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Chapter 1

Introduction

1.1 What this is all about

In this work, we deal with sequences of pixel images (frames) which are noisy shifted,
rotated, and scaled versions of some unknown image f̃ . Moreover, those frames are
sparse in the sense that they do not show the whole transformed (and noisy) image f̃
but only relatively few pixels (at random locations). If the sequence contains enough
frames, it is likely that every pixel is observed in at least one of them, and summing up
all frames yields a rather complete version of the unknown image f̃ . However, since the
single frames are subject to rigid motions, the result is blurred. This situation comes
up in single marker switching (SMS) microscopy on which we elaborate below. Figure
1.1 shows the aggregations of the first 14 and last 14 frames of such a sequence obtained
in an SMS experiment. In applications, the frames are often calibrated by tracking the
positions of so-called fiducial markers (bright spots that are fixed to the specimen and
appear in every frame). This method is technically demanding and has further drawbacks
(see below). We propose a purely statistical reconstruction method based on parametric
models for the drift, rotation, and scaling functions, where we estimate those parameters
by minimizing certain functionals. We prove consistency of our M-estimators, asymptotic
normality of the rotation and scaling parameter estimators, and uniform tightness of the
drift parameter estimator. Furthermore, we test our M-estimators in a simulation study
with various parametric motion models and statistical error models. Last but not least,
we apply our method to SMS microscopy data (Figure 1.2 displays the superposition of all
frames from the data from Figure 1.1 as well as the reconstructions with our M-estimator
and with fiducial marker tracking) and construct bootstrap confidence bands for the drift,
rotation, and scaling functions.

1.2 On fluorescence microscopy

In the life sciences, optical fluorescence imaging is an important tool for studying biolog-
ical molecules at subcellular level. However, for more than a hundred years, the Abbé
diffraction barrier implied a physical limitation of spatial resolution for any kind of light
microscopy. This barrier means that it is not possible to distinguish between two features
that are closer than about 250 nm (approximately half the smallest wavelength of visible
light) in lateral and 500 nm in axial direction because they merge into each other. In the
last twenty years, the Abbé barrier has been overcome by recording features within such a
diffraction limited area consecutively instead of simultaneously by changing their ability
to be observed over time (Hell, 2009). Concerning fluorescence microscopy, this means

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Superimposed position histograms derived from the first (left) and last (right)
14 frames of an SMS experiment. The sample is a Hela-cell β-tubulin network. The super-
imposed position histograms of all 29,000 frames of the experiment and a reconstruction
derived from them are shown in Figure 1.2.

Figure 1.2: Left column: SMS acquisition of the β-tubulin network I. Top left: motion
blurred position histogram. Top middle: reconstructed position histogram under a linear
drift model and a quadratic rotation and scaling model. Top right: position histogram
reconstructed using fiducial marker tracking. Bottom left: detailed view inside the white
box above. Bottom middle and right: reconstructed details after motion corrections.
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changing the fluorophore’s ability to emit a fluorescence photon or to change the color
or other properties of the emitted photon. Nowadays, there are several such techniques
(Hell, 2003; Betzig et al., 2006; Rust et al., 2006; Hess et al., 2006) which has revolution-
ized the field of cell imaging. It is even possible to observe active biological molecules at
a resolution level down to 10 – 20 nm which gives entirely new insights into the signalling
and transport processes within cells (see e.g., Westphal et al. (2008); Berning et al. (2012);
Jones et al. (2011); Huang et al. (2013), to mention a few).

Roughly speaking, there are two distinct categories of modern nanoscale microscopy.
The first is the targeted mode (ensemble based), where the fluorophores (markers) are
switched at a known and precisely defined coordinate. It includes techniques such as stim-
ulated emission depletion (STED) (Hell and Wichmann, 1994; Klar et al., 2000; Schmidt
et al., 2008), saturated patterned excitation microscopy (SPEM) (Heintzmann et al.,
2002) or saturated structured illumination microscopy (SSIM) (Gustafsson, 2005), and
reversible saturable optical fluorescence transitions (RESOLFT) (Hofmann et al., 2005;
Hell, 2003). Because of the direct targeting, the specimen can usually be scanned in a
relatively short time and thus movements are not a major source of blurring.

In contrast, the second category is the stochastic switching (or single marker switch-
ing, SMS) mode, where the entire sample is illuminated simultaneously, but with a low
switching light intensity. This assures that with high probability only a few (random)
markers are in their fluorescent state at any time. Development of these techniques
has been rapid during the last years. They include stochastic optical reconstruction mi-
croscopy (STORM) (Rust et al., 2006; Holden et al., 2011), photoactivated localization
microscopy (PALM) (Betzig et al., 2006), fluorescence photoactivation localization mi-
croscopy (FPALM) (Hess et al., 2006), and PALM with independently running acquisition
(PALMIRA) (Geisler et al., 2007; Egner et al., 2007). See Hell (2007) for a survey.

Due to the fact that each single high resolved image in SMS microscopy yields only
very little but sparse information, a long sequence of images (frames) has to be recorded
in order to accumulate to a representative view of the specimen. Usually, such sequences
are in the range of several tens of thousands of frames. Recently developed methods make
explicit use of this sparseness for image reconstruction, for example, employing a sparsity
enforcing penalty or prior, see Babcock et al. (2012); Cox et al. (2012); Holden et al.
(2011); Zhu et al. (2012); Quan et al. (2011); Hafi et al. (2014). The unknown marker
positions are usually determined by calculating the centroid of their observed diffraction
patterns, physically enforcing spatial sparseness and rendering more sophisticated decon-
volution methods unnecessary. Note that the standard deviation of the average of N ∈ N
identically and independently distributed random variables is by a factor of 1/

√
N smaller

than the standard deviation of only one of these random variables. In our context, N is
the average number of detected photons within the individual diffraction patterns, mean-
ing that the localization accuracy can be

√
N times better than the initial resolution of

the microscope (Thompson et al., 2002). The markers localized within each frame are
then registered in highly time and space resolved position histograms (see Figure 1.1),
the overlay of which represents the final SMS-image.

Nevertheless, since we need to record thousands of frames for this final image, the
measurement process typically takes several minutes. Hence, a movement of the specimen
over significant distances during this time leads to blurring, which is a major motivation
for this work. These movements can have different shapes. Drift may be caused by
temperature variations (thermal drift) during the measurement process while rotation
might occur due to small vibrations coupled with a rigid specimen that is not perfectly
adhesive to the object layer. In this context, even if there are only drift-like effects present,
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a large shift at one location and a smaller one at another can lead to a rotation. External
systematic movements of the optical device (mechanical drift and rotation) may also be
a problem. Moreover, as the optical device heats up during the measurement process,
thermal expansion can lead to a decreasing distance between the original focal plane
and the ocular, meaning that the image appears scaled up. As can be seen in Figure
1.2 (left upper display) these movements are the major source of blurring. The need to
correct for this motion of the object in the sparse position histograms is well known and
it is therefore current practice to incorporate fiducial markers (e.g., bright fluorescent
microspheres) into the specimen which can be tracked and thus used to align subsequent
frames. However, this is not only technically demanding and expensive, often times the
fiducials also outshine relevant parts of the image. Hence, developing methods which
allow to estimate the drift, rotation, and scaling of the specimen without incorporation
of fiducials would be an important achievement.

1.3 Estimation of drift, rotation and scaling

A first attempt at estimating drift has been made by Geisler et al. (2012), who suggested
a heuristic correlation method to align subsequent frames properly (see Deschout et al.
(2014) for a recent survey on this issue). In Hartmann et al. (2016), we treated this
problem in a statistically rigorous way, assuming a parametric model for the drift as
a function in time, proposing an M-estimator for this drift parameter and proving its
consistency and asymptotic normality. Here, although we will present an expansion of the
method of Geisler et al. (2012) to incorporate rotation and scaling in Chapter 8, we focus
on a similar expansion of our own M-estimation technique. We argue that a parametric
model for the drift, rotation, and scaling functions is often appropriate and we suggest M-
estimators for them. See the middle column of Figure 1.2 for the image of the recordings
of a β-tubulin network within a Hela-cell, which was obtained after motion correction with
our M-estimators, to be developed in Chapter 4. We will show the asymptotic normality
of the rotation and scaling estimator and uniform tightness of the drift estimator as the
acquisition time increases, and we argue that this is the “right asymptotics” in SMS
microscopy due to relatively long acquisition times which inherently come along with this
technique. From this asymptotics we obtain simple bootstrap confidence bands for the
drift, rotation, and scaling functions and finally improved estimates of the image together
with a measure to access the statistical uncertainty of the aligned images. We stress that
our asymptotics is substantially different to that underlying many other image alignment
and registration methods where at each time step data from the full image is observed
and hence asymptotics concerns the number of pixels tending to infinity.

Finally, our method is compared in real world applications with calibration using
cross correlation or fiducial markers. We show that our method is at least as competitive
revealing the incorporation of fiducials as not necessary in the analysis and processing of
SMS images.

1.4 A simple model for SMS microscopy

In SMS microscopy, data is acquired in a two step process, first, switching marker
molecules on, and second, reading out of their fluorescent signal. For details, we refer
to Betzig et al. (2006); Geisler et al. (2012); Hell (2009); Hess et al. (2006). However,
the data represents single photon counts recorded with an array of photodetectors, where
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it is reasonable to assume that different markers emit photons independently. Hence,
the data can be described as a spatial (thinned) Poisson process (possibly corrupted by
some background noise) with unknown intensity λ which is linked to the unknown marker
density f̃ , for example, by a convolution λ = K ∗ f̃ , where the kernel K is determined by
the optical system. In ensemble based microscopy the focal spot is scanned through the
sample. This requires an additional deconvolution step which can be helpful to obtain
improved resolution (see Vardi et al. (1985); Silverman et al. (1990); Nowak and Kolaczyk
(2000); Cavalier and Koo (2002); Antoniadis and Bigot (2006); Zhang et al. (2008); Frick
et al. (2013); Bigot et al. (2013) for several Poisson deconvolution methods). In SMS
microscopy, however, as considered in this work, the centre of each spot already serves as
a very accurate location estimate of the marker molecule because of the enforced sparsity
(see Aspelmeier et al. (2015)). Therefore, we adopt current practice, and a sophisticated
deconvolution step is not required.

As you may draw from Figure 1.2, indeed the major source of blurring in SMS mi-
croscopy comes from sample motion, rather than from optical blurring as the technique
is designed to be physically sparse.

Since the number of photon counts in SMS experiments is usually rather high, in the
following, we simplify things further by restricting ourselves to use a (heteroscedastic)
Gaussian model as an approximation to the Poisson model for large intensity f̃ . Never-
theless, we did some simulations for a Poisson model in our simulation study (see Chapter
9), warranting that approximation appropriate. An approximate model for the above SMS
scenario is hence given by (possibly after an offset correction)

Õt
j :=

{
f̃ t(xj) + ν̃tj ε̃

t
j, if t ∈ T̃, j ∈ J̃ t,

0, if t ∈ T̃, j ∈ {1, . . . , n} \ J̃ t,
(1.1)

where f̃ : R2 → R represents the marker intensity (which can be thought of as a grey-scale
image) and

f̃ t(xj) := f̃
(

1/σα0
t ·R−ρφ0t

(
xj − δθ0t

))
is a shifted, rotated, and scaled version of f̃ . The scaling factor σα0

t depends on the
observation time t and an unknown parameter α0 ∈ A ⊂ Rd3 , where d3 ∈ N,

Rρ :=

(
cos(ρ) − sin(ρ)
sin(ρ) cos(ρ)

)
(1.2)

is the rotation matrix with angle ρ, −ρφ0t is a rotation angle which also depends on time
t and an unknown parameter φ0 ∈ Φ ⊂ Rd2 , where d2 ∈ N, and δθ0t is a translation (drift)
vector depending on time t and an unknown parameter θ0 ∈ Θ ⊂ Rd1 , where d1 ∈ N.
The xj ∈ [0, 1]2 denote pixel locations. The ε̃tj ∼ N (0, 1) are independent Gaussian errors
while the noise levels ν̃tj > 0 model spatial and temporal inhomogeneities and are, in
general, unknown. In particular, in a pure Poisson model they would equal the signal
f̃ t. The set T̃ = {0, 1/T, . . . (T − 1)/T} with T ∈ N contains equidistant time points (the
times at which the images are observed), n ∈ N is the total possible number of pixels in

the image, and J̃ t ⊆ {1, . . . , n} indexes the pixels observed at time t ∈ T̃.
As stated before, in the low energy stochastic switching scenario we assume that the

pixel locations xj selected by the switch-on process are small in number (i.e., ñt := #J̃ t

is small) and sufficiently distant to each other. Consequently, the assumption that the

errors ν̃tj (t ∈ T̃, j ∈ J̃ t) are independently distributed for different time points t1, t2 ∈ T̃,
t1 6= t2, even if they belong to the same pixel locations, is reasonable. Obviously, the
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intensity of the images scales with ñt which means that f̃ t actually has to be rescaled
with the relative amount of total intensity at time t, that is, multiplied by ñt/

∑
s∈T̃ ñs,

to keep the observed intensity constant. We will suppress this in the following, however,
as ñt is observable and any estimate of f̃ t can thus be rescaled easily.

Note that we need ñt ≥ 1 for all t ∈ T̃, which is, however, always true for SMS
microscopy as the sampling rate is never chosen below. We will see that the only additional
assumptions required on J̃t or ñt are that arbitrarily large unions of subsequent J̃t’s
converge to {1, . . . , n} and that the average observation frequency at each time point t
and each pixel location xj converges to some mean ct(xj) (see Assumption 3.8). Both
assumptions make sense in our SMS scenario since it is highly unlikely that there is
a pixel we never observe in an arbitrarily large number of frames and since the ct(xj)
are basically determined by the marker intensity f̃ t(xj) and the switch-on probability

given by the experimental setup. Therefore, even though in SMS microscopy, the J̃ t’s
are strictly speaking random and their exact distributions will depend on the fluorophore
characteristics, we will consider the J̃ t’s to be fixed and we will state our results and
conditions accordingly. However, Assumption 3.8 and our main Theorems 6.23 and 6.42
hold similarly for this random situation, for example, when the convergence in Assumption
3.8 is now almost surely, which can be derived from the strong law of large numbers for
non identically distributed random variables.

In contrast to the usual asymptotics in imaging, where the pixel number n tends to
infinity as the discretization level increases, we consider here the novel scenario where the
total pixel number is fixed while the number of time frames T tends to infinity. In SMS
nanoscopy, T typically ranges from 10,000 to 40,000, corresponding to a time resolution
of several milliseconds.

1.5 Relation to the literature

The asymptotics considered in Chapter 6 require rather involved computations and no-
tably, they are different from various approaches and asymptotics in the literature. Note
that, in our SMS microscopy setting, the number ñt of observed pixels at time t in model
(1.1) is typically small and, in particular, does not tend to infinity. Hence, our approach is
different from time dynamic imaging (Foroosh et al., 2002; Huang et al., 2005; Papenberg
et al., 2006; Cuzol et al., 2007; Allassonnière et al., 2007; Fleet and Weiss, 2006; Bruhn
et al., 2005; Weickert and Schnörr, 2001; Li et al., 2014) where in each time step a (rather)
complete sample of the entire image has to be recorded. In strict contrast to this, SMS
microscopy provides only a few observed markers at each time. Therefore, our setting is
also different from Gamboa et al. (2007) as well as from Bigot et al. (2009), although we
borrow the idea of a Procrustes type estimator based on minimizing a suitable contrast
functional, see Gower (1975). The two afore mentioned recent references consider a finite
and fixed number T of images which are subject to Gaussian noise, each of which comes
with an individual unknown similarity transform. More specifically, translated to our
setup, Gamboa et al. (2007) consider one-dimensional “images”, each subject to a one-
dimensional translation, while Bigot et al. (2009) consider two-dimensional images, each
subject to translation, rotation, and scaling. They prove that those unknown similarity
transformations can be consistently estimated with asymptotic normality if the number of
pixels n tends to infinity which corresponds to an increasing signal-to-noise ratio for each
frame. Here, motivated by SMS microscopy, we swap the asymptotics for a finite number
of pixels n (of which we observe ñt ≤ n at time t), while the number of observation time
points T goes to infinity, and allow for a time dependent drift, rotation, and scaling.
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We would like to mention that the shift property of the Fourier transform (and a similar
property of the analytical Fourier-Mellin transform) which has motivated our approach is
crucial in many related methods based on FFT (Reddy and Chatterji, 1996; Bigot et al.,
2009).

We note that our work is not limited to SMS microscopy and might be used for other
purposes, such as noisy object or particle tracking, when only small parts of the object are
registered at each time step as is the case for heavily undersampled magnetic resonance
imaging (Li et al., 2014). Extensions to non parametric models for drift, rotation, and
scaling are possible and will be the topic of subsequent research. Finally, in a sense,
our work is complementary to the issue of testing in fluorescence microscopy whether a
protein structure has significantly changed in time as in Bissantz et al. (2009).

1.6 Overview

This thesis is organized as follows.

Chapter 2. In this chapter, we define the Fourier transform

Fg(ω) =

∫
R2

e−2πi〈ω,x〉g(x) dx

and the (analytical) Fourier-Mellin transform

AFMg(u, v) =

∫ ∞
0

∫ 2π

0

e−2πiuψrγ−iv(g ◦ P)(r, ψ) dψ
dr

r
, (u, v) ∈ Z× R,

of a function g : R2 → R, where P is the polar coordinate transform and γ > 0 helps
with the existence of the integral in the case that (g ◦ P)(r, ψ) does not converge to 0 for
r → 0. Due to its shift property

Fg(·−δ)(ω) = e−2πi〈ω,δ〉Fg(ω), δ ∈ R2, (1.3)

the Fourier transform turns the drift of the image sequence into a phase shift that can be
eliminated by taking the absolute values of the Fourier coefficients which allows us to first
estimate rotation and scaling. This is done using the Fourier-Mellin transform which has
a property similar to (1.3) with respect to rotation and scaling. Key to the estimation
method is the Plancherel equality,∫

R2

|g(x)|2 dx =

∫
R2

|Fg(ω)|2 dω,

since it means that we can minimize distances between images in the Fourier domain
instead of the image domain.

Chapter 3. In this chapter, we present our semi-parametric model (3.2). This model
is semi-parametric in the sense that it includes an infinite-dimensional parameter f̃ and
a finite-dimensional parameter (θ, φ, α) ∈ Rd1+d2+d3 .

To asymptotically decrease the noise level, we average over βT ∈ N subsequent frames.
This so-called binning gives us the model

Ot
j :=

1

βT

βT−1∑
i=0

Õ
t+i/T
j ≈ f t(xj) +

√
nt
βT
νtjε

t
j, t ∈ T, j ∈ {1, . . . , n} , (1.4)
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where f t(xj) := ct(xj)f̃
t(xj) with an average observation frequency ct(xj), ν

t
j > 0 are

basically averages of the original noise levels ν̃tj, ε
t
j are independent standard normal

random variables, and T := {0, βT/T, 2βT/T, . . . , (T − βT )/T}. From this, we derive our
Fourier model

Y t(ω) := Ff t(ω) +W t(ω), t ∈ T, ω ∈ R2,

where the W t(ω)’s are noise terms with centred normal real and imaginary parts. Because
of the shift property (1.3) and some additional calculations, with f := f 0, we have that

|Ff t|2 (ω) = (σαt )4
∣∣∣Ff (σαt R−ρφt ω)

∣∣∣2 ,
which does not depend on the drift δθ0t . In particular, the rotation and scaling in the
image domain result in the same rotation and the inverse scaling in the Fourier domain.
We will first estimate (φ0, α0) from the analytical Fourier-Mellin transform of the data,

AFM|Y t|2(u, v) = AFM|Fft |2(u, v) +AFMWt(u, v), t ∈ T, (u, v) ∈ Z× R,

where W t(ω) := |W t(ω)|2 + 2<
(
Ff t(ω)W t(ω)

)
.

Chapter 4. In this chapter, we explain our M-estimation method for the calibration
of the image sequence and provide for estimators for the drift, rotation, and scaling
parameters as well as for the unknown true image f . This method relies on minimizing
so-called contrast functionals. With suitably chosen cutoffs uT , vT > 0, the contrast
functional for rotation and scaling is

MT (φ, α) :=

∫ vT

−vT

∑
|u|≤uT

βT
T

∑
t∈T

∣∣∣∣∣(σαt )−ive2πiuρφtAFM|Y t|2(u, v)

−βT
T

∑
t′∈T

(σαt′)
−ive2πiuρφ

t′AFM|Y t′ |2(u, v)

∣∣∣∣∣
2

dv,

from which we derive an estimator (φ̂T , α̂T ) ∈ argmin(φ,α)∈Φ×AM̃T (φ, α) for the parameter

(φ0, α0). Calibration of the Fourier image sequence (Y t)t∈T with φφ̂Tt and σα̂Tt yields the
following model,

Zt
T (ω) := (σα̂Tt )−2Y t

(
1/σα̂Tt ·Rρ

φ̂T
t

ω
)
.

It remains to estimate the drift parameter θ0 with the minimizer θ̂T of the contrast
functional

NT (θ) :=

∫
ΩT

βT
T

∑
t∈T

∣∣∣∣∣e2πi〈ω,δθt 〉Zt
T (ω)− βT

T

∑
t′∈T

e2πi〈ω,δθt′〉Zt′(ω)

∣∣∣∣∣
2

dω,

with a suitable cutoff rT > 0. By correcting the Zt
T ’s with the resulting drift function

estimator t 7→ δθ̂Tt and performing a subsequent inverse Fourier transform, we finally get
an estimator for the image f ,

f̂T (xj) :=

∫
ΩT

βT
T

∑
t∈T

exp
(

2πi
〈
ω, xj + δθ̂Tt

〉)
Zt
T (ω) dω, j ∈ {1, . . . , n} .
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Chapter 5. In this chapter, we deal with some preliminary computations for our main
theorems, like the distributions and dependencies of statistical error terms (e.g., W t(ω))

and derivatives of the rotation and scaling correction term du,v(σ
α
t , ρ

φ
t ) := (σαt )−ive2πiuρφt

and the drift correction term hω(δθt ) := e2πi〈ω,δθt 〉.

Chapter 6. In this chapter, we present our main theoretical results. In particular,
we provide for the main assumptions on the model and derive consistency of the drift,
rotation, and scaling parameter estimators θ̂T , φ̂T , and α̂T , and the image estimator f̂T
under those assumptions. Moreover, we prove that

√
T (φ̂T−φ0, α̂T−α0) is asymptotically

normal and that
(√

T (θ̂T − θ0)
)
T∈N is uniformly tight, where θ0, φ0, and α0 are the

unknown true parameters.

Chapter 7. In this chapter, we propose a simple model selection method for the para-
metric drift, rotation, and scaling models based on the values of the contrast functionals.
Furthermore, we use the motion blur measure

m2(I) := log

(
J(ψmax)

J(ψmin)

)
introduced in (Xu et al., 2013) to compare our results with fiducial marker tracking. Here,
I is a pixel image,

J(ψ) :=
N2∑
j=1

(
∆I
(
(xj)1, (xj)2

)
ψ

)2

is the average squared directional derivative of I in direction
(
cos(ψ), sin(ψ)

)
, ψmin is a

minimizer of J , and ψmax = ψmin ± π/2. The idea behind m2 is that, if the image I
is smeared along

(
cos(ψ), sin(ψ)

)
, then its intensity will vary little in that direction and

much in the perpendicular direction. This motion blur measure can be used to detect
the major drift direction and the blurring caused by the drift. Since rotation and scaling
become a translation if we transform the image into log-polar coordinates, m2 can be
easily adapted to measure the motion blur created by these movements.

Chapter 8. In this chapter, we describe two alternative methods for the estimation of
drift, rotation and scaling in image sequences (without theoretical results).

The first one is based on the work of Geisler et al. (2012) who deal with drift only and
maximize the cross correlation of two frames,

(Ot ? Ot′)(τ) :=
n∑
j=1

Sτ (O
t
j)O

t′

j ,

to find the optimal lag τ t,t
′

which should be close to the true translation vector δθ0t′ − δ
θ0
t

between the t-th and the t′-th frame. Here, Sτ denotes the translation by τ . Then,
τ̄ t,• := βT

T

∑
t′∈T τ

t,t′ estimates the average translation of the t-th single frame Ot with
respect to the entire sequence. Hence, we can correct the image sequence for drift by
shifting each Ot by −τ̄ t,•. Since the squared Fourier magnitudes |Y t|2 are devoid of drift
but retain the rotation and (inverse) scaling of the original frames, and transformation into
log-polar coordinates converts those into translations, this cross correlation method can
easily be adapted to estimate rotation and scaling. As with the M-estimation technique,
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we can calibrate the images for rotation and scaling and, in a second step, estimate the
drift by employing the cross correlation procedure again.

The second method is the afore-mentioned fiducial marker tracking which is commonly
used in experiments. It is based on tracking the positions of at least two bright fluorescent
spheres that have to be attached to the specimen and then appear in every frame. We
denote the positions of these two markers in the t-th frame with µt1 and µt2. Since the
translation by δθ0t , the rotation by ρφ0t , and the scaling by σα0

t are assumed to act globally
on the entire image, we have that µti = σα0

t Rρ
φ0
t

(µ0
i + δθ0t ), i ∈ {1, 2}. Thus,

µt1 − µt2 = σα0
t Rρ

φ0
t

(µ0
1 − µ0

2),

which means that we can see the rotation and scaling directly from comparing the direction
and length of the difference vector µt1 − µt2 with those of µ0

1 − µ0
2. After calibrating the

frames with these quantities, we can correct them for drift by aligning the marker positions
in each frame with their respective starting points in the first frame.

Chapter 9. In this chapter, we illustrate the M-estimation method proposed in Chap-
ter 4 in a simulation study, using polynomial drift, rotation, and scaling models. In
particular, we study the robustness of our M-estimator with respect to outliers by ex-
changing the Gaussian distribution of the errors εtj with a Student-t-distribution with
two degrees of freedom. In both cases, the sparsity of the images is enforced by multi-
plying the (noisy) grey values at all possible pixel locations with independent Bernoulli
random variables with parameter p ∈ (0, 1). Moreover, we employ a Poisson model, that
is, Ot

j ∼ Pois
(
pf t(xj)

)
independently in j and t, for which our method still works fine.

Here, the Bernoulli probability p yields a comparable average image intensity with the
two other error models. Furthermore, we consider a piecewise linear drift, rotation, and
scaling model with a jump at an unknown time point.

Chapter 10. In this chapter, we apply our M-estimation method to SMS nanoscopy
data and give a detailed discussion of the results including bootstrap confidence regions. In
particular, we demonstrate the model selection method from Chapter 7 and compare our
M-estimators to results from cross correlation and fiducial marker tracking (see Chapter
8).

Chapter 11. In this final chapter, we explain how to construct bootstrap confidence
bands for the drift, rotation, and scaling functions. Bootstrapping is a so-called re-
sampling method which means that we create additional “artificial data” by sampling
from the original data in some way. We employ a residual bootstrap oriented on the
model (1.4), simulating B ∈ N bootstrap samples of the form

(Ot
j)

(b) := f̂T

(
1/σα̂Tt ·R−ρφ̂Tt

(
xj − δθ̂Tt

))
+ (εtj)

(b), t ∈ T, j ∈ {1, . . . , n} ,

where b ∈ {1, . . . , B} and the (εtj)
(b)’s are independently drawn from the uniform distri-

bution on the set of residuals,

(εtj)
(b) ∼ U

{
Ot
j − f̂T

(
1/σα̂Tt ·R−ρφ̂Tt

(
xj − δθ̂Tt

)) ∣∣∣ t ∈ T, j ∈ {1, . . . , n}
}
.

Performing our M-estimation method with (Ot
j)

(b) instead of Ot
j gives us bootstrap repli-

cats θ̂
(b)
T , φ̂

(b)
T , and α̂

(b)
T of the estimators θ̂T , φ̂T , and α̂T , B of each, which correspond to
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drift component functions (δθ̂
(b)
T )1, (δθ̂

(b)
T )2, rotation functions ρφ̂

(b)
T , and scaling functions

σα̂
(b)
T . Based on the work of Hall and Pittelkow (1990), we construct a 95%-confidence

band for the drift component function (δθ0)1 by choosing optimal u+, u− > 0 such that
u+ + u− is minimal under the condition that

(δ
θ̂
(b)
T
t )1 ∈

[
(δθ̂Tt )1 − u−t, (δθ̂Tt )1 + u+t

]
for all t ∈ [0, 1],

for all b in a set that includes at least 95% of the elements of {1, . . . , B}. The boundaries of

the confidence band are then given by the functions t 7→ (δθ̂Tt )1−u−t and t 7→ (δθ̂Tt )1 +u+t.

Bootstrap confidence bands for (δθ̂
(b)
T )2, ρφ̂

(b)
T , and σα̂

(b)
T are achieved similarly.
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Chapter 2

Fourier transform and Fourier-Mellin
transform

In this chapter, we define the Fourier transform and the related (analytical) Fourier-Mellin
transform which are crucial for this work because of their properties proved in the Lemmas
2.5 and 2.18. For more details on the definitions, lemmas, and theorems presented in this
chapter, see (Rudin, 1990). First, we need the following definition.

Definition 2.1 (Lp-spaces with seminorm). Let (Ω,A, µ) a measure space. For values
p ∈ [1,∞), we define the Lp-space

Lp(Ω,A, µ) := {g : Ω→ C | g is µ-measurable and ‖g‖Lp <∞} ,
with the Lp-seminorm

‖·‖Lp : Lp → [0,∞], g 7→
(∫

Ω

|g(x)|p µ(dx)

)1/p

.

For the special case p =∞, we define

L∞(Ω,A, µ) := {g : Ω→ C | g is µ-measurable and ‖g‖L∞ <∞} ,
with the L∞-seminorm

‖·‖L∞ := inf
N∈A,µ(N)=0

sup
x∈Ω\N

|g(x)| .

We will denote ‖·‖L∞ also with ‖·‖∞.

Note, that ‖·‖Lp is only a seminorm. For example, if we consider Lp
(
R,B(R), λ

)
,

where B(R) is the Borel-σ-algebra on R and λ is the Lebesgue-measure on B(R), and
p ∈ [0,∞], then we have for

g : R→ C, x 7→

{
1, if x ∈ Q,
0, if x ∈ R \Q,

that g ∈ Lp
(
R,B(R), λ

)
with ‖g‖Lp = 0, but g 6= 0. This is because λ(Q) = 0. Identifying

functions in Lp(Ω,A, µ) if they are µ-almost everywhere (µ-a.e.) equal (i.e., they differ
only on a set N ∈ A with µ(N) = 0) leads to the following normed spaces.

Definition 2.2 (Lp-spaces with norm). Let (Ω,A, µ) a measure space, p ∈ [1,∞], and

N p := {g ∈ Lp(Ω,A, µ) | ‖g‖Lp = 0} = {g ∈ Lp(Ω,A, µ) | g = 0 µ-a.e.} .
Then, the Lp-space Lp(Ω,A, µ) := Lp(Ω,A, µ)/N p, together with the Lp-norm

‖·‖Lp : Lp(Ω,A, µ)→ [0,∞), [g] 7→ ‖g‖Lp ,
is a normed space.

13
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2.1 Fourier transform

Definition 2.3 (Fourier transform). Let g ∈ L1
(
R2,B(R2), λ

)
, where B(R2) is the Borel-

σ-algebra on R2. The Fourier transform of g is defined as

Fg : R2 → C, ω 7→
∫
R2

e−2πi〈ω,x〉g(x) dx.

Moreover, we define the inverse Fourier transform as

F−1
g : R2 → C, x 7→

∫
R2

e2πi〈ω,x〉g(ω) dω.

The following lemma can be found in (Rudin, 1990, page 22)

Lemma 2.4 (Inverse Fourier transform). Let g ∈ L1
(
R2,B(R2), λ

)
. If we have that

Fg ∈ L1
(
R2,B(R2), λ

)
, then F−1

Fg = g a.e.

Lemma 2.5 (Generalized shift property). Let g ∈ L1
(
R2,B(R2), λ

)
, δ ∈ R2, ρ ∈ [0, 2π),

and σ > 0. With
g̃ : R2 → R, x 7→ g

(
1/σ ·R−ρ(x− δ)

)
,

where R−ρ is the rotation by −ρ, we have

Fg̃(ω) = σ2e−2πi〈ω,δ〉Fg(σR−ρω).

Proof. With the substitution y := 1/σ ·R−ρ(x− δ), we get

Fg̃(ω) =

∫
R2

e−2πi〈ω,x〉g̃(x) dx

=

∫
R2

e−2πi〈ω,x〉g
(
1/σ ·R−ρ(x− δ)

)
dx

=

∫
R2

exp (−2πi 〈ω, σRρy + δ〉) g(y)σ2 dy

= σ2e−2πi〈ω,δ〉
∫
R2

exp (−2πi 〈ω, σRρy〉) g(y) dy

= σ2e−2πi〈ω,δ〉
∫
R2

exp (−2πi 〈σR−ρω, y〉) g(y) dy

= σ2e−2πi〈ω,δ〉Fg(σR−ρω).

This means that a translation in the image domain becomes a phase shift in the Fourier
domain (this is the so-called shift property of the Fourier transform), a rotation leads to
the same rotation in the Fourier domain, and scaling in the image domain translates to the
inverse scaling in the Fourier domain as well as a multiplication of the Fourier magnitude.

In what follows, we will need some standard norms that we define below.

Definition 2.6 (Euclidean norm and 1-norm). Let d ∈ N, b = (b1, . . . , bd)
> ∈ Rd, and

A = (ai,j)
d
i,j=1 ∈ Rd×d. We define the Euclidean norm

‖b‖ :=

√√√√ d∑
i=1

b2
i
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and the 1-norm

‖b‖1 :=
d∑
i=1

|bi| , ‖A‖1 :=
d∑

i,j=1

|ai,j| .

The following well-known properties of the 1-norm will be useful throughout this work.

Lemma 2.7 (Properties of ‖·‖1). Let d ∈ N, x, y ∈ Rd, and A ∈ Rd×d. Then,

‖x‖ ≤ ‖x‖1 ≤
√
d ‖x‖ ,

∥∥xy>∥∥
1

= ‖x‖1 ‖y‖1 and ‖Ax‖1 ≤ ‖A‖1 ‖x‖1 .

The following definition will come in handy later on. It is linked to an integrable
function g ∈ L1

(
R2,B(R2), λ

)
being p times differentiable in a weak sense (see e.g., Evans

(1998), page 245).

Definition 2.8 (Sobolev space). For p > 0, we call

Hp(R2) :=

{
g ∈ L1

(
R2,B(R2), λ

) ∣∣∣∣ ∫
R2

(
1 + ‖ω‖2)p |Fg(ω)|2 dω <∞

}
the Sobolev space of order p.

By Lemma 2.5, a translation by a vector δ in the image domain becomes a multi-
plicative phase shift e−2πi〈ω,δ〉 in the Fourier domain. Because |ex| = 1 for all x ∈ C, the
Fourier magnitude defined below helps to get rid of the drift so we can estimate rotation
and scaling first.

Definition 2.9 (Fourier magnitude). For any function g, we define its Fourier magni-
tudes as

|Fg| : R2 → [0,∞), ω 7→ |Fg(ω)| .

Lemma 2.10 (π-periodicity of Fourier magnitude). For integrable g : R2 → R, the Fourier
magnitude |Fg| of g is invariant to rotation by π.

Proof. Let g̃ : R2 × R, x 7→ g(Rπx), where Rπ is the rotation by π. Because Rπx = −x
for all x ∈ R2, we have

|Fg̃(ω)|2 =

∣∣∣∣∫
R2

e−2πi〈ω,x〉g(−x) dx

∣∣∣∣2 =

∣∣∣∣∫
R2

e−2πi〈ω,−y〉g(y) dy

∣∣∣∣2
=

∫
R2

∫
R2

e−2πi〈ω,(−y)−(−y′)〉g(y)g(y′) dy dy′

=

∫
R2

∫
R2

e−2πi〈ω,y′−y〉g(y′)g(y) dy′ dy

=

∣∣∣∣∫
R2

e−2πi〈ω,y〉g(y) dy

∣∣∣∣2 = |Fg(ω)|2 ,

with y := Rπx.

Since we deal with data in the form of pixel images, we will also need the discrete
Fourier transform.

Definition 2.11 (Discrete Fourier transform). For a finite set J , X = {xj | j ∈ J} ⊂ R2,
and a function g : X→ R, we call

FX
g (ω) :=

1

#J

∑
j∈J

e−2πi〈ω,xj〉g(xj), ω ∈ R2,

the discrete Fourier transform of g.
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The following theorem is essential for our M-estimation method which we will describe
in detail in Chapter 4. In our context, it says that the distance between two images f t

and f t
′

is the same as the distance between their Fourier transforms Ff t and Ff t′ , so that
we can minimize such distances in Fourier space instead. For a proof, see (Rudin, 1990,
page 26).

Theorem 2.12 (Plancherel). Let d ∈ N. There is an isometry

Ψ: L2
(
Rd,B(Rd), λ

)
→ L2

(
Rd,B(Rd), λ

)
which is unitary (i.e., for all g1, g2 ∈ L2

(
Rd,B(Rd), λ

)
we have that 〈Ψg1,Ψg2〉 = 〈g1, g2〉)

and uniquely defined by Ψ(g) = Fg for all g ∈ S(Rd), where the Schwartz space S(Rd)
is a certain subset of the set of smooth functions that is dense in Lp

(
Rd,B(Rd), λ

)
for all

p ∈ [0,∞).

2.2 Fourier-Mellin transform

As we have seen in Lemma 2.5, the Fourier magnitude is invariant to translations of the
image which will prove useful. Various Fourier-type transformations have been devel-
oped for handling different groups of transformations in image analysis (see e.g., Derrode
and Ghorbel (2004); Ghorbel (1994); Lenz (1990); Gauthier et al. (1991); Segman et al.
(1992)). As explained in the following, the Fourier-Mellin transformation has a “shift
property” with respect to rotation and scaling. We refer to (Rudin, 1990) for more de-
tails.

Let Z the additive group of integers, R the additive group of real numbers, R∗+ the
multiplicative group of strictly positive real numbers, and S1 the unit sphere in R2, all
of which are locally compact groups. We will identify points in S1 (as vectors in R2)
with their angle to the x-axis in [0, 2π). Then, the direct product R∗+ × S1 is also locally
compact and represents scaling factors and rotation angles in the real plane. Let dr and
dψ denote the standard Lebesgue measures on R∗+ and [0, 2π), respectively. Then, the
Haar measure of R∗+ × S1 is dr/r · dψ/(2π), which is positive and invariant (because it
stems from the Lebesgue measures). Furthermore, the dual group of R∗+ × S1 is Z × R.
Therefore, we can define a Fourier transform on R∗+ × S1 as described in Definition 2.14.
For that, we first need to define the polar (and log-polar) coordinate transformations.

Definition 2.13 (Polar and log-polar coordinate transforms). We define the polar coor-
dinate transform P and the log-polar coordinate transform LP as

P : [0,∞)× [0, 2π)→ R2, (r, ψ) 7→
(
r cos(ψ), r sin(ψ)

)
,

LP : R× [0, 2π)→ R2, (l, ψ) 7→
(
el cos(ψ), el sin(ψ)

)
.

Definition 2.14 (Fourier-Mellin transform). Let g ∈ L1
(
R2,B(R2), λ

)
. The Fourier-

Mellin transform of g is defined as

FMg : Z× R→ C, (u, v) 7→
∫ ∞

0

∫ 2π

0

(g ◦ P)(r, ψ)r−ive−iuψ dψ
dr

r
.

Remark 2.15 (Connection between Fourier transform and Fourier-Mellin transform).
The Fourier-Mellin transform is a Fourier-type transform on the similarity group Z×R.
This will later allow as to use the Fast Fourier Transform algorithm (FFT, see e.g., Cooley
and Tukey (1965)) to efficiently compute the Fourier-Mellin transform.
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2.3 Analytical Fourier-Mellin transform

The Fourier-Mellin transform is not well-defined if the function g does not vanish for
r → 0 (see e.g., Derrode and Ghorbel (2004)). In particular, pixel images usually do not
assume the value 0 at their centre. To fix this problem, we multiply g(r, ψ) with rγ with
a suitable γ > 0. This leads to the following definition.

Definition 2.16 (Analytical Fourier-Mellin transform). Let g ∈ L1
(
R2,B(R2), λ

)
and let

γ > 0. The analytical Fourier-Mellin transformation of g is defined as

AFMg : Z× R→ C, (u, v) 7→
∫ ∞

0

∫ 2π

0

e−2πiuψrγ−iv(g ◦ P)(r, ψ) dψ
dr

r
.

Furthermore, we define the inverse analytical Fourier-Mellin transform as

AFM−1
g : [0,∞)× [0, 2π), (r, ψ) 7→

∫
R

∑
u∈Z

e2πiuψrivg(u, v) dv.

Lemma 2.17 (Inverse analytical Fourier-Mellin transform). Let g ∈ L1
(
R2,B(R2), λ

)
and γ > 0. If AFMg ∈ L1

(
R2,B(R2), λ

)
, then AFM−1

AFMg
(r, ψ) = rγg(r, ψ) for all

(r, ψ) ∈ [0,∞)× [0, 2π).

The analytical Fourier-Mellin transform fulfils something similar to the shift property
of the Fourier transform.

Lemma 2.18. Let g ∈ L1
(
R2,B(R2), λ

)
and g̃ a rotated and scaled version of g, that is,

(g̃ ◦ P)(r, ψ) = (g ◦ P)(σr, ψ + ρ),

with a scaling factor σ > 0 and a rotation angle ρ ∈ [0, 2π). Then,

AFMg̃(u, v) = σ−γ+ive2πiuρAFMg(u, v), (u, v) ∈ Z× R.

Proof. We have

AFMg̃(u, v) =

∫ ∞
0

∫ 2π

0

e−2πiuψrγ−iv(g̃ ◦ P)(r, ψ) dψ
dr

r

=

∫ ∞
0

∫ 2π

0

e−2πiuψrγ−iv(g ◦ P)(σr, ψ + ρ) dψ
dr

r

=

∫ ∞
0

∫ 2π+ρ

ρ

e−2πiu(ψ̃−ρ)(r̃/σ)γ−iv(g ◦ P)(r̃, ψ̃) dψ̃
dr̃

r̃

= σ−γ+ive2πiuρ

∫ ∞
0

∫ 2π

0

e−2πiuψ̃r̃γ−iv(g ◦ P)(r̃, ψ̃) dψ̃
dr̃

r̃

= σ−γ+ive2πiuρAFMg(u, v),

where r̃ := σr, ψ̃ := ψ + ρ, and g is 2π-periodic in ψ.

Remark 2.19. Note, that by Remark 2.15, we get AFMg(u, v) = Fg̃(u, v) with

g̃ : [0,∞)× [0, 2π), (r, ψ) 7→ rγ(g ◦ LP)(r, ψ).

In particular, the Plancherel theorem (Theorem 2.12) holds also for the analytical Fourier-
Mellin transform.
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Chapter 3

Model

Now, we introduce our model for the image sequences from SMS microscopy. Note that
we initially use notations like Õt

j for the observations or ε̃tj for the statistical errors because
we will soon consider binned (i.e., averaged in time) versions of the data frames which we
will mainly work with (see Section 3.1). The resulting variables will then be called Ot

j,
εtj, and so on.

Let a function f̃ : R2 → R represent a grey value image. We will consider a shifted,
rotated and scaled version of f̃ , for which we define the following functions.

Definition 3.1 (Drift, rotation, and scaling functions). Let d1, d2, d3 ∈ N and let Θ ⊆ Rd1,
Φ ⊆ Rd2, A ⊆ Rd3 compact subsets. Let 0 < σmin < 1 < σmax <∞.

• For θ ∈ Θ, we call δθ : [0, 1]→ R2, t 7→ δθt , a drift function.

• For φ ∈ Φ, we call ρφ : [0, 1]→ (−π/2, π/2], t 7→ ρφt , a rotation function.

• For α ∈ A, we call σα : [0, 1]→ [σmin, σmax], t 7→ σαt , a scaling function.

We denote the true and unknown parameters by θ0 ∈ Θ, φ0 ∈ Φ, and α0 ∈ A.

Remark 3.2 (Interpretation). The interval [0, 1] represents a (standardised) time period,
in which we observe a sequence of transformed images. For each t ∈ [0, 1], θ ∈ Θ, φ ∈ Φ,
and α ∈ A,

• δθt ∈ R2 is a translation vector,

• ρφt ∈ (−π/2, π/2] is a rotation angle,

• σαt ∈ [σmin, σmax] is a scaling factor,

such that, with Rρ from (1.2),

x 7→ f̃
(

1/σαt ·R−ρφt
(
x− δθt

))
is a version of the image f̃ which is first shifted by δθt and then rotated by ρφt and scaled
by σαt . The bounds on the scaling function σαt are useful for technical reasons (see the
proofs in Chapter 6) but are also naturally given by the experimental setting, σmin by the
resolution of the microscope (or the pixel size) and σmax by the size of the observation
window. The values of the rotation function ρφ have to be in an interval of length π to
ensure that we get unique estimates of the rotation angles, which will be explained later
in Remark 4.4. Of course, that interval has to contain 0 to allow for ρφ0 = 0 as set in
Assumption 3.3. We choose the interval (−π/2, π/2] because it is symmetric and we want
to allow clockwise and counter-clockwise rotations alike.

19
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Assumption 3.3. Since we do not expect drift, rotation, or scaling at time t = 0, we
assume that δθ0 = 0, ρφ0 = 0, and σα0 = 1 for all θ ∈ Θ, φ ∈ Φ, and α ∈ A.

For each t ∈ [0, 1], we define

f̃ t : R2 → R, x 7→ f̃
(

1/σα0
t ·R−ρφ0t

(
x− δθ0t

))
. (3.1)

We observe

Õt
j :=

{
f̃ t(xj) + ν̃tj ε̃

t
j, if t ∈ T̃, j ∈ J̃ t,

0, if t ∈ T̃, j ∈ {1, . . . , n} \ J̃ t,
(3.2)

where T̃ := {0, 1/T, . . . , (T − 1)/T} is a set of equidistant time points with T ∈ N,

x1, . . . , xn ∈ [0, 1]2 are pixel locations, J̃ t ⊆ {1, . . . , n} with a total number of pixels
n ∈ N, ν̃tj > 0, and ε̃tj ∼ N (0, 1) such that ε̃tj is independent of ε̃t

′

j′ except if j = j′ and
t = t′.

Definition 3.4 (Frames). For each t ∈ T̃, we call the observed image at time t, (Õt
j)j∈J̃t,

a frame.

Remark 3.5 (Order of transformations). We choose the specific order in which we apply
the affine transformations in (3.1) because we will correct the observed images in two steps:
first for rotation and scaling and then for drift (see Chapter 4). In practice, however, this
is not necessarily a restriction. Consider the alternatively transformed image

f̃ talt : x 7→ f̃
(

1/σα0
t ·R−ρφ0t x− δ

θ0
t

)
, (3.3)

which is first rotated and scaled and then shifted. Since the rotation and scaling is easily
invertible, we can define a new family of drift functions{

δ̃θ;φ,α : [0, 1]→ R2, t 7→ σαt ·Rρφt
δθt

∣∣∣ θ ∈ Θ, φ ∈ Φ, α ∈ A
}
,

such that

f̃ talt(x) = f̃
(

1/σα0
t ·R−ρφ0t

(
x− δ̃θ0;φ0,α0

t

))
,

which has the form given in (3.1). Obviously, δ̃θ;φ,α depends on the rotation and scaling
of the image sequence and will usually not have the same form as the originally proposed
δθ. Hence, it might be useful to implement a suitably flexible drift model δθ in (3.1) such
that it can reasonably approximate δ̃θ;φ,α in the case that the actual model looks like (3.3).

Remark 3.6 (Center of rotation and scaling). Note that, in model (3.1), we assume
that the center of rotation and scaling is always in the middle of the image domain.
Considering a more complex model featuring a shifting center point will be the subject of
further research.
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3.1 Binning

In SMS-microscopy, each frame Õt typically contains very little information because the
number of observed pixels #J̃ t is small, whereas the length T of the image sequence is
quite huge. It might thus be interesting to bin subsequent frames, that is, take the point-
wise average of them, to increase the information per frame or just to reduce the memory
needed to process calibration methods on the sequence. Here, however, binning serves
mainly as a means to asymptotically reduce the noise level of the data.

Definition 3.7 (Indicator function). For a set A and a subset B ⊆ A, we define the
indicator function

IB : A→ {0, 1} , x 7→

{
1, if x ∈ B,
0, if x ∈ A \B.

Note, that we omit the set A from the notation IB. When we use the indicator function,
the identity of A will be clear from the context.

For all T ∈ N, we define a bin size βT ∈ N such that T/βT ∈ N. We construct a new
image sequence of length T/βT by averaging over βT subsequent frames,

Ot
j :=

1

βT

βT−1∑
i=0

Õ
t+i/T
j , t ∈ T, j ∈ {1, . . . , n} , (3.4)

where

T :=

{
0,

1

T/βT
,

2

T/βT
, . . . ,

T/βT − 1

T/βT

}
=

{
0,
βT
T
,
2βT
T
, . . . ,

T − βT
T

}
.

For T large and βT small enough (i.e., βT = o(T )), we assume that the drift, rotation, and
scaling functions are approximately constant over βT subsequent frames (i.e., f̃ s = f̃ s

′
for

all s, s′ ∈ {t+ i/T | i ∈ {0, . . . , βT − 1}}). Thus,

Ot
j =

1

βT

βT−1∑
i=0

IJ̃t+i/T (j)f̃ t+i/T (xj) +
1

βT

βT−1∑
i=0

IJ̃t+i/T (j)ν̃
t+i/T
j ε̃

t+i/T
j

=
1

βT

βT−1∑
i=0

IJ̃t+i/T (j)f̃ t+i/T (xj) +

√
nt
βT
νtjε

t
j, t ∈ T, j ∈ {1, . . . , n} ,

where J tT :=
⋃βT−1
i=0 J̃ t+i/T , nt := #J tT , εtj ∼ N (0, 1) are pairwise independent, and

(νtj)
2 :=

1

ntβT

βT−1∑
i=0

IJ̃t+i/T (j)(ν̃
t+i/T
j )2.

Let Xt := {xj | j ∈ J tT} and gt : Xt → R with

gt(xj) :=
1

βT

βT−1∑
i=0

IJ̃t+i/T (j)f t+i/T (xj).

The discrete Fourier transform of gt is

FXt
gt (ω) =

1

nt

∑
j∈JtT

e−2πi〈ω,xj〉 1

βT

βT−1∑
i=0

IJ̃t+i/T (j)f̃ t+i/T (xj). (3.5)
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Assumption 3.8. Assume that βT
T→∞−→ ∞, βT = o(T ), J tT ↗ {1, . . . , n} as T →∞, and

that

1

βT

βT−1∑
i=0

IJ̃t+i/T (j)
T→∞−→ ct(xj)

for all t ∈ [0, 1], j ∈ {1, . . . , n}, with functions ct : R2 → (0, 1). Assume further that the
drift, rotation, and scaling functions are right-continuous in t and that f̃ is continuous.

Lemma 3.9. Under Assumption 3.8, FXt
gt (ω) converges to

FX
f t(ω) =

1

n

n∑
j=1

e−2πi〈ω,xj〉f t(xj),

where X := {xj | j ∈ {1, . . . , n}} and f t := ctf̃ t.

Proof. Because of the continuity of f̃ , the right-continuity of the transformations, and the
fact that i < βT = o(T ), we have for a fixed t ∈ [0, 1] that

f̃ t+i/T (xj)− f̃ t(xj)
T→∞−→ 0 uniformly in i.

Since we observe f̃ only on a compact subset of R2 and a continuous function is always
uniformly continuous on a compact set, it follows that

1

βT

βT−1∑
i=0

IJ̃t+i/T (j)f̃ t+i/T (xj)

=
1

βT

βT−1∑
i=0

IJ̃t+i/T (j)
(
f̃ t+i/T (xj)− f t(xj)

)
+

1

βT

βT−1∑
i=0

IJ̃t+i/T (j)f̃ t(xj)

T→∞−→ ct(xj)f̃
t(xj).

The assertion now follows from (3.5) and the fact that J tT ↗ {1, . . . , n}.

Remark 3.10 (Asymptotic order of βT ). The asymptotic behaviour βT → ∞ ensures
that, for larger T , we bin more frames and thus, the sizes of the J tT ’s tend to increase.
On the other hand, the fact that βT = o(T ) ensures that the time period represented by
each binned frame decreases. Note that we can assure these asymptotics for βT only for
T in a subsequence of N if we also require βT ∈ N and T/βT ∈ N. However, dropping one
of the latter requirements would lead to a lot of additional notation and we will therefore
keep them for the sake of simplicity.

Remark 3.11 (Interpretation of ct and f t). In SMS-microscopy, the probability of reg-
istering something at time t and pixel location xj depends mainly on the marker density
f̃ t(xj) at this point in time and space and on the switching-light intensity. Hence, ct(xj) is
proportional to f̃ t(xj), meaning that we basically observe a noisy version of (f̃ t)2 instead
of f̃ t.

If we instead consider a Bernoulli model meaning that each pixel location xj is active
at time t with some probability ptj ∈ [0, 1] and inactive with probability 1−ptj, and if t 7→ ptj
is right-continuous for each j ∈ {1, . . . , n}, then we have ct(xj) = ptj.

Whatever the truth is, we cannot observe f̃ t without ct and will therefore reconstruct
f := c0f̃ instead of f̃ itself.
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For simplicity’s sake, we assume that

FX
f t(ω) ≈ Ff t(ω). (3.6)

From Lemma 2.5, we get

Ff t(ω) = (σα0
t )2e

−2πi
〈
ω,δ

θ0
t

〉
Ff (σα0

t R−ρφ0t
ω). (3.7)

Instead of the original observations Ot : j 7→ Ot
j, we now consider their squared Fourier

magnitudes
∣∣FXt

Ot(ω)
∣∣2, where

FXt
Ot(ω) =

1

nt

∑
j∈JtT

e−2πi〈ω,xj〉Ot
j = FXt

gt (ω) +W t(ω)

with

W t(ω) :=
1√
ntβT

∑
j∈JtT

e−2πi〈ω,xj〉νtjε
t
j. (3.8)

Because of Lemma 3.9, (3.6), and (3.7), in the following, we will work with the approxi-
mation

FXt
Ot(ω) ≈ Y t(ω),

where Y t(ω) is defined below.

Definition 3.12 (Fourier Model). For t ∈ T and ω ∈ R2, we define

Y t(ω) := Ff t(ω) +W t(ω), (3.9)

with W t(ω) from (3.8).

By Lemma 2.5,

Ff t(ω) = (σα0
t )2e

−2πi
〈
ω,δ

θ0
t

〉
Ff (σα0

t R−ρφ0t
ω),

which implies

|Ff t |2 (ω) = (σα0
t )4

∣∣∣Ff (σα0
t R−ρφ0t

ω)
∣∣∣2 . (3.10)

Note that the |Ff t|2’s do not depend on the drift δθ. We aim to estimate the rotation

parameter φ and the scaling parameter α from
{
|Y t|2

}
t∈T. Then, we can calibrate the

images f t with the estimated rotation and scaling, leaving only the drift to be estimated.
Because of (3.9), the analytical Fourier-Mellin transform of |Y t|2 is

AFM|Y t|2(u, v) =

∫ ∞
0

∫ 2π

0

e−2πiuψr−ivrγ
(∣∣Y t

∣∣2 ◦ P)(r, ψ) dψ
dr

r

=

∫ ∞
0

∫ 2π

0

e−2πiuψr−ivrγ
(
|Ff t |2 ◦ P +W t ◦ P

)
(r, ψ) dψ

dr

r

= AFM|Fft |2(u, v) +AFMWt(u, v), (3.11)

where
W t(ω) :=

∣∣W t(ω)
∣∣2 + 2<

(
Ff t(ω)W t(ω)

)
. (3.12)

In the next chapter, we explain how to estimate the unknown drift, rotation, and
scaling parameters θ0, φ0, and α0.
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Chapter 4

M-estimation method

In this chapter, we describe a method for the estimation of the drift, rotation, and scaling
parameters θ0, φ0, and α0 based on M-estimation. This means that we define certain
functions (called contrast functionals) depending on the data which we minimize with
respect to the parameters θ, φ, and α.

From Lemma 2.18 and (3.10), we get

AFM|Fft|2(u, v) = du,v(1/σ
α0
t ,−ρ

φ0
t )F t(u, v), (4.1)

where

du,v(σ, ρ) := σ−ive2πiuρ, (4.2)

F t(u, v) := (σα0
t )4−γAFM|Ff |2(u, v). (4.3)

This, together with (3.11), gives the idea that (if the error terms get small)

du,v(σ
α0
t , ρ

φ0
t )AFM|Y t|2(u, v) ≈ F t(u, v).

Based on this, we define an estimator for the scaling and rotation parameters as a mini-
mizer of a certain functional.

Definition 4.1 (Contrast functionals for rotation and scaling). With suitable cutoffs
uT , vT > 0 (as specified in the Theorems of Chapter 6), we define the empirical contrast
functional (for rotation and scaling),

MT (φ, α) :=

∫ vT

−vT

∑
|u|≤uT

βT
T

∑
t∈T

∣∣∣∣∣du,v(σαt , ρφt )AFM|Y t|2(u, v)

−βT
T

∑
t′∈T

du,v(σ
α
t′ , ρ

φ
t′)AFM|Y t′ |2(u, v)

∣∣∣∣∣
2

dv

= M0
T + M̃T (φ, α),

with

M0
T :=

∫ vT

−vT

∑
|u|≤uT

βT
T

∑
t∈T

∣∣∣AFM|Y t|2(u, v)
∣∣∣2 dv,

M̃T (φ, α) := −
∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βTT ∑
t∈T

du,v(σ
α
t , ρ

φ
t )AFM|Y t|2(u, v)

∣∣∣∣∣
2

dv,
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where we used Corollary A.3 in the Appendix and |du,v(σ, ρ)| = 1. Similarly, we define
the population contrast functional (for rotation and scaling),

M(φ, α) :=

∫
R

∑
u∈Z

∫ 1

0

∣∣∣∣∣du,v(σαt /σα0
t , ρ

φ
t − ρ

φ0
t )F t(u, v)

−
∫ 1

0

du,v(σ
α
t′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ )F t′(u, v) dt′

∣∣∣∣∣
2

dt dv

= M0 + M̃(φ, α),

with

M0 :=

∫
R

∑
u∈Z

∫ 1

0

∣∣F t(u, v)
∣∣2 dt dv,

M̃(φ, α) := −
∫
R

∑
u∈Z

∣∣∣∣∫ 1

0

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v) dt

∣∣∣∣2 dv,

where we used Corollary A.3 in the Appendix and |du,v(σ, ρ)| = 1, again.

Remark 4.2. Note, that M0
T and M0 are constant in (φ, α). Minimizing MT or M is

therefore equivalent to minimizing M̃T or M̃ , respectively.

Definition 4.3. (Scaling and rotation parameter estimator) We define

(φ̂T , α̂T ) ∈ argmin(φ,α)∈A×ΦM̃T (φ, α).

Remark 4.4 (Bounds on rotation angles). We can now explain the restriction of the
rotation function to values in an interval of length π. By Lemma 2.10, the squared Fourier
magnitude |Ff |2 (and hence its analytical Fourier-Mellin transform) does not change if we

rotate f by π. Thus, allowing ρφt to assume values in an interval of length larger than π
could result in an estimated rotation angle that is shifted by π which in turn would produce
frames that are turned upside down.

In the next section, the Theorems 6.13 and 6.23 will show that, under some assump-
tions, (φ̂T , α̂T ) is a consistent estimator for (φ0, α0) and asymptotically centred normal
with rate

√
T .

The next step is to calibrate the Fourier data Y t with those estimators which leads to
the following model.

Definition 4.5 (Fourier model after rotation and scaling correction). We define

Zt
T (ω) := (σα̂Tt )−2Y t

(
1/σα̂Tt ·Rρ

φ̂T
t

ω
)

= hω

(
−1/σα̂Tt ·R−ρφ̂Tt

δθ0t

)( σα0
t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)
+ V t

T (ω), (4.4)

where
hω(δ) := e2πi〈ω,δ〉 (4.5)

and

V t
T (ω) := (σα̂Tt )−2W t

(
1/σα̂Tt ·Rρ

φ̂T
t

ω
)

=
1

√
ntβT (σα̂Tt )2

∑
j∈JtT

exp
(
−2πi

〈
1/σα̂Tt ·Rρ

φ̂T
t

ω, xj

〉)
νtjε

t
j. (4.6)
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Similar to the estimation of the rotation and scaling parameters, we minimize a certain
contrast functional to estimate the true drift parameter θ0.

Definition 4.6 (Contrast functionals for drift). For a suitable cutoff rT > 0 (to be
specified in Chapter 6), let

ΩT :=
{
ω ∈ R2 | ‖ω‖ < rT

}
(4.7)

the (open) Euclidean ball with centre 0 ∈ R2 and radius rT and define the empirical
contrast functional (for drift),

NT (θ) :=

∫
ΩT

βT
T

∑
t∈T

∣∣∣∣∣hω (1/σα̂Tt ·R−ρφ̂Tt
δθt

)
Zt
T (ω)

−βT
T

∑
t′∈T

hω

(
1/σα̂Tt′ ·R−ρφ̂T

t′
δθt′

)
Zt′(ω)

∣∣∣∣∣
2

dω

= N0
T + ÑT (θ),

with

N0
T :=

∫
ΩT

βT
T

∑
t∈T

∣∣Zt
T (ω)

∣∣2 dω,

ÑT (θ) := −
∫

ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

δθt

)
Zt
T (ω)

∣∣∣∣∣
2

dω,

where we used Corollary A.3 in the Appendix and |hω(δ)| = 1. Similarly, we define the
population contrast functional (for drift),

N(θ) :=

∫
R2

∫ 1

0

∣∣∣∣∣hω (1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t )
)
Ff (ω)

−
∫ 1

0

hω

(
1/σα0

t′ ·R−ρφ0
t′

(δθt′ − δ
θ0
t′ )
)
Ff (ω) dt′

∣∣∣∣∣
2

dt dω

= N0 + Ñ(θ),

where

N0 :=

∫
R2

|Ff (ω)|2 dω,

Ñ(θ) := −
∫
R2

|Ff (ω)|2
∣∣∣∣∫ 1

0

hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)

dt

∣∣∣∣2 dω,

where we used Corollary A.3 in the Appendix and |hω(δ)| = 1, again.

Remark 4.7. Note, that N0
T and N0 are constant in θ. Minimizing NT or N is therefore

equivalent to minimizing ÑT or Ñ , respectively.

We can now define estimators for the drift parameter θ0 and the unknown image f .

Definition 4.8. (Drift parameter estimator) We define

θ̂T := argminθ∈ΘÑT (θ).
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Definition 4.9. (Image estimator) We define the estimator for f as the inverse Fourier
transform of the calibrated Fourier data,

f̂T (xj) :=

∫
ΩT

βT
T

∑
t∈T

e2πi〈ω,xj〉hω(1/σα̂Tt ·R−ρφ̂Tt
δθ̂Tt )Zt

T (ω) dω, j ∈ {1, . . . , n} .

Theorem 6.33 in Chapter 6 will show that θ̂T and f̂T are consistent estimators for
θ0 and f , respectively. Furthermore, Theorem 6.42 will show that

(√
T (θ̂T − θ0)

)
T∈N is

uniformly tight.
We summarize the M-estimation procedure in the following algorithm.

Algorithm 4.10 (Image correction via M-estimation). Choose cutoffs rT , uT , vT > 0,
γ > 0, and parametric models for the drift function δθ, the rotation function ρφ, and the
scaling function σα.

1. Given a sequence of frames (Ot)t∈T, approximate the squared Fourier magnitudes

|Y t|2 with
∣∣FX

Ot

∣∣2, t ∈ T.

2. Compute AFMT
|Y t|2, t ∈ T.

3. Estimate (φ0, α0) with the minimizer (φ̂T , α̂T ) of M̃T (φ, α).

4. Calibrate the Fourier frames (Y t)t∈T with those estimators, to get

Zt
T (ω) := (σα̂Tt )−2Y t

(
1/σα̂Tt ·Rρ

φ̂T
t

ω
)
.

5. Estimate θ0 with the minimizer θ̂T of ÑT (θ).

6. Calibrate the (Zt
T )t∈T with those estimators.

7. Compute the image estimator f̂T as the inverse Fourier transform of the resulting
calibrated Fourier frames.

Remark 4.11. In the simulation study and the application to SMS data (Chapters 9 and
10), we will use the well-known fast Fourier transform algorithm (FFT) to compute the
Fourier transforms of the frames. Moreover, we will employ Remark 2.15 to compute the
analytical Fourier-Mellin transform via a log-polar coordinate transform of (the squared
Fourier magnitudes of) the frames and a subsequent FFT.



Chapter 5

Preliminary Computations

In this chapter, we prove some properties of the error terms W t(ω), AFMT
Wt(u, v), and

V t
T (ω). Moreover, we summarize some properties of the terms d(u,v)(σ, ρ) and hω(δ) and

compute the first and second derivatives of d(u,v)(σ
α
t , ρ

φ
t ) with respect to (φ, α) and the

derivatives of hω(δθt ) with respect to θ.

Lemma 5.1 (Properties of W t(ω)). Recall W t(ω) from (3.8).

1. The real and imaginary parts of W t(ω) are centred normal,

<
(
W t(ω)

)
∼ N

0,
1

ntβT

∑
j∈JtT

(
cos
(
2π 〈ω, xj〉

))2

(νtj)
2

 ,

=
(
W t(ω)

)
∼ N

0,
1

ntβT

∑
j∈JtT

(
sin
(
2π 〈ω, xj〉

))2

(νtj)
2

 .

2. We have E
(
|W t(ω)|2

)
= 1

ntβT

∑
j∈JtT

(νtj)
2.

3. W t(ω) and W t′(ω′) are independent unless t = t′,

4. For t ∈ [0, 1], j, j′ ∈ J tT , and ω ∈ R2, define

<tω := <
(
Ff t(ω)W t(ω)

)
, Stω :=

∣∣W t(ω)
∣∣2 , cosj,j

′

ω := cos
(
2π 〈ω, xj − xj′〉

)
.

With this, we have E(<tωStω′) = 0 and

E(<tω<tω′) =
1

n3
tβT

∑
j,j′,j′′∈JtT

cosj,j
′

ω cosj
′′,j′

ω′ f t(xtj)f
t(xtj′′)(ν

t
j′)

2,

E(StωS
t
ω′) =

1

n2
tβ

2
T

[
3
∑
j∈JtT

(νtj)
4 +

∑
j 6=j′

(
1 + 2 cosj,j

′

ω cosj,j
′

ω′

)
(νtj)

2(νtj′)
2

]
.

Proof.

1. Since they are linear combinations of independent centred Gaussian random vari-
ables

{
εtj | j ∈ J tT

}
, <
(
W t(ω)

)
and =

(
W t(ω)

)
are also centred Gaussian. Because

29
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the εtj are standard normal and independent, we get

Var
(
<
(
W t(ω)

))
=

1

ntβT

∑
j∈JtT

Var
(

cos
(
2π 〈ω, xj〉

)
νtjε

t
j

)
=

1

ntβT

∑
j∈JtT

(
cos
(
2π 〈ω, xj〉

))2

(νtj)
2,

and, similarly,

Var
(
=
(
W t(ω)

))
=

1

ntβT

∑
j∈JtT

Var
(
− sin

(
2π 〈ω, xj〉

)
νtjε

t
j

)
=

1

ntβT

∑
j∈JtT

(
sin
(
2π 〈ω, xj〉

))2

(νtj)
2,

2. This follows from

E
(∣∣W t(ω)

∣∣2) = E
(
<
(
W t(ω)

)2
)

+ E
(
=
(
W t(ω)

)2
)

= Var
(
<
(
W t(ω)

))
+ Var

(
=
(
W t(ω)

))
and the fact that cos2(x) + sin2(x) = 1 for all x ∈ R.

3. Since
{
εtj
∣∣ j ∈ J tT} and

{
εt
′

j′

∣∣ j′ ∈ J t′T } are independent for t 6= t′, so are W t(ω) and

W t′(ω′).

4. First, note that

<
(
Ff t(ω)W t(ω)

)
= <

n−3/2
t β

−1/2
T

∑
j,j′∈JtT

e−2πi〈ω,xj〉f t(xj)e
2πi〈ω,xj′〉νtj′εtj′


= n

−3/2
t β

−1/2
T

∑
j,j′∈JtT

cosj,j
′

ω f t(xj)ν
t
j′ε

t
j′ .

Since E(εtj′ε
t
j′′′) = 0 unless j′ = j′′′ and E

(
(εtj′)

2
)

= 1, it follows that

E
[
<
(
Ff t(ω)W t(ω)

)
<
(
Ff t(ω′)W t(ω′)

)]
= n−3

t β−1
T

∑
j,j′,j′′∈JtT

cosj,j
′

ω cosj
′′,j′

ω′ f t(xj)f
t(xj′′)(ν

t
j′)

2.

Furthermore, using Theorem B.3 in the Appendix,

∣∣W t(ω′)
∣∣2 =

 1√
ntβT

∑
j′′∈JtT

cos
(
2π 〈ω′, xj′′〉

)
νtj′′ε

t
j′′

2

+

 1√
ntβT

∑
j′′∈JtT

sin
(
2π 〈ω′, xj′′〉

)
νtj′′ε

t
j′′

2

=
1

ntβT

∑
j′′,j′′′∈JtT

cos
(
2π 〈ω′, xj′′〉

)
cos
(
2π 〈ω′, xj′′′〉

)
νtj′′ν

t
j′′′ε

t
j′′ε

t
j′′′

+
1

ntβT

∑
j′′,j′′′∈JtT

sin
(
2π 〈ω′, xj′′〉

)
sin
(
2π 〈ω′, xj′′′〉

)
νtj′′ν

t
j′′′ε

t
j′′ε

t
j′′′ ,
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which implies ∣∣W t(ω′)
∣∣2 =

1

ntβT

∑
j′′,j′′′∈JtT

cosj
′′,j′′′

ω′ νtj′′ν
t
j′′′ε

t
j′′ε

t
j′′′ .

Because E(εtj′ε
t
j′′ε

t
j′′′) = 0 even if j′ = j′′ = j′′′, we get

E
[
<
(
Ff t(ω)W t(ω)

) ∣∣W t(ω′)
∣∣2]

= n
−5/2
t β

−3/2
T

∑
j,j′,j′′,j′′′∈JtT

cosj,j
′

ω cosj
′′,j′′′

ω′ f t(xj)ν
t
j′ν

t
j′′ν

t
j′′′E

[
εtj′ε

t
j′′ε

t
j′′′

]
= 0.

Finally, because E
(
(εtj)

4
)

= 3,

E
(∣∣W t(ω)

∣∣2 ∣∣W t(ω′)
∣∣2)

= n−2
t β−2

T

∑
j,j′,j′′,j′′′∈JtT

cosj,j
′

ω cosj
′′,j′′′

ω′ νtjν
t
j′ν

t
j′′ν

t
j′′′E

(
εtjε

t
j′ε

t
j′′ε

t
j′′′

)
= n−2

t β−2
T

( ∑
j=j′=j′′=j′′′

+
∑

j=j′ 6=j′′=j′′′
+

∑
j=j′′ 6=j′=j′′′

+
∑

j=j′′′ 6=j′=j′′

)
(

cosj,j
′

ω cosj
′′,j′′′

ω′ νtjν
t
j′ν

t
j′′ν

t
j′′′E

(
εtjε

t
j′ε

t
j′′ε

t
j′′′

))
= n−2

t β−2
T

(∑
j∈JtT

3(νtj)
4 +

∑
j 6=j′′

(νtj)
2(νtj′′)

2 + 2
∑
j 6=j′

cosj,j
′

ω cosj,j
′

ω′ (νtj)
2(νtj′)

2

)

= n−2
t β−2

T

(
3
∑
j∈JtT

(νtj)
4 +

∑
j 6=j′

(
1 + 2 cosj,j

′

ω cosj,j
′

ω′ (νtj)
2(νtj′)

2

)
.

Assumption 5.2. There is a constant νmax ∈ (0,∞) such that νtj ≤ νmax for all t ∈ [0, 1]
and j ∈ {1, . . . , n}.

Lemma 5.3 (Properties of AFMT
Wt(u, v)). Recall W t from (3.12). Under Assumption

5.2, we have

E
[∣∣AFMT

Wt(u, v)
∣∣2] = O

(
r2γ
T

βT

)
. (5.1)

Proof. With Lemma 5.1, we get

E
[∣∣AFMT

Wt(u, v)
∣∣2]

= E

[∣∣∣∣∫ rT

0

∫ 2π

0

e−2πiuψrγ−iv
(
W t ◦ P

)
(r, ψ) dψ

dr

r

∣∣∣∣2
]

=

∫ rT

0

∫ rT

0

∫ 2π

0

∫ 2π

0

e−2πiu(ψ−ψ′)rγ−iv(r′)γ+iv

·E

[(∣∣W t
(
P(r, ψ)

)∣∣2 + 2<
((
Ff tW t

)(
P(r, ψ)

)))

·

(∣∣W t
(
P(r′, ψ′)

)∣∣2 + 2<
((
Ff tW t

)(
P(r′, ψ′)

)))]
dψ dψ′

dr

r

dr′

r′
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=

∫ rT

0

∫ rT

0

∫ 2π

0

∫ 2π

0

e−2πiu(ψ−ψ′)rγ−iv(r′)γ+iv

{
E

[ ∣∣W t
(
P(r, ψ)

)∣∣2 ∣∣W t
(
P(r′, ψ′)

))∣∣2 ]

+4E

[
<
((
Ff tW t

)(
P(r, ψ)

))
<
((
Ff tW t

)(
P(r′, ψ′)

))]}
dψ dψ′

dr

r

dr′

r′

=

∫ rT

0

∫ rT

0

∫ 2π

0

∫ 2π

0

e−2πiu(ψ−ψ′)rγ−iv(r′)γ+iv

{
1

n2
tβ

2
T

[
3
∑
j∈JtT

(νtj)
4

+
∑
j 6=j′

(
1 + 2 cos

(
2π 〈P(r, ψ), xj − xj′〉

)
cos
(

2π 〈P(r′, ψ′), xj − xj′〉
))

(νtj)
2(νtj′)

2

]

+
4

n3
tβT

∑
j,j′,j′′∈JtT

[
cos
(

2π
〈
P(r, ψ), xtj − xj′

〉)
cos
(

2π
〈
P(r′, ψ′), xtj′′ − xj′

〉)

·f t(xtj)f t(xtj′′)(νtj′)2

]}
dψ dψ′

dr

r

dr′

r′
.

In particular, because of the triangle inequality and |cos(x)| ≤ 1 for all x ∈ R,

E
[∣∣AFMT

Wt(u, v)
∣∣2]

≤
∫ rT

0

∫ rT

0

∫ 2π

0

∫ 2π

0

rγ(r′)γ

{
3ν4

max

n2
tβ

2
T

+
4

n3
tβT

∑
j,j′′∈JtT

f t(xtj)f
t(xtj′′)ν

2
max

}
dψ dψ′

dr

r

dr′

r′

= 4π2

{
3ν4

max

n2
tβ

2
T

+
4

n3
tβT

∑
j,j′′∈JtT

f t(xtj)f
t(xtj′′)ν

2
max

}(∫ rT

0

rγ−1 dr

)2

=
4π2r2γ

T

γ2

{
3ν4

max

n2
tβ

2
T

+
4

n3
tβT

∑
j,j′′∈JtT

f t(xtj)f
t(xtj′′)ν

2
max

}

≤ 4π2r2γ
T

γ2

{
3ν4

max

β2
T

+
4

βT
‖f‖∞ ν

2
max

}
= O

(
r2γ
T

βT

)
.

where we used that nt ≥ 1 and that f is bounded.

Lemma 5.4 (Asymptotic order of V t
T (ω)). Recall V t

T (ω) from (4.6). Under Assumption

5.2, for all T ∈ N, t, t′ ∈ T, and ω ∈ R2, we have E
∣∣V t
T (ω)V t′

T (ω)
∣∣ = O(1/βT ).

Proof. Since the εtj are independent standard normal random variables, we get

E
∣∣∣V t
T (ω)V t′

T (ω)
∣∣∣ = E

∣∣∣∣∣ 1
√
ntnt′βT (σα̂Tt )2(σα̂Tt′ )2

∑
j∈JtT

∑
j′∈Jt′T

exp
(
−2πi

〈
1/σα̂Tt ·Rρ

φ̂T
t

ω, xj

〉)

· exp

(
2πi

〈
1/σα̂Tt′ ·Rρ

φ̂T
t′
ω, xj′

〉)
νtjν

t′

j′ε
t
jε
t′

j′

∣∣∣∣∣
≤ 1
√
ntnt′βTσ4

min

∑
j∈JtT

∑
j′∈Jt′T

νtjν
t′

j′E
∣∣∣εtjεt′j′∣∣∣ ≤ ν2

max

βTσ4
min

= O
(

1

βT

)
.
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Lemma 5.5 (Properties of du,v(σ, ρ)). Recall from (4.2) that du,v(σ, ρ) := σ−ive2πiuρ. We
have

|du,v(σ, ρ)| ≡ 1, (5.2)

du,v(σ, ρ) = 1/du,v(σ, ρ) = du,v(1/σ,−ρ), (5.3)

du,v(1, 0) = 1, (5.4)

du,v(σ, ρ)du,v(σ
′, ρ′) = du,v(σσ

′, ρ+ ρ′). (5.5)

Proof. Define λ := log(σ). Then, du,v(σ, ρ) = ei(2πuρ−vλ). The fact that
∣∣eix
∣∣ = 1 and

eix = e−ix for all x ∈ R implies (5.2) and (5.3). The properties (5.4) and (5.5) follow
directly from the definition.

Assumption 5.6. There is a convex open neighborhood U ⊆ Φ×A of (φ0, α0) and some
C > 0 such that α 7→ σαt and φ 7→ ρφt are twice differentiable on U for all t ∈ [0, 1] and∥∥∥gradφρ

φ
t

∥∥∥ , ‖gradασ
α
t ‖ ≤ C,

∥∥∥Hessφρ
φ
t

∥∥∥
1
, ‖Hessασ

α
t ‖1 ≤ C2 uniformly in φ, α, t.

Lemma 5.7 (Derivatives of du,v(σ
α
t , ρ

φ
t )). Under Assumption 5.6, for u ∈ Z, v ∈ R,

t, t′ ∈ [0, 1], and (φ, α) ∈ U , we define

dt,t
′

u,v(φ, α) := du,v(σ
α
t /σ

α
t′/σ

α0
t , ρ

φ
t − ρ

φ
t′ − ρ

φ0
t ) ∈ C, (5.6)

at,t
′

u,v(φ, α) :=
(

2πu grad>φ (ρφt − ρ
φ
t′),−vσ

α
t′σ

α0
t /σ

α
t grad>α (σαt /σ

α
t′)
)>
∈ Rd2+d3 , (5.7)

Ht,t′

u,v(φ, α) :=

(
2πuHessφ(ρφt − ρ

φ
t′) 0

0 −vσαt′σ
α0
t /σ

α
t Hessα(σαt /σ

α
t′)

)
∈ R(d2+d3)×(d2+d3).

(5.8)

Note, that dt,0u,v(φ0, α0) = du,v(1, 0) = 1. There is a constant C̃ > 0 (independent from u,
v, t, t′, φ, and α) such that

grad(φ,α)d
t,t′

u,v(φ, α) = iat,t
′

u,v(φ, α)dt,t
′

u,v(φ, α), (5.9)

Hess(φ,α)d
t,t′

u,v(φ, α) =
(

iHt,t′

u,v(φ, α)− at,t
′

u,v(φ, α)at,t
′

u,v(φ, α)>
)
dt,t
′

u,v(φ, α), (5.10)∥∥∥at,t′u,v(φ, α)
∥∥∥ ≤ C̃ ‖(u, v)‖ , (5.11)∥∥∥grad(φ,α)d

t,t′

u,v(φ, α)
∥∥∥ ≤ C̃ ‖(u, v)‖ , (5.12)∥∥∥Hess(φ,α)d

t,t′

u,v(φ, α)
∥∥∥

1
≤ C̃ ‖(u, v)‖+ C̃2 ‖(u, v)‖2 . (5.13)

Proof. First of all,

grad(φ,α)du,v(σ
α
t /σ

α
t′/σ

α0
t , ρ

φ
t − ρ

φ
t′ − ρ

φ0
t )

= grad(φ,α) exp
(
2πiu(ρφt − ρ

φ
t′ − ρ

φ0
t )− iv log(σαt /σ

α
t′/σ

α0
t )
)

= du,v(σ
α
t /σ

α
t′/σ

α0
t , ρ

φ
t − ρ

φ
t′ − ρ

φ0
t )

·i
(

2πu grad>φ (ρφt − ρ
φ
t′),−vσ

α
t′σ

α0
t /σ

α
t grad>α (σαt /σ

α
t′)
)>

,
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which proves (5.9). It follows that

Hess(φ,α)du,v(σ
α
t /σ

α
t′/σ

α0
t , ρ

φ
t − ρ

φ
t′ − ρ

φ0
t )

= grad>(φ,α)

[
du,v(σ

α
t /σ

α
t′/σ

α0
t , ρ

φ
t − ρ

φ
t′ − ρ

φ0
t )

·i
(

2πu grad>φ (ρφt − ρ
φ
t′),−vσ

α
t′σ

α0
t /σ

α
t grad>α (σαt /σ

α
t′)
)> ]

= du,v(σ
α
t /σ

α
t′/σ

α0
t , ρ

φ
t − ρ

φ
t′ − ρ

φ0
t )

·

[
−
(

2πu grad>φ (ρφt − ρ
φ
t′),−vσ

α
t′σ

α0
t /σ

α
t grad>α (σαt /σ

α
t′)
)>

·
(

2πu grad>φ (ρφt − ρ
φ
t′),−vσ

α
t′σ

α0
t /σ

α
t grad>α (σαt /σ

α
t′)
)

+i

(
2πuHessφ(ρφt − ρ

φ
t′) 0

0 −vσαt′σ
α0
t /σ

α
t Hessα(σαt /σ

α
t′)

)]
,

proving (5.10). Now, let C̃1 := 4πCσ2
max/σ

2
min with C > 0 from Assumption 5.6. Then,∥∥∥at,t′u,v(φ, α)

∥∥∥2

≤ 4π2u2
∥∥∥gradφ(ρφt − ρ

φ
t′)
∥∥∥2

+ v2

(
σαt′σ

α0
t

σαt

)2

‖gradα(σαt /σ
α
t′)‖

2

≤ 4π2u2
(∥∥∥gradφρ

φ
t

∥∥∥+
∥∥∥gradφρ

φ
t′

∥∥∥)2

+v2

(
σα0
t

σαt σ
α
t′

)2 (
σαt′ ‖gradασ

α
t ‖+ σαt ‖gradασ

α
t′‖
)2

≤ 16π2C2u2 + 4

(
σmax

σmin

)4

C2v2 ≤ C̃2
1 ‖(u, v)‖2 ,

which implies (5.11). Hence, (5.12) holds because, by (5.9),∥∥∥grad(φ,α)d
t,t′

u,v(φ, α)
∥∥∥ =

∥∥∥at,t′u,v(φ, α)
∥∥∥ .

Furthermore, by Assumption 5.6, and because of∥∥xy>∥∥
1

= ‖x‖1 ‖y‖1 ≤ d3 ‖x‖ ‖y‖ for all x, y ∈ Rd3 ,

we have that

‖Hessα(σαt /σ
α
t′)‖1

=

∥∥∥∥grad>α

(
σαt′ gradασ

α
t − σαt gradασ

α
t′

(σαt′)
2

)∥∥∥∥
1

=
∥∥(σαt′ Hessασ

α
t + gradασ

α
t grad>ασ

α
t′ − σαt Hessασ

α
t′ − gradασ

α
t′ grad>ασ

α
t

)
(σαt′)

−2

−2(σαt′)
−3
(
σαt′ gradασ

α
t − σαt gradασ

α
t′

)
grad>ασ

α
t′

∥∥
1

≤ 2C2(σmax + 1)

σ2
min

+
4d3C

2σmax

σ3
min

≤ 8d3C
2σmax

σ3
min

.

It follows that∥∥∥Ht,t′

u,v(φ, α)
∥∥∥

1
= 2π |u|

∥∥∥Hessφ(ρφt − ρ
φ
t′)
∥∥∥

1
+ |v| σ

α
t′σ

α0
t

σαt
‖Hessα(σαt /σ

α
t′)‖1

≤ 4πC2 |u|+ 8d3C
2σ

3
max

σ4
min

|v| ≤ C̃2 ‖(u, v)‖ ,
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where C̃2 := 8πd
3/2
3 C2σ3

max/σ
4
min, which implies∥∥∥Hess(φ,α)d

t,t′

u,v(φ, α)
∥∥∥

1
≤

∥∥∥Ht,t′

u,v(φ, α)
∥∥∥

1
+ d3

∥∥∥at,t′u,v(φ, α)
∥∥∥2

≤ C̃2 ‖(u, v)‖+ d3C̃
2
1 ‖(u, v)‖2 .

Then, (5.13) holds with C̃ := max
{√

d3C̃1, C̃2

}
.

Lemma 5.8 (Properties of hω(δ)). Recall from (4.5) that hω(δ) := e2πi〈ω,δ〉. We have

|hω(δ)| ≡ 1, (5.14)

hω(δ) = 1/hω(δ) = hω(−δ), (5.15)

hω(0) = 1, (5.16)

hω(δ)hω(δ′) = hω(δ + δ′). (5.17)

Proof. The fact that
∣∣eix
∣∣ = 1 and eix = e−ix for all x ∈ R implies (5.14) and (5.15). The

properties (5.16) and (5.17) follow because e0 = 1 and exey = ex+y for all x, y ∈ C.

Assumption 5.9. There is a convex open neighborhood U ′ ⊆ Θ of θ0 and some C > 0
such that θ 7→ δθt is twice differentiable in U ′ for all t ∈ [0, 1] and, uniformly in θ and t,∥∥gradθ(δ

θ
t )1

∥∥ ,∥∥gradθ(δ
θ
t )2

∥∥ ≤ C,
∥∥Hessθ(δ

θ
t )1

∥∥
1
,
∥∥Hessθ(δ

θ
t )2

∥∥
1
≤ C2.

Lemma 5.10 (Derivatives of hω(δθt )). Under Assumption 5.9, for ω = (ω1, ω2) ∈ R2,
t, t′ ∈ [0, 1], θ ∈ U ′, and with δθt − δθt′ =

(
(δθt − δθt′)1, (δ

θ
t − δθt′)2

)
, we define

τ tT := 1/σα̂Tt ·R−ρφ̂Tt
∈ R2×2, (5.18)

ht,t
′

T,ω(θ) := hω
(
τ tT (δθt − δ

θ0
t )− τ t′T δθt′

)
∈ C, (5.19)

bt,t
′

T,ω(θ) := 2π
(
ω1 gradθ(τ

t
T δ

θ
t − τ t

′

T δ
θ
t′)1 + ω2 gradθ(τ

t
T δ

θ
t − τ t

′

T δ
θ
t′)2

)
∈ Rd1 , (5.20)

Ht,t′

T,ω(θ) := 2π
(
ω1 Hessθ(τ

t
T δ

θ
t − τ t

′

T δ
θ
t′)1 + ω2 Hessθ(τ

t
T δ

θ
t − τ t

′

T δ
θ
t′)2

)
∈ Rd1×d1 . (5.21)

Note, that ht,0T,ω(θ0) = hω(0) = 1 and that bt,0T,ω(θ)−bt
′,0
T,ω(θ) = bt,t

′

T,ω(θ). For later use, we also
define the limits (given the consistency of the rotation and scaling parameter estimators
which we will prove in Chapter 6)

τ t∞ := 1/σα0
t ·R−ρφ0t ∈ R2×2, (5.22)

bt,t
′

∞,ω(θ) := 2π
(
ω1 gradθ(τ

t
∞δ

θ
t − τ t

′

∞δ
θ
t′)1 + ω2 gradθ(τ

t
∞δ

θ
t − τ t

′

∞δ
θ
t′)2

)
∈ Rd1 , (5.23)

Ht,t′

∞,ω(θ) := 2π
(
ω1 Hessθ(τ

t
∞δ

θ
t − τ t

′

∞δ
θ
t′)1 + ω2 Hessθ(τ

t
∞δ

θ
t − τ t

′

∞δ
θ
t′)2

)
∈ Rd1×d1 . (5.24)

There is a constant C̃ > 0 (independent from T , ω, t, t′, and θ) such that

gradθh
t,t′

T,ω(θ) = ibt,t
′

T,ω(θ)ht,t
′

T,ω(θ), (5.25)

Hessθh
t,t′

ω (θ) =
(
iHt,t′

T,ω(θ)− bt,t
′

T,ω(θ)bt,t
′

T,ω(θ)>
)
ht,t

′

T,ω(θ), (5.26)∥∥∥bt,t′T,ω(θ)
∥∥∥ ≤ C̃ ‖ω‖ , (5.27)∥∥∥gradθh

t,t′

T,ω(θ)
∥∥∥ ≤ C̃ ‖ω‖ , (5.28)∥∥∥Ht,t′

T,ω(θ)
∥∥∥

1
≤ C̃ ‖ω‖ , (5.29)∥∥∥Hessθh

t,t′

T,ω(θ)
∥∥∥

1
≤ C̃ ‖ω‖+ C̃2 ‖ω‖2 . (5.30)
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Proof. First, consider

gradθhω
(
τ tT (δθt − δ

θ0
t )− τ t′T δθt′

)
= gradθ exp

(
2πi
〈
ω, τ tT (δθt − δ

θ0
t )− τ t′T δθt′

〉)
= 2πi

(
ω1 gradθ(τ

t
T δ

θ
t − τ t

′

T δ
θ
t′)1 + ω2 gradθ(τ

t
T δ

θ
t − τ t

′

T δ
θ
t′)2

)
hω
(
τ tT (δθt − δ

θ0
t )− τ t′T δθt′

)
,

proving (5.25). Hence,

Hessθhω
(
τ tT (δθt − δ

θ0
t )− τ t′T δθt′

)
= grad>θ

(
2πi
(
ω1 gradθ(τ

t
T δ

θ
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′

T δ
θ
t′)1 + ω2 gradθ(τ

t
T δ

θ
t − τ t

′

T δ
θ
t′)2

)
·hω
(
τ tT (δθt − δ

θ0
t )− τ t′T δθt′

))
= 2πhω

(
τ tT (δθt − δ

θ0
t )− τ t′T δθt′

)[
i
(
ω1 Hessθ(τ

t
T δ

θ
t − τ t

′

T δ
θ
t′)1 + ω2 Hessθ(τ

t
T δ

θ
t − τ t

′

T δ
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t′)2

)
−2π

(
ω1 gradθ(τ
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′
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θ
t′)1 + ω2 gradθ(τ
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·
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θ
t − τ t

′

T δ
θ
t′)1 + ω2 gradθ(τ

t
T δ

θ
t − τ t

′

T δ
θ
t′)2

)>]
,

which proves (5.26). We denote the components of τ tT by (τ tT )i,j, i, j ∈ {1, 2}, for which we

have |(τ tT )i,j| ≤ σ−1
min. Let C̃1 := 8π

√
d1C/σmin with C > 0 from Assumption 5.9. Then,

with Lemma 2.7,∥∥∥bt,t′T,ω(θ)
∥∥∥ ≤ 2π |ω1|

(∥∥gradθ(τ
t
T δ

θ
t )1

∥∥+
∥∥∥gradθ(τ

t′

T δ
θ
t′)1

∥∥∥)
+2π |ω2|

(∥∥gradθ(τ
t
T δ

θ
t )2

∥∥+
∥∥∥gradθ(τ

t′

T δ
θ
t′)2

∥∥∥)
≤ 2π |ω1|

(∣∣(τ tT )1,1

∣∣ ∥∥gradθ(δ
θ
t )1

∥∥+
∣∣(τ tT )1,2

∣∣ ∥∥gradθ(δ
θ
t )2

∥∥
+
∣∣∣(τ t′T )1,1

∣∣∣ ∥∥gradθ(δ
θ
t′)1

∥∥+
∣∣∣(τ t′T )1,2

∣∣∣ ∥∥gradθ(δ
θ
t′)2

∥∥)
+2π |ω2|

(∣∣(τ tT )2,1

∣∣ ∥∥gradθ(δ
θ
t )1

∥∥+
∣∣(τ tT )2,2

∣∣ ∥∥gradθ(δ
θ
t )2

∥∥
+
∣∣∣(τ t′T )2,1

∣∣∣ ∥∥gradθ(δ
θ
t′)1

∥∥+
∣∣∣(τ t′T )2,2

∣∣∣ ∥∥gradθ(δ
θ
t′)2

∥∥)
≤ C̃1 ‖ω‖ , (5.31)

from which we get (5.27). By (5.25), we have∥∥∥gradθh
t,t′

T,ω(θ)
∥∥∥ =

∥∥∥bt,t′T,ω(θ)
∥∥∥ ,

implying (5.28). Similarly to (5.31), we get that
∥∥∥Ht,t′

T,ω(θ)
∥∥∥

1
≤ C̃1 ‖ω‖, which yields

(5.29). With C̃ :=
√
d1C̃1, it follows that∥∥Hessθhω(δθt − δ

θ0
t )
∥∥

1
≤
∥∥∥Ht,t′

T,ω(θ)
∥∥∥

1
+ d1

∥∥∥bt,t′T,ω(θ)
∥∥∥2

≤ C̃ ‖ω‖+ C̃2 ‖ω‖2 .

Thus, (5.30) holds, completing the proof.



Chapter 6

Main Results

In this chapter, we prove the consistency of (φ̂T , α̂T ), θ̂T , and f̂T , as well as the asymptotic
normality of

√
T (φ̂T , α̂T ) and the uniform tightness of (θ̂T )T∈N.

6.1 Estimation of rotation and scaling

Before we start, we need another definition (see e.g., Rudin (1990, page 265)).

Definition 6.1 (Total variation). Let g : [0, 1]→ C and let

P := {{t0, . . . , tk} | k ∈ N, 0 = t0 < t1 < · · · < tk = 1}

the set of all finite partitions of [0, 1]. We define the total variation of g as

TV(g) := sup
{t0,...,tk}∈P

k−1∑
i=0

|g(ti+1)− g(ti)| .

Assumption 6.2. Under Assumption 5.6, we assume that the second partial derivatives

φ 7→ ∂2ρφt
∂φm∂φm′

, α 7→ ∂2σαt
∂αm′′∂αm′′′

,

are continuous at the true parameters φ0 and α0, respectively, for all m,m′ ∈ {1, . . . , d2}
and m′′,m′′′ ∈ {1, . . . , d3}. Furthermore, the first partial derivatives at φ0 and α0, as
functions in t, are of bounded total variation, that is, there is a C ′ > 0 such that

TV

(
t 7→ ∂ρφt

∂φm

)
< C ′, TV

(
t 7→ ∂σαt

∂αm′′

)
< C ′,

for all m ∈ {1, . . . , d2} and m′′ ∈ {1, . . . , d3}.

Definition 6.3 (Not rotation or scaling invariant). A function g : R2 → C is called not
rotation invariant if there is no ρ ∈ (0, 2π) such that g(x) = g(R−ρx) for all x ∈ R2.
Similarly, g is called not scaling invariant if there is no σ ∈ (0, 1) ∪ (1,∞) such that
g(x) = g(1/σ · x) for all x ∈ R2.

Lemma 6.4. Let g ∈ L2(R2) and γ > 0 such that
(
ω 7→ ‖ω‖γ |Fg(ω)|2

)
∈ L1(R2). The

function g is not rotation invariant if and only if there are coprime u, u′ ∈ Z \ {0} and
v ∈ R such that AFM|Fg |2(u, v) 6= 0 and AFM|Fg |2(u

′, v) 6= 0.

37
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Proof. Let ρ ∈ [0, 2π) such that g(x) = g(R−ρx) for all x ∈ R2. From Lemma 2.5, we get
that

|Fg(ω)|2 = |Fg(R−ρω)|2 for all ω ∈ R2.

Hence, by Lemma 2.18,

AFM|Fg |2(u, v) = e−2πiuρAFM|Fg |2(u, v) for all (u, v) ∈ Z× R. (6.1)

Let u, u′ ∈ Z \ {0} coprime with AFM|Fg |2(u, v) 6= 0 and AFM|Fg |2(u
′, v) 6= 0. Then,

(6.1) implies that e−2πiuρ = 1 and e−2πiu′ρ = 1 and thus, uρ ∈ Z and u′ρ ∈ Z. In particular,
ρ ∈ [0, 2π) ∩Q. Let ρ = z1/z2, where z1 ∈ Z and z2 ∈ N are coprime.

Assume that ρ 6= 0. Then, z1 6= 0 and it follows that both uz1 and u′z1 are multiples
of z2, which is a contradiction to the fact that u and u′ are coprime.

Now, assume that AFM|Fg |2(u, v) = 0 for all coprime u, u′ ∈ Z\{0} and v ∈ R. Since
for every u ∈ Z \ {0} there is a u′ ∈ Z \ {0} such that u and u′ are coprime (e.g., u′ := pu
with a prime number p that is not part of the prime decomposition of u), this means that
AFM|Fg |2(u, v) = 0 for all u 6= 0. With the inverse analytical Fourier-Mellin transform,
we get that

rγ
(
|Fg|2 ◦ P

)
(r, ψ) =

∫
R

∑
u∈Z

e2πiuψrivAFM|Fg |2(u, v) dv = 0

for all (r, ψ) ∈ [0,∞)× [0, 2π), implying that Fg = 0. Hence,

g(x) =

∫
R2

e2πi〈x,ω〉Fg(ω) dω = 0 for all x ∈ R2,

which means that g is constant and, in particular, g(x) = g(R−ρx) for all x ∈ R2 and
ρ ∈ [0, 2π)

Lemma 6.5. Let g ∈ L2(R2) and γ > 0 such that
(
ω 7→ ‖ω‖γ |Fg(ω)|2

)
∈ L1(R2). The

function g is not scaling invariant if and only if there are u ∈ Z and an open Borel set
B ⊆ R with positive Lebesgue measure such that AFM|Fg |2(u, v) 6= 0 for all v ∈ B.

Proof. Let σ ∈ (0,∞) such that g(x) = g(1/σ · x) for all x ∈ R2. Because of Lemma 2.5,
this implies that

|Fg(ω)|2 = σ4 |Fg(σω)|2 for all ω ∈ R2.

Hence, by Lemma 2.18,

AFM|Fg |2(u, v) = σ4−γ+ivAFM|Fg |2(u, v) for all (u, v) ∈ Z× R.

For AFM|Fg |2(u, v) 6= 0, this implies that σ4−γ+iv = 1. In the case of γ 6= 4, taking the
absolute value yields σ = 1. For γ = 4, it follows that

eiv log(σ) = 1. (6.2)

Since g is not scaling invariant, this holds for all v in an open Borel set B ⊆ R with
positive Lebesgue-measure. Because both Q and R \Q are dense in R, we can therefore
fix v ∈ B and choose v1, v2 ∈ B \ {v} such that

v − v1 ∈ Q, while v − v2 ∈ R \Q. (6.3)
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By (6.2), we have that

ei(v−v1) log(σ) =
eiv log(σ)

eiv1 log(σ)
= 1,

which implies (v − v1) log(σ)/2π ∈ Z. Similarly, we get (v − v2) log(σ)/2π ∈ Z. Because
of (6.3), this implies log(σ) = 0 and thus, σ = 1 for all possible values of γ.

On the other hand, if there are no u ∈ Z and no open Borel sets B ⊆ R with positive
Lebesgue-measure such that AFM|Fg |2(u, v) 6= 0 for all v ∈ B, then AFM|Fg |2 = 0 a.e.
With the inverse analytical Fourier-Mellin transform, it follows that

rγ
(
|Fg|2 ◦ P

)
(r, ψ) =

∫
R

∑
u∈Z

e2πiuψrivAFM|Fg |2(u, v) dv = 0

for all (r, ψ) ∈ [0,∞)× [0, 2π). Hence, Fg = 0, and thus

g(x) =

∫
R2

e2πi〈x,ω〉Fg(ω) dω = 0 for all x ∈ R2,

implying that g is constant and, in particular, g(x) = g(1/σ · x) for all x ∈ R2 and
σ > 0.

Assumption 6.6. Let f ∈ L2(R2) ∩H1/2(R2) not rotation or scaling invariant.

Assumption 6.7. The maps

Φ→ L1
(
[0, 1], (−π/2, π/2]

)
, φ 7→

(
ρφ : t 7→ ρφt

)
,

A→ L1
(
[0, 1], [σmin, σmax]

)
, α 7→

(
σα : t 7→ σαt

)
,

are continuous with respect to the L1-norm. Moreover, for each φ ∈ Φ and α ∈ A, the
rotation and scaling functions t 7→ ρφt and t 7→ σαt are continuous at t = 0.

Definition 6.8 (Identifiability). For some index set I, let GI = {gi : [0, 1]→ R | i ∈ I}
a set of functions. We call GI identifiable if for all i, j ∈ I, the existence of a Borel set
B ⊆ [0, 1] of Lebesgue measure equal to 1 with gi(t) = gj(t) for all t ∈ B implies i = j.

Assumption 6.9. The set of scaling functions
{
t 7→ σφt

∣∣α ∈ A
}

and the set of rotation

functions
{
t 7→ ρφt

∣∣φ ∈ Φ
}

are identifiable.

Assumption 6.10. There is an open neighborhood Uρ,σ ⊆ Φ × A of (φ0, α0) and there
are constants Lρ, Lσ > 0 such that the following local uniform Lipschitz conditions hold,

sup
t∈[0,1]

∣∣∣ρφt − ρφ0t ∣∣∣ ≤ Lρ ‖φ− φ0‖ , sup
t∈[0,1]

|σαt − σ
α0
t | ≤ Lσ ‖α− α0‖ for all (φ, α) ∈ Uρ,σ.

Assumption 6.11. There is a C > 0 such that, uniformly in φ and α,

TV(t 7→ ρφt ) + TV(t 7→ σαt ) < C.

Assumption 6.12. We have the following Sobolev-1/2 condition,∫
R

∑
u∈Z

‖(u, v)‖
∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv <∞.
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Theorem 6.13 (Consistency of rotation and scaling parameters). Suppose that the As-

sumptions 5.2, 6.6, 6.7, 6.9, 6.10, 6.11, and 6.12 hold. If we have rT , uT , vT , βT
T→∞−→ ∞,

βT = o(T ), and r2γ
T uTvTβ

−1
T

T→∞−→ 0, then the scaling and rotation estimator (φ̂T , α̂T ) from
Definition 4.3 is consistent, that is,

(φ̂T , α̂T )
T→∞−→ (φ0, α0) in probability. (6.4)

Proof. The proof follows a standard three step argument in M-estimation (e.g., (van der
Vaart, 2000; Gamboa et al., 2007; Bigot et al., 2009; Hartmann et al., 2016)). The three
steps are:

1. Show the uniqueness of the population contrast minimizer (φ0, α0) which, together
with the compactness of Φ× A, yields (B.2) in the Appendix.

2. Show the continuity of the population contrast functional.

3. Show that M̃T
T→∞−→ M̃ in probability uniformly over (φ, α), implying (B.1) in the

Appendix.

Note, that (B.3) in the Appendix holds because (φ̂T , α̂T ) is defined as a minimizer of M̃T .
Then, Theorem B.6 in the Appendix yields the desired consistency of (φ̂T , α̂T ).

Step 1: uniqueness of the contrast minimizer (φ0, α0). First, note that because
F t(u, v) = (σα0

t )4−γAFM|Ff |2(u, v), we have

M̃(φ, α) = −
∫
R

∑
u∈Z

∣∣∣∣∫ 1

0

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γAFM|Ff |2(u, v) dt

∣∣∣∣2 dv

= −
∫
R

∑
u∈Z

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 ∣∣∣∣∫ 1

0

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γ dt

∣∣∣∣2 dv

≥ −
∫
R

∑
u∈Z

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2(∫ 1

0

∣∣∣du,v(σαt /σα0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γ
∣∣∣ dt

)2

dv

= −
∫
R

∑
u∈Z

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2(∫ 1

0

(σα0
t )4−γ dt

)2

dv

for all (φ, α) with equality if (φ, α) = (φ0, α0). Let (φ, α) ∈ Φ× A such that

M̃(φ, α) = −
∫
R

∑
u∈Z

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2(∫ 1

0

(σα0
t )4−γ dt

)2

dv. (6.5)

Since f is not rotation or scaling invariant by Assumption 6.6, by Lemma 6.4, there is
are coprime u, u′ ∈ Z \ {0} and an open Borel set B ⊆ R with positive Lebesgue-measure
such that AFM|Ff |2(u, v) 6= 0 and AFM|Ff |2(u

′, v) 6= 0 for all v ∈ B. Then, for (6.5)

to hold, we must have∣∣∣∣∫ 1

0

du′′,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γ dt

∣∣∣∣ =

∫ 1

0

(σα0
t )4−γ dt

for all (u′′, v) ∈ {u, u′}×B. By Lemma A.11 in the Appendix, t 7→ du′′,v(σ
α
t /σ

α0
t , ρ

φ
t −ρ

φ0
t )

is constant a.e. on [0, 1]. Because of the identifiability constraint (σα0 , ρ
φ
0) = (1, 0) for all
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(φ, α) and the continuity of σα and ρφ at t = 0 (Assumption 6.7), this constant has to be
1 which implies that

1 = du′′,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t ) = exp

(
−iv
(
log(σαt )− log(σα0

t )
)

+ 2πiu′′
(
ρφt − ρ

φ0
t

))
(6.6)

a.e. on [0, 1] for all (u′′, v) ∈ {u, u′} ×B. Choose v1, v2 ∈ B \ {v} such that

v − v1 ∈ Q, v − v2 ∈ R \Q. (6.7)

From (6.6),

exp
(
−i(v − v1)

(
log(σαt )− log(σα0

t )
))

=
du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )

du,v1(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )

= 1,

and similarly, exp
(
−i(v − v2)

(
log(σαt )− log(σα0

t )
))

= 1, which implies that

(v − v1)
(
log(σαt )− log(σα0

t )
)
/(2π) ∈ Z,

(v − v2)
(
log(σαt )− log(σα0

t )
)
/(2π) ∈ Z.

Because of (6.7), this means that log(σαt )− log(σα0
t ) = 0 a.e. on [0, 1]. Since the logarithm

is bijective and the scaling functions are identifiable (Assumption 6.9), we get α = α0.
Because of (6.6), it follows that

exp
(

2πiu
(
ρφt − ρ

φ0
t

))
= 1, exp

(
2πiu′

(
ρφt − ρ

φ0
t

))
= 1, a.e. on [0, 1],

which means that u(ρφt − ρφ0t ) ∈ Z and u′(ρφt − ρφ0t ) ∈ Z a.e. on [0, 1]. In particular,
ρφt −ρ

φ0
t ∈ Q. Since t 7→ ρφt −ρ

φ0
t is continuous at t = 0 with value 0 (Assumption 6.7), we

can choose t > 0 small such that |ρφt − ρ
φ0
t | < 1. Let z1 ∈ Z and z2 ∈ N>1 coprime such

that ρφt − ρ
φ0
t = z1/z2. Then, uz1 and u′z1 are both multiples of z2, which contradicts the

fact that u and u′ are coprime unless z1 = 0. Thus, ρφt = ρφ0t and the identifiability of the
rotation functions (Assumption 6.9) yields φ = φ0.

Step 2: Continuity of M̃ . By Assumption 6.7, the functions t 7→ σαt and t 7→ ραt are
measurable for all α ∈ A, φ ∈ Φ. Therefore, the functions

t 7→ du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v) = du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γAFM|Ff |2(u, v)

are measurable, too, for all u ∈ Z, v ∈ R, α ∈ A, φ ∈ Φ, as they are concatena-
tions of measurable functions. By the same Assumption, the functions α 7→ σαt and
φ 7→ ρφt are continuous for all t ∈ [0, 1]. As a concatenation of continuous functions,
(φ, α) 7→ du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v) is also continuous for all u ∈ Z, v ∈ R, t ∈ [0, 1].

Furthermore, the constant function

t 7→ g̃u,v := max
{
σ4−γ

max, σ
4−γ
min

}
AFM|Ff |2(u, v)

is an integrable majorant for t 7→ du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρφ0t )F t(u, v). Thus, we can apply

Theorem B.1 in the Appendix to get that

(φ, α) 7→
∫ 1

0

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v) dt
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is continuous for all u ∈ Z, v ∈ R. Because x 7→ |x|2 is continuous, so is

(φ, α) 7→ gα,φu,v :=

∣∣∣∣∫ 1

0

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v) dt

∣∣∣∣2 .
By Assumption 6.6 and Lemma A.13 in the Appendix, AFM|Ff |2 : Z × R → C is con-

tinuous. Since (u, v) 7→ du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρφ0t ) is continuous, too, we get at once that

(u, v) 7→ du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρφ0t )F t(u, v) is continuous. Hence, by the same chain of ar-

guments as above, the function (u, v) 7→ gα,φu,v is continuous and therefore Lebesgue-

measurable for all α ∈ A, φ ∈ Φ. Since gα,φu,v ≤ |g̃u,v|
2 for all α ∈ A, φ ∈ Φ, and, by

Assumption 6.12,∫
R

∑
u∈Z

|g̃u,v|2 dv = max
{
σ8−2γ

max , σ
8−2γ
min

}∫
R

∑
u∈Z

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv <∞,

(u, v) 7→ |g̃u,v|2 is an integrable majorant for (u, v) 7→ gtu,v(φ, α). Applying Theorem B.1

in the Appendix again yields the continuity of M̃ .

Step 3: M̃T
T→∞−→ M̃ in probability uniformly in (φ, α). From (3.11) and (4.1), we

get

AFM|Y t|2(u, v) = du,v(1/σ
α0
t ,−ρ

φ0
t )F t(u, v) +AFMWt(u, v). (6.8)

Hence,

M̃T (φ, α) = −
∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βTT ∑
t∈T

du,v(σ
α
t , ρ

φ
t )AFM|Y t|2(u, v)

∣∣∣∣∣
2

dv

= −
∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βTT ∑
t∈T

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v)

+du,v(σ
α
t , ρ

φ
t )AFMWt(u, v)

∣∣∣∣∣
2

dv

= AT (φ, α) +BT (φ, α) + CT (φ, α), (6.9)

with

AT (φ, α) := −
∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βTT ∑
t∈T

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v)

∣∣∣∣∣
2

dv,

BT (φ, α) := −
∫ vT

−vT

∑
|u|≤uT

2<

[(
βT
T

∑
t∈T

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v)

)

·

(
βT
T

∑
t′∈T

du,v(σαt′ , ρ
φ
t′)AFMWt′ (u, v)

)]
dv,

CT (φ, α) := −
∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βTT ∑
t∈T

du,v(σ
α
t , ρ

φ
t )AFMWt(u, v)

∣∣∣∣∣
2

dv,
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where we used Lemma A.1 in the Appendix. To derive the desired uniform convergence

we will show that the deterministic part AT
T→∞−→ M̃ uniformly in (φ, α) while the random

part BT + CT
T→∞−→ 0 in probability uniformly in (φ, α). To keep the notation short, in

the following, we will write

ctu,v(φ, α) := du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γ. (6.10)

Consider∣∣∣AT (φ, α)− M̃(φ, α)
∣∣∣

=

∣∣∣∣∣
∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βTT ∑
t∈T

du,v

(
σαt
σα0
t

, ρφt − ρ
φ0
t

)
F t(u, v)

∣∣∣∣∣
2

−
∣∣∣∣∫ 1

0

du,v

(
σαt
σα0
t

, ρφt − ρ
φ0
t

)
F t(u, v) dt

∣∣∣∣2 dv

−

∫ −vT
−∞

∑
|u|≤uT

+

∫ ∞
vT

∑
|u|≤uT

+

∫
R

∑
|u|>uT

∣∣∣∣∫ 1

0

du,v

(
σαt
σα0
t

, ρφt − ρ
φ0
t

)
F t(u, v) dt

∣∣∣∣2 dv

∣∣∣∣∣
=

∣∣∣∣∣
∫ vT

−vT

∑
|u|≤uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2
(∣∣∣∣∣βTT ∑

t∈T

ctu,v(φ, α)

∣∣∣∣∣
2

−
∣∣∣∣∫ 1

0

ctu,v(φ, α) dt

∣∣∣∣2
)

dv

−

∫ −vT
−∞

∑
|u|≤uT

+

∫ ∞
vT

∑
|u|≤uT

+

∫
R

∑
|u|>uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 ∣∣∣∣∫ 1

0

ctu,v(φ, α) dt

∣∣∣∣2 dv

∣∣∣∣∣
≤

∫ vT

−vT

∑
|u|≤uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2
∣∣∣∣∣
∣∣∣∣∣βTT ∑

t∈T

ctu,v(φ, α)

∣∣∣∣∣
2

−
∣∣∣∣∫ 1

0

ctu,v(φ, α) dt

∣∣∣∣2
∣∣∣∣∣ dv

+

∫ −vT
−∞

∑
|u|≤uT

+

∫ ∞
vT

∑
|u|≤uT

+

∫
R

∑
|u|>uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 ∫ 1

0

∣∣ctu,v(φ, α)
∣∣2 dt dv

≤ 2Cγ

∫ vT

−vT

∑
|u|≤uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2
∣∣∣∣∣βTT ∑

t∈T

ctu,v(φ, α)−
∫ 1

0

ctu,v(φ, α) dt

∣∣∣∣∣ dv

+Cγ

∫ −vT
−∞

∑
|u|≤uT

+

∫ ∞
vT

∑
|u|≤uT

+

∫
R

∑
|u|>uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv

≤ 2CγβT
T

∫ vT

−vT

∑
|u|≤uT

TV
(
t 7→ ctu,v(φ, α)

) ∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv

+Cγ

∫ −vT
−∞

∑
|u|≤uT

+

∫ ∞
vT

∑
|u|≤uT

+

∫
R

∑
|u|>uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv, (6.11)

where we used Lemma A.4 in the Appendix for the second inequality with

Cγ := max
{
σ−8+2γ

min , σ8−2γ
max

}
(6.12)

and Lemma A.6 in the Appendix for the last inequality. Because∫
R

∑
u∈Z

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv <∞ (6.13)
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by Assumption 6.12, and because uT , vT
T→∞−→ ∞, the second term in (6.11) vanishes for

T →∞. To tackle the first term, we show that

sup
(φ,α)∈Φ×A

TV
(
t 7→ ctu,v(φ, α)

)
≤ C4 ‖(v, u)‖+ C3, (6.14)

with some constants C3, C4 > 0. First of all, σα : t 7→ σαt and ρφ : t 7→ ρφt are of bounded
variation uniformly in α ∈ A, φ ∈ Φ, by Assumption 6.11. By Lemma A.10 in the
Appendix, x 7→ x4−γ is Lipschitz-continuous on [σmin, σmax] with Lipschitz-constant in
the set

{
(4− γ)σ3−γ

max, (4− γ)σ−3+γ
min , 0, (−4 + γ)σ−3+γ

min

}
(for γ < 3, 3 < γ < 4, γ = 4, and

4 < γ, respectively). Furthermore, the logarithm, restricted to the interval [σmin, σmax], is
differentiable with derivative bounded by log′(σmin) = 1/σmin. Hence, by Lemma A.10 in
the Appendix, log|[σmin,σmax] is Lipschitz-continuous with Lipschitz-constant 1/σmin. Since
t 7→ σαt is of bounded variation uniformly in α ∈ A, so is t 7→ log(σαt ). This and Lemma
A.9 in the Appendix imply that there are C1, C2, C3 > 0 such that

TV
(
log(σα)− log(σα0)

)
≤ C1, TV

(
ρφ − ρφ0

)
≤ C2, TV

(
(σα0)4−γ) ≤ C3, (6.15)

uniformly in (φ, α). Since ‖x‖ ≤ ‖x‖1 for all x ∈ R2, we have for all t, t′ ∈ [0, 1], that∣∣∣ exp
(

i
〈(
−v, 2πu

)
,
(
log(σαt )− log(σα0

t ), ρφt − ρ
φ0
t

)〉)
− exp

(
i
〈(
−v, 2πu

)
,
(
log(σαt′)− log(σα0

t′ ), ρφt′ − ρ
φ0
t′

)〉)∣∣∣
≤
√

2
∥∥(2πu,−v)∥∥ ∥∥∥(log(σαt )− log(σα0

t ), ρφt − ρ
φ0
t

)
−
(
log(σαt′)− log(σα0

t′ ), ρφt′ − ρ
φ0
t′

)∥∥∥
1

≤ 2π
√

2 ‖(u, v)‖
( ∣∣(log(σαt )− log(σα0

t )
)
−
(
log(σαt′)− log(σα0

t′ )
)∣∣

+
∣∣∣(ρφt − ρφ0t )− (ρφt′ − ρφ0t′ )∣∣∣ ),

where we applied Lemma A.8 in the Appendix for the first inequality. Hence,

TV
(
t 7→ du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )
)

= TV

(
t 7→ exp

(
i
〈(
−v, 2πu

)
,
(
log(σαt )− log(σα0

t ), ρφt − ρ
φ0
t

)〉))
≤ 2π

√
2(C2

1 + C2
2) ‖(u, v)‖ .

Now, the second part of Lemma A.5 in the Appendix yields

TV
(
t 7→ ctu,v(φ, α)

)
≤

∥∥t 7→ (σα0
t )4−γ∥∥

∞TV
(
t 7→ du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )
)

+
∥∥∥t 7→ du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )
∥∥∥
∞

TV
(
t 7→ (σα0

t )4−γ)
≤ C4 ‖(u, v)‖+ C3,

uniformly in (φ, α), where C4 := 2π
√

2Cγ(C
2
1 + C2

2) with Cγ from (6.12), proving (6.14).
From (6.11) and (6.14), we get∣∣∣AT (φ, α)− M̃(φ, α)

∣∣∣
≤ 2CγβT

T

∫ vT

−vT

∑
|u|≤uT

(
C4 ‖(u, v)‖+ C3

) ∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv + o(1)

≤ 2CγC5βT
T

+ o(1) = o(1),
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where the integral is bounded by some constant C5 > 0 because of Assumption 6.12.
Since Cγ and C5 do not depend on (φ, α),

AT
T→∞−→ M̃ uniformly in (φ, α). (6.16)

Next, we show that ECT
T→∞−→ 0 uniformly in (φ, α) which implies uniform convergence

CT
T→∞−→ 0 in probability due to the Markov inequality (Theorem B.10 in the Appendix).

With the Cauchy-Schwarz inequality and Lemma 5.3, we get that

0 ≥ inf
(φ,α)∈Φ×A

ECT (φ, α)

= inf
(φ,α)∈Φ×A

E

−∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βTT ∑
t∈T

du,v(σ
α
t , ρ

φ
t )AFMT

Wt(u, v)

∣∣∣∣∣
2

dv


≥ inf

(φ,α)∈Φ×A
E

−∫ vT

−vT

∑
|u|≤uT

(
βT
T

∑
t′∈T

∣∣∣du,v(σαt′ , ρφt′)∣∣∣2
)(

βT
T

∑
t∈T

∣∣AFMT
Wt(u, v)

∣∣2) dv


= −

∫ vT

−vT

∑
|u|≤uT

βT
T

∑
t∈T

E
(∣∣AFMT

Wt(u, v)
∣∣2) dv

≥ −
∫ vT

−vT

∑
|u|≤uT

βT
T

∑
t∈T

O
(
r2γ
T

βT

)
dv = O

(
r2γ
T uTvT
βT

)
.

Since r2γ
T uTvTβ

−1
T

T→∞−→ 0, ECT (φ, α)
T→∞−→ 0 uniformly in (φ, α), and thus

CT (φ, α)
T→∞−→ 0 in probability uniformly in (φ, α). (6.17)

Finally, the Cauchy-Schwarz inequality implies that(
BT (φ, α)

)2 ≤ 4AT (φ, α)CT (φ, α)
T→∞−→ 0 in probability uniformly in (φ, α). (6.18)

From (6.16), (6.17), (6.18), and Slutzky’s Lemma (Theorem B.9 in the Appendix), we
conclude that

M̃T (φ, α) = AT (φ, α) + oP(1)
T→∞−→ M̃(φ, α)

in probability uniformly in (φ, α).

Assumption 6.14. For each j ∈ {1, . . . , n}, there is a function ν̄j : [0, 1] → (0, νmax]
which is integrable such that

(νtj)
2 =

1

ntβT

βT−1∑
i=1

IJ̃t+i/T (j)(ν̃
t+i/T
j )2 T→∞−→

(
ν̄j(t)

)2
uniformly in t ∈ [0, 1].

Definition 6.15. Let

Gt′

j := <

[∫ 1

0

(σα0
t )4−γ

∫
R

∑
u∈Z

AFM|Ff |2(u, v)Qt
j(u, v)grad(φ,α)du,v(1/σ

α0

t′ ,−ρ
φ0
t′ ) dv dt

]
where Qt

j(u, v) := AFMqtj
(u, v) with qtj(ω) := <

(
e2πi〈ω,xj〉Ff t(ω)

)
. We define

Σ := 16

∫ 1

0

1

nt′

∑
j∈Jt′

(νt
′

j )2Gt′

j (Gt′

j )> dt′. (6.19)
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Remark 6.16. Note, that Qt
j(u, v) is well defined because ω 7→ e2πi〈ω,xj〉 is continuous for

all xj and thus Lebesgue-measurable,
∣∣qtj(ω)

∣∣ ≤ |Ff t(ω)|, and Ff t is integrable.

Theorem 6.17 (Central limit theorem for grad(φ,α)MT (φ0, α0)). Under the Assump-

tions 5.6, 6.12, and 6.14, if T, uT , vT , rT , βT → ∞ such that
√
Tr2+γ

T β−1
T

T→∞−→ 0 and√
TuTvT ‖(uT , vT )‖ r2γ

T β
−1
T

T→∞−→ 0, we have that

√
Tgrad(φ,α)MT (φ0, α0)

T→∞−→ N (0,Σ) in distribution,

with covariance matrix Σ from (6.19).

Proof. We will use the decomposition M̃T = AT + BT + CT from (6.9) and show that√
Tgrad(φ,α)AT (φ0, α0) = 0,

√
Tgrad(φ,α)CT (φ0, α0)

T→∞−→ 0 in probability, and

√
Tgrad(φ,α)BT (φ0, α0)

T→∞−→ N (0,Σ) in distribution.

First, consider the gradient of the integrand of AT . By Lemma A.14 in the Appendix
and Lemma 5.7, we get

grad(φ,α)

(
−
∑
t,t′∈T

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v)du,v(σαt′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ )F t′(u, v)

)
= −2

∑
t,t′∈T

<
(

grad(φ,α)du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v)du,v(σαt′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ )F t′(u, v)

)
= 2

∑
t,t′∈T

(
2πu (gradφρ

φ
t )>,−vσα0

t /σ
α
t (gradασ

α
t )>
)>

·=
(
du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )du,v(σαt′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ )F t(u, v)F t′(u, v)

)
. (6.20)

Because of du,v(σ
α0
t /σ

α0
t , ρ

φ0
t − ρ

φ0
t ) = du,v(1, 0) = 1 and

=
(
F t(u, v)F t′(u, v)

)
= (σα0

t )4−γ(σα0

t′ )4−γ=

(∣∣∣∣AFMT

|Ff |2(u, v)

∣∣∣∣2
)

= 0,

(6.20) vanishes for (φ, α) = (φ0, α0), implying that

√
Tgrad(φ,α)AT (φ0, α0) = 0. (6.21)

Next, we consider the asymptotic behaviour of
√
Tgrad(φ,α)CT (φ0, α0). By Lemma

A.14 in the Appendix and (5.9), we get

grad(φ,α)

(
−
∑
t,t′∈T

du,v(σ
α
t , ρ

φ
t )AFMWt(u, v)du,v(σαt′ , ρ

φ
t′)AFMWt′ (u, v)

)
= −2

∑
t,t′∈T

<
(

grad(φ,α)du,v(σ
α
t , ρ

φ
t )AFMWt(u, v)du,v(σαt′ , ρ

φ
t′)AFMWt′ (u, v)

)
= 2

∑
t∈T

∑
t′∈T\{t}

(
2πu(gradφρ

φ
t )>,−v/σαt · (gradασ

α
t )>
)>

·=
(
du,v(σ

α
t , ρ

φ
t )AFMWt(u, v)du,v(σαt′ , ρ

φ
t′)AFMWt′ (u, v)

)
,
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where the terms with t′ = t vanish due to

=
(∣∣∣du,v(σαt , ρφt )AFMWt(u, v)

∣∣∣2) = 0.

With Lemma 5.7, it follows that

E
∥∥∥√Tgrad(φ,α)CT (φ0, α0)

∥∥∥
= E

∥∥∥∥∥√T
∫ vT

−vT

∑
|u|≤uT

2β2
T

T 2

∑
t∈T

∑
t′∈T\{t}

(
2πu(gradφρ

φ
t )>,−v/σαt · (gradασ

α
t )>
)>

·=
(
du,v(σ

α
t , ρ

φ
t )AFMWt(u, v)du,v(σαt′ , ρ

φ
t′)AFMWt′ (u, v)

)
dv

∥∥∥∥∥
≤ 2C̃

√
T

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖ β
2
T

T 2

∑
t∈T

∑
t′∈T\{t}

E |AFMWt(u, v)|E |AFMWt′ (u, v)| dv

≤ 2C̃
√
T

∫ vT

−vT

∑
|u|≤uT

‖(uT , vT )‖ β
2
T

T 2

∑
t∈T

∑
t′∈T\{t}

O
(
r2γ
T

βT

)
dv

= O

(√
TuTvT ‖(uT , vT )‖ r2γ

T

βT

)
,

where we used that, due to Lemma 5.3,

E |AFMWt(u, v)| ≤
√

E
(
|AFMWt(u, v)|2

)
= O

(
rγT√
βT

)
.

Since
√
TuTvT ‖(uT , vT )‖ r2γ

T /βT
T→∞−→ 0, we have

√
Tgrad(φ,α)CT (φ0, α0)

T→∞−→ 0 in probability. (6.22)

Finally, we tackle
√
Tgrad(φ,α)BT (φ0, α0). We write BT = B

(1)
T +B

(2)
T with

B
(1)
T (φ, α) := −

∫ vT

−vT

∑
|u|≤uT

2<

[(
βT
T

∑
t∈T

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v)

)

·

(
βT
T

∑
t′∈T

du,v(1/σ
α
t′ ,−ρ

φ
t′)AFM|W t′|2(u, v)

)]
dv,

B
(2)
T (φ, α) := −

∫ vT

−vT

∑
|u|≤uT

2<

[(
βT
T

∑
t∈T

du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )F t(u, v)

)

·

(
βT
T

∑
t′∈T

du,v(1/σ
α
t′ ,−ρ

φ
t′)AFM2<

(
F
ft
′W t′

)(u, v)

)]
dv.

With Lemma 5.1, we have

E
∣∣∣AFMT

|W t|2(u, v)
∣∣∣ ≤ ∫

ΩT

‖ω‖γ E
(∣∣W t(ω)

∣∣2) dω

=

∫
ΩT

‖ω‖γ 1

ntβT

∑
j∈JtT

(νtj)
2 dω ≤ πν2

maxr
2+γ
T

βT
,
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because 1/nt ≤ 1. Hence, with Lemma 5.7,

E
∥∥∥√Tgradφ,αB

(1)
T (φ0, α0)

∥∥∥
= E

∥∥∥∥∥2
√
T

∫ vT

−vT

∑
|u|≤uT

βT
T

∑
t∈T

βT
T

∑
t′∈T

·<

[
grad(φ,α)du,v(σ

α
t /σ

α
t′/σ

α0
t , ρ

φ
t − ρ

φ
t′ − ρ

φ0
t )F t(u, v)AFM|W t′|2(u, v)

]
dv

∥∥∥∥∥
≤ 2C̃

√
T
βT
T

∑
t∈T

βT
T

∑
t′∈T

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖
∣∣F t(u, v)

∣∣E ∣∣∣∣AFM|W t′ |2(u, v)

∣∣∣∣ dv

≤ 2πC̃ν2
max max

{
σ4−γ

max, σ
4−γ
min

} √Tr2+γ
T

βT

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖
∣∣∣∣AFMT

|Ff |2(u, v)

∣∣∣∣ dv

= O

(√
Tr2+γ

T

βT

)
,

due to Assumption 6.12. Since
√
Tr2+γ

T /βT
T→∞−→ 0, we get

√
Tgradφ,αB

(1)
T (φ0, α0)

T→∞−→ 0 in probability. (6.23)

It remains to show the asymptotic normality of
√
Tgradφ,αB

(2)
T (φ0, α0). We have

AFMT
2<(FftW t)(u, v)

= 2

∫ rT

0

∫ 2π

0

e−2πiuψr−ivrγ
(
<
(
Ff tW t
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◦ P
)

(r, ψ) dψ
dr

r

= 2
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0
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0
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)
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 1√
ntβT
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=
2√
ntβT
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j
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0
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(
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]
dψ

dr

r

=
2√
ntβT

∑
j∈JtT

AFMT
qtj

(u, v)νtjε
t
j,

with qtj(ω) := <
(
e2πi〈ω,xj〉Ff t(ω)

)
as in Definition 6.15. Hence,

B
(2)
T (φ, α) = −2βT
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It follows that

B
(2)
T (φ, α) = −4

√
βT
T

∑
t′∈T

1
√
nt′

∑
j∈Jt′T

νt
′

j ε
t′

j <

[
βT
T

∑
t∈T

∫ vT

−vT

∑
|u|≤uT

·du,v(σαt /σαt′/σ
α0
t , ρ

φ
t − ρ

φ
t′ − ρ

φ0
t )F t(u, v)AFMT

qt
′
j

(u, v) dv

]
. (6.24)

Now, let ξ ∈ Rd2+d3 . From (5.9) and (6.24), we get for (φ, α) = (φ0, α0) that〈
ξ,
√
Tgrad(φ,α)B

(2)
T (φ0, α0)

〉
= −4

√
βT
T

∑
t′∈T

1
√
nt′

∑
j∈Jt′T

νt
′

j ε
t′

j <

[
βT
T

∑
t∈T

∫ vT

−vT

∑
|u|≤uT

·
〈
ξ, grad(φ,α)du,v(1/σ

α0

t′ ,−ρ
φ0
t′ )
〉
F t(u, v)AFMT

qt
′
j

(u, v) dv

]

is a linear combination of independent standard-normal random variables εt
′
j and therefore

a centred Gaussian random variable with variance

16βT
T

∑
t′∈T

1

nt′

∑
j∈Jt′T

(νt
′

j )2<

[
βT
T

∑
t∈T

∫ vT

−vT

∑
|u|≤uT

F t(u, v)AFMT
qt
′
j

(u, v)

·
〈
ξ, grad(φ,α)du,v(1/σ

α0

t′ ,−ρ
φ0
t′ )
〉

dv

]2

T→∞−→ 16

∫ 1

0

1

nt′

∑
j∈Jt′T

(νt
′

j )2<

[∫ 1

0

(σα0
t )4−γ

∫
R

∑
u∈Z

AFM|Ff |2(u, v)AFMqt
′
j

(u, v)

·
〈
ξ, grad(φ,α)du,v(1/σ

α0

t′ ,−ρ
φ0
t′ )
〉

dv dt

]2

dt′ = ξ>Σξ, (6.25)

with Σ from (6.19). By Corollary B.5 in the Appendix and Lemma A.16 in the Appendix,

√
Tgrad(φ,α)B

(2)
T (φ0, α0)

T→∞−→ N (0,Σ) in distribution. (6.26)

From (6.21), (6.22), (6.23), (6.26), and Slutzky’s Lemma (Theorem B.9 in the Appendix),
we deduce

√
Tgrad(φ,α)M̃T (φ0, α0) =

√
Tgrad(φ,α)B

(2)
T (φ0, α0) + oP(1)

T→∞−→ N (0,Σ)

in distribution, completing the proof.

Assumption 6.18. For all m ∈ {1, . . . , d2} and m′ ∈ {1, . . . , d3}, there are Borel sets
Bm, Bm′ ⊆ [0, 1], each of positive Lebesgue-measure, such that the functions

Bm → R, t 7→ ∂ρφt
∂φm

∣∣∣∣
φ=φ0

, and Bm′ → R, t 7→ ∂σαt
∂αm′

∣∣∣∣
α=α0

,

are not constant.
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Example 6.19 (Polynomial rotation and scaling). Suppose that we have polynomial ro-
tation and scaling models, that is,

ρφ̃t =

d2∑
m=0

φmt
m, σα̃t = 1 +

d3∑
m′=0

αm′t
m′ ,

where φ̃ = (φ0, . . . , φd2), α̃ = (α0, . . . , αd3). In this case, Assumption 6.18 is an implica-

tion of the identifiability constraints ρφ̃0 = 0 for all φ̃ ∈ Φ and σα̃0 = 1 for all α̃ ∈ A from
Assumption 3.3, since those mean that the intercepts φ0 and α0 are zero. Hence, we have

ρφt =

d2∑
m=1

φmt
m, σαt = 1 +

d3∑
m′=1

αm′t
m′ ,

with φ = (φ1, . . . , φd2), α = (α1, . . . , αd3). Since ∂ρφt /∂φm = tm and ∂σαt /∂αm′ = tm
′

are
not constant in t for all m,m′ ≥ 1, Assumption 6.18 holds.

Lemma 6.20. Under the Assumptions 5.6 and 6.12, Hess(φ,α)M̃(φ, α) has finite operator
norm for all (φ, α) ∈ U with U ⊆ Φ× A from Assumption 5.6. Furthermore, the matrix

HM := Hess(φ,α)M̃(φ0, α0) (6.27)

is symmetric. If the Assumptions 6.6 and 6.18 hold, HM is also positive definite and
hence invertible.

Proof. By Lemma 5.7, Lemma A.15, and Theorem B.2 in the Appendix,

Hess(φ,α)M̃(φ, α)

= −
∫
R

∑
u∈Z
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0
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0
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dv
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α
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φ
t′ − ρ
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t′ )

)
dt dt′ dv

= −2

∫
R

∑
u∈Z

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 ∫ 1

0

∫ 1

0

(σα0
t σ

α0
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·<

(
du,v(σ

α
t /σ
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t , ρ

φ
t − ρ

φ0
t )du,v(σαt′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ )

·
[
iHt,0

u,v(φ, α)− at,0u,v(φ, α)
(
at,0u,v(φ, α)− at

′,0
u,v (φ, α)

)>])
dt dt′ dv. (6.28)
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Let ξ ∈ Rd2+d3 with ‖ξ‖ = 1. By Assumption 6.12, we have∥∥∥Hess(φ,α)M̃(φ, α)ξ
∥∥∥

≤ 2

∫
R

∑
u∈Z

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 ∫ 1

0

∫ 1

0

(σα0
t σ

α0

t′ )4−γ

·
[∥∥Ht,0

u,v(φ, α)ξ
∥∥+

∥∥∥at,0u,v(φ, α)
(
at,0u,v(φ, α)− at

′,0
u,v (φ, α)

)>
ξ
∥∥∥] dv

≤ 2 max {σmax, σmin}4−γ
∫
R

∑
u∈Z

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 [C̃ ‖(u, v)‖+ 2C̃2 ‖(u, v)‖2
]

dv

< ∞,

with C̃ > 0 from Lemma 5.7. Hence, Hess(φ,α)M̃(φ, α) has finite operator norm. From
(6.28), we get for (φ, α) = (φ0, α0) that

HM = Hess(φ,α)M̃(φ0, α0)

= 2

∫
R

∑
u∈Z

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2
[∫ 1

0

∫ 1

0

(σα0
t σ

α0

t′ )4−γat,0u,v(φ0, α0)at,0u,v(φ0, α0)> dt dt′

−
(∫ 1

0

(σα0
t )4−γat,0u,v(φ0, α0) dt

)(∫ 1

0

(σα0

t′ )4−γat
′,0
u,v (φ0, α0) dt

)> ]
dv. (6.29)

Since matrices of the form xx> with x ∈ Rd2+d3 are always symmetric, it follows that HM

is symmetric.

Now, let ξ(2) ∈ Rd2 and ξ(3) ∈ Rd3 such that ξ :=
(
(ξ(2))>, (ξ(3))>

)> 6= 0. By Assump-
tion 6.6 and Lemma 6.4, there are u ∈ Z\{0} and an open Borel set B ⊆ R with positive
Lebesgue-measure such that AFM|Ff |2(u, v) 6= 0 for all v ∈ B. If Assumption 6.18 holds,

there is another Borel set B′ ⊆ [0, 1] with positive Lebesgue-measure such that

B′ → R, t 7→
〈
ξ, at,0u,v(φ0, α0)

〉
= 2πu

d2∑
m=1

ξ(2)
m

∂ρφt
∂φm

∣∣∣∣
φ=φ0

− v
d3∑

m′=1

ξ
(3)
m′

∂σαt
∂αm′

∣∣∣∣
α=α0

is not constant for all v ∈ R \ V 0 with some Lebesgue null-set V 0 ⊆ R. From the
Cauchy-Schwarz inequality, we have that(∫ 1

0

g1(t)g2(t) dt

)2

≤
∫ 1

0

g1(t)2 dt

∫ 1

0

g2(t′)2 dt′

for all integrable functions g1, g2 : [0, 1] → R, with equality if and only if g1 and g2 are
linearly dependent a.e. Let

gu,v1 (t) := (σα0
t )2−γ/2 〈ξ, at,0u,v(φ0, α0)

〉
, gu,v2 (t) := (σα0

t )2−γ/2.

For all v ∈ R \ V 0, these are not linearly dependent, since t 7→
〈
ξ, at,0u,v(φ0, α0)

〉
is not

constant. Hence,(∫ 1

0

(σα0
t )4−γ 〈ξ, at,0u,v(φ0, α0)

〉
dt

)2

<

∫ 1

0

(σα0
t )4−γ 〈ξ, at,0u,v(φ0, α0)

〉2
dt

∫ 1

0

(σα0

t′ )4−γ dt′
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for all v ∈ R \ V 0. It follows that

ξ>HMξ ≥ 2

∫
B\V 0

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2
[∫ 1

0

(σα0
t )4−γ 〈ξ, at,0u,v(φ0, α0)

〉2
dt

∫ 1

0

(σα0

t′ )4−γ dt′

−
(∫ 1

0

(σα0
t )4−γ 〈ξ, at,0u,v(φ0, α0)

〉
dt

)2
]

dv > 0, (6.30)

as the integrand (as a function in v) is strictly positive. We conclude that HM is symmetric
and positive definite and thus invertible.

Assumption 6.21. We have the following Sobolev-2 condition,∫
R

∑
u∈Z

‖(u, v)‖4

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv <∞.

Theorem 6.22. Under the Assumption 5.6, let (φ̂∗T , α̂
∗
T )T∈N a sequence of random vec-

tors with values in U , such that (φ̂∗T , α̂
∗
T )

T→∞−→ (φ0, α0) in probability. Suppose that the
Assumptions 6.2, 6.7, 6.14, and 6.21 hold. Then, with HM from (6.27),∥∥∥Hess(φ,α)M̃T (φ̂∗T , α̂

∗
T )−HM

∥∥∥
1

T→∞−→ 0 in probability,

Proof. We will use the decomposition M̃T = AT +BT + CT from (6.9) and show that∥∥∥Hess(φ,α)AT (φ̂∗T , α̂
∗
T )−HM

∥∥∥
1

T→∞−→ 0 in probability,

sup
(φ,α)∈U

∥∥Hess(φ,α)BT (φ, α) + Hess(φ,α)CT (φ, α)
∥∥

1

T→∞−→ 0 in probability.

By Lemma 5.7 and Lemma A.14 in the Appendix, we get

Hess(φ,α)AT (φ, α)

= −
∫ vT

−vT

∑
|u|≤uT

2β2
T

T 2

∑
t,t′∈T

<
[
F t(u, v)F t′(u, v)

·
(
du,v(σαt′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ ) Hess(φ,α)du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )

+grad(φ,α)du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )grad(φ,α)du,v(σ

α
t′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ )
)]

dv

= −
∫ vT

−vT

∑
|u|≤uT

2β2
T

T 2

∑
t,t′∈T

<
[
F t(u, v)F t′(u, v)

·
(
du,v(σαt′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ ) Hess(φ,α)du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )

+grad(φ,α)du,v(σ
α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )grad(φ,α)du,v(σ

α
t′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ )
)]

dv

= −2

∫ vT

−vT

∑
|u|≤uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 β2
T

T 2

∑
t,t′∈T

(σα0
t σ

α0

t′ )4−γ

·<
[
du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )du,v(σαt′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ )

·
(

iHt,0
u,v(φ, α)− at,0u,v(φ, α)

(
at,0u,v(φ, α)− at

′,0
u,v (φ, α)

)>)]
dv. (6.31)
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Since φ 7→ ρφt and α 7→ σαt are continuous (Assumption 6.7) and du,v is Lipschitz-
continuous (Lemma A.8 in the Appendix), the continuous mapping theorem (Theorem
B.8 in the Appendix) yields that

∣∣∣du,v(σα̂∗Tt /σα0
t , ρ

φ̂∗T
t − ρ

φ0
t )− 1

∣∣∣ ≤ √2 ‖(2πu,−v)‖

∥∥∥∥∥
(

ρ
φ̂∗T
t − ρ

φ0
t

log(σ
α̂∗T
t )− log(σα0

t )

)∥∥∥∥∥
= oP

(
‖(u, v)‖

)
,

where the logarithm is Lipschitz-continuous on [σmin, σmax] by Lemma A.10 in the Ap-
pendix. Hence,

du,v(σ
α̂∗T
t /σα0

t , ρ
φ̂∗T
t − ρ

φ0
t )du,v(σ

α̂∗T
t′ /σ

α0

t′ , ρ
φ̂∗T
t′ − ρ

φ0
t′ ) = 1 + oP

(
‖(u, v)‖2).

In particular, the imaginary part vanishes asymptotically. With Lemma 5.7 and Assump-
tion 6.12, it follows that∥∥∥∥∥

∫ vT

−vT

∑
|u|≤uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 β2
T

T 2

∑
t,t′∈T

(σα0
t σ

α0

t′ )4−γ

·<
[
du,v(σ

α
t /σ

α0
t , ρ

φ
t − ρ

φ0
t )du,v(σαt′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ )iHt,0

u,v(φ, α)
]

dv

∥∥∥∥∥
1

≤ max
{
σ8−2γ

min , σ8−2γ
max

}∫ vT

−vT

∑
|u|≤uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2
·β

2
T

T 2

∑
t,t′∈T

∣∣∣=[du,v(σαt /σα0
t , ρ

φ
t − ρ

φ0
t )du,v(σαt′/σ

α0

t′ , ρ
φ
t′ − ρ

φ0
t′ )
]∣∣∣ ∥∥Ht,0

u,v(φ, α)
∥∥

1
dv

= oP

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖3

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv

 = oP(1). (6.32)

Moreover,∫ vT

−vT

∑
|u|≤uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 β2
T

T 2

∑
t,t′∈T

(σα0
t σ

α0

t′ )4−γ<
[
iHt,0

u,v(φ, α)
]

dv = 0. (6.33)

From Assumption 5.6, Lemma 5.7, and the continuous mapping theorem (Theorem B.8
in the Appendix), we get that∥∥∥at,0u,v(φ̂∗T , α̂∗T )

(
at,0u,v(φ̂

∗
T , α̂

∗
T )− at

′,0
u,v (φ̂∗T , α̂

∗
T )
)>

−at,0u,v(φ0, α0)
(
at,0u,v(φ0, α0)− at

′,0
u,v (φ0, α0)

)>∥∥∥
1

≤
∥∥∥at,0u,v(φ̂∗T , α̂∗T )

[(
at,0u,v(φ̂

∗
T , α̂

∗
T )− at

′,0
u,v (φ̂∗T , α̂

∗
T )
)> − (at,0u,v(φ0, α0)− at

′,0
u,v (φ0, α0)

)>]∥∥∥
1

+
∥∥∥(at,0u,v(φ̂∗T , α̂∗T )− at,0u,v(φ0, α0)

)(
at,0u,v(φ0, α0)− at

′,0
u,v (φ0, α0)

)>∥∥∥
1

≤
∥∥∥at,0u,v(φ̂∗T , α̂∗T )

∥∥∥
1

(∥∥∥at,0u,v(φ̂∗T , α̂∗T )− at,0u,v(φ0, α0)
∥∥∥

1
+
∥∥∥at′,0u,v (φ̂∗T , α̂

∗
T )− at

′,0
u,v (φ0, α0)

∥∥∥
1

)
+
∥∥∥at,0u,v(φ̂∗T , α̂∗T )− at,0u,v(φ0, α0)

∥∥∥
1

(∥∥at,0u,v(φ0, α0)
∥∥

1
+
∥∥∥at′,0u,v (φ0, α0)

∥∥∥
1

)
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≤ (d2 + d3)C̃ ‖(u, v)‖

·

[
3
(

2π |u|
∥∥∥gradφ(ρ

φ̂∗T
t )− gradφ(ρφ0t )

∥∥∥+ |v|
∥∥∥σα0

t /σ
α̂∗T
t gradα(σ

α̂∗T
t )− gradα(σα0

t )
∥∥∥)

+
(

2π |u|
∥∥∥gradφ(ρ

φ̂∗T
t′ )− gradφ(ρφ0t′ )

∥∥∥+ |v|
∥∥∥σα0

t′ /σ
α̂∗T
t′ gradα(σ

α̂∗T
t′ )− gradα(σα0

t′ )
∥∥∥)]

= oP
(
‖(u, v)‖2).

This, together with (6.31), (6.32), (6.33), and Assumption 5.6, gives∥∥∥Hess(φ,α)AT (φ̂∗T , α̂
∗
T )− Hess(φ,α)AT (φ0, α0)

∥∥∥
1

= 2

∥∥∥∥∥
∫ vT

−vT

∑
|u|≤uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 β2
T

T 2

∑
t,t′∈T

(σα0
t σ

α0

t′ )4−γ

·
{
<
[
du,v(σ

α̂∗T
t /σα0

t , ρ
φ̂∗T
t − ρ

φ0
t )du,v(σ

α̂∗T
t′ /σ

α0

t′ , ρ
φ̂∗T
t′ − ρ

φ0
t′ )
]

·at,0u,v(φ̂∗T , α̂∗T )
(
at,0u,v(φ̂

∗
T , α̂

∗
T )− at

′,0
u,v (φ̂∗T , α̂

∗
T )
)>

−at,0u,v(φ0, α0)
(
at,0u,v(φ0, α0)− at

′,0
u,v (φ0, α0)

)>}
dv

∥∥∥∥∥
1

+ oP(1)

≤ oP

2 max
{
σ8−2γ

min , σ8−2γ
max

}∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖4

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv

+ oP(1)

= oP(1). (6.34)

By Lemma 6.20, HM has finite operator norm. In particular, the components of HM are
finite. Hence,∥∥∥∥∫ 1

0

∫ 1

0

(σα0
t σ

α0

t′ )4−γat,0u,v(φ0, α0)
(
at,0u,v(φ0, α0)− at

′,0
u,v (φ0, α0)

)>
dt dt′ dv

∥∥∥∥
1

·2
∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 = o(1),

as T →∞. With (6.31) and (6.34), this implies that∥∥∥Hess(φ,α)AT (φ̂∗T , α̂
∗
T )−HM

∥∥∥
1

=
∥∥Hess(φ,α)AT (φ0, α0)−HM

∥∥
1

+ oP(1)

≤ 2

∫ vT

−vT

∑
|u|≤uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2
(∥∥∥∥∥β2

T

T 2

∑
t,t′∈T

At,t′

u,v −
∫ 1

0

∫ 1

0

At,t′

u,v dt dt′

∥∥∥∥∥
1

+

∥∥∥∥∥β2
T

T 2

∑
t,t′∈T

Bt,t′

u,v −
∫ 1

0

∫ 1

0

Bt,t′

u,v dt dt′

∥∥∥∥∥
1

)
dv + oP(1), (6.35)

where

At,t′

u,v := (σα0
t σ

α0

t′ )4−γat,0u,v(φ0, α0)at,0u,v(φ0, α0)>,

Bt,t′

u,v := (σα0
t σ

α0

t′ )4−γat,0u,v(φ0, α0)at
′,0
u,v (φ0, α0)>.
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By Lemma A.5, Lemma A.7, Lemma A.9, and Lemma A.10 (all in the Appendix), and
Assumption 6.2, we have that

∥∥∥∥∥β2
T

T 2

∑
t,t′∈T

At,t′

u,v −
∫ 1

0

∫ 1

0

At,t′

u,v dt dt′

∥∥∥∥∥
1

=

d2+d3∑
m,m′=1

∣∣∣∣∣β2
T

T 2

∑
t,t′∈T

(
At,t′

u,v

)
m,m′
−
∫ 1

0

∫ 1

0

(
At,t′

u,v

)
m,m′

dt dt′

∣∣∣∣∣
≤ CγC̃

2 ‖(u, v)‖2 βT
T

·
d2+d3∑
m,m′=1

{
TV
[
t 7→ (σα0

t )4−γ(at,0u,v(φ0, α0)
)
m

(
at,0u,v(φ0, α0)

)
m′

]
+ TV

[
t 7→ (σα0

t )4−γ
]}

≤ CγC̃
2 ‖(u, v)‖2 βT

T

{
(d2 + d3)CγC̃ ‖(u, v)‖

d2+d3∑
m=1

TV
[
t 7→

(
at,0u,v(φ0, α0)

)
m

]
+(d2 + d3)CγC̃ ‖(u, v)‖

d2+d3∑
m′=1

TV
[
t 7→

(
at,0u,v(φ0, α0)

)
m′

]
+(d2 + d3)2C3C̃

2 ‖(u, v)‖2 + (d2 + d3)2C3

}
≤ (d2 + d3)CγC̃

2 ‖(u, v)‖2 βT
T

{
2CγC̃ ‖(u, v)‖

(
2π |u|

d2∑
m=1

TV

[
t 7→ ∂ρφt

∂φm

∣∣∣∣
φ=φ0

]

+ |v|
d3∑

m′=1

TV

[
t 7→ ∂σαt

∂αm′

∣∣∣∣
α=α0

])
+ (d2 + d3)C3

(
C̃2 ‖(u, v)‖2 + 1

)}

= OP

(
‖(u, v)‖4 βT

T

)
, (6.36)

with C̃ > 0 from Lemma 5.7, Cγ := max
{
σ4−γ

min , σ
4−γ
max

}
, and C3 > 0 from (6.15). Similarly,

∥∥∥∥∥β2
T

T 2

∑
t,t′∈T

Bt,t′

u,v −
∫ 1

0

∫ 1

0

Bt,t′

u,v dt dt′

∥∥∥∥∥
1

≤ CγC̃ ‖(u, v)‖ βT
T

·
d2+d3∑
m,m′=1

{
TV
[
t 7→ (σα0

t )4−γ(at,0u,v(φ0, α0)
)
m

]
+ TV

[
t 7→ (σα0

t )4−γ(at,0u,v(φ0, α0)
)
m′

]}
≤ 2(d2 + d3)CγC̃ ‖(u, v)‖ βT

T

·
{
Cγ

d2+d3∑
m=1

TV
[
t 7→

(
at,0u,v(φ0, α0)

)
m

]
+ (d2 + d3)C3C̃ ‖(u, v)‖

}
= OP

(
‖(u, v)‖2 βT

T

)
. (6.37)
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From (6.35), (6.36), and (6.37), we get that

∥∥∥Hess(φ,α)AT (φ̂∗T , α̂
∗
T )−HM

∥∥∥
1

= OP

βT
T

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖4

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣2 dv

 ,

(6.38)
which converges to 0 due to Assumption 6.21.

Next, we show that sup(φ,α)∈U
∥∥Hess(φ,α)BT (φ, α)

∥∥
1

T→∞−→ 0 in probability. From
Lemma 5.7, we have

sup
(φ,α)∈U

∥∥∥Hess(φ,α)du,v(σ
α
t /σ

α0
t /σ

α
t′ , ρ

φ
t − ρ

φ0
t − ρ

φ
t′)
∥∥∥

1
= O

(
‖(u, v)‖2). (6.39)

By Lemma 5.3 and (6.39), we get that

sup
(φ,α)∈U

∥∥Hess(φ,α)BT (φ, α)
∥∥

1

= sup
(φ,α)∈U

∥∥∥∥∥
∫ vT

−vT

∑
|u|≤uT

2<

[
β2
T

T 2

∑
t,t′∈T

F t(u, v)AFMWt′ (u, v)

·Hess(φ,α)du,v(σ
α
t /σ

α0
t /σ

α
t′ , ρ

φ
t − ρ

φ0
t − ρ

φ
t′)

]
dv

∥∥∥∥∥
1

≤ 2Cγ sup
(φ,α)∈U

∫ vT

−vT

∑
|u|≤uT

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣ β2
T

T 2

∑
t,t′∈T

|AFMWt′ (u, v)|

·
∥∥∥Hess(φ,α)du,v(σ

α
t /σ

α0
t /σ

α
t′ , ρ

φ
t − ρ

φ0
t − ρ

φ
t′)
∥∥∥

1
dv

= OP

 rγT√
βT

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖2

∣∣∣∣AFM|Ff |2(u, v)

∣∣∣∣ dv

 .

Because of Assumption 6.21 and r2γ
T /βT

T→∞−→ 0, the above converges to 0 and we conclude
that

sup
(φ,α)∈U

∥∥Hess(φ,α)BT (φ, α)
∥∥

1

T→∞−→ 0 in probability. (6.40)

Finally, we consider sup(φ,α)∈U
∥∥Hess(φ,α)CT (φ, α)

∥∥
1
. By Lemma 5.3 and (6.39),

sup
(φ,α)∈U

∥∥Hess(φ,α)CT (φ, α)
∥∥

1

= sup
(φ,α)∈U

∥∥∥∥∥
∫ vT

−vT

∑
|u|≤uT

β2
T

T 2

∑
t,t′∈T

Hess(φ,α)du,v(σ
α
t /σ

α
t′ , ρ

φ
t − ρ

φ
t′)

·AFMWt(u, v)AFMWt′ (u, v) dv

∥∥∥∥∥
1

≤ sup
(φ,α)∈U

∫ vT

−vT

∑
|u|≤uT

β2
T

T 2

∑
t,t′∈T

∥∥∥Hess(φ,α)du,v(σ
α
t /σ

α
t′ , ρ

φ
t − ρ

φ
t′)
∥∥∥

1

· |AFMWt(u, v)| |AFMWt′ (u, v)| dv

= O

r2γ
T

βT

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖2 dv

 = O

(
‖(uT , vT )‖2 uTvT r

2γ
T

βT

)
.
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Since ‖(uT , vT )‖2 uTvT r
2γ
T /βT

T→∞−→ 0, we get

sup
(φ,α)∈U

∥∥Hess(φ,α)CT (φ, α)
∥∥

1

T→∞−→ 0 in probability. (6.41)

From (6.38), (6.40), and (6.41), we conclude that∥∥∥Hess(φ,α)M̃T (φ̂∗T , α̂
∗
T )−HM

∥∥∥
1

T→∞−→ 0 in probability.

Theorem 6.23 (Central limit theorem for rotation and scaling parameters). Suppose that
Assumption 6.18 as well as the Assumptions of the Theorems 6.17 and 6.22 hold. Then,

√
T

(
φ̂T − φ0

α̂T − α0

)
T→∞−→ N (0, H−1

M ΣH−1
M ) in distribution,

with Σ from Definition 6.15 and HM from (6.27).

Proof. By Assumption 6.2, M̃T is twice continuously differentiable in a convex open neigh-
borhood U ⊆ Φ×A of (φ0, α0). In particular, if M̃T has a minimum at some (φ, α) ∈ U ,

then grad(φ,α)M̃T (φ, α) = 0. Let

G̃T (φ, α) :=

{
grad(φ,α)M̃T (φ, α), if (φ, α) ∈ U,
grad(φ,α)M̃T (φ0, α0), if (φ, α) ∈ (Φ× A) \ U.

As (φ̂T , α̂T ) is defined as a minimizer of M̃T and (φ̂T , α̂T )
T→∞−→ (φ0, α0) ∈ U in probability,

we have for all ε > 0 that

P
(√

TG̃T (φ̂T , α̂T ) > ε
)

= P
(√

Tgrad(φ,α)M̃T (φ̂T , α̂T ) > ε, (φ̂T , α̂T ) ∈ U
)

+P
(√

Tgrad(φ,α)M̃T (φ0, α0) > ε, (φ̂T , α̂T ) /∈ U
)

≤ P
(

(φ̂T , α̂T ) /∈ U
)
T→∞−→ 0,

which means that √
TG̃T (φ̂T , α̂T ) = oP(1). (6.42)

For (φ, α) ∈ U , we can apply the mean value theorem for real functions of multiple

variables to each component of grad(φ,α)M̃T (φ, α) to get that

grad(φ,α)M̃T (φ, α) = grad(φ,α)M̃T (φ0, α0) + Hess(φ,α)M̃T (φ†, α†)

(
φ− φ0

α− α0

)
, (6.43)

where (φ†, α†) ∈ U such that its components are convex combinations of the respective
components of (φ, α) and (φ0, α0). By (6.43), on the event {(φ̂T , α̂T ) ∈ U}, we can find
(φ̂†T , α̂

†
T ) ∈ U between (φ̂T , α̂T ) and (φ0, α0) such that

grad(φ,α)M̃T (φ̂T , α̂T ) = grad(φ,α)M̃T (φ0, α0) + Hess(φ,α)M̃T (φ̂†T , α̂
†
T )

(
φ̂T − φ0

α̂T − α0

)
. (6.44)

With the definitions

(φ̂∗T , α̂
∗
T ) :=

{
(φ̂†T , α̂

†
T ), if (φ̂T , α̂T ) ∈ U,

(φ0, α0), if (φ̂T , α̂T ) ∈ (Φ× A) \ U,



58 CHAPTER 6. MAIN RESULTS

and

H̃T :=

{
Hess(φ,α)M̃T (φ̂∗T , α̂

∗
T ) = Hess(φ,α)M̃T (φ̂†T , α̂

†
T ), if (φ̂T , α̂T ) ∈ U,

0, if (φ̂T , α̂T ) ∈ (Φ× A) \ U,

as well as (6.42), we get that

√
Tgrad(φ,α)M̃T (φ0, α0) + H̃T

√
T

(
φ̂T − φ0

α̂T − α0

)
=
√
TG̃T (φ̂T , α̂T ) = oP(1), (6.45)

which holds on {(φ̂T , α̂T ) /∈ U} by design of G̃T and H̃T and on {(φ̂T , α̂T ) ∈ U} due to
(6.44). Equation (6.45) and Theorem 6.17 yield that

H̃T

√
T

(
φ̂T − φ0

α̂T − α0

)
= −
√
Tgrad(φ,α)M̃T (φ0, α0) + oP(1) = OP(1). (6.46)

Since (φ̂∗T , α̂
∗
T ) ∈ U is between (φ̂T , α̂T ) and (φ0, α0) and (φ̂T , α̂T ) is a consistent estimator,

we have that (φ̂∗T , α̂
∗
T )

T→∞−→ (φ0, α0) in probability. Because of Assumption 6.18 and

Lemma 6.20, HM is invertible, and by Theorem 6.22, H̃T
T→∞−→ HM in probability. Together

with (6.46) and Lemma A.17 in the Appendix, this implies that

√
T

(
φ̂T − φ0

α̂T − α0

)
= OP(1).

Hence, again with Theorem 6.22,(
H̃T −HM

)√
T

(
φ̂T − φ0

α̂T − α0

)
= oP(1)OP(1) = oP(1).

From this, (6.46), and Theorem 6.17, it follows that

HM

√
T

(
φ̂T − φ0

α̂T − α0

)
= −
√
Tgrad(φ,α)M̃T (φ0, α0) + oP(1)

T→∞−→ N (0,Σ) in distribution,

where we used that, for all centred normal random vectors X, X and −X have the same
distribution. Finally, multiplication with H−1

M yields the assertion.

Corollary 6.24. Under the Assumption 6.2, if
√
T (φ̂T − φ0, α̂T − α0) is asymptotically

centred normal, we have for all ω ∈ R2 \ {0} and t ∈ [0, 1], that

√
T

(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω − ω
)

is asymptotically centred normal.

Proof. For ω ∈ R2 \ {0} and t ∈ [0, 1], let

gtω : Rd2+d3 → R2, (φ, α) 7→ σα0
t

σαt
R
ρφt −ρ

φ0
t
ω.

By Assumption 6.2, there is an open neighborhood U ⊆ Φ × A of (φ0, α0) such that
φ 7→ ρφt and α 7→ σαt are continuously differentiable on U . Hence, gtω is continuously
differentiable on U . Because gtω(φ0, α0) = ω, applying the Delta method (Theorem B.7 in
the Appendix) yields the assertion.
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6.2 Drift Estimation

Assumption 6.25. Suppose that Assumption 5.9 holds. We assume that the second
partial derivatives

θ 7→ ∂2(δθt )1

∂θm∂θm′
, θ 7→ ∂2(δθt )2

∂θm∂θm′

are continuous at the true parameter θ0 for all m,m′ ∈ {1, . . . , d1}. Moreover, the first
partial derivatives at θ0, as functions in t, are of bounded variation, that is, there is a
C ′ > 0 such that

TV

(
t 7→ ∂(δθt )1

∂θm

)
< C ′, TV

(
t 7→ ∂(δθt )2

∂θm

)
< C ′,

for all m ∈ {1, . . . , d1} and all θ ∈ Θ.

Definition 6.26 (Not translation invariant). A function g : R2 → C is called not trans-
lation invariant if there is no δ ∈ R2 \ {0} such that g(x) = g(x− δ) for all x ∈ R2.

Lemma 6.27. A function g ∈ L2(R2) is not translation invariant if and only if there is
an open Borel set B ⊆ R2 with positive Lebesgue-measure such that Fg(ω) 6= 0 for all
ω ∈ B.

Proof. Let δ ∈ R2 such that g(x) = g(x− δ) for all x ∈ R2. Then,

Fg(ω) =

∫
R2

e−2πi〈ω,x〉g(x) dx =

∫
R2

e−2πi〈ω,x〉g(x− δ) dx

=

∫
R2

e−2πi〈ω,y+δ〉g(y) dy = e−2πi〈ω,δ〉
∫
R2

e−2πi〈ω,y〉g(y) dy = e−2πi〈ω,δ〉Fg(ω),

with the substitution y := x − δ. For Fg(ω) 6= 0, this implies that e−2πi〈ω,δ〉 = 1
and thus 〈ω, δ〉 ∈ Z. If this holds for all ω in an open Borel set B ⊆ R2, we can

fix ω = (ω1, ω2) ∈ B and choose ω
(1)
1 , ω

(2)
1 ∈ R \ {ω1} and ω

(1)
2 , ω

(2)
2 ∈ R \ {ω2} with

(ω
(1)
1 , ω2), (ω

(2)
1 , ω2), (ω1, ω

(1)
2 )(ω1, ω

(2)
2 ) ∈ B and

ω1 − ω(1)
1 , ω2 − ω(1)

2 ∈ Q, ω1 − ω(2)
1 , ω2 − ω(2)

2 ∈ R \Q. (6.47)

Hence,

(ω1 − ω(1)
1 )δ1 = 〈ω, δ〉 −

〈
(ω

(1)
1 , ω2), δ

〉
∈ Z,

(ω1 − ω(2)
1 )δ1 = 〈ω, δ〉 −

〈
(ω

(2)
1 , ω2), δ

〉
∈ Z,

(ω2 − ω(1)
2 )δ2 = 〈ω, δ〉 −

〈
(ω1, ω

(1)
2 ), δ

〉
∈ Z,

(ω2 − ω(2)
2 )δ2 = 〈ω, δ〉 −

〈
(ω1, ω

(2)
2 ), δ

〉
∈ Z.

Because of (6.47), this means that δ = 0, implying that g is not translation invariant.
On the other hand, if there is no open Borel set B ⊆ R2 with positive Lebesgue-

measure such that Fg(ω) 6= 0 for all ω ∈ B, then Fg = 0 a.e. Applying the inverse Fourier
transform, we get

g(x) =

∫
R2

e2πi〈x,ω〉Fg(ω) dω = 0 for all x ∈ R2.

Hence, g is constant. In particular, g(x) = g(x− δ) for all x, δ ∈ R2.
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Assumption 6.28. Let f ∈ L2(R2) ∩H1/2(R2) and f not translation invariant.

Assumption 6.29. The map

Θ→ L1
(
[0, 1],R2

)
, θ 7→

(
δθ : t 7→ δθt =

(
(δθt )1, (δ

θ
t )2

))
,

is continuous with respect to the component-wise L1-norm∥∥θ 7→ δθ
∥∥
L1 :=

∥∥θ 7→ (δθ)1

∥∥
L1 +

∥∥θ 7→ (δθ)2

∥∥
L1 .

Furthermore, for each θ ∈ Θ, the drift function t 7→ δθt is continuous at t = 0.

Assumption 6.30. The set of drift functions
{
t 7→ δθt

∣∣θ ∈ Θ
}

is identifiable.

Assumption 6.31. There is an open neighborhood Uδ ⊆ Θ of θ0 and a constant Lδ > 0
such that the following local uniform Lipschitz condition holds,

sup
t∈[0,1]

∥∥δθt − δθ0t ∥∥ ≤ Lδ ‖θ − θ0‖ for all θ ∈ Uδ.

Assumption 6.32. There is a C > 0 such that, uniformly in θ,

TV
(
t 7→ (δθt )1

)
+ TV

(
t 7→ (δθt )2

)
< C.

Theorem 6.33 (Consistency of drift parameter). Suppose that the Assumptions 6.2, 6.7,

6.26, 6.28, 6.29, 6.30, 6.31, and 6.32 hold. If rT , βT
T→∞−→ ∞, βT = o(T ), r4

TT
−1 T→∞−→ 0,

r2
Tβ
−1
T

T→∞−→ 0, and
√
T (φ̂T − φ0, α̂T − α0) is asymptotically centred normal, then the drift

estimator θ̂T from Definition 4.8 is consistent, that is,

θ̂T
T→∞−→ θ0 in probability. (6.48)

Additionally, the image estimator f̂T from Definition 4.9 is consistent, that is,∥∥∥f̂T − f∥∥∥
L2

T→∞−→ 0 in probability. (6.49)

Proof. The proof follows the standard three step argument which we used in the proof of
Theorem 6.13. The three steps are:

1. Show the uniqueness of the population contrast minimizer θ0 which, together with
the compactness of Θ, yields (B.2) in the Appendix.

2. Show the continuity of the population contrast functional.

3. Show that ÑT
T→∞−→ Ñ in probability uniformly over θ, implying (B.1) in the Ap-

pendix.

Note, that (B.3) in the Appendix holds because θ̂T is defined as a minimizer of ÑT . Then,
Theorem B.6 in the Appendix yields the desired consistency of θ̂T .
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Step 1: uniqueness of population contrast minimizer θ0. We have

Ñ(θ) = −
∫
R2

|Ff (ω)|2
∣∣∣∣∫ 1

0

hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)

dt

∣∣∣∣2 dω

≥ −
∫
R2

|Ff (ω)|2
(∫ 1

0

∣∣∣hω (1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t )
)∣∣∣ dt

)2

dω = −
∫
R2

|Ff (ω)|2 dω

for all θ ∈ Θ with equality if θ = θ0. Let θ ∈ Θ such that

Ñ(θ) = −
∫
R2

|Ff (ω)|2 dω. (6.50)

Since f is not translation invariant by Assumption 6.28, by Lemma 6.27, there is an open
Borel set B ⊆ R2 with positive Lebesgue measure such that Ff (ω) 6= 0 for all ω ∈ B.
Since (6.50) holds, we have∣∣∣∣∫ 1

0

hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)

dt

∣∣∣∣ = 1 for all ω ∈ B.

By Lemma A.11 in the Appendix, t 7→ hω
(
1/σα0

t ·R−ρφ0t (δθt − δθ0t )
)

is constant almost

everywhere on [0, 1]. Because of the identifiability constraint δθ0 = 0 for all θ ∈ Θ and the
continuity of δθ at t = 0 (Assumption 6.29), this constant has to be 1 which implies that

1 = hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)

= exp
(

2πi
〈
ω, 1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
〉)

for all ω ∈ B, (6.51)

almost everywhere on [0, 1]. Fix ω = (ω1, ω2) ∈ B and choose ω
(1)
1 , ω

(2)
1 ∈ R \ {ω1} and

ω
(1)
2 , ω

(2)
2 ∈ R \ {ω2} such that (ω

(1)
1 , ω2), (ω

(2)
1 , ω2), (ω1, ω

(1)
2 ), (ω1, ω

(2)
2 ) ∈ B and

ω1 − ω(1)
1 , ω2 − ω(1)

2 ∈ Q, ω1 − ω(2)
1 , ω2 − ω(2)

2 ∈ R \Q. (6.52)

From (6.51),

1 =
exp

(
2πi
〈
ω, 1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
〉)

exp
(

2πi
〈

(ω
(1)
1 , ω2)>, 1/σα0

t ·R−ρφ0t (δθt − δθ0t )
〉)

= exp
[
2πi(ω1 − ω(1)

1 )
(

1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t )
)

1

]
and similarly,

1 = exp
[
2πi(ω1 − ω(2)

1 )
(

1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t )
)

1

]
,

1 = exp
[
2πi(ω2 − ω(1)

2 )
(

1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t )
)

2

]
,

1 = exp
[
2πi(ω2 − ω(2)

2 )
(

1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t )
)

2

]
,

which implies that

(ω1 − ω(1)
1 )
(

1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t )
)

1
∈ Z,

(ω1 − ω(2)
1 )
(

1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t )
)

1
∈ Z,

(ω2 − ω(1)
2 )
(

1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t )
)

2
∈ Z,

(ω2 − ω(2)
2 )
(

1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t )
)

2
∈ Z.
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Because of (6.52), we get that

1/σα0
t ·R−ρφ0t (δθt − δ

θ0
t ) = 0 a.e. on [0, 1]. (6.53)

Since R−ρφ0t
is a rotation matrix,

det
(

1/σα0
t ·R−ρφ0t

)
= (σα0

t )−2 ≥ σ−2
max > 0 for all t ∈ [0, 1],

which, together with (6.53), implies that δθt −δ
θ0
t = 0 a.e. on [0, 1]. Since the drift function

is identifiable (Assumption 6.30), we conclude that θ = θ0.

Step 2: Continuity of Ñ . By Assumptions 6.7 and 6.29, the functions t 7→ ρφ0t ,
t 7→ σα0

t and t 7→ δθt are measurable for all θ ∈ Θ. Hence, t 7→ hω
(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)

is measurable for all θ ∈ Θ, ω ∈ R2, as a concatenation of measurable functions. Also by
Assumption 6.29, the functions θ 7→ δθt are continuous for all t ∈ [0, 1], giving that
θ 7→ hω

(
1/σα0

t ·R−ρφ0t (δθt − δθ0t )
)

is continuous for all t ∈ [0, 1], ω ∈ R2, as a con-

catenation of continuous functions. Furthermore, t 7→ 1 is an integrable majorant for
t 7→ hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)
. Consequently, Theorem B.1 in the Appendix yields that

θ 7→
∫ 1

0

hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)

dt

is continuous for all ω ∈ R2. Since x 7→ |x|2 is continuous, we get that

θ 7→ gθω :=

∣∣∣∣∫ 1

0

hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)

dt

∣∣∣∣2
is continuous for all ω ∈ R2. By the same argument, the continuity of the functions
ω 7→ hω

(
1/σα0

t ·R−ρφ0t (δθt − δθ0t )
)

for all t ∈ [0, 1] and θ ∈ Θ implies that ω 7→ gθω is

continuous, too, and hence Lebesgue-measurable. Since |Ff (ω)|2 is constant in θ and
continuous in ω (Lemma A.12 in the Appendix), |Ff (ω)|2 gθω is also continuous in ω as
well as in θ as a concatenation of continuous functions. In particular, ω 7→ |Ff (ω)|2 gθω is
Lebesgue-measurable. Furthermore, the function ω 7→ |Ff (ω)|2 is an integrable majorant
for ω 7→ |Ff (ω)|2 gθω because of Assumption 6.28 and gθω ≤ 1. Hence, we can apply

Theorem B.1 in the Appendix again to get the continuity of Ñ .

Step 3: ÑT
T→∞−→ Ñ in probability uniformly in θ. From (4.4), we get

ÑT (θ) = −
∫

ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

δθt

)
Zt
T (ω)

∣∣∣∣∣
2

dω

= −
∫

ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)( σα0

t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)

+hω

(
1/σα̂Tt ·R−ρφ̂Tt

δθt

)
V t
T (ω)

∣∣∣∣∣
2

dω

= AT (θ) +BT (θ) + CT (θ), (6.54)



6.2. DRIFT ESTIMATION 63

with

AT (θ) := −
∫

ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)

·
(
σα0
t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)∣∣∣∣∣
2

dω,

BT (θ) := −
∫

ΩT

2<

[(
βT
T

∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)

·
(
σα0
t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

))

·

(
βT
T

∑
t′∈T

hω

(
1/σα̂Tt′ ·R−ρφ̂T

t′
δθt′

)
V t′
T (ω)

)]
dω,

CT (θ) := −
∫

ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

δθt

)
V t
T (ω)

∣∣∣∣∣
2

dω,

where we used Lemma A.1 in the Appendix. To derive the desired uniform convergence,

we will show that AT
T→∞−→ Ñ in probability uniformly in θ while BT + CT

T→∞−→ 0 in
probability uniformly in θ. Because of Assumption 6.28, we have that∫

R2\ΩT
|Ff (ω)|2

∣∣∣∣∫ 1

0

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)

dt

∣∣∣∣2 dω ≤
∫
R2\ΩT

|Ff (ω)|2 dω
T→∞−→ 0.

Hence, ∣∣∣AT (θ)− Ñ(θ)
∣∣∣

=

∣∣∣∣∣
∫

ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)( σα0

t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)∣∣∣∣∣
2

−
∣∣∣∣∫ 1

0

hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)
Ff (ω) dt

∣∣∣∣2 dω

−
∫
R2\ΩT

|Ff (ω)|2
∣∣∣∣∫ 1

0

hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)

dt

∣∣∣∣2 dω

∣∣∣∣∣
=

∣∣∣∣∣
∫

ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)( σα0

t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)∣∣∣∣∣
2

−
∣∣∣∣∫ 1

0

hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)
Ff (ω) dt

∣∣∣∣2 dω

∣∣∣∣∣+ o(1).

With Lemma A.4 in the Appendix, it follows that∣∣∣AT (θ)− Ñ(θ)
∣∣∣

≤
∫

ΩT

2 ‖Ff‖∞

(
σmax

σmin

)2
∣∣∣∣∣
∫ 1

0

hω

(
1/σα0

t ·R−ρφ0t (δθt − δ
θ0
t )
)
Ff (ω) dt

−βT
T

∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)( σα0

t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

) ∣∣∣∣∣ dω + o(1)
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= 2 ‖Ff‖∞

(
σmax

σmin

)2 ∫
ΩT

∣∣∣∣∣hω
(

1/σα0

t+t′ ·R−ρφ0
t+t′

(δθt+t′ − δ
θ0
t+t′)

)
Ff (ω) dt′

−
∑
t∈T

∫ βT /T

0

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)( σα0

t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

) ∣∣∣∣∣ dω
+o(1)

≤ 2 ‖Ff‖∞

(
σmax

σmin

)2 ∫
ΩT

∑
t∈T

∫ βT /T

0

∣∣∣∣∣hω
(

1/σα0

t+t′ ·R−ρφ0
t+t′

(δθt+t′ − δ
θ0
t+t′)

)
Ff (ω)

−hω
(

1/σα̂Tt ·R−ρφ̂Tt
(δθt − δ

θ0
t )
)
Ff (ω)

∣∣∣∣∣+

∣∣∣∣∣hω (1/σα̂Tt ·R−ρφ̂Tt
(δθt − δ

θ0
t )
)
Ff (ω)

−hω
(

1/σα̂Tt ·R−ρφ̂Tt
(δθt − δ

θ0
t )
)( σα0

t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

) ∣∣∣∣∣ dt′ dω + o(1)

= 2 ‖Ff‖∞

(
σmax

σmin

)2 ∫
ΩT

∑
t∈T

∫ βT /T

0

∣∣∣hω (1/σα0

t+t′ ·R−ρφ0
t+t′

(δθt+t′ − δ
θ0
t+t′)

)
−hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)∣∣∣ |Ff (ω)|

+

∣∣∣∣∣
(
σα0
t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)
−Ff (ω)

∣∣∣∣∣ dt′ dω + o(1). (6.55)

First, we consider the first part of (6.55). With Lemma A.8 in the Appendix, we get∫
ΩT

βT
T

∑
t∈T

∫ βT /T

0

∣∣∣∣hω (1/σα0

t+t′ ·R−ρφ0
t+t′

(δθt+t′ − δ
θ0
t+t′)

)
−hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)∣∣∣∣ |Ff (ω)| dt′ dω

≤ 23/2π

∫
ΩT

‖ω‖ |Ff (ω)| dω

·
∑
t∈T

∫ βT /T

0

∥∥∥∥1/σα0

t+t′ ·R−ρφ0
t+t′

(δθt+t′ − δ
θ0
t+t′)− 1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )

∥∥∥∥ dt′

≤ 23/2π

∫
ΩT

‖ω‖ |Ff (ω)| dω
∑
t∈T

∫ βT /T

0

1/σα̂Tt
∥∥(δθt+t′ − δ

θ0
t+t′)− (δθt − δ

θ0
t )
∥∥

+

∥∥∥∥(1/σα0

t+t′ ·R−ρφ0
t+t′
− 1/σα̂Tt ·R−ρφ̂Tt

)
(δθt+t′ − δ

θ0
t+t′)

∥∥∥∥ dt′, (6.56)

where we used the fact that ‖Rδ‖ = ‖δ‖ for any rotation matrix R ∈ R2×2 and any
δ ∈ R2. Since the total variation of the drift function is (uniformly over θ) bounded by
C > 0 from Assumption 6.32, we have that∑

t∈T

∫ βT /T

0

1/σα̂Tt
∥∥(δθt − δ

θ0
t )− (δθt+t′ − δ

θ0
t+t′)

∥∥ dt′

≤ σ−1
min

∫ βT /T

0

∑
t∈T

∥∥δθt − δθt+t′∥∥+
∥∥δθ0t − δθ0t+t′∥∥ dt′

≤ σ−1
min

∫ βT /T

0

2C dt′ =
2CβT
σminT

= o(1), (6.57)
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because βT = o(T ). Together with Assumption 6.28, it follows that the first part of (6.55)
converges to zero in probability. For the second part of (6.55), we have

βT
T

∑
t∈T

∣∣∣∣∣
(
σα0
t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)
−Ff (ω)

∣∣∣∣∣
≤ βT

T

∑
t∈T

(∣∣∣∣∣
(
σα0
t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)
−
(
σα0
t

σα̂Tt

)2

Ff (ω)

∣∣∣∣∣
+

∣∣∣∣∣
(
σα0
t

σα̂Tt

)2

Ff (ω)−Ff (ω)

∣∣∣∣∣
)

=
βT
T

∑
t∈T

((
σα0
t

σα̂Tt

)2 ∣∣∣∣Ff ( σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)
−Ff (ω)

∣∣∣∣+

∣∣∣∣∣
(
σα0
t

σα̂Tt

)2

− 1

∣∣∣∣∣Ff (ω)

)

≤
(
σmax

σmin

)2
βT
T

∑
t∈T

(
Lf

∥∥∥∥ σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω − ω
∥∥∥∥+

∣∣∣(σα0
t )2 − (σα̂Tt )2

∣∣∣ ‖Ff‖∞
)

= OP

(
1√
T

)
, (6.58)

where we used Lemma A.12 in the Appendix for the second inequality, Corollary 6.24,
and the fact that

√
T
(
(σα̂Tt )2 − (σα0

t )2
)

is asymptotically centred normal for T → ∞ by
the Delta-method (Theorem B.7 in the Appendix). Hence,∫

ΩT

βT
T

∑
t∈T

∣∣∣∣∣
(
σα0
t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)
−Ff (ω)

∣∣∣∣∣ dω = OP

(
r2
T√
T

)
= oP(1). (6.59)

From (6.55), (6.57), and (6.59), it follows that∣∣∣AT (θ)− Ñ(θ)
∣∣∣ T→∞−→ 0 in probability uniformly in θ. (6.60)

Next, we show that CT
T→∞−→ 0 in probability uniformly in θ. With the Cauchy-Schwarz

inequality and Lemma 5.4, we get

0 ≥ ECT (θ)

= −E

∫
ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

δθt

)
V t
T (ω)

∣∣∣∣∣
2

dω


≥ −E

(∫
ΩT

(
βT
T

∑
t∈T

∣∣∣hω (1/σα̂Tt ·R−ρφ̂Tt
δθt

)∣∣∣2)(βT
T

∑
t∈T

∣∣V t
T (ω)

∣∣2) dω

)

= −
∫

ΩT

βT
T

∑
t∈T

E
(∣∣V t

T (ω)
∣∣2) dω = −

∫
ΩT

O
(

1

βT

)
dω = O

(
r2
T

βT

)
= o(1).

Since r2
T/βT

T→∞−→ 0, we get ECT (θ)
T→∞−→ 0 uniformly in θ, and thus

CT
T→∞−→ 0 in probability uniformly in θ. (6.61)

Finally, the Cauchy-Schwarz inequality implies(
BT (θ)

)2 ≤ 4AT (θ)CT (θ)
T→∞−→ 0 in probability uniformly in θ. (6.62)
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From (6.60), (6.61), and (6.62), we get ÑT
T→∞−→ Ñ in probability uniformly in θ, proving

(6.48).

Now, we prove (6.49). Using the Plancherel equality (Theorem 2.12 in the Appendix)
and (4.4), we have

∥∥∥f̂T − f∥∥∥2

L2

=

∫
ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

δθ̂Tt

)
Zt
T (ω)−Ff (ω)

∣∣∣∣∣
2

dω +

∫
R2\ΩT

|Ff (ω)|2 dω

=

∫
ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθ̂Tt − δθ0t )
)( σα0

t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)
−Ff (ω)

+
βT
T

∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

δθ̂Tt

)
V t
T (ω)

∣∣∣∣∣
2

dω + o(1)

= DT + ET + CT (θ̂T ) + o(1),

with

DT :=

∫
ΩT

∣∣∣∣∣βTT ∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθ̂Tt − δθ0t )
)( σα0

t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)

−Ff (ω)

∣∣∣∣∣
2

dω,

ET :=

∫
ΩT

2<

[(
βT
T

∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθ̂Tt − δθ0t )
)( σα0

t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)

−Ff (ω)

)(
βT
T

∑
t′∈T

hω

(
1/σα̂Tt′ ·R−ρφ̂T

t′
δθ̂Tt′

)
V t′
T (ω)

)]
dω,

and CT (θ̂T ) ≤ supθ∈Θ CT (θ)
T→∞−→ 0 in probability as shown before. Because of (6.58), we

have

DT ≤
∫

ΩT

(
βT
T

∑
t∈T

∣∣∣∣∣hω (1/σα̂Tt ·R−ρφ̂Tt
(δθ̂Tt − δθ0t )

)( σα0
t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)

−Ff (ω)

∣∣∣∣∣
)2

dω

≤
∫

ΩT

(
βT
T

∑
t∈T

∣∣∣∣∣hω (1/σα̂Tt ·R−ρφ̂Tt
(δθ̂Tt − δθ0t )

)( σα0
t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)

−hω
(

1/σα̂Tt ·R−ρφ̂Tt
(δθ̂Tt − δθ0t )

)
Ff (ω)

∣∣∣∣∣
+
βT
T

∑
t∈T

∣∣∣hω (1/σα̂Tt ·R−ρφ̂Tt
(δθ̂Tt − δθ0t )

)
Ff (ω)−Ff (ω)

∣∣∣)2

dω
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=

∫
ΩT

(
βT
T

∑
t∈T

∣∣∣∣∣
(
σα0
t

σα̂Tt

)2

Ff
(
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)
−Ff (ω)

∣∣∣∣∣
+ |Ff (ω)| βT

T

∑
t∈T

∣∣∣hω (1/σα̂Tt ·R−ρφ̂Tt
(δθ̂Tt − δθ0t )

)
− 1
∣∣∣)2

dω

≤
∫

ΩT

(
OP

(
1√
T

)
+ 2
√

2πσ−1
min ‖ω‖ |Ff (ω)| βT

T

∑
t∈T

∥∥∥δθ̂Tt − δθ0t ∥∥∥
)2

dω

≤
∫

ΩT

(
OP

(
1√
T

)
+ 2
√

2πσ−1
min ‖ω‖ |Ff (ω)| OP

(
Lδ

∥∥∥θ̂T − θ0

∥∥∥))2

dω

= OP

(
r2
T

T
+

1√
T

∥∥∥θ̂T − θ0

∥∥∥∫
ΩT

‖ω‖ |Ff (ω)| dω

+
∥∥∥θ̂T − θ0

∥∥∥2
∫

ΩT

‖ω‖2 |Ff (ω)|2 dω

)
,

where we used Lemma A.8 in the Appendix and the fact that rotations do not change the
length of a vector for the third inequality and Assumption 6.31 for the fourth inequality.

Because of r2
T/T

T→∞−→ 0, (6.48), and Assumption 6.28, it follows that DT
T→∞−→ 0 in

probability.
Finally, by the Cauchy-Schwarz inequality,

E2
T ≤ 4DTCT (θ̂T )

T→∞−→ 0

in probability, completing the proof of (6.49).

Remark 6.34 (Asymptotic orders of rT , uT , vT , and βT ). To get consistent estimators
(φ̂T , α̂T ) and θ̂T for the rotation, scaling, and drift parameters, the Theorems 6.13, 6.23,
and 6.33 suggest that we choose the cutoffs rT , uT , and vT , and the bin size βT , such that

rT , uT , vT , βT
T→∞−→ ∞ and

βT = o(T ),

r4
T = o(T ),

√
Tr2+γ

T = o(βT ),
√
TuTvT ‖(uT , vT )‖ r2γ

T = o(βT ).

In particular, βT has to go to infinity slower than T , but faster than
√
T , much faster, in

fact, if we do not want to throw away too much information by choosing small cutoffs rT ,
uT , and vT . However, we will see in Chapter 10 that the estimation method still works
fine if, for T = 35, 000, we choose βT = 70 and rT = uT = vT = 64.

Theorem 6.35 (Uniform tightness of
(
gradθÑT (θ0)

)
T∈N). Under the Assumptions 5.6,

6.2, and 6.28, if rT = o(T 1/6),
√
Tr3

T/βT
T→∞−→ 0, and

√
T (φ̂T − φ0, α̂T − α0) is asymptot-

ically centred normal, then
(√

TgradθÑT (θ0)
)
T∈N is uniformly tight.

Proof. We will use the decomposition ÑT = AT + BT + CT from (6.54) and show that∥∥∥√TgradθAT (θ0)
∥∥∥ = OP(1),

√
TgradθCT (θ0)

T→∞−→ 0 in probability, and
√
TgradθBT (θ0)
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converges in distribution to a centred Gaussian random vector. First, consider

ωtT :=
σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω. (6.63)

By Lemma A.12 in the Appendix and Corollary 6.24, we get∣∣Ff (ωtT )−Ff (ω)
∣∣ ≤ Lf

∥∥∥∥ σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω − ω
∥∥∥∥ = OP

(
1√
T

)
, (6.64)

with some Lipschitz-constant Lf > 0. Since =
[
Ff (ω)Ff (ω)

]
= =

[
|Ff (ω)|2

]
= 0, it follows

that∣∣∣= [Ff (ωtT )Ff (ωt
′
T )
]∣∣∣ =

∣∣∣= [(Ff (ωtT )−Ff (ω) + Ff (ω)
)(
Ff (ωt

′
T )−Ff (ω) + Ff (ω)

)]∣∣∣
=

∣∣∣=[(Ff (ωtT )−Ff (ω)
)(
Ff (ωt

′
T )−Ff (ω)

)
+
(
Ff (ωtT )−Ff (ω)

)
Ff (ω) + Ff (ω)

(
Ff (ωt

′
T )−Ff (ω)

)]∣∣∣
≤ OP

(
1

T

)
+ 2 |Ff (ω)| OP

(
1√
T

)
. (6.65)

With Lemma A.14 in the Appendix, (5.25), and (6.65), we get for the gradient of the
integrand of AT , that∥∥∥∥∥gradθ

[
−
∑
t,t′∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)( σα0

t

σα̂Tt
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Ff (ωtT )

·hω
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(δθt′ − δ
θ0
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Ff (ωt
′
T )

]∣∣∣∣∣
θ=θ0

∥∥∥∥∥
= 2

∥∥∥∥∥ ∑
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<

[
gradθhω

(
1/σα̂Tt ·R−ρφ̂Tt
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θ0
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t

σα̂Tt
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Ff (ωtT )

·hω
(

1/σα̂Tt′ ·R−ρφ̂T
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θ0
t′ )

)(
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σα̂Tt′

)2

Ff (ωt
′
T )

]∣∣∣∣∣
θ=θ0

∥∥∥∥∥
= 2

∥∥∥∥∥∑
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(
σα0
t σ
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σα̂Tt σα̂Tt′

)2(
bt,0T,ω(θ)=

[
Ff (ωtT )Ff (ωt

′
T )

·hω
(

1/σα̂Tt ·R−ρφ̂Tt
(δθt − δ

θ0
t )
)
hω

(
1/σα̂Tt′ ·R−ρφ̂T

t′
(δθt′ − δ

θ0
t′ )

)])∣∣∣∣∣
θ=θ0

∥∥∥∥∥
= 2

∥∥∥∥∥ ∑
t,t′∈T

(
σα0
t σ

α0

t′

σα̂Tt σα̂Tt′

)2

bt,0T,ω(θ0)=
[
Ff (ωtT )Ff (ωt

′
T )
] ∥∥∥∥∥

≤ 2
∑
t,t′∈T

(
σα0
t σ

α0

t′

σα̂Tt σα̂Tt′

)2 ∥∥bt,0T,ω(θ0)
∥∥ ∣∣∣= [Ff (ωtT )Ff (ωt

′
T )
]∣∣∣

≤ 2C̃

(
σmax

σmin

)4

‖ω‖ T
2

β2
T

(
OP

(
1

T

)
+ 2 |Ff (ω)| OP

(
1√
T

))
= OP

(
‖ω‖ T

β2
T

+ ‖ω‖ |Ff (ω)| T
3/2

β2
T

)
, (6.66)
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with bt,0T,ω(θ) and C̃ > 0 from Lemma 5.10. It follows that

∥∥∥√TgradθAT (θ0)
∥∥∥ ≤ √

T

∫
ΩT

β2
T

T 2
OP

(
‖ω‖ T

β2
T

+ ‖ω‖ |Ff (ω)| T
3/2

β2
T

)
dω

= OP

(
r3
T√
T

+

∫
ΩT

‖ω‖ |Ff (ω)| dω

)
.

Since rT = o(T 1/6) and Assumption 6.28 holds, we get that∥∥∥√TgradθAT (θ0)
∥∥∥ = OP(1). (6.67)

Next, we consider the asymptotic behaviour of
√
TgradθCT (θ0). By Lemma A.14 in

the Appendix, Lemma 5.4, and (5.25), we get

E

∥∥∥∥∥gradθ

(
−
∑
t,t′∈T

hω(1/σα̂Tt ·R−ρφ̂Tt
δθt )V

t
T (ω)hω(1/σα̂Tt′ ·R−ρφ̂T
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δθt′)V

t′
T (ω)

)∥∥∥∥∥
= E

∥∥∥∥∥−∑
t,t′∈T

2<
(

gradθhω(1/σα̂Tt ·R−ρφ̂Tt
δθt )V

t
T (ω)hω(1/σα̂Tt′ ·R−ρφ̂T

t′
δθt′)V

t′
T (ω)

)∥∥∥∥∥
= 2E

∥∥∥∥∥∑
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bt,0T,ω(θ)=
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t
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T (ω)

)∥∥∥∥∥
≤ 2C̃ ‖ω‖

∑
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E
∣∣∣V t
T (ω)V t′

T (ω)
∣∣∣ = 2C̃ ‖ω‖

∑
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O
(

1

βT

)
= O

(
‖ω‖ T

2

β3
T

)
, (6.68)

with bt,0T,ω(θ) and C̃ > 0 from Lemma 5.10. It follows that

E
∥∥∥√TgradθCT (θ0)

∥∥∥ = E

∥∥∥∥∥√T
∫

ΩT

β2
T

T 2
gradθ

(
−
∑
t,t′∈T

hω(1/σα̂Tt ·R−ρφ̂Tt
δθt )V

t
T (ω)

·hω(1/σα̂Tt′ ·R−ρφ̂T
t′
δθt′)V

t′
T (ω)

)∣∣∣∣∣
θ=θ0

dω

∥∥∥∥∥
≤
√
T

∫
ΩT

β2
T

T 2
O
(
‖ω‖ T

2

β3
T

)
dω = O

(√
Tr3

T

βT

)
.

Since
√
Tr3

T/βT
T→∞−→ 0, we have

√
TgradθCT (θ0)

T→∞−→ 0 in probability. (6.69)

It remains to show the asymptotic normality of
√
TgradθBT (θ0). From Lemma 5.10,

we get

gradθBT (θ) = gradθ

{
−
∫

ΩT

2<

[(
βT
T

∑
t′∈T

hω(−1/σα̂Tt′ ·R−ρφ̂T
t′
δθt′)V

t′(ω)

)

·

(
βT
T

∑
t∈T

hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
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t )
)( σα0

t

σα̂Tt

)2

Ff (ωtT )

)]
dω

}
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from which it follows that

gradθBT (θ) =

∫
ΩT

2β2
T

T 2

∑
t,t′∈T

bt,t
′

T,ω(θ)=

[(
σα0
t

σα̂Tt

)2

Ff (ωtT )V t′(ω)

·hω
(

1/σα̂Tt ·R−ρφ̂Tt
(δθt − δ

θ0
t )− 1/σα̂Tt′ ·R−ρφ̂T

t′
δθt′

)]
dω

=
2
√
βT
T

∑
t′∈T

(σα̂Tt′ )−2 1
√
nt′

∑
j∈Jt′T

νt
′

j ε
t′

j =

[∫
ΩT

βT
T

∑
t∈T

(
σα0
t

σα̂Tt

)2

bt,t
′

T,ω(θ)

·hω
(

1/σα̂Tt ·R−ρφ̂Tt
(δθt − δ

θ0
t )− 1/σα̂Tt′ ·R−ρφ̂T

t′
δθt′

)
Ff (ωtT )

· exp

(
2πi

〈
1/σα̂Tt′ ·Rρ

φ̂T
t′
ω, xj

〉)
dω

]
. (6.70)

Now, let

Gt′

j (ω) := (σα0

t′ )−2 exp
(

2πi
〈

1/σα0

t′ ·Rρ
φ0
t′
ω, xj

〉)
Ff (ω),

Ĝt′
j (ω)

t

T
:=

(
σα0
t

σα̂Tt σα̂Tt′

)2

exp

(
2πi

〈
1/σα̂Tt′ ·Rρ

φ̂T
t′
ω, xj

〉)
Ff (ωtT ),

and ξ ∈ Rd1 . From (6.70), we get that

〈
ξ,
√
TgradθBT (θ0)

〉
=

2
√
βT√
T

∑
t′∈T

1
√
nt′

∑
j∈Jt′T

νt
′

j ε
t′

j =

[∫
ΩT

βT
T

∑
t∈T

Ĝt′
j (ω)

t

T

·
〈
ξ,bt,t

′

T,ω(θ0)
〉
hω(−1/σα̂Tt′ ·R−ρφ̂T

t′
δθ0t′ ) dω

]
= DT + ET , (6.71)

with

DT :=
2
√
βT√
T

∑
t′∈T

1
√
nt′

∑
j∈Jt′T

νt
′

j ε
t′

j =

[∫
ΩT

βT
T

∑
t∈T

(
Ĝt′
j (ω)

t

T
−Gt′

j (ω)

)

·
〈
ξ,bt,t

′

T,ω(θ0)
〉
hω(−1/σα̂Tt′ ·R−ρφ̂T

t′
δθ0t′ ) dω

]
,

ET :=
2
√
βT√
T

∑
t′∈T

1
√
nt′

∑
j∈Jt′T

νt
′

j ε
t′

j =

[∫
ΩT

βT
T

∑
t∈T

Gt′

j (ω)

·
〈
ξ,bt,t

′

T,ω(θ0)
〉
hω(−1/σα̂Tt′ ·R−ρφ̂T

t′
δθ0t′ ) dω

]
.

We will show that DT
T→∞−→ 0 in probability and ET converges in distribution to a centred
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Gaussian random variable. Consider∣∣∣∣Ĝt′
j (ω)

t

T
−Gt′

j (ω)

∣∣∣∣ =

∣∣∣∣∣
(

σα0
t

σα̂Tt σα̂Tt′

)2

exp

(
2πi

〈
1/σα̂Tt′ ·Rρ

φ̂T
t′
ω, xj

〉)
Ff (ωtT )

−(σα0

t′ )−2 exp
(

2πi
〈

1/σα0

t′ ·Rρ
φ0
t′
ω, xj

〉)
Ff (ω)

∣∣∣∣∣
≤

∣∣∣∣∣
(

σα0
t

σα̂Tt σα̂Tt′

)2

exp

(
2πi

〈
1/σα̂Tt′ ·Rρ

φ̂T
t′
ω, xj

〉)
Ff (ωtT )

−(σα0

t′ )−2 exp
(

2πi
〈

1/σα0

t′ ·Rρ
φ0
t′
ω, xj

〉)
Ff (ωtT )

∣∣∣∣∣
+

∣∣∣∣∣(σα0

t′ )−2 exp
(

2πi
〈

1/σα0

t′ ·Rρ
φ0
t′
ω, xj

〉)
Ff (ωtT )

−(σα0

t′ )−2 exp
(

2πi
〈

1/σα0

t′ ·Rρ
φ0
t′
ω, xj

〉)
Ff (ω)

∣∣∣∣∣
=

∣∣∣∣∣
(

σα0
t

σα̂Tt σα̂Tt′

)2

exp

(
2πi

〈
1/σα̂Tt′ ·Rρ

φ̂T
t′
ω, xj

〉)

−(σα0

t′ )−2 exp
(

2πi
〈

1/σα0

t′ ·Rρ
φ0
t′
ω, xj

〉) ∣∣∣∣∣ ‖Ff‖∞
+σ−2

min

∣∣∣∣Ff ( σα0
t

σα̂Tt
R
ρ
φ̂T
t −ρ

φ0
t

ω

)
−Ff (ω)

∣∣∣∣ . (6.72)

It is ∣∣∣∣∣
(

σα0
t

σα̂Tt σα̂Tt′

)2

exp

(
2πi

〈
1/σα̂Tt′ ·Rρ

φ̂T
t′
ω, xj

〉)

−(σα0

t′ )−2 exp
(

2πi
〈

1/σα0

t′ ·Rρ
φ0
t′
ω, xj

〉) ∣∣∣∣∣
≤

∣∣∣∣∣∣
(

σα0
t

σα̂Tt σα̂Tt′

)2

−
(

1

σα0

t′

)2

∣∣∣∣∣∣
∣∣∣∣exp

(
2πi

〈
1/σα̂Tt′ ·Rρ

φ̂T
t′
ω, xj

〉)∣∣∣∣
+(σα0

t′ )−2

∣∣∣∣exp

(
2πi

〈
1/σα̂Tt′ ·Rρ

φ̂T
t′
ω, xj

〉)
− exp

(
2πi
〈

1/σα0

t′ ·Rρ
φ0
t′
ω, xj

〉)∣∣∣∣
≤

∣∣∣(σα̂Tt σα̂Tt′ )2 − (σα0
t σ

α0

t′ )2
∣∣∣

σ6
min

+
23/2π ‖xj‖
σ2

min

∣∣∣∣∣ 1

σα̂Tt′
R
ρ
φ̂T
t′
ω − 1

σα0

t′
R
ρ
φ0
t′
ω

∣∣∣∣∣
= OP

(
1√
T

)
, (6.73)

where we used the Delta-Method (Theorem B.7 in the Appendix) to see that the ran-
dom variables

√
T
(
(σα̂Tt σα̂Tt′ )2 − (σα0

t σ
α0

t′ )2
)

and
√
T
(
1/σα̂Tt′ · Rρ

φ̂T
t′
ω − 1/σα0

t′ · Rρ
φ0
t′
ω
)

are

asymptotically centred normal. From (6.65), (6.72), and (6.73), it follows that∣∣∣∣Ĝt′
j (ω)

t

T
−Gt′

j (ω)

∣∣∣∣ = OP

(
1√
T

)
.
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Since
∣∣εt′j ∣∣ = OP(1) for all t′ ∈ T, j ∈ J t′T , we get

|DT | ≤ 4C̃ ‖ξ‖
√
βT√
T

∑
t′∈T

1
√
nt′

∑
j∈Jt′T

νt
′

j OP(1)

∫
ΩT

βT
T

∑
t∈T

OP

(
1√
T

)
‖ω‖ dω

≤
√
βT√
T

∑
t′∈T

OP

(
r3
T√
T

)
= OP

(
r3
T√
βT

)
.

with C̃ > 0 from Lemma 5.10. Since r6
T/βT = o(

√
Tr3

T/βT )
T→∞−→ 0, we get

DT
T→∞−→ 0 in probability. (6.74)

Finally, ET is a linear combination of independent standard-normal random variables εt
′
j

and therefore a centred Gaussian random variable with variance

4βT
T

∑
t′∈T

1

nt′

∑
j∈Jt′T

(νt
′

j )2=

[∫
ΩT

βT
T

∑
t∈T

Gt′

j (ω)
〈
ξ,bt,t

′

T,ω(θ0)
〉
hω(−1/σα̂Tt′ ·R−ρφ̂T

t′
δθ0t′ ) dω

]2

converging to ξ>Σ̃ξ, where

Σ̃ :=

∫ 1

0

1

n

n∑
j=1

St
′

j (St
′

j )> dt′,

with ν̄j from Assumption 6.14, bt,t
′
∞,ω(θ0) from (5.23) and

St
′

j := 2ν̄j(t
′)=

[∫
R2

∫ 1

0

Gt′

j (ω)bt,t
′

∞,ω(θ0)hω(−1/σα0

t′ ·R−ρφ0
t′
δθ0t′ ) dt dω

]
.

By Lemma A.16 and Corollary B.5 (both in the Appendix),

√
TgradθBT (θ0)

T→∞−→ N (0, Σ̃) in distribution. (6.75)

From (6.67), (6.69), (6.75), and Slutzky’s Lemma (Theorem B.9 in the Appendix), we

deduce
√
TgradθÑT (θ0) = OP(1), completing the proof.

Assumption 6.36. For all m ∈ {1, . . . , d1}, there is a Borel set Bm ⊆ [0, 1] of positive
Lebesgue-measure, such that at least one of the functions

Bm → R, t 7→ ∂(δθt )1

∂θm

∣∣∣∣
θ=θ0

, and Bm → R, t 7→ ∂(δθt )2

∂θm

∣∣∣∣
θ=θ0

,

is not constant, where δθt =
(
(δθt )1, (δ

θ
t )2

)
.

Example 6.37 (Polynomial drift). Suppose that we have a polynomial drift model, that
is,

(δθ̃t )1 =

d′1∑
m=0

θmt
m, (δθ̃t )2 =

d′′1∑
m=0

θd′1+1+mt
m,
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where θ̃ = (θ0, . . . , θd1) and d′1, d
′′
1 ∈ N with d′1 + d′′1 = d1. In this case, Assumption 6.36 is

an implication of the identifiability constraint δθ̃0 = 0 for all θ̃ ∈ Θ from Assumption 3.3,
since it means that the intercepts θ0 and θd′1+1 are zero. Hence,

(δθt )1 =

d′1∑
m=1

θmt
m, (δθt )2 =

d′′1∑
m=1

θd′1+1+mt
m,

with θ = (θ1, . . . , θd1). Then, we have ∂(δθt )1/∂θm = tm for all m ∈ {1, . . . , d′1} and
∂(δθt )2/∂θm = tm−d

′
1 for all m ∈ {d′1 + 1, . . . , d1}. Since those functions are not constant

in t, Assumption 6.36 holds.

Assumption 6.38. We assume that f ∈ H1(R2).

Lemma 6.39. Under the Assumptions 5.9 and 6.38, HessθÑ(θ) has finite operator norm
for all θ ∈ U ′ with U ′ ⊆ Θ from Assumption 5.9. Moreover, the matrix

HN := HessθÑ(θ0) (6.76)

is symmetric. If the Assumptions 6.28 and 6.36 hold, HM is also positive definite and
thus invertible.

Proof. From Lemma 5.10, Lemma A.15, and Theorem B.2 in the Appendix, with

hθω,T,t := hω

(
1/σα̂Tt ·R−ρφ̂Tt

(δθt − δ
θ0
t )
)
, (6.77)

we get

HessθÑ(θ) = −Hessθ

∫
R2

|Ff (ω)|2
∫ 1

0

∫ 1

0

hθω,T,th
θ
ω,T,t′ dt dt′ dω

= −2

∫
R2

|Ff (ω)|2
∫ 1

0

∫ 1

0

<
(
hθω,T,t′ Hessθh

θ
ω,T,t

+ gradθh
θ
ω,T,tgrad>θ h

θ
ω,T,t′

)
dt dt′ dω

= −2

∫
R2

|Ff (ω)|2
∫ 1

0

∫ 1

0

<

(
hθω,T,th

θ
ω,T,t′

·
[
iHt,0

T,ω(θ)− bt,0T,ω(θ)
(
bt,0T,ω(θ)− bt

′,0
T,ω(θ)

)>])
dt dt′ dω. (6.78)

Let ξ ∈ Rd1 with ‖ξ‖ = 1. Then, because f ∈ H1(R2) by Assumption 6.38,∥∥∥HessθÑ(θ)ξ
∥∥∥

≤ 2

∫
R2

|Ff (ω)|2
∫ 1

0

∫ 1

0

∥∥Ht,0
T,ω(θ)ξ

∥∥+
∥∥∥bt,0T,ω(θ)

(
bt,0T,ω(θ)− bt

′,0
T,ω(θ)

)>
ξ
∥∥∥ dt dt′ dω

≤ 2

∫
R2

|Ff (ω)|2
∫ 1

0

∫ 1

0

∥∥Ht,0
T,ω(θ)

∥∥
1

+
∥∥bt,0T,ω(θ)

∥∥(∥∥bt,0T,ω(θ)
∥∥+

∥∥∥bt′,0T,ω(θ)
∥∥∥) dt dt′ dω

≤ 2

∫
R2

|Ff (ω)|2
(
C̃ ‖ω‖+ 2C̃2 ‖ω‖2

)
dω <∞,
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with C̃ > 0 from Lemma 5.10. Thus, HessθÑ(θ) has finite operator norm. From (6.78),
we have for θ = θ0 that

HN = HessθÑ(θ0)

= 2

∫
R2

|Ff (ω)|2
∫ 1

0

∫ 1

0

bt,0T,ω(θ0)
(
bt,0T,ω(θ0)− bt

′,0
T,ω(θ0)

)>
dt dt′ dω

= 2

∫
R2

|Ff (ω)|2
[∫ 1

0

bt,0T,ω(θ0)bt,0T,ω(θ0)> dt

−
(∫ 1

0

bt,0T,ω(θ0) dt

)(∫ 1

0

bt
′,0
T,ω(θ0) dt′

)> ]
dω. (6.79)

Since matrices of the form xx> with x ∈ Rd1 are symmetric, it follows that HN is sym-
metric.

Now, let ξ ∈ Rd1 \ {0}. By Assumption 6.28, there is an open Borel set B ⊆ R2 with
positive Lebesgue-measure such that Ff (ω) 6= 0 for all ω ∈ B. If the Assumptions 6.36
and 6.18 (implying that the rotation and scaling functions themselves do not vanish an
a Borel set with positive Lebesgue-measure) hold, there is another Borel set B′ ⊆ [0, 1]
with positive Lebesgue-measure such that

B′ → R, t 7→
〈
ξ,bt,0T,ω(θ0)

〉
=

2π

σα̂Tt

d1∑
m=1

ξm

((
ω1 cos

(
ρφ̂Tt
)

+ ω2 sin
(
ρφ̂Tt
))∂(δθt )1

∂θm

+
(
ω2 cos

(
ρφ̂Tt
)
− ω1 sin

(
ρφ̂Tt
))∂(δθt )2

∂θm

)∣∣∣∣∣
θ=θ0

is not constant for all ω ∈ R2\Ω0 with some Lebesgue null-set Ω0 ⊆ R2. Since the Cauchy-

Schwarz inequality implies that
(∫ 1

0
g(t) dt

)2 ≤
∫ 1

0
g(t)2 dt for all integrable functions

g : [0, 1]→ R, with equality if and only if g is constant a.e., we get∫ 1

0

〈
ξ,bt,0T,ω(θ0)

〉2
dt−

(∫ 1

0

〈
ξ,bt,0T,ω(θ0)

〉
dt

)2

> 0.

Hence,

ξ>HNξ ≥ 2

∫
B

|Ff (ω)|2
[∫ 1

0

〈
ξ,bt,0T,ω(θ0)

〉2
dt−

(∫ 1

0

〈
ξ,bt,0T,ω(θ0)

〉
dt

)2
]

dω > 0,

since the integrand (as a function in ω) is strictly positive on B. We conclude that HN is
symmetric and positive definite and as such invertible.

Assumption 6.40. We assume that f ∈ H2(R2).

Theorem 6.41. Under the Assumption 5.9, let (θ̂∗T )T∈N a sequence of random vectors

with values in U ′, such that θ̂∗T
T→∞−→ θ0 in probability. Suppose, that the Assumptions of

Theorem 6.35 and the Assumptions 6.25 and 6.40 hold. Then, with HN from (6.76),∥∥∥HessθÑT (θ̂∗T )−HN

∥∥∥
1

T→∞−→ 0 in probability.
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Proof. We will use the decomposition ÑT = AT +BT + CT from (6.54) and show that∥∥∥HessθAT (θ̂∗T )−HN

∥∥∥
1

T→∞−→ 0 in probability,

sup
θ∈U ′
‖HessθBT (θ) + HessθCT (θ)‖1

T→∞−→ 0 in probability.

With Lemma 5.10, Lemma A.14 in the Appendix, ωtT from (6.63), and hθω,T,t from 6.77,
we get

HessθAT (θ)

= Hessθ

[
−
∫

ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0
t

σα̂Tt

)2

hθω,T,tFf (ωtT )

(
σα0

t′

σα̂Tt′

)2

hθω,T,t′Ff (ωt
′
T ) dω

]

= −2

∫
ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0
t

σα̂Tt

)2
(
σα0

t′

σα̂Tt′

)2

<

{
Ff (ωtT )Ff (ωt

′
T )

·
[

Hessθh
θ
ω,T,th

θ
ω,T,t′ + gradθh

θ
ω,T,tgrad>θ h

θ
ω,T,t′

]}
dω

= −2

∫
ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0
t

σα̂Tt

)2
(
σα0

t′

σα̂Tt′

)2

<
{
Ff (ωtT )Ff (ωt

′
T )

·hθω,T,thθω,T,t′
[
iHt,0

T,ω(θ)− bt,0T,ω(θ)bt,0T,ω(θ)> + bt,0T,ω(θ)bt
′,0
T,ω(θ)>

]}
dω

= −2

∫
ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0
t

σα̂Tt

)2
(
σα0

t′

σα̂Tt′

)2

<
{
Ff (ωtT )Ff (ωt

′
T )

·hθω,T,thθω,T,t′
[
iHt,0

T,ω(θ)− bt,0T,ω(θ)bt,t
′

T,ω(θ)>
]}

dω. (6.80)

where we used that bt,0T,ω(θ0)− bt
′,0
T,ω(θ0) = bt,t

′

T,ω(θ0). From (6.64), we get∣∣Ff (ωtT )
∣∣ ≤ ∣∣Ff (ωtT )−Ff (ω)

∣∣+ |Ff (ω)| = OP

(
1√
T

+ |Ff (ω)|
)
. (6.81)

Moreover, the continuity of θ 7→ δθt (Assumption 6.29), the Lipschitz-continuity of hω
(Lemma A.8 in the Appendix), and the continuous mapping theorem (Theorem B.8 in
the Appendix) yield that∣∣∣hθ̂∗Tω,T,t − 1

∣∣∣ =
∣∣∣hω (1/σα̂Tt ·R−ρφ̂Tt

(δ
θ̂∗T
t − δθ0t )

)
− 1
∣∣∣

=
∣∣∣exp

(
2πi
〈
ω, 1/σα̂Tt ·R−ρφ̂Tt

(δ
θ̂∗T
t − δθ0t )

〉)
− 1
∣∣∣

=
∣∣∣exp

(
2πi
〈

1/σα̂Tt ·Rρ
φ̂T
t

ω, δ
θ̂∗T
t − δθ0t

〉)
− 1
∣∣∣

≤ 2π
√

2
∥∥∥1/σα̂Tt ·Rρ

φ̂T
t

ω
∥∥∥∥∥∥δθ̂∗Tt − δθ0t ∥∥∥

≤ 2π
√

2

σmin

‖ω‖
∥∥∥δθ̂∗Tt − δθ0t ∥∥∥ = oP

(
‖ω‖

)
and thus

h
θ̂∗T
ω,T,th

θ̂∗T
ω,T,t′ = 1 + oP

(
‖ω‖2). (6.82)
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In particular, the imaginary part converges to 0. With (6.65), (6.81), and (6.82), we have∥∥∥∥<{Ff (ωtT )Ff (ωt
′
T ) · hθ̂

∗
T
ω,T,th

θ̂∗T
ω,T,t′ · iH

t,0
T,ω(θ̂∗T )

}∥∥∥∥
1

=

∣∣∣∣={Ff (ωtT )Ff (ωt
′
T ) · hθ̂

∗
T
ω,T,th

θ̂∗T
ω,T,t′

}∣∣∣∣ ∥∥∥Ht,0
T,ω(θ̂∗T )

∥∥∥
1

=

∣∣∣∣={Ff (ωtT )Ff (ωt
′
T )
}
<
{
h
θ̂∗T
ω,T,th

θ̂∗T
ω,T,t′

}
+<

{
Ff (ωtT )Ff (ωt

′
T )
}
=
{
h
θ̂∗T
ω,T,th

θ̂∗T
ω,T,t′
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T,ω(θ̂∗T )

∥∥∥
1

≤
∣∣∣={Ff (ωtT )Ff (ωt

′
T )
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1

+
∣∣Ff (ωtT )

∣∣ ∣∣∣Ff (ωt′T )
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T,ω(θ̂∗T )
∥∥∥

1

= OP

(
‖ω‖
T

+
‖ω‖ |Ff (ω)|√

T

)
+ oP

(
‖ω‖3 |Ff (ω)|2

)
.

It follows that∥∥∥∥∥
∫

ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0
t

σα̂Tt

)2
(
σα0

t′

σα̂Tt′

)2

·<

{
Ff (ωtT )Ff (ωt

′
T ) · hθ̂

∗
T
ω,T,th

θ̂∗T
ω,T,t′ · iH
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T,ω(θ̂∗T )

}
dω

∥∥∥∥∥
1

≤
(
σmax

σmin

)4 ∫
ΩT

β2
T

T 2

∑
t,t′∈T

OP

(
‖ω‖
T

+
‖ω‖ |Ff (ω)|√

T

)
+ oP

(
‖ω‖3 |Ff (ω)|2

)
dω

= OP

(
r3
T

T
+

√
rT
T

∫
ΩT

‖ω‖ |Ff (ω)|2 dω

)
+ oP

(∫
ΩT

‖ω‖3 |Ff (ω)|2 dω

)
= oP(1), (6.83)

because of r3
T/T

T→∞−→ 0 and Assumption 6.40. Similarly,∥∥∥<{Ff (ωtT )Ff (ωt
′
T ) · iHt,0

T,ω(θ0)
}∥∥∥

1
=

∣∣∣={Ff (ωtT )Ff (ωt
′
T )
}∣∣∣ ∥∥Ht,0

T,ω(θ0)
∥∥

1

= OP

(
‖ω‖
T

+
‖ω‖ |Ff (ω)|√

T

)
,

which implies that∥∥∥∥∥
∫

ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0
t

σα̂Tt

)2
(
σα0

t′

σα̂Tt′

)2

<

{
Ff (ωtT )Ff (ωt

′
T ) · iHt,0

T,ω(θ0)

}
dω

∥∥∥∥∥
1

= oP(1). (6.84)

Moreover, by Assumption 5.9 and the continuous mapping theorem (Theorem B.8 in the
Appendix), we get that∥∥∥bt,0T,ω(θ̂∗T )bt,t

′

T,ω(θ̂∗T )> − bt,0T,ω(θ0)bt,t
′

T,ω(θ0)>
∥∥∥

1

≤
∥∥∥bt,0T,ω(θ̂∗T )

[
bt,t

′

T,ω(θ̂∗T )− bt,t
′

T,ω(θ0)
]>∥∥∥

1
+
∥∥∥[bt,0T,ω(θ̂∗T )− bt,0T,ω(θ0)

]
bt,t

′

T,ω(θ0)>
∥∥∥

1

≤ d1C̃ ‖ω‖
(∥∥∥bt,t′T,ω(θ̂∗T )− bt,t

′

T,ω(θ0)
∥∥∥+

∥∥∥bt,0T,ω(θ̂∗T )− bt,0T,ω(θ0)
∥∥∥)



6.2. DRIFT ESTIMATION 77

≤ 2πd1C̃

σmin

‖ω‖
(

2 |ω1|
∣∣∣cos(ρφ̂Tt )

∣∣∣ ∥∥∥gradθ(δ
θ
t )1|θ=θ̂∗T − gradθ(δ

θ
t )1|θ=θ0

∥∥∥
+2 |ω1|

∣∣∣sin(ρφ̂Tt )
∣∣∣ ∥∥∥gradθ(δ

θ
t )2|θ=θ̂∗T − gradθ(δ

θ
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∥∥∥
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∣∣∣sin(−ρφ̂Tt )
∣∣∣ ∥∥∥gradθ(δ

θ
t )1|θ=θ̂∗T − gradθ(δ

θ
t )1|θ=θ0

∥∥∥
+2 |ω2|

∣∣∣cos(ρφ̂Tt )
∣∣∣ ∥∥∥gradθ(δ

θ
t )2|θ=θ̂∗T − gradθ(δ

θ
t )2|θ=θ0

∥∥∥
+ |ω1|

∣∣∣cos(ρφ̂Tt′ )
∣∣∣ ∥∥∥gradθ(δ

θ
t′)1|θ=θ̂∗T − gradθ(δ

θ
t′)1|θ=θ0

∥∥∥
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∣∣∣sin(ρφ̂Tt′ )
∣∣∣ ∥∥∥gradθ(δ

θ
t′)2|θ=θ̂∗T − gradθ(δ

θ
t′)2|θ=θ0

∥∥∥
+ |ω2|

∣∣∣sin(−ρφ̂Tt′ )
∣∣∣ ∥∥∥gradθ(δ

θ
t′)1|θ=θ̂∗T − gradθ(δ

θ
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∥∥∥
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∣∣∣cos(ρφ̂Tt′ )
∣∣∣ ∥∥∥gradθ(δ

θ
t′)2|θ=θ̂∗T − gradθ(δ

θ
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∥∥∥)
≤ 2πd

3/2
1 C̃
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‖ω‖2
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2
∥∥∥gradθ(δ

θ
t )1|θ=θ̂∗T − gradθ(δ

θ
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∥∥∥
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∥∥∥gradθ(δ

θ
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θ
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∥∥∥
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∥∥∥gradθ(δ

θ
t′)1|θ=θ̂∗T − gradθ(δ

θ
t′)1|θ=θ0

∥∥∥
+
∥∥∥gradθ(δ

θ
t′)2|θ=θ̂∗T − gradθ(δ

θ
t′)2|θ=θ0

∥∥∥)
= oP

(
‖ω‖2).

With (6.80), (6.81), (6.82), (6.83), and (6.84), it follows that∥∥∥HessθAT (θ̂∗T )− HessθAT (θ0)
∥∥∥

1

=
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∥∥∥∥∥
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)
= oP(1), (6.85)

because of r6
T/T

T→∞−→ 0 and Assumption 6.40. By Lemma 6.39, HN has finite operator
norm. In particular, the components of HN are finite. Hence, with (6.79),∥∥∥∥2

∫
R2\ΩT

|Ff (ω)|2
∫ 1

0

∫ 1

0

bt,0T,ω(θ0)bt,t
′

T,ω(θ0)> dt dt′ dω

∥∥∥∥
1

= o(1),
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as T →∞. With (6.80) and (6.85), it follows that∥∥∥HessθAT (θ̂∗T )−HN

∥∥∥
1
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bt,0T,ω(θ0)bt,t
′
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By the continuous mapping theorem (Theorem B.8 in the Appendix), we have that

(
σα0
t σ

α0

t′

σα̂Tt σα̂Tt′

)2

T→∞−→ 1 in probability.

Together with Lemma 5.10 and (6.81), this implies that
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= oP(1), (6.87)

since r2
T/T

T→∞−→ 0 and Assumption 6.40 holds. Furthermore, by Lemma A.7 in the
Appendix, Lemma A.9 in the Appendix, and Assumption 6.25, we get that∥∥∥∥∥β2
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≤ 2d1C̃ ‖ω‖
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, (6.88)

with C̃ > 0 from Lemma 5.10, where the final line in (6.88) follows from Assumption
6.11 and Lemma A.5 in the Appendix. Similarly, with Lemma A.5 in the Appendix and
Lemma A.6 in the Appendix,∥∥∥∥∥βTT ∑
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Collecting (6.86), (6.87), (6.88), and (6.89), it follows that∥∥∥HessθAT (θ̂∗T )−HN

∥∥∥
1
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Next, we show that supθ∈U ′ ‖HessθBT (θ)‖1

T→∞−→ 0 in probability. By Lemma 5.10,
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Because of (6.81), (6.91), and Lemma 5.4, we have

sup
θ∈U ′
‖HessθBT (θ)‖1 = sup

θ∈U ′

∥∥∥∥∥
∫

ΩT

2<

[
β2
T

T 2

∑
t,t′∈T

Hessθhω

(
τ tT (δθt − δ

θ0
t )− τ t′T δθt′

)
·
(
σα0
t

σα̂Tt

)2

Ff (ωtT )V t′(ω)

]
dω

∥∥∥∥∥
1

≤ 2 sup
θ∈U ′

∫
ΩT

β2
T

T 2

∑
t,t′∈T

∥∥∥Hessθhω

(
τ tT (δθt − δ

θ0
t )− τ t′T δθt′

)∥∥∥
1

·
(
σmax

σmin

)2 ∣∣Ff (ωtT )
∣∣ ∣∣∣V t′(ω)

∣∣∣ dω

= OP

(∫
ΩT

‖ω‖2

√
βT

{
1√
T

+ |Ff (ω)|
}

dω

)

= OP

(
r4
T√
TβT

+
rT√
βT

∫
ΩT

‖ω‖ |Ff (ω)| dω

)
.



80 CHAPTER 6. MAIN RESULTS

Because of r4
T/
√
TβT

T→∞−→ 0, rT/
√
βT

T→∞−→ 0, and Assumption 6.28, we conclude that

sup
θ∈U ′
‖HessθBT (θ)‖1

T→∞−→ 0 in probability. (6.92)

Finally, we consider HessθCT (θ). Because of (6.91) and Lemma 5.4, it is
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Since r4
T/βT

T→∞−→ 0, we get

sup
θ∈U ′
‖HessθCT (θ)‖1

T→∞−→ 0 in probability. (6.93)

From (6.90), (6.92), and (6.93), we conclude that∥∥∥HessθÑT (θ0)−HN

∥∥∥
1

T→∞−→ 0 in probability.

Theorem 6.42 (Uniform tightness of drift estimators). Under the Assumptions 6.36 and

6.40 and the Assumptions of Theorem 6.35, if θ̂T
T→∞−→ θ0 in probability, the sequence(√

T (θ̂T − θ0)
)
T∈N is uniformly tight.

Proof. By Assumption 6.25, there is a convex open neighborhood U ′ ⊆ Θ of θ0 such that
ÑT is twice continuously differentiable on U ′. In particular, if θ ∈ U ′ is a minimizer of
ÑT , then gradθÑT (θ) = 0. We define

G̃T (θ) :=

{
gradθÑT (θ), if θ ∈ U ′,
gradθÑT (θ0), if θ ∈ Θ \ U ′.

Because, by definition, θ̂T is a minimizer of ÑT , and because θ̂T
T→∞−→ θ0 ∈ U ′ in probability,

we have that

P
(√

TG̃T (θ̂T ) > ε
)

= P
(√

TgradθÑT (θ̂T ) > ε, θ̂T ∈ U ′
)

+P
(√

TgradθÑT (θ0) > ε, θ̂T /∈ U ′
)

≤ P
(
θ̂T /∈ U ′

)
,

which converges to 0 for all ε > 0, that is,

√
TG̃T (θ̂T ) = oP(1). (6.94)
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If θ ∈ U ′, the mean value theorem for real functions of multiple variables applied to each
component of gradθÑT (θ) yields that

gradθÑT (θ) = gradθÑT (θ0) + HessθÑT (θ†)(θ − θ0), (6.95)

with a component-wise convex combination θ† ∈ U of θ and θ0. By (6.95), on the event
{θ̂T ∈ U ′}, there is θ̂†T ∈ U ′ between θ̂T and θ0 with

gradθÑT (θ̂T ) = gradθÑT (θ0) + HessθÑT (θ̂†T )(θ̂T − θ0). (6.96)

With the definitions

θ̂∗T :=

{
θ̂†T , if θ̂T ∈ U ′,
θ0, if θ̂T ∈ Θ \ U ′,

and

H̃T :=

{
HessθÑT (θ̂∗T ) = HessθÑT (θ̂†T ), if θ̂T ∈ U ′,
0, if θ̂T ∈ Θ \ U,

and equation (6.94), it follows that

√
TgradθÑT (θ0) + H̃T

√
T (θ̂T − θ0) =

√
TG̃T (θ̂T ) = oP(1), (6.97)

which is true on the event {θ̂T ∈ U ′} by (6.96) and on the complement {θ̂T /∈ U ′} by

design of G̃T and H̃T . From (6.97) and Theorem 6.35, we get that

H̃T

√
T (θ̂T − θ0) = −

√
TgradθÑT (θ0) + oP(1) = OP(1). (6.98)

Because θ̂T is a consistent estimator for θ0 and θ̂∗T is between θ̂T and θ0, it follows at

once that θ̂∗T
T→∞−→ θ0 in probability. Since HN is invertible by Lemma 6.39, Theorem

6.41 implies that H̃T
T→∞−→ HN in probability. From this, (6.98), and Lemma A.17 in the

Appendix, we conclude that
√
T (θ̂T − θ0) = OP(1).
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Chapter 7

Model selection and motion blur

To select fitting parametric models for the drift, rotation, and scaling functions, we can
estimate with different models and choose the one which leads to the estimator with
the lowest contrast value. This can be interpreted in the following way. We explain
this for drift, the situation for the rotation and scaling is similar. Instead of minimizing
the contrast functional NT (θ) over θ ∈ Θ for, for example, linear drift functions δθ, we
could also minimize the contrast as a functional of the drift function itself, NT (δ), over
all linear functions δ on [0, 1]. This can now easily be extended to encompass a variety
of drift models, for example, by considering the set of all polynomial drift functions on
[0, 1] with degree less or equal to 3 (which we used in the Chapters 9 and 10). We can
then estimate the drift by the parametric model (and the associated parameter estimator)
with the overall smallest contrast value. Of course, since polynomial models of high degree
contain those of lesser degree, this model selection should be superfluous if we only consider
polynomial models. However, since we have to deal with statistical errors and we minimize
the contrast numerically, a too complex model (e.g., assuming a cubic polynomial for the
drift function when it is actually linear) might yield a worse reconstruction than a simpler
one, for example, due to over-fitting.

Furthermore, we use an objective means of measuring how well the estimation method
reduced the blur of the superimposed image due to the affine transformations. We will
also use this measure to compare our results to those of alternative estimation methods
which are described in Chapter 8.

We will explain the procedure for translation, first, since the application to rotation
and scaling is based on it.

7.1 Drift blur

The following was proposed in (Xu et al., 2013) which is based on the work of (Chen
et al., 2010).

Definition 7.1 (Motion blur measure). Let I : {xj | j ∈ {1, . . . , n}} → R a (grey value)
pixel image, ψ ∈ [0, 2π), and

J(ψ) :=
n∑
j=1

(
∆I
(
(xj)1, (xj)2

)
ψ

)2

the average squared directional derivative of I in direction
(
cos(ψ), sin(ψ)

)>
. We define
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the motion blur measure as

m2(I) := log

(
J(ψmax)

J(ψmin)

)
,

where we have an estimated motion direction ψmin ∈ argminψ∈[0,2π)J(ψ) and ψmax is the
direction perpendicular to ψmin.

Remark 7.2. Note, that J(ψ) = 0 if and only if I is constant in direction ψ. An
advantage of m2 is that m2(aI) = m2(I) for all a > 0 which means that it does not
depend on the grey value scale of the image. The fact that ψmin is selected as a minimizer
of J is based on the idea that the image is blurred in the direction of the motion and thus
the image intensity changes little in this direction (on average), while it varies much more
in the perpendicular direction.

The minimizer ψmin can be obtained as follows. Rewrite

J(ψ) =
(
cos(ψ), sin(ψ)

)
D
(
cos(ψ), sin(ψ)

)>
,

where

D =

(
d11 d12

d12 d22

)
with drs :=

n∑
j=1

∂I

∂(x)r

(
(xj)1, (xj)2

)
· ∂I

∂(x)s

(
(xs)j, (xj)2

)
,

for r, s ∈ {1, 2}. Then,

J(ψ) = d11 + d12 sin(2ψ) + (d22 − d11)
(
sin(ψ)

)2
.

We get the minimum value of J by setting

dJ(ψ)

dψ
= d12 cos(2ψ) + (d22 − d11) sin(2ψ) = 0,

which yields ψ = ψm + (rπ)/2, r ∈ Z, with ψm = arctan
(
2d12/(d11− d22)

)
/2. The motion

direction is then determined by

ψmin :=

{
ψm if J(ψm) ≤ J(ψm + π/2),

ψm + π/2 if J(ψm) > J(ψm + π/2).

The J(ψmax) also keeps the blur measure value low in the case of an image that is (almost)
constant over wide areas (where the directional derivative is small in any direction).

Remark 7.3 (Flaw of m2). While m2 is a good measure of blurring in a known direction,
it has a major flaw when it comes to determining the motion direction. Consider an
image I which contains a vertical white bar ten pixels long and 1 pixel wide and is black
everywhere else. Then, the motion blur measure m2 will register the long bright object as a
vertically blurred shorter and even brighter object. If we now blur this image horizontally
such that it now contains a less bright (i.e., grey) bar of length 10 pixels and width 5 pixels,
the motion blur value of that image (in vertical direction) will be less than the one of the
original image because the total squared directional derivative in horizontal direction (i.e.,
J(ψmax)) becomes much smaller due to the lower grey value of the bar.

This problem occurs when there is a stretched object of relatively high brightness in
the image, as is the case for the curved lines in the test image in Figure 9.1 and for the
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dense structure in the middle lower third of the data shown in Figure 10.3. We can thus
apply m2 only if we already know a meaningful motion direction. In simulations, this
is easy since we know the true drift, rotation, and scaling and can thus use the average
true motion direction. In our application to SMS data, we will use the average motion
direction of fiducial markers which mostly follow the true and unknown motion of the
specimen they are attached to (see 8), to assess the quality of our estimation results.

7.2 Rotation and scaling blur

We already know that a rotation and scaling in the image domain results in the same
rotation and an inverse scaling in the Fourier domain. After taking the squared Fourier
magnitudes (to get rid of the drift) and after performing a log-polar coordinate transform,
the rotation and scaling became a translation. This means that we can apply the motion

blur measure m2 to
∣∣Ff̃T ∣∣2◦LP to get an estimate of the quality of the rotation and scaling

correction, where f̃T is the point-wise average of the rotation and scaling corrected frames.

7.3 Motion blur measure in application

In our simulation study (Chapter 9), since we already know the true drift function δt(θ0),

we can choose the average drift direction
∫ 1

0
∂δt(θ0)/∂t dt = δ1(θ0) as the motion direction

(after normalization). Similarly, we can choose the average rotation and logarithmic
scaling direction to compute the motion blur of the superposition of log-polar transformed
squared Fourier magnitudes of the images after rotation and scaling correction, but before
drift correction. Hence, in our context (where, for drift, I is either f̂T or the superimposed
image, and similar for rotation and scaling, see Tables 9.7 and 9.8) we get the motion
blur measure

m̃2 := log

(∑n
j=1

〈
gradxI(xj), Rπ/2δ1(θ0)/ ‖δ1(θ0)‖

〉2∑n
j=1 〈gradxI(xj), δ1(θ0)/ ‖δ1(θ0)‖〉2

)
. (7.1)

Note that the average drift direction used to determine the motion blur (7.1) in the case
of a drift function with jump is (before normalization)

t0δt0(θ) + (1− t0)
(
δ1(θ)− lim

t↘t0
δt(θ)

)
instead of just δ1(θ), where t0 is the time at which the jump occurs. We calculated an
approximation of gradxI as follows (see e.g., (Gonzalez, R.C. and Woods, R.E., 2002)).

Let I be a pixel image of size N ×N . For every pixel location (i, j), i, j ∈ {1, . . . , N},
the gradient of I is defined as ∇I(i, j) :=

(
Gx(i, j), Gy(i, j)

)>
with

Gx(i, j) :=
1∑

i′,j′=−1

Sx(i
′ + 2, j′ + 2)I(i+ i′, j + j′),

Gy(i, j) :=
1∑

i′,j′=−1

Sy(i
′ + 2, j′ + 2)I(i+ i′, j + j′),

where we extend the image periodically, that is, I(0, j) := I(N, j), I(N + 1, j) := I(1, j),
I(i, 0) := I(i, N), and I(i, N + 1) := I(i, 1) and so on. Here, Sx and Sy are the Sobel



86 CHAPTER 7. MODEL SELECTION AND MOTION BLUR

masks

Sx :=
1

8

 −1 0 1
−2 0 2
−1 0 1

 , Sy :=
1

8

 −1 −2 −1
0 0 0
1 2 1

 .

Often, especially if I is noisy, it is beneficial to smooth the image first, for example, with
a Gauss kernel

K :=
1

16

 1 2 1
2 4 2
1 2 1

 .

This means that we replace every I(i, j) with the weighted average

Ī(i, j) :=
1∑

i′,j′=−1

K(i′ + 2, j′ + 2)I(i+ i′, j + j′)

of the 3×3 pixel area centred on it. Because our images (see Chapters 9 and 10) are very
noisy, we smooth twice before applying the motion blur measure.



Chapter 8

Other estimation methods

In this chapter, we take a look at two other methods which can be used to estimate drift,
rotation, and scaling in an image sequence. The first uses cross correlation to compare
all possible pairs of images, while the second relies on tracking the positions of markers
that are fixed on the specimen and appear in every single frame.

8.1 Cross Correlation

Definition 8.1 (Cross correlation). Let g1, g2 : R2 → C integrable. The cross correlation
of g1 and g2 is defined as

g1 ? g2 : R2 → C, τ 7→
∫
R2

g1(x)g2(x+ τ) dx,

where the argument τ ∈ R2 is called the lag.

In applications, we can either implement a loop which computes the cross correlation
for all possible lags τ ∈ {xj − xj′ | j, j′ ∈ {1, . . . , n}}, with n equidistant pixel locations
xj, or we use a trick. The following theorem gives an efficient way to compute the
cross correlation numerically, since it allows to make use of the well-known fast Fourier
transform algorithm (FFT, see e.g., Cooley and Tukey (1965)).

The following theorem is similar to the convolution theorem (see e.g., Rudin (1990,
Theorem 1.2.4 (b))).

Theorem 8.2. For g1, g2 : R2 → C, we have g1 ? g2 = F−1
(
Fg1 · Fg2

)
.

Proof. Since ab = a · b for all a, b ∈ C, we have for all ω ∈ R2 that

Fg1(ω) · Fg2(ω) =

∫
R2

g1(x)e−2πi〈ω,x〉 dx ·
∫
R2

g2(y)e−2πi〈ω,y〉 dy

=

(∫
R2

g1(x)e2πi〈ω,x〉 dx

)
·
∫
R2

g2(y)e−2πi〈ω,y〉 dy

=

∫
R2

g1(x)e2πi〈ω,x〉
(∫

R2

g2(y)e−2πi〈ω,y〉 dy

)
dx

=

∫
R2

g1(x)e2πi〈ω,x〉
(∫

R2

g2(x+ τ)e−2πi〈ω,x+τ〉 dτ

)
dx

=

∫
R2

(∫
R2

g1(x)g2(x+ τ) dx

)
e−2πi〈ω,τ〉 dτ = Fg1?g2(ω),
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with τ = y−x. Applying the inverse Fourier transform to both sides yields the assertion.

Cross correlation can obviously be useful in our SMS-setup for motion correction.
Consider a (binned) sequence of frames

(
Ot =

{
Ot
j

∣∣ j ∈ J tT})t∈T, translated by vectors
(δt)t∈T, rotated by angles (φt)t∈T, and scaled by factors (σt)t∈T, each frame representing
a pixel image of size n1 × n2, with n1 ≥ n2 and a total pixel number of n = n1n2.
Similarly to the M-estimation method summarized in Algorithm 4.10, we first compute
the analytical Fourier-Mellin transformation of the squared Fourier magnitude of each
frame, where we also transform into log-polar coordinates to convert the rotation and
scaling into a translation (where we assume that the rotation shows in the n1-direction
and the scaling in the n2-direction). We then maximize the cross correlation between
any two Fourier-Mellin frames, for example, at times t, t′ ∈ T, to get an optimal lag τ t,t

′

between the t-th and the t′-th Fourier-Mellin frames. Then, βT
T

∑
t′∈T τ

t,t′ estimates the
average translation of the t-th Fourier-Mellin frame with respect to the whole sequence.
By subtracting the average initial lag, βT

T

∑
t′∈T τ

0,t′ , we get

τ̄ t,• :=
βT
T

∑
t′∈T

(
τ t,t

′ − τ 0,t′
)
.

Now, we have to reconstruct the rotation angles ρt and scaling factors σt from (τ̄ t,•)t∈T.
For the rotation, this essentially means rescaling the range from n1 to 2π. Since we want to
estimate angles in (−π, π], we further need to shift by π/2, count modulo π, and subtract
π/2 again. We thus estimate ρt by

ρ̂t :=

((
2π

n1

τ̄ t,•1 +
π

2

)
mod π

)
− π

2
, t ∈ T.

For the scaling factor, due to the log-polar coordinate transformation, the corresponding
components of the τ̄ t,•’s are in a logarithmic scale. Since the maximal possible radius is
n2/2, we have

σ̂t :=
(n2

2

)−τ̄ t,•2 /(n2/2)

, t ∈ T.

Next, we calibrate the original frames Ot, rotating them by −ρ̂t and scaling them with
1/σ̂t. Straightforward cross correlation on the set of calibrated frames results in optimal
lags τ̃ t,t

′
and, subsequently, translation estimates

δ̂t :=
βT
T

∑
t′∈T

(
τ̃ t,t

′ − τ̃ 0,t′
)
.

Shifting the already for rotation and scaling corrected frames by −δ̂t and, thereafter,
overlaying all of them yields an estimator for the image f .

We summarize this procedure in the following algorithm.

Algorithm 8.3 (Image correction via cross correlation). We assume data in the form of
pixel images of size n1 × n2, with n1 ≥ n2 and a total pixel number of n = n1n2.

1. Given a (binned) sequence of frames
(
Ot =

{
Ot
j

∣∣ j ∈ J tT})t∈T, compute the squared

Fourier magnitudes
∣∣FXt

Ot

∣∣2, where Xt =
{
xj
∣∣ j ∈ J tT}, using fast Fourier transform

(FFT).
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2. Choose an appropriate γ > 0, transform the
∣∣FXt

Ot

∣∣2’s into log-polar coordinates,
multiply with elγ, where l is the logarithm of the radius, and apply FFT again to get
FGt = AFM|FXt

Ot
|2, where

Gt : R× (−π, π]→ [0,∞), (l, ψ) 7→ elγ
(∣∣∣FXt

Ot

∣∣∣2 ◦ LP) (l, ψ).

3. For each pair (t, t′) ∈ T2, compute the optimal lag

τ t,t
′
= (τ t,t

′

1 , τ t,t
′

2 ) ∈ arg max
τ∈R2

(Gt ? Gt′)(τ) = arg max
τ∈R2
F−1

(
FGt · FGt′

)
(τ).

If τ t,t
′

is not unique, take the one with the smallest length
∥∥τ t,t′∥∥.

4. For all t ∈ T, let τ̄ t,• := βT
T

∑
t′∈T
(
τ t,t

′ − τ 0,t′
)

and estimate the rotation angles and
scaling factors with

ρ̂t :=

((
2π

n1

τ̄ t,•1 +
π

2

)
mod π

)
− π

2
, σ̂t :=

(n2

2

)−τ̄ t,•2 /(n2/2)

, t ∈ T.

5. For each t ∈ T, scale Ot with 1/σ̂t and rotate it by −ρ̂t, using for example, bilinear
interpolation, calling the resulting calibrated frames P t.

6. For each pair (t, t′) ∈ T2, compute the optimal lag

τ̃ t,t
′ ∈ arg max

τ∈R2

(
P t ? P t′

)
(τ) = arg max

τ∈R2
F−1

(
FP t · FP t′

)
(τ).

If τ̃ t,t
′

is not unique, take the one with the smallest length
∥∥τ̃ t,t′∥∥.

7. Estimate the translation vector by δ̂t := βT
T

∑
t′∈T
(
τ̃ t,t

′ − τ̃ 0,t′
)
.

8. For each t ∈ T, translate P t by −δ̂t, calling the resulting calibrated frames Qt.

9. Compute the point-wise average f̂(x) := βT
T

∑
t∈TQ

t(x).

8.2 Fiducial marker tracking

As was pointed out in the introduction, it is common practice to incorporate fiducial
markers (bright fluorescent spheres) into the specimen. Since we observe these fiducial
markers in every frame, we can track their positions and use this information to calibrate
the images. For each fiducial marker µ, we can visually identify a small rectangular
subset [a, b] × [c, d] ⊆ [0, 1]2 of the image domain such that (presumably all of) the data
coming from µ during the entire data acquisition time is inside this rectangle. For each
t ∈ T, let µt ∈ [0, 1]2 the true and unknown position of the fiducial marker and let
{zti | i ∈ {1, . . . , kt}} ⊆ [a, b]× [c, d] the recorded positions in [a, b]× [c, d] at time t, where
kt ∈ N. We estimate µt by the spatial mean of all zti , that is,

µ̂t :=
1

kt

kt∑
i=1

zti ∈ [a, b]× [c, d].

This gives us a sequence (µ̂t)t∈T of estimated fiducial marker positions.
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Now, assume that we observe two fiducial markers, µ1 and µ2, each with their respec-
tive rectangular occurrence areas, [a1, b1]× [c1, d1] ⊆ [0, 1]2 and [a2, b2]× [c2, d2] ⊆ [0, 1]2,
such that (

[a1, b1]× [c1, d1]
)
∩
(
[a2, b2]× [c2, d2]

)
= ∅, (8.1)

and they contain kt1 and kt2 measurements, respectively. Then, for each of these fiducial
markers, we get a sequence of estimated positions, (µ̂t1)t∈T and (µ̂t2)t∈T. From these, we can
estimate rotation and scaling of the specimen in the following way. Define the difference
vectors

d̂t =
(
(d̂t)1, (d̂

t)2

)>
:= µ̂t1 − µ̂t2 ∈ R2, t ∈ T.

Because of (8.1), d̂t 6= 0 for all t ∈ T. Homogeneous scaling of the whole specimen by a
factor σ > 0 implies that

∥∥d̂t∥∥ is also scaled by σ. Similarly, rotating the specimen by an

angle ρ ∈ (−π, π] rotates d̂t by the same angle. Note, that neither of this does depend on
the position of the origin. Hence, we get a sequence of scaling and rotation estimators,
(σ̂t)t∈T and (ρ̂t)t∈T, with

σ̂t :=
∥∥d̂t∥∥/∥∥d̂0

∥∥, ρ̂t := atan2
(
(d̂t)2, (d̂

t)1

)
− atan2

(
(d̂0)2, (d̂

0)1

)
,

where

atan2: R2 \ {0} → (−π, π], (y, x) 7→



arctan(y/x), if x > 0,

arctan(y/x) + π, if x < 0 and y ≥ 0,

arctan(y/x)− π, if x < 0 and y < 0,

π/2, if x = 0 and y > 0,

−π/2, if x = 0 and y < 0,

is the angle between a vector (x, y) ∈ R2 \ {0} and the x-axis. We can then calibrate the
images with those estimators by rotating the t-th frame by −ρ̂t and scaling it by 1/σ̂t.
This changes the estimated marker positions to

µ̃tj :=
1

σ̂t
·R−ρ̂tµ̂tj, j ∈ {1, 2} .

Finally, we correct the images for drift by translating the t-th frame by −µ̃t1 (or −µ̃t2).
Since the estimated marker positions are subject to statistical errors and measurement
errors, the average −(µ̃t1 + µ̃t2)/2 is even better suited for drift correction since it reduces
the variance by a factor of (about) 1/2. The estimated image is then given by the point-
wise average of all frames.

We summarize this in the following algorithm.

Algorithm 8.4 (Image correction via fiducial marker tracking).

1. Specify the rectangles containing the two fiducial markers, [aj, bj]× [cj, dj] ⊆ [0, 1]2,
j ∈ {1, 2}, and collect the data points

{
zti,j
∣∣ t ∈ T, i ∈

{
1, . . . , ktj

}}
within them.

2. For all t ∈ T, compute the spatial means µ̂tj := 1
kt

∑kt
i=1 z

t
i,j, j ∈ {1, 2}, and their

differences, d̂t := µ̂t1 − µ̂t2.

3. For each t ∈ T, scale the t-th frame with 1/σ̂t and rotate it by −ρ̂t, given by

1/σ̂t :=
∥∥d̂0
∥∥/∥∥d̂t∥∥, −ρ̂t := atan2

(
(d̂0)2, (d̂

0)1

)
− atan2

(
(d̂t)2, (d̂

t)1

)
.
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4. For each t ∈ T, translate the t-th frame by −(µ̃t1 + µ̃t2)/2, where µ̃tj := 1
σ̂t
· R−ρ̂tµ̂tj,

j ∈ {1, 2}.

5. Compute the point-wise average of all frames.

We will apply the motion blur measure from Chapter 7 to compare the results of
fiducial marker tracking with those of our M-estimation method and those from cross
correlation.
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Chapter 9

Simulation Study

To investigate the finite sample properties of the M-estimation method proposed in Chap-
ter 4, we conduct a simulation study with images of size n = N2 pixels with N = 512. We
opt for T ∈ {20, 50, 100} in order to reduce computational time, as our implementation
requires several minutes to compute θ̂T on a 512×512 image for T = 500, say. In order to
make these simulations comparable to the data in Chapter 10, we choose drift, rotation,
and scaling parameters θ0, φ0, and α0 such that the total motion (i.e., the pixel shift
between the first and the last image) has comparable scale to the ones observed in our
SMS data.

We consider the model (3.2) with four different motion types: linear, quadratic, and
cubic motion functions, as well as a piecewise linear motion with a jump at an unknown
time. Note that the motion with jump violates the Lipschitz properties in the Assumptions
6.10 and 6.31.

Figure 9.1: Test image f̃ with grey scale values (rescaled to the unit interval), represented
by colours ranging from black (0) over red and yellow to white (1).

We use the test image displayed in Figure 9.1, with image intensity f̃ ranging from
zero to one (the average image intensity is about 0.045), and apply three error models.
We aim to apply our method to SMS microscopy and therefore, following the model (3.2),
introduce a randomness of the selected pixel locations at each time point by multiplying
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the noisy grey values with Bernoulli random variables. More precisely, for every pixel
location xj, j ∈ {1, . . . , n}, and every time point t ∈ T, we observe

Õt
j :=

(
f̃ t(xj) + ν̃tj ε̃

t
j

)
Bt
j, (9.1)

where the Bt
j’s are independent Bernoulli random variables with parameter p = 5/T

meaning that every pixel is seen five times on average over the whole observation period.
Note that T is defined in such a way that the whole time interval is always [0, 1], that is,
if T = 100, the time between two subsequent frames is exactly half as long as if T were
only 50.

First, we employ a Gaussian error model, which means that the ε̃tj in (9.1) are inde-
pendent standard normal random variables.

Secondly, in order to test the robustness of our estimation method against outliers, we
assume that the ε̃tj in (9.1) are i.i.d. t-distributed with 2 degrees of freedom.

Finally, we simulate a Poisson error model,

Õt
j ∼ Pois

(
pf̃ t(xj)

)
, (9.2)

where the Õt
j are mutually independent and the Poisson intensity contains the Bernoulli-

probability p such that the average image intensity of the two models (9.1) and (9.2) is
the same.

For the Poisson model (9.2), we use a variance stabilizing transformation,
√
Õt
j + 1/4

(see e.g., (Frick et al., 2013, page 378)). We minimize discretized versions of the contrast
functionals from Definitions 4.1 and 4.6 and use fast Fourier transform (FFT) which
can be performed in O(N2 · 2 log(N)) steps, exploiting Remark 2.15 so we can apply
FFT for the rotation and scaling contrast. The minimizers are evaluated by a standard
Nelder-Mead-type algorithm as implemented in the statistical software R. We specify the
parameters as follows: ν = 0.1 (Gaussian and t2-distributed errors), rT = uT = vT = 16.
As start value for the minimization algorithm we choose 0 ∈ Rd, where d ∈ {d1, d2 + d3}
is the dimension of the drift parameter θ0 or the rotation and scaling parameter (φ0, α0),
respectively.
Polynomial motion models have been described in the Examples 6.19 and 6.37. In
the linear model we have δt(θ) = θt. We choose θ0 = (50/512, 35/512), φ0 = π/8, and
α0 = 0.278, that is, the image is shifted by 50 pixels in x1-direction and by 35 pixels in
x2-direction, rotated by an angle of π/8 and scaled up to a factor of 1.278 over the time
interval [0, 1]. In the quadratic drift model we set

δt(θ) = (θ11, θ21)>t+ (θ12, θ22)>t2,

ρt(φ) = φ1t+ φ2t
2,

σt(α) = 1 + α1t+ α2t
2.

For the drift in x1-direction we choose (θ11, θ12) = (30/512, 30/512), in x2-direction
(θ21, θ22) = (10/512, 40/512). For the rotation we choose (φ1, φ2) = (π/16, π/8) and
for the scaling (α1, α2) = (0.15, 0.1). Similarly, we employ a cubic model for drift,
δt(θ) = (θ11, θ21)t + (θ12, θ22)t2 + (θ13, θ23)t3, and for rotation and scaling accordingly.
In this case, we choose the motion parameters (θ11, θ12, θ13) = (20/512, 0, 25/512) as
well as (θ21, θ22, θ23) = (12/512, 20/512, 5/512), (φ1, φ2, φ3) = (π/16, π/32, 5π/32), and
(α1, α2, α3) = (0, 0.1, 0.2).

The results of one estimate are reported in the Tables 9.1 and 9.2, the means of 100
simulations each in Tables 9.3 and 9.4. As recorded in the Tables 9.5 and 9.6, with
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Figure 9.2: Left (fourth row): Test image f̃ with grey scale values (rescaled to the unit
interval), represented by colours ranging from black (0) over red and yellow to white (1).
Right: The first row shows the first frames of sequences of T = 20 noisy images subject
to linear motion functions (from left to right: Gaussian noise, Student-t2 noise, Poisson
model). The second row depicts the corresponding superimposed images (i.e., the averages
over all frames in the sequence). The true motion curves of two pixels are shown as
white curve segments on top of which we plot the estimated motion in blue. The true and
the estimated parameters are reported in the Tables 9.1 and 9.2. The third row shows the
superimposed images after the rotation and scaling correction while the fourth row displays
the images after the additional drift correction.
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Figure 9.3: Left (fourth row): Test image f̃ with grey scale values (rescaled to the unit
interval), represented by colours ranging from black (0) over red and yellow to white (1).
Right: The first row shows the first frames of sequences of T = 50 noisy images subject
to linear motion functions (from left to right: Gaussian noise, Student-t2 noise, Poisson
model). The second row depicts the corresponding superimposed images (i.e., the averages
over all frames in the sequence). The true motion curves of two pixels are shown as
white curve segments on top of which we plot the estimated motion in blue. The true and
the estimated parameters are reported in the Tables 9.1 and 9.2. The third row shows the
superimposed images after the rotation and scaling correction while the fourth row displays
the images after the additional drift correction.
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Figure 9.4: Left (fourth row): Test image f̃ with grey scale values (rescaled to the unit
interval), represented by colours ranging from black (0) over red and yellow to white (1).
Right: The first row shows the first frames of sequences of T = 20 noisy images subject to
quadratic motion functions (from left to right: Gaussian noise, Student-t2 noise, Poisson
model). The second row depicts the corresponding superimposed images (i.e., the averages
over all frames in the sequence). The true motion curves of two pixels are shown as
white curve segments on top of which we plot the estimated motion in blue. The true and
the estimated parameters are reported in the Tables 9.1 and 9.2. The third row shows the
superimposed images after the rotation and scaling correction while the fourth row displays
the images after the additional drift correction.
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Figure 9.5: Left (fourth row): Test image f̃ with grey scale values (rescaled to the unit
interval), represented by colours ranging from black (0) over red and yellow to white (1).
Right: The first row shows the first frames of sequences of T = 50 noisy images subject to
quadratic motion functions (from left to right: Gaussian noise, Student-t2 noise, Poisson
model). The second row depicts the corresponding superimposed images (i.e., the averages
over all frames in the sequence). The true motion curves of two pixels are shown as
white curve segments on top of which we plot the estimated motion in blue. The true and
the estimated parameters are reported in the Tables 9.1 and 9.2. The third row shows the
superimposed images after the rotation and scaling correction while the fourth row displays
the images after the additional drift correction.
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Figure 9.6: Left (fourth row): Test image f̃ with grey scale values (rescaled to the unit
interval), represented by colours ranging from black (0) over red and yellow to white
(1). Right: The first row shows the first frames of sequences of T = 20 noisy images
subject to piecewise linear motion functions with a common change point (from left to
right: Gaussian noise, Student-t2 noise, Poisson model). The second row depicts the
corresponding superimposed images (i.e., the averages over all frames in the sequence).
The true motion curves of two pixels are shown as white curve segments. The left pixel
moves to the right and down, then jumps a little to the right and up and continues its
motion, as depicted with the two leftmost curve segments. The two curve segments to
the right show the similar motion of the second pixel. On top of these white curves we
plot the estimated motion in blue. The true and the estimated parameters are reported in
the Tables 9.1 and 9.2. The third row shows the superimposed images after the rotation
and scaling correction while the fourth row displays the images after the additional drift
correction.
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Figure 9.7: Left (fourth row): Test image f̃ with grey scale values (rescaled to the unit
interval), represented by colours ranging from black (0) over red and yellow to white
(1). Right: The first row shows the first frames of sequences of T = 50 noisy images
subject to piecewise linear motion functions with a common change point (from left to
right: Gaussian noise, Student-t2 noise, Poisson model). The second row depicts the
corresponding superimposed images (i.e., the averages over all frames in the sequence).
The true motion curves of two pixels are shown as white curve segments. The left pixel
moves to the right and down, then jumps a little to the right and up and continues its
motion, as depicted with the two leftmost curve segments. The two curve segments to
the right show the similar motion of the second pixel. On top of these white curves we
plot the estimated motion in blue. The true and the estimated parameters are reported in
the Tables 9.1 and 9.2. The third row shows the superimposed images after the rotation
and scaling correction while the fourth row displays the images after the additional drift
correction.
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increasing degree of the polynomials, the mean squared error increases. Nevertheless,
visual inspection of the estimated images in Figure 9.5 exhibits good reconstruction quality
for the Gaussian and Poisson models.

To evaluate our motion correction we use versions of the motion blur measure m2

proposed by Xu et al. (2013) which is based on the work of Chen et al. (2010) (for details
see Chapter 7). The motion blur values of the superimposed images, the corresponding
rotation and scaling corrected images, and the final estimated images are reported in the
Tables 9.7 and 9.8. Evidently, the blurring is reduced in every correction step, although
visual inspection of the resulting images shows that in the case of t2-distributed noise, the
reconstruction is not very good for motion models which are more complex than linear.
Motion model with jump. Finally, in order to analyse the robustness of our method,
for example, when a smooth motion abruptly jumps due to an external shock, we consider
a piecewise linear motion model with a jump at an unknown time,

δt(θ) =

{
(θ11, θ21)>t if t ≤ t0,

(θ12, θ22)>(t− t0) + (θ13, θ23)> if t > t0,

ρt(φ) =

{
φ1t if t ≤ t0,

φ2(t− t0) + φ3 if t > t0,

σt(α) =

{
1 + α1t if t ≤ t0,

1 + α2(t− t0) + α3 if t > t0,

with (φ1, φ2, φ3, α1, α2, α3, t0) ∈ Φ×A×[0, 1] ⊂ R7 and (θ11, θ12, θ13, θ21, θ22, θ23) ∈ Θ ⊂ R6,
that is, the rotation function jumps to the angle φ3 at the unknown time point t0 and
so on. As mentioned before, this type of motion does not meet our assumptions, for
example, the Lipschitz properties in the Assumptions 6.10 and 6.31 are not fulfilled as
one can easily see by perturbing the parameter t0. For these simulations, we double the
Bernoulli probability to p = 10/T .

For the simulation, we choose the drift parameters (θ11, θ21) = (20/512, 10/512),
(θ12, θ22) = (15/512, 30/512), (θ13, θ23) = (40/512, 36/512), the rotation angle parameters
(φ1, φ2, φ3) = (π/8, π/8, π/40), and the scaling parameters (α1, α2, α3) = (0.1, 0.2, 0.07),
as well as the jump time t0 = 0.4. We estimate the jump time t0 together with the rotation
and scaling parameters and take the resulting estimate as given for the drift estimation.
Once again, we use the Gaussian noise, the t-distributed noise with 2 degrees of freedom,
and the Poisson model. The superimposed images as well as their reconstructions are
visualized in Figures 9.6 and 9.7. In the Tables 9.1 and 9.2, the estimation results are
summarized. The blur values are reported in the Tables 9.7 and 9.8.
Computational time. For polynomial motion, simulating a sample and computing
the estimates required about 2 minutes for T = 20 frames on a Core AMD Opteron with
2.6 GHz, where the most expensive part is the rotation and scaling of the images, which
means that the computational time scales almost linearly with the number of frames T .
The numerical optimization itself takes about 10 seconds. For the motion with jump,
we considered jump times t̂0 on the grid {2/T, . . . , 98/T} and, given t̂0, minimized the
contrast functional w.r.t. (φ, α) to find the estimator for (φ0, α0, t0) with overall minimal
contrast. This leads to higher computational times between about 3 minutes (T = 20) and
30 minutes (T = 100). Our simulations show that the proposed estimation method works
well and significantly reduces blurring. This has been demonstrated for a polynomial
drift even if we observe just a small part of the shifted image at every time point. We
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have also obtained good results for reconstruction in a Poisson model. The simulations
with t2-distributed noise show that the estimation method is not very robust against
outliers, especially if the observed images are very sparse. Finally, we studied the case of
a piecewise linear drift with a jump at an unknown time point, that is, a discontinuous
drift. Although the Assumptions 6.10 and 6.31 are not satisfied in this case, we found
that even in this setting our estimator performs quite well.
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Chapter 10

Application to SMS data

In this chapter, we demonstrate how the estimation method proposed in Chapter 4 can
be used to process SMS nanoscopy data. In particular, we address suitable choices for
the drift, rotation, and scaling models δθt , ρ

φ
t , and σαt as well as computational issues.

We used a standard SMS-setup for this study (see e.g., Geisler et al. (2012); Hart-
mann et al. (2016)) which was equipped with a home-built stable sample holder ensuring
that the sample drift is well below the expected average localization accuracy. For image
acquisition, a series of T ∈ {29, 000; 35, 000} frames was taken from a microtubule net-
work (β-tubulin) of Hela-cells with a frame exposure time of 15 ms, resulting in a total
image acquisition time of about 7.25 and 8.75 minutes, respectively. During this time an
experimental drift and rotation were applied by moving the sample with respect to the
objective lens.

The lateral positions of the fluorescent markers were then calculated from the single
frames by a mask-fitting of the respective Airy spot (Thompson et al., 2002). These
locations were tabulated together with the respective time of detection t ∈ T.

We analyse two data sets (networks I and II) from β-tubulin networks in Hela-cells.
The position histogram of the first data set is shown in Figure 1.2. It contains 1,243,170
positions recorded in 29,000 frames which are distributed over an area of approximately
32 µm×30 µm. The second dataset (see Figure 10.3) contains 1,074,516 positions recorded
in 35,000 frames. The data of this set are distributed over an area of about 49 µm×42 µm.
The positions of the fiducials were used to compare the quality of our method to the
current state of the art of rigid motion correction.

To analyse the data with our M-estimation method we create T = 2000 position
histograms of n = N2 = 5122 bins of the first data set and T = 500 position histograms
of n = N2 = 5122 bins of the second data set, that is, we look at T = 2000 position
histograms which are composed of the data points of βT = 14 frames each (see Figure
1.1) and T = 500 position histograms composed of βT = 70 frames each. Our empirical
analysis shows that the estimates are not strongly influenced by the choices of T and N ,
however too small values circumvent the registration of small movements and for large
values computational problems arise in terms of speed. This is in accordance with our
previous simulation results.

As exemplarily demonstrated in Figure 10.1 for the second data set shown in Figure
10.3, the number of recorded markers nt varies slightly as the experiment continues. Since
switched on markers bleach after emitting light, one has to increase the switching laser
intensity occasionally to get a roughly constant number of observations per frame, which
was quite successful in this experiment.

Note that in the experiments, fiducial markers were included into the sample, that is,
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Figure 10.1: Number of data points (registered markers) nt per frame (network II)

a persistent fluorescence source, which enables us to track the motion easily, for testing
purposes (see Chapter 8). We stress that this is currently state of the art technology to
align SMS images over time (see the Introduction). In order to investigate the validity of
our method, we delete the data originating from the fiducial markers from the observed
sample and use it for verification only.

First, we try the cross correlation method described in Chapter 8 on the data from
network II. It turns out that this method relies heavily on rather complete images to
estimate the rotation and scaling of the images which is not the case in pure drift correction
(Geisler et al., 2012). Figure 10.2 shows the correction based on a binned sequence of
5 binned frames (i.e., βT = 7, 000). Even halving the bin size to βT = 3.500 lead to
“reconstructions” that were far blurrier than the uncorrected image. The reconstruction in
Figure 10.2 seems to improve the image resolution a little but due to the large value of βT ,
the motion blur in each binned frame is too large to enable a satisfactory reconstruction.

As reported in Tables 10.1 and 10.2, we apply three different motion models to the
second data set and choose the one with the smallest contrast values. Moreover, we
display the corresponding motion blur values m2 (see Chapter 7) to compare the image
estimators with fiducial marker tracking. The time required for the computation of θ̂T ,
φ̂T , and α̂T may last up to about 45 minutes (on a Core AMD Opteron with 2.6 GHz),
depending on the bin width. Since we do not know the true motion functions (as was
the case in the simulation study, Chapter 9), we determine the motion direction as the
average motion direction obtained from fiducial marker tracking (once for rotation and
log-scaling and once more for drift, see Chapters 7 and 8 for details). In particular, in
the Tables 10.1 and 10.2, we report the m2-value for the correction via fiducial tracking,
too. The result indicates that our estimation method is competitive with tracking of the
fiducial movement. The reconstructions of the image for fiducial tracking and a linear
motion model are displayed in Figure 10.4.
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Figure 10.2: First row: motion blurred position histogram of network II with n = 5122

bins (left) and reconstruction using cross correlation with 5 binned frames, that is, with
bin size βT = 7, 000 (right). Second row: detailed views inside the white boxes.

Figure 10.3: Motion blurred position histogram of network II with n = 5122 bins (middle)
and close up on two areas with fiducials (left and right). These fiducials were used for
tracking. Their estimated positions are drawn over the fiducial data as white curves. The
blue curves demonstrate the estimated linear motion (our M-estimator) of the two fiducial
starting positions according to a linear motion model.
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rot./scal. models rot. scal. contrast motion blur

φ̂T ;3 φ̂T ;2 φ̂T ;1 α̂T ;3 α̂T ;2 α̂T ;1 MT m̃2

linear linear - - 0.018 - - 0.003 273890e13 2.124
quadratic quadratic - 0.003 0.014 - -0.005 0.014 273891e13 2.125
cubic cubic -0.002 -0.009 0.023 -0.002 0.004 0.001 273893e13 2.125

fiducial tracking - 2.108
superimposed image 273895e13 2.131

Table 10.1: Rotation and scaling estimation results for the β-tubulin network I in Figure
1.2 for several drift models.

drift models x1-dir. x2-dir. contrast motion blur

x1-dir. x2-dir. θ̂T ;13 θ̂T ;12 θ̂T ;11 θ̂T ;23 θ̂T ;22 θ̂T ;21 NT m2

linear linear - - 0.001 - - -0.015 125e6 -0.366
quadratic quadratic - -0.002 0.007 - 0.013 -0.026 125e6 -0.352
cubic cubic -0.014 0.024 -0.006 0.001 0.004 -0.020 126e6 -0.349

fiducial tracking - -0.408
rot./scal.-correct. image 128e6 -0.057

Table 10.2: Drift estimation results for the β-tubulin network II with fiducial markers,
see Figure 10.3, for several drift models. The displayed motion blur values are for the
respective images with fiducial markers removed.

Figure 10.4: Drift blurred network II (top left), with the assumption of a linear motion
estimated image (top center), and by fiducial marker tracking corrected image (top right),
as well as detailed views inside the white boxes (bottom row)
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Bootstrap confidence bands

Given the parameter and image estimators θ̂T , φ̂T , α̂T , and f̂T from the Definitions 4.3,

4.8, and 4.9 and thus estimators (δθ̂Tt )1, (δθ̂Tt )2, ρφ̂Tt , and σα̂Tt for the drift, rotation, and
scaling functions (δθ0t )1, (δθ0t )2, ρφ0t , and σα0

t , we can construct bootstrap confidence bands
for these functions using the method described in Hall and Pittelkow (1990). Here, we
give a short summary of that method with our application to motion functions in mind,
using the drift function in x1-direction as an example (the confidence bands for the other
functions are computed in the exactly same way). For notational simplicity following
(3.4), we index the spatial location by a single index j ∈ {1, . . . , n}. Note that this
method assumes homoscedasticity (i.e., (νtj)

2 ≡ ν2 > 0) and we use it for simplicity’s
sake. To account for heteroscedasticity, one could make use of a wild bootstrap procedure
(see e.g., Wu (1986); Liu (1988); Mammen (1993)). First, we consider the standardized

difference ∆t :=
(
(δθ̂Tt )1 − (δθ0t )1

)
/ν̂, where ν̂ is the empirical standard deviation of the

residuals

rtj := Ot
j − f̂T

(
1/σα̂Tt ·R−ρφ̂Tt

(
xj − δθ̂Tt

))
, t ∈ T, j ∈ {1, . . . , n} , (11.1)

and thus an estimator for the standard deviation of the errors

εtj = Ot
j − f

(
1/σα0

t ·R−ρφ0t
(
xj − δθ0t

))
, t ∈ T, j ∈ {1, . . . , n} .

Obviously, constructing a confidence band for (δθ0t )1 is equivalent to constructing one
for ∆t. Next we choose the shape of the confidence band in terms of two functions

g+, g− : [0, 1] → [0,∞) such that (δθ̂Tt )1 + ν̂u+g+(t) and (δθ̂Tt )1 − ν̂u−g−(t) represent the
upper and lower border, respectively, of the confidence band for (δθ0t )1, with appropriate
positive numbers u+, u−. For a confidence level η ∈ (0, 1) we minimize u+ +u− under the
constraint

P
(

(δθ0t )1 ∈
[
(δθ̂Tt )1 + ν̂u+g+(t), (δθ̂Tt )1 − ν̂u−g−(t)

]
for all t ∈ [0, 1]

)
≥ 1− η,

or, equivalently under

P
(
∆t ∈ [−u+g+(t), u−g−(t)] for all t ∈ [0, 1]

)
≥ 1− η.

Since the distribution of ∆t is unknown, we approximate it by bootstrapping B ∈ N
times from the residuals (11.1), that is, for every b ∈ {1, . . . , B} and every j ∈ {1, . . . , n},
t ∈ T, we draw (εtj)

(b) independently with replacement from the set of all residuals{
rt
′

j′

∣∣ j′ ∈ {1, . . . , n} , t′ ∈ T
}

. We thus obtain

(Ot
j)

(b) := f̂T

(
1/σα̂Tt ·R−ρφ̂Tt

(
xj − δθ̂Tt

))
+ (εtj)

(b), t ∈ T, j ∈ {1, . . . , n} .
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Figure 11.1: Estimated motion functions (red) and confidence bands (dashed).

Applying our estimation method to the (Ot
j)

(b) we obtain bootstrap replicates θ̂
(b)
T , φ̂

(b)
T ,

and α̂
(b)
T and thus replicates f̂

(b)
T , b ∈ {1, . . . , B}. This in turn leads to bootstrap replicates

(rtj)
(b) := (Ot

j)
(b) − f̂ (b)

T

(
1/σ

α̂
(b)
T

t ·R
−ρ

φ̂
(b)
T
t

(
xj − δ

θ̂
(b)
T
t

))
,

ν̂(b) :=

√√√√ 1

nT

n∑
j=1

∑
t∈T

(
(rtj)

(b) − 1

nT

n∑
j′=1

∑
t′∈T

(rt
′
j′)

(b)

)2

,

∆
(b)
t :=

(
(δ
θ̂
(b)
T
t )1 − (δθ̂TT )1

)
/ν̂(b),

which allow for minimization of u+ + u− such that

#
{
b ∈ {1, . . . , B}

∣∣∣∆(b)
t ∈ [−u+g+(t), u−g−(t)] for all t ∈ [0, 1]

}
≥ (1− η)B.

Note that approximating the distribution of the drift parameter estimator θ̂T is not
theoretically justified because we have not proved a central limit theorem for it. In the
case of pure drift estimation, however, we were able to show asymptotic normality of θ̂T
(Hartmann et al., 2016), and we are confident that it can also be derived in the scenario
presented here with some additional work. Thus, we compute bootstrap confidence bands
for the drift functions, too.

Because we assume the motion functions to be fixed at time t = 0 (at 0 for drift and
rotation and at 1 for scaling), we can employ a confidence band which has width zero at
t = 0. Since, in our application, we look at polynomial motion functions only, and since
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on [0, 1] the linear part dominates the others in the sense that t ≥ tp for all p > 1 and
t ∈ [0, 1], we will choose g+(t) = g−(t) = t.

The thus obtained confidence bands for the above data set of Figure 10.4, linear drift,
rotation, and scaling models, B = 200 and η = 0.05 are shown in Figure 11.1.

Figure 11.2: Average of the bootstrap replicates f̂
(b1)
T , . . . , f̂

(bm)
T of the estimated image

f̂T corresponding to the m = d(1 − η)Be motion curves t 7→
(
(δ
θ̂
(b)
T
t )1, (δ

θ̂
(b)
T
t )2, ρ

φ̂
(b)
T
t , σ

α̂
(b)
T

t

)
nearest to the estimator t 7→

(
(δθ̂Tt )1, (δ

θ̂T
t )2, ρ

φ̂T
t , σα̂Tt

)
with respect to the supremum norm

distance.

To further visualize the confidence statement we take a look at the average of (most of)

the bootstrap replicates f̂
(b)
T of the estimator f̂T . For that we choose the 0.95-proportion

of the bootstrap replicates

t 7→
(

(δ
θ̂
(b)
T
t )1, (δ

θ̂
(b)
T
t )2, ρ

φ̂
(b)
T
t , σ

α̂
(b)
T

t

)
, b ∈ {1, . . . , B},

with the smallest supremum norm distances

sup
t∈[0,1]

∥∥∥∥((δ
θ̂
(b)
T
t )1, (δ

θ̂
(b)
T
t )2, ρ

φ̂
(b)
T
t , σ

α̂
(b)
T

t

)
−
(

(δθ̂Tt )1, (δ
θ̂T
t )2, ρ

φ̂T
t , σα̂Tt

)∥∥∥∥
to the original motion function estimator. We denote the corresponding indices with
b1, . . . , bm, where m = d(1 − η)Be. The convex hull of the corresponding motion curves
resembles a four-dimensional bootstrap confidence band. Figure 11.2 shows the average
of the images f̂

(b1)
T , . . . , f̂

(bm)
T which thus “contains” the true image with a probability of

about 0.95.
A visual comparison with 10.4 shows that this “bootstrap image” is blurrier than the

estimator f̂T , but still better defined than the uncorrected image.
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Chapter 12

Conclusion

We proposed a method for rigid motion (drift, rotation, and scaling) estimation and
correction in sparse dynamic imaging and derived its asymptotic distributional properties.
On the one hand, sparse acquisition is beneficial for improved spatial resolution and an
important feature of any SMS microscopy. On the other hand, we have seen that this
provides a significant burden as it is well known that the specimens move over time due to,
for example, thermal inhomogeneity inside the sample and external systematic movements
of the optical device. This raises a particular challenge for image registration as sparse
acquisition and motion over time provide a conflicting situation. Currently, this is solved
by technically incorporating bright fiducial markers into the specimen and registering
their tracks. We claim that this can be completely discarded in many applications and it
is sufficient to apply the proposed statistical method to estimate the drift, rotation, and
scaling and finally to obtain the image from simply correcting the data by this estimated
motion. The proposed method has been investigated in simulations and in real world
examples from SMS microscopy and produces results similar to fiducial tracking. In
general, reconstructions are quite satisfying. In particular, the results show a certain
degree of stability with respect to parameter choices, for example, the thresholds rT , uT ,
and vT . Consistency of the proposed estimators (and asymptotic normality for the rotation
and scaling estimators) have been established which allows to qualify the statistical error
of the motion estimates and the final image. To this end, simple bootstrap methods can
be used.

It remains to further work to investigate higher order properties of the proposed es-
timator as well as properties of non parametric estimators, for example if the motion
functions are estimated by splines. Note that the proposed method (at least the drift and
scaling estimation) can in principle be applied to higher dimensions, in particular three
dimensional measurements. However, computationally this appears to be much more
demanding.
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Appendix A

Mathematical Tools

The following are simple (but maybe not obvious) statements about complex numbers or
functions.

Lemma A.1. For a, b ∈ C we have |a± b|2 = |a|2 ± 2<(ab) + |b|2.

Proof. Write a = a1 + ia2 and b = b1 + ib2 with a1, a2, b1, b2 ∈ R. Then,

|a± b|2 = (a1± b1)2 + (a2± b2)2 = a2
1 + a2

2 + b2
1 + b2

2± 2(a1b1 + a2b2) = |a|2 + |b|2± 2<(ab).

Corollary A.2. For a, b ∈ C we have |a+ b|2 ≤ 2 |a|2 + 2 |b|2.

Proof. From Lemma A.1, we get

|a|2 + |b|2 − 2<(ab) = |a− b|2 ≥ 0,

implying that |a|2 + |b|2 ≥ 2<(ab), and thus (again with Lemma A.1)

|a+ b|2 = |a|2 + 2<(ab) + |b|2 ≤ 2 |a|2 + 2 |b|2 .

Corollary A.3. Let g : [0, 1]→ C integrable. Then,∫ 1

0

∣∣∣∣g(t)−
∫ 1

0

g(t′) dt′
∣∣∣∣2 dt =

∫ 1

0

|g(t)|2 dt−
∣∣∣∣∫ 1

0

g(t) dt

∣∣∣∣2 .
Proof. Using Lemma A.1 and aa = |a|2 for all a ∈ C, we have∫ 1

0

∣∣∣∣g(t)−
∫ 1

0

g(t′) dt′
∣∣∣∣2 dt

=

∫ 1

0

(
|g(t)|2 dt+

∣∣∣∣∫ 1

0

g(t′) dt′
∣∣∣∣2 − 2<

(
g(t)

∫ 1

0

g(t′) dt′

))
dt

=

∫ 1

0

|g(t)|2 dt+

∣∣∣∣∫ 1

0

g(t′) dt′
∣∣∣∣2 − 2<

(∫ 1

0

g(t) dt

∫ 1

0

g(t′) dt′

)

=

∫ 1

0

|g(t)|2 dt−
∣∣∣∣∫ 1

0

g(t′) dt′
∣∣∣∣2 .

117



118 APPENDIX A. MATHEMATICAL TOOLS

Lemma A.4. Let a, b ∈ C and C > 0 such that |a| , |b| ≤ C. Then, the following
inequality holds, |a|2 − |b|2 ≤ 2C |a− b|.

Proof. Because |a|+ |b| ≤ 2C, we have

|a|2 − |b|2 =
(
|a|+ |b|

)(
|a| − |b|

)
≤ 2C

(
|a| − |b|

)
≤ 2C |a− b| ,

where the last inequality comes from the second triangle inequality.

Lemma A.5. Let X ⊆ R compact and g1, g2 : X → C bounded functions.

1. If g1, g2 are Lipschitz-continuous with Lipschitz-constants L1 and L2, respectively,
then g1 · g2 is Lipschitz-continuous with Lipschitz-constant L1 ‖g2‖∞ + L2 ‖g1‖∞.

2. TV(g1 · g2) ≤ ‖g2‖∞TV(g1) + ‖g1‖∞TV(g2).

Proof.

1. For all x, y ∈ X we have

|g1(x)g2(x)− g1(y)g2(y)| ≤ |g1(x)g2(x)− g1(y)g2(x)|+ |g1(y)g2(x)− g1(y)g2(y)|
≤ (L1 ‖g(x)‖∞ + L2 ‖g1‖∞) |x− y| .

2. Let X = {x0, . . . , xn} a partition of X. Then,

n∑
i=1

|g1(xi)g2(xi)− g1(xi−1)g2(xi−1)|

≤
n∑
i=1

|g1(xi)g2(xi)− g1(xi−1)g2(xi)|+ |g1(xi−1)g2(xi)− g1(xi−1)g2(xi−1)|

≤ ‖g2‖∞
n∑
i=1

|g1(xi)− g1(xi−1)|+ ‖g1‖∞
n∑
i=1

|g2(xi)− g2(xi−1)| .

Taking the supremum over all possible partitions X of X on both sides yields

TV(g1 · g2) ≤ ‖g2‖∞TV(g1) + ‖g1‖∞TV(g2).

Lemma A.6. Let g : [0, 1]→ C, T ∈ N, and ti := i/T for i ∈ {0, 1, . . . , T}. Then,∣∣∣∣∣ 1

T

T−1∑
i=0

g(ti)−
∫ 1

0

g(t) dt

∣∣∣∣∣ ≤ TV(g)

T
.

Proof. We have∣∣∣∣∣ 1

T

T−1∑
i=0

g(ti)−
∫ 1

0

g(t) dt

∣∣∣∣∣ =

∣∣∣∣∣ 1

T

T−1∑
i=0

g(ti)−
T−1∑
i=0

∫ 1/T

0

g(ti + t) dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1/T

0

T−1∑
i=0

(
g(ti)− g(ti + t)

)
dt

∣∣∣∣∣ .
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It follows that∣∣∣∣∣ 1

T

T−1∑
i=0

g(ti)−
∫ 1

0

g(t) dt

∣∣∣∣∣ ≤
∫ 1/T

0

T−1∑
i=0

|g(ti)− g(ti + t)| dt

=

∫ 1/T

0

T−1∑
i=0

(
|g(ti+1)− g(ti + t)|+ |g(ti + t)− g(ti)|

)
dt

≤
∫ 1/T

0

2T−1∑
j=0

∣∣g(t̃j+1)− g(t̃j)
∣∣ dt

≤
∫ 1/T

0

TV(g) dt =
TV(g)

T
,

where

(t̃0, . . . , t̃2T ) :=

(
0, t,

1

T
,

1

T
+ t,

2

T
,

2

T
+ t, . . . ,

T − 1

T
+ t, 1

)
, t ∈ (0, 1/T ),

defines a partition of [0, 1].

Lemma A.7. Let g1, g2 : [0, 1]→ C and C > 0 such that |g1(t)| ≤ C and |g2(t)| ≤ C for
all t ∈ [0, 1]. Let T ∈ N and ti := i/T for i ∈ {0, 1, . . . , T}. Then,∣∣∣∣∣
(

1

T

T−1∑
i=0

g1(ti)

)(
1

T

T−1∑
i′=0

g2(ti′)

)
−
∫ 1

0

g1(t) dt

∫ 1

0

g2(t′) dt′

∣∣∣∣∣ ≤ C

T

(
TV(g1) + TV(g2)

)
.

Proof. With Lemma A.6, we have∣∣∣∣∣
(

1

T

T−1∑
i=0

g1(ti)

)(
1

T

T−1∑
i′=0

g2(ti′)

)
−
∫ 1

0

g1(t) dt

∫ 1

0

g2(t′) dt′

∣∣∣∣∣
≤

∣∣∣∣∣
(

1

T

T−1∑
i=0

g1(ti)

)(
1

T

T−1∑
i′=0

g2(ti′)

)
−

(
1

T

T−1∑
i=0

g1(ti)

)∫ 1

0

g2(t′) dt′

∣∣∣∣∣
+

∣∣∣∣∣
(

1

T

T−1∑
i=0

g1(ti)

)∫ 1

0

g2(t′) dt′ −
∫ 1

0

g1(t) dt

∫ 1

0

g2(t′) dt′

∣∣∣∣∣
=

∣∣∣∣∣ 1

T

T−1∑
i=0

g1(ti)

∣∣∣∣∣
∣∣∣∣∣ 1

T

T−1∑
i′=0

g2(ti′)−
∫ 1

0

g2(t′) dt′

∣∣∣∣∣
+

∣∣∣∣∣ 1

T

T−1∑
i=0

g1(ti)−
∫ 1

0

g1(t) dt

∣∣∣∣∣
∣∣∣∣∫ 1

0

g2(t′) dt′
∣∣∣∣

≤ C

T

(
TV(g1) + TV(g2)

)
.

Lemma A.8. Let a ∈ R2. The function g : R2 → C, x 7→ ei〈a,x〉, is Lipschitz-continuous
with Lipschitz-constant

√
2 ‖a‖.

Proof. For x, y ∈ R2, we have

|g(x)− g(y)|2 = |cos(〈a, x〉)− cos(〈a, y〉)|2 + |sin(〈a, x〉)− sin(〈a, y〉)|2

= 2 〈a, x− y〉2 ≤ 2 ‖a‖2 ‖x− y‖2 ,
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where we used the Lipschitz-continuity of cos and sin with Lipschitz-constant 1 and the
Cauchy-Schwarz inequality.

Lemma A.9. Let g1, g2 : [0, 1]→ R, a, b ∈ C, and g := ag1 + bg2. Then,

TV(g) ≤ |a|TV(g1) + |b|TV(g2).

Proof. Let {t0, . . . , tn} a partition of [0, 1]. We have

n−1∑
i=0

|g(ti+1)− g(ti)| =
n−1∑
i=0

|ag1(ti+1) + bg2(ti+1)− ag1(ti)− bg2(ti)|

=
n−1∑
i=0

∣∣a(g1(ti+1)− g1(ti)
)

+ b
(
g2(ti+1)− g2(ti)

)∣∣
≤ |a|

n−1∑
i=0

|g1(ti+1)− g1(ti)|+ |b|
n−1∑
i=0

|g2(ti+1)− g2(ti)| .

Taking the supremum over all possible partitions yields the assertion.

Lemma A.10. Let g : R → R differentiable, a, b ∈ R with a < b, and C > 0 such
that |g′(x)| ≤ C for all x ∈ [a, b]. Then, the restriction g|[a,b] of g to [a, b] is Lipschitz-
continuous with Lipschitz-constant C.

Proof. Let x, y ∈ [a, b]. By the mean value theorem, there is a z ∈ [x, y] such that

|g(x)− g(y)| = |g(y) + (x− y)g′(z)− g(y)| = |g′(z)| |x− y| ≤ C |x− y| .

Lemma A.11. Let g1 : [0, 1] → C and g2 : [0, 1] → (0,∞) integrable such that |g1| ≤ 1
and ∣∣∣∣∫ 1

0

g1(t)g2(t) dt

∣∣∣∣ =

∫ 1

0

g2(t) dt. (A.1)

Then, there is c ∈ C with |c| = 1 such that g1(t) = c a.e. on [0, 1].

Proof. From (A.1), we get∫ 1

0

g2(t) dt =

∣∣∣∣∫ 1

0

g1(t)g2(t) dt

∣∣∣∣ ≤ ∫ 1

0

|g1(t)| g2(t) dt

and therefore, ∫ 1

0

(
|g1(t)| − 1

)
g2(t) dt ≥ 0.

Since |g1(t)| − 1 ≤ 0 and g2(t) > 0 for all t ∈ [0, 1], this implies that |g1(t)| − 1 = 0 a.e.,
that is, |g1(t)| = 1 a.e. In particular,

g1(t) = g1(t)−1 a.e. on [0, 1]. (A.2)

Because of ∫ 1

0

∫ 1

0

g2(t)g2(t′) dt dt′ =

(∫ 1

0

g2(t) dt

)2

=

∣∣∣∣∫ 1

0

g1(t)g2(t) dt

∣∣∣∣2
=

∫ 1

0

∫ 1

0

g1(t)g1(t′)g2(t)g2(t′) dt dt′,
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we get

0 =

∫ 1

0

∫ 1

0

(
g1(t)g1(t′)− 1

)
g2(t)g2(t′) dt dt′

=

∫ 1

0

∫ 1

0

(
<
(
g1(t)g1(t′)

)
− 1
)
g2(t)g2(t′) dt dt′ (A.3)

+i

∫ 1

0

∫ 1

0

=
(
g1(t)g1(t′)

)
g2(t)g2(t′) dt dt′.

This means that both the real and imaginary parts on the right hand side have to be zero.
Because of

<
(
g1(t)g1(t′)

)
− 1 ≤

∣∣∣<(g1(t)g1(t′)
)∣∣∣− 1 ≤ |g1(t)| |g1(t′)| − 1 = 0,

and g2(t)g2(t′) > 0, it follows from (A.3) that <
(
g1(t)g1(t′)

)
= 1 a.e. Since we also have

that
∣∣∣g1(t)g1(t′)

∣∣∣ = |g1(t)| |g1(t′)| = 1 a.e., we get g1(t)g1(t′) = 1 a.e. Because of (A.2),

this means that

g1(t) =
(
g1(t′)

)−1

=
(
g1(t′)−1

)−1

= g1(t′) a.e. on [0, 1],

which implies that g1(t) = c a.e. on [0, 1] for some c ∈ C with |c| = 1.

Lemma A.12. Let g : R2 → C such that

Lg := 2π
√

2

∫
R2

‖x‖ |g(x)| dx <∞.

Then, the Fourier transform Fg : R2 → C is Lipschitz-continuous with Lipschitz-constant
Lg.

Proof. Let ω, ω′ ∈ R2. Then,

|Fg(ω)−Fg(ω′)| =
∣∣∣∣∫

R2

e−2πi〈ω,x〉g(x) dx−
∫
R2

e−2πi〈ω′,x〉g(x) dx

∣∣∣∣
=

∣∣∣∣∫
R2

(
e−2πi〈ω,x〉 − e−2πi〈ω′,x〉

)
g(x) dx

∣∣∣∣
≤
∫
R2

∣∣∣e−2πi〈ω,x〉 − e−2πi〈ω′,x〉
∣∣∣ |g(x)| dx

≤
∫
R2

2π
√

2 ‖x‖ ‖ω − ω′‖ |g(x)| dx = Lg ‖ω − ω′‖ ,

where we used Lemma A.8 for the second inequality.

Lemma A.13. Let g : R2 → C such that

L′g :=
√

2

∫ ∞
0

∫ 2π

0

∥∥(2πψ, log(r)
)∥∥ rγ |(g ◦ P)(r, ψ)| dψ

dr

r
<∞.

Then, the analytical Fourier-Mellin transform AFMg : Z×R→ C is Lipschitz-continuous
with Lipschitz-constant L′g.
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Proof. Let (u, v), (u′, v′) ∈ Z× R. Then,

|AFMg(u, v)−AFMg(u
′, v′)|

=

∣∣∣∣∫ ∞
0

∫ 2π

0

(
e−2πiuψr−iv − e−2πiu′ψr−iv′

)
rγ(g ◦ P)(r, ψ) dψ

dr

r

∣∣∣∣
≤

∫ ∞
0

∫ 2π

0

∣∣∣e−2πiuψ−iv log(r) − e−2πiu′ψ−iv′ log(r)
∣∣∣ rγ |(g ◦ P)(r, ψ)| dψ

dr

r

≤
∫ ∞

0

∫ 2π

0

√
2
∥∥(2πψ, log(r)

)∥∥ ‖(u, v)− (u′, v′)‖ rγ |(g ◦ P)(r, ψ)| dψ
dr

r

≤ L′g ‖(u, v)− (u′, v′)‖ ,

where we used Lemma A.8 for the second inequality.

Lemma A.14. Let I a finite index set, d ∈ N, and gi : Rd → C for i ∈ I.

1. If gi is differentiable for all i ∈ I, then, for all m ∈ {1, . . . , d},

∂

∂xm

∑
i,i′∈I

gi(x)gi′(x) = 2
∑
i,i′∈I

<
(
∂gi
∂xm

(x)gi′(x)

)
.

2. If gi is twice differentiable for all i ∈ I, then, for all k,m ∈ {1, . . . , d},

∂2

∂xk∂xm

∑
i,i′∈I

gi(x)gi′(x) = 2
∑
i,i′∈I

<
(

∂2gi
∂xk∂xm

(x)gi′(x) +
∂gi
∂xm

(x)
∂gi′

∂xk
(x)

)
.

Proof.

1. We have

∂

∂xm

∑
i,i′∈I

gi(x)gi′(x) =
∂

∂xm

∑
i,i′∈I

[
<
(
gi(x)

)
+ i=

(
gi(x)

))(
<
(
gi′(x)

)
− i=

(
gi′(x)

)]
=

∂

∂xm

∑
i,i′∈I

[
<
(
gi(x)

)
<
(
gi′(x)

)
+ =

(
gi(x)

)
=
(
gi′(x)

)]
= 2

∑
i,i′∈I

[
<
(
∂gi
∂xm

(x)

)
<
(
gi′(x)

)
+ =

(
∂gi
∂xm

(x)

)
=
(
gi′(x)

)]
= 2

∑
i,i′∈I

<
(
∂gi
∂xm

(x)gi′(x)

)
,

where we used the symmetry of the sum in i and i′ for the second and third equality.

2. This follows directly from the first part of the Lemma and the product rule.

Lemma A.15. Let d ∈ N and let g : Rd × [0, 1]→ C such that

1. t 7→ g(x, t) is integrable for all x ∈ Rd,

2. x 7→ g(x, t) is continuously differentiable a.e. on [0, 1],
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3. there is an integrable h : [0, 1]→ [0,∞) such that, for all (x, t) ∈ Rd × [0, 1] and for
all m ∈ {1, . . . , d}, ∣∣∣∣ ∂g∂xm (x, t)

∣∣∣∣ ≤ h(t).

Then,

∂

∂xm

∫ 1

0

∫ 1

0

g(x, t)g(x, t′) dt dt′ = 2

∫ 1

0

∫ 1

0

<
(
∂g

∂xm
(x, t)g(x, t′)

)
dt dt′.

Proof. First, note that if the partial derivatives of g are bounded by h, then so are the
real and imaginary parts of those partial derivatives. We have

∂

∂xm

∫ 1

0

∫ 1

0

g(x, t)g(x, t′) dt dt′

=
∂

∂xm

∫ 1

0

∫ 1

0

(
<
(
g(x, t)

)
+ i=

(
g(x, t)

))(
<
(
g(x, t′)

)
− i=

(
g(x, t′)

))
dt dt′

=
∂

∂xm

∫ 1

0

∫ 1

0

<
(
g(x, t)

)
<
(
g(x, t′)

)
+ =

(
g(x, t)

)
=
(
g(x, t′)

)
dt dt′

=
∂

∂xm

[∫ 1

0

<
(
g(x, t)

)
dt

]2

+
∂

∂xm

[∫ 1

0

=
(
g(x, t)

)
dt

]2

= 2

∫ 1

0

<
(
∂g

∂xm
(x, t)

)
dt

∫ 1

0

<
(
g(x, t′)

)
dt′

+2

∫ 1

0

=
(
∂g

∂xm
(x, t)

)
dt

∫ 1

0

=
(
g(x, t′)

)
dt′

= 2

∫ 1

0

∫ 1

0

<
(
∂g

∂xm
(x, t)g(x, t′)

)
dt dt′,

where we used the symmetry of the integrals in t and t′ for the second equality and the
chain rule as well as Theorem B.2 for the fourth equality, while the last one stems from
the fact that <(a)<(b) + =(a)=(b) = <(ab) for all a, b ∈ C.

The following two lemmas are useful for showing asymptotic normality in Chapter 6.

Lemma A.16. Let (νT )T∈N a sequence in (0,∞) and ν ∈ (0,∞) such that νT
T→∞−→ ν.

Furthermore, let XT ∼ N (0, νT ) and X ∼ N (0, ν). Then, XT
D→ X.

Proof. The characteristic functions of XT and X are

φXT (y) = exp

(
−ν

2
Ty

2

2

)
, φX(y) = exp

(
−ν

2y2

2

)
.

Since νT
T→∞−→ ν and the functions ν̃ 7→ exp

(
−ν̃2y2/2

)
are continuous, the statement

follows from Theorem B.4.

Lemma A.17. For d ∈ N and a probability space (Ω,A,P), let (XT )T∈N a sequence of

random matrices XT : Ω→ Rd×d and X ∈ Rd×d such that X is invertible and XT
T→∞−→ X

in probability. Furthermore, let (YT )T∈N a sequence of random vectors in Rd, such that
(XTYT )T∈N is uniformly tight. Then, (YT )T∈N is uniformly tight.
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Proof. We define

X ′T : Ω→ GLd(R), ω 7→

{
XT (ω), if det

(
XT (ω)

)
6= 0,

X, if det
(
XT (ω)

)
= 0.

Since XT
T→∞−→ X in probability, we get that X ′T

T→∞−→ X in probability. Let

X ′′T := (X ′T )−1.

Because matrix inversion and the determinant are continuous maps, it follows from the
continuous mapping theorem (Theorem B.8 in the Appendix) that

‖X ′′T‖1

T→∞−→
∥∥X−1

∥∥
1

and det(XT )
T→∞−→ det(X) 6= 0 in probability.

This means that for all δ > 0 and ε > 0, there is a T (δ, ε) ∈ N such that

P
(∣∣‖X ′′T‖1 −

∥∥X−1
∥∥

1

∣∣ ≥ δ
)
<
ε

4
and P

(
det(XT ) = 0

)
<
ε

4
for all T > T (δ, ε).

Fix δ > 0 and ε > 0. Then, with the event

ET (δ) :=
{
ω ∈ Ω

∣∣∣ ∣∣‖X ′′T (ω)‖1 −
∥∥X−1

∥∥
1

∣∣ ≥ δ
}
∪
{
ω ∈ Ω

∣∣∣ det
(
XT (ω)

)
= 0
}

we have that P
(
ET (δ)

)
< ε/2 for all T > T (δ, ε). Furthermore, XT (ω) is invertible with

XT (ω)−1 = X ′′T (ω) and ‖X ′′T (ω)‖1 ≤ ‖X−1‖1 + δ for all ω ∈ Ω \ ET (δ). Since (XTYT )T∈N
is uniformly tight, we have that for all ε̃ > 0, there is an m(ε̃) > 0 such that

sup
T∈N

P
(
‖XTYT‖1 > m(ε̃)

)
≤ ε̃

2
.

Hence, for ε̃ = ε and for all T > T (δ, ε), we have that

1− ε

2
≤ P

(
‖XTYT‖1 ≤ m(ε)

)
= P

(
‖XTYT‖1 ≤ m(ε), ET (δ)

)
+ P

(
‖XTYT‖1 ≤ m(ε),Ω \ ET (δ)

)
≤ P

(
ET (δ)

)
+ P

(
‖X ′′T‖1 ‖XTYT‖1 ≤ ‖X

′′
T‖1m(ε),Ω \ ET (δ)

)
≤ ε

2
+ P

(∥∥X−1
T XTYT

∥∥
1
≤
(∥∥X−1

∥∥
1

+ δ
)
m(ε),Ω \ ET (δ)

)
≤ ε

2
+ P

(
‖YT‖1 ≤

(∥∥X−1
∥∥

1
+ δ
)
m(ε)

)
,

where we used Lemma 2.7 and the fact that X ′′T = X−1
T on Ω \ ET (δ) for the third

inequality. With mδ(ε) :=
(
‖X−1‖1 + δ

)
m(ε), where we chose δ > 0 arbitrarily, it follows

that
sup

T>T (δ,ε)

P
(
‖YT‖1 > mδ(ε)

)
≤ ε.

Since this holds for all ε > 0 with mδ(ε) not depending on T , we get that (YT )T>T (δ,ε) is
uniformly tight. Because a single random variable is always tight, there is an mT (ε) > 0
for each T ∈ {1, . . . , T (δ, ε)} and all ε > 0 such that P

(
‖YT‖1 > mT (ε)

)
≤ ε. We conclude

that for all ε > 0, there is an

m̃δ(ε) := max
{
m1(ε), . . . ,mT (δ,ε)(ε),m

δ(ε)
}
> 0,

such that
sup
T∈N

P
(
‖YT‖1 > m̃δ(ε)

)
≤ ε,

which means that (YT )T∈N is uniformly tight.



Appendix B

Well-known theorems

For the reader’s convenience, we present some theorems from the literature which are
applied in the proofs in this work.

The following theorem can be found in Heuser, H. (1995, page 101).

Theorem B.1 (Continuity of parameter integrals). Let X a metric space, E a Banach
space, and (Ω,A, µ) a measure space. Let g : X × Ω→ E with

(i) ω 7→ g(x, ω) is µ-measurable for all x ∈ X,

(ii) x 7→ g(x, ω) is continuous µ-a.e. on Ω,

(iii) there is an h ∈ L1(Ω, µ, E) such that |g(x, ω)| ≤ h(ω) for all (x, ω) ∈ X × Ω.

Then, G : X → E, x 7→
∫

Ω
g(x, ω)µ(dω) is well-defined and continuous.

The following theorem can be found in Heuser, H. (1995, page 101).

Theorem B.2 (Differentiability of parameter integrals). Let d ∈ N, U ⊆ Rd open, E a
Banach space, and (Ω,A, µ) a measure space. Let g : U × Ω→ E with

(i) ω 7→ g(x, ω) is in L1(Ω, µ, E) for all x ∈ U ,

(ii) x 7→ g(x, ω) is continuously differentiable µ-a.e. on Ω,

(iii) there is an h ∈ L1(Ω, µ, E) such that for all (x, ω) ∈ U × Ω, i ∈ {1, . . . , d},∣∣∣∣ ∂g∂xi (x, ω)

∣∣∣∣ ≤ h(ω).

Then, G : U → E, x 7→
∫

Ω
g(x, ω)µ(dω) is well-defined and continuously differentiable

such that for all (x, ω) ∈ U × Ω, i ∈ {1, . . . , d},

∂G

∂xi
(x) =

∫
Ω

∂g

∂xj
(x, ω)µ(dω).

The following theorem can be found in Forster, O. (2004, page 133).

Theorem B.3. For x, y ∈ R we have cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y).

The following theorem can be found in van der Vaart (2000, Theorem 2.13).
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Theorem B.4 (Continuity theorem of Lévy and Cramér). Let (XT )T∈N a sequence
of random variables in R, X a random variable in R, and φXT (y) := E(eiyXn) and

φX(y) := E(eiyX) their respective characteristic functions. Then, XT
D→ X if and only if

φXT (y)
T→∞−→ φX(y) for all y ∈ R.

The following theorem can be found in van der Vaart (2000, page 16).

Corollary B.5 (Cramér-Wold Device). Let d ∈ N, (XT )T∈N a sequence of random vectors

in Rd, and X a random vector in Rd. Then, XT
D→ X if and only if 〈ξ,XT 〉

D→ 〈ξ,X〉 for
all ξ ∈ Rd.

The following theorem can be found in van der Vaart (2000, Theorem 5.7).

Theorem B.6 (van der Vaart). Let Θ ⊆ Rd, θ0 ∈ Θ, and M : Θ → R a function.
Furthermore, let (YT )T∈N a sequence of random variables on a probability space (Ω,A,P)
with values in a measure space (Ω′,A′) and let m : Θ × Ω′ → R a function such that
y 7→ m(θ, y) is measurable for all θ ∈ Θ and θ 7→ m(θ, y) is continuous for all y ∈ Ω′.
For all T ∈ N, define

MT : Θ→ R, θ 7→ m(θ, YT ).

Let (θ̂T )T∈N a sequence of estimators for θ. Assume that

sup
θ∈Θ
|MT (θ)−M(θ)| T→∞−→ 0 in probability, (B.1)

inf {M(θ) | θ ∈ Θ, ‖θ − θ0‖ ≥ ε} > M(θ0) for all ε > 0, (B.2)

lim sup
T→∞

(
MT (θ̂T )−MT (θ0)

)
≤ 0. (B.3)

Then, θ̂T
T→∞−→ θ0 in probability.

The following theorem can be found in van der Vaart (2000, Theorem 3.8).

Theorem B.7 (Delta method). Let (µ̂T )T∈N a sequence of random vectors in Rd, µ0 ∈ Rd,
and Σ ∈ Rd×d, such that

√
T (µ̂T − µ0)

T→∞−→ N (0,Σ) in distribution.

Let k ∈ N and let g : Rd → Rk continuously differentiable. Then

√
T
(
g(µ̂T )− g(µ0)

) T→∞−→ N (0, Jg(µ0)ΣJg(µ0)>) in distribution,

where Jg(µ0) ∈ Rk×d is the Jacobi matrix of g at µ0.

The following theorem can be found in van der Vaart (2000, Theorem 2.3).

Theorem B.8 (Continuous mapping). Let d, k ∈ N and let g : Rd → Rk continuous a.e.
on Rd. Furthermore, let (XT )T∈N a sequence of random vectors in Rd and X a random
vector in Rd.

1. If XT
T→∞−→ X in distribution, then g(XT )

T→∞−→ g(X) in distribution.

2. If XT
T→∞−→ X in probability, then g(XT )

T→∞−→ g(X) in probability.

3. If XT
T→∞−→ X almost surely, then g(XT )

T→∞−→ g(X) almost surely.
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The following theorem can be found in van der Vaart (2000, Theorem 2.8).

Theorem B.9 (Slutzky’s Lemma). For d ∈ N, let (XT )T∈N and (YT )T∈N sequences of
random vectors in Rd, (ZT )T∈N a sequence of random variables in R, X a random vector

in Rd, c ∈ Rd, and c′ ∈ R. Assume that XT
T→∞−→ X in distribution, YT

T→∞−→ c in

probability, and ZT
T→∞−→ c′ in probability. Then,

1. XT + YT
T→∞−→ X + c in distribution,

2. ZTXT
T→∞−→ c′X in distribution,

3. if ZT 6= 0 almost surely and c′ 6= 0, Z−1
T XT

T→∞−→ (c′)−1X in distribution.

The following theorem can be found in van der Vaart (2000, Example 2.6).

Theorem B.10 (Markov’s inequality). Let d ∈ N, m, p > 0, and let (XT )T∈N a sequence
of random vectors in Rd. Then,

P
(
‖XT‖ > m

)
≤

E
(
‖XT‖p

)
mp

.

The following theorem can be found in van der Vaart (2000, Theorem 2.4).

Theorem B.11 (Prohorov). Let d ∈ N, (XT )T∈N a sequence of random vectors in Rd.

1. If XT
T→∞−→ X in distribution for some random vector X in Rd, then (XT )T∈N is

uniformly tight.

2. If (XT )T∈N is uniformly tight, then there exists a subsequence (Tk)k∈N such that

XTk

k→∞−→ X in distribution for some random vector X in Rd.
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