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Summary

Many multiscale segmentation methods have been proven to work successfully for detecting
multiple change-points, mainly because they provide faithful statistical statements, while
at the same time allowing for efficient computation. Underpinning theory has been studied
exclusively for models which assume that the signal is an unknown step function. However,
when the signal is only approximately piecewise constant, which often occurs in practical
applications, the behavior of multiscale segmentation methods is still not well studied. To
narrow this gap, we investigate the asymptotic properties of a certain class of multiscale
change-point segmentation methods in a general nonparametric regression setting.

The main contribution of this work is the adaptation property of these methods over a
wide range of function classes, although they are designed for step functions. On the one
hand, this includes the optimal convergence rates (up to log-factor) for step functions with
bounded or even increasing to infinite number of jumps. On the other hand, for models
beyond step functions, which are characterized by certain approximation spaces, we show
the optimal rates (up to log-factor) as well. This includes bounded variation functions and
(piecewise) Holder functions of smoothness order 0 < o < 1. All results are formulated in
terms of LP-loss, 0 < p < oo, both almost surely and in expectation. In addition, we show
that the convergence rates readily imply accuracy of feature detection, such as change-
points, modes, troughs, etc. The practical performance is examined by various numerical
simulations.
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1 Introduction

We assume that the observations are given through the general regression model

i=f(2)+e i=0..n-1, (L1)

where " = (&, ...,&_,) are independent centered sub-Gaussian random variables.
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Figure 1.1: Examples of a regression step function (left) and a non-step function (right)
with Gaussian noise

When f is a piecewise constant function with an unknown number of change-points (see
e.g. Figure 1.1 left), model (1.1) is often referred to as change-point regression model,
the related (non-parametric) problem turns into estimating the number and locations of
change-points, as well as the function value on each constant interval. The corresponding
study has a long and rich history in the statistical literature (see Basseville and Nikiforov,
1993; Brodsky and Darkhovsky, 1993; Csorgé and Horvath, 1997; Chen and Gupta, 2000;
Lai, 2001; Wu, 2005, for a selective survey). Recent years have witnessed a renaissance in
change-point inference motivated by several applications which require fast and efficient
finding of many change-points. To this end, many change-point segmentation methods have
been lately proposed, which are either based on dynamic programming (Boysen et al., 2009;
Killick et al., 2012; Du et al., 2015), local search (Scott and Knott, 1974; Olshen et al.,
2004; Fryzlewicz, 2014), or convex optimization (Harchaoui and Lévy-Leduc, 2008; Tibshi-
rani and Wang, 2008; Harchaoui and Lévy-Leduc, 2010). More recently, Frick et al. (2014)
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introduced a multiscale segmentation approach, Simultaneous MU]ltiscale Change-point Es-
timator (SMUCE). SMUCE minimizes the number of change-points under a side constraint
based on a simultaneous multiple testing procedure on all scales (length of subsequent ob-
servations), see Davies and Kovac (2001), Boysen et al. (2007), Pein et al. (2015) and Li
et al. (2016) for related estimators. Implemented by fast dynamic programming algorithms,
SMUCE and its variants were found empirically promising in various applications (see e.g.
Hotz et al., 2013; Futschik et al., 2014; Behr et al., 2016).

On the other hand, in many applications a piecewise constant function is only an approx-
imation of the underlying signal (see e.g. Figure 1.1 right). For instance, in DNA copy
number analysis, a change-point regression model is commonly assumed (see e.g. Olshen
et al., 2004; Lai et al., 2005), although a periodic trend distortion (known as genomic
waves) exists with biological evidence (Diskin et al., 2008). In this case, i.e., when f is not
piecewise constant, motivated by change-point segmentation methods, we are particularly
interested in the following problems:

(i) Can we apply segmentation methods for change-point regression settings to model (1.1)
when the true signal f is beyond piecewise constant? If so, how robust do these meth-
ods perform?

(ii) How well do they recover such functions? More precisely, what are their convergence
rates results with respect to LP-loss, 0 < p < 00?

1.1 Methodology

When the underlying signal f is in the space of cadlag functions (right-continuous with left
limits, cf. Section 2.1), following Frick et al. (2014), we introduce multiscale change-point
segmentation estimators for model (1.1), which approximate f by a step function f,, as
follows.

For a system of intervals Z, we estimate model (1.1) by solving

_ min #J(fn) subject to Tz (y"; fn) <gq, (1.2)
fnes([0,1))

where S§([0,1)) is the space of right-continuous step functions, J(f) is the set of change-
points of f, ¢ € R is a user-specified threshold, which will be chosen later, and Tz (y"; f) is
a multiscale test statistic, where

1
To(y"s f) = sup Q== D —en)| —srp,
fzgle%nl nu’ i/nel
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with s; a scale penalty to be defined later. Note that the solution to the optimization
problem (1.2) might be non-unique, in which case one could pick an arbitrary solution.
Recall that SMUCE from Frick et al. (2014) is an estimator of the form (1.2), Figure 1.2
shows SMUCE’s estimates for some classical testing signals: Blocks, Bumps, Heavisine and
Doppler (Donoho and Johnstone, 1994).

The main focus of this work is to investigate convergence rates of the estimator fn in (1.2)
with respect to LP-loss, 0 < p < oo. First, we consider the situation when f is a step
function but with an increasing number of change-points (probably to infinity). That is,
when f is in Sg(k,) with

Sulkn) = {f € 8(0.1)) : #J(f) < b, and | f]l = < L},

for k, € N and L > 0.

Then, in order to investigate the convergence behavior of fn for more general functions,
we consider functions in certain approximation spaces (c.f. Section 2.3) defined by

AV = {f € D([0,1)) : sup kT, (f) < oo}, for v > 0, (1.3)
k>1

where D([0, 1)) is the space of cadlag functions (cf. Section 2.1) and I'y(f) is the approxi-
mation error (c.f. Section 2.3) defined by

Du(f) = inf{llf ~glle g € S(0, 1)), #J(g) < k}

Furthermore, motivated by Lin et al. (2016), we show how convergence rates yield to
accurate feature detection, such as change-points, modes, troughs, etc.

1.2 Related work

Although many segmentation methods have been studied in recent years, most of them
require the underlying signal to lie in the step function space and some even need a fixed
number of changes. Only a few are studied under slightly more general models, allowing
the number of change-points to increase with number of observations, see e.g. (Zhang and
Siegmund, 2012; Fryzlewicz, 2014; Li et al., 2016). In general, nothing is known for segmen-
tation methods in the general nonparametric regression setting (1.1). Exceptions include
the convergence analysis of the jump-penalized least square estimator in Boysen et al.
(2009). There they proved that the Potts minimizer has a convergence rate of (logn/n)/?
with respect to L?-loss when f is a step function with bounded number of change-points.
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Further, they showed a convergence rate of (logn/n)Y27+1) with respect to L?-loss when
f belongs to aforementioned approximation space (1.3), and as an example, showed a con-
vergence rate of (logn/ n)a/ (204+1) with respect to L2-loss when f belongs to Holder class of
order a, 0 < a < 1. For the unbalanced Haar wavelets based estimator, Fryzlewicz (2007)
proved a convergence rate of (1/n)'/2logn when f is a step function with bounded number
of change-points, and a convergence rate of (1/n)°‘/(20‘+1) logn when f belongs to Holder
class of order o, 0 < o < 1, both with respect to L?-loss. Our work extends these results
to a class of multiscale change-point segmentation methods.

Besides theoretical interest (cf. Linton and Seo, 2014; Farcomeni, 2014), studying models
beyond piecewise constant functions is of particular practical importance (e.g. Olshen et al.,
2004; Lai et al., 2005; Diskin et al., 2008). Such a study can be regarded as robustness
analysis of segmentation methods against model misspecification. Our viewpoint concerns
robustness against a distorted step function. This is different from focusing on locations
and magnitudes of jumps for piecewise smooth functions as in Korostelev (1988), Gijbels
et al. (1999) and Bigot (2005). It is also in sharp contrast to a recent work by Song et al.
(2016) who considered a reverse scenario: a sequence of smooth functions approaches a
step function in the limit.

1.3 Main results

When f in (1.1) is a step function, the theory behind multiscale segmentation methods
in (1.2) is well-understood, including deviation bounds on the number and the location of
change-points and optimal detection of vanishing signals. This work derives convergence
rates for a sequence of piecewise constant functions with possibly increasing number of
changes (see also Frick et al., 2014; Fryzlewicz, 2014). We show that under some general
assumptions and an appropriate choice of the threshold ¢ in (1.1), it holds for 0 < r < oo

that {1 /pL/2}
) § 2%k, + 1 min{1/p, r i
an_fHLP:O<( > (10g> /2> )

n

uniformly for f € Sp(ky), both almost surely and in expectation. Combining this with
existing theory on lower bounds (Tsybakov, 2009; Li et al., 2016), yields that the multiscale
change-point segmentation estimator is minimax optimal up to a log-factor, see Section 3.1
for details.

Secondly, when f is an arbitrary function in the approximation spaces (1.3) (cf. Section
2.3 and Section 3.2), we also derive a uniform convergence rate of f,, both almost surely
and in expectation, with respect to LP-loss for any 0 < p < oo. That is,

A : /2—1/p)
1 = Tl = © (75520 g ) =575 ).
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uniformly for f in the approximation space A7. As special cases we obtain the optimal
rates n~2/3min{1/2,1/p} and p—20/QRat)min{l/2,1/p} (yp to a log-factor) in terms of the LP-
loss (0 < p < o0), both almost surely and in expectation, for f within bounded variation
and (piecewise) Holder continuous of order 0 < v < 1, respectively.

Thirdly, the convergence rates imply accuracy of feature detection, such as deviation
bounds on the locations of jumps. This again extends existing theory on piecewise con-
stant functions to more general functions (cf. Lin et al., 2016). Moreover, for non-step
functions we also get statistical justification on the detection of features, such as modes
and troughs, deduced by convergence rates, see Section 3.3. More precisely, under some
general assumptions, for an appropriate choice of ¢, it holds almost surely that

; . . kylogn
A Ten)) 1= e | min =] =O(Z ). as

where (fg,) is a sequence of step functions with up to k, jumps and A,, is the smallest
jump size of f, . For f € A7, it holds almost surely that

) 1 /logny7/(@v+D)
max{|m1(fn)mI(f)]:IeIn}:O<m<0i;n)v . ) n

where my(g) := [; g(x)dx/|I] is the mean of function g over I and Ay, is the smallest length
of intervals in Z,.

In summary, the major finding of this work is that the aforementioned multiscale change-
point segmentation methods are wniversal, in the sense that they are completely inde-
pendent of the unknown true regression function. Hence, they automatically adapt to
the unknown “smoothness” of the underlying function, no matter whether it is piecewise
constant (possibly with unbounded number of change-points) or lies in the approximation
spaces (1.3). In other words, the estimators in (1.2) are robust to the misspecification of
the true smoothness class, provided the degree of such misspecification is mild.

This work is organized as follows. In Chapter 2 we introduce some basic preliminaries and
multiscale change-point segmentation methods. Some necessary assumptions are listed
as well. In Chapter 3 we derive uniform bounds on the LP-loss over step functions with
possibly increasing number of change-points and over classical approximation spaces. We
also present some implications on feature detection from convergence rates. Theoretical
findings are supported by simulations in Chapter 4. There, we also outline implementa-
tion of multiscale change-point segmentation estimators in (1.2), and compare with other
change-point methods. This work ends with conclusion and outlook in Chapter 5.
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2 Mathematical methodology

In order to state the regression model formally, we will first introduce some notations and
terminologies, which will also be used later in this work.

2.1 Model and notation

We begin by recalling the definition of a sub-Gaussian random variable and of the cadlag
functions. We will restrict our consideration on the interval [0,1) where the regression
model is defined.

Definition 2.1.1. A random variable X € R is said to be sub-Gaussian with variance o
if its moment generating function satisfies

2

E (e*X) <e”*'/2 Vs e R, (2.1)

in this case we write X ~ subG(o?).
Definition 2.1.2 (Billingsley (1999)). Let D([0,1)) be the space of real functions f on
[0,1) that are right-continuous and have left-hand limits:

(i) For 0 <t <1, f(t+) = limg)y f(s) exits and f(t+) = f(¢).
(ii) For 0 <t <1, f(t—) = limgp f(s) exits.

Functions having these two properties are called cadlag functions.
Remark 2.1.3. A simple example of cadlag functions is the space of right-continuous change-
point functions (step functions), which is defined as

k
§([0,1)) = {f e D([0,1)) :f(1) = Y eilpr, ) (B), (2.2)
=0
O=m<mn<... < Tk41 :1>Ci5£ci+1}-

With these preparations, we now state our regression model. Suppose we observe indepen-
dent random variables Y = (y{, v%, ..., yn_;) through the regression model

y?:f(%)+§?, i=0,. .. .n—1, (2.3)
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where (&)?:_01 are independent centered sub-Gaussian random variables with the scale pa-
rameter o and the underlying signal f is in the space of cadlag functions D([0, 1)).

If f is an step function in S([0,1)), we denote by J(f) = (71, 72,..., ) the increasingly
ordered vector of change-points and by #J(f) = k the number of change-points. Let fn
be an estimator of f. If f, lies in S([0,1)) as well, we will denote the estimated number
of change-points by k and the estimated change-point locations by J ( fn) = (71,72, T})-
By intervals we always refer to those of the form [a,0),0 < a < b < 1. For abbreviation,

we write y" = (yzn)?;ol’ "= (f(l/n))?;ol and " = (gzn)?;ol

It is useful to introduce a technical concept of normality, which describes the richness of a
system of intervals.

Definition 2.1.4 (Nemirovski (1985)). A system Z = Z,, of intervals is called normal
(or c-normal) for some constant ¢ > 1, if it satisfies the following requirements:

(i) For every interval I C [0,1) with length |I| > c/n, there is an interval I in T such
that I C I and |I| > ¢~ Y1].

(ii) The end-points of each interval in Z lie on the grid {i/n:i=0,...,n —1}.

(iii) The system Z contains at least the intervals [i/n, (i +1)/n),i=0,...,n — 1.
Remark 2.1.5. The requirement (i) in the above definition is crucial, while (ii) and (iii)
are technical nature aim to the discrete sampling locations {i/n}!~;'. Examples of normal
systems include the highly redundant system Z° of all intervals whose end-points lie on
the grid (with the constant ¢ > 2), used in Siegmund and Yakir (2000), Diimbgen and
Spokoiny (2001) and Frick et al. (2014), and less redundant, but still asymptotically efficient
systems (see Walther, 2010; Rivera and Walther, 2013). Moreover, there are even normal
systems with cardinality of order n, such as the dyadic partition system, with the constant
c>4,

; a1 4
{[Z(zhﬂ,l; [Tﬂn}) :izo,...,zﬂ—1,j:0,...,uog2nj},

n

see Hotz et al. (2013) and Grasmair et al. (2015) for further information.

2.2 Multiscale change-point segmentation

Given a (normal) system Z of intervals, we introduce a class of multiscale change-point
segmentation estimators f, (see Frick et al., 2014; Pein et al., 2015; Li et al., 2016) as a
solution to

min J subject to Tz(y"; f) < q. 2.4
fes([o’l))# (f) ] (y" f) <a (2.4)



2.2 Multiscale change-point segmentation

Here g € R is a user-specified threshold to be chosen later. The side constraint in (2.4) is
defined by a multiscale test statistic

1
Tr(y"sf) = swp §——| > —en)| i g (2.5)
fzgfegnl nu’ i/nel

with s; € R a scale penalty, which can be deterministic or random, and might even depend
on the candidate f and the data y™.

The side constraint in (2.4) originates from a simultaneous multiple testing procedure on
various scales, which combines all the local likelihood ratio tests for whether the local mean
fron I of f equals to a given ¢y for every I € Z. This provides a criterion for testing the
constancy of f on each of the segments I € Z. The scale penalty sy is introduced to balance
the detection power over different scales, see Diimbgen and Spokoiny (2001), Walther
(2010), and Frick et al. (2014) for several choices, and see Boysen et al. (2009) and Davies
et al. (2012) for the unpenalized estimators, where s; = 0. Thus, the multiscale change-
point segmentation estimator yields the most parsimonious candidate over the acceptance
region of the multiple tests. The threshold ¢ in (2.4), as a trade-off between data-fit and
parsimony, can be chosen such that the truth f is admissible to the side constraint at least
with a pre-specified probability 1 — 3, i.e., q is the 1 — § quantile of the distribution of
T7(£™;0) which can be determined by Monte-Carlo simulations or based on asymptotic
considerations (Frick et al., 2014). Here,

1
g=q(B) = inf{ueR:P{sup’ &
1e7 /n|I| 'i/nzel
The choice of significance level 5 provides an upper bound on the family-wise error rate of

the aforementioned multiple testing. It immediately leads to a control of overestimating
the number of jumps #J(f) of f, i.e.,

P{#J(f) S #I(f)}=1- 5.

Also, it is possible to control instead the false discovery rate by means of local quantiles,
see Li et al. (2016) for details. For asymptotic analysis, it will be sufficient to assume
q =< v/logn, as we will see in Chapter 3.

—sfgu}zl—ﬁ}. (2.6)

Note that the solution to the optimization problem (2.4) might be non-unique. In this case,
one can pick any solution of (2.4). In practice often the constrained mazximal likelihood
estimator is used, see Frick et al. (2014) for details. In fact, if we denote the minimal
value of #J(f) in problem (2.4) by k, then we actually get a confidence set for the true
regression function f given by the function class C(q) (Frick et al., 2014):

C(g) = {g €S : #(g) = b Trly"sg) < q}. (27)
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We emphasize that our results hold not only for one particular solution (e.g. maximal
likelihood estimator) picked from C(g). The results hold for all the possible solution from
the class C(q) as well.

In the following, whenever referring to the multiscale change-point segmentation methods
by (2.4), we always assume the following.
Assumption 1. (i) The interval system Z is c-normal for some constant ¢ > 1.

(ii) The scale penalty s; satisfies almost surely that

supl|sr| < d+/logn for some constant 6 > 0.
1€l

Remark 2.2.1. We note that )
sup

I€T \/nyl|‘ Z &

i/nel

is at most of order y/logn (Shao, 1995), so Assumption 1 is quite natural. In particular, it
allows for many common scale penalties (Diimbgen and Spokoiny, 2001; Schmidt-Hieber
et al., 2013; Frick et al., 2014), and even includes a no scale penalty (Davies et al., 2012).
Thus, Assumption 1 is rather weak, which in turn makes the approach (2.4) rather general.
For instance, this includes SMUCE (Frick et al., 2014) and FDRSeg (Li et al., 2016) as
special cases. More precisely, for SMUCE we have Z = Z° and s; = \/2log(e/|I|), and for

FDRSeg we have again the same system Z = Z°, but the scale penalty s; = 1/21log(e|I|/|I]),

with I the constant segment of the candidate solution, which contains I.

For simplicity, we also assume that the scale parameter (i.e. noise level) o in model (2.3) is
known. In practice, it can be easily pre-estimated, see Dette et al. (1998) for instance.

2.3 Approximation space

The idea for our estimator comes from the setting that the underlying function f in (2.3)
is a step function. However, for practical applications, it often occurs that f is only
approximately piecewise constant (cf. Chapter 1). It is quite natural to consider extending
this method and related results to more general function spaces. When trying to do this
extension, the question arises, which properties of the underlying function f determine
the convergence and asymptotic properties. It turns out that the speed of approximation
speed of f by step functions is crucial. In order to figure this question out precisely, we now
introduce the so called approzimation error and approzimation space (cf. Pietsch, 1981;
DeVore and Lorentz, 1993; DeVore, 1998).

Definition 2.3.1 (Quasi-norm). A quasi-norm is a non-negative function || - || x defined
on a (real or complex) linear space X for which the following conditions are satisfied.

10



2.3 Approximation space

(i) If || fl|x = 0 for some f € X, then f =0.
(i) [|Afllx = |Alllf]lx for f € X and all scalars A.

(iii) There exists a constant cx > 1 such that

If +gllx < ex(Ifllx + llgllx) for f,g € X.

A quasi-Banach space (X, || - ||x) is a linear space X equipped with a quasi-norm || - ||x
such that every Cauchy sequence is convergent.

A quasi-norm || - || x is called a p-norm (0 < p < 1) if

If + 9l < I + gl for f,g € X.

Definition 2.3.2 (Approximation Schemes). An approximation scheme (X, A,) is a
quasi-Banach space X together with a sequence of subsets A, such that the following
conditions are satisfied.

(i) 44 C A, C...CX.
(ii) AA,, C A, for all scalars A and n € N.
(iii) A, UA, C Apyy for myn € N.

Let (X, A,) be an approximation scheme. For f € X and n € N the nth approximation
number (error) is defined by

Co(f, X) :=inf{||f —a||x : a € A, }.

Definition 2.3.3 (Approximation Spaces). Let 0 < p < oo and 0 < u < co. Let I* be

the space of all the bounded sequences of real numbers (z,,)32 ;, with the [*-norm

00 1/u
H(wn);'o:lllzu = (Z |~"3n|"> for u < oo,
n=1

and
|(@n)oqlliee == sup |zp] for u = oo.
n=1,...,00

Then the approximation space X/, or more precisely (X, A,)%, consists of all elements
f € X such that (n?~1/*T,,(f, X)) € 1%, where n € N.

Ezample 2.5.4. Consider the space of cadlag functions D([0,1)), equipped with the L°°-
norm. For k € N, let A; be the space of step functions with no more than k& number of
change-points, that is,

Ay = S(k) == {f € 8([0,1)) : #J(f) < k}

11



2 Mathematical methodology

It is easy to see that (D([0,1)), Ax) is an approximation scheme. For f € D([0,1)), the
approximation error is then defined by

Tu(f) = Te(f, D0, 1))) = inf{uf ~glle 1 g € S(0.1)), #J(g) < k}

Thus for any 0 < v < oo, we have the following approximation space (D([0,1)),S(k))%,

(D((0,1)), S(k)% = {f € D([0,1)) : sup Ty (f) < o0}.

k>1

For abbreviation, we will write A := (D([0,1)),S(k))& in the following.

12



3 Theory

In this chapter, we show convergence rates of the multiscale change-point segmentation
methods for the model in (2.3) with equidistant sampling points. We stress, that the
subsequent results can be easily generalized to non-equidistant (and random) sample points
x;n under appropriate conditions on the design (see Munk and Dette, 1998). This is,
however, suppressed to ease presentation.

3.1 Convergence rates for step functions

Consider first the locally constant change-point regression, i.e., the underlying signal f in
model (2.3) is piecewise constant. We introduce the class of uniformly bounded piecewise
constant functions (recall (2.2)) with up to k jumps

Su(k) = {f € S(0.1)): #(f) < k. and |fll= < L},

for k € Nand L > 0. For a step function f € Sr(k), let Ay be the smallest interval length
of f, and let Ay and Ay be the smallest and the largest jump size of f, respectively.

Now we consider a specific multiscale change-point segmentation estimator, SMUCE (Frick
et al., 2014), and derive its convergence rate with respect to L2-loss, which has not shown
in the original paper. To finish the story, we assume the underlying signal f belongs to the
following slightly constrained uniformly bounded piecewise constant functions:

BV,e,H(LaK) = {f € SL(K)|)‘f > v,e < Af < Af < H}7 (31)

where 0 < v < 1/2 and 0 < € < H < oo. Denote by f,, the SMUCE of f in model (2.3),
we deduce the uniform upper bound of L?-loss for SMUCE fn.

Theorem 3.1.1. Under the assumptions above, if we choose 5 = o(y/logn/n) and B >
n~",r>1, in SMUCE (Frick et al., 2014), then

1
tmswp  sup B (1f— £l12) (l°g”)2 ¢ (3.2)
LK) n

n—o0 feBu,e,H(

where C' is a constant only depending on v,e, H,r,c and K.

13



3 Theory

Proof. Assume #J(f) = K; < K, and define the following sets:
A= {19 €S #J(W) < Kf},
for a given ¢, with ¢, — 0,
By = {19 €S d(JW),J(f)) < cn},

where d(J(9), J(f)) := max,¢ ) minze y(p)|7 — 7|. Note that

EOﬁﬂW)ZAﬁP“ﬂﬂmzﬁﬁ+/}

n

P {Ilfu— fllp= >t} dt

In the following, we will show as n — oo,

Vvn ) m
s [P Al = e [ < (5.
f€By. n(L,K)JO logn
and .
o [P 1l > i [ (3.0
f€By . u (LK) Jyn logn

For (3.3), we have

/o\/ﬁP{Hf"_fHL2 > t} dt\/@

</ P{Ilfa~ fllzz = t, AN By }dt, |-
0 logn
Vi
+ [Tl e 2 a0 B an [
0 logn
& . n
< — > .
< ["P{lh= 1l = a0 B an [ (35)
C Cc n
VAP (A} 4 PBLY), o (3.6)

For the first part of (3.6), since 5 = 0(7vlongn)’ it follows from P(A¢) < /8 (c.f. (Frick et al.,

2014)) that
n

limsup  sup P(A°) =0.

n—co feB, . p(Lk) V1ogn

14



3.1 Convergence rates for step functions

For the second part of (3.6), if we take ¢, = 482%05" < A¢/8 and § > 1/n", from the
Theorem 7 in (Frick et al., 2014), we have

1 1
P(B;) < 2K {exp(— 16nanf exp(= q+\/210g (e/cn))?) + exp(— " —A?c)}

< 2K {exp(q® + 2log(e/cn) —

< ZKf(e—rlogn + 6—12r10gn)
14K
<

1 1
TGnanf) + exp(—znanf)}

nT‘
where the third inequality comes from ¢ < ,/8log % Thus

n

lim sup sup

P(B;)=0
n—00  feB, . u(L,K) Viogn (Br)

On the other hand, it is easy to see that if ¥ € AN By, then #J(¢) = #J(f). Thus, for
(3.5),

| e {iia= sl 2 a0
0
=E <an = flize: 1{AmBn}>
. ) 1/2
<E <”fn — fllzzs 1{AmBn}) . (3.7)
Let 7,7 = min{Tivﬁ}va = max{7;, 7}, [; = [Tf_l,Tf)ﬂh = |71 — 7|, and denote by 6;

and 6; the value of f and fn on I;, respectively, then the square of (3.7) is bounded from
above by

Ky Ky
D 10— 0P (rpy — 77 + > max{|0i1 — 0,7, 16; — 6ia YA — 7))
i=0 i=1
Ky Ky
§ ZT]Z'E (’91 — 91’2> + Z(2|0i+1 — 91|2 + 2’01 — 9,"2)Cn
i=0 i=1

<> (ni + 2¢,)E (|éi - ei|2) +2K A%,

Note that by the construction of SMUCE, we have for any interval I;,

T, 00) = ¥, = i/ T~y [210g 17 <,

15



3 Theory

here T,, is the multiscale statistic in SMUCE, }711, is the average value of Y; in the interval
I;, and |I;] is the length of I;. This implies \/n|L||Y;, —0; —t| < g+, /2log ‘I—?', ifY;, —0; <t
and éz —0; >t Then,

P{éi—ezt}SP{Y/}Z.—9§8,91—91>S}+P{}7ji—91>t}
gP{\/n|Ii||Yfi—9i—t|§q+ 2log ’”}+P{Y[i>9i+t}

7”L|Ii|t2
2

1
1
< 2exp(—g(tv/nlhi] —q - 210gm)2)

Since we already know |I;| > n; — 2¢, > 0, by monotonicity of , /2log \Tel and symmetry of

the gaussian distribution, we have

P {|él -0 > t} < 4exp(—é(t n(n; — 2cn) —q— 4 /2log )3_) (3.8)

e
n; — 2¢p

Using (3.8) to estimate

E !Az‘—9z‘!2)

|9AZ — 91| > t1/2} dt

€
q+2, /2log = 2cn )2
V/n(n;—2cn)

(q +2,/2log -5 ¢

n(n; — 2cy)

_ (412 — —g—9./ € 2
/ \/Qk)gn?m Qexp( 8(t (z QCn) q 2 210g7’]2‘—26n) )dt

vn ( —2cn)

[l
S~

_ 1/2 _ 1/2
{|9 0;] >t dt+/ m)Q {|9 0] >t }

n(nl —2cn,)

IN

q+2,/2log —F o
It remains to calculate the latter term. Let a = ﬁ;z = \/n(n; — 2¢y), then
n{ng Cn

xp(—=(% ”72_277, - —21121() dt
/(;2 € p( 8( n( c ) q gnl 2Cn) )
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3.1 Convergence rates for step functions

1,22
:/0 e 8 b—z(ac + ab)dzx (3.9)
2 [ _
(3.9) :2/ =5 (2 4+ ab)d
b* Jo
2 o0
Sb—Z ; e 8% (x + ab)d
8 2a
_b72 + ? V 271'.
Hence,
E (|e} - ei|2)
(q+2,/2log —5—)? 9 (q+2,/2log —5—)
< - ;3 +8v2r T
n(ni — 2cn) n(n; — 2¢n) n(n; — 2¢n)

which implies that the square of (3.5) is bounded by

Ky
2 )
§ T 9 [2log—C 4 4v/2m)? + (32 — 32n)} + 2K Délta’cy
— QCn Ai — 2¢p

0
e ~
<E(Kf +1)((g+2,/2log ot 4V2m)? + (32 — 32m)) + 2K A%c,.
mn

If we take ¢, = 28rlosn 414 g8 > T, then

A2
limsup  sup / {an fllzz = t dt1 / \/ —|— 16)K + 32).
n—00 feB, . u(Lk)
(3.10)

(3.4) follows by the same method as in (Li et al., 2016). That is, by construction, we have
0<i<n-—1

n—1 .
||fn—ZYi1[i,ﬂ)HL2§ max ]fn(%)—Yi)\Sq—i-\/Qlogen.
i=0

On the other hand, for f = Y Ox1pr, -, ), e have
Ky

n—1
HZYil[%,m = fllzz < ||ZY1[Z i1y — Zle [rr] o] 22
=0

17



3 Theory

Ky
+ || Z@kl[[mkw M) - f”L2
k=0 mor
1 n—1 5 K
<Yl A
=0

If n is chosen large enough such that /n/2 > Af(%)l/z + g+ v2logen, then

/;P {I1fa=fllzz > t}ar

n
) n—1 n—1

g/ P {an =D Yilp eylle + 11 Y Yils sy — fllze > t}dt
vn i=0 B i=0 men

n—1
& - K 1
g/ P{q+\/2logen+Af(nf)l/z—i-(nZ\ez‘\Q)l/z Zt} dt
n i=0

R

n—1
OO 1 2\1/2 3
< — . >
_/\/EP{nE lei]®) 2 5 dt
=0

This implies (3.4). Thus Theorem 3.1.1 is proved. O
Remark 3.1.2. The above theorem gives an upper bound for the SMUCE, combined with
the following theorem from Li et al. (2016) we show that the SMUCE is minimax optimal
up to a log-factor, with respect to L?-loss.

Theorem 3.1.3 (Li et al. (2016), Theorem 3.4). There ezists a positive constant C,

such that

. o2 1/2

~inf sup E(an—f||L2> ZC<>
fn€S(0.1)) FEBy, e 1 (LK) n

foranyo >0,0<v<1/2 and0<e< H > oo,

In fact, if the number of change-points is bounded, the estimation problem is, roughly
speaking, parametric, by interpreting the change-point locations and function values as
parameters. A rather complete analysis of this situation is provided either from a Bayesian
viewpoint (see e.g. Ibragimov and Has’minskii, 1981; Huskova and Antoch, 2003) or from a
likelihood viewpoint (see e.g. Yao and Au, 1989; Siegmund and Yakir, 2000). However, in
order to understand the nonparametric nature of the change-point regression, we now allow
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3.1 Convergence rates for step functions

the number of change-points to increase as the number of observations tends to infinity,
and we get a much more general result for the convergence rate with respect to LP-loss,
0<p<oo.

Theorem 3.1.4. Assume model (2.3) and that Assumption 1 holds with constants ¢ > 1
and § > 0. Let 0 < p, r < 0o, and let fn be the multiscale change-point segmentation
estimator from (2.4) with threshold

q = ay/logn for some a > § 4+ o/ 2r + 4,
or q=q(p) as in (2.6) with B = O(n™").

Let ky, be a sequence of non-negative integers such that ky, = o(n). Then it holds that

. min{1/2,1/p}
1fo = fl» =0 <<2k"n+ 1) (bgn)l/?) . as.

uniformly for f € Sp(ky). Furthermore, the same result also holds in expectation,

E (||fn — f||gp> -0 <(2knn+ 1 (1ogn)’“/2> ’

uniformly for f € Sp(ky).

Proof. We first consider the choice of threshold ¢ = a+/logn, and structure the proof into
three parts.

(i) Good noise case. Assume that the true signal f lies in the multiscale constraint, i.e.

Tr(y"; f) < ay/logn.

By construction, we have #J(fn) < #J(f) < ky. Let intervals {L;}, be the partition of
[0,1) by J(fn)UJ(f) with m < 2k,,. Then it holds that

) min{1/2,1/p}r

I fn = FIB, =D 10; — 0;P| 1] with fp|7, = 6; and f|;, = 6.
=0

If |I;| > ¢/n, then by c-normality of Z, there is I; € Z such that I; C I; and |I;| > |I|/c. Tt

follows that
1 .
< (a+9)4/ e n for = 6; or 6;,
n

which, together with |I;| > |I;| /¢, implies

) 1
L2160, — 0;] < 2(a + 6)y/ & (;Lg”.

1/2

|4

1
0 — — Y
TL|Il’ Z J

j/nefi
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3 Theory

If |I;| < ¢/n, then we have for some ig

A A 7
16— 03] < 105 — i + [ = F(2) | + 20 = < 2(a+6)logn +2L.

Thus, by combining these two situations, we obtain that

p
1o — £ < E:Lm@m+® iﬁf)* 3

| L;|>c/n u|I;|<c/n

2(a+ 6)+/logn + 2L)p.

3|

Note that for 0 < p < 2, by the Holder’s inequality,

Z IIi|<2(a+5) c;oi(z)PS( Z |Ii|)1p/2< Z 4(a+6)2610?f">p/2

w:|I;|>c/n i:|li|>c/n i|li|>c/n

,clogn\P/?
< 42k +1)(a + ) ,
n

and for 2 < p < o0,

Z | I3 (2(@—1—5) C:ji”) < Z (2(a+5) Clc;gn) (%)l—p/?

©:|I;|>c/n | I;|>c/n
SM (4(a + 5)210g n)p/Q.
n
Therefore, as n — oo,
P 2k, + 1)c\min{r/2,r/p} -
[ fn = fllze < 2T/p<(n)> (4(a + 5)210gn) /2(1 +0(1)). (3.11)

(ii) Almost sure convergence. Noting that (n|I])~1/2 2i/ner &' 18 again sub-Gaussian with
scale parameter o for I € Z, we obtain by Boole’s inequality that

P {Ts(y"; /) > ay/logn} <P sup ﬁ‘%&fﬁ o)V log (3.12)

_M_A'_Q —_r
<2n 202 <2n7" —0 as n — oo.

This together with (3.11) implies the almost sure convergence assertion for ¢ = a+/logn.
(iii) Convergence in expectation. It follows from (3.11) that

E (/= flzs) =E (Ifn = fllz0: Tr(y": f) < av/logn)
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3.1 Convergence rates for step functions

+ B (1 fa = FI0 Tr("s 1) > av/logn)
(2]{;n;—1)c>min{7‘/2,’r/17} (4(0, n 5)210g n)r/2(1 i 0(1))

+ B (Ilfo = fll70: T2y £) > ay/logn) .

Sz?"/:t)(

We next show the second term above asymptotically vanishes faster than the first one.
Note that

B (1fu — £ T £) > ay/logn)
onp/2
:/0 P {”fn fHLp = U;Tz(yn;f) > a\/@} ; ’r‘/p 1du
b P 12 Tty ) > 0o} D

2nP

<or/Ppr/2p {TI(yn; f) > a\/logn} +/ P {an —fl5, = u} %ur/p—ldu
2np/2
r/p+1, —r/2 > £ p C r/p—1
<ot [ P {a fll > ) Sl (3.13)
2np/2

where the last inequality is due to (3.12). Introduce functions g = fool Yi' L/, (i41) /n)
and h = Z:‘L;ol (/1)1 /n (i+1)/n)- Then, with notation " := {£'}}0 0, ()4 = max{z,0}
and s := (2r — p)4, it holds that
1o = £ <3770+ (o = gl + llg = Rl + 12 = FI7,)
<800+ ((a + 67 (togm)"? - n" €, + (2L)")

<307+ ((a+ 0" (log )/ + n P/ gn|p 4+ 2LY?).

Thus, for large enough n we have

> P r/pl
/Q/QP{an fIIE, >u}p du

np

> (p—1+ p/2 y p—p/(p+s)||en P Tur/r1
< P:3 (a+6)P(logn)?’= +n 1€ 1 Dpss + (2L)P ) > w pu du
2

np/2

) n—1
</ P 3(1+8/p)(p*1)+l Z‘gn‘ms > yirs/o U1,
= Jnp/2 ni 0 ’ B p

p/2 P

<31+s/P)(p-1+ | ( Z|£n|p+5> /oO Ty G=n/r=24, <O(n/?),
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where the last inequality holds by the fact s > 2r — p. Combining this with (3.13) leads to

E (Ifa = £l Tr(y"s £) > av/logn) = O(n~"7?)
= 0<(n*1(2kn + 1))min{r/p’r/2} (log n)r/2>.

This concludes the proof for ¢ = a+/logn.

Finally, we consider the choice of threshold g = ¢(). The corresponding assertions follow
readily from the proof above, by noting the facts that q(3) < ay/logn for some constant a,
due to (3.12), and that P {Tz(y"™; f) > q(5)} = O(n™") by the choice of § =O(n~"). O
Remark 3.1.5. In the above theorem, we note that the choice of the only tuning parameter
q is universal, i.e., completely independent of the (unknown) true regression function. One
can easily obtain a lower bound of order (k,/n)™™1/21/P} on the best possible rate in
terms of LP-loss, 0 < p < oo, by standard arguments based on testing many hypotheses
and information inequalities (cf. Tsybakov, 2009; Li et al., 2016). Thus, the multiscale
change-point segmentation method adapts to the underlying complexity of the truth, and
is up to a log-factor minimax optimal over classes S (k,) with different choices of k,,
such that k, = o(n), in particular, k, =< n?, 0 < 6 < 1. This includes the case § = 0,
where, by convention, k,, is finite. Moreover, we point out that the choice of threshold ¢
is independent of the specific loss function, but depends on the order r of the moments of
the loss.

3.2 Robustness to model misspecification

In practical applications the underlying function in model (2.3) is usually not a precise
step function. As a robustness study, we next consider the convergence behavior of the
multiscale change-point segmentation methods for more general functions. Using the ter-
minology introduced in Section 2.3, we consider the following approximation space.

AT = {f € D([0,1)) : sup KT(f) < oo}, for 4 > 0,
k>1

and the subclasses

Al = {f € D([0,1)) : sup kT(f) < L, and ||f||ze < L}, for v > 0 and L > 0,
k>1

where I'y(f) is the approximation error defined by

Du(f) = inf{llf ~glle g € S(0.1)), #J(g) < k} (3.14)
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3.2 Robustness to model misspecification

Note that A” = J;-qA]. The order ~ of these spaces (or classes) reflects the speed of
approximation of f by step functions as the number of change-points increases. In addition,
it is worth noting that if we consider instead the L9-loss only for a fixed ¢, then we can
replace ||f — gllz~ by ||f — gllze in the definition (3.14) of the approximation error Ag.
This will slightly enlarge the approximation spaces.

The rates of convergence for these spaces (or classes) are provided in the following theorem.

Theorem 3.2.1. Assume model (2.3) and that Assumption 1 holds with constants ¢ > 1
and 6 > 0. Let 0 < p,r < oo, and let f, be the multiscale change-point segmentation
estimator from (2.4) with threshold

qg = av/logn for some a > § + o/ 2r + 4,
or q=q(p) as in (2.6) with = O(n™").
Then it holds that

; — 2 i 7+ (/2-1/p)4
1o = 1l = 0 (72 mn 020 ogn) ) s,
uniformly for f € A]. Furthermore, the same result also holds in expectation,
o . +(1/2—1/p)
B (L~ 11ir) = © (o =m0 gy ),

uniformly for f € AJ.

Proof. The idea behind is that we first approximate the truth f by a step function f,
with O(ky,) jumps, and then treat fj as the underlying “true” signal in model (2.3) (with
additional approximation error). In this way, it allows us to employ similar techniques as
in the proof of Theorem 3.1.4. To be rigorous, we give a detailed proof as follows.

Firstly, we consider the choice of threshold ¢ = a+/logn.
(i) Good noise case. Assume for the moment that the observations y" = {y?}"~; from
model (2.3) are close to the truth f in the sense that the event

] .
G, = y”:iug ‘Zy?—f(l)}—sjgao\/@
€

TL|I| i/nel "
holds with ag = § + o0+/2r + 4. Now let

oo K 2L )2/(27+1)( n )1/(2v+1)]

a — ag logn

Note that f € Az, so for every n, by means of compactness argument, there exists a
step function f, € S([0,1)) with #J(fr,) < k, such that ||f — fg, |z~ < kn L. By
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introducing additional change-points at {z/kn}fgfl into fkn, one can construct another
step function fy, with #J(fr,) < 2k, such that its largest segment length < 1/k, and
If — fi |z < 2k L. Then

1 ) 1 7
Tr(y"™; fr,) < ‘E -) - ‘+ ’E - —’—
W™ ) f ?elg I ol Z'/nEI(f(n) CI) il_lelg o] i/nely f(n) Sy
kn =CI O

§2n1/2k57*1/21} + apy/logn < ay/logn.

That is, fk, lies in the constraint of (2.4). Thus, by definition, #J(fn) < #T(fr,) < 2kn.
Let intervals {I;}I", be the partition of [0,1) by J(fn) U J(fx,) with m < 3k,. Then

I fo = frallie =Y (0 = 62711 with fulr, = 6; and f, |1, = 6;.
=0

If |I;| > ¢/n, there is I; € T such that I; C I; and |I;| > |I;|/c. Then,

1 logn -
0— — 71 < (a+0)4/ for 6 = 0; or 6;,
A Z Y; (a+0) . or or

j/nel;
which, together with |I;| > |I;| /¢, implies

A 1
L2160, — 6;] < 2(a + 8)y/ & (;Lg".

If |I;| < ¢/n, then we have for some ig, jo

. . io
6] < 16: = i | + [, = FC2)| + 1l < 2(a+0)V/logn + L,

Ji _
and (6i] = £, ()] < I = fillz + 11|z < (277 + 1L,

which lead to

A . I
10; — 0;] < 10;] + 105] < 2(a + 6)y/ Oi” +2(k7 + 1)L

Thus, by combining these two situations, we obtain that

" clogn\?
RN S RN

i:|I;]|>c/n
+ > (2(a+5)\/10gn+2(k;7+1)L>p

| I;|<c/n

C
n
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3.2 Robustness to model misspecification

Then, with a similar argument as for (3.11), we obtain as n — oo

3kn + 1)C)min{1,p/2}(1

1o fuls < 2(4(a+ 5)108m) " (* Fo(1),

n

which together with a triangular inequality leads to

3kn, + 1)c>min{7’/p7r/2}

1 fn — 7 < 2@/PF0" (4(a + 6)2log n) T/Q(( (1+0(1)). (3.15)

n

(ii) Rates of convergence. The rate of almost convergence is a consequence of (3.15) and
the fact that, due to (3.12),

1
limsup P {G;} < limsupP supi‘ &' > (ag —0)/logn p =0.
n—o00 { } n—o00 1€ wn\[\ i/%E:I ( )

Similar to the proof step (iii) of Theorem 3.1.4, we drive from (3.15) that, as n — oo,
E (Ilf— fll10)
=& (Ifo — fl0:6n) + B (Ifn — 155 65)
<E ([ fllisi0n) + 2770 *P G0} + [
2nP
§0<(10g n)r/Q (nflkn)min{T/PuT/2}> + O(nfr/2)
-0 ((log n)T/2 (n—lkn)min{r/pvr/Q}) ’

o0

F_ P > /1
Pl = 71 = uf

which shows the rate of convergence in expectation.

Lastly, for the choice of threshold ¢ = ¢(f8), the proof follows in the same way as above,
based on the facts that ¢(8) < a+/logn for some constant a, due to (3.12), and that
P{G:} = O(n™") by the choice of 3 = O(n™"). O
Remark 3.2.2. Similar to Theorem 3.1.4, the above theorem shows that the multiscale
change-point segmentation method with a universal threshold automatically adapts to the
smoothness of the approximation spaces, in the sense that it has a faster rate for larger
order . However, unlike in Theorem 3.1.4, we assume the constant a in the definition of
the threshold ¢ should be strictly greater than § + o+/2r + 4, which is necessary since the
constant hidden in the O notation tends to infinity as a — § + ov/2r + 4.

Ezxample 3.2.3. (i) (Piecewise) Hélder functions. For 0 < a < 1 and L > 0, we consider
the Holder function classes

H(0,1)) := {f € D(0,1)) : [|fl|z= < L and
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|f (1) = f(x2)] < Llay — 2| for all m1, 25 € 0,1)},

and the piecewise Holder function classes with at most x jumps

wrn((0,1)) = {f e D([0,1) : there is a partition {I;}\_,, with [ <, of [0,1)
such that f{I_ € H7(I;) for all possible z}

Obviously, the latter one contains the former as a special case when x = 0, that is,
H§ 1 ([0,1)) = HP([0,1)). It is easy to see that H{([0,1)) C A%, with L' > L, and
He,([0,1)) €AY, with L' > L(x + 1)*T1/2 (cf. Boysen et al., 2009).

It is known that the fastest possible rate over H§([0,1)), 0 < o < 1 with respect to the
LP-loss, 0 < p < 00, is at most of order np—2¢/(2a+1)min{1/2,1/p} (see eg. Ibragimov and
Has’minskii, 1981; Ibragimov and Khas'minskii, 1982). Thus, as a consequence of Theo-
rem 3.2.1, the multiscale change-point segmentation method with a universal threshold is
simultaneously minimax optimal (up to a log-factor) over H7([0,1)) and Hg[([0,1)) for
every k € Ng, 0 < o < 1 and L > 0, that is, adaptive to the smoothness order « of the
underlying function.

(i) Bounded variation functions. Recall that the (total) variation ||-||py of a function f is
defined as

[fllrv == SUP{Z!J"(%H) —flz)|:0=20 < <apy1=1,me N}.
=0

We introduce the cadlag-bounded variation classes
BV.([0,1) == {f € D([0,1)) : | fllz < L and || f||rv < L}  for L > 0.
Elementary calculation, together with Jordan decomposition, implies that
BV ([0,1)) C AL, for L' > L.

Since the Hélder class H}([0,1)) € BV([0,1)), the best possible rate for BV([0,1))
cannot be faster than that for H} ([0,1)), which is of order n=2/3min{l/21/p} Then, Theo-
rem 3.2.1 implies that the multiscale change-point segmentation method attains the min-

imax optimal rate (up to a log-factor) over the bounded variation classes BV (]0,1)) for
L>0.

We point out that the convergence rates of the multiscale change-point segmentation meth-
ods in the examples above coincide with the rates reported in Boysen et al. (2009) for jump-
penalized least square estimators, while they are faster than the rates reported in Fryzlewicz
(2007) for the unbalanced Haar wavelets based estimator, with the difference being in log-
factors. All these examples concern the approximation spaces A?Y for v < 1. Note, however,
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3.3 Implications of the convergence rates

that those for v > 1 do not contain functions of higher smoothness, such as Holder func-
tions with smoothness order @ > 1, since it is known (Burchard and Hale, 1975) that if
f is piecewise continuously differentiable (i.e. piecewise C!), and if f lies in AY for some
~v > 1, then f is piecewise constant, see also (Boysen et al., 2009, Remark 1).

3.3 Implications of the convergence rates

The convergence rates not only reflect the average performance in recovering the truth over
its domain, but also, as a byproduct, lead to statistical justification on the detection of
features, such as change-points, modes, and troughs, etc. (see also Lin et al., 2016).

We begin with a theorem which was shown in Lin et al. (2016).

Theorem 3.3.1 (Lin et al. (2016), Theorem 8). Let f be a piecewise constant func-
tion, and f be an estimator that satisfied the error bound ||f — fI2. = Op(Ry). Assume
that an/)\fc = o(Ay). Then,

. nR,
d = 1 e _= —_— . 1
(J(f),J(f)) Tel?f}},fmg}i?n)h 7 01@( Y ) (3.16)

The above theorem shows the approximate recovery in change-point problems from L?-loss.
With the help of this theorem, combining the convergence results we obtained, we show
the following theorem.

Theorem 3.3.2. Assume model (2.3) and that Assumption 1 holds with constants ¢ > 1
and § > 0, and that fn is the multiscale change-point segmentation estimator from (2.4)
with threshold

q = ay/logn for some a > § + o/ 2r + 4,
or q=q(p) as in (2.6) with = O(n™"),

for some 0 < r < oco. Then

(i) Let fr, be a sequence of step functions with up to k, jumps. By A, and X\, denote
the smallest jump size, and the smallest segment length of f,, , respectively. If

k,logn
nA, A2

-0 as n — 0o

it holds almost surely that

. ) ) knlogn
d(J(fn); I (fr,)) = el reatt )|T —fl= O( A2n )
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(ii) For n € N, let Z,, be a collection of intervals, and X\, the smallest length of intervals
in Iy, i.e. \p :=min{|I|: I € Z,,}. Then for any f € A7

. 2y+1
maxc{[my(fo) = mi(f)| : [ €L} =0 <\/1Tn<1°fb”)7/( ! )>, a..
where m(g) := [; g(x)dx/|I| is the mean of function g over I.

Proof. From Theorem 3.1.4, take p = 2 and r = 2, we have || f — [l = (9(1“"1%) almost
surely. By the assumptions, we have

kylogn
And2

— 0 as n — 00,

take R, in Theorem 3.3.1 as (kplogn)/n, we get the first result.

For the second part, similarly, taking p = 2 and r = 2 in Theorem 3.2.1, we have
A 1
1o = fllze = Q=227 @,
n

Combining with the fact

1f = fllzz = VA max{|mi(fa) = mi(f)] : T €T},

we get the result. O
Remark 3.3.3. The rate in Theorem 3.3.2 (i) in particular applies to SMUCE (Frick et al.,
2014) and FDRSeg (Li et al., 2016), where rates of the same order are reported, and it
is of the fastest order known until now (Fryzlewicz, 2014). It, moreover, implies that
P {#J(fn) > #J(fkn)} — 1, which together with the fact (by the choice of threshold q)
that

P {#7(f) > #J(fy)} < OM0) >0

leads to the consistency of the multiscale change-point segmentation methods in estimating
the number of jumps, that is,

P {#J(fa) = #7(fr,)} = 1.

under the setting specified in Theorem 3.3.2 (i). This coincides with the consistency result
in Frick et al. (2014), where they induced it by a different approach.

The local means of my(f) over a collection of intervals I actually shed light on the shape of
f, such as increases and decreases (thus modes and troughs). In fact, for disjoint intervals
I, I such that mp, (f) < mp,(f), if )\T_Ll/2(log n/n)" @+ 5 0, then it holds for sufficiently
large n that

m (fn) <mp (fn)a
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3.3 Implications of the convergence rates

by Theorem 3.3.2 (ii). In other words, an increase (or decrease) of f on the convex hull
conv(I; U I3) of the union of I; and I eventually leads to an increase (or decrease) of f
on conv(Iy UIy). Further, by selecting Z,, as a fixed partition that captures the modes and
the troughs of f, one can show that

P {#modes(fn) > #modes(f), #troughs(fn) > #troughs(f)} — 1, as n — oo.

Another consequence of Theorem 3.3.2 (ii) is a control of the estimation accuracy of jump
locations for general functions f in A7. Define for f € A" the jump locations of f as J(f) :=
{z: f(z) # f(z—)}, and the smallest jump size as Ay := min {|f(z) — f(z—)| : = € J(f)}.
By setting Z,, := {[z,x + \,) or [x — A\, z) : x € J(f)}, with A, < d(J(fn), J(f)), one can
easily obtain from Theorem 3.3.2 (ii) that

A . 1 logn\7/(27+1)
4fS‘mln(f)_mln(fn)‘:(o(m(oi >v v+ ) a.s.

for some appropriately chosen I,, € Z,,. This further implies that

A B 1 slogny2v/(2v+1)
d(J(fn),J(f)) =0 (Af< - ) > a.s. for every f € A7.

As step functions lie in AY for all v > 0, the above result “formally” reproduces Theo-
rem 3.3.2 (i) for the case that the step function f is fixed, by letting v tend to infinity.
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4 Implementation and Simulation

We first give a brief outline of the implementation of multiscale change-point segmenta-
tion methods, then investigate the performance of these methods by a couple of simula-
tions.

4.1 Implementation

Note that in the definition of multiscale change-point segmentation method we consider
only the local constraints on the intervals where candidate functions are constant. This
ensures the structure of the corresponding optimization problem (2.4) to be a directed
acyclic graph, which makes dynamic programming algorithms (cf. Bellman, 1957) appli-
cable to such a problem. Moreover, the computation can be substantially accelerated
by incorporating pruning ideas as recently developed in Frick et al. (2014), Pein et al.
(2015) and Li et al. (2016). As a consequence, the computation complexity of multiscale
change-point segmentation methods can be even almost linear in terms of the number of
observations, in case that there are many change-points, see Frick et al. (2014), Pein et al.
(2015) and Li et al. (2016) for further details.

The multiscale change-point segmentation estimator can be computed by a pruned dynamic
programing algorithm followed in Frick et al. (2012) and Futschik et al. (2014). We will
briefly outline the algorithm in the following, see Frick et al. (2014) for details. Note that a
change-point segmentation estimator fn can be identified with the vector (él, v én) e R"”
where 0; = f,(i/n). Next, for a given ¢ € N on an interval {k, ...,1}, we define the local
cost of ¢ on {k,...,l} as

h(k, l, c, y”) ifmax[c[k/n,l/n) \/ﬁ‘zunel(y? — C)‘ — Sy S q

dk7l (yn7 C) =
o0 else,

where h(k,l,c,y™) is a cost function whose definition is based on the selection method of
the solutions to (2.4). For instance, if we use the maximum likelihood method, as the
authors did in SMUCE, then h(k,l,c,y™) can be defined as the negative log-likelihood.
The optimal costs on the interval {k,...,I} are then defined by dj; = mincer di;(y", c). If
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4 Implementation and Simulation

di, < 00, we say that ci; is the optimal parameter if di; = dj 1 (y", cx). If di; = oo then
no ¢ € R exits such that the multiscale constraint is satisfied on {k,..,}.

Now we outline the dynamic programing approach to solve (2.4). To do this, we first
compute the optimal costs d, := dy, for p = 1,2,..., and the corresponding parameter
values ¢y if d, < co. If di 11 = oo then we save the latest feasible index by Ry = p.
For all p > Ry at least one new change-point has to be added in order to satisfy the
multiscale constraint. Note that for 1 <1 < Ry we can always find an estimator f (I,p) =
crilqr,. gy + c+1pl{41,...py Which has the lowest costs on its constant pieces given the
jump location .

By setting

l(p) = argmindy ; + di41,
1<i<Ry

we find that f(p) = f(I(p),p) is the estimator on the interval {1,...,p} with the lowest
cumulative costs dj, := dy y(p) + djp)+1,, among all the piecewise constant functions with
one change-point. Iterate this procedure until dj11,41 = oo for all 1 <[ < Ry and then
set Ry =p.

Now assume for k > 1, we already know Ry_1 and Ry, and for Ri_1 < [ < Ry, the estimator
f(1) has the lowest cumulative costs d; with k change-points on the interval {1,...,1}. Then
for p > Ry,

f,p) = fF(D1qy + crrplign,. p

is an estimator with k41 change-points on the interval {1, ..., p} with the lowest cumulative
costs given that the last change-point is at [. Again, by setting l(p) = arg ming, | «<p, di+
djy1, we obtain the estimator f(p) = f(I(p),p) with the lowest cumulative costs d, =
d1(p) + di(p)+1,p- Proceed these procedures until diy1 541 = oo for all Ry <1 < Ry (then

define Ry = p and iterate) or until p = n (then we get our estimator f,, = f(n)).

4.2 Simulation by SMUCE

We now investigate the performance of multiscale change-point segmentation methods from
various perspectives. For brevity, we only consider a particular multiscale change-point
segmentation method, SMUCE (Frick et al., 2014), and stress that the results are similar
for other multiscale change-point segmentation methods (which are not shown here), see
e.g. Li et al. (2016) for a further simulation study. For SMUCE, we use the implementation
of an efficient pruned dynamic program from the CRAN R-package “stepR” (version 1.0),
we select the system of all intervals with dyadic lengths for the multiscale constraint,
and choose ¢(f) by (2.6) as the threshold, which is simulated by 10.000 Monte-Carlo
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4.2 Simulation by SMUCE

simulations. In what follows, the noise is assumed to be Gaussian with a known noise level
o, and SNR denotes the signal-to-noise ratio || f||z2/0.

4.2.1 Stability

We first examine the stability of multiscale change-point segmentation methods with re-
spect to the significance level 8 in (2.6). The test signal f (adopted from Olshen et al.,
2004; Zhang and Siegmund, 2007) has 6 change points at 138, 225, 242, 299, 308, 332,
and its values on each segment are -0.18, 0.08, 1.07, -0.53, 0.16, -0.69, -0.16, respectively.
Figure 4.1 presents the behavior of SMUCE with threshold g = ¢(8) for different choices
of significance level 5. In fact, for the shown data, SMUCE detects the correct number of
change-points, and recovers the location and the height of each segment in high accuracy,
for the whole range of 5 € [0.06,0.94]. For smaller 5 (< 0.06), SMUCE tends to underesti-
mate the number of change-points (see the second panel of Figure 4.1 for example, where
the missing change-point is marked by a vertical line), while, for larger g (> 0.94), it is
inclined to recover false change points (as shown in the last panel of Figure 4.1). Note that
in either case the estimated locations and heights of the remaining segments (away from
the missing/spurious jumps) are fairly accurate. This reveals that SMUCE is remarkably
stable with respect to the choice of j.

4.2.2 Different noise backgrounds

We next investigate the impact of noise level (or equivalently, of the SNR) on multiscale
change-point segmentation methods. We consider the recovery of the Blocks signal (Donoho
and Johnstone, 1994) for different noise levels. The estimation by SMUCE with significance
level § = 0.1 is summarized in Figures 4.2. It shows that SMUCE recovers the signal rather
well for low and medium noise levels, while misses one or two tiny features for high noise
level.

4.2.3 Robustness

Furthermore, we study the robustness of multiscale change-point segmentation methods
in case of model misspecification. To that end, we introduce a local trend component as
in Olshen et al. (2004) and Zhang and Siegmund (2007) to the test signal f in Section 4.2.1,
which leads to the model

yr = <f <:l> + 0.25bsin(aﬂ'i)) + &7, 1=0,...,n—1. (4.1)
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Figure 4.1: Estimation of step functions by SMUCE with ¢ = ¢(8) by (2.6) for different g
(sample size n = 497, and SNR = 1).

In particular, we simulate the data using a = 0.025 and b = 0.3, and apply SMUCE again
with various choices of 3, see Figure 4.3. Similar phenomenon as in Figure 4.1 is viewed.
For instance, SMUCE captures all relevant features of the signal still for a wide range of
(0.08 < 8 <0.29, for the data in Figure 4.3).

On the other hand, when the parameter b is large enough, i.e., the fluctuation is strong
enough, SMUCE is able to capture the fluctuation by inducing additional change-points.
Figure 4.4 shows how SMUCE performs for the signal above with b = 1.0 and b = 1.2

under different noise levels.
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Figure 4.2: Estimation of the Blocks signal for various noise levels (sample size n = 1,023).

4.2.4 Empirical convergence rates

Lastly, we empirically explore the asymptotic behavior of multiscale change-point methods.
The test signals are Blocks and Heavisine (Donoho and Johnstone, 1994). In Figure 4.5, we
show the average of L?-loss of SMUCE with significance level 3 = 0.1 over 20 repetitions
for a range of sample sizes from 1,023 to 10,230. Note that the empirical convergence rates
are quite close to the minimax optimal rates (indicated by slopes of the red straight lines),
which confirms our theoretical findings in Theorems 3.1.4 and 3.2.1.
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Figure 4.3: Estimation of step functions with local trends by SMUCE with ¢ = ¢(3) by (2.6)
for different 5 (sample size n = 497, and SNR = 1).

4.3 Comparison

Next we compare the SMUCE and another multiscale change-point segmentation method,
FDRSeg (Li et al., 2016) with some other change-points methods, PELT (Killick et al.,
2012), CBS (Olshen et al., 2004; Venkatraman and Olshen, 2007) and WBS (Fryzlewicz,
2007). As mentioned in the Introduction, these methods work well in change-point prob-
lems either because they use exact and fast global optimization methods based on dynamic
programming (PELT, SMUCE and FDRSeg) or because they use fast greedy methods
based on local single change-point detection (CBS and WBS). Although all of these meth-
ods are developed under the setting of change-point models, we can still apply them
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Figure 4.4: Estimation of the signal in (4.1) with a = 0.025 for various b and noise levels
(sample size n = 497).

in non-step function models. Concerning implementation, we use CRAN R-packages
“FDRSeg” (version 1.0 — 1) for FDRSeg, “PSCBS” (version 0.61.0) for CBS, “wbs” for
WBS, “changepoint” (version 2.2.2) for PELT.

4.3.1 Overview

Figure 4.6 shows the five methods’ behavior in the estimation of the classical testing signals:
Blocks, Bumps, Heavisine and Doppler (Donoho and Johnstone, 1994). We see they capture
nearly all the main features of each signal, except that CBS misestimates some features for
Bumps and Heavisine signals. Note that, compared to the other four methods, SMUCE
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Figure 4.5: Empirical convergence rates of SMUCE for Blocks and Heavisine signals

(SNR = v/6).

captures all the main features and simultaneously controls the parsimony, i.e. the number
of change-points.

4.3.2 Robustness

We also do the robustness comparison over these five methods. We use the same test signal
with trend components as from (4.1). We see in Figure 4.7, SMUCE, FDRSeg, WBS, PELT
obtain the right number of change-points, while CBS overestimate one change-point. On
the other hand, Figure 4.8 shows when the trend parameter is large, these methods are
also able to capture the fluctuant features by inducing additional change-points, where
SMUCE and FDRSeg are with lower numbers of change-points, which is obvious due to
their construction.

4.3.3 Empirical convergence rates

We end the simulation study by comparing the asymptotic behaviors of these methods. The
test signals are Blocks and Heavisine (Donoho and Johnstone, 1994). Figure 4.9 shows the
outcome of the five methods over 20 repetitions for a range of sample sizes from 1.023 to
10.230. It shows that for step-function signals, SMUCE and FDRSeg get a smaller L?-loss
while for the heavisine signal they get a larger L?-loss. This is also due to the minimization
of the number of change-points among the candidate functions.
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Figure 4.9: Empirical convergence rates of different methods for Blocks and Heavisine sig-

nals (SNR = /6).
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5 Discussion and outlook

In this work we focused on convergence analysis for multiscale change-point segmentation
methods, a general family of change-point estimators based on combination of variational
estimation and multiple testing over different scales, in a nonparametric regression setting.
Special emphasis was put on step functions while allowing for various distortions, where
we found that estimation difficulty for is mainly determined by its number of jumps. We
showed that multiscale change-point segmentation methods attain nearly optimal conver-
gence rates for step functions with asymptotically bounded or even varying number of
jumps.

As a robustness study, we also examined convergence behavior of these methods for more
general functions, which are viewed as distorted jump functions. Such distortion is precisely
characterized by classical approximation spaces. In particular, we derived nearly optimal
convergence rates for multiscale change-point segmentation methods in case the regression
function is either a (piecewise) Holder function or a bounded variation function. Further-
more, it was shown that these methods automatically adapt to the unknown smoothness
of the corresponding function classes, as the only tuning parameter can be selected in a
universal way. The convergence rates also provide statistical justification with respect to
detection of features, such as change-points, modes and troughs.

Finally, we collect some possible extensions of our methodology and theoretical analysis,
which we plan to explore in future.

(a) Multiscale change-point segmentation methods cannot attain faster convergence rates
for functions of stronger smoothness than above, since these estimators are piecewise
constant. This can be improved by considering piecewise polynomial estimators (see
e.g. Spokoiny, 1998). However, proper combination with multiscale methodology
needs further investigation (see the rejoinder by Frick et al., 2014, for a first attempt).
Alternatively, certain smoothness penalties can be selected instead of the number of
jumps in the formulation of multiscale change-point segmentation, see e.g. Grasmair
et al. (2015), where nearly optimal rates are shown for higher order Sobolev/Besov
classes.

(b) Recall from Section 3.2, that by the classical approximation theory (c.f. DeVore,
1998), for any f € A7 and any number K of change-points, there always exists a
best approximation of f by a step function fx with K number of change-points. It
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is natural to ask how different the multiscale change-point segmentation estimator
fn is from the best approximation f. I () Although Theorem 3.2.1 already gives an
asymptotic answer, the non-asymptotic case needs further research. In addition, re-
call Figure 4.3 and 4.4 where the estimator fn detects no change-points on a constant
interval with small fluctuations, but detects a change-point when the fluctuation is
strong enough. Another issue is to further analyze precisely under which conditions
fn induces a change-point. It is clear that the fluctuation and noise level play an
important role, as we can see from Figure 4.4.

Our theory and analysis assumes the noise to be sub-Gaussian. Extension of our
results to models with general errors beyond sub-Gaussian would be interesting as
well. For instance, if considering exponential families, the corresponding regression
model becomes

yln ~ Ff(i/n)7 fOTiZ O,...,n— 1,

where {Fy}oer is a regular and minimal one-dimensional exponential family of dis-
tributions and f € D([0,1)). See Frick et al. (2014) for the case when f is a step
function.

Boysen et al. (2009) show that jump-penalized least squares estimators have a conver-
gence rate of (logn/n)*/ e+ with respect to L?-loss when the underlying function
is in Holder class of order a, 0 < a < 1. Moreover, Fryzlewicz (2007) shows that un-
balanced Haar wavelets based estimator has a convergence rate of (1/n)*/(2¢+1) Jogn
with respect to L?-loss when the underlying function is in Hélder class of order a,
0 < a < 1. Note that the empirical convergence rates of several change-point es-
timators in Figure 4.9 are all approximately of order n'/3 for the Heavisine signal.
We conjecture that these estimators also have a certain convergence rate when the
underlying signal f is in a certain approximation space. Moreover, it is not clear how
differences of estimation methods relate the differences of convergence rates. This
raises challenging issues, which we plan to address in future.
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