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Abstract 
 

The second most common neurodegenerative disease, Parkinson’s disease (PD), is 

caused by loss of dopaminergic neurons in the substantia nigra leading to impaired motor 

control. Genetic analyses have revealed recessively and dominantly inherited mutations in 

the so-called PARK genes that cause symptoms reminiscent of those of PD. Mutations in 

the FBXO7 gene (PARK15) have been linked to several families presenting with 

Parkinsonian-Pyramidal Syndrome, but its precise role in neurons remains unknown. 

Proteasomal dysfunction has previously been linked to PD. Owing to the previously 

published finding that FBXO7 interacts with the proteasomal modulator PI31, I 

investigated the role of FBXO7 in proteasomal regulation and found in loss-of-function 

experiments that FBXO7 promotes proteasome activity. To model the PARK15 syndrome 

in mice, we generated a conventional FBXO7 knockout mouse line. With behavioral 

experiments, I showed that these mice present early onset motor defects and premature 

death. As FBXO7 is ubiquitously expressed in the brain, we dissected the pyramidal and 

Parkinsonian phenotype using a conditional knockout strategy. I found that loss of FBXO7 

in pyramidal forebrain neurons caused severe motor deficits reminiscent of the pyramidal 

symptoms seen in PARK15 patients, in addition to stereotypic behavior. I could show that 

the glutamatergic transporter level was downregulated in the striatum of these mice, along 

with an increase in dopamine. On the other hand, loss of FBXO7 in murine 

catecholaminergic neurons lead to a progressive loss of fine motor control with reduced 

ambulation in the end stage, which can be interpreted as a Parkinsonian phenotype. This 

was accompanied by a significant decrease of striatal dopamine, without neuronal loss. 

Taken together, this study shows FBXO7 as a regulator of the 26S proteasome and 

characterizes novel mouse models for investigation of Parkinsonian-Pyramidal Syndrome. 

 



"If you put your mind to it, you can accomplish anything." 
~ Michael J. Fox as Marty McFly, "Back to the Future" 

 

 

1 Introduction 

1.1 Parkinson's disease 

With an aging population the world faces new challenges in the shape of age-related 

diseases. Second only to Alzheimer’s disease, Parkinson's disease (PD) affects about 6 

million people worldwide and is one of the most common neurodegenerative disorders 

known today (Dorsey et al., 2007). It is a complex motor disease whose symptoms 

comprise bradykinesia, resting tremor, rigidity and postural instability. However, additional 

symptoms such as cognitive decline, mood disorders and sleep disturbances are mostly 

present and further contribute to the discomfort of patients’ every day life. The underlying 

reason for PD symptoms is a loss of dopaminergic neurons in the substantia nigra, but 

what causes these neurons to die is still debated. PD research aims at easing the pain 

and giving hope to patients, while simultaneously saving the society costly symptomatic 

treatment. This quest begins with identifying the pathogenic mechanisms causing the 

disease and requires a translational approach involving meaningful animal models. 

1.1.1 Genetic variants of PD 

Most cases of Parkinson's disease are of idiopathic origin with only about 10% of patients 

reporting a family history of PD (Thomas and Beal, 2007). However, in recent years, 

several families have been diagnosed with familiar PD caused by mutations in identified 

genetic loci, the so-called PARK loci (Table 1.1). Although these genetic variants are rare, 

they can offer valuable insight into the signaling pathways that are rendered dysfunctional 

and hence shed light on therapeutic strategies for both familiar and sporadic forms of PD.  

The first gene to be associated with PD was SNCA (Polymeropoulos et al., 1997), which 

encodes for the protein  α-synuclein. This protein was later shown to be a major 

constituent of the so-called Lewy bodies; intra-neuronal protein deposits in the brain 

known as the pathological hallmark of PD (Spillantini et al., 1997). Patients have been 

found to have point-mutations or duplication events in the SCNA gene (PARK1/4) 

(Nuytemans et al., 2010). These mutations are inherited in an autosomal dominant 

manner and the severity of the symptoms correlate with increased gene number, 

suggesting a gain-of-function toxicity of the dysfunctional protein. The symptoms in 

PARK1/4 patients are often early-onset (>55 years), with dementia as a secondary 



Introduction 3	  

symptom. Another PD variant that is inherited in the same manner is caused by point 

mutations in the PARK8 gene encoding leucine-rich-repeat kinase 2 (LRRK2) (Brice, 

2005; Lesage et al., 2005; Ozelius et al., 2006). This is the most prevalent PD gene 

known so far and is found both in late-onset familiar and sporadic PD, with the familiar 

cases closely resembling the symptoms of the sporadic variant. LRRK2 is a protein kinase 

whose mutant variants are also thought to confer a toxic gain-of-function. 

Three other genes that have been unequivocally associated with PD are PARK2, PARK6 

and PARK7, which encode the E3 ubiquitin ligase parkin, PTEN-induced putative kinase 1 

(PINK1), and the antioxidant stress sensor DJ-1, respectively (Bonifati et al., 2003; Kitada 

et al., 1998; Valente et al., 2004). These syndromes are inherited in an autosomal 

recessive manner and the symptoms seen in these patients are often early-onset and 

caused by point mutations in their respective genes. PARK2, 6 and 7 are symptomatically 

indistinguishable and cause early-onset PD. Mutations in parkin are found in 77% of all 

juvenile Parkinson's cases (Lucking et al., 2000). All these genes are thought to be 

rendered dysfunctional by their mutations, suggesting that alterations in protein function 

cause PD symptoms in these patients. 

Additional genes and loci are associated with PD, both as isolated cases and risk factors, 

but many of these remain controversial or unconfirmed (Klein and Westenberger, 2012). 

So far 20 loci have been included in the PARK gene list. Some genes are associated with 

syndromes that are not strictly Parkinsonian, others are either uncharacterized genes or 

genetic variants, which are predominantly linked with other syndromes (Table 1.1). 

Table 1.1 Loci and genes associated with Parkinson's disease. Modified from Klein and 

Valadas (Klein and Westenberger, 2012; Valadas et al., 2015). AD=Autosomal dominant, 

AR=Autosomal recessive, PD=Parkinson's disease, EOPD=Early-onset PD. 

PARK 
locus 

Clinical 
phenotype Inheritance Gene Pathology Status 

PARK1/4 EOPD AD SNCA Lewy bodies Confirmed 
PARK2 EOPD AR parkin Lewy bodies Confirmed 
PARK3 Classical PD AD unknown Lewy bodies Unconfirmed 
PARK5 Classical PD AD UCHL1 Unknown Unconfirmed  
PARK6 EOPD AR PINK1 Lewy bodies (1 

case) 
Confirmed 

PARK7 EOPD AR DJ-1 Unknown Confirmed 
PARK8 Classical PD AD and risk 

factor 
LRRK2 Lewy bodies 

(usually) 
Confirmed 

PARK9 Kufor-Rakeb 
syndrome 

AR ATP13A2 Unknown Confirmed 

PARK10 Classical PD Risk factor unknown Unknown Confirmed 
susceptibility locus 

PARK11 Late-onset PD AD or risk 
factor 

GIGYF2 Unknown Not independently 
confirmed 
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PARK12 Classical PD Risk factor unknown Unknown Confirmed 
susceptibility locus 

PARK13 Classical PD AD or risk 
factor 

Omi/HtrA2 Unknown Unconfirmed 

PARK14 Early-onset 
dystonia-
parkinsonism 

AR PLA2G6 Lewy bodies Confirmed 

PARK15 Early-onset 
parkinsonian-
pyramidal 
syndrome 

AR FBXO7 Unknown Confirmed 

PARK16 Classical PD Risk factor unknown Unknown Confirmed 
susceptibility locus 

PARK17 Classical PD AD VPS35 Unknown Confirmed 
PARK18 Classical PD AD EIF4G1 Unknown Unconfirmed 
PARK19 Early-onset 

parkinsonism 
AR DNAJC6 Unknown Unconfirmed 

PARK20 Early-onset 
dystonia-
parkinsonism 
with cognitive 
decline 

AR SYNJ1 Unknown Unconfirmed 

 

1.2 Rodent models of Parkinson's disease 

Novel insight into the mechanisms behind neurological disorders has come from the use 

of animal models, which are also prerequisites for development of new treatment 

strategies and evaluation of their efficacy. The focus lies on rodent models as they are 

closely related to humans. A good animal model of Parkinson's disease should capture 

the features of PD in humans such as slow onset, loss of dopaminergic neurons and 

consequently the reduction in dopamine levels. The model should also allow for testing 

the response to current pharmacological treatment. 

1.2.1 Pharmacological models 

For Parkinson’s disease the first models developed were toxin models. A group of drug 

abusers in 1986 California suddenly developed full-blown Parkinson’s after intake of 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a by-product of heroin synthesis 

(Davis et al., 1979). The metabolite of this compound, MPP+, is a specific blocker of 

complex I of the mitochondrial electron transport chain (Trevor et al., 1988). 

Administration of this drug in mice, especially in the C57BL/6 strain, gives rise to motor 

symptoms and loss of dopaminergic neurons similar to PD (Donnan et al., 1987; Sonsalla 

and Heikkila, 1988). The pesticide rotenone is also a blocker of complex I activity in 

mitochondria, but in contrast to MPTP, it induces systemic mitochondrial defects (Xiong et 

al., 2012). MPTP and rotenone function very differently in different genetic backgrounds 

and the effects are also sometimes spontaneously reversible (Sedelis et al., 2001). This 
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prompted the use of the 6-hydroxy dopamine (6-OHDA) as a selective toxin of 

dopaminergic neural terminals when injected in the striatum. Mice treated in this way 

show long-lasting motor effects on top of dopaminergic neuron loss (Alvarez-Fischer et 

al., 2008).  

These models have in common that they represent a tool to investigate acute onset of 

symptoms, but might fail to model the slowly progressing cellular defects that underlie PD.  

1.2.2 Knock-in mouse models 

To model the impending cellular breakdown, researchers have taken advantage of 

information from genetic PD cases. Initially, mouse lines overexpressing either wild type 

human α-synuclein or mutant versions were generated. Several of these lines have 

successfully recapitulated the formation of Lewy body-like inclusions containing α-

synuclein accompanied by a progressive neurodegenerative phenotype (Chesselet et al., 

2012; Martin et al., 2006; Rockenstein et al., 2002). These lines, however, use pan-

neuronal promoters and the pathology is not restricted to dopaminergic neurons. When 

SNCA was expressed under the chatecholaminergic tyrosine hydroxylase (TH) promoter, 

pathology was absent (Matsuoka et al., 2001). The symptoms showing in the former lines 

could be attributed to inappropriately high expression of α-synuclein in neurons and nuclei 

of the brainstem and spinal cord including motor neurons, hence explaining why no nigral 

loss is present. One reason why such over-expression models might not be suitable is 

that rodents handle aggregations differently from humans. Overexpression of APP, 

normally thought to cause Alzheimer's plaques in humans, fail to cause protein 

aggregations in mice until very late, which could be due to a protective enzymatic cascade 

(Stein and Johnson, 2002). Also the α-synuclein A53T mutation, which causes PD in 

humans, is the wild type mouse variant.  

LRRK2 mouse models have similar to SNCA used a knock-in approach with mutations 

found in patients. Mice with both overexpression of the human R1441G and G2019S 

mutants displayed motor deficits, with the latter model even showing dopaminergic 

neuronal loss (Li et al., 2009b; Ramonet et al., 2011). This is controversial however, as 

several other lines failed to show any loss of dopaminergic neurons (Lin et al., 2009; 

Melrose et al., 2010). 

1.2.3 Knockout mouse models 

Recessively inherited PARK syndromes are thought to be best modeled by knockout lines 

that mimic a loss-of-function mechanism. The most common variant, PARK2 (parkin), has 

been modeled in several knockout lines, but none have shown significant motor 
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symptoms or neuronal loss (Goldberg et al., 2003; Perez and Palmiter, 2005; Von Coelln 

et al., 2004). The same is true for PINK1 knockout models (Kitada et al., 2007). Several 

DJ-1 knockout models have also been created, but only recently has one been shown to 

have clear dopaminergic neuron loss (Rousseaux et al., 2012). The results remain 

controversial, as only a subset of the animals showed neuronal loss, potentially due to 

other modulatory genetic factors. Notably, a triple knockout of all three genes showed 

neither a motor phenotype nor loss of neurons (Kitada et al., 2009).  

1.2.4 Novel animal models of PD 

Recently, novel α-synuclein models have been developed that take advantage of both 

adeno-associated viruses and lentiviral vectors to overexpress α-synuclein in the 

substantia nigra (Fischer et al., 2016). The initial problems with these models were that 

the load and targeting of the vectors gave highly variable results. However, the technique 

has been developing rapidly, and models that show (i) initial axon terminal dysfunction, (ii) 

progressive nigrostriatal degeneration, (iii) neuroinflammation and (iv) robust motor 

phenotypes have been characterized (Chung et al., 2009; Decressac et al., 2012; 

Gombash et al., 2013; Lundblad et al., 2012).  

Another interesting strategy for α-synuclein based murine PD models is based on the 

finding that once the α-synuclein-preformed fibrils (PFFs) appear, they can spread in a 

prion-like fashion in vivo. Mice inoculated with PFFs of recombinant mouse α-synuclein 

showed a progressive formation of aggregations in a subset of neurons accompanied by 

reduced motor function and dopaminergic neuron death (Luk et al., 2012). Building on this 

notion, researchers have developed an interesting new approach where α-synuclein 

aggregates are administered intranasally. This model shows rapid onset of motor defects 

and avoids stressful animal handling, but is still new and further characterization is 

needed (Gruden et al., 2014). 

 

1.3 Molecular mechanisms of Parkinson's disease 

The molecular mechanisms underlying PD are heavily debated and several questions 

need answers. Firstly, what underlies the selective loss of dopaminergic neurons? The 

current hypothesis suggests that dopaminergic neurons are more vulnerable due to high 

metabolic rates and exposure to toxic oxidative by-products of dopamine metabolism. 

Additionally, most sporadic Parkinson's patients show Lewy body pathology. But are these 

proteinaceous deposits a cause or a consequence of cellular dysfunction? It has recently 

been shown that α-synuclein aggregates can "infect" healthy neurons in a prion-like 
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manner, suggesting an extracellular propagation mechanism (Olanow and Brundin, 2013). 

This is confounded by the fact that not all Parkinson's patients show heavy Lewy body 

pathology and that familiar variants largely lack this hallmark. And lastly, although it is 

clear that dopaminergic neurons are lost, this loss is often subsequent to a loss of 

dopamine release. Hence, what is the sequence of events leading to dopaminergic cell 

death and which mechanisms are responsible?  

1.3.1 Synaptic dysfunction 

The loss of dopamine release seen in PD patients suggests a failure of the synaptic 

machinery. This notion is supported by α-synuclein being present at synapses (Cheng et 

al., 2011) and involved in neurotransmitter release (Nemani et al., 2010). Particularly, α-

synuclein is thought to be involved in vesicle formation and release. This is partially 

conveyed by binding to dopaminergic vesicles directly, and partially by interaction with 

phospholipase D2, an enzyme that stimulates recruitment of adaptor molecules upon 

neurotransmitter activation (Lotharius and Brundin, 2002). In addition, LRRK2 has been 

found to phosphorylate proteins involved in vesicle recycling (Matta et al., 2012; Piccoli et 

al., 2011; Yun et al., 2013). A dysfunction in these proteins might lead to a failure of 

vesicle release and synaptic dysfunction. This might again trigger a so-called dying-back 

mechanism hypothesized by multiple studies, in which synaptic dysfunction triggers 

axonal terminal loss and subsequently lead to neuronal cell death. An early observation in 

a human morphological study supporting this view shows that loss of axon terminals in the 

striatum is more pronounced than dopaminergic neuron loss in the substantia nigra 

(Bernheimer et al., 1973). Later investigation has revealed early axonal dysfunction both 

in chronic and acute MPTP rodent models (Li et al., 2009a; Serra et al., 2002). Also in 

some of the viral vector α-synuclein models, axonal pathology was seen prior to 

dopaminergic neuronal loss causing the authors to hypothesize that the dying-back 

mechanism is important for α-synuclein pathology (Chung et al., 2009; Decressac et al., 

2012).  

1.3.2 Mitochondrial dysfunction 

Mitochondrial dysfunction has been shown in brains of PD patients in several studies 

(Keeney et al., 2006; Parker et al., 1989; Schapira et al., 1989). Although PD is 

characterized by the loss of dopaminergic neurons, mitochondrial defects have been 

observed in other brain areas as well as in skeletal muscles and platelets of PD patients 

(Bindoff et al., 1991; Haas et al., 1995). The connection between mitochondrial 

impairment and PD was further strengthened by the discovery of toxic compounds 

causing PD. MPTP, the first toxin to be associated with PD, is metabolized to MPP+, 
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which resembles dopamine and is taken up by dopaminergic neurons where it inactivates 

complex I of the electron transport chain in mitochondria (Trevor et al., 1988). The same is 

the case for rotenone, a pesticide that can be used to model PD in rats (Xiong et al., 

2012). Interestingly, these pharmacological models of PD ties mitochondrial dysfunction to 

synaptic failure: MPTP-treated monkeys show destruction of striatal terminals before cell 

body loss (Herkenham et al., 1991), and MPTP-treated mice show reduced neuronal loss 

when the striatal terminal degradation is prevented (Wu et al., 2003). Additional line of 

evidence for mitochondrial involvement stems from research done on parkin, PINK1 and 

DJ-1. These proteins are involved in clearance of dysfunctional mitochondria and 

mutations in either gene cause early-onset PD. Healthy mitochondria can maintain a 

stable membrane potential that causes PINK1 to be transported into the mitochondrial 

lumen and proteolysed. On the other hand, when this potential is lost, PINK1 is stabilized 

on the outer membrane where it functions to recruit parkin (Ziviani et al., 2010). Parkin is 

an E3 ubiquitin ligase that subsequently ubiquitinates several proteins associated with the 

mitochondrial membrane and targets these for destruction by the autophagosome (Gegg 

et al., 2010). DJ-1 is predominantly involved in protecting cells from oxidative stress (Taira 

et al., 2004; Yokota et al., 2003) and PD patients have shown an increase in oxidized 

proteins in the brain (Alam et al., 1997). DJ-1 is also localized to the mitochondria and has 

been shown to induce mitochondrial damage in a knockout mouse model (Krebiehl et al., 

2010). Taken together, there are strong indications that mitochondrial dysfunction is 

heavily involved in PD pathology. 

1.3.3 Protein clearance 

In addition to the mitochondria, another of the cells’ crucial regulatory systems, the 

ubiquitin proteasome system (UPS) has been investigated as a potential PD mechanism. 

Firstly, Lewy bodies are proteinaceous deposits that consist of many proteins, and notably 

both ubiquitin and proteasomal subunits have been found amongst them (Forno, 1996; Ii 

et al., 1997). Aside from classical Lewy bodies, protein aggregation has been observed in 

the substantia nigra of Parkinson's patients (Lopiano et al., 2000) and proteasomal activity 

seems to be decreased in PD patients compared to healthy control individuals (McNaught 

and Jenner, 2001). Although the composition of the proteasome seems normal (Furukawa 

et al., 2002), selective decrease in 20S proteasome function has been found in the 

substantia nigra (SN) of PD patients (McNaught et al., 2002a). Also, systemic 

administration of proteasome inhibitors was shown to cause Parkinsonian symptoms in 

mice (McNaught et al., 2004), but this study is controversial, as the findings have not been 

replicated in subsequent studies (Bove et al., 2006; Kordower et al., 2006; Manning-Bog 

et al., 2006). When the 26S proteasome, however, was selectively disrupted through the 
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knock-down of Rpt2 in mouse forebrain or tyrosine hydroxylase positive neurons, severe 

neurodegeneration was found (Bedford et al., 2008). In addition, a study aiming at 

identifying novel biomarkers for PD found elevated levels of proteasomal subunit α 2 

(PSMA2) in blood samples from PD patients compared to healthy individuals (Grunblatt et 

al., 2010). 

One of the recently discovered PARK genes encodes UHCL1, a de-ubiquitylase 

responsible for replenishing the pool of monomeric ubiquitin required for marking protein 

for degradation (Pickart, 2000). Mutations in this protein in a gracile axonal dystrophy 

(GAD) mouse model led to inclusion body formation, which stained positive for ubiquitin 

(Saigoh et al., 1999). In addition, overexpression of human α-synuclein leads to 

aggregation formation in mice (Masliah et al., 2000). The E3 ubiquitin ligase parkin 

(PARK2) has also been found to bind to the proteasome in a ligase independent manner 

and knockdown of parkin lowered proteasomal activity by 25% (Um et al., 2010).  

The accumulation of protein aggregates and proteasomal dysfunction in PD patients 

strongly suggest the UPS as a potential therapeutic target for PD and warrants further 

investigation.  

 

1.4 FBXO7 

This study centers around one of the recently identified PARK genes, Fbxo7 (PARK15), 

which encodes an E3 ubiquitin ligase harboring an F-box motif (Cenciarelli et al., 1999; 

Winston et al., 1999).  

1.4.1 PARK15 patients  

Fbxo7 was first identified as a Parkinson-associated gene by a genome-wide linkage 

analysis in an Iranian family with Parkinsonian-Pyramidal syndrome (Shojaee et al., 

2008). These patients presented with Babinski sign, spasticity and hyperactive reflexes as 

initial symptoms and later onset of extra-pyramidal symptoms like rigidity and 

bradykinesia, but no signs of tremor. The disease-causing mutation was found to be the 

missense mutation Arg378Gly. Two other families, one Italian and one Dutch, were then 

found to carry three other mutations in Fbxo7; a nonsense mutation (Arg498X) and a 

compound heterozygous mutation involving an internal splice site (IVS7+ 1G/T and 

Thr22Met) (Di Fonzo et al., 2009). The affected individuals in these families presented 

with early-onset Parkinsonism as their first symptoms and later pyramidal signs similar to 

the ones seen in the Iranian family. FBXO7 was on grounds of these findings proposed as 
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a Parkinson-associated gene and the syndrome named PARK15. Since then, patients 

carrying mutations in Fbxo7 has been found in a Chinese cohort study (Lin et al., 2013), 

and in several patients from Pakistan and Turkey (Conedera et al., 2016; Gunduz et al., 

2014; Hanagasi et al., 2007; Lohmann et al., 2015; Paisan-Ruiz et al., 2010; Yalcin-

Cakmakli et al., 2014). A summary of mutations and symptoms of PARK15 patients is 

found in the appendix (Table A1).  Parkinsonian symptoms were alleviated in all patients 

treated with L-dopa, but dyskinesia and behavioral disturbances were frequent side 

effects and treatment often discontinued. In some patients general brain atrophy was 

found upon MRI scanning and one patient showed a diffuse CIT-SPECT, suggesting pre-

synaptic disturbances in the striatum (Di Fonzo et al., 2009). In most families Parkinsonian 

features were prominent, while in the Iranian family some patients only showed pyramidal 

signs. PARK15 is therefore classified as a Parkinsonian-Pyramidal Syndrome likely 

involving multiple brain regions. 

1.4.2 The ubiquitin proteasome system 

E3 ubiquitin ligases such as FBXO7 are part of the ubiquitin proteasome system, which is 

mainly responsible for protein degradation (Hershko and Ciechanover, 1998). To ensure 

protein homeostasis in the cell, it is crucial to have a degradation system that recognizes 

proteins to be destroyed at the right time and place. Proteins are marked for degradation 

by ubiquitin, a small molecule of 8.5 kDa that is covalently attached to lysine residues of 

the target substrate. Three enzymes conduct this procedure; firstly the E1 ubiquitin-

activating enzyme activates ubiquitin by binding to a sulfide group in an ATP-dependent 

manner, then the E2 ubiquitin-conjugating enzyme carries the ubiquitin to the E3 ubiquitin 

ligase. Here, the substrate is brought into close contact with the E2-ubiquitin conjugate 

from where ubiquitin is transferred onto the substrate (Figure 1.1).  

Substrates ubiquitinated by lysine (K)48 chains are mostly recognized and degraded by 

the proteasome (Figure 1.1). These are multi-protein organelles consisting of a barrel-

shaped core with two outer alpha rings and two inner beta rings (Bochtler et al., 1999). 

Three of the beta subunits harbor different catalytic properties termed the chymotrypsin-

like (β5), trypsin-like (β2) and post-glutamylpeptide hydrolysing or caspase-like (β1) 

activity (Groll et al., 2005). The alpha-rings confer structural stability and the N-termini of 

the alpha-ring normally extend into the pore, keeping the proteasome closed when the 

regulatory particle is not bound. The regulatory particle binds to the alpha-rings and 

consist of a base and a lid (Tomko and Hochstrasser, 2013). The base has six AAA-

ATPase subunits (Rpt1-6) responsible for the energy-consuming process of unfolding and 

transfer of the targeted proteins into the proteolytic chamber. It also has two large non-
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ATPase subunits, Rpn 1 and 2, and is bound to the lid by Rpn10 and 13. Rpn10 and 13 

might also function as substrate recognizing subunits. The lid consists of eight non-

ATPase subunits (Rpn3, 5-9, 11 and 12). In addition to harboring substrate recognition 

motifs, the proteasome transiently binds to interacting particles. Such particles, including 

Rad23, harbor ubiquitin-recognition motifs as well as ubiquitin-like domains allowing the 

recruitment of poly-ubiquitinated substrates to the proteasome. 

 

Figure 1.1 Schematic of the ubiquitin proteasome system. Ubiquitination of target substrates 

mediated by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin 

ligase lead to degradation of the substrate by the 26S/30S proteasome. 

1.4.3 E3 ubiquitin ligases 

The enzyme responsible for conferring specificity to the protein degradation process is the 

E3 ubiquitin ligase. While 2 E1 enzymes and 30 E2 enzymes are currently known 
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(Scheffner et al., 1995), more than 600 E3 ligases have been identified, which provide 

extensive control mechanisms of protein regulation (Deshaies and Joazeiro, 2009). An E3 

ligase recognizes individual substrates through specific interaction motifs. One E3 ligase 

can have various substrates, and one substrate can be recognized by more than one 

ligase giving a certain degree of redundancy and thus flexibility to the system. Ubiquitin 

itself has seven lysines (K), upon which ubiquitination chains can be attached. Chains 

formed via K48 attachment are more commonly associated with proteasomal degradation, 

while chains formed on a K63 base are known for a variety of functional modification 

(Pickart, 2004). The other chain types, K6, K11, K27, K29 and K33 are not well 

characterized yet (Ikeda and Dikic, 2008).  

Classically two main types of E3 ligases are found: the homologous to C-type (HECT) and 

the really interesting new gene (RING) type (Pickart and Eddins, 2004). The HECT-type 

harbors intrinsic enzymatic activity and the ubiquitin is transferred from the E2 to the E3 

before ligation to the target substrate (Kamadurai et al., 2013). The RING-type acts as a 

scaffold protein, mediating interaction between the E2 and the substrate. FBXO7, and 

other RING type E3 ligases, typically form multi-subunit enzymes, one of the most 

common ones being the Skp1-Cullin1-F-box protein (SCF) complex (Cardozo and 

Pagano, 2004) (Figure1.2). F-box proteins are responsible for target recognition and 

comprise a wide group of proteins harboring a so-called F-box motif, which facilitates the 

association with the core components S-phase kinase-associated protein 1 (Skp1) and 

cullin1. They are further subdivided according to their additional motifs; FBXW, which has 

a WD-40 motif, FBXL, with leucine-rich repeats at the C-terminus and FBXO, which have 

other motifs (Jin et al., 2004). The other essential partner of the SCF complex is Ring-box 

1 (Rbx1), the RING protein that facilitates interaction with the E2-ubiquitin conjugate. 

 

 

 

Figure 1.2 Schematic representation of the Skp1-cullin1-
F-box protein (SCF) complex. Skp1=S-phase kinase-

associated protein 1; Rbx1=Ring-box 1. 

1.4.4 Interaction partners of FBXO7 

FBXO7 was identified together with other F-box proteins in 1999 through a yeast two-

hybrid screen using Skp1 as bait (Cenciarelli et al., 1999; Winston et al., 1999). Here, 

FBXO7 was shown to bind cullin1, Skp1 and Rbx1 to form an SCF complex harboring 
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ligase activity. The SCF-FBXO7 complex was later found to be the fifth most abundant 

SCF complex in HEK 293 cells (Lee et al., 2011). As a part of an SCF complex, FBXO7 is 

expected to interact with target proteins to ubiquitinate them, but so far not many 

ubiquitination targets have been characterized. Three isoforms of FBXO7 has been 

identified; isoform two lacks the first 25 amino acids, while isoform three has a different N-

terminal structure. Interestingly, although isoform three has never been shown to be 

expressed as a protein, a common SNP Met115Ile changes its start codon, suggesting 

that this group of people completely lack isoform three (Nelson et al., 2013).  

The first FBXO7-interacting protein to be found, and one of the few so far confirmed as a 

target of ubiquitination, is hepatoma up-regulated protein (HURP) (Hsu et al., 2004) 

(Figure 1.3). The ubiquitination of HURP was conveyed by the N-terminal proline-rich 

repeat (PRR) of FBXO7 and depended upon HURP-phosphorylation by the Cyclin B/Cdk1 

complex. HURP is a cell-cycle regulated protein that shows elevated expression during 

the G2/M phase and localizes to the spindle poles during mitosis (Tsou et al., 2003). In 

addition to being up-regulated in hepatomas, elevated gene expression of HURP is 

associated with colon cancer, breast cancer and transitional cell carcinoma (Bassal et al., 

2001; Chiu et al., 2002; Huang et al., 2003).  

In concordance with this finding, it was later shown that FBXO7 also interacts specifically 

with other proteins involved in cell-cycle regulation, namely p27 and the Cyclin D/Cdk6 

complex (Laman et al., 2005) (Figure 1.3). Cyclin-dependent kinases are activated by D 

cyclins to transform the information from growth signals into cell cycle progression 

(Morgan, 1995; Sherr, 1996). Knockdown of FBXO7 reduced the levels of Cyclin D/Cdk6 

assembly factors, suggesting that FBXO7 might be a positive regulator of these proteins 

in a ligase independent manner. The binding of FBXO7 to Cdk6 was independent of its F-

box domain but this domain significantly increased the transforming effect of FBXO7 

overexpression in immortalized murine fibroblasts. In addition, it was shown that FBXO7 

injection into nude mice caused cell transformation and tumor formation (Laman et al., 

2005).  

P27 regulates Cyclin D/Cdk complexes by facilitating their stabilization, nuclear import and 

nuclear retention (Alt et al., 2002; Cheng et al., 1999; LaBaer et al., 1997). FBXO7 was 

found to directly interact with p27 (Figure 1.3), but this interaction did not affect its 

facilitation of Cyclin D/Cdk6 assembly. A later study showed that p27 levels were reduced 

in a partial FBXO7 knockout mouse, suggesting that FBXO7 stabilizes p27, thus 

promoting cell cycle withdrawal (Randle et al., 2015).  
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Figure 1.3 FBXO7 is a cell cycle regulator. FBXO7 can ubiquitinate the cell cycle regulator 

HURP, leading to its degradation. In addition, it can stabilize p27 and lead to an increase in 

formation of Cyclin D/Cdk6 complexes with opposing effects on cell cycle. Modified from Nelson et. 

al. (Nelson et al., 2013). 

In human tissue, FBXO7 was found to be absent from colon and lung tissue in healthy 

controls, but present in carcinomas from the same tissue in cancer patients, thus further 

implicating FBXO7 in cancer biology (Laman et al., 2005).   

In contrast to the findings in fibroblasts, it was shown that lack of FBXO7 leads pro-B cells 

into accelerated proliferation with a shortened G1 phase and a decrease in cell size 

(Meziane el et al., 2011). This is accompanied by genome-wide analyses studies showing 

the correlation of SNPs in the FBXO7 gene with changes in red blood cell parameters 

(Ding et al., 2012; Soranzo et al., 2009; van der Harst et al., 2012). The partial FBXO7 

knockout mouse also presented with signs of prolonged anemia and increased number of 

pro-beta cells in their spleens (Laman et al., 2005; Randle et al., 2015).  

Apart from HURP, two other proteins have been found to be direct targets of FBXO7-

mediated ubiquitination, namely cellular inhibitor of apoptosis 1 (cIAP1) and TNF receptor-

associated factor 2 (TRAF2) (Chang et al., 2006; Kuiken et al., 2012). These proteins are 

both ubiquitin ligases involved in NF-κB signaling, although TRAF2 might act as a scaffold 

rather than a ligase in this process (Mahoney et al., 2008). The ubiquitination of receptor-

interacting protein 1 (RIP1) downstream of these ligases lead to a cascade where IκB is 

targeted for degradation and NF-κB can translocate to the nucleus and induce 

transcription of a wide array of genes, including those involved in immune responses 

(Chen and Goeddel, 2002). FBXO7 was found to ubiquitinate both TRAF2 and cIAP1, 
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hence interfering with their function as NF-κB activators, lowering NF-κB signaling (Kuiken 

et al., 2012) (Figure 1.4). Whether this is proteolytic ubiquitination or a functional 

modification remains to be elucidated, but another study suggest that ubiquitination of 

TRAF2 targets it for degradation (Chen et al., 2014). An alternative function for FBXO7 in 

NF-κB pathway is through its interaction with neurotrophin receptor-interacting MAGE 

protein (NRAGE). FBXO7 was found to ubiquitinate NRAGE via K63 linked chain and 

hence activate NF-κB signaling through its alternative bone morphogenic protein (BMP4) 

pathway (Kang and Chung, 2015; Matluk et al., 2010). 

   

Figure 1.4 FBXO7 regulates NF-κB signaling. FBXO7 ubiquitinates three proteins involved in 

NF-κB signaling leading to a reduction in the traditional TNF signaling pathway and an increase in 

the alternative BMP pathway. Modified from Nelson et al. (Nelson et al., 2013). 

Two interesting interaction partners of FBXO7 in the PD context are parkin and PINK1 

(Burchell et al., 2013). FBXO7 seems to be involved in the translocation of parkin to 

depolarized mitochondria and the subsequent ubiquitination of Mfn1 (Figure 1.5). It is 

however not clear what role FBXO7 plays in mitochondrial quality control. 

 

 

Figure 1.5 FBXO7 is involved in mitophagy. PINK1 recruits FBXO7 to mitochondria with 

subsequent recruitment of parkin and ubiquitination of mitochondrial membrane proteins. Modified 

from Nelson et al. (Nelson et al., 2013). 
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1.4.5 Proteasomal inhibitor 31 (PI31) 

Given the role of proteasomal dysfunction in PD, proteasomal inhibitor 31 (PI31) is an 

interesting interacting partner of FBXO7. PI31 was first identified in a screen for regulators 

of the 20S proteasome core activity (Chu-Ping et al., 1992) and shown to be an in vitro 

inhibitor of the caspase-like activity of the 20S core, competing with PA28 for binding to 

the proteasome (McCutchen-Maloney et al., 2000; Zaiss et al., 1999). A subsequent 

study, however, could not find that PI31 inhibits the 20S proteasome in vivo, but rather 

caused a defect in maturation of immunoproteasomes (Zaiss et al., 2002). This suggests 

that PI31 regulates the formation of immunoproteasomes in vivo.  

An attractive hypothesis was proposed by Cho-Park and Stellar, where PI31 was shown 

to interact with the core as well as with the chaperones of the proteasome cap through 

ADP-ribosylation (Cho-Park and Steller, 2013). They suggest that PI31 is involved in 

assembly of the 20S core and 19S cap by binding the core and pry away the chaperones 

from the 19S cap, facilitating the assembly of the 26S functional proteasome. This finding 

could however, not be replicated by an independent group (Li et al., 2014). Li et al. 

showed that knockdown or over-expression of PI31 did not affect proteasome function in 

intact cells. Therefore, despite the strong in vitro evidence of 20S inhibition and 26S 

activation, it is difficult to establish a role for PI31 in proteasomal function in vivo. 

PI31 was identified as an interaction partner of FBXO7 in a yeast two-hybrid screen (Kirk 

et al., 2008). It was then showed that PI31 and FBXO7 shared a dimerization domain 

named the FBXO7-PI31 (FP) domain as well as a conserved proline-rich repeat (PRR) 

sequence at their N-termini  (Figure 1.6).  

 

Figure 1.6 Domain structures of FBXO7 and PI31. FP domain=FBXO7 and PI31 interacting 

domain, Cdk=Cdk-interacting domain, Ubl=Ubiquitin-like domain, PRR=Proline-rich repeat domain. 

Through the FP domain both homo and heterodimerization of the proteins are possible 

(Shang et al., 2015; Shang et al., 2014). It was also shown that FBXO7 could bind 

multiple proteins via its FP-domain and the possibility of multimers was proposed. In 

Drosophila melanogaster, PI31 was found to act as an activator of both 26S purified 

proteasomes and also in vivo boost proteasomal activity (Bader et al., 2011). Here, PI31 

was also shown to interact with Nutcracker, a protein that shares some homology with 
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FBXO7. This interaction was also found to stabilize PI31 protein levels trough a direct 

interaction mechanism.  However, the mutant nutcracker flies show sterility, which could 

not be rescued upon FBXO7 expression suggesting that these are not functional 

homologues (Burchell et al., 2013). Consequently, the interaction mechanism between 

FBXO7 and PI31 is not fully investigated in mammalian cells and the importance of their 

neuronal interaction remains to be clarified. 

Even though FBXO7 has been implicated in multiple cellular pathways, its function in 

neurons remains elusive, and makes it an interesting target for the study of PD disease 

mechanisms.  

 

1.5 Aim of the study 

Mutations in FBXO7 cause Parkinsonian-Pyramidal Syndrome (PARK15) in humans, but 

the mechanism underlying this disease is still unknown. To identify cellular pathways 

affected in PD we can take advantage of genetic data. In this study, I therefore set out to 

model PARK15 using a conventional and two conditional FBXO7 knockout mouse lines. 

In the conventional knockout, I sought to model the systemic loss of FBXO7, while in the 

conditional models I sought to investigate how brain-specific loss of FBXO7 impacted 

mice behavior and cellular function. With these models, I aimed at faithfully replicating 

Parkinsonian-Pyramidal syndrome in mice. 

Based on FBXO7’s interaction with PI31, I wanted to take advantage of cell lines and the 

mouse models to conduct biochemical experiments to elucidate FBXO7s role in 

proteasomal regulation. Taken together, I characterized FBXO7 knockout mice with the 

long-term aim of creating models for testing of therapeutic agents as well as neuronal 

tools to examine pathological pathways underlying Parkinsonian-Pyramidal syndrome. 

 



"A scientist in his laboratory is not a mere technician:  
he is also a child confronting natural phenomena that  

impress him as though they were fairy tales" 
~ Marie Curie, "Madame Curie: A Biography" 

 

2 Materials and methods 

2.1 Reagents and equipment 

2.1.1 Chemicals 

Suppliers of chemicals for this study include: Sigma-Aldrich, Roth (Karlsruhe, Germany), 

Merck Millipore (Darmstadt, Germany), Applichem (Darmstadt, Germany), GE Healthcare 

(Little Chalfont, UK), Worthington (Lakewood, NJ, USA) or Th. Geyer (Hoexter, Germany). 

All chemicals were of either analytical purity or cell culture grade.  

Cell culture media, PSG, GlutaMAX  and Trypan Blue were purchased from Thermo 

Fisher Scientific (Waltham, MA, USA). Poly-L-ornithine hydrobromide as well as Mowiol 

mounting medium were acquired from Sigma-Aldrich (Munich, Germany), trypsin from 

Worthington, albumin fraction V from Applichem and ECL western blotting substrates from 

Thermo Fisher Scientific (Waltham, MA, USA). Protein A-Sepharose and Gluthathione-

sepharose beads were ordered from GE Healthcare. Poly-L-Lysine (PLL) and goat serum 

were obtained from Sigma-Aldrich. Calf serum was purchased from HyClone (GE 

Healthcare), fetal bovine serum from Biochrom (Merck Millipore) and horse serum from 

PAA (Colbe, Germany). GelRed Nucleic Acid Gel Stain was bought from Biotium 

(Hayward, CA, USA) and Tissue-Tek®O.C.T Compund from Sakura Finetek (Torrance, 

CA, USA). Eukitt® mounting medium was obtained from O. Kindler (Freiburg, Germany). 

2.1.2 Enzymes 

Enzymes used in this study are listed in Table 2.1.1 along with their application.  

Table 2.1.1 Enzymes used in this study 

Enzyme Reaction Producer 

T4 DNA ligase Ligation of DNA fragments Fermentas (St. Leon-Rot, Germany) 

Pfu DNA polymerase Polymerase chain reaction Fermentas 

Calf intestinal alkaline 
phosphatase 

5' phosphate removal NEB (Frankfurt, Germany) 

Restriction enzymes DNA digest NEB 

T4 polynucleotide kinase 5’ phosphorylation NEB 

Proteinase K Protein lysis AppliChem 

GoTaq DNA polymerase Polymerase chain reaction Promega (Mannheim, Germany) 
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2.1.3 Kits 

Commercial kits used in this study are listed in Table 2.1.2. Manufacturers protocols were 

followed unless otherwise indicated. 

Table 2.1.2 Commercial kits used in this study 

Kit Application Producer 

NucleoSpin Plasmid kit DNA isolation, small scale Macherey-Nagel 

NucleoBond Xtra Midi EF DNA isolation, medium scale Macherey-Nagel 

NucleoSpin Extract II kit DNA extraction and PCR Clean-Up Macherey-Nagel 

Pierce ECL substrate Western blotting Thermo Fischer 

Bio-Rad Protein Assay Protein quantification Bio-Rad 

PK-4000 peroxidase kit DAB staining Vector Laboratories 

(Petersborough, UK) 

SK-4100 kit DAB staining Vector Laboratories  

SuperScript® III RT cDNA synthesis Thermo Fischer 

SYBR® green Real Time PCR Thermo Fischer 

2.1.4 Equipment and consumables 

The rotarod was bought from Ugo Basile (Ugo Basile, Comerio, Italy). Other equipment for 

behavioral testing was made by the fine mechanics department at the Max-Planck 

Institute of Experimental Medicine. Video surveillance system with Viewer software was 

purchased from BIOBSERVE (St. Augustin, Germany). Micropipettes were bought from 

Gilson (Limburg-Offheim, Germany), power suppliers and thermocycler from Biometra 

(Göttingen, Germany), heating blocks and centrifuges from Eppendorf, rocker and shaker 

from Heidolph (Schwabach, Germany) and electrophoretic apparatus from Bio-RAD 

(Munich, Germany). Cell culture safety hood and incubator, both HERAsafe, and 

infusion pump Heidolph™ Pump Drive 5001, were from Thermo Scientific (Bonn, 

Germany). Fluorescent plate reader (Wallac 1420 VICTOR2TM) was from Perkin Elmer 

(Waltham, MA, USA). Gel Imager for UV detection was from INTAS (Göttingen, 

Germany). Cryo-stat was from Leica (Wetzlar, Germany). Inverted light microscope 

(Eclipse TS100) and dissection microscope (SMZ645) were from Nikon (Tokyo, Japan), 

brightfield light microscope (Zeiss Axiophot) and flourescent microscope (Zeiss observer 

Z.1) from Zeiss (Oberkochen, Germany). 

Consumables were purchased from Falcon (Becton Dickinson Labware Europe, Le Pont 

De Claix, France), Sarstedt AG (Nürnbrecht, Germany), Becton Dickinson (Heidelberg, 

Germany), Greiner Bio-One (Frickenhausen, Germany) and Eppendorf (Hamburg, 

Germany).  
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2.1.5 Software 

Software used in the study for image and video acquisition, data processing, 

quantification and statistical analyses is listed in Table 2.1.3. 

Table 2.1.3 List of software used in this study 

Software Application Source/Manufacturer 

NIS-Element Image-acquisition and analysis Nikon 

ImageJ Image analysis http://rsbweb.nih.gov/ij/ 

GraphPad Prism 6 Statistical analyses GraphPad Software, Inc. 

Viewer tracking Animal movement tracking Biobserve, Germany 

 
2.2 Antibodies and vectors 

2.2.1 Antibodies 

Primary antibodies used in this study are listed in Table 2.2.1 along with their 

manufacturer. Alexa fluor® 488, Cy3 and HRP-conjugated antibodies (α-mouse, α-rat and 

α-rabbit IgG) were from Dianova (Hamburg, Germany), and α-goat IgG from Santa Cruz. 

Table 2.2.1 Αntibodies used in this study: IHC (Immunohistochemistry), WB (Western blot), rb: 

rabbit (affinity purified or serum), m: mouse (monoclonal), gt: goat (affinity purified)  

Target Application Reference 

m-α-FBXO7 WB (1:50) Santa Cruz 

gt-α-PI31 WB (1:500) Sigma-Aldrich 

m-α-γ-tubulin WB (1:2000) Sigma-Aldrich 

rb-α-PSMA2 WB (1:2000) Cell Signalling 

m-α-TH IHC (1:1000) Sigma-Aldrich 

rb-α-TH IHC, WB (1:1000) Zytomed 

m-α-GFAP IHC (1:200) Leica 

rb-α-Iba1 IHC (1:1000) WAKO 

m-α-Mac3 IHC (1:200) BD Pharmingen 

rat-α-DAT WB (1:1000) Millipore 

m-α- SP1 WB (1:500) Santa Cruz 

rb-α-VGLUT1 WB (1:5000) Synaptic Systems 

m-α-Myc WB (1:2000) Santa Cruz 

m-α-Flag WB (1:2000) Sigma 

m-α-NeuN IHC (1:1000) Millipore 

m-α-pan 14-3-3 WB (1:2000) Santa Cruz 

m-α- β-galactosidase  WB (1:500) Santa Cruz 
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2.2.2 Vectors 

Myc-tagged Psma2, Fbxo7 (cloned by Dr. Madhuvanthi Kannan), FP deletion mutant and 

point mutation variants were cloned into the pCMV-myc vector. Flag-tagged Pi31 (cloned 

by Dr. Judith Stegmüller) and Pi31 V83E/I90E mutant were cloned into the p3xFLAG-

CMV-10 vector. GFP-tagged Psma2 was cloned into the pEGFP-C1 vector (cloned by 

David Brockelt). shRNA were cloned into the pSUPER vector and the GST-Rad23B was 

cloned into the pGEX vector (cloned by David Brockelt). 

 

2.3 Buffers and Solutions 

The various buffers and solutions used in this study are listed in Table 2.3.1. 

Table 2.3.1 Buffers and solutions used in this study 

Buffers and solutions Ingredients 

10X Phosphate buffer saline 

(PBS) 

1.37 M NaCl, 14.7 mM KCl, 78.1 mM Na2HPO4, 26.8 mM 

KH2PO4, pH 7.4 

PBST 1xPBS, 0.1% Tween-20 

TritonTM X-100 Lysis Buffer 150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1 mM EDTA, 1% 

TritonTM X-100 

Co-IP buffer 

 

150 mM NaCl, 20 mM Tris-HCl pH 7.4, 1 mM EDTA, 1% 

Nonidet P-40, 10% glycerol (freshly added 3  µg/ml 

aprotinin, 1 µg/ml leupeptin, 1 mM DTT and 1µg/ml 

pepstatin). 

2xYT media 10 g/L Yeast, 16 g/L Tryptone, 5 g/L NaCl 

2xYT agar plates 2xYT with 1.5% agar and either 50 µg/ml Ampicilin or 

Kanamycin 

Running buffer 25 mM Tris base, 190 mM glycine, 0.1% SDS 

Transfer buffer 20 mM Tris base, 153 mM glycine, 20% methanol 

Upper buffer 0.5 M Tris-HCl pH 6.8, 0.4% SDS 

Lower buffer 1.5 M Tris-HCl pH 8.8, 0.4% SDS 

5x SDS-sample buffer 

 

300 mM Tris-HCl pH 6.8, 10% SDS, 50% glycerol, 25% β-

mercaptoethanol, 0.05% bromophenol blue 

Annealing buffer 

 

100 mM CH3COOK, 30 mM HEPES-KOH pH 7.4, 2mM 

(CH3COO)2Mg 

2x HBSS buffer 

 

10 mM KCl, 280 mM NaCl, 15 mM glucose, 1.5 mM 

Na2HPO4, 50 mM HEPES pH 7.05-7.11 

2x TAE 80 mM Tris-acetate, 2 mM EDTA pH 8.5 
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Mowiol-mounting medium 6 g glycerol (85%), 2.4 g Mowiol 4-88 (Calbiochem), 6 mL 

H2O, 12 mL 0.2 M Tris-HCl pH 8.5, 25 mg/ml DABCO 

HHGN 

 

1x HBSS, 2.5 mM HEPES pH 7.5, 35 mM glucose, 4 mM 

NaHCO3 

Proteasomal lysis buffer 50 mM Tris-HCl pH 7.5, 250 mM sucrose, 5 mM MgCl2, 

2mM ATP, 1mM DTT, 0.5mM EDTA, 0.025% Digitonin 

Proteasomal activity buffer 50 mM Tris-HCl pH 7.5, 40 mM KCl, 5 mM MgCl2, 0.5 mM 

ATP, 1 mM DTT  

Buffer A 10 mM HEPES, 10 mM KCl, 0.1 mM EDTA, 0.1 mM 

EGTA, 0.5 mM phenyl-methyl-sulphonyl fluoride (PMSF), 

1 mM dithiothrietol (DTT), 5 µg/ml aprotinin 

Buffer C 20 mM HEPES pH 7.9, 400 mM NaCl, 1 mM EDTA, 1 mM 

EGTA, 1 mM PMSF, 1 mM DTT, 5 µg/ml aprotinin 

Genotyping buffer 200 mM NaCl, 10 mM Tris pH 8.0, 10 mM EDTA, 0.5% 

SDS, 200 µg/ml Proteinase K 

TBS 100 mM Tris-Hcl pH 7.3, 154 mM NaCl 

Nissl stock staining solution 1g Thionine acetate in 100 ml ddH2O  

Nissl buffer 7g C2H3NaO2, 2 ml C2H4O2 in 1 liter H2O 

Nissl working staining solution 45 ml stock staining solution, 455 ml buffer 

CBC BME [+] Earle’s salts [-] L-Glutamine, 10% calf serum 

(heat inactivated), 1% PSG, 25 mM KCl 

TDn 50 mg Trypsin and 0.5 µg DNase in 5 mL HHGN 

DnB 0.4 µg DNase in 4 mL BME [+] Earle’s salts [-] L-

Glutamine 

Mobile phase HPLC 6.9 g/l sodium acetate, 48 mg/l EDTA, 7.3 g/l citric acid, 

105 mg/l octane sulfonic acid and 10% methanol (pH 4.3) 

 

2.4 Molecular cloning 

2.4.1 Generation of short hairpin RNA 

A DNA-based template method, pSUPER RNAi System™, was used to express short 

hairpin RNAs against target sequences (Table 2.4.1) with high homology between mouse, 

rat and human (Brummelkamp et al., 2002; Saiki et al., 1985).  
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Table 2.4.1 Target sequences for shRNA. bp=base pairs, hs=homo sapiens, mm=mus musculus. 

shRNA Target 
region 

Nucleotides 
identical/total 

Sequence 

Fbxo7 shRNA#1 bp 178-197 hs, mm, rat: 21/21 5′-gaagagaccttggcttcata-3′ 

Fbxo7 shRNA#2 bp 200-219 hs, mm, rat: 21/21 5′-ggattgtttctggggacttg-3′ 

Fbxo7 shRNA#ctrl bp 1017-1037  hs, mm, rat: 21/21 5’-gaaactacgcatcttccgac-3’ 

Psma2 shRNA#1 bp 179-199  hs: 21/21,  

mm: 16/21, rat: 18/21 

5′-gaagtgtacacaaagtagaac-3′ 

Psma2 shRNA#2 bp 680-700  hs: 21/21;  

mm, rat: 20/21 

5’-ggattacttggctgccatagc-3′ 

Psma2 shRNA#ctrl bp 27-45  hs, mm, rat: 21/21 5’-gctgactacattcagccc-3’ 

Pi31 shRNA#1 bp 261-280 hs, mm, rat: 21/21 5′-gggaagtggtgacaaacggct-3′ 

Pi31 shRNA#2 bp 351-371 hs: 19/21;  

mm, rat: 21/21 

5′-gaacagcaataaagaactgta-3′ 

Pi31 shRNA#ctrl bp 969-988 hs: 19/21;  

mm, rat: 21/21 

5’-gggctacgatgacatgtacc-3’ 

Primers for shRNA were designed by following criteria: Starts with GAA, GAG or GGG 

followed by 18 nucleotides, has 40-60% GC content and avoids AUG and AAAA. The loop 

sequence AAGTTAACG, which harbours an HpaI selection site, was implemented in 

between the forward and reverse primer sequence and the whole construct flanked by a 

BgIII and a HindIII cut site. The construct was then cloned into the pSUPER vector. 

Primers were resuspended in annealing buffer at 7 pmol and incubated at 95°C for 4 

minutes and then 72°C for 10 minutes and slowly cooled. The oligonucleotide mixture 2:5 

was then phosphorylated with 1µl T4 polynucleotide kinase and 0.4 mM ATP in 50 µl total 

volume for 30 minutes at 37°C. The pSuper vector was digested with BglII and HindIII and 

then dephosphorylated with calf intestinal phosphatase for 1 hour at 37°C. The ligation 

reaction was then set up over night at 16°C as shown in Table 2.4.2. 

Table 2.4.2 PCR reaction for generation of shRNA 

Component Amount 

pSuper vector 1 µl 

10x ligation buffer  2 µl 

ATP 0.5 µl 

Oligonucleotide mixture 15,5 µl 

T4 ligase 1 µl 

Final volume (ddH2O) 20 µl 

 



Materials and methods   

 

24 

2.4.2 Site-directed mutagenesis  

Primers for FBXO7 mutant generation were designed as suggested in the QuickChange 

Site-Directed Mutagenesis Kit (Agilant Technologies) (Papworth et al., 1996). Sequences 

are shown in Table 2.4.3.  

Table 2.4.3 PCR reaction for generation of point mutations 

Mutant Sense primer Αntisense primer 

Fbxo7 T21M cccgagacggagccgatgctggggcatttgcgc gcgcaaatgccccagcatcggctccgtctcggg 

Fbxo7 M115I tccaatcagactagcatccaggatgaacaacca tggttgttcatcctggatgctagtctgattgga 

Fbxo7 R378G aggtttttatatctgggtgattttcgagacaat attgtctcgaaaatcacccagatataaaaacct 

Fbxo7 M498X cccatcttgccagggtgaggcggccccaatgac gtcattggggccgcctcaccctggcaagatggg 

Pi31 V83E/I90E ctgaaagctgagtctgtggagaacggcatggag 
atcaacgtgctg 

cagcacgttgatctccatgccgttctccacaga 
ctcagctttcag 

  

Reaction was set up as indicated in Table 2.4.4. 

Table 2.4.4 PCR reaction for site-directed mutagenesis 

Component Amount 

10x Pfu buffer + MgSO4  5 µl 

10 ng dsDNA template 1 µl 

15 pmol sense primer 1.5 µl 

15 pmol αsense primer 1.5 µl 

0.2 mM dNTP mixture 0.4 µl 

Pfu DNA polymerase  1 µl 

Final volume (ddH2O) 50 µl 

 

Site-directed mutagenesis was then carried out in a PCR Thermocycler in the program 

shown in table 2.4.5. 

Table 2.4.5 PCR program for site-directed mutagenesis 

Step Cycles Temperature Duration 

1 1 95°C 30 seconds 

95°C 30 seconds 

55°C 1 minute 

2 13 

68°C 11.2 minutes 
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After reaction was terminated, 1 µl DpnI was added to the mixture for 1 hour at 37°C to 

digest the methylated original strand. Bacteria were transformed with 1 µl reaction 

mixture, DNA extracted from colonies and sent for sequencing. 

2.4.3 Generation of FBXO7 FP-domain deletion construct 

Primers were designed for deletion of FP-domain of FBXO7 and amplification of the N-

terminal and C-terminal fragments were then carried out simultaneously as described 

below (Table 2.4.6 and 7).  

Table 2.4.6 PCR reaction for fragment amplification 

Component Amount 

10x Pfu buffer + MgSO4  5 µl 

100 ng dsDNA template 10 µl 

10 pmol sense primer (FBXO7 forward/N-terminal) 1 µl 

10 pmol αsense primer (C-terminal/FBXO7 reverse)  1 µl 

0.2 mM dNTP mixture 0.4 µl 

Pfu DNA polymerase (Fermentas) 0.5 µl 

Final volume (ddH2O) 50 µl 

 
Table 2.4.7 PCR program for fragment amplification 

Step Cycles Temperature Duration 

1 1 94°C 30 seconds 

94°C 30 seconds 

53°C 30 seconds 

2 13 

72°C 2 minutes/ kb plasmid 

 

The two PCR-reaction mixtures were then run on a 1% agarose gel, cut out and purified 

using the NucleoSpin Plasmid kit.  DNA was eluted in 30 µl H2O. The fusion PCR reaction 

was then carried out as indicated below (Table 2.4.8) with the same Thermocycler 

settings as shown above. 
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Table 2.4.8 PCR reaction for fragment fusion 

Component Amount 

10x Pfu buffer + MgSO4  5 µl 

PCR C-terminal fragment  1 µl 

PCR N-terminal fragment  1 µl 

10 pmol sense primer  1 µl 

10 pmol α-sense primer 1 µl 

0.2 mM dNTP mixture 0.4 µl 

Pfu DNA polymerase  0.5 µl 

Final volume (ddH2O) 50 µl 

 

PCR reaction was again run on 1% agarose gel and cleaned up as described above 

followed by digestion with KpnI and EcoRI at 37°C for 1 hour. Vector was digested by the 

same enzymes. The product was again cleaned up and DNA concentration was 

measured. The ligation reaction was carried out over night at 16°C as indicated below 

(Table 2.4.9). 

Table 2.4.9 Ligation of fragment into vector 

Component Amount 

10x T4 ligase buffer  0.88 µl 

0.04 µg dsDNA template 1 µl 

0.5 µg PCR product  1 µl 

10 mM ATP  0.7 µl 

T4 DNA ligase  1 µl 

Final volume (ddH2O) 10 µl 

 

2.4.4 Bacterial transformation and selection of positive clones 

PCR-reaction products or purified DNA were used to transform competent DH5α cells. 

Bacteria were thawed on ice and reaction mixture added. This was incubated for 30 

minutes prior to a 90-second heat-shock at 37°C. Liquid 2xYT medium was added to the 

bacteria and incubated for 45 minutes at 37°C. Bacteria were then transferred to 2xYT 

agar plates with ampicillin/kanamycin and incubated over night at 37°C. DNA was 

extracted from clones using the NucleoSpin Plasmid kit. Positive clones were selected 

after digestion with appropriate enzymes and sent for sequencing in the AGCT facility 

(MPI of Experimental Medicine, Göttingen). 
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2.5 Cell culture 

2.5.1 HEK293T cells  

All cell work was performed under sterile conditions in a safety hood. HEK293T cells 

(Graham et al., 1977) were grown in DMEM supplemented with 10% FBS and 1% 

GlutaMAX. Cells were cultured in an incubator at 37°C with 5% CO2. When cells were 

confluent, they were washed in PBS prior to 2 minutes incubation with trypsin-EDTA at 

37°C. Fresh medium was added and cells were scraped off and centrifuged at 4°C at 800 

rpm for 5 min. The supernatant was discarded and cells resuspended in 5 ml of new 

medium. Cells were then diluted 1:5 and plated in either a 10 cm dish or 6-well plates for 

maintenance or transfection respectively. 

2.5.2 Cerebellar granule neuron culture 

Cerebellar granule neurons were isolated and cultured as previously described (Bilimoria 

and Bonni, 2008). Cerebella of rat pups at P6 were dissected out and washed in HHGN.  

Tissue was digested with TDn for 20 minutes at 37°C, then washed 3x in HHGN and 

triturated in DnB until the cell-suspension was homogenous. Cells were then spun down 

at 800 rpm for 5 minutes and resuspended in CBC. Cells were counted in a 

haemocytometer using Trypan Blue and 20 million neurons plated on 10 centimeters 

dishes, coated in poly-ornithine. At DIV1, 10 mM α-mitotic agent cytosine- β-D-

arabinofuranoside (AraC) was added to the medium to abolish growth of proliferating cells 

such as astrocytes. At DIV3, 35 µl of 1M glucose was added per ml of media to replenish 

the carbon source in the medium. 

2.5.3 Plasmid transfection of HEK293T cells 

Transfection of HEK293T cells was carried out as previously described (Konishi et al., 

2004). 0.5-2 µg of plasmid and 50 ng of GFP (C1-GFP, Invitrogen) was added to double-

destilled water to a volume of 90 µl. 10 µl of CaCl2 was added to the mixture. Then 100 µl 

2xHBSS buffer was carefully bubbled into the plasmid solution. The solution was allowed 

to precipitate for 5 minutes at RT before being carefully added to the cell medium. The 

plate was gently shaken to mix the transfection solution with the medium and placed back 

into the incubator for 2-4 days before cell lysis. Transfection efficiency was monitored by 

visual inspection of GFP expression with an inverted fluorescent microscope (Nikon). 
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2.6 Biochemical experiments 

2.6.1 Protein lysis and Bradford assay 

Tissue and cells were lysed in TX100 buffer and mechanically processed either with a cell 

scraper, a dounce or a homogenizer. The lysate was then left on ice for 30 minutes before 

centrifugation at 14000 rpm for 5 minutes. Supernatant was transferred to a new 

Eppendorf tube and the pellet discarded.  

Protein concentration was measured by the Bradford method (Bradford, 1976). Bovine 

serum albumine (BSA, Fermentas) of known concentration served as reference. 2-10 µg 

were diluted along with samples 1:500 in Bradford solution (1:5) in PBS. Absorbance was 

measured at wavelength of 595 nm in a Spectrophotometer (Amersham Biosciences). 

From the BSA measurements a standard curve was calculated and the sample protein 

concentration determined. 

2.6.2 SDS-PAGE and Western blotting  

Western blotting was performed according to standard protocols (Gallagher et al., 2008). 

Samples for Western blot analysis were boiled (except for transmembrane proteins) in 

SDS-sample buffer at 95°C for 5 minutes before being loaded into 10-12% denaturing 

Tris-SDS polyacrylamide gels (Table 2.6.1) and run by the SDS-PAGE electrophoresis 

system.  

Table 2.6.1 Composition of Tris-SDS polyacrylamide gels 

Stacking gel Amount Separating gel Amount 

Upper buffer 25% Lower buffer 25% 

Acrylamide/bis-acrylamide 

(37.5:1, Th. Geyer) 

4% Acrylamide/bis-acrylamide 

(37.5:1, Th. Geyer) 

10-12% 

N',N',N',N'- Tetramethyethylenediamine  

(TEMED) 

0.005% TEMED 0.005% 

Ammonium per sulphate (APS) 0.05% Ammonium per sulphate 

(APS) 

0.05% 

Final volume (ddH2O) 5 ml Final volume (ddH2O) 7.5 ml 

A pre-stained protein ladder (Fermentas) was always run next to the samples. 

Electrophoresis of protein samples was done at 35 mA per gel for 75 minutes in running 

buffer. Samples were then transferred onto nitrocellulose membranes (Protran BA85, 

VWR, Germany) in transfer buffer at 280 mA for 90 minutes. The membranes were next 

blocked using 4% non-fat dried milk powder (Granovita GmbH, Germany) in PBST for 30 
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minutes and then incubated over night or for 1 hour at RT with primary antibody in 3% 

BSA/PBST. Blots were washed 3x10 minutes in PBST and incubated with secondary 

antibodies (peroxidase conjugated, diluted 1:10 000 in 4% milk/PBST) for 1 hr at RT 

before another 3x 10-minute washes in PBST. Protein bands were detected on X-ray films 

(High performance Hyperfilms, Thermo Scientific, Pierce) by enhanced 

chemiluminescence, a substrate for peroxidase. Films were developed on a Kodak 

imaging station. 

2.6.3 Co-immunoprecipitation (Co-IP) analysis 

Co-IP analyses were modified from standard protocols (Bonifacino et al., 2001) and 

carried out on HEK293T cells transfected with plasmids to exogenously express or 

suppress proteins of interest. Cells were lysed in Co-IP buffer. Lysates were incubated 

with c-Myc or Flag antibodies (0.8 µg of antibodies in 1 mg lysate) at 4°C for 2.5 hours in 

a tumbler and subsequently with Protein A-Sepharose beads for 1 hour. The protein-

bound beads were washed three times with Triton X-100 buffer and once with PBS. The 

bound protein was eluted by boiling the beads in SDS buffer.  

2.6.4 Subcellular fractionation 

Subcellular fractionation was performed as previously described (Konishi et al., 2004). 

Briefly, neurons in culture were scraped into detergent-free buffer A and mechanically 

disrupted using a 2-ml dounce homogenizer. Nuclei were spun down at 500 g at 4°C and 

the supernatant was collected as the cytoplasmic fraction. Nuclei were subjected to one 

wash in 0.1% NP40-supplemented buffer A and then lysed in buffer C and pelleted at 

maximum speed (18,400 g) at 4°C. The supernatant was collected as the nuclear fraction. 

Fractions were subjected to SDS-PAGE and Western blot analysis as described. 

2.6.5 Purification of GST fusion proteins 

Previously generated (Sabitha Joseph) pGEX construct-transformed Escherichia coli 

(strain BL21) were grown to OD 0.5 in 2xYT medium, induced with 1 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) for 3.5 h and sonicated in Co-IP buffer. The GST fusion 

proteins were purified from bacterial lysates by incubation with glutathione-coupled 

sepharose beads. 

2.6.6 GST pull-down of proteasomes  

The pull-down was modified from a previously published protocol (Besche and Goldberg, 

2012). Whole brains were lysed in proteasomal lysis buffer and concentration adjusted to 

2 mg/ml. 10 µg GST protein and 40 µl of 50% GST-beads was added to 1 ml of lysate and 
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incubated rotating at 4°C for 1 hour as a pre-clear step. Lysates were then spun down for 

5 min at 14000 rpm at 4°C. 10 µg GST or GST-Rad23 fusion protein was added to 

supernatant and incubated for 2.5 hours at 4°C before addition of 40 µl of 50% GST-

beads and further incubation for another 1.5 hour at 4°C. Beads were washed four times 

with ice-cold 0.1% NP40/PBS and boiled with SDS-sample buffer for 5 minutes at 95°C. 

Samples were loaded into an SDS-PAGE gel and Western blotting followed. 

2.6.7 Proteasomal activity assay 

Proteasomal activity assays were carried out as previously described (Kisselev and 

Goldberg, 2005). Cells were lysed in proteasomal lysis buffer. 12 µg of cell lysate was 

incubated with proteasomal activity buffer containing in addition 0.5 mg/ml BSA and 

proteasomal chymotrypsin-like activity substrate, 100 µM Suc-LLVY-amc. Fluorescence 

was measured using a fluorescent plate reader (Wallac 1420 VICTOR2™) with 355/460 

nm exitation/emission filters. 

2.6.8 Oxyblot analysis 

The OxyBlot™ Protein Oxidation Detection Kit (Millipore) was used to detect oxidized side 

chains of proteins in brain lysates as descibed in manufacturers protocol.  Cortical tissue 

was lysed in Tx100 buffer with freshly added 3 µg/ml aprotinin, 1 µg/ml leupeptin, 50 mM 

DTT and 1µg/ml pepstatin. 5µl 12% SDS was added to 10 µg/µl protein in 5 µl lysate. Two 

samples were prepared for each animal. 10 µl DNPH was added to one sample, while 10 

µl derivatization control was added to the other and incubated for 15 minutes. 7.5 µl 

neutralization solution was added and samples subjected to SDS-PAGE and Western blot 

analysis with the α-DNP antibody. 

2.6.9  High Performance Liquid Chromatography (HPLC) 

Striata from mice, sacrificed by cervical dislocation, were dissected out on ice. HPLC was 

performed as previously described (Tonges et al., 2012). Tissue was homogenized in a 

Precellys 24® bead mill homogenizer (Peqlab, Erlangen, Germany) in 0.1 M perchloric 

acid, 50 µl/mg striatal tissue. Sample was subjected to centrifugation at 13.4 g for 5 min, 

supernatant removed and centrifuged again at 13.4 g for 10 min at 4°C. 20 µl of 

supernatant was injected onto a C18 reverse-phase HR-80 catecholamine column (ESA, 

Bedford, MA, USA). HPLC with electrochemical detection was used to quantify dopamine, 

3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). Mobile phase had 

a flow rate of 0.4 ml/min. Peaks were aquired by an ESA Coulochem III (5010) detector 

(E1 = 50 mV, E2 = 400 mV). The Chromeleon computer system (Dionex, Idstein, 
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Germany) was used to collect and process data. HPLC measurements were performed by 

Dr. Lars Tatenhorst. 

 

2.7 FBXO7 transgenic mouse line  

Ethics Statement: All experiments involving live animals have been conducted according 

to the animal protocol approved by the “Verbraucherschutz und Lebensmittelsicherheit” of 

Lower Saxony, Germany (33.11.42502-04-11/0632). 

2.7.1  Generation of FBXO7 transgenic mouse line 

FBXO7 deficient mice were created by homologous recombination in mouse JM8.N4 ES 

cells (23037 EUCOMM). FBXO7 genomic sequence containing exon 4 was exchanged 

with a neo:lacZ cassette driven by the L1L2_Bact_P promotor. Chimeras were generated 

by injection of targeted ES cells into C57BL/6N blastocysts. The line was kept in a pure 

C57BL/6N background. 

2.7.2  Isolation of genomic DNA and genotyping  

Isolation of mouse DNA followed a simplified standard protocol (Gross-Bellard et al., 

1973). Tail tissue from animals was lysed in genotyping lysis buffer for minimum 2 hours 

at 55°C. Samples were resuspended and spun down for 10 minutes at 14 000 rpm. DNA 

was extracted by addition of 98% ethanol followed by centrifugation for 10 minutes at 14 

000 rpm. DNA was washed once with 70% ethanol and resuspended in 50-100 µl H2O. 

PCR-reaction was carried out according to the GoTaq® DNA polymerase system as 

described below (Table 2.7.1-3). After completion samples were run on a 1% agarose gel 

at 50 V with GelRedTM (1:100 000) added for visualization of sample with a UV-detector. 

Table 2.7.1 Genotyping PCR reaction 

Component Amount 

5x GoTaq buffer  5 µl 

Genomic DNA 0.5 µl 

10 pmol sense primer 1 µl 

10 pmol antisense primer  1 µl 

2.5 mM dNTP mixture 0.4 µl 

GoTaq DNA polymerase  0.1 µl 

Final volume (ddH2O) 25 µl 
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Table 2.7.2 Genotyping PCR program 

Step Cycles Temperature Duration 

1 1 95°C 3 minutes 

95°C 30 seconds 

51°C 30 seconds 

2 28 

72°C 2 minutes/ kb DNA-fragment 

Table 2.7.3 Primers used for genotyping 

Gene Sense primer Αntisense primer Size 

LacZ casette attccagctgagcgccggtcgc gcgagctcagaccataacttcgtata 400 bp 

Fbxo7 loxP2 tcagcatgggtttgttaagcatctacta ggtctagatatctcgacataacttcgtata 600 bp 

Fbxo7 WT gggctgtatgaaggaagtgctatt ccctgagagtgaagggtgctgttc 800 bp 

Cre cagggtgttataagcaatccc cctggaaaatgcttctgtccg 250 bp 

 

2.7.3  RNA isolation, cDNA synthesis and quantitative PCR 

For assessment of mRNA expression level, total RNA from tissue was isolated using the 

TRIZOL reagent (Invitrogen) (Chomczynski, 1993). Tissue was homogenized with 

TRIZOL on ice using a Dounce. Chloroform was added 1:5 and samples vortexed before 

15 minutes incubation on ice. Samples were then centrifuged for 15 minutes at 4°C, 14 

000 rpm, and supernatant transferred to new tube. Equal volume of isopropanol was 

added followed by 15 minutes incubation on ice and 15 minutes centrifugation at 4°C 14 

000 rpm.  Samples were washed once with 70% ethanol and resuspended in 50 µl H2O. 

RNA concentration was measured in a spectrophotometer. cDNA was then synthesized 

using the SuperScript III First-Strand Synthesis System (Invitrogen) (Table 2.7.4-5): 

Table 2.7.4 Reaction for cDNA synthesis 1 

Component Amount 

RNA  3 µl 

50 µM Oligo dT 1 µl 

10 mM dNTP 1 µl 

Final volume (ddH2O) 10 µl 

 

The reaction was incubated for 5 minutes at 65°C followed by 1 minute on ice. Reverse 

transcriptase mixture was prepared as indicated below and added to each sample. 
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Table 2.7.5 Reaction for cDNA synthesis 2 

Component Amount 

10x reverse transcriptase buffer  2 µl 

25mM MgCl2 4 µl 

0.1 M DTT 2 µl 

RNAse OUT  1 µl 

SuperScript Reverse Transciptase 1 µl 

Final volume  10 µl 

 

The reaction was then incubated 50 minutes at 50°C followed by 5 minutes at 85°C to 

stop reaction. Samples were chilled on ice and 1 µl RNAse H was added to each and 

incubated at 37°C for 20 minutes. To amplify cDNA fragments, cDNA was mixed with the 

Power SYBR Green PCR Master Mix (Invitrogen) as indicated below (Table 2.7.6).  

Table 2.7.6 Reaction for quantitative PCR 

Component Amount 

SYBR Green  5 µl 

1 pmol sense primer 0.1 µl 

1 pmol antisense primer 0.1 µl 

cDNA  0.14 µl 

Final volume (ddH2O) 10 µl 

 

Primers for quantitative PCR were designed to amplify a sequence of 150-180 bp 

spanning an exon-intron border. Primers used in this study are listed in Table 2.7.7. 

Table 2.7.7 Primers for quantitative PCR used in this study 

Gene Sense primer Αntisense primer 

FBXO7 tggaagtcaagtggtgtatac tactccagcagcaacgtagga 

PI31 cggtatgagtctaaggatgga gtggaagtcactcaggtcttc 

β-actin  atgccacaggattccatacc  cttcctccctggagaagagc  
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2.8 Immunohistochemistry (IHC) 

2.8.1 Transcardial perfusion and cryo-sectioning 

For histochemistry, mice were anesthetized with 100 mg/kg ketamin and 10 mg/kg xylazin 

in PBS, 100 µl were injected per 10 grams of weight. After deep tendon reflexes were 

abolished, mice were perfused with 10 ml of PBS followed by 10 ml 4% PFA in PBS at a 

rate of 12 rpm with an infusion pump. Brains were post-fixed overnight at 4°C in 4% PFA 

in PBS and then kept in 30% sucrose in PBS for 24 hours at 4°C. They were then 

embedded in equal volumes of OCT and 30% sucrose in PBS and stored at -80°C. 

Coronal sections of 30 µm were cut on a cryostat and kept free floating in PBS with 0.02% 

NaNH3 at 4°C. 

2.8.2 Fluorescent IHC 

A modified protocol for staining of free-floating sections was followed (Hirrlinger et al., 

2006). Sections were washed two times with PBST (1xPBS, 0.2% Tween 20) and 

permeabilized for 30 minutes with 0.5% Triton-X 100 in PBS followed by blocking in 

blocking solution (10% goat serum, 2% BSA, 0.5% TX100 in PBS) for an hour at RT. 

Primary antibody was appropriately diluted in blocking solution without TX100 and the 

sections were incubated on a shaker over night at 4°C. Sections were then washed three 

times for 10 minutes in PBST before incubation in secondary antibody in blocking solution 

without TX100 for 1 hour at RT. To stain nuclei, DAPI was diluted 1:8000 in H2O and 

applied to sections for 5 minutes at RT. At last, sections were washed three times 5 

minutes in PBST for and mounted with Mowiol mounting medium on poly-lysine coated 

glass slides (Macharey-Nagel). 

2.8.3 DAB staining 

DAB and Nissl staining protocols were modified from Tonges et al. (Tonges et al., 2012). 

Sections were washed three times 5 minutes in TBS on a shaker at RT before 

permeabilization and peroxidase suppression in 40% methanol/ 1% H2O2 in TBS for 15 

minutes at RT. Sections were washed again in the same manner and then blocked in 5% 

goat serum in TBS for 1 hour at RT. Primary antibody was applied in the appropriate 

dilution in 2% goat serum in TBS for 48 hours at 4°C shaking. Sections were then washed 

as before and secondary antibody was diluted in TBS and applied to sections for 2 hours 

at RT on shaker and then washed as before. 1 drop solution A and 1 drop solution B were 

mixed in TBS (PK-4000 Peroxidase Standard kit) and allowed to incubate for 45 minutes 

before application to the sections for 2 hours at RT and then washed as before. 2 drops of 
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buffer, 2 drops of DAB, 2 drops of H2O2 and 2 drops of nickel solution were mixed in 5 ml 

H2O (SK-4100 kit) and applied to sections for 10 minutes at RT. Reaction was stopped 

with H2O for 5 minutes and sections mounted on poly-lysine coated slides (Macharey-

Nagel) and allowed to dry for 5 days.  

2.8.4 Nissl staining 

Dried DAB stained sections were first hydrated through an alcohol row (3x Xylol, 100% 

isopropanol, 100% ethanol, 90% ethanol, 70% ethanol, H2O) each for 5 minutes before 

staining with Nissl staining solution for 7 minutes. Sections were then dehydrated through 

the inverse alcohol row and mounted with Eukitt mounting medium.  

 

2.9 Behavioral analyses 

All mice were housed in the animal facility of the MPI of Experimental Medicine in 

Göttingen, Germany. Mice were group-housed in transparent polycarbon cages (Makrolon 

type II cage, 22x16x14 cm) with access to food and water ad libitum. For analyses of the 

FBXO7 conventional knock-out mice, mixed gender mice of age P18 were used in all 

experiments. Mice were allowed to acclimatize in testing facility for 30 min before test. 

Due to the extreme difference in weight between FBXO7-/- and their littermates, 

experimenter could not be kept blind to genotype. For animals from conditional FBXO7-

floxed lines and conventional FBXO7+/- versus wild type mice older than P18, male mice 

were used. All males were allowed to acclimatize in the behavioral facility one week 

before testing occurred and spent at least 30 minutes in test room before every test. 

Experiments were conducted in an order ranking from least to most invasive: elevated 

plus maze for anxiety, open field for exploratory behaviour and ambulation, pole test, 

Inverted grid, wire hang, rotarod and balance beam for motor endurance and 

coordination, Y-maze for memory, marble burying for stereotypies and buried food for 

olfaction assessment. Between each mouse the equipment was washed first with water, 

then 70% ethanol, followed by a last wash with water to clear any odor traces. 

2.9.1 Surface righting reflex 

This protocol was modified from Dr. Martesa Tantra’s protocol (Dere et al., 2014). Pups of 

age P5 were placed on their backs on a flat surface covered with a tissue paper 

underneath a warming lamp. Time spent to right themselves were recorded in three 

consecutive trials with an intra test interval of 5 minutes. Cut-off time was set to 30 

seconds and average time was calculated. 
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2.9.2 Tail suspension test 

The tail suspension test protocol was modified from a scoring protocol for cerebellar 

ataxia (Guyenet et al., 2010). Mice were suspended by the base of their tail for three 

consecutive 10 seconds trial with a resting phase of 1 minute in between. Mice were 

scored as normal (0) if they extended both hind limbs for more than 50% of the time. They 

were scored as 1 if they retracted one hind limb for more than 50% of the time and 2 if 

they partially retracted both hind limbs for more than 50% of the time. The worst 

manifestation of the phenotype, fully retracted hind limbs towards the belly, was scored as 

3. An average score was given to each mouse. 

2.9.3 Kyphosis  

The kyphosis assessment was performed as instructed in the cerebellar ataxia scoring 

protocol (Guyenet et al., 2010). Mice were observed walking in an open field and scored 

as normal (0) when they showed no sign of arched back. They were given a score of 1 if 

the spine was arched while sitting, but could be fully extended during movement and a 

score of 2 if the sine curvature persisted mildly while walking. A score of 3 was given to 

severe curvature of the spine that persisted while walking or sitting. 

2.9.4 Gait analysis 

Gait analysis was conducted as previously described (Guyenet et al., 2010). The mice 

were placed in an open field and observed while walking. The criteria observed were: Is 

body weight supported equally on all limbs, does the abdomen touch the ground, do we 

observe tremor, limping or abnormally placed feet during movement. Mice were scored 

from 0-3 based on the severity of the symptoms. 

2.9.5 Wire hang 

Wire hang is a test to measure muscle strength in mice. This test was modified from a 

previously described protocol (van Putten et al., 2010). The testing apparatus consisted of 

an 80 cm long; 1 mm wide steel wire suspended 30 cm above surface covered with soft 

tissue. Mice were placed with front paws holding the middle of the wire and hang time 

measured. Climbing to end of the wire was counted as maximal time (30 seconds). Each 

mouse was tried three times with an intra-test interval of 5 minutes and average hang time 

calculated. 
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2.9.6 Inverted grid 

Another test to measure muscle strength in mice is the inverted grid test (Tillerson and 

Miller, 2003). Here the mice were placed on top of the home cage lid and the lid was then 

inverted around 20 cm above cage. The time the mice could hold on to cage lid was 

measured three times with an intra test interval of 1 minute. Cut-off time was set at 30 

seconds. 

2.9.7 Ledge test 

Ledge test was performed as described previously (Guyenet et al., 2010). Briefly, the 

mice were placed on the edge of the home cage and encouraged to cross over to the 

opposite side. Test was conducted three times with an inter-trial interval time of 5 min. 

Mice were scored from having a normal balance (0) to unable to walk on ledge (3). A 

score of 1 was given for minor adjustment problems, while a score of 2 was given to 

extensive coordination problems or near-falls. Average score was calculated for each 

animal.  

2.9.8 Balance beam test 

Balance beam is a test to evaluate coordination and motor control in mice. The protocol 

was adapted from Luong et. al (Luong et al., 2011). Mice were placed on a beam of 12 

mm width, 80 cm length, 50 cm above ground with home cage at the other end and 

encouraged to cross 3 times with 15 seconds rest in home cage between trials. A cloth, 

which served as a safety net, was elevated from ground underneath beam to prevent 

mice from being hurt by falling. After a 10 minutes rest, the procedure was repeated on a 

beam of 6 mm width. The training was repeated on two consecutive days before the test 

day where the time of three trials on each beam was recorded and animals scored 

according to number of slips on beam. A score of 7 was given to animals crossing with 

less then two slips, 6 was given to animals that slipped more than two times, but 

otherwise crossed fine. A score of 5 was given when one limb was partially dragged 

across beam, 4 when one limb was constantly dragged, or both limbs were partially 

dragged. A score of 3 means both hind limbs were dragged across while 2 was given to 

mice barely able to cross. When the mouse was not able to cross, a score of 1 was given. 

2.9.9 Pole test 

The pole test has previously been described as a method to assess dopaminergic neuron 

integrity (Ogawa et al., 1985). Animals were placed on a 50 cm (30 cm for P18 old 

animals) tall pole situated in the home cage, 1 cm in diameter, covered in gauze with 
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head facing up and encouraged to climb down. The protocol was applied 5 times, with 30 

seconds break in between, for each mouse on three consecutive days (for P18 only one 

day). On the last day time to turn around, face down, as well as total time spent 

descending pole was recorded manually by experimenter. The best try was counted. 

2.9.10 Rotarod 

Rotarod is a motoric test that measures motor function, comprising balance, endurance 

and coordination (Crawley, 2003). All experiments were conducted on a rotarod (Ugo 

Basile, Srl, Comerio, Italy) on an accelerating protocol of 4-40 rpm for 5 minutes. P18 

conventional FBXO7-/- mice and controls were tested three times on 1 day with an inter-

trial interval of 20 min and average latency to fall was measured. Conditional Nex-Cre and 

TH-Cre; FBXO7fl/fl and conventional FBXO7+/- mice with controls were tested with the 

same protocol on three consecutive days to also assess motor learning. 

2.9.11 Open field  

Open field analysis for P18 FBXO7-/- mice and controls was conducted as described 

previously (Biondi et al., 2010). Mice were placed in the center of a plastic container 

measuring 28x28x20cm and observed for 5 minutes. The container was divided into 16 

squares where the four in the middle were referred to as central and the remaining as 

peripheral squares. Number of peripheral and central crossings was recorded manually.  

For older mice, a round open field of 60 cm diameter 

with 20 cm high walls was used. The field was 

divided into three zones as shown in Figure 2.1 
(Dere et al., 2014). The animals were placed in the 

middle of the field and allowed to move freely for 7 

minutes. The light intensity was set at 120 lux. The 

animal’s movement was recorded with the Viewer 

animal tracking system  

Figure 2.1 Schematic of open field for adult animals 

2.9.12 Elevated plus maze 

To test for anxiety-like behavior the elevated plus maze was used as previously described 

(Dere et al., 2014). Mice were placed facing the closed arm of an apparatus with two 

closed and two open arms. All arms measuring 5x30 cm with the closed ones having 

walls of 15 cm. The maze was elevated 40 cm above ground level with soft tissues placed 

30 cm

20 cm
10 cm



Materials and methods   

 

39 

under the open arms and the light intensity was set to 120 lux. Mice were allowed to freely 

explore the maze for 5 minutes, which was recorded by the Viewer software. 

2.9.13 Light avoidance test 

Another test for anxiety-like behavior is the light avoidance test (Belzung et al., 1987). 

Mice were placed in a cage with a light area, 25x27x30 cm and a dark area, 18x27x30 

cm. The areas were connected through an opening, 7x5 cm. Animals were placed facing 

away from the opening in the light area, light intensity of 400 lux, and then spent 10 

minutes freely exploring. The mouse was recorded using the Viewer animal tracking 

software. Movement within light area, crossings into dark area as well as latency to enter 

dark area and time spent in the different compartments was measured. 

2.9.14 Marble burying 

To assess the stereotypic burying the marble test can be used (Dere et al., 2014). 24 

glass marbles were placed in a regular rectangular pattern of 4x6 on top of bedding in a 

cage measuring 55x35x20 cm. Animals were allowed to explore cage freely for 30 min in 

light intensity of 10 lux. After that time, marbles were classified as buried when ¾ or more 

of marble were covered in bedding. Buried and moved marbles were counted and pattern 

assessed as organized or disorganized. 

2.9.15 Y-maze 

To address the issue of spatial memory a Y-maze test was employed (Swonger and 

Rech, 1972). Animals were placed in the middle of a Y-shaped maze with three arms 

measuring 7.5x30x15 cm spaced 120° apart. Mice were allowed to explore freely for 7 

min and the Viewer software recorded their movements. Sequence of arm entering was 

noted and ratio of triplicates (ABC, CBA, BCA, CAB, ACB, BAC) as well as total arm 

entries were counted.  

2.9.16 Olfaction test 

Olfaction was measured by introducing the mice to chocolate chip cereals (Dere et al., 

2014). These were given into the home cage on the night before training, two cereals per 

mouse. The next day, the mice were placed into cages for measuring and covered in 

bedding at 10 lux. A chocolate chip cereal was placed on top of the bedding in either of 

four locations as shown in (Figure 2.2). The mice were allowed to explore the cage freely 

for 10 minutes. The procedure was repeated every 50 minutes for four times until all 

locations had been used. This protocol was applied on two consecutive days. After the 

second day the food was removed from the home cage and the animals left with only 
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water over night. On the day of testing the chocolate chip cereal was buried in location B 

and the mice placed in the middle of the cage and allowed to explore for maximal 5 

minutes. This was repeated after 90 minutes, then with the chip in 

location C. After another 90 minutes a control trial was conducted, then 

with the chip in location E, on top of the bedding. Each trial was recorded 

by the Viewer software and time until retrieval of chip was measured. 

Figure 2.2 Schematic of olfaction test  

2.9.17 Sucrose preference test 

To assess whether the mice were affected by anhedonia, they were checked for sucrose 

preference (Strekalova and Steinbusch, 2010). Mice were single housed and given 

access to two bottles of drinking water, one of which contained 2% sucrose. The location 

of the bottles was switched every day to avoid location bias. The first three days were 

counted as acclimatization phase. From the third day on the bottles were weighed every 

day for four days and the ratio of amount of sucrose water consumed versus total 

consumption was measured. 

2.9.18 Laboratory animal behavior, observation, registration and analysis system 
(LABORAS) 

The LABORAS home cage behavioral monitoring system (Metris b.v., Hoofddorp, The 

Netherlands) is equipped with a sensor platform set on two force transducers and 

attached to an underlying plate (Dere et al., 2014). Home cages were placed onto the 

sensor platform, with the grid suspended above. Vibrations caused by animal movement 

were transformed into electrical signals and digitized. Data was processed, the signals 

assesed to specific behavioral categories and the dominating behavior at the time was 

measured by the LABORAS software. Amount of seconds spent performing a behavior 

and its frequency were calculated. Animals were allowed to acclimatize to the system for 

1 hour, and recordings performed for 15 hours during the dark cycle. Experiment was 

performed by Anja Ronnenberg and data analyzed by Dr. Ekrem Dere. 

2.9.19 DigiGait analysis  

Gait parameters in mice were analyzed with the DigiGait™ imaging system (Mouse 

Specifics, Inc., Boston) (Hampton et al., 2004; Kale et al., 2004). Animals were placed on 

a transparent treadmill belt with adjustable speed. The walking mouse is recorded from 

below and movies acquired with the DigiGait™ Imager software (version 12.5) Animals 

were acclimated to the testing room for at least one week before the test. Prior to 

A

E

DC

B
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recordings, the animals were allowed to freely explore the treadmill compartment for 5 

min. The speed was slowly increased up to 25 cm/s and running sessions, separated by a 

few minutes of rest in the cage, were recorded. The acquired movies were processed 

using the DigiGait™ Analysis software (version 14.0) and basic gait metrics calculated. 

Values for fore- and hindlimbs were calculated separately with values for right and left 

limb pooled. Experiment was performed by Camille Lancelin. 

 

2.10 Data analyses 

2.10.1 Western blot quantification 

Developed films from Western blot analysis were scanned and subjected to densitometric 

analyses using the ImageJ Gel Analyzer plug-in. The intensity of each sample and the 

respective loading controls were measured and intensity relative to loading control was 

calculated. The first wild type sample was set as reference and values normalized to this.  

2.10.2 Stereological counting 

Stereological methodology for quantification of tyrosine hydroxylase-, or Nissl-positive 

cells in the substantia nigra has been previously described (Tonges et al., 2012). The 

Stereo Investigator software (Stereo Investigator 9.0, MicroBrightField Inc.) and a Zeiss 

Axioplan microscope were used to analyze every fourth histological section of the 

midbrain. A point grid was laid over the outlined Substantia nigra pars compacta. TH or 

Nissl-positive cells in one substantia nigra per animal were counted by the optical 

fractionator method (×40 objective, counting frame 50×50 µm). Nissl cells were counted to 

rule out down-regulation of the tyrosine hydroxylase enzyme as opposed to loss of 

neurons. Experiment was performed in a blinded manner. 

2.10.3 Quantification of IHC images 

Fluorescent images obtained by the Zeiss Axio Observer inverted microscope, were 

converted to 8-bit in ImageJ and a Bernsen local area threshold of 15 was applied. 

Ventral tegmental area and substantia nigra was delineated based on TH-positive area. 

The area fraction stained was measured. 

2.10.4 Statistical analysis 

All statistical analyses were performed with the GraphPad Prism 6.0 software unless 

otherwise stated.  



 "There is nothing like looking, if you want to find something.  
You certainly usually find something, if you look,  

but it is not always quite the something you were after." 
~ J.R.R. Tolkien, "The Hobbit" 

 

3 Results                                                          

3.1 FBXO7 is ubiquitously expressed in rodents and present in 
the cytoplasm of cerebellar granule neurons 

FBXO7 was first identified in two large screens for F-box proteins (Cenciarelli et al., 1999; 

Winston et al., 1999). Winston and colleagues here looked at expression pattern of 

FBXO7 mRNA in various murine tissues and found FBXO7 mRNA to be expressed in 

brain, heart, kidney, liver, lung, skeletal muscle, pancreas and placenta, but absent from 

spleen, testis and embryonic tissue. A subsequent study found FBXO7 mRNA to be 

ubiquitously expressed in human tissue (Ilyin et al., 2000), which was later confirmed by 

histological analysis in human brain (Zhao et al., 2011). At the cellular level, FBXO7 

distribution is debated. It was first shown that human FBXO7 was localized mainly to 

cytoplasm in cycling cells (Chang et al., 2006; Kirk et al., 2008; Laman et al., 2005), but 

later suggested that it might be present in the nucleus as well and actively exported out 

through Crm1 during cell cycle (Nelson and Laman, 2011). This was again challenged by 

two groups, who found that FBXO7 was localized mainly to the nucleus in HEK293T and 

SH-SY5Y cells as well as primary mouse hippocampal neurons (Zhao et al., 2011; Zhou 

et al., 2015). In this study, I use rodents to investigate the expression pattern of FBXO7 

and to model PARK15 signs and symptoms. 

3.1.1 Expression pattern of FBXO7  

I first established the expression profile of FBXO7 by means of western blot analysis of rat 

tissue. I found the FBXO7 protein to be expressed in all tissues tested (Figure 3.1.1), 

contradicting the mRNA to a certain degree, as I also observed expression in the spleen 

(Winston et al., 1999). Here however, the antibody showed several bands of various size 

meaning it could be an unspecific interaciton.   

Figure 3.1.1 FBXO7 shows ubiquitous 

expression in rat tissue. Tissue samples from 

adult male rat, postnatal day (P) 30 were 

subjected to immunoblotting with the FBXO7 

antibody.  γ-tubulin was used as loading control.  
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I then analyzed the temporal expression pattern of FBXO7 in the brain. I immunoblotted 

tissue from rat cerebellum, hippocampus and cortex and found that FBXO7 is expressed 

in these brain regions throughout development. For cortex and hippocampus, I observed 

an age-dependent increase in FBXO7 expression, while I found an age-dependent 

decrease in the cerebellum (Figure 3.1.2).  

 

 

Figure 3.1.2 FBXO7 is expressed in the 

brain throughout development. Lysates 

from rat cerebellum (a), hippocampus (b) and 

cortex (c) at different developmental stages 

(embryonic day (E) 18 to P40) were subjected 

to immunoblotting with an FBXO7 antibody. 

Pan 14-3-3 or γ-tubulin was used as loading 

control. CB=cerebellum, HCP=hippocampus, 

CTX=cortex. 

3.1.2 FBXO7 is localized mainly in the cytoplasm in rat cerebellar granule neurons 

The localization of proteins within a cell can offer insight into their mode of function. I 

therefore carried out subcellular fractionation on cultured rat neurons from cerebellum 

(Figure 3.1.3), and found by subsequent immunoblotting that FBXO7 localized 

predominantly  to the cytoplasm of these cells.  

 

 

Figure 3.1.3 FBXO7 is localized mainly in the cytoplasm of 

cultured cerebellar granule neurons. Cultured cerebellar granule 

neurons, day in vitro  (DIV) 9, from rat were subjected to subcellular 

fractionation followed by immunoblotting with an FBXO7 antibody. 

Pan 14-3-3 served as cytoplasmic and SP1 as nuclear control.  

Taken together, I conclude that FBXO7 is present in various organs in rodents including the brain. 

It is expressed in cerebellum, hippocampus and cortex throughout development. At the cellular 

level, FBXO7 is mainly found in the cytoplasm of cultured rat granule neurons. 
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3.2 FBXO7 positively regulates proteasome activity 

Proteasomal dysfunction is one of the mechanisms suggested to contribute to the etiology 

of PD and inhibition of proteasomal activity has been shown to induce bradykinesia in rats 

(McNaught et al., 2002b). In our lab David Brockelt identified the proteasomal subunit, 

PSMA2, to be a direct interaction partner of FBXO7. To unravel the mechanistic pathway 

underlying the PARK15 syndrome, I therefore chose to focus on how FBXO7 impacts the 

ubiquitin proteasome system.  

One of the known interaction partners of FBXO7 is PI31, a proteasomal regulator, which 

binds directly to FBXO7 via a shared FP domain (Kirk et al., 2008) (Figure 1.6). I created 

an FBXO7 mutant that lacked the FP domain and a PI31 mutant that had crucial 

uncharged amino acids converted into positively charged ones (V83E/I90E). Thereby I 

confirmed the interaction of the wild type proteins and the abolished interaction of the 

mutants through forward and reverse co-immunoprecipitation analysis (Figure 3.2.1a,b).  

 

Figure 3.2.1 The FP domain of FBXO7 is required for interaction with PI31. Myc-tagged 

FBXO7 wild type (wt) or ΔFP domain, was co-expressed with Flag-tagged PI31 wt or the 

V83E/I90E mutant, and control plasmids in HEK293T cells. Cells were lysed and lysate subjected 

to immunoprecipitation with an anti-Flag (a) or anti-Myc (b) antibody followed by immunoblotting 

with an anti-Myc or anti-Flag antibody respectively. Pan 14-3-3 was used as loading control. 

Next, we wanted to see whether the mutations found in PARK15 patients affected the 

binding to PI31. I therefore overexpressed the FBXO7 mutants together with the Flag-

tagged PI31 and performed co-immunoprecipitation analysis (Figure 3.2.2). In this 

experiment PI31 interacted to a similar degree with the wild type FBXO7 protein as 

compared to its mutant variants.  
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Figure 3.2.2 Mutant FBXO7 proteins interact 
with PI31. Myc-tagged FBXO7 and mutant 

variants found in PARK15 patients were co-

expressed with Flag-tagged PI31 in HEK293T 

cells. Cells lysates were subjected to 

immunoprecipitation with the Myc antibody 

followed by immunoblotting with the Flag or the 

Myc antibody.  γ-tubulin was used as loading 

control. 

The association of FBXO7 with the proteasome has previously been observed in a mass-

spectrometry study (Bousquet-Dubouch et al., 2009). To confirm this association in 

mouse brain, I conducted a GST pulldown analysis (Figure 3.2.3). I isolated the 26S/30S 

proteasome via GST-tagged Rad23 that bind to its regulatory 19S subunit and performed 

SDS-PAGE analysis. After immunoblotting for FBXO7 and PI31, I found both to be 

associated with the proteasome. 

Figure 3.2.3 FBXO7 and PI31 interact with the 

proteasome. Brain lysates from wild-type adult 

C57BL/6N mice were subjected to GST-bound Rad23 

or empty GST protein. GST proteins and bound 

proteasome were precipitated by glutathione sepharose 

beads and eluted. Samples were immunoblotted with 

FBXO7 or PI31 antibodies. PSMA2 was used as 

proteasomal control. 

To conduct further analyses on FBXO7, PI31 and PSMA2 and their interaction, I 

generated shRNA constructs targeting their mRNA. I generated two functional shRNA 

variants for each mRNA and one non-functional construct to be used as a negative 

control. The FBXO7 shRNA constructs 1 and 2 were designed by Madhuvanti Kannan 

and the PSMA2 shRNA control was designed by David Brockelt. All functional constructs 

efficiently knocked down their target protein in HEK293T cells (Figure 3.2.4). 
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Figure 3.2.4 Validation of shRNA constructs for FBXO7, PSMA2 and PI31. HEK293T cells 

were transfected with shRNA plasmids targeting FBXO7 (a), PSMA2 (b) or PI31 (c). Cells were 

lysed and lysate subjected to immunoblotting with the FBXO7 (a), PSMA2 (b) or PI31 (c) antibody. 

 γ-tubulin was used as loading control. 

PSMA2 is an interaction partner of FBXO7, whereas PI31 interacts with both FBXO7 and 

the proteasome. I therefore tested the hypothesis that PI31 directly interacts with PSMA2. 

I either overexpressed or knocked down FBXO7 in HEK293T cells and co-expressed 

Flag-tagged PI31 and Myc-tagged PSMA2. Subsequently, I used the Myc antibody to pull 

down PSMA2 and immunoblotted for FBXO7 or Flag (PI31). PI31 was only co-precipitated 

in the presence of FBXO7 showing that PI31 interacts with PSMA2 through FBXO7 

(Figure 3.2.5a).  

FBXO7 overexpression in the presence of PSMA2 was shown by David Brockelt to 

increase a potential ubiquitination smear on PSMA2. Further ubiquitination experiments of 

his indicated that FBXO7 ubiquitinates PSMA2. To determine if PI31 could influence this 

process, I co-expressed GFP-PSMA2 and Myc-FBXO7 in the presence or absence of 

PI31. In the absence of PI31 the potential ubiquitination smear on PSMA2 became visibly 

stronger suggesting that PI31 negatively influences the possible ubiquitination of PSMA2 

by FBXO7 (Figure 3.2.5b). 
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Figure 3.2.5 PI31 interacts with PSMA2 through FBXO7 and may affect its ubiquitination. Un-

tagged FBXO7 and Flag-PI31 were co-expressed with Myc-PSMA2 in HEK293T cells (a). Cells 

were lysed and lysate subjected to co-immunoprecipitation with a Myc antibody followed by 

immunoblotting with the FBXO7 or Flag antibody. Myc-tagged FBXO7 was co-expressed with 

GFP-PSMA2 and shRNA against PI31 or control vector in HEK293T cells (b). Cells were lysed and 

lysate subjected immunoblotting with the GFP, Myc or PI31 antibody.  γ-tubulin was used as 

loading control. OE=overexpression, KD=knockdown.  

With the proteasomal interaction firmly established, we investigated how FBXO7 

regulated proteasomal function. I took advantage of the shRNA constructs and first 

knocked down PSMA2 in HEK293T cells as validation of the RNA silencing and subjected 

the lysate to analysis with an artificial substrate for the chymotrypsin-like activity of the 

proteasome  (Figure 3.2.6a). The knockdown of PSMA2 led to an approximate 20% 

reduction of proteasome activity. I then carried out a similar experiment with shRNA 

targeting FBXO7 (Figure 3.2.6b). Interestingly, I observed that knockdown of FBXO7 also 

led to a 20% lower proteasome activity for the most potent FBXO7 shRNA.  To control for 

the possibility that this effect was due to FBXO7s interaction with PI31, I knocked down 

PI31 in the same manner (Figure 3.2.6c). This knockdown however, had no effect on 

proteasome activity despite a highly efficient reduction in PI31 protein levels. This 

strengthened the hypothesis that FBXO7 itself is important for proteasomal function. 
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Figure 3.2.6 Knockdown of PSMA2 and FBXO7, but not PI31, lowers proteasome activity. 
Lysates of HEK293T cells, transfected with control vector or shRNA targeting PSMA2 (a), FBXO7 

(b) or PI31 (c), were subjected to proteasome activity assay. Data represent mean ± SEM of three 

independent experiments (ANOVA, ** p<0.01, *** p<0.001).  

To determine if FBXO7 could increase proteasome activity if overexpressed, I continued 

the same analysis with overexpressed Myc-FBXO7, but saw no difference in proteasome 

activity as compared to control vector (Figure 3.2.7a). The same was true for 

overexpression of PI31 (Figure 3.2.7b). 

 

Figure 3.2.7 Overexpression of FBXO7 and PI31 do not influence proteasome activity. 
Lysates of HEK293T cells, transfected with Myc-FBXO7 (a) or Flag-PI31 (b) together with control 

vector, were subjected to chymotrypsin-like proteasome activity assay. Data represent mean ± 

SEM of three independent experiments (ANOVA). Immunoblots show overexpression of Myc-

FBXO7 (a) and Flag-PI31 (b). Pan 14-3-3 and  γ-tubulin were used as loading controls. 
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With these experiments, I establish FBXO7 as a proteasomal interactor and a positive 

regulator of proteasome activity. I also show that this function is independent of its 

interaction with PI31. However, as ubiquitination of PSMA2 seems enhanced in absence 

of PI31, it could serve as a modulator of FBXO7. 

 

3.3 Characterization of the novel FBXO7 knockout mouse model  

The study of neurological disease cause and treatment depend heavily upon good animal 

model systems. Earlier rodent models of recessively inherited Parkinsonism have shown 

only subtle or variable symptoms (Blesa and Przedborski, 2014). Therefore we sought to 

establish the FBXO7 knockout (KO) mouse as a model of early-onset Parkinsonian-

Pyramidal syndrome with the aim to use this model to investigate the function of neuronal 

FBXO7 in vivo. 

3.3.1 Generation of FBXO7 conventional knockout mice 

FBXO7 mutations show a recessive inheritance pattern in affected families and fibroblasts 

from one affected family showed a reduction in FBXO7 protein levels (Di Fonzo et al., 

2009). Hence, we speculated that PARK15 symptoms arise due to a loss of function of 

the FBXO7 protein. We wanted to model this functional loss in the entire body as well as 

in specific brain tissue to understand the neuronal function of FBXO7. We purchased 

embryonic stem cells from EUCOMM, project 23037, with a dual conventional and 

conditional knockout potential. These ES cells from C57/Bl6N mice harbored a construct 

where two FRT sites as well as three loxP sites flanked the exon 4 of FBXO7 (Figure 
3.3.1). In addition, the construct harbored a neomycin cassette for ES cell selection and a 

β-gal reporter cassette for expression analysis.  

 

Figure 3.3.1 Targeting cassette for homologous recombination of FBXO7. A gene insertion 

cassette was introduced via homologous recombination into ES cells from C57/Bl6N mice. 

βgal=LacZ reporter gene; βact:neo=Neomycin selection marker; pA=polyA tail; FRT=flip 
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recombinase recognition sequence; loxP=cre recombinase recognition sequence; IRES=Internal 

recombination sequence; En2 SA=splice acceptor sequence for En2. 

Nicola Schwedhelm-Domeyer cultured the ES cells, which were injected into blastocysts 

and then transferred into pseudopregnant NMRI mice. Chimeras were further bred with 

wild type C57BL/6N mice to obtain germline transmission. The resulting offspring were 

then bred to homozygosity and further bred to an EIIa-cre mice line, which targets the Cre 

expression to germline cells. This recombination left a truncated form of FBXO7 consisting 

of the first three exons followed by the β-gal cassette and a stop codon. This line was then 

further bred to wild type C57BL/6N mice to eliminate the cre recombinase gene and then 

bred to homozygosity. To verify the loss of FBXO7, I ran genotyping PCR on tail tissue 

samples (Figure 3.3.2a). Nicola Schwedhelm-Domeyer analyzed mRNA expression by 

qPCR (Figure 3.3.2b) and I performed immunoblotting analyses on brain tissue to confirm 

loss of FBXO7 protein (Figure 3.3.2c). 

 

Figure 3.3.2 Disruption FBXO7 gene, mRNA and protein expression in FBXO7-/- mice. Tail 

biopsies from FBXO7+/+, +/- and -/- littermates were subjected to PCR analysis with primers 

recognizing wild type FBXO7 or β-gal cassette (a). RNA isolated from wild type, heterozygous and 

homozygous FBXO7 littermates at P18 was reverse transcribed and subjected to qPCR analysis 

with primers for FBXO7 and β-actin, the latter served as housekeeping control (b). Data represent 

mean ± SEM of three independent experiments (ANOVA, *** p<0.001). Whole brain lysates of P18 

FBXO7+/+, +/- and -/- littermates were subjected to immunoblotting with antibodies against FBXO7 

and β-gal. γ-tubulin was used as loading control. 

3.3.2 FBXO7-/- mice show retarded growth and premature death 

FBXO7 is a subunit of the cullin1-based E3 ligase. The deletion of core components 

including cullin1 and Rbx1 e.g. leads to a very early embryonic lethality in mice (Tan et al., 

2009; Zhou et al., 2013). We therefore sought to determine the importance of FBXO7 for 

the organism. The ratio of born pups and survival up until genotyping (P18) was, however, 

close to Mendelian ratio, 1:2,2:1 (+/+:+/-:-/-) (Table 3.3.1). Hence I concluded that there is 

little or no embryonic lethality in this line.  
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Table 3.3.1 Ratio of mice pups born to FBXO7+/- parents. Pups from 15 litters were genotyped 

between the age of P5 and P18 and ratio of genotypes calculated.  

 Male Female 

Litter FBXO7+/+ FBXO7+/- FBXO7-/- Total FBXO7+/+ FBXO7+/- FBXO7-/- Total 

1 2 3 0 5 1 2 2 5 
2 1 3 1 5 1 1 0 2 
3 0 2 0 2 1 4 3 8 
4 2 4 0 6 0 1 2 3 
5 0 2 1 3 1 1 0 2 
6 2 2 1 5 2 2 0 4 
7 1 3 0 4 0 2 1 3 
8 1 1 1 3 0 1 1 2 
9 1 2 1 4 0 2 1 3 

10 0 2 1 3 1 2 1 4 
11 1 3 0 4 1 0 2 3 
12 1 1 1 3 1 1 0 2 
13 1 1 0 2 0 2 1 3 
14 0 0 1 1 2 1 2 5 
15 1 2 1 4 0 2 0 2 

Sum 14 31 9 54 11 24 16 51 

Ratio 0.259 0.574 0.167  0.216 0.471 0.314  

 

From the initial litters, I realized that pups did not survive longer than 25 days with a mean 

life expectancy of 21 days (Figure 3.3.3). We therefore kept homozygous mice no longer 

than P18. 

 

Figure 3.3.3 FBXO7-/- mice show 

premature lethality. Death day of 

FBXO7+/+, +/- and -/- mice of 

mixed gender was noted and is 

shown as a Caplan-Meyer survival 

curve with a mean expiry day of 

P21. Data represent mean ± SEM. 

Based on life expectancy, we conducted all analyses at P5 and P18. I sacrificed all pups 

that were too weak to move and did not include them in the analysis. Both brain and 

bodyweight showed a tendency for FBXO7-/- pups to be smaller already at P5, but this 

did not reach significance (Figure 3.3.4a,b). When we conducted the same 

measurements at P18, it became clear that the brain weight was diminished, and the pups 

were only half the size of their littermates (Figure 3.3.4c-e).  
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Figure 3.3.4 FBXO7 knockout mice show retarded growth. Body (a) and brain weight (b) was 

measured for FBXO7+/+, +/- and -/- mice of mixed gender at P5. Body  (c) and brain weight (d) of 

male FBXO7+/+, +/- and -/- mice were measured at P18. N=5-15 animals per genotype. Data 

represent mean ± SEM. (ANOVA, **p<0.01, ***p<0.001). Representative picture of male mice at 

P18 (e).  

3.3.3 FBXO7-/- mice show diminished motor control at P18 

In further analyses, I explored the possibility that the slightly reduced size of the P5 pups 

was already accompanied by motor problems. For this, I tested the pups’ ability to roll 

onto their stomach when turned on their back. This reflex is important at an early stage 

and was not changed to a significant degree in the homozygotes (Figure 3.3.5).  

Figure 3.3.5 FBXO7-/- mice show normal surface righting 

reflex at P5. FBXO7+/+, +/- and -/- mice of mixed gender aged 

P5 were placed on their back on a flat surface and time to turn 

was measured three times. Average time is shown. N>10 

animals per genotype. Data represent mean ± SEM (ANOVA, 

*** p<0.001). 

 

As a morphological characterization I looked at the spine and found FBXO7-/- mice to 

display slight kyphosis (Figure 3.3.6a,b). I also observed moderate hind limb clasping 

upon the tail suspension test (Figure 3.3.6c,d). 
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Figure 3.3.6 FBXO7-/- mice display mild kyphosis and hind limb clasping. Male FBXO7+/+, 

+/- and -/- mice at P18 were scored for kyphosis (a) with 0 indicating normal to 3 indicating severe 

phenotype. Mice were suspended by the tail for 3x10 seconds and scored for hind limb clasping in 

a similar manner from 0 to 3 (b). Representative pictures are shown. N>10 animals per genotype. 

Data represent mean ± SEM (Kruskal-Wallis non-parametric ANOVA, Dunn’s Multiple Comparison 

test, ***p<0.001).  

At P18, I subjected the pups to more rigorous motor testing to assess for motor function 

impairment. Because of the small size and young age of the animals, I first conducted a 

set of experiments in their home cage and in a small open field. The gait score was based 

on the characteristics of whether the young mouse was able to keep its body above the 

ground, if it showed tremor or was walking in a crooked line. Initally, the homozygots only 

tended to keep their feet in a more outward poise and walked with a slightly more 

hunched back (Figure 3.3.7a). Their ambulation was then further assessed in the open 

field, where the young mice were allowed to walk freely in a square 28x28 cm open field. 

The arena was divided into 16 squares and the number of crossings were counted and 

divided into central and peripheral crossings. The total number of crossings was rather 

elevated than diminished for the homozygotes indicating normal ambulation level with 

slight hyperactivity in some individuals (Figure 3.3.7b). In addition, the ratio of central 

versus peripheral crossings was analyzed to look at anxiety state of the mice (Figure 
3.3.7c). Here it became clear that a majority of the homozygotes moved in circles with 

dispersed repetitive jumping. This made the homozygotes move at the edges of the field 

rather than in the middle. It was therefore impossible to conclude anything regarding the 

anxiety state in these mice.  
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Figure 3.3.7 FBXO7-/- mice display normal ambulation and slight gait aberrations. Male 

FBXO7+/+, +/- and -/- mice at P18 were placed in a 28x28 cm open field and allowed to move 

freely. The gait was scored from 0-3 with 0 being normal and 3 worst manifestation of ataxic gait 

(a). Data represent mean ± SEM (Kruskal-Wallis non-parametric ANOVA, Dunn’s Multiple 

Comparison test, ***p<0.001). The open field was divided into 16 squares and total number of line 

crossings counted (b). The number of central square crossings was divided by total number of 

crossings (c). Data represent mean ± SEM (ANOVA, Bonferronis Multiple Comparison test, 

**p<0.01).  N=15-20 animals per genotype.  

To assess their balance, I let the young mice walk on the ledge of their cage and scored 

them from 0 (normal) to 3 (unable to walk on ledge) according to their coordination 

(Figure 3.3.8a). Most of the homozygotes were not able to walk on the ledge due to 

multiple slips and many fell off the ledge. To test their grip strength, I placed the mice on 

the middle of an 80 cm long wire suspended above ground (Figure 3.3.8b). While most 

wild types and heterozygotes had no problems holding on to the wire for 30 seconds or 

climb over to the platform on either end, the homozygotes were barely able to hold on to 

the wire. Since ambulation seemed normal in an open field, I set out to challenge the pups 

on the rotarod (Figure 3.3.8c). Here, the mice walked on an accelerating rod from 4-40 

rpm over 300 seconds. Again the homozygotes performed significantly worse than their 

littermates. The pole test has been used to assess symptoms of dopaminergic neuron 

loss (Ogawa et al., 1985), so I placed the mice on a pole facing upwards and recorded the 

time to turn and climb down (Figure 3.3.8d). Here the homozygotes adopted a strategy of 

grip and fall, so they slid down the pole rather than climb.   

  

Figure 3.3.8 FBXO7-/- mice show diminished motor control. FBXO7+/+, +/- and -/- male mice 

at P18 were subjected to a ledge test (a). Mice were placed on the ledge of home cage and scored 
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according to performance with 0 being able to cross with no problem and 3 not able to cross. Data 

represent mean ± SEM (Kruskal-Wallis non-parametric ANOVA, Dunn’s Multiple Comparison test, 

***p<0.001). They were also placed on a wire and time hanging before fall recorded (b). Mice were 

placed on an accelerating rotarod (4-40 rpm in 5 min) and latency to fall recorded (c). Mice were 

placed face up on a 30 cm long pole and latency to turn and climb down was recorded. Data 

represent mean ± SEM (ANOVA, Bonferronis Multiple Comparison test, ***p<0.001).  N=15-20 

animals per genotype.  

Based on these experiments, I conclude that FBXO7-/- mice are viable until postnatal day 

18, but then die prematurely. The phenotypic analysis I conducted on P18 conventional 

FBXO7-/- mice revealed a significant reduction in body and brain size. This was 

accompanied by reduced muscle strength and weakness, but relatively normal ambulation 

with slight hyperactivity and stereotypic movements. This shows that loss of FBXO7 is 

detrimental to normal development of mice, but does not restrict the dysfunction to the 

nervous system. 

3.3.4 Heterozygous FBXO7 mice show normal behavior at 6 and 12 months of age 

Since loss of FBXO7 resulted in such a dramatic phenotype in mice, we asked if 

heterozygote mice would show a similar phenotype at a later stage due to 

haploinsufficiency of FBXO7. I therefore ran a battery of behavioral tests on the FBXO7+/- 

mice and their wild type littermates at 6 and 12 months of age. I first assessed their weight 

and hind limb clasping through the tail suspension test (Figure 3.3.9a,b) and found no 

difference between genotypes at either age. The same held true for muscle strength as 

shown by the inverted grid test (Figure 3.3.9c) 

  

Figure 3.3.9 FBXO7+/- mice show normal body characteristics and muscle strength. 
FBXO7+/+ (N=18) and +/- (N=15) mice were weighed at different ages (a). Data represent mean ± 

SEM (t-test). The same mice were suspended by the tail (b) and scored for hind limb clasping. 

They were also placed on an inverted cage lid and time until fall was measured (c). Data represent 

mean ± SEM (Mann-Whitney non-parametric t-test). 

I recorded the total track length of the mice, which spent 7 minutes in the open field, and 

found no difference ambulation between groups (Figure 3.3.10). 
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Figure 3.3.10 FBXO7+/- mice show normal ambulation. FBXO7+/+ 

(N=18) and +/- (N=15) mice were allowed to move freely in a circular 

open field 60 cm in diameter. Movement was recorded by the Viewer 

software. Total track length after 7 minutes was measured. Data 

represent mean ± SEM (t-test). 

To measure general anxiety in these mice, I first looked at the time the mice spent in 

different zones in the open field (Figure 3.3.11a). Then I performed an elevated plus 

maze test and measured the fraction of time the animals spent in the open arms of the 

maze (Figure 3.3.11b) Both tests showed that FBXO7+/- mice have normal anxiety 

levels. 

 

Figure 3.3.11 FBXO7+/- mice show normal anxiety levels. FBXO7+/+ (N=18) and +/- (N=15) 

mice were allowed to move freely in a circular open field 60 cm in diameter (a). Time spent in each 

zone during 7 minutes was measured. Mice were placed in an elevated plus maze with two open 

and two closed arms for 5 minutes (b). Time spent in open arms during 5 minutes is shown as ratio 

to time spent in either arm. Data represent mean ± SEM (t-test). 

I further examined the heterozygous mice on the rotarod to measure their general motor 

function using a learning paradigm (Figure 3.3.12a). Then I tested balance and 

coordination with the balance beam test (Figure 3.3.12b,c). In neither of these tests did 

the heterozygous mice perform worse than their wild type littermates. Also the pole test as 

a sensitive test for loss of dopaminergic neurons, revealed no difference for the 

heterozygous animals (Figure 3.3.12d).  
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Figure 3.3.12 FBXO7+/- mice show normal motor function. FBXO7+/+ (N=18) and +/- (N=15) 

mice were placed on a rotarod and exposed to an accelerating protocol from 4-40 rpm for 5 

minutes (a). Latency to fall was measured. Mice were placed on a balance beam of either 12 or 6 

mm width and 80 cm length and encouraged to cross (b,c). Time to cross (b) as well as 

coordination score (c) was measured. Mice were placed face up on a 50 cm tall wooden pole and 

encouraged to climb down (d). Time to turn, as well as time to descend, were recorded. Data 

represent mean ± SEM (a,b: t-test, c,d: Mann-Whitney non-parametric t-test). 

As the olfactory system is often the first to show defects in Parkinson's patients (Haehner 

et al., 2011), I performed an olfaction test on the 6 and 12 months old FBXO7+/- mice 

(Figure 3.3.13). Here mice had to find a buried treat using smell. Also here I found no 

difference between the heterozygous and the wild type mice. 

   

Figure 3.3.13 FBXO7+/- mice show normal olfaction. FBXO7+/+ (N=18) and +/- (N=15) mice 

were placed in a cage with a chocolate chip buried in the bedding in two different corners. On 

control trial the chip was placed in the middle of the cage on top of the bedding. Time to retrieve 

treat was measured. Data represent mean ± SEM (t-test). 

Based on these experiments, I conclude that a mere reduction in FBXO7 levels does not 

have severe consequences for the behavior of the mice up until 12 months of age. 
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3.3.5 FBXO7-/- mice show normal dopaminergic neuron morphology and function 

To evaluate whether dopaminergic neurons are affected by ubiquitous loss of FBXO7, I 

subjected coronal sections of P18 animals to immunostaining with a tyrosine hydroxylase 

antibody and Nissl staining (Figure 3.3.14). Every fourth section was stained and neurons 

counted in a stereological manner. No loss of neurons in the substantia nigra was found 

at P18. 

 

Figure 3.3.14 FBXO7-/- mice show no substantial loss of dopaminergic neurons at P18. 

Coronal cryo-sections from FBXO7+/+ (N=3) and FBXO7-/- (N=3) mice were stained with an 

antibody directed against tyrosine hydroxylase and then subjected to Nissl-staining (a). Every 

fourth section was counted and quantified in a stereological manner with a reading frame of 50x50 

µm. The total number of estimated TH positive neurons (b) as well as the ratio to Nissl positive 

cells (c) was counted. Data represent mean ± SEM (t-test).  

I then proceeded to look at whether axon terminals in the striatum were affected, by 

immunoblotting for dopaminergic markers. I used antibodies against tyrosine hydroxylase 

(TH) and dopamine transporter (DAT) on striatal lysates from P18 animals (Figure 
3.3.15a,b). These were unchanged between the genotypes. The pyramidal symptoms 

seen in PARK15 patients may arise from a disturbance in projection neurons, hence I 

analyzed the levels of VGLUT1, a marker of glutamatergic neurons, in both striatum and 

cortex (Figure 3.3.15c,d). These levels were also unchanged between genotypes. 

Neither of these tests exclude that other axonal features are affected, hence further 

analyses are necessary to confirm axonal integrity in these mice. 
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Figure 3.3.15 FBXO7-/- animals show no evident loss of transporters in the striatum. Striatal 

(a-c) and cortical (d) tissue from P18 FBXO7+/+ (N=3), +/- (N=3) and -/- (N=3) mice was lysed and 

subjected to immunoblotting analysis with antibodies against TH (a), DAT (b) and VGLUT1 (c-d). 

Blots were quantified with the ImageJ software and intensity normalized to loading control (pan 14-

3-3). Values are expressed relative to first FBXO7+/+ sample. Data represent mean ± SEM 

(ANOVA).  
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To investigate if there was a functional impairment of the dopaminergic system, I prepared 

samples from freshly lysed striatal tissue of P18 animals. Dr. Lars Tatenhorst then 

measured the level of dopamine and metabolites by HPLC analysis. The results showed a 

rather subtle increase in striatal dopamine in FBXO7-/- animals compared to controls, 

accompanied by a slight decrease of DOPAC levels, which then led to a significant 

decrease in dopamine metabolism values. 

 

Figure 3.3.16 FBXO7-/- mice show no evident loss of dopamine in the striatum. Striatal tissue 

from P18 old animals was subjected to HPLC analysis for dopamine (a), DOPAC (b) and HVA (c). 

Metabolism is shown as ratio of HVA and DOPAC to dopamine (d).  N=9 per genotype. Data 

represent mean ± SEM (t-test, *p<0.05). HPLC measurements were conducted by Dr. Lars 

Tatenhorst. 

In summary, I could not show any cellular disturbance in the brains of P18 FBXO7-/- mice.  

3.3.6 FBXO7-/- mice show reduced levels of PI31, but no change in proteasome 
activity or oxidation levels 

Since PI31 and FBXO7 interact, I analyzed what impact loss of FBXO7 had on the PI31 

levels in mouse brain tissue. I immunoblotted lysates from cortex of P5 and P16 

FBXO7+/+, +/- and -/- mice with a PI31 antibody and found PI31 to be heavily down-

regulated in FBXO7-/- mice (Figure 3.3.17a). This was not due to a reduced transcription 

as PI31 mRNA levels in cortex were rather increased (Figure 3.3.17b).  
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Figure 3.3.17 FBXO7-/- mice show a decrease in PI31 levels.  Cortical tissue lysates from P5 

and P16 FBXO7+/+, +/- and -/- mice were subjected to immunoblotting with a PI31 antibody (a).  β-

gal was used as control for FBXO7 knock-out and pan 14-3-3 as loading control. RNA isolated 

from cortex of FBXO7+/+ (n=4), +/- (n=2) and -/- (n=4) littermates at P18 was reverse transcribed 

and subjected to qPCR analysis with primers for PI31 and β-actin, the latter served as 

housekeeping control (b). Data represent mean ± SEM (ANOVA).  

In order to see if I could replicate the findings from HEK293T cells, where I showed that 

knockdown of FBXO7 lead to a decrease in proteasome activity, I conducted the same 

proteasome activity assay on cultured cerebellar granule cells from FBXO7+/+ and -/- 

mice. Here however, I could not see any difference in proteasome activity between wild 

type and knockout mice. 

 

 

Figure 3.3.18 Cultured cerebellar granule neurons of 
FBXO7-/- mice show no decrease in proteasome 

activity. Lysates from cultured cerebellar granule 

neurons at DIV 16 were subjected to chymotrypsin-like 

proteasome activity assay. N=5 per genotype (t-test).  

FBXO7 has also been linked to mitochondrial regulation (Burchell et al., 2013) and the 

tight interplay between proteasomal and mitochondrial function is critical in the regulation 

of reactive oxygen species (ROS) (Sullivan et al., 2004). As FBXO7 is involved in both 

these processes I investigated if the level of ROS could be changed in FBXO7-/- animals 

and contribute to an increase in modified carbonyl groups on proteins. I analyzed tissue 

from cortex of FBXO7+/+ and -/- mice with a carbonyl-derivatizing agent (DNPH) but 

found no increase in modified proteins in the FBXO7-/- animals (Figure 3.3.19). 
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Figure 3.3.19 FBXO7-/- mice show no difference in oxidized protein levels in the cortex.  
Cortical tissue from P18 FBXO7+/+ and -/- mice was lysed and exposed to 2,4-

dinitrophenylhydrazine (DNPH, left panel) or control (right panel). The resulting derivatization of 

carbonyl groups in the protein side chains to 2,4-dinitrophenylhydrazone (DNP-hydrazone) was 

detected by an anti-DNP antibody. γ-tubulin served as loading control. 

I here show that PI31 is dependent on FBXO7 as its protein levels are strongly reduced in 

FBXO7-/- animals. These experiments do not show any obvious disturbance in 

proteasomal or mitochondrial function of FBXO7-/- animals at P18.  David Brockelt could 

however show that in FBXO7-/- cortical tissue there is a decrease in proteasomal activity 

similar to what I see in HEK293T cells upon FBXO7 knockdown. Hence, a more thorough  

set of analyses is necessary to investigate these pathways. 

 

3.4 NEX-Cre;fl/fl mice show pyramidal symptoms with stereotypic 
movements and hyperactivity 

3.4.1 FBXO7 fl/fl mice show normal behavior up to 12 months of age 

To establish the requirement for FBXO7 in neuronal function and to distinguish between 

the pyramidal and the Parkinsonian phenotype seen in PARK15 patients, we generated 

two conditional FBXO7 knockout mouse lines. First, mice with the lacZ casette were bred 

to Flip recombinase mice and the LacZ cassette excised. The Flip recombinase gene was 

removed and the floxed line (FBXO7 fl/fl) bred to homozygosity. Since I used the FBXO7 

fl/fl mice to breed all conditional lines in this study, I initially controlled that the FBXO7 fl/fl 

line itself did not show any motor abnormalities and therefore tested 12 months old 

FBXO7 fl/fl animals against wild type littermates. I performed; open field test for 

ambulation, rotarod and balance beam for coordination, pole test for dopaminergic neuron 
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dysfunction and elevated plus maze for general anxiety (Figure 3.4.1). Only in the 

elevated plus maze there was a difference pointing to FBXO7 fl/fl males being less 

anxious than their controls.   

 
Figure 3.4.1 FBXO7 fl/fl show no abnormal behavioral phenotype. FBXO7 fl/fl (N=9) and wild 

type controls (N=8) of 12 months of age were subjected to behavioral tests as previously 

described. Animal weight (a). Tail suspension test (b). Inverted grid (c). Open field, track length (d). 

Rota-rod (e). Balance beam, time to cross and coordination score (f). Pole test (g).  Open field, 

time spent in different zones (h). Elevated plus maze (i). Data represent mean ± SEM (t-test,  

*p<0.05). 

3.4.2 FBXO7 protein expression is reduced in cortex of NEX–Cre;fl/fl mice  

The pyramidal symptoms seen in PARK15 patients indicate a disturbance in the upper 

motor neurons. We chose to model these symptoms by crossing our FBXO7 fl/fl line with 

a Cre deleter line under the control of the NEX promoter whose expression is strong in the 

excitatory neurons in the cortex, hippocampus and olfactory bulb (Goebbels et al., 2006). 

The NEX-Cre line was kept heterozygous at all times and bred to homozygous FBXO7 fl/fl 

mice. The resulting double heterozygot animals were bred to FBXO7 fl/fl mice. For 
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behavioral and cellular analysis NEX-Cre+/-; FBXO7 fl/fl (NEX-Cre;fl/fl) were tested 

together with NEX-Cre+/-; FBXO7 wt (NEX-Cre) and NEXwt; FBXO7 fl/fl (FBXO7 fl/fl) as 

controls. Pups were genotyped at P18-23 (Figure 3.4.2a) and no embryonic lethality was 

found (Table 3.4.1).  

Table 3.4.1 Loss of FBXO7 in NEX-Cre;fl/fl mice is not embryonically lethal. Pups from 20 

litters were genotyped between the age of P15 and P25 and ratio of genotypes calculated.  

 Male Female 

Litter 
NEX-

Cre;fl+ 
NEX-

Cre;fl/fl 
FBXO7 

fl/+ 
FBXO7 

fl/fl Total 
NEX-

Cre;fl+ 
NEX-

Cre;fl/fl 
FBXO7 

fl/+ 
FBXO7 

fl/fl Total 

1  2 2 1 5 2  1 1 4 
2 3   1 4    1 1 
3    3 3 1 1   2 
4  2   2 1 1  4 6 
5 2  2 1 5  1 1 1 3 
6 1    1   1 2 3 
7    1 1 1 1 1  3 
8  1  1 2 1   2 3 
9 1 1 2 1 5 1  1 2 4 

10  1 1 2 4 1  1  2 
11  1  2 3    2 2 
12   2  2 1 2   3 
13 1  1  2  1 2 2 5 
14 2 2 1 2 7  1   1 
15  1 1  2  1  3 4 
16 2    2 1 1   2 
17 2 2 1 2 7 2  1  3 
18 3 1 1 2 7 1  1  2 
19 2 3 1  6  2  2 4 
20  1 1 1 3 2 1 1 1 5 

Sum 19 18 16 20 73 15 13 11 23 62 

Ratio 0.260 0.247 0.219 0.274  0.242 0.210 0.177 0.371  

 
We verified the knockout of FBXO7 by means of qPCR and found FBXO7 mRNA to be 

reduced to about 70% in cortex and about 20% in the striatum (Figure 3.4.2b). I then 

performed immunoblotting to determine the expression of FBXO7, and found that FBXO7 

protein levels were also reduced in cortex but not in the cerebellum (Figure 3.4.2c).  
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Figure 3.4.2 FBXO7 protein and mRNA expression is reduced in cortex of NEX-Cre;fl/fl mice. 

Tail biopsies from NEX-Cre;fl/fl mice and controls were lysed and subjected to PCR analysis with 

primers for FBXO7 wild type, loxp2 and Cre (a). cDNA was synthesized from cortex, and striatum 

of NEX-Cre (N=6) and NEX-Cre;fl/fl (N=6) mice and subjected to RT-PCR analysis with primers 

against FBXO7 (b).  β-actin was used as reference sample. Data represent mean ± SEM (Mann-

Whitney non-parametric t-test, *p<0.05). Tissue from cortex and cerebellum of 2 months old NEX-

Cre;fl/fl mice and controls was lysed and subjected to immunoblotting with antibodies directed 

against FBXO7 (c). γ -tubulin was used as loading control. 

3.4.3 NEX-Cre;fl/fl mice show spasticity and decreased coordination 

To characterize the motor phenotype of the NEX-Cre;fl/fl mice, I performed an array of 

behavioral tests. The weight of these animals was unchanged at 2 months of age, but 

they did not gain any weight in the following 2 months, which resulted in a significant 

difference in weight compared to controls at 4 months of age (Figure 3.4.3a). I initially 

noted a strong hind limb clasping at 2 months, which persisted until 4 months of age 

(Figure 3.4.3b,c).  A personal observation to be noted is that the mice were hard to 

handle upon initial contact. They would spasm and bite down on the cage grid or initiate a 

spastic jumping if let lose. This behavior became less pronounced upon repeated 

handling. 
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Figure 3.4.3 NEX-Cre;fl/fl show no increase in weight and a strong hind limb clasping up to 4 
months of age. NEX-Cre (N=11), FBXO7 fl/fl (N=14) and NEX-Cre;fl/fl (N=15) mice were weighed 

at 2 and 4 months (a). Data represent mean ± SEM (ANOVA, Bonferronis Multiple Comparison 

test, *p<0.05). They were also subjected to the tail suspension test for 3x10 seconds and scored 

for hind limb clasping with 0 being normal and 3 given when both hind limbs were clasped together 

more than 50% of the time (b). Data represent mean ± SEM (Kruskal-Wallis non-parametric 

ANOVA, Dunn’s Multiple Comparison test, ***p<0.001). Example picture of hind limb clasping in 2 

months old mice (c).  

 

To assess the motor control in the NEX-Cre;fl/fl mice, I subjected them to the balance 

beam and rotarod test (Figure 3.4.4). Both the time it took them to cross a balance beam 

of either 12 or 6 mm width, and the coordination score was measured (Figure 3.4.4a,b). 

Here, NEX-Cre;fl/fl mice required more time crossing the beam and showed lower 

coordination score than their control animals at 2 months. This reduction in motor control 

progressed even further at 4 months, where some mice were not able to cross the beam 

without falling down. In the rotarod test, I observed the same: The NEX-Cre;fl/fl mice 

managed to stay at the rotating rod significantly shorter than the controls and were clearly 

uncoordinated in their movements both at 2 months and even more so at 4 months of age 

(Figure 3.3.4c).  
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Figure 3.4.4 NEX-Cre;fl/fl mice show progressive decrease in motor coordination. NEX-Cre 

(N=11), FBXO7 fl/fl (N=14) and NEX-Cre;fl/fl (N=15) mice were subjected to the balance beam test 

at 2 and 4 months of age (a,b). Time needed to cross the 80 cm long beam of two different widths 

(6 and 12 mm) was recorded (a). Animals were scored according to performance with 0 being less 

than 2 slips and 7 being unable to cross beam (b). Data represent mean ± SEM (Kruskal-Wallis 

non-parametric ANOVA, Dunn’s Multiple Comparison test, *p<0.05, **p<0.01, ***p<0.001). The 

mice were also subjected to the rotarod test at 2 (c) and 4 months (d) with an accelerating protocol 

from 4-40 rpm in 5 minutes. Animals were tested on three consecutive days with 3 trials per day 

and 20 minutes intra-test interval and latency to fall measured. Data represent mean ± SEM 

(ANOVA, Bonferronis Multiple Comparison test, *p<0.05, **p<0.01, ***p<0.001).  

In these tests, I could show that the NEX-Cre;fl/fl mice display uncoordinated movements 

and progressive loss of motor control from 2 to 4 months of age. Hence, we conclude that 

loss of FBXO7 in excitatory neurons of the forebrain triggers motor defects in mice.  

3.4.4 NEX-Cre;fl/fl mice show hyperactivity and stereotypic behavior 

In the open field, the NEX-Cre;fl/fl mice moved significantly more than their controls 

(Figure 3.4.5a). They traveled about double the distance at 2 months of age and this 

hyperactivity persisted at 4 months despite the progressive loss of motor control. As the 

open field is a novel environment for the mice, I explored if the hyperactivity was 

consistent in a familiar environment. In collaboration with Dr. Ekrem Dere and Anja 
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Ronnenberg from the Ehrenreich lab, we subjected the mice to the Laboratory Behavior 

Observation, Registration and Analysis System (LABORAS) and observed the same 

hyperactivity there (Figure 3.4.5b-e). The NEX-Cre;fl/fl mice traveled a longer distance, 

spent more time moving, less time immobile and moved at a higher velocity than their 

age-matched controls. 

   
Figure 3.4.5 NEX-Cre;fl/fl mice show severe hyperactivity. NEX-Cre (N=11), FBXO7 fl/fl (N=14) 

and NEX-Cre;fl/fl (N=15) mice were subjected to the open field test at 2 and 4 months of age (a). 

The mice were placed in the middle of an open field of 60 cm diameter and total travel length was 

measured with the Viewer software after 7 minutes. NEX-Cre (N=5), FBXO7 fl/fl (N=5) and NEX-

Cre;fl/fl (N=6) mice were placed in the LABORAS homecage system over a time period of 15 

hours. Path length (b), time spent in motion (c), time spent immobile (d) and velocity was recorded. 

Data represent mean ± SEM (ANOVA, Bonferronis Multiple Comparison test, ***p<0.001). 

LABORAS experiment performed by Anja Ronnenberg and analyzed by Dr. Ekrem Dere. 

Another striking feature in the open field test was that the NEX-Cre;fl/fl mice showed a 

high degree of stereotypic circling (Figure 3.4.6a). The circling was assessed on two 

separate occasions and not unidirectional for an individual animal, but consistent within a 

trial (Table 3.4.2). The number and diameter of the circles varied between animals as well 

as between trials.  

Table 3.4.2 NEX-Cre;fl/fl mice stereotypic circling is uni-directional within test session. NEX-

Cre;fl/fl  mice and age-matched controls were subjected to the open field test twice with 1 week in 

between at 2 months of age. The mice were placed in the middle of an open field of 60 cm 
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diameter and movement pattern recorded with the Viewer software for 7 minutes. Number of 

circles and direction was recorded in each trial.  

 Circles Direction 

Animal Trial 1 Trial 2 Trial 1 Trial 2 

2910 29 32+14 R R+L 

2941 181 7+5 L L+R 

2785 40 63 L L 

2795 76 11 R L 

2798 27 14 R L 

2799 6 312 R L 

2804 197 74 L R 

2806 17 22 R R 

2950 69 50 R L 

2952 15 10 R L 

2953 30 7 L L 

3029 29 19 L L 

3030 20 14+6 R R+L 

3109 9 10 R R 

3110 125 20 R L 

 

We again took advantage of the LABORAS home-cage system and saw the same circling 

pattern, meaning that the stereotypic circling is not stress-induced (Figure 3.5.6b). The 

circling direction changed here as well suggesting that potential lesions are not unilateral 

(Figure 3.4.6c). 

 
Figure 3.4.6 NEX-Cre;fl/fl mice show 
stereotypic circling. 2 months old NEX-Cre 

and NEX-Cre;fl/fl mice were placed in the 

middle of an open field of 60 cm diameter 

and movement pattern recorded with the 

Viewer software for 7 minutes. Examples of 

NEX-Cre movement pattern (left panel) and 

stereotypic circling by NEX-Cre;fl/fl in small 

diameter (middle panel) and large diameter 

(right panel) is shown (a). NEX-Cre (N=5), 

FBXO7 fl/fl (N=5) and NEX-Cre;fl/fl (N=6) 

mice were placed in the LABORAS 

homecage system over a time period of 15 

hours. Number of circles made in the 
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LABORAS homecage system was measured over a time period of 15 hours (b). Ratio of clockwise 

versus counter clockwise circles for individual animals is shown (c). Data represent mean ± SEM 

(ANOVA, Bonferronis Multiple Comparison test, ***p<0.001). LABORAS experiment performed by 

Anja Ronnenberg and analyzed by Dr. Ekrem Dere. 

 

Many types of stereotypic behaviors are found in rodents, so Dr. Dere also analyzed 

rearing, grooming, scratching and climbing behavior (Figure 3.4.6). Scratching and 

rearing frequency were significantly increased for the NEX-Cre;fl/fl mice, but they did not 

groom more than controls (Figure 3.4.6a-c). The climbing behavior was surprisingly 

significantly different between the control groups, which is hard to explain with the current 

data and should be repeated with a larger animal number (Figure 3.4.7d).    

 
Figure 3.4.7 NEX-Cre;fl/fl mice show increased rearing and scratching, but no difference in 
grooming and climbing. NEX-Cre (N=5), FBXO7 fl/fl (N=5) and NEX-Cre;fl/fl (N=6) mice were 

placed in the LABORAS homecage system over a time period of 15 hours. Duration and frequency 

of rearing (a), scratching (b), grooming (c) and climbing (d) was measured. Data represent mean ± 

SEM (ANOVA, Bonferronis Multiple Comparison test, **p<0.01, ***p<0.001). LABORAS experiment 

performed by Anja Ronnenberg and analyzed by Dr. Ekrem Dere. 

 

Another sign of stereotypic behavior in rodents is increased marble burying. I therefore 

presented the mice to 4x6 marbles laid out on soft bedding. Normal mice try to bury the 

marbles in the bedding. Obsessive marble burying or moving are considered signs of 

repetitive or stereotypic behavior. In the NEX-Cre;fl/fl mice however, I saw a reduction in 

both number of marbles buried and number of marbles moved (Figure 3.4.8). 
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Figure 3.4.8 NEX-Cre;fl/fl mice show decreased marble 
moving and burying. NEX-Cre (N=11), FBXO7 fl/fl 

(N=14) and NEX-Cre;fl/fl (N=15) mice were placed in a 

cage 30x45 cm with 4x6 marbles placed out  on top of soft 

bedding for 30 minutes. Number of marbles buried (a) and 

moved (b) was counted. Data represent mean ± SEM 

(Kruskal-Wallis non-parametric ANOVA, Dunn’s Multiple 

Comparison test, *p<0.05, **p<0.01, ***p<0.001).  

 

Since the NEX promoter is also expressed in the hippocampus, I investigated if memory 

formation was affected in these mice. However, the severe motor deficits interfered with 

most standard memory tests. I therefore decided to test the animals for disturbances in 

spatial memory via the Y-maze test, where the mice are allowed to freely explore a maze 

consisting of three equal arms. A triplet is counted when all three arms are consecutively 

visited without re-entrance to an already visited arm. NEX-Cre;fl/fl mice entered the arms 

more often than controls (Figure 3.4.9a), but made equally many triplets (Figure 3.4.9b).  

 
Figure 3.4.9 NEX-Cre;fl/fl mice show no 
aberrations in spatial memory, but patterned 

behavior in Y-maze. NEX-Cre (N=11), FBXO7 

fl/fl (N=14) and NEX-Cre;fl/fl (N=15) mice were 

placed in a Y-maze with 15x30 cm walled arms 

and recorded for 10 minutes. Total number of arm 

entries (a) and ratio of triplets (consecutive visits 

of all three arms) to total number of triplets 

possible (b) were counted. Data represent mean ± SEM (ANOVA, Bonferronis Multiple Comparison 

test).  

 

Some NEX-Cre;fl/fl  animals repeated certain patterns, either duplicates or triplicates: 
NEX-Cre;fl/fl 2795: CBABACB AC AC AC AC BACBA CB CB CB CB ACBACBCBABCBCB AC AC 

AC BACA CB CB CB ACBCBABACAB                

NEX-Cre;fl/fl 3110: C ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB 

ACB ACB ACB ACB CB CBA CBA CBA CBA CBA CBA CBA CBA CBA CBA CBA CBA C  
This lead to a larger spread in triplicate ratios for the NEX;fl/fl animals (Figure 3.4.9b) and 

again shows a high degree of repetitive behavior, which does not only pertain to circling, 

but also arm entries in a mace. This repetitive pattern was also observed in a novel object 

recognition test (Figure 3.4.10). Here, the NEX-Cre;fl/fl mice would sniff one object for a 

couple of seconds, move to the other and sniff at this for a couple of seconds and then 

circle back to the first. This behavior continued for as long as the animal stayed 
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uninterrupted and made the test impossible to perform, but again reflected a highly 

repetitive movement pattern. 

 
Figure 3.4.10 NEX-Cre;fl/fl mice show stereotypic 

movement pattern. 2 months old NEX-Cre and NEX-Cre;fl/fl 

mice were placed in the middle of an open field of 60 cm 

diameter with two different objects of similar size. Examples 

of NEX-Cre (left panel) and NEX-Cre;fl/fl movement pattern 

(right panel) is shown.  
 

As the NEX-Cre;fl/fl mice did not gain weight from 2 to 4 months, we examined their 

feeding behavior. In the LABORAS home-cage system Dr. Dere found an increase in 

eating and a decrease in drinking duration compared to controls (Figure 3.4.11). 

 
Figure 3.4.11 NEX-Cre;fl/fl mice show increased eating and reduced drinking frequency. 
NEX-Cre (N=5), FBXO7 fl/fl (N=5) and NEX-Cre;fl/fl (N=6) mice were placed in the LABORAS 

homecage system over a time period of 15 hours. Eating (a) and drinking (b) events and duration 

was measured. Data represent mean ± SEM (ANOVA, Bonferronis Multiple Comparison test, 

*p<0.05). LABORAS experiment performed by Anja Ronnenberg and analyzed by Dr. Ekrem Dere. 

Behavioral disturbances were found in many of the PARK15 patients, and one patient 

presented with panic attacks (Lohmann et al., 2015). I therefore conducted experiments to 

look into the anxiety state in the NEX-Cre;fl/fl mice. I first analyzed the time spend in 

different zones of the open field, but found no difference (Figure 3.4.12a). This was not 

surprising as the mice showed a high frequency of stereotypic circling. I then did an 

elevated plus maze test, which takes advantage of the rodent’s tendency to seek shelter. 

A normal mouse will spend more time in one of the sheltered arms of the maze compared 

to the open arms. Here, the NEX-Cre;fl/fl mice seemed to be significantly less anxious 

than their controls and spend more than half their time in the open arms of the maze 

(Figure 3.4.12b).  

NEX-Cre NEX-Cre;fl/fl
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Figure 3.4.12 NEX-Cre;fl/fl mice show decreased anxiety in the elevated plus maze test. 

NEX-Cre (N=11), FBXO7 fl/fl (N=14) and NEX-Cre;fl/fl (N=15) mice were placed in the center of an 

open field 60 cm in diameter, and allowed to move freely for 7 minutes. Time spent in different 

zones was recorded (a). The same mice were placed in an Elevated Plus Maze with two open and 

two walled arms and allowed to move freely for 5 minutes and their movement pattern recorded by 

the Viewer software. Ratio of time spent in open arms versus all arms, ratio of distance traveled in 

open arm versus all arms and total path length was measured (b). Data represent mean ± SEM 

(ANOVA, Bonferronis Multiple Comparison test, *p<0.05, **p<0.01). 

To confirm this finding, I subjected the mice to a light/dark paradigm. I placed the mice in 

the light with the option to escape into a dark compartment and measured the latency to 

escape and the time spent in each compartment (Figure 3.4.13). To my surprise, this test 

did not show that the NEX-Cre;fl/fl mice stayed longer in the light, but they showed 

increased latency to enter the dark compartment. The mice also crossed between the 

compartments significantly less than the controls.   
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Figure 3.4.13 NEX-Cre;fl/fl mice show reduced change of location in light/dark paradigm. 

NEX-Cre (N=11), FBXO7 fl/fl (N=14) and NEX-Cre;fl/fl (N=15) mice were placed in the light 

compartment, 30x15 cm of a Plexiglas box and their movement pattern recorded with the viewer 

software. Latency to enter dark compartment (a), 20x30 cm, number of visits to the dark side (b), 

ratio of time spent in light compartment to total time (c), and velocity of movement in light 

compartment (d) was measured. Data represent mean ± SEM (ANOVA, Bonferronis Multiple 

Comparison test, *p<0.05, ***p<0.001). 

Since loss of smell can be a factor influencing other behavioral tests, I also conducted an 

olfactory test on the NEX-Cre conditional mouse line (Figure 3.4.14). Here, I could show 

that the NEX-Cre;fl/fl mice were divided into two groups. Either they found the treat as fast 

as control mice, or they did not recover the treat at all within the test time.  

   
Figure 3.4.14 NEX-Cre;fl/fl mice show normal olfaction. NEX-Cre (N=11), FBXO7 fl/fl (N=14) 

and NEX-Cre;fl/fl (N=15) mice were placed in a 30x40 container with a treat buried underneath the 

bedding on two different trials with different locations. On control trial the treat was placed on top of 

bedding in the middle of the cage. Data represent mean ± SEM (Kruskal-Wallis non-parametric 

ANOVA, Dunn’s Multiple Comparison test).  

When these tests are compared a pattern emerges that suggest NEX-Cre;fl/fl mice to 

show perseverative locomotor behavior. These mice seem to have problems changing 

between behaviors and this is reflected in stereotypic, repetitive movements.  

3.4.5 NEX-Cre;fl/fl mice show altered protein expression in the striatum 

In the conventional FBXO7 knockout mouse line, David Brockelt found increased 

apoptosis in the cortex. I therefore investigated whether the total number of neurons in the 

cortex of the NEX-Cre;fl/fl mice differed from those of controls. So I performed 
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immunohistochemistry with an antibody against the neuronal marker NeuN. I first 

quantified the thickness of the cortex and the ratio between the different cortical layers, 

but found no difference between control and NEX-Cre;fl/fl cortices (Figure 3.4.15a-c). I 

then counted the number of neurons in layer V of the motor cortex (Figure 3.4.15d,e). 

Again, there was no significant difference between the NEX-Cre;fl/fl mice and the controls.  

 
Figure 3.4.15 Cortical thickness and number of neurons in layer V seems normal in NEX-

Cre;fl/fl mice. NEX-Cre;fl/fl  (N=3) and NEX-Cre (N=3) mice were transcardially perfused and 30 

µm brain sections cut with a cryostat. Sections were subjected to immunohistochemistry with an 

antibody directed against NeuN (red/yellow; a,d) and DAPI (blue), a nuclear dye (a). Images were 

measured with the ImageJ software and manually counted in a blinded manner. Cortical thickness 

(b), relative layer thickness (c) and number of neurons/100 µm2 (e) were quantified. Data represent 

mean ± SEM (t-test). Scale bars equal 500 µm. 

Since the NEX promoter is expressed mainly in excitatory neurons, I analyzed how a 

marker of glutamatergic neurons was affected in different brain areas. VGLUT1 is one of 

the main glutamatergic transporters and I examined its expression in cortex, cerebellum 

and striatum (Figure 3.4.16a, b, c). Consistent with the notion that there was no gross 

neuronal loss in the cortex, I also found no difference in VGLUT1 expression in the cortex 

between the genotypes. The cerebellum did also not seem to show a difference in 

VGLUT1 expression. However, in the striatum I saw a marked trend of decreased 

VGLUT1 expression (Figure 3.4.16c). 
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Figure 3.4.16 NEX-Cre;fl/fl animals show a decrease in VGLUT1 expression in the striatum. 
Cortical (a), cerebellar (b) and striatal (c) tissue from NEX-Cre;fl/fl and control mice was lysed and 

subjected to immunoblotting analysis with an antibody against VGLUT1. Blots were quantified with 

the ImageJ software and intensity normalized to loading control (pan 14-3-3). Values are 

expressed relative to first NEX-Cre sample. Data represent mean ± SEM (ANOVA, Bonferronis 

Multiple Comparison test). 

The striatum is a brain area that integrates input from different areas to regulate motor 

behavior. This integration depends heavily upon dopaminergic neurons. To determine if 

dopaminergic neurons were affected by the down-regulation of VGLUT1, I looked at DAT 

and TH, two important proteins in dopaminergic regulation. By immunoblotting analysis I 

found DAT to be significantly up-regulated in the striatum of NEX-Cre;fl/fl mice (Figure 
3.4.17).  
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Figure 3.4.17 NEX-Cre;fl/fl mice show an increase in DAT expression in the striatum. Striatal 

tissue from NEX-Cre;fl/fl and control mice was lysed and subjected to immunoblotting analysis with 

antibodies against DAT (a) and TH (b). Blots were quantified with the ImageJ software and 

intensity normalized to loading control (pan 14-3-3). Values are expressed relative to first NEX-Cre 

sample. Data represent mean ± SEM (ANOVA, Bonferronis Multiple Comparison test, *p<0.05). 

In cooperation with Dr. Lars Tatenhorst I conducted HPLC analysis of dopamine and 

metabolite levels in the striatum of 2 months old NEX-Cre conditional knockout mice. 

Here, we could show that extracellular dopamine was significantly upregulated in the 

striatum of NEX-Cre;fl/fl mice (Figure 3.4.18).  

  
Figure 3.4.18 NEX-Cre;fl/fl mice show an increase of dopamine in the striatum. Striatal tissue 

from NEX-Cre (N=5), FBXO7 fl/fl (N=6) and NEX-Cre;fl/fl (N=10) mice was subjected to HPLC 

analysis for dopamine (a), DOPAC (b) and HVA (c). Metabolism is shown as ratio of HVA and 

DOPAC to dopamine (d).  NEX-Cre N=5, FBXO7 fl/fl N=6, NEX-Cre;fl/fl N=10. Data represent 
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mean ± SEM (ANOVA, Bonferronis Multiple Comparison test, *p<0.05, ***p<0.001). HPLC 

measurements conducted by Dr. Lars Tatenhorst. 

The tight interplay I saw between FBXO7 and PI31 in the FBXO7 full knockout mouse 

model was further confirmed in the NEX-Cre mice, where I observed a significant down-

regulation of PI31 in the cortex of NEX-Cre;fl/fl mice compared to control (Figure 3.4.19). 

 
Figure 3.4.19 NEX-Cre;fl/fl mice show a decrease in PI31 levels.  Cortical tissue lysates from 

NEX-Cre;fl/fl (N=4) and NEX-Cre (N=4) mice were subjected to immunoblotting with an anti-PI31 

antibody. FBXO7 served as control for FBXO7 knockout and γ-tubulin as loading control. Data 

represent mean ± SEM (t-test, *p<0.05, **p<0.01). 

In the conventional FBXO7 knockout mouse, I could not find a difference in oxidized 

protein levels (Figure 3.3.19), but these mice were analyzed only at P18. I therefore 

wanted to see if a longer exposure to FBXO7 depletion caused protein oxidation. I 

analyzed the NEX-Cre;fl/fl mice at 2 months of age, but also here I found no indication of 

increased protein oxidation (Figure 3.4.20). 

  
Figure 3.4.20 NEX-Cre;fl/fl mice show no difference in oxidized protein levels in cortex.  
Cortical tissue from NEX-Cre;fl/fl and control mice was lysed and exposed to 2,4-

dinitrophenylhydrazine (DNPH)(left panel) or control (right panel). The resulting derivatization of 

carbonyl groups in the protein side chains to 2,4-dinitrophenylhydrazone (DNP-hydrazone) was 

detected by an anti-DNP antibody. γ-tubulin served as loading control. 
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The hyperactivity and stereotypic movement pattern seen in the behavioral experiments 

are consistent with a heightened dopaminergic tone in the striatum. Therefore, the 

increased level of dopamine in the striatum and the corresponding up-regulation of DAT in 

the NEX-Cre;fl/fl mice I show here could underlie the behavioral phenotype of these mice. 

In addition I show a decrease in VGLUT1 expression in striatum of NEX-Cre;fl/fl mice 

pointing to pyramidal neuron dysfunction. 

 

3.5 TH-Cre;fl/fl mice show progressive motor decline and loss of 
dopamine in the striatum 

PARK15 patients show Parkinsonian symptoms including bradykinesia and rigidity in 

addition to a response to L-dopa treatment (Table A1). In our conventional mouse model, 

we did not see any difference in dopamine levels and the animals died too young to notice 

if there was a progressive decline in motor function. We therefore set out to model the 

Parkinsonian phenotype of PARK15 patients by conditionally knocking out FBXO7 in 

catecholaminergic neurons. The previously described FBXO7 fl/fl mice were bred with a 

mouse line, where Cre recombinase expression is controlled by the tyrosine hydroxylase 

(TH) promoter (Savitt et al., 2005). The TH-Cre line was kept heterozygous and mice bred 

to homozygosity for FBXO7 fl/fl. Mice were genotyped for the presence of the loxp2 allele, 

the Cre gene and wild type FBXO7 to confirm correct breeding (Figure 3.5.1).  

 

Figure 3.5.1 Verification of TH-cre;fl/fl mouse line. DNA was 

extracted from tail tissue of progeny from TH-Cre+; FBXO7fl/+ x 

FBXO7 fl/fl breedings and subjected to PCR analysis with primers 

directed against Cre, FBXO7 wild type and the FBXO7/loxp2 

cassette.  

3.5.1 TH-Cre;fl/fl mice show abnormal weight-regulation and hind limb clasping 

To characterize the TH-Cre+; FBXO7 fl/fl (TH-Cre;fl/fl) mice, I subjected the animals 

together with age-matched TH-Cre+;FBXO7 wt (TH-Cre) control groups to a row of 

behavioral analysis at 2, 6 and 12 months of age. At 2 months TH-Cre;fl/fl mice were 

phenotypically indistinguishable from TH-Cre mice. When a new cohort of animals was 

tested at 6 months however, they showed a significant increase in weight (Figure 3.5.2). 

Since an increase in weight could interfere with motor tests, only ten animals from each 

group with comparable weights were included in statistical analysis for all tests at 6 

months. Up until 6 months of age no animals died in any of the test cohorts, however from 
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6 until 12 months 6 TH-Cre;fl/fl mice were either found dead in their cage or sacrificed due 

to infections (Table 3.5.1).  

Table 3.5.1 Reason for sacrifice of TH-Cre mice. Mice used for behavioral analysis were 

monitored over the course of 6 months and cause of death noted.  

Animal Genotype Reason for sacrifice Age of death 

412 TH-Cre;fl/fl Found dead 10 months 

1870 TH-Cre;fl/fl Inflamed penis 7 months 

1872 TH-Cre;fl/fl Inflamed penis 10 months 

1873 TH-Cre;fl/fl Found dead 11 months 

2129 TH-Cre;fl/fl Found dead 12 months 

515 TH-Cre;fl/fl Inflamed anus 8 months 

521 TH-Cre Heart murmur 9 months 

 
This resulted in the 12 month old cohort being reduced to 9 TH-Cre;fl/fl animals and 13 

controls. When their bodyweight was measured again at 12 months, I found that the TH-

Cre;fl/fl mice were divided into two groups, one with lower and one with higher body 

weight (Figure 3.5.2). These groups however, performed comparable on all tests, so for 

statistical analysis the results were pooled.  

  
Figure 3.5.2 TH-Cre;fl/fl mice show increased weight at 6 months and are either over- or 

underweight at 12 months of age. TH-Cre and TH-Cre;fl/fl mice were weighed at 2, 6 and 12 

months. At 6 months the heavier TH-Cre;fl/fl and the lighter TH-Cre mice were excluded from the 

statistical analysis. N(2 months)=15,9, N(6 months)=16,15, N(6 months, corrected)=11,10, N(12 

months)=16,9 for TH-Cre and TH-Cre;fl/fl respectively. Data represent mean ± SEM (t-test, 

**p<0.01). 

 

Dopamine is also involved in controlling reward response upon feeding (Hajnal et al., 

2004). I therefore wanted to see if the weight decrease seen in some animals was due to 

a lack of reward stimulation by food intake. I gave the mice the choice of regular water or 

sucrose-supplemented water, but found that the TH-Cre;fl/fl mice preferred the sucrose as 

much as the controls did (Figure 3.5.3).  
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Figure 3.5.3 TH-Cre;fl/fl mice are not anhedonic at 2 months of age. 
TH-Cre (N=7) and TH-Cre;fl/fl (N=9) mice were given the choice of 

water with or without 2% sucrose added. Bottles were weighed for four 

consecutive days after three days acclimatization. Ratio of sucrose-

supplemented water to total water consumption is shown. Data 

represent mean ± SEM (t-test). 

 

At two months of age, no sign of hind limb clasping was present (Figure 3.5.4), but at six 

months a few TH-Cre;fl/fl mice starting showing a clasping phenotype.  In the 12 months 

old mice, I observed a significant increase in their hind limb clasping indicating 

neurological damage. 
 

 
Figure 3.5.4 TH-Cre;fl/fl mice show hind limb clasping at 12 months of age. TH-Cre and TH-

Cre;fl/fl mice were subjected to the tail suspension test for 10 seconds with three repetitions 30 

seconds apart and scored for their hind limb clasping from 0 (normal) to 3 (severe). A 

representative picture of hind limb clasping at 6 months is shown. N(2 months)=15,9, N(6 months, 

corrected)=11,10, N(12 months)=16,9 for TH-Cre and TH-Cre;fl/fl respectively. Data represent 

mean ± SEM (Mann-Whitney non-parametric t-test, ***p<0.001). 

With these results, I conclude that food intake and/or metabolism is disturbed in the adult 

TH-Cre;fl/fl mice. In addition they show hind limb clasping as a sign of progressive 

neurological dysfunction. 

3.5.2 TH-Cre;fl/fl mice show normal olfaction and anxiety phenotype  

Increase or decrease in anxiety can affect several motor tests, so I analyzed the time 

spent in different zones in an open field and found no difference between the genotypes 

at either age (Figure 3.5.5a). This result was also corroborated by the elevated plus maze 

test for the mice at 6 months, where the TH-Cre;fl/fl mice spent an equal amount of time in 

the closed arms versus the open arms of the maze as compared to control mice (Figure 
3.5.5b). Also the distance traveled in the elevated plus maze was comparable between 

genotypes (Figure 3.5.5c). This indicates that TH-Cre;fl/fl mice show normal anxiety 

levels.   

0.0

0.2

0.4

0.6

0.8

1.0
0.

3 
%

 s
uc

ro
se

/
to

ta
l w

at
er

2 months

TH-Cre TH-Cre;
fl/fl



Results   

 

82 

 
Figure 3.5.5 TH-Cre;fl/fl mice show no anxiety phenotype. Mice were placed in an open field of 

60 cm diameter for 7 minutes and their ambulation pattern recorded with the viewer software at 2, 

6 and 12 months of age (a). N(2 months)=15,9, N(6 months, corrected)=11,10, N(12 months)=16,9 

for TH-Cre and TH-Cre;fl/fl respectively. Data represent mean ± SEM (t-test). Mice were placed in 

an elevated plus maze with two open and two closed arms at 6 months of age (b,c). Time spent in 

open arms versus time spent in all arms (b) and total travel length (c) was measured. N(6 months, 

corrected)=11,10 for TH-Cre and TH-Cre;fl/fl, respectively. Data represent mean ± SEM (t-test). 

Loss of olfaction is one of the earliest symptoms seen in Parkinson's disease, hence I 

assessed the TH-Cre;fl/fl mouse model for smell sensitivity. I performed a buried treat 

retrieval test, but found no difference between homozygous and control mice at neither of 

the ages tested (Figure 3.5.6). 

 
Figure 3.5.6 TH-Cre;fl/fl mice show no loss of olfaction. Mice of 2 (a), 6 (b) and 12 months (c) 

of age were placed in a cage where a chocolate chip was buried underneath soft bedding. Latency 

to find treat was measured in two trials after two days of training. The third trial was a control where 

chocolate chip was placed on top of bedding. N(2 months)=15,9, N(6 months, corrected)=11,10, 

N(12 months)=16,9 for TH-Cre and TH-Cre;fl/fl, respectively. Data represent mean ± SEM (t-test). 
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3.5.3 TH-Cre;fl/fl mice display a progressive loss of motor function 

To assess overall ambulation, mice were placed in the open field for 7 minutes (Figure 
3.5.7). At 2 months and 6 months, they all showed similar activity levels as they traveled 

comparable distances in the open field test. However, at 12 months the ambulation was 

severely reduced as the TH-Cre;fl/fl mice traveled only half the distance compared to 

controls.  
Figure 3.5.7 TH-Cre;fl/fl mice move less at 
12 months of age. TH-Cre and TH-Cre;fl/fl 

mice of 2 (N=15,9), 6 (N=11,10) and 12 

(N=16,9) months of age were placed in an 

open field of 60 cm diameter for 7 minutes 

and recorded with the Viewer software. 

Distance traveled was measured.  Data 

represent mean ± SEM (t-test, ***p<0.001). 

To further evaluate the motor function of TH-Cre;fl/fl mice, I subjected them to a 

coordination test. Here the mice had to balance across a beam and I measured their time 

to cross as well as their coordination while doing so. At 2 and 6 months of age the TH-

Cre;fl/fl mice performed as well as their controls (Figure 3.5.8a-d), but at 12 months it 

became clear that they spent significantly more time crossing the beam than the TH-Cre 

control mice (Figure 3.5.8e). The coordination, however, remained normal also for the 12 

months old mice (Figure 3.5.8f). 

 
Figure 3.5.8 TH-Cre;fl/fl mice show progressively slower movements. Mice of 2 months (a,b), 

6 months (c,d) or 12 months (e,f) of age were made to cross a beam of 80 cm length and either 6 

or 12 mm width. Time to cross the beam (a,c,e) as well as coordination score (b,d,f), 7=normal, 0= 

not able to cross, was measured. N(2 months)=15,9, N(6 months, corrected)=11,10, N(12 
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months)=16,9 for TH-Cre and TH-Cre;fl/fl respectively. Data represent mean ± SEM (Mann-

Whitney non-parametric t-test for score, t-test for time, ***p<0.001). 

A more challenging way of measuring motor performance is the rotarod test. Here, the 

mice are placed on an accelerating barrel and latency to fall measured. In this test, I 

measured both their initial performance as well as their motor learning. At 2 months of age 

TH-Cre;fl/fl mice showed the same motor performance as their controls, but at 6 months 

there was already a significant difference in their ability to stay on the rod (Figure 3.5.9 
a,b). At twelve months this difference was further increased and even after three test days 

the TH-Cre;fl/fl could not reach their former performance level, while the wild types 

performed as well at 12 months as they did at 6 months (Figure 3.5.9 c). 

 

 
Figure 3.5.9 TH-Cre;fl/fl mice show progressive loss of motor function. Mice of 2 months (a), 

6 months (b) and 12 months (c) of age were tested on an accelerating rotarod going from 4-40 rpm 

in 5 minutes. At 2 and 12 months mice were tested 3 times a day for 3 days, while at 6 months they 

were tested three times with 3 and 24 hours in between trials. N(2 months)=15,9, N(6 months, 

corrected)=11,10, N(12 months)=16,9 for TH-Cre and TH-Cre;fl/fl respectively. Data represent 

mean ± SEM (t-test, *p<0.05, **p<0.01, ***p<0.001). 

Since both the rotarod and the balance beam are general tests of motor function, I wanted 

to specifically assess the possible dopaminergic dysfunction through the pole test (Ogawa 

et al., 1985). Here, mice have to turn and climb down a pole challenging the fine 

movement adjustments regulated by the basal ganglia. In this test, I found no difference at 

6 months of age, but a significant decline at 12 months of age, suggesting that we indeed 

have a progressive basal ganglia disturbance (Figure 3.5.10).  

Figure 3.5.10 TH-Cre;fl/fl mice show 

progressive loss of fine motor control. 
Mice of 6 (a) and 12 months (b) of age 

were placed on a 50 cm tall pole head up 

and time to turn around and descend pole 

was measured. N(6 months, corrected) 

=11,10, N(12 months)=16,9 for TH-Cre 

and TH-Cre;fl/fl respectively. Data represent mean ± SEM (t-test, **p<0.01). 
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Recently several systems for testing of gait parametrics has been developed, amongst 

them the DigiGait system (Kale et al., 2004). This system allows for fine measurements 

that can identify specific gait parameters associated with Parkinson's disease (Amende et 

al., 2005). We established collaboration with Camille Lancelin in the Marquardt lab to take 

advantage of this technique. She let 8 months old animals run on the DigiGait at standard 

speed and with a more challenging elevated protocol. She then analyzed the results and 

found differences between several of the parameters (Table 3.5.2). Notably the fore limbs 

of the TH-Cre;fl/fl mice showed a significant decrease in stride, brake and stance, while 

the hind limbs showed a decrease in stride, propel and stance as well as an increased 

paw drag. 

Table 3.5.2 TH-Cre;fl/fl mice show alteration in gait parameters at 8 months of age. TH-

Cre;fl/fl (N=7) and age-matched TH-Cre (N=7) controls were subjected to Digigait analysis at 8 

months of age. Data is shown as mean and p-value (t-test, *p<0.05, **p<0.01). Experiment 

conducted by Dr. Camille Lancelin. 

 

MIDLINE.DISTANCE (cm)  0.003 -2.914 -3.348
BRAKE    (s)  0.007 0.048 0.038
STANCE    (s) 0.012 0.142 0.126
OVERLAP.DISTANCE (cm)  0.028 1.419 1.873
X.BRAKE.STRIDE  (%)  0.044 19.329 16.771
STRIDE    (s) 0.049 0.252 0.229
STRIDE.LENGTH  (cm) 0.057 6.300 5.736
STRIDE.FREQUENCY (steps/s) 0.063 4.079 4.457
X.PROPEL.STANCE (%) 0.073 65.743 69.636
X.BRAKE.STANCE  (%) 0.073 34.257 30.364
PAW.AREA.VAR  (cm^2)  0.086 0.016 0.020
ABS.AXIS.DISTANCE (cm)  0.138 0.911 0.866
NORM.STRIDE.LENGTH (real#)  0.167 0.553 0.488
MIN.DA.DT   (cm^2/s)  0.168 -4.522 -4.989
ABS.PAW.ANGLE  (deg) 0.235 10.493 7.557
NORM.STANCE.WIDTH (real#)  0.282 0.438 0.416
STANCE.SWING  (real#) 0.293 1.307 1.221
PROPEL    (s)  0.319 0.093 0.088
SWING    (s)  0.333 0.110 0.103
PAW.AREA  (cm^2)  0.363 0.234 0.247
STANCE.WIDTH.CV (CV%)  0.370 16.394 13.229
X.SWING.STRIDE  (%) 0.386 43.571 44.929
X.STANCE.STRIDE  (%)  0.390 56.429 55.079
FORELIMB.WEIGHT.SUPPORT 0.401 0.699 0.679
STANCE.WIDTH.VAR (cm)  0.411 0.289 0.236
STRIDE.LENGTH.CV (CV%)  0.415 12.004 13.201
STEP.ANGLE.CV  (CV%)  0.429 23.609 19.264
X.PROPEL.STRIDE  (%)  0.457 37.086 38.300
MAX.DA.DT  (cm^2/s)  0.538 15.366 16.048
STEP.ANGLE  (deg) 0.561 57.500 60.800
PAW.ANGLE.VAR  (deg) 0.643 8.721 9.379
STEP.ANGLE.VAR  (deg)  0.690 12.330 11.543
SWING.DURATION.CV (CV%)  0.729 14.884 14.144
ATAXIA.COEFF  (real#)  0.772 0.404 0.418
PAW.ANGLE  (deg) 0.805 0.264 -0.300
STANCE.WIDTH  (cm) 0.805 1.771 1.800
STANCE.FACTOR  (real#)  0.808 1.003 1.009
GAIT.SYMMETRY  (real#)  0.853 1.004 1.003
STRIDE.LENGTH.VAR (cm) 0.940 0.748 0.754
PPP   (cm)  0.975 0.506 0.508

TH-Cre<TH-Cre;fl/fl
TH-Cre>TH-Cre;fl/fl

Parameter p-value
Mean

**
**

*
*

*

Fore limbs Hind limbs
Unit Parameter p-value

Mean
Unit

PAW.DRAG   (real#)  0.005 -5.160 -6.605
OVERLAP.DISTANCE (cm)  0.028 1.419 1.873
PAW.WIDTH  (cm) 0.028 0.780 0.711
PAW.AREA  (cm^2)  0.030 0.584 0.531
MAX.DA.DT  (cm^2/s)  0.036 48.283 42.121
STANCE    (s) 0.042 0.156 0.145
PROPEL    (s)  0.047 0.121 0.103
STRIDE    (s) 0.047 0.252 0.229
STRIDE.LENGTH  (cm) 0.053 6.307 5.743
NORM.STANCE.WIDTH (real#)  0.061 0.694 0.646
STEP.ANGLE.CV  (CV%)  0.070 22.617 33.913
STRIDE.FREQUENCY (steps/s) 0.083 4.086 4.443
STEP.ANGLE  (deg) 0.084 56.657 47.100
SWING    (s)  0.111 0.097 0.085
STANCE.WIDTH.CV (CV%)  0.148 5.950 7.143
PAW.LENGTH  (cm) 0.152 1.458 1.391
STEP.ANGLE.VAR  (deg)  0.160 12.530 14.960
NORM.STRIDE.LENGTH (real#)  0.166 0.554 0.489
X.BRAKE.STRIDE  (%)  0.171 13.650 18.014
STANCE.WIDTH.VAR (cm)  0.173 0.167 0.200
PAW.WIDTH.VAR  (cm) 0.174 0.051 0.044
X.BRAKE.STANCE  (%) 0.191 22.129 28.836
X.PROPEL.STANCE (%) 0.191 77.871 71.164
BRAKE    (s)  0.272 0.034 0.042
PAW.LENGTH.VAR  (cm) 0.290 0.124 0.111
ABS.AXIS.DISTANCE (cm)  0.323 1.461 1.390
X.SHARED.STANCE (%)  0.336 33.736 37.736
STANCE.SWING  (real#) 0.344 1.636 1.743
X.PROPEL.STRIDE  (%)  0.381 48.193 45.114
X.STANCE.STRIDE  (%) 0.415 61.864 63.129
X.SWING.STRIDE  (%)  0.415 38.136 36.871
STRIDE.LENGTH.CV (CV%)  0.484 12.006 13.413
SHARED.STANCE  (s) 0.603 0.052 0.055
SFI   (cm) 0.669 -8.795 -8.650
TFI   (cm) 0.674 -8.799 -8.661
MIDLINE.DISTANCE (cm)  0.689 1.529 1.656
SWING.DURATION.CV (CV%)  0.695 11.966 12.931
PAW.ANGLE.VAR  (deg) 0.698 4.164 4.343
TAU.PROPULSION  (real#)  0.707 0.161 0.148
STANCE.FACTOR  (real#)  0.753 1.033 1.024
MIN.DA.DT   (cm^2/s)  0.756 -8.642 -8.517
PFI   (cm) 0.797 -11.781 -12.079
ABS.PAW.ANGLE  (deg) 0.798 15.471 15.121
GAIT.SYMMETRY  (real#)  0.853 1.004 1.003
PAW.ANGLE   (deg) 0.928 0.929 0.807
ATAXIA.COEFF  (real#)  0.940 0.411 0.416
PPP    (cm)  0.975 0.506 0.508
STRIDE.LENGTH.VAR (cm) 0.993 0.759 0.760
PAW.AREA.VAR  (cm^2)  1.000 0.036 0.036
STANCE.WIDTH  (cm) 1.000 2.800 2.800

**
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*
*

*
*
*
*
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Taken together, this battery of tests reveal that the TH-Cre;fl/fl mice show normal motor 

function during development, but start to show decline around 6 months of age. The finer 

gait parameters show a slower, stiffer gait that results in difficulties with more challenging 

motor tasks. At 12 months of age the symptoms have progressed so far that there is a 

general decrease in ambulation reminiscent of the bradykinesia and rigidity found in 

PARK15 patients. 

3.5.4 TH-Cre;fl/fl mice have reduced amount of dopamine in the striatum   

Parkinson’s disease is caused by a degeneration of the dopaminergic neurons in the 

substantia nigra with a resulting loss of dopaminergic input into the striatum. To determine 

if the progressive motor symptoms seen in TH-Cre;fl/fl mice stem from loss of 

dopaminergic neurons, I conducted stereological counting of TH positive neurons in the 

substantia nigra of 2 and 12 months old mice. Both total number of TH positive neurons in 

the substantia nigra and the ratio of TH positive neurons to Nissl positive cells were 

quantified, but no difference was found between the two groups neither at 2 months nor at 

12 months (Figure 3.5.11). 

 

 
Figure 3.5.11 TH-Cre;fl/fl mice show no loss of neurons in substantia nigra. TH-Cre;fl/fl (N=3) 

and age-matched TH-Cre (N=3) controls of 2 (a,b) and 12 (c,d) months of age were trans-cardially 

perfused and brains fixed before coronal cryo-sectioning of 50 um thick sections. Every fifth section 

was then subjected to immunohistochemistry with an anti-TH antibody followed by Nissl staining 

with thioacetate. Counting of TH- and Nissl-positive neurons were performed with the 

Stereoinvestigator software and total number of TH positive cells (a,c) as well as ratio of TH to 

Nissl positive cells (b,d) counted. Representative pictures of midbrain of 12 months old animals (e). 

Scale bars equal 500  µm, inset 20  µm. Data represent mean ± SEM (t-test). 
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Although cell bodies did not seem to be lost in the TH-Cre;fl/fl mice, axonal loss could still 

occur. I therefore stained striatal sections from 12 months old mice and controls with an 

antibody against TH. I found no visual difference between knockout mice and controls 

(Figure 3.5.12).  
 
Figure 3.5.12 TH-Cre;fl/fl mice show little or 

no striatal terminal loss. TH-Cre;fl/fl and age-

matched controls of 12 (c,d) months of age were 

trans-cardially perfused and brains fixed before 

coronal cryo-sectioning of 50  µm thick sections. 

Every fifth section was then subjected to 

immunohistochemistry with an anti-TH antibody. 

Representative picture is shown. 

 
To confirm this, I also lysed striatal tissue from 2 and 12 months old mice and performed 

immunoblotting analysis with antibodies against TH and the dopamine transporter (DAT) 

(Figure 3.5.13 and 14). Here, I found no difference in TH and DAT levels in 2 months old 

mice (Figure 3.5.13a,b).  

  
Figure 3.5.13 TH-Cre;fl/fl mice show normal expression of TH and DAT protein levels in the 
striatum at 2 months of age. Tissue from TH-Cre;fl/fl and age-matched controls of 2 months of 

age was lysed and subjected to SDS-PAGE analysis followed by immunoblotting with anti-TH or 

anti-DAT . Blots were quantified with the ImageJ software and intensity normalized to loading 
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control (pan 14-3-3). Values are expressed relative to first TH-Cre sample.  Data represent mean ± 

SEM (t-test, *p<0.05). 

In 12 months old mice however, DAT was significantly down-regulated (Figure 3.5.14b). 

This was not the result of a glutamatergic neuron imbalance as seen in the NEX-Cre 

animals as VGLUT1 levels were normal (Figure 3.5.14c).  

 

   
Figure 3.5.14 TH-Cre;fl/fl mice show downregulation of DAT protein levels in the striatum at 
12 months of age. Tissue from TH-Cre;fl/fl and age-matched controls of 12 months of age was 

lysed and subjected to SDS-PAGE analysis followed by immunoblotting with anti-TH (a), anti-DAT 

(b) or anti-VGLUT1 (c) antibodies. Blots were quantified with the ImageJ software and intensity 

normalized to loading control (pan 14-3-3). Values are expressed relative to first TH-Cre sample. 

Data represent mean ± SEM (t-test, *p<0.05). 
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As the functional consequence of dopaminergic neuron loss is a loss of dopamine to the 

striatum, I prepared samples for HPLC analysis, which were then conducted by Dr. Lars 

Tatenhorst (Figure 3.5.15). We here found that in both 2 months and 12 months old 

animals the level of dopamine in the striatum was approximately half of the control level. 

This was accompanied by a slight decrease in the metabolite DOPAC level, but no 

change in HVA, leading to an increased metabolism. 

 
Figure 3.5.15 TH-Cre;fl/fl mice show downregulation of dopamine levels in the striatum. 

Striatal tissue from TH-Cre;fl/fl (N=9,12) and age-matched TH-Cre (N=7,15) controls of 2 and 12 

months of age respectively was subjected to HPLC analysis for dopamine (a), DOPAC (b) and 

HVA (c). Metabolism is shown as ratio of HVA and DOPAC to dopamine (d). Data represent mean 

± SEM (t-test, *p<0.05, ***p<0.001). 

Collectively, the TH-Cre;fl/fl mice display no change in dopaminergic cells in the 

substantia nigra, but a reduced level of striatal dopamine already at 2 months. The low 

dopamine level persists until 12 months of age at which point it is accompanied by a 

reduction in dopamine transporter levels in the striatum.  

3.5.5 TH-Cre;fl/fl mice show astrogliosis in the midbrain   

In both the conventional as well as the NEX-Cre; FBXO7 fl/fl line, we found an increased 

response of glial cells. This accompanied by the fact that inflammation has been found in 

several PD mouse models (Kato et al., 2003; Kett et al., 2015) prompted us to look into 

the inflammatory response in the TH-Cre;fl/fl brain. I stained histological sections of 

midbrains from TH-Cre;fl/fl animals and controls at 12 months of age with antibodies 

against astrocytes (GFAP), microglia (Iba1) and activated microglia (Mac3) (Figure 
3.5.16). I co-stained with anti-TH antibodies and used this to delineate the substantia 

nigra and ventral tegmental area. I then quantified the area of GFAP/Iba1/Mac3 positive 

staining inside the TH-marked area. I found an increase in GFAP levels in TH-Cre;fl/fl 

animals compared to control (Figure 3.5.16a,b), but no difference in Iba1 or Mac3 

staining (Figure 3.5.16c,d).  
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Figure 3.5.16 TH-Cre;fl/fl animals show increased GFAP positive area in the midbrain. TH-

Cre;fl/fl (N=3) and age-matched TH-Cre (N=3) controls of 12 months of age were trans-cardially 

perfused and brains were fixed prior to coronal cryo-sectioning of 50 µm thick sections. Every fifth 

section was then subjected to immunohistochemistry with a TH, GFAP, Iba1 or Mac3 antibody. 

GFAP- (b), Iba1- (c) or Mac3-positive (d) area within TH-positive area was quantified. 

Representative pictures of midbrain of 12 months old mice stained for TH and GFAP is shown (a). 

Scale bars equal 500 µm, inset 20 µm. Data represent mean ± SEM (t-test, ***p<0.001). 

These results show that for all our FBXO7 knockout mouse lines, we have an up-

regulation of astrocytes in the vicinity of the affected neurons. In the TH-Cre;fl/fl mice, 

however, this is not accompanied by reactive microglia at 12 months of age. 
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"What matters is not the facts 
 but how you discover and think about them." 

~ Richard Dawkins, "Words of Wisdom" 
 
 

4 Discussion 

Parkinson’s disease, a debilitating motor disease, is a tremendous burden on patients and 

their families, which also implies large socio-economic costs. In recent years, mechanisms 

underlying this disease have been heavily investigated and multiple hypotheses 

suggested. The ultimate goal of Parkinson’s disease research would be to unify the 

current hypotheses and find common pathways for potential drug intervention. In the 

search of these pathways, genetic models have been of great help, but most models 

failed to faithfully recapitulate all the features of Parkinson’s disease. A newly discovered 

PARK gene, FBXO7, causes Parkinsonian-Pyramidal Syndrome, but the disease 

mechanism remains unknown. 

In this study, I have characterized the conventional FBXO7 knockout mouse as a novel 

mouse model for Parkinsonian-Pyramidal Syndrome. I have shown that the mice 

recapitulated many of the features associated with early onset Parkinson’s disease such 

as motor impairment and premature death. In addition, I have investigated the impact of 

loss of FBXO7 on neuronal function by characterizing two newly generated conditional 

FBXO7 knockout mouse lines. I have shown that loss of FBXO7 in the mouse forebrain 

triggered loss of motor control reminiscent of the pyramidal symptoms seen in PARK15 

patients. In contrast, I have shown that a loss of FBXO7 in catecholaminergic neurons 

caused progressive loss of motor function with gait defects, slowness of movements and 

reduced ambulation closely modeling Parkinsonian symptoms.  

At the cellular level, I have demonstrated that loss of FBXO7 in catecholaminergic 

neurons led to reduced dopamine levels in the striatum accompanied by reactive 

astrogliosis of the substantia nigra, but without corresponding cell loss. Conversely, I have 

shown that knockout of FBXO7 in pyramidal neurons of the forebrain resulted in a 

reduction of VGLUT1 levels in the striatum and an increase in striatal dopamine levels.  

Biochemically, I have shown that a functional consequence of FBXO7 knockdown in 

cultured cells was a reduction in proteasomal activity similar to the one seen upon knock-

down of a proteasomal core subunit. Taken together, I have established mouse models 

that recapitulate features seen in PARK15 patients where the symptoms are distinguished 

and restricted to neuronal subtypes involved in the disease. My research revealed FBXO7 

as a crucial player in cellular health and pointed to a role in proteasomal regulation. 
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4.1 FBXO7 as a proteasomal regulator 

Impairment in proteasomal function has long been thought to be one of the mechanisms 

underlying Parkinson’s disease (McNaught et al., 2001). FBXO7’s relationship with the 

proteasomal interactor PI31 prompted us to further investigate FBXO7’s role in 

proteasomal regulation. As David Brockelt established PSMA2, a proteasomal core 

subunit, as a novel FBXO7 interaction partner, I first showed that knockdown of PSMA2 in 

HEK293T cells led to about 20% reduction in proteasome activity. I then showed a similar 

reduction of proteasomal activity upon FBXO7 knockdown. As PI31 closely interacts with 

FBXO7 and has been reported to regulate the proteasome, I knocked it down in a similar 

manner, but saw no change in proteasomal activity. The latter is not surprising given that 

other groups have previously not been able to recapitulate PI31’s inhibitory or activating 

effects on the mammalian proteasome in vivo (Li et al., 2014; Zaiss et al., 2002). It is 

possible that PI31 only acts as a regulator of spatially confined proteasomes, or that it 

depends heavily on other proteins, so that its knockdown in itself is not enough to show 

an effect on global proteasome function (Li et al., 2014). However, our results establish 

that FBXO7 itself has a profound effect on proteasome function. It is therefore plausible 

that if PI31 acts on the proteasome in vivo, it could be mediated through FBXO7. In this 

context, I could show that PI31 associated with PSMA2 through FBXO7 in a co-

immunoprecipitation assay. It is of course possible that PI31 simultaneously interacts with 

other proteasomal subunits, but in our assay it conveyed no modulatory effects on its 

own. FBXO7 and PI31 have been shown to interact tightly, and in light of our finding that 

PI31 in heavily downregulated in the FBXO7 knockout mouse brain, it is tempting to 

speculate that FBXO7 stabilizes PI31 protein levels. This stabilization is likely to occur 

primarily through a direct interaction rather than a ubiquitination as PI31 and FBXO7 

dimerize in vitro (Kirk et al., 2008). The same study suggested that PI31 could regulate 

FBXO7 by interfering with its homodimerization. Other SCF-type E3 ligases require 

homodimerization to execute their ligase function. For example, disruption of Cdc4-SCF 

dimerization leads to a decrease in the ubiquitin chain elongation by this ligase (Orlicky et 

al., 2003; Tang et al., 2007). As we did not observe a change in proteasomal activity upon 

PI31 knockdown, this mechanism is probably not important for FBXO7’s function on the 

proteasome. In addition, FBXO7 can form multimers and is thus able to both dimerize with 

PI31 and itself (Shang et al., 2014). It has previously been suggested that these two 

proteins are present in different cellular compartments (Kirk et al., 2008), but our pull-

down assays show that at least a subset are localized to the same proteasomes, so this 

cannot explain the lack of effect upon PI31 knockdown. 
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David Brockelt could also show that FBXO7 likely ubiquitinated PSMA2 through a K63-

linked ubiquitination mechanism. I could further show that knockdown of PI31 leads to an 

increase in FBXO7-mediated ubiquitination of PSMA2. We hypothesized that FBXO7-

mediated ubiquitination enhances proteasomal assembly by functional modification of 

PSMA2. PI31 has previously been thought to mediate proteasomal assembly in vitro 

(Cho-Park and Steller, 2013). Here, PI31 binds to and inhibits the individual 20S core 

subunits, but upon close proximity of the 19S cap subunit, PI31 then binds to 19S 

chaperones and facilitate binding of the cap to the core. This hypothesis could explain 

why PI31 functions as a proteasomal activator in Drosophila melanogaster (Bader et al., 

2011). Its interaction partner there, nutcracker, is however only a partial homologue of 

FBXO7 and might not have a similar function to the mammalian FBXO7. We found the 

Ubl domain of FBXO7 to be essential for its interaction with PSMA2 and this domain is not 

shared by PI31. Therefore, it is possible that in mammalian cells FBXO7 has a more 

important role in proteasomal regulation than PI31. Taken together, we have established 

a role for FBXO7 as an important proteasomal regulator, which is independent of its 

interaction with PI31. 

In my master thesis, I showed that knockdown of FBXO7 led to mitochondrial 

fragmentation in hippocampal neurons. Given FBXO7’s interaction with parkin and PINK1, 

there are indications that FBXO7 plays a role in mitochondrial quality control (Burchell et 

al., 2013). Mitochondria and proteasomes are interdependent cellular control organelles 

and a dysfunction in one system might trigger dysfunction in the other. Mitochondrial 

defects and an increase in reactive oxygen species have been found to result in an 

increase in proteasomal disassembly (Livnat-Levanon et al., 2014). Conversely, 

proteasomal inhibition can impair mitochondrial homeostasis and turnover (Sullivan et al., 

2004). In our mouse models, we saw no indication of increased oxidative stress, but 

further investigation of the mitochondrial health in FBXO7 knockout neurons is required. It 

will inevitably be difficult to prove which cellular mechanism is the chicken and which is 

the egg in this case, but FBXO7 emerges as a crucial player in mitochondrial as well as 

proteasomal control and may provide a link between these heavily interconnected cellular 

compartments.  

 

4.2 Systemic loss of FBXO7 is detrimental to the organism 

Through the generation of an FBXO7 conventional knockout mouse, I have recapitulated 

the features of early onset Parkinson’s disease in a rodent model. I could show that the 

homozygous knockout mice die prematurely and are characterized by a loss of motor 
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function. Phenotypic characterization revealed a marked reduction in body and brain size 

in addition to well-pronounced muscle weakness. It has previously been suggested that 

FBXO7 is involved in hematopoesis and a partial knockout mouse was shown to have a 

reduced red blood cell count (Randle et al., 2015). It is therefore conceivable that our 

knockout mouse also suffers from anemia and this could contribute to the premature 

death. In addition, FBXO7’s ubiquitous expression suggests that it is involved in cellular 

functions throughout the body. Mitochondrial and proteasomal function as well as cell 

cycle regulation are not neuron-specific processes and dysfunction in either pathway 

could contribute to cell dysfunction in multiple organs. The FBXO7 knockout pups usually 

die around P21, which is the weaning time. Dysphagia has been shown to be a common 

comorbidity in PARK15 patients (Yalcin-Cakmakli et al., 2014), and the general muscle 

weakness in the homozygous animals could make it hard to tackle the adjustment to solid 

food. The cause of death for the FBXO7 knockout mice is therefore hard to determine and 

could be caused by defects outside of, as well as inside the nervous system. 

The muscle weakness and the kyphosis seen in the FBXO7 knockout mice are strongly 

reminiscent of the phenotype seen in mice, in which FBXO7 is knocked out in myelinating 

cells (data not shown). It has previously been shown that FBXO7 is strongly expressed in 

white matter (Zhang et al., 2014) and these symptoms suggest that glial involvement is 

important to the phenotype of the conventional knockout mouse. Also in a PARK15 

patient, white matter lesions were observed upon brain scans (Lohmann et al., 2015). In 

addition to possible glial involvement and denervation of muscles, the muscle fibers 

themselves are heavily dependent upon an intact mitochondrial and proteasomal 

machinery. Although proteasome inhibition by MG132 has been shown to protect skeletal 

muscles from atrophy (Caron et al., 2011; Jamart et al., 2011), this could also be 

attributed to a disturbance in, for instance, the inflammatory response (Kitajima et al., 

2014). Upon conditional knockdown of the proteasomal subunit Rpt3 in motor neurons or 

muscle cells, a progressive motor deterioration or a reduction in muscle strength and 

premature death was observed respectively (Kitajima et al., 2014; Tashiro et al., 2012). 

Additionally, it has been shown that expression of the mitochondrial fission machinery in 

muscle leads to atrophy and fission inhibition can have a corresponding protective 

function (Romanello et al., 2010). In my master thesis, I could show fragmented 

mitochondria in hippocampal and cerebellar granule cultured neurons, and it is therefore 

feasible that this phenotype also occurs in muscle fibers, contributing to the weakness 

seen in the FBXO7 -/- mice.  The slight hyperactivity and stereotypic jumping seen in the 

P18 FBXO7 -/- mice are similar to the phenotype seen in NEX-Cre;fl/fl mice at this age. 

This suggests that also in the systemic knockout, pyramidal neurons are heavily affected.  
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In P18 FBXO7 knockout mice, we did not observe a change in striatal dopamine levels. 

This could either be because it is too early for dopaminergic defects to show, or there are 

compensatory mechanisms at play. Given that the two month-old TH-Cre;fl/fl mice 

showed a reduction in striatal dopamine, while NEX-Cre;fl/fl animals at the same age 

show an increase, it could also be that these effects equalized one another in the young 

FBXO7 knockout mice. 

We also saw increased apoptosis in cortical neurons of the conventional knockout. This 

corresponded nicely with patient data showing general brain atrophy in some PARK15 

patients (Paisan-Ruiz et al., 2010). Although proteasome dysfunction might not be the 

only mechanism by which loss of FBXO7 contributes to apoptosis, it is interesting to note 

that severe neurodegeneration was observed upon selective disruption of 26S 

proteasome function in mouse forebrain or tyrosine hydroxylase positive neurons (Bedford 

et al., 2008). I could not show any substantial loss of either TH-positive cell bodies in the 

substantia nigra or terminal markers in the striatum of knockout mice at P18. Since no 

pathological data is available from the PARK15 patients, it is hard to say whether they 

suffer from a specific loss of dopaminergic neurons. The loss of presynaptic dopaminergic 

function as seen in the CIT-SPECT of two patients does not necessarily indicate a loss of 

cell bodies (Di Fonzo et al., 2009; Hanagasi et al., 2007).  

Taken together, our conventional FBXO7 knockout mouse model replicates cardinal 

features of the PARK15 patients, but is not sufficient to reveal neuron-specific pathology. 

 

4.3 Modeling the pyramidal syndrome seen in PARK15 patients 

The PARK15 syndrome is characterized by both pyramidal and Parkinsonian symptoms. 

In most patients the Parkinsonian symptoms dominate, but in the first described Iranian 

kindred all patients show pyramidal signs as their first symptoms (Shojaee et al., 2008). 

Only the most severely affected individuals show Parkinsonian symptoms like tremor and 

rigidity. Pyramidal signs stem from lesions in the upper motor neurons and comprise 

among others hyperreflexia, Babinskis sign, spasticity and loss of motor control. With our 

research, we have modeled these symptoms by creating a conditional NEX-Cre FBXO7 

knockout mouse (NEX-Cre;fl/fl), in which FBXO7 was mainly deleted in the excitatory 

neurons of the cortex and hippocampus. With a wide array of behavioral tests, I have 

shown that this model displays loss of motor control as well as a multitude of stereotypic 

behaviors.  
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Upon initial contact with the homozygous NEX-Cre;fl/fl mice, they started jumping and 

biting down on the grid in a spastic manner. Their muscles tensed so much; it was hard to 

keep them still. This was accompanied by a strong clasping in all limbs. In addition, it was 

clear that on both the rotarod and the balance beam the mice had problems moving their 

limbs in fluent motions. They moved in a jerky fashion, had problems holding and gripping 

on to surfaces. This is strongly reminiscent of the abnormal reflexes and spasticity seen in 

PARK15 patients and indicates a loss of function in upper motor neurons. Their spasticity 

eventually made it difficult to properly grab and eat food, while their hyperactivity probably 

caused increased metabolic demand. This starts showing from two months on as the mice 

did not gain any weight and became progressively weaker. We chose to terminate 

experiments at four months of age as the mice showed signs of pain.  

Other prominent features of the NEX-Cre;fl/fl mice were hyperactivity and stereotypic 

behavior. Stereotypic behavior can be measured in rodents in a multitude of tests and 

here I could show that these mice showed a high degree of circling and scratching, but no 

increase in marble burying, grooming or climbing. In the Y-maze, the mice kept a strict 

pattern of arm entry and in a novel object recognition test the mice sniffed one object, 

then the other, then back to the first, and kept going in this pattern for several minutes. In 

the light avoidance test, I could show that the mice stayed in either compartment and 

changed location less frequently than their controls. This was also reflected in the 

elevated plus maze, where the NEX-Cre;fl/fl animals would stay in the open arm for a 

prolonged period of time. Taken together, these results suggest perseverance in 

locomotor behavior. The mice had difficulties ending a behavior once it had been initiated. 

This could also explain why grooming is not exaggerated, as this behavior might transition 

to higher scratching frequency. The same is true for the marble burying where the sniffing 

and circling pattern would overcome the burying behavior. These symptoms of strong 

stereotypies, perseverative locomotor behavior and hyperactivity are strongly reminiscent 

of the symptoms seen in a knockout mouse model of the dopamine transporter (DAT). 

These DAT knockout mice also present with hyperactivity and perseverative locomotor 

behavior (Fox et al., 2013). In these mice, the symptoms are seen in connection with 

increased and prolonged extracellular levels of dopamine in the striatum due to 

dysfunctional dopamine reuptake (Giros et al., 1996). Interestingly, a recently described 

PARK15 patient showed obsessive-compulsive traits (Conedera et al., 2016). In addition, 

several PARK15 patients present with non-specified cognitive dysfunction (Table A1). 

The stereotypic behavioral pattern prompted me to investigate the level of dopamine in 

the striatum of the NEX-Cre;fl/fl animals, and we could indeed show that the dopamine 

levels were significantly higher than in the striatum of control mice. This was accompanied 
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by a slight up-regulation of the dopamine transporter, excluding re-uptake malfunction as 

a possible cause. As to how the glutamatergic afferents from the cortex influence 

dopaminergic output in the striatum is still under debate. Some studies have shown that 

extracellular glutamate can inhibit dopamine release in the striatum (Avshalumov et al., 

2003; Zhang and Sulzer, 2003). Interestingly, I found a decrease in the vesicular 

glutamate transporter 1 (VGLUT1) transporter in the striatum, but not in cortex or 

cerebellum. As we saw increased apoptosis in the conventional knockout, we cannot rule 

out that cell death of glutamatergic neurons in the cortex contributes to the reduction in 

excitatory innervations in the striatum. However, my histological analysis shows no gross 

morphological disturbance in the NEX-Cre;fl/fl cortex.  

On this basis, we hypothesized that the excitatory neurons in the cortex failed to release 

glutamate causing a lifted inhibition on the dopaminergic terminals and an increased 

dopaminergic tone in the striatum. As this does not seem to be caused by cell loss, we 

initiated a collaboration with Dr. Jeong-Seop Rhee and he conducted electrophysiological 

experiments on autaptic excitatory hippocampal neurons from FBXO7 knockout and 

control mice. In these experiments, he could show that the excitatory post-synaptic 

current (EPSC) was reduced along with a reduction in the readily releasable vesicle pool 

and decrease in release probability (data not shown). Interestingly, he could also show 

that the miniature EPSC frequency was decreased, while the amplitude remained normal. 

This electrophysiological phenotype was also shown in a mouse model with impaired 

glutamatergic transmission, the ProSAP1/Shank2−/− mice (Schmeisser et al., 2012). 

These mice, like ours, present with hyperactivity and stereotypies, further strengthening 

our hypothesis that the NEX-Cre;fl/fl mice might suffer from an decrease in striatal 

glutamate transmission.  

 

4.4 Loss of FBXO7 in catecholaminergic neurons 

As Parkinsonian-Pyramidal Syndrome encompasses only a minor subset of PD spectrum 

disorders, we wanted to isolate the symptoms that are related to sporadic PD. We 

therefore created an FBXO7 knockout mouse restricted to catecholaminergic neurons 

using the tyrosine hydroxylase (TH) promoter (TH-Cre;fl/fl). I could show with a series of 

behavioral tests that these mice had normal motor characteristics at two months of age, 

but became progressively more challenged from six to twelve months. In the rotarod test, I 

showed that there was minor impairment already at six months.  
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To further quantify motor disturbances in these mice, we initiated a collaboration with 

Camille Lancelin who determined, using DigiGait testing, that fine gait parameters were 

changed at eight months of age. Particularly interesting was the finding that both brake, 

stance and stride time decreased, in addition to shorter stride length and higher stride 

frequency. This is clearly reminiscent of an MPTP mouse model of PD that was tested 

with the same apparatus hinting at a similar functional loss in the two models (Amende et 

al., 2005).  

The loss of fine motor control progressed into a decrease in ambulation as well as inability 

to perform the rotarod task at twelve months of age. This suggests a progressive loss of 

motor function starting with gait disturbances and slowness of movements leading to a 

decrease in ambulation. It is unlike what we show in the NEX-Cre;fl/fl model, where 

discoordination and spasticity are pronounced phenotypes. The TH-Cre;fl/fl mice hence 

modeled rather bradykinesia and rigidity characteristic for PARK15 and sporadic PD 

patients.  

To monitor if the symptoms were correlated with a loss of dopaminergic innervation, I 

conducted stereological counting of neurons in the substantia nigra, but did not find any 

neuronal loss at either two or twelve months of age. However, when we measured the 

levels of dopamine in the striatum we found a significant down-regulation at twelve 

months of age as compared to control. Surprisingly, the levels were equally low at two 

months, a time point where no discernible motor symptoms were present. An explanation 

for this might be to find in PD patients themselves. It is estimated that symptoms of PD do 

not show until about 30% of dopaminergic neurons in the substantia nigra are lost 

(Fearnley and Lees, 1991; Greffard et al., 2006; Ma et al., 1997). Another study 

visualizing this phenomenon followed PD patients over 40 weeks (Fahn et al., 2004). 

Their motor symptoms were clearly getting worse while the dopamine level stayed the 

same. This suggests that onset and progression of motor symptoms are not linearly 

correlated with the loss of dopamine. The basal ganglia is a heavily interregulated system 

with many connections to other brain areas. Several compensatory mechanisms, both 

within and outside of the basal ganglia, have been suggested to account for the 

discrepancy in correlation between loss of dopamine and the emergence of motor 

symptoms (Bezard et al., 2003). Thus we hypothesize that in our TH-Cre;fl/fl model, a 

prolonged deficiency in dopaminergic tone in the striatum leads to gradual change of 

basal ganglia connectivity and progressive motor dysfunction. One indication of the 

change in striatal connectivity over time is the normal levels of DAT in the TH-Cre;fl/fl 

striatum at two months compared to the decrease seen at twelve months of age. 
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In addition to the loss of motor function, I observed that TH-Cre;fl/fl mice were significantly 

overweight at six months of age. As dopamine is involved in several brain areas related to 

feeding behavior, it was reasonable to assume that the reduction in dopamine also 

affected the TH-Cre;fl/fl food consumption. Although dopamine is classically associated 

with reward behavior, I demonstrated that the sucrose preference of the TH-Cre;fl/fl mice 

was preserved. This was also the case for totally dopamine-deprived animals, suggesting 

that dopamine is not involved in the carbohydrate response to food (Cannon and Palmiter, 

2003). Olfaction also did not seem to be changed in the TH-Cre;fl/fl mice, indicating that 

loss of smell does not account for the abnormal feeding behavior. Normal eating behavior 

evokes dopamine release in the striatum, which can contribute to satiety feeling. This has 

been hypothesized to be partially independent of eating itself and can be triggered directly 

by nutrient sensing in the gut (de Araujo et al., 2012). Dopamine deficiency in both acute 

and genetic paradigms has been shown to inhibit feeding in mice (Sotak et al., 2005). 

However, a reduction in dopamine can lead to increased feeding behavior, as it is 

associated with obesity in rats (Geiger et al., 2009; Rada et al., 2010). In the TH-Cre;fl/fl 

mice, I observed that they have been eating more from two to three months of age. This 

was not quantified; as I did not single house them for the observation period. However, at 

six months most mice were significantly heavier than their controls suggesting that a 

failure of dopamine release upon eating caused increased feeding behavior. At twelve 

months some animals were still heavier than the controls, while some were skinnier. It is 

possible that beneath a certain threshold, dopamine release is not sufficient to sustain 

feeding behavior and aphagia sets in. This needs further exploration, as I did not correlate 

weight with dopamine content in the striatum. 

I observed that several animals got infections and lost weight after six months of age. This 

could be an indirect consequence of the previously mentioned obesity. Obesity in rodents 

and humans are correlated with a low-grade chronic inflammation in the adipose tissue 

and a heightened susceptibility to infections (Falagas and Kompoti, 2006). 

As the TH-promoter is expressed in all catecholaminergic neurons, we know that the nor-

adrenergic and adrenergic cells are also affected. Noradrenergic neurons in the brain are 

known to be involved in Parkinson's disease, and could contribute to motor symptoms 

(Delaville et al., 2011). Specifically, noradrenergic cells in the locus coeruleus (LC) are 

shown to be lost in sporadic PD patients, to an even greater extent than neurons in the 

substantia nigra (SN) (Zarow et al., 2003).  It has also been proposed that LC loss might 

precede loss in SN (Braak and Del Tredici, 2008). The dopamine β-hydroxylase knockout 

mice that lack noradrenalin and adrenalin altogether, show severe motor symptoms, 

which can be attributed to the loss of noradrenalin centrally, not peripherally 
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(Rommelfanger et al., 2007). In this study, Rommelfanger et al. also showed that MPTP 

treatment does not exacerbate motor symptoms in these mice, although it triggers an 

acute loss of 80% of the striatal dopamine. Taken together, the evidence so far suggests 

that a loss of both noradrenalin and dopamine in the brain of Parkinson's patients leads to 

the characteristic motor symptoms. We have not investigated the noradrenergic 

involvement in the brain of our TH-Cre;fl/fl mice, but given that loss of FBXO7 potentially 

triggers dysfunction in all neurons investigated, it is conceivable to assume that 

noradrenergic neurons also are affected. As recent treatment strategies explore 

therapeutics targeting both these systems (Espay et al., 2014), it will be interesting to see 

how they are affected in our mice. The TH-Cre;fl/fl model might provide an excellent 

opportunity to investigate the interplay between these systems, and test therapeutic 

agents.  

Another striking finding in all mouse models is the presence of reactive astrogliosis. Most 

evidence from PD patients suggests a role for microglia in chronic brain inflammation 

where they contribute to dopaminergic neuron degeneration in the midbrain (Przedborski, 

2007). However, in the TH-Cre;fl/fl mice, I found no up-regulation of either normal or 

activated microglia as Iba1 and Mac3 staining appeared comparable to control. 

Astrocytes, however, are upregulated in all models, despite a clear loss of neurons. There 

is an on-going debate whether immune response is damaging or actually protective for 

neurons. Astrogliosis accompanies dead or damaged cells in both the neurotoxic (MPTP) 

(Kato et al., 2003) and the ATP13a2 knockout mouse models (Kett et al., 2015), while 

astrocytes are also suggested to serve a protective role in PD and precede neuronal loss 

(Saura et al., 2003; Sortwell et al., 2000). This is one possible explanation for the limited 

neuronal loss we saw in our conditional FBXO7 knockout mice.  

Another aspect of the immune response is FBXO7’s involvement in NF- κB signaling. It 

has been shown that FBXO7 can ubiquitinate cIAP1 and TRAF2 as to lower the NF- κB 

response (Kuiken et al., 2012). With FBXO7 gone, it is possible that NF- κB signaling is 

increased in these mice. In glia, NF- κB is heavily involved in immune responses, while in 

neurons an increase in NF- κB signaling has been hypothesized to have neuroprotective 

effects against insults such as oxidative stress (Mattson et al., 1997). Hence, the slight 

increase in apoptosis in the conventional knockouts might be partially due to increased 

NF- κB signaling in microglia, while the conditional FBXO7 knockout mice might benefit 

from its neuroprotective role in neurons. This an interesting line of investigation that 

should be continued to shed further light on the immune system involvement in PARK15 

patients.  
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As Lewy bodies are a cardinal pathological feature of PD, David Brockelt stained midbrain 

sections from conventional FBXO7-/- mice for α-synuclein, but found no inclusions (data 

not shown). The lack of protein aggregates in all FBXO7-/- mouse brains correlates with 

the absence of such aggregates in brains of typical juvenile Parkinsonism patients 

(Poulopoulos et al., 2012) and is therefore not surprising.  

 

4.5 Loss of FBXO7 causes neuronal dysfunction 

Loss of FBXO7 in both conditional knockouts caused neuronal dysfunction. In light of the 

electrophysiological findings in the conventional knockout mice, it is tempting to speculate 

that synaptic dysfunction is responsible. The failure of release seen in excitatory neurons 

might be transferable to dopaminergic neurons. The release mechanism of dopamine is 

less characterized than the excitatory/inhibitory release, but many of the main features are 

shared. A question that definitely warrants further investigation is whether we are looking 

at a reduced synapse number or a decreased function of individual synapses. Hence, 

morphological analyses of FBXO7-/- neurons will be important future experiments. 

E3 ubiquitin ligases have a wide variety of targets and each ligase can be involved in 

multiple pathways, as is the case for FBXO7. The cause for the apparent neuronal 

dysfunction seen in the FBXO7 knockout animals is hence difficult to elucidate. We have 

in this and previous studies shown that FBXO7 is involved in proteasomal regulation. A 

tight regulation of protein levels is crucial to all cells, and dysfunctional proteasomes can 

lead to an accumulation of damaged proteins. This might be more harmful in neurons as 

they are post-mitotic cells with a highly compartmentalized structure and high metabolic 

demand. It has for example been shown that neurons are more affected than astrocytes 

by proteasome inhibition in cultured rat cells (Dasuri et al., 2010). 

Proteasomes are present in the synapse and involved in the precise control of protein 

composition required for optimal synapse formation and function. Acute proteasomal 

inhibition at the synapse can lead to an increase in the readily releasable vesicle pool and 

cause a strengthening of synapses (Willeumier et al., 2006). The consequence of 

chronically reduced proteasomal activity however is not well studied. Interestingly, the 

proteasome has been implicated in proper axonal outgrowth through the APC complex, 

which is one of the first described E3 ligases (Konishi et al., 2004; Stegmuller et al., 

2006). It is therefore conceivable that impairment of proteasomal function through 

development can contribute to improper synapse formation. 
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In addition, FBXO7 has been implicated in mitochondrial quality control. Mitochondria are 

crucial for synaptic health, shown for instance by screens conducted in Drosophila 

melanogaster, in which mutations in mitochondrial proteins lead to synaptic dysfunction 

(Verstreken et al., 2005). Mitochondria mainly work at the synapse to regulate calcium 

levels (Rizzuto et al., 2004) or generate ATP, the latter probably most important for 

synaptic function  (Verstreken et al., 2005).  

In terms of proper synapse formation, the light chain of the microtubule associated protein 

1B (MAP1B-LC1) is another interesting interaction partner of FBXO7, identified by David 

Brockelt (data not shown). This protein has been implicated in axonal growth and 

guidance (Gonzalez-Billault et al., 2001; Takei et al., 2000) and can be modified by 

ubiquitination (Yonashiro et al., 2012). This interaction might be interesting to investigate 

in light of both axon outgrowth and proper synapse formation, but also in terms of axonal 

transport of for instance mitochondria. 

If FBXO7 causes changes in cellular functions common to all cells, it is an interesting 

question to answer why we observe such a specific symptom pattern in the PARK15 

patients. One important point is that FBXO7 has shown a particularly strong expression in 

the pyramidal neurons (Zhao et al., 2013) of the cerebral cortex. In addition we know that 

the dopaminergic and noradrenergic neurons are considered vulnerable due to their high 

metabolic load. Therefore these cells types might be especially compromised by loss of 

FBXO7 and contribute to the pyramidal and Parkinsonian symptoms we see in PARK15 

patients. The different expression of the symptoms in individual families might differ due to 

genotypic background and environmental factors. In addition, it is possible that the 

different mutations affect different aspects of FBXO7 function on top of rendering it 

destabilized. 

 

 

 

 



"What's next?" 
~ Martin Sheen as Josiah Bartlet, "The West Wing" 

 
 
 

5 Conclusions and perspectives 

In this study I have characterized three FBXO7 mouse models. At the systemic level, loss 

of FBXO7 is detrimental to mice, as they show growth retardation, weakness and 

premature death. When FBXO7 is absent from forebrain neurons and hippocampus, I find 

a behavioral phenotype consisting of severe spasticity, hyperactivity and perseverative 

locomotor behavior. In contrast, loss of FBXO7 from catecholaminergic neurons leads to a 

progressive loss of fine motor control that causes reduced ambulation. While there is a 

significant increase in apoptosis in the cortex of the FBXO7-/- mice, there is no obvious 

neuronal loss in either of the conditional FBXO7 lines. In the forebrain knockout, I show an 

increase in dopamine in the striatum associated with a down-regulation in the vesicular 

glutamate transporter level. In the chatecholaminergic knockout however, I find a 

decrease in the dopamine level in the striatum. Electrophysiological measurements show 

a decrease in excitatory post-synaptic currents in neurons from the knockout mice. At the 

molecular level, I also show that FBXO7 is involved in proteasomal regulation, while I 

have previously shown that it might have an impact on mitochondrial integrity. Based on 

these findings, I conclude that loss of FBXO7 in murine neurons leads to cellular 

dysfunction not necessarily accompanied by neuronal loss in vivo. The mechanisms 

underlying this dysfunction remain to be explored, but dysfunction of the proteasomal 

system, as well as mitochondrial disturbances are conceivable. My work laid the 

foundation for further investigation of the role of FBXO7 in synaptic function, in 

proteasomal regulation and mitochondrial integrity. Also, my characterization of two 

conditional FBXO7 mouse models will prove useful to study pathways involved in 

Parkinsonian-Pyramidal Syndrome and explore potential therapeutic targets.  
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Appendix  

Table A1 Mutations and clinical features described in PARK15 patients. Modified from Yalcin-

Cakmakli et. al (Yalcin-Cakmakli et al., 2014). 

Subject ID 
code, 
gender 

ANK-06, 
female 

ANK-07, male Family C, 
female 

Family C, 
female 

Family C, 
female 

Family D, 
male 

Reference (Yalcin-
Cakmakli et 
al., 2014) 

(Yalcin-
Cakmakli et al., 
2014) 

(Paisan-Ruiz 
et al., 2010) 

(Paisan-Ruiz 
et al., 2010) 

(Paisan-Ruiz 
et al., 2010) 

(Paisan-Ruiz 
et al., 2010) 

Country  Turkey Turkey Pakistan Pakistan Pakistan Turkey 

Mutations Homozygous 
p.Arg498* 

Homozygous 
p.Arg498* 

Homozygous 
p.Arg498* 

Homozygous 
p.Arg498* 

Homozygous 
p.Arg498* 

Homozygous 
p.Arg498* 

Mental 
retardation 

+ + na na na - 

Onset age 10 14 17 24 22 17 

Symptoms 
at onset 

Slowness, 
gait 
imbalance, 
falls 

Slowness, gait 
imbalance, falls 

Eye-opening 
difficulties, 
stiffness 

Slowness Slowness Walking 
difficulties, 
stiffness 

Parkinson 
signs 

Bradykinesia, 
rigidity, 
postural 
instability 

Bradykinesia, 
rigidity, postural 
instability, 
resting tremor 

Bradykinesia, 
rigidity, 
postural 
instability 

Bradykinesia, 
rigidity, 
postural 
instability 

Bradykinesia, 
rigidity, 
postural 
instability 

Bradykinesia, 
rigidity, 
postural 
instability 

Pyramidal 
signs 

- - + + + - 

Additional 
symptoms 

 Dysphagia, 
tongue 
protrusion 

Cataracts, 
eye-opening 
apraxia 

Dysphagia, 
cataracts 

Dysphagia, 
dystonia 

Marked 
response to 
nicotine 

Response 
to L-Dopa 

+ + + + + + 

Side-
effetcs of 
L-Dopa 

Dyskinesias, 
behavioral 
disturbances 

Dyskinesias, 
behavioral 
disturbances 

Dyskinesias, 
behavioral 
disturbances 

Dyskinesias Dyskinesias Dyskinesias, 
psychosis 

Brain MRI Normal Unspecific T2 
hyperintensities 

Normal General 
atrophy 

General 
atrophy 

Normal 
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Subject ID 
code, 
gender 

NIJ-002, 
female 

NIJ-006, 
male 

10 patients, 
8 males, 2 
females 

Y119, female Y186, female Individual III:2, 
female 

Reference (Di Fonzo et 
al., 2009) 

(Di Fonzo et 
al., 2009) 

(Shojaee et 
al., 2008) 

(Lin et al., 
2013) 

(Lin et al., 
2013) 

(Lohmann et al., 
2015) 

Country  Netherlands Netherlands Iran Taiwan Taiwan Turkey 

Mutations Comp. 
heterozygous 
c1144+1G>T 
pThr22Met 

Comp. 
heterozygous 
c1144+1G>T 
pThr22Met 

Homozygous 
p.Arg378Gly 

Heterozygous 
p.Ile87Thr 

Heterozygous 
p.Asp328Arg 

Homozygous 
p.Leu34Arg 

Mental 
retardation 

- - - - - - 

Onset age 18 19 Third decade 42 40 52 

Symptoms 
at onset 

Tremor, 
nervousness 

Social 
withdrawal, 
slowness 

Stiffness na na Tremors, cramps 

Parkinson 
signs 

Bradykinesia, 
rigidity, 
postural 
instability 

Bradykinesia, 
rigidity, 
postural 
instability, 
resting tremor 

Bradykinesia, 
rigidity (only 
3 worst 
patients) 

Bradykinesia, 
rigidity 

Bradykinesia, 
rigidity 

Bradykinesia, 
rigidity, resting 
tremor 

Pyramidal 
signs 

+ + ++ (all 
patients) 

na na - 

Additional 
symptoms 

Slow 
saccades, 
upgaze 
limitation 

Dysphagia, 
upgaze 
limitation 

Equinovarus 
deformity (all 
patients) 

na na Dysarthric 
speech, 
depression 

Response 
to L-Dopa 

+ + + (only one 
patient 
treated) 

+ + + 

Side-
effetcs of 
L-Dopa 

Dyskinesias, 
behavioral 
disturbances 

Dyskinesias, 
behavioral 
disturbances 

na Dyskinesias - Hallucinations 

Brain MRI Unremarkable Unremarkable Normal na na Mild cortical 
atrophy and 
periventritcular 
white amtter 
lesions 
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Subject ID code, 
gender 

Individual III:4, 
male 

BO-53, female BO-56, male Patient 1, female 

Reference (Lohmann et al., 
2015) 

(Di Fonzo et al., 
2009) 

(Di Fonzo et al., 
2009) 

(Conedera et al., 
2016) 

Country  Turkey Italy Italy Turkey 

Mutations Homozygous 
p.Leu34Arg 

Homozygous 
p.Arg498* 

Homozygous 
p.Arg498* 

Homozygous 
p.Arg498* 

Mental retardation - - - + 

Onset age Third decade 10 13 17 

Symptoms at 
onset 

Rapid eye 
movement sleep 
behavior disorder 

Arm tremor, stiffness, 
unsteadiness 

Hand tremor, 
slowness, 
unsteadiness 

Slowness, tremor 

Parkinson signs Bradykinesia, 
rigidity, postural 
instability, resting 
tremor 

Bradykinesia, rigidity, 
postural instability, 
resting tremor 

Bradykinesia, rigidity, 
postural instability, 
resting tremor 

Bradykinesia, 
rigidity, resting 
tremor 

Pyramidal signs - + + + 

Additional 
symptoms 

Dysarthria, panic 
attacks 

Dysphagia, dystonia, 
incontinence 

Dysphagia, dystonia, 
upgaze limitation 

Behavioral 
disturbances 

Response to L-
Dopa 

+ + + + 

Side-effetcs of L-
Dopa 

- Dyskinesias, 
behavioral 
disturbances 

Dyskinesias, 
behavioral 
disturbances 

Dyskinesias, 
behavioral 
disturbances 

Brain MRI Normal Unremarkable Unremarkable Diffuse atrophy 
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