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Abstract 

 

Modifications of the building units of chromatin - the histone proteins and DNA - direct the 

functional readout of the genome and are part of the so called “epigenome” (Fischle et al., 

2003b; Kouzarides, 2007). Several studies have shown that specialized proteins recognize 

these chemical modifications and thereby define the functional state of chromatin (Bartke et al., 

2010; Nikolov et al., 2011; Vermeulen et al., 2010). Several individual chromatin-binding factors 

have been analyzed in detail. Also, proteomics approaches have taken inventory of factors 

interacting with single chromatin modifications. However, the full set of factors specific to 

particular modified chromatin domains, such as for example eu-and heterochromatin, is not 

known yet.  

 

In this thesis, I report my findings from a systematic in vitro chromatin affinity purification 

approach in combination with quantitative mass spectrometry (Nikolov et al., 2011) that 

significantly expands the list of proteins regulated by heterochromatic modifications, both alone 

and in combination. The results provide a comprehensive catalogue of proteins specifically 

regulated in their chromatin binding by specific modification patterns. Moreover, the datasets 

highlight novel biological functions associated with individual modifications and reveal 

unpredicted functional relationships of the investigated chromatin modifications. 

 

The analysis of the interactomes of combinatorially modified chromatin identifies for the first time 

proteins whose binding properties to chromatin depend on the cooperative action of two 

modifications. The results provide novel insights into the communication between two chromatin 

modifications, namely positive and negative crosstalk. 

Furthermore, I introduce a new experimental workflow combining chromatin affinity purification 

and cross-linking mass spectrometry. This workflow maps physical protein-protein interactions 

sites of chromatin-bound proteins and provides first insights into the hierarchy of protein 

recruitment to chromatin. 

 

Overall, my findings demonstrate that by using a template that mimics the native form of 

chromatin, which is not accessible by the widely used reductionist approaches, chromatin 

modifications can be analyzed in multiple dimensions. In combination with the new methods 

established here, my work will help to improve our understanding of epigenetic regulation of 

chromatin-associated processes. 
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1 Introduction 

 

Epigenetic is the scientific field, which investigates heritable changes in gene expression that do 

not result from changes of the underlying DNA sequence, in other words an alteration of the 

phenotype by retaining the genotype. The term was first introduced by C. Waddington in the 

1950s (Waddington, 1953) and referred in general to molecular processes affecting gene activity 

resulting in a particular phenotype. Over time, the definition of epigenetics narrowed and was 

defined as “An epigenetic trait is a stably heritable phenotype resulting from changes in a 

chromosome without alterations in the DNA sequence.” in 2009 (Berger et al., 2009). Those 

changes of chromatin can occur at several levels. Currently considered in literature are DNA 

methylation, covalent posttranslational histone modifications, histone variants and non-coding 

RNA associated silencing. All these processes are thought to be involved in the establishment 

and maintenance of certain chromatin states that alter chromatin structure and consequently 

gene regulatory processes.  

 

1.1 Chromatin 

 

1.1.1 Chromatin organization 

 

The eukaryotic genome is located in the cell nucleus in form of a highly compacted structure 

called chromatin, made of DNA and its associated molecules including proteins and RNA. In the 

cell, chromatin exists at several levels of compaction, each of them regulating the accessibility of 

the DNA template to the transcription machinery and gene expression factors.  

The first level of chromatin compaction consists in the linear arrangement of repeating uniform 

units of DNA and histone octamers. Histone octamers consist of two copies of each of the four 

core histone proteins H2A, H2B, H3 and H4, around which 147 base pairs (bp) of a left-handed 

DNA superhelix are wrapped in a 1.65 turn (Luger et al., 1997). These uniform units represent 

the basic packaging unit of chromatin and are referred to as nucleosome core particles (NCPs) 

(Kornberg, 1974; Olins and Olins, 1974). Histones are 11-15 kDa in size and very basic proteins. 

They belong to the most conserved proteins among eukaryotes. All core histones exhibit a 

common structural feature called the histone fold motif comprising three α-helices that are 

connected by two loops. These motifs mediate the protein-protein interactions between the 

histone pairs H2A-H2B and H3-H4 as well as the interaction between each histone pair and the 

DNA wrapped around the nucleosome. In presence of DNA or high salt concentration a tetramer 

of two copies of H3 and H4 and two H2A-H2B dimers self-assemble to a stable histone octamer 

(Luger et al., 1997). In contrast to the histone fold motif, the N- and C-terminal tails of histones 



       3           Introduction 
 

are far less structured. They form flexible and accessible domains protruding out of the 

nucleosome core particle and mediate multiple interactions with the neighboring nucleosomes as 

well as with non-histone proteins. 

 

 

Figure 1.1 Structure of the nucleosome core particle. 
Crystal structure at 1.9-Å (PDB_1KX5 (Davey et al., 2002)) visualized using Xlink Analyzer and Chimera 
(Kosinski et al., 2015; Pettersen et al., 2004). 147 bp of DNA (blue) is surrounding the histone octamer, 
which consists of two copies of each of the histones H2A (salmon), H2B (pink), H3 (turquois) and H4 (light 
blue).  

 

The next level of chromatin organization is stabilized by nucleosome to nucleosome 

arrangements. Nucleosomes are formed by both the nucleosome core particles and a linker 

DNA varying in length from 10 to 70 bp. Under physiological salt conditions and the presence of 

divalent cations an array of nucleosomes folds into a helical fiber of approximately 30 nm 

diameter. However, the detailed structure and the in vivo relevance of the 30 nm fiber is 

controversial and still under discussion (Kruithof et al., 2009; Schalch et al., 2005; Tremethick, 

2007). Chromatin organization on levels beyond the 30 nm fiber is even less understood. Higher 

order compaction forming tertiary chromatin structures presumably involves inter-array 

interactions e.g. looping of chromatin fibers.  

A fifth histone type, histone H1, contributes to stabilize the 30 nm fiber and higher order 

structures of chromatin by interacting with both, the linker DNA and the nucleosome core 

particles in a 1:1 ratio (NCP:H1). Nevertheless, it was shown that nucleosomal arrays fold into 

compact states even in absence of H1 (McBryant and Hansen, 2012; Woodcock et al., 2006).  

Chromatin structure is not only influenced by the presence of H1. Variance in length and 

sequence of nucleosomal repeats, the presence of different histone variants and the pattern of 

posttranslational modifications (PTMs) of histones and DNA influence the structural formation of 

chromatin. 
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The structure of chromosomes can be generally distinguished in eu- and heterochromatin. The 

differentiation is ascribed to the heterogeneous staining intensities of chromosome areas 

observed with DNA staining dyes (Heitz, 1928). Heterochromatin represents chromosome 

regions formed by highly condensed chromatin and characterized by an intense DNA staining. 

These heterochromatic regions are thought to be distinctive for silenced gene loci (Dillon and 

Festenstein, 2002; Elgin and Grewal, 2003). Heterochromatin can be further distinguished into 

facultative and constitutive heterochromatin. Facultative heterochromatin mainly includes gene 

loci that are silenced in a time and tissue specific manner whereas constitutive heterochromatin 

is constituted by gene poor regions like repetitive satellite sequences, telomeres and 

centromeres. In contrast, euchromatin has a more relaxed structure. In consequence, staining 

by DNA specific dyes is less intense than the one observed for heterochromatin. The vast 

majority of transcriptionally active genes is present in euchromatin whose loose structure is 

thought to facilitate its accessibility for transcriptional factors. This explains the observations that 

constitutive heterochromatin remains condensed during the complete cell cycle while 

euchromatin undergoes decondensation during interphase.  

The structural organization of chromatin is much more complex than the historical staining 

initially suggested and exists in many structural subtypes, which appeared to play key roles in 

the regulation of essential genomic functions like transcription, replication or DNA repair.  

 

1.1.2 Chromatin modifications 

 

PTMs of histones are one of the key mechanisms regulating chromatin structure and function. 

PTMs that occur on histones are biochemically diverse and include for instant 

serine/threonine/tyrosine phosphorylation, lysine acetylation, lysine and arginine methylation, 

lysine ubiquitination, lysine sumoylation, ADP-ribosylation, arginine citrullination and proline 

isomerization (Rothbart and Strahl, 2014). More than 150 different histone modification sites 

have been identified so far. The vast majority of modification sites are found within the N-

terminal tails of histones although the number and relevance of posttranslational modifications at 

the histone globular domains are of increasing interest (Lawrence et al., 2016). Not only the 

different positions of histone modifications compose the degree of diversity, but also the level of 

the modification state. Methylation can occur in three degrees for lysine (mono-, di- and tri-) and 

arginine (mono-, symmetric and asymmetric di-) residues. 

A model of how histone PTMs function in regulating chromatin structure was postulated with the 

histone code (Jenuwein and Allis, 2001; Strahl and Allis, 2000). This concept is based on 

antagonistic acting enzymes such as kinases/phosphatases, histone acetyltransferases 

(HATs)/histone deacetylases (HDACs) and lysine methyltransferases (KMTs)/lysine 
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demethylases (KDMs) that establish specific histone modification patterns, which are recognized 

and interpreted by non-histone proteins called histone modification readers.  

The large variety of histone modifications provides a high potential for the regulation of 

chromatin organization and function. Histone modifications have been linked to cellular 

processes involved in transcriptional regulation, cell cycle process, DNA replication, DNA repair, 

splicing, epigenetic silencing and others (Izzo and Schneider, 2010; Kouzarides, 2007). 

Chromatin organization can be directly modulated by histone modifications that affect the 

interactions between nucleosomes. For instance, the incorporation of histone H4 lysine 16 

acetylation (H4K16ac) was shown to reduce chromatin compaction and increase transcription 

(Akhtar and Becker, 2000; Shogren-Knaak et al., 2006) whereas H4K20 di- and tri-methylation 

have been shown to enhance chromatin condensation in vitro (Lu et al., 2008). In addition to 

these direct effects, histone modifications can act indirectly on chromatin organization by 

promoting or preventing the recruitment of chromatin binding proteins. Basically all DNA 

processes can be influenced by the regulation of chromatin access of chromatin modifying 

protein complexes or single factors, transcription factors and effector proteins that activate 

downstream signaling (Margueron et al., 2005; Torres and Fujimori, 2015; Wysocka et al., 

2006).  

 

Genomic distribution of histone modifications 

 

The local enrichment of certain histone modification patterns is known to correlate with structural 

regions along the genome. Some histone modifications are highly enriched in heterochromatin 

and depleted from euchromatin while others are specific for euchromatin. Moreover, histone 

modification patterns correlate also with functional genomic elements along these chromatin 

subtypes. This observation allows using them as markers to differentiate certain genomic 

regions.  

 

For example, in euchromatin histone marks like tri-methylation of histone H3 at lysine 4 

(H3K4me3) and H3K27 acetylation are highly enriched at transcriptional start sites (TSS) of 

active genes (Kimura, 2013) while H3K36me3 and H3K4me1 are distributed within the gene 

body (Kimura, 2013). In contrast, heterochromatic inactive gene loci are mainly characterized by 

high levels of H3K9me3 and H3K27me3 as well as the presence of H3K9me2 and H3K27me2 

(Kimura, 2013; Wang et al., 2009). Thus, it appears that inactive genes are depleted from active 

histone marks such as H3K4 methylation while in turn active gene loci appear to be mainly free 

of histone modifications specific for silenced genes. Nevertheless, those general rules can 

deviate depending on cell type and/or developmental stage. For example, in undifferentiated 

stem cells, bivalent chromatin domains were found to be simultaneously marked by both 
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H3K4me3 and H3K27me3, characteristic histone marks for eu- and heterochromatin, 

respectively (Bernstein et al., 2006; Vastenhouw and Schier, 2012). Those domains with a dual 

chromatin identity might have a potential function in the fine regulation of gene expression during 

embryonic development by the capacity of switching between a H3K4me3 transcriptionally 

active state and a H3K27me3 silenced gene state.  

 

The development of techniques such as ChIP-on-chip and ChIP-Seq have considerably 

contributed to deepen our understanding of the global chromatin landscape by providing 

genome wide pictures of the histone mark distribution (Barski et al., 2007; Mikkelsen et al., 2007; 

Wang et al., 2008).  

It was observed that histone lysine acetylation is generally found at transcribed regions of active 

genes, which links this modification to active transcription and gene expression in a more 

general way (Cui and Shi, 2016; Ucar et al., 2011; Wang et al., 2008). A set of distinct histone 

modifications is also generally linked to heterochromatin. H3K9me3, H4K20me3 and H3K27me3 

have been characterized as predominant constitutive heterochromatin marks (Bannister and 

Kouzarides, 2011; Mikkelsen et al., 2007). In agreement with previous reports, which associated 

H3K9me3 and H4K20me3 with silencing of centromeres, transposons and tandem repeats, 

genome wide mapping revealed a strong enrichment of these marks at telomeric, satellite and 

long terminal repeats (Mikkelsen et al., 2007). The group of identified repressive marks included 

next to the tri-methylation sites of H3K9, H4K20 and H3K27 H3K27me2 and H3K9me2 while 

most other modifications correlated with transcriptional activation (Barski et al., 2007; Cui and 

Shi, 2016; Wang et al., 2008). Within heterochromatin not only constitutive regions are marked 

by histone modifications. H3K27me3 is the hallmark of facultative heterochromatin that includes 

regulatory chromatin elements like boundary elements and insulators (Bannister and 

Kouzarides, 2011; Van Bortle et al., 2012) but has also been detected at inactive enhancer 

elements. Surprising and in strong contrast to their di- and tri-methylation counterparts, the 

mono-methylated states of H3K9, H3K27 and H4K20 were found to be located mainly at active 

promoter sites and within the gene body, suggesting an association with transcriptional activity. 

Nevertheless, all three mono-methylation states have been already associated in the context of 

transcriptional repression. H3K27me1 was even shown to be significantly present in 

heterochromatin (Jacob et al., 2010).  

Another histone modification assumed to be associated with heterochromatin is the symmetrical 

di-methylation of arginine 3 of histone H4 (H4R3me2). Genome wide analysis showed no 

prediction for either, active or silenced promoters (Barski et al., 2007). However, several studies 

associated H4R3me2 with transcriptional repression (Cui and Shi, 2016; Hou et al., 2008; Litt et 

al., 2009; Xu et al., 2010; Zhao et al., 2009).  
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Table 1.1 Histone modifications. 
The table represents selected N-terminal histone modifications and their associated functions. The 
information of the table is based on (Izzo and Schneider, 2010; Lawrence et al., 2016). 
 

histone modification function 

H2A H2AK4/5ac transcriptional activation 

  H2AK7ac transcriptional activation 

  H2AS1P mitosis; chromatin assembly 

  H2AK119P spermatogenesis 

  H2AK119uq transcriptional repression 

H2B H2BK5ac transcriptional activation 

  H2BK11/12ac transcriptional activation 

  H2BK15/16ac transcriptional activation 

 

H2BS14P apoptosis 

  H2BK120uq spermatogenesis/meiosis 

  H2BK123uq transcriptional activation 

H3 H3K4me2 permissive euchromatin 

  H3K4me3 transcriptional elongation; active euchromatin 

  H3K9me1 transcriptional activation/repression 

  H3K9me2 transcriptional repression 

  H3K9me3 transcriptional repression; imprinting; DNA methylation 

  H3K27me1 transcriptional activation/repression 

  H3K27me2 transcriptional activation/repression 

  H3K27me3 transcriptional silencing; X-inactivation; bivalent genes/gene poising 

  H3K36me3 transcriptional elongation 

  H3R17me transcriptional activation 

  H3K4ac transcriptional activation 

  H3K9ac histone deposition; transcriptional activation 

  H3K14ac transcriptional activation; DNA repair 

  H3K23ac transcriptional activation; DNA repair 

  H3K27ac transcriptional activation 

  H3S10P mitosis; meiosis; transcriptional activation 

  H3t11/S28P mitosis 

H4 H4K20me1 transcriptional activation/silencing 

  H4K20me3 heterochromatin 

 

H4R3me transcriptional activation 

  H4R3me2s transcriptional silencing 

  H4K5ac histone deposition; transcriptional activation; DNA repair 

  H4K8ac transcriptional activation; DNA repair; transcriptional elongation 

  H4K12ac histone deposition; telomeric silencing; transcriptional activation; DNA repair 

  H4K16ac transcriptional activation; DNA repair 
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DNA methylation 

 

In addition to posttranslational histone modifications chromatin can also be chemically modified 

on the DNA. In eukaryotes, DNA is predominantly methylated at carbon-5 of cytosine (5mC) in 

the context of CpG dinucleotides. CpG dinucleotides are found throughout the genome but are 

mainly located within CpG islands, which are characterized as short CpG rich regions that are 

often associated with TSSs of promotors, gene bodies and intergenic regions (Jones, 2012). 

CpG islands are usually unmethylated and associated with the euchromatic histone modification 

H3K4me3 (Guenther et al., 2007; Illingworth and Bird, 2009; Mikkelsen et al., 2007). However, 

most of the genome is CpG-deficient and essentially methylated. 

In case DNA methylation of CpG islands occurs it is generally associated with transcriptional 

repression and connected with a functional role in imprinting, X-chromosome inactivation and 

transposon repression (Breiling and Lyko, 2015). Recent studies, however, suggest that DNA 

methylation can also be associated with promotion of transcription, indicating a far more 

complex functional diversity (Hu et al., 2013; Jin et al., 2012; Wu et al., 2010).  

The establishment of DNA methylation is performed by three DNA methyltransferases 

comprising DNMT1, which has a strong preference for hemimethylated DNA while the two 

others, DNMT3A and DNMT3B, do not show such a preference and are therefore known as the 

de novo methyltransferases (Goll and Bestor, 2005). DNMT3A and DNMT3B establish DNA 

methylation in early development and together with DNMT1 participate in maintaining DNA 

methylation (Li et al., 2015; Liao et al., 2015).  

 

1.1.3 Readout of chemical chromatin modifications 

 

The dynamic control of chemical modifications of DNA and histones include the action of 

antagonistic working enzymes referred to as “writers” and “erasers”. Those enzymes are 

targeted to chromatin by “reader” domains that recognize specifically modified (or unmodified) 

amino acid residues and DNA. “Reader” domains can be found within the protein structure of 

“writers” and “erasers” or as part of an associated factor.  

 

The most abundant binding domains involved in histone modification readout include 

bromodomains, Bromo-adjacent homology (BAH) domains, plant homeodomain (PHD) fingers, 

WD40 repeat domains, the “royal family” modules and 14-3-3 domains.  

 

Bromodomains are acetyl-binding domains that specifically recognize ε-N-acetylated lysine 

residues (Owen et al., 2000). They are present in a variety of chromatin-associated factors, 

including HAT and HMT enzymes, ATP-dependent helicases and also transcription factors (Ferri 
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et al., 2016). Bromodomains often occur in tandem with other domains within the same protein. 

They are most frequently found associated together with PHD fingers, but also with PWWP, SET 

and BAH domains (Sanchez et al., 2014).  

 

BAH domains have been found to act as protein–protein interaction modules, histone lysine 

methylation recognition and nucleosome binding modules. There are present in many proteins 

associated with DNA and histone modifications, such as DNMT1, MTA1 and the origin 

recognition complex 1 (Orc1) (Yang and Xu, 2013). For instance, the BAH domain was shown to 

be important in mediating the preferential binding of OCR1 to H4K20me2 (Kuo et al., 2012). 

BAH domains are essentially found in factors connected to processes involved in DNA 

methylation, replication and transcriptional regulation. Therefore it is also not surprising to find 

them often together with reader modules known to bind histones and DNA, such as Bromo, 

SANT and PHD domains.  

 

PHD domains are structurally conserved modules that act as readers of methylated lysine on 

histone tails as well as non-histone proteins (Musselman and Kutateladze, 2011). In rare cases, 

PHD domains have been shown to interact with methylated arginine and acetylated lysine. For 

instance, the PHD finger of RAG2 preferentially interact with symmetrically methylated H3R2 

whereas the tandem PHD finger of DPF3b was shown to bind to H3K14ac (Ramon-Maiques et 

al., 2007; Zeng et al., 2010). As most of the other reader modules, PHD fingers are flanked by 

additional reader domains, which appear to be important in combinatorial readout of histone 

modifications.  

 

The “royal family” modules are a group of structurally related protein motives, including the 

Tudor, PWWP, chromatin-binding (Chromo) and malignant brain tumor (MBT) domains that 

recognize lysine methylation by aromatic cage pockets (Maurer-Stroh et al., 2003). Besides 

individual exceptions of the PHD and the WD40 domain, Tudor domains are the only arginine 

binding motives known so far (Gayatri and Bedford, 2014). Some of the proteins harboring a 

Tudor domain have been shown to interact with specific histone methylation sites as well. While 

the Tudor domains of PHF1 and PHF19 interact specifically with H3K36me3, the Tudor domains 

of JMJD2A and UHRF1 can target several modification states, alone or in combination with a 

second binding motive, respectively (Lu and Wang, 2013).  

PWWP domains contain a highly conserved Pro-Trp-Trp-Pro motif and were initially identified as 

non-specific DNA-binding domains. However, recently the PWWP domain of Brf1 has been 

demonstrated to specifically associate with H3K36me3 (Vezzoli et al., 2010).  

Chromodomains are very well characterized as they were discovered among the first histone 

binding folds. Although chromodomains are structurally similar, they can be divided into different 
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subclasses comprising HP1/CBX chromodomains, chromobarrel, chromo shadow and chromo-

ATPase/helicase-DNA-binding (CHD) domains (Yap and Zhou, 2010). The proteins 

heterochromatin protein 1 (HP1) and Polycomb were the first factors characterized as 

specifically recognizing tri-methylated lysine 9 of H3 and tri-methylated lysine 27 of H3 via their 

chromodomain (Patel, 2016; Yap and Zhou, 2010). CBX chromodomains show a similar 

preference for those two modification marks although they have been additionally functionally 

associated with H3K27me2. Interestingly, the chromo shadow domains do not interact with 

methylated histones but were shown to act as protein-protein interaction modules (Brasher et al., 

2000; Cowieson et al., 2000) while the MSL3 chromobarrel domain was shown to bind to mono-

methylation of H4K20 only in the presence of DNA (Kim et al., 2010).  

Proteins harboring MBT repeats are functionally involved in processes like mitosis, tumor 

suppression and preferentially bind to mono- and di-methylated lysines of histones (Bonasio et 

al., 2010). The MBT modules as well as the other members of the “royal family” can occur and 

act as tandem reader modules (Patel, 2016).  

 

WDR 40 motifs are another family of modules acting in form of tandem repeats, which bind to 

methylated as well as unmethylated histones. One of the best studied representatives is the 

protein WDR5 (Patel, 2016; Yap and Zhou, 2010).  

 

Histone phosphorylation mainly occurs at serine residues that can be recognized by 14-3-3 

domains as well as the tandem breast cancer susceptibility (BRCT) domain. For instance, the 

BRCT domain of the protein Breast cancer associated 1 (BRCA1) has been shown to be 

important for its function in DNA repair (Glover, 2006; Yap and Zhou, 2010). 

 

5mC methylated DNA is also recognized by certain protein-binding motifs. So far, three different 

binding motifs were identified – the meCpG-binding domain (MBD), SET and RING-associated 

(SRA) domains and Kaiso and Zpf57 zinc finger proteins (Patel, 2016). Kaiso can recognize 

symmetrically modified 5mC in the context of tandem CpG dinucleotides via a zinc finger motif 

(Prokhortchouk et al., 2001). In mammals, SRA domains are restricted to the UHRF1 protein 

family comprising UHRF1 and UHRF2 and have been demonstrated to bind hemimethylated 

5mCpG/CpG sites (Bronner et al., 2007; Unoki et al., 2004). MBD domains were shown to 

recognize symmetrically methylated CpG dinucleotides (Nan et al., 1993; Ohki et al., 2001). 

Independent of the DNA methyl binding domain, 5mC-binding proteins have been shown to 

recruit proteins associated with transcriptional repression (Patel, 2016).  
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1.1.4 Multivalent readout and crosstalk of chemical chromatin modifications 

 

The diversity of recognition of chemical chromatin modifications is already enormous when only 

considering the range of binding folds identified and their specificity, which is supported by their 

arrangement within a polypeptide and the flanking amino acid sequences of the PTMs to be 

recognized. The diversity strongly increases considering additional processes of multivalent 

readout. The discovery of the linkage of multiple binding domains, either within a single protein 

or multi protein complexes, strongly supports the assumption of complex readout. In particular, 

the readout of a certain modification can be influenced by adjacent PTMs offering countless 

PTM combinations functioning in a synergistically as well as antagonistically manner.  

 

Several mechanisms of combinatorial readout of chromatin modifications are conceivable. The 

combinatorial readout can either take place on the same histone tail or on different histone tails, 

referred as in cis and in trans, respectively. Readout in trans happens either on a particular 

histone or at the nucleosomal level. The latter can be further distinguished between intra- and 

inter-nucleosomal combinatorial readout. Additionally, multivalence can also occur concomitant 

DNA and histone recognition. Binding modules involved in combinatorial readout can be coupled 

by protein-protein interactions in multiple protein complexes or directly within a single protein. 

Possibilities of protein-binding modes reflecting the introduced mechanisms are illustrated in 

figure 1.2.  

 

To date, the combinatorial readout in cis and in trans by paired protein-binding modules within 

one protein could be demonstrated for several proteins. For instant, combinatorial readout in cis 

via a PHD-Bromo cassette has been shown for TRIM24 and TRIM33, which bind unmodified H3 

in parallel with H3K23ac and H3K9me3 concomitantly with H3K18ac, respectively (Tsai et al., 

2010; Xi et al., 2011). The tandem Tudor-PHD finger cassette of UHRF1 has also been shown to 

bind the N-terminus of H3 in cis (Arita et al., 2012). Combinatorial binding in trans is far less 

studied. One of the best studied examples is the intra-nucleosomal binding of the PHD-Bromo 

cassette of BPTF that associates with H3K4me3 and H4K16ac (Ruthenburg et al., 2011).  

Besides paired protein-binding modules within one protein, crosstalk can be addressed on the 

level of indirect protein recruitment by protein-protein interactions. Chromatin modifying protein 

complexes can contain multiple “readers” providing a wide range of binding motifs in 

combination with “writers” and “erasers”. The local accumulation of such complexes provides the 

advantage of a higher degree of specificity and the ability to establish a complex series of 

modification patterns. The HBO1 complex for instance contains several PHD finger modules that 

act cooperatively to regulate its acetyltransferase activity (Musselman et al., 2012; Torres and 

Fujimori, 2015). In a similar fashion, WD40 repeats, PHD and Tudor domains of the PRC2 
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complex regulate its methyltransferase activity. Different posttranslational histone modifications 

have been shown to specifically recruit those protein complexes and additionally provided first 

insights into the multivalent impact of DNA and histone modifications (Bartke et al., 2010; Bluhm 

et al., 2016; Engelen et al., 2015; Kunowska et al., 2015; Nikolov et al., 2011; Vermeulen et al., 

2010).  

 

 

Figure 1.2 Combinatorial readout of posttranslational histone modifications.  
A) Readout of two histone modifications on the same histone tail by a single protein. B) Combinatorial 
readout in cis. Histone PTMs on the same histone tail are recognized by two different proteins. C) 
Combinatorial readout in trans. The readout of two PTMs at different histone tails can take place either 
within one nucleosome (intra-nucleosomal) as shown in the left panel or on different nucleosomes (inter-
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nucleosomal) as represented in the right panel. D) Combinatorial readout in trans facilitated by a multi 
protein complex. The figure is adapted from (Musselman et al., 2012).  

 

Nevertheless, recent knowledge of PTM recognition mechanisms is mainly based on specific 

binding of single proteins to distinct histone modifications or combinations thereof. The extent of 

the influence various modification patterns have on protein binding to chromatin and the 

functional consequences thereof are still not fully understood. Toward understanding the 

epigenetic language of histone and DNA modifications, the assignment of functional 

consequences and therefore the identification of the complement of proteins regulated by 

individual chromatin modifications and combinations is of immense importance.  

 

1.1.5 Chromatin arrays for systematic analysis of chemical modification readout 

 

The question of how distinct histone modifications influence the protein recruitment to chromatin 

and more globally the chromatin interactome consists in the field of epigenetics since many 

years. To approach this question several strategies have been developed over years. Modified 

histone N-terminal peptides are one of the major tools used in approaches ranging from array- to 

affinity-based protein interaction studies (Kim et al., 2006; Wysocka, 2006). In general, affinity 

purifications strategies enable an unbiased, modification-dependent identification of chromatin-

associated factors and macromolecular protein complexes. The experimental design is based on 

the incubation of unmodified or modified N-terminal histone peptides with nuclear extracts 

followed by the identification of the bound proteins by mass spectrometric analysis (Wysocka, 

2006). Recently, this approach has seen important modification by coupling it with quantitative 

mass spectrometry (Oda et al., 2010; Vermeulen et al., 2010). However, the characterization of 

histone PTMs binding proteins has, so far, essentially relied on the use of in vitro synthesized 

modified histone N-terminal peptides as bait in affinity purification that may not reflect faithfully 

the diversity and complexity of the PTM-regulated histone interactome. One strategy to 

overcome this problem has consisted in using mononucleosomes or even oligonucleosomal 

arrays (Bartke et al., 2010; Nikolov et al., 2011). Nucleosomal arrays are of particular interest as 

they offer a far more physiologically relevant model compared to the peptide-based strategy. For 

example, chromatin arrays allow to (i) control histone PTM and underlying DNA sequences, (ii) 

to investigate the binding of proteins within the nucleosomal context including the identification of 

proteins binding only in presence of more than one nucleosome, (iii) characterize the crosstalk 

between histone modifications by inserting two or more PTMs on one single chromatin array, (iv) 

investigate the crosstalk between PTMs of histones and DNA.  

 

The assembly of homogenous recombinant nucleosomal arrays has been well described in the 

literature (Dyer et al., 2004; Huynh et al., 2005; Luger et al., 1999). A general overview is shown 
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in figure 1.3. The system is based on histone octamers that are uniformly position on a defined 

DNA template (Huynh et al., 2005). 

 

 

Figure 1.3 Design of recombinant nucleosomal arrays.  
Recombinant full length histones, either unmodified or modified by native chemical ligation, were 
assembled to histone octamers via dialysis against high salt. Biotinylated 12x200x601 DNA templates and 
histone octamers containing modified histones of choice were mixed and reconstituted to 12mer chromatin 
arrays by dialysis over a salt gradient.  

 

The application of chromatin based affinity purification of an unmodified and a chemically 

modified chromatin array in direct comparison demonstrated that nucleosomal arrays are well 

suited for the identification of specific protein-binding interactomes of chromatin arrays in the 

context of defined chemical modifications, when coupled with relative quantification by mass 

spectrometry (Nikolov et al., 2011). Thus, this method has the potential to elucidate the complex 

protein interactomes of diverse chromatin modification patterns and can provide insights into 

epigenetic regulated biological pathways and histone modification crosstalk. 

 

1.2 Mass spectrometry 

 

1.2.1 Mass spectrometry based protein identification of complex samples  

 

Mass spectrometry is a powerful method especially in terms of global protein identification, 

which has allowed the characterization of organelle proteomes, signaling pathways and 

complete protein complexes. Although mass spectrometry has a long history in science, it is only 

during the last 20 years that it has been developed to the standard method for protein 

identification and quantification of complex samples in proteomics.  

 

The principle of identification and quantification of molecules by mass spectrometry is based on 

the mass-to-charge ratio of the molecules. The molecule of interest is transferred into the gas 

phase and ionized. These ions can be separated according to their mass-to-charge ratio (m/z) 

by ion acceleration in an electric or magnetic field. Ion acceleration is later converted in ion 

current and gives the signal to be detected.  
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A standard proteomics workflow for MS based protein identification is carried out by tandem 

mass spectrometry comprising four main successive steps – (i) protein proteolysis, (ii) m/z 

detection of intact ions, (iii) precursor ion selection and fragmentation, (iv) peptide identification 

followed by protein identification using protein sequence databases (figure 1.4).  

 

The proteomic workflow starts with the proteolysis of the proteins of interest. For the reason that 

peptides possess solubility in a wider range of solvents and their masses can be determined 

with high accuracy, the complex protein sample is proteolytic digested into peptides prior mass 

spectrometric analysis. Consequently, the degree of complexity increases even more. To ensure 

a comprehensive, unambiguous identification, including the detection of low-abundance species, 

a sufficient separation is required. While SDS-PAGE separation can be a first step to reduce the 

degree of complexity at the protein level, the application of liquid chromatography (LC) is 

successfully in use to reduce the complexity at the peptide level. The separation is achieved by 

nanoliter flow rate reversed-phase C18 chromatography coupled to direct elution into an 

electrospray ionization (ESI) mass spectrometer. Additional LC systems are commonly in use as 

well as separation based on capillary electrophoresis and the application of multidimensional 

separation, successfully increasing the number of identified peptides (Di Palma et al., 2012; 

Heemskerk et al., 2016; Yates, 2004).  

 

 

Figure 1.4 Workflow for protein identification by MS.  
Proteins are hydrolyzed to peptides using a specific protease. The mass-to-charge ratios of the peptides 
are determined by mass spectrometry (MS1). Based on the first measurement precursor ions are selected 
and fragmented (MS2). For protein identification the information obtained from the MS1 and MS2 spectra 
are compared to the theoretical masses of a database by a search engine. The figure is adapted from 
(Schmidt, 2010). 
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The majority of tandem mass spectrometry experiments in proteomics use data-dependent-

acquisition (DDA) for detection of m/z ratios. In a first step, the MS1 spectrum is generated by a 

complete scan over a distinct mass range that records m/z ratios of all ions eluting from the LC 

at a certain time point. The most abundant precursor ions are selected for fragmentation, 

commonly done by low-energy collision induced dissociation (CID). The scans of the fragmented 

ions provide the MS2 (or MS/MS) spectra. The DDA cycle acquires data over the length of the 

LC elution gradient.  

The peptide identification is performed in silico by database search engines. A protein sequence 

database provides the theoretically mass of proteolytically digested peptides. The mass 

information resulting from the matched MS1 and MS2 spectra is used to search for peptide 

candidates in the database with corresponding theoretically masses. A certain mass tolerance 

setting according to the mass accuracy of the mass spectrometer is used and the results are 

reported according to statistical ranking.  

 

1.2.2 Relative quantification by Stable Isotope Labeling by Amino acids in Cell culture (SILAC) 

 

Quantitative mass spectrometry is of major importance in the field of MS based proteomics. Two 

general approaches have been developed over the last years – stable isotope-based and label-

free methods. Label-free methods are based on comparison of identical peptides and proteins 

between multiple measurements and rely on either spectrum count or MS1 intensity based 

approaches (Bantscheff et al., 2012). With vast technical progress, label-free approaches have 

become more popular nowadays but still struggle with certain drawbacks. They require several 

replicates and rely on high reproducibility in terms of sample preparation and separation steps 

prior to mass spectrometric measurements. Stable isotope-based mass spectrometry relies on 

the nearly identical physicochemical properties of heavy stable isotopes and their corresponding 

light isotopes. Relative quantification is achieved by comparing the MS intensities of unlabeled 

peptides to their corresponding heavier isotopic labeled peptides. Consequently, the method 

allows the measurement of different labeled peptides (and proteins) within the same sample, 

thus reducing errors from sample preparation and ion suppression by mass spectrometers in 

different MS runs.  

 

Isotope labels can be incorporated chemically, enzymatically or metabolically (Ong and Mann, 

2005). One of the most popular metabolic labeling approaches is Stable Isotope Labeling by 

Amino acids in cell culture (SILAC) (Ong et al., 2002). The incorporation of heavy isotopes takes 

place during cellular or organismal growth with the consequence of a certain limitation in the 

range of applicable samples. This drawback was reduced with the recent development of super 

SILAC and spike-in SILAC allowing the application of SILAC to tissues and body fluids (Geiger 
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et al., 2010; Geiger et al., 2011). Another disadvantage is the number of samples that can be 

compared using SILAC. While a few years ago the complexity of analysis caused restrictions the 

actual limitations are reasoned in the limited number of parallel labels for heavy labeled amino 

acids. Widely in application are the stable isotope labeled amino acids lysine and arginine, 

containing C13 and N15. Using labeled lysines and arginines up to 5-plex SILAC experiments 

can be performed (Ong et al., 2002). Nevertheless, SILAC has proven to be a method of choice 

as it has been proven to be highly accurate and more robust compared to other stable isotope-

based methods and therefore suitable for affinity purification strategies (Chen et al., 2015).  

 

Quantitative MS-based proteomics as large scale MS-based approaches in general require 

specific algorithms for peptide/protein identification and quantification. MaxQuant is a 

quantitative software packages that enables protein identification and quantification in the 

context of SILAC based approaches but also supports quantification of additional label-based 

and label-free approaches (Cox and Mann, 2008; Cox et al., 2011). The software incorporates 

all steps of data analysis, starting from processing MS spectra to final statistical evaluation. The 

analysis pipeline starts with high intensity-weighted estimation of masses for peptide peaks 

(assignment of 3D peaks based on intensity, m/z and elution time), the determination of reliably 

isotope patterns and the assignment of SILAC peptide pairs. After improvement of mass 

accuracy, peptide and protein identification is done using an integrated database search engine. 

The last steps are directed at protein quantification based on the enrichment ratios of individual 

peptide pairs. The software package Perseus enables statistical evaluation and visualization.  

 

1.2.3 Protein-protein cross-linking mass spectrometry 

 

Cross-linking mass spectrometry (XL-MS) is a powerful approach, which allows investigating 

structural as well as physical interaction sites of proteins. A bifunctional cross-linker is used to 

covalently link proteins in physical close proximity engaged in non-covalent interactions. 

Commonly, cross-linkers used in MS possess two cross-linking reactive groups that are 

connected by a spacer but can have properties like variable spacer length, cleavability, 

composition, solubility, isotope labeling and photo reactivity (Paramelle et al., 2013). Another 

very important property is the specificity of a cross-linker that ranges from low to high specificity 

and can be modulated by altering the cross-linking conditions such as pH and the protein-cross-

linker ratio. One of the most popular cross-linking reagents in use is bis(sulfosuccinimidyl) 

suberate (BS3). BS3 is a chemical cross-linker with a spacer arm length of 11.4 Å and belongs 

to the highly reactive N-hydroxysuccinimide (NHS) ester that target nucleophiles. It is a 

homobifunctional cross-linker that can react with primary amines in the side chains of lysine (K) 
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residues and the N-terminus of polypeptides resulting in stable amide bonds (Sinz, 2006; Tran et 

al., 2016).  

After cross-linking, non-cross-linked peptides are still the overrepresented peptide species in a 

given sample (Sinz, 2006). Thus, compared to linear peptides, cross-linked peptide are less 

abundant and therefore less likely to be identified by mass spectrometric measurements. To 

overcome these issues, different enrichment strategies for cross-linking containing species can 

be applied on the protein as well as on the peptide level. Based on the property of a higher 

molecular weight of cross-linked species separation according to size can successfully enrich for 

both, cross-linked proteins and cross-linked peptide pairs. Depending on experimental design 

and sample preparation SDS-PAGE and size exclusion chromatography are applicable methods 

on the protein level. Size exclusion chromatography also has been shown to be applicable on 

the peptide level (Leitner et al., 2012). Alternatively, separation of cross-linked peptides was 

successfully achieved applying strong cation exchange chromatography as they exhibit more 

charges compared to linear peptides (Fritzsche et al., 2012).  

 

Still, one of the major challenges in XL-MS is the identification of cross-linked peptides and 

proteins. Database search engines used for identification of proteins based on linear peptides 

cannot be applied for the analysis of cross-link spectra. The main reason is due to the fact that 

both, MS1 and MS2 spectra do not correspond to one peptide but to all possible combinations of 

cross-linked peptide pairs. The consequence is a dramatic increase of the database used for the 

search associated with increased risk of random assignments and higher false discovery rates. 

To date, two data processing tools, xQuest/xProphet and pLink, have been developed that 

search for cross-links against large databases exceeding a number of 30 to 40 proteins, 

implementing a false discovery rate control (Purcell et al., 2007; Rinner et al., 2008; Walzthoeni 

et al., 2012). Both have been proven to be suitable tools, sensitive enough to study protein-

structure and protein-protein-interactions. The disadvantage of xQuest/xProphet is the necessity 

of labeled cross-linker, thus pLink was the software used for my studies.  
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1.3 Hypothesis and objectives of the presented thesis 

 

Chromatin structure adopts two main configurations: a relaxed state containing most of the 

expressed genes and referred to as euchromatin and a condensed state associated with 

transcriptional silencing called heterochromatin. Both chromatin states exhibit histone 

posttranslational modifications found to be specifically associated with either eu- or hetero- 

chromatin. These chromatin modifications form a complex language whose understanding has 

been subject of constant efforts over the past decade. To date, the vast number of histone 

modification sites that have been identified, their distribution across the genome as well as their 

specific binders have provided considerable information on how chromatin functions can be 

regulated. However, a comprehensive overview of the proteomes associated with defined 

chromatin modifications and their functional outcomes were not achieved so far.  

 

The hypothesis that has set the basis of my thesis work was that the biochemical status of 

chromatin domains is brought about by single chromatin modifications and combinations thereof 

that regulate the recruitment and the exclusion of specific networks of chromatin-associated 

proteins. One important question was whether a set of factors, common to all modifications 

associated with a given chromatin stage, would be responsible of the eu- or heterochromatin 

identities. 

 

To address these questions, my primary objective was to characterize the proteomes associated 

with the majority of the known heterochromatic chromatin modifications and combinations 

thereof, by using a strategy based on chromatin affinity purification coupled to quantitative mass 

spectrometry. One of the first aims was to implement a statistical function that defines a fold 

enrichment cutoff meeting the requirements for the comparison of modification-specific regulated 

factors identified by individual performed experiments. Proteins regulated by specific 

modifications provided the basis for the identification of the biological functions of each of the ten 

heterochromatic modifications and the information regarding their functional relationships. The 

scope of my work has been broadening by introducing the question whether combinations of two 

chromatin modifications have an impact on the biochemical status of chromatin domains 

different from the individual modifications. To investigate this point, the combinations of 

H3K9me3 and H4K20me3 as well as H3K9me3 and CpG methylated DNA were investigated. 

Lastly, a new workflow coupling ChAP with cross-linking mass spectrometry was establish in 

order to map the physical interactions among chromatin-associated proteins with the aim to 

determine the hierarchy of protein recruitment to chromatin. 
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2 Materials and Methods 

 

2.1 Material and reagents 

 

2.1.1 Laboratory equipment 

 

ÄKTA Explorer/Purifier/micro    GE Healthcare, Buckinghamshire (UK) 

Balances       Metler-Toledo, Gießen (DE) 

BBD 6220 CO2 incubator     Heraeus, Hanau (DE) 

Bioreactor 5L with ez-Control    Applikon, Schiedam (NL) 

Centrifuge Cryofuge 6000i     Heraeus, Hanau (DE) 

Centrifuge Sorvall Evolution RC    Thermo Scientific, Braunschweig (DE) 

Centrifuges tabletop 5415R/5810R    Eppendorf, Hamburg (DE) 

ChemiDoc MP System    Bio-Rad, München (DE) 

Electrophoresis power supplies   Bio-Rad, München (DE) 

HP1100 and HP1200 LC systems    Agilent, Santa Clara (USA) 

Laminar flow clean bench     Heraeus, Nahau (DE) 

LTQ-Orbitrap Velos      Thermo Fischer Scientific, Bremen (DE)  

LTQ-XL       Thermo Fischer Scientific, Bremen (DE) 

Mini Trans-Blot system     Bio-Rad, München (DE) 

Mini-PROTEAN Tetra PAGE cell    Bio-Rad, München (DE) 

NanoDrop ND-1000      Peqlab, Erlangen (DE) 

Peristaltic pump      Ismatec, Glattburgg (CH) 

pH meter       Metler-Toledo, Gießen (DE)  

Q-Exactive      Thermo Fischer Scientific, Bremen (DE) 

Sonication bath SONOREX Super    BANDELIN Electronic, Berlin (DE) 

Sorval SA600 rotor      Thermo Scientific, Braunschweig (DE) 

Sorval SS34 rotor      Thermo Scientific, Braunschweig (DE) 

SpeedVac Savant SPD121P    Thermo Scientific, Braunschweig (DE) 

Sub-Cell-GT agarose gel electrophoresis   Bio-Rad, München (DE) 

Thermocycler epgradientS     Eppendorf, Hamburg (DE) 

Thermomixer Comfort     Eppendorf, Hamburg (DE) 

Water bath TW12      Julabo, Selbach (DE) 

XCell Sure Lock Mini NuPAGE cell    Invitrogen, Karlsruhe (DE) 
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2.1.2 Consumables and plastic ware 

 

Amicon Ultra centrifugal filter devices   Millipore, Billerica (USA) 

(MWCO 3 and 10 kDa)  

Phase Lock Heavy Tubes (2-, 15-, 50 ml)   5PRIME, Hamburg (DE) 

Slide-A-Lyzer dialysis units and cassettes  Pierce/Thermo Scientific, Rockford (USA) 

(MWCO 3500, 7000, 10000) 

Spectra/Por dialysis membrane    Spectrum Laboratories, Rancho Domingues  

(MWCO 3500 and 10000)    (USA) 

 

2.1.3 Chemicals 

 

(2-bromoethyl)-tri-methylammonium bromide Sigma-Aldrich, Steinheim (DE) 

(2-chloroethyl)-dimethylammonium chloride  Merck, Darmstadt (DE) 

(2-chloroethyl)-methylammonium chloride   Karl Industries, Aurora (USA) 

2-mercaptoethanol      Sigma-Aldrich, Steinheim (DE) 

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic VWR, Poole (DE) 

acid (HEPES) 

4-Mercaptophenylacetic acid (MPAA)  Sigma-Aldrich, Steinheim (DE) 

Acetic acid       Merck, Darmstadt (DE) 

Acetonitrile, LiChrosolv     Merck, Darmstadt (DE) 

Acrylamide/Bisacrylamide (37.5:1)   Merck, Darmstadt (DE) 

Agarose       Serva, Heidelberg, (DE) 

Ammonium hydrogen carbonate    Fluka, Buchs (CH) 

Ammonium peroxodisulfate     AppliChem, Darmstadt (DE) 

Bis(sulfosuccinimidyl) suberate (BS3)  Thermo Scientific, Schwerte (DE) 

Boric acid       Merck, Darmstadt (DE) 

Bovine serum albumin (BSA)    Sigma-Aldrich, Steinheim (DE) 

Bromophenol blue      Serva, Heidelberg (DE) 

Cleland’s reagent (DTT, for MS analysis)   Calbiochem, Darmstadt (DE) 

Coomassie Briliant Blue G-250    Fluka, Buchs (CH) 

D/L-Methionine      Sigma-Aldrich (DE) 

Deoxynucleotide-5’-phosphate (dATP, dCTP, Roth, Karlsruhe (DE) 

dGTP, dTTP) 

Dipotassium hydrogen phosphate (K2HPO4) Roth, Karlsruhe (DE) 

Dithioerythrol (DTE)      Roth, Karlsruhe (DE) 

Dithiothreitol (DTT)      Alexis Biochemicals, Farmingdale (USA) 
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Ethanol       Merck, Darmstadt (DE) 

Ethidium bromide       Roth, Karlsruhe (DE) 

Ethylendiamine tetraacetate (EDTA)   Roth, Karlsruhe (DE) 

Formic acid (FA)      Fluka, Buchs (CH) 

Glycerol       Merck, Darmstadt (DE) 

Guanidine hydrochloride     Sigma-Aldrich, Steinheim (DE) 

Guanidine hydrochloride (≥ 99.5%)   Roth, Karlsruhe (DE) 

Hydrochloric acid (37% HCl)     Merck, Darmstadt (DE) 

Iodacetamide (IAA)      Sigma-Aldrich, Steinheim (DE) 

LB Broth       MOBIO, Hamburg (DE) 

Magnesium chloride (MgCl2)     Merck, Darmstadt (DE) 

Methanol, LiChrosolv     Merck, Darmstadt (DE) 

N,N,N’,N’-Tetramethylethylendiamid (TEMED)  Sigma-Aldrich, Steinheim (CH) 

Non-fat dry milk powder     Regilait, Saint-Martin-Belle-Roche (FR) 

Ortho-Phosphoric acid     Merck, Darmstadt (DE) 

Phenol:Chlorophorm:Isoamil alcohol (PCI)  Roth, Karlsruhe (DE) 

[25:24:1] 

Phenyl-methylsulfonyl fluoride (PMSF)   Roche, Mannheim (DE) 

Polyethylene glycol 6000 (PEG-6000)  Merck, Darmstadt (DE) 

Ponceau S       Sigma-Aldrich, Steinheim (DE) 

Potassium chloride (KCl)     Merck, Darmstadt (DE) 

Potassium dihydrogen phosphate (KH2PO4)  Roth, Karlsruhe (DE) 

RapiGest      Waters (USA) 

S-(5’-adenosyl)-L-methionine (SAM)   New England Biolabs, Ipswitch (USA) 

Sodium acetate      Roth, Karlsruhe (DE) 

Sodium azide (NaN3)      Alfa Aesar, Massachusetts (USA) 

Sodium chloride (NaCl)     Merck, Darmstadt (DE) 

Sodium dodecyl sulfate (SDS)   VWR, Poole (DE) 

Sodium hydrogen phosphate (Na2HPO4)   Merck, Darmstadt (DE) 

Sodium hydroxide (NaOH)     Merck, Darmstadt (DE) 

Tris(hydroxymethyl)amino ethane (Tris base)  Roth, Karlsruhe (DE) 

Triton X-100       Merck, Darmstadt (DE) 

Tween-20       Sigma-Aldrich, Steinheim (DE) 

Urea        Merck, Darmstadt (DE) 

Water, LiChrosolv      Merck, Darmstadt (DE) 
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2.1.4 Chromatographic and affinity material  

 

C18 reversed phase precolumn (0.15 mm ID x Dr. Maisch, Ammerbuch-Entringen (DE) 

20 mm, Reprosil-Pur120 C18-AQ 5 µm) 

HiLoad Superdex 200 10/300   GE Healthcare, Buckinghamshire (UK) 

HiLoad Superdex 200 16/60    GE Healthcare, Buckinghamshire (UK) 

Superdex 200 Increase 3.2/300   GE Healthcare, Buckinghamshire (UK) 

Superdex Peptide 3.2/300    GE Healthcare, Buckinghamshire (UK) 

HiTrap SP HP 1ml      GE Healthcare, Buckinghamshire (UK) 

PD-10 columns      GE Healthcare, Buckinghamshire (UK) 

Q-Sepharose XK26/20     GE Healthcare, Buckinghamshire (UK) 

Reprosil AQ-3/5μm / 300Å     Dr.Maisch, Ammerbuch (DE) 

SilicaTip emmiters      New Objective, Woburn (USA) 

SP-Sepharose XK26/20     GE Healthcare, Buckinghamshire (UK) 

Streptavidin MagneSphere particles   Promega, Mannheim (DE) 

 

2.1.5 Cell culture media and materials 

 

DMEM High Glucose ([w/o] Lys, [w/o] Arg)   PAA Laboratories, Colbe (DE) 

Fetal bovine serum, dialyzed    PAA Laboratories, Colbe (DE) 

L-Arginine (Arg0)      Sigma-Aldrich, Steinheim (DE) 

L-Arginine, 13C6 (Arg6)     Euriso-top, Saarbrücken (DE) 

L-Lysine (Lys0)      Sigma-Aldrich, Steinheim (DE) 

L-Lysine, 2D4 (Lys4)      Euriso-top, Saarbrücken (DE) 

Penicillin/Streptomycin 100 x    PAA Laboratories, Colbe (DE) 

 

2.1.6 Commercial kits 

 

1 Kb Plus DNA Ladder     Invitrogen, Karlsruhe (DE) 

ECL Pus Western Blotting Detection System  GE Healthcare, Buckinghamshire (UK) 

ECL Western Blotting Detection System   GE Healthcare, Buckinghamshire (UK) 

Hybond ECL nitrocellulose membrane   GE Healthcare, Buckinghamshire (UK) 

Hybond N+ membrane     GE Healthcare, Buckinghamshire (UK) 

Imperial Protein Stain     Pierce/Thermo Scientific, Rockford (USA) 

Mini-PROTEAN 4-12% TGX gels    Bio-Rad, München (DE) 

NucleoBond PC 10000     Machery&Nagel, Düren (DE) 
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NucleoBond Xtra Midi Plus     Machery&Nagel, Düren (DE) 

NucleoSpin Plasmid      Machery&Nagel, Düren (DE) 

NucleoSpin Extract II      Machery&Nagel, Düren (DE) 

NuPAGE Antioxidant      Invitrogen, Karlsruhe (DE) 

NuPAGE LDS Sample Buffer (4x)    Invitrogen, Karlsruhe (DE) 

NuPAGE MOPS SDS Running Buffer (20x)  Invitrogen, Karlsruhe (DE) 

NuPAGE Novex 4-12% Bis-Tris gels, 1mm   Invitrogen, Karlsruhe (DE) 

NuPAGE Sample Reducing Agent (10x)   Invitrogen, Karlsruhe (DE) 

SeeBlue Plus2 Protein Standard    Invitrogen, Karlsruhe (DE) 

 

2.1.7 Commonly used buffers and solutions 

 

10x DNA loading dye      30% [v/v] Glycerol 

10 mM EDTA  

0.25% [w/v] Bromophenol blue 

 

10x PBS        1.37 M NaCl 

27 mM KCl 

100 mM Na2HPO4 

20 mM KH2PO4 

 

1x PBS-T        1x PBS 

0.1% [v/v] Tween-20 

 

10x SDS running buffer      250 mM Tris base 

1.92 M Glycine 

1% [w/v] SDS 

 

1 x SDS sample buffer     60 mM Tris-HCl (pH 6.8) 

10% [v/v] Glycerol 

2% [w/v] SDS 

0.1% [w/v] Bromphenol blue 

150 mM 2-Mercaptoethanol 

 

10x TB        890 mM Tris base 

890 mM Boric acid 
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10x TBE        890 mM Tris base 

890 mM Boric acid 

20 mM EDTA NaOH (pH 8.0) 

 

1 x Transfer buffer      25 mM Tris base 

0.192 M Glycine 

0.1% [w/v] SDS 

20% [v/v] Methanol 

 

Chromatin loading buffer      10% [v/v] Glycerol 

1x RB low 

 

Colloidal Coomassie stain  0.08% [w/v] Coomassie Brilliant Blue 

G 250 

20% [v/v] Methanol 

1.6% [v/v] Ortho-Phosphoric acid 

8% [w/v] Ammonium sulfate 

 

Injection buffer      2% [w/v] SDS  

100 mM NaCl  

10 mM HEPES (pH 7.9)  

50 mM Tris-HCl (pH 7.5)  

2 mM MgCl2  

 

MC buffer        10 mM HEPES (pH 7.6)  

10 mM KOAc  

0.5 mM Mg(OAc)2  

5 mM DTT 

 

PD150 (pull-down wash buffer)     20 mM HEPES NaOH (pH 7.9) 

10% [v/v] Glycerol 

150 mM NaCl 

0.1% [v/v] Triton X-100 
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RB High        10 mM Tris-HCl (pH 7.5) 

1 mM EDTA NaOH (pH 8.0) 

2 M NaCl 

1 mM DTT 

 

RB Low        10 mM Tris-HCl (pH 7.5) 

1 mM EDTA NaOH (pH 8.0) 

12.5 mM NaCl 

1 mM DTT 

 

Röder C        25% [v/v] Glycerol 

20 mM HEPES (pH 7.9) 

420 mM NaCl 

1.5 mM MgCl2 

0.2 mM EDTA NaOH (pH 8.0) 

 

Röder D        10% [v/v] Glycerol 

20 mM HEPES (pH 7.9) 

100 mM KCl 

1.5 mM MgCl2 

0.2 mM EDTA NaOH (pH 8.0) 

0.5 mM DTT 

0.5 mM PMSF 

 

SAU200       7 M Urea,  

20 mM Sodium acetate (pH 5.2)  

1 mM EDTA 

200 mM NaCl 

2 mM DTT 

 

SAU600       7 M Urea 

20 mM Sodium acetate (pH 5.2) 

1 mM EDTA 

600 mM NaCl 

2 mM DTT 
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TW buffer       50 mM Tris-HCl (pH 7.5) 

100 mM NaCl 

1 mM EDTA 

1% [v/v] Triton X-100 

2 mM DTT 

 

Unfolding buffer       7 M Guanidinium-HCl 

20 mM Tris-HCl (pH 7.5) 

10 mM DTT 

 

Wash buffer        50 mM Tris-HCl (pH 7.5) 

100 mM NaCl 

1 mM EDTA 

1 mM PMSF 

1 mM Benzamidine 

2 mM DTT 

 

XL-SEC buffer       0.2% [w/v] SDS 

100 mM NaCl 

10 mM HEPES (pH 7.9)  

 

1 M Tris-HCl buffer  1 M Tris base, desired pH adjusted 

with 37% [w/w] HCl 

 

1 M HEPES buffer  1 M HEPES, desired pH adjusted 

with 5 M NaOH or 5 M KOH 

 

2.1.8 Cell lines 

 

HeLa S3 (human cervical cancer, Computer cell culture centre, BE) were provided by the facility 

for Cell Production, Max Planck Institute for Biophysical Chemistry, Göttingen, DE. 
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2.1.9 Chemically competent Escherichia coli strains 

 

DH5α™      Invitrogen, Karlsruhe (DE) 

dam-/dcm-       New England Biolabs, Ipswitch (USA) 

BL21-CodonPlus (DE3)-RIL    Stratagene, La Jolla (USA) 

 

2.1.10 Plasmids 

 

Table 2.1 Plasmids used for chromatin reconstitution and protein expression. 

 

Name Promotor Resistance Supplier 

 

pET3a_H2A/H2B/H3/H4 

 

 

T7 

 

 

Ampicillin 

 

 

Karolin Luger, Colorado State Univ., Fort 

Collins (USA) (Dyer et al., 2004) 

pET3a_H3A21C Δ1-20 

 

T7 

 

Ampicillin 

 

Wolfgang Fischle, MPI for Biophysical 

Chemistry Göttingen (DE) 

pET3a_H4R23C Δ1-22 

 

T7 

 

Ampicillin 

 

Wolfgang Fischle, MPI for Biophysical 

Chemistry Göttingen (DE)  

pET3d_H3K27C C110A 

 

T7 

 

Ampicillin 

 

Wolfgang Fischle, MPI for Biophysical 

Chemistry Göttingen (DE)  

pUC18_12x200-601 

 

T7 

 

Ampicillin 

 

Daniela Rhodes, MRC Cambridge (UK) 

(Huynh et al., 2005) 

 

2.1.11 Enzymes, Proteins and inhibitors 

 

Antarctic phosphatase     New England Biolabs, Ipswitch (USA) 

Benzonase       Calbiochem, Darmstadt (DE) 

M.SssI CpG methyltransferase    New England Biolabs, Ipswitch (USA) 

Proteinase Inhibitor Cocktail Complete,  Roche, Mannheim (DE) 

EDTA free 

Restriction endonuclease enzymes    New England Biolabs, Ipswitch (USA) 

T4 DNA ligase      New England Biolabs, Ipswitch (USA) 

Taq polymerase      Chromatin Biochemistry (MPIbpc) (DE) 

Trypsin       Roche, Mannheim (DE) 

Trypsin       Promega, Mannheim (DE) 
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2.1.12 Antibodies 

 

Table 2.2 Antibodies and antisera used for western blot analysis. 

 

Name Host Supplier Dilution 

 

α-H3 

 

 

rabbit, polyclonal 

 

 

Abcam, ab1791 

 

 

1 : 10000 

 

α-Sept9 

 

rabbit, polyclonal William S. Trimble, SickKids Toronto (CA) 

(Surka et al., 2002) 

1 : 250 

α-Sept2 

 

rabbit, polyclonal William S. Trimble, SickKids Toronto (CA) (Xie 

et al., 1999) 

1 : 250 

α-SF3A3 

 

rabbit, polyclonal 

 

Reinhard Lührmann, MPI for Biophysical 

Chemistry Göttingen (DE) (Sharma et al., 

2014) 

1 : 2000 

α-Bdp1 rabbit, polyclonal Robert White, University of York (UK) (Fairley 

et al., 2003) 

1 : 500 

α-rabbit HRP swine, polyclonal Dako, P0399 1 : 5000 

 

2.1.13 Antibiotics 

 

Antibiotics:      Final concentrations used: 

 

Ampicillin      100 µg/ml  

Kanamycin      50 µg/ml 

Chloramphenicol      34 µg/ml 

Tetracycline      12.5 µg/ml 

 

2.1.14 Oligonucleotides 

 

Oligonucleotides were purchased from SIGMA (Steinheim, DE) and or were kindly provided by 

Alexandra Stützer (Chromatin Biochemistry Group, Max Planck Institute for Biophysical 

Chemistry, Göttingen, DE). 

 

 Primers for PCR amplification of scavenger DNA for chromatin array reconstitution: 

Forward 5’ GTTATCCGCTCACAATTCCACACAACATAC 3’ 

Reverse 5’ TAATGCAGCTGGCACGACAGGTTTC 3’ 
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 Oligonucleotides for biotin labeling of 12x200-601 template for chromatin array 

reconstitution: 

EcoRI_3’P 5’-GGGGGGGGATCCGGGGGGGp-3’ 

EcoRI_5’P_3’bio 5’-pAATTCCCCCCCGGATCCCCCCCC-biotin-3’ 

 

2.1.15 Peptides 

 

Table 2.3 Peptides used for native chemical ligation. 

 

Protein Sequence C-terminal Supplier 

 

H3K9me3 

 

ARTKQTARKme3STGGKAPRKQL 

 

 

α-thioester 

 

 

Petra Henklein, Charite 

Berlin (DE) 

H3K9me2 

 

ARTKQTARKme2STGGKAPRKQL 

 

α-thioester 

  

Petra Henklein, Charite 

Berlin (DE) 

H3K9me1 

 

ARTKQTARKme1STGGKAPRKQL 

 

α-thioester 

  

Petra Henklein, Charite 

Berlin (DE) 

H4K20me3 

 

SGRGKGGKGLGKGGAKRHRKme3VL 

 

α-thioester 

 

Petra Henklein, Charite 

Berlin (DE) 

H4K20me1 

 

SGRGKGGKGLGKGGAKRHRKme1VL 

 

α-thioester 

 

Petra Henklein, Charite 

Berlin (DE) 

H4R3me2 

 

SGRme2symGKGGKGLGKGGAKRHRKVL 

 

α-thioester 

 

Petra Henklein, Charite 

Berlin (DE) 

 

2.1.16 Software 

 

Adobe Creative Suite 4    Adobe Systems, San Hose (USA) 

Cytoscape 3.3.0    Cytoscape Consortium (Shannon et al., 2003) 

DAVID Bioinformatics Resources 6.6 National Institute of Allergy and Infectious Diseases 

(Huang da et al., 2009a, b) 

MaxQuant and Andromeda   Max Planck Institute for Biochemistry (Cox and 

Mann, 2008; Cox et al., 2011) 

Microsoft Office    Microsoft Corporation, Redmont (USA) 

pLink  Broad Institute of Harvard and Massachusetts 

Institute of Technology, Cambridge (USA) (Purcell et 

al., 2007) 

ProMass Deconvolution   Thermo Scientific (USA) 
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Proteome Discover    Thermo Scientific (USA) 

R language for statistical computing  R Foundation for Statistical Computing (R, 2011) 

Xlink Analyzer     (Kosinski et al., 2015; Pettersen et al., 2004) 

 

2.2 Molecular biology methods 

 

2.2.1 Transformation of chemically competent bacteria 

 

A minimum of 10 ng of the respective plasmids were added to chemical competent cells and 

incubated for 30 min on ice. The transformation took place by a heat shock that was introduced 

by incubating the cell/plasmid mixture for 30 s at 42 °C. Following, the sample was incubated for 

2 min on ice and 500 µl LB-medium were added. The cell suspension was shaken at 37 °C for 

60 min before 100 µl were plated on antibiotic (2.1.13) containing LB agar plates. The agar 

plates were incubated overnight at 37 °C.  

 

2.2.2 Analysis of nucleic acids 

 

2.2.2.1 Concentration determination of nucleic acids 

 

The concentration of DNA was determined by measuring the absorbance against a reference at 

260 nm using the nanodrop spectrophotometer NanoDrop ND-1000. The DNA concentrations 

were calculated with the following equation: 1 OD260nm = 50 μg/ml double-stranded DNA 

(Sambrook, 2001). 

 

2.2.2.2 Nucleic acid gel electrophoresis 

 

DNA fragments were separated according to their size on 0.5% to 2% [w/v] agarose gels in a 

TBE (or TB) buffer system (Sambrook, 2001). In general samples containing 300 ng of DNA and 

1 x loading dye were loaded onto an agarose gel. Using a horizontal DNA electrophoresis cell 

(Sub-Cell-GT) 90 V to 120 V were applied for approximately 60 min. As a size reference 5 µl of a 

1 kb Plus DNA Ladder run with all samples in parallel. Subsequently, the DNA was stained with 

0.5 µg/ml ethidium bromide for 20 min and visualized on the ChemiDoc MP imaging system.  
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2.2.3 DNA precipitation 

 

2.2.3.1 Ethanol 

 

DNA was incubated with 0.3 M sodium acetate (pH 5.2) and 3 volumes ice cold ethanol (99% 

[v/v]) overnight at -20 °C (Sambrook, 2001). Afterwards, the mixture was centrifuged at 16000 x 

g for 30 min at 4 C. The pellet was washed with 70% [v/v] ethanol, air dried and dissolved in 

double-distilled water (ddH2O). 

 

2.2.3.2 Isopropanol 

 

DNA was mixed with 0.3 M sodium acetate (pH 5.2) and 0.7 volumes isopropanol and 

centrifuged immediately at 16000 x g for 30 min at 4 °C. The pellet was washed with 70% [v/v] 

ethanol, air dried and dissolved in ddH2O (Sambrook, 2001). 

 

2.2.3.3 PEG-6000 

 

In order to separate large DNA fragments from smaller ones, DNA was sequentially precipitated 

using PEG (Lis and Schleif, 1975). For this, DNA was incubated with 0.5 M NaCl and 4 % [v/v] 

PEG-6000 for 10 min at RT. The mixture was centrifuged at 16000 x g for 15 min at 4 C. The 

supernatant was collected and the PEG-6000 concentration was increased in 1% steps up to 9% 

[v/v] by repeating the centrifugation step of the resulting supernatants. The pellets resulting from 

each fraction were washed with ice cold 70% [v/v] ethanol, air dried at RT and dissolved in 

ddH2O.  

 

2.2.4 Preparation of DNA templates for chromatin array assembly 

 

2.2.4.1 Preparation of biotinylated 12x200-601 DNA template 

 

For amplification of pUC18_12x200-601 (2.1.10) the plasmid was transformed into chemically 

competent dam-/dcm- E. coli cells (2.1.9). 200 ml ampicillin containing LB medium were 

inoculated with a single bacteria colony at 37 °C and 120 rpm overnight. For large scale 

preparation, 2.5 l of LB medium supplemented with ampicillin were inoculated with 5 ml of the 

overnight culture. This culture was grown at 37 °C overnight, shaking at 120 rpm. Cells were 
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harvested by centrifugation for 15 min at 6000 x g at 4 °C. Cell lysis and DNA purification were 

done using the NucleoBond PC 10000 kit according to the manufacturer’s instructions.  

The 12x200-601 sequence was obtained by digestion of purified plasmid DNA using the 

restriction endonuclease enzymes BsrI, EcoRI, HaeII, and DdeI. For the digest, 300 U of each 

enzyme per mg of DNA were used. The reaction took place in 1 x NEBuffer 2.1 (New England 

Biolabs) at 37 °C overnight. After inactivation of the restriction endonuclease enzymes (at 80°C 

for 20 min) the 2.4 kb 12x200-601 DNA template was separated by PEG precipitation (2.2.3.3).  

The 12x200-601 DNA was biotinylated by ligation of a biotinylated ds oligonucleotide to the 5’ 

EcoRI overhang of the DNA. An equimolar mix of the “EcoRI_3’P” and “EcoRI_5’P_3’bio” 

oligonucleotides were annealed by heating them to 95 °C and allowing them to cool down to RT. 

Prior ligation, the 12x200-601 DNA was dephosphorylated using 1 U Antarctic phosphatase per 

2 µg DNA according to the manufacturer’s instructions. The ligation was performed using a 

tenfold molar excess of the (ds) oligonucleotide. The reaction was carried out with 2.5 U T4 DNA 

ligase per 1 µg of DNA for at least three hours at RT. The biotinylated DNA was extracted by 

addition of an equal volume of phenol:chlorophorm:isoamyl alcohol [25:24:1] in phase lock 

heavy tubes followed by isopropanol precipitation (2.2.3.2) of the aqueous phase.  

 

2.2.4.2 Methylation of biotinylated 12x200-601DNA template 

 

CpG sites of the 12x200-601 DNA template were methylated using the M.SssI 

methyltransferase. 500 µg of DNA were incubated with 240 U of M.SssI in 50 mM NaCl, 10 mM 

EDTA, 10 mM Tris-HCl, pH 7.9 and 160 µM SAM at 37 °C. After three hours, 80 µM SAM and 

100 U of M.SssI were added, the reaction was left to proceed overnight at 37 °C. To ensure 

complete methylation another 130 µM of SAM and 80 U of M.SssI were added and the reaction 

was incubated for four more hours. The DNA was extracted with PCI [25:24:1] and precipitated 

using ethanol (2.2.3.1).  

The efficiency of methylation was tested using restriction endonucleases unable to cleave at 

methylated CpG sites, like BsaAI, according to the manufacturer’s instructions.  

 

2.2.4.3 Preparation of scavenger DNA 

 

The scavenger DNA is a 147 bp sequence of the backbone of the pUC18_12x200-601 plasmid 

(2.1.10) that does not contain the 200-601 nucleosome positioning sequence. The DNA was 

amplified by polymerase chain reaction (PCR) according to the following PCR mix and PCR 

cycle program: 
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PCR mix (100 µl):     PCR cycle program: 

100 mM  Tris-HCl pH 8.8  Temperature   Time 

500 mM  KCl    95 C    2 min 

0.8% [v/v]  NP-40    95 C    30 s 

0.2 mM (each) dNTP mix   68 C    30 s    40x 

0.2 µm (each)  primers   72 C    30 s 

1.5 mM  MgCl2    72 C    1 min 

50 ng   DNA template   10 C    ∞  

20 U/ml  Taq polymerase 

 

The PCR product was extracted with PCI [25:24:1] and subsequently precipitated with 

isopropanol (2.2.3.2).  

 

2.3 Protein biochemistry methods  

 

2.3.1 Detection and analysis of proteins 

 

2.3.1.1 Concentration determination of proteins 

 

The concentration of histone proteins was determined by UV adsorption at 276 nm on a 

NanoDrop ND-1000 using published molar extinction coefficients listed in table 2.4 (Luger et al., 

1999). The protein concentration of nuclear extracts was measured by UV adsorption at 280 nm 

assuming 1 OD280 = 1 mg/ml.  

 

Table 2.4 Values used for the determination of histone concentrations. 

 

Protein Molecular weight (Da) Molar extinction coefficient (M-1cm-1) 

 

H2A 

 

13960 

 

 

4050 

 

H2B 

 

13774 

 

6070 

H3 

 

15273 

 

4040 

H4 11236 5400 
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2.3.1.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Proteins were separated and visualized by discontinuous polyacrylamide gel electrophoresis in 

presence of SDS based on the method of Laemmli (Laemmli, 1970) according to standard 

protocols (Gallagher, 2006). 15% or 18% Tris-glycine resolving gels in combination with a 4% 

stacking gel were used for the analysis of histone proteins. The gels were cast and run using the 

Mini-PROTEAN electrophoresis system according to instructions provided by the manufacturer. 

Before loading the protein samples onto the gel, they were boiled for 5 min at 95 °C in SDS 

sample buffer. As a reference 5 µl of SeeBlue Plus2 pre-stained protein standard was used. 

Protein samples were run in 1 x SDS running buffer at constant current at 15 mA (250 V 

maximum) per gel until the bromophenol blue front reached the bottom of the gel.  

The separation of complex protein mixtures, including samples for mass spectrometry analysis, 

was performed using NuPAGE Novex 4-12% Bis-Tris gradient gels in combination with the 

NuPAGE Pre-cast system according to the manufacturer instructions. For all runs 1 x MOPS 

buffer, antioxidant, LDS sample buffer and reducing agent were used. 

  

2.3.1.3 Coomassie staining of protein SDS-PAGE gels 

 

Proteins separated on SDS-PAGE gels were either stained overnight with Colloidal Coomassie 

stain solution or for 10 to 20 min with Imperial Protein Stain. Gels were destained with ddH2O for 

at least four hours.  

 

2.3.1.4 Silver staining of protein SDS-PAGE gels 

 

Silver staining was performed according to the protocol of Blum at al. (Blum H., 1987). For silver 

staining of proteins separated on SDS-PAGE gels all incubation steps took place at RT on a 

shaker. Gels were incubated in fixative solution (50% MetOH, 12% HOAc) overnight. Afterwards, 

they were incubated twice in 50% EtOH followed by an incubation in 30% EtOH for 20 min each. 

Gels were sensitized in 0.8 mM sodium thiosulfate for exactly 60 s. Sodium thiosulfate solution 

was removed by three wash steps with ddH2O, 20 sec each time. Subsequently, the gels were 

incubated in silver nitrate solution (2 g/l silver nitrate, 0.026% formaldehyde) for 20 min. Before 

development the gels were washed three times with ddH2O. The water was replaced by 

developer solution (60 g/l Na2CO3, 0.0185% formaldehyde, 16 µM sodium thiosulfate) until 

protein bands on the gel turned brown. The process was terminated by addition of fixative 

solution.  
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2.3.1.5 Western blot 

 

Immunoblotting of protein samples separated by SDS-PAGE was done using the MiniTrans Blot 

system. Proteins were transferred onto nitrocellulose membranes. For this, the membrane was 

directly laid onto the SDS-PAGE gel and both were sandwiched between three layers of 

Whatman paper equilibrated in 1 x transfer buffer. Proteins were blotted onto the membrane in 1 

x transfer buffer for one hour at 100 V at 4 °C. The membrane was rinsed with 1 x PBS-T and 

subsequently blocked with 5% milk for 30 min at RT. Afterwards, the membrane was incubated 

with a primary antibody overnight at 4 °C. All antibodies were diluted in 5% milk according to 

table 2.2. In order to remove non-bound antibodies, the membrane was washed three times with 

1 x PBS-T for 10 minutes each. The membrane was then incubated with a secondary antibody 

at RT for at least two hours, followed by three wash steps as described above. The detection 

was done using an enhanced chemiluminescence system (ECL) according to the manufacturer’s 

instructions. The imaging was done using the ChemiDoc MP System.  

 

2.3.2 Recombinant proteins 

 

2.3.2.1 Expression and purification of recombinant histone proteins 

 

Purification of Xenopus leavis histones was performed as described before (Luger et al., 1999) 

with certain alterations. 

The respective plasmids (2.1.10) were transformed into BL21-CodonPlus (DE3)-RIL E. coli cells. 

200 ml of ampicillin containing 2xYT medium were inoculated with a single bacteria colony 

overnight at 37 °C and shaking at 120 rpm. The overnight culture was used to inoculate 2xYT 

medium (1:1000) that was incubated at 37 °C and shaking at 120 rpm. When the culture 

reached an OD600 = 0.5 expression was induced with 0.2 mM IPTG and the culture was 

incubated for four more hour. Afterwards, cells were harvested by centrifugation at 6000 x g for 

15 min at 4 °C.  

In order to purify the histone proteins inclusion bodies were isolated. All steps were performed at 

4 °C. The cell pellet resulting from 2 l bacteria culture was resuspended in 100 ml Wash buffer 

and cells were lysed using a Canadian Press. After 4 cycles the suspension was centrifuged for 

20 min at 23000 x g. The pellet was resuspended in 100 ml TW buffer and centrifuged for 20 min 

at 23000 x g. The wash step was repeated twice. In order to remove Triton X-100 the inclusion 

bodies were additionally washed two times with Wash buffer.  

To extract histone proteins from inclusion bodies the pellet was soaked with 1 ml DSMO, minced 

and incubated at RT for 30 min. Next, 30 ml of Unfolding buffer were added. The suspension 
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was stirred for 1 h at RT and then centrifuged at 23000 x g for 20 min. The resulting pellet was 

re-extracted by adding another 10 ml of Unfolding buffer for 30 min. After another centrifugation 

step both supernatants were pooled and dialyzed three times against 2 l of SAU200.  

For purification of the histone proteins a Q-Sepharose XK26/20 and a SP-Sepharose XK26/20 

column were connected in series and equilibrated with SAU200 before the extracted proteins 

were loaded onto the column combination. After the input has passed the Q-Sepharose column 

was disconnected and washing was continued only with the SP-Sepharose column. Histone 

proteins were eluted applying a linear gradient from 0% to 100% of SAU600 over one column 

volume. Histone containing elution fractions were pooled, dialyzed three times against 2 mM 

DTT, lyophilized and stored at – 80 °C. 

 

For H4R23C Δ1-22 additional alterations to the protocol were implemented. The expression of 

the protein was not induced before the bacteria culture reached an OD600 = 1 and induction took 

place for one hour. Protein extraction from inclusion bodies was extended to two hours. H4R23C 

Δ1-22 proteins were eluted from the SP column applying a step gradient that was first set to 

20% of SAU600, until the UV absorption at 276 nm reached again the value that was detected 

when the column was equilibrated, followed by a gradient from 20% to 100% of SAU600 over 

one column volume. The elution of proteins was visible by two peaks monitored at 276 nm. 

Elution fractions of the first peak were kept whereas the elution fractions of the second peak 

were pooled, diluted 1:3 with SAU0 (the same as SAU200 but without NaCl) and reloaded onto 

the newly equilibrated SP column in a second run. H4R23C Δ1-22 was again eluted with 20% 

SAU600. Histone containing elution fractions of the first and the second run were pooled, 

dialyzed three times against 2 mM DTT, lyophilized and stored at – 80 °C. 

 

2.3.2.2 Introduction of posttranslational modifications by native chemical ligation 

 

The introduction of methylation sites at the N-termini of histone H3 and histone H4 was achieved 

by native chemical ligation as described before (Shogren-Knaak and Peterson, 2004) with a few 

alterations. Synthetic N-terminal histone polypeptides containing modified amino acid residues 

were ligated to the truncated histones H3A21C Δ1-20 or H4R23C Δ1-22, respectively. The 

reaction took place using a molar histone:peptide ratio of 1:5 with a final peptide concentration of 

2 mM.  

Briefly, the respective amount of histone proteins were dissolved in ligation buffer (6 M 

guanidinium-HCl, 100 mM KPi pH 7.9, 20 mM TECEP, 50 mM MPAA) and added to the 

lyophilized peptides. The reaction mixture was incubated at RT for at least 40 h and finally 

dialyzed three times against SAU200. The reaction mixture was loaded onto a HiTrap SP HP 

1ml column equilibrated with SAU200. The histone proteins were eluted by applying a linear 
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gradient from 0% to 100% of SAU600 over 20 column volumes. Fractions containing full length 

histone proteins were pooled, dialyzed three times against 2 mM DTT, lyophilized and stored at 

– 80 °C. The progress of the reaction was monitored by SDS-PAGE and confirmed by 

electrospray mass spectrometry. 

 

2.3.2.3 Introduction of methyl lysine analogs 

 

The introduction of methyl lysine analogs (MLA) was achieved by performing an alkylation 

reaction as described before (Simon, 2010). All methylation states of H3K27 were produced 

using the histone mutant H3K27C, C110A that was dissolved in Alkylation buffer (4 M guanidine 

hydrochloride, 1 M HEPES pH 7.8, 10 mM DL-methionine). All alkylation reactions were 

performed with 10 mg of H3K27C, C110A in a final volume of 1ml.  

The introduction of the tri-methyl lysine analog was performed at 50 °C in presence of 400 mM 

(2-bromoethyl)-tri-methylammonium bromide and 20 mM DTT in the dark with occasional 

flicking. After 5 h the reaction was quenched with 50 µl 2-mercaptoethanol for 30 min at RT. The 

MLA histones were purified using a PD-10 column according to the manufacturer’s instructions 

using 2 mM 2-mercaptoethanol for equilibration and elution.  

The introduction of the di-methyl lysine analog was performed at RT in the presence of 50 mM 

(2-chloroethyl)-di-methylammonium chloride and 20 mM DTT in the dark with occasional flicking. 

After 2.5 h additional 50 mM of (2-chloroethyl)-di-methylammonium chloride were added to the 

reaction mixture. After a total of 4.5 h the reaction was quenched with 50 µl 2-mercaptoethanol 

for 30 min at RT. The MLA histones were purified using a PD-10 column as described for the tri-

methyl lysine analog.  

The introduction of the mono-methyl lysine analog was performed at RT in the presence of 300 

mM (2-chloroethyl)-methylammonium chloride and 20 mM DTT in the dark with occasional 

flicking. After 5 h the reaction was quenched with 50 µl 2-mercaptoethanol for 30 min at RT. The 

MLA histones were purified as described for the tri-methyl lysine analog. 

 

2.3.3 Preparation of recombinant chromatin 

 

2.3.3.1 Assembly of histone octamers 

 

The assembly of octamers composed of the histone proteins H2A, H2B, H3 and H4 were 

performed according to a generalized protocol (Luger et al., 1999). Each of the lyophilized 

histone proteins were completely dissolved in Unfolding buffer to a concentration of 2 mg/ml. All 

four histone variants were mixed in equimolar ratios and adjusted to a final concentration of 1 
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mg/ml. The protein mixture was dialyzed three times against 2 l RB high at 4 °C. Afterwards, the 

assembled octamers were concentrated to a final volume of 50 µl using Amicon Ultra centrifugal 

filter devices and loaded onto a HiLoad 16/60 Superdex 200 prep grade gel filtration column 

installed on an ÄKTA FPLC system. The octamer-containing fractions were pooled and 50% 

[v/v] glycerol was added for long term storage at -20 °C.  

 

2.3.3.2 Chromatin reconstitution by salt dialysis 

 

The reconstitution of oligonucleosomal chromatin arrays composed of 12 nucleosomes was 

performed according to a previously established protocol by dialysis from high salt to low salt 

(Luger et al., 1999). The concentration of octamers in RB high buffer was determined by UV 

spectroscopy (0.45 OD276 nm = 1 mg/ml octamer = 92.2 μM). The DNA template described at 

2.2.4.1 and histone octamers (2.3.3.1) were mixed in a molar ratio of 1.1(-1.3):1 (octamer:DNA) 

in RB high buffer. Additionally, an equimolar amount of scavenger DNA (2.2.4.3) was added to 

bind excess octamer. The salt gradient from 2 M NaCl to 12.5 mM NaCl was achieved by 

continuously replacing RB high with RB low over 30 h using a peristaltic pump.  

The reconstitution was analyzed by agarose gel electrophoresis on a 0.5% [w/v] gel in 0.2 x TB 

buffer at 4 °C. Furthermore, the saturation level of reconstituted chromatin arrays was analyzed 

by restriction digest using the AvaI restriction enzyme and analytical ultracentrifugation (2.3.4.2).  

 

2.3.4 Molecular characterization of recombinant chromatin  

 

2.3.4.1 AvaI digest  

 

The saturation level of reconstituted chromatin arrays was analyzed by a digest with the 

restriction enzyme AvaI, which cuts within the 200-601 nucleosome positioning sequence of the 

chromatin DNA template (2.2.4.1) only when not occupied by histone octamers.  

1 µg of chromatin arrays (2.3.3.2) and 0.5 µg of the DNA template (2.2.4.1) were incubated with 

20 U of AvaI in a total volume of 30 µl for 3 h at 37 °C according to the manufacturer 

instructions. The digested samples were analyzed by agarose gel electrophoresis on a 2% [w/v] 

gel. 
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2.3.4.2 Analytical ultracentrifugation 

 

For the analysis of oligonucleosomes by the sedimentation velocity method using a Beckmann 

XL-A centrifuge, 400 μl containing 0.5 OD260 oligonucleosomes were prepared in RB low buffer. 

The buffer sector of the cells was filled with 400 µl RB low buffer, while the sample sector was 

filled with 390 µl of the chromatin containing solution. A speed of 15.000 rpm was used for 

sedimenting the oligonucleosomes within a series of 25-35 scans. Data analysis was performed 

using the software UltraScan II (Demeler). In general, after assignment of meniscus, cell bottom 

and plateau for each of the analyzed cells, spikes and time-invariant noise as well as 

unsatisfactory scans (where a sigmoidal sedimentation curve cannot be assigned) were 

manually removed. Initial sedimentation distribution was calculated for the viscosity of RB low 

and the sample frictional coefficient. The initial result was used to perform van Holde-Weischet 

boundary analysis on each of the sedimentation scans. The resulting boundary analysis was 

used for plotting the distribution of corrected sedimentation coefficients. 

 

2.4 Cell culture and metabolic labeling  

 

2.4.1 Stable isotope labeling by amino acids in cell culture (SILAC) of HeLa S3 cells 

 

HeLa S3 cells were cultivated as described before (Nikolov et al., 2011). The cells were grown in 

custom High Glucose Dulbecco’s Modified Eagle’s Medium (DMEM) lacking arginine and lysine. 

The medium was supplemented with either light arginine (Arg0) and lysine (Lys0) or heavy 

amino acids (Arg6 and Lys4) (2.1.5) to a final concentration equivalent to 50 mg/ml light amino 

acids. In addition, 1/10 volume of dialyzed fetal bovine serum and 1 x Penicillin/Streptomycin 

were added to the medium.  

The culture was started by bringing 108 cells into a spinner flask containing 100 ml medium. 

Cells were grown at 37 °C, 5% CO2 and 95% relative humidity. Over at least six passages the 

culture was expanded to 1.5 l and finally transferred to a 5 l bioreactor where cells were grown 

under standard conditions (2 x 106 cells/ml, continuously addition of synthetic air and dissolved 

oxygen level kept at pO2 = 20 using a feedback monitoring system). 

 

2.4.2 Preparation of nuclear extracts 

 

The preparation of nuclear extracts was done as described before (Dignam et al., 1983). 

Generally, 1010 SILAC labeled HeLa S3 cells were harvested by centrifugation for 5 min at 2000 

rpm. The pellet was washed twice with 1 x PBS and resuspended in 1.25 volumes MC buffer 
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supplemented with 1/500 volumes 0.25 M DTE and EDTA-free protease inhibitor cocktail 

according to the manufacturer’s instructions. The suspension was incubated on ice for 5 min and 

homogenized using a 50 ml Dounce homogenizer, performing 18 strokes. Nuclei were pelleted 

by centrifugation at 18 000 x g for 5 min at 4 °C. The pellet was resuspended in 1.3 volumes 

Röder C buffer supplemented with 1/500 volumes 0.25 M DTE and 1/200 volumes 0.1 M PMSF. 

Nuclei were disrupted using a Dounce homogenizer, performing 20 strokes. The suspension 

was stirred for 40 min at 4 °C and finally centrifuged at 30 000 x g for 30 min at 4 °C. The 

supernatant was frozen in liquid nitrogen and stored at -80 °C.  

Three nuclear extracts were prepared from individual cell cultures for each labeling, heavy and 

light labeled. The three extracts were pooled according to their labeling and dialyzed three times 

against 2 l of Röder D buffer and centrifuged at 9000 x g for 2 min at 4 °C. The supernatant was 

aliquoted, frozen in liquid nitrogen and stored at -80 °C.  

 

2.5 Biochemical binding assays  

 

2.5.1 Chromatin affinity purification 

 

Chromatin affinity purification using differentially SILAC-labeled HeLa S3 nuclear extracts was 

essentially done as described before (Nikolov et al., 2011). All steps were performed at 4 °C. 40 

µg of chromatin arrays of two different modification states were separately immobilized on 160 µl 

paramagnetic streptavidin coated beads in PD150 buffer supplemented with 1 mg/ml BSA 

overnight. Chromatin-bound beads were washed three times with 800 µl PD150 wash buffer. In 

parallel, 1 ml of heavy and light labeled nuclear extract was incubated with 40 µl paramagnetic 

streptavidin coated beads for 1h to remove unspecific binding proteins. 4 mg of nuclear extract 

were separated from beads and incubated with chromatin-bound beads. After four hours of 

incubation, beads were washed three times with PD150 wash buffer and proteins were eluted 

with 1 x NuPAGE LDS Sample buffer supplemented with 2 mM MgCl2 and 10 mM Tris-HCL pH 

7.9. Eluates from pull-downs done with heavy and light nuclear extracts were mixed in a 1:1 

ratio. To ensure complete release of all chromatin-bound proteins and to improve the following 

separation step, the mixed sample was digested with 1250 U benzonase for 45 min at 37 °C. 

After addition of 1 x NuPAGE reducing agent the samples were heated at 70 °C for 10 min 

before loading onto a 4% - 12% SDS-PAGE gel. After separation, the gel was stained with 

Coomassie overnight.  
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2.5.2 Protein-protein cross-linking on beads 

 

150 µg of chromatin arrays (2.3.3.2) were immobilized on 600 µl paramagnetic streptavidin 

coated beads in PD150 buffer overnight. Chromatin-bound beads were washed 3 times with 3 

ml PD150 wash buffer and incubated with 2 ml pre-cleared nuclear extract (2.5.1) at 4 °C. After 

3 h 20 µM BS3 was added to the sample, which was incubated for 4 h in total. Chromatin-bound 

beads were washed once with 3 ml PD150 wash buffer to remove non-specifically bound 

proteins. To chemically cross-link chromatin-bound proteins beads were incubated twice in 2 ml 

PD150 wash buffer supplemented with 200 µM BS3 for 10 min at RT. Cross-linked proteins and 

chromatin were eluted from the beads by adding 55 µl Injection buffer and 1250 U benzonase 

followed by incubation for 45 min at 37 °C. Afterwards the sample was heated to 70 °C, mixed 

several times using a vortex mixer, and finally separated from magnetic beads using a magnetic 

rack.  

50 µl of the sample were injected onto a Superdex 200 column equilibrated with XL-SEC buffer. 

For separation, a flow rate of 55 µl/min was applied and 50 µl fractions were collected. Elution 

fractions were pooled according to the peaks of the elution profile monitored at 215 nm and 

analyzed by silver staining of SDS-PAGE gels and western blot analysis.  

Proteins of the pooled fractions containing cross-linked material were precipitated using acetone 

at -20 °C overnight. Pellets were resuspended in 1% RapiGest before tryptic digestion (2.6.2). 

Subsequently, acetonitrile was added to the digested samples to a final proportion of 10% [v/v]. 

Following, the sample was injected onto a Superdex peptide column that was equilibrated with 

30% acetonitrile and 0.1% formic acid. For separation, a flow rate of 55 µl/min was applied and 

50 µl fractions were collected. Elution fractions were pooled according to the peaks of the elution 

profile monitored at 215 nm and subjected to mass spectrometric analysis (2.6.4). 

 

2.6 Mass spectrometry methods 

 

2.6.1 In-gel proteolysis of proteins and peptide extraction 

 

In-gel digest of proteins and the following extraction of peptides were essentially done as 

described before (Shevchenko et al., 2006; Shevchenko et al., 1996). All steps of the in-gel 

digest were performed at 25 °C under shaking at 1050 rpm. Each SDS-PAGE gel lane was 

sliced into either 11 or 22 equidistant gel pieces regardless of staining. In order to reduce 

proteins embedded in gel, slices were dehydrated with acetonitrile and rehydrated with 100 mM 

dithiothreitol (DTT) in 50 mM ammonium hydrogen carbonate (NH4HCO3) pH 8.0 and incubated 

at 56 °C for 50 min. After dehydrating the gel slices in acetonitrile, reduced cysteine residues 
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were alkylated in 60 mM iodoacetamide, 50 mM NH4HCO3 pH 8.0 for 20 min at 26 °C in the 

dark. Gel pieces were washed afterwards with 50 mM NH4HCO3 pH 8.0, which was replaced by 

acetonitrile to completely dehydrate them. Finally, gel pieces were rehydrated by incubation in 

20 µl digestion buffer (12.5 ng/µl trypsin (Roche), 41.7 mM NH4HCO3 pH 8.0, 4.2 mM CaCl2) for 

40 min on ice. 60 µl digestion buffer without trypsin were added to the gel pieces and incubated 

at 37 °C overnight.  

For the extraction of peptides from gel pieces incubation steps were performed at 37 °C, shaking 

at 1050 rpm for 15 min. 60 µl ddH2O and 160 µl acetonitrile were added to the digested samples. 

Once gel pieces were shrank, the supernatants were collected and 100 µl 5% formic acid were 

added to the dehydrated gel pieces. Subsequently, gel pieces were dehydrated again by adding 

acetonitrile and the supernatants were collected and pooled with those from the first extraction 

step. Supernatants were evaporated to dryness in a centrifugal concentrator. Dried peptides 

were kept at -20 °C or were immediately dissolved in loading buffer (5% [v/v] acetonitrile, 1% 

[v/v] formic acid) and analyzed by LC-MS/MS (2.6.3). 

 

2.6.2 In-solution proteolysis of proteins 

 

For the in-solution digest of proteins all reagents used were dissolved in 25 mM ammonium 

bicarbonate pH 8.5. Proteins precipitated with acetone were dried in a centrifugal concentrator. 

The pellet was dissolved in 5 µl 1% RapiGest (sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-

yl)methoxy]-1-propanesulfonate) (Yu et al., 2003). In order to reduce the proteins 5 µl 50 mM 

DTT were added and the sample was incubated for 1h at 37 °C. Subsequently, 5 µl 100 mM 

iodoacetamide were added and the sample was incubated for 1 h at 37 °C in the dark. The 

concentration of RapiGest was decreased to 0.1% by adding 35 µl trypsin (Promega) solution 

corresponding to an enzyme:protein ratio of approximately 1:20 enzyme-to-substrate ratio (w:w). 

The digest took place at 37 °C overnight. To decompose the RapiGest the sample was 

supplemented with 5 µl 40% TFA and incubated at 37 °C for two more hours. Finally, the sample 

was centrifuged at 16 000 x g for 30 min and the supernatant was transferred to a new tube. 

Tryptic peptides were dried in a centrifugal concentrator, dissolved in loading buffer (5% [v/v] 

acetonitrile, 1% [v/v] formic acid) immediately afterwards and analyzed by LC-MS/MS (2.6.4).  

 

2.6.3 LC-MS/MS analysis of peptides on LTQ-Orbitrap  

 

Tryptic peptides from in-gel digestion (2.6.1) were analyzed by nanoflow chromatography 

coupled to hybrid ion trap-orbitrap mass spectrometry using a vented column setup (Licklider et 

al., 2002). Dried peptides were dissolved in 20 μl loading buffer (5% [v/v] acetonitrile, 1% [v/v] 
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formic acid) and 20% of the sample was injected and enriched on a custom-packed reversed-

phase C18 precolumn, followed by separation on a custom-packed reversed-phase C18 column 

(0.075 mm ID x 150 mm, Reprosil-Pur 120 C18-AQ, 3 µm) using a 90 min linear gradient of 5-

35% [v/v] acetonitrile, 0.1% [v/v] formic acid at 300 nl/min. The eluent was analyzed in positive 

ion mode on a LTQ-Orbitrap Velos hybrid quadrupole/orbitrap mass spectrometer equipped with 

a FlexIon nanoSpray source with a stainless steel emitter and operated under Excalibur software 

2.1.0.1140 to perform data-dependent acquisition. Each experimental cycle consisted of one full 

MS scan across the 350-1600 m/z range that was acquired at a resolution setting of 30,000 

FWHM, an automatic gain control target of 10e6 and lock mass correction for m/z 441.120025 

from polysiloxane. Up to the 15 most abundant peptide precursors of charge states 2 to 4 above 

an intensity threshold of 2x10e3 were selected at an isolation width of 2.0 Th, fragmented by 

collision-induced dissociation (CID) using helium as collision gas at a normalized collision 

energy setting of 37.5% and an activation time of 10 ms. The product ion spectra were recorded 

using an AGC target of 2x10e5 and a maximum fill time of 100 ms. Precursor m/z values 

selected for MS/MS were excluded for 30 s after one occurrence. Three technical replicates 

were acquired per sample. 

In-gel digestions resulted in eleven samples per chromatin affinity purification experiment were 

measured on a LTQ-Orbitrap Velos using a 90 min total gradient, in-gel digestions resulted in 22 

samples were analyzed on a LTQ-Orbitrap XL mass spectrometer using a 50 min gradient. 

 

2.6.4 LC-MS/MS analysis of peptides on QExactive 

 

Tryptic in-solution digested peptides (2.6.2) were analyzed by nanoflow chromatography coupled 

to a hybrid quadrupole-orbitrap mass spectrometer using a vented column setup (Licklider et al., 

2002). Samples were injected and enriched on a custom-packed reversed phase-C18 

precolumn, followed by separation on a custom-packed reversed-phase C18 column (0.075 mm 

ID x 150 mm, Reprosil-Pur 120 C18-AQ, 3 µm) using a 70 min total gradient of 5-40% [v/v] 

acetonitrile, 0.1% [v/v] formic acid at 300 nl/min. The eluent was analyzed in positive ion mode 

on a QExactive hybrid quadrupole-orbitrap mass spectrometer equipped with a FlexIon 

nanoSpray source with a stainless steel emitter and operated under Excalibur software 2.2.0.48 

to perform data-dependent acquisition. Each experimental cycle consisted of one full MS scan 

across the 350-1600 m/z range that was acquired at a resolution setting of 70,000 FWHM, an 

automatic gain control target of 10e6 and lock mass correction for m/z 441.120025 from 

polysiloxane. Up to the 15 most abundant peptide precursors of charge states 3 to 7 above an 

intensity threshold of 2x10e4 were selected at an isolation width of 2.0 Th, fragmented by higher 

energy collisional dissociation (HCD) using nitrogen as collision gas at a normalized collision 

energy setting of 25%, and their product ion spectra recorded using an AGC target of 2x10e5 
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and a maximum fill time of 60 ms. Precursor m/z values selected for MS/MS were excluded for 

30 s after one occurrence. 

 

2.6.5 Molecular weight determination of histone proteins 

 

Histone proteins were dissolved in 20% [v/v]  acetonitrile and 0.1% [v/v] formic acid and injected 

to a LTQ XL Linear Ion Trap mass spectrometer. The proteins were analyzed in a scan mode 

ranging from 500-2000 m/z. The spectra were extracted and deconvoluted using the Small 

Protein mode of the ProMass Deconvolution software.  

 

2.7 Raw data processing and data analysis 

 

2.7.1 Mass spectrometric raw data processing with MaxQuant 

 

Protein identification and quantification of raw data files derived from mass spectrometric 

measurements (2.6.3, 2.6.4) were performed using the MaxQuant software, version 1.5.2.8 (Cox 

and Mann, 2008; Cox et al., 2011). Enzyme specificity was set to trypsin/P at a maximum of two 

missed cleavages, methionine oxidation was set as variable and cysteine carbamidomethylation 

was set as fixed modification. All other parameters were set according to the default settings 

with the following exceptions. For experiments done with SILAC-labeled nuclear extracts 13C6-

arginine and 13C4-lysine were set as fixed modifications. Additionally, the minimum length of 

peptides was decreased to 6 and the maximal number of modification per peptide to 4.  

Proteins were identified using the Andromeda algorithm searching against the UniProtKB 

SwissProt Human protein sequence database 2014.01 (134921 protein entries) supplemented 

with the MaxQuant common contaminants database (248 entries).  

 

2.7.2 Mass spectrometric raw data processing with pLink 

 

In order to identify cross-linked peptides, raw files obtained from mass spectrometric 

measurements (2.6.4) were transformed into mgf files using Proteome Discover and analyzed by 

the pLink software version 1.07 (Purcell et al., 2007). Raw files of one experiment were analyzed 

in parallel and results were summarized in one output table. The ini file used for the data search 

was configured in the following way. Carbamidomethyl was set as a fixed modification, oxidation, 

pyro-glutamic acid and N-terminal acetylation were set as variable modifications, the search was 

done in mode 1, noninterexport was set as true and the fdr was set to 0.01. All other settings 
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were defined according to the experimental design and/or correspond to the default setting of 

the example ini file downloaded with the software. Raw files used for the pLink search were also 

analyzed by MaxQuant (2.7.1). Identified proteins summarized in the proteinGroups.txt of 

MaxQuant were used as the reverence database for the pLink search. The reverence database 

included only identified proteins with more than 2 “razor and unique peptides”. Additionally, 

contaminants and reverse hits were excluded. The amino acid sequences of identified histone 

proteins were exchanged by those from Xenopus laevis (2.1.10). The most abundant proteins of 

the samples were determined by dividing the number of identified “unique and razor peptides” by 

the molecular weight of the corresponding proteins. The most abundant proteins were arranged 

according to the quotient starting with the highest value.  

In total, three pLink searches using different databases were performed for each experiment. 

The first database included the top 100 of the most abundant proteins, the second database was 

composed of the top 150 most abundant proteins and the third database included all identified 

proteins of each experiment, respectively. For spectra that were annotated in more than one of 

the pLink searches the spectrum with the highest score was chosen for further analysis. Those 

spectra that were annotated in more than one pLink search displaying different outcomes were 

excluded from further analysis.  

Visualization of identified protein-protein cross-links was done using xiNET (Combe et al., 2015).  

Visualization and analysis of cross-linking data in the context of their three-dimensional protein 

structures were done using the Xlink Analyzer software (Kosinski et al., 2015; Pettersen et al., 

2004).  

 

2.7.3 Data filtering and visualization of quantified MS data 

 

The MaxQuant output table proteinGroups.txt was imported to the statistical software package 

PERSEUS (Cox and Mann, 2008), version 1.5.0.26. Normalized heavy-to-light ratios (H/L) and 

intensities were extracted and log2-transformed. Only proteins with a ratio count of at least 3 in 

forward and reverse experiments for a given modification state were considered for 

quantification. After removal of reverse and contaminant entries, the statistical significance of 

individual quantification results was assessed using Perseus’ “significance A” algorithm using a 

two-sided False Discovery Rate estimation to a p value of 0.1 and application of a Benjamini-

Hochberg correction (Cox and Mann, 2008). The processed data were visualized using the 

open-source statistical software package R (version 3.2.3). For data visualization only, missing 

values in one of the experiments were imputed to zero.  
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2.7.4 Protein-protein interaction analysis 

 

Protein-protein interaction analyses were done using the STRING database (Jensen et al., 

2009). Leading UniProt IDs reported in the proteinGroups.txt of MaxQuant (2.7.1) were used to 

identify known and predicted functional and structural interactions (default settings) for the 

design of protein-protein association networks. 

 

2.7.5 Annotation enrichment analysis 

 

Functional annotation enrichment analyses were done using the functional annotation chart of 

the online software package DAVID (Huang da et al., 2009a, b). Results were obtained by using 

default settings of the statistical parameters with the exception of the EASE score (enrichment) 

cutoff, which was set to 0.05. All genome genes of Homo sapiens were used as the background 

database. The background database was provided by DAVID (Huang da et al., 2009a, b). Terms 

were annotated to significant enriched and significant depleted proteins of a certain chromatin 

modification state, respectively. Only enriched annotated terms were included in further 

analyses. The processed data were visualized using the open-source statistical software 

package R (version 3.2.3). 
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3 Results 

 

Nucleosomal arrays have been successfully used to characterize the diversity and complexity of 

PTM-regulated protein interactomes associating with chromatin (Nikolov et al., 2011). 

Nevertheless, comprehensive information regarding the impacted of heterochromatic chromatin 

modifications on proteins binding specifically to chromatin is still lacking. The current information 

content rarely allows drawing conclusions about the extent of functional outcomes associated 

with certain histone modification patterns. 

In this study, chromatin affinity purification (ChAP) coupled to quantitative mass spectrometry 

was optimized predominately in terms of statistical evaluation, to investigate the interactomes 

brought about by ten different chromatin modifications. Furthermore, the method was extended 

to not only identify the interactomes in the context of singly-modified chromatin arrays but also 

the combination of two posttranslational histone modifications. Thus, the extended workflow 

enabled the investigation of the impact of histone PTMs on protein binding to chromatin and 

histone modification crosstalk on a global level. Additionally, a workflow combining ChAP, 

chemical cross-linking and mass spectrometry is introduced. The new combination of 

experimental steps enabled the identification of site-specific protein-protein interactions. 

Moreover the assignment of a network on the basis of these physical protein interactions 

provided information about the hierarchy of protein binding to chromatin. 

 

3.1 12mer nucleosomal arrays are of reproducible quality independent of 

incorporated modifications 

 

In order to expand the extent of modification-specific protein-binding interactomes investigated 

so far, homogenous, recombinant nucleosomal 12mer arrays carrying different chemical 

modifications, alone and in combination, were generated. These chromatin arrays were used as 

templates for affinity purification studies investigating protein-chromatin interactomics in the 

context of single modification and combinations thereof.  

 

3.1.1 Native chemical ligation and alkylation of cysteine residues successfully introduce PTMs 

to recombinant Xenopus laevis histones 

 

Two different approaches were used to introduce site-specific posttranslational modifications to 

recombinant Xenopus laevis histones. Modifications within the first 20 amino acids of the N-

terminus of histone H3 and the first 22 amino acids of the N-terminus of histone H4 were 

introduced by native chemical ligation (NCL) (Shogren-Knaak and Peterson, 2004). The histone 
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methylation sites H3K9me1/-me2/-me3, H4K20me1/-me3 and H4R3me2 were successfully 

created by NCL. The products of the reactions were visualized by SDS-PAGE and mass 

spectrometry. This is exemplarily shown for the NCL of H4K20me3 in figure 3.1 A and B. 

As a second approach to introduce PTMs, methyl lysine analogs (MLAs) were used. Here, lysine 

27 of histone H3 was modified to H3KC27me1/-me2/ and -me3. The method is based on the 

alkylation of an artificially introduced cysteine residue. The cysteine undergoes alkylation with an 

electrophilic ethylamine resulting in aminoethylcysteine, which is an analog of lysine (Simon et 

al., 2007). The completeness of the MLA reaction was verified by mass spectrometry using ESI-

MS, exemplarily shown for H3KC27me3 in figure 3.1 C.  

 

 

Figure 3.1 Introduction of posttranslational histone modifications.  
A) SDS-PAGE analysis of the recombinant histone H4, H4R23C Δ1-22, the thioester peptide composed of 
the N-terminal amino acids 1-22 of H4 and the ligated product H4K20me3. B) ESI-LTQ mass 
spectrometric analysis of H4R23C Δ1-22 (upper part of the panel) and the ligation product H4K20me3 
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(lower part of the panel). C) ESI-LTQ mass spectrometric analysis of the non-alkylated H3K27C C110A 
(left part of the panel) and H3KC27me3 (right part of the panel). 

 

3.1.2 Octamer-DNA molar ratios from 1.1 to 1.3 assemble fully saturated, reproducible 

nucleosomal arrays  

 

The assembly of nucleosomal arrays is based on histone octamers that uniformly position on a 

DNA template. The optimal octamer-DNA molar ratio was determined for each chromatin 

species separately. An octamer-DNA molar ratio from 1.1 up to 1.3 was found to be sufficient to 

obtain a saturation of more than 90% of the DNA template with histone octamers. The success 

of the reconstitution was visualized by native agarose gel electrophoresis (Figure 3.2 A). The 

exact rate of saturation of the nucleosomal arrays was determined by a restriction enzyme digest 

using AvaI (Figure 3.2 B). AvaI cuts the DNA template of chromatin arrays within the 601 

sequence only once per 200 bp repeat. Depending on octamer occupancy AvaI digestion results 

in mononucleosomes and free DNA. 

We additionally tested the reproducibility of the chromatin reconstitution method using analytical 

ultracentrifugation. The distribution of sedimentation coefficients (S) of nucleosomal arrays, 

either fully or subsaturated (saturation level of 75%) were determined by sedimentation velocity 

and van Holde-Weischet analysis. As shown in figure 3.2 C, different fully saturated chromatin 

arrays displayed a similar sedimentation distribution, mainly in the range between 40 and 50 S. 

The similar sedimentation coefficient distribution of both replicates demonstrated that the 

reconstitution method generates highly reproducible chromatin arrays. In comparison, the 

subsaturated chromatin species showed a distribution of sedimentation coefficients in a lower 

range, between 30 and 40 S, indicating lower compaction of the chromatin species. The results 

verified that the saturation level of oligonucleosomal arrays can be reproducibly adjusted over 

the octamer-DNA molar ratio, generating arrays of comparable quality.  

 

3.2 The statistical tool “significance A” determines significant protein fold 

enrichment cutoffs  

 

To investigate the extent of changes in protein composition and binding to chromatin, affected by 

distinct chromatin modification patterns, chromatin-based affinity purification in combination with 

relative quantification by mass spectrometry was established in our lab (Figure 3.3) (Nikolov et 

al., 2011).  

ChAP coupled to quantitative MS is based on the relative quantification of proteins binding to 

unmodified and modified chromatin arrays. This is possible by using SILAC-labeled HeLa 

nuclear extracts. For each modification state two biological replicates were performed in parallel 
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as a label swap experiment. In the “forward” experiment unmodified chromatin arrays were 

incubated with light nuclear extract and modified chromatin arrays with heavy isotope-labeled 

nuclear extract. For the “reverse” experiment modified and unmodified chromatin arrays were 

incubated with light and heavy nuclear extracts, respectively, thus obtaining inverse enrichment 

ratios.  

 

 

Figure 3.2 Quality controls of assembled chromatin arrays.  
A) Native agarose gel electrophoresis of reconstituted chromatin arrays and free DNA. The samples were 
separated by gel electrophoresis on a 0.5% agarose gel using 0.2x TB buffer. The gel was stained with 
ethidium bromide. M defines the DNA size marker. B) AvaI digestion of reconstituted chromatin arrays and 
free DNA. Digested samples were separated by agarose gel electrophoresis on a 2% agarose gel using 
TBE buffer. The gel was stained with ethidium bromide. C) Analytical ultracentrifugation of fully saturated 
and 75% saturated chromatin arrays. The distribution of sedimentation coefficients was obtained using 
sedimentation velocity and van Holde-Weischet analysis (analyzed by Dr. Ron Finn, Max Planck Institute 
for Biophysical Chemistry, Göttingen, Germany).  
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The method enables the identification of all proteins binding to chromatin and that are 

specifically regulated by the underlying chromatin modification. Throughout this study, I will refer 

to this pool of proteins as the “chromatin-binding interactome”. By investigating different 

modification patterns several interactomes were generated by performing experiments with 

individual chromatin modifications. Hereby, a statistical evaluation strategy ensuring a valid 

interpretation of the results not only for individual experiments but also for comparison of 

different interactomes is of immense importance.  

 

In previous studies, a fixed fold enrichment cutoff was defined and applied to all individual 

experiments, not meeting the requirements of a significant determination of a fold enrichment 

cutoff for each individual experiment. To verify significant protein enrichment, I optimized the 

strategy of statistical evaluation to faithfully investigate and interpret the interactomes brought 

about by twelve different chromatin modification patterns.  

 

 

Figure 3.3 Workflow of SILAC-based chromatin affinity purification coupled with mass 
spectrometry.  
Unmodified and modified chromatin arrays are incubated with light and heavy SILAC-labeled nuclear 
extracts from HeLa cells, respectively. Chromatin arrays and their associated proteins of both pull-downs 
are eluted, mixed in a 1:1 ratio, treated with benzonase and finally separated by SDS-PAGE. Proteins are 
in-gel digested using trypsin. The resulting peptides are analyzed by LC-MS/MS. Identification and 
quantification is achieved using the MaxQuant software.  
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To determine the impact of histone PTMs on the chromatin-binding interactome, the proteins 

associated with modified and unmodified chromatin arrays were compared and their relative 

enrichment level was determined. Quantification using SILAC-labeled nuclear extracts assumes 

that unspecific binders, i.e. proteins binding to both templates to the same extent, feature a 

heavy/light ratio (H/L ratio) value of 1. However, due to small variations inherent to all biological 

preparations this value might vary from one experiment to another. Considering all performed 

experiments this theoretical heavy/light ratio of 1 (log2 1 = 0) for unspecific binders in fact ranged 

from -3.2 log2 up to 2.3 log2 (visualized in chapter 3.3 for each individual experiment) as 

calculated by applying a statistical significance test as described in the following. 

The definition of a fixed fold enrichment cutoff is not sufficient to faithfully reflect which proteins 

are significantly enriched or depleted when two different data sets are compared. To overcome 

this problem, the statistical significance of individual quantification results was defined using the 

Perseus’ “significance A” algorithm (Cox and Mann, 2008). This algorithm determines the values 

that are significant outliers relative to a certain population. The “significance A” algorithm was 

used by applying a two-sided False Discovery Rate estimation to a p-value of 0.1 and a 

Benjamini-Hochberg correction.  

To determine significant enrichment values, SILAC ratios of the forward and the reverse 

experiment were averaged. This resulted in a narrowed distribution range of H/L ratios of the 

protein population bound to chromatin. This can be visualized when comparing the distribution of 

H/L ratios of proteins resulting from the individual experiments with the distribution of the 

averaged forward and reverse experiments (Figure 3.4 A-C). Consequently, an increased 

number of significant outliers was calculated compared to calculations using non-averaged 

SILAC ratios, as significant values are determined as outliers relative to the spread of the input 

population (Figure 3.4 A-C).  

 

In order to visualize the results, SILAC ratios of forward and reverse experiments were scatter 

plotted on the x- and y- axis, respectively (Figure 3.4 D). The advantage of this presentation 

style is the complexity of information that can be visualized. 

First, the protein-binding affinity to modified chromatin arrays is demonstrated. Therefore, H/L 

ratios of the reverse experiment were inversed due to the label-swap approach. Data were log2 

scaled, where positive values of the H/L ratio represent an increased protein-binding affinity, 

whereas negative H/L ratios represent a lower binding affinity to modified chromatin arrays 

compared to the unmodified chromatin species. Thus, the scatter plots display proteins whose 

binding is either increased or decreased as a consequence of a specific histone modification 

state.  
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Figure 3.4 Determination and visualization of significantly regulated proteins using the example of 
the H3K9me3 interactome.  
A) Log2 SILAC ratios of proteins identified in the forward experiment are plotted on the x-axis. Total 
summed peptide intensities of the forward experiment are plotted on the y-axis in log2 scale. Proteins 
identified as significant outliers by application of the “significance A” algorithm are marked in blue. B) The 
same as in A) but with values of the reverse experiment. SILAC ratios are inverted. C) The same as in A) 
but with averaged values of the forward and the reverse experiments. D) Log2 scaled H/L ratios of proteins 
of the forward experiment are plotted on the x-axis and of the reverse experiment on the y-axis. Statistical 
analyses were performed with averaged H/L ratios of the datasets. Proteins determined as significantly 
enriched are displayed in the upper right square, while proteins significantly depleted are displayed in the 
lower left square of the plot. Proteins determined as false positives are displayed in the upper left and the 
lower right square. Significantly recruited and depleted proteins are colored in blue. False positive proteins 
are marked in black. Proteins that were significantly regulated but only identified in either the forward or 
the reverse experiment are not plotted. 
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Second, the scatter plots visualize the correlation of both biological replicates. In case of positive 

correlation, for both replicates proteins displaying the same trend in terms of binding affinity to 

modified chromatin arrays and are located in the upper right (increased binding) and in the lower 

left square of the scatter plot (decreased binding). Negative correlation is observed for proteins 

displaying an opposed H/L ratio in both biological replicates. Those proteins are located in the 

upper left and the lower right square of the scatter plot (Figure 3.4 D). Accordingly, negative 

correlation is indicative of false positives. Therefore, significant outliers that displayed a 

diametrically opposed significance score in the forward and reverse experiments were 

eliminated from further analysis (Figure 3.4 D).  

Third, statistically evaluated information is represented by a color code. Significant outliers that 

correspond to proteins significantly regulated by a certain modification state are marked in blue, 

whereas proteins constituting the background are labeled in grey. Proteins identified as false 

positive are colored in black.  

With this statistical evaluation strategy all further introduced chromatin-binding interactomes 

were analyzed and the results were visualized as described.  

 

3.3 ChAP coupled to quantitative MS enables the investigation of chromatin-

protein interactomics and provides insights into chromatin modification 

crosstalk 

 

The first steps towards investigating whether, and even more importantly, how posttranslational 

chromatin modifications affect the structure of chromatin and downstream biological processes, 

such as transcription, replication and cell division, is the investigation of the impact modifications 

have on the protein environment of the chromatin loci they mark. Heterochromatin is 

characterized by a tightly packed form of chromatin and thought to be mainly transcriptional 

silenced. However, it is specifically marked by a variety of posttranslational modifications and 

yet, it is not fully understood how and whether these modifications contribute solely to the 

molecular mechanisms of establishment and maintenance of the heterochromatic state. To 

investigate the extend of biological functions correlating with heterochromatin I focused on 

chemical modifications in literature so far associated with this chromatin stage. The following 

chapter introduces the protein-binding interactomes mapped in the context of different histone 

methylations, DNA methylation and combinations thereof.  
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3.3.1 Individual chromatin modification states recruit specific chromatin-binding interactomes 

 

Interactomes associated with 10 different chromatin modifications were characterized. For each 

modification state between 1,117 and 2,785 chromatin-bound proteins, including their isoforms, 

were identified. All analyses together identified more than 6,000 proteins. Of these, close to 500 

were found to be regulated by the chromatin modifications. Each modification state impacted the 

binding properties of a specific set of factors. Moreover, each dataset included several proteins 

that were not known before to associate with specific histone modifications. A comprehensive list 

of factors whose binding to chromatin was impacted by the presence of a certain modification is 

provided in table 3.1. These data shed light on how extensively the chromatin interactomes are 

regulated by histone posttranslational modifications. The individual protein-binding interactomes 

for each histone modification state will be discussed in the following sections. 

 

H3K9me1 interactome 

 

Genome wide high resolution maps revealed that H3K9me1 is mainly associated with 

transcriptional active gene loci (Barski et al., 2007; Wang et al., 2008). The predominant 

absence of H3K9me1 at constitutive heterochromatin has been demonstrated before by using 

chromatin immunoprecipitation (ChIP) and antibody based detection methods in ES cells (Peters 

et al., 2003). In contrast, antibody based staining of MEF cells demonstrated that H3K9me1 is 

located at pericentric heterochromatic regions (Sims et al., 2006). To my knowledge, proteomic 

studies investigating protein interactions to H3K9me1 on a global scale have not been 

performed.  

In this proteomic study, H3K9me1-modified chromatin arrays recruited six and repelled seven 

factors from binding (Figure 3.5 A, Table 3.1). Although H3K9 mono-methylation was mainly 

shown to be linked to gene activation, several factors connected to heterochromatin were 

identified to be specifically recruited by H3K9me1. Among them were the heterochromatin 

protein HP1α (CBX5) and UHRF1. Both are known to be involved in heterochromatin 

establishment and maintenance and have been shown to bind preferentially to K9me3 of histone 

H3 (Lachner et al., 2001; Nady et al., 2011). The splicing co-activator SRRM1 (Blencowe et al., 

1998) was also recruited to H3K9me1-modified chromatin, indicating that not only 

heterochromatin associated factors were recruited.  

To my knowledge UHRF1 is the only factor of the interactome that has been described so far to 

directly interact with H3K9me1 (Nady et al., 2011). Protein interaction analysis using the 

database STRING (Jensen et al., 2009) predicted no protein-protein interactions besides the 

interaction between CBX5 and PRMT5 (Figure 3.5 B, upper panel). Thus, it remains unclear, 

whether the six proteins bind as single factors or form a multi subunit complex.  
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In contrast, the transcription factors NFIB, NFIC, NFIX and E4F1 were significantly repelled from 

binding, as was INO80E, a component of the INO80 chromatin remodeling complex. The 

protein-protein interactions between NFIB, NFIC and NFIX and between INO80E and MCRS1 

were predicted by STRING analysis (Figure 3.5 B, lower panel), suggesting that H3K9me1 

regulated factors are biologically linked, which verifies the specificity of the approach.  

 

 

Figure 3.5 Protein-binding interactomes of H3K9me1 and H3K9me2 chromatin.  
A) H3K9me1 interactome. Proteins are plotted by their log2 SILAC ratios of the forward experiment on the 
x-axis and the reverse experiment on the y-axis. Significantly recruited and depleted proteins are colored 
in blue. False positive proteins are marked in black. B) STRING protein-protein interaction networks of 
factors significantly recruited by H3K9me1 (upper part of the panel) and excluded proteins (lower part of 
the panel). C) H3K9me2 interactome. Data are represented as described in A. D) Protein-protein 
interaction networks from STRING analysis of proteins significantly affected by H3K9me2. Recruited 
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proteins are shown in the upper part of the panel, whereas excluded proteins are represented in the lower 
part of the panel. 

 

H3K9me2  

 

The chromatin-binding interactome of H3K9me2 introduced here is represented by the results of 

the forward experiment only, as data evaluation revealed a non-normal distribution of SILAC 

ratios of chromatin-bound proteins identified in the reverse experiment.  

Chromatin di-methylated at lysine 9 of histone H3 recruited five and depleted eight factors from 

binding (Figure 3.5 C, Table 3.1). As the modification is known to be linked to gene repression 

(Wang et al., 2008), it is not surprising that nearly all factors recruited have been shown to be 

involved in maintenance of a repressive transcriptional state. These proteins comprise CBX5, 

UHFR1, DNMT1 and the putative polycomb group protein SCML2 (Montini et al., 1999). HP1 

proteins, such as CBX5 have been shown to bind to H3K9me2 N-terminal peptides (Jacobs and 

Khorasanizadeh, 2002; Lachner et al., 2001). Also, UHRF1 has been demonstrated to bind to 

H3K9me2/-me3 (Liu et al., 2013). Moreover, UHRF1 was identified to interact with DNMT1, 

(Bostick et al., 2007; Sharif et al., 2007), suggesting a role for UHRF1 in DNMT1 recruitment to 

H3K9me2-marked chromatin regions. A link between CBX5, UHRF1 and DNMT1 was further 

suggested by STRING analysis (Figure 3.5 D, upper panel). There is one published study that 

screened for H3K9me2-binding proteins using N-terminal modified peptides of H3 (Chan et al., 

2009). Comparing the findings of this study to mine, CBX5 was found to be the only overlapping 

factor identified to bind in the context of H3K9me2. 

The transcription factors CEBPD, TFAP4, ATF2 and the zinc finger protein ZBTB43 were 

depleted from binding to H3K9me2 in addition to the transcription factors also excluded from 

binding to H3K9me1-modified chromatin arrays. STRING analysis did not reveal any association 

of these factors (Figure 3.5 D, lower panel). 

 

H3K9me3 

 

H3K9me3 is the most intensively investigated repressive histone modification. It marks 

pericentric heterochromatin (Barski et al., 2007; Fischle et al., 2003a; Lachner et al., 2003; 

Wang et al., 2008). In my study, no other modification state affected as many proteins as tri-

methylated lysine 9 of histone H3. Altogether, 59 proteins were specifically recruited and 72 

repelled from binding (Figure 3.6 A, Table 3.1). Previous studies using different methodologies, 

already identify a set of H3K9me3-binding factors comprising among others the different 

isoforms of HP1, CBX1, CBX3 and CBX5 (Lachner et al., 2001), ADNP (Mosch et al., 2011) as 

well as UHRF1 (Karagianni et al., 2008) and MPHOSPH8 (Kokura et al., 2010). Besides single 
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Table 3.1 Proteins recruited and excluded from binding to chemically modified chromatin. 
Proteins are listed according to their enrichment ratios (H/L ratios) starting with the highest value on top. 
Proteins significantly recruited by a certain modification state are written in black, proteins excluded are 
written in blue. Grey marked proteins indicate that the proteins were already found to interact with the 
respective modification in one of the following studies (Bartke et al., 2010; Bluhm et al., 2016; Bostick et 
al., 2007; Engelen et al., 2015; Kunowska et al., 2015; Nady et al., 2011; Nikolov et al., 2011; Oda et al., 
2010; Vermeulen et al., 2010) 
 

H3K9me1 H3K9me2 H3K9me3 H3K27me1 H3K27me2 H3K27me3 H3 Δ1-20 H4K20me1 H4K20me3 H4R3me2 meCpG H3K9me3-
H4K20me3 

H3K9me3-
meCpG 

SHKBP1 UHRF1 CBX1 GCC2 JADE2 EIF2B5 FAM114A1 SCML2 DNAH8 POLR3H UHRF1 DNAH8 DSC3 

SRRM1 CBX5 UHRF2 CNOT2 KIAA1524 PHF1 CAPN1 LCN1 ORC2 POLR3D DNMT1 LRWD1 CALML5 

ALDH18A1 ACTL8 CBX3 BAG6 LGALS7 FGF2 TALDO1 HDGFRP2 LRWD1 SNC73 SCML2 CBX1 TGM3 

PRMT5 DNMT1 CBX5 RSF1 PHF1 FRMPD3 MIF ZRANB2 ORC3 POLR3G RALGAPA2 CBX5 CSTA 

UHRF1 SCML2 USP3 DYM GBP1 LRWD1 ZGPAT PC4 HMGN5 POLR1C ZHX2 ORC3 CDK2AP1 

CBX5 NFIC SPIN2B DFNA5 SLC25A3 ORC2 HDGF RMND1 ARG1 E2F6 ZBTB33 CHAF1B DNCL1 

MCRS1 CEBPD POGZ PRIC295 MAGOH ORC3 CAST SREK1 ORC5 NFIC USP7 ORC2 TRAM1L1 

NFIB NFIB CHAF1A CNOT1 SHPRH ORC5 PSAT1 USP7 SIRT6 POLR3E ACTL8 POGZ  

NFIX ZBTB43 CHAMP1 IPO11 PFN1 ORC3L WARS ENO1 EIF5 POLR2E ZHX1 CBX3  

E4F1 NFIA CHAF1B KIF11 PRPF40A CBX8 SYAP1 RSRC2 APEX1 ACTL8 ZHX3 ORC5  

INO80E TFAP4 NIPBL CNOT11 SRSF6 PRC1 PARK7 CIR ORC3L USP7 UHRF2 SPIN2B  

TFPT E4F1 SEPT7 XPO1 PGK1 ABCF1 FMNL1 NAP1L4 SYAP1 NOLC1 SEMG1 NIPBL  

NFIC ATF2 SEPT9 FBXL6 SAP18 EIF2S2 ANXA5 RPRC1 PHF1 NAA40 CUEDC1 CHAF1A  

    SIRT6 UBA5 EIF4A3 TOPBP1 POU2F1 PSMD3 RNF213 LMNA MBD2 UHRF2  

    SEPT2 SIRT6 ACIN1 WDR5B TPT1 PHF8 EIF5B NCL ZBTB12 SPIN1  

    SPIN1 RAVER1 PHF21A TCOF1 BCLAF1 INO80C USP3 CHD1 MTA2 CHAMP1  

    ACTL8 GET4 CLIC1 EIF2S3 NBN MYC EIF2S2 SCML2 UBE2D2 ORC3L  

    DNMT1 TTI1 ZC3H11A PRC1 PNP MLXIPL EMG1 ZCCHC10 GATAD2B ADNP  

    ADNP2 CNOT7 RNPS1 EIF2S1 CKB POLG EIF2S1 TADA1 CDK2AP1 MAU2  

    LRWD1 ZKSCAN3 TKT MAFK ALDOC TKT ORC6 RAD51AP1 HYDIN NOLC1  

    USP7 SPTY2D1 PAXIP1 PBX2 GDI2 PGK1 TXLNA   ZNF687 JADE2  

    HMGN5 PSMA7 CHAF1B ELF2 AHCY PNISR GOLT1B   FIZ1 ING5  

    ORC3L POLR3K ISL2 KIF2A EIF4H PHF21A EIF2S3   ZMYND8 PHF5A  

    ORC2 PRC1 E4F1 CDYL2 CXorf38 ZNF580 KIF2A   RBBP7 SF3B1  

    TCHH VWA9 AEBP2 AAR2 ZNF451 RFXANK RAD51AP1   CTSD SHPRH  

    ORC3 CHD1 INO80E PLK1 MAGOH HES1 KIF2C   GATAD2A UBTF  

    UHRF1 TAF11 TFPT RBM7 FAM48A INO80D ABCF1   CHD3 SF3A1  

    RAD51AP1 RECQL SP3 XPO5 VRK3 DHX36 BCR/ABL f.   RBBP7 SF3B4  

    ADNP MED10 NR2C1 KIF5B-ALK DLG3 NCAPD2 TXLNG   PGBD3 PMVK  

    ZHX1 HSP90AB1 HEATR2 EXOC2 FAM134C NCOR2 KIFC1   MTA3 FRMPD3  

    EIF5 TPI1 ZMYM1 RPLP2 NACA NEIL2 ZNF598   BLMH SF3A3  

    ORC5 CENPF SP1 NOLC1 TMPO CHTOP PDIA5   CHD4 SEPT10  

    MIER2 SETX ZNF629 SPATA5L1 CEBPD ZC3H14 NFIX   RBM4 SF3B2  

    EMG1 CKAP2 NFIB OXSR1 GOLGB1 SNRPD3 C19orf47   NCOA6 SEPT9  

    SEPT6 PFN1 ZNF770 NPM1 FMNL1 SRSF6 NFIA   ZBTB4 PGK1  

    MPHOSPH8 MED16 CD3EAP RPRC1 SARS SAP18 POLR1B   POGZ SEPT6  

    ATRX GTF3C4 POLR1E PCMT1 ATL3 PNN PKP2   RBBP4 C9orf78  

    MAU2 HSPA9 KMT2C JADE2 LMNA DDX21 ANKRD12   MECP2 LSM2  

    KIFC1 GTF3C5 PRDM10 YKT6 ARPC2 MAGOH BRCA1   MTA1 USP3  

    SMCHD1 LDHB POLR1A EPPK1 ALDH18A1 RPL7L1 E4F1   SEMG2 EIF4G1  

    SEPT8 ZBTB1 PARD3 TINF2 UIMC1 SF3B4 ANKRD32   BACH1 EIF5  

    CDYL MARK2 POLR1B NAP1L1 CBR1 SNRPB2 BARD1   CHAMP1 ING4  

    SCML2 PRDX1 ESRRA UBL4A ASNS PURB AMY1A   WHSC1 RAB6A  

    KIF2A LDHA   SYDE1 CPNE1 CGGBP1     POLR3F BRCA1  

    ABCF1 ACTN4   SCYL2 CUL1 MAP4     E2F2 SEPT7  

    EIF2S2 PKM   HTRA1 TADA3 ZNF354A     SIN3A CHD1L  

    MORC2 TKT   MAP2K2 ARHGEF3 SNRPA1     CLOCK JADE3  

    EIF2S1 EEF2   CHERP BPTF ZC2HC1A     POLR1C RAD51AP1  

    EIF2S3 PRDX6   CBFB ARPC4 SF3A3     BHLHB2 BARD1  

    MIER1 PNP   UBTF PES1 ZBED6     RPRD1B BABAM1  

    ELF1 EEF1B2   PCSK9 POM121C PURA     ZNF131 SEPT2  

    CDYL2 PGAM1   C11orf57 LIG4 SF3B2     BRMS1L BRCC3  

    ZC3HAV1 PSMA6   PHF8 SHCBP1 SF3B1     MITF ZBED1  

    JMJD1C ENO1   ACACA MTF2 ANKRD12     ELF1 SDHB  

    LRIF1 G2E3   GTF2E2 POLD3 SF3A1     SAP30 ACACA  

    WHSC1L1 PPIA   TYMS PUM1 RSL1D1     SUPT3H BRE  

    ZNF280D IGHG4   ZHX2 RIOK3 ATRIP     SAP130 CSTA  

    CDKN1A ALDOA   MBTPS1 RSL1D1 ACACA     ARNTL ASF1B  

    ZMYM2 GNB2L1   AEBP2 SMARCA5 BRE     SUDS3    

    RNF213 DSC2   JARID2 CCDC59 BRCA1     CGGBP1    

    ETV6 ANXA1   G2E3 MRPL13 BARD1     ELF2    

    TINF2 SERPINB3     PUM1 ANKRD11     TAF1D    

    INO80D MMS22L     COBL       ZSCAN20    

    PCNA TGM3     MOB4       MAX    

    CACYBP SFN     NFATC2IP       ARID4A    

    TAF1 CDSN     FBXW11       BRMS1    

    TAF5 EPPK1     POP4       AP2A1    

    TAF6 POF1B     PLEKHA4       MLXIPL    

    WDR77 TADA2B     CENPV       ING2    

    CEBPG DSC3     HMGB3       E2F1    

    ZNF644 TF     HMG20A       ING1    
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H3K9me1 H3K9me2 H3K9me3 H3K27me1 H3K27me2 H3K27me3 H3 Δ1-20 H4K20me1 H4K20me3 H4R3me2 meCpG H3K9me3-
H4K20me3 

H3K9me3-
meCpG 
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f. 
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    RFX1 CAT     SIN3B       S100A11    

    PAXIP1 GSTP1     TIMP2       HES1    

    WIZ LGALS7     GGNBP2       MLX   

     TAF1A IGHG1     FNBP4       RAD1   

     POLR3E PRDX2     CLASP2       USF1   

     KMT2D FABP5     DDX52       USF2   

     POLR3D CSTA     USP7       ZBTB14   

     ZBTB44 IGKC   

 

IFI16       ATP6V1F   

     ZBTB39 ARG1     FOXN2       ZBTB1   

     POLR3GL DSC1     CLASP1       AP2B1   

     UCHL5 SPRR1A     SUZ12       SYN1   

     INO80 SPRR1B     KAT7       EPPK1   

     ZNF444 IGLC1     TARS       SYT1   

     NCOA6 TGM1     EZH2       ATP6V0D1   

     ACTR8 S100A14     EED       SFN   

   

 

INO80C       USP1       ATP6V1B2   

     POLR3A       KMT2C       LGALS7   

     TFPT   

 

  DNMT1       SV2A   
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     CRCP 
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     SP3       TWF2           

     EHMT2       RAI14           

     BAZ2A       NS5ATP4A            

    EHMT1       PHF14            

    POLR3C       CCDC138            

    POLR3B       JADE3            

    TIAL1       SVIL            

    POLR3K       LRRFIP2            
    CEBPD       CAPRIN1            

    POLR3F       TOB1            

    HIVEP2       PRKD2            

    POLR3G       IGF2            

    ZNF148       MYL6B            

    CEBPB       ACACA            

    POLR1D       UHRF1            

    POLR3H       BAZ1B            

    POLR2H       KRI1            

    POLR2E       CDSN            

    KLF16       IGKC            

    POLR1C       IGF1            

    ZNF282       DEFA3            

    POLR2K                    

    POLR2L                    

    POLR1A                    

    CYR61                    

    POLR1B                    

    NFIX               

 
   

    ZMYM1               
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    TAF1B               
 

   

 
  FAM129B 

 
                  

 
  PHF20L1 

 
                  

 
  NFIB 

 
                  

 
  NFIA 

 
            

 
  

 

 
  E4F1 

 
            

 
  

  

factors, protein complexes were also recruited by H3K9me3. In agreement with previous findings 

(Bartke et al., 2010; Vermeulen et al., 2010), several members of the human ORC complex were 

found in the dataset. Additionally, a set of factors not shown to bind to H3K9me3-modified 

chromatin before was identified. For example, four out of the five subunits of the septin complex 

were found. Protein-protein interaction analysis using the STRING database predicted an 

indirect connection of SEPT2 to CBX5 via ADNP (Figure 3.6 B). Moreover, this analysis 

predicted a network including most of the proteins specifically recruited by H3K9me3, thus 

validating the approach in terms of specificity and known biological context. Furthermore, the 

STRING analysis indicated recruitment of factors completely new in the context of H3K9me3 
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binding and therefore argued for a gain in knowledge using chromatin arrays over e.g. histone 

peptides for identification of histone PTM-binding proteins.  

Proteins depleted from binding seemed to be organized in complexes as well. For example, 

seven subunits of the INO80 complex and several members of the BRAC1-core RNA 

polymerase II complex were prevented from binding. These findings appeared to be directly 

connected, as 57 of the 72 factors excluded from binding to H3K9me3 are included in an 

extensive protein-protein binding network based on STRING analysis (Figure 3.6 C).  

 

H3KC27me1  

 

The mono-methylation of lysine 27 of histone H3 has been shown to have a higher prevalence at 

active promoters compared to silent ones (Barski et al., 2007). Other studies mapped the 

modification to be significantly present in heterochromatin (Jacob et al., 2010). Chromatin affinity 

purification using H3KC27me1 modified chromatin revealed 19 factors significantly recruited and 

68 excluded from binding (Figure 3.7 A, Table 3.1). Among them, four members of the CCR4-

NOT transcription complex, which is a key regulator of gene expression (Collart, 2016), were 

found (Figure 3.7 C). Other proteins identified are also involved in positive regulation of gene 

expression. These include the chromatin assembly factor RFS1 (LeRoy et al., 1998; Shamay et 

al., 2002) and GCN1L1 (Marton et al., 1997). Also recruited were the deacetylase SIRT6, the 

ribonucleoprotein RAVR1, which acts as a splicing co-repressor and thereby modulates 

alternative splicing events (Gromak et al., 2003; Plafker and Macara, 2000), and the proteins 

XPO1 and IPO11 that function in nuclear export and import, respectively (Kudo et al., 1997). 

Surprisingly, three of the identified factors, DYM, GET4, and GCC2, are involved in processes 

connected to the Golgi apparatus and are known to locate to the cytoplasm (Dimitrov et al., 

2009; Mariappan et al., 2010; Reddy et al., 2006).  

Factors excluded from binding to H3KC27 mono-methylated chromatin feature a broad range of 

enzymatic activities and thus functional diversity. For instance, there were proteins depleted 

from binding that promote transcription such as GTF3C5, GTF3C4 or POLR3K and proteins 

connected to RNA polymerase II activity such as TAF11 and MED10. Many factors are 

connected to cytoskeleton associated functions i.e. PFN1, CKAP2, PRC1 and CENPF. 

Enzymatically active proteins included for example the pyruvate kinase PKM, the hydrolase 

YOD1 that can remove conjugated ubiquitin from proteins, and the G2/M-phase specific E3 

ubiquitin protein ligase G2E3. Two members of the 20S proteasome were identified as well. 

Even though there was a high diversity of expelled factors, protein-protein interactions predicted 

by STRING indicated that 34 of them are connected to one another (Figure 3.7 B). 

http://string-db.org/newstring_cgi/display_single_node.pl?taskId=DWyWsz3dxy6B&node=1856801&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=DWyWsz3dxy6B&node=1854480&targetmode=proteins


       Results 62 
 

 
 

 

 

Figure 3.6 Protein-binding interactome of H3K9me3-modified chromatin.  
A) H3K9me3 interactome. Proteins are plotted by their log2 SILAC ratios of the forward experiment on the 
x-axis and the reverse experiment on the y-axis. Proteins significantly recruited and excluded from binding 
to chromatin are colored in blue. False positive proteins are marked in black. B) STRING protein 
interactome of proteins significantly recruited by H3K9me3. C) STRING protein-protein interactions of 
factors significantly excluded by H3K9me3.  
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H3KC27me2 

 

The di-methylated state of H3KC27 has been shown to be linked to transcriptional repression 

and localizes to heterochromatin and enhancers (Barski et al., 2007; Wang et al., 2008). 20 

factors were recruited whereas 23 factors were repelled from binding to H3KC27me2-modified 

chromatin (Figure 3.7 D, Table 3.1).  

Several PHD finger proteins were recruited to H3KC27me2. Prominent examples are (i) the 

PHF21A protein, which is a component of the BHC co-repressor complex, (ii) the PHF15 

(JADE2) protein, which is part of the HBO1 complex that displays histone H4 acetylation activity 

and (iii) PHF1, a protein, which is a component of the polycomb group. Remarkably, eight of the 

enriched factors are related to the spliceosome. SRRM1, MAGOH, EIF4A3, and SRRM2 are 

known to interact with the assembly intermediate C of the spliceosome complex, while the 

proteins SRSF6, PRPF40A, RNPS1 and SAP18 interact with the spliceosome at different stages 

of assembly. Interestingly, SAP18 is also part of the (chromatin) repressor complex SIN3, 

suggesting a crosstalk between the two processes. Known associations among the recruited 

proteins are shown in figure 3.7 E, upper panel. 

RNA splicing occurs either co-transcriptionally or immediately after transcription. Surprisingly, 

contrary to recruitment of spliceosomal factors, several subunits of the RNA polymerase I were 

excluded from binding to H3KC27me2. In addition, INO80, a component of the remodeling 

complex INO80, was also excluded from binding to H3KC27me2.  

INO80 was additionally excluded from H3K9 mono- and tri- methylated chromatin. A similar 

binding profile was observed for the nuclear factors NFIB and E4F1 that were besides 

H3K9me1/-me2/-me3 also excluded from H3KC27me2. These findings support a linkage of 

biological functions facilitated by H3K9me1/-me2/-me3 and H3KC27me2 and indicate the 

exclusion of these factors from most heterochromatic regions. In general, the fact that several 

factors were regulated the same way by different modification states (Table 3.1) support the 

existence of a set of factors generally associated with the establishment and maintenance of 

certain chromatin stages. 

An example of proteins underlying opposed regulation by different modifications is CHAF1B, a 

member of the chromatin assembly complex 1 (CAF-1). The protein was excluded from binding 

to H3KC27me2 but enriched by H3K9me3.  

STRING analysis indicated that a protein complex comprised of the transcription factors SP1, 

SP3, ESRRA and NR2C1 was significantly depleted from H3KC27me2-modified chromatin 

arrays (Figure 3.7 E, lower panel). Another interaction among expelled proteins was identified 

between MLL3, a H3K4 methyltransferase, and the protein PAXIP1, which is involved in DNA 

damage response and transcriptional regulation (Wang et al., 2010).  

http://string-db.org/newstring_cgi/display_single_node.pl?taskId=OifXWTs_qJjL&node=1860119&targetmode=proteins
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Figure 3.7 Protein-binding interactomes of H3KC27 mono- and di-methylated chromatin.  
A) H3KC27me1 interactome. Proteins are plotted by their log2 SILAC ratios of the forward experiment on 
the x-axis and the reverse experiment on the y-axis. Proteins that are significantly recruited or depleted 
from binding to chromatin by the modification are colored in blue. Proteins that were identified as false 
positive are marked in black. B) Protein-protein interaction network of proteins significantly excluded by 
H3KC27me1 predicted by STRING. C) STRING protein interactome of factors significantly recruited by 
H3KC27me1. D) H3KC27me2 interactome. Data are represented as described in A. E) STRING predicted 
protein interactome of factors significantly regulated by H3KC27me2. Recruited factors are shown in the 
upper part of the panel, whereas excluded factors are shown in the lower part of the panel. 

 

H3KC27me3 

 

The histone modification H3K27me3 is mainly present at silent promoters and is known to be 

related to gene silencing (Barski et al., 2007; Ringrose and Paro, 2004; Wang et al., 2008). 

Performing ChAP with H3KC27me3-modified chromatin arrays revealed that 22 proteins were 

recruited and 37 proteins were excluded from binding to this modification in the context of 

chromatin (Figure 3.8 A, Table 3.1).  

Protein-protein interaction analysis using STRING predicted three multi subunit complexes 

among the proteins recruited to H3KC27me3. The complex encompassing the highest number of 

proteins is formed by several translation initiation factors, connected to the chromo domain 

protein CDYL2 (Figure 3.8 B, upper panel). A second complex is formed by the members of the 

ORC complex that was also shown to be recruited to H3K9me3-modified chromatin (Figure 3.8 

B, upper panel). In a recent study, members of the ORC complex were shown to bind to both 

modification states, H3K9me3 and H3K27me3, in the context of mononucleosomes (Bartke et 

al., 2010). TOPBP1, which is required for DNA replication (Makiniemi et al., 2001), was also 

recruited but not shown to be in association with the ORC complex. A third complex was formed 

by the proteins PRC1, KIF2A and two members of the repressive polycomb group, CBX8 and 

PHF1 (Figure 3.8 B, upper panel). The polycomb group proteins are well studied and known to 

interact with H3K27 methylation states (van Kruijsbergen et al., 2015), therefore they were 

expected to bind to H3K27me3-modified chromatin.  

The protein-binding interactome of H3K27me3 was already investigated in the context of 

mononucleosomes (Bartke et al., 2010). CBX8 was the only protein found to be recruited by 

H3K27me3-modified mononucleosomes and in the here presented study. No further overlap was 

observed, as in the context of mononucleosomes factors depleted from binding to H3K27me3 

were not identified.  

Factors like G2E3 and NOLC1 were identified to be excluded from binding to H3KC27me3-

modified chromatin. These factors have been identified in more than one of the chromatin-

binding interactomes, always in the context of exclusion from chromatin binding. Additionally, in 

contrast to H3KC27me2, factors related to the spliceosome are depleted by H3KC27me3, 

demonstrating an opposed protein-binding regulation by different modification states as 
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described for other factors before. Other expelled proteins are (i) transcriptional activators, (ii) 

factors functionally related to the cytoskeleton, (iii) proteins with kinase activity. The PHD finger 

proteins PHF8 and PH15 were found to be depleted as well.  

The interactome of H3KC27me3 revealed the recruitment as well as repulsion of transcription 

factors from chromatin, which indicates the possibility of existing fine-tuning mechanisms of 

protein-binding properties mediated by a distinct PTM. 

 

 

Figure 3.8 H3KC27me3 chromatin-binding interactome.  
A) H3KC27me3 interactome. Data are represented as described in figure 3.7 A. B) STRING predicted 
protein-protein interaction networks of factors significantly recruited (upper part of the panel) and depleted 
(lower part of the panel) by H3KC27me3.  

 

H4K20me1 

 

Similar to all other investigated mono-methylation marks it was shown that H4K20me1 is linked 

to gene activation and co-localizes with H3K9me1 in vivo (Barski et al., 2007; Wang et al., 

2008). 19 factors were enriched while 35 factors were excluded from binding to H4K20me1-

modified chromatin (Figure 3.9 A, Table 3.1). Two components of the INO80 complex were 

recruited as well as the nucleosome assembly protein NAP1L4 and the RNA polymerase subunit 

gamma-1. Several factors involved in transcriptional repression were found to be recruited as 

well. Among them I identified PHF21A, HES1 and CIR1 (Figure 3.9 B, upper panel). 

http://string-db.org/newstring_cgi/display_single_node.pl?taskId=0_L1J8JK7gzF&node=1860119&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=0_L1J8JK7gzF&node=1843312&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=0_L1J8JK7gzF&node=1852242&targetmode=proteins
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Protein-protein interaction analysis using STRING indicated that two complexes were depleted 

from binding to mono-methylated H4K20 (Figure 3.9 B, lower panel). The larger protein complex 

predicted by STRING consists of 18 proteins. 16 of these proteins are spliceosomal factors, 

mainly connected to the C complex. The second protein network includes members of the 

BRCA1-A complex, BARD1, BRCA1 and BRE, which are responsible for the maintenance of 

genome stability. The proteins ACACA and ATRIP have been shown to associate with this 

complex as well (Figure 3.9 B, lower panel). Altogether, the predicted STRING interactome 

connected 25 of the 35 excluded factors, suggesting most of the proteins to be linked to similar 

biological functionalities. 

 

H4K20me3 

 

Tri-methylated H4K20 has been shown to localize to heterochromatin and is connected to 

transcriptional repression (Barski et al., 2007; Schotta et al., 2004; Wang et al., 2008). 

Performing ChAP 32 factors were enriched and 11 factors excluded from binding to H4K20me3 

chromatin (Figure 3.9 C, Table 3.1). The modification recruited the ORC complex together with 

its binding components LRWD1 and APEX1. With the exception of APEX1 the complex was also 

recruited to tri-methylated H3K9 and H3KC27 (Table 3.1). The co-purification of the ORC 

complex with all three methylation sites has been shown before (Vermeulen et al., 2010). 

Additionally, STRING analysis predicted protein-protein associations between several recruited 

translation initiation factors (Figure 3.9 D, upper panel), which were also recruited to chromatin 

by H3KC27me3. This complex showed additional association with two taxilin proteins connected 

to the hydrolase USP3, which is known to deubiquitinate monoubiquitinated target proteins, such 

as histone H2A and H2B. Several kinesin family members in association with DNAH8 and PHF1 

formed a third complex predicted by STRING (Figure 3.9 D, upper panel).  

H4K20me3 excluded several factors from binding to chromatin that have been shown to be 

excluded by other modification states investigated in this study as well. For instant, besides 

H4K20me3 all three methylation states of H3K9 excluded factors of the NFI gene family and the 

protein E4F1. The heterodimer BARD1-BRCA1 was excluded from binding to H4K20me1 as well 

as H4K20me3. Additionally, an identical regulation pattern was identified for a third protein, 

ANKRD12, which was regulated the same way by both introduced H4K20 methylation degrees. 
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Figure 3.9 Chromatin-associated protein interactomes of histone H4K20 mono- and tri-methylation.  
A) H4K20me1 interactome. Log2 H/L ratios of proteins identified in the forward experiment are plotted on 
the x-axis and of the reverse experiment on the y-axis. Proteins that are significantly recruited or depleted 
from binding to chromatin arrays are colored in blue. False positive proteins are marked in black. B) 
STRING interactome of proteins significantly enriched (upper part of the panel) and excluded (lower part 
of the panel) by H4K20me1. C) H4K20me3 interactome. Data are represented as described in A. D) 
STRING protein-protein interaction network of proteins significantly recruited (upper part of the panel) and 
depleted (lower part of the panel) by H4K20me3.  
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H4R3me2 

 

Arginine 3 of histone H4 is symmetrically di-methylated by PRMT5, a methyltransferase that is 

part of the repressive MB2/NURD complex. I found this complex recruited by H3K9me1 and 

depleted with H3K9me3 (Table 3.1). According to the literature, H4R3me2 was expected to be a 

mark associated with heterochromatin (Le Guezennec et al., 2006; Zhao et al., 2009). Nine 

factors were recruited to H4R3me2-modified chromatin and 11 factors were found to be 

excluded from binding (Figure 3.10 A, Table 3.1). Surprisingly, six of the recruited factors are 

DNA-directed polymerases, suggesting an association to transcriptional activity for H4R3me2. 

Additionally, two transcription factors and the protein SNC73 were recruited, supporting the 

assumption that this modification is rather associated with transcriptional activity and therefore 

unlikely to be linked to pericentric heterochromatin. This assumption is further supported by the 

fact that H4R3me2 excluded the proteins ACTL8, USP7, SCML2 and RAD51AP1 from binding 

to chromatin, as all proteins have been shown to be recruited by H3K9me3, a well-studied 

marker for pericentric heterochromatin. 

 

H3Δ1-20 

 

ChAP was performed with chromatin arrays containing truncated histones H3 that were missing 

the first 20 N-terminal amino acids (Figure 3.10 B). This experiment gave indications of protein 

binding to H3 influenced by the unmodified histone tail.  

The experiment revealed 71 factors with a higher affinity to the wt H3, and thus these proteins 

were depleted from binding to chromatin when the N-terminus of H3 was missing (Table 3.1). 

USP7, DNMT1, ACTL8, and UHRF1 were found to be depleted by H3Δ1-20, which was not 

surprising as they have been demonstrated to be highly enriched in the context of several ChAP 

experiments with methylated H3 tails (Table 3.1). Other proteins excluded from binding to H3Δ1-

20 were JADE3 (PHF16), several factors of the polycomb group, such as SUZ12, and the 

helicase SMARCA5. All these proteins are known to be associated with chromatin in the context 

of PTMs of the H3 N-terminus and therefore are not unlikely to be excluded from binding to 

H3Δ1-20 containing chromatin.  

The proteins CDSN, IGKC and the histone methyltransferase KMT2C (MLL3) were found to be 

depleted by H3Δ1-20 as well as by chromatin arrays containing methylated H3. This finding 

indicates that these proteins preferentially associate with chromatin in presence of the 

unmodified H3 tail.  

Interestingly, the N-terminal tail of H3 seems also to have a role in prevention of protein binding 

to chromatin. I identified 45 proteins that were significantly recruited to chromatin containing 

tailless histone H3 (Figure 3.10 B, Table 3.1). Most likely, these proteins showed enrichment in 

http://string-db.org/newstring_cgi/display_single_node.pl?taskId=jjjM9_XMO9c_&node=1849881&targetmode=proteins
http://string-db.org/newstring_cgi/display_single_node.pl?taskId=jjjM9_XMO9c_&node=1846833&targetmode=proteins
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consequence of a better accessibility to the globular domain of H3 or other parts of the 

nucleosome that might be sterically blocked by the presence of the H3 N-terminal tail.  

 

 

Figure 3.10 Chromatin-binding proteins regulated by H4R3me2 and H3Δ1-20.  
Proteins are plotted by their log2 SILAC ratios of the forward experiment on the x-axis and the reverse 
experiment on the y-axis. Proteins that are significantly recruited or depleted from binding to chromatin by 
the modification are colored in blue. Proteins that were identified as false positive are marked in black. A) 
H4R3me2 protein-binding interactome. B) H3Δ1-20 interactome.  

 

Methylated DNA (meCpG) 

 

Chromatin arrays carrying methyl at position 5 of the cytosine pyrimidine ring within CpG 

stretches of the underlying DNA template recruited 42 factors and depleted 47 factors 

significantly from binding to nucleosomal arrays (Figure 3.11 A, Table 3.1). As DNA methylation 

has mainly been described as a repressive mark, I expected to find an overlap with factors also 

regulated by other repressive marks. Surprisingly, the only overlap of recruited factors was found 

between meCpG and H3K9me3. Among the overlapping nine factors were UHRF1, DNMT1, 

SCML2, USP7 and ACTL8. None of the factors regulated by H3KC27me3 or H4K20me3 were 

regulated by methylated DNA (Table 3.1). 19 of the factors recruited by meCpG were predicted 

by the STRING database to be associated with each other (Figure 3.11 B). Among these 

proteins are chromo domain helicase binding proteins, metastasis associated 1 family members, 

the methyl CpG binding protein 2 and zinc finger proteins.  

In the context of mononucleosomes affinity purification was performed with methylated DNA 

using a DNA template based on the 601 sequence (Bartke et al., 2010) similar to what was used 

in the here presented study. Five out of nine recruited factors that have been identified to be 

recruited in that study, namely, MECP2, MBD2, MTA2, CHD4, GATAD2A, were recruited by 
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DNA methylated oligonucleosomal arrays as well. The proteins MAX, USF2, BHLHB2 and USF1 

were depleted from binding to both, mono- and oligonucleosomal arrays. 

Protein-protein interaction analysis of excluded proteins indicated that only ten proteins were not 

associated with the predicted network (Figure 3.11 C). Several factors of the ING2 complex were 

excluded from binding including ING1 and its associated factor SFN. An additional complex was 

predicted by three proteins connected to the V-ATPase. DNA-dependent RNA polymerase and 

transcriptional activators were depleted from binding, supporting an association with gene 

silencing. The overlap observed among proteins excluded from meCpG and H3K9me3 binding is 

unique to polymerase subunits, namely POLR3F and POLR1C. 

 

 

Figure 3.11 Protein-binding interactome of chromatin containing methylated DNA.  
A) Protein-binding interactome of meCpG containing chromatin. Log2 scaled H/L ratios of proteins 
identified in the forward experiment were plotted on the x-axis and the reverse experiment on the y-axis. 
Factors determined as significant outliers are marked in blue. False positives are marked in black. B) 
STRING protein-protein interaction analysis of factors significantly recruited by meCpG. C) Protein-protein 
network of proteins significantly depleted from meCpG chromatin predicted by STRING. 
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3.3.2 The methylation degrees of lysine residues affect protein binding to different extends  

 

The functional significance of different methylation degrees of lysine residues within histones is 

still under discussion. The lower methylation degrees, mono- and di-methylation, might act as 

platforms that enable the establishment of the respective higher methylation state, leading to the 

tri-methylation mark that affects downstream processes. Alternatively, each of the three 

methylation degrees has their own biological significance and thus lead to distinct functional 

outcomes themselves. 

In the following section I compared the protein-binding interactomes of different methylation 

degrees of H3K9, H3K27 and H4K20 to obtain more insights on how individual methylation 

degrees regulate chromatin-binding properties of individual factors and protein complexes.  

 

 

Figure 3.12 Overlap of proteins regulated by the methylation degrees of H3K9.  
A) Venn diagram of all factors significantly regulated by mon-, di- and tri-methylation of H3K9. B) Bar plot 
of proteins regulated by at least two modification states of H3K9. Log2 scaled SILAC ratios are plotted on 
the y-axis. Gene names are plotted on the x-axis. 

 

Mono-, di- and tri-methylation of H3K9 

 

Each of the methylation states of H3K9 recruited and repelled a specific set of factors from 

binding to the modified chromatin arrays (Figure 3.5, 3.6, Table 3.1). Remarkably, the number of 

factors regulated by H3K9me3 was 10 times higher than those regulated by H3K9me1 and 
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H3K9me2. In fact, mono- and di-methylation of H3K9 affected the binding behavior of 13 

proteins, whereas H3K9me3 had an impact on 131 proteins. The overlap of significantly 

regulated factors is shown in figure 3.12 A. A set of five proteins, CBX5, UHRF1, NFIB, NFIC, 

and E4F1 was affected by all three modification states. These proteins were regulated the same 

way. They were either recruited to all modification states or excluded from binding to chromatin 

(Figure 3.12 B). Several proteins displayed an overlap between two of the modification states 

(Figure 3.12). With the exception of one factor, PRMT5, all proteins were regulated in the same 

direction by the overlapping methylation states. PRMT5 is the only factor found to display an 

opposed binding profile, as the protein was significantly recruited to H3K9me1 but repelled from 

binding to H3K9me3 (Figure 3.12 B).  

 

Mono-, di- and tri-methylation of H3K27 

 

The three different methylation states of H3KC27 affected different protein interactomes, 

indicating the specificity of each modification state on protein-binding properties to chromatin 

(Figure 3.7, 3.8, Table 3.1). Notably, none of the modified lysine residues within histones 

investigated in this study demonstrated such a high divergence of protein binding regulated by 

different methylation degrees. The different H3K27 methylation states have been shown to 

localize to different genomic regions, with a greater diversity than H3K9 and H4K20 methylation 

states (Rosenfeld et al., 2009). Contrary to H3K9 methylation, not a single factor was found to 

be regulated by all three methylation states of H3KC27 (Figure 3.13 A). An overlap of 

significantly regulated proteins was observed only between two of the H3K27 methylation states 

(Figure 3.13 A). The three factors, LGALS7, PFN1 and TKT were significantly affected by 

H3KC27me1 and H3KC27me2 and displayed an opposed binding profile to chromatin. All three 

were significantly repelled from binding to H3KC27me1-modified chromatin while H3KC27me2 

significantly recruited these proteins (Table 3.1). JADE2 and the protein PRC1 also showed an 

opposed binding to chromatin in the context of different H3K27 methylation states. I also 

observed PHF1, AEBP2, EPPK1 and G2E3, to exhibit an opposed binding profile, thus, recruited 

and depleted from binding by two different H3K27 methylation states (Table 3.1). 

 

Mono- and tri-methylation of H4K20 

 

For H4K20 only mono- and tri-methylation states were investigated. Significantly regulated 

proteins of both modification degrees showed a high divergence (Figure 3.9, Table 3.1). An 

overlap was observed for only three factors, including ANKRD12, BRCA1 and BARD1 (Figure 

3.13 B). All three proteins were excluded from binding independently of the H4K20 methylation 

state investigated.  
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Taken together, only a small set of common factors was observed to show the same binding 

profile to chromatin containing different modification degrees of a certain methylation site. The 

H3K9 methylation degrees showed an exceptionally high overlap of factors regulated the same 

way (Figure 3.12 A, Table 3.1). At least 70 % of H3K9me1 and of H3K9me2 regulated proteins 

were found to display the same binding profile as to H3K9me3. These findings suggest a 

functional link between the lower modification states and H3K9me3.  

In contrast, diverse examples of proteins affected by the modification degrees of H3K27 and 

H4K20 highlighted the varying effect methylation degrees can have on the regulation of 

chromatin-binding interactomes that was not given for the H3K9 methylation states.  

 

 

Figure 3.13 Overlap of significant proteins regulated by different methylation states.  
A) Venn diagram of proteins significantly regulated by mono-, di- and tri-methylation of H3KC27. B) Venn 
diagram of proteins significantly regulated by H4K20me1 and H4K20me3.  

 

3.3.3 Two chromatin modifications in trans do not only constitute the sum of their single 

counterparts but demonstrate an independent impact on chromatin-binding interactomes 

 

Crosstalk between histone modifications is referred to as the influence one modification has on 

the biological impact of a second one. It is mainly observed between two chemical modifications, 

resulting in changed chromatin-binding properties for a limited number of factors (Lee et al., 

2010). 

I hypothesized that crosstalk of two modifications does not only affect individual proteins but 

changes chromatin-binding properties of proteins on larger scale. Thus, I assumed that 
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chromatin modification crosstalk is a process of its own functional significance that extends the 

variety of chromatin regulating mechanisms.  

In order to investigate chromatin modification crosstalk I extended the approach and applied 

ChAP by combining two posttranslational chromatin modifications. On one end I incorporated 

two modifications in trans, i.e. on different histones within one nucleosome. To this end we 

investigated the communication between modifications of H3 and H4. On the other end, I 

analyzed crosstalk between histone PTMs and DNA methylation in the context of chromatin 

arrays. 

 

3.3.3.1 Chromatin arrays carrying a combination of H3K9me3 and H4K20me3 result in a specific 

protein interactome  

 

To take advantage of the possibilities provided by the oligonucleosomal arrays I decided to 

investigate histone modification crosstalk between H3 and H4. Crosstalk in trans cannot be 

investigated using modified N-terminal peptides of histones, as it requires a nucleosomal 

context. Such analyses have not been done before on a proteomic scale. The combination of 

H3K9me3 and H4K20me3 was chosen as these modifications co-localize in pericentric 

heterochromatin in vivo and seem to be functionally linked (Mikkelsen et al., 2007; Schotta et al., 

2004; Sims et al., 2006).  

Performing ChAP using chromatin arrays carrying both modifications, H3K9me3 and H4K20me3 

in combination (H3K9me3|H4K20me3), resulted in a protein interactome displaying 18 factors 

significantly enriched and 39 factors significantly repelled from binding to chromatin (Figure 3.14 

A, Table 3.1). Interestingly, the interactome of the double modification was not just the sum or 

the average of the interactomes obtained with the individual modifications H3K9me3 and 

H4K20me3 (Figure 3.14 B). While all proteins specifically recruited by the double modification 

were also specifically recruited by at least one of the individual modifications, 

H3K9me3|H4K20me3 had a strong impact on exclusion of protein binding to chromatin. Here, 

overlapping proteins excluded from binding by H3K9me3|H4K20me3 and the individual 

modifications were rare and in fact only represented 5.1% of all excluded proteins. Thus, most 

factors excluded by the double modification were uniquely depleted from binding to chromatin 

only in presence of both, H3K9me3 and H4K20me3. 

STRING analysis indicated that proteins repelled from binding to H3K9me3|H4K20me3 

essentially clustered in four main protein complexes (Figure 3.14 C). Five members of the septin 

complex, four members of the HBO1 complex, responsible for the bulk of histone H4 acetylation, 

at least seven factors involved in splicing as well as several components of the BRCA1-A 

complex were identified. Interestingly, the components of the BRCA1-A complex, BARD1 and 

BRCA1, had been found to be excluded from binding to H4K20me3 as well (3.9 D, lower panel, 
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Table 3.1). These proteins are located in the background of the H3K9me3 interactome. In 

contrast, the members of the septin complex were significantly enriched by H3K9me3-modified 

chromatin (3.6 B, Table 3.1), demonstrating an opposed binding profile in the context of the 

double modification. These findings motivated me to investigate the binding profiles of proteins 

affected by all three modification states in more detail.  

 

 

Figure 3.14 Protein-binding interactome of H3K9me3|H4K20me3-modified chromatin.  
A) H3K9me3|H4K20me3 interactome. Proteins are plotted by their log2 SILAC ratios of the forward 
experiment on the x-axis and the reverse experiment on the y-axis. Significantly recruited and depleted 
proteins are colored in blue. False positive proteins are marked in black. B) Venn diagram of factors 
significantly regulated by H3K9me3, H4K20me3 and H3K9me3|H4K20me3. C) STRING protein-protein 
interaction network of proteins significantly depleted from binding to H3K9me3|H4K20me3 chromatin. 

 

3.3.3.2 The double modification H3K9me3|H4K20me3 indicates positive and negative crosstalk 

 

The communication between different chemical chromatin modifications can occur on several 

levels. A modification can either promote or prevent the addition or the removal of a second 

modification. Furthermore, a modification can promote or prevent functional properties of a 
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second modification, e.g. the promotion or blockage of protein binding to chromatin and thereby 

functional consequences associated with these proteins.  

The latter I investigated in the context of H3K9me3 and H4K20me3. Potential crosstalk was 

addressed by comparing the protein-binding profiles affected by the single modifications to the 

binding profile obtained with H3K9me3|H4K20me3. I started with proteins found to be 

significantly recruited or excluded from binding to the three different chromatin species (Table 

3.1).  

Considering only proteins significantly recruited by H3K9me3|H4K20me3 I found all proteins 

recruited by at least one of the single modifications as well (Figure 3.15 A). This finding 

suggested that protein recruitment in the context of H3K9me3 and H4K20me3 is defined by the 

presence of the individual modifications. The combination of both PTMs had no effect on protein 

recruitment independent H3K9me3 and H4K20me3.  

Next, proteins significantly excluded from H3K9me3|H4K20me3 were compared to proteins 

excluded by the single modifications (Figure 3.15 B). Surprisingly, only 2 of the factors excluded 

by H3K9me3|H4K20me3 were also found to be excluded by one of the single modifications, in 

fact by H4K20me3.  

When comparing H3K9me3|H4K20me3 excluded factors to significantly enriched factors of the 

two single modifications I found an overlap of 7 proteins (Figure 3.15 C). USP3, RAD51AP1 and 

EIF5 were recruited to both single modifications. Additionally, the members of the septin 

complex recruited by H3K9me3 were excluded by the double modification. These findings show 

for the first time that the presence of two modifications in trans result in an inverse binding 

pattern of proteins to chromatin. The combination of both PTMs had an opposing effect on 

protein binding in comparison to the individual modifications, H3K9me3 and H4K20me3. 

 

I was wondering whether this effect was limited to a small number of H3K9me3|H4K20me3 

excluded proteins. Therefore, I compared the SILAC ratios of all H3K9me3|H4K20me3 

significantly excluded proteins with proteins identified in the experiments of H3K9me3- and 

H4K20me3-modified chromatin (Figure 3.16 A). Indeed, 32 of H3K9me3|H4K20me3 significantly 

excluded factors displayed an opposed binding affinity to chromatin compared to the individual 

modifications, indicating negative crosstalk between H3K9me3 and H4K20me3. 

 

So far I only considered proteins that were significantly affected by the modifications. As I found 

proteins opposingly regulated by the double modification I was questioning whether this effect is 

limited to proteins excluded from binding. Proteins significantly recruited to 

H3K9me3|H4K20me3 showed no crosstalk. Therefore, I decided to extend the analysis and 

included proteins displaying an H/L ratio larger than log2 1.5 in the H3K9me3|H4K20me3 

dataset. These proteins were not significantly recruited to the double modification but showed an 
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increased affinity to the modified chromatin arrays. 18 of these proteins displayed opposed 

binding compared to the single modifications (Figure 3.16 B), indicating also positive crosstalk 

between H3K9me3 and H4K20me3. Notably, almost all factors affected are in association with 

transcriptional activity, such as the DNA-directed RNA polymerase III subunits and the 

transcription factors NFIA and NFIC.  

 

 

Figure 3.15 Comparison of significant protein binding to chromatin affected by H3K9me3, 
H4K20me3 and H3K9me3|H4K20me3.  
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A) Venn diagram of proteins recruited to chromatin by all three modification states. B) Venn diagram of 
proteins excluded from binding to chromatin by all three modification states. C) Venn diagram of proteins 
significantly recruited to H3K9me3 and H4K20me3 and excluded from binding to H3K9me3|H4K20me3 
chromatin. 

 

Taken together, the data showed three effects of H3K9me3 and H4K20me3 crosstalk. In the first 

category, the double modification had “no effect” on protein binding. “No effect” refers to the 

finding that the protein-binding properties were similar over all three modification patterns. In the 

second category, negative crosstalk between H3K9me3 and H4K20me3 was observed. 

Negative crosstalk was defined as decreased protein-binding affinities in the context of the 

double modification but enriched affinities with individual modifications. In the third category, 

H3K9me3 and H4K20me3 showed positive crosstalk. Positive crosstalk was given when the 

double modification displayed increased protein-binding affinities, while the individual 

modifications displayed decreased binding affinities.  

 

3.3.3.3 Communication of histone and DNA modifications is indicated by positive and negative 

crosstalk 

 

In many model organisms DNA methylation and histone PTMs have been found to be linked (Du 

et al., 2015) in the context of co-localization at certain chromatin regions, but also in terms of 

crosstalk. This made the combination of H3K9me3 and meCpG attractive to prove, whether the 

crosstalk observed between H3 and H4 is also given in the context of further combinations, i.e. 

DNA methylation and posttranslational histone modifications.  

 

The analysis of the meCpG protein-binding interactome revealed an overlap of factors also 

significantly affected by the H3K9me3 interactome (3.17 B, Table 3.1). It appeared that a set of 

nine proteins is similarly regulated by H3K9me3 and meCpG, suggesting that these two 

modifications may be involved in the same regulation pathways. This argument was in 

agreement with a strong association between these chromatin modifications described in the 

literature (Du et al., 2015; Fuks et al., 2003; Lehnertz et al., 2003; Liu et al., 2013).  

 

In consequence, I wanted to characterize in more detail, how the combination of both, histone 

posttranslational modifications and DNA methylation, regulates the chromatin-binding 

interactome. I wanted to investigate potential crosstalk, as seen with the combinatorial readout 

of H3 and H4 methylation. Therefore, ChAP experiments were performed using 

oligonucleosomal arrays carrying both H3K9me3 and CpG-methylated DNA.  
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Figure 3.16 Crosstalk between H3K9me3 and H4K20me3.  
A) Negative crosstalk between H3K9me3 and H4K20me3. Log2 scaled SILAC ratios of proteins 
significantly repelled from binding and displaying negative crosstalk are indicated on the y-axis. There 
gene names are indicated on the x-axis. B) Positive crosstalk affected by H3K9me3 and H4K20me3. 
Proteins displaying an H/L ratio larger than log2 1.5 in the dataset of the double modification and 
displaying positive crosstalk are plotted as described in A). 
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The protein-binding interactome obtained from ChAP using chromatin arrays carrying both 

modifications, H3K9me3 and meCpG, in combination (H3K9me3|meCpG), displayed 7 factors 

significantly excluded from binding to chromatin but no factors significantly recruited (Figure 3.17 

A, Table 3.1). The comparison of significantly affected proteins of all three datasets, H3K9me3, 

meCpG and the combination of both modifications, revealed an overlap of one factor, CDK2AP1, 

which was recruited to meCpG-modified chromatin and excluded from binding to 

H3K9me3|meCpG-modified chromatin (Figure 3.17 B). The opposed binding behavior to 

chromatin indicated negative crosstalk between meCpG and H3K9me3.  

Despite the results of the significance test, an unusual high number of proteins displayed a 

higher affinity to H3K9me3|meCpG than to unmodified chromatin arrays, whereas the number of 

depleted proteins was similar to other ChAP-MS experiments (Figure 3.17 A). The possibility 

that this effect resulted from experimental variability is low, as only proteins displaying an 

increased H/L ratio are affected in both replicates. The high number of recruited proteins shifted 

the overall distribution towards high H/L ratios (Figure 3.17 A). With this large number of 

enriched proteins significant outliers could not be determined by the described significance test 

(section 3.2). However, considering the increased H/L ratios of both replicates, 

H3K9me3|meCpG-modified chromatin clearly displayed an impact on binding of a very large 

number of proteins to chromatin.  

 

 

Figure 3.17 Chromatin-binding interactome of H3K9me3|meCpG in comparison to the individual 
modifications.  
A) H3K9me3|meCpG interactome. Protein enrichment ratios are plotted as described in figure 3.14 A. B) 
Venn diagram of proteins significantly regulated by H3K9me3, CpG-methylated DNA and 
H3K9me3|meCpG-modified chromatin.  
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The combinatorial readout of H3K9me3|meCpG has already been performed in the context of 

mononucleosomes (Bartke et al., 2010). In comparison to the interactome revealed with 

chromatin arrays no overlap of significantly excluded factors was observed. Considering the 40 

factors displaying the strongest enrichment to H3K9me3|meCpG chromatin and comparing 

these to the factors enriched with H3K9me3|meCpG mononucleosomes, an overlap of five 

factors was observed, namely UHRF1, CBX3, MBD2, MTA2 and CHD4. All five proteins have 

been shown to be enriched by at least one of the single modifications in the context of chromatin 

arrays as well.  

 

In order to investigate positive and negative crosstalk I extended the analysis to proteins that 

showed no significance but increased and decreased binding affinities to H3K9me3|meCpG. 

Thus, all proteins displaying an H/L ratio larger than log2 3.5 and smaller than log2 -2 in the 

H3K9me3|meCpG dataset were included in the analysis. 

Next to CDK2AP1, I found 14 more proteins showing a decreased binding affinity to 

H3K9me3|meCpG and an increased affinity to at least one of the individual modifications (Figure 

3.18 A). The binding profiles of these proteins indicated negative crosstalk between H3K9me3 

and meCpG. These proteins included USP3 and UBTF, which displayed negative crosstalk 

between both, H3K9me3 and meCpG and also H3K9me3 and H4K20me3. Other proteins 

affected were NUMA1, a component of the nuclear matrix, CENPF, which is involved in 

kinetochore function and chromosome segregation, the histone acetyltransferase KAT7 and the 

nucleolar protein NCL. 

CpG-methylated DNA and H3K9me3 also showed positive crosstalk (Figure 3.18 B). The 

majority of affected factors are known to promote transcriptional activity. Interestingly, there was 

an overlap of 5 factors that displayed positive crosstalk between H3K9me3 and H4K20me3 as 

well. NFIA, NFIC, PRDM10 and the polymerase subunits POLR3A and POLR3H showed 

positive crosstalk between both investigated combinations of chromatin modifications. 

Additionally, three components of the chromatin remodeling complex INO80 and several 

transcription factors showed positive crosstalk in presence of H3K9me3 and methylated DNA. 
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Figure 3.18 Crosstalk of H3K9me3 and CpG-methylated DNA.  
A) Negative crosstalk of H3K9me3 and meCpG. Log2 SILAC ratios are plotted on the y-axis. Gene names 
are plotted on the x-axis. Proteins with a SILAC ratio less than log2 -2 were considered for the analysis. B) 
Positive crosstalk of H3K9me3 and meCpG. SILAC ratios and gene names were plotted as described for 
A). Proteins with a SILAC ratio greater than log2 3.5 were considered for the analysis. 
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3.4 Annotation analysis functionally correlates chromatin marks  

 

High resolution maps based on genome wide analyses of chemical chromatin modifications 

provided insights into the distribution of these marks (Barski et al., 2007; Mikkelsen et al., 2007; 

Wang et al., 2008). Distinct modification patterns have been shown to correlate with certain 

chromatin states, leading to the assumption that a functional correlation between modifications 

exists. To investigate a functional correlation of chromatin modifications based on the protein 

interactomes (3.3), I applied gene annotation enrichment analyses. These analyses resulted in 

identification of overrepresented biological processes and functions related to individual 

chromatin modification marks. 

 

As general strategy, significantly enriched and repelled proteins of a certain modification mark, 

introduced in chapter 3.3, were considered individually for gene annotation enrichment analyses. 

Gene names were mapped to associated biological annotations using the functional annotation 

chart of the online software package DAVID (Huang da et al., 2009a, b). Results represented in 

the following chapter were obtained by using default statistic parameters of DAVID with the 

exception of the EASE score (enrichment) cutoff that was set to 0.05 to increase stringency. 

Annotation categories included in these analyses were GO terms for molecular functions (MF) 

and biological pathways. For the annotation of cellular pathways, the databases 

Panther_Pathways, KEGG_Pathway, BBID, Biocarta and Reactome_Pathway were screened. 

GO term annotation MF was performed including all terms. For each annotation term category 

two output lists per modification state were generated. One list of enriched annotation terms for 

recruited proteins (↑) and one for proteins excluded from binding (↓). Terms were only 

considered for enrichment analysis when at least two genes were assigned to a particular 

annotation term. Only significantly enriched annotation terms (matching the EASE score) were 

included in further analyses. 

To enable global comparison of individual modification marks, the enriched annotation terms of 

recruited and depleted proteins of each chromatin modification mark were correlated by 

determining Pearson product-moment correlation coefficients (Pearson correlation coefficient). 

Modification marks showing a strong linear association of P-values of annotated terms displayed 

a high correlation coefficient. To compare annotated terms that were not enriched in each 

dataset missing P-values were set to 1. 

 

Correlation coefficients obtained for enriched biological pathways are displayed in a heat map 

(Figure 3.19 A). Three clusters of strong correlation between modification states were observed. 

The largest cluster includes the datasets of recruited proteins of H3K9me3, H4K20me3, 

H3KC27me3 and H3K9me3|H4K20me3, indicating a comparable impact on biological functions. 
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All four chromatin modification marks have been shown to co-localize to pericentric 

heterochromatic regions and to be absent from transcriptionally active chromatin (Barski et al., 

2007; Wang et al., 2008). Thus, functional similarities between these modifications might trigger 

related biological outcomes.  

A second cluster of correlation coefficients was obtained for enriched biological pathways for the 

datasets of H3K9me3 and H3KC27me2 depleted and H4R3me2 recruited proteins (Figure 3.19 

A). These findings were additionally supported by a strong correlation of H3K9me3 and 

H3KC27me2 depleted and H4R3me2 recruited proteins by annotation enrichment analyses of 

GO terms of MF (Figure 3.19 B). The results clearly indicated an antagonistic regulation of 

biological functions impacted by these modification marks. These biological functions are 

depleted by H3K9me3- and H3KC27me2-modified chromatin and given with H4R3me2-modified 

chromatin. On the individual protein level, I found several DNA-dependent RNA polymerase 

subunits excluded from binding to H3K9me3- and H3KC27me2-modified chromatin, while they 

were recruited by H4R3me2, suggesting transcriptional activity of chromatin regions marked with 

H4R3me2.  

Another antagonistic regulation is highlighted by the third cluster of correlation coefficients 

obtained for enriched biological pathways of proteins recruited to chromatin modified at 

H3KC27me2 but depleted from binding to H3K9me3|H4K20me3 and H4K20me1 (Figure 3.19 A). 

All datasets were connected to the spliceosome, with the particularity that H3KC27me2 attracted, 

while the presence of H3K9me3|H4K20me3 and H4K20me1 excluded spliceosomal activity. 

This was attributed to the binding properties of several spliceosome associated factors that were 

shown to be opposingly regulated by H3KC27me2 compared to H3K9me3|H4K20me3 and 

H4K20me1 (section 3.3).  

 

Correlation of P-values obtained from annotation term enrichment of GO terms MF pointed to a 

relation between the datasets of H4K20me1 recruited factors and factors depleted from binding 

to chromatin by H3K9me1/-me2, H3KC27me1/-me2 and H4K20me3 (Figure 3.19 B). These data 

suggested an antagonistic regulation of biological functions of H4K20me1 in comparison to the 

mono-methylation states of H3K9 and H3K27, which is surprising as they have been shown to 

be located at the same type of genomic regions (Barski et al., 2007; Mikkelsen et al., 2007; 

Rosenfeld et al., 2009; Wang et al., 2008). The correlation of opposed binding profiles of 

proteins to chromatin of H4K20me1 and the modifications H3K9me2, H3KC27me2 and 

H4K20me3 in contrast, is in agreement with previous findings. In genome wide distribution 

profiles H4K20me1 had its significance at transcriptional active sites whereas H3K9me2, 

H3KC27me2 and H4K20me3 accumulated at transcriptionally silenced regions (Barski et al., 

2007; Mikkelsen et al., 2007; Rosenfeld et al., 2009; Wang et al., 2008).  
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Figure 3.19 Annotation enrichment analyses of biological pathways and GO terms of molecular 
functions.  
Significantly enriched (↑) and repelled proteins (↓) of all investigated chromatin modifications (section 3.3) 
were included in the analyses. Protein lists (enriched or excluded) resulted from the respective 
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modification states were applied to annotation term enrichment analysis. P-values of enriched annotation 
terms resulted from the modified Fisher's exact test performed by DAVID (Huang da et al., 2009a, b) were 
taken as input for calculation and visualization of Pearson correlation coefficients. P-values of annotated 
terms that displayed no significance were set to 1. A) Pearson correlation coefficients (Corr) of enriched 
pathway terms annotated to proteins recruited and excluded from binding to modified chromatin are listed 
on the y- and x-axis. Positive correlation is indicated in red shades while negative correlation is indicated 
in blue shades. B) Pearson correlation coefficients of enriched GO terms of molecular functions. Data are 
represented as described for A. 

 

Notably, for both datasets of meCpG, proteins recruited and excluded from binding to chromatin, 

displayed a strong correlation (Figure 3.19 B). The functional classification of meCpG is still 

controversial. In recent years, more and more evidence has accumulated that connects 

methylated DNA with transcriptional activity (Hu et al., 2013; Jin et al., 2012; Wu et al., 2010). 

However, meCpG has been mainly correlated with transcriptional inactivity (Breiling and Lyko, 

2015). In my analyses, proteins depleted as well as recruited to meCpG-modified chromatin 

were associated with similar biological functions, supporting a role for methylated DNA in the 

context of transcriptional activation as well as repression.  

 

In summary, the results of gene annotation enrichment analyses of different modification 

patterns, based on significantly enriched and depleted proteins, suggested four groups of 

functionally related modification patterns. H3K9me3, H4K20me3, H3KC27me3 and the double 

modification H3K9me3|H4K20me3 showed a strong correlation in the context of annotated 

pathway terms, suggesting a functional link between these modifications. Furthermore, the 

analyses indicated an opposing functional background for H4R3me2 compared to H3K9me3 and 

H3KC27me2. The fact that H3K9me3 and H3KC27me2 are associated with transcriptional 

inactivity and that H4R3me2 recruited several subunits of the polymerase (Table 3.1) strongly 

indicates that H4R3me2 is associated with transcriptional activity. The correlation analyses of 

enriched annotated terms also implied that H4K20me1 impacts protein binding to chromatin and 

associated functionalities opposed to H3KC27me2. This finding is based on the inverse 

regulation of binding properties of spliceosomal factors (Table 3.1, Figure 3.7 E, upper panel, 

Figure 3.9 B, lower panel). Next to H3KC27me2, also H3K9me1/-me2, H3KC27me1 and 

H4K20me3 seem to trigger opposed biological functions than H4K20me1. A last group of 

modifications that seemed to be functionally linked, constituted H3K9me1/-me2, H4K20me3 and 

to a lesser extend meCpG. These modification states showed a correlation of terms annotated to 

proteins that were significantly depleted from binding to chromatin.  
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3.5 Protein-protein cross-linking of the chromatin-binding interactome  

 

My results to that point demonstrated that chromatin affinity purification coupled to mass 

spectrometry is a powerful method for the identification of chromatin-associated factors. It allows 

determination of chromatin-binding interactomes in the context of different chromatin 

modifications and combinations thereof. The method allows studying the impact of chromatin 

modification patterns on recruitment and exclusion of protein binding to chromatin in addition to 

crosstalk effects of modifications (3.3). Yet, the approach does not provide information about 

factors that primarily bind to chromatin and factors that piggypack on other factors for 

association. To address the hierarchical binding pattern of chromatin-associated proteins we 

extended ChAP-MS by protein-protein cross-linking of the chromatin-binding interactome. A 

workflow combining ChAP, chemical cross-linking and mass spectrometry was established. This 

allowed the mapping of specific protein-protein interaction sites and thereby providing structural 

information of binding patterns of chromatin-associated factors and multi protein complexes. 

 

3.5.1 Protein-protein cross-linking on assembled chromatin arrays 

 

To identify physical interaction sites of specific chromatin-associated factors chemical cross-

linking was applied. Chemical cross-linking results in permanent connections of protein 

interaction sites. Thus, proteins assembled in a non-covalent complex that are in close proximity, 

spanning the reach of the cross-linker, can be covalently linked.  

In this study we used bis(sulfosuccinimidyl) suberate (BS3), a chemical cross-linker with a 

spacer arm length of 11.4 Å. It is a homobifunctional cross-linker that reacts with primary amines 

in the side chains of lysine (K) residues and the N-terminus of polypeptide chains resulting in 

stable amide bonds (Sinz, 2006). The appropriate BS3 concentration for efficient cross-linking 

was determined by titrating the cross-linker to affinity purified protein complexes bound to 

recombinant chromatin arrays (M. Nikolov, MPI-bpc). We used a concentration of 200 µM BS3 

to sufficiently cross-link specific chromatin-binding interactomes.  
 

The complete workflow established for cross-linking of chromatin-binding interactomes is 

summarized in figure 3.20. Briefly, specific chromatin-binding interactomes were obtained by 

ChAP. Biotin-tagged 12mer chromatin arrays were assembled as described before and validated 

for sufficient saturation levels (Figure 3.21). The ChAP workflow was extended by the addition of 

BS3 during affinity purification. Cross-linking was found to be most efficient when a small 

concentration of BS3 (20 µM) was already added to the pull down while chromatin arrays were 

still incubated with nuclear extract. The specific chromatin-binding interactomes were cross-
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linked after protein-bound chromatin arrays were separated from nuclear extract and unspecific 

bound proteins were washed away. 

 

 

Figure 3.20 General workflow of protein-protein cross-link coupled with ChAP-MS.  
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An important step of the purification procedure is the removal of proteins cross-linked to 

streptavidin of the magnetic beats used for the chromatin pull-down. To exclude such cross-links 

and cross-links occurring between the streptavidin beads themselves from the analysis, the 

cross-linked chromatin-binding interactome was separated from magnetic beats. Therefore, the 

biotin-tagged DNA of the chromatin arrays was degraded by the nuclease benzonase resulting 

in the release of histone octamers and associated proteins from magnetic beads.  

 

I prepared a negative control that allowed direct comparison of cross-linked with non-cross-

linked samples, to prove that ChAP coupled with cross-linking enabled efficient and specific 

cross-linking on-beads of chromatin-associated proteins (Figure 3.22). 

 

 
Figure 3.21 Quality control of reconstituted nucleosomal arrays.  
(A) Agarose gel electrophoresis of free DNA and reconstituted nucleosomal 12mer arrays. (B) AvaI 
digestion of nucleosomal 12mer arrays shown in (A). The saturation level of the nucleosomal arrays is 
above 90%. M defines the DNA size marker. 

 

The identification of cross-links from complex protein mixtures is challenging since cross-linked 

species are underrepresented. Therefore, it is necessary to reduce the complexity of the sample 

and enrich for cross-linked species before mass spectrometric measurements.  

Separation of cross-linked and non-cross-linked species was performed by size exclusion 

chromatography (SEC) on the protein as well as on the peptide level. On the protein level, SEC 

elution profiles monitored by UV absorption at 215 nm featured 6 peaks (Figure 3.22 A, left 

panel). The protein mixture of chromatin associated factors was separated and several fractions 

were pooled according to eluted peaks. Cross-linked proteins eluted within the first three peaks 

from the column, visible by SDS-PAGE and Western blot analysis (Figure 3.22 A, middle and 

right panel). The analysis of elution fractions by SDS-PAGE validated the separation of proteins
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according to their size and indicated the presence of large protein aggregates by a diffuse 

separation pattern of proteins (Figure 3.22 A, middle panel). The success of cross-linking was 

additionally demonstrated by upwards shifted signals of histone H3 as detected by Western blot 

analysis using an antibody against H3 (Figure 3.22 A, right panel). Fractions comprised of cross-

linked material were used for further analyses. Proteins were digested in-solution using the 

protease trypsin.  

 

 

Figure 3.22 Enrichment for protein-protein cross-links by size exclusion chromatography (SEC).  
Elution profiles (monitored by UV absorption) of proteins associated with unmodified chromatin that were 
separated according to their size using a Superdex 200 column (left panel). The protein contents of 
displayed peaks were analyzed by SDS-PAGE (middle panel) and Western blot analysis using apolyclonal 
α-H3 antibody (right panel). SDS-PAGE gels were stained with silver nitrate. Mw defines the molecular 
weight marker. (A) BS3 treated chromatin-associated proteins. (B) Negative control. All experimental 
steps of the negative control were performed equally to the cross-link experiment but the sample was not 
treated with BS3.  
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The negative control displayed a similar elution profile. Proteins started to elute with a shift of 0.1 

ml (Figure 3.22 B, left panel), indicating larger protein complexes in the cross-linked samples. 

Elution fractions were pooled according to the cross-linked experiment (Figure 3.22 A, left 

panel).  

 

The cross-linked protein samples treated with proteases were composed of three 

subpopulations of peptides, (i) cross-linked peptides, (ii) single peptide chains and (iii) non-

cross-linked peptides. Single peptide chains can either be linked to a cross-linker reacted with 

water or ammonia (mono-links) or with a cross-linker that reacted with both ends of the same 

peptide (loop cross-links). Cross-linked peptides can occur as intramolecular bonds within one 

protein molecule (intra-cross-links) or as intermolecular bonds between two different protein 

molecules (inter-cross-links) (Figure 3.23 B) that are able to create high-molecular weight 

aggregates (Tran et al., 2016). Leitner and colleagues demonstrated that SEC at the peptide 

level of samples treated with cross-linkers facilitates the identification of cross-linked peptides by 

MS (Leitner et al., 2012). To ensure comprehensive detection of cross-linked peptides by MS, 

trypsinized protein mixtures were enriched for cross-linked peptides by another SEC step. The 

elution of peptides started with the void volume, indicating the presence of large peptides and 

the separation of cross-linked peptide aggregates from smaller peptide species. Elution fractions 

were pooled according to eluted peaks. Each of the resulting samples was analyzed by LC- 

MS/MS on a QExactive mass spectrometer. The majority of cross-linked peptides identified in 

the samples resulted from the first two peaks of the elution profile, additionally indicating a 

successful separation of cross-linked and non-cross-linked peptide species. 

 

 

Figure 3.23 Chemical cross-links of peptides using the cross-linker BS3.  
A) Chemical structure of bis(sulfosuccinimidyl) suberate (BS3). B) Cross-linked peptide species that can 
be obtained from proteolysis of cross-linked proteins (adapted from (Tran et al., 2016)). 
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3.5.2 Protein-protein cross-links of complex protein samples are specifically detected by the 

search algorithm pLink in combination with a reference database 

 

One of the major challenges in XL-MS is the identification of cross-linked peptides and proteins. 

The main reason is due to the fact that obtained MS spectra do not correspond to one peptide 

but to all possible combinations of a cross-linked peptide pair. The consequence is a dramatic 

increase of the database used for the search associated with increased risk of random 

assignments and higher false discovery rates. These increases are exponential with the number 

of proteins included for the search. Thus, it is necessary to determine those proteins having a 

high probability to be detected in the search. These proteins will constitute the reference 

database.  

 

To define a specific database, protein identification from MS measurements, were obtained 

using the MaxQuant software (Cox and Mann, 2008; Cox et al., 2011). Only proteins detected by 

at least 3 “razor and unique peptides” were included. The most abundant proteins were 

determined by dividing the number of detected peptide counts by their molecular weight.  

To increase specificity of cross-link identification a FDR of 0.01 was set for the search using the 

pLink software (Purcell et al., 2007).  

To test the specificity of protein-protein cross-link identification using pLink, I applied the 

algorithm to the mass spectra obtained from the negative control that should not show any 

cross-links. In total three pLink analyses were done, each time using a reference database 

including either the most 100 abundant proteins, the most 150 or all proteins identified in the 

sample. Depending on the size of the reverence database that was used between 13 and 21 

cross-links were identified. Three of those cross-links were also found to be positive 

identifications in the cross-linked sample and were excluded from further analysis. As the 

restriction settings for the detection of cross-linked peptides in combination with purification and 

enrichment strategies still included the identification of false positives the filtering stringency for 

the dataset was increased. 

Therefore, the median of the pLink scores of all spectra that were identified for the negative 

control was determined. Spectra identified for the cross-linked samples displaying a score less 

than this median were excluded from further analyses. In total I found 0.6% false positive 

spectra that had to be excluded from further analysis. As the interest of investigation was 

focused on the identification of the binding hierarchy of proteins associated with chromatin, 

ambiguous spectra were generally excluded from analyses.  

To further validate the specificity of cross-links I mapped the identified intra-cross-links of 

proteins against available crystal structures. The spacer arm of BS3 is 11.4-Å long. Lysines have 

a flexible side chain of 6-Å. Therefore, the two Cα atoms of specifically cross-linked lysines 
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should be within a 24-Å distance. I selected the proteins Poly [ADP-ribose] polymerase 1 

(PARP1) and DNA topoisomerase 2-alpha (TOP2A) from the dataset as they displayed several 

intra-cross-links and for both proteins crystal structures were available. 

Using the Xlink Analyzer software (Kosinski et al., 2015; Pettersen et al., 2004) cross-links of 

PARP1 were mapped to the crystal structure of PARP1 with the PDB code 4DQY (Langelier et 

al., 2012). The crystal structure includes the amino acid sequences 6-91, 224-359, 531-575, 

584-644, and 662-761. Hence, only 5 out of 20 cross-links could be mapped to the structure. All 

5 cross links displayed a distance below 24-Å (Figure 3.24 A) validating the specificity of the 

detected cross-links. The same analysis was performed with the identified intra-cross-links of the 

human DNA topoisomerase 2-alpha (TOP2A), using the 2.9-Å resolution structure with the PDB 

code 4FM9 (Wendorff et al., 2012). This structure includes the amino acid sequences 433-1092 

and 1124-1190 of the protein. Here, 5 out of 13 cross-links could be mapped. Only one cross-

link featured a distance longer than 24-Å (33-Å). This cross-link is spanning the DNA-binding 

domain (Figure 3.24 B), which might be conformationally changed when TOP2A is not bound to 

DNA. Both, PARP1 and TOP2A are DNA-binding proteins (Figure 3.24) but have been identified 

to be cross-linked to proteins that themselves are directly cross-linked to one of the histones of 

the histone octamer (Figure 3.26 A).  

 

 

Figure 3.24 Protein-protein cross-links in the context of three-dimensional protein structures.  
Identified intra-cross-links of Poly [ADP-ribose] polymerase 1 (PARP1) and DNA topoisomerase 2-alpha 
(TOP2A) were mapped to corresponding crystal structures using the Xlink Analyzer software (Kosinski et 
al., 2015; Pettersen et al., 2004). The tertiary protein structure is shown in purple. Cross-links are 
represented as blue bars when the distance is below 24-Å and in red when the distance is more than 24-
Å. DNA bound by the protein is indicated by a golden alpha helix surrounding the sugar backbone in blue. 
A) Crystal structure of human PARP1 (PDB code 4DQY (Langelier et al., 2012)) demonstrating the 
position of all identified cross-links corresponding to the amino acid sequence of the shown structure. B) 
2.9-Å resolution structure of human TOP2A (PDB code 4FM9 (Wendorff et al., 2012)). The position of 
identified cross-links corresponding to the amino acid sequence is shown. 

 



       95           Results 
 

In conclusion, with one exception I could demonstrate that all mapped cross-links lie within a 24-

Å distance, suggesting that these cross-links are specific. The analysis of the negative control in 

parallel enabled the identification of false positive cross-links and therefore reduced the false 

positive rate. With the identification of only 0.6% false positive spectra, that were excluded from 

the dataset, and the mapping of identified cross-links to crystal structures as positive controls, it 

was shown that the stringency of data filtering is sufficient to provide reliable cross-link 

identifications. 

 

3.6 ChAP-MS coupled with XL provides information of the binding hierarchy 

beyond primary binding proteins recruited to chromatin 

 

ChAP-MS in combination with cross-linking was applied to unmodified nucleosomal arrays. For 

each experiment more than 200 protein species were identified. To ensure specificity and 

integrity of cross-link identification three different databases were used for pLink searches. The 

databases either comprised the top 100 abundant proteins, the top 150 or all positive identified 

proteins of one experiment. All together I obtained 1363 spectra with 521 different cross-link 

sites from two biological replicates. 45.7% of all identified cross-links localized to the 

nucleosome core particle. 

 

Protein-protein cross-links of the core nucleosome 

 

238 cross-links were identified within the core nucleosome, annotated in 792 spectra. These 

represented 464 inter- and 328 intra-cross-links. Most of these cross-links were mapped to the 

lysine-rich N-terminal or C-terminal tails of the histones (Figure 3.25 A). These terminal tails of 

the histones are thought to be unstructured, flexible and protrude outwards from the nucleosome 

core particle (Figure 1.1). It is known that the tails interact with the DNA wrapped around the 

nucleosome (Angelov et al., 2001; Mutskov et al., 1998) as well as with acidic patches of 

nucleosomes in close proximity (Davey et al., 2002; Dorigo et al., 2004; Luger et al., 1997). 

Hence, it is very likely that each of the histone tails can be temporarily in close proximity to each 

other.  

As consequence, lysines far apart from each other in the crystal structure of the core 

nucleosome can come in close proximity and therefore can be cross-linked by BS3. This might 

explain that only 57 of all protein-protein cross-links identified within the core nucleosome were 

shorter than 24-Å whereas 174 of the cross-links were longer than 24-Å (Figure 3.25 B). In 

particular for histone H3 many cross-links were observed with a distance above 24-Å. As shown 

in figure 3.25 A cross-links to histone H3 were mainly found within the N-terminus of the protein. 

Similarly, for the histones H2A, H2B and H4 cross-link sites were concentrated within the 
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unstructured domains of the proteins (Figure 3.25 A). Therefore, no conclusion regarding 

structural information can be drawn from the cross-links obtained for the histone octamer. 

 

 

Figure 3.25 Protein-protein cross-link analysis of the core nucleosome.  
A) Cross-links identified for the core nucleosome. The map was created using xiNet (Combe et al., 2015). 
Intra-cross-links are represented by purple lines. Inter-cross-links are colored in green. Red loops indicate 
that the same peptide was cross-linked to itself (multimerization). B) Histogram of cross-link distances of 
all identified cross-links within the four histone proteins mapped onto the crystal structure of the core 
nucleosome (PDB_1KX5 (Davey et al., 2002)) using the Xlink Analyzer software (Kosinski et al., 2015; 
Pettersen et al., 2004). Distances below 24-Å are labelled in blue. Distances longer then 24-Å are colored 
in red.  

 

Protein-protein cross-links of chromatin-associated factors 

 

In order to address the hierarchical binding patterning of chromatin-associated proteins and their 

physical interaction sites all filtered spectra of identified cross-links were uploaded to xiNET 

(Combe et al., 2015). The information of these spectra is summarized in a node-link diagram 

(Figure 3.26 A). 75 proteins were found to be cross-linked. Eight of them displayed only intra-

cross-links, whereas all others exhibit at least one inter-cross-link (Figure 3.26 A). As cross-links 

covalently link proteins in close proximity, it was not surprising that 238 cross-links out of 521 

different cross-link sites were identified within the histone octamer. 18 proteins showed a direct 

physical interaction to at least one of the core histones (Figure 3.26 A). Accordingly, these 

proteins were identified as primary binders to chromatin. A subset of these proteins was found to 

be cross-linked to a second protein. For instance, the protein HP1BP3 was cross-linked to 

histone H3 as well as to SMARCA5. Thus, this approach allowed the identification of secondary 

binders to the core nucleosome, in this case SMARCA5 (Figure 3.26 A). This result clearly 

demonstrate that SMARCA5 can be recruited to chromatin via HP1BP3 when not binding 

directly to chromatin by itself. The same is true for RPL6 and RREB1 as they were also identified 

to be cross-linked to HP1BP3. The protein SMARCA5 itself was cross-linked to a second 

protein, HSPA5, that can be considered as a tertiary binder to the core nucleosome. This protein 

again is connected to a multi subunit complex of proteins identified to be cross-linked to each 

other (Figure 3.26 A). 
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Not all cross-linked proteins could be assigned to one of the core histones. A protein complex of 

SNRNP200, HLTF, DNMT1, KDM2A, BAZ1B and HNRNPC was cross-linked to each other. In 

this case, the connector to chromatin was either not identified or the complex was directly bound 

to DNA via one of the proteins, for instance, such as DNMT1.  

 

To prove that I cross-linked proteins with a biological background to chromatin that show 

expected functional associations, I investigated the 75 proteins identified to be cross-linked 

using the STRING database (Figure 3.26 B). Only six proteins were not included in the protein-

protein map drawn by STRING, verifying the biological association of those proteins. The 

physical interaction sites of the four largest protein complexes of cross-linked proteins (Figure 

3.26 A) were compared to the protein-protein interactions shown by STRING (Figure 3.26 B). 

Altogether, 17 protein-protein interactions overlapped between the two maps (Figure 3.26). For 

instance, the protein-protein interactions between the core histones as well as to histone H1 

proteins have been also predicted by STRING. STRING also showed interactions between 

histone H2A and TOP2A. The complex of UBF1, TOP1, PARP1 and OGT1 was found in both 

maps as well.  

Taken together, I could demonstrate that the established workflow is suitable for (i) identification 

of chromatin associated proteins, (ii) identification of physical interactions between proteins and 

proteins with the nucleosome, (iii) giving insights into the binding hierarchy of chromatin-

associated proteins and their complexes, and (iv) identification of discrete interaction (cross-link) 

sites within proteins.  
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Figure 3.26 Interaction network of cross-linked factors associated with chromatin.  
A) Node-link diagram of identified cross-links of chromatin-associated proteins. The network map was 
drawn in xiNET (Combe et al., 2015). Proteins are indicated by a node while cross-linked partner proteins 
are connected by a straight line between two nodes. Intra-cross-links are indicated by a loop connected to 
the respective node. Core histone proteins are marked in red. A large number of identified cross-links for a 
certain protein pair is roughly indicated by a grey shadow around the connection line between the two 
proteins. B) Protein-protein interaction network of known and predicted protein-protein interactions of the 
set of proteins found to be cross-linked in A. The network was generated by the database STRING 
(Jensen et al., 2009) using the default settings of the database.  
 

 



       99           Discussion 
 

4 Discussion 

 

This study is based on a strategy combining recombinant homogenously modified chromatin 

arrays and quantitative mass spectrometry in order to characterize the protein-binding profiles in 

the context of 12 different histone modification patterns. This thesis work has established 

comprehensive lists of proteins whose binding to nucleosomes is regulated by histone 

modifications specifically found at heterochromatin. The raw proteomic data were analyzed by 

using a statistical approach, which allowed the comparison of different interactomes side by 

side. Conclusions were drawn regarding the biological functions, which are actively regulated by 

histone posttranslational modifications. Furthermore, the approach was extended by the 

incorporation of two different histone modifications in combination. For the first time, the 

crosstalk between one modification on H3 and one on H4 was analyzed on a global scale. Also, 

positive as well as negative crosstalk between histone modifications and methylated DNA was 

investigated. Lastly, a new approach combing chromatin affinity purification, cross-linking and 

mass spectrometry was developed to characterize the hierarchy of physical protein-protein 

interactions within a chromatin-binding interactome.  

 

4.1 Individual chromatin-binding interactomes are comparable based on 

significant enrichment cutoffs 

 

Affinity purification using 12mer chromatin arrays resulted in a high number of recruited proteins. 

In fact, I found between 1,117 and 2,785 proteins associated with chromatin depending on the 

incorporated modification. Most of the proteins were binding to the chromatin arrays 

independently of the histone modification state. To define these modification specific regulated 

factors the binding of proteins to modified and unmodified chromatin arrays were quantitatively 

determined and compared by their relative enrichment levels (SILAC ratio). Proteins significantly 

affected by a modification were identified by applying a statistical scoring function (“significance 

A”) (Cox and Mann, 2008) to the distribution of log SILAC ratios in the corresponding 

experiment. Assuming a symmetric Gaussian distribution of variables (i.e. log SILAC ratios) this 

function calculates and scores the probability that a random individual variable has a defined 

distance from the mean of the distribution, which identifies it as a significant outlier. In average, 

approximately 3.5% of chromatin-bound proteins appeared to be directly affected by a chromatin 

modification. 
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The advantage of this statistical tool is a fold enrichment cutoff calculated based on the protein-

binding properties of each individual experiment. Thus, significantly affected proteins could be 

determined independently of the variations introduced by the many experimental steps during 

sample preparation, stringently required for direct comparison of proteins affected by different 

histone modifications.  

The drawback of this statistical tool is the requirement for a Gaussian distribution with small 

variance. In fact, when the binding properties of a very large number of proteins are affected by 

the underlying chromatin modification the set of SILAC ratios will spread out around the mean of 

the Gaussian distribution. In consequence, even the data indicate a very large number of 

proteins displaying an increased binding affinity to the modified chromatin arrays, no significant 

outlier will be determined.  

Such a case was observed for H3K9me3|meCpG-modified chromatin. More than 30% of 

chromatin-bound proteins appeared to be affected by the double modification. In consequence, 

significant outliers could not be determined. Thus, for the interactome of the double modification 

H3K9m3|meCpG significantly recruited proteins could not be determined, (Figure 3.17 A). 

Hence, proteins recruited to H3K9m3|meCpG chromatin were not comparable to proteins 

significantly impacted by other modification states. 

 

4.2 Interactomics of chromatin-binding proteins provide new insights into the 

functional impact of individual chromatin modifications 

 

The complex language of posttranslational histone modifications is interpreted by proteins 

having reader domains. These histone-interacting domains, by recognizing their target sites, are 

thought to facilitate the recruitment of effector proteins and their connected biological functions 

to specific chromatin loci. The PTMs investigated here have a considerable impact on the 

composition of chromatin-bound proteins in the context of recombinant chromatin arrays. I 

investigated the protein-binding profiles in the context of 10 individual chromatin modifications. 

The first general conclusion from these datasets is the confirmation that PTMs as well as 

methylated DNA, promote and inhibit protein binding to chromatin. Second, independent of the 

methylation site and the degree of methylation, protein recruitment and exclusion from chromatin 

were regulated specifically, as shown by individual chromatin-binding interactomes for each 

modification. Although in the literature all investigated modification states were associated with 

heterochromatin, and therefore to be expected to have a certain overlap in regulated factors and 

functionality, a high diversity of factors was impacted by the different modification states. These 

factors display a limited set of common factors overlapping only partially between the different 

modification states. The observations support the notion of the existence of a histone PTM 
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language, guiding different biological functions, dependent on the underlying chromatin 

modification pattern, to specific genome loci (Jenuwein and Allis, 2001; Strahl and Allis, 2000). 

 

Mono-, di- and tri-methylation of H3K9 

 

The three methylation degrees of H3K9 show a strong contrast in numbers of proteins they 

significantly regulated. Considering all modification patterns investigated, H3K9me3 modulated 

the binding properties of the largest set of proteins. In contrast, H3K9me1/-me2 impacted the 

lowest number of proteins (Table 3.1). The finding indicates that lower methylation degrees of 

H3K9 affect chromatin in a more subtle way, likely regulating a more restricted set of functions.  

At least 70 % of the proteins affected by H3K9me1/-me2 were also affected by H3K9me3 

(Figure 3.12 A), suggesting a functional link between H3K9me1/-me2 and the tri-methylation 

state. The common functions regulated by these modifications might be heterochromatin 

establishment and maintenance. This assumption is supported by the facts that first, the 

methylation degrees of H3K9 are known to be involved in heterochromatin formation and 

maintenance (Loyola et al., 2009; Towbin et al., 2012). Second, in my study I found the well 

characterized human HP1α (CBX5) and the heterochromatic protein UHRF1 to be recruited to 

chromatin by all three modification degrees (Table 3.1). Both proteins have been previously 

shown to bind to the different H3K9 methylation degrees and are primarily involved in 

heterochromatin formation and maintenance (Lachner et al., 2001; Nady et al., 2011).  

Another common feature of the three H3K9 methylation degrees was the significant decrease in 

chromatin binding of transcription factors of the NFI gene family as well as E4F1 (Table 3.1). 

These factors correlated with the regulation pattern of polymerase subunits in the context of 

several modifications (Table 3.1). More precisely, the heterochromatic PTMs H3K9me3, 

H3KC27me2 and H4K20me3 repelled part of these transcription factors together with 

polymerase subunits from binding to chromatin (3.7 E, lower panel and 3.9 D, lower panel) 

whereas H4R3me2 specifically recruited polymerase subunits and NIFC (Table 3.1). 

Additionally, analysis using the database STRING predicted the factors of the NFI gene family to 

be in association with polymerase subunits (Figure 3.6 C). These findings suggest that the 

transcription factors of the NFI gene family work in the context of transcriptional activation and 

thereby support the heterochromatic context of the H3K9 methylation degrees. 

 

The low number of H3K9me1/-me2 regulated proteins raises the question whether these 

modification degrees have their own biological significance or mainly function as substrates 

necessary for the establishment of H3K9me3 as suggested before (Loyola et al., 2009; Towbin 

et al., 2012). Indeed, my data implicate that H3K9me1/-me2 do not autonomously promote 

functional outcomes and are related to H3K9me3. This supports the suggestion of H3K9me1/-
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me2 being substrates for establishment of H3K9 tri-methylation. However, the independent 

genomic distribution of the modification degrees indicates the contribution to various chromatin 

related functions (Barski et al., 2007; Mikkelsen et al., 2007). Therefore, it cannot be ruled out 

that the lower methylation states of H3K9 act in concert with other modification sites to promote 

downstream functions at chromatin regions free of H3K9me3.  

 

Mono-, di- and tri-methylation of H3KC27 

 

In comparison to H3K9, the characteristics of the three methylation degrees of H3KC27 feature 

three main distinctions. First, there was not a single factor found to be commonly regulated by all 

three methylation degrees of H3KC27 (Figure 3.13 A). Second, the factors regulated by each of 

the modification degrees were highly divergent in functionality. Third, chromatin binding of 

several factors was regulated in an antagonistic manner by two of the H3KC27 methylation 

degrees (Table 3.1). These observations indicate a specific biological significance for each of 

the methylation degrees. This point of view agrees with previous findings demonstrating that the 

different H3K27 methylation states are located in different regions of the genome, with a 

diversity much greater than for H3K9 and H4K20 methylation marks (Rosenfeld et al., 2009).  

 

The mono-methylation of H3KC27 recruited several components of the CCR4-NOT complex, 

which has been shown to be involved in transcription initiation and elongation (Collart, 2016). In 

this context the complex was shown to control H3 and H4 acetylation and H3K4 tri-methylation 

(Peng et al., 2008), indicating a role for H3K27me1 in transcriptional activation. This would be in 

agreement with the fact that H3K27me1 is enriched in gene bodies of actively transcribed genes 

(Barski et al., 2007; Wang et al., 2008). The CCR4-NOT complex has also been shown to act in 

the cytoplasm, regulating mRNA translation as well as degradation. Surprisingly, there are three 

more proteins recruited to H3KC27me1 that also show cytoplasmic localization. These proteins 

seem to be associated with a correct organization of the Golgi apparatus and transport 

processes between the Golgi apparatus and the endoplasmic reticulum or endosomes (Dimitrov 

et al., 2009; Mariappan et al., 2010; Reddy et al., 2006). It is unclear how these proteins are 

related to H3K27me1. These proteins might represent cytosolic contaminants found in the 

nuclear extracts due to the method used for the preparation of the extracts (Dignam et al., 1983). 

I think this is not very likely. First of all, light and heavy nuclear extracts were prepared 

individually. Secondly, for each of the two extracts three individual preparations were performed 

and pooled in order to average potential abnormalities introduced by experimental handling. 

Thirdly, some of the cytoplasmic proteins identified in this study were also identified by affinity 

purification in the context of N-terminal histone peptides using HeLa nuclear extracts (Vermeulen 

et al., 2010). From my point of view these facts demonstrate the improbability of contaminants in 
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the nuclear extracts used for this study and support the discovery of so far cytoplasmic classified 

proteins as positive identifications. 

 

Remarkably, 40% of the proteins recruited to H3KC27me2 chromatin are spliceosomal proteins. 

A link between regulation of alternative splicing and chromatin modifications has already been 

described (Luco et al., 2011; Luco et al., 2010; Zhou et al., 2014). The nucleosome density and 

consequently the presence of histone modifications was found to be higher over exons 

compared to introns (Schwartz et al., 2009; Tilgner et al., 2009). The presence of histone 

modifications is thought to locally impact alternative splicing by either, recruitment of splicing 

factors to the transcription site, or by marking alternative exons and/or the surrounding 

chromosomal regions and influencing the elongation rate of polymerase II and therefore splice 

site choices. The presence of H3K9me3 and HP1γ was shown to slow down polymerase II 

resulting in increased inclusion of transcribed alternative exons (Saint-Andre et al., 2011). In 

contrast, hyperacetylation of H3 and H4 increased the elongation rate of polymerase II and 

favored skipping of alternative exons (Hnilicova et al., 2011). 

H3K27me2 was not extensively investigated in the context of alternative splicing so far but have 

been found to be specifically enriched on exons, with the strongest presence at low expressed 

exons, also shown for H3K27me3 (Andersson et al., 2009; Spies et al., 2009).  

The finding that most of the factors recruited by H3KC27me2 are associated with the 

spliceosome strongly correlates this modification site with splicing activities and implicates an 

active functional association. Contrary to the literature, in my study an association with the 

splicing process was exclusively found for H3KC27me2. As chromatin structure and recruitment 

of effector proteins by distinct histone modification patterns seem to correlate with alternative 

splicing it is very likely that the presence of H3K27me2 at certain chromatin regions might 

contribute to splice sites selection or even promote splicing events by slowing down 

transcriptional elongation as shown in the context of H3K9me3.  

 

H3K27me3 is one of the best studied chromatin modification that is catalyzed by the repressive 

multi-subunit complex PRC2 (Schuettengruber et al., 2007). Several polycomb group proteins, 

the components of the PRC2 and PRC1 complexes, have been shown to co-localize with 

H3K27me3 and directly targeting this modification mark (Morey and Helin, 2010; 

Schuettengruber et al., 2007). Surprisingly, the H3KC27me3 interactome characterized here did 

not show an increased affinity for most of the polycomb group proteins expected to bind this 

mark. While I only found CBX8 and PHF1, which were significantly recruited by H3KC27me3, the 

majority of the polycomb proteins were identified below the P-value that was set for statistical 

significance or they were not quantified. The mechanisms that recruit the PRC complexes to 

their target genes are not fully understood yet, but they are thought to contain specific and 
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complex elements, i.e. DNA, RNA and DNA-associated proteins (Morey and Helin, 2010). Those 

elements might have been absent from the chromatin template or the nuclear extracts. The 

preparation of nuclear extracts used for the ChAP experiments were based on high salt 

extraction of isolated nuclei followed by the removal of the insoluble chromatin fraction by 

centrifugation (Dignam et al., 1983). Thus, proteins displaying a very strong affinity to the 

chromatin, which resists to high salt treatment, might have been lost or reduced together with 

the chromatin during nuclear extract preparation.  

 

Histone H4 methylation sites 

 

The interactomes of H4K20me1 and H4K20me3 showed high divergence (Figure 3.9, Table 3.1) 

since only an overlap of three factors were found to be regulated by both modification degrees. 

These factors were excluded from binding to the modified chromatin templates (Figure 3.13 B).  

 

In contrast to most of the other investigated PTMs, H4K20me1 recruited predominantly factors 

associated with positive regulation of transcription (Figure 3.9 B, upper panel, Table 3.1). Among 

them are members of the INO80 remodeling complex, which have been shown to be excluded 

from binding to chromatin by H3K9me1/-me3 and H3KC27me2 histone modifications. In addition, 

an antagonistic regulation was observed of splicing associated factors: while H3KC27me2 

recruited several spliceosomal factors, H4K20me1 excluded 16 factors mainly associated with 

the C spliceosomal complex (Figure 3.9 B lower panel, Table 3.1). The data are indicative of a 

connection of H4K20me1 to transcriptional activity and euchromatin, which would be in 

agreement with previous findings that found H4K20me1 located at gene bodies (Barski et al., 

2007; Vakoc et al., 2006). Additionally, H4K20me1 has been shown to be involved in regulation 

of many cellular processes like genome stability, DNA replication, mitosis, and transcription 

(Beck et al., 2012; Lv et al., 2016). The broad spectrum of biological functions linked to 

H4K20me1 is in good agreement with the variety of functions connected to the proteins 

regulated by H4K20me1 as well as the stronger differences and smaller similarities to the other 

histone modifications investigated here. 

 

The second modification in this study that showed a unique protein-binding regulation when 

compared to the other modifications was H4R3me2. Although this modification was expected to 

be in association with heterochromatin (Le Guezennec et al., 2006; Zhao et al., 2009), six of 

nine recruited proteins were polymerase subunits. Additionally, several proteins that were 

recruited to H3K9me3, the hallmark of pericentric heterochromatin, were excluded from binding 

to H4R3me2 (Table 3.1). These findings strongly suggest an association of H4R3me2 with 

transcriptional activation. In agreement, it was shown that dependent on the methyltransferase 
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that set the di-methylation of H4R3, either PRMT1 or PRMT5, H4R3me2 can be associated with 

transcriptional activation or repression, respectively (Barrero and Malik, 2006; Le Guezennec et 

al., 2006).  

 

4.3 Protein-binding interactomes of modified chromatin arrays display only 

moderate overlap compared to those revealed with different modified 

templates 

 

In recent years several laboratories have made attempts to identify proteins specifically 

associated with distinct histone modifications by using templates such as N-terminal histone 

peptides, mononucleosomes and chromatin arrays (Bartke et al., 2010; Bluhm et al., 2016; 

Engelen et al., 2015; Kunowska et al., 2015; Nikolov et al., 2011; Oda et al., 2010; Vermeulen et 

al., 2010).  

 

In the core of H3K9me3, the proteins CBX5, CBX3 and POGZ were identified in six independent 

studies (including this one) using different templates, cell lines and organisms (Bartke et al., 

2010; Bluhm et al., 2016; Engelen et al., 2015; Kunowska et al., 2015; Nikolov et al., 2011; 

Vermeulen et al., 2010). This high level of convergence suggests a strong affinity to chromatin 

for these proteins, which is in contrast to the finding that the interaction of POGZ and CBX5 

weaken the interaction of CBX5 to chromatin (Nozawa et al., 2010). Overall, nearly half of the 

proteins I found to be recruited by H3K9me3 were identified at least in one of the published 

studies mentioned above.  

The overlap of H3KC27me3 recruited factors with published data was much lower. Common 

factors were CBX8 and several members of the ORC complex (Bartke et al., 2010; Vermeulen et 

al., 2010). The ORC complex seems to have a very strong affinity for heterochromatic 

modifications as the complex was also recruited to H3K9me3 and H4K20me3, which was 

observed using N-terminal histone peptides and mononucleosomes as well (Bartke et al., 2010; 

Vermeulen et al., 2010).  

Next to the ORC complex I found another common feature of H3K9me3, H3K27me3 and 

H4K20me3 that had not been described before. The interactomes showed the recruitment of 

several eukaryotic translation initiation factors (Table 3.1). This was unexpected since these 

factors function in translation initiation within the cytoplasm and were previously shown to be 

absent from the nucleus (Bohnsack et al., 2002). As already discussed earlier, it is unlikely but I 

cannot rule out that such observation could be attributed to contaminations of the nuclear 

extracts by cytosolic proteins. Notably, several translation initiation factors were also found as 

background binders in the context of peptide pull-downs of H3K9me3, H3K27me3 and 
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H4K20me3 (Vermeulen et al., 2010), indicating that these factors seem to be general 

constituents of (HeLa) nuclear extracts. The functional association of the translation initiation 

factors to the heterochromatic modifications H3K9me3, H3K27me3 and H4K20me3 in contrast 

remains to be in investigated.  

 

Most of the differences observed are likely attributed to the different types of templates used in 

the previous studies. In contrast to N-terminal histone peptides, chromatin arrays are formed by 

an underlying DNA sequence and histone octamers. Thus, chromatin arrays allow the 

identification of proteins that require a binding platform consisting of more than one interaction 

site that can be provided by e.g. the globular domain of a histone, the DNA or a second 

nucleosome in the case of inter-nucleosome binding of histone modification in trans. The latter 

binding mode can also not be addressed using mononucleosomes.  

Some of the differences can also likely be attributed to the different experimental procedures 

used in the different studies. For example, nuclear extracts derived from different organism and 

cell types have been used, different mass spectrometer devices with varying sensitivity, the 

number of technical and biological replicates, and statistical evaluations contribute to divergent 

protein identifications.  

 

However, in comparison to the interactomes of defined posttranslational chromatin modifications 

published so far, the number of proteins we found to be affected using modified chromatin arrays 

is much larger. Only a moderate overlap was observed between my thesis work and the studies 

available in the literature (Table 3.1). This is especially true regarding proteins showing 

decreased affinities to a certain modification state. Thus, the data presented here offer a close to 

comprehensive list of factors whose binding to chromatin is affected by posttranslational 

modifications comprising also the excluded proteins, which in previous studies have been 

essentially kept out of focus. These extended dataset provide not only new functional relations of 

histone modifications but also enables the investigation of chromatin modification crosstalk. All 

these facts validate the gain of additional information provided with the here presented study and 

strongly support the usage of a more complex template closer to the native form of chromatin.  

 

4.4 Individual heterochromatic marks display positive as well as negative 

functional correlation 

 

Since all investigated modification states have been shown to be associated with 

heterochromatin and transcriptional repression (Table 1.1) I expected a certain level of overlap 

of regulated factors. However, due to the vast number and diversity of proteins regulated by the 
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individual chromatin modifications, it turned out to be very challenging to draw any general 

conclusions. Therefore, the functional relationship between individual modifications was 

investigated by using gene annotation enrichment analyses. These analyses showed positive as 

well as negative functional correlation of chromatin modifications and highlighted groups, which 

appeared to be functionally linked. 

H3K9me3, H4K20me3, H3KC27me3, and H3K9me3|H4K20me3 showed a strong correlation in 

the context of annotated pathway terms (Figure 3.19 A), suggesting a functional link between 

these modifications. All these modifications have been shown to localize to pericentric 

heterochromatin and to be involved in transcriptional repression (Barski et al., 2007; Fischle et 

al., 2003a; Lachner et al., 2003; Ringrose and Paro, 2004; Schotta et al., 2004; Sims et al., 

2006; Wang et al., 2008). This observation is consistent with the strong correlation on one hand 

and validates the analytical approach on the other hand.  

Negative functional correlation was observed between H4R3me2 and the two modification states 

H3K9me3 and H3KC27me2. While H4R3me2 recruited several polymerase subunits these 

factors were excluded from binding to H3K9me3 and H3KC27me2, strongly suggesting an 

association of H4R3me2 with transcriptional activity. H4R3me2 has been found in the context of 

both, transcriptional activation and repression as described earlier. 

Additionally, H3KC27me2 displayed a negative correlation to H4K20me1. While H3KC27me2 

showed an increased binding affinity for several spliceosomal factors, in turn H4K20me1 

significantly excluded factors associated with the spliceosome from binding to chromatin. This is 

the first time that such functional relationship between both modifications is described and 

suggested that H4K20me1 might mark sequences at the gene bodies with decreased splicing 

activity, while H3KC27me2 might promote splicing events as suggested in chapter 4.2.  

Besides H3KC27me2, H3KC27me1, H3K9me1/-me2, and H4K20me3 also displayed negative 

correlation to H4K20me1 (Figure 3.19 B), which indicate a unique biological significance for 

H4K20me1 compared to the other investigated modification patterns.  

 

4.5 Combinatorial readout in trans provides new insights into crosstalk between 

chemical chromatin modifications 

 

The identification of proteins binding in the context of the combination of modifications is still 

challenging despite vast technical developments. Thus, the multivalent interactions of chromatin-

binding proteins with combinatorial histone modification patterns were only touched upon in a 

limited number of studies. Here, I took the opportunity offered by our chromatin system to 

investigate the effect of combinatorial readout of H3K9me3 and H4K20me3 as well as H3K9me3 

and CpG-methylated DNA on a global scale. Both combinations of chromatin modifications were 
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shown to be not only functionally linked but also displayed co-occurrence in several model 

organisms (Du et al., 2015; Mikkelsen et al., 2007; Schotta et al., 2004; Sims et al., 2006). 

 

The data collected highlight three general effects of combinatorial readout that were observed 

for both combinations, H3K9me3|H4K20me3 and H3K9me3|meCpG.  

In the first category, the double modification appeared to have “no effect” on protein-binding 

regulation. “No effect” was determined for the majority of proteins and referred to the finding that 

the protein-binding properties were similar over all three modification patterns, the two single 

modification sites and the combination thereof. These findings suggest that the regulation of 

protein recruitment to chromatin essentially relies on single modification sites.  

In the second category, I observed antagonistic binding properties for several proteins when 

comparing the double modification to the single ones. In the context of the double modification, 

the decrease in binding of factors that were found otherwise to be enriched with the individual 

modifications was defined as negative crosstalk. In relation to H3K9me3 and H4K20me3 

negative crosstalk was observed for several members of the septin family and spliceosomal 

factors, ASF1B, EIF5 and EIF4G1 (Figure 3.16 A). These findings give insights into the extent of 

consequences brought about by crosstalk. The effects of positive and negative crosstalk were 

not only limited to individual proteins but also were applied to entire protein complexes. Thus, it 

seems that not only direct binding proteins but also secondary interacting proteins were affected 

by crosstalk. Additionally, individual factors displayed negative crosstalk between H3K9me3 and 

meCpG as well as H3K9me3 and H4K20me3, namely USP3 and UBTF (Figure 3.16 A and 3.18 

A). 

Opposed binding was also determined in the reverse direction: crosstalk was considered as 

positive when the double modification displayed increased protein binding, while the individual 

modifications displayed decreased binding to chromatin. Several polymerase subunits and 

members of the NFI family displayed positive crosstalk between both H3K9me3 and meCpG as 

well as H3K9me3 and H4K20me3. Additionally, each of the modification combinations showed 

individual transcription factors that were affected. Recently, positive crosstalk was shown in 

context of H3 methylation and H4 acetylation. It was shown that the presence of H4K5ac next to 

H3K4me3 enhances the binding of BPTF and p300 to nucleosomes by at least seven-fold, 

probably mediated by simultaneous binding of the PHD and the bromodomain (Nguyen et al., 

2014). 

 

In the present study, conclusions about the binding mechanisms of single factors could not be 

drawn, as the experimental design does not allow determining whether a given protein binds 

directly or indirectly to the chromatin arrays. However, it appeared that positive crosstalk of 

chromatin modifications, mainly located at pericentric heterochromatin, tends to recruit factors 
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and protein complexes in association with transcriptional activity and thus, might be involved in 

the reversion of transcriptional repression at defined chromatin regions.  

Proteins showing negative crosstalk are inconclusively transcriptional repressors or in 

association with heterochromatin. In the context of negative crosstalk there seemed to be a 

trend of excluding factors or protein complexes involved in mitosis and proteins associated with 

the cytoskeleton in presence of one of the here investigated double modifications 

H3K9me3|meCpG and H3K9me3|H4K20me3. 

 

4.6 Protein-protein cross-linking coupled to MS maps the binding hierarchy of 

chromatin-bound proteins 

 

So far the identification of specific protein interactions using affinity purification based strategies 

coupled with cross-linking and mass spectrometry were challenging, mainly because of the lack 

in database engines capable to search for cross-links against large databases, which has 

restricted cross-linking approaches to the study of small protein complexes for a long time.  

Now, with important technological developments of recent years, it has become possible to set 

up a workflow that combines proteomic and protein-specific XL-MS. This offers the possibility to 

analyze topological information of the protein interactome associated with chromatin. As I have 

demonstrated, both the protein-binding interactome as well as the hierarchy of protein binding to 

chromatin can be analyzed.  

 

With the established workflow I found 75 cross-linked chromatin-associated proteins. As cross-

links covalently link proteins that are in close physical proximity, the proteins directly cross-linked 

to histones were considered as primary interactors. 18 of the cross-linked proteins showed a 

direct physical interaction to at least one of the core histones (Figure 3.26 A) while 20 factors 

were identified as indirect binders, not cross-linked to histones, but recruited to the chromatin 

arrays via primary binders. The remaining identified proteins could not be assigned to one of the 

core histones. The connecting factors may have not been detected or, alternatively, these 

proteins are recruited to chromatin by interacting with the DNA.  

STRING analysis of cross-linked proteins confirmed the biological association of these proteins 

and came as a support regarding the specificity of the cross-links and of the approach on a more 

general way (Figure 3.26 B).  

 

In contrast to the fact that more than 1000 proteins were identified to bind to the chromatin 

arrays using ChAP-MS, only a small number of proteins were found to be cross-linked. This low 

number might be attributed to limited availability and accessibility of interaction mediating 

sequences qualified for cross-linking. In brief, the BS3 cross-linker, which comprises two amine 
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reactive groups separated by a spacer arm of 11.4-Å in length, reacts with primary amines in the 

side chains of lysine (K) residues and the N-terminus of polypeptides (Sinz, 2006; Tran et al., 

2016). Thus, only interacting protein surfaces exhibiting two lysines within a distance of 24-Å can 

be cross-linked. As a consequence, interaction interface that do not have lysines matching this 

criteria cannot be cross-linked, which result in the impossibility to identify actual interactions. 

This limitation may account, at least in part, for the rather small number of cross-linked proteins 

which were identified. Moreover, BS3 tend mostly to react with easily accessible lysine residues 

localized at the surfaces of protein complexes, since diffusion within the rather hydrophobic 

globular part of complexes is hindered by its hydrophilic nature (Huang et al., 2004). As a 

consequence, this may lower the number of cross-links and therefore reduce the number of final 

interacting partner identified. Additionally, the two enrichment steps on the protein as well as the 

peptide level by size exclusion chromatography are known to lead to loss of biological material. 

 

Another limitation is related to on-bead cross-linking. Streptavidin coated beads that were used 

in this workflow have the potential to cross-link purified proteins to the beads itself, potentially 

leading to false positive identifications. To overcome this issue, the underlying biotinylated DNA 

of the cross-linked sample was degraded, which resulted in the release of histone octamers and 

their associated proteins from the beads. 

 

In conclusion, we established a robust workflow that allows the highly specific identification of 

protein-protein cross-links in the context of chromatin affinity purification. The workflow enables 

the mapping of specific protein-protein interaction sites on one hand and provides information 

regarding the hierarchy of protein binding with each other and to chromatin on the other hand. 

The workflow identifies the abundant chromatin-interacting proteins and therefore has a strong 

potential for the investigation of physical protein-protein interaction sites of protein interactomes 

of modified chromatin arrays. 
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5 Conclusions and future perspectives 

 

I have shown here, that ChAP-MS is suitable for the elucidation of the interactomes of single and 

complex chromatin modification patterns. My results provide a step towards functional 

characterization of individual modifications deposited on an oligonucleosomal chromatin 

template. Each of the modification patterns studied here regulated a specific set of factors, 

underscoring their distinct biological significance. The protein interactomes of individual 

modifications have revealed novel functional associations of specific marks. This was shown for 

H3KC27me2 that recruits several splicing factors, H4R3me2, which appears to have mainly 

impact on the recruitment of polymerase subunits and H3KC27me1, which was associated with 

transcriptional initiation and elongation by the CCR4-NOT complex. The assignment of biological 

functions to the different chromatin-binding interactomes on a global scale allowed the 

identification of novel relationships between individual modifications and indicated positive and 

negative functional correlation of PTMs. One example is the inverse regulation of the binding 

properties of several spliceosomal factors by H3KC27me2 and H4K20me1.  

My work shows that combinations of different modifications in the context of chromatin can 

reveal important aspects of the nature and the complexity of the language of histone PTMs. 

Indeed, the combinatorial experiments presented here identified a subset of factors regulated 

only in presence of two modification sites. Thus, my experimental design gives novel, 

unpredicted insights into mechanisms of crosstalk between two chromatin modifications. Both, 

H3K9me3 and meCpG as well as H3K9me3 and H4K20me3 display positive as well as negative 

crosstalk, which underlines the importance of testing further combinations of modifications 

whose co-occurrence have been proved in vivo already.  

The performed experiments have proven to provide new insights into specific functions and 

regulation mechanisms of individual histone modification patterns. Extending this approach to 

euchromatic marks would significantly increase the knowledge of pathways underlying 

epigenetic regulations. Furthermore, ChAP-MS can determine the protein-binding interactomes 

in the context of distinct biological circumstances by using e.g. a native DNA sequence instead 

of an artificial one or cell extracts from different cell types, organisms or different developmental 

stages. 

The new cross-linking approach we have established provides a workflow for the identification of 

specific protein-protein interaction of chromatin-bound proteins. I expect this method will 

contribute to our understanding of the hierarchy of protein recruitment and deliver detailed 

information of physical interactions sites, allowing the identification of protein domains involved 

in protein-protein interactions. Expanding the workflow to modified chromatin arrays will in the 

near future provide insights into the formation of protein complexes in the context of different 

chromatin modification patterns.  
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7 Appendix 

 

Appendix 1 Proteins significantly recruited or excluded by one of the chromatin modification patterns investigated by chromatin affinity 

purification. The gene names, the uniprot identifier (Protein IDs) and the normalized heavy to light ratios of the forward (F) and the 

reverse (R) experiments are shown as reported by MaxQuant for each chromatin modification state. 
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AAK1 D6W5G0 0.75 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.24 0.27 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

AAR2 Q9Y312 1.05 1.48 0.77 1.11 0.94 0.40 1.27 NaN 0.95 0.86 0.64 1.21 0.89 0.72 1.03 0.23 1.60 0.87 NaN NaN 0.77 1.31 NaN NaN 1.26 0.57

AARS H3BPK7 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ABCF1 H3BPK7 0.91 2.13 0.50 0.85 4.99 0.28 0.89 NaN 0.91 0.49 1.60 0.26 0.42 0.57 1.18 1.40 1.78 0.25 5.02 0.19 0.74 0.63 0.92 1.63 0.67 0.41

ACACA B2ZZ90 0.23 7.76 0.15 2.31 0.70 0.49 0.45 0.73 1.05 0.41 0.30 1.37 1.22 0.43 1.02 2.03 0.57 0.59 0.44 1.27 0.11 2.62 0.74 0.56 0.44 0.72

ACACB O00763 NaN NaN NaN NaN NaN NaN NaN NaN 0.13 0.81 NaN NaN NaN NaN NaN NaN 0.54 NaN 0.62 1.24 NaN NaN 0.68 0.82 0.31 0.46

ACIN1 Q9UKV3-5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ACIN1 E7EQT4 7.62 1.91 0.50 1.46 1.04 0.67 0.73 0.94 2.27 0.33 1.12 0.93 1.92 0.57 2.49 1.55 1.08 0.53 1.74 3.87 0.54 1.45 1.96 1.84 0.36 0.44

ACTL8 Q9H568 0.16 1.89 1.45 1.11 2.28 0.81 1.04 NaN 2.09 0.95 1.60 0.93 2.30 0.49 4.56 0.10 4.26 0.21 29.52 0.02 2.54 0.55 18.41 0.06 0.54 3.09

ACTN4 O43707 0.80 0.90 2.13 NaN 0.88 0.71 0.37 2.19 1.29 0.50 NaN NaN NaN NaN NaN NaN 0.80 NaN 0.56 1.92 0.47 0.39 0.83 0.40 NaN NaN

ACTR5 Q9H9F9 0.40 0.34 2.21 0.49 0.77 1.51 1.14 0.77 0.69 2.29 1.35 1.04 0.25 3.79 0.20 1.28 0.50 2.40 9.93 0.21 2.89 0.52 1.10 1.62 NaN NaN

ACTR8 Q9H981 0.60 0.46 2.03 0.58 0.75 1.42 1.37 NaN 0.70 2.28 1.33 1.21 0.27 4.17 0.21 1.49 0.51 2.37 12.93 0.20 2.77 0.53 1.05 1.42 3.04 0.47

ADNP B2RBM8 0.52 0.59 0.79 0.79 0.69 1.05 0.73 0.73 0.74 0.92 0.94 0.76 1.03 1.18 0.88 0.23 2.82 0.22 55.25 0.01 3.69 0.16 0.99 1.55 1.61 0.18

ADNP2 Q6IQ32 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 3.46 0.19 19.12 0.09 0.93 0.34 1.10 NaN NaN NaN

AEBP2 B3KXA1 NaN NaN 0.57 NaN 0.60 1.14 NaN NaN 0.50 NaN 0.30 NaN NaN NaN NaN 0.29 1.73 0.49 4.10 0.84 3.03 0.34 NaN NaN NaN 1.21

AHCY P23526 NaN 0.20 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.39 NaN 0.03 1.01 0.33 1.76 1.06 1.16 0.99 1.01 NaN NaN

ALDH18A1 P54886-2 3.74 NaN NaN 1.18 NaN NaN NaN NaN NaN NaN NaN 0.56 NaN 0.27 1.91 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ALDOA P04075 0.24 0.15 2.09 NaN NaN NaN 0.13 2.58 NaN NaN NaN NaN NaN NaN 0.26 0.46 NaN NaN 0.22 1.86 NaN NaN 0.94 0.41 NaN NaN

ALDOC B7Z3K9 NaN 0.18 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.21 NaN NaN NaN NaN NaN NaN NaN

AMN1 B7Z7J3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.93 NaN 0.37 0.48 0.15 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

AMY1A Q6NSB3 NaN NaN NaN NaN 0.06 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ANKRD11 Q6UB99 0.67 NaN 0.09 NaN 0.53 2.29 0.66 NaN 1.86 0.46 0.99 1.27 NaN 1.16 NaN 0.23 0.73 1.19 3.16 0.48 0.89 1.36 1.57 0.66 NaN NaN

ANKRD12 Q6UB98-2 NaN NaN 0.25 2.26 0.27 2.24 NaN 0.77 1.37 0.44 1.08 0.73 0.48 2.50 NaN 0.15 0.59 1.18 NaN NaN 0.76 1.10 NaN NaN 1.06 NaN

ANKRD32 B4DR33 0.68 0.45 NaN NaN 0.46 5.60 1.95 NaN 1.58 2.00 1.59 1.05 1.08 2.79 0.70 0.64 1.58 1.59 2.20 1.45 0.96 4.50 1.86 1.63 1.65 2.39

ANXA1 Q5TZZ9 0.23 0.15 NaN NaN NaN NaN 0.21 NaN NaN 0.64 NaN NaN NaN NaN 0.37 NaN NaN NaN 0.21 2.04 NaN NaN 0.90 0.18 NaN NaN

ANXA5 P08758 NaN 0.16 NaN NaN NaN 0.56 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.36 NaN NaN NaN 1.10 NaN NaN NaN

AP2A1 O95782-2 0.93 1.39 0.79 0.70 1.35 0.78 1.58 NaN 0.66 1.11 0.74 NaN 1.46 0.62 0.63 0.45 1.18 1.05 1.86 1.19 0.97 1.22 0.41 NaN 2.45 0.70

AP2B1 A8K916 1.04 1.70 0.68 0.88 1.80 1.03 1.58 0.75 0.78 1.31 0.72 0.87 1.21 0.69 0.70 0.18 1.60 1.37 1.92 1.48 0.66 1.64 0.20 NaN 2.38 0.73

APEX1 Q5TZP7 0.63 0.32 1.12 1.21 13.73 0.36 NaN NaN 2.43 0.75 1.60 0.68 NaN 0.40 0.54 3.17 2.21 0.81 0.45 1.47 0.69 1.33 NaN NaN NaN 1.22

ARG1 P05089 NaN NaN 0.69 0.47 NaN 0.09 0.07 NaN NaN NaN 0.08 0.54 NaN NaN 0.17 0.39 NaN NaN 0.16 NaN 0.67 0.12 NaN NaN NaN 3.95

ARHGEF3 E7EU49 0.52 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.38 0.44 0.10 NaN 1.26 NaN NaN NaN 1.61 NaN NaN NaN NaN

ARID4A P29374 NaN NaN 0.76 NaN 0.57 2.39 NaN 1.07 1.08 0.96 1.21 0.74 0.52 NaN NaN NaN 0.94 0.93 20.33 0.49 0.79 1.16 0.71 5.80 0.00 NaN

ARNTL B2RCL8 0.50 0.81 1.25 0.72 1.14 1.11 1.16 1.02 1.05 1.33 0.95 1.03 0.80 1.54 0.47 1.53 1.06 1.10 1.56 0.47 1.10 0.95 0.44 1.77 1.23 0.54

ARPC2 Q53R19 3.78 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.97 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ARPC4 P59998 0.49 1.82 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.71 0.56 0.49 0.36 NaN NaN 0.69 3.52 NaN NaN 2.30 2.61 NaN NaN

ASF1B Q9NVP2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.67 NaN NaN NaN 29.25 NaN NaN NaN NaN

ASNS P08243-2 NaN 0.29 NaN NaN NaN 1.31 NaN NaN NaN NaN NaN NaN NaN NaN 0.77 0.38 1.02 NaN 0.49 NaN NaN NaN 0.93 0.55 NaN NaN

ATF2 A4D7U9 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.99 NaN NaN

ATF2 F5H629 NaN NaN NaN NaN NaN NaN NaN 0.87 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
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ATF2 P15336-5 0.28 0.37 NaN NaN 0.49 0.94 0.63 0.59 0.56 1.10 0.71 0.64 NaN NaN 0.06 NaN 0.39 1.13 3.35 0.21 1.08 0.37 0.83 1.02 NaN NaN

ATF2 P15336-8 NaN NaN NaN NaN 0.46 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ATL3 Q6DD88 NaN 0.24 0.60 NaN NaN 0.29 NaN NaN 0.81 NaN NaN NaN NaN NaN NaN 2.15 2.21 NaN 0.94 NaN NaN 1.05 NaN NaN NaN NaN

ATP6V0D1 B2R7M1 1.15 1.51 NaN NaN NaN 1.02 NaN NaN NaN NaN NaN NaN 1.04 0.99 0.78 0.18 NaN NaN NaN NaN NaN NaN 0.13 NaN NaN NaN

ATP6V1B2 P21281 0.97 0.80 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.82 0.62 0.78 0.38 NaN NaN NaN NaN NaN NaN 0.12 NaN NaN NaN

ATP6V1F A4D1K0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.21 NaN NaN NaN

ATRIP Q8WXE1-2 0.85 0.81 0.32 NaN 0.70 0.66 NaN NaN 0.84 NaN 0.96 NaN 0.84 0.45 0.62 0.36 0.81 0.79 NaN 0.38 0.46 0.61 NaN NaN 1.67 NaN

ATRX A4LAA3 0.65 0.48 0.33 0.55 0.39 0.40 0.34 0.49 0.48 0.50 0.44 0.55 0.51 1.07 0.67 0.35 1.41 0.20 1.25 0.13 0.85 0.25 0.50 0.32 0.45 0.39

BABAM1 M0R0I0 0.84 0.40 NaN 3.17 NaN NaN NaN NaN 1.34 0.55 NaN NaN NaN 0.89 NaN 0.25 NaN NaN 0.63 4.44 0.23 2.81 NaN NaN NaN NaN

BACH1 Q6ICU0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 3.74 0.17 0.94 NaN 3.68 0.37 NaN NaN

BAG6 B0UX83 1.79 0.50 0.61 1.03 0.99 0.31 1.27 0.32 0.84 0.72 0.72 0.40 2.43 0.95 1.53 0.21 1.34 0.52 NaN NaN 0.93 1.07 NaN NaN 1.52 0.40

BARD1 F6MDH7 0.64 0.37 0.11 4.55 0.23 2.99 0.75 0.75 1.02 0.67 0.97 0.77 0.60 1.09 0.59 1.17 0.74 0.84 0.63 1.22 0.19 2.47 1.04 0.64 0.64 0.92

BAZ1B Q9UIG0-2 0.07 5.41 1.21 0.93 1.31 1.00 0.98 0.86 0.93 1.19 1.04 1.10 1.08 1.38 0.67 1.02 1.10 0.96 1.60 2.27 1.00 1.07 1.39 1.81 0.56 1.38

BAZ2A J3QK86 NaN NaN 0.54 0.77 0.34 1.11 NaN NaN 0.72 0.48 0.85 0.58 0.50 NaN NaN NaN 0.34 1.83 NaN NaN 0.60 0.94 NaN NaN 0.83 NaN

BCLAF1 E9PK91 0.23 0.24 NaN NaN NaN NaN 0.81 NaN NaN NaN NaN NaN NaN NaN 2.21 NaN NaN NaN NaN NaN NaN NaN NaN 1.41 NaN NaN

BCLAF1 Q9NYF8-2 9.47 0.39 3.98 3.10 0.69 0.83 0.80 1.37 0.85 0.66 4.28 2.20 NaN NaN 0.98 0.78 0.89 0.97 1.13 1.31 0.58 0.72 1.38 1.51 0.68 0.79

BCR/ ABL f . A9UEZ6 0.91 NaN NaN NaN 4.19 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.11 NaN NaN NaN

BCR/ ABL f . P11274-2 1.12 0.65 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.92 0.13 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

BHLHB2 Q6IB83 0.62 0.59 0.56 0.36 0.46 0.55 0.46 0.36 0.45 0.50 0.43 0.47 NaN NaN 0.68 1.19 0.39 0.45 1.78 0.26 0.40 0.51 0.32 1.34 0.68 0.30

BLMH Q13867 NaN NaN NaN NaN 0.47 NaN 0.17 NaN 40.10 NaN 0.73 NaN NaN NaN NaN 11.03 5.54 NaN 0.45 0.77 NaN NaN 4.60 NaN NaN NaN

BPTF E9PE19 NaN NaN NaN NaN NaN 0.74 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.71 0.66 NaN NaN NaN NaN

BPTF F5GXF5 NaN NaN NaN 0.06 0.56 0.32 NaN NaN 0.34 0.20 0.31 0.32 NaN NaN NaN NaN 0.32 0.27 NaN NaN 0.25 0.33 NaN NaN NaN 0.58

BPTF F5H176 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.40 NaN NaN NaN NaN 0.86 0.79 NaN NaN NaN NaN

BPTF Q12830 0.29 1.33 0.54 0.79 0.64 0.67 0.57 0.58 0.93 0.45 0.72 0.63 0.37 1.10 0.61 0.75 0.70 0.64 2.01 0.39 0.63 0.61 1.04 0.71 0.74 0.44

BPTF Q12830-2 0.22 NaN NaN NaN NaN 1.32 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.03 NaN NaN 0.88 0.91 NaN NaN NaN NaN

BRCA1 Q3LRH8 0.86 0.39 0.31 4.37 0.25 2.39 0.78 0.65 1.09 0.62 0.95 0.85 NaN 1.03 0.43 0.12 0.75 0.91 1.18 1.10 0.23 2.40 1.11 0.47 0.62 0.72

BRCC3 P46736-2 0.55 0.21 NaN NaN 0.42 1.68 0.43 NaN 1.37 0.48 0.75 0.88 0.61 0.88 0.33 0.27 0.98 0.65 NaN 0.29 0.17 2.71 NaN 0.38 0.64 0.79

BRD2 H0Y6K2 0.29 3.05 1.22 1.45 1.29 2.47 1.13 1.42 1.26 1.38 1.15 2.12 0.83 2.19 0.87 1.67 1.44 1.55 1.39 1.80 1.30 2.09 1.86 1.94 1.09 1.76

BRE Q9NXR7-4 0.48 0.26 0.21 3.04 0.42 1.66 0.61 NaN 1.46 0.45 0.75 0.70 0.61 NaN 0.41 0.12 0.97 0.63 0.63 0.47 0.15 3.33 0.53 0.25 0.59 0.62

BRMS1 Q9Y3T1 0.59 0.81 1.51 1.22 0.71 2.90 1.53 1.53 1.35 1.64 1.29 1.06 0.46 NaN NaN 1.89 1.07 1.44 10.22 0.23 1.04 1.55 0.64 4.30 NaN NaN

BRMS1L B3KU43 0.80 1.03 1.51 1.56 0.81 3.14 1.74 1.25 1.68 1.92 1.66 1.33 0.63 3.27 0.51 0.87 1.30 1.77 6.12 0.36 1.22 2.08 0.82 4.80 3.32 0.97

C10orf 12 Q8N655 0.25 2.70 NaN NaN 0.79 0.65 NaN NaN NaN NaN 0.61 NaN NaN NaN 0.96 0.59 NaN 0.66 1.74 2.39 0.94 0.39 1.09 1.90 0.54 NaN

C11orf 57 Q6ZUT1 NaN 2.82 2.96 0.88 1.45 1.13 1.50 2.01 1.41 1.62 0.69 2.60 NaN NaN NaN NaN 1.37 2.17 NaN 1.86 1.19 2.08 1.17 1.62 1.14 2.26

C19orf 47 Q8N9M1-2 NaN NaN NaN NaN 0.46 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.86 6.53 0.33 0.51 0.24 NaN NaN NaN NaN

C9orf 78 Q9NZ63 NaN 1.16 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.18 NaN NaN NaN NaN 0.37 NaN NaN NaN NaN NaN

CACYBP Q9HB71-3 1.44 NaN NaN NaN 1.13 0.59 0.65 NaN 1.12 0.71 0.61 0.66 0.68 0.86 1.42 0.65 0.52 NaN NaN NaN 0.67 0.68 NaN 0.86 NaN NaN

CAPN1 P07384 NaN 0.05 0.38 0.49 0.27 0.19 0.31 0.33 0.34 0.67 NaN NaN NaN NaN 0.37 6.16 1.45 0.76 NaN NaN 0.55 0.66 NaN NaN NaN 0.45

CAPRIN1 Q14444-2 NaN 4.34 NaN NaN NaN NaN 0.50 NaN NaN NaN NaN NaN NaN NaN 2.29 1.32 NaN NaN NaN NaN NaN 0.57 NaN NaN NaN NaN

CAST B7Z468 NaN 0.11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CAST E7EVY3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CAT P04040 NaN NaN NaN NaN NaN NaN 0.10 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.08 NaN NaN NaN NaN NaN NaN 1.01

CBFB Q13951 0.85 2.02 1.19 0.78 0.71 1.23 NaN NaN NaN NaN 0.24 1.06 NaN NaN 1.09 NaN 0.54 1.24 7.90 0.12 1.02 1.10 0.71 1.46 NaN NaN

CBFB Q13951-2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.39 0.94 NaN NaN

CBR1 P16152 NaN 0.28 NaN NaN NaN NaN NaN NaN NaN 1.35 NaN NaN NaN NaN NaN NaN NaN NaN 0.43 NaN NaN NaN NaN NaN NaN NaN

CBX1 Q6IBN6 NaN NaN 1.17 0.74 0.77 1.22 0.78 0.79 0.68 1.04 1.04 0.89 1.18 0.62 1.84 0.42 7.84 0.07 26.41 0.16 8.65 0.06 NaN 0.80 2.66 0.32

CBX3 A4D177 0.68 0.50 1.35 0.89 0.87 1.53 1.06 0.99 0.96 1.48 1.32 1.08 1.69 0.78 1.76 0.23 8.64 0.08 16.22 0.01 8.76 0.10 1.55 0.92 2.83 0.25

CBX5 P45973 NaN NaN 0.68 NaN 0.65 0.69 0.46 0.87 0.42 0.97 0.66 0.59 2.29 0.26 4.80 0.14 9.47 0.13 20.30 0.06 10.24 0.08 1.32 0.92 NaN NaN

CBX8 Q9HC52 0.77 NaN 1.23 0.97 1.10 1.26 0.97 1.00 2.61 0.51 3.58 0.39 0.82 1.92 0.53 0.21 1.89 0.61 6.76 0.30 2.31 0.56 2.05 1.16 1.86 0.91

CCDC138 Q96M89 0.26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.21 0.20 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CCDC59 Q9P031 0.49 NaN 1.16 1.23 1.18 1.23 NaN NaN 1.22 1.03 1.09 1.23 0.87 NaN 0.36 0.33 1.12 0.53 NaN 1.01 1.02 1.43 0.96 1.17 1.43 1.38

CD3EAP A8K818 NaN NaN NaN 0.79 0.61 0.58 0.75 0.59 NaN NaN 1.42 0.61 NaN NaN NaN 6.25 0.32 0.95 5.46 0.44 1.62 0.28 NaN NaN NaN NaN

CD3EAP O15446 1.47 1.84 0.73 0.90 0.62 0.65 1.16 0.79 0.33 2.02 1.49 0.58 NaN NaN 1.22 7.41 0.30 0.94 2.77 0.35 1.54 0.30 NaN NaN NaN NaN

CDK2AP1 O14519-2 NaN NaN NaN NaN 1.31 1.28 NaN NaN NaN 1.40 NaN NaN NaN NaN NaN NaN 0.88 1.51 0.03 NaN 1.04 1.83 5.32 0.11 NaN NaN

CDKN1A Q96LE1 NaN NaN NaN 0.53 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.40 NaN NaN NaN 0.59 NaN NaN NaN NaN

CDSN Q0EFA5 0.08 NaN NaN NaN NaN NaN 0.14 NaN 0.21 0.06 0.25 NaN NaN NaN NaN NaN NaN NaN 0.14 NaN 0.07 NaN NaN NaN NaN NaN

CDYL Q9Y232-2 0.86 0.57 0.47 0.61 0.35 1.16 0.59 0.59 0.64 0.66 0.86 0.50 0.71 0.58 0.96 0.18 1.80 0.23 3.90 0.17 1.89 0.20 1.23 1.06 1.03 0.19

CDYL2 Q8N8U2 NaN NaN 0.86 0.86 0.40 1.53 NaN NaN NaN NaN 1.54 0.47 1.37 1.27 NaN NaN 2.50 0.37 6.51 0.09 2.74 0.25 1.32 0.97 NaN NaN

CEBPB P17676 0.61 0.40 1.52 1.03 0.50 2.04 1.44 1.19 0.99 1.84 1.10 1.16 NaN NaN 0.20 1.95 0.45 2.74 4.22 0.21 1.47 0.86 1.57 1.05 NaN 0.56
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CEBPD P49716 NaN 0.23 1.60 0.91 0.60 2.75 NaN NaN NaN 1.92 1.26 1.32 NaN NaN 0.10 1.23 0.48 2.77 5.85 0.15 1.69 0.92 1.26 1.37 NaN NaN

CEBPG P53567 NaN NaN 1.47 0.79 0.60 NaN NaN NaN NaN NaN 1.11 NaN NaN NaN NaN 2.99 0.60 2.45 NaN NaN 1.85 NaN NaN NaN 2.14 NaN

CENPF P49454 1.08 0.70 1.29 0.70 1.76 0.58 0.17 1.03 1.12 0.69 0.73 1.15 NaN NaN 1.31 0.60 1.74 0.63 0.22 12.26 0.78 1.20 1.18 1.42 0.52 1.52

CENPV Q7Z7K6 1.87 1.97 0.87 0.65 0.88 0.92 0.84 0.80 0.77 0.86 0.78 0.77 0.72 0.97 2.21 4.94 0.73 0.75 1.40 1.22 0.89 0.77 0.92 1.02 0.77 1.14

CENPV Q7Z7K6-3 NaN 2.18 NaN NaN NaN NaN 0.93 0.92 NaN NaN NaN NaN NaN NaN 2.26 NaN NaN NaN NaN 0.83 1.22 1.13 0.75 1.28 NaN NaN

CGGBP1 Q9UFW8 0.71 1.11 0.44 NaN 2.30 0.45 NaN NaN 1.03 0.90 0.96 0.44 NaN NaN 0.45 0.53 1.67 0.35 6.52 0.18 1.32 0.61 0.50 2.13 NaN NaN

CHAF1A D6W625 0.49 1.07 0.96 0.48 1.34 0.83 0.55 0.82 0.41 1.55 0.76 0.92 NaN 0.64 0.86 1.02 4.77 0.12 5.08 0.37 6.15 0.10 1.50 1.54 NaN NaN

CHAF1B B2R7X3 0.58 0.82 0.89 0.41 1.10 0.83 0.54 0.78 0.38 1.54 0.81 0.75 0.71 0.59 0.85 1.61 4.40 0.13 2.30 0.59 7.41 0.07 1.30 1.25 2.10 0.18

CHAMP1 Q96JM3 1.07 0.71 1.09 0.85 1.06 1.04 0.61 NaN 0.77 1.66 1.22 1.35 1.21 NaN 0.63 0.14 6.98 0.18 11.02 0.12 7.92 0.14 4.49 0.54 1.06 0.34

CHD1 O14646-2 1.40 0.47 0.81 0.54 1.32 0.48 0.67 1.82 1.08 0.57 NaN 0.99 NaN NaN 1.33 0.46 1.09 0.45 0.31 6.01 0.54 1.03 0.78 0.95 0.23 1.99

CHD1L Q86WJ1 NaN 0.51 NaN NaN NaN 0.38 NaN NaN NaN NaN NaN NaN NaN 1.35 0.69 0.56 NaN NaN 0.34 0.68 0.31 NaN 0.63 0.40 NaN NaN

CHD3 H7C0J3 NaN NaN NaN NaN NaN 1.15 NaN NaN NaN NaN NaN NaN NaN NaN 0.68 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CHD3 Q12873 0.53 NaN 0.60 0.49 0.59 0.41 0.48 0.46 0.69 0.49 0.68 0.41 0.44 1.34 0.42 0.16 0.38 0.46 4.21 0.28 0.61 0.41 4.32 0.15 0.76 0.22

CHD4 F5GWX5 0.58 1.00 0.80 0.75 0.89 0.66 0.73 0.73 0.91 0.65 0.87 0.71 0.56 1.06 0.79 0.41 1.12 0.52 11.85 0.03 1.31 0.44 3.94 0.19 1.17 0.43

CHD4 Q14839 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.60 0.53 8.52 0.26 2.15 0.32 NaN NaN NaN NaN

CHERP Q8IWX8 1.76 2.12 0.86 1.82 1.60 0.83 0.84 1.16 1.52 1.37 NaN 1.66 NaN NaN 1.26 0.62 1.61 0.94 1.38 1.03 0.88 2.02 1.16 1.13 0.91 1.36

CHTOP Q9Y3Y2-4 2.23 0.46 0.50 1.83 0.81 0.77 0.70 1.02 2.25 0.76 1.31 1.03 1.19 NaN 0.77 0.23 0.92 0.73 3.44 1.26 0.99 1.06 2.32 NaN 0.80 0.49

CIR A0PJI7 NaN NaN 1.43 0.23 NaN NaN NaN NaN 0.65 0.69 NaN NaN NaN NaN NaN NaN NaN NaN 1.09 0.84 NaN NaN 1.05 1.45 NaN NaN

CKAP2 B2RMQ4 3.76 2.14 0.41 0.64 0.53 0.50 0.55 NaN 0.64 0.71 0.72 0.92 0.53 NaN 0.01 0.25 0.53 0.75 0.35 1.36 0.50 0.71 0.87 0.67 0.38 0.52

CKAP2 E9PD90 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.63 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CKB P12277 NaN 0.18 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.30 NaN NaN NaN 0.29 NaN NaN NaN 1.18 0.39 NaN NaN

CLASP1 B7ZLX3 NaN NaN NaN NaN 1.59 0.70 NaN NaN NaN NaN NaN NaN NaN NaN 0.42 0.03 0.75 0.55 NaN NaN 1.40 0.50 NaN NaN NaN NaN

CLASP1 Q7Z460 0.53 3.25 0.69 0.42 1.29 0.52 0.74 0.52 0.87 0.47 0.82 0.35 1.54 0.55 0.54 0.08 0.79 0.51 2.96 0.31 1.04 0.40 0.53 0.67 1.16 0.25

CLASP2 F5H604 0.49 2.66 0.70 0.54 1.54 0.54 0.91 0.68 0.66 0.73 1.01 0.45 1.73 0.60 0.51 0.08 1.04 0.58 1.92 0.25 0.70 0.77 0.69 NaN 1.24 0.45

CLIC1 Q5SRT3 0.18 0.15 NaN NaN NaN NaN NaN NaN 1.79 0.32 NaN NaN NaN NaN 0.25 NaN NaN NaN 0.38 1.79 NaN NaN 1.15 0.31 NaN NaN

CLOCK Q53EU0 1.24 NaN 0.91 NaN 1.62 2.15 1.18 1.14 0.81 1.26 1.25 NaN NaN 2.57 NaN NaN 1.40 1.38 3.10 0.40 1.52 1.38 0.63 2.19 1.67 1.54

CLTC K7EJJ5 NaN NaN NaN 1.51 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CLUH I3L2B0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CLUH K7EIG1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CNBP P62633-2 1.04 0.79 1.07 0.57 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.78 2.12 NaN NaN 0.88 0.73 0.50 NaN 1.24 NaN NaN NaN

CNOT1 A5YKK6 0.91 1.60 0.56 0.79 1.01 0.30 1.05 0.34 0.52 0.68 0.46 0.57 1.42 0.33 0.76 0.06 1.17 0.67 2.19 NaN 0.48 0.96 NaN NaN 1.10 0.47

CNOT1 H3BMZ2 1.05 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CNOT10 Q9H9A5 0.87 1.17 0.48 0.66 1.07 0.30 0.86 NaN 0.36 0.64 0.42 0.55 1.16 0.48 0.72 0.18 1.05 0.69 0.82 NaN 0.50 0.84 NaN NaN 0.86 0.51

CNOT11 Q9UKZ1 0.67 0.77 0.71 0.61 0.88 0.40 1.23 0.42 0.52 0.77 0.51 0.46 1.02 0.42 0.63 0.15 1.20 0.72 1.30 NaN 0.56 0.95 NaN NaN 1.33 0.55

CNOT2 B3KTL6 NaN NaN 0.81 0.91 0.85 0.83 NaN 0.95 0.92 0.98 0.82 0.85 0.89 1.33 NaN NaN 0.75 0.96 NaN NaN 0.89 0.78 0.85 0.78 0.72 0.72

CNOT2 F8VV52 0.48 0.97 0.48 0.55 0.87 0.32 1.27 0.32 0.59 0.86 NaN NaN 0.79 0.55 0.53 0.21 0.93 0.61 NaN NaN 0.37 0.86 NaN NaN 0.84 0.52

CNOT3 H7C148 NaN NaN NaN NaN NaN NaN 0.63 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CNOT7 B3KM57 0.86 1.18 0.73 0.75 1.03 0.52 1.19 0.45 0.60 1.02 0.53 0.66 0.94 0.49 0.69 0.06 1.08 0.72 1.87 NaN 0.62 1.08 NaN NaN 1.72 0.57

COBL O75128-3 0.37 1.68 NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.70 NaN NaN 0.32 0.05 NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.39

CPNE1 F2Z2V0 NaN 0.30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.65 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CPNE8 Q86YQ8 NaN 2.88 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.08 NaN NaN 0.62 1.26 NaN NaN NaN 0.94 NaN NaN

CRCP O75575 NaN NaN NaN NaN 0.44 0.62 0.35 0.75 0.51 0.75 0.67 0.66 NaN NaN 0.34 NaN 0.20 1.42 11.02 NaN 1.44 0.25 NaN NaN NaN NaN

CSTA Q6IB90 NaN NaN 0.55 NaN NaN NaN 0.07 NaN 0.40 NaN NaN 0.57 NaN NaN 0.08 NaN NaN NaN 0.06 NaN 0.08 NaN NaN 0.21 NaN NaN

CTSD P07339 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.18 NaN NaN NaN NaN 0.18 NaN NaN

CUEDC1 J3QLQ8 NaN NaN NaN NaN 1.84 0.61 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.52 NaN NaN NaN 0.76 1.05 13.24 0.16 NaN NaN

CUL1 Q13616 4.92 0.60 1.49 NaN 1.57 1.17 NaN NaN NaN NaN NaN NaN NaN 0.74 NaN NaN NaN 0.99 1.93 0.62 1.24 NaN 1.07 0.92 NaN NaN

CXorf 38 B2RD30 4.76 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CYR61 B4DI61 12.33 9.81 0.73 0.75 0.61 0.47 0.54 NaN NaN NaN 0.67 0.94 0.36 NaN 9.50 7.97 0.33 NaN 1.11 1.14 NaN 0.55 1.04 0.96 NaN NaN

DDIT4 Q9NX09 0.35 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.39 0.12 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

DDX21 Q9NR30 1.52 3.92 0.33 1.51 1.03 1.03 1.05 NaN 1.51 0.76 1.36 0.66 0.85 1.17 2.92 0.83 0.72 0.81 1.07 1.67 0.75 0.91 2.31 1.25 0.79 1.11

DDX52 Q9Y2R4 0.44 2.36 1.35 1.06 1.11 0.83 0.91 NaN 1.63 0.95 0.95 1.25 1.62 0.77 0.54 0.15 1.00 0.92 1.44 0.94 1.18 1.00 1.65 0.93 0.90 2.38

DDX5-ETV4 f . C1IK54 0.45 NaN NaN NaN 0.11 0.31 NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.17 NaN NaN 0.04 0.28 NaN NaN NaN NaN NaN NaN

DEFA3 Q6EZE9 0.02 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

DFNA5 H7C147 0.17 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

DFNA5 O60443 0.41 0.15 0.66 0.81 0.73 0.25 1.17 0.35 0.54 0.71 0.38 0.52 0.68 0.88 0.34 0.13 1.45 0.53 NaN NaN 0.57 1.03 NaN NaN 1.25 0.49

DHX36 Q9H2U1 1.14 0.77 0.54 1.78 1.00 1.22 0.97 0.58 1.11 0.97 1.68 0.69 0.35 2.24 1.19 0.98 1.10 0.82 1.39 0.61 1.34 0.85 1.09 0.89 1.28 0.51

DLG3 Q92796-3 NaN 0.22 0.62 0.66 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.35 0.36 NaN NaN NaN 0.76 0.51 NaN NaN NaN NaN NaN

DNAH8 H0Y7V4 NaN NaN NaN NaN 116.99 0.85 NaN NaN 1.02 1.04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 146.80 0.48 NaN NaN NaN NaN
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DNMT1 F5GX68 0.19 1.69 1.18 0.42 2.58 0.46 0.60 0.96 0.83 0.78 1.04 0.69 1.45 0.46 4.40 0.28 3.14 0.18 56.86 0.01 1.82 0.38 31.78 0.02 0.38 1.61

DNMT1 P26358 NaN NaN 1.48 0.38 2.75 0.50 NaN NaN NaN NaN 0.95 0.70 1.41 NaN NaN NaN 3.32 0.20 NaN NaN 1.96 0.44 NaN NaN NaN NaN

DNMT1 P26358-2 NaN NaN 1.29 0.36 2.44 0.44 NaN NaN NaN NaN 1.05 0.66 NaN 0.23 NaN NaN 2.92 0.18 215.33 0.01 1.88 0.36 39.19 0.05 NaN NaN

DSC1 Q9HB00 0.08 0.07 NaN NaN 0.13 NaN 0.06 NaN 0.37 0.09 NaN NaN 0.68 1.08 0.08 NaN NaN NaN 0.06 0.13 0.13 NaN 0.17 NaN NaN NaN

DSC2 Q68DY8 NaN NaN NaN NaN NaN NaN 0.21 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

DSC3 A8K6T3 NaN NaN NaN NaN NaN 1.00 0.12 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.11 NaN NaN NaN NaN NaN NaN NaN

DYM J3QSE7 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.16 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

DYM Q7RTS9 0.79 0.91 0.44 0.72 0.91 0.32 1.11 0.34 0.44 0.65 0.45 0.38 0.76 0.51 0.73 0.14 1.28 0.71 0.71 NaN 0.49 0.99 NaN NaN 1.27 0.51

E2F1 Q01094 NaN NaN NaN NaN 0.65 0.50 0.62 NaN 0.46 0.46 0.54 0.74 NaN NaN NaN NaN 0.52 0.36 NaN 0.38 0.51 0.45 0.23 1.85 NaN NaN

E2F2 Q5U0J0 NaN NaN NaN NaN 1.04 0.74 NaN NaN 0.58 NaN NaN NaN NaN NaN NaN NaN 0.65 0.51 NaN NaN 0.57 0.65 0.45 1.49 NaN NaN

E2F6 O75461 0.75 NaN 3.04 1.67 1.61 3.48 2.27 2.24 1.77 3.06 2.02 2.42 1.10 2.77 0.78 0.49 2.47 1.83 2.05 0.13 3.44 1.48 1.71 3.74 5.28 NaN

E4F1 H3BUJ7 NaN 0.51 1.28 0.77 0.34 3.30 0.65 NaN 0.58 2.27 1.28 1.30 0.27 6.34 0.08 4.58 0.21 4.35 12.56 0.10 1.64 0.73 0.93 2.05 NaN NaN

EED O75530 0.29 1.91 0.89 0.64 0.90 0.66 0.65 0.90 0.81 0.74 0.76 0.77 0.50 1.51 1.31 0.76 1.46 0.33 2.34 0.29 1.41 0.35 1.01 1.60 0.71 0.60

EEF1B2 P24534 0.65 0.34 1.08 NaN 0.52 1.02 0.40 2.66 0.76 0.49 0.79 0.61 NaN NaN NaN 0.80 0.33 1.20 0.66 0.87 0.90 0.57 1.35 NaN 1.22 NaN

EEF2 P13639 0.88 0.41 1.39 NaN 1.10 0.97 0.40 NaN 1.35 0.60 1.12 NaN 1.50 0.93 0.74 0.39 1.02 0.85 0.18 1.50 0.61 0.86 0.97 0.38 NaN 0.88

EHMT1 Q9H9B1 0.45 0.51 1.05 0.92 0.68 1.60 0.85 1.06 0.94 1.27 1.14 0.98 2.16 0.74 1.03 0.25 0.38 2.02 8.61 0.20 1.05 0.87 2.20 2.01 2.29 0.34

EHMT2 A2ABF8 0.54 0.56 0.92 0.93 0.72 1.64 0.82 0.95 0.92 1.15 1.11 0.92 2.24 0.73 1.24 0.48 0.37 1.94 7.75 0.23 1.08 0.85 2.24 1.91 1.68 0.28

EIF2B5 Q13144 NaN 0.73 NaN NaN NaN NaN NaN NaN NaN NaN 22.40 0.95 1.34 1.12 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

EIF2S1 Q53XC0 1.52 2.07 1.09 1.30 8.22 0.34 0.89 1.13 1.29 0.76 1.96 0.50 0.55 0.46 1.32 1.23 2.84 0.35 NaN 0.26 0.97 1.00 1.09 2.28 1.57 0.64

EIF2S2 Q6IBR8 0.93 1.39 0.71 0.83 8.30 0.33 1.11 NaN 1.28 0.74 2.18 0.46 0.45 0.43 1.18 2.24 2.71 0.33 2.23 0.28 0.95 1.08 0.90 1.06 1.50 0.53

EIF2S3 P41091 0.82 1.35 1.01 1.02 7.23 0.32 0.88 1.04 1.16 0.67 2.08 0.52 0.79 0.72 1.15 0.98 2.37 0.34 2.61 0.62 0.88 1.03 1.23 1.24 0.95 0.52

EIF4A3 P38919 4.31 0.92 0.48 1.40 0.83 0.61 0.79 0.90 2.11 0.30 1.08 0.97 1.37 0.99 2.02 1.56 1.05 0.56 1.37 2.38 0.58 1.24 1.96 1.34 0.56 0.55

EIF4G1 E7EX73 1.30 1.24 NaN NaN 0.66 0.62 NaN 0.71 1.14 0.38 NaN NaN NaN 0.61 1.50 0.14 0.63 0.74 1.17 1.34 0.35 NaN NaN 0.88 0.62 NaN

EIF4H Q15056 NaN 0.20 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.36 0.56 NaN NaN 0.43 1.00 NaN NaN 0.89 0.87 NaN NaN

EIF5 P55010 NaN 0.40 NaN NaN 15.49 0.26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.76 0.19 NaN 0.28 NaN 2.89 0.73 0.68 NaN NaN

EIF5B Q8N5A0 NaN NaN NaN NaN 6.17 0.19 NaN 0.86 NaN NaN 0.86 0.62 NaN NaN NaN NaN 0.88 0.21 NaN 0.24 0.39 1.02 NaN 1.53 NaN NaN

ELF1 P32519-2 0.80 NaN NaN 1.02 3.68 0.40 NaN NaN NaN NaN NaN NaN NaN NaN 0.19 3.47 2.27 0.34 3.10 0.24 2.38 0.57 0.47 1.85 NaN NaN

ELF2 B7Z720 0.69 0.40 NaN NaN 3.04 0.66 NaN NaN NaN NaN 1.99 0.55 NaN NaN 0.12 0.73 1.85 0.64 8.91 0.17 2.59 0.55 0.58 2.58 NaN NaN

ELF2 Q15723-1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

EMG1 Q92979 0.51 0.79 0.84 0.87 7.42 0.27 1.02 0.93 1.61 2.89 1.04 0.62 0.75 0.62 0.53 0.15 2.79 0.25 2.15 0.49 0.72 0.96 1.43 1.85 0.85 NaN

ENO1 P06733 0.18 0.07 3.44 NaN 1.91 0.98 0.25 2.61 1.90 0.36 NaN NaN NaN 1.03 0.16 0.16 0.79 NaN 0.32 1.67 0.46 0.45 1.01 0.27 NaN NaN

EPPK1 P58107 NaN 0.69 1.42 1.10 1.01 0.48 0.13 NaN NaN 0.38 0.70 1.68 0.75 0.41 0.75 0.57 0.63 0.57 NaN 1.30 0.45 0.58 0.16 NaN NaN NaN

ESRRA Q569H8 NaN NaN NaN 0.56 2.28 0.83 0.83 0.95 0.25 3.92 0.78 0.87 NaN NaN NaN NaN 0.80 1.42 4.48 0.22 1.82 0.54 NaN NaN 1.46 0.50

ETV6 P41212 0.57 0.56 1.66 1.44 0.83 2.60 1.27 1.96 0.97 2.56 1.31 1.17 0.78 2.38 0.27 0.71 0.65 2.49 10.92 0.03 1.86 0.84 0.80 1.04 2.01 1.12

EXOC2 Q96KP1 0.88 1.19 0.84 0.95 0.94 0.53 1.13 0.70 0.94 0.99 0.74 1.46 0.77 0.64 0.77 0.21 1.33 1.05 NaN NaN 0.65 1.22 NaN NaN 2.44 0.60

EZH2 Q15910 0.32 1.99 0.77 0.71 1.06 0.94 0.73 0.94 0.87 0.98 0.90 1.03 0.59 1.42 1.34 1.02 1.49 0.45 1.85 0.94 1.38 0.42 1.13 1.69 0.99 0.74

FABP5 E7DVW5 NaN NaN NaN NaN NaN NaN 0.07 NaN NaN NaN NaN NaN NaN NaN 0.08 0.18 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

FAM114A1 Q8IWE2 NaN 0.05 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

FAM129B Q96TA1-2 1.31 1.04 NaN NaN 0.85 0.50 0.80 NaN NaN NaN 1.24 NaN NaN NaN 1.46 0.93 0.29 NaN 0.26 NaN 0.90 1.12 0.92 1.09 0.01 0.56

FAM134C Q86VR2 NaN 0.22 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.62 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

FAM48A B3KNI1 NaN 0.22 0.54 0.41 0.45 0.91 NaN NaN NaN NaN 0.94 0.65 NaN NaN 0.33 NaN 0.50 0.93 NaN NaN 1.16 0.32 NaN NaN NaN NaN

FBXL6 Q8N531 0.68 0.30 0.95 0.54 0.69 0.80 1.09 0.40 0.69 0.64 0.90 0.41 0.42 1.61 0.62 NaN 0.67 0.65 2.90 0.14 0.75 0.67 0.60 1.03 0.49 0.72

FBXW11 B4DH70 NaN 2.12 1.02 0.79 0.61 1.12 0.82 0.81 0.71 1.07 0.80 0.85 0.45 2.58 NaN NaN 0.51 1.11 8.04 0.21 0.91 0.77 1.16 1.11 NaN 0.53

FGF2 D9ZGF5 0.88 1.98 0.50 1.65 0.99 0.84 0.81 NaN 1.21 4.17 4.84 NaN NaN NaN 1.59 4.47 0.82 0.72 0.79 0.41 0.70 0.81 0.86 0.46 0.44 0.76

FIZ1 Q96SL8 0.81 0.39 0.64 0.82 0.46 1.52 0.80 0.77 0.52 0.64 0.71 0.62 0.29 1.40 0.62 6.13 0.28 1.13 9.62 0.04 0.58 0.50 6.84 0.17 1.19 0.30

FMNL1 I6L9I9 NaN 0.15 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.30 0.63

FMNL1 O95466-2 0.86 0.13 0.70 1.00 0.87 0.34 NaN NaN NaN NaN 0.84 NaN NaN NaN 0.62 2.51 1.12 1.00 1.21 0.99 1.05 1.18 NaN NaN NaN 0.60

FNBP4 D3DQS4 NaN 2.29 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.98 0.96 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

FOXN2 Q6IS90 0.42 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.84 1.17 0.78 NaN 0.34 NaN NaN NaN NaN 0.70 NaN NaN NaN NaN NaN

FRMPD3 Q5JV73 0.07 NaN 0.95 0.85 0.29 0.88 NaN NaN NaN 0.04 7.21 0.78 7.64 1.26 0.94 NaN 0.56 0.21 0.38 0.09 0.40 2.45 0.10 NaN 0.33 0.25

G2E3 F5GX24 0.34 0.38 1.30 1.13 1.23 0.81 0.25 2.63 0.56 1.38 0.29 4.19 1.36 1.05 0.76 0.67 1.22 0.79 0.46 12.76 0.94 1.18 2.66 1.57 0.66 1.18

GATAD2A Q86YP4 0.39 0.90 1.01 0.72 0.95 0.84 0.98 0.96 1.01 0.82 0.92 0.85 0.41 1.45 0.67 0.87 0.68 1.10 5.61 0.05 0.69 1.03 4.53 0.15 1.45 0.52

GATAD2B Q8WXI9 0.43 0.85 0.81 0.61 0.85 0.61 0.66 0.72 0.82 0.69 0.76 0.68 0.34 1.32 0.69 0.50 0.58 0.92 5.81 0.03 0.57 0.90 5.07 0.10 0.99 0.42

GBP1 Q5D1D5 NaN NaN NaN NaN NaN NaN 0.04 0.50 NaN 0.25 0.91 NaN NaN NaN NaN NaN NaN NaN 0.10 NaN NaN 0.04 NaN NaN NaN NaN

GCC2 Q8IWJ2 NaN 0.33 1.10 NaN NaN 0.66 1.02 0.21 NaN 0.89 0.78 NaN NaN NaN NaN 0.14 1.77 1.16 NaN 0.13 0.99 1.10 NaN NaN 0.85 1.58

GDI2 Q5SX86 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.71 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.91

GDI2 Q6IAT1 2.61 0.14 1.74 NaN NaN NaN 0.23 NaN NaN NaN NaN NaN NaN NaN 0.71 NaN NaN NaN 0.20 1.37 NaN NaN 0.87 0.26 NaN NaN

GET4 Q7L5D6 2.59 0.73 0.63 0.82 1.11 0.53 1.26 0.46 0.57 0.76 0.51 0.83 1.65 0.84 1.88 0.17 1.30 0.55 NaN NaN 0.98 0.99 NaN NaN 2.23 0.70
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GGNBP2 A8K3S2 0.44 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.63 0.46 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

GNB2L1 E9KL35 1.08 1.05 NaN NaN 1.24 0.99 0.25 NaN NaN 0.43 NaN NaN 0.64 1.33 1.01 0.23 1.26 NaN NaN 1.02 1.28 1.31 0.68 0.68 1.40 NaN

GOLGB1 Q14789 NaN 0.24 0.08 0.42 0.60 0.12 NaN NaN NaN NaN 0.05 NaN NaN 1.33 NaN NaN 1.12 0.67 NaN NaN 0.67 0.81 NaN NaN 0.97 1.29

GOLT1B G3V1U5 NaN NaN NaN NaN NaN 0.19 NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.04 NaN 1.39 NaN NaN NaN NaN NaN NaN NaN NaN

GSTP1 P09211 NaN NaN NaN NaN NaN NaN 0.10 NaN NaN NaN NaN NaN NaN NaN NaN 0.70 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

GTF2E2 P29084 NaN NaN NaN 0.59 1.47 0.50 0.79 2.24 0.94 1.66 0.57 2.17 0.31 3.64 0.68 0.79 NaN NaN NaN NaN 1.66 0.95 NaN 1.73 NaN NaN

GTF3C4 Q9UKN8 0.81 0.55 0.51 0.55 0.71 0.66 0.51 NaN 0.51 0.89 0.81 0.56 0.53 0.95 0.80 0.33 0.83 0.46 5.58 0.34 1.82 0.17 0.80 NaN NaN NaN

GTF3C5 Q5T7U4 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

GTF3C5 Q9Y5Q8 0.62 0.47 0.45 0.72 0.66 0.53 0.47 NaN 0.37 0.84 0.70 0.51 0.40 1.24 0.68 0.18 0.96 0.37 9.10 0.11 2.15 0.17 0.81 1.55 NaN 0.69

HDGF P51858 NaN 0.10 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

HDGFRP2 Q7Z4V5-2 NaN 0.57 8.74 0.20 0.70 0.77 NaN 0.65 0.78 NaN 0.52 NaN NaN NaN NaN NaN 0.92 0.47 NaN NaN NaN NaN NaN NaN NaN NaN

HEATR2 Q86Y56 1.08 0.72 0.88 0.99 1.21 0.53 1.72 NaN 0.20 1.30 0.42 0.85 1.14 0.98 0.93 0.56 1.86 0.99 0.33 NaN 0.67 1.21 NaN NaN 2.21 0.77

HES1 Q14469 0.79 1.39 2.08 0.44 1.02 1.41 1.23 1.26 0.82 1.50 1.13 1.04 NaN NaN 0.52 0.95 0.79 1.38 NaN 0.22 1.53 0.81 0.44 4.35 3.09 NaN

HIVEP2 P31629 1.30 3.32 0.69 NaN 0.44 1.34 NaN NaN NaN NaN 0.63 0.52 0.55 NaN NaN NaN 0.42 NaN 4.31 0.58 0.73 0.42 NaN NaN NaN NaN

HMG20A Q9NP66 0.12 1.27 1.51 1.00 1.16 1.34 1.07 1.23 1.07 1.59 1.13 1.29 NaN NaN 0.49 0.64 1.09 1.16 0.84 1.42 1.11 1.02 1.01 1.12 1.17 1.90

HMGA1 P17096 2.15 2.37 0.55 0.93 0.93 0.78 0.54 0.54 0.67 0.59 0.91 0.65 0.69 0.76 2.09 2.24 0.92 0.64 1.28 1.31 0.75 0.64 1.37 1.27 0.49 0.90

HMGB3 O15347 0.30 1.62 1.14 1.80 5.09 0.89 1.06 1.57 1.47 0.95 0.46 NaN NaN NaN 0.28 NaN 1.23 0.50 4.72 0.91 1.25 0.81 2.74 1.92 NaN 0.93

HMGN5 Q5JSL0 NaN NaN NaN NaN 18.80 0.09 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 3.10 0.19 NaN NaN NaN NaN NaN 0.70 NaN NaN

HSP90AB1 P08238 1.29 0.95 1.17 1.09 1.25 0.75 0.59 1.67 1.12 0.52 0.70 0.80 0.94 1.35 1.60 1.27 0.96 0.84 0.28 2.48 0.74 0.75 1.11 0.62 1.08 0.72

HSPA9 B7Z4V2 1.19 1.28 0.48 0.59 0.50 0.51 0.48 NaN 0.40 0.55 0.39 0.43 NaN 0.81 1.11 0.97 0.39 0.50 NaN 0.48 0.57 0.31 NaN NaN NaN 2.30

HTRA1 Q05DJ8 0.15 0.24 0.33 0.44 0.34 0.40 0.32 0.61 0.73 0.60 0.32 1.08 0.42 0.34 NaN NaN 0.45 0.83 0.24 NaN 0.39 0.37 NaN NaN 0.29 0.30

HYDIN Q4G0P3 NaN NaN NaN 1.73 0.79 2.22 1.34 1.54 NaN NaN 1.72 1.47 NaN NaN NaN NaN 1.14 1.69 0.78 0.18 1.58 1.39 4.78 0.12 1.03 NaN

IFI16 D3DUZ3 0.26 1.71 0.45 1.04 0.58 0.89 0.44 0.63 0.69 0.69 0.85 0.72 0.49 1.09 0.32 7.31 0.59 0.78 3.99 0.04 0.66 0.68 0.96 0.44 0.87 0.30

IFI16 Q16666 0.29 1.81 0.54 1.12 0.65 0.97 0.55 0.75 0.79 0.79 0.94 0.81 0.57 1.29 0.33 4.45 0.63 0.90 10.65 0.01 0.76 0.78 0.99 0.50 1.13 0.34

IGF1 Q9NP10 0.06 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

IGF2 E3UN46 0.19 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.34 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

IGHG1 S6B291 NaN NaN 0.99 NaN 0.97 NaN 0.07 NaN NaN NaN NaN 0.90 NaN NaN NaN 0.16 0.71 NaN NaN NaN 0.97 0.74 0.24 NaN NaN NaN

IGHG4 P01861 NaN NaN NaN NaN NaN NaN 0.29 NaN NaN NaN NaN NaN NaN NaN NaN 0.13 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

IGKC Q0KKI6 0.06 NaN NaN NaN NaN NaN 0.07 NaN NaN 0.42 NaN NaN NaN NaN NaN 0.16 NaN NaN NaN NaN NaN NaN 0.28 NaN NaN 0.57

IGLC1 A2NUT2 NaN NaN NaN NaN NaN NaN 0.04 NaN NaN NaN NaN NaN NaN NaN NaN 0.22 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ING1 Q9UK53-2 NaN 1.18 1.37 1.36 0.73 2.89 1.63 1.62 1.39 1.82 1.35 1.12 0.55 2.88 0.47 2.62 1.23 1.39 NaN 0.30 1.05 1.62 0.51 5.21 1.67 NaN

ING2 B2RA15 NaN 0.71 1.53 1.50 0.94 3.35 1.92 2.15 1.69 2.05 1.62 1.44 0.69 3.35 NaN NaN 1.59 1.92 NaN 0.25 1.60 2.09 0.66 6.47 2.70 1.47

ING4 A4KYM7 NaN NaN 0.76 0.81 0.68 0.93 0.73 0.90 1.16 0.88 0.69 1.07 0.52 1.94 0.65 NaN 0.98 0.77 0.36 NaN 0.25 2.33 1.43 2.34 1.02 1.22

ING5 E9PEN0 NaN NaN 1.14 1.15 1.32 1.80 1.10 1.06 1.48 1.03 NaN NaN 0.97 NaN 0.70 NaN 1.81 1.58 0.52 6.29 0.61 3.50 1.95 2.74 1.55 1.48

INO80 Q9ULG1 0.66 0.47 1.56 0.64 0.85 1.46 1.06 0.81 0.65 2.13 1.25 1.07 0.32 3.48 0.33 2.89 0.46 2.07 45.99 0.19 2.55 0.48 1.58 2.30 2.54 1.03

INO80B Q9C086 0.38 0.29 2.49 0.68 0.79 1.97 1.44 0.83 0.73 2.47 1.33 1.12 0.22 3.93 0.26 1.26 0.51 2.56 25.25 0.09 2.89 0.56 1.13 0.80 2.10 0.38

INO80C Q6PI98 0.71 0.40 2.94 0.48 0.80 2.02 1.68 0.97 0.72 3.02 1.50 1.27 0.26 4.42 0.25 1.33 0.55 2.66 18.02 0.07 3.32 0.59 1.08 1.64 2.83 0.47

INO80D Q53TQ3-2 NaN NaN 2.54 0.56 0.82 1.15 NaN NaN 0.72 2.81 1.48 1.42 NaN NaN NaN NaN 0.56 2.04 NaN 0.25 3.22 0.53 NaN NaN NaN NaN

INO80E Q8NBZ0 0.41 0.29 2.36 0.62 0.77 1.85 1.45 0.92 0.64 2.89 1.37 1.26 0.21 4.84 0.25 0.93 0.52 2.59 11.44 0.04 3.09 0.54 1.08 1.59 NaN 0.52

IPO11 Q9UI26 1.27 1.12 0.77 0.95 0.80 0.38 1.15 0.39 0.61 0.77 0.74 1.27 0.91 0.67 1.08 0.14 1.51 0.77 NaN NaN 0.60 1.22 NaN NaN 1.95 0.57

ISL2 Q96A47 NaN NaN 1.47 0.79 1.00 NaN 1.10 NaN 0.56 2.13 0.88 0.96 NaN NaN NaN NaN 0.94 NaN 15.38 0.15 1.88 0.56 0.96 1.32 NaN NaN

JADE2 G3XAA4 0.19 0.37 0.99 1.05 0.87 1.15 8.73 1.31 14.63 0.96 0.77 1.85 NaN 1.35 NaN NaN 0.72 1.12 NaN NaN 0.46 2.27 NaN NaN NaN 1.37

JADE3 Q92613 0.18 2.96 0.59 0.90 0.87 0.90 0.47 1.11 1.04 0.73 1.03 1.50 0.67 1.38 1.44 0.61 0.87 0.69 0.27 4.05 0.21 2.48 1.26 1.80 0.60 0.77

JARID2 Q92833 NaN NaN 0.42 0.96 0.68 0.90 NaN NaN 0.50 0.87 0.18 2.49 NaN 1.09 NaN NaN 0.56 0.83 NaN 0.58 0.64 0.66 1.42 1.15 NaN NaN

JMJD1C B7ZLC8 1.20 NaN NaN NaN 1.26 0.41 NaN NaN NaN 0.78 0.74 NaN 0.65 NaN 0.53 0.06 1.17 0.25 0.02 NaN 0.77 0.40 NaN NaN NaN NaN

KAT7 O95251-4 0.20 1.58 0.43 0.79 0.69 0.61 0.42 0.66 0.78 0.51 0.40 0.72 0.58 0.68 1.09 1.05 0.70 0.64 0.11 4.40 0.26 1.14 1.12 1.12 0.50 0.76

KIAA1524 Q8TCG1 0.97 0.70 0.54 0.76 0.99 0.49 NaN NaN 11.50 0.83 NaN NaN 0.80 1.02 0.76 0.35 1.46 0.75 0.18 NaN 0.59 1.51 NaN NaN 2.77 0.64

KIF11 P52732 1.28 0.94 0.77 1.45 0.67 0.19 1.07 0.38 0.55 0.73 0.40 NaN 0.93 0.75 1.13 0.15 1.31 0.73 NaN NaN 0.65 1.23 NaN NaN 1.11 0.43

KIF2A O00139-1 NaN NaN NaN NaN NaN 0.40 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

KIF2A O00139-2 NaN NaN 0.69 NaN 5.41 0.26 NaN NaN NaN NaN 1.25 0.40 NaN NaN 0.66 0.41 1.97 0.25 1.53 0.58 0.94 0.68 1.14 1.05 NaN 0.58

KIF2C A8K3S3 1.01 0.78 NaN 0.69 4.69 0.23 NaN NaN NaN 0.45 0.79 NaN NaN 0.89 NaN 0.33 1.03 0.48 NaN 0.90 0.61 0.65 NaN NaN NaN 0.45

KIF5B-ALK C1PHA2 NaN NaN 1.16 NaN NaN NaN NaN 0.59 0.28 NaN 0.73 NaN NaN NaN NaN NaN 1.56 NaN NaN NaN NaN NaN NaN NaN NaN NaN

KIFC1 Q9BW19 0.62 0.57 0.37 NaN 2.36 0.20 NaN NaN 0.61 0.25 0.73 0.28 NaN 0.43 0.42 0.12 1.25 0.19 1.86 NaN 0.67 0.37 NaN NaN NaN NaN

KLF16 Q9BXK1 0.82 0.58 1.60 0.87 0.76 2.07 1.18 1.29 0.75 2.05 1.14 1.00 0.31 3.44 0.19 5.06 0.38 2.51 9.97 0.15 3.12 0.38 1.68 1.15 2.05 0.68

KMT2C Q8NEZ4 0.39 NaN NaN NaN 0.54 0.79 NaN NaN 0.38 NaN 0.95 0.88 NaN NaN 0.18 0.22 NaN NaN NaN 0.32 2.04 0.31 0.71 0.76 NaN NaN

KMT2D O14686 0.45 0.65 1.59 0.57 0.95 1.15 0.31 NaN 0.73 1.18 1.19 1.06 0.78 1.25 0.24 0.22 0.46 2.00 NaN 0.44 1.35 0.76 2.10 1.44 NaN 0.10

KRI1 H0YFD2 0.11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.42 NaN NaN NaN NaN NaN NaN NaN

LCN1 P31025 NaN NaN NaN 0.14 NaN NaN NaN NaN NaN NaN NaN NaN 0.04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.12 NaN NaN
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LDHA P00338 0.34 0.17 1.63 1.45 1.42 1.11 0.45 2.65 1.51 0.58 1.13 1.24 1.24 1.02 0.27 0.22 1.24 1.08 0.78 1.94 0.82 1.00 1.41 0.72 2.07 1.10

LDHB Q5U077 0.99 0.52 1.28 1.04 0.86 0.69 0.42 2.03 1.20 0.52 0.96 1.07 1.15 0.95 0.82 0.22 1.00 0.94 0.51 1.48 0.66 0.84 1.18 0.69 1.77 0.55

LGALS7 P47929 NaN NaN NaN NaN NaN NaN 0.08 NaN NaN 0.20 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.06 NaN NaN NaN

LIG4 P49917 NaN 1.95 1.64 1.27 0.87 1.65 1.30 1.22 0.82 2.19 1.37 1.52 0.65 2.57 NaN NaN 0.82 1.62 4.67 0.16 1.65 1.02 1.06 0.83 2.15 0.78

LMNA P02545 0.69 0.42 1.15 0.57 1.99 0.35 0.72 0.49 1.10 0.86 0.78 1.06 0.96 1.12 0.56 0.62 1.24 0.60 0.07 2.21 0.79 0.97 0.10 0.56 0.19 1.73

LMNA P02545-2 NaN 0.25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.31 NaN NaN NaN 0.09 1.46 NaN NaN NaN NaN NaN NaN

LMNA P02545-5 NaN NaN NaN NaN NaN NaN NaN 35.49 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

LRIF1 Q5T3J3 NaN NaN 1.54 NaN 1.22 1.22 NaN NaN 0.91 NaN 2.35 1.15 NaN NaN NaN NaN 3.65 0.67 5.72 0.13 2.75 0.38 2.52 NaN NaN NaN

LRRFIP2 A8MXR0 NaN 4.13 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.36 1.04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

LRWD1 Q9UFC0 0.76 0.71 1.12 1.09 9.82 0.05 1.47 1.05 0.91 1.15 3.02 0.19 0.99 0.93 0.78 0.25 3.16 0.18 3.42 0.61 7.94 0.05 2.90 1.09 1.35 1.11

LSM2 Q9Y333 1.43 0.87 NaN NaN 1.31 0.73 NaN 1.09 NaN NaN NaN NaN NaN NaN 0.95 0.40 NaN 0.77 0.61 1.13 0.07 1.50 NaN NaN 0.63 0.70

MAFK A2VCQ5 NaN NaN NaN NaN NaN 0.28 0.09 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

MAFK A8WFP5 0.87 NaN 0.70 0.67 NaN NaN NaN NaN NaN NaN NaN 0.51 NaN NaN 0.34 1.88 NaN NaN 5.77 0.12 NaN 0.57 2.28 0.49 NaN NaN

MAGOH P61326 8.28 0.92 0.39 1.79 0.76 0.47 0.71 1.01 1.80 0.21 1.13 1.15 NaN 0.41 2.21 0.57 1.20 0.46 NaN NaN 0.48 1.28 NaN NaN 0.42 0.64

MAP2K2 P36507 0.81 0.61 0.84 0.86 0.66 0.48 1.03 0.65 0.77 1.17 0.68 1.85 0.58 0.66 0.75 0.18 1.19 0.97 NaN NaN 0.61 1.02 NaN NaN 2.17 0.68

MAP4 E7EVA0 NaN 0.58 0.54 3.00 1.97 0.82 NaN NaN 1.40 NaN 1.64 0.76 NaN NaN 0.47 0.12 1.23 0.76 3.75 NaN 1.39 0.99 2.56 2.22 NaN NaN

MAP4 P27816-5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

MARK2 Q7KZI7-8 0.66 0.01 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.72 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

MAU2 Q9Y6X3 0.86 0.62 NaN NaN 0.93 1.30 0.92 NaN 1.07 NaN 1.25 0.92 NaN 1.67 1.08 0.28 3.14 0.30 12.24 0.08 4.56 0.21 NaN 0.80 NaN NaN

MAU2 Q9Y6X3-2 NaN NaN NaN NaN 1.38 1.35 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 3.22 0.37 8.03 0.14 1.93 0.26 NaN NaN NaN NaN

MAX Q8TAX8 1.02 1.71 3.10 1.03 1.38 1.89 2.24 1.63 1.66 2.27 1.99 1.67 NaN NaN 0.75 4.76 1.56 1.69 6.02 0.17 2.33 1.37 0.51 2.58 2.48 NaN

MBD2 Q9UBB5 0.38 0.79 1.48 0.71 0.97 1.04 1.00 1.02 1.11 0.89 1.06 0.87 0.33 2.55 0.68 0.32 0.65 1.46 15.14 0.01 0.86 1.17 6.56 0.08 2.02 0.54

MBTPS1 Q14703 NaN NaN NaN NaN 0.35 0.49 NaN NaN NaN NaN 0.32 NaN NaN NaN NaN NaN 0.61 NaN NaN NaN 0.27 0.62 NaN NaN 0.69 0.69

MCRS1 Q96EZ8-3 0.58 0.33 2.31 0.79 1.08 1.26 1.35 1.15 0.89 1.62 1.46 1.22 0.26 5.42 0.37 0.53 0.80 1.57 7.29 0.18 2.37 0.62 1.71 1.12 NaN 0.49

MEAF6 Q9HAF1-2 0.22 1.83 1.12 1.14 0.99 1.27 0.78 1.04 1.07 0.87 1.17 1.51 NaN NaN 0.75 0.65 1.16 1.15 0.70 2.39 0.86 1.77 1.86 2.03 0.88 0.93

MECP2 P51608-2 1.04 1.09 0.50 0.93 0.55 0.91 0.58 0.70 0.88 0.65 0.75 0.71 0.62 0.78 0.60 5.77 0.62 0.98 5.15 0.10 0.77 0.74 3.74 0.32 0.58 0.58

MED10 Q9BTT4 0.67 NaN NaN NaN 0.89 0.54 0.60 NaN 0.60 1.10 0.83 0.76 NaN NaN 0.22 NaN 0.52 0.90 0.22 NaN 1.25 0.53 NaN NaN NaN NaN

MED16 Q9Y2X0-2 0.53 0.64 0.71 0.56 0.84 0.41 0.51 NaN 0.49 0.98 0.82 0.64 0.52 1.13 0.27 0.99 0.52 0.64 1.59 0.47 0.88 0.34 0.74 1.15 NaN NaN

MIER1 Q8N108-19 NaN NaN 0.62 0.66 0.72 1.49 0.80 NaN 0.87 1.05 NaN NaN NaN NaN NaN 0.84 2.15 0.31 2.07 0.09 2.39 0.32 NaN NaN NaN NaN

MIER2 Q8N344 NaN NaN NaN NaN 0.53 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.08 0.21 3.85 NaN 2.66 0.20 NaN NaN NaN NaN

MIF I4AY87 NaN 0.09 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.44 NaN NaN NaN NaN NaN NaN NaN

MITF A8K5K3 NaN NaN NaN NaN NaN NaN 1.02 NaN 2.45 1.33 NaN NaN NaN NaN NaN NaN 0.78 NaN 1.75 0.27 NaN 0.63 0.55 2.12 NaN NaN

MLX Q9UH92 0.44 0.72 1.46 0.37 0.99 1.11 1.27 0.86 0.72 1.21 0.98 0.86 0.38 2.25 0.24 0.31 0.77 0.93 10.58 0.21 1.34 0.62 0.25 2.64 2.25 0.34

MLXIPL H7C1V3 NaN 0.58 1.29 0.42 0.75 0.85 NaN NaN NaN NaN 0.72 0.53 NaN NaN NaN NaN 0.68 0.75 NaN 0.12 0.90 0.80 NaN NaN NaN NaN

MLXIPL Q9NP71-3 0.31 0.55 1.38 0.28 0.94 1.04 0.94 0.65 0.60 1.17 0.87 0.80 0.46 2.00 0.22 0.21 0.71 0.83 10.76 0.17 1.11 0.74 0.27 1.85 NaN 0.44

MMS22L E2QRD4 NaN NaN NaN 0.71 0.38 1.24 0.19 NaN NaN NaN 0.98 0.72 0.54 0.90 NaN NaN 0.96 0.67 1.27 0.57 0.26 0.90 0.78 0.70 0.91 NaN

MNT Q99583 0.43 1.20 1.60 0.82 1.14 1.74 1.11 1.11 1.18 1.49 1.19 1.27 0.74 2.24 0.37 6.72 1.26 1.41 3.72 0.23 1.23 1.13 0.33 2.83 2.65 0.51

MOB4 Q9Y3A3-3 0.48 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 32.32 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

MORC2 Q9Y6X9-2 1.04 1.36 NaN NaN 1.77 0.30 NaN NaN NaN NaN NaN NaN NaN NaN 1.08 0.67 NaN 0.35 1.07 1.16 NaN 0.63 1.27 1.22 NaN NaN

MPHOSPH8 Q99549 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.07 NaN NaN 12.07 NaN 3.00 0.28 NaN 0.08 2.63 0.22 NaN NaN NaN NaN

MRPL13 Q9BYD1 0.49 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.28 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

MTA1 Q13330 NaN NaN NaN NaN NaN 0.39 NaN NaN NaN NaN 0.68 0.57 0.42 NaN NaN NaN 0.34 1.09 NaN 0.48 0.42 0.95 NaN 0.25 NaN NaN

MTA1 Q13330-3 0.19 0.84 0.99 0.55 0.86 0.69 0.71 0.84 0.85 0.65 0.81 0.73 0.51 1.61 0.51 0.62 0.50 1.17 3.36 0.11 0.50 1.15 2.12 0.23 1.05 0.47

MTA2 O94776 0.45 1.04 1.02 0.71 0.99 0.85 0.76 0.83 0.98 0.76 0.92 0.82 0.42 1.52 0.82 0.65 0.66 1.11 5.90 0.03 0.70 1.05 6.43 0.11 1.34 0.45

MTA3 E7EQY4 0.34 0.91 0.71 0.68 0.77 0.83 0.86 0.80 0.81 0.75 0.79 0.66 0.31 1.77 0.57 0.55 0.67 0.85 8.18 0.04 0.66 0.87 3.02 0.16 1.02 0.51

MTF2 Q9Y483 0.39 1.58 0.84 0.62 0.85 0.97 0.71 0.73 0.85 1.01 0.78 1.11 0.51 NaN 1.39 1.66 1.06 0.81 1.23 0.50 1.08 0.81 0.84 1.94 0.91 0.98

MYC B4E1N7 NaN NaN 3.87 0.90 1.95 2.08 2.31 NaN 1.61 1.76 2.18 2.17 NaN NaN NaN NaN 1.68 1.93 4.29 0.23 2.20 1.41 0.79 1.61 NaN NaN

MYL6B P14649 NaN 5.52 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.64 1.31 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NAA40 Q86UY6 0.80 0.62 0.80 0.84 0.91 0.95 0.91 0.72 0.80 0.98 0.87 0.84 0.57 1.21 0.89 1.07 0.90 0.77 0.97 0.90 0.89 0.77 0.89 0.97 0.35 2.29

NACA E9PAV3 6.94 0.53 1.73 1.66 1.39 1.01 0.79 NaN 0.42 0.81 1.03 0.93 NaN NaN 0.72 0.37 1.13 NaN NaN 1.59 1.10 1.05 1.37 0.78 NaN NaN

NAP1L1 F8VY35 1.04 2.68 2.06 0.90 2.30 0.84 1.09 1.74 1.85 1.18 0.76 1.98 0.80 1.90 1.95 1.35 2.12 0.71 1.19 1.22 1.85 0.81 2.19 0.45 1.20 1.86

NAP1L4 B7ZAK9 NaN 0.21 4.07 0.69 2.71 0.49 NaN NaN 1.03 1.26 NaN NaN NaN NaN 1.25 0.50 NaN NaN 1.13 0.57 1.01 NaN 1.52 NaN NaN NaN

NBN O60934 NaN 0.17 1.10 1.69 3.36 2.43 2.31 2.33 2.03 2.83 2.09 1.80 0.95 2.48 0.32 0.17 3.19 1.28 0.19 0.38 1.75 1.56 0.49 0.29 2.03 1.61

NCAPD2 B3KMS0 1.41 1.16 0.84 4.23 1.04 0.54 1.07 0.53 0.87 1.04 0.81 0.86 1.05 1.16 1.41 0.70 1.08 1.08 2.40 0.37 0.85 0.77 1.02 0.93 1.30 0.57

NCL P19338 0.60 1.27 0.99 0.86 2.39 0.50 0.62 1.07 1.32 0.77 0.86 1.11 1.21 0.88 1.26 0.34 2.10 0.58 0.26 4.90 0.86 1.93 1.30 0.56 0.31 2.33

NCOA6 Q14686 NaN NaN 1.42 1.30 1.18 1.29 NaN NaN 0.89 2.25 1.01 1.04 NaN NaN 0.35 0.41 0.46 2.12 5.02 0.31 1.88 0.53 1.60 0.15 NaN NaN

NCOR2 C9JE98 0.94 0.58 0.52 NaN 0.51 0.77 0.60 NaN 1.22 0.52 0.95 0.80 NaN 0.89 0.56 0.07 0.63 0.92 NaN NaN 1.02 0.69 NaN NaN NaN NaN

NEIL2 Q969S2-2 NaN NaN 0.82 4.46 1.60 0.96 1.32 2.03 1.39 0.88 1.02 1.01 NaN 1.58 1.05 NaN 1.46 0.81 1.71 0.78 0.97 1.22 1.55 1.13 1.29 1.25
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NFATC2IP Q8NCF5 0.47 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.45 0.26 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NFIA B1AKN8 0.60 0.38 0.78 0.49 0.41 1.62 NaN NaN 0.21 0.53 0.84 0.68 0.24 2.93 0.09 2.99 0.18 2.64 69.81 0.15 2.04 0.25 1.04 0.87 NaN 0.26

NFIA Q12857-2 NaN NaN 0.23 0.60 0.44 NaN NaN NaN NaN NaN 0.70 0.48 NaN NaN 0.05 NaN 0.17 NaN 3.42 0.04 1.63 0.27 1.13 0.91 NaN NaN

NFIB O00712-5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NFIB Q5VW27 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.43 NaN NaN NaN NaN

NFIB Q5VW28 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NFIB Q5VW30 NaN 0.37 0.98 0.59 0.43 1.74 NaN 0.64 0.43 NaN 0.83 0.73 0.28 6.29 0.10 7.91 0.19 2.70 17.59 0.08 1.90 0.31 1.07 0.91 NaN NaN

NFIC P08651 0.73 0.85 0.97 0.56 0.40 1.54 0.26 0.27 0.19 0.42 0.84 0.75 0.11 7.60 0.11 11.19 0.19 2.33 16.73 0.01 2.02 0.27 1.41 0.99 NaN 0.20

NFIC P08651-5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.75 NaN NaN NaN NaN

NFIC P08651-6 NaN NaN NaN NaN 0.54 1.49 NaN NaN NaN NaN 1.03 0.84 NaN NaN NaN NaN 0.28 NaN NaN NaN 2.75 0.39 NaN NaN NaN NaN

NFIX B4DM25 NaN 0.76 1.17 0.80 0.47 2.17 NaN NaN 0.66 NaN 1.02 0.98 0.24 5.04 0.16 NaN 0.28 2.77 19.53 0.14 1.68 0.48 1.52 0.87 NaN NaN

NFIX C9JWJ8 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 6.98 0.63 1.73 0.44 NaN NaN NaN NaN

NFIX D2DXM9 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.24 NaN NaN NaN NaN NaN NaN

NFRKB Q6P4R8-3 0.70 0.44 1.87 0.60 0.88 1.62 1.18 0.87 0.65 2.45 1.27 1.08 0.38 6.92 0.27 0.56 0.48 2.35 36.59 0.02 2.53 0.50 1.35 2.70 1.91 0.32

NIPBL Q6KC79 0.86 0.66 0.58 0.89 0.87 0.78 NaN 0.69 1.01 0.42 1.15 0.73 1.53 0.68 1.95 0.12 3.88 0.13 14.75 0.19 3.86 0.12 NaN 1.06 0.91 0.61

NIPBL Q6KC79-2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.16 NaN NaN NaN NaN 2.31 0.07 NaN NaN NaN NaN

NOLC1 Q14978-2 0.60 0.61 0.68 1.21 0.91 0.76 0.98 1.23 1.02 0.81 0.65 1.34 0.89 0.73 0.83 0.66 1.21 0.56 1.12 2.64 0.37 1.85 2.18 1.32 0.44 2.62

NOLC1 Q14978-3 NaN NaN 0.90 1.22 1.21 1.11 1.17 1.66 1.38 1.17 0.81 1.48 1.15 1.11 NaN NaN 1.38 0.69 1.21 3.02 0.46 2.39 2.42 1.51 0.38 3.33

NPM1 E5RI98 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

NPM1 P06748 1.11 1.51 1.63 0.97 2.06 0.75 0.84 1.34 1.20 1.02 0.80 1.81 1.14 1.42 1.06 0.47 1.60 1.03 0.57 1.76 1.07 1.66 0.95 0.83 0.98 1.43

NR2C1 H9NIM2 0.43 1.18 0.85 0.60 1.32 1.40 1.34 NaN 0.53 2.23 1.19 0.86 1.21 0.91 0.32 0.20 0.96 1.18 3.06 0.36 2.20 0.58 0.56 0.95 NaN NaN

NS5ATP4A Q09GN0 0.27 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.49 0.18 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ORC2 Q13416 0.66 0.73 1.03 1.03 7.63 0.04 1.18 0.88 0.84 0.94 2.93 0.20 1.07 0.89 0.76 0.19 2.86 0.19 3.24 0.78 7.26 0.08 2.47 1.05 0.82 0.95

ORC3 Q9UBD5-2 0.82 0.83 0.89 0.96 6.95 0.04 1.00 0.87 0.83 0.81 2.39 0.19 1.06 0.79 0.88 0.44 2.41 0.18 2.98 0.83 5.33 0.06 2.79 1.10 0.75 0.97

ORC3L Q9UBD5 NaN NaN 1.85 NaN 6.65 0.16 NaN 0.68 1.47 1.45 2.26 0.24 NaN NaN 0.68 0.10 NaN 0.24 NaN 1.29 6.24 0.25 NaN NaN NaN 0.75

ORC5 A4D0P7 0.59 0.74 1.25 1.14 7.95 0.08 1.48 1.05 0.99 1.07 2.88 0.21 1.00 0.96 0.64 0.41 2.66 0.24 6.95 0.40 6.65 0.08 2.84 1.07 1.34 1.27

ORC6 B3KMP9 0.67 0.60 NaN NaN 4.67 0.16 1.20 NaN NaN 0.82 0.97 0.58 NaN 0.59 0.50 0.07 1.70 0.34 1.09 1.06 NaN 0.49 NaN NaN NaN NaN

OXSR1 O95747 1.88 1.50 NaN NaN 0.66 0.50 0.82 0.86 0.82 1.30 0.69 1.45 0.66 1.07 1.51 0.25 1.21 1.16 NaN NaN 0.64 0.85 NaN NaN 1.51 0.70

PARD3 Q8TEW0-11 1.90 NaN NaN NaN NaN NaN 0.41 0.49 0.33 NaN NaN NaN NaN NaN 0.10 0.16 NaN NaN 1.24 0.25 1.08 NaN 0.48 1.02 NaN 0.79

PARK7 Q99497 NaN 0.12 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.16 NaN NaN NaN 0.21 NaN NaN NaN 0.84 0.39 NaN NaN

PATZ1 Q59HH1 1.01 0.50 0.92 1.34 0.54 1.78 NaN NaN 1.55 1.18 0.73 0.71 NaN NaN 0.57 3.04 0.43 2.06 2.87 0.62 1.10 0.73 1.03 0.90 3.95 NaN

PAXIP1 B4DEQ6 0.63 1.15 2.01 0.54 1.06 1.16 NaN NaN 0.50 1.89 1.20 1.37 0.90 1.72 0.43 0.07 0.51 2.13 6.18 0.25 1.71 0.88 2.02 1.34 0.67 NaN

PBX2 P40425 NaN NaN NaN NaN 2.33 0.51 NaN NaN 0.64 NaN 1.25 0.38 NaN NaN 0.60 3.30 0.93 0.55 12.87 0.10 1.67 0.45 1.23 0.50 NaN NaN

PC4 Q6IBA2 1.04 1.15 7.12 0.83 0.84 0.95 0.98 0.96 0.99 0.92 0.88 0.84 0.87 0.88 0.96 1.43 0.77 0.94 0.98 1.27 0.72 0.95 1.07 1.00 0.87 1.08

PCMT1 H7BY58 1.18 1.40 0.39 0.50 0.38 0.44 0.33 0.23 0.38 0.35 0.54 1.25 NaN NaN 1.22 4.14 0.21 0.67 0.38 0.36 0.26 0.46 0.49 0.37 0.76 0.32

PCNA P12004 0.38 0.61 1.09 0.63 0.68 1.36 0.80 1.07 0.50 1.68 0.85 0.96 0.34 1.78 0.23 1.30 0.45 1.70 3.63 0.09 2.09 0.35 0.93 1.06 1.28 0.41

PCSK9 Q8NBP7 NaN NaN NaN 0.45 0.46 0.51 NaN NaN 0.38 0.44 0.55 NaN 0.62 0.33 NaN 0.77 0.40 0.48 NaN NaN 0.32 0.40 NaN NaN NaN NaN

PDIA5 Q14554 NaN NaN NaN NaN 3.57 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

PES1 B5MCF9 NaN 1.93 NaN NaN NaN NaN NaN NaN NaN NaN 1.25 0.71 NaN NaN 1.92 NaN NaN NaN 1.16 1.42 NaN NaN 1.21 NaN NaN NaN

PFN1 P07737 0.20 0.24 NaN NaN NaN NaN 0.35 1.42 NaN 0.34 NaN NaN NaN NaN NaN NaN 0.85 NaN NaN NaN NaN NaN NaN NaN 0.15 NaN

PGAM1 Q6P6D7 0.30 0.16 NaN NaN NaN 0.88 0.37 2.87 0.31 0.51 NaN NaN NaN NaN 0.24 0.25 NaN 2.91 0.58 1.33 NaN NaN 0.26 NaN NaN NaN

PGBD3 A8K4Q3 NaN NaN 0.99 0.52 0.79 0.63 0.68 0.59 0.78 0.55 0.73 0.79 0.31 1.99 NaN NaN 0.49 0.86 9.50 0.09 0.84 0.65 4.32 0.19 0.85 0.24

PGK1 P00558 0.43 0.12 2.36 NaN NaN 0.72 NaN 4.63 2.16 0.30 NaN NaN NaN NaN 0.53 0.19 1.02 0.61 0.32 2.11 0.39 NaN 1.10 0.22 NaN NaN

PHF1 E9PQT8 NaN NaN NaN NaN 7.63 0.23 NaN NaN 5.32 0.34 9.40 0.21 NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.81 NaN NaN NaN NaN

PHF14 O94880 0.07 2.12 1.45 1.13 1.46 1.30 1.00 1.26 1.03 1.51 1.08 1.29 0.67 3.93 0.50 0.95 1.25 1.24 1.23 2.00 1.11 1.43 1.27 1.95 0.61 1.92

PHF14 O94880-2 0.12 NaN NaN NaN 2.02 1.47 1.25 2.05 1.16 2.45 1.52 2.00 NaN NaN NaN NaN NaN 2.32 NaN 1.97 NaN 1.40 1.36 NaN NaN 1.72

PHF20L1 F8W9L8 NaN NaN NaN 1.23 1.94 1.92 NaN NaN NaN NaN 1.92 2.53 NaN NaN NaN NaN NaN 3.49 5.73 NaN 3.10 2.72 4.29 NaN NaN NaN

PHF21A Q96BD5-2 0.27 0.61 NaN 0.43 0.97 0.52 NaN NaN NaN 0.40 0.55 0.45 NaN NaN 0.43 0.50 0.69 0.45 0.99 0.45 0.67 0.38 NaN 0.80 NaN NaN

PHF5A Q7RTV0 1.51 1.01 NaN NaN 1.62 0.54 0.86 1.37 2.18 0.51 NaN NaN 1.97 0.63 0.84 1.08 2.27 0.52 NaN NaN 0.49 2.55 NaN NaN 0.43 NaN

PHF8 Q9UPP1-2 1.28 2.06 3.05 0.50 1.79 0.54 1.13 1.76 1.63 1.23 0.66 2.50 NaN 3.17 NaN NaN 1.41 0.42 NaN NaN 1.17 0.53 1.28 1.05 0.48 1.90

PKM P14618 0.30 0.26 0.62 1.34 1.57 0.83 0.25 1.77 1.05 0.88 0.81 0.50 0.82 1.97 0.43 0.47 0.67 0.89 0.46 0.97 2.28 0.27 1.17 0.65 0.47 0.92

PKM P14618-2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

PKP2 Q99959-2 0.49 0.35 0.77 NaN 0.73 11.63 0.71 0.56 0.86 0.86 0.83 0.80 0.61 0.91 0.34 0.22 0.74 1.06 0.47 0.89 0.88 0.60 0.61 0.49 0.87 0.63

PLEKHA4 Q59H51 0.46 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

PLK1 B2R841 1.18 NaN NaN 0.92 0.98 0.63 NaN NaN NaN NaN 0.73 NaN 0.95 0.51 1.12 0.21 0.90 0.65 NaN NaN 0.98 0.66 NaN NaN NaN NaN

PMVK Q6FGV9 1.01 0.65 0.73 0.70 0.54 0.39 NaN NaN NaN NaN NaN NaN NaN 0.59 0.52 0.15 0.80 1.33 NaN NaN 0.41 NaN NaN NaN NaN NaN

PNISR Q8TF01 1.00 1.25 2.45 0.45 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.55 2.12 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

PNN A8K964 9.86 2.15 0.46 1.83 0.91 0.63 1.53 NaN 2.15 0.41 1.26 1.18 1.69 0.63 2.83 1.72 1.29 0.50 1.51 2.20 0.59 1.61 1.78 1.67 0.45 0.51
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PNP Q8N7G1 NaN 0.18 NaN NaN NaN NaN 0.39 NaN NaN NaN NaN NaN NaN NaN 0.47 0.59 NaN NaN 0.27 NaN NaN NaN 1.01 NaN NaN NaN

POF1B Q8WVV4 NaN NaN NaN NaN NaN NaN 0.12 NaN NaN NaN NaN NaN NaN NaN 0.15 NaN NaN NaN 0.21 NaN NaN NaN NaN NaN NaN NaN

POGZ Q7Z3K3-5 NaN 0.69 1.51 0.93 1.07 1.35 0.86 NaN 0.59 1.84 1.13 1.16 2.13 1.51 0.77 NaN 5.91 0.11 47.32 0.14 7.48 0.08 5.82 0.79 NaN NaN

POGZ Q7Z3K3-7 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.77 NaN 15.19 NaN NaN NaN 6.14 NaN NaN NaN

POLD3 B7ZAQ5 0.51 NaN NaN 0.59 0.42 0.48 NaN NaN NaN 0.84 0.77 0.66 NaN 0.40 0.70 0.45 NaN NaN NaN 1.00 0.58 0.53 1.72 NaN NaN 0.54

POLG E5KNX5 NaN NaN NaN 0.41 0.38 0.38 0.29 NaN 0.73 1.00 0.37 0.51 NaN NaN 0.45 NaN 0.19 0.52 NaN NaN 0.49 0.47 NaN NaN NaN 0.42

POLR1A B7ZKR9 NaN NaN NaN NaN NaN NaN 1.13 NaN NaN NaN NaN NaN NaN NaN NaN 2.76 0.34 NaN NaN 0.37 NaN 0.51 NaN NaN NaN NaN

POLR1A O95602 1.85 2.21 1.02 1.08 0.47 1.98 1.03 0.76 0.39 3.52 1.80 0.75 0.76 1.40 1.15 2.91 0.21 2.19 27.77 0.24 1.94 0.41 0.73 2.40 0.75 0.95

POLR1A B7ZKR9 NaN NaN NaN NaN NaN NaN 1.13 NaN NaN NaN NaN NaN NaN NaN NaN 2.76 0.34 NaN NaN 0.37 NaN 0.51 NaN NaN NaN NaN

POLR1A O95602 1.85 2.21 1.02 1.08 0.47 1.98 1.03 0.76 0.39 3.52 1.80 0.75 0.76 1.40 1.15 2.91 0.21 2.19 27.77 0.24 1.94 0.41 0.73 2.40 0.75 0.95

POLR1B Q9H9Y6 1.94 2.83 1.08 1.06 0.42 2.20 1.21 0.82 0.38 3.98 2.30 1.06 0.40 3.60 1.22 3.63 0.25 2.48 16.97 0.15 2.54 0.54 0.75 2.26 NaN NaN

POLR1C Q96HT3 1.60 1.26 0.70 0.69 0.34 0.94 0.74 0.81 0.47 0.89 0.86 0.68 0.16 2.47 0.70 3.79 0.15 1.70 21.83 0.04 1.54 0.28 0.79 3.44 5.07 0.17

POLR1D Q9Y2S0 NaN 0.82 NaN NaN 0.56 1.12 0.87 0.89 0.56 0.87 0.92 0.76 NaN NaN 0.48 2.13 0.24 1.80 0.05 NaN 1.97 0.36 NaN NaN NaN NaN

POLR1E Q9GZS1-2 NaN 1.67 1.01 1.06 0.51 0.97 1.28 0.89 0.50 3.10 1.75 0.69 0.26 NaN 1.14 NaN 0.31 1.10 5.58 0.12 1.78 0.36 0.74 NaN NaN NaN

POLR2E E5KT65 1.06 0.96 0.74 0.69 0.38 1.00 0.74 0.85 0.47 0.94 0.93 0.70 0.21 2.04 0.39 3.56 0.17 1.63 15.20 0.06 1.67 0.30 0.73 1.89 3.37 0.16

POLR2H C9JLU1 1.41 1.40 0.67 1.01 0.46 0.98 0.83 0.96 0.52 0.93 1.00 0.80 0.20 2.22 0.36 1.39 0.17 1.61 15.42 NaN 1.70 0.30 NaN NaN NaN NaN

POLR2K P53803 NaN NaN NaN NaN 0.45 1.17 0.78 0.95 0.57 1.01 1.03 NaN NaN NaN NaN NaN 0.20 1.99 NaN NaN 1.73 0.39 NaN NaN NaN NaN

POLR2L P62875 1.01 0.92 NaN NaN 0.37 1.01 0.77 0.87 0.55 1.11 0.82 NaN NaN NaN 0.45 1.29 0.15 1.88 NaN NaN 1.85 0.30 0.77 NaN NaN NaN

POLR3A O14802 1.03 0.93 0.36 0.44 0.37 0.54 0.26 0.66 0.45 0.67 0.52 0.52 0.26 1.80 0.44 2.46 0.13 1.25 24.78 0.15 1.15 0.20 1.05 3.00 2.76 0.18

POLR3B Q7Z3R8 1.16 1.02 0.42 0.54 0.36 0.56 0.27 0.67 0.44 0.71 0.51 0.67 0.28 NaN 0.41 1.78 0.14 1.37 4.80 0.21 1.29 0.26 1.19 2.45 NaN 0.25

POLR3C Q9BUI4 0.98 0.91 0.32 0.52 0.36 0.56 0.31 0.71 0.47 0.60 0.50 0.51 0.35 0.78 0.53 1.53 0.14 1.37 9.50 0.34 1.17 0.22 1.04 2.03 2.96 0.21

POLR3D P05423 0.34 0.50 0.45 0.46 0.34 0.58 0.28 0.71 0.46 0.67 0.56 0.54 0.22 1.67 0.34 2.68 0.13 1.21 14.87 NaN 1.16 0.23 NaN 2.19 NaN 0.11

POLR3E Q9NVU0 0.94 0.83 0.30 0.37 0.38 0.54 0.26 0.66 0.45 0.45 0.51 0.53 0.35 1.59 0.41 3.68 0.15 1.21 1.97 0.20 1.06 0.18 1.24 NaN NaN 0.20

POLR3F Q53FI8 1.43 0.82 0.36 0.47 0.31 0.58 0.30 0.79 0.45 0.73 0.45 0.53 NaN NaN 0.37 5.03 0.13 1.41 NaN 0.18 1.25 0.21 0.79 3.01 2.57 0.21

POLR3G D6R9U7 1.56 0.86 0.35 0.40 0.34 0.47 0.34 0.77 0.46 0.73 0.56 0.53 NaN NaN 0.39 1.90 0.18 1.52 11.83 0.32 1.39 0.21 NaN 2.53 NaN 0.17

POLR3GL A6NGX6 NaN NaN 0.29 NaN 0.29 0.52 0.28 0.62 0.44 0.66 0.54 0.59 NaN NaN 0.51 1.17 0.19 1.32 NaN NaN 1.12 0.22 NaN NaN NaN NaN

POLR3H E7ERZ2 NaN NaN NaN NaN NaN NaN NaN NaN 0.85 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

POLR3H Q9Y535 1.52 0.67 0.33 0.45 0.35 0.64 0.33 0.76 0.50 0.75 0.60 0.56 0.15 1.68 0.36 1.62 0.14 1.52 26.33 0.26 1.39 0.20 NaN 3.06 NaN 0.10

POLR3H E7ERZ2 NaN NaN NaN NaN NaN NaN NaN NaN 0.85 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

POLR3H Q9Y535 1.52 0.67 0.33 0.45 0.35 0.64 0.33 0.76 0.50 0.75 0.60 0.56 0.15 1.68 0.36 1.62 0.14 1.52 26.33 0.26 1.39 0.20 NaN 3.06 NaN 0.10

POLR3K Q9Y2Y1 NaN NaN NaN NaN 0.44 0.89 0.37 1.14 0.65 0.90 0.64 0.84 NaN NaN NaN 1.62 0.24 1.66 NaN NaN 1.61 0.27 NaN NaN NaN NaN

POM121C A8CG34 0.51 NaN NaN NaN NaN NaN 0.04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

POP4 O95707 0.47 NaN NaN NaN NaN 1.06 NaN NaN NaN NaN 0.92 0.93 0.79 0.80 0.52 0.24 0.93 NaN 1.53 1.37 1.28 1.03 0.78 NaN NaN NaN

POU2F1 H0YLB5 NaN 0.16 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.19 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

PPIA A8K486 0.16 0.13 1.79 1.62 1.53 1.02 0.31 NaN 1.40 0.38 1.05 0.94 0.60 0.79 0.21 0.34 0.90 0.64 0.43 NaN 0.73 0.57 0.79 0.47 NaN NaN

PRC1 H9KV59 0.70 NaN NaN NaN 0.54 0.19 NaN NaN NaN NaN NaN 0.33 NaN NaN NaN 0.43 0.52 0.22 NaN 0.58 NaN NaN NaN NaN NaN NaN

PRC1 O43663 0.57 0.79 0.47 0.36 0.72 0.29 0.46 1.30 0.49 0.45 0.63 0.30 0.35 1.35 0.60 0.48 0.80 0.25 1.90 0.32 0.75 0.26 0.42 NaN 0.46 0.26

PRDM10 B7ZL72 NaN NaN NaN 0.49 0.65 0.95 NaN NaN 0.21 1.87 0.67 0.73 0.57 NaN 0.23 NaN 0.41 0.80 98.83 0.13 1.91 0.23 2.67 1.16 NaN NaN

PRDX1 Q06830 0.65 0.32 1.55 1.73 1.64 0.83 0.33 1.87 0.69 0.49 0.79 0.85 0.82 1.13 0.61 1.07 1.31 1.04 0.43 1.01 0.93 0.82 1.00 0.52 0.87 0.57

PRDX2 P32119 0.41 0.16 1.50 NaN NaN 0.88 0.07 NaN NaN NaN NaN NaN NaN NaN 0.39 0.70 NaN NaN 0.21 0.95 0.81 NaN 0.88 0.41 NaN NaN

PRDX6 P30041 0.47 0.22 2.87 2.76 1.07 0.91 0.42 2.67 1.61 0.50 0.74 NaN 0.99 0.87 0.40 0.54 1.16 1.16 0.28 1.77 0.65 0.59 1.13 0.30 1.65 0.64

PRIC295 E1NZA1 1.50 1.05 0.51 0.84 0.70 0.29 1.24 0.36 0.47 0.65 0.48 0.54 0.99 0.64 1.11 0.45 1.02 0.64 0.46 0.39 0.41 0.77 NaN NaN 1.05 0.44

PRKD2 Q8NCK8 0.19 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

PRMT5 O14744 1.00 0.82 0.84 0.60 0.72 0.85 NaN NaN 0.60 0.85 0.90 0.71 2.91 0.28 1.18 0.49 0.33 1.52 1.05 0.81 0.95 0.51 1.15 0.89 NaN 0.28

PRPF40A O75400-2 2.16 1.94 0.38 0.83 0.95 0.47 1.09 0.96 NaN 0.35 1.53 0.66 NaN 0.50 1.07 1.25 1.02 0.39 1.67 NaN 0.46 0.96 1.15 NaN 0.30 0.75

PRPF40A O75400-3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.92 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

PSAT1 B4DHQ3 NaN 0.11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.28 1.81 NaN NaN 0.94 NaN NaN NaN

PSMA6 G3V5Z7 0.21 0.18 NaN NaN NaN NaN 0.28 2.39 NaN 0.63 0.50 NaN NaN NaN 0.20 0.04 1.13 0.82 0.49 1.28 1.19 1.07 1.12 0.74 NaN NaN

PSMA7 O14818 0.61 0.30 1.21 NaN 1.02 1.15 0.60 1.40 0.40 0.61 0.99 0.70 1.10 0.69 0.50 0.17 0.71 NaN 0.57 1.07 0.70 0.88 1.06 0.87 NaN NaN

PSMD3 Q6IBN0 0.85 0.64 2.35 0.37 1.07 1.08 NaN NaN 0.71 0.79 NaN 0.84 NaN 2.68 0.76 0.37 1.23 1.12 0.87 0.06 NaN 1.02 NaN 1.02 NaN NaN

PUM1 Q14671 0.76 4.67 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.90 0.29 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

PUM1 Q5T1Z4 0.76 3.89 1.60 NaN 1.30 1.26 1.40 NaN 0.72 0.95 NaN NaN 1.65 0.67 0.92 0.09 1.28 1.34 NaN NaN 0.49 1.35 NaN NaN 1.95 0.97

PURA Q2NLD4 1.73 0.83 0.47 3.16 0.60 2.00 NaN NaN NaN NaN NaN 1.29 NaN NaN 0.90 2.93 0.66 1.64 3.50 0.51 1.65 0.89 4.27 0.86 NaN NaN

PURB Q96QR8 1.32 0.75 0.50 2.54 0.57 2.17 1.09 1.31 1.21 1.49 1.47 1.00 0.45 1.83 0.74 4.17 0.65 1.74 3.11 0.61 1.42 1.08 3.72 0.96 1.12 1.24

RAB6A P20340 0.53 1.72 2.79 17.37 0.81 2.83 NaN NaN 0.70 NaN NaN 0.74 0.86 0.23 0.53 0.15 0.67 NaN NaN NaN 0.15 0.82 NaN NaN NaN NaN

RAB6A Q6FGX3 0.75 1.60 NaN NaN 1.45 2.67 NaN NaN NaN NaN NaN NaN 1.54 0.33 0.24 0.32 NaN NaN NaN NaN 0.33 NaN NaN NaN NaN NaN

RAD1 O60671 NaN NaN NaN NaN 1.23 0.86 NaN NaN NaN NaN 1.20 0.79 NaN NaN NaN NaN 1.00 NaN NaN 0.26 1.55 0.65 0.36 3.77 NaN NaN

RAD51AP1 Q96B01-2 NaN NaN NaN NaN 3.67 0.18 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.14 0.19 0.39 3.09 0.30 NaN NaN NaN 0.21 2.55
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RAI14 Q9P0K7-2 NaN 3.57 1.03 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.19 NaN 0.49 NaN NaN NaN 0.19 NaN NaN NaN NaN

RALGAPA2 Q2PPJ7-3 0.67 NaN NaN 1.31 NaN NaN NaN NaN NaN NaN 0.88 NaN NaN NaN 1.34 0.14 NaN NaN NaN NaN NaN NaN 35.51 0.19 NaN NaN

RAVER1 E9PAU2 0.88 1.48 0.53 0.73 1.03 0.48 1.11 0.42 0.60 0.73 0.49 0.57 1.19 0.56 0.82 0.43 1.09 0.75 0.75 NaN 0.67 0.96 NaN NaN 1.29 0.50

RBBP4 Q09028-3 0.38 0.67 1.15 0.76 0.99 1.10 0.89 0.95 0.88 1.02 0.99 0.87 0.42 2.03 0.71 2.17 1.11 0.82 4.30 0.08 1.48 0.60 3.37 0.27 1.64 0.55

RBBP7 Q16576-2 0.34 0.69 1.16 0.78 0.92 1.01 0.95 0.95 0.98 0.89 1.03 0.87 0.40 2.26 0.64 1.61 0.77 1.00 12.27 0.03 0.87 0.95 3.85 0.17 1.66 0.56

RBBP7 Q6FHQ0 0.33 0.65 1.28 0.76 0.93 1.01 1.00 1.01 1.10 0.89 1.03 0.85 0.37 2.62 0.66 3.20 0.73 1.14 20.37 0.02 0.80 1.16 5.14 0.16 1.87 0.55

RBM4 A8K9U0 1.64 0.98 0.68 1.27 1.02 1.15 0.87 0.92 NaN 0.89 0.95 0.89 NaN 0.81 1.17 0.55 NaN 0.73 5.52 0.58 1.10 0.96 7.67 0.72 0.84 0.91

RBM7 J3KPD3 0.83 0.63 1.19 1.61 0.95 0.91 1.11 1.08 1.03 1.06 NaN 1.37 0.72 1.22 0.79 0.74 1.08 NaN NaN NaN 1.16 1.11 1.51 NaN NaN NaN

RBM7 Q6IRX3 0.57 0.55 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

RECQL P46063 0.48 0.81 0.33 0.54 0.79 0.68 0.60 NaN 0.51 0.57 0.56 0.43 0.25 1.24 0.62 2.59 0.38 0.81 1.45 0.59 1.11 0.26 1.50 1.15 0.55 0.34

RFX1 P22670 0.71 0.87 0.80 0.89 0.43 1.18 NaN NaN 0.62 NaN 0.90 0.84 0.84 0.59 0.70 0.08 0.45 1.89 11.12 0.14 1.54 0.50 2.16 0.55 NaN 0.53

RFXANK O14593 0.54 1.26 1.03 0.30 0.83 0.58 NaN NaN 0.34 1.10 0.58 0.55 0.25 1.55 0.27 0.43 0.57 0.56 20.68 0.05 1.34 0.26 1.58 0.59 NaN NaN

RIOK3 B4E1Q4 0.50 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.43 0.15 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

RMND1 Q5SZ82 1.11 NaN 4.02 NaN NaN NaN 0.90 NaN NaN 0.80 0.79 0.92 NaN NaN NaN NaN 0.70 0.90 0.92 NaN 0.71 NaN NaN NaN NaN NaN

RNF213 Q63HN8 0.78 0.42 0.72 0.98 NaN 0.17 NaN NaN NaN 0.45 0.74 0.57 1.13 0.42 0.54 0.23 1.28 0.27 NaN 0.32 NaN 0.79 NaN NaN 1.54 0.41

RNPS1 H3BV80 5.57 1.30 0.48 1.49 0.79 0.55 0.91 1.12 2.23 0.39 1.34 1.17 NaN 0.59 1.79 2.26 1.04 0.57 1.08 2.62 0.37 1.71 NaN NaN 0.48 0.54

RPL7L1 R4GMU7 NaN NaN 0.37 1.78 0.95 0.70 NaN NaN 1.72 NaN 0.98 0.62 NaN 0.88 0.86 0.35 1.00 0.50 0.85 0.72 0.60 1.07 1.09 0.66 0.67 1.03

RPLP2 P05387 1.30 1.51 NaN NaN 1.30 0.93 0.93 1.10 1.44 1.16 0.71 NaN NaN 1.01 1.12 0.39 1.02 1.08 1.06 37.48 1.08 1.50 0.66 0.43 NaN 0.72

RPRC1 D3DPS3 1.19 1.71 1.37 0.27 NaN 0.60 NaN NaN NaN 0.58 0.43 1.08 NaN NaN 1.43 1.00 NaN NaN 0.86 0.67 1.47 0.36 0.85 0.78 NaN NaN

RPRD1B Q9NQG5 0.69 0.54 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.80 0.81 0.66 NaN 1.03 NaN 1.58 1.04 1.12 NaN 1.90 1.04 NaN

RSF1 Q96T23-2 NaN 0.60 0.16 0.62 0.41 0.45 NaN 0.48 0.54 0.39 0.35 0.36 0.55 NaN 0.56 NaN 0.42 0.53 0.43 1.43 0.38 0.71 0.07 0.02 0.03 0.36

RSL1D1 O76021 0.64 2.86 0.17 2.10 0.58 0.75 0.57 NaN 1.12 0.40 0.75 0.45 0.70 0.62 2.07 0.60 0.57 0.53 1.15 NaN 0.53 0.60 1.68 0.66 0.26 0.88

RSRC2 Q7L4I2-2 0.60 0.80 2.06 0.22 0.66 0.56 1.47 0.58 0.50 0.35 NaN NaN NaN NaN 0.56 0.93 0.55 NaN 0.68 1.02 NaN 0.70 1.05 0.78 0.37 NaN

S100A11 P31949 NaN NaN NaN NaN NaN NaN 0.17 NaN NaN NaN NaN 0.70 NaN NaN NaN 0.39 NaN NaN NaN NaN NaN NaN 0.34 NaN NaN NaN

S100A14 Q9HCY8 NaN NaN NaN NaN NaN NaN 0.01 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SAP130 H7BXF5 0.55 1.15 1.26 1.26 0.77 2.28 1.47 1.31 1.72 1.35 1.24 1.10 0.60 2.95 0.40 NaN 1.01 1.19 4.46 0.29 0.88 1.47 0.76 4.12 1.49 0.63

SAP18 O00422 11.09 1.94 0.33 1.48 0.76 0.40 0.74 0.86 2.32 0.32 NaN NaN NaN NaN 3.14 2.03 1.17 0.50 NaN NaN 0.54 1.25 1.70 1.73 0.42 NaN

SAP30 O75446 0.71 0.79 1.47 1.38 0.83 3.28 1.73 1.41 1.63 1.92 1.62 1.22 0.64 2.90 0.54 0.82 1.29 1.60 10.80 0.19 1.23 1.77 0.81 4.83 3.45 0.87

SARS Q53HA4 NaN 0.24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.50 NaN NaN NaN NaN NaN NaN NaN

SCML2 B4DZR9 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.14 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SCML2 Q9UQR0 0.63 1.53 8.39 0.10 1.02 0.82 NaN NaN 0.96 0.81 0.73 1.13 0.65 0.72 4.14 0.42 2.39 0.26 7.89 0.16 1.43 0.45 16.71 0.03 0.22 2.16

SCYL2 Q6P3W7 1.60 1.60 0.63 0.71 1.04 0.60 0.89 0.26 0.88 1.32 0.62 NaN 1.10 0.65 1.01 0.14 1.16 0.88 NaN NaN 0.58 1.14 NaN NaN 1.91 0.63

SDHB Q0QEY7 NaN NaN NaN 0.50 0.43 0.43 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.25 NaN NaN NaN NaN NaN

SEMG1 P04279-2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.09 NaN NaN

SEMG2 A8K6Z6 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.31 NaN NaN

SEPT10 E7EW69 NaN NaN NaN NaN 1.52 0.34 NaN NaN NaN NaN NaN NaN NaN 0.96 NaN NaN 1.62 1.89 NaN NaN 0.23 1.77 NaN NaN NaN NaN

SEPT2 Q15019 1.17 1.78 0.69 0.81 1.69 0.31 0.44 0.67 0.88 NaN 0.58 0.62 0.73 0.51 0.76 0.23 2.03 0.13 0.58 0.54 0.11 2.30 0.81 0.89 0.49 0.44

SEPT6 Q8NFH9 NaN NaN 0.65 1.18 1.89 0.35 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.33 0.23 NaN NaN 0.40 2.72 NaN NaN NaN NaN

SEPT7 Q16181 1.54 1.59 NaN NaN 1.67 0.30 NaN NaN NaN NaN 0.55 0.40 NaN 0.62 NaN NaN 2.08 0.11 0.61 NaN 0.14 2.00 NaN NaN NaN NaN

SEPT7 A8K3D0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SEPT8 B7ZVZ1 NaN NaN NaN NaN 1.72 0.34 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.32 NaN NaN 0.36 NaN NaN NaN NaN NaN

SEPT9 Q9UHD8 1.29 2.84 0.51 0.63 1.59 0.24 NaN NaN NaN NaN 0.59 0.63 0.97 0.26 0.91 0.26 1.56 0.12 NaN NaN 0.14 1.56 NaN NaN 0.57 1.00

SERPINB3 P29508 NaN NaN NaN NaN NaN NaN 0.20 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.30 NaN NaN NaN NaN 0.54 NaN NaN

SETX Q7Z333 0.72 0.83 1.13 0.99 1.27 0.47 0.14 1.02 1.01 1.13 1.19 1.14 1.00 0.74 0.71 0.06 0.89 0.94 0.04 NaN 0.58 0.63 NaN NaN 1.21 0.31

SF3A1 Q15459 2.02 1.00 0.32 2.80 1.58 0.46 0.68 1.07 1.71 0.58 0.98 1.20 1.96 0.61 1.20 1.05 1.82 0.49 0.68 1.49 0.35 2.11 NaN 0.88 0.57 1.22

SF3A3 B3KY12 1.43 1.01 0.33 2.09 1.32 0.43 0.55 1.05 1.63 0.60 0.65 0.85 1.01 0.80 1.18 1.90 1.58 0.41 0.77 0.93 0.31 2.03 0.97 0.87 0.30 1.13

SF3B1 O75533 1.53 1.09 0.26 2.11 1.54 0.37 0.51 1.00 1.53 0.43 0.86 1.05 2.12 0.66 1.25 1.22 1.50 0.38 1.29 1.49 0.32 1.81 1.06 1.12 0.27 1.08

SF3B2 E9PJ04 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.83 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SF3B4 Q53FG6 1.34 0.70 0.47 NaN 1.17 0.47 0.77 NaN 1.81 0.55 1.00 1.31 1.95 0.82 1.24 2.04 1.54 0.49 1.13 1.05 0.30 1.92 1.08 0.87 0.47 1.12

SFN P31947 0.31 0.14 NaN NaN NaN 0.40 0.16 NaN NaN 0.27 NaN NaN NaN NaN 0.25 NaN 0.65 NaN NaN NaN NaN 0.40 0.13 NaN NaN NaN

SHCBP1 B2RDX0 NaN 1.95 NaN NaN 1.20 0.42 NaN NaN NaN NaN NaN NaN NaN NaN 1.15 NaN NaN 0.37 NaN NaN NaN NaN NaN NaN NaN NaN

SHKBP1 B2R6W9 NaN 2.05 2.61 247.82 NaN NaN NaN NaN 18.49 NaN 8.02 NaN 7.50 NaN NaN NaN NaN 14.85 10.88 NaN NaN 7.93 NaN 12.58 9.65 2.47

SHPRH Q149N8 0.54 0.39 0.55 1.15 1.13 0.80 NaN NaN 2.46 0.28 NaN NaN 0.99 0.71 0.04 2.02 1.25 0.51 0.78 1.63 0.31 1.80 NaN NaN 1.07 0.59

SIN3A Q96ST3 0.60 1.10 1.14 1.43 0.78 2.21 1.22 1.28 1.33 1.39 1.30 0.97 0.75 3.07 0.46 1.51 1.05 1.26 19.35 0.23 0.91 1.50 0.94 6.60 1.65 0.76

SIN3B O75182-2 0.45 NaN 1.51 1.25 1.10 1.37 0.91 1.02 1.68 0.85 1.62 1.18 0.76 3.14 0.56 0.70 1.02 1.40 6.63 NaN 2.23 0.78 1.75 NaN 2.19 0.36

SIRT6 Q8N6T7 NaN 0.36 0.85 0.33 6.34 0.07 NaN 0.57 NaN 0.38 0.52 0.45 1.42 0.25 2.87 0.22 2.54 0.14 2.56 0.16 1.44 0.29 0.87 0.71 0.67 0.38

SLC25A3 F8VVM2 NaN NaN NaN 7.09 NaN NaN NaN NaN NaN 0.27 0.37 NaN NaN NaN NaN NaN NaN NaN 70.06 NaN NaN 0.38 NaN NaN 0.55 NaN

SMARCA5 O60264 0.37 1.62 1.03 1.36 0.88 1.53 0.97 1.09 1.25 1.09 1.26 1.28 0.85 2.11 0.70 1.13 1.00 1.34 2.63 0.54 1.18 1.33 1.94 1.13 0.89 1.07
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SMCHD1 A6NHR9 0.54 0.91 0.61 0.97 0.99 0.73 0.58 NaN 0.79 0.65 1.02 0.73 3.26 0.67 1.44 0.17 2.21 0.24 47.25 0.19 3.01 0.19 NaN 1.06 NaN NaN

SMCHD1 L0R6P7 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.78 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SNC73 Q9UP60 NaN NaN NaN NaN 47.70 NaN 0.06 NaN NaN NaN 0.05 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.12

SNRPA1 P09661 1.80 0.90 0.39 2.21 1.43 0.47 0.65 1.06 1.57 0.58 0.90 0.99 1.68 0.56 1.10 0.99 1.57 0.43 0.94 1.41 0.38 1.79 1.17 1.01 0.44 1.17

SNRPB2 P08579 1.62 0.96 0.37 1.84 1.40 0.47 0.69 1.03 1.53 0.48 0.77 0.89 1.68 0.57 1.06 1.03 1.53 0.43 0.98 1.26 0.41 1.65 1.08 1.07 0.49 1.14

SNRPD3 B4DJP7 1.72 0.87 0.55 2.08 1.24 0.62 0.80 1.11 1.71 0.71 1.10 1.14 NaN 0.67 1.13 1.02 1.43 0.64 0.80 NaN 0.72 1.38 0.73 0.79 0.59 1.22

SP1 G5E9M8 0.84 NaN NaN 0.54 NaN 1.23 NaN NaN 0.30 1.72 0.83 0.61 NaN NaN 0.47 0.49 NaN 1.74 1.34 NaN 2.52 0.24 NaN NaN NaN NaN

SP3 Q8WWU3 0.70 NaN 0.79 0.55 0.79 1.58 0.96 1.01 0.45 1.88 0.94 0.81 NaN NaN 0.39 3.36 0.43 2.14 1.40 0.82 3.09 0.28 1.10 0.70 2.61 0.28

SPATA5L1 Q9BVQ7 1.54 1.33 1.50 NaN 0.89 0.60 NaN NaN 0.97 NaN 0.71 1.46 1.15 0.86 1.11 0.45 0.88 1.20 0.91 NaN 0.82 0.78 NaN NaN NaN NaN

SPIN1 Q9Y657 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.88 0.22 3.36 0.38 7.35 0.13 NaN NaN NaN NaN

SPIN2B Q5JZB8 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 7.57 NaN 12.49 0.13 9.55 0.12 NaN NaN NaN NaN

SPRR1A B7ZLF8 NaN NaN 0.04 NaN NaN NaN 0.06 NaN NaN 0.03 0.14 0.18 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SPRR1B P22528 NaN NaN NaN NaN NaN NaN 0.05 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SPTY2D1 Q68D10-2 1.07 1.61 0.58 0.62 0.53 1.01 0.49 1.21 1.18 0.77 0.71 0.91 2.42 NaN 1.21 0.62 0.55 0.89 0.65 0.69 0.76 0.52 0.86 0.47 0.67 1.30

SREK1 B3KRJ9 1.25 0.69 2.82 0.21 1.15 0.53 NaN NaN NaN NaN NaN NaN 2.27 0.79 0.96 0.83 1.22 0.54 NaN NaN 0.57 1.04 NaN NaN 0.45 0.70

SRRM1 A9Z1X7 7.44 3.28 0.27 0.72 0.35 0.21 0.34 0.48 0.72 0.15 0.45 0.39 NaN 0.27 1.64 1.39 0.37 0.22 0.78 1.27 0.34 0.42 NaN NaN 0.20 0.27

SRSF6 A8K588 7.33 1.79 0.52 2.00 0.92 0.75 0.97 1.25 2.36 0.31 1.51 1.23 2.06 1.16 1.53 1.63 1.32 0.59 1.63 1.50 0.77 1.38 NaN 0.96 0.33 0.63

SUDS3 Q9H7L9 0.60 0.77 1.45 1.34 0.72 3.05 1.47 1.43 1.51 1.69 1.52 1.10 0.58 3.30 0.41 3.57 1.19 1.47 9.63 0.24 1.11 1.76 0.71 3.53 2.46 1.07

SUPT3H O75486 0.64 0.52 1.02 0.55 0.45 0.97 0.84 NaN 0.58 0.99 0.82 0.77 1.55 0.41 0.44 0.45 0.47 1.02 NaN 0.09 1.53 0.38 0.58 2.32 1.71 0.40

SUZ12 Q15022 0.35 2.04 0.76 0.65 0.89 0.93 0.76 0.98 0.89 0.89 0.92 0.84 0.61 1.37 1.44 1.45 1.33 0.50 1.80 0.89 1.16 0.44 1.07 1.72 1.05 0.67

SV2A A8K6Q3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.03 NaN NaN NaN

SV2A L8E840 NaN NaN NaN 0.96 NaN NaN NaN 0.83 NaN NaN NaN 1.01 NaN NaN NaN NaN 1.06 1.22 NaN NaN 0.85 NaN NaN NaN 0.83 0.84

SVIL O95425-2 NaN 4.06 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.08 0.62 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

SYAP1 B2RBI2 NaN 0.12 0.88 1.23 NaN 0.17 0.82 NaN NaN 0.78 NaN NaN NaN NaN NaN NaN 1.36 0.90 NaN NaN NaN 1.09 NaN NaN 1.30 0.55

SYDE1 B2RD93 1.00 NaN 2.41 NaN 3.42 0.36 NaN NaN NaN NaN 0.56 1.46 NaN NaN 0.68 0.13 1.17 0.62 1.37 0.75 0.80 1.05 NaN NaN NaN NaN

SYN1 P17600 NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.02 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.18 NaN NaN NaN

SYT1 J3KQA0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.14 NaN NaN NaN

TADA1 Q96BN2 0.57 0.57 0.75 0.54 0.49 1.11 0.75 NaN 0.54 0.95 0.81 0.72 NaN NaN 0.55 0.30 0.51 0.97 5.32 0.17 1.31 0.40 0.77 1.95 0.33 NaN

TADA2B Q86TJ2 NaN NaN 0.96 0.53 0.49 1.02 0.12 NaN 0.59 0.86 0.94 0.72 0.29 2.07 NaN NaN 0.44 0.96 0.12 0.12 1.39 0.38 NaN 1.07 0.16 NaN

TADA3 O75528 NaN 0.30 1.76 0.83 1.15 1.15 1.20 0.99 0.89 1.45 1.10 0.94 NaN NaN 0.29 1.42 0.94 1.13 1.85 0.76 1.40 0.79 1.22 1.29 1.57 0.92

TAF1 P21675-6 NaN NaN 0.53 0.62 0.51 NaN 0.71 NaN 0.48 0.83 0.67 0.79 NaN NaN 0.18 NaN 0.29 1.34 4.80 0.28 1.47 0.32 NaN NaN NaN NaN

TAF11 Q15544 NaN NaN NaN NaN 0.71 NaN 0.41 1.26 0.61 0.94 0.74 1.04 NaN NaN NaN NaN 0.36 0.52 NaN NaN 1.76 0.42 NaN 0.80 NaN NaN

TAF1A Q15573 NaN NaN 0.46 NaN 0.27 0.96 0.60 0.70 0.42 0.94 0.78 0.67 NaN NaN NaN NaN 0.22 1.33 7.79 0.15 1.02 0.48 0.41 1.36 NaN NaN

TAF1B Q53T94 NaN NaN NaN 1.00 0.84 NaN 0.53 0.78 NaN NaN 0.99 0.75 NaN NaN NaN NaN 0.29 NaN NaN 0.22 NaN 0.40 0.48 NaN NaN 0.98

TAF1D Q9H5J8 NaN NaN 1.91 0.73 NaN NaN 0.72 0.67 0.35 1.03 0.83 0.75 NaN NaN 0.52 NaN 3.21 1.75 9.84 0.22 0.95 0.51 0.51 2.33 NaN NaN

TAF5 Q15542 0.24 1.04 0.44 0.75 0.63 1.10 0.36 0.91 0.49 0.98 0.77 0.87 NaN 2.06 0.15 1.30 0.31 1.40 2.51 0.15 1.50 0.37 1.34 2.18 NaN NaN

TAF6 J3KR72 0.33 0.90 0.41 0.67 0.63 0.83 0.30 0.88 0.45 0.79 0.58 0.88 0.35 1.13 0.14 3.94 0.32 1.43 2.56 0.45 1.33 0.31 NaN 2.36 NaN 0.50

TALDO1 P37837 NaN 0.08 NaN NaN 1.18 NaN NaN NaN NaN 0.37 NaN NaN NaN NaN NaN NaN 1.82 0.67 0.55 NaN NaN NaN NaN NaN NaN NaN

TARS Q53GX7 0.46 2.76 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.54 0.42 1.07 NaN NaN NaN NaN NaN NaN NaN NaN NaN

TBRG1 Q3YBR2 NaN NaN 2.66 0.70 0.86 2.03 3.27 NaN 1.06 2.91 1.70 1.24 0.34 4.99 NaN 1.32 0.49 2.50 6.11 0.10 2.92 0.64 NaN 1.46 NaN NaN

TCHH Q07283 NaN NaN NaN NaN 2.83 0.54 NaN NaN NaN NaN NaN 0.78 NaN NaN NaN 0.86 3.06 0.20 NaN NaN 1.80 0.34 NaN NaN 0.15 NaN

TCOF1 E7ETY2 NaN NaN NaN NaN 0.74 1.46 2.08 1.40 0.67 1.54 2.41 0.62 NaN NaN NaN NaN 0.43 1.06 NaN NaN 1.73 0.52 NaN NaN NaN NaN

TCOF1 E9PHK9 0.94 1.11 0.68 0.93 0.67 0.91 1.34 1.04 0.62 1.36 1.73 0.66 0.32 0.94 0.51 3.86 0.40 0.85 2.11 0.63 1.41 0.47 0.84 1.00 0.80 0.42

TCOF1 Q13428-3 NaN NaN 0.62 0.79 0.70 0.98 1.18 0.90 0.58 1.07 1.51 0.62 NaN NaN NaN 5.82 0.33 0.79 NaN NaN 2.02 0.47 NaN NaN 1.08 0.25

TF Q53H26 NaN NaN NaN NaN NaN NaN 0.11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

TFAP4 Q6FHM5 0.99 0.42 2.57 1.24 1.09 3.69 1.73 1.59 1.26 2.30 1.93 1.79 NaN NaN 0.08 3.25 0.84 3.84 26.96 0.06 3.54 1.12 2.42 3.00 1.64 NaN

TFPT G5E9B5 0.65 0.36 2.24 0.60 0.64 1.64 1.41 0.91 0.61 2.70 1.34 1.23 0.19 5.94 0.29 1.41 0.50 2.37 NaN 0.06 3.41 0.52 0.99 2.26 4.32 0.42

TGM1 B0AZN7 NaN NaN NaN NaN NaN NaN 0.02 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

TGM3 Q08188 NaN NaN 0.23 NaN NaN NaN 0.18 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.08 NaN NaN NaN NaN NaN NaN NaN

TIAL1 Q01085-2 1.75 1.20 1.07 1.49 1.11 0.98 NaN NaN NaN NaN 1.41 1.34 1.37 1.06 1.37 0.49 NaN 2.35 NaN 1.72 1.15 1.11 NaN NaN 1.03 1.29

TIAL1 Q2TSD2 NaN 1.01 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.14 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

TIMP2 P16035 NaN 2.25 1.29 1.13 NaN 1.65 1.49 1.35 NaN 1.83 1.32 1.39 0.96 NaN NaN NaN 1.19 1.67 NaN NaN NaN 1.58 NaN NaN NaN NaN

TINF2 B4DFJ1 NaN NaN 1.16 1.30 1.16 2.40 NaN NaN NaN 2.61 NaN 1.55 NaN NaN NaN NaN 0.62 2.35 2.44 1.02 1.66 1.50 1.60 2.38 NaN NaN

TKT P29401 0.16 0.10 2.42 NaN NaN 0.44 0.22 1.70 1.37 0.30 NaN NaN NaN NaN 0.23 0.54 0.89 0.63 0.19 2.15 0.62 NaN 0.85 NaN NaN NaN

TMPO P42166 1.71 0.14 0.59 0.24 0.92 0.46 0.61 0.16 0.37 0.73 0.42 0.27 NaN NaN 0.33 2.10 0.42 0.45 0.05 0.89 0.74 0.24 0.08 0.41 0.14 0.52

TOB1 Q2TU63 0.20 NaN NaN NaN NaN 0.75 NaN NaN NaN NaN NaN NaN NaN NaN 0.22 0.08 0.33 NaN NaN NaN NaN NaN NaN NaN NaN NaN

TOPBP1 Q92547 1.66 NaN NaN NaN 2.82 0.59 NaN NaN NaN NaN 2.19 0.47 NaN NaN 0.99 0.15 1.62 NaN 4.50 0.47 2.33 0.35 NaN NaN NaN NaN

TPI1 P60174-1 0.13 0.08 0.99 NaN NaN NaN 0.43 1.35 1.15 0.36 NaN NaN NaN NaN 0.13 0.50 NaN NaN 0.33 1.97 NaN NaN 1.21 0.52 NaN NaN
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TPT1 Q5W0H4 NaN 0.16 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.33 NaN NaN NaN 0.83 NaN NaN NaN

TTI1 O43156 1.08 0.75 0.48 0.62 0.87 0.50 1.27 0.46 0.60 0.79 0.67 NaN 0.89 0.82 0.96 0.22 1.26 0.74 1.89 0.32 0.68 1.06 NaN NaN 1.38 0.52

TWF2 D6RG15 NaN 3.42 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

TXLNA P40222 NaN NaN NaN NaN 5.37 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

TXLNG Q9NUQ3 NaN 0.20 NaN NaN 4.14 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

TYMS Q53Y97 0.98 1.14 1.27 1.33 1.11 0.91 NaN NaN NaN NaN NaN 2.08 0.97 0.62 0.77 0.15 NaN 1.20 NaN NaN 0.99 1.29 NaN NaN NaN NaN

UBA5 Q9GZZ9 0.72 0.88 0.60 0.83 1.15 0.75 1.60 0.51 0.62 0.83 0.50 0.51 1.07 0.74 0.69 0.37 1.45 1.02 NaN NaN 0.56 1.31 NaN NaN 1.97 0.60

UBE2D2 P62837 NaN NaN NaN NaN 1.04 0.60 0.23 NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.14 0.45 11.11 0.03 NaN NaN 9.02 0.16 NaN NaN

UBL4A P11441 2.03 0.41 NaN NaN 1.01 0.45 1.24 NaN 1.44 0.67 0.63 NaN 1.91 0.67 1.08 0.14 1.03 0.54 NaN NaN 0.64 1.01 NaN NaN 1.73 0.50

UBTF E9PKP7 0.75 0.75 0.87 1.20 1.22 1.09 0.92 1.43 1.36 1.24 0.73 2.26 NaN NaN 1.44 0.76 1.41 0.80 0.14 4.57 0.45 2.45 NaN NaN NaN NaN

UBTF P17480 0.91 0.87 0.72 1.13 1.14 1.09 0.95 1.23 1.21 1.03 0.86 1.62 1.04 1.17 1.57 1.36 1.22 0.73 0.23 4.10 0.50 2.12 1.36 0.79 0.46 1.97

UCHL5 Q9Y5K5 NaN NaN NaN NaN NaN NaN NaN NaN 0.78 2.69 1.50 1.34 NaN NaN NaN NaN NaN NaN 4.50 NaN 1.96 0.83 NaN NaN NaN NaN

UCHL5 Q9Y5K5-2 0.81 0.39 2.42 0.62 0.75 1.69 1.49 0.86 0.67 2.69 1.43 1.29 0.47 3.50 0.34 1.84 0.54 2.42 9.85 0.11 2.90 0.57 1.31 2.61 4.16 0.32

UHRF1 Q96T88 0.19 6.56 0.85 0.97 1.41 1.03 0.68 1.07 1.51 0.69 1.75 0.69 3.45 0.34 16.08 0.06 3.72 0.26 8.81 0.01 4.06 0.25 31.17 0.02 1.21 1.00

UHRF2 Q96PU4 NaN NaN NaN NaN 3.81 NaN NaN NaN NaN NaN NaN NaN NaN NaN 10.59 NaN 16.02 0.16 8.83 0.14 10.44 0.19 5.97 0.06 NaN NaN

UIMC1 F8VQY2 NaN 0.27 NaN 1.96 0.59 1.10 NaN NaN 1.08 0.40 0.83 0.57 NaN NaN NaN NaN 0.92 0.68 0.38 0.40 0.29 NaN 0.52 0.45 NaN NaN

USF1 B1AQP1 1.03 1.35 1.98 0.83 1.22 1.48 1.68 1.11 1.13 1.73 1.17 1.34 0.59 2.54 0.95 6.52 1.20 1.30 5.16 0.33 1.23 1.29 0.43 6.11 3.28 0.62

USF2 Q15853 0.82 1.56 2.21 0.83 1.32 1.61 1.68 1.21 1.25 1.72 1.31 1.39 0.57 2.84 0.81 4.45 1.19 1.35 5.42 0.20 1.34 1.34 0.39 4.76 3.67 0.57

USF2 Q15853-3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.28 1.10 NaN NaN NaN NaN NaN

USP1 B2R636 0.40 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.07 0.59 NaN 0.28 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

USP3 Q9Y6I4 0.64 0.89 2.69 0.64 6.14 0.19 NaN NaN NaN NaN NaN NaN NaN 0.59 0.86 0.86 6.00 0.11 0.11 3.69 0.33 2.71 NaN NaN 1.21 0.54

USP7 Q93009 0.29 1.82 2.62 0.23 1.97 0.65 0.61 1.12 0.89 0.85 1.02 1.13 1.70 0.72 3.42 0.25 3.36 0.20 30.30 0.01 2.30 0.45 20.45 0.06 0.33 1.88

VRK3 Q8IV63 NaN 0.22 NaN 1.47 NaN NaN 1.08 0.64 0.46 1.33 NaN 1.09 NaN NaN 0.49 NaN 0.63 1.07 0.52 1.08 0.95 0.70 0.59 0.97 0.49 NaN

VWA9 B4DJL6 0.91 0.48 0.66 0.86 0.74 0.77 0.61 NaN 0.73 0.64 0.90 0.79 1.03 1.47 0.49 0.64 0.57 0.88 4.74 0.24 0.89 0.54 1.06 0.89 NaN 0.35

WARS P23381 NaN 0.11 NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.37 NaN NaN 0.38 NaN NaN NaN 0.35 NaN NaN NaN NaN NaN NaN NaN

WDR5 P61964 0.28 2.13 1.47 1.11 1.25 1.37 1.83 0.98 1.60 1.23 1.50 1.19 0.62 2.71 0.58 1.12 1.43 1.11 1.14 1.14 1.48 1.37 1.69 1.79 1.59 1.00

WDR5B Q86VZ2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.06 0.45 NaN NaN NaN NaN NaN NaN NaN 0.32 1.65 NaN NaN NaN NaN NaN

WDR77 Q9BQA1 1.47 0.98 1.19 0.77 0.77 1.30 NaN 0.72 0.70 1.25 1.08 0.90 2.50 0.45 1.43 0.64 0.44 1.74 1.77 0.67 1.04 0.72 1.33 1.58 NaN NaN

WHSC1 O96028 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.49 NaN NaN NaN NaN NaN NaN NaN NaN 0.75 NaN NaN NaN NaN NaN

WHSC1 O96028-3 0.41 0.86 0.38 0.53 0.44 0.58 0.66 0.55 0.82 0.32 0.54 0.40 0.38 0.50 NaN NaN 0.48 0.48 3.80 0.23 0.54 0.40 3.54 0.36 0.43 0.35

WHSC1 O96028-5 NaN NaN NaN NaN 0.55 0.98 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.40 0.42 NaN NaN 0.47 0.37 NaN 0.53 NaN NaN

WHSC1 Q05CW4 NaN NaN NaN NaN NaN 0.96 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

WHSC1L1 Q9BZ95-4 0.62 0.68 0.71 1.05 1.02 1.10 0.89 1.23 1.17 1.04 1.09 0.89 NaN NaN NaN 0.18 2.09 0.33 17.75 0.19 2.46 0.32 3.75 0.70 1.64 0.68

WIZ B7ZM82 0.71 0.76 0.86 0.84 0.57 1.30 0.71 0.90 0.76 1.02 0.96 0.82 1.52 0.70 0.83 0.32 0.34 1.57 6.27 0.17 0.97 0.68 1.35 1.21 1.74 0.26

WIZ B9EGQ5 NaN NaN NaN NaN NaN 1.17 NaN NaN NaN NaN 1.16 0.82 NaN NaN NaN NaN NaN NaN NaN NaN 0.92 0.74 NaN NaN NaN NaN

WIZ O95785 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.30 NaN NaN NaN NaN

XPO1 O14980 1.14 1.38 0.77 1.03 1.33 0.63 1.49 0.47 0.69 0.90 0.55 0.78 1.27 0.68 0.92 0.12 1.74 0.88 1.22 0.42 0.62 1.50 NaN 1.09 2.17 0.58

XPO5 A8K5Y7 1.09 0.82 0.93 1.08 0.70 0.42 1.17 0.63 0.76 1.04 0.48 1.03 0.93 1.08 0.97 0.50 1.31 1.02 0.93 0.40 0.68 1.33 0.77 NaN 1.72 0.54

YKT6 Q9UES0 0.77 0.89 0.75 1.08 0.57 0.45 1.06 0.67 0.58 0.72 0.39 1.10 0.57 0.50 0.59 0.48 1.10 1.63 NaN NaN 0.35 1.08 NaN NaN 1.60 0.55

YOD1 Q5VVQ6-2 NaN NaN NaN NaN NaN NaN 0.11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ZBED1 O96006 1.27 3.28 NaN NaN 0.43 0.43 NaN NaN NaN NaN 0.54 NaN NaN NaN 1.12 0.11 0.44 0.35 NaN NaN 0.25 NaN NaN NaN NaN NaN

ZBED6 P86452 NaN 0.26 0.40 NaN 0.66 1.07 0.46 NaN 0.82 0.56 0.88 0.58 0.46 NaN NaN NaN 0.31 1.08 NaN NaN 0.84 0.49 NaN NaN 1.27 0.38

ZBTB1 Q9Y2K1 0.44 1.23 0.68 0.53 0.41 1.29 0.44 NaN 0.40 0.81 0.69 0.81 0.35 1.92 0.33 1.85 0.29 1.02 1.90 0.31 0.76 0.52 0.17 4.31 2.38 0.29

ZBTB12 Q9Y330 0.31 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.44 0.19 NaN 0.24 11.40 0.07 NaN NaN 6.37 0.09 NaN NaN

ZBTB14 O43829 0.51 0.91 1.64 0.65 1.12 1.03 0.96 0.66 0.83 1.24 1.00 0.80 0.32 3.20 0.33 2.99 0.88 0.78 5.38 0.18 1.05 0.66 0.31 6.27 0.86 0.50

ZBTB33 Q86T24 0.79 0.78 NaN 1.01 NaN NaN NaN NaN NaN NaN 0.63 NaN 0.94 0.82 0.52 0.17 1.69 1.06 11.67 0.19 0.94 NaN 24.10 0.07 NaN NaN

ZBTB39 O15060 NaN NaN 1.47 1.00 0.74 2.78 1.15 1.01 1.15 1.87 1.07 1.41 NaN NaN NaN NaN 0.70 3.91 NaN NaN 1.29 1.36 NaN NaN 1.53 0.89

ZBTB4 Q9P1Z0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 3.19 0.20 NaN NaN 3.21 0.25 NaN NaN

ZBTB43 O43298 NaN 1.50 1.34 0.62 2.07 1.33 NaN NaN NaN NaN 2.29 0.90 NaN NaN 0.09 5.84 0.95 1.63 11.00 0.16 2.30 1.00 1.07 1.06 NaN NaN

ZBTB44 H7BY22 NaN NaN NaN NaN 0.68 1.68 NaN NaN NaN NaN 0.65 0.63 NaN NaN NaN NaN 0.47 2.05 2.55 0.51 1.15 0.66 1.46 0.71 NaN NaN

ZC2HC1A Q96GY0 0.50 0.49 0.24 1.71 0.49 0.90 NaN NaN 1.23 0.33 0.91 0.48 0.25 0.87 0.38 NaN 0.48 0.71 2.82 NaN 0.74 0.53 NaN NaN 0.89 0.37

ZC3H11A B4DLG2 4.78 0.76 0.43 NaN 1.25 0.54 0.64 NaN 1.99 0.35 1.32 0.98 1.34 0.80 0.51 0.23 1.27 0.50 NaN NaN 0.62 1.07 NaN NaN 0.55 0.51

ZC3H14 B4DXU8 11.51 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ZC3H14 G3V4R5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

ZC3H14 Q6PJT7-5 6.20 1.01 0.29 1.35 0.74 0.49 NaN NaN 1.55 0.29 0.62 0.74 NaN 0.98 1.61 0.65 0.94 0.42 0.76 NaN 0.51 0.97 NaN NaN 0.43 0.44

ZC3HAV1 A8K9U6 1.23 1.45 0.96 NaN 0.78 0.61 NaN NaN NaN 0.50 0.82 0.96 NaN NaN 1.16 1.09 1.59 0.28 NaN NaN 1.03 0.49 NaN NaN NaN NaN

ZCCHC10 B3KVL5 NaN NaN NaN NaN NaN NaN NaN NaN 2.96 NaN NaN NaN NaN NaN 1.37 NaN NaN NaN 0.42 1.42 NaN NaN 0.75 0.78 NaN 2.93

ZGPAT H0UI99 11.06 NaN NaN NaN 0.66 0.69 NaN NaN NaN NaN NaN NaN NaN NaN 6.30 NaN 0.66 0.54 NaN NaN 0.15 0.86 NaN NaN NaN NaN
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_F
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ZHX1 Q9UKY1 0.35 0.71 0.74 0.48 2.25 0.23 NaN NaN 0.46 0.62 0.49 0.52 NaN NaN 0.29 NaN 1.85 0.18 41.17 0.11 0.47 0.64 24.81 0.12 NaN NaN

ZHX2 Q9Y6X8 0.42 0.57 NaN NaN NaN NaN NaN NaN NaN NaN 0.48 NaN NaN NaN 0.25 0.56 0.42 0.71 33.67 0.12 0.96 0.34 26.09 0.09 NaN NaN

ZHX3 A8K8Q0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 19.41 0.14 NaN 0.39 17.43 0.15 NaN NaN

ZKSCAN3 Q9BRR0 0.52 0.46 0.53 0.92 0.62 0.85 0.67 NaN 0.60 0.69 0.68 0.53 0.53 0.88 0.53 NaN 0.55 0.73 4.22 0.50 0.59 0.59 0.84 0.83 NaN 0.50

ZMYM1 Q5SVZ6 0.88 1.22 1.07 NaN 0.62 2.22 1.05 1.55 0.57 2.61 1.30 1.96 NaN 1.79 0.50 0.31 0.30 3.05 6.90 3.06 2.12 0.88 1.18 8.86 NaN NaN

ZMYM2 Q9UBW7 0.76 0.63 NaN NaN 0.99 NaN NaN NaN 0.63 0.69 0.70 0.57 NaN NaN 0.53 0.19 1.64 0.30 26.45 0.16 2.82 0.24 0.90 NaN NaN NaN

ZMYND8 Q9ULU4-11 NaN 0.88 0.33 0.51 0.74 0.58 NaN NaN 0.61 0.43 0.72 0.58 0.47 2.29 0.46 NaN 0.49 0.90 15.95 0.26 1.15 0.38 10.81 0.90 NaN NaN

ZMYND8 Q9ULU4-9 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 7.83 NaN NaN NaN

ZNF131 P52739 0.44 1.21 1.17 0.70 1.12 1.07 0.96 0.92 0.84 1.02 0.97 1.02 0.58 1.36 0.48 3.26 1.03 0.81 1.63 0.85 0.92 0.85 0.59 2.17 0.91 0.74

ZNF148 Q9UQR1 1.40 0.65 1.36 0.81 0.57 2.07 0.98 1.11 1.04 1.41 1.17 1.17 0.32 4.18 0.25 3.30 0.42 2.43 20.20 0.18 1.77 0.73 1.68 0.81 2.40 0.35

ZNF280D A8K124 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.72 2.82 0.45 8.04 0.19 2.19 0.15 NaN NaN NaN NaN

ZNF282 Q86YG2 NaN NaN 1.77 0.77 NaN NaN NaN NaN 0.69 2.37 1.12 1.14 NaN NaN NaN NaN 0.44 3.37 NaN NaN 2.22 0.66 NaN NaN NaN NaN

ZNF354A Q86Y64 NaN NaN 0.43 NaN 0.54 0.92 NaN NaN NaN NaN 0.71 0.62 0.41 0.88 NaN NaN 0.48 0.64 NaN NaN 0.74 0.56 NaN NaN NaN NaN

ZNF444 Q53F81 1.06 0.29 0.81 1.16 0.60 2.13 1.09 0.95 0.82 0.92 0.98 0.83 0.59 1.41 0.41 0.69 0.38 1.79 2.50 0.39 1.10 0.67 1.24 0.93 NaN NaN

ZNF451 Q4KMR5 1.51 0.13 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.45 NaN NaN NaN 0.29 0.41 NaN NaN NaN NaN

ZNF580 Q9UK33 NaN NaN 2.87 0.63 1.17 1.34 1.37 NaN 0.96 1.29 1.18 1.13 NaN NaN NaN 0.18 2.17 0.68 5.07 0.15 3.22 0.55 1.86 2.04 NaN 0.52

ZNF598 Q86UK7-2 1.10 1.44 NaN NaN 3.62 NaN NaN NaN NaN NaN NaN NaN NaN 1.24 0.55 0.12 NaN 1.19 1.03 0.65 NaN NaN 1.00 NaN NaN NaN

ZNF629 Q9UEG4 0.50 0.46 NaN NaN NaN NaN 0.37 NaN 0.44 NaN 0.88 0.41 NaN 0.99 0.31 NaN 1.16 0.33 2.98 0.17 4.22 0.24 NaN NaN NaN NaN

ZNF644 Q9H582 0.41 0.47 1.92 1.27 1.12 2.01 1.28 1.38 1.35 1.86 1.68 1.43 2.46 1.46 0.55 0.20 0.65 2.98 13.72 0.16 1.65 1.29 2.56 1.72 1.87 0.58

ZNF687 Q8N1G0 NaN NaN 0.51 0.48 0.59 0.68 NaN NaN 0.43 0.64 0.66 0.49 0.60 NaN 0.55 0.72 0.39 0.75 46.11 0.23 0.86 0.36 11.67 0.86 NaN NaN

ZNF770 A8K5X3 NaN NaN NaN NaN NaN NaN NaN NaN 0.42 NaN 0.40 0.43 NaN NaN NaN NaN NaN NaN 0.51 0.57 NaN NaN NaN NaN NaN NaN

ZRANB2 O95218-2 1.16 1.14 4.46 0.13 NaN NaN 0.71 0.69 0.64 0.51 NaN NaN NaN NaN 1.12 2.62 1.18 0.64 0.69 1.20 0.50 0.71 NaN 0.88 0.47 0.65

ZSCAN20 P17040-3 NaN 1.13 1.05 0.71 0.80 1.08 NaN NaN NaN 1.26 1.06 1.06 NaN NaN 0.29 NaN 1.00 1.08 6.98 0.17 1.26 0.84 0.44 2.04 15.72 NaN
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