
Numerical Simulation of Bloch Equations

for Dynamic Magnetic Resonance Imaging

Dissertation for the award of the degree

ŞDoctor of PhilosophyŤ (Ph.D.)

Division of Mathematics and Natural Sciences

of the Georg-August-Universität Göttingen

within the doctoral program

PhD School of Mathematical Sciences (SMS)

of the Georg-August University School of Science (GAUSS)

submitted by

Arijit Hazra

from Burdwan, West Bengal, India

Göttingen, 2016



This work has been done at:

Biomedizinische NMR Forschungs GmbH

am Max-Planck-Institut für Biophysikalische Chemie

Under the supervision of:

Institut für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen

Thesis Committee

Prof. Dr. Gert Lube (referee) Institut für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen

Prof. Dr. Jens Frahm (co-referee) Biomedizinische NMR Forschungs GmbH

Max-Planck-Institut für biophysikalische Chemie
Examination Board:

Prof. Dr. Gert Lube Institut für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen

Prof. Dr. Jens Frahm Biomedizinische NMR Forschungs GmbH

Max-Planck-Institut für biophysikalische Chemie

Prof. Dr. Hans Hofsaess Institut für Physik II

Georg-August-Universität Göttingen

Prof. Dr. Gerlind Plonka-Hoch Institut für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen

Jr. Prof. Dr. Christoph Lehrenfeld Institut für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen

PD. Dr. Hartje Kriete Mathematisches Institut

Georg-August-Universität Göttingen

Date of Oral Examination: 7.10.2016



Dedicated to Koninika





Acknowledgements

First of all, I would like to thank Prof. Dr. Jens Frahm, head of Biomedizinische

NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, for

ofering me this great opportunity to work in an excellent research facility. He has

given suicient freedom and timely input to make the journey of scientiĄc research in

his group a memorable experience. His constant encouragement and support helped

me to endure diicult phases of my work.

I am highly indebted to Prof. Dr. Gert Lube from the Institut für Numerische und

Angewandte Mathematik of Georg-August-Universität Göttingen for the supervision

of my thesis, his continuous interest and guidance in the mathematical aspects of my

work. I had many invaluable discussions with him which introduced me to a lot of

diferent areas of mathematical research.

I am deeply grateful to Dr. Dirk Voit for introducing me to the Ąeld of MRI and

numerous hours of discussions subsequently about diferent theoretical and experimen-

tal aspects of MRI. His amazing ability to explain diicult concepts intuitively has

sharpened my understanding about this Ąeld.

I would like to thank Arun Joseph for important discussions about theoretical and

experimental aspects of Ćow MRI. I am thankful to him for helping me to adjust with

the life in Germany by informing me about several day-to-day and administrative

issues from the very beginning.

I would like to express my sincere gratitude to Volkert Roelofs, Andreas Merrem

and Zhengguo Tan for sharing their academic insights, giving me their opinions on my

thesis drafts. I am really grateful to Andreas and Volkert for helping me in numerous

daily life and administrative issues. I would also like to thank Jost Kollmeier for helping

me during the Ćow experiments and providing me the data for the contrast agent

experiments. Also, I would like to acknowledge Xiaoqing Wang, Markus Untenberger

for very fruitful academic discussions in multiple occasions.

Apart from this, a major thanks goes to Kurt Bhöm, Oleksandr Kalentev and

former colleagues Sebastian Schätz and Christian Holme for sharing their skills and

insights about large scale computing and Linux operating systems.



vi

Further, I would like to thank all of the present and past groups members in Biomed

NMR to make it such a comfortable place to work.

I am very much thankful to my friends in Göttingen to make last few years a truly

amazing, multi-coloured experience. Life would have been hard without their friendship

and cheerful presence. I would like to thank everyone of my old friends from India and

abroad for their priceless friendships, shared experiences and beautiful memories.

I would specially like to acknowledge more than a decade long friendship of Swar-

nendu Sil. His general insights about mathematical and scientiĄc research have really

helped me to appreciate and enjoy my work more. I would also like to acknowledge

the person who is my oldest friend and the Ąrst inĆuential teacher- my brother Somjit.

Many thanks goes to my family for their emotional support, freedom and afection

in each and every step of my life. I would specially like to mention my father who

always believed in me and the decisions I took and provided me with as much support

as possible. This important occasion reminds me of my mother who passed away long

ago but her sympathetic and kind nature shaped me more than anyone else.

Last but not the least, I would like to thank Koninika for being such an under-

standing, loving person and staying by my side for the last decade throughout all my

whims, stupidities and ventures.



Contents

List of Figures xi

List of Tables xvii

1 Introduction 1

1.1 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Fundamentals of Magnetic Resonance Imaging 5

2.1 NMR Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Bloch Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Signal Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Signal Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Slice Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Spatial Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 k-space Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Imaging Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Cartesian Gradient Echo Sequence . . . . . . . . . . . . . . . . 18

2.5.2 Radial Gradient Echo Sequence . . . . . . . . . . . . . . . . . . 19

2.5.3 Fast Low Angle Shot (FLASH) . . . . . . . . . . . . . . . . . . 20

2.6 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Gridding and FFT . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Parallel Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7.1 Nonlinear Inverse Reconstruction . . . . . . . . . . . . . . . . . 24

2.8 Principles of Flow MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8.1 Phase-Contrast MRI . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Simulation of Bloch Equations for Spatially Stationary Objects 29

3.1 Bloch Equation for Spatially Stationary Object . . . . . . . . . . . . . 30



viii Contents

3.2 Numerical Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Explicit Runge-Kutta Method . . . . . . . . . . . . . . . . . . . 33

3.2.2 Operator Splitting . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Bloch Equation Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Computational Model . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Pulse sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.4 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Slice ProĄle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Comparison between Numerical Methods . . . . . . . . . . . . . 48

3.4.3 Efect of the Number of Subvoxels and Isochromats . . . . . . . 48

4 Simulation of Bloch Equation for Moving Spins 51

4.1 Bloch Equation for Flowing Spins . . . . . . . . . . . . . . . . . . . . . 52

4.2 Numerical Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Numerical Strategies for the Solution of Advection Equation . . . . . . 56

4.3.1 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Boundary Conditions and Ghost Cells . . . . . . . . . . . . . . 63

4.4 Bloch Simulator for Flowing Spins . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Computational Model . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Comparison of Simulations with Experimental Results 73

5.1 MRI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Experimental Equipments . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Static Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Flow Equipments . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Validation of the Static Case . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Single-channel Loop Coil Experiment . . . . . . . . . . . . . . . 76

5.3.2 Experiment with Multiple Tubes . . . . . . . . . . . . . . . . . 77

5.4 Application of Simulation for Parameter Estimation . . . . . . . . . . . 80

5.5 Evaluation of the Simulation of MRI for Flowing Spins . . . . . . . . . 83

5.5.1 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Contents ix

5.5.2 In Vitro Experiments with Laminar Flow . . . . . . . . . . . . . 85

5.5.3 In Vitro Experiments with Pulsatile Flow . . . . . . . . . . . . 88

6 Summary and Outlook 93

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Appendix A Definitions, Theorems and Results Related to ODE Sys-

tems 97

A.1 Solution of Bloch Equations by Operator Splitting . . . . . . . . . . . . 101

Appendix B Existence and Uniqueness of Bloch Equation for Flowing

Spins 107

Appendix C Discontinuous Galerkin Method for Advection Equation 113

Appendix D Briefly on the Numerical Analysis of Partial Differential

Equation 119

D.1 DeĄnitions and Theorems Related to the Solution of Advection Equation121

Abbreviations 125

References 129





List of Figures

2.1 Schematic of a pulsed NMR experiment. (Top left) In equilibrium, M

align along the static magnetic Ąeld B0. (Top middle) radio-frequency

(RF) excitation tilts the magnetization from the longitudinal direction.

(Top right) Precession of magnetization. (Bottom left) spin-spin relax-

ation time (T2) relaxation. (Bottom right) spin-lattice relaxation time

(T1) recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Schematic diagram of the signal detection. (Left) Signal demodulation

(SD). (Right) Quadrature detection. . . . . . . . . . . . . . . . . . . . . 11

2.3 Schematic diagram depicting the relations of slice selection gradient, RF

sinc pulse and the slice thickness. Diferent gradient strengths (G1 and

G2) create slices of diferent thickness at diferent positions (2Ls1 and

2Ls2) for same envelope Be
1(t) functions of a sinc pulse. F refers to the

Fourier transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Envelope function of the sinc pulses with diferent window functions for

RF pulse duration of 4 ms and 4 zero-crossings . . . . . . . . . . . . . . 14

2.5 Schematic illustration of typical k-space trajectories in magnetic reso-

nance imaging (MRI). (Left) Cartesian. (Right) Radial. . . . . . . . . . 16

2.6 Free induction decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Generic spoiled gradient echo sequence diagram. Gradients: (a) slice

selection (b) rewinder (c) phase encoding (d) prephasing in read direction

(e) readout. The colored line in the phase encoding direction corresponds

to the colored line in the k-space. . . . . . . . . . . . . . . . . . . . . . 18

2.8 Generic spoiled gradient echo sequence with radial trajectory. Gradients:

(a) slice selection (b) rewinder (c) prephasing (d) readout. The colored

line in the k-space corresponds to the current repetition . . . . . . . . . 19

2.9 Radial Acquistion with 3 spokes and 5 turns . . . . . . . . . . . . . . . 21



xii List of Figures

2.10 Flow compensation and velocity encoding gradient. (Left) Flow compen-

sation (FC) gradient waveform for compensating constant velocity which

results in zero-phase for both (a) static as well as (b) moving spins with

constant velocity. (Right) Velocity encoding (VENC) gradient waveform

results in zero phase for the (a) static spin but a net phase for the (b)

moving spins with constant velocity. . . . . . . . . . . . . . . . . . . . . 27

3.1 Schematic diagram of computational domain. . . . . . . . . . . . . . . 42

3.2 (Left) The envelope function of the Hanning-Windowed RF pulse with

diferent number of side lobes. (Right) The slice proĄle at the end of

one RF pulse duration resulting from the pulse with the corresponding

envelope function. The envelope function on the left and the resulting

slice proĄle on the right are marked with the same color. . . . . . . . . 46

3.3 (Left) The envelope function of the Hanning-Windowed RF pulse.

(Right) The slice proĄle at the end of RF pulse. 2Ls represents the

nominal slice thickness and 2L′
s represents the actual slice thickness over

which the RF pulse Ćips the equilibrium magnetizations. . . . . . . . . 47

3.4 Single point excitation i.e. 0-dimensional case T1 = 1000 ms, T2 =

100 ms with 101 isochromat elements having constant of-resonance from

−50 to 50 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Magnitude of averaged integrated signal intensities are plotted as a

function of frame number. The Ągures correspond to objects with

following relaxation times: (Top) T1 = 296 ms, T2 = 113 ms, (middle)

T1 = 456 ms, T2 = 113 ms, (bottom) T1 = 456 ms, T2 = 113 ms. (Left

column) Simulated results are shown for three diferent objects for the

computational domain of 4.8× 4.8× 18.0 mm3 divided into 15× 15× 27

subvoxels. (Right column) Simulated results are shown for three diferent

objects for the computational domain of 4.8× 4.8× 18.0 mm3 divided

into 27× 27× 27 subvoxels. For each of these cases, simulations were

carried out with subvoxels consisting of 1, 21, 41 and 61 isochromats

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Schematic representation of a 2-D grid. Ω represent the computational

domain. The boundary of the domain Γ is marked with red line. i-th

cell is magniĄed and Ωi and Γij represent the area of the i-th cell and

the common surface between i-th and the j-th cell respectively. . . . . 57

4.2 Schematic representation of a 1-D cell-centred grid. . . . . . . . . . . . 60



List of Figures xiii

4.3 Limiter function ψ(θ). The shaded region shows the high-resolution total

variation diminishing (TVD) region. Green, red, blue lines lie along the

boundary of the superbee,Van Leer and the minmod limiter functions.

ψ(θ) = 1 and ψ(θ) = θ represent the boundary of the Lax-Wendrof and

the Beam-Warming methods. . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Schematic illustration of ghost cell in one-dimensional computational

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Schematic diagram of computational domain. . . . . . . . . . . . . . . 65

4.6 A 90° slice-selective pulse was used for the studying the Ćow-efects.

The arrows indicate the time when the data was recorded. . . . . . . . 69

4.7 Simulated magnetization distributions of Mx, My, Mz for the through-

plane velocity uz along the positive z-axis in the range 0 to 10 cm s−1

using splitting algorithm in the present work (Right) are compared with

the results in [142] (Left) . The magnetizations were recorded at the

end of the post excitation rephasing gradient as marked by the arrow

Figure 4.6. The length in the slice direction is from −10 to 10 mm. . . 70

4.8 Simulated magnetization distributions of Mx, My, Mz for the through-

plane velocity uz along the positive z-axis in the range 10 to 80 cm s−1

using splitting algorithm in the present work (Right) are compared with

the results in [142] (Left) . The magnetizations were recorded at the

end of the post excitation rephasing gradient as marked by the arrow

Figure 4.6. The length in the slice direction is from −10 to 10 mm. . . 71

4.9 Simulated magnetization distributions of Mx, My, Mz for the through-

plane velocity uz along the positive z-axis in the range 80 to 200 cm s−1

using splitting algorithm in the present work (Right) are compared with

the results in [142] (Left) . The magnetizations were recorded at the

end of the post excitation rephasing gradient as marked by the arrow

Figure 4.6. The length in the slice direction is in the range −15 to 15 mm. 72

5.1 (Top) MRI system and (Bottom) receiver coils. (Bottom left) 64-channel

head coil, (bottom middle) 18-element thorax coil, (bottom right) single-

channel loop coil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Static phantom with tubes containing liquids with known T1 and T2

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 (Left) Flow tube made of glass materials. (Right top) Programmable

voltage controller. (Right middle) silicone rubber hose. (Right bottom)

Flow pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



xiv List of Figures

5.4 MRI experimental set-up with a single channel loop coil and a tube

containing a liquid with known T1 and T2. (Left) The placement of the

tube inside the scanner during the experiment. (Right) The placement

of tube inside the loop-coil. . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Comparison of the normalized energy of the experiment and simulation

for four separate tubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Principal setup of the experiment with the static phantom consisting

of several tubes with predetermined T1 and T2. (Left) Frontal or

coronal plane view of the phantom. Yellow rectangle represents the

slice. (Middle) Axial or transverse plane view. Yellow rectangle and the

central circle show the Ąeld of view (FOV) and the isocenter respectively.

The marker outside the phantom is placed to locate the position of the

tubes.(Right) Lateral or sagital plane view. . . . . . . . . . . . . . . . . 78

5.7 (Left) Image of the container. (Right) Comparison of simulation with

the image for four diferent liquids. . . . . . . . . . . . . . . . . . . . . 79

5.8 (Left) Image with spatially inhomogeneous coil proĄle. (Middle) White

region containing only tap water and the black region is masked out.

(Right) Estimated coil proĄle obtained Ątting data over the white region. 80

5.9 (Left) Image of the static phantom after eliminating the coil inho-

mogeneity efect. (Right) Comparison of simulation with the image,

compensated for spatial inhomogeneity, for four diferent liquids. . . . . 81
5.10 Signal enhancement for two diferent contrast agents for four diferent

Ćip angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.11 (Left) Slice proĄle at echo time (TE) for the Ąrst frame and in dy-

namic equilibrium for 0, 50, 100 and 400 mm s−1 through-plane velocities.

(Right) Slice proĄle at TE in dynamic equilibrium for through-plane

velocities in the range of 0 to 400 mm s−1. . . . . . . . . . . . . . . . . . 84

5.12 (Left) Time evolution of averaged integrated pixel intensities as a func-

tion of frame for through-plane velocity range 0 to 400 mm s−1. (Right)

Normalized steady-state integrated pixel intensities as a function of

constant through-plane velocities. . . . . . . . . . . . . . . . . . . . . . 85

5.13 (Left) magnetic resonance (MR) image of the Ćow tube. (Right) Signal

comparison normalized by the signal intensity of the averaged steady-

state signal in dynamic equilibrium for last ten frames for diferent

velocities under diferent operating conditions of the Ćow pump. The

experimental result is represented by the solid line and the simulation is

represented by the dotted line. . . . . . . . . . . . . . . . . . . . . . . . 86



List of Figures xv

5.14 The velocity contours in the tube for three consecutive measurements

when the pump was operated at 3 V (top) and 6 V (bottom). . . . . . . 88

5.15 Experimental setup for the pulsatile Ćow experiment. Water Ćowed

through the left tube. Middle and right tubes contain static tap water. 89

5.16 (Left) Operational voltage diagram of the pump to create pulsation.

(Right) Fitted through-plane velocity proĄle from phase contrast imaging

(PC MRI) data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.17 The efect of pulsatile Ćow on the signal can be observed here. Signal is

normalized with the steady-state signal of the static water. . . . . . . . 90

5.18 (From top right clockwise) Contour plots for four equidistant diferent

time point in one pulsation period. . . . . . . . . . . . . . . . . . . . . 90

B.1 Schematic diagram of pipe Ćow for illustrating domain (Ω) and domain

boundaries. Γ− marked with red color represents the inĆow boundary.

Γ+ marked with green color represents the outĆow boundary. The blue

line represents impermeable walls of the pipe which is no-Ćow boundaries,

denoted by the symbol Γ0. u is the velocity Ąeld with Ćow direction

(marked by the arrow below u) from the inĆow boundary towards the

outĆow boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.1 Schematic representation of a 2-D grid. Ω represent the computational

domain. The boundary of the domain Γ is marked with red line. i-th

cell is magniĄed and Ωi and E represent the area of the i-th cell and

the edge between i-th and the j-th cell respectively. . . . . . . . . . . . 114

C.2 (Left) One dimensional example of average and jump operators. (Right)

The interface between the i and j-th cell where j > i is depicted with

the used notation. The orientation of the outward normal is from lower

to higher numbered cell. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

D.1 Schematic diagram explaining the Courant-Friedrich-Lewy (CFL) cri-

teria for a three-point scheme. (Left) An unstable three point scheme.

The shaded region shows the numerical domain of dependence which

does not contain the true domain of dependence (Right) A stable three

point scheme. True domain of dependence which is marked by white

cone in the centre contained in the numerical domain of dependence.The

extra numerical domain is shown by the surrounding shaded region. . . 122





List of Tables

2.1 Window functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Limiter functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Relaxation constants for the liquids in diferent tubes . . . . . . . . . . 75

5.2 Relaxavities of the contrast agents . . . . . . . . . . . . . . . . . . . . . 82

5.3 Mean and standard deviation velocities and Re based on the mean

velocity for diferent operating voltages of the Ćow pump at temperature

16 ◦C (kinematic viscosity ν = 1.1092× 10−2 cm2/s [137]). . . . . . . . . 87





Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a powerful modality for diagnostic imaging that

uses a high magnetic Ąeld and nonionizing radio-frequency (RF) irradiation to create

images at high spatial resolution. They are obtained by exciting and detecting a

multitude of spatially encoded nuclear magnetic resonance (NMR) signals from mobile

hydrogen atoms within organs and tissues. At the current stage, MRI Ąnds applications

in both clinical radiology and biomedical research as it ofers several advantages over

other biomedical imaging techniques such as X-ray, computerized tomography (CT),

positron emission tomography (PET) and ultrasound. Firstly, due to the absence of

ionizing radiation, MRI is non-invasive unlike X-ray, CT or PET and therefore may

extensively be applied without harm. Secondly, MRI can be used for imaging cross-

sections as well as three-dimensional volumes without being hampered by problems

such as Ąnite penetration depth or internal reĆection as in the case for ultrasound. And

thirdly, MR images provide excellent soft-tissue contrast and pathological sensitivity,

which facilitates diagnosis and allows for eicient monitoring of disease progression

and treatment in various organs including brain, heart, joints and breast.

One of the powerful features of MRI is that the image contrast can be manipulated

by varying the type, order, strength and duration of the applied RF excitation pulses

and magnetic gradient Ąelds. Altering this pattern, which is commonly known as a

MRI pulse sequence, it is possible to exploit a wide range of contrast mechanisms

including access to physiological functions such as difusion, Ćow, blood oxygenation,

cellular metabolism and tissue temperature. Therefore, MRI is not restricted to a

qualitative description of anatomy, but also serves as a powerful tool for interventional,

functional, metabolic and quantitative studies, which have a huge signiĄcance in

diagnostic imaging.



2 Introduction

On the other hand, MRI also has some disadvantages, which include its low

acquisition speed and high costs due to the requirement of a super-conducting magnet.

Because of this need for a high magnetic Ąeld, MRI technology may also not be accessible

to patients with metal implants. To increase the acquisition speed and accelerate MRI,

a number of fast imaging techniques such as fast low angle shot (FLASH) [43, 55, 42],

echo planar imaging (EPI) [86] and rapid acquisition with relaxation enhancement

(RARE) [64] were devised in the past. However, these pulse sequences alone are not

suicient to generate a continuous stream of fast images at such a high speed as required

for studying physiological processes such as speaking, swallowing or rapid complex Ćuid

motion. In order to achieve even faster image acquisitions at a temporal resolution of

10 to 40 ms to observe complex physiological processes, our group developed a method

which combines highly undersampled fast low angle shot (FLASH)-type acquisitions

with image reconstruction by an iterative optimization of a nonlinear inverse problem

[132, 131, 133].

Although imaging of rapid processes is improved considerably with this technique,

there are still unsolved problems such as a quantitative understanding of the mechanisms

that lead to MRI signal alterations (i.e., both enhancement and loss) when imaging

Ćowing spins (e.g., in vessels or the heart) or other dynamic processes. In fact, apart

from Ćow velocities and volumes, there is an increasing demand in MRI for quantitative

information such as relaxation time constants. In future, access to both high-contrast

imaging and quantitative parametric mapping by MRI is expected to facilitate and

contribute to computer-aided diagnostic strategies.

The main purpose of this thesis is to focus on the quantitative analysis of dynamic

signal changes with a special focus on Ćow. Numerical simulations will be applied to

study the efect of Ćowing spins on the MRI signal evolution during dynamic imaging.

SpeciĄc aims are as follows:

(i) To develop a simulator for spatially stationary objects which is based on precise

mathematical modelling and numerical techniques

(ii) To compare and validate selected results obtained by the simulator with laboratory

experiments

(iii) To explore the possibility to quantify parameters such as relaxation times by

comparing simulation results with experimental Ąndings

(iv) To provide a comprehensive analysis of real-time Ćow MRI by incorporating the

Ćow efect into the simulator for spatially stationary objects
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(v) To compare and validate the simulations for Ćow imaging with laboratory experi-

ments.

(vi) To extend the simulators by parallel implementation

In order to accomplish these goals, this thesis comprises both the theoretical

analysis and numerical implementations of the governing equations of MRI for spatially

stationary and Ćowing objects. Operator splitting methods are used for the simulation

of spatially stationary objects and further extended for the simulation of Ćowing

spins. The simulation techniques are also implemented in a CUDA-enabled graphical

processing unit (GPU). The simulation results for the MRI signal behavior were

compared to a number of laboratory MRI experiments performed on a commercial

MRI system operating at a Ąeld strength of 3 Tesla. SpeciĄc questions of increasing

complexity addressed the inĆuence of the excited slice proĄle, contrast agents and Ćow.

1.1 Organization of the Thesis

A brief overview of the basic principles of MRI which are essential for understanding

the present work is given in Chapter 2. The chapter introduces the basics of nuclear

magnetic resonance (NMR), gradient echo (GE) pulse sequences, image reconstruction

techniques and experimental approaches to quantitative Ćow imaging. Theoretical

analysis and numerical implementations of operator splitting techniques for the simula-

tion of MRI for spatially stationary objects are discussed in Chapter 3. In Chapter 4,

splitting techniques are further extended for studying the efect of Ćowing spins on

MRI. A part of this chapter is devoted to discuss Ąnite volume method (FVM) which

is used for solving the magnetization transport. In addition, preliminary results are

presented at the end of the previous two chapters. In the Ąrst part of Chapter 5,

the simulator for spatially stationary object is evaluated against experiments with

single-compartment and multi-compartment phantoms consisting of diferent aqueous

solutions. The last part of Chapter 5 is devoted to the comparison of simulation with

in vitro Ćow experiments. Finally, Chapter 6 summarizes the main achievements of

this thesis and presents an outlook of prospective work in future.





Chapter 2

Fundamentals of Magnetic

Resonance Imaging

This chapter gives a brief introduction to the basic magnetic resonance imaging (MRI)

principles. MRI is based on the phenomena of nuclear magnetic resonance (NMR)

and its efect on condensed matter discovered by Bloch [17] and Purcell [107] in 1946.

Beginning with the basic physics of NMR the equations governing the macroscopic

time evolution of magnetizations are derived. The signal generation and acquisition

techniques in MRI and the image formation principles based on the acquired signals

are also brieĆy reviewed. In the end, MRI techniques for Ćow imaging are discussed.

For detailed discussions on the topic of MRI the reader is referred to the textbooks

by Haacke et al. [54], Liang et al. [83] and Bernstein et al. [13].

2.1 NMR Phenomena

The basic principles of NMR are based on the fundamental property of the spin.

The spin is an intrinsic form of angular momentum J observed in elementary atomic

particles and atomic nuclei. Although the spin is a quantum mechanical property, in

the classical mechanical model, it can be visualized as a spinning top. MR physics can

be explained satisfactorily with the classical model. However, unlike classical magnetic

momentum, the spins of an elementary particle can take only some discrete magnitudes

based on its spin quantum number I given by

♣J♣ = ℏ
√
I(I + 1), (2.1)
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where I can only be an integer, half-integer or zero and ℏ is the Planck constant divided

by 2π.

The atomic nuclei with a non-zero I induces a magnetic moment µ and the relation

between the angular momentum and the magnetic moment is given by

µ = γJ, (2.2)

where γ is a gyromagnetic ratio.

Although the magnitudes of the spins for a speciĄc atomic nuclei are Ąxed, the

directions of the induced magnetic moments are completely random due to random

motions in thermal equilibrium conditions which results in zero macroscopic magnetism.

However, in the presence of an external magnetic Ąeld B0 the spins align themselves in

discrete energy states given by

Em = −mIγℏB0, (2.3)

where mI which is known as magnetic quantum number, can take only some discrete

2I + 1 possible values from the set ¶−I,−I + 1, · · · I♢ corresponding to a spin quantum

number I. This phenomenon is known as Zeeman splitting.

Due to the abundant presence of the protons of hydrogen atoms (1H) in all living

tissues, they are primarily used in MRI. A 1H has a spin quantum number of I = 1/2

which leads to two possible energy states given by

E↑ = −1

2
γℏB0, E↓ =

1

2
γℏB0. (2.4)

The energy states correspond to parallel ↑ or anti-parallel ↓ alignment of the magnetic

moments with the external magnetic Ąeld. The direction of positive B0 is chosen to be

the longitudinal direction z in MRI. The plane perpendicular to the longitudinal axis

is known as the transverse plane.

The energy level diference between the two spin states is given by ∆E = ℏγB0.

This energy diference results in a spin population diference of the two energy states

according to the Boltzmann relationship and is given by

N↑

N↓

= e
∆E

KbTa , (2.5)

where kb is Boltzmann constant and Ta is absolute temperature. Equation (2.5) implies

a slightly higher number of spins in the parallel ↑ direction.
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The average magnetic moment of a spin system inside a sub-volume yields a

macroscopic magnetism along the direction of the external magnetic Ąeld and its

magnitude for a spin-1/2 system is given by

M0 =
γ2ℏ2Ns

4kbTa
B0. (2.6)

Equation (2.6) shows that the equilibrium magnetization M0 is directly proportional

to the external magnetic Ąeld strength B0 as well as to the number of spins Ns within

the macroscopic volume. The magnetic moment µ experiences a torque in an external

magnetic Ąeld B0 = B0êz and is given by

dµ

dt
= γµ×B0êz, (2.7)

where êz is the unit vector in the direction of the external magnetic Ąeld. The solution

of Equation (2.7) shows that magnetic moments describe a nuclear precession clockwise

about the z-axis at a Ąxed polar angle [83]. The angular frequency of the nuclear

precession, called Larmor frequency, is proportional to the external magnetic Ąeld and

is given by

ω0 = γB0. (2.8)

In presence of an external magnetic Ąeld, the nuclear magnetic moments are quantized

along the direction of the magnetic Ąeld but due to the random phase the transversal

components of the magnetic moments give a zero macroscopic transversal magnetization.

Fundamentally, MRI is based on the following two steps:

(i) Manipulation of the equilibrium magnetization to create a detectable signal from

the object of interest.

(ii) The reconstruction of an image of the object from the detected signal using a

suitable reconstruction method.

2.2 Bloch Equation

The time evolution of the macroscopic magnetization, in presence of an external static

magnetic Ąeld B0 can be obtained from Equation (2.7) by averaging the magnetic

moments over a continuum volume [54],
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dM

dt
= γM×B0. (2.9)

Equation (2.9) is based on the implicit assumption that the protons are non-interacting.

To get a response from an object undergoing an NMR experiment, the orientation

of the longitudinal bulk magnetization is altered by applying an oscillating magnetic

Ąeld B1(t) = B1x(t)êx + êyB1y(t) from a nearby RF transmit coil. If the resonance

condition is fulĄlled, the B1 Ąeld tilts the magnetization towards the transverse plane

(Figure 2.1).

Decay Recovery

ExcitationEquilibrium Precession

Figure 2.1: Schematic of a pulsed NMR experiment. (Top left) In equilibrium,
M align along the static magnetic Ąeld B0. (Top middle) RF excitation tilts the
magnetization from the longitudinal direction. (Top right) Precession of magnetization.
(Bottom left) T2 relaxation. (Bottom right) T1 recovery.

The RF excitation Ąeld is speciĄed by the shape and the duration τp of the envelope

function Be
1(t), the excitation carrier frequency ωrf and the initial phase ψ of the RF
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pulse, expressed in the complex notation as

B1(t) = B1x(t) + iB1y(t) = Be
1(t)e−i(ωrft+ψ). (2.10)

Be
1(t) determines the Ćip angle α of the magnetization due to the RF pulse by the

following relation

α = γ
∫ τp

0
Be

1(t)dt. (2.11)

Immediately after M is tilted from its equilibrium position, the spins inside the excited

volume mutually interact among themselves and with the surrounding to precess towards

the equilibrium state again. The precession of the spins towards the equilibrium position,

as depicted in Figure 2.1, is characterized by two phenomenologically determined

intrinsic time constants:

(i) spin-lattice relaxation time T1 describing the rate of the magnetization recovery

in the z direction due to the energy exchange between the spin system and the

surrounding chemical environment.

(ii) spin-spin relaxation time T2 describing the rate of the magnetization decay in the

transverse plane due to the energy exchange of spins with both the environment

and among themselves.

These relaxation phenomena are governed by the following equations:

dMz

dt
=
M0 −Mz

T1

, (2.12a)

dMx

dt
= −Mx

T2

, (2.12b)

dMy

dt
= −My

T2

. (2.12c)

The combined efect of the static magnetic Ąeld, the RF excitation Ąeld and the

relaxation are given by the Bloch equations,

dM

dt
= γM× (B0 + B1) +

M0 −Mz

T1

êz −
Mx

T2

êx −
My

T2

êy. (2.13)

The magnetization in the transverse plane is very often described using a complex

notation as Mxy(t) = Mx(t) + iMy(t).



10 Fundamentals of Magnetic Resonance Imaging

After the RF excitations time evolution of magnetizations are governed by the

relaxation and the presence of the static magnetic Ąeld. The time evolution of transverse

and longitudinal magnetizations can be expressed and solved as follows,

dMxy

dt
= −ω0Mxy −

Mxy

T2

(2.14a)

⇒ Mxy(t) = Mxy(trf)e
−t/T2e−ω0t,

dMz

dt
=
M0 −Mz

T1

(2.14b)

⇒ Mz(t) = M0 + [Mz(trf)−M0]e
−t/T1 ,

where trf is the time duration of the RF pulse.

2.3 Signal Detection

A pulsed NMR experiment induces a macroscopic magnetism in an object in the form

of a rotating magnetization as described in Section 2.2. For detection of the rotating

magnetization, the emitted energy from the rotating magnetization is converted into

an electric signal.

The magnetic Ćux χm generated by magnetization M(r, t) through a receiver coil

is given by

χm(t) =
∫

Ω
Cr(r) ·M(r, t)dΩ, (2.15)

where Cr(r) is the detection sensitivity of the receiver coil. As soon as the M(r, t) is

Ćipped from its thermal equilibrium state, M(r, t) precesses towards its equilibrium

state, resulting in a time-varying magnetic Ćux χm(t) in the receiver coils. From

FaradayŠs laws of electromagnetic induction, χm(t) induces a electromotive force (EMF)

which is equal to the time-rate of change of χm(t) in the receiver coil and given by

V (t) = − d

dt

∫

Ω
Cr(r) ·M(r, t)dΩ. (2.16)

The time-rate of change of Mz is negligible in comparison to the fast changing Mxy.

The magnetic Ąeld strength in general varies in the excited volume in an NMR

experiment and thus the Larmor frequency is spatially dependent. Under this general
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condition, Equation (2.14b) gives the following expression for the induced EMF [83].

V (t) =
∫

Ω
ω(r)e−t/T2(r)

∣∣∣Mxy(r, 0)
∣∣∣
∣∣∣Cr,xy(r)

∣∣∣ cos(−ω(r)t+ ϕe(r)− ϕr(r) +
π

2
)dΩ,

(2.17)

where Cr,xy = Cr,x + iCr,y represents the efective detection sensitivity of the receiver

coil, ϕr is the phase of the receiver Ąeld, ϕe initial phase shift introduced by the RF

excitations and ω(r) is spatially dependent Larmor frequency.

Figure 2.2: Schematic diagram of the signal detection. (Left) Signal demodulation
(SD). (Right) Quadrature detection.

The high-frequency voltage signal V (t) is demodulated and the demodulated output

signal is detected as illustrated in Figure 2.2 which consists of the multiplication of

V (t) by a reference sinusoidal signal, the low-pass Ąltering of the resulting signal to

remove the high-frequency component and the detection of this output signal. The

main drawback of this detection system is that the precessing direction (clockwise

(CW) or counterclockwise (CCW)) of the magnetization of a spin system can not be

determined from the signal.

To overcome this problem, in modern MRI systems a quadrature detection is

used as illustrated in the right part of Figure 2.2 where V (t) is demodulated with

two sinusoidal reference signals 2 sin(ω0t) and 2 cos(ω0t). The resulting demodulated

signals are detected in two orthogonally placed detectors and combined in a complex

signal S(t),

S(t) = ω0e
iπ/2

∫

Ω
e−i∆ω(r)tMxy(r, t)C

∗
r,xy(r)dΩ, (2.18)

where ω(r) = ω0 + ∆ω(r). The scaling constant ω0ei
π/2 can be omitted without any

loss of signiĄcant information.
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The demodulated signal is equivalent to the signal expression obtained from the

solution of the Bloch equations in a frame rotating with an angular frequency ω0, given

by

dM′

dt
= γM′ × (B0 + B1 −

ω0

γ
êz) +

M0 −Mz

T1

êz −
Mx′

T2

êx′ − My′

T2

êy′ , (2.19)

which conceptually simpliĄes the RF excitation efect in MRI by eliminating the efect

of the static B0 Ąeld. Therefore, Bloch equations are generally solved in a rotating

frame.

2.4 Signal Localization

There are basically two fundamental spatial localization methods: selective excitation,

where only a slice of the object is excited, and spatial encoding which can be used to

encode the signals from excited spins. Both of these techniques are used for 2D imaging

where a slice is selected and the remaining two directions are spatially encoded.

Spatial localizations are controlled by magnetic Ąeld gradients applied using addi-

tional gradient coils. The shape and forms of these magnetic Ąeld gradients can be

adjusted independently in three orthogonal directions.

The longitudinal magnetic Ąeld with an arbitrary magnetic gradient
[
Gx Gy Gz

]T

and the corresponding Larmor frequency can be expressed as

Bz = B0 + r ·G = B0 + xGx + yGy + zGz, (2.20a)

ω(r) = ω0 + γr ·G. (2.20b)

Equation (2.20b) shows, the precession frequency ω of a spin ensemble changes

with a change in the local magnetic Ąeld strength. Application of linear magnetic

gradients alter the resonance condition of the spin ensemble from a distinct frequency

to a continuous bandwidth such that signals from diferent spatial location can be

distinguished.

The Bloch equations for a general MRI sequence need to take into account an

arbitrary gradient Ąeld, magnetic Ąeld inhomogeneity ∆B and is given by

dM′

dt
= γM′ × (B1 + (B0 + ∆B + G · r− ω0

γ
)êz) +

M0 −Mz

T1

êz −
Mx′

T2

êx′ − My′

T2

êy′ .

(2.21)
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2.4.1 Slice Selection

An RF excitation pulse with limited bandwidth of ∆ωp will only excite spins within

a matching frequency range. For a slice selective excitation, a linear Ąeld gradient

is applied corresponding to the limited bandwidth of the RF pulse as illustrated in

Figure 2.3.

Figure 2.3: Schematic diagram depicting the relations of slice selection gradient, RF
sinc pulse and the slice thickness. Diferent gradient strengths (G1 and G2) create
slices of diferent thickness at diferent positions (2Ls1 and 2Ls2) for same envelope
Be

1(t) functions of a sinc pulse. F refers to the Fourier transform.

The frequency bandwidth should be a rectangular function Π(ω) in order to get a

perfectly rectangular slice proĄle so that the excitation pulse will excite spins equally

within the slice of the sample leaving the surrounding spins in equilibrium state.

Although the RF excitation pulse B1(t) is accurately proportional to the Fourier

transform of the frequency bandwidth for small Ćip angles, the same relation is

acceptable to a very good approximation even for high Ćip angles [83]. The identity
1
a
Π(f

a
) F−→ sinc(πat) implies that a sinc function which has an unlimited support is

necessary to get a perfectly rectangular slice proĄle. As only pulses with Ąnite durations

are feasible, a truncated sinc pulse is used which results in a distorted slice proĄle.

Windowing functions are very often used with the truncated sinc pulse to reduce the

distortion of the slice proĄle.

The explicit expression of the envelope function of the sinc pulse is given by [13]:

Be
1(t) =




w(t)B1sinc[π(t−Nt0)/Nt0] 0 ≤ t ≤ τp,

0 otherwise,
(2.22)
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Table 2.1: Window functions

window function w(t)
rectangular 1
Hamming 0.50 + 0.50 cos(π(t−Nt0)/Nt0)
Hanning 0.54 + 0.46 cos(π(t−Nt0)/Nt0)
Blackman 0.42 + 0.50 cos(π(t−Nt0)/Nt0)− 0.08 cos(2π(t−Nt0)/Nt0)

where w(t) is a window function, N represents twice the zero-crossing of the sinc pulse

and t0 one half the width.

Figure 2.4 shows sinc pulses for N = 2 with diferent window functions as listed in

Table 2.1.

Figure 2.4: Envelope function of the sinc pulses with diferent window functions for
RF pulse duration of 4 ms and 4 zero-crossings

To create a slice proĄle of thickness 2Ls, the required slice selection gradient Gss is

given by :

Gss =
π∆f

γLs
where ∆f =

∆ω

2π

1

t0
(2.23)
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2.4.2 Spatial Encoding

After the slice selection, the spatial localization problem reduces from three to two

dimensions and two spatial encoding gradients Gx, Gy are used to encode signals at

each location within the selected slice. The magnetic Ąeld as a result of the spatial

encoding is given by

∆B = Gx · x+Gy · y. (2.24)

In presence of the inhomogeneous magnetic Ąeld ∆B the signal expression for spatial

encoding becomes

S(t) =
∫

Ω
C∗
r (r) ·Mxy(r, tRF)e−i[γx

∫ t

0
Gxdx+γy

∫ t

0
Gydy]dΩ. (2.25)

For conceptual advantages, the spatial encoding is often expressed in a k-space formalism

as

S(t) =
∫

Ω
C∗
r (r) ·Mxy(r, tRF)e−i2π(kx·x+ky ·y)dΩ, (2.26)

where the k-space trajectory is deĄned by

kx :=
γ

2π

∫ t

0
Gx(τ)dτ, (2.27a)

ky :=
γ

2π

∫ t

0
Gy(τ)dτ. (2.27b)

Equation (2.26) shows that the received signal in k-space is the Fourier transform of

the dot product between transverse magnetizations and the coil sensitivity map.

2.4.3 k-space Sampling

In principle, the k-space trajectories can be arbitrary. Figure 2.5 shows only two

popular k-space trajectories.

In Cartesian sampling strategy, data are collected along lines parallel to an axis one

at a time and thus each sample is located on a Cartesian grid. Therefore, fully-sampled

Cartesian data require only a 2D inverse fast Fourier transform (IFFT) for image

reconstruction. In practice, Equation (2.26) is discretized by sampling at a certain

rate. The sampling distance ∆k between two neighboring discrete points is related
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Figure 2.5: Schematic illustration of typical k-space trajectories in MRI. (Left)
Cartesian. (Right) Radial.

with the image size i.e. the FOV by

∆k =
1

FOV
. (2.28)

The discrete FOV is composed of a number of square image elements (pixels) whose

characteristic size, deĄned as spatial resolution, is given by

∆r =
FOV

nb
=

1

∆k · nb
=

1

2kmax

, (2.29)

where nb represents the number of time sample points (base resolution) in a single data

acquisition, kmax the maximal sampling distance from the centre in the k-space.

In order to avoid aliasing, the sampling distance has to satisfy Nyquist-Shannon

criteria given by

∆k =
2kmax

nb
≤ 1

FOV
. (2.30)

On the other hand, according to Equation (2.27), ∆k can be expressed as

∆kx =
γ

2π
Gx∆tx, ∆ky =

γ

2π
Gy∆ty. (2.31)

Sampling interval (dwell time) ∆tx and ∆ty along the Gx and Gy direction can be

determined from Equation (2.31) and Equation (2.30).

Ideally an increasing dwell time prolongs the total readout duration which results in

a higher signal-to-noise ratio (SNR). The reciprocal of the dwell time ∆t is represented
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by the receiver bandwidth (BW). Therefore, higher BW results in a faster sampling

and low SNR.

In radial sampling strategy shown in Figure 2.5 data are acquired along spokes

placed at an angle to an axis. Radial sampling strategy was Ąrst proposed by Lauterbur

in 1973 [101] and Ąltered back-projection method was used for the image reconstruction.

From the deĄnition of k-space in the Equation (2.27), radial sampling can be achieved

with the following gradients

Gx = Gmax cos θ, (2.32a)

Gy = Gmax sin θ, (2.32b)

where Gmax is the maximal gradient amplitude and θ is the angle of the radial spoke.

According to the Nyquist criteria of sampling the number of spokes to be acquired

ns should satisfy ns ≥ π
2
· nb. Undersampling results in streaking artifacts for radial

trajectory unlike aliasing as in case of Cartesian sampling [18].

2.5 Imaging Sequence

The most elementary form of signal is the free induction decay (FID) which is basically

the received NMR signal immediately after the RF excitation pulse without any

manipulation of the primary NMR signal, as depicted in Figure 2.6. The envelope of

the FID can be approximated by an exponential function with an efective spin-spin

relaxation time (T∗
2) assuming a spin system with Lorenzitian distribution

1

T ∗
2

=
1

T2

+ γ∆B0. (2.33)

t
Signal

RF

Figure 2.6: Free induction decay.
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Imaging sequences relevant to this work are based on the gradient echo (GE)

sequences as discussed next.

2.5.1 Cartesian Gradient Echo Sequence

Echo

ADC

a

b

c

d

e

Figure 2.7: Generic spoiled gradient echo sequence diagram. Gradients: (a) slice
selection (b) rewinder (c) phase encoding (d) prephasing in read direction (e) readout.
The colored line in the phase encoding direction corresponds to the colored line in the
k-space.

A generic spoiled GE sequence for 2D imaging is shown in Figure 2.7. A slice

selection gradient is applied along with a α pulse and ϕr1 RF phase for selective

excitations. After that a rewinder gradient is applied in the slice direction to avoid

undesirable signal loss as a result of the phase shift caused by the application of the

slice selection gradient. A phase encoding gradient and a prephasing gradient are

applied in the direction of phase encoding (y) and readout (x) respectively to accelerate

the FID signal decay. Then the dephased spins are rephased by applying a gradient of

opposite polarity in the direction of readout.

When the gradient moment of the readout gradient equals the gradient moment of

the prephasing gradient in the direction of readout gradient, the spins are completely

rephased and form an echo. The time between the center of the RF pulse and the peak

of the signal induced is known as echo time (TE) and the time duration from RF pulse

to the next RF pulse is deĄned as repetition time (TR).

Each GE sequence consists of a train of excitation pulses separated by a TR period.

Between successive excitation pulses, the spatial encoding is performed with switched
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Echo

TE
TR

RF

ADC

a

b

c

c

d

d

Echo

TE
TR

RF

ADC

a

b

c

c

d

d

Figure 2.8: Generic spoiled gradient echo sequence with radial trajectory. Gradients:
(a) slice selection (b) rewinder (c) prephasing (d) readout. The colored line in the
k-space corresponds to the current repetition .

gradients in read, phase and slice direction and one line in k-space is acquired with

each repetition of RF.

The efect of excitation, gradient pulses and the magnetic Ąeld inhomogeneity on

the magnetization vector of each spin is described by Equation (2.21) consisting of α

excitation pulse and the precession due to gradient, inhomogeneity and time-relaxation

as depicted schematically in Figure 2.1. Excitation pulse in the next TR acts on the

modiĄed magnetization and the process of precession is repeated again and again.

Carr showed in [23] that under constant α, and gradient moment and constant TR the

magnetizations reach a state of dynamic equilibrium after several repetitions which is

known as Steady-state Free Precession (SSFP). For clinical imaging, the acquisition

starts only after the magnetizations reach SSFP after several preparatory TR repetition.

2.5.2 Radial Gradient Echo Sequence

Figure 2.8 illustrates a GE sequence with radial trajectories. The fundamental diference

of radial with Cartesian trajectory is that radial trajectory consists of a readout gradient

in two directions unlike one phase encoding and one readout as in Cartesian trajectory.
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Although radial encoding scheme was not used widely in the past, it is gaining

interest in last decade because of a number of interesting advantages [145]. First

of all, radial encoding is relatively more resistant to undersampling than Cartesian

encoding. Moreover, undersampling artifacts appear as streaks at the edge of the image

while the main structure of the object is maintained. Secondly, the readout gradient

in radial GE allows oversampling along both readout directions without additional

measuring time. This oversampling enlarges the circular-supported FOV and hence

reduces undersampling artifacts. Thirdly, radial encoding is intrinsically robust against

motion. Due to the absence of phase encoding, motion-induced ghost artifacts are

eliminated as seen very often in Cartesian trajectory.

2.5.3 Fast Low Angle Shot (FLASH)

Fast low angle shot (FLASH) is a speciĄc example of a gradient echo sequence invented

by Frahm et al. in 1985 [43, 55, 42] which uses short TR, TE and the low Ćip angle to

produce T1 weighted images [62]. Due to the low Ćip angle a signiĄcant amount of

longitudinal magnetizations remain at the end of each repetition and thus enabling

to produce higher signals in the dynamic equilibrium than conventional gradient echo

imaging with high Ćip angles.

However, due to short TR a residual transversal magnetization generally remains

after each repetition resulting in artifacts. In spoiled FLASH technique, the residual

transversal magnetization is destroyed to avoid artifacts using either gradient or RF

spoiling techniques.

(i) Gradient spoiling. A spoiler gradient of high magnitude is applied at the end of

the repetition interval to destroy the residual transverse magnetization [44].

(ii) RF spoiling. The RF phase is quadratically incrementally with a suitable angle

or changed randomly after each repetition [29]. A spoiler gradient is applied very

often additionally at the end of the repetition.

The experiments, conducted in this work, used RF spoiled FLASH sequences with radial

encoding schemes [145]. A quadratic increment RF phase with 117° was suggested by

Crawley et al. in [29] for Cartesian FLASH sequences. However, in a recent study

Volkert et.al. [111] has shown that randomized RF spoiling works better with radial

FLASH. Thus, a randomized RF spoiling was used in the present work.

In radial imaging, the order in which the spokes are acquired play a signiĄcant role

in dynamic imaging as discussed extensively in [145]. The ordering strategy used in

this work is described next.
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Each reconstructed image frame (turn) comprises a certain number of spokes ns
which are uniformly distributed. Afterwards, the spokes are sequentially rotated

between successive turns. This pattern is also repeated after certain number of turns

nt. As the orientation of the spokes should be distinct nt and ns are both odd numbers.

Figure 2.9 depicts schematically employed radial acquisition with ns = 3 spokes and
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Figure 2.9: Radial Acquistion with 3 spokes and 5 turns

nt = 5 turns. The angle increment between two successive spokes (∆θs) and between

two successive turns are given by

∆θs =
2π

ns
, ∆θt =

2π

(ns · nt)
(2.34)

respectively. Therefore, the orientation of the i-th spoke in j-th turn is:

θ(i, j) = [(j − 1) mod nt] ·∆θt + (i− 1) ·∆θs. (2.35)

2.6 Image Reconstruction

In case of Cartesian sampling, the inverse Fourier transform is applied directly to

the sampled k-space data to obtain an image. In radial trajectories, however the

sampled k-space data are neither on a Cartesian grid nor equidistant. Thus, the image

reconstruction with radial sampled data require advance techniques like non-uniform

fast Fourier transform (NUFFT) [41] or interpolation of the data onto a Cartesian grid

prior to the uniform IFFT which is known as regridding or simply gridding algorithm

as discussed in the next section.

2.6.1 Gridding and FFT

The gridding algorithm was Ąrst proposed by OŠsulivan in 1985 [98] and detailed

discussions can be found in [109, 10, 18]. The gridding algorithm includes the following

steps:
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(i) Density compensation. Data acquired through radial sampling have varying

sample density. Therefore, a density compensation function (DCF) is required to

weight the k-space data properly at every sample point in k-space.

(ii) Convolution and evaluation in a grid. The density-compensated data is convolved

with a radial interpolation kernel and the convolved data are evaluated in desired

k-space positions. Kaiser-Bessel function was found to be an optimal interpolation

function for radial acquisitions.

(iii) IFFT is performed on gridded data, oversampled in both directions. The over-

sampling helps to avoid artifacts.

(iv) Roll-of correction. The convolved data in k-space is equivalent to a dot product

between the object and the inverse fast Fourier transform (FFT) of the radial

interpolation kernel in image domain. A Ąnal reconstructed image is obtained

by dividing a 2D IFFT of the oversampled gridded data by the inverse Fourier

transform of the interpolation kernel. This is known as roll-of correction.

(v) Cropping. Finally, the Ąnal image is cropped to display the original region of

interest without aliasing.

2.7 Parallel Imaging

One main drawback of MRI is its relatively low imaging speed. To overcome the speed

barrier of MRI, general techniques based on the idea of combining the information

acquired through multiple receiver coils have been developed. They are known as

parallel imaging methods in MRI. The idea of parallel imaging was Ąrst conceived

with the introduction of the phased-array coils [112]. The phased-array coils consist of

small surface coils, usually placed around the subject in order to simultaneously receive

k-space data from localized regions. The MRI signal obtained for j-th coil from a coil

system is given by Equation (2.36) which is obtained from Equation (2.26) taking into

consideration that Mxy(r, t) is equivalent to the proton density (PD) ρ and replacing

the suixes of the coil sensitivity map with j to denote the complex coil sensitivity

from j-th coil,

Sj(t) =
∫

Ω
ρ(r) · cj(r)e−2iπ(kx·x+ky ·y)dΩ. (2.36)
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The image reconstruction method from the acquired data with multiple coils can be

mathematically posed as an inverse problem where the forward problem is given by,

F : x 7→




PkF¶c1 · ρ♢
...

PkF¶cN · ρ♢




with x =




ρ

c1

...

cN



, (2.37)

where F is the 2D FFT and Pk is the projection onto the k-space trajectory.

Parallel imaging is mainly designed to use the spatial information of coil sensitivities

to allow for the undersampling of k-space and substitute or replace the missing lines in

k-space. Therefore, one of the most crucial aspect of the parallel image reconstruction

is the calibration method of the coil sensitivities of individual receiver coils. Coil

sensitivity maps can be estimated via a pre-scan, auto-calibrated signal (ACS) or

jointly with image.

Irrespective of the calibration technique applied, modern parallel imaging methods

can be classiĄed roughly into two broad categories: image-domain based techniques

(sensitivity encoding (SENSE) [106, 105], nonlinear inverse reconstruction (NLINV)

[132, 133, 131]) and regenerative k-space method (simultaneous acquisition of spa-

tial harmonics (SMASH) [91, 120, 70], generalized auto-calibrating partially parallel

acquisition (GRAPPA) [50]).

k-space methods are based on the k-space locality principle [141], which postulates

that k-space data points are highly correlated with their neighbours. Calibration scans

or the ACSs are additionally required for determining coil-sensitivity proĄles and the

weights. The weights are determined by Ątting undersampled k-space data to the

calibration data. Undersampled data and the weights are utilized subsequently to Ąll

the full k-space. Uncombined coil images obtained by diferent coils can be combined

via sum of squares [112] or phase-preserving coil combination algorithm [138].

On the other hand, the generalized SENSE treats parallel imaging as a linear inverse

problem where the following cost function is to be minimized

Φ(x) = argmin
x

N∑

i=1

∥∥Sn − F (ρ · ci)
∥∥2

2 + α∥ρ∥2
2 with x = ρ. (2.38)

This method relies on the accurate estimation of the coil sensitivity map calculated via

either calibration scan or auto-calibration method. Once the coil sensitivity maps are

obtained, the minimization problem can be solved via regular least-square technique
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or iteratively. Regularization method like Tikhonov regularization [36] that penalizes

the L2 norm of the estimated image is also used to overcome the ill-conditioned nature

of the inverse problem.

For the present work, NLINV reconstruction method proposed by Uecker et al.

[132, 133] was often used as a parallel imaging technique. NLINV is the Ąrst method

based on the joint estimation of the image content and coil sensitivity maps and is

discussed brieĆy in the next section.

2.7.1 Nonlinear Inverse Reconstruction

Following Equation (2.37) the parallel imaging problem can be expressed as

y = F (x), x =




ρ

c1

c2

...

cN




, (2.39)

where y is the measured data and the image content ρ and the coil sensitivity maps cj
combined together in a variable x.

In NLINV, iteratively regularized Gauss-Newton method (IRGNM) [36, 8] is used to

solve the non-linear system of Equation (2.39) in a least-square sense. Equation (2.39)

is linearised y ≈ DF (xn)dx + F (xn) about the estimation xn in the n-th newton

step and a term is added similar as the Tikhnov regularization term. The following

minimization problem is solved for the update dx at each step,

Φ(dx) = argmin
dx

∥∥DF (xn)dx− (y − F (xn))
∥∥2 + αn∥xn + dx− x0∥2 . (2.40)

It can be seen that Equation (2.37) is highly under-determined, as multiplication of ρ by

any complex function and dividing the coil sensitivities with the same complex function

gives a diferent solution with same measured signal y. This shift in information from

the image ρ to the coil sensitivities cj can be restricted by adding prior knowledge that

coil sensitivities are generally rather smooth even if the object may contain edges. This
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prior information is incorporated into NLINV by a pre-conditioning matrix W

x̂ = W−1x =




I

(1 + s∥k∥2
2)

l/2F
. . .

(1 + s∥k∥2
2)

l/2F



x, (2.41)

resulting in a new minimization problem

Φ(dx̂) = argmin
dx̂

∥∥DG(x̂n)dx− (y −G(x̂n))
∥∥2 + αn∥x̂n + dx̂− x̂0∥2 , where Gx̂ = FWx̂.

(2.42)

Equation (2.42) is a linear least-square problem. The resulting normal equations from

the linear least-square problem are solved by conjugate gradient (CG) method. The

x̂n is then updated with an optimized dx̂ to give x̂n+1.

The update rule of dx̂ can be derived from Equation (2.42):

dx̂ = (DF (x̂n)HDF (x̂n) + αnI)−1(DF (x̂n)H(y − F (x̂n)) + αn(x̂n − x̂0)). (2.43)

An optimal estimation of the image content and the coil sensitivity proĄles can be

obtained after performing the iteration for a number of newton steps e.g. 6 or 7.

For the reconstruction of a series of images in real time MRI applications, the

algorithm is initialized with ρ = 1, cj = 0 for the Ąrst frame and the subsequent

frames take the estimate from the preceding frame as initial guess. The regularization

parameter decays along Newton steps according to αn = α02−n, α0 = 1.

The measure data is preprocessed before the NLINV image reconstruction via

gradient delay corrections. To deal with the enormous amount of multi-channel k-space

data in real time MRI applications, the data is compressed to 10 virtual channels via

principal component analysis (PCA) [21] and Ąnally gridded to a 2D Cartesian grid

without density compensation and used for image reconstruction.

After the images are reconstructed using NLINV, they are post-processed with a

modiĄed version of the non-local mean denoising [20] and a temporal median Ąlter [76].

For quantitative comparison, the image content ρ is multiplied with the root of

sum of squares (RSS) of estimated coil sensitivity proĄles cj to give the Ąnal image ρf

ρf = ρ

√√√√
nc∑

j=1

∣∣∣cj
∣∣∣
2
, (2.44)
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where nc is the number of coils chosen after data compression using PCA.

2.8 Principles of Flow MRI

The previous discussions were based on the implicit assumption that the object under

investigation is spatially stationary. However, during MRI of human bodies, scenarios

related to moving spins are frequently encountered. The imaging techniques for moving

spins are called Ćow MRI. Flow MRI can be divided into two subgroups broadly based

on the information obtained from the images. First of them, Magnetic resonance

angiography (MRA) methods, provide qualitative information about Ćuid Ćow through

vessels [93, 139, 5, 35], whereas quantitative Ćow methods such as PC MRI [94, 7,

95, 19] and Fourier Ćow imaging [63] are used to obtain quantitative and functional

information of many physiological processes. As the quantitative calculations of Ćow

velocities from PC MRI were used for Ćow studies in the present work, PC MRI is

discussed brieĆy in the next section.

2.8.1 Phase-Contrast MRI

The basic principle of PC MRI was discovered by Hahn [56] in 1960 which states that

the velocity of moving spins can be encoded into the phase by the introduction of a

bipolar gradient. The position of a moving spin can be expressed as a function of time

using TaylorŠs series

x(t) = x(0) + x
′

(0)
︸ ︷︷ ︸
v0

t+ x
′′

(0)
︸ ︷︷ ︸
a0

t2

2!
+ · · · . (2.45)

The temporal evolution of phases due to the movement of spins can be expressed as

ϕ(t) = γ
∫ T

0
G(t)x(t)dt

= γ
∫ T

0
G(t)(x0 + v0t+

1

2
a0t

2 + · · · )

= γ[x0

∫ T

0
G(t)dt+ v0

∫ T

0
G(t)tdt+

∫ T

0
G(t)

t2

2!
dt+ · · · ]

= γ[x0m0(T ) + v0m1(T ) + a0m2(T ) + · · · ], (2.46)

where m0,m1,m2 represent the gradient moments due to static spin at x0, gradient

moment for constant velocity v0 and constant acceleration a0 respectively. According
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(a)

(b)

Figure 2.10: Flow compensation and velocity encoding gradient. (Left) Flow com-
pensation (FC) gradient waveform for compensating constant velocity which results
in zero-phase for both (a) static as well as (b) moving spins with constant velocity.
(Right) Velocity encoding (VENC) gradient waveform results in zero phase for the (a)
static spin but a net phase for the (b) moving spins with constant velocity.

to Equation (2.46), static and spins moving with constant velocity will have zero phase

by the end of the application of the Ćow compensation (FC) gradient (GFC) with

waveform 121 as depicted schematically on the left part of Figure 2.10. On the other

hand, application of the bipolar gradient with wave form 11 (shown in the right part

of Figure 2.10) will result in zero phase for static spins and a net phase for moving

spins with constant velocities, which is given by,

ϕv(2τ) = γv0

∫ 2τ

0
G(t)tdt (2.47)

= −γG0τ
2v0, (2.48)

which is linearly proportional to the velocity and is also determined by the amplitude

and duration of the velocity encoding (VENC) gradient.

Although the expression looks straight forward, there are some practical consider-

ations in order to calculate the velocity accurately. Firstly, VENC gradient and the

duration must be chosen such that the velocity-encoding range should be larger than
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the velocity to be measured (v0). Otherwise, the accumulated phase exceeds the value

π resulting in phase-wrap artifacts. On the other hand, VENC range can not be too

large as it results in poor SNR. Without any prior idea of the velocity range, several

MRI scans are often necessary to choose a proper VENC.

Secondly, MR images have various sources of phase accumulation e.g. the of-

resonance induced phase. Therefore, to remove phases induced by sources other than

the velocity, at least two measurements are needed. The measurements are performed

in two diferent ways [71]. The Ąrst measurement uses a Ćow compensation gradient

and the second measurement consists of the bipolar velocity gradient resulting in a

phase diference ∆ϕ = −γG0τ
2v0. Subsequently, velocity can be calculated from the

phase diference expression [19, 99, 14].

For PC MRI data with multiple coils, Ąrstly the reconstructed images from two

consecutive measurements and the coil sensitivities are combined to remove unwanted

phase contributions from coils. The weighted image ρij for i-th measurement and j-th

coil is given by

ρij =
ρicij√∑nc

k=1 cikcik
, i = 1, 2 j = 1, 2, · · · , nc (2.49)

where nc are the number of chosen coils after PCA. The complex phase diference

images ρpc are calculated by

ρ̂pc =
nc∑

j=1

ρ0jρ1j, ρpc =
ρ̂pc√
ρ̂pc

. (2.50)

The complex phase diference map was used further to calculate the pixel-wise velocities.

The PC MRI technique explained above is applicable for one-dimensional Ćow.

However, the same principle can be extended in two or three orthogonal directions to

encode multi-dimensional constant velocities [87, 88].



Chapter 3

Simulation of Bloch Equations for

Spatially Stationary Objects

Numerical simulators of Bloch equations are essential tools for a variety of diferent

research directions in MRI. Throwing lights on important essential features of MRI,

it helps in further methodological developments. For example, numerical simulations

have been used previously for the pulse sequence optimizations and designs [3]. MRI

pulse sequence optimization goes through several steps of parameter modiĄcations until

desired image characteristics are obtained. It is a time consuming process and Bloch

equation based numerical simulators are suitable, inexpensive tools for such purposes.

Numerical simulations have also been used for artifact detection and elimination [53].

Due to controlled experiments with the input data, numerical simulations can be

used efectively to locate the exact sources of the artifacts, i.e. whether the artifacts

are generated due to some physical phenomena (motion etc.) or hardware malfunctions

[100, 34].

In prior works, MRI simulations have also been used for the design of specialized

RF pulses [121]. Image reconstruction techniques can be tested using MRI simulations

[121] as well. Apart from the controlled experiments with precise input data, numerical

simulators can also be used to simulate various limiting experimental conditions which

are either improbable or diicult to reproduce in experiments. Because of this advantage,

it is a very useful pedagogical and educational tool [15]. Multiple utilities of numerical

simulations have been combined to produce a few general purpose MRI simulators also

[140, 12, 121].
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3.1 Bloch Equation for Spatially Stationary

Object

As already brieĆy discussed in Chapter 2, Bloch equations describe the time-dependent

behavior of magnetizations in presence of an external magnetic Ąeld. Also, when ex-

pressed in a proper rotating frame Bloch equations explain MRI phenomena better con-

ceptually. Furthermore, Bloch equations for MRI experiments contain time-dependent

magnetic gradient G(t) Ąelds, RF excitation Ąelds Bxy =
[
Bx(t) By(t) 0

]T
with time

dependent amplitudes and phases, magnetic Ąeld inhomogeneities ∆B. In its most

general form, Bloch equation in a rotating frame is expressed as follows:

dM′

dt
= γM′ ×Beff +

(M0 −Mz)êz
T1

− Mx′ êx′ +My′ êy′

T2

(3.1a)

=




− 1
T2

γBz −γBy

−γBz − 1
T2

γBx

γBy −γBx − 1
T1







Mx′

My′

Mz


 +




0

0
M0

T1


 , (3.1b)

where

Beff = Bx(t)êx′ +By(t)êy′ + (B0 −
ωrf

γ
+ G(t) · r + ∆B)êz.

Equation (3.1) governs the MRI experiments for spatially stationary objects.

In an analytical setting, Equation (3.1) can be written as a linear initial value

problem (IVP),

ẇ = A(t)w + g(t), t > 0, w(0) = w0, (3.2)

where

A(t) ∈ Rn×n, w,g ∈ Rn.

Equation (3.2) is an inhomogeneous ordinary diferential equation (ODE) with a forcing

term g(t). The following theorem gives the condition for the existence of a unique

solution for an ODE with the general form of Equation (3.2).
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Theorem 3.1 (Existence, Uniqueness and Extension). If A(t) ∈ Rn×n is a continuous

matrix and g(t) ∈ Rn is a continuous vector, then the linear initial value problem

ẇ = A(t)w + g(t), w(t0) = w0, (3.3)

has a solution for every (t0,w0) ∈ R×Rn and the solution can be extended to all times

t ∈ R.

Proof. The proof of this theorem can be found in [125, 116].

In case of MR experiments the function A(t) is a piecewise constant function and

g(t) is a piecewise constant vector. Then, Theorem 3.1 is applicable to all intervals

where A(t) and g(t) are piecewise constant and the solution can be continuously

extended to t ∈ R [144].

Immediately after the discovery of MR phenomena researchers tried to Ąnd analytical

solutions of Bloch equations. If the RF excitation Ąeld amplitude, phases and magnetic

Ąeld gradients are constant, the Bloch equations are a system of linear ODE with

constant coeicients. The Ąrst analytical solution of such equations was given by Torrey

(1949) by adopting Laplace transform method [129]. Mulkern et al. [96] and Murase et

al. [97] used this method further for simulating diferent MRI experiments.

Analytical solutions of Bloch equations are given in literature with various approxi-

mation and limiting situations such as steady-state solutions [1, 54], for short-lived

RF pulse approximation [54], very weak RF Ąelds [118]. An approximate analytical

solution is also proposed for a rectangular RF pulse in [83]. Analytical solutions

in these limiting situations give us more physical insight about the MR phenomena.

However, no closed form analytical solutions are available for Bloch equations for

MR experiments. Hence, a suitable numerical method must be chosen for a realistic

simulation of MR experiments. The choice of a proper numerical strategy will be

discussed in the next section.

3.2 Numerical Strategies

Prior studies have shown that for accurate numerical simulations of MR experiments,

Equation (3.1a) must be solved for a huge number of mutually independent isochromats

[115, 114]; an isochromat is a microscopic group of spins which resonate at the same

frequency.

Moreover, many previous discussions [83, 115, 114] related to the solution of the

Bloch equations for MRI are based on the assumptions that the RF pulses are short-
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lived, i.e. they take a small fraction of TR. Because of the assumption of short durations

of the RF pulses, relaxations of magnetizations are ignored during RF excitation. The

assumption of short-lived RF pulses are reasonable as long as the durations of RF

pulses are negligible compared to the TR and TE of a repetition. However, the present

study aims at MRI experiments where the duration of the shortest RF pulse is generally

400 µs and the TR can be as small as 2-4 ms. Therefore, RF pulses occupy 10-20 %

of the TR. Pulse sequences with same TR are also repeated multiple times during

an MR experiment, which means that RF pulses occupy a considerable percentage

of time during MR experiments and ignoring relaxations during RF excitations is a

signiĄcant deviation from the experimental conditions. Therefore, in the present thesis,

the simulations are performed without the simpliĄed assumption of a short-lived RF

pulse.

In addition, the longitudinal magnetizations are often assumed to be Ćipped uni-

formly over the slice thickness. Results from numerical simulations show in Section 3.4

that RF pulses do not Ćip the longitudinal magnetizations uniformly over the slice

thickness. As a consequence, the resulting transverse magnetization due to RF excita-

tion and subsequent time evolution are non-uniform as well. Furthermore, the efect of

non-uniform slice proĄles are also added cumulatively over multiple repetitions of the

pulse sequences. Exact slice proĄles are always taken into consideration for simulation

in this work.

Apart from that, magnetic gradients and RF excitation pulse for real time MRI are

step functions of very small time-steps which are known as raster times. Raster time

can be as small as 5 µs. As a result, simulation must be carried out for a high number

of time-steps if the exact pulse sequence data is to be considered.

To sum up, accurate numerical simulations of MRI require simulating Bloch equa-

tions for an ensemble of isochromats over a high number of small time steps which

is a very demanding task computationally. Therefore, computational time is also a

matter of concern for choosing a proper numerical strategy for Bloch equation-based

MRI simulators together with numerical accuracy.

For solving an ODE system such as Equation (3.2), multiple numerical methods

have been proposed and are widely available in the literature. A detailed analysis

of these methods can be found in standard textbooks for numerical solution of an

ODE [58, 69, 22]. In a previous study, Grivet et al. used one of these standard

numerical techniques, explicit 4-5th order adaptive Runge-Kutta (RK45) for Bloch

equations simulations [51]. Explicit RK45 methods are discussed and are also tested

for performance and numerical accuracy in Section 3.4.
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In some previous studies, MRI simulations were carried out splitting Equation (3.1a)

into two subproblems. The general technique of solving a complex time-dependent

problem by splitting into simpler subproblems are known as operator splitting method.

In this chapter, operator splitting methods for solving a system of ODE [68, 47] are dis-

cussed. Higher order splitting methods have been proposed for solving Equation (3.1a)

as well. Results related to the accuracy and performances of the operator splitting

methods are discussed in Section 3.4.

The basic deĄnitions and results for analysis of the numerical methods for an ODE

are given in Appendix A.

3.2.1 Explicit Runge-Kutta Method

This section discusses Runge-Kutta (RK) methods very brieĆy. More detailed discus-

sions can be found in [58, 69, 22].

Explicit RK methods are single-step multi-stage techniques where the solutions at

t = tn+1 is determined from the solutions at t = tn. General s-stage RK methods are

written as follows:

wn+1 = wn + τ
s∑

i=1

biki, τ = tn+1 − tn, (3.4a)

where

ki = f(tn + ciτ,wn + τ
s∑

j=1

ai,jkj), f(t,w) = A(t)w + g(t). (3.4b)

For explicit RK methods ai,j = 0,∀j ≥ i . The matrix [aij]si,j=1 and the coeicients

bi, ci, i = 1, 2, · · · s are generally arranged in a table, known as Butcher tableau. For

explicit RK methods, Butcher tableau is given by

0

c2 a21

...
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

. (3.5)
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The RK methods are consistent if

s∑

j=1

bj = 1. (3.6)

To achieve a speciĄc order of consistency p certain number of stages s of the explicit

Runge-Kutta method must be calculated where s ≥ p.

Embedded RK methods are used very often to control the local truncation errors

with adaptive step size as will be discussed next.

Embedded Runge-Kutta

In embedded RK methods, two methods of order p and p− 1 are calculated and the

diference between them is taken to be the error estimator (ϵn+1) of the solution.

Let us assume the solution at t = tn+1, using p-th order method is denoted by

Equation (3.4a) and the solution by p− 1-th order method is given by

w∗
n+1 = wn + τ

s∑

i=1

b∗
iki. (3.7)

The estimated error ϵn+1, which is of the order p and given by

ϵn+1 = w∗
n+1 −wn+1 = τ

s∑

i=1

(bi − b∗
i )ki. (3.8)

The estimated error ϵn+1 is used to control the time step size adaptively and thus

to ensure desired accuracy.

The Butcher tableau for embedded RK methods are extended with b∗
i values and

given by

0

c2 a21

...
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

b∗
1 b∗

2 · · · b∗
s−1 b∗

s

. (3.9)
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Popular adaptive RK45 methods are Cash-Karp method [25], DormandŰPrince

method [32], RungeŰKuttaŰFehlberg method [39, 40]. Cash-Karp RK45 has been used

for testing accuracy and performance in this work, discussed in Section 3.4.

3.2.2 Operator Splitting

Operator splitting is a powerful tool to decompose a complex time-dependent problem

into simpler sub-problems which can be solved eiciently or more accurately with

suitable analytical or numerical methods. The solution of diferent sub-processes are

then combined by coupling the subprocess through their initial conditions.

Operator splitting are very often distinguished between two diferent cases. The

Ąrst case is known as the diferential splitting where a partial diferential equation

(PDE) system, describing the original multi-scale, multi-physics problem, is split into

diferent sub-processes; operators for each sub-process usually represents a diferent

physical phenomena (e.g., advection, difusion, reaction etc.). The numerical strategy

chosen for solving Bloch equations for Ćowing spins is based on diferential splitting,

discussed in Chapter 4.

For the second category, splitting is applied to an ODE system which is very often

the semi-discretized form of a partial diferential equation (PDE) system. This operator

splitting technique is known as algebraic splitting. In this section, operator splitting

methods are described in an analytical setting in the context of an ODE system,

beginning with a linear ODE system to a general class of ODE system. The purpose

here is to propose an eicient solution methodology for solving Equation (3.1a).

For detail discussion on operator splitting and its applications, the reader is sug-

gested to consult [38, 68, 57].

Operator Splitting for Linear ODE

As an illustration of operator splitting for a linear ODE system, consider a homogeneous

IVP with constant coeicient matrix A ∈ Rn×n given by

ẇ = Aw, w(t0) = w0, (3.10)

where

t ∈ J = [t0 T ] ⊂ R, w : J→ Rn.
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The solution of Equation (3.10) at t = tn+1 in terms of the solution at t = tn:

w(tn+1) = eτAw(tn), τ = tn+1 − tn. (3.11)

Generally calculating the exponential of the matrix at each time step, is tedious

and computationally expensive. In many cases, A is split in matrices which can be

solved analytically. The method is illustrated here by splitting A into two matrices

A = A1 + A2. (3.12)

Splitting of A into more than two matrices is a straightforward extension. After

splitting A, the following two subproblems are solved sequentially one after another

instead of the original problem,

dw∗(t)

dt
= A1w

∗(t), tn < t ≤ tn+1, w∗(tn) = wn, (3.13a)

dw∗∗(t)

dt
= A2w

∗∗(t), tn < t ≤ tn+1, w∗∗(tn) = w∗
n+1. (3.13b)

This splitting method is known as sequential splitting. Solving Equations (3.13a)

and (3.13b), an approximate solution is obtained by putting wn+1 = w∗∗
n+1

wn+1 = eτA2eτA1wn + τϵt, (3.14)

where ϵt is the local truncation error of the splitting method. Let us assume that

Equations (3.13a) and (3.13b) are solved exactly. Solving Equation (3.10) by splitting

A into A1 and A2 introduces a splitting error ϵs which can be calculated by a series

expansion for the matrix exponential.

eτA = I + τ(A1 + A2) +
τ 2(A1

2 + A2
2)

2!
+O

(
τ 3

)
, (3.15a)

eτA2eτA1 = I + τ(A2 + A1) +
τ 2(A1

2 + 2A2A1 + A2
2)

2!
+O

(
τ 3

)
. (3.15b)

Subtracting Equation (3.15b) from Equation (3.15a), the local splitting error ϵs for

one time step can be calculated as

ϵs = (eτA − eτA2eτA1)w(tn) =
1

2
τ 2[A1, A2]w(tn) +O

(
τ 3

)
, (3.16)
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where [A1, A2] is called commutator and deĄned as:

[A1, A2] = A1A2 − A2A1. (3.17)

We can also see from Equation (3.16) and Equation (3.14) that the order of ϵt of a

splitting method is one less than the order of ϵs. Also, Equation (3.16) implies that the

order of accuracy and splitting error of a splitting method depends on [A1, A2]. The

Baker-Campbell-Hausdorf formula [68] shows that ϵs vanishes completely if [A1, A2]

vanishes. It expresses the product of two exponentials as a new exponential, given by

eτA2eτA1 = eτÃ, (3.18a)

where

Ã = (A1 + A2) +
1

2
τ [A1, A2] +

1

12
τ 2([A2, [A1, A2]] + [A1, [A1, A2]])

+
1

24
τ 3([A2, [A1, [A1, A2]]]) +O

(
τ 4

)
.

(3.18b)

According to Equation (3.18b), if A1 and A2 commutes, all the higher order splitting

terms vanish. However, in general, sequential splitting is only Ąrst order accurate.

Some splitting methods, discussed in Section 3.2.2, give us higher order of accuracy.

Operator Splitting for General Class of Initial value problem

Splitting methods can be extended to a general class of ODE system such as Equa-

tion (3.1a). Let us consider a general ODE system

dw

dt
= F(t,w(t)) where t ∈ [t0 T ], w(t0) = w0. (3.19)

Let us further assume, the source term of Equation (3.19) is split into two terms

F(t,w) = F1(t,w) + F2(t,w). (3.20)

In order to solve Equation (3.19) by splitting technique, we need to solve the following

sub-problems as before,

dw∗(t)

dt
= F1(t,w

∗(t)), tn < t ≤ tn+1, w∗(tn) = w(tn), (3.21a)

dw∗∗(t)

dt
= F2(t,w

∗∗(t)) tn < t ≤ tn+1, w∗∗(tn) = w∗(tn+1). (3.21b)
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Setting X(tn+1) = X∗∗(tn+1) gives us the approximate solution at t = tn+1. Using

TaylorŠs expansions of X∗∗(tn+1) and X∗(tn) around t = tn splitting error ϵs for n-th

time step can be calculated as

ϵs =
1

2
τ 2[

∂F1

∂w
F2 −

∂F2

∂w
F1] +O

(
τ 3

)
. (3.22)

The commutator for a general ODE system can be deĄned as

[F1,F2](w) = [
∂F1

∂w
F2 −

∂F2

∂w
F1]. (3.23)

If the commutator vanishes then the splitting error vanishes completely like a linear

ODE system as stated by Theorem 3.2.

Theorem 3.2. If for the IVP Equation (3.19) the commutator vanishes, i.e., Equa-

tion (3.23) is zero then the splitting error ϵs also completely vanishes.

Proof. The proof of this theorem can be found in [68].

Higher Order Splitting Methods

In the previous sections, the sequential operator splitting method and its properties

have been discussed. Higher-order operator-splitting methods can be constructed with

a slight increase in the computational load. The method of symmetrically weighted

sequential operator splitting (SWSS) is one of the ways to achieve a higher order

accuracy. In this method, the diferential equation (DE) is solved sequentially in a

speciĄc order and in its reverse order in every time-step. The average of the solutions

by these two calculations are taken as the approximate solution of the DE. For example,

for the linear ODE system, Equation (3.13a) and then Equation (3.13b) are solved Ąrst

and Equation (3.13b) and then Equation (3.13a) are solved next. The average of these

two solutions are taken as the Ąnal solution which is given by

wn+1 =
1

2
(eτA2eτA1 + eτA1eτA2)wn. (3.24)

From the series expansion of the matrix exponentials, one obtains the splitting error

for SWSS:

ϵs(τ) = − 1

12
τ 3([A1, [A1, A2]] + [A2, [A1, A2]])w(tn) +O

(
τ 4

)
. (3.25)
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For the general ODE system we get the Ąnal solution following the same procedure,

given by

wn+1 =
1

2
(eτF1eτF2 + eτF2eτF1)wn, (3.26)

and the splitting error is given by,

ϵs(τ) = − 1

12
τ 3([F1, [F1,F2]] + [F2, [F1,F2]])w(tn) +O

(
τ 4

)
. (3.27)

Strang(1968) [122] proposed another higher order splitting method, known as Strang

splitting method or sometimes Strang-Marchuk splitting method. In this method, the

following subproblems have to be solved for Equation (3.19) if we split the right hand

side of the equation in two terms.

dw∗(t)

dt
= F1(t,w∗(t)), tn < t ≤ tn+ 1

2
, w∗(tn) = w(tn), (3.28a)

dw∗∗(t)

dt
= F2(t,w∗∗(t)) tn < t ≤ tn+1, w∗∗(tn) = w∗(tn+ 1

2
), (3.28b)

dw∗∗∗(t)

dt
= F1(t,w∗∗∗(t)) tn+ 1

2
< t ≤ tn+1, w∗∗∗(tn) = w∗∗(tn+1). (3.28c)

The solution obtained using this method:

wn+1 = (e
τ
2

F1eτF2e
τ
2

F1)wn. (3.29)

This method gives us the following approximate solution for linear ODE system Splitting

error ϵs in this case:

ϵs(τ) =
1

24
τ 3([F1, [F1,F2]] + 2[F2, [F1,F2]])w(tn) +O

(
τ 5

)
. (3.30)

Splitting Method for Bloch Equations

The generalized Bloch equation for MRI, given by Equation (3.1a), combines two

physical phenomena,

(i) Rotation due to the RF pulse and precession of magnetizations due to the

magnetic gradients and Ąeld inhomogeneities, represented by a linear system.

(ii) T1 and T2 time relaxations of magnetizations given by an inhomogeneous linear

system.
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Equation (3.1a) is solved at each time step, splitting the equation into the two operators

mentioned above.

For tn < t ≤ tn+1,

dM∗

dt
= γM∗ ×Beff︸ ︷︷ ︸

rotation

=




0 γBz −γBy

−γBz 0 γBx

γBy −γBx 0




︸ ︷︷ ︸
rotation operator(Arot)




M∗
x

M∗
y

M∗
z


 , M∗(tn) = M′(tn),

(3.31a)

dM∗∗

dt
=




−M∗∗

x

T2

−M∗∗

y

T2
M0−M∗∗

z

T1




︸ ︷︷ ︸
time relaxation

, M∗∗(tn) = M∗(tn+1). (3.31b)

Both of these sub-problems can be solved analytically. The solution of Equation (3.31a):

M∗(tn+1) = eτArotM′(tn) = RM′(tn). (3.32)

The details of the calculation of R is discussed in Section A.1. The Equation (3.31b) can

also be solved analytically and that gives us the solution of magnetizations step-by-step

for sequential splitting.

M′(tn+1) = M∗∗(tn+1) =




e− τ
T2M∗

x(tn+1)

e− τ
T2M∗

y (tn+1)

e− τ
T1M∗

z (tn+1) + +M0(1− e− τ
T1 )


 . (3.33)

The splitting error for sequential splitting can be estimated from Equations (3.22)Ű

(3.23):

ϵs(τ) =
1

2
τ 2((DArot − ArotD)M′ +




γBy
M0

T1

−γBx
M0

T1

0


) +O

(
τ 3

)
, (3.34a)

=
1

2
τ 2((

1

T2

− 1

T1

)




γByMz

−γBxMz

γByMx′ − γBxMy′


 +




γBy
M0

T1

−γBx
M0

T1

0


) +O

(
τ 3

)
, (3.34b)

where D = diag(− 1
T2
,− 1

T2
,− 1

T1
).
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From Equation (3.34), it can be observed that the splitting error is minimum when

T2 is close to T1. Furthermore, splitting error is 0 after the RF excitation as Bx, By = 0

in post-excitation period of TR.

The splitting error can be minimized even more using higher order splitting methods

as discussed in Section A.1.

3.3 Bloch Equation Simulator

In the present work, the Bloch equations simulator focuses on the radial FLASH

sequences. The computational kernel simulates the time evolution of magnetization for

time-dependent RF and pulse sequence data for an ensemble of isochromats and it is

based on the operator splitting method, described in the previous section.

The simulator takes as input exact pulse sequence data and a model of the object

to be simulated as computational domain. The summed up complex signals Mxy =

Mx + iMy from an ensemble of isochromats, recorded at some speciĄed time points,

are the output of the simulations. The number of output sample points can be freely

chosen and it is adapted to the speciĄc situation.

The computational kernel simulates the time evolution of magnetizations for an

ensemble of isochromats. As the isochromats are mutually independent, the compu-

tational load can be distributed and parallelized. A parallel solver is also developed

using GPU. The numerical implementation in GPU will be discussed in Section 3.3.4.

3.3.1 Computational Model

A schematic diagram of the computational domain is given in Figure 3.1. It shows that

the simulation is generally carried out for a number of voxels. Each of these voxels

are subdivided into a number of subvoxels. Each subvoxel represents an ensemble of

isochromats. The aim of the present work is to calculate step-by-step all components

of the magnetizations for all the isochromats in the ensemble which have speciĄc and

pre-determined MR properties.

Isochromats are characterized by the following MR parameters of the speciĄc object

to be simulated: T1, T2, of-resonance frequency ω due to Ąeld inhomogeneity and

the location of the isochromats relative to isocenter (rx, ry, rz). The of-resonance

frequencies of the isochromats due to magnetic gradients can be calculated from the

relative position from the isocenter. The isochromats along with their characterizing
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Figure 3.1: Schematic diagram of computational domain.

properties are taken as the computational model for the simulation. Computational

models are created using MATLAB (MathWorks, Natwick, NA).

3.3.2 Pulse sequence

The exact pulse sequence is the second set of input data, which consists of the following

components:

(i) RF excitation pulse
[
Bx By 0

]T

(ii) Magnetic Ąeld gradients in slice direction Gz, read-directions Gx, Gy.

(iii) A binary vector specifying the signal-acquisition time points.

In order to acquire the pulse sequence data, MR experimental protocols are taken

as input in an MR vendor provided software framework to simulate the sequence

diagram and acquire the sequence parameters. The acquired pulse sequence data is

further used to generate the input binary Ąle according to the raster times. For this

thesis, as the experiments were conducted in Siemens Prisma system (Section 5.1),

pulse sequence data were generated using the Siemens provided IDEA ( Siemens AG,

Erlangen, Germany) framework.

The complex signals are acquired during simulation either at the signal-acquisition

time points speciĄed by experimental protocols of MRI experiments or at TE of each
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repetition. At the speciĄed output time points during an experiment, the receiver coils

become active and the analog-to-digital converter (ADC) converts the analog signal

to digital for image reconstruction. However, the simulated results at time points,

speciĄed by the experimental protocol, needs to be recorded when the energy of signals

are compared. In general, the simulated data are recorded at TE of each repetition for

comparison.

3.3.3 Implementation

The numerical implementation procedure of the simulator is described in Algorithm 1.

The MRI simulator is developed in C++ due to its multiple features, availability of a

large number libraries, parallel computing interfaces and the high level of performance

requirements of the problem. The serial version of the code relies on C++ Linear

algebra libraries Eigen [52]. Eigen makes the reading, writing and transfers of the data

simpler and also provides some readily available optimized linear algebra operations.

The computationally expensive part is implemented as parallel program using CUDA-C.

The details of parallel implementation are discussed in Section 3.3.4.

As described in line 1 of Algorithm 1, the following parameters are passed as inputs

in the simulator:

(i) Pulse sequence data as a function of time consisting of RF pulse magnitude

max(B1), maximum read-out magnetic gradient max(G), slice selective gradient

Gz, the duration of diferent time-steps τ , a vector ADC specifying the output

time points.

(ii) Computational model, i.e. the ensemble of isochromats with their positions

(rx, ry, rz) and MR properties ω, T1, T2.

(iii) Additional parameters related to an MRI experiment, e.g. total number of

repetitions(nEx) which speciĄes the total duration of numerical simulation,

number of spokes nspokes used for imaging, number of turns nTurn, the MR

sequence type seqtype.

Some other parameters are also speciĄed that gives the simulator greater Ćexibility.

However, they are not mentioned here as they are not essential for a minimal working

of the simulator and illustration purposes.

After the simulator reads the input data (line 1 in Algorithm 1), the initial mag-

netizations m0 of the isochromats are set (line 4 in Algorithm 1). The equilibrium

magnetizations M0 are assumed be 1. For the sequences considered in this work, in the
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Algorithm 1 Simulating Bloch Equation for a Spatially Static Object
1: Inputs:

B1, G, Gz, τ, ADC ← Readfile(PulseSeqeunceData)
isochromats = rx, ry, rz, ω, T1, T2 ← Readfile(IsochromatEnsemble)
nEx, nSpoke, nTurn, baseresol, seqtype←
Readfile(SequenceSpecifier)

2:

3: procedure BlochSimulation

4: Initialize:

Mp
x(0), Mp

y (0), Mp
z (0)← InitializeMagnetization(m0), p =

1, 2, ...rx.length
5: for i ∈ nEx do

6: θrf ← CalculateRFOrientation(seqtype)
7: θs ← CalculateSpokeOrientation(nTurn, nSpoke)
8: Bx = B1 · cos(θrf), By = B1 · sin(θrf)
9: Gx = G · cos(θs), Gy = G · sin(θs)

10: for j ∈ (G.length− 1) do

11: pulsedata← Bx(j), By(j), Gx(j), Gy(j), Gz(j), ADC(j)
12: for k ∈ rx.length do

13: isochromat← rx(k), ry(k), rz(k), ω(k), T1(k), T2(k)
14: Mk

x (j + 1), Mk
y (j + 1), Mk

z (j + 1)← CalculateMagnetization(isochromat

15: , pulsedata, Mk
x (j), Mk

y (j), Mk
z (j))

16: if ADC(j + 1) = 1 then

17: Mxy(i, c) ← CalculateSignal(Mp
x(j + 1), Mp

y (j + 1)), p =
1, 2, · · · rx.length, c = 1, 2, · · · , baseresol

18: return Mxy

beginning of a MR experiment the magnetizations along the transverse directions are

assumed to be 0 and the longitudinal magnetizations are assumed to be equal to the M0.

Therefore, the initial condition of all the isochromats are given by m0 =
(
0 0 1

)T
.

After setting the initial conditions, the time evolution of the magnetizations of

all the isochromats are calculated from repetition to repetition and through all the

speciĄed time points step-by-step (lines 5Ű16 in Algorithm 1) in the following order:

(i) For every repetition, orientation of the RF axis θrf and the spokes θs are calculated

(lines 6Ű7 in Algorithm 1).

(ii) Bx, By, Gx, Gy are calculated for every repetition (lines 8Ű9 in Algorithm 1).

(iii) Pulse sequence data Bx, By, Gx, Gy, Gz, ADC for a speciĄc repetition are used

for a step-by-step solutions for all the isochromats (lines 10Ű16 in Algorithm 1).

(iv) Integrated complex signals are recorded at time points speciĄed by the ADC

vector (Lines 16Ű17 in Algorithm 1).
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3.3.4 Parallel Computing

Algorithm 2 Parallel Subroutine for Calculating Magnetizations in GPU
1: procedure MagnetizationCalculationStatic(isochromats, data)
2: isochromatGPU ← isochromats, pulsedataGPU ← pulsedata
3: Setup CalculateMagnetizationKernel execution conĄguration: grid1, block1

4: Setup CalculateSignalKernel execution conĄguration: grid2, block2

5: CalculateMagnetizationKernel <<< grid1, block1 >>> (Mx(j),My(j),Mz(j),
6: isochromatGPU, pulsedataGPU),Mx(j + 1),My(j + 1),Mz(j + 1))
7: if ADC(j + 1) = 1 then
8: CalculateSignalKernel <<< grid2, block2 >>> (Mx(j + 1),My(j + 1),
9: Mxy(j + 1))

10: return Mxy

All operations in the loops speciĄed in lines 12Ű14 in Algorithm 1 and the procedure

speciĄed in line 16 are mutually independent. Therefore, it is possible to parallelize

them. These parts from Algorithm 1 have been implemented in CUDA-C as a GPU-

based parallel procedures. A CUDA-based template library Thrust [11] has been used

for data transfer from Central Processing Unit (CPU) to GPU and some elementary

reduction operations.

The parallel procedure in Algorithm 2 is described in following steps:

(i) Data related to isochromats and the pulse sequence data i.e. isochromats

and pulsedata are transferred from CPU to GPU global-memory ( Line 1 of

Algorithm 2).

(ii) CalculateMagnetizationKernel, GPU implementation of Lines 12Ű14 in Algo-

rithm 1 and CalculateSignalKernel, GPU implementation of line 16 in Algorithm 1

are conĄgured for GPU calculations ( Lines 2-3 of Algorithm 2).

(iii) CalculateMagnetizationKernel ( Line 5 of Algorithm 2) is executed at each time

step and CalculateSignalKernel ( Lines 6-7 of Algorithm 2) is executed when

output data is to be recorded.

In order to assess the performance enhancement with GPU, numerical experiments

were performed in a Supermicro SuperServer 4027GR-TR system with e Ubuntu 14.04

operating system, 2x Intel Xeon Ivy Bridge E5-2650 main processors. To test the

parallel version of the code a NVIDIA GTX Titan Black (Kepler GK110) GPU were

used.
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To measure the speed up, the simulations were carried out for 27× 27× 45 isochro-

mats for 258 000 time points. The output data were recorded in 1000 time-points. The

parallel simulator took 22.61 s and the serial code took 1813.13 s. Approximately 82

times speed up is achieved.

3.4 Results

3.4.1 Slice Profile

Figure 3.2: (Left) The envelope function of the Hanning-Windowed RF pulse with
diferent number of side lobes. (Right) The slice proĄle at the end of one RF pulse
duration resulting from the pulse with the corresponding envelope function. The
envelope function on the left and the resulting slice proĄle on the right are marked
with the same color.

As already mentioned, a truncated sinc pulses with a few side lobes results in a

distorted non-rectangular slice proĄle. However, if the number of side lobes increase,

the slice proĄle approaches towards a rectangular slice proĄle as depicted by the

simulation results in Figure 3.2. To illustrate the efect of side lobes on the slice proĄle,

the simulations were carried out for a sinc pulse with Hanning windowed apodizations

over a duration of 4 ms. The nominal slice thickness was 6 mm and the corresponding

slice selection gradient were calculated from Equation (2.23). The simulations were

carried out for the sinc pulses for 2N zero-crossings with N = 1, 3, 5, 7, 9.
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Figure 3.2 shows that the slice proĄle becomes more distorted with a decreasing

number of side lobes. Therefore, a sinc pulse with multiple side lobes are favourable for

a less distorted slice proĄle. However, due to the requirement of short repetition time

fast truncated sinc pulses with very short durations are generally used as a compromise

in dynamic MRI experiments.

Figure 3.3: (Left) The envelope function of the Hanning-Windowed RF pulse. (Right)
The slice proĄle at the end of RF pulse. 2Ls represents the nominal slice thickness and
2L′

s represents the actual slice thickness over which the RF pulse Ćips the equilibrium
magnetizations.

A sinc pulse of duration 400 µs with Hanning window apodizations has been

commonly applied for the MRI experiments conducted for the present study. In this

short duration, sinc pulses with only the center lobe can be applied due to hardware

constraints which results in a distorted slice proĄle as illustrated in the left part of

Figure 3.3.

In order to have an idea about the resulting slice proĄle simulation was carried

out for the sinc pulse with the envelope function Be
1(t) corresponding to 40° Ćip angle,

a slice selection gradient Gss corresponding to a nominal slice thickness 2Ls = 6 mm.

The resulting slice proĄle at the end of the RF pulse are plotted in the right part of

Figure 3.3. The Ągure clearly shows that the truncated sinc pulse results in a distorted

slice proĄle of an efective length 2L′
s instead of a rectangular slice proĄle of length 2Ls.

The Ągure also shows that the RF pulse does not Ćip the magnetization uniformly over

the length of the slice. Therefore, the numerical simulations were performed over an

estimated efective length 2L′
s along with taking into account the non-uniform slice

proĄle.
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3.4.2 Comparison between Numerical Methods

Figure 3.4: Single point excitation i.e. 0-dimensional case T1 = 1000 ms, T2 = 100 ms
with 101 isochromat elements having constant of-resonance from −50 to 50 Hz

In order to compare the accuracy and computational time between the embedded

RK method and the operator splitting method, numerical simulations were performed

for a single isochromat with the previously mentioned RF pulse and a constant of-

resonance of 10 Hz. The simulations were performed for four diferent RF pulses for

same number of time-steps. The RK simulations were performed with odeint c++

libraries [2]. Figure 3.4 shows the comparisons for the methods. Though the RK

method is more accurate, it takes 4 times more computational time.

3.4.3 Effect of the Number of Subvoxels and Isochromats

To model the T∗
2 efect of a gradient echo (GE) sequence, each ensemble of isochromats

is assumed to be composed of an arbitrary number of isochromats with diferent

of-resonance frequencies.

In order to study the efect of the number of isochromats in a randomly spoiled T1

weighted radial FLASH sequence, simulations were carried out for a pulse sequence with
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Figure 3.5: Magnitude of averaged integrated signal intensities are plotted as a
function of frame number. The Ągures correspond to objects with following relaxation
times: (Top) T1 = 296 ms, T2 = 113 ms, (middle) T1 = 456 ms, T2 = 113 ms, (bottom)
T1 = 456 ms, T2 = 113 ms. (Left column) Simulated results are shown for three diferent
objects for the computational domain of 4.8× 4.8× 18.0 mm3 divided into 15× 15× 27
subvoxels. (Right column) Simulated results are shown for three diferent objects for
the computational domain of 4.8× 4.8× 18.0 mm3 divided into 27× 27× 27 subvoxels.
For each of these cases, simulations were carried out with subvoxels consisting of 1, 21,
41 and 61 isochromats respectively.

TR/TE = 2.18/1.28 ms, Ćip angle 8°, in-plane resolution = 1.6× 1.6 mm2, nominal

slice thickness=6 mm, FOV = 256× 256 mm2, number of spokes/turns = 17/5 and

base resolution = 160.
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The simulations were performed over a computational domain of 4.8× 4.8× 18.0 mm3

divided into 15× 15× 27 and 27× 27× 27 subvoxels respectively for three diferent

objects. As a reference, simulations were performed taking only one isochromat in each

subvoxel for both computational domains. Also, simulations were performed assuming

each subvoxel to consist of 21, 41 and 61 isochromats in a Lorentzian distribution over

a frequency range −20 to 20 Hz. The magnitude of complex signals are recorded and

summed up for all the isochromats at TE for all the repetitions. After that, they were

averaged over the number of spokes. Magnitude of these averaged integrated signal

intensities are plotted as simulation results.

On the left side of Figure 3.5, simulation results related to the computational

domain with 15× 15× 27 subvoxels is shown for 1, 21, 41 and 61 isochromat numbers

within each subvoxel. Similarly, the right hand side of Figure 3.5 shows simulation

results related to the computational domain 27× 27× 27 for all four cases.

Figure 3.5 clearly depicts that the integrated magnitude signals do not depend much

on the number of isochromats within a subvoxel. However, the number of subvoxels

within a computational domain have an efect on the oscillations of the simulated

results. The simulated results show an oscillatory behaviour with less number of

subvoxels whereas the oscillations are negligible for slightly higher number of subvoxels.

Thus, for further simulations each subvoxel is assumed to consist of one isochromat.



Chapter 4

Simulation of Bloch Equation for

Moving Spins

Numerical simulations of Ćow MRI techniques have been used often as an essential

tool for understanding the mechanism of signal production in previous studies. The

earliest known work related to the numerical simulation for Ćowing spins was a study

on the efect of Ćuid Ćow on slice selection [142]. The efect of Ćow on slice selection

was also investigated later in [82].

There are also prior studies related to the simulation of magnetic resonance angiog-

raphy (MRA) which has become a routine imaging modality for the clinical evaluation

of diseases resulting from vascular shape distortions [75, 84]. The main purpose of

simulating MRA is to increase the understanding of complex circulatory Ćow patterns,

which redistribute the magnetic resonance (MR) signal in a complex way, generate Ćow

artifacts and impair image quality.

Numerical simulations have also been performed for the phase contrast imaging

(PC MRI). Although PC MRI provides useful qualitative information, it sufers from

artifacts in highly complex and turbulent Ćow region. Numerical simulations can

increase our understanding of artifacts and facilitate further development in PC MRI

[103, 104].

However, current MRI studies still lack a comprehensive understanding of the

Ćow-induced disturbances and the efect of Ćow on signal amplitude in magnitude

images. In this work, mathematical modeling and numerical simulation of the Bloch

equation for Ćowing spins has been used to increase our understanding the efect of

Ćow on magnitude images and explore the possibility of quantitative estimation of Ćow

properties from the T1 weighted magnitude images.
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4.1 Bloch Equation for Flowing Spins

There are fundamentally two diferent ways we can look at the time evolution of the

magnetizations for Ćowing spins in presence of an external magnetic Ąeld during an

MRI experiment - the Lagrangian approach and the Eulerian approach.

In the Lagrangian approach, the Ćuid particles are observed as they move through

time and space along a Ćow trajectory. When the Ćuid particles move along Ćow

trajectories in the presence of an external magnetic Ąeld during an MRI experiment,

they also undergo the processes of the RF excitations, precession due to the magnetic

gradients and time-relaxations.

In the Eulerian approach, Ćow of magnetized Ćuids is observed on speciĄc locations

in the space of a domain. The transportation of magnetizations due to Ćuid Ćow are

incorporated by adding a convective term in the Bloch equations [45] and is given by

∂M

∂t
+ (u ·∇)M

︸ ︷︷ ︸
transport

= γM×Bext +
(M0 −Mz)êz

T1

− Mxêx +Myêy
T2︸ ︷︷ ︸

magnetic resonance (MR)

. (4.1)

Due to signal demodulation, the signal acquired from the Ćowing spin in an MRI

experiment is actually equivalent to an equation where magnetizations and the magnetic

Ąeld (Beff) are written in the rotating frame with u is kept in laboratory frame [84].

∂M′

∂t
+ (u ·∇)M′ = γM′ ×Beff +

(M0 −Mz)êz
T1

− Mx′ êx′ +My′ êy′

T2

. (4.2)

Bloch Equation for Ćowing spins given by Equation (4.2) along with proper ini-

tial and boundary conditions is a well-posed problem as discussed elaborately in

Appendix B.

Additionally, if we assume an incompressible Ćow Ąeld which is true for most of the

experimental conditions with body Ćuids and water, the Eulerian Bloch equations for

Ćowing spins can be expressed as

∇ · u = 0, (4.3a)

∂M′

∂t
+ ∇ · (u⊗M′)

︸ ︷︷ ︸
transport

= γM′ ×Beff +
(M0 −Mz)êz

T1

− Mx′ êx′ +My′ êy′

T2︸ ︷︷ ︸
magnetic resonance (MR)

. (4.3b)
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4.2 Numerical Strategies

For developing a numerical simulator for Bloch equations expressed in the Lagrangian

approach, the Ćow trajectories of Ćuid particles are calculated analytically for simple

Ćow situations or computationally for more complex Ćow situations. Subsequently, the

Bloch equations are solved for all points along the Ćow trajectories. This approach is

taken by Marshall et al. in [90, 89] and Tyen et al. in [135].

The advantage of the Lagrangian approach is that it can be understood intuitively

and works well for simple streamlined Ćow patterns. However, the Bloch equations are

required to be solved always for a substantial number of Ćow trajectories for precise

simulation. As a result, this approach is computationally demanding even for simple

Ćow patterns. Apart from that, Lagrangian approach has several disadvantages for

complex Ćow and geometries. Firstly, determining the Ćow trajectories is extremely

diicult for complex Ćow patterns. Secondly, a high level of spatial resolution near the

wall is required to resolve adequately subtle changes in geometries. These disadvantages

make it diicult to apply the Lagrangian approach efectively for complex Ćow patterns

in a complex geometry.

To develop a numerical simulator in Eulerian framework, the computational domain

is divided into a mesh. The magnetizations are calculated on the mesh as a function of

time and space from Equation (4.3). This approach was chosen in [73, 74, 75, 84]. As

this approach does not require Ćow pathline tracking, it is well-suited for modeling

complex Ćow pattern.This approach is computationally less expensive compared to

Lagragian approach as well [74]. Considering these advantages, Eulerian framework is

chosen over the Lagrangian framework for developing the simulator for Ćowing spins in

this work.

Previously, Equation (4.3) is solved using multiple numerical strategies. Jou et al.

in [73] and Lorthois et al. in [84] solved Equation (4.3) by Ąrst solving the Ćow Ąeld in

an Eulerian mesh in a FVM software. They expressed Equation (4.3) later in terms of

longitudinal magnetizations and the magnitude and phase of transverse magnetizations

[84, 73]. These equations are solved further using Ąnite diference method (FDM).

However, they took the assumptions of a short-lived pulse and the RF excitation proĄle

is assumed to be sharp-edged which are signiĄcant deviations for dynamic MRI as will

be seen from Section 4.5 and later in Section 5.5.1.

Jurczuk et al. in [75] solved Equation (4.3) by splitting the transport and the

MR terms. In their work, the magnetization transport was calculated using lattice-

Boltzmann method (LBM) and the magnetizations were calculated using the sequential
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splitting technique as discussed in Section 3.2.2. Operator splitting approach is used

in this work as well with a modiĄcation as discussed in the next subsection.

Splitting of Transport and Magnetic Resonance Terms

In general, a physical phenomena represent the combined efect of several processes

with diferent scales. For example, the Bloch equation for Ćowing spins, given by

Equation (4.3), has two subprocesses of magnetization transport and local magnetization

transformations due to rotation and relaxation. In this case, the behaviour of the

magnetization evolution is described by the sum of the two sub-operators of diferent

physical nature: transportation and the MR phenomena. A diferential splitting,

described in Section 3.2.2, is used widely to solve such mutiscale, multiphysics problem.

The general advantages of the splitting process can be listed as follows [146]:

• Diferent numerical methods can be used to treat diferent sub-problems with

optimal numerical methods for the each subproblems.

• It is easy to change numerical algorithms for diferent sub-problems in order to

achieve improvements of the codes.

• Diferent time-scales can be used to resolve diferent subproblems which helps

in reducing computational load. In many cases, the splitting procedure leads to

better parallel implementation.

On the other hand, the operator splitting introduces splitting errors which interact

with the errors of each subprocess in a very complex way. Thus, it is very diicult to

control the impact of these errors on the total error. Moreover, the operator splitting

typically leads to diiculties in handling the boundary conditions.

In this work, a diferential splitting approach is applied to Equation (4.3) as well.

Here, Equation (4.3) represents an advection-reaction equation where the transport term

in Equation (4.3) takes care of the advection of the magnetizations at a speciĄc point

in time and space from the neighbouring locations. The MR term in Equation (4.3)

which describes the time evolution of magnetizations at that speciĄc time and spatial

point due to RF excitations and time-relaxation is analogous to the reaction term. In

an analytical setting, an advection-reaction equation of a space and time dependent

vector quantity w ≡ w(r, t) is given by

∂w(r, t)

∂t
+∇ · (uw)

︸ ︷︷ ︸
advection

= f(w)
︸ ︷︷ ︸

reaction

. (4.4)
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The reason behind calling f(w) in Equation (4.4) reaction, comes from the frequent

occurrence of this form of equation in chemical transport, also known as the source

term.

If we split Equation (4.4) into advection and reaction, the following two sub-problems

need to be solved:

dw∗(t)

dt
= f(w) = Fr(w

∗(r, t)), tn < t ≤ tn+1, w∗(tn) = wn, (4.5a)

∂w∗∗(t)

∂t
= −∇ · (uw) = Fa(w∗∗(r, t)), tn < t ≤ tn+1, w∗∗(tn) = w∗

n+1. (4.5b)

Let us assume that the numerical operator of Equation (4.4) is Sτ and then the

solution of Equation (4.4) is given by

wn+1 = Sτ (wn), τ = tn+1 − tn. (4.6)

Let us also assume that the solution operator for Equation (4.5a) is Sr,τ and for

Equation (4.5b) Sa,τ . Then the approximate solution using operator splitting is given

by

wn+1 = Sa,τ (Sr,τ (wn)). (4.7)

The numerical solution using the splitting method will introduce a splitting error ϵs

which is given by

ϵs =
1

2
τ 2[Fr,Fa](w) +O

(
τ 3

)
, (4.8a)

where

[Fr,Fa] = F′
r(w)Fa(w)− F′

r(w)Fa(w), (4.8b)

and

F′
a(w)Fr(w) = −∇ · (uf(w)) = −f ′(w)(u · ∇w)− (∇ · u)f(w)−

3∑

i=1

ui
∂f(w)

∂xi
,

(4.8c)

F′
r(w)Fa(w) = −f ′(w)∇ · (uw) = −f ′(w)(u · ∇w)− f ′(w)(∇ · u)w. (4.8d)

It can be proved that if the commutator [Fr,Fa] vanishes then the splitting error is

completely zero [68]. In order to determine the condition under which the commutator
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vanishes, the expression for the commutator is evaluated using Equations (4.8c)Ű(4.8d)

[78],

[Fr,Fa] = (∇ · u)(f(w)− f ′(w)w) +
3∑

i=1

ui
∂f(w)

∂xi
. (4.9)

The following result can be obtained from the above expression [78, 68]

Theorem 4.1. Advection commutes with reaction if : (i) f is independent of r and

∇ · u = 0 or (ii) f is independent of r and linear in u.

According to Theorem 4.1, the commutator for advection-reaction equation does

not vanish as f depends on r which results in a truncation error due to splitting. The

local truncation error ϵt due to splitting is given by

ϵt(tn) =
τ

2
[(∇.u)(f(w)− f ′(w)w) +

3∑

i=1

ui
∂f(w)

∂xi
] +O

(
τ 2

)
. (4.10)

The detailed numerical analysis related to the advection-reaction equation is not

presented further. For an in-depth discussion on the evolution equation with bounded

operators, the reader may consult the review paper [92] by McLachlan et al. and the

book [38] by Farago et al. There are a few recent studies on splitting techniques [60,

59, 6] which focus on the unbounded operators as well.

In order to solve the Equation (4.3) by splitting, the order in which the operators

are solved is crucial. To get a fully consistent treatment, reaction part Equation (4.5a)

is solved Ąrst and the advection term Equation (4.5b) is solved next as explained by

Hundsdorfer et al. in [67, 68]. Equation (4.5a) is solved using the splitting technique

described in Section 3.2.2. Numerical solution strategies to solve the transport of

magnetization Equation (4.5b) is discussed next.

4.3 Numerical Strategies for the Solution of

Advection Equation

In an analytical setting the advection part of Equation (4.4) is given by
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∂w(r, t)

∂t
+∇ · (u(r, t)⊗w(r, t)) = 0, r ∈ Ω, t ∈ (0, T ], (4.11a)

w(r, 0) = w0(r), r ∈ Ω, (4.11b)

w(r, t)♣
u·nΓ<0 = wb, t ∈ [0, T ]. (4.11c)

Equation (4.11) can be solved using various methods, viz. LBM [75], discontinuous

Galerkin method (dGFEM) [117], FDM [84, 73].

It has been shown in Appendix C that for k = 0 a generalized dGFEM formulation

reduces to standard FVM. In the present work, a high-resolution FVM is used for

the simulations of the transport of magnetizations. The biggest advantage of FVM is

the possibility of easy implementation of the method for a complex geometry unlike

FDM and FVM can be easily parallelized in GPU. Also FVM is computationally less

expensive than dGFEM.

Beginning with the semi-discretized form for FVM given by Equation (C.10) in

Appendix C, techniques to determine numerical Ćuxes and time-discretizations are

discussed in this section. Detailed discussions about FVM can be found in [65, 66,

136]. FVM for hyperbolic PDEs is discussed in [81, 130].

Figure 4.1: Schematic representation of a 2-D grid. Ω represent the computational
domain. The boundary of the domain Γ is marked with red line. i-th cell is magniĄed
and Ωi and Γij represent the area of the i-th cell and the common surface between i-th
and the j-th cell respectively.

As depicted in Figure 4.1, in order to get numerical solutions the spatial domain

Ω ∈ Rn is divided into a Ąnite number of cells where the variables are stored in the
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center of each cell. The grid consists of a set of closed control volumes ¶Ωi ⊂ Ω : i =

1, 2, 3 · · · I♢ where R = ¶ri ∈ Ω : i = 1, 2, 3, · · · , I♢ represents cell centers marked with

black dots in Figure 4.1. The grid has the following properties :

1. Ω =
I⋃
i=1

Ωi.

2. Ωi
⋂

Ωj = ∅, i ̸= j.

3. Ωi
⋂

Ωj = Γi
⋂

Γj = Γij.

As discussed in Appendix C, the semi-discretized equation based on the cell-average

values of i-th cell wi(r, t) is given by

d(♣Ωi♣wi)

dt
+

∑

j∈Ji

Fij(u,w)
∣∣∣Γij

∣∣∣ = 0, (4.12)

where wi(ri, t), i = 1, 2, · · · , I is assigned to the i-th point ofR. As the grid dimensions

are assumed not to be changing with time, Equation (4.12) reduces to

dwi(t)

dt
+

1

♣Ωi♣
∑

j∈Ji

Fij(u,w)
∣∣∣Γij

∣∣∣ = 0. (4.13)

The cell-averaged values at i-th cell wi(r, t) at each time-step depends on the Ćux Fij

calculated at diferent faces of the i-th cell. Various spatial discretization schemes

determine the Ćux function Fij with diferent order of accuracy, as a function of the

values of wi for a number of cells. The cells together constitute the stencil of the

numerical scheme. Along with a spatial discretization scheme, a proper time-stepping

technique must be chosen to calculate the time evolution of wi(r, t) in Equation (4.13),

which will be discussed next.

4.3.1 Time Discretization

There are two fundamental methods of time discretization - explicit and implicit

time-stepping. In explicit time stepping, cell-averaged values wi(r, tn+1) at t = tn+1

are calculated from the cell-averaged values wi(r, tn) at t = tn whereas wi(r, tn+1)

are calculated solving a system of algebraic equations involving both wi(r, tn) and

wi(r, tn+1) in implicit time stepping methods.

The choice of time-stepping method depends on the characteristic time scale of the

problem. The biggest advantage of an implicit time-stepping over the explicit methods

is that implicit method are unconditionally stable whereas the time-step sizes for
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explicit time-stepping methods are limited by certain stability criteria. However, when

the important time-scales of a hyperbolic PDE is less than or equal to the time-step

for a stable explicit method, then a explicit time-stepping is favored.

Moreover, explicit methods do not require us to solve a set of algebraic equations

per time-step as required for implicit methods. Therefore, the cost per time step for

implicit methods are higher than for explicit methods. Implicit time-stepping methods

very often need to be used with preconditioners for faster convergence of the iterative

solver of the algebraic equation which is harder to implement. On the other hand,

explicit methods are easy to implement and require a low amount of computer memory.

Considering all the factors mentioned above an explicit method is chosen in this work.

With the simplest Ąrst order explicit time-stepping, Equation (4.13) can be approx-

imated as,

wn+1
i −wn

i =
∑

j∈Ji

τ

Ωi

(
∫ tn+1

tn
Fij(u,w)

∣∣∣Γij
∣∣∣ dt) +O(τ), (4.14)

where

τ = tn+1 − tn, wn
i = wi(tn).

Equation (4.14) is a general multi-dimensional discretized form of Equation (4.12).

The numerical strategy for solving the transport equations depends further on the

spatial discretization of the numerical Ćux at each time step as discussed in the next

section.

4.3.2 Spatial Discretization

To study the efect of one-dimensional Ćow Ąeld on magnetization transport is the

obvious starting point. Not only that, one-dimensional Ćow Ąeld is frequently encoun-

tered in human bodies and of major practical importance. The present work is also

focused on the analysis of the Bloch equations for Ćowing spins for one-dimensional

through-plane steady and pulsatile Ćow Ąeld. The spatial discretization strategies of

one-dimensional Ćow transport equation is discussed in this section beginning from the

Ąrst-order upwind method to high-resolution schemes.
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Figure 4.2: Schematic representation of a 1-D cell-centred grid.

Simple Upwind

Transport equation for a Ćow Ąeld in one dimension in z-direction is given by

∂w(r, t)

∂t
+
∂(uz(r, t)w(r, t))

∂z
= 0. (4.15)

In upwind methods, the average Ćux function is determined by looking at the direction

from which the information is coming, i.e. it is an one-sided method. The numerical

Ćux is determined based on values only to the left or only to the right for positive and

negative velocity as depicted in Figure 4.2.

The diference equation for simple upwind scheme can be written as,

wn+1
i = wn

i −
τ

∆z
(Fn

i+1/2 − Fn
i−1/2) +O(τ) +O(∆z), (4.16)

where Fn
i+1/2

denote the Ćux through the right edge of the i-th cell and Fn
i−1/2

is the

Ćux through the left edge of the i-th cell and they are given by

Fn
i+1/2 = uni wi, Fn

i−1/2 = uni−1wi−1, if U > 0 (4.17a)

Fn
i+1/2 = uni+1wi+1, Fn

i−1/2 = uni wi, if U < 0 (4.17b)

The above equation shows that simple upwind has a two-point stencil and it is Ąrst order

accurate in time and space. It can be shown from the modiĄed equation (explained in

Appendix D) that the upwind method introduces artiĄcial difusion which results in a

lower order accuracy [81]. Nevertheless, the upwind method is monotonicity-preserving

and non-oscillatory (explained in Appendix D).

The explicit upwind method is stable if it satisĄes the CFL condition ui
τ

∆z
≤ 1.

Lax-Wendroff Method

One of the more accurate Ćux approximation methods is the Lax-Wendrof method

which is second order accurate. This method has an extra term to correct for the

artiĄcial difusion introduced in the upwind method [81]. This extra term introduces

an extra-difusion term which compensates for the numerical difusion term completely.
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The diference equation for Lax-Wendrof method is given by

wn+1
i = wn

i −
τ

∆z
(Fn

i+1/2 − Fn
i−1/2)−

τ

∆z
(Fn

h,i+ 1
2
− Fn

h,i− 1
2
), (4.18)

Fn
h,i− 1

2
=

1

2
♣si− 1

2
♣ (1− τ

∆z
♣si− 1

2
♣)Wi− 1

2
, (4.19)

where

si−1/2 =




uni , if U > 0,

uni−1, if U < 0,
Wi−1/2 = wn

i −wn
i−1. (4.20)

Fn
i+1/2

and Fn
i−1/2

have the same expression as for the upwind method. Fn
h,i− 1

2

and

Fn
h,i+ 1

2

represent the anti-difusive term of Lax-Wendrof method. The above equations

show that the Lax-Wendrof method has a three point stencil. One can show that it is

second order accurate in space and Ąrst order accurate in time. The CFL condition for

the Lax-Wendrof method is also give by ui
τ

∆z
≤ 1.

The major advantage of this method is that it gives a more accurate solution in

comparison to upwind method in regions with smooth solutions. On the other hand,

this method results in oscillations near discontinuities [81]. Also, Lax-Wendrof method

introduces a dispersive term in the modiĄed equation which causes a slight shift in

smooth humps, a phase error as shown in [81].

High Resolution Schemes

High resolution schemes combine best features of the non-oscillatory method such as

the upwind method and the higher order accurate method such as the Lax-Wendrof

method. As a consequence, high resolution methods are at least second order accurate

on smooth sections of the solution while preserving non-oscillatory behavior near

discontinuities and smooth humps.

One of the popular approaches to Ąnd a high-resolution scheme is by using Ćux-

limiter methods. Using this method the numerical Ćux at i− 1
2
-th edge is written

as

Fi− 1
2

= FL
i− 1

2
+ ψ(θni− 1

2
)(FH

i− 1
2
− FL

i− 1
2
), (4.21)

where FL
i− 1

2

and FH
i− 1

2

denote the Ćux for a lower and a higher order scheme respectively

at i− 1
2
-th edge. ψ(θn

i− 1
2

) is called the Ćux limiter and θn
i− 1

2

is known as the smoothness
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parameter and is given by

θni− 1
2

=

∣∣∣Wn
I−1/2

∣∣∣
∣∣∣Wn

i−1/2

∣∣∣
I =




i− 1 if ui > 0,

i+ 1 if ui < 0.
(4.22)

We have to choose a proper ψ(θ) such that the desirable properties of a high resolution

scheme can be obtained. From the discussions in Appendix D, high resolution schemes

Figure 4.3: Limiter function ψ(θ). The shaded region shows the high-resolution TVD
region. Green, red, blue lines lie along the boundary of the superbee,Van Leer and
the minmod limiter functions. ψ(θ) = 1 and ψ(θ) = θ represent the boundary of the
Lax-Wendrof and the Beam-Warming methods.

must satisfy the TVD requirements to be non-oscillatory. For a scheme to satisfy the

TVD criteria the value of limiter function must satisfy the following criteria [126]:

0 ≤ ψ(θ)

θ
≤ 2, 0 ≤ ψ(θ) ≤ 2. (4.23)

Also, from the discussions in Appendix D, high resolution schemes must be nonlinear.

Sweby introduced in [124] the following criteria for a scheme to be second order high

resolution which is illustrated by the shaded region in Figure 4.3:

• if 0 < θ < 1 for high-resolution TVD schemes θ < ψ(θ) < 1

• if θ ≥ 1 for high-resolution TVD schemes 1 < ψ(θ) < θ
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Few popular limiter functions are listed in Table 4.1 and are also marked in Figure 4.3.

Table 4.1: Limiter functions

Name ψ(θ)
minmod [110] minmod(1, θ)
superbee [110] max(0,min(1, 2θ),min(2, θ)
Van Leer [134] θ+♣θ♣

1+θ

where minmod(a, b) =





a, if ♣a♣ < ♣b♣ and ab > 0,

b, if ♣b♣ < ♣a♣ and ab > 0,

0, if ab < 0.

Choosing the upwind method as the lower order method and the Lax-Wendrof

method as the higher order method, the high resolution numerical discretization for

Equation (4.15) can be written as

wn+1
i = wn

i −
τ

∆z
(Fn

i+1/2 − Fn
i−1/2)−

τ

∆z
(F̃n

h,i+ 1
2

− F̃n
h,i− 1

2

), (4.24)

F̃n
h,i− 1

2

= ψ(θni− 1
2
)Fn

h,i− 1
2
, (4.25)

where (̃·) is the Ćux-limited term of the anti-difusive term (·) in Lax-Wendrof scheme.

It is obvious from Equation (4.24) that ψ(θ) = 0 and ψ(θ) = 1 for upwind and

Lax-Wendrof scheme respectively.

4.3.3 Boundary Conditions and Ghost Cells

In the transport equation, the magnetizations in the inner cells are calculated by

adding the efect of the magnetization transport from the neighboring cells. However,

the magnetizations on the boundary cells need to be calculated from the imposed

conditions on the boundaries. Therefore, application of accurate boundary conditions

is crucial for accuracy of the numerical result.

In order to solve Equation (4.3) the inĆow condition needs to be speciĄed as

boundary conditions. In this work, the computational domain is chosen such that a

fully saturated incoming magnetizations can be assumed as the inĆow conditions. That

implies the boundary condition is given by

Mx = 0, My = 0, Mz = M0,u · nΓ < 0. (4.26)
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For numerical implementation very often the computational domain is extended to

include a few additional cells on every end. These additional cells are known as ghost

cells as illustrated schematically in Figure 4.4. For one-sided methods like upwind

ghost cells ghost cells

Figure 4.4: Schematic illustration of ghost cell in one-dimensional computational
domain.

method implementing the boundary condition requires implementing only the inĆow

boundary conditions. On the other hand, for numerical implementation of boundary

condition in higher order methods such as Lax-Wendrof or high resolution methods

an outĆow boundary condition needs to be speciĄed. However, for a hyperbolic PDE

such as transport equation the outĆow boundary condition has no physical meaning

and a compatible numerical strategy is necessary.

One way to solve this problem is to use upwind methods in the outĆow boundary

cell and more accurate method on inner cells. Another approach is to impose the

boundary condition in the ghost cells in the outĆow directions is by extrapolating

data from the interior cell. Zero-order extrapolation and the Ąrst order extrapolation

from the interior data are very frequently used. Though Ąrst-order extrapolation is

more accurate, it very often leads to stability problems [81]. Therefore, zero-order

extrapolation is used here which means assigning the inner-boundary cell values to

ghost cells when required which means

wn
l+1 = wn

l , wn
l+2 = wn

l , if U > 0 (4.27a)

wn
l−1 = wn

l , wn
l−2 = wn

l , if U < 0 (4.27b)

where the outer boundary cell is denoted by l.

4.4 Bloch Simulator for Flowing Spins

The Bloch equations simulator for Ćowing spins is based on the splitting method

described in Section 4.2. The simulator is extended from the simulator for spatially
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stationary object (Section 3.3) to include the magnetization transport. The computa-

tional kernel simulates the magnetization transformation under the inĆuence of the

RF pulse and magnetic gradient and then the magnetization transport due to Ćow

sequentially at each time step.

Using the simulator, the transport part of Equation (4.3) can be solved using

upwind, Lax-Wendrof and high-resolution Ćux-limited FVM methods. The MR term

of Equation (4.3) can be solved using sequential, Strang or SWSS splitting techniques

for solving Bloch equations for spatially stationary objects as described in Section 3.2.2.

This simulator takes the velocity Ąeld as an additional input along with the pulse

sequence data and the model of the computational domain. Although the simulator

in the present stage can take any one-dimensional time and space dependent velocity

Ąeld, the present discussion is limited to through-plane Ćow with constant and time

dependent velocity Ąeld. Regarding the output, the integrated pixel intensities are

recorded at previously speciĄed time points similarly as the simulator for spatially

stationary objects. The magnetization transport is also parallelized in GPU like the

Bloch phenomena.

4.4.1 Computational Model

Figure 4.5: Schematic diagram of computational domain.

The computational model is depicted schematically in Figure 4.5. A regular

rectangular cell-centered grid is used for the simulation. Each cell in the grid represents

one subvoxel. One isochromat is assumed to reside in the centre of each subvoxel. uz is
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associated for each of these cell-centers at every time-step of the simulation to calculate

the efect of Ćow on time evolution of magnetization.

4.4.2 Implementation

The numerical implementation procedure is described in Algorithm 3. The simulator

for Ćowing spins takes pulse sequence data, the computational model and additional

MR sequence parameter as inputs like Algorithm 3. The simulator takes also the

magnitude of a constant through-plane velocity as an additional input to study the

efect of the through-plane plug Ćow. On the other hand, sum of sinusoids are used to

study the efect of pulsatile Ćow and given by

uz(t) =
∑

i

ai sin(bit+ ci). (4.28)

For the evaluation of the pulsatile Ćow experiments the amplitudes ai, the angular

frequencies bi and the initial phases ci were obtained after Ątting the pulsatile Ćow

data using curve-Ątting as discussed later in Chapter 4.

The initial condition of Equation (4.3) at each cell-centered grid in the computational

domain is taken to be m0 =
(
0 0 1

)T
. Computational domain is also chosen in such

a way that the magnetizations at inĆow boundary also can be assumed to be fully

unsaturated i.e. we can take mu·nΓ<0 =
(
0 0 1

)T
. The length of computational

domain in the through-plane Ćow direction can be roughly estimated from the slice

proĄle of the magnetization due to through-plane Ćow.

After setting the initial and boundary conditions, the time evolution of the magne-

tizations at all cell-centres are calculated from repetition to repetition and through

all the speciĄed time points step-by-step (lines 6Ű27 in Algorithm 3) in the following

order:

(i) For every repetition, orientation of the RF axis θrf and the spokes θs are calculated

(lines 7Ű8 like Algorithm 3.

(ii) Bx, By, Gx, Gy are calculated for a repetition (lines 9Ű10 in Algorithm 3).

(iii) Pulse sequence data Bx, By, Gx, Gy, Gz, ADC and input velocity u are calculated

for a speciĄc time point (lines 12Ű13 in Algorithm 3).

(iv) Magnetization transformation are calculated for all the isochromats (lines 14Ű17

in Algorithm 3).
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Algorithm 3 Bloch Equation Simulation for Flowing Spins for One-dimensional
Velocity Field

1: Inputs:

B1, G, Gz, τ, ADC ← Readfile(PulseSeqeunceData)
isochromats = rx, ry, rz, ω, T1, T2 ← Readfile(isochromatEnsemble)
nEx, nSpoke, nTurn, baseresol, seqtype←
Readfile(SequenceSpecifier)
velocitySpecifier ← Readfile(V elocityProfile)

2:

3: procedure BlochFlowSimulation

4: Initialize:

Mp
x(0), Mp

y (0), Mp
z (0)← InitializeMagnetization(m0) p =

1, 2, · · · , rx.length
5: Mp

x(0), Mp
y (0), Mp

z (0)← ImplementBoundaryCondition(m0) p = −l+1,−l+2, · · · 0
6: for i ∈ nEx do

7: θrf ← CalculateRFOrientation(seqtype)
8: θs ← CalculateSpokeOrientation(nTurn, nSpoke)
9: Bx = B1 · cos(θrf), By = B1 · sin(θrf)

10: Gx = G · cos(θs), Gy = G · sin(θs)
11: for j ∈ (G.length− 1) do

12: pulsedata← Bx(j), By(j), Gx(j), Gy(j), Gz(j), ADC(j)
13: u← CalculateV elocity(velocitySpecifier)
14: for k ∈ rx.length do

15: isochromat← rx(k), ry(k), rz(k), ω(k), T1(k), T2(k)
16: M∗k

x (j + 1), M∗k
y (j + 1), M∗k

z (j + 1)← CalculateSource(isochromat,

17: pulsedata, Mk
x (j), Mk

y (j), Mk
z (j))

18: for l ∈ ng do

19: M∗l
x (j + 1), M∗l

y (j + 1), M∗l
z (j + 1)← UpdateBoundary(M∗ibc

x (j + 1),

20: M∗ibc
y (j + 1), M∗ibc

z (j + 1))

21: for k ∈ rx.length do

22: Mk
x (j + 1), Mk

y (j + 1), Mk
z (j + 1)← CalculateAdvection(u,

23: M∗
x(j + 1), M∗

y (j + 1), M∗
z (j + 1))

24: if ADC(j + 1) = 1 then

25: Mxy(i, c)← CalculateSignal(Mp
x(j + 1), Mp

y (j + 1)),
26: p = 1, 2, · · · rx.length, c = 1, 2, · · · , baseresol

27: return Mxy

(v) The boundary conditions are updated extrapolating the in Ćow boundary condi-

tions to ghost cells (lines 18Ű20 in Algorithm 3).

(vi) Magnetization transport is calculated at all the cell-centers in the computational

domain at the same time step taking the calculated magnetization due to Bloch

phenomena as the initial value lines 21Ű23 in Algorithm 3.
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(vii) Integrated complex signals are recorded at speciĄed time points (Lines 24Ű26 in

Algorithm 3).

4.4.3 Parallelization

Algorithm 4 Parallel Subroutine for Calculating Magnetizations in GPU for Flowing
Spins
1: procedure MagnetizationCalculationFlow(isochromat, data)
2: isochromatGPU ← isochromats, pulsedataGPU ← pulsedata, uGPU ← u

3: Setup CalculateMagnetizationKernel execution configuration: grid1, block1

4: Setup UpdateBoundaryKernel execution configuration: grid2, block2

5: Setup CalculateAdvectionKernel execution configuration: grid3, block3

6: Setup CalculateSignalKernel execution configuration: grid4, block4

7: CalculateMagnetizationKernel <<< grid1, block1 >>> (Mx(j), My(j), Mz(j),
8: isochromatGPU, pulsedataGPU, M∗

x(j + 1), My∗(j + 1), Mz∗(j + 1))
9: UpdateBoundaryKernel <<< grid2, block2 >>> (M∗ibc

x (j + 1), M∗ibc
y (j + 1),

10: M∗ibc
z (j + 1), M∗gc

x (j + 1), M∗gc
y (j + 1), M∗gc

z (j + 1)
11: CalculateAdvectionKernel <<< grid3, block3 >>> (M∗

x(j +1), M∗
y (j +1), M∗

z (j +1),
12: u, Mx(j + 1), My(j + 1), Mz(j + 1)
13: if ADC(j + 1) = 1 then

14: CalculateSignalKernel <<< grid4, block4 >>> (Mx(j + 1), My(j + 1),
15: Mxy(j + 1))

16: return Mxy

All the calculations in the loops given in lines 14Ű17, 18Ű20, 21Ű23 and 24Ű26 in

Algorithm 3 can be parallelized. These parts are implemented in CUDA-C subroutines

for parallel computation as illustrated in Algorithm 4.

The parallel procedure in Algorithm 4 is described in following steps:

(i) Data related to isochromats and the pulse sequence data i.e. isochromats,

pulsedata and u are transferred from CPU to GPU global-memory ( Line 2 of

Algorithm 4).

(ii) CalculateMagnetizationKernel, GPU implementation of Lines 16Ű17 in Algo-

rithm 3

(iii) UpdateBoundaryKernel ( Lines 9Ű10 of Algorithm 4) and

CalculateAdvectionKernel ( Lines 11Ű12 of Algorithm 4) are executed at each

time step and CalculateSignalKernel ( Lines 13Ű14 of Algorithm 4) is executed

when output data has to be recorded.
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In order to measure the speed up with GPU, numerical experiments were performed

in the same hardware as described in Section 3.3.4, the simulations were carried out for

27× 27× 45 isochromats for 258 000 time points and a constant velocity of 20 mm s−1

were taken as input. The output data were recorded in 1000 time-points. The run-time

was 37.51 s and 2363.13 s for the parallel and the serial versions of the code. Hence, 63

times speed up is achieved approximately.

In order to measure the ratio of execution times of the kernels of magnetization

transport and MR term the numerical experiment performance were proĄled using

GNU proĄler. ProĄling showed that the execution time for magnetization transport

was 75 % of the execution time of the MR term.

4.5 Results

To test the numerical algorithm and the implementation, simulation method is compared

with the results in [142] where Yuan et al. studied the efect of RF pulse on the

magnetization for through-plane Ćow of diferent velocities in the range of 0 to 200 cm s−1

using FDM.

Simulations were performed [142] for the pulse sequence depicted in Figure 4.6 with

the following parameters: RF pulse of Blackman-windowed sinc pulse (Section 2.4.1)

with an amplitude of 0.1750 G and duration of 2.6794 ms, slice selection gradient

Gz = 1.0 G cm−1, nominal slice thickness of 2Ls = 7 mm.

Figure 4.6: A 90° slice-selective pulse was used for the studying the Ćow-efects. The
arrows indicate the time when the data was recorded.

The simulations were carried out for lengths of 20 mm and 30 mm in the slice

direction, divided into 800 grid cells of size 0.025 mm and 0.0375 mm respectively. The

magnetizations are calculated at the end of the post excitation rephasing gradient.

The time duration of the simulations were divided into 4500 time steps with each time

step is equal to 8.9313× 10−4 ms.

In order to evaluate the simulation method used in this thesis, simulations were

carried out with same grid size and time-steps. Lax-Wendrof method is used for the

simulation of magnetization transport.
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Figure 4.7: Simulated magnetization distributions of Mx, My, Mz for the through-
plane velocity uz along the positive z-axis in the range 0 to 10 cm s−1 using splitting
algorithm in the present work (Right) are compared with the results in [142] (Left) .
The magnetizations were recorded at the end of the post excitation rephasing gradient
as marked by the arrow Figure 4.6. The length in the slice direction is from −10 to
10 mm.

Figures 4.7Ű4.9 show an excellent agreement between the results obtained using the

Leap-frog method [127, 126] in [142] and the results using the splitting method used in

the present thesis.

The plots show a shift for magnetizations along the direction of Ćow. The efective

slice length also increases with increasing velocity. Symmetry of Mx and My break

with increasing Ćow velocity as well. Therefore, a proper estimation of slice proĄle is

necessary for choosing the length of computational domain in slice direction, which is
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Figure 4.8: Simulated magnetization distributions of Mx, My, Mz for the through-
plane velocity uz along the positive z-axis in the range 10 to 80 cm s−1 using splitting
algorithm in the present work (Right) are compared with the results in [142] (Left) .
The magnetizations were recorded at the end of the post excitation rephasing gradient
as marked by the arrow Figure 4.6. The length in the slice direction is from −10 to
10 mm.

elaborated and taken into consideration for comparison of simulation with experiments

in Chapter 5.
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Figure 4.9: Simulated magnetization distributions of Mx, My, Mz for the through-
plane velocity uz along the positive z-axis in the range 80 to 200 cm s−1 using splitting
algorithm in the present work (Right) are compared with the results in [142] (Left) .
The magnetizations were recorded at the end of the post excitation rephasing gradient
as marked by the arrow Figure 4.6. The length in the slice direction is in the range
−15 to 15 mm.



Chapter 5

Comparison of Simulations with

Experimental Results

In this chapter, the accuracy of the simulation methods for spatially stationary as well

as Ćowing spin ensembles were evaluated against MRI experiments. In the beginning,

the MRI system and phantoms used for the experiments are described. The simulated

and measured MR signals are compared in later sections.

5.1 MRI System

The MRI system used in this work is a commercially available Prisma (MAGNETOM,

Prisma System, Siemens AG, Erlangen, Germany) as shown in Figure 5.1. It has a bore

length of 142 cm and an inner diameter of 60 cm with possible Ąeld of view of 50 cm. A

superconducting magnet, cooled with liquid helium is used in the MRI system to create

a static magnetic Ąeld of B0 = 2.89 T. It has a two-channel transmit and receiver body

coil and a gradient system with maximum gradient strength of Gmax = 80 mT m−1.

The raster time of the gradients is 10 µs and maximum slew rate is 200 T m−1 s−1. The

body coil is built into the structure of the magnet. Apart from that, various receiver

coils specialized for imaging diferent body parts are available. For the experiments in

the present work, 64-element head coil, 18-element thorax coil and a single channel

loop coil displayed in the bottom part of Figure 5.1 were used.
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Figure 5.1: (Top) MRI system and (Bottom) receiver coils. (Bottom left) 64-channel
head coil, (bottom middle) 18-element thorax coil, (bottom right) single-channel loop
coil.

5.2 Experimental Equipments

5.2.1 Static Phantom

Multiple tubes containing liquids with known T1 and T2 (Diagnostic Sonar Ltd.,

Scotland, UK) were used in the experiments for the validation of the simulation

methods for spatially stationary objects. Experiments were conducted both taking the

tubes one at a time and placing all the tubes inside a container to mimic more realistic

situations as shown in Figure 5.2. The tube numbers and the relaxation times of the

liquids contained in the corresponding tubes are listed in Table 5.1.
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Figure 5.2: Static phantom with tubes contain-
ing liquids with known T1 and T2 parameters

Tube # T1 [ms] T2 [ms]
3 296 113
4 463 53
7 604 95
10 745 157
14 1034 167
16 1276 204

water 2700 2100
Table 5.1: Relaxation constants
for the liquids in diferent tubes

5.2.2 Flow Equipments

Figure 5.3: (Left) Flow tube made of glass materials. (Right top) Programmable
voltage controller. (Right middle) silicone rubber hose. (Right bottom) Flow pump

An in-house acrylic glass tube shown in the left part of the Figure 5.3 was used

for the Ćow experiments. The tube has 5 cm inner diameter and 150 cm length. The

Ćow through the tube was controlled by an electrical pump (Lux Plus KTW270,
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Herzog, Göttingen, Germany) which is connected to a computer controlled power

supply (Voltcraft 12010, Hirschau, Germany) for adjusting the Ćow rate. Apart from

constant Ćow of diferent velocities, pulsatile Ćow with adjustable proĄles could be

generated. A thin silicone rubber hose of 20 mm diameter shown in the Ągure was used

to carry the water in the system.

5.3 Validation of the Static Case

In an MRI experiment with a constant Ćip angle α, constant total gradient moment

and constant TR, the magnetizations reach a state of dynamic equilibrium after several

TR periods. In order to validate the simulation methods, the transient signal evolution

of the experimental results are compared with equivalent simulated results.

5.3.1 Single-channel Loop Coil Experiment

To begin with, the simulation method for spatially stationary objects was tested

with the simplest experiment where a single tube containing only a liquid substance

underwent an MRI experiment with a single-channel loop coil.

It is important to emphasize that the magnetizations are calculated as a function

of time and space in simulations. On the other hand, the discrete time signals are

acquired from the object in an MRI experiment. However, the simulation and the

experiment can be directly related when the coil sensitivity proĄle is homogeneous.

Equation (2.26) shows under such condition the signal expression reduces to

S(t) =
∫

Ω
Mxy(r, tRF)e−i2π(kx·x+ky ·y)dΩ, (5.1)

which implies that the acquired signal has a discrete Fourier transform relation with

the transverse magnetizations. Consequently, the relation between the energy of the

sampled discrete signals and energy of the discrete transverse magnetizations is given

by the following theorem,

Theorem 5.1 (The Plancherel formula for discrete Fourier transform (DFT)). If

x(m,n) and X(k, l) are DFT pairs then

M−1∑

m=0

N−1∑

n=0

∣∣x(m,n)
∣∣2 =

1

MN

M−1∑

k=0

N−1∑

l=0

∣∣X(k, l)
∣∣2 . (5.2)
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Proof. The Proof can be found [83].

Theorem 5.1 gives a condition for the validation of the simulation i.e., with a

homogeneous coil proĄle, the energy of the transversal magnetization at discrete

sample points should be proportional to the energy of the time discrete signals. This

experimental condition is approximately fulĄlled when the experiments are performed

with a single-channel loop coil of suiciently small diameter.

Figure 5.4: MRI experimental set-up with a single channel loop coil and a tube
containing a liquid with known T1 and T2. (Left) The placement of the tube inside
the scanner during the experiment. (Right) The placement of tube inside the loop-coil.

The experiments were conducted taking tubes one at a time from the list in Table 5.1

and placing them inside a loop coil of diameter 4 cm as shown in Figure 5.4. A randomly

spoiled radial FLASH sequence with TR/TE = 2.27/1.47 ms, Ćip angle 8°, in-plane

resolution = 1.0× 1.0 mm2, nominal slice thickness = 6 mm, FOV = 32× 32 mm2,

number of spokes/turns = 27/5 and base resolution = 32 was used for the experiments.

Simulations were performed for the same pulse sequence data over a static object

of 3.0× 3.0× 18.0 mm3 divided into 27× 27× 45 isochromats taking the relaxation

times similar to the speciĄc tube corresponding to each separate run of the experiment.

The data were recorded for all the discrete time points as in the experiment.

The experimental and simulated results are plotted for four tubes in Figure 5.5. The

simulated results and the experimental results represent the energy of the transverse

magnetizations averaged over a frame and the energy of the raw signal per frame

respectively. The results were normalized with the corresponding value of the Ąrst

frame. The Ągure shows that the results are in a good agreement.

5.3.2 Experiment with Multiple Tubes

In order to apply the simulator to more realistic scenarios, the setup is extended

to a phantom with multiple compartments containing diferent substances. To this
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Figure 5.5: Comparison of the normalized energy of the experiment and simulation
for four separate tubes.

Figure 5.6: Principal setup of the experiment with the static phantom consisting
of several tubes with predetermined T1 and T2. (Left) Frontal or coronal plane view
of the phantom. Yellow rectangle represents the slice. (Middle) Axial or transverse
plane view. Yellow rectangle and the central circle show the FOV and the isocenter
respectively. The marker outside the phantom is placed to locate the position of the
tubes.(Right) Lateral or sagital plane view.

end, an experiment was performed with a container with multiple tubes as shown

in Figure 5.2 where each tube contains a separate liquid with known T1 and T2 as

listed in Table 5.1. The principal setup of the experiments is shown in Figure 5.6. The

MRI experiment was conducted with a randomly spoiled radial FLASH sequence with

TR/TE = 2.18/1.28 ms, Ćip angle 8°, in-plane resolution = 1.6× 1.6 mm2, nominal
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slice thickness=6 mm, FOV = 256× 256 mm2, number of spokes/turns = 27/5 and

base resolution = 160. A 64 channel head coil was used to acquire the signal.

Simulations were performed with the same MRI sequence data as in the experiment

over a static object of 4.8× 4.8× 18.0 mm3 divided into 27× 27× 45 isochromats

taking the T1 and T2 corresponding to diferent liquids contained in the tubes of the

container. The simulated data is recorded at the TE because the isochromats are

completely rephased at TE which implies that the simulated data at TE represent

the proton density with zero cumulative phase. The complex signal intensities from

the simulated data are averaged over all the isochromats. Then the magnitude of the

integrated pixel intensities are averaged over the number of spokes used per frame in

the MRI scans. In principle, the averaged integrated pixel intensity is equivalent as

the averaged proton density obtained by averaging over a region of interest (ROI) in

the image.

The magnitude image of the static phantom and the comparison of simulation and

experiment are shown in the left and the right part of Figure 5.7 respectively. For

comparison, the magnitude of the signal intensities of diferent liquids were normalized

by the steady-state signal of the tube with maximum signal (i.e., the signal from tube

3).

Figure 5.7: (Left) Image of the container. (Right) Comparison of simulation with
the image for four diferent liquids.

The right part of Figure 5.7 shows that there is a deviation between the relative

intensities in the simulation and the experiment. The reason for this deviation can be

attributed to the inhomogeneous coil proĄle as can be observed from the image in the
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left part of Figure 5.7. However, the simulations were performed under the assumption

that the coil proĄles are homogeneous. Therefore, for more accurate evaluation of the

simulation methods, the efect of the spatial inhomogeneity of the coil proĄles needs to

be eliminated.

The spatial inhomogeneity of the coil proĄle is eliminated following the strategy

illustrated in Figure 5.8. Following this method, the region which does not contain

water is masked out from the image. A cubic polynomial surface is Ątted to the signal

intensity of the masked out region as depicted in the right part of Figure 5.8. The

estimated smooth surface gives approximately the spatial coil sensitivity distribution.

Figure 5.8: (Left) Image with spatially inhomogeneous coil proĄle. (Middle) White
region containing only tap water and the black region is masked out. (Right) Estimated
coil proĄle obtained Ątting data over the white region.

The image is divided by the coil sensitivity distribution pixel wise to obtain a

compensated image as shown in the left part of Figure 5.9. The signal intensities from

diferent ROIs in the image are normalized like the case with uncorrected coil proĄle.

The simulated and the experimental results show very good agreement after the coil

inhomogeneity correction.

5.4 Application of Simulation for Parameter

Estimation

The simulation can be applied to estimate parameters. This will be illustrated in this

section taking as an example MRI experiments where the efect of the concentration

of the contrast agent on the signal enhancement was studied. The experiments were

performed by Kollmeier and the detailed discussion can be found in [77].
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Figure 5.9: (Left) Image of the static phantom after eliminating the coil inhomogeneity
efect. (Right) Comparison of simulation with the image, compensated for spatial
inhomogeneity, for four diferent liquids.

The primary aim of a contrast agent is to improve the visibility of the internal

structures by radically altering T1 or T∗
2 or both. This can be normally achieved by

introducing a tiny amount of the transition metals (Cr, Mn, Fe) and rare earth metals

(Gd) based chemical structures.

The efects of contrast agents on the relaxation times are determined by a property

of the substance known as relaxivity. The relaxivity of an MRI contrast agent reĆects

how the relaxation time of a solution changes with the concentration of the contrast

agent inside the object. Longitudinal relaxivity r1 reĆects the efect of contrast agents

on the T1 parameter and transverse relaxivity r2 reĆects the efect of the contrast agent

on T2 parameter. The relation between the concentration of the contrast agent and

the time relaxations are given by

1

T1

=
1

T1r

+ r1 · [C], (5.3)

1

T2

=
1

T2r

+ r2 · [C], (5.4)

where T1r and T2r are relaxation times at zero concentration of the contrast agents.

The experiments were performed with Gadovist which contains Gadolinium-based

Gadobutrol (C18H31GdN4O9) (Bayer Healthcare, Berlin, Germany) and saline solution

of Manganese Chloride (MnCl2). The relaxivities were calculated by spin-echo based

relaxometry in the experiments with a 95 %-conĄdential interval as listed in Table 5.2.

1 M = 1 mol l−1.
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Table 5.2: Relaxavities of the contrast agents

Contrast Agent r1[mM−1s−1] r2[mM−1s−1]
Manganese Chloride 5.6± 0.2 86.0± 7.0

Gadobutrol 4.6± 0.2 5.4± 0.2

Figure 5.10: Signal enhancement for two diferent contrast agents for four diferent
Ćip angles

In the experiments, diferent concentration of contrast agents were mixed up with

water in diferent water tubes. To study the efect of the concentrations on the

signal change, experiments were performed with a randomly spoiled radial FLASH

sequence with TR/TE = 2.52/1.78 ms, in-plane resolution = 1.2× 1.2 mm2, FOV =

192× 192 mm2, number of spokes/turns = 51/5 and base resolution = 160, nominal

slice thickness = 8 mm. The same MRI sequence was used for four diferent Ćip angles

8°,12°,16°,20°.

Simulations were carried out with identical pulse sequence data over a static

object of 3.6× 3.6× 24.0 mm3 divided into 27× 27× 45 isochromats with T1 and T2

calculated for speciĄc concentrations of the contrast agent from Equations (5.3)Ű(5.4)

and Table 5.2.
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The images obtained from the experiments were Ąrst corrected for coil inhomo-

geneity as discussed in the previous section. The magnitude of the signals in dynamic

equilibrium were plotted as a function of concentration for four diferent Ćip angles

in Figure 5.10. The good agreement between the experimental and the simulation

results suggests the possible use of the simulator for prediction as well as for parameter

estimation purposes.

5.5 Evaluation of the Simulation of MRI for

Flowing Spins

As mentioned earlier, one of the main goals of the present work is to develop a simulator

to study the efect of Ćowing spins on the MRI signal evolution with a focus on the

quantitative analysis of Ćow induced dynamic signal changes. The Ćow situations

typically encountered in human bodies such as blood Ćow through heart, arteries and

veins, cerebrospinal Ćuid (CSF) Ćow through brain and spine are generally pulsatile in

nature. Also, the Ćow velocity vary over a wide range of magnitude and complexity.

However, in this introductory work, the simulator for Ćowing spins was evaluated

against in vitro experiments, performed for relatively simple laminar and pulsatile Ćow

situations. For evaluation of the simulation methods, efects of plug and pulsatile Ćow

on the magnitude of MR signals were compared. The focus of the present work was

also limited to the Ćow along longitudinal directions i.e. through-plane Ćow.

5.5.1 Proof of Concept

For constant through-plane Ćow velocities, the MR signal from the spins in the excited

slice get replaced by fresh unsaturated spins before the next RF excitation, resulting

in a signal-enhancement. Depending on the velocity of the through-plane Ćow uz, the

saturated spins are replaced partially or fully. The magnitude of the signal enhancement

increases with an increment in through-plane velocity in the partially saturated region,

given by uz <
TH
TR

. Beyond this region of velocity, the excited spins are replaced fully

by unsaturated spins. However, this calculation is based on the simpliĄed assumption

that the Ćow does not have any inĆuence on the location and shape of the slice proĄle

[54] whereas the Ćow inĆuences the location and shape of the slice signiĄcantly.

In order to illustrate the efect of through-plane Ćow on the location and shape of the

slice proĄle, simulations were performed with a randomly spoiled radial FLASH sequence

with TR/TE = 3.33/2.10 ms, Ćip angle = 8°, in-plane resolution= 0.75× 0.75 mm2,
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FOV = 192× 192 mm2, number of spokes/turns = 15/5 and base resolution = 256,

nominal slice thickness = 5 mm. A computational domain of 11.25× 11.25× 15.0 mm3

divided into 75× 75× 45 subvoxels was chosen for the simulation with Ćuids having

relaxation times similar as CSF i.e., T1 = 2000 ms, T2 = 300 ms [24]. The simulation

is carried out for a range of through-plane velocities uz from 0 to 400 mm s−1.

The integrated pixel intensities averaged per frame at TE are plotted as a function

of length in slice direction in Figure 5.11. The left part of the Ągure shows how the

magnitude signals evolve from the Ąrst frame to dynamic equilibrium for velocities 0,

50, 100 and 400 mm s−1. The right part of the Ągure shows slice proĄles at dynamic

equilibrium for a range of velocities from 0 to 400 mm s−1. The left Ągure shows that

with increasing magnitude the Ćow velocity dominates the slice proĄle and there is no

signiĄcant change of slice proĄle with time. It can be observed from the right hand

Ągure that the slice proĄle shifts and expands with increasing magnitude of velocities.

Figure 5.11: (Left) Slice proĄle at TE for the Ąrst frame and in dynamic equilibrium
for 0, 50, 100 and 400 mm s−1 through-plane velocities. (Right) Slice proĄle at TE in
dynamic equilibrium for through-plane velocities in the range of 0 to 400 mm s−1.

Apart from that, in order to estimate velocities from the magnitude of MR signal

in dynamic equilibrium, the magnitude of MR signal should be clearly distinguishable

from each other for diferent velocities. To estimate a velocity range for uz where the

signal-enhancement is sensitive to an increase in velocity, simulated results are analysed

in Figure 5.12.

The left part of Figure 5.12 shows the transient evolution of the magnitude of

signal for diferent velocities and the right part shows the steady-state signal intensities

normalized by the steady-state signal of the static Ćuid. The Ągure depicts that the

steady-state signal increases very rapidly in a very slow Ćow range and the rate of

signal enhancement decreases with an increase in the through-plane velocity beyond an
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Figure 5.12: (Left) Time evolution of averaged integrated pixel intensities as a function
of frame for through-plane velocity range 0 to 400 mm s−1. (Right) Normalized steady-
state integrated pixel intensities as a function of constant through-plane velocities.

initial range. In that initial range, the signal enhancement induced by through-plane

Ćow can be estimated reliably from the magnitude signal.

The remarkable sensitivity of the magnitude of the MR signal to slow Ćow is

supported by a recent study in CSF Ćow [33] where a rapid increase in the magnitude

of the signal could be observed for a very small increase in the inspiration-induced

velocities. Therefore, the present work focused further on in vitro experiments with

slow Ćow in the range of 0-100 mm s−1.

5.5.2 In Vitro Experiments with Laminar Flow

In the beginning, an attempt was made to evaluate the simulator against a laminar

Ćow which can be expressed as a parabolic function of the length in radial coordinate

for Ćow in a circular tube. To this end a laboratory experiment was performed with

the aim to create a fully developed laminar Ćow which can be calculated with relative

ease and can be implemented easily as well. The MR image of the experimental setup

can be seen in the left part of Figure 5.13. The bright circle in the middle and the

small bright circle in the right top corner in the Ągure are the images of the acrylic

glass tube and the guiding rubber hose as illustrated in Figure 5.3.

The relative signal intensities in dynamic equilibrium resulting from diferent

velocities are compared with simulations in the right part of Figure 5.13. From a

previous calibration the operating range of the Ćow pump was chosen such that the

through-plane velocities were expected to be in the laminar Ćow region (i.e, Reynolds

number Re ≤ 2300 [113]).
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Figure 5.13: (Left) MR image of the Ćow tube. (Right) Signal comparison normalized
by the signal intensity of the averaged steady-state signal in dynamic equilibrium for
last ten frames for diferent velocities under diferent operating conditions of the Ćow
pump. The experimental result is represented by the solid line and the simulation is
represented by the dotted line.

At each listed operating voltage in Table 5.3, measurements were performed with a

randomly spoiled radial FLASH sequence with TR/TE = 1.96/1.22 ms, Ćip angle = 8°,

in-plane resolution = 1.6× 1.6 mm2, FOV = 256× 256 mm2, number of spokes/turns

= 17/5 and base resolution = 160 and nominal slice thickness = 6 mm. A very small

ROI was chosen in the image such that the coil sensitivity proĄle over that region can

be assumed to be homogeneous.

A PC MRI sequence [72] was used for pixelwise estimation of the input velocities for

the simulation. The sequence parameters used for estimating the Ćow velocities were:

TR/TE = 5/4.32 ms, in-plane resolution = 1.6× 1.6 mm2, FOV = 256× 256 mm2,

number of spokes/turns = 7/5 and base resolution = 160, nominal slice thickness

= 6 mm, Ćip angle 10°. At each listed operating voltage in Table 5.3, the mean

through-plane Ćow velocity was calculated over the chosen ROI.

The mean velocities and the standard deviation for diferent operating voltages

are listed in the middle and the right column of Table 5.3. The standard deviation

suggested a possible unsteady Ćow proĄle.

The simulation was carried out taking the mean velocity as input constant velocity

for the simulation. To evaluate the simulation methods the magnitudes of relative signal

intensities were compared. A computational domain of 4.8× 4.8× 18.0 mm3 divided

into 45× 45× 45 subvoxels was chosen for the simulation with the pulse sequence
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Table 5.3: Mean and standard deviation velocities and Re based on the mean velocity
for diferent operating voltages of the Ćow pump at temperature 16 ◦C (kinematic
viscosity ν = 1.1092× 10−2 cm2/s [137]).

Voltage [V] Mean Velocity [mm s−1] Standard Deviation [mm s−1] Re
6 49.19 2.26 2217
5 38.71 1.97 1744
4 28.84 1.47 1300
3 18.52 1.04 834

data of the randomly spoiled radial FLASH sequence. A high resolution method with

superbee limiter was used for the calculation of the magnetization transport at each

time discretization step which corresponds to 0.5× 10−5 s during the RF pulse and

1.0× 10−5 s for rest of the duration of a TR period. For the calculation of magnetization

evolution at the same time step one isochromat was assumed to reside at the centre of

each subvoxel.

The experimental and the simulated data are compared in the right part of Fig-

ure 5.13. The Ągure shows that the magnitude of signal from the experimental data

never reaches a dynamic equilibrium in the experiment due to the unsteady velocity

proĄle as already hinted by PC MRI calculation. The experimental data was normalized

by the average magnitude of signal of last 20 frames for the measurement with the

operating voltage of 6 V in Table 5.3. The simulated data was normalized similarly

taking the corresponding velocity.

The reason for the deviation of experimental results from simulation depicted in the

plot could be attributed to the unsteady Ćow proĄle which was already hinted by the

standard deviation in the velocity calculation using PC MRI. A more elaborate picture

of unsteady Ćow proĄle can be observed in the contour plots of the Ćow velocities.

Figure 5.14 depicts the velocity contours inside the tube in three consecutive velocity

measurements in dynamic equilibrium. The through-plane velocities were assumed to

be constant over the time duration of each measurement (i.e. 70 ms). The contour

plots in Figure 5.14 clearly show that the Ćow Ąeld never became a fully developed

laminar Ćow in the existing setup in spite of the fact that the average velocities were

in the laminar range because the laminar Ćow would have produced concentric circular

contours. The reason of not obtaining a fully developed laminar Ćow can be attributed

to the fact that a suiciently big entry length could not be provided in the existing

setup. Empirical studies showed that to guarantee a laminar Ćow proĄle an entry

length le ≈ 0.05ReD must be provided [26], which would result in approximately 2 to

5.5 m length in the used velocity range. The contour plots in the Ągure also suggest
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Figure 5.14: The velocity contours in the tube for three consecutive measurements
when the pump was operated at 3 V (top) and 6 V (bottom).

the presence of transverse Ćow components during the experiments. Therefore, the

assumptions of pixelwise constant through-plane velocity and one-dimensional Ćow on

which the simulations were based, were marginally deviating from the experiments.

5.5.3 In Vitro Experiments with Pulsatile Flow

The simulation method was also evaluated against more relevant pulsatile Ćow using a

laboratory experiment. The pulsatile Ćow experiment setup is depicted in Figure 5.15.

In order to create a pulsatile Ćow proĄle in the Ćow tube the Ćow pump was operated

with a periodic voltage time diagram as shown in the left part of Figure 5.16.

A randomly spoiled FLASH sequence with exactly the same parameters as used

for the similar experiments in the previous section was used. A very small ROI was

chosen to calculate the mean magnitude signal and later to calculate the velocities

with PC MRI such that coil sensitivity proĄle could be assumed homogeneous. Sum of

4 sinusoids given by Equation (4.28) were Ątted to the estimated mean through-plane

Ćow velocity data using Matlab (Mathworks, Natick, MA, IUSA) curve-Ątting toolbox.

The calculated Ćow velocity proĄle and the Ątted curve are depicted in the right part

of Figure 5.16. The simulation is performed with same domain and subvoxels as used
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Figure 5.15: Experimental setup for the pulsatile Ćow experiment. Water Ćowed
through the left tube. Middle and right tubes contain static tap water.

Figure 5.16: (Left) Operational voltage diagram of the pump to create pulsation.
(Right) Fitted through-plane velocity proĄle from PC MRI data.

for the previous section taking the pulsatile velocity proĄle as the input through-plane

velocity. Experimental data was normalized with the steady-state signal from the

spatially stationary tube under the same experimental conditions. Simulation were

normalized also by the steady-state signal of static water.
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Figure 5.17: The efect of pulsatile Ćow on the signal can be observed here. Signal is
normalized with the steady-state signal of the static water.

Figure 5.18: (From top right clockwise) Contour plots for four equidistant diferent
time point in one pulsation period.

Figure 5.17 shows that although the periodicity in the magnitude signals from

the experiment and the simulation agree well, the amplitude of experimental results

deviate marginally from the simulation.
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The deviation could be due to the Ćow proĄle implemented in the simulation were

assumed to be a function of time only. The assumption implies that Ćuid at diferent

positions along the tube must respond simultaneously to the changing pressure at all

positions at every speciĄc point of time in the direction of through-plane Ćow such

that through-plane velocity at every position in the longitudinal direction are same.

In order to fulĄl the condition, the Ćuid is assumed to be moving in bulk which is

artiĄcal and unphysical [143]. Nevertheless, this assumption provides a starting point

for understanding more realistic form of pulsatile Ćow. Moreover, the Ćow proĄle was

never a one-dimensional pulsatile Ćow proĄle as can be observed from Figure 5.18

which shows the velocity contour in the Ćow tube in four time points with 700 ms time

duration diference.





Chapter 6

Summary and Outlook

6.1 Summary

In this thesis, a numerical simulator has been developed for a quantitative description

of the MRI signal of spatially stationary and Ćowing spins. The approach is based on a

numerical solution of the Bloch equation. The simulation methods were validated with

laboratory experiments. The simulated results hint at the possibility of computer-aided

estimation of experimental parameters like Ćow velocity or NMR relaxation time

constants as well as ofer support and potential for further improvements.

Technically, a splitting method was used in order to solve the Bloch equation for

spatially stationary objects. the method splits the equation into two sub-operators

representing the rotation and relaxation of the transverse and longitudinal magneti-

zations involved in an MRI experiment. Subsequently, these two subproblems were

solved analytically and combined step-by-step in certain order to give solutions with

diferent degrees of accuracy. Another advantage of the operator splitting technique is

that it reduces the computation time in comparison to other numerical methods like

Runge-Kutta (RK).

The splitting technique was further extended to solve the Bloch equation for Ćowing

spins which represents an advection-reaction equation. The time evolution of the

relevant magnetizations due to the MR experiment and transport due to the presence

of a Ćow Ąeld were calculated sequentially. Therefore, the transport of magnetization

was added to the simulator for static objects to develop the simulator for Ćowing

spins. High-resolution FVM methods were used to solve the magnetization transport.

One of the major advantages of FVM is that the simulator can be easily extended

to complex and moving geometries which often refer to the situation for Ćow under
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in vivo conditions. In this initial study, the efect of a one-dimensional Ćow Ąeld

with either constant or pulsatile velocities on the temporal evolution of the MRI-

recorded magnitude signal was investigated. However, the present work already lays

the foundation for more realistic simulation of complex Ćow dynamics as, for example,

encountered in the ascending aorta of patients with aortic valve insuiciency and/or

partial stenosis. The simulators were further parallelized for CUDA-enabled GPU to

reduce the simulation time signiĄcantly. The computational domain for the simulation

methods was chosen such that realistic slice proĄles for real-time MRI acquisitions

were taken into consideration and the time steps were chosen to comply with the raster

time of the used MRI pulse sequence.

The simulation methods were validated for a randomly spoiled radial FLASH

sequence and experiments in a 3 Tesla MRI system. The simulator for spatially

stationary objects was tested with use of a single-compartment phantom Ąlled with

doped water to achieve deĄned relaxation times. The simulations were then extended

to a multi-compartment phantom containing several aqueous solutions with diferent

relaxation times. For both of these cases the simulated data agree well with the

experimental results.

The use of numerical simulation for estimating experimental parameters underlying a

certain MRI signal strength (or its change) was explored for the efect of a paramagnetic

contrast agent and its related signal enhancement. The simulation was performed

with relaxation times estimated using T1 and T2 mapping sequences and subsequently

compared with the experimental results. The generally good agreement indicates the

possibility of using the numerical simulator for parameter estimation.

In a Ąnal step, laboratory experiments were conducted for testing the simulator for

slow constant and pulsatile Ćow. The experimentally estimated Ćow velocity via PC

MRI was taken as input for the simulation. Even though the experimental conditions

were not suicient to produce a situation of perfectly laminar Ćow, the simulated

results show reasonable agreement with the experiments. For looking at a pulsatile

Ćow pattern, the experimental velocities obtained by PC MRI, Ątted to a periodic

Ćow pattern as a function of time, were taken as input. Again, the simulated and

experimental results agree well in a comparable range regardless of the simpliĄed

assumption of temporal periodicity in the one-dimensional Ćow proĄle. However, the

simulator already provides potential for further improvement towards the treatment of

more complex Ćow.
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6.2 Outlook

In this thesis the simulation focused on a one-dimensional ensemble of pixels with

homogeneous MR properties. This ofers the advantage of direct comparisons of

integrated pixel intensities from the simulations with experimental MRI results. In

general, however, the simulator can be extended to model the time evolution for series

of two-dimensional MR images with spatially stationary as well as Ćowing spins. For

such situations the spatially variable coil sensitivity proĄles which are factors to the

actual MR image must be taken care of, either by elimination as possible for a single-coil

acquisition or by the incorporation of analytically or experimentally determined coil

sensitivities. Moreover, when studying compartments with irregular geometries, a

reliable treatment should consider partial volumes inside pixels.

Furthermore, the time scales for resolving the magnetization transport and MR

phenomena are diferent. The splitting technique can be tested by taking diferent time

scales for solving Equation (4.3) which may reduce the simulation time signiĄcantly.

Accuracy in time discretization can also be increased by using higher-order time

stepping such as TVD RK time stepping [48] or strong stability preserving linear RK

methods [49].

To cater for more realistic scenarios involving pulsatile and turbulent Ćow as seen

for vascular and cardiac Ćow in humans, the Ćow Ąeld must be extended to two

and three dimensions. Equation (4.13) in Section 4.3 discusses a general formulation

to study multi-dimensional Ćow Ąelds. The easiest way to investigate the efect of

multi-dimensional Ćow on the MRI signal evolution is to employ dimensional splitting

techniques [68, 81]. In dimensional splitting, the efect of Ćow components of all

directions are calculated separately and subsequently combined. Another possibility is

to solve the transport of magnetization from the semidiscrete form of Equation (4.13)

evaluating the Ćuxes by some multi-dimensional interpolation [81]. Higher-order

time stepping techniques can simultaneously be used along with a multi-dimensional

Ćow-Ąeld implementation.

As a Ąrst extension of the current work, accurate pulsatile Ćow Ąelds in time

and space should be incorporated to alleviate the simpliĄed assumption of temporal

periodicity used so far. In the next step, turbulence modelling in time and space

needs to be employed for more complex Ćows. In addition, contributions from vessel

movements should be incorporated for more precise simulation. Readily available

commercial or open-source computational Ćuid dynamics (CFD) softwares can be used

for simulating complex Ćows. Later, the temporally and spatially dependent Ćow Ąelds
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can be taken as input and integrated in the simulator for Ćowing spins to study the

efects on MRI.

With increasing complexity of the Ćow Ąeld, the computational task will be more

demanding. As a result massive parallelism will be essential. In this work, single-GPU

parallelism was used to get a reasonable speed up. However, further improvements are

possible in this direction. Precise optimization techniques and multiple implementation

can be employed to reduce the simulation time signiĄcantly.

Regarding putative applications, clinical scenarios which increasingly rely on quan-

titative information should be further explored, in particular for a computer-aided

parameter estimation in T1, T2, T∗
2 mapping. The current achievement of estimating

Ćow velocities and volume rates from experimental MRI data with use of a simulator

for moving spins warrants more extensive scientiĄc and clinical trials ranging from

artiĄcal phantoms to normal and pathological Ćow in the large vessels of patients.



Appendix A

Definitions, Theorems and Results

Related to ODE Systems

In this chapter, the focus is on the analysis of numerical methods for Ąrst-order initial

value problem (IVP) of the form:

w′(t) = f(t,w(t)), t ∈ (t0, t0 + T ], (A.1a)

w(t0) = w0, w0 ∈ Rd. (A.1b)

We are seeking a vector-valued function w(t) ∈ C1[t0, t0 + T ] with the initial value

Equation (A.1b). The d-dimensional Eucledian space Rd is equipped with norm ∥·∥.
The general existence and uniqueness result of the equation is given by the following

theorem.

Theorem A.1 (PicardŰLindelöf theorem). Suppose that the vector-valued function

(t,w) 7→ f(t,w) is continuous in the domain D defined by t0 ≤ t ≤ t0 +T, ∥w−w0∥ ≤
M such that

∥∥f(t,w0)
∥∥ ≤ K when t0 ≤ t ≤ t0 + T and that f satisfies the Lipschitz

condition:

∃L > 0 such that
∥∥f(t,w)− f(t,w∗)

∥∥ ≤ L∥w−w∗∥ ∀(t,w), (t,w∗) ∈ D.

Assume further that

M ≥ K

L
(eLT − 1). (A.2)

Then, there exists a unique function w ∈ C1[t0, t0 + T ] such that w(t0) = w0 and

w = f(t,w), t ∈ [t0, t0 + T ].



98 DeĄnitions, Theorems and Results Related to ODE Systems

Moreover,

∥∥(w(t)−w0)
∥∥ ≤M, t0 ≤ t ≤ t0 + T. (A.3)

Proof. The proof of this theorem can be found in textbooks on theory and numerical

methods on ordinary diferential equation [119, 102, 125, 116, 22, 58] and textbooks on

numerical analysis [46, 108].

Frequently, there is no analytical solution available for an ODE or the analyti-

cal solution do not give much useful qualitative information. Therefore, numerical

solution of an ODE occupies an important role. The numerical solution vn ∈ Rd of

Equation (A.1a) are generally calculated at discrete time points tn ∈ [t0, t0 + T ]. In

one-step numerical methods like Euler method or Runge-Kutta (RK), the numerical

approximation vn+1 at n+ 1-th time step is determined as a function of tn,vn and the

time step τn and can be expressed in general form as,

vn+1 = vn + τnF(tn,v
n; τn), τ = tn+1 − tn, (A.4)

where the incremental function F : [t0, t0 + T ] × Rd × R+ → Rd is the approximate

diference quotient deĄned by the numerical method.

To analyse the local behaviour of the numerical method, let w(t) be the reference

solution of the following local initial value problem,

w′(t) = f(t,w(t)), t ∈ [tn, tn + τ ], wn = vn. (A.5)

The local description is concerned with the estimation of local truncation error and

consistency of the numerical method.

Definition (local truncation error). The local truncation error ϵ
n at (tn,vn) is deĄned

as follows:

ϵ
n =

1

τ
[wn+1 − vn+1]. (A.6)

From Equation (A.4) and Equation (A.5), local truncation error can be alternatively

described as

ϵ
n =

1

τ
[wn+1 −wn]− F(tn,v

n; τ). (A.7)
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which is basically the diference between the exact and approximate increment per

step.

The consistency of the numerical method can be deĄned based on the deĄnition of

local truncation error.

Definition (Consistency). The numerical method is consistent with the Equation (A.1a)

if the truncation error, deĄned by Equation (A.7), satisĄes the following,

sup
n:nτ≤T

∥ϵn∥ → 0 as τ → 0. (A.8)

Using Equation (A.7) and Equation (A.5), the numerical method is consistent if

F(tn,w
n; 0) ≡ f(tn,w(tn)) t ∈ [t0, t0 + T ], w ∈ Rd. (A.9)

In order to determine the order of accuracy of a numerical scheme, the following

deĄnition is necessary.

Definition (order of magnitude). f(s) is of the order of ϕ(s) if there exist a constant

A such that
∣∣f(s)

∣∣ ≤ A
∣∣ϕ(s)

∣∣ for all s ∈ S and it is generally written as f(s) = O
(
ϕ(s)

)
.

O() is called the Landau notation.

A numerical scheme is said to be accurate of order p if the local truncation error

ϵ
n = O(τ p) Global description of the numerical method is concerned with the behaviour

of the global error ; in particular stability, convergence and the step size τn required to

ensure convergence. In order to Ąnd an approximate solution v = vn (grid function) a

grid on the interval [t0, t0 + T ] is deĄned by the following set of points

t0 < t1 < t2 < · · · < tN = t0 + T, τn = tn+1 − tn, n = 0, 1, 2, · · · , N (A.10)

where τn is the step size. The global behaviour is analysed for grid functions over a

certain grid.

Stability of a numerical scheme which characterizes the robustness of a numerical

scheme with respect to small perturbations, is deĄned as follows:

Definition (Stability). The numerical method Equation (A.4) is said to be stable

if there exists a constant 0 < C0 < ∞ which does not depend on τn such that for

an arbitrary grid τ on [t0, t0 + T ] and for two arbitrary grid functions v,v∗ ∈ Γg on

[t0, t0 + T ], there holds,

∥v− v∗∥ ≤ C0(∥v0 − v∗
0∥+

∥∥ϵ
n(v)− ϵ

n(v∗)
∥∥), v,v∗ ∈ Γg[t0, t0 + T ]. (A.11)
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The condition for stability is given by the following theorem,

Theorem A.2. If F(t,w; τn) satisfies a Lipschitz condition with respect to the w

variables i.e.,

∥∥F(t,v; τn)− F(t,v∗; τn)
∥∥ ≤ L∥v− v∗∥ (A.12)

then the method Equation (A.4) is stable.

Proof. The proof of the above theorem can be found in [46].

Convergence is the property of the numerical scheme which gives us total assurance

that the numerical solutions obtained is valid approximation of the exact solution.

Definition. Let v = ¶vn♢ is a grid function calculated by the numerical method

Equation (A.4) on the following time discretization,

t0 < t1 < t2 < · · · < tN = t0 + T, τn = tn+1 − tn, n = 0, 1, 2, · · · , N. (A.13)

Moreover, w = ¶wn♢ is the grid function induced by the exact solution of Equa-

tion (A.1a) on the same grid. The method is said to converge on [t0, t0 + T ] if

∥w− v∥ → 0 as τmax → 0, (A.14)

where τmax = max
1≤n≤N

(tn − tn−1).

The global error can be deĄned in this connection.

Definition (global error). The global error at the n-th time step is deĄned as follows:

ϵ
n
g = wn − vn, w(tn) = wn. (A.15)

The connection between Consistency, stability and convergence for a linear Q is

given by the following theorem:

Theorem A.3 (Lax equivalence theorem). For a well-posed initial value problem and a

linear two level consistent discretization scheme, stability is the necessary and sufficient

condition for convergence.

Proof. The proof of this theorem can be found [79].
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However, it is not plausible to estimate the global error directly. The bound on the

magnitude of global error can be deĄned in terms of local error using the following

theorem.

Theorem A.4. Consider the general one-step method where, in addition to being a

continuous function of its arguments, F is assumed to satisfy a Lipschitz condition

with respect to its second argument, that is, there exists a positive constant L such that,

for 0 ≤ τn ≥ T and ∀(t,w1), (t,w2) in the domain

D = ¶(t,w) : t0 ≤ t ≤ T,
∥∥∥w−w0

∥∥∥ ≤ C♢, (A.16)

we have

∥∥F(t,w1, f(t,w1(t)); τn)− F(t,w2, f(t,w2(t)); τn)
∥∥ ≤ L∥w1 −w2∥ . (A.17)

Then, assuming that
∥∥∥wn −w0

∥∥∥ ≤ C, n = 1, 2, · · · , N , it follows that,

∥∥∥ϵ
n
g

∥∥∥ ≤ ϵmax

L
(etn−t0 − 1), n = 1, 2, · · · , N, (A.18)

where ϵmax = supn:nτ≤T∥ϵn∥.

Proof. The proof can be found in [123].

A.1 Solution of Bloch Equations by Operator

Splitting

The Bloch equations for MRI in rotating frame read as

dM′

dt
= γM′ ×Beff +

(M0 −Mz)êz
T1

− Mx′ êx′ +My′ êy′

T2

. (A.19)
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To solve equation (A.19) by the sequential splitting technique the following two

subproblems need to be solved at each time-step tn < t ≤ tn+1

dM∗

dt
= γM∗ ×Beff︸ ︷︷ ︸

rotation

=




0 γBz −γBy

−γBz 0 γBx

γBy −γBx 0




︸ ︷︷ ︸
A1




M∗
x

M∗
y

M∗
z


 with M∗(tn) = M′(tn),

(A.20a)

dM∗∗

dt
=




−M∗∗

x

T2

−M∗∗

y

T2
M0−M∗∗

z

T1




︸ ︷︷ ︸
time relaxation

=




−1
T2

0 0

0 −1
T2

0

0 0 −1
T1




︸ ︷︷ ︸
A2




M∗∗
x

M∗∗
y

M∗∗
z


 +




0

0
M0

T1




︸ ︷︷ ︸
g

with M∗∗(tn) = M∗(tn+1).

(A.20b)

The solution of equation (A.20a) is given by

M∗(tn+1) = eAM′(tn), τ = tn+1 − tn, τA1 = A, (A.21)

and

eA = I + A+
A2

2!
+
A3

3!
+ · · · .

We can derive a formula for eA using the following theorems [4]:

(i) Cayley-Hamilton theorem states that every square matrix satisĄes its own char-

acteristic polynomial i.e., if p(λ) = det(A− λI) is the characteristic polynomial

of A then p(A) = 0.

(ii) From division algorithm, if f(λ) is any polynomial then there exist two unique

polynomials g(λ) and r(λ) such that

f(λ) = p(λ)g(λ) + r(λ), (A.22)

where the degree of r(λ) ≤ n− 1

As eA is an inĄnite degree polynomial, it can be uniquely expressed as

eA = p(A)g(A) + r(A), (A.23)
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where p(A) is the characteristic polynomial of A and r(A) is a quadratic function of A

and p(A) = 0 implies that

eA = r(A) =
2∑

i=0

αiA
i, (A.24)

where αi are coeicients of r(A).

Again, if λi, i = 1, 2, 3 are eigenvalues of A then p(λi) = 0. Therefore, from the

above equation

eλi = r(λi) =
2∑

i=0

αiλ
i
i+1 (A.25)

From Equation (A.25) the coeicients of the polynomial r can be calculated.

The eigenvalues of A are 0,±iτγ∥B∥ where ∥B∥2 = (B2
x +B2

y +B2
z ). Putting λis

in Equation (A.25) the coeicients αi of r and thus eA can be determined. Taking

R = eA, nx = Bx

∥B∥
, ny = By

∥B∥
, nz = Bz

∥B∥
, ϕ = τγ∥B∥, elements of R can be written

as

R11 = n2
x + (1− n2

x) cos(ϕ),

R12 = nxny(1− cos(ϕ)) + nz sin(ϕ),

R13 = nxnz(1− cos(ϕ))− ny sin(ϕ),

R21 = nxny(1− cos(ϕ))− nz sin(ϕ),

R22 = n2
y + (1− n2

y) cos(ϕ),

R23 = nynz(1− cos(ϕ)) + nx sin(ϕ),

R31 = nxnz(1− cos(ϕ)) + ny sin(ϕ),

R32 = nynz(1− cos(ϕ))− nx sin(ϕ),

R33 = n2
z + (1− n2

z) cos(ϕ).

(A.26)

Let us assume that R2 is the solution operator of Equation (A.20b) and e2 =

e−τ/T2 , e1 = e−τ/T1 . Then solving Equation (A.20b), we obtain

M∗∗(tn+1) = R2M
∗∗(tn) = diag(e2, e2, e1)M

∗∗(tn) +




0

0

M0(1− e1)


 . (A.27)
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The numerical solution by sequential splitting method is given by

M′
n+1 = R2RM′

n (A.28a)

=




e2R11 e2R12 e1R13

e2R21 e2R22 e1R23

e2R31 e2R32 e1R33


 M′

n +




0

0

M0(1− e1)


 . (A.28b)

Similarly, the numerical solution for SWSS is

M′
n+1 =

1

2
(R2R +RR2)M

′
n (A.29a)

=




e2R11 e2R12
(e1+e2)

2
R13

e2R21 e2R22
(e1+e2)

2
R23

(e1+e2)
2

R31
(e1+e2)

2
R32 e1R33


 M′

n +




R13M0(1−e1)
2

R23M0(1−e1)
2

(1+R33)
2

M0(1− e1)


 . (A.29b)

To determine the solution using the Strang splitting discussed in chapter 3, we Ąrst

need to modify the relaxation operator for a time step of size τ
2
. Let us call it R̂2 and

also denote the corresponding exponential expressions with a (̂·) and we obtain

M′
n+1 = R̂2RR̂2M

′
n (A.30a)

=




ê2
2R11 ê2

2R12 ê1ê2R13

ê2
2R21 ê2

2R22 ê1ê2R23

ê1ê2R31 ê1ê2R32 ê1
2R33


 M′

n +M0(1− ê1)




R13ê2

R23ê2

(1 +R33ê1)


 . (A.30b)

Consistency, Stability, and Convergence of the Splitting method

The Bloch equations Equation (A.19) can be expressed with the splitted operators as

dM′

dt
= A1M

′ + A2M
′ + g. (A.31)

Equation (3.22) shows that local truncation error of the operator splitting method for

an ODE is at least of the order O(τn). Therefore, the operator splitting method is

consistent.

With respect to a suitable operator norm ∥·∥M and a compatible vector norm ∥·∥V
the suicient condition for stability of Equation (A.31) in a Ąnite interval [t0, t0 + T ] is

given by
∥∥∥eτAk

∥∥∥
M
≤ eτωk , k = 1, 2 [16, 9].
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With respect to Euclidean matrix and vector norm [108],

∥∥∥eτA1

∥∥∥
2
≤ eτ∥A1∥2 = eτσ1(A1) = eγ∥B∥τ (A.32)

as

∥A1∥2 = σ1(A1) =
√
ρ(AH1 A1) = γ∥B∥ , (A.33)

where σ1(·), ρ(·) represents the maximum singular value and eigenvalue of the matrix.

Similarly,

∥∥∥eτA2

∥∥∥
2
≤ eτ∥A2∥2 = e

τ
T2 (A.34)

as

∥A2∥2 = σ1(A2) =
√
ρ(AH2 A2) =

1

T2

. (A.35)

Therefore, according to Theorem A.3, the operator splitting method used for the

solution of Bloch equation is convergent.





Appendix B

Existence and Uniqueness of Bloch

Equation for Flowing Spins

In this chapter, well-posedness of Bloch Equations for Ćowing spins will be discussed.

Figure B.1: Schematic diagram of pipe Ćow for illustrating domain (Ω) and domain
boundaries. Γ− marked with red color represents the inĆow boundary. Γ+ marked with
green color represents the outĆow boundary. The blue line represents impermeable walls
of the pipe which is no-Ćow boundaries, denoted by the symbol Γ0. u is the velocity
Ąeld with Ćow direction (marked by the arrow below u) from the inĆow boundary
towards the outĆow boundary.

To this purpose, let Ω ∈ Rd, d = 3 be the Ćow domain with a piecewise smooth

Lipschitz boundary Γ = Γ−
⋃

Γ+
⋃

Γ0. The Bloch equation for Ćowing spins along with
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suitable boundary and initial conditions are given as follows:

∂M′

∂t
+ (u ·∇)M′ = γM′ ×Beff +

(M0 −Mz)êz
T1

− Mx′ êx′ +My′ êy′

T2

(t, r) ∈ (0, T ]× Ω,

(B.1a)

M′ = MΓ, (t, r) ∈ [0, T ]× Γ−, (B.1b)

M′ = M0, (t, r) ∈ ¶0♢ × Ω, (B.1c)

where Γ− = ¶w ∈ Γ♣u · n < 0♢, Γ+ = ¶w ∈ Γ♣u · n > 0♢ and Γ0 = ¶w ∈ Γ♣u · n = 0♢
represent the inĆow, outĆow boundary and solid wall respectively; u : Ω× [0, T ] 7→ Rd

be a given incompressible Ćow Ąeld, i.e., ∇ · u = 0; n is the outward unit normal. A

typical Ćow domain is illustrated with an example of pipe Ćow in Figure B.1.

Theorem B.1 (Well-posedness). There exists a unique solution to Equation (B.1) for

sufficiently smooth u and Beff.

Proof. Equation (B.1a) can be written in the following form using the applied mag-

netic Ąeld Beff = B =
(
Bx By Bz

)T
, the relaxation time diagonal matrix D =

diag( 1
T2
, 1
T2
, 1
T1

) and the constant additional source term f =
(
0 0 M0

T1

)
:

∂M′

∂t
+ (u · ∇)M′ − γM′ ×B +DM′ = f , (t, r) ∈ [0, T ]× Ω. (B.2)

Let us assume for simplicity that the Dirichlet boundary condition be MΓ = 0.

In order to derive a generalized solution of Equation (B.1), consider the space L2(Ω)

of square-integrable functions and the following space

X = ¶N ∈ [L2(Ω)d], (u · ∇)N ∈ [L2(Ω)d], N♣Γ−

= 0♢. (B.3)

Multiplying Equation (B.2) by an arbitrary test vector function N ∈ X and integrating

over domain Ω, we obtain

∫

Ω
∂tM

′ ·Ndr +
∫

Ω
(u · ∇)M′ ·Ndr + γ

∫

Ω
(B×M′) ·Ndr +

∫

Ω
DM′ ·Ndr =

∫

Ω
f ·Ndr

(B.4)

as M′ ×B = −B×M′.
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Let us deĄne the bilinear and linear forms as follows:

a(t; M′,N) :=
∫

Ω
(u · ∇)M′ ·Ndr + γ

∫

Ω
(B×M) ·Ndr +

∫

Ω
DM′ ·Ndr, (B.5a)

l(N) :=
∫

Ω
f ·Ndr. (B.5b)

Let us use also the inner product (u,v)L2(Ω) :=
∫

Ω u ·vdr and norm∥v∥L2(Ω) :=
√

(v, v)

on L2(Ω). With these deĄnitions, we obtain the linear evolution problem of Ąrst order:

Ąnd M′ : [0, T ] 7→ X such that

(∂tM
′,N)L2(Ω) + a(t; M′,N) = l(N), ∀ N ∈ X, (B.6)

with initial condition

M′♣t=0 = M0. (B.7)

We want to apply the main existence theorem by J.L. Lions, given by Theorem 6.6 in

[37]. To this end, we deĄne the graph norm

∥∥∥M′
∥∥∥

X
=

∥∥∥M′
∥∥∥
L2(Ω)

+
∥∥∥(u · ∇)M′

∥∥∥
L2(Ω)

. (B.8)

In order to apply the theorem, the following conditions must be satisĄed:

(P1) The time-dependent bilinear form t 7→ a(t; M,N) is measurable ∀ M,N ∈ X

provided the vector Ąeld u and B are suiciently smooth.

(P2) The bilinear form a(t, ·, ·) is bounded for t ∈ [0, T ], ∀M,N ∈ X.

(P3) Finally, the bilinear form fulĄlls the coercivity condition, given by,

a(t,N,N) = (D1/2N, D
1/2N)L2(Ω) =

∥∥∥D1/2N
∥∥∥

2

L2(Ω)
≥ σ∥N∥2

L2(Ω) (B.9)

with

D
1/2 := diag(

1√
T2

,
1√
T2

,
1√
T1

), σ := min(
1

T1

,
1

T2

) =
1

T1

(as T1 ≥ T2), (B.10)

as from the skew-symmetry property it follows that

((u · ∇N),N)2
L2(Ω) + γ((B×N),N)2

L2(Ω) = 0 (B.11)
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when ∇ · u = 0.

Now we can apply the Lions theorem giving existence and uniqueness of a generalized

solution M : [0, T ] 7→ X of Equation (B.1).

Moreover, we obtain the a-priori estimate for the kinetic energy of the magnetic

Ąeld,

1

2

∥∥∥M′(t)
∥∥∥

2

L2(Ω)
≤ 1

2

∥∥∥M′(0)
∥∥∥

2

L2(Ω)
e−σt +

∫ t

0

∥∥f(s)
∥∥2
L2(Ω) eσ(s−t)ds. (B.12)

In order to obtain the energy estimate as described in Equation (B.12), we set

N = M′ in Equation (B.4) and obtain,

(∂tM
′,M′) + a(t; M′,M′) = l(M′) (B.13a)

⇒ 1

2

d

dt

∥∥∥M′
∥∥∥

2

L2(Ω)
+ a(t; M′,M′) = (f ,M′)L2(Ω). (B.13b)

Equation (B.9), Using Cauchy-Schwarz and YoungŠs inequalities respectively we obtain,

l(M′) ≤∥f∥L2(Ω)

∥∥∥M′
∥∥∥
L2(Ω)

(Cauchy-SchwarzŠs inequality) (B.14a)

≤ 1

2σ
∥f∥2

L2(Ω) +
σ

2

∥∥∥M′
∥∥∥

2

L2(Ω)
(YoungŠs inequality). (B.14b)

Using (P3) and Equation (B.14b), we obtain

d

dt
(
1

2

∥∥∥M′
∥∥∥

2

L2(Ω)
) +

σ

2

∥∥∥M′
∥∥∥

2

L2(Ω)
≤ 1

2σ
∥f∥2

L2(Ω) . (B.15)

Now, applying the Gronwall Lemma, as given by Lemma 6.9 in [37] implies

1

2

∥∥∥M′
∥∥∥

2

L2(Ω)
≤ 1

2

∥∥M(0)
∥∥2
L2(Ω) e−σt +

1

2σ

∫ t

0

∥∥f(s)
∥∥2
L2(Ω) eσ(s−t)ds. (B.16)

We have constant source f giving

∥∥f(s)
∥∥2
L2(Ω) =∥f∥2

L2(Ω) =
∫

Ω
(
M0

T1

)2dr = (
M0

T1

)2♣Ω♣ as ♣Ω♣ =
∫

Ω
dr. (B.17)

Moreover,

∫ t

0

∥∥f(s)
∥∥2
L2(Ω) eσ(s−t)ds = (

M0

T1

)2♣Ω♣ 1− e−σt

σ
(B.18)
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and we Ąnally obtain

1

2

∥∥∥M′
∥∥∥

2

L2(Ω)
≤1

2

∥∥∥M′(0)
∥∥∥

2

L2(Ω)
e−σt +

1

2σ2
(
M0

T1

)2(1− e−σt)♣Ω♣ , (B.19a)

≤1

2

∥∥∥M′(0)
∥∥∥

2

L2(Ω)
e− t

T1 +
M2

0

2
(1− e− t

T1 )♣Ω♣ , (B.19b)

because σ = 1
T1

.

Remark. The result of Theorem B.1 and a-priori estimate Equation (B.19) remain

valid for the special case u = 0 i.e. Bloch equations for spatially stationary objects.





Appendix C

Discontinuous Galerkin Method for

Advection Equation

In this chapter special discretization of advection equation using discontinuous Galerkin

method (dGFEM) method is discussed. In the last section, it is shown that Ąnite

volume method (FVM) is a special case of dGFEM.

To this end, let us consider a general advection or transport equation in a con-

servative form in a computational domain Ω ∈ Rd with a piecewise smooth Lipschitz

boundary Γ = Γ−
⋃

Γ+
⋃

Γ0:

∂w

∂t
+∇ · f(w) = 0, f(w) = u⊗w, (t, r) ∈ (0, T ]× Ω, (C.1a)

w(r, 0) = w0(r), ¶0♢ × Ω, (C.1b)

w(r, t)♣Γ−×[0,T ] = wb, (C.1c)

where Γ− = ¶w ∈ Γ♣u · n < 0♢, Γ+ = ¶w ∈ Γ♣u · n > 0♢ and Γ0 = ¶w ∈ Γ♣u · n = 0♢
represent the inĆow, outĆow boundary and solid wall respectively; u : Ω× [0, T ] 7→ Rd

is a given transport velocity and n is the outward unit normal.

Multiplying Equation (C.1) by an arbitrary test vector function N ∈ X (as deĄned

by Equation (B.3)) and integrating by parts we obtain the weak formulation of

Equation (C.1), given by

∫

Ω
N · ∂w

∂t
dr−

∫

Ω

d∑

s=1

fs(w) · ∂N

∂rs
dr +

∫

Γ

d∑

s=1

fs(w)ns ·NdΓ = 0, (C.2)

where n =
(
n1, n2, · · · , nd

)
is the outer normal in the boundary.
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In the following we deal with the discretization of Equation (C.2) by the dGFEM

[31]. Consider a non-overlapping decomposition Th := ¶Ω♢Ii=1 into convex simplical

subdomains Ωi, i = 1, 2, · · · I as depicted in Figure C.1. We deĄne the discontinuous

Ąnite element space

[Pk(Th)]d := ¶Nh ∈ [L2(Ω)]d; Nh♣Ωi
∈ [Pk(Ωi)]

d ∀ Ωi, i = 1, 2, · · · , I♢, (C.3)

where Pk denotes the set of polynomials of degree k ∈ N. Moreover, let Xh =

[Pk(Th)]d
⋂

X (for simplicity only homogeneous Dirichlet boundary conditions ).

Figure C.1: Schematic representation of a 2-D grid. Ω represent the computational
domain. The boundary of the domain Γ is marked with red line. i-th cell is magniĄed
and Ωi and E represent the area of the i-th cell and the edge between i-th and the
j-th cell respectively.

For adjacent subdomains Ωi,Ωj with interface Γij = Ωi
⋂

Ωj and unit normal vector

nij (directed from Ωi to Ωj), we deĄne the average and jump of Nh ∈ Xh across Γij by

⟨Nh⟩Γij
(r) :=

1

2
(Nh♣Ωi

(r) + Nh♣Ωj
(r)), (C.4a)

[Nh]Γij
(r) := Nh♣Ωi

(r)−Nh♣Ωj
(r). (C.4b)

To derive the discrete formulation we assume that there exists an exact solution

w ∈ C1([0, T ]; Xh) and Equation (C.2) is applied for all the elements Ωi ∈ Th with

test function N ∈ Xh and then summed over all the elements Ωi ∈ Th to obtain the

following:

∑

Ωi∈Th

∫

Ωi

∂w

∂t
·Ndr−

∑

Ωi∈Th

∫

Ωi

d∑

s=1

fs(w) · ∂N

∂rs
dr +

∑

Ωi∈Th

∫

∂Ωi

d∑

s=1

fs(w)nΓ,s ·NdΓ = 0.

(C.5)
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Figure C.2: (Left) One dimensional example of average and jump operators. (Right)
The interface between the i and j-th cell where j > i is depicted with the used notation.
The orientation of the outward normal is from lower to higher numbered cell.

Taking into consideration the boundary conditions and using dGFEM formulation [31,

30] Equation (C.5) reduces to

∑

Ωi∈Th

∫

Ωi

∂w

∂t
·Ndr−

∑

Ωi∈Th

∫

Ωi

d∑

s=1

fs(w) · ∂N

∂rs
dr (C.6)

+
∑

Ωi∈T I
h

∫

∂Ωi

d∑

s=1

fs(w)nΓ,s · [N]dΓ +
∑

Ωi∈T B
h

∫

∂Ωi

d∑

s=1

fs(w)nΓ,s ·NdΓ = 0,

where Ωi ∈ T Ih and Ωi ∈ T Bh denote the inner and the boundary cells respectively.

The crucial point of dGFEM is the evaluation of the integrals over ∂Ωi, approximated

with the aid of numerical Ćux F : Xh ×Xh × Rd 7→ Rd by

∫

Γij

d∑

s=1

fs(w)nΓ,s ·NdΓ ≈
∫

Γij

F(wi,wj,nij) ·NdΓ, (C.7)

where i and j denotes the so-called left and right states as depicted in Figure C.2.

The numerical Ćux must satisfy some basic conditions:

• continuity: F(wi,wj,n) is locally Lipschitz-continuous with respect to variables

wi and wj.

• consistency: F(w,w,n) =
∑d
s=1 fs(w)ns, n =

(
n1 n2 · · ·nd

)
.

• conservativity: F(wi,wj,n) = −F(wj,wi,−n), wi,wj ∈ Xh.

Approximating the face integrals in Equation (C.6) by Equation (C.7) and inter-

changing the derivative and the integral in Ąrst term, we get the discontinuous-Galerkin
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space semi-discretization of Equation (C.1a) as follows:

d

dt
(w(t),N) + bh(w(t),N) = 0, ∀ Nh ∈ Xh, t ∈ (0, T ), (C.8a)

where

(w(t),N) =
∫

Ω
w(t) ·Ndr, (C.8b)

bh(w(t),N) =
∑

Γ∈T I
h

∫

Γ
F(wi,wj,nΓ) · [N]dΓ

+
∑

Γ∈TB
h

∫

Γ
F(wi,wj,nΓ) ·NdΓ−

∫

Ωi

d∑

s=1

fs(w) · ∂N

∂rs
dr,

(C.8c)

where Equation (C.8) make sense for w,N ∈ Xh.

The approximation of the exact solution w(t) will be sought in the Ąnite-dimensional

spaces [Pk(Th)]d = Shk ⊂ Xh for each t ∈ (0, T ].

We say that a function wh : Ω × (0, T ] 7→ Rd is the semi-discrete solution of the

transport equation Equation (C.1a), if the following conditions are satisĄed:

wh ∈ C1([0, T ]; Shk), (C.9a)

d

dt
(wh(t),Nh) + bh(wh(t),Nh) = 0, ∀ Nh ∈ Shk, t ∈ (0, T ), (C.9b)

wh(0) = Πhw
0, (C.9c)

where Πhw
0 is the Shk-approximation of the function w0 from the initial condition and

usually deĄned as the L2-projection of w0 on the space Shk.

Remark. For k = 0 the basis functions of Sh0 are chosen to be the characteristic

functions χi of Ωi ∈ Th i.e. χk = 1 on Ωi and χi = 0 elsewhere, Equation (C.9) reduces

to standard Ąnite volume method (FVM) (i.e. the approximate solution is piecewise

constant on Th). Putting Nh = χi,Ωi ∈ Th we obtain the following semi-discretized

equation:

d

dt
(♣Ωi♣wi(t)) +

∑

j∈Ji

F(wi,wj,nij) = 0, (C.10)
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where

wi =
1

♣Ωi♣
∫

Ωi

whdΩ, Ωi ∈ Th (C.11)

and Ji is set of all elements with a common face with Ωi. For implementation of

boundary conditions, the set Ji is assumed to contain some Ąctitious elements having

a common face ∂Ωi
⋂

Ω, known as ghost cell. In that case, the numerical Ćux is

determined assigning compatible boundary conditions in the ghost cells. For higher-

resolution FVM numerical Ćux F is approximated with values of w from several

neighbouring cells depending on the order of accuracy as discussed in Chapter 4.





Appendix D

Briefly on the Numerical Analysis

of Partial Differential Equation

In this chapter, a set of relevant mathematical concepts and theorems which is required

for analyzing the numerical solution of the partial diferential equation (PDE) in the

present thesis will be discussed.

For a detailed discussion the reader is referred to the books by Thomas [126, 127],

LeVque [81], Toro [128].

Consider a PDE representing an initial-boundary value problem:

L(w(r, t)) = f(r, t), r ∈ Ω, t ∈ (0, T ], (D.1a)

w(r, 0) = w0(r), r ∈ Ω, (D.1b)

w(r, t)♣∂Ω = wb(r, t), t ∈ (0, T ], (D.1c)

where f and w0 are given and L is a partial diferential operator of Ąrst-order.

Numerical discretization of Equations (D.1a)Ű(D.1c) using a suitable spatial dis-

cretization (e.g. FVM) and two level time discretization gives us the following general

diference equation:

vn+1 = Qn(vn) + τFn, τ = tn+1 − tn, (D.2a)

v0 = w0, (D.2b)

where

w0 =
[
w0(r1) w0(r2) · · · w0(rng)

]T
. (D.2c)
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Here superscript corresponds to the time step and vn represent the numerical solution

at grid with ng grid points and the matrix Q may depend on τ, ∆r.

Let us assume

wn =
[
wn(r1) wn(r2) · · · wn(rng

]T
(D.3)

be the exact solution of Equations (D.1a)Ű(D.1c).

Definition (Consistency). The numerical scheme, given by Equations (D.2a)Ű(D.2b),

is consistent with Equations (D.1a)Ű(D.1c) in a norm ∥·∥ if the solution of the partial

diferential equation, w satisĄes

wn+1 = Qn(wn) + τFn + τϵ
n (D.4)

such that

sup
n:nτ≤T

∥ϵn∥ → 0 (D.5)

as ∥∆r∥ ,∆t→ 0. The quantity ϵ
n is called the local truncation error of the numerical

scheme.

Definition. The numerical scheme is said to be accurate of order (p, q) to the given

partial diferential equation Equations (D.1a)Ű(D.1c) if

∥ϵn∥ = O
(
∥∆r∥p

)
+O(τ q). (D.6)

Definition (Stability). The numerical method is said to be stable if for some constant

C0 <∞

sup
n:nτ≤T

∥Qn∥ ≤ C0, (D.7)

where C0 may depend on T .

Stability property is solely related with the numerical scheme and it does not have

any relation with the diferential equation.

Definition (Convergence). The numerical method is said to be convergent if

sup
n:nτ≤T

∥wn − vn∥ → 0 as τ, ∥∆r∥ → 0. (D.8)
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Convergence is the property of the numerical scheme which gives us total assurance

that the numerical solutions obtained is valid approximation of the exact solution.

The condition for convergence of two level linear methods like simple upwind or

Lax-Wendrof method are given by Theorem A.3.

D.1 Definitions and Theorems Related to the

Solution of Advection Equation

The local truncation error of a method shows how well the true solution of a diferential

equation satisĄes the diference equation. However, trying to Ąnd out a PDE for which

the numerical approximation is an exact solution reveals signiĄcant qualitative features

of the numerical scheme as discussed below.

Definition (ModiĄed equation). The solution of a numerical scheme approximately

satisĄes a PDE which is generally diferent from the original PDE and it is known as

the modiĄed equation. ModiĄed equation can be obtained by Taylor series expansion

of the diference equation. By truncating the inĄnite series at some point, we obtain a

PDE which gives a good indication of the behaviour of the numerical scheme [61, 85].

For example a simple upwind method adds an artiĄcial difusive term in the equation

which explains the difusivity properties in the numerical solution of simple upwind

method. On the other hand, the Lax-Wendrof method adds a third-order dispersive

term which leads to dispersive behaviour rather than difusion [81].

Regarding stability of the numerical scheme, one of necessary conditions is given

by the Courant-Friedrich-Lewy (CFL) criteria as deĄned below.

Definition (Courant-Friedrich-Lewy (CFL) condition). A partial diferential equation

and an associated numerical scheme is said to satisfy the CFL condition if the true

domain of dependence is contained in the numerical domain of dependence [28, 27].

CFL condition is illustrated in Figure D.1. In the left part of of Figure D.1, the

true domain of dependence for wi = w(xi, T ) depicted by the non-shaded cone lies

outside the numerical domain of dependence denoted by the shaded region. Therefore,

the scheme is unstable. On the other hand, in the right part of Figure D.1 a Ąner

time discretization is used where the physical domain of dependence for w(xi, T ) is

contained in the numerical domain of dependence. Therefore the scheme is stable.

The following deĄnitions and theorems are concerned with the construction of

higher order high-resolution numerical methods. The Ąrst order linear methods are
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Figure D.1: Schematic diagram explaining the CFL criteria for a three-point scheme.
(Left) An unstable three point scheme. The shaded region shows the numerical domain
of dependence which does not contain the true domain of dependence (Right) A stable
three point scheme. True domain of dependence which is marked by white cone in the
centre contained in the numerical domain of dependence.The extra numerical domain
is shown by the surrounding shaded region.

highly difusive and results in much lower order solution. Whereas second-order linear

methods like Lax-Wendrof method fail near discontinuities and oscillations appear

due to the dispersive nature of these methods. Higher-order high resolution method

combines the non-oscillatory nature of the upwind method with higher order accuracy.

In order to eliminate the numerical oscillation one natural requirement for a

numerical scheme is that it must be monotonicity preserving. Everything hereafter

will be deĄned for a scalar equations for simplicity.

Definition (Monotonicity preserving method). A diference scheme of the form

vn+1
i = Qn(vni+p, · · · , vni+q) (D.9)

is said to be monotonicity preserving if

vni ≥ vni+1, ∀ i (D.10)

implies that

vn+1
i ≥ vn+1

i+1 , ∀ i (D.11)

To construct a monotonicity preserving method numerical schemes must satisfy the

total variation diminishing (TVD) property as deĄned below.
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Definition. The numerical method

wn+1
i = Qn(wn

i+p, · · · ,wn
i+q) (D.12)

is called TVD if it satisĄes the following criteria

TV (wn+1
i ) ≤ TV (wn

i ), ∀wn
i , (D.13)

where

TV (wn
i ) =

∑

i

∥∥∥wn
i+1 −wn

i

∥∥∥ . (D.14)

The following two theorems give us the criteria to construct the higher order

non-oscillatory schemes,

Theorem D.1. Any TVD method is monotonicity preserving.

Proof. The proof can be found in [80].

Theorem D.2. A linear TVD difference scheme is at most of first order.

Proof. The proof can be found in [126].

Therefore, the numerical schemes must be nonlinear and must satisfy the TVD

property to be higher order non-oscillatory i.e., high resolution schemes. The details

about constructing the high resolution schemes can be found in [126, 81, 80, 128].





Abbreviations

T1 spin-lattice relaxation time.

T2 spin-spin relaxation time.

T∗
2 efective spin-spin relaxation time.

ACS auto-calibrated signal.

ADC analog-to-digital converter.

BW bandwidth.

CCW counterclockwise.

CFD computational Ćuid dynamics.

CFL Courant-Friedrich-Lewy.

CG conjugate gradient.

CPU Central Processing Unit.

CSF cerebrospinal Ćuid.

CT computerized tomography.

CW clockwise.

DCF density compensation function.

DE diferential equation.

DFT discrete Fourier transform.

dGFEM discontinuous Galerkin method.
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EMF electromotive force.

EPI echo planar imaging.

FC Ćow compensation.

FDM Ąnite diference method.

FFT fast Fourier transform.

FID free induction decay.

FLASH fast low angle shot.

FOV Ąeld of view.

FVM Ąnite volume method.

GE gradient echo.

GPU graphical processing unit.

GRAPPA generalized auto-calibrating partially parallel acquisition.

IFFT inverse fast Fourier transform.

IRGNM iteratively regularized Gauss-Newton method.

IVP initial value problem.

LBM lattice-Boltzmann method.

MR magnetic resonance.

MRA magnetic resonance angiography.

MRI magnetic resonance imaging.

NLINV nonlinear inverse reconstruction.

NMR nuclear magnetic resonance.

NUFFT non-uniform fast Fourier transform.
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ODE ordinary diferential equation.

PC MRI phase contrast imaging.

PCA principal component analysis.

PD proton density.

PDE partial diferential equation.

PET positron emission tomography.

RARE rapid acquisition with relaxation enhancement.

RF radio-frequency.

RK Runge-Kutta.

RK45 4-5th order adaptive Runge-Kutta.

ROI region of interest.

RSS root of sum of squares.

SENSE sensitivity encoding.

SMASH simultaneous acquisition of spatial harmonics.

SNR signal-to-noise ratio.

SSFP Steady-state Free Precession.

SWSS symmetrically weighted sequential operator splitting.

TE echo time.

TR repetition time.

TVD total variation diminishing.

VENC velocity encoding.





References

1. Abragam, A. The principles of nuclear magnetic resonance (Oxford University

Press, 1961).

2. Ahnert, K. & Mulansky, M. Odeint-Solving ordinary diferential equations in

C++. arXiv preprint arXiv:1110.3397 (2011).

3. Andria, G., Attivissimo, F., Cavone, G. & Lanzolla, A. M. L. Acquisition times

in magnetic resonance imaging: Optimization in clinical use. IEEE Transactions

on Instrumentation and Measurement 58, 3140Ű3148 (2009).

4. Antsaklis, P. J. & Michel, A. N. A linear systems primer 1Ű517 (Springer, 2007).

5. Atkinson, D., Brant-Zawadzki, M., Gillan, G., Purdy, D. & Laub, G. Improved

MR angiography: magnetization transfer suppression with variable Ćip angle

excitation and increased resolution. en. Radiology 190, 890Ű4 (Mar. 1994).

6. Auzinger, W., Herfort, W., Hofstätter, H. & Koch, O. Setup of Order Conditions

for Splitting Methods, 1Ű12 (2016).

7. Axel, L. Blood Ćow efects in magnetic resonance imaging. Journal of Chemical

Information and Modeling 53, 1689Ű1699 (1984).

8. Bakushinsky, A. & Kokurin, M. Iterative methods for approximate solution of

inverse problems (Springer Science & Business Media, 2005).

9. Bátkai, A., Csomós, P. & Nickel, G. Operator splittings and spatial approx-

imations for evolution equations. Journal of Evolution Equations 9, 613Ű636

(2009).

10. Beatty, P. J., Nishimura, D. G. & Pauly, J. M. Rapid gridding reconstruction

with a minimal oversampling ratio. IEEE Transactions on Medical Imaging 24,

799Ű808 (2005).

11. Bell, N. & Hoberock, J. in GPU Computing Gems: Jade Edition 359Ű371 (Elsevier,

2011).



130 References

12. Benoit-Cattin, H., Collewet, G., Belaroussi, B., Saint-Jalmes, H. & Odet, C. The

SIMRI project: A versatile and interactive MRI simulator. Journal of Magnetic

Resonance 173, 97Ű115 (2005).

13. Bernstein, M. A., King, K. F. & Zhou, X. J. Handbook of MRI Pulse Sequences

1040 (Elsevier, 2004).

14. Bernstein, M. A., Mladen, G., Brosnan, T. & Pelc, N. J. Reconstructions of

phase contrast, phased Array multicoil data. Magnetic Resonance in Medicine

32, 330Ű334 (1994).

15. Bittoun, J., Taquin, J. & Sauzade, M. A computer algorithm for the simulation of

any Nuclear Magnetic Resonance (NMR) imaging method. Magnetic Resonance

Imaging 2, 113Ű120 (1984).

16. Bjørhus, M. Operator splitting for abstract Cauchy problems. IMA journal of

Numerical Analysis 18, 419Ű443 (1998).

17. Bloch, F. Nuclear induction. Physical Review 70, 460Ű474 (1946).

18. Block, K. T. Advanced Methods for Radial Data Sampling in Magnetic Resonance

Imaging Dissertation PhD thesis (Georg-August-Universität Göttingen, 2008).

19. Bryant, D. & Payne, J. Measurement of Ćow with NMR imaging using a gradient

pulse and phase diference technique. Journal of computer Assisted Tomography

8, 588Ű593 (1984).

20. Buades, A., Coll, B. & Morel, J.-M. A non-local algorithm for image denoising.

Computer Vision and Pattern 2, 60Ű65 (2005).

21. Buehrer, M., Pruessmann, K. P., Boesiger, P. & Kozerke, S. Array compression

for MRI with large coil arrays. Magnetic Resonance in Medicine 57, 1131Ű1139

(2007).

22. Butcher, J. C. Numerical Methods for Ordinary Differential Equations (John

Wiley & Sons, 2008).

23. Carr, H. Y. Steady-state free precession in nuclear magnetic resonance. Physical

Review 112, 1693Ű1701 (1958).

24. Carr, J. & Carroll, T. Magnetic Resonance Angiography: Principles and Applica-

tions (Springer, 2011).

25. Cash, J. R. & Karp, A. H. A variable order Runge-Kutta method for initial

value problems with rapidly varying right-hand sides. ACM Transactions on

Mathematical Software 16, 201Ű222 (Sept. 1990).



References 131

26. Cengel, Y., Turner, R. & Smith, R. Fundamentals of Thermal-Fluid Sciences

5th ed. (McGraw-Hill Education, 2016).

27. Courant, R., Friedrichs, K. & Lewy, H. On the partial diference equations of

mathematical physics. IBM journal 11, 215Ű234 (1967).

28. Courant, R., Friedrichs, K. & Lewy, H. Über die partiellen Diferenzengleichungen

der mathematischen Physik. Mathematische annalen 100, 32Ű74 (1928).

29. Crawley, A. P., Wood, M. L. & Henkelman, R. M. Elimination of transverse

coherences in FLASH MRI. Magnetic resonance in medicine 8, 248Ű260 (1988).

30. Di Pietro, D. A. & Ern, A. Mathematical aspects of discontinuous Galerkin

methods (Springer Science & Business Media, 2011).

31. Dolejší, V. & Feistauer, M. Discontinuous Galerkin Method (Springer, 2015).

32. Dormand, J. R. & Prince, P. J. A reconsideration of some embedded Runge-

Kutta formulae. Journal of Computational and Applied Mathematics 15, 203Ű211

(1986).

33. Dreha-Kulaczewski, S. et al. Inspiration Is the Major Regulator of Human CSF

Flow. Journal of neuroscience 35, 2485Ű91 (2015).

34. Drobnjak, I., Gavaghan, D., Süli, E., Pitt-Francis, J. & Jenkinson, M. Devel-

opment of a functional magnetic resonance imaging simulator for modeling

realistic rigid-body motion artifacts. Magnetic Resonance in Medicine 56, 364Ű

380 (2006).

35. Edelman, R. R. et al. Quiescent-interval single-shot unenhanced magnetic reso-

nance angiography of peripheral vascular disease: Technical considerations and

clinical feasibility. Magnetic Resonance in Medicine 63, 951Ű958 (2010).

36. Engl, H. W., Hanke, M. & Neubauer, A. Regularization of Inverse Problems 322

(Springer, 2000).

37. Ern, A. & Guermond, J.-L. Theory and practice of finite elements (Springer

Science & Business Media, 2013).

38. Faragó, I. & Havasiy, A. Operator splittings and their applications (Nova Science

Publishers, Inc., 2009).

39. Fehlberg, E. Classical fifth, sixth, seventh and eighth order Runge–Kutta formulas

with stepsize control. tech. rep. (1968).



132 References

40. Fehlberg, E. Klassische runge-kutta-formeln vierter und niedrigerer ordnung

mit schrittweiten-kontrolle und ihre anwendung auf waermeleitungsprobleme.

Computing 6, 61Ű71 (1970).

41. Fessler, J. A. & Sutton, B. P. Nonuniform fast Fourier transforms using min-max

interpolation. IEEE Transactions on Signal Processing 51, 560Ű574 (2003).

42. Frahm, J., Haase, A. & Matthaei, D. Rapid NMR imaging of dynamic processes

using the FLASH technique. Magnetic Resonance in Medicine 3, 321Ű7 (1986).

43. Frahm, J., Haase, A., Matthaei, D., Hänicke, W. & Merboldt, K.-D. Verfahren

und Einrichtung zur schnellen Akquisition von Spinresonanzdaten für eine ort-

saufgelöste Untersuchung eines Objekts 1985.

44. Frahm, J., Hänicke, W. & Merboldt, K. D. Transverse coherence in rapid FLASH

NMR imaging. Journal of Magnetic Resonance (1969) 72, 307Ű314 (1987).

45. Gao, J. H. & Gore, J. C. A numerical investigation of the dependence of NMR

signal from pulsatile blood Ćow in CINE pulse sequences. Medical physics 18,

342Ű349 (1991).

46. Gautschi, W. Numerical Analysis (Birkhäuser Boston, Boston, 2012).

47. Geiser, J. Decomposition Methods for Differential Equations Teory and Applica-

tions (CRC Press, 2009).

48. Gottlieb, S. & Shu, C.-W. Total Variation Diminishing Runge-Kutta Schemes.

Mathematics of Computation 67, 73Ű85 (1998).

49. Gottlieb, S., Shu, C.-W. & Tadmor, E. Strong Stability-Preserving High-Order

Time Discretization Methods. SIAM Review 19, 786Ű789 (2001).

50. Griswold, M. A. et al. Generalized Autocalibrating Partially Parallel Acquisitions

(GRAPPA). Magnetic Resonance in Medicine 47, 1202Ű1210 (2002).

51. Grivet, J.-P. Simulation of magnetic resonance experiments. American Journal

of Physics 61, 1133Ű1139 (1993).

52. Guennebaud, G., Jacob, B., Avery, P., Bachrach, A., Barthelemy, S., et al. Eigen

v3 2010.

53. Guo, Y. & Jiang, X. Simulations of the stent artifacts in magnetic resonance

imaging. IEEE Transactions on Magnetics 48, 659Ű662 (2012).

54. Haacke, E. M., Brown, R. W., Thompson, M. R. & Venkatesan, R. Magnetic

Resonance Imaging: Physical Principles and Sequence Design (Wiley Blackwell,

1999).



References 133

55. Haase, A., Frahm, J., Matthaei, D., Hanicke, W. & Merboldt, K.-D. FLASH

imaging. Rapid NMR imaging using low Ćip-angle pulses. Journal of Magnetic

Resonance (1969) 67, 258Ű266 (1986).

56. Hahn, E. L. Detection of sea-water motion by nuclear precession. Journal of

geophysical research 65, 776Ű777 (1960).

57. Hairer, E., Lubich, C. & Wanner, G. Geometric numerical integration structure-

preserving algorithms for ordinary differential equations 644 (Springer, 2006).

58. Hairer, E., Nørset, S. & Wanner, G. Solving Ordinary Differential Equations I

(Springer, 1993).

59. Hansen, E. & Ostermann, A. Dimension splitting for evolution equations. Nu-

merische Mathematik 108, 557Ű570 (Feb. 2008).

60. Hansen, E. et al. Exponential splitting for unbounded operators. Mathematics

of Computation 78, 1485Ű1496 (Sept. 2009).

61. Hedstrom, G. W. Models of diference schemes for ut + ux = 0 by partial

diferential equations. Mathematics of Computation 29, 969Ű977 (1975).

62. Hendrick, R. E., Kneeland, J. B. & Stark, D. D. Maximizing signal-to-noise

and contrast-to-noise ratios in FLASH imaging. Magnetic Resonance Imaging 5,

117Ű127 (1987).

63. Hennig, J., Müri, M., Brunner, P. & Friedburg, H. Quantitative Ćow measurement

with the fast Fourier Ćow technique. Radiology (1988).

64. Hennig, J., Nauerth, A. & Friedburg, H. RARE imaging: a fast imaging method

for clinical MR. Magnetic Resonance in Medicine 3, 823Ű833 (1986).

65. Hirsch, C. Computational methods for inviscid and viscous flows (Wiley, 1990).

66. Hirsch, C. Numerical Computation of Internal and External Flows: The Funda-

mentals of Computational Fluid Dynamics (Butterworth-Heinemann, 2007).

67. Hundsdorfer, W. & Verwer, J. G. A note on splitting errors for advection-reaction

equations. Applied Numerical Mathematics 18, 191Ű199 (1995).

68. Hundsdorfer, W. & Verwer, J. G. Numerical Solution of Time-Dependent

Advection-Diffusion-Reaction Equations (Springer Science & Business Media,

2003).

69. Iserles, A. A First Course in the Numerical Analysis of Differential Equations

400 (Cambridge University Press, 1996).



134 References

70. Jakob, P. M., Griswold, M. A., Edelman, R. R. & Sodickson, D. K. AUTO-

SMASH: A self-calibrating technique for SMASH imaging. Magnetic Resonance

Materials in Physics, Biology and Medicine 7, 42Ű54 (1998).

71. Joseph, A. A. Real-time MRI of Moving Spins Using Undersampled Radial

FLASH PhD thesis (Julius-Maximilians-Universität Würzburg, 2013).

72. Joseph, A. A. et al. Real-time phase-contrast MRI of cardiovascular blood Ćow us-

ing undersampled radial fast low-angle shot and nonlinear inverse reconstruction.

NMR in Biomedicine 25, 917Ű924 (2012).

73. Jou, L. D. & Saloner, D. A numerical study of magnetic resonance images of

pulsatile Ćow in a two dimensional carotid bifurcation a numerical study of MR

images. Medical Engineering and Physics 20, 643Ű652 (1998).

74. Jou, L. D., van Tyen, R., Berger, S. A. & Saloner, D. Calculation of the mag-

netization distribution for Ćuid Ćow in curved vessels. Magnetic Resonance in

Medicine 35, 577Ű584 (1996).

75. Jurczuk, K. et al. Computational modeling of MR Ćow imaging by the lattice

Boltzmann method and Bloch equation. Magnetic Resonance Imaging 31, 1163Ű

1173 (2013).

76. Klosowski, J. & Frahm, J. Image denoising for real-time MRI. Magnetic resonance

in medicine 00, 1Ű13 (2016).

77. Kollmeier, J. Perfusion Phantom Studies using Real-time Magnetic Resonance

Imaging MA thesis (Georg-August Universität Göttingen, 2016).

78. Lanser, D. & Verwer, J. G. Analysis of operator splitting for advection-difusion-

reaction problems from air pollution modelling. Journal of Computational and

Applied Mathematics 111, 201Ű216 (1999).

79. Lax, P. D. & Richtmyer, R. D. Survey of the stability of linear Ąnite diference

equation. Communications on Pure and Applied Mathematics 2, 267Ű293 (1956).

80. LeVeque, R. J. Numerical Methods for Conservation Laws (Birkhäuser Basel,

Basel, 1992).

81. LeVeque, R. Finite Volume Methods for Hyperbolic Problems (Cambridge Uni-

versity Press, 2002).

82. Lewis, D. P., Tsui, B. M. W. & Moran, P. R. Velocity sensitivity of slice-selective

excitation. Magnetic Resonance Imaging 16, 907Ű916 (1998).



References 135

83. Liang, Z.-P. & Lauterbur, P. C. Principles of Magnetic Resonance Imaging: A

Signal Processing Perspective (IEEE Press, 2000).

84. Lorthois, S., Stroud-Rossman, J., Berger, S., Jou, L. D. & Saloner, D. Numerical

simulation of magnetic resonance angiographies of an anatomically realistic

stenotic carotid bifurcation. Annals of Biomedical Engineering 33, 270Ű283

(2005).

85. Majda, A. & Ralston, J. Discrete shock proĄles for systems of conservation laws.

Communications on Pure and Applied Mathematics 32, 445Ű482 (1979).

86. MansĄeld, P. Multi-planar image formation using NMR spin echoes. Journal of

Physics C: Solid State Physics 10, 55Ű58 (1977).

87. Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M. & Wieben, O. 4D Ćow

MRI. Journal of Magnetic Resonance Imaging 36, 1015Ű1036 (2012).

88. Markl, M. et al. Time-resolved three-dimensional phase-contrast MRI. Journal

of Magnetic Resonance Imaging 17, 499Ű506 (2003).

89. Marshall, I. Computational simulations and experimental studies of 3D phase-

contrast imaging of Ćuid Ćow in carotid bifurcation geometries. Journal of

Magnetic Resonance Imaging 31, 928Ű34 (2010).

90. Marshall, I. Simulation of in-plane Ćow imaging. Concepts in Magnetic Resonance

11, 379Ű392 (1999).

91. McKenzie, C. A., Ohliger, M. A., Yeh, E. N., Price, M. D. & Sodickson, D. K.

Coil-by-coil image reconstruction with SMASH. Magnetic Resonance in Medicine

46, 619Ű623 (2001).

92. McLachlan, R. I. & Quispel, G. R. W. Splitting methods. Acta Numerica 11,

341Ű434 (2002).

93. Miyazaki, M. & Akahane, M. Non-contrast enhanced MR angiography: Estab-

lished techniques. Journal of Magnetic Resonance Imaging 35, 1Ű19 (2012).

94. Moran, P. R., Saloner, D. & Tsui, B. W. NMR velocity-selective excitation

composites for Ćow and motion imaging and suppression of static tissue signal.

IEEE Trans. Med. Imaging 6, 141Ű147 (1987).

95. Moran, P. R. A Ćow velocity zeugmatographic interlace for NMR imaging in

humans. Magnetic Resonance Imaging 1, 197Ű203 (1982).



136 References

96. Mulkern, R. V. & Williams, M. L. The general solution to the Bloch equation

with constant rf and relaxation terms: application to saturation and slice selection.

Medical physics 20, 5Ű13 (1993).

97. Murase, K. & Tanki, N. Numerical solutions to the time-dependent Bloch

equations revisited. Magnetic Resonance Imaging 29, 126Ű131 (2011).

98. O Šsullivan, J. D. A Fast Sinc Function Gridding Algorithm for Fourier Inversion

in Computer Tomography. IEEE Transactions on Medical Imaging 4, 200Ű207

(1985).

99. OŠDonnell, M. NMR blood Ćow imaging using multiecho, phase contrast se-

quences. Medical physics 12, 59Ű64 (1985).

100. Olsson, M. B. E., Wirestam, R. & Persson, B. R. R. A computer simulation pro-

gram for MR imaging: Application to RF and static magnetic Ąeld imperfections.

Magnetic resonance in medicine 34, 612Ű617 (1995).

101. Paul Lauterbur. Image formation by induced local interactions: Examples em-

ploying nuclear magnetic resonance. Nature (1973).

102. Perko, L. Differential Equations and Dynamical Systems 568 (Springer New

York, 2001).

103. Petersson, S. Simulation of Phase Contrast MRI Measurements from Numerical

Flow Data tech. rep. (Linköpings universitet, Linköping, Sweden, 2008), 45.

104. Petersson, S., Dyverfeldt, P., Gårdhagen, R., Karlsson, M. & Ebbers, T. Simula-

tion of phase contrast MRI of turbulent Ćow. Magnetic Resonance in Medicine

64, 1039Ű1046 (2010).

105. Pruessmann, K. P., Weiger, M., Börnet, P. & Boesiger, P. Advances in Sensitivity

Encoding With Arbitrary k-Space Trajectories. Magnetic resonance in medicine

651, 638Ű651 (2001).

106. Pruessmann, K. P., Weiger, M., Scheidegger, M. B. & Boesiger, P. SENSE:

Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine 42, 952Ű962

(1999).

107. Purcell, E., Torrey, H. & Pound, R. Resonance Absorption by Nuclear Magnetic

Moments in a Solid. Physical Review 69, 37Ű38 (1946).

108. Quarteroni, A., Sacco, R. & Saleri, F. Numerical Mathematics (Springer Science

& Business Media, 2010).



References 137

109. Rasche, V., De Boer, R. W., Holz, D. & Proksa, R. Continuous radial data

acquisition for dynamic MRI. Magnetic Resonance in Medicine 34, 754Ű761

(1995).

110. Roe, P. Some contributions to the modelling of discontinuous Ćows. Large-scale

computations in fluid mechanics (1985).

111. Roelofs, V., Voit, D. & Frahm, J. Spoiling without additional gradients: Radial

FLASH MRI with randomized radiofrequency phases. Magnetic resonance in

medicine (2015).

112. Roemer, P. B., Edelstein, W. A. & Hayes, C. E. The NMR phased array. Magnetic

Resonance in Medicine 225, 192Ű225 (1990).

113. Rott, N. Note on the History of Reynolds Number. Annual Review of Fluid

Mechanics 22, 1Ű11 (1990).

114. Shkarin, P. & Spencer, R. G. S. Direct simulation of spin echoes by summation

of isochromats. Concepts in Magnetic Resonance 8, 253Ű268 (1995).

115. Shkarin, P. & Spencer, R. G. S. Time domain simulation of Fourier imaging

by summation of isochromats. International journal of imaging systems and

technology 8, 419Ű426 (1997).

116. Sideris, T. Ordinary Differential Equations and Dynamical Systems 557 (Atlantis

Press, 2013).

117. Sigges, F. Numerical Solution of Bloch-Equations for Incompressible Fluids MA

thesis (Institute of Computer Science, Göttingen, 2016).

118. Slichter, C. P. in Principles of Magnetic Resonance (Springer-Verlag, 1990).

119. Smale, S., Hirsch, M. W. & Devaney, R. L. Differential Equations, Dynamical

Systems, and an Introduction to Chaos, Second Edition (Pure and Applied

Mathematics) (Elsevier Academic Press, 2003).

120. Sodickson, D. K. & Manning, W. J. Simultaneous acquisition of spatial harmonics

(SMASH): Fast imaging with radiofrequency coil arrays. Magnetic Resonance in

Medicine 38, 591Ű603 (1997).

121. Stöcker, T., Vahedipour, K., PĆugfelder, D. & Shah, N. J. High-performance

computing MRI simulations. Magnetic Resonance in Medicine 64, 186Ű193

(2010).

122. Strang, G. On the construction and comparison of diference schemes. SIAM

Journal on Numerical Analysis 5, 506Ű517 (1968).



138 References

123. Süli, E. & Mayers, D. An Introduction to Numerical Analysis (Cambridge Uni-

versity Press, 2003).

124. Sweby, P. High resolution schemes using Ćux limiters for hyperbolic conservation

laws. SIAM Journal on Numerical Analysis (1984).

125. Teschl, G. Ordinary Differential Equations and Dynamical Systems 297 (Ameri-

can Mathematical Society, 2004).

126. Thomas, J. W. Numerical Partial Differential Equations: Conservation Laws

and Elliptic Equations (Springer, 1999).

127. Thomas, J. W. Numerical Partial Differential Equations: Finite Difference

Methods (Springer, 1995).

128. Toro, E. F. Riemann solvers and numerical methods for fluid dynamics: a

practical introduction (Springer Science & Business Media, 2013).

129. Torrey, H. C. Transient nutations in nuclear magnetic resonance. Physical Review

76, 1059Ű1068 (1949).

130. Trangenstein, J. Numerical Solution of Hyperbolic Partial Differential Equations

(Cambridge University Press, 2009).

131. Uecker, M. Nonlinear Reconstruction Methods for Parallel Magnetic Resonance

Imaging PhD thesis (Georg-August-Universität Göttingen, 2009).

132. Uecker, M., Hohage, T., Block, K. T. & Frahm, J. Image reconstruction by

regularized nonlinear inversion - Joint estimation of coil sensitivities and image

content. Magnetic Resonance in Medicine 60, 674Ű682 (2008).

133. Uecker, M., Zhang, S. & Frahm, J. Nonlinear inverse reconstruction for real-time

MRI of the human heart using undersampled radial FLASH. Magnetic Resonance

in Medicine 63, 1456Ű1462 (2010).

134. Van Leer, B. Towards the ultimate conservative diference scheme. II. Mono-

tonicity and conservation combined in a second-order scheme. Journal of Com-

putational Physics 14, 361Ű370 (1974).

135. Van Tyen, R., Saloner, D., Jou, L. D. & Berger, S. MR imaging of Ćow through

tortuous vessels: a numerical simulation. Magnetic Resonance in Medicine 31,

184Ű195 (1994).

136. Versteeg, H. K. & Malaskekera, W. An Introduction to Computational Fluid

Dynamics (Prentice Hall, 2007).

137. Viscopedia. Viscopedia | A free encyclopedia for viscosity 2016.



References 139

138. Walsh, D. O., Gmitro, A. F. & Marcellin, M. W. Adaptive reconstruction of

phased array MR imagery. Magnetic Resonance in Medicine 43, 682Ű690 (2000).

139. Wheaton, A. J. & Miyazaki, M. Non-contrast enhanced MR angiography: Physical

principles. Journal of Magnetic Resonance Imaging 36, 286Ű304 (2012).

140. Xanthis, C. G., Venetis, I. E., Chalkias, A. V. & Aletras, A. H. MRISIMUL:

A GPU-based parallel approach to MRI simulations. IEEE Transactions on

Medical Imaging 33, 607Ű617 (2014).

141. Yeh, E. N., McKenzie, C. A., Ohliger, M. A. & Sodickson, D. K. Parallel

magnetic resonance imaging with adaptive radius in k-space (PARS): Constrained

image reconstruction using k-space locality in radiofrequency coil encoded data.

Magnetic Resonance in Medicine 53, 1383Ű1392 (2005).

142. Yuan, C. The solution of Bloch equations for Ćowing spins during selective pulse

using a Ąnite diference method. Medical physics 14, 914Ű921 (1987).

143. Zamir, M. & Budwig, R. Physics of Pulsatile Flow 2 (Springer, 2000).

144. Zeidler, E. Nonlinear Functional Analysis and Its Applications I: Fixed-Point

Theorems (Springer-Verlag, 1986).

145. Zhang, S. Real-time Magnetic Resonance Imaging PhD thesis (Georg-August-

Universität Göttingen, 2009).

146. Zlatev, Z. & Dimov, I. Diferent splitting techniques with application to air

pollution models. International Journal of Environment and Pollution, 1Ű23

(2008).


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Organization of the Thesis

	2 Fundamentals of Magnetic Resonance Imaging
	2.1 NMR Phenomena
	2.2 Bloch Equation
	2.3 Signal Detection
	2.4 Signal Localization
	2.4.1 Slice Selection
	2.4.2 Spatial Encoding
	2.4.3 k-space Sampling

	2.5 Imaging Sequence
	2.5.1 Cartesian Gradient Echo Sequence
	2.5.2 Radial Gradient Echo Sequence
	2.5.3 Fast Low Angle Shot (FLASH)

	2.6 Image Reconstruction
	2.6.1 Gridding and FFT

	2.7 Parallel Imaging
	2.7.1 Nonlinear Inverse Reconstruction

	2.8 Principles of Flow MRI
	2.8.1 Phase-Contrast MRI


	3 Simulation of Bloch Equations for Spatially Stationary Objects
	3.1 Bloch Equation for Spatially Stationary Object
	3.2 Numerical Strategies
	3.2.1 Explicit Runge-Kutta Method
	3.2.2 Operator Splitting

	3.3 Bloch Equation Simulator
	3.3.1 Computational Model
	3.3.2 Pulse sequence
	3.3.3 Implementation
	3.3.4 Parallel Computing

	3.4 Results
	3.4.1 Slice Profile
	3.4.2 Comparison between Numerical Methods
	3.4.3 Effect of the Number of Subvoxels and Isochromats


	4 Simulation of Bloch Equation for Moving Spins
	4.1 Bloch Equation for Flowing Spins
	4.2 Numerical Strategies
	4.3 Numerical Strategies for the Solution of Advection Equation
	4.3.1 Time Discretization
	4.3.2 Spatial Discretization
	4.3.3 Boundary Conditions and Ghost Cells

	4.4 Bloch Simulator for Flowing Spins
	4.4.1 Computational Model
	4.4.2 Implementation
	4.4.3 Parallelization

	4.5 Results

	5 Comparison of Simulations with Experimental Results
	5.1 MRI System
	5.2 Experimental Equipments
	5.2.1 Static Phantom
	5.2.2 Flow Equipments

	5.3 Validation of the Static Case
	5.3.1 Single-channel Loop Coil Experiment
	5.3.2 Experiment with Multiple Tubes

	5.4 Application of Simulation for Parameter Estimation
	5.5 Evaluation of the Simulation of MRI for Flowing Spins
	5.5.1 Proof of Concept
	5.5.2 In Vitro Experiments with Laminar Flow
	5.5.3 In Vitro Experiments with Pulsatile Flow


	6 Summary and Outlook
	6.1 Summary
	6.2 Outlook

	Appendix A Definitions, Theorems and Results Related to ODE Systems
	A.1 Solution of Bloch Equations by Operator Splitting

	Appendix B Existence and Uniqueness of Bloch Equation for Flowing Spins
	Appendix C Discontinuous Galerkin Method for Advection Equation
	Appendix D Briefly on the Numerical Analysis of partial differential equation 
	D.1 Definitions and Theorems Related to the Solution of Advection Equation

	Abbreviations
	References

