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1. Introduction 

Blood clotting is an essential, life-sustaining process in mammals and involves many soluble 

blood clotting factors and the blood platelets [13]. Platelets are anucleate cells, and are one of 

the smallest cells in the human body with a discoid shape and with diameters between 2-5 µm. 

However, they play a huge role in preventing excessive blood loss from a damaged blood 

vessel. These discoid platelets circulate in the bloodstream and are quiescent in a healthy 

blood vessel. However, upon vessel damage, they immediately respond to activation signals 

by transforming themselves dramatically. They change their shape from discoid to spherical, 

adhere to the underlying, exposed extracellular matrix (ECM), form filopodial and 

lamellipodial extensions, flatten by spreading and eventually contract in a hemostatic plug, to 

pull the wound edges together (Figure 1.1). This rapid and dramatic morphological 

transformation of platelets occurs due to dynamic and ordered rearrangements of their 

cytoskeletal components, which mainly include their actin and microtubules (MTs). 

 

Figure 1.1: Platelets remodel their cytoskeleton when activated2 

At a damaged wound site, in response to activation signals, platelets adhere to the ECM and undergo 

dramatic morphological shape changes, from discoid to spherical along with the formation of 

extensions (intermediate), to fully flat, spread stage, to enable wound closure. These dramatic changes 

are a result of the rapid and extensive remodeling of mainly their actin and MT cytoskeleton. Images 

are adapted from [151].  

 

Upon response to stimuli, the MTs of discoid platelets dismantle and constrict, and their actin 

cytoskeleton severs from the membrane due to which the platelets become spherical. After 

this, there is extensive actin polymerization, during which the platelets form filopodia and 

lamellipodia, spread and continue to strengthen their adhesion to the ECM [139]. The platelets 

also secrete their granules which contain activation factors that recruit more platelets at the

2activation refers to morphological changes occurring in platelets exposed to glass/ foreign 

surfaces/agonists in suspension  
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 site of injury and also make platelets stick to each other. These platelets aggregate together, 

forming a platelet plug (a thrombus) and via their actin-myosin contraction, they pull on the 

plug to make it contact.  

The platelet thrombus formation process is very complex and involves the concerted actions 

of many signaling proteins that activate numerous signaling cascades, which together bring 

about blood clotting and prevent excessive bleeding. During this thrombus formation, the 

metamorphosis of the platelets from discoid to spherical, their subsequent adherence and 

spreading, due to the actions of their actin, myosin and MT cytoskeleton, is of utmost 

importance. Any genetic defects or dysfunctions in any of the proteins that regulate these 

processes, affects the cytoskeletal structure and arrangement and lead to bleeding disorders  

which show effects like prolonged bleeding time, thrombocytopenia and formation of 

defective blood clots [23, 114, 140]. The study of platelets and their cytoskeleton is thus of 

extreme medical importance.  

Since mammalian platelets lack a nucleus, most of the knowledge about their cytoskeletal 

components has been gathered from studying their cytoskeleton, after their chemical fixation, 

by performing electron microscopy and immunofluorescence studies. This lack of a nucleus 

has both its merits and demerits. On the one hand, even though they lack a nucleus, these tiny, 

miraculous cells are enriched in all the proteins that are involved in complex signaling 

pathways that govern the important processes of cell adhesion, spreading and contraction. 

Hence, platelets make an excellent example of a model for a simple biological cell [140], 

where various cellular aspects such as cytoskeletal remodeling can be studied, without the 

interference of a nucleus, and the knowledge gained, can be extrapolated to other cells. On the 

other hand, this lack of a nucleus makes it impossible to transfect, microinject, or in any way 

manipulate the human platelets. Thus it is not easy to visualize and study the cytoskeletal 

dynamics of human platelets in real-time. It is, of course possible to study platelets from 

transgenic mice, and indeed real-time studies on such platelets have added valuable 

information to the existing knowledge about the platelet cytoskeleton and the genetic 

alterations that lead to various bleeding disorders [20, 23, 78, 108, 112, 113, 114, 120, 140]. 

However, owing to their importance in medicine, and because of the role of the cytoskeleton 

in bleeding disorders, it is desirable to study human blood platelets. It is especially desirable 

to have a quick diagnostic tool that can directly visualize the cytoskeletal changes taking place 

in human platelets in real-time.  

The introduction of the novel, fluorogenic, SiR-actin and SiR-tubulin probes, that bind only to 

filamentous actin (F-actin) and MTs, and which can be used for cells that are difficult to 
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transfect [86], are a step forward in achieving this goal. These fluorogenic cytoskeletal probes 

are highly cell permeable and have excellent properties, such as brightness, photostability,   

far-red excitation and emission, low cytotoxicity, that make them ideal for live-cell imaging 

[86].  

In this dissertation, these SiR-actin and SiR-tubulin probes are used to directly visualize the        

F-actin and MT changes occurring during platelet spreading in real-time, and the temporal 

dynamics of these two cytoskeletal components during platelet spreading are explored. In that 

context, the dissertation is structured as below. 

Chapter 2 introduces the biology and importance of human blood platelets and their 

cytoskeleton in aiding in the platelet functions. Particular emphasis is given on their actin and 

MT cytoskeleton. Also, the current approaches available for visualizing the actin and MT 

platelet cytoskeleton are briefly summarized and the SiR-actin and SiR-tubulin cytoskeletal 

probes are introduced [86] followed by a brief mention of the open questions that these 

studies have raised. 

Chapter 3 describes the experimental techniques used in this dissertation which includes 

purification of the platelets, their post-fixation cytoskeletal stainings, their labeling with the     

SiR-actin and SiR-tubulin probes, the methodology of the time-lapse experiments with these 

probes and the data analysis steps carried out to analyze the results.  

Chapter 4 describes the platelet actin, myosin and vinculin cytoskeleton after their chemical 

fixation. This chapter gives a broad overview of the development of the platelet cytoskeleton 

especially the F-actin cytoskeleton, as the platelets spread. 

Chapter 5 demonstrates the real-time F-actin dynamics in platelets as they spread and points 

towards the existence of multiple time-scales of F-actin reorganization during their spreading. 

The results are discussed in context with the existing literature. 

Chapter 6 demonstrates the real-time MT dynamics in platelets as they spread and points 

towards their role in platelet exocytosis and shows that myosin plays a major role in this 

process. The results are discussed in context with the existing literature. 

Chapter 7 summarizes the findings and discusses the relevance of the results in the context of 

the in vivo platelet function. The new possibilities in understanding the platelet cytoskeleton, 

that may open up, with the use of these live-cytoskeletal imaging probes are also briefly 

mentioned.  
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2. State of the Art 

In this chapter the important functions of platelets and their biological background is briefly 

introduced with particular emphasis on the structure of their cytoskeleton and how it aids in 

the platelet functions. The current approaches available for visualizing this platelet 

cytoskeleton are also briefly summarized. Lastly, the recently developed cytoskeletal probes 

SiR-actin and SiR-tubulin are introduced [86]. Most of the basic biological introduction of 

platelets given here is taken from the information available in [94].  

2.1 Overview of platelet functions  

The primary role of platelets is in haemostasis. By the coordinated efforts of platelets and 

many clotting factors, the damage to a blood vessel is sealed by the formation of a thrombus 

i.e. a blood clot. A sketch of an overview of the various steps that occur during thrombus 

formation is shown in Figure 2.1. In a healthy blood vessel (resting state in Figure 2.1) the 

platelets traverse close to the walls of the blood vessels and are quiescent (resting). Their 

quiescent state is maintained by the release of agents like nitric oxide (NO) and prostaglandin 

I2 (PGI2). When there is damage to the blood vessel, the endothelial layer lining the vessel is 

lost and the underlying ECM is exposed. The ECM contains collagen which is a major agonist 

of platelets. Other than collagen other agonists like von Willebrand factor (vWF), adenosine 

diphosphate (ADP), thrombin and thromboxane A2 (TXA2) are also released. All these 

agonists stimulate the platelets and cause their shape change from a discoid to a sphere. The 

platelets adhere to the ECM and spread (adhesion, spreading in Figure 2.1), by extending their 

filopodia and lamellipodia and quickly cover the damaged surface.  Furthermore, the platelets 

secrete more stimulation signals and recruit other platelets to the damaged area which 

eventually form a platelet thrombus. All of these events are collectively referred to as platelet 

activation. The platelets then aggregate and pull on fibrin strands that are formed during 

thrombus formation and close the damaged wound edges together [94]. The cytoskeleton of 

platelets brings about all these dramatic changes in the platelets and it plays a major role in 

these adhesion, spreading, secretion and aggregation processes. The molecular details of these 

cytoskeletal-mediated processes are discussed in the later sections. 
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Figure 2.1: Overview of platelet function in haemostasis 

In a healthy blood vessel, the platelets that traverse the blood vessels are in a resting state which is 

maintained by agents like NO and PGI2, secreted by the endothelial cells. Upon damage to the blood 

vessel, the underlying ECM is exposed which contains platelet agonists like collagen. The platelets 

start to adhere and spread at the site of damage and quickly cover the damaged area. More platelets are 

recruited to the damaged site by secretion of soluble agonists like ADP, TXA2 and thrombin and a clot 

forms. The platelets aggregate in this clot and pull on it to compact it and stop the blood flow. 

 

2.2 The history and origin of platelets 

The discovery of platelets in the early 19th century can be credited to many scientists who all 

described the existence of the 'blood plates/plaques' in some way or the other. Notable 

amongst them were, Max Schultze who was one of the first anatomists to accurately describe 

these cells after looking at them under a microscope in the year 1865. At that time he referred 

to them as 'granules' which he saw in his own as well as other people's blood and described 

them as a normal constituent of the blood which tended to form irregular clumps of various 

sizes.  He further 'enthusiastically recommended' the study of these objects 'to those who are 

concerned with the in-depth study of the blood of humans' [16]. In the later years, Giulio 

Bizzozero (1882) identified these cells when he used 'intravital microscopy of mesenteric 

venules of guinea pigs' [94] and observed them to be 'disk-shaped and circulating in isolation' 

in blood [94]. He also quoted that what he was studying were the same 'granules' that Schultze 
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had previously described. He called them blutplättchen in German and 'blood plates' in 

English which is most likely the source of the current use of the word 'platelets'  [16, 33]. 

Bizzozero's contemporary William Oslar (1881-1186), built on his observations and 

established a clear role for these cells in thrombosis and termed these cells as blood 'plaques' 

[94]. He noted that these blood plaques ''are the elements which first settle on the edges of a 

wounded vessel and form the basis for thrombosis'' [33]. At this time, the origin of blood 

platelet production was unknown. Although Bizzozero had also identified bone marrow 

megakaryocytes (MKs), he was unaware that they were the precursors of blood platelets [94]. 

Then in 1906, Homer Wright using his self-made polychrome staining solution (Wright's 

stain) noted that the red to violet granules present in both platelets and MKs were similar in 

shape and color and thus clarified that platelets originated from the MKs in the bone marrow 

[33, 94].  

There are several models proposed in the literature to suggest how platelets form from their 

progenitor MKs [94]. The most promising model is that of the production of platelets via 

proplatelets that extend from MKs because proplatelets have been found in blood [153] and 

their extension from MKs into blood vessels has been shown [94]. The production of platelets 

based on this model is briefly summarized here and a schematic is shown in Figure 2.2 [88]. 

In response to the hormone thrombopoietin (TPO), hematopoietic stem cells (HSCs) which in 

adults are present mainly in the bone marrow, differentiate into immature MKs (Figure 2.2- 

step 1). The nucleated MKs then undergo maturation and become polyploid by endomitosis 

i.e. several cycles of DNA replication which takes place without cell division. During this 

time the mature MKs migrate to the vascular niche and both the endomitosis and migration 

are regulated by the acto-myosin cytoskeleton [88, 115]. During maturation, the MKs increase 

in size (50-100 µm diameter) thus allowing them to accumulate protein, mRNA, organelles, 

platelet-specific granules and internal membrane pools that are later distributed in the platelets 

[115]. They also develop an invaginated membrane system (IMS) that serves as a reservoir for 

the next step of proplatelet formation (Figure 2.2-steps 2 and 3). At the vascular niche, the 

MKs extend protrusions called proplatelets which appear as barbell-shaped structures (Figure 

2.2- step 4) that are released in the vascular sinusoids. The MTs have a major role during this 

process when they slide past each other and provide the driving force to the proplatelet 

extension via the MT motor protein dynein.  Bipolar MTs line the length of these proplatelets 

and serve as a cargo route on which the organelles and granules that the MKs have 

accumulated during maturation are transported towards the proplatelet tips driven by the MT 

motor protein kinesin [88, 115]. Once the proplatelets are formed, the terminal formation of 
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platelets from them can occur in the blood stream [88]. Recent studies have speculated that 

MKs release a heterogeneous mixture of nascent platelets in the blood stream which then 

finally mature into platelets in circulation. These speculations come from the identification of 

proplatelets in blood [88, 153]. A recent in vitro study has shown that proplatelets are capable 

of generating progeny [133] and another study has identified intermediate forms between 

proplatelets and platelets, termed as preplatelets [154]. These preplatelets (discoid, 2-10 µm 

diameter) can twist their MT cytoskeleton in the center [154] and reversibly convert into the 

barbell-shaped proplatelets (Figure 2.2-step 5). The nuclei from the MKs, which are converted 

to the pre/proplatelets, are extruded and eventually phagocytosed [88]. In the final step, the 

barbell-shaped undergo a fission event to divide into two individual anucleate platelets that 

are released into circulation [88, 115]. These proplatelets have MT coils (~ 2 µm diameter) at 

each end and these MT coils are further retained in the individual platelets. The conversion of 

preplatelets to proplatelets is driven by MT forces as discussed above and formation of these 

proplatelets is determined by the marginal MT coil diameter and thickness [88, 153]. These 

cortical forces thus regulate the final sizes of platelets [153]. The actin and MT cytoskeleton 

hence play a major role in the production and final sizes of the platelets.  
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Figure 2.2: Scheme of platelet production in the bone marrow 

1) In the bone marrow, HSCs differentiate into immature MKs in reponse to the hormone TPO.          

2 & 3) Then these MKs mature during which they become polyploid by undergoing endomitosis, 

increase in size, accumulate mRNA, protein, organelles etc. and develop an IMS. 4) The MKs then 

migrate to the vascular niche and extend proplatelets which can also interconvert to 5) preplatelets. 

The nuclei from these pre/proplatelets are extruded and phagocytosed and in the final step 6) in an 

MT-dependent process, the proplatelets undergo a fission event and form two individual platelets. 

The figure caption information is adapted and the figure is reproduced with permission from Machlus 

KR and Italiano JE., 2013 originally published in The Journal of Cell Biology 

http://dx.doi.org/10.1083/jcb.201304054 [88]. © 1979 Rockefeller University Press, License number- 

4003210614697, Licensed content publisher- Rockefeller University Press. 

 

2.3 General aspects of platelet structure at rest 

Before discussing the specific structural features of the platelet cytoskeleton (given in the 

following sections) the general structure of the whole platelet is briefly summarized first. As 

discussed above platelets are produced from mature MKs and are released into the 

bloodstream. The entire process of platelet production from MKs takes ~5 days in humans. In 

a healthy adult, approximately 1011 platelets are produced each day. The released platelets 

then remain in circulation for 7-10 days and are then destroyed in the spleen [40, 41].  

http://dx.doi.org/10.1083/jcb.201304054


STATE OF THE ART 

 

10 

 

In their inactive (resting/quiescent) state, platelets are discoid in shape with a diameter of 2-5 

µm and a thickness of 0.5 µm. As mentioned before, when circulating in a healthy blood 

vessel, the platelets are maintained in their quiescent state by agents like NO, heparin, and 

PGI2 which are secreted mainly by the endothelial cells. The resting platelets are anatomically 

divided into four zones, from the outer to the innermost areas, as described below. 

 

1) Peripheral zone:  

This zone is responsible for the adhesion and aggregation of platelets. Low-voltage, high-

resolution scanning electron microscopy (LVHR-SEM) suggests that the outer surface of the 

platelets i.e. the plasma membrane resembles the gyri and sulci like those on the brain surface 

making it appear wrinkled [166]. There are also small openings of the open canalicular system 

(OCS) randomly dispersed on the outer surface. The OCS traverses the entire platelet and is 

also surface-connected. It is composed of invaginations of the plasma membrane and serves as 

a pathway for the transport of substances into the platelets and also the release of granular 

contents to the extracellular environment.  

Besides this, the peripheral zone consists of a glycoprotein-rich exterior coat called the 

glycocalyx. The glycocalyx is covered with many glycoprotein receptors which bind to 

adhesive agents, aggregating agents and procoagulant factors to facilitate the adhesion of 

platelets to damaged surfaces, transmit extracellular signals to the platelet interior and trigger 

their activation followed by aggregation and in general speed up the clot retraction process. 

The major glycoprotein surface receptors involved belong to two different categories, the       

G-protein-coupled receptors (GPCRs), and the tyrosine kinase-linked receptors. The GPCRs 

induce platelet activation through G proteins and include mainly the protease activated 

receptors (PAR) for thrombin- PAR1 and PAR4, receptors for TXA2, PGI2, ADP etc. The 

tyrosine kinase-linked receptors induce platelet activation by signaling through tyrosine 

kinases like Src (proto-oncogene tyrosine protein kinase) and Syk (spleen tyrosine kinase). 

Receptors in this category include the GP-VI and GP-Ib-IX-V complex which bind to 

collagen and von Willeband factor (vWF), and the integrins like GPIIb-IIIa complex (also 

known as the integrin IIb3) and 21. There are many IIb3 copies on the surface of the 

platelets and they mediate the binding between fibrinogen and vWF during platelet activation 

whereas 21 is a platelet collagen receptor [32, 111]. Other receptors present on platelet 

surfaces include P-selectin, immunoglobulins and receptors for ADP, epinephrine etc. [69].  

The peripheral zone also consists of a lipid bilayer (also called unit membrane) which 

comprises of asymmetrically distributed phospholipids and provides a surface for the 
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interaction of coagulant proteins. Just below the lipid bilayer and closely associated with is a 

distinct layer called the submembrane area which contains submembrane filaments 

comprising of short actin filaments. This submembrane area serves as a barrier for the internal 

organelles and also serves as a platform for the interaction of the cytoplasmic domains of 

transmembrane receptors e.g. the cytoplasmic tails of  GPIIb-IIIa with various proteins that 

regulate signaling processes during platelet activation e.g. myosin [94].  

 

2) Sol-gel zone:  

This zone is responsible for cytoskeletal support and contraction and is continuous with the 

submembrane area of the peripheral zone. It consists mainly of a circumferential coil of MTs 

which maintains the discoid shape of the platelets and an acto-myosin filament system which 

is involved in various processes that eventually lead to the contraction of platelets and 

retraction of blood clots. These MT and acto-myosin cytoskeleton are described in details in 

section 2.5. 

3) Organelle zone:  

This zone consists of several types of membrane-enclosed bodies which are randomly 

dispersed in the cytoplasm. These include the three major secretory granules- the  granules, 

dense bodies and lysosomes. There are nearly 40-80  granules per platelet that store the 

adhesion molecule P-selectin and the receptor complexes IIb3 and GP-Ib-IX-V. Other than 

those,  granules contain more than 300 secretory proteins which include chemokines, 

ctyokines, growth factors, coagulant factors etc. There are about 4-8 dense bodies present per 

platelet. These mainly store the adenosine and guanosine nucleotides- adenosine diphosphate 

(ADP), adenosine triphosphate (ATP), guanosine-5'-diphosphate (GDP) and guanosine-5'-

triphosphate (GTP). Besides that the dense bodies also have stores of calcium which is crucial 

required the platelet activation process. This zone also consists of some mitochondria which 

are involved in energy metabolism. Other organelles present in this zone include peroxisomes, 

glycosomes, tubular inclusions and electron dense chains and clusters [94]. 

 

4) Membrane zone:  

This comprises of the OCS which is also surface-connected as discussed above and a dense 

tubular system (DTS) which refers to a number of channels distributed randomly in the 

cytoplasm and are just a remnant of the rough and smooth endoplasmic reticulum of MKs. 

The DTS channels act as calcium binding sites and are also speculated to be involved in 

incorporating enzymes involved in prostaglandin synthesis. The OCS and DTS are not 
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completely isolated from each other. Apparently, platelets cannot seem to synthesize proteins 

as they do not retain any rough endoplasmic reticulum and ribosome complexes, nor do they 

have Golgi complexes. However, this notion is disputable as platelets contain tiny amounts of 

mRNA and some studies have demonstrated that platelets are capable of de novo protein 

synthesis [131].  

2.4 Molecular mechanisms of actin and MT dynamics 

Before describing the platelet cytoskeleton in detail, the basic concepts of actin and MT and 

their polymerization dynamics are briefly summarized here since the actin and MT 

cytoskeleton of platelets is most relevant in the context of this dissertation. The cytoskeleton 

of a cell is an important part of it that gives the cell its shape and also prevents the cell from 

deforming by providing a mechanical resistance. When necessary, the cytoskeleton can 

actively contract, which enables the cells to perform vital functions like migration or 

contraction. Besides that the cytoskeleton plays major roles in cellular functions like cell 

signaling pathways, cytokinesis, endocytosis and intracellular transport. All these dynamic 

processes of the cytoskeleton are possible due to the presence of proteins in it that can rapidly 

polymerize to form filaments or depolymerize, depending on the particular cellular 

requirements. Eukaryotic cells have three main cytoskeletal filaments- microfilaments (actin 

filaments), microtubules (MTs) and intermediate filaments. All these filaments along with 

additional proteins bring about the dynamics changes of the cytoskeleton. The general aspects 

of actin and MTs and some details of their occurrence in platelets are discussed below- 

2.4.1 Actin 

Actin is a 42 kDa protein and actin filaments are ~7 nm in diameter. The monomeric globular 

form of actin called as G-actin, polymerizes to form the actin filaments also called as F-actin 

(filamentous actin) which are composed of two strands of actin. F-actin filaments further 

assemble to form bundles and networks. The actin filaments along with these bundles and 

networks play important roles in cell spreading, cytokinesis, muscle contraction and other 

cellular processes. In a cell, actin filaments are constantly growing (polymerizing) and 

shrinking (depolymerizing) to bring about dynamic changes in the cell. This actin 

polymerization and depolymerization can be easily visualized in vitro by, adding salts to a 

solution of G-actin, which induces polymerization and creates F-actin filaments. These F-actin 
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filaments are not distinguishable from those isolated from cells [84]. Actin polymerization in 

vitro proceeds in three sequential steps as shown in Figure 2.3.  

In the first step, the ATP-G-actin (indicated in gray in Figure 2.3) aggregates into unstable, 

short oligomers. In the next step called as the nucleation phase, the oligomers reach a certain 

length of three to four subunits and form a stable nucleus (indicated in blue in Figure 2.3) 

which then acts as a 'seed' and rapidly elongates into F-actin filaments by adding ATP-G-actin 

monomers to both its ends known as plus/barbed and minus/pointed ends with a rate constant 

kon (elongation phase in Figure 2.3). After ATP-G-actin gets incorporated into F-actin 

filaments, the bound ATP slow hydrolyses to ADP thus ADP-F-actin filaments are formed 

(red F-actin filament in Figure 2.3). Along with this addition of ATP-G-actin, there is a 

simultaneous depolymerization caused by the loss of ADP-G-actin with a rate constant koff. In 

the last step, the entire system reaches a steady state when the rate of ATP-G-actin addition 

equals the rate of ADP-G-actin loss (steady state in Figure 2.3). In the steady state the 

concentration of ATP-G-actin monomers decreases until it is in equilibrium with F-actin and 

is called the critical concentration, Cc where koff  = Cc kon. The rate of addition of G-actin 

monomers differs at the two ends of the actin filaments. It is faster at the plus end/barbed end 

(k+
on) and slower (ten times slower) at the minus end/pointed end (k

-
on), hence there also exist 

two different Cc for the two ends where Cc


 > Cc
+. When the G-actin monomer concentration 

is in between the Cc
+ and Cc

 G-actin monomers are added at the (+) end and simultaneously 

dissociate from the () end. This phenomenon of addition of G-actin monomers at the (+) 

ends their subsequent travel along the F-actin filament and removal at the () ends resembles 

the action of a 'treadmill'. Thus this process is known as 'actin treadmilling'. At physiological 

salt concentration and RT conditions, the critical concentrations of actin at respective ends are 

Cc
 ≥ 0.5 µM and Cc

+  = 0.12 µM [161].  In platelets, the Cc
 = 1.0 µM and Cc

+  = 0.2 µM 

respectively [13].  

The assembly and disassembly of actin filaments are regulated additionally by accessory 

proteins. Some proteins like the actin-related-protein ARP2 and ARP3 complex (Arp2/3 

complex) stabilize the actin nucleus and thus promote actin filament nucleation. Other 

proteins like profilin catalyze the ADP to ATP exchange and proteins like actin 

depolymerizing factor) (ADF)/cofilin, mediate filament disassembly. All of these proteins are 

present in platelets [13].  
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Figure 2.3: Actin polymerization and depolymerization 

Actin polymerization in vitro proceeds in three sequential steps. ATP-G-actin monomers initially form 

unstable oligomers that in the nucleation phase form stable nuclei (blue; 3-4 oligomers). These then 

rapidly elongate by the addition of more ATP-G-actin monomers at both ends forming F-actin 

filaments (gray). Stable ADP-F-actin filaments (red) form due to ATP hydrolysis. In the last step, 

there is a steady state where the rate of addition of ATP-G-actin monomers equals the rate of loss of 

ADP-G-actin monomers.  

 

2.4.2 Microtubules (MTs) 

Microtubules are the largest of the cytoskeletal filaments and have a diameter of ~25 nm. 

They are rigid, hollow tubes composed of heterodimers that are made from the polymerization 

of  and -tubulin subunits which are both ~50 kDa. MTs play important roles in mitosis, cell 

polarization, cell motility, secretion, intracellular transport and other cellular processes. Like 

actin filaments, MTs also continuously undergo dynamic changes within a cell to bring about 

its functions. A sketch of the MT dynamics is shown in Figure 2.4. The  and -tubulin 

subunits polymerize in a head to tail manner forming a 'protofilament' (Figure 2.4A and B). In 

most mammalian cells, 13 of these protofilaments then associate laterally to form a hollow 

MT cylinder wall which is 25 nm in diameter (Figure 2.4C and cross-section). More 

heterodimers can then add to this existing MT and elongate it. Because of the head-to-tail 
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association of heterodimers, MTs are polar structures and also have different 

polymerization rates at the two ends. In every protofilament, the -tubulin monomer is 

exposed at the faster-growing (+) end and the -tubulin monomer is at the slower-growing () 

end (Figure 2.4C). The major MT nucleator is -tubulin and some other proteins which mimic 

the (+) end of MT and thus allow faster growth. The -tubulin is found in the centrosome of 

mammalian cells and the site is called microtubule organizing center (MTOC). MT 

polymerization is initiated at the centrosome and heterodimers are added mainly at the (+) 

end.  

A phenomenon called 'dynamic instability' occurs during MT dynamics in vitro as well as in 

vivo where the tubulin subunits both, associate and disassociate from the (+) end, resulting in 

MTs alternately growing and shrinking rapidly (Figure 2.4D and E). This process uses the 

energy of GTP hydrolysis [35]. During MT polymerization, heterodimers are bound to two 

GTP molecules and are incorporated (preferentially) at the (+) end of the existing MT (Figure 

2.4D). After incorporation, the GTP bound to the -tubulin hydrolyzes to GDP but the GTP 

bound to the -tubulin does not hydrolyze. There is a difference in the assembly properties of 

GTP--tubulin and GDP--tubulin with GDP--tubulin being more prone to 

depolymerization. Hence if the (+) end of the existing MT becomes capped with such a GDP-

-tubulin cap, then the MT becomes unstable and rapidly starts to depolymerize. This event is 

called 'catastrophe' (Figure 2.4E). Such events can occur when a MT grows so slowly that the 

GTP--tubulin hydrolyzes to GDP--tubulin, even before heterodimers can be added to 

the (+) end, or a catastrophe event can also occur when a MT shrinks rapidly, thus exposing 

the GDP--tubulin. Before the shrinking MT can vanish completely, a 'rescue' event (Figure 

2.4D) can occur where a GTP--tubulin cap is added to the (+) end, before hydrolysis can 

start. This GTP--tubulin cap then acts as a template for further addition and growth of the 

MT. Just like the treadmilling of actin filaments, this dynamic instability of MTs also occurs 

at monomer concentrations that are near the Cc.  
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Figure 2.4: Microtubule polymerization and depolymerization 

A) MT polymerization starts with -tubulinheterodimers associating in a head-to-tail fashion to 

form B) a protofilament. C) Typically, 13 of these protofilaments (one protofilament outlined in black) 

then associate laterally to form a hollow MT that has a diameter of 25 nm. D) During polymerization 

GTP-tubulin is added to the (+) end and existing MTs are elongated. The GTP--tubulin hydrolyses to 

GDP--tubulin which results in the destabilization of the MT and E) its subsequent depolymerization 

which is called as a 'catastrophe'. The catastrophe event is prevented by a 'rescue' event where GTP--

tubulin forms a cap on the (+) end of the MT and starts to elongate it again. This rapid switching 

between growth and shrinkage phases is known as the dynamic instability of MTs. 

 

Just like for actin, there exist many accessory proteins that regulate MT dynamics. These are 

called microtubule associated proteins (MAPs) and they include mainly the motor proteins 

like dynein and kinesin that help to transport cargo along MTs. These motor proteins have two 

motor domains that act like two 'feet' which walk along the MTs and transport the cargos 

[150]. Besides these, MAPs also include proteins that bind only (+) ends like EB1, EB2, EB3, 

proteins that sever or destabilize existing MTs like catastrophin and katanin, crosslinking 

proteins that stabilize MT structures, proteins that regulate nucleation, and proteins that 
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regulate parameters of dynamic instability such as frequencies of catastrophe and rescue 

events and rates of tubulin assembly [145]. Apart from these, post-translational modifications 

(PTMs) which are dynamic, reversible processes also occur on MTs on the heterodimers, 

post polymerization. These refer to alteration of proteins by the addition of some chemical 

groups or proteins to their amino acid residues. The PTMs occurring on MTs include 

tyrosination/detyrosination and acetylation/deacetylation and serve to stabilize the MTs [67]. 

The tubulin tyrosine ligase (TTL) adds a tyrosine residue to the -subunit of MTs but the 

enzyme responsible for removal of tyrosine is not yet identified. Tubulin acetyltransferase   

(-TAT1), adds an acetyl group to the -subunit of MTs and the tubulin histone deacetylase 6 

(HDAC6) removes the acetyl group. These PTMs are associated with the stability of MTs, 

where newly polymerizing, dynamic MTs are tyrosinated/deacetylated and stable, long-lived 

MTs are detyrosinated/acetylated [67, 122].   

Platelets dominantly express the 1-tubulin isoform of -tubulin. Besides that platelets also 

express the plus-end MT assembly proteins EB-1 and EB-3 and the MT motors dynein and 

kinesin, as well as the enzymes like HDAC6 that are responsible for MT PTMs [10, 36, 94, 

123].  

2.5 Cytoskeleton of platelets in resting state 

As has been discussed before, disc-shaped platelets that are released into the bloodstream 

from the ends of proplatelets circulate in humans for 7-10 days. The platelets can vary in size 

and in their granular contents. However, the structure of their internal cytoskeleton is very 

much consistent. This cytoskeleton helps to maintain the discoid shape of the platelets and 

also maintains their integrity, especially since they encounter high shear forces generated by 

blood flow [94]. The internal cytoskeleton of platelets in their resting state, in order of their 

occurrence from the plasma membrane towards to the inner side, is described in this section 

and a sketch of the cytoskeleton is shown in Figure 2.5. 

2.5.1 Glycoprotein receptors 

As has been discussed in 2.3, the plasma membrane of platelets has many glycoprotein-rich 

transmembrane receptors which mainly include the IIb3 integrins (indicated in Figure 2.5 

by magenta color) which are the most abundant glycoproteins on the platelet surface and the 

GP-Ib-IX-V complex. Resting platelets contain about 80,000 copies of the IIb3 integrins on 
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their surfaces [135, 160]. In response to a stimulus for e.g. a vascular injury, these receptors 

help the platelets to adhere to the ECM at the site of injury. In resting platelets, the integrins 

are in a low-affinity state and have a bent conformation which prevents them from binding to 

extracellular ligands. However, once the platelets are activated by a stimulus, the integrins 

switch to the high-affinity state by unbending and change their conformation making it easier 

to bind to the ligands [94]. 

2.5.2 The spectrin cortex 

The first structure beneath the platelet plasma membrane is a spectrin-based cytoskeleton 

(indicated in Figure 2.5 by amber color). The spectrin strands assemble in two-dimension and 

interconnect to each other at their ends by binding to actin filaments. There is an actin-binding 

site at each molecular end of the spectrin molecule. The RBCs also have a spectrin 

cytoskeleton which has been studied in great details. Under an electron microscope, the 

spectrin strands in RBCs are seen to be heterotetramers which are composed of head-to-head 

aggregates of  chains [94]. The subunit chains associate laterally to form heterodimers 

which in turn associate to form the heterotetramers. There is an actin-binding site at the amino 

terminus of the ß subunit of each heterodimer. Ankyrin helps to anchor the spectrin strands to 

the plasma membrane. In platelets, spectrin is highly expressed in MKs just before they start 

to make the proplatelets and it has been recently shown that the assembly of spectrin tetramers 

are essential for MK maturation, proplatelet extension and also in the maintenance of the 

'barbell-shapes' of proplatelets [109].  

2.5.3 The acto-myosin cortex and the cytoplasmic actin network 

Underlying the spectrin is an actin cortex that too supports the platelet membrane skeleton and 

is both, directly and indirectly, connected to the spectrin cortex. Actin is the most abundant 

protein in platelets with a concentration of 0.55 mM, which approximately equals to 2 × 106 

copies per platelet. In the resting platelet, ~ 40% of the actin is in the form of filaments i.e. F-

actin. About 800,000 actin molecules assemble into 2000-5000 actin filaments that span the 

cytoskeleton of the resting platelet [13, 94]. The rest of the actin (~ 60%) is in the form of 

monomeric globular actin i.e. G-actin [47]. Also, platelets express high concentrations of actin 

cross-linking proteins such as filamin and -actinin. Electron microscopy studies have 

described that the actin cytoskeleton of resting platelets resembles the structure of a spoked 

wheel [56]. At the rim of this wheel, is a two-dimensional spectrin-actin network where the 
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two spectrin strands interconnect with each other via long actin filaments. These filaments 

originate from a highly crosslinked three-dimensional actin filament core in the cytoplasm 

that forms the hub of this wheel (indicated in Figure 2.5 by red color). Filamin connections 

from the sides of actin filaments connect with the cytoplasmic tails of the GP-Ib-IX-V 

receptors and hold the membrane skeleton in compression in between the cytoplasmic actin 

and the plasma membrane. Apart from actin, platelets also have non-muscle myosin IIA. The 

actin filaments are polarized structures and are decorated with myosin heads whose 

stereospecific binding defines this polarity thus allowing the actin barbed ends and pointed 

ends to be distinguished [94]. It is believed that the presence of myosin at the membrane 

skeleton keeps it in a taut state by maintaining contractile tension on the actin filaments which 

are connected to the GP-Ib-IX-V receptors [56].  

Apart from the physical constraints provided by the internal cytoskeleton to maintain the 

platelet discoid shape, there are also some biochemical constraints that prevent the platelets 

from polymerizing the G-actin and changing their shape. These include proteins like profilin 

and thymosin ß4 that sequester G-actin and lower free monomer concentrations.  Furthermore 

monomer addition to the barbed ends of actin filaments is prevented by proteins like gelsolin 

and capZ which cap these ends. Additionally, the stable actin filaments are continuously 

undergoing treadmilling (as explained in section 2.4.1) which keeps the lengths of the 

filaments constant. The protein profilin, apart from sequestering monomers, helps in 

maintaining this treadmilling, as it catalyzes the exchange of ADP-G-actin to the ATP-G-

actin, the form that can polymerize. However, to ensure that not all ADP-G-actin is 

exchanged, thymosin ß4 binds to ADP-G-actin and prevents the nucleotide exchange [25]. 

The F/actin filaments are further stabilized along their lengths by proteins like vasoactive-

stimulated phosphoprotein (VASP), which prevents actin depolymerization from the () end.  

2.5.4 The MT coil 

As has been discussed before (see section 2.2), the platelets released from MKs contain MT. 

In platelets, there exist several MTs which are organized in a circumferential ring structure 

called the marginal band (MB) which is located just beneath the actin cortex (indicated in 

Figure 2.5 by shades of blue). This 'MB' has also been referred to as circumferential MT coil 

[169] or microtubule (MT) coil [108] or even microtubular (MT) ring structure [36]. It has 

been recently shown that this MB is a bipolar array and consists of multiple MTs that coil 

several times and form a single long-lived, detyrosinated/acetylated (stable) MT and is 
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associated with 8-12 tyrosinated/deacetylated (dynamic) MTs which polymerize in both 

directions around the MB of the resting platelet. The dynamic MTs are required to efficiently 

and quickly change the MB size because platelets reduce in size as they age which in turn 

requires the shrinkage of the MT coil. Platelets do not have a MTOC but instead -tubulin 

within the MB nucleates the MTs [108]. Furthermore, an equilibrium between the MT (+) end 

directed motor protein kinesin and () end directed motor protein dynein keeps the platelet 

MBs in their resting state and the dynein motors anchor the MB to the  acto-myosin cortex 

[122]. The MB of the platelets is important for maintaining their discoid shape (Figure 2.6A) 

as it has been observed that, mice that have 1-tubulin deficient MKs, are affected by platelet 

spherocytosis [64]. In this dissertation, the terms MT coil/ring refer to the MB structure 

described above. 

 

 

Figure 2.5: Sketch of platelet cytoskeleton at rest 

A simplified sketch of the structure of the platelet cytoskeleton at rest is shown. Platelets in the 

resting, quiescent state circulate in the bloodstream and have a discoid shape which is maintained due 

to their internal cytoskeleton. The discoid platelets have a plasma membrane (black) which has 

transmembrane receptors like IIb3 integrins (magenta). Below this is a spectrin cortex (orange) 

that forms the backbone of the cytoskeleton and which is connected to an acto-myosin cortex (short 

red filaments). Together actin and myosin provide tension and hence maintain the shape. Below this 

lies the circumferential MB (blue) that comprises stable and dynamic MTs. The cytoplasm is filled 

with a rigid network of F-actin filaments (long red filaments) that resemble the spokes of a wheel and 

maintain the platelet shape. 
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2.6 Platelet activation, their cytoskeleton and its role  

In the previous sections, the general structure of the platelets circulating in the bloodstream in 

their quiescent state, and also the structure of their cytoskeleton which helps keep them in this 

quiescent state, has been discussed. This section describes briefly the events that occur after 

the platelets encounter a vascular breach and the activation signals that are involved in their 

stimulation, with particular emphasis on the accompanying cytoskeletal changes that happen 

in these stimulated platelets and how these changes aid in the platelets to form a clot and seal 

the vascular breach.  

2.6.1 Initiation of platelet activation and their adhesion  

The platelets circulating in the bloodstream are quiescent but as soon as there is a vascular 

breach and the endothelium is damaged, the underlying basement membrane is exposed which 

contains the platelet agonist proteins collagen and laminin. This is a trigger for the platelets to 

rapidly arrive and adhere and gradually take several actions to seal the breach. Once there is a 

vascular breach, the flowing platelets are captured and instantaneously tethered to the 

underlying collagen via their surface receptors. Additionally, the vWF gets immobilized on 

the collagen surface. The platelets bind directly to collagen through their integrin receptor 

21 or through the binding of the GPIb-IX-V complex to the immobilized vWF [94]. In 

blood vessels where the shear rates are high, these tethering interactions between the receptors 

and platelets are not stable due to which the platelets tend to roll on the collagen or 

immobilized vWF until stable adhesion occurs. So the GPIb-IX-V complex helps in recruiting 

platelets to the site of vascular injury and reduces their velocity so that other receptors can aid 

in adhesion [158]. The binding of GPIb-IX-V complex to vWF further enables the binding of 

the low affinity collagen receptor GPVI to collagen. This in turn activates the integrins 21 

and the IIb3 and they switch from their low affinity to high affinity for their ligands. The 

integrin 21 reinforces its binding to collagen and the integrin IIbbinds to fibrinogen 

and vWF respectively. These integrins which have a high affinity for their ligands also have 

slow dissociation rates. So the integrin activation stabilizes the adhesion of platelets and also 

contributes to further internal signaling which is termed as 'inside-out signaling'. 

Subsequently, these bound ligands promote and accelerate the clustering of these IIb3 

integrins which further triggers more intracellular signaling. This event is termed as 'outside-

in signaling' [62]. It has been recently shown that the head domain of the major cytoskeletal 
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ABP talin, binds to the cytoplasmic domain with high affinity and activates the 

IIbintegrin [21], thus indicating that the integrin activation is linked to the further 

activation of the actin cytoskeleton.  

Apart from these receptors, the signaling events that occur downstream of the PAR receptors 

for thrombin, the P2Y1 and P2Y12 receptors for ADP and the TP receptor for TXA2, are also 

the major drivers of platelet activation [94]. The binding of all these receptors to their 

respective ligands triggers a cascade of internal signals in the platelets. Although these 

cascades are slightly different for each of the receptors, all of them eventually instigate the 

activation of the phospholipase C2 (PLC2). The PLC2 hydrolyzes the phosphatidylinositol-4,5-

biphosphate (PIP2) which is present in the membrane, which then produces diacylglycerol 

(DAG) and the second messenger inositol-1,4,5-triphosphate (IP3) [94]. The DAG activates 

several forms of protein kinase C (PKC) and the IP3 is needed to raise the cytoplasmic Ca2+ 

concentrations which eventually trigger a lot of intracellular signals and pathways [94]. The 

IP3 mediates the release of Ca2+ from the DTS. In resting platelets, the cytoplasmic Ca2+ 

concentration is about 0.1 µM but once the platelets are activated, the Ca2+ levels increase by 

10-fold to greater than 1 µM. Thrombin is one of the most potent agonists that drives this 

increase in Ca2+ levels. [94]. This increase in Ca2+ levels has various effects on platelets which 

include the reorganization of the platelet actin cytoskeleton, platelet secretion and acto-

myosin mediated platelet contraction.  

2.6.2 General structural features of activated platelets 

The above described regulatory signals synergistically stimulate the platelets and in turn 

activate many complex internal signaling cascades in platelets. All of these together contribute 

to bringing about morphological and biochemical changes in the platelets whereby they 

dramatically change their shape from discoid to spherical, remodel their internal cytoskeleton, 

spread and release their granules. All these changes are collectively referred to as 'platelet 

activation'.  

Most of these morphological changes can also occur in platelets when they come in contact 

with foreign surfaces like glass [79, 102, 123] and these changes also occur in platelets that 

are activated in suspension [94]. Such changes in the platelets have been visualized by 

electron microscopy studies (Figure 2.6A and B). In general, when platelets are activated, 

their peripheral MT coil which maintains their discoid shape contracts in the platelet center. 

This contraction is brought about by the actomyosin cytoskeleton. The constriction of both the 
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acto-myosin cytoskeleton and the MT coil drive the platelet granules (like  granules and 

dense bodies) towards the platelet centers in a structure termed as the granulomere [79, 94, 

102]. In the initial stages of activation, the platelets extend numerous filopodia and thin 

hyalomeres (Figure 2.6B). These lamellipodia and the granulomere are separated from the 

ring of cytoskeletal filaments that contracts into the platelet centers [94, 102]. Such 

morphological changes occur in the platelets when their stimulus is weak. If it is strong, the 

granules that have moved into the center are secreted to the platelet exterior surface through 

the channels of the OCS [94]. Furthermore, the MT coil may fragment and get distributed in 

the newly formed filopodia [102].  

 

 

Figure 2.6: Transmission electron microscopy images of glass-adhered platelets 

The TEM images of platelets adhered to glass are shown. A) Discoid platelet, incubated for 5 minutes 

before fixation shows peripheral MTC that stabilizes the discoid shape. Parts of the DTS line the 

margin and the  granules are randomly distributed. B) Activated platelet, incubated for 15 minutes 

before fixation has extended hyalomere. The MTC has contracted into the center and the  granules 

have also moved into the center in the granulomere. The granulomere and hyalomere distinctly appear 

to be separated by this MTC. The openings to the surface-connected OCS are also seen.  

The figure caption information is adapted and the figure is reproduced from Neumüller J, Ellinger A, 

and Wagner T., 2015 originally published in Maaz K (ed) The Transmission Electron Microscope - 

Theory and Applications. InTech http://dx.doi.org/10.5772/60673 [102]. © 2015 (Neumüller et al). 

This chapter is open-access under the Creative Commons Attribution License.  
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The transformation of platelets when they get activated by surfaces has also been imaged by 

differential interference contrast (DIC) microscopy (Figure 2.7). On adherence to glass the 

platelets change their shape from disc to sphere and undergo dramatic morphological 

transformation, spread completely and release their granules [7]. The platelets accomplish 

spreading within 10-12 minutes by first forming pseudopodia which extend and retract and 

then form hyalomeres that extend in between these pseudopodia and also laterally form from 

them. Furthermore, these platelets show granulomere hillocks in their center, during the early 

stages of spreading when pseudopodia form and which are described as being 'dome-shaped' 

[7]. The granules contained within these granulomeres are the dense bodies which can be seen 

with DIC. As these platelets begin to spread, the granulomeres slowly flatten and the dense 

bodies that are clustered inside are released from the granulomere and they leave 'craters' [7] 

at the places in the granulomeres, from where they are released (Figure 2.7-4). The craters are 

suggested to be part of the OCS [7]. After full spreading, the hyalomeres show membrane 

ruffling (Figure 2.7-5) which is reminiscent of the lamellipodia in tissue cells [7]. The 

releasing of granules is referred to as 'exocytosis' or 'degranulation event' and occurs mostly 

after formation of hyalomeres (Figure 2.7-6, 7) when the spreading has advanced but can also 

occur during the entire transformation process. In fully spread platelets, the craters eventually 

disappear, and the granulomeres flatten, sometimes completely, and within 30 minutes (Figure 

2.7-8, 9), most platelets have exocytosed as much as they can [7].  It has also been suggested 

that platelets activated by contact with glass may show only one exocytosis event that will go 

on during their entire morphological transformation, unlike several events shown by 

chemically activated platelets [7]. The terms pseudopodia and hyalomere are synonymous 

with the terms filopodia and lamellipodia [7, 127]. This platelet shape change and their 

transformation to a flat form, with the extension of filopodia, flattening via the lamellipodia 

and the squeezing of their granules into the center gives them the appearance of a fried-egg 

and these morphological changes are a result of the remodeling of their cytoskeleton [94]. In 

fact, ultrastructural studies have shown that these platelet protrusions contain F-actin [7, 173]. 

The platelet shape change is important for their ability to firmly attach to the ECM, and to 

each other in a platelet plug and also efficiently secrete their granular contents [106]. The 

platelets can spread rapidly and increase their surface area up to 420% [94]. This newly 

expanded membrane material is obtained by pulling out membrane material from within the 

invaginations of the OCS. The wrinkled surface (of the discoid platelet, described in section 

2.3) too serves as an additional reservoir that contribute to the overall, 4-fold platelet plasma 

membrane expansion during their spreading [94, 166]. 
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Figure 2.7: Differential interference contrast (DIC) microscopy of glass-adhered platelets  

The DIC image of platelets in different spreading stages during their morphological transformation is 

shown. The numbering is in order of the spreading sequence seen in these platelets. 1) Platelet is not 

properly attached. 2) This platelet is in the late pseuodpodial stage and is beginning to spread. It 

shows the granulomere hillock (H). 3) Aggregate of platelets which are poorly attached. 4) This 

platelet is in the intermediate spreading stage and shows the hillock (H) granulomere which also 

shows a crater (Cr) formed presumably due to the release of dense bodies. 5) Another platelet 

showing the hillock with its hyalomere showing ruffles (R). 6 and 7) These platelets have flattened 

and so have their granulomeres, which have exocytosed particles (P) i.e. dense bodies (according to 

[7]), and the spaces where these particles were before show craters (Cr). 8 and 9) These are fully 

flattened platelets that have finished spreading.  

The figure is adapted and the information in the caption is reproduced with permission from Allen 

RD, Zacharski LR, Widirstky ST, et al., 1979 originally published in The Journal of Cell Biology 

http://dx.doi.org/ 10.1083/jcb.83.1.126 [7]. © 1979 Rockefeller University Press, License number- 

4003211252475, Licensed content publisher- Rockefeller University Press. 

 

 

http://dx.doi.org/10.1083/jcb.201304054
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The platelet activation and the subsequent events of shape change, spreading and granule 

release described above, can occur in response to a number of activation stimuli like adhesion 

to the ECM, release of soluble agonists or even by shear stress when passing through a blood 

vessel that is stenosed [61, 122]. The platelets only spread when they adhere to a surface. 

However, the platelet shape change and granule release can also occur when platelets are 

activated in suspension [122]. Furthermore, the platelets can be transiently activated (where 

they only undergo transition from discoid shape to spherical shape) or can be irreversibly 

activated (where they release their granular contents) and this depends on the strength of the 

activation stimulus [122]. 

2.6.3 Actin cytoskeletal reorganization  

As has been discussed in the previous sections, the concerted activation of the receptors via 

the binding of their agonists activate intracellular signaling pathways in platelets, which bring 

about various changes in their structure, and allow the platelets to perform all those functions 

that are required to form and compact platelet plugs. Particularly the agonists thrombin, ADP 

and TXA2, activate the GPCRs which couple to many heterotrimeric G-proteins that mediate 

signaling pathways and bring about complete platelet activation. These G-proteins include 

Gq/G11 family, G12/G13 family and the Gi family. Through their respective receptors, the 

platelet agonists like ADP activate the Gq and Gi, whereas the TXA2 and thrombin mainly 

activate the Gq and G12/G13. These G-proteins are involved in activating signal transduction 

pathways. The Gq/G11 family of G-proteins activates PLC2 that, as explained above, forms IP3 

and DAG that eventually leads to increase in cytoplasmic levels of Ca2+ and the activation of 

PKC. The G12/G13 family activates the Rho family of GTPases which are known to regulate 

many aspects of actin dynamics in cells [18]. These primarily include the subfamilies Cdc42, 

Rac1 and RhoA which affect the formation of filopodia, lamellipodia and stress fibers 

respectively. Platelets mainly express the G-proteins Gq and G12/G13 [106] so when the 

GPCRs are activated, there is activation of PLC2 with an increase in Ca2+ levels and also the 

activation of the Rho family of GTPases, which in turn leads to remodeling of the platelet 

actin cytoskeleton.  

The first set of changes that occur rapidly in activated platelets is morphological changes as 

described in the previous section. The circumferential MT coil of platelets starts to 

depolymerize, due to which the platelets change their discoid shape and become spherical and 

eventually start to extend the F-actin-rich filopodia and spread (if adhered to a surface) and 
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flatten by extending F-actin-rich lamellipodia. Besides these structures, spread platelets also 

show F-actin-rich stress fiber-like structures which are associated with myosin [148]. The MT 

coil of spread platelets appears compressed in their center [94]. The formation of all these 

actin-rich structures occurs by actin polymerization, during the reorganization of the actin 

cytoskeleton in platelets. The molecular aspects of these changes taking place in the actin 

cytoskeleton are discussed first followed by the changes in the MT cytoskeleton in the next 

section 2.6.4. 

The reorganization of the platelet actin cytoskeleton is mediated by the proteins that regulate 

actin dynamics [94]. Before the platelets rapidly burst out their F-actin rich protrusions, they 

first undergo 'rounding' where they change their shape from discoid to spherical. This 

rounding depends on the depolymerization (disassembly) of the existing F-actin filaments that 

have hitherto kept the platelets in the resting state (see section 2.5.3). This depolymerization is 

brought about by the protein gelsolin which is present in abundance (5 µM) in platelets [13]. 

Gelsolin severes the existing F-actin filaments in the presence of Ca2+ and then binds to the 

(+) ends of the filaments to prevent elongation. Another protein, cofilin/ADF synergistically 

acts together with gelsolin to aid in the depolymerization [13]. Thus the connections between 

these F/actin filaments present in the core and the membrane are disassembled. Additionally, 

myosin II is also activated and it is speculated that the now severed F/actin filaments in the 

core, by the contractile action of myosin II, form a microfilamentous shell/ring in the central 

region of the platelet which also centralizes the platelet granules, as they start to spread [13, 

141]. The disassembly of the F-actin filaments during the rounding step, thus breaks down the 

rigid cytoskeleton, and is now more open to allowing new F-actin protrusions and structures 

to be formed by distortion of the platelet membrane. The disassembly also results in the 

release of G-actin monomers from () ends of filaments. Furthermore, the affinity of the 

monomer sequestering proteins like thymosin β4 is lost. All of this synergistically leads to an 

increase in the concentration of G-actin monomers.  

The abundant G-actin monomers generated during the rounding step, then start to polymerize 

into new F-actin filaments which are extruded in the form of the platelet actin-rich structures- 

the filopodia and lamellipodia. This actin filament polymerization (assembly) process, which 

provides the protrusive force for spreading the platelets, is driven by the generation of (+) 

ends. These (+) ends are generated by the uncapping of F-actin filaments that were previously 

severed by gelsolin. Also, the gelsolin that is bound to the (+) ends is removed by 

phosphoinositide binding [58]. These (+) ends can also be synthesized de novo by the 

activation of the Arp2/3 complex. It has been recently suggested that the Arp2/3 complex is 
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responsible for forming new nucleation sites that function just like the (+) ends [13, 82]. In 

platelets, the Arp2/3 complex is expressed abundantly, with concentrations ranging between 

2-10 µM. In the resting platelets, about 25-30% of this complex is bound to the cytoskeleton. 

When platelets are activated, these levels increase to 70-80% and the complex is mainly 

concentrated at the plasma membrane of platelets, where new F-actin assembly occurs [58, 

94]. There exist upstream proteins that regulate this presence of the Arp2/3 complex at the 

periphery and also activate its nucleation activity. These include the proteins cortactin and the 

family members of the Wiskott-Aldrich syndrome protein (WASp) [58].   

So actin polymerization and assembly of the F-actin filaments proceeds from these (+) ends 

(as explained in section 2.4.1) and there is a doubling of the F-actin content in platelets. The 

different F-actin rich structures formed during platelet spreading and actin reorganization are 

explained below and a sketch is shown in Figure 2.8. 

 

1) Filopodia: 

Filopodia are thin (0.1-0.3 µm), long, finger-like membrane protrusions that contain tightly 

arranged parallel bundles F-actin filaments [89]. The tight F-actin bundles are maintained by 

the cross-linking ABP, fascin. The F-actin filaments are in turn linked to the plasma 

membrane by the ERM (ezrin, radixin, moesin) proteins [100]. It has been shown that the 

subfamily Cdc42 of the Rho family of GTPases when activated, causes the growth of 

filopodia in fibroblasts [103] and the neuronal-WASp (N-WASp) further mediates this 

signaling from Cdc42 to the Arp2/3 complex [26]. Platelets are known to express Cdc42 [112] 

so it seems that the N-WASp-Cdc42 pathway occurs in platelets. However, WASp -/- 

platelets still show the formation of filopodia [41] which suggests that there may be 

alternative mechanisms by which filopodia are formed. Indeed, it has been recently shown in 

neuronal cells that the smaller GTPase Rif (RhoF), and the formin mDia1, drive filopodia 

formation independently of Cdc42 and N-WASp [51]. Platelets are known to express both Rif 

and mDia1 [50, 152] which lead to the belief that these proteins may be involved in filopodia 

formation which is independent of Cdc42. Formins are localized at the tips of filopodia and 

may directly form linear F-actin filaments there [93]. Both these pathways ultimately bring 

about actin polymerization which in turn leads to filopodia formation (Figure 2.8A). Platelet 

filopodia are formed during the early activation stages of the platelets and extend from within 

the platelet interior and are additionally associated with the IIb3 integrins  [57, 60]. Also, 

platelets are known to express only the moesin ERM protein which links filopodia to the 

membrane [136]. Filopodia play important roles in mechanosensing which include roles in 



STATE OF THE ART 

 

29 

 

wound healing, adhesion to ECM, roles as pathfinders for neuronal cone growth and as 

guiding sources for chemoattractants [89]. Naturally, in platelets, filopodia too are essential 

for mechanosensing as well as adherence to the ECM. They also capture and recruit more 

platelets to the platelet plug.  

 

2) Lamellipodia: 

Lamellipodia are broad but thin (0.1-0.2 µm), F-actin sheet-like structures that protrude from 

the membrane. They are filled with a branched network of F-actin filaments [89] which helps 

in cell spreading and locomotion. Like other motile cells, such as leucocytes, platelets do not 

move and once they adhere to a surface, they start to spread very rapidly by forming 

circumferential lamellipodia [58]. The subfamily Rac of the Rho family of GTPases is 

responsible for lamellipodia formation and it targets Arp2/3 complex whose  activity is 

responsible for the F-actin branching [91]. Since the Arp2/3 complex can associate at both the 

(+) and () ends of F-actin filaments, it can promote actin polymerization in various new 

directions and thus enables the formation of a branched network [94]. It has been shown in 

platelets that formation of both lamellipodia and filopodia require (+) end actin assembly, as 

the addition of the actin polymerization inhibitor cytocholasin B (that binds to (+) ends of 

actin), inhibits the formation of both lamellipodia and filopodia and that Ca2+ is required for 

the formation of lamellipodia but not for the formation of filopodia [57].  Platelets express 

Rac1 which is essential to form lamellipodia and to also maintain the integrity of thrombi 

under flow. Furthermore, platelets express Arp2/3 and it is seen to localize in the rim of 

spread platelets indicating that it is present at the edge of newly formed lamellipodia [92]. In 

platelets, apart from the Arp2/3 complex, the p21-activated kinases (PAKs) are also the 

effectors of Rac1 [9] that bring about actin polymerization which in turn leads to lamellipodia 

formation (Figure 2.8B). The major function of actin-force driven lamellipodia in platelets is 

to allow them to spread rapidly at the site of injury to quickly cover as much damaged area as 

possible.  
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3) Stress fiber-like structures: 

Stress fibers are bundles of F-actin filaments that also contain myosin II and crosslinking 

proteins like α-actinin which together form higher order structures in non-muscle cells. They 

play a major role in mediating cellular contraction and their structures are compare to those of 

the highly ordered actomyosin arrays typically seen in muscle cells [110]. The stress fibers are 

connected to focal adhesions (FAs) which are integrin-based structures that provide dynamic 

links between the ECM and the actin cytoskeleton [104] and exert their contractile force 

through them. These focal adhesions and focal complexes (which are small FAs) which are 

found at the periphery of migrating and spreading cells, are regulated by the GTPases Rho, 

Rac and Cdc42 [172].  There are also various proteins that are found at the FAs and interact 

with them. Such proteins are further linked to other agents that further allow cells to form 

complex signaling pathways that mediate the various cellular behaviors. Examples of such FA 

associated proteins include talin, vinculin, paxillin [172]. The subfamily RhoA of the Rho 

family of GTPases plays a major role in the formation of stress fibers and regulating the 

actomyosin mediated contractility [18]. The RhoA activation is mediated via the Rho-

associated kinase (ROCK)/myosin II pathways and can also mediate stress fiber formation via 

its formin effectors mDia1 and mDia2 [71, 155], all of which are also found in platelets [49, 

113] and (Figure 2.8C). The presence of stress fiber-like structures associated with myosin II 

and α-actinin, in platelets that have spread, has been confirmed by immunoelectron 

microscopy and immunofluorescence studies [148]. It has further been shown that these stress 

fiber-like structures form in platelets after they have completed spreading and focal adhesion 

proteins like vinculin are found at the tips of the F-actin bundles [99]. This may imply that 

platelets require stress fiber-like structures to mediate their contractile forces through these 

FA proteins which may play a role in compacting in the blood clot. It has been shown that the 

integrity of blood clots is weakened in the absence of stress fiber-like structures [19].   

   



STATE OF THE ART 

 

31 

 

 

Figure 2.8: Sketch of filopodia, lamellipodia and stress fiber-like structures 

Sketch of the F-actin rich structures – the filopodia, lamellipodia and stress fiber-like structures (in 

platelets) is shown. The signaling pathways that lead to their formation via actin polymerization are 

also shown. A) The filopodia contain parallel bundles of F-actin filaments that are linked to the plasma 

membrane by ERM proteins, of which platelets express moesin. Filopodia formation occurs via Cdc42 

and Rif (formin) pathways. The formins are present near filopodial tips. B) The lamellipodia contain 

short networks of F-actin which are branched due to the Arp 2/3 complex. Lamellipodia formation 

occurs via Rac1 whose effectors include Arp2/3 and PAK. C) The stress fiber-like structures are high 

order structures of F-actin bundles that are crosslinked by the -actinin and contain myosin II. Their 

formation occurs via RhoA whose effectors include formins and ROCK/myosin II. FAs are found at 

their tips.   

                          .  
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2.6.4 MT reorganization and actomyosin contraction  

Along with reorganizing their actin, the platelets also reorganize their MT cytoskeleton. The 

MT ring1 that maintains the discoid shape of the platelets has to remodel so that the platelets 

can change their shape during activation. In activated platelets which are spherical in shape, a 

smaller MT ring is observed and it is suggested that this ring forms due to the action of 

actomyosin which bring about the contraction of the platelet MB. This process is referred to 

as 'internal contraction' [68, 165]. The mechanisms which lead to this smaller MT ring 

formation have been only recently understood [36].  

The MB of platelets consists of multiple MTs that coil several times and form a single stable 

MT and is associated with 8-12 dynamic MTs that can polymerize in both directions [108]. 

Based on the work in [108], a recent study has shown the that the MTs in the MB of platelets 

elongate and the MB coils during platelet activation. The crosstalk between MT motors and 

the actomyosin cortex play major roles in this process [36]. The degree of MB coiling 

depends on whether the platelets are transiently activated or irreversibly activated [36, 122]. 

The mechanisms that lead to different degrees of MB coiling and the molecular mechanisms 

behind it are shown in Figure 2.9 (reproduced with permission from [36, 122]). During 

transient activation of platelets (i.e. when they change their shape from discoid to spherical 

and this shape change is reversible), if the activation stimulus is weak (indicated in grey in 

Figure 2.9-1A), the MB (which is in the resting state) elongates slightly and the MB ring 

slightly coils by distortion (indicated in blue and green respectively in Figure 2.9-1A). 

However if there is no further stimulation, the slightly coiled MB relaxes back to its resting 

state. If the transient activation stimulus is strong (indicated by blue in Figure 2.9-1B), the 

MB elongates just like before but coils more tightly and the newly polymerizing MTs (i.e. the 

dynamic MTs) present in the MB switch to the opposite end of this coiled structure which 

slightly compresses (indicated in red in Figure 2.9-1B) and deviate from the coiled path to 

form a new flat MB. Thus such platelets simultaneously show an elongated-coiled and flat-

resting MB. The contraction of actomyosin is responsible for the compression of this coiled 

MB structure [36]. When the platelets are irreversibly activated (i.e. granule release occurs), 

the coiled MB is even more strongly compressed (indicated in pink in Figure 2.9-1C) because 

of which the two ends of this coiled structure come closer. The dynamic MTs that deviate 

towards the opposite side thus have to follow a shorter path and they form a smaller MT ring 

in such irreversibly activated platelets [36, 122]. The molecular mechanisms behind this MB 

coiling have also been investigated and based on these findings a model for the MB coiling 

1In this dissertation, the MT coil/ring refers to the MB structure described in section 2.5.4 
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has been proposed (Figure 2.9-2, [36, 122]). The MB is kept in its resting state by the 

antagonistic actions of kinesin and dynein, and dynein is anchored to the acto-myosin cortex. 

When the platelets are activated, the kinesin motor counteractions are inhibited and the dynein 

motors slide the MTs apart, which leads to MB elongation. The dynein motors can move 

whole MTs by attaching via their two motor domains to a MT and walking towards the () 

end. They can also slide anti-parallel MTs which are adjacent to each other by binding their 

two motor domains to each of the MTs and walking to the respective () ends [122, 150]. This 

leads to the three-dimensional twist of the MB probably because there is a weakening of the 

MB bundle and/or because there is limited space available [122] and the platelets undergo the 

discoid to spherical transition (MB elongation/elongated MB in Figure 2.9). For the sliding of 

the MB and inducing its coiling, high forces may be required. It is possible for dynein motors 

alone to exert such high forces due to their ability to establish catch-bonds that strengthen at 

higher load [117].These high forces first of all have to be proportional to the strength of the 

activation stimulus and also have to be sensed by the acto-myosin cortex [122] which, in the 

event of a strong, irreversible activation of the platelets, will contract and lead to the 

compression of the coiled MB (compression/irreversible activation in Figure 2.9, [122]) . 

Myosin II plays a role in this process, as its inhibition strongly reduces internal contraction of 

the MB in activated platelets [36, 68, 134]. Also it has been recently implicated that acto-

myosin themselves can act as force mechanosensors and their force is proportional to the 

substrate rigidity [46, 96]. This may indicate that acto-myosin can sense the forces developed 

by the action of dynein motors and when these forces are strong enough (e.g. during 

irreversible platelet activation), the surrounding environment may become rigid (MB 

elongation and coiling can stiffen the plasma membrane), and this could be the trigger for the 

acto-myosin cortex to contract (acto-myosin contraction in Figure 2.9) in platelets [122]. It 

can be advantageous to have both a sensory and a response function in the same molecule (i.e. 

in myosin IIA in case of platelets), as the actions can be performed a lot faster and can be 

adapted accordingly to the strength of the activation stimulus. These concerted actions of 

acto-myosin and MTs may explain the cytoskeletal crosstalk occurring during platelet 

activation [122].   
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Figure 2.9: MB coils during platelet activation by action of MT motors and actomyosin 

Sketch of the MB coiling and compression in response to activation stimulus, and the molecular 

interactions behind it is shown. The MB elongates, coils and compresses during transient or reversible 

platelet activation. 1A) When stimulus (grey) is weak during transient activation, MB elongates (blue) 

and distorts (green) resulting in spherical shape but relaxes to the resting state when stimulus is not 

sustained. 1B) When stimulus (grey) is strong during transient activation, MB elongates (blue), coils 

and dynamic MTs form new flat MB (red), which becomes the new resting MB, if stimulus is not 

sustained. 1C) When stimulus (grey) is strong during irreversible activation, MB elongates (blue), 

coils and compresses (pink), and dynamic MTs diverge around a shorter path to form smaller MT ring 

(red). 2) The dynein motor anchored to acto-myosin cortex, slides MB, when kinesin counteractions 

are reduced, leading to MB elongation. Due to space constraints, MB coils (transient activation) and 

compresses due to acto-myosin contraction (irreversible activation).  

The figure 1) is adapted and the information in the caption is reproduced with permission from Sadoul 

K., 2015 originally published in Journal of Thrombosis and Haemostasis http://dx.doi.org/ 
10.1111/jth.12819 [122].  © 2014 International Society on Thrombosis and Haemostasis, License 

number- 4003761272552, Licensed content publisher- John Wiley and Sons. The figure 2) is adapted 

and the information in the caption is reproduced with permission from Diagouraga B. Grichine A, 

Fertin A, et al., 2014 originally published in The Journal of Cell Biology  http://dx.doi.org/ 
10.1083/jcb.201306085 [36] . © 2014 Rockfeller University Press, License number- 4003730176881, 

Licensed content publisher- Rockfeller University Press. 

http://dx.doi.org/10.1083/jcb.201304054
http://dx.doi.org/10.1083/jcb.201304054
http://dx.doi.org/10.1083/jcb.201304054
http://dx.doi.org/10.1083/jcb.201304054
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Electron microscopy studies have seen that the platelet granules are concentrated in the center  

and the smaller MT ring surrounds these granules in the center of activating platelets [165]. It 

is suggested that the granules are packed closely for allowing rapid secretion of their contents 

into the exterior of the platelets via their fusion with the plasma membrane of the OCS (see 

section 2.6.2) that spans the entire platelet [143, 157]. The MB coiling and its compression by 

acto-myosin-mediated contraction are suggested to be responsible for this concentration of the 

granules in the center of activating platelets [122] and whether the platelets get transiently 

activated or irreversibly activated is determined by the efficacy of this acto-myosin 

contraction [122]. It has also been suggested that the acto-myosin contractile force generated 

during this contraction accelerates fusion of granules not only with the plasma membrane but 

also with each other, and this force may also help in discharging the granules towards the 

plasma membrane of platelets [107]. These observations are supported by another observation 

that RhoA-deficient platelets, which have reduced acto-myosin abilities, also show defect in 

shape change and  granule release [113].  

In most of these electron microscopy studies where smaller MT rings have been observed, the 

platelets were activated in suspension or were surface-activated only for few seconds to 

minutes Some of these studies where they also looked for platelet shape change and internal 

contraction have also observed MT rings surrounding central organelles, after treatment of 

MTs with stabilizing agent taxol and have seen no obvious difference in the diameters of 

these MT rings between control and taxol treated platelets [165, 167] which leads to the 

speculation that MTs have no apparent role in platelet shape change and internal contraction. 

These studies also suggest no role of MTs in secretion of platelet granules [167]. However, 

immunofluorescence studies on adhered, fixed platelets have shown that granular trafficking 

is strongly regulated by F-actin filaments and MTs during adhesion process of platelets and 

begins with centralization of the granules in the granulomere by F-actin contractile rings. The 

MTs then further reorganize from the granulomere to traffic the granules to the plasma 

membrane of platelets [27, 28] .  
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To summarize, when the platelets are activated and adhere to the ECM, their cytoskeleton is 

dramatically remodeled (Figure 2.10). The platelets adhere to their ECM via their integrins 

which are linked to ABPs like talin and vinculin. The platelets change their discoid shape and 

become spherical due to the sliding of their MT coil by dynein. The MT coil compresses via 

the contractile action of acto-myosin. The platelets extend filopodia and lamellipodia and and 

start to spread. The MT coil along with platelet granules moves towards the platelet center. 

How the cytoskeleton reorganizes during sustained spreading has not been looked at in much 

details. 

 

Figure 2.10: Sketch of activated platelet cytoskeleton  

A simplified sketch of the structure of the platelet cytoskeleton when it is activated is shown. Platelets 

change their shape from discoid to spherical which is brought about by remodeling of their 

cytoskeleton. The platelets attach to the ECM via their integrins like the IIb3 (magenta) which are 

linked to the ABPs talin (violet) and vinculin (green). The circumferential MT1 coil slides by action of 

dynein motors and starts to coil, inducing shape change. In irreversibly activated platelets, the actin 

(red) and myosin (blue) act together to compress the MT coil. The platelets extend filopodia and 

lamellipodia and start to spread and the MT coil starts to move towards the platelet center enclosing 

the platelet granules. 

 

 

 

1In this dissertation, the MT coil/ring refers to the MB structure described in section 2.5.4 
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2.6.5 Platelet secretion, aggregation and clot compaction  

During platelet activation, apart from the platelet shape change, spreading and cytoskeletal 

remodeling, the platelets in a thrombus/clot, recruit more platelets to grow the clot by 

secreting various molecules that signal more platelets to join this clot. These secretory signals 

are in turn amplified, thus recruiting more and more platelets to the clot. The platelets then 

aggregate and eventually compact the clot. These processes are highly complex and dynamic, 

and in vivo all of these processes occur simultaneously.  

 

1) Platelet secretion and role of cytoskeleton: 

When the Ca2+ levels increase during platelet activation, the platelets secrete their granular 

contents towards the platelet exterior [94]. The purpose of this is to generate more activation 

signals in the exterior so as to recruit more platelets to the growing thrombus. As mentioned 

before, granules fuse with the OCS at the platelet center and their contents travel through the 

OCS channels towards the extracellular environment. The contents of these granules include 

adhesive receptors such as P-selectin, IIb3 integrins and GPIb-IX-V complexes that 

increase the efficiency of platelets to adhere to the damaged surface and also allow platelet 

adherence to each other in the later stages of haemostasis [94]. The released granular contents 

also include more ATP, ADP, vWF, Ca2+, coagulant proteins such as fibrinogen and factor V, 

serotonin. Additionally platelets also release TXA2 and thrombin.  

It is suggested that the cytoskeletal contraction that occurs during platelet activation also 

governs the secretion of granules by promoting their interaction with each other and with the 

OCS [45]. It has been demonstrated by electron microscopy and by functional studies that 

platelet -granules are coated with F-actin. Furthermore, actin polymerization facilitates 

release of -granules and the F-actin cytoskeleton differentially regulates the release of        

-granules and dense granules [45, 171]. The role of MTs in granule secretion is uncertain. In 

some studies it has been demonstrated that MTs are involved in granule secretion [14, 138] 

whereas other studies suggest that MTs play no role in secretion or any platelet activation 

processes [167]. However, some recent immunofluorescence studies done on platelets adhered 

and spread on glass have showed that MTs along with actin are involved in granule 

distribution in platelets [27].  
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2) Platelet aggregation and clot compaction: 

A concerted effect of this granular secretion is the amplification of the platelet activation. The 

ADP, TXA2 and thrombin are the major amplifiers of platelet activation [94]. They further 

activate their GPCRs which bring about the intracellular signaling cascades described in the 

previous section. Eventually, platelets start to aggregate at the growing thrombus and many of 

the mechanisms described previously, are important for this process. The platelets attach to 

each other via their filopodia. Furthermore, they degranulate and their secreted adhesive 

receptors such as P-selectin help intracellular adhesion. These signals also accelerate the 

formation of platelet agonists ADP, TXA2 and thrombin. The platelet aggregation can then 

proceeds in two phases [94]. Initially, vWF bonds are established between platelets via the 

GPIb-IX-V complex. These bonds are very tight and help to keep the platelets in close 

proximity to each other which is essential in high shear flow. This in turn allows the IIb3 

integrins to form more stable bonds with its ligand, fibrinogen and also fibronectin bonds are 

formed [94]. As these platelet-fibrinogen aggregates grow, RBCs are incorporated into the 

growing thrombus. It is implied that RBCs also play an active role in platelet haemostasis [8].  

Finally, the platelet clot contracts by the concerted action of actin and myosin and the clots are 

further stabilized by several mechanisms which include thrombin-mediated conversion of 

fibrionogen to fibrin strands which are insoluble. Furthermore, the generation of contractile 

force needs myosin ATPase activity and is also dependent on the ROCK and MLCK mediated 

regulation of actin and myosin [42, 94].   

2.7 Real-time monitoring of the platelet cytoskeleton  

The importance of the platelets and the role of their actin and MT cytoskeleton have been 

highlighted in the previous sections. Because platelets lack a nucleus, they cannot be 

transfected or microinjected with fluorescent labels. Hence, all the information about their 

cytoskeleton that is available so far has been majorly done after chemical fixation of the 

platelets. The traditional approaches used are mainly immunofluorescence studies with 

phalloidin or anti-actin and anti-tubulin antibodies and electron microscopy studies, which 

have been discussed in previous sections. Such studies have certainly contributed immensely 

to the knowledge about the cytoskeletal changes that take place in platelets during their shape 

change. However, the real-time monitoring of cytoskeletal dynamics, without impairing the 

cytoskeleton in any way, is always desirable. Since the focus of this dissertation is actin and 

MT, in this section, some of the recent advances made in the real-time imaging of platelet 
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actin and MT cytoskeletal dynamics and the novel findings from them that have contributed to 

the existing knowledge about the platelet cytoskeleton are discussed briefly. All of these real-

time studies are done with mouse blood platelets, because, as discussed above, human 

platelets lack a nucleus and cannot be transfected. 

2.7.1 Novel advances in monitoring actin cytoskeleton 

Green fluorescent protein (GFP) is one of the most commonly expressed protein in cells. It 

can be fused to the protein of interest and is expressed in cells to monitor the cellular 

localization of that protein. GFP-actin fusion protein has been used to study actin dynamics in 

live cells. Using GFP-actin expressing platelets from mice, a novel actin structure has been 

identified in platelets and is termed the actin nodule [20]. The mouse platelets were allowed to 

spread on fibrinogen-coated coverslips for 30 minutes in the absence of any agonist. Mouse 

platelets, unlike human platelets, do not form broad lamellipodia and stress fibers in absence 

of agonists such as thrombin. It was observed in these platelets that small nodule-like 

structures formed during the early stages of spreading that underwent dynamic movement 

continuously [20]. These actin nodule structures disappeared as soon as thrombin was added 

and when stress fibers formed [20]. Also, the nodules were associated with low RhoA and 

ROCK activity but required actin polymerization. Overall, it is suggested that these actin 

nodules are novel structures that are formed during early platelet spreading stages and drive 

the formation of the lamellipodia and stress fibers that are formed later in the spreading 

process [20]. In a recent development, a 17-amino-acid-peptide called Lifeact has been fused 

with GFP (Lifeact-GFP) and has been shown to be an attractive alternative to GFP-actin. It 

does not interfere with in vitro and in vivo actin dynamics  [119]. Lifeact-GFP expressing 

mice have been generated and it has also been shown that Lifeact-GFP platelets show rapid 

modeling of their actin during spreading on fibrinogen and also that their spreading is not 

affected [120, 129]. Recently, Lifeact-GFP platelets have been used to investigate details 

about the actin nodules [20] by using structured illumination microscopy (SIM) and direct 

stochastic optical reconstruction microscopy (dSTORM) super-resolution microscopy, along 

with live-cell total internal reflection fluorescence (TIRF) microscopy [114]. It was observed 

that the actin nodules comprise of actin-rich structures linked by actin bundles. The nodules 

were enriched in the adhesion proteins, talin and vinculin. Furthermore, actin nodule 

formation was dependent on the WASp protein and the Arp2/3 complex and the nodules were 

required for interaction of platelets with each other [114].  
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2.7.2 Novel advances in monitoring MT cytoskeleton 

A novel technique of expressing a GFP-linked, MT (+) end marker protein, EB3 (EB3-GFP) 

in MKs was recently shown. These MKs produced platelets that expressed this EB3-GFP and 

hence it was possible to monitor the MT dynamics in living platelets [108]. With this novel 

way, it was shown (as discussed in the previous section 2.5.4) that the platelet MB is a 

bipolar-array comprising of a stable MT and 8-12 dynamic MTs which have mixed polarities 

[108]. Besides that, such EB3-GFP expressing platelets were thrombin-activated and the 

dynamics of EB3-GFP were followed for 2 minutes. The platelets changed shape and 

extended filopodia and the MT coil was compressed in the center. It was seen that MT 

polymerization was increased following activation and the coil was fragmented or was totally 

disassembled as individual MTs radiated outwards in the filopodial extensions and appeared 

to polymerize away from the platelet. The EB3-GFP was present at the tip of these filopodia 

[108]. These findings suggest that agonist generated platelet activation controls MT 

nucleation activity [108].  

Recently, the formation of the small MT ring described in section 2.6.4 has been shown in 

platelets that adhered, changed their shape and started to spread on a glass surface [36, 122]. 

The platelets were stained with a MT tracker dye, Tubulin tracker (a taxol based compound 

coupled to a fluorochrome). The discoid platelets showed the resting MB and when they were 

activated with ADP, the platelets changed their shape from discoid to spherical showing a 

coiled MB and later spread, forming the smaller MT ring [36]. The sphere shape to spread 

shape transition as seen from the time-lapse video, was about 6 minutes, after which the 

imaging was not continued [36]. 

2.8 SiR-actin and SiR-tubulin for live F-actin, MT imaging 

In the previous section, recent advances in the real-time monitoring of platelet actin and MT 

cytoskeleton in mouse platelets have been discussed. Many platelet-related disorders such as 

Glanzmann thrombasthenia, Bernard–Soulier syndrome etc. are characterized with impaired 

cytoskeletal reorganization [140]. Hence it is more desirable to study human blood platelets 

considering their high importance from a medical point of view. However, since these 

platelets are anucleate, real-time visualization of their cytoskeleton has hitherto been difficult. 

But now it is possible to visualize the actin and MT cytoskeleton of anucleate cells like human 
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blood platelets in real-time due to the recently introduced fluorogenic cytoskeletal probes, 

SiR-actin and SiR-tubulin [86].  

An ideal fluorophore for live imaging of the cytoskeleton of cells must possess special 

properties. These include being highly fluorogenic, nontoxic and having far-red excitation and 

emission wavelengths, because at such wavelengths there is no phototoxicity to cells and there 

is also no undesirable autofluorescence. Also such a fluorophore should be cell permeable and 

also very specific to the molecule of interest [86, 87]. Such an ideal fluorophore, which is cell 

permeable and has far-red excitation and emission wavelengths has been recently developed 

[87]. This fluorophore, called the silicon-rhodamine (SiR) fluorophore, can be specifically 

coupled to proteins in live cells, using various labeling strategies [87]. The SiR is a silicon-

containing rhodamine derivative which have been shown to be membrane permeable and 

having supreme spectroscopic properties [38].  

The recently introduced SiR-actin and SiR-tubulin probes (Figure 2.11) are based on these 

SiR-derivatives and are conjugated with ligands that are specific to the F-actin and MT 

cytoskeletal proteins [86]. The SiR-actin probe (Figure 2.11A) is conjugated to a desbromo-

desmethyl-jasplakinolide which specifically binds to F-actin in cells. The SiR-tubulin probe 

(Figure 2.11B) is conjugated to docetaxel which specifically binds to MTs. The specialty of 

the SiR-derivatives is that they exist in an equilibrium state between a non-fluorescent 

spirolactone (OFF state) and a fluorescent zwitterion (ON state; Figure 2.11C, [86]). If the 

SiR-derivatives aggregate or unspecifically bind to hydrophobic surfaces, the OFF state is 

favored. However, if these derivatives interact with polar proteins, they switch into the ON 

state (Figure 2.11C, [86]). Moreover, these probes are highly fluorogenic, meaning the 

fluorescence intensity is increased after they bind to their specific proteins (F-actin and MTs).  

It has been shown that the binding of SiR-actin to F-actin in vitro, increased its fluorescence 

intensity by more than 100-fold as compared to binding to BSA (Figure 2.11D and [86]). The 

binding of SiR-tubulin to polymerized tubulin, increased its fluorescence intensity by more 

than 10-fold (Figure 2.11E and [86]). Besides, it has also been shown that these SiR-actin and 

SiR-tubulin probes did not exhibit any substantial cytotoxicity or any undesirable effects on 

the actin and tubulin kinetics in the cells, at the concentrations that were used  [86]. These 

probes were also demonstrated to be permeable to cells such as, human primary dermal 

fibroblasts and RBCs, that are normally difficult to transfect and the probes also showed no 

detectable phototoxicity [86]. Hence these properties of having far-red far-red excitation and 

emission wavelengths, being fluorogenic and highly specific, being minimally cytotoxic and 
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phototoxic and being highly cell permeable, make these SiR-actin and SiR-tubulin probes 

very suitable for live-cell imaging [86]. 

 

Figure 2.11: Properties of the SiR-actin and SiR-tubulin cytoskeletal probes 

The structure of the SiR-actin and SiR-tubulin cytoskeletal probes is shown along with their 

mechanism. A and B) The SiR-actin and SiR-tubulin probes are conjugated to a jasplakinolide 

derivative and docetaxel respectively which specifically bind to F-actin and MTs. The SiR exists in an 

equilibrium state between a mon-fluorescent lactone (OFF) and fluorescent zwitterion (ON). When it 

binds to proteins, in this case F-actin or MTs, the ON state is favored and the probes increase their 

fluorescence intensity. C and D) The increase in the in vitro fluorescence intensity of SiR-actin 

binding to F-actin, is > 100-fold, and that of SiR-tubulin to polymerized tubulin, is > 10-fold, as 

compared to binding to BSA. 

The structures of the probes (A and B) are reproduced with permission from Lukinavičius G, 

Reymond L, D'Este E, et al., 2014 originally published in Nature Methods http://dx.doi.org/ 

10.1038/nmeth.2972 [86].  © 2014, Rights Managed by Nature Publishing Group, License number- 

4002931300284, Licensed content publisher- Nature Publishing Group. The spectral data has been 

plotted from the source data available from [86]. 

http://dx.doi.org/%2010.1038/nmeth.2972
http://dx.doi.org/%2010.1038/nmeth.2972
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Due to these ideal properties, the SiR-actin and SiR-tubulin probes are also suitable for super-

resolution microscopy such as stimulated emission depletion (STED) microscopy. In fact, in 

this same study, using the SiR-tubulin probe, the MT diameters in centrosomes of human 

fibroblast cells, have been imaged at the highest resolution (39 ± 10 nm) so far known in 

living cells [86]. Also, it has been shown using the SiR-actin probe in live rat hippocampal 

neurons that, these neurons have periodic structures along their axons with a periodicity of 

181 ± 20 nm [86]. These values agree with values reported from fixed phalloidin-stained 

neurons, thus highlighting the creditability of these probes for usage in super-resolution 

imaging [86].  

Apart from their use in super-resolution imaging of nucleated cells, these probes have also 

been recently used to image anucleate blood cells and their usage has revealed novel findings. 

It has been shown that the F-actin in RBCs, which was previously assumed to be not dynamic, 

is in fact dynamic, and owing to this dynamic feature, the F-actin of the RBC membrane 

controls its biomechanical properties [52]. A very recent study has used the SiR-tubulin probe 

in platelets, and has modeled the MB coiling during their shape change from discoid to 

sphere, by activating the platelets in suspension, using ADP [37]. It is suggested that, the MB 

coils and shortens, if the cortical tension increases rapidly, whereas, it only shortens but does 

not coil, if there is a slow increase of the cortical tension [37].  

2.9 Open questions 

There are some aspects of the platelet cytoskeleton that are yet to be studied carefully.        

The first open question, as discussed previously, is the inability to view the cytoskeleton of 

human blood platelets in real-time, because of their lack of a nucleus. Now that the SiR-actin 

and SiR-tubulin probes that specifically bind to F-actin and MTs are available, this 

dissertation has addressed this question. Secondly, until now, most of the studies on the 

platelet actin and MT cytoskeleton (both post-fixation and real-time) have concentrated on 

studying the early activation process in platelets and the platelet shape change. In many of 

these studies, the platelets have been activated in suspension. Only few studies have looked at 

the platelet cytoskeleton after their adherence and spreading on foreign surfaces. Out of these, 

most of them are immunofluorescence studies done post-fixation. Also, the real-time 

monitoring of platelet cytoskeleton, described in the previous section 2.7, has mainly 

concentrated on the earlier activation processes taking place in platelets either in suspension 

or in early activation stages. Since it is implied that glass-surface activated platelets seldom 
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spread longer than 30 minutes, most of the platelet cytoskeletal studies have not been carried 

out beyond this half hour and details of the later stages of cytoskeletal reorganization in 

platelets are lacking. The adherence of platelets to the ECM triggers a complex, dynamic 

intracellular process that consists of multiple signaling events that occur both simultaneously 

and sequentially and in which the platelet actin and MT cytoskeleton play major roles. The 

observation that platelet FAs continue to mature at least an hour after initial contact or that 

platelets mediate their clot contraction process after an hour of their activation [13], point 

towards the notion that important cytoskeletal-mediated platelet processes continue for a long 

time. Thus a crucial understanding of these processes is necessary. Hence in this dissertation, 

the real-time, temporal dynamics of the F-actin and MT cytoskeleton, in platelets spreading 

on fibrinogen-coated coverslips, for longer than 1 hour, are explored. 
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3. Materials and Methods 

In this chapter, the materials and methods which include the methods of platelet purification 

and sample preparation, the experimental techniques followed and all materials used for the 

experimental measurements are described in details. Furthermore, all the data analysis steps 

and approaches taken to interpret the experimental results are also described here. All graphs 

were plotted and statistical data analyses were made using the data analysis and graphing 

software, OriginPro 8.5 (OriginLab, Northampton, MA, USA), if not otherwise stated. The 

data analysis for detecting the F-actin filaments of SiR-actin labeled platelets by the Filament 

Sensor program [39], and the linear fitting of platelet spread areas and F-actin total line length 

plots was performed by Dr. Benjamin Eltzner from the Institute for Mathematical Stochastics, 

Georg-August-University, Göttingen. Hence, the description of these data analyses (see 

sections 3.9 and 3.10) were written together with Dr. Eltzner.  

3.1 Fibrinogen coating of coverslips 

Glass coverslips were completely coated with fibrinogen for allowing platelet adherence. For 

this purpose, coverslips (24 × 60 mm or 21 × 26 mm or ⌀ 20 mm, No.1 thickness, VWR, 

Radnor, Pennsylvania, USA) were cleaned thoroughly with isopropanol and dried with a 

stream of nitrogen gas. To facilitate complete and even coating of fibrinogen, the coverslips 

were rendered hydrophilic by activation in a plasma cleaner (Plasma Cleaning, PDC-32 G, 

Harrick Plasma, Ithaca, New York, USA) with the radio frequency (RF) power at medium 

level, for approximately 1.5 minutes. Afterwards, enough labeled fibrinogen solution (Alexa 

Fluor 488 conjugate, Ex/Em: 495/519 nm, at a final concentration 0.1 mg/mL prepared from a 

1.5 mg/ml stock of fibrinogen from human plasma, Invitrogen, Darmstadt, Germany) or 

unlabeled fibrinogen solution (at a final concentration 0.1 mg/mL prepared from a 20 mg/mL 

stock of fibrinogen from human plasma, Invitrogen, Darmstadt, Germany) was put on the 

activated coverslips to completely coat them. The coverslips were then incubated at RT for 1 

hour (in the dark in case of labeled fibrinogen coating) and then washed thrice with  

phosphate buffered saline (PBS; buffer recipe in Appendix A) to remove any unbound 

fibrinogen. Usually, the coated coverslips were prepared one day prior to the experiments and 

were stored in PBS at 4°C until further use. For live platelet imaging experiments, labeled 
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fibrinogen coated coverslips were used. Figure 3.1A shows an epifluorescence image of a 

typical, completely coated fibrinogen coverslip. Sometimes the fibrinogen coating was uneven 

at some places or showed bright spots which were presumably fibrinogen clusters (Figure 

3.1B and C). Such areas were omitted for live platelet imaging (see section 3.5.2).  

 

 

Figure 3.1: Quality of fibrinogen coatings 

Typical epifluorescence images of labeled (Alexa Fluor 488 conjugated) fibrinogen coatings on glass 

coverslips. The areas on the coverslips which were completely coated with fibrinogen like in A) were 

chosen for platelet imaging. The areas that showed B) scratches or uneven fibrinogen coating or C) 

fibrinogen clusters were not chosen for subsequent imaging of platelets. 

3.2 Platelet purification 

Platelet purification from platelet concentrates was performed on the same day of the 

experiments. All the experiments were conducted in agreement with the ethical vote of the 

Ethic Committee of the University of Gottingen, votum 11/11/09.  

Human blood platelets were purified from platelet concentrates obtained from the Department 

of Transfusion Medicine of the University Medical Center, Göttingen. These concentrates 

were prepared from the blood of healthy volunteer donors who had not taken any anti-platelet 

medication at least 7 days prior to donation. Either the apheresis system or buffy coats pooled 

from 4 donors with the same ABO blood group was used to prepare the platelet concentrates. 

For the purpose of experiments, concentrates that were typically 5-6 days old and not valid 

anymore for transfusion, were used. The concentrates however, still contained many viable 

platelets as the platelets have a typical lifespan of 7-10 days [94], and hence were suitable for 

our experimental purposes.  

The platelet concentrates consisted of blood plasma, platelets and some red blood cells but no 

leucocytes. The platelets were purified by separating them from the plasma in order to avoid 

any uncontrollable influences of the plasma on the experiments. The purified platelet solution 
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contained red blood cells. However their number was usually very low as compared to that of 

the platelets and they did not interfere with the experiments. 

The platelet purification steps were carried out in the PIPES-saline-glucose buffer (PSG; 

buffer recipe in Appendix A). After the final purification step, the platelets were re-suspended 

in HEPES-Tyrode-BSA (HT-BSA; buffer recipe in Appendix A) buffer. The HT buffer was 

mixed with BSA (10% BSA in PBS, MACS BSA stock solution, Miltenyi Biotech, Bergisch 

Gladbach, Germany) on the day of the platelet purification. Prior to purification, the PSG and 

HT buffers were prewarmed to 37°C in a CO2 incubator (5% CO2; HeraCell 150, Thermo 

Scientific, Waltham, Massachusetts, USA).  

A sketch of the steps involved is shown in Figure 3.2A. The platelets were extracted from the 

concentrate bag using 2 and 5 mL sterile syringes (BD Discardit™ II, Becton, Dickinson and 

Company, Franklin Lakes, New Jersey, USA) and a sterile needle (Nr.1, ⌀ 0.90 × 40 mm, 100 

Sterican®, B.Braun, Melsungen, Germany). At first, the seal at the top of the platelet 

concentrate bag was broken and the bag was pierced with the needle connected to the 2 mL 

syringe and 2 mL of the platelet concentrate solution was drawn out and discarded. This step 

ensured that any contamination that may have occurred during the opening of the bag would 

not be carried forward in the next purification steps. After this, 4 mL of the platelet 

concentrate solution was gently drawn out from the bag using the same needle and a 5 mL 

syringe. The needle connected to the syringe was discarded and the concentrate solution was 

collected in a tube (15 mL FalconTM, Thermo Scientific, Waltham, Massachusetts, USA) by 

holding the syringe against the wall of the tube and letting the solution run down gently. Then, 

100 μl of prostaglandin E1 (PGE1, ~0.106 mg/mL, Cayman Chemical Company, Ann Arbor, 

Michigan, USA) was added to keep the platelets quiescent and the platelet concentrate 

solution was centrifuged at 480 × g for 20 minutes at 21-22°C (Eppendorf Centrifuge 5810R, 

Eppendorf, Hamburg, Germany). Afterwards, the supernatant was discarded and the cell pellet 

was re-suspended in 4 mL PSG buffer. This addition of PGE1, followed by centrifugation and 

re-suspension of platelet pellet in 4 mL PSG buffer was repeated twice. The PSG and HT 

buffers were always kept warm at 37°C in between the centrifugation steps. After the third 

centrifugation step, the platelet pellet was gently re-suspended in 1 mL HT-BSA buffer 

without addition of PGE1. The tube now containing the purified platelet solution was stored 

on a rotator (MACSmixTM Tube rotator, Miltenyi Biotech; speed 12 rpm) to keep the platelets 

quiescent until further experimental use.  

The final number of platelets in the purified solution was determined using a hematocrit 

capillary (Heparinized Micro-Hematocrit Capillary Tubes, FisherBrand, Thermo Fisher 
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Scientific Inc., Waltham, Massachusetts, USA). The capillary was filled with the purified 

platelet solution to its capacity (indicated by the red line) and its other end was sealed with 

clay sealant to avoid leaking.  The capillary was then carefully wrapped in a piece of tissue 

and was put in a tube and this tube was centrifuged at 1000 × g for 10 minutes at 21-22°C. 

Due to the centrifugation, the platelet pellet was separated from the liquid and the platelet 

number was determined by comparing the height of the liquid and height of the pellet column 

(Figure 3.2 B) using a Reader Card (ZIPocrit, Microhematocrit Centrifuge, LW Scientific, 

Inc., Lawrenceville, Georgia, USA).  

 

 

Figure 3.2: Sketch of platelet purification and counting 

A) 4 mL of platelet concentrate (platelets in blood plasma) were centrifuged and the platelet pellet 

was re-suspended in PSG buffer. After the last centrifugation step, the pellet was re-suspended in 1 

mL HT-BSA buffer and the number of platelets were counted from this purified platelet concentrate. 

B) A hematocrit capillary was filled with the purified platelet concentrate up to its mark and 

centrifuged. The number of platelets was determined by comparing the height of the separated liquid 

and platelet column. In this example, the platelet count was 9 × 109 mL-1.  
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3.3 Platelet cytoskeleton and plasma membrane staining  

3.3.1 Fixed staining for actin, myosin and vinculin 

The platelets were fixed at different time points during their spreading and stained to visualize 

their F-actin reorganization and their distribution of the focal adhesion protein, vinculin and 

the force generating motor protein, myosin. Single phalloidin staining time series to visualize 

only F-actin were performed along with double stainings for either actin-vinculin or actin-

myosin. Prior to fixation, platelets were allowed to spread for 5, 10, 15, 30, 60 and 120 

minutes for each staining series. 

To begin with, glass coverslips were completely coated with unlabeled fibrinogen (⌀ 20 mm) 

to allow platelet adherence, as described in the previous section (section 3.1). All the 

fibrinogen coated coverslips were placed in plastic petri dishes on pieces of parafilm. The 

parafilm aided in keeping the bottom of the coverslips dry which made it easier to pick them 

up at the time of mounting. After coating, the coverslips were briefly washed once with 200 

µL PBS and then twice with 200 µL HT-BSA buffer. All liquid was removed by tilting the 

petri dishes containing the coverslips and sucking out the liquid that ran out with an 

Eppendorf pipette. It is important to note here that there were still some traces of liquid on the 

coverslips after this process but this did not interfere with our experiments. Afterwards, 200 

µL of 10% BSA solution was added to the coverslips to block unspecific binding sites and left 

to react for 30 minutes. Again, all the liquid was removed and immediately 90 µL of purified 

and diluted platelet solution (concentration of 2 × 107 mL-1) was added to the coverslips 

followed immediately by addition of 10 µL of thrombin solution (at a final concentration of   

4 U/mL, thrombin from human plasma, 1 KU, ≥ 2800 NIH units/mg protein, Sigma-Aldrich, 

Munich, Germany) to trigger platelet spreading.  The addition of thrombin was considered as 

time point zero. All the petri dishes containing the coverslips were quickly transferred to the 

37°C CO2 incubator. At defined time intervals (5, 10, 15, 30, 60 or 120 minutes, counted after 

addition of thrombin) the coverslips were removed from the incubator and the platelets were 

fixed and stabilized by adding 100 µL of 3.7% (diluted in PBS) formaldehyde fixative (37% 

stock solution, Merck, Darmstadt, Germany,). The formaldehyde was allowed to react for 20 

minutes after which the coverslips were washed thrice with 200 µL, warm PBS. The fixed 

platelets were then permeabilized by adding 0.5% Triton-X 100 for 10 minutes followed by 

three washing steps again with PBS.  All liquid was removed and then 200 µL of 10% normal 

goat serum (GS, Abcam, Cambridge, United Kingdom) was added to the coverslips to block 
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unspecific binding sites in the platelets and was left to react for 30 minutes. This step was 

followed by washing the coverslips thrice with 200 µL of a mixture of PBS-1% GS. In the 

following steps this PBS-1% GS mixture was always used for washing.  The fixed platelets 

were then incubated for 1 hour at RT with 200 µL of the primary antibodies to either vinculin 

(2 μg/mL, monoclonal antibody from mouse, Abcam, Cambridge, United Kingdom) or      

non-muscle myosin IIA (0.04 μg/mL, monoclonal antibody from rabbit, Abcam, Cambridge, 

United Kingdom). Afterwards, the coverslips were washed thrice with 200 µL PBS-1% GS. 

Then 200 µL of the secondary goat anti-mouse IgG (5 µg/mL, conjugated to Alexa Fluor 488 

Ex/Em: 490/525 nm, Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA) or goat 

anti-rabbit IgG (5 µg/mL, conjugated to Alexa Fluor 488 Ex/Em: 490/525 nm, Abcam, 

Cambridge, United Kingdom) antibodies were immediately added to the coverslips and were 

incubated for 2 hours at RT. At this time, all the coverslips were covered with aluminum foil 

and were incubated in the dark. After the incubation, the coverslips were washed six times 

with 200 µL of a mixture of PBS-1% GS. Here the washing steps were increased to remove 

any traces of unspecific binding. Then, 200 µL of phalloidin solution (0.11 µM, Abberior 

STAR 635- λabs/λfl: 634/654 nm, Abberior GmbH, Göttingen, Germany) was added to the 

coverslips to stain the F-actin and was incubated for 30 minutes. This was followed by the 

final washing steps repeated four times with 200 µL of PBS-1% GS. Appropriate positive 

(addition of only the primary antibody or only the secondary antibodies) and negative controls 

(no addition of any antibodies) were also performed along with the double staining series. 

For single phalloidin staining time series, the steps performed until platelet fixation were same 

as described above. Afterwards the platelets were not permeabilized but were directly 

incubated with the phalloidin solution followed by the usual washing off of the coverslips 

before mounting. 

The coverslips with the fixed and stained platelets were then mounted on microscope slides 

(cut edges, VWR, Radnor, Pennsylvania, USA) using a mounting solution (ProLong Gold 

Antifade Mountant, Thermo Fisher Scientific Inc., Waltham, Massachusetts, USA). 1-2 drops 

of the mounting solution were placed in the center of the slides and the coverslips having the 

fixed and stained platelets were carefully placed upside down on this mounting medium. The 

coverslips were gently tapped to remove any air bubbles. The mounting medium was left to 

harden for 1-2 hours at RT. Afterwards the edges of the coverslips were sealed with nail 

polish.  
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3.3.2 Labeling with SiR-actin and SiR-tubulin, probe characterization 

For the live imaging of the F-actin or MT reorganization in platelets, they were labeled with 

the cytoskeletal probes SiR-actin that specifically binds to F-actin or SiR-tubulin that 

specifically binds to MTs (stock concentration of 1 mM in DMSO, Spirochrome Ltd., Stein 

am Rhein, Switzerland; λabs/λfl: 652/674 nm). These probes were diluted in HT-BSA buffer to 

a final concentration of 6 μM to which the purified platelets were added to a final cell 

concentration of 1.5 × 107 cells mL-1. The platelets were incubated with the cytoskeletal 

probes, on the tube rotator for approximately 30 minutes and the excess SiR-actin/SiR-tubulin 

probe was not washed off prior to the microscope experiments except where indicated.  

The final probe concentration, labeling time and the decision for no need of a washing step 

after the labeling, were determined by carrying out some characterization tests for the probes. 

These characterization tests were done using the SiR-actin probe by looking at the F-actin 

intensity distributions of spreading platelets as described in section 4.2.2.2. Probe 

concentrations of 2 µM and 6 µM and labeling times of 0, 30 and 120 min were tested. During 

washing off the excess probe, a concentration of 6 µM was used and the platelets were 

initially labeled for 15 min and then the cell solution was centrifuged at 480 × g for 5 min 

followed by re-suspension of the cell pellet in 1 mL fresh, probe-free HT-BSA buffer. Thus, 

in total the platelets were in contact with the SiR-actin probe for approximately 30 min. In 

experiments where the probe concentration was changed, the platelets were labeled for 30 

min, too. In all other characterization experiments, except where indicated, the excess probe 

was not washed off. 

3.3.3 Platelet plasma membrane staining 

For some real-time experiments, the platelets were double stained with the SiR-actin probe to 

analyze the F-actin formation and reorganization, as well as with a plasma membrane dye 

CellMask (CM) Green (Ex/Em: 522/535 nm, Thermo Fisher Scientific Inc., Waltham, MA, 

USA), to obtain the platelet areas as they spread. For that purpose, initially, the purified 

platelets with a final concentration of 1.5 × 107 cells/mL were incubated in 1 mL of HT-BSA 

buffer containing 6 μM of the SiR-actin probe for 15 minutes. Immediately afterwards, the 

plasma membrane dye CM Green was added to this platelet solution at a final concentration of 

2.5 μg/mL and incubated with the platelets for 5 minutes at 37 °C in the CO2 incubator. Then, 

PGE1 was added to this double stained platelets solution and the tube containing this solution 
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was centrifuged at 480 × g for 5 min. The resulting pellet was then gently re-suspended in 1 

mL of fresh HT-BSA buffer and immediately brought to the microscope for the live imaging 

experiments. Thus, in total, the platelets were incubated with the SiR-actin probe for 

approximately 30 min and with the CM Green stain for approximately 15 min prior to the 

microscope experiments. 

3.4 Platelet treatment with pharmacological agents 

In order to image the effects of different pharmacological agents on platelet cytoskeleton in 

real-time, the platelets were labeled with either the SiR-actin or SiR-tubulin probes and 

simultaneously treated with these agents. For that purpose, the agents blebbistatin, a           

non-muscle myosin II inhibitor (Sigma Aldrich, Munich, Germany; final concentrations used- 

20 and 50 μM), Y-27632, a Rho-kinase inhibitor (Abcam, Cambridge, UK; final 

concentration used 50 μM),  nocodazole, a MT depolymerizer (Sigma Aldrich, Munich, 

Germany; final concentration 5 μM) and aspirin, a platelet aggregation inhibitor (Bayer, 

Leverkusen, Germany; final concentration 3.33 mM) were diluted to their indicated final 

concentrations in HT-BSA buffer along with either SiR-actin/ SiR-tubulin at a final 

concentration of 6 µM. Platelets were added to this probe-and-agent containing solution at a 

final concentration of  1.5 × 107 cells mL-1 and were incubated with them on the tube rotator 

for approximately 30 minutes before starting the microscope experiments.  

3.5 Microscopy and image acquisition 

3.5.1 Sample preparation during live platelet imaging  

The SiR-actin or SiR-tubulin labeled or CM Green stained platelet samples were prepared at 

the microscope (see section 3.5.2) shortly before starting the live imaging. The fibrinogen- 

coated coverslips were washed thrice with 100 µL warm HT-BSA buffer and were anchored 

in the coverslip holder that was placed inside a preheated, humid, stage top incubator (see 

section 3.5.2 for details). Before adding the platelets, traces of liquid on the coverslips were 

gently blotted out with a piece of tissue. Then 90 µL of the labeled and/or treated platelet 

solution was pipetted onto the coverslips. This step was followed by the addition of 10 µL of 

thrombin solution (final concentration of 4 U/mL, thrombin from human plasma, 1 KU, ≥ 
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2800 NIH units/mg protein, Sigma-Aldrich, Munich, Germany) to trigger the platelet 

spreading. Details of imaging are described in the following sections. 

3.5.2 Bright-field imaging and epifluorescence imaging 

The imaging of both fixed and live platelets was performed using an inverted microscope (IX 

81, Olympus, Hamburg, Germany) with built-in shutters that was equipped for both bright-

field and epifluorescence imaging in various ranges of magnifications (10X - 100X) and was 

also equipped with a digital camera for recording the imaging. The SiR-actin live spreading 

experiments and the fixed-platelet time series (see section 3.3.1) were recorded with a charge-

coupled device (CCD) Retiga 6000 camera (QImaging, Surrey, BC, Canada). Some of the 

SiR-actin and all the SiR-tubulin live experiments with the pharmacological inhibitors were 

recorded with a complementary metal-oxide semiconductor (CMOS) ORCA-Flash 4.0 V2 

C11440-22CU camera (Hamamatsu Photonics Deutschland GmbH, Herrsching am 

Ammersee, Germany).  

For imaging both, the fixed-platelet time series, and the SiR-actin and SiR-tubulin live, time-

lapse movies of platelet spreading and cytoskeletal reorganization, a 60X oil immersion 

objective (UPLSAPO 60XO, numerical aperture NA = 1.35, working distance WD = 0.15 

mm, Olympus, Hamburg, Germany) was used.   

During live imaging of platelets, a stage top incubator (INUG2E-ONICS, Tokai Hit, 

Shizuoka-ken, Japan) was mounted on top of the microscope stage. The incubator and the 

60X objective were preheated to 37°C and the atmosphere inside the incubator was saturated 

with water vapor and 5% CO2, to maintain physiological conditions for the platelets.  

For the SiR-actin/SiR-tubulin time-lapse experiments, the platelet plasma membrane was 

visualized by either bright-field (BF; in case of singly labeled SiR-actin/SiR-tubulin platelets) 

or by epifluorescence in the FITC channel (in case of CM Green stained platelets). The F-

actin/MT reorganization was subsequently visualized by epifluorescence imaging in the Cy5 

channel. In few of the experiments, instead of imaging the platelet plasma membrane, the 

underlying labeled fibrinogen coating was imaged in the FITC channel together with the       

F-actin/MT reorganization in the Cy5 channel.  

A sketch of our microscope setup is shown in Figure 3.3. A halogen lamp (12 V, 100 W, 

Olympus, Hamburg, Germany) provided the illumination source for the bright-field imaging. 

The transmitted light is focused on the platelet samples via a condenser and magnified by the 

objective. For the epifluorescence imaging, the MT20 illumination system with a 150 W 
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xenon arc lamp provided the illumination source (Olympus, Hamburg, Germany). During the 

imaging, a FITC/Cy5- dualband filterset (AHF Analysentechnik, Tübingen, Germany) was 

used which consisted of an excitation filter (470/622 Dualband Exciter H) that allowed for 

excitation of the fluorescently labeled platelet samples around 470 nm (FITC) and a second 

one around 622 nm (Cy5). The excitation light was further filtered by a dichroic mirror/beam 

splitter (497/655 H Dualband Beamsplitter) which selectively allowed light only above 497 

nm and light only above 655 nm to pass through. An emission filter (537/694 Dualband 

Emitter H) selectively allowed the emission from the samples around 537 nm and around 694 

nm. The spectra of the optical filters, the probes, and the dyes used are shown in Figure 3.4. 

The imaging parameters for the SiR-actin/SiR-tubulin-labeled platelet time-lapse movies in 

Cy5, FITC (fibrinogen coating) and BF channels were 50 ms of illumination time, with 

epifluorescence lamp intensity of 23.1% and BF lamp power of 4 V. The imaging parameters 

for the CM Green-stained platelet time-lapse movies in Cy5 (SiR-actin) and FITC (CM 

Green) channels were 36 ms of illumination time, with epifluorescence lamp intensity of 

11.49%. Time-lapse images of both the plasma membrane or fibrinogen coating (in BF or 

FITC channel) and the F-actin/MT (in the Cy5 channel) were simultaneously recorded, with 

an interval of 10 seconds between each frame and for a total time period of 60-120 minutes.  

The imaging parameters for the fixed-platelet time series in Cy5 (F-actin), FITC 

(vinculin/myosin) and BF channels were 100 ms of illumination time, with epifluorescence 

lamp intensity of 100 % and BF lamp power of 4 V.  
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Figure 3.3: Microscope setup with bright-field and epifluorescence imaging 
 

Plasma membrane of platelets was imaged by bright-field microscopy which used a halogen lamp as 

the light source. The fluorescently labeled cytoskeletal components were imaged by epifluorescence 

microscopy which used a xenon arc lamp as the light source and highly selective excitation and 

emission filters. The images were recorded by a digital camera. 
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Figure 3.4: Spectra of the filters and fluorophores used for imaging 

A) Excitation and emission spectra of STAR 635 phalloidin and vinculin/myosin secondary 

antibodies conjugated to Alexa Fluor 488 used for the fixed platelet time series. The spectral raw data 

values were obtained from Abberior and ThermoFisher  [2, 2, 6]. B) Excitation and emission spectra 

of SiR-actin/SiR-tubulin used to visualize the F-actin/MT during live imaging. The spectral raw data 

values were obtained from Spirochrome [4]. C) Excitation and emission spectra of CM Green used to 

visualize platelet plasma membrane during live imaging. The graph was taken from [5] as the spectral 

raw data values were not available.  D) The spectra of the dualband FITC/Cy5 filterset used for the 

platelet experiments to match the excitation and emission wavelengths of all the fluorophores used 

for imaging. The spectral raw data values were obtained from AHF Analysentechnik [3]. 
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3.5.3 Bright-field and epifluorescence image processing 

All time-lapse images and fixed-platelet images recorded with the microscope (see section 

3.5.2) were processed to adjust their brightness and contrast, using ImageJ [130]. The 

fluorescence intensity of the SiR-actin and SiR-tubulin probes increases with increasing F-

actin or MT content. During the initial spreading stages, the platelets had less F-actin/MT 

content which increased as they spread over time. Hence the time-lapse fluorescence images 

were not of equal brightness. Thus, each of the epifluorescence images was individually 

adjusted for their brightness and contrast whereas the brightness and contrast values for all BF 

images (belonging to one single dataset) were adjusted to the same values. For the fixed-

platelet double staining series (see section 3.3.1), the fluorescence images in different 

channels (F-actin in Cy5 and vinculin/myosin in FITC) were overlayed in ImageJ to reveal the 

overlapping regions. 

3.6 Analysis of F-actin fluorescence intensity 

3.6.1 F-actin normalized intensity plots  

The fluorescence time-lapse spreading movies of SiR-actin labeled platelets were obtained as 

described in section 3.5.2. As they spread, these platelets formed and reorganized their F-actin 

higher-order structures. Since the fluorescence intensity of the SiR-actin probe is proportional 

to the amount of F-actin, increasing fluorescence intensities were seen in the epifluorescence 

(Cy5) channel, as the platelets spread. These intensity increases were analyzed by plotting 

profiles of normalized fluorescence intensities (I) of SiR-actin labeled platelets as they spread 

over time.  

For this purpose, only those platelets from the time-lapse movies were chosen, that were 

isolated, and had shown full spreading with stress fiber-like structure formation, at the end of 

the time-lapse movies. The normalized fluorescence intensities in each image of the 

fluorescence stack were obtained by using an in-house MATLAB script (MATLAB R2009b, 

The MathWorks, Inc., Natrick, MA, USA; see Appendix B). Firstly, the script summed up all 

the individual images in the fluorescence stack giving an average image. This average image 

was then used to manually draw a region of interest (ROI) as close as possible to the average 

fluorescent platelet. The intensity values were then calculated for all the individual images 

within this single ROI and these values were normalized by the pixel number in the ROI 
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(Figure 3.5) and the normalized F-actin intensity curves were plotted. Sometimes, these         

F-actin intensity curves showed spikes in the normalized intensity values. These spikes came 

from SiR-actin labeled platelets that floated over or nearby the platelet of interest, during the 

time-lapse movie. Hence, such time-lapse movies were carefully looked at, and the 

normalized intensity data in the frames where SiR-actin labeled platelets interfered and 

increased the normalized intensity values, was not taken into consideration (e.g. gap in the 

curve in Figure 3.5C refers to such missing data points).  

 

Figure 3.5: Plotting normalized F-actin intensities of SiR-actin labeled platelets 

A) Individual images in the fluorescence images stack of SiR-actin labeled platelets were summed up 

to give an average image. B) This image was used to manually draw a ROI and C) normalized 

intensities were calculated and plotted. The gap seen in the curve comes from missing data points (as 

explained above).  

 

3.6.2 Histogram analysis of F-actin normalized intensities 

The normalized F-actin intensity profiles were plotted for both untreated and SiR-actin 

labeled platelets treated with pharmacological agents (see section 3.4). To better compare the 

the intensity profiles of untreated and treated platelets, a histogram distribution of the 

normalized F-actin intensity values (I) was plotted at three different time points of platelet 

spreading. The time points chosen were 5, 20 and 60 minutes.  The bin width h, of the 

histograms was adjusted individually for each experimental dataset and was determined as h = 

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

√𝑛
  [95] where, n is the total number of values and Imax and Imin are the maximum and 

minimum intensity values in the data series. The relative frequencies were calculated using 

OriginPro 8.5.  



MATERIALS & METHODS 

 

59 

 

3.7 Platelet spread area determination 

The plasma membrane of platelets was stained with CM Green dye (see section 3.3.3) to 

determine their spread areas over time. Fluorescence time-lapse spreading images were 

obtained as described in section 3.5.2. Only single, isolated platelets were chosen for analysis. 

The parameters mentioned below are given in pixels, where 1 pixel equals 0.109 µm.  

In the first step, the plasma membrane contour of the platelet in each image of the 

fluorescence stack was detected by an in-house MATLAB script [22, 125]. The script first 

applied a Wiener filter (wiener2 function using neighborhoods of size 8 × 8 pixels) which 

reduced the background noise in the images. Then, the script used a canny edge detection 

algorithm to detect the cell edges. The algorithm computes a gradient of an image and then 

finds the edges by looking for local maxima in the magnitude of the gradients. It also employs 

two thresholds to detect both strong and weak edges including those weak edges that are 

connected to the strong ones [22]. This feature of the algorithm is useful for the purpose of 

our experiments, as the staining of the plasma membrane may differ between individual 

platelets or may not necessarily be uniform over an entire platelet. For our experiments, these 

low and high thresholds were set to 0.08 and 0.18 pixels, respectively. In the second step, the 

automatically detected contours of the platelet by the canny algorithm, were overlayed with 

the original fluorescence image stack in ImageJ [130] in order to ensure that the detected 

contours were consistent with the platelet contours. In a few instances, some parts of the 

platelet were not detected by the algorithm. Such parts were normally the filopodia or certain 

thin areas of the platelet that showed low fluorescence intensities and thus shallower gradients 

which were difficult to detect. Such non-detected contours were traced manually, by using the 

pencil tool in ImageJ, based on the corresponding fluorescence images. After detecting the 

contours, they were filled manually in ImageJ, using the fill tool, in order to create masks of 

the platelet. A second in-house MATLAB script was then employed to this filled platelet 

images stack, to remove all detected objects other than the platelet itself. The script used a 

threshold of 1 pixel and removed all objects below this size. In the last step, this binarized and 

filled platelet images stack was used to compute the spread area for each time point using 

another in-house MATLAB script that employed the regionprops function. A sketch of the 

steps involved in platelet spread area determination is shown in Figure 3.6. The MATLAB 

scripts used are given in Appendix C.  
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Figure 3.6: Determination of platelet spread area 

A single frame from the fluorescence stack of a CM green stained platelet is shown in this example. A) 

Contours of the platelet were automatically detected by B) a canny edge detection algorithm. To trace 

the non-detected areas (marked in this example in red), C) the original fluorescence images and the 

contour detected images were overlayed and D) the contours were manually traced. E) These masks 

were filled in ImageJ and F) non-filled objects were removed. G) These masks were used to calculate 

the spread areas using the regionprops function.  

3.8 Determination of time point of zero (adhesion) 

Defining the time point 'zero' i.e the time point of platelet adhesion to the fibrinogen-coated 

coverslips was an important consideration in our time-lapse spreading experiments of         

SiR-actin labeled and CM Green stained platelets. The time point 'zero' (tzero) was manually 

determined by careful observation of the time-lapse movies. As described in section 3.5.2, the 

SiR-actin labeled platelets were imaged in the Cy5 channel simultaneously with their plasma 

membrane in the BF channel or with the underlying labeled fibrinogen coating in the FITC 

channel. In the experiments where both the Cy5 and BF time-lapse images were taken, the 

'tzero' was determined by looking at the BF image frames after the platelet came into the field 

of view (FOV), and the frame in which the platelet extended out a filopodium and anchored 

itself to the underlying fibrinogen coating, was considered as the 'tzero' of adhesion (see Figure 
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3.7A). This time point zero determination approach was prone to less error as it was quite 

easy to see the platelets extending their first filopodium, in the BF channel. A noteworthy 

observation that must be taken into account here is that sometimes the platelets, after 

anchoring themselves via a filopodium, did not immediately spread, but instead moved up and 

down for a few seconds forming more filopodia and then continued to spread in a fried-egg-

like manner.  

In the experiments where only the Cy5 time-lapse images were taken, the time point 'zero' 

determination of the platelets was slightly tricky as in the initial frames the platelets extended 

only a single filopodium, or few, thin filopodia, which contained less SiR-actin labeled 

material and hence showed lower fluorescence intensities, making it difficult to see these 

filopodia. In these cases, the Cy5 image frames after the platelet came into the FOV, were 

individually adjusted for their brightness and contrast and carefully observed, and the ' tzero' 

was determined as that 'frame' where the platelet movement slowed down and it's fluorescence 

intensity appeared 'brighter' than that in the previous frame indicating that it had adhered (see 

Figure 3.7B).  This 'frame zero' was generally a few seconds before the platelet had extended 

lamellipodia and had started to spread. This approach was however prone to some error (± 10-

30 seconds) in the 'real' tzero determination because sometimes, although the platelet appeared 

'bright' in that 'tzero' frame, it did not look bright in the next frame. This phenomenon could be 

attributed to the up and down movement of platelets we saw in the BF channel, where they 

first anchored via one filopodium and then moved up and down until they formed enough 

filopodia to adhere firmly and start spreading. It may be possible that when the platelets 

moved upward, they appeared less 'bright'.  

In the experiments where the SiR-actin labeled platelets were double stained with the CM 

Green dye (FITC channel; see section 3.3.3), the 'tzero' was determined by looking at the FITC 

image frames. It was relatively easy to decide the 'tzero frame' because the plasma membrane 

stained platelet, that initially hovered, appeared as a 'bright spot' the moment it adhered to the 

underlying fibrinogen, and initiated spreading in the next frames as seen by its expanding 

plasma membrane (see Figure 3.7C).  
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Figure 3.7: Determination of tzero of SiR-actin labeled platelet adhesion 

The tzero i.e. the time point of adhesion of platelets to the underlying fibrinogen coating was determined 

by observing the BF or epifluorescence time-lapse movies. A) In experiments taken together with BF 

images, the tzero was the frame in which the platelet extended a filopodium (indicated by yellow 

arrow). B) In experiments where only SiR-actin images were taken, determining the tzero was prone to 

error due to the low fluorescence intensity of the images and the bobbing movement of platelets. In 

this example, frames 3 and 4 could have been possible candidates as the platelet appeared brighter in 

these images. But frame 5 was selected as the tzero, because in the next frame the platelet had already 

started to spread (traced outline). C) In experiments taken together with CM Green stained dye in 

FITC channel, the tzero was the frame in which the platelet appeared brighter when it adhered.  
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3.9 F-actin filament detection  

The F-actin filaments formed and assembled by SiR-actin labeled platelets over time were 

detected with a modified version of the Filament Sensor (FS) program [39]. The total line 

(filament) lengths formed over the entire spreading time of these SiR-actin labeled platelets 

were then plotted. The FS is a program developed to detect filaments from fluorescence 

images and is based on a finger print analysis algorithm. It was developed in the research 

group of Professor Stephan Huckemann's from the Institute for Mathematical Stochastics in 

the University of Göttingen. Most of the FS program features have been established by Dr. 

Benjamin Eltzner, a postdoctoral researcher from Prof. Huckemann's group. The complete 

details of the working of the FS program have been recently published [39]. Dr. Eltzner 

carried out the analysis for the detection of the F-actin filaments from our experimental data. 

The fluorescence image stacks of SiR-actin labeled, completely spread platelets were obtained 

as described in section 3.5.2 and only single, isolated platelets were chosen for the analysis. A 

brief description of how the FS program detects the F-actin filaments is given below. The FS 

program was recently modified to detect slightly curved filaments and this modification is 

also described here briefly. A sketch of the steps involved in the detection of F-actin filaments 

is shown in Figure 3.8. 

3.9.1 Pre-processing 

In the first step, the fluorescence images of SiR-actin labeled platelets were pre-processed by 

applying three filters to reduce noise and to enhance linear features. 

1) Firstly, an isotropic Gaussian filter with a standard deviation σ = 1.0 pixel was applied to 

reduce the brightness variations on very short scales which were most likely caused due to 

the noise from the camera (see Figure 3.8A left panel). 

2) Then an 8-neighborhood Laplacian filter was used to sharpen the local features in the 

images by adding a multiple (by a factor L) of the filtered images to the original images 

(see Figure 3.8A middle panel). A range of factors L = 2.0- 4.0 were used for all the 

images.  

3) After applying the Laplacian filter, the bright features of the images could sometimes 

appear grainy. Hence, a directed Gaussian filter (σ = 5.0 pixels) was further applied to 

achieve a more homogeneous brightness along the linear features (see Figure 3.8A right 

panel). The filter determines the Gaussian weighted mean brightness values along pixel 
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lines of different orientations and chooses the maximum value as the new brightness 

value.  

3.9.2 Binarization 

In the second step, the pre-processed images were binarized (Figure 3.8C) by using three 

image processing steps [39], briefly described below. 

1) First, the platelet areas were roughly estimated using a global brightness 'Li' threshold 

[80] and the images were restricted to these areas. 

2) The next step was to define the 'white' and 'black' pixels. For this purpose, for each pixel, 

the brightness of its surroundings was determined by smoothing the pre-processed images 

with a Gaussian filter (σ = 2.0 pixels) and this was compared to the original pre-processed 

images. Then, the 'white' pixels were defined as those that were brighter in the original 

pre-processed images than in the smoothed images, and the rest of the pixels were 

considered as 'black' pixels. 

3) Lastly, to rule out white pixels due to any remaining noise, a directed Gaussian filter (σ = 

4.0 pixels) was applied to the pre-processed images. However, in this case, the σ and the 

average of the brightness values for the different orientations were compared and if the σ 

was below 4.0% of the average, the pixel was switched to black.  

3.9.3 Width map generation 

After the pre-processing and binarization steps, all the white pixels obtained were assigned 

with a width to generate a 'width map' (see Figure 3.8D). The width map is an essential 

preliminary step for the final line (F-actin filament) detection algorithm. For assigning a width 

value to every white pixel, their circular neighborhoods were looked at iteratively [39]. 

During the iteration, the width value was increased successively until a certain condition 

(namely that 95% of the pixels in the neighborhood are white, as explained below) was 

violated. The iteration started with a width value of 1 pixel and a neighborhood diameter of 2 

pixels. Then, the widths were assigned as described briefly below. 

1) Firstly, all the white and black pixels in this neighborhood were counted and if less than 

95% pixels were white, then the iteration stopped. If this was not the case, the width was 

increased to the current neighborhood diameter (e.g. 2 pixels in the first iteration) and then 

the diameter of the neighborhood was increased by 1 pixel (e.g. from to 2 pixels to 3 
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pixels in the first iteration). This iteration was repeated until less than 95% of the pixels in 

the neighborhood were white. 

2) When the iteration stopped, the final width value was given by the diameter of the last 

neighborhood containing at least 95% white pixels. 

3.9.4 Line (filament) detection and total line length plots 

In the last step, the lines (F-actin filaments) were detected by using the line sensor algorithm 

as described in [39]. This algorithm was modified to detect slightly curved lines starting at 

every white pixel as follows. 

1) The algorithm first checked the width map in 120 different directions which were each 3° 

apart. 

2)  Then it calculated the mean width values of all pairs of directions, where the angle 

between the two directions was in the range 180° ± 3°. 

3)  Then, it chose the pair of directions with the largest mean width value and consecutively 

followed both these directions. 

4) When following a direction, the algorithm switched between moving forward by 5 pixels 

and readjusting its direction. After every 5 pixels, the algorithm checked the width map in 

three different directions (shown in different shades of blue in Figure 3.8E) and again 

followed the direction of the largest mean width value (shown in green in Figure 3.8E), 

while disregarding the other two directions. In this way, for every readjustment step, it 

changed its direction by up to 3°, thus piecewise linearly mapping curved lines (orange 

lines in Figure 3.8E and F) giving the final line length values. If the line was curved by 

more than 3° at every 5 pixels, the algorithm did not follow it. The minimal length of lines 

was set to 30 - 40 pixels, depending on the size of the platelet. 

5) If two lines joined at some point to follow the same path, one of these lines was truncated 

at the joining point based on the angle between the orientations of the two lines in the 

overlapping region. If this angle was below 30° (20° or 45° for some datasets), the shorter 

line (or a random line if the two lines are of the same length) was truncated.  

The lengths of all lines detected in each image of the fluorescence stack were summed up and 

these total line lengths were Gaussian smoothed (σ = 10 images) using a self-written Python 

script and then plotted over time (Figure 3.8G).  

A summary of all the parameters used for the pre-processing, binarization and line detection 

steps is shown in Appendix D.  
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Figure 3.8: Steps involved in line (filament) detection by FS program 

An exemplary fluorescence image from a stack of a SiR-actin labeled platelet is shown. The A) 

fluorescence images were B) preprocessed to reduce noise and to enhance linear features. C) The    

pre-processed images were then C) binarized and D) all the white pixels were assigned with a width to 

generate a 'width map' which was used (magnified) E) by the line sensor algorithm to piecewise 

linearly detect lines. The modified algorithm detected slightly curved lines, where it alternated 

between moving ahead by 5 px and then readjusted its direction. After every 5 px it checked the width 

map in three directions (indicated by shades of blue) and followed the direction of the largest mean 

width value (in green) while discarding the other two directions (in red). In this manner, the algorithm 

changed its direction up to 3° for every readjustment step (black arrows), thus piecewise linearly 

mapping curved lines (in orange), to give the final line length. F) These steps were followed for 

detecting all lines and G) the total line lengths were plotted over time. 
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3.10 Piecewise linear model fit 

The platelet area A(t) and total line length plots were fitted with a simple model to determine 

the 'turning time point' (t1) at which the area or the F-actin stress fiber-like network growth 

slowed down. For that, the total line length, when the platelets had adhered but not spread, 

was assumed to be zero. Then, the line length increased rapidly starting at t0 with a slope s0 

and finally at time t1 settled into a phase where it changed only with a small slope s1. For the 

area, the time t0 was always negative, so there was no initial phase of zero area. The model 

was formulated as below: 

 

L(t) =    {

0 for 𝑡 ≤  𝑡0

(𝑡 − 𝑡0)𝑠0 for 𝑡0 <  𝑡 ≤  𝑡1

(𝑡1 − 𝑡0)𝑠0 + (𝑡 − 𝑡1)𝑠1 for 𝑡  > 𝑡1

 (1) 

 

To estimate these parameters, a minimization was performed (here 'argmin' refers to 

minimizing a function, but not taking the minimal value of it but rather the argument 

minimizing the function). 

 
(𝑡̂0, 𝑡̂1, 𝑠̂0, 𝑠̂1)  =  argmin

𝑡0, 𝑡1, 𝑠0, 𝑠1

∑(𝑋(𝑡) − 𝐿(𝑡))
2

𝑇

𝑡=1

 

    

(2) 

where X(t) are the measured values for the platelet area/total line length and T is the number 

of measured time points. To estimate variances of the fitted parameters, bootstrap methods 

were used. For the bootstrap, a parametric model was assumed, where the data were described 

by the random variable  

 X(t) =  L(t) + 𝜎𝜀(t)  (3) 

 

where ε(t) is standard Gaussian white noise and σ is estimated from the fit. Thousand 

bootstrap samples were used. The bootstrap standard deviation for t1 was less than a minute 

for all the analyzed platelets. 

3.11 Spreading status counts and statistics 

The effects of pharmacological agents (see section 3.4) on the spreading of SiR-actin/       

SiR-tubulin labeled platelets was determined by quantifying the relative numbers of 

spread/unspread platelets in experiments, where these platelets were treated with each of these 
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agents, and comparing them with the relative numbers of spread/unspread platelets in 

experiments, where these platelets were left untreated. For this purpose, BF images taken after 

the time-lapse movies (see section 3.5.2) were analyzed to quantify the number of spread and 

unspread platelets from the total number of adhered platelets. For each BF image, the numbers 

of spread and unspread platelets were manually counted. The platelets that showed complete 

lamellipodial spreading with circular, triangular or polygonal morphologies were considered 

as 'spread' whereas those that show rounded morphologies occasionally with filopodia and 

very small lamellipodia were considered as 'unspread'. Platelets lying on the image borders 

and also platelet clusters where individual platelets were hard to distinguish, were not 

considered for counting (see Figure 3.9).  

 

Figure 3.9: Determination of spread and unspread platelets 

The effects of pharmacological agents on the spreading of SiR-actin/SiR-tubulin platelets were 

evaluated by quantifying the relative numbers of spread/unspread platelets after these experiments. 

Platelets were counted manually from the BF images taken after the time-lapse movies. Platelets 

showing flat circular, triangular or polygonal morphologies were considered as 'spread' (indicated by 

green arrows) whereas those that show rounded morphologies occasionally with some filopodia and 

very small lamellipodia were considered as 'unspread' (indicated by blue arrows). Platelets lying on 

the image borders and platelet clusters where individual platelets were not distinguishable were not 

counted (indicated by red boxes). 

 

For every experimental condition, at least three images each, from at least three 'independent' 

datasets were analyzed (here 'independent' datasets refers to experiments performed on three 

different days, using platelets obtained from three different platelet concentrates). The steps 

involved in quantifying these counts and getting the relative numbers is described below for 
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one experimental condition (also see Appendix E). These same set of steps were repeated for 

all the experimental conditions- 

1) The number of spread (Si = S1, S2,…,Sn) and unspread (Ui = U1, U2,…,Un) platelets from 

all images of all datasets were counted, where n refers to the number of datasets. The 

total (T1, T2,…,Tn) number of platelets for each dataset were then the sum of these two 

(T1 = S1 + U1, T2 = S2 + U2…Tn = Sn + Un) and the final number of platelets counted for 

all the datasets were, N = T1 + T2 +…+ Tn. 

2) In the second step, the percentages of spread and unspread platelets for each of the 

datasets were calculated (𝑠̅1, 𝑠̅2,…,𝑠̅n and 𝑈̅1, 𝑈̅2,…,𝑈̅n) and were averaged to give the 

final percentage of spread and unspread platelets for that experimental condition, 𝑠̅ =

 
∑ 𝑠i̅

𝑛
𝑖=1

𝑛
 and 𝑈̅ =  

∑ 𝑈̅i
𝑛
𝑖=1

𝑛
. The standard deviation was also calculated, 𝜎𝑠̅ =  √

∑(𝑠̅i−𝑠̅)2

𝑛−1
 

and these values were then plotted.  

Statistical analysis was performed to determine the significant difference between each 

condition by using an independent two-sample t-test for unequal variances with a p-value      < 

0.05 considered as statistically significant. The manual counts from all experiments and for all 

experimental conditions, and an exemplary dataset showing the statistical significance 

analysis by the two-sample t-test, is shown in Appendix E.  
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4. Results and Discussion  

4.1 The cytoskeleton post-fixation 

As has been discussed in the previous sections, platelets do not have a nucleus, and the usual 

technique for visualizing their cytoskeleton is to fix them and then stain their specific 

cytoskeletal components. In this chapter, the results of these post-fixation approaches done for 

visualizing the platelet cytoskeleton are shown, followed by a short discussion of the results 

with respect to the existing literature. These experiments are done to visualize the distribution 

and reorganization of the F-actin and to also visualize the qualitative distribution of the sites 

of focal adhesion (via vinculin) and force generation (via myosin), as the platelets spread. The 

platelets are fixed after certain time points during their spreading, and stained for their F-actin 

(with phalloidin) and vinculin or non-muscle myosin IIA (with specific antibodies; see section 

3.3.1) and then imaged in the Cy5 and BF channels (see section 3.5.2). The post-fixation 

stainings of F-actin complement the live F-actin imaging in the platelets, which is discussed in 

details in the next chapter. 

4.1.1 Distribution of F-actin only 

The platelets are fixed and stained only with phalloidin at various time points of their 

spreading (5, 10, 15, 30, 60 and 120 minutes) to label their F-actin and the F-actin patterns 

formed during their spreading and imaged. Examples of five different platelets showing the 

most typical F-actin patterns for that particular time point are shown in Figure 4.1.  

In the initial time points of spreading (5-10 minutes), the platelets extend the thin F-actin-rich 

filopodia forming a dendritic shape and then rapidly expand by forming the broad F-actin-rich 

lamellipodia that form in between or extend laterally from the filopodia (e.g. platelet 1 at 5 

minutes and platelet 1 at 10 minutes in Figure 4.1). This expansion is associated with a 

prominent distribution of the F-actin at the cortex and central regions (indicated by the yellow 

arrows in Figure 4.1) of the platelets. Usually, the platelets spread completely within these    

5-10 minutes and show circular, triangular or polygonal morphologies with almost no or very 

few filopodia. Most of the times, the intense F-actin distribution in the central regions appears 
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diffused, although it sometimes appears as a 'ring-like' structure (e.g. platelet 1 and platelet 4 

at 5 minutes in Figure 4.1).  

At the later time points of spreading (10-120 minutes), the F-actin gets reorganized into 

higher order, stress fiber-like structures that span across the entire length of the platelets (10-

120 minutes images in Figure 4.1). These F-actin stress-fiber like structures form bundles that 

are commonly arranged in either ellipsoid (indicated by green arrows in Figure 4.1), triangular 

(indicated by cyan arrows in Figure 4.1) or circular patterns (indicated by orange arrows in 

Figure 4.1). The diffused F-actin distribution in the center gradually diminishes or disappears 

during these later time points of spreading.  

The BF images of these fixed platelets are also carefully looked at and one of the most 

noticeable features is that the F-actin 'ring-like' structures seen in the first 5-15 minutes are 

associated with the platelet granulomeres (see Figure 4.2). The F-actin 'ring-like' structures are 

seen prominently only when the hillock-like granulomeres are present (indicated by yellow 

arrows in BF channel in Figure 4.2). As the platelets spread further (30 minutes and beyond), 

the granulomeres gradually flatten out and are diminished in size (e.g. platelet 1 at 30 minutes 

in Figure 4.2) or no longer visible (e.g. platelet 5 at 30 minutes in Figure 4.2). 

Correspondingly, these F-actin 'ring-like' structures are also no longer noticeable (cyan 

arrows). During this time the F-actin already starts to reorganize into stress-fiber like 

structures (platelets 1 and 5 at 30 minutes in Figure 4.2). 

Another noticeable feature is that although all the platelets at different time points show a 

wide distribution in their final spread sizes (areas), the platelets in the later stages of spreading 

i.e. around 120 minutes appear smaller in size (see Figure 4.1 and Appendix F). These 

platelets also often show the circular arrangement of F-actin stress fiber-like structures.   

In general, during spreading, the platelets efficiently develop and rearrange their F-actin into 

an impressive network of stress-fiber like structures that form distinct patterns on glass.  
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Figure 4.1: F-actin distribution and reorganization post-fixation 

Epifluorescence images of platelets fixed at different time points of their spreading (5-120 minutes) 

and stained for their F-actin. F-actin is distributed in filopodia, lamellipodia, and predominantly in the 

cortex and the central regions in the form of ring-like structures (yellow arrows) in the first 5-10 

minutes of spreading. The ring-like structures gradually disappear as platelets spread and further 

reorganize the F-actin into bundles of stress fiber-like structures that are arranged in ellipsoid (green 

arrows), triangular (cyan arrows) or circular (orange arrows) patterns. 
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Figure 4.2: F-actin ring-like structures are associated with granulomeres 

The F-actin ring like structures formed in the first 5-15 minutes of platelet spreading (yellow arrows 

in Cy5 channel) seem to be associated with the hillock-like granulomeres (yellow arrows in BF 

channel). As the granulomeres flatten out during the later stages of spreading (30 minutes and 

beyond), the F-actin is reorganized into stress fiber-like structures and the F-actin ring like structures 

are almost no longer visible (cyan arrows). 

 

4.1.2 Distribution of F-actin-vinculin or F-actin-myosin 

For visualizing the distribution of vinculin or myosin with respect to F-actin, the platelets 

were fixed and double stained with specific antibodies and phalloidin at various time points of 

their spreading (5, 10, 15, 30, 60 and 120 minutes) and the qualitative distribution patterns of 

these proteins formed during platelet spreading is imaged. Examples of two different platelets 

showing the typical distribution patterns for that particular time point are shown in Figure 4.3 

and Figure 4.4.  
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The F-actin is distributed in the filopodia and lamellipodia and later gets reorganized into the 

stress-fiber like structures (Cy5 channels in Figure 4.3 and Figure 4.4) in the same manner as 

described previously (see section 4.1.1).   

In the initial stages of spreading (5-15 minutes in Figure 4.3), when the platelets have 

expanded via their lamellipodia, the focal adhesion protein vinculin is seen to be distributed 

evenly all over the cytoplasm although the staining signal is more intense at the plasma 

membrane and in the central region where the vinculin is arranged in a ring-like pattern 

(platelets 1 and 2 at 5 minutes and platelet 1 at 10 minutes in Figure 4.3).  Interestingly, these 

vinculin ring-like patterns do not appear to coincide with the F-actin 'ring-like' structures that 

are described previously but rather seem to encircle the granulomere (section 4.1.1 and Figure 

4.1 and Figure 4.2). A look at the BF images in the earlier spreading stages confirms this 

observation (platelet 1 at 10 minutes in Figure 4.5). As the platelets spread further (30 minutes 

and beyond), the vinculin gets distributed all over the cytoplasm but shows a predominantly 

higher signal at the tips of the stress fiber-like structure bundles that the platelets form 

(indicated by cyan arrows in Figure 4.3). At the later time points of spreading (60-120 

minutes) the vinculin is associated with the circular F-actin stress fiber-like structures that the 

platelets form (platelet 2 at 60 minutes, platelets 1 and 2 at 120 minutes in Figure 4.3). 

Over the course of the platelet spreading, the myosin distribution is comparable with that of 

the F-actin, except for its absence in the cortex (5-120 minutes in Figure 4.4). As the platelets 

spread and form filopodia and lamellipodia, the F-actin and myosin are co-distributed in these 

structures. Strikingly, myosin highly coincides with the F-actin 'ring-like' structures seen in 

the first 15 minutes of spreading (indicated by yellow arrows in platelets at 5, 10 and 15 

minutes in Figure 4.4). A closer inspection of the corresponding BF images shows that these 

F-actin-myosin 'ring-like' structures are associated with the platelet granulomeres (platelet 1 at 

10 minutes in Figure 4.5). As the platelets spread further (30-120 minutes) and reorganize into 

bundles of stress fiber-like structures, the myosin distribution too coincides with these 

bundles. During this later stage of spreading, when the granulomeres have flattened out and 

are no longer visible, the F-actin-myosin 'ring-like' structures too are not visible (platelet 1 at 

30 minutes in Figure 4.5).  
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Figure 4.3: Qualitative distribution of F-actin-vinculin post-fixation 

Epifluorescence images of platelets fixed at different time points of their spreading (5-120 minutes) 

and stained for their F-actin (Cy5) and vinculin (FITC). During the course of platelet spreading, the F-

actin is seen in the filopodia, lamellipodia, cortex, and ring-like structures and gradually forms the 

stress-fiber like structures, whereas the vinculin is distributed all over the cytoplasm but shows a 

predominant distribution in the center in a ring-like pattern in the first 5-15 minutes and is later 

predominant at the tips of the bundles of F-actin stress fiber-like structures (indicated by cyan arrows 

and the white areas in the overlayed fluorescence images at time points 30, 60 and 120 minutes). All 

images were taken by Tim Dullweber during his Bachelor thesis. 
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Figure 4.4: Qualitative distribution of F-actin-myosin post-fixation 

Epifluorescence images of platelets fixed at different time points of their spreading (5-120 minutes) 

and stained for their F-actin (Cy5) and myosin (FITC). During the course of platelet spreading, the F-

actin is seen in the filopodia, lamellipodia, cortex, and ring-like structures and gradually forms the 

stress-fiber like structures. The myosin too is associated in all of these structures with the F-actin, 

except in the cortex. Myosin predominantly coincides with the F-actin ring like structures seen in the 

first 5-15 minutes (indicated by yellow arrows) and later coincides with the bundles of F-actin stress 

fiber-like structures that develop at the later time points (white areas in the overlayed fluorescence 

images at time points 30, 60 and 120 minutes). All images were taken by Tim Dullweber during his 

Bachelor thesis. 
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Figure 4.5: Distribution of vinculin and myosin at platelet granulomeres 

Distribution of vinculin (left panel) and myosin (right panel) in the platelet granulomere zone are 

shown with respect to F-actin during the early (top panel, 10 minutes) and later (bottom panel, 30 

minutes) time points of platelet spreading. A) In the early time point, vinculin seems to encircle the 

granulomere (indicated by yellow arrow) and is not associated with the F-actin ring-like structure 

formed by the platelets and shows no defined association at the later time point of spreading when the 

granulomere has flattened. B) In contrast, myosin highly coincides with the F-actin ring-like structure 

(indicated by yellow arrow and white area in overlayed fluorescence image) in the early time point of 

spreading. However, there is no sign of the F-actin-myosin ring-like structure at the later time point 

of spreading when the granulomere has flattened.   

 

In general, during platelet spreading on glass, the sites of focal adhesion (vinculin) are 

distributed all over the platelets with prominent distribution at their centers and at the tips of 

their F-actin bundles, whereas the sites of force generation (myosin) overlap with the sites of 

F-actin distribution, the only exception being the cortical regions.  

4.1.3 Discussion of the results  

Owing to their importance in the wound healing process, the cytoskeletal rearrangements in 

platelets have been studied in detail and since platelets do not have a nucleus, most of these 

studies have been performed after their chemical fixation. Numerous electron microscopy and 

immunofluorescence studies done on the actin cytoskeleton of fixed, glass-surface activated2 

platelets have shown that upon activation, platelets undergo morphological transformation 

from discoid to fried-egg shape. When adhered on protein-coated or non-coated glass 

surfaces, the platelets respond to these surfaces by extensively rearranging their F-actin 

2activation refers to morphological changes occurring in platelets exposed to glass/ foreign surfaces  
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network into filopodia which radiate from the platelet center and contain long actin bundles, 

lamellipodia which consist of short orthogonally arranged actin filaments, and the stress-fiber 

like structures that contain parallel and/or ellipsoidal actin bundles. Further, these platelets 

spread into flat,  polygonal or triangle shapes within 60 minutes [12, 13, 57, 99, 141, 163]. 

Our F-actin stainings, too, show the formation of these typical F-actin structures and also 

show polygonal morphologies after spreading completely within 60 minutes (Figure 4.1, 

Figure 4.3 and Figure 4.4).  

The electron microscopy and immunofluorescence studies have also described the assembly 

of a circular array of F-actin filaments in the center of spreading platelets [12, 57, 57, 141]. In 

[12] it has been referred to as the assembly of a 'contractile ring' which is speculated to also 

contain myosin and is thought to first form during platelet shape change from discoid to 

round, when activated myosin pulls the membrane bound actin filaments into the center [141]. 

It has been observed that this 'contractile ring' encircles the degranulating granules and is most 

prominent during the first 15 minutes of platelet activation on glass [12]. It is also noted that 

the 'contractile ring' is easier to observe when the focal plane is slightly above the surface of 

the coverslip [12]. More immunofluorescence studies on platelets after adhesion have shown 

that these 'contractile rings' bring about the centralization of granules to the platelet 

granulomere zone [27]. Our single F-actin stainings, also show such 'ring-like structures' 

(marked by yellow arrows in Figure 4.1) and from our double F-actin-myosin stainings, it is 

evident that myosin is present in them (marked by yellow arrows in Figure 4.4). Also our BF 

images show that these 'ring-like structures' are associated with the platelet granulomeres 

(Figure 4.2 and Figure 4.5). All the descriptions in the above mentioned studies are consistent 

with our observations, thus implying that the 'ring-like structures' we see are probably the 

'contractile rings'. Since we focus on the surfaces of the fibrinogen-coated coverslips, it is 

possible that the diffused but intensely stained central regions that we see in the early 

spreading stages of the platelets are the 'contractile rings' which are better distinguishable at a 

higher focal plane.  

Immunofluorescence studies have also looked at the distribution of the focal adhesion protein, 

vinculin (also known as an actin binding protein) which forms FA sites by connecting the 

platelet IIb3 integrin to the actin cytoskeletal network [94]. This connection occurs via      

-actinin, which crosslinks F-actin filaments and anchors them to FA sites containing vinculin 

[13, 99, 114, 147]. The general observation in these studies is that in surface-activated, fully 

spread platelets, vinculin is present at the cell membrane and at the terminal points of F-actin 

bundles and serves as a connecting link between them and the ECM [99, 147]. It is speculated 
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in [99] that the accumulation of vinculin at the ends of F-actin bundles can occur due to their 

clustering which may occur when individual actin binding proteins come close to each other 

during stress fiber formation and augment the binding of vinculin molecules to each other. 

Our double F-actin-vinculin stainings, too, show that vinculin is distributed at the plasma 

membrane and the granulomere zone and later on at the tips of F-actin stress fiber-like 

structure bundles (Figure 4.3 and Figure 4.5). A recent immunofluorescence study has looked 

at the distribution of vinculin along with the protein Pdlim7, which is involved in facilitating 

dynamic interactions with the actin cytoskeleton, in platelets that spread on glass for 45 

minutes [156]. Higher resolution SIM images of the distribution of these two proteins reveal 

that in platelets that reach the fully spread stage and form F-actin fibers, the Pdlim7 is present 

at the site of F-actin fibers and vinculin has a diffused distribution over the platelet surface 

with low distribution at the granule area. However, the line scans of fluorescence intensity 

reveal that although the vinculin is distributed evenly, it has higher fluorescence intensity at 

the cortical actin and around the F-actin fibers. The Pdlim7 and vinculin are partially           

co-localized and it is suggested that Pdlim7 possibly crosslinks FA-related proteins like 

vinculin at the sites of F-actin fibers [156]. Our vinculin distribution patterns in the platelet 

spreading stages where F-actin stress fiber-like structures have formed, match the description 

in [156]. It is also seen that during intermediate spreading stages, Pdlim7 is not present at the 

central granule area [156]. Since it is suggested that Pdlim7 colocalizes with vinculin, this 

could explain why we do not see vinculin at the granulomere. Together, all these studies 

imply that during platelet adhesion and early platelet spreading stages, vinculin along with 

other actin binding proteins serve as a scaffold and provide adhesion sites, and at later stages 

of spreading, when platelets form the F-actin stress fiber-like structures, these vinculin FA 

proteins can anchor them to the ECM. It has been suggested that vinculin reinforces the links 

between actin and integrins [97, 114].  

Our observation that the distribution of myosin is comparable with that of the                         

F-actin (Figure 4.5) is consistent with several other studies. Immunofluorescence and 

immunoelectron microscopy studies have shown that myosin associates with F-actin after 

platelets are activated and along with it surrounds the granulomere zone and is also present at 

the same sites as F-actin stress fiber-like structures that are formed later [30, 99, 147, 149].  

Overall, all these immunofluorescence studies on the platelet cytoskeleton imply that during 

platelet spreading, the F-actin, vinculin and myosin of platelets sequentially and 

simultaneously undergo massive rearrangements, which enable the platelets to firmly adhere 

to their ECM and effectively exert their contractile forces through acto-myosin actions. These 
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studies also imply that these cytoskeletal components are functionally and spatially related to 

each other and together interact and contribute to efficiently perform platelet functions. Our 

post-fixation cytoskeletal stainings of these F-actin, vinculin and myosin cytoskeletal 

components of platelets provide an overview of how these interactions occur.  The F-actin 

stainings in particular are useful as they provide a basis for the real-time F-actin dynamics of 

SiR-actin labeled platelets that are described in the next section.  

4.2 Real-time F-actin dynamics  

The post-fixation F-actin staining of platelets discussed in the previous chapter has given a 

broad overview of the F-actin reorganization that takes place in platelets as they spread. With 

the availability of the recently developed SiR-actin probe [86], it is now possible to visualize 

the F-actin dynamics in platelets in real-time. This probe is well suited for the purpose of our 

experiments because it specifically binds only to F-actin and after binding increases its 

fluorescence intensity by100-fold [86]. So the platelets are labeled with this probe and are also 

treated with pharmacological agents (see sections 3.3.2 and 3.4) and their F-actin dynamics 

are visualized (see section 3.5.2) and quantified (see sections 3.6 and 3.9) as they spread on 

fibrinogen-coated glass coverslips. The platelet spreading is triggered by addition of the 

soluble agonist thrombin. In this chapter, the results of these SiR-actin platelet labeling 

experiments are shown, followed by a short discussion of the results with respect to the 

existing literature.  

4.2.1 Direct visualization of platelet F-actin reorganization  

The platelets are labeled with SiR-actin, allowed to spread on fibrinogen-coated coverslips 

and visualized for their F-actin in the Cy5 channel and their plasma membrane in the BF 

channel (as described in section 3.5.2). The time-lapse spreading snapshots of two typical 

SiR-actin labeled platelets imaged in both BF and Cy5 channels are shown in Figure 4.6.  

As soon as the platelets adhere to fibrinogen, they start to change their shape and spread 

rapidly from a rounded to a flat morphology. As seen from the BF time-lapse images (BF 

channels in Figure 4.6A and B and earlier spreading time points for the platelet in Figure 4.6A 

inset), the platelets initially anchor themselves on the underlying fibrinogen-coated coverslips 

by extending the thin, finger-like filopodia (indicated by the magenta arrows in Figure 4.6A 

inset) and within a few seconds start to form the broader lamellipodia that fill up the spaces in 
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between these web-like filopodia or spread out laterally from the filopodia or even form 

directly from the edge of the platelet (indicated by the blue arrows in Figure 4.6A inset). 

During this period, the granulomeres, which are noticeable as the dome-shaped structures 

(indicated by yellow arrow in Figure 4.6), start to move into the center and then gradually 

flatten out. The lamellipodia extend rapidly and the platelets appear to attend their final spread 

areas within minutes. The lamellipodial membranes show a membrane ruffling even after the 

platelets have stopped spreading. The time scale of this entire platelet spreading process, after 

initial contact with fibrinogen-coated glass coverslips ranges between 2-60 minutes, although 

in most cases very rapid spreading (2-5 minutes) is seen. 

The corresponding Cy5 time-lapse images in the initial spreading time points show the 

formation of the F-actin-rich filopodia and lamellipodia (indicated by magenta and blue 

arrows in Figure 4.6). However, the fluorescence intensity is not very high. These platelets 

also show bright F-actin rich fluorescence spots in their centers that correspond to the 

granulomeres seen in the BF channel (indicated by yellow arrows in Figure 4.6). These are 

presumably the contractile rings. As the platelets spread, these bright spots gradually 

disappear when the granulomeres in the BF channel start to flatten out. Although the platelets 

finish their spreading within few minutes (as seen in the BF channel in Figure 4.6), the F-actin 

is seen to reorganize into higher order stress fiber-like structures for long (60-100 minutes) 

and there is an increase in the fluorescence intensities in the Cy5 channel during this time.  

A typical Cy5 snapshot of fully spread platelets taken after the completion of a time-lapse 

movie is shown in Figure 4.7. All the platelets are in different spreading stages as some 

platelets adhere and start to spread at the very beginning or at a very early time point of the 

time-lapse movies, whereas other platelets adhere and spread in the middle or towards the end 

of the movies. However, all these spread platelets form the four typical F-actin structures - the 

filopodia (indicated by magenta arrows), the lamellipodia (indicated by blue arrows), the 

contractile ring (indicated by the yellow arrows) and the stress fiber-like structures (indicated 

by the green arrows). These contractile rings are seen more clearly when the focal plane is 

slightly changed, but otherwise appear as bright spots in the platelet centers which later 

dissolve or are unnoticeable as the spreading progresses. The fully spread platelets show 

circular, triangular or polygonal morphologies and their F-actin stress-fiber like structures are 

seen to form bundles that span across the entire length of the platelets with some prominent 

filaments arranged in triangles or ellipses. These observations are consistent with the F-actin 

patterns seen in the fixed-platelet time series (section 4.1.1).  
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Figure 4.6: Real-time imaging of SiR-actin labeled platelet spreading 

Time-lapse spreading snapshots of a two exemplary SiR-actin labeled platelets (A and B), imaged in 

the BF and Cy5 channels are shown. The earlier time points of spreading from 0-90 seconds, for the 

platelet A), imaged in the BF channel, are shown in the inset. As seen in both BF and Cy5 channels, 

the platelets initially anchor to the underlying fibrinogen and start to spread by extending F-actin-rich 

filopodia (magenta arrows) and further expand by forming the broader F-actin-rich lamellipodia (blue 

arrows) that form in between the filopodia or form laterally from them. At the same time the 

granulomeres (yellow arrows) move to the platelet centers. The platelets finish spreading within few 

minutes, but the F-actin reorganizes into stress-fiber like structures for a longer time and there is an 

increase in the fluorescence intensities in the Cy5 channel over this time period.   
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Figure 4.7: SiR-actin labeled platelets form four F-actin-rich structures while spreading 

A typical snapshot of spread SiR-actin labeled platelets taken after a time-lapse movie is shown. These 

platelets have formed the typical F-actin structures namely the filopodia (magenta arrows), the 

lamellipodia (blue arrows), the contractile rings (yellow arrows) and the stress fiber-like structures. The 

contractile rings are seen more clearly when the focal plane is slightly changed, but otherwise appear as 

bright spots in the platelet centres.  

 

4.2.2 Temporal evolution of F-actin fluorescence intensities  

4.2.2.1 Quantification of F-actin fluorescence intensity increase 

From the time-lapse snapshots of the SiR-actin labeled platelets, it is evident that the 

fluorescence intensities in the epifluorescence channel are increasing (Figure 4.6). This is 

most likely due to the assembly of the F-actin filaments into higher order structures. So to 

analyze these fluorescence intensity increases, the F-actin intensity profiles of normalized 

fluorescence intensities were plotted over time (as described in section 3.6.1) as the SiR-actin 

labeled platelets spread. 

Only fully spread, single platelets that formed the stress fiber-like structures were chosen for 

the analysis. In the first experiments, a SiR-actin probe concentration of 2 and 6 µM was 

chosen for labeling the platelets and the platelets were labeled for 30 minutes without washing 
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off the excess probe, before starting the time-lapse experiments. The normalized F-actin 

intensity curves of platelets labeled with both probe concentrations are shown in Figure 4.8 (A 

for 6 µM and B for 2 µM concentrations). The different colors of the curves stand for group of 

platelets analyzed from datasets that were obtained from independent experimental days. The 

total number of platelets analyzed for that particular concentration is indicated by 'N'. The 

graph in Figure 4.8C shows the types of normalized F-actin intensities profiles typically seen 

for single platelets. The profiles reveal at least two but sometimes four stages - a rapid initial 

steep rise in the normalized fluorescence intensities, followed by a linear increase that 

sometimes reaches a plateau and then at times starts to decrease. These curves are all plotted 

starting from the first point of adhesion (the tzero) of the individual platelets to fibrinogen-

coated glass coverslips. Hence there are differences in the curve profiles, as not all platelets 

start to spread at the same time. The F-actin intensities of those platelets that start to spread 

early and go on spreading for 90 minutes and beyond, reach or begin to reach a plateau. These 

curve profiles seem to complement the stages seen in the time-lapse images of the F-actin 

assembly of SiR-actin labeled platelets as they spread (Figure 4.6). During the initial steep 

rise, rapid F-actin polymerization results in formation of the filopodia and lamellipodia by 

which the platelets spread fast. This is followed by the linear increase where the F-actin 

polymerization continues with the platelets assembling the F-actin into higher-order stress-

fiber like F-actin structures (indicated by orange arrows in Figure 4.8C). For the platelets that 

spread longer, the intensity values saturate reaching a plateau (indicated by magenta arrows in 

Figure 4.8C) which may be interpreted as the cessation of F-actin assembly activity. The 

decrease seen in the normalized fluorescence intensities (indicated by brown arrow in Figure 

4.8C) is most likely due to the bleaching of the SiR-actin probe.  
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Figure 4.8: Temporal evolution of F-actin intensities of SiR-actin labeled platelets 

Time lapse movies of platelets labeled with A) 6 µM and B) 2 µM of SiR-actin probe were taken and 

their normalized F-actin intensity curves were quantified and plotted over time. The total number of 

platelets analyzed is indicated by 'N' and the colors stand for group of platelets analyzed from 

independent datasets. C) The types of intensity profiles typically seen for single platelets are shown. 

Platelets labeled with both concentrations show similar intensity profiles which reveal an initial 

steep rise followed by a linear increase indicating F-actin polymerization (orange arrows) 

which is then sometimes followed by a plateau (magenta arrows) which may indicate 

cessation of F-actin activity. The curves sometimes decrease again (brown arrow) which may 

indicate bleaching of the SiR-actin probe.  

 

4.2.2.2 Characterization of the SiR-actin probe  

One of the most noticeable features of the normalized F-actin fluorescence intensity profiles 

for the two different concentrations of SiR-actin probes is that the trend of the temporal 

evolution of the curves in both looks similar. So to choose a suitable concentration of the     

SiR-actin probe to use for labeling the platelets, some characterization tests for the probe are 

carried out. For that purpose, a histogram distribution (as described in section 3.6.2) of the 
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normalized F-actin intensity values at three different time points of platelet spreading - 5, 20 

and 60 minutes (indicated by magenta, green and blue dotted lines in left panel of Figure 

4.9A) is plotted (right panel Figure 4.9A and Figure 4.9B). The histograms show that the 

intensities at an earlier time point of spreading are clustered around a small group of values 

but those at later time points are more dispersed. It is observed that the trend of the intensity 

distribution is similar between the two different probe concentrations. So a SiR-actin probe 

concentration of 6 µM is used for all the experiments.  

The histogram distribution enables a quick comparison of the intensity values of different 

experimental conditions, thus making it more comprehensive. The SiR-actin probe is 

characterized to find out its optimal labeling time with the platelets. The platelets are labeled 

for 0, 30 (as already shown Figure 4.9A) or 120 minutes before starting the time-lapse 

experiments and the excess probe is not washed off. These platelets are then quantified for 

their normalized F-actin intensities (see Appendix G) and a histogram distribution of the 

intensity values is plotted as before. The total number of platelets analyzed is indicated by 'N'. 

The histogram distribution is compared to the intensity distribution of the 6 µM probe with 30 

minutes of labeling (Figure 4.9A, C and D). Here, too, the trend of the intensity distribution is 

similar for the different labeling times. So a labeling time of 30 minutes before the 

experiments is chosen.  

In all these experiments, the excess SiR-actin probe, after labeling the platelets is not washed 

off. So one likely reason for the rise seen in the fluorescence intensities in the F-actin intensity 

curves, could be due to the binding of free probe molecules still present in the surrounding 

buffer, to the already formed F-actin structures. To test this possibility, the excess SiR-actin 

probe is washed off by centrifugation of the labeled platelets and followed by their 

resuspension in label-free buffer. Time-lapse movies of these platelets are then taken and their 

normalized F-actin intensities are quantified over time (see Appendix G) and the histogram 

distribution of the intensity values is plotted. The total number of platelets analyzed is 

indicated by 'N'. This distribution is also compared with the intensity distribution of the 

platelets labeled with 6 µM of the probe for 30 minutes where the excess probe is not washed 

off (Figure 4.9A and E). Here, too, the intensity distribution trend is similar to that of the 

previous histograms.  

This indicates that the intensities of SiR-actin labeled spread platelets are independent of the 

probe concentration and the labeling times. Also, the rise in the intensities indeed comes from 

the probe binding to the F-actin structures that the platelets reorganize into higher order 

structures as they spread over time.  
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Figure 4.9: F-actin intensities are independent of probe concentration, labeling time or washing  

SiR-actin probe characterization tests are carried out by varying probe concentrations (A and B), 

labeling times (A, C and D) and washing or not washing the excess probe (A and E) after labeling. A 

histogram distribution of the normalized F-actin intensity values at 5 (magenta), 20 (green) and 60 

(blue) min quantified for each these tests was plotted. The histogram distribution of the F-actin 

intensity shows the same trend for all these tests. So finally platelets are labeled with 6 µM of the 

probe for 30 minutes and imaged without washing off the excess probe. (N = total number of platelets 

analyzed). 
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Hence for all the SiR-actin experiments, the platelets are labeled with 6 µM of the probe for 

30 minutes and the excess probe is not washed off. In the next chapters, these parameters of 

the probe are designated as the 'control' parameters. At these optimal parameters, the platelets 

spread normally just like the untreated or only DMSO (vehicle) treated platelets (see Figure 

4.10). 

 

 

Figure 4.10: Platelets spread normally after labeling with SiR-actin probe 

The BF images taken after 60 minutes of platelets spreading are shown. Platelets were left A) 

untreated or B) treated with the vehicle DMSO for 30 minutes or C) with 6 µM SiR-actin probe for 

30 minutes. The SiR-actin probe had no deleterious effects on platelet spreading and they spread 

normally just like the untreated or DMSO treated platelets. 
 

4.2.3 Multiple timescales of F-actin formation and reorganization 

4.2.3.1 Platelets spread within minutes but reorganize F-actin for hours  

As shown before (section 4.2.1), spreading of platelets can be visualized in real-time along 

with the reorganization of their F-actin into stress fiber-like structures, by labeling them with 

the  SiR-actin probe, and imaging them in the BF and Cy5 channels. One of the most striking 

observations during these time-lapse movies is that the platelets seem to spread to their final 

areas very fast after their initial contact with fibrinogen-coated glass coverslips (see Figure 4.6 

BF channel) but the F-actin structures are reorganized into higher order stress fiber-like 

structures for a longer time (see Figure 4.6 Cy5 channel). This is reflected in the observation 

that after completing their spreading, the final area of the platelets does not seem to change 

but their normalized fluorescence intensities still increase Figure 4.6 and Figure 4.8).  
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So in order to look into this phenomenon more carefully, the temporal evolution of the platelet 

areas and their F-actin intensities are simultaneously quantified.  For that purpose, the 

platelets are labeled with both, a plasma membrane dye CM green, and the SiR-actin probe 

and, allowed to spread while taking epifluorescence microscopy time-lapse movies. The       

F-actin intensity curves and areas of the spreading platelets are quantified as described before 

(see sections 3.6 and 3.7).  

An example of the time-lapse snapshots of a platelet double stained with CM green and the 

SiR-actin probe is shown in Figure 4.11A. As seen in the FITC channel, the platelet spread 

area increases rapidly after adhesion and at some point does not change much whereas the F-

actin fluorescence intensity in the Cy5 channel keeps increasing. The spread areas and 

normalized F-actin intensities for three platelets are plotted as shown in Figure 4.11B (the 

blue curves represent the platelet shown in Figure 4.11A). These plots reflect the observations 

from the time-lapse snapshots. After adhesion, the platelet spread areas increase rapidly and 

within a few minutes reach a plateau and do not change much thereafter. To determine the 

turning time point t1 at which the spread areas reach a plateau, the area curves are fitted with a 

piecewise linear model (see section 3.10). An example of this linear fit for the magenta spread 

area curve is shown in Figure 4.11C. From the fit, the t1 value is ~ 1 minute which shows that 

the platelet, after adhering spreads and finishes its spreading within a minute. On an average, 

it is seen that the platelets spread very fast, on the order of ~ 2 minutes. In contrast, the         

F-actin reorganization goes on longer as seen by the increase in the normalized fluorescence 

intensities, on the order of ~ 90 minutes as seen from these curves.  
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Figure 4.11: Platelets spread within minutes but reorganize F-actin for hours 

A) Time-lapse snapshots of a spreading platelet labeled for both its plasma membrane by CM Green 

dye (FITC channel) and F-actin by SiR-actin probe (Cy5 channel) are shown. The platelet spreads 

rapidly and then does not change its area after a point whereas the F-actin intensity goes on 

increasing in the Cy5 channel. B) The spread area (top) and normalized F-actin intensity (bottom) 

over time of the platelet shown in A is plotted (blue curve). The other two curves (green and 

magenta) represent two other platelets. C) The turning time point t1 of the spread area curves is 

obtained by making a linear fit to the spread area curves as shown for the magenta curve. Here the t1 

(dotted line) is ~ 1 min. On an average, after adhesion, platelets reach their final spread area within ~ 

2 minutes but reorganize their F-actin until hours as seen by the increase in the normalized 

fluorescence intensities in B. 
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The reason for analyzing such few platelets for their spread areas and F-actin intensities is that 

the double labeling of the platelets with the two stains seems to affect their ability to 

reorganize the F-actin into stress fiber-like structures. Most of the platelets labeled with CM 

green dye and the SiR-actin probe do not form the stress fiber-like structures that are typically 

expected to form after platelets have spread for more than 60 minutes (see Appendix I). Also, 

the CM green dye internalizes relatively quickly, which makes the imaging near the end of the 

time-lapse movies noisy thus making the detection of the platelet areas difficult.  

However these analyzes although few in number, reflect the time-lapse series observations 

where the platelets are seen to spread within minutes but are seen to reorganize their F-actin 

into stress fiber-like structures for hours. 

4.2.3.2 Temporal evolution of F-actin filaments 

The reorganization of the F-actin mentioned above of SiR-actin labeled platelets is further 

quantified by detecting individual F-actin filaments formed during this process, using the FS 

program [39]. Here the 'F-actin filaments' is a general term which refers to any of the F-actin 

higher order structures and stress fiber-like structures that the FS program can detect. In 

principle the FS program considers any of these detected structures as linear filaments having 

varying length and width.  

Only single platelets that have formed the stress fiber-like structures are chosen from the time-

lapse movies for the analysis. The F-actin filaments formed over time are detected and the 

smoothed total line (filament) lengths are plotted over time (see section 3.9) as shown in 

Figure 4.12A. The different colors of the length curves stand for group of platelets analyzed 

from datasets that were obtained from independent experimental days. The total number of 

platelets analyzed for that particular concentration is indicated by 'N'. The temporal evolution 

profiles of the total line lengths show an initial rapid rise in the first few minutes which is then 

followed by a slower increase that most of the times reaches a plateau. To determine the 

turning time point t1 at which this initial phase of rapid F-actin filament growth ends, the 

previously described piecewise linear fitting model (see section 3.10) is applied to these 

curves and an example of this fitting is shown in Figure 4.12B. Here the filled circles 

represent the total total line lengths and the solid line represents the Gaussian smoothed (σ = 

10 images) total total line lengths. In this particular example, the t1 is ~ 12 minutes.                                   

A histogram distribution of the t1 values obtained by linear fitting of all the platelets analyzed 

is shown in Figure 4.12C. From these fits, on an average, it is seen that the during platelet        
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F-actin reorganization, the initial phase of rapid F-actin filament growth ends within ~ 9 

minutes.  

 

Figure 4.12: Temporal evolution of total F-actin filament lengths  

A) The temporal evolution of the smoothed total line lengths detected by the FS program for 

individual platelets is shown. The curves show an initial rapid growth indicating the formation of 

major F-actin structures within minutes followed by a slow phase of F-actin network growth in hours. 

B) The turning time point t1 at which this initial phase of rapid F-actin filament growth ends is 

determined by making a linear fit to the smoothed total line length curves as shown in this example. 

Here filled circles are the original total line lengths and the solid line is the smoothed total line length 

and the t1 (dotted line) is ~ 12 min. C) Histogram distribution of t1 values (N = 38 platelets). On an 

average, the majority of the F-actin filament growth ends within ~ 9 minutes.  
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4.2.4 Effects of pharmacological agents on F-actin dynamics 

The above results have demonstrated that it is possible to visualize and analyze the F-actin 

reorganization in platelets in real-time. So using the advantage of this, the temporal evolution 

of the effects of common pharmacological agents on platelet spreading and cytoskeletal 

reorganization are further investigated. The SiR-actin labeled platelets are treated with or 

without the pharmacological agents, the time-lapse movies are taken and the normalized F-

actin intensities are quantified. These intensities are then compared to those of the control 

conditions (untreated 6 µM SiR-actin labeled platelets) by looking at the F-actin intensity 

histogram distributions. The snapshots taken after these time-lapse movies are also looked at. 

In all these spreading experiments, the platelet spreading is triggered by addition of thrombin. 

So the first immediate question that arises is what happens to the F-actin intensity distribution 

of the platelets that are not supplied with this agonist thrombin. The first strikingly noticeable 

phenomenon is that when thrombin is not supplied, only few platelets spread as compared to 

the control (Figure 4.13A and B). But the ones that spread show the assembly of the stress 

fiber-like structures, although many of them do not show smooth polygonal morphologies 

typically expected of normally spread platelets (see Figure 4.7) but instead show polygonal 

morphologies with extension of many filopodia. However, their F-actin intensities distribution 

trend is similar to that of the control i.e. the thrombin stimulated SiR-actin labeled platelets 

(Figure 4.14A right panel and B).   

Next, the effects of the myosin inhibitors blebbistatin and Y-27632, which respectively inhibit 

the myosin II by blocking its ATPase activity or ROCK activity, are investigated. In these 

experiments with the myosin inhibitors, the scenarios show some change. When treated with 

20 µM blebbistatin, only few platelets spread (Figure 4.13A and C). Again, the ones that 

spread form the stress fiber-like structures and do not differ in their F-actin intensities 

distribution trend as compared to that of the control platelets (Figure 4.14A right panel and 

C).  But the treatment with 50 µM Y-27632 does not seem to reduce the number of platelets 

that spread. However, there is a noticeable effect on the assembly of F-actin structures. These 

Y-27632 treated platelets show a reduced stress-fiber like structure assembly although there is 

a higher localization of the F-actin at the platelet lamellipodial edges (Figure 4.13A and D). 

Interestingly enough, the histogram trend of the F-actin intensities distribution is similar to 

that of the control platelets (Figure 4.14A right panel and D). 
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Figure 4.13: Pharmacological agents affect spread platelet numbers  

BF and Cy5 time-lapse snapshots of SiR-actin labeled platelets after treatment with or A) without 

pharmacological agents are shown. B) Less number of platelets spread in absence of thrombin as 

compared to the control and show many filopodia. C) Less number of platelets spread in presence of 

20 μM blebbistatin as compared to the control but those that spread show the formation of stress fiber-

like structures. D) There is not much difference in the number of spread platelets as compared to the 

control but there is more F-actin localization at their edges in presence of 50 μM Y-27632. E) There is 

not much difference in the number of spread platelets in presence of 3.33 mM aspirin as compared to 

the control and these platelets also form the stress fiber-like structures. 

 

Lastly, the effects of aspirin on the temporal evolution of platelet spreading and cytoskeletal 

reorganization are also investigated. Aspirin is a well-documented platelet aggregation 

inhibitor [137, 162] but its effect on single platelet spreading has not been studied in great 

details. Again, the platelets treated with 3.33 mM aspirin show no differences in the assembly 

of stress-fiber like structures (Figure 4.13A and E). For the histogram distribution, although 

the F-actin intensity values are slightly higher, there is no difference in the trend of the F-actin 

intensities distribution from that of the control platelets (Figure 4.14A right panel and E). 
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Figure 4.14: Pharmacological agents show no effect on the F-actin intensity profiles  

A) The left panel shows the temporal evolution of the normalized F-actin intensities of SiR-actin 

labeled platelets as they spread. A-E) The right panel shows the histogram distribution of these 

intensity values at 5 (magenta), 20 (green) and 60 (blue) min. The histogram distribution of the F-actin 

intensity values at the chosen time points as compared to the control conditions in A) only SiR-actin 

labeled platelets show the same trend as for SiR-actin labeled platelets provided with or without the 

pharmacological agents- (B) with 20μM of the myosin II inhibitor, blebbistatin (C) with 50μM of the 

ROCK inhibitor, Y-27632 (D) without the agonist, thrombin and (E) with 3.33 mM of the platelet 

aggregation inhibitor, aspirin. 
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An important aspect to note in all these experiments is that only those platelets have been 

chosen to analyze that spread normally and form the stress fiber-like structures. However 

time-lapse imaging has showed that there is difference in the overall numbers of platelets that 

spread during each of these experimental conditions (as shown in Figure 4.13). So in the next 

step, the relative numbers of spread platelets in each of these conditions are quantified. For 

this purpose, the numbers of the spread and unspread platelets from the total adhered after the 

time-lapse BF movies are counted and compared to those numbers of the control untreated 

SiR-actin labeled platelets (see section 3.11).  

The relative numbers quantified are shown in Figure 4.15A. The platelets that show complete 

lamellipodial spreading with circular, triangular or polygonal morphologies are considered as 

'spread' (indicated by purple bars in Figure 4.15A) whereas those that show rounded 

morphologies occasionally with filopodia and very small lamellipodia are considered as 

'unspread' (indicated by orange bars in Figure 4.15A). The relative numbers are also compared 

to the control conditions by performing a statistical analysis using a t-test and a p-value < 0.05  

is considered statistically significant (Figure 4.15B). These relative numbers reflect the 

previous histogram intensity distribution observations. There is a significant reduction in the 

number of spread platelets in the absence of thrombin and in presence of blebbistatin, as 

compared to the control. However, this reduction is slightly larger in case of platelets not 

treated with thrombin. In contrast, there is no significant change in the number of spread 

platelets treated with Y-27632 or aspirin.  
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Figure 4.15: Pharmacological agents show effect on relative spread platelet numbers  

A) Relative number of spread and unspread platelets and B) the average ratio of spread/ total number 

of adhered platelets after treatment with different pharmacological agents are shown. The error bars 

represent SD. As compared to the number of platelets that spread (SiR-actin control) in the presence of 

the agonist thrombin, significantly less number of platelets spread in its absence. Inhibition of myosin 

by blebbistatin but not by Y-27632 significantly affects the number of spread platelets in comparison 

to the control. The platelet aggregation inhibitor aspirin does not have a significant effect on platelet 

spreading. Data is representative of total platelets counted (indicated by 'N') from at least three 

independent experiments. The p-value (two sample t-test assuming unequal variance) for SiR-actin 

control vs. thrombin is 2.94E-05 and for SiR-actin control vs. blebbistatin is 6.82E-04. 
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4.2.5 Discussion of the results  

In this chapter we have shown that it is now possible to image the F-actin reorganization of 

platelets as they spread in real-time. We have also shown that this platelet spreading and 

reorganization appear to occur on various time-scales. Lastly, we have also shown that 

commonly pharmacological agents that show effects on other cell types do not seem to affect 

the temporal F-actin dynamics during platelet spreading. However they do show effects on the 

relative numbers of spread platelets. In the following sections, each of these results are 

interpreted and discussed briefly with respect to existing literature, wherever applicable. 

4.2.5.1 SiR-actin labeling is a promising tool for real-time imaging      

Our real time imaging of SiR-actin labeled platelets show the sequential and simultaneous 

assembly of the F-actin-rich filopodia, lamellipodia, contractile rings and stress fiber-like 

structures in the BF and Cy5 channels (see Figure 4.6 and Figure 4.7). Many microscopy 

visualization studies done on membranes of spreading platelets on glass have described the 

assembly of first the filopodia and then lamellipodia within the first few minutes of spreading. 

The observation that, platelets start to spread first by forming filopodia which extend in a 

web-like manner and then form lamellipodia, in between these filopodia is consistent with 

previous optical microscopy studies of platelet spreading on glass [7]. The time-scales of the 

entire spreading process is also consistent with the 10-12 minutes time scale of platelet 

spreading seen in [7]. Besides that, we have also seen the lamellipodial ruffling activity and 

the movement of granulomeres towards the center of the platelets, as described before [7, 48]. 

Real-time platelet spreading on glass has also been imaged by atomic force microscopy 

(AFM) microscopy. The authors here also show that platelets initially form filopodia and then 

lamellipodia and eventually flatten out. The authors also report the exocytosis of the granules 

which are transported towards the cortex as platelets flatten [48]. Our time-lapse BF snapshots 

also show the filopodia and lamellipodia formation along with the gradual flattening of the 

granulomeres (Figure 4.6, BF channel). So our observations are in good agreement to the 

above mentioned studies. The time-scales described for the formation of platelet filopodia and 

lamellipodia and of the entire spreading process are also consistent with these studies.  

As has been already discussed before (see section 4.1.3), numerous immunofluorescence 

studies on the F-actin cytoskeleton of fixed platelets have shown that platelets indeed form 

these filopodia, lamellipodia, contractile rings and stress fiber-like structures when spread on 
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glass [12, 13, 57, 99, 141, 163]. Also real-time imaging of GFP-actin in mouse platelets has 

shown this sequential formation of filopodia, lamellipodia and stress fiber-like structures [20]. 

Also the morphologies of fully spread platelets that we see closely resemble those shown in 

previous studies of thrombin stimulated platelet spreading on fibrinogen-coated glass 

coverslips [43, 105]. Our time-lapse snapshots particularly show that the F-actin-rich 

contractile ring is associated with the granulomere and moves into the center with the 

movement of the granulomere and disappears as the granulomeres flatten (Figure 4.2 and 

Figure 4.6). Taking into consideration our post-fixation stainings, we have also seen that this 

contractile ring also has myosin along with the actin Figure 4.4 and Figure 4.5). These 

observations validate the involvement of the contractile ring in the granule movement and the 

important degranulation event occurring in the platelets. Additionally, SEM images of 

platelets activated2 in presence of agonists reveal the reorganization of the actin cytoskeleton 

by the platelets. Platelets activated2 for 30 minutes and then fixed show actin filaments 

arranged in parallel bundles which resemble stress fibers. At time the actin filaments are also 

arranged in concentric masses in the cytoplasm of spread platelets or also arranged randomly 

in the cytoplasm [163]. Such arrangements of F-actin are also seen to be formed when        

SiR-actin labeled platelets spread (Figure 4.6 and Figure 4.7, Cy5 channel). 

The Arp2/3 complex is one of the major regulators of actin polymerization in platelets and is 

responsible for formation of platelet filopodia and lamellipodia during platelet shape change 

[58, 82]. The authors in [82] have shown that both the Arp2/3 complex and F-actin are 

localized at the tips of filopodia and the edges of lamellipodia (also referred to as 'cortex') in 

fixed, spread platelets on glass. This would also explain our observations of a rapid spreading 

of platelets via their filopodia and lamellipodia.  

Thus, taken together, our real-time imaging of SiR-actin labeled platelets show the formation 

and reorganization of these distinct filopodia, lamellipodia and stress-fiber like F-actin rich 

structures visualization of F-actin-rich filopodia, lamellipodia, contractile rings and stress-

fiber like structure and support all the above described observations in post-fixation studies 

and at the same time provide the advantage of in situ observation of all these structures.  

Each of the F-actin rich structures are thought to play important roles in the platelet function 

of stopping bleeding by formation of blood clots. Filopodia and lamellipodia are involved in 

platelet shape change. Apart from that lamellipodia spread to quickly cover open wound 

surfaces and filopodia recruit other platelets at the site of injury. The contractile ring is 

involved in platelet degranulation which is necessary for signaling the recruitment of more 

platelets and which eventually leads to assembly of platelet aggregates [13]. This actomyosin 

2activation refers to morphological changes occurring in platelets exposed to glass/ foreign 

surfaces/agonists in suspension  
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contractile ring may also be responsible for exerting the platelet contractile forces [83, 132]. 

The stress-like fibers aid in contraction of the platelet aggregates eventually leading to clot 

retraction [12, 163] 

The SiR-actin probe appears well suited to visualize all this F-actin rearrangement and 

reorganization in platelets. Our characterization tests have shown that the SiR-actin probe has 

no deleterious effect on the platelet spreading or F-actin reorganization (Figure 4.6, Figure 

4.7, Figure 4.8, Figure 4.9 and Figure 4.10). The parameters used for the concentration (6 µM) 

and labeling time (30 minutes) and the unnecessity of washing away the excess probe are all 

in good agreement to those used for imaging the F-actin in human red blood cells in [86].      

For all these reasons, this approach of labeling the anucleate human platelets with SiR-actin 

probe, to visualize the F-actin is a promising new tool to explore the complex and fascinating 

F-actin cytoskeletal choreography that occurs in platelets. This may help to further understand 

the role of the actin cytoskeleton in platelet function better.    

4.2.5.2 The existence of multiple time-scales of F-actin reorganization 

Our time-lapse imaging of SiR-actin labeled platelet spreading has already given us the visual 

perception that platelets spread rapidly once they contact the glass surface but that their F-

actin gets reorganized for long (Figure 4.6). This visual perception is indeed confirmed when 

the platelet spread areas and their corresponding normalized F-actin intensities are quantified 

(Figure 4.11). The platelets do spread very fast-on the order of ~ 2 minutes but their F-actin 

intensities go on increasing until ~ 90 minutes. These F-actin intensity profiles are similar to 

the ones described before (see section 4.2.2.1) and indicate that increases in the intensities 

result from increase in F-actin polymerization and assembly into higher order structures which 

are also seen in the time-lapse snapshots (Figure 4.6). One of the possible reasons of the 

ability of platelets to spread so fast could be due to the structure of their OCS. The OCS of 

platelets has invaginations in which extra membrane is folded in. During spreading, this extra 

membrane rapidly extrudes out of these folds [164, 166] thus helping in achieving larger 

spread areas fast.  

Furthermore, when we look at our plot of smoothed total line lengths of SiR-actin platelets 

and also carefully look at both the BF and Cy5 time-lapse movies and snapshots of these 

(Figure 4.12), it appears that the platelets first build up a basic, stable F-actin structural 

framework within the first few minutes when they spread by extending their lamellipodia, as 

reflected by the sharp increase in the total line lengths. After completing their spreading, this 
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F-actin 'framework' then remains more or less unchanged but new, smaller F-actin structures 

are reorganized within this 'framework' and gradually fill up entire area of the platelet to form 

a dense network. On an average we see that the platelets build up the majority of their F-actin 

filament network on the order of ~ 9 minutes. In some of these total line length plots we also 

see some oscillations which may correlate with a wave-like phase we see in the time-lapse 

movies. It is possible that this phenomenon can arise from dynamic F-actin processes 

occurring in the platelets. However, to elucidate the exact nature of this phenomenon warrants 

further research. 

Overall, our findings point towards the existence of multiple time-scales of F-actin 

reorganization where the F-actin first assembles to form filopodia and lamellipodia enabling 

the platelets to spread within minutes and then assembles into higher order F-actin stress-fiber 

like structures enabling the platelets to reorganize the actin cytoskeleton. The authors in [30] 

have observed by fixed immunofluorescence stainings that, in platelets allowed to spread on 

glass for 20 minutes, the F-actin is cortically distributed as well as some actin aggregates are 

present in the platelet centers. This supports our observations where we indeed see completely 

spread SiR-actin labeled platelets showing F-actin rich lamellipodia within the first 20-25 

minutes after adhesion, but still see a F-actin rich aggregate in the center that gradually 

disappears simultaneously with the formation of stress-fiber like structures (Figure 4.6). 

This multi-step reorganization of the cytoskeleton seems relevant in physiological conditions 

where at an open site of injury the platelets must first rapidly spread via their filopodia and 

lamellipodia to cover the open wound surfaces and then later on form the stress fiber-like 

structures which will contribute to compact the blood clot by reinforcing the entire structure. 

Indeed, it has been shown previously that stress fiber formation is important for maintaining 

the integrity of platelets aggregates under flow [19].  

4.2.5.3 The effects of the pharmacological agents in real-time 

There are numerous studies on fixed human platelets or in vivo mouse models that have 

looked at the effects of the pharmacological agents we have used on platelet spreading and   

F-actin reorganization. However, the temporal evolution of these effects on the platelet         

F-actin dynamics has been looked at by us, for the first time, to our knowledge.  In general we 

see that these agents have no effect on the spreading of platelets. However, the numbers of 

spreading platelets are certainly affected (Figure 4.13, Figure 4.14 and Figure 4.15).  
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To interpret all these observations, we look back into the previous studies done on the effects 

of these pharmacological agents on platelets. Thrombin is one of the most known potent 

agonists of platelet activation and activates human platelets via the GPCRs- PAR1 and PAR4 

[15]. GPCRs induce integrin activation as well as promote integrin outside-in signaling which 

mediates cytoskeletal reorganization in platelets. Presence of thrombin thus causes the 

remodeling of actin in platelets via the small GTPases Cdc42, Rac1 and RhoA which 

respectively form the filopodia, lamellipodia and stress-fibers [11, 49, 59, 77, 81]. Moreover, 

platelet adhesion to immobilized fibrinogen alone results in outside-in signaling that 

eventually leads to spreading via actin polymerization [81, 116]. Thus by presence of both 

thrombin and fibrinogen, the platelet spreading is exceedingly enhanced [81]. If thrombin is 

absent, this would greatly reduce the ability of platelets to spread. However, presence of 

fibrinogen would still induce platelet spreading but not as great as together in the presence of 

thrombin. Our findings indeed support these views where we see less spread platelets in 

absence of thrombin but those that spread go on to form the stress fiber like structures (Figure 

4.13B and Figure 4.14B). It has also been demonstrated that without the stimulation of PAR4, 

murine platelet adherence and spreading on fibrinogen is mainly filopodial [76] which could 

explain why we see platelets with many filopodia in absence of thrombin (Figure 4.13B and 

Figure 4.15). Additionally, we do not see the actin nodules that have been recently elucidated 

[20, 114]. Possible reasons for this could be that actin nodules form only in the initial platelet 

spreading stages and disappear following stress fiber formation [20]. Also their turnover rates 

are very fast (between 10 – 40 seconds), and it may be possible that we simply cannot resolve 

them with our current time-lapse frame rates [114]. 

 Individual non-muscle myosins form bipolar filaments when MLC is phosphorylated. These 

filaments then bind to actin and generate forces through myosin's ATPase motor activity. 

Myosin phosphorylation induces platelet shape change and it occurs via two pathways- the 

calcium dependent Ca2+/calmodulin that activates the MLCK and phosphorylates the MRLC. 

The second ROCK pathway is calcium independent in which the small GTPase RhoA binds to 

ROCK and causes MLC phosphorylation by phosphorylating and inhibiting MLC 

phosphatase Figure 4.16).  

 



RESULTS & DISCUSSION 

 

104 

 

 

Figure 4.16: Schematic of MLC phosphorylation pathways 

Myosin activity occurs by the phosphorylation of the myosin light chain (MLC). This is brought 

about by the biochemical regulators calcium dependent myosin light chain kinase (MLCK) and 

calcium independent Rho-kinase (ROCK). RhoA binds to ROCK and causes MLC phosphorylation 

by phosphorylating and inhibiting MLC phosphatase. Y-27632 inhibits ROCK whereas blebbistatin 

inhibits the ATPase activity of myosin. 

 

Most of the platelet agonists can activate both these MLC phosphorylation pathways. Myosin 

II activity is also required for assembly of actin and this requires a functional MRLC kinase 

but does not require the myosin ATPase activity [68, 94]. Blebbistatin is known to inhibit the 

ATPase activity of myosin without inhibiting the MRLC kinase [144] so the formation of 

myosin bipolar filaments or the actin assembly is not affected. This is consistent with some 

recent studies where they have demonstrated that at lower concentrations of blebbistatin (10 

µM) there is minimal inhibition of platelet shape change (the extension of filopodia and 

lamellipodia) as the actin assembly is not affected. However at higher blebbistatin 

concentrations (25-100 µM) the platelet shape change is inhibited in a concentration-

dependent manner [68]. The authors have shown that this is due to the inhibition of Rho 

activation by higher concentrations of blebbistatin which affects the MRLC phosphorylation 

thus inhibiting platelet shape change. Our experiments reflect these observations. We use a 

blebbistatin concentration of 20 µM which is intermediate between those used by the authors 

in  [68] and which may explain why there are still some platelets that change their shape and 

spread (Figure 4.13C and Figure 4.14C) although the overall number of spread platelets is less 

than that in the control (Figure 4.15) indicating that myosin II is necessary for platelet 

spreading.  
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Our results with the ROCK inhibitor Y-27632 are consistent with previous observations that 

inhibition of ROCK does not affect platelet spreading on fibrinogen [77]. However the 

authors in [19] have shown that ROCK plays a critical role in assembly of stress fibers in 

platelets spreading on collagen which are important for maintaining thrombus integrity. 

Nucleated mammalian cells are known to balance a pro-lamellipodial (mediated via Rac1) or 

a pro-stress fiber (mediated via Rho) state and the upregulation of one of the GTPases results 

in the downregulation of the other and vice versa [55]. When ROCK is inhibited, Rho is 

downregulated which shifts the equilibrium to a pro-lamellipodial state. This could explain 

our observations of a higher localization of F-actin at the platelet edges in the presence of Y-

27632 and a lack of formation of proper stress fiber-like structures (Figure 4.13D). The 

authors in [124] have shown that platelet spreading is not affected in presence of Y-27632 

which is also consistent with our observations (Figure 4.15). Overall, our results indirectly 

demonstrate that the MLCK pathway may play a more critical role in platelet spreading. A 

recent study which has shown that stiffness-mediated platelet spreading on fibrinogen is 

dependent on myosin activity regulated by the MLCK pathway [116] supports our 

speculation.  

The adhesion of platelets on immobilized fibrinogen results in their activation and can cause 

release of secondary agonists such as thromboxane A2 [116]. The formation of thromboxane 

A2 can be blocked by aspirin as it irreversibly binds with platelet cyclooxygenase thus 

inhibiting the conversion of arachidonic acid to thromboxane A2. This reaction further blocks 

the secretion of agents that promote platelet aggregation, a phenomenon which is well known. 

In a recent study done on platelet mechanosensing, the authors in [116] showed that the 

spreading of platelets is not mediated by the endogenous secretion of thromboxane A2. Our 

studies too show that platelet spreading is not affected in presence of aspirin (Figure 4.13E, 

Figure 4.14E and Figure 4.15) and support the observations reported by these authors. 

Taken together, our observations validate the previously reported literature studies of the 

effects of these pharmacological agents on platelet spreading. With our approach, it is now 

possible to further vary the concentrations of these pharmacological agents or even combine 

two or more agents and observe their effects on the F-actin dynamics of platelets as they 

spread. This approach may prove useful to further elucidate the role of individual cytoskeletal 

components in platelets. 
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4.3 Real-time MT dynamics  

The real-time visualization and quantification of the F-actin dynamics in platelets using the 

SiR-actin probe has been introduced in the previous chapter. The MT dynamics in platelets 

can also be visualized in real-time using the SiR-tubulin probe. This probe specifically binds 

only to MTs and after binding increases its fluorescence intensity by 10-fold [86]. So the 

platelets are again labeled with this probe and their MT dynamics are visualized as they 

spread on fibrinogen-coated glass coverslips (see section 3.5.2) and further they are also 

treated with pharmacological agents (see sections 3.3.2 and 3.4) to elucidate the role of MTs 

in platelet spreading. The platelet spreading is triggered by addition of the soluble agonist 

thrombin. The concentration and labeling parameters for the SiR-tubulin probe are the same 

as that used for the SiR-actin probe and also in these experiments the excess probe is not 

washed off. In this chapter, the results of these SiR-tubulin platelet labeling experiments are 

shown, followed by a short discussion of the results with respect to the existing literature.  

4.3.1 Imaging of MT over time 

The platelets are labeled with SiR-tubulin, allowed to spread on fibrinogen-coated coverslips 

and visualized for their MTs in the Cy5 channel and their plasma membrane in the BF channel 

(as described in section 3.5.2). The time-lapse spreading snapshots of two typical SiR-tubulin 

labeled platelets imaged in both BF and Cy5 channels are shown in Figure 4.17.  

The time-lapse snapshots in the BF channel show the earlier described features- formation of 

filopodia and lamellpodia, movement of the granulomeres in the center and their gradual 

flattening (BF channels in Figure 4.17A and B). The platelets again are seen to spread within   

~ 10 minutes after initial contact with the fibrinogen-coated coverslips. 

The time-lapse snapshots in the corresponding Cy5 channels in the initial stages of platelet 

spreading show bright spots in the middle which corresponds to the granulomere of the 

platelets. These 'bright spots' appear as 'MT ring-like' structures which is more evident in case 

of unspread platelets (Figure 4.18). These 'MT ring-like' structures follow the granulomeres 

towards the platelet centers as the platelets start to spread and extend filopodia and some 

lamellipodia. As the platelets spread completely two scenarios are observed.  A commonly 

observed scenario is shown in Figure 4.17A. As the granulomeres start to flatten out these 

round, 'MT ring-like' structures also seem to disintegrate and individual MTs appear to move 

outwards to the periphery of the platelets and span the entire lamellipodial membrane of the 
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platelet (Figure 4.17B). The platelets have almost stopped spreading at this point and only 

show some membrane ruffling (Figure 4.17A BF channel). After moving towards the 

periphery, almost immediately the individual MTs rapidly start to move back to the center of 

the platelets and form elongated spindle-shaped MT structures which are most obvious in this 

example at the last time point (Figure 4.17A Cy5 channel). In a second scenario (Figure 4.17), 

which is seen rarely, these round 'MT ring-like' structures do not disintegrate completely but 

simply elongate as they move towards the center of platelets while simultaneously showing 

individual MTs moving to the periphery of the already spread platelets (Figure 4.17A and B).   

 

 

Figure 4.17: Real-time imaging of SiR-tubulin labeled platelet spreading 

Time-lapse spreading snapshots of a two exemplary SiR-tubulin labeled platelets (A and B), imaged 

in the BF and Cy5 channels are shown. As the platelets spread and the granulomeres start to flatten 

out (BF), the round MT ring (Cy5) A) either disintegrates completely and individual MTs move 

outwards to the periphery of the platelet and start to reassemble in a spindle-shape in the central 

region or (B) disintegrates partially and elongates as it moves to the center with individual MTs 

moving to the periphery simultaneously. The MT structures in the center follow the granulomeres.  
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A particularly noticeable feature is that in the case of unspread or incompletely spread 

platelets (Figure 4.18) the granulomeres do not flatten out as observed in completely spread 

platelets. Such platelets extend only some filopodia and lamellipodia (Figure 4.18 BF channel 

magenta and blue arrows). In these platelets, the round 'MT ring-like' structures do not 

disintegrate but instead remain intact (Figure 4.18 Cy5 channel). The fully spread platelets 

show polygonal morphologies and it is evident that the MTs are associated with the 

granulomere areas and follow them closely. 

 

Figure 4.18: Incompletely spread and unspread platelets show intact MT rings 

Time-lapse spreading snapshots of a incompletely spread and unspread SiR-tubulin labeled platelets 

are shown. Incompletely spread platelets extend few filopodia (magenta arrows) and lamellipodia 

(cyan arrows) and show intact, round MT rings in the center (yellow arrows) that correlate with the 

granulomeres seen in the BF channel. Unspread platelets too show these intact, round MT rings.  

 

4.3.2 The role of MTs and myosin in complete platelet spreading 

The above results have demonstrated that it is possible to visualize and analyze the MT 

reorganization in platelets in real-time. So using the advantage of this, the role of myosin II 

and MTs during prolonged platelet spreading is further investigated by using the 

pharmacological agents, blebbistatin and nocodazole which inhibit myosin and depolymerize 

MTs respectively. The SiR-tubulin labeled platelets are treated with blebbistatin or with 

nocodazole or with a combination of both blebbistatin and nocodazole and the time-lapse 

movies are taken. After that the relative spread platelet numbers for each of these conditions 

are quantified as described before (see section 3.11) and compared with that of the control 

conditions (only SiR-tubulin labeled platelets- positive control). The relative spread platelet 

numbers of unlabeled, untreated and unlabeled but only DMSO (vehicle) containing platelets 

are also quantified as negative controls (Figure 4.19).  
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As seen from the BF snapshots, the platelets having only DMSO or the SiR-tubulin probe 

spread normally like the unlabeled, untreated platelets and show no significant difference in 

the relative numbers of spread platelets. The platelets treated with 5 µM nocodazole show a 

diffused staining of the MTs indicating MT fragmentation but still spread normally and also 

show no significant difference in the number of spread platelets as compared to the SiR-

tubulin labeled platelets (Figure 4.19A, B and C). To ensure a complete inactivation of 

myosin II, a higher concentration (50 µM) of blebbistatin is used. As seen earlier (Figure 4.13 

and Figure 4.15C), in presence of blebbistatin there are significantly fewer spread platelets 

and these numbers are even lower than those in the presence of a lower concentration of 

blebbistatin (Figure 4.19A, B and C). The blebbistatin-treated unspread platelets show intact, 

round MT rings in the Cy5 snapshots (indicated in Figure 4.19A by yellow arrows). Also, 

when a combination of blebbistatin and nocodazole is used, there is again significantly less 

number of spread platelets. The unspread platelets, too, show the intact and round MT rings 

which is intriguing as one would expect that presence of nocodazole would result in a diffused 

staining as it would depolymerize the MTs.  
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Figure 4.19: MT ring disintegration is essential for full platelet spreading and needs myosin 

A)  BF (top) and Cy5 snapshots of platelets that spread in the presence or absence of the 

pharmacological agents nocodazole and blebbistatin are shown. Platelets in Cy5 snapshots are labeled 

with the SiR-tubulin probe. The untreated, DMSO (vehicle) treated and SiR-tubulin treated platelets 

spread normally. The platelets show a diffused and fragmented MT labeling when treated with the MT 

depolymerizing agent nocodazole but they also spread normally. There is a difference in the spreading 

in presence of blebbistatin or a combination of blebbistatin and nocodazole. Most platelets do not 

spread which is seen by their intact MT rings. B and C) Relative number of spread platelets for the 

conditions shown in A) verify the observations seen in these snapshots. The disintegration of both the 

MTs and myosin inhibits platelet spreading highlighting the importance of MT ring disintegration an 

intact myosin function for complete platelet spreading. Data is representative of total platelets counted 

(indicated by 'N') from at least three independent experiments. The p-values (two sample t-test 

assuming unequal variance) for SiR-tubulin control vs. blebbistatin and for SiR-actin control vs. 

blebbistatin are 0.036. 
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4.3.3 Discussion of results  

As discussed before in section 2.6.4, the MBs i.e. MT coils/rings in discoid platelets, 

depending on the strength of the activation stimulus, either form flat MT rings or smaller MT 

rings during transient or irreversible platelet activation. The platelets used in our experiments 

are stored for several days and there is a possibility that these platelets are either transiently or 

irreversibly activated2 in suspension in the platelet concentrate bags [90], prior to our 

spreading experiments, and may have already formed the flat MT rings or the smaller MT 

rings. Hence, it is most likely that we see a mixture of such platelet MT rings in the platelet 

population. When these platelets start to spread, it is very likely that some of these MT rings 

undergo the coiling and compression stages as described previously [36] However, these 

changes occur quickly and depend on the strength of the activation impetus [122]. In our case, 

we use a high concentration of the agonist thrombin, and hence it is likely that we cannot 

elucidate these early steps in the platelet activation. Nevertheless, we are interested in the MT 

dynamics during prolonged spreading and we observe that the MT rings disintegrate either 

partially or completely during platelet spreading, with individual MTs moving towards the 

periphery of platelets.  

Electron microscopy studies done on platelets adhered and spread on glass for 30 minutes 

have observed that the MTs constrict and form rings in the platelet center that surrounds the 

granulomeres. Such MT rings are also formed after treating the platelets with MT stabilizing 

agent taxol or after their exposure to cold temperatures during which MTs are known to 

disassemble [165, 167]. In one study, it is observed that in platelets that spread, the MTs after 

constricting in the center, appear to radiate from the platelet center towards the margin and 

then again move back towards the platelet centers [70, 165]. All of these studies have 

evaluated the platelet activation, shape change and secretion by aggregation studies using an 

aggregometer and have seen no changes in the responses of untreated and taxol or cold 

temperature treated platelets. This has led to the speculation that MTs have no apparent role in 

platelet functions. It is important to note that these studies have supported the single MT 

model in platelets where one long MT is thought to form the circumferential MB band by 

wounding around several times, in discoid platelets. However, recent insights into the platelet 

MT cytoskeleton have revealed that the MB of platelets is in fact a bipolar array, comprising 

of both stable and dynamic MTs [108]. This discovery sheds a new light on the speculations 

of the electron microscopy data. It is implied that the use of strong fixatives during these 

studies may result in the loss of dynamic MTs [108]. Furthermore, due to the PTMs occurring 

2activation refers to morphological changes occurring in platelets exposed to glass/ foreign 

surfaces/agonists in suspension  
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in MTs, there is a population of both detyrosinated/acetylated/stable and 

tyrosinated/deacetylated/dynamic MTs in the MB [122]. It has been shown that detyrosination 

levels (see section 2.4.2) of MTs increase in the presence of taxol [170]. This means that the 

stable MT of the MB will be further stabilized in the presence of taxol. The electron 

microscopy studies probably see these persistently stable MT rings in the center of activated2 

platelets. However, the question still remains why then the platelet shape change and 

aggregation responses are not affected in these electron microscopy studies. One possible 

explanation could be that the platelet shape change, meaning the transition to the spherical 

shape, and the extension of filopodia (which are needed for aggregation) are brought about by 

the tyrosinated/deacetylated/dynamic MTs in the bipolar MB array. It has indeed been shown 

that during platelet activation, tubulin is deacetylated within minutes [123]. Taking into 

consideration all of these recent pioneering studies [36, 108, 122, 123], in the context of the 

electron microscopy studies, a possible explanation is that the detyrosinated/acetylated/stable 

MTs in the platelet MB detach from the actomyosin cortex during platelet activation, coil and 

constrict into the center due to the contractile actions of the cortex and hence change to the 

spherical shape. At the same time, the tyrosinated/deacetylated/dynamic MTs of this MB, 

slide away from the MB and make space for filopodia extension which may allow further 

aggregation. If this explanation is correct, the observations from our experiments support it. 

We too see intact MT rings in the center of incompletely spread or unspread platelets (Figure 

4.18). These could probably be the detyrosinated/acetylated/stable MT rings. In incompletely 

spread platelets, it is possible that the tyrosinated/deacetylated/dynamic MTs form the few 

filopodia and lamellipodia that are seen. In completely spread platelets (Figure 4.17A), where 

the central, round MT rings are not seen anymore, it is possible that the 

detyrosinated/acetylated/stable MTs break down completely as platelets spread and release 

their granules. Indeed, it has been demonstrated that after 5 minutes of platelet spreading on 

glass, there is a decrease of acetylated tubulin (i.e. stable MTs) and tubulin acetylation 

disappears completely after 30 - 60 minutes, when platelets reach maximal spreading [123].  

Furthermore, we see that individual MTs move towards the periphery of platelets during 

platelet spreading. A possible explanation of these observations may come from one of the 

recent immunofluorescence studies on platelets, adhered, spread on glass for 20 minutes and 

fixed. In this study, it has been observed that -dystroglycan, an actin and tubulin binding 

protein, stabilizes the MTs at the plasma membrane of spread platelets and modulates FA 

assembly during the platelet adhesion process. It is suggested that at the leading edge of the 

2activation refers to morphological changes occurring in platelets exposed to glass/ foreign 

surfaces/agonists in suspension  
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lamellipodia, the MTs interact with F-actin filaments to form and the leading edge pushes 

against this MT-F-actin meshwork [28].  

Our results also show that the MTs always encircle the granulomeres implying that they are 

involved in granule trafficking in platelets in some manner. Immunofluorescence studies on 

adhered, spread and fixed platelets have shown that granular trafficking is strongly regulated 

by F-actin filaments and MTs during the adhesion process of platelets. It begins with 

centralization of the granules in the granulomere by F-actin contractile rings and the MTs then 

further reorganize from the granulomere to traffic the granules to the plasma membrane of 

platelets [27, 28] . Our time-lapse snapshots of SiR-tubulin platelets show this movement of 

the individual MTs towards the platelet membranes and these MTs appear to follow the 

granulomeres (Figure 4.17). Furthermore, our earlier observations have already shown the 

existence of F-actin contractile rings (Figure 4.6 and Figure 4.7) associated with the 

granulomeres. This further implies that the F-actin contractile rings are also composed of 

MTs, which are most likely the stable MTs. The disintegration of the MT rings as the 

granulomeres flatten may indicate their role in granule release via the OCS to the platelet 

membrane. Additionally, the observations of individual MTs at the periphery, moving back to 

the center, and reassembling again (Figure 4.17) may indicate a second process of granule 

centralization which may point to multiple exocytosis events taking place during platelet 

spreading. This is however just a speculation. 

Our time-lapse snapshots of incompletely spread or unspread platelets show the intact and 

round MT rings (Figure 4.18). Similarly the time-lapse snapshots of blebbistatin treated 

platelets also show intact MT rings (Figure 4.19A). This may indicate that for the platelets to 

initiate complete spreading and possibly also to perform exocytosis, the stable MT ring has to 

be somehow broken down/disintegrated. Also the action of myosin seems to play a major role 

in this process (Figure 4.19). This seems to be the case because, in the case of untreated 

platelets, the myosin II function is intact and these platelets start to spread and the MT rings 

are disintegrated perhaps together by the concerted action of actin and myosin which enables 

the platelets to spread completely, as discussed above. In nocodazole-treated platelets, the 

MTs are already fragmented and in concerted action with the intact myosin can disintegrate 

the MT ring further to allow platelets to spread completely. A recent study has indeed shown 

that platelet spreading is not affected in presence of nocodazole [124]. As myosin II is 

inhibited by blebbistatin, it is not available to disintegrate the MT rings and although few 

platelets show some filopodia and occasionally lamellipodia, they do not spread completely. 

In the case of both nocodazole and blebbistatin-treated platelets too, the myosin function is 
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absent and hence MT rings are seen. The fact that we see intact and round MT rings even in 

the presence of nocodazole could be because blebbistatin is known to stabilize MTs [146]. 

Myosin II plays a role when the actomyosin contraction is required for the compression of the 

coiled MBs during platelet activation [36].  

Taken together, and based on recent studies [36, 108, 122, 123], we suggest from our data that 

full platelet spreading, along with granule release occurs, only when the stable MT rings that 

are part of the bipolar MB array of platelets, are broken. Incomplete platelet spreading which 

shows filopodial and lamellipodial extension may be an effect of the sliding of the dynamic 

MTs that are part of the bipolar MB array of platelets. Furthermore, the MTs appear to play a 

role in exocytosis of granules during platelet spreading. Since the exocytosis process occurs 

during spreading and also after completion of spreading [13], the granulomeres have to 

degranulate which basically occurs when they flatten out. For this degranulation process to 

take place it seems from our results that the stable MT ring has to somehow be broken down 

and in this process, the myosin II plays a major role.  
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5. Summary & Conclusions 

Anucleate, human blood platelets play an important role in haemostasis to prevent excessive 

blood loss from a vascular damage. Their actin and MT cytoskeleton is especially responsible 

for bringing about dramatic morphological and biochemical changes in them, which enables 

the platelets to change their shape, secrete granular contents, aggregate, adhere, spread, and 

retract in a platelet haemostatic plug, to seal the vascular breach. The platelets are thus 

extremely important cells from a medical point of view and the study of their cytoskeletal 

changes is essential. Because platelets do not have a nucleus, they cannot be transfected, 

microinjected or manipulated in any way. This has restricted the study of their cytoskeleton 

with classic post chemical fixation approaches. However, with the introduction of the novel 

cytoskeletal probes, the SiR-actin and SiR-tubulin, it is now possible to monitor the actin and 

MT cytoskeleton in real-time, in cells, which are otherwise difficult to transfect  [86]. These 

probes specifically bind to F-actin and MTs and increase their fluorescence intensity after 

binding. In this dissertation, we image the F-actin and MTs of platelets while they remodel 

during their spreading, in a time-resolved manner, by labeling them with the novel, 

fluorogenic, SiR-actin and SiR-tubulin probes. Furthermore, we treat these labeled platelets 

with pharmacological agents and image the real-time dynamics of F-actin and MT 

cytoskeleton in their presence, during platelet spreading.  

Using the SiR-actin probe, we demonstrate the ability to directly visualize the different          

F-actin rich filopodia, lamellipodia, contractile ring and stress fiber-like structures that the 

platelets sequentially form as they spread. As the platelets form these higher order F-actin 

structures, the binding of the SiR-actin probe also increases, which is reflected by the increase 

of fluorescence intensities, which we quantify. The averaged actin intensity of single platelets 

over time reveals an initial steep rise followed by a linear increase that gradually reaches a 

plateau indicating the formation and increase in the content of polymerized actin until the 

platelets spread completely. Next, we characterize the parameters for the SiR-actin probe and 

demonstrate that platelets labeled for 30 minutes, with a 6 µM concentration of SiR-actin and 

not washed for removal of the excess probe, spread normally. We further quantify the platelet 

spread areas and determine the temporal growth of their F-actin filaments using the Filament 

Sensor program [1], and observe that the F-actin dynamics in platelets during their spreading 

occurs on multiple time-scales. Upon adherence, the platelets first spread rapidly within ~ 2
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 minutes, build their F-actin network within ~ 9 minutes, which later reorganizes into F-actin 

stress fiber-like structures for hours. Additionally, we observe that the temporal spreading 

dynamics of platelets is not majorly affected in the presence of the myosin inhibitors,           

Y-27632 and blebbistatin or in the presence of the aggregation inhibitor, aspirin or in the 

absence of the soluble agonist, thrombin. However, these pharmacological agents show 

significant effects on the relative numbers of spread platelets. Furthermore, our observations 

indirectly demonstrate the critical role of the MLCK pathway in platelet spreading.  

Using the SiR-tubulin probe, we demonstrate the ability to directly visualize the MT dynamics 

of platelets as they spread. Our data suggest that the stable and dynamic MTs, contained in the 

circumferential, bipolar MB of platelets that give them their discoid shape, could both be 

involved in platelet spreading. To spread completely, the platelets must break their stable MT 

rings and by using blebbistatin, we observe that this process requires the action of myosin II. 

During spreading, it is likely that the dynamic MTs slide and move towards the periphery of 

the platelets and reassemble again. In incompletely spread or unspread platelets, the stable MT 

rings are not broken down but the dynamic MTs may slide and disassemble to allow 

formation of some filopodia and lamellipodia. Furthermore, the MTs in platelets appear to be 

involved in platelet granule exocytosis and their reassembly into the platelet centers may 

possibly suggest the existence of multiple exocytosis events.    

The SiR-actin and SiR-tubulin probes with their excellent properties of near-infrared 

excitation and emission, minimal cytotoxicity, photostability and high cell permeability are 

well suited for the purpose of our experiments. The general impression of platelets is that they 

are fast cells which spread very rapidly and finish their dynamics within some minutes. 

However, by allowing platelets to spread for a long time, we have learned that the platelet 

cytoskeletal dynamics occurs for hours. Together, our data indicate that the F-actin and MTs 

participate in the platelet shape change, adhesion, spreading and secretion and regulate these 

processes via their dynamic remodeling.  The F-actin cytoskeleton polymerizes to form the    

F-actin rich filopodia and lamellipodia enabling platelet adhesion, shape change and extensive 

spreading. The actomyosin contractile ring together with the MTs constricts in the central 

region of platelets and moves the granules in the center, and the platelets continue to mature 

their adhesion process for long by reorganizing their F-actin to form stress fiber-like 

structures and bringing about dynamic ordering in their MTs. Our real-time F-actin and MT 

dynamics are in good agreement to the studies of the cytoskeleton in fixed platelets and 

indicate that both the F-actin and MT dynamics are related to each other.  
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Our results may reflect the dynamics that may occur in vivo. The multi-step remodeling of the 

F-actin cytoskeleton may be especially important at an open bleeding wound, where it is 

essential to first adhere and spread rapidly to quickly cover the open holes and then later form 

higher-order stress fiber-like structures, to reinforce and compact the clot. The existence of 

multiple exocytosis events may be favorable in a growing thrombus where the secretion of 

activating molecules from the granules is necessary to recruit many more platelets into the 

thrombus.  

Taken together, our findings show a novel way to observe the in situ formation and 

reorganization of the F-actin and MT cytoskeleton of human platelets, which has hitherto been 

impossible, due to their lack of a nucleus. We can monitor platelet F-actin and MT dynamics 

in real-time and our relatively simple experimental setup provides an easy way to do this. The 

actin and MT cytoskeleton of human platelets is impaired during many platelet-related 

disorders such as Glanzmann thrombasthenia, Bernard–Soulier syndrome, myosin-heavy 

chain 9 (MYH9)-related disorders, congenital macrothrombocytopenia [140]. Now that we 

have the technique to directly visualize the cytoskeletal changes in real-time, it is desirable to 

use this to compare normal human platelets with platelets from patients with such disorders. 

This approach can provide innovative insights into platelet function and perhaps may lead to 

the development of novel agents that may help to alleviate these disorders. Platelets in vivo 

encounter a variety of stiffnesses in the physiological range (1-100 kPa) and also encounter 

structured wound surfaces [125]. Our technique to directly visualize the F-actin and MT 

cytoskeletal changes in real-time can help in elucidating the spreading dynamics on such 

surfaces. Overall using this technique will improve our understanding of the role of the 

platelet cytoskeleton in aiding the platelet functions, better.  

Despite their functional diversity, the actin and MTs are highly conserved amongst all 

eukaryotes [13, 67]. By studying their dynamics in simple, anucleate cells such as the 

platelets, the knowledge gained about them can be extrapolated to other cells.  
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Appendix 

 Recipes of buffers (sample preparation and platelet purification) 

All buffers used for the experiments (refer to chapter 3, section 3.2) were prepared in 

ultrapure water (Milli-Q, Millipore, MA, USA).  

 

 Phosphate buffered saline (PBS) from a 10X PBS stock solution 

Chemicals Final concentration (mM) 

NaCl 1370  

Na2HPO4·12H2O 43 

KCl 27 

KCl KH2PO4 14  

The pH was adjusted to 7.2. PBS solution was prepared by diluting the 10X stock solution 10 

times. The buffer was sterilized by autoclaving before use.  

 

 

 PIPES-saline glucose (PSG) buffer 

Chemicals Final concentration (mM) 

NaCl 145 

PIPES 5 

Glucose 5 

KCl 4 

MgCl2·6H2O 1 

Na2HPO4·12H2O 0.05  

The pH was adjusted to 6.8 and the buffer was sterilized by autoclaving before use.  
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 Hepes Tyrode buffer with BSA (HT-BSA) 

Chemicals Final concentration (mM) 

NaCl 134 

NAHCO3 12 

HEPES 5 

Glucose 5 

KCl 2.9 

anhydrous MgCl2 1 

NaH2PO4 0.34  

The pH was adjusted to 7.4 and the buffer was sterilized by autoclaving before use. On the 

day of the platelet purification, BSA was added to HT buffer at a final concentration of 5 

mg/ml.  

 Normalized F-actin intensity analysis MATLAB script 

 The normalized F-actin intensities of SiR-actin labeled platelets as they spread were 

obtained using an in-house MATLAB script kindly provided by Gerrit Brehm (details in 

chapter 3, section 3.6.1). The MATLAB script used is shown below. 

%        F-actin normalized intensity with choosing ROI 
%        by Gerrit Brehm 
 
%the mat   lab function 'textprogressbar.m' has do be in the folder that the 
%programm works properly. 
 
close all 
clear all 
 
[file_name, folder_name]=uigetfile('*.tif','select *.tif Image or Stack'); 
                                    %choose the file, *.tif file needed 
if folder_name(1)==0                %If no file selected, stop 
    disp('Error in StackSlider: No files chosen'); 
    return 
end 
file = [folder_name file_name]; 
info = imfinfo(file); 
num_images = numel (info);          %number of pictures 
pic=imread(file); 
fac=1/num_images;                   %define scaling factor 
pic_gray=mat2gray(pic)*fac;         %change the picture zu gray values [0,1] 
pixel=numel(pic);                   %pixelnumber 
I_max=0; 
set(0,'RecursionLimit',num_images);       %resets the counter to max possible 
recursions 
 
if  ~exist([pwd, '\results'], 'dir')      %creating results folder if not 
existend 
    mkdir([pwd, '\results']) 
end 
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save_data = ['intensity_' file_name '.txt']; 
sum_intensitaeten = fopen(save_data,'wt'); %open textfile to write in 
 
%section for ROI 
 
disp('choosing ROI:'); 
disp('**********'); 
 
textprogressbar('load data:'); %progressbar 
 
for k = 2:num_images 
    pic2=imread(file,k); 
    pic2_gray=mat2gray(pic2)*fac; 
    pic_gray=pic_gray+pic2_gray; 
    textprogressbar(uint8(double(k/num_images)*100)); 
end 
overlayed=im2uint16(pic_gray);  %transforming the grey overlayed picture to 
16bit 
textprogressbar('finished'); 
    BW=roipoly(overlayed);       %making the ROI 
    bpixel = nnz(BW==0); %number of black pixel in the Mask 
 
%summed intensities 
 
disp('calculating intensities in ROI:'); 
disp('***********'); 
 
textprogressbar('progress:'); 
 
for k = 1:num_images 
    I=imread(file, k);              %load the actual picture 
        I(~BW) = 0;                         %applying the mask 
    av_intensity = sum(sum(I))/(pixel-bpixel);             %intensity per pixel 
in the frame 
    I_act = max(max(I)); 
    if I_act >= I_max 
        I_max=I_act; 
    end 
    fprintf(sum_intensitaeten,' %5.f %10.f %5.f\n', k, av_intensity, I_act); 
%output of the data in 'intensity.txt' 
    textprogressbar(uint8(double(k/num_images)*100)); 
end 
textprogressbar('finished'); 
fclose(sum_intensitaeten); 
 
%movie of intensities 
 
disp('creating movie of intensities'); 
disp('***********'); 
 
textprogressbar('progress:'); 
for k = 1:num_images 
    I=imread(file, k);              %load the actual picture 
    I(~BW) = 0;                         %applying the mask 
    figure(1); 
    h=figure(1); 
    imagesc(I); 
    set(h,'Units','normalized','Position', [0.5, 0.5, 0.4, 0.4]); %  [left, 
bottom, width, height][0,1]; 
    caxis([0,I_max]); 
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    colorbar; 
    colormap(jet);  %colour images 
    %colormap(gray);    %gray images 
    frame=getframe(h); 
        
imwrite(frame.cdata,fullfile('results',['movie_',file_name]),'WriteMode','appen
d','Compression', 'none'); 
    textprogressbar(uint8(double(k/num_images)*100)); 
end 
textprogressbar('finished'); 
 
[x,y,z]=textread(save_data,'%f %f %f');    %reading in the saved data x=image 
number, y=mean intensity, z= max intensity 
%hold on; 
plot(x,y);  %plotting the data frame (x) vs average intensity (y) 
%plot(x,z); %plotting the data frame vs maximum intensity (z) 
%hold off; 
return; 

 

 

 Platelet contour detection and spread area calculation MATLAB scripts 

 The scripts were kindly provided by Rabea Sandmann and Bernd Nöding (details in 

chapter 3, section 3.7). Firstly, the contours of the fluorescently stained platelet were 

detected by the following script that employed a Wiener filter and a canny edge detection 

algorithm. 

% PROGRAM TO DETECT PLATELET OUTLINES BY WIENER FILTER+CANNY ALGORITHM % 
% written by Rabea Sandmann% 
 
close all 
clear all 
 
cellimagesfiltered = ['*filename.tif']; 
 
info1 = imfinfo (cellimagesfiltered); 
z1 = numel(info1); % number of images in stack as defined in info-file of image 
[r1,s1]=size(cellimagesfiltered); 
 
for i = 1:z1; 
    Image = imread(cellimagesfiltered,i, 'Info', info1); 
    a=[0.08,0.18]; 
    L = wiener2(Image,[8 8]); 
    BW = edge(L,'canny',a); 
    Im_filtered=zeros(r1, s1); 
    h_filtered=figure(1); 
    
imwrite(BW,['*filename_wiener*parameters*_canny*parameters*.tif'],'WriteMode', 
'append', 'Compression', 'none'); 
end 

 
 

 Then a second MATLAB script ran two functions as shown below. 
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%Program to binarize and then select objects above certain threshold (pixel 
size) only 
% Written by Bernd Noeding 
 
allererstes=input('erstes frameNo: '); % first frame number of stack 
allerletztes=input('letztes frameNo: ');% last frame number of stack 
date=input('Datum eingeben (Form YYMMDD): ','s');% stack data saved in YYMMDD 
format 
for i= allererstes : allerletztes 
runningnumber=num2str(i); 
disp(['Stack Nummer', runningnumber]); 
filamentnumber= runningnumber; %input('Filamentnummer eingeben (laufende 
nummer): ', 's'); 
pics= 300; %input('Number of images: '); 
first_pic=1 ; %input('First image: '); 
 
thresholding_binarizing_stack; 
disp(['Ende Thresholding Stack Nummer', runningnumber]); 
 
muellabfuhr_B; 
disp(['Ende AufrÃ¤umenStack Nummer', runningnumber]); 
 
 
end; 

 

Firstly, it re-binarized the filled platelet images stack (function shown below). 

%Programm zur Binarisierung von Originalbilder 
 
function  [] = thresholding_binarizing_J (date, filamentnumber, pics, 
first_pic) 
disp('BinÃ¤rbild'); 
clear C line 
 
N = pics;   %input('Gesamtzahl der Bilder: '); 
Image_1 = first_pic;    %input('Nummer des ersten Bildes: '); 
 
 
for i=1:N 
 
    Imagenr = Image_1+i-1; 
 
    disp(['Bild Nummer ',int2str(Imagenr)]); 
 
    filename = strcat('filelocation\filename.tif');   % Hier unbedingt den 
richtigen Pfad eingeben!!! 
    savename = strcat('filelocation\binary\filename-binary.tif',date, 'v', 
filamentnumber, 'b.tif');     % Hier unbedingt den richtigen Pfad eingeben!!! 
 
 
    im=imread(filename, Imagenr); 
    bwim=im2bw(im,0.0275); %converts the indexed image X with colormap map to a 
binary image: im2bw(X, map, level). 
    imwrite(bwim,savename,'Compression','none', 'WriteMode', 'append'); 
 
    %clear C line 
end 
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%clear C Endung Image* N a c d filename i pat root save* zahl zero ImErased b 

 

and then removed all detected objects other than the filled platelet masks, by employing a 

threshold 

%Programm zur Selektion der grï¿½ï¿½ten Objekte in Binï¿½rbildern 
%Bestimmt die Kontulinien aller Objekte im Binï¿½rbild, sucht dann die 
lï¿½ngste Konturlinie und lï¿½scht alle Objekte auï¿½er diesem grï¿½ï¿½ten 
 
%Bilder einlesen: 
function[] = muellabfuhr_B; 
disp('AufrÃ¤umen'); 
clear C line 
 
N = 270;   %input('Gesamtzahl der Bilder: '); 
Image_1 = 1;    % input('Nummer des ersten Bildes: '); 
 
 
for i=1:N 
 
    Imagenr = Image_1+i-1; 
    disp(['Bild Nummer ',int2str(Imagenr)]); 
 
 
    filename = strcat('filelocation\binary\filename.tif');   % Hier unbedingt 
den richtigen Pfad eingeben!!! 
    savename = strcat('filelocation\clear\filename-clear.tif');     % Hier 
unbedingt den richtigen Pfad eingeben!!! 
 
    Image = double(imread(filename, Imagenr)) + 1; 
 
    %Konturlinien finden und grï¿½ï¿½tes Objekt selektieren: 
 
    C = contour(Image, 1); % 1 Konturebene 
    S=find(C(1,:)==1.5); 
    [a, b] = max(C(2,S)); 
    line = C(:,(S(b)+1):(S(b)+a)); 
    ImErased = roipoly(Image, line(1,:), line(2,:)); 
 
    imwrite(ImErased,savename,'Compression','none', 'WriteMode', 'append'); 
 
    %clear C line 
end 
 
 
%clear C Endung Image* N a c d filename i pat root save* zahl zero ImErased b 

 

 

 

 

 

 The third MATLAB script, calculated the platelet spread area from the binarized 

and filled (masks) platelet images stack using the regionprops function- 
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% PROGRAM TO CALCULATE PLATELET SPREAD AREA AFTER BINARIZATION % 
% written by Rabea Sandmann% 
 
close all 
clear all 
 
global data; 
data='*filename'; 
 
 
zoom=0.109/1; % 1 px = 0.109 µm for the ORCA Flash 4.0 V2 digital camera 
 
t=5; %area threshold in pixels for objects being identified as cell 
 
binarisedcellimages = [data,'.tif']; 
 
info3 = imfinfo (binarisedcellimages); 
z3 = numel(info3); % number of images in stack as defined in info-file of 
image 
 
fileID = fopen([data,'*filename_Area.txt'],'w'); % open a textfile 
fprintf(fileID,'image \t cell nr\t area [um^2]\t perimeter cell [u]\t maj. 
axis [um]\t min. axis [um]\t lambda \t perimeter ellipse [u]\t relative 
perimeter \n\n'); 
 
 
 
for i = 1:z3; 
    FImage = imread(binarisedcellimages,i, 'Info', info3); 
 
    %Calculate cell area and perimeter 
    [cells nrcells]=bwlabel(FImage,4); % gives a number to every object 
 
    for j=1:nrcells 
        Cell_info = 
regionprops(cells,'Area','Perimeter','MajorAxisLength','MinorAxisLength'); 
        Area= Cell_info(j,1).Area*zoom*zoom; 
        Perimeter=Cell_info(j,1).Perimeter*zoom; 
        MajorAxis=Cell_info(j,1).MajorAxisLength*zoom; 
        MinorAxis=Cell_info(j,1).MinorAxisLength*zoom; 
        lambda=(MajorAxis/2 - MinorAxis/2)/(MajorAxis/2 + MinorAxis/2); 
        Ellipseperimeter= pi*(MajorAxis/2 + 
MinorAxis/2)*(1+(3*lambda^2)/(10+(4-3*lambda^2)^(1/2))); 
        relPerimeter=Perimeter/Ellipseperimeter; 
        if Area>t; 
            fprintf(fileID,'%g \t%g \t%g \t%g \t%g \t%g \t%g \t%g 
\t%g\n',[i;j;Area;Perimeter;MajorAxis;MinorAxis;lambda;Ellipseperimeter;re
lPerimeter]); 
        end 
    end 
end 
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 Parameters used for Filament Sensor program 

 A summarized list of the values of the parameters used to detect the F-actin filaments of 

SiR-actin labeled platelets by the FS program (details in chapter 3, section 3.9). The 

modified version of the FS program can be accessed here [1].  

 

Parameters Values used 

Pre-processing 

isotropic Gaussian filter, σ = 1.0 

8-neighborhood Laplacian filter 2.0 - 4.0 

directed Gaussian filter, σ = 5.0 

                                                           Binarization 

global brightness Li threshold 25 

adaptive means Gaussian filter, σ = 2.0 

directed Gaussian filter, σ = 4.0 

Width map generation 

black pixel tolerance 5.0% 

      Line (F-actin filament) detection 

distance between direction changes 5.0 pixels 

Size of direction steps 3.0° 

minimal line length (depending on platelet size) 30 – 40 pixels 

minimal line crossing angle 20°, 30° (most used), 45° 
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 Relative numbers of spread/unspread platelets and statistical analysis by t-test.  

 The relative numbers of spread and unspread, SiR-actin labeled platelets counted for all 

experimental conditions (details in chapter 3, section 3.4 and section 3.11) are given 

below- 

 

 The relative numbers of spread and unspread, SiR-tubulin labeled platelets counted for all 

experimental conditions (details in chapter 3, sections 3.4 and 3.11) are given below-  
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 A t-test was done to statistically compare untreated and pharmacological agent treated 

platelets. A p-value < 0.05 was considered statistically significant and the test was carried 

out in OriginPro 8.5. Two examples of the independent two-sample t-test for unequal 

variances are shown below. In the first example, the t-test shows that there is no 

significant difference in the spreading between only DMSO treated but non-labeled 

platelets and only SiR-tubulin labeled platelets- 

 

In the second example, the t-test shows that there is a significant difference in the 

spreading between only SiR-tubulin labeled platelets and SiR-tubulin labeled platelets, 

treated with blebbistatin- 
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 Representative images of fixed-platelet cytoskeleton time series  

The images were kindly taken by Tim Dullweber during his Bachelor thesis done under       

my supervision. 

 Representative images for each time point of the fixed-platelet time series for the single        

F-actin and double F-actin-vinculin and F-actin-myosin are shown below (details in 

chapter 4). An increase in the number of adhered platelets with time was generally 

observed. The platelet sizes (spread areas) were also observed to increase with time. 

However, the platelet sizes after two hours were smaller, possibly because the platelets 

had retracted. 

 



APPENDIX 

144 

 

 



APPENDIX 

145 
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 SiR-actin probe characterization and spreading tests  

 The normalized F-actin fluorescence intensities of platelets that were quantified after 

labeling them with SiR-actin immediately (0 min labeling), or after 120 minutes, and 

when the excess SiR-actin probe was washed off, are shown below (details in chapter 4.2, 

section 4.2.2). Here the 'N' refers to the number of platelets analyzed from one single 

experimental dataset. The intensity profiles are similar to those of the 6 and 2 µM         

SiR-actin probes (Figure 4.8).   
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 Normalized F-actin intensity profiles of platelets treated with pharmacological 

agents are similar to those of control conditions 

 The normalized F-actin fluorescence intensities of platelets that were quantified           

after not adding thrombin, treating them with 20 µM blebbistatin; treating them with 50 

µM Y-27632 and treating them with 3.3 mM aspirin during their spreading (details in 

chapter 4.2, section 4.2.4). Here the 'N' refers to the total number of platelets analyzed 

from multiple (each dataset represented by black, green or orange curves) experimental 

datasets. The intensity profiles are similar to those of the control conditions (Figure 4.8 

and Figure 4.14). This indicates that those platelets that spread do so normally and the 

pharmacological agents have no effect on them. 
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 F-actin morphologies of CMGreen and SiR-actin double labeled are different than 

only single SiR-actin labeled platelets 

 The platelets labeled with both CMGreen dye and the SiR-actin probe did not reorganize 

the F-actin into stress fiber-like structures that are typically formed by only SiR-actin 

labeled platelets (details in chapter 4.2, section 4.2.3.1). Shown below are representative 

images of the double labeled (CMGreen + SiR-actin) and single labeled (SiR-actin) 

platelets. The double labeled platelets rarely formed the stress-fiber like structures (green 

arrows) which indicated that the labeling with two stains was proving detrimental to the 

normal spreading of the platelets.  
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List of Abbreviations and Symbols 

ADF Actin depolymerizing factor 

ADP   Adenosine diphosphate 

AFM Atomic force microscopy 

Arp2/3 Actin-related proteins ARP2 and ARP3 

ATP  Adenosine triphosphate 

BF Bright-field 

BSA Bovine serum albumin 

DAG Diacylglycerol 

DMSO Dimethyl sulfoxide 

dSTORM Direct Stochastic optical reconstruction microscopy 

DTS Dense tubular system of platelets 

ECM Extracellular matrix 

F-actin Filamentous actin 

FA(s) Focal adhesions 

FS Filament sensor 

G-actin Globular (monomeric) actin 

GDP Guanosine-5'-diphosphate 

GFP Green fluorescent protein 

GPCR(s) G-protein-coupled receptor(s) 

GTP Guanosine-5'-triphosphate 

HDAC6 Histone deacetylase 6 (for deacetylation associated with dynamic MTs) 

HSCs Hematopoietic stem cells 

HT-BSA Hepes-Tyrode BSA 

IMS Invaginated membrane system 

IP3 Inositol-1,4,5-triphosphate 

LVHR-SEM Low-voltage, high-resolution scanning electron microscopy 

MAPs Microtubule associated proteins 

MB (circumferential) Marginal band  

MK(s) Megakaryocyte(s) 
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MLC Myosin light chain 

MLCK Myosin light chain kinase 

MRLC Myosin regulatory light chain 

MT(s) Microtubule(s) 

MTOC Microtubule organizing center  

MT ring/coil Microtubule circumferential marginal band  

Myosin(II) Refers to non-muscle myosin II expressed in platelets 

NA Numerical aperture 

OCS Open canalicular system of platelets 

PAR(s) Protease activated receptor(s) (for thrombin) 

PBS Phosphate buffered saline 

PGE1 Prostaglandin E1 

PGI2 Prostaglandin I2 

PIP2 phosphatidylinositol-4,5-biphosphate 

PKC Protein kinase C 

PLC2 Phospholipase C2 

PSG PIPES Saline Glucose  

PTM(s) Post translational modification(s) 

RBCs Red blood cells 

ROCK Rho-associated protein kinase 

ROI Region of interest 

RF Radio frequency 

RT Room temperature 

SEM Scanning electron microscopy 

SIM Structured illumination microscopy 

SiR Silicon-rhodamine 

Src  Proto-oncogene tyrosine protein kinase 

STED Stimulated Emission Depletion 

Syk  Spleen tyrosine kinase 

TIRF Total internal reflection fluorescence 

TP Thromboxane A2 receptor 

TTL Tubulin tyrosine ligase (for tyrosination associated with dynamic MTs) 

TAT1 Tubulin acetyltransferase (for acetylation associated with stable MTs) 

TXA2 Thromboxane A2 
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VASP Vasoactive-stimulated phosphoprotein 

WASp Wiskott-Aldrich syndrome protein  

Cc  Critical concentration 

kon Rate of ATP-G-actin addition 

koff Rate of ADP-G-actin loss 

tzero First time point of platelet adhesion  

A Platelet spread area 

h Histogram bin width 

I Normalized fluorescence intensity 

N Final number of platelets analyzed/counted per experimental condition 

σ Standard deviation 

t1 Turning time point 
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