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Summary 

 

Although nitrous oxide (N2O) is a minor constituent of the atmosphere, it is still of great 

concern. This is because N2O can significantly affect the physics and chemistry of the 

atmosphere and thus influence the climate on Earth. Soil is a major source of N2O, and 

microbial nitrification and denitrification are the dominant N2O producing processes. Soil 

N2O fluxes usually exhibit significantly spatio-temporal variability since the microbial 

processes of N2O production and consumption are both affected by the substrate availability, 

redox potential and temperature. Moreover, plants can influence soil N2O fluxes through 

altering soil properties and microbial communities and through serving as additional conduits 

for transport of soil-generated N2O. However, we are still struggling to fully understand the 

complexity of N2O production, consumption and transportation processes in soil, and the links 

to abiotic (e.g. soil climate, physics and chemistry) and biotic (e.g. microbial–plant–soil 

interactions) factors. The difficulty of measuring gross N2O production and consumption in 

soil impedes our ability to predict N2O dynamics across the soil-atmosphere interface.  

The aim of the first study was to disentangle gross N2O production and consumption in 

soil by comparing 
15

N2O pool dilution (PD) and gas-flow soil core (GFSC) measurements. 

Intact soil cores were taken from grassland, cropland, beech and pine forests, covering 

different vegetation, soil types and climatic conditions. Across sites, gross N2O production 

and consumption measured by 
15

N2OPD were only 10% and 6%, respectively, of those 

measured by GFSC. Hence, we proposed to use different terminologies for the two methods. 

‘Gross N2O emission and uptake’ are appropriate for 
15

N2OPD, which encompasses gas 

exchange within the 
15

N2O-labelled, soil air-filled pores; while ‘gross N2O production and 

consumption’ can be used for GFSC, which includes N2O directly reduced to N2 in anaerobic 

microsites. Although the 
15

N2OPD could measure only part of gross N2O production in soil, it 

is the only method that can be used under field conditions to quantify atmospheric N2O uptake, 

an important process commonly unquantified in many ecosystems. 

The aim of the second study was to quantify temporal variability and environmental 

controls of gross N2O fluxes. We measured gross N2O emission and gross N2O uptake using 

the 
15

N2OPD technique that we validated in the first study. Asymbiotic N2 fixation was also 

measured to infer the gaseous N balance. This experiment was conducted in adjacent spruce 

and beech forests in central Germany. Our results showed that the beech stand had higher soil 

gross and net N2O emissions and asymbiotic N2 fixation than the spruce stand. Seasonal 

variation of gross N2O emission was mainly controlled by soil NO3
-
 concentration; gross N2O 
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uptake was largely influenced by soil extractable organic C; and asymbiotic N2 fixation was 

correlated with soil extractable organic C and temperature. Asymbiotic N2 fixation was an 

order of magnitude lower than gross N2O uptake in these highly acidic, N-enriched forest 

soils.  

The aim of the third study was to determine tree-mediated N2O fluxes under field 

conditions as well as their contributions to total forest N2O fluxes. Here, we quantified in situ 

stem N2O fluxes from mature alder trees on poorly-drained soil and mature beech and spruce 

trees on well-drained soils in central Germany. Alder, beech and spruce consistently emitted 

N2O via stems and all displayed higher emission rates in summer than in spring and autumn. 

Stem N2O fluxes from alder were higher than beech and spruce due to the presence of 

aerenchyma and lenticels as well as higher soil water content and soil C and N availability in 

the alder stand. Stem N2O fluxes represented 8-11% of the total (soil + stem) N2O fluxes in 

the spruce and beech stands, whereas in the alder stand with its large soil N2O emission stem 

emission contributed only 1% of the total flux. 

Overall, this research provides new insights into gross N2O fluxes and their 

environmental factors, and also provides an estimate of tree-mediate N2O fluxes which can 

improve N budgets of forest ecosystems. Our findings show that the 
15

N2O PD technique was 

a valuable tool to separate the net N2O flux into gross N2O emission and gross N2O uptake in 

the gas phase of the soils, but probably did not allow measuring gross N2O production and 

consumption in anaerobic microsites. Gross N2O emission played an important role in 

controlling the direction and magnitude of net N2O flux. And the regression relationships 

between gross N2O emission and net N2O fluxes also open the possibility of making estimates 

of soil gross N2O emissions based on measured soil net N2O emissions. Tree species had a 

large influence on gross N2O emission, net N2O flux and asymbiotic N2 fixation, and thus 

large-scale field quantification under similar soil types and climatic conditions can be based 

on tree-species stratification as a promising basis to scale up these rates. Lastly, both wetland 

trees and upland trees act as important conduits for soil-generated N2O and the relative 

contribution of tree-mediated N2O fluxes to the total N2O fluxes is more important in upland 

trees than in wetland trees.  
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Zusammenfassung 

 

Obwohl Distickstoffmonoxid (N2O) zu den Nebenbestandteilen der Atmosphäre zählt, ist es 

doch von großer Bedeutung. Es hat signifikanten Einfluss auf die Physik und Chemie der 

Atmosphäre und beeinflusst damit das Klima auf der Erde. Der Boden ist eine wichtige N2O-

Quelle, mit mikrobieller Nitrifikation und Denitrifikation als bestimmende Prozesse der N2O-

Produktion. Boden-N2O-Flüsse zeigen gewöhnlich hohe räumlich-zeitliche Variabilität, denn 

mikrobielle Prozesse von N2O-Produktion und -Verbrauch sind jeweils von der 

Substratverfügbarkeit, dem Redoxpotential und der Temperatur abhängig. Auch können 

Pflanzen die N2O-Flüsse beeinflussen, indem sie Bodeneigenschaften und mikrobielle 

Gesellschaften verändern und als zusätzlicher Transportkanal für bodenbürtiges N2O dienen. 

Dennoch fällt es schwer, die volle Komplexität von Prozesse der N2O-Produktion, des -

Verbrauchs und des -Transports zu verstehen sowie ebenfalls die Verbindungen zu den 

abiotischen Faktoren (z.B. Bodenklima, -physik und -chemie) und biotischen Faktoren (z.B. 

Interaktion mikrobielle Biomasse/Pflanze/Boden). Die Schwierigkeit, N2O-Produktion und -

Verbrauch im Boden zu messen wirkt sich auf die Möglichkeit der Vorhersage von N2O-

Dynamiken im System Boden/Atmosphäre aus. 

 Das Ziel der ersten Studie war es, N2O-Produktion und-Verbrauch voneinander zu 

trennen, indem 
15

N2O pool dilution (PD)- und gas-flow soil core (GFSC)-Messungen 

verglichen wurden. Intakte Bodenzylinder wurden in Grasland, Ackerland, Buchen- und 

Kiefernwäldern genommen um verschiedene Vegetation, Bodentypen und Klimabedingungen 

abzudecken. Über die Versuchsflächen war die N2O-Produktion und -Verbrauch, gemessen 

mit 
15

N2OPD nur 10% bzw. 6% derer, die mit GFSC gemessen wurden. Daher schlagen wir 

eine unterschiedliche Terminologie für die N2O-Flüsse nach den jeweiligen Methoden vor: 

‘Brutto-N2O-Emmission und -Aufnahme’ sind für 
15

N2OPD geeignet, welche den 

Gasaustausch zwischen den 
15

N2O-markierten luftgefüllten Bodenporen umfasst; ‘Brutto-

N2O-Produktion und -Verbrauch’ kann für GFSC genutzt werden, welches das N2O beinhaltet, 

welches in anaeroben Mikroarealen zu N2 reduziert wird. Obwohl die 
15

N2OPD nur einen Teil 

der Brutto-N2O-Produktion im Boden messen konnte ist sie die einzige Methode, die unter 

Feldbedingungen zur Quantifizierung der atmosphärischen N2O-Aufnahme genutzt werden 

kann, welches ein wichtiger, oft nicht quantifizierter Prozess vieler Ökosysteme ist. 

Das Ziel der zweiten Studie war es, zeitliche Variabilität und Umwelteinflüsse auf N2O-

Flüsse zu quantifizieren. Es wurden die Brutto-N2O-Emission und Brutto-N2O-Aufnahme mit 

Hilfe der 
15

N2OPD-Technik gemessen, welche in der ersten Studie validiert wurde. Die 
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asymbiotische N2-Fixierung wurde ebenfalls gemessen, um Rückschlüsse auf das gasförmige 

N-Gleichgewicht zu ziehen. Dieses Experiment wurde in angrenzenden Fichten- und 

Buchenwäldern in der Mitte Deutschlands durchgeführt. Unsere Ergebnisse zeigen, dass die 

Buchenbestände höhere Boden-Brutto- und -Netto-N2O-Emissionen und asymbiotische 

Stickstoff(N2)-Fixierung aufwiesen als die Fichtenbestände. Die saisonale Variabilität der 

Brutto-N2O-Emission wurde hauptsächlich durch die Boden-Nitrat(NO3)-Konzentration 

bestimmt; die Brutto- N2O-Aufnahme war stark durch den aus dem Boden extrahierbaren 

organischen Kohlenstoff(C) beeinflusst; und die asymbiotische N2-Fixierung korrelierte mit 

dem aus dem Boden extrahierbaren C und der Temperatur. Die asymbiotische N2-Fixierung 

war eine Magnitude niedriger als die Brutto-N2O-Aufnahme in diesen stark sauren, N-

angereicherten Waldböden. 

Das Ziel der dritten Studie war es, die baumbürtigen N2O-Flüsse unter Feldbedingungen 

zu ermitteln und ihren Anteil an den N2O-Gesamtflüssen im Wald zu bestimmen. Hierbei 

wurden die in situ-Stamm-N2O-Flüsse von großen Erlen auf schlecht abfließenden Böden und 

großen Buchen und Fichten auf gut abfließenden Böden quantifiziert. Erle, Buche und Fichte 

emittierten konsistent N2O über den Stamm und zeigten alle höhere Emissionsraten im 

Sommer als im Frühjahr und Herbst. Stamm-N2O-Flüsse von Erle waren höher als von Buche 

und Fichte, auf Grund der Anwesenheit von Parenchym und Lentizellen sowie höherem 

Bodenwasseranteil und der Boden-C- und -N-Verfügbarkeit im Erlenbestand. Die Stamm-

N2O-Flüsse bildeten 8-11% der Gesamt(Boden + Stamm)-N2O-Flüsse im Fichten- und 

Buchenbestand, wobei sie im Erlenbestand mit seinen hohen N2O-Emissionen nur 1% der 

Gesamtflüsse ausmachten. 

Insgesamt bietet die Studie neue Einblicke in die Brutto-N2O-Flüsse und asymbiotische  

N2-Fixierung welche bisher nicht in anderen Ökosystemen untersucht wurden, und bringt eine 

Abschätzung von baumbürtigen N2O-Flüssen, die das N-Budget von Waldökosystemen 

verbessern kann. Unsere Befunde zeigen, dass die 
15

N2OPD-Technik ein wertvolles 

Werkzeug darstellt, um die Netto-N2O-Flüsse von Brutto-N2O-Emission und -Aufnahme in 

der Gasphase von Böden zu separieren. Sie erlaubte es jedoch wahrscheinlich nicht, Brutto- 

N2O-Produktion und -Verbrauch in anaeroben Mikroarealen zu messen. Brutto-N2O-Emission 

spielte eine bedeutende Rolle in der Änderung der Richtung und der Magnitude der N2O-

Flüsse und ihre regressiven Beziehungen eröffnen auch die Möglichkeit, Schätzungen der 

Boden-Brutto-N2O-Emissionen basierend auf den gemessenen Boden-Netto-N2O-Emissionen.  

Die Baumart hatte großen Einfluss auf die N2O-Emission, den Netto N2O-Fluss und die 

asymbiotische N2-Fixierung. Somit ist eine großskalige Quantifizierung im Feld bei  
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vergleichbaren Bodentypen und klimatischen Bedingungen auf der Basis von 

Baumartenstratifizierung erfolgversprechend. Bäume feuchter Gebiete und solche 

höhergelegener Gebiete funktionieren als Kanal von bodengeneriertem N2O und der relative 

Beitrag von baumbürtigen N2O-Flüsse ist wichtiger für Bäume hochgelegener Gebiete als für 

Bäume feuchter Gebiete. 
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Chapter 1  

General Introduction 

 

1.1.  Nitrous oxide production and consumption in soil  

The nitrous oxide (N2O) is the one of the main greenhouse gases, contributing approx. 6% to 

the anticipated global warming (IPCC, 2001). It also plays a significant role in atmospheric 

photochemical reactions that contribute to stratospheric ozone depletion (Ravishankara et al., 

2009). In the past few decades, the atmospheric concentration of N2O has increased nearly 

linearly by a rate of 0.2-0.3% yr
-1

 (IPCC, 2007). Although atmospheric N2O has been 

intensively studied using fluxes measurement and global models, there are still many 

uncertainties concerning the global budget of N2O and the mechanisms involved in its 

formation and loss in the atmosphere. This is mainly because the concentration of N2O is 

relatively low (325.1 ppb) and the residence time in the atmosphere is rather long (ca. 120 

years), and also because there is a variety of natural and anthropogenic sources of N2O 

(WMO, 2013). 

At present, soils are thought as the main N2O source in the terrestrial ecosystem: 

emission from natural soils are estimated to be 4.3-5.8 Tg N2O-N yr
-1

, while emissions from 

agricultural soils are estimated to be 6-7 Tg N2O-N yr
-1 

(Syakila and Kroeze, 2011). Although 

there is a wealth of biotic and abiotic processes that can form N2O in soil, nitrification and 

denitrification are recognized as the dominant processes and contribute ca. 70% of global N2O 

emissions (Syakila and Kroeze, 2011). N2O produced in soil can subsequently be consumed 

by the last step of denitrification, i.e. reduction of N2O to N2. Substantial fractions of N2O 

produced in subsoil have been found to be consumed by the last step of denitrification either 

in the same denitrifier cell (Knowles, 1982) or along the diffusion pathway towards soil 

surface (Conen and Neftel, 2007; Koehler et al., 2012). Reduction of N2O to N2 is of 

ecological significance since it is the prevailing natural process that converts reactive nitrogen 

back to inert form of nitrogen, N2 (Dannenmann et al., 2008). 

The conceptual ‘hole-in-the-pipe’ model considered two levels of controls regulating 

N2O production: (1) factors influencing the rates of nitrification and denitrification (i.e. ‘the 

flow through the pipe’); and (2) factors regulating the proportions between the gaseous end 

products (i.e. ‘the size of the holes’; Firestone and Davidson, 1989). Proximal environmental 



2 

 

factors, which influence ‘the flow through the pipe’ and ‘the size of the holes’, are NO3
−
 

concentration, C availability, temperature and O2 concentration (Saggar et al., 2013). Those 

factors can directly affect microbial communities and thus lead to instantaneous changes in 

denitrification rates and the N2O:N2 ratio. Specifically, NO3
−
 and C availabilities control the 

denitrification rate, because they are important substrate and energy source of denitrification 

and also because they act as electron acceptor and donor for this process. Furthermore, high 

NO3
−
 concentration usually results in a high N2O:N2 ratio, since NO3

−
 is preferred as an 

electron acceptor over N2O (Chapuis-Lardy et al., 2007). High soil moisture and soil 

respiration trigger denitrification as they consequently lower the oxygen content in the soil 

and thus result in the formation of N2 rather than N2O (Butterbach-Bahl et al., 2013). 

Temperature is also an important controlling factor not only because nitrification and 

denitrification are enzymatic processes but also because it can change soil respiration rates 

and thus soil oxygen concentrations (Butterbach-Bahl et al., 2013). Lastly, soil pH influences 

N2O production since the activity of nitrous oxide reductase increases with increasing pH 

values (Dannenmann et al., 2008). 

Owing to the dependency of microbial-mediated nitrification and denitrification on 

similar environmental factors and availability of substrates, these two processes often occur in 

close area and interact on each other. Hence, N2O fluxes at the soil surface usually exhibit 

significantly spatial and temporal variability due to the complicated production and 

consumption processes in soil. Disentangling gross N2O production and consumption in soil 

will help us understand the underlying mechanisms controlling N2O fluxes. However, it is 

difficult to quantify these processes in soil since the large heterogeneity of denitrification 

products and the large background of atmospheric N2 (Davidson and Seitzinger, 2006). 

Although acetylene inhibition and 
15

N tracing are two methods that are usually applied to 

separate N2O and N2 production, both methods have obvious disadvantages since they either 

modify the denitrification process or add 
15

N-labelled substrate. A better method is needed to 

quantify N2O production, consumption and controlling factors across the range of ecosystems.  

 

1.2.  Nitrous oxide emission and uptake at the soil surface 

The flux of N2O measured at the soil-atmosphere interface is a composite of source and sink 

terms within the soil profile. Although soils are identified to be significant sources of 

atmospheric N2O, net N2O uptakes by soils have also been frequently observed in various 

natural and managed ecosystems (Chapuis-Lardy et al., 2007; Schlesinger, 2013). Schlesinger 

(2013) compiled 118 values of N2O uptake potential in soils of different ecosystems and 
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demonstrated that net N2O uptake ranged from <1 to 207 µg N m
-2

 h
-1

, with a median of 4 µg 

N m
-2

 h
-1

. In temperate forest soils, net N2O uptake ranged from 0.55 to 66.6 µg N m
-2

 h
-1

 

(Butterbach-Bahl et al., 2002, 1998; Dong et al., 1998; Goossens et al., 2001). Furthermore, 

IPCC (2013) report mentions for the first time a global surface N2O sink of 0-1 Tg N2O-N yr
-1

.  

The sink strength depends on the ease of N2O diffusion from the atmosphere to soil and 

the potential for N2O reduction to N2. Hence, soil texture and particle size distribution may 

significantly affect N2O production and consumption (Wlodarczyk et al., 2005). Soil water 

status is also one of the most important driving factors for the N2O sink strength. Net N2O 

uptake is thought to occur in wet soils since denitrification prefers anoxic condition. This is 

also because high soil water content decrease gas diffusion and convection, as well as increase 

N2O entrapment, which extends the time for potential reduction of N2O to N2 (Clough et al., 

2005). However, recent studies have also shown that soils can take up N2O from the 

atmosphere and reduce it to N2 under dry and oxic conditions (Goldberg and Gebauer, 2009; 

Wu et al., 2013). Goldberg and Gebauer (2009) for instance showed that long drought periods 

can lead to drastic decreases of N2O fluxes from soils to the atmosphere or even turn forest 

soils temporarily to N2O sink. In those cases, the N2O uptake from the atmosphere is usually 

linked to low NO3
-
 concentrations in soils, highlighting again that NO3

-
 availability is a major 

regulator for source and sink of N2O. Since atmospheric N2O is the only electron acceptor left 

for denitrification when NO3
-
 concentration is limited, the consumption of atmospheric N2O 

by denitrification via N2O reductase can explain the observed uptake of atmospheric N2O 

under the low NO3
-
 concentration (Butterbach-Bahl et al., 1998). 

A ‘compensation concentration’ concept was proposed to explain the direction of net 

N2O fluxes depending on concentrations in soils and in the atmosphere (Conrad, 1994). 

However, if only the N2O concentrations are considered, the observed net N2O fluxes would 

probably be interpreted as low rates of N2O production but not as a combination of gaseous 

input and output at the soil-atmosphere interface. N2O fluxes at the soil surface, measured by 

chamber method, should be composed of gross N2O emission and gross N2O uptake (Conen 

and Neftel, 2007). The terminologies ‘gross N2O emission and gross N2O uptake’ are used to 

avoid confusion with ‘gross N2O production and gross N2O consumption’ in soils. Gross N2O 

emission indicates that N2O produced in soil finally escapes to the atmosphere, while gross 

N2O uptake indicates that atmospheric N2O diffuses in soil and reduces to N2. These two 

processes occur at the soil atmosphere interface simultaneously, and their relative flux rates 

decide the magnitude and direction of net N2O fluxes. Hereby, net N2O uptake can only be 

observed when gross N2O uptake rates are higher than gross N2O emission rates (Conen and 
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Neftel, 2007). Splitting net N2O fluxes at the soil-atmosphere into gross N2O emission and 

gross N2O uptake activity would help to better estimate global N2O turnover, and open new 

perspectives on the mitigation of N2O emissions from soil. However, gross N2O emission and 

uptake at the soil surface have never been evaluated due to the absence of a proper 

measurement technique. 

 

1.3.  Effects of plants on nitrous oxide emission 

The influence of plants on soil properties can determine N2O production and consumption in 

soil (Rückauf et al., 2004). Differences in the structure of leave litter on soil surface may alter 

air diffusivity, and thus soil moisture and soil oxygen conditions. Earlier studies have reported 

that deciduous forests typically act as stronger sources of N2O than coniferous forests since 

litter from broad leaved trees restrict oxygen diffusion into the soil more than litter from 

spruce of pine needles, particularly under wet conditions (Ambus et al., 2006). Furthermore, 

differences in C/N ratios of litter quality and root exudation can influence turnover rates of 

organic material (Butterbach-Bahl et al., 1997). Lower C/N ratios probably promote faster N 

cycling and consequently higher N2O production, which have been reported for 11 different 

sites across Europe (Ambus et al., 2006). Moreover, plants affect nitrification and 

denitrification processes by influencing the structure of soil microbial community and/or 

through competition with microbes for mineral N (Cavieres and Badano, 2009).  

Plants also contribute to N2O emission from terrestrial ecosystem as plants can act as 

conduits of soil-produced N2O (Smart and Bloom, 2001). N2O in soil may diffuse into plant 

roots directly or indirectly by water uptake. Afterwards, N2O is transported though plants via 

aerenchyma system or transpiration stream (Díaz-Pinés et al., 2016; Machacova et al., 2016). 

Hereby, plant-mediated N2O are reported to be influenced by soil water status, temperature 

and N availability. High soil moisture can stimulate denitrifying enzymes and thus promote 

N2O production in soil and therein N2O emission at the soil surface. Machacova et al. (2013) 

observed that flooding caused a dramatic transient increase of stem N2O emission by factors 

of 740 for Alder and 14,230 for beech. Increasing stem N2O emission in response to 

temperature have also been observed in previous studies (e.g. Machacova et al., 2013), since 

temperature is the major factor responsible for the belowground N2O production. Moreover, 

stem N2O emission appears to be regulated strongly by soil N availability, as shown by the 

rapid increase following fertilization (e.g. Pihlatie et al., 2005; Díaz-Pinés et al., 2016).   

Currently, the estimates of N2O emissions from terrestrial ecosystems are mainly 

restricted to emission from soils excluding the contribution of plant to the trace gas exchange 
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with the atmosphere (Gauci et al., 2010). An exception are studies on exchange of N2O 

between agricultural ecosystem and the atmosphere, where N2O are mainly quantified as total 

emission from soil plus crop plants (e.g. canola, barley, rice, wheat, soybean and maize; 

Chang et al., 1998; Chen et al., 2002; Yan et al., 2000; Zou et al., 2005). Contribution of 

plant-mediated N2O to total plant-soil emission is on average 25% for wheat plants (Zou et al., 

2005), 6-11% for soybean plants and 8.5-16% for maize plants (Chen et al., 2002). While in 

rice, the contribution ranged from 17.5% to 87.3% depending on soil water status (Yan et al., 

2000; Yu et al., 1997). These results demonstrate that N2O emissions from soil-crop systems 

are greatly affected by plants. 

 Although forests cover 31% of the terrestrial area worldwide (FAO, 2010), tree-

mediated N2O flux is one of the least studied N2O emission pathways. Previous studies are 

mostly restricted to seedlings and saplings under laboratory conditions, and information of 

mature trees under field conditions is lacking. Therefore, current estimates of N2O emission 

from forest ecosystem are only based on chamber-based measurement of soil N2O fluxes and 

do not include tree-mediated N2O flux. As far as we know, only two studies were conducted 

in the field to estimate the contribution of tree-mediated N2O to the total N2O fluxes. One 

study found that tree-mediated N2O accounted for 1-3% of the total forest N2O fluxes, and 

concluded that N2O emission from tree stem is not important (Díaz-Pinés et al., 2016). 

Another paper, however, reported that stem N2O emission contributed up to 18% of the total 

pine forest, and accordingly demonstrated that stem emissions play a significant role in N2O 

emission (Machacova et al., 2016). Overall, these conflicting results may arise from different 

tree species, environmental conditions and measurement time and hence highlights the need 

for more detailed measurements of tree-mediated N2O fluxes in various forest ecosystems. If 

the large contribution of tree-mediated N2O fluxes can be proved in other forest ecosystems, 

the N2O source strength of forest ecosystems may have been underestimated. Moreover, this 

may be a reason to explain the discrepancy between bottom-up emissions-based estimates and 

top-down inverse or satellite-based N2O emission sources.  

 

1.4.  Temperate forests in central Germany 

Ecosystems in central Europe, especially in Germany, have received high element inputs by 

atmospheric deposition since the beginning of industrialization. As a result, geochemical 

cycles and biological processes in many German forest soils have significantly changed and 

soil characteristic like pH, base saturation and C:N ratios have also altered (Brummer et al., 

2009a, b; Meesenburg et al., 2009). N deficiency, which has been common feature of forest 
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stands in the temperate region (Tamm, 1991), does not occur any more due to high N 

deposition rates. On the contrary, N saturation occurs in many forest ecosystems. Previous 

studies conducted on German N saturated forest soils found decreased gross N mineralization, 

increased gross nitrification (Corre and Lamersdorf, 2004; Corre et al., 2003) and increased 

NO3
-
 leaching (as indicated by high leaching:throughfall ratio: 4.2; Corre et al., 2007) 

compared to low N deposition forests. Morover, N2O fluxes from German forests were even 

as high as that from tropical forest (Butterbach-Bahl et al., 1997; Schulte-bisping and 

Brumme, 2003).  

This research was primarily conducted in the Solling forest, which is located in the 

central Germany. Our study sites have received elevated N deposition rates for the past few 

decades and have evidence of high N leaching (Meesenburg et al., 1995; Corre et al., 2003; 

Corre and Lamersdorf, 2004; Corre et al., 2007). Since N-saturated soils increase 

susceptibility for N2O losses to the atmosphere, exploring the mechanisms and processes 

responsible for variabilities of N2O emissions at this site is important. We will conduct three 

studies to investigate gross N2O production and consumption, gross N2O emission and uptake, 

and tree-mediated N2O fluxes. These studies provide the much needed information on the 

mechanisms underlying soil N2O fluxes and associated controlling factors, as well as 

providing new insights into the effect of trees on atmospheric N2O concentration and their 

contributions to the total ecosystem fluxes.   

 

1.5.  Aims and hypotheses 

The aim of the first study was to test whether 
15

N2O pool dilution (PD) technique is a suitable 

method for disentangling gross N2O production and consumption. Since this technique was 

reported as a robust method that can disentangle gross N2O production and consumption in 

the field without inhibiting any step of processes or adding additional substrate, we would like 

to validate this method in order to apply this method in subsequent stages of my research on 

N2O dynamics. Hence, we compared this method with an established gas-flow-soil core 

(GFSC) method by measuring soil intact cores from different ecosystems. We hypothesized 

that the 
15

N2OPD and GFSC methods would yield comparable estimates of gross N2O 

production and consumption in soil. 

The aims of the second study were to quantify gross N2O emission and uptake and 

asymbiotic N2 fixation in soils under beech and spruce forests, and to determine the 

controlling factors of these processes. After we tested the 
15

N2OPD technique and defined the 

processes that can be measured using this approach (gross N2O emission and uptake), we 
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applied the 
15

N2O PD technique to disentangle gross fluxes of N2O at the soil-atmosphere 

interface. We also measured asymbiotic N2 fixation, in order to test the hypothesis that N2 

fixation could compensate N2O emissions. In this study, we hypothesized: (1) the beech forest 

will have higher gross N2O emission and uptake in the soil than the spruce forest; (2) gross 

N2O emission and uptake in soil will mainly be regulated by soil N availability and moisture 

content, whereas soil temperature and available C will additionally influence asymbiotic N2 

fixation; (3) at both forests, with acidic soil and high N deposition, asymbiotic N2 fixation will 

be lower than gross N2O uptake (or N2 flux from the soil). 

The aims of the third study were to quantify in situ tree-mediated N2O emissions and 

their seasonal patterns, and to assess their controlling factors in order to infer the mechanisms 

responsible for tree-mediated N2O emissions. In this study, we test following hypotheses: (1) 

tree-mediated N2O fluxes will be higher in alder than in beech and spruce stands as the former 

is a wetland and is an N2-fixing tree species, of which anaerobic and high soil N conditions 

may promote high soil N2O production, whereas the latter are upland and non N2-fixing tree 

species; (2) N2O transport in alder stem will be dominated by N2O diffusion from the soil to 

the aerenchyma tissue and lenticels, and thus alder stem N2O emission will be influenced by 

the amount of N2O produced in the soil; (3) N2O transport in beech and spruce stems will 

mainly be through dissolved form via xylem sap flow and thus will be limited by the sap flow 

rate which, in turn, will be influenced by air temperature, vapor pressure deficit and soil water 

content. 
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Abstract 

The difficulty of measuring gross N2O production and consumption in soil impedes our ability 

to predict N2O dynamics across the soil-atmosphere interface. Our study aimed to disentangle 

these processes by comparing measurements from gas-flow soil core (GFSC) and 
15

N2O pool 

dilution (
15

N2OPD) methods. GFSC directly measures soil N2O and N2 fluxes, with their sum 

as the gross N2O production, whereas 
15

N2OPD involves addition of 
15

N2O into a chamber 

headspace and measuring its isotopic dilution over time. Measurements were conducted on 

intact soil cores from grassland, cropland, beech and pine forests. Across sites, gross N2O 

production and consumption measured by 
15

N2OPD were only 10% and 6%, respectively, of 

those measured by GFSC. However, 
15

N2OPD remains the only method that can be used 

under field conditions to measure atmospheric N2O uptake in soil. We propose to use different 

terminologies for the gross N2O fluxes that these two methods quantified. For 
15

N2OPD, we 

suggest using ‘gross N2O emission and uptake’, which encompass gas exchange within the 

15
N2O-labelled, soil air-filled pores. For GFSC, ‘gross N2O production and consumption’ can 

be used, which includes both N2O emitted into the soil air-filled pores and N2O directly 

consumed, forming N2, in soil anaerobic microsites.  

 

 

http://www.uni-goettingen.de/en/550804.html
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2.1.  Introduction 

N2O is one of the most important long-lived greenhouse gases and is expected to be the single 

most important ozone-depleting substance throughout the 21
st
 century

1
. Soils account, 

globally, for about 60% of the total N2O flux to the atmosphere, with 6.6 Tg N yr
-1

 from 

natural ecosystems and 4.1 Tg N yr
-1 

from agricultural systems
2
. Although it is generally 

known that microbial nitrification and denitrification in soils are the major sources of 

atmospheric N2O, it remains a struggle to disentangle and quantify gross rates of microbial 

N2O production and consumption in soil which, in turn, determine the net N2O flux across the 

soil-atmosphere interface. 

Under anaerobic conditions, incomplete denitrification produces N2O whereas the 

terminal step of denitrification (i.e. the reduction of N2O to N2) consumes N2O. Hence, 

microbial N2O production and consumption can occur simultaneously in soil via the activities 

of different microorganisms or even by a single denitrifying cell
3
. In addition, within the soil 

profile and in the soil air-filled pores, N2O can be further reduced to N2 during its transport to 

the soil surface
4–6

. Soil physical (e.g. water or oxygen content, temperature, porosity) and 

biochemical factors (e.g. pH, concentrations of electron donors and acceptors) influence the 

balance between soil N2O production and consumption
7
, and consequently the net N2O flux to 

the atmosphere. Soil net N2O uptake has been complied in a review
8
, which specifically refers 

to the net flux of N2O from the atmosphere to the soil and can be detected only if soil N2O 

consumption exceeded production. Soil N2O consumption, however, is often ignored because 

it is prone to be masked by the much larger N2O production
4
 and is difficult to measure 

directly (e.g. as soil N2 flux) against a very high (78%) atmospheric background
9
. 

The static chamber method, commonly used to measure net N2O flux on the soil 

surface, cannot quantify the simultaneously occurring gross N2O production and consumption 

within the soil. One possibility to measure gross N2O production and consumption in soil is 

the 
15

N2O pool dilution (
15

N2OPD) technique, which entails adding 
15

N2O to the chamber 

headspace and subsequently measuring the changes in 
14

N2O and 
15

N2O over time
10

. So far, 

this 
15

N2OPD technique has been used in managed grassland and cropland soils and in salt 

marsh landscape, all located in northern California, by the same authors who first evaluated 

this method under field conditions
10–12

.  

In 2013, when the first 
15

N2OPD measurements were reported
10

, a debate emerged as 

to what extent this technique is able to quantify gross N2O production and consumption in soil. 

Well & Butterbach-Bahl
13

 questioned the key assumptions of the 
15

N2OPD technique: the 

exchange and mixing of soil-derived N2O and 
15

N2O label between aerobic and anaerobic soil 
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microsites. They argued that gross N2O production and consumption in soil would be 

underestimated if produced N2O is immediately reduced to N2 without first mixing with the 

15
N2O-labelled air in interconnected soil pore spaces. This may occur within denitrifier cells 

and between different microorganisms
3
 in anaerobic microsites, which here we infer to 

include not only microsites saturated with water but also isolated pores filled with or enclosed 

by water and water-entrapped N2O
14

. Yang et al.
15

 replied that such constraints could only 

occur when the soil has a high proportion of anaerobic microsites, and argued that the 
15

N2O 

label and soil-derived N2O are likely distributed homogeneously in the chamber headspace 

from which the calculation of gross N2O fluxes is derived. In summary, the efficacy of the 

15
N2OPD technique to estimate gross N2O production and consumption is still not settled, and 

so far this technique has only been compared with results from acetylene inhibition and 
15

N 

tracing methods. These latter methods, however, have their own limitations for determining 

gross N2O production and consumption in soil since they either modify the entire 

denitrification process as well as its single steps (acetylene inhibition method) or require the 

addition of 
15

N-labelled substrate (
15

N tracing method) with the need to label the soil 

homogeneously including its anaerobic microsites
9,16

.  

To date, the enigmatic lack of measurements of gross N2O production and 

consumption in soil impedes our ability to predict N2O dynamics across the soil-atmosphere 

interface. Our study aimed to disentangle gross N2O production and gross N2O consumption 

in soil by comparing measurements from 
15

N2OPD technique and gas-flow soil core (GFSC) 

method. The latter is an established method that directly measures gross N2O production and 

consumption in soil by simultaneously quantifying N2O and N2 fluxes
17

 without the use of an 

inhibitor or 
15

N labelling of substrate
9,16

. We hypothesized that if the assumption of the 

15
N2OPD method (i.e. exchange and mixing of soil-derived N2O and 

15
N2O label between 

aerobic and anaerobic soil microsites) is attained, then the 
15

N2OPD and GFSC methods 

should yield comparable estimates of gross N2O production and consumption in soil. We 

tested this hypothesis using different soils from four ecosystems: grassland, cropland, beech 

and pine forests (Table 1), covering a range of soil biochemical characteristics as well as soil 

aeration status (e.g. water content and soil texture) and N availability.  

 

2.2.  Results  

From the
 15

N2OPD measurements, gross N2O production and consumption rates and net N2O 

flux (Fig. 1a-c) were higher (p = 0.01 – 0.03) in the silty loam Cambisol soil in manured 
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grassland than in the sandy Regosol soil in unmanaged pine forests, and neither differed from 

the sandy loam Cambisol soil in cropland or the silty loam Cambisol soil in unmanaged beech 

forest. For the grassland, cropland and beech forest, net N2O emissions accounted for 66 – 79% 

of gross N2O production (Fig. 1d). For the pine forest, net N2O uptake (Fig. 1c) was paralleled 

by larger gross N2O consumption (Fig. 1b) than gross N2O production (Fig. 1a); these fluxes 

were very small but still above our detection limit. 

From the GFSC measurements, gross N2O production (Fig. 1a) was higher (p = 0.02) 

in the beech forest than in the cropland and pine forest and intermediate in the grassland. 

Gross N2O consumption (p = 0.37; Fig. 1b) and net N2O fluxes (p = 0.06; Fig. 1c) did not 

differ among sites. Net N2O fluxes accounted, on average, for only 24% of gross N2O 

production (Fig. 1d), and hence most (76%) of the produced N2O was further reduced to N2.  

Although significant differences in gross N2O production and consumption between 

the 
15

N2OPD technique and GFSC method were only found in the grassland site (p = 0.02 for 

both; Fig. 1a,b), the fluxes measured by the GFSC method were up to two orders of 

magnitude larger than those measured by the 
15

N2OPD technique (Fig. 1a,b). The large spatial 

variation within each site (indicated by the large standard errors) resulted in non-statistically 

detectable differences between these two methods. However, for gross N2O production, rates 

measured by the 
15

N2OPD technique were on average 10% of those measured by the GFSC 

method (Fig. 1a). For gross N2O consumption, rates measured by the 
15

N2OPD technique 

were on average 6% of those measured by the GFSC method (Fig. 1b). Net N2O fluxes from 

the soil cores used for the 
15

N2OPD measurement were on average 94% of those measured by 

the GFSC method, which did not differ in any of the sites (p = 0.11 – 0.61; Fig. 1c). In three 

sites, except the pine forest that had very low fluxes, the ratios of net N2O flux to gross N2O 

production measured by the 
15

N2OPD technique were higher (p < 0.01 – 0.05) than those 

measured by the GFSC method (Fig. 1d). 

Soil water-filled pore space (WFPS), microbial C and N, and denitrification enzyme 

activity (DEA) were generally higher (p ≤ 0.02) in the grassland than in the pine forest (Table 

2). Soil NH4
+
 concentrations were higher (p < 0.01) in the grassland and beech forest 

compared to the cropland, whereas soil NO3
-
 concentrations were higher (p = 0.02) in the 

cropland than in the grassland and pine forest (Table 2). Gross N2O production and 

consumption, measured by either the 
15

N2OPD technique or the GFSC method, showed 

positive correlations with WFPS, NH4
+
, microbial C and N, and DEA (R = 0.56 – 0.93, p < 

0.05; Supplementary Table S1). Net N2O fluxes from the soil cores used for the 
15

N2OPD 

measurements correlated positively with the same soil properties (R = 0.64 – 0.92, p < 0.01; 
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Supplementary Table S1), whereas no correlation was found with net N2O flux measured by 

the GFSC method. 

 

 

 

 

Figure 1. Soil gross and net N2O fluxes.  Gross N2O production (a), gross N2O consumption 

(b), net N2O flux (c), and the ratio of net N2O flux to gross N2O production (d), measured by 
15

N2O  pool dilution (
15

N2OPD; red bars) and gas-flow soil core (GFSC; blue bars). For each 

method, means (± s.e., n = 4 replicate sampling points) with different capital (for 
15

N2OPD) 

and small letters (for GFSC) indicate significant differences among sites (one-way ANOVA 

with Fisher’s LSD test at p ≤ 0.05 or Kruskal-Wallis ANOVA with multiple comparisons of 

mean ranks at p ≤ 0.05). For each site, asterisks above the bars indicate significant differences 

between the two methods (paired t test at p ≤ 0.05). 



18 

 

 

 

Table 1.  Site characteristics. 

Site characteristics Grassland Cropland Beech forest Pine forest 

Location 47.57°N, 11.03°E 48.19°N, 11.96°E 51.76°N, 9.58°E 43.72°N, 10.28°E  

Mean annual temperature (°C) 6.7 8.5 7.3 14.1 

Mean annual precipitation (mm) 1373 1029 1100 918 

Elevation (m above sea level) 870 510 510 10 

Vegetation/Crop Poaceae; Taraxacum  Zea mays Fagus sylvatica Pinus pinaster 

Soil type Haplic Cambisol  Calcaric Cambisol Dystric Cambisol Calcareous Regosol 

Soil texture (% sand/silt/clay) 10 / 68 / 23 30 / 52 / 18 12 / 54 / 34 93 / 3 / 4 

Soil bulk density (g cm
-3

) 0.59 1.17 0.64 1.30 

Soil pH 7.1 6.7 3.8 5.7 

Soil total organic carbon (g C kg
-1

) 135 20 127 10 

Soil total nitrogen (g N kg
-1

) 8.0 1.7 6.6 0.7 

Soil C:N ratio 16.9 11.8 18.9 13.5 

Soil characteristics in the grassland, cropland and pine forest sites were measured in the top 10 cm of mineral soil
19,21

; in the beech forest site, these 

were measured in the top 5 cm of mineral soil. 
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Table 2.  Soil physical and biochemical characteristics in the top 5 cm, determined from the soil cores immediately after the measurement of gross 

N2O fluxes. 

Means ± s.e. (n = 4) within each row followed by different letter indicate significant differences among sites (one-way ANOVA with Fisher’s LSD 

test at p ≤ 0.05 or Kruskal-Wallis ANOVA with multiple comparisons of mean ranks at p ≤ 0.05).  

 

 

Soil characteristics Grassland Cropland Beech forest Pine forest 

Water-filled pore space (%) 79 ± 1 a 57 ± 2 ab 70 ± 14 ab 25 ± 1 b 

NH4
+
 (mg N kg

-1
) 4.34 ± 0.97 a 0.66  ± 0.12 b 2.35 ± 0.37 a 1.30 ± 0.18 ab 

NO3
-
 (mg N kg

-1
) 1.00 ± 0.14 b 5.42 ± 0.60 a 4.17 ± 2.14 ab 0.71 ± 0.38 b 

Microbial C (g C kg
-1

) 3.26 ± 0.13 a 0.76 ± 0.03 c 2.68 ± 0.24 ab 1.72 ± 0.10 bc 

Microbial N (mg N kg
-1

) 211.02 ± 4.84 a 69.22 ± 0.90 c 160.90 ± 11.35 ab 98.70 ± 5.37 bc 

Denitrification enzyme activity (g N kg
-1

 h
-1

) 5.16 ± 0.64 a 0.21 ± 0.07 bc 0.83 ± 0.17 ab 0.00 ± 0.00 c 
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2.3.  Discussion 

Both the 
15

N2OPD and GFSC methods have been proposed to be able to measure gross N2O 

production and consumption in soils
9.10

. The comparable net N2O fluxes determined by these 

methods (Fig. 1c) suggest that both methods can yield similar results in terms of the net effect 

of concurrently occurring production and consumption of N2O. However, the measured gross 

N2O production and consumption rates (Fig. 1a,b), and thus the ratios of net N2O flux to gross 

N2O production (Fig. 1d), differed between the two methods. Hence, we reject our hypothesis 

that 
15

N2OPD technique and GFSC method yield comparable estimates of gross N2O fluxes.  

When using the 
15

N2OPD technique, gross N2O production is determined from the 

dilution of 
15

N2O label by 
14

N2O produced in the soil
15

. An implicit assumption of this 

approach is that the headspace-labelled 
15

N2O that diffuses into the soil results in a 

homogeneous mixture of 
15

N2O with soil-derived N2O in the soil air-filled pores, which also 

imply that these pores must be interconnected to the soil surface for homogenous mixing to 

occur. Our conservative calculations of diffusive transport of 
15

N2O into interconnected soil 

air-filled pores suggest that 
15

N2O must have diffused into these pores and back to the 

headspace within 0.5 h. However, there may be two situations when gross N2O production 

and consumption will be underestimated by this method: 1) produced N2O is immediately 

consumed within denitrifier cells
3
, and 2) produced N2O diffuses out of denitrifier cells and is 

consumed by other microorganisms, which may have N2O reductase but cannot act on the 

preceding substrates of the denitrification pathway
18

, without being mixed first with the 
15

N2O 

label during the 3-hour measurement period. Both situations can occur in anaerobic microsites, 

which here we infer to microsites saturated with water, isolated pores filled with or enclosed 

by water forming a diffusion barrier, and water-entrapped N2O as expounded by Clough et 

al.
14

. If these situations happen, disparity between 
15

N2OPD and GFSC measurements would 

be large in a fine-textured soil with high water content whereas they would be comparable in 

a coarse-textured soil with low water content. The fact that our results showed the large 

differences between the 
15

N2OPD and GFSC measurements in the silty loam soil of grassland 

with high WFPS and they were particularly comparable in the sandy soil of pine forest with 

low WFPS (Fig. 1a,b; Table 2) suggest that the 
15

N2OPD technique was not able to quantify 

gross N2O production in these above-mentioned two situations. With the GFSC method, gross 

N2O production is measured as the sum of emitted N2O and N2, and thus those immediately 

consumed N2O to N2 within denitrifier cells and between different microorganims in 

anaerobic microsites are included in this measurement.  
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We summarize our results into a conceptual model in order to illustrate two decoupled 

pathways of N2O production and consumption in soil (Fig. 2). In the first pathway, N2O is 

produced in anaerobic microsites and reduced immediately to N2 without first mixing with the 

15
N2O label. Based on our results, only the GFSC method but not the 

15
N2OPD technique was 

able to quantify this pathway. The second pathway covers the soil-derived N2O that diffuses 

into the interconnected soil air-filled pores and mixes with the 
15

N2O label, which was 

captured by the 
15

N2OPD technique. Even if the N2O that has moved into the soil air-filled 

pores is being consumed during its diffusion towards the soil-atmosphere interface
4
, as long 

as the produced N2O mixes with the 
15

N2O label this can be included in the 
15

N2OPD 

calculations of gross N2O production. It is clear that both 
15

N2OPD and GFSC methods yield 

complementary important information, and thus a differentiation in the use of terminologies is 

needed. Since the 
15

N2OPD technique reflects the N2O dynamics in the gas phase of the soils 

and its exchange with the atmosphere, we propose to use the terms ‘gross N2O emission’ and 

‘gross N2O uptake’ to denote the gross N2O fluxes in interconnected soil air-filled pores 

measured by this method. Since the GFSC method measures gross N2O fluxes not only in 

interconnected soil air-filled pores but also in anaerobic microsites, we propose that the terms 

‘gross N2O production’ and ‘gross N2O consumption’ be used (Fig. 2). Below we will use 

these proposed terminologies to distinguish between the processes measured by these two 

methods. 

It is important to point out that the 
15

N2OPD technique is able to yield information on 

gross N2O uptake from the atmosphere to the soil. For years there has been a discussion on 

the importance of N2O uptake in the soil from the atmosphere and substantial progress has 

been hampered because until now only the net N2O fluxes on the soil surface can be routinely 

measured with inexpensive static chamber method. With the 
15

N2OPD technique, we now 

have an operational approach that can be used for field measurements and can separate the net 

N2O fluxes across the soil-atmosphere interface into gross N2O emission and gross N2O 

uptake. It is a significant advancement since this technique will allow us to investigate the 

factors that control N2O uptake by soils under actual field conditions, which is a commonly 

unquantified sink of ecosystem N budgets. 
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Figure 2. Conceptual diagram of gross N2O fluxes.  Gross N2O emission and gross N2O 

uptake, measured by 
15

N2O pool dilution (
15

N2OPD), which largely includes gas exchange in 

interconnected air-filled pores in the soil; gross N2O uptake = gross N2O emission – net N2O 

flux. Gross N2O production and gross N2O consumption, measured by gas-flow soil core 

(GFSC), which encompasses the soil air-filled pores as well as anaerobic microsites (e.g. soil 

micro spots saturated with water, isolated pores filled with or enclosed by water, and water-

entrapped N2O); gross N2O consumption = N2 emission, and gross N2O production = gross 

N2O consumption + net N2O flux.  

 

 

 Moreover, our results contrast to the notion that substantial N2O uptake only happens 

in soils with net negative N2O flux. This was shown by the larger gross N2O uptake 

(measured by 
15

N2OPD technique) in the grassland that had larger net N2O emissions than in 

the pine forest that had a net negative N2O flux (Fig. 1b,c). The positive correlations of gross 

N2O uptake with soil biochemical characteristics (Supplementary Table S1) suggest that high 

gross N2O uptake occurs in soils with high microbial activity and high substrate availability 

(Table 2). The ratios of net to gross N2O emissions (66 – 79% in grassland, cropland and 

beech forest; Fig.1d) were similar to the values reported by Yang et al.
10

 and Yang and 

Silver
12

 from managed grassland and cropland in California (net to gross N2O emission ratio 

of 68 – 70%). These generally comparable ratios may open the possibility of making 

estimates of gross N2O emissions and uptake based on measured net N2O emissions. 

The large fraction of gross N2O production that was consumed to N2 (measured by 

GFSC method) suggests that gross N2O production and consumption were closely coupled, 
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which is in line with our aforementioned deduction (i.e. most N2O was immediately reduced 

to N2 in anaerobic microsites). Hence, the similar correlations found for gross N2O production 

and consumption with soil biochemical characteristics (Supplementary Table S1) as those 

found for gross N2O emission and uptake (measured by 
15

N2OPD technique) suggests that 

these gross N2O fluxes were regulated by the same process, denitrification
4
.  

Our findings show that whereas the 
15

N2OPD technique is a valuable tool to separate 

net N2O flux across the soil-atmosphere interface into gross N2O emission and uptake, it did 

not allow measuring a large part of gross N2O production and consumption in anaerobic 

microsites. In order to avoid misinterpretations of terminologies, we propose that the terms 

‘gross N2O emission and uptake’ should be used for gross N2O fluxes measured with the 

15
N2OPD technique and ‘gross N2O production and consumption’ should be used for gross 

N2O fluxes measured with the GFSC method.  

 

2.4.  Methods  

Study sites and soil sampling.  Soil samples were collected from four ecosystems: grassland, 

cropland, beech and pine forests, covering different vegetation, soil types and climatic 

conditions (Table 1). The montane grassland is manured 2-3 times a year and cut for hay three 

times a year
19

. The cropland is a conventional corn-winter wheat rotation. The unmanaged 

beech forest (Fagus sylvatica) is 163 years old
20

, and the unmanaged Mediterranean pine 

forest (Pinus pinaster) is 52 years old
21

.  

At each site, we selected four sampling points as replicates with a minimum distance of 

25 m from each other. At each replicate, eight intact soil cores (250 cm
3
 each) were taken 

using stainless-steel cores (8 cm diameter, 5 cm height): four of which were used for the 

15
N2OPD measurement and the other four for the GFSC measurement. The 

15
N2OPD 

measurement was conducted concurrently with the GFSC measurement, such that the soil 

cores for these two methods were handled similarly in all aspects. Neither soil moisture nor 

substrate level was adjusted.   

 

15
N2O pool dilution.  Four intact soil cores were placed in an incubation glass (6.6 L volume), 

equipped with Luer-lock stopcock for gas sampling. Upon closure of the incubation vessel, 

we injected into the chamber headspace 7 mL of 
15

N2O label gas, containing 100 ppmv of 98% 

single labelled 
15

N-N2O, 275 ppbv sulfurhexafluoride (SF6, as a tracer for physical loss of 

N2O) and the rest as synthetic air. This injected amount increased the N2O concentration in 
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the headspace by approx. 106 ppbv N2O with 12.5 atom% 
15

N enrichment and SF6 

concentration of 292 pptv. At 0.5, 1, 2, and 3 h following label gas injection, 100 mL and 12 

mL gas samples were taken out and stored in pre-evacuated 100 mL glass bottles and 12 mL 

glass tubes (Exetainer; Labco Limited, Lampeter, UK), respectively, with rubber septa. The 

sampled air volume was then replaced with 112 mL of a gas mixture (80% helium and 20% 

oxygen) to maintain the headspace at atmospheric pressure and oxygen concentration, without 

altering the isotopic composition of the headspace N2O. The dilution that this replacement 

caused was accounted for in the calculations. The 100 mL gas samples were used to analyze 

isotopic composition using an isotope ratio mass spectrometer (IRMS) (Finnigan Delta
plus

 XP, 

Thermo Electron Corporation, Bremen, Germany). The 12 mL gas samples were used to 

measure N2O and SF6 concentrations using a gas chromatograph equipped with an electron 

capture detector (GC 6000 Vega Series 2, Carlo Erba Instruments, Milan, Italy). The detection 

limit of the entire measurement set-up and instrument precision was < 0.9 ppbv N2O h
-1

. 

We modeled the vertical diffusive transport of 
15

N2O label through the 5 cm long soil 

cores, using the diffusion equation 
𝜕𝐶

𝜕𝑡
=

𝜕 𝐶 
2

𝜕𝑥2 in which C, t and x denote concentration, time 

and path length, respectively
22

. The free-air N2O diffusion coefficient at 15 °C, 0.1582 cm s
-1

, 

was used and adjusted for soil tortuosity based on the air-filled porosity
23

, which was 

calculated using the measured bulk density and gravimetric moisture contents. Our most 

conservative calculations, using the lowest air-filled porosity and assuming an impervious 

boundary condition at bottom of the soil cores, showed that the 
15

N2O label had diffused into 

the 5 cm long soil cores and back to the headspace within 0.5 h. Thus, our sampling interval 

during the 3-hour measurement period was sufficient to allow mixing of the label gas with the 

soil-derived N2O in interconnected air-filled pores and to quantify the changes in N2O 

concentrations and 
15

N2O enrichments in the headspace.  

Gross N2O emission rate was calculated using the following equations modified from 

Yang et al.
10

: 
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14 14
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l l
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             (2) 

where [
14

N2O]t is the concentration of 
14

N2O at time t, calculated as the product of N2O 

concentration and 
14

N-N2O atom%; [
15

N2O]t is the concentration of 
15

N2O, calculated as the 

product of N2O concentration and 
15

N-N2O atom% excess, assuming that the 
15

N isotopic 

composition of background N2O is 0.3688 atom%
10

; t represents the time of gas sampling 
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from the headspace; F14 represents the 
14

N2O mole fraction (0.997)  and F15 represents the
 

15
N2O mole fraction (0.003)  of  emitted N2O; k14 and k15 represent the first-order rate 

constants of 
14

N2O and 
15

N2O reduction to N2, respectively, calculated based on the 

fractionation factor (α = k15/k14) that has an average value  of 0.9924 ± 0.0036 in literature
10

; 

kl represents the first-order rate constant for loss of inert transport tracer, SF6; P is gross N2O 

emission rate. The k14 and k15 represent the biological loss, and kl represents the physical loss. 

Since the changes of their concentrations in the headspace are simultaneously affected by 

biological consumption and physical loss, we used the sum of these constants (k14+kl or k15+kl) 

in the above equations. 

We estimated the parameters for P and k15 by simultaneously fitting the measured 

[
14

N2O]t and [
15

N2O]t with equation (1) and (2). The best fit of [
14

N2O]t and [
15

N2O]t was 

found using the least square approach and minimizing the following error function: 

2 2

1 1

( ( ) ( )) ( ( ) ( ))n npredicted observed predicted observed

t t

Y t Y t Z t Z t
E

SD SD 

 
                          (3) 

where E is minimal weighted error (E); Y, Z and n indicate 
14

N2O, 
15

N2O concentrations, and 

the number of measurements, respectively; SD refers to the standard deviation of the observed 

concentrations over the course of measurements
24,25

. Equation (3) was minimized using the 

‘fminsearchbnd’ function in MATLAB (MathWorks, Version R2011b, USA). Gross N2O 

uptake was calculated as the difference between gross N2O emission and net N2O flux
10

.  

 

Gas-flow soil core.  The GFSC method is a fully automated, direct and sensitive 

quantification of the change of N2O and N2 concentrations in the headspace above the soil 

cores. The soil air of the four soil cores and the headspace of the incubation vessel were 

completely replaced by a gas mixture consisting of 20% O2 (purity grade of 5.5), 80% He 

(purity grade of 5.0), N2O (400 ppbv) and N2 (25 ppmv). This complete exchange was done 

by automated repeated cycles of evacuation and gas purging, achieved through a built-in 

purging system in an extremely air-tight chamber that is connected directly to a gas 

chromatograph (Shimadzu GC-17A, Shimadzu，Munich，Germany)
17,26–28

. Eighteen hours 

of evacuation-purging cycles ensure a complete removal of the background atmospheric air
27

, 

after which the headspace and tubing connections to the gas chromatograph were further 

purged for three hours. Subsequently, the system switched to a static chamber mode, and the 

headspace air of the incubation vessel was analyzed hourly over four hours through a directly 

connected gas chromatograph with an electron capture detector for N2O analysis and a pulse 
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discharge He ionization detector (Vici AG, Schenkon，Switzerland) for N2 analysis
26

. To 

sample the headspace, a slight overpressure was created by injecting 40 mL of the He-based 

gas mixture to the headspace, directing headspace air to the sampling loops
26

. The dilution of 

this non-intrusive overpressure sampling technique was accounted for in the calculation of 

N2O and N2 concentrations
26

. In order to achieve the best possible tightness of the incubation 

system against intrusion of atmospheric N2, all tubing connections, valves as well as the entire 

incubation vessel were placed under water. Before starting the N2O and N2 measurements, the 

air-tightness of the system was always checked with an empty incubation vessel, which was 

connected in parallel with the measuring vessel. Based on the sensitivity and repeatability of 

the gas chromatograph measurements, the detection limits were < 0.03 ppmv h
-1

 for N2 and < 

0.45 ppbv h
-1

 for N2O. The measured N2 flux from the soil equals to gross N2O consumption 

whereas the sum of N2 and N2O fluxes equals to gross N2O production
17,26–28

.  

 

Soil controlling factors.  Soil water content (one-day oven-drying at 105 °C and expressed as 

WFPS using 2.65 g cm
-3

 as particle density and the measured bulk density; Table 1), NH4
+
 

and NO3
-
 concentrations (0.5 M K2SO4 extraction), and microbial biomass C and N (CHCl3 

fumigation-extraction) were determined from the soil cores immediately after the gas 

measurements. NH4
+
 and NO3

-
 concentrations in the soil extract were determined using 

continuous flow autoanalyzer (Skalar Scan plus system, Skalar Analytical B.V., Breda, 

Netherlands). Microbial biomass C and N were determined as the difference in 0.5 M K2SO4-

extractable organic C and N (analyzed using persulfate oxidation with an infrared detector; 

Multi N/C 3100 TOC/TNb-Analysator, Analytik Jena, Jena, Germany) between the fumigated 

and unfumigated soils divided by kEC = 0.45 and kEN = 0.68
29

. DEA was determined from the 

N2O produced during an anaerobic incubation with glucose and NO3
-
 added in excess and 

acetylene inhibited N2O reduction of to N2
30

.  

 

Statistical analysis.  The above soil properties, determined separately from the soil cores 

used for 
15

N2OPD and GFSC measurements, did not differ between these two measurements 

(p > 0.05; paired t test); thus,  the values from the two measurements were  averaged to 

represent a replicate sampling point. Data sets were first tested for normal distribution 

(Shapiro-Wilk’s test) and equality of variance (Levene’s test). We used log-transformation for 

variables with non-normal distributions or unequal variances and assessed the differences in 

gross N2O fluxes and soil properties among sites using one-way analysis of variance 

(ANOVA) with Fisher’s least significant difference test. When none of the data 
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transformations were able to attain normal distribution and equality of variance, differences 

among sites were tested using the Kruskal-Wallis ANOVA with multiple comparisons test. 

The differences in gross and net N2O fluxes between the 
15

N2OPD and GFSC methods for 

each site were assessed using the paired t test. Relationships of gross N2O fluxes with soil 

properties were assessed using spearman rank correlation test. Statistical significance was set 

at p ≤ 0.05. Statistical analyses were conducted using SPSS (SPSS, Chicago, Illinois, USA).  
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Supplementary Table S1.  Relationships between soil physical and biochemical characteristics and gross N2O production and consumption, 

measured by 
15

N2O pool dilution technique and gas-flow soil core method. 

Explanatory soil variables 
15

N2O pool dilution 
 

Gas-flow soil core 

 

Gross N2O 

production 

Gross N2O 

consumption 

Net N2O 

flux  

Gross N2O 

production 

Gross N2O 

consumption 

Net N2O 

flux 

pH -0.09 -0.08 -0.07   -0.19 -0.31 -0.17 

Water-filled pore space 0.92
**

 0.85
**

 0.92
**

 
 

0.58
*
 0.56

*
 0.32 

NH4
+
-N 0.69

**
 0.68

**
 0.64

**
 

 
0.70

**
 0.65

*
 0.34 

NO3
-
-N 0.20 0.10 0.22 

 
-0.17 -0.17 0.17 

Microbial C 0.77
**

 0.72
**

 0.77
**

 
 

0.60
*
 0.60

*
 0.16 

Microbial N 0.74
**

 0.73
**

 0.71
**

 
 

0.66
**

 0.69
**

 0.27 

Denitrification enzyme activity 0.93
**

 0.80
**

 0.91
**

   0.83
**

 0.74
**

 0.42 

Correlations were assessed using Spearman rank correlation test; n = 16; 
*
 indicates p ≤ 0.05, and 

**
 indicates p ≤ 0.01. 
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Gross N2O emission, gross N2O uptake and asymbiotic N2 fixation 

in soils under temperate spruce and beech forests 

 

 

Yuan Wen, Marife D. Corre, Wiebke Schrell, Edzo Veldkamp  

 

 

 

 

Abstract 

Soils are not only a major source but also a potential sink of atmospheric nitrous oxide (N2O), 

a potent greenhouse gas and the most important substance causing stratospheric ozone 

depletion. Net N2O flux at the soil surface is a result of two concurrent processes: gross N2O 

emission and gross N2O uptake. Little is known about these processes and their controlling 

factors because only in the last five years that the 
15

N2O pool dilution method was developed 

to measure these processes in the field. Here, we used this method to quantify gross N2O 

emission and gross N2O uptake in adjacent spruce and beech forests on a Cambisol soil in 

central Germany. Asymbiotic N2 fixation was also measured to infer the balance between the 

natural input of N2 into the soil and its output from the soil through gross N2O uptake. Our 

results showed that the beech stand had higher soil gross and net N2O emissions and 

asymbiotic N2 fixation (P < 0.01-0.04) than the spruce stand. Seasonal variation of gross N2O 

emission was mainly controlled by soil NO3
-
 concentration; gross N2O uptake was largely 

influenced by soil extractable organic C; and asymbiotic N2 fixation was correlated with soil 

extractable organic C and temperature. The larger gross and net N2O emissions in beech than 

spruce stands, together with the strong correlation between gross and net N2O fluxes, suggest 

that gross N2O emission rather than gross N2O uptake drove the net N2O flux from the soil. 

Asymbiotic N2 fixation was an order of magnitude lower than gross N2O uptake, indicating 

that N2 fixation did not compensate for the N2 emissions from these highly acidic, N-enriched 

forest soils. Our study generates new insights into previously unknown rates of gross N2O 

emission and uptake, which are presently lacking in N budgets of forest ecosystems. 
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3.1.  Introduction 

Nitrous oxide (N2O) is the third most important greenhouse gas, following CO2 and CH4, and 

plays a significant role in atmospheric photochemical reactions that contribute to stratospheric 

ozone depletion. Since there is an imbalance between the global N2O sources and sinks, 

atmospheric N2O concentration increases at a rate of ~0.25% yr
-1 

(IPCC, 2007). Soils are the 

major global source of atmospheric N2O, contributing approx. 60% of total N2O fluxes to the 

atmosphere (IPCC, 2013). N2O is mainly produced via microbial nitrification and 

denitrification in soils, whereas denitrification can reduce N2O further to N2. Under certain 

conditions, N2O reduction can dominate over N2O production, leading to observations of net 

N2O uptake by soils. Net N2O uptake by soils has been reported for natural and managed 

ecosystems both in temperate and tropical climates (Chapuis-Lardy et al., 2007; Schlesinger, 

2013). In the IPCC report of 2013, N2O uptake by soils was included for the first time as a 

potentially important global N2O sink.  

Net N2O flux at the soil surface, e.g. as measured with chamber technique, is a result of 

two concurrently occurring processes: gross N2O emission and gross N2O uptake. Gross N2O 

emission, as measured by 
15

N2O pool dilution technique (Yang et al., 2011), accounts both the 

N2O that is emitted from the soil to the atmosphere and the N2O that is reduced to N2 within 

the soil pores which are in active exchange with the atmosphere (Wen et al., 2016). Gross 

N2O uptake also accounts not only the reduced N2O which come from atmosphere and 

diffuses into soil but also the reduced N2O within the soil pores; thus gross N2O uptake 

represents the N2 flux from the soil. Thus, net N2O uptake from the atmosphere into the soil 

(i.e. net negative soil N2O flux) can only be detected by chamber-based techniques if gross 

N2O uptake exceeds gross N2O emission (Conen and Neftel, 2007). Recent studies suggest 

that N2O uptake by soils may be more important than assumed so far (Chapuis-Lardy et al., 

2007; Yang and Silver, 2016a). In our earlier study, we found that substantial gross N2O 

uptake occur in soils that have net positive soil N2O fluxes, but only their gross N2O uptake is 

masked by their higher gross N2O emission (Wen et al., 2016). Other earlier studies in 

temperate forest soils also reported net N2O uptake, ranging from -0.55 to -66.6 µg N m
-2

 h
-1

 

(Butterbach-Bahl et al., 2002a, 1998; Dong et al., 1998; Goossens et al., 2001). Presently, 

little is known about gross N2O emission and gross N2O uptake in soil as well as their 

controlling factors. A crucial step for a better understanding of their underlying mechanisms 

is to quantify gross N2O emission and uptake separately. This will improve our understanding 

of controlling factors involved in soil N2O dynamics which, in turn, would help to predict 

how soil-atmosphere N2O fluxes will response to future climatic changes.  
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The new method of 
15

N2O pool dilution that can simultaneously quantify in-situ gross 

N2O emission and uptake in soil has been used so far in three sites in California (managed 

grassland, cropland and salt marsh landscape; Yang et al., 2011; Yang and Silver, 2016a; 

Yang and Silver, 2016b). We recently conducted a validation of this method using intact soil 

cores from three sites in Germany (managed grassland, cropland and unmanaged beech forest) 

and one site in Italy (unmanaged pine forest) (Wen et al., 2016). We found that across sites 

gross N2O emission and uptake in soil are positively correlated with soil N availability, 

moisture content and microbial biomass. From those studies in California, soil gross N2O 

emission and uptake are also regulated by soil N availability, moisture content, temperature 

and CO2 emission (Yang et al., 2011; Yang et al., 2016a). There is one other method that 

measures directly N2 and N2O emissions from intact soil cores – the gas-flow soil core 

method – which has been used to quantify soil gross N2O production (i.e. N2 + N2O fluxes) 

and gross N2O consumption (i.e. N2 fluxes) in grassland, beech and spruce forest sites in 

Germany (Butterbach-Bahl et al., 2002b; Chen et al., 2015; Dannenmann et al., 2008; Wen et 

al., 2016). This method however cannot be deployed for in-situ measurement because this 

instrument needs complete leak-proof setup that can only be achieved in a laboratory setting. 

Thus, so far only the 
15

N2O pool dilution technique is deployable for in-situ measurements.  

Recent global atmospheric N2O budget remains highly uncertain with estimates of net 

N2O emission from natural (or non-agricultural) soils of 3.3-9.0 Tg N yr
-1

 and net N2O uptake 

by soils of 0-1 Tg N yr
-1

 (IPCC, 2013).  Forests cover roughly 31% of the land surface (FAO, 

2010), and may thus substantially affect global N2O budgets. Beech and spruce are the most 

common tree species in European forests (Köble and Seufert, 2000). Previous studies have 

shown that deciduous forests typically act as stronger net N2O source than coniferous forests 

(Ambus et al., 2006). In Germany, earlier studies in forest ecosystems, which are mostly 

influenced by high N deposition, have shown that soil net N2O fluxes were higher in beech 

than in spruce (e.g. Butterbach-Bahl et al., 1997; Schulte-Bisping et al, 2003) and that their 

most important controlling factors are soil or litter C/N ratios (as indicators of soil N 

availability) and soil moisture. To date, other than those studies conducted in California 

(Yang et al. 2011; Yang and Silver, 2016a; Yang and Silver, 2016b), in-situ gross N2O 

emission and gross N2O uptake in soil and their controlling factors have not been investigated 

in any other terrestrial ecosystems. 

Furthermore, biological N2 fixation in soil, the microbial process of converting 

atmospheric N2 into bioavailable ammonia, is one of the most important processes controlling 

N richness of natural ecosystems (Bellenger et al., 2011), and since gaseous N losses are 
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commonly influenced by soil N availability, quantifying gross N2O emission, uptake and N2 

fixation will generate new insights into the gaseous N budget of an ecosystem. Asymbiotic N2 

fixation by free-living microorganisms is an important N input in ecosystems where no or 

only few leguminous species are present (Keuter et al., 2014). Asymbiotic N2 fixation is 

controlled by climatic factors and soil nutrient availability (Reed et al., 2011). Specifically, 

nitrogenase enzyme activity has been shown to be temperature dependent (Houlton et al., 

2008). High soil moisture content also stimulates asymbiotic N2 fixation as it consequently 

lowers the oxygen content in the soil and high oxygen content can inhibit nitrogenase activity 

(Limmer and Drake, 1996; Reed et al., 2011). The bioavailability of labile organic carbon is 

also an important controlling factor because asymbiotic N2 fixation requires a lot of energy 

(Vitousek and Hobbie, 2000). Increased availability of soil nutrients has been shown to either 

down-regulate (mineral N) or stimulate (P, Fe, Mo) asymbiotic N2 fixation (Jean et al., 2013; 

Keuter et al., 2014). No nitrogenase activity has been reported in very acidic soils possibly 

because of reduction of bacterial population which are intolerant to highly acidic condition 

(Jurgensen and Davey, 1970; Limmer and Drake, 1996) combined with low availability of 

nutrients (e.g. P, Mo) in acidic condition which may limit N2 fixation (e.g. Barron et al., 2008; 

Reed et al., 2007; Silvester et al., 1989).  

Soil gross N2O emission, gross N2O uptake and N2 fixation ideally should be 

investigated together in an ecosystem, considering that these processes are controlled by 

similar factors (Reed et al., 2011; Seitzinger et al., 2006) and in view of ecosystem N input-

output budget which often assumed that soil gaseous N emission (e.g. net N2O + N2 emission) 

is compensated by N2 fixation in the soil (e.g. Brumme et al., 2009). While in aquatic 

ecosystem denitrification and N2 fixation are commonly investigated together (e.g. Deutsch et 

al., 2007), this is rarely the case in terrestrial ecosystems.  

In the present study, our objectives were to: 1) quantify gross N2O emission and uptake 

and asymbiotic N2 fixation in soils under beech and spruce forests, and 2) determine the 

controlling factors of these processes. Our study sites were unmanaged, old-growth spruce 

(Picea abies) and beech (Fagus sylvatica) forests on acidic Cambisol soil in central Germany 

that have been receiving high N deposition (averaging 42 and 25  kg N ha
-1

 yr
-1

 in throughfall 

of spruce and beech stands, respectively, since monitoring began in 1970s; Corre et al., 2003; 

Corre and Lamersdorf, 2004; Lower Saxony Forest Research Station, 2003; Meesenburg et al., 

1995). We tested the following hypotheses: (1) the beech forest will have higher gross N2O 

emission and uptake in the soil than the spruce forest; (2) gross N2O emission and uptake in 

soil will be mainly regulated by soil N availability and moisture content, whereas soil 
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temperature and available C will additionally influence asymbiotic N2 fixation; and (3) at both 

forests, with acidic soil and high N deposition, asymbiotic N2 fixation will be lower than gross 

N2O uptake (or N2 flux from the soil). Our study provides the much needed information on 

the importance of spruce and beech forest ecosystems as sink of atmospheric and soil-air N2O, 

and on whether asymbiotic N2 fixation compensates for gross N2O uptake.    

3.2.  Methods and materials 

3.2.1. Site description and sampling design 

Our study was conducted at the Solling upland (51.76° N, 9.58° E), Lower Saxony, Germany. 

Two adjacent stands were selected: a 132-year-old spruce stand and a 163-year-old beech 

stand. Both forest stands are situated at an altitude of 510 m, with a mean annual temperature 

of 7.3 ℃ and a mean annual precipitation of 1100 mm. These forest stands were on a similar 

soil type, formed from loess over weathered Triassic sandstone, classified as Dystric 

Cambisol (FAO) or Typic Dystrochrept (USDA) and has silty loam texture.  

We measured soil gross N2O emission and uptake, microbial C and N, denitrification 

enzyme activity (DEA), and other supporting soil parameters (see Section 2.5) from May to 

October in 2014. Asymbiotic N2 fixation was measured from June to October in the same year. 

Measurements were carried out separately for the organic layer (combined Oi, Oe and Oa 

layers) and 0-5 cm mineral soil. At each site, four or five sampling points (replicates) with a 

minimum distance of 25 m from each other were selected. In each sampling point, intact soil 

samples were taken using stainless-steel cores from each layer. We measured gross N2O 

fluxes and asymbiotic N2 fixation in the field and analyzed the gas samples and supporting 

soil parameters in the laboratory during the same day of sampling.  

3.2.2. 
15

N2O pool dilution method 

At each sampling point, four intact soil cores (250 cm
3 

each) were taken and placed in a glass 

desiccator (6.6 L) equipped with a Luer-lock stopcock which was used for incubation in the 

field. We used four intact soil cores based on several preliminary tests for optimizing the 

closure time of incubation chamber, gas sampling intervals, the concentration of the 
15

N2O 

label gas and the volume of the incubation chamber. To maintain a good seal, vacuum grease 

was applied to the flanges so that the desiccators were closed tightly. Seven mL of the 
15

N2O 

label gas, containing 100 ppmv of 98% single labelled 
15

N-N2O, 275 ppbv of 

sulfurhexafluoride (SF6 as a tracer for physical loss of N2O) and synthetic air, were injected 

into the chamber headspace immediately after closure. Hence, headspace concentrations 
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increased by approximately 106 ppbv N2O with 12.5 atom% 
15

N and 292 pptv SF6. After 

injection of the label gas, the headspace was mixed thoroughly by pumping the inside air with 

the use of a syringe. 100 mL and 12 mL air samples were taken from the headspace, using 

syringes with Luer-lock stopcocks, at 0.5, 1, 2, and 3 h following closure and immediately 

stored into pre-evacuated 100 mL glass bottles and 12 mL glass vials (Exetainer; Labco 

Limited, Lampeter, UK) with rubber septa, respectively. The sampled air volume was then 

replaced with 112 mL of a gas mixture containing 80% helium and 20% oxygen to maintain 

the headspace under atmospheric pressure and oxygen concentration without altering the 

isotopic composition of the headspace N2O. Dilution of the headspace gases caused by adding 

the helium-oxygen gas mixture was corrected for in our calculations (see Section 2.3). The 

100 mL gas samples were used to analyze the isotopic composition using an isotope ratio 

mass spectrometer (IRMS) (Finnigan Delta
plus

 XP, Thermo Electron Corporation, Bremen, 

Germany). The 12 mL gas samples were used to measure N2O and SF6 concentrations using a 

gas chromatograph (GC 6000 Vega Series 2, Carlo Erba Instruments, Milan, Italy) equipped 

with an electron capture detector and an autosampler. Air temperature and barometric 

pressure were recorded during each sampling day.  

The 
15

N2O pool dilution has an implicit assumption that the headspace-labelled 
15

N2O 

diffuses into the soil and results in a homogeneous mixture of 
15

N2O with soil-derived N2O in 

the soil air-filled pores; this implies that these soil pores must be interconnected to the soil 

surface to result in homogenous mixing. Based on the modeled vertical diffusive transport of 

15
N2O label, our most conservative calculations showed that the 

15
N2O label had diffused into 

the 5 cm long soil cores and back to the headspace within 0.5 h. Thus, our sampling interval 

during the 3-hour incubation period was sufficient to allow mixing of the label gas with the 

soil-derived N2O in interconnected air-filled pores. 

3.2.3. Calculation of 
 
gross N2O emission and uptake 

Gross N2O emission and uptake in soil were calculated based from Yang et al. (2011). Net 

flux is the result of gross N2O emission ‘E’ and gross N2O uptake ‘U’: 

𝑁𝑒𝑡 𝑓𝑙𝑢𝑥 = 𝐸 − 𝑈                                                                                                                                  (1) 

We assume that the gross N2O emission rate is linear over the duration of chamber closure, 

and diffusion of N2O from the chamber headspace into soil and its subsequent reduction 

follow Michaelis-Menten-type kinetics (Vieten et al., 2009), yielding the following time-

dependent equation of N2O concentrations, [N2O]: 

𝑁𝑒𝑡 𝑓𝑙𝑢𝑥 =
𝑑[𝑁2𝑂]

𝑑𝑡
= 𝐸 − 𝑘 × [𝑁2𝑂]𝑡                                                                                      (2) 



37 

 

where ‘k’ is the first-order rate constant for U, and ‘[N2O]t’ is the concentration of N2O at 

time t. This equation can be applied to 
14

N2O and 
15

N2O headspace concentration 

simultaneously: 

𝑑[14𝑁2𝑂]

𝑑𝑡
= 𝐹14 × E − (𝑘14 + 𝑘𝑙) × [14𝑁2𝑂]𝑡                                                                                      (3) 

𝑑[15𝑁2𝑂]

𝑑𝑡
= 𝐹15 × E − (𝑘15 + 𝑘𝑙) × [15𝑁2𝑂]𝑡                                                                                      (4) 

Then, these equations can be transformed to the following:  

[14𝑁2𝑂]𝑡 =
𝐹14 × 𝐸

(𝑘14 + 𝑘𝑙)
− {

𝐹14 × 𝐸

(𝑘14 + 𝑘𝑙)
− [14𝑁2𝑂]0} × 𝑒𝑥𝑝{−(𝑘14 + 𝑘𝑙) × (𝑡 − 𝑡0)}             (5) 

[15𝑁2𝑂]𝑡 =
𝐹15 × 𝐸

(𝑘15 + 𝑘𝑙)
− {

𝐹15 × 𝐸

(𝑘15 + 𝑘𝑙)
− [15𝑁2𝑂]0} × 𝑒𝑥𝑝{−(𝑘15 + 𝑘𝑙) × (𝑡 − 𝑡0)}             (6) 

where ‘[
14

N2O]t’ and ‘[
15

N2O]t’ represent the concentrations of 
14

N2O and 
15

N2O at time t, 

calculated respectively as the product of N2O concentration and 
14

N-N2O atom% and 
15

N-N2O 

atom% excess (Yang et al., 2011); ‘F14’ and ‘F15’ represent the mole fractions of emission that 

is in the form of 
14

N2O (99.6569%) and 
15

N2O (0.3431%), respectively (Yang et al., 2011); 

and ‘t’ represents the time of sampling from the headspace; ‘k14’ and ‘k15’ represent the first-

order rate constant for 
14

N2O and 
15

N2O reduction to N2, and they are related by 

experimentally derived stable N isotopic fractionation factors (α = k15/ k14) with the average 

literature value of 0.9924 ± 0.0036 (Yang et al., 2011); ‘kl’ represents the first-order rate 

constant for physical loss of the inert SF6 tracer. We used the sum of the first-order rate 

constants (k14 + kl or k15 + kl) in the above equations because biological consumption and 

physical loss simultaneously affect 
14

N2O and 
15

N2O concentrations in the chamber headspace. 

We estimated E and k15 by simultaneously fitting the measured [
14

N2O]t and [
15

N2O]t 

with equations (5) and (6). The best fit of [
14

N2O]t and [
15

N2O]t was found using the least 

square approach and minimizing the following error function: 

𝐸𝑟𝑟𝑜𝑟 = ∑
(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡)−𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡))2

𝑆𝐷

𝑛
𝑡=1 + ∑

(𝑍𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑡)−𝑍𝑜𝑏𝑠𝑠𝑒𝑟𝑣𝑒𝑑(𝑡))2

𝑆𝐷
                                                 (7)𝑛

𝑡=1                                                  

Y, Z, n and SD indicate [
14

N2O]t, [
15

N2O]t, number of measurements, and standard deviation 

of the observed concentrations, respectively, over the duration of chamber closure (Rhew, 

2011; Teh et al., 2008). Equation (7) was minimized using the ‘fminsearchbnd’ function in 

MATLAB (MathWorks, Version R2011b, USA). Finally, U was calculated by multiplying k14 

and k15 by the average background atmospheric concentrations of 
14

N2O and 
15

N2O (Rhew, 

2011; Yang et al., 2011), considering N2O concentration (325.1 ppb; WMO, 2013) and 
15

N 

natural abundance (0.3663 atom%). 

𝑈 = 𝑘14 × [14𝑁2𝑂] + 𝑘15 × [15𝑁2𝑂]                                                                                       (8)                                                                    



38 

 

This calculation of gross N2O uptake represented well this flux based on the high correlation 

between the calculated net N2O fluxes (E - U) and the measured net N2O fluxes across the 

measurement period in both forest stands (R
2
 = 0.93, n = 84, P < 0.01, slope = 1.05 ± 0.03). 

We reported the measured net N2O fluxes determined from the linear increase of chamber 

headspace N2O concentration. 

3.2.4. Asymbiotic N2 fixation  

Asymbiotic N2 fixation was measured using the acetylene reduction assay (Hardy et al., 1968), 

which we have employed in our earlier works (Keuter et al., 2014; Matson et al., 2015). We 

took intact soil cores (100 cm
3
) from the organic layer and the 0-5 cm mineral soil from each 

sampling point. Soil cores were incubated immediately in the field in 1100 mL glass mason 

jars with lids fitted with septa for gas sampling. This incubation jars have been tested to be 

air-tight (Keuter et al., 2014). We replaced 10% of the headspace with acetylene (cylinder 

C2H2 with 99% purity, Westfalen AG, Münster, Germany), which was previously purified by 

letting it bubbled through 98% H2SO4 and 5 M NaOH solutions (Hyman and Arp, 1987). The 

jars were buried in the ground to incubate the soil cores in the same depth that they were 

sampled. Gas samples of 12 mL were taken from the headspace, using syringes with Luer-

lock stopcocks, at 1, 3 and 24 h and immediately stored into pre-evacuated 12 mL glass vials 

(Exetainer; Labco Limited, Lampeter, United Kindom). Gas samples were analyzed for C2H4 

concentration using a gas chromatograph (Shimadzu GC 14-B, Shimadzu, Duisburg, 

Germany) with a flame ionization detector and Hayesep T column. C2H4 production rates 

were calculated from the slope of the regression line between C2H4 concentration and time. 

C2H4 production rates were converted to asymbiotic N2 fixation rates using the theoretical 

ratio of 3:1 (Hardy et al., 1968), which is commonly used by other N2 fixation studies (e.g. 

Cusack et al., 2009 and Reed et al., 2008 [3:1]; Benner et al., 2007 and Matzek and Vitousek, 

2003 [3.1:1]).  

3.2.5. Supporting soil parameters 

Soil biochemical characteristics were determined in the organic layer and 0-5 cm mineral soil. 

Soil pH was analyzed in a 1:2.5 soil-to-water ratio. Total organic C and N were measured 

from air-dried, ground samples using a CNS Elemental Analyzer (Elementar Vario EL, Hanau, 

Germany). Total Fe  in the organic layer was determined by HNO3 pressure digestion whereas 

exchangeable Fe in the 0-5 cm mineral soil was determined by percolation with 1M 

unbuffered NH4Cl; the digest or percolate was analyzed for Fe content using inductively 
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coupled plasma-atomic emission spectrometer (ICP-AES; iCAP 6300 Duo VIEW ICP 

Spectrometer, Thermo Fischer Scientific GmbH, Dreieich, Germany). Available P and Mo 

were determined using resin-exchange method, as described in our earlier work (Keuter et al., 

2014). Briefly, 0.5 g soil was shaken in 30 mL distilled water for 12 h together with 1 g anion 

exchange resin (DOWEX 41081 analytical grade, Serva Electrophoresis GmbH, Heidelberg, 

Germany) kept in a tea bag. Subsequently, the resin was shaken in 20 mL 0.5 M HCl for 12 h, 

and these extracts were analyzed for P and Mo contents using the ICP-AES. 

From the same 12 mL gas samples, used to measure N2O and SF6 concentrations, CO2 

were also determined using the same gas chromatograph mentioned above in order to 

determine heterotrophic respiration rate and its relationship with gross N2O fluxes. Following 

each measurement of gross and net N2O fluxes, the four soil cores in a chamber were pooled 

and subsamples were used to determine moisture content, microbial C and N, extractable 

mineral N and organic C, and DEA. These were conducted upon arrival at the laboratory 

within the same day of field sampling. Gravimetric water content was determined by oven-

drying the subsample soil at 105 ℃ for one day. Soil water content was expressed as water-

filled pore space (WFPS), calculated using particle densities of 1.40 g cm
-3

 for organic layer 

and 2.65 g cm
-3

 for mineral soil and the measured soil bulk density at our sites. Microbial C 

and N were determined from another subsample soil by chloroform fumigation-extraction 

method (Brookes et al., 1985). About 15 g of the composite soil sample was extracted with 

100 mL 0.5 M K2SO4 for determination of background extractable mineral N and C. Another 

15 g of the paired composite soil sample was fumigated with ethanol-free chloroform for 5 

days, followed by extraction with 100 mL 0.5 M K2SO4. Soil extraction was done by shaking 

the soil with K2SO4 for 1 h and then filtered through K2SO4 pre-washed filter papers. The 

extracts were kept frozen until analysis. The total extractable N, NH4
+
 and NO3

-
 contents of 

the extracts were analyzed using continuous flow injection colorimetry (SEAL Analytical 

AA3, SEAL Analytical GmbH, Norderstadt, Germany), where total N was determined by 

ultraviolet-persulfate digestion followed by hydrazine sulfate reduction (Autoanalyzer 

Method G-157-96), NH4
+
 by salicylate and dicloroisocyanuric acid reaction (Autoanalyzer 

Method G-102-93) and NO3
- 
by cadmium reduction method with NH4Cl buffer (Autoanalyzer 

Method G-254-02). Extractable organic C was measured using ultraviolet-enhanced persulfate 

oxidation using a Total Organic Carbon Analyzer (TOC-Vwp, Shimadzu Europa GmbH, 

Duisburg, Germany). The differences in extractable C and total extractable N between the 

paired fumigated and unfumigated soils were assumed to indicate the C and N released from 

lysed soil microbes. The chloroform-labile C and N were converted to microbial biomass C 
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and N using a KC = 0.45 and a KN = 0.68, respectively (Brookes et al., 1985; Shen et al., 1984). 

DEA determination was based on the method described by Sutton-Grier et al. (2011). Five 

grams of field-moist soil were weighed into 120 mL glass incubation jars. A media with 10 

mL of 1 mM KNO3, 1 mM glucose and 1 g L
-1

 chloramphenicol in distilled-deionized water 

was added to each jar to ensure non-limiting substrate conditions and inhibition of protein 

synthesis. The jar was sealed with a lid that has a gas sampling port with a rubber septum, and 

an anaerobic headspace was created by repeatedly flushing the jar with N2 gas. Acetylene (10 

mL) was injected into each jar, making N2O the final product of denitrification. Jars were 

placed on an orbital shaker at 120 rpm. Gas samples were collected at 2, 22, and 42 min and 

analyzed for N2O concentration using the same gas chromatograph described above. DEA 

was calculated from the linear rates of N2O accumulation.  

3.2.6. Statistical analysis 

Each parameter was first tested for normal distribution using Shapiro-Wilk’s test and for 

equality of variance using Levene’s test. Parameters with non-normal distributions or unequal 

variances were either logarithmically (for gross and net N2O fluxes, mineral N , extractable 

organic C, microbial C and N, CO2 emission, WFPS) or square-root transformed (for DEA). 

For soil biochemical characteristics measured once, analyses were conducted for each soil 

layer and differences between forest types (beech vs. spruce) were analyzed using 

independent T test at P ≤ 0.05. For analysis of time-series data (gross and net N2O fluxes, 

asymbiotic N2 fixation, mineral N, extractable organic C, microbial C and N, DEA, CO2 

emission and WFPS), we used linear mixed effects model (LME). Analysis was conducted for 

each soil layer and the LME model included forest types (beech and spruce) as fixed effect 

whereas sampling dates and spatial replicates were included as random effects. The LME 

model included either 1) a variance function that allows different variances of the response 

variable for the fixed effect, and/or 2) a first-order temporal autoregressive process that 

assumes a decreasing correlation between measurements with increasing time distance, if this 

increased the relative goodness of the model fit (Crawley, 2007). Fixed effects were 

considered significant based on the analysis of variance at P ≤ 0.05, and differences between 

forest types were assessed using Fisher’s least significant difference test at P ≤ 0.05. Linear 

regression analyses were used to explore relationships of gross and net N2O fluxes and 

asymbiotic N2 fixation with possible explanatory soil factors across the entire measurement 

period, conducted separately for each soil layer at each forest stand using the mean of four 

replicates on each sampling day. For the regression analyses, we mentioned values of P ≤ 
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0.09 as marginally significant, considering that field-measured soil variables and processes 

have inherently high spatial variability. All statistical analyses were conducted using the open 

source software R (version 2.15.3). 

3.3.  Results 

3.3.1. Gross N2O emission, gross N2O uptake and asymbiotic N2 fixation  

Gross N2O emissions from the organic layer and the mineral soil were higher in the beech 

than the spruce stands (P < 0.01 for both depths; Table 1). Gross N2O uptake did not differ 

between forest types either in the organic layer (P = 0.76) or in the mineral soil (P = 0.53; 

Table 1). As was the case with gross N2O emissions, net N2O fluxes were higher in the beech 

stand than in the spruce stand both in the organic layer (P = 0.02) and mineral soil (P = 0.04; 

Table 1).  

 

Table 1. Gross N2O emission, gross N2O uptake, net N2O flux, and asymbiotic N2 fixation in 

the organic layer and 0-5 cm mineral soil in spruce and beech forests from May to October 

2014. 

Soil layer/forest 

type   

Gross N2O 

emission   

Gross N2O 

uptake 
Net N2O flux 

Asymbiotic N2 

fixation  

(µg N kg
-1

 h
-1

) (µg N kg
-1

 h
-1

) (µg N kg
-1

 h
-1

) (µg N kg
-1

 h
-1

) 

Organic layer 
    

Spruce 0.87 ± 0.12 b  0.41 ± 0.05  0.24 ± 0.04 b 0.022 ± 0.003 b 

Beech 1.38 ± 0.24 a   0.22 ± 0.05 0.92 ± 0.27 a 0.035 ± 0.004 a 

0-5 cm soil layer 
    

Spruce 0.26 ± 0.04 b 0.10 ± 0.01  0.03 ± 0.04 b 0.010 ± 0.001  

Beech 0.93 ± 0.15 a 0.14 ± 0.04  0.59 ± 0.10 a 0.008 ± 0.001  

At each layer, means ± standard errors (n = 4) within each column followed by the different 

letter indicated significant difference between forest types (linear mixed effects model with 

Fischer’s least significant difference test at P ≤ 0.05). 
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Throughout the entire measurement period of the growing season, gross N2O emissions 

displayed generally large spatial and temporal variability, as shown by the large standard 

errors on the means (Fig. 1a), as compared to gross N2O uptake (Fig. 1b). Net N2O fluxes also 

displayed small temporal variability, with the exception of the organic layer in the spruce 

stand where net N2O fluxes decreased from June to September (Fig. 1c). Both organic layer 

and mineral soil in the beech stand were net N2O sources throughout the measurement period, 

whereas the organic layer in the spruce stand showed small net N2O sinks in September and 

October (Fig. 1c).  

Asymbiotic N2 fixation rates were very low during the entire measurement period with 

only small increases in the beech organic layer during the summer measurements (Fig. 1d). 

Across the measurement period, beech organic layer had higher asymbiotic N2 fixation than 

spruce organic layer (P < 0.01), whereas no difference was found between forest types for the 

mineral soil (P = 0.99; Table 1). Asymbiotic N2 fixation rates were an order of magnitude 

lower than gross N2O uptake in both soil layers at both forests (Table 1). 

 

 

Figure 1. Temporal variability of N2O dynamics and asymbiotic N2 fixation (means ± 

standard errors, n = 4). Soil gross N2O emission (a), gross N2O uptake (b), net N2O flux (c) 

and asymbiotic N2 fixation (d) in the spruce organic layer (OL), spruce 0-5 cm mineral soil 

(MS), beech OL, and beech MS, measured from May to October 2014. 
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3.3.2. Soil characteristics  

No differences were detected between the spruce and beech stands in pH, total organic C, 

total N, total or exchangeable Fe, available Mo and available P (P = 0.07 - 0.88; Table 2). 

Only the spruce stand showed a higher C:N ratio (P = 0.01) and a lower bulk density (P = 

0.02)  than the beech stand in the mineral soil. Of the soil factors that were measured monthly, 

organic layers generally showed higher soil mineral N, extractable organic C, DEA, and 

microbial biomass C and N, and CO2 emission than mineral soils (Fig. 2a-g). Temporal 

variability of these soil properties were also more pronounced in the organic layer than in the 

mineral soil (Fig. 2a-g). Across the whole measurement period, NH4
+
, NO3

-
, DEA, microbial 

C and N did not display significant differences between spruce and beech stands within the 

same soil layer (Fig. 2a-b, d-f). Extractable organic C was higher in the beech organic layer 

than the spruce organic layer (P = 0.01), whereas no difference was found between forest 

types in the mineral soil (P = 0.47; Fig. 2c). Organic layers in the beech stand had larger CO2 

emission than organic layer in the spruce stand (P = 0.01), whereas mineral soil in the beech 

stand had smaller CO2 emission than the spruce stand (P = 0.02; Fig. 2g). WFPS was higher 

for each soil layer in the beech stand compared to the spruce stand (P = 0.03 for both depths; 

Fig. 2h). 
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Table 2. Soil characteristics measured in the beginning of the study (May 2014). 

Soil layer/ forest 

type 

Bulk density     

(g cm
-3

) 

pH                

(1:5 H2O) 

Total 

organic C (g 

C kg
-1

) 

Total N         

(g N kg
-1

) 

Total C:N 

ratio  

Fe
†
                 

(g Fe kg
-1

) 

Available Mo                   

(µg Mo kg
-1

) 

Available P                  

(mg P kg
-1

) 

Organic layer 
        

spruce 0.16 ± 0.02 4.19 ± 0.08 439 ± 20 18.3 ± 0.2 24.1 ± 1.2 11.2 ± 4.3 79.0 ± 33.1 12.5 ± 2.0 

beech 0.17 ± 0.02 4.12 ± 0.13 436 ± 25 20.7 ± 0.8 21.1 ± 0.6 3.4 ± 1.0 105.6 ± 38.3 16.3 ± 3.3 

0-5 cm mineral soil 
        

spruce 0.57 ± 0.08b 3.67 ± 0.07 109 ± 19 5.1 ± 0.9 21.5 ± 0.4a 0.21 ± 0.02 23.6 ± 13.3 12.9 ± 4.6 

beech 0.75 ± 0.06a 3.66 ± 0.07 127 ± 36 6.6 ± 1.6 18.9 ± 0.6b 0.22 ± 0.02  40.4 ± 39.1 9.6 ± 2.7 

At each layer, means ± standard errors (n = 4) within each column followed by the different letter indicated significant difference between forest 

types (independent T test at P ≤ 0.05). 
†
Fe in the organic and mineral soil layers was determined as the total and exchangeable concentrations, 

respectively; available Mo and P were determined by resin-exchange method.  
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Figure 2. Temporal variability of soil properties (means ± standard errors, n = 4). NH4
+
-N (a), 

NO3
-
-N (b), extractable organic C (c), denitrification enzyme activity (d), microbial C (e), 

microbial N (f), soil CO2 flux (g), and water-filled pore space (h) in the spruce organic layer 

(OL), spruce 0-5 cm mineral soil (MS), beech OL, and beech MS, measured from May to 

October 2014. 

 

3.3.3. Correlations of gross N2O fluxes and asymbiotic N2 fixation with soil factors 

Gross N2O emissions were positively correlated with soil NO3
-
 concentrations in both the 

organic layer (Fig. 3a) and mineral soil (Fig. 3c) of the spruce stand, whereas no correlations 

were detected in either soil layers of the beech stand (Fig. 3b, d). Gross N2O uptakes were 

positively correlated with extractable organic C contents in the organic layer (Fig. 4a) and 
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mineral soil (Fig. 4c) of the spruce stand and in the mineral soil of the beech stand (Fig. 4d). 

We also detected significant correlations of gross N2O uptake with NH4
+
 (R

2
 = 0.86, n = 6, P 

< 0.01) and microbial C (R
2
 = 0.83, n = 6, P = 0.01) in the spruce organic layer. Net N2O 

fluxes were positively correlated with gross N2O emissions in the beech organic layer (Fig. 5b) 

and mineral soil (Fig. 5d), and marginally significant correlation was observed in the spruce 

organic layer (Fig. 5a). Asymbiotic N2 fixation was correlated with different soil factors at 

each forest type. For the spruce organic layer, asymbiotic N2 fixation was positively 

correlated with soil CO2 emission (R
2
 = 0.83, n = 6, P = 0.03) and soil temperature (R

2
 = 0.90, 

n = 6, P = 0.01). For the beech stand, asymbiotic N2 fixation was positively correlated with 

soil temperature in the mineral soil (R
2
 = 0.94, n = 6, P < 0.01), and was marginally 

significant correlated with extractable organic C in the organic layer (R
2
 = 0.66, n = 6, P = 

0.09). Other than these, there were no other significant correlations observed. 

 

Figure 3. Relationships between gross N2O emission and soil NO3
-
 concentration in the 

spruce organic layer (a), beech organic layer (b), spruce mineral soil (c) and beech mineral 

soil (d) (n = 6, linear regression). Each point represents the mean of four replicates on each 

sampling day from May to October 2014, and the bars indicate standard errors. 

 



47 

 

 

Figure 4. Relationships between gross N2O uptake and soil extractable organic carbon 

concentration in the spruce organic layer (a), beech organic layer (b), spruce mineral soil (c) 

and beech mineral soil (d) (n = 6, linear regression). Each point represents the mean of four 

replicates on each sampling day from May to October 2014, and the bars indicate standard 

errors. 
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Figure 5. Relationships between net N2O flux and gross N2O emission in the spruce organic 

layer (a), beech organic layer (b), spruce mineral soil (c) and beech mineral soil (d) (n = 6, 

linear regression). Each point represents the mean of four replicates on each sampling day 

from May to October 2014, and the bars indicate standard errors. 

 

3.4. Discussion  

The higher soil gross N2O emission, net N2O flux and asymbiotic N2 fixation in the beech 

stand compared to the spruce stand (Table 1) illustrated that tree species on the same soil type 

and climatic condition have a strong impact on both soil N2O dynamics and asymbiotic N2 

fixation. These results supported our first hypothesis. Earlier studies in Germany have 

reported that beech forests typically act as stronger net source of N2O than spruce forests (e.g. 

Butterbach-Bahl et al., 1997; Schulte-Bisping et al, 2003). Our supporting soil parameters 

suggest that these differences in gross and net N2O emissions were due to higher soil N 

availability and more anaerobic conditions in beech than spruce stands. Our earlier studies 

from beech and spruce forests near to our present sites showed that gross NO3
-
 production in 

both the organic layer and mineral soil is higher in the beech than the spruce stands (Corre et 

al., 2003; Corre and Lamersdorf, 2004), whereby soil NO3
- 

availability was an important 
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factor controlling the temporal pattern of gross N2O emission in the spruce stand (Fig. 3a, c). 

The higher WFPS and CO2 fluxes in the beech than the spruce stands (Fig. 2g, h) might have 

also resulted in more anaerobic conditions, which may have favored not only gross and net 

N2O emissions but also asymbiotic N2 fixation. Quantifying independently the gross N2O 

emission and uptake in soil offers the unique opportunity to explore separately the controlling 

soil factors of these concurrently occurring processes. The positive correlations of gross N2O 

emission with NO3
-
 concentration in the spruce stand (Fig. 3a, c) and of gross N2O uptake 

with extractable organic C in both spruce and beech stands (Fig. 4a, c, d) suggest that 

variations in levels of electron donor and acceptor controlled the temporal patterns of gross 

N2O fluxes within each stand and point to denitrification as the dominant process regulating 

these fluxes. Our previous study on gross N2O emission and uptake from different sites 

(manured grassland, fertilized cropland and unmanaged forests), encompassing wide ranges 

of soil mineral N and organic C levels, also suggest denitrification as the dominant process 

(Wen et al., 2016). Additionally, the positive correlation of gross N2O uptake with NH4
+
 and 

microbial C in the spruce organic layer reflected the similarity of their temporal patterns (Figs. 

1 and 2a, e), which suggests that high gross N2O uptake occurred during a period of high 

microbial activity and substrate availability (i.e. early autumn, as discussed further below). 

Together, our results indicate that both soil N availability (e.g. gross nitrification) and soil 

aeration status (i.e. WFPS, CO2 emission) controlled the difference in gross N2O emissions 

between forest stands, whereas temporal variations in electron donor (e.g. extractable organic 

C) and acceptor (e.g. NO3
-
) influenced gross N2O emission and uptake within a stand. These 

findings supported our second hypothesis.  

Since the time that net negative N2O flux in the soil was first reported, it has been 

discussed whether net N2O uptake is caused by relatively low N2O production or high N2O 

consumption (Conrad, 1994). Earlier studies frequently link net N2O uptake in soil to low 

NO3
-
 level and low atmospheric or fertilizer N input (Butterbach-Bahl et al., 1998; Goossens 

et al., 2001), suggesting that in a condition of low soil N availability net N2O uptake may be 

driven by low gross N2O emission. In our previous study, we observed net N2O uptake in a 

sandy pine forest soil, which was characterized by very low soil N availability and low gross 

N2O fluxes with gross N2O uptake larger than gross N2O emission (Wen et al., 2016). In our 

present study, the observed net N2O uptake in the organic layer of the spruce stand from 

September to October (Fig. 1c) can also be attributed to a larger gross N2O uptake than gross 

N2O emission (Fig. 1a, b). The low gross N2O emissions during this period (Fig. 1a) was 

paralleled by low NO3
-
 content in the organic layer of the spruce stand (Fig. 2b), whereas the 
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high gross N2O uptake (Fig 1b) was paralleled by high extractable organic C, microbial C and 

CO2 emissions (Fig. 2c, e, g), suggesting high bioavailability of organic C. High organic C 

availability is commonly observed in temperate forests during early autumn, which has been 

explained by new input of easily decomposable organic materials from litterfall and still 

favorable temperature for decomposition (Fröberg et al., 2006; Michalzik and Matzner, 1999). 

On the other hand, the larger gross N2O emissions from both soil layers in the beech than 

spruce stands (Table 1), which followed similar trends in gross nitrification (Corre et al., 2003; 

Corre and Lamersdorf, 2004), resulted to a net N2O source throughout the measurement 

period (Fig. 1c). This and the positive correlation between net and gross N2O emissions (Fig. 

5b, d), but not with gross N2O uptake, indicates that net N2O fluxes were largely influenced 

by gross N2O emissions in the beech forest stand. This result is in agreement with Yang and 

Silver (2016b) who reported that the spatial variability in gross N2O emission rates among 

marsh zones in northern California drove their differences in net N2O fluxes. 

Asymbiotic N2 fixation in both forest stands were very low compared to other temperate 

forests (0.165 g N m
-2

 yr
-1

 on average; Cleveland et al., 1999). We suspect that the low 

asymbiotic N2 fixation at our sites was caused by the acidic soil pH, which also resulted in 

low Mo and P levels (Table 2). From extremely acidic forest soils with pH of 2.7-3.3, N2 

fixation was claimed to be absent and was attributed to intolerance of some N2 fixers to acidic 

condition (Jurgensen and Davey, 1970; Limmer and Drake, 1996). In additional to the low 

soil pH, our study sites have been receiving high N deposition (averaging 42 and 25 kg N ha
-1

 

yr
-1

 in throughfall of spruce and beech stands, respectively) accompanied with high N 

leaching (averaging 45% and 10% of throughfall N deposition in spruce and beech stands, 

respectively; Corre et al., 2003; Corre et al., 2007; Corre and Lamersdorf, 2004; Meesenburg 

et al., 1995). High N availability may inhibit nitrogenase activity, since the energy cost for 

microorganism to fix N is much greater than that to acquire mineral N from the soil (Reed et 

al., 2011). Moreover, the levels of available Mo and P in our present sites were comparable or 

an order of magnitude lower than reported values for temperate forest soils where asymbiotic 

N2 fixation were limited by Mo and P (resin-exchangeable Mo of 4-75 µg Mo kg
-1

; resin-

exchangeable P:13-384 mg P kg
-1

; Jean et al., 2013). The low levels of available Mo and P at 

our sites may have limited asymbiotic N2 fixation, as P is a vital component ATP synthesis 

and Mo serves as a metal cofactor in nitrogenase enzyme (Barron et al., 2009; Jean et al., 

2013; Reed et al., 2007; Silvester, 1989). The positive correlations of asymbiotic N2 fixation 

with extractable organic C content and CO2 flux in the organic layer of both forest stands 

suggest that C availability, as a source of energy, was a major factor driving the temporal 
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pattern of asymbiotic N2 fixation. Free-living heterotrophic N2-fixing microorganisms derive 

their energy from organic matter and maintain high respiration rates which may create 

anaerobic conditions that are needed for nitrogenase to fix N2  (Hill, 1992; Knops et al., 2002; 

Reed et al., 2011). The positive correlations between asymbiotic N2 fixation and soil 

temperature, especially in spruce organic layer and beech mineral soil that had generally low 

N2 fixation rates (Table 1), suggest that under conditions of low N2 fixation activity temporal 

variation in temperature additionally limited the enzymatic process of asymbiotic N2 fixation 

(Houlton et al., 2008; Reed et al., 2011). These results were in line with our second 

hypothesis that, in addition to soil N availability, soil C availability and temperature 

influenced asymbiotic N2 fixation.  

Although previous studies have reported a coupling between free-living N2 fixation and 

denitrification (Reed et al., 2011; Seitzinger et al., 2006) and similar controlling factors (e.g. 

organic C availability and aeration status), we did not detect a correlation between asymbiotic 

N2 fixation and gross N2O uptake or emission. In both beech and spruce stands, asymbiotic N2 

fixation rates (Fig. 2d; Table 1) were an order of magnitude lower than either the soil net N2O 

fluxes or gross N2O uptake (i.e. N2O reduce to N2), indicating that asymbiotic N2 fixation did 

not compensate the gaseous N losses from these highly acidic and N-enriched temperate 

forest soils. This result was in agreement with our third hypothesis. 

3.5.  Conclusions 

Our findings show that tree species had a large influence on gross N2O emission, net N2O flux 

and asymbiotic N2 fixation, and thus large-scale field quantification under similar soil types 

and climatic conditions can be based on tree-species stratification as a promising basis to 

scale up these rates. The tree species effects on gross N2O emission were largely through soil 

N availability (e.g. gross nitrification) and soil aeration status (i.e. WFPS, CO2 emission), 

whereas temporal variations of gross N2O emission and uptake were mainly driven by soil 

NO3
-
 and organic C availability. Therefore, extrapolation of gross N2O fluxes with soil depths 

and seasons in these stands can be based on the regression relationships with these soil 

explanatory variables. Gross N2O emission played an important role in controlling the 

direction and magnitude of net N2O flux, and their regression relationships (indicating ratios 

of net to gross N2O emission of 0.5-0.8 across the measurement period) also open the 

possibility of making estimates of soil gross N2O emissions based on measured soil net N2O 

emissions. Our study offers new insights into gross N2O fluxes and asymbiotic N2 fixation, 
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which are not concurrently investigated in any other ecosystems so far, and provides hitherto 

unknown gaseous N fluxes which can improve N budgets of forest ecosystems. 
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Abstract 

Plants are important to regulate the physical and chemical state of the atmosphere through the 

exchange of soil-generated N2O. Presently, little is known about N2O fluxes from mature trees 

under field conditions as well as their contributions to total forest (soil + stem) N2O fluxes. 

We quantified in situ stem and soil N2O fluxes from mature alder (Alnus glutinosa) trees on 

poorly-drained soil and mature beech (Fagus sylvatica) and spruce (Picea abies) trees on 

well-drained soils in central Germany during March-October 2015. Alder, beech and spruce 

consistently emitted N2O via stems and all displayed clear seasonal patterns. Soil factors (e.g. 

temperature, water content, N2O concentration) and climatic factors (air temperature, vapor 

pressure deficit) influenced the temporal variability in stem N2O fluxes. Stem and soil N2O 

fluxes from the alder stand were higher (P < 0.01 for both) than beech and spruce stands. 

Stem N2O fluxes represented 8-11% of the total N2O fluxes in the spruce and beech stands but 

only 1% in the alder stand. Our study highlights the importance to conduct long-term, field-

based measurements of stem N2O fluxes on mature trees and suggests that relative 

contribution of tree-mediated N2O fluxes is more important in upland trees than in wetland 

trees. 
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4.1.  Introduction 

Atmospheric nitrous oxide (N2O) is a trace gas of environmental concern since it has a high 

global warming potential and is predicted to be the main ozone depleting substance in the 21
st
 

century (Ravishankara et al., 2009). Soils are the dominant source of N2O, and microbial 

nitrification and denitrification are the major N2O producing processes (Davidson et al., 2000). 

Three different pathways of soil-atmosphere exchange of N2O have been described: (1) direct 

diffusion from soil to the atmosphere, what is commonly measured by chamber-based  

method; (2) ebullition of gas bubbles, which can occur under water-logged conditions 

(Clough et al., 2005); and (3) plant-mediated transport, which is a common pathway in rice 

paddies but has also been described for trees and even bromeliads (Yu et al., 1997; Rusch & 

Rennenberg, 1998; Yan et al., 2000; Martinson et al., 2010). 

Several mechanisms have been described to explain how plants serve as an effective 

conduit for soil-atmosphere gas exchange. Wetland plants typically develop aerenchyma 

tissue, i.e. internal lacunae formed by cell separation or cell breakdown in their roots, culms 

and stems, to facilitate transport of atmospheric oxygen downwards to the anoxic rhizosphere 

(Armstrong, 1979);  it can also enable transport of soil-borne N2O upwards through the plant, 

followed by its release to the atmosphere (Rusch and Rennenberg, 1998). Unlike wetland 

plants, most upland plants lack aerenchyma tissue, and hence gaseous N2O diffusion through 

their roots and stems is typically considered to be only of minor importance. However, recent 

studies demonstrate that some upland plants without aerenchyma tissue consistently emit N2O 

(Díaz-Pinés et al., 2016; Machacova et al., 2016). Since considerable amounts of N2O can 

dissolve in water, N2O is thought to move preferentially in dissolved form via the 

transpiration stream (Yu et al., 1997; Chang et al., 1998; Pihlatie et al., 2005; Díaz-Pinés et 

al., 2016). Ultimately, this N2O will be released to the atmosphere through leaf stomata (Zou 

et al., 2005), stem surface (Rusch & Rennenberg, 1998) and stem lenticels (Díaz-Pinés et al., 

2016). 

Plant-mediated N2O fluxes are influenced by soil physico-chemical characteristics, 

climatic factors, and plant-specific properties. Correlations of plant-mediated N2O fluxes with 

various soil characteristics have been observed including soil temperature (Machacova et al., 

2013), soil water content (Chang et al., 1998; Rusch & Rennenberg, 1998; Yan et al., 2000; 

Machacova et al., 2013), soil nutrient availability (Smart & Bloom, 2001; Chen et al., 2002; 

Pihlatie et al., 2005; Díaz-Pinés et al., 2016), gas mixing ratio (Rusch & Rennenberg, 1998), 

N2O concentration in soil solution (Pihlatie et al., 2005), and soil N2O fluxes (Díaz-Pinés et 

al., 2016; Machacova et al., 2016). In addition, light conditions have been linked to plant-
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mediated N2O fluxes, suggesting a possible light-dependent gas transport or N2O production 

mechanism in the plant (Jørgensen et al., 2012). Plant-specific properties (e.g. leaf area index) 

and plant age have also been shown to affect plant-mediated N2O fluxes (Smart & Bloom, 

2001; Pihlatie et al., 2005; Díaz-Pinés et al., 2016). 

Although plant-mediated N2O fluxes have been studied for about two decades, research 

has almost exclusively focused on herbaceous plants (especially crops, such as rice, wheat, 

soybean, maize). Investigations of tree-mediated N2O fluxes are rare and mostly restricted to 

seedlings and/or saplings under laboratory conditions (e.g. Rusch and Rennenberg, 1998; 

Pihlatie et al., 2005; Machacova et al., 2013). Laboratory studies usually included flooding 

and fertilization manipulations at rates which are often out of range for field conditions. 

Presently, very little is known on the processes responsible as well as the environmental 

controls of N2O fluxes from mature trees under field conditions. No information has been 

published on the seasonal variation of tree-mediated N2O fluxes. Moreover, current estimates 

of trace gas emissions from forest ecosystems are based on chamber-based measurements of 

soil N2O fluxes and do not include tree-mediated N2O fluxes. Exclusion of the contribution of 

trees to N2O exchange with the atmosphere may lead to a systematic underestimation of total 

ecosystem fluxes (Machacova et al., 2016). A better understanding of tree-mediated N2O 

fluxes is thus crucial to further constrain estimates of forest N2O emissions and to improve 

prediction of forest ecosystem responses to future climatic change. 

In the present study, our aims were to 1) quantify in situ tree-mediated N2O emissions 

and their seasonal patterns, and 2) assess their controlling factors in order to infer the 

mechanisms responsible for tree-mediated N2O emissions. We conducted simultaneous in situ 

measurements of stem and soil N2O fluxes from mature alder (Alnus glutinosa), beech (Fagus 

sylvatica), and spruce (Picea abies) stands. Alder was selected as it is a typical wetland tree 

species, which facilitates oxygen supply to its roots through aerenchyma and lenticels. Beech 

and spruce were selected as they are the most common upland tree species in Europe and do 

not have aerenchyma tissue. We hypothesized that: (1) tree-mediated N2O fluxes will be 

higher in alder than in beech and spruce stands as the former is a wetland and N2-fxing tree 

species, of which anaerobic and high soil N conditions may promote high soil N2O production, 

whereas the latter are upland and non N2-fixing tree species; (2) N2O transport in alder stem 

will be dominated by N2O diffusion from the soil to the aerenchyma tissue and lenticels, and 

thus alder stem N2O emission will be influenced by the amount of N2O produced in the soil; 

(3) N2O transport in beech and spruce stems will be mainly through dissolved form via xylem 

sap flow and thus will be limited by the sap flow rate which, in turn, will be influenced by air 
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temperature, vapor pressure deficit and soil water content. Our study provides new insights 

into the effect of trees on atmospheric N2O concentration and the temporal controls of tree-

mediated N2O emissions, and thus obtains a better constraint of terrestrial N2O dynamics. 

4.2.  Materials and methods 

4.2.1. Site description and experimental design 

Our study was conducted at Solling uplands (51.72° N, 9.73° E) in central Germany. We 

selected three adjacent forest stands: a 39-year-old alder, an 81-year-old beech and a 68-year-

old spruce. Average tree heights were 32 m in the alder, 27 m in the beech and 33 m in the 

spruce stand, and average diameters at breast heights were 0.18 m in the alder, 0.20 m in the 

beech and 0.23 m in the spruce stand. All three stands were located at an elevation of 310 m, 

mean annual temperature was 8.9 ℃ and mean annual precipitation was 791 mm yr
-1

 (period 

2006-2015; German Weather Service station at Moringen-Lutterbech). Soils were classified 

as Histosols for the alder stand and Gleysols for the beech and spruce stands (FAO 

classification). Soil texture was dominated by silty clay in the alder stand, clay silt in the 

beech stand, and silty loam in the spruce stand.  

In each stand, we selected 6 trees with a minimum distance of 25 m from each other. 

We measured stem N2O fluxes within a 0.2-m length of stem section at a breast height, taken 

at 1.3 m from the ground; hence, the measured stem section was between 1.2-1.4 m stem 

height. Soil N2O fluxes were measured from chamber bases, which were installed at 1-m 

distance from the measured trees. In the center between the sampled tree stems and the soil 

chambers, we also installed stainless steel soil gas samplers at 0.4-m depth to measure soil 

N2O concentrations. From March 26 to October 28, 2015, we conducted 11 measurement 

periods during which we measured stem N2O fluxes, soil N2O fluxes, soil N2O concentrations 

and climatic and soil variables for potential controlling factors of stem N2O fluxes. 

Measurements were performed bi-weekly during spring and summer and monthly during 

autumn. In June and July 2015, we conducted additional measurements of stem N2O fluxes at 

0.2-0.4 m and at 2.2-2.4 m stem heights from the ground in order to assess whether stem N2O 

fluxes showed trends with stem height.  

4.2.2. Measurements of stem and soil N2O fluxes and soil N2O concentrations 

We used flexible plastic chambers made of polyethylene-terephthalate, used normally as oven 

bags (hereafter called ‘oven bag chambers’), to measure in situ stem N2O fluxes (Fig. 1). For 

a gas sampling port, a hole was punched on the oven bag, then fitted with a Teflon bulkhead 
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union and closed with a Luer-lock stopcock (Fig. 1). This method has originally been 

developed to sample volatile organic compounds emitted from tree stems (Rachow et al., 

2012), and was tested by our group through preliminary works for measurements of N2O 

fluxes from tree stems. One week before the first measurement, we applied a 1-cm wide strips 

of silicone sealant on the surface of the tree stems (at 1.2 m and 1.4 m heights from the 

ground) to smooth out any irregularities of the bark in order to ensure an air-tight seal with the 

oven bag chambers during measurement. The silicone sealant also served as a mark so that we 

sampled the same 0.2-m length stem section every measurement period. The silicone sealant 

we used (Otto Seal 
®
 S110) did not contain acetic acid since this may damage trees (Bernhard 

Schuldt, pers. comm.). On every measurement period, we wrapped the oven bag chambers 

(approximately 0.6 m length with the custom-made sampling port in the middle) around the 

stem section marked by the silicone sealant strips, and closed the side-ends of the bag with a 

medical adhesive tape. Once fixed onto the stem, we used a gas-powered heat-gun (E4500, 

HellermannTyton GmbH, Tornesch, Germany) on the top and bottom parts of the oven bag to 

‘shrink’ it onto the stem so that it fitted snugly onto the silicone strips. Then, strips of 

polyethylene foam were wrapped around the stem at the top and bottom parts of the oven bag, 

leaving a length of 20 cm  in the middle for gas sample collection. These strips of foam was 

tighten around the entire stem using lashing straps with ratchet tensioners, resulting the straps 

to fix the oven bags tightly onto the silicone sealant strips (Fig. 1). With the lashing straps 

tightly fixed, the strips of foam and the oven bag adjusted to any irregularities on the bark, 

ensuring an air-tight seal (Fig. 1). Since this installation of the oven bag chambers is quick, 

new chambers were attached onto the stem every measurement period and permanent 

chamber installation was not necessary. In contrast to permanently installed chambers, this 

reduced the risk of damaged oven bag chambers affecting flux measurements. Moreover, the 

foam protected the stem from damage during chamber installation and measurements. 

Following installation, the oven bag chamber was first completely evacuated by attaching a 

syringe with Luer-lock one-way check valve onto the sampling port and pumping the air out 

the oven bag repeatedly until it is visibly shrinking onto stem from being empty. The oven 

bag chamber was then refilled with a known volume of ambient air (i.e. 2 L) using a manual 

pump. Immediately following chamber filling, a gas sample of 20 mL was removed at 0, 20, 

40, 60 minutes by attaching a syringe into the Luer-lock sampling port, and injecting the gas 

sample immediately into a pre-evacuated 12 mL exetainers with rubber septa (Labco Limited, 

Lampeter, UK), keeping an overpressure. 
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Figure 1. Oven bag chamber method, used to measure in situ stem N2O fluxes. 

 

Soil N2O fluxes were measured using the standard method that our group has employed 

in our earlier studies (see for a detailed description: Corre et al., 2014; Veldkamp et al., 2013).  

Round chamber bases made of polyvinyl chloride (area 450 cm
2
, height 13 cm) were inserted 

~2 cm into the soil at least a week before the first measurement period and installed 

permanently for the entire measurement period. On each measurement period, chamber covers 

equipped with a Luer-lock sampling port, were attached tightly onto the chamber bases (25 

cm total chamber height and approx. 11 L total volume). Using a plastic syringe, we removed 

gas samples of 20 mL each at 1, 21, 41, and 61 min following chamber closure. Gas samples 

were stored into pre-evacuated 12 mL exetainers with rubber septa.  

Soil N2O concentrations were sampled at 0.4-m depth using stainless-steel probes (1 

mm inner diameter), where one end was perforated with small holes to extract soil air. This 

method had been successfully used in our earlier studies (e.g. van Straaten et al., 2011; 

Koehler et al., 2012; Corre et al., 2014). The stainless-steel probes were inserted into the soil 

prior to the first measurement period and were left permanently on the ground. Before taking 

a gas sample, 5 mL of air was removed and discarded to clear the probes of the ‘dead’ air 
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volume. We took 20 mL gas samples using a plastic syringe, attached the top end of the 

probes, and stored the samples into pre-evacuated 12 mL exetainers with rubber septa.  

4.2.3. N2O analysis and flux rate calculations 

All gas samples were analyzed one day after the field sampling using a gas chromatograph 

(GC 6000 Vega Series 2, Carlo Erba Instruments, Milan, Italy) with an autosampler (Gilson 

SAS, Villiers, Le Bel, France), equipped an electron capture detector. N2O fluxes were 

calculated from the linear change of N2O concentrations in the chamber versus time and were 

adjusted with the field-measured air temperature and atmospheric pressure at the time of 

sampling. Stem N2O fluxes were expressed on a stem-area basis, and soil N2O fluxes were on 

soil-area basis.  

Flux rates of N2O were further estimated for the entire stem using the total area of stem 

surface, which was calculated as the lateral surface area of a circular cone calculated from the 

stem diameter at breast height and the stem height of the tree (Machacova et al., 2016).  For 

the alder trees, we used the observed decreases in N2O fluxes with stem height to calculate the 

fractions of stem N2O fluxes at 0.2-0.4 m and at 2.2-2.4 m heights above the ground, 

measured in June and July 2015, in relation to the regular measurements at 1.2-1.4 m height. 

These calculated fractions were then used to weight the regularly measured stem N2O flux at 

1.2-1.4 m height for the entire stem height. For the beech and spruce trees, stem N2O fluxes at 

0.2-0.4 m and at 2.2-2.4 m heights above the ground did not differ to those at 1.2-1.4 m height, 

and hence we extrapolated the regularly measured stem N2O flux at 1.2-1.4 m height for the 

whole stem height. Since stem N2O fluxes in all tree species were influenced by temperature 

and vapor pressure deficit that display a clear diurnal variation (Hogg et al., 1997; O’Brien et 

al., 2004; Saveyn et al., 2008), we assumed that measured stem N2O fluxes were 

representative for 12 effective hours per day (the average daytime across a year). 

Annual stem N2O fluxes and soil N2O fluxes were calculated by applying the 

trapezoidal rule (linear interpolation of measured rates) over the sampling time intervals. 

Since no measurements were conducted during winter, the N2O fluxes measured in March and 

October were assumed to represent the value over the winter that we interpolated. The 

contribution of stem N2O fluxes to the total forest N2O flux (soil N2O flux + stem N2O flux) 

was calculated using the following equation: 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 (%) =
𝑁2𝑂𝑠𝑡𝑒𝑚 × 𝑁

𝑁2𝑂𝑠𝑡𝑒𝑚 × 𝑁 + 𝑁2𝑂𝑠𝑜𝑖𝑙
× 100                                                               Eqn 1 

where N2Ostem is the annual N2O flux from one stem in g N tree
-1

 yr
-1

; N is the number of tree 

stems per ha; N2Osoil is the annual N2O flux from soil surface in g N ha
-1

 yr
-1

.  
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4.2.4. Auxiliary measurements  

General soil characteristics for the organic layer and the underlying top 5 cm mineral soil 

were determined once in March 2015. Soil pH was analyzed in a 1:2.5 soil-to-water ratio. 

Total organic C and N were measured from air-dried, ground samples using a CN Elemental 

Analyzer (Vario EL Cube, Elementar Analysis Systems GmbH, Hanau, Germany). Total Ca, 

Mg, Al, and K contents in the organic layers were determined from air-dried ground samples 

(using pressure digestion in concentrated HNO3), and exchangeable Ca, Mg, Al, and K 

contents and effective cation exchange capacity (ECEC) in the mineral soil were determined 

from air-dried, 2-mm sieved samples (using cation exchange method by percolation with 1 M 

NH4C1 solution), using inductively coupled plasma-atomic emission spectrometer (iCAP 

6300 Duo VIEW ICP Spectrometer, Thermo Fischer Scientific GmbH, Dreieich, Germany). 

Soil temperature, moisture, mineral N and extractable organic C contents were 

measured during each sampling period. Soil temperature was determined in the top 5-cm 

depth using a digital thermometer (GMH 3210, Greisinger electronic GmbH, Regenstauf, 

Germany). All the rest of the soil variables were measured from samples taken within the top 

10-cm depth. Gravimetric moisture content was measured by drying 20 g of freshly sampled 

soil to constant weight at 105 ℃. About 15 g of soil sample was extracted with 100 mL 0.5 M 

K2SO4 by shaking (1 h) and filtering through K2SO4 pre-washed filter papers. Soil extracts 

were kept frozen until analysis. Total extractable N and mineral N contents of the soil extracts 

were analyzed using continuous flow injection colorimetry (SEAL Analytical AA3, SEAL 

Analytical GmbH, Norderstadt, Germany), where total extractable N was determined by 

ultraviolet-persulfate digestion followed by hydrazine sulfate reduction (Autoanalyzer 

Method G-157-96), NH4
+
 by salicylate and dicloroisocyanuric acid reaction (Autoanalyzer 

Method G-102-93), and NO3
- 

by cadmium reduction method with NH4Cl buffer 

(Autoanalyzer Method G-254-02). Extractable organic C contents of the soil extracts was 

measured using UV-enhanced persulfate oxidation with a Total Organic Carbon Analyzer 

(TOC-Vwp, Shimadzu Europa GmbH, Duisburg, Germany). Soil microbial N and C were 

determined by the chloroform fumigation-extraction method, and measured three times during 

the entire period of measurement (once in spring, summer and autumn). About 15 g of fresh 

soil was extracted with 100 mL 0.5 M K2SO4. Another 15 g of soil sample was placed in a 

desiccator and fumigated with ethanol-free chloroform for 5 days. Afterwards, the fumigated 

samples were extracted with 100 mL 0.5 M K2SO4. The total extractable N and extractable 

organic C contents of the extracts were analyzed as above. The differences in total extractable 

N and extractable organic C between the fumigated and unfumigated samples were assumed 
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to indicate the N and C released from lysed soil microbes. The N and C were converted to 

microbial biomass N and C using a KN=0.68 and Kc=0.45, respectively (Shen et al., 1984). 

Data of hourly air temperature and relative humidity during the entire measurement period 

were obtained from the weather station of the German Weather Service at Moringen-

Lutterbech, 7 km to our study site. Vapor pressure deficit (VPD) was calculated from the 

difference between saturation vapor pressure and actual vapor pressure, which derived from 

air temperature and relative humidity data (Allen et al., 1998). 

4.2.5. Statistical analysis 

Data sets were first tested for normal distribution (Shapiro-Wilk’s test) and equality of 

variance (Levene’s test). We assessed the differences in soil characteristics among stands 

using one-way analysis of variance (ANOVA) with Fisher’s least significant difference test. 

When the data were not able to attain normal distribution and equality of variance, differences 

among sites were tested using the Kruskal-Wallis ANOVA with multiple comparisons test. 

Linear mixed effects (LME) models were used for analysis of time-series data (stem N2O flux, 

soil N2O flux, and other parameters). The LME model included tree species (alder, beech and 

spruce) as fixed effects whereas sampling dates and spatial replicates were included as 

random effects. The LME model included either 1) a variance function that allows different 

variances of the response variable for the fixed effects, and/or 2) a first-order temporal 

autoregressive process that assumes a decreasing correlation between measurements with 

increasing time distance if this improved the relative goodness of the model fit (Crawley, 

2007). Residuals were checked for normality and homoscedasticity, and data were log-

transformed in case of non-normal distribution and/or heteroscedastic residuals. Fixed effects 

were considered significant based on the analysis of variance at P ≤ 0.05, and differences 

between species were assessed using Fisher’s least significant difference (LSD) test. Pearson 

correlation tests were used to explore relationships of stem N2O fluxes with possible 

explanatory variables, and data were log-transformed to fit the assumption of normality. For 

all tests, the level of statistical significance was set at P ≤ 0.05. Since all measurements were 

conducted in the field with considerable spatial variability, we also discuss a few specified 

parameters with values of P ≤ 0.07 that we considered marginally significant. When we 

plotted VPD against stem N2O flux, we excluded VPD data that were above 1.5 kPa in the 

beech and spruce stands (Fig. 5h,i) since water use by these trees will decrease under high 

VPD, due to reduced stomatal conductance (Hogg et al., 1997; O’Brien et al., 2004). All 

statistical analyses were conducted using open source software R (version 2.15.3). 
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4.3.  Results  

4.3.1. Soil properties 

The alder stand showed higher total organic C and N as well as lower total C:N ratios in both 

the organic layer and mineral soil compared to the beech and spruce stands (P < 0.01 for all; 

Table 1). In the organic layer, differences among stands were only detected for total Ca (P = 

0.04; Table 1) and total Al (P < 0.01; Table 1). In the 0-0.05 m mineral soil, exchangeable Ca, 

Mg, K and ECEC were higher in the alder stand than the beech and spruce stands (P < 0.01-

0.03; Table 1). Across the entire sampling period, all soil factors known to influence soil N2O 

fluxes displayed differences among stands. The alder stand showed higher gravimetric water 

content, extractable NO3
-
, extractable organic C, soil N2O concentration, microbial N and C 

compared to the beech and spruce stands (P < 0.01-0.05; Table 2). Extractable NH4
+
 was 

higher in the alder and spruce stands than the beech stand (P < 0.01; Table 2).  

 

4.3.2. Temporal variations in stem N2O fluxes and soil N2O fluxes 

Alder, beech and spruce consistently emitted N2O via stems throughout the sampling period 

and displayed clear temporal variation (Fig. 2). Stem N2O fluxes of alder increased from 0.6 ± 

0.3 µg N m
-2

 stem h
-1 

in March to 8.0 ± 1.7 µg N m
-2

 stem h
-1 

in July, and then decreased to 

0.9 ± 0.2 µg N m
-2

 stem h
-1 

in October (Fig. 2a). Stem N2O fluxes of beech increased from 

spring to summer, levelled off between August  and September (1.5 ± 0.5 µg N m
-2

 stem h
-1

) 

and decreased thereafter (Fig. 2b). Stem N2O fluxes of spruce were low from March to late 

June, increased to a peak of 1.9 ± 0.4 µg N m
-2

 stem h
-1

 in August
 
and thereafter decreased to 

a similar level as in spring (Fig. 2c). Across the entire measurement period, stem N2O fluxes 

of alder (2.2 ± 0.5 µg N m
-2

 stem h
-1

) were higher than stem N2O fluxes of beech and spruce 

(0.7 ± 0.1 µg N m
-2

 stem h
-1 

for beech and 0.7 ± 0.1 µg N m
-2

 stem h
-1 

for spruce; P < 0.01).  

Soil N2O fluxes displayed considerable spatial variability, as shown by the large 

standard errors (Fig. 3a-c). Soil N2O fluxes from the alder stand increased from March to July 

and decreased sharply thereafter (Fig. 3a). However, irregular temporal patterns of soil N2O 

fluxes were observed in the beech and spruce stands; in the beech stand, soil N2O flux 

increased from early to late spring, decreased in early summer and remained low till fall (Fig. 

3b). In the spruce stand, there was net N2O uptake in the soil (negative flux) in the late spring 

and in July (Fig. 3c). Across the entire period of measurements, the alder stand showed higher 

(P < 0.01) soil N2O flux rates (106 ± 27 µg N m
-2

 h
-1

) than the beech stand (2.9 ± 1.1 µg N m
-

2
 soil h

-1
) and spruce stand (4.0 ± 1.0 µg N m

-2
 h

-1
). 
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Table 1. Soil characteristics measured in March 2015. 

Stands 
pH Total organic C Total N Total Ca Mg Al K ECEC 

1:2.5 H2O  (g C kg
-1

) (g N kg
-1

) C:N ratio (g kg
-1

) (g kg
-1

) (g kg
-1

) (g kg
-1

) (mmol charge kg
-1

) 

Organic layer 

         Alder na 536 ± 4 a 30.0 ± 1.2 a 18.0 ± 0.8 b 10.8 ± 0.8 a 1.6 ± 0.3  0.7 ± 0.2 b 1.3 ± 0.1 na 

Beech na 419 ± 37 b 17.6 ± 1.3 b 23.8 ± 1.3 a 7.6 ± 0.9 b 1.0 ± 0.1  4.1 ± 1.1 a 1.4 ± 0.2 na 

Spruce na 500 ± 3 ab 19.5 ± 0.8 b 25.8 ± 1.0 a 9.4 ± 0.6 ab 1.1 ± 0.2  1.5 ± 0.2 ab 1.0 ± 0.0 na 

0-5 cm mineral soil 
         

Alder 4.2 ± 0.3  275 ± 72 a 16.7 ± 4.1 a 16.7 ± 1.2 b 2.10 ± 0.79 a 0.21 ± 0.08 a 0.27 ± 0.09 0.06 ± 0.02 a 252 ± 58 a 

Beech 4.3 ± 0.1 36 ± 5 b 1.9 ± 0.3 b 18.8 ± 0.6 b 0.09 ± 0.03 b 0.01 ± 0.00 b 0.39 ± 0.02 0.01 ± 0.00 b 59 ± 4 b 

Spruce 4.0 ± 0.1  35 ± 4 b 1.5 ± 0.2 b 24.1 ± 0.9 a 0.06 ± 0.01 b 0.01 ± 0.00 b 0.47 ± 0.05 0.01 ± 0.00 b 76 ± 9 b 

Mean ± standard errors (n = 6) within each column followed by different letter indicate significant differences among stands (one-way ANOVA 

with Fisher’s LSD tests at P ≤ 0.05 or Kruskal-Wallis ANOVA with multiple comparisons of mean ranks at P ≤ 0.05). na indicates not applicable. 

Cation concentrations in the organic layer are total amount whereas in the mineral soil are exchangeable amount. 
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Table 2. Soil factors measured in the top 10-cm depth, except for soil N2O concentration 

measured at 40-cm depth, in the alder, beech and spruce stands. 

 Parameters Alder Beech Spruce 

Gravimetric water content (g g
-1

) 2.31 ± 0.28 a 0.57 ± 0.09 b 0.54 ± 0.05 b 

NH4
+
 (mg N kg

-1
) 10.0 ± 1.3 a 4.5 ± 0.5 b 14.3 ± 3.8 a 

NO3
-
 (mg N kg

-1
) 27.4 ± 3.5 a 4.5 ± 1.7 b 6.4 ± 1.7 b 

Extractable organic C (mg C kg
-1

) 517± 41 a 335 ± 51 b 388 ± 59 b 

Soil N2O concentration (ppm) 7.33 ± 1.19 a 0.51 ± 0.04 b 0.72 ± 0.12 b 

Microbial N (mg N kg
-1

) 308 ± 40 a 127 ± 9 b 126 ± 13 b 

Microbial C (mg C kg
-1

) 3361 ± 415 a 1216 ± 81 b 1731 ± 194 b 

Mean ± standard errors (n = 6) within each row followed by different letter indicate 

significant differences among stands (linear mixed model at P ≤ 0.05). Gravimetric water 

content, extractable NH4
+
, NO3

-
 and organic C, and soil N2O concentration were measured on 

the same sampling period as stem and soil N2O fluxes from March to October 2015; microbial 

N and C were measured once in spring, summer and autumn of 2015. 

 

 

 

Table 3. Estimation of N2O emitted from stems of trees in relation to the total forest N2O flux 

(stem N2O flux + soil N2O flux). 

Parameters Alder Beech Spruce 

Tree density (stem ha
-1

) 1308 803 1015 

Factor of stem N2O flux at 0.2-0.4 m 
a
 1.5 ± 0.1 1.1 ± 0.4 0.8 ± 0.2 

Factor of stem N2O flux at 2.2-2.4 m 
a
 0.9 ± 0.1 1.0 ± 0.4 0.8 ± 0.3 

Annual stem N2O flux (g N ha
-1

 yr
-1

) 64.6 ± 16.2 18.9 ± 4.4 31.0 ± 4.5 

Annual soil N2O flux (g N ha
-1

 yr
-1

) 6396 ± 1395 161 ± 110 346 ± 59 

Contribution of stem to forest N2O flux (%) 1.0 10.5 8.2 

Mean ± standard errors (n = 4 for stem N2O flux at 0.2-0.4 m and 2.2-2.4 m heights, or n = 6 

for the regular measurements at 1.2-1.4 m height). 
a
 Fraction of stem N2O flux at 0.2-0.4 m or 2.2-2.4 m height above the ground in relation to 

stem N2O flux at 1.2-1.4 m height. 
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Figure 2. Temporal variations of N2O fluxes (mean ± standard errors, n = 6) from the stems 

of alder (a), beech (b), and spruce (c) measured at breast height (between 1.2 m and 1.4 m 

heights above the ground) from March to October 2015. 

 

Annual stem N2O flux from the alder stand was approximately 2- to 3-folds higher than 

the beech and spruce stands (Table 3). However, since annual soil N2O flux in the alder stand 

was 40 times higher than the beech stand and 18 times higher than the spruce stand (Table 3), 

the relative contribution of stem N2O fluxes of upland beech and spruce stands to total forest 

N2O fluxes was higher than wetland alder trees (Table 3). 

4.3.3. Relationships between stem N2O fluxes and controlling factors 

In the alder stand, stem N2O flux was positively correlated with soil N2O flux (Fig. 4a) and 

soil N2O concentration (Fig. 4b), while in the beech and spruce stands, we did not detect 

significant correlations of stem N2O flux with either soil N2O flux or soil N2O concentration. 

Stem N2O flux was positively correlated with soil temperature in the top 5-cm depth in the 

alder (Fig. 5a) and beech (Fig. 5b) stands. Positive correlations between stem N2O flux and air 

temperature were detected in the alder (Fig. 5d) and beech (Fig. 5e) stands, while a marginally 
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significant correlation was detected in the spruce stand (Fig. 5f). Stem N2O flux displayed 

positive correlations with VPD in the alder (Fig. 5g) and spruce (Fig. 5i) stands. In the alder 

stand, we also found positive correlations of soil temperature with soil N2O flux (R = 0.77; P 

< 0.01), and soil N2O concentration (R = 0.67; P = 0.02). 

 

 

Figure 3. Temporal variations of soil N2O fluxes (mean ± standard errors, n = 6) from alder 

(a), beech (b), and spruce (c) stands, measured from March to October 2015. 
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Figure 4. Pearson correlation tests between stem N2O flux and soil N2O flux (a), soil N2O 

concentration (b) in the alder stand. Each data point represents the mean of six replicates on 

each measurement period from March to October 2015 (n = 11). Data of stem N2O fluxes 

from alder were log10 transformed to fit normal distribution. 
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Figure 5. Pearson correlation tests between stem N2O flux and soil temperature in the top 5-

cm depth (a, b, c), air temperature (d, e, f), and vapor pressure deficit (g, h, i) in the alder, 

beech and spruce stands. Each data point represents the mean of six replicates on each 

measurement period from March to October 2015 (n = 11). Correlation excluded values of 

vapor pressure deficit higher than 1.5 kPa (circle without fill) in the beech and spruce stands. 
a 

Stem N2O fluxes from alder and spruce were log10 transformed to fit normal distribution.
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4.4.  Discussion  

4.4.1. Temporal variability of stem N2O fluxes in different tree species 

The consistent emissions of N2O throughout the measurement period from stems of adult 

alder, beech and spruce (Fig. 2 a-c) exemplified that not only mature wetland trees but also 

mature upland trees can serve as conduits for N2O. Our mean stem N2O fluxes were in the 

range of those reported by previous studies, which did not involve manipulations such as 

flooding or fertilization (0.014 µg N m
-2

 stem h
-1

 to 5.01 µg N m
-2

 stem h
-1

; Machacova et al., 

2013, 2016; Díaz-Pinés et al., 2016). However, only the fluxes we measured in August (1.4 

µg N m
-2

 stem h
-1

) were comparable with published stem N2O fluxes from beech measured in 

the same month (12-year-old beech: 2.2 µg N m
-2

 stem h
-1

; Díaz-Pinés et al., 2016). 

Compared to the fluxes that we measured in other months, published values were up to 37 

times higher, illustrating the considerable seasonal variability in stem N2O fluxes (Fig. 2 a-c). 

Since young beech trees have been reported to emit larger stem N2O fluxes than old beech 

trees (Díaz-Pinés et al., 2016), annual stem N2O fluxes can easily be overestimated if 

extrapolation is based on fluxes measured during the summer or on fluxes measured from 

young trees. 

The higher N2O fluxes that we observed from alder stems compared to beech and spruce 

(Fig. 2) were consistent with published results that stem N2O fluxes from alder stems were 25 

times higher compared to beech stems (Rusch & Rennenberg, 1998; Machacova et al., 2013; 

Díaz-Pinés et al., 2016) and support our first hypothesis that wetland trees emit more N2O 

than upland trees. The factors that contributed to the high stem N2O fluxes were related to 

levels of electron acceptor, donor and aearation status; alder in symbiosis with N2-fxing 

bacteria can fix atmospheric N2 into available N form , enriching the ecosystem with N (Dick 

et al., 2006), as was shown by the high soil NO3
-
 levels (electron acceptor) in alder stand. 

This, in combination with high extractable organic C (as index of C availability to microbial 

activity) and high soil water content (Table 2), made the alder stand a hot spot for 

heterotrophic denitrification, the dominant microbial process that produces N2O in soils 

(Butterbach-Bahl et al., 2013). Moreover, N2O diffusion from alder stem is mainly through 

aerenchyma, while in beech and spruce, N2O is transported in dissolved form via sap flow 

(Machacova et al., 2013). Passive gas diffusion in air-filled aerenchyma can lead to 

considerable stem N2O fluxes, since the diffusion coefficient of N2O in air is several orders of 

magnitude higher than in xylem sap which consists mainly of water (Heincke & 
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Kaupenjohann, 1999). Also the presence of lenticels in alder stems accelerates the gas 

exchange between stem and the atmosphere (Pangala et al., 2014).  

Tree species not only influenced the rate but also the vertical pattern of N2O fluxes 

along the tree stem. For alder, the observed decrease in stem N2O fluxes with increasing stem 

height (Table 3) was probably also due to the presence of aerenchyma, causing a rapid 

diffusion of N2O from the stem to the atmosphere and resulting in steep decreases in stem 

N2O emissions higher up the stem (Díaz-Pinés et al., 2016). In contrast, for beech and spruce 

N2O fluxes at different stem heights were nearly identical (Table 3), probably because 

diffusion of dissolved N2O from xylem sap to the atmosphere is a slow process relative to the 

sap flow rate.  

4.4.2. Factors controlling stem N2O fluxes 

In the alder stand, strong correlations of stem N2O fluxes with soil N2O fluxes and soil N2O 

concentrations (Fig. 4a,b) suggest that N2O emitted from alder stems originated in the soil and 

the temporal variation in stem N2O fluxes was driven by the amount of N2O produced in the 

soil. This supports our second hypothesis. Elevated soil N2O concentrations were probably 

caused by high soil N2O production combined with impeded diffusion out of the soil, both 

resulting from high soil water and substrate (NO3
- 
and extractable organic C) contents (Table 

2).  The elevated N2O concentrations in soil air may have stimulated diffusion of soil-borne 

N2O into aerenchyma of tree roots, subsequently transported upward in the stem through 

aerenchyma, and ultimately led to N2O emission from tree stem. High N2O emissions from 

alder stems, of which roots were exposed to high N2O concentrations, have also been reported 

in an earlier laboratory study (Rusch & Rennenberg, 1998). Additionally, the positive 

correlation of alder stem N2O fluxes with soil and air temperatures (i.e. increasing towards the 

summer and decreasing thereafter; Figs. 2a, 5a,d) and the positive correlations of soil 

temperature with soil N2O fluxes and soil N2O concentrations in the alder stand elucidated 

that temperature additionally drove the temporal variations in alder stem N2O emissions, 

where substrate level and aeration status were conducive to N2O production, as enzymes 

involved in denitrification are temperature-regulated (e.g. Knowles, 1982). Furthermore, an 

increase in soil temperature typically stimulates soil respiration, which will increase oxygen 

consumption and thus enhances anaerobic condition (Butterbach-Bahl et al., 2013).  

For alder, N2O transport in stems as dissolved form via sap flow has been thought to be 

of minor importance compared to transport as gaseous form via aerenchyma, since diffusion 

in gas is several orders of magnitude faster than diffusion in water. Gas transport via sap flow 
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in xylem tissue is an active process, whereas gas transport via aerenchyma is caused by 

passive gas diffusion (Pangala et al., 2015). If sap flow rate is high, the contribution of sap 

flow gas transport could be substantial than previously thought. Indeed, correlations of alder 

stem N2O flux with air temperature and VPD (Fig. 5d,g) suggest that N2O transport via sap 

flow was also occurring. Higher air temperature and VPD typically stimulate sap flow rates 

(Hogg et al., 1997; O’Brien et al., 2004) and thus also the transport of dissolved N2O. Since 

alder leaves have no mechanism to reduce transpiration (Braun, 1974), considerable amounts 

of water are transpired (Herbst et al., 1999), and it appears that this pathway of N2O transport 

through alder stems is more important than previously assumed.  

Beech and spruce are typical upland trees, which do not have aerenchyma. The positive 

correlations of stem N2O fluxes with soil and air temperatures and VPD (Fig. 5) suggest that 

dissolved N2O transport via xylem sap was the major mechanism for N2O transport in upland 

trees. Substantial amounts of N2O can dissolve into water (Koehler et al., 2012) which can be 

taken up by beech and spruce roots, conveyed through xylem sap flow to the stem and 

eventually diffused out of the xylem sap into the atmosphere. Since increasing air temperature 

and VPD enhanced sap flow rates if soil water is sufficient (Fig. 5e, f, i), these findings 

support our third hypothesis.  

4.4.3. Contributions of stem N2O fluxes to total forest N2O fluxes 

For the three tree species, the contributions of stem N2O fluxes to total forest N2O fluxes (1-

11%; Table 3) were within the range of previous studies (1-18%; Díaz-Pinés et al., 2016; 

Machacova et al., 2016), although previous estimates were based on extrapolations of short-

term measurements in summer. In contrast to our expectations, the lower contribution of stem 

N2O flux to total forest N2O flux in the alder stand than in the beech and spruce stands was 

because of the very high soil N2O fluxes from the alder stand, minimizing the relative 

contribution of the stem N2O emissions. In our study, we did not include N2O emissions from 

branches and leaves, which have also been shown to emit N2O under laboratory, greenhouse 

and field conditions (Smart & Bloom, 2001; Pihlatie et al., 2005; Machacova et al., 2013, 

2016). Quantifying branch and leaf N2O emission from mature trees in the field will be 

logistically challenging. Nonetheless, our estimates of contribution of tree-mediated N2O may 

still be conservative. 

The contribution of tree-mediated N2O to total ecosystem N2O fluxes was low 

compared to published estimates of fertilized crops, where plant-related emissions ranged 

from 11 to 87% (Yan et al., 2000; Chen et al., 2002; Zou et al., 2005). However, our study 
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shows that N2O estimates from forest ecosystems solely based on the measurements of soil 

N2O fluxes are probably conservative, since tree-mediated fluxes are not included. If our 

observation of the relative contribution of tree-mediated N2O fluxes in upland trees will be 

further corroborated by other studies, tree-mediated N2O fluxes may be more important in 

upland trees than in wetland trees. However, it should be kept in mind that inclusion of tree-

mediated N2O fluxes will not make significant changes to global N2O budgets since even a 10% 

increase would easily fall within the standard errors of present global estimates. Finally, our 

study highlights the importance to conduct long-term, field-based measurements since the 

complexity of ecosystems cannot be simulated under laboratory conditions. 
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Chapter 5 

 

Synthesis 

 

Several key conclusions can be drawn from this work: 

(1) Limitation of the 
15

N2O pool dilution technique. The 
15

N2O pool dilution (
15

N2OPD) 

technique was first proposed as a robust method to separate gross N2O production and 

consumption in soil (Yang et al., 2011), but our study demonstrates that this technique is not 

able to measure N2O produced in soil but consumed immediately. It is confirmed by the large 

disparity between 
15

N2OPD and GFSC measurements that gross N2O production and gross 

N2O consumption measured by the 
15

N2OPD technique were only 10% and 6% of the values 

measured by the GFSC method. The low fractions are mainly because the produced N2O is 

consumed immediately without mixing the 
15

N2O labeled gas, as assumed by Well & 

Butterbach-Bahl (2013). Hereby, we proposed a conceptual model to illustrate different 

pathways of N2O dynamics. This model provides a new insight into various N2O pathways 

either in soil or at the soil-atmosphere interface. Furthermore, to avoid misinterpretations of 

terminologies we proposed that the terms ‘gross N2O emission and uptake’ should be used for 

gross N2O fluxes measured with the 
15

N2OPD technique and ‘gross N2O production and 

consumption’ should be used for gross N2O fluxes measured with the GFSC method. 

Additionally, we gave clear definitions of the processes measure by the 
15

N2OPD technique. 

Gross N2O emission accounts both the N2O that is emitted from the soil to the atmosphere and 

the N2O that is reduced to N2 within the soil pores which are in active exchange with the 

atmosphere; while gross N2O uptake accounts not only the reduced N2O which comes from 

atmosphere and diffuses into soil but also the reduced N2O within the soil pores.  

 

(2) Advantages of the 
15

N2O pool dilution technique. Although the 
15

N2OPD technique is 

not able to measure gross N2O production and gross N2O consumption in soil, it still has 

significant advantages. Since gross N2O emission and uptake occur simultaneously, these two 

processes have not been measured due to the methodological challenge. Only with the 

15
N2OPD technique, we are able to separate the net N2O fluxes into gross N2O emission and 

uptake. Moreover, this technique can be used in the field, and thus it allows us to investigate 

the underlying mechanisms and controlling factors of N2O fluxes under actual field conditions. 
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Measuring gross N2O emission and uptake improves our ability to predict N2O dynamics 

across the soil-atmosphere interface and understand the future response of N2O dynamics to 

climate change. 

 

(3) Relationships among gross N2O production, consumption, emission and uptake. 

Although previous studies have showed that substantial N2O produced in subsoil could be 

consumed along the diffusion pathway towards soil surface, as indicated by various 
15

N-N2O 

enrichment along soil depth (Conen and Neftel, 2007; Koehler et al., 2012), our study gave a 

direct proof of N2O consumption in soil. The significantly lower gross N2O emission at the 

soil surface than gross N2O production in soil suggested that considerable amount of N2O 

were reduced to N2 during diffusion along 5 cm length soil core. N2O produced in soil may be 

consumed within the same denitrifier cell (Knowles, 1982), or consumed by other 

microorganism, which may have N2O reductase but cannot act on the preceding substrate of 

the denitrification pathway (Sanford et al., 2012). Although atmospheric N2O can diffuse into 

soil and subsequently be reduced to N2, it only accounts 6% of gross N2O consumption in soil. 

 

(4) Net N2O flux & gross N2O emission. Our studies provide a new perspective on the 

mechanisms that control net N2O fluxes at the soil surface. We found that variations in gross 

N2O emission rather than gross N2O uptake drove spatio-temporal patterns in both net N2O 

emission and net N2O uptake. Net N2O uptake was observed in the pine (Chapter 2) and 

spruce forest soils (Chapter 3) when gross N2O emission rates dropped below gross N2O 

uptake rates. The ratios of net to gross N2O emissions (63 – 79% in mineral soils under 

grassland, cropland , beech and spruce forests; Chapter 2 and 3) were similar to the values 

reported by Yang et al. (2011) and Yang and Silver (2016) from managed grassland and 

cropland in California (net to gross N2O emission ratio of 68 – 70%). These generally 

comparable ratios may open the possibility of making estimates of gross N2O emissions and 

uptake based on measured net N2O emissions. 

 

(5) Environmental factors controlling gross N2O emission and gross N2O uptake. 

Independently quantifying gross N2O emission and gross N2O uptake offers the unique 

opportunity to explore the soil factors controlling these concurrently occurring processes. Soil 

N availability, aeration status and microbial activity controlled the variations in gross N2O 

emission and uptake among different sites (Chapter 2), whereas the availabilities of 
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extractable organic C (electron donor) and NO3
- 
(electron acceptor) influence the temporal 

variations in gross N2O emission and uptake within a stand (Chapter 3).  

 

(6) Temporal variability of stem N2O fluxes. Our results showed for the first time that both 

wetland and upland trees could consistently emit N2O across the whole growing season. The 

clear seasonal patterns of tree-mediated N2O fluxes were related to the temporal variability in 

soil factors (e.g. temperature, water content, N2O concentration) and climatic factors (e.g. air 

temperature, vapor pressure deficit). Hereby, our study highlights the importance to conduct 

long-term, field-based measurements since the complexity of ecosystems cannot be simulated 

under laboratory conditions. 

 

(7) Tree-mediated N2O fluxes as a ‘missing’ N2O source. If our observation of the relative 

contribution of tree-mediated N2O fluxes in upland trees (8-11%) will be further corroborated 

by other studies, trees have to be considered as a significant source of N2O in the upland 

forest ecosystems. Omission of this pathway from process models may result in an 

underestimation of total N2O emissions from global forest ecosystems. Hence, our findings 

highlight the important, but often neglected role of upland trees in N2O exchange between the 

biosphere and the atmosphere and the importance of including tree N2O emissions to the total 

N2O budget. However, it also should be kept in mind that even a 10% increase would easily 

fall within the standard errors of present global estimates. 

 

(8) Outlook. This research highlights that the need for further work to accurately characterize 

gross N2O fluxes and more detailed measurements of spatio-temporal variability are necessary. 

This can be crucial for the future estimate of N2O source and sink in terrestrial ecosystem. For 

future gross N2O fluxes studies, clear definitions of processes that can be measured by the 

15
N2OPD technique as well as correct usage of terminologies can avoid confusing. To clarify 

all pathways of N2O emission from soil to the atmosphere, more field studies with adult trees 

are urgently needed to quantify the extent of this release under natural conditions. Moreover, 

branches and leaves, which have also been shown to emit N2O under laboratory, greenhouse 

and field conditions (Machacova et al., 2016, 2013; Pihlatie et al., 2005; Smart and Bloom, 

2001), should be included into future emission studies allowing estimation of a complete 

ecosystem budget of N2O fluxes from forests into the atmosphere.  
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