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Stochastic modeling of

photoswitchable fluorophores for

quantitative superresolution microscopy

Lars Frahm

The diffraction limit of optical microscopy can be overcome by switching fluorophores

between on- and off-states. In the on-state, the fluorophores emit fluorescence and

can be detected. In the off-state, they remain dark. By modeling the stochastic

switching of the fluorophores between the on- and the off-state, quantitative insights

can be gained into the image formation process of superresolution microscopy.

Reversible saturable optical fluorescent transitions (RESOLFT) can be used to drive

the fluorophores to a non-fluorescent off-state using light. In a RESOLFT micro-

scope, the size of the region in which there is a high probability that the fluorophores

remain in the on-state can be confined to the sub-diffraction scale. To count the num-

ber of fluorophores in a RESOLFT image, the photoswitching process of reversibly

switchable fluorescent proteins was modeled. Based on this model, a method was

developed to calibrate the brightness per fluorescent protein directly from the image

data. The result of the analysis is an estimate of the number density of fluorophores

in the image.

In stochastic optical reconstruction microscopy (STORM), a superresolved image

can be reconstructed by switching fluorophores stochastically between the on- and

off-state, and localizing the position of single molecule events. In activation-based

multicolor STORM, several species of activator-reporter fluorophore pairs can be dis-

tinguished by activating them specifically at different points in time. In this method,

the crosstalk between the color channels is typically high due to random activation

of the reporter fluorophores, which can happen at the same time as the specific

activation. We introduce a new approach to avoid this principal source of crosstalk

in multicolor STORM, based on estimating the on-switching time of single molecule

events with sub-frame precision. Our method enables the assignment of switching

events to the correct molecular species with an improved error rate. This signifi-

cantly reduces the crosstalk in activation-based multicolor STORM, and presents a

solution for high resolution STORM imaging of multiple molecular species.
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1. Introduction

With optical fluorescence microscopy, direct insights into biological processes can

be gained. But due to diffraction, the resolution of fluorescence microscopy was

limited to about half the wavelength of the fluorescence light [1]. The diffraction

limit of far-field optical microscopy was first overcome by stimulated emission de-

pletion (STED), by switching fluorescent dyes into a non-fluorescent off-state using

stimulated emission [2, 3]. Since then, many different physical processes have been

used to achieve superresolution by switching fluorophores between a fluorescent on-

and a non-fluorescent off-state [4–6].

For light-driven processes, the incident light can change the probability that a

fluorophore resides in the on-state. This can be used to confine the regions in which

the fluorophores have a high probability to remain in the on-state to sub-diffraction

sized spots. By illuminating the sample with patterns of light, this probability is

driven close to zero everywhere else. These so called coordinate-targeted superres-

olution methods are based on reversible saturable optical (fluorescent) transitions

(RESOLFT) [7].

By driving the probability that fluorophores reside in the on-state close to zero

everywhere, these switching processes can also be exploited by localizing sparsely

activated single molecules. The position of an individual bright emitter can be

determined with a high precision [8, 9]. By repeatedly estimating the positions of

random subsets of the population of fluorophores, a superresolved image can be

reconstructed in single molecule localization microscopy (SMLM) [10–15].

1.1. Quantitative RESOLFT microscopy

RESOLFT microscopy based on reversibly switchable fluorescent proteins (rsFPs)

is ideally suited for quantitative live-cell imaging [16–18]. Fluorescent proteins can

be expressed natively in living organisms such that the structure of interest can be

labeled quantitatively [19,20]. Thus, not only can the structure be imaged with high

resolution, but the number of fluorophores making up the image can be estimated

from the data. At first glance, counting the number of fluorophores in a fluorescence
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1. Introduction

image seems straightforward. As the image can be modeled as the superposition of

the images of many single fluorophores, the number of fluorophores can be estimated

by dividing the image intensity by the brightness per fluorophore [21]. In practice,

however, the characteristic fluorophore brightness cannot be calibrated easily, as it

depends on the illumination intensity distributions in the focal plane of the micro-

scope, the response of the fluorophores and the detection efficiency of the optical

system. Ideally, the brightness should be calibrated from the image data itself to

take into account all these influences. To this end, several methods have been de-

veloped, both for diffraction-limited and superresolution fluorescence microscopy,

which we compare in the following.

For single clusters of few fluorophores each, the number of molecules in each

cluster can be determined by imaging them repeatedly until the fluorophores reach

an irreversible photobleached state [22]. If the signal-to-noise ratio is large enough

to determine steps in the decaying signal, the height of these bleaching steps can be

used to calibrate the brightness per fluorophore.

Another approach is based on the fact, that a fluorophore in the excited state

can only emit one photon at a time. Thus, by investigating the fluorescence photon

statistics, the brightness per fluorophore can be calibrated [23]. This approach was

recently also applied to map the number of fluorophores in STED images [24].

SMLM can also be used to quantify the number of fluorophores in an image. In-

stead of calibrating the brightness of the fluorophores in terms of measured photons,

here, the number of switching cycles has to be estimated precisely [25,26]. However,

due to photobleaching, the number of switching cycles for single fluorophores is typi-

cally geometrically distributed, as most fluophores can switch to the on-state several

times [27,28]. Also, some single molecules may not be detected because they emit an

insufficient number of photons, leading to missed events [29]. Thus, the switching

kinetics have to be calibrated carefully to avoid errors due to missed events and

repeated activation of fluorophores [30]. The problem of geometrically distributed

event numbers can be partly overcome by using binding and unbinding fluorescently

labeled DNA strands [31]. The influx rate of DNA strands is held constant, such

that the number of events follows a Poisson distribution. Nevertheless, the average

binding rate still has to be calibrated from single binding targets.

Fluorescence correlation spectroscopy (FCS) can also be used to determine the

brightness per single molecule [32–34]. Here, fluorophores diffuse through the de-

tection volume, which can be diffraction-limited, or even below the diffraction limit

using STED-FCS [35]. Given the same average signal, the fluctuations from many

2



1. Introduction

dim molecules are smaller than those from a few bright molecules diffusing through

the focus. The brightness per molecule can be estimated from the mean and the vari-

ance of the observed temporal intensity fluctuations using a model for the number

and brightness of the fluorophores [34].

For fluctuations due to photoswitching, the number and the brightness of the

fluorophores can also be modeled using higher statistical moments of the distribution

of measured photon counts. This approach is taken in balanced superresolution

optical fluctuation imaging (SOFI) [36], where the brightness per fluorophore is

estimated from the statistical cumulants of the signal in a wide-field fluorescence

image.

Modeling the switching properties of single molecules due to different kinds of state

transitions is the basis for these counting methods. In this work, we want to estimate

the brightness of the fluorophores from the fluctuations due to the photoswitching

process inherent in RESOLFT microscopy. We have to take into account both the

shape of the intensity distribution in the focus, and the response of the rsFPs on

this intensity. To this end, we measure the intensity-dependent switching rates for

two rsFPs, the reversibly switchable enhanced green fluorescent proteins rsEGFP

and rsEGFP2 [17,18]. Using a simple two state model in which the switching rates

are linearly proportional to the intensity, we calculate the mean and the variance of

the fluorescence signal measured in RESOLFT microscopy. This model is applied

to estimate both the brightness per fluorophore and the number density of the

fluorophores in a single RESOLFT image in living tissue.

1.2. Activation-based multicolor STORM

In SMLM, each single molecule switches on individually, such that the position

of each single molecule event can be localized with a high precision. Additional

information can be gained from analyzing these single molecule signals. By mea-

suring spectral information from single molecule data, multicolor images can be

reconstructed from samples, in which different structures are labeled with different

species of single molecules [37–41]. However, due to chromatic aberrations in the op-

tical system, the images of single molecules of different colors may be distorted, such

that the final image has to be corrected by transforming and aligning images for the

different color channels [6,42–44]. An alternative multicolor SMLM method images

different color species by labeling and imaging the sample sequentially [45,46]. But

again, the images for the color channels have to be aligned. As the localization pre-

cision, and thus the resolution, reaches the single nanometer scale [47,48], the error

3



1. Introduction

due to these image registration methods can be on the order of the localization pre-

cision, such that co-localization studies on the nanometer scale become increasingly

difficult [6, 49].

An SMLM method that avoids the need for image registration is multicolor

STORM (stochastic optical reconstruction microscopy) using activator-reporter dye

pairs [11,50]. Here, the sample is labeled with the same reporter fluorophore species

for all color species in the sample. For color discrimination, each reporter fluorophore

is paired with an activator dye. Different structures in the sample are labeled with

activator dyes that react to light of different wavelengths. Several activator-reporter

species can be discriminated by activating them periodically at different times. Lo-

calization events that are first detected in an image frame in which activation light

is applied, are assigned to the corresponding color channel.

This method typically shows a high crosstalk between the color channels of 10 to

20% [42], while spectral separation of the fluorescence emission allows a crosstalk of

lower than a few percent [39–41]. In sequential imaging methods, negligible crosstalk

is reported [45, 46]. The high crosstalk in activation-based multicolor STORM is

caused by two sources. First, the fluorescent dyes can be activated with activation

light designated to activate another species. Second, random activation of the re-

porter dye can happen at the same time during which the activation light is applied.

As events are typically assigned to each color channel by means of the frame in

which they were first detected, single molecules that activate randomly during the

same frame are assigned to the color channel as well.

To address the problem of the high crosstalk due to random activation, we de-

velop a method to estimate the on- and off-switching transition time from the sin-

gle molecule data with a sub-frame time precision. By estimating this time pre-

cisely, randomly activated single molecule events are recognized and discarded. The

method for estimating the switchng transition times is also applied to analyze the

switching kinetics of Alexa 647, a single molecule fluorophore frequently used as

reporter in activation-based multicolor STORM [51], based on a two state switching

model.
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2. Theoretical modeling of

superresolution microscopy

In order to understand superresolution methods based on photoswitching fluorescent

markers quantitatively, a mathematical model is needed to describe the switching

behavior of the fluorophores. In this chapter, we will first discuss on- and off-

switching fluorescence transitions which have been used for achieving superresolution

in microscopy. Markov models can in general be used to describe the stochastic

behavior of systems switching between different states. Methods for estimating the

rate parameters for different kinds of data are introduced, including single molecule

traces and ensemble switching measurements.

The switching kinetics estimated using these methods are then applied to quan-

titatively model two superresolution methods, RESOLFT microscopy based on re-

versibly switchable fluorescent proteins and STORM single molecule localization

microscopy based on photoswitchable organic dyes.

In RESOLFT microscopy, the signal of an ensemble of many molecules is inte-

grated onto the detector. This usually results in a large signal, but the individual

behavior of each molecule cannot be identified any more. Additionally, the con-

tribution of each molecule is weighted by the point spread function (PSF) of the

microscope.

By taking into account prior knowledge about the imaged structure, we develop a

method to estimate the effective PSF from an image based on a blind deconvolution

procedure. Finally, we will discuss the statistical properties of the signal measured in

RESOLFT microscopy. This stochastic image formation model is applied to estimate

the average brightness of the fluorophores and to infer the number of fluorescent

proteins in a RESOLFT image.

In SMLM, the stochastic behavior of single molecules is observed directly. How-

ever, this kind of measurement requires very bright fluorophores which can be de-

tected one by one. The amount of single molecule data needed to estimate the

switching rates with sufficient precision has to be very large, as the on- and off-

switching rates span several orders of magnitude.

5



2. Theoretical modeling of superresolution microscopy

To measure the on-state dwell times from single molecule data, we develop a

method to estimate the switching transition time for single molecule events with a

sub-frame time precision.

The measured single molecule kinetics are then used to model the imaging pro-

cess in SMLM. This model shows, that the crosstalk in activation-based multicolor

STORM can be reduced by estimating the on-switching transition time, which in

turn allows to assign single molecule events to each color channel with a lower error

rate.

2.1. Photoswitchable fluorophores

Typically, two states are responsible for the resolution improvement in superresolu-

tion microscopy, a fluorescent on-state and a non-fluorescent off-state. The physical

processes leading to on- and off-states useful for superresolution microscopy are

manifold. Two different kinds of transitions can be distinguished: Light-driven and

spontaneous switching transitions.

Light-driven transitions can be characterized by their effective switching cross-

section [52,53], which is the effective area over which a single molecule absorbs light

to undergo the transition. An important physical cross-section is the absorption

cross-section σ for a absorbing a photon to reach the excited state. For single

photon transitions, σ is typically on the order of 10−14 to 10−16cm2.

Once in the excited state, every fluorophore shows the spontaneous emission as one

example of spontaneous switching transitions. Spontaneous switching transitions

can also occur due to chemical reactions [54].

Spontaneous switching transitions from an excited state, can be described by

an effective switching cross-section. The probability of the fluorophore to undergo

the transition is proportional to the probability that it is excited. The effective

switching cross-section can be directly determined by measuring the dependence of

the switching rate k on the intensity I:

k = σeff
λ

hc
I . (2.1)

Here, λ/hc is the inverse of the photon energy at wavelength λ.

The switching rates in light-driven switching transitions typically depend on the

wavelength of the light used. For example, the reversibly switchable fluorescent pro-

teins rsEGFP and rsEGFP2 can be switched on using ultraviolet light and switched

off using green light [17, 18]. This means, that for ultraviolet illumination, the on-

switching rate kon from the dark off- to the fluorescent on-state is larger than the

6



2. Theoretical modeling of superresolution microscopy

competing spontaneous or light-driven off-switching rate koff from the on- to the

off-state. For green illumination light, the off-switching rate koff is larger than the

on-switching rate kon, such that the proteins can be switched to the off-state. By

applying light of different wavelengths, the dynamic equilibrium between the on-

and the off-state can be shifted.

If at least one of the switching rates between the states depends on the intensity

of light, the state of the fluorophore can be controlled spatially using patterns of

light intensity. This effect is used in coordinate-targeted superresolution methods

[3, 5, 7]. Here, the state of the fluorophores is prepared such that the probability

that it remains in the on-state is very low everywhere except in a small region at the

focus. This is achieved for example by stimulated emission or reversible switching

of fluorescent proteins.

For superresolution methods based on stochastic switching, the switching rates

do not necessarily depend on the intensity, as long as the overall probability of the

fluorophores to be in the on-state is small. A superresolved image can be recon-

structed from data of stochastically switching fluorophores which switch on one by

one by localizing the position of each single emitter in the images [10–15].

Although the switching processes can have very different physical realizations,

they can often be modeled using the Markov chain model, which describes the

mathematical properties of a system which is able to switch stochastically between

different states.

2.1.1. Properties of Markov chains

Markov chains are statistical models of time series which have the property that the

future development of the system only depends on the current state of the system,

and not on the sequence of states in the past [55]. This Markov (or “memoryless”)

property is applicable in many different problems and makes it possible to efficiently

calculate many useful results.

A discrete time Markov chain can be defined by a state space which describes

the different states the system can be in and a transition matrix P with the matrix

elements pij which describes the probability of state changes in every (time) step:

P (X(tn) = i|X(tn−1) = j) = pij . (2.2)

7



2. Theoretical modeling of superresolution microscopy

In continuous time, the probability matrix P (t) = pij(t) depends on the elapsed

time interval. It describes the probability of ending up in state j after the time

interval t, if the system started in state i at t = 0. This matrix fulfills the master

equation

P ′(t) = P (t)Q , (2.3)

with the rate matrix Q = qij . The positive off-diagonal elements of Q can be

interpreted as the transition rates from a state to a specific other state. The diagonal

elements qii are the negative sums of the off-diagonal elements in each row and give

the total rate of leaving each state, the so called decay rate. The dwell times in each

state follow an exponential distribution with the corresponding decay rate.

The solution to the system of differential equations is given by the matrix expo-

nential of Q:

P (t) = exp(Qt) . (2.4)

Together with an initial state, this equation describes the time evolution of the

average probability of residing in each state.

2.1.2. Two state Markov Model

We want to consider the two state continuous time Markov chain with the bright

on-state and the dark off-state, as shown in Figure 2.1a.

The time evolution of this model is determined by two rate parameters: The

on-switching rate kon and the off-switching rate koff. The Q matrix is given by

Q =

(
−koff koff

kon −kon

)
. (2.5)

Solving the differential equation (2.3), starting in the state (ρ0, 1 − ρ0), that is, in

a random state with probability ρ0 to be in the on-state, we get the result for the

time evolution of the probability ρon that the system is in the on-state:

ρon(t) = ρ∞ + (ρ0 − ρ∞) exp(−kt) . (2.6)

with the effective rate k = kon + koff and the equilibrium level or duty cycle

ρ∞ =
kon

kon + koff
. (2.7)

For single realizations of the Markov chain, visualized in Figure 2.1c, the on- and off-

state dwell times are distributed exponentially. To measure the parameters of this

model for photoswitchable fluorophores, there are two principal ways: in ensemble

measurements, the signals from many fluorophores are superimposed. In the simplest

8



2. Theoretical modeling of superresolution microscopy

ON

OFF

ON

OFF

ON

OFF

Single realizations of the Markov chain

Average probability of on state occupation
1

0
Time

ON

OFF

ko� kon
Time

Time

Time

Two state
Markov Model

a b

c

ρ∞

~e-kt

ρ0

Figure 2.1. Two state Markov model and time development. a: State

diagram for the two state Markov model. The on- and off-switching rates kon and

koff determine the time development of the system. b: On average, the probability of

residing in the on-state decays exponentially from the initial value ρ0 with an effective

rate k = kon + koff to the equilibrium level ρ∞. c: Single realizations of the Markov

chain show the stochastic switching behavior.

case, if the parameters are the same for all fluorophores contributing to the signal,

the signal is proportional to the on-state probability, as described by Equation (2.6).

In the following, we will also derive an expression for the ensemble behavior if

the switching rates are variable and follow a distribution. Another approach are

single molecule measurements, which are feasible for bright fluorophores. Here, the

switching behavior is observed for each molecule one by one. The dwell times of

each molecule in the on- and off-state are extracted. From the distribution of on-

and off-state dwell times the rate parameters are estimated. Due to a limited time

resolution, short on-state dwell times may not be detected. As the data sets are of

finite length, off-state dwell times which are longer than the measurement time are

not detected. We thus develop tools to estimate the switching rate in these cases

for single molecule data.
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2. Theoretical modeling of superresolution microscopy

2.1.3. Rate estimation for the exponential distribution

The exponential distribution with the kinetic rate parameter k describes the dwell

times t > 0 in a state in a continuous time Markov Chain. It takes the following

form:

P (t|k) = k exp(−kt) . (2.8)

Here, k can describe for example the on- or the off-rate in the simple two-state

Markov chain. The on-rate governs the off-state dwell times, and vice versa. The

average dwell time in the state is given by the inverse of the rate parameter:

〈t〉 =
1

k
. (2.9)

We want to infer the rate parameter from measured dwell times. One possible way

to do this would be to calculate the inverse of the average dwell times. However, the

measured data sets are of finite length. If the dwell time in one of the states is com-

parable to the duration of the measurement, this procedure would underestimate the

switching rate for this state, as switching events longer than the measurement would

not be detected. We have to take this into account to get an accurate estimation

of the rate. Also, it may not be possible to measure very short dwell times due to

the time resolution of our system. In both cases, we may use Bayesian probability

theory [56–58]. If we can measure the dwell time t only in a finite interval given by

T1 < t < T2, the resulting distribution of t is

P (t|k) =


0 , t < T1

k exp(−kt)
exp(−kT1)−exp(−kT2) , T1 < t < T2

0 , t > T2

. (2.10)

After measuring N dwell times in a given state {ti} = (t1, ..., tN ), we can write down

the posterior probability distribution for k using Bayes’ theorem:

P (k|{ti}) =

∏
i P (ti|k)P (k)

P ({ti})
(2.11)

Here, the probability distribution from above as a function of the parameter k is

the likelihood function, P (k) is the prior distribution of the parameter k, and the

normalization factor P ({ti}) =
∫
dkP ({ti}|k)P (k) is also called evidence or marginal

likelihood.

In practice, a useful choice for the prior distribution is the gamma distribution

[56, 58]. This distribution is defined for positive values of k and has a mean of α/β

and a variance of α/β2:

P (k) = PΓ(k;α, β) =
βαkα−1

Γ(α)
exp(−βk) . (2.12)

10



2. Theoretical modeling of superresolution microscopy

The gamma distribution is the conjugate prior for the exponential distribution, tak-

ing the same functional form as the likelihood function. Therefore many calculations

with the gamma distribution as the prior are tractable analytically. When the pa-

rameters are chosen such that the distribution is broad, for example by choosing

small α and β, the choice of the prior has little influence on the estimation result

for large enough amounts of data.

Rate estimation for exponential distribution with lower threshold

If the upper limit T2 is large in comparison to the dwell time, we can neglect the

upper limit and evaluate the expression for the posterior mean analytically. Using

the gamma distribution given in Equation (2.12) as the prior, we can now calculate

the evidence term in Equation (2.11):

P ({ti}) =

∫
dkP ({ti}|k)P (k)

=

∫
dk
kN exp(−k

∑
ti)

exp(−kNT1)

βαkα−1

Γ(α)
exp(−βk)

=
βα

Γ(α)

∫
dkkN+α−1 exp(−k(

∑
ti + β −NT1))

=
βα

Γ(α)

Γ(N + α)

(
∑
ti + β −NT1)N+α

. (2.13)

The posterior distribution then also takes the form of a gamma distribution:

P (k|{ti}) =

∏
i P (ti|k)P (k)

P ({ti})

=
(
∑
ti −NT1 + β)N+αkN+α−1

Γ(N + α)
exp(−k(

∑
ti −NT1 + β))

= PΓ(k;N + α,
∑

ti −NT1 + β) . (2.14)

With the parameters N + α and
∑
ti −NT1 + β. We can use the known relations

for the mean and the variance of the gamma distribution to find the posterior mean

and variance:

E[k|{ti}] =
N + α∑

ti −NT1 + β
(2.15)

Var(k|{ti}) =
N + α

(
∑
ti −NT1 + β)2

. (2.16)

11



2. Theoretical modeling of superresolution microscopy

We note, that small α and β do not have a strong influence on the resulting

estimate, as they are dominated by the number of measured dwell times N and the

sum of all the measured times above the threshold
∑
ti−NT1 =

∑
(ti−T1). In the

limit of α, β → 0, we can use

k̂ =
N∑

ti −NT1
(2.17)

as the estimator for estimating the switching rate from measured dwell times.

To analyze the precision of the estimate depending on the number of measure-

ments, we consider the coefficient of variation, given by

σ

µ
=

√
Var(k|{ti})
E[k|{ti}]

=
1√
N
. (2.18)

Thus, for example to measure the rate parameter with a relative error of 10%, we

would need to measure the dwell times of 100 events.

Estimation of distribution of rates in ensemble measurements

Often it is not possible to measure the on- and off-state dwell times directly, as

the signal from single molecules cannot be detected. Integrating the signal of many

molecules on a detector, it is still possible to measure the average behavior which is

determined by Equation (2.6). The signal measured is therefore expected to follow

an exponential decay. In this kind of ensemble measurement, the decay law is often

seen to be non-exponential, due to variations in the switching rates. The transition

rates can vary for several reasons. If the switching process depends on the intensity,

a non-uniform illumination will lead to a superposition of many different switching

rates, as is the case for point scanning rate measurements with confocal intensity

distributions. Also, there may be an intrinsic distribution of behavior for complex

fluorophores like rsFPs [59].

In these cases, we can model the signal as the superposition of exponential decays

with different rates, where the rates have a distribution with a given mean and

variance. As rates can only be positive, the gamma distribution, introduced in

Equation (2.12), is used to describe this behavior.

The fluorescence signal s(t) of an ensemble with rates distributed according to a

gamma distribution with parameters α and β is

s(t) =

∫
dk exp(−kt)PΓ(k;α, β)

=
βα

Γ(α)

∫
dkkα−1 exp(−k(β + t))

=
βα

(β + t)α
. (2.19)
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2. Theoretical modeling of superresolution microscopy

This decay law can then be fitted to the measured signal to extract the parameters

of the rate distribution. The time until the signal drops to 1/e is longer than for an

exponential decay with the average rate of the distribution β/α, given by

τ1/e = β(exp(1/α)− 1) . (2.20)

For narrow distributions, characterized by a small coefficient of variation σ
µ = 1√

α
,

and thus a large parameter α, the mean lifetime is approximately the lifetime of the

exponential decay β(exp(1/α)− 1) = β/α+O(1/α2).
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2. Theoretical modeling of superresolution microscopy

2.2. RESOLFT microscopy

RESOLFT microscopy is based on the principle that fluorophores can be switched

between a bright on- and a dark off-state using light. We first discuss the image

formation in a point scanning RESOLFT microscope. Using focal intensity distri-

butions with an intensity zero [60], the fluorophores are switched such that they are

only able to fluoresce in a small volume, smaller than the diffraction limit, around

the zero of the intensity. By scanning the pattern over the sample, the superresolved

image can be retrieved. The interaction between the focal intensity distributions and

the intensity-dependent switching kinetics of the fluorophore determine the shape of

the effective PSF of the RESOLFT microscope. Thus, to model quantitatively the

image formation process, we need to model both the intensity patterns as well as

measure the switching rates for the fluorophore. After each switching step, a subset

of fluorophores remains in the on-state, with a distribution which in the end forms

the effective RESOLFT PSF. As these switching processes are stochastic, we exam-

ine the fluctuations in the signal due to the random switching of the fluorophores.

These fluctuations can be used to extract the number and the brightness of the

fluorophores in the image.

2.2.1. Stochastic image formation

In a point scanning RESOLFT microscope, at each scanning position, the fluo-

rophores are first activated, and then switched off using a doughnut intensity pattern.

Finally, the fluorescence of the remaining fluorophores in the center of the intensity

zero is read out confocally [17]. In each of the switching steps, the fluorophores are

switched stochastically, according to Equation (2.6).

As both the on- and the off-switching rate kon and koff depend on the intensity I

and the wavelength λ of the incident light, so do the equilibrium level ρ∞ and the

effective switching rate k. The probability that a fluorophore residing at the position

~r remains in the on-state after each switching step depends on the wavelength λ of

the applied light, the intensity at the position of the fluorophore I(~r), the duration

t for which intensity is applied and the probability ρ0(~r) that the fluorophore was

in the on-state initially:

ρon(t, I(~r), λ, ρ0(~r)) = ρ∞(I(~r), λ) + (ρ0(~r)− ρ∞(I(~r), λ)) exp(−k(I(~r), λ)t) .

(2.21)

For several switching steps, which may use different intensity distributions and wave-

lengths, this function is applied consecutively. The final state of the preceding
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2. Theoretical modeling of superresolution microscopy

switching step takes the role of the initial probability ρ0 for the next switching step.

We define the final distribution as the effective on-switching probability ρeff
on(~r).

Now, we want to calculate statistical properties of the measured signal. In a con-

focal microscope, the signal typically is modeled as following a Poisson distribution

with an average given by the spatial distribution of the flurophores convolved with

the effective point spread function of the microscope. In the RESOLFT microscope,

after the switching steps, the flurophores in the vicinity of the focus are prepared in

the on-state with a probability given by the effective on-switching probability ρeff
on(~r).

This is modeled as a Bernoulli process, with a different on-switching probability for

each fluorophore according to their position. This leads to fluctuations in the signal,

due to the variance of this Bernoulli process.

In the readout step, a confocal excitation and detection is applied for a short

time. The average measured signal from a fluorophore in the on-state is given by

the product of its molecular brightness b per observation time and the confocal PSF

hconf(~r). We assume the confocal PSF to be scaled such that hconf(0) = 1. Thus,

the measured brightness of a fluorophore at the focus is b. If the readout pulse is

short enough such that further switching can be neglected, the measured signal is

Poisson distributed. The number of photons k measured from a fluorophore in the

on-state at the focus is thus given by the Poisson distribution:

PPoiss(k|b) =
bk

k!
exp(−b) . (2.22)

To calculate the variance of the signal measured in the RESOLFT microscope, we

consider the signal of a single fluorophore at position ~r1 relative to the focus. After

the switching steps, the probability that it is switched to the on-state is given by

the effective on-switching probability ρeff
on(~r1). In the on-state, it emits fluorescence

which can be measured as Poisson counts with an average of b times the confocal

PSF hconf(~r1). In the off-state, no fluorescence is measured. Thus, the probability

distribution for the number k of measured photons from a single fluorophore is given

by

P (k|~r1) = PPoiss(k|b · hconf(~r1))ρeff
on(~r1) + δ(k = 0)(1− ρeff

on(~r1)) . (2.23)
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To find the mean and the variance of this distribution, we calculate the first and

second moment:

E[k] =

∞∑
k=0

kP (k|~r1)

=

∞∑
k=0

k
(bhconf(~r1))k

k!
exp(−bhconf(~r1))ρeff

on(~r1)

= bhconf(~r1)ρeff
on(~r1) (2.24)

E[k2] =

∞∑
k=0

k2P (k|~r1)

=

∞∑
k=0

k2 (bhconf(~r1))k

k!
exp(−bhconf(~r1))ρeff

on(~r1)

=
∞∑
k′=0

(k′ + 1)
(bhconf(~r1))k

′

k′!
exp(−bhconf(~r1))ρeff

on(~r1)

= b2hconf(~r1)2ρeff
on(~r1) + bhconf(~r1)ρeff

on(~r1) . (2.25)

The mean and the variance are then given by

µ1 = b · hconf(~r1)ρeff
on(~r1) (2.26)

σ2
1 = b · hconf(~r1)ρeff

on(~r1)(1− ρeff
on(~r1)) . (2.27)

Assuming that different fluorophores switch and emit independently, the mean and

the variance of the measured signal at the scan position ~s during the readout step

for N emitters at positions ~ri is the sum of the mean and variance of the signals

from each individual emitter:

µ = b

N∑
i

hconf(~ri − ~s)ρeff
on(~ri − ~s) (2.28)

σ2 = b
N∑
i

hconf(~ri − ~s)ρeff
on(~ri − ~s)(1 + b · hconf(~ri − ~s)(1− ρeff

on(~ri − ~s))) . (2.29)

This expression depends on the positions of all the fluorophores in the image. These

positions are not known exactly. To be able to apply this expression to real image

data, we write it in terms of a number density n(~r) on a discretized grid. Using

the scanning positions as the grid for the number density, we can write the mean

and the variance for each image pixel as a convolution of the number density with

different convolution kernels for the mean and the variance of the signal.
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2. Theoretical modeling of superresolution microscopy

We define the convolution kernels as the effective RESOLFT PSF

heff(~r) = hconf(~r) · ρeff
on(~r) (2.30)

and the excess variance PSF

hexc(~r) = hconf(~r)
2ρeff

on(~r)(1− ρeff
on(~r)) . (2.31)

The mean and variance of the signal measured in the RESOLFT image can thus

be written as convolutions of the number density with the described convolution

kernels:

µ = b(n⊗ heff) + d (2.32)

and

σ2 = µ+ b2(n⊗ hexc) . (2.33)

Here, we included also a constant background d. Due to the large number of flu-

orophores from out of focus regions contributing to the background, and the large

defocused PSF, it is reasonable to assume that it is homogenous over the field of

view with a constant Poisson rate.

2.2.2. Effective RESOLFT PSF for linear photoswitching

Here, we want to calculate the effective PSF of a RESOLFT microscope under

some simplifying considerations. We assume that after the on-switching step, all

fluorophores are prepared in a random state with the same probability of pon to be

in the on-state. The second assumption is that during the off-switching step the

behavior of the fluorophores can be described using a simple linear switching model,

where both the on- and the off-switching rate depend linearly on the light intensity

of the off-switching beam. The shape of the off-switching beam is approximated

with a quadratic intensity profile. Finally, we approximate the confocal excitation

and detection as a Gaussian PSF.

The on-switching step is typically performed with a diffraction limited PSF. How-

ever, the resolution enhancement is determined by the off-switching step. In the

high intensity region around the focus, the fluorophores are switched into the equi-

librium state, which is independent of the initial state. Thus, we can approximate

the on-switching behavior in the first switching step with a constant value for the

on-switching probability pon for all fluorophores, as shown in Figure 2.2a.
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Figure 2.2. RESOLFT image formation. Comparison of numerical calculation

and analytical approximation of the PSF. a: Left: Probability of fluorophores residing

in the on-state after the on-switching step. This is approximated by a constant on-

switching probability pon. Right: Applied effective switching dose. b: Left: In the

off-switching step, a doughnut shaped intensity profile is used to switch off molecules

in the periphery. In the regions of high intensity (shaded areas), the molecules switch

to the equilibrium level ρ∞. Right: Applied effective switching dose. c: Left: Effective

RESOLFT PSF heff after the confocal readout step. Right: Confocal PSF hconf.
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For the off-switching step, we consider linear photoswitching kinetics which can

be characterized by the effective switching cross-sections σon and σoff. At the wave-

length λoff of the off-switching laser, the fluorophores are driven linearly both from

the on- to the off-state, and from the off- to the on-state, and there are no spon-

taneous switching rates between the states. The switching rates depending on the

off-switching intensity Ioff are given by

kon = σon
λoff

hc
Ioff (2.34)

and

koff = σoff
λoff

hc
Ioff . (2.35)

In this simple model, the equilibrium level ρ∞ is independent of the off-switching

intensity Ioff, and given by the ratio

ρ∞ =
σon

σon + σoff
. (2.36)

The effective off-switching cross-section σoff is assumed to be larger than the effective

on-switching cross-section σon, such that ρ∞ is small.

The effective switching rate k is proportional to the intensity, and we define the

proportionality constant as σ:

σ = (σon + σoff)
λoff

hc
. (2.37)

The effective switching rate is thus given by

k = σIoff . (2.38)

The off-switching step is usually performed until the fluorophores in the high inten-

sity regions of the off-switching PSF are switched into equilibrium. Therefore, all

fluorophores outside of the central region are assumed to be switched to the equi-

librium state, and only fluorophores in the region which is well approximated by a

parabola at the center remain in the on-state with a higher probability, as shown

in Figure 2.2b. The off-switching intensity distribution can be approximated locally

around the focus at ~r = 0 by a quadratic intensity profile, proportional to the il-

lumination intensity I0, with a steepness parameter α which is determined by the

exact shape of the applied intensity distribution [61]:

Ioff(~r) ≈ αr2I0 . (2.39)

The effective on-switching probability set up by the on- and the off-switching steps

is found by inserting the initial probability pon, the intensity dependent switching
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rates given in Equation (2.38) and the quadratic intensity profile given in Equation

(2.39) into Equation (2.21):

ρeff
on = ρ∞ + (pon − ρ∞) exp(−σαr2I0t) . (2.40)

In the readout step, the fluorophores are read out confocally. We approximate the

confocal PSF by a Gaussian PSF with the full width at half maximum (FWHM)

wconf:

hconf = exp(−4 log(2)
r2

w2
conf

) . (2.41)

The effective RESOLFT PSF heff, shown in Figure 2.2c, is given by the product of

the effective on switching distribution and the confocal readout PSF hconf:

heff = ρ∞hconf + (pon − ρ∞)hRESOLFT , (2.42)

with

hRESOLFT = exp(−4 log(2)
r2

w2
conf

− σαr2I0t) (2.43)

The PSF thus consists of two terms, a term proportional to hconf with confocal

resolution, and a sharp central peak hRESOLFT, with a sub-diffraction FWHM given

by

wRESOLFT =
wconf√

1 + w2
confασI0t

. (2.44)

The FWHM of the sharp central peak depends on the inverse square root of the

radiation dose, the product of the illumination intensity I0 and the time t it is

applied. The resolution can be improved increasing the radiation dose, either by

using a higher intensity (within the range in which the linear model applies) or by

employing longer switching times, which enables RESOLFT at low light levels.

The term with confocal resolution is determined by the switching kinetics of the

photoswitch, namely by the equilibrium level or the switching background of the

fluorophore. The contrast c can be defined as the ratio of the amplitudes of the two

contributions to the PSF given in Equation (2.42):

c =
pon − ρ∞

ρ∞
. (2.45)

To model the effect of an imperfect off-switching intensity distribution, in which

there is residual intensity at the focus, we can add a small constant ε to the approx-

imation given by Equation (2.39):

Ioff(~r) = (αr2 + ε)I0 . (2.46)
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In this case, although the FWHM of the central peak is the same as above, its

amplitude decays exponentially:

heff = ρ∞hconf + (pon − ρ∞)hRESOLFT exp(−σεI0t) . (2.47)

This reduces the signal from the central peak, but not from the confocal switching

background, such that the contrast is decreased:

c =
pon − ρ∞

ρ∞
exp(−σεI0t) . (2.48)

To maximize the contrast, it is therefore important to minimize imperfections in the

optical system which can lead to a nonzero intensity at the center of the off-switching

intensity distribution, and to maximize the intial on-switching probability pon.

2.2.3. Counting molecules in RESOLFT microscopy

Our goal is to quantitatively estimate the number density n(~r) in a RESOLFT

image. Based on Equations (2.30) and (2.32), we need to calibrate

• the effective on-switching probability ρeff
on,

• the shape of the confocal PSF hconf,

• the molecular brightness parameter b,

• and the background d, which can typically be estimated from regions in the

image devoid of signal.

Calibration of the effective on-switching probability and the confocal PSF

In the model described in Section 2.2.2, the effective on-switching probability ρeff
on(~r)

is given in Equation (2.40) by the constant equilibrium level ρ∞ plus a Gaussian

function with a sub-diffraction FWHM and the amplitude pon − ρ∞. To calibrate

the effective on-switching probability, in principle, the off-switching intensity dis-

tribution in the experiment and the switching kinetics of the fluorophore must be

known. However, by estimating the effective PSF from the measured image data,

the effective on-switching probability can be calibrated as well. In the analytical

approximation, the effective PSF of the RESOLFT microscope is the product of

the effective on-switching probability ρeff
on(~r) and the confocal PSF hconf(~r). The

confocal PSF can be calculated using vectorial diffraction theory [62]. By measuring

the effective PSF from the image, the parameters of the two Gaussian components,

namely the FWHM of the two components and the ratio between the amplitudes can
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be used to calibrate the parameters in the expression for the effective on-switching

probability ρeff
on(~r) given in Equation 2.40. In Section 2.2.4, we develop a method

to estimate the effective PSF from an image, given that the structure is known to

consist of sparse point- or line-like structures, which can be localized in the image.

Estimation of the molecular brightness b

Equation (2.33) shows that the variance of the noise is larger than the variance of

pure Poisson noise by an excess variance factor due to the stochastic switching of

the fluorophores. The excess variance depends on the brightness b quadratically and

has a spatial structure, as it is given by the number density n(~r) convolved with

a convolution kernel which depends on the confocal PSF hconf(~r) and the effective

on-switching probability ρeff
on(~r). This can be used to calibrate the brightness of the

fluorophores in an image as we show in Section 2.2.5.

2.2.4. Deconvolution and measurement of the effective PSF

The effective PSF of a RESOLFT microscope depends on the switching kinetics and

the illumination light distribution and doses given in the experiment. It would be

convenient to calibrate these in the experiment itself, for instance by estimating the

PSF from the image data.

Although the structure underlying an image is usually not known, for sparse, well-

separated point- or line-like objects, we can estimate it without knowing the PSF

using a heuristic method. After smoothing the image with a Gaussian mask to reduce

the influence of the noise, we find local maxima for sparse point-like structures, or

locally maximum lines for sparse line-like structures. This heuristic estimate of the

object can be used to estimate the PSF using the Richardson-Lucy deconvolution

algorithm [63,64]. This algorithm was first introduced to reconstruct the underlying

structure in images blurred by a known PSF and degraded by Poisson noise, but as

the convolution is commutative, we can as well apply it to estimate the PSF from

an image given a known structure.

Modeling the structure using local maxima

Assuming that the image is known to consist of well separated point objects, it

is possible to localize these objects more precisely than the size of the PSF. Exact

knowledge of the PSF is not needed, because the positions of the emitters can also be

found by taking the position of the pixel with the maximum signal, or, for sub-pixel

accuracy, calculating the center of mass of the intensity distribution.
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A similar method can be applied for finding lines in an image. If the structure

is known to consist of lines which are thinner than the size of the PSF, they can

be localized without knowing the PSF by finding the locally maximal lines in the

image. For each 3× 3 pixel array in the image, a filtering method which returns the

locally maximal lines in an image can be defined by returning one in the case that

the signal in the central pixel is among the three largest signals in the pixel array

and zero otherwise.

For noisy image data, the noise has to be suppressed first, for example by smooth-

ing the image with a Gaussian. To be able to extract lines from an image in this

way, they have to be clearly separated, such that their images are still resolved in

the smoothed image. This filtering method is layed out in Figure 2.3a-c. If the

brightness of the lines varies strongly over the image, this can be taken into account

by multiplying the result of the filter with the smoothed image.

Richardson-Lucy deconvolution for known structure

The Richardson-Lucy deconvolution is based on the Poisson likelihood for an image.

The image is modeled as an unknown object ρ(~r) convolved with a known PSF h(~r),

with an additional constant background d. We define the noise-free image model mi

in each pixel i of the image corresponding to a scan position ~si as

mi = (ρ⊗ h)i + d (2.49)

=

∫
dnrρ(~r)h(~si − ~r) + d . (2.50)

For the numerical calculation, we discretize the object ρj = ρ(~rj) and the point

spread function hij = h(~si − ~rj) in the image space such that

mi =
∑
j

ρjhij + d . (2.51)

The measured counts {ki} in each pixel i are degraded by Poisson noise, such that

the logarithm of the likelihood function can be written as

l({ki}|ρ, h, d) =
∑
i

(ki log(mi)−mi) + const . (2.52)

To find the maximum likelihood estimate for the structure at pixel l, we take the

derivative with respect to ρl:

∂L

∂ρl
=
∑
i

(
ki
mi
− 1

)
∂mi

∂ρl
(2.53)

=
∑
i

(
ki
mi
− 1

)
hil . (2.54)
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Figure 2.3. Schematic of deconvolution of the effective PSF heff. a-c: From

the raw data a, lines are extracted by first smoothing the image using a Gaussian

filter b, and then using a filter c which returns one if a pixel is among the three

largest pixels in each 3×3 pixel region. d: This model is used to extract the effective

PSF using a Richardson-Lucy deconvolution. e-g: From this estimated PSF e, the

parameters of the PSF model given by Equation (2.42) can be extracted by fitting

the model to the data. f-g. Scale bars: Top row: 500 nm, Bottom row: 200 nm
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Setting this derivative to zero, we get the necessary condition for the maximum

likelihood solution ∑
i

ki
mi
hil =

∑
i

hil . (2.55)

This can be written using the cross correlation k
m ∗ h of the ratiometric deviation of

the signal to the model with the PSF.(
k

m
∗ h
)
l

=
∑
i

hil . (2.56)

Thus we find that a multiplicative fixed-point iteration for the estimated object ρ̂ is

given by

ρ̂iter+1
i = ρ̂iter

i ·
(

k

ρ̂iter ⊗ h+ d
∗ h
)
i

/
∑
j

hj . (2.57)

This procedure guarantees that the estimated structure will be positive, because if

it is initialized with positive values for ρ̂0
i , the estimate will remain positive.

As the convolution operator commutes, we can directly write down the correspond-

ing iteration procedure for the case of the unknown PSF with a known underlying

structure ρ. This is given by

ĥiter+1
i = ĥiter

i ·
(

k

ĥiter ⊗ ρ+ d
∗ ρ
)
i

/
∑
j

ρj . (2.58)

To extract the PSF from an image with sparse lines, we can now use the line ex-

traction method described above to fix the structure ρ, and deconvolve the PSF by

starting from a uniform distribution and iterating according to Equation (2.58), as

shown in Figure 2.3d-g.

2.2.5. Estimation of the brightness and the number density

In Section 2.2.4, we showed how to estimate the shape of the effective PSF. Given

that we calibrated the effective on-switching probability ρeff
on(~r), and that the shape

of the confocal readout PSF hconf(~r) is known, the remaining unknown quantities in

the stochastic image formation model described in Section 2.2.1 are the brightness

parameter b and the number density n(~r) underlying the image.

Here, we describe a method to estimate the brightness parameter b from a single

image. The main idea is to make use of the excess variance of the signal, calculated

in Equation (2.33), which is proportional to the square of the brightness parameter.

If several independent images can be measured, the sample variance could also be
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estimated by taking the pixel-wise mean square deviation from the average of the

images.

One way to calculate the variance from only a single image, is to first estimate

the mean signal by taking into account that the signal varies slowly due to the

convolution with the known effective PSF. To estimate the variance, we then consider

the deviations of the measured signal in the image pixels to the estimated mean.

This can be achieved by using the Richardson-Lucy algorithm described in Section

2.2.4 to deconvolve the image with the calibrated effective RESOLFT PSF heff. The

result of the deconvolution, the estimated object ρ̂, is an estimate of the product of

the number density n(~r) and the brightness b:

ρ̂(~r) = b · n(~r) . (2.59)

Convolving this result again with the effective RESOLFT PSF heff results in a

smooth image with strongly reduced noise, which we use as the estimate for the

mean signal in the RESOLFT image given in equation (2.32):

µ̂ = ρ̂⊗ heff + d . (2.60)

In Equation (2.33), the variance of the signal measured in a RESOLFT image was

calculated. It is given by the mean signal, as expected for Poisson noise, plus an

excess variance term, which is due to the stochastic switching. The excess variance

is given by the convolution of the number density n(~r) with the excess variance PSF

hexc defined in Equation (2.31), times the square of the brightness b. The spatial

distribution of the excess variance v can also be estimated using the estimated object

ρ̂:

v̂ = ρ̂⊗ hexc , (2.61)

such that the variance of the image can be written as

σ2 = µ̂+ bv̂ . (2.62)

Using the estimated mean signal µ̂ and the estimated spatial distribution of the

excess variance v̂, we now approximate the likelihood function of the brightness

parameter b, given the image data, with the likelihood function for a Gaussian

distribution with the mean and the variance estimated in Equations (2.60) and

(2.62). The log-likelihood function of the parameters for the mean µ and the variance

σ2 for the Gaussian distribution is given by

l(µ, σ|x) = −(x− µ)2

2σ2
− 1

2
log(σ2) + const . (2.63)
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Using the estimated mean µ̂ and variance σ̂, we can write down the log-likelihood

function for the brightness parameter b given the measured signals ki in each pixel

i in the Gaussian approximation:

l(b|ki, µ̂i, v̂i) = −
N∑
i

(
(ki − µ̂i)2

2(µ̂i + bv̂i)
+

1

2
log(µ̂i + bv̂i)

)
+ const . (2.64)

This likelihood function can be maximized with respect to b to estimate the bright-

ness:

b̂ = arg max
b

l(b|ki, µ̂i, v̂i) . (2.65)

A quantitative estimate of the number density n̂(~r) is then given by the estimated

object, given in equation (2.59), divided by the estimated brightness:

n̂(~r) =
ρ̂(~r)

b̂
. (2.66)
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2.3. Single molecule localization microscopy

While two emitters which are closer than the diffraction limit emitting at the same

time cannot be resolved, if they can be switched to an off-state sequentially, they

can be localized at different points in time. Several physical processes can lead to a

stochastic switching behavior that fulfills the condition that the fluorophores reside

in the off-state for most of the time [10–15]. In this case, a superresolved image can

be reconstructed by localizing single emitters, which emit light at different times,

one by one.

The switching behavior of single emitters which are suitable for SMLM can be

modeled in the simplest case as a two state Markov model, as described in Section

2.1.1, where the on-switching rate is much smaller than the off-switching rate, typi-

cally by more than three orders of magnitude. The on-state dwell times are typically

on the order of the duration of the camera exposure time of 1-100 milliseconds, and

the off-state dwell times are on the order of the duration of the whole experiment,

which can take minutes and up to hours in some cases.

To measure the on-switching rate, single molecule experiments have to be analyzed

such that the finite length of the dataset does not bias the estimate, as described in

Section 2.1.3. To measure the on-state dwell times of the single molecules, we devel-

oped a method to estimate the transition time with a sub-frame timing precision.

This is achieved by analyzing the signal of single molecule events frame by frame.

Modeling the measured signal as photons emitted with a constant rate during the

on-state, the transition time can be estimated by taking the ratio of the signal in the

transition frame to the signal in a frame in which the molecule was in the on-state

during the whole exposure.

The two-state switching kinetics can then be applied to model the imaging process

of activation-based multicolor STORM microscopy [42,50]. Here, two or more color

channels can be discriminated by activating specifically activator-reporter dye pairs

with different activator dyes for each channel. The crosstalk between the color

channels in this method can be on the order of 10 to 20 % [42]. Sources of crosstalk

include the cross-activation, where the reporter dye belonging to the wrong species is

activated by the activation light, and random activation, where a random blinking

event is assigned to a color channel because it happened to be activated at the

wrong time. We show that crosstalk due to randomly switching fluorophores can be

reduced by applying sub-frame single molecule event timing analysis.
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2.3.1. Modeling of single molecule kinetics data and estimation of the

on-switching rate

To estimate the on- and the off-switching rates from single molecule data, we want

to extract the dwell times of the molecules in the off- and in the on-state. The

density of single molecules has to be low enough such that single molecules can

be uniquely identified. However, a lower density of molecules means that a lower

number of events can be measured, which reduces the precision of the estimation of

the switching rates. Here, we present a method of extracting the signal traces for

single molecule data of a relatively high density, in which single molecules can be

clearly separated in the single molecule localization image but their images overlap

in the widefield data because they are closer together than the diffraction limit.

To this end, the dataset is initially analyzed by a STORM analysis algorithm, lo-

calizing the positions of the blinking fluorophores in each image [11,65]. The result-

ing list of localizations is binned in a two-dimensional histogram. Single molecules

are identified as clusters of localizations in this histogram. We extract the positions

of these clusters by localizing again the position of the cluster in the superresolved

image, as visualized in Figure 2.4.

The PSF of the widefield images of the single molecules can be well approximated

by a two-dimensional Gaussian function with the FWHM w given by

f(~r) = A exp(−4 log(2)
r2

w2
) . (2.67)

The single molecule dataset, given by the measured counts {ki,t} in pixel i at position

~ri and frame t can be modeled as a constant background in each frame plus a

superposition of Gaussian point spread functions at the positions ~rj of the single

molecules in the image as basis functions:

mi,t = dt +
N∑
j=1

bjtf(~rj − ~ri) (2.68)

The parameters of this linear model are the brightness of each single molecule in each

frame bjt and the constant background d. We can extract these parameters using

regularized linear least squares optimization [66]. The estimation of the parameters

can be written as the solution to a system of linear equations, which can be efficiently

calculated. This assumes implicitly that the noise of the signal in each pixel is

normally distributed.

If the distance between two molecules is below the diffraction limit, their point

spread functions overlap. Due to the background noise, the least squares error
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Figure 2.4. Linear model for trace extraction. a: The diffraction-limited im-

ages of single molecules in single molecule data may overlap, as seen in the maximum

intensity projection of a movie of blinking single molecules. Scale bar, 2 µm. b:

The single molecule events are localized (blue dots) and clusters of events (circles)

are identified. Scale bar, 500 nm. c: The signal from the region shown in b is the

superposition of the signals from the single molecules in the region. d: To extract

the signal from each single molecule, a set of basis functions is constructed. The

basis function for each single molecule is given by a Gaussian PSF at the center of

mass of each cluster. The single molecule signals can be extracted by estimating the

parameters of the linear model using regularized least squares.
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function may have a lower value if the brightness parameters of the two molecules

are fitted as two very large numbers with a different sign. This overfitting effect

can be reduced by regularizing the error function. By adding a term proportional

to the sum of the squares of the parameters, which is also called weight decay

regularization, the influence of overfitting can be strongly reduced. By defining the

basis functions φj(~ri) = f(~rj − ~ri) for j = 1..N and φ0(~ri) ≡ 1, with b0t = dt, the

regularized cost function is given by

Lt(~bt) =
1

2

∑
i

 N∑
j=0

bjtφj(~ri)− ki,t

2

+
1

2
λ
∑
j

b2jt , (2.69)

where λ is the positive regularization parameter. The parameters minimizing this

cost function are the solution of a linear system of equations for each frame t,

(A+ λ) ·~bt = ~ct (2.70)

where the elements of the matrix A are the overlap between the pairs of basis

functions

Alj =
∑
i

φl(~ri)φj(~ri) (2.71)

and the vector c is given by the weighted sum of the data

cjt =
∑
i

ki,tφj(~ri) . (2.72)

The resulting single molecule traces bjt for j ≥ 1 are the time-dependent brightness

for each single molecule in the model. It is thus possible to extract the signal from

single molecules which are not resolved in the diffraction-limited image, as shown in

Figure 2.4. From the single molecule signal traces we want to extract the off- and

on-state dwell times, which are used to estimate the on- and off-switching rates kon

and koff.

Estimation of the on-switching rate

To estimate the on-switching rate of the single molecules, we have to take into

account the finite length of the dataset. Fluorescent dyes optimized for STORM mi-

croscopy exhibit off-state dwell times which are more than three orders of magnitude

longer than the on-state dwell times [51]. Therefore, the duration of the measure-

ment T is often of the same order of magnitude as the average off-state dwell times

of the single molecules. This can bias the result of the estimation, as described in

Section 2.1.3. Here, we approach this problem by only measuring the first off-time
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for each single molecule, that is the time ti until the first reappearance of the ith

single molecule in the dataset, that is the first frame with a brightness higher than

a threshold.

The on-switching rate kon can then be estimated using Bayes’ theorem for the

posterior distribution given in Equation (2.11) with the likelihood function defined

in Equation (2.10), where the upper boundary of the interval is given by the length

of the dataset T , and the lower boundary is set to 0. The posterior probability

distribution P (kon|{ti}) in this case is proportional to

P (kon|{ti}) ∝

(
N∏
i

kon exp(−konti)

1− exp(−konT )

)
P (k) (2.73)

Using a uniform prior P (k) on a given interval, we calculate numerically the mean

and the variance of the posterior distribution to estimate the on-switching rate and

the error bars.

2.3.2. Single molecule event timing and estimation of the off-switching

rate

To estimate the off-switching rate as described in Section 2.1.3, we first need to

extract the on-state dwell times from the single molecule data. The time resolution

of the camera is limited by a minimum exposure time, which is typically on the order

of one millisecond. As the single molecule events happen randomly, the transition

from the off- to the on-state can happen at any time during the exposure of the

camera. After the transition, the single molecule resides in the on-state for a time

which follows an exponential distribution governed by the off-switching rate and

switches off again.

We want to measure the on-state dwell time accurately with a precision higher

than the frame rate of the camera. The single molecule signal trace is extracted

from the raw data, for example using the linear model described in Section 2.3.1.

We assume, that the single molecule emits photons with a constant rate of b per

frame while residing in the on-state. The average signal measured in each frame is

then given by the fraction of time the single molecule spends in the on-state during

each frame times b.

For events which are detected in at least three consecutive frames, such that they

are in the on-state for at least one full frame, the transition times can be measured

with a precision higher than the frame rate of the camera. The on-switching time is

measured by taking the ratio of the signal in the first frame to the average emission

rate, and the off-switching time accordingly by taking the ratio of the signal in the
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Figure 2.5. Single molecule event timing. a: From the raw data, the signal

trace for each single molecule event is extracted. b: By taking the ratio of the signal

in the transition frames k1 and k2 to the brightness b over the background d, measured

in frames in which the molecule was on for the whole time, the switching times t1 and

t2 can be estimated.

last frame to the average emission rate. The average emission rate b can be estimated

from the frame(s) in which it is switched on for the whole frame. This procedure is

sketched in Figure 2.5.

Switching time estimator for Poissonian noise

We assume that in the on-state, the molecule emits photons with a constant known

rate b per frame, and that there is a constant known rate of background photons d

per frame. The measured counts k1 in the first frame, in which the molecule switches

on at time t1 relative to the beginning of the frame are then Poisson distributed

P (k1|t1, b, d) = PPoiss ((1− t1) b+ d) . (2.74)

To estimate the switching time from the signal using Bayes’ theorem, given by

Equation (2.11), we now assume that the single molecule event is known to start

during the particular camera frame under consideration. This is formalized by using

a uniform prior distribution in the interval [0, 1] for t1. The posterior distribution is
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then proportional to

P (t1|s1, b, d) ∝ ((1− t1)b+ d)k1 exp (−((1− t1)b+ d)) . (2.75)

Thus, we find the maximum a posteriori estimator for t1 to be

t̂1 = 1− k1 − d
b

. (2.76)

The same method is applied to estimate the off-switching transition time t2 from

the signal k2 in the last frame of the trace.

t̂2 =
k2 − d
b

. (2.77)

These estimators are equal to the maximum likelihood estimators, as the prior dis-

tribution was chosen to be constant over the given interval. We can calculate the

Cramer-Rao lower bound for variance of the estimator t1:

Var(t̂1) ≥ b(1− t1) + d

b2
. (2.78)

This shows an interesting property of the transition time estimation. The variance

of the estimator depends on the switching time, and is lower for events which started

later in the first frame. The reason for this dependence is, that as we take a ratio

between two numbers, only the absolute width of the probability distribution of the

signal determines the variance of the estimator. For larger t1, the number of counts

measured in the first frame is small. For the Poisson distribution, although the

relative width of the distribution is inversely proportional to the square root of the

mean, the absolute width is directly proportional to the square root of the mean

and thus smaller for smaller signals.

In calculating the estimator, we assumed that the frame during which the transi-

tion takes place can be identified correctly and the brightness b and the background

d were known precisely. In practice, both of these parameters and the transition

frames also have to be estimated from the data.

Hidden Markov model and Viterbi algorithm

To estimate the transition time of a single molecule event using the estimator de-

scribed in Equations (2.76) and (2.77), we need to be able to identify the transition

frames of the single molecule event. To this end, we employ a hidden Markov model

(HMM) [67,68]. This model is based on the discrete time Markov chain discussed in

Section 2.1.1. In addition to the state space and the transition matrix, in the hidden

Markov model, we define emission probability distributions, which govern the data
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kt measured during each time step t depending on the underlying “hidden” state of

the model st in that time step.

We define an HMM with four hidden states, depicted in Figure 2.6, the off-state,

a transition state form the off- to the on-state, the on-state, and a transition state

from the on- to the off-state, with the transition matrix Tij = P (st+1 = j|st = i):

T =


1− pon pon 0 0

0 0 1 0

0 0 1− poff poff

1 0 0 0

 . (2.79)

The emission probability distributions are chosen as Gaussian distributions with

equal standard deviations σ, centered around the minimum of the data for the off-

state, the maximum of the data for the on-state and the center between both for

the transition states.

Although these probability distributions could be chosen to model the process

more realistically, for example using Poisson distributions, in practice the signal

from single molecules is not stable over time, as for example triplet state blinking

may happen on timescales shorter than the frame rate [69]. These effects, which

also limit the precision of the timing measurements will be investigated in Section

4.2.2.

To infer the most likely sequence of states and thus to detect the transition frames,

we use the Viterbi algorithm [70,71]. This algorithm is based on calculating the like-

lihood for only the most probable sequence of states by taking the Markov property

into account. We first write down the probability distribution for the joint dis-

tribution of the sequence of states {st} and the emissions {kt} at each time step

t = 1 . . . N :

P ({st}, {kt}) = P (s1)P (k1|s1)

N∏
i=2

P (si|si−1)P (ki|si) . (2.80)

Here, in addition to the emission probability distributions P (kt|st) and the transition

probabilities P (si|si−1) given in the matrix T , we need to define the initial state

distribution given by P (s1). Now, to find the most likely sequence of states given

the data, we want to maximize the conditional probability

P ({st}|{kt}) =
P ({st}, {kt})
P ({kt})

. (2.81)

As the term in the denominator is independent of {st}, this is the same as maximizing

Equation (2.80) directly. By going through the data points sequentially, we calculate
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Figure 2.6. Hidden Markov model (HMM) for identifying the transition

frames. a: The model used to identify the transition states consists of four states:

The on- and off-state, and transitions states in between. The probability of leaving

the transitions states is 1. b: On the right-hand side, the emission probability distri-

butions for the states are shown. The result of the Viterbi algorithm for estimating

the most probable sequence of states is shown below.

first the probability of the most likely path which ends up in each state, and second,

keep track of the state from which the last transition occurred. After doing this for

each time step, the most likely sequence of states is found by going back through

the list of states, starting from the final state with the highest likelihood.

Estimation of the off-switching rate

Having identified the first and the last frame of each single molecule trace, we can

now estimate the switching times using the ratiometric estimators given by Equation

(2.76) for the on-switching time and Equation (2.77) for the off-switching time and

calculate the on-state dwell time for each event by taking their difference. The

switching times can only be estimated for events which are detected in at least three

consecutive frames. For events which only emit signal in one or two frames, the

Viterbi algorithm based on the four state model shown in Figure 2.6 is not able

to identify the transition frames correctly. For these events however, the measured

on-state dwell time is always less than two full frames. All events for which the

measured on-state dwell time is longer than two full frames are detected in at least
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three frames. The off-switching rate can thus be estimated from all the measured

times which are longer than this lower threshold using the estimator (2.17).

2.3.3. Modeling of activation-based multicolor STORM

The image quality of SMLM critically depends on the switching kinetics of the dyes

used for labeling the structure. The localization of single molecule events is only

possible if the density of active fluorophores in each image is low enough. At the

same time, the density of fluorophores which label the sample has to be high enough,

otherwise the structure is not well represented by the labelling, and appears dotted

in the reconstructed image [72]. The switching kinetics of the dye are modeled by the

two state Markov chain. Several processes can contribute to the on- and off-rates,

as shown in Figure 2.7b. The average density of fluorophores in the on-state at any

given time is given by the total density of fluorophores n(~r) times the probability

ρon that each fluorophore is in the on-state, given by Equation (2.6). Typically, the

equilibrium between the on- and the off-state is reached shortly after the beginning

of the experiment, such that we can consider only the equilibrium level or duty cycle

of the photoswitch ρ∞.

In addition to the molecules which are on at the beginning of each frame, the

signal from single molecules which switch on during the exposure time is integrated

onto the detector. The probability that a molecule switches from the off- to the

on-state during the exposure time ∆t of the camera is approximately given by the

on-rate kon times ∆t. Thus, the average number density of fluorophores appearing

in each camera frame is given by

non(~r) = (ρ∞ + kon∆t)n(~r) . (2.82)

We denote the highest density for which the localization of single molecules is pos-

sible as nmax. It depends on the size and shape of the point spread function and

the algorithm used for localization. For Gaussian point spread functions and single

emitter fitting algorithms, this maximum density is usually around 1 µm−2 [73]. The

density of fluorophores in the on-state has to be lower than this maximum density

such that single molecule localization is possible:

non < nmax . (2.83)

One way to discriminate different color species in STORM microscopy is to use

activator-reporter dye pairs [42, 50]. Here, the reporter molecule is the same for all

color species. The reporter dye is paired in close proximity with an activator dye,
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Figure 2.7. Activation-based multicolor STORM. a: The sample is labeled

with activator-reporter dye pairs of two different species and excited with red laser

light. Left: Using an ultraviolet pulse, the species with the UV activator dye is

predominantly activated. Center: In frames without an activation, random activation

can occur. Right: Using a green laser pulse, the species with the green activator dye

is predominantly activated. b: State transition model for the reporter dye: A light

driven off-switching rate koff competes with a spontaneous on-switching rate kth and a

light driven on-switching rate kon. c: Histogram of estimated on-switching transition

times. Compared to the frame-based assignment of the events to the color channels,

the number of randomly activated events in the channels can be reduced using sub-

frame switching time estimation.
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which can be excited using laser pulses of different colors, which in turn causes the

reporter dye to switch to the on-state, as visualized in Figure 2.7a. Events which

were first detected in the frame in which the activation pulse is given are assigned to

the corresponding color species. However, all events which were activated randomly

during that frame are also assigned to the same color species. This leads to crosstalk

between the color channels, as some of the randomly activated molecules belong to

the wrong species. Another source of crosstalk which can occur is cross-activation,

where due to the spectral overlap of the excitation spectra of the activator dyes, a

laser pulse also activates fluorophores of the wrong color with a low probability.

To estimate the amount of crosstalk due to random activation, we include an

additional specific activation term in the model for the imaging process given in

Equation (2.82). The power and duration of the activation laser pulse can be chosen

such that the probability of activating a molecule in the off-state is pact. This

activation increases the number of molecules in the on-state in a frame with a specific

activation pulse to

non(~r) = (ρ∞ + kon∆t+ pact)n(~r) . (2.84)

As this density still has to fulfill the condition (2.83), the activation probability is

limited to

pact(~r) <
nmax

n(~r)
− (ρ∞ + kon∆t) . (2.85)

As the widefield activation illumination has the same intensity over the whole field of

view, the activation probability is limited by the highest local density of fluorophores

in the image, max(n(~r)). Only events which are detected for the first time in the

frame with the activation pulse are assigned to each color. The crosstalk is given by

the number of molecules which randomly switch on during that frame. As part of

the randomly activated events belong to the correct species, an upper limit for the

crosstalk x due to random activation is the ratio of randomly activated events over

the total number of activations in the frame:

x <
kon∆t

kon∆t+ pact
. (2.86)

Choosing the activation probability of the pulse as high as possible according to

Equation (2.85), the crosstalk can be reduced to

x <
kon∆t

nmax
max(n(~r)) − ρ∞

. (2.87)

This crosstalk is proportional to the exposure time of the camera, which is effectively

the time during which randomly activated events are integrated into the specific

color channel. Using the sub-frame switching time estimation method developed in

Section 2.3.2, the crosstalk can be reduced.
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2. Theoretical modeling of superresolution microscopy

Histogram of switching times

The distribution of measured on-switching times in an activation-based multicolor

STORM experiment is a sharp peak centered at the time of the activation pulse on a

constant background of random activations, as shown in Figure 2.7c. Depending on

the timing precision of the events in the single molecule experiment, a time interval

∆ttiming shorter than the camera exposure time ∆t can be chosen to assign the

events to each channel. Thus only events which were activated by the activation

pulse with a high probability are assigned to each color channel. This reduces the

number of randomly activated events in each channel by the ratio of the timing

interval to the exposure time of the camera.

The probability P (act|t1) that an event with a measured switching time t1 was

activated specifically by the activation laser pulse can again be calculated using

Bayes’ theorem.

P (act|t1) =
P (t1|act)P (act)

P (t1|act)P (act) + P (t1|rand)P (rand)
. (2.88)

Although randomly activated molecules can be assumed to activate at uniformly

distributed times during a camera frame, the probability P (t1|rand) of the measured

switching time given a random activation may not be uniform. The reason for this

discrepancy is, that the variance of the estimated switching time depends on the

switching time itself, as was shown in Equation (2.78). In practice, due to the

estimation of the first frame of the trace using the hidden Markov model described

in Section 2.3.2, additional artifacts can be induced if the first frame is not correctly

identified. This may happen for switching times close to the boundary between two

camera frames, or if the event is not long enough.

Due to the large number of events in a typical STORM dataset, both the distri-

bution of the randomly activated events P (t1|rand)P (rand) and the distribution of

the specifically activated events P (t1|act)P (act) can be estimated by binning the

measured switching times as a histogram. These distributions are used to assign

the probability given in Equation (2.88) to each event. Thus, events which were not

specifically activated with a high probability can be identified and rejected, and the

crosstalk in the final image due to random activation can be reduced.
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3. Quantitative RESOLFT microscopy

In Section 2.2, we presented a stochastic imaging model for RESOLFT microscopy

and developed a method to estimate the number of fluorophores in the image. The

switching model used to describe the behavior of the fluorophores is based on a two

state Markov chain model. The RESOLFT imaging process consists of three steps,

the on-switching of the fluorophores, the off-switching using an intensity distribution

with a zero used to confine the fluorophores which remain in the on-state to a sub-

diffraction sized region, and the confocal readout. During the off-switching step,

the switching rates between the on- and the off-state are both modeled to depend

linearly on the intensity.

The fluorescent proteins rsEGFP and rsEGFP2 are widely used rsFPs in RESOLFT

microscopy [17,18,20]. To find if the proposed switching model captures the switch-

ing behavior for rsEGFP and rsEGFP2, we measured the switching rates depending

on the intensity. Using a setup with an extended illumination spot, it was made

sure that the light intensity was constant over the observed volume.

The proposed method for counting molecules in a RESOLFT image depends on

the accurate calibration of the effective PSF. In numerical simulations, we simulated

images according to our forward model with known PSFs. As the ground truth is

known, we can estimate how the error of the estimation of the brightness scales,

independent of the additional errors which could be introduced by the calibration

of the PSF.

Finally, the method was applied to RESOLFT images of microtubules in Drosophila

embryos. To be applicable, the effective PSF was estimated from the image itself

using the deconvolution procedure described in Section 2.2.4. From this PSF, the

effective on-switching probability was calibrated, taking into account the measured

switching kinetics.

41



3. Quantitative RESOLFT microscopy

3.1. Switching kinetics measurements

The model for the effective RESOLFT PSF described in Section 2.2.2 is based on

a two state model in which both the on-switching rate kon and the off-switching

rate koff of the stochastic switching of the fluorophore during the off-switching step

depend linearly on the intensity. This dependence is characterized by the effective

cross-section for the on-switching transition σon and the off-switching transition σoff.

We measured the ensemble switching behavior of the reversibly switchable fluores-

cent proteins rsEGFP and rsEGFP2 depending on the intensity of the off-switching

light with λoff = 488 nm using the widefield switching procedure. For an ensemble

of fluorophores which switch stochastically, the signal is expected to be proportional

to the on-state probability, described in Equation (2.6):

s(t) ∝ ρ∞ + (ρ0 − ρ∞) exp(−kt) . (3.1)

The effective switching rate k and the equilibrium level ρ∞ can be directly measured

by fitting an exponential curve to the measured signal, given that the initial state

ρ0 is known. The on- and off-switching rates can be calculated from the measured

parameters k and ρ∞ as

kon = ρ∞k (3.2)

and

koff = k − kon . (3.3)

However, in a confocal microscope, fluorophores contributing to the detected signal

are subject to different illumination intensities, depending on the position of the

fluorophore relative to the focus. As the switching rates depend on the intensity,

the average signal measured when switching fluorophores using a confocal spot is a

superposition of a distribution of rates. The shape of this distribution is determined

by the intensity profile of the confocal spot and the density of the fluorophores,

which may also vary spatially.

This is crucial for measuring the equilibrium level ρ∞, as there is a large volume

in which the intensity of the confocal illumination is low, such that the relaxation

to the equilibrium state takes a long time. In Figure 3.1, switching curves measured

with a confocal illumination spot are compared to switching curves measured with

homogeneous illumination. By fitting the model given by Equation (2.19) to the

switching curves, we can extract the parameters of the distribution of rates. For

the confocal switching signal, the distribution is broadened by the inhomogeneous

intensity pattern. Therefore, to measure intensity dependent switching rates, this

42



3. Quantitative RESOLFT microscopy

0 500 1000 1500 2000 2500

Rate in s -1

0

0.5

1

1.5

2

Pr
ob

ab
ili

ty
 d

en
si

ty

× 10 -3

0 10 20 30 40 50

Time in ms

0

0.2

0.4

0.6

0.8

1

Si
gn

al
 (n

or
m

al
iz

ed
)

0 10 20 30 40 50
Time in ms

10 -2

10 -1

10 0

Si
gn

al
 (n

or
m

al
iz

ed
)

Confocal 
Wide�eldConfocal 

Wide�eld

a bMeasured switching curves Estimated rate distributions

Figure 3.1. Switching curve for widefield and confocal illumination pro-

files. a: switching curves are shown for confocal and widefield illumination on a

linear scale. Inset: the same data is shown on a logarithmic scale. b: Estimated

distribution of rates from fitting the curves with the model given by Equation (2.19).

effect has to be either modeled precisely or avoided experimentally. By illuminating

the sample with a widened intensity distribution, which is homogeneous over the

detection volume of the microscope, all detected fluorophores are exposed to the

same intensity, such that the switching kinetics can be measured directly.

After avoiding artifacts due to the focal intensity distribution, the signal would

be expected to follow an exponential decay, given in Equation (3.1). However, the

decay seems to fall off more slowly after an initial steep decline. Thus, the decay

model given by equation (2.19) with an amplitude a and a constant background

level b was used to model the data:

s(t) = a
βα

(β + t)α
+ b . (3.4)

By fitting the parameters a, b, α and β to the data using nonlinear least squares

fitting, the average switching rate k can be calculated for each intensity

k =
α

β
(3.5)

and the equilibrium level is given by

ρ∞ =
b

a+ b
. (3.6)
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3.1.1. Preparation of the initial state

We want to make sure that all proteins are in the on-state initially, that is ρ0 = 1. To

this end, samples of E. Coli cells expressing rsEGFP and rsEGFP2 were exposed to a

broad intensity distribution with a FWHM of approximately 17 µm of an ultraviolet

laser beam (λon = 375 nm) for a time interval ton. The fluorescence signal after the

UV illumination was read out using an intensity distribution of the same size using

blue light (λoff = 488 nm), whereby the proteins switch to the equilibrium state ρ∞.

The time during which the UV light was applied was increased until the signal at

the beginning of the switching curve reached a maximum. For rsEGFP, ton = 25

ms was chosen. For rsEGFP2, the used activation time was ton = 10 ms. In

typical RESOLFT images, using a diffraction limited UV spot, the duration of the

on-switching pulse given is on the order of 10-30 µs, that is approximately 1000

times shorter [17, 18, 20]. The long on-switching time was chosen to maximize the

probability that the fluorophores reside in the on-state at the beginning of each

switching cycle, that is ρ0 is close to one.

3.1.2. Switching kinetics for rsEGFP and rsEGFP2

To measure the on- and off-switching rates for the two proteins under the influence

of blue light, switching cycles were conducted by first applying activation pulses to

make sure that all proteins are prepared in the on-state (ρ0
∼= 1). This was achieved

using long on-switching times ton, as described in Section 3.1.1. Then blue light

was applied for 20 ms, until the fluorophores in the sample were switched to the

equilibrium state ρ∞. To make sure that the switching rates are measured under

similar conditions, at each position in the sample, a linear ramp of 10 different

illumination intensities was applied, as shown in Figure 3.2. This experiment was

repeated using powers ranging over more than two orders of magnitude.

The results of the estimation of k and ρ∞ are shown in Figure 3.3. The equi-

librium level ρ∞ does not seem to depend strongly on the intensity. The average

equilibrium level ρ∞ was measured to be 0.45% for rsEGFP and 2.4% for rsEGFP2.

For both photoswitchable proteins, both the on- and the off-rate depend linearly on

the intensity over a large range of intensities. For rsEGFP, the effective switching

rate seems to saturate above approximately 100 W/cm2.
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Figure 3.2. Switching kinetics data for rsEGFP2. a: Switching signals mea-

sured with 488nm illumination light of different intensities. Each switching signal

was fitted using the decay law for a distribution of rates. b: Applied intensity for the

on-switching light (λon = 375nm) and the off-switching light (λoff = 488nm). Data

shown for the reversibly switchable fluorescent proteins rsEGFP2 expressed in E.Coli

cells. Sample preparation and measurement was carried out by Philipp Alt.
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Figure 3.3. Switching kinetics for rsEGFP and rsEGFP2 expressed in

E.Coli cells. a: Effective switching rate k measured as a function of the intensity

of the off-switching light (λoff = 488nm). A linear dependence of k on the intensity

is fitted for intensities below 100 W/cm2. b: Equilibrium level ρ∞ as a function of

the intensity. The line shown is the average of the data for all intensities. Sample

preparation and measurement was carried out by Philipp Alt.
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By estimating the proportionality constant for this linear dependence, as described

in Section 2.1 we can estimate the effective cross-sections for the on- and off-switching

transition for rsEGFP:

σon
eff = 5.3× 10−20cm2 (3.7)

and

σoff
eff = 1.2× 10−17cm2 . (3.8)

For rsEGFP2, both effective cross-sections for on- and the off-switching are larger:

σon
eff = 5.7× 10−19cm2 (3.9)

and

σoff
eff = 2.5× 10−17cm2 . (3.10)

3.2. Counting molecules in simulated images

Using the forward model for the stochastic image formation process described in

Section 2.2.1, RESOLFT images were simulated to test the workflow of counting

molecules described in Section 2.2.3. To this end, point-like and line-like structures

were simulated to find how precisely the brightness and the number can be measured,

and which quantities determine the error of the estimate.

As we use the Richardson-Lucy deconvolution for the estimation of the object, the

estimate of the brightness may be subject to bias and artifacts. The parameters in

the simulation can be chosen freely, to determine for example a minimum brightness

which is needed to estimate the number of fluorophores in the image precisely.

In the simulation, the structure was given by a number density in two dimen-

sions on a 1× 1µm grid with 2 nm spacing. We simulated two kinds of structures:

clusters of 50 molecules and single lines with 500 evenly distributed molecules. We

assume the light intensity distributions in the focus to be known exactly, using nu-

merically calculated intensity distributions of the diffraction limited on-switching,

the doughnut-shaped off-switching and the confocal readout [62]. These light distri-

butions are used to calculate the effective on-switching probability ρeff
on(~r), according

to Equation 2.21. We define the peak dose D = σImaxt to describe the switching

parameters in the simulation, such that the final state after switching is given by

ρon(~r) = ρ∞ + (ρ0 − ρ∞) exp(−Dh(~r)) , (3.11)

where the applied intensity distribution h(~r) is assumed to be normalized such that

the maximum value is one. Two different cases were simulated, the saturated on-

switching case, in which applied peak dose was Don = 2 and the low on-switching
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3. Quantitative RESOLFT microscopy

case with Don = 0.1. The resulting on-switching probability at the center of the

focus in the two cases was 86.4 % and 9.5 %, respectively. For the off-switching

step, the peak dose was set to Doff = 20 in both cases, and the equilibrium level was

assumed to be at 2%, approximately the level measured for rsEGFP2. The FWHM

of the sharp RESOLFT peak after the two switching steps was about 40 nm.

To simulate the measurement, at each scanning position, all molecules in the sam-

ple are prepared in a random state according to the effective on-switching probability

ρeff
on(~r) by drawing binomially distributed random numbers at each position.

The measured signal at each scanning position is drawn from a Poisson distribution

with the mean value calculated by integrating the distribution of molecules in the

on-state weighted by the confocal readout PSF, and multiplied by the brightness

for brightness parameters varying from 0.1 to 10. Simulated images for each of the

parameter sets are shown in Figure 3.4 for clusters of molecules and in Figure 3.5

for line structures.

To estimate the number from the simulated images, we follow the procedure de-

scribed in Section 2.2.5 to estimate the brightness from the image, given that the

effective on-switching probability ρeff
on(~r) and the confocal PSF hconf(~r) are known.

In the first step, the image is deconvolved with the known effective PSF, which

estimates the object ρ(~r), given by product of the number density n(~r) and the

brightness b. This estimated object is used to estimate the mean signal in the image

and the spatial distribution of the excess variance. In the second step, the likelihood

function for the parameter b is approximated using the likelihood for the Gaussian

distribution, given by equation (2.64). This is a function of the parameter b, and

the maximum of the likelihood function is calculated numerically to find a point

estimate for the brightness b̂. Finally, to estimate the number of fluorophores in

the image, the estimated object is divided by the estimated brightness parameter b̂.

This is an estimate of the number density of fluorophores in the image. The total

number of molecules in the image is then obtained by integrating this density over

the whole image.

The results of this estimation procedure for the brightness parameter under the

simulated conditions are shown in Figure 3.6.

48



3. Quantitative RESOLFT microscopy

low on-switching
Don=0.1

0

1

2

3

0

2

4

6

0

2

4

6

8

0

20

40

60

0

10

20

30

40

0.1

0.5

1

5

10

0

1

2

3

4

5

0

10

20

0

10

20

30

40

0

100

200

300

400

0

50

100

150

Brightness
b

saturated  on-switching
Don=2
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3.3. Experimental results in RESOLFT images

To validate the workflow described in Section 2.2.3, we use RESOLFT images of

Drosophila embryo muscle tissue using the same microscope and samples as de-

scribed in [20]. All cells in these flies express ubiquitously rsEGFP2 fused to α-

tubulin.

Tubulin is known to form helices with a diameter of approximately 25 nm. Each

turn comprises of 13 dimers of α- and β-tubulin and is spaced 8 nm apart [74, 75].

The total density of α-tubulin along a single filament can thus be estimated to be

approximately 1625 per µm.

Using Western blots of larval protein extracts, the ratio of endogenous α-tubulin

to rsEGFP2-α-tubulin in the Drosophila embryos was measured to be about 3:1 [20].

Thus, we expect the number density of rsEGFP2 proteins localized along a single

microtubule fiber to be on the order of 400 per µm.

3.3.1. Estimation of the effective PSF and calibration of the effective

on-switching probability

By means of the line extraction filter, we build a model for the structure, which can

be used to estimate the PSF using the Richardson-Lucy deconvolution, as described

in section 2.2.4. The background value is estimated by averaging the signal in regions

without any structure in it, which are identified by smoothing the image with a

Gaussian function with a FWHM of 120 nm (5 pixels) and applying a threshold to

the result. The average background counts per pixel are thus estimated to be

d ∼= 0.35 (3.12)

Figure 3.7a-d shows the result of the filtering procedure and the deconvolved effective

PSF. Using nonlinear least-squares fitting, we fit the estimated PSF according to

the analytical model, given in Equation (2.42), with a superposition of two Gaussian

PSFs:

heff = a1hconf + a2hRESOLFT (3.13)

= a1 exp(−4 log(2)
r2

w2
conf

) + a2 exp(−4 log(2)
r2

w2
RESOLFT

) . (3.14)

From this model, we find the values for the FWHM of the confocal background PSF

to be

wconf
∼= 217 nm . (3.15)
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Figure 3.7. Estimation of the effective RESOLFT PSF a: RESOLFT image

of tubulin filaments in muscle tissue of a Drosophila embryo expressing rsEGFP2

fused to α-tubulin. b: Localized tubulin filaments in the image. c: Result of the

Richardson-Lucy deconvolution of the PSF. d: Fit of a two-dimensional Gaussian

PSF with two components. e: Estimated confocal readout PSF hconf. f: Estimated

effective on-switching probability ρeff
on. g: One-dimensional profile of the estimated

confocal readout PSF hconf. h: One-dimensional profile of the estimated ffective on-

switching probability ρeff
on. Scale bars: a,b: 500 nm, c-e: 200 nm. Sample preparation

and measurement was carried out by Sebastian Schnorrenberg.
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The FWHM of the sharp RESOLFT PSF is measured to be

wRESOLFT
∼= 66 nm . (3.16)

As we have determined the equilibrium switching level ρ∞ = 0.024 for rsEGFP2 in

Section 3.1, we can estimate the value of the on-switching probability pon according

to Equation (2.42) from the ratio of the measured amplitudes a1 and a2, as

pon = ρ∞(1 +
a2

a1
) . (3.17)

The on-switching probability measured for this dataset is

pon
∼= 0.14 . (3.18)

That means, at the focus, approximately 14% of the proteins remain in the on-state

after the off-switching beam is applied.

Using these calibrated values, we can construct the two PSFs needed for the esti-

mation of the brightness, the effective on-switching probability, given by Equation

(2.40), and the confocal readout PSF, given by Equation (2.41).

The effective on-switching probability ρeff
on according to our model, is given by a

constant ρ∞ plus a Gaussian peak with a FWHM won which depends on the applied

light dose, as shown in Figure 3.7f and h. The FWHM won of the effective on-

switching probability can be calculated from the measured values of the confocal

and the RESOLFT PSF.

won =
wRESOLFTwconf√
w2

conf − w2
RESOLFT

∼= 63 nm . (3.19)

The effective on-switching probability, shown in Figure 3.7f, h is given by

ρeff
on = ρ∞ + (pon − ρ∞) exp(−4 log(2)

r2

w2
on

) . (3.20)

The confocal readout PSF is given by a Gaussian PSF with the measured FWHM

wconf and is shown in Figure 3.7e, g.

3.3.2. Quantification of the excess variance and counting molecules in

RESOLFT microscopy

From the same RESOLFT image which was used in Section 3.3.1, we estimate the

brightness b as described in Section 2.2.5. To this end, we first deconvolve the

image using the Richardson-Lucy algorithm with the iteration procedure described

in Equation (2.57) using the effective PSF and the value for the background which we
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determined in Section 3.3.1. The inital estimate is chosen to be constant everywhere

with the average value of the data set.

We stop the Richardson-Lucy algorithm after 50 iterations. The result of the

deconvolution, the estimated object ρ̂ is an estimate of the product of the number

density n(~r) of the proteins in the sample times the brightness b per protein. We

estimate the mean signal in the image µ̂ by convolving ρ̂ with the effective PSF

heff and adding again the calibrated constant background value d given in Equation

(3.12):

µ̂ = (ρ⊗ heff) + d . (3.21)

The estimated spatial distribution of the excess variance v̂ is calculated by convolving

ρ̂ with the PSF of the excess variance given by Equation (2.31).

v̂ = ρ̂⊗ hexc (3.22)

These results are used in the approximated log-likelihood function described in Equa-

tion (2.64). The values of the log-likelihood function are calculated numerically and

shown in Figure 3.8. Assuming a uniform prior distribution, we can normalize this

function to get the posterior probability density for the parameter b. The posterior

mean estimate of the parameter b̂ from this procedure is given by

b̂ ∼= 0.507 (3.23)

with a 90% credible interval between 0.46 and 0.54. By dividing the result of the

deconvolution ρ̂ by the estimated brightness b̂, we get an estimate of the number

density of fluorophores in the image, shown in Figure 3.9. Integrating the density

over single microtubules identified in the image, we can estimate the linear density of

rsEGFP2 along filaments in the image. For five microtubule segments in the image,

the average linear density of rsEGFP2 was quantified, and the results are shown in

Table 3.1.
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Figure 3.8. Log likelihood and posterior distribution for b. a: Log likelihood

function for the brightness parameter b, given the image data. b: Numerically nor-

malized posterior probability density for the brightness parameter b, given the image

data.

Table 3.1. Estimated linear number density of rsEGFP2 for the regions in Figure

3.9.

Region Number Length in µm Estimated density per µm

a 655 1.29 508

b 715 1.69 423

c 952 2.03 469

d 521 1.35 386

e 914 2.11 433

total 3757 8.47 444
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Figure 3.9. Estimation of the number density of rsEGFP2. The number

density was estimated for the RESOLFT image shown in Figure 3.7a. For each of

the regions a-e, the linear density along the filament was quantified by integration

the density over the area and dividing the result by the length of the filament. The

results are shown in Table 3.1. Scale bar, 500 nm.
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4. Activation-based multicolor STORM

The theoretical model of activation-based multicolor STORM presented in Section

2.3.3 is based on the two state Markov chain model. To validate this model, and to

find the optimal imaging conditions given this model for the fluorophore, we mea-

sured the intensity-dependent kinetic on- and off-switching rates for the organic dye

Alexa 647. To this end, single molecule datasets were taken with different illumina-

tion intensities of the excitation laser without additional activation of fluorophores,

to measure the on-switching rate.

To measure the off-switching rate, we developed a method for single molecule

event timing in Section 2.3.2. To evaluate the performance of the transition time

estimation, we conducted experiments with fluorescent beads and single molecules.

The method was then applied to measure the intensity-dependent off-switching rate

of Alexa 647.

The model described in Section 2.3.3 predicts that the crosstalk between the color

channels in activation-based multicolor STORM can be reduced by measuring the

on-switching time precisely, to identify specifically activated single molecule events.

We describe multicolor STORM experiments with precisely timed activation pulses

and quantify the crosstalk due to the random activation of single molecules and due

to cross-activation of the species.

4.1. Measuring Alexa 647 on-switching kinetics

To prepare a single molecule sample, single Alexa 647-labeled double stranded DNA

molecules were bound to a biotin-streptavidin coated glass surface at 500 pM con-

centration. The sample was immersed in a buffer containing an enzymatic oxygen

scavenging system (pyranose oxidase and catalase) and primary thiol (mercaptoethy-

lamine). The samples were imaged using an inverted fluorescence microscope as

described previously [42]. Single molecule experiments were performed at six inten-

sities of the 642 nm excitation laser ranging from 0.4 kW/cm2 to 6.5 kW/cm2. For

each intensity value, a measurement of 300 seconds was taken with different frame-

rates adjusted to the expected event duration time. The measurement parameters
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4. Activation-based multicolor STORM

are shown in Table 4.1. From these datasets, events were localized using a STORM

image analysis algorithm [11, 65]. In the localization data, clusters of localizations

were identified as single molecules. Fitting a linear model to the dataset, as de-

scribed in Section 2.3.1, the brightness of each single molecule in each frame was

estimated to obtain the signal trace.

For each single molecule signal trace, the first off-state dwell time was measured as

the first time the signal was measured above a manually chosen threshold value for

each dataset. The on-rate was estimated by modeling the distribution of measured

off-state dwell times according to equation (2.73) with the upper limit of T = 300s.

In Figure 4.1, we show histograms of the off-times with the corresponding model dis-

tribution given by equation (2.10) with the estimated parameters. The on-switching

rate appears to be linearly dependent on the intensity I642 with an offset, the con-

stant thermal on-switching rate:

kon(I642) = kth + σon
λ

hc
I642 . (4.1)

By fitting this model to the measured on-rates we can estimate the effective on-

switching cross-section for Alexa 647:

σon = 5.3× 10−22cm2 . (4.2)

Table 4.1. Measurement parameters for the single molecule switching kinetics ex-

periments.

Intensity in kW/cm2 Frame rate in Hz

0.43 20

0.87 20

0.87 50

2.17 50

2.17 100

4.35 100

4.35 200

6.52 100

6.52 200
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Figure 4.1. Estimation of the on-switching rate for Alexa 647. a-e: Mea-

sured off-times for different intensity values. The plotted curve is the distribution

expected for the on-switching rate parameter estimated from the data in each his-

togram. f: The intensity-dependence of the on-switching rate is shown. A linear fit

of the dependence is shown in red. Sample preparation and measurement was carried

out by Michael Weber and Mark Bates.
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4.2. Single molecule event timing measurements

In Section 2.3.2, we introduced a method to estimate the transition times of single

molecule events with a sub-framerate timing precision by calculating the ratio of

photon counts in the first frame in which a single molecule event is detected and the

average rate of photon counts measured during a frame in which the molecule was

in the on-state for the whole time. We calculated the Cramer-Rao lower bound for

the variance of the estimator in Equation (2.78), using a Poisson noise model with

constant background counts.

4.2.1. Switching time estimation for fluorescent beads

To find how well the switching time can be estimated, we first conducted an ex-

periment with fluorescent beads. The excitation laser was controlled such that the

beads were exposed to light with constant intensity for a given time interval, starting

at a fraction of 0.8 of a camera frame. This pulse scheme was repeated 150 times.

The switching time was estimated by first identifying the transition frames using

the hidden Markov model described in Section 2.3.2. Using the estimator given in

Equation (2.76), the on-switching transition time was estimated for beads under

different intensity conditions. We calculated the standard deviation of the switching

time estimation and the number of photon counts for each bead under different illu-

mination intensities. The result is shown in Figure 4.2 together with the square root

of the Cramer-Rao lower bound calculated for the estimator without background

noise:

σCRLB =

√
1− t1
b

. (4.3)

For fluorescent beads, the measured timing precision is close to the Cramer-Rao

bound.

4.2.2. Switching time estimation for single molecules

Single molecule experiments were conducted using streptavidin bound to a glass

surface coated with biotinylated bovine serum albumin. The streptavidin was la-

beled with Cy3 and Alexa 647, such that the Alexa 647 dyes can by activated via

excitation of the Cy3 dye using a green 532nm laser.

The activation pulses were timed at specific delays during the exposure time of

50ms of the camera. For each delay, 3000 frames were recorded. The single molecule

switching events were localized from the dataset. For each event, the signal trace

was extracted from the data and the switching time was estimated.
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Figure 4.2. Timing precision for fluorescent beads. For each data point, the

brightness and switching time was measured for 150 times. The red curve is the

square root of the Cramer-Rao lower bound for the number of photon counts and the

starting time during the frame 0.8. Sample preparation and measurement was carried

out by Mark Bates.

In Figure 4.3, the results of the switching time estimation relative to the beginning

of the frame with an activation pulse are shown. To estimate the timing precision for

the different delays, we fit Gaussian distributions to the histogram. The Cramer-Rao

bound is shown for the average brightness and the background measured from the

single molecule events. The measured timing precision is larger than the estimated

Cramer-Rao bound for Poisson noise by up to a factor of five. This discrepancy may

be explained by a higher variance in the signal due to sub-framerate blinking of the

single molecules.
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Figure 4.3. Single molecule measurements of the timing precision for

Alexa 647. The measured single molecule event transition times are shown as his-

tograms relative to the beginning of the frame in which the activation pulse was

given with different delays. Inset: The standard deviation for each delay (blue dots)

is shown together with the square root of the Cramer-Rao lower bound (red line).

Sample preparation and measurement was carried out by Mark Bates.
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4.3. Alexa 647 off-switching kinetics

The single molecule event timing method can be applied to the single molecule

kinetics data described in Section 4.1 to measure the duration of the events, that

is the on-state dwell time, depending on the intensity. The on- and off-switching

transition times are measured for each single molecule event detected in the dataset.

Here, the events are not activated specifically, such that the on-switching time is not

synchronized with the camera. To be able to measure the transition times precisely,

the first and last frames of the single molecule event have to be identified using the

hidden Markov model algorithm developed in Section 2.3.2. This is only possible if

the signal can be detected in the transition frames and the molecule is in the on-

state for at least one frame in between. Thus, the on-state dwell times can only be

measured for events which are longer than two camera frames. To estimate the off-

switching rate, we have to take this into account when using the estimator derived

in Section 2.1.3 given by equation (2.17). The results of the estimation are shown

in Figure 4.4. The off-switching rate is proportional to the applied intensity of the

excitation laser. The number of photons per event, given by the estimated rate

b times the duration of the event, does not depend on the intensity. By fitting a

linear dependece to the measured off-rate, we can estimate the effective off-switching

cross-section for Alexa 647:

σoff = 4.1× 10−18cm2 . (4.4)

4.4. Multicolor STORM using single molecule event timing

An application for the single molecule event timing method is the reduction of the

crosstalk in activation-based multicolor STORM. In Section 4.2.2, we showed that

the activation time can be measured with a sub-frame time precision for single

molecules. As discussed in Section 2.3.3, the random activation of single molecules

is a source of crosstalk, which can be reduced by using the switching time estimation

to discriminate between randomly and specifically activated single molecule events.

We performed multicolor STORM experiments using activator-reporter dye pairs.

For the first color channel, the mitochondrial protein Tom20 was labeled with

activator-reporter dye pairs of Alexa 647 and Cy3. For the second color channel,

Tubulin was labeled with dye pairs of Alexa 647 and Alexa 405. In both cases,

the fluorophores were conjugated to antibodies which were bound to the protein of

interest, as described previously [42,50]. The two species of dye pairs were activated
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Figure 4.4. Off-switching rate measurement for Alexa647. a: Intensity-

dependent off-switching rate. A linear dependence (red line) is fitted to the measured

data (blue dots). b: Total number of photon counts per single molecule event for

single molecules of Alexa 647 (blue dots). The mean of the number of photons is

shown in red.
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4. Activation-based multicolor STORM

using a green or UV laser pulse, respectively. The camera exposure time was 6.8 ms.

The activation pulses were given after 0.7 of the camera exposure had elapsed. The

duration of the pulses was controlled using a feedback loop to keep the number of

specifically activated events at a constant level. During the experiment, the pulses

were applied alternatingly every 10 camera frames.

The data was analyzed by localizing the position of each single molecule event

using a STORM image analysis algorithm [11, 65]. Then, for each event, the signal

trace was extracted from the data and the starting time of the event was estimated

as described in Section 2.3.2.

We compared two methods of assigning the single molecule events to the color

channels. In the frame-based method, all events which were first detected in one

of the frames with a pulse are assigned to the corresponding color channel. This

is equivalent the procedure described before [42, 50]. In the timing-based method,

the sub-frame estimation of the on-switching time was used to assign events to

each color channel which have a high probability of being correctly identified. The

resulting images are compared in Figure 4.5b. In Figure 4.6, a histogram of the

on-switching transition times for one of the pulses is shown. The size of the time

interval used for the assignement of the color determines the number of randomly

activated events assigned to the color channel. There is a trade-off between the

number of incorrectly assigned random events and the number discarded events.

As seen in Figure 4.6, when retaining approximately two thirds of the events, the

crosstalk due to randomly activated molecules can be reduced by approximately one

half by choosing a symmetric interval of length 0.2 camera exposure times, that is

±0.1 around the time of the activation pulse.

To analyze the crosstalk in the image shown in Figure 4.5, we analyzed regions in

which only one of the structures were present (microtubules or Tom20). In each of

these regions, the number of localizations which were assigned to each channel was

counted. The crosstalk was calculated as the fraction of localizations which were

assigned to the wrong color channel. For both channels, the crosstalk was about 7%

using the frame-based method to assign the events to the color channels. Using the

timing-based method, and a time interval of 0.2 camera exposure times to assign

the color channels, the crosstalk was reduced to below 3.5%.
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Figure 4.5. Multicolor STORM image of Tom20 and Tubulin. a: Mul-

ticolor STORM image of Tom20 and Tubulin. Scale bar, 1 µm b: Inset region in

a shown with a high contrast colormap. The frame- and timing-based methods are

compared for the individual color channels. Scale bar, 500 nm. c Quantified crosstalk

values in the dashed regions in a. Sample preparation and measurement was carried

out by Michael Weber and Mark Bates.
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Figure 4.6. On-switching transition time and color assignment. a: Green:

Histogram of the number of events detected in each frame, according to the frame-

based method. Color coded: Histogram of estimated on-switching transition times

color coded with the estimated probability of correct assignment. b: Trade-off be-

tween crosstalk and fraction of specifically activated events retained in the image. The

size of the chosen time interval for the assignment of the color channel is shown in

color code. The choice of the timing window determines both the fraction of specifi-

cally activated molecules retained in the image and the fraction of randomly activated

events which cause the crosstalk.
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4.4.1. Quantification of the sources of crosstalk

In Section 2.3.3, we described two sources of crosstalk. The cross-activation due

to the spectral overlap of the two activator dyes and the crosstalk due to random

activation of the reporter fluorophores. By estimating the on-switching time for each

single molecule event, we can reduce the crosstalk due to the randomly activated

reporter dyes. To find the relative contributions of the crosstalk due to randomly

activated reporter dyes and cross-activation of the dyes, control experiments were

conducted.

First, two-color STORM images of the two nuclear pore complex proteins, gp210

and panFG in A6 cells were taken shown in Figure 4.7. The structures were labeled

with primary antibodies against gp210 and panFG, and secondary antibodies labeled

with either the Alexa 647-Alexa 405 dye pair, or the Alexa 647-Cy3 dye pair.

In the control experiments, the samples were only labeled with one of the sec-

ondary antibodies. The same intensity profile to which the feedback loop was ad-

justed in the two-color experiment was applied for the activation pulses of both

colors.

The contributions of the two sources of crosstalk depending on the chosen time

interval ∆ttiming can be quantified as follows. We denote the number of activations

in a time interval with a specific activation pulse for the species i as Ni. This is

a mixture of the specifically activated events Si of the species associated with the

channel and the cross-activated events from the other channels:

Ni = Si + riSi +
∑
j 6=i

(xj + rj)Sj . (4.5)

Here, the fraction of randomly activated events for each species is given by ri and

the fraction of cross-activated events are given by xi. In a time interval of the

same proportions during a frame without a specific activation pulse, only randomly

activated events occur:

N0 =
∑
j

rjSj . (4.6)

The measured crosstalk in the final image is given by the contributions from the

other color channels:

Xi =

∑
j 6=i(xj + rj)Sj

Ni
(4.7)

= Xcross-activation
i +Xrandom

i . (4.8)

In the control images, shown in Figures 4.8 and 4.9, the fractions xi and ri can

be measured directly. Using these ratios, we can estimate the relative contribution
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of the cross-activation and the random activation on the crosstalk in the two color

image for the frame-based and the timing-based analysis.

To this end, we measure the numbers Ni from the estimated on-switching times of

the two color dataset shown in Figure 4.7. By solving the system of linear equations

(4.5), the number of specific activations in the color channels is estimated. The

crosstalk for both color channels can be calculated according to Equation (4.7),

while also finding the contributions for the two sources of crosstalk. The results

of the crosstalk estimation are shown in Table 4.2. The total crosstalk is again

reduced by approximately one half by using the timing based method by choosing

a symmetric interval of 0.2 camera exposure times around the pulse time. The

improvement is mainly due to the reduction of randomly activated events which are

assigned to each color channel.

Table 4.2. Estimated crosstalk for random activation and cross-activation.

Species Method Total crosstalk Cross-activation Random activation

gp210 Frame-based 3.32% 0.99% 2.33%

Timing-based 1.62% 0.65% 0.97%

panFG Frame-based 10.34% 0.85% 9.49%

Timing-based 5.08% 1.8% 3.28%
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Figure 4.7. Multicolor STORM image of gp210 and panFG. a: Whole field

of view. Scale bar, 2 µm. b: Zoomed region. Scale bar, 250 nm. c: Histogram of

measured on-switching times shown on a logarithmic scale for the frames with specific

activation pulses and a frame without a specific activation pulse. Sample preparation

and measurement was carried out by Michael Weber and Mark Bates.
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Figure 4.8. Multicolor STORM image of panFG control sample. a: Whole

field of view. Scale bar, 2 µm. b: Zoomed region. Scale bar, 250 nm. c: Histogram of

measured on-switching times shown on a logarithmic scale for the frames with specific

activation pulses and a frame without a specific activation pulse. Sample preparation

and measurement was carried out by Michael Weber and Mark Bates.
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Figure 4.9. Multicolor STORM image of gp210 control sample. a: Whole

field of view. Scale bar, 2 µm. b: Zoomed region. Scale bar, 250 nm. c: Histogram of

measured on-switching times shown on a logarithmic scale for the frames with specific

activation pulses and a frame without a specific activation pulse. Sample preparation

and measurement was carried out by Michael Weber and Mark Bates.
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5. Discussion

In this work, we quantitatively modeled superresolution microscopy based on pho-

toswitchable emitters using a simple two state switching model. For RESOLFT mi-

croscopy based on reversible switchable fluorescent proteins, we developed a method

to calibrate the brightness per fluorophore from the image data, based on the model-

ing and estimation of the excess variance due to the stochastic switching of the fluo-

rophores. This was applied to estimate the number density of fluorophores in the im-

age. For STORM microscopy, we introduced a method to measure the on-switching

transition time of the single molecule events with sub-frame timing precision. This

was applied to reduce the crosstalk due to random activation in activation-based

multicolor STORM microscopy.

5.1. Two state model

Both imaging modalities considered in this thesis were modeled based on the two

state Markov chain. As described in Section 2.1.1, the switching behavior for a single

realization of the Markov chain is characterized by its exponentially distributed state

dwell times. The single molecule data of Alexa 647 we describe in Section 4.1 show,

that both the on- and the off-state dwell times are distributed exponentially under

the controlled conditions in the single molecule experiment. In another work, up to

four states have been considered to model the switching behavior of Alexa 647 [76].

However, on the timescales of the camera exposure time (5-50 ms) used and the

duration of our experiments (5 minutes), we find that two states are sufficient to

describe the switching behavior relevant to SMLM.

The switching curves measured for rsEGFP and rsEGFP2 shown in Section 3.1

could be approximated closely with a superposition of exponential decay functions,

weighted by a gamma distribution. Thus, the decay law describing the off-switching

signal in these proteins is not described fully using the simple two state Markov

model. This is not surprising, as different processes can be involved in the photo-

switching process for reversibly fluorescent proteins, like isomerization and protona-

tion [59].

74



5. Discussion

5.1.1. States on shorter timescales

On timescales shorter than those considered in this work, fluorophores can undergo

transitions between the excited and the ground state, which happens on the order of

nanoseconds, and the triplet state, which can have lifetimes of a few microseconds

to a few milliseconds [69].

In the RESOLFT measurements, the dwell times were chosen to be 30 µs, which is

longer than the reported lifetimes of the triplet state dynamics rsEGFP2, which were

reported on the order of 1 µs [18]. As the signal does not show strong saturation

effects, as seen in Figure 3.2, metastable triplet state dynamics are probably not

limiting the signal from the proteins.

The switching transitions on shorter timescales do play a role for the measure-

ment of the transition time in Alexa 647, as they could increase the variance of the

measured fluorescence signal. An increased variance may lead to a lower timing

precision than expected for Poisson noise. These processes may explain why the

timing precision measured for the single molecule data is worse than expected for

Poisson noise, as seen in Section 4.2.2.

5.1.2. States on longer timescales

On longer timescales, most fluorophores lose the ability to fluoresce due to pho-

tobleaching. The fluorescent protein rsEGFP2 was shown to last more than 2000

switching cycles on average before the signal drops to half of the initial value [17].

For the Drosophila embryo muscle cells used for the quantification of the brightness

in Secion 3.3, it was possible to take movies of 20 frames before the fluorescence sig-

nal dropped to two thirds of the initial value [20]. Assuming a linear photobleaching

process depending on the applied light dose, this would amount to a loss of fluores-

cence signal of about 2% per recorded image. Photobleaching is thus not expected

to strongly influence the result of the quantification.

In the single molecule experiments for Alexa 647, we were not able to observe

the photobleaching process, as the duration of the experiments was too short. The

average number of switching cycles Alexa 647 can undergo before photobleaching was

previously reported to be approximately 11 [27]. The average off-state dwell times

we measured in Section 4.1 are approximately one quarter of the total duration

of the experiment even for the highest intensity. To measure the total number of

photoswitching cycles under these conditions, longer experiments would be needed.

However, in the multicolor measurements described in Section 4.4, photobleaching

can occur on the timescale of the experiment. Photobleaching decreases the density
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of fluorophores which are able to fluoresce over time. For the crosstalk in activation-

based multicolor STORM, a lower density of fluorophores is desirable, as more single

molecule events can be activated specifically. However, due to a decreasing labeling

density, the structure may not be represented well by the remaining labels after a

large fraction of the fluorophores is bleached [72].

5.2. Quantitative RESOLFT microscopy

The stochastic image formation model for RESOLFT microscopy described in Sec-

tion 2.2.1 was used to predict the mean and the variance of the measured signal. For

the switching kinetics with a linear intensity dependence of the on- and off-switching

rates over a large range of intensities, we calculated the specific shape of the effective

RESOLFT PSF. We validated this switching model in Section 3.1. In the general

case, to calculate the shape of the PSF, the intensity-dependent switching kinetics

must be known.

The effective RESOLFT PSF depends not only on the on- and off-switching rates,

but also on the focal intensity distribution which is used to switch the fluorophores.

We showed in Section 2.2.2, that the approximations used fit well with numerically

calculated intensity profiles. Due to aberrations, the intensity distributions in the

experiment may have slightly different shapes, such that the theoretical model which

consists of two Gaussian PSFs may not be appropriate [77].

However, by estimating the PSF directly from the image data, as described in

Section 2.2.4, it should be possible to detect strong deviations from the expected

shapes. The described procedure does not assume any model for the shape of the

PSF. In Section 3.3.1, the shape of the estimated PSF was seen to be well described

by the theoretical model.

The filtering method used to estimate the object heuristically may fail in some

cases, for example if the PSF has more than one peak. For dense regions in the

image, like at the crossing of two lines, the algorithm fails to identify the lines

correctly. Due to the deconvolution procedure, the shape of the PSF is optimized

over the whole image, such that small regions of higher density should not influence

the result strongly.
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5.2.1. Blind deconvolution and regularization

The procedure sketched in Section 2.2.4 for estimating the PSF is a blind decon-

volution method [78–80]. Blind deconvolution algorithms are used if both the PSF

and the image are unknown. In this case, an unconstrained maximum likelihood

approach would fail, because the trivial solution, in which the underlying struc-

ture is equal to the image and the PSF is a delta peak, maximizes the likelihood.

This is also called overfitting [66]. Overfitting can happen if there are more flexible

parameters than independent data points. As the number of parameters in blind

deconvolution is much larger than the number of image pixels, the method is prone

to overfitting.

Regularization methods can be used to reduce the effect of overfitting in these

cases. Some regularization methods add terms to the likelihood function, which

are designed to reduce the likelihood for complex solutions [66]. In the method for

estimating the effective PSF, two implicit regularization effects are at work. First,

the object is fixed to the result of the heuristic maximum line extraction. Therefore

the parameters of the object are not optimized. The second regularization effect

is the number of iterations in the Richardson-Lucy deconvolution. By stopping the

algorithm early without converging to the maximum likelihood solution, the result is

regularized implicitly [81]. In practice, this can reduce typical artifacts which occur,

like the separation of structures into alternating pixels with high and low signals,

respectively.

The Richardson-Lucy deconvolution is also used for the estimation of the bright-

ness, as described in Section 2.2.5. Here, given the effective PSF, the object is

estimated. In a second step, the excess variance in the image is used to quantify

the brightness. This procedure depends strongly on the number of iterations used.

Each iteration of the Richardson-Lucy deconvolution increases the likelihood of the

model given the data. This also decreases the square deviation of the data to the

model, thus decreasing the excess variance which can be measured. During the first

iterations, the estimate of the object typically improves, at some point however, ar-

tifacts are introduced, which increase the value of the likelihood function, but may

not represent the object accurately. It is not clear how to determine exactly the

transition between these two regimes [81]. The number of iterations thus has to be

chosen with care.
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5.2.2. Counting error

The final result of the estimated number density depends critically on the correct

calibration of the on-switching probability. The total number of molecules in the

RESOLFT image is basically given by the total number of photon counts in the im-

age divided by the brightness and by the on-switching probability. The on-switching

probability is calibrated indirectly, using the shape of the PSF and the equilibrium

level for the switching process, which was calibrated in a separate experiment. Any

errors in the calibration of the brightness and the on-switching probability will lead

to an error in the estimation of the number of molecules in the image. In simulated

data with a known on-switching probability, the estimated brightness showed a small

bias and was typically estimated too low. This would amount to systematically over-

estimating the number of molecules in the image. Assuming that the calibration of

the brightness and the on-switching probability can be performed accurately, the

error in determining the number is limited by the variance of the signal.

In all counting methods, the single molecule behavior is modeled. The signal

of, for example a cluster of molecules is then assumed to be the superposition of

the independent signals of many single molecules. When counting molecules in

superresolution microscopy, the number of fluorophores in sub-diffraction volumes

is estimated. When fluorophores are closer together than about 10 nm, they may

interact by fluorescence resonance energy transfer (FRET) between an excited donor

and an acceptor [69, 82]. This process is used to study interactions in biological

systems, by using fluorophores of different species with overlapping spectra. If the

absorption and emission spectra of a single fluorophore overlap, FRET between

fluorophores of the same species can occur [53,83]. These interactions may invalidate

the assumption of the independent switching and emission in the fluorophore models

used for counting molecules. For the microtubule sample studied in Section 3.3, the

linear density of fluorophores along a microtubule was estimated to be around 400

per µm. For a random distribution of 400 fluorescent proteins in a cylindrical volume

given by the diameter of 25 nm of the microtubule and its length of 1 µm, the average

distance between proteins is approximately 15 nm. Thus, interactions between some

of the fluorophores in the sample cannot be ruled out. However, as the fluorophores

are prepared in a sub-diffraction volume in the RESOLFT microscope, not all of

the fluorophores in the detection volume are in the fluorescent state at the time of

detection. As estimated in Section 3.3, approximately 14% of the fluorophores at

the focus remain in the on-state before the detection step, such that the effective

intermolecular distance between fluorophores in the on-state may be larger.

78



5. Discussion

5.3. Single molecule event timing and multicolor STORM

By estimating the switching transition time of single molecule events with a sub-

frame time precision, we were able to reduce the crosstalk in activation-based mul-

ticolor STORM microscopy by about a factor of two, as shown in Section 4.4.

5.3.1. Single molecule event timing

A method for estimating transition times with a higher timing precision for camera-

based data has been used in FRET studies [84]. The FRET signal was modeled as

a step function, similar to the model for the single molecule events in Section 2.3.2.

However, instead of estimating the transition time for each event individually, the

signals from many individual events were aligned by correlating upsampled signals

for each event. Another method for increasing the time resolution of a camera

detector is stroboscopic illumination, where the illumination light is only applied for

a short duration during the camera exposure [85].

The problem of estimating a change point in the time-resolved signal of a Poisson

process is important for the analysis of single molecule signals [86, 87]. However,

typically it is assumed that the time resolution is high, for example for data taken

with an avalanche photodiode, in which the time of each single photon arrival is

measured. The determination of the change point is then limited by the noise of the

signal. In this case, the time of the change point can be estimated using the binary

segmentation technique [88]. The dataset is split in two parts. The null hypothesis

of no change in the Poisson rate is compared to the hypothesis of a change point at

the position at which the dataset was split using a likelihood ratio test.

Due to the limited time resolution of the camera, this method cannot be applied to

the single molecule signals considered in this work. Using camera detectors, however,

has the advantage that the signals from many single molecules can be measured in

parallel. This is crucial for the reconstruction of an image in SMLM.

The transition time is estimated by taking the ratio of the signal in the first frame

of a single molecule trace to the average brightness in fully exposed frames. For

this method to work, the single molecule trace has to be long enough, such that

there is least one full frame during which the molecule was in the on-state. As the

duration of the single molecule events is exponentially distributed, there can be a

large fraction of events which are too short for average on-state dwell times of two to

four camera exposure times. The first frame of each single molecule event is detected

using an HMM. Due to the noise in the signal, it can be misidentified in some cases,

especially for transition times which are close to the boundary between two frames.
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5.3.2. Crosstalk in multicolor SMLM

Multicolor methods for SMLM in which all channels are imaged during the same

experiment [39–42,50], typically assign each single molecule event to a color channel.

Independent of the method used, there is typically a small probability of assigning an

event to a wrong channel. These incorrectly assigned events determine the crosstalk

in multicolor SMLM. If one of the species is more abundant than the other ones,

the crosstalk from this channel into the other channels will be much higher. The

crosstalk in the final image can be reduced by discarding events which cannot be

assigned with a high certainty [39]. With a higher number of distinct color species

in the image, the crosstalk is given by the sum of the contributions of each species.

Thus, it is especially important to reduce the crosstalk if more than for example two

colors are imaged.

In multicolor SMLM using spectrally separated fluorophores, the crosstalk which

can be achieved is typically lower than in activation-based multicolor STORM. Using

two color channels for the detection of the fluorescence, a crosstalk below 10% was

achieved [39, 40]. Using an extra objective to measure the spectrum for each single

molecule event on a second camera, the crosstalk could be reduced to below 2% [41].

In activation-based multicolor STORM, the crosstalk was typically reported to

be between 10 and 20% [42]. Using the switching time analysis, we were able to

reduce the crosstalk by a factor of two. In the measurements shown in Section

4.4, a crosstalk of between 3% and 5% was achieved. This is comparable with other

methods for multicolor SMLM, however, the problem of image registration described

in Section 1.2 is avoided.

Another aspect related to image registration in SMLM is drift correction. As

typical SMLM experiments take a few minutes or even up to hours, drift on the

scale of the resolution can typically not be avoided and has to be corrected in post-

processing [6, 89].

80



6. Outlook

The stochastic behavior of photoswitchable fluorophores was modeled by a simple

two state Markov chain with a fluorescent on- and a non-fluorescent off-state. This

model was applied to describe the stochastic image formation process in RESOLFT

microscopy based on reversibly switchable proteins. Due to the stochastic switching

behavior of the fluorophores in the focal region of a RESOLFT microscope, the

variance of the measured signal is higher than for non-switching fluorophores. This

excess variance was estimated from a single image to calibrate the brightness per

fluorophore, with the goal of estimating the number density of fluorophores in the

image.

Instead of a confocal excitation and detection, other modes of readout can be con-

sidered. The signal from the fluorescent proteins can be read out with an additional

off-switching step using STED [90]. This can be included into the model by using

the effective STED PSF to model the readout step.

The image formation process can be readily extended to different intensity pat-

terns for the confinement of the on-state population to sub-diffraction volumes [91].

By taking into account the specific noise of the camera, the image formation model

can be applied to in parallelized RESOLFT microscopy [92].

The calibration of the brightness from the image data may be improved by using a

specific deconvolution approach with an adjusted noise model, by taking into account

the joint likelihood function for the number density and the brightness. This may

solve some of the problems of the deconvolution algorithm used.

If more than one image can be taken of the structure, this can improve the esti-

mate of the brightness in several ways. First, more data can in principle increase

the precision of any estimate, although photobleaching may have to be taken into

account. Second, the variance of the signal can be estimated from several images

without the need of the deconvolution method. These approaches could reduce the

bias in the estimation of the brightness.

We introduced a method for estimating the switching transition time for single

molecule events in SMLM with a sub-frame timing precision. This method was used

to reduce the crosstalk due to randomly activated fluorophores in activation-based
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multicolor STORM. With a reduced crosstalk, it is possible to increase the number

of color species in the sample. Without the need to register the images, activation-

based STORM can be applied with a high resolution in three dimensions, using 4Pi

detection [93].

The estimation of the switching time can be applied to other kinds of single

molecule data, for example single molecule FRET, where the additional time reso-

lution may be helpful.

The precision of the switching time estimate depends strongly on the stability

of the signal. For single cyanine dyes, the stability depends strongly on the used

buffer conditions [69]. Optimizing these buffer conditions will increase the precision

in transition time measurements, and potentially lead to a further decrease of the

crosstalk in activation-based multicolor STORM. To this end, the tools we developed

for the measurement of the single molecule switching kinetics will be helpful.
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and S. Jakobs, “In vivo super-resolution RESOLFT microscopy of Drosophila

melanogaster ,” eLife, vol. 5, p. e15567, jun 2016.

[21] V. C. Coffman and J.-Q. Wu, “Counting protein molecules using quantita-

tive fluorescence microscopy,” Trends in Biochemical Sciences, vol. 37, no. 11,

pp. 499–506, 2012.

[22] M. H. Ulbrich and E. Y. Isacoff, “Subunit counting in membrane-bound pro-

teins,” Nature Methods, vol. 4, no. 4, pp. 319–321, 2007.

[23] H. Ta, A. Kiel, M. Wahl, and D.-P. Herten, “Experimental approach to extend

the range for counting fluorescent molecules based on photon-antibunching,”

Physical Chemistry Chemical Physics, vol. 12, no. 35, pp. 10295–10300, 2010.

[24] H. Ta, J. Keller, M. Haltmeier, S. K. Saka, J. Schmied, F. Opazo, P. Tinnefeld,

A. Munk, and S. W. Hell, “Mapping molecules in scanning far-field fluorescence

nanoscopy,” Nature Communications, vol. 6, 2015.

[25] P. Annibale, S. Vanni, M. Scarselli, U. Rothlisberger, and A. Radenovic, “Quan-

titative photo activated localization microscopy: unraveling the effects of pho-

toblinking,” PloS ONE, vol. 6, no. 7, p. e22678, 2011.

[26] S.-H. Lee, J. Y. Shin, A. Lee, and C. Bustamante, “Counting single pho-

toactivatable fluorescent molecules by photoactivated localization microscopy

(PALM),” Proceedings of the National Academy of Sciences, vol. 109, no. 43,

pp. 17436–17441, 2012.

[27] R. P. Nieuwenhuizen, M. Bates, A. Szymborska, K. A. Lidke, B. Rieger, and

S. Stallinga, “Quantitative Localization Microscopy: Effects of Photophysics

and Labeling Stoichiometry,” PloS ONE, vol. 10, no. 5, p. e0127989, 2015.

[28] F. Fricke, J. Beaudouin, R. Eils, and M. Heilemann, “One, two or three? prob-

ing the stoichiometry of membrane proteins by single-molecule localization mi-

croscopy,” Scientific Reports, vol. 5, 2015.

85



A. Bibliography

[29] N. Durisic, L. Laparra-Cuervo, Á. Sandoval-Álvarez, J. S. Borbely, and
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