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Abstract 

 
Heart failure is one of the most common causes for morbidity and hospitalization in the 
western civilization. The prognosis is still poor and new therapies are needed. For decades, 
variations in phosphorylation and redox status of cardiac proteins have been characterized in 
different heart diseases to identify new drug targets. Both abnormal phosphorylation-levels of 
cardiac key proteins and elevated reactive oxygen species (ROS) production were found to 
contribute to contractile dysfunction and fibrosis in failing hearts.  

In this context type-1 phosphatase (PP-1) was demonstrated to be a principal contributor to 
Ser/Thr PP activity (~45%) and has been implicated particularly in the regulation of basal 
cardiac contractility and in the responses to β-adrenergic stimulation (El-Armouche et al, 
2009; Yin et al, 2009). Up until now redox sensitivity of cardiac PP-1 has not been 
addressed, despite well-known perturbations in PP-1 regulation in failing hearts. Therefore, 
one goal of this project was to identify the underlying mechanisms of PP-1 oxidation and to 
test whether oxidized PP-1 contributes to the pathophysiology of abnormal protein 
phosphorylation and myocardial dysfunction in failing myocardium. Immunoblotting revealed 
that the phosphorylation status of classical PP-1 downstream target proteins, such as 
phospholamban (PLB) and cardiac myosin binding protein-C (cMyBP-C) were differentially 
affected by H2O2, indicating a complex layer of regulation of both redox sensitive kinases and 
phosphatases. Consistently, the phosphorylation status of protein phosphatase inhibitor-1 (I-
1), a crosstalk protein between protein kinase A and PP-1 signaling, showed a bell-shaped 
phosphorylation response with a maximal peak at 100 µM., For the first time we 
demonstrated with mass spectrometry that PP-1 shows various post-translational 
modifications on the incubation with H2O2 as one of the majorly available intracellular 
reactive oxygen species. In summary, for PP-1 a mechanism is purposed which states that 
PP-1’s cysteine residues in the presence of H2O2, first form sulfenic acid with a fast response 
to protect higher oxidations by glutathione that enables a self-protective mechanism by 
forming transient inter-disulfide bridges. Intra-protein disulfide bridges with Cys127 to form a 
dimer formation of PP-1 at 70 kDa might also play a role for the activity of the protein. In 
contrast, in the absence of glutathione, direct formation of sulfonic acid would make the 
protein irreversible inactive. The discovery of reversibility of PP-1 in the presence of the 
reducing agent (TCEP) after inactivation upon H2O2 treatment clearly shows that disulfide 
bridges are playing a crucial role in maintaining the activity of PP-1. 

In addition, to the changed redox status of cytosolic proteins like PP-1 in diseased 
cardiomyocytes, an impairment of the redox balance in organelles was described. With this 
respect the occurring endoplasmic reticulum (ER) stress is of high interest as it could 
influence transmembrane and secreted proteins. Therefore, the redox- and ER stress-
dependent regulation of the secreted connective tissue growth factor (CTGF) was 
investigated. CTGF is a cysteine-rich protein highly expressed during embryonic 
development and in fibrotic diseases, including cardiac fibrosis (Winter et al., 2008; Lok et 
al., 2015). Due to its high content in cysteines and intramolecular disulfide bonds, we 
hypothesize that ER stress modulates the oxidation status of CTGF, which in turn affects its 
activity and structure in cardiomyocytes. Moreover, it was unknown whether ER stress can 
be modulated by the expression of cysteine-rich proteins like CTGF. We first analyzed CTGF 
expression in human diseased heart samples and were able to show an up-regulation in 
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ischemic cardiomyopathy (ICM), which is associated with increased ER stress and changes 
in redox signaling. To further link the regulation of CTGF to these processes, isolated 
neonatal rat cardiomyocytes (NRCMs) were treated with pharmacological ER (DTT, 
thapsigargin) and oxidative (H2O2) stress inducers. DTT altered the molecular weight of 
CTGF in non-reducing immunoblots, suggesting conformational changes in the protein 
structure. In contrast, thapsigargin increased intracellular CTGF content, reaching the 
maximum after 6 hours of exposure to NRCMs. H2O2 had only a modest effect increasing 
intracellular CTGF within minutes. To further analyze the crosstalk of ER stress and CTGF 
regulation, CTGF expression was reduced with a specific siRNA in NRCMs, which led to a 
decrease in the expression of ER stress markers like PDI, BIP and IRE1-α. This data argues 
for an interconnection of CTGF and ER stress, as ER stress modulates CTGF and vice 
versa, CTGF expression modulates proteins of the ER stress cascade. 

In summary, this thesis gives mechanistic insight in the redox-dependent regulation of PP1 
and CTGF, which represent not only the cytosolic and secretory compartments of 
cardiomyocytes, respectively, but also the two mayor pathomechanisms contractile 
dysfunction and fibrosis in heart disease. 
 

Key words: cysteine, disulfide bridges, heart failure, redox, cardiomyocytes, PP-1, CTGF 
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1 Introduction 

1.1 Oxidative stress 

During normal cellular aerobic function reactive oxygen species (ROS) such as hydrogen 

peroxide (H2O2), hydroxyl radical (●OH) and superoxide (O2
●-) are produced in cells which 

react at both cellular and tissue levels (Griendling and FitzGerald, 2003). Intracellular ROS 

are formed from a single electron reduction of oxygen (O2), which leads to the formation of 

radical O2
●-. In the presence of superoxide dismutase (SOD) enzymes, two molecules of O2

●- 

can be converted to one molecule of H2O2 and one molecule of water (H2O). In addition, by 

accepting an electron from free Fe2+ ions (Fenton reaction), H2O2 is converted to ●OH. With 

the potential presence of glutathione peroxidases, peroxiredoxins or catalase, H2O2 can be 

reduced to water. H2O2 can also potentiate the modification of redox-sensitive Cys residues 

to alter cellular signaling (Sullivan and Chandel, 2014; Figure 1). Further details about Cys 

redox modifications are discussed in Section 1.2. 

Figure 1 | Chemical reactions involved in generating ROS. Signaling pathway showing the 
formation of ROS species within the cell (Sullivan and Chandel, 2014).   

Classically, oxidants have been considered as harmful elements mediating pathology. 

Oxidants are counterbalanced by antioxidants to maintain homeostatic levels of ROS. The 

most well-known antioxidant molecules are GSH, ubiquinol, thioredoxin, lipoic acid, beta 

carotene, retinol (vitamin A), ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) 
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(Charles and Eaton, 2008). Whenever oxidants and antioxidants are imbalanced, leads to an 

increase in ROS levels, a condition which is called oxidative stress (Sies, 1997).  

On the other hand, redox signaling involves O2 or O2-derived ROS to alter the cardiac 

function at the post-translational level. From a clinical perspective, oxidative stress has been 

associated with cardiac disease development (e.g., heart failure) with antioxidants in clinical 

trials showing little or no impact on rescuing the heart from diseases (Johnston et al., 2015).  

1.1.1 Sources of ROS and their role in the heart 

The primary sources of ROS in cardiac metabolism are known to be mitochondria, 

endoplasmic reticulum (ER), nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidases (NOX), nitric oxide synthases (NOS), cytochrome P450 oxidases and xanthine 

oxidase (XO) (Sag et al., 2014; Figure 2). Electron leak from complexes I and III are the most 

well characterized sources of mitochondrial ROS production and have a significant impact on 

both disease pathogenesis and redox signaling transduction in the cardiovascular system 

(Chen and Zweier, 2014). However, recent studies suggest excessive mitochondrial ROS 

production in apoptosis, which leads to an abrupt remodeling of the heart (van Empel, 

Vanessa P M et al., 2005; Matsushima et al., 2006). Within the human end-stage of heart 

failure and in various heart failure models such as myocardial infraction and pressure 

overload–induced myocardial hypertrophy, XO has been found to be highly expressed (Berry 

and Hare, 2004; Maytin et al., 2004; Stull et al., 2004). In contrast, human clinical studies 

suggested that XO inhibitor treatment is not related to increased or decreased risk of 

cardiovascular diseases (Seoyoung C. Kim et al., 2015). 

All seven isoforms of NADPH oxidase enzymes contain a core subunit NOX1-5 and DUOX1-

2. NOX2 and NOX4 are expressed mainly in endothelial cells, cardiomyocytes, and 

fibroblasts. Studies of NOX2 knockout mice suggest that during pressure overload, ROS 

produced by NOX2 can affect the development of interstitial fibrosis and cardiac contractile 

dysfunction, but it is not shown to be important for the development of cardiac hypertrophy 

(Grieve et al., 2006). In eukaryotic cells, ER provides a typical oxidation environment for 

protein folding and disulfide bridge formation. Over time, as unfolded proteins are 

accumulated in the ER, leading to ER stress in the cell, an increase in ROS species can be 

observed due to a decrease in antioxidant levels (Rahal et al., 2014). More information 

related to ER-associated ROS will be discussed in Section 1.6. 

For the physiological functioning and signaling of the cardiac cells, high amounts of 

endogenous H2O2 lead to various diseases, whereas lower levels are essential. Within 
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diseased tissues H2O2 concentrations of up to 100 µM have been measured (Burgoyne et al., 

2007; Hartzell, 2007). However, 1-15 µM of H2O2 appears to be the peak level in normal 

physiological contexts. During scientific experimentation, intracellular concentrations of 1-

15% of externally applied H2O2 have been reported. External incubation with 10-103 µM H2O2 

could largely mimic the discharge of H2O2 endogenously by growth factors and therefore 

such concentrations of exogenous H2O2 are physiologically relevant (Schroder and Eaton, 

2008). 

Figure 2 | Sources of ROS in cardiomyocytes. Under both baseline and pathophysiological 
conditions, ROS is produced by various sources in cardiac tissue. PP-1 is inhibited by ROS, playing 
an important role in calcium and ROS signaling within the cell (adapted from Erickson et al., 2011).  

Previous clinical experiments using antioxidants have been largely disappointing as despite 

promising pre-clinical data in animal models, anti-oxidants failed to show any protective 

effects in large scale clinical trials (Steinhubl, 2008). These unanticipated results have been 

largely attributed to the unspecific nature of antioxidants. In such cases, exogenous 

application of anti-oxidants would also disrupt the physiological processes that oxidants 

contribute to. This therefore permits further research on the pathological and physiological 

roles of oxidants in order to develop specific treatments to target these mechanisms.  

1.2 Redox-nano switches – Cysteine residues 

Cysteine (Cys) is a molecule that consists of sulfur, carbon, nitrogen and hydrogen. In 

general, due to the presence of the thiol group, Cys side chains are known to be a highly 

potent nucleophile under physiological conditions (Figure 3). Within the thiol group, the 



  
Introduction  

 
  

 
 

4 

 

average pKa of Cys is 8.2 (Tajc et al., 2004). Thiol group reactivity is linked with its pKa 

value (Shaked et al., 1980).  

 

 

 

 
Figure 3 | Cys structure. Cartoon representation of the Cys molecule showing sulfur (yellow), carbon 
(cyan), oxygen (red), nitrogen (blue) and hydrogen (gray-white). 

Thiol acidity could be increased by three to four-fold, if the thiol groups are in proximity to 

positively charged residues, i.e. lysine or arginine (Copley et al., 2004). Interactions with 

distinct residues and metal ions can also lead to stabilization of the thiolate form. Within the 

ER (a highly oxidizing compartment), Cys residues have a tendency to form disulfide bridges 

under physiological conditions. Whereas in the cytoplasm (a highly reducing environment), 

Cys residues are in the free thiol state.  

 

 

 

 

 

 

 

Figure 4 | Redox modification pathway of Cys by H2O2. The catalytic thiol groups, representing 
oxidative modification by H2O2: reversible modification (sulfenic acid, disulfide, and glutathionylation) 
and irreversible modification (sulfinic acid and sulfonic acid) (adapted from Meng C.T. et al., 2004). 

When Cys is oxidized, kinases and phosphatases are activated and inactivated, respectively 

(Denu and Tanner, 1998; Brennan et al., 2006). Cys thiol groups are highly reactive and can 

trigger many biological pathways and act as a primary site for post translational modifications 

(PTM). Thiol modifications can be reversible, such as the formation of sulfenic acid (R-SOH), 

inter or intra-disulfide bonds and glutathionylation (R-S-SG) (Lim et al., 2001), or irreversible, 
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such as the formation of sulfinic acid (R-S-O2H) and sulfonic acid (R-S-O3H) (for review see 

Murray and van Eyk, 2012; Figure 4). 

1.2.1 Reversible thiol modifications 

1.2.1.1 Disulfide bridges 

At the post-translational level, only Cys residues can undergo oxidation, which leads to the 

formation of disulfide bridges, which are particularly enhanced in secreted and membranous 

proteins. Disulfide bridges help to stabilize the protein’s secondary structure through stronger 

covalent bonds (and not ionic or H-bridge formation) between two parts of the protein, or by 

linking various polypeptide chains. Normally proteins with only a single disulfide are 

available, but due to the presence of multiple Cys residues within one protein, formations of 

many disulfide bridges are also possible. Disulfide bridges formation within the cellular 

environment is also dependent on the oxidants present in the various cell compartments. 

Disulfide bridge formations are favorable within the lumen of ER due to a suitable pH (~7.2) 

for redox reactions of a thiol group (Kim et al., 1998). On the contrary, in the cytosol 

glutathione is the primary thiol-containing molecule, which prevents the formation of disulfide 

bridges. Within the cytosol of a resting cell, glutathione is present in either its reduced form 

(GSH) or oxidized state (GSSG) in the ratio 100:1; a ratio which has been demonstrated to 

reduce to 10:1 or even 1:1 in various models of oxidative stress (Chai et al., 1994).  

Disulfide bridges can be of two types: intra, and inter - disulfide bridges. Some proteins such 

as thioredoxin, glutaredoxin, and protein disulfide isomerases contain CXXC motifs, which 

are a signature style of all proteins that form intra-disulfide bridges (Go et al., 2015). In 

addition, kinases are also well known to be redox regulated. It has been established that 

serine/threonine kinases PKG-1α (Burgoyne, JR et al., 2007) and ATM (Guo et al., 2010) 

activation mechanism is dependent on the formation of intermolecular disulfide bridges 

between homodimers. 

1.2.1.2 S-glutathionylation  

One of the most common PTMs inside the cells is S-glutathionylation. When a protein 

undergoes the oxidation process, first the most unstable form of thiol-oxidation sulfenation 

happens, which is then resolved by a Cys GSH. This reaction stops further oxidation of the 

protein to form an irreversible form of thiol oxidation (sulfinic and sulfonic acid). The resulting 

product of the reaction is S-glutathionylation (R-S-SG), which can be reversed to the original 

state of the protein (R-SH), in the presence of glutathione transferase (GST). GSSG ßà 
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GSH transfer to Cys residues is primarily dependent on the action of GST. This in return is 

mainly dependent on continued yield of GSH from the synthetic enzymes, such as 

glutathione synthetase and gamma-glutamylcysteine. This further helps in the removal of 

conjugates of GSH as a defined transporter. The principle role of GST is detoxification of 

xenobiotics by catalyzing the nucleophilic attack by GSH, which is possible with electrophilic 

carbon, nitrogen or sulfur atoms. This prevents any communication with crucial nucleic acids 

and cellular proteins (Ferre and Clote, 2005).  

1.2.1.3 S-sulfenylation  

When proteins are exposed to oxidants, sulfenic acid (R-SOH) is formed which can alter 

protein structure and hence protein activity. As this modification is highly unstable, the 

identification of this state remains challenging (Lo Conte and Carroll, 2013). It has been 

found that mainly protein tyrosine phosphatase (PTPs) are inactivated by H2O2. Within the 

SH2 domain-containing PTPs (SHP-1 and SHP-2), two Cys residues form a stable disulfide 

bridge. This modification leads to an increase in catalytic pKa value and hence a decrease in 

the activity of PTP protein (Chen et al., 2009). 

1.2.2 Irreversible thiol modifications 

1.2.2.1 Sulfinic and sulfonic acid  

Two modifications of the thiol groups are considered to be permanently inactivated and 

irreversible: sulfinic (R-S-O2H) and sulfonic (R-S-O3H) acid. Recently, 181 R-S-O2H/R-S-O3H 

sites were recognized from rat myocardial tissue incubated with a physiological estimation of 

H2O2 (<100 µM) or from ischemia/reperfusion (I/R) injury using the Langendorff perfusion. 

This study showed that I/R not only substantially increases both modified peptides from 

proteins involved in energy utilization and contractility, but also those engaged in oxidative 

damage and repair (Paulech et al., 2015).  

1.3 Mass spectrometry  

Mass spectrometry (MS) is an analytical technique mainly used to measure the molecular 

mass of a sample. It can also be used for more complex protein samples and structure 

analysis. The MS techniques is known to be very versatile due to the following attributes: (i) 

high sensitivity, (ii) detection of every molecule independent from its chemical nature, (iii) 

enabling of minor mass changes, e.g. alteration of one amino acid for another, and (iv) 

detection of PTMs with their exact modification site. The most common instruments in 
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biopharmaceutical MS are based on the matrix-assisted laser desorption/ionization (MALDI) 

and electrospray ionization (ESI) principle because they are available to large biomolecules. 

In principle, the liquid or gaseous sample first needs to be transferred from atmospheric 

pressure to the high vacuum regions and also from a non-charged molecule into the charged 

ion state. This is done by one of several ion sources available at front of the mass 

spectrometry unit. Then the particles pass through the mass analyzer, where they are 

separated according to their m/z ratio. At the end, they hit the detector plate that consumes 

the ions. Detection is enabled by the multiplication of a molecule in a secondary ion cascade, 

and this package of ions is recorded both the detector and by a PC framework. The PC 

shows the signals graphically as a mass spectrum: a two-dimensional plot of intensity versus 

m/z.  

Figure 5 | An overview of electrospray ionization. ESI source produced a continuous stream of the 
sample solution, which is passed through quartz silica capillary, producing ions into multiple charge 
states that are trapped by MS.  

Currently, most MS instrumentation is coupled with ESI, which has been established as one 

of the most important methods for small-scale chromatography coupling. A sample of interest 

is first brought into the tip of the conductive capillary, i.e. the ionization source of the MS. 

Then an electric field is established between the capillary and the mass spectrometer, which 

leads to the initial procuration of positive or negative charges. In ESI the molecules are 

present in solution and are then transformed into the gaseous state using high voltage. This 

process generates charged analyte/solvent droplets at the tip. Furthermore, atmospheric 

pressure reduces the size of the charged droplets and the solvent evaporates. Consequently, 
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droplets continue to contracting until the surface strain can no longer support the charge and 

the droplets are separated, and then analyzed by MS (for review see Yates et al., 2009; 

Figure 5). 

1.3.1 General strategies for peptide and disulfide bridge identification  

As discussed in Section 1.2, disulfide bridges formation is most common with secretory 

proteins, which could become one of the main targets in biopharmaceutical industry. 

Certainly, the PTMs in general, assume an essential role in the structural stabilization of the 

protein, and in the near future, it will be necessary to study the advancement of novel protein 

biopharmaceutical interventions (Sandra et al., 2014). Currently, detection of SS bridges or 

glutathionylation in proteins is difficult in MS analysis due to the high tendency for false–

positive results. In MS-based disulfide mapping, the general rule is to produce and dissect 

fragments with a single disulfide bridge associating two peptides via proteolytic enzymatic 

digestion of the non-reduced protein. Further, it can then be recognized either by mass alone 

or by MS/MS sequencing. The predominantly used enzyme in proteomics is Trypsin, but in 

SS analysis it might be beneficial to digest at low pH, in such case Pepsin would be an ideal 

enzyme (Liu et al., 2014). Such cases result in the integration of an absence of enzymatic 

cleavage sites amongst Cys residues, and smaller disulfide bridges centers with firmly 

dispersed or even adjacent Cys residues (Goyder et al., 2013; Reinwarth et al., 2014). 

Figure 6 | An overview of the generation of MS and MS/MS spectra used for the identification of 
peptides. On the top left, the MS analysis of three different ions is shown. They bypass Q1 and Q2 
and are separated in the ToF according to m/z. On the lower left, selection of one ion in Q1 and 
fragmentation in Q2 with subsequent detection in the ToF is shown. On the right hand, the 
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fragmentation pattern with the most typical ions of a short model peptide is represented (according to 
Biemann, 1988). 

To understand the general strategy behind the unequivocal identification of a linear peptide, 

an example of a QToF instrument is explained (Figure 6). A QT of instruments consists of the 

following parts: (i) a selection Quadrupole (Q1), (ii) a fragmentation Quadrupole (Q2), and (iii) 

a Time of Flight (ToF) high-resolution mass analyzer. The latter can be interchanged with an 

Orbitrap which turns the instrument into the state of the art QExactive. When analyzing the 

intact mass of the peptides, the mixture transitions from Q1 to Q2, and is then separated 

according to its m/z in the ToF analyzer.  

When the sequence or structural information of a peptide is required, the peptide is first 

selected in Q1, then fragmented in Q2 (by applying collision energy which is achieved by a 

lower vacuum value when inflating the cell with He or N2 molecules), and the resulting 

fragments are separated according to their m/z in the ToF analyzer. Combined information 

on the intact mass and the sequence readout can be submitted to a database search for 

unequivocal identification of the peptide. Fragmentation of the peptide depends on the 

method and the gas used. Generally, the peptide breaks along the backbone exactly at the 

peptide bond, resulting in y-type (C-terminal) and b-type (N-terminal) ions. If using Trypsin as 

a proteolytic enzyme, the placement of a positive charge at the C-terminal Arginine (Arg/R) 

or Lysine (Lys/K) residue is visible, and another mobile proton is available for b-type ions. 

Figure 7 | A general strategy explaining the identification of peptide using MS/MS data. In silico 
generated MS/MS data from a complex database is compared with spectra obtained from the LC-
MS/MS experiment. The blue side represents the real experiment, while the red side is an in-silico 
experiment performed by the search engine. 
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Identification of a peptide in a proteomics experiment is assisted with databases as shown in 

Figure 7. The intact protein is digested with a site-specific endoproteinase like Trypsin, 

leaving Arg/R or Lys/K residues at the C-terminus. These peptides are detected in the MS 

regime, one precursor ion (one peptide) is selected for fragmentation, and the sequence can 

be read out according to Figure 7.  

Starting with a gene, the open reading frame (ORF) is in-silico transcribed, but modern 

proteome databases begin immediately with a curated database that contains only existing 

proteins. The proteins are in-silico digested and then an automated database search requires 

a spectrum comparison, which can be performed by two approaches: (1) One approach 

starts with comparing the intact mass of a peptide with all suitable intact masses from the in-

silico digested database. Further spectrum searches are performed on a subset of 

corresponding peptide spectra. (2) The other approach starts with the determination of 

peptides sequences and searches them against a much smaller subset of possible precursor 

masses going along with it, which will greatly improve the confidence of peptide identification, 

particularly when PTMs are involved. 

1.4 The cardiac β-adrenergic signaling pathway 

Cardiovascular diseases (CVDs) are the primary cause of mortality worldwide, accounting for 

17.3 million deaths per year, and mortalities are expected to increase to more than 23.6 

million deaths per year by 2030. Even though the death rate from CVDs has fallen to 39% 

between 2001 and 2011, the concern and risk are high (Mozaffarian et al., 2015). Cardiac 

homeostasis is maintained by various post-translational modifications (PTMs), including 

phosphorylation, glycosylation, acetylation, hydroxylation, proteolytic cleavage as well as 

oxidative modifications. These  altered PTMs can lead to heart failure, including contractile 

dysfunction and arrhythmias (Herren et al., 2013; Hoshino et al., 2014; Prysyazhna and 

Eaton, 2015). 

During physical activity or stress the sympathetic nervous system initiates a ‘fight or flight’ 

response. Within ventricular cardiomyocytes, norepinephrine and epinephrine act upon the β-

adrenergic signaling system - activating adenylyl cyclase (AC) via stimulatory G proteins 

(Gs). This leads to an increase in cyclic adenosine monophosphate (cAMP), and hence 

activates protein kinase A (PKA) (Reuter H., 1983). Activated PKA further phosphorylates 

various pivotal proteins, such as ryanodine receptors (RyR2), phospholamban (PLB), 

troponin I (TnI), cardiac myosin binding protein-C (MyBP-C) and L-type calcium (Ca2+) 

channels (LTCC). These aforementioned proteins regulate the excitation-contraction 
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coupling (ECC) cycle of the cardiomyocytes and hence the contraction of the heart (Bers, 

2002; El-Armouche and Eschenhagen, 2009; Figure 8).  

During ECC, Ca2+ plays an essential role in cardiac contraction by maintaining high cytosolic 

Ca2+ concentration to activate cross-bridge formation between myofilaments proteins, which 

in turn develops pressure in the heart chambers and hence provides energy for the ejection 

of blood (Luo and Anderson, 2013). Ca2+ enters the cardiomyocytes via tubular-dependent 

LTCC and later, with the phosphorylation of PLB at Ser16 by PKA, increases sarcoplasmic 

reticulum Ca-ATPase (SERCA2a) activity, thereby facilitating cytoplasmic Ca2+ reuptake into 

the sarcoplasmic reticulum (SR) lumen. The phosphorylation of PLB, cMyBP-C, and TnI by 

PKA could be reversed by protein phosphatases (PP) (Figure 8). Phosphatases are 

discussed in more detail below.  

Figure 8 | Recent advances in redox regulation of b–adrenergic signaling pathway in cardiac 
myocytes. b-adrenergic (b-AR) receptors, localized in micro-domains of the sarcolemma formed by t-
tubules, activate stimulatory G proteins (Gs) which stimulate adenyl cyclase (AC) to make cAMP. 
cAMP then promotes an increase in protein kinase A (PKA)–dependent phospholamban (PLN) 
phosphorylation. This in turn promotes increased uptake of calcium ions (Ca2+), via the sarcoplasmic 
reticulum Ca2+ ATPase (SERCA), into the sarcoplasmic reticulum (SR) increasing SR Ca2+ load, and 
SR Ca2+ release through ryanodine receptors (RyR2). In addition, activation of PKA also 
phosphorylates L-Type Ca2+ channel (LTCC), troponin I (TnI) and cardiac myosin binding protein-C 
(MyBP-C). Moreover, activated PKA, also triggers phosphorylation of I-1 at Threonine-35 to act as an 
inhibitor of phosphatase PP-1, resulting in dephosphorylation of PLB, cMyBP and TnI. On the 
contrary, PP-2A and PP-2B deactivates I-1 by dephosphorylation at Serine-45 and hence activation of 
PP-1. ROS alters the balance between kinase and phosphatase activity by activating and deactivating 
in a dose-dependent manner respectively and hence complex signaling paradigm with the 
downstream cardiac proteins (adapted from Bers, 2002).  
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1.5 Serine/threonine phosphatases 

Many physiological functions are influenced by phosphorylation/de-phosphorylation events, 

such as cell differentiation, cell signaling, gene expression, neuronal activity, mitosis and 

metabolic functions (see reviews by McCluskey et al., 2002; Virshup and Shenolikar, 2009; 

Schulz and Wieczorek, 2013). Regulatory processes dictate the balance between two key 

enzymes; protein kinases, which transfer phosphate from ATP to the protein 

(phosphorylation), and protein phosphatases, which catalyze the opposite reaction 

(dephosphorylation). Protein phosphatases are considered to be relatively non-specific 

enzymes that exist only to reverse the action of protein kinases. In eukaryotic cells, 

phosphorylation’s main targets are three hydroxyl-containing amino acids serine, threonine 

and tyrosine, and out of these, mainly serine is targeted. While understating the role of 

phosphatases and kinases, which are almost equal in number in the human genome i.e. 90 

vs 107, whereas the number of catalytic subunits of serine/threonine phosphatases is much 

lower than that of Ser/Thr kinases (40 vs 428; Moorhead et al, 2007). Protein phosphatase 

families include: protein phosphatase type-1 (PP-1, ~38.5 kDa; Figure 9), type-2 (PP-2), 

consisting of PP-2A, PP-2B (calcineurin) and PP-2C. Recently, this set has been extended to 

PP-4, PP-5, PP-6 and PP-7 (Herzig and Neumann, 2000; Shi, 2009). PP-1 and PP-2 are the 

major constituents of phosphatase activity (~90%). Specifically, PP-1 is ubiquitously 

expressed in most cardiac cell types, including cardiomyocytes (El-Armouche and 

Eschenhagen, 2009). 

1.5.1 Protein phosphatase 1 (PP-1)  

PP-1 is a monomeric 37-kDa protein (Bollen et al., 2010) containing 330 residues. PP-1 

plays a leading role in Ser/Thr PP activity (~45%). All isoforms of PP-1 contain thirteen Cys 

residues that hold two manganese (Mn2+) ions at the center of the structure. Mn2+ is an 

essential element in biological systems and occurs in various oxidation states (+2. +3. +4. +6 

and +7). It is also a cofactor for important enzymes and metalloproteins that are necessary 

for proper functioning (Martinez-Finley et al., 2013). Mammalian cells have three genes 

which encode four isoforms of PP-1’s catalytic subunits PP-1α, PP-1β (or δ), PP-1γ1 & PP-

1γ2 (Cohen 1988). Moreover, different isoforms of PP-1 shares similar sequence of 

percentages - 93% (γ1/γ2), 91% (α/γ1), 89% (α/β), 88% (α/γ2), 87% (γ1/β) and 85% (γ2/β). 

All aforementioned isoforms of PP-1 have a distinctive tissue distribution and subcellular 

localization, which assembled to a favored binding to regulatory subunits and perform distinct 

functions (MacMillan et al., 1999).  
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PP-1 is highly conserved throughout evolution and is involved in a diverse array of cellular 

processes including muscle contraction, gene transcription, synaptic plasticity, glycogen 

metabolism and cell cycle progression (Cyert and Thorner, 1989). In the heart PP-1 has 

been shown to specifically regulate basal cardiac contractility and feedback to β-adrenergic 

stimulation. There are two types of PP-1 inhibitors: natural small molecular toxins and protein 

inhibitors. Various toxins exist inhibiting PP-1 activity, including tautomycin, calyuclin A, 

microcystin and okadaic acid (OA). However, many endogenous proteins, such as the acid- 

and heat-stable inhibitor proteins – inhibitor-1 (1-1), inhibitor-2 (I-2), dopamine- and cyclic-

AMP-regulated phosphoprotein (DARPP-32) have been shown to inhibit PP-1, leading to 

changes in localization and activity.  

1.5.2 Predicted oxidative modifications of PP-1 

ROS are capable of modulating the response of numerous cell-signaling pathways and serve 

as secondary messengers that control signal transduction by oxidizing cysteines of various 

kinases and phosphatases (Chiarugi, 2005). Oxidative modifications of PKA have been 

shown to enhance cardiac contractility via increased phosphorylation of key proteins 

(Brennan et al., 2006). In general, PKA inhibits PP-1 activity by phosphorylating PP inhibitor-

1 (I-1) at Thr35 and PP-2B dephosphorylating I-1 at Ser45, acting as a counterbalance 

(MacLennan and Kranias, 2003; El-Armouche and Eschenhagen, 2009). In contrast, ROS 

can inhibit the activity of phosphatases and improve the ability of PKA to phosphorylate 

various downstream cardiac proteins (Figure 8). So far it has been shown that inactivation of 

PP-2B occurs in a thiol-oxidation-dependent manner (Li et al., 2004).  

PP-1 contains highly conserved motifs with putative reactive Cys residues (Cys155 and 

Cys158) in proximity to the active site similar to thioredoxin (CXXC) (Figure 9.A). In the 

presence of oxidants, the Cys residues are expected to form a disulfide bridges, which 

results in loss of PP-1 activity (Fetrow. et al., 1999). This putative mechanism will be 

examined in this thesis.  

Interestingly, besides targeting Cys for redox regulation, the PP-1 structure also has 

binuclear metal ions which reside about 3.3 Å apart at the center of the catalytic subunit. The 

two metal ions, manganese (Mn2+), are surrounded by four histidines (His), two aspartic 

acids (Asp), and one asparagine (Asn). On top, exclusively Cys residues (Cys62, Cys127, 

Cys140, Cys155, Cys171, Cys202, Cys245 and Cys273) also lie near the Mn2+ ions (Figure 9.B).  
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Figure 9 | Sequence and detailed structure analysis of PP-1 (PDB id: 4MOV). (A) A summary of 
multiple sequence alignment of the three isoforms (α, β and γ-1 and γ-2) of PP-1. The following 
symbols are used to depict residues: identical (*), conservative (:) and similar (.). Above the sequence, 
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B.1 
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α-helices are represented as cylinders, β-strands are indicated with arrows, and metal coordinated 
residues are highlighted in yellow (Peti et al., 2013). (B) Binuclear metal center surrounded by Cys 
residues in the PP-1 structure, showing the networking Cys residues as red in color, the distance 
between them as red dotted lines and the rest of the backbone peptide is shown as a blue cartoon 
(B.1). The two Mn2+ ions are shown as pink balls surrounded by close Cys residues (B.2), with four 
Histidines surrounding the Mn2+ ions (B3).  

1.6 ER stress and the unfold protein response  

Cardiovascular studies have intensively focused on the function of the 

sarcoplasmic/endoplasmic reticulum (SR/ER) in cardiomyocytes, mainly due to SR’s role as 

a primary source of intracellular Ca2+, which regulates the contraction and relaxation of 

myofilaments. Currently, it is well accepted that a relationship exists between disturbances in 

Ca2+ handling and heart disease, and thus the regulation of Ca2+ is an important 

pharmaceutical target for treatment of cardiovascular diseases. In addition, there is 

increasing evidence showing that the ability of protein handling in the SR/ER is also affected 

by heart disease. This leads to ER stress which has been first described in 1988 in simian 

cells (Kozutsumi et al., 1988).  

A network of membranes, known as cisternae, builds the ER in eukaryotic cells. Membrane 

and secretory proteins are produced in the ER, then processed, folded, and exported via the 

Golgi apparatus to the cell membrane or released into the interstitial space. In the ER lumen, 

balanced protein folding is primarily maintained by levels of calcium, molecular chaperones, 

protein glycosylation and the redox-status. Perturbations in the balance of accumulation and 

removal of misfolded/unfolded proteins can lead to physiological/pathological consequences, 

a condition which is called ER stress (Glembotski, 2007). To overcome this and to restore 

function back to the cell, a series of events takes place, including the degradation of 

misfolded proteins, the increase in production of chaperones, and the downregulation of 

protein translation. This process is known as unfolded protein response (UPR). If UPR is not 

successful, the cell will undergo apoptosis (Fribley et al., 2009). In the heart, it has also been 

shown that UPR is activated during I/R; furthermore long-term stresses that lead to cardiac 

hypertrophy and heart failure (Glembotski, 2008).  

ER stress is prominently led by three ER-transmembrane proteins, i.e. inositol-requiring 

enzyme-1 (IRE-1) (Cox et al., 1993), protein kinase R-like ER kinase (PERK) (Shi et al., 

1998) and activating transcription factor 6 (ATF6) (Zhu et al., 1997). These proteins act as 

the primary proximal effectors of the UPR signaling pathway. When the ER protein folding 

machinery functions efficiently, the ER luminal domains of IRE-1, PERK and ATF6 resides at 

the ER-resident chaperone called binding protein (BiP). Upon perturbation of ER protein 
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folding machinery, aggregation of misfolded proteins begins: BiP dissociates from IRE-1, 

PERK and ATF6, and attaches to the hydrophobic regions of misfolded proteins in order to 

support their folding. This translocation of BiP activates the three proximal effectors, which in 

turn activates the UPR signaling pathway (Bertolotti et al., 2000; Minamino and Kitakaze, 

2010; Kimata and Kohno, 2011). 

1.6.1 ER-transmembrane proteins (IRE-1, PERK and ATF6) 

The IRE-1 gene was first discovered in mammals which encodes a type 1 ER 

transmembrane protein (Mori et al., 1993). IRE-1 functions as a kinase and as an 

endoribonuclease. In the UPR, IRE-1 gets detached from BiP due to the accumulation of 

misfolded proteins in the ER. Autophosphorylation by its kinase activity occurs and 

dimerization activates IRE-1 leading to the subsequent activation of endoribonuclease 

activity. IRE-1α is the most important isoform for UPR, it efficiently splices the X-box binding 

protein 1 mRNA (XBP-1). After the spliced mRNA is translated, the splice variant, i.e. XBP-1s 

moves to the nucleus and triggers the activation of ER-stress responsive genes, which 

regulate the protein folding machinery, transportation and protein degradation (Calfon et al., 

2002; Figure 10).  

PERK is a type 1 ER transmembrane protein kinase and found as a monomer under 

unstressed conditions (Shi et al., 1998). Without ER stress, the luminal part of the 

monomeric PERK associates with the ER chaperone BiP. As soon as ER stress is initiated, 

BiP relocates from PERK to misfolded ER proteins. BiP relocalization permits PERK to 

dimerize, which facilitates trans-autophosphorylation in a mechanism similar to growth factor 

receptor activation (Ma et al., 2002). After dimerization and autophosphorylation, PERK is 

activated, which further phosphorylates and activates eukaryotic translation initiation factor 

2α (elF2α) at Ser51, which in turn prevents the initiation of global translation (Bertolotti et al., 

2000). Global translational inhibition decreases the protein-folding load on the ER, aiding in 

the recovery of ER homeostasis and the amelioration of efficient protein folding machinery 

(Harding et al., 1999). With respect to translational arrest, elF2α phosphorylation also 

translates specific mRNAs such as the activating transcription factor 4 (ATF4). This results in 

increased expression of ATF4, which assists in regulating transcription factors such as 

C/EBP homologous protein (CHOP). This protein contributes to programmed cell death 

(Figure 10).  

Similar to IRE-1 and PERK regulation, ATF6 is an ER transmembrane protein that, during 

the unstressed state, exists as a dimer linked by intermolecular SS bridges in the luminal 

domain and is associated with BiP. During ER stress, protein misfolding increases which 
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leads to the sequestration of BiP away from the ER-luminal domain of ATF6. In contrast to 

the other two effectors, which remain in the ER lumen upon dissociation of BiP and disulfide 

bridge cleavage, a 90 kDa form of ATF6 translocate to the Golgi-complex, where it is cleaved 

by site-1 and site-2 proteases (S1P and S2P) (Figure 10). The resulting cleaved 50 kDa 

ATF6 is a cytosolic fragment, which translocate to the nucleus where it can form homodimers 

or heterodimers with a small group of basic leucine zipper transcription factors which trigger 

UPR genes expression in the nucleus. Therefore, activated ATF6 is an essential element of 

the UPR (Glembotski, 2014).   

Figure 10 | ER stress signaling pathways in eukaryotic cells. ER stress is triggered by disturbance 
in nutrient or energy balance of a cell, results in misfolded protein accumulation in the ER and hence 
activation of the UPR as a surviving process. Three ER transmembrane proteins play an essential role 
in maintaining the balance between ER stress and UPR: Inositol-requiring enzyme-1 (IRE-1), protein 
kinase R-like ER kinase (PERK) and activating transcription factor 6 (ATF6)–in combination with the 
ER chaperone BiP (adapted from Groenendyk et al., 2013). 

1.7 Connective tissue growth factor 

CCN proteins are known to have abundant amounts of Cys (>10%) and a complete 

conservation of the 38 Cys residues position in the sequence (Bork, 1993). In total, there are 

six exclusive proteins within the CCN family, which share the same sequence homologies 

and secondary structure. The CCN family of secreted Cys-rich proteins with similar structure 

are grouped together and abbreviated according to these proteins: Cys-rich protein 61 

(cyr61=CCN1), connective tissue growth factor (CTGF=CCN2) and nephroblastoma 

overexpressed protein (NOV=CCN3) (Leask and Abraham, 2006). The other three members 
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of the CCN family are Wnt-1-induced proteins (WISP): WISP-1 (CCN4), WISP-2 (CCN5) and 

WISP-3 (CCN6) (Rachfal and Brigstock, 2005). CTGF was discovered in 1991. Gary et al. 

described a platelet-derived growth factor (PDGF)-related mitogen in the medium of human 

umbilical vein endothelial cells (HUVECs) and termed it CTGF (Bradham DM et al., 1991).  

1.7.1 Structural and functional properties of CTGF 

CTGF is a 36 kDa matricellular protein of the CCN family containing four distinct structure 

modules: (1) an insulin-like growth factor binding protein (IGFBP), (2) a von-Willebrand factor 

type C (vWF-C), (3) a thrombospondin motif (TSP1), and (4) a Cys knot (CT) at the 

carboxyterminal end (Figure 11.A). Between modules (2) and (3), CTGF has a hinge region 

which can be cleaved by proteases into two fragments of similar molecular weights.  

All four modules are involved in different physiological functions such as cell proliferation, 

migration, adhesion, differentiation, matrix production and apoptosis. From the pathobiology 

perspective CTGF is overexpressed in fibrotic lesions, fibrogenesis, cancer, atherosclerosis 

(Au et al., 2010; Leeuwis et al., 2010; Jacobson and Cunningham, 2012) and is also involved 

in wound healing, angiogenesis and epithelial-mesenchymal transition (Alfaro et al., 2013; 

Sonnylal et al., 2013; Liu et al., 2014b). 

CTGF contains 39 conserved Cys residues, spread over four modules and can form intra- 

and inter-disulfide bridges. The IGFBP N-terminal domain contains twelve Cys residues 

(Hwa et al., 1999). vWF-C, also known as chordin-like Cys-rich (CR) repeats, contains ten 

Cys residues. The first motif ‘Cys2XXCys3XCys4’ lies in the middle and the second motif 

‘Cys8Cys9XXCys10’ lies at the end of the repeat (Bork, 1993). In total, TSP-1 contains six Cys 

residues and the motif ‘CSXTCG’ (Tan et al., 2002). The last domain, located at the carboxy-

terminal end, is known as the CT module or Cys knot. It has been suggested that the CT 

module may be involved in dimerization as it serves this function in transforming growth 

factor-β (TGF-β), nerve growth factor and PDGF (Bork, 1993). 

The CT is stable in structure with two SS bridges forming a ring structure and the fifth Cys 

projecting through the ring to allow the formation of a third SS bridge (Perbal et al., 1998) 

(Figure 11.B). Within the aqueous environment, this structure enhances the availability of 

hydrophobic residues in monomers and supports the formation of homo- or heterodimers. To 

initiate signal transduction through their respective receptors, dimers serve as an active state 

of the CT bearing growth factors. Individual domains of CTGF show a distinct functions, 

where the C-terminal arbitrate fibroblast proliferation and the N-terminal domain arbitrates 

myofibroblast differentiation and collagen synthesis (Grotendorst and Duncan, 2005). 
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Figure 11 | Schematic structure of CTGF protein. (A) Structural CTGF is composed of four 
modules: IGFBP, vWF-C, TSP1 and the CT (adapted from Winter et al., 2008). (B) 3D chemical 
structure with various domains of CTGF showing intra and inter-SS bridges (Holbourn et al., 2008). 

1.7.2 Functional aspect of CTGF in heart diseases 

Previous studies on CTGF have focused on cardiac fibrosis (Jatho et al., 2015; Ongherth et 

al., 2015); yet it is still uncertain whether CTGF plays any role in cardiomyocytes. Contrary to 

studies on the negative impacts of CTGF during fibrogenesis, several reports suggest that 

CTGF plays a cardio-protective role. This cardio-protective role was shown by Ahmed et al, 

as CTGF restored phosphokinase signaling by promoting the inhibition of GSK-3β and 

activating phospho-SMAD2 (Ahmed et al., 2011).  

CTGF can also attenuate hypertrophic signaling in cardiac myocytes in response to chronic 

pressure (Gravning et al., 2013a). The same research group suggested that paracrine 

regulation of GRK5 activity in cardiomyocytes may contribute to cardio-protective actions of 

CTGF in heart failure (Gravning et al., 2013b). In adult cardiac myocytes CTGF has also 

been shown to directly trigger the Akt/GSK-3β signaling pathway, which leads to increasing 

tolerance to hypoxia and oxidative stress (Moe et al., 2013). One of the studies furthermore 

describes an antagonizing function of CTGF by using a CTGF monoclonal antibody. The 

results showed that the antibody may decrease the danger of hypertensive coronary illness 

in patients (Szabo et al., 2014). 

In the context of cellular proliferation, CCN1 and CTGF are known to be positive regulators of 

growth, whereas CCN3 and CCN5 are negative growth regulators (Brigstock, 1999; Lau and 

Lam, 1999). In different tissues and organs, CCN1 and CTGF (structurally related, but 
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functionally distinct multimodular proteins) are expressed during pathological or 

developmental events. In one of the studies, it was shown that, using in vitro computation of 

biological activities, CCN1 expression triggered a genetic reprogramming of structural, 

adhesive and angiogenic proteins, whereas CTGF induced aggregation of the extracellular 

matrix, a primary stage of fibrotic diseases (Chaqour and Goppelt-Struebe, 2006).  

Further comparisons by the Park group showed differential expression of CTGF and CCN5 

during the process of cardiac remodeling and opposite regulation during the fibrosis and 

cardiac hypertrophy. In other words, CTGF and CCN5 were shown to be pro-and anti-

hypertrophic, respectively. The CT domain is absent in CCN5, which is known to have 

hypertrophic activity in CTGF. The deletion of the CT domain in CTGF restores hypertrophic 

function similar to a CCN5-like dominant negative molecule (Yoon et al., 2010). The same 

group demonstrated that CCN5 expression was significantly decreased in end-stage heart 

failure samples compared to non-failing heart samples. In addition, both in vivo and in vitro 

experimentation showed that CCN5 triggers apoptosis only in myofibroblasts, but surprisingly 

not in cardiomyocytes or fibroblasts. The authors suggest that CCN5 could reverse cardiac 

fibrosis (Jeong et al., 2016).  

In 2001 it was reported that, in dermal fibroblasts and activated hepatic stellate cells, CTGF 

protein is quantitatively emitted through the Golgi apparatus and is rapidly degraded in the 

endosome (Chen et al., 2001). In chondrocytes it was found that the loss of CTGF triggers 

deformed extracellular matrix (ECM) organization and chondrocyte death, accompanied by 

increased cellular stress (Hall-Glenn et al., 2013). CTGF and its role in ER stress in the heart 

has not been fully understood. Therefore, the involvement of CTGF in the ER stress 

response and UPR signaling pathway was analyzed.  
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2 Aim of the study 

Abnormal phosphorylation levels of cardiac key proteins and elevated reactive oxygen 
species (ROS) production were shown to contribute to contractile dysfunction and fibrosis in 
failing hearts. Within this context this thesis aimed to investigate the redox sensitivity of the 
cytosolic PP1 and the secreted CTGF in cardiomyocytes. Both proteins were demonstrated 
before to be dysregulated in the diseased heart, however, the influence of a changed redox 
status on their regulation in cardiomyocytes had been not assessed. 

Given that redox sensitivities of cardiac PP-1 and CTGF are involved in contractile 
dysfunction and fibrosis, which are the main pathomechanisms of cardiac diseases, the 
thesis addresses the following objectives: 
 
● Identify the mechanisms of PP-1 oxidation and test whether oxidized PP-1 
contributes to the pathophysiology of abnormal protein phosphorylation and 
myocardial dysfunction in failing myocardium  
 
More specifically, the following questions were addressed: 

1. Does PP-1 activity change, due to cysteine oxidation status or dinuclear metal (Mn2+) 
ions in response to oxidative stress? 

2. Does glutathionylation play any role in the activity of PP-1? 

The main experimental procedure consisted of activity assays to identify the PP-1 activity. 
Mass spectrometry was used, as a method to analyze different Cys-based post-translational 
modification in PP-1. 
 
● Test the hypothesis whether redox and ER stress affects CTGF and vice versa 

In detail, the following questions were addressed: 

1. Is CTGF affected by redox and ER stress in cardiomyocytes? 

2. Is ER stress and the UPR pathway affected by the expression of CTGF?  

We attempted to answer the above questions using a combination of non-reducing gels and 
incubation of the cells with redox and ER stress eliciting agents. Furthermore, we also used 
si-RNA techniques to knockdown CTGF expression in cardiomyocytes and assessed the 
impact on various ER stress markers. 
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3 Materials & Methods 

3.1 Materials 

3.1.1 Antibodies  

Table 1 | Primary antibodies 

Primary 
antibody 

Dilution Source Type/ Clone Catalogue 
No. 

Company 

W.B IF 
α-actinin 1:2000 1:500 Mouse Monoclonal/6-

11B-1 
 

T6793 Sigma-Aldrich 

ATF6 1:500 1:50 Rabbit Polyclonal H-280 Santa Cruz 

BiP 1:500    - 
 

Rabbit Monoclonal C50B12 Cell Signaling 

CHOP 1:500 1:3200 
 

Mouse Monoclonal L63F7 Cell Signaling 

CTGF 1:200 1:50 Goat Polyclonal/L-20 
 

sc-14939 Santa Cruz 

CSQ 1:1000    - 
 

Rabbit Polyclonal 9102S Dianova 

Phospho 
cMyBP-C- 
Ser282 

1:5000    - Rabbit Polyclonal ALX-215-057-
R050 

Enzo Life 
Science 

Phospho-
Inhibitor-1-
Thr35  

1:1000    - Rabbit Polyclonal #2302 Cell Signaling 

IRE1-α 1:1000    - 
 

Rabbit Monoclonal 14C10 Cell Signaling 

PDI 1:1000 1:100 
 

Rabbit Monoclonal C81H6 Cell Signaling 

Phospho 
PLB-Ser16 

1:1000    - Rabbit Polyclonal 9102S Badrilla 

PKA RI 1:200    - 
 

Mouse Monoclonal 610166 BD 
Transduction 
Laboratories 

PP-1  1:200    - 
 

Mouse Monoclonal E-9 Santa Cruz 

PP-1 alpha 
(α) 

1:1000    - 
 

Mouse Polyclonal C-19 Santa Cruz 

SERCA2 1:200    - Goat Polyclonal Sc-8094 Santa Cruz 

α-tubulin 
(~Tubulin) 

1:2000    - Mouse Monoclonal T 5168 Sigma-Aldrich 
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Table 2 | Horseradish peroxidase (HRP)-conjugated secondary antibodies 

Secondary 
antibody 

Dilution Source Catalogue No. Company 

Goat 1:10000 Donkey Sc-2020 Santa Cruz 

Mouse 1:10000 Rabbit A9044 Sigma-Aldrich 

Rabbit 1:40000 Goat A9169 Sigma-Aldrich 

Table 3 | Fluorophore-conjugated secondary antibodies for immunofluorescence 

Secondary 
antibody 

Dilution Fluorophore 
 

Source Catalogue 
No. 

Company 

Goat 1:300 Cy3 Rabbit 305-165-003 Jackson Immuno 
Research 

Goat 1:100 FITC Rabbit 305-095-003 Jackson Immuno 
Research 

Goat 1:150 FITC 488  Rabbit 305-095-003 Jackson Immuno 
Research 

Rabbit 1:500 Alexa-fluor 
594 

Goat 111-475-144 Jackson Immuno 
Research 

 

3.1.2 Buffers and solution 

Table 4 | Composition of the used buffers, solutions, and media 

Immunoblotting 

GST-fish buffer (500 ml)  25 ml 1 M Tris (pH 7.4 with HCl)  
75 ml 1 M NaCl  
2 ml 1 M MgCl2  
50 ml glycerol  
5 ml Igepal CA-630  
up to 500 ml distilled water  

4x SDS-PAGE sample loading buffer (50 ml)  25 ml glycerol  
5 ml β-Mercaptoethanol  
3.25 g SDS  
15 ml 300 mM Tris (pH 6.8 with HCl)  
0.125 g bromophenol blue  
up to 50 ml distilled water  

Blocking buffer 10 ml 1 M Tris-HCl pH 7.4 
20 ml 0.5 M malemide 
20 ml 10% SDS 
up to 50 ml H2O 

2x Non-reducing loading buffer 4 ml 1 M Tris-HCl pH 6.8 
1.6 gm SDS 
8 ml Glycerol, 87% 
4 mg bromophenol blue 
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8 ml 0.5 M malemide 

2x Reducing loading buffer 4 ml 1 M Tris-HCl pH 6.8 
1.6 gm SDS 
8 ml Glycerol, 87% 
4 mg bromophenol blue 
8 ml 0.5 M malemide 
0.617 gm DTT 

10x TBS buffer (1000 ml)  12.12 g Tris  
87.65 g NaCl  
up to 1000 ml distilled water  
pH 7.4 with HCl  

TBS-T buffer (1000 ml)  1000 ml 10x TBS  
1 ml tween 20  

5x SDS-PAGE electrophoresis buffer (1000 ml)  15.1 g Tris  
94 g glycine  
5 g SDS  
up to 1000 ml distilled water  
pH 8.3 with KOH  

Blotting buffer (1000 ml)  3.02 g Tris  
14.4 g glycine  
200 ml methanol  
up to 1000 ml distilled water  

12% SDS-polyacrylamide gel (50 ml)  16.5 ml distilled water  
20 ml acrylamide rotiphorese gel 30 solution  
12.5 ml 1.5 M Tris (pH 8.8 with HCl)  
0.5 ml 10% SDS  
0.5 ml 10% APS  

15% SDS-polyacrylamide gel (50 ml)  11.5 ml distilled water  
25 ml acrylamide rotiphorese gel 30 solution  
12.5 ml 1.5 M Tris (pH 8.8 with HCl)  
0.5 ml 10% SDS  
0.5 ml 10% APS  
0.02 ml TEMED  

5% SDS-polyacrylamide gel (20 ml)  13.6 ml distilled water  
3.4 ml acrylamide rotiphorese gel 30 solution  
2.5 ml 1 M Tris (pH 6.8 with HCl)  
0.2 ml 10% SDS  
0.2 ml 10% APS  
0.02 ml TEMED  

10% SDS (100 ml)  10 g SDS  
up to 100 ml distilled water  

10% APS (10 ml)  1 g APS  
up to 10 ml distilled water  

Ponceau S stain (100 ml)  
 

5 ml glacial acetic acid  
0.2 g Ponceau S powder  
up to 100 ml distilled water  
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Immunofluorescence (IF) 
 
4% paraformaldehyde (PFA) (250 ml)  10 g paraformaldehyde  

50 μl 10 N NaOH  
25 ml 10x PBS  
up to 250 ml distilled water  
pH adjusted to 7.0 with HCl  

0.05% Triton (50 ml) 250 μl 10x Triton up to 50 ml PBS  

1x Roti-Immunoblock (50 ml)  5 ml 10x Roti-Immunoblock up to 50 ml 
distilled water  

Agarose gel electrophoresis 
  
1% Agarose gel (50 ml)  0.5 g agarose powder  

50 ml 1x TAE buffer  
2 μl ethidium bromide (10 mg/ml)  

50x TAE buffer (1000 ml)  242.28 g Tris  
57.1 ml glacial acetic acid  
200 ml 0.25 M EDTA (pH 8.0 with NaOH)  
up to 1000 ml distilled water  

Bacterial culture media and plates 
  
LB medium (1000 ml)  10 g tryptone  

5 g yeast extract  
10 g NaCl  
up to 1000 ml distilled water  
pH 7.0  
autoclave  

LB agar plates with carbenicillin (1000 ml)  10 g tryptone  
5 g yeast extract  
10 g NaCl  
15 g agar  
up to 1000 ml distilled water  
pH 7.0 with NaOH  
autoclave  
let cool to about 50°C, then add 1 ml 
carbenicillin stock (50 mg/ml), then cast as 20 
ml/10 cm petri dish  

SOB medium (1000 ml)  20 g tryptone  
5 g yeast extract  
0.5 g NaCl  
10 ml 25 mM KCl  
up to 1000 ml distilled water  
pH 7.4  
autoclave  
5 ml autoclaved 2 M MgCl2  

SOC medium (100 ml)  1 ml filter-sterilized 2 M glucose  
up to 100 ml SOB medium  
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Cell Isolation 

Calcium- and bicarbonate- free Hanks with HEPES 
(CBFHH) (1000 ml)  

40 ml NaCl stock (200 g/l) 
10 ml MgSO4*H2O stock (20 g/l)  
10 ml KH2PO4 stock (6 g/l)  
10 ml Na2HPO4*2H2O stock (5.97 g/l)  
10 ml glucose dihydrate stock (100 g/l)  
100 ml HEPES stock (47.66 g/l)  
up to 1000 ml distilled water, sterile by filtration  
pH 7.4 with NaOH  

Heat inactivated FCS (50 ml)  50 ml FCS was incubated in a water bath 
adjusted to 56°C for 30 minute (min), during 
which it was shaken gently every 5 min.  

Non-cardiomyocyte medium (NCM)  500 ml DMEM GlutaMAX 1 g/l glucose  
50 ml heat-inactivated FCS  
5 ml P/S (100x)  

0.4% Trypan blue (100 ml)  0.4 mg trypan blue  
100 ml distilled water  

Neo-natal rat cardiomyocyte (NRCM) culture media 
 

Cardiomyocyte medium (CM)  Minimal Essential Medium (MEM-Earle, 2.2 g / 
l NaHCO3, without L-glutamine)  
FCS (inactivated) 10% (v/v)  
L-glutamine, 1% (v/v)  
Penicillin / streptomycin, 1% (v/v)  
BrdU (10 mM) 1% (v/v) freshly added  

BrdU (5-bromo-2'-deoxyuridine)  

 

BrdU 10 mM  
In aqueous solution, sterile filtered. Stable for 
one week at 4°C. 

Other buffers and solution 
  
BIAM labeling buffer  
 
 
 

1 ml 10 mM Tris (pH 6.8 with HCl)  
1ml 1% Triton X-100 
6.6 ml 100mM Nacl 
10 ml 1% SDS   
up to 100 ml distilled water  
(Prior to use, add 100 µM BIAM to solution) 

Stage A buffer 0.5% (v/v) acetic acid in water 

Stage B buffer 80% (v/v) acetonitrile 
0.5% (v/v) acetic acid in water 

Loading buffer for MS 1% (v/v) acetonitrile  
0.1% (v/v) formic acid in water 
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3.1.3 Chemicals and reagents 

Table 5 | List of chemical and reagents 

Chemical and Reagents Manufacturer 

Acetic acid (100%)  Carl Roth  

Acetonitrile AppliChem 

Agar  Peqlab  

Agarose  AppliChem  

Ammonium bicarbonate Sigma-Aldrich 

Ammonium persulfate (APS)  AppliChem  

Ascorbic acid  AppliChem  

Aqua B. Braun Braun 

N-(Biotinoyl)-N'-(Iodoacetyl)Ethylenediamine (BIAM) Thermo-Scientific 

Brefeldin a (BFA) Sigma-Aldrich 

Bromophenol blue  AppliChem  

Carbenicillin  Applichem  

Control siRNA-A Santa Cruz 

CTGF siRNA  Santa Cruz 

Cycloheximide Santa Cruz 

4',6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich  

Diamide Sigma-Aldrich 

Dimethylsulfoxide (DMSO)  Sigma-Aldrich  

DMEM Glutamax, 1 g/l glucose, pyruvate  Life Technologies  

DMEM Glutamax, 4.5 g/l glucose  Life Technologies  

DNA loading buffer (6x)  Thermo-Scientific  

DNA molecular weight standard (1  kb DNA ladder)  Thermo Scientific  

Dithiothreitol (DTT) Applichem 

Ethanol, absolute  J.T. Baker  

Ethidium bromide  Sigma-Aldrich  

EvaGreen dye for qPCR  Solis Biodyne  

Fetal calf serum (FCS)  Life Technologies  

Formaldehyde (37%)  Merck  

Formic acid AppliChem 

GeneRuler 1 Kb plus DNA ladder  Thermo-Scientific  

Glucose AppliChem 

Glycerol AppliChem 

Glycine AppliChem 

Hydrogen peroxide (H2O2) solution  Sigma-Aldrich  
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4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)  Carl Roth  

Igepal CA-630 Sigma-Aldrich 

Iodoacetamide (IAA) Sigma-Aldrich  

Isopropanol Carl Roth 

Lipofectamine RNAiMAX transfection reagent Life Technologies 

6x Loading Dye (Agarose gel                                                                          

electrophoresis)  

Thermo Scientific  

Lumi-Light PLUS Western Blotting Substrate  Roche  

Magnesium chloride (MgCl2) AppliChem 

Manganese chloride (MnCl2) AppliChem 

Maleimide Sigma-Aldrich 

β-Mercaptoethanol AppliChem 

Methanol Carl Roth 

MG132 Sigma-Aldrich 

Okadaic acid Enzo life sciences 

Paraformaldehyde (PFA) Sigma-Aldrich 

Penicillin/streptomycin (P/S) Life Technologies 

Phosphate-buffered saline (PBS) without Ca2+  Life Technologies 

PolyFect transfection reagent  Qiagen  

Ponceau S  Sigma-Aldrich 

Protein Marker „Roti‐Mark Standard.“  Carl Roth  

Roti‐Block (Blocking Reagent) 10X Carl Roth  

Roti‐Nanoquant (Bradford reagent)  Carl Roth  

Sodium chloride (NaCl)  Sigma-Aldrich  

Sodium dodecyl sulfate (SDS)  AppliChem 

Streptavidin agarose Thermo-Scientific 

Streptavidin, horseradish peroxidase conjugate Thermo-Scientific 

SuperSignal West Femto  Thermo Fisher Scientific  

Bond-Breaker TCEP Solution, Neutral pH Thermo-Scientific 

Tetramethylethylenediamine (TEMED)  Merck 

Thapsigargin (TGN) Calbiochem 

Tris ultrapure (Tris base)  AppliChem 

Triton X-100 Carl Roth 

Trypan blue Fluka 

Trypsin-EDTA 0.05% Life Technologies 

Tunicamycin Santa Cruz 

Tween-20 Carl Roth 

Urea AppliChem 
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3.1.4 Kits  

Table 6 | List of kits 

3.1.5 Cells  

Table 7 | List of bacterial and mammalian cells 

Cells Description 
HSP47 knock out (KO)  Isolated from MEFs 

Primary neo-natal rat 
cardiomyocytes (NRCM)  

Isolated weekly from neonatal Wistar rats (1-3 days old)  

3.1.6 Primers and recombinant proteins 

Table 8 | List of primers used for qPCR and RT-PCR 

Gene Primer Sequence (5`→ 3`) Annealing 
temperature 

CTGF  
 

Forward CCG GGT TAC CAA TGA CAA TA 58oC  
 

Reverse CAC ACC CCA CAG AAC TTA GC 

PBGD Forward CCT GAA ACT CTG CTT CGC TG 58oC  

Kit Application Manufacturer 
EnzChek Phosphatase Assay 
Kit 

Phosphatase activity 
assay  

Molecular probes 

Exprep plasmid SV mini  Miniprep plasmid 
purification from bacteria  

GeneAll  

GoTaq green master mix  PCR  Promega  

High pure PCR product 
purification kit  

PCR product purification  Roche  

5x HOT FIREPOL EvaGreen 
qPCR Mix Plus 

qPCR  
 

Solis Biodyne  
 

Lumi-light western blotting 
substrate  

Chemiluminescence 
protein blot visualization  

Roche  

Neonatal Heart Dissociation 
Kit 

Isolation of beating 
cardiomyocytes  

Miltenyi Biotec 

ProFluor Ser/Thr PPase Assay 
Kit 

Phosphatase activity 
assay  
 

Promega 

Revert Aid First Strand cDNA 
Synthesis Kit  

RNA reverse 
transcription into cDNA  

Thermo-Scientific  

RNeasy  Total RNA isolation  Qiagen  
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Reverse CTG GAC CAT CTT CTT GCT GAA  

PDI Forward CTT CTT CAA GGA CGC AGG GT 58°C 

Reverse GCG GCC TTC ATC AAA CTT CTT 

XBP-1 Forward TTA CGA GAG AAA ACT CAT GGG C 58°C 

Reverse GGG TCC AAC TTG TCC AGA ATG 

 

Table 9 | List of recombinant protein 

Enzyme 
 

Source Company 

PP-1A,active,GST-tagged, human 
recombinant 

Sf9 insect cells Sigma-SRP5338 

PP-1A, His-tagged E.coli Sigma-P7937  

3.1.7 Laboratory instrument, general material and software 

Table 10 | List of instruments 

Instrument 
 

Model No. Manufacturer 

Autoclave  VX-150  Systec  

Cell counting chamber  Fuchs-Rosenthal bright-line  Marienfeld-Superior  

Cell culture incubator  Steri-cult 200 Incubator  Forma Scientific  

Cell culture incubator  Labotect Incubator C 200  Labotect  

Cell sieve  Cell dissociation sieve - 
tissue grinder kit (250 μm 
pore size)  

Sigma-Aldrich  

Centrifuge bench top  Centrifuge 5804 R  Eppendorf  

Centrifuge bench top  Sigma 3K30  Sigma  

Centrifuge table top  Tabletop centrifuge 5415 D  Eppendorf  

Centrifuge table top  Combi-spin FVL-2400N  Biosan  

Centrifuge table top  Centrifuge 5417 R  Eppendorf  

Chemiluminescence imaging 
system  

Versa doc MP  Bio-Rad  

Double distilled water system  Milli-Q  Millipore  

Electric power supply and 
control  

Powerpac  Bio-Rad  

Heating block  Thermomixer compact  Eppendorf  

Incubator  CFC-free  Sanyo  

Inverted fluorescence 
microscope  

Axiovert 200  Zeiss  

Inverted fluorescence 
microscope with climate 
chamber  

Olympus IX 81  Olympus  
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Inverted microscope  Axiovert S100 TV  Zeiss  

Microplate reader  Flex Station 3  MDS Analytical Technologies 

Microscope camera  CAM-XM10-T-Camera  Olympus  

Nanospray Flex ion-Source ES071 Thermo-Scientific 

pH meter  WTW  Inolab  

Pipettes  Pipetman  Gilson  

Plate reader  FlexStation3  Molecular Devices  

Pump  ME2  Vacuubrand  

Q Exactive Plus System  LTQ Orbitrap XL Thermo-Scientific 

Real-Time-PCR-System  TaqMan 7900HT Fast Real-
Time-PCR System  

Applied Biosystems  

Rocker  Diomax 1030  Heidolph  

Rotation shaker  Reax 3  Heidolph  

Scale  Portable  Sartorius  

Shaker  GFL 3016  GLF  

Shaker  Vibramax 100  Heidolph  

Shaking incubator  Innova 4300  New Baunswick Scientific  

Spectrophotometer  Nanodrop 1000  Peqlab  

Sonicator  Sonifier B-12  Branson Sonic Power  

Temperature control chamber  Certomat  B. Braun  

Thermocycler  Mastercycler gradient  Eppendorf  

Ultracentrifuge  L8-70M  Beckman  

Ultracentrifuge rotor  SW-27  Beckman  

Ultra-high performance liquid 
chromatography unit (UPLC) 

Dionix Ultimate 3000  Thermo-Scientific 

UV agarose gel imaging 
system  

Gel doc XR  Bio-Rad  

Vortexer  VF 2 Vortexer  Janke u. Kunkel IKA Labortechnik  

Water bath  2764  Eppendorf  

Western blotting setup  Mini-protean tetra cell 4-gel 
system 

Bio-Rad  

 

Table 11 | List of general material 

General material Manufacturer 

Acclaim PepMap100 C18 
column 

Thermo-Scientific 

Cell culture dishes  Greiner Bio One  
Cell scrapers  Sarstedt  
Centrifuge tubes  Beckman  
Empore SPE Disks Sigma-Aldrich (66883-U SUPELCO) 
Filter syringes  Sarstedt  
Liquid junction emitters  New Objective 
Multi-well cell culture plates  Greiner Bio One  
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Nitrocellulose membrane, 
Whatman, Protran  

GE Healthcare  

PCR reaction tubes  Sarstedt  
Pipette tips  Sarstedt  
Pipette tips with filters  4titude  
Protein desalting spin columns Thermo-Scientific 
Reaction tubes (15, 50 ml) Greiner Bio One 
Reaction tubes (0.5, 1.5, 2 ml) Sarstedt 
Reprosil Saphir Dr. Maisch GmbH 
Serological pipettes Sarstedt  
Silica beads Amerbruch 
96 well microtiter plates Thermo-Scientific 
96 well solid black microplates Corning 
Wide opening, serological 
pipettes  

Falcon 
  

 

Table 12 | List of software 

Program 
 

Application Manufacturer 

Citavi  Managing references 
 

Swiss academic software 

GraphPad Prism 6.0c  Statistical calculations and 
graphs drawing  
 

GraphPad  

ImageJ 1.51a  Evaluation of fluorescence 
intensity 

National Institutes of Health, USA  
 

Image Lab 5.1  Operating the Versa Doc 
MP system and for semi-
quantification of western 
blots  
 

Bio-Rad  

Peaks 7.0 Search engine Analysing Mass-
Spectrometry’s data 
 

Bioinformatics solutions Inc. 

PyMOL 0.99rc6-bin-win32 Structural analysis of 
proteins 
 

Schrödinger, Inc. 

SDS 2.4  Operating the TaqMan 
7900HT Fast Real-Time-
PCR System, and its data 
analysis  
 

Applied Biosystems  

Xcellence pro  Operating the Olympus 
microscopy system for cell 
imaging  

Olympus  
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3.2 Methods 

3.2.1 Cell culture methods 

3.2.1.1 Preparation of cardiomyocytes from neonatal rats 

Neonatal rats were sacrificed on postnatal day 0-3 (P0-P3) in accordance with ethical 

standards. Hearts were extracted using forceps and ventricular tissues were collected in cell 

culture dishes with ice-cooled Calcium- and bicarbonate- free Hanks with HEPES (CBFHH). 

Ventricular tissues were cut in half and transferred to a new culture dish with 20 ml of 

CBFHH and washed one additional time to remove excess blood. The tissues were minced 

into small pieces (1-2 mm3) and then transferred via a 10ml pipette tip to a gentle MACS C-

tube (up to ~20 neonatal rat hearts). 

The following enzymes were prepared from the neonatal heart dissociation kit (for 20 

neonatal rat hearts) according to the manufacturer’s instructions. Reagent preparation 

summarized in Table 13: 

Table 13 | Reagent preparation 

Enzyme mix 1 Enzyme mix 2 

Enzyme P 

62.5 μl 

Buffer X 

2300 μl 

Buffer Y 

25 μl 

Enzyme A 

12.5 μl 

Enzyme D 

100 μl 

The enzyme mix 1 was preheated for 5 minutes (min) at 37°C and mixed with enzyme mix 2. 

2.5 ml of the enzyme mix was transferred to the C-tube containing the tissues and incubated 

in an inward position with the cap down for 15 min at 37°C. The C-tube was then attached to 

the sleeve of a gentle MACS Dissociator and followed by the program named 

‘h_Tumour_01.' Incubation steps were repeated twice to complete the digestion of tissue. 

After the completions of the program, C-tubes were removed from the gentleMACS 

Dissociator and samples were carefully resuspended in 7.5 ml of a non-cardiomyocyte 

medium (NCM).  

To separate the tissue from the suspension, a sieve was moistened (pore size 250 µm) with 

3-4 ml of NCM. The cell suspension was transferred through the sieve, collected in a fresh 

cell culture dish and added to a falcon tube. Cell suspensions were centrifuged at 300 g for 5 

min (20°C), and the supernatant was carefully discarded and re-suspended in 4 ml of 1x 

Phosphate-buffered saline (PBS), homogenized and then filtered.  
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The percoll gradient method was used to extract and purify only the cardiomyocytes fraction 

from the heterogeneous cell suspensions (consisting of a mixture of fibroblasts, 

cardiomyocytes, and erythrocytes). The percoll stock solution was prepared by mixing 40.5 

ml of percoll (4°C) with 4.5 ml of 10x PBS. Then, a top and bottom precoll solution (TPS, 

BPS) was prepared, by mixing 9 ml of percoll stock with 11 ml of 1x PBS and 13 ml percoll 

stock with 7 ml of 1x PBS respectively. To differentiate between both solutions, 200 µl of 

phenol red stock solution was added to TPS. Subsequently, 4 ml of TPS was added to two 

15 ml reaction tubes, and 3 ml of BPS was slowly added to the bottom while transferring the 

pipette upward. Next, 2 ml of cell suspension mixed with 1x PBS was slowly added and 

centrifuged at 750 g for 30 min at 20°C. The percoll gradient (Figure 12) was divided into 

three different gradients (as per density of tissue), i.e. fibroblasts, cardiomyocytes, and 

erythrocytes. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 | Percoll gradient with three distinct layers consisting of fibroblasts, cardiomyocytes, 
and erythrocytes.  

The upper 5 ml of the solution composed of fibroblasts was removed, and 2 ml of 

cardiomyocyte layer was carefully transferred into a new 50 ml tube and washed twice with 

pure DMEM cardiomyocyte medium (CM) at 300 g for 5 min at 20°C. The supernatant was 

discarded, and the pellet was resuspended in 10 ml of pre-warmed DMEM CM. The 

overgrowth of fibroblasts within cardiomyocytes was prevented by the adding 10 mM of 

Fibroblasts 

Cardiomyocytes 

Erythrocyte 
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antimetabolite 5'-bromo-2'-deoxyuridine (BrdU) in the cardiomyocytes medium, which 

selectively inhibited the DNA synthesis and consequently cell proliferation of fibroblasts.  

Cells were counted as follows: 10 µl of cell suspension was mixed with 10 µl tryphan blue 

and transferred to a Neubauer counting chamber. The cell number was counted in all four 

corner chamber, and the average value was used to quantify the cell number as shown 

below: 

Cell quantity x 2 (dilution) x 10⁴ = cell amount/mL 

Cells were seeded into 1% collagen (diluted in PBS) coated plates. For six or twelve well 

plates, 1 x 106 or 0.5 x 106 cells/well were added, respectively. The neo-natal rat 

cardiomyocytes (NRCM) culture was maintained at 37°C in 5% CO2 in a humidified incubator. 

The medium was exchanged after 48 hours (h).  

3.2.1.2 Immunofluorescence of NRCM cells 

After the specific treatment of cells, the medium was aspirated, and the cells were fixed with 

4% paraformaldehyde (PFA) for 15 min at room temperature (RT). The cells were then 

washed twice with PBS and incubated for 5 min with 0.05% Triton solution to permeabilize 

the cell membranes. Cells were washed twice with 1X PBS, before being incubated with 1x 

Roti-Immunoblock for 1 h at RT. Next, the cells were incubated overnight in the dark at 4°C 

with PBS containing the primary antibody against the protein of interest. Cells were then 

washed twice with 1x PBS and incubated overnight at 4°C in the dark with the specific 

fluorophore-conjugated secondary antibodies and DAPI to stain the nuclei (see Table 4 for 

respective dilutions). Finally, the cells were washed twice with PBS and images were taken 

using inverted fluorescence microscopy (Olympus).  

3.2.1.3 Live cell imaging  

The experiments were performed in a 6 well plate with cells incubated with 2 ml of medium. 

The cells were incubated with 102 µM, 103 µM and 104 µM of H2O2 for 90 min in the climate 

chamber of the inverse fluorescence microscope (Olympus), keeping the ideal enviornment 

at 37°C, 5% CO2, 57.37% lamp intensity and the exposure time of 20 ms. A 40x objective 

and a bright-field filter were used to capture the video. The time-lapse recording was setup at 

one frame every 20 min for a total duration of 24 h, with the first frame taken at 0 sec. The 

change in the morphology of cells was further analyzed with Image J.  
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3.2.1.4 Gene knockdown via siRNA transfection 

After seeding NRCMs (day 1), the first transfection was performed after 19-20 h (day 2). For 

the transfection, 2 different siRNA constructs were used: a siRNA, which does not bind to 

mammalian mRNA to serve as a control (siRNA ctrl) and a second siRNA construct that 

binds to the mRNA of CTGF (siRNA ctgf) and blocks its translation. For each well (6 well 

plate) transfection, RNAi duplex-Lipofectamine RNAiMAX complexes were first produced as 

follows:  

(1) 9.9 µl siRNA (22nM) was gently mixed with 900 µl Opti-MEM (OM). 

(2) In parallel, 9.9 µl Lipofectamine RNAiMAX was mixed with 900 µl OM. 

(3) Both solutions were mixed and incubated for 20 min at RT. 

For the transfection, the cells were washed twice with warm PBS. Then 600 µl of 37°C warm 

OM was added together with 400 µl of transfection solution in each well for 6 h at 37°C. Later 

the cells were washed twice with warm PBS and then incubated with fresh CM (day 2). The 

second transfection was performed 24 h after the first transfection as described above (day 

3). The next medium change was conducted after 24 h (day 4). The next day (24 h later) the 

cells were used for particular experiments (Figure 13).                                                   

Figure 13 | Timeline for siRNA transfection. 

3.2.2 Protein biochemical methods 

3.2.2.1 Preparation of samples for western blotting  

NRCMs were kept at 37°C and 5% CO2 in a humidified incubator for 3-4 days with one 

medium exchange. On the day of the experiments, the cells were incubated with respective 

reagents for the definite period under controlled conditions. For protein analysis, the cells 

were lysed with ice-cold GST-fish lysis buffer and afterwards centrifuged at 13000 g for 10 
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min at 4°C to remove the cell debris. The supernatant was mixed with 4x sample loading 

buffer. Subsequently, the samples were incubated at 95°C for 5 min on a heating block and 

then gently centrifuged. 

For reducing and non-reducing gel, the cells were lysed with a blocking buffer containing 

malemide, which blocks the free thiol groups. The cells were later mixed with a 2x loading 

buffer (including malemide) with and without, DTT respectively. To keep the disulfide bridges 

intact, non-reduced samples were not heated, whereas reduced samples were heated at 

95°C for 5 min. 

3.2.2.2 Protein quantification of samples via Bradford assay 

To measure protein concentration, a colorimetric protein assay was used, which was based 

on a shift in the absorbance maximum when dye associates with proteins. A standard curve 

was established with BSA dilutions of known concentrations. 200 μl of 1x Roti-Nanoquant 

solution was mixed with 1 μl of the protein sample (diluted 1:150) and incubated for 5 min at 

RT. Together with the standard curve, the absorbance of each sample was detected at 595 

nm with the microplate reader Flexstation3, and the protein concentrations were calculated 

by linear regression analysis.  

3.2.2.3 Protein separation by SDS-polyacrylamide gel electrophoresis (SDS-
PAGE) and detection by immunoblot 

The electrophoresis for the immunoblotting was carried out in 12-15% SDS-PAGE. Protein 

samples from Section 3.2.2.1 were separated at 200 V on polyacrylamide gels. They were 

then blotted onto a nitrocellulose membrane for 1 h at 100 V. The membranes were blocked 

for 1 h with 1x Roti-Block, washed with the TBST and incubated overnight with a primary 

antibody at 4°C. The following day, the membrane was washed three times for 10 min with 

TBST and incubated with the secondary antibody for 1 h at RT. At the end, the membrane 

was washed again three times for 10 min with TBST. For protein-antibody complex detection, 

west-dura extended duration substrate was used, and for imaging a chemiluminescence 

imager equipped with the software Quantity one. 

3.2.2.4 BIAM labeling assay 

The N-(Biotinoyl)-N-(Iodoacetyl) Ethylenediamine (BIAM) labeling assay was performed to 

confirm Cys oxidation status change in response to ROS. Briefly, NRCMs were incubated at 

37°C for 15 min in a NRCM medium containing 102 µM H2O2. Then the cells were washed 

with PBS and lysed with a BIAM labeling buffer. The control samples were treated without a 
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BIAM labeling buffer. Debris was removed by centrifugation at 13000 g for 10 min, and 

supernatants were further incubated at 37°C for 30 min. Excess BIAM was withdrawn from 

the lysates using protein desalting columns. The lysates were aliquoted into input and output 

samples. Output lysates were mixed with 50 µl streptavidin beads and incubated overnight 

on a shaker at 4°C. The next day the beads were washed thrice with a labeling buffer and 

the sample was cooked with loading buffer at 95°C for 5 min. Both input and output samples 

were then loaded for immunoblotting (Figure 14) (see Section 3.2.2.3).  

Figure 14 | General assay format for the BIAM labeling assay 

3.2.2.5 Phosphatase activity assay 

Total PP activity was measured using the EnzChek Phosphatase Assay Kit. Human heart 

tissue homogenates, NRCM and whole heart mouse tissue were generated in a passive lysis 

buffer (20 mM Tris-HCl pH 7.5, 1 mM Na2EDTA, 150 mM NaCl, 1 mM EGTA, 1% Triton and 

protease inhibitor). Afterwards the protein content (20 µg total protein) was measured using a 

Pierce BCA Protein Assay Kit. The 100 µM 6,8-difluoro-4-methylumbelliferyl phosphate 

(DiFMUP) substrate was mixed with a 100 mM reaction buffer (sodium acetate pH 5.5), 

which was then added to the protein and incubated at RT for 15 min. Fluorescence was 

measured using an excitation wavelength of 360 nm and an emission wavelength detection 

at 460 nm on a Flexstation 3 (Molecular Devices; Figure 15). The fluorescence values were 

used as read out to calculate the PP activity.  
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Figure 15 | Chromogenic reactions in the EnzChek Phosphatase Assay Kit. In the presence of 
reaction buffer, PP cleave the DiFMUP substrate, converting into phosphatase and hydrolyzed DiFMU 
(6, 8-Difluoro-7-Hydroxy-4-Methylumbelliferone) as a fluorogenic product (excitation/emission 
=385/490 nm).  

For calculating the PP-1 activity, a recombinant protein (rPP-1) was used as a source of 

phosphatases and a commercial Promega PP activity assay. The phosphate activity was 

measured in 96 well formats and involved ‘add, mix and read’ steps (Table 14). The assay 

started with a reaction of rPP-1 with a reaction buffer including phosphorylated bisamide 

rhodamine 110 peptide (R110 substrate) and control 7-Amino-4-methylcoumarin (AMC 

substrate). The latter serves as a control for compounds that inhibit the protease. In this 

context, both R110 and AMC substrate were non-fluorescent. However, after the 

phosphatase reaction, the addition of a protease solution stopped the reaction. Then both 

substrates were digested, producing highly fluorescent R110 and AMC. A phosphate solution 

was prepared including MgCl2 and MnCl2, and the assay was initiated by adding a 25 µl 

substrate solution. The reaction was continued for 10 min, and then a protease solution was 

added for 90 min. To stabilize the reaction, 25 µl of stabilizer solution was added. The R110 

signal was measured using an excitation wavelength of 485 nm and an emission wavelength 

at 530 nm. The AMC signal was measured using excitation wavelength of 360 nm and 

emission wavelength at 460 nm. The ratio between R110 and AMC signal was used to 

calculate the PP-1 activity.  

Table 14 | General assay format for 96 well plates used in Promega PP assay 

Phosphatase solution 

Reaction 
buffer  

(µl) 
Control 

(µl) 
Reaction buffer  5 5 

PP-1 0 10 

MgCl2 1 1 

MnCl2 3.125 3.125 

H2O 15.9 5.9 
Total 25 25 

Substrate solution   

5x Reaction buffer (µl) 200 

R11 substrate (µl) 1 
AMC substrate (µl) 1 

H2O (µl) 798 

Total (ml) 1 
Protease solution   

5x Termination buffer 
(µl) 200 
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3.2.3 Molecular biological methods 

3.2.3.1 RNA isolation 

NRCM were grown to 80% confluence, washed once with PBS and total RNA was extracted 

using the RNeasy mini kit, according to the supplier’s procedure with an additional 

homogenization step using a QIA shredder. Afterwards the RNA concentration was 

determined using a Nanodrop 1000 device. Samples were stored at -80°C.  

3.2.3.2 cDNA synthesis 

cDNA synthesis was performed using Revert Aid First cDNA Synthesis Kit from 1 µg RNA 

(extracted from NRCM at step 3.2.3.1) according to manufacturer’s protocol. Samples were 

stored at -20°C. 

3.2.3.3 Quantitative real-time polymerase chain reaction (qRT-PCR) 

qRT-PCR was performed to detect the expression level of various genes in NRCM. As the 

housekeeping gene, PBGD was used for normalization. In general, qPCR was performed 

using 5x HOT FIREPOL EvaGreen qPCR Mix Plus Kit as per manufacturer’s protocol. 

Primers for each gene were diluted to 10 µM, and cDNA samples were diluted to 1:20 with 

RNAse free water. For each sample four replicates were performed with a master mix for 

each gene, which was prepared as shown in Table 15: 

 

 

 

Protease Reagent (µl) 20 
Okadaic acid (300 µM) 10 

H2O (µl) 770 
Total (ml) 1 

Stabilizer solution   
5x Termination buffer 

(µl) 200 
Stabilizer reagent (µl) 1 

H2O (µl) 799 
Total (ml) 1 

9A	w
ell							

	
				

	 

	 
25 µl Stabilizer solution 

25 µl Protease solution 

25 µl Substrate solution 

25 µl Phosphate  
       solution 

90 min. 

10 min. 
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Table 15 | Master Mix for qRT-PCR 

Reagent  Volume  

Primer for (10 pmol/μL)  1 μL  

Primer rev (10 pmol/μL)  1 μL  

Template DNA /Standard DNA (1:20)  1 μL  

RNase-free water  13 μL  

5x EvaGreen qPCR mix  4 μL  

Initially, 1 µl of the diluted cDNA was added per well (Micro-Amp optical reaction 384-well 

plate), and mixed with 19 µl of the master mix. Analyzes were carried out with TaqMan 

7900HT Fast Real-Time-PCR System and as per the following program (Table 16): 

Table 16 | qPCR Program 

Cycle  Temperature  Time  Number of Cycles  

Initial Denaturation  95°C  15 min   

Denaturation  95°C  15 s    

Annealing  60°C  20 s   30 

Elongation  72°C  40 s   

Dissociation curve  95°C  15 s   

 60°C 15 s  

 95°C 15 s  

In the end, threshold cycle values (CT) were calculated for each gene. Finally, to calculate 

gene expression, ΔΔct value was used by the following formula: 

2-ΔΔct = 2(ctSample - ctHousekeeping gene in sample) - (ctControl - ctHousekeeping gene in control) 

3.2.4 Analytical methods 

3.2.4.1 Differentiation of disulfide bridges assisted by protein structural 
analysis with Pymol 

Pymol 0.99rc6-bin-win32 was used to generate structural plots. A Pymol script file was 

prepared that enabled a prior selection of several residues and their labeling either as 

colored sticks or balls. Another feature of the Pymol program was the measurement of 

molecular distances that are summarized in the cross-correlation Table 21. The red dotted 

lines indicate the distances that could be measured (Figure 9) and that are also shown in 



  
Materials and Methods  

 
  

 
 

42 

 

Table 21 for every reasonable combination of two Cys residues. Gnerally, the molecular 

distance for forming a bridge lies within 3 Å. However, small structural changes could also 

induce other proximities since most of the Cys residues are in about 6 Å distance (Figure 9).  

3.2.4.2 Performing the oxidative stress experiment and sample preparations 
for the identification of various PTMs in PP-1 

The experimental design was simplified by incubating GST-tagged PP-1A (supplied in 50 

mM Tris-HCl, pH 7.5, 150 mM NaCl, 10 mM glutathione, 0.1 mM EDTA, 0.25 mM DTT, 0.1 

mM PMSF, and 25% glycerol) in 50mM TRIS pH 7.5 buffer with the following four treatments: 

(1) without Mn2+, without H2O2, (2) without Mn2+, 500 μM H2O2 (15 min), (3) 0.1 mM Mn2+, 

without H2O2, and (4) 0.1 mM Mn2+, 500 μM H2O2 (15 min).  

After the oxidation, 10 mM (final concentration) of iodoacetamide (IAA) were immediately 

added to the samples to block free Cys residues within 20 min. Then 4% SDS solution was 

added to obtain a final SDS concentration of 1% and immediately afterwards the samples 

were subjected to a filter-aided sample preparation (FASP) (Wisniewski et al., 2009). The 

buffer exchange was performed twice for 8 M Urea and twice for 50 mM ammonium 

bicarbonate (ABC). This was followed by an overnight protein digestion at 37°C using a 

digestion buffer (1 µg trypsin/100 ng with 50 mM ABC in 100 µl total volume). The membrane 

was not allowed to dry during the digestion. 

The above experiment was repeated with the 100 ng of the His-tagged recombinant PP-1 

alpha protein for each of the above conditions. The advantage of using this protein was that 

the reducing reagents were omitted from the buffers. Hence, the reactions can be performed 

under “real” oxidative conditions, and the FASP digestions were performed as described in 

above FASP protocol. 

3.2.4.3 Peptide purification via stage tips  

After 18 h the digest was spun through the filter and then subsequently washed with 50 µl 50 

mM ABC buffer, 50 µl 0.5 M NaCl and 100 µl Stage A buffer. All fractions were collected in 

the microspin tube. Samples were then desalted according to the stage tip protocol 

(Rappsilber et al., 2007). Three discs of the desalting material (Empore SPE Disks; C18-

Octadecyl, diameter 47 mm) were prepared in yellow pipette tips and activated with 50 µl 

methanol, washed with 50 µl Stage B buffer and then equilibrated with 100 µl Stage A buffer. 

After loading the sample, the stage tips were washed with another 100 µl Stage A buffer and 
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either stored until measurement or directly eluted with two times 40 µl Stage B buffer into 96 

well microtiter plates. 

3.2.4.4 LC-MS/MS analysis  

For the experimental design with GST-tagged PP-1A, measurements were performed on a Q 

Exactive Plus interfaced with an ultra-high performance liquid chromatography (UPLC) unit 

and a Nanospray Flex Ion-Source Ion Source. Peptides were loaded onto a C18 PepMap100 

column (300 µm internal diameter (i.d) x 5mm length) with 5 µM particle size and 100 Ǻ pore 

width using the capillary pump of the UPLC. The loading pump was operated at a flow rate of 

25 µl/min with the loading buffer (1% acetonitrile (v/v), 0.1% formic acid (v/v) in water). For 

shorter separation, the nano-LC pump unit was operated at 0.5 µl/min and delivered a linear 

binary gradient from 5% to 44% buffer B (80% acetonitrile (v/v) in 0.1% formic acid in water) 

in 28,53 min or 31.02 min, respectively. It was followed by a wash-out at 99% buffer B for 4 

min and re-equilibration to 1% buffer for 10 min or 5 min, respectively. Data acquisition 

started at 2 min when the concentration of buffer B had increased by 5% from the starting 

conditions. The total acquisition time was 48.53 min or 47.52 min, respectively. The gradient 

times were adjusted to the dead volume of the pre-column 1 or pre-column 2 connections. 

The in-house columns were packed directly into liquid junction emitters (100 µm i.d, tip 10+/-

1 µm) with 2.4 µm Reprosil Saphir fused silica beads. The length of the columns varied 

between 12 cm and 15 cm.  

Ionization power of the source was 2.6 keV, and the MS spectra was recorded in 45 min with 

the following parameters: the full MS scan was 200 m/z with a resolution of 70,000; an 

automatic gain control (AGC) target value of 3 x 106 total ion counts with maximal ion 

injection time of 250 ms; the mass spectra were recorded in the profile mode within a mass 

range of 300-2500 m/z. All precursor ions with a charge state between two and six were 

chosen for fragmentation, applying an isolation window of 2 m/z if they met the intensity 

threshold of 6,7x103. This threshold is calculated from the AGC target value of 105 and the 

underfill ratio of 1%. To achieve this target value, a maximal injection time of 150 ms for any 

precursor was allowed. The MS/MS spectra were recorded with the following parameters: the 

resolution was 17,500 at 200 m/z. All selected Precursor ions underwent higher-energy 

collisional dissociation (HCD) fragmentation with a normalized energy of 30. MSMS spectra 

were recorded in the centroid mode within the mass range of 200-2000 m/z. All precursors 

being fragmented were dynamically excluded for 30sec within 10 ppm mass accuracy for a 

second fragmentation event in order to increase the sensitivity for low abundance precursors.  



  
Materials and Methods  

 
  

 
 

44 

 

For the repeated experiment with the His-tagged PP-1, the experimental design for the 

measurement was altered again: the measurement time was now 60 min and the system 

was operated in the one-pre-column setup. Measurements were performed on a Q Exactive 

Plus System, interfaced with FlexSource Electrospray Ion Source. The spray voltage was 3.3 

keV using a direct junction emitter (stainless steel emitter) with a capillary temperature of 

250°C. No extra gas supply was used for sheath gas, auxiliary gas or spare gas. Data 

acquisition was performed in the positive ion mode. MS Spectra were recorded with the 

following parameters: resolution at 200 m/z was 70,000, AGC target value 3x106, max 

injection time 160 ms, and all MS spectra were recorded in profile mode within a mass range 

of 200-2000 m/z. All precursor ions with a charge state between 2 and 6 were chosen for 

fragmentation, applying an isolation window of 2 m/z if they met the intensity threshold of 

6,7x103. The threshold was calculated from the AGC target value of 1x105 and the underfill 

ratio of 1% and underwent HCD fragmentation with a stepped energy fragmentation scheme. 

This scheme included three fragmentations at the normalized fragmentation energies 30, 35 

and 40 and the subsequent overlay of the obtained spectra to a single spectrum. The MSMS 

spectra were recorded with the following parameters: resolution at 200 m/z 17,500 and max 

injection time 150 ms. All MSMS spectra were recorded in the centroid mode within the mass 

range of 200-2000 m/z. Finally, all precursors within 10 ppm mass accuracy eluting within a 

time frame of 30sec were excluded from fragmentation for a second time to increase the 

sensitivity for low abundance precursors. 

3.2.4.5 Data analysis with Peaks 7.0 software 

Spectra were searched with the Peaks 7.0 search engine. Briefly, regular redox-

modifications were examined, and a search strategy for the identification of disulfide-linked 

spectra from a known/identified protein was established. For the former, the following 

parameters were used: the database was UniProt human (July,7th, 2015) comprising 68605 

proteins. Variable modifications in the case of GST-tagged PP-1 used were 

Carbamidomethylation (c, +57.02), Cysteine oxidation to cysteic acid (c, +47.98), Cysteinyl C 

(c, +119.00), Deamidation (NQ) (d, +0.98), Disulfide Bridge unpaired fragmentation (d, -

2.02), Dehydroalanine C (d, -33.99), Deoxidation (M) (d, +31.99), Glutathione disulfide (g, 

+305.07), Hydroxylation (h, +15.99), Oxidation (M) (o, +15.99), Oxidation (HW) (o, +15.99), 

Oxidation or Hydroxylation (C) (o, +15.99), Persulfide C (p, +31.97) and Phosphorylation 

(STY) (p, +79.97). The parent mass tolerance allowed was set to 10 ppm and fragment mass 

tolerance was set to 0.02 Da. The enzyme specificity used was Trypsin, missing cleavages 

were limited to four, but cutting before Proline was authorized in contrast to the standard 
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Trypsin settings. Variable modifications permitted for the search were five. Extraction of data 

points was set to the top 100 peaks for each spectrum.  

Variable modifications in the case of His-tagged PP-1 used were: Acetylation (N-term) (a, 

+42.01), Arginine oxidation to glutamic semialdehyde (a, -43.05), Carbamidomethylation (c, 

+57.02), Deamidation (NQ) (d, +0.98), Disulfide CID breakage (d, +33.99), Dehydroalanine  

(d, -33.99), Dehydration (d, -18.01), Dihydroxy (d, +31.99), Hydroxylation (h, +15.99), internal 

disulfide bond (i, -1.01), internal disulfide bond unpaired fragmentation (i, -2.02), Methyl ester 

(m, +14.02), Oxidation (M) (o, +15.99), Oxidation (HW) (o, +15.99), Oxidation or 

Hydroxylation (C) (o, +15.99), Proline oxidation to pyroglutamic acid (p, +13.98), Sulfone C 

(s, +47.98) and S-Persulfide C (s, +31.97). Otherwise the same conditions were used as with 

the GST-tagged protein.  

Figure 16 | Scheme is showing the generation of permutated Cys-peptide database. The top box 
shows the original protein sequence with the Cys-containing peptides indicated within any other 
sequence x. The Cys residues are highlighted in bold red. In the middle box, the Cys-containing 
peptides were excised and permutated with each other. In the bottom box, all combinations were 
reassembled with the original protein sequence to form the new database entry.  

Since a database search from a linear protein database does not allow the simultaneous 

detection of two structurally close but sequence-wise distant peptides, an automatic search 

strategy for this data was created. For the identification of disulfide-linked peptides, a new 

linearized database entry was created that contained two peptides combinations in a 

permutation. An artificial disulfide-protein was incorporated to the normal human database in 

order to perform the search with the normal search engine. This protein allowed the detection 

xxxxxxxxxxxxxPeptide1withCysteinexxxxxxxxxxxxxxxPeptide2withCysteinexxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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of the intact disulfide-linked peptides from a non-reduced sample, considering them as longer 

peptides with a missed cleavage in the middle either as AB or BA combination. The method 

used to detect these peptides is described in detail in Figure 16 (above).  

Figure 17 | A robust strategy behind the identification of disulfide bridges. Point 1) brings out the 
drawbacks searching disulfide-link spectra in a normal linear database when the peptides are distant 
in the protein sequence. Fragmentation of one peptide might be favored and then it jumps over the 
disulfide-link. Point 2) and 3), illustrated how a novel solution is applying permutated combination of 
the Cys peptides in the database and how further identification works. Hereby case a) represents the 
order of Peptide1Peptide2 and case b) the reverse order Peptide2Peptide1 for the spectrum 
annotation.  

From previous studies on cross-linked peptides, often the b-type or the y-type ion series 

breaks at the site of crosslinking so that a dipeptide is identified by a partial series from the 

one and a partial series from the other peptide. There are also studies about branched 

peptides, which observed that the ion series might jump from one peptide to the other over 

the site of interaction (e.g. Hsiao et al., 2009a). Measurements on the QE favors the 

generation of y-type ion series. In order to unequivocally identify two disulfide linked 

peptides, they need to show fragmented ions in the spectrum that argue for this “jumping the 

gap”-mechanism. When searching the data on behalf of the permutated database, the 

spectra have to match both the intact molecular weight and the fragmentation pattern. For 

these peptides, two main characteristics were taken into account: the loss of two hydrogen (-

2.02 a.m.u.) Da because of the disulfide bridge, and the hydroxylation of the free C-terminus 

of the second peptide (+18.01 a.m.u.), that is now buried in the sequence of the permutated 
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database. This provides a C-terminal modification (e.g. positioned at the K or R for a trypsin 

digestion) of +15.99 a.m.u. (equal to oxidation). In order to evaluate whether spectra were 

correctly annotated, the search was conducted both for the position of the +15.99 a.m.u 

modification as well as for the occurrence of large molecular weight fractions that 

complemented either the y-type or the b-type ion series (Figure 17). 

3.2.5 Statistical analysis 

Data are reported as the mean of n=2 or mean ± SEM of n>3. Experiments with n=2 are 

showing the solid data as second independent experiments were performed to confirm the 

finding. Statistical analyses were performed with GraphPad Prism 6. Multiple group 

comparisons were calculated by one or two-way ANOVA, followed by Bonferroni’s multiple 

comparison tests. Comparison of two group experiments was performed using a t-Test. The 

significance definitions are *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001 vs. control. 

In the case of mass spectroscopy experiments, samples were injected twice in the 

instruments. Only one out of two experiments give us consistent results along with the 

theory. Spectral count is different for every Cys site and every modification.  
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4 Results 

4.1 Physiological effect of redox regulation in cardiac myocytes 

To initially investigate the effect of oxidative stress on cardiac myocytes, a very simple 

experiment was established by making live cell imaging of NRCM with increasing 

concentrations of H2O2 to force oxidative stress. NRCM was incubated at 37°C until it was 

fully mature and beating. A movie was recorded with one frame taken every 20 min for 24 h 

(with the first frame taken at 0 sec), with control (0 µM), 102 µM, 103 µM and 104 µM of H2O2 

(movie available on CD; Figure 18). Without H2O2, the NRCM cell contraction was, as 

expected, normal and its hold same with exposure to the physiological dose of 102 µM H2O2. 

With higher concentration doses of 103 µM, reduced contraction of cells was observed and at 

104 µM cell death was observed. After video recording of the cultured NRCM, a matlab 

based script according to Huebsch et al. was used to generate a heat map of the mean 

contraction of the contractile regions for each given H2O2 concentrations (Huebsch et al., 

2015; Figure 18.A). The same script was afterwards used to quantify the contraction velocity 

and the relaxation velocity of the myocytes at each H2O2 concentration. From this values the 

relaxation-contraction ratios were calculated to give a measure of myocyte vitality.  

Control 102 µM

103 µM 104 µM

A
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Figure 18 | Analysis of NRCM relaxation-contraction ratio exposed to oxidative stress. (A) Heat 
map depicting the mean of the time-averaged magnitude of every motion (myocyte contraction). A 
center of mean contraction is defined as a region from which contractions (inward motion) and 
relaxation (outward motion) are maximized over the time-averaged course of the movie. (B) 
Quantitative analysis representing ratio of relaxation to contraction. Values are given as mean ± SEM, 
n=2-4. 
 
Quantitative analysis of the ratio between contraction to relaxation, suggested that ratios 

remains similar with 102 µM H2O2, and gradually decreased at higher concentrations of H2O2 

(Figure 18.B). 

 

4.2 Redox regulation of PP-1 in the heart 

4.2.1 Importance of PP-1 in physiological functioning of NRCM 

4.2.1.1 Investigation of phosphatase activity in human heart samples, NRCM, 
and whole heart mouse tissue 

To calculate Phosphatase activity, two different kits were used. For human heart samples, 

NRCM and whole heart tissue Enzchek kit, and for recombinant protein the Promega 

phosphatase activity assay were used (Section 3.2.2.5).  
 
 
 
 
 
 
 
 
 
 
 
Figure 19 | Phosphatase activities in human NF, Hy and HF hearts. Total phosphatase activities of 
human heart homogenates (20 µg total protein); non-failing (NF), hypertrophy (Hy) and heart 
failure(HF) patients were measured using EnzChek Phosphatase Assay Kit. Values are given as 
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mean ± SEM, NF=5, Hy=15 and HF=23. Statistical comparison was performed by t-test, *p< 0.05 vs. 
NF. 

To differentiate between different types of phosphatases, i.e. PP-1 and PP-2A, OA as 

phosphatase inhibitor, was used in the Enzchek kit assay. Total phosphatase activity in heart 

failure (HF) patients was 7.38% lower as compared to non-failing (NF) and hypertrophy (Hy) 

samples (Figure 19). The inhibitory activity of 10 and 100 nM of OA was expected to inhibit 

mainly PP-2A and PP-1 activity respectively. In NRCM and total heart tissue from mice, PP-1 

contributes to approximately 10% of total PP-activity (Figure 20). Heart samples were kind 

gift from Dr. Thomas H. Fischer, Clinic for Cardiology and Pneumology, Goettingen. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 | Phosphatase activity in NRCM and whole heart tissue of mouse. 
Total phosphatase activities depicting percentage of PP-2A and PP-1 activity in (A) NRCM and (B) 
whole heart tissue of mouse. Activity was measured using ProFluor Ser/Thr PPase Assay in the 
presence of 10 nM (PP-2A) and 100 nM (PP-1) OA. Panel A, B – Figure ii represents the %PP-activity 
after calculations as per following formula {PP-2A = [Control- 10(PP-2A)]/Control; PP-1 = [10(PP-2A)-
100(PP-1)]/Control}. Values are given as mean ± SEM, n=3-6. Statistical comparison was performed 
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by t-tests, *p<0.05, **p<0.01 vs. control (Panel A, B – Figure i), **p<0.01 vs PP-2A (Panel A, B – 
Figure ii). 

4.2.1.2 Impact of oxidative stress on phosphatase activity in NRCM and rPP-1 

To test the effect of oxidative stress on PP-1 activity, in the presence of Mn2+ buffer, the 

experiments were conducted using either recombinant PP-1 alpha (rPP-1-GST tagged) in 

vitro or in living neonatal rat cardiomyocyte (NRCM) treated with the oxidizing agent H2O2. 

Results show that increasing concentrations of H2O2 induced a significant reduction in 

recombinant PP-1 activity (Figure 21.A); with a maximum effect of H2O2 after 10-30 min 

incubation time (Figure 21.B). Consistently, the reducing agent Tris-(2-carboxyethyl) 

phosphine (TCEP), when added to recombinant PP-1, reversed H2O2-induced PP-1 

inactivation (Figure 21.C). However, when NRCM was treated with H2O2, the net decrease in 

PP-activity reached around 25%, indicating that not only PP-1 activity was affected by 

oxidation (Figure 22).  

 
Figure 21 | Phosphatase activity in rPP-1. (A) Activity of recombinant-PP-1 (rPP-1) incubated with 
H2O2 (0, 50, 100, 200, 500 μM) for 10 min. Values are given as mean ± SEM, n=3-4. (B) The activity of 
rPP-1 incubated with H2O2 (200 μM) for the indicated time period. Values are given as mean ± SEM, 
n=2-4. (C) Reversibility of rPP-1 activity, when incubated with H2O2 (200 μM, 15 min) followed by 
TCEP (100 mM) for 5 min. Values are given as mean, n=2. Statistical comparison was performed by 
one-way ANOVA, and post hoc correction with Bonferroni’s multiple comparison tests, *p<0.05, 
***p<0.001, ****p<0.0001 vs. control. 
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Figure 22 | Phosphatase activities in NRCM. Total phosphatase activity in NRCM incubated with 
H2O2 (100 µM) for 3 min was measured using EnzChek Phosphatase Assay Kit. Values are given as 
mean ± SEM, n=5. Statistical comparison was performed by t-test, **p<0.01 vs. control. 

4.2.1.3 Impact of oxidative stress on cross talk between PKA and PP-1 
signaling pathways 

Regarding the impact on downstream targets, immunoblotting revealed that the 

phosphorylation status of classical PP-1 downstream target proteins such as phospholamban 

(PLB) and cardiac myosin binding protein-C (cMyBP-C) were differentially affected by H2O2, 

indicating a complex layer of regulation of both redox-sensitive kinases and phosphatases 

(Figure 24.A). Whereas the phosphorylation status at Thr35 of protein phosphatase inhibitor-1 

(I-1), a crosstalk protein between protein kinase A and PP-1 signaling showed a bell-shaped 

phosphorylation response with a maximal peak at 100 μM (Figure 23).  

Figure 23 | Phospho I-1 phosphorylation after H2O2 treatment. (A) Immunoblot and (B) 
quantification of concentration dependency of H2O2 mediated phospho I-1 expression in NRCM. The 
analysis was normalized to CSQ, and the change in phospho I-1 expression was estimated relative to 
the control. Values are given as mean ± SEM, n=3. Statistical comparisons were performed by one-
way ANOVA, and post hoc correction with Bonferroni’s multiple comparison tests, *p< 0.05 vs. control. 

There was no effect of H2O2 at physiological concentration on PLB phosphorylation at Ser16 

(p-PLB-Ser16) or cMyBPC phosphorylation at Ser282 (p-cMBPC-Ser282) after 3 min (Figure 

24.C). Time-dependent experiments, however, showed a remarkable decrease in PLB-Ser16 
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phosphorylation after 10 min. In contrast, cMyBPC-Ser282 phosphorylation was bell-shaped, 

peaking after 10 min of H2O2 incubation (Figure 24.B).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 | Putative mechanism of PKA activation and PP-1 inactivation by H2O2. (A) The 
mechanism is showing the summary of activating and inhibitory effect of H2O2 on PKA and PP-1 
respectively, and hence changes in phosphorylation of downstream cardiac protein, PLB and 
cMyBPC. Immunoblot and quantification of (B) time course and (C) concentration dependency of H2O2 
mediated PLB-pSer16 and cMyBPC-pSer282 expression in NRCM. The analysis was normalized to 
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CSQ, and the change in PLB-pSer16 and cMyBPC-pSer282 expression was estimated relative to the 
control Values are given as mean ± SEM, n= 3. Statistical comparisons were performed by one-way 
ANOVA, and post hoc correction with Bonferroni’s multiple comparison tests, *p < 0.05 vs. control. 

4.2.2 Identification of redox-sensitive Cys in PP-1 

4.2.2.1 Investigating the disulfide bridges in phosphatases via immunoblotting 

 A PKA regulatory subunit-1 (PKA RI) dimer formation in NRCM was established to identify 

any disulfide bridges within the PP-1 protein. In the presence of maleimide NRCM were then 

treated with increasing concentrations of oxidizing agents, i.e. diamide and H2O2. Afterwards 

the sample was processed on a gel under non-reducing conditions which formed a RI 

subunit of PKA and resulted in an SDS-resistant dimer.  

Figure 25 | Effect of increasing concentration of diamide and H2O2 (15 min) on NRCMs under 
non-reducing and reducing conditions in PKA. (A) Mechanism depicting the blocking of free thiols 
with maleimide during the oxidation process in the protein (B) Immunoblots probed with anti-PKA RI 
and (C) densitometric analysis showing the percentage of PKA-RI that exists as monomer or dimer. 
Values are given as mean, n=2. 
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This dimer formation was no longer present when samples were run on reduced gel 

(inclusive of DTT). This data shows a shift of bands from 50 kDa to 100 kDa, was due to 

intermolecular disulfide bridges formations. disulfide bridge formation was dose dependent, 

since more than 50% of PKA RI in NRCM becoming dimeric after 15 min with 100 μM, in 

contrast to the treatment of H2O2, same observation was observed at 104 μM (Figure 25.B). 

The bar chart shows the quantitative data of two experiments, when treated with diamide, 

indicating the percentage of PKA-RI having monomer and dimer formation (Figure 25.C).  

The same samples were run which were used to establish PKA-RI dimer formation. This step 

allowed us to identify any inter-molecular disulfide bridge formations in PP-1. Figure 26 

shows that with dose dependence of diamide, PP-1 expression decreased, and no shift in 

the gel was observed as per PKA immunoblots. The bar chart shows the quantitative data of 

two experiments, when treated with diamide, indicating the decreasing expression of PP-1 

(Figure 26.B). However, interestingly a dimer formation was observed at 70 kDa both in 

control and increased concentrations of diamide, which were less expressed at 103 μM 

diamide and eventually disappeared at 104 μM diamide. 

Figure 26 | Effect of increasing concentrations of diamide (15 min) on NRCMs under non-
reducing condition probed with PP-1 (catalytic subunit). (A) Immunoblot representing the 
decreasing expression of PP-1 (37 kda) and a dimer formation at 70 kDa, which eventually disappears 
at 104 μM diamide. (B) Densitometric analysis showing the decreasing expression of PP-1. Values are 
given as mean, n=2. 

PP-2A was examined more closely to check for disulfide bridge formation within the family of 

phosphatases. Some literature has suggested that PP-2A might also have redox-sensitive 

Cys. Therefore, the same samples were run on non-reduced gel with PP-2A antibody. In the 

end, it was discovered that no shift in gel occurred. However, at 104 μM diamide, less 

expression of PP-2A was observed which concurs with the findings of PP-1 (Figure 27).  
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Figure 27 | Effect of increasing concentration of diamide (15 min) on NRCMs under non-
reducing conditions probed with anti-PP-2A. Immunoblot representing the reduction of expression 
of PP-2A (37 kda) at 104 μM diamide. Similar results were obtained in a second independent 
experiment. 

While running blots for PP-1, PP-2A and PKA under non-reducing and reducing conditions, 

an interesting finding was discovered regarding SERCA2a. Without DTT as the reducing 

agent, a band shift was observed in the non-reducing state with respect to SERCA2a, which 

was not visible in PP-1 and PP-2A blots. Hence, in conclusion, SERCA2a, which has redox-

sensitive Cys, appears to lead to a band shift, whereas phosphatases do not (Figure 28).  

 

 

 

 

 

 

 

 

 

Figure 28 | Cell lysates from NRCM analyzed under non-reducing and reducing conditions 
probed with anti-SERCA2a, anti-PP-1 (catalytic subunit) and anti-PP-2A. Immunoblots 
representing a shift in band with respect to SERCA2a, which is not visible for PP-1 and PP-2A. Similar 
results were obtained in a second independent experiment.  

To further confirm that PP-1 Cys-oxidation status changes in response to ROS, a cell 

permeable, biotinylated iodoacetamide (BIAM) was applied to label free Cys thiol groups 
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following exposure of NRCM cells to oxidizing agent H2O2. For HRP conjugated streptavidin 

immunoblots, results showed that by the addition of H2O2, unexpectedly there was little 

difference between control and treated cells. However, in comparison to pH 6.5, a visible 

change occurred with the sample treated with pH 8.5, after BIAM and H2O2 were added. No 

change was observed in the pulldown of PP-1 expression all above-mentioned conditions 

(Figure 29).  

 

 

 

 

 

 

 

 

Figure 29 | Identification of oxidized proteins due to redox active Cys. NRCM were treated with 0 
μM (Control) and 100 μM H2O2 for 15 min, followed by an incubation with BIAM (20 μM - 6.5 pH and 
100 μM - 8.5 pH) for 30 min and protein-BIAM adducts were purified using streptavidin pull-down and 
then subjected to Western blot analysis using PP-1 antibodies in BIAM labeling buffer. Similar results 
were obtained in a second independent experiment. 

4.2.2.2 Analysis of disulfide bridges from bioinformatics tools in PP-1  

To calculate pKa values, PROPKA 3.1 (Søndergaard et al., 2011) was used, to semi-

quantitatively estimate pKa values of all the Cys residues of PP-1A. It is empirical pKa 

predictors, based on the better physical description of the desolvation and dielectric 

response for the protein. Table 18 shows that out of thirteen Cys residues, only two 
(Cys155 and Cys171) had the lowest pKa i.e. 8.01 and 8.97 respectively. 
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The Cysteine Oxidation Prediction Algorithm (COPA) is an algorithm used to predict 

oxidation-susceptible sites, which can further help a protein’s Cys residues susceptible to 

redox-mediated regulation and identify possible enzyme catalytic sites with reactive cysteine 

thiols (Sanchez et al. 2008). Table 17 demonstrates that Cys 39, 155, 171 and 245 were 

susceptible to oxidation by sulfur distance, and that the oxidation status was reduced. Also, 

Cys127 and Cys273 are vulnerable to oxidation due to a low pKa and a reduced oxidation state.  

 

 
 
 
 

 

 

 

 

Table 18 | Analysis of pKa of PP-1A (PDB id: 4MOV) by PROPKA 3.1. The representative table 
represents the pKa of all Cys in the PP-1α. Cys155 and Cys171 are susceptible to oxidation because of 
pKa near to 8. 

Table 17 | Analysis of oxidation status of all Cys by COPA. Representative table represents the 
oxidation status, pKa and various other predictions, whose full form are as follow: Oxidation Status 
Codes: RED – Reduced, DSB - Disulfide Bond, OXI – Oxidized; Prediction Codes: SOD - Susceptible 
to Oxidation by Sulfur Distance, SEP - Susceptible to Oxidation by Exposure and pKa, NOS - Not 
Oxidation Susceptible, N/P - No Prediction. 
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The third prediction software for Cys oxidation that was used was DiANNA (version 1.1), a 

software program composed of an artificial neural network located on a web server. The 

software provides information on various Cys oxidation states and disulfide connectivity of 

proteins. The amino acid sequence of PP-1α was analyzed in DiANNA with the help of the 

support vector machine (SVM) with spectrum kernel. SVM predicts whether a Cys is reduced 

or involved in a disulfide bridge or bound to the metallic ligand. The results in Table 19 show 

that only Cys273 obtained a score of 1, an indication that the compound is highly likely to both 

oxidize and form disulfide bridges. (Ferre and Clote, 2005).  

  
 

 

 

 

 

 

 

 

 

 

 

Furthermore, Cys S-glutathionylaton (GSH) sites from PP-1 A (PDB id: 3N5U) were also 

verified in human species with the dbGSH database. The database integrates all 

experimentally verified S-glutathionylated peptides from research articles using a text mining 

approach. The Figure 30 refers to the identified Cys, i.e. 140, 158 and 245 which were S-

glutathionylated (Chiang et al., 2012). The top part of the figure shows the proposed S-

glutathionylation sites in the context of solvent accessibility and protein secondary structure. 

Both Cys140 and Cys245 were located at the end or beginning of a helical structure, 

respectively, and at a solvent accessible area. The predicted Cys158 was found in the middle 

of a helical structure and hence was not solvent accessible. The lower part of the picture 

shows two consensus motifs for probable glutathionylation sites. It is easily visible that the 

acidic amino acid residues Asp (D) and Glu (E) are in close proximity. 

Table 19 | Analysis of disulfide oxidation state prediction of PP-1A by DiANNA 1.1 web. It is a 
neural network, which takes the input of evolutionary information of symmetric window centered on 
each Cys. It tells us a score of a Cys oxidation state prediction with the score of 1. The program 
provides a score for a Cys oxidation state prediction, with a score of 1 indicating high susceptibility to 
oxidation and a strong likelihood to form disulfide bridge. 
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Figure 30 | Graphical representation of S-glutathionylation sites analyzed by the dbGSH 
database in PP-1. (A) An overview of protein S-glutathionylation sites with functional and structural 
information of human PP-1 (PDB id: 3N5U) showing Cys140, Cys158 and Cys245 to be S-
glutathionylated. (B) Substrate motifs are showing a conserved region for Cys140 and Cys245. 

4.2.3 Analysis via Mass Spectrometry  

The reason for beginning the analyses with mass spectrometry (MS) was to prove the 

existence of the predicted disulfide bridges. The Pymol software for measuring the molecular 

distances from the non-oxidized protein structure did not predict any intra-molecular disulfide 

bridges. The immunoblots, on the other hand, were able to show band shifts which 

represented inter-disulfide bridges (Section 4.2.2.1), however, it is unclear whether these 

disulfide bridges are artifacts. MS is the only method that maps all PTMs and sites in a single 

experiment without a priori knowledge.  

4.2.3.1 Investigating the PTMs in GST-tagged PP-1  

According to the computational prediction (Section 4.2.2.2), possible Cys residues were 

identified, which could be oxidized and may be susceptible to disulfide bridge formation. The 

experiment was performed with four different conditions (1: –Mn2+ –H2O2; 2: –Mn2+ +H2O2; 3: 

+Mn2+ –H2O2; 4: +Mn2+ +H2O2) so that one can draw some conclusions about the protective 

effect of Mn2+ and the oxidative effect of high H2O2 conditions. In addition to the common 

PTMs, a new database search strategy was created to unequivocally identify disulfide linked 

peptides from non-reduced and proteolytic digested samples. Although in principle many 

different PTMs could be formed under oxidative stress, the main emphasis was given on the 

identification of (i) free cysteines (which were protected by alkylation with IAA), (ii) 

glutathionylated Cys, (iii) potential disulfides being indicated by an unheterolytic cleavage of 

the disulfide link forming one persulfide and one dehydroalanine peptide, and (iv) sulfone 
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oxidized cysteines (which is the highest oxidatitive form of cysteines). The experiment was 

performed as described in Section 3.2.4. The H2O2 (500 μM) concentration used in the 

experiment would more than out-compete the protective effect of Mn2+ ions in the buffer.  

The data was generated with LC-MS/MS using an Ultimate 3000 chromatography system 

coupled to a Q-Exactive Plus system. The sample was loaded onto the precolumn and eluted 

in reverse to the separation column. Data acquisition was performed with a top ten-centroid 

mode method. It was then searched with Peaks 7.0 with semi-Trypsin specificity because 

some long nonspecific fragments could have been undetectable. With this method, a longer 

fragment was identified that had a non-specific cleavage site comprising Cys273 and Cys291 

but starting at Ser268. However, the two short peptides that included Cys39 and Cys127 were 

not detectable (Appendix 1) under all condition, so in conclusion, they might be involved in 

some intra-molecular interaction or unexpected modification.  

The search included all relevant Cys modifications, namely dehydroalanine, persulfide, 

sulfenic acid, sulfonic acid, glutathionylation, internal disulfide bridges on one peptide (but 

which could also be represented by a combination of the first two modifications), and 

carbamidomethylation. Furthermore, all other types of amino acid oxidations were included: 

phosphorylations of Ser, Thr and Tyr, N-terminal protein acetylation and side reactions such 

as pyrolation of Gln and Pyro Asn and deamidations of Glu and Asp. 

Glutathionylation in the non-protective buffer was observed under harsh oxidative stress 

(Figure 31.B) for the three Cys residues Cys140, Cys245 with good spectra and Cys202 with a 

lower quality spectrum. Many Cys residues were observed with dehydroalanine and 

persulfide modifications only under these experimental conditions, which suggest that these 

Cys residues form disulfide bridges. The over-oxidation of the Cys residues was also 

displayed. Figure 31 provides a sequence summary of the four distinct buffer conditions. The 

above-mentioned modified Cys residues are highlighted with green or gray boxes, 

respectively. 
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Figure 31 | In vitro-assays for MS readout 
using the GST-tagged PP-1 protein. All 
sequences which were successfully identified by 
Peaks 7.0 software are depicted by a blue bar 
below the sequence. All PTMs, their abbreviations 
and their color code are shown on the left. With 
respect to four different conditions, output PTM 
was generated with specifically (B) showing 
glutathionylated Cys140, Cys202 and Cys245 in the 
gray and persulfide/dehydroalanine generated by 
MSMS fragmentation of disulfide in a green box 
with respective spectra. 
 

C) + Mn2+, - H2O2  

D) + Mn2+, + H2O2  
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The spectrum shown for Cys140 (Figure 32) shows that Cys underwent glutathionylation. 

Furthermore, the ion tables and the error bar plots are shown as they were extracted from 

Peaks 7.0 software. The remaining spectra for Cys202 and Cys245 is shown in Appendix 3. 

The table in Figure 32 summarizes the following ions: on the left side of the peptide 

sequence are Immonium ions, b-type ions, b-H2O ions, b-NH3 ions, a-type ions and B (2+) 

ions. On the right side of the peptide sequence are y t-type ions, y-H2O ions, y-NH3 ions and 

y (2+) ions. The error plot below shows all fragment ions within 0.02 Da mass deviations that 

were allowed for the search. Since almost the entire ion series was covered, the correct 

identification could be made with confidence. 

 

Figure 32 | Spectra and positions of the glutathione-modified Cys140.The top shows the spectrum 
with y-type ions in red and b-type ions in blue. The ion table below displays the exact masses of each 
of the ions and indicates the site of the PTM. In the structure, Cys residues are highlighted in red, 
glutathione-modified in cyan, and indicated by an arrow. 

In order to describe the different solvent accessibilities and the reactivity of the diverse Cys 

residues, the above-mentioned modifications were quantified using the spectral count 

approach. The data from the GST-tagged PP-1 for the four experimental conditions 

demonstrated that the Cys residues are subtyped in 2-3 groups (Figure 33). Overall, free Cys 

spectral counts were higher in number in both conditions –Mn2+ –H2O2 and +Mn2+ –H2O2. 

persulfide/disulfide bridge and sulfone formation was higher when –Mn2+ +H2O2 was 
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incubated. In contrast, the presence of additional Mn2+ ions protected the Cys residues from 

further oxidation. Three Cys residues also formed glutathionylation.  

The PTMs of the 13 Cys residues were quite different from one another. Data for Cys155 and 

Cys158 as well as Cys171 and Cys172 has to be interpreted pairwise because they most likely 

form an internal disulfide bridge upon sample preparation. Mn2+ ions in the buffer protect 

them completely from sulfone formation. Disulfide bridges are observed under all conditions, 

but to a lesser extent when no H2O2 is applied. Apparently, the presence of the Mn2+ does 

not alter this effect. For instance, Cys155 and Cys158, disulfide formation dominated in the 

condition with –Mn2+ +H2O2 and no free Cys in the 4th condition with +Mn2+ +H2O2: 50% of 

persulfide/disulfide bridge and 50% free Cys or 50% of persulfide/disulfide bridge and 40% 

free Cys, respectively. However, spectral counting results demonstrated, that Cys158 formed 

10% of sulfone Cys in the condition with –Mn2+ +H2O2 which hints at the fact, that it might be 

free under some circumstances while Cys155 is more protected. Cys171/Cys172 showed a 

similar trend but about 20-25% of persulfide/disulfide bridge formation under condition 2. 

When no H2O2 treatment was performed, spectral count for Cys171 and Cys172 showed 62-

70% of free Cys and only the rest to be persulfide/ disulfide bridges, which can be explained 

by the disfavored orientation of the sulfhydryl groups in the peptide. Around 58-62% of 

persulfide/ disulfide bridge spectral count was discovered in the condition with –Mn2+ +H2O2 

and was reduced to 12-20% in the condition with +Mn2+ –H2O2 and rest free Cys. 

Cys273 and Cys291 lie at the outermost region of the structure show a complete 100% 

persulfide/disulfide bridge spectral count in the condition with –Mn2+ +H2O2. This result is 

reversed with 100% free Cys in the condition with +Mn2+ –H2O2. No spectra were found for 

the last condition with +Mn2+ +H2O2.  

For Cys140, Cys202 and Cys245 glutathionylation (in gray) was detected, that apparently 

competes with the disulfide formation; and further also showed 62%, 47% and 50% of 

sulfone spectra counts, respectively, with the condition –Mn2+ +H2O2. Cys140 also forms 

sulfone with Mn2+ in the buffer. However, in Cys202 and Cys245, no sulfone formation was 

observed with the condition +Mn2+ –H2O2. In Cys140 and Cys245, 35% and 50% of Cys 

residues formed sulfone, respectively, with the condition +Mn2+ +H2O2 and no spectral count 

was identified for Cys202 for the latter condition. Mn2+ completely protected Cys62 and Cys105. 

In the condition with –Mn2+ +H2O2, around 33% and 68% of sulfone formations were 

identified in the two aforementioned Cys, respectively. In the last condition, almost 35% 

sulfone formations were identified in Cys62 and however no spectra were identified for the 

Cys105. 
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Figure 33 | Quantification of the amount of free, persulfide/disulfide and sulfonic acid -Cys 
residues by spectral counting. Columns show the percentage distribution of all the four 
modifications. Yellow represent sulfone formation, grey represent glutathione formation, green 
represent persulfide/disulfide formation and blue represent free Cys residues.  

In order to verify the results from persulfide/dehydroalanine detection and unequivocally 

identify the disulfide-linked peptides within the data set, a new data search strategy was 
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introduced. Though the fact that other software packages are available such as StavroX 

(Gotze et al., 2012), SearchXlinks (Wefing et al., 2006), XlinkX (Liu et al., 2015) or several 

commercial software from the mass spectrometry vendors e.g. the PepFinder Software from 

ThermoFischer Scientific. The results were compared with the StavroX software, but the 

quality of the identified spectra was not satisfying, since the program annotated the peptide 

fragments just from the free N-and C-termini of the two peptides (data not shown). An 

interesting question would be, if a more robust strategy might be able to detect the higher 

order b-type or y-type fragments. Similar to the observation with sumolated peptides (Hsiao 

et al., 2009b), that the ion series jumped from one to the other peptides for branched 

species. Based on this idea a search database was generated, as was described in detail in 

the Section 3.2.4.5. In the at end, tall linear peptides were identified. The actually disulfide- 

linked region would not be identified by fragmented ions, but high molecular fragments were 

observed in the second peptide after jumping the linkage. Hence, this behavior for some of 

the following spectra was observed and incorporated into the database to optimize the 

search strategy. The strategy worked well for a single or few known proteins but a general 

strategy for the understanding of the disulfide network of an entire proteome is still needs to 

be developed. Two example spectrums are shown in Figure 34. The modification in the 

middle of the peptide is calculated as follows: 

Water (free C-terminus) – Hydrogen = Jump over Disulfide bridge 

18.01 Da – 2.02 Da = 15.99 Da 

Table 20 summarizes the observed disulfide spectra from the four experimental conditions in 

a reactivity scheme. The previously described Cys155 and Cys158 are located in a distance 

that is suitable for inter-disulfide bridge formation. The olive-green squares being identified 

under all conditions are Cys155Cys158 and Cys171Cys172 that are placed on the same Trypsin 

derived peptide and hence could be generated from sample preparation. Interestingly, the –

Mn2+ +H2O2 condition resulted in a significant increase in the occurrence of disulfide 

peptides, which is concurrent with our prior observation of the persulfides/dehydroalanines. 

The light green squares were generated by a weaker spectrum. However, only Cys residues 

in the upper left part of the figure involved with a strong emphasis of the Cys39 and Cys127, as 

they were not identified as non-modified peptides in these samples. For Cys127-Cys140 a 

disulfide link was found under all conditions except for the last one. The same holds true for 

the Cys39-Cys127 link. Without the addition of Mn2+, a Cys127-Cys245 disulfide link was also 

observed. Disulfide exchange might be in concurrence with the protection of the Mn2+. Many 

disulfide peptides were positively identified and were in proximity within the 3D structure 

(Cys140 XL Cys39, Cys105 XL Cys39, Cys140 XL Cys127, Cys140 XL Cys154Cys158 and Cys127 XL 
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Cys154Cys158). The common basis for this mass spectrometry identification is that at least one 

of the two ion series, y-type or b-type, has to “jump the gap” of the cysteine that spans 

between the two peptides. Note, that at high concentrations of proteins or peptides at neutral 

pH, a so-called disulfide scrambling can take place which rearranges disulfide formations 

from a partially denatured protein or in the peptide solution. To avoid these very acidic 

digestion conditions, one possible alternative could be in combination with pepsin. Figure 34 

represents spectra and ion table of Cys39 XL Cys127 and Cys127 XL Cys140 showing disulfide 

bridge formation. The remaining corresponding spectra are shown in the Appendix 4. 

. 
 
 

C) + Mn2+, - H2O2  D) + Mn2+, + H2O2  

A) - Mn2+, - H2O2  B) - Mn2+, + H2O2  

Table 20 | Cross-reactivity scheme for disulfide linkages in GST-tagged PP-1A. Spectra 
generated with GST-tagged PP-1, showing disulfide bridges pattern in all four conditions. 
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Figure 34 | Disulfide-peptide conjugates (spectrum and fragment table) of (A) Cys39 and Cys140 

(B) Cys127 and Cys140. In the structure plot, the two involved Cys are indicated with green color.  

Results from Figure 26 proposed the native inter-disulfide bridges forming a dimer at 70 kDa, 

which were then analyzed by the mass spectrometry approach. Only one inter-disulfide 

bridge with Cys127 was discovered. However, it was only discovered in the condition –Mn2+ 

+H2O2, which contradicted the results from the immunoblot. It even showed inter-disulfide 

bridge under control conditions. Figure 35 represents the protein surface of PP-1 (PDB id: 

4MOV), with Cys residues in red (Cys127, Cys273 and Cys39) at the surface. These residues 

are prone to oxidation and might form inter-disulfide bridges with other proteins. Also, the 

structure nicely shows the entry point for manganese ions in green and pink (Histidines and 

Mn2+). 

Pymol and the PDB structure 4MOV were used to map all the possible distances of Cys 

residues with each other and the Mn2+ ions to understand the data obtained from the MS/MS 

fragmentation experiments (Table 21). The color-coding ranges from the heavy blue 

(shortest distance) to white (longest distance). The approximate color-coding distribution is 

shown on the right side of the table. The solid black boxes indicate the two possible Cys 

networks over closer interaction, showing, that the protein could be seen as divided into two 

halves. The Cys residues at the rim carry another color code: green boxes indicate Cys with 

1) Cys39 XL Cys127 
7) Cys127 XL Cys140 

A) - Mn2+, - H2O2  B) - Mn2+, + H2O2  
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persulfide/dehydroalanine modification as a strong indicator for a cleaved disulfide bridge 

(only in the –Mn2+ +H2O2 condition, compare supplemental information) and in grey for 

glutathione-modified sites. Cys202 was found within both above mentioned modifications. 

Mn2+ ions are indicated in pink in the structure. The values are given in Å. 

Figure 35 | Spectrum and ion table for the inter-disulfide bridges with Cys127. Surface structure is 
showing the outer bound Cys residues- 127, 273 and 39, which could be prone to oxidation. 

Cys 39 Cys 62 Cys 105 Cys 127 Cys 140 Cys 155 Cys 158 Cys 171 Cys 172 Cys 202 Cys 245 Cys 273 Cys 291 Mn2+ colorcode

Cys 39 19,68 6,97 15,72 8,68 4,54 16,54 24,20 22,15 23,69 25,46 23,86 33,78 19,92 30,00

Cys 62 19,68 6,82 18,44 22,31 17,76 10,41 8,60 7,78 19,53 6,91 18,04 13,11 11,82 27,00

Cys 105 6,97 6,82 18,96 8,66 9,65 16,64 24,81 23,01 7,04 25,08 21,18 30,20 20,19 24,00

Cys 127 15,72 18,44 18,96 10,72 14,07 13,94 21,41 15,82 12,56 23,80 16,44 28,94 11,00 21,00

Cys 140 8,68 22,31 8,66 10,72 11,64 16,65 27,56 23,75 23,16 27,53 18,62 33,79 17,45 18,00

Cys 155 4,54 17,76 9,65 14,07 11,64 6,98 20,33 18,59 20,82 22,60 23,76 27,07 17,75 15,00

Cys 158 16,54 10,41 16,64 13,94 16,65 6,98 20,98 19,30 12,02 23,67 27,99 29,58 19,72 12,00

Cys 171 24,20 8,60 24,81 21,41 27,56 20,33 20,98 5,96 19,42 4,57 24,22 9,08 15,24 10,00

Cys 172 22,15 7,78 23,01 15,82 23,75 18,59 19,30 5,96 13,56 6,43 19,11 15,03 19,24 9,00

Cys 202 23,69 19,53 7,04 12,56 23,16 20,82 12,02 19,42 13,56 19,87 21,33 26,59 12,41 8,00

Cys 245 25,46 6,91 25,08 23,80 27,53 22,60 23,67 4,57 6,43 19,87 21,25 7,15 14,37 7,00

Cys 273 23,86 18,04 21,18 16,44 18,62 23,76 27,99 24,22 19,11 21,33 21,25 26,60 9,08 6,00

Cys 291 33,78 13,11 30,20 28,94 33,79 27,07 29,58 9,08 15,03 26,59 7,15 26,60 20,86 5,00

Mn2+ 19,92 11,82 20,19 11,00 17,45 17,75 19,72 15,24 19,24 12,41 14,37 9,08 20,86 4,00

Table 21 | Distance measurements [Å] of the Cys residues with each other and Mn2+. The PDB 
file 4MOV contains structural information of the PP-1A under non-oxidative conditions and was used 
in Pymol to measure all cysteine distances with each other and the Mn2+.  

90°

Cys273

Cys127 Cys39

Cys273

Cys127
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The first idea was that some Cys residues should be protected from even higher oxidative 

reaction by formation of internal disulfide bridges presumably those that are in contact with 

the Mn2+ ions. This hypothesis has to be followed up in a second experiment, where 

glutathione protection mechanism is taken away from the sample.  

4.2.3.2 Investigating PTMs in His-tagged PP-1  

In order to verify whether glutathionylation is involved in the formation of transient disulfide 

links, a His-tagged PP-1 was used to identify various PTMs using the same methods as 

discussed in the previous section. The spectra from four conditions demonstrated that hyper-

oxidation of Cys to sulfonic acid upon H2O2 treatment was partially prevented at Cys155Cys158 

and Cys171Cys172 and Cys62 and Cys105 if Mn2+ was added to the buffer. Figure 36.B shows 

that all Cys residues, including Cys127, were detected at the highest oxidation state. Only 

Cys39 was not identified by the digestion. This shows that the oxidative stress is much more 

harmful to the protein in the absence of GSSH and GST. The missing Cys39 was identified as 

the sole disulfide bridging cysteine in this set of experiments. The spectrum of the Cys39 XL 

Cys155Cys158 linked peptide is shown in Figure 37. 

A) –Mn
2+

 –H2O2  

B) –Mn
2+

 +H2O2  
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Figure 36 | In vitro-assays for MS readout using 
the His-tagged PP-1 (data based on analysis from 
Peaks7.0 software). All PTMs, their abbreviations 
and their color code are shown on the left. With 
respect to four different conditions, output PTM was 
generated with specifically (B) showing sulfone 
formation at various Cys residues in the yellow box 
with respective bar chart and spectra. 
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Figure 37 | Cys39 XL Cys155Cys158 disulfide-peptide conjugates (spectrum and fragment table) is 
the disulfide link induced in the His-tagged PP-1. In the structure plot, the two involved Cys are 
indicated in green. They are located in a local proximity that makes the formation of a disulfide bridge.  

Finally, the amount of free and hyper-oxidized Cys residues (sulfonic acid) was quantified by 

extracting the label free quantification (LFQ) of each peptide using PEAKS 7.0 software. The 

color code of Table 22 ranges from green (lowest value) to red (highest value). The amount 

of free Cys residues is highest with +Mn2+ –H2O2 in the buffer and slightly lower with –Mn2+ –

H2O2 in the buffer, which suggests that oxidation could also occur in Cys residues exposed to 

the air. Cys105 and Cys245 have interesting values: the lowest values were observed as 

expected by treatment with H2O2 and no protective Mn2+ present. However, for one Cys the 

opposite was observed, however it was not displayed in the sequence. In accordance with 

these observations, Table 22 shows the highest values for the formation of sulfonic acid, 

when no protective Mn2+ ions counteracted the H2O2 treatment. From a structural 

perspective, Cys105 is the furthest distance from the Mn2+ binding centrum and also 

completely shielded by the His residues that cage the two Mn2+ ions. Cys140 is almost equally 

prone to form sulfonic acid as it is close to the Mn2+ binding centrum.  
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4.2.3.3 Oxidation of other amino acids in the vicinity of Mn2+ ion in GST / His-
tagged PP-1  

The X-ray structure of PP-1 has revealed four Histidines (His) close to dinuclear metal ions. 

While finding the PTM in both, GST and His-tagged PP-1, surprisingly His248 was solely 

identified to be oxidized in the GST-tagged protein experiment. This might suggest that it is 

more solvent exposed as the other His residues and probably not involved in the binding of 

the Mn2+ ions. An unexpected result was found in the His-tagged protein experiment, where 

His248 was unaffected while His125 was oxidized with buffer B (–Mn2+ –H2O2), The spectra are 

shown in Figure 38. 

Tyr272 can be oxidized, however it is only 4.4 Å from the Mn2+ ion and 3.68 Å from His66, 

hence do not have a protective effect. The oxidizable His248 is only 8.55 Å from the Mn2+ ion 

(Figure 39). The sample containing GSH and GST resulted in surprising oxidations in the 

presence of additional Mn2+. Fairly consistent mono-oxidation occurred under all conditions 

except in buffer condition B (–Mn2+ +H2O2). 

Table 22 | Possible Cys residues that can undergo sulfonation in His-tagged PP-1. The color 
code is from green for lowest value to red for the highest value. Dark green labeled boxes=free 
cysteine; Orange labeled boxes=Sulfonic acid (SO3). 

Peptide Cys
no	Mn	+													
no	H2O2		

no	Mn	+									
with	H2O2		

with	Mn	+									
no	H2O2	

with	Mn	+						
with	H2O2		 Color	Code		

ICGDIHGQYYDLLR Cys62 1,36E+06 2,73E+05 2,89E+06 8,04E+05 1,60E+07
QSLETICLLLAYK Cys105 6,01E+06 4,85E+05 1,60E+07 2,09E+06 8,50E+06
GKQSLETICLLLAYK Cys105 3,13E+06 1,00E+03 2,07E+06 1,00E+03 5,00E+06
GNHECASINR Cys127 6,10E+04 2,68E+05 1,00E+03 1,00E+03 1,00E+06
IYGFYDECKRR Cys140 5,00E+05
TFTDCFNCLPIAAIVDEK.I Cys155Cys158 3,02E+06 1,00E+03 3,61E+06 2,64E+05 1,00E+05
IFCCHGGLSPDLQSM(+15.99)EQIR Cys171CYs172 1,32E+06 1,00E+03 4,60E+06 9,20E+05 5,00E+04
IFCCHGGLSPDLQSMEQIRR Cys171Cys172 9,19E+05 1,00E+03 5,96E+06 2,27E+05 1,00E+04
IM(+15.99)RPTDVPDQGLLCDLLWSDPDK Cys202 5,00E+03
FLHKHDLDLICR Cys245 3,98E+06 1,44E+05 3,49E+06 1,00E+03 2,00E+03
HDLDLICR Cys245 1,93E+06 1,00E+03 1,16E+07 8,37E+05 1,00E+03

Peptide Cys
no	Mn	+												
no	H2O2		

no	Mn	+									
with	H2O2		

with	Mn	+									
no	H2O2	

with	Mn	+						
with	H2O2		

ICGDIHGQYYDLLR Cys62 1,00E+03 1,09E+06 1,00E+03 1,00E+03
QSLETICLLLAYK Cys105 7,10E+04 8,40E+06 1,00E+03 1,46E+05
GKQSLETICLLLAYK Cys105 1,00E+03 3,73E+06 1,00E+03 3,67E+04
GNHECASINR Cys127
IYGFYDECKRR Cys140 1,00E+03 7,30E+06 1,82E+05 2,13E+05
TFTDCFNCLPIAAIVDEK.I Cys155Cys158 1,00E+03 2,41E+05 6,40E+04 1,00E+03
IFCCHGGLSPDLQSM(+15.99)EQIR Cys171CYs172 1,00E+03 8,27E+05 1,00E+03 1,00E+03
IFCCHGGLSPDLQSMEQIRR Cys171Cys172
IM(+15.99)RPTDVPDQGLLCDLLWSDPDK Cys202 1,00E+03 2,96E+05 1,00E+03 1,00E+03
FLHKHDLDLICR Cys245 1,00E+03 1,01E+06 1,00E+03 1,00E+03
HDLDLICR Cys245 1,00E+03 1,98E+06 4,17E+05 5,51E+05

Free	Cys

Sulfone	Cys
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Figure 38 | Spectra and ion table of oxidized Histidine (His248/His125) caging around the 
dinuclear Mn2+ ions. In the structure of PP-1, the two Mn2+ ions are caged by the four His residues 
(His66, His125, His173 and His248). Spectra under H2O2 treatment represent show mono-oxidized His248 

and His125 in the (A) GST and (B) His-tagged- PP-1, respectively.  

Figure 39 | Spectra and ion table of oxidized Tyrosine (Tyr272) close to Cys273 in the (A) GST and 
(B) His-tagged PP-1 respectively. 
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4.3 Regulation of CTGF under stress conditions in cardiomyocytes 

4.3.1 Expression of CTGF in physiological functioning of the heart 

Human non-failing (NF), ischemic (ICM), and dilated cardiomyopathy (DCM) heart samples 

were used to examine the expression of CTGF in heart disease. Immunoblotting analysis 

demonstrated that CTGF expression was significantly higher in DCM samples as compared 

to NF samples (Figure 40.A). In ICM samples, CTGF expression was slightly but not 

significantly increased compared to NF samples (Figure 40.B).  

 

Figure 40 | Higher protein expression of CTGF in end-stage human heart failure. (A) Immunoblot 
and (B) relative analysis of CTGF expression in non-failing (NF) hearts, end-stage heart failure 
ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). Analysis was normalized to 
Tubulin, and the change in CTGF expression was estimated relative to the control. Values are given 
as mean ± SEM, NF=5, ICM=5 and DCM=4. Statistical comparison was performed by one-way 
ANOVA, and post hoc correction with Bonferroni’s multiple comparison tests, *p<0.05 vs. NF. The 
heart samples were kindly provided by Dr. Thomas H. Fischer, Clinic for Cardiology and Pneumology, 
Goettingen. 

4.3.2 Influence of oxidative and ER stress on CTGF expression in NRCM 

The influence of the oxidative environment on CTGF expression was subsequently analyzed 

in NRCM with 100 μM H2O2 for short incubation times of up to 30 min (time intervals of 3, 6, 

10, 15 and 30 min) and longer incubation times of up to 6 h (time interval of 2, 4 and 6 h). In 

both settings, the last time point was kept as control time point. The relative analysis of 
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immunoblots (Figure 41) revealed that no significant change in CTGF levels occurred after 

H2O2 treatment.  

Figure 41 | Protein expression of CTGF in cardiomyocytes exposed to H2O2. (A) Immunoblot and 
(B) relative analysis of CTGF in neonatal rat cardiomyocytes (NRCM) exposed to 100 μM H2O2 at 
different time points. Analysis was normalized to Tubulin, and the change in CTGF expression was 
estimated relative to the control. Values are given as mean ± SEM, n=3-5. Statistical comparisons 
were performed by one-way ANOVA, and post hoc correction with Bonferroni’s multiple comparison 
tests, *p<0.05 vs. control. 

To determine the effect of reducing conditions on CTGF, the NRCMs were treated with 50 

mM DTT for up to 30 min (time interval with 3, 6, 10, 15 and 30 min). In the respective 

immunoblot analysis, CTGF showed a time-dependent staircase pattern. This likely reflects 

different structural forms of CTGF in the cells, with the lower band having a molecular weight 

of 36 kDa and the top band with a molecular weight of 38 kDa in non-reducing SDS-PAGE. 

Furthermore, by the addition of the reducing agent in SDS-PAGE sample buffer (reducing 

condition), the staircase pattern was no longer present supporting the hypothesis of in cell 

reduction of CTGF by DTT (Figure 42.A). In addition, the concentration-dependent effect of 

DTT and diamide on CTGF in a non-reducing condition was analyzed. The results 

demonstrated that the staircase pattern of CTGF was dependent on the DTT concentration. 

The oxidizing agent diamide was without effect (Figure 42.B) 
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Figure 42 | Protein expression of CTGF in cardiomyocytes exposed to DTT and diamide. (A) 
Immunoblot of CTGF in NRCM exposed to 50 mM DTT for different time periods analyzed under non-
reducing and reducing conditions. Tubulin is shown as loading control. (B) Immunoblot analysis of the 
ER stress markers IRE-1α and PDI and CTGF in NRCM exposed to increasing concentrations of DTT 
and diamide under non-reducing conditions. Tubulin is shown as loading control, n=3. 
 
Further, the intracellular Ca2+-depleting agent thapsigargin (TGN) was studied as it has been 

described to induce ER stress similar to DTT (Zhang et al., 2010). As shown in Figure 43, 

CTGF expression was significantly increased after 6 h when NRCM were treated with 3 µM 

TGN. Under the used conditions the ER stress markers PDI and IRE1-α were only up-

regulated by trend.   
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Figure 43 | Protein expression of CTGF in NRCM exposed to TGN. (A) Immunoblot and (B) relative 
analysis of CTGF, IRE1-α, and PDI in NRCM exposed to 3 μM thapsigargin (TGN) for the indicated 
time periods. Analysis was normalized to Tubulin, and the change in CTGF expression was estimated 
relative to the control. Values are given as mean ± SEM, n=3-5. Statistical comparisons were 
performed by one-way ANOVA, and post hoc correction with Bonferroni’s multiple comparison tests, 
*p<0.05 vs. control.    

Aside from DTT and TGN, tunicamycin (Tm) has been demonstrated to induce ER stress 

(Kaufman, 1999). Therefore, the NRCMs were treated with Tm for different time periods and 

with various concentrations and CTGF was again analyzed by immunoblot. However, under 

neither conditions a change in CTGF expression as well as in the ER stress marker IRE1-α 

could be observed (Figure 44).   
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Figure 44 | CTGF protein expression in NRCM exposed to Tm. (A) Immunoblot and relative 
analysis of CTGF and IRE1-α in NRCM exposed to (A) 2.5 μg/ml Tm for different time periods. Values 
are given as mean ± SEM, n=4. (B) treated with different concentrations (2.5, 5 and 10 µg/ml) for 1 hr. 
Values are given as mean ± SEM, n=3. Analysis was normalized to Tubulin, and the change in CTGF 
expression was estimated relative to the control. Statistical comparisons were performed by one-way 
ANOVA, and post hoc correction with Bonferroni’s multiple comparison tests, *p<0.05 vs. control. 

4.3.3 Impact of heat shock response and chaperone/heat shock protein 
on CTGF expression in NRCM 

As ER stress induced by DTT and TGN influenced CTGF in its oxidative state and 

expression, respectively, the effect of other stressors was investigated next. To analyze the 

influence of the heat shock protein hsp47, CTGF expression was analyzed in control mouse 

embryonic fibroblasts (MEF) and hsp47 knockout mouse embryonic fibroblasts. In this 

experiment, CTGF was found to be less expressed in hsp47 MEF compared to control cells. 

Next, the NRCM were incubated at 42°C for 1h with a subsequent recovery phase for 

different time periods. CTGF was found to be up-regulated 2 h after the heat shock (Figure 

45).  
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Figure 45 | Effect of heat shock on the expression of CTGF. (A) Protein expression of CTGF, 
HSP47 and Tubulin in control and HSP47 knockout mouse embryonic fibroblasts, n=1. (B) Immunoblot 
and (C) relative analysis of CTGF, IRE1-α and Tubulin as a loading control in cell extracts from NRCM 
after heat shock at 42°C for 1 h and recovery phases of 2-6 h. Values are given as mean ± SEM, n=5-
6. Statistical comparisons were performed by one-way ANOVA, and post hoc correction with 
Bonferroni’s multiple comparison tests, *p<0.05 vs. control. 

4.3.4 Impact of pH, MG132 and BFA on CTGF expression in NRCM  

To further examine the effects of the pH of the culture medium on CTGF expression, the 

NRCMs were cultivated under different pH conditions (pH 8, 7, 7.5 and 6) for 1 h. However, 

no effect was detectable (Figure 46.A). Moreover, inhibition of the proteasome with different 

concentrations of MG132 was also without effect (Figure 46.B). And finally blockade of the 

transport from the ER to the Golgi apparatus by brefeldin A (BFA) showed no effect (Figure 

46.C).   
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Figure 46 | The effect of pH, MG132 and BFA treatment on CTGF expression in NRCM. 
Immunoblot and relative analysis of CTGF in NRCM exposed to (A) Different pH over 1 h. Value are 
given as mean ± SEM, n=6. (B) Concentration-dependent of MG132 over 1 h. Value are given as 
mean ± SEM, n=3 (C) Concentration-dependent of BFA over 1 h. Value are given as mean ± SEM, 
n=3. Tubulin is shown as loading control. Statistical comparisons were performed by one-way ANOVA, 
and post hoc correction with Bonferroni’s multiple comparison tests, *p<0.05 vs. control. 

4.3.5 Impact of siRNA-CTGF knockdown on NRCM 

As CTGF was demonstrated to be regulated by cellular stressors like DTT and TGN, in the 

next step the effect of CTGF expression on the ER stress response was analyzed. 

Therefore, CTGF expression was reduced by a siRNA approach. Immunofluorescence 

analysis demonstrated that the knockdown of CTGF appeared to lead to a translocation of 

ATF6 to the nucleus (Figure 47).  

Moreover, the knockdown of CTGF led to a significant downregulation of the ER stress 

markers IRE-1α, PDI, and BiP (Figure 48). Only CHOP was not changed in its expression.  

Next, the splicing of the XBP1 mRNA was analyzed by PCR which had been demonstrated 

to occur during the unfolded protein response (Wang et al., 2014). In these experiments, the 

knockdown of CTGF resulted in the amplification of two PCR products representing the 

unspliced (US) and spliced (S) XBP1 mRNA (Figure 49).  

To validate, the immunoblot data, the expression of ER markers at mRNA level was 

examined. As shown in Figure 50, with successful knockdown of CTGF at mRNA level, other 

ER stress markers were not changed. 

Figure 47 | Knockdown of CTGF in NRCM and ATF6 localization. siRNA was used to partially 
knockdown CTGF in NRCM. In the control siRNA, ATF6 was localized at endomembranes (arrow 
heads), whereas in the cells treated with the siRNA, ATF6 was moved to the nucleus (arrow heads). 
Immunofluorescence staining was performed to detect CTGF (green), ATF6 (red) and the nuclei were 
stained with DAPI (blue), n=2, Scale bar: 20 µm. 
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Figure 48 | Partial knockdown of CTGF in NRCM and various ER stress markers at the protein 
level. (A) Immunoblot and (B) relative analysis of CTGF, IRE1-α, BIP, PDI and CHOP (markers of ER 
stress) on siCTGF-partial knockdown NRCM. Values are given as mean ± SEM, n=4-7. Statistical 
comparisons were performed by an unpaired t-test, *p<0.05 vs. control. 

 

 

 

 

 

 

 

 

Figure 49 | Knockdown of CTGF in NRCM with XBP1 splicing. XBP1 mRNA was detected by RT-
PCR. XBP1US was observed as a 289 bp band, and XBP1S was observed as a 263 bp band on 
siCTGF-partial knockdown NRCM, n=2. 
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Figure 50 | Partial knockdown of CTGF in NRCM and various ER stress markers at the 
transcription level. mRNA level of CTGF, ATF4, PDI, and BiP was assessed by qPCR in control and 
CTGF knockdown NRCM. The values are given as mean ± SEM, n=4. Statistical comparisons were 
performed by a paired t-test, *p<0.05 vs. control. 
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5 Discussion 

In spite of significant improvements in the treatment of cardiovascular diseases, heart failure 

remains a prevalent problem. Heart failure describes a critical state in which the heart is not 

able to maintain normal cardiac output, and thus blood supply to the organs is diminished. 

The leading causes of heart failure include arrhythmia, cardiomyopathy, hypertension, 

myocardial infarction and ischemic heart disease (Drazner, 2011; Minicucci et al., 2011; 

Yancy et al., 2013; Diez, 2014; Lip et al., 2016; Marti-Carvajal and Kwong, 2016). For 

decades variations in the phosphorylation and redox status of various proteins have been 

characterized in different areas of heart diseases, however this has unfortunately not 

resulted in many new therapeutic treatments. Both abnormal phosphorylation states of 

essential cardiac proteins and elevated ROS production contribute to contractile dysfunction 

and fibrosis in failing hearts. Cys residues are subjected to oxidation, however the interplay 

between oxidation and downstream phosphorylation events remains unclear. Despite its 

important role in the cardiovascular system whether redox changes to PP-1 affect the 

regulation of its targets is not fully understood. In this study, mass spectrometry was used to 

explore the oxidation state and various PTMs of PP-1. In addition to irreversible 

modifications, such as sulfonic acid formation of Cys residues, mass spectrometry may work 

as a robust strategy to identify transient modifications such as disulfide bridge formation and 

glutathionylation of PP-1.  

The effect of oxidative stress is, however, not restricted to the cytoplasm of a cell. Also other 

compartments are affected by increased oxidative stress. With that respect, the endoplasmic 

reticulum (ER) is of special interest as oxidative stress can induce ER stress leading to an 

accumulation of unfolded transmembrane and secreted proteins. This results in the unfolded 

protein response which itself is a reactive oxygen species producing mechanism (Santos CX 

et al., 2009). Therefore, the secreted protein CTGF, which is strongly induced in heart failure, 

was studied as a target of oxidative changes in the ER and as a potential regulator of ER 

stress.  

 
5.1 H2O2 influences the movement and morphology of cardiac cells 

Exogenous H2O2 application is a valuable tool for altering oxidant-dependent signaling in 

cardiac tissue and cells. For maintenance and efficient physiological functioning of the 

cardiovascular system, it has been well established that levels of endogenous H2O2 need to 

be lower and that higher levels are associated with various diseases (Halliwell et al., 2000; 

Gough and Cotter, 2011). Recently it has become clear that H2O2 is not exclusively 
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associated with deleterious functions but also mediates normal physiological processes 

(Schroder and Eaton, 2008). The mechanisms by which oxidation alters the heart’s 

contractile properties resulting in myocardial remodeling is not entirely understood. 

To investigate the possibility that H2O2 exogenously regulates cardiac function, NRCMs were 

treated with different concentrations of H2O2 for 24 h and a time-lapse movie was recorded. 

Heat maps were generated from the movies showing the spots of myocyte contraction as 

mean of the time-averaged magnitude of every motion. For that a matlab based script was 

used, according to Huebsch et al, which also quantified the contraction velocity and the 

relaxation velocity of the myocytes at each H2O2 concentration (Huebsch et al., 2015). From 

this values the relaxation-contraction ratios were calculated to give a measure of myocyte 

vitality. A resolution of 0.6442 μm/pixel (20× objective) was used and dead floating cells were 

tried to filter with the script build-in cleaning mechanism. The script first determines 

spatiotemporal information about motion vector direction and intensity of every beating 

cardiac myocyte which will then be translated into the results seen in Figure 18. Results 

demonstrated that a concentration of 104 µM H2O2 significantly damaged NRCM vitality. 

However, NRCMs were resistant to lower concentrations 100 or 103 µM of H2O2 (Figure 18). 

During disease states when ROS is elevated cardiac function is compromised altering 

calcium homeostasis and negatively affecting myofilament proteins responsible for mediating 

contractile functioning. The reciprocal synergy between ROS and calcium signaling has been 

shown to modify various calcium channels, pumps, and exchangers (Görlach et al., 2015). 

Lower levels of endogenous H2O2 are essential for normal physiological functioning and 

signaling, whereas higher levels are associated with altered cell morphology in cardiac 

myocytes (Schroder and Eaton, 2008). Another study showed that acute treatment of 100 µM 

H2O2 for 45 min in NRCM, triggers MAP kinase activation which could further be stopped by 

catalase (Sabri et al., 1998). In addition, treating the cardiomyocytes or fibroblast with 0-200 

µM H2O2 for 30 min induces MAPK, and while the cells are remaining healthy, some 

downstream phosphorylation targets were downregulated by EGF receptor inhibitors 

(Purdom and Chen, 2005). Interestingly, another group revealed that different concentrations 

of H2O2 showed a different effect in rat cardiomyocytes over the period of 24 h, such that 10-

30 µM triggered protein synthesis, 200 µM induced apoptosis and 300-1000 µM triggered 

both apoptosis and necrosis (Kwon et al., 2003). In summary, exogenous application of H2O2 

to tissues or cells in the range of 0.1-1.0 mM over several hours will not lead to the death of 

cells but rather triggers downstream signaling pathways. 
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5.2 Oxidative stress influences cardiac β-adrenergic signaling 
pathway and PP-1 activity 

According to the enzymatic activities, there are two enzyme subclasses within the family, PP-

1, and PP-2, which further consists of PP-2A and PP-2B (calcineurin) and PP-2C 

(Ingebritsen and Cohen, 1983). In the cardiovascular system PP-1, PP-2A and PP-2B are 

responsible for 90% of protein phosphatase activity (El-Armouche and Eschenhagen, 2009). 

Neumann et al first identified increased PP-1 activity as a hallmark of cardiovascular disease 

(Neumann et al., 1997). Almost one decade ago it was established that both in vitro and in 

vivo PP-1 activity is inhibited by H2O2 (3 mM) treatment and further that it could be reversed 

in vitro by thiol-oxidant N-acetyl-cysteine (NAC) and reduced glutathione (GSH). Moreover, it 

was found that NAC pretreatment protected from H2O2 triggered PP-1 inactivation, 

eradicating H2O2 triggered elF2α phosphorylation and protein synthesis inhibition (O’Loghlen 

et al., 2003). In the following year, it was also shown in rat hippocampal and SHSY5Y human 

neuroblastoma cells, that there was a decrease in the phosphorylation of I-2 and PP-1 

activity due to H2O2 incubation; the authors proposed that oxidative stress-induced activation 

of Cdk5 led to I-2 phosphorylation, preventing its inhibitory effect on PP-1 (Zambrano et al., 

2004). How oxidative stress and β-adrenergic signaling pathways converge via PP-1 in 

cardiac cells was analyzed. To assess PP activity two assays were utilized: EnzChek kit 

assay (DiFMUP as substrate; Figure 15) and ProFluor Ser/Thr PPase Assay (R110 as 

substrate; Table 14). 

Using the ProFluor Ser/Thr PPase assay, PP-1 and PP-2A activity was calculated by using a 

selective inhibitor, i.e. OA in NRCM and whole heart tissue of mice (Figure 20). Using this 

assay, findings are in line with previous work, demonstrating a 10% contribution of PP-1 in 

both species. Structure-function analysis suggests that PP-1 activity may be regulated by two 

redox-sensitive Cys residing in proximity to its active site (Fetrow. et al., 1999). To further 

validate whether PP-1 activity is oxidant-dependent, a recombinant PP-1-GST tagged 

peptide was used with the abovementioned kit. PP-1 activity was inhibited by the exogenous 

addition of H2O2 in both a concentration and time-dependent manner (Figure 21.A-B). 

Furthermore, the reversibility of the inhibition of PP-1 activity was elucidated via the reducing 

agent (TCEP) (Figure 21.C). The EnzChek kit assay was used to calculate total phosphatase 

activity in human non-failing (NF), ischemic cardiomyopathy (ICM) and dilated 

cardiomyopathy (DCM) donor hearts. Interestingly, the total phosphate activity was lower 

(~7%) in DCM as compared to ICM and NF (Figure 19). Consequently, using the same kit, in 

NRCM the inhibition of total PP activity was identified by 25%, in the presence of 100 µM 

H2O2 as exogenous oxidant (Figure 22). In parallel recently, Santos et al, demonstrated that, 
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recombinant PP-1 was also concentration-dependently inactivated by H2O2. However, thiol 

reductant such as DTT, glutathione and Cys did not restore PP-1 activity as removal of 

excess of H2O2 by catalase treatment. But with a one-electron reductant, ascorbate, 

efficiently reversed PP-1 inactivation (Santos et al., 2016).   

The PP-1-inhibtory subunit I-1 is strongly expressed in the cytosol of cardiomyocytes, and 

thus plays a primary role in phosphorylation feedback loops and expedites crosstalk between 

phosphatases and kinases. During β-adrenergic stimulation, I-1 was activated via PKA, 

consequently inhibition of PP-1, which leads to the formation of a positive feedback loop 

augmenting the phosphorylation of several cardiac substrates such as PLB, RyR2, cMyBPC 

and TnI (El-Armouche et al., 2003; Heijman et al., 2013). Also, many cardiac proteins are 

dephosphorylated by PP-1 and PP-2A, for example PP-1 triggers the dephosphorylation of 

TnI at Ser23/24 (Solaro and Kobayashi, 2011). The results in NRCM demonstrated a novel 

impact of oxidative stress on various cardiac proteins playing a vital role in the functioning of 

the β-adrenergic signaling pathway (Figure 24). The phosphorylation status of protein 

phosphatase inhibitor-1 (I-1), a crosstalk protein between PKA and PP-1 signaling, showed a 

bell-shaped phosphorylation response with a maximal peak at 100 μM H2O2 (Figure 23). This 

data is in line with results from the Eaton group, i.e. the oxidant-induced bell-shaped PKA 

phosphorylation was highest at 100 µM H2O2 (5 min) in adult rat ventricular myocytes; after 

which there was a loss of phosphorylation (Brennan et al., 2006). However, no effect on 

phosphorylation of both PLB-Ser16 and cMyBP-C-Ser282 was observed in concentration 

dependent manner (Figure 24.C). For PLB-Ser16, phosphorylation was decreased after 10 

min incubation with 100 µM H2O2, whereas phosphorylation of cMyBP-C-Ser282 showed a 

bell-shaped curve with the highest peak at 10 min (Figure 24.B). One possible explanation 

could be that PP-1 activity was decreased after 10 min (Figure 21.A) and that might suggest 

for the cMyBP-Ser282 phosphorylation to be high after 10 min. Nevertheless, it is surprising 

that PLB-Ser16 phosphorylation is decreased after 10 min. If H2O2 is incubated longer, it is 

possible that it has more time to phosphorylate and activate I-1 via PKA oxidant dependent 

activation (Brennan et al., 2006), which will inhibit PP-1 more strongly and therefore increase 

phosphorylation at PLB-Ser16. However, on the other hand, a study done in cardiomyocytes 

directed NOX2 transgenic mouse model, Ang II-stimulated NOX2-ROS production increased 

cardiac contractile performance by augmenting SERCA activity driven by enhanced PLB 

phosphorylation and led to faster contraction and relaxation. Further, it was established that 

PP-1 activity was strongly inhibited in Ang II-treated transgenic mice, which is in line with the 

mechanism where NOX2 inactivates PP-1, permitting for an increase in PLB 

phosphorylation.  Still, the spatial interrelationship between NOX2, PP-1 and PLB or how PP-

1 is inhibited by NOX2, remains elusive at this stage. One possible suggestion could be that, 
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NOX2 inhibits PP-1 locally at the junctional SR and this then transduces the signal to PLB at 

the network SR (Zhang et al., 2015). 

In summary, these results suggest that the activity of PP-1 is inhibited in the presence of 

oxidation and that it can be reversed in the presence of the reducing agents. Our findings 

also demonstrated that the expression of PLB-Ser16 and cMyBP-C-Ser282 were differentially 

affected by H2O2, indicating a complex layer of regulation of both redox-sensitive kinases and 

phosphatases. Results from failing human samples show that PP activity is diminished in 

failing myocardium. The pathway described in this study could therefore be novel possibility 

with which to treat cardiovascular disease.  

5.3 Identification of redox-sensitive Cysteine residues in PP-1 via 
immunoblotting 

In 2006, it was demonstrated that the regulatory subunit of type I PKA contain redox-

sensitive Cys residues With respect to the availability of cellular H2O2, this leads to the two RI 

subunits of the tetrameric holoenzyme to form inter-protein disulfide bridges (Brennan et al., 

2006). The same experiment with H2O2 and diamide was successfully replicated in NRCM. In 

addition, samples were also treated with maleimide, which reacts with free thiol groups and 

further stops oxidative reactions or disulfide bridge formation. Interestingly, using similar 

protocols in NRCM samples, PP-1 immunoblots show the formation of a dimer at 70 kDa 

(Figure 26) suggesting that inter-molecular disulfide bridges may be formed in PP-1 in its 

native state. These results are similar to those obtained from the Brautigan group which 

showed that purified PP-1 from rabbit skeletal muscle formed a 70 kDa polypeptide as a 

potential dimer of the 38 kDa monomer (Brautigan and Shriner, 1989). Surprisingly, Cys127 

was also identified to form inter-disulfide bridges as one of the PTMs using mass 

spectrometry (Figure 35). One of the limitation of these findings is that although the dimer 

formation was identified from control samples up to 104 µM diamide, including 37 kDa. 

However, mass spectrometry results indicated that only Cys127 was identified to form inter-

disulfide bridges and only with condition -Mn2+ and +H2O2, in contrast to the immunoblot 

data. In addition to this reduced expression of PP-1 was identified with increasing 

concentration of diamide at 37 kDa. An explanation for the above-mentioned result may be 

that the epitope of the antibody is less available after a dose of 103 and 104 µM diamide. 

In 2007, it was discovered in rat cerebral cortex, that inhibition of PP-2A activity was 

associated with the formation of intramolecular disulfide bridges (Foley et al., 2007). With the 

same above-mentioned samples, band shifts were also checked and immunoblots showed 
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that the same results as PP-1 but no intramolecular disulfide bridge formation in PP-2A 

(Figure 27).  

As SERCA in previous experiments with HPLC-ESI (electrospray ionization)-MS/MS (tandem 

MS) showed two Cys residues (Cys344 and Cys349) forming internal disulfide bridges (Sharov 

et al., 2006). To some extent the formation of an internal disulfide bridge in SERCA2a could 

be demonstrated by immunoblotting of shifted bands (Figure 28). One conclusion from the 

observation of a shift to lower size when running the NRCM samples under non-reducing 

conditions is that SERCA2a is forming an internal disulfide bridge. However, under the 

above-mentioned conditions for PP-1, no such shift was observed therefore contradicting the 

idea of internal disulfide bridges formation in PP-1. Similar results were observed for PP-2A. 

A biotin-conjugated iodoacetamide (BIAM) labeling assay was used to investigate whether 

PP-1 Cys-oxidation changes in response to ROS. From the results, one conclusion is that, 

free Cys residues are mostly protected from oxidations at very acidic pH and performing the 

assay at slightly acidic or slightly basic conditions does not protect the Cys residues from 

being oxidized. These results suggest that, under the chosen conditions, the Cys residues of 

PP-1 are not susceptible to oxidation by H2O2 (Figure 29). However, the ‘Biotin-switch assay’ 

should be used as an indirect method to check for oxidized Cys in proteins as an alternative 

to the BIAM labeling assay (Forrester et al., 2009). 

In summary, immunoblots demonstrated the PKA’s dimerization and SERCA’s band shift, 

thus representing Cys oxidations in the respective protein. With respect to PP-1, results 

suggest the dimerization formation at 70 kDa, however a band shift was not observed. 

Section 5.5.6, illustrates the prediction software results, which concur with above mentioned 

findings. 

5.4 Known oxidative state of Cysteine in PP-1  

The recent X-ray structure of oxidized PP-1γ (PDB id: 4UT3; Figure 51) reveals that only two 

Cys residues Cys127 and Cys273 are oxidized. Cys273 resides on the outskirt of the structure, 

might be one of the reasons, for not identifying any connection towards disulfide bridges. In 

contrast, since Cys127 lies in the vicinity of various other Cys, it is expected that it 

interchanges disulfide bridges with the network around it in the, those disulfide links were 

identified with mass spectrometry (see Figure 31). The same results were identified in the 

recent crystallographic studies, stating that Cys127 and Cys273, were often oxidized to a 

sulfenic derivative in electron density maps (Santos et al., 2016).  
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Figure 51 | The X-ray structure of PP-1γ (PDB id: 4UT3) in its oxidized state. The two blue Cys 
residues (Cys127 and Cys273) are oxidized in the presence of H2O2. The distances between oxidized 
Cys and Mn2+ are measured as follows: Cys127-Mn2+ = 8.81 Å; Cys273-Mn2+ = 9.98 Å. 

5.5 Impact of redox stress on PP-1 detected by mass spectroscopy 

The varied chemistry of Cys residues is due to the electronic structure of its thiol group, 

resulting in multiple oxidation states (-2 to +6) and redox modifications (sulfenylation, -SOH; 

sulfinylation, -SO2H; sulfonylation, -SO3H; glutathionylation, -SSG; SS formation, etc.). All of 

which contribute to various signaling pathways. For example, it has been well established 

that tyrosine phosphatases are sensitive to oxidation by ROS, especially H2O2, acts as an 

intracellular second messenger in the cells (den Hertog et al., 2005; Tonks, 2005). In the 

following sub-sections, the key focus will be to discuss the structure of PP-1 with respect to 

its various PTMs, Mn2+ role, networking of disulfide bridges and predictive computational 

methods. 

5.5.1 Redox-response of GST-tagged PP-1 involves glutathionylation of 
Cys: 140, 202 and 245 

PTP-1B is the most studied redox-sensitive signaling protein which consists of reversible 

oxidized Cys involving Cys215 to be glutathionylated (Barrett et al., 1999). Though H2O2 is 

known to be a secondary messenger, excessive concentrations may also damage various 

amino acids (Berlett and Stadtman, 1997). Cys residues are first oxidized to sulfenic acid, 

which is reducible, however they may be further oxidized to irreversible sulfinic and sulfonic 

acid. Another possible pathway could involve the protective pathway by reacting with 

glutathione to form a reversible disulfide link, which prevents excessive oxidation. S-

glutathionylation is reversible and so protects and modifies structures/functions of proteins. 
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Thus it can consequently regulate signaling pathways to maintain cellular homeostasis (Grek 

et al., 2013). 

In the course of the experiments, it should be considered that, PP-1 is tagged with 

glutathione S-transferase (GST), and supplied with 10mM of excess glutathione (GSH) in the 

buffer for the stability of the protein. In this thesis, results (Figure 32) have demonstrated that 

in GST-tagged PP-1, glutathionylation can be induced at outer-bound Cys residues (i.e. 

Cys140, Cys202 and Cys245) only as a consequence of oxidative stress. Also, with Cys202, both 

complete glutathionylation and persulfide modifications were identified (Figure 33). 

Altogether, the findings of the mass spectrometry experiments provide strong evidence that 

Cys residues in PP-1 are prone to oxidation. Therefore, glutathionylation in PP-1 could be a 

fast response to oxidative stress that protects the protein from further damage. A major 

limitation of this finding is that the same experiments were not performed with different 

concentrations of GSH in the presence of the GST-tagged PP-1 and with different 

concentrations of GSH in the presence of a non-tagged protein. Therefore, it cannot be 

unequivocally concluded from the data that glutathionylation occurs. Also, the non-detectable 

Cys peptides generated with LC-MS/MS were believed to be involved with disulfide bridge 

formation, but they were not detectable. Therefore, these Cys residues may be altered by a 

hitherto unknown modification (Append 1). 

Additional experiments are necessary to repeat the above findings intracellularly. This is 

critical for illustrating the glutathionylation state of PP-1, as GSH is present in large amounts 

(~10mM) in cells and reduces various oxidizing agents, including H2O2. Furthermore, it would 

be necessary to identify which modifications occur in situ, such as: sulfenic acid (Cys-SOH), 

intra-disulfide (Cys-SS) and/or mixed disulfide (Cys-SSG). Nonetheless, the above results 

indicate that that the action of GSH to modify Cys-SOH into Cys-SSG in the intracellular 

context to form glutathione mixed disulfide links (PP-1-SSG), is the first reaction to oxidative 

stress. The results also demonstrated that the activity could be recovered with TCEP or by 

thioltransferase (see also Figure 21). 

5.5.2 Mn2+ in external buffer plays a protective role for Cysteine 
oxidation 

Nearly two decades ago, it was shown that PP-1 activity mainly relies on the di-nuclear metal 

center for catalysis, rather than Cys-redox modifications (Egloff et al., 1995; Goldberg et al., 

1995). Later it was demonstrated by Zhang et al in a cardiomyocyte-targeted NOX2-

transgenic mouse model that elevated NOX2 activity modulates cardiomyocytes SR Ca2+ 

uptake and contractile function. Which further, increased PLB phosphorylation in both heart 
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tissues and cardiomyocyte cells, which correlated with the inhibition of PP-1 activity. This 

mechanism was additionally confirmed with PKA inhibitors blocking Ang II-mediated 

enhancement of contractile function in transgenic myocytes. (Zhang et al., 2015). The same 

group later also showed that PP-1 inhibition is mainly redox-regulated by the metal center 

and not by the Cys oxidation. In particular, NOX4 mediate the inhibition of PP-1 resulting in 

enhanced elF2α phosphorylation and increase in ATF4 levels increase cell survival during 

protein misfolding stress and is strongly protective against acute cardiac or kidney injury 

(Santos et al., 2016). 

A theoretical study on the reaction mechanisms of PP-1 has demonstrated a novel 

mechanism behind the different oxidation states of the Mn2+ at the catalytic center. Based on 

the high-resolution crystal structure, it was shown that the different oxidation states of Mn ion 

(i.e. Mn3+-Mn2+ and Mn3+-Mn3+) can shorten the bond lengths between the metal ions by 0.15  

Å, which triggers the energy barriers (Zhang et al., 2013). In parallel, recently Santos et al., 

demonstrated that soaking of PP-1 crystals with H2O2 did not alter the general structural 

features of the active site, however a contraction of the average metal coordination sphere 

by 0.12 Å compared to ascorbate-treated crystals (Santos et al., 2016).  

The active center is placed in proximity to Cys127, Cys273, Cys155 and Cys158. Half of the Cys 

network, including Cys39, Cys105, Cys127, Cys140, Cys155 and Cys158, are in proximity to the 

metal ions and hence could be protected from oxidation. The other half is situated further 

from the metal ions and hence will not be protected. When the formation of disulfide bridges 

in our assay was observed, this separation into two halves quickly became visible (see also 

the two black boxes in Table 21). In addition, it was identified that extra Mn2+ ions in the 

buffer took reduced redox stress so that fewer disulfide bridges were formed as compared to 

the –Mn2+ +H2O2 conditions. The same was observed for other Cys-based PTM in PP-1. This 

result was obtained under harsh, non-physiological conditions (Table 20.C), but it could also 

be possible under higher H2O2 concentrations in the cellular context. Furthermore, the Cys 

sulfone levels were used as a readout of the damaging effect of H2O2 (Table 22). Additional 

Mn2+ in the buffer protected all Cys residues from over-oxidation, and therefore concluded 

that under physiological conditions, the two Mn2+ bound in the complex could provide 

protection from oxidation. 

5.5.3 Network of disulfide bridges might play a protective role in 
maintenance of GST-tagged PP-1 activity under redox-stress  

In this thesis, the role of various PTM including intra-molecular disulfide bridge formation and 

gluthathionylation were assessed during oxidative stress. Oxidative stress has been shown 
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to affect the activity of the protein. This inhibition can also be reversed with the treatment of 

TCEP (Figure 21). S-Gluthathionylation was shown to be a fast response to a harsh oxidative 

treatment, but this modification may have deleterious effects if prolonged. Therefore, the 

formation of the disulfide bridges from the Cys residues, not in proximity to one another, may 

play a role in maintaining structural integrity of PP-1. Hence the structure of PP-1 could be 

highly dynamic, however the formation of transient intra-molecular disulfide bridges cannot 

be identified using typically employed approaches, such as non-reducing immunoblots. 

Nevertheless, these modifications may be identified using with mass spectrometry. 

This approach was used in LC-MSMS experiments under four conditions: including and 

excluding both Mn2+ and H2O2 in the buffer solutions. A curious result that was identified 

under all conditions was that Cys155 and Cys158; Cys171 and Cys172 formed disulfide bridges. 

The direct proximity of Cys171 and Cys172 supports this behavior, and the disulfide bridge 

remains intact. This is an expected result because they are always placed on one peptide 

when the protein was digested with Trypsin. On the other hand, Trypsin digestion is 

performed at almost neutral pH, which can lead to artifact formation of disulfide bridges. The 

observation was because generally the detection of disulfide linked peptides is in only 

enabled by H2O2 treatment. Artifact formations did not play a major role in this experiment.  

Cys39 and Cys127 were not detected as free peptide spectra, which allows us to conclude that 

they play a major role in disulfide networking.  

When a normal search was performed with all the Cys modifications, the formation of 

persulfides and/or dehydroalanines was observed for the following Cys residues: Cys62, 

Cys105, Cys155, Cys202 and Cys291, that must be formed under CID conditions from either 

disulfide bridges or any other type of disulfide-link. In conclusion, oxidative stress might 

induce disulfide bridge formations that freeze structural changes in the protein. Altogether, 

seven disulfide bridges were identified as true ones (Cys140 XL Cys39, Cys105 XL Cys39, Cys140 

XL Cys127, Cys140 XL Cys154Cys158 and Cys127 XL Cys154Cys158). However, none of them were 

found to be in the appropriate proximity to form native disulfide bridges. In order to form 

disulfide bridges, Cys residues need more flexibility of the protein to come closer to each 

other. Three more disulfide bridge spectra were weaker and could be hence artifacts from 

the database search (Cys39 XL Cys62, Cys39 XL Cys127 and Cys140 XL Cys154Cys158), since the 

spectra do not contain enough information about the second peptide. Also from a structural 

point of view, these disulfide bridges are not very likely to form because the Cys residues are 

too far away from each other so that this could be explained by disulfide scrambling. On the 

other hand, not all Cys residues are involved in disulfide links when harsh oxidative stress is 

applied to the protein. Although experiments were performed under slightly acidic conditions, 
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the results from all four conditions provide sufficient information to conclude that true 

disulfide links were formed. Also, disulfide shuffling upon digestion with Trypsin might have 

also played a role.  

With the aid of pymol and PDB id: 4MOV, all possible distances were measured in Ängström 

between all thirteen Cys. The distance between all the Cys and Mn2+ ions in PP-1 was 

measured as well. Table 21, arguments for the Cys which are closer to Mn2+ ions might be 

protected from oxidation. Figure 52.A shows close proximities of Cys273, Cys202 and Cys127. 

According to the distance measurements of the structure determined under non-oxidative 

conditions, one should also see protection for Cys245 and Cys62 (Table 21). The latter are 

close proximity to Cys155Cys158 which forms a disulfide bridges under all conditions (as 

detected in Figure 52.B). Cys155 being in the center vicinity of all the Cys residues, it appears 

to be an ideal Cys to form disulfide bridges with other Cys. The same holds true for Cys245 

(Figure 52.C) which shows a second network between Cys291, Cys62, Cys245, Cys171 and 

Cys172. Cys171Cys172 could form a disulfide under all conditions. The two potential networks 

based on the proximities are indicated in black boxes in Table 21. To conclude, the 

experiments do not answer the question to which extent the Mn2+ ions are protective against 

the oxidation, since the H2O2 levels are quite artificially high. As stated above, Cys273 and 

Cys291 are too far away from the active center and not protected by the Mn2+ ion, either. 

However, a truncated peptide was identified starting from Ser168 being completely reduced 

without H2O2, and a persulfide formation at Cys291 when H2O2 was applied.  

Over two decades ago, site-directed mutants of the catalytic subunit of rabbit muscle PP-1 

were generated, as their activity is highly susceptible to inactivation by sulfhydryl reagents. In 

an experiment, they had mutated the following Cys residues: 39, 62, 171, 202, and 273 from 

Cys to Ser. All six mutants were active; and so did not depend on the mechanism of a 

cysteinyl-phosphate intermediate (Zhang et al., 1994). In the same study, interestingly, C273S 

mutant, this Cys is closest to the C-terminus, shows a similar activity to the wild-type 

recombinant enzyme, which suggests that that portion of C-terminus of PP-1 can be cleaved 

without loss of activity (Cohen, 1989; Bollen and Stalmans, 1992). Recent study confirming 

the abovementioned findings that, PP-1 Cys127/273Ser double variant mutant exhibited the 

same catalytic activity as wild type PP-1 and responded identically to H2O2 treatment (Santos 

et al., 2016).  

In the future, it would be interesting to conduct mutagenesis studies involving the 

replacement of redox-sensitive Cys residues in PP-1. For instance, Cys127 would be a 

convincing link between disulfide bridges and PP-1 activity. It is also possible that an amino 
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acid switch could alter the PP-1 structure, leading to total inactivation of PP-1 and disrupting 

the β-adrenergic signaling pathway. 

Figure 52 | Proximities of several Cys residues forming a network. Red Cys have a very high 
proximity, and blue Cys residues are in the range of 14 Å. (A) The cartoon representation shows close 
proximities towards the Mn2+ for Cys273, Cys202 and Cys127. The distance measurements of the 
structure determined under non-oxidative conditions, shows that Cys245 and Cys62 are protected 
(Table 21). (B) The figure shows the network of closer related Cys residues around Cys155. 
Cys155Cys158 can form a disulfide under all conditions and might interact with Cys39 and Cys105. On the 
other hand, Cys140 and Cys127 are further away. With Cys155 in the center vicinity of all the Cys 
residues, it could be ideal for forming disulfide bridges with all other Cys. (C) The same holds true for 
Cys245 which shows a second network between Cys291, Cys62, Cys245, Cys171 and Cys172. Cys171Cys172 
would also form a disulfide bridge under all conditions.  

5.5.4 Redox response of His-tagged PP-1 involves sulfone formation 

From the Peaks results, the first observation from the His-tagged PP-1A protein was that a 

large number of sulfone was formed at all Cys residues when H2O2 was applied, but no 

persulfides were formed at all. Furthermore, other amino acids were oxidized, which was not 

present in the GST-tagged PP-1A. This confirms the protective mechanism of GST in the 

buffer for all other amino acids, but also clearly shows that glutathione in GST-tagged PP-1 is 

protecting the protein from further oxidation and preventing the Cys from being oxidized up to 

the sulfone state, a mechanism missing completely in the His-tagged PP-1. 

Similar to GST-tagged PP-1, the free peptides with Cys39 were not visible, but some oxidized 

peptides comprised Cys127. Cys39 is the only disulfide bridge discovered close to Cys155Cys158 

in the condition with non Mn2+ and with H2O2. To conclude, the fast formation of sulfones of 

all the other Cys prevented more disulfide bridge formations. The distance table also shows 

the by far lowest distance of only 4.54 Å between Cys39 and Cys155, which argues for the fast 

formation of a disulfide bridges as a protection mechanism even more strongly.  
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When samples were free from Mn2+ and H2O2, all Cys were free, and carbamidomethylation 

was possible. Surprisingly, when Mn2+ were not present in the buffer, the addition of H2O2 led 

to the formation of sulfonic acid of all Cys residues, whereas in the presence of Mn2+ ions this 

was not the case. 

5.5.5 Do Histidine residues cage the dinuclear Mn2+ ions to shield them 
from Cysteine residues? 

The X-ray structure of PP-1 has revealed the six residues which coordinate the Mn2+ ions 

(Asp64, His66, Asp92, Asn124, His173 and His248). His66 is found next to one Mn2+ ion, His248 is 

next to the other Mn2+ ion, which excludes His125 from the unity sequence of the ligands 

amino acids. It has been well established that His125 is required for catalysis and that it is not 

a ligand to both metal ions, but that it is within the range of 5 Å (Lohse et al., 1995). 

However, site-directed mutagenesis of His125 been shown to have considerable effect on its 

catalytic activity as well as on the stability of the protein, which opens the question for the 

role of His.  

 

 

 

 

 

 

Figure 53 | His caging Mn2+ and Tyr272 arrangement correlated to Cys network His arrangement 
around the dinuclear Mn

2+ 
ions. In the structure of PP-1, two Mn

2+
 ions are surrounded by the four 

His residues (His
66

, His
125

, His
173

 and His
248

). Tyr272 is close by Mn2+ ions and gets oxidized.  

Di-nuclear Mn2+ ions are surrounded by four His (His66, His125, His173 and His248). 

Interestingly, in this study, His125 was discovered to be oxidized in the spectral data in the 

condition with Mn2+ and with H2O2 in His-tagged PP-1, while His248 was discovered to be 

oxidized in the GST-tagged protein (Figure 53). This lead to a conclusion that first Mn2+ is 

getting oxidized, followed by His. Cys residues might behave independently from this 

because they are shielded by the His residues from the protected distance of the metal ions. 

Mn2+ ions do not protect Cys from oxidation unless a certain order of oxidation (first Mn2+ and 

His173	
His125	

Tyr272	

Cys273	
His248	

His66	
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later His) occurs as a protection mechanism. One possible conclusion could be that first Mn2+ 

gets oxidized and then His but that somehow Mn2+ ions fail to protect Cys from oxidation.  

In addition, Tyr272 gets oxidized in the condition with non Mn2+ ions and with H2O2, which 

resides next to the Cys273 and also in close proximity of dinuclear Mn2+ ions. One suggestion 

for this oxidation could be that Tyr aids in the oxidation of both metal ions and Cys273 by 

transferring the electrons to them or vice versa. More experimental data are needed to prove 

this interesting finding.  

5.5.6 Disulfide bridges determination in PP-1 using predictive 
computational methods and its correlation with mass spectrometry 
data 

Cys is known as a tripotic acid in which the pKa of the thiol group has been identified to be 

8.2 (Tajc et al., 2004). Thiol groups are considered to be mild acids, where the pKa value can 

be altered due to the protein microenvironment. In conclusion, the pKa value will play a 

significant role, whether a thiol group will be reactive enough to oxidize, and hence to form 

disulfide bridges with a neighboring thiol group. In total, four different prediction software 

programs were used to identify the probability for disulfide bridges in PP-1 with 

corresponding PDB id or sequence information, namely PROPKA 3.1, COPA, DiANNA and 

dbGSH database. 

PROPKA 3.1 software identified Cys155 and Cys171 as the Cys with the lowest pKa. The 

corresponding thiol groups containing Cys can be highly susceptible to oxidation and can 

later form disulfide bonds. Mass spectrometry analysis found those Cys residues to be 

involved in disulfide bridges in all times, but this correlates also with its simplified detection 

on just one Tryptic peptide. In contrast, COPA, an algorithm based disulfide bridges predictor 

software, identified Cys 39, 127, 155, 171, 245 and 273 to be redox sensitive. This software 

categorizes different Cys residues into oxidation susceptible and oxidation-non-susceptible 

and further classified three points for prediction of thiol oxidation susceptibility i.e. distance to 

the nearest Cys sulfur atom, solvent accessibility, and pKa. Interestingly, both Cys39 and 

Cys127 were also not identified as free Cys peptides under all buffer conditions, and to be 

involved in disulfide formation. Cys245 is known as one target to glutathionylation. 

Furthermore, DiANNA software predicted mainly Cys273 to be in oxidation state with the score 

of 1. Also, from a structural point of view, PP-1 contains dinuclear Mn2+ in the pocket of the 

catalytic subunit, and Cys273 and Cys291 were quite distant from it and hence could not be 

protected from oxidation by Mn2+ ions. In the mass spectrometry analysis, initially these two 

Cys residues were not detected at all, but a repeated search in aid with a semi-trypsin 
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activity that allows one non-specific cleavage, it was possible to detect a truncated peptide 

starting at Ser168, where both Cys residues were non-oxidized in non Mn2+ and with H2O2 and 

hence must be protected. Under harsh oxidative conditions, Cys291 was also identified as a 

persulfide, which indicated that it might form disulfide bridge or mixed disulfide bridge with 

glutathione. Another prediction software/database dbGSH proposed that Cys140, Cys158 and 

Cys245 could be S-glutathionylated, which could be correlated with the MS results that 

demonstrated Cys140, Cys202 and Cys245 to be S-glutathionylated (discussed in detail in 

Section 5.5.1). 

5.6 Proposed mechanism for protection of PP-1 from irreversible 
loss of activity 

In the native structure of PP-1, there is no disulfide bridge formation and no Cys residues are 

known to play any role in redox modified signaling mechanism. In this thesis, a mechanism 

for the redox modification of PP-1 is purposed (Figure 54). At this point, it is uncertain which 

part of the mechanism described below may be responsible for the redox-based activity of 

PP-1, but it seems clear that the GST activity and GSH at high concentrations actively 

protects the Cys residues from the formation of an irreversible state of sulfonic acid, which 

further leads to a protective mechanism that involves formation of various disulfide bridges. 

However, external addition of Mn2+ in the buffer also leads to the novel protection of Cys and 

His from oxidation.  

Figure 54 | A proposed mechanism showing the vital role of glutathione, His, Cys and Mn2+ 
ions in the activity of PP-1. With the aid of two His-tagged and GST-tagged rPP-1, glutathione 
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protects the Cys from the irreversible (sulfone) modification by forming a strong disulfide-network. 
Dinuclear Mn2+ ions at the center pocket of the catalytic unit, also act as protecting agent by lowering 
the Cys oxidations and decrease in disulfide bridges formation. Histidine surrounding the Mn2+ also 
protects the metal ions from further oxidation, by allowing themselves to get oxidized first. PP-1 
activity could be recovered by TCEP, if Cys are still in a reversible stage, i.e. disulfide bridges.  

This novel observation sheds light on the mechanism of PP-1 as a redox sensor. As 

highlighted in Figure 55, the presence of glutathione leads to the oxidant induced inactivation 

of PP-1 via transient intra-molecular disulfide bridge formation. It is possible that PP-1 might 

first form mixed-disulfide bridges via S-glutathionylation, which could be reverted back to the 

original structure in the presence of GST. This work also highlights, how GSH plays a 

protective role by not allowing Cys to form an irreversible sulfonic acid state, whereas the 

disulfide bridges between Cys39 and Cys155Cys158 are prominent after the sulfenic acid 

formation.  

 

 

 

 

 

 

 

 

 

 

Figure 55 | Cys redox sensor in PP-1. The proposed mechanism of S-glutathionylation of PP-1 to 
protect against extreme oxidation, and to make PP-1 a novel regulatory model for redox regulation. 

5.7 Clinical importance of redox-modified PP-1 

Peroxide stress and the consequent formation of sulfenic acid and further transient disulfide 

bridges is believed to be a common mechanism in disease formation, e.g. of the brain, or the 

blood circulation system, i.e. in the development of high blood pressure/hypertension (Rybka 

et al., 2011). Presently, very little research has been undertaken examining the role of PP-1 
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oxidation specifically in context of cardiovascular research (Zhang et al., 2015; Santos et al., 

2016). 

PP-1 is found as a target to oxidative stress in the brain, forming transient disulfide bridges 

(Foley et al., 2016), but the exact mechanism and the extent of the disulfide formation have 

not been determined. Repeated psychological stress might increase disulfide formation and 

the inhibition of the four non-Peridoxin-like proteins in the brain which directly increases the 

vulnerability for disturbed glutamate neurotransmission. In this context, thioredoxin was also 

mentioned as a marker protein in the early development of the disease. In particular in 

schizophrenia, a disturbed antioxidant defense system in combination with increased 

formation of reactive oxygen species plays a crucial role (Wu et al., 2013). 

In conclusion, these results describe in detail a potential role of disulfide bridges and PTMs 

of the PP-1 alpha as a protection mechanism to maintain the activity of the protein under 

oxidative stress conditions in the context of heart disease, which may hold clinical and 

therapeutic implications. 

5.8 Regulation of CTGF in response to ER stress 

The number of cardiomyocytes usually decreases during HF (Nakano et al., 2012). Although 

the cause of this loss has not been fully clarified, it is known that cardiomyocytes are 

exposed to many different stressors in HF (Richardson et al., 1996; Chien, 1999). Among the 

stressors, mechanical stress is considered to induce growth response in the overloaded 

myocardium by the release of the growth promoting factors, such as Ang II, endothelin-1 and 

TGF-β (Ruwhof and van der Laarse, 2000). Besides mechanical stress, cardiomyocytes are 

also constantly exposed to oxidative stress (Santos et al., 2011).  

In the first part of this thesis, a mechanism was suggested depicting the S-glutathionylation 

of PP-1 that could further lead to intra- and inter- disulfide bond formation and protect the 

protein from irreversible state of sulfonic acid. After establishing PP-1 a well-defined role in 

folding mechanisms, it will be really interesting to identify, which component of the cell plays 

role in the folding of the protein and maintains the hemostasis of the cell. To answer that 

question, one of the classic and little known secretory proteins called as CTGF was targeted. 

Various cellular functions, including processing of secreted proteins, calcium storage and 

folding of proteins, are controlled by ER and disruption to the ER function leads to ER stress. 

In the following sections of the discussion, the main focus is to identify whether the ER and 

CTGF have any co-relationship in maintaining the physiological balance of the cell. 
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The in this thesis presented data demonstrates that an increase in oxidative stress as elicited 

by the application of H2O2 led to a slight increase of intracellular CTGF levels, which were 

however not significant. Trends toward an up-regulation of CTGF were observed 6 min and 4 

h after H2O2 addition (Figure 41.A). The long-term up-regulation of CTGF under stress 

conditions was further confirmed by the conduction of heat-shock experiments. These results 

are in accordance with previous findings of up-regulation of CTGF under stress conditions, in 

particular mechanical stress (Chudgar et al., 2006). These findings therefore indicate that 

CTGF up-regulation may be an initial response to different kinds of stressors in 

cardiomyocytes.  

It has previously been shown that ER stress can be initiated by chemicals such as 

dithiothreitol (DTT), thapsigargin (TGN) and tunicamycin (Tm) which change the redox 

balance, Ca2+ homeostasis and protein glycosylation state in the ER, respectively, as well as 

brefeldin A, which inhibits transportation of proteins from the ER to the Golgi complex 

(Kozutsumi et al., 1988; Kaufman, 1999; Breckenridge et al., 2003; Merksamer et al., 2008). 

When these chemicals were applied to the cells, the ER protein folding machinery 

deteriorates. The aggregation of malfunctioned, misfolded proteins is a hallmark signal of ER 

stress (Chang et al., 1987). In this thesis, results obtained from cells exposed to DTT 

demonstrated that CTGF may form an intramolecular disulfide bridge as demonstrated with 

immunoblots showing molecular weight shifts from between 36 and 38 kDa under non-

reducing and reducing SDS-PAGE conditions (Figure 42).  

Furthermore, results also demonstrated that when NRCM were treated with TGN, it induced 

ER stress by emptying intracellular Ca2+ stores, which led to an up regulation of CTGF after 6 

h (Figure 43). To determine if glycosylation was essential for rat CTGF localization and 

secretion, NRCM was also incubated with Tm. In contrast to TGN, incubation of NRCM with 

Tm did not affect CTGF expression. These results are perhaps not surprising as in rat CTGF, 

no N-linked glycosylation site has been identified. Thus, N-linked glycosylation could be 

excluded from a process influencing CTGF expression and secretion.  

A liver study showed that hsp47, TGF-β1 and CTGF are involved in the pathogenesis of 

hepatic fibrosis infected by Schistosoma japonicum, and that downregulation of hsp47 in a 

hepatic mouse model of schistosomiasis led to  downregulation of CTGF (Huang et al., 

2014). The expression of CTGF in hsp47 knockout mouse embryonic fibroblasts was 

analyzed and results demonstrated that in these cells CTGF expression was markedly 

downregulated supporting a link between the collagen processing hsp47 and CTGF (Figure 

45).  
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5.8.1 No evidence for the impact of pH, MG132 and BFA on CTGF 
expression in NRCM 

In human airway smooth muscle cells, it has been demonstrated that extracellular 

acidification of pH 6.3 can trigger the CTGF expression and that this plays a major role in the 

formation of ECM proteins and necessary for airway remodeling via the GPR68-Gq/11-IP3-

Ca2+ signaling (Ichimonji et al., 2010). Within the cardiovascular field the impact of pH has 

not been studied in relation to CTGF expression. To assess the effects of pH on CTGF 

expression, NRCM were exposed to a wide range of pH conditions. Results demonstrated 

that in NRCM, different pH conditions had no major influence on CTGF expression (Figure 

46.A). Next, MG132 (a potent, membrane-permeable proteasome inhibitor) was used to 

assess the correlation between proteasome degradation and CTGF expression in NRCM. 

CTGF showed no concentration dependent change in expression with MG132 treatment; 

indicating that CTGF, under these conditions, does not appear to have a role in proteasome 

degradation (Figure 46.B). In 2002, it was demonstrated that BFA-induced Golgi disruption 

blocks CTGF secretion (Chen et al., 2001). However, in this study no change was observed 

in the expression of CTGF with increasing concentrations of BFA in NRCM (Figure 46.C).  

5.8.2 Knockdown of CTGF affects ER stress markers in NRCM  

During I/R, all sources of oxygen and energy substrates are diminished in the myocardium, 

leading to an increased production of ROS. This eventually triggers the UPR signaling 

pathway. In this context, it has been reported that an increased expression of UPR-related 

genes in cardiomyocytes occurs such as BiP, XBP-1, and PDI, which have been identified 

following myocardial infarction in mouse and human hearts (Thuerauf et al., 2006; Severino 

et al., 2007). As a consequence, it could result in perturbation of ER oxidative balance and 

Ca2+ homeostasis, and hence the loss of cardiac function and ultimately apoptosis 

(Scarabelli and Gottlieb, 2004). More than two decades ago the concept of ER stress was 

identified and recently its role in cardiovascular functioning has been increasingly recognized 

(Kozutsumi et al., 1988). Various external and physiological changes such as ischemia, heat, 

hypoxia, glucose and metabolic starvations are strong inducers of the ER stress signaling 

pathway (Toth et al., 2007).  

In this thesis, different stressors were used to analyze their effect on CTGF and its role in ER 

stress signaling pathway in cardiomyocytes. The obtained results demonstrate that certain 

factors inducing ER stress can increase CTGF expression. However, whether CTGF can 
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affect ER stress was not clear. Therefore, the regulation of various ER stress related proteins 

and their dependence on CTGF were examined.  

When the unfolded protein response (UPR) is initiated various UPR signaling pathways are 

activated. One such pathway involves the transmembrane activating transcription factor 6 

(ATF6) which is sequentially cleaved by site-1 protease (S1P) and S2P inside the Golgi (Ye 

et al., 2000). This allows the cytosolic fragment of ATF6 to enter the nucleus. In this study, 

the putative roles of CTGF and ATF6 in NRCM were investigated by siRNA-mediated 

silencing of CTGF in vitro. Immunofluorescence analysis demonstrated that siCTGF-

transfected cells had a lower CTGF and ATF6 expression (mainly in the nucleus) than 

siControl-transfected cells (Figure 47). In a previous study, it was shown that when ATF6 is 

conditionally active in cardiomyocytes, as achieved by a transgenic mouse line, and upon in 

vivo ischemic injury, ATF6 triggers cytoprotective ER stress proteins involving BiP and 

GRP94, which can function to reduce ischemic injury (Martindale et al., 2006). Moreover, in a 

mouse model of pressure overload hypertrophy, ATF6 has been suggested to play an 

adaptive role (Lynch et al., 2012).  

Next, the relationship between CTGF and the third UPR activation pathway was analyzed, 

which is governed by the dimerization and autophosphorylation of IRE1-α. Under basal non-

stress conditions, IRE1-α is inactive, but upon stress, there is a conformational alteration of 

IRE1-α induced by its phosphorylation, which exposes a ribonuclease capacity that removes 

an intron from XBP1 mRNA (XBP1US). A recent study from Lyons group has demonstrated 

that deletion of CTGF can induce cellular stress and plays a protective role in the survival of 

chondrocytes (Hall-Glenn et al., 2013). Another recent study demonstrated that, an 

adenovirus (Ad5-CMV-CCN2) mediated gene transfer induced ER stress and UPR in primary 

hepatic stellate cells and hepatocytes (Borkham-Kamphorst et al., 2016). Results have 

demonstrated the partial knockdown of CTGF in NRCM, leads to significant downregulation 

of the ER stress markers IRE-1α, PDI, and BiP (Figure 48), which is in line with research as 

discussed above. However, the same results were not established at the transcription level, 

as ER stress markers expressions were almost the same (Figure 50). The length of XBP1S 

was observed to be 263 base pairs, and the US variant had 289 base pairs for the siCTGF 

partial knockdown and conclusive of proteins expression data from the partial knockdown of 

CTGF in NRCM (Figure 49). In conclusion, the data suggest that either CTGF is governing 

the expression of ER stress markers or vice versa.  
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5.9 Role of secretory cells with respect to ER stress  

Different cells respond in various ways to ER stress which leads to the activation of UPR by 

the secretory apparatus. The purpose of UPR is to increase the competence of a cell to carry 

out protein secretion and protect the cell from ER stress (Ron and Walter, 2007). Few 

publications exist on the relationship between UPR, ER stress and the secretory pathway, 

and how secretory proteins relate to the survival of the cell during ER stress. The targeting of 

CTGF proteins in cardiomyocytes and their role in UPR represents a unique aspect of this 

study. Previously this has only been examined in chondrocytes and hepatocytes (Hall-Glenn 

et al., 2013; Wu et al., 2015). 

Mammalian cells, including antibody-secreting plasma cells and insulin secreting pancreatic 

β-cells, are involved in maintaining the balance between ER competence to the protein 

folding demand and have large fluxes in their secretory loads (Moore and Hollien, 2012). The 

first work done to understand the relationship between secretory cells and the UPR was 

done in plasma cell differentiation. Here it was shown that XBP-1 plays an important factor in 

this process, as without it cells undergo apoptosis (Iwakoshi et al., 2003). Furthermore, it was 

previously discovered that during early B-cell development there is an IRE1-α deficiency 

(Zhang et al., 2005). In contrast to plasma cells, deletion or mutation of Perk or perturbation 

of the elF2α phosphorylation site induces β-cell deficiency, deregulation of glucose 

metabolism and early-onset diabetes (Harding et al., 2001; Zhang et al., 2002). Also, deletion 

of XBP-1 in β-cells damages secretion, insulin processing and in vivo proliferation (Lee et al., 

2011). Similarly, lack in any of the three primary signaling pathways in the liver negotiates 

the response to acute ER stress, inducing suppression of metabolic gene expression, which 

is regulated by up-regulation of CHOP (Rutkowski et al., 2008). Furthermore, osteoblasts 

also highly  express PERK, ATF4 and XBP1 (Clauss et al., 1993; Zhang et al., 2002; Saito et 

al., 2011) and both PERK and IRE1-α (Murakami et al., 2009; Saito et al., 2011) are 

activated during differentiation. The triggering of UPR in osteoblasts is likely to be involved in 

bone morphogenetic protein 2 (Bmp2) signaling, which is required for osteoblast 

differentiation and bone formation. Thorough research has been done in various secretory 

cell types, but there is much to be learned about the UPR in specific tissues and organs.  

5.10 Higher expression of CTGF in the end stage heart failure 

In the left ventricular tissue CTGF expression was significantly up-regulated in DCM and 

showed a trend toward elevation in ICM heart samples (Figure 40). These results are in 

accordance with previous studies demonstrating that CTGF is up-regulated in both animal 

and human models of HF (Daniels et al., 2009). In the context of HF and cardiac 



  
Discussion  

  

 
 

106 

 

hypertrophy, downstream effectors of Gαq-coupled receptors for endothelin-1, norepinephrine 

and Ang II regulate CTGF expression (Kemp et al., 2004). However, the role of CTGF as a 

marker for fibrosis or triggering protein for interstitial fibrosis of the heart remains to be fully 

elucidated. Interestingly, in the heart and other organs, CTGF’s modular domain structure 

influences the binding and consequent signaling of TGF-β which is known to be a regulator 

of fibrillar collagen gene transcription (Abreu et al., 2002).  

Figure 56 represents a summary of all the results related to the effect of various stressors on 

CTGF expression. Red boxes, including changes in BFA, MG132 and pH demonstrated no 

effect on CTGF expression. However, green boxes including oxidizing agents, ER stress 

reducing agents, ER stress markers, heat shock, HSP47 and end stage heart failure, showed 

changes on the CTGF expression. The CTGF data argue for an interconnection of CTGF 

and ER stress, as ER stress modulates CTGF and vice versa, CTGF expression modulates 

proteins of the ER stress cascade. 

Figure 56 | Summary of all effectors on CTGF. Cartoon picture representing all the stressors used 
during the experiments. Boxes in red show no effect on CTGF expression, whereas green boxes 
represent with effect on CTGF expression.  
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6 Appendix 

6.1 Spectrum covered by MS 

 

 

  

 

Append 1 | Peak results indicating the Cys peptides that were not detected with red boxes. No 
detection might point at an unknown modification or involvement in disulfide bridges.  
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Append 2 | The new scrambled PP-1 sequence is displayed with the potential disulfide peptides 
boxed in red. The red boxes indicate the peptides of interest. Database search strategy for disulfide-
linked peptides under four different conditions as discussed in Figure 31. 
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Append 3 | Spectra and positions of the glutathione modified Cys202 and Cys245. 
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6.2 Summary of all disulfide bridges 
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Append 4 | All disulfide-peptide conjugates are shown in their spectrum and fragment table. In 
the structure plot, the two Cys involved are indicated in green. 
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