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Abstract 

PKA is activated by β-adrenergic signaling induced elevation in intracellular cAMP and 

sequestered into proximity with its substrates by scaffold A-kinase anchoring proteins 
(AKAPs). PKARIα is a unique isoform of PKA as in response to oxidants it forms two inter -
protein disulfide bonds between its regulatory subunits, which directly flank its interaction site 

with AKAPs. As such, it is probable that the oxidation of PKARIα affects its localization with 
AKAPs, therefore serving as a regulatory mechanism by which the kinase is targeted to its 

substrates. This thesis examines the interplay between β-adrenergic and oxidant induced 
PKARIα regulation and its impact on PKA substrate phosphorylation. In particular, regulat ion 
of the mitochondrial fission protein dynamin-related protein 1 (DRP1) is assessed as this is 

facilitated by the PKARIα scaffold protein Dual-AKAP1 (D-AKAP1).    
 

PKARIα formed a disulfide-dimer during ex vivo Langendorff perfusions with H2O2, which 
was associated with its translocation to the insoluble fraction of cardiac homogenates. This 
model of PKARIα oxidation was then replicated in vivo in the context of starvation. In heart, 

24 hours starvation increased PKARIα disulfide-dimer formation and PKA-substrate 
phosphorylation, as detected by a pan-specific “total” PKA substrate antibody, specific 

phosphorylation of DRP1-S637 was unchanged. In liver, 24 hours starvation increased 
PKARIα disulfide-dimer formation, which co-fractionated with D-AKAP1. DRP1 also formed 
higher molecular weight complexes consistent with its phosphorylation by PKA. Identifying 

whether these changes were mediated by PKARIα phosphorylation of DRP1 was not possible 
as the antibody failed to produce a specific phospho-signal in immunoblots from liver. 

Unexpectedly, PKARIα-C17S KI mice showed increased cardiac DRP1-S637 phosphoryla t ion 
after starvation and also displayed a basal elevations in both PKARIα expression and “total” 
PKA-substrate phosphorylation  

 
Langendorff perfusion experiments revealed that Na-pyruvate attenuates H2O2 induced 

cysteine oxidation. Physiologically this was evidenced by abolished responses in left 
ventricular end diastolic pressure (LVEDP) and coronary flow rate (CFR) in response to H2O2 
in the presence of Na-pyruvate. PKARIα disulfide-dimer formation in response to H2O2 was 

not affected by elevating cAMP with the β-adrenergic agonist isoprenaline. H2O2 attenuated 
isoprenaline- induced elevations in “total” PKA-substrate phosphorylation which 

physiologically was reflected by blunted CFR, LVEDP and left ventricular end systolic 
pressure (LVSP) responsiveness to isoprenaline. However, using the PKARIα-C17S KI mouse 
these changes were seen to occur independently of PKARIα disulfide-dimer formation.  

 
Taken together, the above findings indicate that PKARIα is modulated by both its oxidation to 

a disulfide-dimer and cAMP binding. However, the interplay between these two factors 
remains unclear as evidenced by a failure of cellular models to translate to ex vivo and in vivo 
scenarios. In the heart, starvation induced disulfide PKARIα does not appear to regulate DRP1. 

However in the context of liver, promising results indicate that starvation induced disulfide 
PKARIα may contribute to the protective effects of reduced mitochondrial fission through 

inhibition of DRP1.  
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Abbreviations 

2-AHA-cAMP  2-(6-aminohexylamino)-adenosine- 3', 5'- cyclic monophosphate   

DNP   2, 4 dinitrophenol 

CM-H2DCFDA 2’,7’-dichlorodihydrofluorescein diacetate 

DCF-DA  2’,7’-dichlorofluorescin diacetate       

AC   adenylate cyclase        

AKAPs  A-kinase anchoring proteins        

BS3   bis-sulfosuccinimidyl-suberate       

CICR   Ca2+ induced Ca2+ release”        

CaMKIα  calmodulin-dependent kinase I      

CFR   coronary flow rate        

cAMP   cyclic adenosine monophosphate       

cGMP    cyclic guanosine monophosphate      

CNBA and CNBB cyclic nucleotide binding domains       

CDK1    cyclin-dependent kinase 1        

S-   deprotonated 'reactive' thiolate anion     

DHE   dihydroethidum        

N2O3   dinitrogen trioxide         

DSG   disuccinimidyl glutarate       

D/D   docking/dimerization domain       

D-AKAPs  dual specific AKAPs         

DRP1   dynamin related protein 1        

EGS   ethylene glycol bis-succinimidyl succinate      

ECC   excitation-contraction coupling       

GPCR   G protein-coupled adrenergic receptors      

GSH   glutathione          

H2O2   hydrogen peroxide        

HO•   hydroxyl radical         

HIF-1 α  hypoxia-inducible factor 1α        

IP   intraperitoneally        

I/R    ischaemia reperfusion    



Abbreviations  

 
 

IV 
 

    

ISO   isoprenaline         

JPH2   junctophilin 2         

LVEDP  left ventricular end diastolic pressure      

LVSP   left ventricular systolic pressure       

LTCC/Cav1.2  L-type Ca2+ channels         

LC3-I   microtubule-associated protein 1A/1B-light chain 3     

MFF   mitochondria fission factor        

Mdivi-1  mitochondrial division inhibitor 1      

MID49/51  mitochondrial dynamic proteins 49 and 51      

MPTP   mitochondrial permeability transition pore      

BRP44   mitochondrial pyruvate carrier 2       

MFN1   mitofusion protein 1         

MFN2   mitofusion protein 2         

NOX   nicotinamide adenine dinucleotide phosphate-oxidase    

NO   nitric oxide         

NOS   nitric oxide synthases         

NO+   nitrosonium cation         

OMM   outer mitochondrial membrane       

GSSG   oxidized glutathione         

ONOO-  peroxynitrite          

PDE   phosphodiesterase         

PKARIα  protein kinase RIα 

PKA-cat  catalytic subunit of PKA      

PCR   polymerase chain reaction        

PKA   protein kinase A         

PKG1α  protein kinase G 1α         

RNS   reactive nitrogen species        

ROS   reactive oxygen species        

R   regulatory          

RyR2   ryanodine receptors         

SR   sarcoplasmic reticulum        

SERCA  sarcoplasmic reticulum ATPase  
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Introduction  

1.1 Reactive oxygen species 

The sequential reduction of molecular oxygen leads to the formation of biological forms of 

reactive oxygen species (ROS) comprising of the superoxide anion (O2
-), hydrogen peroxide 

(H2O2) and hydroxyl radical (HO•).These forms of ROS are capable of altering cellular 

signaling by modifying susceptible proteins. Initially thought to contribute solely to cellular 

damage it has become clear that ROS signaling pathways are in fact a highly organized and 

compartmentalized network critical for homeostatic biological function [1, 2]. For example 

ROS produced by nicotinamide adenine dinucleotide phosphate-oxidase (NOX) enzymes 

modulate cardiac transcription factors, cell migration, vascular tone and cardiac contraction [3-

5]. However, their excessive production, both transiently and chronically, is now implicated in 

numerous cardiovascular pathologies such as inflammation, arrhythmias, diabetes, 

hypertension, atherosclerosis, reperfusion injury, fibrosis and diastolic dysfunction [6-14].  

 

1.1.1 Sources of ROS 

Mitochondria are a major source of intracellular ROS generation due to leakage of electrons 

from the electron transport chain that react with molecular oxygen to generate superoxide. 

Once generated, the superoxide is readily converted to more stable H2O2 by the enzyme 

superoxide dismutase (SOD). Importantly, as mitochondrial complexes are abundant in heme 

groups and iron sulfur clusters H2O2 can also be converted to highly reactive hydroxyl radicals 

[15, 16]. In addition to ROS generated by electron transport chain leakage, enzymatic networks 

such as NOX, xanthine oxidase and uncoupled nitric oxide synthase (NOS) contribute to 

endogenous ROS production [17]. Homeostatic balance of this system is maintained through 

both enzymatic (SOD, catalase, glutathione peroxidase) and non-enzymatic (vitamins, 

thioredoxin (TRX), flavonoids) scavenging systems. Under normal homeostatic conditions this 

system is tightly balanced such that moderate increases in ROS can act as secondary 

messengers by reversibly modifying protein function. However, during disease states when 

ROS are excessively produced or when exogenously applied to mimic excess production, the 

innate anti-oxidant scavenging system becomes overwhelmed. The impact of this imbalance 
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on the cellular environment is a shift to a state of excessive ROS levels termed “oxidat ive 

stress”.  

 

1.2 Oxidative modification of cysteine thiols   

The ability of ROS to act as secondary messengers is attributed to their ability to oxidize 

susceptible cysteine thiols on select proteins. The alteration of cysteine residues by oxidation 

generates a conjugated moiety with a different shape and charge characteristic, which can 

induce structure rearrangement to alter enzymatic activity. Protein oxidation is considered a 

physiological signaling modality as it can specifically and transiently regulate protein function. 

The selectivity of protein oxidation is provided by the limited reactivity of cysteine thiols. This 

is due to the majority of cysteines being buried within proteins and thus not accessible to an 

oxidant. In addition the pKa of an accessible cysteine thiol is an important determinant of its 

reactivity. For a cysteine thiol to be sensitive to oxidation it needs to be in a deprotonated 

'reactive' thiolate anion form (S-) and thus have a low pKa. The pKa of a cysteine thiol is 

determined by its local tertiary environment, which is lowered by close proximity to basic 

amino acids lysine, arginine or histidine.   

 

H2O2 is a major form of ROS responsible for oxidant-dependent signaling and is formed 

enzymatically through the dismutation of superoxide. Once generated, H2O2 readily reacts with 

cysteine thiols to form a sulfenic acid (SOH) intermediate, which is then rapidly resolved by 

an adjacent cysteine on the same protein or neighboring protein to form an intra- or inter-

molecular disulfide respectively (Figure 1.1). Alternatively a sulfenic acid can react with the 

highly replete cellular thiol containing tri-peptide glutathione (GSH), leading to protein 

glutathiolation. 

 

Once oxidized a cysteine thiol can be reduced by the replete cellular reducing system. The rate 

of reduction and hence stability of an oxidative modification is determined by its type, 

accessibility and the quantity of oxidant present. Formation of an inter- or intra- molecular 

disulfide within a target protein can be reduced by TRX through a disulfide exchange reaction 

[18]. This leads to reduction of the target protein and oxidation of TRX, which is then recycled 

back to its reduced form by TRX reductase and electrons provided by NADPH. The formation 

of a glutathione adduct on a protein is also readily reversible and is enzymatically reduced by 
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glutaredoxin. However in contrast to TRX, glutaredoxin does not have an oxidoreductase and 

instead uses free GSH to reduce its target, which leads to the formation of oxidized glutathione 

(GSSG). Under conditions of excessive oxidant production cysteines can transition to an 

irreversibly oxidized state known as hyperoxidation which is associated with disease. A 

cysteine sulfenic acid can be further oxidized to a sulfinic (SO2H) and then to sulfonic acid 

(SO3H). The formation of a sulfonic acid is irreversible, whereas a sulfinic acid is only 

reversible on peroxiredoxin at the expense of ATP and driven by the enzyme sulfiredoxin [19].  

 

In addition to H2O2 reactive nitrogen species (RNS) also contribute to thiol-dependent redox 

signaling by forming protein nitric oxide (NO) adducts termed S-nitrosylation (SNO). NO 

generated from L-arginine by the nitric oxide synthases while remaining in its native form is 

unable to directly modify cysteine thiols. However the formation of the nitrosonium cation 

(NO+) or dinitrogen trioxide (N2O3) can induce direct thiol oxidation (N2O3 + RSH → RSNO 

+ HNO2), whereas small thiol containing compounds such as S-nitrosoglutathione (GSNO) can 

induce protein S-nitrosylation through an exchange reaction termed trans-nitrosylation (GSNO 

+ RSH → RSNO + GSH) [20]. A protein nitrosothiol is relatively unstable and can therefore 

act as an intermediate in the formation of a more stable disulfide in a similar manner to a 

sulfenic acid. In situations where there is localized formation of both nitric oxide and 

superoxide this can lead to formation of the highly reactive species peroxynitrite (ONOO -). 

Peroxynitrite can induce S-nitrosylation but also irreversible tyrosine nitration that is often 

associated with disease.   
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Figure 1.1 Reversible and irreversible post translation oxidative modification of cysteine residues..  
Cysteine thiols are oxidised by H2O2 to a sulfenic acid (SOH) intermediate that is quickly resolved by 
another cysteine on either the same or an adjacent protein to form an intra- or –inter-molecular disulfide 
respectively. Alternatively, sulfenic acid can be glutathiolated by glutathione (GSH). Gluthathiolation 
is reduced by Glutaredoxin (Grx) and disulfides by thioredoxin (Trx). During excessive oxidant 
production cysteine thiols can be irreversibly oxidised to sulfonic acid. Figure adapted from Johnston 
et al. [21].   

 

Protein Kinase A (PKA) is a heterotetrameric threonine/serine kinase replete in the 

cardiovascular systems and a critical mediator of cardiac function under both physiological and 

pathophysiological conditions. The RIα isoform of PKA (PKARIα) is distinct from other 

isoforms as it is one such protein that is subject to reversible cysteine oxidation. This leads to 

the formation of two inter-protein disulfide bonds between its regulatory subunits which are 

seen to catalyse PKARIα activity leading to phosphorylation of its substrates. This topic is 

considered in more detail below.  
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1.3 Classical activation of PKA   

PKA is composed of two regulatory (R) and two catalytic subunits (PKA-cat). The regulatory 

subunits of PKA exist in two isoforms RI and RII, the presence of either identifies its isozyme 

nomenclature as PKARI or PKARII. PKA activation is modulated through the sympathet ic 

nervous system (Figure 1.2). Upon binding of epinephrine or norepinephrine to G protein-

coupled adrenergic receptors (GPCR), adenylyl cyclase (AC) is activated producing a rapid 

increase in intracellular cyclic adenosine monophosphate (cAMP) which binds to the B domain 

of the regulatory subunit of PKA inducing a conformational change permitting cAMP to also 

access the A binding domain. Once both domains are bound with cAMP the kinase fully 

dissociates freeing the catalytic subunits to phosphorylate serine and threonine substrate 

residues [22]. PKA signaling is terminated by phosphatases that remove the phosphate groups 

and phosphodiesterases (PDEs) which hydrolyze cAMP [23]. 

 

 

Figure 1.2 Classical activation of PKA.Catecholamine binding to G protein coupled β-
adrenoreceptors (GPCR) activates the hydrolysis of GDP to GTP by stimulative regulative G-protein 
(Gs). GTP then activates adenylate cyclase (AC) to convert ATP to cAMP, which binds to the 
regulatory subunits of the kinase inducing a conformation shift that dissociates both catalytic 
subunits, which then phosphorylate serine and threonine substrate residues. Phosphorylation is 
inhibited by phosphatases and cAMP signalling terminated through its hydrolysis by 
phospodiesterases (PDEs).     
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1.3.1 Excitation-contraction coupling  

 

Cardiac contraction is modulated through the coupling of an electrical stimulus to a contractile 

output in a process known as excitation-contraction coupling (ECC) [21]. An action potential 

depolarizes the cell membrane activating voltage sensitive L-type Ca2+ channels 

(LTCC/Cav1.2) and allowing Ca2+ to flow into the cell, where it binds to cardiac ryanodine 

receptors (RyR2) on the adjacent sarcoplasmic reticulum (SR)[23]. This binding precipitates 

cell-wide  Ca2+ release from the sarcoplasmic reticulum (SR) store termed “Ca2+ induced Ca2+ 

release” (CICR), giving rise to a synchronous cardiac contraction necessary for cardiac output 

[21]. For the myocardium to relax it is necessary that cytoplasmic Ca2+ levels are returned to 

diastolic levels allowing Ca2+ to dissociate from the myofilaments [21]. This is accomplished 

through inactivation of extracellular Ca2+ entering through LTCC and Ca2+ extrusion from the 

cytoplasm via the sarcoplasmic reticulum ATPase (SERCA), Na/Ca2+ exchanger, sarcolemmal 

Ca2+ATPase  and mitochondrial uniporter [21, 23].   

 

1.3.2 PKA mediated changes in cardiac function  

 

PKA mediates several proteins critical for cardiac function (Figure 1.3). PKA may 

phosphorylate the LTCC to increase Ca2+ flux into the myoplasm [24]. However, the proposed 

LTCC phosphorylation sites are under debate [21, 25]. LTCC phosphorylation is an accepted 

mechanism to potentiate the release of Ca2+ from the SR through CICR to positively impact 

inotropy through augmented CICR. In addition, phosphorylation of troponin I by activated 

PKA increases the rate of Ca2+ dissociation from the myofilaments resulting in accelerated 

relaxation (lusitropy) [21, 26]. In addition to facilitating SR Ca2+ release PKA also augments 

Ca2+ sequestration into the SR by negatively regulating the inhibitory effect of PLB on SERCA 

[21, 27]. This increased Ca2+ flux to the SR has the net effect of increasing SR Ca2+ content, 

SR Ca2+ release and SR Ca2+ re-uptake thus, PKA facilitates cardiac contraction, relaxation and 

heart rate when activated [21, 23]. PKA has been shown to critically mediate RyR2 function 

via its specific S2808 phosphorylation site [21, 28, 29]. Transgenic mice harboring a S2808A 

mutation show blunted inotropic and chronotropic response to catecholamines [21, 30], while 

phosphomimetic mutation of the receptor leads to age-dependent cardiomyopathy and 

arrhythmias [21, 31].  
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Figure 1.3. Key contractile proteins mediated by PKA phosphorylation. Under conditions of 
increased cardiac demand epinephrine or norepinephrine binds to g protein coupled receptors (GPCR) 
to increase cAMP via adenylate cyclases to activate PKA. PKA may phosphorylate the L-type Ca2+ 
channel (LTCC) increasing Ca2+ flux to the cytosol to increase inotropy. Phosphorylation of cardiac 
troponin I (CTnI) enhances lusitropy by dissociating Ca2+ from myofilaments. Phosphorylation of the 
sarcoplasmic reticulum ATPase (SERCA) inhibitory protein phospholamban (PLB) enhances Ca2+ re-
uptake into the sarcoplasmic reticulum (SR), facilitating lusitropy and SR Ca2+ store thus also 
facilitating inotropy. PKA mediated phosphorylation of RYR2 reduces the stability of the receptor 
resulting in diastolic Ca2+ leak. Black circles indicate protein activation and red lines-inhibition. 
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1.4 Oxidative modification of PKARIα 

PKARIα is unique from other PKA isoforms as its activation can be induced independently of 

cAMP by ROS. The regulatory subunits of PKARIα are composed of two cyclic nucleotide 

binding domains (CNBA and CNBB), an inhibitor site and a docking/dimer ization domain 

(D/D) (Figure 1.4A).The N-terminal (D/D) dictates PKARIα’s localization via its interaction 

with A-kinase anchoring proteins (AKAPs), thus providing an additional mechanism for 

compartmentalization and specificity of PKA signaling. The D/D of each regulatory subunit 

contains cysteines at position 17 and 38 (human and mouse) which, in the kinase’s tertiary 

structure, lie anti-parallel to those on its opposing regulatory subunit. These cysteines were first 

identified following a proteomic screen and in the presence of oxidants, such as H2O2, lead to 

the formation of an anti-parallel dimer joined by disulfides between the opposing cysteines 

[32-35]. This bond was initially thought to be a constitutive modification due to the high 

concentration of reducing agent required to break it [36]. In later studies the presence of 

disulfides within PKARIα was evaluated by Langendorff perfusing isolated rat hearts with 

increasing concentrations of H2O2. These hearts were then homogenized in the presence of the 

alkylating agent maleimide to prevent artificial oxidation and PKARIα resolved using SDS-

PAGE in the absence of reducing agent. By using this approach a dose dependent increase in 

the percentage of disulfide bound PKARIα could be observed in response to H2O2, which was 

entirely abolished in the presence of reducing agent [32]. Disulfide dimer formation was 

associated with translocation of the kinase to the myofilaments and phosphorylation of its 

targets troponin I and myosin binding protein C [32]. This resulted in enhanced myocyte 

contractility independent of β-adrenergic stimulation or elevations in cAMP and was inhibited, 

although not entirely, by the PKA inhibitor H89 [32]. In addition disulfide PKARIα was 

recently identified as playing a crucial role in angiogenesis. Burgoyne et al. showed that pro-

angiogenic interventions couple NOX dependent oxidant generation to disulfide PKARIα 

formation inducing ERK signalling critical for angiogenesis [37]. In line with this “redox dead” 

PKARIα C17S KI displayed deficient angiogenesis in response to hind limb ischaemia and 

tumour-implant growth [37].  
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Figure 1.4. Structure of PKARIα interacting with D-AKAP2. (A) Top. Schematic of PKARIα 
domain structure showing docking dimerization domain (D/D), inhibitor site and cyclic nucleotide 
binding domains A and B (CNBA/B). Bottom. Schematic of PKARIα D/D showing antiparallel cysteine 
thiols which form a disulfide in response to H2O2. (B) Crystal structure of PKARIα D/D bound to the 
α-helix of D-AKAP2in showing. Cys16 and 37 (bovine residues, in mouse and human Cys17 and Cys 
38). Mutation of Cys16 or Cys37 reduce affinity between RIα and D-AKAP[38]. Figure adapted from 
Sarma et al. [33]. 
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1.5 AKAPs 

Binding of cAMP to the regulatory subunits of PKA initiates the release of its catalytic 

subunits, which then phosphorylate serine and threonine residues. In addition to their 

interaction with cAMP, the regulatory subunits also target PKA to specific areas of the cell to 

localise their signalling. This is achieved through their interaction with scaffold AKAPs. 

AKAPs are signalling hubs containing not just PKA, but also its substrates and the proteins 

necessary for fine tuning of its regulation such as PDEs, phosphatases, adenylate cyclases and 

GPCRs [39, 40]. AKAPs are expressed in all tissue and identified by the presence of an 

amphipathic helix, which directly interacts with the D/D of R subunits. If the AKAP interacts 

with PKARI and PKARII it is denoted as a dual specific AKAPs (D-AKAPs). The majority of 

identified AKAPs are RII specific or bind it with a higher affinity than RI [41].  

 

Structural discrepancies in the D/D domain of RI and RII account for their differential binding 

to specific AKAPs (Figure 1.5). The RIIα D/D forms a non-polar shallow cleft complimenting 

the diagonal hydrophobic AKAP helix. In contrast the D/D of RIα forms a deep cleft lined with 

more basic and acidic residues that contact the AKAP helix. In place of isoleucine 17 RIα 

contains glutamine 26, this exchange of a non-polar for polar amino acid would result in a more 

hydrophilic groove less suitable for the hydrophobic AKAP helix [42]. Additionally, the N-

terminal of RIIα contains a β-strand with two isoleucine residues that stabilize the interaction 

between the D/D and AKAP helix. This feature is lost in RIα as the isoleucine residues are 

instead contained within an N-terminal helix [33, 41]. The most abundant and well 

characterised D-AKAP is D-AKAP1, also known as AKAP1, AKAP121, AKAP149, or S-

AKAP84. D-AKAP1 localises PKA to the outer mitochondrial membrane [43]. 
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Figure 1.5. Structural discrepancies in the D/D domain of PKARIα and PKARIIα account AKAP 
specificity. The D/D of RIα forms a deep cleft lined with basic and acid residues resulting in a 
hydrophilic groove. In contrast the D/D of RIIα forms a shallow cleft that is complimented by the 
diagonal hydrophobic AKAP helix.  

 

1.6 Disulfide-dependent changes in PKARIα affinity for D-AKAPs 

The translocation of disulfide bound PKARIα to alternate subcellular locations may be 

explained by redox mediated changes in its affinity for AKAPs (Figure 1.6). D-AKAPs 

associate with both PKARI and PKARII. Crystal structure analysis of the D/D of bovine 

PKARIα shows the disulfide forming cysteines to lie antiparallel to one another flanking the 

area responsible for AKAP α-helix binding (Figure 1.4B) [33]. Based on this proximity, Sarma 

et al. hypothesized that PKARIα disulfide formation may impact the kinase’s affinity for D-

AKAPs [33]. Indeed, utilizing bovine RIα with Cys17Ala or Cys37Ala mutations to prevent 

disulfide formation a 3 fold and 16 fold reduction, respectively, in nanomolar affinity for D-

AKAP2 in comparison to wild-type RIα was observed.[33]. Disulfide formation was reported 

to facilitate PKARIα-D-AKAP2 interaction by reducing regulatory subunit flexibility allowing 

the formation of both an AKAP binding pocket and increasing the proximity of stabiliz ing 

residues [33]. Similarly, mutation of both cysteine residues to alanine has been shown to 

preclude a PKARIα interaction with both D-AKAP1 and D-AKAP2 [44, 45]. Banky et al. also 

showed that Cys38 mutagenesis to histidine had a greater impact on D-AKAP1 affinity than 

mutagenesis of Cys17 [44]. Taken together the above work strongly suggests the disulfide 

dimer formation of PKARIα is an important mechanism for targeting it to its scaffold D-AKAP 

proteins.  
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1.7 Substrate-induced dissociation of PKARIα 

Substrate-induced dissociation is an additional characteristic that uniquely distinguishes 

PKARIα from other PKA isoforms (Figure 1.6). The axiomatic view that PKA is only activated 

after full dissociation of its catalytic and regulatory subunits was first challenged by Yang et 

al. who demonstrated that cAMP can induce kinase activity independent of subunit dissociation 

[46]. Disparate responses between PKARIα and PKARII to cAMP have since been described 

by several groups. Dissociation PKARIα in the presence of cAMP has been reported only to 

occur with the addition of substrate [47]. Similarly, small angle X-ray scattering showed that 

PKARIα, and not PKARII, is only partially dissociated by cAMP and that the addition of both 

substrate and cAMP was necessary for full dissociation [48]. Additionally, the presence of 

substrate is also seen to sensitize PKARIα, but not PKARII, to low levels of cAMP. Using size 

exclusion chromatography Viste et al. observed that substrate enhanced the dissociation of 

PKARIα’s regulatory and catalytic subunits but had no effect on PKARIIα [49]. Furthermore, 

the presence of substrate significantly attenuated the rate of PKARIα subunit re-association 

relative to PKARII [49]. This suggests an intricate model in which PKARIα, but not PKARII, 

is only partially dissociated by cAMP binding but fully dissociated in the tandem presence of 

both nucleotide and substrate. Such sensitization may also reconcile the apparent paradox that 

PKA substrate phosphorylation is seen to increase in response to H2O2 despite unchanged 

intracellular cAMP concentrations [35]. 
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Figure 1.6. Schematic of PKA showing classical and oxidative activation. Classical activation 
involves the binding of cAMP to the regulatory subunits of PKA which induces dissociation of the 
holoenzyme resulting in substrate phosphorylation. Oxidative activation does not involve cAMP 
binding. Instead cysteines located in the D/D of the regulatory subunits are oxidized to form two 
intermolecular disulfides which increase the kinase’s affinity for its AKAP scaffold proteins. This 
brings PKARIα into proximity with its substrate leading to substrate induced activation. Figure from 
Johnston et al. [21]. 

 

1.8 cAMP modulation of PKARIα disulfide formation 

 

Cyclic guanosine monophosphate (cGMP) dependent protein kinase 1α (PKG1α) is another 

adenylyl cyclase that forms a disulfide dimer in response to ROS [5, 50]. Binding of its 

nucleotide cGMP prevents its formation of an inter-protein disulfide bond [5]. Though it is yet 

to be confirmed, as a crystal structure of the complete holoenzyme is unavailable, this is 

presumably through induction of a conformational change that reduces the proximity of its 

redox sensitive thiols to one another [5]. If cAMP binding induces an analogous change in 

PKARIα preventing disulfide formation this would also likely impact oxidant mediated 

PKARIα substrate phosphorylation.  
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1.9 Hypothesized model of PKARIα activation  

The above models are of particular interest as they are both specific to PKARIα, the only PKA 

isoform capable of forming disulfide bonds. Taking both mechanisms together it is 

hypothesized that PKARIα disulfide formation increases the holoenzyme’s affinity for D-

AKAPs, bringing the kinase into proximity with its substrate which through substrate-induced 

dissociation results in augmented phosphorylation which is maximal in the presence of elevated 

cAMP via β-adrenergic stimulation (Figure 1.7).  

 

 

 

Figure 1.7. Hypothesized mechanism of PKARIα activation in the presence of oxidants and β-
adrenergic stimulation. Under resting conditions PKARIα is localized in the cytosol. PKARIα is 
activated by oxidants, which increase its affinity for A kinase anchoring protein (AKAP) leading to 
substrate phosphorylation. PKARIα is also activated by β-adrenergic stimulation through increased 
cAMP production causing partial dissociation of the kinase and thus substrate phosphorylation. It is 
hypothesized that in the presence of oxidants and cAMP, PKARIα will be fully dissociated through 
increased AKAP affinity, substrate induced dissociation and cAMP elevation leading to maximal 
substrate phosphorylation.   

 

1.10 D-AKAP1 facilitates PKA dependent DRP1 modification 

D-AKAP1 localises PKARIα to the outer mitochondrial membrane (OMM) through its N-

terminal targeting sequence which also contains its PKA binding helix [51]. At the OMM D-

AKAP1 acts as a critical point of convergence between PKA and dynamin related protein 1 

(DRP1) to modulate mitochondrial fission. Fission is one half of the continual process of 

mitochondrial division and fusion, which is critical for maintenance of healthy efficient pools 

of mitochondria. Fusion involves the preservation and expansion of mitochondrial networks by 

joining adjacent organelles. Fission, in contrast, refers to the process of selective mitochondria l 

degradation. DRP1 is considered the principal arbitrator of mitochondrial fission and is 
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negatively regulated by PKA [52]. The role of DRP1 in mitochondrial fission and particula r ly 

in the context of cardiac function is considered in more detail below. 

1.10.1 Post translational modification of DRP1 

 

DRP1 is an 80 kDa member of the dynamin superfamily of proteins, consisting of an amino-

terminal GTPase, a middle and variable domain and carboxyl terminal GTPase effector domain 

(Figure 1.8). DRP1 is almost exclusively (~ 97%) localized to the cytoplasm, therefore its 

recruitment to the OMM is necessary to induce fission. Upon translocation to the OMM, DRP1 

assembles into spirals encircling the mitochondria, which then constrict in a GTPase dependent 

mechanism to sever the inner mitochondrial membrane and OMM (Figure 1.8). A number of 

post-translation modifications have been identified that affect DRP1’s activity with 

mitochondria. These include SUMOlyation[53], S-nitrosylation[54], phosphorylation [55-58], 

O-GlcNAcylation [59] and ubiquitination [60]. 

 

 

 

Figure 1.8. DRP1 domain structure and sites of known post-translational modification. DRP1 is 
composed of a GTPase, middle, variable and GTPase effector domain.  P (phosphorylation), NO (S-
nitrosylation), SUMO (SUMOylation), O-Glc (O-GlycNacylation). MARCH5 and PARKIN 
(ubiquitation).   

 

Both Parkin and Membrane-associated RING-CH, an OMM transmembrane protein associated 

with mitochondrial fusion protein 2 (MFN2), have been shown to promote DRP1 ubiquitina t ion 

and influence mitochondrial morphology [60, 61]. Cyclin-dependent kinase 1 (CDK1) 

phosphorylation of S616 drives mitochondrial division during mitosis, while phosphoryla t ion 

at this same site by ERK2 promotes both tumour growth and is important for reprogramming 

during pluripotency [62, 63]. Calmodulin-dependent kinase I (CaMKIα) phosphorylates DRP1 

at S637 and is associated with an increase in its translocation to mitochondria and affinity for 
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FIS1 suggesting a link between Ca2+ signalling and mitochondrial dynamics [58]. S-

nitrosylation of DRP1 has been associated with Alzheimer’s disease and neurodegenerat ion. 

Beta-amyloid, a critical orchestrator of Alzheimer’s disease, resulted in NO production and S-

nitrosylation of DRP1. This was associated with mitochondrial fission, neuronal dysfunc tion 

and synaptic damage which were prevented by DRP1 cysteine mutation [54]. Though not 

observed to modify mitochondrial recruitment small ubiquitin- like modifier (SUMO) proteins 

SUMO E3 ligase MAPL and SUMO protease SENP5 directly target DRP1 [53]. In 

cardiomyocytes O-GlcNAcylated DRP1 reduces S637 phosphorylation relocating the dynamin 

to mitochondria resulting in fission and decreased mitochondrial membrane potential [59] 

.  

1.10.2 PKA dependent DRP1 modification 

 

Though phosphorylated at several sites, DRP1 phosphorylation at S637 by PKA is the first and 

best characterized mechanism of the dynamin’s inhibition. This was independently described 

by two groups in 2007, both of which reported it to inhibit DRP1 fission activity through 

reduced GTP hydrolysis resulting in more reticulated and less fragmented mitochondria [55, 

56]. Using a combination of fluorescence recovery after photobleaching (FRAP), fluorescent 

particle tracking, subcellular fractionations and intact cell crosslinking Merrill et al. expanded 

our understanding of PKA’s inhibition of DRP1 [64]. The authors showed that under resting 

conditions DRP1 rapidly cycles between the mitochondria and cytosol, but upon S637 becomes 

trapped at the OMM unable to hydrolyse GTP and instead forms large oligomeric complexes 

incompatible with membrane fission [64].  Conversely, dephosphorylation at this same site by 

calcineurin enhances DRP1 fission by facilitating its hydrolysis of GTP [65, 66]. D-AKAP1 

promotes this inhibition by increasing localisation of OMM PKA [67]. Knockdown of D-

AKAP1 reduces PKA-DRP1 interaction resulting in increased mitochondrial fission and 

apoptosis while over-expression of D-AKAP1 confers protection which is abolished by 

mutation of its PKA binding site [56, 64]. Ex vivo cardiac ischaemia reperfusion (I/R) was 

shown to result in S637 dephosphorylation and mitochondrial DRP1 accumulation and 

associated with contractile dysfunction, ROS production and mitochondrial swelling [68]. This 

dysfunction, and importantly S637 dephosphorylation, was prevented by pre-treatment with 

Mdivi-1, FK506 mediated calcineurin inhibition or induced hypothermia [68]. Similar results 

were reported in an in vivo model of cardiac arrest whereby S637 dephosphorylation was 

associated with mitochondrial and contractile dysfunction and prevented by Mdivi-1 treatment 
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during cardiopulmonary resuscitation [69]. Finally, DRP1-S637 phosphorylation can also be 

initiated through exercise induced PKA activation [56]. In summary, the evidence suggests that 

DRP1 S637 phosphorylation is protective against ischaemic reperfusion injury through 

prevention of DRP1 fission activity.  In addition to these modifications the recruitment of 

DRP1 to the OMM is critically dependent upon the presence of facilitation proteins resident at 

the mitochondria. 

 

1.10.3 Mitochondrial DRP1 accessory proteins 

 

Association proteins are necessary for DRP1’s recruitment to the OMM as the protein itself 

contains no hydrophobic transmembrane domain (Figure 1.9). Mitochondria fission factor 

(MFF) is the best described accessory protein that localises DRP1 to the OMM. MFF co-

localises with DRP1 at the OMM, which is disrupted by RNAi knockdown resulting in 

elongated mitochondria [70]. Conversely, MFF overexpression increases DRP1 OMM 

recruitment and fission. Adding further credence to this model is the observation that MFF over 

expression results in a fragmented mitochondrial phenotype. Mitochondrial dynamic proteins 

49 and 51 (MID49/51) also localise DRP1 to the OMM though there are conflicting reports as 

to the impact of this on fission [71, 72]. Emerging work suggests DRP1 may interact with the 

critical mitochondrial fusion proteins mitofusion protein 1 (MFN1) and mitofusion protein 2 

(MFN2) shifting them from a fusion-incompetent to a fusion-competent configuration [73].  
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Figure 1.9. DRP1 mediates mitochondrial fission. Dephosphorylation of DRP1-S637 by calcineurin 
results in its recruitment to the outer mitochondrial membrane (OMM) where it associates with its 
accessory protein mitochondria fission factor (MFF). Mitochondrial dynamic proteins 49 and 51 
(MID49/51) also recruit DRP1 to the OMM though their impact on fission is unresolved. DRP1 self 
assembles into spirals at the site of fission and hydrolyses GTP to mechanically constrict and sever the 
mitochondria. PKA phosphorylation of S637 is facilitated by D-AKAP1 and prevents GTP hydrolysis 
re-localising DRP1 from the OMM and preventing mitochondrial fission.      

 
 

1.11 DRP1 in the myocardium  

As DRP1 is the principal mediator of fission and fragmented mitochondrial networks are 

typically observed prior to and during apoptosis DRP1 has been implicated in programmed cell 

death. By exposing cells to the pro-apoptotic treatments staurosporine, etoposide or γ 

irradiation Frank et al. showed DRP1 was recruited to mitochondria prior to apoptosis and 

associated with a fragmented mitochondrial phenotype [74]. The authors then showed that this, 

as well as cytochrome c release, inner mitochondrial membrane depolarization and cell death 
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were entirely inhibited by over expression of a DRP1 dominant negative mutant [74]. Simila r ly, 

the DRP1 inhibitor mitochondrial division inhibitor 1 (Mdivi-1) is seen to prevent apoptosis 

through attenuated mitochondrial membrane permeabilisation and Bax/Bak-dependent 

cytochrome c release [75]. However, other have reported DRP1 inhibition not to prevent the 

release of pro-apoptotic stimuli or conversely to prevent apoptosis [76, 77].     

 

The potential for DRP1 mutations to impact cardiac function was established following an N-

ethyl-N-nitrosourea mutagenesis screen, which identified the DRP1 c452f “Python” mouse. 

Python mice develop dilated cardiomyopathy, a reduction in mitochondrial respiratory 

complexes and ATP depletion [78]. Using DRP1 floxed allele mice, cardiomyocyte-spec ific 

DRP1 ablated mice were generated by three independent groups. In all cases knockout of DRP1 

was lethal at both perinatal and adult stages. All mice harboured enlarged mitochondria due to 

unopposed fission and the resultant mitochondria were deficient in both bioenergetics and 

mitochondrial autophagy [79-81]. Following conditional knockout of DRP1, Ikeda et al. 

reported critical development of cardiac fibrosis, hypertrophy, reduced fractional shortening 

and diastolic dysfunction as well as higher susceptibility to I/R injury [79]. Unconditiona l 

knockout of DRP1 is postnatally lethal between days 9 and 10 and associated with severe 

reduction in ventricular performance [81]. Song et al. found that cardiac specific deletion of 

DRP1 led to lethal dilated cardiomyopathy, cardiomyocyte necrosis and enlarged 

mitochondria, the quantity of which progressively declined and was matched by a concurrent 

increase in mitochondrial autophagy biomarkers [80]. Caution must be exhibited however 

when comparing ablation of a protein, as in the above studies, and mutation of a discrete facet 

of its mechanism as DRP1 mediates not just fission of mitochondria, but also fission of 

peroxisomes. Indeed, adenovirus expression of DRP1 dominant-negative mutants showed 

attenuated DRP1-GTPase activity to confer protection against I/R and cardiac hypertrophy [82, 

83].    

 

Pharmacological inhibitors of DRP1 have also shed light on its essential role in the 

myocardium. Mitochondrial division inhibitor is a selective small molecule cell permeable 

inhibitor of DRP1 that blocks its hydrolysis of GTP preventing its polymerisation [75]. Pre-

treatment of cells or animals with Midivi-1 appears to be cardio-protective in a number of 

settings. HL-1 cells pre-treated with Midivi-1 increased cell survival and reduced 

mitochondrial permeability transition pore (MPTP) opening during simulated I/R. In 
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accordance with this is also seen to reduce infarct size after I/R [84]. Similarly, mice pre-treated 

with Midivi-1 show improved contractile function and reduced fibrosis in pressure overload 

induced heart failure [85] . P110, is a selective synthetic peptide that disrupts DRP1 binding to 

its mitochondrial scaffold protein FIS1 preventing fission [86] and was found to confer cardio-

protection to primary cardiomyocytes and ex vivo and in vivo models of I/R [87]. The factors 

mediating DRP1’s fission activity are summarized below in Figure 1.10. 
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Figure 1.10. Schematic of primary factors impacting mitochondrial fusion and fission. Factors 
promoting mitochondrial fission are indicated on the left and those favouring fusion on the right. DRP1 
is the key arbitrator of fission and is modulated by phosphorylation of its S637 site. Phosphorylation by 
PKA inhibits DRP1’s activity promoting fusion while calcineurin dephosphorylation activates the 
dynamic facilitating fission [56]. Elevated cytosolic Ca2+, as during ischaemia, activates calcineurin 
leading to mitochondrial fission [88]. Pro-apoptotic stimuli recruit DRP1 to mitochondria, leading to 
mitochondrial permeability transition pore (mPTP) opening (symbolised by open red oval) predisposing 
tissue to cell death [74]. DRP1 mediated mPTP opening during ischaemia pre-disposes the myocardium 
to cell death at reperfusion [84]. PKA phosphorylation of DRP1 during starvation promotes cell survival 
and mitochondrial fusion and can also be triggered via β-adrenergic stimulation through isoprenaline 
and exercise [56, 57]. DRP1 is localised to the outer mitochondrial membrane by mitochondrial fission 
factor (MFF) and mitochondrial dynamic proteins 49 and 51 (MID49/51) [73]. Mitochondrial fusion 
proteins 1 and 2 (MFN1/2) are essential for initiating fusion and may interact with DRP1 [73]. PKA 
phosphorylates DRP1 at the outer mitochondrial membrane (OMM) via its scaffold protein D-AKAP1 
[89]. Small molecule DRP1 inhibitors mitochondrial division inhibitor 1 (Mdivi-1) and P110 prevent 
fission by inhibiting DRP1-GTPase activity and MFF docking respectively [75, 87]. Fragmented 
mitochondria, ischaemic conditions and hypoxia lead to aberrant ROS production further destabilizing 
mitochondria and promoting cell death [90-92].  Figure adapted from Ong et al. [93]  
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1.12 PKA mediates DRP1 during starvation  

Starvation results in a state of mitochondrial dysfunction and cell wide autophagy. Autophagy 

is the selective engulfment of cellular macromolecules and organelles in multilamellar vesicles , 

which fuse with lysosomes. This leads to their digestion and the retrieval of amino acids for 

gluconeogenesis. A long standing, but not mechanistically understood, observation of 

starvation induced autophagy was that despite a replete increase in cellular autophagy, 

mitochondria actually increase in size [94, 95] . This paradox was resolved by Gomes et al. 

who starved cultured cells and mice to induce autophagy and mitochondrial elongation [57]. 

This increase in organelle size was attributed to PKA mediated inhibitory phosphorylation of 

DR1-S637. Using a genetically encoded cAMP FRET reporter probe EPAC, Gomes et al. 

showed that treatment of mouse embryonic fibroblasts with nutrient poor medium induces 

rapid elevations in cAMP [57]. This activates PKA facilitating DRP1-S637 phosphoryla t ion 

inhibiting DRP1 mediated mitochondrial fission. Both pharmacological inhibition of PKA and 

site directed mutagenesis (DRP1-S637A) abrogated this observation resulting in fragmented 

mitochondria. Importantly, it was shown that elongated mitochondria more efficient ly 

produced energy attributable to increased cristae density and mitochondr ial ATP synthase 

dimerization. Indicating that PKA mediated DRP1-S637 phosphorylation is an adaptive 

mechanism to starvation [57].  

 

1.12.1 Starvation elevates cAMP  

 

Starvation leads to elevations in circulating glucagon, epinephrine and norepinephrine, all three 

of which elevate cAMP through GPCR binding  [96-98]. Epinephrine initiates lipolysis from 

fat stores by phosphorylating hormone sensitive lipase and perilipin [99]. While glucagon 

produced by pancreatic alpha cells stimulates liver glycogenolysis and gluconeogenesis by 

elevating cAMP activated PKA [100, 101]. The pathway by which this is achieved in well 

characterised and described below in Figure 1.11 [100, 102].  
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Figure 1.11. Glucagon promotes cAMP elevation activating. Glucagon binds to plasma membrane 
G protein-coupled receptors (GPCR) leading to the activation of the cAMP producing enzyme adenylate 
cyclase (AC) which activates PKA [100]. PKA induces glycogen degradation by inhibiting glycogen 
synthase (Gly syn) and phosphorylating phosphorylase kinase (Phos kinase) [100]. Phosphorylase 
kinase activates glycogen phosphorylase  B (Gly phos B): converting it to its active “A” (Gly phos A) 
conformation which liberates glucose-1-phosphate from glycogen polymers and is transported from 
hepatic cells to the blood via the glucose transporter 2 (GLUT2) [100]. Active PKA also enters the 
nucleus to phosphorylate and activate cAMP-responsive element binding protein (CREB) [103]. CREB 
associates with the promoter of the phosphoenolpyruvate carboxykinase (PEPCK) promoter increasing 
transcription of PEPCK and other gluconeogenic enzymes, therefore elevating gluconeogenesis [103]. 
Figure adapted from Bradshaw et al. [103].  
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1.12.2 Starvation elevates ROS  

 

In addition to increased cAMP production during starvation, it is widely accepted that nutrient 

scarcity elicits a rapid elevation in ROS production [104]. The principal source of oxidant 

generation during nutrient deprivation appears to be via mitochondrial electron transport leak 

[105-107]. The hypothesis for this, as opposed to membrane bound NOX oxidant generation 

for example, is that nutrient scarcity produces an energetic deficit that is compensated for by 

increased mitochondrial ATP production, resulting also in electron transport chain leak and 

ROS generation [105]. Indeed, using dihydroethidum (DHE), a fluorescent probe that reacts to 

peroxides, Scherz-Shouval et al. showed that CHO and HeLa cells serum starved for 3 or 13 

hours accumulated peroxides [108]. In particular, H2O2 accumulation was confirmed using 

2’,7’-dichlorofluorescin diacetate (DCF-DA), a fluorescent probe that primarily reacts with 

H2O2 [108]. In line with this incubation of cells with catalase, which decomposes H2O2, 

abrogated starvation induced DCF-DA fluorescence [108]. The authors noted a strong 

colocalisation between DCF-DA and MitoTracker Red, a mitochondrial marker, fluorescence 

suggesting the organelle was responsible for the ROS production [108]. In accordance with, 

this mitochondrial electron transport chain disruptors, rotenone and TTFA as well as H2O2  all 

induce complete autophagy signalling cascades [109]. Additionally, during autophagy catalase 

is selectively degraded promoting H2O2 accumulation [110]. By contrast Chen et al. posit that 

O2
- is the principal ROS generated during starvation induced autophagy [111]. Flow cytometric 

analysis of ROS using DHE and the chloromethyl derivative of 2’,7’-

dichlorodihydrofluorescein diacetate (CM-H2DCFDA) as indicators of O2
- and H2O2 

respectively. The authors showed that autophagy induced by starvation, mitochondrial electron 

transport chain inhibitors and exogenous H2O2 application all correlated with increased O2
- and 

reduced H2O2 levels [111]. Although the relative production of both O2
- and H2O2 during 

starvation may be uncertain the literature is consensual that nutrient deprivation is accompanied 

by a general increase in ROS.  
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1.13 Hypothesized model of starvation induced PKARIα activation 

Taken together the above evidence suggests that: during starvation cAMP is elevated which 

activates and recruits PKA to the mitochondria via D-AKAP1, once localised PKA 

phosphorylates DRP1 at its S637 residue preventing fission activity of the dynamin to preserve 

mitochondrial function, and that these events take place against a background of aberrant ROS 

production. Therefore, during starvation cAMP is elevated in addition to a concomitant rise in 

ROS production, such scenarios are of particular relevance to this thesis as it is concerned with 

the integration of both nucleotide and oxidant signalling by PKARIα [80, 112]. It is therefore 

hypothesized that PKA’s inhibitory phosphorylation of DRP1-S637 during starvation is 

mediated by disulfide activated PKARIα via D-AKAP1 (Figure 1.11) 

 

 

 

Figure 1.11. Hypothesized model of PKARIα modulation of DRP1 during starvation. (1) Under 
resting conditions PKARIα and DRP1 are primarily cytosolic. (2) During starvation ROS and cAMP 
are elevated as byproducts of metabolism and glucagon. PKARIα becomes oxidized forming disulfides 
increasing its affinity for D-AKAP1, similarly DRP1 is recruited to the mitochondria where it self 
assembles into oligomers. (3) In the presence of DRP1, PKARIα is sensitized to elevated cAMP, leading 
to its full dissociation and phosphorylation of DRP1-S637. This inhibits DRP1’s GTPase activity 
trapping it at the mitochondria in large in-active oligomeric complexes.  
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1.14 Aim of thesis 

 

The aim of this thesis was to investigate the ramifications of redox modified PKARIα on both 

total substrate, and specifically DRP1-S637, phosphorylation. A number of in vivo 

interventions involving elevated ROS and cAMP production, as well as metabolica l ly 

challenging mitochondria, were investigated as this was anticipated to invoke a PKARIα-D-

AKAP1-DRP1 signalling axis. Starvation was principally utilized as PKA, DRP1 and D-

AKAP-1 have been shown to critically modulate the cells adaptive response nutrient 

deprivation. In addition, during starvation these events takes place amid an environment replete 

in both oxidants and cAMP. Factors that are the principal mechanisms by which PKARIα is 

activated. It was anticipated that starvation would result in aberrant ROS production oxidis ing 

the kinase to form inter-regulatory subunit disulfide bonds increasing its affinity for D-AKAP1 

at the mitochondria where it would negatively regulate DRP1 via S636 phosphorylation (Figure 

1.11). To further investigate disulfide PKARIα activity, Langendorff perfusion experiments 

using the oxidant H2O2 and β-adrenergic agonist isoprenaline were also undertaken. This 

permitted tight regulation of both agents in the myocardium and was used to assess the impact 

of their presence on PKARIα mediated substrate phosphorylation, disulfide formation and 

cardiac function. It was hypothesized that disulfide PKARIα mediated substrate 

phosphorylation would be exacerbated by isoprenaline through increased cAMP production 

(Figure 1.7).   
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Material and Methods  

1.15 Mice 

 

All animal protocols were carried out in the UK in accordance with the Home Office Guidance 

on the Operation of the Animals (Scientific Procedures) Act 1986 and approved by King’s 

College London’s Animal Welfare and Ethical Review Body. Unless otherwise stated all mice 

were 6 week old C57BL/6J (Charles River, UK); weighing between 20-22 grams. 

 

1.15.1 PKARIα C17S knock-in mice 

 

C57bl/6 mice were used to generate constitutively expressing PKARIα C17S knock in (KI) 

mice by TactonicArtemis as described previously [37]. Briefly, a targeting vector was 

constructed for murine Prkar1a by polymerase chain reaction (PCR) amplification of the 

murine Prkar1a region, introducing the Cys17Ser mutation to exon 1 by site-directed 

mutagenesis, and inserting an FRT-flanked neomycin selection marker (permitt ing 

identification of transfected embryonic stem cells) in proximity to the mutation favouring 

homologous recombination. Homologous recombination occurrence was confirmed by 

Southern blot screening; followed by validation of positive clones. Embryonic stem cells were 

then transfected permitting chimera generation. Chimeras were subsequently bred with an Flp 

deletor for in vivo selection marker deletion. Chimeras were bred directly to deletors for 

embryonic stem cells to go germline therefore obtaining germline transmission and selection 

marker deletion concurrently. Mice were bred from 6-7 weeks of age as heterozygous pairs 

producing wild-type (WT) or KI progeny (Figure 2.1). Sequence comparison of human and 

mouse PKARIα show high sequence homology suggesting experiments in mice should be 

applicable to humans (Table 1).   
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Figure 2.1. The “redox-dead” PKARIα C17S KI mouse. Two disulfide bonds are formed between 
cysteines 17 and 38 on adjacent regulatory subunits of PKARIα in response to oxidants such as H2O2. 

This response is precluded in PKARIα C17S KI mice through mutation of cysteine 17 serine.  

 

Table 1. Sequence alignment of human and mouse PKARIα. Disulfide forming cysteines of interest 
highlighter in red, * identical, : similar  

 

 
HUMAN MESGSTAASEEARSLRECELYVQKHNIQALLKDSIVQLCTARPERPMAFLREYFERLEKE 60 
MOUSE MASGSMATSEEERSLRECELYVQKHNIQALLKDSIVQLCTTRPERPMAFLREYFERLEKE 60 
      * *** *:*** ****************************:******************* 
HUMAN EAKQIQNLQKAGTRTDSREDEISPPPPNPVVKGRRRRGAISAEVYTEEDAASYVRKVIPK 120  
MOUSE EARQIQCLQKTGIRTDSREDEISPPPPNPVVKGRRRRGAISAEVYTEEDAASYVRKVIPK 120 
      **:*** ***:* *********************************************** 
HUMAN DYKTMAALAKAIEKNVLFSHLDDNERSDIFDAMFSVSFIAGETVIQQGDEGDNFYVIDQG 180  
MOUSE DYKTMAALAKAIEKNVLFSHLDDNERSDIFDAMFPVSFIAGETVIQQGDEGDNFYVIDQG 180  
      ********************************** ************************* 
HUMAN ETDVYVNNEWATSVGEGGSFGELALIYGTPRAATVKAKTNVKLWGIDRDSYRRILMGSTL 240  
MOUSE EMDVYVNNEWATSVGEGGSFGELALIYGTPRAATVKAKTNVKLWGIDRDSYRRILMGSTL 240  
      * ********************************************************** 
HUMAN RKRKMYEEFLSKVSILESLDKWERLTVADALEPVQFEDGQKIVVQGEPGDEFFIILEGSA 300  
MOUSE RKRKMYEEFLSKVSILESLDKWERLTVADALEPVQFEDGQKIVVQGEPGDEFFIILEGTA 300  
      **********************************************************:* 
HUMAN AVLQRRSENEEFVEVGRLGPSDYFGEIALLMNRPRAATVVARGPLKCVKLDRPRFERVLG 360 
MOUSE AVLQRRSENEEFVEVGRLGPSDYFGEIALLMNRPRAATVVARGPLKCVKLDRPRFERVLG 360  
      ************************************************************ 
HUMAN PCSDILKRNIQQYNSFVSLSV 381 
MOUSE PCSDILKRNIQQYNSFVSLSV 381  

  ********************* 
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1.16 Langendorff perfusion of mouse hearts 

1.16.1 Langendorff perfusion set-up 

  

Mice were sacrificed with a lethal dose of intraperitoneally injected sodium pentobarbital (45 

mg/kg) containing heparin (1000 IU/kg). Hearts were rapidly excised into ice-cooled Krebs-

Henseleit bicarbonate buffer (K-HB), cannulated and then perfused under constant perfusion 

pressure (80 mmHg) at 37 °C with carbogen gassed (95 % O2, 5 % CO2) K-HB (Figure 2.2). 

Unless otherwise stated K-HB contained (118 mmol/L NaCl, 4.75 mmol/L KCl, 1.18 mmol/L 

KH2PO4, 25 mmol/L NaHCO3, 1.19 mmol/L MgSO4, 2 mM Na-pyruvate and 11 mmol/L 

glucose). Experiments in which Na-pyruvate was removed are indicated in the results 

description and figure legends. Prior to all experiments Deltran disposable pressure transducers 

(Utah Medical Products Inc, USA) were calibrated using a mercury sphygmomanometer and 

flow rates calibrated by collecting effluent over a one minute period. The perfusion rig was 

cleaned with boiling water prior to and following all experiments. Perfusion pressure was 

maintained by a computer-driver peristaltic pump controller and recorded using a pressure 

transducer. Changes in maximal left ventricular end systolic pressure (LVSP) and left 

ventricular end diastolic pressure (LVEDP) were assessed via a pressure transducer-connec ted 

left ventricular inserted balloon. As hearts were perfused at constant pressure changes, in flow 

rate were dependent on changes in the vascular resistance of the myocardium and not pump 

speed. Therefore, flow rate to the heart was used as a proxy measurement of coronary flow rate 

(CFR). Heart rate (540 bpm) was maintained by a pulse generator attached to both perfusion 

cannula and bath. A stabilisation period of 20 minutes preceded all interventions. All variables 

were monitored using LabChart 7 (AD Instruments). Inclusion criteria were CFR between 1-5 

ml/min, LVEDP below 10 mmHg and LVSP above 60 mmHg. Upon cessation of all protocols, 

ventricular tissue was removed from hearts, placed into a cryovial, snap-frozen in liquid 

nitrogen and stored at -80 °C.  
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Figure 2.2. Schematic of Langendorff perfusion system. Hearts were rapidly excised into ice-cooled 
K-HB, cannulated and perfused from reservoir 1 at constant pressure (80 mmHg) with carbogen 
bubbled K-HB heated to 37 °C. The left atrium was removed, a saran wrap balloon connected to a 
pressure transducer inserted and inflated with a micro-syringe to record changes in LVP. Hearts were 
paced at 540 bpm by a pulse generator and perfusion pressure monitored by a pressure transducer 
connected above the cannula. A compliance chamber above the heart also functioned as a bubble trap.   
 

1.16.2 Na-pyruvate addition to K-HB 

 

During perfusions hearts sometimes underwent repeated cyclic fluctuations of varying periods 

in LVSP and LVEDP making a valid comparison of contractile function between conditions 

difficult. Cyclic fluctuations in contractile stability have previously been reported by other 

groups and attributed to metabolic substrate deficiency [113, 114]. Wang et al. reported that 

supplementation of K-HB with Na-pyruvate, as additional metabolic substrate, abolished these 

fluctuations [113]. Therefore, in experiments monitoring contractile function Na-pyruvate (2 

mM) was added to K-HB (Figure 2.3). The presence or absence of Na-pyruvate in Langendorff 

experiments is indicated in figure legends.   
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Figure 2.3. Example traces of contractile fluctuations in Langendorff perfused mouse hearts 
during a four minute period of recording. Regular cyclic fluctuations in LVSP and LVEDP were 
observed during perfusions without the presence of Na-pyruvate. 
 

1.16.3 Selection of isoprenaline dose  

 

Isoprenaline is a widely used and potent agonist of PKA substrate phosphorylation. Prior to 

examining the effects of concurrent Langendorff perfusion with isoprenaline and H2O2 it was 

necessary to identify a concentration that induced sub-maximal changes in PKA substrate 

phosphorylation. By using this sub-maximal dose in combination with H2O2, subtle changes in 

the phospho-status of PKA substrates may be identified indicating an influence of the oxidant 

on phosphorylation which may otherwise be masked by higher concentration of isoprenaline. 

Phosphorylation of PKA-substrate was investigated using an antibody that detects the PKA 

phosphorylation consensus motif Arg-Arg-X-pSer/pThr (RRXS*/T*) allowing changes in 
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“total” PKA substrate phosphorylation to be immunoblotted [32, 115]. In all experiments 

“total” PKA-substrate phosphorylation was quantified as the total signal in each lane from 

RRXS*/T* immunoblots normalized to GAPDH. A small pilot study using titrated doses of 

isoprenaline in perfused hearts and mouse intraperitoneally injected (IP) with the agonist as a 

positive control was undertaken. 100 nM isoprenaline led to large changes in DRP1-S637 

phosphorylation and “total” PKA-substrate phosphorylation which were unchanged by 1 nM 

leading to our selection of 10 nM for experiments (Figure 2.4).   

 

 

Figure 2.4. Identification of 10 nM isoprenaline as submaximal phosphorylation dose in 
Langendorff perfused hearts. Heart were stabilized for 20 minutes before perfusion with 0, 1, 10 and 
100 nM isoprenaline for five minutes. Intraperitoneal injection (IP) of isoprenaline (1 mg/kg) was used 
as a positive control. Immunoblot of pDRP1-s637 and pPKAsubstrate. Analysis, One-way ANOVA 
with Tukey poc hoc test (n=2, ±SEM, p<0.05). K-HB with Na-pyruvate.  

 

1.16.4 Perfusion of hearts with H2O2 and isoprenaline  

 

Hearts were stabilised with K-HB for 20 minutes from reservoir 1. Freshly prepared H2O2 and 

isoprenaline (shielded from light) were kept at 4 °C.  H2O2 and/or isoprenaline were added to 

reservoir 2, 5 minutes prior to their use. Upon treatment 3-way stopcocks were used to switch 

from reservoir 1 to reservoir 2. Hearts were perfused for 5 minutes with 100 µM H2O2 and/or 
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10 nM isoprenaline unless otherwise stated, control hearts were time matched and perfused 

exclusively from reservoir 1 (Figure 2.5). 

 

 

 

Figure 2.5. Schematic of Langendorff perfusion experiments with H2O2 and isoprenaline. Heart 
were stabilised for 20 minutes with K-HB prior to all interventions. Hearts were then perfused for 5 
minutes with either H2O2 (100 µM), isoprenaline (10 nM) or both agents. Controls were time-matched 
perfused hearts with K-HB. Upon experimental cessation hearts were immediately snap-frozen in liquid 
nitrogen.  
 

1.17 Ex vivo ischaemia-reperfusion   

Reperfusion injury is the paradoxical dysfunction that ensues re-oxygenation of ischaemic 

tissue in an effort to quell damage caused by oxygen deficiency. The role of oxygen derived 

free-radicals has been implicated, and extensively examined, in the context of I/R [91]. 

Although it is well established that I/R is associated with aberrant ROS production, their 

discrete sources, forms and relative contribution to injury continue to be deeply studied [91]. 

So far 6 sources of ROS have been implicated in I/R including xanthine oxidase [116, 117], 

NOX enzymes [118], mitochondria [119-121], NOS [122], cytochrome P450 [123] and 

monoamine oxidase [124]. PKA is implicated in the protective effects of ischaemic 

preconditioning through endothelial NOS regulation [125] and proteasome assembly [126]. It 

has also been implicated in the protective effects of both temperature and morphine 

preconditioning to I/R injury [127, 128]. PKA’s activation during reperfusion through is seen 

to reduce infarct size through Akt activation. [129]. Additionally, PDE-3B -/- mice, which are 

deficient in cAMP degradation, show reduced infarct size following coronary artery ligat ion 

and I/R [130]. In line with this, treatment with the PDE3 inhibitor milrinone prior to ischaemia 

elevates PKA activity and reduces myocardial infarct size after I/R [131].  
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PKA is also seen to confer cardio-protection during I/R injury through activation of heat-shock 

protein 20 a small molecular weight chaperone that assists in the maintenance of protein 

conformation [132]. PKA mediated mitochondrial Ca2+ activated K+ channel opening was also 

identified as the mechanism by which adrenomedullin, a peptide hormone, reduces infarct size 

following ischaemic injury [133]. Finally, while complete ablation of DRP1 provokes 

cardiomyopathy and mitochondrial dysfunction [79, 134] acute inhibition of the GTPase is 

consistently seen as protective against I/R [88]. In vivo experiments using selective DRP1 

inhibitors mdivi-1 and P110, the non-competitive dynamin GTPase inhibitor Dynasore as well 

animals expressing inactive DRP1, have all been shown to confer cardioprotection through 

preserved contractile function or reduced infarct size during and following I/R [68, 83, 84, 87, 

135, 136]. The protective effects of DRP1 inhibition during I/R have been attributed to 

preserved mitochondrial morphology, reduced ROS production, improved mitochondrial O2 

consumption, increased inotropy and lusitropy and both reduced infarct size and long term 

cardiac dysfunction [68, 83, 84, 87, 135, 136].  

 

Taken together this suggests that I/R results in the aberrant productions of oxidants and that 

PKA and inhibition of DRP1 protect against ischaemic injury. Interestingly, PKA 

endogenously inhibits DRP1 by phosphorylating its S637 residue and PKARIα has been shown 

to be activated by oxidants resulting in phosphorylation of its targets [32, 55, 137]. Whether 

PKARIα forms a disulfide in response to oxidants produced during I/R and if this modulates 

DRP1 phosphorylation is unknown and was therefore investigated.  

 

Hearts were prepared as in 2.2.1. Following a 20 minute stabilisation period hearts were subject 

to global ischaemia followed by reperfusion. Various time-courses of both interventions as well 

as pre-conditioning involving brief (1 minute) periods of ischaemia and reperfusion were used 

to assess if disulfide PKARIα was formed and whether this was time-dependent (Figure 2.6). 

During ischaemia K-HB perfusion to the myocardium was entirely ceased and the perfusate re-

routed to reservoir 1, reperfusion was achieved through re-establishment of flow to the heart. 

Phosphorylation of DRP1-S637 was unchanged by I/R (Figure S2) and no change in disulfide 

PKARIα was seen in response to any of the 15 different I/R conditions tested (Figure S1). As 

no alteration in either the oxidative status of PKARIα or the phosphorylation state of DRP1, 

the proteins on which this thesis is primarily concerned, was observed these experiments were 

discontinued. 
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Figure 2.6. Schematic of ex vivo ischaemia-reperfusion experiments. 3 separate experiments were 
undertaken using various periods of I/R and pre-conditioning to ascertain at which point PKARIα may 
be oxidised. All interventions were preceded by a 20 minute stabilisation period.  Experiment 1 involved 
15 minutes of ischaemia followed by either 1, 15 or 30 minutes of reperfusion. Experiment 2 involved 
2 and 3 bouts of pre-conditioning (1 minute ischaemia followed by 1 minute of reperfusion), 10 or 20 
minutes of ischaemia, and 5 or 40 minutes of reperfusion following 20 minutes of ischaemia. 
Experiment 3 involved 30 minutes of ischaemia followed by 2.5, 5, 30, 60 or 120 minutes of 
reperfusion. Controls were time matched to the longest condition for all experiments. Upon cessation 
of each intervention hearts were immediately snap-frozen in liquid nitrogen. K-HB without Na-
pyruvate. 
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Interesting, a small initial pilot study showed that levels of junctophilin 2 (JPH2), a protein 

linking the plasma and sarcoplasmic reticulum membranes, appeared to be reduced in a time 

dependent manner during reperfusion (Figure 2.7A). Experiments using larger samples sizes 

showed that after 60 minutes of reperfusion JPH2 levels were indeed reduced (P<0.05). Calpain 

is a Ca2+ dependent cysteine protease which targets both talin and spectrin for degradation 

when activated yielding lower molecular weight cleavage products [138, 139]. Degradation of 

both talin and spectrin, as well as an increase in their cleavage products (p<0.05), was also 

observed after 60 minutes of reperfusion (Figure 2.7B). It was therefore anticipated that calpain 

may be degrading JPH2 during reperfusion. However, the homogenisation buffer used in the 

above experiments contained 2 mM CaCl2+. Although it also contained 1 mM EGTA, which 

sequesters Ca2+, and a protease inhibitor cocktail tablet. As we were investigating a Ca2+ 

dependent protease it was thought prudent to repeat the experiments using a Ca2+ free 

homogenisation buffer (Appendix S2, Tissue homogenisation buffer). These experiments 

failed to show a reduction in JPH2 following I/R suggesting the previous observations were a 

methodological artefact (Figure 2.7C). Interestingly, shortly after these experiments Guo et al. 

showed that JPH2 was downregulated after I/R and using both computational analysis and in 

vitro calpain proteolysis reactions, identified four putative JPH2 calpain cleavage sites [140].  
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Figure 2.7. Reduction in JPH2 levels following I/R is a methodological artefact. Hearts were 
stabilized for 20 minutes prior to 30 minutes of global ischaemia. Reperfusion of varying durations was 
then commenced. “0” indicates untreated time matched controls. Upon cessation of experiments hearts 
were immediately snap-frozen in liquid nitrogen. (A) Top, immunoblots of JPH2 and GAPDH from 
hearts subject to 30 minutes of ischaemia followed by 2.5, 5, 30, 60 and 120 minutes reperfusion (0 n 
= 2, all others n = 1). Bottom, Densitometry of immunoblots. (B) Immunoblots of JPH2, Talin, Spectrin 
and GAPDH indicating cleavage products following 60 minutes of reperfusion after 30 minutes 
ischaemia (0 n = 4, 60 n = 5). (C) Immunoblot of JPH2 following 60 minutes of reperfusion after 30 
minutes ischaemia homogenised in Ca2+ free buffer (n = 5).  K-HB without Na-pyruvate.         

 

 

1.18 In vivo interventions 

1.18.1 Starvation 

 

Mice were deprived of animal chow for 12 and 24 hours and allowed continuous access to 

water (Figure 2.8). Control groups were allowed ab libitum access to chow and water. In both 

durations of starvation food was removed at 8pm and the animals sacrificed after 12 or 24 

hours. Prior to sacrifice blood glucose measurements were taken from the tip of mice tails using 

the Accu-Chek Aviva Blood Glucose Monitor System (Roche, USA).  
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Figure 2.8. Schematic of starvation experiments. Animal chow was removed from mice for 12 or 24 
hours and water was available at all times. Control animals had ab libitum access to both chow and 
water. Upon cessation of the experiment hearts were extracted and immediately snap-frozen in liquid 
nitrogen. 

 

1.18.2 Intraperitoneal injection with isoprenaline 

 

Mice were intraperitoneally (IP) injected with freshly prepared isoprenaline (1 mg/kg) mixed 

in 0.9 % NaCl or with NaCl alone as controls. 5 minutes after injection animals were sacrificed, 

hearts rapidly excised into ice-cooled K-HB, rinsed, snap-frozen in liquid nitrogen and stored 

at -80 °C.  

 

1.18.3 Intraperitoneal injection with 2, 4 dinitrophenol  

 

2, 4 dinitrophenol (DNP) is a potent proton ionophore that uncouples mitochondrial oxidative 

phosphorylation. DNP destabilises the proton gradient across mitochondria by transporting H+ 

cations across its IMM independently of ATP synthase activity [141, 142]. Upon entering the 

mitochondrial matrix DNP is depronated, shuttled back across the inner mitochondria l 

membrane and its cycle repeated.  Collapse of this proton motive force causes mitochondria to 

continuously consume oxygen in order to generate the energy needed to shuttle protons back 

across the IMM in an attempt to re-establish the proton gradient [143]. Thus, oxygen 

consumption is uncoupled from ATP production which is instead lost as heat [141, 142]. DNP 

treatment was therefore used to metabolically stress mitochondria and assess whether this 

involved recruitment of disulfide PKARIα and pDRP1-S637. 
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Mice were IP injected with 30 mg/kg of DNP as this dose has previously been shown in rats to 

decrease body weight, and increase resting and skinned muscle oxygen consumption [144]. 

Tissues were then harvested 0.5, 2, 4, and 8 hours post injection, placed in a cryovial, snap 

frozen in liquid nitrogen and stored at -80 °C. Controls received an equal volume IP of 0.9 % 

NaCl and were time matched (Figure 2.9). No change in disulfide PKARIα or pDRP1-S637 

were observed at any time point post IP therefore mitochondrial uncoupling experiments were 

discontinued (Figure S3). 

 

 

 

Figure 2.9. Schematic of 2,4 DNP experiments. Mice were intraperitoneally injected with 2, 4 DNP 
(30 mg/kg) and hearts harvested 2, 4, and 8 hours post injection. Control mice received an equal volume 
of 0.9% NaCl and were harvested 8 hours post IP. Hearts were immediately snap-frozen in liquid 
nitrogen (n = 2).  
 

1.18.4 Intraperitoneal injection of glucagon 

 

As previously described in Figure 1.9, the peptide hormone glucagon raises intracellular cAMP 

concentration by binding to GPCRs which initiates a signalling cascade resulting in glucose 

liberation from glycogen stores [145, 146]. As also previously discussed in chapter 1.13 

nutrient deprivation is also associated with aberrant ROS production [147-149]. Therefore, we 

hypothesized that nutrient deprevation in combination with glucagon treatment may be an 

effective means to induce disulfide PKARIα formation in the presence of elevated cAMP.  

 

Animals were fasted for 6 hours before IP injection of glucagon (1 mg/kg). Prior to and 10, 20 

and 60 minutes post injection, tail vein blood glucose levels were measured using the Accu-

Chek Aviva Blood Glucose Monitor System. Control mice had access to animal chow at all 

times and were sham injected with 0.9 % NaCl (Figure 2.10). Glucagon IP injection resulted 
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in elevated blood glucose levels 10, 20 and 60 minutes post injection but no difference in 

disulfide PKARIα or pDRP1-S637 were seen (Figure S4). These experiments were therefore 

discontinued.  

 

 

Figure 2.10. Schematic of glucagon intraperitoneal injection experiments. Mice were fasted for 6 
hours prior to glucagon (1 mg/kg) IP injection. Blood glucose measurements then taken 10, 30 and 60 
minutes post-IP and assessed with an Akku Chek blood glucose monitor. Control animals had ab libitum 
chow access at all times. Hearts were harvested after the final blood glucose measurement and 
immediately snap-frozen in liquid nitrogen (n = 3).   

 

1.18.5 Hypoxic chamber exposure 

 

An interplay between hypoxia, mitochondrial dysfunction and DRP1 has been described in 

several contexts. Wu et al. recently described a novel pathway in which FUN14 Domain 

containing 1 protein recruits DRP1 to mitochondria under hypoxic conditions to induce fission 

[150]. Rats maintained under hypoxic conditions are also been seen to upregulate DRP1 in 

pulmonary arterial smooth muscle cells [151]. In addition, using a combination of 

hemodynamic analysis and morphometric assays Shen et al. demonstrated that DRP1 mediates 

increases in right ventricular systemic pressure and hypertrophy as well as pulmonary 

angiogenesis in response to hypoxia by promoting the proliferation and migration of pulmonary 

arterial endothelial cells [152]. Kim et al. showed that mitochondria undergo fission in response 

to hypoxia which is mediated by AKAP149 availability [67]. Accordingly,  under hypoxic 

conditions the ubiquitin ligase Siah2 was seen to degrade AKAP149 preventing PKA mediated 

inhibition of DRP1 mitochondrial fission [67]. AKAP149 levels were elevated in Siah2 -/- 

cardiomyocytes which showed decreased apoptosis in response to simulated ischaemia [67]. 

Similarly, Siah2 -/- mice displayed reduced infarct size and cell death in response to myocardia l 

infarction [67].  
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In tandem with affecting DRP1, hypoxic conditions are a well-established stimulus of ROS 

production. Under normoxic conditions hypoxia- inducible factor 1α (HIF-1 α) is quickly prolyl 

hydroxylated resulting in its ubiquitination by the E3 ligase von Hippel-Lindau protein and 

subsequent degradation by the proteasome [92]. Under hypoxic conditions HIF-1 α in not 

hydroxylated and instead forms heterodimers with aryl hydrocarbon nuclear translocase 

resulting in transcriptional changes to genes regulating adaptation to hypoxia including those 

responsible for ROS production [92]. For example, HIF-1 α regulates the transcription of both 

inducible and endothelial NOS thus increasing NO bio-availability [92, 153].  Taken together 

this data suggest that DRP1 is responsive to hypoxic stimuli and that hypoxic conditions initia te 

ROS production. Therefore, we hypothesized that hypoxic conditions represented a potential 

environment in which to assess the role of disulfide PKARIα in DRP1 regulation.  

 

Hypoxic experiments were conducted by Dr. Olena Rudyk. Mice were subjected to 10 % 

oxygen for 2 and 3 days using the Proox P360 (BioSpherix, USA) hypobaric chamber. Control 

mice were housed in the same room as those exposed to hypobaric conditions (Figure 2.11). 

Upon cessation of experiments animals were sacrificed, hearts rapidly excised, snap-frozen in 

liquid nitrogen and stored at -80 °C. No difference in disulfide PKARIα or pDRP1-S637 in 

response to 2 or 3 days hypoxic exposure was observed and so these experiments were 

discontinued (Figure S5). 
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 Figure 2.11. Schematic of 2 and 3 day hypoxic chamber experiments. Hypoxic animals were housed 
in the Proox P360 hypobaric chamber containing 10 % O2 for 2 or 3 days. O2 levels were monitored 
throughout the experiment with an in-chamber O2 sensor. Control mice were concurrently kept in the 
same room and exposed to ambient room O2 (21%). Upon cessation of the experiment hearts were 
excised and immediately snap-frozen in liquid nitrogen. (Top) Left, image of hypoxic chambers 
housing mice cages. Right, schematic of hypoxic chamber set-up. (Bottom) Schematic of experiments 
protocol with each row representing a different experimental group (n = 4).    

 

1.19 Isolation and treatment of mouse ventricular cardiomyocytes 

1.19.1 Isolation of ventricular cardiomyocytes 

 

C57bl/6N mice (Charles River, Sulzfeld, Germany) were anesthetized with 3% isoflurane, their 

cervical vertebrae dislocated, hearts rapidly extracted, cannulated with a 21 gauge blunted 

syringe and attached to a modified Langendorff system. Perfusion was maintained at 4 ml/min 

and 37 °C.  Hearts were perfused with Ca2+ free isolation buffer for 4 minutes prior to digestion 

with perfusion buffer containing 40 µM CaCl2 and 2 mg/ml collagenase type II (~300 units/mg) 

for 9 minutes. Ventricles were then removed, minced in digestion buffer with a scissors to 

approximately 1 mm3  pieces, then gently agitated with a 10 ml pipette. Digestion was seized 

with perfusion buffer containing 10 % BCS and 12.5 µM CaCl2. Cells were then sedimented 
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twice in an upright 15 ml falcons for 8 minutes, the supernatant discarded and the pellet re-

suspended in perfusion buffer containing 10 % BCS and 12.5 µM CaCl2.  

 

1.19.2 Treatment of cardiomyocytes with H2O2 

 

Freshly isolated cardiomyocytes were lightly centrifuged (1000 g, 1 min), re-suspended in 

MEM medium, distributed into 6 well plates and left for 1 hour to settle and stabilize. Cells 

were then treated for 10 minutes with H2O2 (100 µM, or as indicated), the thiol selective 

oxidant diamide (500 µM) as a positive control for disulfide dimer formation or left untreated 

as controls. In cardiomyocytes treated with 0, 10 and 100 µM H2O2 there was no clear dose-

response in disulfide PKARIα formation, the extent of dimer formation varied substantia l ly 

within conditions and no band was detected at the monomeric weight of the protein (Figure 

S6A). Similar results were seen in an additional experiment in which cardiomyocytes were 

treated with 100 µM H2O2 and diamide (Figure S6B). This rendered correct quantification of 

disulfide PKARIα formation impossible as it could not be expressed as a percentage of the total 

protein. For these reasons additional experiments were carried out in whole-heart models as 

these reliably showed changes in both the monomeric and dimeric form of the kinase.  

 

1.20 Immunofluorescence 

 

Following isolation, cardiomyocytes were settled on laminin (2 mg/ml) coated glass coverslips 

(Ø 18 mm) in isolation buffer for 30 minutes at room temperature. Cells were then fixed with 

paraformaldehyde (4 %) in Ca2+ and Mg2+ free PBS for 5 minutes. Following this cells were 

washed twice with PBS prior to permeabilisation with 0.2 % Triton X-100 in PBS containing 

10 % BCS. Primary antibodies were then added and cells incubated over night at 4 °C. Cells 

were subsequently washed 3 times with PBS containing BCS and incubated with secondary 

antibody in the dark for 90 minutes at room temperature. Cells were then washed 3 times with 

PBS, embedded in mounting medium and set overnight for imaging the following day.  
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1.20.1 Confocal microscopy 

 

A LSM 710 confocal laser scanning microscope (Carl Zeiss, Jena, Germany) with a 63x 1.4 

NA oil objective was used to image fluorescent secondary antibodies. Transmitted light mode 

was used to ascertain cell viability prior to imaging. Data was recorded using the 

manufacturer’s software (ZEN 2009). Secondary antibodies were excited at 2 % laser power, 

AlexaFluor 514 and AlexaFluor 633 were excited at 514 nm and 613 nm and their emissions 

detected between 520 – 620 nm and 640 – 740 nm respectively. Imaging pixel size was 80 nm 

x 80 nm.   

 

 

 

Figure 2.12. Representative confocal images of PKARIα co-stains of RyR2 and Caveolin 3. Co-
staining freshly isolated mouse cardiomyocytes with immunofluorescent indicators of major structural 
and Ca2+ handling proteins. (A) Representative image of cardiomyocytes stained with PKARIα and 
RyR2 (B) Representative image of cardiomyocytes stained for PKARIα and the junctional protein 
Caveolin 3 (Cav3).  

 

In the initial work showing that perfusion of rat hearts with H2O2 led to the translocation of 

disulfide bound PKARIα to myofilament and nuclear fractions this result was further supported 

by immunofluorescent data [32]. Using immunofluorescence, Brennan et al. demonstrated that 

H2O2 treated cultured adult rat ventricular cardiomyocytes exhibited greater nuclear and 

myofibrillar localisation [32]. In an attempt to identify potential interaction partners of disulfide 

bound PKARIα after H2O2 treatment a number of immunofluorescent co-stains were made in 

freshly isolated mouse ventricular cardiomyocytes with PKARIα and other major structural 

and Ca2+ handling proteins. Immunofluorescent imaging of these cells however revealed a 

highly variable staining signal for the PKARIα antibody. For example in Figure 2.12A the 

PKARIα stain exhibits a more striated patterns while in Figure 2.2B the PKARIα is diffuse 

throughout the cell. Immunofluorescent PKARIα were repeated a number of times and failed 
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to show a consistent signal. Therefore, immunofluorescent co-localisation experiments in 

cardiomyocytes could not be made with confidence. In retrospect, culturing of mouse 

cardiomyocytes overnight prior to H2O2 treatments should have been employed as this would 

have allowed the redox-state of the cells to stabilize and likely would have produced a more 

consistent fluorescent signal.   

 

1.21 Molecular biology 

1.21.1 Tissue homogenisation 

 

Tissues were homogenized on ice with a Polytron grinder to 10% (w/v) samples in 

homogenisation buffer. An aliquot was re-suspended in an equal volume of non-reducing SDS 

sample buffer (SB) containing maleimide. Samples were then boiled (95 °C, 5 min), 

centrifuged (25,000 rcf, 5 min) and labelled “non-reduced”. Aliquots were then removed and 

5% (v/v) β-mercaptoethanol added to yield a reduced sample. 

 

1.21.2 Cardiomyocyte homogenisation 

 

All homogenisation was undertaken at 4 °C. Cells were centrifuged (1,000 g, 1 min), re-

suspended in cell-homogenisation buffer and vortexed. Cells were then centrifuged (2,000 g, 

10 minutes) the supernatant removed and snap-frozen in liquid nitrogen. Protein concentrations 

were assessed using Pierce BCA Protein Assay Kit according to the manufacturer’s 

instructions.   

 

1.21.3 Fractionation 

 

Cardiac homogenate (200 µl) was centrifuged at 4 °C (5 min, 25,000 rcf) and the resultant 

supernatant added to 200 µl of SB (soluble fraction). The pellet was re-suspended in 200 µl 

homogenisation buffer containing 1% Triton X-100 and centrifuged (5 min, 25,000 rcf). The 

resultant supernatant was added to 200 µl of SB (insoluble fraction) and the pellet re-suspended 

in 200 µl of sample buffer (pellet). Therefore, yielding 3 separate fractions. Markers of the 
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cytosol (GAPDH), membrane (α1NaKATPase) and myofilaments (cTnI) revealed these 

proteins to be abundant in the soluble, insoluble and pellet fractions respectively (Figure 2.13).    

 

 

 

Figure 2.13. Immunoblot of subcellular markers following fractionation of cardiac homogenates. 
Cardiac homogenates were centrifuged in the absence and presence of 1 % Triton X-100 yielding a 
soluble, insoluble and pellet fraction. Immunoblots of GAPDH, α1NaKATPase and cTnI identified 
these fractions as primarily cytosolic, membrane and myofilament rich fractions respectively (n = 2). 
 

1.21.4 Western blotting  

 

10 µl of tissue homogenates as prepared in 2.6.1 or 40 ug of cardiomyocyte protein as 

determined in 2.6.2 in SB were loaded per well. SDS-PAGE and semi dry transfer protocols 

were run with BioRad Protean and Trans-Blot Turbo systems using the manufacturer’s pre-

cast gels, PVDF membranes, running and transfer buffers according to the manufacturer’s 

instruction. Membranes were blocked, and antibodies incubated in, PBS-Tween-20 containing 

5 % (wt/vol) fat free milk (Premier International Foods, UK). Membranes were incubated in 

primary antibodies for 2 hours at room temperature or overnight at 4 °C and HRP-conjugated 

secondary antibodies for 1 hour at room temperature. Incubations were separated by 3 15 

minute PBS-Tween-20 washes. Blots were developed on autoradiographic film (GE 

Healthcare, UK) using chemiluminescence (ECL, Thermo Scientific, Illinois, US) in a film 

developer (Fuji, JPN). Densitometry was conducted with Image Studio Lite. All immunob lo ts 

showing dimeric and monomeric PKARIα were run from non-reduced samples. A table of all 

antibodies used in this thesis can be found in Appendix 2.  SuperSignal West Femto Maximum 

Sensitivity Substrate (Thermo Scientific, Illinois, US) was used as chemiluminescence for 

immunoblots of DRP1 and S637 as normal ECL failed to produce signal on immunoblots.  
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1.21.5 Coomassie Brilliant Blue staining 

 

Following exposure of membranes on autoradiographic film, membranes were rinsed in de-

ionised water and protein loading stained using Coomassie Brilliant Blue. Membranes were 

gently shaken in the stain for 10 minutes and de-stained for approximately 1 hour until a clear 

separation of background and stain was visible. Staining was used to confirm that both protein 

transfer from gel to blot and protein loading were uniform.    

 

1.21.6 DRP1 and pDRP1-S637 antibody selection  

 

Prior to assessing changes in DRP1 localisation or phosphorylation is was necessary to find 

antibodies that produced a clear reliable signal. The chosen antibodies had been used in 

published work and were therefore tested (Table2).  

 

Table 2. Antibodies tested for DRP1 and pDRP1-S637. Table displays the antibodies that were 
tested, their product numbers, company from which they were ordered, species in which they were 
raised, dilutions used and incubation times. All antibodies were incubated in 5 % milk in PBS-T. 

 

Name Code Company Species Concentration Incubation 

DRP1 [154] 8570 Cell Signalling Rabbit 1:1000 Overnight, 4 °C 

DRP1 [155] 32898 Santa Cruz Rabbit 1:1000 Overnight, 4 °C 

pS637 [55] 6319 Cell Signalling Rabbit 1:1000 Overnight, 4 °C 

pS637 [55] 4867 Cell Signalling Rabbit 1:1000 Overnight, 4 °C 

 

Antibodies were tested on immunoblots of cardiac homogenates from mice IP injected with 

isoprenaline as a positive control for pDRP1-S637. Homogenates were centrifuged to yield 

soluble and insoluble fractions. Phosphorylation of DRP1-S637 was detected at its appropriate 

molecular weight (82kDa) using Cell Signalling  DRP1-S637 antibody #4867 and total DRP1 

was clearest with Cell signalling antibody #8570 (Figure 2.14). These antibodies were therefore 

used in all further experiments.  
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Figure 2.14. Selection of appropriate antibodies for DRP1 and pS637. Immunoblot of DRP1 and 
S637 in soluble and insoluble heart fractions using commercially available antibodies following 
intraperitoneal injection of isoprenaline (1mg/kg). (Top) Left, Cell Signalling antibody number 8570, 
right Santa Cruz antibody number 32898. (Bottom) Left, Cell Signalling antibody number 6319, right 
Cell Signalling antibody number 4867 (n = 1).   
 

 

1.21.7 Polymerase chain reaction  

 

DNA was isolated from mice ear clippings using the Qiagen DNAeasy tissue kit according to 

the manufacturer’s instructions.  The PCR reaction for genotyping of PKARIα C17S KI was 

developed by Tactonic Artemis. A DNA-free master mix was made and 36 µl per DNA sample 

aliquoted into PCR tube racks on ice. DNA (4 µl) was then added to each aliquot of master mix 

and the samples placed in a thermal cycler (Eppendorf) upon cessation of the cycle samples 

were held at 4 °C.  DNA electrophoresis was conducted on a 2 % agarose gel in tris-acetate 

ethylenediaminetetraacetic (TAE) buffer containing 0.01 % gelRed Nucleic Acid Gel Stain 

(Biotium) for DNA visualisation. The first lane was loaded with 5 µl of the 100 bp DNA step 

ladder (Promega), and 15 µl of PCR product were loaded in adjacent lanes. Samples run to the 

end of the gel and gentoypes assessed by visualising DNA fragments under UV light.   
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1.22 Protein crosslinking 

Protein-protein interactions can be investigated using crosslinking compounds. These agents 

stabilise interactions that may be otherwise weak or transient making their identification more 

readily detectable. If H2O2 brought PKARIα, DRP-1 or D-AKAP into proximity with other 

proteins this would be evident by an increase in labelling in crosslinked samples 

immunoblotted for these proteins.  

 

First a screen of the amine-amine crosslinking compounds bis-sulfosuccinimidyl-subera te 

(BS3), disuccinimidyl glutarate (DSG) and ethylene glycol bis-succinimidyl succinate (EGS) 

containing spacer arms lengths of 11.4 Å, 7.7 Å and 16.1 Å respectively were used to identify 

an effective agent. Hearts were homogenized in liquid nitrogen using a mortar and pestle and 

made to 10 % (w/v) homogenates in PBS lysis buffer containing 100 mM maleimide. 

Homogenates were then centrifuged at 4 °C (25,000 rcf, 5 min), the supernatant removed and 

rotated at room temperature (30 min) in 2 mM BS3, EGS or DSG.  The reaction was terminated 

by incubation with 100 mM Tris-HCL pH 7.4 (15 min) and samples re-suspended in an equal 

volume of SB containing 5 % (v/v) β-mercaptoethanol (Figure 2.15).   

 

 

Figure 2.15. BS3 and not DSG or EGS effectively crosslinks PKARIα. Immunoblot of PKARIα 
from mouse hearts perfused with H2O2 (100 µM) for 5 minutes and the resultant homogenates 
crosslinked with bis-sulfosuccinimidyl-suberate (BS3), disuccinimidyl glutarate (DSG) or ethylene 
glycol bis-succinimidyl succinate (EGS) for 30 minutes. K-HB with Na-pyruvate. 

 

https://en.wikipedia.org/wiki/%C3%85
https://en.wikipedia.org/wiki/%C3%85
https://en.wikipedia.org/wiki/%C3%85
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Incubation of cardiac homogenates with 3 different crosslinking compounds showed that BS3 

and not DSG or EGS successfully bound PKARIα to other proteins as evidenced by labelling 

above the dimeric weight of the protein (Figure 2.15). BS3 was therefore used in all succeeding 

crosslinking experiments. Hearts treated with H2O2 and subsequently crosslinked with BS3 

were then probed for DRP1 and D-AKAP1. If H2O2 increased the association of either protein 

with PKARIα an increase in labelling of immunoblots for DRP1 or D-AKAP1 above their 

molecular weight would be anticipated in treated hearts and absent in controls. 

 

 

Figure 2.16. No difference in DRP1 or D-AKAP1 labelling in cross-linked homogenates from 
hearts perfused with H2O2. Mouse hearts were perfused with H2O2 (100 µM) for 5 minutes and the 
resultant homogenates cross-linked with BS3 in the presence of maleimide for 30 minutes. Left, 
immunoblot of DRP1. Right, immunoblot of D-AKAP1. K-HB with Na-pyruvate. 

 

No difference in labelling of crosslinked samples from H2O2 perfused hearts were seen in 

immunoblots of DRP1 or D-AKAP1 (Figure 2.16), indicating that the treatment did not 

increase their association with other proteins. H2O2 may result in subtle changes in protein 

association not readily detectable by crosslinking alone. Therefore, to enrich the concentration 

of bound PKARIα after crosslinking we used cAMP affinity chromatography.  
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1.23 Affinity pull down using cAMP agarose 

 

Purification of PKA using cAMP gels has previously been employed to co-capture the 

holoenzyme with both its AKAPs and associated substrates [156-159]. 2-(6-

aminohexylamino)-adenosine- 3', 5'- cyclic monophosphate (2-AHA-cAMP), a commercia l ly 

available conjugate of cAMP immobilised on agarose beads by a flexible aminohe xylamino 

spacer arm at position 2’ of the adenine ring (Biolog, A 054-06), was used to purify PKARIα.  

Hearts were homogenized in liquid nitrogen using a mortar and pestle and made to 10 % (w/v) 

homogenates in PBS lysis buffer. Homogenates were vortexed, an aliquot added to sample 

buffer and designated “Input”. To reduce non-specific 2-AHA-cAMP beads were washed in 

PBS lysis buffer containing 0.5 % bovine serum albumin (BSA). Homogenates were then 

incubated with 10 % (v/v) 2-AHA-cAMP slurry and rotated at 4 °C for 2 hours. Homogenates 

were then centrifuged (1,500 g, 2 min), the flow-through added to an equal volume of SB and 

designated “unbound”. Beads were washed 4 times with PBS lysis buffer and once prior to 

elution with triton-free PBS lysis buffer. Beads were eluted with SB and designated “capture”. 

Equal protein concentrations were added to all lanes.  

 

Several steps were first taken to optimize the capture of PKARIα. Firstly, 10mM cAMP or 

SDS-sample buffer was used to assess which solution more effectively eluted PKARIα from 

2-AHA-cAMP (Figure 2.17A). Secondly, 500 µg or 1000 µg of homogenate was used to assess 

which concentration was necessary to effectively capture PKARIα (Figure 2.7B). Finally, 

homogenates were also incubated with varying concentrations of 2-AHA-cAMP to assess 

which concentration optimally captured PKARIα (Figure 2.7C).  
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Figure 2.17. Development of 2-AHA-cAMP affinity purification of PKA in cardiac homogenates. 
Immunoblots of affinity purified PKARIα (A) Cardiac homogenates were incubated with 2-AHA-
cAMP agarose and eluted with SDS sample buffer or cAMP (10 mM) (B) 0.5 and 1mg of cardiac 
homogenate was incubated with 2-AHA-cAMP (C) Cardiac homogenates were incubated in 5, 10 and 
20% 2-AHA-cAMP. Protein concentration between Input, Capture and Unbound equal in all above 
experiments.   
 

 

These experiments showed that SB was more effective at eluting PKARIα than a molar excess 

of cAMP (Figure 2.7A). Additionally, 500 µg of homogenate appeared sufficient to capture 

PKARIα (Figure 2.7B). Finally, incubation of samples with 10 % (v/v) 2-AHA-cAMP 

appeared to be the optimal concentration of ligand to bind the kinase (Figure 2.7C). These 

parameters were therefore used in subsequent experiments involving hearts perfused with 

H2O2. 
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Figure 2.18. 2-AHA-cAMP effectively captures PKARIα but not PKA-cat or DRP1. Immunoblots 
of PKARIα, PKA-cat and DRP1 from PKA purified from hearts treated for 5 minutes with H2O2 using 
2-AHA-cAMP agarose. Protein concentration equal between all lanes.  K-HB with Na-pyruvate.   
 

 

PKARIα was effectively captured using 2-AHA-cAMP but neither PKA-cat nor DRP1 were 

co-captured (Figure 2.18). This is expected as cAMP, although necessarily conjugated to 

agarose to purify the protein, also catalyses the release of the holoenyme’s catalytic subunits. 

Though this reduces the probability of co-capturing PKA substrates, this potential pitfall was 

anticipated to be mitigated in succeeding experiments as the samples were first crosslinked 

stabilizing associations.   

 

1.23.1 Affinity purification of crosslinked proteins  

 

 Finally, cardiac homogenates from hearts perfused with H2O2 were first crosslinked and then 

captured with 2-AHA-cAMP in order to first stabilize interactions and then enrich the capture. 

This showed that H2O2 reduced the amount of PKA captured (Figure 2.19).  For experiments 

involving affinity pull down an aliquot of cross-linked homogenate prior to re-suspension in 

SB was used. Silver staining was completed using the PlusOne Silver Staining Kit (GE 

Healthcare Life Sciences) as per the manufacturer’s guidelines.  
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Figure 2.19. Cross-linking and subsequent affinity purification of PKA using 2-AHA-cAMP 
captures PKA in control but not H2O2 perfused hearts. Silver stain of tris-glycine gel loaded with 
H2O2 perfused heart homogenate cross-linked prior to 2-AHA-cAMP purification. All lanes loaded with 
equal concentrations of protein. K-HB with Na-pyruvate. 

 

 

To assess if PKARIα interacted with DRP1 or D-AKAP1 and whether this was influenced by 

the presence of disulfide bonds between PKARIα subunits mouse hearts were perfused with 

H2O2 and subject to several methods routinely used to capture protein interactions. Despite the 

use of crosslinking compounds, cAMP-agarose and both in tandem no co-purification of 

PKARIα and DRP1 or D-AKAP1 was observed.  

 

PKARIα was successfully crosslinked as evidenced by the formation of higher molecular 

weight complexes in the presence of BSE (Figure 2.15). If H2O2 influenced the interaction 

between PKARIα, DRP1 and D-AKAP1 greater labelling of these proteins should be observed 

in immunoblots. Although numerous attempts were made, no clear difference in labelling of 

these proteins were seen (Figure 2.16). As an alternative approach, immobilisation of PKARIα 

using cAMP-agarose was used. This approach has been employed numerous times in the 
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literature to successfully co-capture PKA with both its AKAPs and associated substrates [156-

159]. Several attempts were first utilised to optimize PKARIα capture which included using 

different elutants and varying the concentration of homogenate and 2-AHA cAMP agarose 

(Figure 2.17). In each case PKARIα was successfully captured, however neither the catalytic 

subunit of PKA nor DRP1 were co-purified and no apparent impact of H2O2 on these potential 

interactions was seen (Figure 2.18). Nucleotide binding to PKA initiates the release of its 

catalytic subunits, therefore it is perhaps not surprising that PKA-cat and DRP1 were not co-

purified. Probing of captured samples for D-AKAP1 were unfortunately unsuccessful. In a final 

attempt to identify a DRP1-PKARIα interaction homogenates from Langendorff H2O2  

perfused hearts were first covalently cross linked and PKA then captured with cAMP agarose 

(Figure 2.19). This was anticipated to first stabilize PKARIα interactions and then enrich them, 

permitting their visual identification as bands on a silver stained Tris-glycine gel that could be 

subsequently cut out, digested and identified with mass spectrometry. Unfortunately, this 

protocol failed to capture any clear difference in banding pattern between H2O2 treated and 

untreated hearts and was therefore not further pursued (Figure 2.19). Finally, in later 

experiments the addition of Na-pyruvate was identified as potently attenuating H2O2 induced 

protein oxidation (detailed in section 4.6). As Na-pyruvate was included in the K-HB of all the 

above cross-linking experiments this factor likely contributed to the failure to identify changes 

in PKARIα association with DRP1 and D-AKAP1 in response to H2O2.   

 

1.24 Reagents 

Unless otherwise stated all reagents used in the following experiments were purchased from 

Sigma-Aldrich (St. Louis, MO). Buffer compositions are found in Appendix 2.  
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1.25 Statistics 

Data are presented as mean ± standard error of the mean (SEM). Sample numbers are denoted 

by “n”. Unpaired Student’s t-test, one-way Analysis of Variance (one-way ANOVA) with 

Tukey post hoc test and repeated measures two-way ANOVA with multiple comparisons 

between groups were used where appropriate and are indicated in figure legends. Data were 

analysed using GraphPad Prism 6 (GraphPad Software, Inc). P-values <0.05 were considered 

significant.
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Results  

1.26 Fraction of cardiac homogenates 

To assess compartment specific changes in the localisation of DRP1 to mitochondria it was 

necessary to separate soluble from insoluble proteins. This was achieved through centrifuga tion 

in the absence of detergent. Antibodies to the mitochondrial markers D-AKAP1 and the 

mitochondrial pyruvate carrier 2 (BRP44) were then used to determine if this provided efficient 

separation of mitochondria from soluble proteins.   

 

 

 

Figure 3.1. Centrifugation in the absence of detergent efficiently separates mitochondrial from 
soluble proteins. (Left) Immunoblot of PKARIα, DAKAP1, DRP1, GAPDH and BRP44 in samples 
centrifuged in the absence of detergent. D-AKAP1 and BRP44 show exclusive localisation to the 
insoluble fraction. GAPDH and PKARIα are entirely soluble while the majority of DRP1 is also soluble 
(Right) Coomassie stain of PVDF membrane showing distinct protein separation between soluble and 
insoluble fractions (n = 2). K-HB without Na-pyruvate. 

 

 

Both D-AKAP1 and BRP44 show exclusive localisation to the insoluble pellet while DRP1, 

PKARIα and GAPDH are restricted to the soluble fraction of cardiac homogenates. This 

suggests fractionation in the absence of detergent is an efficient means of separating 

mitochondrial from soluble proteins. Therefore providing a rapid assay for the assessment of 

whether proteins of interest, namely PKARIα and DRP1, alter their localisation with 

mitochondria following interventions modulating cAMP and oxidant concentrations.   
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1.27 Langendorff perfusion of hearts with H2O2 

Mouse hearts were Langendorff perfused with 100 µM H2O2 for 5 minutes. Centrifugation of 

heart homogenate in the absence of detergent yielded soluble and insoluble fractions. 

Immunobloting in the absence of reducing agent was used to assses alteration in disulfide 

PKARIα in response to H2O2   

 

 

 

Figure 3.2. H2O2 induces a disulfide dimer of PKARIα which translocates to the insoluble fraction 
of cardiac homogenates while PKARII is unchanged. Mouse hearts were perfused for 5 minutes with 
100 µM H2O2 and immediately snap frozen in liquid nitrogen. Cardiac homogenates were centrifuged 
(25,000 rcf, 5 min) in the absence of detergent generating soluble and insoluble fractions.  (A) 
Immunoblot of PKARIα in non-reducing sample buffer from uncentrifuged homogenate (B) 
Immunoblot of soluble (left) and insoluble (right) PKARIα and PKARII, GAPDH and NaKATPase 
were used as loading controls for soluble and insoluble immunoblots respectively. Data analysed using 
students t-test (n=3±SEM, *p<0.05). K-HB without Na-pyruvate. 
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Perfusion with H2O2 increased the amount of disulfide PKARIα from 27 % to 77%  (p<0.05) 

(Figure 3.2A). Disulfide, but not monomeric PKARIα, was significantly (p<0.05) increased in 

the insoluble fraction of hearts in response to H2O2 (Figure 3.2B). No change in localisation of 

PKARII was observed in response to H2O2 (Figure 3.2B). 

 

1.28 24 hours starvation induced changes in cardiac PKARIα and DRP1 

Starvation was used to trigger an increase in cAMP and ROS as well as induce mitochondria l 

recruitment of DRP1. Animal chow was removed from starved animals for 24 hours after which 

blood glucose was measured and the animals sacrificed.  

 

 
 

Figure 3.3. Starvation of mice for 24 hours results in PKARIα dimer formation but does not 
change kinase localisation or phosphorylation of DRP1 S637. Food was removed from cages at 9 
am, 24 hours later blood glucose levels were measured and animals sacrificed. (A) Blood glucose levels 
following 24 hours starvation. (B) Immunoblot of PKARIα (C) Immunoblot of PKARIα and DRP in 
soluble and insoluble fractions of cardiac homogenates. (D) Left, immunoblot of DRP1 and S637 with 
an isoprenaline injected mouse used as positive control (+ve) for S637 phosphorylation. Right, 
densitometry quantification of S637/DRP1 (n=5, ±SEM,*p<0.05). 

 
 

24 hour starvation reduced blood glucose levels by 42 % from 10.4 to 6.3 mmol/L (p<0.05) 

and led to a 12.7 % increase in percent disulfide PKARIα (p<0.05), (Figure 3.3A and 3.3B). 

No difference in pDRP1-S637 or PKARIα and DRP1 localisation was observed in response to 
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24 hours starvation (Figure 3.3C and 3.3D). Fat, muscle and liver samples were also excised 

from starved mice and immunoblotted. This revealed that fat and muscle samples showed 

highly variable disulfide PKRIα levels while those observed in liver were relatively stable (data 

not shown). For this reason liver tissue, as opposed to fat and muscle were also further 

examined.  
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1.28.1 24 hours starvation induced changes in liver PKARIα and DRP1 

 

 

Figure 3.4. Starvation induced liver PKARIα dimerization and translocation, DRP1 forms higher 
molecular weight complexes and its soluble abundance is increased. (A) Immunoblot of PKARIα. 
(B) Immunoblot of PKARIα and DRP in soluble and insoluble fractions of liver homogenates. (C)  
Immunoblot of DRP1 and S637 with an isoprenaline injected mouse used as positive control (+ve) for 
S637 phosphorylation. (D) Immunoblot of DRP1 in unfractionated and soluble fractions at high 
exposure (n=5, ±SEM). 
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Starvation increased the percent disulfide PKARIα in the liver by 16 % (p<0.05) (Figure 3.4A). 

A significant (p<0.05) increase in insoluble PKARIα and soluble DRP1 was also observed 

following starvation (Figure 3.4B). No signal for pDRP1-S637 was seen in liver homogenates 

(Figure 3.4C) and there can be confidence in these results as the positive control sample also 

generated a robust pDRP1 signal at the anticipated weight of this protein. The samples were 

re-run several times and additional positive controls analysed, however no discernible signal 

at the correct weight could be observed and, therefore, assessment of pDRP1-S637 in liver 

samples was not pursued further. Long exposures of DRP1 immunoblots revealed higher 

molecular weight complexes in unfractionated and insoluble fractions after starvation (Figure 

3.4D).  As it is unclear at which time point changes in DRP1 modulation and ROS production 

in response to starvation are initiated a shorter duration of 12 hours starvation was also 

investigated.  

 

1.28.2 12 hours starvation induced changes in PKARIα and DRP1 

 

 

Figure 3.5. Starvation of mice for 12 hours results in PKARIα dimer formation but not change in 
DRP1-S637 phosphorylation in cardiac tissue. (A) Left, immunoblot of PKARIα. Right, 
densitometry quantification of disulfide to monomeric PKARIα ratio (B) Immunoblot of DRP and S637 
with an isoprenaline injected mouse used as positive control (+ve) for S637 phosphorylation. Right, 
densitometry quantification of S637/DRP1. (n=5, ±SEM, *p<0.05).  
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12 hours starvation increased percent disulfide PKARIα in the heart by 19 % (p<0.05) (Figure 

3.5A), but did not alter the levels of pDRP1-S637 (Figure 3.5B). Liver samples were not 

assessed due to failure in previous experiments to observe any pDRP1-S637 signal (Figure 

3.4C).  

 

1.29 24 hours starvation of PKARIα C17S KI mice  

Starvation of mice for 24 hours increased disulfide PKARIα formation and its presence in the 

insoluble fraction of liver homogenates. Although the pDRP-S637 signal was not detected in 

liver samples, soluble DRP1 was seen to increase and higher molecular weight complexes form 

in response to starvation. Both of these traits are consistent with DRP1 phosphorylation by 

PKA. To assess whether these factors were modulated by disulfide PKARIα, 24 hour starvation 

experiments were repeated using the “redox dead” PKARIα C17S KI mouse.  

 

 

 

Figure 3.6. PKARIα C17S KI mice show no difference in blood glucose response to 24 hour 

starvation compared to WT littermates but show basally elevated PKARIα expression in hearts. 
Food was removed from cages at 9am, 24 hours later blood glucose levels were measured and animals 
sacrificed (A) Blood glucose measurements following starvation. (B) Immunoblot of PKARIα and 
GAPDH. (C) Immunoblot of reduced PKARIα and GAPDH. KI: PKARIα C17S, WT: wildtype (n=3, 
±SEM, *p<0.05).  
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24 hours starvation reduced blood glucose levels by 39 % (p<0.05), with no difference in this 

glycaemic response between WT or KI mice (Figure 3.6A). The proportion of disulfide 

PKARIα increased from 43 % to 72 % (p<0.05) in WT animals in response to starvation, which 

was not observed in KIs (Figure 3.6B). Basal PKARIα expression was elevated 1.2 fold 

(p<0.05) in KIs compared to WTs (Figure 3.6C).  

 

1.29.1 Starvation induced changes in DRP1 in PKARIα C17S KI mice  

 

 

Figure 3.7. PKARIα C17S KI mice show higher levels of S637 phosphorylation after 24 hours 
starvation which does not change DRP1 localisation in hearts. Food was removed from mice for 24 
hours after which they were sacrificed. (A) Immunoblot of DRP1 and S637. (B) Immunoblot of soluble 
DRP1 and GAPDH. (C) Immunoblot of insoluble DRP1 and NaKaATPase. KI: PKARIα C17S, WT: 
wildtype (n=3). 

 

 

DRP1-S637 showed a trend toward increased basal phosphorylation in hearts from KI animals 

(Figure 3.7A). Following starvation DRP1-S637 phosphorylation was significantly increased 

in KIs but unchanged in WT animals (p<0.05) (Figure 3.7A). A trend toward elevated soluble 

DRP1 was seen basally in KIs and after starvation in both WT and KI animals (Figure 3.7B). 

No significant change in insoluble DRP1 was observed between either genotype in response to 

starvation (Figure 3.7C). To assess if changes in phosphorylation after starvation in KIs was 

DRP1 specific, total PKA substrate phosphorylation was also assessed.   
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1.29.2 “Total” PKA-substrate phosphorylation in PKARIα C17S KI mice 

 

Figure 3.8. PKARIα C17S KI mice show higher levels of basal PKA substrate phosphorylation 
and no change in PKA catalytic subunit expression in heart. Food was removed from mice for 24 
hours after which they were sacrificed. Left, immunoblot of PKA substrate phosphorylation 
(pRRXS*/T*), PKAcat and GAPDH in WT and KI animals before and after starvation. Right, 
densitometry quantification of PKA substrate phosphorylation. KI: PKARIα C17S, WT: wildtype (n=3, 
±SEM, *p<0.05).  

 

 

24 hours starvation induced a significant (p<0.05) increase in PKA substrate phosphoryla t ion 

in WT but not KI mice, although the latter displayed significantly (p<0.05) elevated basal PKA-

substrate phosphorylation (Figure 3.8). No change in PKA-cat expression was observed 

between genotypes (Figure 3.8).   
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1.29.3 Starvation induced changes in mitochondrial and autophagy associated proteins  

 

 

Figure 3.9. 24 hours starvation results in elevated levels of MFN 2 but not MFN1 and PKARIα 
C17S KI show high basal levels of LC3-II in hearts. Food was removed from mice for 24 hours after 
which they were sacrificed. (A) Immunoblots of MFN1, MFN2, LC3 showing LC3-I and LC3-II, and 
GAPDH. (B) Densitometry quantification of MFN1/GAPDH. (C) Densitometry quantification of 
MFN2/GAPDH. (C) Densitometry quantification of LC3-II/GAPDH. KI: PKARIα C17S, WT: 
wildtype (n=3, ±SEM, *p<0.05).  
 

 

MFN2 but not MFN1 expression was significantly (p<0.05) increased in both genotypes in 

response to 24 hours starvation (Figure 3.9B and 3.9C). KI mice showed a trend toward basally 

increased LC3-II levels and no significant changes were observed following starvation (Figure 

3.9D).  

 

1.30 Initial concomitant perfusion with H2O2 and isoprenaline 

 

The purpose of these experiments was to answer the following questions. 1) Is increased 

disulfide PKARIα associated with a concomitant increase in pPKA-substrate? 2) Do elevated 

levels of cAMP affect PKARIα disulfide formation? 3) What is the impact on pPKA-substrate 

phosphorylation when both disulfide PKARIα and cAMP are elevated in parallel?  
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Figure 3.10. Perfusion of hearts with 100 µM H2O2 failed to induce disulfide PKARIα. Hearts were 
stabilized for 20 minutes prior to perfusion with 100 µM H2O2, 10 nM isoprenaline, or both agonists 
simultaneously for 5 minutes, control hearts were time matched and perfused exclusively with K-HB. 
(A) Immunoblot of PKARIα (B) Immunoblot of PKA substrate phosphorylation and GAPDH. (C) 

Densitometry of PKA substrate phosphorylation/GAPDH. Analysis, one-way ANOVA with Tukey post 
hoc test (n=5, ±SEM). K-HB with Na-pyruvate. 
 
 

H2O2, isoprenaline or both these agents administered concomitantly had no impact on PKARIα 

disulfide formation (3.10A). Isoprenaline increased pPKA-substrate which was not affected by 

H2O2 (Figure 3.10C). Perfusion with H2O2 is routinely used to increase disulfide PKARIα 

therefore this result was unexpected and additional experiments were carried out to try and 

understand why oxidation of the kinase was not observed. To exclude contaminated H2O2 as 

the problem further experiments were independently undertaken using newly ordered, 

previously unopened H2O2, additionally studies with higher oxidant concentrations were 

performed. PKGIα was immunoblotted as it readily forms a disulfide dimer in the presence of 

H2O2 and could therefore serve as a positive control for protein oxidation [50].  
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1.30.1 Pefusion with unopened and increasing doses of H2O2   

 

Figure 3.11. Perfusion of hearts with unopened or higher doses of H2O2 fail to induce PKARIα 
and PKGα disulfide dimerization. Hearts were stabilized for 20 minutes prior to perfusion with H2O2, 
control hearts were time matched and perfused exclusively with K-HB. (A) Immunoblot of PKARIα 
(top) and PKGIα (bottom) in hearts perfused with 100 µM H2O2 for 10 minutes, n=5 (B) Immunoblot 
of PKARIα (top) and PKGIα (bottom) in hearts perfused (10 min) with 100 µM and 500 µM H2O2 
(n=2). K-HB with Na-pyruvate. 

 

 

Perfusion of hearts with newly ordered, previously unused H2O2 failed to induce any change 

in PKARIα or PKGIα disulfide formation (Figure 3.11A) indicating that the results in Figure 

3.10A were not a result of a technical issue with the PKARIα antibody or because of degraded 

H2O2. Perfusion of hearts with 500 µM H2O2 did not affect PKARIα but induced a significant 

increase in PKGIα disulfide formation (Figure 3.11B). However, typically 50 µM H2O2 is 

sufficient to induce disulfides in PKARIα or PKGIα indicating that other factors were 

mitigating the peroxide’s effectiveness. Following discussions with laboratory members 

conducting related experiments, it was determined that Na-pyruvate was a constituent of the 

K-HB I was using, but was often not included. Although Na-pyruvate stabilizes contractile 

function (Figure 2.3), it may have been responsible for the attenuated oxidation PKARIα in 

these experiments. Therefore, the perfusion experiments were repeated, exposing the hearts to 

H2O2 in the absence or presence of Na-pyruvate to control for this variable.   
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1.30.2 Perfusion with H2O2 in the absence of Na-pyruvate 

 

 

Figure 3.12. Na-pyruvate attenuates the oxidation of PKARIα and PKGIα by H2O2. Hearts were 
perfused using K-HB with or without 2 mM Na-pyruvate. Following a 20 minutes stabilisation period 
H2O2 (100 µM) was added to the buffer and hearts perfused for a further 5 minutes. Control hearts were 
time matched hearts perfused using K-HB with or without 2 mM Na-pyruvate. (A) Top, immunoblot 
of PKARIα. Bottom, immunoblot of PKGIα. (B) Top, densitometry quantification of PKARIα dimer 
expressed as a percent of total PKARIα. Bottom, densitometry quantification of PKGIα dimer expressed 
as a percent of total PKGIα. Analysis, one-way ANOVA with Tukey post hoc test (n=3, ±SEM, 
*p<0.05).  

 

Removal of Na-pyruvate from the K-HB led to 1.8 fold and 0.9 fold increase (p<0.05) in 

percent disulfide PKARIα and PKGIα respectively in response to H2O2 (Figure 3.12). No 

change in either kinase was observed when hearts were perfused with H2O2 in the presence of 

Na-pyruvate.  
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1.30.3 Cardiac function in response to H2O2 in the presence and absence of Na-pyruvate 

 

Figure 3.13. Na-pyruvate abolishes H2O2 induced changes in CFR and LVEDP. Hearts were perfused using K-HB with or without 2 mM Na-pyruvate. 
Following a 20 minutes stabilisation period H2O2 (100 µM) was added to the buffer and hearts perfused for a further 5 minutes. Control hearts were time matched 
hearts perfused using K-HB with or without 2 mM Na-pyruvate. (Left) Average coronary flow rate (CFR) values 5 minutes pre and post treatment. (Middle) 
Average left ventricular end diastolic pressure (LVEDP) values 5 minutes pre and post treatment. (Right) Average left ventricular systolic pressure values 5 
minutes pre and post treatment. * p<0.05 difference from Control group (Repeated measures Two way ANOVA, multiple comparison between groups). # 
p<0.05 area under the curve (AUC) difference from Control group during 5 minutes post treatment (One way ANOVA, Tukey post hoc test). Control n=8, H2O2 
n=12, Control + Na-pyruvate n=8, H2O2 + Na-pyruvate n=9, ±SEM. 
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As well as attenuating disulfide PKARIα formation, Na-pyruvate also attenuated H2O2 induced 

changes in cardiac performance (Figure 3.13). Perfusion of hearts with H2O2 increased CFR 

by 49% and LVEDP by 106 % at all time points post treatment (p<0.05) and showed a trend 

toward reducing LVSP by 29 %. These physiological alteration in response to H2O2 were 

entirely attenuated by the presence of Na-pyruvate in the K-HB.  

 

1.31 Concomitant perfusion with H2O2 and isoprenaline in the absence of Na-pyruvate 

Having found that Na-pyruvate efficiently blocks H2O2-induced PKARIα disulfide formation, 

it was not used in all subsequent experiments. Perfusion of mouse hearts with H2O2 alone or in 

combination with isoprenaline were then repeated in the absence of Na-pyruvate.  

 

 
 

Figure 3.14. Concurrent perfusion with H2O2 and isoprenaline does not affect PKARIα 
dimerization or pDRP1-S637 but reduces PKA substrate phosphorylation. Following a 20 minute 
stabilisation period hearts were perfused with 100 µM H2O2, 10 nM isoprenaline, or both substances in 
tandem for 5 minutes. Control hearts were time-matched and perfused with K-HB throughout. (A) 

Immunoblot of PKARIα, PKA substrate phosphorylation (pRRXS*/T*), pS637 and DRP1. (B) Top, 
densitometry quantification of disulfide PKARIα expressed as a percent of total PKARIα. Bottom, 
densitometry quantification of PKA substrate phosphorylation. Analysis, one-way ANOVA with Tukey 
post hoc test, *p<0.05 difference from control, #p<0.05 difference from ISO (n=5, ±SEM).  K-HB 
without Na-pyruvate. 
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Concurrent perfusion with isoprenaline and H2O2 or H2O2 alone produced a similar increase of 

approximately 90 % (p<0.05) in percent disulfide PKARIα compared to controls (Figure 3.14). 

Phosphorylation of PKA-substrate was unaltered by H2O2 and increased 2.9 fold (p<0.05) by 

isoprenaline (Figure 3.14). H2O2 abrogated isoprenaline induced PKA-substrate 

phosphorylation by 41 % (p<0.05). No changes in pDRP1-S637 were observed under any 

conditions.  
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1.31.1 Cardiac function in response to concomitant perfusion with H2O2 and isoprenaline  

 

 
 
Figure 3.15. H2O2 attenuates isoprenaline induced changes in CFR, LVEDP and LVSP. Following a 20 minute stabilisation period hearts were perfused 
with 100 µM H2O2, 10 nM isoprenaline, or both substances in tandem for 5 minutes. Control hearts were time-matched and perfused with K-HB throughout. 
(Left) Average coronary flow rate (CFR) values 5 minutes pre and post treatment. (Middle) Average left ventricular end diastolic pressure (LVEDP) values 5 
minutes pre and post treatment. (Right) Average left ventricular systolic pressure values 5 minutes pre and post treatment. * p<0.05 difference from Control 
group (Repeated measures Two way ANOVA, multiple comparison between groups). # p<0.05 area under the curve (AUC) difference from Control group 
during five minutes post treatment (One way ANOVA, Tukey post hoc test). Control n=8, H2O2 n=12, ISO=7, H2O2 + ISO n=6, ±SEM) K-HB without Na-
pyruvate. 
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Administering isoprenaline for 5 minutes increased CFR by 144 % and LVSP by 74 % 

(p<0.05), both of which were attenuated by concurrent perfusion with H2O2 (Figure 3.15). 

LVEDP was significantly decreased by isoprenaline (p<0.05) and this was also attenuated by 

concurrent perfusion with H2O2. To assess whether disulfide PKARIα was responsible for the 

reduction in pPKA-substrate seen in response to concurrent perfusion with H2O2 and 

isoprenaline the above experiments were repeated with PKARIα C17S KI and WT littermate 

mice. 

 

1.32 Perfusion of PKARIα C17S KI mice with H2O2 and isoprenaline 

 

Figure 3.16. Perfusion of KI or WT mice with H2O2 and isoprenaline. Following a 20 minute 
stabilisation period hearts were perfused with 100 µM H2O2, 10 nM isoprenaline, or both substances in 
tandem for 5 minutes. Control hearts were time-matched and perfused with K-HB throughout. (Left) 

Immunoblot of PKARI α. (Right) Immunoblot of PKARIα run under reducing conditions. KI: PKARIα 
C17S, WT: wildtype (n=3). K-HB without Na-pyruvate. 
 

H2O2 increased the percent disulfide PKARIα in WT hearts, and the concomitant presence of 

isoprenaline did not modulate this (p<0.05). Isoprenaline alone had no impact on disulfide 

formation in WTs. Hearts from KI mice showed no disulfide form of PKARIα, but did show 

an 88 % (p<0.05) increase in PKAIα expression.  
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Figure 3.17. Disulfide PKARIα is not responsible for H2O2 induced reductions in isoprenaline 
sensitivity. Following a 20 minute stabilisation period hearts were perfused with 100 µM H2O2, 10 nM 
isoprenaline, or both substances in tandem for 5 minutes. Control hearts were time-matched and 
perfused with K-HB throughout. (Left) Immunoblot of PKA substrate phosphorylation, pS637, DRP1 
and GAPDH. (Right) Top, densitometry quantification of PKA substrate phosphorylation normalised 
to GAPDH. Bottom, densitometry quantification of pS637 normalised to total DRP1. KI: PKARIα 
C17S, WT: wildtype. * p<0.05 difference from control. # p<0.05 difference from ISO. (n=3, ±SEM). 
K-HB without Na-pyruvate. 

 

Neither WT nor KI animals showed significant alterations in pPKA-substrate in response to 

H2O2. In contrast, isoprenaline increased pPKA-substrate by 98 % and 101 % in hearts from 

WT and KI animals respectively (p<0.05). The presence of H2O2 attenuated isoprenaline-

induced changes in pPKA-substrate to a similar extent in both WT and KI mice. No difference 

in pDRP1-S637 was observed between WT and KI animals or between condition.
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Discussion 

1.33 Brief summary of results  

 

The aim of this thesis was to investigate factors influencing disulfide PKARIα formation and 

the impact of this oxidation event on the phosphorylation of substrates of this kinase. PKARIα 

formed a disulfide-dimer during perfusions with H2O2, which was associated with its 

translocation to the insoluble fraction of cardiac homogenates. 12 or 24 hours starvation of 

mice increased disulfide PKARIα formation, translocation and PKA-substrate 

phosphorylation, as detected by a pan-specific ‘total’ PKA substrate antibody, but not specific 

phosphorylation of DRP1-S637. To assess the potential role of disulfide PKARIα in mediating 

these changes PKARIα-C17S KI and WT mice were also starved for 24 hours. Unexpectedly, 

in heart and liver tissue PKARIα-C17S KI mice showed a basal elevation in PKA-substrate 

phosphorylation and increased PKARIα expression, as well as an increase in DRP1-S637 

phosphorylation following starvation. Langendorff perfusion experiments showed that Na-

pyruvate blocked oxidation events associated with H2O2. Biochemically, this was evidenced 

by Na-pyruvates attenuation of H2O2 induced cysteine oxidation and physiologically as an 

attenuation of H2O2 mediated changes in LVEDP and CFR. Disulfide PKARIα formation in 

response to H2O2 was not impacted by elevating cardiac cAMP with the β-adrenergic agonist 

isoprenaline. However, H2O2 did attenuate isoprenaline- induced elevations in PKA-substrate 

phosphorylation, which physiologically was reflected by a blunted CFR, LVEDP and LVSP 

responsiveness to isoprenaline. To assess whether these changes were dependent on disulfide 

PKARIα the above experiments were repeated using PKARIα-C17S KI and WT mice. Both 

PKARIα-C17S KI and WT mice displayed a similar reduction in PKA-substrate 

phosphorylation during concomitant perfusions with H2O2 and isoprenaline. This indicates that 

reduced isoprenaline sensitivity in the presence of H2O2 is not dependent on disulfide PKARIα. 

Taken together, the above findings indicate that PKARIα activity is modulated by both its 

oxidation to a disulfide dimer or through cAMP binding. However, the interplay between these 

two factors may be more complex than anticipated as evidenced by a failure of cellular models 

to translate to ex vivo and in vivo scenarios.        
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1.34 Subcellular localization of DRP1, PKARIα and D-AKAP1 

 

Fractionation by centrifugation in the absence of detergent showed PKARIα and GAPDH to 

be exclusively soluble, DRP1 to be almost entirely soluble, and as expected while D-AKAP1 

and BRP44 (both mitochondrial markers) were insoluble (Figure 3.1). The presence of D-

AKAP1 and BRP44 in the insoluble but not soluble fraction suggests centrifuga tion 

successfully separated mitochondrial from soluble proteins and thus could be used as a rapid 

assay to study changes in the protein mitochondrial localisation. Basally a high level of 

interaction between PKARIα and DRP1 via D-AKAP1 appears unlikely as neither the kinase 

nor GTPase strongly co-fractionate with the scaffold protein. However, as shown in Figure 

3.2B in the presence of H2O2 PKARIα forms a disulfide dimer which is recruited to the same 

fraction as D-AKAP1. Interestingly, DRP1 is recruited to mitochondrial fractions under 

various conditions including: hypoxia; ischaemic injury; Ca2+ overload; hyperglycemia and 

starvation [65, 67, 68, 93]. Although the recruitment of DRP1 to the mitochondria has 

repeatedly been shown using fluorescently labelled proteins [56, 65, 67, 68, 93], the exact 

mechanisms mediating this remain unclear. A number of DRP1 post-translationa l 

modifications have been identified, as summarised in Figure 1.7. For example, phosphoryla t ion 

of DRP1-S616 by CDK1 positively regulates DRP1 association with mitochondria and is 

important during mitotic cell division [63]. Calcineurin-mediated dephosphorylation of DRP1-

S637 induced by elevated cytosolic Ca2+, following mitochondrial depolarization using the 

mitochondrial uncouplers FCCP and arachidonic acid, is similarly seen to drive DRP1 

translocation to mitochondria [65]. In line with this, Slupe et al. identified a DRP1 calcineur in 

docking motif which promotes mitochondrial remodelling and ischaemic neuronal injury [66]. 

DRP1-S637 phosphorylation by PKA is seen to inhibit DRP1 fission activity by decreasing the 

interaction of its GED domain with its GTP-binding and middle domains this slowing GTP 

hydrolysis [55]. While sumolyation, and ubiquitination promote its fission of mitochondria [53, 

60]. It is due to this wide array of conditions that modulate DRP1 that a number of experimenta l 

approaches were initially studied, as detailed in the Materials and Methods section of Chapter 

2.    
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1.35 H2O2 induces disulfide dimer formation and translocation of PKARIα 

 

Perfusion of Langendorff perfused hearts with H2O2 increased the percentage disulfide 

PKARIα from 27% to 77 % (Figure 3.2A). These findings are in line with previous experiments 

showing that PKARIα forms a disulfide dimer in response to oxidants such as H2O2 or the nitric 

oxide donor nitrocysteine [32, 137]. It was previously established that Cys17 and Cys38 are 

responsible for the pair of interprotein disulfides that can form between the PKARIα regulatory 

subunits. Conformationally, the two RIα subunits lie antiparallel to one another on the D/D 

interface of the holoenzyme directly flanking its interaction with the a-helix of AKAPs (Figure 

1.4). As previously explained in section 1,7 systematic mutation of these residues to alanine 

reduce the kinase’s affinity for D-AKAP2 [38]. This suggests that oxidation of Cys17 and 38 

is a critical mechanism for targeting PKARIα to its scaffold proteins. Adding further credence 

to this model are structural comparisons of membrane and cytosolic PKARIα. Using 

electrospray ionization mass spectrometry, Boeshans et al. reported a higher extent of disulfide 

formation in membrane versus cytosolic localised PKARIα [160]. As PKARIα is primarily 

soluble (Figure 3.1) alteration in its affinity for scaffold AKAP proteins is likely an important 

modification to target its activity. Oxidation of PKARIα to a disulfide dimer led to aggregation 

of the disulfide bound form of the kinase in the insoluble fraction of mouse hearts (Figure 

3.2B). Based on the aforementioned studies, it is probable that this re-localisation is mediated 

through a disulfide- induced increase in the affinity of PKARIα for its membrane bound 

scaffold AKAPs [32]. It was hypothesized that increased association between PKARIα and D-

AKAPs should facilitate substrate-induced dissociation of the tetramer to enhance 

phosphorylation. Indeed, Brennan et al. reported that H2O2 induced-disulfide PKARIα was 

also increased in membrane fractions and associated with PKA substrate phosphorylation [32]. 

Alterations in substrate phosphorylation following disulfide PKARIα formation are explored 

in further detail below in section 4.4. PKARII localisation was unchanged during H2O2 

perfusions further clarifying that oxidation induced re-localisation is a specific trait of PKARIα 

(Figure 3.2B). This observation is also consistent with the view that the PKARII is primarily 

membrane bound under basal conditions through its association with AKAPs [161]. 
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1.36 In vivo regulation of disulfide PKARIα 

 

In vivo starvation of mice was chosen to instigate a possible PKARIα-DRP1 interaction via D-

AKAP1 as these conditions have previously been shown to result in increased PKA-dependent 

DRP1-S637 phosphorylation [57]. As described in section 1.13, starvation has also been shown 

to result in the production of both oxidants and cAMP, factors which based on our hypothes ised 

model of PKARIα activation are expected to result in maximal phosphorylation of DRP1-S637 

[57, 108, 162-164]. It was hypothesized that nutrient deprivation for 12 or 24 hours would 

instigate mitochondrial electron transport chain leak as a result of increased ATP demand 

therefore causing ROS levels to rise. The redox sensitive regulatory subunits of PKARIα would 

then perhaps become oxidised to form a disulfide dimer, increasing its affinity for D-AKAP1. 

On binding to D-AKAP1, PKARIα would then be sensitized to cAMP which as a result of 

GPCR agonism induced by starvation would also be elevated. Both elevated ROS and cAMP 

levels would therefore together induce the full dissociation of PKARIα leading to the 

prevention of mitochondrial fission through DRP1-S637 phosphorylation. The specific role of 

disulfide dimerized PKARIα in mediating these changes would then potentially be confirmed 

using PKARIα C17S KI mice. The principal approach taken was to withhold food from mice 

for 12 or 24 hour periods. A starved metabolic state was confirmed by blood glucose 

measurements immediately after the duration of starvation and changes in the oxidative, 

phosphorylation and subcellular localisation of PKARIα and DRP1 were assessed by 

immunoblotting. 

 

1.36.1 Starvation induces PKARIα disulfide formation  

 

These experiments confirmed that removal of food for 24 hours induced a starved state as 

evidenced by a significant reduction in blood glucose levels (Figure 3.3A). As described above, 

a central tenet to the hypothesis was that starvation would elevate both intracellular ROS and 

cAMP levels. Here it is shown that starvation precipitates a robust increase in the production 

of oxidants as evidenced by the oxidation of PKARIα to a disulfide dimer in heart (Figure 3.3B 

and 3.4A) and liver (Figure 3.5A) following 12 and 24 hour periods of starvation. Simila r ly, 

the observed elevation of “total” PKA-substrate phosphorylation during starvation is strongly 

indicative of increased cAMP production (Figure 3.8). Though ROS are generated by NOX, 
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xanthine oxidase and NOS, during starvation their source has been principally attributed to 

mitochondrial electron chain leakage [105]. As such DCF-DA staining, a purported H2O2 

sensitive fluorescent probe, exhibits co-localisation with mitochondria during nutrient 

deprivation. Similarly, mitochondrial targeted SOD2 over expression is also seen to reduce 

total O2
- levels during starvation [111]. Hence, two hypotheses are proposed for mitochondria l, 

as opposed to NOX production of ROS during starvation. The first posits that during starvation 

the energetic demand of the cell increases against a deficit in available substrate which 

mitochondria attempt to compensate for by increasing ATP production leading to electron leak 

[105]. The second proposes that a currently unknown factor may transduce upstream nutrient 

deprivation signals to mitochondria [105]. These results provided justification for the selection 

of starvation as a scenario in which ROS production were elevated and show for the first time 

that during this physiologically-relevant intervention PKARIα becomes oxidised.  

 

1.36.2 Starvation induced PKARIα translocation  

 

Following from this it was anticipated that starvation induced-disulfide PKARIα would exhibit 

increased affinity for its scaffold AKAPs, in particular D-AKAP1. Indeed, 24 hours starvation 

elevated the percent of liver disulfide PKARIα which was associated with its increased co-

fractionation with D-AKAP1 (Figure 3.4). This is in line with previous results showing that 

perfusion of hearts with H2O2 led to translocation of disulfide PKARIα and shows translat ion 

of our model from an ex vivo  to in vivo  physiological context (Figure 3.2B). Though, PKARIα 

translocation was observed in liver homogenates, no change in the localisation of the kinase 

was observed in heart tissue following 24 hours starvation (Figure 3.3C). Two reasons may 

account for this. Firstly, although PKARIα was significantly oxidised in heart and liver the 

latter exhibited a larger total percent of disulfide PKARIα after starvation, therefore increasing 

the probability of observing its translocation relative to the former. Secondly, failure to observe 

PKARIα translocation in cardiac tissue may be a reflection of starvation inducing a more subtle 

increase in ROS than H2O2 perfusions. During Langendorff experiments PKARIα disulfide 

formation approaches maximal levels as replenished H2O2 is continuously circulated through 

the myocardium. Under physiological conditions, such as in starvation, it is likely that 

enzymatic (SOD, catalase and gluthathione peroxidase) and non-enzymatic (ascorbic acid, 

thioredoxin and flavonoids) scavenging systems are more capable of buffering endogenous 
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intracellular oxidant production. These scavenging systems may therefore be recycling 

disulfide PKARIα back to its reduced state, decreasing its location in the insoluble fraction and 

so limiting the likelihood of observing its translocation.  

 

1.36.3 Starvation induced changes in the phosphorylation of PKA substrates  

 

Based on my hypothesised model of activation, the factors considered above should result in 

the dissociation of PKARIα inducing phosphorylation of its substrates, in particular DRP1-

S637. Indeed, “total” PKA-substrate phosphorylation was elevated following 24 hour 

starvation (Figure 3.8). In addition a trend toward elevated DRP1-S637 phosphorylation in 

cardiac tissue was observed after 24 hours starvation (Figure 3.3D) but unchanged after 12 

hours (Figure 3.5B). On immunoblots from liver samples no DRP1-S637 phosphoryla t ion 

signal was observed despite a positive control (cardiac homogenate from a mouse 

intraperitoneally injected with isoprenaline), indicating that the antibody worked appropriately 

(Figure 3.4C). A number of additional studies analysing liver samples from isoprenaline -

injected mice as positive controls showed no phosphorylation signal for DRP1-S637 at its 

correct molecular weight therefore a valid assessment of the phospho-status of DRP1 in liver 

could not be made. S637 phosphorylation inhibits GTP hydrolysis, trapping DRP1 at the OMM 

which consequently self assembles into large oligomeric complexes incompatible with 

mitochondrial fission [64, 67]. In other words DRP1-S637 phosphorylation increases the 

localisation of DRP1 at the mitochondria in the form of oligomeric complexes. Therefore, the 

anticipated result of DRP-S637 phosphorylation was the increased presence of DRP1 

oligomeric complexes in insoluble fractions after starvation. In line with this, high molecular 

weight complexes were observed on immunoblots of liver DRP1 after starvation which were 

also confirmed to be present in insoluble fractions (Figure 3.4D). DRP1 oligomerization is an 

essential precursor to fission and well described in the literature [165, 166]. OMM DRP1 self-

assembles into oligomers by forming cross bridges between adjacent middle and GED domains 

[165]. Upon encirclement of the mitochondria DRP1 oligomers then constricts in a GTPase-

dependent manner severing the organelle [166, 167]. Although this observation fits well with 

the described effects of PKA mediated DRP1-S637 phosphorylation, namely the accumula t ion 

of OMM DRP1, failure to identify a specific phosphor-DRP1 signal precluded a possible 

causative association [64]. A schematic of these findings is presented below.  
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Figure 4.1. PKARIα modulation during starvation. During starvation glucagon is released to 
maintain blood glucose levels. Binding of glucagon to g-protein coupled receptors (GPCR) triggers an 
increase in intracellular cAMP via adenylate cyclase (AC). Mitochondrial metabolism is increased to 
compensate for the energetic deficit induced by starvation leading to electron transport chain leak and 
ROS production. PKARIα becomes oxidized to its disulfide form increasing its affinity for D-AKAP1 
at the mitochondria and other AKAPs which sensitize the kinase to cAMP. PKARIα then fully 
dissociates to phosphorylate its substrates however, whether disulfide PKARIα is involved in the 
phosphorylation of DRP1 remains unclear.  

 

Additionally, in liver starvation also increased soluble DRP1 levels. This observation, though 

in contrast to the previous point, is also consistent with some reports of DRP1-S637 

phosphorylation. Cereghetti et al. showed that the uncoupling agents FCCP and arachidonic 

acid dephosphorylated DRP1-S637 leading to its mitochondrial accumulation which was 

attenuated by a phosphomimetic DRP1-S637D mutation [65]. Phosphomimetic mutations in 

the assessment of DRP1 function are however problematic as they operate under the 

presumption that phospho-regulation of DRP1 is a single step process. This therefore neglects 

the possibility that it may arrest DRP1 function at a premature stage of its recruitment 

potentially confounding experimental interpretations. However, ex vivo  and in vivo  models of 

cardiac dysfunction (I/R and KCL-induced cardiac arrest, respectively) have shown that DRP1-

S637 dephosphorylation is associated with increased mitochondrial DRP1 [68, 69]. To 



4. Discussion  

 
 

83 

 

summarize, in liver 24 hours starvation increased disulfide and insoluble PKARIα. 

Concurrently, DRP1 was increased in soluble fractions and higher molecular weight complexes 

were observed on DRP1 immunoblots. Taken together, the above factors are compelling 

evidence for a role of disulfide-PKARIα in mediating these events. 

 

1.36.4 Starvation induced changes in liver DRP1-S637 

 

Unfortunately, failure to observe a DRP1-S637 phosphorylation signal on immunoblots from 

liver samples precluded drawing any causative associations. If PKARIα was phosphoryla t ing 

liver DRP1-S637 the anticipated effect of this would be inhibition of DRP1 fission activity 

resulting in elongated mitochondria. Indeed, liver electron micrographs from mice starved for 

12 hours do exhibit elongated mitochondria [57]. Although the authors provide extensive 

evidence to suggest this is mediated by PKA-dependent inhibitory phosphorylation of DRP1-

S637 this was not directly shown in liver tissue [57]. In contrast to liver, no change in DRP1 

localisation was observed in heart samples after 12 or 24 hours starvation. This discrepancy 

between tissues may be explained by distinct differences between cardiac and hepatic 

mitochondria. For example, mitochondria in liver have an approximate 8 fold higher rate of 

proteolytic activity than those from cardiomyocytes [168]. In other words mitochondria l 

networks, which critically depend on DRP1 for their modulation, are more dynamic in liver 

than in heart. This difference in activity may account for the current discrepancies observed 

between liver and heart samples. 

 

Though a number of promising results in liver were obtained, the failure to observe a DRP1-

S637 phosphorylation signal presented a major hurdle. It prevented conclusions being drawn 

about potential case-and effect, and so also limited the enthusiasm for further related 

experiments. The inability to observe changes in the phospho-status of DRP1 in interventions 

of specific interest was a major issue which I encountered. To potentially overcome this 

problem 2 additional approaches could be employed. As has previously been performed, DRP1 

might be immunoprecipitated to enrich the protein prior to immunoblotting with a phospho-

specific S637 antibody or indirectly with the pan PKA-substrate antibody, as used in this thesis 

[56, 57]. Alternatively, the Phos-tag method could potentially be used to monitor changes in 

the phospho-status of DRP1 [169]. 
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1.37 PKARIα C17S KI show basal elevation in “total” PKA-substrate phosphorylation  

 

PKARIα C17S KI and WT animals exhibited similar reductions in blood glucose levels after 

starvation and as anticipated disulfide PKARIα was elevated in WT but not KI mice (Figure 

3.6B). Unexpectedly, and previously unobserved in this colony, KI mice displayed a greater 

than 1-fold increase in expression of PKARIα, compared to WT in heart (Figure 3.6C) and 

liver samples. It was hypothesised that KI animals harbouring a mutation precluding disulfide 

formation, would have decreased AKAP affinity, thereby reducing DRP1-S637 and “total” 

PKA-substrate phosphorylation during starvation. This was not observed, in fact contrary to 

our expectations PKARIα C17S KI mice showed a trend toward elevated basal DRP-S637 

phosphorylation which was significantly increased by starvation (Figure 3.7A). Furthermore, 

analysis of “total” PKA-substrate phosphorylation revealed that this was not specific to DRP1 

but reflected a broad basal elevation in substrate phosphorylation (Figure 3.8).  

 

This result is diametrically opposite our hypothesized model in which disulfide PKARIα would 

have enhanced affinity for its scaffold proteins, thus elevated substrate phosphorylation (Figure 

1.7). To prevent disulfide formation between opposing RIα subunits it was necessary to mutate 

one of two cysteines. Although the PKARIα C17S KI mutation prevents disulfide formation 

between subunits it potentially leaves the remaining cysteine 38 available for oxidative 

modification. Both cysteines are located in the D/D domain of PKARIα which directly interacts 

with the amphipathic helix of AKAPs (Figure 1.4B). Instead of forming an inter-RIα disulfide 

bond, upon KI mutation of C17S the remaining cysteine thiol may now form an inter-protein 

disulfide with its associated AKAPs. PKARIα anchored in this way to AKAPs, in the presence 

of elevated cAMP as in starvation, could then exacerbate PKARIα substrate phosphoryla t ion 

as observed. Sequence analysis of both D-AKAP1 and D-AKAP2 show no cysteine residues 

within their respective amphipathic helices, though this does not exclude disulfide exchange 

occurring with currently unidentified D-AKAPs. Though D-AKAP1 may not interact via a 

thiol with PKARIα, it is notable that in a recent proteome wide screen using cysteine-react ive 

small-molecule fragments both PKARIα and D-AKAP1 were identified as redox active [170]. 

Alternatively, the current model presumes that Cys17 is the sensing thiol, i.e. the first to 

become oxidised to sulfenic acid before being resolved to a disulfide by its opposing Cys38 
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residue. Its mutation to a serine thereby precludes disulfide formation. However if Cys38 is the 

sensing thiol, upon oxidation to sulfenic acid and unable to resolve to a disulfide due to the 

C17S mutation it could be further stepwise oxidised to a sulfinic and then sulfonic acid that 

may have functional impact (Figure 1.1). Oxidative modification to sulfonic acid is irreversib le 

and may therefore also mediate PKARIα activity. Identifying whether Cys38 forms a sulfenic 

acid in the KI mouse could be assessed using dimedone-based reagents which specifica l ly 

alkylate and trap cysteine sulfenic acids [171]. If Cys38 were the sensing thiol, labelling would 

be minimal in WTs as the sulfenic acid would be quickly resolved to a disulfide by Cys17. 

However, in the KI, Cys38 could not form a disulfide with Cys17 and would therefore be 

trapped in its sulfenic state evidenced by an increase in dimedone labelling.    

 

In KI mice DRP1-S637 phosphorylation was significantly increased by starvation (Figure 3.7). 

As previously discussed this was contrary to expectations and may be accounted for by the 

aforementioned reasons however, it also raises an important question. Namely, if S637 

phosphorylation was anticipated to modulate DRP1 localisation why then in KI animals 

displaying significantly elevated S637 phosphorylation was DRP1 localisation unchanged? 

This may suggest the fractionation did not adequately separate both fractions to detect changes 

in protein localisation. However this is perhaps unlikely as alterations in PKARIα and DRP1 

localisation were previously demonstrated using the same method (Figure 3.2B). An alternat ive 

approach may have been to use a commercially available mitochondria isolation kit such as the 

Mitochondria Isolation Kit for Tissue by ThermoFisher which has previously been used to 

show changes in DRP1 localisation [68]. Commercially available kits however are not without 

their caveats, especially as their constituents are unlisted because they are proprietary, and so 

it can be unclear how such methods actually work.  

 

1.37.1 Increased RIα expression in PKARIα C17S KI mice  

 

KI mice displayed a significant increase in RIα subunit expression in both heart and liver but 

no change in PKA-cat expression (Figure 3.6C). The expected impact of this can be interpreted 

in two ways. Firstly, as the regulatory subunits localise PKARIα to a specific set of AKAPs 

and therefore also its substrate, an increase in RIα expression may be expected to enhance 

“total” PKA-substrate phosphorylation through increased targeting of the kinase to AKAPs. In 



4. Discussion  

 
 

86 

 

accordance with this, PKA-substrate phosphorylation is decreased in human dilated 

cardiomyopathy, which is associated with a concurrent reduction in both PKARI and PKARII 

subunit expression [172]. An alternative interpretation focuses on regulatory subunit  

sequestration of catalytic subunit activity. As PKA-cat levels remained unchanged while 

PKARIα expression was elevated, an increase in the ratio of PKARIα:PKA-cat may be 

anticipated to reduce “total” PKA-substrate phosphorylation through catalytic subunit 

inactivation. Importantly this reasoning would only be true in circumstances of unaltered 

cAMP levels, which were not measured in this study. Han et al. measured the phosphoryla t ion 

state and expression of PKA regulatory and catalytic subunits in failing human myocardium 

[173]. PKA substrate phosphorylation was decreased despite post-translational modification of 

PKARII and PKA-cat that favoured catalytic subunits release and affinity for its substrate 

[173]. The authors found that a concurrent increase in PKARIα expression may be 

compensating for this by sequestering PKA-cat activity [173].  

 

Previous research conducted in 2012 on the colony used in this work reported a basal increase 

in kidney and liver PKARIα expression but no change was observed in cardiac tissue [174]. It 

is possible that this upregulation is a compensatory mechanism against deficient PKARIα 

activity incurred as a consequence of the cysteine mutation. For example, disulfide PKARIα-

mediated ERK phosphorylation was recently seen to be critical for angiogenic signalling [37]. 

Using Doppler imaging and immunostained tumour sections Burgoyne et al. showed that 

PKARIα C17S KI mice were deficient in angiogenesis after hind limb ischaemia and tumour 

implant [37]. In line with this, elevated PKARIα expression is associated with numerous 

cancers including cholangiocarcinoma [175], melanoma [176], ovarian cancer [177] and 

colorectal cancer [178]. No tumours, however, have been identified during studies involving 

dissection of PKARIα C17S KI mice. Conversely, mutations in the PRKAR1A gene are 

associated with approximately 75 % of patients with Carney Complex, a multiple endocrine 

neoplasia in which patients develop skin pigmentation and Schwannomas [179].  
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1.37.2 Starvation increases MFN2 expression  

 

Starvation increased cardiac MFN2 levels in both PKARIα C17S KI and WT animals (Figure 

3.9C). Mitochondrial fusion begins with the tethering of two separate mitochondria and this is 

critically dependent on the presence of MFN1 and MFN2 [167]. MFN1 and MFN2 are localised 

to the OMM and extend their carboxyl terminals into the cytosol, forming homo or hetero 

interactions with MFN1 and MFN2 of adjacent mitochondria [52]. Increased MFN2 expression 

therefore suggests that mitochondria are in pro-fusion state during starvation. Mitochondria 

elongation in response to starvation has previously been reported [180].  Gomes et al. showed 

that in response to nutrient deprivation mitochondria enlarge, possess higher cristae levels, are 

protected from autophagic degradation and increase ATP synthesis [57]. Interestingly, 

mitochondria also donate membranes for autophagosome formation during starvation and this 

process is attenuated by MFN2 depletion [181]. Therefore, it is likely MFN2 upregulation is 

an adaptive response to nutrient scarcity.   

 

The ubiquitously expressed cytosolic microtubule-associated protein 1A/1B-light chain 3 

(LC3-I) is an essential component of autophagosome formation  [182]. During autophagy LC3-

I is conjugated to LC3-phosphatidylethanolamine conjugate (LC3-II), which associates with 

autophagosomal membranes and degraded upon fusion with lysosomes [182, 183]. As such 

LC3-II is a routine marker of starvation- induced autophagy [182]. A trend toward increased 

LC3-II in response to starvation was observed in WT animals but was not significant (Figure 

3.9D). Though a broadly used indicator of autophagosome formation, LC3-II measurement 

with immunoblotting is not without its caveats. Principally, LC3-II itself is degraded during 

autophagy [182]. It is therefore recommended that LC3-II be assessed with or without 

lysosomal protease inhibitors which were not used in the present study and may account for 

our failure to observe an increased LC3-II in response to starvation [183]. LC3-II formation 

appeared, though not significantly, basally elevated in PKARIα C17S KI mice (Figure 3.9D). 

P62 is commonly examined in tandem with LC3 as it binds both LC3 and ubiquitin and its 

accumulation is an indicator of dysfunctional autophagy [182]. To assess whether elevated 

LC3-II observed in PKARIα C17S KI mice impacted on autophagy, P62 levels were also 

examined but found unchanged (Figure S7). Despite this, elevated LC3-II in PKARIα C17S 

KI mice presents an interesting avenue for further study as LC3-II is negatively regulated by 
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PKA [184]. Therefore, in KI mice this negative regulation may be compromised resulting in 

elevated LC3-II.  

 

1.38 Na-pyruvate attenuates H2O2 induced oxidation of PKARIα and PKGIα  

Initial experiments with isoprenaline and H2O2 failed to increase the percentage of PKARIα 

disulfide dimer (Figure 3.10A). As this method was previously effective at inducing disulfides 

(Figure 3.2A), additional experiments were undertaken to establish why in this instance it was 

not. H2O2 is a highly reactive substance and decomposed by most transition metals as well as 

catalase [185]. Despite cautions taken in the laboratory to limit degradation, it is possible that 

H2O2 can become contaminated and so decompose, therefore new H2O2 was ordered and 

perfusions performed again. Additionally, as batch to batch variation in antibody specificity is 

possible PKGIα disulfide dimer formation was used as a control for H2O2 induced protein 

oxidation. However, experiments using newly ordered (Figure 3.11A) and increasing doses of 

H2O2 (Figure 3.11B) again failed to increase disulfide PKARIα or PKGIα dimer levels and so 

the factors considered above were ruled out as responsible. Following discussions with other 

laboratory members using similar protocols it was identified that Na-pyruvate was not included 

in their perfusion buffer. Removal of Na-pyruvate from my perfusion buffer dramatica lly 

altered the effectiveness of H2O2 to induce disulfide PKARIα and PKGIα dimers (Figure 3.12) 

and also enhanced both CFR and LVEDP (Figure 3.13).  

 

Pyruvate is a critical intermediate in the citric acid cycle and is produced by the breakdown of 

glucose during glycolysis [186]. Pyruvate is used to produce energy by the following 

mechanisms: Decarboxylation of pyruvate by the pyruvate dehydrogenase complex produces 

acetyl-CoA an essential input to the citric acid cycle. Carboxylation of pyruvate by pyruvate 

carboxylase produces oxaloacetate which replenishes key citric acid cycle intermediates and is 

also used during gluconeogenesis [186]. Pyruvate can also be transaminated to alanine or in 

the absence of oxygen reduced to lactate [187]. During Langendorff perfusion cardiac function 

can undergo regular cyclic fluctuations in contractility and coronary flow (Figure 2.3) 

rendering valid comparisons between experiments problematic. The addition of Na-pyruvate 

has previously been shown to mitigate this [113]. As alterations in contractile function were an 

important index in these experiments Na-pyruvate had been added to obviate problems caused 

by variability due to fluctuation in contractility.  
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Pyruvate undergoes rapid decarboxylation in the presence of H2O2 yielding acetate, H2O and 

CO2 [185, 186, 188]. Attention was first brought to its used in oxidants treated cell culture 

experiments by Giandomenico et al. who reported differences in H2O2 stability across various 

culture mediums [189]. By systematically measuring H2O2 degradation in response to cell 

culture components the authors found Na-pyruvate to be a highly efficient scavenger of the 

oxidant [189]. Cognisance of pyruvate content in experiments using exogenous application of 

oxidants has since been confirmed and cautioned by several other groups [190-193]. Na-

pyruvate caused a striking reduction in both the ability of H2O2 to induce disulfide PKARIα 

(Figure 3.12) and its physiological impacts on CFR and LVEDP (Figure 3.13). Rather than 

infer that it is in this case cardio-protective, for the aforementioned reasons, it is most likely 

Na-pyruvate’s presence in the buffer greatly reduced the effective lifetime of H2O2 prior to 

reaching the myocardium. Investigating whether pre-perfusion with Na-pyruvate can attenuate 

cardiac dysfunction and disulfide PKARIα formation in response to H2O2 treatment or oxidant 

generating interventions such as I/R therefore present an interesting avenue of further 

investigation. It is worth mentioning that Na-pyruvate showed a tendency to increase CFR and 

LVSP under control conditions relative to hearts perfused in its absence (Figure 3.13) as well 

as reduce basal levels of disulfide PKGIα (Figure 3.12). Similar inotropic results as well as 

protective effects have been reported during I/R injury, myocardial infarction and cardioplegia, 

and are thought to be mediated by pyruvate-dependent increased energy production or free 

radical scavenging [113, 194-199]. These results verify that these cardio-protective effects may 

also be mediated through pyruvates scavenging of H2O2.  

 

1.39 PKARIα disulfide formation is unaffected by β-adrenergic stimulation   

Binding of cAMP to PKA induces a conformational change in the kinase resulting in the release 

of its catalytic subunits [21]. PKGIα is similarly altered by interaction with its nucleotide 

cGMP, which prevents its formation of disulfide dimers [5]. Whether cAMP mediates PKARIα 

disulfide formation between its regulatory subunits was assessed by elevating cardiac cAMP 

levels with the non-selective β-adrenoreceptor agonist isoprenaline in the presence and absence 

of H2O2. Isoprenaline alone or in combination with H2O2 did not affect disulfide formation 

(Figure 3.14). Unlike PKGIα, whose nucleotides bind close to its disulfide forming cysteines, 

the cAMP binding domains and disulfide cysteines formed by PKARIα are not in close 
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proximity [5]. This may therefore preclude an impact of cAMP on PKARIα disulfide 

formation. Compartmentalisation of cAMP signalling is well described and regulated by 

numerous factors such as PDEs and the particular GPCR or adenylate cyclase activated [200, 

201]. Isoprenaline- induced elevations in cAMP are reportedly constrained to the particula te 

fraction, while PGE1 increases soluble cAMP [202]. Using cAMP sensors specifically targeted 

to RI and RII domains Benedetto et al. showed that isoprenaline induced elevations in cAMP 

were only detected by the RII sensor, while the RI sensor exclusively responded to PGE1 [203]. 

Therefore, PGE1 may have been a more effective agonist to discriminately target cAMP to 

PKARIα. 

 

1.39.1 H2O2 attenuates myocardial isoprenaline sensitivity  

 

As described in section 1.8, PKARIα, but not PKARII shows increased responsiveness to 

cAMP in the presence of substrate [48]. This substrate-induced sensitivity to cAMP results in 

potentiated PKA activity for a given cAMP concentration and reduces the rate of PKARIα-

PKA-cat re-association [48, 49, 204]. This led to the proposal that both substrate and cAMP 

are necessary for full dissociation of PKA-cat subunits and therefore full activation of PKARIα. 

Furthermore, mutation of the cysteines necessary for PKARIα disulfide formation reduce the 

kinase’s affinity for D-AKAP2 [33]. It was hypothesised that disulfide formation between the 

RIα subunits would enhance the association of the kinase with its AKAPs, which when in 

proximity with its substrate would be sensitised to cAMP leading to complete disassociat ion 

and activation of PKARIα (Figure 1.6). “Total” PKA-substrate phosphorylation was 

unchanged in the presence of H2O2 but was elevated, as anticipated, by isoprenaline. However, 

this elevation was unexpectedly attenuated by H2O2 (Figure 3.14) and mirrored by a 

simultaneous attenuation of CFR, LVEDP and LVSP responsiveness to isoprenaline in the 

presence of H2O2 (Figure 3.15). These findings are summarised in the figure below. 

Unexpectedly, DRP1-S637 phosphorylation was unchanged during all interventions studied.  
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Figure 4.2. Summary of hypothesized and achieved results in Langendorff perfusion experiments.  
Top, hypothesized model of substrate phosphorylation in the presence of oxidants and β-adrenergic 
stimulation. Middle, schematic representation of hypothesized and achieved substrate phosphorylation 
results. Bottom, schematic representation of physiological changes in cardiac function during H2O2 and 
isoprenaline perfusions. Left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure 
(LVEDP) and coronary flow rate (CFR).   

 

In contrast to the current study, previous work has shown an impact of H2O2 on substrate 

phosphorylation. Treatment of freshly isolated or overnight cultured rat ventricular myocytes 

with H2O2 has previously been shown to induce the phosphorylation of PLB and cTnI which 

was largely, but not entirely, attenuated by the presence of the PKA inhibitor H98 [35]. 

Similarly, treatment of bovine aortic endothelial cells with H2O2 or vascular endothelial growth 

factor induces PKARIα disulfide formation and PKA site specific phosphorylation of ERK 

which is absent in aorta from PKARIα C17S KI mice [37]. In addition, it has also been shown 

that treatment of cells with isoprenaline, PGE1 or directly with cAMP in the presence of H2O2 

shows a trend toward potentiated “total” PKA-substrate phosphorylation beyond exposure to 
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either chemical alone [205]. Although this was not observed in cardiomyocytes it was reliably 

detected in HEK293 or vascular smooth muscle cells, as well as aortic rings under cell culture 

conditions [205]. This is in contrast to the current results showing that rather than potentiating 

“total” PKA-substrate phosphorylation, in hearts the presence of oxidants and cAMP reduces 

phosphorylation levels below the levels achieved by β-adrenoreceptor agonism alone (Figure 

3.14). Interestingly this phenomenon was not observed in initial perfusion experiments (Figure 

3.10B), further supporting the hypothesis that pyruvate contributes to the decomposition, and 

thus effectiveness, of H2O2. The subsequent loss of phosphorylation due to H2O2 was 

accompanied by a concurrent reduction in all indices of cardiac function in response to 

isoprenaline (Figure 3.15). Both the LVSP and CFR response to isoprenaline was significantly 

attenuated, while LVEDP changes were entirely abolished by H2O2 (Figure 3.15). The disparity 

between these findings may stem from several methodological limitations.  

 

Though examined under culture conditions, all of the results in cells considered above had yet 

to be replicated at organ level. Furthermore, although PKA substrates were observed to be 

phosphorylated in response to H2O2 in adult rat ventricular myocytes, this was not observed in 

vascular smooth muscle cells, HEK cells or aortic rings [205]. In line with this, previous 

experiments involving H2O2 perfused mouse hearts failed to identify any change in a number 

of PKA substrates using site-specific phospho antibodies [174]. In cellular experiments 

showing perpetuated “total” PKA-substrate phosphorylation after exposure to cAMP agonists 

and H2O2 the concentrations of H2O2 used were at least 2-fold and often 5-fold higher than 

those utilised in the current study. Additionally, the incubation periods used were twice as long 

as those in the current study [205]. Both factors are important as PKA substrate 

phosphorylation has also been shown to exhibit a bell-shaped curve in response to increasing 

concentrations of H2O2 [35]. Therefore, shorter incubation periods with lower concentrations 

of H2O2 may account for the disparity in the current results. Moreover, culture experiments all 

involved pre-treatment of cells prior to concomitant treatments, which is in contrast to the 

current study which involved only concomitant exposure [205]. Furthermore, cardiomyocyte 

monoculture experiments may not be translatable to whole heart scenarios as the myocardium 

is composed of several distinct cell types. Indeed, using a combination of genetic tools and 

cellular markers Pinto et al. recently revised estimates of cardiac tissue composition to be 

primarily endothelial cells (55%) followed by cardiomyocytes (32%) and then fibroblas ts 

(13%) [206]. Therefore, although specific changes may be reliably induced in cell culture 
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preparations these pathways may not be translatable as they do not reflect in vivo changes in 

the intracellular environment of heterocellular organs.  

 

H2O2 when exogenously applied is also an indiscriminate, non-specific cell-wide oxidant that 

targets PKARIα, but is also fully capable of modifying other proteins - including those involved 

in PKA substrate phosphorylation. For example, PKA-cat contains a cysteine near its active 

site that when S-gluthathionylated, inhibits the activity of the kinase [207]. Similarly, when 

oxidised at its metal centre, the serine-threonine protein phosphatase-1 (PP1) is also inactiva ted 

[208]. Assessing H2O2 induced alterations in PKA substrate phosphorylation is further 

complicated by the oxidants concurrent activation of redox sensitive PKG. This is particula r ly 

confounding as PKG phosphorylates a number of residues that are also regulated by PKA. For 

example, the cardiac myosin binding protein c (cMyBP-C) serine residues 273, 282 and 302 

are all phosphorylated by both PKA and PKG [209, 210]. Similarly, cTnI Ser23/24 are 

regulated by both PKA and PKG [26]. In line with this, oxidant-dependent PKA substrate 

phosphorylation in cardiomyocytes was only partially attenuated by H89 suggesting alternat ive 

pathways, such as those mentioned above, may also contribute to H2O2-induced changes in 

phosphorylation [35]. Therefore, it is possible that any PKARIα disulfide-dependent changes 

in phosphorylation are masked by concurrent oxidation of other mediators of PKA substrate 

phosphorylation. In summary, significant differences in the concentrations of H2O2 used, 

duration of exposure, method of application and the non-specific nature of H2O2 may account 

for the discrepancy between the current results and those observed in cell culture preparations.  

 

1.39.2 DRP1-S637 phosphorylation is unchanged by H2O2 or isoprenaline 

 

Unexpectedly DRP1-S637 phosphorylation was unchanged during all eight Langendorff 

conditions under which it was examined. This is particularly perplexing for two reasons. 

Firstly, half of the conditions contained isoprenaline at concentrations sufficient to induce 

significant elevations in “total” PKA-substrate phosphorylation. Secondly, isoprenaline and 

other cAMP elevating agents such as forskolin are routinely used as a positive control for 

DRP1-S637 phosphorylation [56, 57, 64]. In addition calcineurin, which dephosphoryla tes 

DRP1-S637, is itself subject to inactivation by H2O2. Using purified calcineurin and mutants 

harbouring a Met 406 to Leu exchange, Carruthers & Stemmer showed that methionine 
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oxidation by H2O2 reduced the affinity of calmodulin for calcineurin more than 3-fold, 

disrupting the enzymes activation [211]. This adds a further credence to the expectation of 

altered DRP1-S637 phosphorylation during perfusion experiments. These results therefore 

raise the question of whether the means by which S637 phosphorylation was assessed was 

sufficiently sensitive to detect changes in the proteins phospho-status. Evidence refuting this is 

presented in Figure 2.4, as DRP1-S637 phosphorylation shows a clear dose-response to 

increasing concentration of isoprenaline. On the other hand the observation that direct 

perfusion of isoprenaline to the myocardium, at concentrations adequate to induce ample 

increases in “total” PKA-substrate phosphorylation, did not affect S637 phosphorylation. This 

indicates that alternative methods of assessment are warranted. Examples of these methods are 

described in section 4.3.1.      

 

1.39.3 H2O2 attenuates isoprenaline induced alterations in contractile function  

 

The impact of β-adrenergic receptor agonists on cardiac performance are well characterized, 

resulting in increased inotropy, chronotropy and lusitropyas via mechanisms described in 

Figure 1.3 [21, 23]. Enhanced contractility, myocardial relaxation and coronary vasodilat ion 

were readily seen in response to isoprenaline (Figure 3.15). Pacing of hearts precluded the 

observation of chronotropic variability. If H2O2 induced similar the phosphorylation of PKA-

substrates typically attributed to PKARII in response to β-adrenoreceptor activation, the 

expected profiles of their contractile indices should be comparable. Though this is true for CFR, 

both LVSP and LVEDP show divergent responses to isoprenaline and H2O2
 (Figure 3.15). It 

could therefore be suggested that disulfide PKARIα and cAMP-activated PKARII induce 

divergent responses in contractile function. However, as H2O2 failed to induce any change in 

“total” PKA-substrate phosphorylation this argument cannot be made (Figure 3.14). As 

previously mentioned H2O2 likely oxidises many different free protein thiols, a clear 

ramification of which is activation of other redox sensitive proteins that modulate cardiac 

function such as PKGIα. Disulfide PKGIα has previously been shown to mitigate LVSP 

responsiveness to isoprenaline. Indeed, when PKGIα is inhibited, an inotropic response to H2O2 

is seen in rat hearts [137]. Therefore, it is possible that activation of alternative signall ing 

pathways by H2O2 is masking contractile changes induced by disulfide PKARIα.  
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1.39.4 Disulfide PKARIα does not mediate H2O2 induced changes in isoprenaline  

sensitivity 

 

H2O2 increased PKARIα disulfide formation, which in the presence of elevated cAMP, was 

associated with a decrease in “total” PKA substrate phosphorylation (Figure 3.14). By contrast,  

PKARIα C17S KI mice which cannot form disulfides showed elevated “total” PKA-substrate 

phosphorylation (Figure 3.8). In other words, in both cases the presence or absence of disulfide 

PKARIα appeared to be associated with a concurrent change in “total” PKA-substrate 

phosphorylation. Taken together this data suggested that disulfide bound PKARIα, instead of 

facilitating substrate phosphorylation, may in fact be preventing it. To test this hypothesis, 

additional perfusion experiments were performed with PKARIα C17S KI and WT mice. If 

disulfide bound PKARIα was responsible for decreasing isoprenaline- induced “total” PKA-

substrate phosphorylation in the presence of H2O2, it was anticipated that this effect would be 

absent in KI but not WT mice. KI mice showed no disulfide form of the kinase under any 

conditions, but did show increased PKARIα expression (Figure 3.16). WT mice displayed 

similar increases in disulfide PKARIα in response to H2O2 in the presence or absence of 

isoprenaline. “Total” PKA-substrate phosphorylation was similar between genotypes under all 

conditions suggesting that H2O2 induced disulfide bound PKARIα is not responsible for the 

decreases in phosphorylation observed during concurrent perfusions (Figure 3.17). In contrast 

to previous experiments (Figure 3.8) KI preparations did not display basal elevations in “total” 

PKA-substrate phosphorylation, which would be a plausible, anticipated consequence. 

Langendorff experiments were conducted ex vivo and involved the excision, cannulation and 

perfusion of hearts under artificial conditions for a 35 minute period. In contrast, the previous 

experiments involved excision and immediate snap-freezing of hearts in liquid nitrogen. Due 

to the speed at which tissues were isolated and frozen the latter experiments are therefore likely 

a better reflection of the in situ phospho-status of PKA substrate in KI mice. Differences in 

physiological indices of cardiac function between KI and WT mice could not be viably assessed 

due to small sample sizes.  

 

Though the above reduction in isoprenaline sensitivity in the presence of oxidants appears 

independent of disulfide PKARIα formation it is nonetheless a striking observation. These 

results therefore highlight the strong potential interplay between oxidant and β-adrenergic-

induced PKA signalling. Attenuation of cardiac β-adrenoceptor signal transduction has been 



4. Discussion  

 
 

96 

 

reported in the presence of H2O2. In rat heart membranes treated with H2O2, a decrease in β1 

and β2-adrenoceptor density was observed as well as reduced adenylate cyclase activity 

responsiveness to isoprenaline, effects which were abrogated by the H2O2 decomposing 

enzyme catalase [212]. Similarly, perfusion of rat hearts with H2O2 has been reported to reduce 

β-adrenoceptor density and depress both adenylate cyclase activity and the positive- inotrop ic 

response to isoprenaline [213]. Perturbations of β-adrenoceptors sensitivity and density 

following H2O2 treatment have also been reported in intestinal, tracheal, and lung parenchymal 

tissue [214, 215]. Therefore, the reduced responsiveness to isoprenaline in the presence of H2O2 

may be explained by the oxidant concurrently reducing β-adrenergic responsiveness.  

 

Finally, catecholamines are readily degraded by oxidative reactions catalysed by oxygen, light, 

acidic conditions and heavy metal [216]. Though isoprenaline and H2O2 were added separately 

to the perfusion buffer minutes prior to its use, it is possible that oxidative degradation of 

isoprenaline catalysed by H2O2 occurred within the same time window. Degradation of 

isoprenaline produces aminochromes which are further oxidised to various reactive 

intermediates and free radicals [217]. Accordingly, in cardiomyocytes and H9C2 cells this 

degradation is accompanied by a concomitant increase in ROS production [218, 219]. 

However, no additional increase in disulfide PKARIα was observed during combined 

perfusions with H2O2 and isoprenaline compared to H2O2 alone, suggesting the agent may not 

have been degraded. 

 

1.40 Summary and future work 

 

Previous cellular and in vitro studies have shown that in response to oxidants PKARIα forms 

disulfide bonds between its regulatory subunits which are associated with both enhanced 

affinity for its scaffold AKAPs and phosphorylation of its substrates [32, 33]. In addition, 

PKARIα substrate also sensitises the kinase to its nucleotide cAMP to induce its activation 

[49]. The purpose of this thesis was to examine the interplay of these factors on PKARIα 

substrate phosphorylation and disulfide dimer formation in vivo. To this end, a number of in 

vivo and ex vivo approaches were undertaken that involved the application of exogenous 

oxidants and the cAMP agonist isoprenaline or scenarios in which elevations in both factors 

were thought to occur.   
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These experiments revealed that perfusion of hearts with the oxidant H2O2 led to the formation 

of disulfide bonds between the regulatory subunits of PKARIα. Disulfide bound PKARIα then 

exhibited enhanced affinity for its AKAPs, as evidenced by co-fractionation of the kinase with 

D-AKAP1 after perfusions. However, these changes were not associated with any change in 

substrate phosphorylation. PKARIα disulfide formation was unaffected by the presence of 

cAMP, however during concomitant perfusions with H2O2 and isoprenaline cardiac sensitivity 

to the cAMP agonist was reduced. This was evidenced at the protein level by reduced “total” 

PKA-substrate phosphorylation and physiologically as a blunted response in CFR, LVEDP and 

LVSP responsiveness to isoprenaline. Using the “redox dead” PKARIα C17S KI mouse these 

changes were seen, however they occur independently of disulfide formation. These changes 

may instead stem from H2O2 concomitantly inducing additional signalling events. Oxidant 

induced PKARIα disulfide formation was also verified in vivo in the context of starvation. 

Oxidation of PKARIα to a disulfide dimer was robustly seen in response to various periods of 

starvation and associated with both co-fractionation of the kinase with its scaffold protein D-

AKAP1 and increased “total” PKA-substrate phosphorylation. Clarifying the contribution of 

disulfide PKARIα to this increase was difficult as basally PKARIα C17S KI mice displayed 

both increased RIα expression and “total” PKA-substrate phosphorylation. Although no change 

in phosphorylation of the mitochondrial D-AKAP1 associated protein DRP1 was observed 

during starvation, several promising results in livers were obtained. These included; increased 

PKARIα disulfide formation and translocation, the formation of DRP1 higher molecular weight 

complexes and increased soluble DRP1. These findings are indicative of DRP1-S637 

phosphorylation. However as no increase in DRP1-S637 was detected using commercia l ly 

available antibodies further experiments utilizing phospho-capture resins or immune-

precipitated DRP1 may allow this to be confirmed.    

 

The failure to replicate cell culture experiments may be a consequence of several factors. 

Unlike cell monocultures, the current experiments were undertaken in heterocellular organs 

exposed to lower concentration of H2O2 for shorter time periods. Furthermore, H2O2 is a highly 

reactive oxidant and it would seem prudent to assume its exogenous application has many off 

target effects, its use to oxidise PKARIα is therefore not without its own limitations. Due to 

these factors experiments using cardiomyocytes isolated from PKARIα C17S KI and WT mice 

would be a valid complimentary approach. Of particular concern is the observation that KI 

mice unable to form disulfides in fact display a basal elevation in substrate phosphorylat ion. 
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This may be accounted for by the concurrent increase in RIα expression observed in these mice 

which may unspecifically saturate AKAPs in an effort to compensate for decreased targeting 

due to the Cys17 to Ser KI mutation. Taken together these findings suggest a more intricate 

model of PKARIα activation than is seen in other redox-sensitive kinases. For example, PKGIα 

is activated independently by cGMP or oxidants and binding of its nucleotide precludes its 

formation of a disulfide dimer [5]. However unlike PKARIα, the regulatory and catalytic units 

of PKGIα are fused into a single subunit [220]. This conformational difference may therefore 

account for a more complex method of PKARIα regulation by cAMP and disulfide bond 

formation.  

 

Critical to this and previous work is the hypothesis that disulfide-mediated increases in 

PKARIα-AKAP affinity, which have been clearly demonstrated, facilitate an increase in PKA-

substrate phosphorylation [33]. Although this would seem logical this facet of PKARIα 

activation has yet to be fully substantiated in vitro. Therefore future work involving in vitro 

kinase activity assays using recombinant PKARIα in its disulfide and reduced state may be 

undertaken to clarify this point. Mitochondrial networks are generally reported in terms of 

aspect ratio (i.e. length/width) which in cardiomyocytes and liver is typically around 1.5. 

However, in other cells types, such as mouse embryonic fibroblasts a mitochondrial aspect 

ratio of approximately 6 is typical [52]. In addition, these networks display rapid rates of 

mitochondrial fusion and fission compared to the relatively slow turnover seen in 

cardiomyocytes [52]. Therefore, examination of PKARIα mediated DRP1-S637 

phosphorylation in cell types typically exhibiting more dynamic changes in mitochondria l 

fusion and fission events may be a more promising avenue of investigation than in cardiac 

tissue. In addition, encouraging results indicative of a PKARIα mediated change in liver DRP1 

during starvation were identified. Further investigation of the phospho-status of DRP1-S637 

using alternative methods may be informative. As the implication of DRP1-S637 

phosphorylation is inhibition of its mitochondrial fission activity a method of assessing changes 

in mitochondrial morphology would also be necessary. This could perhaps be accomplished by 

using electron microscopy or immunohistochemistry of liver tissue sections. For example, if 

PKARIα phosphorylates DRP1-S637 during starvation, mitochondria from these interventions 

should be larger and this difference should be absent in PKARIα C17S KI mice.  
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In conclusion, PKARIα is a ubiquitous kinase replete within the cardiovascular system and 

subject to post-translational modification by both cAMP and oxidants. Ex vivo Langendorff 

perfusion experiments demonstrated that in response to H2O2 PKARIα forms a disulfide dimer 

which translocates to membrane fractions. This model of PKARIα oxidation was then 

replicated in vivo in the context of starvation. The targets of starvation induced disulfide bound 

PKARIα remain to be fully elucidated, although promising results suggest that in liver 

starvation induced disulfide PKARIα may target the mitochondrial fission protein DRP1.  

PKARIα can be activated by β-adrenergic stimulation or through its oxidation to a disulfide 

dimer. How these two events are integrated by PKARIα to impact the phosphorylation of its 

substrates remains unclear as evidenced by a failure of translation between cellular and organ 

models. In addition, Na-pyruvate was identified as potently attenuating H2O2 induced cysteine 

oxidation. This is of particular methodological importance to experiments involving the 

exogenous application of oxidants, as numerous culture mediums and perfusion solutions 

include Na-pyruvate. Finally, a complete understanding of the factors regulating PKARIα is 

important as PKA is a critical regulator of inotropy, lusitropy and chronotropy in the heart and 

numerous cardiac pathologies such as ischaemic injury, heart disease and myocardial infarct ion 

are associated with excessive β-adrenergic stimulation and ROS production.  
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Figure S1. Ex-vivo ischaemia-reperfusion experiment does not induce disulfide PKARIα. Three 
separate experiments were undertaken using various periods of I/R. All interventions were preceded by 
a 20 minute stabilisation period.  (A) Immunoblot of PKARIα from hearts subject to 15 minutes 
ischaemia, or 15 minutes of ischaemia followed by 1, 15 or 30 minutes of reperfusion. (B) Immunoblot 
of PKARIα from hearts subject to two and three bouts of pre-conditioning (1 minute ischaemia followed 
by 1 minute of reperfusion), 10 or 20 minutes of ischaemia, and 5 or 40 minutes of reperfusion following 
20 minutes of ischaemia. (C) Immunoblot of PKARIα from hearts subject to 30 minutes of ischaemia 
followed by 2.5, 5, 30, 60 or 120 minutes of reperfusion. –ve, negative control (PKARIα C17S KI 
sample) and +ve, heart perfused with 100 µM H2O2. All controls were time matched.  
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Figure S2. Ex-vivo ischaemia-reperfusion experiment does not alter pDRP1-S637. Immunoblot of 
DRP1 and pDRP1-S637 from mice hearts subjected to 30 minutes of ischaemia followed by 60 minutes 
of reperfusion. A mouse IP injected with isoprenaline served as a positive control for pDRP1-S637. 
(controls n=5, I/R n=6, ±SEM). 

 

 

 

 

Figure S3. Mitochondrial uncoupling with DNP does not induce changes in disulfide PKARIα. 
Immunoblot of PKARIα and pDRP1-S637 in hearts from mice treated with DNP. Mice were injected 
with DNP (30 mg/kg) and hearts harvested 2, 4, and 8 hours post injection. Control mice received an 
equal volume of 0.9 % NaCl and were harvested 8 hours post IP. Hearts were immediately snap-frozen 
in liquid nitrogen. 
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Figure S4. Glucagon elevates blood glucose but does not alter disulfide PKARIα formation or 
pDRP1-s637. Mice were fasted for 6 hours prior to glucagon (1 mg/kg) IP injection. Blood glucose 
measurements were taken 10, 30 and 60 minutes post-IP and assessed with an Akku Chek blood glucose 
monitor. Control animals had ab libitum chow access at all times. Hearts were harvested after the final 
blood glucose measurement and immediately snap-frozen in liquid nitrogen. (A) Blood glucose 
response to glucagon IP after 6 hours fasting. (B) Immunoblot of PKARIα and pDRP1-S637 in hearts 
from glucagon injected mice. * p<0.05 difference from Control group (Repeated measures Two way 
ANOVA, multiple comparison between groups). 
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Figure S5. Two or three day hypoxia does not impact disulfide PKARIα or pDRP1-s637. Hypoxic 
animals were housed in the Proox P360 hypobaric chamber containing 10 % O2 for two or three days. 
O2 levels were monitored throughout the experiment with an in-chamber O2 sensor. Control mice were 
kept in the same room and exposed to ambient O2 (21%) for an equal duration of time. Upon cessation 
of the experiment hearts were immediately snap-frozen in liquid nitrogen. A mouse IP injected with 
isoprenaline was used as a positive control for pDRP1-S637. (A) Immunoblot of PKARIα and pDRP1-
S637 in response to 2 day hypoxia. (B) Immunoblot of PKARIα and pDRP1-S637 in response to 3 day 
hypoxia. 
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Figure S6. Freshly isolated cardiomyocytes show irregular disulfide PKARIα response to H2O2 
and monomer protein is not visible. Freshly isolated cardiomyocytes were settled for 1 hour prior to 
treatment for 10 minutes with H2O2 (100µM, or as indicated), the thiol selective oxidant diamide (500 
µM) or left as untreated controls. (A) Immunoblot of PKARIα in response to 0, 10 and 100 µM H2O2. 
(B) Immunoblot of PKARIα in response to 100 µM H2O2 and diamide. 
 
 
 

 

Figure S7. P62 is unchanged in PKARIα C17S KI mice. Food was removed from mice for 24 

hours after which they were sacrificed. Left, immunoblot of P62 and GAPDH from WT and 
KI animals before and after starvation. Right, densitometry quantification of PKA substrate 

phosphorylation. KI: PKARIα C17S, WT: wildtype (n=3, ±SEM). Analysis: One-way 
ANOVA, p<0.05.  
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A2. Reagents and buffers 

Krebs-Henseleit bicarbonate perfusate 

 

CaCl2    1.4 mM  
NaCl    118.5 mM 
Glucose   11 mM   

NaHCO3   25 mM  
KCl    4.7 mM 

KH2PO4   1.2 mM  
MgSO4 · 7H2O  1.27 mM 
Na-pyruvate   2 mM 

 
The first four chemicals were added to ddH2O and stirred until completely dissolved prior to 

the addition of the remaining chemicals. The buffer was freshly made on the day of its use and 

kept at 4 °C. 

 
H2O2 

 
10.2 µl of stock H2O2 (9.79 M) in 989.8 µl of ddH2O gives 100 mM H2O2.  

 
Insert 1 µl/ml of 100 mM H2O2 for final concentration of 100 µM 
 

Make fresh on day of experiment. Pour stock solution into epindorff prior to pipetting to 
prevent contamination.  

 
Isoprenaline 

 

61.93 g of isoprenaline (MW 247.72) in 50ml ddH2O gives 5 mM stock. 

Dilute this 1:5 for 10 µM solution  

Insert 1 µl/ml of 10 µM solution for final concentration of 10 nM.  

Make fresh on day of experiment and shield from light.  

For intraperitoneal injection  

Stock: 30 mg of isoprenaline in 10 ml of 0.9 % NaCl 

Stock is then diluted 1:10 in NaCl for a final concentration of 0.3 µg/µl 

Mice are injected with 3.3 µl/g giving a dose of 1 mg isoprenaline per kg 

Make fresh on day of experiment and shield from light.  

 

 
 



A2. Reagents and buffers 

 

116 

 

 
 

 
 

2,4 dinitrophenol (DNP) 

 
Stock: 90 mg of DNP in 10 ml of 0.9 % NaCl 

 
Stock is then diluted 1:10 in NaCl for a final concentration of 9 µg/µl 

 
Mice are injected with 3.3 µl/g giving a dose of 30 mg DNP/ kg 
 

Make fresh on day of experiment and shield from light. 
 

 
Glucagon 

 

Stock: 30 mg of glucagon in 10 ml of 0.9 % NaCl 
 

Stock is then diluted 1:10 in NaCl for a final concentration of 0.3 µg/µl 
 
Mice are injected with 3.3 µl/g giving a dose of 1 mg glucagon per kg 

 
Make fresh on day of experiment. 

 
 
Cardiomyocyte isolation buffer 

 
NaHCO3   120.4 mM 

KCl    14.7 mM 
KH2PO4   0.6 mM 
Na2HPO4  · 2 H2O  0.6 mM 

MgSO4 · 7 H2O  1.2 mM 
HEPES   10 mM 

NaHCO3   4.6 mM 
Taurin    30 mM 
2,3-Butanedione monoxime 10 mM 

Glucose   5.5 mM 
pH 7.4 at 37 °C 

 
 
Tissue homogenisation buffer 

 
Tric-HCL pH 7.4  100 mM 

Maleimide   100 mM 
1 x cOmplete mini EDTA-free tablet (Roche)  
1:100 dilution of phosphatase inhibitor cocktail P5726 (Sigma Aldrich) 

 
Homogenisation buffer was kept on ice at all times during homogenisation.  
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Sodium dodecyl sulfate (SDS) sample buffer 

 

Tris-HCL pH 6.8  100 mM 
SDS    4 % 
Glycerol    20 % 

Bromophenol blue 
Maleimide    100 mM 

 
Reducing sample buffer was made by adding 5 % (v/v) β-mercaptoethanol.  
Cell homogenisation buffer 

 
HEPES     10 mM 

Sucrose     300 mM 
NaCl      1 mM 
CaCl      2 mM 

EGTA      1 mM 
Triton X-100     1 % 

PhoSTOP tablet (Roche)   1/10 ml 
cOmplete mini EDTA-free tablet (Roche) 1/10 ml 
pH 7.4 

 
All homogenisation is undertaken on ice.  

 
 
PBS-Tween-20 

 
PBS      1 L 

Tween-20     1 ml 
 
 

Coomassie Brilliant Blue 

 

Coomassie Brilliant Blue R-250  0.2 % 
Acetic acid      7.5 % 
Ethanol      50 % 

 
Destain 

Methanol     50 % 
Acetic acid      1 % 
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Primary Antibodies: Western Blot  

Name Species Manufacturer/Catalogue no. Dilution 

PKARIα Mouse BD Transduction Laboratories (610165) 1:1000 

Phospho-PKA substrate Rabbit Cell Signalling Technology (9624) 1:1000 

PKARIIα Mouse BD Transduction Laboratories (612242) 1:1000 

PKAcatα Mouse BD Transdcution Laboratories (610980) 1:1000 

DRP1 Rabbit Cell Signalling Technology (8570) 1:500 

Mitofusion-1 (D6E2S) Rabbit Cell Signalling Technology (14739) 1:1000 

Mitofusion-2 (D2D10) Rabbit Cell Signalling Technology (9482) 1:1000 

LC3A/B XP Rabbit Cell Signalling Technology (12741) 1:1000 

BRP44 Rabbit Abcam (ab 111380) 1:1000 

DRP1 Rabbit Santa Cruz Biotechnology(sc-32898) 1:1000 

pDRP1-s637 Rabbit Cell Signalling Technology (6319) 1:500 

pDRP1-s637 Rabbit Cell Signalling Technology (4867) 1:500 

D-AKAP1 Rabbit Proteintech Europe (15618-1-AP) 1:1000 

PKGα Goat Santa Cruz Biotechnology (sc-10338, E-17) 1:1000 

GAPDH (V-18) Goat Santa Cruz Biotechnology (20357) 1:1000 

NaKATPase-α1 Mouse Developmental Studies Hybridoma Bank (α6F) 1:1000 

Cardiac Troponin I Rabbit Abcam (ab47003) 1:1000 

    

 

Secondary Antibodies: Western Blot 

Name Manufacturer/Catalogue no. Dilution 

Anti-mouse IgG HRP Cell Signalling Technology (7076) 1:1000 

Anti-rabbit IgG HRP Cell Signalling Technology (9624) 1:1000 

Anti-goat IgG HRP BD Transduction Laboratories (612242) 1:1000 

 

Primary Antibodies: Immunofluorescence 

Name Species Manufacturer/Catalogue no. Dilution 

PKARIα Mouse BD Transduction Laboratories (610165) 1:500 

RYR2 Mouse Piece Antibodies via Thermo (MA3-916) 1:500 

Cav3 Rabbit Abcam, (Ab 2912) 1:500 

 

Secondary Antibodies: Immunofluorescence 

Name Manufacturer/Catalogue no. Dilution 

AlexaFluor 514 goat anti-mouse Molecular Probes, Life Technologies (A31555) 1:1000 

AlexaFluor 633goat anti-rabbit Molecular Probes, Life Technologies (A21071) 1:1000 
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Prkar1 polymerase chain reaction master-mix for one reaction 

 

5 x green GoTaq flexi buffer (Promega) -   10 µl  

MgCl2 (Promega)    25 mM   4 µl 

dNTPs (Promega)    10 mM   1 µl 

PKA primer 1 (Invitrogen)   5 µM   1 µl 

GCT TTC CTT TAC CAA GCA GG 

PKA primer 2 (Invitrogen)   5 µM   1 µl 

GTC TGT GAG TCA CAC TGA CC 

Tas (5 U/ µl)(Promega)   -   0.4 µl 

Nucleotide free H2O    -   35.6 µl 

DNA elute     -   4 µl 

 

Master-mix is first made on ice and then 36 µl added to every 4 µl DNA sample 

 

Polymerase chain reaction thermocycler program  

 

95 °C  5 minutes 

95 °C  30 seconds 

60 °C  30 seconds  35 cycles  

72 °C  1 minute 

72°C  10 minute 

 

TAE buffer 

 

Tris-Base   40 mM 

Glasical acetic acid  20 mM 

EDTA    1 mM 

pH 8.3 
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2 %  Agarose gel 

 

2 g of agarose powder (Applichem) is dissolved in 100 ml of TAE buffer and heated in a 

microwave until dissolved. Once cooled, 0.01 % (v/v) gelRed Nucleid Acid Gel Sta in 

(Biotium) is added. The solution is then poured into a casting tray, combs added and allowed 

to set. 

 

PBS lysis buffer 

PBS    50 ml 

Triton X-100   1 ml 

1 x protease inhibitor tablet  

 

2-AHA-cAMP  

 

On arrival beads were centrifuged (1,000 g, 5 minutes), the supernatant removed and beads re-

suspended in 10 ml of PBS containing 0.1 % sodium azide. Beads are stored at 4 °C until 

needed. 
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