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Abstract

Confounding problems in regression analysis arise when one or more third variables

are simultaneously associated with both the covariates and the response variables

under consideration. Even when these confounders are included in the modeling

process, standard regression models usually fail at separating the corresponding

e�ects due to the complex correlation structure.

Third variables inducing similar spatial structure within covariates and responses

constitute the special case of spatial confounding, which is at the core of this dis-

sertation. Existing methods for alleviating the resulting estimation bias are based

on the orthogonalization of spatial and covariate information. Using this approach,

the e�ect of the covariate of interest is clearly identi�ed, but the estimates for the

spatial components are restricted and thus hard to interpret.

Adapted from the framework of simultaneous equation models, this dissertation

provides a fully interpretable model class for dealing with spatial confounding. Be-

sides its applicability in spatial statistics, additional �exibility of the methodology

presented here is achieved by incorporating alternative e�ect types such as non-

linear or cluster-speci�c random e�ects. These extensions further enhance the

applicability of the newly introduced model class which is illustrated for various

research �elds such as economics, health and ecology.

i





Zusammenfassung

Regressionsanalysen sind von Konfundierungse�ekten betro�en, wenn Drittvari-

ablen gleichzeitig mit Zielgröÿen und Kovariablen korreliert sind. Klassische Re-

gressionsmodelle sind in diesen Fällen nicht in der Lage, Kovariablen- und Drittvari-

ablene�ekte voneinander zu unterscheiden. Die resultierenden Schätzer sind folg-

lich in der Regel verzerrt.

Motivation für diese Dissertation ist der Spezialfall von räumlicher Konfundierung,

der auftritt wenn Drittvariablen eine ähnliche räumliche Struktur in Kovariablen

und Zielgröÿen induzieren. Um der Verzerrung des geschätzten Kovariablene�ektes

entgegen zu wirken, werden üblicherweise die räumlichen Komponenten bezüglich

der untersuchten Kovariablen orthogonalisiert. Einerseits wird auf diese Weise

sichergestellt, dass der Kovariablene�ekt unverzerrt geschätzt werden kann. Auf

der anderen Seite werden jedoch so die räumlichen E�ekte stark eingeschränkt und

sind nicht mehr direkt interpretierbar.

In dieser Dissertation wird eine Modellklasse entwickelt, die die Zusammenhänge

zwischen Zielgröÿen, Kovariablen und Drittvariablen abbildet und interpretierbare

E�ektschätzer für alle auftretenden Variablen ermöglicht. Grundlage für diese

Modelle bilden Strukturgleichungsmodelle, die in dieser Arbeit neben räumlichen

zusätzlich um nichtlineare und zufällige E�ekte erweitert werden. Die Anwend-

barkeit der Methodik wird anhand von Beispielen aus Wirtschaftwissenschaften,

Gesundheitsforschung und Ökologie illustriert.
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�Framing the question as the choice between accuracy and inter-
pretability is an incorrect interpretation of what the goal of a statistical
analysis is.�

Leo Breiman, 2001
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1. Introduction

In order to motivate the research questions addressed in this cumulative disserta-

tion, I will consider one of the �rst studies I encountered at the outset of my time

as a PhD student. Before expounding the aims and structure of the thesis at the

end of this introduction, I will also explain the single components of the disserta-

tion's title E�ect Separation in Regression Models with Multiple Scales using the

example of Reich et al. (2006). In particular, I start with brie�y introducing the

basics and most important extensions of regression models and embed the meth-

ods employed in this dissertation into this framework. Subsequently, features of

modeling data measured at multiple scales are highlighted along with the challenge

of separating the corresponding e�ects.

1.1. Regression Models

Regression models in general explain the variability of so-called response variables

by a set of covariates. Since its �rst reference in Galton (1886), regression analysis

has become one of the most frequently applied tools for statistical investigations.

Due to its versatility, researchers constantly enhance the range of available model

classes. Fundamental to this development, as well as for this cumulative disserta-

tion, is the classical linear model

y = β0 + β1x+ ε, (1.1)

which links the expectation of the response y to an explanatory variable x. The

association between x and y is captured by the regression coe�cient β1 and the

overall level (intercept) is denoted by β0. The stochastic error is given by ε.
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1. Introduction

In the following, I will leave out the intercept for reasons of notational simplic-

ity. Technically, this is usually achieved by centering the variables around their

means. Estimation of the model parameters based on observed data via least

squares techniques originates from Gauÿ (1809). Since then, some of the most

in�uential extensions of Equation (1.1) include generalized linear models (GLM,

see McCullagh and Nelder, 1983), which allow for a broad set of response types

such as continuous (e.g. individual income) or categorical (e.g. health status)

variables as well as counts (e.g. number of cases of a certain disease). Generalized

additive models (GAM, see Hastie and Tibshirani, 1990, and Wood, 2006) enable

additional �exibility concerning the type of covariate e�ects: nonlinear in�uences

(e.g. via P-splines, see Eilers and Marx, 1996) or spatially structured covariates

can thus be included into the modeling process.

Additionally, models for jointly investigating multiple responses have been intro-

duced. In the simplest bivariate case, a vector of two outcomes (y1, y2)′ is linked

to a set of covariates. Examples for these types of models are seemingly unrelated

regression (Zellner, 1962) and copula-based models (as in Klein and Kneib, 2016).

Both approaches enable the quanti�cation of the dependency structure between

the responses y1 and y2.

Obviously, the list of regression model classes presented here is not meant to be

exhaustive. Rather, it highlights the relevance of enhancing existent regression

techniques, both from an applied and a methodological point of view. With this

dissertation, I intend to contribute to the further advancement of regression mod-

els.

For the remainder of this thesis, the class of simultaneous (or structural) equation

models (SEMs, see Bollen, 1989, for a detailed overview) � as outlined in Section 3

and all contributing articles � will be particularly important. The outstanding fea-

ture of SEMs is that they explicitly include some responses as potential covariates
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1.2. Multiple Scales

for others, whereas copula and seemingly unrelated regression models interpret the

association between the responses as undirected dependencies. For the bivariate

case, this feature of SEMs is represented by the model equations

y1 = γ1x+ ε1

y2 = γ2x+ β21y1 + ε2.

The �rst equation corresponds to a simple linear model of the exogenous variable

x and the �rst response y1, which appears as a covariate itself within the predictor

of the regression equation for y2. The e�ects of the exogenous variable are labeled

γ1 and γ2 in this case. The direct association between the endogenous variables

y1 and y2 is captured by β21. The error components are denoted by ε1 and ε2,

respectively.

Due to the relevance of SEMs in this thesis, I will adopt the corresponding notation

from the start, even for univariate regression models. Consequently, the linear

model in Equation (1.1) is in the following alternatively denoted by

y2 = β21y1 + ε2. (1.1')

1.2. Multiple Scales

In regression analysis, multiple scales are said to exist if besides the individual or

observational level, the observations are nested in speci�c groups (e.g. schools,

households or administrative regions). Whereas standard linear models link co-

variate and response on the individual scale via a constant e�ect (β21 in Equa-

tion (1.1')) as is illustrated by the solid arrows in Figure 1.1 (left), the grouping

structure in regression models with multiple scales may modify this association for

each cluster (see Figure 1.1, right).

3



1. Introduction

y1 y2 y1 y2

Figure 1.1.: Left: Illustration of a relationship between y1 and y2 at the level
of individuals. The association (→) is the same for each individ-
ual. Right: The observations are grouped. The e�ect of y1 on
y2 is potentially di�erent for each group (→, 99K or · · · �).

As an example, consider the relationship between social well-being (y1) as the

explanatory variable and its in�uence on the risk of being a�ected by a certain

disease (y2) as the response. Reich et al. (2006) use the centered socioeconomic

status (SEc) to approach social well-being and link it to the standardized stomach

cancer incidence ratio (SIR) in Slovenia via the linear model equation

log(SIRi) = β21 · SEci + ε2i, i = 1, . . . , n, (1.2)

where n denotes the sample size. As an extension, the authors introduce an

additional (in this case a spatial) scale into the model using the fact that the

observations are aggregated at the scale of municipalities in Slovenia. Spatial

e�ects are included to represent region-speci�c risk factors (e.g. demographic or

environmental). This extends Equation (1.2) to

log(SIRi) = β21 · SEci + fspat(regioni) + ε2i, i = 1, . . . , n, (1.3)

where the unknown spatial function f is approximated by municipality-speci�c

random e�ects (see Section 2.2 for details). Figure 1.2 illustrates the spatial

structures of the response SIR (left plot) and the covariate SEc (right plot).
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(a) SIR

0.75 4

(b) SEc

−1.5 1.20

Figure 1.2.: Standardized cancer incidence ratio (a) and centered socioeco-
nomic status (b) in Slovenian municipalities. From Reich et al.
(2006).

By incorporating regional e�ects as above or cluster-speci�c e�ects in general,

potential latent characteristics of the underlying grouping structure are controlled

for. In particular spatial e�ects are usually thought to represent environmental,

ecological or political circumstances in the sampling regions.

1.3. E�ect Separation

The �exibility of di�erent e�ect types within the predictor structure comes along

with the challenge of separating these e�ects. Intuitively speaking, the model has

to decide how much of the variability in the response is explained by the various

covariates measured at di�erent scales. In matters of the disease mapping example

in Section 1.2, the linear in�uence β21 of SEc is supposed to be separated from

the spatial component fspat of the municipalities.

Separation is particularly di�cult if the covariates under consideration are highly

correlated. This phenomenon is labeled (multi-)collinearity for multiple partly co-

inciding linearly modeled covariates (e.g. Mela and Kopalle, 2002). A nonlinear

association between covariates is usually termed concurvity (e.g. Amodio et al.,

2014). The situation in the aforementioned example from Reich et al. (2006) is

labeled spatial confounding: a covariate of interest and the response have similar
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1. Introduction

(i.e. positively or negatively correlated) spatial structures. In general, collinearity,

concurvity and spatial confounding lead to imprecise or biased estimates of the

covariate e�ects. This is due to the fact that di�erent covariates compete for

explanatory capacity of the response and the model is not able to separate the

occurring e�ects from each other.

Figure 1.2 illustrates that in the example of Reich et al. (2006), SIR is generally

higher in the northeast of Slovenia (Plot (a), left) while SEc shows a more or less

inverse pattern (Plot (b), right). Consequently, the spatial structures in SIR and

SEc are to some degree negatively correlated. As a result, Reich et al. (2006)

found a signi�cant negative e�ect of SEc on SIR in a simple linear regression setup

without spatial components (see Equation (1.2)), which vanishes when including

the location of the observations as region-speci�c e�ects of the municipalities (as

in Equation (1.3)). Hence, the authors conclude that the relation between SIR

and SEc is spatially confounded.

1.4. Aims of the Dissertation

The overall aim of this dissertation � as motivated by the above example of spa-

tially confounded data � is the development of statistical models which re�ect the

situation of regression setups with e�ects that are hard to separate. In this con-

text, SEMs form the foundation for my approach to deal with E�ect Separation

in Regression Models with Multiple Scales. More precisely, the objectives of my

thesis are

• integrating aspects of geoadditive regression models into the SEM framework

in order to appropriately represent the scenario of spatial confounding,

• extending this new approach with a spatial smoothing technique which ac-

counts for the simultaneous presence of spatial information within covariates

and responses,
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• and generalizing the above improvements for alternative semiparametric ef-

fect types such as nonlinear or random e�ects.

The proposed methods are thoroughly evaluated in terms of identi�ability and

robustness with respect to various correlation structures within the data via elab-

orate simulation studies. Additionally, their applicability is illustrated on multiple

real datasets from a broad set of research areas such as economics, health and

ecology.

1.5. Structure of the Thesis

The remainder of the thesis is organized as follows:

• The concept of spatial confounding along with existing approaches is for-

malized in Chapter 2.

• A brief introduction into the framework of SEMs is given in Chapter 3.

• The scienti�c articles which form the body of this dissertation are summarized

in Chapter 4 and printed in Appendices A - C.

• Finally, the overall results of this thesis as well as potential future research

directions are discussed in Chapter 5.
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2. From Linear Regression to

Spatial Confounding

In this chapter, I formalize and visualize the concept of spatial confounding. Start-

ing from a simple linear regression setup as in Equation (1.1'), di�erent data

structures are described in order to establish the border between classical geoaddi-

tive regression and spatially confounded data. In the second section, I extend the

model from Equation (1.1') to di�erent spatial approaches and show how these

models deal with spatial confounding.

2.1. Spatial Structures within Datasets

In order to unify the potentially complex sources of spatial dependencies, I interpret

space as an abstract concept independent from its origin in this thesis. Hence,

the source of spatial structures itself is not of primary interest. However, the

visualizations and explanations in this section demonstrate how this abstract notion

of space can be conceived as a feature of the data.

Figure 2.1 illustrates the simplest univariate setup: the response y2 (outer black

box) is a composition of the covariate y1 (blue area) and some stochastic noise ε2

(yellow area). None of the occurring variables contains spatial information. Hence,

the data generating process corresponds to Equation (1.1').1

1This type of visualization as in Figures 2.1-2.7 is an extension of that used by Lindenlaub
(2012).
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2. From Linear Regression to Spatial Confounding

𝑦1 ε2

𝑦2

Figure 2.1.: Illustration of the data generating process according to Equa-
tion (1.1'). The response y2 is composed of the covariate y1 and
some stochastic error ε2.

A more complex, but still well-behaved data structure is shown in Figure 2.2.

In this case, the variability in the response is complemented by some unknown

spatial component f(space) (red area in the �gure). Formally, we can extend

Equation (1.1') to

y2 = β21y1 + f(space) + ε2. (2.1)

I use the expression well-behaved in this context to indicate that covariate and

spatial parts within y2 are clearly separated (the red and blue areas in Figure 2.2

do not overlap).

𝑦1 ε2

𝑦2

space

Figure 2.2.: Illustration of the data generating process according to Equa-
tion (2.1). The response y2 is composed of the covariate y1,
additional spatial information and some stochastic error ε2.

The data generating process in cases of spatially confounded data still corresponds

to Equation (2.1) with the important additional property that spatial and covariate

information overlap at least partly. In Figure 2.3, this is illustrated as the red and

blue striped area.

In the �rst two cases, standard regression models usually yield reliable estimates

of the regression coe�cients. However, in cases such as the one represented by

Figure 2.3, the separation of covariate and spatial e�ects is particularly di�cult

(see Paciorek, 2010, among others).
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𝑦1 ε2

𝑦2

𝑦1 space space

Figure 2.3.: Illustration of spatially confounded data. The response y2 is com-
posed of the covariate y1, spatial information and some stochastic
error ε2. Additionally, covariate and spatial information at least
partly overlap (y1 ∩ space 6= ∅).

2.2. Properties of Regression Models in Case of

Spatial Confounding

In this section, I illustrate how, for di�erent model formulations, a bias emerges

under spatial confounding. As stated above, in the other (unconfounded) cases,

classical regression analysis is typically unproblematic and is thus not of interest

here. Consequently, in this section, the underlying data is assumed to be generated

as visualized in Figure 2.3. The interpretation of the illustrations in Figures 2.4 -

2.7 is hence also based on this situation.

Linear Modeling (LM)

Firstly, if the spatial component is ignored completely, the model reduces to a

simple linear model as in Equation (1.1'). Consequently, the usual least squares

estimator β̂21 of the covariate e�ect will be biased. This is due to the fact that the

model not only assigns the true e�ect of y1 on y2 to y1, but additionally interprets

the common information shared by y1 and space as covariate e�ect. This leads

to an overestimation2 of β21. The spatial component that is not related to y1 is

considered as additional noise contribution (see Figure 2.4). In this case, the spatial

information is completely lost in the estimation process (for an investigation of the

confounding bias in linear models, see Thaden and Kneib, 2017, and Appendix A).

2In fact, the direction of the bias depends on the sign of the correlation between the spa-
tial components in y1 and y2. Nevertheless, I limit this qualitative visualization of spatial
confounding to the case of overestimation of β21.
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2. From Linear Regression to Spatial Confounding

𝑦1 ε2

𝑦2

𝑦1 space space

(a) Confounded data as in Figure 2.3

𝑦1

𝑦2

ε2

(b) Linear regression

Figure 2.4.: Spatially confounded data (a) and decomposition of the e�ects
resulting from simple linear regression (b). The covariate e�ect
is overestimated as the model additionally assigns the shared (by
covariate and space) information to y1.

Geoadditive Regression (GEO)

There are several ways to include spatial components into regression models. I will

focus on the case of discrete spatial information (e.g. information available on the

scale of administrative regions).3 Assume that for each observation, the location

s is known as one of �nitely many (d, in this case) regions, i.e. s ∈ {1, . . . , d}.
The unknown spatial function f(space) in Equation (2.1) is then approximated

by adding regional indicators to the predictor. For each observation i = 1, . . . , n,

these are de�ned as

zsi =





1, if y2i was observed in region s

0, otherwise

, s = 1, . . . , d. (2.2)

3Following the argumentation of Paciorek (2010), the qualitative description of the model's per-
formance is the same, no matter if spatial information is available on a discrete or continuous
(e.g. in terms of coordinates) scale.
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2.2. Properties of Regression Models in Case of Spatial Confounding

Consequently, for i = 1, . . . , n, the geoadditive linear model equation is

y2i = β21y1i + z′iγ2 + ε2i (2.3)

with zi ∈ {(z1i, . . . , zdi)′ ∈ {0, 1}d |
∑d

s=1 zsi = 1} and region-speci�c e�ects

stored in the vector γ2 = (γ21, . . . , γ2d)
′ ∈ Rd. Note that this notation di�ers

from common geoadditive regression equations. Usually, the spatial indicator of

a reference region is replaced by an overall intercept in the predictor in Equa-

tion (2.3) for reasons of identi�ability. Technically, the model as stated here is

nevertheless identi�ed since the variables are assumed to be centered, as explained

in the introduction.

In geoadditive models, a certain smoothness across space is generally assumed,

in the sense that observations which are located close to one another behave

more similarly than observations located far apart. This smoothness is induced by

penalizing large deviations between the e�ects of neighboring regions in the corre-

sponding likelihood in a frequentist approach. Alternatively, choosing appropriate

spatial priors leads to the Bayesian analogue. This idea corresponds to modeling

space as a Markov random �eld (MRF). Rue and Held (2005) describe the con-

struction and properties of MRFs in detail.

In the situation of Figure 2.3, multiple problems can occur. The spatial func-

tion might capture both the true spatial e�ect and the information which can not

uniquely be assigned to y1 or space. In this case the covariate e�ect will be un-

derestimated and too much weight is assigned to space. On the other hand, if the

spatial structure is estimated to be extremely smooth (via a strong penalization of

di�erences between e�ects of neighboring regions), the spatial function is usually

heavily penalized towards zero and the results correspond to that of a simple lin-

ear model without spatial e�ects (see Thaden and Kneib, 2017 and Appendix A

for details on the in�uence of spatial penalties in confounded regression setups).
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2. From Linear Regression to Spatial Confounding

Additionally, all kinds of compromises between these two extremes are possible as

illustrated in Figure 2.5. Consequently, the estimated e�ects are generally biased

and hard to interpret.

𝑦1 ε2

𝑦2

𝑦1 space space

(a) Confounded data as in Figure 2.3

𝑦1 ε2

𝑦2

space

(b) Geoadditive regression

Figure 2.5.: Spatially confounded data (a) and decomposition of the e�ects
resulting from classical geoadditive regression (b). Depending on
the degree of spatial smoothing, the information in y2 is somehow

separated among covariate and space. Both covariate and spatial
e�ects are prone to confounding bias.

Restricted Spatial Regression (RS)

Due to the aforementioned estimation issues, confounding problems in spatial

statistics represent a dynamic �eld of current research. Several authors explain

and evaluate the concept of restricted spatial regression (e.g. Reich et al., 2006;

Hughes and Haran, 2013, and Hanks et al., 2015). The concept builds upon an

orthogonalization of spatial components and covariate information. This can be

explained analogously to a setup with two highly correlated continuous covariates

y1 and x in a linear model, i.e.

y2 = β21y1 + γ2x + ε2, (2.4)

where x = (x1, . . . , xn)
′, yj = (yj1, . . . , yjn)

′, j = 1, 2, and ε2 = (ε21, . . . , ε2n)
′

are the vectors containing all observations of the respective variables. In this case,

14



2.2. Properties of Regression Models in Case of Spatial Confounding

β21 and γ2 represent the usual linear regression coe�cients. One approach to deal

with such collinearity problems is to include an orthogonal transformation x̃ of x

into the model instead of x itself. This is achieved by regressing x on y1 in a �rst

step via

x = δy1 + ε.

The estimated residuals

ε̂ = x− y1 (y
′
1y1)

−1
y′1x

resulting from the above equation are by construction orthogonal to y1 (see

Fahrmeir et al., 2013, for details). Next, setting x̃ = ε̂ and substituting x̃ for

x in Equation (2.4) yields

y2 = β21y1 + γ̃2x̃ + ε2. (2.4')

Following this procedure, the covariates of the regression model in Equation (2.4')

are uncorrelated. On the one hand, the collinearity related problems in the estima-

tion of β21 are thereby alleviated. On the other hand, it is not possible to estimate

the overall in�uence γ2 of x from Equation (2.4'). Instead, only the e�ect γ̃2 of

the restricted version x̃ of x can be quanti�ed.

Reich et al. (2006) generalized this orthogonalization for spatial components and

suggested to apply such a restricted spatial regression model in case of spatial con-

founding.4 As for the example of correlated continuous covariates explained above,

this approach removes the bias in the estimation of β21. However analogously, the

interpretability of the spatial component is lost. As illustrated in Figure 2.6, the

spatial component is underestimated in this case. If, as Clayton et al. (1993)

state, �the location e�ect is only a surrogate for other confounding factors� and is

4The approach of Reich et al. (2006) was further improved by Hughes and Haran (2013) in
terms of computational e�ciency and translated to continuous spatial information by Hanks
et al. (2015).
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2. From Linear Regression to Spatial Confounding

hence not of interest itself, restricted spatial regression supplies a perfectly su�cing

tool to alleviate spatial confounding bias. Contrariwise, if the spatial e�ects are

meaningful (e.g. when representing important environmental factors in ecological

analyses), the lack of interpretability of the re-parametrized spatial functions yields

unsatisfactory results.

𝑦1 ε2

𝑦2

𝑦1 space space

(a) Confounded data as in Figure 2.3

𝑦1 ε2

𝑦2

space

(b) Restricted spatial regression

Figure 2.6.: Spatially confounded data (a) and decomposition of the e�ects
resulting from restricted spatial regression (b). Confounding bias
in the estimation of the covariate e�ect is alleviated. Parts of
the spatial information is lost due to its restricted nature.

Summary

Spatial confounding may lead to severe identi�cation problems, even if the spatial

information is included into the model. Depending on the modeling approach, all

or potentially important subsets of the estimated coe�cients are biased. Table 2.1

qualitatively summarizes the performance of di�erent models, if the underlying

data is spatially confounded. In the table, check marks and x marks illustrate the

presence or absence of drawbacks (red for presence/green for absence) and capa-

bilities (green/red) of the di�erent approaches, respectively. Ignoring the spatial

component completely (LM) or employing classic geoadditive approaches (GEO)

generally leads to unreliable estimates, whereas in the latter case the performance

depends on the correlation structure within the data at hand and is thus hard to
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2.2. Properties of Regression Models in Case of Spatial Confounding

predict. Restricting the spatial component to the part which is orthogonal to the

covariate information removes the bias in the estimation of the covariate e�ect.

On the downside the resulting spatial e�ects are no longer interpretable.

Bias Interpretability
Model of β̂21 of γ̂2 of β̂21 of γ̂2

LM 3 NA 7 7

GEO (3) (3) (7) (7)
RS 7 3 3 7

Aim of the thesis 7 7 3 3

Table 2.1.: Performance of LM, GEO and RS in terms of bias and inter-
pretability of the regression coe�cients for spatially confounded
datasets. This dissertation develops a fully interpretable model to
overcome the disadvantages of existing approaches (last row).

The key drawback of the existing approaches is � in my opinion � their inherent

unidimensionality in the sense that the explained variability in the response y2

is only shifted from y1 to the spatial part or vice versa. Figuratively speaking,

these models are able to exclusively adapt the widths of the blue and red boxes in

Figure 2.3, respectively.

In the following chapter, I explain how spatial components can be incorporated into

SEMs. Thereby, a new dimension is established in the modeling process which

allows for simultaneously quantifying the indirect spatial information within the

covariate (space1, orange box in Figure 2.7 (b)) and the direct spatial information

in the response (space2, red box). The area of the orange box in the �gure depends

on the amount of spatial information in y1 and thus visualizes the degree of spatial

confounding. By this, I introduce a fully interpretable model class for spatially

confounded regression setups (see Table 2.1, last row).
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2. From Linear Regression to Spatial Confounding

𝑦1 ε2

𝑦2

𝑦1 space space

(a) Confounded data as in Figure 2.3

ε2
𝑦1

𝑦2

space2

space1

(b) Geoadditive simultaneous equation model

Figure 2.7.: Spatially confounded data (a) and decomposition of the e�ects
resulting from geoadditive simultaneous equation models as pro-
posed in this thesis (b). The spatial information is decomposed in
an indirect part space1 in y1 and a direct part space2 in y2. The
area of the orange box re�ects the degree of spatial confounding.
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3. Simultaneous Equation Models

Simultaneous equation models (SEMs) in general represent complex relationships

between variables in a multivariate setting. More precisely, SEMs consist of multi-

ple regression equations with the additional feature that response variables of one

equation are allowed to appear as covariates in another equation. In this part of the

thesis, I brie�y describe how SEMs can be obtained by extending linear models and

how to conceive spatial components in this context. For a more detailed overview

on SEMs, I refer to Bollen (1989). Technical details on how SEMs are applied in

the context of e�ect separation are given in the contributing articles (Appendix A

- C).

3.1. SEMs as Extension of Linear Models

SEMs naturally extend classical linear models as in Equations (1.1') and (2.4).

Figure 3.1 illustrates this extension. The path diagrams visualize the relationships

between the occurring variables. Plot (a) corresponds to a multiple linear model

as in Equation (2.4): the covariates x and y1 a�ect the response y2 linearly via

γ2 and β21, respectively. Plot (b) visualizes the case of simple linear regression

as formally given in Equation (1.1') in which only y1 has a linear in�uence on

y2. Finally, Figure 3.1 (c) represents an SEM with exogenous variable x and

endogenous variables y1 and y2. Again, y2 is directly a�ected by x and y1. The

key extension in comparison to the plots in (a) and (b) is the additional e�ect γ1 of

x on y1 (dashed arrow). As already motivated in the introduction, Figure 3.1 (c)
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3. Simultaneous Equation Models

translates to the two linear simultaneous equations

y1 = γ1x+ ε1

y2 = γ2x+ β21y1 + ε2, (3.1)

where γ1, γ2 and β21 are the linear regression coe�cients. The stochastic errors in

the equations are given by ε1 and ε2, respectively.

x

y1

y2

(a) y1

y2

(b)

x

y2

y1(c)

β21β21

γ2

β21

γ1

γ2

Figure 3.1.: Path diagrams of a multiple linear regression model (a) as in
Equation (2.4), simple linear regression (b) based on Equa-
tion (1.1') and a simple linear recursive SEM as an extension of
both in (c). The exogenous variable x simultaneously in�uences
the endogenous variables y1 and y2 via γ1 and γ2, respectively.
Additionally y1 has a direct e�ect β21 on y2 (extended illustration
from Thaden, 2017).

As an illustrative example for Figure 3.1 (c) consider the ecological interrelations

between primary producers (plants) and primary and secondary consumers (ani-

mals). Species richness of both plants and animals is usually simultaneously driven

by environmental factors. Additionally, a direct association between producers and

consumer is supposed to exist as shown in Figure 3.2.1

1Based on the study of Jetz et al. (2009), this example is investigated in a more detailed way
in Thaden (2017).
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environment

animals

plants

Figure 3.2.: Exemplary ecological pathways of the relationship between plant
and animal species richness conditioned on environmental factors.

SEMs in general allow for separating direct (dotted arrow in Figure 3.2) from

indirect (combination of dashed and solid arrows in Figure 3.2) e�ects of the ex-

ogenous variables by disentangling the paths in Figure 3.2. Founded on this idea,

I brie�y illustrate how SEMs can be extended by means of tools originating from

spatial statistics in order to enhance the identi�ability of e�ects in cases of spatial

confounding in the next section.

3.2. Spatial E�ects in SEMs

Based on the construction of geoadditive models as introduced in Section 2.2, it is

now straightforward to further generalize the model in Equation (3.1). Replacing

the linearly modeled covariate x by a spatial component in Figure 3.1 (c) and

Equation (3.1) yields

y1 = f (1)(space) + ε1

y2 = f (2)(space) + β21y1 + ε2.

As described in Section 2.2, the spatial functions f (1) and f (2) can be approximated

using regional indicators with or without Markov random �eld penalty, i.e., for

i = 1, . . . , n, the model equations are given by

y1i = z′iγ1 + ε1i (3.1.A)

y2i = β21y1i + z′iγ2 + ε2i (3.1.B)
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3. Simultaneous Equation Models

It is Equation (3.1.A) which incorporates the additional dimension for spatially

confounded regression setups mentioned at the end of the previous chapter. Ad-

ditionally, this approach allows for quantifying the amount of spatial information

in the covariate y1 by estimating f (1) � a feature that is not available in existing

methods (e.g. LM, GEO and RS as introduced in Section 2.2). Consequently, the

dashed arrow in Figure 3.1 (c) represents the central idea for improving spatial

models in the context of confounded data.

In the contributing articles summarized in the subsequent chapter, I introduce and

further generalize a new model class for dealing with e�ect separation problems in

confounded data, for which (3.1.A) as well as (3.1.B) are fundamental.

3.3. Estimation in SEMs

Usually, model parameters in classical SEMs are estimated by assuming joint nor-

mality of all (i.e. exogenous and endogenous) variables. Clearly, this assumption

is violated in our case since the exogenous variables are represented by binary spa-

tial indicators (see Equation (2.2)). Consequently, we restrict the distributional

assumption to the two error terms in (3.1.A) and (3.1.B), namely2


ε1i
ε2i


 iid∼ N




0

0


 ,


σ

2
1 0

0 σ2
2




 , i = 1, . . . , n.

This distribution translates to a bivariate Gaussian distribution for the endogenous

variables, i.e. 
y1i
y2i


 |zi,θ ∼ N (µi,Σy) , (3.2)

2See Section 5.2 and Appendices A - C for a discussion on the assumption of independent error
terms.

22



3.3. Estimation in SEMs

where

µi =


 1 0

−β21 1



−1
γ

′
1

γ ′2


 zi,

ΣY =


 1 0

−β21 1



−1
σ

2
1 0

0 σ2
2








 1 0

−β21 1



−1


′

.

and θ collects the unknown model parameters. The likelihood induced by (3.2) is

the basis for frequentist maximum likelihood estimation (as in Thaden and Kneib,

2017) or a Bayesian approach (see Thaden, 2017, for example).
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4. Summaries of the Articles

The three contributions of this dissertation are based on the idea of bringing to-

gether spatial statistics and simultaneous equation models as motivated in the

previous chapters. After summarizing the key �ndings of the articles in the subse-

quent sections, the results are further discussed in the �nal Chapter 5.

4.1. Structural Equation Models for Dealing

with Spatial Confounding

Thaden, H. and Kneib, T. (2017)

Structural Equation Models for Dealing with Spatial Confounding.

To appear in The American Statistician (accepted February 14, 2017).

The article is printed in Appendix A.

In this contribution, we formalize the multi-dimensionality of spatially confounded

regression setups. The article illustrates how path analysis techniques can be used

to disentangle direct from indirect spatial e�ects while at the same time control-

ling for an association between the endogenous variables. For that purpose, we

integrate spatial indicator variables into a bivariate structural equation model and

hence establish the class of geoadditive structural equation models (gSEM).

To this end, we implement a likelihood-based estimation strategy resulting from

the assumption of joint normality of the individual error terms shown in Equa-

tions (3.1.A) and (3.1.B). In a simulation study, we demonstrate how classical
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4. Summaries of the Articles

geoadditive models as introduced in Section 2.2 fail at separating covariate from

spatial e�ects in cases of spatial confounding. In contrast, our proposed method

alleviates confounding bias, even for highly correlated data.

Additionally, we introduce a likelihood ratio test as a supportive tool for model

selection. This test uses the fact that the simpler linear and geoadditive models

are nested within gSEM.

Finally, the practical applicability of gSEM is exemplarily illustrated in an analysis

of the relationship between household income and age structure at the scale of

German districts based on data from the INKAR (2015) survey. We demonstrate

how a spatially structured third variable (unemployment rate, in this case) induces

spatial confounding problems if not included in the estimation process.

My own contributions for this article include:

• Overall conceptualization of the article

• Theoretical justi�cation of the SEM approach

• Development and implementation in R (R Development Core Team, 2008)

of the model class gSEM

• Design and realization of an elaborate simulation study in order to evaluate

the suggested approach in terms of identi�cation, precision and robustness

against overspeci�cation

• Preparation of the data for the practical application of gSEM on German

household incomes

• Documentation of the results and writing of the manuscript

The contributions of my coauthor Thomas Kneib include proofreading of the article

at many stages as well as constant exchange of ideas on potential improvements

with respect to structure and content of the research project.
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4.2. Integrating Multivariate Conditionally

Autoregressive Spatial Priors into

Recursive Bivariate Models for Analyzing

Environmental Sensitivity of Mussels

Thaden, H., Pata, Maria P., Klein, N., Cadarso-Suarez, C. and Kneib, T. (2017)

Integrating Multivariate Conditionally Autoregressive Spatial Priors into Recursive

Bivariate Models for Analyzing Environmental Sensitivity of Mussels.

Submitted to Spatial Statistics.

The article is printed in Appendix B.

This more applied work extends the geoadditive structural equation model (gSEM)

from the �rst publication (see previous section) with a bivariate penalization ap-

proach that incorporates the correlation between the spatial information in co-

variate and response. More speci�cally, we combine the path analysis features of

gSEM with correlation structures captured by multivariate conditionally autore-

gressive (MCAR, see Gelfand and Vounatsou, 2003) priors for the spatial e�ects.

This extension is motivated by the application on adult mussel and mussel seed

abundances at the Galician coast. The spatial e�ects are supposed to capture

how mussels of di�erent degrees of maturity react to their ecological environment.

Allowing for correlation of these environmental factors re�ects the idea that indi-

viduals of the same species do not react independently to their environment. The

results of this study intend to improve the overall understanding of the marine

ecology at the Galician coast. This is not only of local economic importance for

the region of Galicia, but also fundamental for the national economy of Spain. The

data was originally analyzed and provided by Pata et al. (2012).

From a methodological perspective, we illustrate how the total spatial correlation
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in our recursive model can be decomposed via the MCAR structure of the spatial

e�ects.

This publication resulted from a research exchange at the University of Santiago

de Compostela in October 2015 and is hence a collaboration of multiple scientists

from Germany and Spain. My own contributions of this project are:

• Overall conceptualization of the article

• Bringing together the theory arising from MCAR type priors and SEMs

• Supplying a detailed interpretation of all model components along with a

decomposition of the overall spatial correlation in the data

• Implementation of the Bayesian estimation strategy in the software JAGS

(Plummer, 2003) via the R interface rjags (Plummer, 2016)

• Documentation of the results and writing of the original manuscript

The contributions of the coauthors include:

Maria P. Pata supplied a detailed description of the data and their collection

process. Furthermore, she interpreted the results from an ecological per-

spective.

Nadja Klein contributed to the clarity of the argumentation by proofreading the

manuscript at di�erent stages and gave valuable input concerning the dis-

cussion of the choice of prior distributions for the model parameters.

Carmen Cadarso-Suarez provided the data and details on the sampling region

(especially, she provided the basis of Figure 2 in the manuscript). Together

with Thomas Kneib, she contributed as a global adviser in this research

project.
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Thomas Kneib contributed as an overall supervisor of the project. Besides ini-

tiating the collaboration between both universities, he supported by proof-

reading the manuscript at di�erent stages. Additionally, Thomas Kneib and

I jointly worked on the global structure of the article and coordinated the

cooperation of the researchers involved in this project.

4.3. General Multivariate E�ect Priors in

Recursive Bivariate Gaussian Models

Thaden, H. (2017)

General Multivariate E�ect Priors in Recursive Bivariate Gaussian Models.

Zentrum für Statistik, Universität Göttingen, Working Paper Series,

https://www.uni-goettingen.de/de/13_Thaden_02_2017/558175.html.

The article is printed in Appendix C.

In this working paper, I further generalize the model class described by Thaden

et al. (2017). I introduce a framework in which not only correlated spatial e�ects,

but additionally various semiparametric e�ect types with general correlation struc-

ture can be incorporated into SEMs. Thus, I translate the approach for spatial

confounding to a broader set of situations in which for example concurvity prob-

lems can be addressed. The idea is based on the technically similar basis function

representations of the di�erent e�ect types (see Fahrmeir et al., 2013, for details).

More precisely, I illustrate how the MCAR prior structure for regional e�ects can be

translated to nonlinear e�ects via Bayesian P-splines and independent identically

distributed (i.i.d.) random e�ects.

For statistical inference in this model class, I derive the full conditional distributions

for all model parameters and implement the resulting Gibbs sampler based on the

mixed model representation of the basis function approach (as outlined in Fahrmeir

et al., 2004). Additionally, I generalize the interpretation of the correlation struc-
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ture introduced by Thaden et al. (2017) for spatial e�ects to the alternative e�ect

types.

Identi�cation of the model parameters and the model �t (via WAIC, see Watan-

abe, 2010) are evaluated in a simulation study. I illustrate the applicability of

this �exible approach on two real data sets. Firstly, I investigate the association

between acute (wasting) and chronic (stunting) undernutrition on a national scale

in African and Asian developing countries based on data from the World Health

Organization (WHO, 2016). In this application, country speci�c spatial e�ects are

included to capture environmental (e.g. climatic) and political circumstances.

The second example is based on a dataset previously studied by Jetz et al. (2009)

who investigate how species richness of plants (as producers) a�ects that of ani-

mals (as consumers) conditioned on a set of environmental factors using a linear

SEM. I extend their approach by including environmental factors nonlinearly via

Bayesian P-splines.

As the single author, I am fully responsible for the contents and conceptualization

of the manuscript. Holger Kreft from the Department of Biodiversity, Macroecol-

ogy & Biogeography at the University of Goettingen provided the species richness

data and assisted in the interpretation of the estimation results. The exchange of

ideas and concepts with Thomas Kneib and Nadja Klein (both from the University

of Goettingen) concerning this manuscript is highly appreciated.
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5.1. Summary of the Thesis

Spatial confounding problems in statistical analysis arise when explanatory and re-

sponse variables share some common spatial structures. As a consequence, the

results of standard regression approaches are usually not fully reliable in the sense

that estimates tend to be biased and/or imprecise.

The growing literature on this topic generally focuses on a restricted version of

classical geoadditive regression models based on an orthogonalization of spatial

and covariate information. These models alleviate confounding bias in the esti-

mated covariate e�ect, but the estimated spatial component of the model is no

longer interpretable due to its restricted nature.

As an introductory step to overcome the shortcomings of the existing approaches,

I translated the problem at hand - which can as well be labeled spatial endogeneity

of the covariate - to simultaneous equations in order to statistically formalize the

concept of spatial confounding. By adapting the existing inferential framework of

SEMs to the speci�c situation in spatial analysis, gSEM constitutes an intuitive

tool for visualizing and analyzing spatially confounded data. This approach hence

overcomes the restricted interpretability in existing models suggested by Reich

et al. (2006), Hughes and Haran (2013) and Hanks et al. (2015). Additionally, a

likelihood ratio test is provided as supportive tool for model selection in this case.
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In a second contribution, I extended gSEM by �exible spatial priors which allow for

general correlation structures. This idea not only captures the similar spatial struc-

tures in covariate and response (as Paciorek, 2010, describes spatial confounding),

but also induces an overall decomposition of the spatial correlation within the data.

Hence, it allows for quantifying the amount of information shared by covariate and

spatial components.

Finally, the method was further generalized for alternative e�ect types such as

nonlinear or random e�ects. A fundamental concept for this extension is the

technically similar basis function representation underlying the modeling of these

e�ects. Analogously to Thaden et al. (2017), the article contains a detailed in-

terpretation of the occurring e�ects along with a decomposition of the correlation

structure adapted to the newly introduced e�ect types.

The developed methods are also promising from an applied perspective. As illus-

trated in the contributing articles, they point at interesting insights for research

questions in economics (as in the illustration on German income data by Thaden

and Kneib, 2017), health (e.g. when relating acute and chronic undernutrition

in developing countries, see Thaden, 2017) and ecological research (as shown for

mussel abundance by Thaden et al., 2017, and species richness by Thaden, 2017).

Overall, the model class developed in this dissertation can be interpreted as

• an extension of semiparametric regression models with multiple responses by

introducing a recursive SEM structure,

• a broader class of SEMs with semiparametric predictors,

• and �nally a new modeling approach in spatial regression.
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5.2. Potential Future Research Directions

The methods provided in this dissertation can only serve as a �rst step in combin-

ing methodology arising from SEM techniques with modeling approaches in spatial

and semiparametric regression. In this section, I point at some possible directions

of future research.

Distributional �exibility: The estimation strategies (either frequentist maximum

likelihood estimation or Bayesian Markov Chain Monte Carlo (MCMC) sampling)

presented here are based on assuming Gaussian error terms (see Equation (3.2)).

On the one hand, this reduces the normality assumption to only two variables,

whereas in classical SEMs, estimation is usually related to joint normality of all

occurring variables (also the exogenous variables). On the other hand, this as-

sumption turns out to be restrictive in many practical applications (e.g. for count

or binary data). A �rst step in a more general direction is illustrated by Shipley

(2009) who introduces piecewise SEMs to capture di�erent response distributions

in a multiple stage estimation procedure.

Independence assumption: Identi�cation in recursive SEMs as investigated in

this dissertation is - in the linear case - ensured by assuming independence of

the error terms across equations. As I argue within the contributing manuscripts,

this assumption is not too restrictive, since the resulting joint distribution of the

response variables has a non-diagonal covariance matrix (see Equation (3.2)). Fur-

thermore, allowing for correlation among the semiparametric e�ects captures ad-

ditional sources of correlation between these variables. However, it is well known

that regularization with the e�ect priors as employed by Thaden (2017) reduces

the e�ective number of parameters (Wood, 2006). Consequently, regularization re-

duces the overall model complexity. It would be worth to investigate under which

circumstances the assumption of independent error terms can be relaxed which

would extend the class of seemingly unrelated regression models (Zellner, 1962)

with the recursive structure of SEMs.
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Predictor structure: Based on the representation of the semiparametric e�ects

in Thaden (2017), it appears straightforward to extend the predictor with multiple

di�erent e�ects, for example spatial and nonlinear as in

y1 = f
(1)
spat(space) + f

(1)
nonlin(x) + ε1

y2 = β21y1 + f
(2)
spat(space) + f

(2)
nonlin(x) + ε2

Hence, simultaneous in�uences of spatial components as well as nonlinear e�ects

of an exogenous variable x on the endogenous variables y1 and y2 can be modeled

at the same time. This would establish the class of structured additive simultane-

ous equation models with general e�ect priors based on the approach developed

in this thesis.

SEMs beyond the mean: As in standard linear or generalized linear regression

approaches, the model equations link covariates and responses on the level of the

responses' means. Recently, modeling other features of the response distributions

such as scale and shape has gained more and more interest. Existing frameworks

are generalized additive models for location, scale and shape (GAMLSS, see Rigby

and Stasinopoulos, 2005) or structured additive distributional regression (Klein

et al., 2015). Technically, these models link the di�erent parameters of the re-

sponse distribution (e.g. the variance σ2 of a Gaussian distribution) to a set of

covariates. Integrating the methods presented here into these frameworks might

lead to additional possibilities of alleviating confounding problems at the level of

various distributional outcomes. Additionally, extending the ideas of joining SEM

with quantile regression techniques as outlined by Koenker (2005) would transfer

these ideas from the mean to arbitrary conditional quantiles of the endogenous

variables. Conditional expectiles represent a natural alternative to quantile regres-

sion approaches. Sobotka and Kneib (2012), for example, illustrate how spatial

aspects can be conceived in this context which could serve as the fundament for

another extension of the model class developed in this thesis.
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5.3. Concluding Remark

The overall aim of this dissertation is founded in Leo Breiman's quotation at

the very beginning of this thesis. Existing methods on the separation of e�ects in

complex and in particular spatially confounded regression setups enable precise and

unbiased estimation of one covariate e�ect, whereas the overall interpretability of

the spatial component is forfeited. Reinterpreting the role of spatial correlation as a

noteworthy characteristic of both covariate and response simultaneously addresses

accuracy and interpretability and has thus established the ideas at the basis of this

dissertation.
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Abstract

In regression analyses of spatially structured data, it is common practice to intro-

duce spatially correlated random e�ects into the regression model in order to reduce

or even avoid unobserved variable bias in the estimation of other covariate e�ects.

If besides the response the covariates are also spatially correlated, the spatial e�ects

may confound the e�ect of the covariates or vice versa. In this case, the model fails to

identify the true covariate e�ect due to multicollinearity. For highly collinear contin-

uous covariates, path analysis and structural equation modeling techniques prove to

be helpful to disentangle direct covariate e�ects from indirect covariate e�ects arising

from correlation with other variables. This work discusses the applicability of these

techniques in regression setups where spatial and covariate e�ects coincide at least

partly and classical geoadditive models fail to separate these e�ects.
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1 Introduction

Confounding or a third variable e�ect (cf. Weiber and Mühlhaus, 2014) in statistical anal-

ysis describes the scenario when a possibly latent variable is associated with both the

response variable and one or more covariates. Figure 1 illustrates such confounding in a

simple setup with one covariate.

Confounder

Covariate

Response

Figure 1: Illustration of a confounded statistical relationship. The con-
founder in�uences the covariate and the response simultaneously

As a consequence, estimation of the covariate e�ects might be a�ected in terms of bias or

precision. In most cases, confounding variables are unobserved. Hence, it is hard to adjust

for confounding e�ects in the estimation. In this article, we consider the speci�c case of

spatial confounding, which was introduced by Clayton et al. (1993) as �confounding due to

location� and which Paciorek (2010) describes as the presence of similar spatial patterns

within confounders and covariates. These patterns induce correlations among the observed

and unobserved variables and hence lead to a bias in the estimation. On the one hand, the

spatial structure allows for including the confounder as a spatial e�ect into the model. On

the other hand, even controlling for spatial confounders in classical spatial models such as

kriging cannot reduce the bias if the correlation is strong (Paciorek, 2010). As a result,

there is a growing literature trying to address the problem of spatial confounding bias.

Reich et al. (2006), for instance, encountered this problem while analyzing the relation-

ship between the stomach cancer incidence ratio and the socio economic status on level of

municipalities in Slovenia. Based on the same data, Hodges and Reich (2010) introduce

restricted spatial regression via an orthogonalization of the spatial e�ect and the covariate

information. Paciorek (2010) describes the in�uence of the spatial scales on which response

and covariate vary on the degree of confounding bias. Hughes and Haran (2013) provide

methods to alleviate spatial confounding by reparametrization of geoadditive models and

apply their methodology to the analysis of childhood mortality in the US. Whereas the

above-mentioned articles are based on discrete spatial information, Hanks et al. (2015)

transfer these approaches to situations with continuous spatial support. The common

methodological thread of the mentioned papers is that they allow for spatial information
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only within the response: either as spatially structured random e�ects within the predictor

or as spatial correlation in the residuals. On the other hand, these approaches do not allow

for explicitly modeling the spatial information within the covariate.

In our contribution, we interpret the role of space in a conceptually di�erent manner, in

the sense that space is allowed to have an e�ect on the covariate and the response simul-

taneously. Figure 2, in which space takes the role of the confounder, illustrates this idea.

The total spatial information in the response is composed of the direct spatial e�ect (solid

arrow) and the indirect spatial e�ect transported to the response through the covariate

e�ect (dashed arrows). Motivated by Figures 1 and 2, we establish an estimation strat-

Space

Covariate

Response

Figure 2: Illustration of a spatially confounded statistical relation-
ship. Space in�uences the response directly (solid arrow) and indirectly
through the covariate (dashed arrows).

egy which is based on multiple regression equations uni�ed in the framework of structural

equation models (SEM). SEM emerged from path analysis (Wright, 1918) and have been

extensively studied and developed since then (see Bollen, 1989, for a detailed overview).

Although the focus of the introduced approach is on reducing bias in the estimation of the

covariate e�ect, SEM techniques additionally provide us with the methodology to estimate

all occurring e�ects represented by arrows in Figure 2 in one single step. The estimation

itself can be performed based on the joint likelihood of the observed variables conditioned

on the location of the observations. This also provides the basis for a Bayesian approach

to SEM. We investigate under which circumstances classical geoadditive approaches fail to

separate the e�ects and illustrate the applicability of both likelihood-based and Bayesian

SEM techniques in this context.

The overall aims of this paper are �rst the junction of structural equation models and

spatial statistics motivated by spatial confounding problems. Second, we summarize and

illustrate how strong spatial correlation within the data a�ects the estimation in commonly

used models.

The rest of the article is organized as follows: In Section 2 we brie�y summarize how dis-

crete spatial information can be modeled and explain the theory underlying geoadditive

regression models. The subsequent section motivates the use of path analysis techniques,
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introduces structural equation models as an extension of the linear model and shows how

spatial e�ects can be conceived using that framework. Section 4 describes the setup and the

results of our simulation study in detail. In Section 5, we illustrate how the unemployment

rate confounds the relationship between age and disposable household income in adminis-

trative districts in Germany using real data from the INKAR 2012 survey (INKAR, 2015).

Additionally, we formulate a likelihood ratio test which can be seen as a supportive tool

for model selection in spatially confounded regression settings. Finally, Section 6 concludes

and indicates further research directions.

2 Geoadditive Regression and Spatial Confounding

2.1 Spatial E�ects and Geoadditive Regression Models

Depending on the scale, spatial information can be included continuously (e.g. via coordi-

nates) or discretely (e.g. in terms of countries or administrative districts) into statistical

models. In this paper, we focus on the case of discrete spatial information. More precisely,

we assume that for each observation the location is available in terms of one of �nitely

many regions S = {1, . . . , d}.
The notation used in this paper is motivated by the one commonly used in structural

equation models (see Section 3.2 for a detailed explanation). In terms of simple linear

regression models without spatial components, we denote the response variable by Y2 and

the covariate by Y1 yielding the model equation

y2i = β0 + β21y1i + ε2i, i = 1, . . . , n (1)

where yji corresponds to the i-th observation of Yj, j = 1, 2. The regression coe�cients are

denoted by β0 and β21, ε2i is the usual Gaussian error term and n is the sample size. In the

following, we will leave out the intercept β0 and consider all variables as centered. Spatial

e�ects are included as a (smooth) function of the geographic location, which in practice

can be written as

fspat : S → R,

s 7→ γs (2)
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due to the discrete nature of available spatial information, i.e. each region s has a scalar

valued e�ect γs on the variable of interest. To incorporate (2) into (1), spatial indicators

are constructed. For each region s ∈ S let

zsi =





1, if y2i was observed in region s

0, otherwise
.

Now, the extended geoadditive linear model equation is

y2i = y1iβ21 + z′iγ + ε2i (3)

with zi = (z1i, . . . , zdi)
′ ∈ {0, 1}d and spatial e�ects vector γ = (γ1, . . . , γd)

′ ∈ Rd.

A commonly made assumption in geostatistical analysis is that the spatial e�ects involve

a certain smoothness (Rue and Held, 2005). The reasoning behind this assumption is

that observations which are located close to each other are more similar than observations

far apart. In terms of discrete regional e�ects, spatial proximity is usually de�ned as

neighborhood of regions, i.e. sharing a common boundary. In order to ensure this spatial

smoothness, large deviations between the e�ects of neighboring regions are penalized during

the estimation of these e�ects. This penalization corresponds to modeling space as a Markov

random �eld (Besag et al., 1991). Details on the construction of the spatial penalty can be

found e.g. in Fahrmeir et al. (2013, Chapters 7 and 8) and in Appendix A.

For the rest of this article, we will use this widely used standard geoadditive regression

model as a benchmark for our new approach introduced in Section 3.2. Additionally, we

illustrate how penalization a�ects the estimation in di�erent confounding scenarios.

2.2 Formalization of Spatial Confounding

Using the notation from the previous subsection, we formalize the concept of confounding

as follows.

De�nition. A regression with response variable Y2 and covariate Y1 is called confounded

by a third variable X1, if

1. Y1 and X1 are stochastically dependent and

2. X1 in�uences the regressional relationship between Y1 and Y2, i.e. E(Y2 | Y1 = y1) 6=
E(Y2 | Y1 = y1, X1 = x1).
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The regression is spatially confounded, if the confounder X1 has a spatial structure.

In other words, spatial confounding occurs, if both confounder and covariate have a sim-

ilar spatial structure (cf. Paciorek, 2010). Hence, in contrast to (3), spatial e�ects in the

response and covariate need to be considered. Estimation of the covariate e�ect of interest

β21 will be biased, if this is not accounted for (see Section 4 and Paciorek, 2010).

3 The Geoadditive Structural Equation Model (gSEM)

With help of the de�nition from the previous section, we further formalize the illustration

of confounded regression scenarios as shown in Figure 3. The individual regions in�uence

the response and the covariate simultaneously via fspat,2 and fspat,1, respectively. One way

S

Y1

Y2

fspat,2

fspat,1 β21

Figure 3: Formalization of a spatially confounded simple regression with
covariate Y1 and response Y2.

to alleviate confounding bias in the estimation of the covariate e�ect of interest β21, is a

correction of the response for its spatial component fspat,2 in a �rst step. Regressing the

modi�ed version of the response on the original covariate then leads to unbiased results.

In cases of spatially confounded data, classic modeling approaches cannot decompose the

two spatial structures and thus fail at correctly adjusting the response. In this section, we

show how the di�erent e�ects can be separated by disentangling the paths in Figure 3.

3.1 E�ect Separation via Path Analysis

Similar to how Weiber and Mühlhaus (2014, Chapter 3) describe the separation of direct

and indirect covariate e�ects via path analysis in case of standardized continuous covariates,

we illustrate how to extend this idea to discrete spatial information. For that purpose, we

de�ne the overall occurring spatial e�ect ftotal by combining the paths in Figure 3. Hence,

the overall spatial information can be written as a composition of the direct and indirect
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spatial e�ect, i.e. for each region s ∈ S

ftotal(s) = fspat,2(s) + fspat,1(s) · β21 (4)

holds.

Now, denote by y∗2i the i-th observation of the response correctly adjusted for its spatial

e�ect, i.e.

y∗2i = y2i − fspat,2(si). (5)

Although in cases of spatial confounding, fspat,2 and β21 cannot be estimated without bias

with standard methods, one can show that the adjustment in (5) is equivalent to correcting

the response for ftotal and the covariate for fspat,1, respectively, prior to the actual regression

analysis (see Appendix B for details). Hence, the correction in (5) is equivalent to modeling

(y2i − ftotal(si)) = β21(y1i − fspat,1(si)) + εi. (6)

Note that three regression steps are necessary to obtain the desired unbiased estimator of

β21 via (6): �rst estimate the overall spatial information ftotal in y2, second estimate the

spatial e�ect fspat,1 in y1 and �nally use these estimates in (6) to obtain an estimate for β21.

In the following section, we show how to unify these steps by means of structural equation

techniques.

3.2 Employing Structural Equation Models

In general, SEM consist of multiple regression equations in which response variables from

one equation are allowed to appear as covariates in other equations. Variables that oc-

cur as response at least in one of the equations are called endogenous, whereas variables

that only appear as covariates are called exogenous. Figure 4 represents a SEM with two

endogenous variables (hence two equations) and d exogenous variables. In terms of spa-

tial confounding as described above, Z1, . . . , Zd, correspond to the regional indicators and

represent the confounder in Figure 1. Y1 and Y2 denote the covariate and response in the

same �gure, respectively. Using standard SEM notation, we denote by yi = (y1i, y2i)
′ the

i-th observation of the vector of endogenous variables and by zi = (z1i, . . . , zdi)
′ the vector

of exogenous variables. Occurring covariate e�ects in the individual equations are indexed

�rst by the index of the corresponding response and second by the index of the covariate.
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Z1

Z2

...

Zk

...

Zd Y1

Y2 ε2

ε1

γ21

γ22

γ2k

γ2d

γ11

γ12

γ1k

γ1d

β21

Figure 4: Illustration of a structural equation model representing a spa-
tially confounded regression. Regional indicators are considered to be
exogenous whereas covariate and response are considered to be endoge-
nous variables.

Figure 4 can thus be translated into the two structural equations

y1i =
d∑

k=1

zkiγ1k + ε1i (7)

y2i = y1iβ21 +
d∑

k=1

zkiγ2k + ε2i. (8)

Note that if all regional e�ects γjk, j = 1, 2, k = 1, . . . , d, are zero, the data generating

process reduces to a simple linear model with response y2 and a covariate y1 following the

distribution induced by ε1. Combining Equations (7) and (8) yields the bivariate model

equation

yi = Byi + Γzi + εi ∈ R2

⇔ yi = (I−B)−1Γzi + (I−B)−1εi (9)

where the two spatial e�ects are summarized in

Γ = (γ1,γ2)
′ =


γ11 . . . γ1d

γ21 . . . γ2d


 .

8
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The regional indicators and error terms are given by zi = (z1i, . . . , zdi)
′ and εi = (ε1i, ε2i)

′,

respectively. Moreover, I is the two dimensional identity matrix and

B =


 0 0

β21 0




contains the covariate e�ect. The model in Equation (9) is in the following referred to as

geoadditive structural equation model (gSEM). Note that the linear (cf. Equation (1)) and

geoadditive (cf. Equation (3)) regression models are nested within this SEM via setting

γ1 and γ2 or only γ1 in (9) equal to zero. In general, also in this approach, neighborhood

penalties as introduced in Section 2 could easily be incorporated for γ1 or γ2 or both. On

the other hand, as is illustrated during the simulation study in Section 4, penalization is one

of the main drivers of confounding bias. Hence, when referring to gSEM in the following,

unpenalized regional e�ects are included if not explicitly otherwise stated.

In this paper, we assume εji
iid∼ N (0, σ2

j ), i = 1, . . . , n, for j = 1, 2 and independence

between the two error terms. The assumption of independence can in general be avoided,

but it represents the idea that the correlation between covariate and response is completely

captured by β21 and the spatial e�ects. Note that usually one assumes joint normality of

all occurring variables in the SEM and estimates the e�ects by comparing the theoretical

with the empirical covariance matrix (see Bollen, 1989, for details). We only impose the

normality assumption on the two error terms in order to reduce the dimensionality of

the resulting likelihood. Another reason for avoiding the assumption of joint normality

in our approach is the fact that the introduced exogenous variables are binary and hence

far from normally distributed. Hence, we circumvent a potential misspeci�cation of the

model. The distributional assumption on the error vector ε implies a two-dimensional

normal distribution of the vector of endogenous variables. The resulting log-likelihood of

yi | zi,γ1,γ2, β21

except for additive constants is then given by

l(θ) = −n
2

log(|ΣY|)−
1

2

n∑

i=1

(yi − µi)
′Σ−1Y (yi − µi) (10)

9
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where the mean vector and covariance matrix of the vector of endogenous variables can be

calculated as

µi = (I−B)−1Γzi,

ΣY = (I−B)−1


σ

2
1 0

0 σ2
2


 ((I−B)−1)′

and θ = (σ1, σ2, β21,γ1,γ2) ∈ R2·d+3 collects all unknown parameters. The (log-)likelihood

in (10) can be used to obtain estimates for the regression parameters, either by a maxi-

mum likelihood approach (i.e. directed optimization of (10) with respect to the unknown

parameters θ) or in a Bayesian way using Markov chain Monte Carlo (MCMC) techniques.

In Section 4, we brie�y illustrate that both approaches lead to very similar point estimates

(posterior mean in the Bayesian case) and uncertainty measures (bootstrapped standard

errors for maximum likelihood estimation and posterior standard deviation for the Bayesian

approach).

4 Simulation Study

To illustrate the applicability of gSEM and to identify the driving factors of confounding

bias, a simulation study is performed. Thereby, we compare the performance of the esti-

mators of the covariate e�ect across di�erent model formulations in terms of bias and mean

squared error. Finally, we illustrate the behavior of the models in cases where the data

generating process deviates from how we de�ne spatial confounding in Section 2 and evalu-

ate the estimation of the spatial e�ects. For these purposes, we generate data according to

how Paciorek (2010) describes spatial confounding. Hence, as spatial e�ects, we simulate a

spatially structured third variable X which a�ects the covariate and the response linearly.

As a consequence, the two spatial e�ects are linearly dependent and the degree of spatial

confounding is controlled for via the variability of the covariate y1 beyond the spatial scale,

i.e. via σ2
1 = Var(ε1).
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4.1 Setup of the Simulation

4.1.1 Data generating process

We simulate three di�erent spatial structures on an arti�cial map with 49 regions as il-

lustrated in Figure 5: �rst, a spatial gradient from southwest to northeast (left image),

second a spatial clustering at the center of the map (central image) and �nally a spatially

unstructured confounder (right image).

Structure 1

1 2.5

Structure 2

0.8 2

Unstructured

0 2

Figure 5: Di�erent spatial structures of the confounding variable x. Left:
Gradient from southwest to northeast (Structure 1). Center: Clustering
at the center of the map (Structure 2). Right: Unstructured confounder
(Unstructured).

For each of the three spatial structures, we generate data according to

y1i = 0.5 · xi + ε1i

y2i = β21y1i − 1 · xi + ε2i

ε1i ∼ N (0, σ2
1)

ε21 ∼ N (0, σ2
2) (11)

with a true covariate e�ect1 β21 = 3, a �xed sample size of n = 490 and four di�erent

variance combinations

(σ1, σ2) ∈ {(0.15, 1), (1, 1), (1, 0.15), (0.15, 0.15)}.
1We also simulated additional covariate e�ect sizes β21. Qualitatively, the results do not change, so we

restrict the presentation to the aforementioned case of β21 = 3.
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The confounder X is assumed to be region speci�c as shown in Figure 5 and was considered

unknown and included as a spatial e�ect or ignored completely during the estimation. Each

scenario was replicated 100 times, yielding 1200 simulated datasets in total.

4.1.2 Models for comparison

In the estimation step, we account for the spatial information as described in the previous

section. Here, we illustrate the results of three conceptually di�erent model formulations:

LM: We show what happens, if the confounder is ignored completely. Hence, we estimate

a simple linear regression model without any spatial components:

y2 = y1β21 + ε2, ε2 ∼ N (0, σ2
2I). (12)

GEO: Additionally, we investigate how classic geoadditive regression models including the

linear covariate e�ect and one spatial e�ect modeled as a Markov random �eld deal

with confounding problems. This modeling approach is widely used in regression

analysis of spatially structured data and hence serves as benchmark for the new

bivariate approach:

y2 = y1β21 + fspat,2(s) + ε2, ε2 ∼ N (0, σ2
2I), (13)

where fspat,2 represents the penalized spatial e�ects in (3).

gSEM: Finally, we employ the gSEM-based regression with two spatial e�ects without

any penalty for the spatial e�ects:

yi = (I−B)−1Γzi + (I−B)−1εi, i = 1, . . . , n, εi ∼ N (0,Σε), (14)

with spatial indicators zi as in (3).

We chose these model formulations to simultaneously illustrate the in�uence of the pe-

nalization and the di�erences resulting from incorporating no, one or two spatial e�ects.

Additionally, we investigated the performance of the penalized version of gSEM. The results

were similar to that of GEO and did not lead to a signi�cant improvement with respect

to confounding bias. Hence, we restrict the presentation to the results of the unpenalized

gSEM.
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4.2 Results

In this part, the behavior of the di�erent models in various confounding scenarios is de-

scribed in detail. First, we focus on the main objective of the newly introduced method,

namely bias reduction. Furthermore, we compare the models' performances in terms of

precision and mean squared errors and evaluate the estimated spatial e�ects. Finally, we

illustrate how deviations from the data generating process a�ect the estimation. Note that

estimates shown here are maximum likelihood estimates based on the log-likelihood from

Equation (10). At the end of this section, we brie�y show that a Bayesian reformulation

leads to basically the same properties of the estimators.
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Figure 6: Estimated covariate e�ect β̂21 in the simulated data sets.
Left: Confounder following the gradient structure. Center: Con-
founder following the centroid structure. Right: Unstructured con-
founder. In all three panels, the results for gSEM (black), LM (gray)
and GEO (white) are displayed for the variance combinations (σ1, σ2) ∈
{(0.15, 1), (1, 1), (1, 0.15), (0.15, 0.15)} (from left to right).

4.2.1 Bias in the estimation of the covariate e�ect

Figure 6 visualizes the impact of di�erent variance combinations in (11) on the estimated

covariate e�ect β̂21. The �gure is separated into three parts. The left panel illustrates the

model's performances for a confounder following the gradient structure in Figure 5. If σ1

is small, i.e. if the covariate does not vary much beyond the spatial scale, the scenario

is considered to be highly confounded. This labeling is justi�ed, since in this case the

bias in the estimation of β21 is largest for LM and GEO (left boxplots, gray and white).
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The newly introduced approach gSEM leads to unbiased estimation even in this extreme

case (left boxplot, black). In cases of low or no confounding, i.e. large variability of y1

beyond the spatial scale, gSEM and GEO perform similarly well with respect to bias of β̂21

(left panel, Scenarios 2 and 3, black and white boxplots). Ignoring the spatial component

completely, preserves confounding bias to a certain degree (LM, as above, gray boxplots).

Decreasing the uncertainty in y2, namely decreasing σ2
2 leads to an improved performance

in GEO and gSEM, even if σ2
1 is small. The bias in the estimation in LM is not a�ected

by a smaller error variance σ2
2 (Left panel, Scenario 4). Qualitatively, the results do not

change for the alternative structures of the spatial confounder. The centroid structure

(central panel in Figure 6) leads to more or less the same results as described above. For

the unstructured confounder, the performance of GEO and LM is even worse, whereas the

estimation in the gSEM approach appears to be una�ected by the spatial structure of the

confounder. The negative e�ect of the missing structure on GEO based estimation is to a

certain degree expected, since the model itself assumes a smooth structure of the spatial

e�ects (via penalization), which is not present in the data.

4.2.2 Mean squared error

Although the focus of gSEM is to alleviate confounding bias, we additionally investigate

the mean squared error (MSE) of the covariate e�ects estimator β̂21 across models. Figure

7 shows the MSE in dependence of σ1 on the left and σ2 on the right, respectively. In the

�rst case, σ2 = 1 was kept constant, in the second case, we chose σ1 = 0.15 to illustrate

the behavior of the MSE in a confounded setting. The remaining parameters of the simu-

lation were chosen as explained at the beginning of Section 4 for the unstructured spatial

confounder. For σ1 in the range between 0.15 and 1 (left �gure), the estimator based on

gSEM has the lowest MSE (solid line), whereas ignoring the spatial components leads to

the worst performance (dashed line). If the covariate y1 varies strongly beyond the spatial

scale, i.e. if σ1 gets large, spatial confounding is less problematic and all models perform

similarly well.

On the other hand, the MSE in the simple linear model seems to be independent of the

variability of the second error component σ2 (right �gure, dashed line). If σ2 is small,

GEO and gSEM lead to unbiased and precise estimators resulting in MSE's close to zero.

Increasing σ2 yields a steep increase in the MSE for GEO (dotted line), whereas the MSE

in gSEM rises considerably slower (solid line).
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In all cases, there is a clear order of the models with respect to estimation MSE: gSEM

performs best, followed by GEO, whereas LM has the largest MSE.2
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Figure 7: Resulting mean squared error of β̂21 for gSEM (solid), GEO
(dotted) and LM (dashed) estimation for increasing variability of the
covariate beyond the spatial scale (left) and increasing error standard
deviation σ2.

2The MSE becomes substantially larger in gSEM, when there is basically no variability in the covariate
beyond the spatial information. On the other hand, in these cases, it should be questioned, if confounder
and covariate really represent di�erent in�uences on the response anyway, depending on the application.
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Figure 8: Exemplary comparison of true and estimated spatial e�ects
for the simulated gradient structure of the spatial confounder. The rows
correspond to confounding scenarios resulting from the variance com-
binations (σ1, σ2) ∈ {(0.15, 1), (1, 1), (1, 0.15), (0.15, 0.15)} of the error
terms, respectively. The left and center columns show the estimated
and simulated spatial e�ects based on gSEM for y1 and y2, respectively.
The right column illustrates the according estimated spatial e�ects in
GEO. Due to the univariate nature of GEO, estimates for γ1 are not
available in this model.
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4.2.3 Evaluation of the spatial e�ect estimators

To illustrate the e�ect of confounding variables on the estimated spatial e�ects, we show

the results of gSEM and GEO for a confounder following the gradient structure in Figure

5 for one dataset of each simulated scenario. Note that the illustrated results can be seen

as representative and do not change qualitatively for di�erent structures of the confounder.

Figure 8 compares the estimated and the true spatial e�ects. Each row in the �gure

corresponds to a variance combination (σ1, σ2) ∈ {(0.15, 1), (1, 1), (1, 0.15), (0.15, 0.15)}.
In each row, the left graph shows the estimated spatial e�ects in y1, which can not be

compared to any other model, since only gSEM allows for estimating these e�ects. In all

scenarios, the overall correlation between estimated and true e�ects is positive and the

performance improves for low uncertainty σ2
1 as expected. The central and right plots show

estimation results for the spatial e�ects in y2 using gSEM and GEO, respectively. In the

case of high confounding (�rst row), the source of confounding bias becomes obvious: in

GEO, the spatial e�ects estimators are strongly penalized towards their overall mean and

hence do not represent the true spatial structure anymore. This missing spatial information

is then captured by the covariate e�ect which induces the confounding bias. On the other

hand, this problem is alleviated by gSEM yielding unbiased estimates in all scenarios. In

the other cases, the performance of gSEM and GEO is comparable with respect to the

estimated spatial e�ects in y2.

4.2.4 Over-speci�cation

In order to analyze the robustness of gSEM against over-speci�cation, we additionally in-

vestigate the performance of the model in cases where only one spatial e�ect or no covariate

e�ect is present. In this sense, these scenarios violate the formal de�nition of spatial con-

founding (cf. Section 2), such that too many e�ects are included in gSEM.

In the �rst case, data was generated according to Equation (11) with a confounding e�ect

of 0 instead of 0.5 on y1. In the second case, the confounder has no e�ect on the response

y2. In a third setup, β21 was set to 0. (�guratively speaking, we remove the dashed and

solid arrows from Figure 3). In all cases, we set σ1 = 0.2 and σ2 = 1.3 Again, the remaining

parameters were kept constant as in the �rst simulation.

Figure 9 shows the estimated covariate e�ect in the case of no spatial information in y1 (left

panel) and no spatial structure in y2 (central panel). The results for the setup without co-

3The choice of these standard errors does not a�ect the results of the �rst two scenarios qualitatively,
since in these cases, no confounding is present in the data.
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Figure 9: Estimation results for β̂21 across models when gSEM is over-
speci�ed. Left : No confounding e�ect on y1. Center : No confounding
e�ect on y2. Right : No covariate e�ect, i.e. β21 = 0.

variate e�ect are shown on the right. Again, we compare the performances of a simple linear

model (LM, gray boxplots), a standard geoadditive model (GEO, white boxplots) and the

in this case over-speci�ed gSEM (black boxplots). All three model speci�cations lead to an

unbiased and similarly precise estimation of β21 if only one spatial e�ect is present (left and

central �gure). The fact, that also the linear and geoadditive models perform reliably here,

indicates that there is no (spatial) confounding bias. Hence, the results concur with the

formal conditions for spatial confounding introduced in Section 2. If β21 = 0, we observe

the same confounding bias in LM and GEO (gray and white boxplots, right �gure) as for

the case β21 6= 0. Also in this case, the estimator based on gSEM remains unbiased. Thus,

in our approach, we do not observe the increased type-1 error found by Hanks et al. (2015)

for univariate restricted spatial regression.

4.2.5 Likelihood-Based vs. Bayesian estimation

Point estimates in gSEM can in general be obtained by maximizing the resulting log-

likelihood in (10) with respect to the unknown parameters. The uncertainty can be eval-

uated assuming asymptotic normality of the maximum likelihood estimates or based on

bootstrap techniques. An alternative is using a Bayesian estimation strategy from the

start, which naturally leads to uncertainty measure via posterior standard errors resulting

from MCMC samples. In this part, we compare the frequentist with the Bayesian approach

in terms of point estimates and uncertainty measures.

For the Bayesian approach, we use weakly informative priors for the unknown parameters
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in addition to the likelihood in (10). More precisely, we use

β21 ∼ N
(
0, 106

)

γ1 ∼ Nd

(
0, 106Id

)

γ2 ∼ Nd

(
0, 106Id

)

σ2
1 ∼ InvGamma (0.001, 0.001)

σ2
2 ∼ InvGamma (0.001, 0.001) .

as priors distributions.4 To construct the MCMC chains, we discard the �rst 5000 samples

(burnin phase) and then generate 50000 samples from which only every 50th is incorporated

in the sample to avoid autocorrelation of the samples (thinning). Hence, posterior analysis

is based on 1000 MCMC samples for each parameter. Table 1 shows the results for six

representative datasets from the simulation study. For each of the three spatial structures,

the results for two datasets are displayed, one considered highly confounded (variance com-

bination (σ1, σ2) = (0.15, 1) and a second including less confounded data (σ1, σ2) = (1, 1).

Table 1: Comparison of Bayesian and frequentist estimation approaches
for the three simulated spatial structures. Frequentist point estimates
(β̂ML) are compared to Bayesian posterior means (β̂MCMC). Addition-
ally, results for the uncertainty measures posterior standard deviations,
bootstrap standard errors (based on 500 bootstrap samples) and asymp-

totic standard errors (following ML theory) are displayed.

Spatial structure (σ1, σ2) β̂ML β̂MCMC Bootstrap se Posterior sd Asymptotic se

gradient (0.15, 1) 2.93 2.95 0.31 0.34 0.22
gradient (1, 1) 2.98 2.97 0.05 0.05 0.03
centroid (0.15, 1) 2.81 2.80 0.35 0.34 0.22
centroid (1, 1) 3.01 3.01 0.05 0.05 0.03
unstructured (0.15, 1) 2.98 2.98 0.32 0.32 0.21
unstructured (1, 1) 3.03 3.03 0.06 0.05 0.03

Independent from the degree of confounding as well as the spatial structure, frequentist

maximum likelihood estimation and the Bayesian analog lead to basically the same point

estimates for the covariate e�ect β21. Also, when comparing the two approaches with

respect to their uncertainty, there are no substantial di�erences when in the frequentist

approach bootstrap techniques are used to derive standard errors. In all cases, the asymp-

totic standard errors appear to be too optimistic due to the relatively small sample size

4Note again, that these weakly informative priors for γ1 and γ2 correspond to unpenalized spatial
e�ects from a frequentist perspective. For details on appropriate priors which incorporate the neighborhood
structure, see Rue and Held (2005).
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(n = 490) and hence presumably large deviations from the asymptotic distribution of the

maximum likelihood estimators.

4.2.6 Summary

To summarize the results from the simulation study, we conclude that gSEM ful�lls its task

of removing the spatial confounding bias in a broad set of situations. Even in extreme cases

of high spatial correlation in response and covariate, the estimation of the covariate e�ect is

unbiased. This does not hold, if the spatial component is ignored completely (LM, omitted

variable bias) or if the commonly used neighborhood penalty is included in the estimation

process (GEO and penalized gSEM, confounding bias). This also becomes obvious when

analyzing the estimated spatial e�ects across models. Although the focus is on alleviating

the bias, also the MSE of the estimated covariate e�ect is in the range of the benchmarking

geoadditive model in cases of low or no confounding and smaller, if the data are highly

confounded. Furthermore, the estimator of the covariate e�ect in gSEM is robust against

over-speci�cation and hence particularly useful for situations, in which it is unclear where

to include the spatial e�ects. Finally, using a maximum likelihood approach or a Bayesian

estimation strategy with weakly informative priors leads to equivalent results.

5 Household Income and Age in German Districts

Income, in general, is one of the most important measures of economic welfare (see for

example Slesnick, 1998). Especially, the disposable household income is considered a rele-

vant determinant of the capability of the household to ful�ll its material needs. Disposable

income of a private household is de�ned as the sum of income and social bene�ts of all

household members after subtracting the direct taxes and social insurance contributions.

In this section, we illustrate how spatially structured confounders in�uence the relationship

between average age and average disposable household income aggregated on the admin-

istrative level of German Raumordnungsregionen (called districts, in the following). We

use data from the Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) collected

as indicators and maps for rural and urban development (INKAR, 2015) from 2012. Note

that observations are available on the level of Landkreise, which we aggregate on the larger

scale of districts in order to ensure identi�ability of the di�erent spatial e�ects. Hence, the

data set consists of n = 402 observations in d = 96 districts.

Figure 10 shows the spatial distribution of both variables. The disposable income is higher
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in the south and west of Germany, whereas the average age shows a reverse spatial pattern.

However, based on economic theory, we would in general presume a positive in�uence of

age on income, since age is strongly related with working experience (e.g. Mincer, 1974).

These con�icting �ndings might be a result of the ecological fallacy (Robinson, 1950) since

the data are aggregated on district level and individual observations are not available in the

data set. On the other hand, it can be explained by missing variables inducing the inverse

spatial patterns, hence by spatial confounding. One possible confounder is displayed in

Figure 11. It shows the unemployment rate in the German districts. The spatial pattern

is nearly identical to that of the age structure. Yet, contrary to age, we would assume that

unemployment a�ects the income negatively.

Average age in years

37.8 44.5

Household income in EUR per inhabitant

1382 2134

Figure 10: Average age in years (left) and disposable household income
in EUR per inhabitant (right) in German Raumordnungsregionen. Data
source: c©BBSR Bonn 2015.

Unemployment rate in %

2.2 14.5

Figure 11: Unemployment rate in % in German Raumordnungsregionen.
Data source: c©BBSR Bonn 2015.
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5.1 Model formulations

Similar to the setup of our simulation study, we investigate how di�erent model formulations

deal with this confounding scenario. More precisely, we estimate the e�ect of age on

household income using the following models:

LM1: Simple linear regression without spatial e�ects

incomei = βage · agei + εi,

LM2: multiple linear regression without spatial e�ects

incomei = βage · agei + βunem · unemploymenti + εi,

GEO1: simple geoadditive regression with one spatial e�ect (penalized, as introduced in

Section 2.1) on the response

incomei = βage · agei + fspat(regioni) + εi,

GEO2: multiple geoadditive regression with one spatial e�ect (penalized, as introduced

in Section 2.1) on the response

incomei = βage · agei + βunem · unemploymenti + fspat(regioni) + εi,

gSEM: a structural equation model with endogenous variables yi = (agei, incomei)
′ and

two unpenalized spatial e�ects included as regional indicators


 agei

incomei


 =


I−


 0 0

βage 0





−1

Γzi +


I−


 0 0

βage 0





−1

εi.

Note that the models LM2 and GEO2 are assumed to be unconfounded, since the supposed

confounder unemployment is included as a covariate. Hence, they should be regarded as

tools to illustrate how ignoring confounders a�ects the estimation in the well-established

standard linear and geoadditive models. Clearly, the models are underspeci�ed in the sense

that multiple additional determinants of income are not taken into account. Di�erent stud-

ies suggest that also other characteristics like for example education and gender strongly
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a�ect the available income (see Sohn 2016 or Lemieux, 2006). However, this situation

represents the cause of spatial confounding: spatially structured omitted variables which

are also associated with the covariate of interest. Thus, the purpose of this section is to

illustrate the problems and approaches discussed in the previous parts of the article on real

data, instead of o�ering an economically rigorous analysis of the relationship between age

and income.

5.2 Model selection: Likelihood ratio test

In order to compare the alternative approaches from a model selection perspective, we

conduct a likelihood ratio test based on the bivariate likelihood derived in Section 3. The

simpler models LM1 and GEO1 are nested within the gSEM approach as follows:

• A simple linear model (LM1) for the in�uence of y1 on y2 (here age on income) is

nested in gSEM by setting γ1 = γ2 = 0. Then, the only e�ect to be estimated is β21.

• A model without spatial e�ect in y1 (GEO1) is nested in gSEM for γ1 = 0 (analo-

gously for y2 and γ2).

• A purely spatial model without covariate e�ect is nested in gSEM for β21 = 0.

Note that the models including unemployment (LM2 and GEO2) are not nested within

gSEM and can therefor not be compared using the LR-test. On the other hand, these

models are only supposed to illustrate e�ects of ignored spatially structured covariates and

hence do not represent confounded scenarios as discussed in this article. Also, we included

a purely spatial SEM to �nd out, if the covariate age improves the model �t, even if space

is accounted for in age and income.

The corresponding test statistic is

Λ = 2 · (lgSEM − lres),

where lgSEM and lres denote the log-likelihood evaluate at the optimum in the full and

restricted model, respectively. The asymptotic distribution of Λ is

Λ
a∼ χ2(pgSEM − pres),

where pgSEM and pres are the numbers of estimated parameters in the full and restricted

model, respectively. Note that this standard likelihood ratio test cannot be used to compare
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Table 2: Results of the likelihood ratio test for di�erent model speci�-
cations. GEO1∗ corresponds to a regression model for income explained
by age and unpenalized regional e�ects. LM1 is a simple linear model
for income with only age as a covariate. no covariate corresponds to
a bivariate model for (age, income) explained only by regional e�ects.
The full model is gSEM with regional e�ects in age and income as well
as age as a covariate for income.

model restriction Λ χ2
0.99(pgSEM − pres) p-value

GEO1∗ γ1 = 0 406.88 131.14 ≈ 0
LM1 γ1 = γ2 = 0 787.34 240.50 ≈ 0
no covariate β21 = 0 22.69 6.63 1.91 · 10−6

models with penalized e�ects with those using unpenalized e�ects. Nevertheless, it can be

used to determine which e�ects should be included at all. Table 2 shows the results for

the di�erent model restrictions. On all standard signi�cance levels, the likelihood ratio

test signi�cantly favors the full model, indicating that both spatial e�ects as well as the

covariate e�ect should be included into the modeling process.

5.3 Results

Table 3 summarizes the estimation results after standardizing the occurring variables. Ig-

noring the confounder completely (LM1) yields a signi�cantly negative estimator of the

age e�ect, which is presumably at least partly driven by the strong regional correlation

of age and unemployment. This e�ect vanishes, if the unemployment rate is modeled di-

rectly (LM2) or approximated as a spatial e�ect in the response (GEO1). Including the

unemployment rate directly and an additional spatial e�ect on the income (GEO2) leads

to a signi�cantly positive estimation result (i.e. the expected sign), indicating that there is

still spatial information left in the response after adjusting for age and unemployment rate.

The results of the gSEM-based estimation support this assumption. Here the estimated

age e�ect is even larger and highly signi�cant even if unemployment is not included as a

covariate. The 95% con�dence interval is based on 1000 bootstrap iterations in this case.

The spatial components in gSEM are not only able to correct for the e�ect of the unem-

ployment rate, but can as well be considered as aggregates for additional missing variables.

These results support the �ndings from the likelihood ratio test and highlight that if the

confounding variables are not modeled directly (e.g. if they are unobserved), the gSEM

approach leads to what is in line with previous research: via the adjustment using path

analysis techniques, it is �nally possible to identify the positive relationship between age

and income suggested by economic theory (Mincer, 1974) and empirical studies (among
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others Lemieux, 2006 or Klein et al., 2015). In cases, when the confounder is observed

and thus can easily be included (LM2 and GEO2), allowing for additional spatial variation

(GEO2) leads to a qualitatively similar result as gSEM.

Table 3: Point estimates and 95% con�dence intervals of the age e�ect
across models. The con�dence interval in the gSEM approach is based
on 1000 bootstrap iterations. The models LM1 (linear model of income
versus age), GEO1 (geoadditive model for income explained by age and
regional e�ects) and gSEM (bivariate model for age explained by regional
e�ects and income explained by age and regional e�ects) correspond
to spatially confounded scenarios. LM2 (explain income by age and
unemployment) and GEO2 (geoadditive model for income with age and
unemployment as covariates and regional e�ects) are unconfounded in
the sense that they include the confounding variable (unemployment).

Method β̂age 95% con�dence interval

LM1 −0.33 [−0.43,−0.24]
LM2 0.02 [−0.06, 0.11]
GEO1 0.08 [−0.02, 0.17]
GEO2 0.17 [ 0.09, 0.26]
gSEM 0.23 [ 0.14, 0.36]

The spatial e�ects estimated by gSEM and GEO1 are visualized in Figures 12 and 13,

respectively. The spatial structures observed in age and income (see Figure 10) are more

or less reproduced by gSEM, whereas due to its univariate nature, GEO1 only provides

estimates for the spatial e�ects in income. In this case, the estimated e�ects are similar

(although slightly more penalized towards zero) to those resulting from gSEM. Overall,

the regional e�ects have a positive in�uence on income in the south and west of Germany,

whereas the spatial in�uence tends to be negative in the north and east. Even 22 years

after the reuni�cation of Germany, a clear cut between the former German Democratic

Republic in the east and West Germany is visible. On the other hand, the spatial patterns

in the age structure show that the average age is higher in eastern regions and lower in

southern and western parts of Germany.

6 Discussion

In this article, we formalize the concept of spatial confounding as described by Paciorek

(2010). We illustrate how spatially confounded data a�ect the estimation even if spatial

e�ects are accounted for in commonly used regression models. We found that not only

the variability of the covariate beyond the spatial scale, but also the amount of noise in-

�uences the performance of the estimation in classic geoadditive models. Although there
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Spatial effect in age (gSEM)

−1.5 2.40

Spatial effect in income (gSEM)

−1.65 2.50

Figure 12: Spatial e�ects in age (left) and income (right) estimated via
gSEM.

Spatial effect in income (GEO1)

−1.3 1.750

Figure 13: Estimated spatial e�ects in income via GEO1.

are multiple alternatives to modeling space as a Markov random �eld in the geoadditive

regression model, we take this speci�cation as a representative benchmark for the gSEM

estimation. Hodges and Reich (2010), for example, found that spatial confounding prob-

lems do not occur due to a speci�c parametrization of the spatial e�ects, but - if present -

are inherent in the data. In order to address the resulting confounding bias, we incorporate

discrete spatial information into the framework of structural equation models which allows

for frequentist (maximum likelihood) or Bayesian estimation (equivalent for uninformative

priors). Even in case of a strong spatial structure within the covariate, estimation with

the gSEM approach is still unbiased but shows increased uncertainty, if the spatial e�ects

are unpenalized. Nevertheless, the variance of the estimator rises moderately such that

the mean squared error is generally stable due to the bias reduction. Classical geoaddi-

tive approaches and simple linear regression models are not capable of identifying the true

covariate e�ect, if spatial confounding is present. In contrast to existing techniques to al-
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leviate confounding bias, our method allows for and quanti�es spatial e�ects on both, the

covariate and the response simultaneously. In this sense, the presented method is not only

able to separate spatial from covariate e�ects, but can also be considered as an extension

to geoadditive regression models. Additionally, in cases when only one spatial component

or no covariate e�ect is present in the data and the gSEM is over-speci�ed, estimation

is still reliable. Thus, the introduced methodology allows for a robust and user friendly

estimation, even when it is not clear which variables are a�ected by spatially structured

third variables.

We demonstrate the applicability of our estimation strategy when investigating the relation-

ship between age and disposable household income on the level of Raumordnungsregionen

in Germany based on INKAR data from 2012 (INKAR, 2015). Clearly, the models used

are underspeci�ed in the sense that multiple determinants of income are not taken into

account (e.g. education). On the other hand, confounders are unobserved in many cases

and hence, this example nicely illustrates how spatially structured omitted variables can

lead to confounded regression results. In this data set, the unemployment rate is identi�ed

as one such confounder. Here, gSEM-based estimation leads to the most plausible results,

if the confounder is included as a regional e�ect. The results are additionally substantiated

with a likelihood ratio test, which uses the nested nature of the compared models. We

advise the reader to interpret the introduced test as a supportive tool for model selection

instead of a rigorous test for spatial confounding. Nevertheless, a joint application of gSEM

and the likelihood ratio test might be helpful to identify which relationships are present in

the data (i.e. which paths should be added to the representative path diagram).

In our simulation study, we focus on the ability of gSEM to separate spatial components

from one covariate e�ect. On the other hand, SEM in general allow for including several

variables and we do not expect any substantially di�erent results when adding more exoge-

nous variables. In theory, it is also possible to include further endogenous variables. This

would allow for alleviating spatial confounding of multiple covariate e�ects, but it would

induce a considerable increase of the required sample size. For example, to include two

confounded covariates and one response variable, one would have to estimate three times

the number of regions plus the number of covariates di�erent e�ects.

To this point, gSEM allows for alleviating spatial confounding of normally distributed data.

The presented framework may be translated to alternative distributional assumptions to

further investigate confounding e�ects in count or binary data. Additionally, extending

the Bayesian formulation might facilitate to incorporate multiple also non-linear and semi-
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parametric e�ects and hence allow for an increase of the model complexity. Furthermore,

we found that independently penalizing the two spatial e�ects preserves the confounding

bias. Alternatively, including multivariate spatial priors allowing for general dependency

structures into gSEM potentially points to a natural extension.

In that sense, the present study serves as a very �rst step to combine methodology that

arises from SEM and confounding problems in spatial statistics. The aforementioned ex-

tensions represent interesting future research directions.
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A Spatial neighborhood penalties

In regression models with discrete (regional) spatial information

y2i = y1iβ21 + z′iγ + ε2i

the region speci�c e�ects in γ are usually penalized by subtracting the term

λγ ′Kγ,

from the log-likelihood, where λ ∈ R+ is the smoothing parameter and determines the

degree of penalization. Here, K ∈ Rd×d results from

Ks,r =





−1, s ∼ r, s 6= r

0, s � r

|N(s)|, s = r

(15)

where, N(s) denotes the set of neighbors of region s, where s, r ∈ S are de�ned to be

neighbors (s ∼ r), if they share a common border. The idea of penalizing the log-likelihood

based on (15) with an adjacency matrix K corresponds to modeling space as a Markov

random �eld (Besag et al., 1991) and represents the assumption that regions that are

geographically close to each other behave more similar than regions that are far apart. In

our simulation, the smoothing parameter λ is chosen using the generalized cross validation

criterion as implemented in the R (R Core Team, 2016) package mgcv (Wood, 2016) and

explained in Wood (2006). Note that di�erent penalty matrices can be used, e.g. the

d× d identity matrix for spatially unstructured penalized e�ects. Furthermore, this model

formulation is equivalent to interpreting the regional e�ects as random (spatially correlated,

if K is an adjacency matrix and uncorrelated, if K is the identity matrix). A detailed

description of this model class can for example be found in Fahrmeir et al. (2013, Chapters

7 and 8).
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B Equivalence of Adjustment Approaches

Recall the confounding situation in Figure 3. Here the total spatial e�ect is a composition

of the direct and indirect spatial e�ects, i.e.

ftotal(s) = fspat,2(s) + fspat,1(s) · β21. (4)

Now, let y∗2i be the i-th observation of the response correctly adjusted for its spatial e�ect.

Hence,

y∗2i = y2i − fspat,2(si). (5)

Then after rewriting (4) as

fspat,2(si) = ftotal(si)− fspat,1(si) · β21, (4')

regressing the adjusted response on the original covariate can formally be written as

y∗2i = y1iβ21 + ε2i

⇔ y2i − fspat,2(si) = y1i · β21 + ε2i

⇔ y2i − (ftotal(si)− fspat,1(si) · β21) = y1i · β21 + ε2i

⇔ y2i − ftotal(si)︸ ︷︷ ︸
=:ỹ2i

= β21 · (y1i − fspat,1(si))︸ ︷︷ ︸
=:ỹ1i

+ ε2i

⇔ ỹ2i = ỹ1i · β21 + ε2i. (16)

Now note that in (16) the terms y2i and y1i are observed. The spatial e�ects fspat,1(si)

and ftotal(si) can, in the situation of Figure 3, be estimated without bias. Hence using

(16) to estimate the coe�cient of interest β21 would correct for bias resulting from spatial

confounding.
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Abstract

Understanding ecological interrelationships between species and their en-
vironment is an important part of biological and in case of productive live-
stock also economic research. We therefore investigate how adult mussels
and mussel seeds (of Mytilus galloprovincialis) interact while simultane-
ously accounting for environmental factors. For that purpose, we develop
a recursive bivariate simultaneous equation model which considers the en-
vironmental endogeneity of the mussels. In order to address the potentially
highly complex ecological patterns, we include environmental factors via
integrating multivariate autoregressive discrete spatial e�ect priors into the
framework of simultaneous equation models. This allows for general correla-
tion structures of the spatial e�ects and thus avoids the restrictive (implicit)
assumption that adult mussels and mussel seeds of the same species react
independently to their environment.
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1 Introduction

Knowledge of spatial patterns of species plays a key role for understanding the

ecological processes that have generated such patterns (Underwood et al., 2000).

In the case of marine resources, knowledge of these patterns is of crucial concern

from both an ecological and socio-economic point of view (McQuaid et al., 2015).

Mussels are key species in rocky intertidal ecosystems (Herman, 1993) providing

varied microhabitats and ensuring an enabling environment for a lot of species

(Ragnarsson and Ra�aelli, 1999). Their distribution and abundance are regu-

lated by the joint action of di�erent biotic and abiotic factors. These factors can

be acting at di�erent spatial scales, starting from local ones in form of dessica-

tion and wave exposure (Dame, 2011 and Harley and Helmuth, 2003), predation

and competition (Connolly and Roughgarden, 1999 and Menge and Sutherland,

1987) or topography and local hydrodynamic e�ects (Smith et al., 2009), up to

large geographical scales, including di�erent climatic and oceanographic conditions

(Broitman et al., 2005 and Blanchette and Gaines, 2007).

The mussel Mytilus galloprovincialis (Lamarck, 1819), apart from its biological im-

portance, is one of the most valuable marine resources in Spain since the Galician

region (northwest Atlantic coast) is the largest producer of mussels in Europe.

More than 200,000 metric tons (MT) per year (Monfort, 2014) are harvested,

which represents more than 470 million Euros in revenue (Caballero et al., 2008).

The mussel farming sector relies on intertidal mussel seed banks for maintaining

the mussel production, with an estimated annual harvest of seed standing over

7000 MT (Labarta et al., 2005 and Peteiro et al., 2007).

As a consequence, knowledge of spatial patterns of mussel seed abundance, its

relationship with adult mussels and environmental factors are of crucial interest

from an ecological perspective (Xavier et al., 2007and McQuaid et al., 2015) and

for avoiding depletion of natural populations with appropriate management strate-

gies that should be adapted to regional patterns (Blanchette and Gaines, 2007,

McQuaid and Payne, 1998 and Reaugh-Flower et al., 2011).

Recently, di�erent studies have focused on the spatial patterns and factors having

in�uence on mussel abundance over medium and large scales, most of them car-
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ried out in North America (Broitman et al., 2005 and Ho�mann et al., 2012) and

South Africa (Xavier et al., 2007, Pfa� et al., 2011, Reaugh-Flower et al., 2011

and McQuaid et al., 2015) where Mytilus galloprovincialis is an invasive species.

Less attention has been given to the largest producer region in Europe.

From an ecological perspective, the objective of the present paper is to develop

a deeper understanding of the relationship between mussel seed and adult mus-

sel abundances with respect to their spatial environment. For that purpose, we

assume a direct e�ect of mussel seed on adult mussel abundance in order to cap-

ture a possible correlation between those variables. Environmental in�uences are

collected within regional e�ects which act on the scale of d = 25 administrative

regions at the Galician coast (see Figure 2). We allow the environmental factors

to simultaneously a�ect both, mussel seed and adult mussel abundances. The

assumed underlying ecological pathways are represented in Figure 1.

For the analysis, we translate these relationships into a bivariate recursive simul-

taneous equation model (SEM). SEM are a special case of structural equation

models, in which all occurring variables are observed. Since their �rst appearance

(Wright, 1918), they have been widely used and further developed. Austin (2007),

for example, mentions the potential of applying SEM for the analysis of species

distributions.

Environment

Mussel seeds Adult mussels

Figure 1: Assumed underlying ecological pathway: environmental factors in-
�uence mussel seed and adult mussel abundances, while at the same time,
the presence of mussel seeds a�ects that of adult mussels.

Figure 1 yields the simultaneous equations

log(seeds) = fspat,1(s) + ε1

log(adults) = log(seeds)β + fspat,2(s) + ε2. (1)

Here, β represents the direct interrelation between mussel seed and adult mussel

abundance. The functions fspat,1 and fspat,2 are based on the discrete locational
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information s of the observations and capture all environmental factors in�uencing

the seed and adult abundances, respectively. The estimation of these spatial func-

tions relies on the assumption that geographical proximity induces similar behavior.

In other words, we assume that environmental factors are more similar between

regions close to each other than between regions far apart. This idea is accounted

for by using conditionally autoregressive (CAR) priors for the spatial e�ects (see

Besag et al., 1991, for example). As an extension we further allow both spatial

e�ects to be correlated, which leads to multivariate conditionally autoregressive

(MCAR) priors (e.g. Gelfand and Vounatsou, 2003). The ecological reasoning is

that mussel seeds and adult mussels from the same species do not necessarily react

independently to their environment.

Estimation is based on an MCMC sampler constructed via the software JAGS

(more precisely using the R (R Core Team, 2016) interface rjags, see Plummer,

2003 and Plummer, 2016)

To the best of our knowledge, this is the �rst analysis aiming at integrating

MCAR type spatial priors into SEM to simultaneously address direct e�ects be-

tween species as well as spatial correlation within species abundances.

The rest of the paper is organized as follows. In Section 2, we describe the data

used for our analysis and its collection process. The theoretical background of

SEM as well as the setup for the Bayesian estimation strategy are explained in

Section 3. The reader may �nd the empirical results of our analysis in Section 4.

Finally, Section 5 concludes.

2 Data Description

Our analysis is based on data from Pata et al. (2012) who used it for a study

with a di�erent focus on the analysis of mussel seed abundance individually. The

study area is located at the Northwest Atlantic coast of Spain, between latitudes

41◦ 52′�43◦21′N and longitudes 8◦ 52′�8◦ 29′W, covering 650 km of coastline,

over 450 km of which comprises rocky shore. Oceanographic and environmental

conditions of this vast area vary widely from North to South, as well as proximity

of mussel farms.
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The data were collected during spring tides at 93 sites from March to September

(2005-2006 and 2008-2009). At each site, a transect perpendicular to the coastal

line was placed in the intertidal zone with transect length varying with area of

habitat available. Sample squares of 20×20 cm were established and the percent-

age cover of adult mussels and mussel seed were used as measures for according

abundances, applying a semi-quantitative sampling protocol (Crisp and Southward,

1958 and Simkanin et al., 2005).

Whereas the mussel seed is under exploitation pressure, the spatial index selected

for this study was administrative area since each of these areas are responsible of

exploitation of its stretch of coastline.

Data was aggregated on the level of transects yielding n = 89 observations nested

in d = 25 administrative regions at the Galician coast. The sampling region as well

as the spatial distributions of the abundances of mussel seed and adult mussels

(centered on a log-scale) are shown in Figure 2.
1
st
st
ag
e

2
n
d
st
ag
e

Figure 2: Mussel seed (left) and adult mussel (center) abundances on the log-
scale (centered). Dark colors indicate higher abundance whereas light colors
represent lower abundance. The situation of the sampling region within Spain
as well as the observations on transect level (black dots) are shown on the
right. The �gure is an extended version of that shown in Pata et al. (2012).
First stage and second stage correspond to the two sampling periods from
2005-2006 and 2008-2009, respectively.
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3 Methodology

3.1 Simultaneous Equation Models

Simultaneous equation models (SEM, see Bollen, 1989 for a detailed introduction)

in general allow for estimating multiple regression equations simultaneously. Addi-

tionally, it is possible to include response variables from one equation as covariates

in others. In this section, we brie�y illustrate the bivariate case which is used for

the data analysis.

Consider the model

y1i = x′1iγ1 + ε1i

y2i = βy1i + x′2iγ2 + ε2i, (2)

where y1i and y2i denote the i-th observations of the �rst (mussel seed abundance

in the present study) and second (adult mussel abundance in the present study)

response variable (endogenous variable), respectively. The corresponding covariate

combinations for each equation are represented by x1i and x2i (exogenous vari-

ables), whereas γ1 and γ2 are the associated e�ects. The relationship between

the two response variables is captured by β. Finally, ε1i and ε2i are the individual

stochastic errors.

For the present study, the exogenous variables and e�ects in (2) are replaced by

spatial functions fspat,j, j = 1, 2 (see Equation (1)). Spatial information is avail-

able on a discrete scale (i.e., in terms of regions). Hence, the spatial functions are

represented by

fspat,j = x′jiγj, j = 1, 2,

where x1i = x2i = (x1i, . . . , xdi)
′ = xi and

xki =




1, if observation i is located in region k

0, otherwise
k = 1, . . . , d, i = 1, . . . , n.
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Here, d is the total number of regions. The spatial e�ect vectors γj = (γj1, . . . , γjd)
′

collect the region-speci�c e�ects on yj, j = 1, 2. Consequently, a more compact

notation of the model in (2) is given in the vectorized form

yi =


y1i
y2i


 = (I−B)−1Γxi + (I−B)−1εi,

where I is the 2× 2−identity matrix and

B =


0 0

β 0


 ,Γ =


γ

′
1

γ ′2


 =


γ11 . . . γ1d

γ21 . . . γ2d


 , εi =


ε1i
ε1i


 .

Based on the assumption of joint normality and independence of the individual

error terms, i.e.

εi ∼ N




0

0


 ,


σ

2
1 0

0 σ2
2




 ,

one �nds that also the response vector yi is normally distributed with mean vector

µi = (I−B)−1Γxi

and non-diagonal covariance matrix

Σy = (I−B)−1


σ

2
1 0

0 σ2
2


((I−B)−1

)′
.

The errors are assumed to be independent for two reasons with regard to content

and identi�cation: Firstly, a SEM with the same set of exogenous variable in each

of the equations (recall that x1i = x2i in our case) is identi�ed, if and only if the

error terms are uncorrelated (see Bollen, 1989). On the other hand, we assume

that the correlation between y1i and y2i is completely captured by the linear e�ect

β and the individual spatial e�ects γ1 and γ2, which we allow to be correlated

(see Section 3.2).
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3.2 Prior Speci�cation

Variance components and covariate e�ect

For the variance components and the e�ect of y1 on y2, we use weakly informative

priors, namely

σ2
j ∼ InvGamma(a1, b1), j = 1, 2

β ∼ N (0, σ2
β)

with small values for the parameters, e.g. a1 = b1 = 0.001, and large variance

σ2
β = 106. The concept of weakly informative prior distributions corresponds to

unrestricted estimation from a frequentist perspective.

MCAR prior for the regional e�ects

The construction of the prior for regional e�ects is to some degree more elaborate

(see Rue and Held, 2005 for a detailed description). First, we explain the idea for

one single spatial e�ect γ. The general underlying assumption is that regions that

are geographically close-by behave more similarly than regions far apart. Given d

regions, this idea is re�ected by the prior assumption

γs|γr, r ∈ N(s) ∼ N
(∑

r:r∼s

1

|N(s)|γr,
τ 2

|N(s)|

)
, (3)

where N(s) is the set of neighboring regions of region s. Two regions s and

r are de�ned to be neighbors (s ∼ r), if they share a common boundary. The

neighborhood relationship is symmetric, i.e. r ∼ s is equivalent to s ∼ r. In this

simple form, each neighbor r ∈ N(s) has the same in�uence on region s. More

general concepts exist, e.g. by weighting this in�uence by the length of the shared

boundary or the inverse distance of the centroids, (again, see Rue and Held, 2005,

for details). The prior in (3) implies that the expected value of a regional e�ect is

the mean of the neighboring e�ects, whereas its variance decreases with the number

of neighbors. The variance parameter τ 2 corresponds to the overall variability of

the spatial e�ect. Based on (3) one can derive the joint prior distribution of the

8
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spatial e�ects vector γ = (γ1, . . . , γd)
′ as

γ ∼ N
(

0,
1

τ 2
K−1

)
, (4)

where

Ks,r =





−ν, s 6= r, s ∼ r

0, s 6= r, s 6∼ r

|N(s)|, s = r

is the neighborhood matrix. The singularity parameter ν ∈ [0, 1] determines the

degree of how similar e�ects of neighboring regions are. The limiting case ν = 0

corresponds to uncorrelated regional e�ects. For ν = 1, the distribution in (4) is

partially improper and is generally referred to and widely used as intrinsic Gaussian

Markov random �elds (IGMRF) or conditionally autoregressive (CAR) spatial ef-

fects. Note that for the present study, we set ν = 0.95 as a compromise between

numerical proximity to an IGMRF and numerical stability of the resulting MCMC

sampler. The reason is that JAGS does not allow for improper prior distributions.

The idea of univariate CAR spatial e�ects has been generalized for multivariate

conditionally autoregressive (MCAR) spatial e�ects (see Mardia, 1988, and Gelfand

and Vounatsou, 2003 for example). For the present bivariate case, we allow the

two spatial e�ects γ1 and γ2 to be correlated and construct the prior

γ := vect(Γ) = (γ ′1,γ
′
2) ∼ N

(
0, (A⊗K)−1

)
, (5)

with

A =


 τ 21 ρτ1τ2

ρτ1τ2 τ 22



−1

and K as above. Again, τ 21 and τ 22 are the overall variances of γ1 and γ2, respec-

tively (dotted arrows in Figure 3). The correlation between the spatial e�ects is

captured by ρ (dashed arrow in Figure 3).

9

85



y2, adult abundance

y1, seed abundance

E
n
vi
ro
n
m
en
t

ρ

τ1

τ2

γ1

γ2

β

Figure 3: Decomposition of the overall spatial correlation via the bivariate
MCAR penalty. The individual variance parameters τ21 and τ22 control the
correlation between regional e�ects in y1 and y2, respectively (dotted arrows).
The correlation between the two spatial e�ects is captured by ρ (dashed
arrow).

Hyperparameters

Finally, we need to assign prior distributions for the hyperparameters τ 21 , τ
2
2 and ρ

in the spatial e�ects covariance matrix A−1. In a similar way to the variances of

the error terms, we chose

τ 2j ∼ InvGamma(a2, b2), j = 1, 2 (6)

for the variances of the individual spatial e�ects. The correlation ρ ∈ (−1, 1) is
constructed via

ρ =
η√

1 + η2
. (7)

The inverse transformation of (7) maps ρ to the real line and we can hence use a

normal prior on η, namely

η ∼ N (0, σ2
η). (8)

In this context, the values of a2, b2 and σ
2
η have to be chosen carefully with respect

to identi�cation. This is due to the fact that the log-density function of the spatial

10
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e�ects prior (5) includes the term

P := γ ′ (A⊗K)γ (9)

with A as above. Hence, (9) can be rewritten as

P = γ ′




1
τ21 (1−ρ2)

− ρ
τ1τ2(1−ρ2)

− ρ
τ1τ2(1−ρ2)

1
τ22 (1−ρ2)


⊗Kγ.

This representation of P indicates

• Given τ 21 →∞, we �nd A1,1 → 0 and A1,2,A2,1 → 0 no matter what values

τ 22 and ρ take, as long as they do not approach zero. Consequently, in this

case, τ 22 and ρ are not identi�ed.

• The same holds for τ 22 → ∞ which yields A2,2,A1,2,A2,1 → 0 and thus

identi�cation problems for ρ and τ 21 .

• Finally, if |ρ| → 1 then A →


0 0

0 0


 in a component wise sense, as long

as τ 21 , τ
2
2 6→ 0. In this case, τ 21 and τ 22 are unidenti�ed.

As a consequence, these scenarios should be avoided by appropriate choices of

prior distributions to ensure identi�ability of the parameters.

4 Empirical Results

Setup

The underlying ecological relationships are represented by the bivariate simultane-

ous equation model (compare Equation (1))

log(seedsi) = fspat,1(si) + ε1i

log(adultsi) = log(seedsi)β + fspat,2(si) + ε2i, i = 1, . . . , n

where the spatial e�ects are represented by discrete regional e�ects (see Section

3.2). The abundances of adult mussels and mussel seeds are included on a log-
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scale. As explained in Section 3, we assume joint normality and independence of

the error terms ε1 and ε2. Posterior analysis is based on 10000 MCMC samples,

from which we discard the �rst 5000 (burnin phase) and only use every 5-th sample

to avoid autocorrelation of the samples (thinning). Consequently, the results are

based on 1000 MCMC samples. Our model is estimated using the prior structures

from Section 3.2 in JAGS. Due to the identi�cation constraints explained at the

end of Section 3, we set a2 = 0.1 and b2 = 1 in (6) and σ2
η = 10 in (8),

respectively. Alternatively, we compared the results for di�erent hyperparameter

values and a uniform prior for η. The estimates were robust as long as the chosen

values respected the identi�cation constraints. All in all, the �rst values appeared

to yield numerically stable estimates, while at the same time correspond vague

enough hyperpriors to allow for a quite general covariance structure of the spatial

e�ects.

In the following, we compare the results of the full model M1 in Equation (1) with

three sub-models, namely

M2: no covariate e�ect, i.e. β = 0,

M3: uncorrelated spatial e�ects, i.e. ρ = 0,

M4: and unpenalized spatial e�ects, i.e. weakly informative priors for the spatial

e�ects without neighborhood structure.

Posterior analysis

Table 1 shows the posterior mean point estimates for M1-M4 (if available) together

with the resulting deviance information criteria (DIC, see Spiegelhalter et al., 2002).

The latter clearly favor models M1 and M2, which allow for correlated spatial

e�ects.

The estimation results of the full model M1 are displayed in Table 2. The direct

e�ect of mussel seed abundance on adult mussel abundance is not signi�cant based

on a 90% credibility interval and small in absolute terms which explains the similar

DICs for M1 and M2 (see Table 2 again).

Both, M1 and M2 identify a strong negative correlation between the two spatial

e�ects. This is also apparent when investigating the regional e�ects (see Figure 4).
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Table 1: Posterior means of occurring model parameters across models. 'NA'
indicates that the according parameter was set to zero for the speci�c sub-
model.

Coe�cient M1 M2 M3 M4

β 0.099 NA 0.012 0.045
σ2
1 0.397 0.398 0.396 0.402
σ2
2 0.407 0.400 0.410 0.415
τ 21 0.260 0.262 0.223 NA
τ 22 0.440 0.406 0.238 NA
ρ -0.929 -0.897 NA NA
DIC 117.84 116.29 121.28 177.28

Table 2: Posterior analysis of the MCMC samples. Shown are posterior
means, as well as 90% credibility intervals.

Parameter posterior mean 90% cred. interval

β 0.099 [-0.091, 0.288]
σ21 0.397 [ 0.300, 0.524]
σ22 0.407 [ 0.308, 0.534]
τ21 0.260 [ 0.124, 0.498]
τ22 0.440 [ 0.207, 0.835]
ρ -0.929 [-0.986,-0.801]

While the environmental circumstances seem to positively in�uence mussel seed

abundance in the north of the sampling region, there is a more negative e�ect in

the south. The spatial e�ects for adult mussel abundance show an inverse pattern.

A summary of the estimated spatial e�ects is given in Table 3. If penalized (M1-

M3), the ranges of spatial e�ects are quite similar. As expected, without penaliza-

tion (M4) the estimated e�ects spread more broadly. Interestingly, a considerable

empirical correlation between the two spatial e�ects γ1 and γ2 is only identi�ed if

it is accounted for in the prior structure of these e�ects (M1 and M2). Though,

visually, the estimated spatial e�ects show no major di�erences across models (see

Figure 6 in Appendix A).

Table 3: Summary of estimated spatial e�ects across models. Minimum and
maximum of γ1 and γ2, as well as the empirical correlation between both are
calculated based on the posterior mean point estimates.

min(γ1) max(γ1) min(γ2) max(γ2) cor(γ1,γ2)
M1 -0.526 0.304 -0.677 1.072 -0.744
M2 -0.480 0.296 -0.665 1.091 -0.669
M3 -0.395 0.251 -0.632 1.096 -0.047
M4 -1.202 0.524 -0.832 1.469 -0.069
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M1: Spatial effects in seed abundance

−0.52 0.310

M1: Spatial effects in adult abundance

−0.66 1.090

Figure 4: Posterior means of regional e�ects on adult mussel (right) and
mussel seed abundances (left) based on the full model M1.

Figure 5 illustrates how the prior structure of the spatial e�ects in�uences the

posterior density of the direct covariate e�ect β. In our analysis, we �nd that

using priors which do not allow for a general correlation structure (M3 and M4)

puts the center of the posterior of the covariate e�ect β towards zero (also see

posterior means of β across models in Table 1). On the other hand, in the full

model M1, more probability mass of β is shifted towards positive values a posteriori.

Posterior density of β

β

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4 M1
M3
M4

Figure 5: Posterior density of β for the full model M1 (solid line), as well as
the sub-models M3 (dashed line, ρ = 0) and M4 (dotted line, no penalty at
all).
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Ecological interpretation

The insigni�cant association between mussel seed and adult seed abundance agree

with results found at the South African coasts at a similar spatial scale (Erlandsson

and McQuaid, 2004, Reaugh-Flower et al., 2011 and Xavier et al., 2007). The ab-

sence of a signi�cant relationship between adults and seeds could be explained by

the e�ect of local hydrographic conditions and topography (Reaugh-Flower et al.,

2011). Nonetheless, Smith et al. (2009) found a signi�cant association between

adults and mussel seeds at the North American Coast, with positive association

in southern regions, more protected and temperate, and negative association in

northern locations. It should be plausible that the marked di�erences in conditions

between the north and the south regions of our study area could mask a signi�cant

association with di�erent sign in both regions. At large scales a consistent and

positive relationship has been found, which is related to large scales oceanographic

processes, such as upwelling (Reaugh-Flower et al., 2011).

The two spatial e�ects are highly negatively correlated, whereas mussel seed abun-

dance is decreasing from North to South, adult mussel abundance shows the op-

posite pattern. There are a lot of concomitant aspects acting for producing this

contrasting patterns. As Erlandsson et al. (2005) state, topography is an impor-

tant factor in determining the spatial patterns of mussel cover at medium and large

scales, being the topography of northern sites less favorable for adult mussels than

southern ones. Nevertheless the complex topography of northern locations can act

as a protective element for mussel seed.

Lower abundance of adults in northern sites can also be the result of stronger

oceanographic conditions in autumn and winter. Higher hydrodynamics in these

regions can cause the detachment of wide layers of adult mussels (Denny, 1987 and

Gaylord, 2000). Mussel seed recruitment in this coast is higher during spring and

summer (matching with our sampling seasons), when hydrodynamics are weaker,

but a lower abundance of adults in northern sites can be re�ecting the higher mor-

tality of the seeds of the previous year.

Another aspect that should be considered is the presence of competitors. In north-

ern sites, the density of barnacles, a direct competitor of mussels, is higher then in

southern ones. This competitor does not a�ect the presence of mussel seed, since
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they can settle around the barnacles.

Upwelling and ocean currents at the Galician coast can also explain the higher

abundance of mussel seed in northern locations. To these must be added a very

important and distinctive feature of this coast which is the presence of a huge

density of mussel farms in southern regions. Combining the e�ect of currents and

upwelling, a great amount of larvae from such productive area are transported to

the north.

5 Discussion

In the present study, we simultaneously investigate the interrelationship between

adult mussel and mussel seed abundances together with environmental in�uences

on both along data used in Pata et al. (2012). For that purpose, we integrate

MCAR type prior distributions for the spatial e�ects into a bivariate SEM. The lat-

ter allows for simultaneously estimating the aforementioned relationships, whereas

the chosen prior structure permits general correlation structures for the spatial ef-

fects. These e�ects themselves are thought to collect all environmental factors and

the �exible correlation structure represents the idea that seeds and adults from the

same mussel species do not necessarily react independently to their environment.

Empirically, we �nd a non-signi�cant positive association between seed and adult

abundance. This result is in line with former studies (Erlandsson and McQuaid,

2004, Reaugh-Flower et al., 2011 and Xavier et al., 2007). However, these previous

�ndings were obtained by nonspatial or spatial analyses relying on semivariograms.

The simultaneous nature of the relationship between mussel seeds and adults mus-

sels alongside their environments is exclusively investigated in this contribution.

The two spatial e�ects are highly negatively correlated. Mussel seed abundance

is higher in northern regions and lower in the south. On the other hand, environ-

mental factors on adult mussel abundance act in the opposite direction.

The low number of studies carried out on this topic show very contrasting re-

ports that seem to be highly related to the spatial scale considered. Both positive

(Erlandsson and McQuaid, 2004) and negative (Hewitt et al., 1997) spatial asso-

ciations have been found, as well as no spatial association between mussel seed
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abundance and adult abundance (Blanchette et al., 2006). We conclude that more

e�ort must be done in analyzing the spatial e�ects at di�erent scales in order to

recognize which factors are responsible for the direction of spatial correlation in

the future.

From a methodological point of view, a rigorous analysis on the in�uence of prior

choices of the spatial e�ects on the posterior of β in recursive bivariate regression

models exhibits an interesting topic for additional research. Neelon et al. (2014),

for example, alternatively suggest an inverse Wishart prior for the spatial e�ects

covariance matrix A−1. Furthermore, our approach may be extended to more gen-

eral (besides regional e�ects) cluster e�ects, like random e�ect or even correlated

splines (for the analogy of prior structures of the mentioned e�ect types, see Klein

et al., 2015).
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A Spatial e�ects comparison across models

Figure 6 visualizes the posterior means of the spatial e�ects according to the

model speci�cations M2-M4 from Section 4. Optical di�erences across models are

of slight magnitude. For a more detailed comparisons of the models' performances

see Section 4.

22

B. MCAR Priors in Recursive SEM for Analyzing Environmental Sensitivity of Mussels

98



M2: Spatial effects in seed abundance

−0.48 0.30

M2: Spatial effects in adult abundance

−0.66 1.090

M3: Spatial effects in seed abundance

−0.39 0.250

M3: Spatial effects in adult abundance

−0.63 1.10

M4: Spatial effects in seed abundance

−1.2 0.52

M4: Spatial effects in adult abundance

−0.83 1.470

Figure 6: Posterior means of the regional e�ects in mussel seed (left) and
adult mussel (right) abundances. The rows correspond to estimation via M2-
M4, respectively. Dark colors indicate positive regional e�ects whereas light
color represent negative regional e�ects.
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Abstract

Modeling complex relationships and interactions between variables is an

ongoing statistical challenge. In particular, the joint modeling of multiple

response variables has recently gained interest among methodological and

applied researchers. In this article, we contribute to this development by

incorporating semiparametric predictors into recursive simultaneous equation

models. In particular, we extend the existing framework by imposing e�ect

priors that account for correlation of the e�ects across equations. This idea

can be seen as a generalization of multivariate conditional autoregressive

priors used for the analysis of multivariate spatial data.

We implement a Gibbs sampler for the estimation and evaluate the model in

an elaborate simulation study. Finally, we illustrate the applicability of our

approach with real data examples on malnutrition in Asia and Africa as well

as the analysis of plant and species richness with respect to environmental

diversity.

Keywords: simultaneous equation models, correlated e�ects, semiparametric pre-
dictors

1 Introduction

Joint modeling of multiple response variables has recently gained rising popularity

in statistical research. Examples include the development of models for multivari-

ate responses in the context of distributional regression (Klein and Kneib, 2016),

joint modeling of e.g. survival and longitudinal data (Waldmann et al., 2017) or

extensions of simultaneous equation models (for example Thaden and Kneib, 2017,

and Thaden et al., 2017). Furthermore, not only di�erent compositions of response
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variables, but also �exibility concerning the type of covariate e�ects constitutes an

important �eld of current research. In particular, the interest in regression models

with structured additive predictors including linear, nonlinear, random or spatial

e�ects increased, both from a methodological and applied perspective (e.g. Klein

et al., 2015 or Pata et al., 2012).

In this article, we contribute to this development by joining the framework of si-

multaneous equation models (SEM) with the �exibility of semiparametric e�ect

types. More precisely, we summarize how di�erent e�ects can be conceived using

a unifying basis function approach (as shown in e.g. Wood, 2006) and integrate

those into recursive SEM with bivariate response. In contrast to Song et al. (2013),

who focus on modeling nonlinear e�ects using Bayesian P-splines in SEM with la-

tent variables, we further generalize their approach by introducing additional e�ect

types (i.e. spatial and random e�ects). Furthermore, in order to capture potential

complex correlation structures among the occurring variables, we allow the semi-

parametric e�ects to be correlated across equations. This is achieved by choosing

appropriate priors for these e�ects. These priors serve as a fundament for our

Markov Chain Monte Carlo (MCMC) estimation procedure. Overall, our approach

extends the idea of multivariate conditionally autoregressive (MCAR, see Gelfand

and Vounatsou, 2003, for example) spatial e�ect priors, which has - to the best of

our knowledge - neither been generalized to alternative e�ect types nor integrated

into bivariate SEM before.

We will not only evaluate our proposed approach in several simulation scenarios

but also apply the method to real data examples representing di�erent semipara-

metric e�ects in a typical structured additive predictor. They illustrate the complex

underlying relationships arising in various applied areas in which typically di�erent

sources of correlation occur. Speci�cally, we start with the problem of correlated

spatial e�ects in childhood undernutrition in developing countries. Childhood un-

dernutrition is one of the major public health problems in these countries. It is

expected that acute undernutrition, wasting, has an e�ect on chronic undernutri-

tion, stunting. We analyze this question in more detail across countries in Africa

and Asia. We will use data from the global health observatory data repository

published by the World Health Organization (WHO, 2016).
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The second example illustrates the applicability of our approach in an ecological

context. We analyze how species richness of plants and animals are interrelated

with respect to their environment. The research question is based on the origi-

nal paper of Jetz et al. (2009) along the sub-dataset applied in Klein and Kneib

(2016).

The rest of the paper is structured as follows: In Section 2, we explain our pro-

posed approach in detail. We build up the model starting from simple linear SEM

and include more complex predictor structures step by step in several subsections.

Our implementation of the Bayesian estimation strategy via Gibbs sampling can

be found in Section 3. The simulations in Section 4 evaluate the performance of

the proposed method while Section 5 illustrates the applicability in two complex

real datasets coming from di�erent applied areas (health and ecology) and dealing

with relevant research questions. Finally, Section 6 summarizes our �ndings and

gives possible extensions for future research.

2 Methodology

2.1 Recursive Bivariate Simultaneous Equation Models

Simultaneous equation models (SEM) allow for representing potentially complex

relationships between variables in a multivariate setting. More speci�cally, they

consist of multiple regression equations with the additional feature that response

variables of one equation (endogenous variables) are allowed to appear as covariates

in another equation (hence the term recursive SEM). Exogenous variables only

appear as covariates in one or more of the equations. We refer to Bollen (1989)

for a detailed general overview on SEM.

Figure 1 shows a typical representation of a SEM with one exogenous variable x

and two related endogenous variables y1 and y2 as a path diagram. E�ects between

variables are illustrated as arrows.
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x

y2

y1
γ1

β21

γ2

Figure 1: Path diagram of a simple linear recursive SEM. The exogenous
variable x simultaneously in�uences the endogenous variables y1 and y2 via
γ1 and γ2, respectively. Additionally y1 has a direct e�ect β21 on y2.

In this simple linear setting, Figure 1 translates to the simultaneous equations

y1 = γ1x+ ε1 (1)

y2 = γ2x+ β21y1 + ε2, (2)

where γ1, γ2 and β21 are the linear regression coe�cients and ε1 and ε2 are the

error terms within the equations, respectively. In this article, we investigate the

performance of more �exible predictor structures in order to overcome the - in

many practical applications unrealistic - assumption of linearity. More precisely, we

allow the exogenous variable to have some functional in�uence on the endogenous

variables. We generalize (1) and (2) and obtain

y1 = f (1)(x) + ε1 (1')

y2 = f (2)(x) + β21y1 + ε2. (2')

The unknown functions f (1) and f (2) are not necessarily continuous. They can

represent di�erent types of e�ects such as nonlinear, spatial or random e�ects.

Figure 2 illustrates this extension. In the subsequent section, we explain how

the unknown functions f (1) and f (2) can be approximated via basis functions.

Additionally, we further generalize the approach by allowing these functions to be

correlated. By this, we extend the framework of classical linear recursive bivariate

SEM by allowing for semiparametric predictors with general correlation structure.
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x

y2

y1
f (1)(x)

β21

f (2)(x)

Figure 2: Illustration of a nonlinear simultaneous equation model with two
endogenous variables y1 and y2. The exogenous variable x is allowed to
simultaneously a�ect both endogenous variables via the unknown functions
f (1)(x) and f (2)(x), respectively.

2.2 E�ect Speci�c Basis Function Representations

In this section, we explain how multiple e�ect types can be expressed in the unifying

semiparametric framework of a linear basis function approach (see Wood, 2006 for

a detailed overview). For a simple start, assume that as in (2') y2 is a�ected by x

via an unknown function f , i.e. for each observation i = 1, . . . , n,

y2i = f (2)(xi) + ε2i

holds. The unknown function f is approximated as a linear combination of e�ect-

speci�c basis functions, namely

f (2)(xi) =
L∑

l=1

α2lBl(xi), (3)

such that (3) can be written as

f (2)(x) = Bα2, (4)

with x = (x1, . . . , xn)′ and coe�cient vector α2 = (α21, . . . , α2L)′. Above, B is

the design matrix with entries B[i, l] = Bl(xi) for i = 1, . . . , n and l = 1, . . . , L.

The choice of basis functions depends on the e�ect type. Widely used examples

include:

• Linear e�ects: The basis functions simply correspond to the observations

x1, . . . , xn. Consequently, B = x reduces to an n× 1 design vector.
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• Continuous e�ects: A common way to include smooth functions for univari-

ate covariates are B-spline basis functions (see Eilers and Marx, 1996), such

that B contains the basis functions evaluated at the observed data points.

• Discrete spatial e�ects: For discrete spatial information (e.g. administrative

regional units) the design matrix corresponds to an indicator matrix capturing

which region each observation is located in.

• Random e�ects: Random e�ects are used to model group or individual spe-

ci�c e�ects. Similar to discrete spatial e�ects, the design matrix B indicates

which group or individual the observations belong to.

Along with the choice of suitable basis functions, the resulting regression coe�-

cients are usually regularized in order to ensure a certain smoothness (e.g. across

space or of nonlinear functions) or to avoid over�tting. From a frequentist per-

spective, this regularization is obtained by penalizing the coe�cients during the

estimation (as explained in Wood, 2006).

Basic Prior Structures

In the Bayesian formulation - as in our case - the desired smoothness is obtained

by choosing appropriate Gaussian priors of the form

p(α2 | τ 22 ) ∝ exp

(
− 1

2τ 22
α′2Kα2

)
, (5)

where τ 22 is the smoothing variance replacing the function of a penalty parameter in

a penalized likelihood approach. Similar to the basis functions, the precision matrix

K is e�ect speci�c and in some cases rank de�cient. For the above mentioned

examples of e�ect types, the corresponding precision matrices are:

• Linear e�ects: Either K = 0 for no smoothing or K = 1 which corresponds

to a ridge penalization from a frequentist perspective.

• Nonlinear e�ects: The Bayesian analogue of penalized B-splines or P-splines

is obtained by choosing K = D′D, where D is the di�erence matrix of
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desired order (frequent choices are �rst or second order di�erences). Con-

sequently, the prior is partially improper as the rank of K is reduced by the

order of the di�erence approach (again, see Eilers and Marx, 1996 or Lang

and Brezger, 2004 for details).

• Discrete spatial e�ects: When analyzing spatially structured data, a com-

monly made assumption is that nearby observations are more similar than

observations far apart. This idea is re�ected by choosing K to be the adja-

cency matrix incorporating the neighborhood structure of the regions under

consideration which results in partially improper Markov random �eld priors

for the regional e�ects. Rue and Held (2005) give a detailed overview on

construction and properties of K.

• Random e�ects: The idea that observations within a group may behave

di�erent than across groups is represented by setting K = IL, where L is

the number of groups (i.i.d. random e�ects).

A detailed summary of available basis functions and smoothing matrices is given

in (Fahrmeir et al., 2013, Chapter 9).

Bivariate Semiparametric SEM Formulation

A natural extension of the basis function approach in a bivariate setting is to

de�ne the predictor structure of each equation in the SEM individually. Based on

the structure of a simple SEM in (1') and (2'), we get

y1 = Bα1 + ε1

y2 = Bα2 + β21y1 + ε2, (6)

where the individual contributions of the observed responses and error terms are

stored in the vectors yj = (yj1, . . . , yjn)′ and εj = (εj1, . . . , εjn)′, j = 1, 2,

respectively. As explained above, B captures the evaluations of the e�ect speci�c

basis functions at the observations of the exogenous variables. The SEM in (6)
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can be rewritten as a large multivariate model via


y′1

y′2


 = M−1


α

′
1

α′2


B′ + M−1


ε
′
1

ε′2


 , M =


 1 0

−β21 1.


 (7)

For the rest of this article, we will assume that the error terms ε1 and ε2 are

normally distributed and independent across equations, i.e.


ε1i
ε2i


 iid∼ N2





0

0


 ,


σ

2
1 0

0 σ2
2




︸ ︷︷ ︸
=:Σε



, i = 1, . . . , n. (8)

This assumption is based on the following reasoning:

• At least linear recursive SEM as investigated in this article (i.e. the same set

of exogenous variables builds up the predictor of both endogenous variables)

are technically identi�ed, if and only if the error terms are independent (see

Bollen, 1989). Although the regularization priors as introduced above in

general reduce the e�ective degrees of freedom compared to unpenalized es-

timation, it is not within the scope of this article to thoroughly investigate the

identi�ability of regularized SEM with correlated error terms. Consequently,

we stick to this - potentially too conservative - assumption.

• Due to the recursive structure of the model, the independence between ε1 and

ε2 does not imply independence between y1 and y2. Instead, the relationship

between the response variables is captured (a) by the direct e�ect β21, (b)

by the simultaneous in�uence of x on both responses and (c) by allowing the

latter to be correlated itself. The underlying assumption thus corresponds

to the idea that the correlation between y1 and y2 is completely captured by

(a)-(c).
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2.3 A Priori Correlated Semiparametric Predictors

Instead of using independent priors for α1 and α2 as in (5), i.e.

p(α1,α2 | τ 21 , τ 22 ) ∝ exp

(
− 1

2τ 21
α′1Kα1

)
· exp

(
− 1

2τ 22
α′2Kα2

)
, (9)

we aim at allowing these coe�cients to be correlated. As a typical example, in

which the implicit assumption of uncorrelated e�ects might be too restrictive, con-

sider the analysis of ecological data. Often, regional e�ects (modeled with Markov

random �eld prior, see above) can be included to represent environmental factors.

On the other hand, di�erent species might react similarly or in a con�ictive manner

to their environment. This feature is potentially not accounted for, if the e�ects

are forced to be independent by the choice of according priors. An example is given

in Thaden et al. (2017) who simultaneously study the environmental sensitivity of

young and adult mussels at the Galician coast.

Hence, inspired by the idea of multivariate conditionally autoregressive (MCAR)

regional e�ects (e.g. Gelfand and Vounatsou, 2003) which are used for multivariate

spatial data, we combine the individual priors in Equation (9) to a joint prior for

α1 and α2, namely

p


(α′1,α

′
2)
′

︸ ︷︷ ︸
=α

| A


 ∝ exp

(
−1

2
α′(A−1 ⊗K)α

)
, A =


 τ 21 ρτ1τ2

ρτ1τ2 τ 22


 .

(10)

Again, τ 21 and τ 22 are the smoothing variances of the e�ects of x on y1 and y2,

respectively while with the structure of A the correlation between the individual

e�ects can be captured by ρ. Note that (9) is a special case of (10) via setting

ρ = 0.

2.4 Interpretation

Joining SEM techniques with correlated semiparametric predictors yields some

noteworthy features concerning the interpretation of the e�ects. First, as is typical

for SEM, the overall in�uence of the exogenous variable x can be decomposed into

a direct and an indirect e�ect on y2. Following the arrows in Figure 1, the direct

9
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e�ect corresponds to γ2. The indirect e�ect results from multiplying along the

dashed arrows, such that it is given by γ1 · β21. Consequently, the total e�ect of

x on y can be written as

effectx,total = x · (γ2 + γ1 · β21).

The same decomposition is obtained when semiparametric e�ects are involved.

Replacing xγ1 and xγ2 by f
(1)(x) and f (2)(x), respectively, yields

effectx,total = f (2)(x) + β21f
(1)(x)

= B (α2 +α1β21) . (11)

Figure 3 illustrates the extension of Figure 1 and shows the in�uence of the model

parameters within the recursive bivariate SEM. The overall variability of the basis

functions (e.g. variability across space or between groups) is captured by τ 21 and

τ 22 (dotted arrows). The correlation between the corresponding e�ects is captured

by ρ (dashed arrow). The interpretation of this parameter is straightforward:

it captures whether the in�uences of the exogenous variable on the endogenous

variables are similar (ρ > 0), con�ictive (ρ < 0) or not related at all (ρ = 0).

The interpretation of α1 and α2 depends on the type of e�ect (nonlinear, spatial,

random, . . . ), whereas β21 is the classical linear e�ect.

2.5 Mixed Model Representation of the Predictors

Unfortunately, implementing the basis function approach along with its correlated

e�ects as explained in Section 2.2, yields computational problems. We explain

these for the special case of nonlinear e�ects via Bayesian P-splines with coe�cient

vectors αj = (αj1, . . . , αjL)′, j = 1, 2. As stated in Fahrmeir et al. (2013, Chapter

8.1), the �rst order di�erence penalty of an individual P-spline corresponds to a

stochastic formulation, a �rst order random walk de�ned by

αjl = αj,l−1 + ujl, ujl ∼ N (0, τ 2j ), j = 1, 2. (12)

10
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y2

y1

x

B1(x)

. . . BL(x)

B1(x)

. . . BL(x)

ρ

τ21

τ22

α1

α2

β21

Figure 3: Decomposition of the overall interrelationships within the bivariate
recursive model. Basis functions B1(x), . . . , BL(x) are evaluated at the ex-
ogenous variable x (left large ellipse). The variability across basis functions
is controlled for via τ21 and τ22 (variances of the semiparametric e�ect, dotted
arrows) and the penalty matrix K (see Section 2.2 for details and examples).
Additionally, the correlation between the e�ects on the endogenous variables
y1 and y2 is captured by ρ (dashed arrow). The e�ects of the basis functions
on y1 and y2 are collected in α1 and α2, respectively. Finally, y1 has a linear
e�ect β21 on y2.

On the one hand, this representation is fundamental for deriving the prior distri-

bution for αj in (5). On the other hand, two random walks as in (12) are usually

highly correlated even if the stochastic parts u1 and u2 of the two random walks

are independent - a phenomenon often called spurious correlation by econometri-

cians (Simon, 1954). Consequently, the two vectors of coe�cients α1 and α2 of

the splines in our bivariate recursive SEM will be correlated as well, no matter

what the true value of ρ is. As a result, the Markov chains (see Section 3) for ρ

generally converge to ±1 during the estimation via sampling. In particular, this

parameter is not or only weakly identi�ed in our model.

To overcome this problem, we use the mixed model representation of the basis

function approach as outlined by Fahrmeir et al. (2004):

Bαj = Xβj + Zγj,

11
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where X and Z result from the eigendecomposition of the precision matrix K.

Depending on the type of e�ect, K is rank de�cient (e.g. has rank L− 1 for MRF

and rank L−k for P-splines based on k-th order di�erences). The dimension of βj

corresponds to the rank de�cit k and Xβj can be interpreted as the unregularized

baseline e�ect. The component Zγj then captures the deviations from this baseline

e�ect and is the regularized (or smoothed) part. For example,

• Xβj is a horizontal line for P-splines based on �rst order di�erences and a

linear trend for second order di�erences.

• Xβj is the average regional e�ect in a MRF. The di�erences between regions

are included in Zγj.

• X = 0 for i.i.d. random e�ect, since in this case K = IL has full rank.

It can be shown that, with X and Z chosen as above, p(αj) ∝ exp
(
− 1

2τ2j
α′jKαj

)

implies

γj ∼ N
(
0, τ 2j IL−k

)
.

Consequently, we convert the joint prior structure in Equation (10) to

p


(γ ′1,γ

′
2)
′

︸ ︷︷ ︸
=γ


 ∝ exp

(
−1

2
γ ′(A−1 ⊗ IL−k)γ

)
, A =


 τ 21 ρτ1τ2

ρτ1τ2 τ 22


 .

3 Bayesian Inference and Estimation

The full conditional distributions based on the joint posterior p(γ,β, σ2
1, σ

2
2, τ

2
1 , τ

2
2 , ρ|y)

are estimated via the Gibbs sampler described in this section.

3.1 Likelihood

The likelihood of y is based on the normality assumption in (8) and the model

formulation in Equation (7). Consequently, we �nd

p




y1i
y2i


 | θ


 ∝ exp


−1

2




y1i
y2i


− µyi



′

Σ−1y




y1i
y2i


− µyi





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with

µyi
= M−1


β

′
1 γ ′1

β′2 γ ′2




X[i, ]′

Z[i, ]′


 and Σy = M−1Σε

(
M−1)′

and θ collects all unknown model parameters.

3.2 Prior Choices

Coe�cient for the Direct Covariate E�ect

The coe�cient β21 is assigned a �at prior, i.e. p(β21) ∝ const.

Unpenalized Part of the Coe�cient Vector

We employ weakly informative conjugate priors for (β′1,β
′
2)
′

(β′1,β
′
2)
′ ∼ N


0,


ν

2 0

0 ν2


⊗ Ik


 , with large ν.

Correlated Part of the Coe�cient Vector

For the regularized part of the e�ect speci�c coe�cients, we use the prior distri-

bution introduced in Section 2.2 and 2.5, namely

γ ∼ N (0,A⊗ IL−k)

Error Variances

Similar to (β′1,β
′
2)
′, we use the conjugate inverse gamma distribution for the error

variances σ2
1 and σ2

2 with small scale and shape parameters:

σ2
j ∼ IG(0.001, 0.001), j = 1, 2.

Prior Covariance Structure of γ

As hyperprior for A we chose an inverse Wishart distribution with κ = 4 degrees of

freedom and scale matrix Ψ = I2. This choice corresponds to the least informative
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hyperprior for which the mean still exists.

The resulting full conditional distributions for the model parameters then establish

a Gibbs sampler for the estimation of all model parameters (see Appendix A).

3.3 Model Selection

The MCMC draws resulting from the Gibbs sampler allow for the application of

well known model selection criteria in order to compare the overall predictive per-

formance of the model. We focus on the Watanabe-Akaike information criterion

(WAIC, see Watanabe, 2010). Similar to the deviance information criterion (DIC,

see Spiegelhalter et al., 2002) it is easily computable from the MCMC samples,

but has the advantage that it does not rely on posterior point estimates. Instead,

it incorporates the complete simulated posterior distribution of the parameters and

can hence be seen as fully Bayesian. As DIC, it is usually interpreted as a compro-

mise between predictive capability of the model and its complexity in terms of the

e�ective number of parameters. It is de�ned as

WAIC = −2 ·
n∑

i=1

log

(
1

S

S∑

s=1

p(yi | θ(s))
)

+ 2 · p̂WAIC,

where S is the number of MCMC samples. For details on the implementation and

the e�ective number of parameters p̂WAIC, see Gelman et al. (2014).

4 Simulation study

4.1 Setup

We investigate the capability of our approach to identify the model parameters in

a broad set of simulated scenarios (36 in total). The performance of the model

is examined for di�erent sample sizes and various correlation structures within

the data. Also, the in�uence of presence or absence of a recursive structure,

incorporated via β21 6= 0 or β21 = 0, respectively, is analyzed. Data are generated

according to Equation (7). We refer to Table 1 for details on the simulation

process.
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E�ect type β21 ρ n

P-Splines {0, 1} {0, 0.5,−0.8} {150, 500}
Discrete spatial {0, 1} {0, 0.5,−0.8} {150, 500}
Random intercept {0, 1} {0, 0.5,−0.8} {150, 500}

Table 1: Simulated model parameters for the di�erent e�ect types. The
remaining parameters where �xed to σ2

1 = σ2
2 = τ21 = τ22 = 1. The total

number of scenarios is 36, each scenario has been replicated 100 times.

4.2 Results

In the following, our results are evaluated via estimation bias and mean squared

error (MSE) for the 100 repetitions of each scenario. Bayesian inference is based

on 1000 post burnin and post thinning MCMC samples (we discard 500 burnin

samples and use a thinning of 5).

P-Splines

In this section, we illustrate the estimation results for the scenarios mentioned in

Table 1 applied to P-splines with 10 inner knots and second order di�erences. The

exogenous variable x ranges from 0 to 5. Figure 4 exemplarily shows the simulated

nonlinear functions f (1)(x) on y1 (left) and f (2)(x) on y2 (right). The functions

look similar across repetitions within a simulation scenario. The solid, dashed

and dotted lines correspond to true correlations between the spline coe�cients of

ρ = 0, ρ = 0.5 and ρ = −0.8, respectively. Furthermore, Figure 4 nicely illustrates

how a nontrivial correlation ρ 6= 0 induces additional smoothing of the nonlinear

functions.

Estimation results for the direct e�ect β̂21 of y1 on y2 as well as the correlation ρ̂

between the splines coe�cients are summarized in Figure 5. The structure of the

four individual plots is as follows:

• The solid lines together with '◦' correspond to the case β21 = 1, n = 150.

• The dashed lines together with '4' correspond to the case β21 = 0, n = 150.

• The dotted lines together with '+' correspond to the case β21 = 1, n = 500.

• The dashed and dotted lines together with '×' correspond to the case β21 =

0, n = 500.
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Figure 4: Simulated nonlinear functions of x on y1 (left) and y2 (right).
Displayed are examples for the cases ρ = 0 (solid lines), ρ = 0.5 (dashed
lines) and ρ = −0.8 (dotted lines).

In all four individual plots, MSE and bias are plotted against the absolute value

of the correlation |ρ|. The upper left plot shows the MSE of β̂21 compared across

simulation scenarios. Estimation of this coe�cient seems to be independent of the

e�ect size (i.e. the cases β21 = 0 and β21 6= 0 are estimated similarly well). On

the other hand, an increasing sample size heavily reduces both, the bias and MSE.

For a given sample size, the bias is the same for β21 = 0 and β21 = 1, whereas it

can be reduced with larger sample sizes.

The estimates for ρ show a similar behavior though not as pronounced as for

the linear e�ect. Especially for highly correlated splines, the MSE is substantially

smaller in larger samples (upper right plot). The bias is reduced in all scenarios

when n is large (lower right plot). Again, the size of β21 has no e�ect on the

performance of ρ̂ with respect to MSE or bias. It should be noted that MSE and

bias are in general larger for ρ̂ than for β̂21, i.e. it seems (as expected) to be more

di�cult to identify the correlation structure of the semiparametric e�ects than the

recursive linear e�ect.

Comparison to Models with Uncorrelated E�ects

When comparing the performance of our model which incorporates e�ects with a

general correlation structure to the alternative approach using independent priors

as in Equation (9), we �nd that � though on a small scale � the estimation of the
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Figure 5: Top row: Mean squared error of β̂ (left) and ρ̂ (right) across

simulation scenarios. Bottom row: Estimation bias of β̂ (left) and ρ̂ (right)
across simulation scenarios.

linear covariate e�ect β21 tends to be more stable in the general case. Exemplarily,

we show the values of MSE and bias of the corresponding estimator for three

simulation scenarios in Table 2. The results for the other scenarios are comparable.

In addition, we found that the additional smoothing which results from allowing

the e�ects to be correlated results in a generally smaller WAIC compared to a

model with uncorrelated e�ects (not shown for the simulations, see Section 5.3 for

a comparison of WAIC in the applications).

Discrete Spatial E�ects and i.i.d. Random E�ects

Additionally, we simulated spatially structured data on an arti�cial map with 49

regions (as in Thaden and Kneib, 2017) as well as clustered data (10 clusters)
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Scenario / Model mse(β̂21) bias(β̂21)

β21 = 1, ρ = 0 / ρ = 0 0.007 0.011
β21 = 1, ρ = 0 / ρ 6= 0 0.005 0.006
β21 = 1, ρ = 0.5 / ρ = 0 0.023 0.105
β21 = 1, ρ = 0.5 / ρ 6= 0 0.011 0.064
β21 = 1, ρ = −0.8 / ρ = 0 0.030 -0.140
β21 = 1, ρ = −0.8 / ρ 6= 0 0.016 -0.093

Table 2: Comparison of mean squared error and bias of β̂21 between the
general approach and a model with uncorrelated semiparametric e�ects.

for the evaluation of our model with the e�ect types explained in Section 2.2. In

summary and as expected (due to the similarities in the basis function approach),

the results for simulations with discrete spatial data and i.i.d. random e�ects

correspond to those obtained for P-splines. Consequently, we abstain from showing

these results in this section.

5 Applications

5.1 Correlated Spatial E�ects: Malnutrition in Africa and

Asia

Childhood undernutrition is one of the major health problems in developing coun-

tries. Speci�c forms of malnutrition have been linked to individual characteristics

of children and their parents in various studies (e.g. Klein and Kneib, 2016). The

term wasting characterizes low weight for height and is generally associated with

acute starvation. On the other hand, stunting is a sign for long-term suboptimal

nutritional conditions and is de�ned as low height for age. Both measures are

usually reported as Z-scores that compare the individual nutrition status with a

prede�ned reference population:

z =
observed value−median value in reference population

standard deviation in reference population
. (13)

Based on the WHO de�nition, an individual is considered to su�er from wasting

or stunting, if its weight or height is two standard deviations below the median

weight or height of the reference population, respectively.
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Our analysis is based on country speci�c proportions of children under �ve years of

age who are a�ected by wasting and stunting while controlling for environmental

and political circumstances. The latter factors are included as correlated discrete

spatial e�ects, see Figure 6 for an illustration.

country

wasting

stunting

β

f
(1)
spat

f
(2)
spat

ρ

Figure 6: Flexible SEM approach with correlated regional e�ects to explain
the relationships between the location and wasting and stunting proportions.
The endogenous variables are on the log scale.

Concretely, we estimate the interrelations using the model formulation

log(wastingi) = f
(1)
spat(countryi) + ε1i

log(stuntingi) = f
(2)
spat(countryi) + β log(wastingi) + ε2i,

where the spatial functions f
(1)
spat and f

(2)
spat are included as correlated Markov ran-

dom �elds. Our �ndings are based on WHO data for African and western Asian de-

veloping countries (WHO, 2016). For each country, multiple observations (between

1990 and 2014) are available. The number of data points di�ers from country to

country and ranges between 1 (e.g. in Turkmenistan) and 21 (in Bangladesh). We

estimate two separate models for 47 African (n = 237 observations) and 23 Asian

(n = 127) countries.

We �nd a signi�cant e�ect of the log proportion of wasted children on that of

stunted children (and hence of acute on chronic undernutrition) of β̂Asia = 0.57

(in a 90% credibility interval [0.28, 0.83]) along with a correlation of ρ̂Asia = 0.53

([0.02, 0.85]) in Asia. At the same time, the estimates for African developing

countries point in the same direction (β̂Africa = 0.10 and ρ̂Africa = 0.11). How-

ever, they are not signi�cant as the 90% credibility intervals are [−0.05, 0.23] and

[−0.30, 0.50], respectively.

The country speci�c spatial e�ects are shown in Figure 7 for Africa and in Figure 8
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for Asia. Both, wasting (left plot in Figure 7) and stunting (central plot) propor-

tions are more strongly a�ected in countries in or close to the Sahel, which can

at least partly be explained by the challenging climatic conditions in that area. In

Asia, more children su�er from wasting (left plot in Figure 8) and stunting (central

plot) in the south east, whereas northern countries are not that strongly a�ected.

In this case, the positively estimated spatial correlation (ρ̂Asia = 0.53) is visible as

similar spatial patterns in wasting and stunting. The total country-speci�c e�ects

based on Equation (11) are shown in the right plots of Figures 7 for Africa and 8

for Asia, respectively. Note that the spatial e�ects are signi�cant in general. How-

ever, for both continents a large proportion of the marginal credibility intervals of

individual country-speci�c e�ects on stunting overlaps 0 (for details, see Figure 11

and 12 in Appendix B).

−1.36 0.770 −0.44 0.310 −1.35 0.770

Figure 7: Estimated country speci�c e�ect for acute (wasting, left) and
chronic (stunting, center) undernutrition in Africa. The right plot shows
the total regional e�ect for stunting in Africa based on Equation (11).

5.2 Correlated P-Splines: Species Richness of Plants and

Animals

Understanding the environmental drivers of species richness is of crucial ecological

interest. Illustrating the complex interactions between di�erent species and their

environments often is an incentive for extending standard statistical models in

order to capture these interrelations. Jetz et al. (2009), for example, relate the

relationship of species richness of plants and animals to environmental factors
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−0.91 0.930 −0.85 0.38 −1.37 1.040

Figure 8: Estimated country speci�c e�ect for acute (wasting, left) and
chronic (stunting, center) undernutrition in Asia. The right plot shows the
total regional e�ect for stunting in Asia based on Equation (11).

(e.g. temperature and number of di�erent ecosystems) at 639 sampling locations

worldwide using a linear structural equation model approach (see Figure 9 (a)).

topology

plant richness

animal richness

(a)

topology

plant richness

animal richness

(b)

β

γ1

γ2

β

f (1)

f (2)

ρ

Figure 9: (a) SEM approach similar to Jetz et al. (2009): The topological
diversity simultaneously a�ects plant and animal richness linearly. (b) Pro-
posed approach using correlated splines to explain the relationships between
topology and plant and animal species richness. All variables are on the log
scale.

They analyze if the resulting correlation is due to a direct e�ect of plant richness on

animal richness (i.e. from producer to consumer) or if it "emerges more strongly

from similar responses to environmental gradients". Klein and Kneib (2016) apply

a structured additive copula model to a sub-dataset from Jetz et al. (2009) in order

to explain the aforementioned dependency structure by environmental covariates
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but do not allow for a direct association between plant and animal species richness.

We use the dataset (consisting of n = 480 observations) from Klein and Kneib

(2016) and extend the approach of Jetz et al. (2009) as explained in Section 2. As

illustrated in Figure 9 (b), we allow the e�ects of the topological diversity (topo,

measured as maximal range of elevation within the sampling region) on plant and

animal species richness to be nonlinear and correlated. We estimate the e�ects

based on the model

log(plantsi) = f (1)(log(topoi)) + ε1i

log(animalsi) = f (2)(log(topoi)) + β log(plantsi) + ε2i.

From the results we �nd a signi�cant direct e�ect β̂ = 0.45 (in a 90% credibility

interval [0.37, 0.54]) of plant species richness on animal species richness. The

estimated nonlinear e�ects on plant and animal species richness along with 80%

and 90% pointwise credibility intervals are illustrated in the left and central panel of

Figure 10, respectively. The right plot shows the total e�ect of topological diversity

on animal species richness as a linear combination of the individual nonlinear e�ects

based on Equation (11).
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Figure 10: Nonlinear e�ects of topological diversity on species richness of
plants (left) and animals (center). The total topological e�ect on animal
species richness based on Equation (11) is shown in the right plot. The 80%
and 90% pointwise credibility intervals are shown as gray dashed and solid
lines, respectively.

Overall, we �nd a positive in�uence of topological diversity on both species richness

in plants and animals. The e�ect is more pronounced for plants but still signi�cant

based on the 80% and 90% credibility intervals. The slope appears to be larger

for higher topological diversity and is negative for extremely high elevation ranges.

The negative slopes for highly heterogeneous regions could possibly be explained
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by the area-heterogeneity trade o� described by Allouche et al. (2012).

The estimated splines show a similar pattern which is also re�ected by the estimated

correlation ρ̂ = 0.72 ([0.39, 0.91]). This estimate thus quanti�es the "similar

responses to environmental gradients" as mentioned by Jetz et al. (2009) and

hence supports the interpretation of the authors.

5.3 Model Selection for the Applications

Evaluating WAIC for the examples explained above illustrates another feature of

our approach: besides its ability to capture potential correlations between the

included e�ects, this additional smoothing reduces the overall model complexity.

As a result, WAIC is lower (compared to a model with uncorrelated e�ects) in all

cases as shown in Table 3.

Malnutrition in Africa Malnutrition in Asia Species richness

ρ = 0 530.41 424.57 2385.43
ρ 6= 0 465.49 404.61 2383.40

Table 3: WAIC values for the models applied in Sections 5.1 and 5.2. Model
performance is evaluated for uncorrelated (�rst row) and correlated (second
row) semiparametric e�ects.

6 Discussion

In this contribution, we extend the framework of simultaneous equation models

with the �exibility of semiparametric e�ects. In order to capture potentially com-

plex correlation structures within the data, we illustrate how di�erent types of

e�ects (e.g. nonlinear or spatial) can be incorporated into SEM via a basis func-

tion approach using correlated prior structures for the corresponding e�ects. We

show how the resulting e�ects can be interpreted and how the overall variability

and correlation in the model can be decomposed using path diagrams. For the

estimation, we implement a Gibbs sampler based on conjugate priors for all pa-

rameters.

In an extensive simulation study, we evaluate the model's performance in a large

variety of scenarios. Independent from the e�ect type, our approach is capable of
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identifying the occurring e�ects and of recovering the correlation of these e�ects.

Compared to a model with independent e�ects across equations, introducing a

general covariance structure yields additional smoothing of the e�ects and hence

a reduction of the WAIC (which we also �nd in all applications).

We illustrate the interdisciplinary applicability of our approach in two examples.

Firstly, we analyze the e�ect of the proportion of acutely malnourished children

on that of chronically undernourished children in African and Asian developing

countries. Correlated country-speci�c e�ects are included in order to capture en-

vironmental (e.g. climatic) and political factors within these countries. Based on

WHO data between 1990 and 2014, we �nd a positive e�ect of acute on chronic

undernutrition and positively correlated spatial e�ects.

In a second example, we use correlated Bayesian P-splines in order to simulta-

neously quantify the e�ect of topological diversity on plant and animal species

richness. Along with a positive direct e�ect of plant on animal species richness

(representing the idea that producers attract consumers), the estimated nonlinear

e�ects of topological diversity are highly correlated, indicating that plants and an-

imals react in a similar way to their environment in the sampling regions.

Identi�cation is a crucial aspect in SEM. For that reason, we impose the conser-

vative (i.e. emerging from linear SEM) assumption of uncorrelated error terms

within the two recursive model equations. As mentioned above, smoothing in gen-

eral and in particular smoothing across equations will lead to a reduction of the

overall e�ective number of parameters. It appears worthwhile to investigate under

which circumstances (i.e. the degree of smoothing) the assumption of indepen-

dence can be relaxed. Additionally, it is conceptually straightforward to further

extend the predictor structure of the endogenous variables by using multiple semi-

parametric e�ects at once. With the appropriate prior choices, our Gibbs sampler

only needs slight adjustments. Finally, the �eld of applications of our approach can

be widened by allowing for distributional �exibility in the responses (i.e. relaxing

the assumption of normally distributed error terms). Depending on the choices of

other parametric distributions, full conditionals of the parameters will no longer be

obtained from simple Gibbs steps, but from a Metropolis-Hastings type step with

appropriate proposal distributions.
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A Full Conditionals and Gibbs Sampler

Based on the posterior distribution

p(β21, δ̃, σ
2
1, σ

2
2,A | y) ∝ L× p(β21)× p(δ̃)× p(σ2

1)× p(σ2
2)× p(A),

where δ̃ = (β′1,β
′
2,γ

′
1,γ

′
2)
′
contains the coe�cients of the semiparametric e�ect,

we derive the full conditionals for the model parameters as follows.

Direct Covariate E�ect

The full conditional distribution of the direct covariate e�ect β21 given all other

model parameters is

β21| · · · ∼ N
(

y′1y2 −
∑L

l=1 (
∑n

i=1 y1ivil) δ2l
y′1y1

,
σ2
2

y′1y1

)
,
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where vil is the entry at position [i, l] of the matrix V = (X | Z) and δ2l captures

the components of the coe�cients vector δ2 = (β′2,γ
′
2)
′.

Unpenalized and Penalized Part of the Coe�cient Vector

After some re-ordering of the coe�cients, we derive a joint full conditional for

β1,β2 and γ. More precisely, with

δ̃ = (β′1,β
′
2,γ

′
1,γ

′
2)
′
,

Ṽ =
(
X̃ | Z̃

)
, where X̃ = M−1 ⊗X and Z̃ = M−1 ⊗ Z,

as well as

Σ̃ = (M−1 ⊗ In)(Σε ⊗ In)(M−1 ⊗ In)′ and

Σ̃δ̃ =





ν

2 0

0 ν2


⊗ Ik 0

0 A⊗ IL−k


 ,

it can be shown that the full conditional of δ̃ given the remaining model compo-

nents is again a Gaussian distribution, namely

δ̃| · · · ∼ N
((

Ṽ′Σ̃
−1

Ṽ + Σ−1
δ̃

)−1
Ṽ′Σ̃

−1
ỹ,
(
Ṽ′Σ̃

−1
Ṽ + Σ−1

δ̃

)−1)
,

where ỹ = (y′1,y
′
2)
′.

Error Variances and Covariance Structure of γ

The full conditional distributions of the error variances calculate as

σj| · · · ∼ IG
(
aσ2

j
, bσ2

j

)
, j = 1, 2,
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with

aσ2
1

= aσ2
2

= 0.001 +
n

2
,

bσ2
1

= 0.001 + 0.5
n∑

i=1

y21i −
L∑

l=1

(
n∑

i=1

y1ivil

)
δ1l − 0.5

n∑

i=1

(
L∑

l=1

vilδ1l

)2

and

bσ2
2

= 0.001 +
β2
21

2

n∑

i=1

y21i − β21
n∑

i=1

y1iy2i + 0.5
n∑

i=1

y22i

− β21
L∑

l=1

(
n∑

i=1

y1ivil

)
δ2l +

L∑

l=1

(
n∑

i=1

y2ivil

)
δ2l + 0.5

n∑

i=1

(
L∑

l=1

vilδ2l

)2

,

with vil and δjl as above.

Finally, the full conditional distribution of the covariance structure of the coe�cient

vector γ is given by

A| · · · ∼ IW (γ̃ ′γ̃ + Ψ, L− k + κ) .

Iteratively drawing from these full conditional distributions consequently constitutes

the Gibbs sampler on which our inference is based.1

B Uncertainty of Country-speci�c E�ects for

the Malnutrition Data

The �gures in this section of the appendix show the marginal credibility intervals

of the country-speci�c e�ects from the application on malnutrition in Africa and

Asia (see Section 5). The intervals are calculated based on the MCMC samples

for the regression coe�cients.

1When comparing our results to those from a model with uncorrelated semiparametric e�ects
during the simulation study in Section 4, we employ inverse-gamma priors for the individual
variances τ21 and τ22 . The Gibbs sampler is accordingly adjusted in this case.
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Figure 11: Marginal credibility intervals for the country-speci�c e�ects on
wasting (upper panel) and stunting (lower panel) in Africa. The 80% and
90% credibility intervals are illustrated in gray and black, respectively.
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Figure 12: Marginal credibility intervals for the country-speci�c e�ects on
wasting (upper panel) and stunting (lower panel) in Asia. The 80% and 90%
credibility intervals are illustrated in gray and black, respectively.

31

133



nothing



Versicherung bei Zulassung zur

Promotionsprüfung

nothing

Ich versichere,

1. dass ich die eingereichte Dissertation

E�ect Separation in Regression Models with Multiple Scales

selbstständig angefertigt habe und nicht die Hilfe Dritter in einer dem Prü-
fungsrecht und wissenschaftlicher Redlichkeit widersprechenden Weise in An-
spruch genommen habe,

2. dass ich das Prüfungsrecht einschlieÿlich der wissenschaftlichen Redlichkeit
- hierzu gehört die strikte Beachtung des Zitiergebots, so dass die Über-
nahme fremden Gedankenguts in der Dissertation deutlich gekennzeichnet
ist - beachtet habe,

3. dass beim vorliegenden Promotionsverfahren kein Vermittler gegen Entgelt
eingeschaltet worden ist sowie im Zusammenhang mit dem Promotionsver-
fahren und seiner Vorbereitung

• kein Entgelt gezahlt oder entgeltgleiche Leistungen erbracht worden
sind

• keine Dienste unentgeltlich in Anspruch genommen wurden, die dem
Sinn und Zweck eines Prüfungsverfahrens widersprechen,

4. dass ich eine entsprechende Promotion nicht anderweitig beantragt und hier-
bei die eingereichte Dissertation oder Teile daraus vorgelegt habe.

Mir ist bekannt, dass Unwahrheiten hinsichtlich der vorstehenden Versicherung
die Zulassung zur Promotionsprüfung ausschlieÿen und im Falle eines späteren
Bekanntwerdens die Promotionsprüfung für ungültig erklärt werden oder der Dok-
torgrad aberkannt werden kann.

Datum, Unterschrift


	Introduction
	Regression Models
	Multiple Scales
	Effect Separation
	Aims of the Dissertation
	Structure of the Thesis

	From Linear Regression to Spatial Confounding
	Spatial Structures within Datasets
	Properties of Regression Models in Case of Spatial Confounding

	Simultaneous Equation Models
	SEMs as Extension of Linear Models
	Spatial Effects in SEMs
	Estimation in SEMs

	Summaries of the Articles
	Structural Equation Models for Dealing with Spatial Confounding
	MCAR Priors in Recursive SEM for Analyzing Environmental Sensitivity of Mussels
	General Multivariate Effect Priors in Recursive Bivariate Gaussian Models

	Discussion and Outlook
	Summary of the Thesis
	Potential Future Research Directions
	Concluding Remark

	Structural Equation Models for Dealing with Spatial Confounding
	Integrating Multivariate Conditionally Autoregressive Spatial Priors into Recursive Bivariate Models for Analyzing Environmental Sensitivity of Mussels
	General Multivariate Effect Priors in Recursive Bivariate Gaussian Models

