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Summary 

The reliability of paleoenvironment (paleoclimate, paleovegetation etc.) interpretations and 

radiocarbon ages based on isotopes of carbon (δ13C, 14C), oxygen (δ18O) and clumped isotopes 

(Δ47) in soil carbonates types e.g. mollusk shells, eggshells, fruit carbonates, rhizolith, nodules, 

clast coatings etc., depends on the recrystallization degree of these carbonate types after formation 

and/or embedding in soil. Soil CO2 concentration and its isotopic composition is in equilibrium with 

CO2 respired by roots and organisms. Dissolution of carbonate types in soil solution and further 

recrystallization re-equilibrate the δ13C and Δ14C of carbonate types with soil CO2. Hence, the δ13C 

in recrystallized carbonate will save fingerprints of dominant vegetation during the recrystallization 

phase and Δ14C will reflect the recrystallization time and most likely δ18O as well as Δ47 will record 

the isotopic composition of oxygen in soil water and the recrystallization temperature, respectively. 

For example addition of only 5% modern C due to recrystallization to a 45,000-year old bone leads 

to more than 20,000 years underestimation of the age. 

Despite the known effects of recrystallization on paleoenvironmental interpretations and 

radiocarbon dating, the dynamics of this process and its affecting factors remain poorly understood. 

This is because of low solubility of calcium carbonate and low recrystallization rates which 

complicate experimentally assessments. Recently, the sensitive technique of 14C labeling has been 

shown to help understand the recrystallization process. This technique is based on 14CO2 labeling 

of the soil atmosphere and subsequent tracing 14C activity in a carbonate sample. 14C labeling 

approach was used to determine the recrystallization of mollusk shells; one of the most common 

carbonate types in soils, sediment and cultural layers; under various environmental conditions.  

Recrystallization begins soon after embedding of shells in soil and increases exponentially with 

time. Shell carbonate recrystallization rates ranged between 1.0 10-3 and 1.6 10-2 % day-1 depending 

on environmental conditions such as cation exchange capacity (CEC), presence of geogenic 

carbonates in soil i.e. loess carbonate and degree of shell fossilization i.e. degradation of organic 

compounds in shell structure. The recrystallization was one order of magnitude higher in soils with 

relatively low CEC e.g. sandy soils comparing to loamy soils with higher CEC. Presence of 30% 

geogenic carbonates intensifies shell carbonate recrystallization up to seven times because 

geogenic carbonate may also recrystallize and accumulates on shells. Recrystallization in fossils 

was 1.2 times higher than the fresh specimens due to higher porosity in shell structure and so more 

surface area contacting soil solution. Furthermore, The full recrystallization (i.e. when the whole 

shell materials would be recrystallized and the original isotopic signals are vanished completely) for 

shell particles in of 2-2.5 mm in diameter were determined as about 90 to 770 years depending on 

presence or absence of geogenic carbonates and fossilization stages. 

4 
 



Zusammenfassung 

Die Zuverlässigkeit der Interpretationen von Paläo-Umgebungen (Paläoklimat-, Paläovegetation 

etc.) und Radiokohlenstoff datierung auf der Basis von Isotopen von Kohlenstoff (δ13C, 14C), 

Sauerstoff (δ18O) und verklumpt Isotopen (Δ47) in Typen der Boden-Karbonat, z.B. 

Molluskenschalen, Eierschalen, Fruchtcarbonate, Rhizolithen, Knötchen, Clastbeschichtungen etc. 

hängt vom Umkristallisationsgrad dieser Karbonat-typen nach der Bildung und/oder Einbettung in 

den Boden ab. Die CO2-Konzentration des Bodens und seine Isotopenzusammensetzung liegt im 

Gleichgewicht mit CO2, das durch Wurzeln und Organismen Atmung angeregt wird. Die Auflösung 

von Karbonat-Typen in der Bodenlösung und die weitere Umkristallisation re-equilibrieren die δ13C 

und Δ14C der Karbonat-Typen mit dem Boden CO2. Daher wird das δ13C in Umkristallisiertem 

Karbonat während der Umkristallisationsphase Fingerabdrücke dominanter Vegetation erhalten und 

Δ14C wird die Umkristallisationszeit. Höchstwahrscheinlich reflektieren auch δ18O bzw. Δ47 die 

Isotopenzusammensetzung von Sauerstoff in Bodenwasser und die Umkristallisationstemperatur. 

Zum Beispiel führt die Zugabe von nur 5% modernen C aufgrund der Umkristallisation zu einem 

45.000 Jahre alten Knochen zu mehr als 20.000 Jahren Unterbewertung des Alters. 

Trotz der bekannten Effekte der Umkristallisation auf Paläoumweltinterpretationen und 

Radiokohlenstoff-Datierung sind die Dynamik dieses Prozesses und seine beeinflussenden 

Faktoren schlecht verstanden. Dies liegt an der geringen Löslichkeit von Calciumcarbonat und 

niedrigen Umkristallisationsraten, die experimentelle Untersuchungen erschweren. In letzter Zeit 

wurde gezeigt, dass die empfindliche Technik der 14C-Markierung dazu beiträgt, den 

Umkristallisationsvorgang zu verstehen. Diese Technik basiert auf der 14CO2-Markierung der 

Bodenatmosphäre und der nachfolgenden Verfolgung der 14C-Aktivität in einer Karbonat Probe. 14C-

Markierungsansatz wurde verwendet, um die Umkristallisation von Molluskenschalen; Einer der 

häufigsten Karbonat-Typen in Böden, Sedimente und Kulturschichten; Unter verschiedenen 

Umgebungsbedingungen zu bestimmen. 

Die Umkristallisation beginnt bald nach dem Einbetten von Schalen in den Boden und steigt 

exponentiell mit der Zeit an. Molluskenschalen Umkristallisationsraten reichten zwischen 1,0 10-3 

und 1,6 10-2% pro Tag je nach Umgebungsbedingungen wie Kationenaustauschkapazität (KAK), 

Vorhandensein von geogenen Karbonaten im Boden (dh Lösskarbonat) und Grad der 

Schalenfossilisierung (dh Abbau von organischen Verbindungen in der Schalenstruktur). Die 

Umkristallisation war um eine Größenordnung höher in Böden mit relativ niedrigem KAK, z.B. 

Sandige Böden im Vergleich zu lehmigen Böden mit höherer KAK. Die Anwesenheit von 30% 

geogenen Karbonaten verstärkt die Schalenkarbonat-Umkristallisation bis zu siebenmal, da auch 

5 
 



geogenes Karbonat auch umkristallisieren und sich auf Schalen ansammeln kann. Die 

Umkristallisation in den Fossilien war 1,2-mal höher als die frischen Proben aufgrund der höheren 

Porosität in der Schalenstruktur und damit mehr Oberflächenkontaktierung der Bodenlösung. 

Weiterhin wurde die vollständige Umkristallisation (dh wenn die gesamten Schalenmaterialien 

umkristallisiert und die ursprünglichen Isotopensignale vollständig verschwunden sind) für 

Schalenteilchen mit einem Durchmesser von 2-2,5 mm als etwa 90 bis 770 Jahre bestimmt die in 

Abhängigkeit von der Anwesenheit oder Abwesenheit von geogenen Karbonate und 

Schalenfossilisierungsgrad ist. 
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Preface 

Carbonate-containing materials are present in soils in various morphologies which are generally 

classified in three groups. (1) Geogenic carbonates which are inherited from parent materials like 

limestone particles, loess deposits. (2) Biogenic carbonates which comprise part of organisms body 

for example mollusk shells, egg shells, fruit carbonates and (3) Pedogenic carbonates which are 

formed via pedogenesis such as nodules, coatings, etc. Isotopes of carbon (δ13C, 14C) and oxygen 

(δ18O) in these carbonate types are valuable indicators of paleoenvironment (paleoclimate, 

paleovegetation etc.) and important in chronological studies (especially in Quaternary research) in 

soil science, geosciences, and archeological studies. The Δ14C of soil carbonates is used to 

determine absolute ages of soils, sediments, and landscapes; δ13C of soil carbonates corresponds 

to paleovegetation; δ18O is related to carbonate formation temperatures and isotopic composition of 

oxygen in water (δ18Owater) that carbonates formed from and clumped isotopes of δ18O and δ13C (i.e. 

measuring of mass 47 as 13C18O16O) can be used as a direct indicator of carbonate formation 

temperatures known as TΔ47.  

Despite this relevance, the following issues may limit the applicability of isotopic approaches 

and increase the uncertainties of interpretations. 

(1) The recrystallization process: all carbonate types may undergo dissolution after formation 

and recrystallize. The repeated cycles of dissolution and recrystallization changes the δ13C, δ18O 

and Δ14C of the carbonate types. Because the isotopic composition of the recrystallized carbonate 

controls by environmental parameters differing from the formation condition of the original carbonate 

type. For example the carbonate type which has been formed at relatively high temperatures may 

recrystallize at relatively lower temperatures. The dynamics of this process under various 

environmental conditions controlling the recrystallization rates are however, unknown or poorly 

understood. 

(2) Old carbon incorporation in biogenic carbonates: The suitability of biogenic carbonates for 

radiocarbon dating is based on the assumption that C provides solely through organisms’ 

respiration. That means the 14C content in biogenic carbonates controls by 14C content of 

atmospheric CO2. However, organisms may digest radiometrically-dead geogenic carbonates i.e. 

without detectable 14C. The incorporation of this old C leads to overestimation of radiocarbon ages 

based on biogenic carbonates. So far, the effect of old C on radiocarbon ages has been examined 

and proved only in land snail shells.  
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Therefore, the main objectives of this study were: 

• To analyze the effects of soil properties (presence of diffuse geogenic carbonates, cation 

exchange capacity) and environmental parameters (CO2 partial pressure, temperature, soil 

moisture) on recrystallization rates of carbonate types using  14C  labeling approach 

• To study the recrystallization rates of carbonate types as a function of time 

• To examine the source of carbon in biogenic carbonates (i.e. fruits of Buglossoides arvensis) 

and suitability for dating purposes, and 

In introduction section (chapter 1), various carbonate types in soil have been defined, the 

formation mechanisms and effective environmental factors leading to their formation have been 

mentioned and their resolution for paleoenvironment reconstruction has been argued. The problem 

of recrystallization and subsequent uncertainties in paleoenvironmental interpretation and dating 

has been discussed and simple approaches to consider recrystallization were summarized. Finally, 

the most important future research directions, including the anthropogenic effects i.e. fertilization 

and soil management have been suggested. 

In chapter 2 and 3, the effects of environmental factors (i.e. soil moisture content, presence of 

geogenic carbonate, CEC) as well as time on carbonate recrystallization have been examined. Due 

to the very slow rate (around 10-5 day-1) of recrystallization, and due to the limitations of usual 

approaches (mass changes, natural changes of isotopic signature, etc.), the 14C labeling technique 

(Kuzyakov et al. 2006) has been used in both studies. The high sensitivity of the 14C labeling 

technique enables measuring recrystallization rates even after a few days. This technique relies on 

the substitution of CaCO3-C with CO2-C from the soil atmosphere. 

In chapter 4 the suitability of fruit carbonates of Buglossoides arvensis for radiocarbon dating 

has been argued. The seeds of B. arvensis have been cultivated on calcareous and non-calcareous 

soils. The plants have been labeled with 14CO2 through atmosphere (shoot-labeling) or via 

Na2
14CO3 dissolved in soil solution (root-labeling) during fruit development period. Thereafter, the 

incorporation of dead carbon in fruit carbonate has been determined based on recovered 14C and 

comparison between plants grown on calcareous and non-calcareous soils. The lower 14C recovery 

in calcareous soils has been related to the incorporation of dead carbon from soil. 
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Table 1: Summary of objectives, the approaches and innovative findings of conducted studies 

Study Objectives Approaches Findings 

1 

Summarizing available theories on: 
• Pedogenic carbonates forms and formation 
processes 
• The relation of pedogenic carbonate forms 
to environmental factors 
• Implications of Δ14C, δ13C, δ18O and Δ47 for 
dating and paleoenvironmental 
reconstructions 
• Discussing the uncertainties in dating and 
paleoenvironment reconstruction due to 
recrystallization 

Literature 
review 

• Suggesting the most important future research directions on 
pedogenic carbonate, including the anthropogenic effects of 
fertilization and soil management 

2 

Determining the recrystallization rates of 
shell carbonate as a function of time, and 
presence of geogenic carbonates and 
organic compounds in soils and shell 
structure, respectively 

14C labeling 
and tracing 

• Shell carbonate recrystallization begins very soon after 
embedding in soils and increases exponentially with time. 

• Shell recrystallization increases in the presence of geogenic 
carbonate. 

• Shell recrystallization increases after elimination of 
structural organic compounds and subsequently increases 
in shell porosity. 

• The 14C labeling approach is sensitive in assessing 
recrystallization rates of biogenic carbonate within 
reasonably short times. 

3 

Determining the effect of cation exchange 
capacity (CEC) and elemental composition 
of cations on shell carbonate 
recrystallization to underline the 
consequences for radiocarbon dating and 
paleoenvironmental reconstructions 

14C labeling 
and tracing 

• Shell carbonate recrystallization decreases with increasing 
soil CEC. 

• Parameters such as total CEC and the equilibria between 
exchangeable and dissolved cations should be included in 
models predicting shell diagenesis.  

• The 14C labeling approach can be used to determine the 
weathering rates of soil Ca-bearing minerals. 

4 

Identifying the origin of C in fruit carbonate 
of Buglossoides arvensis to quantify the 
contribution of absorbed HCO3

- from soil 
and its subsequences for radiocarbon 
dates. 
 

14C labeling 
and tracing 

• B. arvensis takes up HCO3
- from the soil via roots where 

the source of HCO3
- can be dissolution of carbonate 

minerals (radiometrically dead, e.g. loess carbonate) and 
dissolution of root-respired CO2 (recent C) in soil solution. 

• An age overestimation of ca. 500 years is possible due to 
ca. 6.0% incorporated HCO3

-. 
• The age overestimation in fruit carbonate however, is 

insignificant   in relatively old samples, approximately after 
two 14C half-lives. 
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1.1. Abstract 

Soils comprise the largest terrestrial carbon (C) pool, containing both organic and inorganic C. 

Soil inorganic carbon (SIC) was frequently disregarded because (1) it is partly heritage from soil 

parent material, (2) undergoes slow formation processes and (3) very slow exchange with 

atmospheric CO2. The global importance of SIC, however, is reflected by the fact that SIC links the 

long-term geological C cycle with the fast biotic C cycle, and this linkage is ongoing in soils. 

Furthermore, the importance of SIC is at least as high as that of soil organic carbon (SOC) 

especially in semiarid and arid climates, where SIC comprises the largest C pool. Considering the 

origin, formation processes and morphology, carbonates in soils are categorized into three groups: 

geogenic carbonates (GC), biogenic carbonates (BC) and pedogenic carbonates (PC). In this 

review we summarize the available data and theories on forms and formation processes of PC and 

relate them to environmental factors. After describing the general formation principles of PC, we 

present the specific forms and formation processes for PC features and the possibilities to use them 

to reconstruct soil-forming factors and processes. The following PC are described in detail: 

earthworm biospheroliths, rhizoliths and calcified roots, hypocoatings, nodules, clast coatings, 

calcretes and laminar caps. 

The second part of the review focuses on the isotopic composition of PC: δ13C, Δ14C and δ18O, 

as well as clumped 13C and 18O isotopes known as Δ47. The isotopic signature of PC enables 

reconstructing the formation environment: the dominating vegetation (δ13C), temperature (δ18O and 

Δ47), and the age of PC formation (Δ14C). The uncertainties in reconstructional and dating studies 
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due to PC recrystallization after formation are discussed and simple approaches to consider 

recrystallization are summarized. 

Finally, we suggest the most important future research directions on PC, including the 

anthropogenic effects of fertilization and soil management. In conclusion, PC are an important part 

of SIC that reflect the time, periods and formation processes in soils. A mechanistic understanding 

of PC formation is a prerequisite to predict terrestrial C stocks and changes in the global C cycle, 

and to link the long-term geological with short-term biological C cycles. 

 

Keywords: pedogenic carbonate; CaCO3 recrystallization; diagenesis; paleoenvironment 

reconstructions; radiocarbon dating; inorganic carbon sequestration  

 

1.2. Inorganic carbon in soil and pedogenic carbonates 

1.2.1. Relevance of soil inorganic carbon 

Soils with 1,570 Pg C (Eswaran, 1993) are the largest terrestrial C pool and are the third 

greatest C reservoir in the world after oceans with 38,725 Pg (IPCC, 1990) and fossil fuels with 

4,000 Pg (Seigenthaler and Sarmiento, 1993) containing organic and inorganic C (Eswaran et al., 

2000). Plant litter, rhizodeposits and microbial biomass are the main sources of the soil organic 

carbon (SOC) pool. The SOC pool comprises 697 Pg C in 0-30 cm and 1,500 Pg C in 0-100 cm 

depths (IPCC, 2007). Intensive exchange of organic C with the atmosphere, especially connected 

with anthropogenic activities, led to a very broad range of studies related to the organic C cycle in 

soil and these have been summarized in many reviews (e.g. IPCC, 2007; Kuzyakov, 2006). 

In contrast to organic C, the exchange of soil inorganic carbon (SIC), i.e. various soil carbonate 

minerals (mostly calcite), with the atmosphere and the involvement of SIC in biotic C cycles is much 

slower (mean residence time of 78,000 years (Schlesinger, 1985)). Additionally, the distribution 

depth of SIC is opposite to that of SOC: most stocks are located deeper than one meter (Dı́az-

Hernández et al., 2003; Wang et al., 2010). These two reasons explain why much fewer studies 

focused on SIC than on SOC (Drees et al., 2001; Rawlins et al., 2011). Nonetheless, large stocks of 

SIC – 160 Pg C in 0-30 cm (Nieder and Benbi, 2008), 695-748 Pg C in 0-100 cm depth (Batjes, 

1996) and 950 Pg C up to 2 m (Lal, 2012) – reflect its importance especially over the long term. The 

SIC content in first 2 m of soil in semi-arid regions could be 10 or even up to 17 times higher than 

SOC (Dı́az-Hernández et al., 2003; Emmerich, 2003; Shi et al., 2012). Furthermore, a much longer 
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mean residence time of SIC – millennia (Schlesinger, 1985) – shows its greater role in the global C 

cycle compared with SOC (few hours to centuries) (Hsieh, 1993; Qualls and Bridgham, 2005). SIC 

also links SOC with short residence times to the long-term geological C cycle (Liu et al., 2010). Soils 

of arid and semi-arid regions with usually alkaline pH (> 8.5) and richness in Ca and/or Mg (> 0.1%) 

may enhance the SIC content following organic fertilization and increase the respired CO2 (Bughio 

et al., 2016; Wang et al., 2015). 

Changes in environmental properties such as soil acidification because of N fertilization, N 

fixation by legumes or intensification of re-wetting cycles due to irrigation could release great 

amounts of SIC and increase CO2 emissions (Eswaran et al., 2000; Shi et al., 2012). Such effects, 

though driven by natural processes, are well known in our planet’s history, e.g. between the 

Pleistocene and Holocene, when around 400-500 Pg C were released from SIC and strongly 

intensified global warming over a short period (Adams and Post, 1999). The formation and 

accumulation of carbonate minerals in soils, in contrast, can directly mitigate the increase of 

atmospheric CO2 (Landi et al., 2003; Xie et al., 2008) if calcium (Ca2+) ions have been released to 

the soil via sources other than carbonate-containing minerals, for instance from weathering of 

igneous rocks, decomposition of organic matter or dissolved Ca2+ in rainwater (Boettinger and 

Southard, 1991; Emmerich, 2003; Monger et al., 2015). This calls for investigating SIC stocks, 

forms and their dynamics to understand the role of SIC in the C cycle at regional and global scales, 

the fast and slow processes of C cycling, as well as the link between biotic and abiotic parts of the C 

cycle. 
 

1.2.2. Soil inorganic carbon: worldwide distribution  

Large SIC stocks are mostly found in regions with low water availability (i.e. arid, semi-arid and 

sub-humid regions) (Fig. 1) (Eswaran et al., 2000). Low precipitation and high potential 

evapotranspiration strongly limit the dissolution and leaching of carbonates from soil (Eswaran et 

al., 2000; Royer, 1999). Accordingly, the highest SIC content – around 320 to 1280 Mg C ha-1 – is 

accumulated in soils of arid regions with mean annual precipitation (MAP) below 250 mm such as 

middle east, African Sahara and west USA (Fig. 1). As MAP increases, the SIC content decreases 

and less than 40 Mg C ha-1 may accumulate at MAP exceeding 1000 mm for example in Amazonian 

forests and monsoonal forests in south-east Asia. However, partial eluviation and redistribution of 

carbonates may concentrate SIC deeper in the soil profile (Dı́az-Hernández et al., 2003; Wang et 

al., 2010).  
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Figure 1: World SIC distribution in the top meter of soils (USDA-NRCS, 2000) and its correlation 

with areas of lower mean annual precipitation. The iso-lines of mean annual precipitation (mm) are 

from (FAO, 1996). Only the iso-lines of precipitation <1000 mm are presented. Note the exponential 

scale of SIC content. Most SIC is located in areas with precipitation <500 mm and SIC stocks above 

32 kg C m-2 (320 Mg C ha-1) are located in areas with precipitation <250 mm. 

 

1.2.3. Soil inorganic carbon pools, classification and definitions 

Based on origin, formation processes and morphology, the SIC can be subdivided into three 

large groups:  

1. Geogenic carbonates (GC)1: carbonates which have remained or are inherited from soil 

parent materials such as limestone particles or allocated onto the soil from other locations by 

calcareous dust or landslides etc. 

1 Here we do not review the forms and formation of geogenic and biogenic carbonates in soil. 

Soil Inorganic Carbon U.S. Department of Agriculture 
Natural Resources Conservation Service 
Soil Survey Division 
World Soil Resources 
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2. Biogenic carbonates (BC)1: carbonates formed within terrestrial or aquatic animals and 

plants as part of their skeleton, for example shells, bones and calcified seeds, or released from or 

within certain organs such as the esophageal glands of earthworms. 

3. Pedogenic carbonates (PC): carbonates formed and redistributed in soils via dissolution of 

the SIC pool (i.e. geogenic, biogenic or previously formed pedogenic carbonates) and re-

precipitation of dissolved ions in various morphologies such as carbonate nodules. 

This review focuses solely on the origin, morphology and processes of PC formation. The GC and 

BC are mentioned only if relevant for PC formation. 

1.2.4. Pedogenic carbonate within soil inorganic carbon pools and its relevance 

PC originates during soil formation from GC or BC and/or former PC by recrystallization and 

redistribution in soil (see section 2). PC accumulation affects the physical, chemical and biological 

properties of soil (Nordt et al., 1998) and thus affects plant growth and soil productivity. 

PC accumulation can plug soil pores (Baumhardt and Lascano, 1993; Gile, 1961), increasing 

bulk density and reducing root penetration, water migration and oxygen supply (Baumhardt and 

Lascano, 1993; Georgen et al., 1991).  

Fine PC crystals (i.e. micrite < 4 μm) are more active in chemical reactions than large particles 

of GC (such as for example limestone). The availability of phosphorus and some micro-nutrients 

such as iron, zinc and copper for plants is therefore extremely reduced in the presence of PC 

(Becze-Deàk et al., 1997). Accordingly, the presence of PC, their localization and forms in soil 

modify the water budget and fertilizer management.  

Considering the effect of PC on plant growth and soil productivity, the layers or horizons 

containing PC have been defined quantitatively (e.g. amounts of carbonate, layer thickness) as 

diagnostic materials, diagnostic properties or diagnostic horizons in many soil classification systems 

such as World Reference Base, Soil Taxonomy, Russian and German systems especially in higher 

levels, i.e. major soil groups (WRB, 2014) orders and sub-orders (Soil Survey Staff, 2010). 

In this review we focus on 1) the general mechanisms of PC formation, 2) the most common 

morphological forms of PC and their specific formation processes and 3) environmental factors 

affecting the rate of PC accumulation in soils. We then discuss 4) the importance and applications 

of PC in environmental sciences and mention 5) the uncertainties because of recrystallization and 

6) evidence of PC recrystallization. Finally, we suggest 7) directions of further studies. 
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1.3. Formation of pedogenic carbonate 

1.3.1. General principle of pedogenic carbonate formation 

The general process of PC formation consists of three steps: 1) dissolution of SIC pools2, 2) 

movement of dissolved ions within pores, through soil profiles as well as landscapes and 3) re-

precipitation. 

(1) Dissolution of SIC pools: The dissolution of SIC – mostly of CaCO3 – considering the 

solubility product (Ksp ≈ 10-6 - 10-9) in distilled water (Robbins, 1985) is comparatively low (Eq. 1). 

The dissolution rate is strongly controlled by soil pH and dissolved CO2. The dissolution rate of CO2 

and concentration of dissolved inorganic carbon (DIC) species (i.e. HCO3
-, CO3

2-, H2CO3
° and 

CO2), however, is controlled by the partial pressure of CO2 (pCO2) in the soil atmosphere (Andrews 

and Schlesinger, 2001; Karberg et al., 2005). CaCO3 solubility in pure H2O at 25 °C is 0.013 g L-1, 

whereas in weak acids such as carbonic acid, the solubility increases up to five times (Aylward, 

2007). The acidity produced by CO2 dissolution removes OH- ions and shifts the Eq. 1 to the right, 

leading to further dissolution of CaCO3. The increase of pCO2 in the soil air increases the solubility 

of CaCO3, otherwise the pH will drop. 

CaCO3  +  2H2O  ↔  Ca2+
(aq)  +  2OH-

(aq)  +  H2CO3(aq)
 Eq. 1 

CO2(g)  +  H2O  ↔  H2CO3
*  (HCO3

-  +  CO3
2- + CO2(aq)  +  H2CO3

°
(aq))  +  2H+ Eq. 2 

 

(2) Movement of dissolved ions: the dissolved Ca2+ ions and DIC species are translocated by 

water movement in various directions: i.e. diffusion, capillary rise (unidirectional), water percolation 

(mainly downwards) or evaporation (upward). The transportation occurs over multiple spatial scales 

from mm to km: within and between microaggregates, macroaggregates, soil horizons, landscapes 

and even from terrestrial to aquatic ecosystems. The dissolved ions, however, may remain without 

significant translocation if soil permeability is very low, e.g. at the top of hard bedrock. Despite 

downward and upward migration of water, the upward migration of Ca2+ ions and DIC species is 

strongly restricted. Because pCO2 in the soil air strongly decreases close to the surface, CaCO3 

solubility declines, the solution becomes supersaturated and CaCO3 precipitates. The rare cases of 

2 This is the general formation mechanism of PC. If Ca ions are provided by sources other than SIC, such as 

weathering of Ca-bearing silicates, PC may also form (See section 2.4., parent material). 
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upward CaCO3 migration are possible only from continuously evaporating groundwater (e.g. in 

calcretes, see section 2.3.), or in the case of a higher CO2 concentration in the topsoil versus 

subsoil, e.g. due to high microbial and root respiratory activities. 

(3) Re-precipitation: if soil solution becomes supersaturated with CaCO3, the solutes 

precipitate. Supersaturation of soil solution in respect to CaCO3 may take place for two reasons: 1) 

decreasing soil water content mainly connected with evapotranspiration and 2) decreasing pCO2 

(Robbins, 1985; Salomons and Mook, 1976). Considering changes in precipitation rates due to 

environmental properties (see section 2.4) however, various morphologies may form. 

1.3.2. Formation mechanisms of pedogenic carbonates 

Considering the water movement during PC formation and the morphology of accumulated PC, 

various theories and mechanisms have been proposed for PC formation. These can be classified 

into four groups (adapted from (Monger, 2002)): 

1. Perdescendum models: dissolution of GC, BC or PC in the topsoil, downward leaching and 

re-precipitation in subsoil because of water consumption. This is the main process of PC 

redistribution and accumulation in soil horizons (Gile et al., 1966; Machette, 1985; Royer, 1999). 

Lateral movement of solutes in this model also explains PC formation in various positions of a 

landscape (Monger, 2002). 

2. Perascendum models: PC forms by upward water movement due to capillary rise or 

fluctuations of shallow groundwater. Dissolution occurs in the subsoil, and upward movement of the 

solution (after soil dryness because of evaporation, or drop in CO2 concentration) accumulates PC 

near or even at the soil surface (Khadkikar et al., 1998; Knuteson et al., 1989; Miller et al., 1987; 

Monger and Adams, 1996; Suchý, 2002). This model also includes the dissolution of SIC in higher 

landscape elevations and carbonate migration with groundwater with subsequent evaporation in 

soils at lower landscape elevations. 

3. In situ models: dissolution of SIC pool and re-precipitation of dissolved CaCO3 take place 

without significant movement through the soil profile (Monger and Adams, 1996; Rabenhorst and 

Wilding, 1986; West et al., 1988). This process commonly redistributes carbonates within the soil 

aggregates and pores of one horizon. 

4. Biological models: biological activities increase the concentration of Ca2+ ions inside the 

organisms (e.g. plant cell-walls, plant vacuoles, fungi hyphae) or close to the organisms (e.g. along 
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roots due to water mass flow towards the root, below termite nests because of their characteristic 

residual collectivity). Further calcification of Ca-bearing organs or supersaturation of soil solution at 

such sites forms PC (Alonso-Zarza, 1999; Becze-Deàk et al., 1997; Elis, 2002; Monger and 

Gallegos, 2000; Verrecchia et al., 1995). 

Depending on the prevalence of one or more of these mechanisms and their localization, the 

accumulation of re-precipitated carbonate generates various morphological forms of PC. 

1.3.3. Morphology of pedogenic carbonates  

Around 10 main PC forms are differentiated based on their morphology, properties and 

formation mechanisms (Table 2). These PC forms are classified based on the contribution of biotic 

and abiotic processes to their formation as well as PC formation rates.  

 
Table 2: Characteristics of the most common pedogenic carbonate features in soils1 

 

 

 

PC features 
Characteristics Formation5 

category 
Formation 
time scale Shape Size Density2 Porosity3 Impurities4 

 PC features mostly related to biotic controls   

Earthworm 
biospheroliths A 

Spheroidal Few mm High Moderate Moderate 4 Days 

Calcified root 

cells B 
Branch shape 
structures 

Less than mm in 
diameter and up to 
few cm length 

Low High Low 4 Weeks to 
months 

Rhizoliths B Cylindrical 
structures 

Up to several cm in 
diameter and up to 
several meters length 

High Moderate 

Low to 
high 
outward 
root center 

4 Months to 
years 

Needle fiber 
calcite 

Microscopic 
needle shape 
crystals 

Some μm Very high Very low 
Very low to 
pure 
calcite 

4 or could be 
even not 

pedogenic 
Days 

Pseudomorph 
calcite after 
gypsum 

Microscopic 
lenticular 
crystals 

Some μm Very high Very low 
Very low to 
pure 
calcite 

Not clear,  
probably 4 

Not clear 
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Table 2: continue 

1. The information for pedogenic carbonate features were inferred considering data in: Alonso-Zarza, 1999; Amundson et 

al., 1997; Barta, 2011; Becze-Deàk et al., 1997; Brock and Buck, 2005; Candy et al., 2005; Durand et al., 2010; Gile et al., 

1966; Gocke et al., 2011a; Khormali et al., 2006; Klappa, 1980; Kovda et al., 2003; Pustovoytov and Leisten, 2002; 

Rabenhorst and Wilding, 1986; Verrecchia and Verrecchia, 1994; Versteegh et al., 2013; Villagran and Poch, 2014; 

Wieder and Yaalon, 1982.  

2. Low: 1.5-1.6, moderate: 1.6-1.7, high: 1.7-1.8, very high: 1.8->2 g cm-3 
3. Very low: <5, low: 5-20, moderate: 20-30, high: >30 % 
4. Very low: <10, low: 10-30, moderate: 30-50, high: >50 % (minerals or particles other than calcite) 
5. See section 1.3.2. (Formation mechanisms of pedogenic carbonate). 
6. In parentheses: probable mechanism(s) other than the main one. 
7. Calcretes and laminar caps are new soil horizons which are formed by cementation. 

 

A) Earthworm biospheroliths: Calciferous glands or esophageal glands of earthworms produce 

carbonate features, which are excreted in earthworm casts (Fig. 2) (Becze-Deàk et al., 1997). 

Despite the primary biogenic origin of earthworm biospheroliths, they frequently provide an initial 

nucleus for further spherical accumulation of other forms of PC. The presence of earthworm 

biospheroliths in soils is an indication of stable conditions, i.e. absence of erosion or deposition 

(Becze-Deàk et al., 1997). Earthworm biospheroliths occur frequently in loess-paleosol sequences 

(Becze-Deàk et al., 1997) and can be used for 14C dating (Pustovoytov et al., 2004). The formation 

rate of earthworm biospheroliths is fast – within a few days (Lambkin et al., 2011). 

PC features 
Characteristics Formation5 

category 
Formation 
time scale Shape Size Density2 Porosity3 Impurities4 

 PC features mostly related to abiotic controls   

Soft masses Diffuse powder Visible powder Low High Low probably 3 Weeks 

Hypocoatings C 

Laminated 
carbonate inside 
soil matrix and 
along soil pores 

Few mm thickness 
with diffuse boundary 
into soil matrix 

High Low High 2 
Weeks to 
months 

Nodules D Spheroidal Few mm to few cm in 
diameter 

Low to 
very high 

Low to 
very high 

High 3 Decades 

Clast Coatings E 

Laminated 
carbonate 
beneath (or at 
the top of) clasts 

Few mm to few cm 
thickness, the same 
length as related clast 

High Low Moderate 1, (2)6 
Centuries to 

millennia 

Calcretes F Cemented 
horizon7 

At least 10 cm Very high Very low High 2, (1, 3, 4)  Millennia 
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Figure 2: Earthworm biospheroliths. Left: Plain Polarized Light; PPL (Verrecchia, 2011); Right: 

Cross Polarized Light, XPL (courtesy O. Ehrmann). Earthworm biospheroliths are produced by 

earthworms’ calciferous glands, which release ~ 0.8 mg CaCO3 earthworm-1 day-1 (Lambkin et al., 

2011). The thin section of biospherolith (right) is kindly provided by Dr. Otto Ehrmann (Bildarchiv 

Boden, http://www.bildarchiv-boden.de). 

 

B) Rhizoliths are formed by mass flow of water with soluble Ca2+ towards the root and 

precipitation of CaCO3 along the root (Fig. 3 top). Because Ca2+ uptake is much lower than the 

water uptake, the remaining Ca2+ ions precipitate with CO2 from rhizomicrobial respiration as 

CaCO3, thus forming the rhizoliths (Callot et al., 1982; Hinsinger, 1998; Lambers et al., 2009). The 

other but rare possibility is the release of HCO3
- instead of H+ by roots to compensate for the uptake 

of anions such as NO3
-. Increasing soil pH by released HCO3

-  induces CaCO3 precipitation around 

the root (Klappa, 1980). Rhizolith formation is common for shrubs and trees, but is not relevant for 

grasses because of their short life cycle. CaCO3 accumulation increases with root age over 

decades to centuries (Gocke et al., 2011a) and may form huge rhizolith landscapes, e.g. in Western 

Australia. In strongly calcareous soils, plants may reduce Ca2+ toxicity by CaCO3 precipitation in 

vacuoles of root cortical cells. This leads to calcification of the root cortex and formation of another 

type of rhizoliths termed calcified roots (Jaillard, 1987) (Fig. 3 bottom). 

 

50 μm 
200 μm 
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Figure 3: Rhizoliths (top) and calcified roots (bottom). Top left: Rhizoliths formed in loess deposits, 

Nussloch, south-west Germany (© Zamanian), Top middle and right: Rhizolith formation stages by 

soil solution mass flow towards the roots by water uptake (top middle) leading to Ca2+ accumulation 

and CaCO3 precipitation in the rhizosphere. Root water uptake leads to supersaturation of CaCO3 

and precipitation of carbonates, e.g. as calcite along the root. After root death and decomposition of 

organic tissues the rhizolith remains in soil (top right). Bottom left: Calcified roots formed in soils on 

alluvial deposits (© Zamanian). Bottom right: The magnification of the rectangle on bottom left; note 

the preserved cell structure and dissolution/re-precipitation in cells. 

 

C) Hypocoatings or Pseudomycels are formed by penetration of percolating water through the 

soil matrix and rapid precipitation of CaCO3 around large and medium soil pores (Fig. 4). Rapid 

precipitation is common because of the strong pCO2 decrease in these pores compared to the 

micro-pores. Hypocoatings may also be formed by a fluctuating water table (Durand et al., 2010). 

Because of fast precipitation, this form of CaCO3 is young, potentially forming within weeks to 

months. 

1 
cm 

1 mm 

Recrystallized carbonates 

Dissolution voids 

0.3 mm 
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Figure 4: Carbonate hypocoatings. Left: Hypocoatings inside the soil matrix and around the soil 

pores or cracks (© Kuzyakov), Center: Hypocoating formation by water evaporation or sudden 

decrease of CO2 partial pressure in large pores, leading to CaCO3 precipitation inside the soil 

matrix and around large pores. Right: Cross section of PC hypocoating around a pore (XPL) 

(Courtesy O. Ehrmann). The thin-section of calcite hypocoating around a channel (right) is kindly 

provided by Dr. Otto Ehrmann (Bildarchiv Boden, http://www.bildarchiv-boden.de). 

 

D) Nodules (Fig. 5) are formed in situ by impregnation of soil matrix with CaCO3 at specific 

locations (Durand et al., 2010). This impregnation creates the diffuse and gradual outer boundaries 

of the nodules, and the internal fabric of the nodules remains similar to the host soil (Durand et al., 

2010). Although nodules are one of the most common forms of PC, the formation processes and 

localization of nodules remain unclear. The CaCO3 accumulation probably initially begins around a 

nucleus, e.g. mineral particles, organic remnants, particles of GC or biospheroliths. Sometimes, 

nodules have a sharp outer boundary as well as a dissimilar fabric as does the host soil (Fig. 5). 

This probably reflects soil turbation or translocation of nodules from other horizons or other parts of 

the landscape by means of deposition (Kovda et al., 2003). 

E) Coatings on clasts are formed by slowly percolating water becoming trapped on the bottom 

of clasts such as stone particles. Subsequent desiccation by evaporation or water uptake by roots 

supersaturates the trapped water with CaCO3. CaCO3 then precipitates in microlayers on the 

bottom of clasts (Fig. 6). The microlayers usually have light and dark colors, reflecting the presence 

of impurities. The light-colored microlayers are mostly comprised pure calcite, but the darker one 

may contain organic compounds and/or minerals other than CaCO3 (Courty et al., 1994; Durand et 

al., 2010). The formation period of coatings is centuries to millennia. Therefore, radiocarbon dating 

and the stable isotope composition (δ13C and δ18O) of microlayers represent an informative 

chronological and paleoenvironmental proxy (Fig. 6 left) (Pustovoytov, 2002). 
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Figure 5: Carbonate nodules. Left: PC nodules at lower depths (150 cm) of Voronic Chernosem, 

“Stone Steppe”, Russia (© Kuzyakov); Right: Cross section of PC nodule and clast coating in the 

topsoil (A horizon; 0-11 cm) in petric Calcisol (Zamanian, 2005). Photomicrograph is in XPL. 

 

The formation mechanism of clast coatings, however, is not always similar to that of stalactites. 

The presence of cracks between the coating and the clast surface creates free space for 

precipitation of new carbonates (Brock and Buck, 2005). Coatings may also form at the top of clasts 

in regions with summer/fall precipitation. In wet summers, the stone surface will be warmer than the 

soil solution, leading to supersaturation of bicarbonate on the stone top and consequently CaCO3 

precipitation (Amundson et al., 1997). The alteration in clast coating orientation (i.e. mostly at the 

bottom of clast), however, is an indicator of soil disturbance (Fig. 5 right). 

 

 

Figure 6: Carbonate coatings on stones. Left: PC accumulation underneath stone particle (i.e. clast 

coating) and the chronological sequence of microlayers in PC coatings (Pustovoytov et al., 2007); 

Right: Coating formation by percolating water remaining underneath the coarse fragments (e.g. 
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stones). The soluble ions (i.e. Ca2+ and HCO3
-) will precipitate during soil dryness on the bottom 

side of the stone. In specific conditions, coatings may form on the upper side of stones (Amundson 

et al., 1997). The blue arrows show downward migration of water from the soil surface which may 

partly remain underneath stones. The orange arrows show water evaporation leading to soil 

dryness and supersaturation of the trapped solution and thus CaCO3 precipitation. 

 

F) Calcrete: The soil horizon impregnated and cemented with PC is termed calcrete (Goudie, 

1972; Reeves, 1970) (Fig. 7). Calcrete reflects the recent or past existence of a shallow 

groundwater table. Fluctuating groundwater levels accompanied with intensive evapotranspiration 

accumulate carbonates in soil horizons (Khadkikar et al., 1998; Knuteson et al., 1989), leading to 

their cementation and the formation of calcrete (Fig. 8). Cementation by CaCO3 may occur also by 

1) leaching of dissolved Ca2+ and HCO3
- ions from upper horizons (Fig. 8) (Gile et al., 1966; 

Machette, 1985), or 2) dissolution of Ca2+ containing rock (i.e. limestone) and carbonate 

precipitation without translocation of dissolved ions (Rabenhorst and Wilding, 1986; West et al., 

1988). Biological activities such as bio-mineralization of roots lead to the formation of laminar crusts 

known as rootcretes in soil (Verrecchia et al., 1993; Wright et al., 1996). Nonetheless, huge CaCO3 

amounts accumulated as calcrete cannot be explained by the translocation of dissolved ions within 

the soil profile. They clearly reflect the Ca2+ relocation from higher landscape positions (Sauer et al., 

2015). Considering the formation mechanisms, the properties of calcretes, however, will be 

different: for instance, the presence of high Mg-calcite is an indication of groundwater calcrete 

(Miller et al., 1985). 

The necessary time span for calcrete formation is millennia or longer. Soil erosion or deposition may 

change the depth of maximum PC accumulation (Alonso-Zarza, 2003; Gile, 1999) and prolong or 

shorten the formation period of calcrete (See section 2.4. Topography and soil position in the 

landscape and soil age). The thickness of calcrete, its location, micromorphology and formation 

stages are useful indicators of development and age of soils and landscapes (Adamson et al., 2015; 

Gile et al., 1966). 
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Figure 7: Calcrete morphology. Top: Thick calcrete formed on alluvial deposits comprised two 

distinct horizons: the lower calcrete contains abundant coarse fragments impregnated and 

cemented with PC. The upper calcrete – laminar calcrete – comprises negligible coarse fragments 

but horizontal layers of PC accumulation (profile depth: ca. 150 cm). Middle: PC accumulation as 
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microlayers in the upper calcrete. Bottom: Surrounded coarse fragments with micritic PC in the 

lower calcrete. Photomicrographs are in XPL (Zamanian, 2005). 

 

 

Figure 8: Calcrete formation: Accumulation of PC by CaCO3 redistribution within a landscape: 

CaCO3 will be mainly leached from upper parts of the landscape with groundwater (inclined blue 

arrows) and will be moved to a lower landscape positions. Upward movement of water by capillary 

rise (Vertical blue arrow) will form calcrete at the middle parts of a landscape. CaCO3 relocated 

from higher landscape positions cements the carbonate deposition zone (Calcic horizon) and finally 

form the calcrete (Knuteson et al., 1989). 

Considering the four steps of Gile et al.’s (1966) model, formation of coatings on clasts is the initial 

stages of PC accumulation in gravelly soils (right), while in non-gravelly soils (left) nodules would be 

formed. Connection of coatings as well as nodules by the gradual CaCO3 accumulation will plug the 

soil horizon (stage III) and forms calcrete. Water stagnation at the top of calcrete and subsequent 

gently drying soil will generate a laminar cap at the top of calcrete in the same way in gravelly and 

non-gravelly soils (stage IV). 

 

G) Laminar caps are formed in the presence of several restrictions for vertical water percolation 

and the subsequent formation of a perched water table (Alonso-Zarza, 2003; Gile et al., 1966). 
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Restricted water permeability leads to lateral water movement at the top of the low permeable zone. 

Such low permeable zones can for example be an existing calcrete or hard bedrock (Rabenhorst 

and Wilding, 1986). When the soil becomes dry, PC will precipitate in microlayers at the top of the 

low permeable zone and further decrease the permeability. A laminar cap forms a new horizon in 

the soil, which is nearly entirely occupied with PC and is impermeable to roots. Clay minerals and 

organic matter comprise non-calcareous materials in this horizon, and soil skeletal particles and 

coarse fragments such as pebbles and gravels are present in minor amounts and lower than 1% 

(Fig. 7) (Brock and Buck, 2009; Gile et al., 1966). The formation of a laminar cap may also be 

controlled by biological activity (e.g. Cyanobacteria, fungi or horizontal plant roots) (Verrecchia et 

al., 1995) in the same manner as calcrete formation. 

1.3.4. Factors affecting pedogenic carbonate accumulation in soil 

A large complex of several external and internal as well as biotic and abiotic factors affects the 

formation processes, accumulation rates and total amounts of PC. The external factors such as 

climate, topography and organisms mainly affect PC localization and PC formation rates. These 

factors mainly affect the water balance and CO2 content in the soil air. The internal soil factors such 

as parent material and physical and chemical properties are mainly responsible for the total amount 

of PC, its morphology and impurities. 

1.3.4.1. Climate  

Climate, i.e. precipitation and temperature, is suggested as the main controlling factor for PC 

formation and localization (Borchardt and Lienkaemper, 1999; Eswaran et al., 2000). The amount 

and seasonal distribution of mean annual precipitation controls the depth of carbonate leaching and 

accumulation (Egli and Fitze, 2001) (see section 1.2) (Fig. 9). Therefore, accumulation of PC near 

the soil surface is common for precipitation less than 500 mm (Landi et al., 2003; Retallack, 2005). 

Moreover, MAP controls the soil moisture regime and so, affects the morphology of PC features. 

For instance, drier conditions may lead to formation of euhedral or well-shaped CaCO3 crystals, 

whereas anhedral crystals with irregular and broken boundaries are formed at more humid periods 

(Kuznetsova and Khokhlova, 2012). 
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Figure 9: Correlation between the mean annual precipitation (MAP) and the upper depth of the 

pedogenic carbonate horizon (Bk) (data in Heidari et al., 2004; Khormali et al., 2012, 2006, 2003; 

Khresat, 2001; Kovda et al., 2014; Kuzyakov, 2006; Royer, 1999, n = 1542). 

 

The effect of temperature on PC formation, accumulation and localization is complicated. PC 

can accumulate in soils in a wide range of temperatures from very hot conditions in hot deserts 

(Amit et al., 2011; Thomas, 2011) to cold climatic zones such as tundra (Courty et al., 1994; 

Pustovoytov, 1998). Increasing temperature decreases CO2 solubility (Krauskopf and Bird, 1994), 

which directly affects the supersaturation of soil solution with CaCO3 (Barker and Cox, 2011). 

Increasing temperature, however, boosts microbial respiration and thus increases the CO2 

concentration in soil air (Lal and Kimble, 2000). This biotic effect of temperature overwhelms the 

abiotic effect of CO2 solubility (Gocke and Kuzyakov, 2011). Accordingly, higher temperatures 

increase the PC accumulation rates (Candy and Black, 2009; Gocke and Kuzyakov, 2011). Faster 

rates (due to warmer conditions) lead to more impurities such as rare earth elements in the PC 

structure (Gabitov et al., 2008; Violette et al., 2010). The presence of such co-precipitates affects 

the dissolution rate of PC after formation as well as its morphology and crystal size (Eisenlohr et al., 

1999) (see section 4.3.2).  
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The temperature controls PC morphology and the formation of CaCO3 polymorphs (Ma et al., 

2010). Increase of temperature decreases the [CO3
2-]/[Ca2+] ratio and so, aragonite formation is 

favored instead of calcite or vaterite (Ma et al., 2010). 

In conclusion, the balance between MAP (total amount and seasonality) and evapotranspiration 

(driven by temperature and wind speed) determines the rates and the amounts of PC as well as the 

depth of PC accumulation. Hence PC are formed during soil drying when evapotranspiration 

exceeds precipitation (Birkeland, 1999; Gile et al., 1966; Hough et al., 2014; Rawlins et al., 2011). 

1.3.4.2. Soil parent material 

Soil parent material and the Ca source for CaCO3 precipitation affect the total amount, formation 

rates, mineralogical and isotopic composition of PC. There is more PC in soils formed on 

calcareous parent materials (Dı́az-Hernández et al., 2003; Schlesinger et al., 1989). Moreover, 

thicker PC coatings form under limestone particles (i.e. particles larger than 1 cm) compared to 

sandstones (Pustovoytov, 2002; Treadwell-Steitz and McFadden, 2000). The source of Ca for PC 

formation can be examined by pursuing trace elements in the PC structure as well as examining the 

isotopic composition, e.g. Ca originated from atmospheric deposition is evident by similar 87Sr/86Sr 

ratios in aerosols and accumulated PC (Chiquet et al., 1999). δ13C of PC on calcareous vs. non-

calcareous parent materials usually shows a higher heterogeneity i.e. wider range of δ13C, because 

GC such as limestone particles remain inside the PC structure (Kraimer and Monger, 2009). In 

aeolian deposits, however, the finer particle size distribution of calcareous dust may lead to 

complete dissolution of GC and thus less δ13C heterogeneity in PC features (Kraimer and Monger, 

2009). The weathering of non-calcareous parent materials contributes to the localization of cations 

such as rare earth elements (REE), uranium, barium etc. as impurities in PC structure (Violette et 

al., 2010; Yang et al., 2014). 

The weathering of non-calcareous parent materials such as igneous rocks in some old soils 

may provide nearly the total Ca available for PC formation (Landi et al., 2003; Naiman et al., 2000; 

Whipkey et al., 2000). However, it usually supplies less than 2% of Ca in precipitated PC (Capo and 

Chadwick, 1999). The presence of co-precipitated cations from parent material in the PC structure 

changes the crystallographic parameters of CaCO3 and controls the crystal morphology (Klein, 

2002). For instance, impurities decrease the crystal size (Catoni et al., 2012). Elongated and 

needle-shaped crystals are formed in solution at higher concentrations (100 ppb) of (REE3+)⁄(Ca2+), 

while rhombohedral and prismatic crystals are common at lower concentrations (10 ppb) (Barker 
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and Cox, 2011). The impurities also inhibit PC dissolution because they remain on the crystal 

surface and decrease ion exchange (Eisenlohr et al., 1999). 

Aluminosilicates as well as organic compounds such as fulvic and humic acids are additional 

impurities (Gabitov et al., 2008; Stumm and Morgan, 1996). The presence of aluminosilicates and 

organic compounds in PC structure affects crystal growth. For instance, binding of carboxyl groups 

at or near crystal growth sites inhibits the growth rate of CaCO3 crystals (Reddy, 2012).  

1.3.4.3. Soil properties  

Soil texture, structure, pH, ion strength and composition of soil solution can affect PC formation 

(Chadwick et al., 1989; Finneran and Morse, 2009; Ma et al., 2010; Reddy, 2012). Soil properties 

such as texture and structure control the accumulation depth of PC because they affect water 

holding capacity, water penetration and movement (Chadwick et al., 1989). The pH affects 

carbonate crystal size and morphology by controlling the supersaturation state of soil solution with 

CaCO3 (Ma et al., 2010). The ratio of bicarbonate/carbonate decreases as the soil pH becomes 

alkaline (e.g. pH > 8.5). This favors higher nucleation rates and faster precipitation of smaller 

CaCO3 crystals (Ma et al., 2010). Ionic strength controls the mole fraction of free water during 

CaCO3 dissolution (Finneran and Morse, 2009). Therefore, CaCO3 dissolution in saline soils takes 

longer and precipitation occurs earlier compared to salt-free soils.  

1.3.4.4. Topography, soil position in the landscape and soil age 

The topography and soil position in a landscape affect the total amounts, the accumulation rate 

and the accumulation depth of PC. The upper parts of a hillslope may contain no or few PC 

features, while thick calcretes may form at downslope positions because of groundwater presence 

or downslope flow of soil solution (Jacks and Sharma, 1995; Khadkikar et al., 1998). Stable land 

surfaces in a landscape usually show the greatest PC accumulation compared to the other 

positions. On unstable land surfaces the depth of PC accumulation and the total amount of PC in 

soil changes due to erosion and deposition. 

Erosion increases the PC exposure into the percolating water front, and rewetting cycles 

promotes carbonate dissolution. PC dissolution followed by the translocation of ions leads to less 

PC accumulation in the soil profile or their deeper localization. It can lead to complex profiles with 

overprinting over multiple formation phases that have been formed during various climate cycles. 

37 
 



Deposition also changes the depth of water percolation, reducing the PC accumulation in a 

particular depth of the soil profile (Alonso-Zarza, 2003; Candy and Black, 2009; Gile, 1999). On 

stable land surfaces, total PC is positively correlated with soil age. Increasing amounts over time 

also creates various PC morphologies (Adamson et al., 2015; Badía et al., 2009; Bockheim and 

Douglass, 2006; Dı́az-Hernández et al., 2003). Disperse PC accumulations increase with soil age, 

will be connected to each other and finally plug soil pores, forming calcrete (Fig.8). Therefore, 

various morphologies and stages for PC accumulation are used as an indicator of soil development 

(Fig. 8) (Amoroso, 2006; Gile et al., 1966; Machette, 1985; Pustovoytov, 2003). 

1.3.4.5. Local vegetation and soil organisms 

In the presence of active roots, carbonate dissolution increases by 5 to 10 times. Carbonate 

solubility increases near roots because of (1) up to 100 times higher CO2 concentration in the 

rhizosphere versus atmosphere and (2) up to two units lower local pH because of H+ and carboxylic 

acid release by roots (Andrews and Schlesinger, 2001; Berthelin, 1988; Gocke et al., 2011b). The 

higher ions concentration leads to two-orders-of-magnitude-faster PC accumulation close to the 

roots compared to root-free soil (Gocke et al., 2011b; Kuzyakov et al., 2006), e.g. to rhizolith 

formation (Fig. 3). Note, however, differences in root distribution and thickness as well as variation 

in root respiration and exudation (Hamada and Tanaka, 2001; Kuzyakov and Domanski, 2002) 

change the PC formation rates under various plant species. For example, carbonate dissolution and 

re-precipitation under maize is higher than in soils covered by ryegrass because the root growing 

rates and exudation are higher under maize. 

Soil microorganisms, i.e. bacteria and fungi, are also active in PC formation. If Ca2+ ions are 

available in solution, bacteria can produce a visible accumulation of carbonates within a few days 

(Monger et al., 1991). Extracellular polymers such as polysaccharides and amino acids may also 

control the morphology of CaCO3 (Braissant et al., 2003). For example the presence of aspartic 

acids favors the formation of needle shape crystals (Braissant et al., 2003). However, even 

components of bacterial cells such as cell walls may act as nuclei of carbonate precipitation (Perito 

et al., 2014). 
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1.4. Carbon and oxygen in pedogenic carbonates 

1.4.1. Sources of carbon, oxygen and calcium in pedogenic carbonates 

Carbon in PC originates from dissolved CO2 in soil solution (Eq. 1, 2). Respiration of roots and 

microorganisms and the decomposition of litter and SOM are the sole CO2 sources in the soil air 

during the growing season (Karberg et al., 2005). However, in frozen soils or soils with very low 

respiration rates (e.g. dry hot deserts), the CO2 concentration is partly controlled by the diffusion of 

atmospheric CO2 into the soil (Cerling, 1984). 

The source of oxygen in PC is related more to the soil water than to soil CO2. This is confirmed 

by the close correlation between δ18O of PC and mean δ18O of local meteoric water (Cerling, 1984; 

Cerling and Quade, 1993). 

Calcium in PC can originate from three sources: (1) dissolution of GC as limestone (and/or to a 

lesser extent dolostone) (Kelly et al., 1991; Rabenhorst and Wilding, 1986), (2) atmospheric 

deposition, which is the main source of Ca especially in non-calcareous soils (Naiman et al., 2000) 

and (3) weathering of Ca-bearing minerals other than carbonates (Landi et al., 2003; Naiman et al., 

2000; Whipkey et al., 2000) such as augite, apatite, hornblende, gypsum, oligoclase and 

plagioclase. 

1.4.2. Isotopic composition of carbon (δ13C, Δ14C) and oxygen (δ18O) in pedogenic 
carbonates 

The isotopic signature of PC - δ13C and δ18O - is controlled by the isotopic composition of soil 

CO2 and of water, respectively (Cerling, 1984). During the growing season, root and microorganism 

respiration is high and represents the only CO2 source in soil (Cerling, 1984); the relative 

abundance of C3 and C4 plants in the local vegetation controls the δ13C value of PC (Fig. 10). Due 

to isotopic discrimination by photosynthetic pathways, the δ13C of CO2 under C3 plant species (-

27‰ on average) differs from that under C4 species (-13‰ on average) (Cerling et al., 1997). 

Further isotopic discrimination results from CO2 diffusion in soil (ca. +4.4‰) and carbonate 

precipitation (ca. +11‰). Consequently, PC are 13C enriched by about 15‰ compared to the 

respired CO2. The values are ca. -12‰ under pure C3 and +2‰ under pure C4 vegetation (Fig. 10).  
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Figure 10: The δ13C values of carbonate forms in soil (changed after Nordt et al., 1996). The δ13C 

isotopic composition of soil CO2 and thus of pedogenic carbonates (PC) is controlled by local 

vegetation (C3 or C4 plants) (Cerling, 1984). The mean δ13C value and standard deviation for 

biogenic carbonates (BC) are calculated from: Dettman et al., 1999; Prendergast et al., 2015; 

Pustovoytov et al., 2010; Regev et al., 2011; Riera et al., 2013; Stern et al., 1994. Note the different 
13C fractionation by rhizorespiration for C3 and C4 plants (Werth and Kuzyakov, 2010). The 13C 

fractionations are presented with dashed lines and mentioned in italics. 

 

Since root and rhizomicrobial respiration are the dominant CO2 sources in soils (Kuzyakov, 

2006), SOM decomposition has a minor effect on 13C of PC (Ueda et al., 2005). Diffusion of 

atmospheric CO2 (global average δ13C = -8.5‰ in 2015) can further enrich 13C in PC. Nonetheless, 

the effect of diffused atmospheric CO2 is restricted maximally to the upper 50 cm of the soil 

(Cerling, 1984) and is negligible in the presence of vegetation. 

The Δ14C of PC is determined by biological activities in soil. In contrast to δ13C, SOM 

decomposition affects Δ14C in PC. Therefore, the relative proportion of CO2 respired by the 

rhizosphere and the CO2 released from SOM decomposition determine the 14C abundance in PC. 
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The contribution of SOM decomposition to 14C abundance in PC, however, is more important in 

deeper horizons. This is because the SOM age mostly increases with soil depth (i.e. the older the 

SOM, the more depleted the 14C abundance) (Amundson et al., 1994). 

The δ18O of PC is controlled by the oxygen isotopic composition of meteoric water, from which 

carbonates originate (Cerling, 1984). Increasing evaporation leads to higher δ18O depletion in PC 

(Liu et al., 1996; Zhou and Chafetz, 2010). Since the temperature controls the amount of 

evaporation, changes in the isotopic composition of meteoric water corresponds to mean annual air 

temperature (MAAT) (Cerling, 1984; Hsieh et al., 1998a, 1998b). 

1.5. Implications of PC in paleoenvironmental and chronological studies 

δ13C and δ18O as well as Δ14C of PC are valuable proxies for paleoenvironmental and 

chronological investigations (Feakins et al., 2013; Levin et al., 2011; Monger et al., 2009; Konstantin 

Pustovoytov et al., 2007; Wang et al., 1996). Dissolution of SIC and re-precipitation of dissolved 

ions (i.e. Ca2+ and DIC species) takes place under complete equilibrium with soil air CO2 (Eq. 3) 

(Cerling, 1984; Nordt et al., 1996).  

  

CaCGO3 + CRO2 + H2O ↔ Ca(HCGO3)+ + HCRO3
- ↔ Eq. 3: 

↔ Ca(HCRO3)+ + HCGO3
- ↔ CaCRO3↓ + CGO2 + H2O 

 

where the index G reflects the origin of carbon from geogenic carbonate present in soil before 

dissolution and R reflects the carbon origin from CO2 respired by roots and microorganisms. 

Therefore, substituting HCGO3
- by HCRO3

- will conserve the δ13C fingerprints of dominant vegetation 

within accumulated PC (Fig. 10) (Amundson et al., 1989; Cerling et al., 1989). 

The Δ14C of PC is applied to determine the absolute age of soils, sediments, cultural layers and 

late-Quaternary geomorphological units (Amundson et al., 1994; Chen and Polach, 1986; Gile, 

1993; Pustovoytov et al., 2007; Pustovoytov and Leisten, 2002; Wang et al., 1996). The radiocarbon 

ages help to distinguish between individual stages of PC formation and correlate them to past 

environmental changes (Fig. 6) (Candy and Black, 2009; Pustovoytov et al., 2007).  

Along with radiocarbon dating (age limit up to 60,000 years), the Th/U-technique allows 

estimation of crystal growth within longer time intervals during soil formation (age determination up 

to over 500,000 y) (Ku et al., 1979; Sharp et al., 2003; Candy et al., 2005; Durand et al., 2007; 
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Blisniuk et al., 2012). Uranium may be incorporated into the PC structure as impurities during crystal 

growth (see section 3.3, parent material). The broader age range that can be determined is the 

major advantage of application of the U/Th-dating to Quaternary carbonate materials. Some 

sedimentological settings have been suggested to be favorable for diagenetic contamination of 

carbonate by environmental uranium, which may result in younger measured ages (McLaren and 

Rowe, 1996). However, the U/Th ages of different carbonate samples usually show a good match 

with independently estimated ages of their contexts. Such inter comparisons are based on 

archaeological age estimations (Magnani et al., 2007), OSL and radiocarbon dating (Magee et al., 

2009) or their combinations (Clark-Balzan et al., 2012). Although the sample quantities required for 

U/Th dating are larger compared to the14C AMS procedure, substantial reduction in sample size can 

be achieved through the use of multi-collector inductively coupled plasma mass spectrometry (Seth 

et al., 2003) and laser ablation techniques (Spooner et al., 2016).  

Since the δ13C of PC reflects that of soil CO2 and is related to the pCO2 in soil air and in the 

atmosphere, the δ13C of PC can be used as a CO2 paleobarometer to estimate the atmospheric 

CO2 concentration during the formation time of PC (Huang et al., 2012; Retallack, 2009). This CO2 

paleobarometer shows a high potential for paleosols covered with pure C3 vegetation (presumably 

most pre-Miocene soils) or if the proportion of C4 biomass can be estimated (for example, if the 

humus horizons are preserved) (Ekart et al., 1999; Royer et al., 2001).  

The δ13C and δ18O in the lattice of PC crystals enable estimating the temperature of PC 

formation (Ghosh et al., 2006a). The combination of 13C and 18O in CaCO3 crystals, known as Δ47 or 

clumped isotopes, is the measuring δ18O and δ13C connected in one molecule simultaneously, for 

instance as 13C18O16O. The ∆47 value in a crystal lattice depends only on the environmental 

temperature: increasing the temperature will decrease the ∆47 in that crystal (Eiler, 2007). 

Therefore, the ∆47 value in PC can be used as a paleothermometer to estimate the temperature 

during PC formation (Ghosh et al., 2006a; Versteegh et al., 2013). The estimated PC formation 

temperature and the relation between environmental temperature and elevation enable drawing 

conclusions about the uplift range of geological surfaces (Ghosh et al., 2006b). Accordingly, the PC 

features now located at higher elevations with cooler temperature may have been formed in warmer 

environments (Peters et al., 2013).  

1.6. Recrystallization of soil carbonates  

All the above-mentioned applications of δ13C, Δ14C, δ18O and clumped isotopes in PC are 

based on two assumptions:  

(1) The formed PC feature is completely free of GC admixtures. 
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(2) The formed PC feature represents a geochemically closed system. This means PC 

experiences no further cycle(s) of dissolution and re-precipitation (= recrystallization) after initial 

formation.   

Deviations from these assumptions reveal uncertainties in chronological and re-constructional 

studies based on PC (Cerling, 1991; Pustovoytov and Leisten, 2002; Quast et al., 2006). Because 

recrystallization rates depend on various biotic and abiotic factors (Gocke et al., 2011b; Gocke and 

Kuzyakov, 2011), the resulting errors will differ, especially where recrystallization is relatively fast, 

e.g. in the presence of high root and microbial respiration (Gocke et al., 2011b; Kuzyakov et al., 

2006). 

The low solubility of carbonates (Ksp = 10-6 - 10-9) (Robbins, 1985) and consequently low 

recrystallization rates lead to difficulties in measuring these rates over short periods. Recently, 

however, it has been shown that the sensitive 14C labeling approach (Gocke et al., 2011b, 2010; 

Kuzyakov et al., 2006) can contribute to a better understanding of the recrystallization dynamics and 

their effects on the isotopic composition of C in PC. This technique labels soil air with 14CO2. By 

tracing the 14C activity of a carbonate sample and knowing the amounts of added C as CO2, the 

amounts of recrystallized carbonates can be calculated. This approach was used to show the 

dependence of CaCO3 recrystallization rates on (i) CO2 concentration in soil (Gocke et al., 2010), 

(ii) presence of plants with various root systems (Gocke et al., 2011b), (iii) temperature (Gocke and 

Kuzyakov, 2011), and (iv) migration of recrystallized CaCO3 along soil profile (Gocke et al., 2012). 

The very slow rates assessed by the 14C labeling approach (about 0.00003 day-1) demonstrated that 

at least centuries or probably even several millennia are necessary for full recrystallization and thus 

for complete formation of PC (Kuzyakov et al., 2006). This means that the first assumption may not 

be achieve even after a long time, at least in PC features formed in loess deposits. Furthermore, the 

exponential nature of recrystallization (Kuzyakov et al., 2006) – partial re-dissolution and 

recrystallization of formed PC – may also make the second assumption questionable. 

1.6.1. Uncertainties of paleoenvironmental reconstructions based on pedogenic carbonates 

The recrystallization of PC under conditions different from the environment during PC formation 

(e.g. changes in local vegetation or environmental temperature) will strongly complicate the 

application of the isotopic signature of PC for paleo-reconstruction studies. The new isotopic signals 

of a PC feature will reflect the altered and not the original environmental conditions (Pendall et al., 

1994). Considering the first assumption, mixing of old PC as well as "dead" (i.e. not applicable for 

radiocarbon dating) limestone particles with newly formed PC overestimates the absolute ages of 
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soils, landscape or geomorphological surfaces (Pendall et al., 1994; Pustovoytov and Terhorst, 

2004). For instance, if only 1% dead limestone particle remain in the structure of a given PC 

specimen (i.e. not full recrystallization of GC), the age of PC will be overestimated by more than two 

times. If the amount of remaining GC is 5%, the age overestimation will increase to about 10 times 

(Kuzyakov et al., 2006). Moreover, the difference of δ13C values of the remaining GC to that of PC 

(Fig. 10) leads to a less negative δ13C of PC (Pendall et al., 1994; Quast et al., 2006) and 

consequently to doubtful paleoecological interpretations.  

Recrystallization will also affect the stable isotopic signature and interpretations for 

paleoenvironmental studies and PC-based radiocarbon dating. If only 1% of modern 14C is mixed 

with a dead limestone specimen, the age estimation will be 36,500 years. Increasing the 

contamination with modern 14C to 10% alters the age of that limestone to about 18,500 years 

(Williams and Polach, 1969).  

PC recrystallization also affects δ18O (Cerling, 1991) and  may thus overestimate PC formation 

temperature by up to 20 °C (Ghosh et al., 2006b). Therefore, interpretation of the δ13C, Δ14C, δ18O 

and ∆47 signatures in PC for paleoenvironmental reconstructions and dating should consider 

possible deviations from the above-mentioned assumptions. 

Formation of PC following BC dissolution will also affect the chronological and paleoecological 

interpretations based on BC. In archeological sites, various BC types preserved in soils are 

frequently used to interpret their isotopic signatures. This includes: 

• Shells (i.e. mollusk shells) (Xu et al., 2010; Yanes et al., 2013) 

• Bone pieces (Berna et al., 2004; Krueger, 1991; Zazzo et al., 2009)  

• Eggshell particles (Janz et al., 2009; Kandel and Conard, 2005; Long et al., 1983; Vogel et 

al., 2001) 

• Tooth enamel and dentin (Feakins et al., 2013; Hedges et al., 1995; Hoppe et al., 2004) 

• Old wood ashes (Regev et al., 2011) and calcified fossil seeds (Pustovoytov et al., 2004; 

Regev et al., 2011). 

BC features are used to recognize the settlements or habitats, diet regimes and extinction 

periods of ancient humans, animals and plants (Hoppe et al., 2004; Janz et al., 2009; Kandel and 

Conard, 2005) as well as to reconstruct the environmental conditions during their lifetimes (Villagran 
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and Poch, 2014; Xu et al., 2010; Yanes et al., 2013). PC formation and mixing with fossil BC will 

complicate the results of such paleo-reconstruction studies, e.g. the age of a 45,000 y-old bone will 

be estimated 20,000 y if only 5% contamination with modern C took place (Zazzo and Saliège, 

2011). Paleoenvironmental reconstructions and dating based on PC as well as BC should consider 

possible recrystallization and isotopic exchange. 

1.6.2. Evidence of pedogenic carbonate recrystallization after formation 

The recrystallization of PC features after formation can be recognized in isotopic composition as 

well as morphology. The following evidence confirms the recrystallization of PC features in different 

environmental conditions as the dominant process during their formation. 

(a) Relatively young radiocarbon ages of PC features compared to geological periods are 

usually explained by admixtures of modern 14C during recrystallization (Pustovoytov and Terhorst, 

2004). A correspondence between measured Δ14C ages of PC with other chronological data is 

therefore used to evaluate the PC contamination and the reliability of achieved dates. The other 

chronological data include stratigraphy of the sampling context or the ages of accompanying 

datable compounds such as organic C and artefacts (Pustovoytov and Terhorst, 2004; Vogel et al., 

2001).  

(b) Large δ13C variation in PC from paleosols with similar ages (and probable similar vegetation 

and pCO2 in the respective geological period) is referred to recrystallization. In contrast, fewer δ13C 

differences in PC from contrasting geological time spans are also introduced as recrystallization 

evidence (Quast et al., 2006). 

(c) The size of PC features is positively correlated to the δ13C signature of recently 

recrystallized carbonates (Kraimer and Monger, 2009). The smaller the PC size, the more δ13C 

changes due to recrystallization is expected. 

(d) The microscopic indications of PC dissolution under a polarized microscope can be 

recognized as follows (Durand et al., 2010): 

1. PC grains with well-rounded shapes. 

2. Presence of crystals with pronounced serration. 

3. Formation of mouldic voids (e.g. preferential dissolution of shell fragments leaves empty spaces 

previously occupied by carbonates). 
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4. Clay-coating networks without carbonate crystals (formed after partial dissolution of carbonate 

grains and further clay illuviation with pore filling). 

5. Depletion of hypocoatings (i.e. soil carbonate-free matrix around voids such as channels). 

(e) The dissolved ions may recrystallize on the former PC feature. The microscopic evidence of 

such recrystallization is (Durand et al., 2010): 

1. Irregular distribution of crystal size and mottled crystal mosaics of different sizes (i.e. 

replacement of finer crystals with coarser ones). 

2. Star-like masses of elongated and radially arranged sparite crystals around a central zone of 

microsparite crystals. 

3. Curved contacts between neighboring sparitic (> 20 μm) carbonate crystals. 

1.7. Conclusions and outlook 

1.7.1. Conclusions 

Various formation mechanisms and environmental factors result in distinct morphological 

features of PC such as nodules and coatings, which form in various time spans – from a few weeks 

(e.g. hypocoatings) and decades (e.g. rhizoliths) to hundreds of thousands or even millions of years 

(e.g. calcrete). PC forms therefore reflect soil genesis processes and record the effects of soil-

forming factors. δ13C, Δ14C and δ18O as well as Δ47 in PC are valuable tools for paleoenvironmental 

reconstructions and soil age estimation. PC features, however, have variable physical and chemical 

properties including various CaCO3 contents and impurities. This reflects the response of PC 

features to environmental conditions such as changes in local vegetation or climatic properties. 

Furthermore, depending on the duration of PC formation period, the isotopic inventory of individual 

PC features will reveal different resolutions in paleo-reconstruction and chronological studies. 

PC can undergo recrystallization after formation. This complicates the interpretations of 

paleoenvironment records and chronological studies based on PC isotopic composition. Every 

recrystallization cycle may occur under new environmental conditions – i.e. climate or local 

vegetation – differing from the previous one. Full or even partial re-equilibration to the new 

environment will insert new signals into the isotopic inventory of PC. Recrystallization therefore 

resets the radiometric clock by adding modern 14C to the isotopic inventory of PC. It can therefore 

lead to a strongly biased assessment of air pCO2 or temperature (as well as vegetation or 
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precipitation) for the period of PC formation. The result is misleading paleoenvironmental 

reconstructions. Nonetheless, incorporating the variety of PC features (with corresponding formation 

mechanisms and time, as well as physical and chemical properties and microscopic indications) 

enables considering how recrystallization may have altered the isotopic composition of PC features. 

     Future research directions 

Based on the overview of the mechanisms and rates of PC formation and of their applications 

for reconstructing soil genesis and paleoenvironment, as well as considering the huge SIC stocks in 

soil, the following research directions can be grouped into three issues: 

(1) Mechanisms and rates of PC formation  

- The effects of biotic processes such as respiration (CO2 concentration), carboxylic acid 

excretion (pH changes) or water uptake (Ca concentration in rhizosphere) by plants and 

microorganisms on PC formation were shown in a few studies (Kuzyakov et al., 2006; Monger et al., 

1991). However, the biotic activities are frequently disregarded with respect to PC formation. This 

calls for demonstrating the importance of biota for PC formation under a broad range of 

environmental conditions. It remains unclear whether PC can be formed in the absence of biological 

activity at all. 

- Both roots and microorganisms may have similar functions in PC formation: respiration, acid 

release, etc. We are not aware of any study comparing the importance of roots or microorganisms 

for PC formation. This should be done for individual PC forms.   

- Various plant species such as shrubs, grasses and herbs have different root systems, rooting 

depth and resistance to higher pH due to CaCO3 accumulation. How various plant species affect 

PC formation rates as well as the depth of PC accumulation should be clarified. 

- Formation mechanisms of various PC features and the budget of the elements (e.g. Ca) 

remain unclear. More studies such as comparisons of the Ca content in parent material as well as in 

soil layers with PC are needed to identify the Ca source(s) in PC. 

(2) Implications for paleoenvironment reconstructions and soil genesis  

- The reliability of PC features as proxies for paleoenvironment reconstructions and dating 

purposes is still questionable because of recrystallization. This calls for quantifying how the 

environmental factors such as soil moisture, temperature, initial GC content, and the depth of PC 
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formation affect PC recrystallization. In this respect, 14C labeling of soil CO2 showed high potential 

for understanding the dynamics of carbonate recrystallization in soils (Kuzyakov et al., 2006). The 

radiometric ages of PC features should be compared with independently estimated ages of their 

contexts, such as archeological sites or geomorphic landscape elements. Furthermore, long-term 

experimental observation of CaCO3 alteration with time in native soils can serve as a good 

complimentary approach. 

- Individual PC features, considering variations in their physical and chemical properties, should 

respond differently to changes in environmental conditions, i.e. will have different recrystallization 

rates. Therefore, the recrystallization rates of various PC features should be compared under 

identical environmental conditions.  

- A part of 13C enrichment in PC comparing to the respired CO2 is because of soil CO2 diffusion 

(Cerling, 1984). The CO2 diffusion in soil (and thus changes in δ13C of PC) is, however, related to 

soil properties such as soil water content, temperature and clay content as well as the diffusion 

distance within the soil profile. The above-mentioned 4.4‰ 13C enrichment in soil CO2 by diffusion 

should therefore be analyzed for various soils with contrasting physical and chemical properties.  

(3) Natural and anthropogenic effects on PC and consequences for the concentration of 
atmospheric CO2  

- The contribution of CaCO3 to CO2 fluxes from soil to the atmosphere because of fertilization 

and management is completely unknown. Soil acidification due to urea or ammonium fertilization as 

well as legume cultivation strongly affects CaCO3 dissolution and CO2 release to the atmosphere. 

This calls for investigating the effects of various soil cultivation systems such as fertilizer forms and 

levels, as well as management practices – till, no-till, liming, irrigation frequency and other 

managements – on CaCO3 dissolution and CO2 efflux. These anthropogenic effects on CaCO3 

dissolution should be compared to the rates of natural acidification processes related to litter 

decomposition and rhizosphere fluxes of H+ ions and organic acids. 

- Development of a mechanism-based model predicting the upper and maximal depths of PC 

accumulation in soil profiles is important for understanding soil genesis as well as fertilization and 

irrigation management. This requires incorporating the relations between the depth of PC 

accumulation and various environmental parameters – not only mean annual precipitation as in Fig. 

9 but also soil water balance, its seasonal dynamics, the initial carbonate content in parent material 

and soil physical properties. 
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Concluding, despite the importance of SIC and PC for terrestrial C stocks and the global C 

cycle, the number of studies on SIC is very limited, especially compared to those dealing with SOC. 

Most of these studies were descriptional, focused on the presentation of properties, contents, forms 

and depths of PC. Only few studies attempted to develop the concepts and models of PC formation 

mechanisms and relate them to environmental factors. Such a mechanism-based understanding 

and models will strongly contribute to predicting terrestrial C stocks and changes in the global C 

cycle. This will help closely link long-term geological with short-term biological C cycles. 
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2.1. Abstract 

Mollusk shells are commonly present in a broad array of geological and archaeological 

contexts. The shell carbonate can serve for numerical age determination (Δ14C) and as a 

paleoenvironmental indicator (δ18O, δ13C). Shell carbonate recrystallization in soils, however, may 

re-equilibrate the C isotopic signature with soil CO2. The equilibration dynamics remain poorly 

understood because of the absence of suitable experimental approaches. Here we used the 

artificial 14C-labelling technique to study the process of shell carbonate recrystallization as a function 

of time.     

Organic-free and organic-containing shell particles of Protothaca staminea were mixed with 

loess or a carbonate-free loamy soil. The mixtures were placed in air-tight bottles, where the bottle 

air containing 14CO2 (pCO2 = 2%). The 14C activity of shells was measured over time and related to 

the recrystallization of shell carbonate. 

Recrystallization of shell carbonate already began after one day. The recrystallization rates 

were 10-3 % day-1 in organic-containing shell embedded in soil and 1.6 10-2 % day-1 in organic-free 

shells in loess. Removal of organic compounds increased shell porosity, and so, increased the 

contact surface for exchange with soil solution. Organic-free shells recrystallized much faster in 

loess (0.56% in 56 days) than in other treatments. Recrystallization was 2 to 7 times higher in loess 

(in the presence and absence of organic compounds, respectively) than in carbonate-free soil. 

Loess carbonate itself can recrystallize and accumulate on shells, leading to overestimation of shell 
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carbonate recrystallization. A model for shell carbonate recrystallization as a function of time was 

developed. The model considers the presence or absence of organic compounds in shell structure 

and geogenic carbonates in the embedding matrix. The model enabled all results to be fitted with R2 

= 0.98. 

The modeled time necessary for nearly full recrystallization (95% of shell carbonate) was 88 

years for organic-free shells in loess and up to 770 years for organic-containing shells in carbonate-

free soil. After this period, the original isotopic signature will vanish completely and will be replaced 

by a new δ13C and Δ14C signature in the shell structure. Thus, shell carbonate recrystallization may 

proceed relatively rapidly in terms of geologic time. This is necessary to consider in the 

interpretation of dating results and paleoenvironmental reconstructions.  

 

Keywords: biogenic carbonates, geogenic carbonates, recrystallization, porosity, shell, 14C labeling 

 

2.2. Introduction 

Mollusk shells are among the most common findings at archaeological sites (Thomas, 2015, 

and references therein). Their carbonate fraction represents a useful paleoenvironmental and 

chronological proxy (Pigati et al., 2004; Pigati et al., 2010; Xu et al., 2010; Pigati, 2013; Yanes et al., 

2013). The CaCO3 fraction of shells can be especially useful for such investigations if the 

preservation of organic compounds is poor, such as in arid environments or coastal regions (Russo 

et al., 2010; Zazzo and Saliège, 2011). Under such circumstances, shell carbonate can be the only 

alternative to paleoenvironmental and chronological studies (Chappell and Pollach, 1972; Újvári et 

al., 2014). 

Mollusk shells are usually well preserved in sediment after burial (Pigati et al., 2004; Pigati et 

al., 2010), but their elemental and/or isotopic composition can be influenced by recrystallization 

processes (Webb et al., 2007; Collins, 2012). Recrystallization occurs following soil dryness, 

increased Ca2+ concentration and/or a drop in soil CO2 partial pressure  (Chappell and Pollach, 

1972; Russo et al., 2010). Since the amount of soil CO2 and its isotopic composition is in equilibrium 

with CO2 respired by roots and rhizosphere organisms, the isotopic signature (δ13C, Δ14C) of 

recrystallized carbonate will equilibrate with soil CO2 (Cerling et al., 1989). In this case, the δ13C in 

recrystallized carbonate in soil will save fingerprints of dominant vegetation during the 

recrystallization phase and the Δ14C will reflect the age of the recrystallization event. The presence 

of even a few percent of modern C can significantly affect the results of paleoenvironmental and 
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chronological studies based on shell carbonate (Webb et al., 2007). For instance, the presence of 

10-15% of modern C as carbonate in 30 ka-old shells leads to an 11 ka error in age (Webb et al., 

2007). 

Considering the significant effect of modern C on radiocarbon dating, various techniques have 

been proposed to assure the fidelity of geochemical signals. Evidence of recrystallization can be 

detected using optical and electron microscopes (Cochran et al., 2010), X-ray analysis (Chappell 

and Pollach, 1972; Piepenbrink, 1989; Cochran et al., 2010), trace element measurements 

(Shemesh, 1990; Oliver et al., 1996; Cochran et al., 2010) and density analysis (Russo et al., 2010). 

It is also advisable to verify the consistency of measured ages with other datable materials or 

stratigraphic positions (Bonadonna et al., 1999; Webb et al., 2007; Janz et al., 2009). The selected 

samples should also be subjected to physical and chemical pre-treatments such as soaking in acid 

or mechanical abrasion, to reduce the influence of suspected recrystallization (Krueger, 1991; 

Bezerra et al., 2008).  

Despite the progress in laboratory methods, the dynamics of shell carbonate recrystallization in 

sedimentary environments and its affecting factors remain poorly understood. Furthermore, in some 

cases the proposed techniques for sample selection may have drawbacks. In certain environments 

the recrystallized carbonate could be aragonitic (Webb et al., 2007). Analysis with a scanning 

electron microscope is restricted to a small portion of the samples, which risks overlooking 

recrystallized carbonates when these are few (Douka et al., 2010), especially when the 

recrystallized carbonate is patchily distributed (Webb et al., 2007).  

In soils, shell carbonate may be found very well preserved (i.e. without recrystallization) up to 

nearly completely recrystallized (Chappell and Pollach, 1972). Various biological and environmental 

parameters seem to control the rate of dissolution and subsequently recrystallization of shell 

carbonates (Yates et al., 2002). These include porosity (Nielsen-Marsh and Hedges, 1999; Collins, 

2012) and organic compounds present in the shell structure (Hall and Kennedy, 1967; Nielsen-

Marsh and Hedges, 2000), microbial attack (Nielsen-Marsh and Hedges, 1999; Janz et al., 2009), 

soil pH (Piepenbrink, 1989; Berna et al., 2004), presence of geogenic carbonates (GeoC) for 

example limestone (Yates et al., 2002; Berna et al., 2004), water availability (Douka et al., 2010; 

Cochran et al., 2010) and water circulation (Forman and Polyak, 1997), temperature (Douka et al., 

2010) and age (Chappell and Pollach, 1972).   

The dissolution of shell carbonate can begin immediately after burial (Fairbridge, 1967) and be 

associated with changes in elemental composition (Walls et al., 1977; Ragland et al., 1979) and 
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exfoliation (Yates, 1986). Dissolution is related to surface area (Nielsen-Marsh and Hedges, 1999; 

Collins, 2012), which increases with pore space of the skeletal structure (Henrich and Wefer, 1986; 

Nielsen-Marsh and Hedges, 2000). Therefore, recrystallization may occur both at the surface and/or 

inner parts of a shell fragment (Yates, 1986). Exfoliation and oxidation of organic compounds 

causes gaps and pore spaces in the shell structure, making it more susceptible to recrystallization 

(Yates, 1986; Webb et al., 2007). In isotopic studies, heating of samples is usually used to eliminate 

organic compounds (Dauphin et al., 2006). Heating also causes some crystallographic changes in 

shell structure (Collins, 2012). The occluded water will be removed (Lécuyer and O’Neil, 1994) and 

trace elements become mobile (Lécuyer, 1996; Dauphin et al., 2006). Therefore, heating increases 

shell porosity (Collins, 2012) and thus promotes recrystallization. Recrystallization on the shell 

surface may not merely reflect shell carbonate dissolution. If other source(s) of carbonate (e.g. 

GeoC) are present in the embedding matrix or if soluble Ca is available, then carbonate may 

precipitate on the shell surface from external sources as well (Yates et al., 2002; Prendergast and 

Stevens, 2014). As a consequence, shells embedded in calcareous soils may be contaminated by 

secondary carbonate, which can exhibit a higher susceptibility to recrystallization (Forman and 

Polyak, 1997). 

The low solubility of calcium carbonate (Ksp=10-9 at 25 ○C) (Robbins, 1985) and its low 

recrystallization rate complicate experimental research on shell carbonate recrystallization under 

controlled laboratory conditions. Recently, the sensitive technique of 14C labeling (Kuzyakov et al., 

2006; Gocke et al., 2010; Gocke et al., 2011) has been shown to help understand the processes 

and dynamics of recrystallization and its effects on the C isotopic composition of shell carbonate. 

This technique is based on 14CO2 labeling of the soil atmosphere and subsequent tracing of 14C 

activity in a carbonate sample in the soil. The method enables the amount of recrystallized 

carbonate and rate of recrystallization to be calculated. In this study we 1) determine the 

recrystallization of shell carbonate as a function of time, 2) investigate the effect of geogenic 

carbonates in soil on shell carbonate recrystallization rates, and 3) evaluate the effect of organic 

compounds on recrystallization. Based on the experimentally measured recrystallization, we discuss 

the consequences for dating and paleoenvironmental reconstructions based on the C isotopic 

composition of shell carbonate. 
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2.3. Material and methods 

2.3.1. Matrix materials and shells 

Loess deposits and a loamy soil were chosen as matrix materials. Loess and soil were 

collected from a single profile in an open mine in Nussloch, SW Germany (49.19○N, 8.43○E, 217 m 

asl. (Kuzyakov et al., 2006)). The soil was collected from the A horizon at a depth of 0.1 m (Table 3) 

and the loess from 10 m depth. The loess comprised 29.8% CaCO3 equivalent and 0.19% organic 

carbon content with silt loam as particle size distribution (for further information about loess see 

(Antoine et al., 2009). Loess and soil samples before beginning the experiment were air dried and 

sieved through a 2 mm pore size screen. 

 

Table 3: Chemical and physical properties of the soil 

Texture pH1:1 
CaCO3 
content 

Organic 
matter 

Cation 
exchange 
capacity 

Exchangeable cations 

  
% 

 Ca2+ Mg2+ K+ Na+ 
  cmol+ kg-1 

silty clay 
loam 6.8 - 1.1 16.3 13.2 2.05 0.42 0.02 

 

Pacific little-neck clams (Protothaca staminea) were selected as shell materials. The shells 

were collected from the North Sea coast in north-west Germany (53.68 N 6.99 E). The shells were 

washed carefully with distilled water ultrasonically to exclude the contaminants and dried at 60 ○C 

overnight. The dried shells were broken to small particles with a hammer and sieved to a particle 

size ranging from 2 to 2.5 mm. To examine the effects of organic compounds on shell carbonate 

recrystallization rate, half of the shells were heated to 550°C in a furnace for 3 h to eliminate the 

organic compounds (Table 4). 
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Table 4: Elemental composition of shell carbonates before and after organic compounds 

elimination by heating at 550 °C. 

Elemental 
composition Al Ca Fe K Mg Mn Na P S 

 mg g-1 

Organic-containing 
shells 0.02 365 0.54 0.25 0.35 0.02 4.81 0.31 0.71 

Organic-free shells 0.03 370 0.60 0.29 0.39 0.02 4.94 0.33 0.75 

 

2.3.2. Experiment setup 

300 mg (16-20 particles) of organic-containing and organic-free shells were mixed with 7.8 g of 

loess or soil and packed into 25 mL glass bottles with an inner surface area of 7.07 cm2. The bulk 

density of loess and soil in bottles were 1.1 g cm-3. The depth of loess and soil in bottles was 1 cm 

hence led to equal CO2 diffusion in the whole sample. Thereafter, 1.97 mL distilled water was 

added to each bottle. The water content corresponded to 60% of the saturated water content of 

loess and soil. Two plastic vials (0.5 mL) were also placed into each bottle (Fig. 11): one for the 

labeling and the second for removal of remaining CO2 (see 2.4.), and the bottles were sealed air 

tight. The experiment therefore included four treatments: 

 

a) Organic-containing shells in Loess (Org+loess) 

b) Organic-free shells in Loess  (NoOrg+loess) 

c) Organic-containing shells in soil (Org+soil) 

d) Organic-free shells in soil (NoOrg+soil) 
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Figure 11: The experiment layout and the labelling technique. 14CO2 was released by injecting 

H3PO4 into the vial containing Na2
14CO3. The 14CO2 remaining at the end of the recrystallization 

period (not participated in recrystallized carbonate) was trapped before each sampling by adding 

NaOH into the second vial. The H3PO4 was injected by syringe through the septa at the beginning 

of labelling, and NaOH injected at the end of labelling. 

 

2.3.3. Labeling technique and sampling 

14C labeled Na2CO3 (0.2 mL, 0.9 kBq) was injected by syringe into one of the vials in each 

bottle (Fig. 1). Injecting H3PO4 (0.07 M) into the vial containing Na2
14CO3 released the 14CO2. The 

concentration of 14C in shells was negligible comparing to the added 14C. Therefore, the initial 14C of 

shells has no effect on the measured and calculated results. The partial pressure of CO2 (pCO2) in 

bottles was 2% which is the common CO2 concentration at presence of roots and microbial 

respiration in soils (Pausch and Kuzyakov, 2012). The necessary amount of Na2
14CO3 to reach the 

mentioned pCO2 was calculated considering the ideal gas law (1 mol = 22.4 L). The air volume was 

determined by subtracting the volume of matrix particles and the added water from the total volume 

of bottle. The labeled samples were incubated for time periods of 1, 3, 10, 21 and 56 days at room 

temperature. At the end of each period, 0.4 mL of 1 M NaOH solution was injected into the second 

vial to absorb CO2 in the bottle’s air. After one day of CO2 absorption, the bottles were opened. 

Loess and soil along with shell particles were washed with 10 ml of slightly alkalinized distilled water 

to remove dissolved organic (DOC) and inorganic (DIC) carbon. Then the samples were let dry at 

60 °C overnight. Afterward the shell particles were separated from the matrixes using tweezers. To 

ensure that no loess or soil materials remained on the shell surface, the shell particles were washed 

again ultrasonically and dried at 60 °C. Dried shell particles were then ground to fine homogenized 

powder.  

 

1 cm 
of matrix 
materials 

Shell particles 

vial for 
Na2

14CO3 
 

vial for NaOH 
solution 
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2.3.4. 14C analyses 

The 14C activity was quantified in five carbon pools: shells, loess and soil, soluble phase (DIC 

and DOC), remaining CO2 in the bottle’s air, and the remaining labeling solution. This measurement 

enabled us to calculate the budget and distribution of added 14C in the samples.  

The carbonate in shell particles, loess and soil was released as CO2 by adding H3PO4 to an 

aliquot of shell particles (0.1 g), loess (0.5 g) and soil (2.0 g). The released CO2 was trapped in 1.5 

mL of 1 M NaOH solution overnight. Adding phenolphthalein to an aliquot of this NaOH solution 

clarified if the NaOH solution was not completely neutralized by absorption.  

An aliquot of the above-mentioned alkali solutions as well as solutions containing dissolved C 

and labeling remaining were mixed with scintillation cocktail (Rotiszint EcoPlus, Carl Roth, 

Germany). After the chemiluminescence decayed, the 14C activity of solutions was measured using 

a multi radio isotope counter (Beckman LS6500, USA). The 14C counting efficiency was at least 

70% and the measurement error was 5% at the maximum.  

 

2.3.5. Calculations and statistical analyses 

Considering the total amount of C and total 14C activity added to the bottles, the measured 14C 

activity in NaOH solutions related to the shells, loess and soil will reveal the amount of C 

recrystallized as carbonate on shells, loess and soil, respectively. The 14C activity was recalculated 

as a percentage of the measured 14C activity in relation to the total 14C added to the bottles and also 

as the amount of recrystallized carbonate (mg) on shell particles, loess and soil. The experiment 

was done with 4 replications for each sampling period. The mean values, standard errors and 

regression lines were calculated and drawn using SigmaPlot 12.0 (Systat Software Inc., California, 

USA). The significance of differences between recrystallization amount of various treatments was 

calculated by post-hoc Fisher LSD test at α = 0.05 error probability level (STATISTICA 10, StatSoft 

Inc., Tulsa, USA).  

 

2.4. Results 

As expected, the highest 14C activity was measured in air bottle CO2 for all treatments except 

NoOrg+Loess (Fig. 12). The highest 14C activity for NoOrg+Loess was instead in the loess. 14C 
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activity was generally higher in the loess than the shell particles (Fig. 12). 14C activity in the shells, 

however, increased continuously with time.  
  

 

Figure 12: The distribution of measured 14C activity between phases depending on time after 

labeling. Bar lines show standard errors. 
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The amount of recrystallized matrix carbonate was 0.51 mg in NoOrg+loess after two months, 

while the value for Org+loess was 0.05 mg (Fig. 13). Recrystallization in soil was calculated as 

0.0038 to 0.0041 mg.  

  

 

Figure 13: 14C activity and recrystallized amounts of CaCO3 in loess and soil depending on 

recrystallization time. The filled and open symbols refer to the shells containing and free of organic 

compounds, respectively. Bar lines show standard errors. Note the different scales of Y axes. 

 

The recrystallization of shell carbonate already took place on the first day and increased 

exponentially with time (Fig. 14). The values in the loess were 2 to 7 times higher (for Org+loess 

and NoOrg+loess, respectively) than for shells in the carbonate-free soil. Removing organic 

compounds from the shell material increased recrystallization of shell carbonate. Therefore, the 

difference between the amounts of recrystallization in organic-containing and organic-free shells 

increased as a function of time. The highest measured recrystallization rate for 300 mg shell 

carbonate was 1.6 10-4 day-1 in NoOrg+loess, while the lowest was 1.0 10-5 day-1 in Org+soil. The 

presence of organic compounds in the shell decreased the recrystallization rates by a factor of 4 in 

loess and 2.6 in soil. Shell carbonate recrystallization after two months in loess was 0.56% in 

organic-free shells and 0.14% in organic-containing shells. In soil, recrystallization was 1.2 times 

higher for the organic-free shells (ca. 0.08%) than for organic-containing shells (0.06%). 
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Figure 14: 14C activity and recrystallized amounts of CaCO3 on shells in loess and soil as a function 

of time (Ri). The filled and open symbols refer to the shells containing and free of organic 

compounds, respectively. Bar lines show standard errors. Note the different scales on Y-axes. 

 

Theoretically, the entire shell fragment can undergo dissolution and recrystallization. The higher 

the recrystallization rate, the less non-recrystallized or original shell carbonate will remain. 

Therefore, after two months, NoOrg+Loess showed the lowest (99.44%) and Org+Soil the highest 

(99.94%) amounts of remaining, non-recrystallized shell carbonate (Fig. 15). Carbonate 

recrystallization is exponential with time (Kuzyakov et al., 2006) and, according to the equation, 

never reaches 100%. We therefore calculated the time necessary for recrystallization of 95% of the 

shell carbonate, and considered this as the time for full recrystallization. It is important to stress that 

for this assessment, the recrystallization is considered as an uninterrupted and uniform process. 

The exponential equations calculated from our experimental results leveled off at values far from 

complete recrystallization at least in NoOrg+Loess. However, to have an estimation of full 

recrystallization, fitted exponential equations were extrapolated to 5% remaining shell carbonate. 

This showed the time necessary for full recrystallization of shell carbonate in NoOrg+loess was 

around 90 years (Fig. 15, b). The corresponding values for shell carbonate in Org+Loess, 

NoOrg+soil and Org+soil were respectively around 320, 700 and 770 years (Fig. 15, c and d).  
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Figure 15: (a) Percentage of shell carbonate remaining not-recrystallized after 56 days, (b, c and d) 

the calculated time for full recrystallization of shell carbonate containing or free of organic 

compounds in loess or soil (95% recrystallization assumed as full recrystallization). Circles and 

diamonds refer to shells in loess and loamy soil, respectively. Filled and open symbols show shells 

containing and free of organic compounds, respectively. The model line for each treatment is shown 

in different line styles. 

 

2.5. Discussion 

2.5.1. Matrix carbonate recrystallization in loess and carbonate-free soil 

Recrystallization of matrix carbonate was higher in the loess than in the carbonate-free soil. 

Recrystallization in loess was expected because it contained ca. 30% CaCO3 (i.e. GeoC). The 

dissolution of GeoC and isotopic re-equilibration with labeled 14CO2 during recrystallization 
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introduced 14C into the loess carbonate (Gocke et al., 2010). Unexpectedly, we also measured 14C 

in the matrix of carbonate-free soil following shell carbonate dissolution and recrystallization. 

Recrystallization in NoOrg+soil was higher in the first 10 days (Fig. 13, Soil). This confirms the 

results of Lécuyer (1996), who showed that heating (>400 ○C) increases the release of Ca2+ from 

shell structure into to the leachate (i.e. deionized water). The released Ca2+ into the soil solution and 

consequently recrystallization inside the soil, however, rapidly decreased with time (Fig. 13, Soil). 

This can be explained by the following. (1) The recrystallized carbonate had been dissolved in the 

solution and later recrystallized on shells instead of the soil. A higher rate of dissolution for 

recrystallized carbonate than shell carbonate is expected because of the very fine particle size, and 

hence large surface area, of recrystallized carbonate (Nordt et al., 1998). (2) The Ca2+ ions of 

recrystallized carbonate had been exchanged with other ions (e.g. K+ or Na+) on exchange sites of 

clay minerals or SOM. Therefore, other forms of carbonate such as Na2CO3 or K2CO3 were 

generated and leached out by soil washing. A similar exchange occurs in aquifers because of 

calcite dissolution in geologic time spans. The higher affinity of Ca2+ to clay minerals can displace 

Na+, K+ and even Mg2+ (Appelo, 1994). 

 

2.5.2. Recrystallization of shell carbonate  

The measured shell carbonate recrystallization after one day confirms that carbonate 

dissolution and recrystallization can start immediately after the exposure of carbonate to CO2 

(Fairbridge, 1967). Furthermore, recrystallization increases with elimination of organic compounds 

from the shell structure and in the presence of GeoC in the embedding matrix when compared to 

the organic-containing shells in a carbonate-free matrix (Fig. 14). To discuss about the effect of 

organic compounds elimination and presence of GeoC on shell carbonate recrystallization, the 

recrystallization amounts in NoOrg+soil, Org+loess and NoOrg+loess were compared to Org+soil.  

 

2.5.2.1. Effects of organic compound elimination on shell carbonate recrystallization 

According to Fig. 4 (Loess), shell carbonate recrystallization in Org+soil (ROrg+soil) as a function 

of time (t) can be modelled with Eq. 2. 

  

Eq. 2 ROrg+soil (mg) = 0.065 × (1 – exp (-0.034 × t)) 
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Heating up to 550 ○C eliminated nearly all shell organic compounds (Dauphin et al., 2006) and 

their protective effect (Hall and Kennedy, 1967; Nielsen-Marsh and Hedges, 2000). Organic 

compound elimination also increases shell porosity, increasing the contact surface between shell 

carbonate and solution and thus promoting carbonate dissolution (Collins, 2012) and 

recrystallization. Therefore, the recrystallization difference between NoOrg+soil and Org+soil (i.e. 

organic-free and organic-containing shells in soil, respectively) shows the effect of organic 

compounds on shell carbonate recrystallization. We suggest introducing a term characterizing the 

effect of organic compounds elimination on shell carbonate, Korg (Eq. 3). 

 

Eq. 3: Korg (mg) = RNoOrg+soil – ROrg+soil 

 

where RNoOrg+soil and ROrg+soil are the amounts of recrystallized carbonate on organic-free and 

organic-containing shells in soil, respectively.  

The difference in recrystallization between RNoOrg+soil and ROrg+soil for all measured dates was 

similar. Therefore, the average of all dates (0.0048 ± 0.008 mg CaCO3) was used as the constant 

amount (Korg) to show the effect of organic compounds elimination. Accordingly, adding 0.0048 mg 

to Eq. 2 yields the amount of recrystallization for NoOrg+soil (R2 between observed and predicted 

data: 0.75). 

 

2.5.2.2. The effect of geogenic carbonate on shell recrystallization 

The higher recrystallization rates of shell carbonate in loess versus soil (Fig. 14) demonstrated 

the effect of GeoC on shell carbonate recrystallization (Forman and Polyak, 1997). Therefore, 

higher recrystallization of organic-containing shells in loess (Org+loess) versus Org+soil shows the 

effect of GeoC (KGeoC) on recrystallization (Eq. 4). 

 

Eq. 4: KGeoC (mg) = ROrg+loess – ROrg+soil 

 

where ROrg+loess and ROrg+soil are the amounts of recrystallized carbonate for organic-containing 

shells in loess and soil, respectively, for each measuring date. 
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The amount of carbonate recrystallization due to the presence of GeoC increased exponentially 

with time. Therefore, instead of merely calculating the mean (as a constant amount), Eq. 5 was 

used to show this trend. 

 

Eq. 5: KGeoC (mg) = 0.0667 × (1 – exp (-0.107 × t)) 

 

To test the accuracy of Eq. 5, the calculated amounts of recrystallized CaCO3 using this 

equation were added to the results of Eq. 2 to estimate the extent of recrystallization in Org+loess. 

The R2 between measured amounts of recrystallization and the predicted data for Org+loess was 

0.88. We assumed, however, that the dissolution rates of GeoC (i.e. loess carbonate) and shell 

carbonate were similar. Considering the disseminated structure of loess carbonate and fine particle 

size distribution compared to the shell carbonate, higher dissolution and recrystallization of loess 

carbonate is expected. 

 

2.5.2.3. The combined effect of organic compounds and geogenic carbonate on shell 
carbonate recrystallization 

Differences between the measured amounts of recrystallization in NoOrg+loess and NoOrg+soil 

should also show the effect of GeoC on shell carbonate recrystallization. However, these 

differences did not agree with the results of Eq. 4. Furthermore, adding Korg (calculated as 0.0048 

mg) to KGeoC (Eq. 6) did not yield the measured recrystallization of shells in NoOrg+loess. 

Eliminating the protective effect of shell organic compounds (Hall and Kennedy, 1967; Nielsen-

Marsh and Hedges, 2000) as well as increasing the shell porosity (Collins, 2012) made shell 

carbonate more vulnerable to dissolution. Accordingly, recrystallization took place not only on the 

shell surface but also in the interior of the shell structure (Yates, 1986). Organic compound 

elimination therefore intensified the effect of GeoC (KGeoC in the equations below) on shell 

carbonate recrystallization. To show this intensification we used the difference between measured 

amounts of recrystallization in NoOrg+loess and Org+soil (Eq. 7). Adding the term intensification 

(int.) to Eq. 6 equating it to Eq. 7 allows the amount of intensification to be calculated (Eq. 8). 

 

Eq. 6: K(GeoC + NoOrg) = (ROrg+loess – ROrg+soil) + (RNoOrg+soil – ROrg+soil) = 

 ROrg+loess + RNoOrg+soil - 2ROrg+soil 
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Eq. 7: K(GeoC + NoOrg) = RNoOrg+loess – ROrg+soil 

 

Eq. 8: K(GeoC + NoOrg + int.) = E(GeoC + NoOrg) = 

 ROrg+loess + RNoOrg+soil - 2ROrg+soil + int. = RNoOrg+loess - ROrg+soil → 

 int. = (RNoOrg+loess - ROrg+soil) – (ROrg+loess + RNoOrg+soil - 2ROrg+soil) = 

 (RNoOrg+loess + ROrg+soil) - (ROrg+loess + RNoOrg+soil) 

 

We used Eq. 9 to determine the ratio between the calculated recrystallization due to 

intensification (Eq. 8) and the effect of GeoC and organic compound elimination (Eq. 6). Since Eq. 9 

predicts similar values for all dates, the mean of all dates was used as the constant rate, showing 

intensification of Kint. = 4.80 ± 1.1. Using this calculated constant rate (Kint), we estimated the 

amount of recrystallized shell carbonate in NoOrg+loess as a function of time (Eq. 10). The 

formulated equation (Eq. 10) was then used to predict shell carbonate recrystallization (Rshell carbonate) 

of all treatments on all dates. The R2 of the linear regression between measured and predicted data 

of all treatments and dates using Eq. 10 was 0.98 (Fig. 16). 

 

Eq. 9: Kint. = int. / K(GeoC + NoOrg) = 4.8029 

 

Eq. 10: Rshell carbonate = ROrg+soil + KGeoC + KNoOrg + int. = (ROrg+soil + KGeoC + Korg) × Kint. 
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Figure 16: The relation between modelled amounts of shell-carbonate recrystallization using Eq. (9) 

for all treatments and times with measured recrystallization. Bar lines show standard errors of 

measured recrystallization of each of four treatments at various dates. 

 

2.5.3. Time required for full recrystallization of shell carbonate 

Full recrystallization time calculated in this study was at least 10 times shorter than earlier 

estimations of 90% recrystallization after 7000 y (Chappell and Pollach, 1972). Different properties 

of the deposition areas (Yates et al., 2002) are one reason for the various estimates. In the littoral 

zone (Chappell and Pollach, 1972) water circulation (Forman and Polyak, 1997) washed out the 

dissolved Ca2+ ions, prolonging the time necessary for full recrystallization of shell carbonate. 

Moreover, solubility of CaCO3 in seawater with alkaline pH (Jacobson, 2005) is lower than in soil 

solution (pCO2 = 2%) (Pausch and Kuzyakov, 2012). Also noteworthy is that our time estimation is 

based on the assumption that shell carbonate recrystallization is a continuous process.       

The recrystallization process is exponential in time (Kuzyakov et al., 2006). Since the 

recrystallized carbonate is thought to first fill all the gaps in the outer shell layers and cover the shell 

surface (Webb et al., 2007), it protects the rest of the shell carbonate from further dissolution. 

Therefore, pre-treatments (e.g. washing with acids) before 14C dating of shell carbonate provide 
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more reliable dates (Yates, 1986). In calcareous soils or sediments (e.g. loess), where the 

recrystallization involves not only shell carbonate but also GeoC (Yates et al., 2002; Prendergast 

and Stevens, 2014), the time necessary for full recrystallization will be longer than estimated. In 

turn, recrystallized carbonate on the shell surface will undergo repeated recrystallization. This can 

buffer CO2 reactions and protect the shell carbonate from further recrystallization. Analysis of this 

time delay requires a specific experimental layout. 

After full recrystallization of shell carbonate, however, the isotopic composition of C is no longer 

related to the environmental conditions during the life time of the mollusk or its diet regime. The C 

isotopes will contain information about the properties of the environment in which it is embedded 

and the recrystallization conditions (Prendergast and Stevens, 2014). 

 

2.5.4. Significance of the results for archaeology and paleoenvironmental research  

The findings of this study have implications in archaeology and related disciplines.  Since shell 

carbonate can serve both as a dating material and a paleoenvironmental proxy, a profound 

understanding of its geochemical behavior in cultural layers, soils and sediments over long periods 

of time is essential. Moreover, it frequently represents the only proxy record available, especially in 

arid regions. It should be also noted that some archaeological sites, such as shell middens, consist 

almost entirely of shell carbonate (Álvarez et al., 2011). The findings are, further, equally relevant to 

research on other finds of carbonate materials in cultural layers, for example egg shells (Magee et 

al., 2009). 

Notwithstanding the existence of analytical tools for testing the integrity of mollusk shell 

carbonate for dating purposes or paleoenvironmental reconstructions, surprisingly little is known 

about the dynamics of diagenetic shell recrystallization in different sedimentological environments. 

The relatively low rate of carbonate dissolution limits the feasibility of reproducing the process with 

conventional methods. Currently, the outcome of shell carbonate exposure to CO2 in different 

sedimentological settings appears difficult to predict without experiment or modelling. To sum up, 

three issues of our study deserve particular attention.  

(1) The 14C-labelling approach enables detecting of very low concentrations of newly-formed 

CaCO3. Our data showed that the 14C label is present in both shell and matrix carbonate very soon 

after the exposure to 14CO2. The method thus offers a new experimental perspective for research 

on the recrystallization of biogenic carbonates under fine-tuned, controlled, laboratory conditions. 
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The proposed model also suggests an approach to estimate and predict the extent of 

recrystallization in a given sample when investigating paleoenvironment reconstructions, or for 

dating purposes. 

(2) Most chronological and paleoecological studies neglect both the character of original 

organic matter in a mollusk shell and the carbonate content of its ambient matrix. Our experiments 

demonstrate that these parameters are essential when assessing the probability of carbonate 

recrystallization and interpreting radiometric and isotopic shell characteristics (Fig. 17). This is 

especially important if archaeological contexts involve burned material with mollusk shells 

(Rodrigues et al., 2009). 

 

 

Figure 17: Shell carbonate recrystallization depending on presence of organic compounds in shell 

structure and geogenic carbonates in soil. Organic compounds elimination increases shell porosity 

and make it vulnerable to recrystallization. Geogenic carbonates may also undergo dissolution and 

may recrystallize on shell surface or fill shell´s structural porosities. 

 

(3) When extrapolating the results of this study to real archaeological settings, it must be borne 

in mind that the conditions of our experiment comply with a relatively limited spectrum of 

geochemical systems. Experimental conditions corresponded to the CO2 concentrations occurring 

commonly in the uppermost horizons of exposed (non-buried) soils with developed root systems of 

vegetation and a certain degree of microbial activity. In terrestrial environments, such conditions are 

rare at depths greater than ca. 1 m below the land surface and in extremely cool, hot or dry 
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climates. Also, except in wet tropical environments, the annual soil CO2 production is usually not 

uninterrupted, but restricted in time to the vegetative period. Its duration and combination with other 

climate parameters should be taken into account when the recrystallization period is the focus of 

interest.  

A key goal for future research will be to increase the practical value of 14C-labeling research on 

mollusk shells by conducting experiments that approximate natural carbonate recrystallization 

processes. The experiments should be appropriately modified by adding living root systems and 

varying factors such as depth, temperature and moisture regimes. Furthermore, future 

investigations should focus on comparisons between experimentally deduced recrystallization 

values and native samples of shell carbonate of known age that have been exposed to CO2 under 

known or predictable conditions. 

2.6. Conclusions  

Shell carbonate recrystallization begins very soon after embedding in soils and increases 

exponentially with time. Within two months, 0.06 to 0.56 mg per 100 mg shell carbonate was 

recrystallized, depending on the presence of organic compounds in the shell structure and geogenic 

carbonates in the soil. 

Shell and environmental properties affect the rates of shell carbonate recrystallization. Removing 

structural organic compounds and thus enhancing shell porosity increased the rate by 0.0048 mg 

(2-2.5 mm shell size). In the presence of geogenic carbonate, shell recrystallization increased 

because part of the recrystallized carbonate originated from re-precipitation of dissolved geogenic 

carbonate. The effect of geogenic carbonates was time-dependent and was intensified after 

elimination of structural organic compounds with associated increases in shell porosity. This 

intensification increased the measured recrystallized carbonate up to 4.8 times compared with 

pristine shells in carbonate-free soil. Recrystallization should be considered when interpreting of 

dating results and paleoenvironmental reconstructions. 

The 14C labeling approach was sensitive in assessing recrystallization rates of biogenic carbonate 

such as shell carbonate, within reasonably short times. 14C labeling provides a useful tool to 

examine the effects of individual factors on shell carbonate recrystallization.  
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3.1. Abstract  

The radiocarbon method has been frequently used to date mollusk shell carbonate. The 

accuracy of estimated ages, however, depends on the degree and completeness of shell carbonate 

recrystallization. Although the effect of contamination of the shell CaCO3 with environmental carbon 

(C) is well known, the role of Ca2+ in diagenetic processes remains unclear. Addition of young C to 

shells during diagenesis occurs in soil solution, where the Ca2+ concentration is in equilibrium with 

exchangeable Ca2+ and/or weathering of Ca-bearing minerals. While the exchange process takes 

place within seconds, the dissolution equilibrium requires longer timescales (on the order of 

months). It has therefore been hypothesized that the dissolution and recrystallization of shell 

carbonate in soils with higher cation exchange capacity (CEC) should proceed slower compared to 

those with low CEC. The objective was to determine the effects of soil CEC and exchangeable 

cations on shell carbonate recrystallization using the 14C labeling approach. Shell particles of the 

bivalve Protothaca staminea were mixed with carbonate-free sand (CEC = 0.37 cmol+ kg-1) (Sand), 

a loamy soil (CEC = 16 cmol+ kg-1) (Loam) or the same loamy soil saturated with KCl, where 

exchangeable cations were replaced with K+ (Exchanged). The high-sensitivity 14C labeling/tracing 

approach was used to determine carbonate recrystallization rates. Shell carbonate recrystallization 

after 120 days in Loam and Exchanged (0.016 and 0.024 mg CaCO3, respectively) showed one 

order of magnitude lower recrystallization than in Sand (0.13 mg CaCO3). A high level of soil 
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exchangeable Ca2+ decreased the solubility of shell carbonate and consequently its recrystallization 

because the exchange is faster than dissolution. Therefore, soil CEC and cation composition are 

determinant factors of shell carbonate recrystallization. Shells in soils with low CEC may undergo 

more intensive recrystallization; hence they may need further pretreatments before the dating 

procedure. 

 

Keywords: cation exchange capacity, biogenic carbonates, recrystallization, 14C labeling 
  

3.2. Introduction 

The radiocarbon (Δ14C) age of shell carbonate has a long history of application for dating 

purposes (Arrhenius et al., 1951; Kulp et al., 1951; Scholl, 1964; Douka et al., 2010; Pigati et al., 

2010). To achieve reliable dating, however, shell carbonate should behave as a closed system in 

respect to C after deposition in soils (Pigati et al., 2010). An addition of merely 10-15% modern C 

from the embedding soil matrix, for example, may lead to an 11 ka age difference in ca. 30 ka year-

old shells (Webb et al., 2007). Modern C addition to shell carbonate occurs by precipitation of 

secondary carbonate minerals on shells, when the solubility constants are achieved in soil solution. 

Therefore, the ions’ concentration in soil solution will be the key determinant of secondary 

carbonate formation rates (Pate et al., 1989). The Δ14C of these newly formed secondary 

carbonates, however, will differ from the Δ14C of shell carbonate and reflect the time of precipitation 

rather than shell carbonate age. Thus, a complete understanding of the processes by which 

secondary carbonate can become incorporated into shell material is critical for evaluating the 

veracity of shell 14C ages. 

Several approaches have been proposed to solve the problem of 14C contamination in 

radiometric dating of biogenic carbonates in soils and sediments. The non-modified carbonate can 

be mechanically separated from the newly-formed fraction and be dated thereafter (Douka et al., 

2010). Usually, however, the risk of encountering diagenetically altered carbonate is assessed by 

comparing the measured 14C ages of carbonate with the known ages of other, independent sources 

(Pigati et al., 2004, 2013; Pustovoytov & Riehl, 2006; Magee et al., 2009). Furthermore, the rate of 

carbonate recrystallization in soil can be estimated experimentally by 14C-labeling of CO2 under 

controlled conditions (Kuzyakov et al., 2006; Gocke et al., 2012). The latter method offers a 

possibility of studying the effects of recrystallization on 14C contamination of carbonates within a 

relatively short time (weeks to months). At the same time, precise knowledge of the effects of 

86 
 



specific soil properties on carbonate recrystallization is needed to extrapolate experimental results 

to natural soils and sediments.  

Here, we address the effect of the cation exchange capacity (CEC), one of the main inherent 

soil characteristics, on the diagenetic alteration of shell carbonate using the 14C labeling technique. 

The concentration of cations, i.e. Ca2+, in soil solution is in equilibrium with the exchangeable Ca2+ 

on surfaces of clay minerals and organic matter and with the dissolution of Ca-bearing minerals 

such as calcite in shell structure. The concentration of exchangeable Ca2+ in soils depends on total 

clay content and total soil organic matter as well as the mineralogy of dominant clay minerals. 

CaCO3 solubility in soil solution is controlled by CO2 partial pressure in soil atmosphere (Karberg et 

al., 2005) which is usually between 0.15 and 2.5% and may reach even to 12% (in Stolwijk & 

Thimann, 1957).  Therefore, in slightly acidified soil solution i.e. following CO2 dissolution, the 

solubility of CaCO3 increases (Aylward, 2007). However, the exchange process is completed within 

a few seconds to a few days and is faster than dissolution equilibria – months to years (Sears & 

Langmuir, 1982). Therefore, the exchange process is the main source of cations buffering changes 

in soil solution chemistry, for example following acidification (Sears & Langmuir, 1982; Norrström, 

1995).  

Considering that the exchange rate is faster than dissolution, we hypothesized that shell 

recrystallization will be the slowest in soils with high CEC. This is because cations released from 

exchange sites will buffer changes in soil solution chemistry before shell carbonate dissolution can 

reach the equilibrium. Accordingly, shell carbonate undergoes less dissolution and consequently 

less recrystallization. Here we examine the role of soil matrix CEC on shell carbonate 

recrystallization using 14C labeling. The objectives were to: (1) determine how soil CEC affects the 

rate of carbonate recrystallization in shells, (2) clarify whether the elemental composition of cations 

modifies the recrystallization rates, and (3) underline the consequences for radiocarbon dating and 

paleoenvironmental reconstructions.   

  

3.3. Materials and methods 

3.3.1. Matrix materials 

Carbonate-free sand particles and a carbonate-free loamy soil were used to examine the effect 

of CEC on shell carbonate recrystallization (Table 5). Sand particle diameters ranged from 0.5-1.5 

mm. The particle size distribution of loamy soil (Loam) was 25.1% clay, 68.4% silt and 6.5% sand. 
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To examine the effect of cation types at the soil exchange sites and the concentration of 

exchangeable Ca2+ on shell carbonate recrystallization, a subsample of the Loam saturated with 1 N 

KCl to substitute exchangeable Ca2+ with potassium (K). 33 mL of KCl solution was added to 5 g of 

soil. The suspension was shaken for 5 min followed by 5 min centrifugation in 2500 rpm. After 

decanting the supernatant, the procedure of KCl addition and centrifugation was repeated two more 

times. Subsequently, the exchanged soil was washed out 3-4 times with distilled water to remove 

the remaining chlorine ions (Cl-) from the soil solution. The presence of Cl- in the supernatant was 

tested by adding a few drops of 1 M AgNO3. The absence of white precipitate showed the complete 

removal of Cl-. The treated soil (Exchanged) was dried afterward at 105 °C overnight. 

 

Table 5: Exchangeable cations in sand and soil and cation contents in shells 

 

 Ca2+ K+ Mg2+ Na+ CEC 

mmol+ kg-1 

Sand 0.79 0.06 0.17 0.07 3.71 

Loam 132 4.21 20.5 0.22 163 

Exchanged 19.4 119 4.33 0.26 156 

 mg g-1  

Shell 370 0.29 0.35 4.80  
 

3.3.2. Experimental setup and analyses 

300 mg of heated (550 °C) shell particles of Pacific little-neck clams (Protothaca staminea)  

(Table 5) in the size range of 2 - 2.5 mm were mixed with 7 g of Sand, Loam and Exchanged in 250 

mL glass bottles. 1.68 mL of distilled water was added to the Sand as well as 2.37 mL to the Loam 

and Exchanged to bring the soil moisture to 80% of water holding capacity. Two 1.5 mL plastic vials 

were placed in the bottles for labeling (see below). The bottles were then sealed air-tight and kept at 

room temperature for 5, 20, 60 and 120 days. 

Following sealing, 0.2 mL of Na2
14CO3 was added to one of the plastic vials. The concentration 

of Na2
14CO3, considering the air volume in bottles after subtraction of soil and water, was 2% CO2 

partial pressure after neutralizing the Na2
14CO3 by acid. 2% pCO2 is the common soil pCO2 in the 

presence of living roots (Pausch & Kuzyakov, 2012). Afterwards by injecting 0.2 mL of 1 M H3PO4 
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solution into the vial containing Na2
14CO3 solution, the 14C-labeled CO2 was released into the 

bottle’s air as the first labeling (t = 0). The second labeling was done in the same way at day 55 (t = 

55). The 14C activity at both labeling times was 9.35 kBq in Sand and 6.92 kBq in Loam and 

Exchanged. 

One day before opening the bottles at each sampling date (i.e. 5, 20, 60 and 120 days), 0.4 mL 

of 1 N NaOH was injected into the second plastic vial to trap the remaining CO2, i.e. not 

incorporated in carbonate recrystallization. The amount of recrystallized carbonates on shells and in 

matrices was calculated, considering the known C amounts added to the bottles, the total added 14C 

and the measured 14C activity in shells and matrices (Kuzyakov et al., 2006). 

After opening of bottles, the matrices were washed with 10 mL of distilled water. The shell 

particles were removed from the matrices with tweezers and washed ultrasonically to remove any 

adhering matrix particles. Shell particles as well as the matrix materials were ground into a fine 

powder. 0.1 g of shell powder and 2 g of matrix materials were acidified to release carbonates as 

CO2, which was trapped in 1 M NaOH solution. Then, scintillation cocktail (Rotiszint EcoPlus, Carl 

Roth, Germany) was added to an aliquot of alkali solutions (i.e. NaOH in plastic vials and NaOH 

used to trap released CO2 by acidification of shells and matrices) and washing water. After few 

hours waiting for chemiluminescence decay, 14C activity was measured by a multi radio-isotope 

counter (Beckman LS6500, USA). The 14C counting efficiency was at least 70% and the 

measurement error was 5% at maximum. 

Besides the treatments containing shell particles, solely matrix materials with the same water 

content and labeling procedures were prepared to determine whether carbonate precipitation takes 

place because of Ca2+ release from exchange sites. Recrystallization in these samples, however, 

was measured just at the end of experiment i.e. after 120 days.  

CEC of the matrix materials and the composition of exchangeable cations were measured at 

each sampling period. CEC and exchangeable cations were determined by percolating soil samples 

with 100 ml of 1 M NH4Cl adjusted to pH = 8.1 for 4 h (König & Fortmann, 1996) and measuring 

cations in percolates using an inductively coupled plasma-atomic emission spectrometer (iCAP 

6300 Duo VIEW ICP Spectrometer, Thermo Fischer Scientific GmbH, Dreieich, Germany). 

The concentration of cations in shell particles (Table 5) as well as the concentration of 

dissolved ions in matrix solutions at the beginning of the experiment and in the matrix solutions at 

each sampling date were also determined using an ICP spectrometer.  
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3.3.3. Statistics 

The statistical analyses were done using STATISTICA 10 (StatSoft Inc., Tulsa, USA). The 

mean values and standard errors were calculated for 4 replications of each treatment at each 

sampling period. The significance of differences between the amounts of recrystallized carbonates 

between treatments at various dates was analyzed using the post-hoc Fisher LSD test at α = 0.05 

probability level.     
 

3.3.4. Results 

The highest shell carbonate recrystallization (Fig. 18, top) during the first labeling was in Sand 

with an average of 0.043 mg for days 5 and 20, followed by Loam and Exchanged, with 0.010 and 

0.003 mg, respectively. During the second labeling, shell carbonate recrystallization in Sand and 

Exchanged increased, while shell carbonate recrystallization was fairly constant in Loam. The 

average shell carbonate recrystallization between dates 60 and 120 was 0.131, 0.016 and 0.024 mg 

in Sand, Loam and Exchanged, respectively.  

The amounts of precipitated carbonates during first labeling in the presence of shell particles 

were similar in Sand, Loam and Exchanged (Fig. 18, middle). After the second labeling the 

precipitated carbonate increased by up to two orders of magnitude in Sand and Exchanged and one 

order of magnitude in Loam, compared to the first labeling. 

Carbonate precipitation was also detected in matrices without the presence of any shell 

particles (Fig. 18, bottom). The precipitated carbonates in these matrices after 120 days and with 

one labeling pulse were 0.0004, 0.0079 and 0.0110 mg in Sand, Loam and Exchanged, 

respectively. After second labeling, the amounts of formerly precipitated carbonates decreased to 

0.0001 mg in Sand and 0.0083 mg in Exchanged, whereas in Loam the value increased to 0.0143 

mg (Fig. 18, bottom). 

The significant increase in soil exchangeable Ca2+ was evident in Sand (Fig. 19, top). The 

values in Loam showed a decreasing trend, while in Exchanged it remained constant (Fig. 19, top). 

Unlike the exchangeable Ca2+, the exchangeable sodium (Na+) showed an exponential increase 

over time in all matrices (Fig. 19, bottom). Considering the negligible amounts of exchangeable Na+ 

in the matrices, the source of Na+ should be solely shells (Table 5). Therefore, soil exchangeable 

Na+ was a good indicator showing shell dissolution as well as exchange process.  
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Figure 18: (top) Carbonate recrystallization of shells in various matrixes. (middle) Carbonate 

recrystallization inside the matrix materials in the presence of shell particles. (bottom) Carbonate 

recrystallization inside the matrix materials in the absence of shell particles after 120 days. Black 

arrows show the time of labeling at the beginning of the experiment and at day 55. 

 

 

 

Figure 19: Changes in concentrations of exchangeable Ca2+ (top) and exchangeable Na+ (bottom) 

during the 120-day experiment period. Trend lines are shown in different styles. 

 

The concentration of dissolved Ca2+ in matrix solutions increased over 120 days in Sand but 

decreased in Loam and Exchanged (Fig. 20 top). Nonetheless, only the concentrations of dissolved 

Ca2+ in Sand during first labeling were significantly different with Loam and Exchanged. The Na+ 

concentration increased exponentially in all solutions, without a difference between matrices at each 

sampling time (except day 120 for Sand). 
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Figure 20: Changes in concentrations of dissolved Ca2+ (top) and dissolved Na+ (bottom) during the 

120-day experiment period. 

 

3.4. Discussion  

Shell carbonate dissolution and release of Ca2+ from exchange sites occurred concurrently with 

changes in soil solution chemistry (Levy, 1980) – in the present case CO2 release into solution due 

to an increase in pCO2 by labeling (Pate et al., 1989). Soil exchangeable Ca2+ was released to 

buffer excess H+ ions (Norrström, 1995) following CO2 dissolution. The released exchangeable Ca2+ 

was bound to bicarbonate ions, leading to precipitation of new-formed CaCO3. Hence, more 

carbonate was precipitated in Loam and Exchanged with higher exchangeable Ca2+ compared to 

Sand (Fig. 18, bottom). Consequently, more carbonate precipitation is expected following further 
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CO2 dissolution i.e. after the second labeling. Carbonate precipitation, however, increased only in 

Loam (Fig. 18, bottom). The decline in the content of formerly precipitated carbonates in Exchanged 

and Sand should solely reflect partial dissolution of these carbonates. Due to lower exchangeable 

Ca2+ in Exchanged and Sand, carbonate dissolution took part in buffering excess H+ (Levy, 1980; 

Kelly et al., 1998; Chadwick et al., 2003). As long as Ca2+ ions remain in soil solution, more CO2 in 

the form of HCO3
- will be neutralized, i.e. Ca(HCO3

-)2 in solution vs. solid CaCO3. The effective 

contribution of carbonates to H+ buffering is also recognizable by comparing the carbonate amounts 

precipitated in matrices with and without shells. Precipitation in Exchanged and Sand matrices 

containing shells was higher than in matrices without shells (Fig. 18, middle and bottom).  

Shell carbonate dissolution is confirmed by tracing changes in soil exchangeable Na+ 

concentration (Fig. 19, bottom). The exchangeable Na+ increased in all matrices over 120 days, 

despite negligible initial concentrations both as exchangeable or dissolved Na+ (Fig. 19 and 20 

bottom, at t = 0). Accordingly, the exponential increase of exchangeable Na+ should be due solely to 

shell carbonate dissolution and release of dissolved Na+ into soil solutions. Na is present in mollusk 

shell structure (Table 5), and concentrations exceeding 2000 ppm are generally indicative of shells 

from marine environments (Hahn et al., 2012; Findlater et al., 2014; O’Neil & Gillikin, 2014). An 

increasing Na+ concentration (Fig. 20, bottom) therefore had to exchange Na+ with other cations on 

soil exchange sites (Ferrell & Brooks, 1971; Levy, 1980). Although the concentrations of other 

elements on soil exchange sites, especially of exchangeable Ca2+, remained nearly constant (Fig. 

19, top), Loam and Exchanged with higher CEC showed more exchangeable Na+ than Sand (Fig. 

19, bottom). The lower value in Exchanged vs. Loam, however, reflects the inability to exchange K+ 

ions that were fixed in soil clay minerals. 

Shell carbonate dissolution and recrystallization were the highest in Sand because it has the 

lowest CEC. Therefore, more shell carbonate dissolved to buffer excess H+ (Porder et al., 2015). An 

increase in soil CEC and exchangeable Ca2+ decreases the solubility of shell carbonate and 

consequently the recrystallization. This is because exchange processes have faster rates than 

dissolution (Fig. 21). Following changes in soil solution chemistry, e.g. increasing soil pCO2, shell 

carbonate recrystallization increases comparatively slowly in soils with high CEC (Fig. 21). This calls 

for examining the properties of the environment embedding the shells, especially the total clay 

content and mineralogy as well as the composition of exchangeable and dissolved cations during 

sampling for radiocarbon dating. Furthermore, more precise models describing shell carbonate 

diagenesis require including soil CEC and exchangeable cation parameters. 
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Figure 21: Shell carbonate recrystallization depending on soil cation exchange capacity and Ca2+ 

concentration: Shell carbonate recrystallization decreases as soil CEC increases (green and red 

lines). Shell carbonate recrystallization rates in similar time spans increase faster in soils with less 

CEC with increasing soil pCO2 (Blue dotted lines). 

 

Carbonate dissolution rates depend on the CaCO3 saturation state in solution. Any changes in 

the chemical composition of soil solution are initially buffered by releasing the exchangeable cations 

(Levy, 1980). Accordingly, soil CEC is the key determinant of carbonate recrystallization rates. The 

effect of CEC on shell carbonate recrystallization is important for any studies related to 

paleoenvironment reconstructions based on carbonate δ13C signatures and radiocarbon dating. This 

is especially the case in areas where the shell carbonate fraction is the only available proxy, for 

example in arid regions due to decomposition of organic materials (Zazzo & Saliège, 2011). 

Furthermore, various types of biogenic carbonates such as bones (Zazzo et al., 2009), eggshells 

(Janz et al., 2009), teeth (Feakins et al., 2013) and calcified seeds (Pustovoytov et al., 2004) are 

also frequently used for paleoenvironment reconstructions and dating. These biogenic carbonates 

may undergo diagenesis as well. Biogenic carbonate diagenesis, however, proceeds at relatively 

slow rates, making it difficult to study diagenesis rates in short periods (Kuzyakov et al., 2006). 14C 

labeling showed a high potential to trace very small changes in shell CaCO3-C isotopic composition 

following dissolution and recrystallization. Therefore, 14C labeling may overcome the above 
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limitation, which makes it suited to study the diagenesis dynamics of biogenic carbonates under 

various environmental conditions. Moreover, 14C labeling can be recommended in investigations 

related to weathering of Ca-bearing minerals. Tracing 14C activity added as a label to systems 

similar to the ones in this study, but containing individual minerals instead of shells, may help reveal 

the weathering rates of such minerals. 
  

3.5. Conclusion 

Shell carbonate dissolution and recrystallization decrease with increasing soil CEC. This is 

because the equilibrium between exchangeable and dissolved cations will be reached much faster 

than mineral dissolution, e.g. of CaCO3 in shells. Therefore, the isotopic composition of shells may 

show less variation than the initial amounts in soils with relatively high CEC. This effect of CEC calls 

for including parameters such as total CEC and the equilibria between exchangeable and dissolved 

cations in models predicting shell diagenesis. 14C labeling showed a high potential to trace minor 

changes in the isotopic composition of shells following diagenesis and thus to better understand 

diagenesis dynamics. The 14C labeling approach can also be used to determine the weathering 

rates of other Ca-bearing minerals. 
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4.1. Abstract 

Fruit carbonate of Buglossoides arvensis (syn. Lithospermum arvense) is a valuable dating and 

paleoenvironmental proxy for late Quaternary deposits and cultural layers because CaCO3 in fruit is 

assumed to be accumulated from photosynthetic C. However, considering the uptake of HCO3
- by 

roots from soil solution, the estimated age could be too old depending on the source of HCO3
- 

allocated in fruit carbonate. Until now, no studies have assessed the contributions of photosynthetic 

and soil C to the fruit carbonate. To evaluate this, the allocation of photo-assimilated carbon (C) and 

root uptake of HCO3
- was examined by 14C labeling and tracing. B. arvensis was grown in 

carbonate-free and carbonate-containing soils (Sand and Loess, respectively), where 14C was 

provided as 1) 14CO2 in the atmosphere (5 times shoot pulse labeling) or 2) Na2
14CO3 in soil 

solution (root-labeling; 5 times by injecting labeled solution into the soil) during one month of fruit 

development. Distinctly different patterns of 14C distribution in plant organs after root- and shoot 

labeling showed the ability of B. arvensis to take up HCO3
- from soil solution. The highest 14C 

activity from root labeling was recovered in roots, followed by shoots, fruit organics and fruit 

carbonate. In contrast, 14C activity after shoot labeling was the highest in shoots, followed by fruit 

organics, roots and fruit carbonate. Total photo-assimilated C incorporated via shoot labeling in 

Loess grown plants was 1.51 mg lower than in Sand reflecting the presence of dissolved carbonate 

(i.e. CaCO3) in Loess. Loess carbonate dissolution and root-respired CO2 in soil solution are both 

sources of HCO3
- for root uptake. Considering this dilution effect by carbonates, the total 
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incorporated HCO3
- comprised 0.15% of C in fruit carbonate after 10 hours of shoot labeling. 

However, if the incorporated HCO3
- during 10 hours of shoot labeling is extrapolated for the whole 

month of fruit development (i.e. 420 h photoperiod), fruit carbonate in Loess-grown plants 

incorporated ca. 6.3% more HCO3
- than in Sand. Therefore, fruit carbonates from plants grown on 

calcareous soils may yield overestimated radiocarbon ages around 500 years because of a few % 

uptake of HCO3
- by roots. However, the age overestimation because of HCO3

- uptake becomes 

insignificant in fruits older than ca. 11,000 y due to increasing uncertainties in age determination. 

 

Keywords: Buglossoides arvensis, Lithospermum arvense, Biogenic carbonate, Reservoir effect, 14C 

labeling, Radiocarbon dating, Paleoenvironmental proxy  

 

4.2. Introduction 

Buglossoides arvensis (L) I.M.Johnst., syn. Lithospermum arvense L., (tribe Lithospermeae, 

family Boraginaceae) is an annual plant with 10-50 cm height and flowering time between April and 

July. B. arvensis is commonly found in Eurasian arable lands, grasslands and forest margins. The 

fruits, which are often incorrectly considered as fruits of B. arvensis, are small (ca. 2 mm in 

diameter), ovoid, and contain CaCO3 in their epidermal cells and parts of sclerenchyma (for more 

information about B. arvensis see (Pustovoytov and Riehl, 2006; and references therein) (Fig. 22).  

Fossil fruits of B. arvensis and other members of Lithospermeae are often found in late 

Pleistocene and Holocene deposits as well as in cultural layers of archaeological sites (Pustovoytov 

and Riehl, 2006). This calls for testing the applicability of carbon (C) isotopes in these fruits for 

dating purposes and paleoenvironmental reconstructions. Previously, it has been demonstrated that 

fruit carbonate of another taxon, the genus Celtis, can be successfully dated with 14C (Wang et al., 

1997; Quade et al., 2014) and serve as a paleoclimate proxy (Jahren et al., 2001). Similar results 

have been obtained for the tribe Lithospermeae (Pustovoytov et al., 2004; Pustovoytov and Riehl, 

2006; Pustovoytov et al., 2010). Aside from a few under- or overestimates the achieved ages 

showed good consistency with independently estimated ages for the archeological layers. The 

underestimated ages can be explained by post-sedimentary incorporation of fruits into the deposits 

(i.e. via bioturbation) (Wang et al., 1997; Pustovoytov et al., 2004; Pustovoytov et al., 2010) or slight  

diagenetic 14C-contamination effects (Quade et al., 2014). A ca. 400-year overestimate for a 
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herbarium exemplar from the early 19th century has been attributed to occasional depletion in 

atmospheric 14C concentration because of fossil fuel combustion (Pustovoytov and Riehl, 2006). 

 

 

Figure 22: (Left) A ca. one-month-old B. arvensis grown in a 250 mL plastic pot; (Right, top) B. 

arvensis flower; (Right, bottom) B. arvensis fruits. The arrows show the openings in the pot lid, 

which were used for irrigation and root labelling (see 2.2. Labelling procedure). 

 

However, since 1940 it has been known that plants can take up HCO3
- from soil solution via 

their roots (Overstreet et al., 1940; Cramer and Richards, 1999; Cramer et al., 1999; Viktor and 

Cramer, 2005). It has been shown that the amount of HCO3
- taken up can be 0.8 to 2% of the C 

assimilated through photosynthesis (Pelkonen et al., 1985; Brix, 1990; Viktor and Cramer, 2003; 

Ford et al., 2007). However, the HCO3
- uptake depends on its concentration in soil solution (Cramer 

and Lips, 1995) and the plant species (Stolwijk and Thimann, 1957). Some species, for example 

oats, are tolerant of high HCO3
- concentrations in the rhizosphere (up to 6.5% CO2 concentration), 

but some like tomato may show toxicity symptoms at comparatively low concentrations (ca. 1%  

CO2) (Stolwijk and Thimann, 1957). HCO3
- uptake via roots is mostly passive and depends on 

transpiration rates (Stolwijk and Thimann, 1957; Brix, 1990; Amiro and Ewing, 1992). This may 

explain why soil-derived HCO3
- is found at highest concentrations in roots, and decreases with 

distance from the roots (Brix, 1990). However, these concentrations can increase locally in specific 

2 mm 
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plant organs such as newly formed stems or fine roots, through unknown active mechanisms 

(Vuorinen et al., 1989; Ford et al., 2007). 

The HCO3
- concentration in soil solution is determined by the dissolution of root- and microbe-

respired CO2, exchange of CO2 between the soil and atmosphere and dissolution of carbonate 

containing minerals such as CaCO3. The isotopic composition of C in these HCO3
- sources differs: 

while HCO3
- from carbonate minerals is often totally 14C depleted, the 14C content of respired CO2 is 

almost identical with the 14C concentration in modern atmospheric CO2. Therefore, even a few 

percent of old C from carbonate minerals; can modify 14C ages of a sample. We hypothesize that 

radiocarbon ages based on fruit carbonate could overestimate the true age of a sample if part of the 

C comes from soil HCO3
-. Therefore, the main aims of this experiment were: 1) to identify the origin 

of C in CaCO3 of fruits, 2) to quantify the contribution of absorbed HCO3
- from soil, and 3) to 

calculate the potential effect of root HCO3
- uptake on radiocarbon dates based on fruit carbonates 

of B. arvensis. 

 

4.3. Material and methods 

4.3.1. Experimental layout  

250 mL plastic pots with lids (Sartorius AG, Germany) were used for plant growth (Fig. 22, Left). 

The lids had one main hole in the middle, for the growing plant stem, and three smaller openings, 

which were used for soil labeling and irrigation. To make a carbonate-containing and a carbonate-

free medium for plant growth, a carbonate-free loamy soil (Haplic Luvisol, originated from loess) 

was mixed with loess and sand particles, respectively, at a 1:1 ratio (200 g of loamy soil to 200 g of 

loess or sand). The loamy soil, loess and sand particles were air-dried and passed through a 2 mm 

screen before mixing. Loess samples containing 30% CaCO3 were taken from an open mine at 

Nussloch, southwest Germany, from 10 m below the soil surface (see (Kuzyakov et al., 2006) for 

details). Carbonate-free sand in the size range 0.5-1.5 mm was used. Water content was adjusted 

to 60% of water holding capacity by adding 96 mL of distilled water to the loamy soil + loess 

(hereafter called Loess) and 84 mL to the loamy soil + sand (hereafter called Sand). The water 

content of Loess and Sand was kept at 60% of water holding capacity during the whole experiment 

by weighing the pots and adding water when needed.  
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Fruits of B. arvensis were pre-germinated in the dark on wet filter paper. When plant height was 

around 1 cm they were transplanted into the growth pots, the lids closed, and placed into a growing 

chamber at 25-27 °C, 14-h photoperiod and 180 μmol m-2 s-1 light intensity. 

 

4.3.2. Labeling procedure 

Labeling started one week after the first flowers developed, and was repeated five times over a 

one-month period thereafter. Labeling was applied to either the roots or the shoots. In both cases, 

200 kBq of 14C in the form of Na2
14CO3 solution was used at each labeling occasion. The applied 

14C activity for labeling was several orders of magnitude higher than natural abundance of 14C in 

plant organs or soils. Hence, the initial 14C activity of plant organs or soils had no effect on the 

results of labeling. Before starting the procedure, the space between the stem and the main opening 

in the lid was filled with cotton and covered with Vaseline to provide an air-tight seal, which was 

maintained for the one-month period. The three small openings were only closed for the few hours 

of each labeling procedure, using tight-fitting plastic pins. Separation of the root and shoot 

atmospheres during the labeling procedure was necessary to prevent dissolution of 14CO2 in the soil 

solution while labeling the shoots, and to avoid photosynthetic assimilation of labeled 14CO2 that 

might be released from the soil solution during root labeling (Amiro and Ewing, 1992; Cramer and 

Richards, 1999). 

For shoot labeling, the pots were placed in an air-tight labeling chamber made of Plexiglas (0.5 

× 0.5 × 0.6 m3), which was fitted with four connections and a fan for circulating 14CO2. To produce 
14CO2, 5 mL of 2.5 M Na2

14CO3 was acidified by addition of H3PO4. The 14CO2 was pumped into the 

chamber using two inlets. After one hour the chamber was connected via the two outlets to a glass 

bottle with 20 mL of 1 M NaOH to trap unassimilated 14CO2. The trapping period was also one hour. 

Afterwards, the plants were returned to the normal conditions outside the labeling chamber and the 

plastic pins were removed. 

For root labeling, 3 mL of 0.002 M Na2
14CO3 solution was injected deeply into the soil in each 

pot via the three small openings in the lids (1 mL each) (Fig. 1, left). This fairly low concentration of 

sodium carbonate had no effect on plant growth or fruit production compared to the shoot-labeled 

plants. 
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4.3.3. 14C analyses 

One week after the fifth labeling, 14C activity was measured in plant organs (shoots, roots, and 

fruits), bulk soil and soil solution. After collecting the fruits, the plant stems were cut at the base and 

soils were washed with distilled water to separate the roots and to collect soil solution. To wash the 

soils, 1000 mL of distilled water was used for Loess and 880 mL for Sand. The bulk soils, shoots, 

roots and fruits were dried overnight at 40 °C to determine dry weights. Afterwards, 14C was 

measured in a subsample of each material. 
14C in fruits was measured separately in carbonate and organic components. The fruits were 

acidified with H3PO4 and the released CO2 was trapped in 1 M NaOH solution. The alkali solution 

was mixed with scintillation cocktail (Rotiszint EcoPlus, Carl Roth, Germany) and 14C was measured 

after decay of chemiluminescence with an Automatic TDCR Liquid Scintillation Counter (HIDEX 300 

SL, Turku, Finland). The acidified fruits were washed again with distilled water, dried at 40°C and 

weighed again to determine the weight lost from carbonates. The weight loss after acidification was 

taken as the fruit carbonate content. The remaining fruit material (i.e. the organic part) was 

combusted at 900 °C using a Biological Oxidizer (OX 400) to yield CO2. The produced CO2 was 

trapped in NaOH and 14C activity was measured as described above. 
14C measurement in the bulk soil was similar to that for fruits. For soil acidification, 0.1 g of 

Loess and 2 g of Sand were used. 14C measurements of shoots and roots were performed in the 

same way as for the organic parts of fruits, but as finely ground powders. 14C in soil solution was 

measured after addition of scintillation cocktail. To differentiate between dissolved organic carbon 

(DOC) and dissolved inorganic carbon (DIC), a part of the solution was acidified before addition of 

scintillation cocktail. This provided a 14C determination in DOC. The difference between 14C activity 

of total dissolved carbon and that of DOC was the 14C activity in DIC. 

 

4.3.4. Calculation of carbon incorporation into plant organs and age overestimation 

The C amounts incorporated into plant organs (mg) were calculated based on the C content of 

the labeling solution (mg) added to each pot, total 14C activity applied to each pot, and the 14C 

activity measured in plant organs (i.e. fruit carbonates, fruit organics, roots, shoots) (See Kuzyakov 

et al., 2006 for more details).  

To calculate the age overestimation because of incorporated HCO3
- carbon, we used the usual 14C 

decay equation (Bowman, 1995): 

 

T = −8267 ·  ln  (ASN   ̸ AON )      (Eq. 1) 
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where ASN is the normalized number of measured 14C atoms in a given sample and AON is the initial 

normalized number of 14C atoms at the beginning of decay and T is the time elapsed since the 

beginning of decay. Assuming a constant atmospheric 14C concentration over time, 

   

ASN  =   AON · 𝑒𝑒−λT   (Eq. 2) 

 

where λ = 1 / 8267. This law remains true as long as no new fractions of 14C or radiometrically dead 

C are added to a sample.  If a portion P of radimetrically dead carbon is added to a sample, the 14C 

concentration in such a sample becomes lower by a factor 1/(1+P), which modifies Eq. 2 in the 

following way: 

 

ASN =  AON  · 𝑒𝑒−λT  ·  1
1+𝑃𝑃

          (Eq. 3) 

 

Combining Eq. 1 and Eq 3., we obtain a formula for the measured age T՛ of a sample with a 

portion of radiometrically dead carbon P: 

 

T′ = −8267 ·  ln �(AON  · 𝑒𝑒−λT  ·  1
1+𝑃𝑃

 )   ̸ AON �        (Eq. 4) 

 

It is further apparent that 

 

T′ = −8267 · ln �𝑒𝑒
−λT

1+𝑃𝑃
� =    T  + 8267 ·  ln (1 + 𝑃𝑃)         (Eq. 5) 

 

Eq. 5 can provide the offset between the measured age of a sample with admixtures of dead 

carbon and its true age ΔT under stable 14C atmospheric concentration: 

 

ΔT = T′  −  T =   8267 · ln  (1 + 𝑃𝑃)     (Eq. 6) 

 

As it follows from Eq. 6, this offset does not depend on time and is only determined by the 

quantity of dead carbon admixture.    
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4.3.5. Statistics 

Mean values and standard errors were calculated for 6 replicates of each treatment. The 

significance of differences between shoot- and root-labeled plants was assessed using the post-hoc 

Fisher LSD test at α = 0.05 significance level. Statistical analyses were done in STATISTICA 10 

(StatSoft Inc., Tulsa, USA). 

 

4.4. Results 

The 14C distribution via shoot- and root labeling showed obvious and significant differences (p < 

5%) between various organs (Table 6). 14C specific activity after shoot labeling was the highest in 

shoots, followed by fruit organics and roots. In contrast, the highest 14C activity after root labeling 

was recovered in the roots, followed by DOC and DIC. 14C fraction recovered in shoots was ca. 6 

times higher (43-47%) after shoot labeling than root labeling (7-8%). Recovery after shoot labeling 

was also ca. 9 times higher in fruit organics, but ca. 3 times lower in roots. 

Total incorporation of C from shoot labeling by Loess-grown plants was 90.6 mg, lower (p < 

5%) than for the Sand-grown plants (92.1 mg). Incorporated C from root labeling was 74.1 and 103 

mg for Loess and Sand, respectively (Table 7). Fruit carbonate had greater incorporation from shoot 

labeling than from root labeling: 1.5 times higher in Sand and 1.9 times in Loess (Table 7). 

 

Table 6: Percentage of 14C label recovered in different plant organs and soils via 

photosynthesis (Shoot-labeling) or taken up by roots (Root-labeling). Standard errors are 

shown in parentheses. 

Labeled fractions 
Shoot-labeling  Root-labeling 

Sand Loess  Sand Loess 

Fruit carbonate 0.16 (0.01) 0.15 (0.01)  0.08 (0.01) 0.06 (0.01) 

Fruit organics 25.1 (0.98) 30.4 (1.19)  4.38 (0.70) 2.46 (0.23) 

Shoots 46.8 (2.64) 43.3 (1.17)  7.88 (0.47) 6.93 (0.39) 

Roots 23.6 (2.26) 20.3 (1.66)  69.7 (0.90) 49.8 (3.15) 

Dissolved organic carbon 2.86 (0.11) 3.54 (0.05)  13.2 (0.39) 20.4 (1.20) 

Dissolved inorganic carbon 1.17 (0.04) 1.14 (0.08)  3.81 (0.34) 9.18 (0.95) 

Soil carbonate 0.25 (0.02) 1.17 (0.10)  1.00 (0.05) 11.2 (1.24) 
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Table 7: Amounts of incorporated labeled carbon (mg) in plant organs after shoot or root 

labeling of Sand- or Loess-grown plants. Standard errors are shown in parentheses. 

Labeled fractions 
Shoot-labeling  Root-labeling 

Sand Loess  Sand Loess 

Fruit carbonate 0.15 (0.01) 0.14 (0.01)  0.10 (0.01) 0.08 (0.01) 

Fruit organics 24.2 (0.94) 29.3 (1.14)  5.47 (0.88) 3.07 (0.29) 

Shoots 45.1 (2.54) 41.6 (1.12)  9.85 (0.59) 8.66 (0.49) 

Roots 22.7 (2.17) 19.6 (1.60)  87.1 (1.12) 62.3 (3.93) 

Total 92.1 (0.13) 90.6 (0.17)  103 (0.90) 74.1 (3.62) 

 

4.5. Discussion 

The soil properties (Loess vs. Sand) and the labeling approach (shoot vs. roots) had no effect 

on total plant growth or individual organs. Therefore, we can directly compare the label 

incorporation and distribution between the soils and labeling conditions.  

The obvious differences in 14C activity of various plant organs after root labeling comparing to 

shoot labeling reveal that HCO3
- carbon was taken up by B. arvensis roots (Table 6). To determine 

the amount of HCO3
- carbon incorporated by B. arvensis, the total incorporated C via shoot labeling 

in Loess and Sand were compared. If we assume no re-uptake via HCO3
-, there should be no 

difference between the incorporated C from 14CO2 in Sand- and Loess-grown plants following 

shoot-labeling. The comparison, however, reveals 1.51 mg less photo-assimilated C in Loess than 

in Sand (Table 7). CaCO3 solubility in distilled water is 13.1 mg L-1 at 25 °C (Aylward, 2007). 

Therefore, in Loess with ca. 700 mL water3, 9.1 mg CaCO3 can be dissolved. According to the C 

mass proportion in CaCO3 (12 mg C 100 mg-1 CaCO3), this amount of dissolved CaCO3 contains 

1.1 mg C (fairly equal to the solubility of CaCO3). Root-respired CO2 can dissolve in soil solution 

and be reabsorbed by roots (Ford et al., 2007). However, root-respired CO2 is diluted in Loess 

solution before re-uptake (Fig. 23). Hence, total incorporated C in Loess plants was lower than in 

Sand plants. In conclusion the so-called reservoir effect, i.e. incorporation of 14C-depleted carbon 

from soil into biologically formed carbonates which has already been proven for other types of 

3 Cumulative amount of water added to the pots to keep the water content of Loess at 60% of water holding 
capacity during one month labeling. 
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biogenic carbonates, such as land-snail shells (Pigati et al., 2004; Pigati et al., 2010 and references 

therein) also takes place in fruit carbonate of B. arvensis. 

 

 

Figure 23: Dilution of 14C content of plant organs by dissolved inorganic C (HCO3
-) taken from 2 

sources: In carbonate-free soils, the only source of HCO3
- is dissolution of root- and 

rhizomicrobially-respired CO2 originally from the atmosphere (ACO2). In carbonate-containing soils, 

the dissolution of lithogenic carbonates (CaLCO3) is a second source. The HCO3
- from root-respired 

CO2 is diluted by the HCO3
- from lithogenic carbonates (Kuzyakov et al., 2006; Gocke et al., 2011). 

For shoot-labeled plants, this process leads to a reduction of the 14C activity in the re-absorbed 

HCO3
-. 

 

Since the incorporated C from soil carbonate is radiocarbon dead, this may lead to 

overestimations of radiocarbon ages based on biogenic carbonates (Goodfriend, 1987). 

Considering the total weight of C in fruit carbonates (8.08 mg C, based on 20 fruits) and the 

difference between HCO3
- incorporation into fruit carbonate in Sand and Loess after shoot labeling 
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(0.012 mg C) ca. 0.15% of C in fruit carbonate - after 10 h labeling - originated from soil solution. 

The total HCO3
- incorporated into the whole plant amounted to 1.6% of dry weight. However, fruit 

carbonate in Loess after shoot labeling showed 7.6% more HCO3
- than in Sand (Table 7). 

Furthermore, extrapolating the 10 h labeling period to the full month of this study (420 h 

photoperiod) indicates around 6.3% of fruit carbonate in Loess is derived from lithogenic 

carbonates. A 6.3% share of lithogenic HCO3
- leads to radiocarbon ages overestimated by 505 14C 

years (Eq. 6), based on fruit carbonate of Loess-grown Buglossoides arvensis.  

 

In this connection, it is important to note that too old radiocarbon ages on fruit carbonate were 

reported in literature (Pustovoytov et al., 2004, 2010; Pustovoytov and Riehl, 2006). One of the 

ways to explain the discrepancy between an age measured on the carbonate fraction of fruits and 

the true age of the sample could be the uptake of inorganic carbon from the soil by root systems.   

Regarding the suitability of fruit carbonate for dating purposes, an age overestimation of order of 

500 14C years, though persistent with increasing sample age, becomes insignificant against the 

measurement uncertainties in relatively old samples  (such as 11,000 y and older, i.e. after two 14C 

half-lives).      

Some of the other findings may also deserve particular attention. As expected, the distribution 

of C from soil CaCO3 decreases with the distance of plant organs from the roots (Brix, 1990) (Table 

7). The HCO3
- distribution in plant organs has usually been attributed to passive uptake with 

transpiration flow (Stolwijk and Thimann, 1957; Amiro and Ewing, 1992). This means that HCO3
- 

moves with water from roots towards stomata (Amiro and Ewing, 1992). However, the different 14C 

activities in various organs following shoot labeling in Sand and Loess, arising from the dilution 

effect of lithogenic HCO3
-, suggest the selective incorporation of HCO3

- carbon in specific organs 

(Ford et al., 2007). After shoot labeling, there was 3.20 mg more labeled C in roots and shoots and 

0.012 mg more labeled C in fruit carbonate of plants grown in Sand than of those in Loess (Table 

7). At the same time, Sand-grown plants had 5.11 mg less labeled C in fruit organics. The higher 

difference indicates a higher dilution effect by soil carbonate and higher incorporation of HCO3
-. 

Therefore, the highest HCO3
- amount was retained in roots and shoots, followed by fruit carbonate, 

while fruit organics showed the lowest HCO3
- incorporation. This may suggest some active uptake 

processes (Vuorinen et al., 1989; Ford et al., 2007) enhancing fruit carbonate compared to the fruit 

organics, since these components are the same distance from the roots. The apparent lower HCO3
- 
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incorporated in Loess- compared to Sand-grown plants after root labeling, on the other hand, is 

partly due to substitution of added Na2CO3-C with Loess CaCO3-C (Fig. 1) (Kuzyakov et al., 2006).  

 

4.6. Conclusions 

(1) Buglossoides arvensis takes up dissolved inorganic carbon (HCO3
-) from the soil via roots 

under laboratory conditions. The source of HCO3
- can be dissolution of carbonate minerals 

(radiometrically dead, e.g. loess carbonate) and dissolution of root-respired CO2 (recent C) in soil 

solution. 

(2) The HCO3
- uptake is mostly passive; however, HCO3

- can be preferentially incorporated into 

organs such as fruit carbonate, which are formed at specific plant development stages. 

(3) The incorporated HCO3
- taken up by roots may contribute more than 6.0% of fruit-carbonate 

C in plants growing on a carbonate-containing soil. Therefore, an age overestimation of ca. 500 

years is possible. Inflated ages based on fruit carbonate can be attributed to HCO3
- uptake by roots 

during fruit development. This calls for further investigation of possible effects of calcareous 

substrates on the outcome of 14C-dating of the fruit carbonate fraction. 

(4) The age overestimation because of lithogenic HCO3
- incorporation in fruit carbonate 

however, is insignificant   in relatively old samples, approximately after two 14C half-lives. 
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