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Abstract 

During the last two decades the search for risk factors of many human diseases turned into a 

new direction, since it got feasible to gauge the human genome. Genome-wide association 

studies (GWAS) were carried out to identify genes or narrow genomic regions responsible 

for the susceptibility to health problems. Lung cancer is one of these conditions. Lung cancer 

is a major public health problem - worldwide. During the whole lifetime, one out of 14 men 

and one out of 17 women will develop an invasive lung or bronchial cancer.1 Moreover, only 

one or two out of 5 patients survive the first 5 years after being diagnosed. 2 

The International Lung Cancer Consortium (ILCCO), overlapping with the Transdisciplinary 

Research in Cancer of the Lung (TRICL, another international group of cooperating lung can-

cer researchers) was established in 2004 with the aim of sharing comparable data from on-

going lung cancer case-control and cohort studies. The participating studies are from differ-

ent geographical areas and ethnicities. On the basis of genomic data being shared within 

ILCOO, it was possible to identify and verify the existence of genomic risk loci for lung cancer 

in European population at chromosomes 5p15.33, 6p21-22 and 15q25.3-10 

However, the applied genome-wide association studies suffer from several drawbacks. One 

thereof is the ignorance of the complexity of molecular-biological mechanisms. Gene-set 

analyses methods (GSA) were proposed as complementing approaches in the investigation 

of the genetic basis of diseases using GWAS results to overcome this disadvantage. These 

aim to discover a joint association of the markers belonging to the genes of considered bio-

logical pathways (denoted as gene-sets (GS)) with a disease of interest. Moreover, even if 

GSAs based on different but comparable studies successfully identify joint association for the 

same GS, one cannot simply consider this as replicated findings. The pattern of associations 

of the concerned markers needs to be taken into account. 

I have proposed the quantitative approach META-GSA to combine results from GSAs, respec-

tively 𝑝𝐺𝑆-values of GSs, by incorporating concordance of single-marker association patterns 

between studies, relevant for the GS of interest.11 

This new method has been applied to the data of ILCCO/TRICL. A pathway currently marked 

as specific to systemic lupus erythematosus was discovered as being significantly implicated 

in lung cancer. The gene region 6p21-22 in this pathway appears to be more extensively as-

sociated with lung cancer than previously assumed.3,6,8 Given wide-stretched linkage disequi-

librium in and around the area APOM/BAG6/MSH512, there is currently not enough infor-

mation or evidence to conclude whether the potential pleiotropy of lung cancer and system-

ic lupus erythematosus is spurious, biological, or mediated.13 Further research on this path-

way and gene region will be necessary. 
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Zusammenfassung 

In den letzten vier Jahrzehnten wandte sich die Suche nach Risikofaktoren vieler mensch-

licher Krankheiten dem menschlichen Genom zu, da es möglich wurde, dieses massenhaft 

und kostengünstig zu vermessen. Genomweite Assoziationsstudien (GWAS) wurden durch-

geführt, um Gene oder enge genomische Regionen zu identifizieren, die für die Ermittlung 

der individuellen Krankheitsanfälligkeit, z.B. hinsichtlich Lungenkrebs (LK), von Bedeutung 

sind. Lungenkrebs ist weltweit ein großes Thema des Gesundheitswesens. Im Laufe ihres 

Lebens werden einer von 14 Männern und eine von 17 Frauen einen invasiven Lungen- oder 

Bronchialtumor entwickeln.1 Außerdem überleben nur ein bis zwei von 5 Patienten die ers-

ten 5 Jahre nach der Diagnose Lungenkrebs.2 

Das International Lung Cancer Consortium (ILCCO), das mit der Gruppe Transdisciplinary Re-

search in Cancer of the Lung (TRICL) überlappt, wurde 2004 mit dem Ziel gegründet, ver-

gleichbare Daten von laufenden Studien zu Lungenkrebs-Erkrankung zusammen zu bringen. 

Die teilnehmenden Studien stammen aus verschiedenen geografischen Regionen und um-

fassen mehrere Ethnien. Auf der Basis aller genomischen Daten des ILCCO, war es möglich, 

die Existenz von genomischen Risikofaktoren für Lungenkrebs in europäisch stämmigen Po-

pulationen auf den Chromosomen 5p15.33, 6p21-22 und 15q25.3-10 zu identifizieren und zu 

verifizieren. 3-10 

Die angewandten statistischen Auswertemethoden sind jedoch nicht frei von Nachteilen. Ei-

ner davon ist das Ignorieren der Komplexität molekularbiologischer Mechanismen in der 

Genese einer Erkrankung. Gen-Set-Analyse-Methoden (GSA) wurden daher als ergänzende 

Ansätze zur Datenauswertung von GWAS vorgeschlagen. GSAs zielen darauf ab, eine ge-

meinsame Assoziation zwischen einer Zielerkrankung und den Markern, die zu den Genen 

der betrachteten biologischen Mechanismen gehören (im Weitern als Gen-Sets (GS) be-

zeichnet), aufzudecken. Aber, auch wenn GSAs, die auf unterschiedlichen, aber vergleich-

baren Studien basieren, erfolgreich eine gemeinsame Assoziation für dieselben GSs identifi-

zieren konnten, kann das nicht als Replikation der Ergebnisse angesehen werden. Das Asso-

ziationsmuster der betroffenen Marker muss berücksichtigt werden. 

Ich habe den quantitativen Ansatz META-GSA entwickelt, um Ergebnisse von GSAs quantita-

tiv valide zu kombinieren, indem die Konkordanz von Einzelmarker-Assoziationsmustern zwi-

schen den Studien adäquat berücksichtigt wird.  

Diese neue Methode wurde dann auf die Daten von ILCCO / TRICL angewandt. Gene, die der 

Krankheit Systemischer Lupus Erythematodes (SLE) zugeordnet werden, wurden auch als sig-

nifikant zu Lungenkrebs assoziiert erkannt. Daraus lässt sich folgern, dass die Genregion 

6p21-22 mit Lungenkrebs stärker assoziiert ist als bisher angenommen.3,6,8 Es besteht jedoch 

ein weit reichendes Kopplungsungleichgewicht dieser Region mit dem Bereich 

APOM/BAG6/MSH512, der einen bekannten Risikofaktor für Lungenkrebs darstellt. Aus den 

Daten kann nicht eindeutig geklärt werden, ob die potentielle Pleiotropie von Lungenkrebs 

und SLE scheinbar, biologisch oder vermittelt ist.13 Weitere Untersuchungen dieser Genregi-

on sind daher notwendig.  
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Abbreviations 

 

RR relative risk 

OR odds ratio 

95%-CI 95% confidence interval 

ES enrichment score 

NES normalized enrichment score 

PDR directed reversed p-value 

GS gene-set (of interest) 

GS´ remaining genes in the genome 

GSA gene-set analysis 

GWAS genome-wide association studies 

pooledGWAS-GSA Alternative approach to META-GSA: The combining of studies is 

performed at the level of markers, followed by a single GSA performed 

on the pooled marker-specific associations.  

MtG annotation of markers to genes 

GtP  annotation of genes to gene-sets/pathways 

LC Lung Cancer 

SLE Systemic Lupus Erythematosus 

ILCCO International Lung Cancer Consortium  

TRICL  Transdisciplinary Research in Cancer of the Lung 

DNA deoxyribonucleic acid 

AUC area under the curve 

KEGG Kyoto Encyclopedia of Genes and Genomes  

GO Gene Ontology 

ALIGATOR Association LIst Go AnnoTatOR 

GSEA Gene-Set Enrichment Analysis 
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1 Introduction 

1.1 Lung cancer – and its risk factors 

Cancer is a major public health problem all over the globe. About 14.1 million new cancer 

cases, 8.2 million deaths by cancer and 32.6 million people living with cancer (within 5 years 

of diagnosis) were counted for 2012 worldwide.14 In developed countries about 482,600 new 

male and 241,700 female cases per anno for cancer of the lung or bronchus (LC) have been 

estimated. This is in men the second largest, respectively in women third largest, cancer in-

cidence.15 In Germany 34,690 males and 18,810 women have been newly diagnosed with LC 

in 2013. 29,708 men and 15,140 women died from LC in the same year.2 During the whole 

lifetime, one out of 14 men and one out of 17 women will develop an invasive lung or bron-

chial cancer (estimated for the United States of America, 2010 to 2012).1 Furthermore, once 

diagnosed with lung cancer, one has to face a poor prognosis. According to the “Zentrum für 

Krebsregisterdaten”, 84% of men 79% women will die within the first 5 years after being 

diagnosed with LC.2 Due to the combination of high incidence and poor prognosis, LC is the 

most common cause of cancer death worldwide. However, standardised incidence and prev-

alence of LC for men is decreasing since the mid of the 1980s, in Germany as in other de-

volved countries. On average between 2003 and 2013 the incidence declined by -1.2% (per-

centage points) per anno, the prevalence by -1.5%. In contrast, there is a continuously in-

creasing trend in incidence and prevalence for women, since the beginning of the data col-

lection. On average between 2003 and 2013 the incidence raised by +3.1% and the preva-

lence by +2.7%, each year.2 

Lifelong tobacco smoking remains the predominant cause of LC, even in former-smokers. It 

is known today that tobacco smoke is a mixture of more than 5,000 chemicals. It is toxic and 

carcinogenic.16 At least 98 of these components are, once inhaled, hazardous for human 

health. The first relation between smoking and LC was drawn in 1939, considering a German 

case-series of 96 LC-patients.17 The first scientific evidence was given by Doll and Hill in 1952, 

comparing 1.465 LC cases and 1.465 matched controls, but without calculating any excess 

risk estimates for smokers18. By summarizing the results of a total of 287 studies estimating 

the association between smoking and LC, all published between 1950 and 1995, an overall 

relative risk of RR=5.50 (95%-CI 5.07-5.96) was estimated for (ever-) smokers and an RR=8.43 

(95%-CI: 7.63-9.31) for current smokers, each compared to never-smokers. The relative risk 

was stronger for squamous LC (current smoking RR=16.91, 95%-CI: 13.14-21.76) than adeno 

LC (RR=4.21, 95%-CI: 3.32-5.34).19 LC only occurs in one out of 10 heavy smokers.19 

The rate of male smokers in Germany has dropped since the 1990s (1992: 37% of men 

smoked; 2013: 29% of men smoked).20 Even more, for German male smokers the 30-day 

prevalence of smoking more than 20 cigarettes a day fell from 27% to 2% between 1980 and 

2013. Both changes act as the main explanation for the reduction of incidence and preva-

lence of LC. In contrast, about one out of 5 German women is smoking, without any change 
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of this rate in the last decades. (1992: 22% of women smoked; 2013: 20% of women 

smoked). There also exists a negative trend in the amount of smoked cigarettes a day in 

German women (as in men). For female smokers the 30-day prevalence of smoking more 

than 20 cigarettes per day fell from 16% to 1.4% between 1980 and 2013.  

It is estimated that 10–29% of LC cases are attributable to factors other than smoking, repre-

senting between 16,000 and 24,000 LC deaths annually in the USA alone.2-4 Exposure to ra-

don, a naturally occurring radioactive gas, is regarded as the second frequent cause of LC. 

About 10% of LC cases are attributed to it.21,22 Exposure to other environmental factors, like 

exhaust fumes of diesel engines, arsenic, asbestos, crystalline silica and some more chemical 

substances were found to be further risk factors for LC.21,23-25 An increased risk of developing 

LC has also been observed in patients with other diseases, such as COPD, pneumonia, tuber-

culosis, or the autoimmune disorder systemic lupus erythematosus (SLE).26,27 To my 

knowledge, the only identified factor lowering the risk for LC is the intake of soy food or soy 

products.28 

Other lifestyle factors had been discussed to lower the risk of LC, these are e.g. physical ac-

tivity, consumption of fruits, red mead, tea, beer and wine or supplements of vitamins or 

minerals.29-31 With the exception of some particular subgroups, like non-smoking women 

drinking black tea every day, for none of these factors a convincing evidence of preventing 

lung cancer in general is given. Although relative risk estimates from meta-analyses of 

RR=0.9 or similar are reported, the observed associations between lung cancer and dietary 

factors or physical activity are hard to disentangle from cigarette smoking.32-36   

Familial aggregation of lung cancer was identified as a further risk factor, already discovered 

before the turn of the century37-42, persistent even when corrected for smoking.5-8 This indi-

cates the existence of a genetic component which is relevant in the aetiology of LC. Today 

(27th February 2017) PubMed lists 222,009 scientific publications assigned to the key "Lung 

neoplasms/genetics", some dating back to the 1960s. In one of the early enlisted publica-

tions, “a negro family is presented in which all four of eight siblings older than 50 have de-

veloped carcinoma of the lung. Attention is drawn to the possible genetic and environmental 

factors which are etiologically related to cancer of the human lung.”43 Although at this time 

no facilities for genotyping were available, it was concluded that “the inter-relationship of 

smoking and genetic factors may explain the very high incidence of lung carcinoma in this 

family“. Investigations from Germany showed a 2.6-fold increased lung cancer risk in young 

patients (OR, 95% CI 1.6–6.0) if a first degree relative had been diagnosed with LC cancer44 

and a 5.6- fold increased risk (OR, 95% CI 0.7-46.9) if a parent or sibling was affected with LC 

at young age, too.45 Even for non-smokers aged 40 to 59, an increase of the lung cancer risk 

up to 6-fold was seen in the presence of lung cancer in a first-degree relative.46  

In 1990 the results of a segregation analyses performed on 337 families, each ascertained 

through a lung cancer patient indicated that early onset LC can be caused by a Mendelian 

codominant inheritance of a rare major autosomal gene. Segregation at this putative locus 
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could account for about 2/3 of the cumulative incidence of lung cancer in individuals up to 

age 50. 47,48 It was not until 14 years later that the first evidence for linkage of a lung cancer 

susceptibility locus was published. The putative locus was localized to a region on 6q23–25.49 

This provides evidence that genetic factors contribute to the susceptibility of LC. During the 

last decade several genetic variants have been identified as associated to lung cancer or to a 

specific histological sub-type by genome-wide association studies (GWASs), candidate gene 

or pathway studies. Genomic risk loci in European population were identified at chromo-

somes e.g. 5p15.33, 6p21-22 and 15q25.3-10 Most of these variants could only be detected by 

combining several GWASs meta-analytically within the International Lung Cancer Consortium 

(ILCCO) or the Transdisciplinary Research in Cancer of the Lung (TRICL), and hence increasing 

the sample size. 

1.2 Genome-wide association studies 

In 1909 Wilhelm Johannsen coined the word “gene” to label the Mendelian unit of heredity. 

He also introduced the terms “genotype” and “phenotype” to discriminate between an indi-

vidual genetic traits and it’s physically or mental appearance. But only after in 1953, Watson 

and Crick reached their ground-breaking conclusion that the deoxyribonucleic acid molecule 

(DNA) exists in the form of a three-dimensional double helix, the basis to investigate the ge-

nomic contribution to human life was given. Since then, medical and biologic scientists turn 

their attention to the human DNA and its differences between individuals or populations. 

The so-called “genomic variations” in the human genome can be of different forms, includ-

ing single nucleotide polymorphisms (SNPs) or substitutions, tandem repeats, insertions or 

deletions (indels) or copy number variations (CNVs) or other chromosomal rearrangements. 

Genetic variations can be of diverse sizes; from single nucleotides to several mega bases. 

Owing to their inherent features, variations of larger size like e.g. tandem repeats have first 

been used in linkage studies, aiming to locate the chromosomal regions harbouring the mu-

tations or genes for monogenic or familial disorders or quantitative with high penetrance 

traits.50 The drawback of such family-based approaches can mainly be attributed to their low 

statistical power, when several genomic variations, each with small effect sizes and/or low 

penetrance, contribute to the heritability of the trait of interest (e.g. a disease status). In 

such a situation family-based approaches would require impractically large sample sizes in 

order to detect genetic risk factors.51 Most diseases are believed to have such a complex 

genetic architecture.52 

Starting with the decoding of the human genome sequence in 2003 and the availability of 

high-throughput genotyping facilities, the focus of genetic epidemiologists shifted towards 

genetic variations commonly occurring in the entire population, rather than in selected fami-

lies. They also started to investigate the whole sequence of the DNA, rather than pre-

selected candidate genes. “Association studies using common allelic variants are cheaper 

and simpler than the complete resequencing of candidate genes, and have been proposed as 

a powerful means of identifying the common variants that underlie complex traits. In their 
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simplest form, association studies compare the frequency of alleles or genotypes of a particu-

lar variant between disease cases and controls.”52 For association studies typically log-linear 

models were assumed, which are robust against the majority of all possible genetic models. 

There is also no need to make assumptions about the genomic location of the causal vari-

ants. Association studies make use of the principle of linkage disequilibrium (LD) at the 

population level. LD simply quantifies the probability of the alleles of two loci (e.g. disease 

and marker loci) to appear on the same gamete more often together than expected by ran-

dom. One of the simplest measures of LD is: 

𝐷 = 𝑝𝐴𝐵 − 𝑝𝐴 ∙ 𝑝𝐵 

where 𝑝𝐴  is the frequency of allele A at the first locus, 𝑝𝐵 is the frequency of allele B at the 

second locus, and 𝑝𝐴𝐵 is the frequency of the haplotype AB (the joint presence of A and B).53 

Put simply, LD is the non-random association of alleles of loci. “When evolutionary forces can 

be ignored, including marker and disease locus mutation, any decay in disequilibrium is due 

solely to recombination“53 and hence applies to adjacent markers. This assumption is neces-

sary to relate an observed association between a marker locus and a trait of interest (e.g. a 

disease status) to a causal genomic disease locus in LD to the marker locus. However, a use-

ful level of LD between two loci is unlikely to extend beyond an average distance of 3 kb, 

aside from some genomic regions with extended LD-patterns.54,55  

A genome-wide association study (GWAS) is defined as an association approach that surveys 

most of the genome for causal genetic variants52. This is accomplished by genotyping the 

DNA of each study participant at nowadays at least 300,000 loci. Common SNPs, defined by 

a minor allele frequency >5%, are usually investigated. The density of the SNPs chosen as 

genomic markers is intended to be high enough to contain (or cover) almost all the genome 

by LD.56,57 Association to the trait of interest is usually estimated and statistically tested 

marker by marker. “The genome-wide association approach therefore represents an unbi-

ased yet fairly comprehensive option that can be attempted even in the absence of convinc-

ing evidence regarding the function or location of the causal genes.”52 With advances in gen-

otyping technologies and the assembling of millions of SNPs to a reference sequence of the 

human genome, GWAS became affordable and popular for the investigation of genomic risk 

factors for common complex diseases. 58,59 

1.3 Drawbacks of genome-wide association studies 

GWASs provide the opportunity to identify single markers or narrow genomic regions which 

are associated to a disease using genotypes of thousands of SNPs throughout the whole ge-

nome. However, these analyses are not free of drawbacks. Two major aspects are a) missing 

heritability and b) low predictive ability. 

Discussing the performance of published GWAS in 2010, Eichler et al. stated: “Although re-

cent genome-wide studies have provided valuable insights into the genetic basis of human 

disease, they have explained relatively little of the heritability of most complex traits, and the 
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variants identified through these studies have small effect sizes.“60 This drawback, noted as 

missing heritability, has been related to a variety of aspects in the design and analysis of 

GWAS. Issues like incomplete coverage; disregard of rare variants or CNVs; genes that map 

to regions of copy-number polymorphic (CNP) duplications, opposing effects of selection, 

population history, migration and mutation rates or population stratification have been 

deemed to cause missing heritability.56,60 A further weaknesses is the often inadequate or 

completely neglected modelling of epigenetic effects, gene x environment interaction or 

gene x gene interaction. But exactly such interdependencies can be expected, taking into 

account the complexity of molecular-biological mechanisms. Yet, they require very large 

sample sizes to be discovered.61-63 

Given the limited ability to identify susceptibility loci, it is not surprising that GWAS results 

are often not sufficient to distinguish between individuals with low and high genetic disease 

risk (noted as low predictive ability).64 For breast cancer the “Gail model for prediction” 

achieves an AUC (area under the curve) of 58%, without regarding known genetic risk fac-

tors. After incorporating 10 relevant genetic variants identified by GWAS the AUC only in-

creased to 61.8%. For prostate cancer an AUC of 86.2% for the prediction with the PSA (pros-

tate specific antigen) alone was reported. After adding 33 genetic variants into the model 

the AUC increased only to 87.2%. For lung cancer a prediction model, mainly based on smok-

ing history in a Chinese population, reached an AUC of 61.9%, after adding 5 relevant SNPs 

the AUC increased to only 63.9%.65 

It was pointed out that GWAS are neither intended to explain all genetic variation nor to find 

appropriate prediction models, but to observe associations between single loci and complex 

traits.66 However, the interplay of genes in the aetiology of the considered phenotype re-

mains unconsidered in GWAS, but can be important regarding the biological nature of the 

trait.62 The joint consideration of molecular-biologically meaningful sets of markers, respec-

tively genes, has therefore been proposed as an additional approach to reveal genetic risk 

factors or pinpoint to involved molecular mechanisms. A further part of the “missing herita-

bility” might be explained in this way. Simultaneously considering related markers can pro-

vide a boost of power and uncover genes that are relevant in the aetiology of a disease but 

with low effects. To jointly analyse of several markers, respectively genes, allow researchers 

to better explore the multifaceted genetic architectures of complex diseases. 
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2 Gene-set analysis (GSA) 

Several methods for gene-set analysis (GSA) were proposed as complementing approaches 

to the investigation of the genetic basis of diseases using GWAS results or including hun-

dreds of markers in single, very large statistical models.67-73 All approaches have been devel-

oped to investigate pre-specified biological pathways, gene networks or gene families (fur-

ther denoted as gene-sets (GS)). The annotation of markers to genes (MtG), respectively 

genes to gene-sets/pathways (GtP) can be obtained from public accessible data bases. For 

example dbSNP58,59 or ENSEMBL74 can be used for MtG assignment; KEGG75,76, GO77 or DA-

VID78 can be used for GtP assignment.68 

The GSA approaches can be grouped according to the null-hypothesis being tested.70 In the 

context of GWAS these are:  

Self-contained null-hypothesis (Q1) — The genes in a gene-set are not associated with the 

disease phenotype;  

Competitive null-hypothesis (Q2) — The genes in a gene-set show the same magnitude of 

associations with the disease phenotype compared with genes in the rest of the genome. 

2.1 Methods for the self-contained null-hypothesis 

Some methods for testing the self-contained null-hypothesis (Q1) need the original genotype 

data as input and build a common statistical model for all markers of a considered GS. They 

are time- and storage- intensive. Comprehensive comparisons of these methods outline the 

pros and cons, but without pointing to one approach as the overall best.68,69,71,79 Two meth-

ods are exemplarily introduced here, to demonstrate the methodical challenges in the way 

to define such a common model:  

The Network-Based Kernel Machine Test80 makes use of a semi-parametric logistic regression 

model for the probability of being a case, including all markers belonging to genes of a con-

sidered GS. Genetic effects are modelled non-parametrically. Environmental effects are 

modelled parametrically. The fitted model is of the form: 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑦𝑖 = 1)) = 𝒙𝑖
𝑇𝜷 + ℎ(𝒛𝑖) 

where 𝑦𝑖 is the case-control indicator (control: 𝑦𝑖 = 0, case: 𝑦𝑖 = 1) for 𝑖 = 1, … , 𝑛 individ-

uals. The vector β represents the intercept and regression coefficient terms related to the 

environmental covariates 𝑥𝑖 for the ith individual. The variable 𝑧𝑖 denotes the genotype vec-

tor of selected marker for the ith individual.  

The nonparametric, unknown centred smooth function ℎ describes how the risk of being 

affected by the disease depends on the observed genotypes and can take the form: 

ℎ(𝑧𝑖) = ∑ 𝛼𝑖𝐾(𝑧𝑖, 𝑧𝑗)
𝑛

𝑗=1
 



15 
 

where 𝑲 (the so called kernel) can be understood as measuring the similarity between the 

individuals i and j based on their genotypes.  

“… [F]or GWAS, the linear kernel 𝐾(𝑧𝑖, 𝑧𝑗) =  𝑧𝑗
𝑇𝑧𝑖, was probably the most frequently applied 

kernel. Using this kernel in the logistic kernel machine test, is equivalent to using a logistic 

regression with a linearly defined random effect for all SNPs”.81 This kernel is a special case 

of the more general defined d-th polynomial kernel: 

𝐾(𝑧𝑖, 𝑧𝑗) =  (𝑧𝑗
𝑇𝑧𝑖 + 𝜌)

𝑑
 

where 𝜌 and 𝑑 are tuning parameters.82 However, both kernels fail in case of gene-gene in-

teraction within the GS. Alternative kernels have been defined and successfully applied in 

the context of GWAS80,83-85. For instance the identity-by-state (IBS) kernel rest upon the pro-

portion of alleles shared between two individuals 𝑖 and 𝑗. The IBS kernel is defined as: 

𝐾(𝑧𝑖, 𝑧𝑗) =  ∑
2Ι(𝑧𝑖𝑙 = 𝑧𝑗𝑙) + Ι(|𝑧𝑖𝑙 − 𝑧𝑗𝑙| = 1)

2𝑛𝑚

𝑛𝑚

𝑙=1
 

where Ι denotes an indicator function taking the values 0 or 1 and 𝑛𝑚 is the number of 

markers belonging to GS. This kernel has been shown to be more robust in case of non-

linearity of genotype effects than the linear kernel.85 

For the upper mentioned Network-Based Kernel Machine Test80 the matrix 𝑲 is built as 

product of the observed genotypes, the MtG assignment and a weighting of genes according 

their importance within the GS. The network-based kernel is defined as: 

𝐾(𝑧𝑖, 𝑧𝑗) =  𝒁𝑨𝑵𝑨𝑇𝒁𝑍 

where 𝒁 is a matrix containing the genotype data per individual (coded in trinary fashion – 

0,1 or 2; respectively in-between values for imputed genotypes; dimension: number of indi-

viduals times number of markers in GS) and 𝑨 is a matrix containing the MtG assignment 

(dimension: number of markers in GS times number of genes in GS). The network structure 

of a considered GS is converted to an undirected adjacency matrix 𝑵 (dimension: number of 

genes in the path - squared) with all diagonal elements equal 1, due to “self-interaction”. 

Any other element of 𝑵 represents the interaction of a pair of genes within the GS, where 1 

represents activation and –1 represents inhibition. For the construction of N the database 

KEGG can be used. Thus the network-based kernel incorporates external knowledge of the 

biological mechanisms within the GS of interest into the GSA. However, the matrices to build 

𝐾(𝑧𝑖, 𝑧𝑗) can get very bulky for large gene-sets which comprise hundreds of markers, in par-

ticular for a GWAS with a large sample size. 

As alternative approach, Chen et al. proposed a “gene-set ridge regression in association 

studies (GRASS)” algorithm.86 In order to reduce the amount of data finally used for model-

ling, the genetic variation of all SNPs belonging to a single gene is decomposed by applying 

principal component analysis. Thereby, orthogonal eigenSNPs per gene are generated, but 
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only those that explaine 95% of the genetic variation of a gene will further be included in the 

statistical model. Hence the variable 𝒛𝑖 denotes here the vector of eigenSNPs of the ith indi-

vidual. In contrast to the method above, GRASS utilises a logistic fully-parametrical regres-

sion model: 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑦𝑖 = 1)) = 𝒙𝑖
𝑇𝜷𝟏 + 𝒛𝑖

𝑇𝜷𝟐 

but the estimated parameters 𝜷𝟐 are constrained under the usually penalty function of a 

ridge regression:  

‖𝜷𝟐‖𝛾 = (∑ |𝛽𝑗|
𝛾𝑝

𝑗=1
)

1
𝛾

 

with 0 < 𝛾 < 1 and p the number of parameters 𝛽𝑗. 

The second methods, as all others testing 𝜷𝟐 in the manner of Q1, may be invalid if e.g. the 

assumptions of the models are not fulfilled. This might be the case if variables (e.g. markers) 

present a multi-collinear structure (strong LD).87 They can also lead to false positive findings, 

e.g. if not sufficiently adjusted population stratification causes spurious association. 

Other methods to test Q1 are based on the weighted Fisher’s inverse χ²-method to pool sta-

tistical evidence in combining several p-values (further denoted as SPP: simple p-value pool-

ing):  

𝑀 = −2 ∑ w𝑚ln(𝑝𝑚)
𝑛𝑚

𝑚=1
 

with 𝑚 an index for a marker, 𝑛𝑚 the number of markers belonging to GS and w𝑚 a weight.  

Luo at al. proposed first to generate the correlation matrix 𝑅𝑚 of the normal-quantiles of the 

𝑝𝑚-values 𝑍𝑚 = Φ−1(1 − 𝑝𝑚) for all markers belonging to a gene 𝑔.88 Then a linear combi-

nation in the form 

𝑇𝑔 =
𝑒´𝑍𝑚

√𝑒´𝑅𝑚𝑒
      with 𝑒 = (1,1, … 1)𝑇 

is calculated and a gene-wide 𝑝𝑔-value, assuming 𝑇𝑔 to be standard-normally distributed, is 

derived. Finally, all 𝑝𝑔-values of genes belonging to the GS are used to calculate M (instead 

of 𝑝𝑚) and the corresponding GS-wide 𝑝𝐺𝑆-value, setting w𝑔 = 1 (instead of 𝑤𝑚) for all 

genes. 

De la Cruz et al. proposed the method SLAT (Set Level Association Testing), which differs 

from the above mentioned approach by truncating 𝑝𝑚 lower than a pre-specified threshold 

(=restriction of accounted markers) and assigning weights w𝑚 according the number of 

markers in LD per gene.89  
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2.2 Methods for the competitive null-hypothesis 

Alternative to such “one-model” approaches, methods testing the competitive null-hypoth-

esis (Q2) have been developed. These usually compare single marker association results (e.g. 

p-values or odds ratios) of markers/genes belonging to GS with those of all remaining genes 

in the genome (remaining GS´). Thus, pathways enriched with moderate association signals 

at several markers may be discovered which would be missed by a single marker approach.  

As before, comprehensive comparisons of these methods outline the pros and cons, but 

without pointing to one approach as the overall best.68,69,71,79 Two methods are exemplarily 

introduced here, to demonstrate the methodical challenges in the way to define such a 

common model:  

The first and most popular approach briefly described here is GSEA (Gene-Set Enrichment 

Analysis), proposed by Subramanian et al..90,91 A given list of markers is first ranked by 𝑝𝑚-

values. To evaluate the degree of “enrichment” the GSEA method calculates an Enrichment 

Score (ES) by walking down this ordered list. At the beginning, a cumulative sum C is set to 

zero and will be increased when a marker belongs to GS and decreased otherwise. The in-

crement of increase and decrease is chosen in the way that C is equal to zero at the end of 

the list again. If a GS is enriched with markers of low 𝑝𝑚-values, than C will get very large 

quickly. If the GS is not associated to the trait of interest, C will follow a random walk around 

zero. The maximum departure of C from zero is taken as ES and can be interpreted as a 

weighted Kolmogorov-Smirnov statistic. Hence GSEA tests, whether the distribution of 𝑝𝑚-

values follows a uniform distribution. GSEA normalizes the ES for each GS to account for the 

variation in set sizes, yielding a normalized enrichment score (NES). To avoid dependencies 

of markers in LD, one may choose the smallest 𝑝𝑚-value of markers belonging to the same 

gene. 

The second approach briefly described here is ALIGATOR (Association LIst Go AnnoTatOR)92. 

It uses of all 𝑝𝑚-values per marker resulting from a previous GWAS, regardless whether a 

marker belongs to GS or GS´. The first step consists of counting the numbers of significant 

markers 𝑚𝑠𝑖𝑔,𝐺𝑆 belonging to a GS and 𝑚𝑠𝑖𝑔,𝐺𝑆´ belonging to the remaining GS´. These counts 

are then compared like in Fisher’s exact test, however the null-distribution of the test statis-

tic is generated by a Monte-Carlo-Permutation procedure. It is desirable to correct the 

achieved GS-specific p-values for the number of GSs being tested. Because the GSs are not 

generally independent, standard methods, such as the Bonferroni and Sidak corrections, are 

inappropriate; a bootstrap approach is applied instead. This method was used to accomplish 

GSA for this dissertation. 

The input datasets for this method are small, because the thousands of genotypes of each 

individual are no more required; but the accomplishment is time-intensive. However, be-

cause of the massive use of permutation and boot-strapping almost no model assumption 

needs to be fulfilled. 
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The diversity of the upper mentioned methods illustrates that GSA itself is a generic term 

describing an analytical strategy rather than a single method. Approaches differ for example 

by the way to combine results of several makers to a single quantity for a gene, by the way 

to assign genes to pathways or to statistically contrast genes belonging to the GS of interest 

with all remaining genes (providing a pGS-value for a GS).  

The performance of some strategies has been compared 25,31,32; e.g. by G. Fehringer et al.33 

who compared GSA applied to two independent GWASs formed by several ILCCO/TRICL data 

sets. They found “a highly plausible association for the acetylcholine receptor activity path-

way“, but concluded: “Difficulty in replicating associations (between the independent GWAS 

datasets) hindered our comparison …“. They used a heuristic approach by declaring those 

pathways as highly plausibly associated to lung cancer which were highly ranked (low gene-

set p-values) by at least two GSA methods in both GWAS data sets, without taking additional 

information into account.  

From a scientific point of view such an ad-hoc approach is not satisfying, because signifi-

cance and consistency need to be addressed in a systematic quantitative manner. GSA usual-

ly provides p-values for GSs without giving any kind of effect/association estimate. Hence, 

Fisher’s inverse χ² method (here also denoted as SPP) - a well-established method to pool 

significance by a meta-analysis - might be applied. However, even if a GS of interest is found 

significantly “enriched” within all of several independent GWAS data sets, it is not guaran-

teed that the underlying single-marker association results are consistent regarding the direc-

tion of the association (as risk or protection factor for the disease). 
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3 Summaries 

3.1 META-GSA: A novel method to synthesise statistical evidence of several 

gene-set analyses  

I have proposed the quantitative approach META-GSA to combine results of GSAs, respec-

tively 𝑝𝐺𝑆-values of GSs, by incorporating concordance of single-marker association patterns 

between studies, relevant for the GS of interest.11 

These 𝑝𝐺𝑆-values usually result from one-sided statistical tests (e.g. the larger ES the lower 

𝑝𝐺𝑆). Hence, low 𝑝𝐺𝑆–values result from low single marker p-values 𝑝𝑚 of genes in GS. Nev-

ertheless, low 𝑝𝐺𝑆–values can theoretically arise through accumulated marker significance in 

which the minor alleles of all markers are observed for example as protective factors in one 

study, while being seen at the same time as risk factors in another study. Thus, significance 

for GS can appear simultaneously in several studies without concordance of the patterns of 

observed associations of markers, respectively genes, contained in GS (briefly denoted as 

association pattern). Consequently, concordance of the direction of the test (of pGS) is not 

given a priori. 

The main steps of META-GSA are first to determine the concordance of association patterns; 

second, to use these to derive a weight for each study; and third, to apply a weighted ver-

sion of Fisher’s inverse χ²-method93 to summarize significance of GSAs in a single meta-

analytical p-value. Thus significance of GSA-results and concordance of single-marker associ-

ation are combined. META-GSA can be further considered as an approach testing GS-

significance conditional to, or in the presence of concordance of association patterns. 

META-GSA was intended to use as little input data as possible. This makes it feasible even if 

the access to original study data is restricted, e.g. if data owners are reluctant to share de-

tailed information due to legal or ethical causes. Because META-GSA is designed to rely on p-

values as quantity of significance, it was necessary to define a measure that reflects also the 

direction of the observed association for a marker (indicating a protective or risk factor). 

Thus, a directed reversed p-value (PDR) was defined as:  

)1( ,,, smsmsm pdp   

where 𝑚 is an index for a marker, 𝑠 is an index for a study and 𝑑𝑚,𝑠 ∈  {−1, +1} is the direc-

tion of the observed association. 

Next, the correlation of all 𝑝𝑚,𝑠
′ -values of all markers belonging to GS is calculated. Because it 

is not assumed that each study used the same GSA approach, a rank-correlation, which is 

independent of the scale of 𝑝𝑚,𝑠
′ , is used. Once the correlation matrix is found, principal 

component analysis (PCA) is used to determine the load of each study on a common but un-

known general PDR-profile of the GS. We assume that these loads can be represented by the 
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first principal component (𝑃𝐶1𝑠). Study weights 𝑤𝑠 are then calculated as the product of the 

normalized load and the proportion of effective studies:  

ws =
PC1s

∑ PC1j
ns

j=1

∙
EV1

ns
 

where 𝑛𝑠 denotes the number of studies in the meta-analysis and 𝐸𝑉1 denotes the first ei-

genvalue. EV1 ∑ EV1j
ns
j=1⁄  is the fraction of explained variance, since ∑ EV1j

ns
j=1 = 𝑛𝑠 for a 

correlation matrix, EV1 𝑛𝑠⁄  can be considered as the proportion of effective studies. 

Finally, the test statistic  





s
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n

s
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1

, )ln(2  

is calculated and a corresponding 𝑝𝑀𝐸𝑇𝐴−𝐺𝑆𝐴,𝐺𝑆-value is derived. Since the mathematical 

conditions of the weighted version of Fisher’s inverse χ²-method to assume 
snM  as χ²-

distrubuted93 are not fulfilled, the application of a CPU-intensive permutation procedure is 

required.  

Accordingly, the core test-statistic 𝑀𝑛𝑠
 of META-GSA depends on necessary aspects being 

considered: GS-significance by 𝑝𝐺𝑆,𝑠–values and concordance of association patterns by the 

weights 𝑤𝑠.  

Furthermore, I have investigated the benefits and the effort of META-GSA in comparison 

with SPP, which is fast but does not address concordance of association patterns in any way. 

Both methods keep the type 1 error at the specified level. However, under H0 the results of 

META-GSA and SPP were found to be almost uncorrelated. False-positive gene sets found by 

META-GSA and SPP only partially overlap. We assume that this may result at least in part 

from including the concordance of association patterns, for the evaluation. 

Moreover, META-GSA was found to be more powerful than SPP. The greater the number of 

studies combined, the larger the advantages in power became. 

We also compared META-GSA to a pooledGWAS-GSA approach. For the latter, the combin-

ing of studies is switched to the level of markers, followed by a single GSA performed on the 

pooled marker-specific associations. In general, we found META-GSA to outperform 

pooledGWAS-GSA. 

The method META-GSA is descript in detailed in Rosenberger et al. PLoS One 201511. All pro-

grams were implemented in SAS 9.3 (SAS Institute, NC, USA) and are provided as supple-

mental material. 
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3.2 Gene-set analysis with respect to lung cancer: A meta-analysis 

I have further performed a meta-analysis of seven GSAs for lung cancer, applying the meth-

od META-GSA. Overall, information taken from 11,365 cases and 22,505 controls from within 

the TRICL/ILCCO consortia was used to investigate a total of 234 pathways from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database.75,76,94  

In the original GWASs, a log-additive mode of inheritance was fitted for each marker, adjust-

ing for age, sex, smoking status, study centre (if applicable), and the first three principal 

components to account for hidden genomic structure. There was agreement within 

TRICL/ILCCO on the model to be used for singe-marker association analysis. The calculations 

had been performed by the study centres themselves and shared within the consortium. The 

results of marker-by-marker association tests were used as input information for the GSAs. 

The marker-to-gene annotation (MtG) for humans from the ENSEMBL database74 was used. 

For some data set GSA results were already available. If necessary, GSA was performed using 

the program ALIGATOR.92 

This revealed the systemic lupus erythematosus KEGG pathway hsa05322, driven by the 

gene region 6p21-22, but no other investigated KEGG pathway, as implicated in lung cancer 

(p=0.0306, corrected for multiple testing). This gene region is known to be associated with 

squamous cell lung carcinoma. The most important genes driving the significance of this 

pathway belong to the genomic areas HIST1-H4L, -1BN, -2BN, -H2AK, -H4K and C2/C4A/C4B. 

Within these areas, the markers most significantly associated with LC are rs13194781 (locat-

ed within HIST12BN) and rs1270942 (located between C2 and C4A). 

The investigation of the association of KEGG pathways in lung cancer GWAS is reported in 

detail in Rosenberger et al. PLoS One 2017.95  
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4 Discussion 

About 50,000 individuals are diagnosed with lung cancer in Germany every year. They face a 

poor prognosis, since only 21% of women 16% of men survive five years after being diag-

nosed. Most cases can be attributed to tobacco smoking, but there is also scientific evidence 

that genetic factors contribute to the susceptibility of Lung cancer. In the recent two dec-

ades genome-wide association studies (GWASs) have been carried out to identify genetic 

variants that are associated to lung cancer or to a specific histological subtype. Genomic risk 

loci in European population were identified at chromosomes e.g. 5p15.33, 6p21-22 and 

15q25, after pooling data of several GWASs within the International Lung Cancer Consortium 

(ILCCO), overlapping with the Transdisciplinary Research in Cancer of the Lung (TRICL).3-10 It 

has also been increasingly recognized that GSA can extend GWAS approaches by incorporat-

ing existing knowledge of biological processes, with the aim of identifying disease-related 

pathways. GSA has gained great popularity and several approaches have been proposed. 

Although the pros and cons have been discussed 72,73 and points to improve have been for-

mulated 70, it has only been mentioned that there is a need to replicate pathway association 

findings to avoid false positive results.70 According to our knowledge, there is no formal 

method to combine the results of several GSAs. The basic criticism on applying simple p-

pooling (SPP) is a lack of interpretability of results when single markers differ in their at-

tributed role as risk or predictive factor. I have proposed the quantitative approach META-

GSA to combine such results, respectively GS-significance, by incorporating concordance of 

single-marker association patterns between studies, relevant for the GS of interest. This 

method was then applied to the data shared within ILCCO/TRICL, to further investigate ge-

netic risk factor for lung cancer.    

META-GSA was found to outperform SPP and a pooledGWAS-GSA approach. One advantage 

of META-GSA is the fact that heterogeneity in the strength of association for single markers 

or genes, respectively, between studies does not necessarily cause lower power, as long as 

other genes belonging to GS compensate such deficiency. “Between-study heterogeneity … 

can offer valuables insight for further clarification of gene-disease associations”.96 

Furthermore, META-GSA is applicable to any GSA method selected, even those using indi-

vidual participants’ genotype data, which may prove to be more suitable and more powerful 

than methods based on GWAS summary results (pooledGWAS-GSA).68,80 Resting the GSA on 

common effect estimates can become critical in the case of strong study heterogeneity for 

few or many markers, since the existence of a common marker-specific association in such a 

situation is doubtful. For META-GSA, study heterogeneity results in low concordance of the 

patterns of study-specific association estimates and subsequently in low study weights, 

which simply reduces the power, however without violating such a critical assumption. 

All the same, META-GSA has some critical points that need to be mentioned. First, it is nec-

essary to estimate LD between neighboring markers to be able to calculate PDRs (the core 
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quantity of META-GSA) of differing markers across studies. It is known that LD-patterns in 

human subpopulations are different.97 This can be problematic if one aims to combine re-

sults across different ethnicities or if the source population of a study is known to be ad-

mixed.  

Secondly, the implemented way to combine marker-level estimates to a gene-level statistic 

is only one of several published alternatives.98-101 

Moreover, to perform GWASs and GSAs one needs to annotate marker to genes (MtG) 

which are annotated to pathways (GtP) in a static way, referring to public databases. In con-

trast, genes act dynamically and may have for instance several transcripts which can be ac-

tive or passive in a certain pathway. Thus, a static annotation maybe doesn’t match well to a 

dynamic biological process. META-GSA is concerned to this drawback to the same extend as 

the GSA approaches aimed to be combined.  

Next, META-GSA is applicable to any GSA method selected for the analysis of a single GWAS, 

irrespectively if the self-contained null-hypothesis (Q1) or the competitive null-hypothesis 

(Q2) was tested. Combining 𝑝𝐺𝑆,𝑠-values for Q1 and Q2 is calculative feasible but induces a 

lack of interpretability.   

In addition, the use of a permutation procedure is time and CPU-intensive.  

The biggest disadvantage is perhaps that p-values for each tested gene-set are the only re-

sults. META-GSA is designed to rely on p-values as quantity of significance. A p-value can be 

used to justify the existences of an association; however it is not solely determined by the 

strength of the observed effect, but also by factors like sample size, the used statistical mod-

el and the applied test procedure. Hence META-GSA is unable to estimate the fraction of the 

risk for an investigated disease that can be attributed to the identified driving genes or the 

whole gene-set. As with most GSA approaches META-GSA does not deliver any effect esti-

mation. 

All in all, I could demonstrate that META-GSA may be a powerful add-on tool in the research 

of the genetic architecture of complex traits or diseases. I have applied this new tool to dis-

cover an accumulation of genomic association with lung cancer in the KEGG pathway 

hsa05322, which comprises genes related to systemic lupus erythematosus (SLE). This sug-

gests some cross-phenotype association with lung cancer and SLE. 

Regarding the application, all pGS–driving genes identified in the reported meta-analysis are 

located within or next to the major histocompatibility complex (MHC) on chromosome 6p21-

22, albeit in two separate areas, about 3000 kb apart. The first area comprises the genes of 

histone cluster I: HIST1-H4L, -1BN, -2BN, -H2AK, -H4K. The second area comprises the genes 

C2, C4A, and C4B. Neither of both areas were before identified as associated to lung cancer. 

However, the identification of disease-relevant genes in the MHC region (6p21–6p22) and 

far beyond is complicated owing to the strong and extensive LD across both common and 
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rare haplotypes.12 Hence any observed cross-phenotype association will probably tag plenty 

of genes.   

In conclusion, the gene region 6p21-22 appears to be more extensively associated with lung 

cancer than previously assumed. Given wide-stretched linkage disequilibrium to the area 

APOM/BAG6/MSH5, there is currently simply not enough information or evidence to con-

clude whether the potential pleiotropy of lung cancer and SLE is spurious, biological, or me-

diated. 
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