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1. Introduction 

 

1.1 Extracellular vesicles 

 

Extracellular vesicles (EVs) are defined as extracellular particles containing cytosolic 

components from the secreting cell, which are encapsulated by lipid bilayers. The secretion 

of these EVs is conserved throughout evolution including simple and multicellular 

eukaryotes (e.g. Caenorhabditis elegans [1], Leishmania donovani [2], Toxoplasma gondii [3] 

and fungi [4]) but also prokaryotic cells [5] and mammalian cells [6, 7]. Extracellular vesicles 

have a diverse repertoire of features and in recent years various nomenclatures have been 

used in literature. Vesicles were designated by their size (microvesicles, nanovesicles, 

nanoparticles), their tissue of origin (prostasomes, oncosomes) or by their presence outside 

of cells (exosomes, ectosomes or exovesicles). The nomenclature of extracellular vesicles is 

still in discussion [8]. Nevertheless, according to the latest research, EVs can be divided into 

three subclasses: apoptotic bodies, microvesicles and exosomes (Figure 1). 

 

 

Figure 1: Release of extracellular vesicles and their properties. Extracellular vesicles can be classified 
into three main classes: Apoptotic bodies (AB), microvesicles (MV) and exosomes. Apoptotic bodies 
are shed from the cell membrane during stress or apoptosis and are 1000-5000 nm in size. 
Microvesicles were shed from the cell membrane too, while they are smaller in size with 100-
1000 nm. Exosomes are the smallest known extracellular vesicles with a diameter of 30-100 nm. 
Internal vesicles are formed inside multivesicular bodies (MVB), which fuse with the cell membrane 
and release these internal vesicles now called exosomes. 
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The typical diameter of apoptotic bodies or apoptotic vesicles ranges from 1000 nm – 

5000 nm and they are released upon apoptotic cell death [9-11]. These vesicles directly bud 

from the plasma membrane and carry cytoplasmic, nuclear and endoplasmic proteins [12, 

13] as well as DNA and histones [14]. Oncosomes share the biogenesis route and size 

distribution of apoptotic bodies but are cancer specific and may have unique properties in 

vivo through transferring the oncoprotein EGFRvIII to the membrane of tumour cells lacking 

this protein [15]. Compared to apoptotic bodies, microvesicles (MV) are smaller in size (100-

1000 nm) but share a similar biogenesis route. Both vesicle types are shed from the plasma 

membrane of the sending cell, while microvesicles are released under non-apoptotic 

conditions, for example after stimulation of cells by cytokines [16, 17]. Recent studies 

reported the transfer of mRNA and miRNA from one cell to another by MVs [18], therefore 

MVs are discussed to play a role in cell-cell communication [19]. A similar role in horizontal 

transfer of information is also postulated for exosomes. These 30-100 nm extracellular 

vesicles are formed by invagination of internal vesicles in multivesicular bodies. These 

intraluminal vesicles can further fuse with the lysosome leading to degradation or fuse with 

the plasma membrane, releasing the internal vesicles to the extracellular space [20]. More 

detail of the biogenesis of exosomes is provided in the next chapter (1.2 Exosomes: 

Classification, biogenesis and marker proteins). Since the cargo (e.g. small RNAs, proteins, 

DNA) differs among diverse types of EVs [21], a pure population of e.g. exosomes is needed 

for specific small RNA detection, which is the base of this thesis. However, there are still 

limitations of current EV isolation methods providing high yield and purity due to the 

similarity of MVs and exosomes, which will also be described in the next chapters 

 

 

1.2 Exosomes: Classification, biogenesis and marker proteins 

 

Exosomes are 30 – 100 nm sized extracellular vesicles of endocytic origin, which are secreted 

by a multitude of cell types in vitro as well as in vivo [22]. The endocytic pathway consists of 

dynamic membranous compartments involving early endosomes, which originate by 

endocytosis at the plasma membrane [23] (Figure 2). Molecules, such as receptors of the 

plasma membrane, are transferred by endocytic vesicles to early endosomes (1). Due to the 

acidic pH of 6.2 inside these cell compartments the receptors are uncoupled from their 
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ligands and partially recycled back to the plasma membrane (2). Late endosomes even 

comprise a pH of 5.0-5.5 and accumulate intraluminal vesicles within their lumen (3), while 

they mature to multivesicular bodies (MVBs) [24, 25]. MVBs can either fuse with the 

lysosome leading to a degradation of their content by lysosomal hydrolases (5) or fuse with 

the plasma membrane to release their content as extracellular vesicles, also called exosomes 

(6). The process, which determines exocytosis or degradation, is not fully understood. 

However, in 1993 Vidal and Stahl found that MVBs fusing with the plasma membrane bear 

markers of rather early endosomes than late endosomes, suggesting different 

subpopulations of MVBs inside the cell [26]. 

 
Figure 2: Diagram of endosome pathways and exosome biogenesis in mammalian cells. Membrane 
proteins (for example transferrin- or EGF-receptors) are internalized upon receptor binding and 
transported to early endosomes (1). Here the receptor proteins are released from their ligand and 
are recycled to the plasma membrane (2). During maturation of the endosome vesicles are 
internalized (3) and multivesicular bodies are formed (4). These cell compartments can fuse with the 
lysosome leading to a degradation of cargo (5) or they fuse with the plasma membrane (6). Upon 
fusion the internal vesicles of the MVBs are released into extracellular space, now called exosomes. 

 

Exosomes are unleashed by a variety of cells, including but not limiting to reticulocytes [27], 

platelets [7], dendritic cells [20] and cancer cells [6, 28]. Due to this fact, exosomes are 

naturally found in a variety of body fluids like blood [29], saliva [30, 31], urine [32] and 

amniotic fluid [33]. They are secreted by donor cells and often reach specific sets of recipient 

cells via fusion with the plasma membrane or via endocytosis [34]. An important role in cell-

cell communication is postulated for these secreted vesicles [35], which will be further 
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introduced and evaluated in chapter 1.5.  

Recent studies focussed on the lipid analysis of exosomes. When comparing the plasma 

membrane with secreted vesicles an enrichment of sphingomyelin, phosphatidylserine and 

cholesterol was detected in exosomes [36]. A first description of exosomes carrying RNA was 

made in 2007, while in recent years numerous groups have analysed the presence of nucleic 

acids in more detail [28, 32, 37]. Most of these studies describe the small RNA and mRNA 

content of EVs, while a few workgroups focus on rRNA [38]. However, the rRNA content of 

exosomes is controversially discussed, since in 2013 a comparison of RNA sizes in apoptotic 

bodies, MV and exosomes indicated, that the presence of rRNA was limited to apoptotic 

bodies and large MVs populations. The small RNA content of exosomes seems to be 

different compared to intracellular small RNAs, which suggests a controlled import 

mechanism of RNAs into exosomes [6, 39]. In 2013 Villarroya-Beltri described sequence 

motifs, that were specific for exosomal miRNAs, as was evaluated by micro array analysis 

[40].  However, up to now the underlying mechanism is not completely understood and 

needs further investigations. 

In accordance with intracellular formation, all proteins and small RNAs can be found inside 

the cell as well. However, as a result of specific transport- and synthesis steps, which are not 

fully clarified yet, specific proteins, but also lipids and RNAs as described above, are enriched 

in exosomes. In the last few years exosomal marker proteins like tetraspanins (CD9, CD63 

and CD81) or proteins which are involved in the biosynthesis of MVBs, for example Tumor 

susceptibility Gene 101 (TSG101) or ALG2 interacting protein (Alix), were discovered [41-43]. 

CD9, CD63 and CD81 belong to the tetraspanin superfamily [44-46], which is characterized 

by four transmembrane regions and two exposed extracellular loops [47]. CD9 is involved in 

cell motility, adhesion, fusion [48] and the loss of CD9 expression leads to tumor progression 

and metastasis in several types of cancer [49-51]. Furthermore, CD9, CD63 and CD81 are 

expressed on the mammalian oocyte surface and an essential role of CD9 for sperm-egg 

fusion was identified [52]. Miyados et al. showed that CD9 containing vesicles induce fusion 

between sperm and eggs in vitro, a finding that delivered first insight into gamete fusion 

(and other membrane fusion) events [53]. TSG101 and Alix are soluble cytoplasmic 

components of the “endosomal sorting complex required for transport” (ESCRT) machinery, 

which is required for Multivesicular Body (MVB) formation and cargo sorting into 

intraluminal vesicles (ILV) [54]. 
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Both ESCRT complexes and tetraspanins play major roles during exosome assembly from 

intraluminal membranes [41]. Tetraspanins consist of four transmembrane helices and have 

the capacity to interact with surface receptors or signalling molecules, forming tetraspanin-

enriched microdomains (TEMs) that play an important role in EV biogenesis and EV release 

[22]. Furthermore, exosomes contain cell specific proteins, for example exosomes deriving 

from antigen presenting cells contain MHCI and MHCII molecules [55], whereas exosomes 

from reticolocytes harbour transferrin receptors [27] and exosomes from T-lymphocytes 

include CD3 in their membrane [56]. Since there is no exclusively exosomal marker protein 

known so far, these differential expression of proteins can be used to identify exosomes 

from different sources, for example in blood plasma. A schematic drawing of an exosome 

and its major components is depicted in Figure 3. 

 

 

Figure 3: Schematic representation of exosome composition. Exosomes are defined as 30-100 nm 
sized extracellular vesicles of endocytic origin. They contain enriched proteins like tetraspanins (CD9, 
CD63 or CD81) or proteins of the ESCRT machinery (for example TSG101 and Alix). Besides proteins 
small RNAs (miRNAs, snoRNAs) and mRNAs are present inside these extracellular vesicles. However, 
the transport route of small RNAs and mRNAs remains elusive at the current stage.  

   

In summary, exosomes show distinct lipid, RNA and protein profiles that allow 

differentiation from secreting cells and other EVs like AB or MVs. According to these 

observations an important role in cell-cell communication is postulated for exosomes, which 

will be further evaluated in the chapter 1.5 [57]. 
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1.3 Methods of extracellular vesicle isolation 

 

The research on extracellular vesicles has recently emerged because of the potential for 

exosomes to be used as biomarkers in diagnosis of diseases. However, the isolation of EVs is 

still challenging, time consuming and hard to adapt to clinical practice [58]. A lot of 

investigation effort was invested to isolate exosomes with high purity and quantity. 

Especially for clinical applications it is important to have an efficient, quick, reliable and 

economic workflow for exosome isolation, since highly complex biological fluids with limited 

amounts like plasma are mainly used. Exosomes can be isolated by their size, density, 

protein content or biochemical properties. Ultracentrifugation is the most commonly used 

technique for exosome isolation [59]. This method involves different centrifugation steps to 

remove cells, cell debris and bigger microvesicles. A final centrifugation step at high g-forces 

(≥100.000 xg) is performed to collect exosomes, which can be washed and centrifuged one 

more time to increase purity [32, 60]. An alternative method, which is often used for 

exosome isolation, is based on precipitation by polyethylene glycol (PEG) [61]. PEG is a 

nontoxic synthetic polymer which is capable of sterically excluding proteins from the solvent 

until the concentration of protein is very high and the solubility exceeded, which in turn 

leads to precipitation of e.g. exosomes [62]. Some commercially available kits use this 

technique to isolate exosomes, for example ExoQuick TC (System Bioscience) [63]. 

Moreover, exosomes can be isolated by their density (for exosomes between 1.08 and 1.21 

g/mL) [55, 64]. Optiprep (Iodixanol) or sucrose gradients combined with a centrifugation 

step separate these extracellular vesicles from bigger microvesicles and extracellular 

proteins. In recent years many workgroups focused on subpopulations of exosomes, which 

cannot be analysed by the methods explained so far. Subtypes of exosomes share the same 

size and density, while cargo content and receptor molecules differ among subtypes. 

Isolation of exosomes by immunoisolation, implying magnetic beads, allows the isolation of 

specific exosome subgroups, which expose the desired overrepresented membrane protein 

[65]. Immunoisolation has been performed e.g. for MHCII containing exosomes from antigen 

presenting cells [66] or Her2-positive exosomes derived from breast adenocarcinoma cell 

lines [67]. 
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In summary, none of this method combines high purity and yield, is low time consuming and 

allows the study of exosome subgroups. In recent years great efforts were made to develop 

new technologies for vesicle isolation. Nevertheless, no common isolation protocol for 

exosomes, that would match the above mentioned features, is available yet.  

 

 

 

1.4 Biogenesis of miRNAs and RNA interference (RNAi)  

 

MiRNAs are 20-23 nt long, highly conserved non-protein coding RNA molecules. They are 

involved in regulation of gene expression by inhibiting translation or initiating degeneration 

of mRNA transcripts in a process called RNA interference (RNAi). RNAi was discovered in 

1986, when Ecker et al. observed transcriptional inhibition by expressing antisense RNA in 

transgenic plants [68]. By overexpression of chalcone synthase, a key enzyme for 

pigmentation in plants, they wanted to darken the color of the flower. However, after 

overexpression they observed white instead of dark flowers due to an increased rate of 

mRNA degradation, which was the first observation of the RNAi mechanism [69]. In 1998 

Mello and Fire reported a gene silencing effect upon injection of double stranded RNA into 

C. elegans, whereas an injection of mRNA or antisense RNA showed no outcomes on gene 

expression [70]. They called this phenomenon RNAi and received the Nobel Prize for this 

discovery in 2006. Only a few years later the first endogenous miRNAs were discovered, lin-4 

in C.elegans [71]. In the past 20 years over 1500 miRNAs were annotated in the human 

genome, collected in an open available miRNA database (miRBase) [72]. The miRNA 

biogenesis and the RNAi pathway are summarized in Figure 4. 
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Figure 4: MiRNA biogenesis and function. MiRNAs, located in intronic regions of protein coding 
genes or as independing genes, are transcribed inside the nucleus by RNA polymerase II. After 
transcription Drosha further processes pri-miRNAs into small precursor hairpin miRNAs, also called 
pre-miRNAs. These are exported via Exportin 5 into the cytoplasm and further processed by Dicer, 
which recognized the hairpin structure of pre-miRNAs, yielding a double stranded mature miRNA. 
Following processing, one strand of the mature miRNA (guide) is incorporated into a miRNA-induced-
silencing complex (RISC), while the other strand (passenger) is released and degraded. The 
miRNA/RISC complex binds to messenger RNA and stops transcription or leads to degradation of the 
transcript. 

 
MiRNAs are located in introns of protein coding genes (miRtrons) or hold independent gene 

locations [73]. They are transcribed via polymerase II inside the nucleus and fold into hairpin 

structures [74]. These pri-miRNAs act as substrates for Drosha, a protein of the RNAse III 

family, which cleaves the primary miRNA transcript (pri-miRNA) into 70 nucleotides long 

precursor-miRNAs (pre-miRNAs). These single stranded RNAs are exported via Exportin-5 

into the cytoplasm and further processed by the bidentate endonuclease Dicer, which 

recognizes and removes the hairpin structure [75]. Dicer, also an RNAse III enzyme, cleaves 

the exported pre-miRNA into 20-23 bp long double stranded mature miRNAs commonly with 

2nt 3´-overhangs. Afterwards, the guide strand is incorporated into the miRNA-induced-

silencing-complex (RISC), while the passenger strand is degraded. This RNA/protein complex 

binds complementary mRNA to stop the translation process by preventing the binding of the 

60S ribosomal subunit or the eukaryotic translation initiation factor (eIF). Furthermore, the 

RISc complex can lead to degradation by directing an endonuclease, which belongs to the 
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Ago family, to cleave messenger RNA [76-78]. The loading of miRNAs into EVs remains 

elusive at this point. Since proteins of the RISC machinery are found in exosomes (for 

example Ago2), recent studies suggest a possible interaction of these proteins with the 

ESCRT machinery leading to a direct loading into ILV in MVBs [79, 80]. The RNAi pathway 

combined with exosomal release is summarized in Figure 5. 

 

 

Figure 5: RNAi pathway and exosome biogenesis. All miRNAs are transcribed in the nucleus by 
polymerase II. After processing by Drosha pre-miRNAs are exported via Exportin 5 into the 
cytoplasm, where Dicer recognizes the loop structure. Further processing results in double stranded 
miRNAs, which are loaded into the RISC complex. They can regulate gene expression inside the cell 
by degradation of miRNAs or by inhibiting the translation process. However, miRNAs can be loaded 
into MVBs. This process is so far poorly understood. MVBs further fuse with the plasma membrane 
and internal vesicles are released into the extracellular space, where they are called exosomes.  

 

In 2015 an hnRNPA2B1 dependent loading of miRNAs into EVs was discovered [40]. HnRNPs 

are ubiquitously expressed ribonucleoproteins that control the transport of HIV genomic 

RNA, e.g. in HeLa cells [81], and are involved in transport processes of specific mRNA in 

neurons [82]. They recognize specific EXO-motifs (GGAG) in small RNAs and provoke the 

loading into EVs. Furthermore, it was shown, that hnRNPA2B1 is sumoylated and this post-

transcriptional modification is important for the loading process. However, the regulation of 

this process and interaction partners of hnRNPA2B1 are not known respectively not fully 

understood yet. 
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1.5 Cell-cell communication via extracellular vesicles 

 

First described in 1983 by Stahl and Johnstone, a key finding in interpreting the role of 

exosomes was made in 2007, when Valadi and co-workers discovered miRNAs and mRNAs as 

a cargo [37, 83]. The concept of EVs in intracellular communication implies a secretion of EVs 

by sending cells, a specific interaction and uptake of these vesicles by a recipient cell and a 

release of functional miRNAs or other signalling molecules to induce changes in gene 

expression (Figure 6).  

 

 

Figure 6: Cell-cell communication by exosomes. MiRNAs are loaded into MVB (1), which fuse with 
the plasma membrane of the sending cell (2). Exosomes can reach specific target cells by endocytosis 
(3) or fusion with the plasma membrane (4). In both cases the cargo (e.g. miRNAs) is released. 
Functionality of transferred miRNAs requires loading into RISC complex to influence the gene 
expression of the target cell and complete cell-cell communication. 

 

Indeed, EVs were shown to be involved in routes of cell-cell communication beyond peptides 

or small molecules and with both endocrine and paracrine effects [35, 84-86]. After their 

release, exosomes can enter the target cell by either fusion with the plasma membrane or 

endocytosis. In both cases the content of exosomes including small RNAs will be disposed 

into the cytosol of the recipient cell [34, 87]. Recent studies showed a transfer of exosomes 

from oligodendrocytes to microglia cells and a fusion of these vesicles through 

macropinocytosis [88], while Fruhbeis et al. described a endocytosis dependent uptake 
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mechanism in neurons [89]. However, the fusion of exosomes with their target cell, the 

release of small RNAs and the gene regulatory functions of these npcRNAs is still poorly 

understood and requires more analysis and examinations.  

Besides their proven qualification as diagnostic tool for certain cancers, the exosome´s 

potential to deliver functional RNAs implies putative clinical relevance, e.g. in immune 

system regulation or gene therapy [90]. One important part of our immune system are T-

lymphocytes, which functions include elimination of viral, bacterial or parasitic infections 

through recognition of antigens by the T-cell receptor. The T-cell receptor recognizes specific 

antigenic peptides bound to MHC molecules on antigen presenting cells (like dendritic cells 

or B-cells). This T-cell mediated immunity is a central element if the adaptive immune 

response. Two important classes of T-lymphocytes are T helper cells (TH cells, CD4+) and 

cytotoxic T-cells (TC cells, CD8+). CD4 positive T-cells recognize peptide antigens on MHCII 

molecules presented by antigen-presenting cells (APCs). Upon presentation of antigens 

TH cells get activated and secrete cytokines, assisting the active immune response. Cytotoxic 

T-cells recognize virus-infected or tumor-cells by binding to antigen-peptides presented in 

MHCI molecules. Recently, the role of exosomes influencing this process has been 

highlighted and exosomes were shown to affect the antigen presentation or to induce 

immune activation or suppression [91, 92]. In 2011, Mittelbrunn et al. identified a 

unidirectional transfer of miRNA loaded exosomes from T-cells to antigen presenting cells 

[35]. This exosomal transfer of regulatory small RNAs delivers new insight into the 

orchestration of gene expression and the cell-cell communication within the immune 

system. 

 

 

1.6  Gene delivery via lentiviruses or virus-like particles (VLPs) 

 

To study exosomes in more detail an efficient manipulation of cancer or recipient cells is 

required, which can be achieved by lentiviruses (LVs) or virus like particles (VLPs). 

Lentiviruses belong to the retroviridae family and have a diploid, positive strand RNA 

genome, which is reversely transcribed and integrated into the host genome [93]. Since the 

viral genome can both integrate in dividing and non-dividing cells, in particular HIV-1 based 

LVs became a widespread tool for gene delivery applications [94]. During the last years, 

lentiviral vectors were improved and optimized in regard of safety. The third and recent 
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generation of vectors utilizes replication deficient viruses that only require three HIV-1 genes 

from the original genome (i.e. gag, pol and rev) [95, 96]. Another beneficial feature of LVs is 

the possibility of pseudotyping, a manipulation of the exposed viral surface that enables 

adaptations of the natural tropism by expressing foreign viral glycoproteins on its envelope. 

One prominent example is the vesicular stomatitis virus glycoprotein (VSVG), which 

facilitates LV-transduction in a wide range of cells from many different vertebrate species. In 

particular HIV-1 based LVs with VSVG, instead of the original HIV-GP120/GP41, have 

extensively been used in vitro and in vivo [97-100]. In order to create LV vectors with a high 

selectivity for target cells, immense efforts have successfully been devoted to engineer 

specific ligands, peptides or single chain antibodies that upon expression on the virus-

surface would allow recognition of addressable target-cell markers. [101-109] Taken 

together with high GOI loading capacities of up to 10 kb, options such as integrating or non-

integrating LV vectors and the high in vitro and in vivo expression levels, LVs are seen as a 

promising tool for research and gene therapy. 

Besides LVs our workgroup established virus-like particles as a gene delivery tool for the 

transduction of target cells, which cannot be reached by normal transfection methods. The 

human polyoma JC virus (JCV) is a non-enveloped virus with 5 kb double stranded DNA 

genome [110]. The capsid contains a major capsid protein VP1 forming pentameric 

capsomers and in addition 30-60 molecules of the minor capsid proteins VP2 and VP3. 

However, VP1 alone is able to form viral capsids, which can be loaded in vitro with small 

DNA or RNA molecules [111, 112]. This is achieved by a specific disassembly/reassembly 

treatment in which the incorporation of nucleic acids occurs [113]. By removing divalent 

calcium ions through dialysis the VP1-VLP structure is destabilized and dissociated into VP1-

pentamers. Reassociation of this pentamers by addition of calcium ions in presence of 

nucleic acids leads to an incooperation of this cargo inside the VP1-capsids.  

The native tropism of JCV is defined by several flexible loops of the major capsid protein 

VP1, which bind to lactoseries tetrasaccharide c (LSTc) residues on the target cell surface 

[114]. After LSTc binding the 5-HT serotonin receptor is recruited and enables the cellular 

entry by a clathrin dependent mechanism [115].  

Both virus tools (LVs and VLPs) enable an efficient transduction of recipient cells, which 

cannot be manipulated easily by common or commercially available methods. In figure 7 LVs 

are compared to exosomes and VLPs regarding size, protein and nucleic acid content 
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Figure 7: Comparison of lentiviruses, exosomes and virus-like particles. LVs are80-120 nm in size 
and contain capsid proteins, viral genome and polymerase. These viruses are surrounded by a lipid 
bilayer containing receptor molecules like VSV-G. In contrast to LVs exosomes are smaller (30-
100 nm) and contain RNA molecules of the host cell like snoRNAs, miRNAs and mRNAs. Furthermore, 
exosomes include proteins of the ESCRT machinery (TSG101 and Alix) and are as LVs surrounded by a 
lipid bilayer including membrane proteins like tetraspanins. Compared to LVs and exosomes VLPs 
contain no lipid bilayer. Their capsid (37-45 nm) consists of VP1-protein and can be filled with a cargo 
of interest. 

 

As described above, lentiviruses are membranous enclosed viruses with a diameter of 80 -

120 nm. They contain a RNA genome and different proteins for reproduction and infection 

of target cells surrounded by capsid proteins. These proteins are enclosed by a lipid bilayer 

membrane containing surface receptor molecules like VSV-G. Exosomes are 30 – 100 nm 

sized extracellular vesicles and show similarities compared to LVs, like the lipid bilayer 

membrane. Exosomes contain furthermore small RNAs and mRNAs as well proteins from the 

ESCRT machinery like TSG101 and Alix, but also membrane proteins originally derived from 

the plasma membrane of the sending cell. Also the biogenesis routes of LV assembly and 

exosome formation are extremely similar [116]. On the other hand, VLPs are surrounded by 

a protein capsid. They contain no lipid bilayer and carry no genetic information, if not 

deliberate added as gene of interest. VLPs have a size of 37-45 nm and are the smallest gene 

delivery tool compared to LVs and exosomes. 
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1.7 Aim of thesis 

 

In the past couple of years, extracellular vesicles (EVs), mainly exosomes, have gained 

interest as a major research-objective. For clinical applications of exosomes a fast isolation 

method yielding high amounts and purity of extracellular vesicles is needed. One aim of this 

thesis was to isolate extracellular vesicles by three different isolation techniques and 

compare the amount and size profiles. Therefore, we checked the size distribution and 

amounts of EVs by Nanoparticle Tracking Analysis (NTA), identified exosomal proteins by 

western blot and analysed them by electron microscopy. 

Up to now, the sorting mechanism of miRNAs into exosomes is poorly understood. To clarify 

this unanswered mechanism we wanted to characterize the exosomal small RNA profile of 

four human cell lines by next generation sequencing. We compared intracellular and 

exosomal small RNA candidates and tried to discover cell specific small RNA patterns and 

sequence motifs. 

Additionally, we aimed to analyze the influence of three exosomal marker proteins on EV 

production and size distribution and wanted to address the fusion of exosomes with target 

cells by one of these proteins. 

Moreover, we hypothesized a role of exosomes in cell-cell communication via a transfer of 

small RNAs. A discovery of secretion motif may be useful for an artificial loading of miRNAs 

into exosomes that opens the possibility to use engineered exosomes for gene therapy. We 

wanted to evaluate if exosomes can fuse with specific target cells by transwell experiments 

and test the functionality of transferred small RNAs by qPCR or UTA system. For the use of 

clinical engineered exosomes a specific modification of target cells is inevitable but, up to 

now, hard to achieve. To overcome this issue we wanted to use VLPs to specific modify 

osteoblasts in an in vivo rat model in cooperation with the UMG. Therefore, target specific 

RANKL siRNAs should be loaded into VLPs, injected into rats and the gene expression of 

RANKL should be analyzed by qPCR. 

Taken together, the aim of this thesis should clarify the unanswered questions in the 

exosome field like cellular and exosomal profiles, sequence motifs, fusion with target cell 

and their role in cell-cell communication. The future goal of exosome research has to be the 

clinical application and usage as biomarkers, which should be supported by the results of 

this thesis. 
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2. Materials & Methods 

 

2.1  Molecular biology 

 
2.1.1  Escherichia coli transformation, cultivation and plasmid isolation 

E.coli Top10 or Stbl3 strains were cultivated at 37 °C either on LB-plates or in LB-media at 

180 rpm. Transformation was performed as described by Inoue et al. [117]. Positive 

transformed clones were selected by choosing the required antibiotic. 

Table 1: Antibiotic concentrations for bacteria selection 

Antibiotic Concentration Company 

Ampicillin 100 µg/mL (H2O) Carl Roth, Germany (K029.2) 

Kanamycin 50 µg/mL (H2O) Applichem, Germany (A1493) 

Chloramphenicol 34 µg/mL (Ethanol) Applichem, Germany (A1806) 

 

For plasmid isolation 5 mL of LB-medium containing the desired clone was incubated over 

night at 37 °C at 180 rpm. Cells were centrifuged at 2000 xg and plasmid preparation was 

performed by QIAprep Spin Miniprep Kit according to manufactures condition (Qiagen, 

Germany). Purified plasmids were measured by Synergy2 System and stored at -20°C. 

  

2.1.2  DNA separation by Agarose Gel Electrophoresis 

For separation and size determination of DNA constructs 1% Agarose (w/v) was used. 

Therefore the desired DNA was mixed with loading dye (Thermo Fischer, MA, USA), while 

GeneRuler DNA-ladder (Thermo Fischer, MA, USA) served as size standard. Size separation 

was performed at 120 V for 30 min using 1x TAE buffer.   

 

2.1.3  Polymerase chain reaction 

Amplification of specific DNA fragments was achieved by polymerase chain reaction using 

Taq (BiothermTM, Germany) or Phusion polymerase (New England Biolabs, MA, USA). PCR 

reactions were performed in a total volume of 20 µL by adding the components described in 

table 2. 
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Table 2: Pipetting scheme for polymerase chain reaction 

Volume Component 

X µL (100ng) DNA 

1 µL Forward Primer (10 µM) 

1 µL Reverse Primer (10 µM) 

0,4 µL dNTPs (10 mM) 

0,2 µL 

4 µL 

Polymerase 

Reaction buffer (5x) 

Ad to 20 µl total volume Water 

 

PCR conditions were determined according to product length, GC content and melting 

temperature of used oligonucleotides. A standard protocol is provided in table 3. 

 

Table 3: Standard protocol for PCR amplification 

Step       Description Time and Temperature 

1 Initial denaturation 10 min at 95 °C 

2 Denaturation 10 sec at 95 °C 

3 Annealing 30 sec at 50-60 °C 

4 Amplification 30 sec/kb at 72 °C 

5 Final amplification 10 min at 72 °C 

 

Steps 2-4 were repeated 30 times and after completion the reaction was stored at 4 °C.  

 

 

2.1.4  Gel purification 

PCR products were separated by agarose gel electrophoreses as described in 2.1.2. Size 

separated products were analysed under UV light and desired product was cutted. Excised 

DNA was purified by QIAquick Gel extraction Kit (Qiagen, Germany) according to 

manufactures condition. After purification DNA was analysed by Synergy 2 System (Biotek, 

Winooski, USA) to analyse concentration and salt contamination. Purified DNA was stored at 

-20 °C until use.  
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2.1.5  Ligation of two DNA fragments 

For DNA ligation the following reaction was prepared on ice: 
 

Table 4: Pipetting scheme for DNA ligation 

Component Volume 

T4 DNA Ligase Buffer (10x) 2 µL 

T4 DNA Ligase 1 µL 

Vector DNA (4kb) 50 ng 

Insert DNA (1 kb) 37.5 ng 

Nuclease free water Fill to 20 µL 

 

The molar ration of vector to insert was kept at 1:3. Reaction was gently mixed and 

incubated at 16 °C for 1 h. Enzyme was heat inactivated at 65 °C. 

 

 

2.1.6  Transformation of bacteria 

For transformation chemically competent E. coli were thawed on ice. For each 

transformation 50 µL of E.coli and 1-5 µL DNA were mixed and incubated for 30 min on ice. 

Afterwards mixture was heated up to 42 °C for 30 sec and immediately cooled down on ice. 

250 µL of prewarmed SOC medium was added and samples were incubated for 1 h at 37 °C.  

LB agar plates were prepared and 20-200 µl was spread carefully. Plates were incubated at 

37 °C overnight. On the next day colonies were selected and analysed by plasmid isolation, 

PCR or sequencing. Positive clones were stored at -80 °C in 12 % Glycerol 

 

 

2.1.7  Restriction digestion of DNA 

In order to confirm the insert and vector backbone a restriction digestion was performed. 

5 µg of examined plasmids were incubated with 5 units of restriction enzyme. A total volume 

of 20 µL was incubated for 1 h at desired temperature and 10 µL of this solution was 

separated by agarose gel electrophoresis. Restriction pattern were analysed after 

ethidiumbromid stain via Gel IX 20 Gel documentation system (INTAS, Germany). 
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2.1.8 Isolation of extracellular vesicles 

For exosome isolation cells were seeded in 6 wells (200.000 cells/well) and cultivated three 

days in exosome free media (FCS was ultracentrifuged at 100.000 xg for at least 16 h). 

Supernatant was differential centrifuged (500 xg 5 min, 2000 xg 30 min), filtered (450 nm, 

Sartorius, Germany), mixed with PEG solution (1:5 PEG8000 in PBS) and incubated at 4 °C.  

After 16 h supernatant was centrifuged at 1500 xg for 30 min and the vesicle containing 

pellet resuspended in 200 µL PBS. For differential ultracentrifugation 40 mL of sequential 

centrifuged and filtered SN (500 xg 5 min, 2000 xg 30 min, 450 nm filter, Sartorius, Germany) 

were centrifuged at 10.000 xg for 2 h to remove bigger vesicles like apoptotic bodies or large 

microvesicles. At 100.000 xg exosome were pelleted and the pellet was washed once with 

PBS followed by another 100.000 xg step. The resulting pellet was resuspended in 100 µL 

PBS and stored at 4°C for further analysis. In contrast to the differential ultracentrifugation 

protocol 35 mL of differential centrifuged and filtered SN (500 xg 5 min, 2000 xg 30 min, 

450 nm filter, Sartorius, Germany) was centrifuged at 10.000 xg for 2 h. Afterwards 4 mL of 

sucrose (20 %) was overlaid with SN of the previous step and centrifuged at 100.000 xg for 

2 h. The resulting pellet dissolved in 100 µL PBS and stored at 4 °C for further analysis. 

 

 
2.1.9 Extracellular vesicle characterization by Nanoparticle Tracking Analysis  

EVs were analysed by NanoSight LM10 instrument. Samples were diluted 1:100 in PBS and 

recorded in triplicates for 30 sec. Number of particles were calculated by NTA software 2.3 

and illustrated by Graphpad Prism 6. 

 

 

2.1.10 RNA Isolation, size and integrity detection and cDNA synthesis  

Total RNA was isolated via Phenol/Chloroform extraction according to manufacture protocol 

(Trizol, Thermo Fisher Scientific, CA, USA).  RNA was measured by Synergy system (BioTek, 

Winooski, USA), 1000ng of total RNA was reverse transcribed using Sensifast cDNA Synthesis 

Kit (Bioline, London, UK) and diluted (1:5 or 1:10). Alternatively RNA was measured on 

BioAnalyzer System (Agilent, CA, USA) via RNA 6000 Pico Kit (Agilent, CA, USA) and RNA 

amount, size distribution and RNA integrity number (RIN) was analysed. 
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2.1.11 Quantitative PCR analysis 

After reverse transcription 25ng of cDNA was used for quantitative analysis on ABI 

StepOnePlus system (Applied Biosystems, CA, USA). For CD9, Alix and TSG101 synthesized 

primers (Sigma-Aldrich, St. Louis, Missouri, USA) (Table 5) and for DNMT1 and BCL2 designed 

primer sets (Genecopoeia, Maryland, USA) were used for target amplification. Relative 

expression was calculated via ΔΔCT-method using β2M as housekeeping gene. 
 

Table 5: Sequence information of qPCR primers 

Primer Sequence 

hB2M-fwd TGTGCTCGCGCTACTCTCTCT 

hB2M rev CGGATGGATGAAACCCAGACA 

hCD9-fwd ATGATGCTGGTGGGCTTC 

hCD9-rev GCTCATCCTTGGTTTTCAGC 

hTSG101-fwd CAGAGCTCAATGCCTTGAAAC 

hTSG101-rev GAACTGAGTTCTTCATCCTTC 

hAlix-fwd CAATTGTGCAGCCTTAGCTAG 

hAlix-rev GTATCTGGAGATATGTCCACG 

 

 

2.1.12 NGS library preparation 

RNA was isolated as described in 2.1.10. Via BioAnalyzer System quality and quantity of total 

RNA was measured (BioAnalyzer RNA Pico Kit, Agilent, Santa Clara, USA). 2 µg RNA was used 

for RNA purification with magnetic bead cleanup module (Life Technologies, Carlsbad, USA). 

Purified RNA was ligated with sequencing adapters, reverse transcripted and purified (Ion 

Total RNA-Seq Kit v2, Life Technologies, Carlsbad, USA). Finally barcodes were added and 

library size and amount was detected via BioAnalyzer HS Chip (Agilent, Santa Clara, USA). 

  
 
 
2.1.13 Next generation sequencing and data analysis 

Library was prepared according to 2.1.12, diluted (18pM) and clonal amplified by emulsion 

PCR on IonTorrent OneTouch System according to manufacturer´s protocol (Ion PGM 

Template OT2 200 Kit (Life Technologies, Carlsbad, USA)). Purification of amplified library 

was performed on OneTouch ES System. Templated ISPs are loaded onto IonTorrent 316 
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Chip and sequenced via IonTorrent PGM System. Raw reads were trimmed and high quality 

reads mapped to miRBase21 or snoRNABase V3 [118]. Mapped reads were further analysed 

by own generated R-scripts using the DEseq package [119, 120]. 

 

 

2.1.14 Preparing samples for electron microscopy 

Exosomes were isolated as described in 2.2.8. After PEG precipitation the exosome pellet 

dissolved in 50 µL Paraformaldehyd (2%) and a negative stain was performed. Therefor a 

cupper grid (mesh = 250) was exposed to UV light for 8 min. Afterwards the grid was 

incubated with the exosome sample for 10 minutes and washed four times with H2O. At the 

end the grid was negative stained with Uranylacetat for 3 sec and dried overnight. 

For visualizing cells in electron microscopy Raji cells were cultured as described in 2.2.1. Cells 

were pelleted at 500 xg for 5 min and pellet was fixated with glutaraldehyd (2.5 %). Cells 

were in embedded automatically in Agar (2%) via Lynx System (Leica, Germany) and sliced in 

thin pieces (1 mm). Pieces were transferred into flat embedding forms and overlayed with 

Epon. Samples were harden at 60 °C for 24 h and 24 h at 24 °C. Edges of the Epon blocks 

were minced with a milling machine (Leica, Germany) and semi-thin slices were produced on 

a microtome (Leica, Germany) with a thickness of around 500 nm. Slices were stained with 

methylenblau according to the Richardson method [121]. After detection of cell rich regions 

the slices were further processed at the ultramicrotom to generate thin slices (50 nm). Slices 

were teased on cupper grids and negative stained via uranylacetat as described above.  

 

2.1.15  Preparation of UTA constructs and sequence information 

In order to analyse miRNA efficiencies the complementary sequences for desired miRNAs 

were cloned into pUTA2.0 vector (Figure 8).  This vector was digested using XhoI and NotI for 

2 h at 37 °C. DNA was separated via agarose gel electrophoresis and extracted using 

QIAquick Gel Extraction Kit (Qiagen, Germany). Desired oligonucleotides were ordered 

(Sigma, Germany, table 6), both strands (forward and reverse) incubated at 96 °C for 90 min 

and cooled down to 16 °C. Ligation with linearized pUTA 2.0 plasmid was performed at 16 °C 

for 2 h. Ligation reaction was transformed in E.coli and mini-preps were performed as 

described above 
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Figure 8: Generation of pUTA2.0 construct. The pUTA2.0 vector was digested with XhoI and NotI and 
purified by agarose electrophoresis. Full complementary miRNA target sites were ordered by Sigma. 
Linearized vector was ligated with complementary miRNA target sites listed in table 6.  
 
 

 

Table 6: Generated plasmids for miRNA efficiency detection by the UTA system. Overhangs are 
highlighted in bold and capital letters and linker regions are marked in bold letters. 
 

 

miRNA 
 

 

Sequence 
 

miR-451 F 
3 copies 

GGCCaaaccgttaccattactgagttccggaaaccgttaccattactgagttccggaaaccgttaccattactgagtt 

miR-451 R 
3 copies 

TCGAaactcagtaatggtaacggtttccggaactcagtaatggtaacggtttccggaactcagtaatggtaacggttt 

miR-15a-5p F 
3 copies 

GGCCtagcagcacataatggtttgtgccggtagcagcacataatggtttgtgccggtagcagcacataatggtttgtg 

miR-15a-5p R 
3 copies 

TCGAcacaaaccattatgtgctgctaccggcacaaaccattatgtgctgctaccggcacaaaccattatgtgctgcta 

miR-19b-3p F 
3 copies 

GGCCtgtgcaaatccatgcaaaactgaccggtgtgcaaatccatgcaaaactgaccggtgtgcaaatccatgcaaaactga 

miR-19b-3p R 
3 copies 

TCGAtcagttttgcatggatttgcacaccggtcagttttgcatggatttgcacaccggtcagttttgcatggatttgcaca 

miR-21-5p F 
3 copies 

GGCCtagcttatcagactgatgttgaccggtagcttatcagactgatgttgaccggtagcttatcagactgatgttga 

miR-21-5p R 
3 copies 

TCGAtcaacatcagtctgataagctaccggtcaacatcagtctgataagctaccggtcaacatcagtctgataagcta 

miR-148a-3p F 
3 copies 

GGCCtcagtgcactacagaactttgtccggtcagtgcactacagaactttgtccggtcagtgcactacagaactttgt 

miR-148a-3p R 
3 copies 

TCGAacaaagttctgtagtgcactgaccggacaaagttctgtagtgcactgaccggacaaagttctgtagtgcactga 

miR-15a-5p F 
3 copies 

GGCCtagcagcacataatggtttgtgccggtagcagcacataatggtttgtgccggtagcagcacataatggtttgtg 

miR-15a-5p R 
3 copies 

TCGAcacaaaccattatgtgctgctaccggcacaaaccattatgtgctgctaccggcacaaaccattatgtgctgcta 
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GL-2 F 
3 copies 

GGCCcacgtacgcggaatacttcgaaaccggcacgtacgcggaatacttcgaaaccggcacgtacgcggaatacttcgaaa 

GL-2 R 
3 copies 

TCGAtttcgaagtattccgcgtacgtgccggtttcgaagtattccgcgtacgtgccggtttcgaagtattccgcgtacgtg 

Control 1 F GGCCtaaggctatgaagagatac 

Control 1 R TCGAgtatctcttcatagcctta 

Control 2 F GGCCaattctccgaacgtgtcacgt 

Control 2 R TCGAacgtgacacgttcggagaatt 

 

 

 

2.2  Cell biology 

 
2.2.1  Cell culture  

All cell lines were maintained according to manufacturing conditions at 37°C and 5% CO2. 

HeLa, Raji, DG75 and Jurkat cells were cultured in RPMI (Roswell Park Memorial Institute) 

supplemented with 10% FCS and 1 % antibiotics (Penicillin and Streptomycin), whereas 

HEK293 and SW837 were maintained in DMEM (Dulbecco´s modified Eagle´s Medium) with 

10% FCS and 1% antibiotics and SHSY-5Y were kept in DMEM with 15% FCS and 1% 

antibiotics. 

 

 

2.2.2  Fluorescence microscopy 

Fluorescence microscopy pictures were obtained by an Axio Observer microscope (Zeiss, 

Germany) using the filter set BP 525/50 for GFP and filter set BP 605/70 for RFP detection. 

Exposure time was set to 1000 msec for all fluorescence pictures. 

 

 

2.2.3  Generation of lentiviral constructs 

Fusion proteins were cloned from original plasmids (mEmerald-CD9-10, mCherry-hAlix and 

mCherry-Tsg101) into pENTR1a no CCDB. Gateway cloning with LR reaction was performed 

according to manufactures condition using pLENTI6.3/TO/V5-Dest as destination vector 

(Thermo Fisher Scientific, Woltham, MA, USA). Generated pLenti6.3-CD9GFP, pLenti6.3-

TSG101mCherry, pLenti6.3-AlixmCherry and pLemir-NS were used as GOI for LV production. 

Detailed information of used plasmids is provided in the appendix (9.5). 
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Table 7: Plasmids for LV generation with depositor and Addgene information 

Plasmid A gift from Addgene number 

pENTR1a no CCDB Eric Campeau [122] # 17398 

mEmerald-CD9-10 Michael Davidson # 54029 

mCherry-hALIX James Hurley [123] # 21504 

mCherry-TSG101 James Hurley [123] # 21505 

psPAX2 Didier Trono # 12260 

pLemir-NS Jerry Crabtree [124] # 32809 

pLenti CMV GFP Neo Eric Campeau [122] #17447 

pCMV-VSVG Bob Weinberg [125] #8454 

 

 
 
2.2.4 Lentivirus production, concentration and titration 

VSVG pseudotyped lentiviruses were generated in HEK293FT cells, whereas CD9 

pseudotyped lentiviruses were produced in HEK293FT-CD9GFP cells. Cells were seeded in 6-

well plates at 1*106 cells/mL and directly transfected with according pLenti6.3 constructs for 

GOI delivery, psPAX2 for viral capsid proteins and pCMV-VSV-G and/or mEmerald-CD9-10 for 

viral envelope proteins. 16 h after transfection sodium butyrate containing media (0,01M) 

was added for 8 h. Afterwards media without sodium butyrate was used and collected every 

24 h. After 5 days media was centrifuged 30 min at 2000 xg, filtered (450 nm) and 

concentrated via Vivaspin columns (100.000 MWCO, Sartorius, Germany). 

 

 

2.2.5  Generation of stable CD9GFP, Alix-mCherry and TSG101mCherry cell lines 

HEK293FT, HEK293, HeLa, SHSY-5Y, Jurkat and Raji cells were seeded in 24 well plates 

(50.000 cells/well) and after 24h infected with LV-VSVG-CD9GFP carrying CD9GFP and VSVG as 

envelope proteins and CD9GFP as gene information. After 96h blasticidin containing media 

was added to cells (blasticidin concentration see table 8) and cells were selected for at least 

14 days. 
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Table 8: Blasticidin concentration for selection of lentivirus transduced cell lines 

Cell line Blasticidin concentration 

HEK293 5µg/mL 
HEK293FT 5µg/mL 

Raji 7,5µg/mL 

Jurkat 3µg/mL 

SHSY-5Y 5µg/mL 

HeLa 3µg/mL 

 

 

2.2.6  Primary cortical culture 

For a co-cultivation of neurons and glia cells isolated cortices of E18 Wistar rats were 

prepared according to Shimada et al. and Fischbach with minor modifications [126, 127]. 

Their meninges were removed and they were cutted into small pieces in ice-cold dissection 

media (HBSS (Gibco, 14170-088) with 33 mM glucose (Roth, 6780.1) and 10 mM HEPES 

(Roth, HN78.3)). Tissue pieces were incubated in trypsin/EDTA (0.05/0.02%) (PAN Biotech, 

P10-023100) and afterwards washed with dissection media. The cells were singularized by 

trituation in DMEM (Gibco, 31966021) with 10% FCS (Gibco, 10500), 2 mM GlutaMAX 

(Gibco, 35050061), penicillin 10,000 U/mL and streptomycin10 mg/mL (P06-07100, PAN 

Biotech), and filtered through a 100 µm cell strainer (Greiner Bio one, 542000). Using Trypan 

Blue (Roth, CN76.1) cells were counted and seeded in 24-well plates with PEI-treated (0.05% 

for 5h (Sigma, P3143)) glass cover slips. Cells were cultured at 37 °C with 5% CO2 and a 

humidified atmosphere. After one day media was changed to neurobasal media (Gibco, 

21103-049) with 2 mM GlutaMAX (Gibco, 35050061), penicillin 10,000 U/mL and 

streptomycin 10 mg/mL (P06-07100, PAN Biotech) and 2% B27 supplement (Gibco, 17504-

044). 

 

 

2.2.7  Immunohistochemistry and confocal microscopy 

Cells were fixed with PFA (4% in PBS), permeabalized with Triton X-100 (0.2% in PBS) and 

blocked with BSA (5% in PBS). First antibody (NeuN, 1:500, Merck MAB377, Germany) was 

added over night and secondary antibody (goat anti mouse IgG/IgA/IgM Alexa Fluor 488, A-

10667 Life Technologies, Carlsbad, USA) for 1h. Nuclei were stained with Hoechst 33342 

(1:500 in PBS). Coverslips were mounted in Mowiol (12-15 µL) on glass slides and analysed 

on LSM 5 Pascal microscope (Zeiss, Germany). 
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2.2.8  Flow cytometry analysis (FACS) 

Adherent cells were trypsinized by trypsin and centrifuged (300 xg, 5 min), for suspension 

cells this step was skipped. Cells were fixed with PFA (2% in PBS) for 30 min at 4 °C and 

washed three times with PBS (300 xg, 5 min). Fixed cells were analysed on BD LSR II system 

(BD, New Jersey, USA) using the PE 550LP- BP575/26 filterset for RFP and 505LP - BP530/30 

filterset for GFP detection. Data was analysed by FACSdiva software and plots generated by 

Graphpad Prism 6. 

 

 

2.2.9 Transfection of pUTA2.0 plasmids and data analysis 

HEK293 cells were seeded in 24-well plates at a concentration of 100.000 cells/well. After 

24 h the corresponding plasmid (Table 6) was transfected via Lipofectamine according to 

manufacturing conditions. Cells were incubated for 48 h and afterwards harvested and 

prepared for FACS analysis. For GL-2 exosome treatment HEK FT CD9 cells were transfected 

via Lipofectamine (1 µL Lipofectamine for 1000 ng DNA per 24 well with 50.000 cells). 

Supernatant was removed 48 h after transfection and transferred to HEK293 wildtype cells. 

After 30 min incubation cells were transfected with the corresponding pUTA plasmid 

(Control or GL-2) as described above. Fluorescence was detected 48h post transfection by 

flow cytometry using YFP (550LP and BP575/26) and CFP (550 LP and BP450/50) filtesets on 

BD LSRII instrument (BD, NJ, USA). Positive cells were selected using FACSdivaTM software 

and further analysed in R. 

 

2.2.10 Virus like particle loading with DNA or RNA for in vitro use 

JC polyoma VP1 protein was purified as described in 2.3.5. VLPs were disassembled in HEPES 

buffer (10 mM HEPES, 150 mM NaCl and 15 mM EGTA and DTT) at room temperature for 

1 h. 25 µg VLPs were loaded with 500 ng linear DNA (CAG-GFP construct) or 2 µL of Cy3 

modified siRNA (20 µM) and incubated for 30 min. Reassembly was performed in 5 L HEPES 

buffer containing CaCl2 for capsid formation (10 mM HEPES, 150 mM NaCl and 1 mM CaCl2 

at 4 °C overnight. On the next day VLPs were added to human B-lymphocytes (Raji) and gene 

expression or red fluorescence was observed after 24-48 h via fluorescence microscopy.  
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Raji cells transduced by Cy3 siRNA loaded VLPs were transferred into transwells (Corning, 

NY, USA) for cocultivation with SW837 cells. Red fluorescence for SW837 was observed after 

48 h to confirm vesicle transfer between this two cell lines. 

 

 

2.2.11 Virus like particle loading with NanoGold particles 

NanoGold solution was provided by Andrea Knauer (TU Ilmenau). 500 µL of NanoGold stock 

solution (80 nM) was washed three times (21.000 xg, 15 min) with water to remove 

benzyldimethyl-hexadecylammonium chloride (BDAC) ligand. After wash steps the pellet was 

resuspended in 160 µL nuclease free H2O, particles were mixed with 160 µL of thiol modified 

siRNA (6.25 µM) and incubated for 2 h at room temperature at 750 rpm. After RNa 

hybridization the excess siRNA was removed by one wash step (13.000 xg for 15 min) and 

the pellet was resuspended in 80 µL siRNA buffer (300 mM KCl, 30 mM HEPES-pH 7.5, 

1.0 mM MgCl2). UV/Vis spectra were measured on Synergy System to detect peak shift and 

confirm RNA hybridization [128]. Per 25 µg VLPs 40 µL of NanoGold-miRNA particles were 

used. VLPs were reassembled over night in HEPES buffer containing CaCL2 as described 

above. Raji cells were treated with NanoGold loaded VLPs and Cy3 fluorescence was 

observed after 48 h via fluorescence microscopy. Furthermore, electron microscopy studies 

were performed 48 h post transduction. 

 

siRNA Sequence (5´ 3`) 

Thiol modified miR-451a 5´-Thiol-C6-AAACCGUUACCAUUACUGAGUUU-3 

Thiol and Cy3 modified miR-451a 5´-Thiol-C6-AAACCGUUACCAUUACUGAGUUU-Cy3-3 

 

 

2.2.12 Virus like particle loading for in vivo use 

For the in vivo use of VLPs 3 month old female Spraque-Dawley rats (Winkelmann, Germany) 

were used. All animal procedures were approved by the local Animal Care and Use 

Committee (permission number 33.9-42502-04-11/0560, district authorities of Oldenburg, 

Germany). All rats had approximately the same weight (289g ± 18g) and were kept according 

to the german animal protection. For treatment the desired amount of VLPs were loaded as 

described in 2.2.10 with a ratio of 25 µg VLPs per 7 µL siRNA (20 µM). SiRANKL (J-094995-09 
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and J-094995-10, GE Healthcare, UK) or control siRNA (D-001100-01, GE Healthcare, UK) 

were used. VLPS were injected i.p. and at the end of the experiment animals were 

euthanized under CO2 anaesthesia and tibiae was removed for further analysis. 

 

 

2.3  Protein biochemistry 

 
2.3.1 Preparation of exosome or cellular samples for protein analysis 

Cells were cultures in 24-well plates as mentioned above. Cell culture media was removed 

and 200 µL RIPA buffer was added and incubated for 5 min at room temperature. After 

mixing 5x up and down cell lysis was checked by microscopy and cell lysates were stored at                                  

-20 °C. Exosomes were isolated as described above with one exception. Resulting pellet at 

the end of the isolation procedure was dissolved in 100 µL RIPA buffer.  

 

 

2.3.2  Determination of protein concentration 

Before protein quantification exosomal and cellular samples were diluted 1:100 with water. 

Diluted protein lysate (3 µL) was mixed with Bradford reagent (297 µL) and incubated for 

10 min at room temperature. Afterwards protein concentration was measured by Synergy 2 

System (BioTek, VT, USA) at 595 nm. Standard cure (0 ng/µL, 200 ng/µL, 400 ng/µL, 600 

ng/µL, 800 ng/µL and 1000 ng/µL) was used to calculate protein concentration.  

 

 
2.3.3  Polyacrylamid gel electrophoresis 

To separate proteins according to their size, sodium dodecyl sulfate (SDS-) gel 

electrophoresis was performed [129]. Gels were prepared in NovexTM cassettes by the 

following recipe. 
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Table 9: Recipe for separation gel 

Component Amount (10% gels) Amount (12.5 % gels) 

H2O 2,5 mL 2.19 mL 

40% Acrylamide/bis Acrylamid 1.25 mL 1.56 mL 

1,5 M Tris, pH 8,8 1.25 mL 1.25 mL 

10% ammonium persulfate (APS) 50 µL 50 µL 

TEMED 5 µL 5 µL 

 

Table 10: Stacking gel recipe 

Component Amount 

H2O 3.13 mL 

40% Acrylamide/bis Acrylamid 0.62 mL 

1,5 M Tris, pH 6,8 1.25 mL 

10% ammoniumpersulfate (APS) 50 µL 

TEMED 5 µL 

 

After gel polymerization the prepared gel was inserted into electrophoresis chamber (Novex, 

Thermo Fischer, MA, USA) and the chamber was filled with 1x electrophoresis buffer. 

Samples were mixed with Laemmli buffer[130], incubated at 95 °C for 10 min and loaded 

onto the gel (10 µg total protein), while 3 µL Pageruler prestained Protein Ladder 

(Fermentas, MA, USA) or Magic Mark XP protein Ladder (Thermo Fischer, MA, USA) were 

used to detect size of proteins. Electrophoresis was performed at 35 mA for 1 h.  

 

 

2.3.4  Western Blot  

After size separation via SDS gel electrophoresis proteins were transferred on a 

nitrocellulose membrane. The gel and the membrane were assembled inside the XCell II Blot 

Module (Thermo Fischer, MA, USA) surrounded by 2 Whatman paper and 2 sponges soaked 

in transfer buffer. After 1 h transfer with 25 V the membrane was stained with Panceau to 

evaluate successful transfer or directly blocked with NETT-G buffer for 1h at room 

temperature. Afterwards membrane was incubated with primary antibody (1:1000 in      

NETT-G) over night at 4 °C. After three washes with TBS-T membrane was incubated with 

HRP coupled secondary antibody (1:10.000 in TBS-T) for 2h at room temperature. 

Membrane was washed three times with TBS-T and HRP substrate (Luminata Forte, Merck, 
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Germany) was added. The chemiluminescence signal was detected by ECL machine 

(Chemocam Imager, INTAS, Germany). Used antibodies are listed in table 11. 

 

Table 11: Antibody information for Western Blot analysis 

Antibody Company Description 

Anti-CD9 (ab92726) Abcam, UK Rabbit monoclonal 
anti human 

Anti-CD63 (10628D) Thermo Fisher Scientific, CA, USA Mouse monoclonal 

  anti human 

Anti-Alix (634502) BioLegend CA, USA, Mouse monoclonal 
anti human 

Anti-rabbit (G-21234) Life Technology, CA, USA HRP labelled 
Goat anti human 

Anti-mouse (G-21040) Life Technology, CA, USA HRP labelled 
Goat anti human 

NeuN (MAB37) Merck, Germany Mouse monoclonal 
anti rat 

 

 
 

2.3.5  VLP production and purification  

The codon optimized JC VP1 DNA was ordered from GENEART for baculoviral expression. By 

BamHI/HindIII and SphI/NcoI the amplicon was transferred into pFBDM vector based 

expression system. Generation of VP1 gene containing baculovirus was performed as 

described elsewhere [131]. Expression of VP1 was performed in insect cells (High Five, 

Thermo Fischer, CA, USA) according to manufactures condition. Viral capsid supernatant was 

centrifuges for 30 min at 10.000 xg to remove cellular fragments. After filtration (0.45 µm 

filter) viral capsids were precipitated by poly ethylene glycol (7.5% (w/v) PEG8000) at room 

temperature. Precipitate was pelleted at 10.000 xg for 30 min and resuspended in HEPES 

buffer (20 mM HEPES, 150 mM NaCl, 15 mM EGTA and DTT, pH 7.4) for 2 h on a tumble 

shaker. Remaining precipitate was removed by a 21.000 xg centrifugation step for 30 min. 

VP1 particles remain in the supernatant, which is dialyzed (MWCO 6-8 kDa) over night at 4 °C 

against 5 L of HEPES buffer (20 mM HEPES, 150 mM NaCl, 1 mM CaCl2, pH 7.4). Dialyzed 

supernatant was centrifuged at 21.000 xg for 30 min and purified by size exclusion 

chromatography (Sepharyl S-300 HR column using ÄKTA Avant system). Viral capsids eluted 

in the void volumne and were concentrated (30 kDa Vivaspin, Sartorius, Germany). Purified 

empty viral capsids were stored at -80 °C upon use.  
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2.4  Materials 

 

2.4.1  Machines 

Table 12: Used machines and manufacturer information 

Machine Model Company 

Balance EG 620-3NM Kern & Sohn GmbH, Germany 

Chemiluminescence System ChemoCam Imager INTAS, Germany 

Centrifuge Heraeus Megafuge 8R Thermo Fisher Scientific, MA, USA 

Centrifuge Heraeus Fresco21 Thermo Fisher Scientific, MA, USA 

Centrifuge Avanti J-30I Beckman Coulter, CA, USA 

E-Gel system E-Gel iBase System Life Technologies, CA, USA 

Fluorometer Qubit 2.0 Life Technologies, CA, USA 

Freezer (-20°C)  Bosch, Germany 

Freezer (-80°C) MDF-DU500VH-PE Panasonic, Japan 

Freezer (-150°C) ULT7150-9-D Thermo Fisher Scientific, MA, USA 

Flow Cytometer LSR II Flow Cytometer BD Bioscience, NJ, USA 

Gel documentation system Gel iX Imager INTAS, Germany 

Hamilton pipette MicroliterTM Syringes Hamilton, NV, USA 

Ice machine ZBE 70-35 Ziegra, Germany 

Incubator Heracell VIOS 160i  Thermo Fisher Scientific, MA, USA 

Incubator IN75 Memmert, Germany 

Incubator Ecotron Infors HT, Switzerland 

Ion Torrent NGS PGM Life Technologies, CA, USA 

Ion Torrent OneTouch2 OneTouch2TM  Life Technologies, CA, USA 

Ion Torrent OneTouch ES OneTouch ES Life Technologies, CA, USA 

Microscope Axio Vert. A1 Zeiss, Germany 

PCR Thermocycler Labcycler Sensoquest, Germany 

PCR Thermocycler 2720 Thermal cycler Applied Biosystems, MA, USA 

pH meter SevenCompactTM S210 Mettler Toledo, OH, USA 

Plate Reader Synergy 2 BioTek, VT, USA 

Platform Rocker PMR-30 Grant bio, Cambridge, UK 

Power supply EV231 Consort bvba, Belgium 

Rotor JS-24.38 Beckman Coulter, CA, USA 

Rotor JA-30.50 Beckman Coulter, CA, USA 
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Safety Cabinet Safe 2020 Thermo Fisher Scientific, MA, USA 

Thermoblock ThermoStat plus Eppendorf, Germany 

Thermoblock CTM HTA-BioTec, Germany 

Vortexer Vortex-GenieTM 2 Scientific Industries, NY, USA 

Water bath WNB10 Memmert, Germany 

Western Blot chamber XCell SureLock® MiniCell  Life Technologies, CA, USA 

 
     

2.4.2  Buffers and Solutions 

Table 13: Informations about buffers and solutions 

 

Buffer and solutions Recipe 

Electrophoresis buffer (SDS-PAGE) (5x) 125 mM Tris 
1,25 M Glycin 
10 % SDS 

Laemmli buffer 0,125 M Tris-HCl pH 6,8 
4 % SDS 
20 % Glycerol 
10 % 𝛽-Mercaptoethanol 
0,004 % Bromphenolblau 

LB media Yeast extract (5 g/L) 
Trypton (10 g/L) 
NaCl (5 g/L) 
 

RIPA buffer 25 mM Tris-HCl pH 7,6 
150 mM NaCl 
1 % NP-40 
1 % Natrium-Deoxycholat 
0,1 % SDS 
 

TAE buffer (Agarose gel electrophoreses) 40 mM Tris-HCl  
20 mM acetic acid  
1 mM EDTA  
adjust to pH 7,0 
 

TBS 500 mM Tris  
1,5 M NaCl 
adjust pH to 7,6 
 

TBS-T 500 mM Tris  
1,5 M NaCl 
0,05 % Tween20 
 

Western blot blockbuffer (NETT-G) 1 L NETT (1 x) 
0,25 % Gelatine 
 

Western blot transferbuffer 192 mM Tris 
1,25 M Glycin 
20 % Methanol 
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Western blot washbuffer (NETT, 10x) 1,5 M NaCl 
0,05 M EDTA pH 8,0 
0,5 M Tris-HCl pH 7,5 
0,5 % Triton X-100 
 

 

 
 
2.4.3  Chemicals and Materials 

 

Table 14: Chemicals and Materials 

Compounds Provider Information 

0,45 µm filter Sigma Aldrich, MO, USA 

1,4-Dithiothreitol Carl Roth, Germany 

24-well plate Greiner, Germany 

2-propanol Merck-Millipore, Germany 

6-well plate Greiner, Germany 

96-well plate Greiner, Germany 

Acetic acid Carl Roth, Germany 

Aceton Carl Roth, Germany 

Acrylamid (40%) Bis solution  Biorad Ca, USA 

Acrylamid solution Carl Roth, Germany 

Agar-Agar Carl Roth, Germany 

Agarose Biozym, Austria 

Agarose (LE Agarose) Carl Roth, Germany 

Amidoblack 10B Merck, Germany 

Aminoproicacid Sigma Aldrich, MO, USA 

Ammonium persulfate (APS) Sigma Aldrich, MO, USA 

Ammoniumchloride Carl Roth, Germany 

Ammoniumperoxodisulfat (APS) Carl Roth, Germany 

Ammoniumsulfate Carl Roth, Germany 

Ampicillin Carl Roth, Germany 

β-Mercaptoethanol Carl Roth, Germany 

Biotherm Taq Genecraft, Germany 

Biotherm Taq 10x buffer  Genecraft, Germany 

Blasticidin S HCL (10mg/ml) Gibco, CA, USA 

Bordeaux Red Sigma Aldrich, MO, USA 

Boric acid Sigma Aldrich, MO, USA 

Bovine Serum albunin Fluka, MO, USA 

Brilliant Blue G Sigma Aldrich, MO, USA 

Bromphenol Sodium salt Carl Roth, Germany 

Calciumchloride (Cellpure) Carl Roth, Germany 
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Casein Hydrolysate Fluka, MO, USA 

Chitosan Sigma Aldrich, MO, USA 

Chloramphenicol Applichem, MO, USA 

Chloroform Merck Millipore, Germany 

Complete Mini Roche, Switzerland 

Coomassie G250 Carl Roth, Germany 

Coomassie R250 Carl Roth, Germany 

Creatinin Merck, Germany 

Cryokonservation tubes Sarstedt, Germany 

d´NTPs Sigma Aldrich, MO, USA 

di Sodiumhydrogenphosphate Carl Roth, Germany 

Diethyl pyrocaronate Sigma Aldrich, MO, USA 

Dimethylsulfoxid  Roth, Germany 

diPotassiumhydrogenphosphate Carl Roth, Germany 

D-L-Lysine Sigma Aldrich, MO, USA 

DMSO Carl Roth, Germany 

dNTPs Sigma Aldrich, MO, USA 

D-Saccharose Carl Roth, Germany 

D-Sorbitol Carl Roth, Germany 

DTT Carl Roth, Germany 

EDTA Applichem, MO, USA 

EGTA Sigma Aldrich, MO, USA 

Ethanol Merck-Millipore, Germany 

Ethidiumbromide Carl Roth, Germany 

Epon Serva, Germany 

Falcontube 15 mL Greiner Bio-One, Austria 

Falcontube 50 mL Greiner Bio-One, Austria 

Fetal calf serum Gibco, MA, USA 

Gelatine Sigma Aldrich, MO, USA 

Geneticin Gibco, CA, USA 

Gentamycin Carl Roth, Germany 

Glas beads Carl Roth, Germany 

Glucose Carl Roth, Germany 

Glutardialdehyd 25% Carl Roth, Germany 

Glycerin Carl Roth, Germany 

Glycerol Sigma Aldrich, MO, USA 

Guanidinhydrochloride Carl Roth, Germany 

HCL solution  Merck-Millipore, Germany 

HEPES Carl Roth, Germany 

HPLC-Wasser Millipore-Merck, Germany 

Hydrochloric acid(37%) Carl Roth, Germany 

Hydrogenperoxid Urea Merck, Germany 



2. Materials & Methods 

34 
 

Imidazol Sigma Aldrich, MO, USA 

IPTG Carl Roth, Germany 

Isopropanol Carl Roth, Germany 

Kanamycin Applichem, MO, USA 

L-Ascorbic acid Sigma Aldrich, MO, USA 

Lithiumchlorid Carl Roth, Germany 

Loading Dye (DNA) Thermo Fischer, MA, USA 

MagicMarkTM XP Protein Marker  Invitrogen, CA, USA 

Mealeic Acid Sigma Aldrich, MO, USA 

MES Sigma Aldrich, MO, USA 

Methanol Carl Roth, Germany 

Methyl cellulose Sigma Aldrich, MO, USA 

Methylenblue Carl Roth, Germany 

Milk powder Carl Roth, Germany 

MOPS Carl Roth, Germany 

Mowiol 4-88 Sigma Aldrich, MO, USA 

Neomycin B Carl Roth, Germany 

Nickel (II)-Chloride hexahydrat Carl Roth, Germany 

Nitrocellulose membrane Macherey-Nagel, Germany 

Paraformaldehyd Carl Roth, Germany 

PBS-Dulbecco PAA, MA, USA 

PBS-Tabletten Gibco, CA, USA 

Penicillin/streptomycin PAA, MA, USA 

Pen-Strep PAA, MA, USA 

Petri dishes Greiner Bio-one, Austria 

PhenolRed Carl Roth, Germany 

Pipette tips 10µL Eppendorf, Germany 

Pipette tips 1000 µL Eppendorf, Germany 

Pipette tips 200 µL Eppendorf, Germany 

Poly(ethyleneimine) PEI solution Sigma Aldrich, MO, USa 

Polyethylenglycol 8000 Sigma Aldrich, MO, USA 

Poly-L-Lysin Sigma Aldrich, MO, USA 

Ponceau Red Sigma Aldrich, MO, USA 

Potassium Hexacyanoferrat (III) Carl Roth, Germany 

Potassium hydroxyide Carl Roth, Germany 

Potassium sodium tartrate tetrahydrate Sigma Aldrich, MO, USA 

Potassiumchloride Carl Roth, Germany 

Potassium-di-Hydrogenphosphate Carl Roth, Germany 

Potassiumhydrogencarbonate Carl Roth, Germany 

Potassiumnitrate Merck, Germany 

Proteinase K Qiagen, Germany 

Puromycin Dihydrochloride Gibco, MA, USA 
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Reaction tube 1,5 mL  Eppendorf, Germany 

Reaction tube 2 mL Eppendorf, Germany 

RNA later solution Ambion, MA, USA  

RNase Sigma Aldrich, MO, USA 

Saccharose  Carl Roth , Germany 

SDS-Pellets Carl Roth, Germany 

Serological pipette 10 mL Sarstedt, Germany 

Serological pipette 25 mL  Sarstedt, Germany 

Serological pipette 5 mL Sarstedt, Germany 

Serva Blue R (Coomassie R250) Serva 

Shrimp alkaline phosphatase Amersham, MA, USA 

Sodium acetate  Carl Roth, Germany 

Sodium butyrate Sigma Aldrich, MO, USA 

Sodium chloride Carl Roth, Germany 

Sodium hydroxid Carl Roth, Germany 

Sodiumacetate Sigma Aldrich, MO, USA 

Sodiumcarbonate Carl Roth, Germany 

Sodiumcitrate Sigma Aldrich, MO, USA 

Sodiumdihydrogenphosphate Carl Roth, Germany 

Sodiumsulfate Merck, Germany 

Sodiumthiosulfat Pentahydrate Carl Roth, Germany 

T4 DNA Ligase Promega, WI, USA 

TEMED Sigma Aldrich, MO, USA 

Tetracyclin Hydrochloride Carl Roth, Germany 

Tetramethylethylenediamine (TEMED) Sigma Aldrich, MO, USA 

Transwell (6,5 mm with 0.4 µm pores) Corning, NY, USA 

Tris acetate Carl Roth, Germany 

TRIS base Sigma Aldrich, MO, USA 

Tris-HCl Sigma Aldrich, MO, USA 

tri-Sodiumcitrate diHydrate Carl Roth, Germany 

Triton X-100 Sigma Aldrich, MO, USA 

Trypanblue PAA, MA, USA 

Trypsin-EDTA PAN, MA, USA 

Trypton / Pepton Carl Roth, Germany 

Tween 20 Carl Roth, Germany 

Uranylacetat Sigma Aldrich, MO, USA 

Urea Carl Roth, Germany 

Vivaspin (30 kDa) Sartorius, Germany 

Whatman Paper Carl Roth, Germany 

X-Gal Carl Roth, Germany 

Yeast Carl Roth, Germany 

Zeocin Invitrogen, MA, USA 
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2.4.4. Bacterial strains information 

 

Table 15: Used bacterial strains for transformation and plasmid generation 

Strain Genotype Source 

One Shot® Stbl3™ Chemically 
Competent E.coli 

F-mcrB mrrhsdS20 (rB-, mB-) recA13 
supE44 ara-14 galK2 lacY1 proA2 rpsL20 
(StrR) xyl-5 λ-leumtl-1 

Thermo Fisher 
Scientific, MA, USA 
C737303 
 

One Shot® TOP10 Chemically 
Competent E.coli 

F- mcrA Δ (mrr-hsdRMS-mcrBC) 
Φ80lacZΔM15 Δ lacX74 recA1 araD139 
Δ( araleu)7697 galU galK rpsL (StrR) 
endA1 nupG 

Thermo Fisher 
Scientific, MA, USA 
C404010 

 

 

2.4.5 Cell lines 

 

Table 16: Cell lines for in vitro tests 

Cell line Description Distributor information 

HEK293 Human embryonic kidney (ATCC® CRL-1573TM) 

HEK293 FT Human embryonic kidney Thermo Fisher VirapowerTM System 

HeLa  Human cervix carcinoma (ATCC® CCL-2TM) 

Jurkat  Human Lymphocyte (ATCC® TIB-152™) Clone E6-1 

Raji Human B-Lymphocyte (ATCC® CCL-86™) 

SH-SY5Y Human neuroblastoma (ATCC® CRL-2266™) 

DG75 Human B-Lymphocyte (ATCC® CRL-2625™) 

SW837 Human rectal adenocarcinoma (ATCC® CRL-235™) 

 

 

 

2.4.6  Cell culture media and additives 

Table 17: Different media for cell culture use. 

Medium Additives Company 

DMEM + L-Glutamine, + phenol red, high glucose Gibco 

Optimem + L-Glutamine, + phenol red Gibco 

DPBS No Ca, no Mg, no phenol red PAN 

Fetal calf serum Heat inactivated Gibco 

RPMI + L-Glutamine, + phenol red Gibco 

Trypsin 0,05 % in PBS, no Mg2+, no Ca2+ PAN 
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2.4.7 Software 

Diverse online databases and software were used to generate graphs or analyse RNA or DNA 

sequences. 

 

ChemDraw Professional 15.1 (University of Göttingen licence) 

Flowing software 

Graphpad Prism 6 (DPZ licence) 

miRBase21 

Microsoft Excel 

Microsoft Word 

Microsoft PowerPoint 

Multialign 

NCBI Blast 

Bioconductor R software and DESeq package [120] 
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3. Results 

 
3.1.  Comparison of three isolation techniques for exosomes 

 

Extracellular vesicles (EVs) display a diversity of approved and putative cellular functions and 

are accepted markers in diagnosis and prognosis of disease. However, limited information is 

available when it comes to the most efficient isolation method for high yields combined with 

high purity of EVs [58]. 

 

3.1.1  Different isolation techniques yield various size profiles of EVs 

 

To address the problem of EV isolation a comparison of three different techniques with cell 

culture supernatants (CCSN) of four human cell lines was performed. Both yields and size 

distributions of isolated EVs were examined. The three individual isolation techniques are 

summarized in Figure 9.  

 

Figure 9: Comparison of three exosome isolation techniques. For all techniques cell culture 
supernatant (CCSN) harvested after 72 hours was differentially centrifuged (500 xg 5 min, 2000 xg 30 
min) and filtered through a 450 nm filter. For the ultracentrifugation protocol 40 mL of filtered CCSN 
were differentially centrifuged (10.000 xg 2 h, 100.000 xg 2 h and 100.000 xg 16 h). For sucrose 
cushion ultracentrifugation 35 mL of CCSN were centrifuged at 10.000 xg for 2 h followed by a 
100.000 xg centrifugation step through a 20 % sucrose cushion. For the PEG precipitation technique 
only 10 mL of CCSN were used and mixed (1:5) with PEG solution (500mg/mL in PBS), incubated over 
night at 4 °C and centrifuged at 1500 xg for 30 min. Resulting pellets of all isolation methods were 
dissolved in 100 µL PBS. All centrifugation steps were performed at 4 °C. Scale bar = 100 µm 
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All four cell lines were cultured under the same conditions for the different isolation 

protocols. Cells were seeded in same densities and cultured for three days in exosome free 

media with supplements. Living cells were separated by a 500 xg centrifugation step, while 

cell debris and fragments were removed during a 2000 xg centrifugation for 30 min. 

Subsequently a 450 nm cellulose acetate filter was used to remove residual fragments. To 

perform ultracentrifugation (UC), 40 mL of pre-purified supernatant were centrifuged at 

10.000 xg for 2 h to remove bigger vesicles including apoptotic bodies and large 

microvesicles. At 100.000 xg exosomes were pelleted and the pellet was washed once with 

PBS followed by a second 100.000 xg step. The resulting pellet was resuspended in 100 µL 

PBS and stored at 4 °C for further analysis. In contrast to the UC protocol only 35 mL of 

differential CCSN were centrifuged at 10.000 xg for sucrose isolation. In order to separate 

larger microvesicles from exosomes a 20 % sucrose cushion was used during one 

centrifugation step at 100.000 xg. The exosome containing pellet was resuspended in 100 µL 

PBS and stored at 4 °C. For the PEG precipitation workflow 10 mL of CCSN were mixed with 

the PEG solution, incubated overnight at 4 °C and subsequently centrifuged at 1500 xg for 

30m. The resulting pellet was diluted in 100µL PBS and stored at 4 °C. The EV-PBS solutions 

were diluted 1:100 and were analysed by Nanoparticle Tracking Analysis (NTA) to determine 

size distribution and yield (Figure 10). 

EVs from HEK293 isolated by Sucrose UC yields the smallest mean size of EVs (mean: 

149 nm, Figure 10a), while UC and PEG precipitation isolated slightly bigger vesicles (mean: 

168 nm, respectively 156 nm). The same general trend was observed for Jurkat cells, upon 

sucrose UC with the smallest vesicle size profile (mean: 65 nm) compared to UC (mean: 

150 nm) and PEG precipitation (mean: 188 nm). Size distributions were similar for HeLa and 

Raji cells. Sucrose UC and UC resulted in almost the same size distributions of extracellular 

vesicles. The detected mean particle size for Hela sucrose UC (mean: 96 nm) was slightly 

higher compared the vesicles isolated by differential UC (mean: 87 nm). Raji EVs displayed a 

mean size of 88 nm after sucrose UC and 86 nm after differential UC. In contrast PEG 

precipitation yields EVs with higher diameters (mean size for HeLa 188 nm and Raji 174 nm). 
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Figure 10: Comparing size and yield of extracellular vesicles (EVs) isolated by three different 
techniques. EVs of four human cell lines were isolated by the three isolation techniques described in 
Figure 1. Size profiles of isolated EVs were measured by Nanoparticle Tracking Analysis and are 
depicted in (a). Nanoparticle Tracking Analysis of extracellular vesicles showed significantly enlarged 
particle concentrations (yield per input) for PEG precipitation compared to ultracentrifugation and 
sucrose ultracentrifugation (b). The two ultracentrifugation isolation techniques displayed only minor 
differences in the individual yields of particles for all tested cell lines. 

 

Analysis of the yield per input revealed different values for the purification protocols. PEG 

precipitation displayed improved performance in all cell lines. From HEK293 cells 0.92 ± 0.04 

*108 particles/mL input material (CCSN) were isolated by PEG precipitation, while UC yielded 

0.41 ± 0.02 *108 and sucrose UC 0.31 ± 0.02 *108 particles/mL. An even bigger effect was 

observed for HeLa cells, in which PEG precipitation resulted in 1.71 ± 0.07 *108 particles/mL 

compared to only 0.05 ± 0.005 *108 particles for UC and 0.08 ± 0.003 *108 particles/mL for 

sucrose UC. Studying Jurkat EVs from CCSN using PEG precipitation indicated the double 

amount of particles (1.07 ± 0.09 *108 particles/mL) compared to the UC techniques (0.54 ± 

0.04*108 particles/mL for UC and 0.80 ± 0.04 *108 particles/mL for Sucrose UC). For Raji EVs 

similar trends were observed. Via PEG precipitation 2.53 ± 0.15 *108 particles/mL were 

isolated, while UC and sucrose UC yielded only 0.47 ± 0.04 *108 respectively 0.56 ± 0.05 *108 

particles/mL. The NTA analysis results were summarized in table 18. 
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Table 18: Mean particle size and yield of different EV isolated from four different human cell lines by 
three isolation methods. 

 HEK293 mean particle size HEK293 yield per input 

PEG Precipitation 156.2 [nm] 0.92 *108 [particles per mL] 
Ultracentrifugation 168.1 [nm] 0.41 *108 [particles per mL] 
Sucrose ultracentrifugation 149.6 [nm] 0.31 *108 [particles per mL] 
   

 HeLa mean particle size HeLa yield per input 

PEG Precipitation 188.3 [nm] 1.71 *108 [particles per mL] 
Ultracentrifugation 86.8 [nm] 0.05 *108 [particles per mL] 
Sucrose ultracentrifugation 96.4 [nm] 0.08 *108 [particles per mL] 

   

 Jurkat mean particle size Jurkat yield per input 

PEG Precipitation 188.1 [nm] 1.07 *108 [particles per mL] 
Ultracentrifugation 150.4 [nm] 0.54 *108 [particles per mL] 
Sucrose ultracentrifugation 65.8 [nm] 0.80 *108 [particles per mL] 
   

 Raji mean particle size Raji yield per input 

PEG Precipitation 174.5 [nm]     2.53 *108 [particles per mL] 
Ultracentrifugation 85.9 [nm]     0.47 *108 [particles per mL] 
Sucrose ultracentrifugation 88.1 [nm]     0.56 *108 [particles per mL] 
   

 
 
 

3.1.2  All tested isolation techniques show exosomal marker protein expression  
like CD9, CD63 or Alix 

 

In addition to the examination of the size profiles and EVs amounts of by the NTA technique, 

a verification of particle identities by detecting three exosomal marker proteins was 

performed in western blot analysis (Figure 11).  

Alix (Ensembl: PDCD6IP) is a class E VPS protein that functions within the ESCRT machinery 

and is present in the exosomal lumen, was the first exosomal marker protein to be detected. 

No signal was detected inside the cell (500 xg pellet), in cell debris (2000 xg pellet) and in 

bigger microvesicles (10.000 xg pellet). A specific signal with the expected molecular weight 

of 90 kDa was observed after the first UC step (100.000 xg P1) with even increased signal 

intensity after washing (100.000 xg P2). Furthermore, a strong signal was detected after PEG 

precipitation and sucrose UC.  
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Figure 11: Detection of three different exosome marker proteins via Western Blot. Exosomes of Raji 
cells were isolated by three different isolation techniques and equal amounts of protein (10 µg total 
protein) were separated via SDS PAGE. Presence of Alix (a), CD63 (b) and CD9 (c) for all three 
techniques was confirmed using specific antibodies (Table 11). Alix was detectable in 
ultracentrifugation pellets, after PEG precipitation and in the sucrose cushion pellet, while CD63 was 
detectable after all differential centrifugation steps. Intracellular CD9 gave a signal around 20 kDa, 
which increased in higher centrifugation speeds to 60 kDa. 

 
 

Secondly the expression of tetraspanin CD63 (Ensembl: TSPAN-30) was tested. CD63 was 

advised in virtually all cellular membranes including cell membrane, lysosomal membrane, 

late endosomal membrane and exosomal membrane. This tetraspanin was detected in all 

samples, i.e. the cell pellet (500 xg), cell debris (2000 xg), the microvesicle pellet (10.000 xg) 

and exosome pellets (100.000 xg P1 and P2, PEG and Sucrose) at around 60 - 65 kDa.  

Finally, the tetraspanin CD9 (TSPAN29) was analysed. This tetraspanin is detectable in cell 

membranes and in extracellular space for example in exosome membranes. For CD9 a broad 

cellular signal was observed at 20 kDa, 30 kDa and weak signals at 40-60 kDa. In the 2000 xg 

fraction the same pattern was observed, whereas the 10.000 xg, 100.000 xg fractions and 

sucrose UC show a single signal at 60 kDa. For PEG precipitation 2 signals at 20 kDa and 60 

kDa were detected. In summary all three isolation techniques revealed a positive signal for 

CD9, CD63 and Alix. 
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3.1.3  Confirmation of EV isolation by electron microscopy 

 

To further confirm successful EV isolation electron microscopy studies were performed 

(Figure 12). Exosomes were isolated as described before and fixed with PFA. Afterwards 

samples were negative stained with uranylacetate and immobilized on cupper grids. In 

theory exosomes appear as 30 – 100 nm membranous vesicles in EM microscopy. 

 

 

Figure 12: Detection of extracellular vesicles by electron microscopy. Exosomes of Raji cells were 
isolated using the three different techniques and visualized by electron microscopy. Spherical 
particles with a diameter of around 50 nm were observed in all samples (a). Additionally, PEG 
precipitation showed also vesicles larger than 100 nm (white arrow). After ultracentrifugation only 
vesicles with a diameter smaller than 100 nm (black arrows) were observed. Furthermore, a higher 
background compared to the ultracentrifugation techniques was observed (b) for PEG-precipitated 
samples. 



3. Results 

44 
 

In figure 12a high-resolution pictures of EVs are illustrated for PEG-precipitated samples, 

while overview pictures are depicted in Figure 12b. PEG precipitation yielded a high number 

of vesicles with a broad size range (50-150 nm) with the majority of vesicles at around 

100nm diameter. In addition, a relatively high background level was detected. For the 

ultracentrifugation techniques a different pattern was observed. Both techniques gave rise 

of homogenous vesicles with sizes smaller than 100 nm and also the background levels were 

reduced when compared to the PEG precipitation.  

 
 
 

3.2.  Small RNA profiles of cellular and exosomal RNA 

 

3.2.1  Cellular and exosomal RNA differ in size distribution  

 

Following the analysis of exosome isolation techniques, cellular and exosomal RNAs from 

four different human cell lines were isolated and prepared for Next Generation Sequencing 

(NGS) of their small RNA content. Size profiles of isolated RNAs from Raji cells and Raji EVs 

are shown in Figure 13. 

Profiles of the cellular Raji RNA displayed two main peaks with approximately 2000 and 4000 

nucleotides corresponding to 18S and 28S ribosomal RNAs. The RNA integrity number (RIN) 

was calculated by the ratio of these 2 peaks reached 9.8, indicating good quality RNA (10 is 

maximum). Furthermore, small RNAs between 50 and 300 nucleotides were detectable, 

while the marker peak showed the expected signal at 25 nucleotides. The pool of cellular 

RNAs included mainly long RNAs (56.6 %) with sizes larger than 1000 nucleotides, while the 

small RNA fraction up to 200 nucleotides showed a share of 40.4 %. To use cellular RNA for 

small RNA sequencing a purification of the small RNA fraction was necessary to be 

performed. After small RNA refinement (Figure 13 b) size distribution altered to a majority of 

small RNAs with 25 and 200 nt in size (76.1 %) and only 23.0 % of RNAs larger than 1000 nt. 

The portion of RNAs between 200 and 1000 nt was reduced from 3.0 % to 0.9 %. 

When comparing cellular (Figure 13a) and exosomal RNA (Figure 13c) different size patterns 

were observed. Due to the limited RNA amount after exosomal RNA isolation no smallRNA 

purification was performed. Mainly small RNAs (66.7 %) were detected inside exosomes and 
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only 5.0 % of RNAs longer than 1000 nucleotides were visible. The fraction of 200-1000 nt 

RNAs was more dominant (28.3 %) compared to cellular RNA (3.0 %).  

 

 

Figure 13: RNA size-profile of cellular (purified / total RNA) and exosomal RNA. RNA was extracted 
from Raji cells and their EVs. Total RNA was purified by magnetic beads. Cellular RNA showed 40.4 % 
small RNAs and 56.6 % large RNA. After purification the small RNA content increased to 76.1% and 
the large RNA content decreased to 23,0 %. Exosomal RNA showed high portion of small RNAs (66.7 
%), while the large RNAs were underrepresented (5.0 %). 

 

3.2.2  Next generation sequencing workflow 

 

After evaluation of the RNA quality on Bioanalyzer System, small RNAs were subjected to 

library preparation and next generation sequencing (Figure 14). The RNA quality was 

analysed (Step 1) by Bioanalyzer system (RIN >9) and small RNAs were purified and ligated to 

adapters (Step 2). In a second PCR step the adapters were completed or barcode sequences 

for sample identification were added. Completed libraries were clonally amplified (Step 3) 

and sequenced on the IonTorrent PGM platform. Shortly, the PCIM system recognized 

inserted by the pH drop upon proton release (Step 4). After sequencing raw signals were 

processed, adapters trimmed, low quality reads deleted and fastq files generated (Step 5). 
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Quality checked reads were aligned against miRBase21 and snoRNABase V3 and analysed by 

Bioconductor DESeq package in R [120].  

 

Figure 14: Illustration of the next generation sequencing workflow. RNA was isolated (1) and the 
RNA integrity number (RIN) was checked for RNA samples on BioAnalyzer system. Cellular RNA (RIN ≥ 
9) was purified and the small RNAs were ligated to sequence adapters and barcodes (2). Because of 
the high small RNA content in exosomes the small RNA purification step was skipped. Completed 
libraries were clonally amplified (3) and sequenced on the IonTorrent PGM system (4). Afterwards 
sequences were processed, quality checked, trimmed and analysed by the Bioconductor DESeq 
software package on R. 

 
 
3.2.3  Reproducibility of NGS data on the IonTorrent system 

 

The reproducibility of the NGS workflow was confirmed by three different biological replicas 

of each cellular and exosomal RNAs isolated from Raji cells (Figure 15). Detailed sequence 

information is listed in table 19. 

 

Table 19: Sequencing information for Raji libraries 

     Bases    Reads Mean Read Length 

Raji cell1 23.564.413 1.328.741 30 bp 
Raji cell2 9.482.133 519.690 18 bp 
Raji cell3 4.203.270 229.203 18 bp 
Raji exo1 36.856.068 1.489.896 25 bp 
Raji exo2 14.711.571 487.422 30 bp 
Raji exo3 5.833.148 266.501 22 bp 
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Having a more detailed look at the distribution of small RNAs unique patterns were observed 

in cellular and exosomal (Figure 15a). Using the sequence cluster algorithms included in 

DESeq package cellular samples cluster together, whereas exosomal samples cluster apart 

(Figure 15b). Raji exo1 and exo2 are more similar compared to Raji exo3, while all the 

cellular samples displayed only minor differences. The same tendencies were observed in a 

PCA plot (Figure 15c). 

 

 

Figure 15: Reproducibility of NGS data generated by IonTorrent System. Exosomal and cellular RNA 
of three different biological replicates from Raji cells were utilized for the NGS workflow. Raw 
reads were quality checked, trimmed and aligned against miRBase21 and snoRBase V3. Data analysis 
was performed with Bioconductor DESeq package to generate the heatmap (a), clustering (b) and 
PCA plot (c). Distinct exosomal and intracellular patterns were observed after cluster analysis. 
Cellular pattern showed only minor differences after cluster analysis, whereas exosome samples 
comprise higher deviation, especially between Raji exo1/exo2 and Raji exo3. Trends were confirmed 
by principle component calculations. 

 

 

3.2.4  Exosomal and intracellular small RNA profiles of human B-lymphocytes (Raji) 

 

To visualize the different expression patterns and clustering of samples a log2 fold change 

plot was generated for small RNA profiles from Raji (Figure 16b). A list of candidates that 

appeared enriched in either exosomes or intracellular is provided in table 20.   
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Figure 16: Cellular and exosomal small RNA distribution of Raji small RNA libraries. Heatmap and 
log2foldchange were calculated and generated by Bioconductor DESeq package. Top five cellular 
(red) and exosomal (green) overexpressed miRNAs were highlighted and listed in table 20. 

 
Both strands (5p and 3p) of miR-3607 were overrepresented in the intracellular small RNA 

population and only barely detectable in extracellular vesicles. The same is true for the 

snoRNA U104 and miR-130b-5p and miR-20a-3p, which showed a 40-170 fold cellular 

overexpression. In contrast the miRNA miR-1246 showed the highest extracellular 

overrepresentation (140 fold) followed by miR-223-3p (82 fold), miR-222-3p (78 fold), miR-

145-5p (43 fold) and miR-27b-3p with 19 fold higher abundance in extracellular vesicles. 

 

Table 20: MiRNA candidates of Raji and distribution in cells compared to exosomes 

small RNA Log2foldchange Basemean cell Basemean exo 

hsa-miR-3607-5p -9,53 313,28 0,42 

hsa-miR-3607-3p -7,63 83,96 0,42 

U104 -7,40 419,25 2,48 

hsa-miR-130b-5p -6,60 75,57 0,78 

hsa-miR-20a-3p -5,39 44,44 1,06 
 

   

hsa-miR-1246 7,20 1,30 191,33 

hsa-miR-223-3p 6,36 4,71 386,16 

hsa-miR-222-3p 6,29 3,12 244,37 

hsa-miR-145-5p 5,44 3,60 156,26 

hsa-miR-27b-3p 4,26 12,94 247,31 

 

Furthermore, I detected exclusively intracellular or extracellular small RNA candidates 

(Table 21). MiR-218-5p showed the highest extracellular only expression followed by miR-
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451a and miR-367-3p. However I detected some miRNAs only in cell extracts, e.g. miR-4284, 

miR-582-5p or miR-664a-3p, too. Moreover two snoRNAs (U57 and U73a) were identified, 

which showed high levels in cellular small RNA samples but were not detectable in EV 

samples. 

Table 21: MiRNA candidates exclusively present in exosomes (log2 foldchange = Inf) or intracellular 
(log2foldchange = -Inf) 

small RNA Log2foldchange Basemean exo 

hsa-miR-218-5p Inf 4986,27 

hsa-miR-451a Inf 434,19 

hsa-miR-367-3p Inf 222,65 

hsa-miR-486-5p Inf 110,99 

hsa-miR-122-5p Inf 89,17 
 

small RNA Log2foldchange Basemean cell 

hsa-miR-4284 -Inf 549,45 

hsa-miR-582-5p -Inf 73,77 

U57 -Inf 65,61 

hsa-miR-664a-3p -Inf 37,01 

U73a -Inf 32,85 

 
 

Taken together, the IonTorrent System displayed a high level of reproducibility with three 

different small RNA-libraries, each for cellular and exosomal samples as was analysed by 

cluster calculations and PCA plots. Furthermore, distinct cellular and exosomal small RNA 

patterns were observed for human Raji B-cells and distinct expressed small RNAs were 

described. 

 

 

3.2.5 Exosomal and intracellular small RNA profiles of human T-lymphocytes (Jurkat) 

 

After confirming the reproducibility and reliability of the IonTorrent System and analysing 

intra- and extracellular small RNA distribution of human B-cells I examined exosomal and 

intracellular RNAs of human T-cells (Jurkat). The heatmap and foldchange plot were 

generated by the DESeq package in R and are depicted in Figure 17. 
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Figure 17: Small RNA distribution in cells and exosomes of Jurkat. Exosomal and cellular human T-
lymphocytes (Jurkat) were utilized for the NGS workflow. Raw reads were quality checked, trimmed 
and aligned to miRBase21 and snoRBase V3. Data analysis was performed with Bioconductor DESeq 
package to generate the heatmap (a) and log2foldchange (b). Top five cellular (red) and exosomal 
(green) enriched miRNAs were highlighted. 

 
Both for human B-cells and for human T-cells (Jurkat) I detected distinct small RNA 

distributions in cellular and extracellular RNA samples. The top5 cellular (red) or exosomal 

(green) enriched small RNAs were highlighted in a log2foldchange plot (Figure 17b) and are 

summarized in table 22.  

 

Table 22: MiRNA candidates of Jurkat and distribution in cells compared to exosomes 

small RNA Log2foldchange Basemean cell Basemean exo 

hsa-miR-378f -9.69 2238.37 2.69 
hsa-let-7e-5p -8.83 3696.45 8.08 

hsa-miR-378g -8.11 2240.23 8.08 

U24 -7.41 459.78 2.69 

U48 -6.86 314.94 2.69 

    

hsa-miR-143-3p 8.09 0.74 201.94 

hsa-miR-486-5p 7.84 1.11 255.79 

hsa-miR-122-5p 7.32 0.37 59.24 
hsa-miR-145-5p 7.04 2.60 341.96 
hsa-miR-130a-3p 6.56 0.37        35.00 

 

 

MiR-378f was almost 1000 fold more frequently found intracellular, whereas let-7e-5p and 

miR-378g represent a 280-462 fold cellular overrepresentation. I also detected two snoRNAs 
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among the top5 candidates, while U24 was 170 fold and U48 117 fold enriched inside the 

cell. The top 5 small RNAs overrepresented in exosomes consist of miR-143-3p (272 fold), 

miR-486-5p (230 fold), miR-122-5p (160 fold), miR-145-5p (132 fold) and miR130a-3p (94 

fold). A full list of mapped small RNA reads and previewed in the supplements of this thesis. 

Similar to human B-cell profiles small RNAs only present in one of the groups were 

identified. Top 5 exclusively exosomal or cellular candidates are summarized in table 23. 

Table 23: MiRNA candidates exclusively present in Jurkat exosomes (log2foldchange = Inf) or 
intracellular (log2foldchange = -Inf) 

small RNA Log2foldchange Basemean exo 

hsa-miR-451a Inf 651.60 

hsa-miR-494-3p Inf 166.94 

hsa-miR-376c-3p Inf 72.70 

hsa-miR-214-3p Inf 61.93 

hsa-miR-526b-5p Inf 53.85 
 

small RNA Log2foldchange Basemean cell 

hsa-miR-378b -Inf 2324.16 

hsa-miR-378i -Inf 2015.16 

hsa-miR-181c-5p -Inf 572.68 

hsa-miR-196b-5p -Inf 237.32 

hsa-miR-4318 -Inf 121.07 

 

Analogous to Raji cells miR-451a was only detectable extracellular together with               

miR-494-3p, miR-376c-3p, miR-214-3p and miR-526b-5p. On the other hand the top 5 

exclusively intracellular miRNAs consisted of miR-378b, followed by miR-378i, miR181c-5p, 

miR186b-5p and miR-4318. 

 

 

3.2.6  Exosomal and intracellular small RNA profiles of human B-lymphocytes (DG75) 

 

In order to check a second human B-cell line I analysed human DG75 cells. This cell line was 

established in 1975 from a pleural effusion of a patient with Burkitt´s lymphoma [132]. 

Heatmap and log2foldchange plot were generated via DESeq package and are shown in 

Figure 18. 
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Figure 18: Cellular and exosomal small RNA expression of human B-lymphocytes (DG75). Exosomal 
and cellular small RNA libraries of human B-lymphocytes (DG75) were utilized for the NGS workflow. 
Raw reads were quality checked, trimmed and aligned against miRBase21 and snoRBase V3. Data 
analysis was performed with Bioconductor DESeq package to generate the heatmap (a) and PCA plot 
(b). Top five cellular (red) or exosomal (green) enriched small RNAs were highlighted. 

 

Distinct small RNA pattern were observed for cellular and exosomal DG75 small RNAs. Top 5 

intracellular (red) and extracellular (green) small RNAs were highlighted in a log2foldchange 

plot (Figure 18b) and are listed in table 24. 

 

Table 24: MiRNA candidates of DG75 and distribution in cells compared to exosomes 

small RNA Log2foldchange Basemean cell Basemean exo 

U29 -6,92 197,80 1,63 

HBII-429 -6,67 333,74 3,26 

hsa-miR-4521 -6,63 10374,20 104,51 

hsa-miR-3607-5p -5,43 2527,26 58,79 

hsa-miR-20a-5p -4,65 10153,13 404,98 

    

hsa-miR-451a 10,79 0,61 1085,94 

hsa-miR-125a-5p 7,82 0,61 138,80 

hsa-miR-126-3p 7,57 3,06 581,34 

hsa-miR-130a-3p 6,744 0,61 65,32 

hsa-miR-223-3p 6,07 26,94 1817,52 

 

 

Surprisingly two snoRNAs (U29 and HBII-429) showed the highest foldchange (102-121 fold) 

comparing DG75 cells and extracellular vesicles followed by miRNAs miR-4521 (99 fold), 

miR3607-5p (43 fold) and miR-20a-5p (25 fold). Additionally miR-451a was 1780 fold 
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enriched inside exosomes followed by miR-125a-5p (228 fold), miR-126-3p (190 fold), miR-

130a-3p (107 fold) and miR-223-3p (67 fold). 

Furthermore, I identified small RNAs only present intracellular or in extracellular vesicles 

(Table 25). More detailed analyses and comparisons of the two human B-cell derived cell 

lines Raji and DG75 is provided in 3.2.8. 

 

Table 25: MiRNA candidates exclusively present in DG75 exosomes (log2foldchange = Inf) or 
intracellular (log2foldchange = -Inf) 

small RNA Log2foldchange Basemean exo 

hsa-miR-145-5p Inf 357,63 

hsa-miR-494-3p Inf 311,90 

hsa-miR-203b-5p Inf 153,50 

hsa-miR-203a-3p Inf 145,34 

hsa-miR-143-3p Inf 133,91 
 

small RNA Log2foldchange Basemean cell 

hsa-miR-33a-5p -Inf 179,43 

hsa-miR-590-3p -Inf 137,17 

U36B -Inf 100,43 

hsa-miR-1275 -Inf 59,40 

snR38A -Inf 53,89 

 

 

 

Mir-145-5p and miR-494-3p showed strong extracellular presence without being detectable 

inside the cell. Similar observations were made for miR-203-3p, miR-203b-5p and miR143-

3p, which displayed a weaker expression in extracellular vesicles compared to miR-145-5p 

and miR-494-3p. 

In contrast miR-33a-5p, miR-590-3p and miR-1275 showed only intracellular expression, 

together with two snoRNAs (U36B and SnR38A). 
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3.2.7  Exosomal and intracellular small RNA profiles of human cervical cancer cells (HeLa) 

 

After checking three human suspension cell lines of B- and T-cell origins I analysed 

intracellular and extracellular small RNAs of the adherent growing HeLa cells. This cell line 

derived from cervical cancer cells and is the oldest and commonly used human cell line 

[133]. Heatmap and log2foldchange plot were generated via DESeq package in R and are 

depicted in Figure 19. Five cellular (red) and exosomal (green) overrepresented small RNAs 

are highlighted. A summary of overrepresented small RNAs is provided in table 26. 

 

 

Figure 19: Cellular and exosomal small RNA expression of human cervical cancer cells (HeLa). 
Exosomal and cellular small RNA libraries of HeLa cells were utilized for the NGS workflow. Raw reads 
were quality checked, trimmed and aligned against miRBase21 and snoRBase V3. Data analysis was 
performed with Bioconductor DESeq package to generate the heatmap (a) and PCA plot (b). Top five 
cellular (red) and exosomal (green) enriched miRNAs were highlighted. 

 

Diverging profiles of extracellular and intracellular small RNAs were detected for human 

cervical cancer cells. The top 5 cell-enriched small RNAs included four miRNAs and one 

snoRNA. MiR-204-5p displayed the highest cellular enrichment (187 fold) followed by miR-

4284 (135 fold) and miR-95-3p (15 fold). U74 belongs to small nucleolar RNAs and showed a 

14 fold overexpression and miR-454-3p was 12 fold enriched comparing cellular and 

exosomal small RNAs of HeLa (Table 26).  
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Table 26: Top 5 cellular and exosomal miRNAs in HeLa 

small RNA Log2foldchange Basemean cell Basemean exo 

hsa-miR-204-5p -7,55 423,09 2,26 

hsa-miR-4284 -7,08 917,80 6,79 

hsa-miR-95-3p -3,91 34,04 2,26 

U74 -3,86 131,75 9,05 

hsa-miR-454-3p -3,60 27,41 2,26 

    

hsa-miR-376c-3p 8,74 0,88 377,74 

hsa-miR-1246 7,95 8,84 2194,06 

hsa-miR-340-3p 7,41 2,65 450,12 

hsa-miR-320d 7,32 7,96 1275,72 

hsa-miR-150-5p 7,19 0,88 128,93 

 
 

Vice versa miR-376c-3p was 429 fold enriched in exosomes, ensuing miR-1246 (248 fold), 

miR-340-3p (170 fold), miR-320d (160 fold) and miR-150-5p with 146 fold enrichment in 

extracellular vesicles compared to intracellular appearance. 

 

Moreover, I detected several small RNAs exclusively detectable intracellular or extracellular 

(Table 27).  Equally to Raji and Jurkat small RNA distributions miR-451a was solely detectable 

in extracellular vesicles. Besides miR-451a the small RNAs miR-223-3p, miR-486-5p, miR-134-

5p and miR-494-3p are expressed extracellular but not detectable intracellular. 

On the other hand the snoRNAs U63 and U81 are only expressed inside the cell and not 

detectable extracellular, which is also true for miR-324-5p, miR-28-5p and miR-4521. 

 

Table 27: Exclusively extracellular (log2foldchange = Inf) or intracellular (log2foldchange = -Inf) 
HeLa miRNA candidates 

small RNA Log2foldchange Basemean cell 

U63 -Inf 26,53 

U81 -Inf 18,57 

hsa-miR-324-5p -Inf 13,26 

hsa-miR-28-5p -Inf 11,94 

hsa-miR-4521 -Inf 11,94 
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small RNA Log2foldchange Basemean exo 

hsa-miR-223-3p Inf 531,55 

hsa-miR-451a Inf 484,05 

hsa-miR-486-5p Inf 217,14 

hsa-miR-134-5p Inf 104,05 

hsa-miR-494-3p Inf 81,43 

 

 

 

3.2.8  Cluster analysis of cellular and exosomal small RNAs  

 

In addition to the comparison of cellular and exosomal RNA profiles a cluster analysis of all 

samples was performed to evaluate sequencing data and workflow. The focus was set to 

extracellular smallRNA profiles and the comparison to intracellular small RNAs.  

Clustering of small RNA profiles from the various samples was performed in DESeq software 

using preset standard parameters. In the cluster analysis of Raji und Jurkat cells (Figure 20) 

different distributions of small RNAs were detected. Four main groups we identified. The Raji 

cellular RNA samples clustered closely together, which was already seen in Figure 15 and 

Figure 16. A similar outcome was detected for exosomal small RNA profiles of Raji cells, 

whereas the samples “Raji exo1” and “Raji exo2” showed more similarities compared to 

“Raji exo3”. Small RNA profiles of Jurkat cells and exosomes cluster apart showing low 

resemblances to each other and forming two separate cluster-groups.  
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Figure 20: Cellular and exosomal small RNA expression of Raji and Jurkat. Exosomal and cellular 
small RNA libraries of human T- and B-cells were utilized for the NGS workflow. Raw reads were 
quality checked, trimmed and aligned against miRBase21 and snoRBase V3. Heatmap (a) and PCA 
plot (b) were generated via Bioconductor DESeq package in R. Distinct exosomal and intracellular 
small RNA profiles were detected for each cell line. Principle component analysis shows separate 
clustering for extracellular and intracellular samples and for different cell lines as well. 

 

Comparable trends were observed in a principal component analysis. Raji cellular samples 

clustered in one group shown in blue, while exosomal samples (depicted in green) showed a 

broader distribution. Jurkat exosome (light green) and cellular samples (light blue) show low 

similarities to Raji cells and exosomes. 

 

When analysing HeLa and DG75 NGS datasets similar trends were observed (Figure 21).  No 

changes in clustering were seen for Raji and Jurkat datasets. The exosome NGS datasets of 

Hela and DG75 clustered together, although the PCA plot showed a larger difference. For the 

cell-derived datasets of Hela and DG75 an identical clustering behaviour was observed, but 

the samples plotted closer in the principle component analysis. 

In summary, distinct cell and exosome RNA profiles of the four different human cell lines 

were detected and compared in clustering and principal component analysis. The next step 

is the analysis of exosomal RNAs and the distribution among the four cell lines. 
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Figure 21: Cellular and exosomal small RNAs of Raji, Jurkat, DG75 and HeLa. Exosomal and cellular 
small RNA libraries of four different human cell lines were utilized for the NGS workflow. Raw reads 
were quality checked, trimmed and aligned against miRBase21 and snoRBase V3. Heatmap (a) and 
PCA plot (b) were generated via Bioconductor DESeq package in R. Raji cells could be clearly 
distinguished from Raji exosomes by cluster calculations. Jurkat show differences in small RNA 
expression and build a second group. Nevertheless Jurkat cellular and extracellular profiles show a 
low resemblance to each other, which leads to a formation of two separate cluster-groups. 
Extracellular and intracellular datasets of Hela and DG75 build a third cluster group, whereas 
extrallular and intracellular datasets were distinguishable. 

 
 
 

3.2.9  Comparison of miRNA distribution in exosomes and sequence motifs 

 

In order to exclude misleading cell culture artefacts by RNA remains or contaminations in 

exosome free cell culture media and to detect cell specific exosomal miRNAs I investigated 

the extracellular miRNA profiles of HeLa, Jurkat, Raji and DG75. NGS datasets were analysed 

by Bioconductor DESeq package and aligned to miRBase 21. Discovered miRNAs were 

represented in a VENN diagram [134] and identified sequence motifs were depicted in 

Figure 22.  
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Figure 22: Expression pattern and sequence motifs of exosomal miRNAs in HeLa, Jurkat, DG75 and 
Raji exosomes. Exosomal miRNAs (a) showed a common pool with 89 miRNAs upon all four tested 
cell lines, nevertheless distinct small RNAs for all tested cell lines were detected too and are listed in 
table 28. Totally 249 miRNAs were compared. Sequence motif analysis revealed distinct extracellular 
and intracellular (b) patterns, which match with the literature (c). 

 
 

Analysis of the extracellular miRNA distributions of four human cell lines revealed a common 

pool of 89 miRNAs. MiR451a was present in the extracellular fractions of all human cell lines 

but in Raji, Jurkat and Hela it was not detectable in cell samples. Besides miR-451a, miR-

148a, miR-21, miR-93 and miR-16 were found to be common extracellular RNAs in all four 

tested cell lines. In general the two B-cell lines show an overlap of 111/249 miRNAs. Similar 

values were reached when comparing DG75 and Jurkat cells, whereas Raji and Jurkat only 

displayed an overlap of 93 miRNAs. Comparison of Raji and HeLa extracellular miRNA 

profiles indicated only 91 similar common miRNAs.  

In the distinct exosomal miRNA datasets I discovered miR140-5p, miR-10b, miR-369-3p, miR-

376b and miR-136 as specific extracellular small RNAs for human B-lymphocytes (Raji).  

Additionally I analysed a second human B-lymphocyte (DG75) cell line and checked for 

specific extracellular RNAs. MiR203, miR-1295, miR-598, miR-195 and miR-330-3p were 

exclusively detectable within DG75 exosomes. Besides B-lymphocytes I studied the 

extracellular RNA content of human T-Lymphocytes (Jurkat). Specific extracellular miRNAs 

for human T-lymphocyte consists of miR-1274a, miR-363, miR-20b, miR-326 and miR-182. 

The cervix carcinoma cell line HeLa was selected as representative. Mir-100, miR-31, miR-

452, miR-224 and miR-134 were only detectable inside exosomes of Hela cells. A summary of 

specific miRNA profiles of each cell line and a common pool is illustrated in table 28. 
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In addition I succeeded with the identification of specific intracellular and extracellular 

miRNA motifs using the DESeq package and the online motif-based sequence analysis tool 

(MEME). The exosomal sequence motif contains a set of four bases with the following 

sequence: GNAC (wherein N is G, A or C), frequently flanked by T (or better U) residues at 3’ 

and 5’. The intracellular sequence motif is also composed of four bases but shows a 

diverging sequence with PGCA (wherein P is A or T). These sequence motifs match well with 

sequence motifs generated by microarray analysis as previously reported (Figure 22c).  

 

Table 28: Exosomal miRNA distribution among four human cell lines 

Common pool Raji exosomes DG75 exosomes Jurkat exosomes HeLa exosomes 

hsa-miR-451a hsa-miR-140-5p hsa-miR-203 hsa-miR-1274a hsa-miR-100 
hsa-miR-148a hsa-miR-10b hsa-miR-1295 hsa-miR-363 hsa-miR-31 

hsa-miR-21 hsa-miR-369-3p hsa-miR-598 hsa-miR-20b hsa-miR-452 
hsa-miR-93 hsa-miR-376b hsa-miR-195 hsa-miR-326 hsa-miR-224 
hsa-miR-16 hsa-miR-136 hsa-miR-330-3p hsa-miR-182 hsa-miR-134 

 
 

Cellular and exosomal miRNA profiles of Raji, Jurkat and DG75 are summarized in figure 23. 

Cellular profiles of B-cells, i.e. of Raji and DG75 cells, revealed similarities like the sequence 

AGGAGCAT were observed, whereas human T-Lymphocytes showed distinct cellular profiles. 

Furthermore, I identified specific extracellular miRNA profiles of human B- and T-

lymphocytes, whereas Raji and Jurkat profiles show more similarities (ACT sequence) 

compared to DG75 cells.  

 

Figure 23: Distinct small RNA sequence motifs of three different human B- and T-lymphocytes. NGS 
datasets of exosomal small RNAs of Raji, Jurkat and DG75 were analysed quality checked, trimmed 
and aligned against miRBase 21 by Bioconductor DESeq package in R. Annotated miRNAs were 
checked via the online available motif-based sequence analysis tool (MEME) and best matching 
motifs are depicted in a-f. The cellular Raji motif shows high similarities with DG75 cellular motif, 
whereas the Jurkat cellular motif differs. For exosomal motifs Raji and Jurkat are more equivalent, 
when the DG75 exosomal profile shows more alteration. 
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3.3  Comparison of exosome isolation techniques 

 

Although being research topic for many years the isolation of extracellular vesicles is still a 

challenging procedure. Ultracentrifugation techniques are time consuming and require 

specific materials and machines, which is not present in basic equipped laboratories or 

clinics.  To overcome this issue I evaluated two different exosome isolation techniques, i.e. 

by PEG precipitation and the gold standard differential ultracentrifugation. Multiple analyses 

were performed in the context of extracellular vesicle size profiles and small RNA contents. 

Raji cells were cultured for three days in exosome free media and exosomes were harvested. 

After exosome isolation I checked the size profiles of isolated particles via Nanoparticle 

Tracking Analysis (NTA) and performed RNA isolation. Size profiles of isolated RNA were 

checked on a BioAnalyzer System and are depicted together with particle size profiles 

measured by NTA in Figure 24. 

 

 

Figure 24: RNA- and vesicle size-profiles of EVs isolated from Raji cells. Human B-lymphocytes (Raji) 
were cultured for 3 days in exosome free media and exosomes were isolated by PEG precipitation 
(blue) or differential ultracentrifugation (red). Size profiles of extracellular vesicles were analysed by 
Nanoparticle Tracking Analysis (NTA) system (a) and subsequently RNA was isolated by phenol-
chloroform extraction. Size profiles of RNA (b) show minor differences comparing both isolation 
techniques, whereas size profiles of vesicles differ strongly. Extracellular vesicles isolated by 
differential ultracentrifugation show smaller sized vesicles compared to particles isolated by PEG 
precipitation. Marker peaks at 25 nt were normalized to 1 FU. 
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As described before extracellular vesicles isolated by PEG precipitation showed a broader 

size distribution and bigger mean vesicle sizes compared to particles isolated by differential 

ultracentrifugation (Figure 10 and Figure 24a). Comparing small RNA profiles by BioAnalyzer 

system I detected only minor differences (Figure 24b). Both isolation methods revealed small 

RNAs up to 500 nucleotides. After PEG precipitation a small leftover of 18S and 28S 

ribosomal RNAs was detected, while in differential ultracentrifuged particles no ribosomal 

RNA was detectable. The main RNA peak after PEG precipitation was observed at 152 nt 

followed by two peaks at 224 and 343 nt. Exosomes isolated by ultracentrifugation showed a 

similar pattern of RNA sizes with a main group around 150 nt followed by two peaks at 217 

nt and 327 nt.  

After similar small RNA size profiles were confirmed, I prepared small RNA libraries for NGS 

with samples from both isolation techniques to compare their small RNA contents.  NGS 

datasets were analysed by Bioconductor DESeq package and aligned against miRBase 21 and 

snoRNABaseV3 (Figure 25). 
 

 

Figure 25: Small RNA profiles of cellular and exosomal RNA isolated by ultracentrifugation or PEG 
precipitation, principle component analysis and foldchange analysis. NGS datasets were analysed 
by DESeq package and aligned against miRBase 21 and snoRNABase V3. According to a cluster 
analysis Raji ultracentrifugated smallRNAs cluster closely to PEG precipitated small RNA profiles (a). 
Cellular RNA profiles were added to assess exosomal small RNA datasets. Principle component 
analysis revealed a close clustering of Raji UC and PEG1 sample, whereas Raji PEG2 shows a different 
profile (b). Nevertheless Raji PEG and UC profiles look more similar compared to cellular small RNA 
distributions. This trend was confirmed checking the log2fold scatter plot, which demonstrates only 
minor differences comparing PEG and UC samples. 
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Principle component and cluster analysis revealed a close relation between 

ultracentrifugation and PEG precipitated samples, whereas cellular samples showed a 

different small RNA profile. Raji PEG1 and Raji UC showed more overlap compared to Raji 

PEG2, while an obvious difference to cellular samples was observed. Having a closer look at 

differentially expressed miRNAs (Figure 25c and table 29) only minor differences in 

expression was detected. Most small RNAs show a log2 foldchange between -2 and 2, while 

miR-378a-3p was enriched in PEG precipitated samples. The same is true for miR-19a-3p, 

miR-301a-3p, miR-16-5p and miR-142-5p. Also ultracentrifugation samples contained 

enriched miRNAs including miR-218-5p, miR-186-5p, miR-3591-3p, miR-122-5p and miR-27b-

3p.  

However equal distributed extracellular miRNAs comparing both isolation techniques were 

also detected, mentioning miR-451a, miR-367-3p and miR-486-5p. Expression patterns of 

miRNAs isolated by different isolation procedures were summarized in table 29.  

 

Table 29: Small RNA content of PEG precipitated or ultracentrifuged extracellular vesicles 

smallRNA Log2foldchange Basemean PEG Basemean UC 

hsa-miR-378a-3p -3,395724874 1139,420477 108,2602376 

hsa-miR-19a-3p -2,578352317 646,5920531 108,2602376 

hsa-miR-301a-3p -2,504593013 21,88057725 3,855681498 

hsa-miR-16-5p -2,449318078 689,8171318 126,3036105 

hsa-miR-142-5p -2,043601659 5,298650755 1,285227166 

    

hsa-miR-218-5p 2,782730118 1767,227197 12161,23336 

hsa-miR-186-5p 1,691231583 27,93677652 90,21686465 

hsa-miR-3591-3p 1,479923227 32,34345774 90,21686465 

hsa-miR-122-5p 1,400481621 34,1743886 90,21686465 

hsa-miR-27b-3p 0,964081601 46,24558201 90,21686465 

    

hsa-miR-451a 0,847086794 37,86668023 68,11703979 

hsa-miR-367-3p 0,426068819 2,869734089 3,855681498 

hsa-miR-486-5p 0,163034413 1,147893636 1,285227166 

 
 

No exclusively extracellular miRNAs were detected in samples isolated by 

ultracentrifugation. However, some small RNAs were only detectable in PEG precipitated 

extracellular vesicles, for example the snoRNA U24, miR146a-5p and miR-744-5p (Table 30). 
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Table 30: miRNAs only detectable after PEG precipitation 

smallRNA Log2foldchange Basemean PEG 

U24 -Inf 10.33 

miR-146a-5p -Inf 3.55 

miR-744-5p -Inf 1.83 

 
 

Only minor differences on small RNA expression were observed, when comparing both 

exosomal isolation techniques. PEG precipitation and ultracentrifugation showed similar 

outcome after cluster analysis and principle component calculations. However, 

overrepresented miRNA candidates for each isolation technique were observed. 

 
 
 

3.4  Overexpression of exosomal marker proteins and influence on EVs and 
 LVs 
 
 
3.4.1  Overexpression of TSG101, Alix or CD9 alters both amount and mean sizes of EVs 
 

Relatively little is known about exosomal marker proteins and their influence on EV 

assembly and secretion. To pursue this question human HEK293 were transduced by 

lentiviruses to generate stable expressing cell lines for the exosomal marker proteins CD9, 

Alix and TSG101. Afterwards the expression of target proteins was analysed by qPCR (Figure 

26).  

 

Figure 26: Overexpression of exosomal marker proteins CD9, Alix and TSG101 in HEK293 cells 
affects vesicle amounts and sizes. QPCR analyses were performed and displayed a 12-fold increase 
of TSG101 expression after lentiviral transduction. In stable expressing HEK-Alix cells a 4-fold increase 
was detected, whereas CD9 showed a 23-fold overexpression after stable cell line generation. 
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QPCR analysis revealed a 12-fold increase of expression in stably TSG101 expressing HEK293 

cells when compared to wildtype HEK293. The expression of Alix was 4-fold and the CD9 

expression 23-fold increased in the respective stable cells.  

 

To analyse the influence of overexpression on extracellular vesicles I measured size profiles 

of secreted vesicles by Nanoparticle Tracking Analysis (Figure 27). Reduced average-size of 

extracellular vesicles for HEK293-CD9GFP cells with diameters of 160.9 nm (±2,16 nm) 

compared to wildtype cells with 170.5 nm (±2.46 nm) were observed. In contrast, an 

increased size was detected both for HEK293-TSG101 (197.2 nm ±4.99) and HEK293-Alix 

cells (186.4 nm ±4.92). Furthermore, CD9GFP expressing cells produced significantly more 

extracellular vesicles (6.27±0.54 *108) in contrast to HEK293 WT (4.86±0.15*108). However, 

the lowest EV concentrations were observed in HEK293-TSG101 (2.24±0.25 *108), and 

HEK293-Alix (2.78±0.24 *108) cell culture supernatants. By examining only vesicles in the 

size range of exosomes (i.e. 30-100nm) [6, 22, 60, 135] this trend was confirmed and for 

HEK293-CD9GFP cell supernatants the effect was even stronger, I detected 68.76±8.45*108  

particles for HEK293-CD9GFP compared to 28.98±2.74 *108 for HEK293 WT cells, reflecting a 

CD9 mediated 2.5-fold increase of secreted exosomes.  Besides the reduced concentration 

of extracellular vesicles in HEK293-TSG101 and HEK293-Alix supernatants I also detected 

lower concentrations of exosome-sized vesicles (8.65±1.15 *108 particles for HEK293-

TSG101 and 17.66±2.79 *108  vesicles for HEK293-Alix cells).  

In summary, I observed an increased amount of extracellular vesicles in response to CD9-

overexpression, while both TSG101 and Alix overexpression resulted in a reduced abundance 

of extracellular vesicles. This observation was confirmed and even more obvious for vesicles 

within the exosome size-range of 30-100nm. The size of EVs increased, however, on the 

course of TSG101 and Alix overexpression but decreased after CD9 overexpression. 
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Figure 27: 19: Overexpression of exosomal marker proteins CD9, Alix and TSG101 in HEK293 cells 
affects vesicle amounts and sizes. Nanoparticle Tracking analysis of extracellular vesicles (a-c) 
showed significantly enlarged particles for HEK293-TSG101 and HEK293-Alix compared to the 
wildtype. The overexpression of CD9 led to a decreased average size of secreted vesicles (a). Total 
extracellular vesicle amount was decreased upon TSG101 and Alix overexpression, but the 
extracellular vesicle amount was significantly increased upon CD9 overexpression (b). For vesicles 
within the size range of exosomes (30-100nm) these trends were even more robust (c). 

 
 
 
 
 
3.4.2  CD9 overexpression affects size and amount of extracellular vesicles in  
            different cell types 

 

To further investigate and to prove the significantly increased number of extracellular 

vesicles upon CD9 overexpression different stable CD9GFP expressing cell lines were 

generated by LV transduction (HeLa CD9GFP, Jurkat CD9GFP, Raji CD9GFP and HEKFT CD9GFP). 

Secreted vesicles were examined in respect to their abundance and size distribution by NTA 

(Figure 28 and table 31). 

A 22-fold overexpression of CD9 in HEK293FT cells (commonly used for the production of 

lentiviral vectors), resembled the observations made with HEK293 wild type cells. Human 

HeLa cells only reached a 2-fold increase of CD9 as seen in qPCR analysis, while the B-cell line 

Raji cells displayed the highest transgene expression level of CD9 (920-fold), and the human 

T-cell line Jurkat reached a 55-fold overexpression.  
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Figure 28: CD9 overexpression in HEK293 FT, Hela, Jurkat and Raji cells. CD9 overexpression 
increases the amount of extracellular vesicles in all tested cell lines (a) Furthermore, the vesicle size 
was significant lower in HEK293 FT cells due to CD9 overexpression. Opposite effects were observed 
in HeLa cells and suspension cells like Raji and Jurkat, these extracellular vesicles show no change in 
size distribution compared to wildtype cells (b). Exosome amount was significant increased in all cell 
lines except HeLa and CD9 expression was quantified by qPCR (d). 

 

 

The amounts of cell-free vesicles were increased in all cell culture supernatants of CD9 

overexpressing cells when compared to the original cells.  HEK293FT cells increased their 

particle concentration from 5.18±0.33 *108 to 7.59±0.36 *108 vesicles per mL, while HeLa 

cells increased their extracellular vesicles from 6.5±0.35 *108 to 9.66±0.5 *108 per ml. Both 

B- and T- cells exhibited in general a lower vesicle amount (2.92±0.13 *108 vesicles for Jurkat 

cells and 3.12±0.10 *108 particles produced by Raji wild type cells). Nevertheless both 

suspension cell lines increased their extracellular vesicle production to 4.73±0.2 *108 for 

Jurkat- CD9GFP cells respectively 6,99±0,31 *108 particles detected in Raji- CD9GFP cells, 

indicating an approximately 2-fold higher concentration.  
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Table 31: Summary of CD9, Alix and TSG overexpression and influence on EVs 

Cell line CD9 overexpression Mean vesicle size Vesicle amount Exosome Amount 

HEK293 - 170,5±2,46 nm 4,86±0,15*108 28,98±2,74 *106 

HEK293 CD9GFP 23-fold 160,9±2,16 nm 6,27±0,54 *108 68,76±8,45*106   

HEK293 FT - 171,7±3,11 nm 5,18±0,33 *108 30,96±3,80 *106 

HEK293 FT CD9GFP 22-fold 156,2±5,76 nm 7,59±0,36 *108 101,5±19,32 *106 

HeLa - 188,8±1,68 nm 6,50±0,35 *108 20,66±2,83 *106 

HeLa CDPGFP 2-fold 196.4±1,94 nm 9,66±0,50 *108 26,98±3,02 *106 

Jurkat - 155.8 ±3.71 nm 2,92±0,13 *108 30,74±3,32 *106 

Jurkat CD9GFP 55-fold 151.8±3.79 nm 4,73±0,20 *108 67,14±8,72 *106 

Raji - 157.0 ±1.65 nm 3,12±0,10 *108 32,01±3,89 *106 

Raji CD9GFP 920-fold 161.4 ±2.31 nm 6,99±0,31 *108 64,37±7,37 *106 

 

Cell line Alix 
overexpression 

Mean vesicle size Vesicle amount Exosome Amount 

HEK293 - 170,5±2,46 nm 4,86±0,15*108 28,98±2,74 *106 

HEK293-
AlixmCherry 

4-fold 186,4±4,92 nm 2,78±0,24 *108 17,66±2,79 *108 

 

Cell line TSG101 
overexpression 

Mean vesicle size Vesicle amount Exosome Amount 

HEK293 - 170,5±2,46 nm 4,86±0,15*108 28,98±2,74 *106 

HEK293-
TSG101mCherry 

12-fold 197,2±4,99 nm 2,24±0,25 *108 8,65±1,15 *108 

 

Additionally reduced extracellular vesicle sizes in HEK293FT upon CD9 overexpression were 

detected (171.70 nm ±3.11 in HEK293FT and 156.20 nm ±5.76 in HEK293FT-CD9GFP), which 

confirm the observations in HEK293. However opposite effects were observed in HeLa, 

where extracellular vesicle size was increased from 188.8 nm ±1.68 to 196.4 nm ±1.94 

caused by CD9 overexpression. In suspension cells no significant change of extracellular 

vesicle size was detected. 

Focussing on secreted vesicles with exosomal size (30-100nm) revealed a confirmation of the 

previously described trend and HEK293FT cells show an >3-fold increase of exosomes (from 

30.96±3.80 *106 to 101.5±19.32 *106 particles/ml), whereas the suspension cell lines double 

their exosome production from 32.01±3,89 *106 to 64.37±7.37 *106 particles per mL for Raji 

cells, and, respectively from 30.74±3.32 *106 to 67.14±8.72 *106 particles per mL for Jurkat 
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cells. Only for HeLa cells the amount of vesicles with exosomal size was not significantly 

changed (20.66±2.83 *106 to 26.98±3.02 *106 particles per mL).  

Taken together in HEK293FT, Jurkat and Raji cell culture supernatant an increased amount of 

extracellular vesicles after CD9GFP overexpression was detected by NTA. However, Hela cells 

displayed no significant increase of vesicles with exosome size, but at the same time the 

foreign CD9 expression was also the lowest in cell lines studied. 

 

3.4.3  Cellular localization of CD9GFP, AlixmCherry and TSG101mCherry 

 

The CD9GFP expression was also monitored by fluorescence microscopy (Figure 29). CD9GFP 

was visualized mainly in the membranes of the adherently growing cells as well as 

suspension cells. The CD9GFP overexpressing cell lines did not show any visible changes of 

their phenotype and displayed no increased mortality compared to the respective wildtype 

cells. Some accumulation of CD9GFP as indicated by increased GFP fluorescence intensities 

was observed in cell-cell contact regions. 

 

 

Figure 29: CD9 locate to the plasma membrane and cell-cell-contact surfaces in stably CD9-GFP 
expressing cell lines. Cell membrane localization of CD9GFP was observed via fluorescence 
microscopy. Green fluorescence was detected with a fixed exposure time (1000 msec) after at least 
two weeks of Blasticidin selection. Membrane expression of CD9GFP was detected in every tested cell 
line. White arrows indicate increased CD9GFP expression on cell-cell contact areas.                                      
Scale bar = 100 µm. 
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Furthermore, I was able to generate stable expressing HEK293 TSG101mCherry and AlixmCherry 

cell lines by lentivirus transduction. In contrast to CD9GFP overexpression an increased 

mortality rate was observed after lentiviral transduction. Cells with high TSG101mCherry or 

AlixmCherry expression (indicated by fluorescence microscopy) showed a round phenotype, 

whereas cells with lower TSG101mCherry or AlixmCherry expression presented cytoplasmatic 

fluorescence with local accumulations (Figure 30). 

 

 

Figure 30: Alix and TSG101 overexpression in HEK293 cells visualized by fluorescence microscopy.  
HEK293 cells were transduced with VSVG LVs carrying AlixmCherry or TSG101mCherry as gene of interest. 
Cells were selected via Blasticidin and fluorescence microscopy was performed with a fixed exposure 
time (1000msec). Scale bar 100 µm. 

 

3.4.4  LV production workflow and produced LVs  

 

Previous studies reported some positive influence of increased extracellular vesicle amounts 

on the transduction efficiency of recombinant adeno-associated viruses (AAV) and HIV [136, 

137].  To examine these effects in response to increased levels of CD9 the HEK293FT-CD9GFP 

cell line was utilized for LV production and the resulting virus titers and the transduction 

efficiency were compared. The general workflow is shown in Figure 31a. Three variants of 

lentiviral vectors were generated, i.e. a pseudotyped variant exposing the vesicular 

stomatitis virus glycoprotein (VSVG), the CD9GFP variant and a combined VSVG-CD9GFP 

lentiviral vector (Figure 31c). All three LV deliver RFP coding genetic information into the 

host cell, which can be detected by fluorescence microscopy or FACS analysis. 
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Figure 31: Procedure of Lentivirus production and comparison between exosomes and LVs. 
HEK293FT or HEK293FT-CD9 cells were transfected with three different plasmids encoding for 
envelope glycoproteins (i.e. CD9 and/or VSVG), viral capsid proteins and the gene of interest, here a 
red fluorescent protein (RFP) (a). LVs are shed from the cell membrane, and LVs produced in 
HEK293FT-CD9 cells carry additional CD9-GFP and/or VSVG within their envelope. Exosomes and LVs 
are depicted in (b) and show similar characteristics including in particular their size and partially the 
lipid contents. Three different kinds of LVs, i.e. exposing VSVG, CD9 or VSVG and CD9, were produced 
and are schematically shown in (c). 

 

3.4.5  The CD9 mediated increase of extracellular vesicles boosts the transduction 
efficiency of lentiviral vectors 

 

The putative effect of high CD9 expression and the resulting increase of EV release on LV 

performance were examined. The modified recombinant LVs were generated with VSVG as 

envelope protein (LV-VSVG) in standard HEK293FT and viruses carrying CD9GFP and VSVG  

(LV-VSVG-CD9GFP) on the virus envelope produced in HEK293FT-CD9GFP. The incorporation of 

membrane proteins, in this case CD9GFP and/or VSVG, into the envelope of the recombinant 

lentivirus is directly linked to virus budding. With an increased expression level and a higher 

abundance of specific proteins in membranous cell compartments the chances of 

incorporation into the envelope are dramatically increased. Surprisingly I detected in our 

previous experiments a higher infectivity of LV-VSVG-CD9GFP on Jurkat and Raji cells 

compared to LV-VSVG. Lentiviruses with CD9 and VSVG as envelope proteins transduced 

97% of Jurkat and 80% of Raji cells, whereas LV-VSVG LVs infected 45% of Jurkat and only 
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6 % of Raji cells. Both viruses delivered the GFP reporter as GOI, which was examined by 

FACS analysis (Figure 32). 

 
 

 

Figure 32: Lentiviral transduction of Raji and Jurkat. Raji and Jurkat cells were transduced with two 
different LVs and transduction efficiency was analysed after 72h by FACS analysis. LV-VSVG-CD9GFP 
showed higher efficiency compared to LV-VSVG-GFP.  

 
 
In order to undock the GOI (GFP) expression from the CD9GFP expression LV-VSVG and LV-

VSVG-CD9GFP viruses carrying RFP as GOI were designed. Subsequently, the transduction 

efficiencies of the recombinant LVs and a set of negative controls lacking viral capsid or viral 

envelope proteins were analysed by fluorescence microscopy and FACS analysis (Figure 33-

34). Equal amount of viruses (physical titer of 1*107 lentivirus particles according to p24 Elisa 

titration) were used for infections of equal amount of HeLa, HEK293 or SH-SY5Y. 

 

Figure 33: Transduction efficiency of LV-VSVG and LV-VSVG-CD9. Comparison of transduction 
efficiency was evaluated with LV-VSVG as a standard control and LV-VSVG-CD9 on HEK293. 
Successful transduction was confirmed via fluorescence microscopy in regular intervals from 20 to 
108 hours after transduction. Scale bar 200 µm. 
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On HEK293 cells LV-VSVG-CD9GFP revealed a faster and more efficient transduction, once 

after 40 hours 45% of the treated cells were transduced with a physical titer of 1*107, while 

at this stage the control LV-VSVG only reached 15% of the cells under the same conditions. 

Besides the faster onset of transgene (RFP) expression also increased transduction efficiency 

after 116 hours were observed. LV-VSVG-CD9GFP transduced 85% of HEK293, while the 

maximum for LV-VSVG was 75% of cells. In HeLa similar observations were detected, since 

after 40 hours 22% of cells were transduced, whereas LV-VSVG only reached 8%. At the peak 

time 116 hours after infection the differences between transduction efficiencies was even 

more obvious than it was shown in HEK293 cells. LV-VSVG-CD9 transduced 48% of HeLa, 

while LV-VSVG led to RFP expression in only 20%. Additionally the influence of CD9 on LV 

transduction efficiency was tested on SH-SY5Y. 40 hours after transduction no remarkable 

differences in virus transduction was detected due to a low amount of RFP expression. The 

increased efficiency of LV-VSVG-CD9GFP got more evident after 72h, since LV-VSVG-CD9GFP 

infected 12% of SH-SY5Y while LV-VSVG remained at 4%. After 160 hours the general 

tendency from the experiments with HEK293 and HeLa was confirmed in SH-SY5Y. LV-VSVG 

transduced a maximum of 12% of cells and LV-VSVG-CD9GFP transduced 23% with the same 

physical titer. Our findings were graphically summarized in figure 34. 

 
 

 

Figure 34: Transduction efficiency of LV-VSVG and LV-VSVG-CD9. Comparison of transduction 
efficiency was evaluated with LV-VSVG as a standard control and LV-VSVG-CD9 on HEK293. 
Successful transduction was confirmed via fluorescence microscopy in regular intervals from 20 to 
108 hours after transduction. In the fluorescence microscopy analysis positive cells were quantified 
by manual counting and the transduction efficiency was calculated. 

 
The transduction efficiency was further examined with a second method, i.e. FACS analysis, 

where the number of cells expressing RFP was quantified 108 hours post infection 

(Figure 35). The overall observation of increased efficiency of LV-VSVG-CD9GFP as seen by 

fluorescence microscopy was confirmed. LV-VSVG-CD9GFP was more efficient on HEK293 cells 

with transducing 46.53%±2.14% of HEK293 cells compared to LV-VSVG, which infected only 
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31.22%±0.25% of target cells. The same tendency was observed for HeLa and SHSY-5Y cells, 

where LV-VSVG-CD9GFP transduced 10.81%±0.13% and 12.12%±0.67%, while LV-VSVG only 

infected 7.81%±0.25% of HeLa and 6.88%±1.11% of SHSY-5Y cells. 

 

Figure 35: Transduction efficiency of LV-VSVG and LV-VSVG-CD9 determined by FACS analysis.  
Comparison of transduction efficiency was evaluated with LV-VSVG as a standard control and LV-
VSVG-CD9 on HEK293, Hela and SH-SY5Y cells. End-point analysis was performed by detecting virus 
encoded RFP in flow cytometry analysis 108 h after transduction. 

 

Thus, LV-VSVG-CD9GFP showed remarkably higher transduction rates and transgene 

expression efficiencies when compared to LV-VSVG. Cells transduced with LV-VSVG-CD9GFP 

displayed higher RFP intensities, a faster onset of expression (Figure 33 and 34) and reached 

an increased amount of cells after 108 hours (Figure 35). The obtained results were 

summarized in table 32. 

 
 

Table 32: Comparison of LV-VSVG and LV-VSVG-CD9GFP transduction efficiency 

Cell line LV-VSVG 
Microscopy 

LV-VSVG-CD9GFP 
Microscopy 

LV-VSVG 
108h FACS 

LV-VSVG-CD9GFP 
108h FACS 

 

HEK293 75% 85% 31.22%±0.25% 46.53%±2.14% 

HeLa 20% 48% 7.81%±0.25% 10.81%±0.13% 

SH-SY5Y 12% 23% 6.88%±1.11% 12.12%±0.67% 
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3.4.6  Overexpression of CD9 yields transduction competent LVs in absence of viral 
envelope proteins 

 

To further investigate the beneficial effects of the tetraspanin CD9 on lentiviral 

transductions its capability to mediate membrane fusion in absence of VSVG was examined. 

Therefore three different LVs (LV-CD9, LV-VSVG and LV-VSVG-CD9GFP) were used and 

checked for successful transduction events on HEK293 cells by RFP detection per 

fluorescence microscopy 72h post infection (Figure 36). 

 

 

 

Figure 36: CD9 mediates fusion with target cell membrane. HEK293 cells were transduced with CD9, 
VSVG and VSVG-CD9 LVs. All tested LVs show expression after 72h. The highest efficiency was 
observed with LV-VSVG-CD9GFP followed by LV-VSVG, but also the virus without any viral glycoprotein 
(LV-CD9GFP) successfully infected a minor proportion of cells. Negative control without viral envelope 
proteins or CD9GFP shows no transduction (b). Scale bar 100 µm (a) respectively 200 µm (b). 

 

Indeed RFP positive cells were observed after 72h for all three tested viruses, including LV-

CD9GFP without VSVG on the virus envelope. To access weather the tested envelope 



3. Results 

76 
 

glycoproteins can drive RFP expression by themselves, a set of control experiments in which 

all relevant virus components were omitted were designed and the putative transductions 

on HEK293 cells was analysed (Figure 36b and Figure 37). All negative controls like virus 

capsids lacking envelope proteins to drive tropism or envelope proteins without capsid did 

not lead to any RFP expression in the target cells. 

 

 

Figure 37: Negative control setup for transduction efficiency comparison of CD9, VSVG and CD9-
VSVG virus. HEK293 cells treated with described negative controls show no expression of RFP after 
72h. Scale bar 200 µm. 

 

 

3.4.7  Influence of CD9 on LV production and amount tested by ELISA 

 

The influence of different surface proteins on the productive amount of viruses was 

examined by determining the physical titer by p24-ELISA measurement (Figure 38). When 

only CD9GFP was present on the virus surface the physical titer (TU=4.13*108±2.66) did not 

significantly change when compared to the VSVG virus (TU=3.43*108±3.24). Upon co-

expression of CD9GFP and VSVG a moderate increase of the virus amount was observed 

(TU=4.70*108±2.61). 
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Figure 38: Physical titer of tested lentiviruses measured by Elisa. LV-CD9GFP (TU=4.13*108±2.66) 
show no increased physical titer compared to VSVG virus (TU=3.43*108±3.24). If CD9 together with 
VSVG is present on viral surface a mild increase of physical titer (TU=4.70*108±2.61) was observed. 

 

 

 

3.4.8  Performance of CD9 LVs on primary cell material 

 

Three recombinant and pseudotyped LVs were tested on primary rat central nervous system 

(CNS) material (E18 Wistar rat dissociated cortex cultures, Figure 39) to exclude misleading 

cell culture artefacts of CD9 fusion. These viruses (physical titer TU = 107 viral particles) were 

added to fresh isolated neuronal rat cells and incubated for 96 hours. All three viruses led to 

expression of the transgene (RFP) on primary rat CNS primary cells. 
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Figure 39: Lentivirus function on primary rat brain culture. Lentiviruses were tested on E18 Wistar 
rat dissociated cultures. After 96h cells were fixed and stained for NeuN (green). Transduced cells 
(red) partially show neuronal shape and NeuN expression (right side) for all tested viruses. 

 

 
3.4.9  Cytoplasmic relocalization of CD9 during lentivirus production 

 

During production of LVs in HEK293FT-CD9GFP cells a change of CD9GFP localization from the 

plasma membrane towards cytoplasmic speckles was observed (Figure 40). This observation 

was made both in confocal microscopy as well as in standard fluorescence microscopy 24, 48 

and 72h after transfection with lentiviral plasmids (data not shown). With the increased 

resolution in confocal microscopy the focal CD9-containing accumulations were detected in 

the cytoplasm (speckles) as well, which was not as clearly detectable in fluorescence 

microscopy.  

To examine the putative re-localization of CD9GFP in HEK293FT-CD9GFP cells during 

production of recombinant lentivirus, cells not showing signs of virus production (no RFP 

expression), and those during LV production (detected by RFP expression) were quantified 

by manual counting. Localizations of CD9GFP was analysed by microscopy. Without virus 

production 86.5% of all cells displayed membranous localization of CD9GFP and only 13.5% 

displayed a partially cytoplasmic localization, which was visible as diffuse stain or speckles. In 

contrast to this observation, upon virus production, which was confirmed by RFP expression, 

98% of all cells exhibited cytoplasmic localization of the CD9GFP tetraspanin, while only in 2% 

of the cells CD9GFP remained in the plasma membrane. 
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Figure 40: Localization of CD9GFP in HEK293FT-CD9GFP cells. Cellular localization of CD9GFP was 
analysed by fluorescence and confocal microscopy.   Confocal pictures of lentivirus producing cells 
(red and green) and HEK293FT-CD9GFP wildtype cells (green) are depicted in (a). In addition 
fluorescence microscopy and cell quantification was performed and cellular localization of CD9 was 
analysed (b). 

 
 
Taken together we showed that raised expression of the ESCRT proteins TSG101 and 

Alix lead to an overall decrease of secreted vesicles with enlarged average sizes. In 

contrast, enhanced levels of the tetraspanin CD9 resulted in significantly increased 

numbers of extracellular vesicles with smaller and more exosome-like size that were 

secreted form four different human cell lines. Intriguingly, exosomes and their 

biogenesis route display similarities to lentivirus and we studied the impact of CD9 

expression on release and infectivity of recombinant lentiviral vectors. Although the 

titers of released particles were not increased upon production in high-CD9 cells we 

observed improved performance in terms of speed and efficiency of lentiviral gene 

delivery into numerous human cell lines including HEK293, HeLa, SHSY-5Y and also B- 

and T-lymphocytes. Furthermore, we demonstrate that enhanced CD9 enables lentiviral 

transduction in absence of any pseudotyping viral glycoprotein or fusogenic molecule. 

Our findings indicate an important role of CD9 for lentiviral vector and exosome 
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biogenesis and point out a remarkable function of this tetraspanin in membrane fusion, 

viral infectivity and exosome mediated horizontal information-transfer [138]. 

 
 
 
3.4.10  CD9 influence on exosomal small RNA content 

 

Since CD9 influenced the extracellular vesicle size and secretion, the CD9 overexpression 

effects on extracellular small RNA content of Raji cells were examined. Therefore 

extracellular vesicles of wildtype and CD9 overexpressing Raji were isolated and small RNA 

libraries were prepared. After next generation sequencing on the IonTorrent System and 

subsequent data analysis I generated heatmap, PCA plot and foldchange scatter plot with my 

own scripts in R (Figure 41). 

 

 

Figure 41: CD9 influence on exosomal miRNA content. Extracellular vesicles were isolated from 
wildtype and CD9 overexpressing Raji cells by PEG precipitation. After small RNA workflow and NGS 
sequencing heatmap (a), PCA plot (b) and foldchange scatter plot (c) were generated with DESeq 
package in R. Extracellular RNAs of wildtype and CD9 overexpressing Raji cells cluster together and 
both differ from cell samples.  Principle component analysis revealed a greater consistency of Raji 
CD9 PEG and Raji PEG compared to Raji PEG2. Small RNA candidates with log2foldchange higher than 
3 were highlighted in green (enriched in wildtype extracellular vesicles) or red (enriched in 
extracellular vesicles of CD9 overexpressing Raji). 
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The cluster analysis of all samples displayed differences between cellular and exosomal 

samples. However, the exosomal samples exhibited many parallels. Raji PEG samples 

showed high similarities with Raji CD9 PEG, whereas Raji PEG2 had a more distinct profile 

but still different compared to cellular samples. Two snoRNAs, i.e. U73a and U78, comprised 

the highest enrichment (9 fold) inside CD9 overexpressed extracellular vesicles followed by 

miR-30d-5p (6 fold), HBII-429 (5.5 fold) and miR-155-5p (4.5 fold). However, I detected four 

snoRNAs that were enriched in the PEG precipitated samples, mgU6-47 (14 fold), U24 (13.5 

fold), U58B (4.5 fold) and U61 (4.5 fold). MiR-5585-3p was ranking fifth among the 

overrepresented small RNAs with 4-fold enrichment. 

 

Table 33: Top5 overrepresented extracellular small RNA candidates of wildtype and CD9 
overexpressing B-lymphocytes 

smallRNA Log2foldchange Basemean PEG Basemean CD9 PEG 

U73a 3,18 1,81 16,38 

U78 3,18 1,81 16,38 

hsa-miR-30d-5p 2,57 12,23 72,44 

HBII-429 2,47 2,05 11,34 

hsa-miR-155-5p 2,19 29,70 135,44 

    

mgU6-47 3,81 8,85 0,63 

U24 3,75 16,99 1,26 

U58B 2,16 2,81 0,63 

U61 2,16 2,81 0,63 

hsa-miR-5585-3p 2,12 8,23 1,89 

 
 

Furthermore, I detected specific wildtype exosomal small RNA candidates, which were not 

detected in extracellular vesicles of CD9 overexpressing Raji cells. MiR-142-5p showed the 

highest expression of exclusively wildtype exosomal candidates followed by miR-1303, 

whereas the miRNAs miR-107, miR-15a-5p and miR-93-3p were only expressed on low level. 

 

Table 34: MiRNAs exclusively present in exosomes of wildtype Raji 

smallRNA Log2foldchange Basemean PEG 

hsa-miR-142-5p -Inf 8,61 

hsa-miR-1303 -Inf 1,52 

hsa-miR-107 -Inf 0,76 

hsa-miR-15a-5p -Inf 0,76 

hsa-miR-93-3p -Inf 0,76 
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3.5. Role of EVs in cell-cell communication 

 
 
3.5.1 Sequence motifs of secreted miRNAs of Jurkat and Raji  

 
Although exosomes were already described in 1987 these EVs have only been recognized as 

a potent vehicles of intercellular communication over the past couple of years [27]. Since I 

detected specific patterns of extracellular small RNAs with specific sequence motifs in four 

human cell lines and recently published studies share these observations [40]. Increasing 

evidence suggests that small RNAs are actively loaded into EVs to modify target cells. To 

clarify these findings samples of Jurkat and Raji exosome small RNA sequence motifs were 

analysed (Figure 42). 

 

 

Figure 42: Exosomal miRNAs of Raji und Jurkat and their sequence motifs. Exosomes of Raji and 
Jurkat cells were isolated by PEG precipitation and the NGS workflow for small RNA sequences was 
performed. Raw reads were aligned to mIRBase21 and sequence motifs were discovered by a motif-
based sequence analysis tool (MEME). Because of the reverse transcription step during library 
syntheses DNA motifs were presented (T=U). Raji and Jurkat cells show high similarities to the 
discovered motifs (a). Some exosomal miRNAs discovered in Raji and Jurkat exosomes carry the 
observed motif, whereas miRNAs without this sequence (miR-15a-3p and miR-186-5p) were 
discovered too (b). 

 

 
Sequence motifs of extracellular miRNAs showed high similarities in both studied cell lines. 

Nevertheless not all miRNAs found in extracellular vesicles contained this sequence motif, 

for example miR-15a-3p and miR-186-5p. However miR-148a-3p contains the motif twice.   
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3.5.2 Cell-cell communication between Raji and Jurkat cells 

 

In order to analyse the influence of EVs on the intracellular Raji miRNA content we treated 

Raji cells with Jurkat supernatant (including exosomes) and performed a comparative 

analysis via next generation sequencing. Therefor we analysed three biological replicas of 

untreated Raji cells and compared the small RNA content with two biological replicas of 

exosome treated Raji cells (Figure 43).  

 
 

 

Figure 43: Co-cultivation of Raji cells with Jurkat cell culture supernatant and the resulting change 
of intracellular miRNA composition. Raji cells were co-cultures with Jurkat cell culture supernatant 
and small RNA was sequenced by NGS. Data was trimmed, aligned and analysed by DESeq package 
in R. Heatmap shows clustering of treated sample compared to wildtype Raji cells. Five top 
overrepresented (green) and underrepresented red) miRNAs after Jurkat SN treatment were 
highlighted in a Log2 foldchange plot.  

 
 
 
Cluster analysis revealed a different pattern of miRNAs in treated Raji cells compared to the 

wildtype. Foldchange calculation showed that miR-19b-1-5p was overrepresented after 
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treatment with Jurkat supernatant together with miR-320a, miR-766-3p, miR-1307-5p and 

miR-193-3p (Table 35). However, candidates with decreased abundance were observed too, 

e.g. miR-106a-5p, miR-182-5p, miR-27b-3p, miR-9-3p and miR-146b-5p.  

 
 

Table 35: Increased and decreased miRNA candidates after Jurkat exosome treatment 

miRNA Basemean Raji WT Basemean Raji treated Fold change 

hsa-miR-19b-1-5p 15,79 48,15 0,335 

hsa-miR-320a 20,09 57,04 0,35 

hsa-miR-766-3p 18,66 51,69 0,36 

hsa-miR-1307-5p 37,33 102,10 0,36 

hsa-miR-193b-3p 66,02 171,01 0,38 
 

miRNA Basemean Raji WT Basemean Raji treated Fold change 

hsa-miR-106a-5p 66,02 2,33 28,25 

hsa-miR-182-5p 14,35 1,68 8,54 

hsa-miR-27b-3p 20,09 2,63 7,64 

hsa-miR-9-3p 15,78 3,50 4,50 

hsa-miR-146b-5p 97,60 32,88 2,96 

 
 
 
 
After the comparative analysis between exosome treated and untreated Raji cells we picked 

five miRNA candidates, carrying the exosomal secretion motif (Figure 42 and table 36). All 

candidates were high abundant in Jurkat exosomes and increased (miR-21-5p and miR-19b-

3p) or unaffected (miR-15a-5p, miR-148a-3p) by exosome treatment insight Raji cells. For 

miR-451a no intracellular expression, neither in wildtype Raji cells nor in exosome treated 

cells, was detected. All miRNA candidates are listed in table 36. 
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Table 36: High represented miRNAs in Jurkat exosomes and change in Raji cells upon treatment 
with Jurkat exosomes 

miRNA Basemean Raji WT Basemean Raji treated Fold change Jurkat exosome 

hsa-miR-21-5p 2428.55 4419.44 0,55 608,52 

hsa-miR-19b-3p 3423.23 4790.87 0,71 2250,99 

hsa-miR-15a-5p 241.13 210,33 1.146 153,48 

hsa-miR-148a-3p 134.92 121,93 1.147 395.81 

hsa-miR-451a - - - 651.60 

 
 
 
 
Further experiments focussed on high abundant exosomal miRNAs carrying the exosomal 

secretion motif and to investigate the putative cell-cell communication between Raji and 

Jurkat cells. For these miRNA candidates I performed an in silico analysis by checking the 

current literature and using and miRNA target database “miRTarBase” (Table 37).  

 

Table 37: In silico analysis of miRNA targets 

miRNA In silico analysis of regulated genes miRNA Databases (miRTarBase) 

hsa-miR-15a-5p Bcl-2[139] BCL-2 

hsa-miR-19b-3p Bcl-2 [140] DNMT1 

hsa-miR-21-5p DNMT1 [141] BCL-2 

hsa-miR-148a-3p DNMT1 [142], Bcl-2 [143] DNMT1, BCL-2 

hsa-miR-451a  BCL-2 

 

The miRNA target database revealed for all identified miRNA candidates B-cell lymphoma 2 

(BCL-2) and/or DNA methyltransferase 1 (DNMT1) as common target genes. This observation 

was confirmed by several recent publications [139-143]. 

In the next experiment I cultivated Raji cells and treated them with Raji or Jurkat exosomes 

(isolated by PEG precipitation). Afterwards the expression of DNMT1 and BCL2 was tested 

via quantitative PCR analysis (Figure 44). 
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Figure 44: QPCR analysis of BCL2 and DNMT1 in Raji cells. Raji cells were treated with Jurkat or Raji 
exosomes and and gene expression of BCL2 and DNMT1 was analyzed after 0h, 24h and 48h. For 
BCL2 no change in gene expression was observed after 0h. After one day the gene expression of BCL2 
was non significant increased by Raji exosomes, while a treatment with Jurkat exosomes showed a 
significant increase on mRNA level. After 48h no change in gene expression by Raji exosomes was 
observed, whereas Jurkat exosomes lead to a significant increase in gene expression. For DNMT1 no 
significant change compared to wildtype Rajis was observed with any treatment. After 24h a 
significant reduction of DNMT1 gene expression was detected by Jurkat exosomes, however this 
effect dissappeared after 48h.  

 
 
 

Immediately after adding the exosomes to Raji cells no effect on gene expression of BCL2 

and DNMT1 was detected. After 24 h the BCL2 expression was 51% increased upon 

treatment with Jurkat exosomes, while Raji exosomes show no effect. 48 h post treatment 

the effects remains stable, we observed a 35 % increase of Bcl-2 expression upon Jurkat 

exosome treatment (p<0.05).  

In contrast I observed a 15 % reduction (p<0.05) of DNMT1 after 24h upon treatment with 

Jurkat exosomes, whereas Raji exosomes lead to no effect. 48 h post treatment with Jurkat 

exosomes no change in gene expression was observed. 

In summary I analysed exosomal miRNAs of Raji and Jurkat and selected candidates by their 

sequence motif and expression change in Raji cells after treatment with Jurkat exosomes. In 

an in silico analysis I discovered two target genes and analysed their expression after 

treatment with extracellular vesicles of Raji or Jurkat cells, where I observed an significant 

decrease of DNMT1 expression upon Jurkat EV treatment and a significant increase of BCL2 

expression due to treatment with Jurkat exosomes. 
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3.5.3 Cell-cell communication analysis by a novel dual reporter gene toolbox 

 

After candidate selection and gene expression analysis small effects on gene expression of 

BCL2 and DNMT1 were observed (see 3.5.2). A key role for exosomes is postulated for 

intracellular communication, however the exact mechanisms remain elusive. In order to 

analyse putative cell-cell communication on a single cell level, I used a novel reporter gene 

toolbox [144]. This reporter gen assay is based a construct with two different fluorescence 

proteins, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). While CFP 

carries a complete complementary miRNA sequence at the 3´UTR region, YFP is unaffected 

and is not influenced by miRNAs. CFP and YFP intensities of each cell were measured 48 h 

post treatment by flow cytometry. We designed “non cognate” controls to test the 

unaffected expression of both proteins inside HEK293 cells. In Figure 45a a proportional 

increase of YFP and CFP was detected for this control. Using constructs with a miRNA target 

site (e.g. miR-23a-3p or miR-27a-3p) inserted into the 3´UTR region of CFP a reduction of 

CFP/YFP ratio was observed (Figure 45 a/b), indicating a miRNA binding and translational 

repression of CFP.  The reduction of CFP expression is more pronounced for the miR-27a-3p 

construct, reflecting the observed effects after luciferase assay analysis (data not shown). 

 

Figure 45: Principle of the dual fluorescence reporter gene toolbox and miRNA characterization.  
Two different flourescent proteins (CFP and YFP) were expressed from one plasmid under two 
different promoters (a). Furthermore, CFP contains a perfect target region for a miRNA whithin its 
3´UTR region. HEK293 cells were transfected with the plasmid-miRNA target combination and 
fluorescence intensity was evaluated after 72 h. A non-cognate control, miR.23a-3p and miR-27a-3p 
were studied. The CFP/YFP ratio was reduced for miR-23a-3p and miR-27a-3p but remains for the 
negative control plasmid (b), indicating a miRNA binding follwed by transcriptional repression of CFP 
for miR-23 and miR-27. CFP respression was more pronounced fir miR-27a, reflecting the results 
obtained by luciferase assays (data not shown). 
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For the following experiments I used two controls with non-human complementary miRNA 

sequence sites.  Both controls show a proportional increase of YFP and CFP, even after 

treatment with Jurkat or Raji exosomes (Figure 46). MiRNAs show no effect on CFP 

expression, confirming the complementary non-human miRNA sequence sites. For every 

performed experiment I used at least two controls to confirm the reliability of the reporter 

gene assay. 

 

 

Figure 46: Non cognate controls for dual reporter gene assay. Two negative controls containing a 
non human miRNA target side were used. Transfected HEK293 were directly used for FACS analysis 
or further treated with Jurkat, Jurkat-CD9, Raji or Raji-CD9 exosomes. All samples show a linear 
behaviour, indicating a constant expression of both proteins without any miRNA influence. 

 
For candidate miRNAs, which were selected in accordance to their high abundance in 

exosomes (i.e. miR-451a miR-148a-3p), no effects on CFP expression was detected. 

Furthermore, I tested a third non cognate control (GL-2), which also showed a proportional 

behaviour of CFP and YFP expression. To elucidate an uptake of exosomes we performed an 

exosome treatment and analysed the CFP and YFP expression. All candidates showed a linear 

YFP/CFP expression indicating no influence of exosomal treatment on the intracellular 

miRNA content (Figure 47). 
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Figure 47: Functional characterization of miR-451a, miR-148a-3p and GL-2. MiRNA target sites were 
inserted in the 3´UTR site of CFP and transfected into HEK293 cells. Cells were treated with exosomes 
and fluorescence intensitues were analysed by flow cytometry. No change in YFP/CFP ratio was 
observed for the tested candidates and treatment with Raji or Jurkat exosomes show no effect. 

 

 

 

Besides miR-451a and miR-148a-3p I tested a construct containing the complementary 

sequence of miR-15a-5p (Figure 48). A non-cognate control (black) was used to identify 

efficient and successful transfection. The used construct lead to a CFP reduction in untreated 

HEK293 cells, indicating miRNA binding to the complementary miRNA sequence. To analyse 

an exosomal uptake HEK293 cells were treated with Raji and Jurkat exosomes and CFP and 

YFP expression was compared to untreated cells. None of the exosome treatments led to a 

reduction of CFP expression, indicating no exosomal uptake and miRNA release insight 

HEK293 cells. 



3. Results 

90 
 

 

Figure 48: Functional characterization of miR-15a-5p and influence of exosome treatment. MiR-
15a-5p target site was inserted into 3´UTR site of CFP and construct was transfected into HE293 cells. 
Non-cognate control (black) showed proportional YFP/CFP ratio indicating a succesfull transfection. 
CFP/YFP ratio was reduced for miR-15a-5p target site (blue), indicating miRNA binding to the full 
complementary miRNA sequence at the 3´UTR of CFP. To analyze a putative exosome uptake cells 
were treated with Raji or Jurkat exosomes (red). All treatments lead to a comparable reduction 
compared to wildtype cells, indicating no exosomal uptake and miRNA release. 

 
 

 

For a miR-21-5p construct stronger silencing effects on CFP expression (blue) compared to 

the miR-15a-5p construct were observed (Figure 49). Non cognate control was used for 

identification of efficient and successful transfection. Treatment with Jurkat or Raji 

exosomes (red) lead to no further reduction of CFP expression, indicating no efficient 

exosomal uptake and miRNA release. 
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Figure 49: Functional characterization of miR-21-5p and influence of exosome treatment. MiR-21-
5p target site was inserted into 3´UTR site of CFP and construct was transfected into HE293 cells. 
Non-cognate control (black) showed proportional YFP/CFP ratio indicating a succesfull transfection. 
Strong reducing effects on CFP/YFP ratio compared to non cognate control was observed for the miR-
21-5p construct, indicating an efficient miRNA binding to the complementary miR-21-5p sequence. 
To confirm an exosomal uptake and miRNA release HEK293 cells were treated with Jurkat and Raji 
exosomes. No exosome treatment led to an increased CFP reduction, indicating no exosomal uptake 
and mIRNA release in HEK293 cells. 

 

 
Eventually I tested the functionality of miR-19b-3p in HEK293 cells and the influence of 

exosome from B- and T-lymphocytes (Figure 50). MiR-19b-3p showed a weaker silencing 

functionality compared to miR-21-5p but acted stronger compared to miR-15a-5p. Upon 

exosome treatment the functionality was slightly increased in low fluorescent cells (log YFP 

between 2 and 4). CFP fluorescence was reduced for a minor extend all tested exosome 

treatments, indicating a functional transfer of exosomes, successful release and functionality 

of miR-21-5p. 
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Figure 50: Functional characterization of miR-19b-3p and influence of exosome treatment. MiR-
19b-3p target site was inserted into 3´UTR site of CFP and construct was transfected into HE293 cells. 
Non-cognate control (black) showed proportional YFP/CFP ratio indicating a succesfull transfection. 
MiR-19b-3p led to a strong reduction of CFP, indicating a miRNA binding to the complementary 
region in HEK293. Exosome treatment show small effects on CFP expression, CFP showed a stronger 
downregulation between log2 and log4 YFP expression for all exosome treatments. 

 

In order to use the reporter gene system with a non-endogenous miRNA I designed a 

construct containing a GL-2 target sequence in the 3´region of CFP. GL-2 contains a secretion 

motif (Figure 51) and should theoretically be exported into exosomes.  

 

 

Figure 51: Exosomal secretion motif and comparison to GL-2 siRNA sequence. The secretion motif  
of own generated next generation sequencing data of 4 human cell lines was analyzed by DESeq 
package in R in combination with the online motif tool MEME (a). GL-2 siRNA contains 3 of 4 
nucleotides of the secretion motif (b). The second nucleotide differs from the secretion motif, 
nevertheless this nucleotide is highly variable. 
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HEK293 FT CD9 cells were transduced with a GL-2 siRNA and the supernatant including the 

exosomes was transferred to HEK293 wildtype cells. After transfection of the control 

plasmid or GL-2 plasmid the influence on CFP expression was analysed by flow cytometry 

(Figure 52). 

 

 

Figure 52: Functional characterization of non-endogenous GL-2 transferred by lipofection or 
extracellular vesicles. HEK FT CD9 cells were transfected with GL-2 siRNA and supernatant was 
transferred 48h post transfection to HEK293 wildtype cells. The functionality of GL-2 was analyzed by 
flow cytometry. The negative control showed no influence upon exosome treatment, while analyzing 
the GL-2 construct a reduction of the CFP signal was observed after exosome treatment. As a positive 
control a cotransfection with GL-2 construct and GL-2 siRNA was performed and reduction of CFP 
expressions was observed. Comparing the GL-2 cotransfection and GL-2 exosome treatment stronger 
effects were seen at lower fluorescence intensities (log YFP between 2 and 4) in the cotransfection, 
while at higher fluorescence intensities the effect appeared stronger for the exosome treatment. 

 
 
The control plasmid with a non-human miRNA target sequence at the 3´end of CFP exhibited 

a linear behavior for CFP and YFP expression which also remained unaffected by treatment 

with GL-2 loaded exosomes. As a positive control I used a construct with a GL-2 target 

sequence at the 3´end of CFP. Using this control a linear behavior of CFP and YFP expression 



3. Results 

94 
 

was observed in HEK293 wildtype cells. However after exosome treatment a reduction of 

CFP expression was observed, indicating an uptake of GL-2 loaded exosomes and activity of  

the transferred GL-2 siRNA inside the cell and the corresponding inhibition of CFP 

expression. As a positive control I used a cotransfection of GL-2 siRNA and GL-2 sensor 

construct. Similar effects compared to the exosome treatment were observed. Nevertheless 

the GL2 cotransfection showed stronger target repression at low fluorescence intensities 

(log YFP 2-4), while a stronger effect at high fluorescence intensities (log YFP > 4) was 

observed for the exosome treatment. 

Nevertheless free Lipofectamine complexes or free-floating siRNAs can influence the 

obtained results. To check the effect of free siRNAs and Lipofectamine I transfected HEKFT-

CD9 and HEKFT wildtype cells with GL-2 siRNA by lipofection. The supernatant of transfected 

cells was harvested 48h post transfection and was used as a positive control due the effects 

observed before (Figure 52). Additionally cells were washed 6h post transfection to remove 

residual Lipofectamine complexes and siRNAs and supernatant was harvested after 48h to 

allow exosome production. As controls HEKFT-CD9 and wildtype cells were treated with GL-2 

siRNAs without Lipofectamine to analyze the effect of free siRNAs. Additionally we used 

Lipofectamine complexes, which were cocultivated for 48h with GL-2 siRNAs at 37 °C in cell 

free media. All supernatants were transferred to HEK293, which were incubated for 30 min 

and afterwards transfected with desired constructs for functional analysis (Control-1a and 

GL-2). All controls, except of cell free Lipofectamine with siRNA, showed no effects on CFP 

expression in flow cytometry analysis after 48h incubation.  Cell-free Lipfectamine had toxic 

effects on HEK293 cells, leading to a small reduction of CFP expression at high fluorescence 

intensities (logYFP>6). GL2-loaded exosomes led to CFP reduction in HEK293 target cells. This 

effect was less pronounced, when cells were washed 6 h after GL-2 transfection to remove 

free-floating siRNAs and Lipofectamine complexes (Figure 53). However, the observed 

effects were less dominant compared to the experiment before, where we observed 

stronger CFP repression.  
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Figure 53: Functional characterization of non-endogenous GL-2 transferred by CD9 or WT 
exosomes. HEKFT-CD9 or wildtype cells were transfected with GL-2 siRNA and supernatant was 
collected after 48 h. Additionally, to avoid contaminations of free siRNA and Lipofectamine 
complexes, cells were washed 6h after transfection and exosomes were collected 54h post 
transfection. Supernatant was transferred to HEK293 and incubated for 30 min. Constructs for 
control siRNA (Control_1a) and GL-2 were transfected into HEK293 and functionality was analyzed 
48h post transfection by flow cytometry. Supernatant of HEK FT cells treated with GL-2 siRNA 
without Lipofectamine (red and blue) show a control like behavior in FACS analysis (A). Cells treated 
with cell free Lipofectamine and siRNA, which were incubated for 48h at 37 °C, showed toxic effects 
and low reduction of CFP at high intensities (logYFP>5). For cells treated with GL-2 supernatant of 
washed CD9 and WT cells reduced intensities of CFP were detected. If unwashed supernatant was 
used this effect was even increased and reflects the results gained before (Figure 52). 

 

In summary we detected several upregulated miRNAs in Raji cells treated with Jurkat 

supernatant by NGS sequencing, which were also present in Jurkat exosomes. In silico 

analysis revealed two targets for these miRNA candidates, DNMT1 and BCL-2. Raji cells 

treated with PEG precipitated exosomes showed significant reduction of DNMT1 detected 

by qPCR studies. Furthermore, I verified the cell-cell communication between HEKFT and 

HEK293 cells via our own generated UTA system. We demonstrate a transfer of GL-2 loaded 

vesicles and confirmed the functionality of a non-human siRNA inside HEK293 cells, which 

opens new insights into the role of exosomes in cell-cell communication. 
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3.6  Manipulation of human B-lymphocytes and in vivo studies 

 

3.6.1  Transduction of human B-lymphocytes via virus-like particles (VLPs) 

 
Since suspension cells are hard to transfect with commercial kits I used JC polyomavirus 

derived virus-like particles, which were produced and purified in our lab. This tool was 

chosen, because JCV is known to infect human B-lymphocytes [145]. Furthermore, VLPs have 

been defined as suitable tool for delivery of genetic material like siRNAs or shRNAs in cell 

culture as well as in vivo [110, 146-150].  

In order to test virus-like particles on human B-lymphocytes (Raji) we used a GFP expression 

cassette containing a CAG-promoter and GFP as GOI with a SV40 poly-A signal. This cassette 

was loaded into VLPs, added to Raji cells and GFP expression as analysed 72 h post 

transduction (Figure 54).  

 

Figure 54: CAG-GFP expression cassette supply into B-lymphocytes via VLP transduction. The 
linearized expression cassette was obtained by amplification from the pAAV-CAG-GFP plasmid and 
contains a CAG promoter as well as a SV40 poly-A signal. This cassette was loaded into virus like 
particles to transduce Raji cells. GFP expression was observed 72h post transduction via fluorescence 
microscopy(b, scale bar 200 µm, exposure time 1 sec). or flow cytometry (c). FACS analysis revealed 
30 % GFP positive cells. 
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After 72h green fluorescence was detected by fluorescence microscopy. Approximately 50% 

of all cells showed green fluorescence, while the intensities varied among the cell population 

To quantify the transduction efficiency we performed FACS analysis, which revealed 30 % of 

positive transduced Raji cells. 

 

3.6.2  Tracking of miR-451a inside human B-lymphocytes via NanoGold particles 

 

After successful transduction of human B-lymphocytes I designed a thiol and Cy3 modified 

miR-451a sequence. Thiol groups were covalently attached to NanoGold particles, which 

allow a saturation of the NanoGold particle surface with the designed miRNAs. Since I 

detected miR-451a mainly in exosomes of four human cell lines I selected this miRNA             

(sequence and modifications in Table 38), covalently attached it to NanoGold particles, 

transduced them into human B-lymphocytes and tracked the NanoGold particle inside the 

cell via electron microscopy (Figure 55). Because of the high electron density of NanoGold 

spherical particles electron microscopy is the preferable method to analyse these particles 

[151, 152]. 

 

Figure 55: Delivery of NanoGold particles via virus-like particles into human B-lymphocytes (Raji). 
Thiol- and Cy3- modified miR-451a was coupled to NanoGold particles and loaded into VLPs to 
transduce human B-cells (a). Raji cells were prepared for electron microscopy by negative staining. 
Due to the high electron density NanoGold particles appear as dark spots in EM images. Wildtype 
cells showed no dark spots, while NanoGold-VLP treated cells contained locally dark spots inside the 
cytoplasm (white arrows) or inside intraluminal vesicles (dark arrows) (b).  
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Electron microscopy demonstrated a successful transduction of Raji cells with NanoGold 

loaded VLPs. VLP treated cells show locally dark accumulations of NanoGold particles which 

are not visible in untreated cells (Figure 55 b). Furthermore, miR-451a coupled particles 

were visible inside the cytoplasm (white arrows), while a large proportion was visible inside 

intraluminal vesicles (black arrows) with a diameter around 500 nm. Many dark 

accumulations were visible inside the nucleus, too. 

 

Table 38: Sequence and modification of miR-451a 

MiRNA Sequence and modifications 

MiR-451a 5'- Thiol-aug cgg aaa ccg uua cca uua cug agu uu -Cy3 -3' 

 

 

3.6.3  Studying cell-cell communication between Raji and SW837 

 

After successful transduction of Raji cells with DNA expression constructs and miRNA 

modified NanoGold particles I transduced these cells with a Cy3-modified non-cognate siRNA 

containing the Raji secretion motif, which was detected by analysis of small RNA sequence 

data (compare Figure 22). The aim was to study the cell-cell communication between human 

B-lymphocytes and human colorectal carcinoma cells SW837 [153]. Raji cells were 

transduced with Cy3-modified RNA and after washing and centrifugation steps co-cultivated 

with SW837 cells. Since the Cy3-modified siRNA contained a secretion motif for Raji cells a 

transfer of this siRNA by extracellular vesicles was studied (Figure 56). 

 

 

 

Figure 56: Raji secretion motif and comparison to Cy3 siRNA sequence. Raji secretion motif of own 
generated next generation sequencing data was analyzed by DESeq package in R in combination with 
the online motif tool MEME. The Cy3 siRNA sequence shows the secretion motif at the 5´end 
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Figure 57: Analysis of cell-cell communication between Rajhi and SW837 cells. Cy3-modified siRNAs 
were delivered via virus like particles into Raji cells. After 24h Raji cells show red fluorescence due to 
the Cy3-modified sirna (b). Subsequently cells were washed and transferred into transwells for 
cocultivation with SW837 (a). Fluorescence microscopy was performed after 48h to detect positive 
cell-cell communication via EVs between Raji and SW837 cells. Indeed most of SW837 showed red 
fluorescence with local accumulations inside the cytoplasm, indicating a positive transfer of Cy3-
labelled siRNA via EVs (b). 

 

 

Raji cells showed red fluorescence 24 h post transduction with Cy3-modified siRNA loaded 

VLPs, indicating positive transduction by virus-like particles (Figure 57).  Furthermore, I 

detected red fluorescent SW837 cells after 48 h co-cultivation, presuming an intracellular 

transport of this modified siRNA, carrying the secretion motif of Raji cells, by extracellular 

vesicles. 
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3.6.4 In vivo siRNA delivery by virus-like particles (VLPs) 

 
Because of the recent research on exosomes as biomarkers and the in vivo use of modified 

exosomes in clinical use its getting more important to modify cells and their released 

vesicles in vivo [154, 155]. However, all in vivo studies facing the same issue, the delivery of 

the desired cargo and off target effects. To tackle these issues we used virus-like particles as 

a gene delivery vehicle to study and modify RANKL expression level during osteoporosis in a 

rat model. Virus-like particles enter cells through binding of specific glycolipids and 

glycoproteins. Furthermore, a specific interaction with serotonin receptors HTR2a                    

(5-hydroxytryptamine receptor 2a) is needed. Due to the high expression of HTR2a in 

cultured osteoblasts as well as in rat tibiae (data not shown) we selected this model system 

to perform first in vivo tests of virus like particles. Therefor virus-like particles were loaded in 

vitro with siRNAs against RANKL by disassembling and reassociation in the presence of the 

desired nucleic acid. Different amounts of virus-like particles were intraperitoneal injected 

into female Sprague-Dawley rats and RANKL expression was analysed by qPCR (Figure 58). 

Beta-2-microglobulin served as housekeeping gene for normalization of RANKL levels by 

ΔΔCT-method. Two animals were used for every treatment, except for the injection of 

105 µg siRANKL-VLPs, where we used five animals. 

 

For the first in vivo test of siRNA loaded virus-like particles we chose three different doses of 

siRNA loaded virus like particles summarized in table 39. 

 

Table 39: Three different doses of siRNA loaded virus-like particles. 

Dose Virus like particles amount siRNA amount Ratio (VLP/siRNA) 

Low 40 µg 3 µg 1:13.3 

Medium 105 µg 7.8 µg 1:13.4 

High 150 µg 11.2 µg 1:13.4 

 

To compare the different treatments the VLP/siRNA ratio was kept constant.   
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Figure 58: In vivo siRNA delivery against RANKL in rat tibiae via virus-like particles. VLPs were 
intraperitoneal injected into female Sprague-Dawley rats and tibiae was removed 72 h post 
transduction. After total RNA isolation and qPCR analysis no significant changes on RANKL mRNA 
level were observed due to control treatment (NaCl injection and VLP + control siRNA injection). 
Furthermore, low doses of VLPs show no significant silencing effects. Nevertheless injecting 105 µg of 
VLPs resulted in 18% knockdown of RANKL mRNA without reaching significance (p=0.08). Trongest 
effects were observed using 150 µg of VLPs, reaching a knockdown of 40% (p=0.008). 

 

No significant silencing effects were observed for the control setup, meaning animals 

injected with NaCl or 120 µg of control siRNA (siControl) loaded VLPs. This control siRNA was 

designed to not target any known rat gene and is used to distinguish sequence-specific 

silencing from non-specific effects caused by the treatment. Furthermore, we observed no 

silencing effects for 40 µg VLPs loaded with siRANKL. Nevertheless injections of 105 µg and 

150 µg siRANKL-VLPs reduced the RANKL mRNA by 18% respectively 40 %, while treatment 

with 150 µg VLPs reached significance (b). Therefore this condition was used for further 

experiments. Because of the high fluctuations in the RANKL mRNA level in all treatment 

groups we increased the number of treated animals. Animals were treated with NaCl, 150 µg 

VLP-siControl and 150 µg VLP-siRANKL (10 animals each). Rats were euthanized after three 
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days and tibia was extracted for qPCR analysis. We observed 40 % reduction of endogenous 

RANKL expression on mRNA level with P<0.001. Control animals showed no significant 

change upon treatment with NaCl or VLP-siControl. 

Summarizing we reduced the endogenous RANKL mRNA level by injecting RANKL specific 

siRNAs using virus-like particles as a delivery system. 

 

 

4. Discussion 

 

In the following paragraph I want to summarize the results of this work: 

In this thesis I was able to isolate extracellular vesicles of four human cell lines by three 

different isolation techniques (chapter 4.1). The small RNA content of EVs from four cell lines 

was detected by next generation sequencing and analysed by own generated scripts by the 

open source R-software. Sequence motif analysis revealed cellular retention and secretion 

motifs for miRNAs as well as distinct miRNA patterns for all cell lines (chapter 4.2). 

Comparison of EVS isolated by the UC-protocol and PEG precipitation revealed no difference 

in small RNA content (chapter 4.3). Through generation of LVs a role in vesicle fusion was 

discovered for CD9. Furthermore, CD9 overexpression raises the transduction efficiency of 

generated LV constructs. An increased EV production was detected for CD9 overexpressing 

cell lines. However the extracellular small RNA content was not changed upon CD9 

overexpression (chapter 4.4). Moreover, I was able to detect a cell-cell communication 

between several cell lines by qPCR analysis, fluorescent labelled siRNAs and our own 

generated reporter gene construct (chapter 4.5). With our VLP technology we were able to 

adapt the in vitro manipulation of cells by small RNAs to an in vivo rat model, which opens 

new perspectives for future exosome analysis and manipulation thereof (chapter 4.6). More 

details are provided in the indicated paragraphs. 

 

4.1  Comparison of exosome isolation techniques 

 

In the last decade extracellular vesicles, in particular exosomes, have gained interest 

because of their potential application in gene therapy diagnosis and prognosis of diseases. 

However, no common isolation technique for extracellular vesicle, which can be performed 
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fast and yields high amounts of pure exosomes, is established and accepted so far. To study 

exosomes for clinical purpose, e.g. diagnosis of cancers, a fast, easy and efficient isolation 

method is necessary. In our screening we include three different isolation techniques 

(Figure 9) and analysed the size distribution, amount and purity of extracellular vesicles. All 

cell lines were cultured in exosome free FCS (100.000 xg for 16 h) to avoid contamination of 

bovine vesicles [156]. Polyethylene glycol is often used for enveloped virus purification and 

concentration [157, 158]. Since exosomes share size properties of enveloped viruses, i.e. 

lentiviruses, I choose PEG precipitation to compare with common ultracentrifugation 

protocols. Furthermore, commercially available exosome isolation kits like ExoQuick (System 

Bioscience, CA, USA) or “Total Exosome Isolation” (Life Technologies, MA, USA) use this 

precipitation technique. PEG Precipitation is, when compared to the two tested 

ultracentrifugation protocols, faster and easier to perform; a hands on time of less than 

30 min is needed. In total the process of PEG precipitation requires only 75 min including 

centrifugation time, which is compared to ultracentrifugation techniques, because of the 

more laborious procedure (ultracentrifugation steps, compensate weights etc.), much faster.  

In NTA analysis PEG precipitated vesicles displayed higher mean sizes compared to 

ultracentrifugation techniques (Figure 10). PEG is a polymer, which displays water and 

increases the local protein concentration until precipitation. Since the NTA cannot 

distinguish between 200 nm vesicles and two 100 nm particles sticking together this results 

have to be evaluated carefully. For the four tested cell lines I observed a size distribution 

between 156.2 – 174.5 nm. This size distribution reflects the current literature, where 

vesicles between 50-250 nm were observed after PEG precipitation [58, 159]. In HEK293 no 

differences in mean sizes between the tested isolation techniques were observed. Probably 

the microvesicle amount differs from other cell lines and not all microvesicles were removed 

during the purification steps.  

Furthermore, I performed a comparative analysis regarding the yield of extracellular vesicles. 

Increased yield per input values were observes for the PEG precipitation protocol, while the 

two ultracentrifugation techniques show similar yields. PEG precipitation requires less input 

material and yields more particles compared to the ultracentrifugation techniques. Thus this 

technique is suitable for extracellular vesicle isolation for limited material e.g. in clinical 

approaches. However, after PEG precipitation many vesicles with sizes of microvesicles were 
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detected, suggesting a mixed population of exosomes and microvesicles, while microvesicles 

were less abundant in samples from both UC-protocols [32]. 

To further elucidate the presence of exosomes and their purity I checked for exosomal 

marker proteins via western blot analysis (Figure 11). For all isolation techniques a positive 

Alix signal was observed, while Alix was at the same protein concentration not detectable 

inside the cell. After increasing the protein concentration from 10 to 20 µg total protein 

concentration Alix was detectable in cell extracts (data not shown). Alix is a component of 

the ESCRT machinery and a well characterized exosome marker protein [160-162]. Besides 

Alix I studied the two tetraspanins CD9 and CD63. Both proteins have been described as 

exosomal marker proteins and are often used to detect or identify exosomes. Escola et al. 

showed in 1998 a seven fold enrichment of CD63 in exosomes compared to cellular extracts 

[163]. Nevertheless tetraspanins are also expressed on the plasma membrane and therefor 

these proteins are also detectable in microvesicle fractions [164]. This fact was confirmed by 

our comparative protein analysis via western blot. CD63 was detected intracellular, in 

microvesicles and in exosomes with a molecular weight of 60 kDa. In contrast CD9 displayed 

a shift from 20 kDa (intracellular) to 60 kDa in microvesicles and exosomes. Both signals, for 

CD9 and CD63, were detected at higher molecular weight compared to their expected size. 

CD63 and also CD9 are known to be posttranscriptional modified by glycosylation, lipidation 

or palmitoylation [165]. Furthermore, traces of membrane fragments influence the 

migration in PAGE and inturn increase the size visualized by western blotting. 

Posttranscriptional modified CD63 was observed by other workgroups too [58], for instance 

Gallo et al reported a signal around 60 kDa for CD63 [166]. To overcome this issue a TCA 

precipitation and several wash steps to remove membrane fragments will be a suitable 

approach [167].  

In addition we confirmed successful EV isolation by electron microscopy (Figure 12). All 

isolation techniques showed vesicle in the expected size range of 30 – 100 nm. Nevertheless 

bigger vesicles (>100 nm) were observed in PEG precipitated samples which is also described 

in literature [58]. No difference in vesicle size was obtained for the two ultracentrifugation 

techniques, in both samples vesicles between 30 – 100 nm were observed. Ultracentrifuged 

exosomes were also reported to have diameters between 50-100 nm by several groups, 

matching our observations [57, 166]. 
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Taken together I performed a comparative analysis of three different exosome isolations 

techniques yielding different size profiles and yields, while PEG precipitation contains to 

some extent larger vesicles but also increased amounts of EVs. All isolation techniques 

showed presence of exosomal marker proteins like CD9, CD63 and Alix and existence of 

vesicles with exosomal size in electron microscopy. 

 

 

4.2  Cellular and extracellular small RNA profiles of four human cell lines 

 

After confirming successful exosome isolation by detecting size profiles of EVs, exosomal 

protein marker and visualization in electron microscopy I compared exosomal and cellular 

small RNA profiles of four human cell lines by next generation sequencing. Therefor total 

RNA was directly isolated from PEG precipitated exosomes or from cell pellets. Analysis of 

extracted RNA was performed on BioAnalyzer System to detect size, purity and amount of 

isolated RNA (Figure 13). Cellular RNA shows two main peaks at 2000 and 4000 nucleotides, 

representing the 18S and 28S ribosomal RNA. The ratio of the integral of both peaks leads to 

the RNA Integrity Number (RIN) number, which reveals the quality of isolated RNA. RNA is 

rapidly degraded in presence of ubiquitous RNase enzymes. No degradation occurred at RIN 

of 10, whereas the RNA is completely degraded at RIN=1 [168, 169]. For total RNA samples 

RIN values above 9 were accepted for NGS. Since the main proportion of intracellular RNA is 

composed of ribosomal RNA [169] a purification step was performed for cellular RNA 

samples to remove rRNA and increase the amount of small RNAs. Nevertheless the 

BioAnalyzer system combined with the RNA Pico chip is not capable of recognizing small 

RNAs like miRNAs with a size of 21-23 nt, since the range of detectable RNAs is limited from 

25-5000 nucleotides. At this point we can´t evaluate the presence or purification of miRNAs. 

For exosomal RNA only low amounts of 18S and 28S ribosomal RNA were detected and the 

small RNA content (25-200 nt) was higher compared to cellular samples. Due to the absence 

of rRNA and the high amount of small RNAs the small RNA purification was skipped. Same 

distributions of cellular RNAs and small RNAs of PEG precipitated exosomes were described 

before [157], indicating a successful workflow.  

After RNA isolation the next generation sequencing workflow was performed as described in 

Figure 14.  For Raji intracellular and exosomal triplicates were analysed and unique miRNA 
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patterns were observed (Figure 15). Cellular triplicates showed high similarities in 

hierarchical clustering, even though differences in sequence depth and mean sequence 

length were detected (229.203 reads and 18 bp mean read length for the lowest and 

1.328.741 reads and 30 bp mean read length for the deepest sequenced library), concluding 

an efficient and reproducible sequencing workflow. Close clustering was also observed for 

exosomal samples, however bigger differences in hierarchical clustering were detected for 

the third exosomal library (Raji exo3). Raji exo3 had 266.501 total reads, 5.6 times less 

compared to Raji exo1 (1.489.896 reads). Mean read length was consistent for all three 

replicates (between 22 - 30 bp). SnoRNAs showed in general low abundance inside 

exosomes. All candidates belong to the C/D box snoRNA family responsible for methylation 

of ribosomal RNA and are localized inside the nucleolus [170]. These npcRNAs are not 

processed by Dicer and Drosha and no studies observed snoRNAs in exosomes, indicating a 

cellular remaining of snoRNA candidates. Having a closer look at the heatmap the region of 

snoRNAs is underrepresented in Raji exo3, most likely because of the lowest sequence depth 

of all exosome replicas. An overview of identified intracellular or extracellular miRNA of all 

tested human cell lines and their relevance and occurrence described in literature is 

provided in table 41. 

 

Table 41: Identified miRNAs, description in the literature and motif (c= cellular, e= 
extracellular, n= neutral) 
 

MiRNAs Cell type Tissue/Cell line [Literature] Motif 

miR-3607 Raji cell Prostate cancer [171] c 

miR-4284 Raji cell B-cell lymphoma [172] n 

miR-218-5p Raji exo Pericardial fluid[173] e 

miR-451a Raji exo B- and T-cell exosomes [40] n 

miR-378b/f/g/i Jurkat cell Colon carcinom [174] c 

miR-451a Jurkat exo B- and T-cell exosomes [40] n 

miR-494-3p Jurkat exo Melanoma exosomes [175] e 

miR-143-3p Jurkat exo Smooth muscle cells exosomes [176] c 

miR-4521 DG75 cell Whole blood [177] n 

miR-33a-5p DG75 cell Human plasma [178] c 

miR-590-3p DG75 cell Monocytes [179] c 

miR-125a-5p DG75 exo Plasma exosomes [180] n 

miR-451a DG75 exo B- and T-cell exosomes [40] n 

miR-204-5p HeLa cell Colorectal cancer [181] c 
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miR-451a HeLa exo B- and T-cell exosomes [40] n 

miR-223-3p HeLa exo Exosomes of whole blood samples [182] n 

 

For all tested cell lines a differential expression pattern of miRNAs was observed. MiR-4284 

showed the highest cellular expression combined with absence in extracellular vesicles in 

Raji cells and recent studies suggested this miRNA as a putative biomarker for B-cell 

lymphoma [172], matching perfectly our observations in human B-lymphoma cells. 

Moreover we detected miR-218-5p and miR-451a as strong expressed miRNAs in EVs. MiR-

218-5p was found in pericardial fluid from patients with heart failure [173], indicating a 

extracellular appearance of this miRNA. Maturation of miR-451 is Dicer independent and 

requires Ago catalysis, opening a complete new miRNA processing pathway [183]. This 

miRNA is known to be highly expressed in exosomes of Hek293T cells, primary T-

lymphocytes and Epstein-Barr virus transformed B-Lymphocytes [40, 184-186], confirming 

our sequence workflow and data analysis. Furthermore, miR-451a is a frequently described 

exosomal miRNA and used as biomarker for several diseases [187, 188]. Some differential 

expressed candidates contain a secretion or retention motif, which will be discussed in the 

next paragraph in more detail. 

In addition to the distinct small RNA profiles of four human cell lines cluster analysis from 

various samples were performed via DESeq package in R. As described before, Raji cells 

showed comparable small RNA profiles, which differ from extracellular profiles. We 

compared Raji and Jurkat intracellular RNA, which identified differences in small RNA 

expression (Figure 20). Adding DG75 and HeLa datasets (Figure 21) has no influence on Raji 

and Jurkat clustering. Surprisingly both cell lines show more similarities compared to DG75 

and Hela. Raji and DG75 belong to B-lymphocytes and are of hematopoietic origin [189], 

while Raji cells were infected by Epstein-Barr virus. Surprisingly DG75 and HeLa showed 

similar small RNA patterns, which were unexpected, since DG75 is a suspension cell line of B-

cells and HeLa an adherent cervical cancer cell line. Nevertheless both cell lines (HeLa and 

DG75) were only sequenced once. For a statistical analysis at least triplicates are needed to 

compare different cell lines.  

Analysis of extracellular miRNAs of four human cell lines revealed 89 common miRNAs. As 

described before miR-451a was detectable in all exosomal samples and is already known as 

an exosomal miRNA [187]. Besides miR-451a I identified miR-148a as a common extracellular 
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miRNA. It is known to be present in exosomes of MSC [190] and functions as a critical 

regulator of B-cell autoimmunity [191]. MiR-203 is known to be present in B-Lymphocytes 

but downregulated upon Epstein-Bar virus infection, which explains the presence only in 

DG75 cells [192].  

Due to the extracellular miRNA analysis I searched for sequence motifs enriched in 

extracellular RNAs. Indeed I found a motif of four nucleotides (GNAC) enriched in exosomes 

with an e value of e = 0.000047, confirming statistical significance. So far no extracellular 

miRNA motif identified by NGS is available, nevertheless Villarroya-Beltri published 2013 an 

extracellular miRNA motif analysed by microarrays (GGAG/C) looking similar to our motif 

[40]. Furthermore, an intracellular sequence motif was published too, matching complete 

with our intracellular motif (Figure 22). Since statistical power increases with the number of 

miRNAs, the motif search was performed with combined samples of all four cell lines, 

Nevertheless sequence motifs were analysed also for single cell lines, however only for Raji 

exosomes (UGNACU, e-value 6.7e-008)) and intracellular DG75 miRNAs (AGG/CAGC, e-value 

0.000034) confident e-values were reached (Figure 23). 

Summarizing a high reproducibility of the IonTorrent PGM system was achieved and 

intracellular and exosomal small RNA profiles of four different human cell lines were 

generated. A common pool of 89 miRNAs was identified and sequence motifs of cellular and 

exosomal miRNAs were discovered. 

 

 

4.3  Comparison of PEG precipitation and Ultracentrifugation 

 

Research on extracellular vesicles, in special exosomes, gained interest in recent years. 

Currently research is focusing on exosomes as biomarkers and for diagnosis in of diseases 

[155]. In particular for clinical application an efficient exosome isolation is needed, since 

patient material is complex (like human plasma) and limited. However, until today no 

general isolation protocol for exosomes is available. The isolation of EVs is still a challenging 

and time consuming procedure not adapted to clinical use yet. 

An efficient and fast isolation method is needed for clinical applications of exosomes. 

Therefore I compared i) the “golden standard” technique ultracentrifugation, which is most 

frequently used in research environments to isolate pure exosomes, and ii) the fast PEG 
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precipitation method in regards of vesicle yield, size distribution and small RNA content. For 

the comparative analysis exosomes were isolated from Raji cells after 72 h incubation and 

EVs were isolated by PEG precipitation or ultracentrifugation as described in 2.1.8.  Smaller 

size profiles of exosomes isolated by ultracentrifugation were observed as already described 

above (chapter 4.1). Both isolation techniques revealed similar small RNA size profiles after 

separation on BioAnalyzer system. Recent studies compared small RNA profiles of ExtraPEG 

(PEG precipitation followed by one ultracentrifugation step) isolated exosomes with 

differential ultracentrifuged exosomes and detected similar size profiles of small RNAs [157]. 

Our protocol of PEG precipitation lacks an ultracentrifugation step and still yields similar size 

profiles of small RNAs, providing a promising method for clinical research (Figure 24). Since 

size profiles of small RNAs give no evidence of present small RNAs, I performed NGS 

sequencing and compared exosomes isolated by ultracentrifugation and PEG precipitation. 

All exosomal samples were distinct to cellular samples after hierarchical clustering and PCA 

plot analysis (Figure 25). Ultracentrifuged exosomes were similar to PEG precipitated 

sample. Small difference observed in cluster analysis can be explained by regular variances in 

biological replicates because of slightly different procedure during PEG precipitation or small 

technical variations during library preparation and sequencing procedure. After small RNA 

analysis via R-software using the DESeq package I detected several small RNAs enriched in 

PEG precipitation or ultracentrifugation. For miR-378a-3p and miR-19a-3p, both known 

miRNA enriched in exosomes, an enrichment in PEG samples was detected [193]. Besides 

these candidates we identified miR-301a-3p, also known as circulating miRNA and suggested 

biomarker for Alzheimer´s disease [194]. Besides PEG enriched candidates we also detected 

miRNA candidates enriched after ultracentrifugation, for example miR-218-5p. As described 

in chapter 4.2 this miRNA found in pericardial fluid from patients with heart failure [173], 

indicating an extracellular appearance of this miRNA. Furthermore, miR-186-5p was 

overrepresented in exosomes isolated by ultracentrifugation. This miRNA is also identified 

extracellular after myocardial infarction. Interestingly, also miR-122-5p, overrepresented in 

UC exosomes, was detected in patients after acute myocardial infarction. These findings 

indicate a specific isolation of miRNAs after cell damage processes like myocardial infarction 

or in cell culture after apoptosis. 

For miRNA candidates, which were solely detectable in Raji exosomes (compare Figure 16 

and table 21) no drastically changes were observed comparing both isolation techniques. 
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However, three small RNA candidates were solely detected in PEG precipitated samples. 

Surprisingly we detected one snoRNA (U24). C/D box snoRNAs are transcribed and 

processed inside the nucleus. However, studies showed an interaction of U8 with nuclear 

export proteins (like PHAX, CRM1 and Ran) and suggested an export of U8 during biogenesis 

[195]. This export process is unknown for other snoRNA candidates (like U24) and needs 

further investigation. Besides U24 we identified miR-146a-5p and miR-744-5p as exclusively 

present small RNAs in PEG samples. MiR-146a-5p was already observed in EVs of human 

serum [196], while miR-744-5p was found in plasma samples and is proposed as a biomarker 

for pancreatic cancer [197]. All identified miRNAs isolated by PEG precipitation or 

ultracentrifugation are described as extracellular miRNAs in literature, suggesting a 

successful isolation of extracellular miRNAs by both isolation techniques. 

Taken together both methods yield vesicles in exosomal size range (30 – 100 nm), while UC 

revealed smaller particles compared to PEG precipitation. Nevertheless both isolation 

techniques disclosed similar small RNA patterns and similarities after principle component 

analysis and cluster calculations. For miRNAs overrepresented in exosomes isolated by UC 

three candidates are known to be released after myocardial infarctions, indicating a specific 

enrichment of miRNAs released after cell damage processes. This phenomenon was not 

observed for PEG precipitated exosomes. Since both techniques revealed known 

extracellular miRNAs with similar frequency and PEG precipitation showed no specifity for 

miRNAs released after cell damage, we suggest to use this method for clinical applications of 

exosomes. PEG precipitation uncovers similar miRNA amounts compared to 

ultracentrifugation techniques and needs less hands-on-time and no specific lab equipment. 

 

 

4.4  Overexpression of exosomal marker proteins and influence on EVs and LVs 

 

The influence of extracellular vesicles and their biogenesis pathways on virus production as 

well as on virus infection has been discussed during the last decade [198, 199]. Although the 

precise mode of action of extracellular vesicles for example in HIV infection has not been 

characterized in very detail, increasing evidence suggests that EVs facilitate the 

enhancement of infection and replication [135]. However, contributions of intraluminal 

vesicles like exosomes to viral pathogenesis are currently unravelling and the utilization of 

the cellular vesiculation machinery was identified as an enhancer for virus transduction e.g. 
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in HIV or AAV pathogenesis. Positive effects on virus efficiency and stability were observed 

[136, 137]. 

In this chapter new functional connections of the vesiculation machinery of intraluminal 

vesicles (ILVs) in particular with HIV-1 based LV transduction were identified. We 

overexpressed three exosomal marker proteins (i.e. CD9, TSG101 and Alix) and investigated 

the influence on extracellular vesicles (Figure 26). Only CD9 overexpression increased the 

overall level of microvesicles and exosome production with some emphasis towards the 

latter, supporting the previously proposed contribution of tetraspanins on ILV biogenesis 

[41, 200]. Both TSG101 and Alix are responsible for trafficking of the ESCRT machinery and 

led upon overexpression to a decreased amount of extracellular vesicles upon constitutive 

overexpression. In particular exosomes were affected by increased expression of all the 

marker proteins, whereas CD9 increased both total vesicle amount and the proportion of 

exosomes in conditioned medium. Increased expression of the ESCRT related Alix and 

TSG101 resulted in the exact opposite effect with an overall decreased amount of cell free 

vesicles and a size range indicating an increase of membrane shedding microvesicles 

(average > 150 nm). Phenotypic changes of expressing cells were not observed for CD9, but 

TSG101 and Alix overexpressing Hek293 cells developed increased mortality rates 

(Figure 30). This finding indicates that too high levels of TSG101 or Alix induce cytotoxic 

effect and thus the surviving cells displayed less pronounced expression when compared to 

the average of CD9 overexpression. The toxicity of high TSG101 levels, and also its role in 

regulation of cell growth, proliferation and cell survival were previously reported [201, 202]. 

Overexpression of Alix was linked to an increased rate of neuronal death by caspase 

activation [203], fitting our observations.  

The increased levels of extracellular vesicles and the shift towards a higher proportion of 

exosomes were consistent for the overexpression of CD9 in four different human cell lines. 

These findings strongly indicate a role of CD9 in ILV biogenesis and thus extracellular vesicle 

production. This direct connection between CD9 expression alone and the production of 

extracellular vesicles was not reported far, although a general role of tetraspanins in 

microdomain formation and ILV assembly has been discussed [41, 200].  

Extracellular vesicles were reported to positively influence viral transduction, accordingly we 

investigated whether LVs produced in pro-exosome conditions (i.e. increased CD9 levels) will 

differ from standard LVs [52, 137]. Expecting more efficient LVs from CD9-overexpressing 
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producer cells in the context of accelerated extracellular vesicle secretion we indeed 

observed faster transduction with LV-VSVG-CD9GFP and a quicker onset of transgene 

expression (GFP or RFP) compared to standard LV-VSVG viruses (Figure 33-34).  

Unexpectedly, we also observed transduction competent LV-CD9GFP virus that delivered its 

genomic content into minor portions of target cells in absence of any additional and known 

fusogen (Figure 36). This, however, indicated a direct contribution of producer cell provided 

increased levels of CD9 to facilitate membrane fusion between the LV envelope and the 

target cell membrane. We confirmed this finding in vitro in HEK293 cells as well as ex vivo 

with primary rat CNS tissue. In 2000 Miyado et al. showed that CD9 is capable of fusing 

membranes of sperm and eggs in vitro, gathering some insights into functions of 

tetraspanins [52]. Recently an interaction of CD9 was shown to interact  with growth factors 

and integrins, indicating a role in cell fusion [48, 204]. To figure out if CD9-overexpression 

also had a boosting effect on recombinant LV-production, we determined their physical titer 

after production in standard HEK293FT and pro-exosomal HEK293FT-CD9GFP cells. LV-VSVG 

and LV-CD9GFP did not display significant differences and only the LV-VSVG-CD9GFP 

production was slightly increased. The influence of tetraspanins on virus production, 

efficiency and stability is recently controversial discussed in the literature. Krementsow et al. 

neglected effects of CD9 overexpression on subsequent virus release, while others described 

a supporting role of tetraspanins in uptake, trafficking and spread of viruses [205, 206]. 

Other studies reported that extracellular domains of CD9, CD53, CD63 and CD81 are 

involved in HIV-1 infection [207]. Thus, our findings of positive influence of the tetraspanin 

CD9 on LV performance is partially explained by increased exosome biogenesis and also by 

CD9 assisted transduction of target cells. Kadiu et al. described that HIV is “entrapped” by 

exosomes, forming heterogeneous aggregates of cell derived and viral particles that in turn 

facilitate infection events [136]. Our negative controls (Figure 37) indicate that specific 

proteins on the LV envelope are substantial for transduction. Viral capsids without either 

viral glycoproteins (e.g. VSV-G) or high levels of CD9GFP were not capable of transducing 

HEK293 cells, although exosomes and endogenous CD9 were present during the production 

process. Reflecting our observations, we are convinced that increased CD9 expression has 

supportive effects on the performance of LV-VSVG-CD9GFP and furthermore, that CD9GFP 

promotes the fusion with target cell membranes. 
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Furthermore, we observed a cytoplasmic relocalization of CD9GFP during virus production 

already 24h after transfection with lentiviral plasmids (Figure 40). In 2007 Deneka et al. 

already observed a HIV-1 assembly in intracellular vesicular structures containing 

tetraspanins like CD53, CD81 and CD9 [208], which supports our observations. These 

findings together with the increased efficiency and the feature of membrane fusion of CD9 

deliver novel and in part unexpected insights into the influence of tetraspanins on virus 

production and performance and open new prospects of using tetraspanins in the context of 

future therapeutic interventions with LV based delivery strategies.  

Since CD9 influenced the extracellular vesicle amount and size distribution the impact on 

extracellular small RNAs in Raji cells was examined by high throughput sequencing via 

IonTorrent system. Cluster analysis revealed only minor differences between CD9 and WT 

exosomes. Surprisingly we observed an increased abundance of U73a, U78 and HBII-429 in 

exosomes of CD9 overexpressing cells. So far there is no evidence of CD9 interaction with 

snoRNAs or miRNAs. However, tetraspanins can interact with membrane molecules and 

organize supramolecular clusters, called tetraspanin enriched microdomains (TEM). These 

microdomains are a putative key to understand how genetic information is transported into 

EVs [48, 209]. Nevertheless, further research is needed to understand this complex process. 

Furthermore, miR-30d-5p and miR-155-5p were more dominant in exosomes produced by 

CD9 overexpressing cells. Both are known extracellular miRNAs and no connection to CD9 

was observed so far [175, 196]. On the other hand we observed four snoRNA candidates 

overrepresented in wildtype exosomes (mgU6-47, U24, U58B and U61). U24 was already 

observed in PEG precipitated samples and was overrepresented in PEG precipitated 

exosomes compared to ultracentrifuged exosomes. The overrepresentation of snoRNAs in 

PEG precipitated samples can be explained by a possible contamination of MVs. Still the 

function of snoRNAs inside EVs and their biogenesis route is unknown. Besides snoRNA 

candidates we found increased miR-5585-3p amounts in PEG precipitated exosomes. Little is 

known about this miRNA. A recent study detected this miRNA in extracellular vesicles of 

glioblastoma cells. However, all candidates enriched in WT exosomes displayed low 

basemean values, allowing only careful conclusions. 

Taken together CD9 and WT exosomes show many similarities and only few deregulated 

small RNA candidates, indicating no active role of CD9 in exosomal sorting of small RNAs into 

exosomes. 
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4.5  Role of EVs in cell-cell communication 

 

Although exosome research is developing since 30 years little is known about their role in 

cell-cell communication. Previous findings indicate an direct transfer of genetic material by 

exosomes [19, 35, 86, 210]. These findings have increased the interest in exosomes and their 

role in communication between cells and support the idea that exosomes transfer proteins 

and genetic information. However, only little is known about the functionality of miRNAs 

inside the target cell after exosomal transfer. To address this mechanism, I treated Raji cells 

with Jurkat supernatant (including exosomes) and analysed the change in small RNA 

expression by next generation sequencing (Figure 41). We identified several differentially 

expressed miRNA candidates after Jurkat exosome treatment. We focussed on miRNAs, 

which were increased after treatment but at the same time strong abundant in Jurkat 

exosomes, like miR-21-5p, miR-19b-3p, miR-15a-5p and miR-148a-3. Since miR-451a is high 

abundant in Jurkat exosomes and beyond the detection threshold within Raji cells we chose 

this miRNA as a fifth candidate. All selected miRNAs carry the secretion motif of Jurkat cells 

at least partially, for miR-148a-3p it was even detected twice (Figure 42). In silico analysis via 

miRNA target databases and literature research revealed two different targets for all 

candidate, B-cell lymphoma 2 (BCL-2) and DNA methyltransferase 1 (DNMT1) (Table 38) 

[139-143]. DNMT1 is a known target for miR-148a-3p and miR-21-5p. The promoter of miR-

148a is silenced by DNMT1-depending methylation and DNMT1 itself is a target of miR-148a, 

revealing a feedback loop insight this gene regulatory network [211]. Indeed we detected a 

DNMT1 reduction 48 h post treatment with Jurkat exosomes (PEG precipitated) but no 

effects were caused by Raji exosomes. These findings represent a functional transfer of 

miRNAs via exosomes between T- and B-cells (Figure 44). The reduction in DNMT1 gene 

expression vanished after 48h. This indicates only short time effects for exosome treatment 

upon absorption of exosomes. However, the effect of silencing was weak but significant, 

giving evidence for a fine-tuning effect on gene expression by extracellular vesicles. For the 

target Bcl-2 opposing effects were observed. Increased gene expression of Bcl-2 was 

detected 24 h post treatment with Jurkat exosomes. This effect was still detected after 48 h. 

Treatment with Raji exosomes leads to no effect, suggesting a specific uptake of exosomes 

from a different cell type and the omission of own generated exosomes. A transfer of EVs 

between human T-lymphocytes and B-lymphocytes was published in 2011, however no 
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functionality of transferred miRNAs was shown in this study [35]. To elucidate the 

functionality of transferred small RNAs in recipient cells we used our own designed dual 

reporter gene toolbox. We used a reporter gene construct containing two fluorescent 

proteins under constitutive promoters. One reporter gene (CFP) contains a full 

complementary miRNA target site at the 3´UTR region. Upon small RNA binding the 

expression of CFP will be reduced while the second reportergene (YFP) stays unaffected, 

which can be detected via flow cytometry (Figure 45). The manuscript for our dual reporter 

gene assay was submitted for publication and is currently under review [144]. To check the 

reliability of the system we used several negative controls, transfect them into HEK293 WT, 

performed a treatment with exosomes of different origin and analysed the gene expression 

of YFP and CFP by flow cytometry (Figure 46). All negative controls contain a non-human 

miRNA target site at the 3´UTR of CFP and show no influence on CFP expression after flow 

cytometry analysis, indicating no influence of miRNAs and exosome treatment. To test the 

functionality of the selected miRNA candidates we designed constructs containing the full 

complementary target site of the desired miRNA (miR-15a-5p, miR-19b-3p, miR-21-5p, miR-

148-3p and miR-451a) at the 3´UTR of CFP and tested the functionality in cell culture 

experiments followed by FACS analysis. MiR-451a, miR-148a-3p and GL-2 did not affect the 

target (CFP) expression (Figure 47). Since GL-2 is a synthetic siRNA with no known human 

target we expected this outcome. MiR-451a and miR-148a-3p are low expressed inside 

HEK293 cells (data not shown) but high abundant in exosomes. Nevertheless we could not 

detect a reduction of CFP in wildtype and exosome treated cells, confirming the NGS data 

and presuming inefficient exosomes transfer or too low concentrations of the respective 

miRNAs. For miR-15a-5p and miR-21-5p a reduction of CFP intensity was observed in HEK293 

WT cells (Figure 48-49). Both miRNAs are strong expressed intracellular, confirming the 

results of our reporter gene system. However the exosome treatment showed no effect on 

CFP expression, indicating no effect of exosomal transferred miRNAs. Eventually we tested 

the functionality of miR-19b-3p (Figure 50). We observed a stronger CFP reduction upon 

exosome treatment at low YFP intensities (log YFP 2-4). Low effects after exosome 

treatment were expected since we observed a low reduction of DNMT1 before.  

Based on our previous results we wanted to drastically increase the small RNA content in 

exosomes by siRNA transduction in high-exosome producing cells (HEKFT CD9). For the 

siRNA candidate we choose GL-2, since it contains the secretion motif for small RNAs 
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(Figure 51). As a positive control we cotransfected GL-2 siRNA and a construct with a 

complementary GL-2 target site in recipient cells and observed a reduction of CFP after FACS 

analysis (Figure 52). Furthermore, we treated recipient HEK293 cells with exosomes 

produced in GL-2 transfected HEK293FT cells. We observed a strong reduction of CFP after 

exosome treatment, proposing a sufficient transfer of GL-2 loaded HEKFT CD9 exosomes in 

HEK293 cells. Compared to the GL-2 co-transfection we observed weaker reduction of CFP in 

low fluorescent cells (log YFP<4) but stronger effects at high fluorescent cells (log YFP>5), 

which can be explained by a low transfection efficiency for the cotransfection of reporter 

gene plasmid and effector GL-2 siRNA.  

To confirm a transfer of GL-2 loaded exosomes and to rule out an effect of free-floating GL-2 

siRNA or Lipofectamine-complexes we analysed several negative controls (Figure 53). All 

controls showed no effect on fluorescent expression except of 48h-incubated Lipofectamine-

complexes with GL-2. Here we observed after treatment an increased mortality rate induced 

by the toxicity of Lipofectamine, an often overseen but very critical factor for non-viral gene 

delivery [212, 213]. Moreover we compared the effect of GL-2 loaded exosomes of wildtype 

HEKFT and HEKFT CD9 cells. CD9 overexpressing cells should produce an increased amount 

of exosomes without affecting the extracellular RNA content. However, the reducing effect 

on CFP expression was comparable between WT and CD9 exosomes. The amount of 

wildtype exosomes seems to be sufficient to load the transfected GL-2 siRNA into these 

vesicles since an increased amount of exosomes showed no effect. To exclude the effect of 

free-floating siRNAs and Lipofectamine complexes, we included several negative controls 

leading to no or very weak effects on target gene expression. Nevertheless the effect of 

samples treated with exosomes is more pronounced. These findings reveal new prospects 

using exosomes as a drug delivery system. There is huge interest in using exosomes as 

therapeutics by influencing the cargo transported within these vesicles [214]. Although 

exosomal content can vary between different cell types we were able to boost the exosomal 

loading by a desired siRNA. Furthermore, we were able to verify the transport of artificial 

loaded exosomes and demonstrate the functionality of the artificial siRNA inside the target 

cell. 

In summary we identified differentially expressed miRNAs after exosome treatment in Raji 

cells and selected five candidates containing an exosome secretion motif. Furthermore, we 

observed a repressing effect of Jurkat exosomes on DNMT1 in Raji cells, proposed by a 
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miRNA transfer via exosomes. Moreover we solidified these assumptions by an dual 

reportergen assay, which indicated an increased functionality of miR-19b-3p in exosome 

treated samples. Finally, we exhausted the loading of exosomes by a GL-2 transfection in 

high-producing exosome cells and detected an efficient transfer of GL-2 loaded vesicles. 

These findings support the proposed mechanism of cellular communication via exosomes 

and confirmed the functionality of transferred small RNAs. 

 

 

4.6  Manipulation of human B-lymphocytes and in vivo studies 

 

In this thesis I focused in the extracellular RNA content and cell-cell communication between 

suspension cells (B- and T-lymphocytes). Since this cell lines are in general hard to transfect 

with commercial methods, we used JC polyomavirus derived VLPs. VLPs are known to be a 

suitable tool for transferring genetic material in different human cell lines and also lead to an 

efficient transfer of siRNAs in vivo [215].  

We confirmed the transduction of human B-lymphocytes by transferring an expression 

cassette, containing q GFP-coding sequence under control of a constitutive promoter, and 

analyzed the fluorescence by microscopy or flow cytometry (Figure 54). Native JC 

polyomavirus requires 5-HT2a receptors combined with lactoseries tetrasaccharide c (LSTc) 

for infection [114][205, 206]. B-lymphocytes are susceptible for native JCV infection and LSTc 

was detected on their surface [145, 216, 217]. Thus, VLPs represent an alternative delivery 

tool to transfer genetic material into desired target cells without transferring viral genetic 

material and avoiding viral integration into the host genome. These results were submitted 

for publication and are currently under review [218]. 

After approving the successful transduction of B-lymphocytes we wanted to track miRNAs 

with a secretion motif inside the cytoplasm of Raji cells (Figure 55). Therefore, I used a thiol-

modified miRNA, which is highly enriched in exosomes (miR-451a). NanoGold particles are 

attractive biocompatible materials often used to label proteins or nucleic acids [219, 220]. 

However, these particles aggregate under physiological conditions without ligands. To 

prevent aggregation and to track the miRNA within Raji cells, we linked the thiol-modified 

miRNA to the NanoGold surface, enabling solubility particles under physiological conditions. 

Through transduction of these NanoGold-miRNA particles into B-lymphocytes we were able 
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to pursue the complexes within the cell by electron microscopy. NanoGold particles are 

recognized by electron microscopy due to their high electron density [221]. Indeed we 

observed dark spots in electron microscopy images, reflecting the NanoGold complexes. 

NanoGold was mainly localized inside the nucleus and inside ILVs, reflecting the size of 

multivesicular bodies of approximately 500 nm [222]. Since we used the exosome enriched 

miR-451a for covering the NanoGold particles, these observations may deliver first insights 

into the trafficking pathway of exosomal miRNAs and support our next generation 

sequencing data. 

For exosomes a role in cell-cell communication is postulated. So far we confirmed the 

communication between B and T-lymphocytes via qPCR analysis and prooved a transfer of 

siRNA-loaded vesicles between embryonic kidney cells by our reporter gene assay. The local 

communication via exosomes, for example in the tumor microenvironment, is well studied 

[223]. In 2009 a study reported, that the acidic microenvironment of tumors increases the 

rate of exosomal uptake [224]. Since B- and T-lymphocytes are both high abundant cell 

populations in the tumor environment [225], we choose human B-lymphocytes (Raji) and a 

colon carcinoma cell line (SW837) and checked for a communication via EVs between these 

two cell lines. Therefore, we modified a siRNA, carrying the exosome secretion motif (Figure 

56), with a fluorescent label for easy and fast identification via fluorescent microscopy.  VLPs 

were loaded with the labeled siRNA and transferred to Raji cells. We were able to transduce 

a high amount of B-lymphocytes, perceptible by the red fluorescence (Figure 57). After wash 

steps B-cells were transferred into transwells and cocultured with SW837. Transwells 

provide a physical separation between both cell lines, allowing only particles smaller than 

400 nm to pass. Indeed we observed after 48h co-cultivation a transfer of labeled siRNA, 

leading to red fluorescent SW837 cells. Since both cell lines have no physical contact and 

free-siRNA added to the supernatant lead to no fluorescent cells (data not shown), we 

propose a transfer of labeled siRNA via extracellular vesicles between Raji and SW837 cells. 

So far we focused on the cell-cell communication in vitro using several cancer cell lines. We 

were able to identify a communication between human B- and T-lymphocytes by qPCR, 

among B-lymphocytes and colon carcinoma cells via fluorescence microscopy and among 

HEK293 cells by our own generated reporter gen assay.  

The restriction to in vitro analysis was based on the absence of an efficient and selective 

manipulation of cells in vivo. However, this is a future goal for exosomal research. To 
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overcome the issue of manipulating cells in vivo we used our VLP technology. The cellular 

uptake of VLPs is mediated by 5-hydroxytryptamine (5-HT) receptors, a subgroup of the 

serotonin receptor family, highly expressed on osteoblasts [226]. Since the primary amino 

acid sequence of 5-HT2a receptors is highly conserved between rats and human, we used 

rats as a model for testing in vivo siRNA delivery by VLPs. Indeed we were able to reduce the 

endogenous RANKL level by RANKL-siRNA loaded VLPs. Injection of 40 or 105 µg lead to no 

significant effects after qPCR analysis, but reproducible and significant silencing effects were 

achieved by injecting 150 µg (0.5 mg/kg) of siRNA-loaded VLPs (Figure 58). For our studies 

0.04 mg/kg siRNAs were used, however the amounts of VLPs and injected siRNA is low 

compared to previous studies using chemically modified siRNAs (2.5–5 mg/kg) or lipid-based 

technologies (0.3 mg/kg) [227, 228]. These findings report for the first time an efficient 

transfer of siRNAs by VLPs in vivo. With these observations the basics for in vivo cell 

manipulation were established. We showed an efficient transfer of siRNA loaded VLPs in vivo 

and proved the functionality of transferred siRNAs by qPCR analysis. Further studies will 

focus on the manipulation of selective cell types (e.g. cancer cells) and the modification of 

their exosomal small RNA content to study cell-cell communication in vitro. 

 

In Figure 59 the key findings of this thesis are summarized and will be summed up in the 

next chapter (5. Summary). 
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Figure 59: Key findings evaluated in this thesis. Three EV isolation methods were compared 
in regards of yield and particle size distribution. Via next generation sequencing comparative 
analysis of intracellular and extracellular small RNAs were performed for four human cell 
lines. Motif searches revealed an intracellular retention and an exosome secretion motif. 
Comparison of PEG precipitation and ultracentrifugation revealed only minor differences in 
extracellular small RNA content. Furthermore, we discovered a role of CD9 in vesicle fusion 
and on EV production. Cell-cell communication between various cell lines was confirmed by 
qPCR, fluorescence microscopy and a dual reporter gene assay. 
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5. Summary 

Exosomes are small extracellular vesicles (EVs) of endocytic origin and get released by a 

multitude of cell types. These vesicles have been found in a variety of body fluids and more 

recently an important role in exchanging genetic information between cells was postulated 

for exosomes.   

The aims of this thesis were to investigate the npcRNA content of exosomes and analyse 

their putative role in cell-cell communication. I established three different exosome isolation 

techniques yielding EVs in the appropriate size range determined by nanoparticle tracking 

analysis (NTA) and detected three exosomal marker proteins, i.e. Alix, TSG101 and CD9, by 

immunoblot. Furthermore, the identity of exosomes was confirmed by electron microscopy. 

Stable cell lines were generated to investigate the effect of the individual marker proteins on 

exosome production and characteristics. The tetraspanin CD9 positively influenced exosome 

and microvesicle production, while overexpression of Alix or TSG reduced the amount of 

EVs. In the context of lentiviral vector production a role in membrane fusion was identified 

for CD9, indicating a direct participation in fusion of exosomes with target cell membranes. 

However, extracellular CD9-enriched and WT vesicles comprise similar npcRNA content, 

suggesting no active role of CD9 in sorting of npcRNAs to exosomes.  

The extracellular npcRNA content of four human cell lines was successfully examined via 

Next Generation Sequencing. Data analysis was performed using the DESeq package in R 

with self-made, question-adjusted, scripts. NGS data analysis revealed secretion (exosome) 

and retention (cell) motifs for miRNAs, an important finding for further cell-cell 

communication studies. Furthermore, I identified differentially expressed miRNAs after 

Jurkat exosome treatment in Raji cells by NGS and in silico analysis revealed two target 

genes (DNMT1 and Bcl-2) for these candidates. Extracellular vesicles derived from T-

lymphocytes transferred sufficient amounts of functional miRNAs to induce a significant 

knockdown of DNMT1 as was confirmed by qPCR analysis. We generated a reporter gene 

assay that enabled detection of the horizontal transfer of synthetic siRNA (siGL-2) in 

exosomes. The results indicated a direct and functional communication via extracellular 

vesicles. In contact-inhibiting co-cultures we were able to confirm an EV mediated transfer 

of fluorescent labelled siRNAs between human B-lymphocytes and colon carcinoma cells, 

reflecting the cellular communication in the tumor microenvironment. Modification of cells 

with npcRNAs to study EV-functions is difficult in some cell types and hard to adapt for in 

vivo research. We utilized a gene delivery technology based on virus-like particles (VLP) that 

facilitates modification of cells in vivo. Feasibility was confirmed in a rat animal model by 

systemic delivery of functional siRNAs. The directed in vivo manipulation of cells opens new 

prospects for the exosome research and has to be expanded in the future. 
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aa    amino acid 

ab    antibody 

APS   ammoniumperoxodisulfate 

Amp    ampicillin 

ATP    adenosine triphosphate 

ß-ME    beta mercaptoethanol 

BSA    bovine serum albumin 

bp    base pair 

Ca   calcium 

Da    dalton 

DAPI    4´-6´-diamidin-2´-phenylindol-dihydrochlorid 

DMEM   Dulbecco´s modified Eagle's medium 

DMSO    dimethysulfoxide 

DNA    deoxyribonucleic acid 

dNTP    desoxynucleotide triphosphate 

E. coli    Escherichia coli 

ECL    enhanced chemiluminescence 

EDTA    ethylendiamine tetraacetate 

h    hour(s) 

HRP    horse radish peroxidase 

IPTG    isopropyl-ß-D-thiogalactopyranosid 

k    kilo 

kDa    kilo Dalton 

MCS    multiple cloning site 

min    minute(s) 

m    milli 

μ    micro 

Mg   magnesium 

mRNA    messenger RNA 

MW    relative molecular weight 
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PAGE    polyacrylamide gel electrophoresis 

PBS    phosphate buffered saline 

PCR    polymerase chain reaction 

RNA    ribonucleic acid 

rRNA    ribosomal ribonucleic acid 

ss    single stranded 

ds    double stranded 

rpm    revolutions per minute 

s    second(s) 

SDS    sodium dodecyl sulphate 

siRNA    small interfering RNA 

Tris    Tris(hydroxymethyl)-aminomethane 

U    unit 

wt    wild type 

x g    x-fold gravity   double stranded 

rpm    revolutions per minute 

s    second(s) 

SDS    sodium dodecyl sulphate 

siRNA    small interfering RNA 

Tris    Tris(hydroxymethyl)-aminomethane 

U    unit 

wt    wild type 

x g    x-fold gravity 
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9. Appendix 

 
9.1  Raji sequencing reports 

 

9.1.1  Intracellular Raji library (Raji cell1) 
 

 
 
9.1.2 Intracellular Raji library (Raji cell3) 
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9.1.3 Intracellular Raji (Raji cell2) and exosomal Raji library (Raji exo3) 
 

 
 
9.1.4 Exosomal Raji library (Raji exo1) 
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9.1.4 Exosomal Raji library (Raji exo2) 
 

 
 

9.2  Jurkat sequencing run reports 

 

9.2.1  Intracellular Jurkat library 
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9.2.2 Exosomal Jurkat library 
 

 
 

9.3 DG75 sequencing reports 

 

9.3.1 Intracellular DG75 library 
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9.3.2 Exosomal DG75 library 
 

 
 

9.4  HeLa sequencing reports 

 

9.4.1 Intracellular HeLa library 
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9.4.2 Exosomal HeLa library 
 

 
 
 
9.5 Raji small RNA sequencing results 

id baseMean 
cell 

baseMean 
exo 

foldChange log2FoldChange 

hsa-miR-3607-5p 313,280829 0,42463986 0,00135546 -9,527001 

hsa-miR-3607-3p 83,9653381 0,42463986 0,00505732 -7,6274103 

U104 419,253362 2,47706583 0,00590828 -7,4030463 

hsa-miR-130b-5p 75,572145 0,77850641 0,0103015 -6,6010019 

hsa-miR-20a-3p 44,4430407 1,06159964 0,02388675 -5,3876458 

U37 28,6202996 0,7077331 0,02472836 -5,3376896 

hsa-miR-33a-5p 36,2775353 0,92005302 0,02536151 -5,3012156 

U74 286,158361 7,93256811 0,0277209 -5,1728819 

U49A 11,7669666 0,35386655 0,03007288 -5,0553933 

hsa-miR-582-3p 10,2957857 0,35386655 0,03437004 -4,8627047 

snR39B 252,822842 10,3517684 0,04094475 -4,6101777 

U52 23,3935402 0,99082633 0,0423547 -4,5613342 

U45B 13,2417636 0,56618648 0,04275763 -4,5476742 

U80 138,969281 6,30478199 0,04536817 -4,4621757 

hsa-let-7a-5p 4314,22095 195,760055 0,04537553 -4,4619417 

hsa-miR-155-3p 62,5667129 2,97744353 0,0475883 -4,3932493 

hsa-miR-590-3p 34,7039905 1,91087936 0,05506224 -4,182793 

hsa-let-7a-3p 14,3390376 0,84927971 0,0592285 -4,0775646 

hsa-let-7f-5p 3746,70638 228,883626 0,06108929 -4,0329368 

U38B 134,999042 8,29636371 0,06145498 -4,0243262 
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hsa-miR-1306-5p 5,67102304 0,35386655 0,06239907 -4,0023317 

hsa-miR-183-5p 6,17962929 0,42463986 0,06871607 -3,8632086 

hsa-miR-29b-3p 4082,15575 281,119853 0,06886554 -3,860074 

U58C 85,6032162 5,95687288 0,06958702 -3,8450379 

U33 17,991849 1,27391957 0,07080537 -3,8199974 

hsa-miR-28-5p 11,9103026 0,84927971 0,07130631 -3,8098265 

hsa-miR-92a-1-5p 78,8255426 6,08650462 0,07721488 -3,6949773 

U18A 10,5410822 0,84927971 0,08056855 -3,6336394 

hsa-let-7g-3p 5,22421164 0,42463986 0,08128305 -3,6209016 

hsa-let-7d-5p 1107,62105 97,3029425 0,08784859 -3,5088371 

U31 140,533911 12,6115498 0,08974026 -3,4781008 

U79 36,2897213 3,33230299 0,09182498 -3,4449695 

hsa-miR-7-1-3p 32,1344007 3,04325231 0,09470388 -3,4004327 

hsa-miR-4454 84,1675835 8,21764716 0,09763435 -3,3564674 

hsa-miR-1260b 202,006143 21,4920504 0,10639305 -3,2325241 

U47 3,91142879 0,42463986 0,10856387 -3,203384 

U42A 29,5519517 3,39711886 0,11495413 -3,1208698 

hsa-miR-18a-3p 13,6796017 1,62778612 0,11899368 -3,0710432 

hsa-let-7f-1-3p 9,610843 1,20314626 0,12518634 -2,9978509 

hsa-miR-4286 262,823428 33,0031095 0,12557141 -2,99342 

hsa-miR-1307-5p 233,797963 29,6120377 0,12665653 -2,9810067 

hsa-miR-625-3p 95,3113941 12,112165 0,12707993 -2,9761919 

U76 41,827853 5,44954484 0,13028507 -2,9402563 

hsa-miR-361-3p 33,6882495 4,39290972 0,13039887 -2,9389967 

U96a 18,7375102 2,48203036 0,13246319 -2,9163366 

hsa-miR-19b-1-5p 115,894404 15,5162342 0,13388251 -2,9009605 

hsa-miR-877-3p 4,57194103 0,63695979 0,13931934 -2,8435326 

hsa-miR-598-3p 3,02604762 0,42463986 0,14032821 -2,833123 

hsa-miR-551a 6,03414875 0,84927971 0,14074557 -2,8288386 

U26 21,5516732 3,18479893 0,14777502 -2,7585257 

hsa-miR-324-5p 16,9958624 2,54783914 0,14990938 -2,7378375 

U61 2,34685728 0,35386655 0,15078316 -2,7294528 

hsa-miR-505-5p 18,287091 3,11402562 0,17028546 -2,5539729 

U45A 26,6501587 4,81854249 0,18080727 -2,4674754 

hsa-miR-625-5p 127,613561 23,3112273 0,18267046 -2,4526848 

U20 17,4160988 3,26053677 0,18721396 -2,4172401 

hsa-miR-148a-5p 4,11542477 0,77850641 0,18916793 -2,4022605 

hsa-miR-21-5p 8754,3285 1765,85034 0,20171168 -2,3096334 

hsa-let-7g-5p 1655,69778 356,219149 0,21514745 -2,2166024 

hsa-miR-545-3p 1,93667048 0,42463986 0,21926283 -2,1892668 

hsa-miR-99a-5p 162,705394 37,3392362 0,22948985 -2,1234978 

hsa-let-7b-5p 137,369481 34,3837459 0,2503012 -1,9982629 

hsa-miR-92b-3p 6,89041534 1,76933274 0,25678173 -1,9613856 

U50B 2,17875429 0,56618648 0,25986706 -1,9441543 

hsa-miR-505-3p 86,3786815 22,8885733 0,26497942 -1,9160478 

U25 42,1453891 11,4133681 0,27080941 -1,8846502 

hsa-miR-365a-3p 383,666195 103,944454 0,27092419 -1,8840389 

hsa-miR-365b-3p 383,666195 103,944454 0,27092419 -1,8840389 

hsa-miR-33a-3p 31,8603764 8,64427283 0,27131735 -1,8819468 

hsa-miR-98-5p 47,0251531 13,0391684 0,27728072 -1,8505808 
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hsa-miR-95-3p 5,54998113 1,55701281 0,2805438 -1,8337021 

hsa-miR-454-3p 28,654713 8,14588094 0,28427718 -1,8146298 

hsa-miR-28-3p 7,04345619 2,05242598 0,29139472 -1,7789533 

hsa-miR-101-3p 453,44853 132,983211 0,29327079 -1,7696947 

U75 44,6233297 13,2604244 0,29716349 -1,7506712 

hsa-miR-181a-3p 16,9911783 5,37877153 0,3165626 -1,6594373 

hsa-miR-151a-5p 122,770758 39,0417672 0,31800543 -1,6528767 

hsa-miR-148b-5p 4,22749343 1,34469288 0,31808278 -1,6525258 

HBII-276 4,17219071 1,34469288 0,322299 -1,6335284 

hsa-miR-3618 1,08937714 0,35386655 0,32483383 -1,6222262 

hsa-miR-15b-3p 48,8925269 16,0844065 0,32897474 -1,6039513 

hsa-miR-17-3p 346,037622 113,871992 0,32907402 -1,6035159 

hsa-miR-29c-3p 389,946498 129,012955 0,33084784 -1,5957603 

hsa-miR-25-5p 4,46060399 1,4862395 0,33319243 -1,5855725 

hsa-miR-103a-3p 2023,77682 685,726512 0,33883505 -1,561345 

hsa-miR-103b 2023,77682 685,726512 0,33883505 -1,561345 

hsa-miR-151b 123,739094 43,2243428 0,34931841 -1,5173854 

hsa-miR-106b-5p 889,873402 319,555643 0,35910237 -1,4775329 

hsa-miR-191-5p 5067,04896 1873,3135 0,36970503 -1,4355534 

U21 8,78905647 3,25557224 0,37041203 -1,4327971 

hsa-miR-628-5p 2,27214484 0,84927971 0,37377886 -1,4197431 

ACA45 95,3286757 36,1939555 0,37967543 -1,3971615 

hsa-miR-3613-3p 2,41186485 0,92005302 0,38146956 -1,3903602 

U83A 20,61601 7,86576642 0,3815368 -1,3901059 

hsa-miR-629-3p 2,03006103 0,77850641 0,38348916 -1,3827423 

hsa-miR-20a-5p 4329,40744 1778,10283 0,41070351 -1,2838308 

hsa-miR-107 880,012167 371,543919 0,42220316 -1,2439907 

hsa-miR-182-5p 5,85707252 2,54783914 0,43500215 -1,2009056 

hsa-miR-454-5p 3,14708953 1,41546619 0,44976992 -1,1527409 

hsa-miR-3940-3p 1,08937714 0,49541317 0,45476736 -1,1367994 

hsa-let-7i-5p 170,566743 78,2399747 0,45870592 -1,1243586 

U42B 19,3804207 9,07487012 0,46824939 -1,094651 

hsa-miR-15b-5p 379,118241 178,990526 0,47212322 -1,0827646 

U83B 27,7758239 13,1797221 0,47450337 -1,0755098 

hsa-miR-29a-3p 1257,60972 614,2612 0,48843548 -1,0337601 

U62A 5,33554868 2,61861245 0,49078597 -1,0268341 

U62B 5,33554868 2,61861245 0,49078597 -1,0268341 

hsa-miR-98-3p 0,84729333 0,42463986 0,50117219 -0,9966217 

U17a 4,08777341 2,05242598 0,50208898 -0,993985 

hsa-miR-19a-3p 3580,82292 1807,10183 0,50466104 -0,9866134 

hsa-miR-19b-3p 8696,78788 4706,95034 0,5412286 -0,88569 

hsa-miR-196a-5p 5,18685542 2,83093238 0,54578972 -0,8735829 

hsa-miR-185-5p 158,926579 90,7709002 0,5711499 -0,8080586 

hsa-miR-296-5p 60,1423173 34,3827374 0,5716896 -0,806696 

hsa-miR-944 3,78068203 2,26474591 0,59903105 -0,7392973 

hsa-miR-3184-5p 8,05450492 4,95413167 0,61507588 -0,7011637 

hsa-miR-374b-5p 51,809382 32,3741826 0,62487104 -0,6783696 

hsa-miR-374c-3p 51,809382 32,3741826 0,62487104 -0,6783696 

hsa-miR-577 34,1059463 21,5918168 0,63308071 -0,6595386 

hsa-miR-21-3p 20,0118686 13,04314 0,65177022 -0,6175647 
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hsa-miR-1285-3p 1,90901912 1,27391957 0,6673163 -0,5835574 

hsa-miR-425-5p 372,946481 251,292128 0,67380212 -0,5696031 

hsa-miR-378a-5p 78,3823472 53,0398837 0,67668149 -0,5634512 

hsa-miR-106b-3p 44,0623051 29,9220174 0,67908425 -0,5583375 

hsa-miR-186-5p 116,891458 81,5793217 0,69790661 -0,5188941 

hsa-miR-769-5p 24,4351164 17,2786166 0,70712234 -0,4999683 

hsa-miR-193b-3p 306,244135 222,908021 0,72787686 -0,4582337 

hsa-miR-766-3p 82,0901166 60,2716847 0,73421366 -0,4457281 

hsa-miR-590-5p 173,311609 131,588157 0,7592576 -0,3973386 

hsa-miR-142-5p 7,35590485 5,88212794 0,7996471 -0,3225647 

hsa-miR-589-3p 0,96833524 0,77850641 0,80396372 -0,3147977 

hsa-miR-18a-5p 4430,99514 3716,77303 0,83881226 -0,2535802 

U55 1,93667048 1,62778612 0,84050753 -0,2506674 

hsa-miR-138-5p 415,309279 352,641552 0,84910588 -0,2359836 

hsa-miR-18b-5p 13,0423933 11,2618924 0,86348358 -0,2117594 

hsa-miR-181a-5p 211,24423 183,870147 0,870415 -0,2002247 

hsa-miR-301a-3p 49,2624813 43,9261185 0,89167491 -0,1654103 

hsa-let-7c-5p 52,997507 47,9880338 0,90547719 -0,1432498 

hsa-miR-4524a-3p 0,84729333 0,77850641 0,91881568 -0,1221526 

hsa-miR-4524b-5p 0,84729333 0,77850641 0,91881568 -0,1221526 

hsa-miR-140-5p 23,8475168 22,4779122 0,94256825 -0,085331 

hsa-miR-93-3p 19,1598911 18,5844028 0,96996391 -0,043997 

hsa-miR-26b-5p 60,1188883 59,9956314 0,99794978 -0,0029609 

hsa-miR-576-3p 0,84729333 0,84927971 1,00234438 0,00337827 

hsa-miR-484 189,096986 192,345084 1,01717689 0,02457059 

hsa-miR-22-3p 20,9636703 21,3973692 1,02068812 0,02954211 

hsa-miR-324-3p 10,7286031 10,9778062 1,02322792 0,03312753 

hsa-miR-181b-5p 107,191842 110,2692 1,02870888 0,04083476 

hsa-miR-1307-3p 38,9583955 41,1032231 1,05505431 0,07731726 

hsa-miR-30e-3p 2,29979619 2,48203036 1,07923927 0,11001475 

hsa-miR-296-3p 22,209301 24,0778188 1,08413222 0,11654072 

hsa-miR-1180-3p 1,33146095 1,4862395 1,11624715 0,1586565 

hsa-miR-30d-5p 661,800191 739,006292 1,11666074 0,15919094 

hsa-miR-26a-5p 244,297408 275,451522 1,12752536 0,17315988 

hsa-miR-148a-3p 195,833695 227,026613 1,15928269 0,21323241 

hsa-miR-378c 281,706908 340,033513 1,20704712 0,271482 

hsa-miR-423-3p 211,957086 256,550365 1,21038824 0,27546988 

hsa-miR-140-3p 129,991291 160,83342 1,23726304 0,30715225 

hsa-miR-155-5p 349,189008 434,270153 1,24365356 0,31458465 

hsa-miR-210-3p 23,9549013 30,2011391 1,26074988 0,33428209 

U3 377,321853 476,018673 1,26157197 0,33522251 

U3-3 377,321853 476,018673 1,26157197 0,33522251 

hsa-miR-30c-5p 178,948422 226,120407 1,2636066 0,33754738 

hsa-miR-629-5p 21,3706444 27,3542421 1,27999145 0,35613417 

hsa-miR-128-3p 136,596909 174,854999 1,28008021 0,35623421 

hsa-miR-197-3p 82,2582278 113,822074 1,38371659 0,46854848 

hsa-miR-30b-5p 126,41172 178,129441 1,40912125 0,49479575 

hsa-miR-339-5p 74,635742 106,032828 1,42067092 0,50657241 

hsa-miR-744-5p 44,5888496 63,7684648 1,43014376 0,51616017 

hsa-miR-342-3p 76,8579496 112,327782 1,46149855 0,5474484 
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hsa-miR-1270 0,72625143 1,06159964 1,46175222 0,54769879 

hsa-miR-32-5p 11,9716942 17,7141784 1,4796718 0,56527722 

hsa-miR-545-5p 0,60520952 0,92005302 1,52022231 0,60428232 

U3-2 302,760823 471,135314 1,55613038 0,63796294 

U3-2B 302,760823 471,135314 1,55613038 0,63796294 

U3-4 302,760823 471,135314 1,55613038 0,63796294 

hsa-miR-192-5p 22,1532667 34,6628675 1,56468425 0,64587155 

hsa-miR-671-5p 10,8668517 17,1271409 1,57609042 0,65635031 

hsa-miR-16-5p 1224,72157 1938,90303 1,58313781 0,66278685 

hsa-miR-9-3p 16,1377961 27,1379506 1,68163921 0,74986821 

hsa-miR-320a 128,994564 220,894564 1,71243312 0,77604764 

hsa-miR-130b-3p 36,5925236 64,0705441 1,75091898 0,80811233 

hsa-let-7d-3p 45,2820924 79,3932652 1,75330381 0,81007601 

hsa-miR-15a-5p 395,659367 714,374758 1,80552975 0,85242219 

hsa-miR-378a-3p 1640,88831 2979,12517 1,81555634 0,8604117 

hsa-miR-5196-3p 0,60520952 1,13237295 1,87104285 0,9038426 

U8 8,52969929 16,0056899 1,87646591 0,90801808 

hsa-miR-17-5p 760,301861 1459,10735 1,91911585 0,94044181 

hsa-miR-93-5p 435,005647 848,558101 1,95068295 0,96397932 

hsa-miR-148b-3p 10,8586183 21,4930433 1,97935343 0,98502924 

hsa-miR-92a-3p 514,239652 1087,12036 2,11403449 1,07999891 

hsa-miR-652-3p 4,94477161 10,6976917 2,16343495 1,11332374 

hsa-miR-193b-5p 0,96833524 2,12319929 2,19262834 1,13266129 

hsa-miR-25-3p 33,2805438 82,361757 2,47477197 1,3072956 

hsa-miR-361-5p 10,0950106 26,3165503 2,60688683 1,38232796 

hsa-miR-7-5p 206,282514 539,019549 2,61301619 1,38571607 

hsa-miR-146b-5p 26,1228744 68,4775066 2,62136186 1,39031652 

hsa-miR-3529-3p 202,05502 539,019549 2,66768699 1,4155894 

hsa-miR-221-3p 46,6304235 127,305526 2,73009586 1,44895161 

hsa-miR-24-3p 22,9492099 67,6898807 2,94955169 1,56049569 

hsa-miR-330-3p 1,33146095 4,10485195 3,08296833 1,62432007 

hsa-miR-30e-5p 106,724948 329,175609 3,08433609 1,62495998 

hsa-miR-378d 50,8464041 157,812183 3,10370391 1,63399093 

hsa-miR-301b-3p 0,84729333 2,68938576 3,17409055 1,66634328 

hsa-miR-877-5p 2,65394866 10,04981 3,78673864 1,92095585 

hsa-miR-23b-3p 20,0003558 84,0692838 4,20338941 2,07155312 

mgU2-19 1,93667048 8,64129411 4,4619331 2,15766888 

hsa-miR-589-5p 0,72625143 4,03904317 5,56149428 2,47547256 

hsa-miR-9-5p 58,0482584 324,294462 5,58663552 2,4819797 

hsa-miR-421 1,3038096 10,2720589 7,87849619 2,97792028 

hsa-miR-106a-5p 18,8488472 152,953862 8,1147595 3,02054834 

hsa-miR-146a-5p 100,394086 1048,87712 10,4475987 3,38509948 

hsa-miR-378e 1,08937714 12,1022359 11,1093169 3,47369821 

hsa-miR-568 2,03006103 24,3238976 11,9818553 3,58277942 

hsa-miR-3184-3p 43,6528499 571,625968 13,0948144 3,71092371 

hsa-miR-423-5p 43,6528499 571,625968 13,0948144 3,71092371 

hsa-miR-125b-5p 21,8098873 360,423602 16,5256976 4,04663927 

hsa-miR-142-3p 3,13811628 56,3911571 17,9697475 4,16749823 

hsa-miR-27b-3p 12,9447136 247,306477 19,1048241 4,25586507 

hsa-miR-145-5p 3,60360579 156,258643 43,3617471 5,43835098 
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hsa-miR-222-3p 3,11943817 244,373913 78,3390788 6,29166026 

hsa-miR-223-3p 4,71166105 386,16441 81,9592933 6,35683564 

hsa-miR-1246 1,3038096 191,328267 146,745558 7,19717302 

ACA3 0 0,77850641 Inf Inf 

ACA63 0 0,63695979 Inf Inf 

HBII-202 0 0,35386655 Inf Inf 

HBII-85-10 0 12,3563516 Inf Inf 

hsa-let-7e-5p 0 2,61861245 Inf Inf 

hsa-miR-100-5p 0 1,4862395 Inf Inf 

hsa-miR-10a-5p 0 0,63695979 Inf Inf 

hsa-miR-10b-5p 0 27,0342749 Inf Inf 

hsa-miR-122-5p 0 178,352722 Inf Inf 

hsa-miR-125a-5p 0 9,2104593 Inf Inf 

hsa-miR-126-3p 0 171,157881 Inf Inf 

hsa-miR-126-5p 0 167,169644 Inf Inf 

hsa-miR-1268a 0 1,27391957 Inf Inf 

hsa-miR-1268b 0 0,7077331 Inf Inf 

hsa-miR-1297 0 0,56618648 Inf Inf 

hsa-miR-130a-3p 0 8,00632013 Inf Inf 

hsa-miR-136-5p 0 3,61440332 Inf Inf 

hsa-miR-138-1-3p 0 0,35386655 Inf Inf 

hsa-miR-139-5p 0 53,5691025 Inf Inf 

hsa-miR-141-3p 0 0,49541317 Inf Inf 

hsa-miR-143-3p 0 33,7497336 Inf Inf 

hsa-miR-144-3p 0 62,3239233 Inf Inf 

hsa-miR-144-5p 0 16,7802247 Inf Inf 

hsa-miR-150-5p 0 59,7663425 Inf Inf 

hsa-miR-151a-3p 0 2,33551922 Inf Inf 

hsa-miR-152-3p 0 2,61861245 Inf Inf 

hsa-miR-194-5p 0 1,98165267 Inf Inf 

hsa-miR-195-5p 0 1,69855943 Inf Inf 

hsa-miR-197-5p 0 0,42463986 Inf Inf 

hsa-miR-199a-3p 0 12,1918745 Inf Inf 

hsa-miR-199a-5p 0 2,97744353 Inf Inf 

hsa-miR-199b-3p 0 12,1918745 Inf Inf 

hsa-miR-200c-3p 0 0,92005302 Inf Inf 

hsa-miR-203a-3p 0 1,98165267 Inf Inf 

hsa-miR-203b-5p 0 0,49541317 Inf Inf 

hsa-miR-214-3p 0 27,5436356 Inf Inf 

hsa-miR-218-5p 0 9972,54205 Inf Inf 

hsa-miR-22-5p 0 3,33230299 Inf Inf 

hsa-miR-23a-3p 0 142,324334 Inf Inf 

hsa-miR-27a-3p 0 17,4520143 Inf Inf 

hsa-miR-3074-5p 0 7,0842813 Inf Inf 

hsa-miR-30a-5p 0 7,22483501 Inf Inf 

hsa-miR-3194-5p 0 1,27391957 Inf Inf 

hsa-miR-320b 0 3,89253203 Inf Inf 

hsa-miR-320c 0 2,1939726 Inf Inf 

hsa-miR-320d 0 1,4862395 Inf Inf 

hsa-miR-326 0 1,13237295 Inf Inf 
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hsa-miR-328-3p 0 0,63695979 Inf Inf 

hsa-miR-331-3p 0 0,42463986 Inf Inf 

hsa-miR-331-5p 0 5,6678222 Inf Inf 

hsa-miR-335-5p 0 8,57548533 Inf Inf 

hsa-miR-339-3p 0 6,58191779 Inf Inf 

hsa-miR-340-3p 0 29,6099935 Inf Inf 

hsa-miR-34a-5p 0 107,293735 Inf Inf 

hsa-miR-34c-5p 0 0,49541317 Inf Inf 

hsa-miR-3591-3p 0 172,894241 Inf Inf 

hsa-miR-3667-5p 0 1,27391957 Inf Inf 

hsa-miR-367-3p 0 445,317105 Inf Inf 

hsa-miR-369-3p 0 2,97843644 Inf Inf 

hsa-miR-374a-5p 0 3,26053677 Inf Inf 

hsa-miR-376b-3p 0 3,54462291 Inf Inf 

hsa-miR-376c-3p 0 23,8774138 Inf Inf 

hsa-miR-378f 0 2,61861245 Inf Inf 

hsa-miR-378g 0 2,12319929 Inf Inf 

hsa-miR-409-3p 0 0,49541317 Inf Inf 

hsa-miR-409-5p 0 0,56618648 Inf Inf 

hsa-miR-411-5p 0 0,49541317 Inf Inf 

hsa-miR-412-5p 0 0,49541317 Inf Inf 

hsa-miR-424-5p 0 4,25334892 Inf Inf 

hsa-miR-433-3p 0 10,2969597 Inf Inf 

hsa-miR-4424 0 0,84927971 Inf Inf 

hsa-miR-4466 0 0,35386655 Inf Inf 

hsa-miR-449a 0 0,35386655 Inf Inf 

hsa-miR-451a 0 868,38312 Inf Inf 

hsa-miR-455-3p 0 0,35386655 Inf Inf 

hsa-miR-486-3p 0 2,97843644 Inf Inf 

hsa-miR-486-5p 0 221,987836 Inf Inf 

hsa-miR-492 0 12,3563516 Inf Inf 

hsa-miR-494-3p 0 62,7686555 Inf Inf 

hsa-miR-494-5p 0 35,0096629 Inf Inf 

hsa-miR-520g-5p 0 3,47484251 Inf Inf 

hsa-miR-526b-5p 0 3,47484251 Inf Inf 

hsa-miR-542-3p 0 0,35386655 Inf Inf 

hsa-miR-574-3p 0 0,63695979 Inf Inf 

hsa-miR-615-3p 0 0,35386655 Inf Inf 

hsa-miR-619-5p 0 3,75098541 Inf Inf 

hsa-miR-627-5p 0 0,63695979 Inf Inf 

hsa-miR-664a-5p 0 0,35386655 Inf Inf 

hsa-miR-6731-3p 0 0,35386655 Inf Inf 

hsa-miR-6810-3p 0 0,49541317 Inf Inf 

hsa-miR-7641 0 2,48203036 Inf Inf 

hsa-miR-885-5p 0 18,5345274 Inf Inf 

hsa-miR-940 0 0,63695979 Inf Inf 

hsa-miR-941 0 0,49541317 Inf Inf 

hsa-miR-942-5p 0 0,49541317 Inf Inf 

hsa-miR-99b-5p 0 1,06159964 Inf Inf 

SNORD127 0 3,68616953 Inf Inf 
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U32A 0 0,35386655 Inf Inf 

U64 0 0,49541317 Inf Inf 

U68 0 0,35386655 Inf Inf 

U96b 0 2,48203036 Inf Inf 

ACA4 0,72625143 0 0 -Inf 

ACA61 11,3729768 0 0 -Inf 

ACA62 0,60520952 0 0 -Inf 

ACA7 1,69458667 0 0 -Inf 

ACA7B 1,69458667 0 0 -Inf 

hsa-miR-1273g-3p 0,60520952 0 0 -Inf 

hsa-miR-1275 22,9962709 0 0 -Inf 

hsa-miR-1285-5p 0,60520952 0 0 -Inf 

hsa-miR-16-2-3p 7,0211621 0 0 -Inf 

hsa-miR-181b-3p 4,9260935 0 0 -Inf 

hsa-miR-190a-3p 2,05771238 0 0 -Inf 

hsa-miR-190a-5p 8,5893496 0 0 -Inf 

hsa-miR-191-3p 0,96833524 0 0 -Inf 

hsa-miR-219b-5p 0,60520952 0 0 -Inf 

hsa-miR-26b-3p 2,17875429 0 0 -Inf 

hsa-miR-29a-5p 0,84729333 0 0 -Inf 

hsa-miR-29b-1-5p 16,5767024 0 0 -Inf 

hsa-miR-29c-5p 6,5743507 0 0 -Inf 

hsa-miR-301a-5p 0,60520952 0 0 -Inf 

hsa-miR-3615 0,60520952 0 0 -Inf 

hsa-miR-3653-5p 0,96833524 0 0 -Inf 

hsa-miR-4284 549,455387 0 0 -Inf 

hsa-miR-4323 2,03006103 0 0 -Inf 

hsa-miR-4521 11,8262137 0 0 -Inf 

hsa-miR-4791 2,15110293 0 0 -Inf 

hsa-miR-548aa 7,96184599 0 0 -Inf 

hsa-miR-548t-3p 7,96184599 0 0 -Inf 

hsa-miR-576-5p 0,72625143 0 0 -Inf 

hsa-miR-579-3p 2,53290676 0 0 -Inf 

hsa-miR-582-5p 73,7723183 0 0 -Inf 

hsa-miR-616-5p 0,72625143 0 0 -Inf 

hsa-miR-664a-3p 37,0106154 0 0 -Inf 

hsa-miR-769-3p 0,60520952 0 0 -Inf 

hsa-miR-7974 0,60520952 0 0 -Inf 

hsa-miR-7975 0,72625143 0 0 -Inf 

hsa-miR-942-3p 0,60520952 0 0 -Inf 

mgU6-47 1,45250286 0 0 -Inf 

mgU6-77 1,81562857 0 0 -Inf 

SNORD119 10,131627 0 0 -Inf 

SNORD121A 9,87983835 0 0 -Inf 

SNORD121B 0,60520952 0 0 -Inf 

SNORD125 0,96833524 0 0 -Inf 

SNORD126 2,89603247 0 0 -Inf 

snR38A 4,8416762 0 0 -Inf 

U102 29,6934715 0 0 -Inf 

U103 0,96833524 0 0 -Inf 
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U103B 0,96833524 0 0 -Inf 

U105 0,72625143 0 0 -Inf 

U106 1,57354476 0 0 -Inf 

U14A 0,60520952 0 0 -Inf 

U14B 1,21041905 0 0 -Inf 

U15A 1,45250286 0 0 -Inf 

U16 19,9752522 0 0 -Inf 

U18B 1,08937714 0 0 -Inf 

U18C 4,64665347 0 0 -Inf 

U22 17,9613215 0 0 -Inf 

U24 23,3209723 0 0 -Inf 

U29 18,7170323 0 0 -Inf 

U35B 13,5104224 0 0 -Inf 

U36A 2,41186485 0 0 -Inf 

U36B 21,2043412 0 0 -Inf 

U38A 3,6222839 0 0 -Inf 

U43 3,51021524 0 0 -Inf 

U46 3,38917334 0 0 -Inf 

U48 0,72625143 0 0 -Inf 

U50 1,93667048 0 0 -Inf 

U53 18,2533508 0 0 -Inf 

U54 23,8956543 0 0 -Inf 

U57 65,615778 0 0 -Inf 

U58B 23,3428631 0 0 -Inf 

U60 1,57354476 0 0 -Inf 

U71b 0,96833524 0 0 -Inf 

U73a 32,858171 0 0 -Inf 

U77 20,4073299 0 0 -Inf 

U81 10,503726 0 0 -Inf 

U82 20,8336552 0 0 -Inf 

U84 0,96833524 0 0 -Inf 

U87 2,15110293 0 0 -Inf 

U89 0,84729333 0 0 -Inf 

U90 5,8197163 0 0 -Inf 

U94 0,60520952 0 0 -Inf 

U95 8,86590526 0 0 -Inf 

U97 0,72625143 0 0 -Inf 

Z17B 1,57354476 0 0 -Inf 

 
 
 
 
9.6 Jurkat small RNA sequencing results (log2foldchange >±2) 

 
id baseMeanA 

cell 
baseMeanB 

exo 
foldChange log2FoldChange 

hsa-miR-378f 2238,37161 2,6925824 0,00120292 -9,699243354 

hsa-let-7e-5p 3696,4514 8,07774721 0,00218527 -8,837972232 

hsa-miR-378g 2240,22856 8,07774721 0,00360577 -8,115477217 
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U24 459,781657 2,6925824 0,00585622 -7,415814604 

U48 314,939294 2,6925824 0,00854953 -6,869939459 

hsa-miR-101-3p 246,603409 2,6925824 0,01091868 -6,517058436 

snR39B 395,53107 8,07774721 0,02042254 -5,613694219 

U42B 373,61902 8,07774721 0,02162028 -5,531471094 

U38B 122,930314 2,6925824 0,02190332 -5,512706412 

U52 226,176922 5,38516481 0,02380952 -5,392317423 

hsa-let-7f-5p 6971,003 169,632691 0,02433404 -5,360880111 

U34 314,567903 8,07774721 0,02567887 -5,283274663 

HBII-210 1207,39109 37,6961537 0,03122116 -5,001331924 

U27 1245,27294 40,3887361 0,03243364 -4,946365177 

hsa-miR-3607-5p 835,629022 29,6184064 0,03544444 -4,818296672 

U18A 69,0786658 2,6925824 0,0389785 -4,681177816 

hsa-miR-3607-3p 734,239367 29,6184064 0,0403389 -4,631684542 

hsa-miR-15b-5p 1220,01837 51,1590657 0,04193303 -4,575769147 

hsa-miR-590-3p 62,3936336 2,6925824 0,04315476 -4,534336428 

hsa-miR-181d-5p 373,990411 16,1554944 0,04319762 -4,532904472 

hsa-miR-1260b 231,376391 10,7703296 0,04654896 -4,425107358 

U78 635,820838 29,6184064 0,04658294 -4,424054373 

U58B 53,8516481 2,6925824 0,05 -4,321928095 

SNORD121A 52,737476 2,6925824 0,05105634 -4,291766124 

U45B 50,1377413 2,6925824 0,0537037 -4,218834602 

U96a 50,1377413 2,6925824 0,0537037 -4,218834602 

hsa-miR-9-5p 47,9093973 2,6925824 0,05620155 -4,15324626 

HBII-429 93,5904504 5,38516481 0,05753968 -4,119298928 

U76 45,3096625 2,6925824 0,05942623 -4,072756342 

U44 630,249978 37,6961537 0,05981143 -4,063434932 

mgh28S-2409 223,205797 13,462912 0,06031614 -4,051312091 

U31 1530,12959 94,2403841 0,06158981 -4,02116461 

U57 87,2768089 5,38516481 0,06170213 -4,018535951 

hsa-miR-29a-3p 730,896851 51,1590657 0,06999492 -3,836605997 

hsa-miR-7-5p 595,710645 43,0813185 0,0723192 -3,789477431 

SNORD119 34,9107236 2,6925824 0,07712766 -3,696607857 

hsa-let-7a-5p 7082,04881 565,442305 0,07984163 -3,646715056 

hsa-miR-3529-3p 535,545355 43,0813185 0,08044383 -3,635874454 

U49B 64,250587 5,38516481 0,08381503 -3,576647233 

hsa-miR-100-5p 62,7650243 5,38516481 0,08579882 -3,542898441 

hsa-miR-340-3p 187,180901 16,1554944 0,08630952 -3,534336428 

U30 62,022243 5,38516481 0,08682635 -3,525723297 

hsa-miR-29c-5p 30,4540355 2,6925824 0,08841463 -3,499571009 

hsa-miR-130b-5p 180,124478 16,1554944 0,08969072 -3,478897441 

hsa-miR-19a-3p 14292,2274 1375,90961 0,09626978 -3,376773174 

U79 54,9658201 5,38516481 0,09797297 -3,351472371 

U95 108,074687 10,7703296 0,09965636 -3,326894348 

U61 26,368738 2,6925824 0,10211268 -3,291766124 

hsa-miR-7-1-3p 25,254566 2,6925824 0,10661765 -3,229481846 

U104 225,06275 24,2332416 0,10767327 -3,215267987 
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hsa-miR-98-5p 337,222734 37,6961537 0,11178414 -3,16121257 

hsa-miR-4286 237,690033 26,925824 0,11328125 -3,142019005 

hsa-miR-374b-5p 443,811858 51,1590657 0,11527197 -3,116886394 

hsa-miR-374c-3p 443,811858 51,1590657 0,11527197 -3,116886394 

hsa-miR-218-5p 21,5406592 2,6925824 0,125 -3 

hsa-let-7d-5p 2277,36763 293,491482 0,12887313 -2,955976662 

U63 62,3936336 8,07774721 0,12946429 -2,949373927 

U60 20,0550965 2,6925824 0,13425926 -2,896906507 

hsa-miR-577 19,6837059 2,6925824 0,13679245 -2,869939459 

U45A 134,814816 18,8480768 0,13980716 -2,838489821 

hsa-miR-20a-5p 1499,67555 215,406592 0,14363546 -2,799516105 

hsa-miR-30c-5p 816,688097 118,473626 0,14506594 -2,785219275 

hsa-miR-505-3p 219,49189 32,3109888 0,14720812 -2,764070824 

U80 108,074687 16,1554944 0,14948454 -2,741931847 

hsa-miR-454-3p 124,787267 18,8480768 0,15104167 -2,726981506 

hsa-miR-19b-3p 14749,4093 2250,99889 0,15261621 -2,712019929 

HBII-142 17,4553618 2,6925824 0,15425532 -2,696607857 

hsa-miR-15a-3p 17,0839711 2,6925824 0,1576087 -2,665580961 

U35A 17,0839711 2,6925824 0,1576087 -2,665580961 

hsa-miR-29c-3p 785,862671 126,551373 0,16103497 -2,634554065 

hsa-miR-30a-5p 199,436793 32,3109888 0,16201117 -2,625834782 

hsa-let-7c-5p 497,663506 80,7774721 0,16231343 -2,623145695 

U16 15,9697991 2,6925824 0,16860465 -2,56828376 

hsa-miR-548aa 46,7952252 8,07774721 0,17261905 -2,534336428 

hsa-miR-548t-3p 46,7952252 8,07774721 0,17261905 -2,534336428 

hsa-miR-98-3p 30,4540355 5,38516481 0,17682927 -2,499571009 

HBII-95B 14,8556271 2,6925824 0,18125 -2,4639471 

hsa-miR-142-5p 58,6797269 10,7703296 0,1835443 -2,445799753 

hsa-miR-4454 277,800226 51,1590657 0,18415775 -2,440985951 

U25 86,9054183 16,1554944 0,18589744 -2,427421224 

U42A 57,9369455 10,7703296 0,18589744 -2,427421224 

U81 27,8543007 5,38516481 0,19333333 -2,370837695 

hsa-miR-18b-5p 277,800226 53,8516481 0,19385027 -2,36698537 

U50 27,4829101 5,38516481 0,19594595 -2,351472371 

U33 26,7401287 5,38516481 0,20138889 -2,311944006 

U74 283,371086 59,2368129 0,20904325 -2,258126633 

hsa-miR-455-3p 391,445773 83,4700545 0,21323529 -2,229481846 

hsa-miR-424-5p 73,5353539 16,1554944 0,21969697 -2,186413124 

hsa-miR-340-5p 12,2558923 2,6925824 0,21969697 -2,186413124 

U49A 96,1901852 21,5406592 0,22393822 -2,158827293 

hsa-miR-181a-2-3p 22,6548313 5,38516481 0,23770492 -2,072756342 

hsa-miR-25-3p 53,8516481 215,406592 4 2 

hsa-miR-331-5p 3,34251609 13,462912 4,02777778 2,009984089 

hsa-miR-877-5p 62,022243 258,487911 4,16766467 2,059239203 

hsa-miR-671-3p 1,85695338 8,07774721 4,35 2,121015401 

hsa-miR-345-5p 115,873891 522,360986 4,50801282 2,172491618 

hsa-miR-629-5p 17,8267525 80,7774721 4,53125 2,17990909 
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hsa-miR-24-3p 214,29242 985,48516 4,59878683 2,201253325 

hsa-miR-339-3p 8,54198556 40,3887361 4,72826087 2,241309635 

hsa-miR-3184-3p 26,368738 126,551373 4,79929578 2,262822727 

hsa-miR-423-5p 26,368738 126,551373 4,79929578 2,262822727 

hsa-miR-200c-3p 4,45668812 21,5406592 4,83333333 2,273018494 

hsa-miR-1908-5p 1,11417203 5,38516481 4,83333333 2,273018494 

hsa-miR-222-5p 1,11417203 5,38516481 4,83333333 2,273018494 

hsa-miR-34a-5p 1,11417203 5,38516481 4,83333333 2,273018494 

hsa-miR-3928-3p 1,11417203 5,38516481 4,83333333 2,273018494 

hsa-miR-6804-5p 1,11417203 5,38516481 4,83333333 2,273018494 

U85 1,11417203 5,38516481 4,83333333 2,273018494 

hsa-miR-320c 5,94225082 29,6184064 4,984375 2,317412614 

U3-3 263,31599 1335,52087 5,0719323 2,342535488 

U3 265,915724 1354,36895 5,09322626 2,348579808 

hsa-miR-1303 2,97112541 16,1554944 5,4375 2,442943496 

hsa-miR-2110 1,48556271 8,07774721 5,4375 2,442943496 

hsa-miR-22-3p 6,3136415 35,0035713 5,54411765 2,470957872 

hsa-miR-3184-5p 16,7125804 94,2403841 5,63888889 2,495410916 

hsa-miR-4661-5p 1,85695338 10,7703296 5,8 2,5360529 

hsa-miR-28-3p 36,3962863 215,406592 5,91836735 2,565199246 

hsa-miR-320b 8,54198556 51,1590657 5,98913044 2,582346553 

U8 34,5393329 207,328845 6,00268817 2,585608725 

U3-2 193,123152 1176,65851 6,09278846 2,607102652 

U3-2B 193,123152 1176,65851 6,09278846 2,607102652 

U3-4 192,00898 1171,27335 6,10009671 2,608832116 

hsa-miR-7974 2,97112541 18,8480768 6,34375 2,665335917 

HBII-166 5,57086015 37,6961537 6,76666667 2,758445322 

hsa-miR-320d 2,97112541 21,5406592 7,25 2,857980995 

hsa-miR-1226-5p 2,59973473 18,8480768 7,25 2,857980995 

hsa-miR-3909 2,22834406 16,1554944 7,25 2,857980995 

hsa-miR-203a-3p 1,11417203 8,07774721 7,25 2,857980995 

U100 1,11417203 8,07774721 7,25 2,857980995 

HBII-85-10 0,74278135 5,38516481 7,25 2,857980995 

hsa-miR-1286 0,74278135 5,38516481 7,25 2,857980995 

hsa-miR-647 0,74278135 5,38516481 7,25 2,857980995 

14qII-20 0,37139068 2,6925824 7,25 2,857980995 

14qII-22 0,37139068 2,6925824 7,25 2,857980995 

14qII-23 0,37139068 2,6925824 7,25 2,857980995 

14qII-25 0,37139068 2,6925824 7,25 2,857980995 

14qII-28 0,37139068 2,6925824 7,25 2,857980995 

14qII-29 0,37139068 2,6925824 7,25 2,857980995 

14qII-9 0,37139068 2,6925824 7,25 2,857980995 

ACA11 0,37139068 2,6925824 7,25 2,857980995 

hsa-miR-192-3p 0,37139068 2,6925824 7,25 2,857980995 

hsa-miR-193b-5p 0,37139068 2,6925824 7,25 2,857980995 

hsa-miR-3667-5p 0,37139068 2,6925824 7,25 2,857980995 

hsa-miR-373-3p 0,37139068 2,6925824 7,25 2,857980995 
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hsa-miR-4687-3p 0,37139068 2,6925824 7,25 2,857980995 

hsa-miR-6821-3p 0,37139068 2,6925824 7,25 2,857980995 

hsa-miR-130b-3p 90,619325 673,145601 7,42827869 2,893027942 

hsa-miR-1246 27,8543007 212,71401 7,63666667 2,932943053 

hsa-miR-139-5p 18,1981431 140,014285 7,69387755 2,943710869 

hsa-miR-151a-3p 12,9986737 107,703296 8,28571429 3,050626073 

hsa-miR-10b-5p 1,48556271 13,462912 9,0625 3,17990909 

hsa-miR-199a-3p 2,97112541 29,6184064 9,96875 3,317412614 

hsa-miR-199b-3p 2,97112541 29,6184064 9,96875 3,317412614 

hsa-miR-1273h-3p 1,85695338 18,8480768 10,15 3,343407822 

ACA63 2,59973473 26,925824 10,3571429 3,372554168 

hsa-miR-320a 168,611367 1766,33406 10,4757709 3,388984512 

hsa-miR-3194-3p 0,74278135 8,07774721 10,875 3,442943496 

hsa-miR-497-5p 0,74278135 8,07774721 10,875 3,442943496 

U93 0,74278135 8,07774721 10,875 3,442943496 

HBII-289 5,19946947 67,3145601 12,9464286 3,694482263 

hsa-miR-203b-5p 0,74278135 10,7703296 14,5 3,857980995 

hsa-miR-3940-3p 0,74278135 10,7703296 14,5 3,857980995 

hsa-miR-125a-3p 0,37139068 5,38516481 14,5 3,857980995 

hsa-miR-1468-5p 0,37139068 5,38516481 14,5 3,857980995 

hsa-miR-4660 0,37139068 5,38516481 14,5 3,857980995 

hsa-miR-4684-3p 0,37139068 5,38516481 14,5 3,857980995 

hsa-miR-4726-5p 0,37139068 5,38516481 14,5 3,857980995 

hsa-miR-568 0,37139068 5,38516481 14,5 3,857980995 

hsa-miR-643 0,37139068 5,38516481 14,5 3,857980995 

hsa-miR-7704 0,37139068 5,38516481 14,5 3,857980995 

hsa-miR-891a-5p 0,37139068 5,38516481 14,5 3,857980995 

hTR 0,37139068 5,38516481 14,5 3,857980995 

hsa-miR-7641 1,11417203 18,8480768 16,9166667 4,080373416 

ACA47 1,48556271 32,3109888 21,75 4,442943496 

hsa-miR-320e 0,37139068 8,07774721 21,75 4,442943496 

hsa-miR-449b-3p 0,37139068 8,07774721 21,75 4,442943496 

hsa-miR-6516-3p 1,11417203 26,925824 24,1666667 4,594946589 

hsa-miR-589-5p 3,71390676 113,088461 30,45 4,928370323 

hsa-miR-619-3p 0,37139068 32,3109888 87 6,442943496 

hsa-miR-130a-3p 0,37139068 35,0035713 94,25 6,558420713 

hsa-miR-145-5p 2,59973473 341,957965 131,535714 7,03931076 

hsa-miR-122-5p 0,37139068 59,2368129 159,5 7,317412614 

hsa-miR-486-5p 1,11417203 255,795328 229,583333 7,842874103 

hsa-miR-143-3p 0,74278135 201,94368 271,875 8,086799686 

hsa-miR-451a 0 651,604942 Inf Inf 

hsa-miR-494-3p 0 166,940109 Inf Inf 

hsa-miR-376c-3p 0 72,6997249 Inf Inf 

hsa-miR-214-3p 0 61,9293953 Inf Inf 

hsa-miR-526b-5p 0 53,8516481 Inf Inf 

hsa-miR-379-5p 0 48,4664833 Inf Inf 

hsa-miR-3609 0 40,3887361 Inf Inf 
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hsa-miR-6087 0 32,3109888 Inf Inf 

hsa-miR-199a-5p 0 26,925824 Inf Inf 

hsa-miR-3591-3p 0 24,2332416 Inf Inf 

hsa-miR-574-3p 0 24,2332416 Inf Inf 

hsa-miR-409-3p 0 21,5406592 Inf Inf 

hsa-miR-382-5p 0 18,8480768 Inf Inf 

hsa-miR-487b-3p 0 18,8480768 Inf Inf 

hsa-miR-637 0 13,462912 Inf Inf 

hsa-miR-217 0 10,7703296 Inf Inf 

hsa-miR-486-3p 0 10,7703296 Inf Inf 

hsa-miR-495-3p 0 10,7703296 Inf Inf 

hsa-miR-124-5p 0 8,07774721 Inf Inf 

hsa-miR-31-5p 0 8,07774721 Inf Inf 

hsa-miR-412-5p 0 8,07774721 Inf Inf 

hsa-miR-487a-3p 0 8,07774721 Inf Inf 

hsa-miR-493-3p 0 8,07774721 Inf Inf 

hsa-miR-144-5p 0 5,38516481 Inf Inf 

hsa-miR-210-5p 0 5,38516481 Inf Inf 

hsa-miR-3126-3p 0 5,38516481 Inf Inf 

hsa-miR-411-5p 0 5,38516481 Inf Inf 

hsa-miR-4689 0 5,38516481 Inf Inf 

hsa-miR-5010-3p 0 5,38516481 Inf Inf 

hsa-miR-520g-5p 0 5,38516481 Inf Inf 

hsa-miR-611 0 5,38516481 Inf Inf 

hsa-miR-6500-3p 0 5,38516481 Inf Inf 

hsa-miR-6789-5p 0 5,38516481 Inf Inf 

hsa-miR-6791-3p 0 5,38516481 Inf Inf 

hsa-miR-6878-3p 0 5,38516481 Inf Inf 

mgU12-22 0 5,38516481 Inf Inf 

U108 0 5,38516481 Inf Inf 

U91 0 5,38516481 Inf Inf 

ACA19 0 2,6925824 Inf Inf 

HBII-52-26 0 2,6925824 Inf Inf 

HBII-52-31 0 2,6925824 Inf Inf 

HBII-52-41 0 2,6925824 Inf Inf 

hsa-miR-127-3p 0 2,6925824 Inf Inf 

hsa-miR-144-3p 0 2,6925824 Inf Inf 

hsa-miR-205-5p 0 2,6925824 Inf Inf 

hsa-miR-224-5p 0 2,6925824 Inf Inf 

hsa-miR-299-5p 0 2,6925824 Inf Inf 

hsa-miR-3120-5p 0 2,6925824 Inf Inf 

hsa-miR-3157-3p 0 2,6925824 Inf Inf 

hsa-miR-329-3p 0 2,6925824 Inf Inf 

hsa-miR-3605-5p 0 2,6925824 Inf Inf 

hsa-miR-369-5p 0 2,6925824 Inf Inf 

hsa-miR-377-3p 0 2,6925824 Inf Inf 

hsa-miR-3939 0 2,6925824 Inf Inf 
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hsa-miR-4463 0 2,6925824 Inf Inf 

hsa-miR-4497 0 2,6925824 Inf Inf 

hsa-miR-4508 0 2,6925824 Inf Inf 

hsa-miR-4659b-5p 0 2,6925824 Inf Inf 

hsa-miR-4723-5p 0 2,6925824 Inf Inf 

hsa-miR-4754 0 2,6925824 Inf Inf 

hsa-miR-518c-5p 0 2,6925824 Inf Inf 

hsa-miR-518d-5p 0 2,6925824 Inf Inf 

hsa-miR-520c-5p 0 2,6925824 Inf Inf 

hsa-miR-526a 0 2,6925824 Inf Inf 

hsa-miR-6729-5p 0 2,6925824 Inf Inf 

hsa-miR-6771-5p 0 2,6925824 Inf Inf 

hsa-miR-6794-5p 0 2,6925824 Inf Inf 

hsa-miR-6831-3p 0 2,6925824 Inf Inf 

hsa-miR-6831-5p 0 2,6925824 Inf Inf 

hsa-miR-937-5p 0 2,6925824 Inf Inf 

hsa-miR-378b 2324,16285 0 0 -Inf 

hsa-miR-378i 2015,16581 0 0 -Inf 

hsa-miR-181c-5p 572,684423 0 0 -Inf 

hsa-miR-196b-5p 237,318642 0 0 -Inf 

hsa-miR-4318 121,073361 0 0 -Inf 

hsa-miR-4289 111,417203 0 0 -Inf 

hsa-miR-1304-3p 106,217733 0 0 -Inf 

U73a 106,217733 0 0 -Inf 

U82 106,217733 0 0 -Inf 

U58C 83,5629022 0 0 -Inf 

HBII-419 82,0773395 0 0 -Inf 

U102 80,9631675 0 0 -Inf 

hsa-miR-7975 79,8489954 0 0 -Inf 

U45C 76,87787 0 0 -Inf 

U54 75,3923073 0 0 -Inf 

hsa-miR-23c 51,9946947 0 0 -Inf 

U46 46,0524439 0 0 -Inf 

hsa-miR-1301-3p 42,3385371 0 0 -Inf 

hsa-miR-7977 42,3385371 0 0 -Inf 

HBII-316 41,5957558 0 0 -Inf 

U75 41,5957558 0 0 -Inf 

U88 35,2821143 0 0 -Inf 

hsa-miR-505-5p 34,9107236 0 0 -Inf 

U29 33,4251609 0 0 -Inf 

hsa-miR-33a-5p 31,9395982 0 0 -Inf 

U37 28,2256914 0 0 -Inf 

mgh18S-121 27,1115194 0 0 -Inf 

hsa-miR-4521 26,7401287 0 0 -Inf 

U105B 25,6259567 0 0 -Inf 

hsa-miR-4448 25,254566 0 0 -Inf 

ACA36B 24,140394 0 0 -Inf 
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HBII-180C 23,7690033 0 0 -Inf 

HBII-276 23,7690033 0 0 -Inf 

hsa-miR-664a-3p 23,7690033 0 0 -Inf 

hsa-miR-181b-2-3p 23,3976126 0 0 -Inf 

U32A 23,3976126 0 0 -Inf 

hsa-miR-301a-5p 23,0262219 0 0 -Inf 

HBII-55 21,9120499 0 0 -Inf 

hsa-miR-181b-3p 21,5406592 0 0 -Inf 

hsa-miR-500b-5p 21,5406592 0 0 -Inf 

hsa-miR-1290 21,1692686 0 0 -Inf 

SNORD121B 20,7978779 0 0 -Inf 

hsa-miR-140-5p 19,6837059 0 0 -Inf 

hsa-miR-542-3p 19,6837059 0 0 -Inf 

hsa-miR-652-5p 19,6837059 0 0 -Inf 

HBII-108B 18,5695338 0 0 -Inf 

HBII-13 17,4553618 0 0 -Inf 

HBII-82B 15,9697991 0 0 -Inf 

U36B 15,9697991 0 0 -Inf 

HBII-240 15,5984084 0 0 -Inf 

hsa-miR-500a-5p 15,5984084 0 0 -Inf 

hsa-miR-153-3p 15,2270177 0 0 -Inf 

U106 15,2270177 0 0 -Inf 

HBII-239 14,1128457 0 0 -Inf 

hsa-let-7f-2-3p 14,1128457 0 0 -Inf 

hsa-miR-16-2-3p 14,1128457 0 0 -Inf 

U53 12,9986737 0 0 -Inf 

hsa-miR-96-5p 12,627283 0 0 -Inf 

HBII-95 11,8845016 0 0 -Inf 

hsa-miR-1254 11,8845016 0 0 -Inf 

hsa-miR-660-3p 11,8845016 0 0 -Inf 

U101 11,513111 0 0 -Inf 

hsa-miR-30e-3p 11,1417203 0 0 -Inf 

hsa-miR-3619-5p 11,1417203 0 0 -Inf 

HBII-234 10,3989389 0 0 -Inf 

hsa-miR-550a-5p 10,3989389 0 0 -Inf 

hsa-miR-766-5p 10,0275483 0 0 -Inf 

U56 10,0275483 0 0 -Inf 

snR38A 9,65615759 0 0 -Inf 

U83 9,65615759 0 0 -Inf 

HBII-180A 9,28476691 0 0 -Inf 

hsa-miR-362-5p 9,28476691 0 0 -Inf 

hsa-miR-501-5p 9,28476691 0 0 -Inf 

HBII-296A 8,91337623 0 0 -Inf 

hsa-miR-500b-3p 8,91337623 0 0 -Inf 

hsa-miR-545-5p 8,91337623 0 0 -Inf 

hsa-miR-378h 8,54198556 0 0 -Inf 

U77 8,54198556 0 0 -Inf 
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HBII-296B 8,17059488 0 0 -Inf 

U103 8,17059488 0 0 -Inf 

U103B 8,17059488 0 0 -Inf 

U18C 8,17059488 0 0 -Inf 

hsa-let-7g-3p 7,7992042 0 0 -Inf 

U36C 7,7992042 0 0 -Inf 

hsa-miR-550a-3-5p 7,42781353 0 0 -Inf 

hsa-miR-942-5p 7,42781353 0 0 -Inf 

hsa-miR-548ap-3p 7,05642285 0 0 -Inf 

ACA10 6,68503217 0 0 -Inf 

E3 6,68503217 0 0 -Inf 

hsa-miR-3200-3p 6,68503217 0 0 -Inf 

hsa-miR-744-3p 6,3136415 0 0 -Inf 

HBII-99 5,94225082 0 0 -Inf 

hsa-miR-26b-3p 5,94225082 0 0 -Inf 

hsa-miR-1224-3p 5,57086015 0 0 -Inf 

hsa-miR-18a-3p 5,57086015 0 0 -Inf 

hsa-miR-502-5p 5,57086015 0 0 -Inf 

hsa-miR-574-5p 5,57086015 0 0 -Inf 

hsa-miR-92b-5p 5,57086015 0 0 -Inf 

U86 5,57086015 0 0 -Inf 

hsa-miR-183-3p 5,19946947 0 0 -Inf 

hsa-miR-212-3p 5,19946947 0 0 -Inf 

hsa-miR-3182 5,19946947 0 0 -Inf 

hsa-miR-504-5p 5,19946947 0 0 -Inf 

snR38B 5,19946947 0 0 -Inf 

U51 5,19946947 0 0 -Inf 

ACA51 4,82807879 0 0 -Inf 

ACA9 4,82807879 0 0 -Inf 

hsa-miR-8485 4,82807879 0 0 -Inf 

hsa-miR-99b-3p 4,82807879 0 0 -Inf 

U36A 4,82807879 0 0 -Inf 

HBII-251 4,45668812 0 0 -Inf 

HBII-295 4,45668812 0 0 -Inf 

HBII-85-12 4,45668812 0 0 -Inf 

hsa-miR-219b-5p 4,45668812 0 0 -Inf 

hsa-miR-221-5p 4,45668812 0 0 -Inf 

ACA61 4,08529744 0 0 -Inf 

ACA7 4,08529744 0 0 -Inf 

HBII-85-23 4,08529744 0 0 -Inf 

hsa-miR-25-5p 4,08529744 0 0 -Inf 

hsa-miR-301b-5p 4,08529744 0 0 -Inf 

hsa-miR-374a-5p 4,08529744 0 0 -Inf 

hsa-miR-548av-5p 4,08529744 0 0 -Inf 

HBI-43 3,71390676 0 0 -Inf 

HBII-85-11 3,71390676 0 0 -Inf 

hsa-miR-1273f 3,71390676 0 0 -Inf 
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hsa-miR-29a-5p 3,71390676 0 0 -Inf 

hsa-miR-4472 3,71390676 0 0 -Inf 

hsa-miR-624-5p 3,71390676 0 0 -Inf 

hsa-miR-769-3p 3,71390676 0 0 -Inf 

ACA7B 3,34251609 0 0 -Inf 

hsa-miR-3130-5p 3,34251609 0 0 -Inf 

hsa-miR-4791 3,34251609 0 0 -Inf 

hsa-miR-616-3p 3,34251609 0 0 -Inf 

hsa-miR-619-5p 3,34251609 0 0 -Inf 

hsa-miR-6797-3p 3,34251609 0 0 -Inf 

SNORD127 3,34251609 0 0 -Inf 

U71b 3,34251609 0 0 -Inf 

ACA43 2,97112541 0 0 -Inf 

hsa-miR-132-5p 2,97112541 0 0 -Inf 

hsa-miR-16-1-3p 2,97112541 0 0 -Inf 

hsa-miR-2467-3p 2,97112541 0 0 -Inf 

hsa-miR-450b-5p 2,97112541 0 0 -Inf 

hsa-miR-545-3p 2,97112541 0 0 -Inf 

hsa-miR-6511a-3p 2,97112541 0 0 -Inf 

hsa-miR-6511b-3p 2,97112541 0 0 -Inf 

hsa-miR-6799-3p 2,97112541 0 0 -Inf 

mgU2-25 2,97112541 0 0 -Inf 

ACA22 2,59973473 0 0 -Inf 

HBII-382 2,59973473 0 0 -Inf 

hsa-miR-103a-2-5p 2,59973473 0 0 -Inf 

hsa-miR-1179 2,59973473 0 0 -Inf 

hsa-miR-1256 2,59973473 0 0 -Inf 

hsa-miR-1273d 2,59973473 0 0 -Inf 

hsa-miR-128-1-5p 2,59973473 0 0 -Inf 

hsa-miR-199b-5p 2,59973473 0 0 -Inf 

hsa-miR-3150a-5p 2,59973473 0 0 -Inf 

hsa-miR-3653-5p 2,59973473 0 0 -Inf 

hsa-miR-548k 2,59973473 0 0 -Inf 

 
 
 
9.7 DG75 small RNA sequencing results (log2foldchange >±2) 

 
id baseMeanA baseMeanB foldChange log2FoldChange 

U29 197,796297 1,63299316 0,00825593 -6,920352855 

HBII-429 333,742978 3,26598632 0,00978593 -6,67507492 

hsa-miR-4521 10374,2014 104,511562 0,01007418 -6,633193917 

hsa-miR-3607-5p 2527,26104 58,7877538 0,02326145 -5,425915222 

hsa-miR-20a-5p 10153,135 404,982304 0,03988742 -4,647922577 

hsa-miR-505-5p 39,8042083 1,63299316 0,04102564 -4,607330314 

U101 38,5794635 1,63299316 0,04232804 -4,562242424 
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U74 1611,76425 70,218706 0,04356636 -4,52064152 

hsa-miR-95-3p 28,169132 1,63299316 0,05797101 -4,108524457 

ACA3 27,5567596 1,63299316 0,05925926 -4,076815597 

hsa-miR-33a-3p 80,8331615 4,89897949 0,06060606 -4,044394119 

hsa-miR-16-2-3p 25,7196423 1,63299316 0,06349206 -3,977279923 

U104 1085,73633 71,8516991 0,06617785 -3,917507703 

hsa-miR-19b-1-5p 172,076654 11,4309521 0,06642942 -3,912033899 

U25 364,361599 24,4948974 0,06722689 -3,894817763 

U45C 235,763388 16,3299316 0,06926407 -3,851749041 

U102 304,349101 21,2289111 0,06975184 -3,841624824 

U31 1921,6247 143,703398 0,07478224 -3,741160519 

HBI-61 21,4330353 1,63299316 0,07619048 -3,714245518 

hsa-miR-106b-5p 2115,74677 163,299316 0,07718283 -3,695576306 

HBII-336 20,8206628 1,63299316 0,07843137 -3,672425342 

SNORD126 20,8206628 1,63299316 0,07843137 -3,672425342 

U38A 20,8206628 1,63299316 0,07843137 -3,672425342 

hsa-miR-378a-5p 143,907522 11,4309521 0,07943262 -3,654124525 

hsa-miR-4284 605,023967 48,9897949 0,08097166 -3,626439137 

U44 1014,70113 84,9156444 0,08368538 -3,57888067 

hsa-miR-28-5p 205,144766 17,9629248 0,08756219 -3,513548167 

U18C 35,5176013 3,26598632 0,09195402 -3,442943496 

U50 34,9052288 3,26598632 0,09356725 -3,417852515 

SNORD119 51,4392846 4,89897949 0,0952381 -3,392317423 

hsa-miR-548aa 34,2928564 3,26598632 0,0952381 -3,392317423 

hsa-miR-548t-3p 34,2928564 3,26598632 0,0952381 -3,392317423 

hsa-miR-182-5p 152,480737 14,6969385 0,09638554 -3,375039431 

hsa-miR-942-5p 16,5340558 1,63299316 0,09876543 -3,339850003 

U19 16,5340558 1,63299316 0,09876543 -3,339850003 

hsa-miR-7-5p 676,671541 66,9527196 0,09894419 -3,33724115 

U58B 246,786092 24,4948974 0,09925558 -3,332707934 

hsa-miR-3529-3p 621,558022 62,0537402 0,0998358 -3,324298999 

hsa-miR-365a-3p 556,034172 55,5217675 0,09985316 -3,324048147 

hsa-miR-365b-3p 556,034172 55,5217675 0,09985316 -3,324048147 

hsa-miR-99a-5p 904,474088 93,0806102 0,10291131 -3,280526597 

hsa-let-7a-5p 7002,4788 751,176855 0,10727299 -3,220641195 

U73a 332,518233 35,9258496 0,10804174 -3,21033927 

hsa-miR-29c-3p 584,815676 63,6867333 0,10890052 -3,198917205 

HBII-419 313,534687 34,2928564 0,109375 -3,192645078 

hsa-miR-18a-5p 12721,425 1433,768 0,11270498 -3,149376782 

snR39B 2202,70365 249,847954 0,11342786 -3,140153102 

hsa-miR-29b-3p 4710,98115 545,419716 0,11577625 -3,110588801 

hsa-miR-1307-5p 463,565934 55,5217675 0,11977103 -3,061649149 

U58A 272,505734 34,2928564 0,1258427 -2,990306604 

ACA21 12,8598212 1,63299316 0,12698413 -2,977279923 

hsa-miR-1303 12,8598212 1,63299316 0,12698413 -2,977279923 

hsa-miR-148b-5p 12,8598212 1,63299316 0,12698413 -2,977279923 

hsa-miR-500a-5p 12,8598212 1,63299316 0,12698413 -2,977279923 
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Z17B 76,5465545 9,79795897 0,128 -2,965784285 

hsa-miR-18a-3p 24,4948974 3,26598632 0,13333333 -2,906890596 

U81 107,165176 14,6969385 0,13714286 -2,866248611 

hsa-miR-130b-5p 105,328059 14,6969385 0,13953488 -2,841302254 

HBII-85-27 11,6350763 1,63299316 0,14035088 -2,832890014 

U58C 781,387228 112,676528 0,14420063 -2,793850658 

hsa-let-7d-5p 1735,46348 251,480947 0,14490708 -2,786800003 

hsa-let-7f-5p 4673,01406 690,756108 0,14781811 -2,758105059 

E3 22,0454077 3,26598632 0,14814815 -2,754887502 

HBII-85-25 11,0227038 1,63299316 0,14814815 -2,754887502 

HBII-99 11,0227038 1,63299316 0,14814815 -2,754887502 

hsa-miR-616-5p 11,0227038 1,63299316 0,14814815 -2,754887502 

U87 11,0227038 1,63299316 0,14814815 -2,754887502 

U82 219,229332 32,6598632 0,14897579 -2,746850183 

mgh18S-121 216,779842 32,6598632 0,15065913 -2,730639956 

hsa-miR-629-3p 21,4330353 3,26598632 0,15238095 -2,714245518 

HBII-142 31,8433667 4,89897949 0,15384615 -2,700439718 

hsa-miR-4286 559,708406 86,5486376 0,15463166 -2,693092401 

U63 198,408669 31,0268701 0,1563786 -2,67688499 

U77 61,849616 9,79795897 0,15841584 -2,658211483 

HBII-420 374,159558 62,0537402 0,16584834 -2,592063557 

ACA51 9,79795897 1,63299316 0,16666667 -2,584962501 

hsa-miR-501-5p 9,79795897 1,63299316 0,16666667 -2,584962501 

U88 9,79795897 1,63299316 0,16666667 -2,584962501 

hsa-miR-101-3p 631,355981 106,144556 0,16812157 -2,572423305 

hsa-miR-18b-5p 58,1753814 9,79795897 0,16842105 -2,569855608 

SNORD121A 112,676528 19,5959179 0,17391304 -2,523561956 

hsa-miR-9-5p 56,3382641 9,79795897 0,17391304 -2,523561956 

hsa-miR-3653-5p 28,169132 4,89897949 0,17391304 -2,523561956 

hsa-miR-219b-5p 9,18558654 1,63299316 0,17777778 -2,491853096 

hsa-miR-3667-5p 9,18558654 1,63299316 0,17777778 -2,491853096 

U67 9,18558654 1,63299316 0,17777778 -2,491853096 

hsa-miR-17-3p 673,609679 122,474487 0,18181818 -2,459431619 

U28 17,7588006 3,26598632 0,18390805 -2,442943496 

hsa-miR-183-5p 70,4228301 13,0639453 0,18550725 -2,430452552 

hsa-miR-339-5p 175,750889 32,6598632 0,18583043 -2,427941333 

U18A 157,379716 29,3938769 0,18677043 -2,420662048 

hsa-miR-589-3p 34,9052288 6,53197265 0,1871345 -2,417852515 

U50B 43,4784429 8,16496581 0,18779343 -2,412781525 

U35B 52,051657 9,79795897 0,18823529 -2,409390936 

U90 8,5732141 1,63299316 0,19047619 -2,392317423 

hsa-miR-4454 212,493235 40,8248291 0,19212296 -2,379898164 

hsa-miR-142-3p 1508,27331 295,571762 0,19596698 -2,351317526 

hsa-miR-34a-5p 261,48303 52,2557812 0,19984387 -2,32305476 

SNORD125 24,4948974 4,89897949 0,2 -2,321928095 

hsa-miR-324-3p 55,7258917 11,4309521 0,20512821 -2,285402219 

hsa-miR-140-5p 39,8042083 8,16496581 0,20512821 -2,285402219 
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U54 31,8433667 6,53197265 0,20512821 -2,285402219 

ACA14b 7,96084166 1,63299316 0,20512821 -2,285402219 

HBII-316 176,975634 37,5588427 0,21222607 -2,236326227 

U57 122,474487 26,1278906 0,21333333 -2,22881869 

HBII-234 15,3093109 3,26598632 0,21333333 -2,22881869 

hsa-miR-25-5p 15,3093109 3,26598632 0,21333333 -2,22881869 

hsa-miR-582-5p 105,328059 22,8619043 0,21705426 -2,203872333 

hsa-miR-660-5p 320,270784 70,218706 0,21924793 -2,189364882 

hsa-let-7a-3p 52,051657 11,4309521 0,21960784 -2,186998515 

hsa-miR-1285-3p 28,7815045 6,53197265 0,22695036 -2,139551352 

hsa-miR-532-3p 28,7815045 6,53197265 0,22695036 -2,139551352 

hsa-miR-1260b 399,266828 91,4476171 0,22903886 -2,126335733 

hsa-let-7f-1-3p 35,5176013 8,16496581 0,22988506 -2,121015401 

hsa-miR-29a-3p 1752,60991 403,349311 0,23014209 -2,119403226 

hsa-miR-29c-5p 14,084566 3,26598632 0,23188406 -2,108524457 

hsa-miR-1180-3p 20,8206628 4,89897949 0,23529412 -2,087462841 

ACA9 6,73609679 1,63299316 0,24242424 -2,044394119 

hsa-miR-4791 6,73609679 1,63299316 0,24242424 -2,044394119 

hsa-miR-641 6,73609679 1,63299316 0,24242424 -2,044394119 

U96a 60,0124987 14,6969385 0,24489796 -2,029747343 

hsa-miR-15b-5p 1331,29768 326,598632 0,24532352 -2,027242536 

U43 98,5919622 24,4948974 0,24844721 -2,008988783 

U79 327,006881 81,6496581 0,24968789 -2,001802243 

hsa-miR-589-5p 13,4721936 53,8887743 4 2 

ACA41 4,89897949 19,5959179 4 2 

hsa-miR-526b-5p 4,89897949 19,5959179 4 2 

hsa-miR-7641 3,67423461 14,6969385 4 2 

hsa-miR-378f 2,44948974 9,79795897 4 2 

HBII-52-23 1,22474487 4,89897949 4 2 

hsa-miR-25-3p 88,1816307 364,157475 4,12962963 2,046012398 

hsa-miR-194-5p 17,7588006 75,1176855 4,22988506 2,08061846 

U3-3 556,646544 2356,40913 4,23322332 2,0817566 

U3 569,506365 2444,59076 4,29247312 2,101809099 

hsa-miR-619-5p 2,44948974 11,4309521 4,66666667 2,222392421 

ACA47 5,51135192 26,1278906 4,74074074 2,245112498 

U3-2 453,767975 2282,92444 5,03103914 2,330856412 

U3-2B 453,767975 2282,92444 5,03103914 2,330856412 

U3-4 439,683409 2279,65845 5,18477252 2,374280692 

hsa-miR-320b 8,5732141 45,7238085 5,33333333 2,415037499 

hsa-miR-320d 4,89897949 26,1278906 5,33333333 2,415037499 

HBII-202 1,22474487 6,53197265 5,33333333 2,415037499 

hsa-miR-129-2-3p 0,61237244 3,26598632 5,33333333 2,415037499 

hsa-miR-129-5p 0,61237244 3,26598632 5,33333333 2,415037499 

hsa-miR-182-3p 0,61237244 3,26598632 5,33333333 2,415037499 

hsa-miR-193a-3p 0,61237244 3,26598632 5,33333333 2,415037499 

hsa-miR-200b-3p 0,61237244 3,26598632 5,33333333 2,415037499 

hsa-miR-4511 0,61237244 3,26598632 5,33333333 2,415037499 
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hsa-miR-4779 0,61237244 3,26598632 5,33333333 2,415037499 

hsa-miR-7850-5p 0,61237244 3,26598632 5,33333333 2,415037499 

hsa-miR-99b-5p 0,61237244 3,26598632 5,33333333 2,415037499 

HBII-85-8 4,28660705 24,4948974 5,71428571 2,514573173 

HBII-276 4,28660705 26,1278906 6,0952381 2,607682577 

hsa-miR-152-3p 1,83711731 11,4309521 6,22222222 2,637429921 

U99 1,83711731 11,4309521 6,22222222 2,637429921 

HBII-85-6 4,28660705 27,7608838 6,47619048 2,695145418 

hsa-miR-320c 5,51135192 35,9258496 6,51851852 2,704544116 

HBII-85-10 1,22474487 8,16496581 6,66666667 2,736965594 

hsa-miR-643 1,22474487 8,16496581 6,66666667 2,736965594 

ACA63 3,06186218 22,8619043 7,46666667 2,900464326 

HBII-85-3 5,51135192 42,4578222 7,7037037 2,945552216 

HBII-85-9 5,51135192 42,4578222 7,7037037 2,945552216 

hsa-miR-150-5p 50,8269122 393,551352 7,74297189 2,952887404 

ACA8 0,61237244 4,89897949 8 3 

hsa-miR-133a-3p 0,61237244 4,89897949 8 3 

hsa-miR-138-1-3p 0,61237244 4,89897949 8 3 

hsa-miR-196b-5p 0,61237244 4,89897949 8 3 

hsa-miR-4492 0,61237244 4,89897949 8 3 

hsa-miR-885-5p 0,61237244 4,89897949 8 3 

SNORA84 0,61237244 4,89897949 8 3 

HBII-85-5 4,28660705 37,5588427 8,76190476 3,131244533 

HBII-85-7 4,28660705 37,5588427 8,76190476 3,131244533 

hsa-miR-486-3p 1,83711731 16,3299316 8,88888889 3,152003093 

hsa-miR-146a-5p 58,1753814 519,291826 8,92631579 3,158064846 

HBII-85-1 4,28660705 39,1918359 9,14285714 3,192645078 

HBII-436 1,22474487 11,4309521 9,33333333 3,222392421 

U61 1,22474487 11,4309521 9,33333333 3,222392421 

hsa-miR-3074-5p 6,73609679 63,6867333 9,45454546 3,2410081 

HBII-85-2 4,28660705 42,4578222 9,90476191 3,308122295 

SNORA38B 0,61237244 6,53197265 10,6666667 3,415037499 

U49B 0,61237244 6,53197265 10,6666667 3,415037499 

hsa-let-7e-5p 1,83711731 21,2289111 11,5555556 3,530514717 

hsa-miR-3651 0,61237244 8,16496581 13,3333333 3,736965594 

hsa-miR-6087 0,61237244 8,16496581 13,3333333 3,736965594 

hsa-miR-760 0,61237244 9,79795897 16 4 

U89 0,61237244 9,79795897 16 4 

HBII-85-4 2,44948974 40,8248291 16,6666667 4,058893689 

hsa-miR-199a-3p 5,51135192 101,245576 18,3703704 4,199308808 

hsa-miR-199b-3p 5,51135192 101,245576 18,3703704 4,199308808 

U47 1,22474487 22,8619043 18,6666667 4,222392421 

hsa-miR-655-3p 0,61237244 11,4309521 18,6666667 4,222392421 

hsa-miR-1246 34,2928564 658,096244 19,1904762 4,262318606 

hsa-miR-619-3p 0,61237244 13,0639453 21,3333333 4,415037499 

hsa-miR-647 0,61237244 13,0639453 21,3333333 4,415037499 

HBII-289 6,12372436 140,437412 22,9333333 4,519374159 
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U32A 3,06186218 91,4476171 29,8666667 4,900464326 

hsa-miR-199a-5p 0,61237244 24,4948974 40 5,321928095 

hsa-miR-3607-3p 1,22474487 52,2557812 42,6666667 5,415037499 

hsa-miR-126-5p 7,34846923 331,497612 45,1111111 5,495410916 

hsa-miR-486-5p 12,2474487 664,628217 54,2666667 5,761994389 

hsa-miR-30a-5p 0,61237244 39,1918359 64 6 

hsa-miR-223-3p 26,9443872 1817,52139 67,4545455 6,075843758 

hsa-miR-130a-3p 0,61237244 65,3197265 106,666667 6,736965594 

hsa-miR-126-3p 3,06186218 581,345566 189,866667 7,568842835 

hsa-miR-125a-5p 0,61237244 138,804419 226,666667 7,824428435 

hsa-miR-451a 0,61237244 1085,94045 1773,33333 10,79224803 

hsa-miR-145-5p 0 357,625502 Inf Inf 

hsa-miR-494-3p 0 311,901694 Inf Inf 

hsa-miR-203b-5p 0 153,501357 Inf Inf 

hsa-miR-203a-3p 0 145,336391 Inf Inf 

hsa-miR-143-3p 0 133,905439 Inf Inf 

hsa-miR-221-3p 0 112,676528 Inf Inf 

hsa-miR-376c-3p 0 112,676528 Inf Inf 

hsa-miR-214-3p 0 66,9527196 Inf Inf 

hsa-miR-379-5p 0 55,5217675 Inf Inf 

hsa-miR-455-3p 0 52,2557812 Inf Inf 

hsa-miR-144-3p 0 39,1918359 Inf Inf 

hsa-miR-222-3p 0 39,1918359 Inf Inf 

hsa-miR-409-3p 0 29,3938769 Inf Inf 

hTR 0 29,3938769 Inf Inf 

hsa-miR-122-5p 0 26,1278906 Inf Inf 

hsa-miR-144-5p 0 22,8619043 Inf Inf 

hsa-miR-411-5p 0 17,9629248 Inf Inf 

hsa-miR-487b-3p 0 16,3299316 Inf Inf 

hsa-miR-382-5p 0 14,6969385 Inf Inf 

hsa-miR-10b-5p 0 13,0639453 Inf Inf 

hsa-miR-224-5p 0 13,0639453 Inf Inf 

hsa-miR-376a-5p 0 11,4309521 Inf Inf 

hsa-miR-483-3p 0 11,4309521 Inf Inf 

hsa-miR-10a-5p 0 9,79795897 Inf Inf 

hsa-miR-326 0 9,79795897 Inf Inf 

hsa-miR-329-3p 0 9,79795897 Inf Inf 

hsa-miR-409-5p 0 9,79795897 Inf Inf 

hsa-miR-493-3p 0 9,79795897 Inf Inf 

hsa-miR-204-3p 0 8,16496581 Inf Inf 

hsa-miR-376a-3p 0 8,16496581 Inf Inf 

hsa-miR-376c-5p 0 8,16496581 Inf Inf 

hsa-miR-412-5p 0 8,16496581 Inf Inf 

hsa-miR-493-5p 0 8,16496581 Inf Inf 

hsa-miR-1249-3p 0 6,53197265 Inf Inf 

hsa-miR-26a-2-3p 0 6,53197265 Inf Inf 

hsa-miR-299-5p 0 6,53197265 Inf Inf 
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hsa-miR-3609 0 6,53197265 Inf Inf 

hsa-miR-381-3p 0 6,53197265 Inf Inf 

hsa-miR-487a-3p 0 6,53197265 Inf Inf 

hsa-miR-206 0 4,89897949 Inf Inf 

hsa-miR-335-5p 0 4,89897949 Inf Inf 

hsa-miR-3653-3p 0 4,89897949 Inf Inf 

hsa-miR-433-3p 0 4,89897949 Inf Inf 

hsa-miR-496 0 4,89897949 Inf Inf 

ACA54 0 3,26598632 Inf Inf 

hsa-miR-143-5p 0 3,26598632 Inf Inf 

hsa-miR-145-3p 0 3,26598632 Inf Inf 

hsa-miR-200a-5p 0 3,26598632 Inf Inf 

hsa-miR-340-3p 0 3,26598632 Inf Inf 

hsa-miR-34c-5p 0 3,26598632 Inf Inf 

hsa-miR-3591-3p 0 3,26598632 Inf Inf 

hsa-miR-3648 0 3,26598632 Inf Inf 

hsa-miR-33a-5p 179,425124 0 0 -Inf 

hsa-miR-590-3p 137,171426 0 0 -Inf 

U36B 100,42908 0 0 -Inf 

hsa-miR-1275 59,4001263 0 0 -Inf 

snR38A 53,8887743 0 0 -Inf 

ACA36B 50,8269122 0 0 -Inf 

hsa-miR-664a-3p 48,3774224 0 0 -Inf 

HBII-13 41,0289532 0 0 -Inf 

U105 28,7815045 0 0 -Inf 

U84 28,169132 0 0 -Inf 

HBII-239 27,5567596 0 0 -Inf 

hsa-miR-7974 23,882525 0 0 -Inf 

U15A 23,882525 0 0 -Inf 

HBII-108B 22,0454077 0 0 -Inf 

hsa-miR-579-3p 19,5959179 0 0 -Inf 

hsa-miR-181b-3p 17,7588006 0 0 -Inf 

U105B 17,1464282 0 0 -Inf 

U71b 16,5340558 0 0 -Inf 

hsa-miR-3618 14,6969385 0 0 -Inf 

hsa-miR-500b-5p 14,6969385 0 0 -Inf 

hsa-miR-545-3p 14,084566 0 0 -Inf 

hsa-miR-34a-3p 12,8598212 0 0 -Inf 

hsa-miR-4485-3p 12,8598212 0 0 -Inf 

hsa-miR-362-5p 11,6350763 0 0 -Inf 

ACA2b 11,0227038 0 0 -Inf 

hsa-miR-877-3p 11,0227038 0 0 -Inf 

HBII-251 10,4103314 0 0 -Inf 

hsa-miR-132-5p 10,4103314 0 0 -Inf 

ACA23 9,79795897 0 0 -Inf 

hsa-miR-192-3p 9,79795897 0 0 -Inf 

HBII-180A 9,18558654 0 0 -Inf 
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hsa-miR-3074-3p 8,5732141 0 0 -Inf 

hsa-miR-33b-5p 8,5732141 0 0 -Inf 

hsa-miR-597-5p 8,5732141 0 0 -Inf 

hsa-miR-96-5p 8,5732141 0 0 -Inf 

ACA62 7,96084166 0 0 -Inf 

hsa-miR-26b-3p 7,96084166 0 0 -Inf 

hsa-miR-4323 7,96084166 0 0 -Inf 

hsa-miR-183-3p 7,34846923 0 0 -Inf 

hsa-miR-3613-5p 7,34846923 0 0 -Inf 

hsa-miR-642a-3p 7,34846923 0 0 -Inf 

hsa-miR-642b-5p 7,34846923 0 0 -Inf 

ACA33 6,73609679 0 0 -Inf 

hsa-miR-3179 6,73609679 0 0 -Inf 

hsa-miR-642a-5p 6,73609679 0 0 -Inf 

hsa-miR-652-5p 6,73609679 0 0 -Inf 

ACA36 6,12372436 0 0 -Inf 

hsa-let-7g-3p 6,12372436 0 0 -Inf 

hsa-miR-4461 6,12372436 0 0 -Inf 

hsa-miR-576-5p 6,12372436 0 0 -Inf 

hsa-miR-874-5p 6,12372436 0 0 -Inf 

mgU6-77 6,12372436 0 0 -Inf 

ACA35 5,51135192 0 0 -Inf 

hsa-miR-1254 5,51135192 0 0 -Inf 

hsa-miR-1296-3p 5,51135192 0 0 -Inf 

hsa-miR-2110 5,51135192 0 0 -Inf 

hsa-miR-550a-3p 5,51135192 0 0 -Inf 

hsa-miR-550b-2-5p 5,51135192 0 0 -Inf 

mgU2-25 5,51135192 0 0 -Inf 

U65 5,51135192 0 0 -Inf 

U71d 5,51135192 0 0 -Inf 

ACA52 4,89897949 0 0 -Inf 

ACA53 4,89897949 0 0 -Inf 

hsa-let-7c-3p 4,89897949 0 0 -Inf 

hsa-miR-1-3p 4,89897949 0 0 -Inf 

 
 
 
 
9.8 HeLa small RNA sequencing results (log2foldchange >±1) 

 
id baseMeanA cell baseMeanB exo log2FoldChange 

hsa-miR-204-5p 423,0920113 2,261919333 -7,547280156 

hsa-miR-4284 917,8046138 6,785758 -7,079533269 

hsa-miR-95-3p 34,04188596 2,261919333 -3,911691582 

U74 131,7465197 9,047677333 -3,864073562 

hsa-miR-454-3p 27,41034974 2,261919333 -3,599101352 
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hsa-miR-125b-5p 1283,423311 117,6198053 -3,44779418 

U80 72,94689849 6,785758 -3,426264755 

U29 21,22091593 2,261919333 -3,229867542 

HBII-429 20,3367111 2,261919333 -3,168466997 

HBII-142 19,45250627 2,261919333 -3,10433666 

mgh28S-2411 17,24199419 2,261919333 -2,93030726 

hsa-miR-582-5p 98,58883857 13,571516 -2,86084244 

U24 49,07336808 6,785758 -2,854358407 

U48 15,91568694 2,261919333 -2,814830043 

hsa-miR-1260b 99,4730434 15,83343533 -2,65133131 

hsa-miR-99a-5p 1104,813935 192,2631433 -2,522649291 

U44 84,44156129 15,83343533 -2,414978947 

hsa-miR-455-3p 46,42075359 9,047677333 -2,359150559 

hsa-miR-10b-5p 68,96797676 13,571516 -2,345344759 

U97 11,49466279 2,261919333 -2,345344759 

hsa-miR-551b-3p 68,52587434 13,571516 -2,336066946 

U38A 11,05256038 2,261919333 -2,288761231 

hsa-miR-26a-5p 389,0501253 88,21485399 -2,140862536 

hsa-miR-361-3p 19,45250627 4,523838666 -2,10433666 

HBII-240 9,726253133 2,261919333 -2,10433666 

hsa-let-7f-5p 402,3131978 95,00061199 -2,082310353 

hsa-miR-3117-3p 18,56830144 4,523838666 -2,037222464 

hsa-miR-10a-5p 81,7889468 20,357274 -2,0063615 

hsa-miR-4454 398,334276 101,78637 -1,968435241 

hsa-miR-182-5p 77,36792265 20,357274 -1,926191152 

hsa-miR-30c-5p 246,2510452 65,59566066 -1,908457563 

hsa-miR-590-3p 8,399945887 2,261919333 -1,892832555 

hsa-miR-125a-5p 607,4487184 169,64395 -1,840252639 

U50 7,957843472 2,261919333 -1,814830043 

hsa-miR-4286 237,8510993 70,11949933 -1,762171093 

U16 7,515741057 2,261919333 -1,732367882 

hsa-miR-365a-3p 58,79962121 18,09535467 -1,700187477 

hsa-miR-365b-3p 58,79962121 18,09535467 -1,700187477 

hsa-miR-374b-5p 36,69450045 11,30959667 -1,698016378 

hsa-miR-374c-3p 36,69450045 11,30959667 -1,698016378 

hsa-miR-339-5p 29,1787594 9,047677333 -1,689299161 

hsa-miR-1275 7,073638642 2,261919333 -1,644905041 

hsa-miR-148b-5p 7,073638642 2,261919333 -1,644905041 

U82 7,073638642 2,261919333 -1,644905041 

U87 7,073638642 2,261919333 -1,644905041 

hsa-let-7e-5p 188,7777313 61,071822 -1,628109799 

U21 20,77881351 6,785758 -1,614531392 

hsa-miR-30b-5p 79,57843472 27,143032 -1,551795637 

U88 6,631536227 2,261919333 -1,551795637 

hsa-miR-210-3p 45,09444634 15,83343533 -1,509975461 

U62A 87,97838061 31,66687066 -1,47417474 

U62B 87,97838061 31,66687066 -1,47417474 



9. Appendix 

169 
 

HBII-239 6,189433812 2,261919333 -1,452259963 

hsa-miR-151a-5p 256,8615032 97,26253133 -1,40103464 

HBII-180C 17,6840966 6,785758 -1,381870635 

hsa-miR-98-5p 17,6840966 6,785758 -1,381870635 

hsa-miR-151b 264,3772442 101,78637 -1,377053619 

hsa-let-7a-5p 1067,677333 445,5981086 -1,260660695 

HBII-99 5,305228981 2,261919333 -1,229867542 

hsa-miR-32-5p 5,305228981 2,261919333 -1,229867542 

hsa-miR-876-5p 5,305228981 2,261919333 -1,229867542 

hsa-miR-505-3p 15,47358453 6,785758 -1,189225557 

hsa-miR-139-5p 66,75746468 29,40495133 -1,182870062 

hsa-miR-99a-3p 9,726253133 4,523838666 -1,10433666 

hsa-miR-500a-3p 4,863126566 2,261919333 -1,10433666 

U71b 4,863126566 2,261919333 -1,10433666 

U73a 4,863126566 2,261919333 -1,10433666 

hsa-miR-99b-5p 152,5253332 72,38141866 -1,075357593 

hsa-miR-30d-5p 179,4935805 364,1690126 1,02067592 

hsa-let-7d-3p 6,631536227 13,571516 1,033166864 

hsa-miR-296-5p 6,631536227 13,571516 1,033166864 

U75 4,421024151 9,047677333 1,033166864 

HBII-166 2,210512076 4,523838666 1,033166864 

hsa-miR-1254 2,210512076 4,523838666 1,033166864 

hsa-miR-1292-5p 2,210512076 4,523838666 1,033166864 

U27 42,88393427 90,47677333 1,077110212 

hsa-miR-574-3p 102,5677603 217,144256 1,082076464 

U33 10,61045796 22,61919333 1,092060553 

hsa-miR-224-3p 5,305228981 11,30959667 1,092060553 

U17b 25,19983766 54,286064 1,107167445 

hsa-miR-152-3p 16,79989177 36,19070933 1,107167445 

hsa-miR-23a-3p 1801,567342 3928,953882 1,124892654 

hsa-miR-181a-5p 43,32603668 95,00061199 1,132702537 

hsa-miR-877-3p 3,094716906 6,785758 1,132702537 

U18A 3,094716906 6,785758 1,132702537 

hsa-miR-19b-3p 1716,241575 3833,95327 1,159580114 

hsa-miR-186-5p 10,16835555 24,88111266 1,290964621 

hsa-miR-24-3p 935,4887104 2384,062977 1,349630198 

hsa-miR-224-5p 62,77854295 160,5962727 1,355094959 

U20 6,189433812 15,83343533 1,355094959 

hsa-miR-1306-5p 4,421024151 11,30959667 1,355094959 

hsa-miR-3607-5p 4,421024151 11,30959667 1,355094959 

U34 3,536819321 9,047677333 1,355094959 

U58A 2,652614491 6,785758 1,355094959 

hsa-miR-92b-5p 1,76840966 4,523838666 1,355094959 

U37 1,76840966 4,523838666 1,355094959 

ACA33 0,88420483 2,261919333 1,355094959 

ACA43 0,88420483 2,261919333 1,355094959 

HBI-43 0,88420483 2,261919333 1,355094959 
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HBII-202 0,88420483 2,261919333 1,355094959 

hsa-miR-1237-3p 0,88420483 2,261919333 1,355094959 

hsa-miR-1268a 0,88420483 2,261919333 1,355094959 

hsa-miR-1287-5p 0,88420483 2,261919333 1,355094959 

hsa-miR-181a-3p 0,88420483 2,261919333 1,355094959 

hsa-miR-183-3p 0,88420483 2,261919333 1,355094959 

hsa-miR-196b-3p 0,88420483 2,261919333 1,355094959 

hsa-miR-221-5p 0,88420483 2,261919333 1,355094959 

hsa-miR-25-5p 0,88420483 2,261919333 1,355094959 

hsa-miR-301b-3p 0,88420483 2,261919333 1,355094959 

hsa-miR-326 0,88420483 2,261919333 1,355094959 

hsa-miR-4488 0,88420483 2,261919333 1,355094959 

hsa-miR-6787-3p 0,88420483 2,261919333 1,355094959 

U85 0,88420483 2,261919333 1,355094959 

hsa-miR-452-5p 75,15741057 199,0489013 1,405135641 

hsa-let-7b-3p 8,842048302 24,88111266 1,492598483 

U26 31,83137389 90,47677333 1,507098052 

U52 3,978921736 11,30959667 1,507098052 

hsa-miR-1180-3p 11,05256038 31,66687066 1,518593691 

hsa-miR-185-5p 43,7681391 131,1913213 1,583719334 

ACA45 11,93676521 36,19070933 1,600207457 

hsa-miR-25-3p 15,47358453 47,500306 1,618129365 

hsa-miR-93-3p 12,37886762 38,45262866 1,635202878 

hsa-miR-501-3p 3,536819321 11,30959667 1,677023054 

hsa-miR-107 87,97838061 289,5256746 1,718470338 

hsa-miR-361-5p 21,22091593 72,38141866 1,770132458 

hsa-miR-421 17,24199419 58,80990266 1,770132458 

hsa-miR-22-5p 3,978921736 13,571516 1,770132458 

HBII-276 1,326307245 4,523838666 1,770132458 

hsa-miR-138-1-3p 1,326307245 4,523838666 1,770132458 

U58B 1,326307245 4,523838666 1,770132458 

U42B 11,05256038 38,45262866 1,79870161 

hsa-miR-149-5p 24,75773525 90,47677333 1,869668132 

hsa-miR-126-3p 18,56830144 67,85758 1,869668132 

hsa-miR-15b-3p 18,56830144 67,85758 1,869668132 

hsa-miR-423-3p 132,6307245 490,8364953 1,887827501 

hsa-miR-145-5p 97,70463374 361,9070933 1,889120494 

HBII-85-1 3,536819321 13,571516 1,94005746 

HBII-85-2 3,536819321 13,571516 1,94005746 

hsa-miR-454-5p 3,536819321 13,571516 1,94005746 

HBII-295 1,76840966 6,785758 1,94005746 

hsa-miR-579-3p 1,76840966 6,785758 1,94005746 

hsa-miR-629-3p 1,76840966 6,785758 1,94005746 

U17a 22,98932559 92,73869266 2,012207245 

hsa-miR-590-5p 88,86258544 361,9070933 2,025971363 

ACA61 2,210512076 9,047677333 2,033166864 

hsa-miR-92a-1-5p 2,210512076 9,047677333 2,033166864 
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mgU2-19 20,3367111 85,95293466 2,079460516 

hsa-miR-15a-5p 58,3575188 248,8111266 2,092060553 

hsa-let-7i-5p 171,5357371 744,1714606 2,11712589 

U8 10,16835555 45,23838666 2,153461098 

hsa-miR-21-3p 3,536819321 15,83343533 2,162449881 

hsa-miR-93-5p 244,924738 1124,173909 2,198454834 

hsa-miR-132-3p 10,61045796 49,76222533 2,229564077 

hsa-miR-615-3p 12,37886762 58,80990266 2,248179755 

hsa-miR-20a-5p 481,8916325 2372,75338 2,299781502 

HBII-85-3 4,863126566 24,88111266 2,355094959 

HBII-85-9 4,863126566 24,88111266 2,355094959 

HBII-85-4 2,652614491 13,571516 2,355094959 

ACA3 0,88420483 4,523838666 2,355094959 

hsa-miR-589-3p 0,88420483 4,523838666 2,355094959 

hsa-miR-873-3p 0,88420483 4,523838666 2,355094959 

U14B 0,88420483 4,523838666 2,355094959 

U41 0,88420483 4,523838666 2,355094959 

ACA21 0,442102415 2,261919333 2,355094959 

ACA41 0,442102415 2,261919333 2,355094959 

ACA55 0,442102415 2,261919333 2,355094959 

HBII-234 0,442102415 2,261919333 2,355094959 

HBII-438A 0,442102415 2,261919333 2,355094959 

HBII-438B 0,442102415 2,261919333 2,355094959 

hsa-let-7f-1-3p 0,442102415 2,261919333 2,355094959 

hsa-miR-105-5p 0,442102415 2,261919333 2,355094959 

hsa-miR-125b-2-3p 0,442102415 2,261919333 2,355094959 

hsa-miR-1268b 0,442102415 2,261919333 2,355094959 

hsa-miR-190a-5p 0,442102415 2,261919333 2,355094959 

hsa-miR-191-3p 0,442102415 2,261919333 2,355094959 

hsa-miR-616-3p 0,442102415 2,261919333 2,355094959 

hsa-miR-619-5p 0,442102415 2,261919333 2,355094959 

mgU6-47 0,442102415 2,261919333 2,355094959 

U105B 0,442102415 2,261919333 2,355094959 

U54 0,442102415 2,261919333 2,355094959 

U92 0,442102415 2,261919333 2,355094959 

mgh28S-2409 7,515741057 40,714548 2,437557119 

hsa-miR-143-3p 13,70517487 74,64333799 2,445292768 

hsa-miR-221-3p 32,71557872 183,215466 2,485491596 

hsa-miR-193b-3p 159,5989719 920,6011686 2,528124916 

hsa-let-7b-5p 273,2192925 1587,867372 2,538959151 

HBII-85-6 2,652614491 15,83343533 2,57748738 

HBII-85-8 2,652614491 15,83343533 2,57748738 

HBII-210 13,70517487 90,47677333 2,722826743 

HBII-316 2,652614491 18,09535467 2,770132458 

hsa-miR-130b-3p 8,842048302 61,071822 2,788054366 

hsa-miR-378d 22,98932559 167,3820307 2,864108606 

U83A 3,978921736 29,40495133 2,885609676 
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hsa-miR-130a-3p 127,767598 968,1014746 2,921636263 

hsa-miR-497-5p 1,76840966 13,571516 2,94005746 

ACA47 0,88420483 6,785758 2,94005746 

hsa-miR-378f 0,88420483 6,785758 2,94005746 

hsa-miR-589-5p 0,88420483 6,785758 2,94005746 

U14A 0,88420483 6,785758 2,94005746 

hsa-miR-3074-5p 49,51547049 393,573964 2,990683533 

hsa-miR-940 3,978921736 31,66687066 2,992524879 

HBII-85-5 3,094716906 24,88111266 3,007171655 

HBII-85-7 3,094716906 24,88111266 3,007171655 

hsa-miR-92a-3p 248,4615573 2056,084674 3,048805123 

E3 1,326307245 11,30959667 3,092060553 

hsa-miR-3613-3p 2,652614491 24,88111266 3,229564077 

hsa-miR-335-5p 12,37886762 122,143644 3,302627539 

hsa-miR-484 533,1755126 5297,415078 3,312606127 

hsa-miR-181b-5p 36,69450045 373,21669 3,346377742 

hsa-miR-1285-3p 1,76840966 18,09535467 3,355094959 

hsa-miR-16-2-3p 0,442102415 4,523838666 3,355094959 

hsa-miR-2278 0,442102415 4,523838666 3,355094959 

hsa-miR-340-5p 0,442102415 4,523838666 3,355094959 

hsa-miR-3940-3p 0,442102415 4,523838666 3,355094959 

hsa-miR-4508 0,442102415 4,523838666 3,355094959 

hsa-miR-6516-3p 0,442102415 4,523838666 3,355094959 

hsa-miR-6516-5p 0,442102415 4,523838666 3,355094959 

mgU12-22 0,442102415 4,523838666 3,355094959 

U28 0,442102415 4,523838666 3,355094959 

U71d 0,442102415 4,523838666 3,355094959 

U91 0,442102415 4,523838666 3,355094959 

U42A 1,76840966 20,357274 3,52501996 

U83B 3,094716906 36,19070933 3,547740037 

hsa-miR-320a 543,7859706 6629,685566 3,607829611 

hsa-miR-3184-5p 6,631536227 95,00061199 3,840521786 

hsa-miR-3529-3p 2,210512076 31,66687066 3,840521786 

hsa-miR-7-5p 2,210512076 31,66687066 3,840521786 

hsa-miR-92b-3p 45,53654876 671,790042 3,882913552 

hsa-miR-203b-5p 0,88420483 13,571516 3,94005746 

hsa-miR-2110 0,88420483 13,571516 3,94005746 

ACA63 0,442102415 6,785758 3,94005746 

hsa-miR-18a-3p 0,442102415 6,785758 3,94005746 

hsa-miR-6747-3p 0,442102415 6,785758 3,94005746 

hsa-miR-22-3p 16,35778936 264,644562 4,016006313 

hsa-miR-3184-3p 31,83137389 542,86064 4,092060553 

hsa-miR-423-5p 31,83137389 542,86064 4,092060553 

hsa-miR-126-5p 6,631536227 135,71516 4,355094959 

hsa-miR-629-5p 9,726253133 212,6204173 4,450252192 

hsa-miR-125a-3p 1,76840966 40,714548 4,52501996 

hsa-miR-320e 1,76840966 40,714548 4,52501996 
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U104 1,76840966 40,714548 4,52501996 

U96a 0,88420483 20,357274 4,52501996 

U22 11,49466279 278,216078 4,597169746 

hsa-miR-574-5p 9,284150718 226,1919333 4,606633726 

U61 0,442102415 11,30959667 4,677023054 

hsa-miR-378a-3p 166,2305081 4446,933409 4,741553713 

hsa-miR-296-3p 4,421024151 119,8817247 4,761087318 

U3 174,1883516 5163,961838 4,889758284 

U3-3 167,5568153 5143,604564 4,94005746 

hsa-miR-193a-5p 13,26307245 443,3361893 5,062914207 

hsa-miR-378c 7,515741057 253,3349653 5,07498704 

U3-2 124,2307786 5075,746984 5,352525599 

U3-2B 124,2307786 5075,746984 5,352525599 

U3-4 123,3465738 5071,223145 5,36154421 

HBII-289 3,536819321 156,072434 5,463619416 

hsa-miR-378e 1,326307245 63,33374133 5,57748738 

hsa-miR-877-5p 3,978921736 203,57274 5,677023054 

hsa-miR-138-5p 15,03148211 902,5058139 5,907877054 

hsa-miR-148a-3p 0,442102415 40,714548 6,52501996 

hsa-miR-193b-5p 0,442102415 45,23838666 6,677023054 

hsa-miR-320b 14,5893797 1687,391823 6,85373266 

hsa-miR-320c 10,61045796 1531,319389 7,173144482 

hsa-miR-150-5p 0,88420483 128,929402 7,187984973 

hsa-miR-320d 7,957843472 1275,722504 7,32472131 

hsa-miR-340-3p 2,652614491 450,1219473 7,406757079 

hsa-miR-1246 8,842048302 2194,061753 7,955007801 

hsa-miR-376c-3p 0,88420483 377,7405286 8,738799251 

hsa-miR-223-3p 0 531,5510433 Inf 

hsa-miR-451a 0 484,0507373 Inf 

hsa-miR-486-5p 0 217,144256 Inf 

hsa-miR-134-5p 0 104,0482893 Inf 

hsa-miR-494-3p 0 81,42909599 Inf 

hsa-miR-323a-3p 0 76,90525733 Inf 

hsa-miR-409-3p 0 61,071822 Inf 

hsa-miR-200a-3p 0 56,54798333 Inf 

hsa-miR-376a-3p 0 47,500306 Inf 

hsa-miR-382-5p 0 38,45262866 Inf 

hsa-miR-122-5p 0 29,40495133 Inf 

hsa-miR-3591-3p 0 29,40495133 Inf 

hsa-miR-144-3p 0 27,143032 Inf 

hsa-miR-142-3p 0 24,88111266 Inf 

hsa-miR-206 0 20,357274 Inf 

hsa-miR-154-5p 0 15,83343533 Inf 

hsa-miR-200b-3p 0 15,83343533 Inf 

hsa-miR-200c-3p 0 15,83343533 Inf 

hsa-miR-425-3p 0 15,83343533 Inf 

hsa-miR-214-3p 0 11,30959667 Inf 
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hsa-miR-329-3p 0 11,30959667 Inf 

hsa-miR-543 0 11,30959667 Inf 

hsa-miR-7854-3p 0 11,30959667 Inf 

U95 0 11,30959667 Inf 

hsa-miR-29b-1-5p 0 9,047677333 Inf 

hsa-miR-3607-3p 0 9,047677333 Inf 

hsa-miR-373-3p 0 9,047677333 Inf 

hsa-miR-379-5p 0 9,047677333 Inf 

hsa-miR-487b-3p 0 9,047677333 Inf 

hsa-miR-495-3p 0 9,047677333 Inf 

hsa-miR-6777-3p 0 9,047677333 Inf 

hsa-miR-885-5p 0 9,047677333 Inf 

hsa-miR-1-3p 0 6,785758 Inf 

hsa-miR-136-3p 0 6,785758 Inf 

hsa-miR-144-5p 0 6,785758 Inf 

hsa-miR-199a-3p 0 6,785758 Inf 

hsa-miR-199b-3p 0 6,785758 Inf 

hsa-miR-3679-5p 0 6,785758 Inf 

hsa-miR-380-3p 0 6,785758 Inf 

hsa-miR-382-3p 0 6,785758 Inf 

hsa-miR-432-5p 0 6,785758 Inf 

hsa-miR-486-3p 0 6,785758 Inf 

hsa-miR-5100 0 6,785758 Inf 

14qI-8 0 4,523838666 Inf 

14qII-14 0 4,523838666 Inf 

14qII-26 0 4,523838666 Inf 

HBI-6 0 4,523838666 Inf 

hsa-miR-127-3p 0 4,523838666 Inf 

hsa-miR-1273g-3p 0 4,523838666 Inf 

hsa-miR-1285-5p 0 4,523838666 Inf 

hsa-miR-142-5p 0 4,523838666 Inf 

hsa-miR-197-5p 0 4,523838666 Inf 

hsa-miR-215-5p 0 4,523838666 Inf 

hsa-miR-2355-3p 0 4,523838666 Inf 

hsa-miR-23a-5p 0 4,523838666 Inf 

hsa-miR-299-3p 0 4,523838666 Inf 

hsa-miR-300 0 4,523838666 Inf 

hsa-miR-3194-5p 0 4,523838666 Inf 

hsa-miR-337-5p 0 4,523838666 Inf 

hsa-miR-34c-5p 0 4,523838666 Inf 

hsa-miR-365a-5p 0 4,523838666 Inf 

hsa-miR-376b-3p 0 4,523838666 Inf 

hsa-miR-381-3p 0 4,523838666 Inf 

hsa-miR-411-5p 0 4,523838666 Inf 

hsa-miR-4429 0 4,523838666 Inf 

hsa-miR-4492 0 4,523838666 Inf 

hsa-miR-4725-3p 0 4,523838666 Inf 
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hsa-miR-485-3p 0 4,523838666 Inf 

hsa-miR-493-5p 0 4,523838666 Inf 

hsa-miR-665 0 4,523838666 Inf 

hsa-miR-760 0 4,523838666 Inf 

hsa-miR-938 0 4,523838666 Inf 

U63 26,52614491 0  -Inf 

U81 18,56830144 0 -Inf 

U84 16,35778936 0 -Inf 

U76 15,47358453 0 -Inf 

hsa-miR-324-5p 13,26307245 0 -Inf 

hsa-miR-28-5p 11,93676521 0 -Inf 

hsa-miR-4521 11,93676521 0 -Inf 

U36C 11,49466279 0 -Inf 

hsa-miR-378a-5p 10,16835555 0 -Inf 

U45A 8,842048302 0 -Inf 

hsa-miR-664a-3p 7,957843472 0 -Inf 

U106 7,957843472 0 -Inf 

ACA36B 7,515741057 0 -Inf 

HBII-180A 7,515741057 0 -Inf 

hsa-miR-196b-5p 7,073638642 0 -Inf 

mgh18S-121 7,073638642 0 -Inf 

U101 7,073638642 0 -Inf 

U103 7,073638642 0 -Inf 

U103B 7,073638642 0 -Inf 

HBII-55 6,631536227 0 -Inf 

U51 6,631536227 0 -Inf 

U60 6,631536227 0 -Inf 

U43 6,189433812 0 -Inf 

snR38B 5,747331397 0 -Inf 

U45B 5,747331397 0 -Inf 

U86 5,747331397 0 -Inf 

hsa-miR-27a-5p 5,305228981 0 -Inf 

hsa-miR-532-3p 5,305228981 0 -Inf 

hsa-miR-675-3p 5,305228981 0 -Inf 

U55 5,305228981 0 -Inf 

hsa-miR-502-3p 4,863126566 0 -Inf 

U13 4,863126566 0 -Inf 

U49A 4,863126566 0 -Inf 

hsa-miR-192-5p 4,421024151 0 -Inf 

hsa-miR-548aa 4,421024151 0 -Inf 

hsa-miR-548t-3p 4,421024151 0 -Inf 

U15A 4,421024151 0 -Inf 

U50B 4,421024151 0 -Inf 

HBII-85-21 3,978921736 0 -Inf 

hsa-miR-545-3p 3,978921736 0 -Inf 

U58C 3,978921736 0 -Inf 

U65 3,978921736 0 -Inf 
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HBII-85-14 3,536819321 0 -Inf 

HBII-85-16 3,536819321 0 -Inf 

HBII-85-17 3,536819321 0 -Inf 

HBII-85-18 3,536819321 0 -Inf 

HBII-85-19 3,536819321 0 -Inf 

HBII-85-20 3,536819321 0 -Inf 

HBII-85-22 3,536819321 0 -Inf 

HBII-95B 3,536819321 0 -Inf 

hsa-miR-132-5p 3,536819321 0 -Inf 

HBII-85-15 3,094716906 0 -Inf 

HBII-85-25 3,094716906 0 -Inf 

HBII-85-27 3,094716906 0 -Inf 

HBII-85-29 3,094716906 0 -Inf 

hsa-miR-362-5p 3,094716906 0 -Inf 

U15B 3,094716906 0 -Inf 

U59B 3,094716906 0 -Inf 

U77 3,094716906 0 -Inf 
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9.9  Plasmid maps 

 
9.9.1  Destiny vector for lentiviral construct generation  

 
 
9.9.2. Lentivirus vector for stable CD9GFP expression 
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9.9.3. Lentivirus vector for stable AlixmCherry expression 

 

 
 
 
 
9.9.4. Lentivirus vector for stable TSG101mCherry expression  

 
 



9. Appendix 

179 
 

9.10 Curriculum vitae 

 
Personal data 

 

Date of birth  18.09.1985 

Born in   Herford 

Nationality  German 

 

Education 

 

05.2013 – 11.2016 Promotion at the German Primate Center (Uni Göttingen) 

 Acceptance at the Göttingen Graduate School for 

Neurosciences, Biophysics, and Molecular Biosciences 

(GGNB) 

 Emphases: Molecular Biology (RNA isolation, NGS),  

Cell Biology (Cell Culture, Transfection), Bioinformatic (NGS 

Data Analysis by R-software) 

 

10.2010 – 01.2013 Biochemistry (Master), University Bielefeld 

 Emphases: Proteincrystallography, Cell Biology, Genetics  

 Master thesis: „Untersuchungen zur 

Transkriptionsregulation der humanen Xylosyltransferasen 

 (Grade: 1.0) 

 Graduation: Bachelor of Science (Note: 1.4) 

 _________________________________________________ 

 

10.2006 – 09.2010 Biochemistry (Bachelor), University Bielefeld 

 Emphases: Gentechnology, Cell Biology, Immunology 

 Bachelor thesis: „Funktionale Charakterisierung einer ZF5-

Transkriptionsfaktorbindestelle im XT-II Promotor“             

(Grade: 1.3) 

 Graduation: Bachelor of Science (Note: 2.4) 

 



9. Appendix 

180 
 

10.2005 – 09.2006 Bioinformatics and Genome Research, Universität Bielefeld  

 

Study abroad 

 
01.2012 – 04.2012 Research Internship, Biomedical Center,  

Uppsala University, Sweden 
 

- Cell culture of chinese hamster ovary cells 

- Cell stimulation with FGF 

- SDS-PAGE protein separation and western      
  blotting 

- Separation of GAGs by sizing column  
  chromatography 

- Enzymatic and chemical cleavage of GAGs 

 

10.2003    Great Whirley High school Exchange, UK 

 

Further Qualification 

 

Languages         German (native language) 

 English (advanced) 

 Latin (basic) 

 

EDV knowledge  Operation systems: MS Windows, MacOS, Linux 

  Programming: R-software 

     Data processing: Origin 8.6, Graphpad, Fiji, Chemdraw 

Awards 

 

Admission to Göttingen Graduate School for Neurosciences, Biophysics, and Molecular 

Biosciences (GGNB) in 2013. 

 

Posterprize at the 12th international PhD symposium „Horizons in Molecular Biology“, 

Göttingen in 2014. 

 



9. Appendix 

181 
 

Publications 

 

Hoffmann DB, Böker KO, Schneider S, Eckermann-Felkl E, Schuder A, Komrakova M, 

Sehmisch S, Gruber J. In Vivo siRNA Delivery Using JC Virus-like Particles Decreases the 

Expression of RANKL in Rats. Mol Ther Nucleic Acids. 2016 Mar 22;5:e298. doi: 

10.1038/mtna.2016.15. 

 

Liedigk R, Kolleck J, Böker KO, Meijaard E, Md-Zain BM, Abdul-Latiff MA, Ampeng A, Lakim 

M, Abdul-Patah P, Tosi AJ, Brameier M, Zinner D, Roos C. Mitogenomic phylogeny of the 

common long-tailed macaque (Macaca fascicularis fascicularis). BMC Genomics. 2015 Mar 

21;16:222. doi: 10.1186/s12864-015-1437-0. 

 

Faust I, Böker KO, Eirich C, Akkermann D, Kuhn J, Knabbe C, Hendig D. Identification and 

characterization of human xylosyltransferase II promoter single nucleotide variants. Biochem 

Biophys Res Commun. 2015 Mar 20;458(4):901-7. doi: 10.1016/j.bbrc.2015.02.056. 

 

Faust I, Böker KO, Lichtenberg C, Kuhn J, Knabbe C, Hendig D. First description of the 

complete human xylosyltransferase-I promoter region. BMC Genet. 2014 Dec 5;15:129. doi: 

10.1186/s12863-014-0129-0. 


	Table of contents
	List of Figures
	List of tables
	Original publications
	1. Introduction
	1.1 Extracellular vesicles
	1.2 Exosomes: Classification, biogenesis and marker proteins
	1.3 Methods of extracellular vesicle isolation
	1.4 Biogenesis of miRNAs and RNA interference (RNAi)
	1.5 Cell-cell communication via extracellular vesicles
	1.6  Gene delivery via lentiviruses or virus-like particles (VLPs)
	1.7 Aim of thesis

	2. Materials & Methods
	2.1  Molecular biology
	2.1.1  Escherichia coli transformation, cultivation and plasmid isolation
	2.1.2  DNA separation by Agarose Gel Electrophoresis
	2.1.3  Polymerase chain reaction
	2.1.4  Gel purification
	2.1.5  Ligation of two DNA fragments
	2.1.6  Transformation of bacteria
	2.1.7  Restriction digestion of DNA
	2.1.8 Isolation of extracellular vesicles
	2.1.9 Extracellular vesicle characterization by Nanoparticle Tracking Analysis
	2.1.10 RNA Isolation, size and integrity detection and cDNA synthesis
	2.1.11 Quantitative PCR analysis
	2.1.12 NGS library preparation
	2.1.13 Next generation sequencing and data analysis
	2.1.14 Preparing samples for electron microscopy

	2.2  Cell biology
	2.2.1  Cell culture
	2.2.2  Fluorescence microscopy
	2.2.3  Generation of lentiviral constructs
	2.2.4 Lentivirus production, concentration and titration
	2.2.5  Generation of stable CD9GFP, Alix-mCherry and TSG101mCherry cell lines
	2.2.6  Primary cortical culture
	2.2.7  Immunohistochemistry and confocal microscopy
	2.2.8  Flow cytometry analysis (FACS)
	2.2.9 Transfection of pUTA2.0 plasmids and data analysis
	2.2.10 Virus like particle loading with DNA or RNA for in vitro use
	2.2.11 Virus like particle loading with NanoGold particles
	2.2.12 Virus like particle loading for in vivo use

	2.3  Protein biochemistry
	2.3.1 Preparation of exosome or cellular samples for protein analysis
	2.3.2  Determination of protein concentration
	2.3.3  Polyacrylamid gel electrophoresis
	2.3.4  Western Blot
	2.3.5  VLP production and purification

	2.4  Materials
	2.4.1  Machines
	2.4.2  Buffers and Solutions
	2.4.3  Chemicals and Materials
	2.4.4. Bacterial strains information
	2.4.5 Cell lines
	2.4.6  Cell culture media and additives


	3. Results
	3.1.  Comparison of three isolation techniques for exosomes
	3.1.1  Different isolation techniques yield various size profiles of EVs
	3.1.2  All tested isolation techniques show exosomal marker protein expression
	like CD9, CD63 or Alix
	3.1.3  Confirmation of EV isolation by electron microscopy

	3.2.  Small RNA profiles of cellular and exosomal RNA
	3.2.1  Cellular and exosomal RNA differ in size distribution
	3.2.2  Next generation sequencing workflow
	3.2.3  Reproducibility of NGS data on the IonTorrent system
	3.2.4  Exosomal and intracellular small RNA profiles of human B-lymphocytes (Raji)
	3.2.5 Exosomal and intracellular small RNA profiles of human T-lymphocytes (Jurkat)
	3.2.6  Exosomal and intracellular small RNA profiles of human B-lymphocytes (DG75)
	3.2.7  Exosomal and intracellular small RNA profiles of human cervical cancer cells (HeLa)
	3.2.8  Cluster analysis of cellular and exosomal small RNAs
	3.2.9  Comparison of miRNA distribution in exosomes and sequence motifs

	3.3  Comparison of exosome isolation techniques
	3.4  Overexpression of exosomal marker proteins and influence on EVs and  LVs
	3.4.1  Overexpression of TSG101, Alix or CD9 alters both amount and mean sizes of EVs
	3.4.2  CD9 overexpression affects size and amount of extracellular vesicles in
	different cell types
	3.4.3  Cellular localization of CD9GFP, AlixmCherry and TSG101mCherry
	3.4.4  LV production workflow and produced LVs
	3.4.5  The CD9 mediated increase of extracellular vesicles boosts the transduction efficiency of lentiviral vectors
	3.4.6  Overexpression of CD9 yields transduction competent LVs in absence of viral envelope proteins
	3.4.7  Influence of CD9 on LV production and amount tested by ELISA
	3.4.8  Performance of CD9 LVs on primary cell material
	3.4.9  Cytoplasmic relocalization of CD9 during lentivirus production
	3.4.10  CD9 influence on exosomal small RNA content

	3.5. Role of EVs in cell-cell communication
	3.5.1 Sequence motifs of secreted miRNAs of Jurkat and Raji
	3.5.2 Cell-cell communication between Raji and Jurkat cells
	3.5.3 Cell-cell communication analysis by a novel dual reporter gene toolbox

	3.6  Manipulation of human B-lymphocytes and in vivo studies
	3.6.1  Transduction of human B-lymphocytes via virus-like particles (VLPs)
	3.6.2  Tracking of miR-451a inside human B-lymphocytes via NanoGold particles
	3.6.3  Studying cell-cell communication between Raji and SW837
	3.6.4 In vivo siRNA delivery by virus-like particles (VLPs)


	4. Discussion
	4.1  Comparison of exosome isolation techniques
	4.2  Cellular and extracellular small RNA profiles of four human cell lines
	4.3  Comparison of PEG precipitation and Ultracentrifugation
	4.4  Overexpression of exosomal marker proteins and influence on EVs and LVs
	4.5  Role of EVs in cell-cell communication
	4.6  Manipulation of human B-lymphocytes and in vivo studies

	5. Summary
	6. Reference
	7. Acknowledgements
	8. Abbreviations
	9. Appendix
	9.1  Raji sequencing reports
	9.1.1  Intracellular Raji library (Raji cell1)
	9.1.2 Intracellular Raji library (Raji cell3)
	9.1.3 Intracellular Raji (Raji cell2) and exosomal Raji library (Raji exo3)
	9.1.4 Exosomal Raji library (Raji exo1)
	9.1.4 Exosomal Raji library (Raji exo2)

	9.2  Jurkat sequencing run reports
	9.2.1  Intracellular Jurkat library
	9.2.2 Exosomal Jurkat library

	9.3 DG75 sequencing reports
	9.3.1 Intracellular DG75 library
	9.3.2 Exosomal DG75 library

	9.4  HeLa sequencing reports
	9.4.1 Intracellular HeLa library
	9.4.2 Exosomal HeLa library

	9.5 Raji small RNA sequencing results
	9.6 Jurkat small RNA sequencing results (log2foldchange >±2)
	9.7 DG75 small RNA sequencing results (log2foldchange >±2)
	9.8 HeLa small RNA sequencing results (log2foldchange >±1)
	9.9  Plasmid maps
	9.9.1  Destiny vector for lentiviral construct generation
	9.9.2. Lentivirus vector for stable CD9GFP expression
	9.9.3. Lentivirus vector for stable AlixmCherry expression
	9.9.4. Lentivirus vector for stable TSG101mCherry expression

	9.10 Curriculum vitae


