (SNAREs) in a Ca2+ dependent manner 

(Nalefski and Falke, 1996). Notably, there is a difference in calcium sensitivity and kinetics 

of Syt interactions among different Syts.   

Synaptotagmin 4 (Syt4), a brain-specific 47 kDa Syt, harbours a conserved aspartate to 

serine substitution in the C2A domain leading to decreased Ca2+ dependent phospholipid 

binding activity, with the exception of Drosophila Syt4 (Ullrich et al., 1994; von Poser et al., 

1997). Because of this unique feature in Syt4, its role as a positive or negative regulator in 

vesicle fusion is a matter of debate. Several studies have indicated that Syt4 doesn’t act as 

a pre-synaptic Ca2+ sensor like Syt1, but rather works as a post-synaptic or glial Ca2+ sensor 

(Ibata et al., 2002; Zhang et al., 2004; Yoshihara and Montana, 2004). Syt4 has been 

implicated in increasing; decreasing or modulating Ca2+ evoked release in a context and cell 

type dependent manner (Thomas et al., 1999; Eaton et al., 2000; Wang et al., 2001; Wang 

et al., 2003; Tsuboi and Rutter, 2003; Zhang et al., 2004; Machado et al., 2004). Syt4 mRNA 

is expressed in all brain regions but mainly in the hippocampus, cortex and cerebellum 

(Berton et al., 1997). The subcellular localization of Syt4 was debated for a long time in 

differing reports. It was shown to be prominent in Golgi in the cell soma and neurites (Ibata 

et al., 2000), and on DCVs in PC-12 cells (Osborne et al., 1999; Ibata et al., 2002; Ting et al., 

2006). Its localization to SVs in neurons was reported (Littleton et al., 1999; Berton et al., 

2000), and later it was reported to be absent from SVs and post-synaptic at the NMJ 

(Yoshihara et al. Science 2005). Recently, Syt4 was shown to localize to BDNF-containing 

DCVs in both axons and dendrites of hippocampal neurons (Dean et al., 2009). 

Furthermore, it was shown to negatively regulate BDNF release leading to changes in 

synaptic function and plasticity in neurons (Dean et al., 2009). Syt4 is also particularly 
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interesting as it is an immediate early gene upregulated by seizures and activity (Vician et 

al., 1995; Mori and Fukuda, 2011). In humans, it maps to a region of chromosome 18 

associated with human psychiatric disorders, schizophrenia and bipolar diseases (Ferguson 

et al., 2000; Ferguson et al., 2004). 

Interestingly, the S135 site of Syt4 located in the spacer region between the 

transmembrane domain and the C2A domain, is phosphorylated by the protein kinase JNK 

(c-Jun N-terminal kinase) both in vitro and in vivo (Mori et al., 2008). JNK-dependent 

phosphorylation of Syt4 at S135 is important for translocating Syt4 from immature to 

mature secretory vesicles and also increases Ca2+ evoked release in NGF treated PC-12 cells 

(Mori et al., 2008).  

1. 9 JNK and its role in axonal transport  

JNK, also known as stress-activated protein kinase (SAPK), is a proline-directed protein 

kinase that phosphorylates serine or threonine residues. It comprises of ten splice variants 

derived from three genes: JNK1 (four isoforms), JNK2 (four isoforms) and JNK3 (two 

isoforms) that are all either 46 kDa or 54 kDa in size (Kyriakis and Avruch, 2012). However, 

they differ in expression in the mammalian brain (Lee et al., 1999; Brecht et al., 2005). JNK1 

and JNK3 subcellular distributions differ in the cortex, hippocampus and cerebellum. JNK3 

is found in 90% of pyramidal layer neurons whereas JNK1 is majorly seen in CA3, CA4 and 

the hilus of the dentate gyrus in the hippocampus (Lee et al., 1999). 

JNK belongs to the classical mitogen activated protein kinase (MAPK) signalling cascade. In 

this cascade, MAPK (JNK and p38) are activated by dual phosphorylation of the threonine-

proline-tyrosine (TPY) motif of upstream MAP kinase kinase (MAPKK) (MKK4 and MKK7 for 

JNK and MKK3 or MKK6 for p38). These MAPKK are themselves activated by a diverse group 

of MAP kinase kinase kinases (MAPKKK). The MAPK pathway is a three-tiered signalling 

cascade, which is activated by various stimuli including stress signals, growth factors, 

hormones, and cytokines (Fig 1.5) (Davis, 2000). 

JNK is amongst the most abundant kinases in the brain (Whalley, 2008) and is important 

for controlling stress responses in addition to normal physiological processes (Ip and Davis, 

1998; Davis, 2000). 
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Figure 1.5 Signaling cascade for activating JNK, a member of mitogen activated protein kinases 

(MAPK) family 

The MAPK pathway is a three-tiered signalling cascade in which JNK (c-Jun N-terminal kinase) is activated by 

dual phosphorylation of threonine and tyrosine in the TPY motif by two MAPK kinases, MKK7 and MKK4.  The 

MAPKK members are activated, in turn, by phosphorylation by a group of MAPKKKs. The whole signalling 

cascade is activated in response to stimuli like stress, cytokines, and growth hormones.  Activation of JNK in 

this cascade finally phosphorylates several nuclear and/or cytoplasmic substrates, which play various 

important roles in the cell. MAPK: mitogen activated protein kinase, ASK1: apoptosis signal regulating kinase-

1, DLK: dual leucine zipper bearing kinase, MEKKs and MLKs: MAPKK kinases, TAOK2: thousand-and-one 

amino acid kinase 2 (Adapted from (Davis, 2000; Coffey, 2014) Permissions taken from Nature publishing 

group. License number 3810870567210. 

Apart from being well known for its role in neuronal apoptosis, it also promotes neuronal 

differentiation and migration, synaptic plasticity and memory formation (Behrens et al., 

1999; Oliva et al., 2006; Westerlund et al., 2011; Coffey, 2014). In addition, JNK has been 

reported to be involved in long range vesicle trafficking to support neuronal functions.  It 

regulates axonal transport by phosphorylating motor and adapter proteins and cargoes. 

For example, JNK3 phosphorylates the motor protein Kif5C at S176; reducing kinesin-1 

interaction with microtubules and in turn inhibiting fast anterograde axonal transport, in 

squid axoplasm (Morfini et al., 2006; Morfini et al., 2009). JNK also controls the 

directionality of transport via phosphorylation of adapter proteins for both kinesins and 

dyneins, such as JNK-interacting protein (JIP1). Phosphorylation of JIP1 at S421 promotes 
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anterograde axonal transport by kinesin-1 and non-phosphorylated JIP1 favours retrograde 

axonal transport of amyloid precursor protein (APP) in rodent neurons (Fu and Holzbaur, 

2013). Unloading of kinesin-transported cargoes from tubulin tracks has also been reported 

to involve the JNK pathway in neurons (Stagi et al., 2006; Thomas et al., 2009; Wu et al., 

2013; Gibbs et al., 2015). 

As robust axonal transport is key for neuronal function and development, deregulation of 

axonal transport by protein kinases has been implicated in several neurological disorders 

including Alzheimer’s disease, Amyotrophic Lateral Sclerosis, and Huntington’s disease. In 

Huntington’s disease, JNK3 is activated by mutant huntingtin (polyQ-htt) resulting in 

phosphorylation of the kinesin-1 motor domain. Phosphorylation of kinesin-1 causes 

dissociation of motor proteins from microtubules leading to impaired axonal transport 

(Morfini et al., 2009). 

1. 10 Capture of transiting DCVs 

The efficient circuitous trafficking of DCVs is important to supply cargo filled vesicles from 

the cell soma to en passant boutons; the heterogeneity in DCV stores at these synapses 

indicates the importance of vesicle capture from the transiting pool.  It was long believed 

that the cell soma controls the delivery of DCVs at various release sites and that these 

release sites just wait passively to receive cargo. However, this model is incapable of 

delivering cargoes specifically to active synapses and doesn’t support different 

neuropeptidergic stores at different synapses. In addition, this system would involve 

significant delays in cargo traffic from the cell soma to distal boutons in neurons; especially 

given that some sensory and motor neurons have terminals > 1 m away from the cell soma. 

Efficient vesicle capture by synapses is likely important to maintain and modulate 

neurotransmission quickly. In Drosophila, DCV capture has been shown to be under 

transcriptional control influencing neuron-specific variation in peptidergic function (Bulgari 

et al., 2014). In addition, the same group provided evidence that difference in DCV number 

at synapses is not due to differences in delivery from the cell soma but is a result of pre-

synaptic capture. DCVs move in both anterograde and retrograde directions to supply 

vesicles and these transiting vesicles are captured bi-directionally in axons (Wong et al., 

2012; Wong et al., 2015). 
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 The specificity of certain synapse to have more DCVs compared to others is conferred by 

the activity dependence of vesicle capture. Activity-dependent capture of vesicles at 

synapses provides a mechanism to fulfil the demand of even distally located nerve 

terminals (Shakiryanova et al., 2006; Wong et al., 2015) in a synapse-specific manner. 

Another remarkable property of activity-dependent capture of DCVs is that the process 

itself is reversible and repeatable (Shakiryanova et al., 2006). The reversibility of the 

capture process indicates that captured vesicles have the ability to return to transiting pool 

and the repeatable nature of capture suggests that DCVs can fuse multiple times at pre-

synaptic sites (Shakiryanova et al., 2006; Wong et al., 2012). 

1. 11 Fusion and release of cargo from DCVs 

Unlike SVs, which recycle locally at synapses, dense core vesicles undergo long-range 

trafficking, are captured from the transiting pool of vesicles and undergo fusion whenever 

required. Release of cargo from DCVs requires typically high frequency stimuli compared 

to that required for SVs fusion (Scalettar, 2006).  

DCVs generally are seen in 20-30 % of axonal boutons in mature hippocampal neurons; 

ranging 1-10 in absolute number. They are usually located away from the active zone, and 

hence might require intra-bouton trafficking on actin filaments before being docked and 

tethered at synaptic sites (Sorra et al., 2006). DCV cargo can also be released from non-

synaptic/extra-synaptic sites, but upon more prolonged stimulation compared to synaptic 

DCVs (van de Bospoort et al., 2012; Trueta and De-Miguel, 2012). Several studies have 

shown various types of DCVs fusion, ranging from full fusion resulting in complete release 

of cargo, to kiss-and-run fusion leading to partial release of cargo, and “crash  fusion” - an 

accelerated fusion that doesn’t involve the classical linear pathway of steps requiring 

docking-tethering and subsequent fusion of vesicles with the plasma membrane (Verhage 

and Sorensen, 2008; Xia et al., 2009; Matsuda et al., 2009; Wu et al., 2014). 

While much is known about the synaptic vesicle fusion machinery, very little is known 

about DCV fusion machinery in neurons. Though the transport and exocytotic mechanisms 

of SVs are different compared to DCVs, these two vesicle types still share common 

properties like the need for functional SNARE proteins and calcium influx through voltage-

gated calcium channels to promote fusion (Xu and Xu, 2008).Munc13-1/2 are essential 

priming proteins involved in SV exocytosis (Burns and Augustine, 1995; Varoqueaux et al., 
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2002; Rhee et al., 2002; Basu et al., 2007) whereas for DCVs, these proteins help in priming 

but are not critical for release. Knockouts of these proteins reduce synaptic DCV release, 

and in its absence prolonged stimulation is required at synapses to release remaining 

vesicles (van de Bospoort et al., 2012). Calcium activator protein for secretion-1 (CAPS-1) 

is another essential protein reported for priming of DCVs for fusion at both synaptic and 

non-synaptic sites.  CAPS-1 deletion has been shown to impair fusion competence of 

stationary DCVs in pre-synaptic terminals of mammalian neurons (Farina et al., 2015). 

Another important class of proteins for vesicle fusion are synaptotagmins which act as Ca2+ 

sensors and facilitate fusion of vesicles with the target plasma membrane (Sudhof, 2002). 

Syt1 is a well-characterized protein present on SVs responsible for their fusion and 

neurotransmission, but it is not clear which Syt isoform (or other calcium-sensing protein) 

is responsible for DCV fusion in neurons. In PC-12 cells, DCVs are very heterogeneous, and 

different Syt isoforms, including Syt 1, 4, 7 and 9 were shown to regulate the exocytosis of 

DCVs depending on the type of fusion (Zhang et al., 2011). By using pHluorins (pH-sensitive 

markers whose fluorescence is quenched in acidic environments and dequenched/visible 

in a basic environment), it was demonstrated that even in hippocampal neurons, there 

might be multiple Syts isoforms responsible for DCV fusion (Dean et al., 2012). Syt4-

pHluorin present on BDNF-containing dense core vesicles shows distinct kinetics compared 

to Syt1-phluorin in hippocampal neurons (Dean et al., 2009). A pHluorin attached to Syt1 

on the luminal side of SVs exhibits a fast increase in fluorescence on depolarization 

(corresponding to exocytosis), followed by a steep decline within 60 - 90 s indicating 

endocytosis and reacidification of synaptic vesicles (Miesenbock et al., 1998; 

Sankaranarayanan and Ryan, 2000; Dean et al., 2012). On the contrary, Syt4-pHluorin 

shows a slower rise followed by prolonged elevation of fluorescence for several minutes 

upon depolarization further indicating its distinct localization to DCVs. The majority of 

other Syts show DCV-like fusion properties in hippocampal neurons, suggesting that 

multiple Syt isoforms may regulate DCV fusion on similar or distinct vesicle sub-

populations. 
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1. 12 Aim and scope of thesis 

As mentioned above, neuronal dense core vesicles (DCVs) facilitate many crucial functions 

including neuronal differentiation, migration and plasticity by transporting and releasing 

neurotrophins and neuropeptides at sites where they are needed (Scalettar, 2006; Wong 

et al., 2012). Unlike synaptic vesicles (SVs), which are locally refilled and recycled at 

synaptic terminals in neurons, DCVs are filled with cargo at the Golgi in the cell soma and 

are then trafficked long distance along cytoskeletal elements with the help of motor 

proteins (Burgoyne and Morgan, 2003; Kim et al., 2006; Wong et al., 2012). So far, several 

studies have been done in PC-12 cells, other neuroendocrine cells, C.elegans, Drosophila, 

and mammalian neurons, but we still lack of complete understanding of how cargo-filled 

DCVs are transported, and captured at release sites. This motivated us to explore these 

properties in mammalian hippocampal neurons in the current study.  

In PC-12 cells, Synaptotagmin 4 (Syt4), an integral DCV protein, is phosphorylated at S135 

by JNK. This promotes a change in localization of Syt4 from immature DCVs at the Golgi to 

mature secretory DCVs away from the Golgi, and increases Ca2+ evoked release following 

NGF stimulation (Mori et al., 2008). It was also reported that in Drosophila neurons there 

is circuitous trafficking of DCVs in axons and active synapses capture these vesicles from 

the transiting pool when needed in a reversible and repeatable manner (Shakiryanova et 

al., 2006; Wong et al., 2012). In mammalian neurons, Syt4 is integral to brain-derived 

neurotrophic factor (BDNF)-harboring DCVs (Dean et al., 2009), which are recruited to 

synapses following increases in neuronal activity (Dean et al., 2012). In addition, JNK has 

also been reported to be involved in vesicle trafficking and unloading of kinesin transported 

cargoes from tubulin tracks in neurons (Stagi et al., 2006; Gibbs et al., 2015).  

We hypothesized, based on all these evidences that the circuitous trafficking of DCVs 

observed in Drosophila might be the general phenomenon that also occurs in mammalian 

neurons. We further hypothesized that phosphorylation of Syt4 at S135 in neurons may be 

important for the trafficking, and capture of these DCVs at release sites in neuronal 

processes. To capture DCVs from transiting pool, highly active synapses might promote 

phosphorylation of JNK that could then phosphorylate transiting Syt4 vesicles at S135, 

causing them to detach from microtubules. Apart from capture, we also sought to 
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investigate if phosphorylation of Syt4 at S135 affects fusion of DCVs at synaptic or non-

synaptic sites in hippocampal neurons.  

This regulated transport, capture and release of DCVs in neurons would potentially allow 

fast recruitment of Syt4 containing DCVs to active synapses, bypassing the delays 

associated with signalling between synapses and the soma. This would in turn ensure 

robust maintenance and modulation of neurotransmission in hippocampal neurons via 

dense core vesicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2. Materials and Methods 

2.1 Materials 

2.1.1 Antibodies used 

All primary and secondary antibodies used in this dissertation are specified in Table 2  

and Table 3 below: 

Table 2 List of primary antibodies used 

 

Primary Antibodies Host Catalogue 

number 

Application Company 

Chromogranin A 
(CgA) 

Sheep 2095-0220 ICC (1:2000) AbD Serotec 

JNK/SAPK1 Mouse 610627 ICC (1:400)  

WB (1:1000) 

BD 
Transduction 
Laboratories 

Kif1a Mouse 612094 WB (1:500) BD 
Transduction  

Laboratories 

Map2 Chick 5543 ICC (1:3000) Millipore 

Phospho- SAPK/JNK Mouse 9255 ICC (1:400)  

WB (1:1000) 

Cell Signaling 
Technology 

Phospho-c-Jun Rabbit 9261 WB (1:1000) Cell Signaling 
Technology 

PSD-95 Mouse 124011 WB (1:1000) Synaptic 
Systems 

Rab-GDI Mouse 130011 WB (1:1000) Synaptic 
Systems 

Synaptobrevin 2 
(VAMP2) 

Mouse 104211 

(Clone 69.1) 

WB (1:1000) Synaptic 
Systems 

Synaptophysin Guinea 
pig 

101004 ICC (1:2000) Synaptic 
Systems 

Synaptophysin Mouse 101011 (Clone 
7.2) 

WB (1:1000) Synaptic 
Systems 

Synaptotagmin 1 Mouse 105101 WB (1:1000) Synaptic 
Systems 



22   

 

Table 3 List of secondary antibodies used 

2.1.2 Mammalian Expression constructs 

All plasmids used in this study are listed below in Table 4: 

Table 4 List of all plasmids used in this study for over-expression 

Constructs Name Source 

1) Kif1a-GFP M.A. Silverman, Burnaby, BC, 

Canada. 

1) AAV-ESYN-mCherry-rSytIV ( Syt4 

control) 

2) AAV-ESYN-mCherry-rSytIV (S135A) 

(Syt4 phosphodeficient) 

Jonathan T. Ting, Duke University, 

Durham, NC, United States 

Synaptotagmin 4 Rabbit 105043 ICC (1:1000)  

WB (1:1000) 

Synaptic 
Systems 

Tubulin Mouse 302211 WB (1:1000) Synaptic 
Systems 

Secondary Antibodies 

with conjugated dye 

Host Catalogue 

Number 

Applications Company 

Anti- guinea pig Alexa 

647 

Goat A-21450 ICC (1:2000) Invitrogen 

Anti- rabbit Alexa 546 Goat A-11010 ICC (1:2000) Invitrogen 

Anti-chick Alexa 405 Goat 175765 ICC (1:2000) Abcam 

Anti-mouse Alexa 488 Donkey A-21202 ICC (1:2000) Invitrogen 

HRP-coupled 

monoclonal mouse 

Mouse 1706516 WB (1:2000) Bio-Rad 

HRP-coupled rabbit 

polyclonal 

Rabbit 1706515 WB (1:2000) Bio-Rad 

Anti- guinea pig Alexa 

647 

Goat A-21450 ICC (1:2000) Invitrogen 

Anti- rabbit Alexa 546 Goat A-11010 ICC (1:2000) Invitrogen 

Anti-chick Alexa 405 Goat 175765 ICC (1:2000) Abcam 
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3) AAV-ESYN-mCherry-rSytIV (S135E) 

(Syt4 phosphomimetic) 

1) Bassoon-GFP 

2) CgA-GFP 

3) LifeAct-RFP 

4) PSD-95 GFP 

5) Synaptophysin-GFP 

Thomas Dresbach, University of 

Goettingen 

1) pAAV-SYN-mCherry-SytIV-P2A-

FlagJNK1a1(apf) [JNK1(APF)] 

2) pAAV-SYN-mCherry-SytIV-P2A-

FlagMKK7B2Jnk1a1 [MKK7-JNK1] 

3) pAAV-SYN-mCherry-SytIV(S135A)-

P2A-FlagMKK7B2Jnk1a1  

[S135A/MKK7-JNK1] 

Were cloned by using the insert from 

pCDNA3 Flag MKK7B2Jnk1a1 

(Addgene # 19726) or from pCDNA3 

Flag Jnk1a1 (apf) (Addgene # 13846) 

in  Syt4 control or deficient construct 

in addition to a P2A domain (Derijard 

et al., 1994; Lei et al., 2002; Kim et 

al., 2011) to ensure co-transfection. 

      1)   Syt4 (control)-pHluorin Edwin R. Chapman, University of 

Wisconsin, Madison, Wisconsin 

1) Syt4 (S135A)-pHluorin 

2) Syt4 (S135E)-pHluorin 

Site directed mutagenesis was done 

using the Syt4 control-pHluorin 

construct to get these pHluorin 

mutant constructs. 

2.1.3 Buffers and Solutions 

The various buffers and solutions used are listed in Table 5:  

Table 5 List of buffers and solutions used 

Buffers and solutions Ingredients 

Anode Buffer (10X) 2 M Tris in dH2O adjusted to pH 8.9 with HCl 

Base Solution 140 mM NaCl, 5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 5.5 mM 

glucose, 20 mM Hepes, pH=7.3 

Blot Buffer 200 mM glycine, 25 mM Tris, 0.04% SDS, 20% methanol 

Buffer D 2% donkey serum, 0.1% Triton X-100, and 0.05% sodium 

azide in 2×PBS 

Cathode Buffer 1 M Tris, 1 M Tricin, 1% SDS in dH2O (pH = 8.25). 
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Dissection Media Hank’s Balanced Salt Solution, HBSS (Gibco) buffered with 10 

mM HEPES (Gibco) 

Gel Buffer 3 M Tris-HCl (pH 8.45), 0.3% (w/v) SDS 

HEK cells media DMEM (4.5 g/L glucose; [-] glutamine; [-] pyruvate, GIBCO) 

supplemented with 10% FBS (Biochrom) and 1%  

pencillin/streptomycin (Invitrogen) 

High KCL solution 100 mM NaCl, 90 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 5.5 mM 

glucose, 20 mM Hepes, pH=7.3 

Homogenization 

Buffer 

320 mM sucrose, 4 mM HEPES; pH 7.4, adjusted with NaOH 

Lysis buffer for tails 100 mM Tris-HCl (pH 8.5), 5 mM EDTA (pH 8.0), 0.2% SDS, 

200 mM NaCl 

Neurobasal® Plus media 

(NB+ media) 

Neurobasal®  (NB), 1x B-27 supplement, 1x Glutamax, 

penicillin/streptomycin: 100U 

NH4Cl Solution 

 

90 mM NaCl, 50 mM NH4Cl, 5 mM KCl, 2 mM CaCl2, 2 mM 

MgCl2, 5.5 mM glucose, 20 mM Hepes, pH=7.3 

PBS 20 mM Na2HPO4, 150 mM NaCl, pH 7.4 

SDS- Sample Buffer 50mM Tris, 4% SDS, 0.01% Serva Blue G, 12% Glycerol to pH 

6.8 with HCl, 2 % B-mercaptoethanol 

Transfection buffer        

(used in calcium 

phosphate 

transfection) 

274 mM NaCl, 10 mM KCl, 1.4 mM Na2HPO4, 15 mM glucose, 

42 mM Hepes, pH 7.06 

2.1.4 Chemicals used 

All chemicals used in various experiments are listed below in Table 6: 

Table 6 Major chemicals/drugs used in this study 

Chemical Name Role/Application Catalogue 

Number 

Company 

Anisomycin Acts as a JNK activator (and 

inhibits protein synthesis) (Frey 

et al., 1988; Moriguchi et al., 

1997; Curtin and Cotter, 2002) 

A9789 Sigma-Aldrich 
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Bicuculline Increases neuronal activity, is an 

antagonist of GABAA receptors 

(Heyer et al., 1982; Dean et al., 

2012)  

120108 Abcam 

Latrunculin B Sequesters G-actin and prevents 

F-actin assembly (Wakatsuki et 

al., 2001; Colin et al., 2008)  

3973 Tocris 

Nocodazole Interferes with the 

polymerization of microtubules 

(Colin et al., 2008) (Eilers et al., 

1989)  

1228 Tocris 

SP600125 Inhibitor of JNK (Bennett et al., 

2001; Mori et al., 2008) 

S5567 Sigma 

2.1.5 Mouse lines 

Syt4 wild type or knockout mice (provided by Harvey Herschman, UCLA) were used for 

immunocytochemistry experiments or brain lysate preparation for Western blotting. 

2.1.5.1 Genotyping  

Mouse tail biopsy was used to isolate DNA for genotyping. Tail samples obtained from the 

animal facility were digested with 3.5 μl of 10 mg/ml proteinase K in 500 μl lysis buffer 

(Table 5) while shaking for 6 hours or overnight at 55°C. Samples were then centrifuged in 

a tabletop centrifuge at maximum speed for 10 min and supernatants were transferred 

into a fresh tube. These were then precipitated with 500 μl isopropanol and mixed well. 

Samples were then centrifuged again at maximum speed for 10 min, after which 

supernatants were removed and 200 μl 70% ethanol were used to wash each pellet by 

centrifuging for another 10 min at maximum speed. Next, the ethanol was removed and 

the pellets dried for subsequent re-suspension in 100 μl ddH2O. 

Genotyping using the DNA isolated from the mouse tails was carried out using specific 

primers: 

Syt4 Wt forward primer: 5’-CACTTCCCTCACGTCAGAGGAG-3’ 

Syt4 KO forward primer: 5’-AACCACACTGCTCGACATTGGG-3’ 

Syt4 Reverse primer (for both WT and KO): 5’-GCAAGGAGAGCTCTTGGATGTG-3’ 
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Wild-type (WT) band is 300 bp  

Knockout (KO) band is 250 bp 

For each sample, 2 μl DNA were transferred to fresh PCR tubes, and mixed with 48 μl 

of the following PCR mix: 

Reagent Volume 

10X Buffer 5 μl 

25 mM dNTPs 0.4 μl 

10 μM forward primer 1 μl  

10 μM reverse primer 1 μl  

Taq DNA polymerase 1.25 μl  

dH2O 39.25 μl  

Total 48 μl /reaction (+2 μl of DNA) 

 

Samples were then placed in thermocyclers for PCR to amplify specific DNA segments (Saiki 

et al., 1988; Mullis et al., 1992). The genotyping PCR thermocycler program was as follows: 

 

PCR program: 

93 °C for 10 min 

Cycle (40 X): 

93 °C for 30 sec 

60 °C for 45 sec 

65 °C for 90 sec 

65 °C for 10 min 

4 °C hold 

 

Then, to separate the PCR products, 2% (w/v) agarose gels in 1X TAE buffer (including SYBR® 

Safe DNA Gel Stain, ThermoFisher Scientific) were loaded with PCR samples and 100 bp 

DNA ladder (ThermoFisher Scientific, Germany) in a separate lane. DNA bands were 

separated by horizontal gel electrophoresis at 75 V for 1 h. To document genotyping 

results, pictures were obtained using a UV illuminator with the INTAS imaging system.  
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2.2 Methods 

2.2.1 Cell Culture 

All research involving animals was approved by the Institutional Animal Care and Ethics 

Committees of Goettingen University (T10.31), and was done in accordance with German 

animal welfare laws.  We tried our best to minimize the number of animals used and their 

suffering. All animals used for experiments in this dissertation were bred and kept in the 

mouse facility of the European Neuroscience Institute or the animal facility of the 

University Medical Center in Göttingen, Germany.  

2.2.1.1 Dissociated rat hippocampal neuron culture preparation  

12 mm glass coverslips (Carolina Biologicals) stored in 70 % ethanol were transferred one 

by one into 24-well plates and washed thrice with autoclaved distilled water. These 

coverslips were then coated with either 0.04% polyethyleneimine (PEI, Sigma) or 0.5 mg/ml 

poly-D-lysine (PDL, Sigma). PEI coating was done overnight at 37 °C whereas PDL coating 

was done for 4 hours at room temperature. These coated coverslips were then washed and 

stored in distilled water. 

For dissociated hippocampal neuronal cultures, the protocol published in (Banker and 

Cowan, 1977) was used with minor modifications.  E18-19 wistar rats were used for rat 

hippocampal culture preparation. After euthanizing timed pregnant rats with CO2, embryos 

were removed and brains of embryos were transferred into 4 °C dissection media (Table 

5). Once meninges were removed carefully from isolated brains, the hippocampi were cut 

out using fine forceps from both the hemispheres of each brain. Then isolated hippocampi 

were put into a 15 mL falcon tube containing 4 °C dissection media. Following collection of 

all hippocampi, the dissection media in the falcon tube was aspirated. 2 mL pre-warmed 

0.05% trypsin (Gibco) at 37 ºC was added to the hippocampi and the solution was incubated 

for 20 min in a 37 °C water bath. After incubation, trypsin solution was aspirated carefully 

and tissue was washed 3 times with 5 mL 4 °C dissection media. Following the third wash, 

1 mL NB+ (Table 5) was added and cells were triturated to obtain a single cell suspension. 

Afterwards, the cell suspension was filtered through a 100 μm cell strainer (BD Falcon) pre-

wet with 4.5 mL culture media. After filtration, the strainer was washed with another 4.5 

mL culture media so that the final cell suspension was 10 mL. Finally, cell number was 

determined using a hemocytometer with trypan blue staining. For rat hippocampal 
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neuronal cultures, the cell suspension was adjusted to 80,000 cells /500 μL. Thereafter, 500 

μL of cell suspension was added to each well on coated coverslips. Cultures were 

maintained in a Hera Cell 240i cell culture incubator (Thermo Scientific) at 37 °C and 5 % 

CO2. 

2.2.1.2 Dissociated mouse hippocampal neuron culture preparation 

P0 Syt4 WT/KO mice were used for mouse hippocampal neuronal preparation. Brains were 

removed directly following decapitation and put into cold dissection media. After this step, 

the protocol was similar to rat hippocampal neuron preparation with minor modifications. 

Briefly, isolated hippocampi were kept in 0.25% of trypsin (Gibco) for tissue digestion in the 

water bath for 30 minutes. All other steps including trituration, counting and plating were 

similar to rat hippocampal culture preparation. Mouse hippocampal neurons were plated 

with comparatively higher density of 100,000 cells /500ul on PDL or PEI coated coverslips. 

Cultures were maintained in a Hera Cell 240i cell culture incubator (Thermo Scientific) at 

37°C and 5 % CO2. 

2.2.1.3 HEK 293T cell culture 

HEK 293T cells were grown in HEK cell media (Table 5) in 10 cm culture dishes. Cells were 

split when the plate was approximately 90% confluent. These confluent cells were then 

washed with 5 mL pre-warmed PBS after removing the media. 1 mL of 0.25% trypsin (Gibco) 

was added for 2 min to reduce the adherence of cells from the dish. The adhering cells 

were further removed by adding 9 mL of HEK cell medium and the cells were pipetted up 

and down several times to obtain single-cell suspension. The cell suspension was 

centrifuged at 800 rpm for 5 min and then the pellet was resuspended in 5 mL of HEK cell 

media. The cells were then plated on 10 cm culture dishes to obtain desired confluency and 

kept in the incubator. 

2.2.2 Transfection Protocols 

Two different transfection protocols were performed to overexpress desired plasmids. For 

hippocampal neurons, Lipofectamine 2000 transfection was used and for HEK cells, calcium 

phosphate transfection was used. Plasmid DNA (Table 4) used for transfection was first 

amplified using the following protocol. 
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2.2.2.1 Plasmid DNA amplification 

E. coli strain XL-1 Blue electrocompetent cells (Stratagene, cat. no.: 200249) were used to 

amplify DNA. 2 μl of plasmid DNA was added to an electroporation cuvette (Biozym 

Scientific GmbH, cat. # 748010) with 50 μl E.coli XL1-blue cells. This mixture was then 

treated with an 1800 V impulse in an electroporator 2510 (Eppendorf). 1 mL LB (Roth, cat. 

no.: X968.1; prepared according to the manufacturer’s recommendations) was then added 

to the cuvette, mixed with the cell suspension, and then transferred into a new tube. This 

tube was then incubated on an eppendorf thermomixer (for 1.5 ml tubes) at 37 °C for 1 h 

with shaking at 800 rpm. Using an ethanol-sprayed, bent glass pipette, 20 μl of the bacterial 

mix was spread over a 10 cm LB-agar plate (that contained 0.5 % yeast extract, 1 % tryptone 

(pH 7), 1 % NaCl, and 1.5 % agar in LB medium), together with 100 μg/mL ampicillin (Roth, 

cat. no.: K029.2) or 50 μg/mL kanamycin (Roth, cat. no.: T832.3)). Plates were then 

incubated at 37 °C overnight. Afterwards, 20 μl of cell suspension was smeared on a LB agar 

plate with the required antibiotic and grown overnight at 37 °C in the incubator. The next 

day, single isolated bacterial colonies were selected and each was added to an Erlenmeyer 

flask containing 300 mL pre-warmed LB medium with 50 μg/mL of the respective antibiotic. 

Flasks were incubated with shaking at 300 rpm and 37 °C for 16-24 h. These cultures were 

then used for plasmid purification. 

For plasmid purification, the NucleoBond®Xtra Maxi-Kit from Macherey-Nagel with the 

suggested protocol was used. The centrifugation steps were done at 4000 g and 4 °C for 

double the time suggested in the protocol. DNA pellets were reconstituted with an 

appropriate amount of ddH2O. DNA concentration was measured using a NanoPhotometer 

Implen (Montreal Biotech Inc.). The constructs were then stored at -20 °C until use for 

transfection. 

2.2.2.2 Lipofectamine 2000 Transfection 

Neurons were transfected at days in vitro 10 (DIV 10) using Lipofectamine 2000 

(Invitrogen). 1uL of Lipofectamine 2000 in 50 μL of Neurobasal medium and 0.75 μg of DNA 

in 50 uL of Neurobasal (Gibco) medium were incubated separately for 5 min. Then the DNA 

solution was mixed with the Lipofectamine solution and incubated for 20 min at room 

temperature. Meanwhile, conditioned culture medium (in which cells were growing for the 

past 10 days) was removed, saved and replaced with 400 μL of fresh prewarmed 
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Neurobasal medium. The saved conditioned media was stored at 37 °C and 5 % CO2. After 

20 min incubation time, 100 μL of Lipofectamine-DNA mixture was added to the well and 

incubated for four hours at 37 °C and 5 % CO2. The transfection medium was then removed, 

cells were washed once with 500 μL of Neurobasal pre-warmed to 37 °C and then 

exchanged with 500 μL of 37 °C stored conditioned media. Media was immediately 

replaced after removing the transfection media to avoid exposing neurons to air. After 

transfection, cells were placed back in the incubator at 37 °C and 5 % CO2. These 

transfected cells were then imaged between DIV 13-16. 

2.2.2.3 Calcium phosphate transfection 

HEK 293T cells were transfected using calcium phosphate when they were 40-50 % 

confluent.  To prepare the DNA-Ca2+ precipitate for one 10 cm culture dish, 1.3 mL of 

transfection buffer (Table 5) was added dropwise to another 1.3 mL of ddH2O containing 

20 μg of DNA and 166 μL of 2 M CaCl2, under gentle vortex. This complete transfection 

mixture was then added dropwise to the HEK cells culture plate. The culture was then 

incubated with this transfection mixture overnight at 37 °C and 5% CO2.  The next day, 

media was removed and culture was washed twice with prewarmed PBS. After washing, 

fresh HEK cells media (Table 5) was added to the cells. These transfected HEK cell cultures 

were then grown until they were 90-95% confluent and were then used for 

immunoprecipitation experiments. 

2.2.3 Imaging protocols 

Both fixed sample and live cell imaging were done in this study. Details of the imaging setup 

and description of imaging protocols are as follows: 

2.2.3.1 Immunocytochemistry (ICC) and fixed sample imaging 

For immunocytochemistry, cultured neurons were fixed at DIV 14-16 for 30 min in 4% 

paraformaldehyde in 0.1 M phosphate buffer (Bhatnagar, 1996). These cells were then 

washed in 1X PBS for 3 x 3 min.  Fixed samples were then stored in 1X PBS at 4 °C or 

immediately used for immunostaining. To prevent non-specific binding and permeablize 

the cells, samples were incubated with buffer D (Table 5) for 30 min. After blocking and 

permeabilization, primary antibodies (diluted in buffer D) were added onto the samples 

overnight at 4 °C. The following day, samples were washed in 1X PBS for 3 x 3 min, after 
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which secondary antibodies (diluted in buffer D) were added and incubated at room 

temperature in the dark for 2 h. After secondary antibody incubation, samples were 

washed in 1X PBS for 3 x 3 min. Next, the coverslips were mounted in Fluoromount 

mounting reagent (Diagnostic BioSystems, cat. # K048) on glass slides. After mounting, the 

edges of coverslips were sealed with transparent nail polish. Samples were stored at 4 °C 

in the dark and were then imaged. Fixed sample imaging was done using a 40X/ 1.3 NA oil 

DIC objective (Zeiss, Plan-Apochromat) on a Zeiss LSM 710 confocal microscope. Images 

were analyzed using ImageJ software (National Institute of Health, USA, Plug-in Coloc2) or 

MetaMorph. 

2.2.3.2 Live cell imaging 

For live cell imaging, transfected neurons on coverslips at DIV 13-15 were transferred to a 

live imaging chamber (Warner Instruments) containing 150 μL of Base solution (Table 5). 

Images of GFP-tagged constructs were acquired with 450-490ex/505-555em and of 

mCherry-tagged constructs with 545-570ex/575-680em on a Zeiss AxioObserver inverted 

microscope with a Photometrics Evolve EMCCD camera, and Lambda DG-4 high-speed 

wavelength switcher interfaced with Metamorph software. 

Trafficking Experiments: Healthy neurons or regions were selected during live cell imaging 

based on cell morphology and in which vesicles could be seen moving within the field of 

view before acquiring videos. Images were acquired at 100 ms - 500 ms exposure time at 1 

sec intervals for 5 min and in some experiments for 20 min. For experiments testing the 

impact of different pharmacological treatments (Table 6), cells were treated as follows: 

Nocodazole (10 μM) and Latrunculin (10 μM) for 30 min, SP600125 (10 μM) and Anisomycin 

(50 μg/mL) for 2-4 h each before bringing for imaging. Videos were then analysed using 

Metamorph and Imaris 7.6.4 (Bitplane).  

For activity dependent pause experiments, high KCL solution (Table 5) was applied by 

pipette for 3 minutes on the scope itself during the time-lapse recording followed by 

perfusion with base Tyrode’s solution to wash out high KCL solution. Kymographs were 

then made using kymograph tool in Metamorph software. 

Fusion Experiments: Transfected cells (identified by faint GFP fluorescence in non-

depolarizing conditions) in which axons and dendrites were clearly discernible by 
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morphology were selected. Images of pHluorins were acquired at 1 sec intervals for 3 min. 

A baseline of twenty images was collected before addition of high KCL buffer (Table 5) to 

depolarize neurons. Axonal regions were selected in Metamorph and the fluorescence 

intensity was plotted versus time. Puncta that did not exhibit any lateral movement during 

image acquisition were chosen for analysis. For measurement of the surface versus internal 

amount of pHluorin signal, neurons were first depolarized with high KCl solution to confirm 

that recycling events could be detected within the field of view. Subsequent treatment with 

NH4Cl solution (Table 5) was then performed to dequench internal pHluorins and 

determine total pHluorin signal at regions at which vesicles fused. 

2.2.4 Biochemistry Experiments 

These experiments were done with Dr. Saheeb Ahmed (a postdoc in our lab).  

Sample preparation for immunoblotting 

For immunoblotting from cell cultures, dissociated hippocampal cells at DIV 13-15 or 

HEK 293 cells were cultured as described in sections 2.2.1 on polystyrene based 10 cm 

tissue culture dishes (CellStar). For some experiments, pharmacological treatments were 

performed as described in the Results section before sample collection. To collect samples, 

culture medium from the plates was removed and cells were washed with 1X PBS (Sigma-

Aldrich). Cells were then harvested in 500 μL 1 X PBS using a cell scraper (CytoOne, Cat. 

No.: #CC76000220) and passed through a 27-gauge needle (HSW Fine-ject, cat.no.: 

#4710004020). Lysate was then centrifuged at 4000 rpm in an Eppendorf centrifuge 5424 

for 10 min at 4 °C to pellet nuclei and cellular debris.  

In some experiments, whole brain homogenates were also used for immunoblotting. For 

these experiments, brains were isolated from 2-4 months old wild type or Syt4 knockout 

mice and transferred to a petri dish with 4 °C freshly prepared homogenization buffer on 

ice. Brains were chopped into smaller pieces and collected in 1.5 mL Eppendorf tubes 

containing 500 μL of homogenization buffer. Homogenization of brain tissue was done in 9 

mL of 4 °C homogenization buffer using a glass-teflon homogenizer (10 strokes at 900 rpm) 

in the cold room. Tubes with homogenized brain lysates were centrifuged at 1,000 X g for 

10 min at 4 °C. Supernatant was aliquoted and snap-frozen in liquid nitrogen for later use 

at -80 °C. 
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Protein concentration was determined using a BCA protein assay kit (Novagen, cat. no. 

#712853) according to the manufacturer’s recommendations. 

2.2.4.1 SDS-PAGE  

Protein fractionation was done on 10 % denaturing Tris-SDS polyacrylamide gels using an 

electrophoresis system.  Before running SDS-PAGE, gels were cast by mounting glass plates, 

spacers (0.8 mm) and combs (10 and 15 wells) onto a Bio-Rad holder.  The components of 

the stacking gel and resolving gels were mixed as per the table shown below (Schägger and 

von Jagow, 1987).  

 

Components Stacking gel Resolving gel 

30% Acrylamide  200 μl 1.66 ml 

Gel buffer 375 μl 1.68 ml 

Distilled water 925 μl 570 μl 

50 % glycerol - 1.06 ml 

TEMED 2 μl 3 μl 

10 % APS 10 μl 25 μl 

 

First, 3.4 ml of resolving gel (10%) was poured and filled with 1 ml of the stacking gel on 

top of it, to which a comb was added for casting. The outer gel running chamber was filled 

with anode buffer and cathode buffer was added to the inner cassette, into which gels were 

placed (Table 2.1.4). The samples were boiled in 5 X SDS-sample buffer (Table 5) for 5 min 

at 95 °C before being equally loaded into the lanes of the gel. For each gel, 5 µL of pre-

stained protein ladder (Fermentas, cat. no. #SM0671) was loaded into one of the lanes. 

Electrophoresis of protein samples was then run at 60 V for 15 min, and then 120 V for an 

hour.  

2.2.4.2 Western blotting 

After gel electrophoresis, separated proteins on gels were transferred onto nitrocellulose 

membranes. Before transfer, gels were equilibrated in blotting buffer for 10 min along with 
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fibre pads, nitrocellulose membranes and filter papers. The blotting “sandwich” in the blot 

transfer apparatus was stacked as follows (cathode to anode end): one fibre pad, one filter 

paper, the gel, one nitrocellulose membrane, one filter paper, one fibre pad. The transfer 

was run at 100 mA for 1 h using a Bio-rad PowerPac 1000 blotting system.  

After transfer, membranes were blocked with 5% milk solution in PBST (0.05% Tween-20 

in 1XPBS) for 1 h. The membranes were then incubated with primary antibodies (diluted 

appropriately in 5% milk PBST) overnight. Following primary antibody incubation, blots 

were washed three times, 10 min each, with milk solution and then incubated with 

secondary antibodies in 5% milk in PBST for 2 hr at RT. Subsequently, each membrane was 

washed in 1X PBS for 5 x 5 min, followed by applying ECL solution: ECL A (1.28% (w/v) Tris-

HCl and 0.23% (w/v) luminol Na+ salt (Sigma, cat. no.: A4685-1g) in dH2O (pH 8.6), ECL B 

0.01% P-coumaric acid (Sigma, cat. no.: 9008-5g) in DMSO and ECL C solution 0.008% H2O2 

to the membrane for 1 min. Antibody signal on membranes were detected using the 

Fujifilm LAS-3000 imaging system (R&D Systems).  

2.2.4.3 Co-immunoprecipitation 

For co-immunoprecipitation analysis, transfected HEK 293 cells were harvested in IP-Lysis 

buffer (50 mM Tris-HCl pH 7.5; 150 mM NaCl; 2 mM EDTA; 0.5%; NP40; Complete protease 

inhibitor (Roche)). Cell lysates were then incubated with 30 μL of antibody coupled Protein 

A/G dynabeads (Invitrogen) or GFP-Trap beads (Chromotech) for 2 h at 4 °C on a rotator. 

Uncoupled beads were used for non-specific binding controls. Supernatant was saved as 

unbound fraction and bound proteins from beads were eluted by incubating them for 10 

minutes at 95 °C in 4× SDS sample buffer. The samples were then analyzed using SDS-PAGE 

and Western blotting. 

2.2.4.4 Immuno-isolation of synaptic vesicles 

Mouse monoclonal antibodies directed against Syt1 or Syb 2 were coupled to Protein A 

dynabeads (Invitrogen) in 1 mM PBS-EDTA for 1 h. at 4 °C. Lysate was added to beads 

coupled with antibody and incubated for 2 h. at 4 °C on a rotator. Magnetic beads were 

then separated from the non-bound fraction (supernatant) and washed three times with 1 

mM PBS. Beads were then resuspended in sample buffer (bound fraction). Input, bound 
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fraction and unbound fraction were separated by 12.5% SDS-PAGE and analyzed by 

Western blot using antibodies directed against Syt4, Syt1, Syp, Syb2, Rab-GDI and PSD-95. 

2.2.4.5 Subcellular fractionation of mouse brain  

Fractionation was performed as previously described (Ahmed et al., 2013). Briefly, mouse 

brain was homogenized in homogenization buffer (320 mM sucrose, 4 mM HEPES-KOH, pH 

7.4) in a glass-teflon homogenizer (10 strokes at 900 rpm). The resulting homogenate (H) 

was differentially centrifuged to obtain fractions.  

2.2.4.6 In-vitro kinase assay 

Four different peptides were made including S135 Syt4 and S63 c-Jun, known kinase motifs 

in Syt4 and c-Jun, to test Syt4 phosphorylation using an in vitro kinase assay according to 

the manufacturer’s instructions. 

Peptides were as follows: 

Syt4 (WT):    PETEKEAVSPESLKSST 

Syt4 (def):    PETEKEAVAPESLKSST 

c-Jun (WT):   AKNSDLLTSPDVGLLKL 

c-Jun (def):  AKNSDLLTAPDVGLLK 

A JNK1 kinase assay with the ADP-GloTM Kinase assay kit was used (Promega). In all assays 

0.2 µg/µl of each peptide and 5 µM of ATP were used. First, standard curves were obtained 

by making a series of ADP-ATP dilutions based on the kit protocol, and the luminescence of 

each dilution was measured. Then phosphorylation of wild-type Syt4 and c-jun peptides by 

JNK1 were calculated based on standard curves and reported as % activity (inclusive of 

auto-phosphorylation). In addition, phosphodeficient mutants were used as a control for 

specificity of the kinase at the desired site. The kinase activity was measured and reported 

relative to the value of the corresponding wild-type peptides. We used P38 peptides as 

positive control for JNK1 activity. This experiment was performed with our collaborator, 

Mahdokht Kohansal, a PhD student in Prof. Reinhard Jahn’s lab. 
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2.2.4.7 Kinase prediction (in-silico approach) 

The GPS 3.0 (Zhou et al., 2004) was used as a tool to predict kinases that phosphorylate  

Syt4 at S135 and c-Jun (control peptide) at S63 of c-Jun. Peptides for wild-type Syt4: 

PETEKEAVSPESLKSST and wild-type c-Jun: AKNSDLLTSPDVGLLKL were submitted to the 

prediction software with a threshold set to medium (which corresponds to a false positive 

rate (FPR) equal to 6). All available serine/threonine kinases were activated as potential 

kinases. The software reported a score and a cut off value for each kinase. All kinases with 

Score/Cutoff > 2 were assumed as significant predicted kinases for phosphorylation of the 

submitted sites. This experiment was done by our collaborator, Mahdokht Kohansal, a PhD 

student in Prof. Reinhard Jahn’s lab. 

2.2.5 Quantification and data analysis 

2.2.5.1 Co-localization analysis  

For co-localization analysis, we used ImageJ software (National Institute of Health, USA, 

Plug-in Coloc2). Pearson’s coefficients were calculated to obtain cell wide correlation of 

fluorescence intensities (Farina et al., 2015). In activity-dependent capture experiments, 

the percentage of colocalization was determined as the percentage of the total 

thresholded area of one channel that overlapped with the thresholded area of the other 

channel using Metamorph (Dean et al., 2009). 

2.2.5.2 Live cell imaging analysis 

 After acquisition, DCV mobility was tracked using the particle-tracking module of Imaris 

7.6.4 (Bitplane). Positional data of vesicles was also obtained using this software. 

For quantification of vesicle movement and pausing, positional data were imported into 

Matlab (Mathworks, Natick, MA, USA) and analyzed with custom-written programs. Matlab 

code was written by our collaborator Michael Siebrecht, MSc student in the lab. Vesicles 

that were present for less than 3 s within the field of view were not included in analysis. 

Track Speed Mean and Track Displacement was calculated for each condition.  The mobile 

vesicle percentage was calculated as the percent of vesicles in each video with a track 

duration of at least 10 s and track displacement of at least 1 μm. For pause analysis, a pause 

was defined as a drop of vesicle velocity to 0 ± 0.1 μm/s (Bury and Sabo, 2011). Average 
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pause time was calculated only for those vesicles that could be tracked for the entire 

duration of the movie. Vesicles that were moving or paused for the entire duration of a 

time-lapse were excluded from average pause time analysis. Vesicles were used for n 

number of all trafficking parameters except mobile percentage (for which video number 

was used), since measured parameters - determined by variance and standard deviation 

analysis - were the most variable for vesicles, compared to videos including many vesicles. 

Multiple axons from different transfected cells were imaged in each region selected for 

trafficking analysis, in which axons could not be traced back to specific cells.  For this reason 

we did not use number of cells as the n number.  

2.2.5.3 Activity-dependent pause analysis 

For analysing activity-dependent pauses, immobile vesicles were not considered. A vesicle 

was considered paused during stimulation only if it was visible for the entire duration of 

KCl stimulation, and paused at or after stimulation for at least two thirds of the total time 

of stimulation (i.e. for 2 min). Vesicles that satisfied these criteria were then counted to 

calculate percentage of moving vesicles that paused during stimulation. 

Statistical significance for all quantification was determined by a Student’s t test. For data 

having multiple comparisons, significance was evaluated using Student’s t-test with 

Bonferroni correction.  

 

 

 

 

 

 





 

3. Results 

3.1 Syt4 is present on DCVs, distinct from SVs proteins 

To understand the trafficking of dense core vesicles, we first verified the localization of Syt4 

in hippocampal neurons using a Syt4 antibody. Syt4 was previously shown to be present on 

DCVs in PC12 cells (Vician et al., 1995; Yoshihara and Montana, 2004) and on BDNF-

containing DCVs in hippocampal neurons (Dean et al., 2009). We confirmed the specificity 

of the Syt4 antibody using wild-type and Syt4 KO neurons. We found that Syt4 was 

prominent in the Golgi and was also in neurites. It showed a punctate distribution in wild-

type neurons only, and was absent in Syt4 knockout by immunocytochemistry (ICC) (Fig 3.1 

A). Syt4 has been reported to localize to BDNF-containing DCVs in hippocampal neurons, 

but Syt4 vesicles devoid of BDNF have also been observed (Dean et al., 2009). To test if Syt4 

is a general marker of DCVs, we tested its co-localization with Chromogranin A (CgA), a 

known cargo in the majority of DCVs, and compared it with a synaptic vesicle marker, 

synaptophysin (Syp) (Adams et al., 1993; McMahon et al., 1996; Machado et al., 2010). We 

found Syt4 highly co-localized with CgA in hippocampal neurons (Fig 3.1 B and C). 68.3 ± 

1.5 % of CgA vesicles co-localized with Syt4 and 82.4 ± 1.1 % of Syt4 vesicles had CgA, which 

was significantly higher than the colocalization of Syt4 and Syp (24.1 ± 2.6 % of Syt4 vesicles 

colocalized with Syp and 29.8 ± 3.7 % Syp vesicles were Syt4 positive) (n= 6 images for CgA 

and Syt4, 18 images for Syp and Syt4 staining). Because we planned to use mCherry-tagged 

Syt4 in trafficking experiments, we also tested if mCherry-Syt4 and CgA-GFP co-localized. 

We found a similar percentage of colocalization (77.3 ± 3.4 % of CgA-GFP vesicles were 

Syt4-mCherry positive and 82.2 ± 2.2 % of Syt4-mCherry vesicles were co-localized with 

CgA-GFP) (n= 10 images for Syt4-mcherry and CgA-GFP co-transfection). 

We further confirmed the specificity and localization of Syt4 by biochemistry experiments. 

We found a single band corresponding to the molecular weight (47 kDa) of Syt4 in wildtype 

brain lysates, but not in Syt4 knockout lysates, by Western blotting (Fig 3.1 D). Also, to 

check localization of Syt4, we carried out subcellular fractionation from mouse brain 

homogenates and found Syt4 was not enriched in the SV fraction. Syb2, a known SV protein 

was used as a control for this experiment and was highly enriched in SV fractions (Fig 3.1 

D). Furthermore, in immuno-organelle isolation from brain homogenate using anti-Syt1 

and anti-Syb2 to immuno-isolate SVs, we found Syt4 in the supernatant and not in the 
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bound fraction, confirming Syt4s distinct localization compared to SVs proteins (Fig 3.1 E). 

All biochemistry experiments were done with Dr. Saheeb Ahmed (a postdoc in our lab). 

Together, these immunocytochemistry and biochemistry experiments show that Syt4 

localises to DCVs, and not to SVs.   

 

Figure 3.1 Syt4 is localized to DCVs 

(A) Example images of hippocampal mouse neurons from wild-type and Syt4 knockouts (Syt4 KO) 

immunostained for endogenous Syt4 (red) and Map2 (green), a dendritic marker. Scale bar is 20 μm. (B) 

Hippocampal rat neurons (DIV14) stained with Syt4 (red) and CgA (green) a known DCV cargo, or the synaptic 

vesicle marker, Syp. Scale bar is 5 μm. C) Images of neurons co-transfected with mCherry-Syt4 (red) and CgA-

GFP (green) showing high co-localization of Syt4 with CgA. Scale bar is 5 μm (D) Syt4 antibody testing in 

Western blots of wild-type and Syt4 knockout brain homogenates, and its localization in subcellular fractions 

of brain homogenate. (E) Immuno-organelle isolation of SVs with Syt1 and Syb2 from brain homogenate. 

Antibodies conjugated to beads are indicated below the blots and antibodies used for Western blotting are 

indicated to the left.  Syt4 in both the blots was seen only in the supernatant confirming it’s absence on 

synaptic vesicles.  
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3.2 DCVs are highly mobile on microtubules in axons 

Unlike SVs, DCVs are synthesized in the cell soma and are then trafficked long-distances 

along microtubules to release sites in axons (Scalettar, 2006). We verified that Syt4 vesicles 

were also highly mobile (Fig 3.2 A). To confirm the trafficking of DCVs on microtubules, 

hippocampal neurons transfected with mCherry-Syt4 were treated with 10 μM 

nocodazole, a microtubule dissociating drug, for 30 minutes prior to imaging (Eilers et al., 

1989; Colin et al., 2008). We observed a significant decrease in vesicle displacement/sec 

and also in the mobile vesicle percentage following this treatment (Fig 3.2 B). In control 

mCherry-Syt4 transfected axons, displacement/s was 0.07 ± 0.0018 μm/s whereas in 

nocodazole treated cultures it was significantly decreased to 0.038 ± 0.0011 μm/s (n= 4950 

and 4766 vesicles for control and nocodazole treated from 3 different cultures). Similarly, 

the mobile vesicle percentage of control was 19.7 ± 2.15 % and of nocodazole treated was 

11.4 ± 2.2 % of vesicles (n= 13 and 13 videos of control and nocodazole treated from 3 

different experiments, respectively). This decrease in displacement and mobility of Syt4-

containing vesicles on treatment with nocodazole indicates that Syt4 vesicles move along 

microtubules in axons. 

At the Drosophila NMJ, long-range trafficking of DCVs shows a circuitous trafficking pattern 

termed as “sushi-model”. In this model, DCVs filled with cargoes are routed to go first from 

the cell soma to the very distal end of axon where they switch directions and are then 

actively circulated retrogradely to ensure an even distribution of DCVs at all synapses 

(Moughamian and Holzbaur, 2012; Wong et al., 2012). To determine if this property of 

DCVs is also true in hippocampal neurons, we scanned ~ 5 mm of mid-axonal processes in 

hippocampal neurons and observed 992 vesicles. We found that in mid-axon regions 62.5% 

of vesicles were stationary, 37.2% of vesicles moved unidirectionally (either in the 

anterograde or retrograde direction) and interestingly, only a very minimal fraction of 

around 0.3% of vesicles switched direction in mid axon regions (Fig 3.2 C).  
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Figure 3.2 DCVs undergo long-range trafficking on microtubules in axon. 

 (A) Snapshots of trafficking of Syt4 vesicles in control and nocodazole treated mCherry-Syt4 transfected 
cultures. Scale bar is 10 μm. (B) Quantification of displacement/s and mobile vesicle percentage of the two 
conditions indicating that Syt4 mobility is microtubule dependent (n= 4950 and 4766 vesicles for 
displacement/s and for mobile percentage n= 13 and 13 videos of control and nocodazole treated from 3 
different experiments, respectively). (C) Kymographs showing long-range trafficking of Syt4 vesicles in mid-
axon regions and distal ends of axons (where the black region is the growth cone). Colored trajectories in 
kymographs show the unidirectional or switching directions of vesicles. (D) Quantified percentage of vesicles 
in mid-axon and distal ends of axons shows mainly unidirectional movement in mid-axon regions and a higher 
percentage of switching in distal ends near the growth cone in hippocampal neurons. (Total length of axon 
scanned for mid-axon = 4948.16 μm and total number of vesicles = 992, total length of distal axon/growth 
cone regions examined = 1,008 μm and total number of vesicles = 200). Scale bar is 10 μm. Error indicates 
S.E.M. Significance was determined by Student’s t-tests with Bonferroni correction (* p<0.05 and *** 
p<0.001). 
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On the other hand, in distal axonal ends specifically near growth cone regions, we 

examined 200 vesicles in 1,008 μm of regions and found that a comparatively large fraction 

of vesicles (17%) switch directions (Fig 3.2 D). DCVs were seen switching direction along a 

relatively large region within approximately 100 µm of the growth cone and not exactly at 

the very end, thus the vesicles defined as unidirectional near the growth cone may have 

switched directions outside the field of view. These data suggest that DCVs in hippocampal 

neurons also follow the “sushi-model” mode of trafficking. They are routed circuitously, 

from the soma to the distal end of axons, where they change direction and traffic back to 

the soma. 

After observing the property of long-range trafficking of Syt4 vesicles, we were interested 

in knowing whether and how release sites in axons capture these transiting vesicles. 

Protein kinases have been shown to play an important role in regulating the transport of 

cargoes by either phosphorylating motor proteins, adaptor proteins, cargoes or by 

modifying microtubule networks (McIlvain et al., 1994; Kumar et al., 2000; Gibbs et al., 

2015). Syt4 is phosphorylated at S135 by JNK, which enhances Ca2+ evoked release in PC-

12 cells (Mori et al., 2008). Hence, we wanted to test if Syt4 phosphorylation at S135 also 

affects trafficking, capture and fusion in hippocampal neurons.  

3.3 More number of synapses at DIV13 compared to DIV6 

We used Syt4 phosphorylation mutants; Syt4 S135A (phosphodeficient) and Syt4 S135E 

(phosphomimetic) compared to control Syt4 to investigate the effects of phosphorylating 

Syt4 at S135 on the trafficking of DCVs before and after synapse formation.  First, we 

compared DIV6 and DIV13 timepoints for the number of synapses in neurons (Ichikawa et 

al., 1993; Biffi et al., 2013), since we aimed to test the hypothesis that differences in 

trafficking of Syt4 phosphomutants may occur developmentally. We stained hippocampal 

neurons with endogenous Syp to mark pre-synaptic sites, PSD-95 to mark post-synaptic 

sites and Map2 as dendritic marker at both DIV6 and DIV13. As expected, we found 

significantly more synapses, identified by puncta containing both pre- and post synaptic 

marker at DIV13 compared to DIV6 (Fig 3.3 A and B).  
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Figure 3.3 Comparison of synapses at DIV 6 and DIV 13 

 (A) Immunofluorescence images of hippocampal neurons at DIV6 and DIV13 stained with MAP2, PSD-95 and 

Syp to mark dendrites, postsynaptic and presynaptic sites, respectively. Scale bar is 10 μm. (B) Quantification 

of the number of synapses at DIV6 and DIV13 showing significantly more synapses/10 um at DIV13 than DIV6 

(n= 17 images each of DIV6 and DIV13). 

3.4 Phosphorylating Syt4 at S135 affects DCVs trafficking  

We then aimed to test the effect of phosphorylation of Syt4 at S135 on vesicle trafficking 

before synapse formation, DIV6. Hippocampal neurons were transfected at DIV3 with 

mCherry-tagged control, S135A or S135E Syt4 and vesicle trafficking was assessed by live 

cell imaging at DIV6. We found that all three Syt4 control, Syt4 S135A and Syt4 S135E were 

highly mobile at DIV6 after visualized by color-coded tracks in Imaris and in kymographs 

(Fig 3.4 A top and bottom panels). We quantified the population dynamics of vesicle 

trafficking by analyzing several parameters including average vesicle speed, displacement 

and mobile vesicle percentage using Imaris and a customized Matlab code. 

Frequency distribution and quantification of average speed (μm/s) showed that control 

Syt4 vesicles had an average speed of 0.135 ± 0.0021 μm/s, S135A of 0.119 ± 0.0018 μm/s 

and S135E of 0.124 ± 0.0015 μm/s (Fig 3.4 B and C).  Because speed does not measure 

translocation (i.e. a vesicle could have a high speed but move only back and forth a small 

distance) we also calculated displacement/s of the vesicle population. Calculated 

displacement/s of control, S135A and S135E vesicles were 0.056 ± 0.0018 μm/s, 0.049 ± 

0.0016 μm/s and 0.051 ± 0.0013 μm/s respectively (Fig 3.4 D) (n= 3703, 4619 and 3937 

vesicles for average speed and displacement/s, from 3 different cultures). In brief, there 

was no significant difference in average speed and displacement between 

phosphodeficient and phosphomimetic Syt4 vesicles at DIV6, whereas control Syt4 had a 

higher speed and displacement compared to the mutants.  
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Figure 3.4 Phosphorylating Syt4 at S135 increases DCV mobility before synapse formation at DIV6 

 (A) Immunofluorescence images of hippocampal neurons at DIV6 and DIV13 immunostained with MAP2, 

PSD-95 and Syp to mark dendrites, postsynaptic and presynaptic sides respectively. Scale bar is 10 μm. (B) 

Quantification of number of synapses at DIV6 and DIV13 showing significantly more number of synapses/10 

µm at DIV13. (C) Snapshots of trafficking videos and kymographs of control, S135A and S135E transfected 

hippocampal neurons at DIV6 imaged for 5 min (301 s). Scale bar of snapshot is 10 μm and in kymographs is 

5 μm. (D) Comparison of frequency distribution of average speed of vesicles (um/s) between control, S135A 

and S135E. (E) Quantification of average speed (µm/s), displacement/s (F) and mobile vesicle percentage (G) 

indicating that control Syt4 vesicles have significantly higher speed compared to S135A and S135E vesicles. 
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Also, displacement/s of control vesicles was slightly more than that of S135A. The mobile vesicle percentage 

of S135E was significantly higher compared to control and S135A (n= 3703, 4619 and 3937 vesicles for average 

speed and displacement/s and for mobile percentage, n= 11, 13 and 12 videos of control, S135A and S135E 

from 3 different cultures). Error indicates S.E.M. Significance was determined by Student’s t-tests with 

Bonferroni correction (*p< 0.05, **p<0.01 and ***p<0.001). 

Interestingly, the mobile vesicle percentage (defined as vesicles with a displacement of at 

least 1 µm over the duration of each 5 minute timelapse) of S135E vesicles was significantly 

higher than control and S135A vesicles. Mobile vesicle percentage of control, S135A and 

S135E vesicles were 12.8 ± 3.35 %, 12.95 ± 1.74% and 21.33± 2.41 %, respectively (Fig 3.4 

E) (n= 11, 13 and 12 videos for control, S135A and S135E, respectively, from 3 different 

cultures). Together, these data indicate that average speed and displacement/s of 

phosphomutants (S135A and S135E) vesicles were not significantly different before 

synapse formation. But interestingly, phosphorylation of Syt4 at S135 increases the mobile 

vesicle percentage of DCVs at DIV 6. 

3.5 Phosphorylating Syt4 at S135 changes DCV mobility at DIV13 

Next, we investigated if trafficking of Syt4 phosphomutants changes at DIV13 after synapse 

formation. We transfected hippocampal neurons with all three constructs – control, 

phophodeficient and phosphomimetic Syt4 at DIV 10 and imaged vesicle movement at 

DIV13. By live cell imaging, we found that all three mutants were still mobile, although 

interestingly at DIV13, Syt4 control and S135E mobility was reduced compared to their 

respective mobility at DIV6 analyzed both by Imaris color-coded tracks and by kymographs 

(Fig 3.5 A). The frequency distribution of average speed (μm/s) revealed that S135A had 

more high moving vesicles whereas S135E had more slow speed vesicles (Fig 3.5 B). 

Compared to DIV6, average speed of control and S135E vesicles at DIV13 were decreased 

to 0.093 ± 0.0019 μm/s and 0.086 ± 0.0018 μm/s whereas S135A was moving with almost 

the same speed of 0.114 ± 0.0021 μm/s (Fig 3.5 C). Vesicle displacement/s also showed the 

same trend; control and S135E were reduced to 0.036 ± 0.0016 μm/s and 0.030 ± 0.0014 

μm/s at DIV13 whereas S135A diplacement/s remained similar to DIV6, at 0.054 ± 0.0020 

μm/s (Fig 3.5 D) (n= 2686, 2965 and 3189 vesicles for average speed and displacement/s of 

control, S135A and S135E, respectively). In summary, while S135E and control vesicles were 

less mobile after synapse formation, S135A vesicles were as mobile as at DIV6, and there 

was no change in the speed and displacement of this phosphodeficient mutant at DIV13.  
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Figure 3.5 Synapse maturation changes DCVs mobility 

(A) Snapshots of trafficking videos and kymographs of control, S135A and S135E transfected hippocampal 

neurons at DIV13 imaged for 5 min (301 s). (B) Frequency distribution of average speed (μm/s) of control, 

S135A and S135E vesicles at DIV13 showed that S135A Syt4 vesicles had a higher mobile percentage with 

higher velocity. (C) With synapse maturation at DIV13, average speed and displacement/ s (D) of S135A 

remained similar to DIV6 but average speed and displacement of control and S135E decreased significantly. 

Also, avg. speed of S135E vesicles was the lowest (n= 2686, 2965 and 3189 vesicles for average speed and 
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displacement/s of control, S135A and S135E, respectively).  (E) Quantified mobile vesicle percentage showed 

that S135A vesicles were highly mobile and S135E were least mobile (for mobile percentage, n= 12, 11 and 

14 videos of control, S135A and S135E, respectively from 3 different cultures). Scale of fluorescent images is 

10 μm and of kymographs is 5 μm. Error indicates S.E.M. Significance was determined by Student’s t-tests 

with Bonferroni correction (*p< 0.05, **p<0.01 and ***p<0.001). 

 

Surprisingly, we found that the mobile vesicle percentage of S135E, which was highest in 

DIV6, was lowest at DIV13. It was reduced to 8.37 ± 1.19% of vesicles. S135A had 20.9 ± 

2.81% mobile vesicles whereas control remained similar, at 11.8 ± 1.73% mobile vesicles 

(Fig 3.5 E) (For mobile percentage, n= 12, 11 and 14 videos of control, S135A and S135E, 

respectively, from 3 different cultures). These trafficking experiments showed that with 

synapse formation, there is a significant decrease in mobility of phosphorylated vesicles, 

whereas phosphodeficient vesicles show similar trafficking at DIV13 and DIV6. Also, S135E 

vesicles that were highly mobile at DIV6 were now least mobile at DIV13, whereas S135A 

vesicles had a significantly higher mobile vesicle percentage at DIV13 than DIV6. This could 

indicate that phosphorylation of Syt4 is important for reducing the trafficking of DCVs and 

aiding in capture of DCVs at release sites in mature cultures. 

 

 

 

 

 

 

 

 

 

 

 

 



3. Results  49 

3.6 S135E vesicles are least mobile and S135A vesicles are highly mobile in 

axons  

Since DCVs are known to be more mobile in axons compared to dendrites (de Wit et al., 

2006), we examined if the phosphorylation effect on trafficking of DCVs was different in 

axons and dendrites and if it was more prominent in axons at DIV13. We co-transfected 

hippocampal neurons at DIV10 with mCherry-tagged control or mCherry-tagged Syt4 

phosphomutants and EGFP (a neuronal volumetric marker). We distinguished axons and 

dendrites in the culture based on morphology marked by GFP.  Dendrites had a larger 

diameter and were decorated by dendritic spines, and were branched at angles less than 

ninety degrees within approximately 100 μm of the cell soma, whereas axons were much 

thinner and could be identified as the only process that projected far away from the cell 

body. After identifying these regions, we performed time lapse imaging to visualize the 

differences in vesicle trafficking of phosphorylation mutants of Syt4 in axons and dendrites 

specifically. 

In axons, we observed by Imaris and kymographs that S135A vesicles were the most mobile 

(Fig 3.6 A). Frequency distribution and average speed quantification showed that S135E 

vesicles were the least mobile with an average speed of 0.113 ± 0.0017 μm/s for S135A and 

0.123 ± 0.0018 μm/s for control (Fig 3.6 B, C). Vesicle displacement/s also showed that 

S135A and control covered more distance compared to S135E (displacement/s of control, 

S135A and S135E was 0.058 ± 0.0017 μm/s, 0.075 ± 0.0017 μm/s and 0.049 ± 0.0015 μm/s 

respectively (Fig 3.6 D).  The percentage of S135E mobile vesicles was significantly less than 

control and S135A (mobile vesicle percentage of control, S135A and S135E were 17.1 ± 

1.51%, 20.9 ± 1.43% and 11.6 ± 1.49%, respectively) (Fig 3.6 E). These results indicate that 

in axons at DIV13, phosphodeficient vesicles are highly mobile and phosphomimetic 

vesicles are least mobile. Thus phosphorylation of Syt4 at S135 decreases DCVs mobility.  
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Figure 3.6 Syt4 vesicles are highly mobile in axons at DIV13. S135E vesicles are least mobile with 

decreased speed and displacement/s compared to control and S135A vesicles. 

Hippocampal neurons were co-transfected with eGFP and mCherry-Syt4, mCherry-syt4 S135A or mCherry-

Syt4 S135E. Axonal and dendritic regions were chosen based on morphology marked by eGFP and then time 

lapse images were taken for 5 min (301 s) in the mCherry channel. (A) Images indicating axonal regions 

marked with eGFP, snapshots from the trafficking videos of these selected regions and respective 

kymographs of control, S135A and S135E shows the difference in trafficking of DCVs in axons at DIV13. (B) 

Frequency distribution of average speed (μm/s) of control, S135A and S135E indicating that S135A has more 

vesicles with higher avg. speed. (C) Quantified avg. speed and displacement/s (D) showed that S135A vesicles 

move with significantly higher speed and were cover larger distances compared to control and S135E. S135E 
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vesicles move with the least speed and covered significantly less distance. (E) Mobile vesicle percentage 

indicates that S135A vesicles were highly mobile and S135E were least mobile. (F) Quantification of 

pauses/min shows that S135A vesicles have a higher number of pauses/min compared to control and S135E. 

(G) Average pause time of S135A vesicles was significantly less than control and S135E vesicles (n= 4476, 6502 

and 4228 vesicles for average speed, displacement/s, pauses/min and avg. pause time of control, S135A and 

S135E, whereas for mobile percentage n= 27, 31 and 32 videos, respectively from 4 different cultures).  Scale 

bar of fluorescent images and of kymographs is 5 μm. Error indicates S.E.M. Significance was determined by 

Student’s t-tests with Bonferroni correction (*p< 0.05, **p<0.01 and ***p<0.001).   

 
Consequently, we examined the possible reason for this effect. We investigated 

pauses/min and average pause time of vesicles in each condition, since decreased mobility 

could be due to either an increased number of pauses or increased duration of pause time. 

We found that the number of pauses/ min was surprisingly more for highly mobile S135A 

vesicles compared to S135E and control (pauses/min of control, S1135A and S135E were 

4.85 ± 0.11, 5.92 ± 0.09, and 4.71 ± 0.12, respectively (Fig 3.6 F). One would expect the 

number of pauses per min to be less if vesicles are highly mobile, which was not the case 

in our pause analysis. Then, we examined the average pause time of these vesicles and, 

indeed, the average pause time of S135A was the least. Average pause time of control, 

S135A and S135E vesicles were 10.79 ± 0.64 s, 8.16 ± 0.45 s and 10.59 ± 0.84 s, respectively 

(Fig 3.6 G). This suggests that because phosphodeficient vesicles traffic the most, they scan 

more “capture/release sites” resulting in a higher frequency of pauses, but the pause 

duration at these sites are not that long, unlike phosphomimetic vesicles and control 

vesicles, which have less pauses but longer pause duration (n= 4476, 6502 and 4228 

vesicles for average speed, displacement/s, pauses/min and avg. pause time of control, 

S135A and S135E vesicles, respectivley and for mobile percentage n= 27, 31 and 32 videos, 

respectively, from 4 different cultures).  

3.7 Syt4 vesicles are comparatively less mobile in dendrites 

We then observed the trafficking of Syt4 vesicles in dendrites and the effect of 

phosphorylating Syt4 at S135. We found that the mobility of vesicles in dendrites was much 

less than in axons for control and phosphomutant vesicles analysed both by Imaris and 

kymographs (Fig 3.7 A).  But we observed the same phosphorylation effect on average 

speed and displacement/s in dendrites as in axons. S135A vesicles were most mobile 

covering more distance compared to S135E and control vesicles (avg. speed of control, 

S135A and S135E were 0.058 ± 0.0016 μm/s, 0.068 ± 0.0024 μm/s and 0.059 ± 0.0017 μm/s, 



52   

whereas displacement/s was 0.017 ± 0.0013 μm/s, 0.028 ± 0.0021 μm/s and 0.018 ± 0.0014 

μm/s, respectively) (Fig 3.7 B, C and D). Mobile percentage of control and both mutants 

was significantly less (< 5%) compared to axons (Fig 3.7 E) (n= 1319, 1489 and 1088 vesicles 

for average speed, displacement/s of control, S135A and S135E, and for mobile percentage 

n= 13, 13 and 14 videos from 4 different cultures). Together, these experiments are 

consistent with the literature that DCVs are more mobile in axons than in dendrites (Adachi 

et al., 2005; de Wit et al., 2006). In addition, we showed that S135E vesicles are least mobile 

compared to control and S135A vesicles at DIV 13. 

 

 
 

Figure 3.7 Syt4 vesicles are less mobile in dendrites at DIV13 

 (A) Images indicating dendritic regions marked with eGFP, snapshots from the trafficking videos of these 

selected regions and respective kymographs of control, S135A and S135E transfected neurons at DIV13. (B) 

Comparison of frequency distribution of average speed (µm/s) of control, S135A and S135E vesicles. (C), 

Quantification of average speed (um/s), displacement/s (D) and mobile vesicle percentage (E). Avg. speed 

and displacement/s showed the same trend as in axons but with comparatively low values indicating that 

DCVs are more mobile in axons compared to dendrites. Mobile vesicle percentage was not different in all 

three conditions in dendrites (n= 1319, 1489 and 1088 vesicles for average speed and displacement/s of 

control, S135A and S135E, whereas for mobile percentage n= 13, 13 and 14 videos, respectively, from 4 

different cultures). Scale bar of fluorescent images and kymograph is 5 μm. Error indicates S.E.M. Significance 

was determined by Student’s t-tests with Bonferroni correction (*p< 0.05, **p<0.01 and ***p<0.001).   
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3.8 S135E shows less interaction with Kif1A motor protein 

Kif1A is the primary microtubule dependent motor protein responsible for fast axonal 

transport of DCVs in hippocampal neurons (Lo et al., 2011) and Syt4 has been reported to 

bind Kif1A (Arthur et al., 2010). Based on these evidences, we next tested if S135E, the least 

mobile vesicles, had a difference in interaction with the Kif1A motor protein compared to 

control and S135A.  Differences in binding to motor proteins could possibly explain the 

decrease in mobility of S135E vesicles. We tested this by performing co-

immunoprecipitation (Co-IP) experiments in HEK293 cells co-transfected with Kif1A-GFP 

and mCherry-tagged Syt4 control, mCherry-Syt4 (S135A) or mCherry-Syt4 (S135E) using 

GFP-Trap beads (Fig 3.8 A). A specific Kif1A-GFP band around 230 kDa (200 kDa of Kif1A 

and 27 kDa of GFP) was seen in bound fractions in all three cases. Then, we blotted for Syt4, 

to check its interaction with Kif1A (Fig 3.8 B). We found that Syt4 control and Syt4 S135A 

showed a relatively high intensity band around 78 kDa (49 kDa Syt4 and 28.8 kDa mCherry) 

compared to S135E. The reduced intensity of the Syt4 S135E band indicated a reduced 

interaction of Syt4 S135E with Kif1A compared to control and S135A. This experiment was 

done with the help of Dr. Katja Burk (a postdoc in the lab). This result shows that 

phosphorylation may result in destabilization of motor-microtubule complexes with Syt4, 

leading to decreased trafficking and increased capture. 

 

 

 

Figure 3.8 Syt4 S135E shows less interaction with Kif1A motor protein 

 (A) Blots for Kif1A and Syt4 (B) in co-immunoprecipitation experiments of Kif1A-GFP with mCherry-Syt4 

control, mCherry-Syt4 S135A or mCherry-Syt4 S135E co-expressed in HEK 293 cells. GFP-Trap beads (marked 

by plus sign (+)) against the GFP fluorophore of Kif1A were used to co-immunoprecipitate Kif1A and to test 

and compare the interaction of Kif1A and the phosphomutants. A binding control of agarose beads were used 

as positive controls marked by minus signs (-). Low and high exposures of Syt4 blots are shown. Input (HEK 
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cells transfected lysate), bound and unbound fractions of control or GFP-trap beads are labelled above each 

lane on the top of the blot. Three conditions were tested: Syt4 (ctrl), Syt4 (S135A) and Syt4 (S135E) which are 

labelled on the left of blots. Black arrow on left of blots marks correct size bands (n=3 different experiments). 

3.9 Overexpression of Kif1A rescues S135E vesicles mobility 

Since S135E has the least mobility compared to S135A and control, and S135E Syt4 has 

reduced binding to Kif1A, we tested if over-expression of Kif1A has an effect on trafficking 

of Syt4 control and phosphomutant vesicles (Wong et al., 2002; Kondo et al., 2012). We co-

transfected hippocampal neurons with Kif1A-GFP and control, S135A or S135E mCherry-

Syt4 at DIV10 and imaged trafficking on DIV13. First, we found co-transport of Kif1A with 

Syt4 vesicles in all three conditions. The percentage of S135E and S135A vesicles travelling 

with Kif1A was significantly higher compared to control Syt4 vesicles traveling with Kif1A 

(percentage of control, S135A and S135E vesicles traveling with Kif1A was 70.4 ± 6.87%, 

85.8 ± 4.22% and 86.4 ± 3.15%, respectively) (Fig 3.9 C). We also quantified percentage of 

Kif1A travelling with Syt4 vesicles and found a similar trend; Kif1A trafficked significantly 

more with S135E and S135A vesicles compared to control Syt4 (percentage of Kif1A 

travelling with control, S135A and S135E vesicles were 61.8 ± 5.67%, 78.1 ± 5.09% and 79.2 

± 3.96%, respectively) (n= 7, 9 and 9 videos for control, S135A and S135E with Kif1A co-

transport, respectively). 

Next, we quantified trafficking parameters for control, S135A and S135E vesicles when we 

co-over-expressed Kif1A-GFP. We found higher mobility of vesicles in all three conditions 

compared to conditions without Kif1A-GFP overexpression, both by Imaris and in 

kymographs.  Surprisingly, with Kif1A-GFP overexpression, S135E vesicles became highly 

mobile (Fig 3.9 A and B). Quantification and comparison of trafficking parameters with and 

without Kif1A-GFP overexpressed showed significant differences. We found that with Kif1A 

over expression, average speed (μm/s) and displacement/s of all three conditions; control, 

S135A and S135E were significantly higher compared to normal Kif1A levels. We also 

compared average speed (μm/s) and displacement/s of control, S135A and S135E with 

Kif1A over-expression and found that S135A and S135E were very similar and significantly 

higher than control Syt4 with Kif1A overexpression (Fig 3.9 D and E). Then, we investigated 

mobile vesicle percentage and found that with Kif1A overexpression, S135A and S135E had 

a significantly higher percentage of mobile vesicles compared to normal Kif1A levels. 



3. Results  55 

Importantly, there was no difference in trafficking among control, S135A and S135E vesicles 

with Kif1A over-expression (Fig 3.9 F). 

 

Figure 3.9 Over-expressing Kif1A rescues S135E vesicle mobility 

 (A) Snapshots of trafficking videos of control, S135A and S135E vesicles when overexpressed with Kif1A-GFP. 

Scale bar is 5 μm. (B) Respective kymographs of Syt4 vesicles with Kif1A-GFP overexpression at DIV13 imaged 

for 322 s. Scale bar is 10 μm. (C) Quantification of average speed (μm/s) and displacement/s (D) of control, 

S135A and S135E vesicles and with Kif1A-GFP overexpression. Kif1A co-transfection causes a significant 
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increase in both average speed and displacement/s compared to single transfection. (E) Percentage of mobile 

S135A and S135E vesicles with Kif1A co-transfected were significantly higher than in single transfected 

conditions. (F) Pauses/min of vesicles in Kif1A overexpressed conditions was also significantly higher 

compared to single transfection of control, S135A and S135E Syt4. (G) Quantification of average pause time 

showed that Kif1A overexpression reduced the pause duration compared to single transfected conditions 

(n=4278, 6325 and 9507 vesicles for average speed, displacement/s, pauses/min and average pause time, 

whereas for mobile percentage n= 7, 9 and 12 videos, respectively, from 3 different cultures for Kif1A co-

transfected conditions). Error indicates S.E.M. Significance was determined by Student’s t-tests with 

Bonferroni correction (*p< 0.05, **p<0.01 and ***p<0.001).   

We also examined the frequency and average pause time of these trafficking vesicles and 

found that highly mobile vesicles in all conditions had more pauses/min but significantly 

shorter pause durations consistent with the previous data. Quantification of pauses/min 

showed that with Kif1A over-expression, the frequency of pauses increases in all three 

conditions and interestingly, the number of pauses/min was highest in S135E vesicles 

compared to control and S135A vesicles (Fig 3.9 G). In addition, average pause time 

decreased significantly in all three conditions compared to normal Kif1A levels indicating 

that these vesicles with Kif1A overexpression traffic more and pause for less time 

(Fig 3.9 H). Together, these data show that over-expression of Kif1A rescues the decreased 

motility of S135E vesicles because of which S135E vesicles traffic similar to S135A vesicles. 

3.10 S135E vesicles are more localised at pre-synaptic sites 

After observing the decreased mobility of S135E vesicles, we next tested the localisation of 

Syt4 phosphomutants to axons versus dendrites and more specifically at pre- or post-

synaptic sites. To distinguish axons and dendrites, we immunostained hippocampal 

cultures transfected with GFP-tagged Syt4, or S135A or S135E mutants with MAP2 to mark 

dendrites (Fig 3.10 A). We found no difference in localization of these vesicles in both 

dendrites and axons. In dendrites, the number of puncta per 10 μm of control, S135A and 

S135E were 3.18 ± 0.31%, 3.31 ± 0.22% and 3.34 ± 0.25%, respectively (Fig 3.10 B). Similarly, 

in axons, the number of vesicles/10 μm was 2.66 ± 0.14%, 2.42 ± 0.14% and 2.85 ± 0.17% 

for control, S135A and S135E, respectively (Fig 3.10 C).  

Then, we specifically examined pre- and postsynaptic sites by co-transfecting Syt4 mutants 

with SypGFP or PSD-95 GFP, respectively (Fig 3.10 D and E). We found that S135E vesicles 

(that were least mobile in trafficking experiments) co-localized more with SypGFP 

compared to control (Pearson’s coefficient of control, S135A and S135E were 0.37 ± 0.024, 
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0.38 ± 0.030 and 0.45 ± 0.028, respectively; n= 37, 33 and 33 cells from 3 different cultures) 

(Fig 3.10 E).  

 

 

Figure 3.10 Syt4 S135E vesicles are captured at pre-synaptic sites 

(A) Images of GFP-Syt4, GFP-Syt4 S135A and GFP-Syt4 S135E transfected cells immunostained for MAP2 to 

mark dendrites. (B) Quantitation of dendritic (GFP puncta in MAP2-positive processes) and axonal (C; GFP 

puncta in MAP-2 negative processes) vesicle distribution of GFP-Syt4, GFP-Syt4 S135A and GFP-Syt4 S135E. 

(D) Images of hippocampal neurons co-transfected with Syp-GFP and mCherry-tagged Syt4, Syt4 S135A or 

Syt4 S135E. (E) Quantified Pearson’s coefficient showing that mCherry-Syt4 S135E is more co-localized at 

synapses than control or S135A Syt4 (n = 37, 33 and 33 cells for Syp-GFP co-transfected with mCherry-Syt4, 

mCherry-Syt4 S135A and mCherry-Syt4 S135E, respectively, from 3 different cultures). (F) Images of neurons 

co-transfected with PSD95-GFP and mCherry-tagged Syt4, Syt4 S135A or Syt4 S135E. (G) Quantified Pearson’s 
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coefficient showing no difference in co-localization of PSD95-GFP with mCherry-Syt4, mCherry-Syt4 S135A or 

mCherry-Syt4 S135E (n= 23, 19 and 20 cells for PSD95-GFP co-transfected with mCherry-Syt4, mCherry-Syt4 

S135A and mCherry-Syt4 S135E, respectively, from 3 different cultures). Error indicates S.E.M. Significance 

was determined by Student’s t-tests with Bonferroni correction (**p<0.01). 

In contrast, colocalisation at post-synaptic sites marked with PSD-95GFP didn’t show any 

significant difference (Pearson’s coefficients were 0.19 ± 0.02, 0.20 ± 0.02 and 0.17 ± 0.01 

for control, S135A and S135E, respectively) (Fig 3.10 F and G). These data show that 

phosphomimetic vesicles (S135E) are specifically captured at pre-synaptic sites. 

3.11 Disrupting actin increases the mobility of phosphorylated vesicles and 

does not change S135A vesicle trafficking 

In mature neurons, pre-synaptic sites are known to be enriched in F-actin that helps in 

modulating the efficacy of the terminal (Hirokawa et al., 1989; Cingolani and Goda, 2008). 

To verify this, we transfected hippocampal neurons at DIV10 with LifeAct-RFP and bassoon-

GFP. We then imaged at DIV14 and observed high co-localization of LifeAct-RFP with the 

pre-synaptic marker bassoon-GFP confirming concentrated F-actin at pre-synaptic sites (Fig 

3.11 A). F-actin disruption has also been shown to increase the mobility of 

neuropeptidergic DCVs in PC-12 cells (Ng et al., 2002). To test whether actin 

depolymerisation affects the mobility of DCVs in neurons, we treated our mCherry-tagged 

Syt4 control and phosphomutant transfected hippocampal neurons with 10 μM of the actin 

depolymerizing agent latrunculin B for 30 minutes. We then imaged the treated and 

untreated control, S135A and S135E Syt4 transfected neurons. We observed a significantly 

higher average speed of latrunculin treated S135E and control vesicles compared to 

untreated (latrunculin treated control and S135 average speed was 0.18 ± 0.0027 μm/s and 

0.23 ± 0.0044 μm/s, respectively, whereas untreated control and S135 average speed were 

0.15 ± 0.0032 μm/s and 0.14 ± 0.0025 μm/s, respectively) (Fig 3.11 B).  Vesicle 

displacement/s of control and S135E were also higher for treated cultures in comparison 

to untreated ones (displacement/s of control and S135E treated was 0.1 ± 0.0025 μm/s and 

0.12 ± 0.0043 μm/s, respectively, whereas for untreated control and S135E, it was 0.07 ± 

0.0031 μm/s and 0.06 ± 0.0024 μm/s, respectively) (Fig 3.11 C). Average speed and 

displacement/s for S135A vesicles in treated and untreated conditions were very similar 

(avg. speed of treated and untreated S135A vesicles were 0.18 ± 0.0023 μm/s and 0.19 ± 

0.0027 μm/s, respectively, whereas displacement/s of treated and untreated were 0.09 ± 
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0.0022 μm/s and 0.09 ± 0.0026 μm/s respectively). Interestingly, quantification of mobile 

vesicle percentage of treated and untreated conditions was not significantly different (Fig 

3.11 D; 30.7 ± 3.4%, 29.5 ± 2.97% and 40.1 ± 8.37% for treated control, S135E and S135A, 

respectively, and 24.7 ± 3.36%, 33.9 ± 3.88% and 23.1 ± 2.57% for untreated control, S135E 

and S135A, respectively).  

 

 

Figure 3.11 Actin disruption leads to more mobility of control and S135E vesicles without 

changing the trafficking parameters of S135A 

(A) Example images of axons from hippocampal neurons transfected with LifeAct-RFP and Bassoon-GFP 

showing concentrated actin at pre-synaptic sites. (B) Quantification of average speed (μm/s) and 

displacement/s (C) of control, S135A and S135E in untreated and latrunculin treated conditions. Latrunculin 

treatment shows a significant increase in both average speed and displacement/s of control and S135E but 

not on S135A. (D) Percentage of mobile vesicles in latrunculin treated and non-treated conditions had no 

difference. (E) Average pause time of vesicles in latrunculin treated conditions was significantly lower than in 

non-treated conditions for control and S135E. (F) Quantification of pauses/min showed that latrunculin 

treated control and S135E vesicles had more pauses compared to non-treated conditions (n=5109, 5609 and 

2317 for average speed, displacement/s, pauses/min and average pause time, whereas for mobile percentage 

n= 22, 21 and 15 videos from 4-5 different cultures for control, S135E and S135A, respectively in latrunculin 
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treated conditions). Scale bar in fluorescent images is 5 μm. Error indicates S.E.M. Significance was 

determined by Student’s t-tests with Bonferroni correction (* p< 0.05, ** p<0.01 and ***p<0.001).   

We also analysed vesicle pauses for treated and untreated vesicles and observed that 

latrunculin treated S135E and control vesicles had more pauses per min but significantly 

less average pause time similar to highly mobile S135A untreated vesicles (Fig 3.11 E and F; 

n=5109, 5609 and 2317 vesicles for average speed, displacement/s, pauses/min and 

average pause time, whereas for mobile percentage n= 22, 21 and 15 videos from 4-5 

different cultures for control, S135E and S135A, respectively, in latrunculin treated 

conditions). To summarize the above results, we found that actin plays a significant role in 

capturing phosphorylated DCVs at release sites. 

3.12 JNK phosphorylates Syt4 at the S135 site  

For capturing of vesicles, there is a need for unloading cargoes from microtubule tracks in 

axons. The c-Jun N-terminal kinase (JNK) pathway has been shown to involve in this step in 

cultured neurons (Stagi et al., 2006). In addition, JNK has been reported to phosphorylate 

Syt4 at S135 in PC-12 cells (Mori et al., 2008). To confirm that JNK and Syt4 interact, and 

JNK phosphorylates Syt4 we used biochemistry and in silico approaches. We co-transfected 

HEK 293 cells with Flag-MKK7-JNK1 and GFP-Syt4. In Co-IPs, we were able to pull down 

GFP-Syt4 with anti-Flag antibody and in reverse Co-IPs with an anti-GFP antibody we were 

able to pull down Flag-MKK7-JNK1 (Fig 3.12 A and B). We also used an in silico approach to 

determine if the S135 site of Syt4 is phosphorylated by JNK. We used c-Jun, a known 

substrate as a control for JNK kinase (Ip and Davis, 1998). Indeed, we found that JNK was 

the predicted kinase for phosphorylating Syt4 at S135 (Score/cut-off of JNK for Syt4 was 

2.76 and of c-Jun was 3.84) (Fig 3.12 C).  

In addition, we used an in vitro kinase assay to further confirm that Syt4 is phosphorylated 

by JNK at S135. We found that the percentage of JNK activity was reduced significantly 

(>50%) when S135 in Syt4 WT was replaced with S135A (Fig 3.12 D). As a control, we used 

a c-Jun peptide containing S63, which is phosphorylated by JNK1. When the S63 site of c-

Jun was replaced with S63A, we found an approximate two-third reduction in % of JNK1 

phosphorylation, similar to the reduction in the percentage of JNK activity for S135A Syt4. 

Co-IP experiments were performed with Dr. Saheeb Ahmed (a postdoc in the lab) and 

kinase prediction and in vitro kinase assays were done with our collaborator Mahdokht 
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Kohansal, a PhD student in Prof. Reinhard Jahn’s lab. These results cumulatively confirm 

that JNK phosphorylates Syt4 at the S135 site, which is consistent with Mori et al 2008. 

 

Figure 3.12 JNK phosphorylates Syt4 at the S135 site 

(A) Western blots of JNK (Flag-MKK7-JNK1) and Syt4 (GFP-Syt4) co-immunoprecipitated from co-expressing 

HEK cells with anti-Flag and anti-GFP (B) antibodies. Plus sign indicates the pull-downs with anti-Flag or anti-

GFP antibodies attached to beads and minus signs show the binding controls.  Respective bound and unbound 

fractions are indicated on the top of each lane. Antibodies used for Westerns are shown to the left of the 

blots. (C) GPS kinase prediction results showed that Syt4 and c-Jun (a known JNK substrate) peptide are 

phosphorylated by JNK (Score/cutoff of above 2 is a positive result). (D) In vitro kinase assay showed 

significantly higher percentage of JNK phosphorylation in Syt4 (WT) and c-Jun (WT) compared to 

phosphodeficient mutants. Error indicates S.E.M. Significance was determined by Student’s t-tests with 

Bonferroni correction (**p<0.01). 

3.13 Phosphorylation of JNK at Syt4 S135 decreases the trafficking of DCVs 

To test the effect of JNK phosphorylation, specifically, on trafficking of Syt4 vesicles, we 

first tried activating and inhibiting JNK using pharmacological treatments with anisomycin 

(a JNK-activator) and SP600125 (a JNK inhibitor) (Bennett et al., 2001; Curtin and Cotter, 

2002) in time-lapse imaging experiments of mCherry-Syt4 transfected hippocampal 

neurons. We saw a significant decrease in the mobility of Syt4 vesicles with anisomycin 

treatment, but little or no change in vesicle trafficking upon SP600125 treatment. Analysed 

tracks in Imaris and pause detection by kymographs showed that Syt4 vesicles were highly 
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mobile in control and SP600125 treated cultures, whereas anisomycin treatment 

decreased the mobility of these vesicles (Fig 3.13 A and B).  

Frequency distributions also showed that anisomycin treated cultures had more vesicles 

with low average speed (Fig 3.13 C). We found that mCherry-Syt4 vesicles in cultures 

treated with anisomycin had a significant decrease in average speed of vesicles and 

displacement/s compared to control and SP600125 treated cells (Fig 3.13 D and E). 

Frequency distribution and average speed quantification showed that anisomycin treated 

Syt4 vesicles had the lowest average speed of 0.105 ± 0.0024 μm/s compared to control 

and SP600125 treated cultures (control avg. speed was 0.145 ± 0.0030 μm/s and SP600125 

treated culture average vesicle speed was 0.147 ± 0.0028 μm/s). Vesicle displacement/s 

also showed that SP600125 treated and control Syt4 vesicles covered more distance 

compared to anisomycin treated vesicles (displacement/s of control, SP600125 and 

anisomycin treated vesicles was 0.074 ± 0.0068 μm/s, 0.063 ± 0.007 μm/s and 0.047 ± 

0.0075 μm/s, respectively; n= 2643, 2362 and 2151 vesicles for average speed, 

displacement/s, pauses/min and avg. pause time of control, SP6 and anisomycin treated 

cultures, respectively). We also examined mobile vesicle percentage and found that 

anisomycin treated cultures had a trend towards less mobile vesicle (Fig 3.13 F). The 

percentage of mobile vesicles in anisomycin treated cultures was 19.7 ± 3.01% which was 

significantly less compared to mobile vesicle percentage of control and SP600125 treated 

cultures (29.7 ± 3.06% and 25.3 ± 1.91%, respectively; n= 12,9 and 16 videos for control, 

SP6 and anisomycin, respectively from 3 different cultures).  

In addition, we found by pause analysis of these treated cultures that there were 

significantly less pauses in anisomycin treated cells and higher average pause time 

compared to control and SP600125 treated cultures (Fig 3.13 G and H). Trafficking 

parameters of SP600125 treated cells were not significantly different compared to control.  

In addition, Westerns also showed that anisomycin treated cultures had significantly higher 

p-JNK compared to control and SP600125 treated cultures (Fig 3.13 I; Westerns were done 

by Dr. Saheeb Ahmed). We found that p-JNK protein levels in control and SP600125 treated 

cultures were not significantly different, which explains why we did not see a change in 

trafficking of vesicles with SP6 treatment of hippocampal neurons. These results show that 
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upon anisomycin treatment (which activates JNK), the mobility of Syt4 DCVs decreases 

substantially compared to control and SP600125 treated cultures. 

 

Figure 3.13 Anisomycin and SP600125 effect on trafficking of DCVs 

(A) Snapshots of trafficking videos of control, SP600125 and anisomycin treated hippocampal neurons. Scale 

bar is 10 um.  (B) Respective kymographs of all conditions. Scale bar is 5 μm. (C) Comparison of frequency 

distribution of avg. speed of control, SP600125 and anisomycin conditions. (D) Quantified average speed 

(μm/s) and displacement/s (E) shows that vesicles in the anisomycin treated condition have the lowest speed 

and cover the least distance. (F) Mobile vesicle percentage was quantified. (G) Pauses/ min and average pause 

time (H) was quantified for control, SP600125 and anisomycin treated conditions (n= 2643, 2362 and 2151 

vesicles for average speed, displacement/s, pauses/min and avg. pause time of control, SP600125 and 

anisomycin treated conditions, respectively whereas for mobile percentage n = 12, 9 and 16 videos for 

control, SP600125 and anisomycin treated conditions, respectively, from 3 different cultures).  (I) Western 

for JNK and p-JNK in hippocampal neuron cell lysates of SP600125 and anisomycin treated samples compared 
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to control. Right panel indicates quantification of p-JNK band intensity in all three conditions. Error indicates 

S.E.M. Significance was determined by Student’s t-tests with Bonferroni correction (*p<0.05, **p<0.01 and 

***p<0.001).  

3.14 Phosphorylation of Syt4 S135 by over-expressing JNK also reduces the 

trafficking of DCVs 

Considering the unspecific effects pharmacological treatments could have, we tested the 

effect of JNK phosphorylation of Syt4 vesicles using a more specific approach. We 

transfected hippocampal neurons with control mCherry-Syt4, mCherry-Syt4-P2A-JNK1 

(APF), a dominant negative form of JNK1, or mCherry-Syt4-P2A-MKK7-JNK1 to examine the 

effects of increased activated JNK1 on Syt4 trafficking in isolated cells (Derijard et al., 1994; 

Lei et al., 2002; Kim et al., 2011). To further confirm that the S135 site of Syt4 is 

phosphorylated by JNK, we transfected hippocampal neurons with mCherry-Syt4 (S135A)-

P2A-MKK7-JNK1. We examined vesicle trafficking by time-lapse imaging in these four 

conditions at DIV11, and analysed vesicle mobility. We observed high mobility of vesicles 

in JNK1 (APF) and S135A/MKK7-JNK1 whereas control Syt4 vesicles with over-expressed 

MKK7-JNK1 were least mobile both by Imaris and kymograph analysis (Fig 3.14 A). 

Frequency distributions of average speed (μm/s) also showed more vesicles with MKK7-

JNK1 co-expression with slower speed whereas S135A vesicles with MKK7-JNK1 co-

expression had higher speeds (Fig 3.14 B). Average speed and displacement/s of vesicles in 

JNK1 (APF) and S135A/MKK7-JNK1 conditions were significantly higher than control and 

MKK7-JNK1 conditions (Fig 3.14 C and D). Mobile vesicle percentage of Syt4 MKK7-JNK1 

was the lowest compared to control, JNK1 (APF) and S135A/MKK7-JNK1 conditions (Fig 

3.14 E). Vesicle pause analysis revealed that vesicles that were highly mobile, as in JNK1 

(APF) and S135A/MKK7-JNK1 conditions, had a higher number of pauses/min but 

significantly less average pause time(s). On the other hand, pauses/min of control and 

MKK7-JNK1 were significantly lower whereas average pause time in these conditions was 

significantly higher than JNK1 (APF) or S135A/MKK7-JNK1 conditions (Fig 3.14 F and G).  

Furthermore, we tested the co-localization of control, JNK1 (APF) and MKK7-JNK1 vesicles 

with the pre-synaptic marker Syp-GFP by ICC (Fig 3.14 H). We found that MKK7-JNK1 

vesicles were highly co-localised with Syp-GFP compared to other conditions indicating that 

these least mobile vesicles are more localised at pre-synaptic sites in hippocampal neurons 
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(Fig 3.14 I; Pearson’s coefficient was 0.38 ± 0.04 for MKK7-JNK1, 0.33 ± 0.02 for JNK1 (APF) 

and 0.30 ± 0.02 for control). 

 

Figure 3.14 Phosphorylation of Syt4 at S135 by JNK decreases DCVs mobility and localises these 

vesicles to synapses 

(A) Images from videos of hippocampal neurons transfected with Syt4 control, Syt4 control with dominant 

negative JNK (JNK1(APF)), Syt4 control with over-expressed JNK (MKK7-JNK1) and Syt4 S135A with over-

expressed JNK (S135A/MKK7-JNK1). Scale bar is 10 μm. (B) Respective kymographs of all conditions. Scale bar 
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is 5 µm. (C) Frequency distribution of average speed of vesicles in control, JNK1 (APF), MKK7-JNK1 and 

S135A/MKK7-JNK1 conditions. (D) Quantified avg. speed and displacement/s (E) showed that JNK1(APF) and 

S135A/MKK7-JNK1 vesicles moved with significantly higher speed and covered larger distances  compared to 

control and MKK7-JNK1 conditions. (F) Mobile vesicle percentage quantification indicates that vesicles in the 

MKK7-JNK1 condition were the least mobile of all conditions. (G) Quantification of pauses/min shows that 

JNK1(APF) and S135A/MKK7-JNK1 have a higher number of pauses/min compared to control and MKK7-JNK1 

conditions. (H) Average pause time of vesicles in the MKK7-JNK1 condition was the highest compared to other 

conditions (n= 5216, 7478, 3172 and 4232 vesicles for average speed, displacement/s, pauses/min and avg. 

pause time of control, JNK1(APF), MKK7-JNK1 and S135a/MKK7-JNK1, respectively, whereas for mobile 

percentage n= 22, 27, 27 and 18 videos from 4 different cultures). (I) Images of neurons co-transfected with 

Syp-GFP and control, JNK1(APF) or MKK7-JNK1. Scale bar is 10 μm. (J) Quantified Pearson’s coefficient 

showing more colocalisation of vesicles with Syp-GFP in the MKK7-JNK1 condition compared to all other 

conditions (n= 12, 17,and 21 cells for control, JNK1(APF) and MKK7-JNK1 conditions, respectively, from 3 

different cultures). Error indicates S.E.M. Significance was determined by Student’s t-tests with Bonferroni 

correction (*p< 0.05, **p<0.01 and ***p<0.001).   

These data reveal that JNK phosphorylation of Syt4 specifically at S135 leads to a decrease 

in the mobility of transiting Syt4 vesicles and increases their localisation at synapses in 

hippocampal neurons. 

3.15 Activity-dependent phosphorylation of S135 captures transiting Syt4 

vesicles 

At the Drosophila NMJ, the probability of capturing transiting vesicles depends on neuronal 

activity. Highly active synapses capture vesicles from the transiting pool, which maintains 

the neuropeptidergic store at synapses (Shakiryanova et al., 2006; Bulgari et al., 2014). To 

determine whether the same phenomenon is true for Syt4-harboring DCVs in mammalian 

hippocampal neurons, we examined the trafficking of Syt4 vesicles by transiently increasing 

neuronal activity. First we transfected hippocampal cultures at DIV10 with mCherry-Syt4 

control, mCherry-Syt4 S135A or mCherry-Syt4-P2A-JNK1 (APF). We applied high KCl 

solution for 3 minutes to depolarize neurons in the middle of 10-minute time-lapse 

recordings at DIV11. In mCherry-Syt4 WT, we found that many transiting vesicles were 

stopped during the time of KCl stimulation (Fig 3.15 A). These vesicles then either resumed 

movement at the cessation of stimulus, or remained immobilized. Whereas in the case of 

mCherry-Syt4 S135A, there were very few pausing vesicles during the stimulation time (Fig 

3.15 B).  
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Figure 3.15 Activity dependent phosphorylation causes transiting vesicles to pause. 

 (A) Kymographs of Syt4 vesicle trafficking in mCherry-Syt4 WT, mCherry-Syt4 S135A (B) and mCherry-Syt4 

WT/JNK1 (APF) (C) conditions during stimulation with 70 mM KCl. Dotted white line represents the 70mM 

KCl application during time-lapse imaging. (D) Kymograph of mCherry-Syt4 WT vesicles without KCl 

stimulation. Coloured tracks highlight the trajectories of moving vesicles. In mCherry-Syt4 WT conditions, 

there were more pausing vesicles during KCl stimulation compared to mCherry-Syt4 S135A and mCherry-Syt4 

WT/ JNK1 (APF) conditions. (E) Quantification of percentage of vesicles pausing during stimulation (and 
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without stimulation for Syt4 WT) shows that Syt4 WT has significantly more pauses compared to Syt4 S135A 

and Syt4/ JNK1 (APF) during stimulation. Scale bar is 5 μm (n= 17, 15 and 9 videos for stimulated control, 

S135A and JNK1 (APF) conditions, respectively, from 3-4 different cultures and n= 8 videos for non-stimulated 

Syt4 control from 3 different cultures). Error indicates S.E.M. Significance was determined by Student’s t-tests 

with Bonferroni correction (*p< 0.05 and ***p<0.001).   

 

We further examined mCherry-Syt4-P2A-JNK1 (APF) to test if JNK phosphorylation of Syt4 

is necessary for activity dependent capture, and found that Syt4 vesicles co-expressed with 

dominant negative JNK1 (APF) remained highly mobile during neuronal activity. This 

confirmed that JNK1 phosphorylation of Syt4 S135 was necessary for activity-dependent 

pausing of transiting DCVs in hippocampal neurons (Fig. 3.15 C). 

As a control, we also imaged mCherry-Syt4 without KCl stimulation and found low numbers 

of pausing vesicles comparable to mCherry-Syt4 S135A or mCherry-Syt4-P2A-JNK1 (APF) 

conditions. 

There was a significantly higher percentage of pausing vesicles in Syt4 (WT) compared to 

Syt4 S135A and Syt4/JNK1 (APF) conditions (Fig 3.15 E; percentage of pausing vesicles in 

three conditions were: 36.8 ± 4.9% (Syt4 (WT)), 13.1 ± 3.08% (Syt4 S135A) and 18.1 ± 5.02% 

(Syt4/JNK1 (APF)); n= 17, 15 and 9 videos of WT, S135A and JNK1 (APF), respectively from 

3-4 different cultures in KCl stimulation conditions and n= 8 videos for non-stimulated Syt4 

WT from 3 different cultures). Together, these data show that activity dependent JNK 

phosphorylation captures transiting neuropeptidergic dense core vesicles in hippocampal 

neurons.   
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3.16 PJNK is localised to synapses at DIV13 in hippocampal neurons 

We then aimed to visualize the localisation of JNK and p-JNK in hippocampal neurons. We 

used JNK and p-JNK antibodies in combination with Syp, a pre-synaptic site marker and 

Map2, a dendritic marker, to mark endogenous localisation of JNK and p-JNK. We found 

that JNK was present throughout hippocampal neurons, in cell body, neurites, and 

synapses, whereas p-JNK was more localised to synapses (Fig 3.16 A).  Next, we compared 

p-JNK levels at DIV6 and DIV13. We immunostained neurons with p-JNK, the pre-synaptic 

marker Syp, and the dendritic marker Map2 at DIV6 and 13. We found significantly more 

p-JNK localised to synapses at DIV13 compared to DIV6 (Fig 3.16 B). We checked the total 

protein levels by Western blotting for JNK and p-JNK at DIV6 and DIV13 and found that the 

total protein levels were quite similar, although with a bit of variation among cultures (Fig 

3.16 C). 

 

Figure 3.16 Localisation of JNK and p-JNK in hippocampal neurons. 

 (A) Example images to show the localisation of JNK and p-JNK with syp (a synapse marker). MAP2 is a 

dendritic marker. Scale bar is 10 μm. (B) Comparison and quantification of p-JNK (green) levels at synapses 

marked with Syp (red) at DIV6 and 13. Scale bar is 5 μm (n=27 images each for DIV6 and 13). (C) Western blot 

comparing total protein levels of JNK and p-JNK at DIV6 and 13 (n=2 different neuronal cultures). Error 

indicates S.E.M. Significance was determined by Student’s t-tests with Bonferroni correction (***p<0.001).   
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3.17 Activity dependent capture of Syt4 vesicles at synapses by JNK 

phosphorylation 

Knowing that p-JNK is concentrated more at synapses (Fig 3.16 A) and that short term 

70 mM KCl depolarisation causes transient capture of mCherry-Syt4 vesicles (Fig. 3.15 A), 

we tested the effects of stimulating neuronal cultures for longer times by treating them 

with 40 µM bicuculline for 1 h. We then performed immunostaining experiments to 

examine if neuronal stimulation leads to capture of endogenous Syt4 at synapses by JNK 

phosphorylation, by testing if adding the JNK inhibitor SP600125 reduces capture in 

neuronal cultures in which activity is increased. 

To prove that SP600125 blocks JNK activity, we treated DIV13 hippocampal neuronal 

cultures with anisomycin (a JNK activator), SP600125 (a JNK inhibitor) and with both 

SP600125 and anisomycin and then blotted for P-c Jun, a known substrate for JNK 

(Bogoyevitch and Kobe, 2006). We found that SP600125 indeed inhibited JNK 

phosphorylation, as treatment of hippocampal neurons with anisomycin (JNK activator) 

increased P-c Jun levels whereas addition of SP600125 with anisomycin blocked the 

increase in P-c Jun (Fig 3.17 A). Bicuculline treatment increased p-JNK levels slightly and 

also increased Syt4, as expected, since Syt4 is upregulated by activity (Fig 3.17 B; 

Dr. Saheeb Ahmed, a postdoc in the lab performed these Westerns). 

We then performed immunostaining experiments in hippocampal neurons in control, 

bicuculline treated (40 µM bicuculline for 1 h) and SP600125 with bicuculline treated 

conditions. We immunostained these cultures with antibodies for endogenous p-JNK or 

Syt4 and Syp as a synapse marker (Fig 3.17 C and E). We observed a significant increase in 

the level of p-JNK at synapses in bicuculline treated cultures, whereas this increase was 

reduced to basal levels with concomitant SP600125 treatment (Fig 3.17 D). Similarly, we 

found a significant increase in Syt4 at synapses with bicuculline treatment, which was 

reduced to basal levels with SP600125 treatment (Fig 3.17 F). With these experiments we 

showed that increased neuronal activity enhances p-JNK at synapses, which leads to 

capture of Syt4 vesicles at synaptic sites in hippocampal neurons. 
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Figure 3.17 Long term stimulation causes more p-JNK and Syt4 at synapses. 

 (A) Western blot of P-c Jun in hippocampal neurons treated with SP600125 (a JNK inhibitor), anisomycin and 

anisomycin + SP600125 compared to control. (B) Westerns for Syt4, JNK and p-JNK in hippocampal neurons 

treated with Bicuculline (bic) for 1 hr compared to control. Quantification of p-JNK and Syt4 levels in Westerns 

comparing control (ctrl) and bicuculline treated (bic) cultures. (C) Example images of p-JNK (red), syp (green) 

and merged images with Map2 (a dendrite marker) in control, bicuculline treated and bicuculline + SP600125 

treated conditions. (D) Quantification of p-JNK at synapses in all three conditions. (E) Example images of Syt4 

(red), syp (green) and merged images with Map2 (a dendrite marker) in control, bicuculline treated and 

bicuculline + SP600125 treated cultures. (F) Quantification of p-JNK at synapses in all three conditions (n= 46, 

49 and 17 images in control, bicuculline treated and bicuculline + SP600125 treated conditions, respectively, 

from 4 different cultures). Scale bar 5 μm. Error indicates S.E.M.  Values normalised to control in (D) and (F). 

Significance was determined by Student’s t-tests with Bonferroni correction (*p< 0.05 and ***p<0.001).   
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3.18 Phosphorylation of Syt4 at S135 doesn’t change the fusion of DCVs at 

synaptic or non-synaptic sites in hippocampal neurons 

After determining the effects of phosphorylation of Syt4 at S135 on trafficking and capture 

of DCVs, we extended our study to examine if phosphorylation of Syt4 also changes fusion 

properties of DCVs in axons. We co-transfected hippocampal neurons with synapsin-

mCherry (to mark synaptic sites) and pHluorin-tagged constructs of control Syt4, Syt4 

S135A and Syt4 S135E at DIV10. PHluorins are pH sensitive GFPs, which are normally fused 

to the lumenal domain of vesicle proteins and quenched in acidic environments, i.e. in the 

lumen of vesicles, but become fluorescent in basic environments, i.e. when vesicles fuse 

with the plasma membrane and their lumenal domain is exposed to the extracellular 

solution (Miesenbock et al., 1998). We used constructs in which the pHluorin molecule was 

attached to the lumenal domain of Syt4 and Syt4 phosphomutants to test for differences 

in fusion properties. We stimulated transfected cells at DIV13 with high KCL solution (45 

mM KCL + 10 mM Ca2+) followed by NH4CL solution to dequench all internal pHluorin signal, 

during imaging for 3 mins. We focused on axonal regions identified by signal of co-

transfected synapsin-mCherry. We found an increase in fluorescence of pHluorin-Syt4 

vesicles after high KCl addition and a further increase in intensity of fluorescence upon 

NH4Cl application, consistent with the literature for wild-type pHluorin-Syt4 responses 

(Dean et al., 2009; Dean et al., 2012), (Fig 3.18 A). Syt4-pHluorin responses showed an 

increase in fluorescence upon KCl stimulation, which remained elevated and plateaued for 

minutes after stimulation, indicating fusion of vesicles. Addition of 25 mM NH4Cl solution 

led to a further increase in fluorescence intensity that corresponded to the total internal 

vesicle content at synapses (Fig 3.18 B).  

DCVs have been reported to fuse at both synaptic and non-synaptic sites in axons (van de 

Bospoort et al., 2012). Hence, we compared Syt4 pHluorin control and phosphomutant 

fusion properties at both synaptic and non-synaptic sites. Synaptic sites were marked by 

synapsin-mCherry and sites without synapsin-mCherry signal in axons were considered 

non-synaptic for analysis. At synaptic sites, delta F/F values of phosphomutants Syt4 

pHluorin responses were very similar though control Syt4-pHluorin showed significantly 

more fluorescence upon KCl stimulation compared to either phosphomutant (Fig 3.18 C). 
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Figure 3.18 Fusion of phosphomutants S135A and S135E was similar at both synaptic and non-

synaptic sites in hippocampal neurons 

 (A) pHluorin-Syt4 exocytotic events (marked by white arrow) before stimulation, after 45mM KCl and after 

50 mM NH4Cl stimulation. Scale bar is 5 µm. (B) Sample trace of change in pHluorin-Syt4 fluorescence upon 

KCl stimulation and NH4Cl addition. (C) Average trace of dF/F after KCl stimulation of control, S135A and 

S135E at synaptic and non-synaptic (D) sites. (E) Quantification of dF/F of NH4Cl response at synaptic and 

non-synaptic (F) sites of control, S135A and S135E pHluorin-Syt4 (n= 12, 17 and 21 events at synapses and n= 

34, 29 and 41 events at non-synaptic sites for control, S135A and S135E pHluorin-Syt4, respectively). Error 

indicates S.E.M. Significance was determined by Student’s t-tests with Bonferroni correction.  
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This difference in fusion characteristics of control with the phosphomutant vesicles at 

synaptic sites could be because phosphodeficient vesicles are highly mobile and might not 

get to synaptic sites, resulting in significantly less fusion. On the other hand, 

phosphomimetic Syt4 vesicles might get dropped at incorrect docking sites contributing to 

comparatively less fusion at synaptic sites.  

On contrary, at non-synaptic sites all control, S135A and S135E Syt4 pHluorins had very 

similar kinetics of fusion (Fig 3.18 D). Synaptic and non-synaptic delta F/F values upon NH4Cl 

stimulation of all three pHluorin contructs were also very similar, and were not significantly 

different. Together, these data shows that phosphorylation of Syt4 at S135 doesn’t change 

the fusion of DCVs significantly at synaptic or non-synaptic sites in hippocampal neurons. 

 

 

 

 

 

 



 

4. Discussion 

The question of whether and how transiting DCVs are recruited to pre-synaptic terminals 

in hippocampal neurons has remained an open question for many years. In this study, we 

examined these aspects of DCV trafficking in hippocampal neurons. We showed that a 

specific isoform of the synaptotagmin family, Syt4, specifically localises to DCVs and these 

Syt4 labelled DCVs undergo long range trafficking in neurons. In PC-12 cells, it was reported 

previously that c-Jun N-terminal kinase (JNK) phosphorylates Syt4 at the S135 site resulting 

in translocation of Syt4 from immature to mature secretory vesicles and enhances Ca2+ 

evoked release (Mori et al., 2008). Also, JNK has been shown to play a critical role in 

regulating vesicle mobility and in unloading cargoes from microtubular tracks in neurons 

(Stagi et al., 2006; Morfini et al., 2009; Gibbs et al., 2015). Consistent with the literature, 

we found that phosphorylation of Syt4 at S135 by JNK affects DCV transport in hippocampal 

neurons. Phosphorylated vesicles were less mobile and were more concentrated at pre-

synaptic sites compared to non-phosphorylated vesicles in mature neurons. Furthermore, 

we tested if neuronal activity can lead to this phosphorylation effect, causing vesicle 

capture at synapses in mammalian hippocampal neurons, as occurs in Drosophila neurons 

(Shakiryanova et al., 2006; Bulgari et al., 2014). Indeed, we found that activity dependent 

JNK phosphorylation of Syt4 at the S135 site reduces DCV trafficking and promotes capture 

at synapses in hippocampal neurons. This study provides insights into the mechanisms of 

fast capture of DCVs at specific synapses in hippocampal neurons, which may subsequently 

lead to modification of synaptic functions, for example by the release of cargoes like BDNF 

from DCVs at potentiated synapses during learning and memory.  

4.1 Long range trafficking of Syt4 harboring dense core vesicles on 

microtubules of hippocampal neurons 

Syt4, a unique member of the synaptotagmin family of proteins is integral to brain derived 

neurotrophic factor (BDNF) containing DCVs in both axons and dendrites in hippocampal 

neurons (Dean et al., 2009; Dean et al., 2012). DCVs are known to efficiently co-package 

and co-transport different cargoes in hippocampal neurons (Lochner et al., 2008; Kwinter 

et al., 2009). Here we showed (Fig 3.1) Syt4 was localised to DCVs containing chromogranin 

A (CgA). CgA is considered to be a major constituent of DCVs in endocrine and 
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neuroendocrine cells and in neurons (Erickson et al., 1992; Adams et al., 1993; Kim et al., 

2001; Machado et al., 2010). Hence, Syt4 marked the majority of DCVs in hippocampal 

neurons. In addition to this, our subcellular fractionation data and immuno-organelle 

isolation of SVs agrees with literature showing that Syt4 is absent from synaptic vesicles 

(Berton et al., 2000; Ibata et al., 2002).  

In contrast to SVs, which are synthesised and recycled at synaptic sites, the biogenesis of 

DCVs is known to take place in the cell soma, from where they are then transported on 

microtubules into axons and dendrites (Burgoyne and Morgan, 2003; Kim et al., 2006; 

Wong et al., 2012). Depolymerizing MTs with nocodazole has been reported to disrupt 

BDNF containing DCV movement in neurons (Gauthier et al., 2004; Colin et al., 2008). We 

also found that these Syt4 labelled DCVs were highly mobile on microtubules and disrupting 

microtubules with nocodazole hampered vesicle trafficking (Fig 3.2 A and B).  

DCVs have been reported to undergo long range trafficking and to be more mobile in axons 

compared to dendrites (Adachi et al., 2005; de Wit et al., 2006), and our results are 

consistent with these reports; we also showed that Syt4 labelled DCVs were transported 

long distance and were more mobile in axons compared to dendrites (Fig 3.6 and Fig 3.7 E 

panels). This difference in trafficking between axons and dendrites could be due to 1) the 

orientation of microtubules in axons versus dendrites, where microtubules have uniform 

polarity in axons, while dendrites have mixed polarity (Baas et al., 1988), or 2) MAP2 

(microtubule associated protein 2), which is specifically present in dendrites and has been 

reported to interfere with kinesin based trafficking of vesicles (Drechsel et al., 1992). 

4.1.1. “Sushi-Model” of DCV trafficking in hippocampal neurons 

At the Drosophila neuromuscular junction, DCVs undergo a circuitous trafficking pattern 

termed the “sushi-model” in which they are routed from the cell soma to the distal tip of 

axons and back again to ensure delivery of cargoes to all boutons at which they are required 

(Moughamian and Holzbaur, 2012; Wong et al., 2012) – like sushi being delivered by 

conveyer belt to patrons at a sushi restaurant. Kinesin and dynein motor proteins drive 

DCVs filled with cargo in anterograde and retrograde directions. We found that this model 

also holds true in mammalian hippocampal axons (Fig 3.2 C and D). Although the long 

length of mammalian hippocampal axons precludes imaging an entire axon to track single 

vesicle trajectories in mature neurons, we imaged a total of approximately 1000 vesicles in 
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approximately 5 mm of mid-axonal regions and around 200 vesicles in 1 mm of growth 

cone regions at DIV13. Strikingly, vesicles in mid-axonal regions only rarely switched 

directions and trafficked continually in either anterograde or retrograde directions, while 

in growth cones we observed many switches in direction of vesicles. 

This might occur because mid-axonal regions contain a mix of labile and stable microtubule 

domains, while distal ends of axons consist almost entirely of labile domains (Baas and 

Black, 1990) characterized by tyrosinated alpha-tubulin (Ahmad, 1992). Also, we know that 

vesicles in neurons simultaneously carry both plus end directed kinesins and minus end 

directed dynein motors (Hancock, 2014) and activation of either of them determines the 

direction of travel, hence, it might be the activation of dynein motors on DCVs causing 

switching of directions near the growth cone. In addition, dynactin, a co-factor of dynein, 

is enriched in the distal end of axons and recruitment of this co-factor with other end-

binding proteins initiates retrograde movement of vesicles (Moughamian and Holzbaur, 

2012; Moughamian et al., 2013). Thus dynein present in an inactive state on vesicles might 

be specifically activated at the distal end of axons resulting in directionality switches of 

DCVs in hippocampal neurons. 

4.2 JNK, the kinase responsible for phosphorylating Syt4 at S135 

Several lines of evidence in this study indicate that JNK is the kinase that phosphorylates 

Syt4 at S135. In PC-12 cells, Syt4 has been already shown to get phosphorylated at the S135 

site by JNK which enhances Ca2+ evoked release (Mori et al., 2008). Also, phospho-

proteomics analysis by mass spectrometry of mouse brain in various studies has highlighted 

S135 as a site of Syt4 that is phosphorylated (Huttlin et al., 2010; Wisniewski et al., 2010; 

Goswami et al., 2012). We verified by in-silico analysis, in-vitro kinase assays that JNK 

phosphorylates Syt4 at this site. Co-IP experiments also showed the interaction of JNK with 

Syt4 (Fig 3.12). Furthermore in trafficking experiments, over-expression of active JNK1 

made Syt4 vesicles less mobile, whereas dominant negative JNK1 made Syt4 vesicles more 

mobile than control. In addition, phospho-deficient S135A Syt4 vesicles remained highly 

mobile even in the presence of over-expressed active JNK1, indicating that JNK1 specifically 

phosphorylates Syt4 at the S135 site (Fig 3.14). 

Although we focused on JNK1, it is possible that additional JNK isoforms play similar roles 

in DCV capture in neurons. For example, JNK3 phosphorylates KIF5C at S176, which reduces 
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its ability to bind microtubules, and inhibits fast anterograde axonal transport in squid 

axoplasm (Morfini et al., 2006). While JNK1 is ubiquitously expressed, JNK3 is present in 

the hippocampus (Lee et al., 1999; Coffey, 2014) and could also play a role in vesicle 

capture. Activation of the JNK signaling cascade has been reported to inhibit axonal 

transport of mitochondria and synaptophysin by disrupting the interaction between 

kinesin-1 and microtubules in hippocampal neurons (Stagi et al., 2006). JNK also regulates 

fast axonal transport by acting on adaptor proteins like JNK-interacting protein 1 (JIP1). 

Phosphorylation of JIP1 at S421 increases anterograde transport and non-phosphorylated 

JIP1 favours retrograde transport of amyloid precursor protein (APP) vesicles (Fu and 

Holzbaur, 2013). Hence, phosphorylation of motor proteins, adaptor proteins or cargoes 

directly is important for regulating axonal transport (Gibbs et al., 2015). 

4.3 Phosphorylation of Syt4 at S135 decreases DCV trafficking in mature 

neurons  

In this study, we compared DCV trafficking of Syt4 phosphomutant vesicles, 

phosphodeficient Syt4 (S135A) and phosphomimetic Syt4 (S135E). with wild-type Syt4 

vesicles and found that phosphorylated Syt4 vesicles have decreased mobility in mature 

hippocampal neuronal culture (Fig 3.4 and 3.5).  

4.3.1 Phosphorylation of Syt4 at S135 reduces DCV mobility developmentally 

At DIV6, before the majority of synapses have formed, Syt4 phosphomutants didn’t show 

significant differences in DCV mobility parameters. At DIV13, after significantly high 

numbers of synapses are formed (Fig 3.3), we found that average speed and 

displacement/s of phosphodeficient S135A vesicles were similar to DIV6. However, 

mobility of control and phosphomimetic S135E vesicles were reduced significantly 

compared to at DIV6. These results indicate that mature hippocampal cultures at DIV13 

have the ability to pause phosphorylated vesicles, resulting in decreased mobility of control 

and S135E vesicles whereas S135A vesicles, which can’t be phosphorylated, show no 

change in trafficking. This effect of phosphorylation of Syt4 at S135 on trafficking was seen 

both in axons and dendrites even though we found significantly higher mobility of DCVs in 

axons compared to dendrites consistent with previous studies (Adachi et al., 2005; de Wit 

et al., 2006).  
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We also found that p-JNK is more localised to synapses at DIV13 compared to DIV6 (Fig 

3.16), which might contribute to the observed differences in trafficking of Syt4 

phosphomutants vesicles developmentally. 

4.3.2 Phosphorylated Syt4 vesicles show reduced interaction with the motor 

protein Kif1A 

Kif1A is the motor protein responsible for anterograde DCV axonal transport in 

hippocampal neurons (Lo et al., 2011). Also in Drosophila and C. elegans, the homolog of 

Kif1A, unc-104, is required for axonal transport of DCVs (Bloom, 2001; Zahn et al., 2004; 

Barkus et al., 2008). We found in our experiments that the motor protein Kif1A co-

transports with Syt4 vesicles in hippocampal neurons (Fig 3.9). In addition, Syt4 co-

immunoprecipitates with Kif1A. We found that Syt4 S135E had reduced interaction with 

Kif1A compared to S135A and wild-type Syt4 (Fig 3.8). This destabilized interaction 

between Kif1A and vesicle cargo could result in reduced processivity by Kif1A (Soppina et 

al., 2014). Previous studies on kinesin-cargo release in the case of Kif17-Mint1 also showed 

that phosphorylation is an important mechanism to disrupt the binding of cargo to motor 

proteins, resulting in its release from microtubular tracks (Guillaud et al., 2008).  

We performed Syt4 – Kif1A co-immunoprecipitation experiments in HEK293 cells. It would 

be interesting to compare the interaction of phosphomutants with Kif1A in neuronal 

cultures where additional adapter molecules that stabilize or destabilize cargo-motor 

binding, would be present.  Various adaptor proteins are known to link cargoes with kinesin 

motors and regulate trafficking of vesicles, including liprin alpha, which binds Kif1A to 

traffic synaptic vesicle precursors, huntingtin which binds kinesin-1 to move BDNF vesicles, 

and JNK scaffolding proteins like JIP1 which binds kinesin-1 to transport amyloid precursor 

protein vesicles (Shin et al., 2003; Morfini et al., 2009; Goodwin and Juo, 2013; Fu and 

Holzbaur, 2013; Maday et al., 2014). It would be interesting to test if the decreased motility 

of S135E vesicles is because of reduced interaction with motors through adaptor proteins. 

We could also test if Syt4 phosphomutant vesicles have differences in interaction with 

microtubules themselves, which results in variability in trafficking parameters. MT 

associated proteins like tau regulate kinesin dependent trafficking by influencing the 

attachment and detachment of motors with MTs (Ebneth et al., 1998; Trinczek et al., 1999).  
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4.3.3 Over-expression of Kif1A rescues the trafficking of phosphorylated vesicles 

Over-expression of motor proteins has been shown to affect higher brain functions in vivo 

by mediating transportation of cargoes. For instance, Kif17 overexpression enhances 

learning and memory in mice by trafficking N-methyl D-aspartate type glutamate receptors 

(Wong et al., 2002). In addition, over-expressing Kif1A was shown to promote hippocampal 

synaptogenesis (Kondo et al., 2012).  

Surprisingly, our results demonstrate that overexpressing Kif1A rescues the trafficking of 

S135E vesicles by enhancing their trafficking to the levels of S135A vesicles. Average speed 

and displacement of S135A and S135E with over-expressed Kif1A was almost identical 

suggesting that Syt4 motor protein binding sites are not saturated in control conditions 

with normal levels of Kif1A. Control vesicles trafficked significantly less compared to 

phosphomutants with Kif1A overexpression. Comparison of co-transport of Kif1A with Syt4 

control and S135E vesicles showed that Kif1A co-trafficked significantly more with S135E 

vesicles compared to control Syt4 vesicles (Fig 3.9). Hence, it might be the lower number 

of Kif1A motors interacting with control Syt4 vesicles that leads to less trafficking of control 

Syt4 DCVs compared to phosphomutants with Kif1A overexpression.  

4.4 Activity dependent JNK phosphorylation captures Syt4 vesicles at 

synapses 

4.4.1 Actin helps in capturing phosphorylated Syt4 vesicles at pre-synaptic sites 

We found that actin, which is highly enriched at pre-synaptic sites (Hirokawa et al., 1989; 

Cingolani and Goda, 2008), is necessary for the JNK-dependent capture of DCVs. Disruption 

of actin mobilizes phosphomimetic and control vesicles without showing any effect on 

phosphodeficient vesicles (Fig 3.11). This is consistent with previous reports that actin plays 

an important role in the mobility of DCVs in neuroendocrine cells (Oheim and Stuhmer, 

2000; Lang et al., 2000). 

Switching of cargo trafficking from microtubules to actin is known to be important for the 

delivery of cargoes to release sites (Heisler et al., 2011; Coles and Bradke, 2015). While 

kinesins and dyneins promote long-distance trafficking of organelles along microtubules, 

myosins drive cargo along actin for local transport from microtubules to the plasma 

membrane (Langford, 1995). The transition of cargo from microtubules to actin is 
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suggested to occur through a “tug-of-war” between motor proteins, where the number of 

motors (i.e. the amount of force provided by each) can control cargo switching (Schroeder 

et al., 2010). Myosin Va interacts with DCVs (Bittins et al., 2009) and regulates their 

distribution and exocytosis in neuroendocrine cells as well as neurons (Rudolf, 2003; Kogel 

et al., 2010). If actin is disrupted as in our experiment, it might be that myosins cannot 

traffic “paused” vesicles locally into boutons via actin. This would cause kinesins to “win” 

via transportation on microtubules, resulting in increased motility of vesicles and defects 

in capture by actin at pre-synaptic sites. This data reveal that actin plays an important role 

in capturing phosphorylated vesicle at pre-synaptic sites. 

4.4.2 JNK dependent capture of Syt4 vesicles at active synapses 

We found that transiting Syt4 DCVs are captured at synapses by JNK-dependent 

phosphorylation. We examined the localisation of these Syt4 phosphomutants at synapses 

by fixed sample imaging and found that S135E was significantly more localised at pre-

synaptic sites, but there was no difference at post-synaptic sites (Fig 3.10). Also, increasing 

active JNK by expression of MKK7-JNK1 caused Syt4 vesicles to accumulate at synapses (Fig 

3.14 I). Fixed sample imaging may under-represent the localization of Syt4 S135E vesicles 

to synapses, since these vesicles are highly mobile.  

The JNK-dependent capture of Syt4 DCVs was found to be activity-dependent (Fig 3.15), 

consistent with observations at the Drosophila NMJ (Shakiryanova et al., 2006; Bulgari et 

al., 2014). Pauses are defined according to (Wong et al., 2012) as immobility of a transiting 

vesicle at a site for greater than 120 seconds, while transient visits (5 – 120 s) and bypasses 

(0 – 5 s) were also reported in DCVs trafficking in Drosophila neurons. We found that Syt4 

vesicles paused for 2 or more minutes in response to short term depolarization of neurons, 

while phosphodeficient Syt4 vesicles or Syt4 vesicles co-expressed with dominant negative 

JNK1 did not. These results showed that an increase in neuronal activity causes JNK 

dependent phosphorylation leading to capture of transiting vesicles.  

In our pause analysis of trafficking experiments without inducing activity, pauses were 

defined as a deflection in average speed by 0.1 um/s. Interestingly, we found that highly 

mobile vesicles (S135A, JNK1 (APF) or S135A/MKK7-JNK1 vesicles) pause more frequently 

but with shorter duration, whereas phosphorylated Syt4 vesicles have longer pause times 

but don’t have a high number of pauses. This suggests that not all pauses are captures and 
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capture is dependent on sufficient pause time and/or on the presence of motor proteins 

or other essential proteins involved in pausing, which may be heterogeous on DCV 

subpopulations (Bury and Sabo, 2011).  

Furthermore, we found that p-JNK was increased at synapses by increases in neuronal 

activity for 1 h., and this caused a concomitant increase in endogenous Syt4 at synapses, 

which was blocked by the JNK inhibitor SP600125 (Fig 3.17). A complete understanding of 

stimuli causing JNK activation at active synapses remains an open question. Interestingly, 

activation of NMDA receptors has been reported to increase neuronal activity and to 

activate MAP kinases, including JNK, in hippocampal neurons (Ko et al., 1998; Mukherjee 

et al., 1999).  This NMDA-induced activation of JNK depended on calcium influx (Ko et al., 

1998), which likely occurs predominantly at synapses. Calcium influx was also shown to be 

necessary for longer pause durations of synaptic vesicle protein transport vesicles at 

synapses (Sabo et al., 2006). Hence, it might be that calcium influx activates JNK leading to 

capture of DCVs at active synapses. 

We observed significant decreases in DCV mobility caused by JNK1 phosphorylation, but 

vesicles are not completely immobilized. This could indicate additional capture 

mechanisms by other JNKs, or additional kinases, which could phosphorylate additional 

sites on Syt4 or on other DCV proteins. In C.elegans motor neurons, CaMKII-dependent 

phosphorylation was suggested as a mechanism to regulate transport and polarized 

distribution of DCVs by degrading the adaptor protein liprin-alpha (Hoogenraad et al., 

2007; Goodwin and Juo, 2013). Liprin-alpha has been shown to interact with Kif1A (Shin et 

al., 2003); hence, it might be that CamKII and JNK act synergistically to regulate dense core 

vesicle distribution in mammalian neurons too. 

The capture of vesicles we observed during short term stimulation were sometimes 

reversible, consistent with observations in Drosophila (Shakiryanova et al., 2006) and for 

Sema3A-GFP harboring dense core vesicles in mammalian neurons (de Wit et al., 2006). In 

the latter study these transient “capture” events correlated with increased Sema3A-GFP 

surface puncta, suggesting that transient capture may correspond to “kiss and run” 

transient fusion events (de Wit et al., 2006). 
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4.6 Effect of phosphorylating Syt4 at S135 on the fusion properties of DCVs  

DCVs are known to fuse at both synaptic and non-synaptic sites, though preferentially at 

synaptic sites in neurons (van de Bospoort et al., 2012). Syt4-pHluorin has been used as a 

marker to visualize exocytosis of DCVs in both axons and dendrites (Dean et al., 2009; Dean 

et al., 2012; Dean et al., 2012). We found, using Syt4 control and phosphomutant pHluorins, 

that Syt4 harboring vesicles fuse in response to high KCl stimulation in axons irrespective 

of Syt4 S135 phosphorylation state. At non-synaptic sites, we found no difference in fusion 

characteristics of control, S135A and S135E vesicles, indicating that the phosphorylation 

state of Syt4 S135 doesn’t affect the fusion of vesicles at non-synaptic sites. On the 

contrary, on synaptic sites control Syt4 vesicles had a significantly higher magnitude of 

fusion compared to both phosphomutants upon KCl stimulation. S135A-pHluorin vesicles 

may exhibit less fusion because they are highly mobile, and hence, fewer vesicles are 

available for fusion at release sites. S135E-pHluorin vesicles, on the other hand, may show 

less fusion due to non-specific dropping off of S135E vesicles at sites away from docking 

and fusion sites. Proteins like Munc-13 and CAPS-1 aid in DCV fusion at docking sites. The 

absence of Munc-13 decreases the synaptic fusion rate of DCVs whereas overexpression 

has been reported to increase fusion events at non-synaptic sites, implying that Munc-13 

might be necessary for priming/docking/fusion at synapses. CAPS-1 has also been reported 

to promote fusion of immobile or tethered DCVs at synaptic sites (van de Bospoort et al., 

2012; Farina et al., 2015). Hence, if S135E vesicles were dropped too far from these docking 

sites, unloading from microtubules would not necessarily lead to more fusion. Interestingly, 

our findings that phosphomimetic vesicles were more localised to synaptic sites compared 

to phosphodeficient vesicles and that there is no difference in fusion between 

phosphomutants supports distinct roles of capture and fusion of vesicles at boutons, i.e. 

capture does not necessarily lead to fusion. This would also explain why there is more 

capture, but less fusion seen of phosphomimetic vesicles at synapse.  

 

The percentage of vesicle fusion at individual sites calculated by KCL/NH4Cl fluorescence 

also was not significantly different between control and phosphomutants at both synaptic 

and non-synaptic sites. But, interestingly, the total number of vesicles remaining after 

fusion present at synaptic sites was more than non-synaptic sites, consistent with EM data 
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indicating 1-10 DCVs at synaptic sites (Sorra et al., 2006). Though studies comparing the 

number of DCVs at synaptic versus non-synaptic sites by EM are lacking.  Quantitation of 

the numbers of DCVs at synaptic and non-synaptic sites would be informative to determine 

the distribution and efficiency of DCV release at each site. 

Syt4 phosphorylation didn’t change the fusion of DCVs in hippocampal neurons but other 

Syt isoforms or proteins may be present on DCVs to mediate fusion. Syt6, Syt7 and Syt9 

exist on DCVs in PC-12 cells and also in hippocampal neurons raising the possibility that 

these isoforms may regulate DCV fusion in neurons (Zhang et al., 2011; Dean et al., 2012; 

Wong et al., 2015). Since Syt4 harbors an aspartate-to-serine substitution in its C2A domain 

leading to decreased Ca2+ sensitivity, it is probably not the key Syt isoform involved in fusion 

of DCVs but might be involved in Ca2+ independent functions (von Poser et al., 1997). 

Recently, Syt6 has been shown to trigger BDNF release in hippocampal neurons (Wong et 

al., 2015). According to our findings, Syt4 is at least involved in trafficking and capture of 

DCVs, and negatively regulates their fusion (Dean et al., 2009). Other Syt isoforms of 

proteins present on the same vesicles may promote the fusion of captured DCVs.  

4.6 Conclusions and future perspectives 

To summarize, we found that the majority of DCVs harbour the synaptotagmin isoform, 

Syt4 in hippocampal neurons. Trafficking of DCVs in dendrites was significantly less than in 

axons. In axons, these DCVs are highly mobile on microtubules and traffic circuitously as 

described by the “Sushi-model” first shown in the Drosophila NMJ (Moughamian and 

Holzbaur, 2012; Wong et al., 2012). Syt4-labelled DCVs traffic in a circuitous pattern, i.e 

either anterograde or retrograde directions and mainly switch directions at the distal end 

of axons near the growth cone. Following synapse formation, trafficking of DCVs harboring 

phosphorylated Syt4 decreases. In comparisons of phosphodeficient (S135A) and 

phosphomimetic (S135E) Syt4 phosphomutants we found that phosphorylated Syt4 

vesicles have reduced motility and are more localised to pre-synaptic sites in mature 

neurons. Interestingly, the Kif1A motor protein showed less interaction with S135E 

vesicles, potentially explaining the reduced trafficking of phosphorylated vesicles. Actin 

was also necessary for the capture of phosphorylated vesicles in axons. Furthermore, by 

several lines of evidence, we showed that JNK is the kinase responsible for phosphorylating 
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Syt4 at S135 and causing activity dependent reversible vesicle capture at synapses (Fig. 

4.1).  

 

 

 

Figure 4.1 Proposed model for the capture of dense core vesicles by JNK dependent 

phosphorylation of Syt4 at S135 at active synapses in hippocampal neurons 

Dense core vesicles undergo long range trafficking on microtubules via the microtubule associated motor 

protein Kif1A. These vesicles follow a circuitous trafficking pattern termed the “sushi model” in which 

switching of directions is mainly seen at the distal end of axons, near the growth cone. Syt4, a synaptotagmin 

isoform present specifically on DCVs interacts with Kif1A resulting in vesicle mobility. At active synapses, JNK 

phosphorylates Syt4 at S135 specifically. This phosphorylation causes reduced interaction of Syt4 on vesicles 

with the Kif1A motor protein and in turn decreased vesicle mobility. A decrease in vesicle mobility promotes 

capture of DCVs at active synapses. Actin, which is enriched at pre-synaptic sites, is necessary for capturing 

DCVs. This model enhances our understanding of activity dependent capture of DCVs from the transiting pool 

of vesicles in hippocampal neurons.   

 

Although Syt4 phosphorylation at S135 was found to play a significant role in trafficking 

and capture of vesicles, there was no difference in the fusion of phosphodeficient vesicles 
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compared to phosphomimetic Syt4 vesicles at synaptic or non-synaptic sites in 

hippocampal neurons. 

Our study furthers the understanding of capture mechanisms of DCVs at active synapses in 

hippocampal neurons. The continual circuitous trafficking of DCVs in the axon and their 

activity-dependent capture at synaptic sites, provides a mechanism that allows for both 

fast and synapse-specific delivery of DCVs to release sites in neuronal processes. Future 

work is needed to understand the complete molecular machinery involved in precise 

spatial and temporal regulation of motor-cargo interactions important for DCV recruitment 

and fusion at release sites. Deducing the local signalling pathway at active pre-synaptic sites 

that causes JNK phosphorylation would aid in understanding the activity-dependent 

mechanism of DCV capture via JNK and its role in normal physiological conditions. 

Alterations in axonal transport, capture and fusion of DCVs has been implicated in 

neurodegenerative diseases, including Huntington’s, Alzheimer’s disease and autism 

(Chevalier-Larsen and Holzbaur, 2006; Sadakata and Furuichi, 2009; Dubey et al., 2015). 

Proper axonal transport and activity-dependent capture of DCVs is likely an important 

mechanism for efficient synaptic function. An understanding of the basic mechanisms of 

trafficking, capture and fusion of DCVs and how these mechanisms affect synaptic 

modulation and function may uncover novel strategies for combating neurodegenerative 

diseases in the future. 
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6. Abbreviations 

°C   degree Celsius 

ACh    Acetylcholine  

ADP   Adenosine diphosphate 

APP    Amyloid precursor protein 

ATP                  Adenosine triphosphate 

BDNF               Brain derived neurotrophic factor 

Ca2+                Calcium  

CaCl2               Calcium chloride 

CAPS-1   Calcium-dependent activator protein for secretion 1 

Cat. No.  Catalogue number 
CgA   Chromogranin A 

cm   centimeter 

Co-IPs   Co-immunoprecipitation 

CO2   Carbon dioxide 

DCVs   Dense core vesicles 

ddH2O   double distilled water 

Def   Phospho-deficient 

dH20   distilled water 

DIC objective  Differential interference contrast objective 

DNA   deoxyribonucleic acid 

dNTPs   Deoxynucleotide Triphosphate 

E.coli   Escherichia coli 

e.g.   for example, exempli gratia 
E18-19   Embryonic days 18-19  

EDTA   Ethylenediaminetetraacetic acid 

em   emission 

et al   and others, et alli 
etc.   extra, et cetera 

ex   excitation 

F-actin   Filamentous actin 

Flag-tag  FLAG-octapeptide of sequence DYKDDDDK for labeling and 

purification of fusion proteins 

G-actin   Globular actin 

GABA   Gamma-Aminobutyric acid (γ-Aminobutyric acid)  

GFP   Green Fluorescent protein 

GPS    Group based prediction software 

GTP   Guanosine-5'-triphosphate 

h   hour  

HCl   Hydrochloric acid 

HEK cells  Human Embryonic Kidney 293 cells 
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HRP   Horse radish peroxidase 

i.e.   that is, id est 

JIP1   JNK interacting protein 1 

JNK   c-Jun N-terminal kinase 

KCl   Potassium Chloride 

kDa   kilodalton 

KO   Knockout 

LB   Lysogeny broth 

m   meter  

Map2   Microtubule associated protein 2 

MAPK   Mitogen activated protein kinase 

MAPKK  Mitogen activated protein kinase kinase 

MAPKKK  Mitogen activated protein kinase kinase kinase 

mg   milligram 

MgCl2   magnesium chloride 

min   minutes 

ml   millilitres 

mM   millimolar 

MTs   Microtubules 

Na+   Sodium ion 

Na2HPO4  Sodium hydrogen phosphate 

NaCl   Sodium chloride 

NB+   Neurobasal plus media (with B-27 and Glutamax supplements) 

NGF   Nerve Growth Factor 

Nh4Cl   Ammonium chloride 

nm   nanometer 

NMJ   Neuromuscular junction 

NPY   Neuropeptide Y 

NSF N-ethylmaleimide-sensitive factor 

NTs   Neurotransmitters 

P0   Postnatal day 0 

PAGE   Polyacrylamide Gel Electrophoresis 

PBS   Phosphate buffer saline 

PC-12 cells  Pheochromocytoma cells   

PCR   Polymerase chain reaction 

PDL   Poly-D-lysine  

PEI   Polyethylenimine 

PSD-95   Postsynaptic density -95 

Rab-GDI  Rab GDP dissociation inhibitor 

rER   rough endoplasmic reticulum 

RFP   Red fluorescent protein 

Rpm   revolution per minute 
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s   second 

S135   Serine at 135 position 

SAPK1   Stress activated protein kinase 1 

SDS   Sodium dodecyl sulphate 

SNAP-25  Synaptosomal-Associated Protein 25 

SNARE Soluble NSF Attachment Protein Receptor 

SVs   Synaptic vesicles 

Syb 2   Synaptobrevin 2 

Syt4 -/-  Synaptotagmin 4 knockout 

Syt4   Synaptotagmin 4 

Syts   Synaptotagmins 

TAE   Tris base, acetic acid and EDTA buffer 

TPY motif  Threonine-Proline-Tyrosine motif 

UV   ultraviolet  

V   voltage 

VAMP2  Vesicle associated membrane protein 2 

vGAT   vesicular GABA transporter 

vGluT   vesicular Glutamate transporter 

w/v   weight/volume 

WT   Wild type 

μl   microliter 

μM   micromolar 
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