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Abstract 

 

Redox alterations due to increased ROS production in heart cells have been 

implicated in several cardiovascular diseases, such as ischemia, hypertrophy, and 

myocardial infarction, but may also play a crucial role for the wanted and unwanted 

effects of pharmacological stimulation. Genetically encoded biosensors allow for the 

visualization of redox changes at real-time in a quantitative manner, but have not yet 

been applied to human heart models. In this study, the hypothesis was tested that 

the cytosolic glutathione (GSH) redox sensor Grx1-roGFP2 can be applied to record 

the GSH redox state in human cardiomyocytes and fibroblasts. The cytosolic 

glutathione redox sensor Grx1-roGFP2 was stably introduced into human embryonic 

stem cell-derived cardiomyocytes (HES2-CM) and human foreskin fibroblasts (HFF) 

via lentiviral transduction. The kinetics of the Grx1-roGFP2 sensor were determined 

in a cell type specific manner in HES2-CM and HFF under increasing concentrations 

of H2O2 (0.1 - 1,000 µmol/L), diamide (1 - 1,000 µmol/L), and DTT (0.1 - 1 mmol/L). 

This identified a more reduced EGSH in HES2-CMs (-289 ± 1 mV; n=56) compared to 

HFFs (-269 ± 2 mV; n=18). Subsequently, GSH redox state alterations were 

investigated upon ROS stimulation with angiotensin II and pharmacological 

stimulation with cardioactive reference compounds (levosimendan, omecamtiv 

mecarbil). To investigate cell specific GSH redox changes in a tissue context, 

engineered heart muscles (EHM) were generated by mixing either (i) Grx1-roGFP2-

HFFs and naive HES2-CMs or (ii) Grx1-roGFP2 HES2-CMs and naive HFFs in a 

collagen hydrogel. Force generating EHM were formed within 20 days and were 

subjected to an acute oxidative (H2O2) and reductive (DTT) challenge. GSH oxidation 

and reduction could be recorded optically and associated with a reduced and 

increased contractile performance in EHM. Taken together, GSH redox state can be 

recorded optogenetically in living human cardiomyocytes and fibroblasts in classical 

monolayer and EHM culture. Differences in EGSH suggest difference in redox related 

signalling in cardiomyocytes and fibroblasts which may have to be considered when 

interpreting redox responses to drugs or other stimuli at the whole heart level.  
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1. Introduction 

1.1 Cellular composition of the heart 

The human heart is a beating organ that consists mainly of cardiomyocytes, 

fibroblasts, endothelial cells, smooth muscle cells, and immune cells (Souders et al. 

2009). Cardiomyocytes (CM) comprise almost 30% of the total cell pool while the 

remainder 70% are non-myocytes (Tirziu et al. 2010) with the cardiac fibroblasts (CF) 

being the most abundant cell type (Souders et al. 2009, Tian and Morrisey 2012). To 

understand the functional mechanics of the heart, it is essential to understand the 

biology of interactions of these cells. 

 

Cardiomyocytes are contracting, striated and rod-shaped cells, which determine the 

performance of the heart. This energy dependent process depends critically on the 

provision of ATP produced in mitochondria. Actin and myosin filaments comprise the 

molecular machines that help the cell to contract. Furthermore, cardiomyocytes 

interact with their myocardial environment not only mechanically, but also by the 

secretion of cytokines and growth factors (Howard and Baudino 2014). 

 

Cardiac fibroblasts, similarly to cardiomyocytes, are of mesodermal origin and 

considered the main contributor to extracellular matrix (ECM) of the heart (Souders et 

al. 2009). In addition, they are capable of sensing and responding to biochemical 

stress by secreting cytokines and growth factors (MacKenna et al. 2000). The 

secretion of several factors such as Ang II, IGF-1, transforming growth factor-ß1 

(TGF-ß), endothelin-1 (ET-1) and FGF2 (Bouzegrhane and Thibault 2002, Bujak and 

Frangogiannis 2007, Manabe et al. 2002) can influence cardiomyocyte contractility, 

metabolism, and oxygenation (Tirziu et al. 2010, Tomasek et al. 2002). In the recent 

years, the role of cardiac fibroblasts for cardiac physiology and pathology has been 

increasingly considered (MacKenna et al. 2000, Souders et al. 2009, Tiburcy and 

Zimmermann 2014). 
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1.2 ROS sources and redox signaling in the heart 

The beating heart requires ATP which for the most part (95%) is provided by 

oxidative phosphorylation in mitochondria and for a minor part by the glycolysis and 

the Krebs cycle; 70-90% is produced by oxidation of fatty acids, while 10-30% is 

produced by oxidation of glucose, lactate, ketone bodies, and amino acids (Doenst et 

al. 2013). A byproduct of oxidative phosphorylation is the generation of ROS. ROS 

are highly reactive free radical molecules containing oxygen (O2-, -OH, H2O2), which 

are implicated in a myriad of cellular pathways, defined as redox signaling (Burgoyne 

et al. 2012). In addition to the ROS production by the mitochondrial electron transport 

chain (ETC), there are several dedicated enzymes, such as the nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidases (NOX), NO synthases (NOS), xanthine 

oxidase (XO), and monoamine oxidases (MAO) that contribute to overall cellular 

ROS load (Burgoyne et al. 2012, Santos et al. 2016). A delicate interplay of ROS and 

antioxidants control the level of cellular oxidation and reduction and thus a number of 

biological processes (Figure 1). 

 

 

Figure 1: Sources of ROS and the consequences of high and low ROS 

production. Image adapted from (Tsutsui et al. 2011). 
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Mitochondrial ROS is produced mainly by complexes I and III of the ETC (Doenst et 

al. 2013). MAOs generate H2O2 during catabolic reactions and XOs generate H2O2 or 

O2
- by using oxygen as an electron acceptor. NOS enzymes require 

tetrahydrobiopterin (BH4) as a co-factor for NO production. The lack of BH4 leads to 

enhanced O2
-  production which reacts with NO to ONOO-; peroxynitrite that leads to 

a further reduction in BH4 and can induce cell death by apoptosis and necrosis 

(Burgoyne et al. 2012, Chen et al. 2010). Finally, NOX enzymes are considered key 

players in cardiac ROS production. In human, this family of enzymes consists of 

seven isoforms (NOX 1-5 and dual oxidase 1-2), which require distinct subunits for 

their catalytic reactions (Lassegue et al. 2012, Santos et al. 2016). NOX 2 and NOX 4 

are respectively considered the main O2
- and H2O2 generating isoforms in the heart 

(Burgoyne et al. 2012, Hafstad et al. 2013, Lassegue et al. 2012, Sirker et al. 2011). 

NOX 2 is reported to be activated by angiotensin II (AngII), endothelin-1, growth 

factors, cytokines or mechanical forces. In contrast, NOX 4 is constitutively active; 

stimuli, such as hypoxia, endoplasmic reticulum (ER) stress, TGF-ß and ischemia 

have however shown to increase NOX 4 protein abundance (Burgoyne et al. 2012). 

 

Studies show that physiological amounts of ROS are necessary for cell survival, 

proliferation and function (Figure 1). Several signaling pathways are directly 

influenced by ROS (Figure 2) and its excess production and accumulation can 

damage a number of cellular/sub-cellular components such as membranes, proteins 

and DNA (Charles and Eaton 2008, Elahi et al. 2009, Handy and Loscalzo 2016, 

Sabri et al. 2003, Sarsour et al. 2009, Sawyer et al. 2002, von Harsdorf et al. 1999). 

Examples of ROS mediated regulation of cellular processes include the Na+-H+ 

exchanger (NHE) and mitogen-activated protein kinases (MAPK) (Sabri et al. 1998) 

as well as tyrosine kinase Src pathways, protein kinase C, GTP-binding RAS proteins 

(Amin et al. 2001, Nakamura et al. 1998, Takimoto and Kass 2007). Specifically in 

cardiomyocytes, high ROS contributes to cell dysfunction and cardiac remodeling 

(Cesselli et al. 2001) by stimulation of apoptosis signaling kinase-1 (Kwon et al. 

2003), activation of nuclear factor ĸB (NFĸB) (Takimoto and Kass 2007), and 

reduction of Ca2+ uptake by SR Ca2+ ATPase (SERCA) (Xu et al. 1997). In addition, 

ROS inhibits the L-type Ca2+ current (Fearon et al. 1999) and affects the release of 

sarcoplasmic reticulum (SR) Ca2+ as a result of ROS modification of  the cysteine 
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sulphydryl groups of the ryanodine receptor (RyR) (Kawakami and Okabe 1998, Zima 

and Blatter 2006). Effects of ROS in cardiac fibroblasts are reported to involve: (1) 

activation of matrix metalloproteinases (MMP), which leads to fibrosis and cardiac 

remodeling (Siwik et al. 2001, Sorescu and Griendling 2002, Spinale 2002) and (2) 

induced CF proliferation (Cheng et al. 2003, Takimoto and Kass 2007). Accordingly, 

elevation of ROS is implicated in myocardial infarction, fibrosis, atherosclerosis, 

cardiac hypertrophy, ischemia-reperfusion, and heart failure (Bolli 1998, Giordano 

2005, Tsutsui et al. 2011). 

 

 

 

Figure 2: ROS pathways associated with cardiac hypertrophy and remodeling. 

Image taken from (Takimoto and Kass 2007). 

1.3 ROS regulation in redox state 

The term ‘redox state’ is linked with the redox equilibrium of redox couples inside the 

cell, such as reduced and oxidized glutathione (GSH/GSSG), thioredoxin (Trx/TrxSS) 

and other cysteine (Cys/CySS) containing proteins. The most abundant cellular 

antioxidant enzymes include glutathione, thioredoxin, and peroxiredoxin, which play 
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an important role in cellular redox balancing and regulation (Hafstad et al. 2013, 

Kang et al. 2005). Nicotinamide adenine dinucleotide phosphate (NADPH) is the 

main source of reducing equivalents of the GSH and Trx proteins (Schafer and 

Buettner 2001). GSH/GSSG is considered the main cellular redox system and found 

in high amounts in most cell compartments (cytosol, mitochondria, ER and nucleus) 

(Mari et al. 2010, Schafer and Buettner 2001). In the cytosol, glutathione abundance 

has been reported to be within the range of 2-10 mmol/L (Hwang et al. 1992, Mari et 

al. 2010). In the ER enhanced oxidation is reflected by a higher abundance of GSSG. 

Mitochondria contain about 15% of the total glutathione pool (Mari et al. 2009, Ribas 

et al. 2014). The cellular and subcellular glutathione redox potential (EGSH) can be 

calculated using the Nernst equation, considering an equilibrium of EGSH and EroGFP2 

(Meyer and Dick 2010, Morgan et al. 2011). 

 

Basal levels and states of cellular ROS are altered by free radical scavengers such 

as superoxide dismutase (SOD), glutathione peroxidase and catalase. The balance 

of the constantly oscillating reduction and oxidation processes are described as the 

“redox state” of the cell (McCord 1988, Werns and Lucchesi 1989).  

 

In comparison to other ROS, H2O2 is the most stable ROS species and the 

mitochondria are the main compartments for H2O2 production. H2O2 is essential in 

intracellular redox signaling, signal transduction and plays a role in oxidative 

modifications of the sulfhydryl (thiol) group (-SH) of cysteines at the active site of 

enzymatically active proteins. Mammalian cells developed self-protective 

mechanisms to regulate and to protect themselves from the damaging H2O2 levels. 

This self-protecting mechanism could be an enzymatic or non-enzymatic system 

(Bienert et al. 2006, Malinouski et al. 2011, Veal et al. 2007). Antioxidant proteins 

such as glutathione, thioredoxin and peroxiredoxin play key roles in scavenging ROS 

(Giles 2006, Tew and Townsend 2011, Zhang and Martin 2014).  

 

When ROS is present in the cellular system, due to enzymatic activities or 

exogenous stimulation (Figure 3), SOD mediates the conversion of superoxide to 

H2O2. In the presence of H2O2, the stimulation of the glutathione system is facilitated 

by the activation of glutathione peroxidase (GPx) (Liu et al. 2004) that mediates 
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oxidation of GSH to GSSG while detoxifying H2O2 into H2O (McCord et al. 1971, 

Weydert and Cullen 2010). The reverse reduction process is mediated by glutathione 

reductase (GR) that receives electrons from NADPH (Watson et al. 2003) and helps 

in the conversion of GSSG to GSH. Moreover, the GSH/GSSG ratio is itself affected 

by the redox state of the thioltransferase glutaredoxin system (Grx; Figure 3) 

(Yoshioka 2015). 

 

 

 

 

Figure 3: ROS effects on glutathione and thioredoxin. Oxidation leads to disulfide 

formation (-SS-) while reduction resolves the disulfides to thiol (-SH) residues in 

classical redox couples. Reduced and oxidized glutathione (GSH and GSSG) and 

thioredoxin (Trx-SH and Trx-SS) protein and its dependence on ROS, SOD and 

Catalase are depicted. GSH/GSSG state is further influenced by the redox state of 

the thioltransferase glutaredoxin (Grx) (Zhang and Martin 2014). 
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Thioredoxin, specifically Trx1, is known for the specific cardioprotective function in 

the heart (Yoshioka 2015). The thioredoxin is protonated by oxidoreductases such as 

thioredoxin reductase (TrxR) and oxidized in the presence of peroxiredoxin (Prx) 

which at the same time is reduced (Figure 3) (Powis et al. 2000, Powis and Montfort 

2001, Wood et al. 2003, Yoshioka 2015, Zhang and Martin 2014). Prx oxidation is 

typically analysed to determine the general state of oxidation in cells and tissue. The 

redox regulation of Prx is further detailed in Figure 4. Peroxiredoxins are important 

antioxidant enzymes and assist in maintaining low intracellular levels of H2O2. The 2-

Cys (Cys 51 and 172) peroxiredoxin enzymes are found in 4 different types (Prx 1,2,3 

and 4) (Riquier et al. 2014). These proteins contain Cys with some nucleophilic 

sulphur (S) on their side chains that are very reactive to oxidation (Griendling et al. 

2016, Nagahara et al. 2009).Formation of sulfenic (-SOH), sulfinic (-SO2H) and 

sulfonic (-SO3H) derivatives (Figure 4) due to oxidation lead to post-translational 

modifications of several proteins (Munns et al. 2005). 
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Figure 4: Peroxiredoxin redox regulation. Reduction of disulphides on peroxidatic 

(CYSP) and resolving cyteines (CYSR) of peroxiredoxin (Prx) dimers is mediated by 

thioredoxin (Trx). CYSP is oxidized to sulphenic (-SOH) residues and hyperoxidized 

to sulphinic (-SO2H) and sulphonic (-SO3H) residues, upon high H2O2 exposure.  

Image was adapted from (Hoyle and O'Neill 2015). 

1.4 Measurements of ROS and redox states 

Different strategies used to measure ROS and redox states in cells have been 

reviewed recently by Griendling et al (Griendling et al. 2016). Biochemical assays 

(e.g., dichlorodihydrofluorescein diacetate, amplex red, and dihydrorhodamine) have 

been routinely used to measure cellular redox changes. However, several limitations 

have been associated with such methods, including cell toxicity, oxidation artifacts, 

lack of dynamic measurements, and limited specificity (Forkink et al. 2010, Meyer 

and Dick 2010). This led to the development of optogenetic tools to study redox 

changes. 
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1.4.1 Genetically modified fluorescent redox sensors 

In recent years, genetically modified methods were developed to help monitor 

intracellular redox state changes in cells. Hydrogen peroxide sensor (Hyper) is a real-

time, ratiometric sensor that is sensitive to H2O2. It is characterized by 2 excitation 

peaks at 410 and 500 nm and an emission at 519 nm; its signal changes are 

reversible (Belousov et al. 2006) with a fast reaction constant (Bilan et al. 2013). As 

for most fluorescent-protein sensors, pH effects on signal intensity need to be 

considered (Lukyanov and Belousov 2014). Improvements of sensors are generally 

by enhancing redox-coupling, dynamic range and localization of sensors to 

subcellular compartments (Albrecht et al. 2011, Ezerina et al. 2014). 

 

The first genetic redox sensing modifications were performed by adding cysteine 

residues at the N149C and S202C positions within the green fluorescent protein 

(GFP). Similar mutations were subsequently demonstrated to be effective in a redox-

active yellow fluorescence protein (rxYFP) (Ostergaard et al. 2001). When this 

modified sensor was subjected to redox processes, a spectral change occurred at 

404 nm and 512 nm due to a shift in H148 and Y203 positions resulting from the 

formation of the disulfide bond between C149-C202 that faces the chromophore 

(Maulucci et al. 2008). This process allowed the visualization of the signal in real time 

and the changes in spectral levels could be used to report absolute concentrations of 

reduced and oxidized glutathione (GSH and GSSG, respectively) residues in cells 

(Ostergaard et al. 2004). However, to overcome the slow reaction of protein 

equilibrium due to differing glutathione states, the protein was fused with a 

recombinant glutaredoxin enzyme (Bjornberg et al. 2006). This model was further 

improved with another redox sensitive probe roGFP2 (Meyer and Dick 2010). In their 

study, Meyer and Dick introduced cysteine residues in S147 and Q204 positions of 

wild-type GFP (wtGFP) and enhanced GFP (EGFP). These new cysteine residues 

are located on ß-strands 7 and 10, close to positions 148 and 204 facing the 

chromophore (Figure 5B). This allows the formation of intramolecular disulfide bridge 

between the two residues (Meyer and Dick 2010). The redox probe was named as 

roGFP1 (derived from wtGFP) when introducing C48S mutation, and roGFP2 

(derived from EGFP) when adding another mutation S65T (Dooley et al. 2004, 

Hanson et al. 2004). In comparison to rxYFP, roGFPs are more sensitive to changes 
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of GSH/GSSG oxidation in a reduced environment due to their lower midpoint 

potential (-291 mV for roGFP1 and -280mV for roGFP2 (Dooley et al. 2004). 

Furthermore, they are ratiometric and have an increased signal to noise ratio or 

dynamic range, which is determined by the proportion of the maximum to minimum 

response of the excitation ratios (Hanson et al. 2004). Ratiometric analysis of roGFP 

probes are useful tools to visualize the oxidation and reduction equilibrium of 

glutathione/glutathione disulfide (GSH/GSSG) fluorescence ratio in real time at 400 

nm and 490 nm (Dooley et al. 2004, Hanson et al. 2004, Meyer and Dick 2010). In 

this study, we used the Grx1-roGFP2 redox sensitive probe to measure the cytosolic 

glutathione potential.  

1.4.2 Mechanism of redox sensing with Grx1-roGFP2 

There are several advantages of utilizing roGFP2 relative to roGFP1, including 

enhanced brightness and dynamic range. The anionic form of the roGFP2 

chromophore (490 nm) dominates over the protonated form (405 nm) at basal state, 

thus during oxidation due to the decrease in the anionic form and an increase in 

protonic form of the chromophore, a better signal could be obtained (Hanson et al. 

2004). In roGFP2, the mutation S65T adds further resistance to artifacts such as 

photoswitching (Meyer and Dick 2010). roGFP2 was fused to human glutaredoxin 

redox enzyme Grx1 to accelerate the thiol-disulfide exchange between roGFP 

molecules and glutathione (Gutscher et al. 2008). Grx1-roGFP2 was reportedly very 

sensitive to traces of GSSG in the reduced environment of the cytosol, as a result of 

the redox potential (EGSH) ranging between -240 mV and -320 mV (Lukyanov and 

Belousov 2014). The reversibility of the Grx1-roGFP2 biosensor signal includes three 

consecutive steps (Figure 5A). Oxidized glutathione (GSSG) reacts with the 

nucleophilic cysteine (C23) of Grx1, to form a Grx1-glutathione disulfide intermediate. 

The next step is to S-glutathionylate the roGFP2, by reacting with one of the thiols of 

roGFP2. S-glutathionylated roGFP2 per se is unstable; stability is achieved by 

internal disulfide-bridge (C147-C204) formation (Meyer and Dick 2010). Application of 

oxidants (H2O2) leads to conformational changes on the roGFP2 structure, due to 

disulfide bridge formation between ß-strand 7 and 10. Antioxidant challenge of the 

sensor helps the roGFP2 protein to form thiol groups of the adjacent Cy147 and Cys 
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204 (Figure 5B). The fluorescent intensity changes of the signal at 405 and 488 nm 

upon oxidation and reduction are shown below (Figure 5C). 

 

 

Figure 5: Schematic view of Grx1-roGFP2 sensor in oxidized and reduced 

conditions. (A) Reversible three step mechanism of the biosensor. (B) The ß-sheet 

organization of reduced and oxidized roGFP2, with Cys 204 and Cys 147 on ß-

strands 7 and 10. (C) Fluorescence intensities at 405 and 488 nm of the oxidized and 

reduced probe. Image adapted from (Aller et al. 2013, Meyer and Dick 2010, Swain 

et al. 2016). 

1.5 Drug-ROS sensing and therapeutic opportunities 

In the sections above, ROS sources and the pathophysiological role of ROS 

production are introduced. Another aspect to be considered is the toxicity and 

oxidative stress by drug-induced ROS production.  
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Several classes of drugs have been investigated for cardiac toxicity and the 

underlying mechanism to produce ROS. For example, the anticancer drug 

doxorubicin (Dox) can induce mitochondrial dysfunction and lipid peroxidation due to 

damage of amino acids and DNA caused by ROS (Raschi et al. 2010, Sawyer et al. 

2010). Azidothymidine (AZT) induces ROS and NOS production (Kline et al. 2009, 

Kohler et al. 2009).  

 

Enhancers of cardiac contractility such as the calcium-sensitizer levosimendan 

(LEVO) and the myosin activator omecamtiv mecarbil (OME) are applied clinically in 

acute heart failure. Enhanced contractility typically results in enhanced ATP turn-

over, which may be compensated by enhanced mitochondrial ATP production as well 

as ROS generation. Interestingly, OME in contrast to LEVO, despite both being 

strong positive inotropes, seems to not increase ATP consumption. The specific 

mechanisms of action of LEVO include: (1) positive inotropic effect by enhanced 

calcium sensitivity of troponin C and (2) pre- and afterload reduction as a 

consequence of vasodilation due to the opening of ATP-sensitive potassium 

channels in smooth muscle cells (Parissis et al. 2007, Pollesello et al. 2016). In 

addition, a cardioprotective effect has been postulated for LEVO which appears to be 

linked mechanistically to the activation of the mitochondrial ATP-sensitive K+-channel 

(Farmakis et al. 2016, Parissis et al. 2008). In non-myocytes (human neutrophils) 

LEVO inhibits ROS production (Hasslacher et al. 2011). Furthermore, LEVO prevents 

the generation of ROS by myeloperoxidase enzyme (MPO), which is released by 

polymorphonuclear leukocytes (PMN) in heart failure (HF) patients (Hasslacher et al. 

2011). In human atrial biopsies, antioxidant effects of LEVO were reported to prevent 

cell death of cardiomyocytes and H2O2-induced contractile dysfunction (Parissis et al. 

2008, Sahin et al. 2007). Collectively, these data suggest an effect of LEVO on ROS, 

but do not specify whether ROS alterations occur in cardiomyocytes and fibroblasts. 

OME, also known as CK-1827452, enhances myosin-actin cross-bridge formation 

without an increase in total ATP or oxygen consumption (Nagy et al. 2014, Teerlink 

2009).  

 

In contrast to OME and LEVO, Angiotensin II stimulation directly affects ROS 

production (H2O2 and O2
-) by the activation of NADPH oxidases. Initially, the 
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signaling starts with the activation of G-protein-coupled receptor 1 (AT1R), which 

activates redox dependent targets (Rac, c-Src, protein kinase C; PKC) to stimulate 

O2
- production by NOX2 in the heart. When reacting with NO radicals, O2

- produces 

peroxynitrite, whereas dismutation with superoxide dismutase (SOD) results in H2O2 

production. AngII stimulation increases in cytoplasmic calcium (Ca2+), thus activating 

NOX5 to produce H2O2. Both H2O2 and ONOO- then stimulate mitochondrial ROS 

that will activate NADPH oxidases in the cytoplasm (Figure 6) (Dikalov and 

Nazarewicz 2013). 

 

Previous studies have used a number of antioxidants to reduce ROS, but the lack of 

specificity and disturbance of the redox homeostasis contributed to the suboptimal 

efficacy of the so far reported approaches (Zhang et al. 2012). Another approach was 

to develop specific compounds that could target and inhibit ROS production enzymes 

and proteins modified by ROS (Dao et al. 2015). Dao et al. further highlight the 

strengths of each of these strategies with promising directions such as inducing Nrf2 

transcription by dimethyl fumarate (DMF) activators like BG12, an approach that has 

been reported to be effective in multiple sclerosis (Bomprezzi 2015, Kappos et al. 

2008). In general it can be concluded that targeting the mitochondrial pathway to 

modulate redox states in cells appears promising in diseases with ROS dysregulation 

(Brown et al. 2016). Also because of its translational potential it is important to 

develop experimental models allowing for a clear correlation of ROS activity and 

function; biosensors for a quantitative assessment of redox potentials appear 

instrumental also for the development of cardioactive drugs or to identify potentially 

limiting side effects (Santos et al. 2016). Accordingly, the strategy of this study is to 

develop and validate a method for optical assessment of redox alterations in human 

heart muscle. 
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Figure 6: Redox signaling pathway via AngII stimulation. Activation of GPCR and 

AT1R follows the activation of several molecules that stimulate NOX specific 

enzymes to produce ROS. Image adapted from (Dikalov and Nazarewicz 2013). 

1.6 Engineered heart muscle as a 3D model to study redox changes 

Engineered Heart Muscles (EHM) is a promising tool for in vitro studies in 

cardiovascular research (Tiburcy et al. 2017). In fact, several groups have proposed 

different engineered heart tissue models for applications in drug development (Hirt et 

al. 2014). The engineering of force-generating cardiac tissues were first reported in 

embryonic chick (Eschenhagen et al. 1997) and neonatal rat (Zimmermann et al. 

2000) models. Most recently, ring-shaped human EHM have been advanced to 

display several structural (for example anisotropic sarcomere assembly) and 

functional (for example positive force frequency relationship) properties of postnatal 

myocardium (Tiburcy et al. 2017). Several drugs have been tested in tissue 
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engineered myocardium, including angiotensin II and anthracyclines; angiotensin II 

enhanced EHM stiffness without reducing contractile performance; doxorubicin 

demonstrated the anticipated concentration dependent cardiomyocyte toxicity 

(unpublished data). Whether these effects are related to ROS production has not 

been studied so far. The use of redox reporters would facilitate these analyses. 

1.7 Aim of the thesis 

This study aims to (Figure 7): 

 

1) Establish stable Grx1-roGFP2 expression in human cardiomyocytes and 

fibroblasts to enable optogenetic recordings of GSH redox state in a cell type 

specific manner. 

 

2) Determine whether GSH redox state alterations under pharmacological 

stimulation can be monitored in human cardiomyocytes and fibroblasts. 

 

3) Establish cell-type specific GSH redox state imaging in a tissue (EHM) 

context. 
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Figure 7: Overview of the strategy, methods, and aims used in this study. 
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2. Materials and Methods 

 

2.1 Cells 

An overview of the cell lines used in this study can be found in Appendix 2. The use 

of human embryonic stem cells was approved according to the German Stem Cell 

Act by the Robert-Koch-Institute (permit #12; reference number: 1710-79-1-4-16). 

2.1.1 TSA201 

Commercially available TSA201 cells were derived from human embryonic kidney 

and immortalized by transduction of the SV40 large T-antigen (Giovarelli et al. 1995). 

In this study, TSA cells were used to test the expression of GFP from pGIPZ-Grx1-

roGFP2 plasmid and as host cells of the packaging plasmids for the production of 

transgenic lentivirus.  

2.1.1.1 Cell Culture and maintenance of cell lines 

Passaging of TSA201 cells was performed at ~70% confluency. The cells were 

rinsed with 1x PBS and incubated for 3-5 mins in TryPLE (Invitrogen, 12604) to aid 

cell detachment. TryPLE was inactivated by the addition of 2x volume of TSA culture 

medium (Appendix 1) and the complete cell suspension was centrifuged at 300 x g 

for 5 mins. The cell pellet was triturated in TSA culture medium and counted using 

the CASY Model TT cell counter (Roche). The desired number of TSA201 cells was 

seeded in cell culture dishes or frozen for further usage. 

2.1.1.2 Freezing and thawing of TSA201 cells 

The cells were suspended (3 - 8 x 106 cells/ml) and triturated gently in freezing 

medium (see Appendix 1). The cells were transferred into cryovials (1ml/vial) and 

placed inside a freezing box at -80 °C to allow for controlled freezing. The cells were 

finally stored at -80 or -150 °C until further use. To thaw the cells, the cryovials were 

placed in 37 °C water bath for 2-3 mins, subsequently suspended in 9 ml of fresh and 
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warm TSA medium, and centrifuged at 300 x g for 5 mins to remove the DMSO. The 

cell pellet was further triturated in fresh TSA medium and then used for experiments. 

2.1.2 Human foreskin fibroblasts 

Human foreskin fibroblasts (HFF) were purchased from American Type Culture 

Collection (SCRC-1041; ATCC) and cultured in human fibroblast medium (Appendix 

1). Passages 25-30 were used for all the following experiments.  

2.1.2.1 Culturing and passaging of HFFs 

HFFs were passaged regularly when reaching a confluency of 80–90%. The cells 

were washed with pre-warmed (at 37 °C) PBS and then treated for 3-5 mins with pre-

warmed TryPLE (Invitrogen). To inactivate TryPLE, 2x volume of HFF medium was 

added to the detached cell suspension, which was triturated to produce a single cell 

suspension. To pellet the cells, the cell suspension was centrifuged at 300 x g for 5 

mins. The cells were then suspended in HFF medium, counted using the CASY 

Model TT cell counter (Roche), and seeded on non-coated culture flasks at the 

required density or frozen (see Section 2.1.1.2) for storage purposes.  

2.1.3 Human embryonic stem cells 

The human embryonic stem cell line (HES2) with a genetic modification of the 

ROSA26 locus to express a tandem dimer red fluorescence protein (tdRFP) was 

kindly provided by Prof. G. Keller (Toronto) (Irion et al. 2007). These cells were 

cultured on γ-irradiated HFFs feeder layers and then cultured in HESC medium (see 

Appendix 1). HES2 cells were passaged for expansion and single cell adaptation by 

using EDTA digestion solution (0.5 mol/L, pH 8, Applichem). After adaptation, these 

cells were differentiated into cardiomyocytes. 

2.1.3.1 Monolayer differentiation of HES2-CM 

Directed differentiation of HES2 was by a staged protocol (Tiburcy et al. 2017). 

Initially, HES cells were plated at a density of 5-10 x 105 cells/cm2 on feeder free 
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MatrigelTM (growth factor reduced; 1:60 diluted in 1x PBS; BD Biosciences)-coated 

flasks and cultured in HES cell-conditioned medium (Appendix 1) for 24 hours. HES 

cells were then rinsed with RPMI medium (Appendix 1) and kept in mesoderm-

induction medium (Appendix 1) for 3 days. HES cells were then rinsed with RPMI 

medium and cultured in mesoderm specification medium (Appendix 1) for 10 days. 

Highly purified cardiomyocytes were subsequently obtained with metabolic selection 

(Tohyama et al. 2013) in HES selection medium (0.28ml/cm2; Appendix 1).  

2.1.3.2 Single cell dissociation of HES2-CM 

The enriched cardiomyocytes obtained from the differentiation procedure (section 

2.1.3.1) were washed 2 times with 1x PBS and treated with Accutase digestion 

solution (Appendix 1) for 10 mins at RT, until the cells were detached from the flasks 

into single cells. The digestion solution was inactivated with 2-3 times the volume of 

serum-free CM medium and 5 µmol/L of Rock inhibitor (Appendix 1) was added into 

the cell solution. The harvested cells were centrifuged at 200 x g for 10 mins and 

further triturated in fresh serum-free medium. The cells were either re-plated onto 

MatrigelTM-coated flasks or used for further experiments. The purity of 

cardiomyocytes was determined by antibody labelling of sarcomeric α-actinin and 

assessed by Flow cytometry analysis software (Section 2.1.4; see Table 8 for 

antibody dilution and immunostaining protocol). 

2.1.3.3 Freezing and thawing of HES2-CM 

Cells were re-suspended (3 - 8 x 106 cells/ml) and triturated gently in freezing 

medium (Appendix 1). To thaw the frozen cardiomyocytes, the cryovial was warmed 

up 2-3 mins in a 37 °C water bath and gently triturated via a 2 ml pipette in 9 ml fresh 

CM medium. The cell suspension was centrifuged at 200 x g for 10 mins to remove 

DMSO. The cell pellet was re-suspended in fresh serum-free CM medium and plated 

onto MatrigelTM-coated flasks to recover for at least 5 days.  
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2.1.4 Flow cytometry 

Flow cytometry analysis was performed on both live and cells fixed in 70% ice-cold 

ethanol or fixed in 4% PFA for 15 mins at RT. 

2.1.4.1 Live cell analysis 

Live analysis was done to analyse the transduction efficiency in live cardiomyocytes 

and fibroblasts. In live cell analysis, the transduced and non-transduced cells were 

washed once with 1x PBS and then centrifuged at 300 x g for 5 mins. Cell pellets 

were washed with blocking buffer containing 5% FBS (Appendix) and centrifuged at 

300 x g for 5 mins. Meanwhile, Sytox solution was prepared (1:1,000 dilution) in 

blocking buffer with 5% FBS. The cells were then incubated in Sytox solution for 15 

mins at RT. After the incubation time, the cells were washed with 1x PBS and 

centrifuged at 300 x g for 5 mins. After 2 repeats of washing and pelleting, the cells 

were strained through a 70 μm cell strainer to remove cell clumps and subjected to 

flow cytometry analysis (LSR II Cytometer, BD Bioscience).  

2.1.4.2 Fixed cell suspensions analysis 

Cell suspensions previously fixed in ice-cold 70% ethanol or 4% Roti® Histofix, were 

strained though a 70 μm cell strainer and subjected to blocking buffer solution 

(Appendix 1) to permeabilize the cells for 10 mins at RT. The cells were incubated 

with specific primary antibodies for 45 mins at 4 °C (Table 8). At this step, to 

determine the purity of the differentiated cardiomyocyte population, CM-specific 

sarcomeric α-actinin antibody incubation was performed (Sigma-Aldrich, A7811, 

1:4,000; Table 8). Cell populations used as a negative control were incubated with a 

primary antibody against Immunoglobulin G (IgG) isotype control (R&D systems). 

After the incubation, the cells were washed (2x) with blocking buffer solution and then 

incubated with secondary antibody and the nuclei staining dye Hoechst (Invitrogen, 

H2570; 1:1,000) in the dark for 1 hr at 4 °C. For CM, goat anti-mouse Alexa 488 

(Invitrogen, A-110001; 1:1,000) was used as a secondary antibody. The cells were 

washed again (2x) in blocking buffer solution and re-suspended in PBS. The analysis 
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was performed using a LSR II Cytometer (BD Bioscience) and FACSDiva Software 

6.0 (BD Bioscience).  

2.2 Cloning of pGIPZ- Grx1-roGFP2 

The original plasmid pLPCX-Grx1-roGFP2 containing the biosensor coding sequence 

“Grx1-roGFP2” was a kind gift from Prof. Tobias Dick. The Grx1-roGFP2 coding 

sequence was excised and inserted into the pGIPZ lentiviral backbone (Open 

Biosystems). The cloning strategy is briefly described in Figure 8. 

 

(A) PCR amplification of “CMV-Grx1-roGFP2” by integrating XbaI and NotIrestriction 

enzyme cutting sites. To amplify the sequence of interest “Grx1-roGFP2”, forward 

and reverse primers with flanking restriction enzyme cutting sites on 5’ and 3’ 

ends were designed (Table 1). The amplified PCR product (5’-XbaI restriction site 

- CMV-Grx1-roGPF2 – NotI restriction site-3’) was integrated into the multiple 

cloning site (MCS) of a TOPO vector. 
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Figure 8: Schematic overview of the cloning strategy. (A) The CMV-Grx1-

roGFP2 sequence of the original plasmid provided by Prof. Dick was PCR amplified 

and decorated with flanking XbaI and NotI restriction sites. The PCR product was 

inserted into a TOPO vector. (B) The CMV-turboGFP sequence in pGIPZ was 

replaced with CMV-Grx1-roGFP2 from TOPO vector. 

 

(B) Replacement of the CMV-turboGFPtag from the pGIPZ backbone by CMV-Grx1-

roGFP2 sequence with XbaI and NotI restriction cutting sites at 5’ and 3’ ends 

respectively. Restriction enzymes XbaI and NotI were used to remove CMV-
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turboGFP sequence from the pGIPZ backbone. The CMV-Grx1-roGFP2 

sequence was inserted via corresponding XbaI and NotI restriction sites yielding 

the plasmid pGIPZ-Grx1-roGFP2.   

 

Forward primers (sequence 5’-3’) 

XBaIkozakCMV Base pairs (bp) 

F1 
Gctctagagcagatagtaatcaattacgggg
tc 

33 

F2 
Gctctagagcagggccaccatagtaatcaat
tacgg 

36 

F3 gctctagagcagatagtaatcaattacgg 29 

Reverse primer (sequence 5’-3’) 

Not IGrx1-roGP2 Base pairs (bp) 

R 
Ataagaatcgccggcgtaaactatttacttgta
cagctcgtc 

42 

 

Table 1: Forward and reverse primers used for PCR amplification of CMV-Grx1-

roGFP2. Primers F1 and R were chosen for PCR amplification. 

 
Each of the cloning steps includes technologies such as Polymerase Chain Reaction 

(PCR), RE digestion, agarose gel electrophoresis and extraction, ligation, 

transformation, plasmid DNA preparation, and DNA sequencing. The details of each 

of the techniques are explained in the following sections. 

2.2.1 Polymerase Chain Reaction (PCR) 

PCR amplifications of the biosensor coding sequence were done by using a T 

gradient PCR thermocycler (Biometra). The forward primers (F1-3) shown in Table 1 

were all used in combination with the reverse primer R. Parameters and the amounts 

of each of the components are listed in Table 2 below. 
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 A B C* D 

Primer combination F1 & R F2 & R F2 & R F3 & R 

dH2O (µl) 37.7 37.7 37.7 37.7 

Ex Taq10x Buffer (µl) 5 5 5 5 

dNTPmix (2.5 mmol; µl) 4 4 4 4 

Template (~200 ng; µl) 1 1 1 1 

Primer F (10 mmol; µl) 1 1 1 1 

Primer R (10 mmol; µl) 1 1 1 1 

ExTaq Enzyme (5 U/µl; µl) 0.3 0.3 0.3 0.3 

TOTAL (µl) 50 50 50 50 

 

Table 2: Components and parameters needed for PCR. *The difference to B is the 

annealing temperature (55 °C). 

 

The time and temperature protocol for each of the primer combinations is shown in 

Table 3 below. 

 

Program Temperature (°C) Time (sec) Cycles 

Initial denaturation  98 30 1 

Denaturation  98 10 

30 Annealing  
A B C D 

30 
66 66 55 61 

Elongation  72 30 

Final elongation  72 120 1 

End of program 4 ∞ 1 

 

Table 3: PCR protocol. Except of annealing temperature, all the other steps were 

identical for each primer combination. 

 

All PCR products were finally mixed with 6x DNA loading buffer (New England  

Biolabs, NEB) and separated by 1% agarose gel electrophoresis (Appendix 1). 
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2.2.2 Agarose gel electrophoresis 

To prepare a 1% agarose gel, 3 g of agarose was dissolved into 300 ml of 1x TAE 

running buffer (Appendix 1). The cooling of the gel solution was followed by the 

addition of 0.2 µg/ml of ethidium bromide (EtBr; Sigma Aldrich, #1239-45-8). The 

solution was poured into a gel tray and left to polymerise for 30 mins. Next, PCR 

amplified samples were loaded together with a 1 kb DNA ladder (Plus; Fermentas). 

Electrophoresis was at 100 V for 45 mins in 1x TAE running buffer (Appendix 1). 

Visualization of the DNA was under UV in the Gel Doc XR (BioRad) with subsequent 

analysis using the Quantity One Software (BioRad). 

2.2.3 Plasmid DNA extraction from agarose gels 

Extraction of DNA bands from agarose gels was performed as per manufacturer’s 

protocol (QIAquick gel extraction kit, QIAGEN). First, the desired DNA fragments 

were excised with a clean scalpel and put into 1.5 ml polypropylene (PP) tubes 

(Eppendorf). Each of the gel sections containing the DNA bands was weighed and 

300 µl of Buffer QG was added per 100 mg of gel. Subsequently, the samples were 

incubated at 50 °C for 10 mins with vortex intervals every 2-3 minutes. Complete 

dissolving of the gel was accompanied with the addition of 100 µl of isopropanol per 

100 mg of gel. The solution was placed into QIAquick 2 ml spin columns and 

centrifuged at 13,000 x g for 1 min. The flow-through was discarded and the 

QIAquick columns were washed with 0.75 ml Buffer PE. The washing step was 

followed by spinning at 13,000 x g for 1 min and the QIAquick columns were placed 

into clean1.5 ml PP tubes. 30 µl Buffer EB or pre-warmed (50 °C) H2O was added 

into the columns and left to stand for 1 min. The columns were centrifuged again at 

13,000 x g for 1 min and the concentration of the eluted DNA was measured by using 

a spectrophotometer (Nanodrop, ND-1000, Thermo Scientific). 

2.2.4 Ligation 

The DNA fragments eluted from the PCR of each primer combination (Table 4) were 

subjected to ligation reaction with either a TOPO vector (Figure 8A) or the pGIPZ 



 Materials and Methods 

26 

 

backbone (Figure 8B). For an optimal ligation reaction, the size and concentration of 

the vector and the insert was calculated with the formula below: 

 

𝐼𝑛𝑠𝑒𝑟𝑡 (𝑛𝑔) =  𝑉𝑒𝑐𝑡𝑜𝑟 (𝑛𝑔) 𝑥 
𝐼𝑛𝑠𝑒𝑟𝑡 (𝑏𝑝)

𝑉𝑒𝑐𝑡𝑜𝑟 (𝑏𝑝)
 𝑥 𝑟𝑎𝑡𝑖𝑜 

Subcloning into TOPO vector was performed according to the manufacture´s 

protocol. Ligation was performed by incubating the insert and the vector with T4 

ligase (NEB) at 16 °C overnight. The components of the ligation reactions for Figure 

8A and B are shown in Table 4. 

 
PCR A (CMV-Grx1-roGFP2) ligation to pGIPZ (Figure 8B) 

Vector (pGIPZ; 50 ng/µl; µl) 1.5 

Insert (PCR A; CMV-Grx1-roGFP2; µl) 0.5 

10 x T4 ligase Buffer (µl) 2 

T4 ligase (µl) 1 

dH2O (µl) 15 

Total (µl) 20 

 

Table 4: Ligation of insert and vector (step A-B as indicated in Figure 8). 

2.2.5 Transformation 

5 µl of the ligation mixture was added into 100 µl of TOP10 competent cells and 

incubated on ice for 30 mins. This step was followed by heat shock of the cells for 60 

sec at 42 °C with subsequent placement on ice for 2 mins. 450 µl of SOC medium 

(Invitrogen) was added into the mixture followed by incubation while shaking at 1 x g 

for 1 hr at 37 °C. 50-100 µl of the transformation reaction solution was plated onto 

PCR A (CMV-Grx1-roGFP2) ligation to TOPO vector (Figure 8A) 

Insert (PCR product; 100 ng/µl; µl) 1 

Salt solution (µl) 1 

TOPO vector (10 ng/µl; µl) 1 

dH2O (µl) 3 

Total (µl) 6 
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LB-agarose plates with 100 µg/ml ampicillin (Appendix 1) and allowed to air dry. The 

inverted plates were then incubated overnight at 37 °C. 

 

For TOPO vector subcloning mixtures, except for the plating on LB-agarose plates, 

all previously mentioned steps were the same. 30 minutes before plating the ligation 

mixture, 40 µl of X gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) and 40 µl 

of IPTG (Isopropyl β-D-1-thiogalactopyranoside) were plated onto the LB-agarose 

plates with ampicillin resistance. Using the blue-white colony screening strategy, 

detection of positive colonies (white coloured colonies) from negative colonies (blue 

colonies) can be performed. After plating the ligation mixture, the plates were 

incubated upside down at 37 °C in a dark environment.  

2.2.6 Miniplasmid DNA preparation 

The procedure for small scale plasmid DNA amplification was performed according to 

manufacturer’s protocol with NucleoSpin® Plasmid columns (Macherey-Nagel, 

#740499.250). First, 50 ml PP tubes (Falcon, BD) were filled with 4 ml LB-medium 

(Lysogeny broth; Appendix 1) and 100 µg/ml ampicillin. The colonies were picked 

from the agar plates and transferred into the LB-medium and incubated overnight (8-

12 hrs) at 37 °C and shaking at 220 rpm. The next day, the cultures were centrifuged 

at 11,500 x g for 30 sec. After spinning, the pellet of bacteria was re-suspended into 

250 µl of Buffer A1 (Macherey-Nagel) and mixed with 250 µl of lysis Buffer A2 

(Macherey-Nagel). The mixture was inverted 6-8 times and then incubated at RT for 

5 mins. After lysis, 300 µl of neutralisation Buffer A3 (Macherey-Nagel) was added 

into the lysed bacteria and the mixture was again inverted 6-8 times. In the next step, 

the mixture was centrifuged at 11,500 x g for 5-10 mins. The supernatant obtained 

from the last centrifugation was transferred into the Nucleospin collection tubes. The 

supernatants were centrifuged at the same speed as before for 1 min. The flow-

through was discarded from the collection tubes. The silica membranes of the 

Nucleospin columns were washed first with 500 µl of Buffer AW (Macherey-Nagel) 

and later with 600 µl of Buffer A4 (Macherey-Nagel). Both steps were followed by 

centrifugation at 11,500 x g for 1 min. The drying process of the silica membrane was 

done by another centrifugation for 2 mins. At the end, 30 µl of pre-warmed (at 50 °C) 

H2O was added to the center of the silica membrane and left to stand at RT for 1 min. 
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After spinning at 11,500 x g for 1 min, the eluted DNA was measured by a 

spectrophotometer (Nanodrop, ND-1000, Thermo Scientific) and subjected to RE 

digestion (2.2.7) or gel electrophoresis (section 2.2.2). 

2.2.7 Restriction enzyme digestion 

This technique was used to linearize the DNA plasmid to prepare for the ligation 

(CMV-Grx1-roGFP2 to pGIPZ, Figure 8B) and it can also be used for confirming the 

right clone/plasmid after a ligation step (subcloning of Grx1-roGFP2 into TOPO 

vector, Figure 8A). The reaction components and quantities required for the 

restriction enzyme digestion are shown in Table 5. 

 

                    Plasmids               

Reagents 

Reaction I (µl) 

TOPO- CMV-Grx1-roGFP2 

(2,000 ng) 

Reaction II (µl) 

pGIPZ 

(4,000 ng) 

3.1 2.2 

XbaI 1 1 

NotI 1 1 

Fast digest Buffer (green) 2 2 

H2O 12.9 13.8 

Total amount 20 20 

 

Table 5: Restriction enzyme digestion (figure 8B). 

 

DNA plasmids were linearized upon incubation with fast digest restriction enzymes at 

37 °C for 1 hr. Following the incubation, the linearized DNA plasmids were subjected 

to gel electrophoresis and the fragments were eluted as described in Section 2.2.3. 

The next step was integration of “CMV-Grx1-roGFP2” into pGIPZ backbone via 

ligation (Section 2.2.4). 
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2.2.8 Maxiplasmid DNA preparation 

After confirming the eluted plasmid DNAs, the next step was to purify high yields of 

the plasmid DNA. This step was performed according to the NucleoBond® Xtra kit 

(Macherey-Nagel). At first, a starter culture (4 ml) was prepared as described above 

(Section 2.2.6) with 100 µg/ml ampicillin. Incubation in a shaker (220 rpm) at 37 °C 

was for ~8 hrs. Once the bacteria reached exponential proliferation (log phase), 1 ml 

from the starter culture was added into 250 ml of LB-medium (containing 100 µg/ml 

ampicillin) in an Erlenmeyer flask and incubated in a shaker (220 rpm) for 12-16 hrs 

at 37 °C. The bacterial solution was centrifuged in an ultracentrifuge at 6,000 x g for 

15 mins at 4 °C. The supernatant was discarded and the pellet was resuspended in 

12 ml of Buffer RES + RNase A (Macherey-Nagel). This step was followed with the 

addition of 12 ml of Buffer LYS, which helped in lysing the bacteria. The lysate was 

gently inverted 5 times and it was incubated at RT for 5 mins. Next, the 

NucleoBond®Xtra Column and the filter were prepared and equilibrated by 25 ml of 

the Buffer EQU (Macherey-Nagel). After 5 mins of incubation, the bacterial lysate 

was neutralized with12 ml Buffer NEU (Macherey-Nagel) and gently inverted for a 

few times. The lysate was then poured through the equilibrated NucleoBond® Xtra 

Column filter and left to run until the liquid lysate was all filtered. Both the 

NucleoBond® Xtra Column and the filter were washed with 12 ml of Buffer EQU and 

then the filter was discarded. This was followed by washing of the NucleoBond® Xtra 

Column with 25 ml of Buffer WASH (Macherey-Nagel). DNA elution was done by 

adding 15 ml of Buffer ELU (Macherey-Nagel) and it was collected in a 50 ml falcon 

tube (BD). To precipitate the eluted DNA, 10.5 ml of RT isopropanol was added and 

the elution was first mixed thoroughly by vortexing, followed by centrifugation at 

8,000 x g for 30 mins at 4 °C. The supernatant was discarded and DNA pellet was 

washed with 70% ethanol at RT. The plasmid solution was centrifuged at 8,000 x g 

for 15 mins at RT. The resulting DNA pellets were left to dry (~30 mins) and then 

reconstituted in 100 µl Elution Buffer (Macherey-Nagel). The yield of the DNA was 

determined by a spectrophotometer (Nanodrop, ND-1000, Thermo Scientific). 
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2.2.9 DNA sequencing 

To ensure that the cloning process was successful and that the cloned constructs 

were correct, plasmid DNA was prepared for sequencing (Table 6) and then sent to 

sequencing by SeqLab (Göttingen). The primers used for sequencing were: forward 

primer 5’-gctctagagcagatagtaatcaattacgg-3’ and reverse primer 5’-

ataagaatcgccggcgtaaactatttacttgtacagctcgtc-3’.  

 

Clones (#) 

      Plasmid DNA  

(1,200 ng/ µl; µl) 

 

 

Primers (µl) 

 

  dH2O (µl) Total (µl) 

2 1.4 3 10.6 15 

3 1.2 3 10.8 15 

5 1.2 3 10.8 15 

7 1.2 3 10.8 15 

8 1.5 3 10.5 15 

9 1.2 3 10.8 15 

15 1.1 3 10.9 15 

21 1.3 3 10.7 15 

 

Table 6: DNA sequencing reaction mixture. 

2.3 Transduction of Grx1-roGFP2 in HFFs and HES2-CM 

Stable transduction of Grx1-roGFP2 was achieved by lentiviral vector using standard 

protocols. 

2.3.1 Lentivirus production 

TSA201 were seeded in 10 cm cell culture dishes (Nunc) in low serum medium (0.5% 

FCS, 1% P/S; see Appendix). Once 70% confluency was reached, TSA201 cells 

were carefully washed once with PBS. Subsequently, 7 ml of the low serum medium 

was added. Transfection of pGIPZ-Grx1-roGFP2 together with psPAX2 (Addgene 

plasmid #12260) and pMD2.G (Addgene plasmid #12259) for lentiviral packaging 
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and VSV-G envelope expression (psPAX2 and pMD2.G were a kind gift by Prof. D. 

Trono), was done by using Polyfect reagent (Qiagen) according to manufacturer’s 

protocol (Table 7). 

 

Components for transfection Quantity 

pMD2.G 2 µg 

psPAX.2 3 µg 

GOI (pGIPZ-Grx1-roGFP2) 3 µg 

DMEM (w/o serum, w/o pen/strep) up to 300 µl 

Polyfect 80 µl 

Low serum medium (0.5% FCS, 1% P/S) up to 1 ml 

 

Table 7: Transfection reaction mixture for lentivirus production. 

 

The mixture was mixed by vortexing and then incubated for 10 mins at RT. 

Thereafter, low serum medium up to 1 ml was added and the complete mixture was 

layered onto TSA201 cells in a dropwise manner. After 72 hrs, the virus suspension 

was collected from the culture dishes into a 50 ml PP (polypropylene) tube (BD, 

Bioscience) and filtered through 0.45 µm filter (Millex® Syringe filter units, 30 mm; 

Merck Millipore) to remove cell debris. The virus suspension could be directly used to 

transduce HFFs and HES2-CMs. Alternatively virus was purified, concentrated, and 

frozen at -80 °C until further use. 

2.3.2 Lentivirus purification 

Purification of lentivirus was done by using a commercial Vivapure®Lentiselect40 kit 

(Sartorius; #VS-LVPQ040). The virus suspension obtained after 72 hrs of transfection 

(section 2.3.1) was passed slowly through a membrane absorber and collected as 

demonstrated in Figure 9. 
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Figure 9: The assembled unit for lentivirus purification. The syringe is slowly 

filled with virus from the virus suspension and then passes carefully through the 

membrane absorber. Image adapted from (Vivapure® Lentiselect, Sartorius). 

 

After the virus suspension was filtered, the membrane absorber was washed and 

then eluted with 4 ml elution buffer according to the manufacturer’s instructions. The 

eluted viral solution was spun at 3,000 x g for 12 mins. The pellet was washed 1x 

with PBS and again spun at 3,000 x g for 12 mins. The titer of the lentiviral particles 

was determined to be >5 x 106 IFU/ml by using LentiXTM Go StixTM (Clontech).  The 

concentrated virus was aliquoted and stored at -80 °C. 

2.3.3 Lentivirus transduction of HFFs and HES2-CMs 

HFFs and HES2-CM at 70% confluence were transduced with lentivirus particles. On 

the day of the transduction, fresh medium (for HFF human fibroblast medium; for 

HES2-CM-serum free CM medium; see Appendix 1) together with polybrene (0.8 

mg/mL; see Appendix 1) was added onto the cells. On HFFs, fibroblast growth factor 

(FGF; 10ng/ml; Appendix1) was also added to the medium. Frozen aliquots of Grx1-

roGFP2 – lentivirus (100 µl/each) were thawed on ice and added to the medium 

inside the flasks. The cells were incubated with the virus for 72 hrs at 5% CO2 and 37 

°C. After the transduction process, the medium of the HFFs was changed to fresh 

Virus 

suspension

Membrane

absorber
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human fibroblast medium containing 1 µg/ml of puromycin (Invitrogen, #A11138-03) 

to select for successfully transduced cells. We initiated the selection of HES2-CM 

cultures with 0.1 µg/ml of puromycin, however after 48 hrs the cells were observed to 

be of poor quality and puromycin was subsequently withdrawn. 

2.4 Redox measurements of transgenic HFFs and HES2-CMs 

The transduced HFFs and HES2-CMs (section 2.4.4) were seeded in 24-well imaging 

plates (Zell Kontakt, #3231-20). For HES2-CMs, the imaging plate was first coated 

with Matrigel™ (1:120 in PBS) and incubated at 37 °C for 30 mins. The transgenic 

CMs were seeded as above (section 2.1.3.2). For HFFs, the seeding process in the 

imaging plate was performed as before (section 2.1.2.1). 

 

The redox measurements on the transgenic cells were done by using an inverted 

fluorescence microscope IX83 (Olympus). The establishment of the setup was done 

using a polychrome light source (Till Photonics) under the control of Visiview 

Software as previously described (Swain et al. 2016). The microscope was equipped 

with a cellVivo (Pecon) chamber to control the temperature (37 °C). Prior to 

measurements, transgenic HFFs and HES2-CMs expressing the Grx1-roGFP2 

sensor were washed and loaded with 300 µl of imaging buffer (with 1 mmol/L Ca2+ for 

HES-CMs and 2 mmol/L Ca2+ for HFFs; see Appendix 1). The cells were excited at 

405 nm and 488 nm and emission was detected via a CCD camera at 510 nm 

(Figure 10).  
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Figure 10: Schematics of the fluorescence capture system used to measure 

redox changes in monolayer (transgenic HES2-CM and HFFs) and tissue 

(EHMs). Image adapted from (Swain et al. 2016). 

 

The pseudocolors for 405 and 488 nm signals were labelled blue and green, 

respectively. This could help to visualize the redox states of the cells during exposure 

to oxidants or antioxidant easily. Signal-to-noise ratio was calculated at 60 sec and 

180 sec exposure and images were acquired every 5 sec for HFFs and 10 sec for 

HES2-CMs. Once a stable baseline 405/488 nm ratio was reached (at 60 sec for 

HFFs and at 180 sec for HES2-CMs), the cells were challenged with oxidants such 

as hydrogen peroxide (H2O2: 0.1-1,000 µmol/L; Sigma-Aldrich, #7722-84-1) or 

Diamide (DA: 1-1,000 µmol/L; Sigma-Aldrich,#10465-78-8) and antioxidants such as 

dithiothreitol (DTT: 0.1-1 mmol/L; Sigma-Aldrich, #3483-12-3). The maximum 

oxidation and maximum reduction responses were used to calculate the reduction 

potential EGSH and dynamic range of the roGFP2 sensor in both HFFs and HES2-CM. 
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2.4.1 Calculation of EroGFP2 redox potentials 

The calculation of redox potential EroGFP2 was performed by applying the Nernst 

Equation and assuming that EroGFP2 and EGSH are in equilibrium (Meyer and Dick 

2010, Morgan et al. 2011): 

 

(1) 𝐸𝐺𝑆𝐻  =  𝐸𝐺𝑆𝐻
°′ −

RT

2F
 ln  (

[𝐺𝑆𝐻]𝑥[𝐺𝑆𝐻] 

[𝐺𝑆𝑆𝐺]
) = 𝐸𝑟𝑜𝐺𝐹𝑃2 

 

R is the gas constant (8.315 J/Kmol), T is absolute temperature (298.15 K) and F is 

the Faraday’s constant (96.485 C/mol).  

 

Before calculating the redox potential EGSH, the degree of oxidation of the biosensor 

(OxDroGFP2) had to be defined (2). OxDroGFP2 was calculated based on the 

fluorescence intensities recorded at 405 and 488 nm excitation under reduced (DTT -

0.1-1 mmol/L) and oxidized (H2O2 - 0.1-1,000 µmol/L; DA - 1-1,000 µmol/L) 

conditions: 

 

 (2) 𝑂𝑥𝐷𝑟𝑜𝐺𝐹𝑃2 =
[roGFP2]ox

([roGFP2]red + [roGFP2]ox  )
 

 

The equation (2) can be transformed as below (3): 

 

(3) 𝑂𝑥𝐷𝑟𝑜𝐺𝐹𝑃2 =
I405 x I488red−I405red x I488

I405 x I488red−I405 x I488ox + I405ox x I488−I405red x I488
 

 

I is the fluorescence intensity at 510 nm under the indicated excitation wavelengths 

at maximally oxidized (ox) or reduced (red) conditions.  

 

Based on OxDroGP2 and the already defined sensor midpoint redox potential E°’roGFP2 

(-280 mV; (Dooley et al. 2004)) the redox potential EroGFP2 can be calculated (4): 

 

(4) 𝐸𝑟𝑜𝐺𝐹𝑃2  =  𝐸𝑟𝑜𝐺𝐹𝑃2
°′ −

RT

2F
 ln (

1 − 𝑂𝑥𝐷𝑟𝑜𝐺𝐹𝑃2

𝑂𝑥𝐷𝑟𝑜𝐺𝐹𝑃2
) 
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The dynamic range of the biosensor was determined by considering the maximal 

H2O2 and DTT responses. Microscope settings (excitation light intensities and 

exposure times) were all standardized before the measurements. 

2.5 Redox response to reference compounds 

Both transgenic HFFs and HES2-CM were treated with angiotensin II (0.1-1,000 

nmol/L; Sigma-Aldrich, #4474-91-3), levosimendan (LEVO - 0.1-10 µmol/L; Sigma-

Aldrich, #141505-33-1) and omecamtiv mecarbil (OME/CK-1827452 - 0.1-10 µmol/L; 

AdooQ Bioscience, #A11206) to study potential effects on glutathione redox 

potential. After a stable baseline recording for 300 sec, 300 µl of each of the 

compounds at the specific concentrations were added onto HFFs and HES2-CMs 

(see Appendix 1). Fluorescence signals were recorded over 900 sec. The change in 

oxidation or reduction response were analysed using Visiview Software. 

2.6 Oxidized peroxiredoxin in fibroblasts and cardiomyocyte 

Oxidation at the protein level was studied after challenging HFF and HES2-CM with 

H2O2 (1 – 1,000 µmol/L) for 1 hr. Protein isolation and quantification are explained 

below. 

2.6.1 Protein isolation 

HFF and HES2-CM were seeded (5 x 105 / well) on 6-well plates and then incubated 

with H2O2 for 1 hr. Subsequently, the cell lysates were extracted by exposing the 

cells to CytoBusterTM Protein extraction reagent (Millipore, 71009; 200 µl/well) which 

was mixed with Protease (Roche), Phosphatase inhibitor (PhosSTOP) cocktails 

(Roche) and Maleimide (Sigma-Aldrich, #129585; 100 mmol/L final concentration) for 

5 mins at 4 °C. The cell lysates were scraped of the culture dish and collected into 

separate 2 ml PP tubes. After centrifugation at 14,000 x g for 5 mins at 4 °C the 

supernatant was collected into new PP tubes to either be used directly for 

immunoblotting or to be stored at -20 °C for further applications and analysis. 
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2.6.2 Protein quantification via Bradford Assay 

Protein concentration of the extracted protein samples was determined by performing 

Bradford protein assay (Bradford 1976). A protein standard curve was analysed after 

loading defined amounts of BSA (0, 1, 2, 4, 8, 16 µg in 50 µl H2O). 2 µl of each of the 

protein samples was diluted with 48 µl H2O and analysed in parallel. All samples 

were analysed in triplicates. 200 µl of 1x Bradford reagent (Roti Quant, K015.3, 

ROTH; diluted in H2O) was added and the samples incubated for 5 mins at RT. 

Sample absorbance was measured at 595 nm in a Flexstation® 3 Multi-mode 

microplate reader (Molecular Devices). The concentration of protein samples were 

analysed and calculated according to the standard curve. 

2.6.3 SDS-PAGE and immunoblotting analysis 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed for protein separation according to their molecular weight. 12% SDS-

polyacrylamide gels (Appendix 1) were used. 20 µg of each protein sample was 

mixed with 6x Laemmli Loading Buffer (Appendix 1) together with Maleimide (Sigma-

Aldrich, #129585; 100 mmol/L final concentration) to protect the oxidized states of the 

proteins. The protein samples were denatured at 95 °C for 5 mins. After denaturation, 

30-40 µl of each of the protein samples and 5-10 µl of the Precision PlusTM Protein 

KaleidoscopeTM protein ladder (BioRad) were loaded on the SDS-PAGE gel. The 

system was operated in 1x running buffer (Appendix 1) at 70 V and later the voltage 

was increased to 120 V to separate the protein samples. 

 

The proteins were then transferred electrophoretically from the SDS-PAGE gels to 

polyvinylidene fluoride membranes (PVDF; AmershamTMHybondTMP 0.45) in 1x 

transfer buffer (Appendix 1) at 4 °C for 1 hr at 100 V. The membranes were 

incubated in 10% Roti-blocking buffer (Roth), which was diluted in distilled H2O. 

During incubation, the membranes were placed on a mechanical rocking platform for 

1 hr at RT. The primary antibody (anti-peroxiredoxin) was diluted in TBST buffer 

(Appendix 1; Table 8) and added to the membranes overnight at 4 °C. The next day, 

the membranes were washed 3x with TBST buffer in 10 mins intervals. A secondary 

horse radish peroxidase (HRP)-coupled antibody was added to the membranes and 



 Materials and Methods 

38 

 

incubated for 1 hr at RT on the rocking platform at the indicated dilution (Table 8). 

Detection of the protein-antibody complex was done by using the chemiluminescent 

reagent Super Signal® West Femto Maximum Sensitive Substrate (Thermo 

Scientific). A ChemDocTM MP Imaging System (BioRad) and Image LabTM Software 

v5.1 (BioRad) were used to visualise and analyse the signals. 

 

List of Antibodies Dilution / amount 

Name Species Manufacturer WB FACS 

P
ri

m
a

ry
 a

n
ti

b
o

d
ie

s
 

anti-sarcomeric 
α-actinin 

Mouse 
Sigma-Aldrich 

(A7811) 
- 1:4,000 

anti-Mouse IgG1 
isotype control 

Mouse 
R&D Systems 

(MAB002) 
- 1:160 

Anti-
peroxiredoxin-

SO3 
Rabbit 

Abcam 
(Ab16830) 

1:2,000 - 

anti-GAPDH Mouse 
Millipore 

(MAB374) 
1:1,000 - 

S
e

c
o

n
d

a
ry

 a
n

ti
b

o
d

ie
s

 anti-Mouse-Alexa 
633 

Goat 
Invitrogen 
(A21052) 

- 1:1,000 

anti-Mouse 
IgG/HRP 
conjugate 

Goat Dako (P0260) 1:10,000 - 

anti-Rabbit 
IgG/HRP 
conjugate 

Goat Dako (P0448) 1:5,000 - 

D
N

A
-d

y
e

 

Hoechst - 
Invitrogen 
(H3570) 

- 1 µg/ml 

 

Table 8: List of primary/secondary antibodies and fluorescent conjugates used 

in this study together with the manufacturers (catalogue number) and dilution 

factors. 
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2.7 Generation and analysis of Human Engineered Heart Muscle 

Engineered heart muscle (EHM) is a hydrogel based (collagen) construct that 

consists of cellular and ECM components (Soong et al. 2012, Tiburcy et al. 2011, 

Zimmermann et al. 2002). The EHM used in this study were optimized to exhibit 

properties of postnatal myocardium (Tiburcy et al. 2017). 

2.7.1 Construction and casting of EHMs 

The EHM reconstitution mixture was cast into custom-made circular molds with 

central poles (Figure 11A; (Tiburcy et al. 2014)). The outer and inner diameters of an 

individual circular mold were 10 and 4 mm (Figure 11B).  

 

 

 

Figure 11: EHM mold and stretcher construct design. (A) Top view of a glass 

culture dish filled with silicon to form 4 circular molds around central Teflon or silicone 

cylinder. (B) Side view of the culture dish with two circular casting molds (outer/inner 

diameter: 10/4 mm). (C-D) Dynamic mechanical silicon stretcher design. Images 

adapted from (Tiburcy et al. 2014). 

 

Casting of EHMs was done on ice and all master mix components (Table 9) were 

kept cold (4 °C), under sterile conditions. All steps were done on ice to prevent 

premature polymerizations. At first, cardiomyocytes and fibroblasts were prepared at 

a ratio of 70:30, respectively and triturated into EHM medium (Appendix 1). To 

prepare the master mix, collagen type I was mixed with 2x RPMI (Appendix 1). The 

A) B)

C) D)
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pH was adjusted by drop wise addition of 0.1 N NaOH. A colour change from yellow 

to pink indicates a pH of ~7.4. The cell suspension was then added to the master mix 

and triturated to ensure homogeneous cell distribution within the EHM mixture. In the 

last step, 450 µl of EHM mixture was added gently into each of the circular molds 

together with the EHM cell mixture and incubated at 37 °C with 5% CO2 for 1 hr to 

facilitate polymerization.  

 

 

Master mix components 

Number of EHMs 

1 x 4 x 8 x 

Bovine Collagen (6.9 mg/mL) 68 µl 271 µl 542 µl 

2x RPMI (Appendix 1) 68 µl 271 µl 542 µl 

0.1 N NaOH 13 µl 53 µl 106 µl 

Cell Suspension (1.45 x 106/EHM) 378 µl 1511 µl 3022 µl 

Total volume 527 µl 2106 µl 4212 µl 

 

Table 9: EHM master mix components. 

 

After the initial polymerization period, serum-free maturation medium (SFMM) with 

TGF-ß1 (5 ng/mL) was added. The medium was changed after 24 hrs. EHMs were 

left to condense for 3 days and then transferred onto flexible mechanical silicon 

stretchers (Figure 11C and 11D) in 24-well plates (Figure 12). EHMs culture was for 

2 days with medium changes every other day. 
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Figure 12: EHM condensation and mechanical (dynamic) loading.(A) EHM 

condensed for 1 hr at 37 °C. (B) Full condensation of EHM 3 days after casting. (C) 

Mechanical loading of EHM on dynamic silicon stretchers in 24-well plates. (Bars: 5 

mm). Images adapted from (Tiburcy et al. 2014). 

2.7.2 Visualisation of redox changes in transgenic EHMs 

To visualize redox changes, EHMs were cast into three groups: 1) wild type (wt) 

EHMs with both non-transgenic HES2-CM and HFF; 2) EHMs with transgenic 

roGFP2-HES2-CM and non-transgenic HFF; and 3) EHM with non-transgenic HFF 

and transgenic roGFP2-HES2-CM. After 20 days of cultivation, EHMs from each 

group were washed with pre-warmed (37 °C) Tyrode’s solution (Appendix 1) and 

transferred onto silicon stretchers fixed on a glass coverslip (VWR, #33386, 25 mm 

Ø). The imaging setup was composed of a polychrome light source (Till Photonics) 

under the control of Visiview Software as previously described (Giovarelli et al. 1995, 

Swain et al. 2016). The EHMs with roGFP2 sensor were excited at 405 nm and 488 

nm and emission was detected via a CCD camera at 510 nm (Figure 10). Signal-to-

noise ratio was measured at 300 ms exposure and images were acquired every 10 

sec. Once a stable baseline 405/488 nm ratio was reached, generally at 300 sec, the 

EHMs were subjected to Tyrode’s solution containing different concentrations of 

H2O2 or DTT. The ratiometric glutathione redox changes depending on 405/488 

A)

C)

B)
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excitation, were visualized at 4x magnifications and the mean intensities were used 

to calculate OxDroGP2 (see Section 2.4.1). 

2.7.3 Isometric force measurements 

Isometric force measurement were performed as described previously (Zimmermann 

et al. 2000) in organ baths filled with Tyrode’s solution at 37 °C and perfused with 

carbogen (95% O2, 5% CO2) to stabilize the pH at 7.4. After 20 days of maturation, 

the EHMs were transferred onto hooks of a force transducer suspended in organ 

baths and electrically stimulated at 4 Hz in an electrical field generated by two 

parallel platinum electrodes (5 ms monophasic pulses of 200 mA). First, EHM were 

preloaded to a length with optimal force development (Lmax; Frank-Starling 

mechanism) at 1.8 mmol/L [Ca2+]. This was followed by thorough washing (2x) in 0.2 

mmol/L [Ca2+] containing Tyrode’s solution and finally an exposure to increasing 

concentrations of [Ca2+] (0.2 – 4 mmol/L) to establish a calcium response curve 

(maximal inotropic effect and EC50). At EC50 calcium concentrations (wt EHM, 

0.65±0.06, n=50; roGFP HFF, 0.83±0.12, n=37; roGFP CM, 0.55±0.06, n=31), EHMs 

were exposed to different concentrations of H2O2 (0.1 – 1,000 µmol/L) and DTT (0.01 

– 3 mmol/L) and the maximum and minimum forces were acquired by BMON and 

analysed by AMON Softwares (G. Jaeckel, Hanau). 

2.7.4 EHM dissociation 

EHM dissociation was performed by incubating EHMs in 1 ml collagenase solution 

(Appendix 1) for 1 hr at 37 °C. The collagenase solution together with the dissociated 

parts of EHMs was collected into a PP tube (BD Bioscience) and neutralized with 

Blocking Buffer Solution (Appendix 1); the remaining EHM fragments were incubated 

in Accutase Digestion Solution (Appendix 1) for 30 mins at 37 °C and collected in the 

same PP tube. After complete dissociation, the cell number and viability were 

measured by using a CASY Model TT cell counter. The cell suspension was then 

strained through a 70 µm mesh to remove remaining cell/tissue clumps. 

Subsequently, the cell suspension was either directly used for flow cytometry to 

measure live cells or fixed in cold 70% ethanol or 4% Roti® Histofix at RT for 

immunofluorescence staining.  
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2.7.5 Immunofluorescent staining and low cytometry 

The cell suspension was centrifuged at 300 x g for 5 mins to remove the fixing 

solution. The cells were then incubated in blocking buffer (Appendix 1) for 10 mins on 

ice. The staining and analysis was as described in section 2.1.4.2. 

2.8 Statistics 

Data are presented as arithmetic mean ± SEM. Statistical analysis were performed 

by one-way ANOVA, two-way ANOVA, two-tailed unpaired Student’s t-test with 

indicated post hoc tests using GraphPad Prism v6 (GraphPad Software Inc., San 

Diego). A p-value of <0.05 was considered significant.  
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3. Results 

3.1 Cloning of pGIPZ- Grx1-roGFP2 

The “Grx1-roGFP2” biosensor (Meyer and Dick 2010) was cloned into the pGIPZ 

backbone for subsequent production of lentivirus particles and transduction to report 

EGSH in cardiomyocytes and fibroblasts. 

3.1.1 Integration of XbaI and NotI cutting sites on CMV-Grx1-roGFP2 

The cytomegalovirus (CMV) promoter together with the biosensor coding sequence 

(Grx1-roGFP2) from the original plasmid (pLPCX-Grx1-roGFP2; kind gift from T. 

Dick, Heidelberg) were ligated (Table 1 in Material and Methods) and the sequence 

size (1,750 base pair) was confirmed by agarose electrophoresis separation (Figure 

13A). 

 

Depending on the size (~1,750 bp), each of the PCR product obtained by the primer 

combinations (A-D) was ligated to TOPO vector. Rapid ligation of the biosensor into 

TOPO vector was performed within 5 min incubation due to rapid ligation of the 3’-A 

overhangs to the PCR product by taq polymerase enzyme. Following overnight (16 

hrs) transformation, white (positive) colonies were picked and the modified plasmid 

was extracted. RE digestion of the plasmids was performed to determine positive 

clones containing the right ligation orientation by gel electrophoresis (Figure 13B). 

Clone A containing the ligation of PCR product (CMV-Grx1-roGPF2) of primer 

combination A (forward F1 and reverse R primers) with TOPO vector, was chosen for 

further amplification and modification for subcloning into the pGIPZ lentiviral 

backbone. 
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Figure 13: Schematic view of the subcloning strategy. (A) Representative gel of 

the PCR product for all primer combinations A-D. (B) Schematic diagram of the 

ligation strategy for the insertion of Grx1-roGFP2 into a TOPO vector and verification 

of the insertion in clone A1 by RE digestion (XbaI/NotI). DNA ladder: 1 kb Plus 

(Fermentas). 

3.1.2 Generation of the lentivirus plasmid pGIPZ-Grx1-roGFP2 

Generation of pGIPZ-CMV-Grx1-roGFP2 was performed by replacing the CMV-

turboGFPtag sequence of the pGIPZ backbone with the CMV-Grx1-roGFP2 

sequence. The resulting clones were screened by RE digestion (Figure 14A). 23 out 

of 24 clones were positive for Grx1-roGFP2. Random clones were selected and 

subjected to DNA sequencing for confirmation of positive ligation of CMV-Grx1-
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roGFP2 construct into pGIPZ plasmid (Figure 14B). Clone 4 was selected for 

lentivirus production and further glutathione redox measurements. 

 

 

Figure 14: Verification of pGIPZ-CMV-Grx1-roGFP2 cloning. (A) RE digestion 

with XbaI and NotI released the CMV-Grx1-roGFP2 fragment (1,750 bp) from the 

vector backbone (10.3 kb). (B) DNA sequencing of Grx1-roGFP2 fragment confirmed 

its sequence integrity (clone 4). DNA 1 kb Plus Ladder (Fermentas). 
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3.2 Grx1-roGFP2 expression in TSA cells and lentivirus production 

pGIPZ-Grx1-roGFP2 (clones 4 and 7; Figure 14A), the packaging plasmid psPAX.2 

and the envelope construct pMD2.G were co-transfected into TSA cells. The original 

pGIPZ plasmid containing GFP was used as a positive control for TSA cell 

transfection. After 72 hrs of transfection, TSA cells were visualized for positive GFP 

expression (Figure 15). 

 

 

 

Figure 15: TSA cells after 72 hrs of transfection. (top) Brightfield; (bottom) GFP 

fluorescence after transfection of pGIPZ-Grx1-ro-GFP2 (clones 4 and 7) and pGIPZ 

plasmids with the lentivirus helper plasmids psPAX.2 and pMD2.G. Scale bar: 200 

µm. 

 

Similar GFP signal intensities suggest similar transfection efficiencies in the pGIPZ 

and pGIPZ-Grx1-roGFP2 (clones 4 and 7) groups. Virus particle containing 

supernatant was collected and purified before transducing HES2-CM and HFFs. 
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3.2.1 Lentivirus transduction of HFF and HES2-CM 

HFFs were transduced with lentivirus containing the biosensor from both clone 4 and 

7. pGIPZ lentivirus transduction was performed as control experiment (Figure 16). 

 

 

 

Figure 16: HFFs after transduction. (top) Brightfield; (bottom) GFP fluorescence 

after transduction with lentivirus harvested from TSA transfected with pGIPZ-Grx1-

roGFP2 clone 4 and 7 as well as pGIPZ. Scale bar: 200 µm. 

 

According to previously established killing curves (Soong, PhD thesis) positively 

transduced HFFs were selected using 1 µg/ml puromycin for 4 days. Lentivirus 

derived from clone 4 showed a stronger GFP intensity and transduction efficiency 

than clone 7. As such, all the following experiments were performed using construct 

4. Transduction of HFFs and HES2-CMs by the purified lentivirus, resulted in the 

expression of GFP in each cell type (Figure 17A, 18A). Transduction efficiency was 

72 ± 6.1 % in HFF (n=8; Figure 17B,C) and 47 ± 7.2 % in HES2-CM (n=7; Figure 

18B,C). 
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Figure 17: Transduction efficiency in HFFs. (A) (left) Brightfield; (right) GFP 

fluorescence after lentiviral transduction of HFF with biosensor Grx1-roGFP2. Scale 

bar: 200 µm. (B) Transfection efficiency analysed by flow cytometry (p<0.05, 

Student’s t-test). 
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Figure 18: Transduction efficiency in HES2-CMs. (A) (left) Brightfield; (right) GFP 

fluorescence after lentiviral transduction of HES2-CM with biosensor Grx1-roGFP2. 

Scale bar: 200 µm. (B) Transfection efficiency analysed by flow cytometry (p<0.05, 

Student’s t-test). 

3.3 Monolayer glutathione redox measurements 

Genetically encoded redox biosensors allow for quantification of redox couples inside 

the cell. In this study, the glutathione redox sensor Grx1-roGFP2 was expressed in 

the cytosol. By titration of H2O2, DA and DTT it was possible to quantify the ratio of 

the reduced and oxidized forms of the glutathione couple [GSH:GSSG] in HFF and 

HES2-CM. Fluorescence changes were analysed ratiometrically from regions of 

interests (ROI), which were manually defined to encompass individual cells (Figure 

19). 
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Figure 19: Cell-specific analysis of the glutathione redox sensor in HFF and 

HES2-CM. ROI: region of interest for fluorescence intensity measurements. Scale 

bars: 40 and 20 µm in HFF and HES2-CM, respectively. 

3.3.1 Oxidative challenge with H2O2 

Exposure to H2O2 causes disulfide bond formation between Cys147 and Cys204 in 

the glutathione protein (GSH + GSH  GSSG). This change promotes the 

protonation of the roGFP2 chromophore, leading to increased fluorescence emission 

under 405 nm versus 490 nm excitation. Treatment with DTT has the reverse 

function (GSSG  GSH + GSH).  

 

Grx1-roGFP2 transduced HFFs (Figure 20) and HES2-CMs (Figure 21) were treated 

with different concentrations of H2O2 (0.1 – 1,000 µmol/L). Interestingly, a 

concentration dependent response was observed in HFF whereas HES2-CM 

demonstrated an all or nothing response with maximal effects at 100 µmol/L in HFF 

(Figure 20) versus 10 µmol/L in HES2-CM (Figure 21).  
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Figure 20: Live imaging of glutathione oxidation in HFFs under H2O2 challenge. 

(A) Changes in the ratiometric fluorescence signal of the Grx1-roGFP2 in HFF in 

response to H2O2 at the indicated concentrations as a function of time (Ro= 405/490 

nm excited signals at baseline); H2O2 was added at 60 sec of stable baseline 

recordings. (B) Maximal ratiometric signal increase at the indicated H2O2 

concentrations. 19-43 cells/group; *p<0.05 vs. Ctrl by two-way (A) and one-way (B) 

ANOVA followed by Dunnett’s post hoc test. 

 

 

Figure 21: Live imaging of glutathione oxidation in HES2-CMs under H2O2 

challenge. (A) Changes in the ratiometric fluorescence signal of the Grx1-roGFP2 in 

HES2-CM in response to H2O2 at the indicated concentrations as a function of time 

(Ro= 405/490 nm excited signals at baseline); H2O2 was added at 180 sec of stable 

baseline recordings. (B) Maximal ratiometric signal increase at the indicated H2O2 

concentrations. 46-71 cells/group; *p<0.05 vs. Ctrl by two-way (A) and one-way (B) 

ANOVA followed by Dunnett’s post hoc test. 
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The onset of glutathione oxidation was similar in HFF (Figure 22A) and HES2-CM 

(Figure 22B) at 10 µmol/L, but clearly enhanced at higher concentrations in HFF only.  

 

 

 

Figure 22: Differences in glutathione oxidation kinetics in HFF and HES2-CM. 

Time required for half maximum reporter signal (t50) increase in HFF (n=27-41); A) 

and HES2-CM (n=39-47); B) cultures. *p<0.05 vs. 10 µmol/L H2O2 by one-way 

ANOVA followed by Tukey’s post hoc test. 

3.3.2 Response of HFF and HES2-CM to DA 

Diamide (DA) is a thiol group oxidant that oxidizes the thiol groups of roGFP2 directly 

into disulfides. Thus it does not depend on the availability of glutathione in the cell 

(Swain et al. 2016). Hence, DA stimulation allows for the determination of the 

maximal roGFP2 signal change obtainable under an oxidative challenge. HFFs and 

HES2-CMs expressing the Grx1-roGFP2 were exposed to different concentrations of 

DA (1 - 1,000 µmol/L). Similar as for H2O2 maximal oxidation under DA was achieved 

at lower concentrations in HES2-CM as compared to HFF (0.1 vs 1 mmol/L) (Figure 

23 and 24). Time to maximal reporter signal was similarly DA concentration 

dependent (Figure 25). 
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Figure 23: Live imaging of glutathione oxidation in HFFs under DA challenge. 

(A) Changes in the ratiometric fluorescence signal of the Grx1-roGFP2 in HFF in 

response to DA at the indicated concentrations as a function of time (Ro= 405/490 

nm excited signals at baseline); DA was added at 60 sec of stable baseline 

recordings. (B) Maximal ratiometric signal increase at the indicated DA 

concentrations. 26-60 cells/group; *p<0.05 vs. Ctrl by two-way (A) and one-way (B) 

ANOVA followed by Dunnett’s post hoc test.  

 

 

Figure 24: Live imaging of glutathione oxidation in HES2-CMs under DA 

challenge. (A) Changes in the ratiometric fluorescence signal of the Grx1-roGFP2 in 

HES2-CM in response to DA at the indicated concentrations as a function of time 

(Ro= 405/490 nm excited signals at baseline); DA was added at 180 sec of stable 

baseline recordings. (B) Maximal ratiometric signal increase at the indicated DA 

concentrations. 7-9 cells/group; *p<0.05 vs. Ctrl by two-way (A) and one-way (B) 

ANOVA followed by Dunnett’s post hoc test. 
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The time required for biosensor oxidation in HFFs is similar and independent of the 

DA concentrations (Figure 25A). Interestingly, HES2-CM showed a DA concentration 

dependent acceleration in DA mediated oxidation with slower and faster kinetics at 

10 and 1,000 µmol/L DA, respectively (Figure 25B). 

.   

 

 

Figure 25: Differences in biosensor oxidation kinetics in HFF and HES2-CM. 

Time required for half maximum reporter signal (t50) increase in HFF (n=12-55); A) 

and HES2-CM (n=7-15); B) cultures. *p<0.05 vs. 10 µmol/L and 100 µmol/L DA by 

one-way ANOVA followed by Tukey’s post hoc test. 

 

3.3.3 Response of HFF and HES2-CM to DTT 

To investigate the reducing properties of the biosensor Grx1-roGFP2, trangenic HFFs 

and HES2-CMs were exposed to various concentrations (0.01 - 1.0 mmol/L) of 

reducing agent DTT (Figures 26 and 27). In contrast to the findings in response to 

oxidation with H2O2 and DA there was a clear concentration dependency in HFF and 

HES2-CM. However, HFF demonstrated a much stronger signal reduction by 1 

mmol/L (–64±1.6%; n=28) as compared to the signal reduction in HES2-CM (–

22±0.8%; n=58). 
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Figure 26: Live imaging of glutathione oxidation in HFF under DTT challenge. 

(A) Changes in the ratiometric fluorescence signal of the Grx1-roGFP2 in HFF in 

response to DTT at the indicated concentrations as a function of time (Ro= 405/490 

nm excited signals at baseline); DTT was added at 180 sec of stable baseline 

recordings. (B) Maximal ratiometric signal decrease at the indicated DTT 

concentrations. 21-37 cells/group; *p<0.05 vs. Ctrl by two-way (A) and one-way (B) 

ANOVA followed by Dunnett’s post hoc test. 

 

 

 

Figure 27: Live imaging of glutathione oxidation in HES2-CMs under DTT 

challenge. (A) Changes in the ratiometric fluorescence signal of the Grx1-roGFP2 in 

HES2-CM in response to DTT at the indicated concentrations as a function of time 

(Ro= 405/490 nm excited signals at baseline); DTT was added at 180 sec of stable 

baseline recordings. (B) Maximal ratiometric signal decrease at the indicated DTT 

concentrations. 46-85 cells/group; *p<0.05 vs. Ctrl by two-way (A) and one-way (B) 

ANOVA followed by Dunnett’s post hoc test. 
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Another obvious difference was the markedly slower kinetics of Grx1-roGFP2 

reduction (21 ± 0.9 ms in HFF vs.  83 ± 3.1 ms in HES2-CM at 1 mmol/L DTT; n= 

28/58; Figure 28).  

 

 

Figure 28: Differences in glutathione reduction kinetics in HFF and HES2-CM. 

Time required for half maximum reporter signal (t50) decrease in HFF (n= 21-37); A) 

and HES2-CM (n= 40-62); B) cultures; *p<0.05 vs. 0.01 mmol/L DTT by one-way 

ANOVA followed by Tukey’s post hoc test. 

3.3.4 Calculation of the glutathione redox potential 

Glutathione redox potential (EGSH) was calculated for both cell types by using the 

Nernst Equation (Section 2.4.1, equation (3) Materials and Methods). The 

calculations were based on the OxDroGFP2 of the maximum response for oxidation 

(H2O2 and DA) and the maximum response for reduction (DTT). HES2-CMs 

demonstrated a significantly more reduced EGSH compared to HFFs (Table 10). There 

was no difference in DA-DTT and H2O2-DTT signal range based calculation of EGSH, 

suggesting that maximal Grx1-roGFP2 sensor oxidation could be achieved with 

H2O2. 
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Redox potential Cell type 

HES2-CM HFF 

Diamide-DTT -289 ± 1.3 mV* 
(13) 

-270 ± 1.1 mV 
(18) 

H2O2-DTT -289 ± 1.3 mV* 
(56) 

-269 ± 1.6 mV 
(18) 

 

Table 10: EGSH of the glutathione sensor in HFFs and HES2-CMs. Number of 

analyzed cells is shown inside the parentheses. *p<0.05 HES2-CM vs. HFF by 

unpaired, two-tailed Student’s t-test. 

3.3.5 Glutathione redox changes upon cumulative redox challenge 

In addition to the effects of bolus administration of H2O2 and DTT, responses to 

cumulative additions were analysed in HFFs (Figure 29).  These analyses suggest a 

good dynamic range of the Grx1-roGFP2 sensor with the possibility to sense 

oxidation by 10 - 1,000 µmol/L H2O2 and reduction by 0.01 - 1 mmol/L DTT.  

 

 

 

Figure 29: Assessment of the dynamic range of the Grx1-roGFP2 sensor. 

Stimulation with (A) H2O2 (18 cells/group) and (B) DTT (8 cells/group). 
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3.4 Grx1-roGFP2 responses to angiotensin II and inotropes 

Angiotensin II has been demonstrated to increase ROS/roGFP2 signal in murine 

heart preparations (Swain et al. 2016). In HFF and HES2-CM there was a distinct 

response to Angiotensin II with at all a mild reductive effect in HFFs at 100 nmol/L 

(Figure 30), but a strong oxidative effect in HES2-CM already at low (0.1 nmol/L) 

angiotensin II concentrations (Figure 31); notably, there appeared to be a 

concentration dependent decline of this observed oxidative response.  

 

 

 

Figure 30: Visualization of glutathione redox states under angiotensin II 

stimulation in HFF. (A) Changes in the ratiometric fluorescence signal of the Grx1-

roGFP2 in HFF in response to angiotensin II (AngII) at the indicated concentrations 

as a function of time (Ro= 405/490 nm excited signals at baseline); angiotensin II was 

added at 300 sec of stable baseline recordings and (B) Maximal ratiometric signal 

increase at the indicated angiotensin II (AngII) concentrations. 42-68 cells/group; 

*p<0.05 vs. Ctrl by two-way (A) and one-way (B) ANOVA followed by Dunnett’s post 

hoc test. 
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Figure 31: Visualization of glutathione redox states under angiotensin II 

stimulation in HES2-CM. (A) Changes in the ratiometric fluorescence signal of the 

Grx1-roGFP2 in HES2-CM in response to angiotensin II (AngII) at the indicated 

concentrations as a function of time (Ro= 405/490 nm excited signals at baseline); 

angiotensin was added at 300 sec of stable baseline recordings and (B) Maximal 

ratiometric signal increase at the indicated angiotensin II (AngII) concentrations. 31-

71 cells/group; *p<0.05 vs. Ctrl by two-way (A) and one-way (B) ANOVA followed by 

Dunnett’s post hoc test. 

 

Next, the cells were exposed to increasing concentrations of the calcium-sensitizer 

levosimendan (LEVO; 0.01 - 10 µmol/L). Similarly as observed for angiotensin II, 

there was an effect in both HES2-CM (Figure 32) and HFF (Figure 33). The apparent 

increase in oxidation in the Ctrl group appeared to be an effect of the solvent (DMSO) 

and may have to be considered when interpreting the data. In all the experiments 

with levosimendan (LEVO) and omecamtiv mecarbil (OME), the Ctrl group includes 

1% DMSO, whereas the sample dilutions (0.01 - 10 µmol/L) contain less DMSO 

(0.01% or less DMSO).  
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Figure 32: Visualization of glutathione redox states under levosimendan 

treatment in HFF. (A) Changes in the ratiometric fluorescence signal of the Grx1-

roGFP2 in HFF in response to levosimendan (LEVO) at the indicated concentrations 

as a function of time (Ro= 405/490 nm excited signals at baseline); levosimendan 

was added at 300 sec of stable baseline recordings and (B) Maximal ratiometric 

signal increase at the indicated levosimendan (LEVO) concentrations (17-41 

cells/group). 

 
Surprisingly, the sample dilutions of levosimendan did not show any significant 

difference on oxidizing effect when compared to the Ctrl group in HFFs (Figure 32). 

However, Ctrl group in HES2-CMs treated with levosimendan showed a more 

pronounced oxidizing effect in comparison to the sample dilutions (Figure 33). 
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Figure 33: Visualization of glutathione redox states under levosimendan 

treatment in HES2-CM. (A) Changes in the ratiometric fluorescence signal of the 

Grx1-roGFP2 in HES2-CM in response to levosimendan (LEVO) at the indicated 

concentrations as a function of time (Ro= 405/490 nm excited signals at baseline); 

levosimendan was added at 300 sec of stable baseline recordings and (B) Maximal 

ratiometric signal increase at the indicated levosimendan (LEVO) concentrations. 9-

21 cells/group; *p<0.05 vs. Ctrl by two-way (A) and one-way (B) ANOVA followed by 

Dunnett’s post hoc test. 

 

Finally, the cells were exposed to omecamtiv mercabil (OME; 0.01 - 10 µmol/L), a 

cardiac myosin activator. In contrast to AngII and LEVO, a reduced Grx1-roGFP2 

signal was observed under OME stimulation only in HES2-CM without a clear 

concentration dependency (Figure 35). Similar as for the LEVO experiments, the 

oxidative effects of DMSO have to be considered, which appeared more pronounced 

in HES2-CM than HFF. 
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Figure 34: Visualization of glutathione redox states under omecamtiv mecarbil 

treatment in HFF. (A) Changes in the ratiometric fluorescence signal of the Grx1-

roGFP2 in HFF in response to omecamtiv mecarbil (OME) at the indicated 

concentrations as a function of time (Ro= 405/490 nm excited signals at baseline); 

omecamtiv mecarbil was added at 300 sec of stable baseline recordings and (B) 

Maximal ratiometric signal increase at the indicated omecamtiv mecarbil (OME) 

concentrations. 13-22 cells/group; *p<0.05 vs Ctrl by two-way (A) and one-way (B) 

ANOVA followed by Dunnett’s post hoc test. 

 

 

Figure 35: Visualization of glutathione redox states under omecamtiv mecarbil 

treatment in HES2-CM. (A) Changes in the ratiometric fluorescence signal of the 

Grx1-roGFP2 in HES2-CM in response to omecamtiv mecarbil (OME) at the 

indicated concentrations as a function of time (Ro= 405/490 nm excited signals at 

baseline); omecamtiv mecarbil was added at 300 sec of stable baseline recordings 

and (B) Maximal ratiometric signal increase at the indicated omecamtiv mecarbil 

(OME) concentrations (4-7 cells/group). 



 Results 

64 

 

3.5 Detection of peroxiredoxin oxidation 

Exposure of cells to oxidative stress (e.g., by exposure to H2O2) is anticipated to 

result in the oxidation of cysteines (Cys-SH) in a wide array of proteins, including 

peroxiredoxin (Prx). Cysteines in Prx are reversibly oxidized to sulfenic acid groups (-

SOH) and irreversibly to sulfinic (-SO2H) or sulfonic acid groups (-SO3H). Immunoblot 

detection of periodoxin-SO3 (Table 8) confirmed that H2O2 at the above as oxidatively 

effective identified concentrations (100 - 1,000 µmol/L) in HFF and HES2-CM indeed 

resulted in the anticipated oxidation of periodoxin (Figure 36). Interestingly, Grx1-

roGFP2 sensor appeared 10-fold more sensitive as to the detection of oxidation with 

clearly enhanced signals already at 10 µmol/L (Figure 20 and 21). 

 

 

 

Figure 36: Confirmation of peroxiredoxin oxidation in HFFs and HES2-CMs 

upon H2O2 exposure. Protein lysates were prepared 1 hr after exposure to the 

indicated H2O2 concentration. Protein oxidation was stabilized with maleimide. 

Representative Immunoblots and analyses of all obtained data (Prx-SO3 signals were 

corrected to GAPDH signals). (A-B) data from HFF cultures (n=9/group); (C-D) data 

from HES2-CM cultures (n=5-6/group). *p<0.05 vs. Ctrl by one-way ANOVA followed 

by Dunnett’s post hoc test. 
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3.6 Redox sensing in engineered heart muscle 

To assess whether changes of the glutathione redox state in HFFs and HES2-CMs 

can be determined in a multicellular human tissue context, EHM (Tiburcy et al. 2017) 

were constructed from distinctly labelled (Grx1-roGFP2) mixtures of HFF and HES2-

CM (Figure 37).  

 

 

 

 

Figure 37: Expression and monitoring of the glutathione redox sensor in EHM. 

(A) EHM with Grx1-roGFP2 glutathione redox sensor expressed in roGFP HFF (B) 

Zoom in on a ROI for roGFP2 detection in EHM (left); control EHM without the 

expression of Grx1-roGFP2 (right). Scale bar: 200 µm. 

3.6.1 Glutathione redox measurements in EHM 

EHM with either HFF or HES2-CM expressing Grx1-roGFP2 were exposed to H2O2 

and DTT at maximally effective concentrations (1 mmol/L; Figure 38). These 

experiments confirmed the utility of the Grx1-roGFP2 sensor in multicellular human 

tissue preparations and in addition demonstrated the concept of cell type specific 

redox sensing in HFF (Figure 38A) and HES2-CM (Figure 38B). Oxidative challenge 

with H2O2 induced a similar effect on HFF and HES2-CM in EHM, whereas HES2-



 Results 

66 

 

CM appeared to respond with a stronger decrease in sensor signal upon DTT 

challenge.  

 

 

 

Figure 38: Cell type specific visualization of redox alteration in engineered 

human myocardium. Changes in the ratiometric fluorescence signal of the Grx1-

roGFP2 in (A) HFF (1-2 EHM/group) and (B) HES2-CM (2-4 EHM/group) in response 

to H2O2 (1 mmol/L) and DTT (1 mmol/L) as a function of time (Ro= 405/490 nm 

excited signals at baseline); H2O2 or DTT were added as indicated at 300 sec of 

stable baseline recordings. 
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3.6.2 Contraction force measurement 

EHM were developed under biomimetic conditions to obtain functional properties of 

bona fide myocardium, which can be measured under defined isometric conditions 

(Figure 39) (Tiburcy et al. 2017). Inotropic properties of EHM were analysed under 

exposure to increasing extracellular calcium concentrations. This confirmed similar 

contractility independent of Grx1-roGFP2 expression and thus ruled out sensor 

toxicity.  

 

 

 

Figure 39: Assessment of potential Grx1-roGFP2 toxicity in EHM. (A) EHM 

during culture on flexible silicone poles to facilitate auxotonic contractions. (B) EHM 

suspended in an organ bath filled with Tyrode’s solution at 37 °C for isometric force 

measurements under electrical field stimulation (1.5 Hz). Force of contraction (FOC) 

under increasing extracellular calcium concentrations as indicated in EHM comprising 

(C) Grx1-roGFP2 HES2-CM (n= 17-33/group) or (D) Grx1-roGFP2 HFF (n= 36-

42/group). 
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Finally, concentration response curves for H2O2 and DTT were analysed to determine 

whether oxidative or reductive challenges would affect human EHM contractility. This 

set of experiments demonstrated surprisingly little acute effects at a wide range of 

concentrations tested (Figure 40). However at highest oxidative (H2O2: 1 mmol/L) 

and reductive challenge (DTT: 3 mmol/L) contractile function was reduced and 

increased, respectively.  

 

 

 

Figure 40: Functional consequences of oxidation and reduction in EHM 

contractility. EHM were exposed to increasing concentrations of H2O2 (A; n= 9-

15/group) or DTT (B; n= 6-19/group) as indicated. FOC was assessed isometrically 

under electrical field stimulation (1.5 Hz) at EC50 calcium concentrations (individually 

determined prior to exposure to H2O2 or DTT). EHM from all tested groups 

demonstrated similar responses, confirming that lentiviral transduction with Grx1-

roGFP2 did not impair HFF or HES2-CM function. 
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4. Discussion 

 

Redox signaling affects the heart both physiologically (e.g., cell growth, 

differentiation, excitation-contraction coupling) and pathologically (e.g., fibrosis, 

cardiac remodeling, hypertrophy) (Burgoyne et al. 2012, Santos et al. 2011). Cells 

are equipped with redox-stress defense mechanisms that include endogenous 

antioxidants (e.g., glutathione, glutathione peroxidase, thioredoxin, peroxiredoxin) 

(Hafstad et al. 2013, Santos et al. 2011). Therapeutic application of compounds with 

antioxidant activity has been proposed as an approach to protect the heart, with 

however so far limited success. A key challenge to the field is to determine the 

mechanisms underlying the fine-tuning of the redox status in cells and its subcellular 

compartments. The application of redox assays/sensors promises for detailed insight 

into qualitative and quantitative changes of the redox state of the cell. Until recently, 

most studies have utilized a variety of redox sensitive dyes, such as 

dichlorodihydrofluorescein diacetate, amplex red, and dihydrorhodamine (Forkink et 

al. 2010, Griendling et al. 2016, Meyer and Dick 2010) to monitor both ROS in and 

redox states of cells. The recent advent of genetically encoded redox sensors 

promises to advance the field markedly because of the possibility to target sensors to 

subcellular compartments (Swain et al. 2016) or cell types, as demonstrated in this 

thesis. 

 

The following main observation could be made: 

 

1) Human fibroblasts and cardiomyocytes can be stably transduced with the 

cytosolic glutathione redox sensor Grx1-roGFP2 without signs for transgene 

toxicity. 

 
2) Cardiomyocytes are more sensitive to oxidation and less reactive to reduction 

compared to fibroblasts. 
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3) This may at least in part be explained by the more reduced glutathione redox 

potential in cardiomyocytes compared to fibroblasts. 

 

4) Fibroblasts as compared to cardiomyocytes displayed a wider range in redox 

state alterations. 

 

5) Fibroblasts show faster responses to oxidative and reductive challenges 

compared to cardiomyocytes.  

 
6) Assessment of redox alterations under pharmacological stimulation was 

confounded by oxidizing effects of DMSO.  

 

7) Glutathione redox sensing can be performed in a cell type specific manner in 

EHM and thus may allow dissecting the “redox-interplay” between different cell 

types in a tissue context. 

 

Fibroblast from human foreskin and cardiomyocytes derived from the human 

embryonic stem cell line HES2 were utilized as surrogates for the most abundant cell 

types of the heart. The suitability of these cells to model human heart function was 

recently demonstrated (Tiburcy et al. 2017).  

4.1 Tools for redox quantification in living cells 

Monitoring of redox alteration in cells and tissue requires tools for the robust and 

quantitative reporting of the dynamic changes in cellular redox states. The most 

promising tools to monitor cellular redox changes dynamically, in real time and 

compartment specific appear to be biological sensors genetically integrated into cells 

of interest (Lukyanov and Belousov 2014, Meyer and Dick 2010). In this study, we 

utilized the genetically encoded glutathione redox sensor Grx1-roGFP2, which 

detects redox changes of the GSH:GSSG couple in a quantitative manner in real 

time. Modifications of the Grx1-roGFP2 sensor have been shown to also allow for 

subcellular targeting of the redox sensor (Swain et al. 2016). This study identified 

differences in the cytosol and mitochondria of murine cardiomyocytes. In this thesis, 

targeting of the most abundant cell types in the human heart was demonstrated by 
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transducing the cytosolic Grx1-roGFP2 sensor into cardiomyocytes and fibroblasts. 

Human embryonic stem (HES) cell-derived cardiomyocytes and human foreskin 

fibroblasts were chosen because of their accessibility and the finding that these cell 

types can be reconstituted to myocardium with structural, molecular, and functional 

properties of the postnatal human heart (Tiburcy et al. 2017). In fact, human foreskin 

and adult heart derived fibroblasts are similarly supportive to heart muscle 

reconstitution in vitro (unpublished data). Lentiviral transduction was chosen in a first 

attempt to validate the concept of Grx1-roGFP2 expression in human cardiomyocytes 

and fibroblasts cells. The need for repeated transduction especially in HES-derived 

cells makes this a tedious approach, which will have to be replaced by the stable 

introduction of the reporters by homologous recombination. In addition, silencing and 

incomplete labelling of the cells of interest is an issue that can be circumvented with 

for example TALEN or CRISPR mediated integration of target sequences in defined 

genomic loci such as the AAVS1 site (Mussolino et al. 2014). Despite these caveats 

it was possible to establish proof-of-concept for glutathione redox potential sensing in 

human heart cells. Validation experiments with oxidizing (H2O2, DA) and reducing 

(DTT) compounds confirmed the principle utility of the Grx1-roGFP2 sensor in human 

cardiomyocytes and fibroblasts. Some of the observed variability may be contributed 

to variable transduction and activity of the Grx1-roGFP2 sensor.   

 

Another robust way to analyze cellular oxidation is by the investigation of 

characteristic protein modifications under oxidative stimulation. For example, 

effective oxidation of peroxiredoxin by H2O2 should lead to its sulfonylation (-SO3) 

(Sobotta et al. 2013), which can be detected by Prx-SO3 specific antibodies. 

Immunoblots confirmed that H2O2 at the chosen concentration range would indeed 

result in oxidation of Prx with an apparent H2O2 concentration dependent effect at 10 

- 1,000 µmol/L H2O2.  

 

4.2 Cell type specific glutathione redox responses 

Both HFFs and HES2-CMs demonstrated a concentration dependent oxidizing and 

reducing trajectory with distinct sensitivities (EC50), response kinetics (t50), and EGSH 

(Table 11). 



 Discussion 

72 

 

 

 
Parameter HES2-CM (n) HFF (n) 

H2O2 

EC50 2.6 ± 2.2 µmol/L (46-70) 10.5 ± 1.2 µmol/L (19-43) 

R/Ro (max) +56 ± 4% (57) +78 ± 7% (41) 

t50 

10 µmol/L = 26 ± 1 ms (45) 

100 µmol/L = 26 ± 1 ms (39)    

1,000 µmol/L  = 22 ± 2 ms (39) 

10 µmol/L = 30 ± 3 ms (27)        

100 µmol/L = 6 ± 0.3 ms (41)      

1,000 µmol/L = 5 ± 0.3 ms (41) 

DA 

EC50 16.1 ± 1.4 µmol/L (7-19) 40.7 ± 1.2 µmol/L (42-60) 

R/Ro (max) +57 ± 4% (14) +153 ± 4% (48) 

t50 

10 µmol/L = 49 ± 4 ms (55)                  

100 µmol/L = 36 ± 2 ms (39)    

1,000 µmol/L  = 9 ± 1 ms (23) 

10 µmol/L = 27 ± 1 ms (7)                 

100 µmol/L = 28 ± 3 ms (13)   

1,000 µmol/L = 25 ± 1 ms (15) 

DTT 

EC50 0.2 ± 0.1 mmol/L (46-85) 0.03 ± 0.01 mmol/L (28-45) 

R/Ro (max) -22 ± 1% (58) -64 ± 2% (28) 

t50 

0.01 mmol/L = 131 ± 16 ms (62)        

0.1 mmol/L = 115 ±11 ms (40)    

1 mmol/L  = 83 ± 3 ms (58) 

0.01 mmol/L = 42 ± 4 ms (21)        

0.1 mmol/L = 31 ± 1 ms (37)           

1 mmol/L  = 28 ± 1 ms (28) 

EGSH H2O2-DTT -289 ± 1 mV (56) -269 ± 2 mV (18) 

 

Table 11: Summary of Grx1-roGFP2 sensor activites in HES2-CM and HFF.  

n = numbers of cells analysed. 

 

The more reduced EGSH in cardiomyocytes was a particularly interesting observation 

and has to be considered when interpreting the observed differences in the 

responses to oxidative and reductive challenges. The response range to oxidative 

and reductive stimulation with H2O2 and DTT, respectively, was for both cell types 10 

- 1,000 µmol/L and 0.01 – 1 mmol/L. HES2-CM showed a markedly higher sensitivity 

to oxidation (refer to EC50
 in Table 11) with at the same time a clearly smaller 

dynamic range in redox alterations (refer to R/R0 in Table 11); cardiomyocytes 
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demonstrated a ΔR/R0 differences of ~80% vs. ~140% in fibroblasts (absolute % 

change). Another interesting observation was the apparent roGFP-oxidation reserve 

in fibroblasts, which was evidenced by the lower R/R0 signal change under maximal 

H2O2 (~80%) vs. DA (~150%).  

 

Fibroblasts appear to exhibit a particular high expression in NOX4 (RNA-sequencing 

data in (Tiburcy et al. 2017)). NOX4 is constitutively active and H2O2 producing 

(Kuroda et al. 2010) and moreover directly activated by H2O2 mediated oxidation 

(Colston et al. 2005). This suggests a more extensive oxidant load in fibroblasts and 

thus may on the one hand explain the difference in EGSH (Table 11) and the wider 

range in particular of oxidative changes of the redox state. The difference in 

oxidation/reduction kinetics (t50) was a surprising observation and may argue for 

differences in cellular uptake or membrane permeability of H2O2. There is a steep 

gradient of H2O2 between extra- and intracellular compartments with a 100-fold 

higher concentration outside vs. inside the cell, in addition there are differences in 

H2O2 in the different subcellular compartments (Sies 2017). The difference in t50 

reported in this thesis requires more detailed investigations of differences in 

transmembranous H2O2 gradients as well as subcellular targets in cardiomyocytes 

and fibroblasts. The recent demonstration of cytosol and mitochondria targeting of 

the Grx1-roGFP2 sensor is particularly interesting in this context (Swain et al. 2016).  

 

4.3 Cell type specific redox responses to angiotensin II and drugs 

Another aspect of this study was to investigate cell type redox responses upon 

stimulation with angiotensin II and inotropic drugs. From previous studies, stimulation 

with angiotensin II, the key effector of rennin angiotensin system, is known to be 

involved in ROS production pathways by stimulating membrane bound NAD(P)H 

oxidase (Dikalov and Nazarewicz 2013, Griendling et al. 1994, Vazquez-Medina et al. 

2013). In our experiments, HFFs did not exhibit obvious redox changes over the 

whole range of angiotensin II concentrations tested; surprisingly, a reductive effect 

was observed under 100 nmol/L angiotensin II. This is in contrast to the study 

conducted by Sano et al. and Swain et al. They demonstrated ROS production and 

roGFP2 oxidation in cardiac fibroblasts by angiotensin II stimulation (Sano et al. 
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2001, Swain et al. 2016). HES2-CMs showed however some oxidative effects at a 

low angiotensin concentration (0.1 nmol/L). These results are surprising and 

somewhat inconsistent. Stable expression of Grx1-roGFP2 in every cell of interest 

with a similar expression level may help to further clarify these apparently discrepant 

findings. Collectively, these data suggest that assessments of oxidation and 

reduction would benefit from cell-type specific analyses.  

 

In an attempt to study oxidative and reductive drug effects, levosimendan and 

omecamtiv mecarbil were applied to HES2-CM and HFF. These cardioactive 

inotropes are applied in acute heart failure with cardioprotective effects reported for 

levosimendan (via activation of the mitochondrial ATP-sensitive K+-channels) and no 

effect on myocardial oxygen consumption reported for omecamtiv mecarbil (Farmakis 

et al. 2016, Meijs et al. 2012). There was no obvious effect of LEVO and OME in 

cardiomyocyte or fibroblasts oxidation. However, these experiments appeared to be 

severely confounded oxidizing effects of the solvent DMSO. A refinement of the study 

protocol (avoidance of DMSO) is needed to ensure the assessment of drug specific 

effects and confirm the present findings of no effects of LEVO and OME on the redox 

state of cardiomyocytes and fibroblasts. 

4.4 Redox sensing in a heart muscle tissue context 

Up to this point, we discussed results and analysis that were performed in monolayer 

cardiomyocytes and fibroblasts. Cellular measurements provide information 

regarding compound effects and pathways involved in redox changes in specific cell 

cultures. However, investigations in a cardiac muscle model that mimic the 

microenvironment of the heart tissue are physiologically more relevant than 

monolayer cell culture. Furthermore, in a tissue context the interaction between cells 

plays a key role in the investigation of drug effects on redox homeostasis in a cardiac 

tissue.  EHMs exhibit a higher degree of maturity as compared to monolayer cultures 

(resemble an embryonic phenotype); in fact, they reflect in many structural, molecular 

and functional parameters properties of the postnatal human heart (Tiburcy et al. 

2017). By genetically modifying the two most abundant heart cell types and mixing 

them in a defined context, it became possible to define response to redox challenges 

in a heart muscle context. Importantly, we demonstrated that the biosensor 
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responded in EHM to the bolus of H2O2 and DTT both optically and functionally.  

Stimulation of human EHMs with oxidizing and reducing agents confirmed that we 

were able to detect redox changes occurring within the tissue. Interestingly, 

contractile properties were deteriorated under maximal oxidation and appeared to be 

enhanced under maximal reduction with H2O2 and DTT, respectively. These results 

fit well with previous data showing that redox alterations affect signaling pathways 

(eg. Ca2+/calmodulin-dependent kinase II; CAMKII or cAMP-dependent protein 

kinase; PKA) important in contractility and could bring cardiomyocyte to death 

(Santos et al. 2016).  

 

These studies will be extended in the future to study the interplay between the 

different cardiac cell species and their specific responses to environmental, 

biomechanical, and pharmacological stimuli. In addition, a link to signaling pathways 

will need to be established and assessments of acute vs chronic effects will need to 

be performed. A potential caveat is the thickness of engineered tissue (~ 1 mm) and 

the intra-tissue distance between cells (from direct contact to several 100 µm), which 

may limit cell-cell communication via highly reactive and thus instable oxidants. 

However, effects of oxidation (intracellular or extracellular) of secreted proteins, such 

as extracellular matrix proteins or growth factors, could be studied and may provide 

relevant information on redox-mediated tissue homeostasis. Alternative technologies 

for intra-tissue assessment of oxidation were recently developed (Fujikawa et al. 

2016) and rely on the arrest of the redox state of the roGFP-biosensor by the 

membrane-permeable thiol-alkylating agent (NEM). First experiments in human 

EHMs suggest that this method would indeed be applicable to study the redox state 

histologically. This together with the possibility for in tissue fluorescence analyses by 

confocal (~50 µm penetration depth) and 2-photon (~200 µm) microscopy should 

allow for comprehensive in tissue phenotyping of redox mechanisms and their 

association with heart muscle function.  
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5. Summary and outlook 

 

This study introduces the use of the glutathione redox sensor Grx1-roGFP2 as a tool 

to monitor responses to oxidative and reductive challenges in a human heart muscle 

specific context. Redox challenges are considered key contributors to physiological 

and pathological processes in the heart. In addition, pharmacological interventions 

often influence the cellular redox state. With the introduction of a human Grx1-

roGFP2 engineered heart muscle (EHM) model we anticipate to be able to contribute 

to the definition of mechanisms underlying wanted and unwanted drug effects as well 

as cardiac disease progression. A key observation of this study was the finding of a 

differential glutathione redox potential in cardiomyocyte and fibroblasts. Thus, drugs 

with oxidant and antioxidant activity may elicit sometimes even mechanistically 

opposing functions in the different myocardial cell compartments. Future studies will 

investigate this finding in more detail and take advantage of the possibility to 

reconstitute EHM with defined cell types with or without a genetically encoded redox 

sensor. Targeting subcellular compartments in a cell type specific context will further 

open experimental possibilities to decipher redox mechanisms and may eventually 

contribute to the development of cell and cell compartment targeted interventions for 

the treatment of heart failure.  
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Appendix 1 

 

Reagents for cloning 

 

LB-medium 

10 g  Bacto-Tryptone 

5 g  Bacto Yeast Extract 

10 g  NaCl 

All the components were dissolved and filled up to 1 L of dH2O. pH was adjusted to 

7.4. The medium was stored at 4 °C for up to 3 weeks. 

 

Ampicillin  

To prepare a stock of 100 mg/mL 200 mg were dissolved in 2 ml of dH2O. The stock 

solution was aliquoted in 500 µl and stored at –20 °C. 

 

LB-agarose plate (with ampicillin resistance) 

7.5 g  Agar  

500 ml LB-medium 

500 µl  Ampicillin stock (100 mg/mL) 

The agar was dissolved in LB-medium and autoclaved. After cooling down to 50 °C, 

ampicillin stock was added and the solution was poured into 10 cm petri dishes. 

Following the hardening of the agar, the plates were stored at 4 °C. 
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Reagents for DNA gel electrophoresis  

 

50x TAE 

242 g  Tris-Base 

100 ml EDTA (0.5 mol/L; pH 8.0) 

57.1 ml Glacial acetic acid 

The ingredients were dissolved in 800 ml of dH2O, adjusted pH at 8.5 and then filled 

up to 1 L of dH2O. For gel electrophoresis, 1x TAE buffer was used (1:50 dilution). 

 

6x DNA loading buffer (2 colors) 

75 mg  Bromophenol-Blue 

25 mg  Xylene cyanol 

100 ml Glycerol (30%) 

 

1 % agarose gel 

1 g of Agarose UltraPureTM powder (AppliChem) was boiled in 100 ml TAE buffer 

until the powder was completely dissolved. After cooling, 0.2 µg/ml ethidium bromide 

(EtBR; Sigma-Aldrich) was added into the gel solution, following by a gentle swirl. 

The homogeneous solution was added into already prepared casting trays.  
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Reagents and media for cell culture 

 

Activin A stock solution 

(Manufacturer’s protocol) 

To prepare a stock solution of 10 µg/ml dissolve activin A (Recombinant 

Human/Mouse/Rat Activin A protein; R&D Systems #338-AC) in 1x PBS with 0.1 % 

human recombinant serum albumin (HAS) (Sigma-Aldrich #A9731). Aliquots were 

stored in -20 °C. 

 

BMP-4 stock solution 

(Manufacturer’s protocol) 

To prepare a stock solution of 10 µg/ml dissolve BMP-4 (Recombinant Human BMP-

4; Sigma-Aldrich #314-BP) in 1x PBS with 0.1% HSA (Sigma-Aldrich #A9731). 

Aliquots were stored in -20 °C. 

 

IWP-4 stock solution 

(Manufacturer’s protocol) 

To prepare a stock solution of 5 mmol/L dissolve IWP-4 (Stemolecule™ Wnt inhibitor 

IWP-4; Stemgent #04-0036) in DMSO. Aliquots were stored in -20 °C. 

 

CHIR stock solution 

(Manufacturer’s protocol) 

To prepare a stock solution of 10 mmol/L dissolve CHIR (Stemolecule™ CHIR99021; 

Stemgent #04-0004) in DMSO. Aliquots were stored in -20 °C. 

 

bFGF stock solution 

(Manufacturer’s protocol) 

To prepare a stock solution of 10 µg/ml dissolve bFGF (Recombinant Human FGF-

basic [154 aa]; Peprotech #AF-100-18B) in 1x PBS with 0.1% HSA (Sigma-Aldrich 

#A9731). Aliquots were stored in -20 °C. 

 

IGF-1 stock solution 

(Manufacturer’s protocol) 
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To prepare a stock solution of 100 µg/ml dissolve IGF (Recombinant Human IGF-1; 

Peprotech #AF-100-11) in 1x PBS with 0.1% HSA (Sigma-Aldrich #A9731). Aliquots 

were stored in -20 °C. 

 

VEGF stock solution 

(Manufacturer’s protocol) 

To prepare a stock solution of 5 µg/ml dissolve VEGF (Animal-Free Recombinant 

Human VEGF [165 aa]; Peprotech #AF-100-20) in 1x PBS with 0.1% HSA (Sigma-

Aldrich #A9731). Aliquots were stored in -20 °C. 

 

TGF-ß1 stock solution 

(Manufacturer’s protocol) 

To prepare a stock solution of 5 µg/ml dissolve TGF-ß1 (Recombinant Human TGF-

ß1 [CHO cell derived]; Peprotech #AF-100-21C) in 1x PBS with 0.1% HSA (Sigma-

Aldrich #A9731). Aliquots were stored in -20 °C. 

 

Polybrene stock solution 

To prepare 1 mg/mL stock 10 mg of hexadimethine bromide (Sigma Aldrich) was 

dissolved in 10 ml of PBS or 0.9% NaCl solution (ready purchased). The solution was 

filtered and stored at 4 °C. It was used for transduction at a final concentration of 8 

µg/ml. 

 

Ascorbic acid stock solution 

To prepare a stock solution of 300 mmol/L dissolve 0.87 g of L-ascorbic acid 2-

phosphate sesquimagnesium salt hydrate (Sigma-Aldrich #A8960) in 10 ml of dH2O 

and sterile filtrate it. Aliquots were stored in -20 °C. 

 

10x RPMI 

RPMI powder (RPMI 1640 medium powder; Gibco #52800-035) was dissolved in 10 

ml of dH2O, sterile filtered and stored at 4 °C. 

 

2x RPMI 

2 ml 10 x RPMI 
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0.8 ml B-27® Supplement (50x;Gibco #17504-044) 

0.2 ml P/S (100x.Gibco #15140-122) 

7 ml H2O 

Sterile filtered solution was stored at 4 °C until further use 

 

Accutase digestion solution 

Mix Accutase (Millipore SCR005) with 0.125 % Trypsin (diluted 1:20 from Trypsin 2.5 

% stock; Gibco 15090-046) and add 20 µg/ml DNase I. 

 

Collagenase digestion solution 

Dissolve 500 mg of collagenase (Collagenase from Clostridium histolyticum for 

general use, Type I; Sigma-Aldrich # C0130) in 250 ml of 1x PBS with Ca2+/Mg2+ and 

20% FBS (Gibco #10270). Aliquots were stored in -20 °C. 

 

HES2-CM serum-free medium 

500 ml RPMI medium 1640.GlutaMAX™ (Gibco #61870-010) 

5.2 ml P/S (100x;Gibco #15140-122) 

10 ml B-27® Supplement (50x;Gibco #17504-044) 

335 μl Ascorbic acid stock solution (300 mmol/L) 

 

HFF medium 

500 ml RPMI medium 1640.GlutaMAX™ (Gibco #61870-010) 

88.6 ml FBS (Gibco #10270) 

6.2 ml Pen/Strep (100x;Gibco #15140-122) 

 

HFF conditioned medium 

50 ml HESC medium 

25 µl bFGF (final concentration 5 ng/ml; Miltenyi Biotech) 

 

HESC medium 

39.5 ml KO DMEM medium (Invitrogen. #10829) 

10 ml KSR (Knockout Serum Replacement; Invitrogen. #10828) 

0.5 ml P/S (100x;Gibco #15140-122) 
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0.5 ml MEM-NEAA (100x; Gibco #111450-035) 

0.5 ml L-Glutamine (200 mmol/L; Gibco #25030-024) 

50 µl bFGF (final concentration 10 ng/ml; Miltenyi Biotech) 

 

HESC conditioned medium 

25 ml RPMI medium 1640,GlutaMAX™ (Gibco #61870-010) 

25 ml FBS (Gibco  #10270) 

50 µl P/S (100x; Gibco #15140-122) 

 

Cardiac specification medium 

50 ml HES2-CM serum-free medium 

50 µl IWP4 stock solution (final concentration 5 µmol/L) 

 

Selection medium 

49.5 ml RPMI 1640 (without glucose, without–glutamine; Biological 

Industries/WKS Labor diagnostik #01-101-1A) 

0.25 ml Sodium Lactate (final concentration 2.2 mmol/L; Sigma-Aldrich 

71723) 

0.5 ml P/S (100x;Gibco #15140-122) 

0.1 ml 2-mercaptoethanol (50 mmol/L; Invitrogen #31350010)  

  

TSA culture medium 

500 ml DMEM medium (Gibco  #61965-026) 

50 ml FBS (Gibco #10270) 

5.5 ml P/S (100x;Gibco #15140-122) 

 

TSA low serum medium 

500 ml DMEM medium (Gibco #61965-026) 

25 ml FBS (Gibco #10270) 

5.2 ml P/S (100x;Gibco #15140-122) 

 

 

 



 Appendix 1 

83 

 

EHM medium (incomplete) 

500 ml IMDM GlutaMAX™ (Gibco #31980030) 

5.5 ml P/S (100x;Gibco #15140-122) 

5.5 ml L-Glutamine (200 mmol/L; Gibco #25030-024) 

5.5 ml MEM-NEAA (100x; Gibco#111450-035) 

500 µl Ascorbic acid (stock solution: 300 mmol/L) 

  

EHM medium (complete) 

50 ml EHM medium (incomplete) 

2 ml B-27® minus insulin (50x;Gibco #A18956-01) 

50 µl bFGF stock solution (final concentration 10 ng/ml) 

50 µl IGF-1 stock solution (final concentration 100 ng/ml) 

50 µl VEGF stock solution (final concentration 5 ng/ml) 

 

Freezing medium 

90% FBS (Gibco #10270) 

10% DMSO (Sigma-Aldrich #276855) 

Cell pellets were resuspended in FBS mixture with DMSO and then transferred into 

cryovials. The cryovials were stored at -152 °C. 
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Reagents for redox measurement 

 

KCl stock solution 

To prepare 1 mol/L stock solution, 18.64 g of KCl was dissolved and filled up to 250 

ml of dH2O. The solution was stored at RT. 

 

MgCl2 

To prepare a 1 mol/L stock solution, 50.82 g of MgCl2 was dissolved and filled up to 

250 ml of dH2O. The solution was stored at RT. 

 

CaCl2  

To prepare 1 mol/L stock solution, 26.75 g of CaCl2 was dissolved and filled up to 

250 ml of dH2O. The solution was stored at RT. 

 

Imaging buffer 

144 mmol/L   NACl 

5.4 mmol/L    KCl 

1 mmol/L   MgCl2 

10 mmol/L   HEPES 

1 mmol/L   CaCl2 

For the preparation of the imaging buffer, the ingredients listed above (1 mmol/L or 2 

mmol/L of CaCl2 for CMs and HFFs, respectively) were dissolved in dH2O and pH 

gradient was adjusted to 7.3. The buffer was stored at RT. 

 

H2O2solution 

The stock solution 30% H2O2 (Mw = 34.01 g/mol; Sigma-Aldrich #7722-84-1) was 

equivalent to 10 mol/L (d= 1.11 g/ml) and was store at 4 °C. Dilutions of (0.1 - 1,000 

µmol/L) were freshly prepared for each experiment. 

 

Diamide stock solution 

To prepare a stock solution of 1 mol/L, 1 g of diamide (Mw = 172.19 g/mol; Sigma 

Aldrich #10465-78-8) was diluted into 5.8 ml dH2O. The solution was filtered, aliquot 
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and stored at -20 °C.  Dilutions of (1 - 1,000 µmol/L) were freshly prepared for each 

experiment. 

 

DTT stock solution 

To prepare a stock solution of 1 mol/L dissolve 1.54 g of DTT (Sigma Aldrich #3483-

12-3) in 10 ml dH2O. The solution was filtered, aliquot and stored at -20 °C. Dilutions 

of (0.1 – 1 mmol/L) were freshly prepared for each experiment. 

 

Angiotensin II stock solution 

To prepare a stock solution of 5 µmol/L dissolve 1 mg of Angitensin II (Sigma-Aldrich 

#4474-91-3) into 40 µl of dH2O. The solution was further dissolved in 200 ml of dH2O 

and aliquots were stored at -20 °C. Dilutions of (0.1 - 1,000 nmol/L) were freshly 

prepared for each experiment. 

 

Levosimendan stock solution 

To prepare a stock solution of 1 mmol/L dissolve 5 mg of Levosimendan (Sigma-

Aldrich 141505-33-1) in 178 µl of DMSO. The solution was thoroughly dissolved into 

17.8 ml of dH2O and aliquots were stored at -20 °C. Dilutions of (0.1 - 10 µmol/L) 

were freshly prepared for each experiment. 

 

Omecamtiv mecarbil (CK-1827452) stock solution 

To prepare a stock solution of 1 mmol/L dissolve 5 mg of omecamtiv mecarbil (CK-

1827452; AdooQ Bioscience #A11206) in 124.6 µl of DMSO. The solution was 

thoroughly dissolved into 12.46 ml of dH2O and aliquots were stored at -20 °C. 

Dilutions of (0.1 - 10 µmol/L) were freshly prepared for each experiment. 
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Reagents for Immunoblotting 

 

6x Laemmli loading buffer (non-reducing) 

3 ml  Tris-HCl 0.5 mol/L (pH 6.8) 

1.2 g  SDS 

0.75 ml Bromophenol blue (0.5%) 

1.5 ml  Glycerin (100%) 

All the ingredients were dissolved and filled up to 9 ml with H2O. For a reducing gel, 

150 µl 2-ß-Mercaptoethanol was added into the final solution. Aliquots were stored at 

-20 °C. 

 

1.5 mol/L Tris-HCl pH 8.8 

90.85 g of Tris-HCl was dissolved and filled up to 500 ml of dH2O. pH was adjusted 

to pH 8.8. 

 

0.5 mol/L Tris-HCl pH 6.8 

30.28 g of Tris-HCl was dissolved and filled up to 500 ml of dH2O. pH was adjusted 

to 6.8 

 

Preparation of SDS-PAGE 

 

Separating gel 

Volume (ml) 

for 2 gels 
6% 8% 10% 12% 15% 

Protein size (KDa) 150-50 105-40 90-25 60-20 45-10 

H2O 5.3 4.6 4.0 3.3 2.3 

30 % Acrylamide 2.0 2.7 3.3 4.0 5.0 

1.5 M Tris pH 8.8 2.5 2.5 2.5 2.5 2.5 

10 % SDS 0.1 0.1 0.1 0.1 0.1 

10 % APS 0.1 0.1 0.1 0.1 0.1 

TEMED 0.008 0.006 0.004 0.004 0.004 
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Stacking/collecting gel 

Volume (ml) 4 gels 

H2O 5.6 

30 % Acrylamid 0.85 

0.5 M Tris pH 6.8 2.5 

10 % SDS 0.1 

10 % APS 0.1 

TEMED 0.01 

 

 

10x Electrophoresis / Running buffer (pH 8.3 – 8.7) 

60.6 g  Tris-Base 

288 g  Glycine 

20 g  SDS 

All the ingredients were dissolved and fully mixed in 1 L dH2O and filled up to 2 L of 

dH2O. For every running of gel electrophoresis, 1x running buffer (1:10 dilution) was 

freshly prepared.  

 

10x Transfer buffer 

60.5 g  Tris-Base 

288 g  Glycine 

The ingredients were fully dissolved in 2 L dH2O. 

 

1x Transfer buffer 

200 ml 10 x Transfer buffer 

400 ml Methanol 

The complete solution was filled up to 2 L of dH2O. 

 

10x TBS stock solution 

121.14 g Tris-Base 

175.32 NaCl 
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The ingredients were dissolved in 1.5 L of H2O and stirred until fully dissolved. pH 

was adjusted to 7.5 by using fuming HCl. The final solution was filled up 2 L of H2O. 

 

1x TBST solution 

100 ml 10x TBS 

900 ml H2O 

1 ml  Tween 20 

All the ingredients were mixed until fully dissolved.  

 

Preparation of PVDF membrane 

Activation of PVDF membrane was done by immersing it for 10 sec in 100 % 

Methanol, followed by a washing step for 5 min in dH2O and equilibrating it for 5-10 

min in transfer buffer. 

 

Ponceau staining 

Membranes were incubated for 1-3 min at RT in Ponceau S-solution (Applichem) and 

then rinsed with dH2O to remove the extra red solution. After the staining, protein 

bands appear red colored and this color was rinsed by TBST solution. 
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Reagents for isomeric measurement 

CaCl2 stock solution 

To prepare stock solution of 2.25 mol/L dissolve 165.57 g of CaCl2 x 2H2O in 500 ml 

of dH2O. The stock was stored at 4 °C. 

 

MgCl2 stock solution 

To prepare a stock solution of 1.05 mol/L dissolve 106.83 g of MgCl2 x 6H2O in 500 

ml of dH2O. The stock was stored at 4 °C. 

 

Stock I solution (0.2 mmol/L Calcium) 

175 g  NaCl 

10 g  KCl 

2.22 ml CaCl2 stock solution (2.25 mol/L) 

25 ml  MgCl2 stock solution (1.05 mol/L) 

The ingredients were dissolved and filled up till 1 L with dH2O. The stock was stored 

at 4 °C. 

 

Stock II solution 

50 g of NAHCO3 was dissolved into 1 L of dH2O and stored at 4 °C. 

 

Stock III solution 

5.8 g of NAH2PO4 was dissolved into 1 L of dH2O and stored at 4 °C. 

 

Tyrode’s solution 

200 ml Stock I solution (0.2 mmol/L Calcium) 

190 ml Stock II solution 

50 ml  Stock III solution 

5 g  D-Glucose 

500 mg Ascorbic acid 

The ingredients were dissolved and filled up to 5 L of dH2O. The Tyrode’s solution 

was prepared before the contraction force measurement. 
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Reagents for Immunstaining and Flow Cytometry 
 

Permealizing blocking buffer 

26.3 ml Goat serum 

5.26 g  Bovine serum albumin (BSA; Sigma-Aldrich #A3311) 

2.63  Triton X-100 

The ingredients were dissolved and filled up to 500 ml of 1x PBS. The solution was 

stored at 4 °C. 

 

Non-permealizing blocking buffer 

The buffer was prepared by adding 5% of FBS (Gibco #10270) into 1x PBS solution 

and stored at 4 °C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Appendix 2 

91 

 

 

Appendix 2 

 

Table 12: Cell lines. 

Cell line Genetic Background Source 

TSA201 

Human Embryonic kidney immortalized 

by an adenovirus serotype 5, SV40 

large T-antigen 

Cells used for lentiviral 

production 

HFFs Human Foreskin Fibroblasts. wild type 

Purchased from American 

Type Culture Collection 

(SCRC-1041; ATCC) 

HFFs 

(pGIPZ) 

Human Foreskin Fibroblasts with 

lentiviral transduction of pGIPZ 

Transgenic modification via 

lentiviral transduction 

roGFP2-HFF 

Human Foreskin Fibroblasts with 

lentiviral transduction of pGIPZ-CMV-

Grx1-roGFP2 

Transgenic modification via 

lentiviral transduction 

HES2-RFP 

HES2 line (Embryonic Stem cell 

International) (Reubinoff et al. 2000) 

including tdRFP knock-in in ROSA26 

locus 

Kindly provided by Gordon 

Keller (Irion et al. 2007) 

HES2-RFP 

CM 

Human cardiomyocytes derived from 

HES2-RFP 
See section 2.1.3.1 

HES2-RFP 

CM (pGIPZ) 

HES2-RFP CM with lentiviral 

transduction of pGIPZ 

Transgenic modification via 

lentiviral transduction 

roGFP2-

HES2-RFP 

CM 

HES2-RFP CM with lentiviral 

transduction of pGIPZ-CMV-Grx1-

roGFP2 

Transgenic modification via 

lentiviral transduction 
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