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Chapter 1 
____________________________________________________________ 

Introduction 

 

Oilseed rape (Brassica napus L., AACC, 2n = 38) is an amphidiploid species belonging to 

the family Cruciferae (Brassicaceae). It is one of the most economically important and 

exhaustively studied oil and protein crops worldwide. The geographical origin of 

rapeseed is assumed to be in the European-Mediterranean region through the natural 

interspecific hybridization of the diploid species B. rapa (AA genome, 2n = 20) and B. 

oleracea (CC genome, 2n = 18) (Downey and Rimmer 1993).  

Among dicotyledonous species, oilseed rape (B. napus L.) and tobacco are model plants 

for microspore embryogenesis, i.e. the in vitro regeneration of plantlets from immature 

pollen grains. This applies all the more for oilseed rape because this species is closely 

related to the model plant Arabidopsis thaliana, which up to date belongs to the non-

responsive species with respect to microspore embryogenesis (Hosp et al. 2007). 

Among the Brassica species B. napus is considered to be the most embryogenic one 

(Ferrie 2003). 

During the past 20 years, microspore culture in oil seed rape has become increasingly 

important in commercial breeding programs for the fast development of completely 

homozygous doubled haploid lines. Nowadays, doubled haploid technology is 

considered as one of the most important techniques to achieve success in plant 

breeding programs since recessiveness recovery is accomplished, traits are rapidly 

fixed and selection efficiency is increased (Steward 2008; Ali et al. 2009). Besides that, 

double haploid populations are employed for the construction of linkage maps and QTL 

analysis (Yang et al. 2014). 
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Microspore culture efficiency depends on important factors, such as donor plant 

developmental stage and growth conditions, microspore developmental stage and 

pretreatment, microspore plating density, nutrient content of culture medium and 

culture conditions (Möllers and Iqbal 2009). Despite the progress achieved in improving 

the androgenesis lab protocols, the outcome of microspore culture has been proven to 

be still very much genotype-dependent (Ferrie and Möllers 2011). Although a number 

of studies aimed at identifying the genetic causes of the enormous differences in the 

microspore embryogenic potential and the capacity of the embryos to directly convert 

into plantlets of different oilseed rape genotypes, the genetic causes remain a mystery. 

A continuous improvement in the microspore culture technology is vital for a 

competitive generation of doubled haploid populations in commercial breeding 

programs. As pointed out earlier (Möllers and Iqbal 2009), there are still some 

shortages at three major steps of the whole process: (1) microspore embryogenic 

potential, (2) induced diploidization and (3) direct embryo to plant conversion. 

Identifying the genetic causes for mentioned limitations in microspore embryogenic 

potential and direct embryo to plant conversion could help to improve the system 

through marker assisted selection of genotypes with improved androgenic potential. It 

may also contribute by suggesting which medium components should be modified to 

achieve a better response. 

The objectives of the present work were  

(1) to develop a doubled haploid population from the cross of the highly embryogenic 

line DH4079 and the low embryogenic inbred line Express 617 

(2) to characterize the generated doubled haploid population for its microspore 

embryogenic potential, its direct embryo to plant conversion as well as for other 

relevant traits 

(3) to develop an Illumina SNP-chip based molecular marker map, to identify QTL for 

those traits and to localize candidate genes within QTL confidence intervals for the 

traits of interest, and 

(4) to study the gene expression pattern in low-temperature treated microspore 

derived embryos with the aim to identify differentially expressed genes which may be 

involved in the enhanced direct embryo to plant conversion after this treatment 
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2.1 Abstract 

Brassica napus L. has become a model plant for studying microspore embryogenesis. 

Nevertheless, the genetic causes of the enormous differences in the microspore 

embryogenic potential of oilseed rape genotypes remains unknown and a continuous 

enhancement in the microspore culture success is of great importance for the efficient 

generation of doubled haploid populations in commercial breeding programs. The 

present chapter summarizes the considerable research in microspore culture that has 

been accomplished in recent years and points at open questions that may be addressed 

in in upcoming studies. An enhancement for embryo yield has been achieved by the 

addition of substances with an effect on key processes during the embryo development, 

such as ethylene biosynthesis inhibitors (antioxidant activity), brassinosteroids 

(establishment and maintenance of the apical meristem) and bleomycin (cytoskeletal 

reorganization). Supplementary stressing factors (temperature, pH) in further research 

would enable the application of new efficient methods in oilseed rape microspore 

culture. A low frequency of spontaneous diploidization has been reported in microspore 

cultures of oilseed rape. The positive effect of colchicine as a mitotic inhibitor is widely 

recognized besides its enhancing effect on embryo yield. Nevertheless, its toxicity has 

led to the evaluation of possible synergistic effects of a combination of less harmful 

substances, for instance APM, pronamide, oryzalin and trifluralin. An efficient 

conversion of microspore derived embryos to plants is required for a successful 

generation of double haploid populations. A main factor involved in direct embryo to 

plant conversion is the proper development and maintenance of the apical meristem. 

The addition of brassinolide regulates such process and has been proven to be 

successful as well as the application of a cold treatment, which significantly increased 

direct embryo to plant conversion. The inheritance of microspore embryogenic 

potential and direct embryo to plant conversion is poorly understood in spite of the 

great effort conducted to identify genes involved in those traits. Several studies 

assessed the distorted marker segregation pattern in oilseed rape, concluding that a 

deviation in the expected Mendelian segregation ratio is not randomly distributed along 

the genome. Skewed marker segregation depends on the studied population and 

different genomic regions may cause distorted segregation, supporting the assumption 
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that such traits are polygenic. The study of gene expression profiles allowed the 

characterization of a large number of genes which showed an up- or down- regulation 

during the embryogenic process. Among those genes FUSCA3, LEC1, LEC2, BBM, WOX2 

and WOX9, ABSCISIC ACID INSENSITIVE3, CLE, MEE67, HSP70B exhibit a molecular 

activity strongly related to the ability of microspores to develop into embryos. The 

genetic basis of the direct embryo to plant conversion is still poorly understood but 

genes involved in the establishment of cell fate could influence plant development in 

vitro, for instance, ZLL, AGO1, CLV, WUS, WOX, CUC and SCL genes. The significant 

progress achieved by sequencing the oilseed rape genome and the availability of a large 

number of informative SNP-markers facilitates the future characterization of genes 

involved in microspore embryogenesis and direct embryo to plant conversion. 
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2.2 Introduction 

Among dicotyledonous species, oilseed rape (Brassica napus L.) and tobacco are model 

plants for microspore embryogenesis. This applies all the more for oilseed rape because 

this species is closely related to Arabidopsis thaliana, which up to date belongs to the 

non-responsive species with respect to microspore embryogenesis. More than five 

years have elapsed since the last review about microspore embryogenesis in oilseed 

rape has been published (Ferrie and Möllers 2011). During this period, important 

progress has been achieved by sequencing the genome of Brassica napus (Chalhoub et 

al. 2014) as well as of its direct diploid ancestor species Brassica rapa L. (Wang et al. 

2011) and Brassica oleracea (Liu et al. 2014). An Illumina SNP-chip with more than 

50.000 SNP-markers has been developed (Clarke et al. 2016) which for the first time 

allows the identification of physical marker positions in the sequenced genomes and 

thereby allows the direct comparison of linkage maps derived from crosses involving 

different genotypes. On the other hand, increasing performance in RNA sequencing 

technologies (Wang et al. 2009; Bojahr et al. 2016) enabled the analysis of differences in 

gene expression, which helped to identify candidate genes involved in microspore 

embryogenesis and direct embryo to plant conversion. Recently developed 

CRISPR/Cas9 technology (Barrangou and Doudna 2016) promises to provide a tool to 

specifically inactivate candidate genes and hence may help in proving their functions. 

The genetic cause for the enormous differences in the microspore embryogenic 

potential of different oilseed rape genotypes remains a mystery. The microspore 

embryogenic potential is defined as the number of microspore derived embryos 

produced from a certain number of microspores. A continuous improvement in the 

microspore culture technology is vital for a competitive generation of doubled haploid 

populations in commercial breeding programs. As pointed out earlier (Möllers and Iqbal 

2009), there are shortages at three major steps of the process: (1) microspore 

embryogenic potential, (2) induced diploidization and (3) direct embryo to plant 

conversion. Since the pioneering work of Lichter (1982; Lichter 1985; Gland et al. 1988) 

continuous improvements in different steps of the protocol has been achieved. This 

manuscript summarizes the progress accomplished with a focus on the past six years 

and intends to point at open questions that may be approached in future research. It 
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also complements recent reviews of Islam and Tuteja (2012) and Soriano et al. (2013) 

which are not specific for Brassica napus.  

2.3 Microspore embryogenic potential 

The NLN-medium Robert Lichter used in his microspore experiments is the basal 

medium of Nitsch and Nitsch (1967) which was developed for in vitro cultures of 

Plumbago indica. Lichter (1985) supplemented this basal medium with L-serine (100 

mg/l) and L-glutamine (800 mg/L) and some phytohormones. The original medium 

used by Lichter (1985) contains 125 mg/L magnesium sulphate, even though the 

frequently used NLN-medium of Duchefa (N0252; https://www.duchefa-

biochemie.com/product/details/number/ N0252) contains only 61 mg/L. From the 

published literature it is not clear, how much effort Lichter (1985) made to optimize the 

composition of the NLN-medium. The results of Gland et al. (1988) do not allow to 

conclude which of the nine different tested culture medium variants are more suitable 

for regeneration of a maximum number of embryos. Surprisingly, few studies were 

made to optimize the culture media composition for Brassica species. The fact that 

embryo yield was enhanced if the culture medium was replaced by fresh medium after a 

culture period of three days indicates that at this time the concentration of some of the 

minor medium constituents is limiting embryo regeneration (Hansen and Svinnset 

1993). However, the positive effect of replacing the culture medium after 24-48 h has 

also been explained by auto-toxic effects of freshly isolated microspores (Kott et al. 

1988b; Gu et al. 2003). In order to induce a sporophytic development of microspores, 

different stresses have been applied, which increased reactive oxygen species (ROS) 

production (Hoseini et al. 2014), an undesirable effect that could be overcome by the 

replacement of culture medium. 

 Leroux et al. (2009) reported that inhibition of ethylene biosynthesis in B. napus by 

increasing concentrations of cobalt chloride and aminoethoxyvinylglycine (AVG) led to 

the enhancement in embryo yield of 75 % and 50 % respectively, whereas addition of 

the ethylene precursor S-adenosyl-methionine or the ethylene-releasing agent 

ethephon decreased embryo yield. The use of silver nitrate as an ethylene inhibitor 

resulted in the improvement of anther and microspore responsiveness in B. juncea, B. 
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oleracea and B. rapa (Biddington et al. 1988; Dias and Martins 1999; Malik et al. 2001; 

Prem et al. 2005; Na et al. 2011; Kabir et al. 2013). Several authors included activated 

charcoal on Brassicas microspore culture protocols because of its ability to catch toxic 

compounds as ethylene (e.g. Gland et al. 1988; Mathias 1988; Lichter 1989; Ferrie 2003; 

Gu et al. 2004; Supena et al. 2006; Jiang et al. 2008; Prem et al. 2008; Takahira et al. 

2010). However, its inhibitory activity in microspore embryogenesis has also been 

observed (Yang et al. 2014). Activated charcoal can irreversibly adsorb a large range of 

substances, including vitamins, metal ions and plant growth regulators (Thomas 2008), 

reason why its effects on microspore culture are still unclear.  

In barley, increased concentration of the micronutrient copper sulphate in anther 

culture has improved the frequency of responding anthers and of regenerated green 

plantlets (Nuutila et al. 2000; Wojnarowiez et al. 2002; Jacquard et al. 2009). The 

positive effect of copper sulphate may rely on its ability to enhance microspore survival 

and synchronization of the first embryogenic division (Wojnarowiez et al. 2002), but 

this effect has not yet been investigated in Brassica microspore culture. 

Hormones are involved in every process of plant development. Nevertheless, their 

addition is omitted nowadays from current microspore culture protocols, reinforcing 

the commonly accepted knowledge that microspore embryogenesis in Brassica napus 

works as efficient without the addition of any phytohormone. However, a proper 

balance among growth regulators is required to trigger microspore embryogenesis (Zur 

et al. 2014). The use of brassinosteroids, important steroidal growth regulators, to 

enhance rapeseed microspore embryogenic potential has been studied by Ferrie et al. 

(2005). Two brassinosteroids, 24-epibrassinolide and brassinolide, were proved to 

increase up to twelve-fold and ten-fold embryogenesis in B. napus and B. juncea 

respectively, including recalcitrant oilseed rape cultivars. Such results were confirmed 

by Belmonte et al. (2010), who identified a two- to five-fold enhancement on 

microspore derived embryo production and better embryo quality, characterized by the 

development of zygotic-like shoot apical meristems, when cultures were treated with 

brassinolide, while the addition of the brassinolide biosynthesis inhibitor brassinazole 

substantially decreased embryo yield and promoted the formation of aberrant apical 

meristems. Ferrie et al. (2005) postulated the brassinolide protective effect on 

microspores to the initial high-temperature treatment since its activity against biotic 
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and abiotic stresses has already been suggested (Krishna 2003; Divi and Krishna 2009). 

Otherwise, brassinolide could have a positive influence on microspore culture due to its 

ability to modulate glutathione and ascorbate metabolism, shifting redox homeostasis 

from a reduced to an oxidized ratio during microspore culture process (Belmonte et al. 

2010) that favors embryo yield and apical meristem development (Belmonte et al. 

2006; Stasolla et al. 2008; Stasolla 2010). The enhanced microspore embryogenic 

potential effect of the exogenous addition of ascorbic acid and glutathione was studied 

by Hoseini et al. (2014). At a concentration of 10 mg/l of ascorbic acid, embryo yield in 

B. napus was almost doubled in contrast to control cultures. Ascorbic acid activity was 

increased in a combination treatment with 50 mg/l of α-Tocopherol, an organic 

compound from the Vitamin E family, or in conjunction with 10 mg/l of reduced 

glutathione. In B. campestris the induction of microspores in glutathione absence 

decreased embryo yield (Yang et al. 2014), suggesting a potential positive effect of 

glutathione in microspore embryogenesis.  

The effect of exogenous auxins on androgenesis of oilseed rape and other Brassica 

species has been shown to be detrimental and embryo yield is significantly decreased in 

cultures treated with 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid 

(NAA) and indole-3-acetic acid (IAA) (Ramesar-Fortner and Yeung 2006; Ardebili and 

Mehran 2011; Yang et al. 2014). Supporting these results, the addition of antiauxins has 

resulted in improved microspore embryogenesis. In B. juncea, microspores treated with 

20 µM of the antiauxin p-chlorophenoxyisobutyric acid (PCIB) showed an up to five-fold 

improved embryogenesis at a higher induction temperature of 35 °C in comparison to 

colchicine treated cultures (Agarwal et al. 2006).  Likewise, in B. rapa, 40 µM of PCIB 

increased the embryo yield by three- to six-fold over the controls (Zhang et al. 2011). 

The effect of PCIB was also studied in B. napus, in which a three- to four-fold higher 

embryo yield was obtained when microspores were incubated for 20 min in the 

presence of 3 and 4 mg/l of PCIB (Ahmadi et al. 2012). 

In contrast to auxins, exogenous cytokinins have shown to enhance androgenesis in 

Brassica species. Zhang et al. (2012) reported a significant increase of embryo yield in B. 

rapa when microspores of low and high responsive genotypes were cultured in the 

presence of minimal 6-benzylaminopurine (BA) concentrations (0.05-0.1 mg/l). At 

higher BA concentrations the embryo yield decreased. Similar observations were found 
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by Takahashi et al. (2012). The addition of 0.1 mg/l and 0.3 mg/l of BA enhance two- to 

twelve-fold embryo yield in five B. rapa subspecies. In two cultivars of B. campestris, the 

addition of BA (0.4 mg/l) and zeatin (0.2 mg/l) to microspore culture improved embryo 

yield(Yang et al. 2014). To some extent, a low auxin/cytokinin ratio seems to be 

required at the early stages of the androgenic process, but a shift in phytohormone 

balance during culture could be suitable for the proper development and maturation of 

embryos as observed in vivo and in vitro since the equilibrium among growth regulators 

has shown to be a major factor influencing microspore culture success, more than the 

actual concentration of individual hormones (Hays et al. 2001; Zur et al. 2014; Dubas et 

al. 2014; Zur et al. 2015). In another study of rapeseed, microspore embryogenic 

efficiency was improved by exogenous abscisic acid (ABA) at a concentration of 0.5 

mg/l for 12 h which enhanced embryo yield three-fold compared to untreated cultures 

and increased plantlet regeneration by 68 % (Ahmadi et al. 2014). In a recent 

publication, Dubas et al. (2013) detected an increase in endogenous ABA concentration 

as a consequence of heat treatment of microspores, underlining the importance of ABA 

on microspore embryogenesis, an issue that so far is poorly understood. 

Ahmadi et al. (2014) studied the effect of jasmonic acid (JA) and salicylic acid (SA) on 

microspore cultures of B. napus. 1.0 mg/l of JA and 0.2-0.5 mg/l of SA positively 

influenced microspore embryogenesis compared to control, when microspores were 

treated for 24 h and 6 h respectively.  

Embryogenesis induction in microspore culture is a stress-dependent process (Touraev 

et al. 1997) and besides enhancing embryo diploidization, anti-mitotic drugs act as 

stress factors triggering the sporophytic development of microspores since alteration of 

cytoskeleton homeostasis is considered of great significance for embryogenic success 

(Simmonds and Keller 1999). Colchicine is an antimicrotubular substance widely used 

in microspore culture protocols of Brassica species and is able to induce microspore 

embryogenesis without heat treatment (Zhao et al. 1996a), and since decades, its ability 

to enhance embryo yield has been recognized (Iqbal et al. 1994; Chen et al. 1994; Zaki 

and Dickinson 1995; Zhou et al. 2002a; Zhou et al. 2002b). In a range of 10 to 500 mg/l, 

colchicine is able to increase microspore embryogenesis when applied for 15 to 72 

hours. Colchicine was able to replace the heat shock (32 °C) required for the initiation of 

embryogenesis in B. napus. Using microspores of B. napus cv. Topas, Zhao et al. (1996) 
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induced microspore embryogenesis using the non-inductive temperature of 25 °C and 

treating the microspore cultures with 25 µM colchicine for 42 h followed by a dilution to 

12.5 µM with fresh medium. Klutschewski (2013) studied in detail the influence of 

colchicine in 17 oilseed rape genotypes, denoting that a treatment of 25 µM for 72 h of 

colchicine is able to significantly enhance embryogenesis compared to untreated 

cultures. More prolonged periods of colchicine treatment reduced embryo yields and 

increased the frequency of tetraploid plants. In the same study, the effect of 

amiprophos-methyl (APM) and pronamide, mitosis inhibitor substances, was evaluated 

and resulted in a decreased embryogenic potential in all genotypes compared to 

colchicine treatments. Reduction of embryo yield by the addition of pronamide and APM 

may be due their increased affinity to plant microtubules that could maintain 

microtubule destabilization for a longer period before being degraded. An enhancement 

of embryo yield related to the antibiotic and antimitotic bleomycin treatment in B. 

napus was reported by Zeng et al. (2010) and Ahmadi et al. (2012). Applying 0.1 to 0.2 

µg/ml bleomycin for 20 to 30 minutes increased embryo production in oilseed rape 

two- to four-fold (Zeng et al. 2010; Ahmadi et al. 2012). The biochemical effect of 

bleomycin on oilseed rape microspore culture is still unknown which encourages the 

application of the antibiotic in further studies. Cytochalasin D is a fungal metabolite, 

whose addition to induction medium was able to promote microspore embryogenesis in 

the absence of heat stress by promoting a cytoskeletal reorganization that resulted in 

symmetric divisions of B. napus microspores (Gervais et al. 2000). Similarly, n-Butanol 

is a compound that induces rearrangements in the microspore cytoskeleton facilitating 

symmetric divisions that led to embryogenesis (Fábián et al. 2015). The promoting role 

of n-butanol in microspore embryogenesis of maize, barley and wheat has been proved 

(Soriano et al. 2008; Földesiné Füredi et al. 2011; Földesiné Füredi et al. 2012; Castillo 

et al. 2014), but it has not yet been assessed in B. napus. 

Temperature is considered an important factor controlling the embryogenic 

development of microspores in B. napus (Custers et al. 1994). An initial 32°C heat 

treatment for 1-2 days followed by an incubation at lower temperature (25-28°C), has 

been routinely used as a stress promoter of microspore embryogenesis in Brassica 

species recalcitrant genotypes (Abraha et al. 2008; Zhang et al. 2012). Besides 

promoting a cytoskeleton reorganization (Gervais et al. 2000), temperature influences 

endogenous auxin distribution during microspore embryogenic development in B. 
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napus and its local accumulation resulting from heat treatment determines embryo 

polarity and the subsequent axiality of adult plants (Dubas et al. 2014), which is 

supported by the observation of an enhancement of microspore derived embryos with 

suspensor-like structures by high-temperature that specifies the apical-basal polarity of 

embryos (Supena et al. 2008). An initial heat treatment in combination with the 

addition of antiauxin substances in microspore cultures of B. napus may have a positive 

effect on embryo yield as has been observed in B. juncea (Agarwal et al. 2006). Prem et 

al. (2012) reported the successful embryogenesis of oilseed rape microspores at 18°C 

involving the formation of suspensor-like structures, which would be a new system to 

achieve microspore derived embryo formation in heat sensitive genotypes. 

Polyethylene glycol (PEG 4000) has shown to be a successful embryogenic inducer of 

microspores able to replace sucrose as osmoticum in B. napus cultures (Ilić-Grubor et al. 

1998). Ferrie and Keller (2007) reported a significant enhancement of embryogenesis 

in B. napus and other cruciferous species when microspores were cultivated in a low 

sucrose concentration medium with 25 % PEG 4000. In B. napus, induction medium 

supplemented with PEG generated microspore derived embryos at low temperatures 

(4, 15, or 18°C), suggesting that PEG treatment could replace the thermal stress of 32 °C 

for 2 days in the induction of embryogenesis. PEG treatment had other advantages: the 

embryos were morphologically similar to zygotic embryos and conversion into plants 

and chromosome doubling (without colchicine) were increased (Ferrie and Keller 

2007).  

Additional stressing factors denote important possibilities to be considered. The pH role 

in cell and tissue culture is widely recognized (George et al. 2008), but the influence in 

microspore culture has been poorly studied. Yuan et al. (2012) reported an increment 

on embryogenesis when pH was increased from 5.8 to 6.4 in recalcitrant B. oleracea 

genotypes. The combination of a high pH value and the addition of 2—(N-Morpholino) 

ethanesulfonic acid (MES) and the gum arabic improved embryo yield up to thirty-five-

fold in very low responsive genotypes. The effect of oligosaccharides was assessed by 

Lemonnier-Le Penhuizic et al. (2001) in B. oleracea. 30 min treatment of 34 µM of 

carrageenan oligosaccharides increased two- to three-fold embryogenesis in 

combination to heat stress. Further studies evaluating the effect of such stresses would 

make possible the application of new methods in oilseed rape microspore culture. 



13 
 

2.4 Induced diploidization 

A generally low frequency of spontaneous diploidization has been found in microspore 

cultures of oilseed rape. The application of colchicine or alternative inhibitors of mitotic 

spindle tubers like pronamide and APM to freshly isolated microspores during the heat 

stress treatment for a period of one to three days led to induced diploidization rates of 

70 to 90 % (for a review see Ferrie and Möllers 2011). To improve the efficiency of the 

DH technology in oilseed rape breeding programs, it is desirable to obtain reproducible 

diploidization rates of 90 % and higher. Increasing the inhibitor concentration did not 

enhance diploidization, and extending the treatment period beyond 72 hours increased 

frequency of tetraploid plantlets. Colchicine has also been shown to enhance 

microspore embryogenesis in B. napus and other species. As little as 25 µM or 10 mg/L 

colchicine is effective in inducing diploidization in microspores and in improving 

embryogenesis (Iqbal et al. 1994; Zhao et al. 1996a). It remained an open question, if 

even lower concentrations of colchicine than 25 µM are effective in diploidization and if 

the colchicine can be left in the medium without a washing step and without negative 

effects on microspore embryogenesis. Zhao et al. (1996) showed that washing steps to 

eliminate colchicine reduced embryo yield since cell injury and loss of induced cells is 

increased, whereas the dilution of the microspore solution to reduce colchicine 

concentration enhanced embryogenesis. Therefore, the addition of 10 mg/l of colchicine 

combined with a dilution of the microspore culture after two days avoiding 

centrifugation may lead to an improved embryo yield and enhanced diploidization 

frequency, as previously suggested by Zhao et al. (1996b). 

A combined application of different microtubule inhibitors, also in combination with 

physical treatments (high and low temperature, pressure, electric current) has not 

shown any synergistic effect on the diploidization of maize root tips (Häntzschel and 

Weber 2010). Also, no synergistic effect of a combination of colchicine, APM and 

pronamide on diploidization of 8 different crosses of Brassica napus microspores was 

reported by Klutschewski (2013). Addition of the solvent dimethyl sulfoxide (DMSO) in 

concentration of 1 % to the mannitol pretreatment medium resulted in an enhanced 

production of embryos and green plants in anther culture of Hordeum vulgare L. and 

Triticum aestivum L. (Echávarri and Cistué 2016). In contrast, addition of DMSO to the 

colchicine induction medium of Brassica napus did not lead to an enhanced 
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diploidization rate (Klutschewski 2013). Another aspect is that pronamide, APM and 

oryzalin have a much lower toxicity to mammals compared to colchicine (Häntzschel 

and Weber 2010).   

2.5 Direct embryo to plant conversion 

Rapid and highly efficient conversion of microspore derived embryos to plants is the 

most desirable practical result for the production of double haploid populations.  The 

ultimate goal would be that the embryos could be directly transferred to soil without 

any subculture on solid medium. However, direct embryo to plant conversion is 

genotype dependent and contrasting results under similar culture conditions were 

observed, which requires further improvement of the system (Ferrie and Möllers 2011). 

A feature that has proved to be of great significance for direct embryo to plant 

conversion is the appropriate formation and maintenance of the shoot apical meristem 

(Stasolla et al. 2008). Results of Ferrie et al. (2005) indicated that the addition of 

Brassinolide not only increased the production of microspore derived embryos but also 

enhanced direct embryo to plant conversion. This effect is correlated with the 

brassinolide-related enhanced expression of BnSTM and BnCLV1 genes, which are 

markers for the shoot apical meristem formation (Belmonte et al. 2010; Belmonte et al. 

2011). In agreement, the use of brassinazole, an inhibitor of brassinolide biosynthesis, 

caused the development of aberrant meristems and plant regeneration failed. 

Overexpression of AtDWF4, a brassinolide biosynthetic gene, resulted in overcoming 

the inhibitory effects on seedling germination of exogenous applied ABA (Divi and 

Krishna 2010). Belmonte et al. (2011) suggested that the correct embryo and apical 

meristem formation is related to the brassinolide capacity to modify purine and 

pyrimidine metabolism, since their role in the biosynthesis of polysaccharides, cofactors 

and cytokinins has been reported (Boldt and Zrenner 2003; Stasolla et al. 2003; Zrenner 

et al. 2006). Purine and pyrimidine biosynthesis is also correlated to ascorbate addition 

(Stasolla et al. 2001), which is needed for meristem reactivation during early phases of 

germination (Stasolla and Yeung 2006; Stasolla and Yeung 2007; Stasolla 2010). 

Brassinolide increases the recycling of ascorbate from oxidized forms (Belmonte et al. 

2010) and exogenous application of BSO (DL-buthionine-[S,R]- sulphoximine) enhances 
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ascorbate biosynthesis (Stasolla et al. 2008). Further research is required to more 

precisely identify the optimum concentration and microspore derived embryo 

developmental stage to achieve efficient embryo to plant conversion. 

It is not known if the retarded shoot formation of embryos may be an effect related to 

primary seed dormancy, which is observed also in Brassica species (Fei et al. 2007). 

Different types of seed treatments have shown to improve germination. Osmopriming of 

oilseed rape seeds has notably improved germination performance by modulating 

several cellular processes prior to germination (Kubala et al. 2015). The use of 

polyethylene glycol 6000 as a seed pre-treatment accelerated germination in B. napus 

(Pace et al. 2012) and other member of the Brassicacea family (e. g. Jett et al. 1996; 

Gallardo et al. 2001). 

Although the ability of microspore derived embryos to convert directly to plantlets is 

genotype depended, cold treatment significantly increased the direct embryo to plant 

conversion. Several studies have shown that direct plant regeneration can be 

dramatically improved by the cold treatment of embryos for a period of 3 to 28 days at 

1°C-10°C, while higher temperatures induced undesired secondary embryogenesis. (e. 

g. Coventry et al. 1988; Cegielska-Taras et al. 2002; Zhang et al. 2006). The influence of 

temperature and photoperiod on 13 oilseed rape genotypes was further assessed by 

Klutschewski (2013), who observed that the positive influence of cold treatment on 

direct embryo to plant conversion is improved when embryos are incubated under 

continuous darkness, suggesting an important role of photoperiod on direct embryo to 

plant conversion. Direct embryo to plant conversion enhancement by cold-treatment 

may arise from the fact that low temperatures induce cell dehydration (Chinnusamy et 

al. 2007), which is a fundamental step for embryo maturation (Fei et al. 2007). 

Accordingly, plantlet regeneration has been improved applying desiccation treatments 

(e. g. Kott and Beversdorf 1990; Zhang et al. 2006; Haddadi et al. 2008; Prem et al. 

2008) or promoting embryo desiccation by ABA as a treatment prior to direct embryo 

to plant conversion induction (Hansen 2000). Very early research has shown that in 

Brassicas, ABA treatment increased desiccation tolerance of microspore derived 

embryos (Senaratna et al. 1991) and viability of embryos is enlarged (Takahata et al. 

1993), suggesting their possible employment on the development of Brassica artificial 

seeds, that until now has been unsuccessful. 
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Changes in the nutrient content of the induction media has also led to a better 

performance on direct embryo to plant conversion. Tian et al. (2004) showed that 

plantlets derived from MS media with Ca2+ concentration increased to 900 mg/l and 

half the micro and macronutrient content showed a similar morphology as zygotic 

seedlings, and plant regeneration was improved. Calcium has shown to increase seed 

germination of several angiosperm species, and even to alleviate the inhibition of 

germination by acid and salinity stresses (Tobe et al. 2004; Shaikh et al. 2007; Liu et al. 

2011). Recent evidence indicate that the increase in cytosolic Ca2+ concentration 

neutralizes the negative effect of ABA, promoting seed germination in A. thaliana (Kong 

et al. 2015) while an excess of calcium is toxic and prevents seed germination (White 

and Broadley 2003). Oilseed rape is also known to have a comparatively high demand 

for the micronutrient boron (Zhang et al. 2014 and references therein). Although the 

NLN-medium contains with 10 mg/l (162 µM) relatively high concentrations of H3BO3, 

Sotiropoulos and Dimassi (2004) reported that shoot regeneration and shoot length 

was significantly enhanced in kiwifruit shoot cultures on medium with a twenty-fold 

higher boron concentration (2 mM). However, the effect of increased H3BO3 

concentration alone or in combination CaCl2 on the direct embryo to plant conversion 

has not yet been investigated in Brassica napus. 

2.6 Inheritance of microspore embryogenic potential, 

diploidization and direct embryo to plant conversion 

To identify genes involved in the microspore embryogenic pathway two different ways 

are followed. One way aims at investigating the inheritance of the genes determining 

the microspore embryogenic potential, and the other at comparing gene expression 

profiles of induced and non-induced microspores of genotypes with contrasting 

embryogenic response (Ferrie and Möllers 2011). In the first approach heterozygous F1 

plants derived from crosses between two different genotypes are used to develop 

segregating recombinant inbred line (RIL) or doubled haploid (DH) populations, which 

are then used to map QTL for microspore embryogenic potential and to study distorted 

marker segregation. Genomic regions with molecular markers significantly deviating 

from the expected 1:1 segregation are thought to be linked to genes involved either in 

microspore embryogenesis, diploidization efficiency or direct embryo to plant 
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conversion. In genetically characterized DH populations only genotypes are considered 

that finally regenerate to diploid fertile plantlets. Gamete genotypes that are not viable 

or embryogenic, which do not become diploid, and which do not readily form shoots are 

usually discarded. Hence, at each of those four steps skewed allele segregation may 

occur. Furthermore, skewed allele segregation may take place during the early stage of 

meiosis. This can only be detected if the BC1 plant generation is analyzed for marker 

allele segregation. Last, but not least, significantly distorted marker segregation can 

occur by chance. In the second approach, microspores from homozygous lines are 

cultivated under embryogenesis inducing (32 °C) and non-inducing conditions (20 °C) 

and differences in gene expression levels is used to identify candidate genes. Previous 

progress in comparing results from different populations was hampered by the lack of 

sequence informative markers and genome sequences (for a review see Ferrie and 

Möllers 2011). The availability of important Brassica genome sequences and of a large 

number of sequence informative SNP-markers now allows the comparison of physical 

positions of QTL and regions with distorted marker segregation across different 

populations. 

To identify genomic regions that carry genetic factors controlling embryogenic potential 

of isolated microspores of rapeseed, Ecke et al. (2015) analyzed marker segregations in 

a segregating population of haploid microspore derived embryos and a BC1 population 

from a cross between the winter oilseed rape cultivar Express 617 and the 

resynthesized line RS239. After map construction 230 of 481 markers (48 %) showed 

significantly distorted marker segregations, whereas this value, was with only 26 of the 

markers (12 %) much lower in the BC1. In total, 34 regions with skewed segregations 

were identified, which were distributed over all linkage groups with the exception of 

A03 and C04. Regions with multiple distorted markers and large Chi2 values and no 

corresponding region with distorted segregation in the BC1 were detected on linkage 

groups A02, A05, A07, A09, C02, C03 and C06. Intervarietal substitution lines from the 

same cross with Express 617 as recurrent parent, which carried donor segments 

covering genomic regions that had shown skewed segregations were used to 

characterize their microspore embryogenic potential. Seven lines were identified that 

showed a 4.1 to 40.4 fold increase in the microspore embryogenic potential in 

comparison to the low embryogenic parent Express 617. Those lines carried between 

one and eight donor segments; they may be useful in further studies to narrow the 
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genomic regions involved in embryogenesis and to finally identify relevant genes. In 

continuation of this study, Kampouridis et al. (2016a) analyzed marker segregation in 

populations of doubled haploid plantlets, of haploid and doubled haploid microspore-

derived embryos, and of BC1 plants, from the same cross, with the intention to identify 

regions showing distorted marker segregation specifically caused by genotypic 

differences in direct embryo to plant conversion. Among 26 regions with skewed 

marker segregation, only four regions on linkage groups C05, C07/C07a and two on C08 

showed skewed segregations only in the DEPC population. Furthermore, by comparing 

marker segregation between segregating populations of haploid and colchicine induced 

diploid microspore derived embryos and of BC1 plants from the same cross, 

Kampouridis et al. (2016b) identified genomic regions on linkage groups A03, A06, A07, 

A08, C01, C04 and C08 that carried genetic factors controlling the colchicine induced 

diploidization rate of isolated microspores. In a Brassica rapa doubled haploid 

population derived from the cross of the highly embryogenic cultivar Ho Mei and the 

low responding cultivar CR-Seiga, Kitashiba et al. (2016) identified physical regions 

with strongly skewed marker segregations on A05, A08 and A09 with the Ho Mei alleles 

being predominant. The most pronounced distorted segregation was found on A08. 

These three regions showed the expected Mendelian segregation ratio in a F2 

population, indicating that distorted segregations are not caused by differences in male 

gametogenesis but by differences in microspore embryogenesis. Analyzing a BC3F1 

population from the same cross, it was shown that the region on A08 had the strongest 

effect on embryo yield from microspores and an additive effect was observed in 

combination with the region of A05. In a related study in barley Bélanger et al. (2016) 

used a pooled genotyping-by-sequencing approach to estimate allelic frequencies and to 

examine segregation distortion in 12 segregating populations derived from 

androgenesis. Applying a large number of SNP markers, they determined that on the 

average 28.9 % of the markers showed distorted segregation and that 25.3 % of the 

genetic map consisted of regions with distorted segregation. Across the 12 populations, 

36 different distorted segregation peaks could be distinguished and 27 out of these 36 

were observed in only one population. This reinforces the impression that the trait 

microspore embryogenesis is a polygenic trait and that dependent on the genotypes, 

different genomic regions may cause distorted segregation in different populations. If 

segregations are found to be significantly skewed, they may nevertheless occur by 

chance.  
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2.7 Identification of candidate genes for microspore culture 

response  

Stress induced plant male germ cell reprogramming involves dramatic changes in the 

expression of a large number of genes which can only be explained by epigenetic 

mechanisms. Changes in DNA methylation, chromatin dynamics and small RNAs play an 

essential role in the regulation of stress-responsive gene expression in plant male germ 

cells (for a review see Chen et al. 2016). In undifferentiated vacuolated microspores and 

in microspores reprogrammed to embryogenesis of B. napus, Solis et al. (2012) found a 

significantly lower DNA methylation and transcript abundance of DNA 

methyltransferase I (BrMET1a) compared to differentiated mature pollen as well as 

globular and cotyledonary microspore derived embryos, supporting earlier results 

showing a higher general gene expression level in undifferentiated cells. Li et al. (2012) 

also cloned a putative DNA methyltransferase from Brassica rapa (BcMF22), which was 

preferentially expressed during pollen development starting from pollen mother cell 

until mature pollen.   

By comparing differentially expressed genes in induced embryogenic and non-

embryogenic microspores Malik et al. (2007) were able to identify a specific number of 

genes that are expressed in haploid and zygotic embryos, but not during pollen 

development (for a review see Soriano et al. 2013). Among those genes were FUSCA3, 

LEAFY COTYLEDON1 (LEC1), LEC2, BABY BOOM (BBM), two WUSCHEL-related 

homeobox (WOX) genes, WOX2 and WOX9, and ABSCISIC ACID INSENSITIVE3. 

However, only the expression of LEC2 was useful to distinguish between embryogenic 

and non-embryogenic cultures after 3 days in culture. Analyzing genomic regions with 

skewed segregation, Kitashiba et al. (2016) were not able to collocate the position of the 

candidate genes BBM1 (Boutilier et al. 2002), LEC1 (Meinke et al. 1994), ABI3 (Parcy et 

al. 1994) and CYP81F (Malik et al. 2007) with their three identified regions with skewed 

segregation (see above). Furthermore, the four candidate genes were located on A10, 

A03, A07 and A10, respectively, and those loci did not show distorted segregation in the 

doubled haploid population Ho Mei x CR-Seiga. Together, this casts some doubt on the 

importance of those genes in microspore embryogenesis. Kitashiba et al. (2016) were 

able to identify the locus Bra029631 at 110kb distance to the Br110 locus on A05. 
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Bra029631 is homolog to Bnm4D-84, a gene which is highly expressed in globular to 

torpedo stage embryos (Tsuwamoto et al. 2007). In addition, several other candidate 

genes, like CLE (CLAVATA/ESR-RELATED)–like gene (Bra016537), MEE67 (MATERNAL 

EFFECT EMBRYO ARREST 67) (Bra016560) and HSP70B (70 kDa class heat-shock 

protein) (Bra016644), were found to be located adjacent to the Br071-5c locus on A08 

within a distance of 11 up to 486 kb (Kitashiba et al. 2016). The BBM gene belongs to 

the AP2/ERF-family (Boutilier et al. 2002; Lv et al. 2016). The ethylene response 

transcription factor (ERF) family proteins play an important role in regulating a variety 

of stress responses in plants (Lv et al. 2016). In B. napus, the expression of BnERF2.4 

was induced by submergence and the overexpression of BnERF2.4 in Arabidopsis 

increased the level of tolerance to submergence and oxidative stress (Lv et al. 2016). 

Interestingly, isolated microspore cultures in liquid medium may also suffer from 

submergence stress which, in addition to the heat stress may cause enhanced ethylene 

biosynthesis. This matches well with the observation that the above mentioned addition 

of cobalt chloride to the culture medium improves microspore embryogenesis (Leroux 

et al. 2009). 

Although direct embryo to plant conversion is still a bottleneck in efficient application 

of DH technology, little is known about the genetic and exogenous regulation of this 

developmental step in microspore derived embryos. The establishment of a shoot apical 

meristem is an important event in embryogenesis, and the maintenance of its structure 

and functionality seems to be a major factor influencing direct embryo to plant 

conversion (Belmonte et al. 2006; Stasolla et al. 2008).  This process is regulated by a 

number of genes (Elhiti et al. 2010). Overexpression of the gene SHOOTMERISTEMLESS 

(STM), which enhances microspore embryogenesis, has shown to modulate the 

expression of several other genes involved in the establishment of cell fates in embryo 

cultures of Brassica species and A. thaliana, for instance, ZWILLE (ZLL), ARGONAUTE1 

(AGO1), CLAVATA (CLV), WUSCHEL (WUS), WUSCHEL RELATED HOMEOBOX (WOX), 

CUP-SHAPED COTYLEDON (CUC) and SCARECROW-LIKE genes (SCL) (Tsuwamoto and 

Takahata 2008; Stasolla et al. 2008; Elhiti et al. 2010; Elhiti et al. 2012; Elhiti et al. 

2013). However, their direct and indirect influence of direct embryo to plant conversion 

is still unknown.               
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3.1 Abstract 

Microspore culture is a very powerful technique in breeding of oilseed rape for the 

rapid and efficient generation of completely homozygous doubled haploid (DH) lines. 

Despite the progress achieved in optimizing tissue culture protocols, tremendous 

differences remain among B. napus genotypes in their embryogenic response and the 

genetic basis of those differences is still largely unknown. Furthermore, direct embryo 

to plant conversion efficiency is a hindrance to tissue culture success. The objective of 

this work was to study the genetic variation and inheritance of the embryogenic 

potential and direct embryo to plant conversion in a DH population of the cross DH4079 

x Express 617, and to determine genomic regions and putative candidate genes 

responsible for those traits. Survival of embryos, root regeneration and secondary 

embryogenesis were also evaluated. The parental lines were selected due to their 

contrasting response in microspore embryogenic potential and direct embryo to shoot 

conversion. First, F1-plants of the cross DH4079 x Express 617 were used to generate a 

DH population of 204 lines. Then, those DH lines were seed propagated and used again 

as the source of microspores, which were cultured following a standard protocol. The 

number of microspores and microspore embryogenic potential, defined as the 

percentage of microspores developing embryos, were recorded. Embryos were 

transferred to Gamborg’s B5 medium supplemented with 0.1 mg/L gibberellic acid and 

following a cold treatment, the survival, secondary embryogenesis, direct embryo to 

plant conversion and root regeneration were scored. Experiments were repeated five 

times and mean values obtained from 81 to 98 lines were used for QTL mapping based 

on an Illumina Infinium Brassica 60K SNP molecular linkage map. Large and significant 

genetic differences among the genotypes were found for all traits.  The microspore 

density of cultures based on 16 buds per experiment varied in the DH population from 

58,900 to 148,700 per ml as a mean over 5 experiments from . Microspore embryogenic 

potential ranged from 0 to 3.6 %. Embryo survival varied from 26 % to 99 %, and direct 

embryo to plant conversion was found to range from 13 % to 85 %. Root regeneration 

varied from 14 % to 95 %, and secondary embryogenesis occurred in 4 % up to 91 % of 

the embryos. Heritabilities ranged from 66 % for microspore density to 86 % for 

microspore embryogenic potential. A positive correlation between survival of embryos, 

direct embryo to plant conversion, root regeneration and secondary embryogenesis was 
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observed (rs= 0.37** to 0.78**). A linkage map based on 1,414 SNP markers was 

developed from which 49 % exhibited distorted segregation clustered over all linkage 

groups, except for chromosome A04. Together 10 QTL were mapped on linkage groups 

A01, A02, A05, A10, C04 and C06. For microspore embryogenic potential three QTL 

were detected, which together explained 31.7 % of the phenotypic variance observed in 

the DH population. One major QTL (R2≥25 %) was identified for the trait survival of 

microspore derived embryos explaining 26.1 % of the phenotypic variance. Two QTL 

each were detected for secondary embryogenesis and direct embryo to plant 

conversion, which explained 34.8 % and 35 % of the phenotypic variance, respectively. 

For root regeneration, two QTL were determined which explained 34.5 % of the 

phenotypic variance. Overlapping confidence intervals of QTL in linkage group A05 

indicated an important region responsible for microspore embryogenic potential. 

BLAST-analysis revealed the presence of nineteen candidate genes within the 95 % 

confidence interval of QTL. Among those, CLAVATA3/EMBRYO SURROUNDING 

REGION-RELATED PEPTIDE 1, CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 

PEPTIDE 25, WUSCHEL RELATED HOMEOBOX 1, WUSCHEL RELATED HOMEOBOX 2, 

WUSCHEL RELATED HOMEOBOX 5, CUP-SHAPED COTYLEDON 3, SCARECROW and NO-

APICAL-MERISTEM were previously reported candidate genes related to microspore 

embryogenic potential, secondary embryogenesis and direct embryo to plant 

conversion.  
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3.2 Introduction 

Brassica napus has become an important model plant to study functional genomics 

underlying androgenesis, because Arabidopsis thaliana belongs to the non-responsive 

species in microspore embryogenesis (Hosp et al. 2007). In this regard, it is of great 

importance to complement the knowledge already generated with QTL analysis that 

integrates phenotypic and genotypic information in order to identify genomic regions 

involved in the main phases and constraints of microspore culture: diploidization, 

microspore embryogenesis and direct embryo to plant conversion. 

The first successful research about microspore embryogenesis of oilseed rape was 

published by Lichter (1982). Since then, numerous authors have developed protocols to 

enhance androgenesis success of Brassica napus focusing on pre-culture treatments, 

media composition, culture density, hormone and antimitotic induction and 

temperature stress. Furthermore, some studies have aimed at improving direct embryo 

to plant conversion (for a review see Ferrie and Möllers 2011; Soriano et al. 2013; 

Rahman and Michalak de Jiménez 2016). From those analyses, it has been possible to 

identify numerous factors influencing the androgenesis process and plant regeneration 

of microspore derived embryos. Despite such progress achieved in optimizing tissue 

culture protocols, it also became clear that success in microspore culture is genotype 

dependent, leading to a highly heterogenic response in embryo yield and plant 

regeneration under comparable culture conditions.  

In Brassica napus, few approaches have studied genetic causes of differences in the 

capacity of microspores to generate embryos and direct embryo to plant conversion. 

Since it is assumed that microspore derived embryos are generated from a random 

sample of gametes from a heterozygous plant, a Mendelian 1:1 segregation ratio is 

expected for a monogenic trait. However, already early work on isozyme genetic 

markers detected distorted segregation in DH populations (Foisset et al. 1993). Further 

studies in oilseed rape confirmed that distorted segregation is a persistent phenomenon 

in F1-plant derived doubled haploid populations (Cloutier et al. 1995; Tanhuanpää et al. 

1994; Zhang et al. 2003). Results from different crosses between responsive and non-

responsive genotypes revealed segregation distortions at diverse loci located in various 
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linkage groups, suggesting a dissimilar origin of selective pressures during in vitro 

culture and the importance of the genetic background for microspore culture and plant 

regeneration success. Ono and Takahata (2000) reported high heritability values of 

shoot regeneration from seedling derived cotyledonary explants, as well as a 

predominant contribution of additive effects to phenotypic variance in a 7x7 diallel 

cross. However, dominant effects were also significant. In agreement with these results, 

heritability for microspore embryogenic ability, determined as number of embryos 

regenerated from a certain number of microspores,  in a 4 × 4 Brassica napus diallel 

cross was high and additive effects were predominant (Zhang and Takahata 2001). A 

first effort to identify putative genes associated with microspore embryogenic potential 

was undertaken by Cloutier et al. (1995), who recognized 5 loci on linkage groups 01 

and 18 possibly involved in androgenesis, based on  a comparative segregation analysis 

using a F2 population and two F1 microspore-derived populations from the same cross 

between the microspore culture-responsive parent Topas and the non-responsive 

parent Westar. Further research on gene expression led to the identification of several 

candidate genes that were up-regulated in response to acquisition of microspore 

embryogenic potential and highly expressed during zygotic embryo development 

(Joosen et al. 2007; Malik et al. 2007; Stasolla et al. 2008; Elhiti et al. 2010; Elhiti et al. 

2013). 

The increasing understanding of the genetic factors involved in the reprogramming of 

microspore development into embryos and its further direct conversion into plants 

could be enormously advantageous for the early diagnosis of responsive and not 

responsive genotypes. Furthermore, the better understanding of the genetic regulation 

mechanisms of androgenesis is of great importance to establish strategies to overcome 

the poor microspore and embryo responsiveness in recalcitrant genotypes and species 

(Boutilier et al. 2005; Hosp et al. 2007). 

In this context, the objectives of the present research were to develop a microspore-

derived DH population from the cross DH4079 x Express 617, to study the genetic 

variation and inheritance of the microspore embryogenic potential and direct embryo 

to plant conversion in a DH population, and to map QTL and evaluate the possible 

presence of candidate genes for those traits. Among the genotypes known, the Swedish 

spring cultivar Topas has been extensively studied for its excellent microspore 
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embryogenic potential and the derived line DH4079 showed an outstanding embryo 

production of many thousand embryos per experiment, which has made DH4079 a 

standard in many investigations (Boutilier et al. 2002; Cloutier et al. 1995;  Ferrie et al. 

2005; Ferrie and Keller 2007; Malik and Krochko 2009; Malik et al. 2007). In contrast, a 

very low embryo yield is obtained from inbred line 617 of winter oilseed rape cultivar 

Express, in the range of nil up to 50 embryos per experiment under comparable 

conditions (Klutschewski 2013; Ecke et al. 2015). Moreover, a good direct embryo to 

plant conversion was found for Express 617, whereas the response was only moderate 

for DH4079 (Klutschewski 2013). 
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3.3 Materials and Methods 

3.3.1 Development of the DH Population 

Seeds of the inbred line 617 of the winter oilseed rape cultivar Express were obtained 

from Norddeutsche Pflanzenzucht Hans-Georg Lembke KG (www.npz.de). Seeds of 

DH4079 (Ferrie 2003) were provided by Alison Ferrie (NRC Saskatoon, Canada). An F1 

seed derived from the cross between Express 617 and DH4079 was germinated under 

aseptic conditions on Murashige and Skoog (1962) medium and the plantlet was in vitro 

clonally propagated. Cloned F1-plants were transferred to soil (Fruhstorfer T25-Erde) 

in multipot trays. After acclimatization, plants were cultivated in the greenhouse for 4 

weeks. Subsequent to this period, plants were transferred to 13 cm pots and vernalized 

for 8 weeks in a cold chamber (4 °C, 8 h light). After that, plants were again cultivated in 

the greenhouse. Upon bolting, plants were transferred to a growth chamber (12/6 °C 

light/dark, 16/8 h light/dark) and were used as microspore donors. The growth 

chamber was equipped with Sodium-vapor lamps (SON-T Agro Philips Master Green 

Power CGT 400 watt, light intensity of 400 µmol m-2 s-1). Donor plants were watered 

three times per week and fertilized once a week with N:P:K (15:11:15). 

For microspore isolation, buds with 2.5 to 3.5 mm length with microspores at the late 

uninucleate stage were collected and treated as previously described by Möllers et al. 

(1994) with minor modifications. 16 buds were surface sterilized with 1 % calcium 

hypochlorite solution and Tween-20 in constant stirring for 5 minutes. Buds were 

rinsed 3 times with autoclaved deionized water and transferred to a nylon sieve (50 µm, 

5 cm in diameter) in a Petri dish (92 x 16 mm, Sarstedt AG and Co., Nürnbrecht, 

Germany) containing 5 ml of liquid filter sterilized NLN13-medium (Lichter 1982; 

www.duchefa-biochemie.com, catalog no. N0252). Buds were squeezed in the sieve with 

the flat end of a pistil to release the microspores. The sieve was then rinsed with 7 ml of 

NLN13-medium. The resultant 12 ml microspore suspension was transferred to a tube, 

which was then centrifuged for 5 minutes at 1000 RPM.  The supernatant was carefully 

decanted and the pellet was washed twice with NLN13-medium. The final microspore 

pellet was resuspended in 12 ml NLN13-medium and transferred to a Petri dish (92 x 

16 mm). 600 µl of a colchicine stock solution (2 mg/ml) were added to obtain a final 
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concentration of 100 mg/L and Petri dishes were sealed twice with Parafilm. Petri 

dishes were incubated 48 h at 32 °C in the dark. Then, the microspore suspension was 

transferred to a tube and centrifuged as described above. The supernatant was 

discarded and the pellet resuspended in 12 ml NLN was transferred to a new Petri dish. 

Cultures were incubated 8 days at 28 °C in the dark and then transferred to an orbital 

shaker (40 rpm) in a culture room (22 °C, 12/12 h light/dark, Osram L Lumilux daylight 

58W, with a light intensity of 70 µmol m-2 s-1), after adding 2 ml of fresh NLN13-

medium. 

Twenty-one days after culture initiation, microspore derived embryos were transferred 

to liquid medium at a density of 30 embryos/12 ml NLN13-medium in Petri dishes (92 x 

16 mm), which were incubated for 7 days on a shaker (40 rpm) in the same culture 

room and under the same conditions as described above. Well differentiated 

microspore derived embryos at the late cotyledonary stage with a size of 0.7 to 1.0 cm 

in length were transferred to plastic boxes (10.5 x 8 x 5 cm, Volume 0.24 L, Huhtamaki 

GmbH and Co.KG, Alf, Germany) containing B5-medium complemented with 0.1 mg/L 

gibberellic acid and solidified with 0.9 % Plant Agar (Gamborg et al. 1968; Plant Agar, 

C.E. Roeper GmbH, Germany). Eight microspore derived embryos were placed in each 

plastic box, which were then incubated for 10 days at 2 °C in the dark (Cegielska-Taras 

et al. 2002). After that period, boxes with embryos were transferred to shelves in the 

same culture room and under the same light and temperature conditions as described 

above. Direct embryo to plant conversion was scored once a week for up to 10 weeks 

after transfer to B5-medium. The span (weeks) that occurred after the transfer of 

embryos to B5 medium until the appearance of the shoot was recorded as “Readiness”. 

Regenerated plantlets were subcultured and finally transferred to soil and acclimatized 

as previously described.  

Leaf samples were taken to confirm that diploidization had occurred (Möllers et al. 

1994). Therefore, 1 cm2 leaf tissue samples were dissected and carefully chopped with a 

sharp blade. 1 ml of staining buffer (fluorochrome solution 4´6-diamidino-2-

phenylindole solution, DAPI) was added and the resulting suspension was filtered by 

means of a nylon sieve (40 µm) to remove plant tissue debris. The nucleus containing 

suspension was analyzed with a Partec Cell Analyser CA-II flow cytometer. Confirmed 

doubled haploid plants were vernalized for 8 weeks as described above. Then, plants 
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were transferred to the greenhouse and at begin of flowering, inflorescences were 

covered with microspore crisp bags to secure self-pollination. 

3.3.2 Characterization of the DH Population 

In total 204 doubled haploid plants were regenerated fromF1-plants of the cross 

DH4079 x Express 617 from 4 independent microspore cultures. Consequently, 4 

subpopulations of 56, 53, 48 and 47 DH lines were generated. Following self-pollination, 

seeds harvested from those lines, parental genotypes and F1 were sown in batches of 20 

lines a two seeds per genotype in the greenhouse. Plants were grown until the 3rd to 

4th leaf stage and then they were vernalized for 8 weeks. Individual plants were then 

repotted to 13 cm pots using standardized soil (Fruhstorfer T25-Erde) and cultivated in 

the greenhouse. At bolting, plants were transferred to the growth chamber and 

cultivated under the same conditions as described above. At the begin of flowering, 2.5 

to 3.5 mm long buds with microspores at the late uninucleate stage were collected and 

used for microspore isolation as previously described. Once the microspore pellet was 

obtained, it was resuspended in 12 ml NLN13-medium containing 10 mg/L colchicine to 

induce diploidization. A drop of the microspore suspension was extracted and stored in 

a 1 ml microcentrifuge tube for a subsequent analysis of the microspore density 

(number of microspores/ml), which was accomplished using a Fuchs-Rosenthal 

counting chamber. The suspension was shifted to a Petri dish (92 x 16 mm) and it was 

sealed twice with Parafilm. Microspore preparations were incubated in the dark for 48 

hours at 32 °C. After this period, the microspore solution was transferred to a tube and 

centrifuged for 5 min as described before. The supernatant was discarded and the pellet 

was resuspended in 12 ml NLN in a Petri dish, which was incubated 8 days in the dark 

at 28 °C. Subsequently, 2 ml of fresh NLN13-medium were added and microspore 

cultures were transferred to an orbital shaker (40 rpm) in a culture room (22 °C, 12/12 

h light/dark, Osram L Lumilux daylight 58W, with a light intensity of 70 µmol m -2 s-1). 

15 days after culture initiation, half of the developed microspore derived embryos were 

transferred to a new Petri dish containing 12 ml NLN13-medium. For the remaining half 

of the embryos 10 ml of NLN13-medium were carefully replaced by 10 ml of fresh 

NLN13-medium. At day 20 after culture initiation, the number of regenerated embryos 

was recorded. In this way, microspore embryogenic potential was calculated as the 

percentage of microspores developing microspore derived embryos.  
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At this stage, from each experiment 30 microspore derived embryos were transferred to 

each of three new Petri dishes with 12 ml NLN13–medium. The cultures were incubated 

for approximately 7 days in the same culture room and under the same conditions as 

described above. Microspore derived embryos at late cotyledonary stage with a size of 

0.7 to 1.0 cm in length were transferred to B5 medium supplemented with 0.1 mg/L 

gibberellic acid and solidified with 0.9 % Agar (Plant Agar, C.E. Roeper GmbH, 

Germany). 8 microspore derived embryos were placed in each of the 7 plastic boxes per 

experiment and genotype (56 embryos/ experiment / genotype). Cold treatment of 

embryos and their subsequent transfer to a culture room were accomplished as 

described above. 6 weeks after transfer to B5-medium the traits survival, direct embryo 

to plant conversion, root regeneration and secondary embryogenesis of the microspore 

derived embryos were scored. The trait survival was determined as the percentage of 

microspore derived embryos that were alive after 6 weeks of being transferred to B5 

medium. Root regeneration was calculated as the percentage of microspore derived 

embryos which developed roots from the hypocotyl. Direct embryo to plant conversion 

was determined as the proportion of microspore derived embryos that regenerated into 

plants, presenting both shoot and root. The trait secondary embryogenesis was scored 

as the percentage of microspore derived embryos that generated somatic embryos. 

3.3.3 Experimental design and Statistical Analysis 

To study the microspore density and the microspore embryogenic potential, five 

independent microspore cultures experiments were done per genotype, in which the 

number of microspores per ml of medium and percentage of microspores developing 

microspore derived embryos were scored. To evaluate the remaining traits, 56 

microspore derived embryos derived from each of the previously mentioned 

experiments were cultured in plastic boxes, achieving a total of 7 replicates (7 boxes 

with 8 embryos each) per experiment and genotype to determine the traits survival, 

direct embryo to plant conversion, root regeneration and secondary embryogenesis. For 

the microspore culture experiments and the remaining traits, the following two ANOVA 

models were used:  

(1) Ƴij = µ + gi + giej 

(2) Ƴijk = µ + gi + ej + giej + rk:giej 



31 
 

In model (1) Ƴij is the trait value of the genotype i in the experiment j, µ is the general 

mean, and gi and ej are the effects of the genotype and the experiment, respectively. giej 

is the interaction between ith genotype and jth experiment. In model (2) Ƴijk is the trait 

value of the genotype i in the experiment j and replicate (box) k, μ is overall mean, gi and 

ej are effects of genotype i and experiment j, respectively; giej is the interaction between 

ith genotype and jth experiment, and pk:giej is the effect of the replicate k within the 

genotype i and the experiment j. 

The data were tested for outliers based on the Cook Distance using the “Influence.ME” 

package of R software version 3.2.2 (Nieuwenhuis et al. 2012; R Development Core 

Team 2016). To estimate variance components the PLABSTAT software was employed 

(Utz 2011). All factors were treated as random and broad-sense Heritability (H2) was 

calculated as the following ratio (Hill et al. 1998): 

(1) H2 = ơ2g / (ơ2
g + ơ2ge/E) 

(2) H2 = ơ2g / (ơ2
g + ơ2ge/E + ơ2

ɛ /ER) 

where E is the number of experiments and R the number of replicates. Spearman´s rank 

correlation coefficients based on the mean values of each genotype were calculated 

between all traits. Correlations were computed using the “cor” function from the basic 

“stats” package of R software version 3.2.2 (R Development Core Team 2016). Results 

from the trait microspore embryogenic potential were square root transformed to 

achieve a better fit to normal distribution before statistical analysis. 

3.3.4 SNP Marker Analysis and Linkage Map Development 

100 mg of leaf tissue from young plants of each genotype of the DH population grown in 

the greenhouse were sampled in 2 ml reaction tubes (Safe lock), which were 

immediately frozen in liquid nitrogen and stored at -80 °C. DNA was isolated using the 

innuPREP Plant DNA Kit (Analytik Jena AG) and each sample was diluted to achieve a 

density of 50ng DNA/l in a total volume of 20 l. SNP analysis was performed by the 

company TraitGenetics GmbH, Gatersleben, based on the Illumina Infinium 60k Chip 

(Clarke et al. 2016). Samples from the parental lines DH4079 and Express 617 and the 

cross (F1) were also collected and analyzed. A linkage map was kindly provided by 
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TraitGenetics GmbH (Gatersleben, Germany). From 52,157 SNP markers 22,714 

resulted polymorphic. 3,143 markers were selected and a high-density genetic map was 

developed using the software JoinMap 4.1 (Stam 1993). The final linkage map covered 

2,345.5 cM genome length with an average marker distance of 1.69 cM. 1,414 markers 

distributed over the 19 linkage groups were used for the final framework map. 

3.3.5 QTL Analysis and Study of Distorted Marker Segregation  

Identification of quantitative trait loci (QTL) was performed using the software WinQTL 

Cartographer version 2.5 (Wang et al. 2012) and composite interval mapping (CIM) 

algorithm was employed. The linkage map developed by Trait Genetics GmbH was 

employed to determine QTL positions. Independent LOD significance thresholds 

(α=0.05) were estimated for each trait by 1000 permutation tests. Model 6 was 

employed and forward and backward stepwise regression method was used to set 

cofactors. The genome was scanned at 1 cM intervals and the window size was set to 10 

cM. 95 % confidence intervals for QTL were determined by the one LOD score down 

method from the peak position. Names of QTL were established as a junction of the 

abbreviation of the trait name, the linkage group involved and the marker position on 

the linkage group. 

Additive effects, as well as the percentage of phenotypic variance explained by a QTL, 

were also estimated by means of WinQTL Cartographer software version 2.5. Goodness-

of-fit to the expected Mendelian segregation 1:1 (P≤0.05) of SNP markers in the DH 

population was computed by a Chi-square test using the “chisq.test” function from the 

basic “stats” package of R software version 3.2.2. 

3.3.6 Synteny Analysis for Candidate Gene Localization  

 QTL positions were studied and closely related SNP markers were characterized 

according to the maximum LOD score for the traits microspore embryogenic potential 

and direct embryo to plant conversion. 95 % confidence intervals of related genomic 

regions previously identified were used to select the areas were putative candidate 

genes could be found. To achieve this, sequences of flanking SNP markers (Clarke et al. 

2016) were used for BLAST analysis to identify physical positions of QTL using the B. 
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oleracea Genome Database (Bolbase; http://www.ocri-genomics.org/bolbase/) and the 

B. rapa Genome Database (BRAD; http://brassicadb.org/brad/index.php). B. oleracea 

and B. rapa databases were consulted since the gene annotation is more comprehensive 

compared to B. napus reference genome (Chalhoub et al. 2014). Physical positions of 

genes reported in preceding studies associated with embryogenesis and microspore 

culture were compared to the positions of the QTL. In addition, a gene inquiry on B. 

oleracea and B. rapa databases was performed by applying the search tool for the 

following keywords: ´apical meristem´, ´bilateral symmetry´, ´cotyledon´, 

´embryogenesis´, ´gametophytic´, ´germination´, ´gibberellin´, ´microspore´, 

´regeneration´. Physical positions of the predicted genes resulting from such inquiry 

were also compared to the physical positions of the QTL presented in this manuscript. 
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3.4 Results   

3.4.1 Phenotypic Analysis and Heritability 

The readiness with which the embryos derived from the F1-plants DH4079 x Express 

showed direct embryo to plant conversion was scored. Embryos started to form shoots 

after two weeks and shoot regeneration stopped after 9 weeks. The average shoot 

regeneration time was 4.9 weeks (Figure 3.1). 

 

 

 

 

 

 

 

A DH population of 204 lines was generated from the cross DH4079 x Express 617, from 

which 98 genotypes were phenotypically characterized for the trait density of 

microspores and 96 for the trait microspore embryogenic potential. Survival of embryos 

was assessed in 96 DH lines and direct embryo to plant conversion in 85 genotypes, 

while root regeneration and secondary embryogenesis was studied in 82 and 86 lines, 

respectively. Analysis of variance revealed significant effects of the genotype on all 

studied traits (Table 3.1). Even though the effect of the genotype x experiment 

interaction was significant, the variance component values were smaller than the 

genotype effect. The effect of the factor experiment was only significant for the traits 

microspore density and embryo survival. Moderate to high broad-sense heritabilities 

for all traits ranged from 0.66 to 0.86.  

Figure 1 3.1 Frequency distribution of the direct embryo to plant conversion of the segregating 

microspore derived embryo population derived from the F1 DH4079 x Express 617. 
 



 

 

 

 

 
Table 13.1 Variance components and heritabilities of the DH population. 

 

Trait DF 
Variance Componentsd Heritability 

(H2) ơ2g ơ2e ơ2ge ơ2ɛ 

Microspore Density (mic/ml)a 97 230.6** 48.5** 603.6 - 0.66 

Microspore Embryogenic Potential (%)b 95 20.1** 0.1 15.8 - 0.86 

Embryo Survival (%) 95 206.4** 7.8** 432.5 ** 287.3 0.69 

DEPC (%)c 84 257.9 ** 2.6 311.8 ** 342.8 0.78 

Root Regeneration (%) 81 319.9 ** 2.9 270.8 ** 374.2 0.83 

Secondary Embryogenesis (%) 85 424.2 ** 0.8 371.8** 273.0 0.84 

a original values /100 

b square root transformed values × 100 

c DEPC = Direct Embryo to Plant Conversion  

d ơ2
g = genetic variance, ơ2

e = environmental variance, ơ2
ge = variance of genotype x environment interaction, ơ2ɛ = residual error 

∗∗ denotes significance at P < 0.01 
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Extremely contrasting culture responses were observed among the characterized lines 

of the DH population, as well as in the parental genotypes, not only for the studied traits 

but also in morphology, color and size (Figure 3.2).  

 

 

 

 

 

 

 

 

 

The phenotypic traits showed weakly skewed and normally distributed residuals, 

except for microspore embryogenic potential that displayed a strongly right-skewed 

frequency distribution (Figure 3.3 and 3.4). The microspore density of cultures based on 

16 buds per experiment varied in the DH population from 58,900 to 148,700 per ml as a 

mean over 5 experiments. Parental genotypes and the F1 did not differ significantly 

from each other (Table 3.2). The microspore embryogenic potential of the studied DH 

lines ranged from 0 to 3.6 % with a mean of 0.2 %, meaning that 0 to 43,000 microspore 

derived embryos were developed as a mean over the experiments. Parental genotypes 

and F1 showed significant differences in their microspore embryogenic potential. The 

value for the microspore embryogenic potential of the parental line Express 617 was 

extremely low (0.003 %), no DH line with a significantly lower value was identified but 

four DH lines did not produce embryos. 16 out of 98 lines, showed a greater microspore 

embryogenic potential compared to the high responsive parent DH4079 (1.41 %). The 

Figure 2 3.2 Highly different responses to microspore culture: a) morphological variation 

among genotypes of the DH population, b) quantity of microspore derived embryos 

produced by parental lines Express 617 (above) and DH4079 (below), and c) secondary 

embryogenesis response (above) and direct embryo to plant conversion (below). 
 

a c b 
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F1 presented an intermediate value of 0.5 %. The extreme values of the highly 

responding DH lines compared to the parental genotype suggested transgressive 

segregation. The trait survival varied from 26 % to 100 % and displayed a mean of 77 

%; no significant differences were found among the parental genotypes and the F1 for 

the survival of embryos. Direct embryo to plant conversion ranged from 13 % to 85 % 

with a mean value of 49 %; no genotype showed higher value compared to the high 

responsive parent Express 617 (88 %) and a lower value compared to the low 

responsive parent DH4079 (35 %); the mean value of the F1 (35 %) for direct embryo 

to plant conversion did not differ from the parental genotype DH4079. For the trait root 

regeneration, results of the DH population ranged from 14 % to 95 % and showed a 

mean value of 66 %. The mean value for root regeneration of the responsive parent 

Express 617 (96 %) significantly differed from the mean values of the low responsive 

parent DH4079 (42.9 %) and the F1 (52.1 %).  In the studied population, the trait 

secondary embryogenesis varied from 4 % to 91 % with a mean of 38 %. Parental 

genotypes and the F1 displayed similar results. Phenotypic values of each DH line for all 

traits are shown in Appendix A.1. 
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Figure 3 3.3 Frequency distribution of the residuals (left) and the traits (right) microspore 

density, embryogenic potential and survival of embryos of the DH population. Residual 

values are normally distributed. Frequency distribution of residuals of embryogenic 

potential was generated based on square root transformed data. Mean values of the DH 

population (vertical dashed line), of the cross (F1) and parental genotypes Express 617 

(Ex617) and DH4079 (DH4079) are also presented. 
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Figure 4 3.4 Frequency distribution of the residuals (left) and of the traits (right) direct 

embryo to plant conversion, root regeneration, and secondary embryogenesis of the DH 

population. Residual values are normally distributed.  Mean values of the DH population 

(vertical dashed line), of the cross (F1) and parental genotypes Express 617 (Ex617) and 

DH4079 (DH4079) are also presented. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 23.2 Descriptive statistics of the studied variables in the DH population, parental lines and progeny. 
 

 

Trait Min Max Mean 
LSD 

5 % 
SD 

Parentsc 
F1d 

DH4079 Express 617 

Microspore Density (Mic/ml)a 58.9 148.7 95.5 305.7 18.7 82.3 90.8 84.3 

Microspore Embryogenic Potential (%) 0.0 3.6 0.2 0.24 0.8 1.4 0.003 0.5 

Embryo Survival (%) 26.2 99.6 76.7 27.1 17.6 78.4 98.0 73.2 

DEPCb (%) 13.0 85.0 49.0 23.6 19.5 34.9 87.7 34.7 

Root Regeneration (%) 13.6 95.4 65.8 22.4 19.6 42.9 95.6 52.1 

Secondary Embryogenesis (%) 4.4 91.3 37.9 25.2 22.6 43.9 52.6 50.9 

a Mic = number on microspores in thousands 

b DEPC = direct embryo to plant conversion 

c Depicted values are means over 15 experiments 

d F1 = cross DH4079 x Express 617 

40
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3.4.2 Correlation among Traits 

A correlation analysis between the means over all experiments for all traits, including 

direct embryo to plant conversion and the number of microspores per DH line, was 

performed. A weak negative correlation was found between microspore embryogenic 

potential and the density of microspores. A weak positive correlation was observed 

between the total number of microspore derived embryos and their survival after being 

transferred to B5 Medium. Survival of microspore derived embryos was strongly 

correlated with all the remaining traits: direct embryo to plant conversion, root 

regeneration and secondary embryogenesis. A very strong correlation was detected 

between the trait direct embryo to plant conversion and root regeneration. Correlation 

between secondary embryogenesis and direct embryo to plant conversion and root 

regeneration was weakly positive (Table 3.3). No correlation was identified for the 

readiness of direct embryo to plant conversion of the individual DH microspore derived 

embryos of the segregating population and the trait direct embryo to plant conversion 

(rS=-0.06).  

Table 33.3 Spearman´s rank correlations (rS) between microspore culture traits. 

 

 

Trait MICa POTb SURVc DEPCd ROOTe SEEMf 

POTb -0.17* 
 

    

SURVc  0.07  0.13     

DEPCd  0.05  0.10  0.78**    

ROOTe -0.05  0.13  0.78**  0.66**   

SEEMf  0.14  0.01  0.58**  0.37**  0.37**  

READg  0.16* -0.20** -0.04 -0.06 -0.14* -0.06 

* and ** denotes significance at P< 0.05 and 0.01 respectively 

a MIC = Number of microspores 

b POT = Microspore Embryogenic Potential 

c SURV = Survival 

d DEPC = Direct Embryo to Plant Conversion 

e ROOT = Root Regeneration 

f SEEM = Secondary Embryogenesis 

g READ = Readiness of the DEPC of individual DH microspore derived embryos of the segregating 

population 
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3.4.3 Genetic Map and Marker Segregation  

The developed molecular map consisted of 1,414 SNP markers distributed over 19 

linkage groups (Table 3.4). Linkage group A07 was the largest chromosome of the DH 

population with 209.70 cM length followed by C03 and C06 with 187.40 and 180.00 cM, 

respectively, even though A03 had the largest marker number with 114 SNPs. The 

average marker interval was 1.69 cM. The smallest linkage groups corresponded to A04, 

A08 and A10 with only 67.70, 79.10 and 76.20 cM length. Large gaps without 

segregating markers were detected on A07 (40.7 cM) and C06 (37.3 cM). 

A significant deviation of the expected Mendelian segregation ratio of 1:1 was observed 

in the population of 204 DH lines. 48.9 % of the SNP markers exhibited distorted 

segregation (X2≥3.84, P≤0.05), from which 63.4 % showed a significantly higher 

distortion towards the alleles of the responsive cultivar DH4079, and only 36.6 % 

towards the parental inbreed line Express 617. Loci with distorted marker segregation 

were not randomly distributed along the genome and such distribution was mostly 

consistent among the 4 subpopulations constituting the DH population. Markers 

exhibiting an excess of DH4079 alleles clustered within linkage groups A03, A06, A07, 

A08, C03, C05, C07 and C09 (Figure 3.5 and 3.6). Markers showing an excess of Express 

617 were predominantly present in linkage groups A01, A02, A09, A10, C02 and C06. 

Linkage groups A05, C01, C04 and C08 contained markers with distorted segregation in 

favor of both parental genotypes, which clustered in different regions along the 

chromosome. Distorted segregation was not observed in linkage group A04. 
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Table 43.4 Marker distribution, size and mean distances between markers of each linkage 
group of the A and C genomes in the linkage map of the DH population DH4079 x Express 617. 

 

Linkage 

Group 

No.  of markers 
Length 

[cM] 

Average marker 

interval 

[cM] 

Biggest 

Gap 

[cM] 
Polymorphic 

markers 

Map 

development 

Framework 

map markers 

A01 1013 290 83 147.10 1.77 11.5 

A02 992 196 84 103.60 1.23 3.9 

A03 1264 171 114 121.30 1.06 3.5 

A04 777 130 60 67.70 1.13 12.1 

A05 1089 171 72 116.60 1.62 12.1 

A06 872 169 86 111.20 1.29 5.9 

A07 1101 267 78 209.70 2.69 40.7 

A08 912 109 52 79.10 1.52 5.9 

A09 1079 140 79 135.80 1.72 18.8 

A10 905 137 68 76.20 1.12 10.4 

C01 2244 217 70 107.00 1.53 10.6 

C02 2315 197 74 103.60 1.40 11 

C03 1108 186 101 187.40 1.86 14.6 

C04 2487 137 90 142.20 1.58 8.9 

C05 519 117 64 121.40 1.90 5.9 

C06 1138 191 64 180.00 2.81 37.3 

C07 1468 131 68 122.40 1.80 13.9 

C08 836 91 52 107.20 2.06 6.9 

C09 595 96 55 106.00 1.93 14.8 

A Genome 10004 1780 776 1168.30 1.52 40.7 

C Genome 12710 1363 638 1177.20 1.87 37.3 

 

Total 

 

22714 3143 1414 2345.50 1.69 40.7 
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Figure 5 3.5 Distribution of distorted marker segregation along the 19 linkage groups in the DH population DH4079 x Express 617 (black line). 

Distorted marker segregation of the 4 subpopulations is defined by colored lines. Significant skewed marker segregation (P< 0.05) above the 

absolute Chi-squared value (x2=3.84) is represented by a dashed red line (            ). Alleles segregating in favor of parental genotype DH4079 have 

positive values, alleles segregating in favor of parental genotype Express 617 have negative values. 
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Figure 6 3.5 (Continue from previous page) Distribution of distorted marker segregation areas along the 19 linkage groups in the DH population 

DH4079 x Express 617 (black line). Distorted marker segregation of the 4 subpopulations is defined by colored lines. Significant skewed marker 

segregation (P< 0.05) above the absolute Chi-squared value (x2=3.84) is represented by a dashed red line (           ). Alleles segregating in favor of 

parental genotype DH4079 have positive values, alleles segregating in favor of parental genotype Express 617 have negative values. 
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3.4.4 QTL analysis 

QTL analysis allowed the identification of ten QTL for the different traits (Table 3.5 and 

Figures 3.6 and 3.7). Eight QTL were identified in the A genome, while only two QTL 

were positioned in C genome. No QTL was detected for the trait density of microspores.  

Three QTL were found for the trait microspore embryogenic potential, which together 

explained 31.7 % of the phenotypic variance observed in the DH population. The QTL 

POT.A01.67 and POT.C06.134 were located in linkage groups A01 and C06, respectively, 

positioned in areas of distorted marker segregation in favor of Express 617. The QTL 

POT.A02.73 was located in chromosome A02 in a region without biased segregation. 

The three QTL identified for the trait microspore embryogenic potential displayed 

negative additive effects. This indicates that the alleles increasing the trait value are 

derived from the parental genotype Express 617. 

Only one major QTL (R2≥25 %), was determined for the trait survival of microspore 

derived embryos that explained 26.1 % of the phenotypic variance. This QTL, 

SURV.A05.43, was located in a region with distorted marker segregated in favor of 

DH4079 on linkage group A05 and showed a negative additive affect. The QTL allele was 

derived from the parental genotype Express 617 which displayed a higher survival 

performance compared to DH4079.  

Two QTL located in areas of non-distorted marker segregation on linkage groups A05 

and A10 were detected for the trait secondary embryogenesis, which explained 34.8 % 

of the phenotypic variance in the DH population. The two QTL related to secondary 

embryogenesis displayed additive effects in opposite directions: SECEMB.A05.21 

showed a negative phenotypic effect and SECEMB.A10.20 a positive additive effect.  

Two QTL explaining 35 % of the phenotypic variance were identified for the trait direct 

embryo to plant conversion. The additive effect was negative for the QTL DEPC.A02.49, 

positioned in an area with non-distorted marker segregation on linkage group A02. The 

additive effect for QTL DEPC.A05.41 was also negative; it was located on A05 in a region 

with biased marker segregation in favor of DH4079. 
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For the trait root regeneration two QTL, ROOT.A05.41 and ROOT.C04.140, were 

determined in chromosome A05 and C04, which showed negative additive effects and 

together explained 34.5 % of the phenotypic variance in the DH population. The QTL 

ROOT.A05.41 was located in an area with distorted marker segregation in favor of 

DH4079, whereas the QTL ROOT.C04.140 was located in a region with biased marker 

segregated in favor of Express 617. 

QTL for the traits survival, secondary embryogenesis, direct embryo to plant conversion 

and root regeneration were located in linkage group A05. All of those QTL, except the 

one for secondary embryogenesis, showed small overlapping confidence intervals 

(Figure 3.7).  



 
 

 

 

 

 
Table 53.5 Mapped QTL and their most likely positions for the studied traits in the DH population DH4079 x Express 

617. 
 

QTL Trait 
Linkage 
Group 

Position 
(cM) 

CIa 
 (cM) 

LOD 
Additive 

effectb 
R2c  

(%) 
TR2d  
(%) 

POT.A01.67 

Microspore Embryogenic Potential 
 

A01 67 67-70 3.35 -0.28 9.60 

31.7 POT.A02.73 A02 73 69-75 3.23 -0.26 8.07 

POT.C06.134 C06 134 112-144 5.14 -0.34 13.99 

SURV.A05.43 Survival A05 43 43-45 9.39 -0.93 26.09 26.1 

SECEMB.A05.21 
Secondary Embryogenesis 

A05 21 2-25 4.26 -0.77 11.23 
32.5 

SECEMB.A10.20 A10 20 16-23 7.92 0.11 21.30 

DEPC.A02.49 
Direct Embryo to Plant Conversion 

A02 49 49-53 3.71 -0.07 12.10 
35.0 

DEPC.A05.41 A05 41 40-43 6.49 -0.09 22.90 

ROOT.A05.41 
Root Regeneration 

A05 41 39-43 3.72 -0.07 11.99 
34.5 

ROOT.C04.140 C04 140 127-140 6.73 -0.09 22.49 

a CI = Confidence Interval 

b Negative additive effects indicate that alleles increasing the trait value originate from Express 617, while positive effects indicate 

the alleles increasing the trait value originate from DH4079 

c R2 represents the percentage of phenotypic variance explained by the QTL 

d TR2 represents the total percentage of phenotypic variance explained by all QTL 
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Figure 7 3.6 Positions of QTL for the traits microspore embryogenic potential (POT), 
survival (SURV), direct embryo to plant conversion (DEPC) and root regeneration (ROOT). 
QTL for the traits survival, direct embryo to plant conversion and root regeneration showed 
overlapping confidence intervals in linkage group A05. Genetic positions of markers flanking 
genomic regions related to the QTL are shown (bold).  
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Figure 8 3.7 Molecular linkage map of the DH population DH4079 x Express 617. Marker 

segregation, mapped QTL and their most likely positions are shown. 
 

a Significant strongly distorted marker segregation (>3:1) is represented by green color when alleles 
segregate in favor of parental genotype DH4079, and blue color when alleles segregate towards parental 
genotype Express 617 
b H2 represents the value of broad-sense heritability for each trait 
c R2 represents the percentage of the phenotypic variance explained by the QTL 
d POT = Embryogenic Potential 
e SURV = Survival 
f SEEM = Secondary Embryogenesis 
g DEPC = Direct Embryo to Plant Conversion 
h ROOT = Root Regeneration  
i MIC = Microspore Density 
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3.4.5 Identification of candidate genes within QTL regions 

An investigation to identify putative genes responsible for microspore culture success 

was performed. BLASTN analysis against the B. rapa and B. oleracea genomes indicated 

the presence of nineteen genes located within the 95 % confidence interval of QTL 

related to microspore embryogenic potential, secondary embryogenesis and direct 

embryo to plant conversion. 

Five candidate genes possibly related to microspore embryogenic potential were 

localized between the flanking markers of the QTL on A01 and C06 (Table 3.6 and 

Figure 3.8). In chromosome A01, a copy of the gene Bra028326 was found which 

encodes an isopentenyltransferase-7 involved in the biosynthesis of the cytokinin 

hormone group. The Bra037583, also located in A01, translates into a 

formylglycinamidine ribonucleotide synthase, associated with purine biosynthesis. 

Bra038210 positioned on chromosome A01, encodes a late embryogenesis abundant 

protein. The gene Bol042965 was located in linkage group C06.  Bol042965 encodes 

CLE25, a homolog of the CLAVATA3 gene binding protein that is related to cell 

differentiation and maintenance of the meristem identity. The gene Bol016999 in C06 

encodes an oleosin protein related to lipid storage. 

Table 63.6 Candidate genes of B. rapa and B. oleracea located within the 95 % 
confidence interval of the QTL accounted for microspore embryogenic potential. 

 

Chromosome Candidate Gene 
Orthologous 

Gene in  
A. thaliana 

E value Gene/Protein Description 

A01 Bra028326 AT3G23630 2E-126 
IPT7; 
isopentenyltransferase-7 

A01 Bra037583 AT1G74260 5E-66 
PUR4; formylglycinamidine 
ribonucleotide synthase 

A01 Bra038210 AT3G19430 4.00E-163 
LEA; late embryogenesis 
abundant protein-related 

C06 Bol042965 AT3G28455 2E-17 
CLE25; homologous to the 
CLAVATA3 gene; protein 
binding / receptor binding 

C06 Bol016999 AT5G61610 5E-43 Oleosin family protein 

Gene descriptions were obtained from BRAD and TAIR. 
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Physical Map (bp) B. oleracea 

Genetic map (cM) B. napus  Physical Map (bp) B. rapa 
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Figure 9 3.8 QTL positioned in linkage groups A01 and C06 associated with the trait microspore 
embryogenic potential (POT.A01.67 and POT.C06.7134) in the genetic map of B. napus. Physical 
positions of possible candidate genes within the SNP markers (bold) delimiting the 95 % 
confidence interval of the QTL for microspore embryogenic potential in the map of B. rapa and B. 
oleracea are shown. 
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Seven genes were found between the flanking markers of the QTL for secondary 

embryogenesis in linkage groups A05 and A10 (Table 3.7 and Figure 3.9). Five genes 

encode transcription factors from which Bra034855 and Bra002576, localized on 

chromosomes A05 and A10 respectively, encode WUSCHEL related homebox-5 and 

WUSCHEL related homebox-2, that are important to determine cell fates during plant 

development. A similar function is associated with SCARECROW transcription factor 

family proteins that are encoded by two genes, Bra002894 and Bra002564, located on 

chromosome A10 and which are responsible for maintaining stem cells in the 

meristems. Bra002859 on A10 is the gene of the No Apical Meristem domain 

transcriptional regulator superfamily protein related to the formation of boundary cells 

of the meristems. A gene positioned on linkage group A10, Bra002957, encodes the 

enzyme thiamine-4, responsible for thiamine biosynthesis and which is involved in 

the response to oxidative stress. Finally, a gene with unknown activity, Bra002994 

localized on chromosome A10, encodes a late embryogenesis abundant related-protein. 

Table 73.7 Candidate genes of B. rapa and located within the 95 % confidence interval 
of the QTL accounted for secondary embryogenesis. 

 

Chromosome Candidate Gene 
Orthologous 

Gene in  
A. thaliana 

E value Gene/Protein Description 

A05 Bra034855 AT3G11260 1E-36 
WOX5; WUSCHEL related 
homebox-5 

A10 Bra002576 AT5G59340 3E-62 
WOX2; WUSCHEL related 
homebox-2 

A10 Bra002894 AT4G08250 0.0 
SCARECROW transcription 
factor family protein 

A10 Bra002564 AT5G59450 2.00E-168 
SCL11; SCARECROW-like 
transcription factor-11 

A10 Bra002859 AT1G60340 1.00E-24 

NAC; No Apical Meristem 
domain transcriptional 
regulator superfamily 
protein 

A10 Bra002957 AT5G54770 2E-175 THI4; thiamine-4 

A10 Bra002994 AT5G54370 1.00E-138 
LEA; late embryogenesis 
abundant protein-related 

Gene descriptions were obtained from BRAD and TAIR. 
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Figure 103.9 QTL positioned in linkage groups A05 and A10 associated with the traits survival 
(SURV.A05.43), direct embryo to plant conversion (DEPC.A05.41), root (ROOT.A05.41) 

regeneration and secondary embryogenesis (SEEM.A05.21, SEEM.A10.20) in the genetic map of 
B. napus. Physical positions of possible candidate genes within the SNP markers (bold) 
delimiting the 95 % confidence interval of the QTL for direct embryo to plant conversion and 
secondary embryogenesis in the map of B. rapa are shown. 
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Five genes possibly related to direct embryo to plant conversion were localized within 

the 95 % confidence interval of the QTL on A02 and A05 (Table 3.8 and Figure 3.9 and 

3.10). One transcription factor gene, Bra008259 on linkage group A02, encode CUP-

SHAPED COTYLEDON-3 which is involved in cell fate. Two enzyme genes, Bra008362 

and Bra008421 on A02, encode the enzymes gibberellin 2-oxidase-1 and a 

phosphoglycerate kinase. Gibberellin 2-oxidase-1 is involved in hormone biosynthetic 

processes while the phosphoglycerate kinase is associated with glycolysis. A gene 

Bra008076, homologous to the CLAVATA3 gene, is positioned on chromosome A02 and 

encodes CLE1, a DNA-binding protein highly related to cell differentiation and 

maintenance of the meristem identity. Two genes, Bra022221 and Bra027219, with 

unknown activity were also located in the confidence intervals of the QTL for the trait 

direct embryo to plant conversion on linkage group A05, which encodes for late 

embryogenesis abundant domain-containing proteins. 

Table 83.8 Candidate genes of B. rapa and located within the 95 % confidence interval 
of the QTL accounted for direct embryo to plant conversion. 

 

Chromosome Candidate Gene 
Orthologous 

Gene in  
A. thaliana 

E value Gene/Protein Description 

A02 Bra008259 AT1G76420 9E-127 
CUC3; cup shaped cotyledon-
3 

A02 Bra008362 AT1G78440 3.00E-143 
ATGA2OX1; gibberellin 2-
oxidase-1 

A02 Bra008421 AT1G79550 0.0 
PGK; phosphoglycerate 
kinase 

A02 Bra008076 AT1G73165 7E-23 
CLE1; homologous to the 
CLAVATA3 gene; protein 
binding / receptor binding 

A05 Bra022221 AT3G17520 2.00E-74 
LEA; late embryogenesis 
abundant domain-containing 
protein 

A05 Bra027219 AT3G15670 2.00E-59 
LEA; late embryogenesis 
abundant domain-containing 
protein putative 

Gene descriptions were obtained from BRAD and TAIR. 
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Figure 113.10 QTL positioned in linkage group A02 associated with the traits, microspore 
embryogenic potential (POT.A02.73) and direct embryo to plant conversion (DEPC.A02.49) in 
the genetic map of B. napus. Physical positions of possible candidate genes within the SNP 
markers (bold) delimiting the 95 % confidence interval of the QTL for direct embryo to plant 
conversion in the map of B. rapa are shown.  
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3.5 Discussion    

Along the intensive research developed during the last decades, it has become clear that 

there are 3 major bottlenecks that hamper microspore culture success: diploidization, 

microspore embryogenic potential and direct embryo to plant conversion. In this 

research, the latter two traits were assessed. Secondary embryogenesis was also 

considered, since very similar factors may control the correct development of embryos 

in both the microspore and the somatic embryogenesis system. For the trait direct 

embryo to plant conversion, other related traits were studied: survival of embryos and 

root regeneration. The significance of survival of embryos is determined by the fact that 

the actual origin of the unsuccessful regeneration of DH plants may arise from the early 

death of embryos when transferring them to a suitable medium for conversion to 

plantlets. Therefore, survival of embryos might be considered an additional selective 

step during the development of double haploid populations. Independent scoring of 

root regeneration was performed with the aim to evaluate the presence of DH lines with 

the ability to form only roots but no shoots.  

3.5.1 Phenotypic variation in the DH4079 x Express 617 population 

In Brassica napus, very early studies showed the potential of microspores to produce 

embryos (Thomas and Wenzel 1975 cited in Lichter 1982). It was observed that 

different hybrids with a common parent had similar behavior under the same culture 

conditions, revealing the genetic control of androgenesis (Dunwell and Cornish 1985). 

In concordance to this, a variety of oilseed rape lines have exhibited enormous 

differences in microspore embryogenic potential (Chuong et al. 1988; Dunwell et al. 

1983; Siebel and Pauls 1989; Thurling and Chay 1984). In this study, a huge variation in 

response was found in the DH4079 x Express 617 population, which made clear the 

presence of a complex genetic network involved in microspore embryogenic potential 

and direct embryo to plant conversion. The significance of genetic factors involved in 

the in vitro culture related traits was supported by the relatively high broad-sense 

heritability values observed in the DH4079 x Express 617 DH population (see Table 

3.1). A heritability value of 86 % was identified for the trait microspore embryogenic 

potential. In agreement with that, Zhang and Takahata (2001) found very high broad-
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sense heritabilities of microspore embryogenic ability of 97 % and 96 % for B. napus 

and B. campestris ssp. pekinensis, respectively. Seo et al. (2013) reported heritabilities of 

in vitro shoot regeneration from hypocotyls in B. rapa of 75 %, while in the DH4079 x 

Express 617 DH population a heritability value of 82 % was observed for direct embryo 

to plant conversion. 

Since the embryogenic potential of microspores in Brassicas has been evaluated under 

very different culture conditions, it is very difficult to compare results among scientific 

studies. Nonetheless, all of them concluded that there is a small percentage of young 

pollen grains which switch their developmental pathway from gametophytic to 

sporophytic (Chuong and Beversdorf 1985; Dunwell and Cornish 1985; Gland et al. 

1988; Iqbal et al. 1994). Results obtained in this research showed that microspore 

embryogenic potential ranged from 0 to 3.9 %, meaning that up to 43,000 embryos per 

16 buds as a mean of five experiments could be obtained for very successful DH lines. 

Even, when many authors claimed that the optimal microspore density to obtain the 

highest microspore embryogenic potential ranges between 10,000 and 100,000 

microspores/ml (Huang et al. 1990; Orr et al. 1990; Telmer et al. 1992; Weber et al. 

2005), the microspore density of the cultures in the DH4079 x Express 617 DH 

population varied broadly from 58,900 to 148,700 microspores/ml and microspore 

embryogenesis was achieved for 96 of the 99 studied DH lines.  However, only a weak 

negative linear correlation was identified among the traits microspore density and 

microspore embryogenic potential. Such result may be derived from the fact that the 

relationship between those two variables could be curvilinear. Another factor 

influencing the lack of strong correlation among those traits could be related to the 

developmental stage of microspores. Late uninucleate stage has shown to be the 

optimal condition to generate microspore derived embryos in the cultivar Topas (Fan et 

al. 1988; Pechan and Keller 1988). However, a developmental asynchrony of 

microspores has been detected in the same anther and buds of the same plant and 

between individuals in similar development stage in some genotypes (Kott et al. 1988a; 

Pechan and Keller 1989; Kontowski and Friedt 1994), while in others, a more 

homogeneous microspore population has been found increasing the embryo yield 

(Kontowski and Friedt 1994). In the present research, the quantity of microspores at 

the optimal developmental phase was not recorded and would be interesting to assess 
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in order to evaluate the presence of a linear correlation between microspore density 

and microspore embryogenic potential.  

In previous studies, hybrids derived from multiples crosses of high and low responsive 

genotypes showed variable responses, displaying a superior performance on embryo 

yield compared to the parental genotypes or a value in between both parents 

(Kontowski and Friedt 1994; Zhang and Takahata 2001; Zhang et al. 2003), consistent 

with the F1 value for microspore embryogenic potential (0.49 %) of the present 

research, as well as for the traits root regeneration and secondary embryogenesis. This 

result could be the outcome of a cross between DH4079, a highly responsive genotype 

(Ferrie 2003), and Express 617, very recalcitrant (Klutschewski 2013; Ecke et al. 2015). 

Direct embryo to plant conversion ranged from 13 % to 85 % in the DH population. 

Surprisingly, the F1 showed a value of 34.7 %, which was not significantly different 

from the less responsive parent DH4079 (34.9 %), but much below the 87.7 % of 

Express 617, which has been recognized before for its excellent direct embryo to plant 

conversion (Klutschewski 2013). Such F1 response was also observed for embryo 

survival, even though the trait values for the parental genotypes were not statistically 

different based on the LSD (cf. Tables 3.1 and 3.2). Klutschewski (2013) evaluated the 

conversion of embryos into plants in 5 cultivars and 8 crosses of oilseed rape, 

identifying a very contrasting response among the hybrids compared to the parents. 

Thus, while some hybrids performed similar to either one of the parental genotypes, 

others showed lower direct embryo to plant conversion values in comparison to both 

parents. 

A correlation between the readiness of direct embryo to plant conversion of the 

individual DH microspore derived embryos of the segregating F1 derived embryo 

population and their performance for direct embryo to plant conversion was expected 

since the early development of a shoot could be an evidence of a genetic predisposition 

to easily convert directly into plants. Nonetheless, both traits showed no correlation. 

Genetic factors controlling direct embryo to plant conversion may be independent of the 

timing of shoot development. 
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16 genotypes of the DH population showed a higher microspore embryogenic potential 

compared to the high responsive parental line DH4079, which suggested transgressive 

segregation. Parental genotypes DH4079 and Express 617 present contrasting response 

for microspore embryogenic potential and direct embryo to plant conversion, which is 

usually a consequence of fixed allele sets with opposite effects. Transgressive 

segregation in the microspore derived DH population studied in the present research 

could be then explained by the recombination of positive parental alleles with additive 

effects of complementary genes. However, QTL analysis revealed only  alleles with 

positive additive effects from the parent Express 617. Unmasking of recessive alleles 

expressed in the DH derived progeny is a possibility that should not be discarded since 

Express 617 is an inbred line and complete homozygosity is not guaranteed (Rieseberg 

et al. 1999). 

3.5.2 Distorted segregation in the DH4079 x Express 617 DH population 

Skewed marker segregation has been reported very often in microspore derived DH 

populations of Brassica species (for a review see Ferrie and Möllers 2011). Biased 

marker segregations ranged from 9 % to 65 % and it occurred mostly in favor of the 

responsive parental genotype. Skewed marker segregation is considered to be caused 

by linkage of those markers to a gene or genes involved in microspore embryogenesis, 

diploidization, survival of embryos and consequently plant regeneration (Gupta 2013). 

As a result, specific parental alleles favoring androgenesis and/or direct embryo to 

plant conversion would occur more frequent in a DH population generated by 

microspore culture. In order to confirm the specific effect of loci on microspore culture 

responsiveness, skewed marker segregation should not occur in F2 populations of the 

same cross (Lombard and Delourme 2001). However, distorted segregation has been 

also reported in F2 (Chyi et al. 1992; Teutonico and Osborn, 1994), BC- (Ecke et al., 

2015) and RIL- Brassica populations (Ding et al. 2012; Yu et al. 2013), which implies 

that factors influencing skewed allele frequency are already effective during meiosis 

and are not necessarily restricted to embryogenic processes. 

In the DH4079 x Express 617 DH population skewed marker allele segregation was 

identified for 48.9 % of the SNP markers. SNP markers showing strongly skewed 

segregation in the DH population did show the expected 1:1 Mendelian segregation in 
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the BC1 population, except for one out of 15  markers, Bn-A09-p23144404 in linkage 

group A09 (Freudenthal 2016). Such outcome confirmed that factors influencing 

skewed allele frequency are not effective during meiosis and could be related to the 

embryogenic process. 63.4 % of the SNP markers were biased in favor of the highly 

responsive parent DH4079 and 36.6 % towards the recalcitrant parental genotype 

Express 617 for the trait microspore embryogenic potential in the DH population. This 

is in accordance with results of Tanhuanpää et al. (1994), who found that 7 out of 15 

RAPD markers showed distorted segregation in favor of the highly responsive Topas in 

a microspore derived DH population from the cross Topas x R4. Cloutier et al. (1995) 

reported 23 % and 31 % of RFLP markers with distorted segregation in two microspore 

derived populations, from which 59 % and 60 % were biased towards the responsive 

parental genotype Topas and 41 % and 40 % in favor of the poor responsive genotype 

Westar. In contrast to the observed outcome in the DH4079 x Express 617 population, 

31 % of the mapped markers in a DH population from the cross Express x R53 showed a 

skewed segregation ratio with 69.3 % of the alleles favoring the low responding parent 

Express (Radoev 2007). However, the microspore embryogenic potential of R53 is not 

known (Radoev 2007). Ecke et al. (2015) identified biased segregation in 48 % of the 

markers mapped in a segregating population of haploid microspore derived embryos of 

a cross between Express 617 and the resynthesized oilseed rape line RS239. 19 out of 

34 regions with skewed marker segregation were in favor of the parental genotype 

RS239. When the segregation distortion was studied in a population of DH plantlets 

derived from the same parental lines, 59.9 % of the markers showed biased segregation. 

50 % of such genomic regions biased towards Express 617 alleles and 50 % in favor of 

RS239 alleles (Kampouridis et al. 2016). Microspore embryogenic potential of the 

genotype RS239 is not known. 

Even though previous studies suggested that gametic selection during androgenesis is a 

major factor acting in microspore embryogenic potential (Cloutier et al. 1995; Foisset 

and Delourme 1996), posterior selection during the development of embryos and 

plantlet regeneration could take place. Radoev et al. (2008), Ecke et al. (2015) and 

Kampouridis et al. (2016) identified numerous genomic regions with skewed 

segregation towards the androgenic recalcitrant but high direct embryo to plant 

conversion responsive parental genotype Express 617. Based on those results, 

segregation pattern in DH populations generated by microspore culture would be 
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influenced by the differences in the response of the parental genotypes with respect to 

their embryogenic, diploidization and direct embryo to plant conversion potential. Since 

DH4079 and Express 617 were chosen according to their extremely contrasting 

androgenic responses, it could be expected that selection during microspore 

embryogenesis would play a major role and skewed segregation would be mostly in 

favor of the parental responsive line DH4079, even though further selection during 

direct embryo to plant conversion, in which Express 617 displayed a higher direct 

embryo to plant conversion, could also influence marker allele segregation.  

3.5.3 QTL analysis 

In the present research, 10 QTL were detected: three for microspore embryogenic 

potential, one for survival of the embryos, and two each for secondary embryogenesis, 

direct embryo to plant conversion and for root regeneration. This represents the first 

QTL study assessing microspore embryogenic potential and direct embryo to plant 

conversion in Brassica species. 

In the present study, QTL for microspore embryogenic potential were located on linkage 

groups A01, A02 and C06, and QTL of the trait secondary embryogenesis were located 

in chromosomes A05 and A10. Compatible with our findings, Ecke et al. (2015) 

indicated the presence of important regions for microspore embryogenic potential in 

chromosomes A01, A02, A05 and A10.  

The QTL DEPC.A02.49 on chromosome A02 was responsible for 12.1 % of the 

phenotypic variance for direct embryo to plant conversion. The second QTL 

DEPC.A05.41 explained 22.15 % of the phenotypic variance and its presence was 

supported by the QTL ROOT.A05.41 that explained 12 % of the phenotypic variance for 

the trait root regeneration. Kampouridis et al. (2016) identified two important regions 

on linkage groups A02 and A05 possibly influencing direct embryo to plant conversion. 

In a previous research, the ability of hypocotyls to generate callus and shoots in B. rapa 

was evaluated (Seo et al. 2013). A QTL responsible for callus regeneration explaining 

9.2 % of the phenotypic variance was identified in linkage group A02. It can then be 

assumed that chromosome A02 carries important genes influencing in vitro direct shoot 

regeneration ability of B. napus. Additional to the previously mentioned QTL localized in 
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linkage group A05, a QTL SURV.A05.43 in the same chromosome explained 26.1 % of 

the phenotypic variance observed in the population for the survival of embryos. 

Overlapping confidence intervals of QTL in linkage group A05 indicate the presence of a 

clustered region carrying important factors responsible for the direct embryo to plant 

conversion. Alternatively, one locus in this region may exert pleiotropic effects on 

different traits. Significant and high correlation coefficients (rs=0.66 – 0.78, P< 0.01) for 

embryo survival, direct embryo to plant conversion and root regeneration indicates the 

presence of a ‘hotspot’ for loci controlling the regeneration of plants resulting from 

microspore derived embryos. An additional QTL, ROOT.C04.140, was found on 

chromosome C04 that explained 22.5 % of the phenotypic variance. Since a significant 

Spearman´s correlation (rs=0.66, P< 0.01) was found between root regeneration and 

direct embryo to plant conversion, it is likely that a gene or genes related to plant 

regeneration are located in this area of chromosome C04. 

Seo et al. (2013) reported the presence of two QTL on linkage group A06 and of two 

more on linkage groups A07 and A09 for plant regeneration, explaining 12.3 %, 14.0 %, 

8.4 % and 11.2 % of the phenotypic variance in the B. rapa population, respectively. In 

contrast, neither in the DH4079 x Express 617 DH population nor in the Express 617 x 

RS239 DH populations (Ecke et al. 2015; Kampouridis et al. 2016), evidence for the 

presence of QTL related to direct embryo to plant conversion on such chromosomes 

was identified.  

Although a large number of genomic regions with distorted marker segregation in the 

direction of both parents were identified (cf. Figures 3.5 and 2.6), no QTL influencing 

microspore embryogenic potential and direct embryo to plant conversion were 

identified on linkage groups A03, A04, A08 and C01, C02, C03, C05 and C09. The lack of 

collocation of distorted marker regions on this chromosomes with QTL for microspore 

embryogenic potential and direct embryo to plant conversion are consistent with 

results obtained by Ecke et al. (2015), Kampouridis et al. (2016) and Seo et al. (2013). 

Physical positions of QTL detected in the DH population DH4079 x Express 617 and 

physical positions of putative genomic regions related to microspore embryogenic 

potential and direct embryo to plant conversion detected by Ecke et al. (2015) and 

Kampouridis et al. (2016) were compared. Even though conspicuous genomic regions 
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were found in linkage groups A01, A02, A05 and A10 for all populations, there were no 

overlapping regions accounting for any trait (e. g. Figure 3.11). This supports the 

hypothesis about the existence of many different loci influencing embryogenesis of B. 

napus in those linkage groups. 

 

As previously reported for B. napus, B. oleracea and B. rapa (Zhang and Takahata 2001; 

Zhang et al. 2003; Sparrow et al. 2004; Holme et al. 2004), and in agreement with the 

effects of all QTL identified in the present study, in vitro culture response (plant 

regeneration from protoplast and petioles, androgenesis and direct embryo to plant 

Figure 123.11 QTL positions in linkage group A05 associated with the traits survival (SURV), 
direct embryo to plant conversion (DEPC) and root (ROOT) regeneration showed overlapping 
confidence intervals in the genetic map of B. napus. Physical positions in the B. rapa map within 
the 95 % confidence interval of the QTL accounting for DEPC and SECEMB are shown (red), as 
well as physical positions of markers flanking putative genomic regions related to microspore 
embryogenic potential (black) and DEPC (grey) according to Ecke et al. (2015) and Kampouridis 
et al. (2016).  

Genetic map (cM) B. napus  Physical Map (bp) B. rapa 
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conversion) seems to be under genetic control of loci with additive effects. However, an 

important contribution of dominant effects and epistatic interactions has been also 

stated (Zhang and Takahata 2001; Sparrow et al. 2004; Seo et al. 2013), an issue that 

was not assessed at the DH population DH4079 x Express 617. 

Except for the QTL SECEMB.A10.20 for secondary embryogenesis, the QTL alleles 

increasing the value of all traits are derived from Express 617. This result is consistent 

with the trait direct embryo to plant conversion since Express 617 is the much better 

responding parental genotype. However, for microspore embryogenic potential, our 

findings are opposite to the expected results, taking into account that DH4079 displayed 

a higher microspore embryogenic potential (1.4 %) compared to Express 617 (0.003 

%). In order to avoid errors and to confirm the position and direction of the effects, a 

second QTL analysis was performed using QTL Network 2.1 (Yang et al. 2008), which 

resulted in a very similar output compare to WinQTL Cartographer 2.5 (Wang et al. 

2012). Seo et al. (2013) evaluated the callus and shoot regeneration potential of B. rapa 

germinated hypocotyls, identifying an unexpected opposite direction of the effects on 

50 % of the QTL identified. A possible explanation for this result is the presence of 

epistatic interactions between loci, a very common fact influencing complex traits 

(Walley et al. 2012).  

It is very important to point out that the mapping population of this research was 

restricted to 99 DH lines due to the methodological difficulties to determine the 

microspore embryogenic potential and direct embryo to plant conversion of a 

satisfactory number of individuals. The size of the population is a critical factor affecting 

the power of QTL detection since it depends on recombination frequencies. Then, in 

small populations, the effect of QTL tend to be overestimated, while QTL with small 

effects are not detected (Zhang et al. 2014a). High-resolution mapping in larger 

populations has shown that usually single QTL splits in multiple closely linked QTL with 

often opposite effects (Mackay et al. 2009; Zhao et al. 2005). Even though DH4079 and 

Express 617 showed contrasting responses for both traits, microspore embryogenic 

potential and direct embryo to plant conversion, another reason why several QTL could 

not be detected, may be the absence of polymorphisms between the parental lines in 

loci influencing such traits. Absence of polymorphic markers may also cause the large 

gaps observed in linkage groups A07 and C06 (cf. figure 3.5). 



66 
 

3.5.4 Candidate Gene Analysis 

In order to identify the genetic factors involved in microspore culture, a BLAST analysis 

was performed on B. rapa and B. oleracea genome databases to locate physical positions 

of the QTL for microspore embryogenic potential, secondary embryogenesis and direct 

embryo to plant conversion. An exhaustive search of candidate genes was performed for 

the 95 % confidence interval of the QTL. This resulted in the identification of nineteen 

candidate genes with a strong relation to microspore culture success. 

On linkage group A01, the gene Bra028326 collocalized with the QTL POT.A01.67 for 

the trait microspore embryogenic potential. Bra028326 encodes for the enzyme 

isopentenyltransferase-7 (IPT7) which is involved in the biosynthetic pathway of 

cytokinins. Elhiti et al. (2012) identified a notable increase in IPT7 transcripts in 

androgenic cultures of B. napus and its up-regulation has also been observed during the 

induction period of somatic embryogenesis in zygotic embryos of Arabidopsis lines 

overexpressing the B. oleracea gene SHOOTMERISTEMLESS (STM). STM encodes a 

knotted-like homeobox protein required for the formation and maintenance of 

meristems and its overexpression correlated with an increment on somatic 

embryogenic potential (Elhiti et al. 2010). The enhancement of  isopentenyltransferase-

7 transcripts may result in an increase of cytokinins which possibly induce microspore 

embryogenesis due to their ability to control mitosis and cytokinesis, being able to 

induce cell division and differentiation in in vitro cultures (Zur et al. 2015). 

A collocation of the gene Bra037583 and the QTL POT.A01.67 in A01 was also identified. 

Bra037583 encodes a formylglycinamidine ribonucleotide synthase (PUR4, PURINE 

BIOSYNTHESIS 4), associated with purine biosynthesis (TAIR 2016). PUR4 function 

affects male gametophyte development and a significant increase in its expression has 

been observed when comparing microspore derived embryos with pollen (Joosen et al. 

2007). Nevertheless, its possible influence on microspore embryogenic potential has 

not been established. 

The gene Bol016999, on linkage group C06, encoding an oleosin was collocated with the 

QTL POT.C06.134 associated with microspore embryogenic potential. Oleosin belongs 

to an embryo specific protein group related to lipid storage which transcript has been 
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detected in zygotic, somatic and microspore embryos in B. napus. Oleosin is up-

regulated on different stages during embryo development (Tsuwamoto et al. 2007; 

Malik et al. 2007; Malik et al. 2008), and transcripts seem to be accumulated altogether 

with major storage protein genes, napin and cruciferin (Hays et al. 2001). However, a 

direct link to microspore embryogenic potential was not identified.  

On linkage groups C06 and A05, the genes Bol042965 and Bra008076 collocate with the 

QTL POT.C06.134 and DEPC.A02.49 respectively. Such QTL were identified for the traits 

microspore embryogenic potential and direct embryo to plant conversion. Bol042965 

encodes CLAVATA3/EMBRYO SURROUNDING REGION-RELATED PEPTIDE 25 (CLE25), 

while Bra008076 encodes CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 

PEPTIDE 1 (CLE1), both homologous to the CLAVATA3 (CLV3) gene of A. thaliana. 

CLE25, CLE1 and CLV3 belong to the CLAVATA family of receptor kinase proteins that 

enhances cell differentiation of peripheral cells of the meristem by repressing the 

expression of WUSCHEL (WUS), a gene related to apical meristem identity maintenance. 

CLAVATA1 (CLV1) is implicated in the regulation of the shoot apical meristem 

establishment. CLV1 mutants show an enlarged area of WUS expression, since a normal 

pattern of cell division and differentiation is missing, and larger meristems are formed 

(Schoof et al. 2000). In Arabidopsis ectopically overexpressing the B. napus CLV1 gene, 

WUS expression decreased and the size of the apical meristem and embryogenic 

capacity of hypocotyl explants was diminished too (Elhiti et al. 2010). CLAVATA genes 

are also essential for the maintenance of the apical meristem during all developmental 

stages for further organogenesis (Clark et al. 1997). Matsuo et al. (2009) reported the 

up-regulation of CLAVATA3/EMBRYO SURROUNDING REGION-RELATED PEPTIDE 2 

(CLE2) during the first days of induction as a result of the overexpression of the 

Arabidopsis ENHANCER OF SHOOT REGENERATION 1 (ESR1), which is a key factor 

influencing in vitro shoot regeneration in root explants (Banno et al. 2001). The function 

of CLE1 and CLE25 is poorly understood but is has been observed that even though 

CLE1 can rescue loss-of-function clv3-mutant, CLE25 cannot replace CLV3 activity (Ni 

and Clark 2006). On the other hand, the CLE25 peptide caused a size reduction of the 

apical meristem in Arabidopsis as CLV1, while CLE1 did not (Kinoshita et al. 2007). 

The genes Bra002576 and Bra034855 encode the transcription factor genes WUSCHEL 

related homebox-2 (WOX2) and WUSCHEL related homebox-5 (WOX5), which 
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collocalized with the QTL SECEMB.A05.21 and SECEMB.A10.20, respectively. During 

embryogenesis, the process to develop shoot and root meristems is relevant for the 

correct establishment of polarity. The organization is regulated by the WOX 

transcription factors in the root meristem and the WUSCHEL (WUS) transcription 

factors in the shoot meristem. Both are mainly expressed in the meristem quiescent 

center and are required to maintain the structural and functional integrity of the stem 

cells (Laux et al. 1996; Sarkar et al. 2007). Presumably, WUS transcription factors act by 

repressing the transcription of response regulators implicated in the differentiation 

processes determining cell fates during zygotic embryogenesis and plant development 

(Maraschin 2005; De Smet et al. 2010). In Arabidopsis, ectopically expressing the B. 

napus SHOOTMERISTEMLESS gene, the expression of WUSCHEL (WUS) was enhanced 

and it has been related to lines with increased embryogenic capacity by the formation of 

meristematic cells in hypocotyl explants (Elhiti et al. 2010). WOX2 and WOX8 have been 

detected in the female gamete and zygote, while WOX9 was identified starting from the 

bicellular stage of zygotic embryos of Arabidopsis. WOX1 has also been identified during 

the first stages of embryo formation and its expression during heart and torpedo stages 

is linked to the initiation of vascular primordium of the cotyledons. Then, after the first 

mitotic divisions of embryos, WOX expression is confined to the quiescent center of the 

meristem (Haecker 2004), suggesting that cell identity to generate meristems is 

determined already at the first zygotic division and its maintenance during the embryo 

development depends also on the expression of WUS in the shoot and WOX in the root 

(Elhiti et al. 2010; Soriano et al. 2013). The activity of WUS on embryogenesis was 

confirmed in Arabidopsis gain-of-function mutants which showed an enhanced somatic 

embryogenic capacity of root explants, promoting the switch from the vegetative to 

embryonic growth (Zuo et al. 2002).  

In such way, while WUS and STM genes maintain the identity of meristematic cells, 

CLAVATA genes act negatively inducing cell differentiation and preventing the spread of 

the stem cell population (Laux et al. 1996; Elhiti et al. 2010). The kinase-associated 

protein phosphatase (KAPP) seem to be a key factor in the WUS-CLV interaction to 

determine stem cell identity in the root and apical meristems since KAPP binds to CLV 

receptors and in this way decreases the CLV repression activity on WUS (Carles and 

Fletcher 2003). KAPP 4.9 fold up-regulation has been identified in Arabidopsis 

ectopically expressing the B. napus SHOOTMERISTEMLESS gene, which may be an 
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evidence of similar molecular factors involved in zygotic and in vitro embryogenesis 

(Elhiti et al. 2010).  In this way, the integrity of the meristems is regulated by a direct 

interaction of WUS and CLV genes through a positive–negative feedback loop of both, 

while the expression of WUSCHEL may start the formation of the apical and subapical 

meristems while CLV1, CLV2 and CLV3 specifies the tissue domains during embryo 

development (Brand 2000; Boutilier et al. 2005; Malik et al. 2007; Zhang et al. 2014b). 

WOX and CLE are then required for proper development of embryos (Malik et al. 2007; 

Elhiti et al. 2012), participating from the earliest stages to establish the apical and basal 

domains and maintenance of meristem structural and functional integrity, which is 

certainly associated with the capacity of cells to regenerate a shoot from the apical 

meristem and a root from the subapical meristem. 

Two genes, Bra002894 and Bra002564 encoding a SCARECROW protein and a 

SCARECROW-like transcription factor-11, collocated with the physical position of the 

QTL SECEMB.A10.20, which was related to the trait secondary embryogenesis. 

SCARECROW (SCR) transcription factor family proteins seem to be also responsible for 

maintaining stem cells in the meristems and like WUS, are mainly expressed in the 

quiescent center of root meristems during embryo development and under the 

regulation of SHORTROOT (SHR) transcription factors (Helariutta et al. 2000). SCR gene 

product controls the periclinal division that originates the cortex and endodermis cells, 

participating in cell fate to produce and maintain a radial organization in the root 

(Sabatini 2003). Expression of SCR in rapeseed microspore cultures starts after 3 days 

of induction and is maintained during embryo development (Custers et al. 2001), while 

in zygotic embryogenesis of Arabidopsis, SCR expression is observed in very early stages 

of embryo development (Jenik et al. 2007), suggesting that similar expression patterns 

of SCR expression to establish radial symmetry are followed in vivo and in vitro 

(Tsuwamoto and Takahata 2008). In hypocotyl explants of Arabidopsis ectopically 

expressing the B. napus STM genes that induce somatic embryogenesis, up-regulation of 

two SCARECROW-LIKE genes was observed (Elhiti et al. 2013). 

The genes Bra002859 and Bra008259 collocated with the QTL SECEMB.A10.20 in 

linkage group A10 and DEPC.A02.49 in A02 respectively. Bra002859 and Bra008259, 

related to the traits secondary embryogenesis and direct embryo to plant conversion, 

encode two analogous of the NO-APICAL-MERISTEM (NAM) from Petunia and CUP-
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SHAPED COTYLEDON 3 (CUC3) from Arabidopsis. NAM and CUC belong to NAC domain 

transcriptional regulator superfamily related to the formation of boundary cells of the 

meristems, contributing to the formation of the apical meristems and cotyledon 

detachment (Zimmermann and Werr 2005),  shifting from radial to bilateral symmetry 

of the embryo during the globular-heart stage transition (Zhang et al. 2014b). Petunia 

nam- and Arabidopsis cuc1- and cuc2- mutants fail to develop shoot meristems, and 

cotyledons are usually fused, blocking the normal development of the shoot (Souer et al. 

1996; Aida et al. 1997; Aida et al. 1999). The NAC activity in the meristem initiation may 

be related to the SHOOTMERISTEMLESS (STM) gene, whose expression depends on 

CUC1-3 (Aida et al. 1999; Takada et al. 2001). Development of axillary meristems and 

shoot and leaf arrangement are also dependent on CUC2 and CUC3 expression (Hibara 

et al. 2006). Arabidopsis thaliana-CUC3 expression has also been detected in boundaries 

of lateral roots and trichomes, suggesting that this gene could be related to the 

establishment of cell lineage boundaries in the root (Xie 2000). Root explants of 

Arabidopsis overexpressing the ENHANCER OF SHOOT REGENERATION 1 (ESR1) gene, 

and which expression is positively correlated with the shoot regeneration efficiency, 

showed up-regulation of CUC1 when transferred to shoot induction medium (Matsuo et 

al. 2009). Such results indicated that NAC transcriptional regulators are key factors in 

the shoot apical meristem initiation, primordia position and organ boundary 

establishment. In such way, NAC transcription factors are required for the correct 

multicellular organism development and growth of lateral organs of the plant, 

influencing not only the embryo body but also the direct embryo to plant conversion. 

A gene positioned in linkage group A10 within the confidence interval of the QTL 

SECEMB.A10.20 accounting for secondary embryogenesis, Bra002957, encode the 

enzyme thiamine-4, responsible for thiamine biosynthesis. Up-regulated thiamine genes 

have been identified in various stages of embryo development, but with a special 

transcription enhancement during the first induction days of androgenesis of B. napus 

(Joosen et al. 2007; Malik et al. 2007; Malik et al. 2008). A pair function in thiamine 

biosynthesis and mitochondrial DNA damage tolerance has been associated with 

thiamine enzymes expressed during all seed developmental stages and seedling 

development stage (TAIR 2016). Thiamine enzymes are involved in the response to 

oxidative and cold stress, and these functions may be associated with the competence of 
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microspores to develop embryos and the ability of such embryos to convert into plants 

after cold treatment. 

Three genes, Bra002994 on A10 which collocated with the QTL SECEMB.A10.20, and 

Bra022221 and Bra027219 that collocated with the QTL DEPC.A05.41 in linkage group 

A05, encode for late embryogenesis abundant domain-containing proteins (LEA). In 

Arabidopsis, somatic and zygotic embryogenesis was accompanied by an up-regulation 

of LEA genes at the latest developmental stage (Holdsworth et al. 2008; 

Wickramasuriya and Dunwell 2015), as observed in microspore embryogenesis in B. 

napus (Malik et al. 2007; Tsuwamoto and Takahata 2008; Malik et al. 2008). LEA protein 

transcripts are accumulated during the maturation phase of zygotic embryos (Saleh and 

Pages 2003). Increased expression of LEA genes is correlated with the exogenous 

application of the glutathione inhibitor buthionine sulfoximine (BSO) that accelerated 

microspore derived embryo maturation and increased the growth and performance of 

embryos during direct embryo to plant conversion in B. napus (Belmonte et al. 2006; 

Stasolla et al. 2008). A similar outcome was observed in embryos, where the exogenous 

application of ABA increased the expression of LEA genes resulting in the successful 

direct embryo to plant conversion (Haddadi et al. 2008), which supports the association 

of LEA proteins to such trait, even though LEA function is still unknown. 

A gene, Bra008362, encoding the gibberellin 2-oxidase-1, collocates with the QTL 

DEPC.A02.49 for direct embryo to plant conversion on linkage group A05. Gibberellin 2-

oxidase-1 (GA2ox1) expression has been detected in mature embryos and its function is 

associated with gibberellin catabolic process (TAIR 2016). Gibberellins (GAs) are 

essential plant hormones involved in seed germination, and their regulation is 

associated with different metabolic pathways, but GA 2-oxidation is considered the 

major inactivation regulating system in Arabidopsis (Rieu et al. 2008a; Yamaguchi 

2008). Therefore, the reduced expression of gibberellin 2-oxidases is correlated with a 

fast seed germination, while defective GA biosynthesis resulted in a prolonged seed 

dormancy (Lo et al. 2008). During vegetative and early reproductive phases, 

AtGA20ox1 and AtGA20ox2 are the mostly expressed gibberellin 2-oxidases and their 

function is considered to be partially redundant (Rieu et al. 2008b). In Arabidopsis, the 

loss-of-function deactivation of the gene GA2ox2 caused an increment of GA4 content 

accompanied by the enhancement of germination during imbibition (Yamauchi et al. 
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2007). It was confirmed with a double AtGA20ox1/AtGA20ox2-mutant, which showed 

more efficient germination when compared to the wild type. Germination of the double 

mutant was enhanced when a cold treatment was applied (Rieu et al. 2008b). It is well 

known that gibberellin 2-oxidases inhibit seed germination in the absence of light and 

cold conditions (Yamaguchi 2008). Cold treatment stimuli have shown to be effective 

for the direct embryo to plant conversion in B. napus (see Chapter 2). In this way, the 

expression level of the enzyme gibberellin 2-oxidase-1 could be associated with the 

further development of plants resulting from microspore derived embryos, acting 

similarly in in vivo and in vitro systems. 

The gene Bra008421 was localized on chromosome A02 within the confidence interval 

of the QTL DEPC.A02.49 for direct embryo to plant conversion. The gene Bra008421 

encodes a phosphoglycerate kinase, an enzyme of the glycolytic pathway catalyzing the 

transfer of a phosphate group from 1,3-bisphosphoglycerate to ADP to produce ATP 

(Liu et al. 2015). Phosphoglycerate kinase was up-regulated at various stages of 

microspore derived embryo development of B. napus (Joosen et al. 2007; Elhiti et al. 

2013). In primed oilseed rape seeds, showing an improved germination, an 

accumulation of phosphoglycerate kinase was observed (Kubala et al. 2015). In 

Arabidopsis, phosphoglycerate kinase was accumulated before radicle protrusion 

(Gallardo et al. 2001), and storage lipid mobilization may be required for a correct 

germination. In this regard, up-regulation of phosphoglycerate kinase in microspore 

derived embryos may be an important factor related to their direct conversion into 

plants. 

Previous studies assessing gene expression during androgenesis have suggested 

additional important microspore embryogenesis-related genes for instance 

BABYBOOM1 (BBM1), ABSCISIC ACID INSENSITIVE3 (ABI3), ARABIDOPSIS 

THALIANA SEED GENE 1 (ATS1), LEAFY COTYLEDON group (LEC1, LEC2 and (FUSCA3), 

FAD1, SHOOTMERISTEMLESS (STM), CUP-SHAPED COTYLEDON1 (CUC1) and ZWILLE 

(Boutilier et al. 2002; Malik et al. 2007; Tsuwamoto and Takahata 2008; Elhiti et al. 

2013; Zhang et al. 2014b). The physical positions of those candidate genes did not 

collocate with the 95 % confidence interval of the QTL identified for microspore 

embryogenic potential and direct embryo to plant conversion. Nevertheless, very 
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important genes previously related to these traits, such as CLE1, CLE25, WOX2, WOX5, 

SCARECROW, CUC3, NAC and LEA were found. 

3.5.5 Conclusions and Outlook 

The development of doubled haploid plants are of major interest for oilseed rape 

breeding and has been used since some decades for basic and practical research (Ferrie 

and Möllers 2011). Microspore culture in oilseed rape is a very important tool whose 

relevance has increased over the years (Tanhuanpää et al. 1994). Nevertheless, even 

with very efficient protocols, enormous differences in the microspore embryogenic 

potential remain among different B. napus genotypes, that is indeed restricted by a poor 

embryo production and a low direct embryo to plant conversion (Chuong et al. 1988), 

making the development of DH populations still expensive and time-consuming.  

Until now, many studies have focused on examining genomic regions with distorted 

marker segregation in Brassica species that indicate areas enriched with alleles that 

may confer the ability to generate DH plants. However, distorted marker segregation is 

a very common phenomenon as previously stated, which is not only influenced by the 

genotype but also by the environment (e.g. experimental conditions) and random 

effects (Foisset et al. 1996). In the present research, 6 out of 10 QTL collocated with 

biased marker segregation areas. Therefore, distorted marker segregation is not a 

definitive proof of regions controlling microspore culture response, because not all 

genomic areas related to androgenesis success are identical to regions with distorted 

marker segregation. A further detailed examination on highly distorted areas 

(segregation ratio>1:3) on linkage groups A01, A03, A08, A09, C03, C04 and C08 could 

reveal the presence of previously reported candidate genes (e. g. STM, CLV, WUS, WOX) 

related to microspore culture response. 

Microspore culture is a very time-consuming method and exhaustive work is needed to 

study the microspore embryogenic potential of a mapping population. For this reason, 

no previous QTL analysis for microspore embryogenesis was performed (Ecke et al. 

2015), and the present research represents a pioneer study.  



74 
 

Further characterization of additional DH lines from the DH4079 x Express 617 

mapping population would increase the power of QTL detection and could allow a more 

reliable identification of genes responsible for microspore embryogenic potential and 

direct embryo to plant conversion. Additional specific studies should also focus on the 

QTL hot-spot region on linkage group A05. 

Possible candidate genes underlying QTL associated with the microspore embryogenic 

potential to generate embryos and their ability to convert into plants were proposed. 

Suggested candidate genes are involved in relevant biosynthetic pathways (e.g. 

gibberellin catabolic pathway), metabolic processes (e.g. storage product mobilization) 

and at the transcriptional level (e.g. apical and subapical meristem initiation). Further 

allele characterization of the suggested candidate gene loci in high- and low-responsive 

lines from the DH4079 x Express 617 DH population, could provide substantial 

information about their influence in microspore embryogenic potential and direct 

embryo to plant conversion. The analysis of different parental allele effects could also 

facilitate the transfer of the microspore embryogenic potential from responsive to non-

responsive lines. 

The development and evaluation of gain- and loss-of-function mutants of candidate 

genes in B. napus would support their employment as markers to categorize high- and 

low- responsive genotypes. At the same time, the corroboration of the level and process 

of influence of such genes may direct the focus on specific experimental microspore 

culture improvements, either to enhance the ability of microspores to respond to 

inductive signals and initiate and maintain the embryo development, or to increase the 

capacity of embryos to convert into plants. 

Since heritability values were high and many QTL were identified, it was confirmed that 

genetic factors are involved in microspore success, which makes feasible the transfer of 

the embryogenic ability from highly responding to non- or low-responding genotypes. 

Thus, the microspore culture ability can be genetically improved in Brassicas (Zhang 

and Takahata 2001). It would be then an important issue to determine whether genes 

involved in microspore embryogenesis are closely linked to genes of agronomic interest. 

Previously, skewed segregation in microspore culture was considered a disadvantage 

for breeding programs (Zhang et al. 2003; Bélanger et al. 2016) because prevalent 
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genomic regions could be linked to undesirable agronomic traits (Tanhuanpää et al. 

1994). Nevertheless, several studies on DH oilseed rape microspore derived 

populations have shown that a very broad phenotypic diversity is conserved for most 

characters of interest: oil quality (Delourme et al. 2006; Qiu et al. 2006; Zhao et al. 

2005), fiber and protein content (Suprianto 2014; Zhang et al. 2006), glucosinolate 

content (Brandes 2014; Uzunova et al. 1995), resistance (Su et al. 2015; Voorrips et al. 

1997), phytosterols (Amar et al. 2008; Teh and Möllers 2016) and yield (Lichter et al. 

1988; Chen et al. 2007). Considering this, DH plant population development by 

microspore culture technique is a very suitable tool that complement conventional 

breeding methods by selecting profitable combinations of alleles (Walley et al. 2012). 
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Chapter 4 
____________________________________________________________ 
 

 

 

Effect of a low temperature treatment on gene 

expression in microspore derived embryos of Brassica 

napus L.  
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4.1 Abstract 

The success of microspore culture success is a concern for the production of doubled 

haploid populations. Since the response to microspore culture is genotype dependent, 

the contrasting performances of the direct conversion of microspore derived embryos 

to plants observed in several oilseed rape genotypes makes Brassica napus the perfect 

model plant to analyze functional genomics involved in the development of microspore 

derived embryos and its subsequent plant regeneration. Cold pretreatment of embryos 

has shown to enhance direct embryo to plant conversion and the study of the effect of 

low temperature on gene expression would give important insights of the genetic 

factors involved in plant regeneration from microspore derived embryos, which is still 

considered a constraint of the development of double haploids.  In this context, the aim 

of the present research was to study gene expression profiles through MACE (Massive 

Analysis of cDNA Ends) of cold-induced embryos derived from the genotypes DH4079 

and Express 617. These genotypes show a contrasting direct embryo to plant 

conversion performance, which is useful to identify differentially modulated genes with 

a similar expression pattern in both genotypes that is possibly related to the 

enhancement of direct embryo to plant conversion under low-temperature induction. 

Microspore culture of the winter oilseed rape genotype Express 617 and the spring 

genotype DH4079 was performed following a standard protocol. Microspore derived 

embryos at the late cotyledonary stage were cold treated for 10 days at 2 °C, while 

control embryos were incubated for 10 days at 20 °C.  The procedure was repeated for 

each genotype. After this, embryos were frozen and MACE was performed by GenXPro 

GmbH, Frankfurt am Main, Germany. MACE revealed 86,557 different transcripts from 

which 1,970 genes were exclusively expressed in cold treated embryos of both 

genotypes. As a whole, 2,606 transcripts exhibited a differential expression 

(log2FoldChange>2.3) and 207 transcripts were up- or down-regulated in both 

genotypes in cold treated embryos compared to the control treatment. Of the 207 

transcripts, 187 transcripts were annotated to known gene sequences and the top ten 

up- and down-regulated cDNA sequences were used for BLAST analysis to identify 

orthologous genes in the B. napus, B. oleracea, B. rapa and A. thaliana databases. Genes 

involved in plant defense, stress tolerance and cell detoxification were up-regulated 

(MATE efflux family protein, AP2/ERF transcription factors, Betv1/MLP like protein), as 
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well as genes encoding for carbohydrate and lipid transporters (SWEET12 and SRPBCC 

ligand-binding domain-containing protein), and genes translated into enzymes with 

hydrolase activity (HAD and ENDO1). Three more genes, BnaC06g15680D, 

BnaC05g26290D and BnaC07g40880D, encoding B. napus proteins with unknown 

function were highly up-regulated. Conversely, genes encoding proteins related to 

stress tolerance with an increasing accumulation during embryo development (M17, 

LEA49 and glycine-rich protein), were down-regulated in cold-treated embryos. 

Furthermore, three genes encoding proteins with enzymatic activity (GDSL 

lipase/esterase and Xyloglucan endotransglucosylase) and a transcription factor 

(AGL67) were highly down-regulated. Four gene transcripts, BnaC05g11200D, 

BnaC05g30620D, BnaA01g09770D and BnaC05g05660D, with unknown function were 

also down-regulated. Results of this study showed that exposure to cold temperature 

regulates gene expression of microspore derived embryos that could be associated with 

an enhancement of direct embryo to plant conversion. Further studies on differential 

gene expression, assessed by MACE and the detection of gene alleles associated to the 

contrasting response of genotypes, may lead to the identification of candidate genes 

related to plant regeneration from microspore derived embryos under cold-stress 

conditions. 
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4.2 Introduction 

Androgenesis is a crucial issue for the production of haploid and doubled haploid 

individuals. The enormous microspore embryogenic potential of some oilseed rape 

genotypes and a high sequence similarity of many genes to Arabidopsis thaliana (Brunel 

et al. 1999; Fourmann et al. 2002) have made Brassica napus a model plant to analyze 

functional genomics of microspore embryogenesis, replacing in this regard the non-

androgenic A. thaliana (Hosp et al. 2007). Nevertheless,  much less attention has been 

given to the genetic factors involved in the subsequent direct embryo to plant 

conversion, which is considered a bottleneck  for the development of double haploid 

populations (Möllers and Iqbal 2009). 

Pioneer studies on gene expression have shown that a major feature influencing the 

successful plant regeneration from microspore derived embryos is the proper 

formation and maintenance of the shoot apical meristem (Belmonte et al. 2006; Stasolla 

et al. 2008). For instance, the SHOOTMERISTEMLESS (STM), ZWILLE (ZLL), 

ARGONAUTE1 (AGO1), CLAVATA (CLV), WUSCHEL (WUS), and WUSCHEL RELATED 

HOMEOBOX (WOX) genes have been shown to be involved in the initiation of the shoot 

and root meristems, as well as in the preservation of stem cell identity and regulation of 

cell fates in embryo cultures of Brassicas and A. thaliana. The increased expression of 

the mentioned genes positively regulates CUP-SHAPED COTYLEDON (CUC) and 

SCARECROW-LIKE genes, which are also involved in cell fate decision (Tsuwamoto and 

Takahata 2008; Stasolla et al. 2008; Elhiti et al. 2010; Elhiti et al. 2012; Elhiti et al. 

2013). Therefore, an increased expression of genes involved in the establishment of an 

appropriate structure and functionality of the shoot apical meristem may enhance 

direct embryo to plant conversion. 

Since microspore culture response is genotype dependent, very contrasting 

performances regarding the direct microspore derived embryo to plant conversion 

under similar culture conditions were observed. This limits the efficiency of the 

androgenic system for many genotypes (Ferrie and Möllers 2011). However, it has been 

observed that direct embryo to plant conversion can be very much improved by a short 

term low-temperature treatment at 1-4 °C for a period of 3 to 14 days (e. g. Coventry et 
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al. 1988; Cegielska-Taras et al. 2002; Zhang et al. 2006). The short term low-

temperature treatment of microspore derived embryos to enhance their direct embryo 

to plant conversion has shown to be effective in many different genotypes (e. g. 

Coventry et al. 1988; Cegielska-Taras et al. 2002; Klutschewski 2013). Hence, it can be 

accepted, that the cold treatment has a genotype independent positive effect on this 

trait. In general, cold stress decreases the expression of several genes by the direct 

inhibition of the cell metabolic activity and by a cold-induced osmotic and oxidative 

stress (Chinnusamy et al. 2007). As a consequence, low-temperature treatment 

implicates the reprogramming of gene expression and metabolism (Viswanathan and 

Zhu 2002).  

Massive Analysis of cDNA Ends (MACE) is a new RNA sequencing technology developed 

by GenXpro GmbH, Frankfurt am Main, Germany, which provides sequence information 

about transcribed genes and transcript abundance. MACE allows a simultaneous 

genotyping and transcript quantification with a high resolution since only one sequence 

read is produced from the 3′-end of each polyadenylated transcript and very low-

abundant transcripts are identified in comparison to the RNA-Seq method (Zawada et 

al. 2014; Bojahr et al. 2016). Hence, MACE is a next generation sequencing system that 

enables a detailed characterization of differentially expressed genes. 

The objectives of the present research were to study the effect of a short term low 

temperature treatment of microspore derived embryos on gene expression profiles of 

the genotypes DH4079 and Express 617, and to identify differentially expressed genes 

with a similar expression pattern in both parental lines, which possibly may be related 

to the enhanced direct embryo to plant conversion. Among the known rapeseed 

genotypes, the line DH4079 of the Swedish spring cultivar Topas shows an outstanding 

microspore embryogenic potential, but only a moderate direct embryo to plant 

conversion (see chapter 3). In contrast, a very low embryo production is obtained from 

inbred line 617 derived from the winter oilseed rape cultivar Express, but which shows 

a good direct embryo to plant conversion under comparable conditions (Klutschewski 

2013; Ecke et al. 2015, and see Chapter 3). 
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4.3 Materials and Methods 

4.3.1 Plant material 

Seeds of the winter oilseed rape genotype Express 617 and of the spring genotype 

DH4079 were cultivated in the greenhouse. Upon bolting, plants were transferred to a 

growth chamber for their further use as microspore donor plants (Buds of length 2.5 to 

3.5 mm with microspores at the late uninucleate stage were collected and surface 

sterilized with 1 % calcium hypochlorite solution and Tween-20. Microspore isolation 

and culture were performed following a standard protocol. For further details on donor 

plant growth conditions, microspore preparation and culture see Materials and 

Methods of Chapter 3.  Twenty-one days after culture initiation a subsample of 30 

microspore derived embryos was transferred to a Petri dish (92 x 16 mm, Sarstedt AG 

and Co., Nürnbrecht, Germany) with 12 ml LN13-medium (Lichter 1982; www.duchefa-

biochemie.com, catalog no. N0252). Petri dishes were incubated for 7 days on a shaker 

(40 rpm) in a culture room (22 °C, 12/12 h light/dark, Osram L Lumilux daylight 58W, 

with a light intensity of 70 µmol m-2 s-1). Well differentiated microspore derived 

embryos at the late cotyledonary stage with a size of 0.7 to 1.0 cm in length were 

transferred to plastic boxes (10.5 x 8 x 5 cm, Volume 0.24 L, Huhtamaki GmbH and 

Co.KG, Alf, Germany) containing B5-medium supplemented with 0.1 mg/L gibberellic 

acid and solidified with 0.9 % Plant Agar (Gamborg et al. 1968). Eight microspore 

derived embryos were placed in each plastic box, to give a total of 2 boxes per genotype. 

One box each from the genotypes Express 617 and DH4079, were incubated for 10 days 

at 2 °C in the dark (Cegielska-Taras et al. 2002). The other two boxes with embryos 

were incubated in a culture room at 22 °C. After 10 days, boxes with cold treated 

embryos were transferred to the same culture room at 22 °C and incubated for another 

10 days along with non-cold treated embryos. After 20 days in total, the cold and non-

cold treated embryos of both genotypes were frozen in liquid nitrogen and stored at -80 

°C.  
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4.3.2 MACE 

To identify genes that are differentially expressed after a cold treatment to induce direct 

embryo to plant conversion, a Massive Analysis of cDNA Ends (MACE) was performed 

on treated and control microspore derived embryos. Therefore, bulked embryos from 

each genotype and each treatment (4 bulks of 8 embryos) were used. RNA extraction 

and MACE was performed at GenXPro GmbH, Frankfurt am Main, Germany. From each 

bulk a RNA library was generated. Raw read counts were normalized by dividing the 

number of each transcript through the sum of the total reads of the library and 

multiplied by 106 ((RawCount/LibraryCount)*1.000.000 = tags per million). Transcript 

distribution along the libraries was plotted in Venn diagrams using the InteractiVenn 

tool (Heberle et al. 2015). 

4.3.3 Gene annotation and gene expression profiling  

The transcripts were analyzed by GenXPro GmbH, Frankfurt am Main, Germany through 

BLAST against the B. napus Genome Database (GENOSCOPE; 

http://www.genoscope.cns.fr/brassicanapus/). Gene Ontology (GO) term enrichment 

was obtained according to the functional classification of genes of the Gene Ontology 

Consortium (http://geneontology.org/). 

Significant differentially expressed transcripts were determined by paired comparisons 

between the libraries of the temperature treated against control embryos of each 

genotype. The following 2 comparisons were made: untreated embryos against cold-

treated embryos of genotype Express 617 and untreated embryos against cold-treated 

embryos of genotype DH4079. A transcript was considered differentially expressed 

when the fold change of the normalized expression value was at least five-fold increased 

or decreased, resulting in a log2FoldChange value ≥ 2.3, with a false discovery rate 

(FDR) ≤ 0.05 and an adjusted P-value ≤0.05. log2FoldChange was calculated as the log2 

value of normalized read counts in untreated embryos subtracted from the log2 value of 

normalized read counts in the cold-treated embryos (log2FoldChange = 

log2(normalized read counts cold-treated) – log2((normalized read counts untreated)).  
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Expression patterns of differential expressed transcripts were assessed by a 

hierarchical clustering using “dendextend” package of R software version 3.2.2 (Galili 

2015; R Development Core Team 2016). Top ten up- and down-regulated cDNA 

sequences were used for BLAST analysis to identify orthologous genes in the B. napus 

Genome Database (GENOSCOPE; http://www.genoscope.cns.fr/brassicanapus/), B. 

oleracea Genome Database (Bolbase; http://119.97.203.210/bolbase/index.html), B. 

rapa Genome Database (BRAD; http://brassicadb.org/brad/index.php) and A. thaliana 

Database (TAIR; http://www.arabidopsis.org/). Gene annotations were obtained from 

the Swiss-Prot and TrEMBL UniProtKB (http://www.uniprot.org/uniprot/), InterPro 

(http://www.ebi.ac.uk/interpro/) and TAIR (https://www.arabidopsis.org/) 

Databases. 

 

http://www.arabidopsis.org/
http://www.ebi.ac.uk/interpro/
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4.4 Results 

Massive Analysis of cDNA Ends (MACE) was performed to identify differentially 

expressed genes of embryos after a cold treatment at 2 °C for 10 days that enhances the 

direct embryo to plant conversion. Genome-wide gene expression profiling was 

performed in bulked set of eight control embryos and eight 2 °C-treated embryos from 

the two genotypes DH4079 and Express 617. The RNA was isolated only 10 days after 

the cold treatment, because the idea was not to detect direct gene expression 

differences caused by the cold treatment, but rather to detect long term differences 

affecting the enhanced direct embryo to shoot conversion. The total number of reads 

was 28,572,782, comprising 13,418,891 reads from the two control libraries (untreated 

embryos) and 15,153,891 from the two cold treated embryo libraries (Table 4.1). 

27,285,187 reads accounted to known gene sequences in reference to B. napus, B. rapa 

and B. oleracea genomes, whereas 1,286,377 reads were uncharacterized. The total 

number of reads accounted for 86,557 different transcripts.  

 

 

 

 

Table 94.1 Summary of statistics of mRNA reads in the four libraries of B. napus 
microspore derived embryos. 

 

  
Control 

Cold 
Treated 

Total 

Number of uncharacterized reads Express 617 325,582 336,051 
 

 
DH4079 308,421 316,323 

 

 
Total 634,003 652,374 1,286,377 

    
4.5 % 

Number of characterized reads Express 617 6,155,654 6,601,050 
 

 
DH4079 6,517,010 8,011,473 

 

 
Total 12,672,664 14,612,523 27,285,187 

    
95.5 % 

Total number of reads Express 617 6,481,515 6,825,788 
 

 
DH4079 6,937,376 8,328,103 

 

 
Total 13,418,891 15,153,891 28,572,782 
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4.4.1 Gene expression 

From the 86,557 identified transcripts, 50,630 were expressed in all four libraries 

(Figure 4.1). Similar numbers of genes, between 67,895 and 70,050, were expressed in 

the cold treated and untreated embryos of Express 617 and DH4079. Of the 86,557 

transcripts 1,970 genes were exclusively expressed in cold treated embryos of both 

genotypes; and 1,188 genes were only expressed in untreated control embryos 

 

4.4.2 Functional classification of genes 

From the 86,557 different entities, 40,997 were assigned to at least one gene ontology 

(GO) term grouped in the three main functional categories: biological process, 

molecular function and cellular component (Figure 4.2).  The majority of genes (22,071, 

38.1 %) were assigned to the category molecular function, followed by biological 

process (19,256, 33.2 %) and cellular component (16,627, 28.7 %). More emphasis was 

Figure 134.1 Genes expressed in control and cold treated embryos in Express 617 (E) and 
DH4079 (T) genotypes of B. napus. 50,630 genes were simultaneously detected in each of the 

four libraries and 1,970 genes were specifically expressed in cold treated embryos of both 

genotypes. 
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made on molecular function and biological process categories since a better 

understanding of the embryo response to cold treatment could be obtained compared 

to the cellular component category.  The GO terms “binding” (13,787 genes, 

GO:0005488) and “catalytic activity” (11,765 genes, GO:0003824) were dominant for 

the main category of molecular function, while “metabolic process” (16,107 genes, 

GO:0008152) and “cellular process” (12,657, GO:0009987) were dominant for the main 

term biological process. 

 

 

 

Figure 144.2 Gene ontology (GO) classification of annotated genes in two main GO categories: 

molecular function and biological process. The number of genes (x-axis) belonging to the most 

representative 21 sub-categories (y-axis) are shown. 
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4.4.3 Differentially expressed genes in cold treated embryos of both parental 

lines 

When analyzing the two parental lines separately, 2,606 transcripts out of the 86,557 

exhibited a differential expression with a log2 ratio≥2.3 in cold treated embryos 

compared to the control treatment. Differential expression of the transcripts was 

visualized by a hierarchical cluster analysis to examine similar and unequal patterns in 

both genotypes (Figure 4.3). As a result, the expression of 207 (7.9 % of the 2,606 

transcripts) transcripts were simultaneously up- or down-regulated in both genotypes, 

when embryos were cold treated, even when the direction of the regulation was 

different among the two genotypes for 17 transcripts. From the 207 transcripts, 20 (9.7 

%) corresponded to uncharacterized RNA sequences and 187 (90.3 %) were annotated 

to known gene sequences (Figure 4.4). From the annotated transcripts that exhibited a 

significant dissimilar expression in both genotypes, 67 (35.8 %) were down-regulated 

and 120 (64.2 %) were up-regulated in Express 617. In DH4079, 82 (43.9 %) transcripts 

were down-regulated and 105 (56.1 %) transcripts were up-regulated (Figure 4.5b). As 

a whole, 66 annotated transcripts were down-regulated and 104 transcripts were up-

regulated in a similar pattern in both parental genotypes. 

Only in Express 617, a total of 843 transcripts expressed differentially and 726 (86.1 %) 

were annotated to gene sequences while 117 (13.9 %) corresponded to uncharacterized 

RNA. Among the annotated transcripts, 174 (24 %) were down-regulated and 552 (76 

%) up-regulated (Figure 4.5a). In DH4079, the expression of 1,970 transcripts was 

differentially regulated, from which 236 (12 %) corresponded to uncharacterized RNA 

and 1,734 (88 %) matched gene sequences. From the characterized sequences, 873 

(50.3 %) were down-regulated and 861 (49.6 %) transcripts were up-regulated in 

DH4079 (Figure 4.5a). 
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Figure 154.3 Hierarchical cluster analysis of the 2,606 differentially expressed 

genes in cold treated embryos compared to control embryos from two different 

rapeseed genotypes, Express 617 and DH4079 (columns). Similar expression 

patterns in both genotypes are shown (arrows). Hierarchical cluster analysis was 

based on log2FoldChange values, displaying expression patterns of genes (rows). 

The expression of a gene was significantly different over a threshold of 2.3 

log2FoldChange absolute value. Green palette represents up-regulated 

expression and red palette represents down-regulated expression. 
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Figure 174.4 Differentially expressed genes (>log2FoldChange 2.3) of cold treated embryos 

(p<0.05, FDR<0.05) in comparison to control embryos: 539 genes were exclusively differentially 

regulated (up- or down- regulated) in Express 617 (E-Treated) and 1,547 in DH4079 (T-

Treated), whereas 187 genes were differentially expressed in both genotypes. 

 

Figure 174.5 Direction of gene regulation in differentially expressed transcripts identified in 

cold treated embryos in comparison to control embryos in genotypes Express 617 and DH4079. 

a) A total of 726 genes were differentially expressed in Express 617 and 1,734 in DH4079. b) 

187 genes were simultaneously modulated in both genotypes, even though the direction of the 

gene regulation was not identical in Express 617 and DH4079 for all genes, as revealed by the 

different percentages shown for the up-and down-regulated expression. 

a) b) 
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From the 187 differentially expressed genes in cold treated embryos of both genotypes, 

the top ten genes showing the highest log2FoldChange in expression were further 

studied (Tables 4.2 and 4.3). 

BnaA09g05190D and BnaA01g11760D were the two most up-regulated genes in cold 

treated microspore derived embryos (Table 4.2). They encode for integral components 

of the plasma membrane with transporter activity. The bidirectional sugar transporter 

SWEET is the protein product of BnaA09g05190D expression, orthologous to SWEET12 

in A. thaliana, whereas BnaA01g11760D translates into a Multi Antimicrobial Extrusion 

(MATE) efflux family protein involved in cell detoxification. A third gene probably 

involved in transporter activity, BnaC05g01260D, has an A. thaliana orthologue 

At1g02470, which encodes an SRPBCC (START/RHOalphaC/PITP/Bet v1/CoxG/CalC) 

ligand-binding domain-containing protein, belonging to the polyketide 

cyclase/dehydrase and lipid transport superfamily. BnaA09g50010D belongs to the ten 

top up-regulated genes, which translates into an APETALA2/ETHYLENE RESPONSE 

FACTOR (AP2/ERF) domain, which belongs to a transcription factor family regulated by 

ethylene and by abiotic stresses. The orthologue in A. thaliana is OCTADECANOID-

RESPONSIVE ARABIDOPSIS AP2/ERF 59 (ORA59) involved in plant defense. The up-

regulated gene BnaAnng33440D encodes for a Betv1/MLP like protein, an orthologue to 

MLP423 in A. thaliana with a defense-related function. Two genes with enzymatic 

activity, BnaA05g06860D and BnaA09g47700D, were up-regulated. BnaA05g06860D 

encodes a Haloacid Dehalogenase (HAD) with hydrolase activity. An A. thaliana 

orthologue was not found. BnaA09g47700D encodes an S1/P1 nuclease, whose 

orthologue in A. thaliana corresponds to the ENDONUCLEASE 1 (ENDO1). 

BnaC06g15680D was up-regulated and encodes a Yippee family putative zinc-binding 

protein with unknown function. Another two B. napus genes, BnaC05g26290D and 

BnaC07g40880D, were up-regulated but the translated proteins have not been 

characterized. 

In the group of the ten top down-regulated genes in cold treated microspore derived 

embryos, the transcript of BnaA07g33810D with the orthologous AGAMOUS-LIKE 67 

transcription factor was found in A. thaliana. The two genes encoding proteins with 

enzymatic activity, BnaC05g43060D and BnaC09g32760D, were highly down-regulated. 

BnaC05g43060D encodes a GDSL lipase/esterase, whereas BnaC09g32760D translated 
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into a Xyloglucan endotransglucosylase, both with hydrolase activity as their 

orthologous counterparts in A. thaliana. The A. thaliana orthologous for the down-

regulated BnaC03g23240D and BnaA03g12360D encode two Late Embryogenesis 

Abundant (LEA) proteins, M17 and LEA 49, which are related to stress tolerance. The 

orthologous gene of BnaA09g18220D in A. thaliana encodes a glycine-rich protein also 

related to dehydration tolerance during cold stress. Four down-regulated gene 

transcripts, BnaC05g11200D, BnaC05g30620D, BnaA01g09770D and BnaC05g05660D, 

have not been characterized in B. napus and their function in the orthologous A. thaliana 

remains unknown. 

 



 
 

 

Table 104.2 Top ten up-regulated transcripts in B. napus cold treated microspore derived embryos of Express 617 and DH4079 genotypes. 
 
 

log2FoldChange Best match in B. napus Orthologous genes 

Annotation* 
Express 617 DH4079 Gene E-value ID% A. thaliana B. oleracea B. rapa 

3.7 4.9 BnaA09g05190D 1.5E-143 98.2 AT5G23660 Bo9g014010 Bra026487 
SWEET, SWEET sucrose 

transporter family proteins 

3.7 5.0 BnaAnng33440D 0 98.3 AT1G24020 Bo7g054680 Bra012397 MLP423, MLP like protein 

3.7 5.9 BnaC06g15680D 4.5E-131 100 AT3G55890 Bo6g069870 Bra003223 Yippee-like family protein 

3.9 6.3 BnaA01g11760D 1.3E-63 100 AT4G21903 Bo1g025740 Bra013572 MATE efflux family protein 

3.9 6.2 BnaC05g01260D 9.4E-127 98.4 AT1G02470 Bo5g003200 - 
Polyketide cyclase/dehydrase and 

lipid transport superfamily protein  

4.1 6.5 BnaA05g06860D 3.4E-83 100 
 

- Bra005174 HAD hydrolase 

4.2 4.9 BnaA09g47700D 4.4E-48 100 AT1G11190 - Bra031758 ENDO1, endonuclease 

4.4 4.1 BnaA09g50010D 1.9E-152 100 AT1G06160 Bo8g114710 Bra032433 
ORA59, ethylene-responsive 

transcription factor  

4.5 6.8 BnaC05g26290D 4.8E-144 100 AT1G49800 Bo5g076470 - BnaC05g26290D protein 

4.8 4.3 BnaC07g40880D 1.4E-97 100 - Bo7g111410 - BnaC07g40880D protein 

* Gene descriptions were obtained from TAIR ID% of what to what on RNA sequence level? 
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Table 114.3 Top ten down-regulated transcripts in B. napus cold treated microspore derived embryos of Express 617 and DH4079 genotypes. 
 
 

log2FoldChange Best match in B. napus Orthologous genes 

Annotation* 
Express 617 DH4079 Gene E-value ID% A. thaliana B. oleracea B. rapa 

-3.5 -5.3 BnaC05g11200D 0 98.7 AT3G21380 Bo5g020350 Bra026177 
 JAL36, mannose-binding lectin 

superfamily protein 

-3.4 -4.2 BnaC05g30620D 4.9E-28 89.2 AT3G21480 Bo5g101000 Bra031286 
 BRCT domain-containing DNA 

repair protein 

-3.2 -5.2 BnaA07g33810D 1.1E-130 100 AT1G77950  - Bra015645 
AGL67, MADSbox family 

transcription factor 

-3.2 -4.7 BnaA01g09770D 0.49 95.2 AT4G18975   - Bra013365 Uncharacterized protein 

-3.2 -6.1 BnaC05g43060D 6.2E-119 100 AT3G09930  Bo5g137850   - GDSL esterase/lipase 

-3.1 -6.9 BnaC09g32760D 2.9E-70 100 AT5G57550  Bo9g133240 Bra002722  XTH25, glycoside hydrolase family 

-3.0 -4.6 BnaC03g23240D 0 100 AT2G41260   Bo3g035510  - 
M17, late embryogenesis abundant 

protein 

-2.9 -4.6 BnaA09g18220D 0 100 AT2G05580  Bo9g069430   - Glycine-rich protein family  

-2.9 -4.9 BnaA03g12360D 1.1E-163 100 AT5G53260  Bo3g022820 Bra029085  
LEA49, late embryogenesis 

abundant protein 

-2.8 -4.3 BnaC05g05660D 2.6E-40 100 AT1G07985  - Bra018667   Uncharacterized protein 

* Gene descriptions were obtained from TAIR 
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4.5 Discussion    

A major constraint to the development of DH populations through microspore culture is 

the efficient plant regeneration from microspore derived embryos, that is enhanced by 

the application of a short cold pretreatment (e. g. Coventry et al. 1988; Cegielska-Taras 

et al. 2002). The exposure to cold temperature is a stressful system that consequently 

reprograms the expression of multiple genes (Viswanathan and Zhu 2002). In this 

research, the expression profiles of cold treated and not cold treated embryos were 

assessed in order to find putative genes influencing cold-induced direct embryo to plant 

conversion. The study was complemented by the inclusion of two genotypes, DH4079 

and Express 617, which showed a different performance for this trait. 

4.5.1 Gene Expression and Functional Classification 

In a first approach, 86,557 different transcripts were identified through MACE analysis. 

However, only 50,630 were detected in all of the four libraries, and 1,970 were 

exclusively expressed in cold treated embryos of both genotypes, showing that the gene 

expression may be regulated by low temperature. 

When transcripts were classified according to their biological function, the most 

representative Gene Ontology (GO) terms were metabolic and cellular processes 

followed by response to stimulus.  However, the most dominant GO terms for the 

molecular function category were binding and catalytic activity, in which antioxidant 

activity was also highly represented. This pattern was observed in the expression 

profiles of developing zygotic embryos of B. rapa (Zhang et al. 2014b), suggesting a high 

transcriptional and metabolic activity as well as the activation of a protective 

mechanism against environmental stress during embryo maturation and conversion 

into plants.  

4.5.2 Differential genes expression profiling 

In total, 207 transcripts were either up- or down-regulated in both genotypes when 

embryos were cold treated, from which 187 were annotated to known gene sequences. 

Of the 187 transcripts, 64 % and 56 % were up-regulated in Express 617 and DH4079, 
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respectively. Therefore, the direction of the gene regulation was not equal for all genes 

in both genotypes, but such higher percentages of up-regulated genes could be an 

indication of an increase in gene expression resulting from the cold treatment. 

Similarities in gene expression patterns of cold treated embryos in both genotypes can 

be then associated with their response to low temperature that enhances direct embryo 

to plant conversion. 

To study in detail the effect of cold treatment on the expression of important genes 

possibly influencing direct embryo to plant conversion, the top ten up- and down-

regulated transcripts in both Express 617 and DH4079 were further evaluated. 

The gene BnaA09g05190D (Table 4.2) was highly up-regulated and encodes a 

bidirectional sugar transporter member of the SWEET family, whose orthologue in A. 

thaliana, SWEET12, is responsible for carbohydrate transport particularly expressed in 

the phloem (Chen et al. 2012). The SWEET family protein members are expressed at 

several stages of embryo development and seedlings and have been related to an 

improvement in seed yield in A. thaliana (Schmid et al. 2005; Chen et al. 2015). The 

bidirectional sugar transporter SWEET15 was highly up-regulated in a prior 

germination phase after PEG 6000 mediated osmopriming in B. napus that resulted in 

an increase of germinated seeds (Kubala et al. 2015). Therefore, SWEET transporters 

have been involved not only in seed maturation but also in ending seed dormancy (TAIR 

2016) that could influence direct plant conversion of microspore derived embryos. 

BnaA01g11760D translates into the DETOXIFICATION protein that is a member of the 

Multi Antimicrobial Extrusion (MATE) efflux family that mediate resistance to several 

toxins (UniProt 2015). In B. napus, the repression of SHOOTMERISTEMLESS (STM) 

expression resulted in the down-regulation of MATE efflux genes during microspore 

embryogenesis (Elhiti et al. 2012). STM is responsible for the proper formation and 

maintenance of the shoot apical meristem and has been related to an enhancement of 

embryo yield and improved direct embryo to plant conversion (Elhiti et al. 2013). In the 

present study, DETOXIFICATION gene was up-regulated in cold-treated microspore 

derived embryos, which is in concordance with previous research on seed germination, 

in which a MATE efflux family protein was up-regulated after PEG 6000 mediated 
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osmopriming of B. napus seeds prior to germination and its expression was enhanced in 

24 h-imbibed seeds of A. thaliana (Nakabayashi et al. 2005; Kubala et al. 2015). 

BnaA09g50010D was part of the ten top up-regulated genes and encodes an 

APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain (UniProt 2015), which 

belongs to the transcription factor AP2/ERF family regulated by ethylene and biotic and 

abiotic stresses via ETHYLENE-INSENSITIVE2 (EIN2) (Fujimoto 2000). AP2/ERF family 

proteins are expressed in A. thaliana at the four- to twelve-leaves stage and its 

expression has also been associated with cold and oxidative stress response and 

tolerance in B. napus and A. thaliana seedlings (Schmid et al. 2005; Du et al. 2016; Lv et 

al. 2016). The A. thaliana AP2/ERF 59 (ORA59) is involved in plant defense and is an 

essential integrator of the signal transduction pathways that involve jasmonic acid and 

ethylene. Consistent with the present research, some ERF were up-regulated after PEG 

6000 mediated B. napus seed osmopriming prior to germination and in microspore 

derived embryo shoot meristems of  oilseed rape overexpressing STM (Elhiti et al. 2013; 

Kubala et al. 2015). It has been shown before that the AP2/ERF transcription factors 

diminish the expression of AGAMOUS in A. thaliana (Drews et al. 1991). This result is 

consistent with the outcome of the present research, since the B. napus gene, 

BnaA07g33810D, orthologous of the transcription factor AGAMOUS-LIKE 67 (AGL67) in 

A. thaliana, was down-regulated in cold treated embryos. This result is also supported 

by the findings of Elhiti et al. (2013), because a decreased STM expression caused an up-

regulation of AGAMOUS-like TF in shoot meristems of B. napus embryos. 

The up-regulated gene BnaC05g01260D is probably involved in the mobilization of 

storage products during germination since it is orthologous in A. thaliana. At1g02470, 

encodes an SRPBCC ligand-binding domain-containing protein with lipid transport 

activity (TAIR 2016), and expression in A. thaliana embryos and up-regulation upon 

PEG 6000 mediated osmopriming of B. napus seeds prior to germination has been 

observed (Schmid et al. 2005; Kubala et al. 2015).  

The genes BnaA05g06860D and BnaA09g47700D encode a HAD and an S1/P1 nuclease, 

respectively. Both genes with hydrolase activity were up-regulated as well as the 

BnaC06g15680D gene that encodes a Yippee family putative zinc-binding protein with 

unknown function (Mitchell et al. 2015; UniProt 2015). A plant defense-related gene 
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that was up-regulated in cold-treated embryos was BnaAnng33440D that encodes for a 

Betv1/MLP like protein with unknown function (Wen et al. 1997). Betv1/MLP like gene 

expresses in mature and imbibed seeds and seedlings of A. thaliana following 

application of biotic and abiotic stress (Giavalisco et al. 2005; Nakabayashi et al. 2005; 

Schmid et al. 2005). Another two B. napus genes, BnaC05g26290D and BnaC07g40880D 

which encode for proteins are not yet characterized. They were up-regulated in cold-

treated oilseed rape microspore derived embryos. An up-regulation of those genes 

following cold treatment of embryos and its relation to direct embryo to plant 

conversion has not been reported. 

On the other hand, BnaC03g23240D and BnaA03g12360D belong to the group of down-

regulated genes. The A. thaliana orthologous gene encode two Late Embryogenesis 

Abundant (LEA) proteins, M17 and LEA 49 (UniProt 2015). LEA proteins are considered 

cold responsive proteins with an important role in stress protection and desiccation 

tolerance (Yuan et al. 2012; Candat et al. 2014), and have been involved in embryo 

development since they are highly up-regulated during embryo maturation in A. 

thaliana, B. oleracea, B. rapa and B. napus (Raynal et al. 1999; Li et al. 2005; Soeda et al. 

2005; Zhang et al. 2014b). However, in agreement with the results of the present study, 

LEA genes showed a decreased expression through seed priming and imbibition and 

disappeared during germination (Raynal et al. 1999; Soeda et al. 2005; Ge et al. 2013; 

Kubala et al. 2015). 

The B. napus gene C09g32760D, which translates into a XYLOGLUCAN 

ENDOTRANSGLYCOSYLASE/HYDROLASE (XTHs), was down-regulated in cold-treated 

microspore derived embryos. Consistent with this, Elhiti et al. (2012 and 2013) 

reported the down-regulation of XYLOGLUCAN ENDOTRANSGLYCOSYLASE 6 and 9, and 

other genes belonging to the cell wall category in shoot apical meristems of microspore 

derived embryos overexpressing the B. napus STM gene, that also resulted in the 

enhancement of direct embryo to plant conversion. Such observation seems contrary to 

what is expected since XTHs are involved in the modification of primary plant cell wall 

structure, cleaving xyloglucan polymers in growing tissues (Hyodo et al. 2003).  

The transcripts of the BnaC05g43060D and BnaA09g18220D genes were also down-

regulated. BnaC05g43060D encodes a GDSL lipase/esterase with hydrolase activity as 
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its orthologous counterpart in A. thaliana (Mitchell et al. 2015), whereas the 

orthologous in A. thaliana of BnaA09g18220D translates into a glycine-rich protein that 

is probably related to cold stress tolerance (TAIR 2016). Four down-regulated gene 

transcripts, BnaC05g11200D, BnaC05g30620D, BnaA01g09770D and BnaC05g05660D 

have not been characterized in B. napus; therefore, their function is still unknown. The 

relationship of the diminished expression of those genes to cold-induced direct embryo 

to plant conversion was not established. 

4.5.3 Conclusions and Outlook 

The outcome of this study indicated that cold stress modulates gene expression of 

microspore derived embryos. Promising MACE results on differential gene expression 

suggested that this procedure could be applied to identify candidate genes related to 

plant regeneration from microspore derived embryos following cold-stress treatment. 

The expression of certain genes responsible for the shoot apical and root subapical 

meristems initiation and maintenance, such as SHOOTMERISTEMLESS, ZWILLE, 

ARGONAUTE1, CLAVATA, WUSCHEL and WUSCHEL RELATED HOMEOBOX (WOX), has 

previously been related to direct embryo to plant conversion success (e. g. Stasolla et al. 

2008; Elhiti et al. 2010). A further more comprehensive BLAST analysis of all expressed 

genes against B. oleracea, B. rapa and A. thaliana databases would allow to identify B. 

napus orthologous genes and analyze their possible differential expression associated to 

a direct embryo to plant conversion enhancement in cold-induced embryos. 

Supplementary experimental biological replications with the inclusion of additional 

low- and high-responsive genotypes would allow a more precise detection of SNP 

polymorphisms to establish a relation of dissimilar gene alleles to differential response 

of genotypes. 

A comprehensive study of clusters of genes with similar expression patterns as well as a 

pathway-based analysis (Kyoto Encyclopedia of Genes and Genomes; 

http://www.genome.jp/kegg/) could increase the understanding of gene interactions 

and biological processes involved in cold-induced direct embryo to plant conversion. 
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Chapter 5  

____________________________________________________________ 

General Discussion 

 

 

Microspore culture is a routinely employed technic for the development of double 

haploid populations for breeding programs. Despite the progress achieved in the 

improvement of microspore culture methods, many species remain recalcitrant (Ferrie 

and Möllers 2011) and the development of successful protocols is much more expensive 

compared to conventional breeding (Haddadi et al. 2008). Because of that reason, there 

is an interest to study the genetic basis underlying microspore culture response and the 

development of molecular markers for this purpose may be useful in breeding 

programs. Among Brassicas, B. napus is considered to be the most embryogenic species 

(Ferrie 2003) and remarkable differences among oilseed rape genotypes have been 

reported (Ferrie and Keller 2007). This makes oilseed rape an outstanding model plant 

to study functional genetics of androgenesis and zygotic embryogenesis (Custers et al. 

2001; Touraev et al. 2001). Therefore, a DH population derived from the cross between 

DH4079 and Express 617, which show very contrasting responses in their microspore 

embryogenic potential and direct embryo to plant conversion, was assessed in this 

study. 

5.1 Genetic Variation in microspore culture response of the DH4079 x Express 

Population  

Large and significant differences among the genotypes were observed for the traits 

microspore density, microspore embryogenic potential, embryo survival, direct embryo 

to plant conversion, root regeneration and secondary embryogenesis. In agreement, a 

huge variety in the microspore embryogenic potential and direct embryo to plant 

conversion has been observed among rapeseed genotypes (e. g. Trifonova and 



100 
 

Atanassov 1997; Babbar and Agarwal 2004; Smýkalová et al. 2006; Klutschewski 2013). 

Analysis of variance showed a highly predominant genotypic effect for microspore 

embryogenic potential, direct embryo to plant conversion and related traits. 

Consequently, high broad-sense heritabilities were observed in the DH4079 x Express 

617 DH population, as reported in previous studies in oilseed rape (Zhang and Takahata 

2001; Klutschewski 2013; Seo et al. 2013). The major importance of genetic factors 

involved in microspore culture response indicates that selection of successful genotypes 

is plausible, and microspore embryogenic potential and direct embryo to plant 

conversion can be genetically improved. This implies that routinely applying the 

microspore culture technic in commercial breeding programs will gradually improve 

tissue culture ability of the breeding material. The question remains if the loci 

responsible for distorted marker segregation are closely link to agronomic interest. This 

may be positive or negative depending on the direction of the effect of the allele. 

However, to date there is no evidence for any positive or negative effect of the 

androgenic process on the phenotypic trait variation within a segregating population.    

5.2 Distorted segregation and identification of QTL for microspore culture 

response 

Distorted segregation was identified in 49 % of the SNP markers, which is a common 

result in double haploid microspore derived populations that show an excess of alleles 

mostly in favor of the responsive parental genotype (for a review see Ferrie and Möllers 

2011). In the DH4079 x Express 617 population 63.4 % of the markers were biased in 

favor of DH4079 and 36.6 % towards the genotype Express 617, indicating that alleles 

positively affecting microspore embryogenic potential derived from both parents. A 

detailed analysis of highly distorted areas (segregation ratio>1:3) located in linkage 

groups A01, A03, A08, A09, C03, C04 and C08 would enable the possible identification of 

candidate genes previously associated with microspore culture response, such as 

BABYBOOM1 (BBM1), ABSCISIC ACID INSENSITIVE3 (ABI3), ARABIDOPSIS 

THALIANA SEED GENE 1 (ATS1), LEAFY COTYLEDON group (LEC1, LEC2 and FUSCA3), 

FAD1, SHOOTMERISTEMLESS (STM), CUP-SHAPED COTYLEDON1 (CUC1) and ZWILLE 

(Boutilier et al. 2002; Malik et al. 2007; Tsuwamoto and Takahata 2008; Elhiti et al. 

2013; Zhang et al. 2014b). 
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In the present research, 10 QTL related to microspore culture response were detected, 

from which 6 collocated with areas showing distorted marker segregation. From the 10 

QTL, three accounted for microspore embryogenic potential, one for survival of the 

embryos, and two each for secondary embryogenesis, direct embryo to plant conversion 

and for root regeneration. QTL for microspore embryogenic potential and direct 

embryo to plant conversion were located on chromosomes A01, A02, A05, A10 and C06, 

which is consistent with Ecke et al. (2015) and Kampouridis et al. (2016) findings. 

Nevertheless, physical positions of QTL and putative genomic regions related to 

microspore embryogenic potential and direct embryo to plant conversion detected by 

Ecke et al. (2015) and Kampouridis et al. (2016) did not overlap, which suggests the 

presence of several different loci controlling androgenesis of B. napus. A further 

characterization of additional DH lines from the DH4079 x Express 617 mapping 

population may lead to a more comprehensive detection of QTL since the size of the 

mapping population in this research was limited to 99 DH lines. Significant and high 

correlation coefficients (rs=0.66 – 0.78, P< 0.01) among embryo survival, direct embryo 

to plant conversion and root regeneration, as well as collocation of QTL of those traits 

on linkage group A05, pointed out the presence of a clustered region possibly carrying 

genes responsible for the direct embryo to plant conversion or the existence of a gene 

with a pleiotropic effect. A detailed analysis of parental alleles in this area, comparing 

bulked groups of low-responsive genotypes and of high-responsive genotypes for the 

trait direct embryo to plant conversion could allow the identification of SNP markers 

useful for further marker assisted selection. 

5.3 Candidate Gene Analysis 

A detailed examination of genes located in the 95 % confidence interval of QTL for the 

traits microspore embryogenic potential, secondary embryogenesis and direct embryo 

to plant conversion, resulted in the identification of nineteen putative candidate genes, 

of which 8 showed a strong relationship to microspore culture response: CLE1, CLE25, 

WOX2, WOX5, SCR, SCL11, CUC3 and NAC. All these genes are involved in the formation 

and maintenance of shoot and root meristems. Proper morphology and function of the 

shoot apical meristem has proven to be of  relevance for androgenesis, influencing 

positively direct embryo to plant conversion (Stasolla et al. 2008; Elhiti et al. 2013). 

While WOX, SCR, SCR11 preserve the identity of meristematic cells (e. g. Laux et al. 
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1996; Schoof et al. 2000; Matsuo et al. 2009; Elhiti et al. 2010), CLV, CUC and NAC genes 

induce cell differentiation and primordia appearance (e. g. Aida et al. 1999; Takada et al. 

2001; Hibara et al. 2006; Matsuo et al. 2009). LEA genes, highly up-regulated during 

embryo development, as well as hormone metabolism-related genes (IPT7 and 

GA20ox1) did collocate with QTL for microspore embryogenic potential, secondary 

embryogenesis and direct embryo to plant conversion. A further evaluation of the allelic 

variants of such genes present in the parental genotypes, as well as in DH lines showing 

contrasting responses, could confirm their influence on microspore embryogenic 

potential and direct embryo to plant conversion. Since a significant reprogramming of 

gene expression in microspores is needed to switch from the usual gametophytic 

development to an embryogenic development, a complex genetic network must be 

involved in the androgenetic process. 

5.4 Expression Profile Analysis 

A gene expression study through MACE was performed in cold-treated microspore 

derived embryos in comparison to non-treated embryos since a ten-day period of a cold 

shock has shown to enhance direct embryo to plant conversion (Cegielska-Taras et al. 

2002; Klutschewski 2013).  MACE revealed 86,557 different transcripts from which 

1,970 genes were exclusively expressed in cold treated embryos of both genotypes and 

207 exhibited a differential expression (log2FoldChange>2.3) compared to control 

treatment. This result revealed that low temperature enhances direct embryo to plant 

conversion by reprogramming the expression of genes involved in several processes, 

such as plant defense, stress tolerance and cell detoxification that were part of the 10 

most up-regulated genes (MATE efflux family protein, AP2/ERF transcription factors, 

Betv1/MLP like protein). AP2/ERF is a family of transcription factors with a regulatory 

role on plant response to biotic and abiotic stresses (Du et al. 2016). BABY BOOM gene, 

which has an important role in triggering the embryogenic growth on somatic tissues 

(Boutilier et al. 2002),  and ESR1 (Enhancer of Shoot Regeneration 1) gene whose 

overexpression increased in vitro shoot regeneration (Banno et al. 2001; Matsuo et al. 

2009), belong to the AP2-ERF family. BABY BOOM gene along with several other AP2-

ERF members, displayed an outstanding differential expression during Brassica 

androgenesis (e. g. Tsuwamoto et al. 2007; Zhang et al. 2014), pointing out the 

relevance of the AP2-ERF family during microspore culture response. A strong up-
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regulation also occurred for genes encoding carbohydrate and lipid transporters 

(SWEET12 and SRPBCC ligand-binding domain-containing protein), possibly related to 

storage product mobilization during germination and seedling establishment (Schmid et 

al. 2005; TAIR 2016). On the other hand, genes related to stress tolerance (M17, LEA49 

and glycine-rich protein) belong to the group of the most down-regulated ones in cold-

treated embryos. LEA and glycine-rich proteins have been associated with embryo 

maturation, accumulating during embryo development, but decreasing during seed 

germination (Raynal et al. 1999; Soeda et al. 2005; Ge et al. 2013; Kubala et al. 2015). 

Results of this study showed that the exposure of microspore derived embryos to cold 

temperature regulates gene expression that could be associated with an enhancement 

of direct embryo to plant conversion. Further replicated expression profiles and the SNP 

characterization of highly up- and down-regulated transcripts may allow the 

identification of candidate genes for improved plantlet regeneration induced by cold 

treatment. A comparison of gene expression profiles through MACE along the complete 

process of direct embryo to plant conversion, namely, from the onset of the cold-

treatment until the appearance of the shoot, would increase the knowledge of the 

genetic factors involved in every of the several stages involved in plantlet regeneration. 

5.5 Conclusion 

The outcome of this study showed a large variation on microspore embryogenic 

potential and direct embryo to plant conversion in the DH4079 x Express 617 

population with high heritability values, which pointed out the predominantly influence 

of genotypic factors on such traits. QTL and putative candidate gene detection make 

plausible the identification of high responsive genotypes and the transfer of alleles 

positively affecting microspore culture efficiency to low-responsive genotypes during 

plant breeding programs for the development of double haploid populations. The 

employment of recent sequencing and genotyping tools as MACE would lead to an 

earlier recognition of genes directly involved in microspore culture response. 

 

 

 

 



104 
 

 

Chapter 6  

____________________________________________________________ 

Summary 

 

 

Microspore culture is a very powerful technique in breeding of oilseed rape for the 

rapid and efficient generation of completely homozygous doubled haploid (DH) lines. 

Despite the progress achieved in optimizing tissue culture protocols, tremendous 

differences remain among Brassica napus genotypes in their embryogenic response and 

direct embryo to plant conversion, representing a hindrance in the development of 

double haploid populations for plant breeding purposes.  

To understand the genetic factors underlying microspore culture response, the 

following objectives were addressed: (a) to develop a doubled haploid population from 

the cross of the highly embryogenic line DH4079 and the low embryogenic inbred line 

Express 617; (2) to characterize the doubled haploid population for its microspore 

embryogenic potential, its direct embryo to plant conversion as well as for microspore 

density, embryo survival, root regeneration and secondary embryogenesis; (3) to 

develop an Illumina SNP-chip based molecular marker map, to identify QTL for those 

traits and to localize candidate genes within QTL confidence intervals for the traits of 

interest; and (4) to study the gene expression pattern in low-temperature treated 

microspore derived embryos with the aim to identify differentially expressed genes 

which may be involved in the enhanced direct embryo to plant conversion after cold 

induction. 

In vitro propagated F1-plants of the cross DH4079 x Express 617 were used to generate 

a DH population of 207 lines that were seed propagated and used as the source of 

microspores, which were cultured following a standard protocol. The number of 
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microspores and microspore embryogenic potential, defined as the percentage of 

microspores developing embryos, were recorded. Embryos at the late cotyledonary 

stage were transferred to solid medium to induce plantlet regeneration and following a 

cold treatment, the survival, secondary embryogenesis, direct embryo to plant 

conversion and root regeneration were scored. Experiments were repeated five times 

and mean values obtained from 81 to 98 lines were used for QTL mapping was 

performed based on an Illumina Infinium Brassica 60K SNP molecular linkage. Large 

and significant genetic differences were observed between the genotypes for all traits.  

Microspore number varied from 58,900 to 148,700 /ml and microspore embryogenic 

potential ranged from 0 to 3.6 %. Embryo survival varied from 26 % to 99 %, and direct 

embryo to plant conversion was found to range from 13 % to 85 %. Root regeneration 

varied from 14 % to 95 %, and secondary embryogenesis occurred in 4 % up to 91 % of 

the embryos. Analysis of variance revealed a predominant effect of the genotype 

influencing microspore culture response and high broad-sense heritabilities ranging 

from 66 % for the microspore number to 86 % for microspore embryogenic potential 

were detected. A linkage map based on 1,414 SNP markers was developed of which 49 

% exhibited distorted segregation clustered over all linkage groups, except for 

chromosome A04. Together, ten QTL were mapped on linkage groups A01, A02, A05, 

A10, C04 and C06. A positive correlation between survival of embryos, direct embryo to 

plant conversion and root regeneration, as well as overlapping QTL confidence intervals 

indicated the presence of either a ‘hotspot’ for loci controlling the regeneration of plants 

resulting from microspore derived embryos or a pleiotropic gene influencing several 

traits. BLAST-analysis revealed the presence of nineteen candidate genes within the 95 

% confidence interval of QTL. Among those, CLAVATA3/EMBRYO SURROUNDING 

REGION-RELATED PEPTIDE 1, CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 

PEPTIDE 25, WUSCHEL RELATED HOMEOBOX 1, WUSCHEL RELATED HOMEOBOX 2, 

WUSCHEL RELATED HOMEOBOX 5, CUP-SHAPED COTYLEDON 3, SCARECROW and NO-

APICAL-MERISTEM stand out, because they control cell fate and are responsible for root 

and shoot meristem initiation and maintenance, which is of major factor influencing 

microspore embryogenic potential and further direct embryo to plant conversion. 

In a further step, expression profiles of cold-treated and not cold-treated embryos were 

assessed through MACE (Massive Analysis of cDNA Ends). Microspore culture of 

genotypes Express 617 and DH4079 was performed following a standard protocol and 
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microspore derived embryos at the late cotyledonary stage were cold treated for 10 

days at 2 °C, while control embryos were incubated for 10 days at 20 °C. After this, cold-

treated and control embryos were cultured together for 10 days at 20 °C before they 

were frozen in liquid nitrogen. MACE was performed by GenXPro GmbH, Frankfurt am 

Main, Germany. MACE revealed 86,557 different transcripts, 2,606 exhibited a 

differential expression (log2FoldChange>2.3) of which 207 transcripts were up- or 

down-regulated in both genotypes when embryos were cold treated. Of the 207 

transcripts, 187 transcripts were annotated to known gene sequences and the top ten 

up- and down-regulated cDNA sequences were used for BLAST analysis to identify 

orthologous genes in the B. napus, B. oleracea, B. rapa and A. thaliana databases. Genes 

involved in plant defense, stress tolerance and cell detoxification were up-regulated 

(MATE efflux family protein, AP2/ERF transcription factors, Betv1/MLP like protein), as 

well as genes encoding for carbohydrate and lipid transporters (SWEET12 and SRPBCC 

ligand-binding domain-containing protein). Conversely, genes encoding proteins related 

to stress tolerance with an increasing accumulation during embryo development (M17, 

LEA49 and glycine-rich protein), were down-regulated in cold-treated embryos.  

Results of this study revealed a predominant effect of genotypic factors influencing 

embryogenic potential and direct embryo to plant conversion in the DH4079 x Express 

617 population. QTL analysis and MACE are complementary tools that allow the 

identification of genes controlling microspore culture response. An increased 

knowledge of the genetic factors involved in microspore culture would facilitate the 

allele transfer from high-responsive genotypes to less-responsive lines of agronomic 

interest and its employment in the development of double haploid populations during 

plant breeding programs.  
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Appendix 
____________________________________________________________ 
 

 

A.1 

 

Supplementary Table 1. Mean values over 5 experiments of the evaluated traits. 

Microspore density (MIC) is expressed as the volume of microspores per ml of 

liquid medium. Number of embryos (MDE) is expressed as the quantity of 

microspore derived embryos per single culture. Microspore embryogenic potential 

(POT) is defined as the number of microspore derived embryos produced from a 

certain number of microspores. The trait survival (SURV) is determined as the 

percentage of microspore derived embryos that were alive after 6 weeks of being 

transferred to B5 medium. Root (ROOT) regeneration was calculated as the 

percentage of microspore derived embryos which developed roots from the 

hypocotyl. Direct embryo to plant conversion (DEPC) was determined as the 

proportion of microspore derived embryos that regenerated into plants, presenting 

both shoot and root. The trait secondary embryogenesis (SECEMB) was scored as 

the percentage of microspore derived embryos that generated somatic embryos. 

 

 

DH LINE MIC MDE POT SURV SECEMB ROOT DEPC 

TG-004 1102488 2867.25 0.303 43.214 15.714 36.786 26.786 

TG-005 1008651 24520.6 2.315 76.894 65.909 79.412 66.288 

TG-006 1184748 31244.6 3.382 98.438 47.083 86.429 72.500 

TG-007 - 6350.6 - 89.815 72.685 54.167 37.963 

TG-008 1709184 40656.2 2.545 87.109 14.844 76.071 71.324 

TG-009 1519716 - - 57.143 24.554 - - 

TG-011 - 5227.75 - 88.942 43.750 74.519 67.308 

TG-012 1298336 16586.8 1.452 97.917 32.661 83.333 75.379 

TG-013 745941 18703.33 2.918 99.554 62.054 76.339 - 
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TG-016 - - - - - - 56.696 

TG-018 1631600 15995.25 0.822 86.538 43.750 75.962 58.654 

TG-019 1056507 7950 0.892 97.794 71.691 88.235 70.221 

TG-020 897751.2 378.2 0.044 - - - - 

TG-021 1195832 2557 0.214 93.750 78.646 79.688 36.458 

TG-022 1120732 1147 0.037 85.294 - 78.241 38.603 

TG-023 745941 4693.2 0.704 85.000 20.417 77.574 79.435 

TG-024 801876 36354.5 3.918 62.879 21.970 - 42.803 

TG-025 1120003 1359.2 0.189 75.463 27.652 72.727 57.500 

TG-026 729168 2708.6 0.132 47.500 6.786 - - 

TG-027 1051752 14039 1.532 90.741 60.185 79.167 54.630 

TG-028 806750.4 5813.6 0.845 46.875 10.156 - 32.857 

TG-029 1030500 9390 0.828 77.083 4.435 79.167 47.059 

TG-030 1124753 7426.6 0.655 90.625 - - 60.938 

TG-031 724255.2 23614 2.056 79.412 37.868 66.912 58.214 

TG-032 1064009 5215 0.298 92.803 54.412 90.278 71.591 

TG-033 1148652 13193 1.115 96.212 - 94.231 66.667 

TG-034 911503.2 14267 1.467 69.643 13.571 - 45.357 

TG-035 1058632 18232 1.546 - - - - 

TG-036 1087188 24443.6 2.099 84.848 20.703 82.197 43.214 

TG-037 1014375 10821.2 1.060 65.152 26.136 51.515 59.848 

TG-038 - 40280.6 - 77.941 11.029 - 52.941 

TG-039 903014.4 4958.6 0.545 63.636 39.394 52.273 35.606 

TG-040 1201500 1780.2 0.149 60.294 - 53.676 21.324 

TG-041 754250.4 8945.6 1.590 99.632 84.926 86.397 63.235 

TG-042 1227920 12928 1.102 41.071 16.786 13.603 28.214 

TG-043 998011.2 38027.2 1.988 26.172 14.063 25.357 15.000 

TG-044 916566 463.2 0.062 95.089 29.911 87.946 85.268 

TG-045 1339875 20903 1.450 68.382 12.868 71.786 48.529 

TG-050 - 0.0 0.000* - - - - 

TG-051 1279246 22878 1.932 88.710 84.677 65.323 22.581 

TG-053 1265254 5843.6 0.422 55.645 13.603 27.941 26.103 

TG-054 1314250 22018.75 1.491 96.371 39.113 81.048 74.194 

TG-059 1279683 13069.8 1.170 81.250 60.156 52.734 32.422 

TG-061 1220622 18347.2 2.011 78.409 63.636 51.894 34.091 

TG-063 922916 36174.4 1.561 86.765 44.907 80.556 73.214 

TG-064 1331750 329.6 0.027 61.290 - 65.530 38.636 

TG-065 1398250 110 0.007 89.643 82.738 - 53.929 

TG-066 1045626 6492.4 0.559 56.250 21.691 73.276 28.309 

TG-069 1737747 7507.8 0.409 94.737 82.237 90.789 75.658 

TG-071 1253439 6558.75 0.536 57.212 12.500 - - 

TG-073 1087248 15353.5 2.447 40.234 19.922 28.906 24.219 

TG-074 1013292 5698.8 0.532 90.152 40.530 71.970 58.333 

TG-075 - 10975.6 - 81.429 28.214 71.429 64.286 

TG-076 904584 1206.4 0.116 33.173 8.173 30.921 22.596 

TG-078 1174256 2598.25 0.244 64.286 13.839 45.833 49.107 

TG-079 775420 4630.333 0.606 74.242 26.136 54.167 44.318 
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TG-083 1085336 19957.33 1.776 - - - - 

TG-089 1319052 3387.75 0.225 80.000 46.500 66.000 53.500 

TG-090 1099001 2103.6 0.237 76.838 34.559 76.429 70.714 

TG-091 1205671 13819.2 1.133 76.563 19.141 52.344 48.438 

TG-093 1280998 5127.4 0.493 48.162 20.370 35.662 23.162 

TG-095 1292814 35243.6 2.861 64.286 29.643 58.929 - 

TG-099 1157784 - - - - - - 

TG-101 920916 22632.6 1.292 92.647 56.985 88.971 60.357 

TG-102 - 0.0 0.000* - - - - 

TG-103 - 0.0 0.000* - - - - 

TG-104 909998.4 17801.8 2.064 88.750 55.417 64.453 49.583 

TG-106 1087868 2214 0.170 - - - - 

TG-107 1433160 38433 2.952 66.912 35.662 - 34.559 

TG-112 - 292.8 0.002** 81.522 61.413 63.043 46.739 

TG-113 1212790 5899.25 0.636 95.703 51.563 93.214 78.929 

TG-114 1351162 284 0.021 91.250 - 67.500 - 

TG-116 1130940 5230.2 0.577 97.500 - 77.500 - 

TG-118 1093728 18920.8 1.246 90.714 72.685 81.481 49.286 

TG-119 1001874 32900.2 - 52.652 16.827 - 39.015 

TG-120 1203126 26714 - 93.145 54.032 92.188 69.355 

TG-121 1234001 1319.6 0.088 85.357 48.214 83.333 23.214 

TG-122 1496284 8599.667 0.549 - - - - 

TG-125 1380309 633.75 0.047 - - - - 

TG-128 1265000 13207 - 82.857 18.571 95.357 78.214 

TG-129 943248 84.25 0.313 92.411 23.214 70.982 - 

TG-132 1456253 1884.8 0.174 80.804 63.393 76.786 44.643 

TG-133 1204584 23046 - 92.411 32.589 69.643 49.107 

TG-134 918753.6 8518.2 1.093 71.691 12.891 27.273 73.162 

TG-135 1148751 5838.75 - 87.946 34.375 84.524 63.839 

TG-136 957052.8 14766.4 1.209 84.191 75.962 73.558 - 

TG-137 1297502 9792.6 0.834 80.147 11.250 - 31.985 

TG-138 - 8986.4 - 98.611 10.648 84.722 81.944 

TG-139 1170710 11027.75 0.947 84.500 76.000 74.500 - 

TG-145 910113 4943.5 0.396 - - - - 

TG-149 1174250 5861.2 0.504 75.000 42.500 57.721 56.618 

TG-151 1312502 21090 1.684 87.121 29.924 70.076 62.121 

TG-158 - 1479.5 - 54.167 43.056 44.907 24.537 

TG-162 1055836 500 0.104 - - - - 

TG-163 1408664 7903 0.474 68.015 19.853 43.182 35.227 

TG-164 1391249 293.8 0.027 60.526 - - - 

TG-165 1098999 7642.2 0.614 76.389 50.926 61.111 45.370 

TG-166 - 168.8 0.019** - - - - 

TG-167 1071876 18460 1.752 87.500 31.250 73.162 72.059 

TG-168 - 0.000 0.000* - - - - 

TG-169 1385432 20207.6 1.388 90.625 44.643 78.125 68.304 

TG-170 1344732 889.6 0.111 77.941 55.147 32.353 - 

TG-171 917001.6 1651.8 0.103 35.227 15.909 22.159 13.068 
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TG-172 1485318 15330.75 0.547 61.574 - 50.463 40.741 

TG-182 1248101 31483 3.174 47.596 18.269 38.942 32.212 

TG-188 1462916 33850 0.981 91.667 18.056 81.019 73.148 

TG-193 1382504 - - - - - - 

TG-196 1784998 8902.6 0.475 98.611 91.250 67.593 46.759 

TG-198 1289500 9750.6 0.467 93.214 36.071 66.429 57.143 

TG-199 1435001 3350.6 0.261 64.815 49.537 46.296 22.685 

TG-201 1286249 1782 0.104 70.625 - - 34.375 

TG-204 - 4499.5 - 57.143 24.554 40.179 36.607 

* The microspore embryogenic potential was calculated as 0.000 when, even if the data for 
microspore density was not available, the number of regenerated embryos was null. 

** The mean of the microspore embryogenic potential was calculated based of 5 experiments from 
which 4 did not developed embryos, therefore the microspore embryogenic potential was calculated 
even though the microspore density was not available. 
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