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Abstract

A mechanistic understanding of biological function requires a quantitative determination of

macromolecular subunit architecture and interaction. Optical microscopy and spectroscopy

provide a noninvasive method to characterize the stoichiometric ratios of molecular com-

plexes. Though target-bound fluorescence labeling techniques can help to detect single

molecules, counting molecules in a molecular complex remains challenging. In solution,

diffusion limits the observation times of single molecules and, thus reduces the number of

detectable photons. Current methods have limited resolving power or are constrained by

a complex experimental configuration. Therefore, they are not able to precisely quantify

the number of labeled fluorophores. In this dissertation, I first explore the ability of pho-

ton antibunching to probe molecular stoichiometry in solution. The underlying theoretical

model is elucidated and subsequently applied to samples of different labeling stoichiome-

try. It enables determining the average number of emitters per molecular complex. In the

second part of my thesis, to obtain the full distribution of species with a particular num-

ber of fluorescent labels, another method is developed. It is based on molecular brightness

analysis using imaging-based photon counting histograms. This is assisted by a nanofluidic

device that enables direct imaging of diffusing molecules with extended observation time. I

performed a systematic study of the experimental conditions which guarantee an optimal

performance of this method. The capability of correctly determining distributions of stoi-

chiometries of molecular mixtures is verified by both simulation and measurements of small

molecules. The nanofluidics system allows both single-molecule detection and manipulation

under microscopic imaging, which is simple and implementation-friendly.
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1 Introduction

In the early 1990s, adventurous biophysicists and microscopists invented an optical system

to eventually reach the detection of single molecules [84] [88]. Aided by fluorescent tagging, e.g.

chemical labeling, immunofluorescent staining, and genetic labeling [101] that can specifically

target the molecule/structure of interest, this groundbreaking advance allows for seeing single

biomolecules as brightly shining stars dancing in their biological space. Since then, single-

molecule detection, with its potential to gain invaluable insights into nature, has inspired

various experimental designs [83]. It offers the possibility to study the dynamic evolution of

biological systems at unprecedented molecular scale. Especially, single-molecule fluorescence

localization-based microscopy has not only allowed for sensing of minuscule molecule mo-

bility, e.g. motor protein walking along actin filaments [124] but also contributed essentially

to break the longstanding diffraction barrier of optical microscopy [8] [9] [99]. It has turned

the optical microscope into the nanoscope and created a vibrant cross-disciplinary research

environment for super-resolution imaging [89]. For wide-field epifluorescence or total internal

reflection fluorescence (TIRF) microscopes, the resolution of imaging can be increased by at

least one order of magnitude. This family of methods takes advantage of the feature that

fluorescence molecules can be switched ’on’ and ’off’. Therefore, each ’on’ molecules can be

recorded and separately localized in a time-sequential manner [100].

Super-resolution microscopy tells the position of biomolecules with improved precision, which

is a very useful tool such as to directly observe if binding and dissociation take place for an

enzyme to its substrate [52]. To report on the intramolecular conformational changes or on

intermolecular interactions between molecules, another powerful technique, named single-

molecule Foerster Resonance Energy Transfer (smFRET), is used. It normally measures

the fluorescence time trajectories from a FRET pairs, typically two adjacent fluorophores

of different colors called donor and acceptor. Dipole-dipole interaction between the two flu-

orophores results in energy transfer from donor to acceptor that is a sensitive function of

distance. Using smFRET, one can measure molecular distances and their temporal variation

in a distance range of 2 to 10 nm [51] [49] [106].

Although single-molecule methods were instrumental in providing previously unavailable

data on elementary biological processes [50], many important technical challenges remain to
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be solved. Among them, two issues have frequently been raised in the context of biological

applications and call for improvement: immobilization-free single-molecule detection method

to avoid the perturbation of biological functions of studied molecules [5] and obtaining quanti-

tative information, in particular, counting molecule numbers in biomolecular complexes [100].

Nanometer-sized objects are undergoing fast Brownian motion in aqueous solution, resulting

in the difficulty of studying non-immobilized biomolecules. Optical detection of molecules

in solution is often made difficult by the out-of-focus fluorescence background from diffusing

molecules. The most natural solution is to introduce some forms of optical-sectioning [5],

which can highlight only a fraction of molecules in the sample volume by confined excita-

tion/detection. For example, confocal spectroscopy is commonly applied to detect single

molecules in solution. The light beam is tightly focused by using a high numerical aper-

ture (NA) objective, producing a diffraction-limited excitation volume. A spatial pinhole

placed at the confocal plane of the objective allows for eliminating out-of-focus light (op-

tical sectioning). Only molecules diffusing through the confocal detection volume can emit

fluorescence signal that is recorded onto point detectors of single photon sensitivity [5]. Ev-

ery molecular detection event appears in the fluorescence intensity time trace as a transient

signal burst [106]. Burst-by-burst analysis can be performed to extract information of each

diffusing molecules. One of the drawbacks is that the dwell time of a single molecule in the

confocal detection volume (∼ 1 femtoliter) is limited by diffusion so that each molecule can

only be observed for a short moment (typically, a few milliseconds). Concerning biological

applications, many processes happen on the timescale of seconds. Thus, the milliseconds ob-

servation time is too short to follow the dynamics of slow process [117]. Likewise, for imaging

method such as TIRF microscopy, laser illumination is performed with an incidence angle

above the critical angle of total internal reflection. It generates an evanescent excitation

field that forms a thin optical excitation layer of a few hundred nanometers in thickness [4].

Diffusing molecules quickly escape from this detection plane, which also limits the number

of photons that can be collected (i.e. photon budget) during the short observation time.

The photon budget determines the accuracy with which one can determine single molecule

properties, for example how well one can localize a single molecule from its image. As is

well known, this localization accuracy scales with the square root of the number of detected

photons. A similar relation will apply when one wants to determine the number of fluores-
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cently emitting molecules on a molecular complex by measuring the brightness (number of

photons per time) from such a complex.

This dissertation focuses on determining the stoichiometry of biomolecular complexes in

solution on the single-molecule level. For this purpose, I have developed a modified flu-

orescence photon antibunching method, and I have built a new nanofluidics-based rapid

single-molecule imaging microscope. Using this microscope, I was able to determine single-

molecule brightness histograms, which can be used to obtain distributions of stoichiometries

across an ensemble of molecules.

1.1 Probing molecular stoichiometry on the single-molecule level

Single-molecule spectroscopy and imaging are able to measure the full distribution of molec-

ular parameters (e.g. emission spectra, brightness or fluorescence lifetime) instead of only a

population average. It helps to explore the hidden heterogeneities of molecular properties,

such as the presence of multiple subpopulations, or the presence of observe intermediate

states in molecular dynamics [75].

Single-molecule experiments have been performed both in vivo and in vitro. The two ap-

proaches are complementary and used in combination to study molecular functions in cells.

In vivo measurements can reveal how biomolecules (such as proteins or DNA) function in a

cellular context, and the actions of individual molecules are connected to the phenotype of a

cell [95]. For in vitro measurements, molecules are usually separated spatially at low density,

and their activity can be determined with high precision. Additionally, in vitro experimental

results are often used as prior expectations to the related in vivo experiments.

Determining molecular stoichiometry is of great significance. Knowledge of subunit stoi-

chiometry is essential to infer the biological functions of molecular complexes in cells [57]. For

instance, many membrane proteins form multimers before they achieve a functional states

and the stoichiometry of molecular assemblies determines the fundamental properties of sig-

naling complexes [116]. Moreover, altered stoichiometries may lead to disease states of the

cell [96]. Thus, quantitative information is helpful for better understanding the underlying

molecular mechanisms of many biological problems.
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For example, neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s dis-

ease (PD), Huntington’s disease (HD) or amyotrophic lateral sclerosis (ALS) have a com-

mon molecular mechanism, specifically, the aggregation of misfolded proteins in the central

nervous system [97] [98]. More than half of the 25 recognized neurodegenerative diseases are

associated with protein aggregates [90]. However, a quantitative characterization of protein

aggregation is challenging [58], and the fundamental reactions taking place during aggregation

are difficult to determine [104]. Also, the exact pathways and kinetics of protein aggregation

are not well known, although the peculiarities of aggregation are probably important for

disease development. [98].

Recently, single-molecule spectroscopy has been applied to study PD-associated protein

alpha-synuclein (αS) oligomerization [26]. More specifically, smFRET was employed to detect

and characterize oligomer structures. This measurement technique is capable of detecting

the crucial early stages of aggregation and has eventually revealed the presence of two forms

of oligomeric species [26]. A recent combination of fast-flow microfluidics and kinetic analysis

has been used to drastically increase the temporal resolution of oligomerization measrue-

ments [56] [58].

Figure 1: Jablonski diagram of the energy levels

Single molecule spectroscopy and imaging can be particularly useful for this kind of studies.
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Super-resolution microscopy offers the opportunity to directly image individual protein ag-

gregates. For instance, direct stochastic optical reconstruction microscopy (dSTORM) has

been used to image the arrangement and stoichiometry of proteins of the nuclear pore com-

plex, with ∼15 nm lateral resolution. It was shown that the integral membrane protein gp210

is distributed in an eightfold radial symmetry [76]. Nonetheless, even super-resolution imaging

is not yet capable of spatially resolving densely packed molecular aggregates. Fortunately,

single-molecule fluorescence spectroscopy can provide information about the stoichiometry

of such clusters or complexes.

As shown in Figure 1, a single fluorescent molecule absorbs a photon from the excitation

source and is excited from its electronic singlet ground state S0 into its first singlet excited

state S1. After fast internal relaxation that brings the molecule to the lowest vibrational

level of S1, it emits a photon that is red-shifted with respect to the excitation wavelength and

returns to its ground state. This transition from S1 to S0 is named spontaneous emission,

and the average time a molecule resides in its excited state is called fluorescence lifetime.

The excited-state lifetime (typically a few nanoseconds) determines the temporal separation

between subsequent photons from a single emitter. Thus, a single emitter can only emit

one photon at a time, which leads to the phenomenon of antibunching [65] [64] [6]. However,

when measuring two or more independent emitters, it is possible to detect simultaneously

emitted photons. Therefore, anitbunching can be used to determine the stoichiometry of

multimolecular complexes, both on surfaces [42] and in solution [109]. The first part of this dis-

sertation focuses on photon antibunching in solution and its application to probe molecular

stoichiometry.

There exists a second approach to use single-molecule fluorescence for determining the num-

ber of emitting fluorophores on a single complex. After a certain number of excitation

cycles, a fluorophore molecule will eventually photobleach. Consequently, the fluorescence

intensity of a molecular complex with more than one label should drop in a stepwise fash-

ion. The number of these discrete steps ideally corresponds to the number of fluorescent

tags on one single complex. Hence, the method of counting bleaching steps has been com-

bined with single-molecule localization-based microscopy for determining stoichiometry of

immobilized molecular complexes [116] [128] [33]. Besides photobleaching, many fluorophores

can reversibly switch between a fluorescence ’on’ and a dark ’off’ state, due to triplet or
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redox state dynamics, photochromic switching [52] or dynamic binding and dissociation [60].

Recent studies have explored fluorophore blinking statistics to count molecules in molecular

complexes [68] [96] [59] [57]. Using photoleaching and photoblinking to determine molecular sto-

ichiometry usually requires long time observations of single molecules, either to ensure the

capture of intensity drops or to record many on/off cycles for statistical estimation. There-

fore, they are mostly working on immobilized molecules.

One goal of the dissertation is to study molecules in aqueous solution. In this case, the

biggest challenge is the short dwell time for observing a single diffusing molecule, i.e. the

short time a molecule resides within the detection volume before diffusing out of it. For

these measurements, fluorescence blinking and bleaching are undesired. Molecular diffu-

sion, both rotational and translational, is connected to the hydrodynamic size of a molecule.

Fluorescence Correlation Spectroscopy (FCS) is typically used for measuring the hydrody-

namic radius of molecules at nanomolar concentrations, which could potentially be used for

determining the stoichiometry of a complex [91] [28]. However, this technique is less suitable

for the measurements of a mixture of multiple species, especially when the size difference

is not so significant. Alternatively, molecular brightness, which is defined as the average

number of photons per time per molecule, provides a sensitive parameter for measuring

the distribution of molecular species with different stoichiometric numbers. Provided that

there are no electronic interactions between the fluorophores on one complex, brightness of a

molecular complex scales linearly with the number of fluorescent emitters. Thus, the second

part of this dissertation is devoted to the precise measurement of molecular brightness and

its application to the determination of stoichiometries in mixtures.

1.2 Photon antibunching

Photon antibunching was first theoretically predicted [13] [65] and then experimentally demon-

strated in the late 1970s [64], when resonance fluorescence of sodium atoms was studied under

continuous excitation in atomic beams. Shortly after, Moerner and Orrit accomplished the

detection of single molecules at low temperature [84] [88], and photon antibunching was suc-

cessfully measured for a single dye molecule trapped in a solid [6]. It was later observed for
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organic dyes on a surface [3], for semiconductor nanocrystals [81] and for nitrogen-vacancies

in diamond [66] at room temperature. Since then, photon antibunching has been routinely

applied as the gold standard of proving the presence of only a single emitter within the

detection volume [47].

Figure 2: Fluorescence excitation spectra of (a) one and (b) two single pentacene molecules. (c)

and (d) show correlation function for cases (a) and (b), from ref. [6]. Note that the contrast in the

correlation function in (d) is much more reduced than (c).

Modern photon counting devices achieve a temporal resolution of as small as 1 ps, which

is enough for observing fluorescence photon antibunching that typically takes place on a

time scale of nanoseconds. The measurement is done by counting single photons with high

temporal resolution and then calculating a two-photon correlation function. Antibunching

will be visible as a sharp drop of the two-photon correlation amplitude at short lag times

on the order of the fluorescence lifetime. This is due to the fact that a single molecule can-

not emit, on average, more than one photon during the lifetime of its excited state. More

specifically, no photon pairs can be detected simultaneously, yielding a zero value at zero lag
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time of the correlation function. It is obvious that this value increases when the lag time

becomes larger than the fluorescence lifetime. If more than one emitter is present within the

detection volume, those emitters can emit photons independently. This results in a non-zero

probability of detecting two photons at zero lag time, and the amplitude of the antibunching

dip becomes smaller with an increasing number of emitters. In the earliest single-molecule

experiments of photon antibunching, this unique feature has already been observed for the

case of two molecules trapped in a solid and pumped at the same time [6], as shown in Figure

2.

Thus, photon antibunching can be used as a tool to determine the number of emitters

within the detection volume. Given that molecules in solution are indistinguishable, photon

antibunching measurements can be performed in a cumulative way by integrating the fluo-

rescence signal over many single-molecule transits through the detection volume.

I will discuss the method of using photon antibunching for the determination of molecular

stoichiometry in Chapter 2. I will first present the theoretical background of the method,

and then present the results of my experimental application of antibunching to determining

molecular stoichiometries.

1.3 Brightness analysis

Fluorescence properties such as intensity or lifetime can be used to sense local changes in

a molecule’s environment. In order to guarantee a reliable statistical analysis, a sufficiently

large number of detected photons is required. For example, fluorescence lifetime is a sensi-

tive indicator that can be applied to investigate the dynamics of single molecules, e.g. the

protein conformational changes [123]. For reliably determining the fluorescence lifetime of

a mono-exponential fluorescence decay, one needs at least 100 detected photons [80]. Many

more photons are required for multi-exponential decays. To allow for long observation times,

measurements are typically done by performing point-like excitation/detection of individual

tethered molecules. In solution, the observation time of each molecule is limited due to its

Brownian diffusion through the detection volume, usually in the range of less than 1 ms for

a GFP-like protein. Under a typical molecular count rate in the order of 104 to 105 counts/s,

as a consequence, it is difficult to record enough photons to give a reliable estimation of
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single molecule lifetime.

However, freely diffusing molecules in solution experience a more homogeneous local envi-

ronment than immobilized molecules. Given that the independently fluorescing molecules

within a molecular complex share the same emission properties, it is possible to increase the

statistics by accumulating the signal over many molecular detection events.

A confocal microscope provides an exceptional signal to noise ratio (SNR), in comparison

to a wide-field fluorescence microscope. There, each molecule passing through the detection

volume is excited by light of a tightly focused laser beam. If the concentration of fluorescing

molecules in solution is low enough, the recorded fluorescence intensity will show large fluctu-

ations over time, due to the constantly changing number of fluorescing molecules within the

detection volume. Early work concerned with statistical analysis of this signal fluctuation

has resulted in techniques such as photon-counting histogram (PCH) spectroscopy [15] [16],

or Fluorescence Intensity Distribution Analysis (FIDA) [62]. The methods employ different

mathematical approaches to determine the molecular brightness and number of molecules

in the confocal detection volume. Both techniques focus on investigating the fluctuations

of the fluorescence signal amplitude, which is mainly caused by the random number of

molecules in the detection volume, and the non-uniform spatial profile of the excitation in-

tensity. Experimental conditions should have to be carefully characterized to fit the data

with a sophisticated theoretical model. In particular, precise determination of the so-called

molecular detection function (MDF) is required. The MDF depends on excitation and de-

tection light geometry and emission properties of the molecule, and it tends to change by

multiple experimental parameters such as cover-slide thickness, refractive index of sample

solution, astigmatism and optical saturation [36]. Thus, those methods of brightness analysis

have not found broad biological applications.

A fundamental challenge of brightness quantification in solution is that each diffusing molecule

transits the ∼1 fL detection volume along an irregular trajectory, which generates hetero-

geneous fluorescent fluctuation time traces. Pioneered by Keller and his group, the idea

of flow cytometry has been introduced in combination with single-molecule burst size dis-

tribution (BSD) analysis [79] [37] [38]. In their study, a sheath flow directed and transported

single molecules through a laser focus, ensuring nearly identical molecular transit trajecto-

ries. This generated relatively uniform fluorescence bursts, as demonstrated in Figure 3.
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Even though excellent signal quality and unsurpassed resolving power for molecular mix-

tures were achieved at that time, this method has not been applied widely. This is due to

the complexity of the set-up that requires an orthogonal excitation/detection scheme which

has to be well-aligned to the sheath flow. Moreover, since it allows the presence of only

one molecule at one time in the detection volume, the experimental throughput is very low.

A follow-up method of Cylindrical Illumination Confocal Spectroscopy (CICS) [74] utilizes

one-dimensional beam shaping to create a uniform sheet-like observation volume that could

be incorporated into a versatile microfluidics system. It facilitates the application of Keller’s

BSD analysis, especially on many single nucleic acids related studies [72] [73].

Figure 3: Single-molecule burst size analysis by flow cytometry. Modified from ref. [37] [38].

For all flow cytometric approaches to single-molecule detection, a relatively high flow rate

(a few millimeters per second) is required to compete against molecular diffusion and, thus

to ensure identical molecular transit paths. For a typical confocal-based detection volume of

less than 1 µm in diameter, the observation time (a few hundreds of µs) becomes too short

for detecting a sufficient number of fluorescent photons per molecule.

Alternatively, single-molecule studies can also be performed with an imaging widefield micro-

scope. Generally, epifluorescence microscopy is applied to excite a large area of a sample, and
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multiple molecules can be recorded and studied in parallel. It can be integrated into a detec-

tion system for high-throughput applications. Additionally, since the individual molecules

are visualized directly by imaging, locations of molecular detection can be used to infer the

excitation condition that each molecule has been experiencing. This approach can signifi-

cantly improve the brightness characterization of single moleucles, as discussed in Chapter 4.

To extend the observation time and increase the photon budget, possible solutions include

either devising a dynamic detection system that is able to track fast moving molecules or

trapping them locally in the detection volume. Early work along these ideas has lead to

elegant engineering solutions, e.g. single-molecule tracking [53] or Anti-Brownian Electroki-

netic (ABEL) trapping [22]. In a imaging method, long time observation may benefit from

expanding illumination but would have to suffer from low SNR. Concerning the brightness

analysis, it is of great interests that a simple integration of nanofluidic system offers to solve

this problem in a straightforward manner. The characterization of molecular brightness is

inherited from Keller’s early work. In contrast, rather than illustrating the single-molecule

detection event as fluorescence intensity burst, imaging system allows for visualizing single

molecule as characteristic image pattern, i.e. Point Spread Function (PSF). Starting with

Chapter 3, I will demonstrate how a nanofludic system allows for observing single molecules

over long time spans, orders of magnitudes longer than what is usually possible with a con-

focal microscope, and how to measure their brightness. The imaging system substantially

improves the throughput, which is important for application in e.g. advanced molecular

diagnostics.

1.4 Nanofluidics assisted single-molecule detection

The combination of micro/nanofabrication techniques with wide-field optical microscopy

is perfectly suited to achieve extended observation times for immobilization-free single-

molecule studies. With much less sample consumption and higher speed of analysis, mi-

cro/nanofluidics facilitates analytical biochemistry with chip-like devices [127]. These systems

are especially efficient when utilizing optical signal transduction. Nanofluidic devices help in

confining molecular motion to a few dozen or hundred nanometers. Therefore, fluorescence
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molecules can be kept in the detection volume. This offers an extended observation times

which are not obtainable in free solution. Furthermore, this local confinement enables the

separation of individual molecules and realizes some kind of physical sectioning similar to

optical sectioning in confocal spectroscopy or TIRF microscopy, which provides a high SNR

by largely reducing the out-of-focus background.

Figure 4: Nanofluidic channel system for single-molecule optical measurements. (A) A typical

nanofluidic channel (500 nm×250 nm cross section) by differential interference contrast optical

microscopy. The scale bar is 10 µm. (B) Schematic diagram of single-molecule detection in the

nanofluidic channel under a confocal fluorescence microscope. Adapted from ref. [19].

One of the most prominent applications of this kind of technique is single molecule real-

time sequencing (SMRT). It utilizes zero-mode waveguides (ZMWs) to form thousands of

zeptoliter small reaction vessels on a planar surface. Single nucleotide incorporations by

DNA polymerase are observed through a massively parallel fluorescence detection [71] [35].

Besides ZMWs, nano-sized fluidic channels are another way of confining molecules into well-
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determined excitation and detection geometries.

As shown in Figure 4, a nanofluidic system provides a flow cytometry-like device that is

able to guide molecules through the optical detection volume. With the height of the chan-

nel smaller than the depth of focus, molecules which are confined within the channels are

consistently kept in the focal plane. Therefore, Keller’s early idea of single-molecule BSD

analysis can be revived in a new fashion. The nanofluidic device is compatible to inverted

fluorescence microscope, making the alignment of sample flow much easier.

Nanofluidic channels also enable long-term single-molecule investigation in solution by ma-

nipulating molecular motion [23] [70]. smFRET [115] or lifetime spectroscopy [118] in solution have

already been successfully performed using nanoscale devices. It also offers the possibility to

measure the distribution molecular brightness with high precision. Moreover, employing a

single photon sensitive camera, brightness information can be obtained by direct imaging-

based photon counting. This method can analyze multiple single molecules at a time and is

amenable to massively parallel integration. Since the diffusion and transport of individual

molecules are directly observed in nanofluidic channels, single-molecule brightness estima-

tions can be done in a way that is no longer sensitive to the irregularity of molecular motion.

For this purpose, full-glass-chips with channel heights of less than 200 nm are utilized, which

confine molecular motion to the focal plane of the observing microscope. In combination

with high-speed stroboscopic imaging and active flow control, individual molecules can be

precisely monitored and well-manipulated in solution. I have obtained high-quality images of

freely diffusing molecules and measured their brightness with high accuracy. The direct imag-

ing approach is high-throughput and implementation-friendly, which offers great potential

for many lab-on-a-chip based ’point-of-care’ applications with single-molecule sensitivity [103].



16 1. Introduction
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2 Exploring photon antibunching to determine the sto-

ichiometry of molecular complexes

Several studies have been published that have applied fluorescence antibunching for the deter-

mination of the number of independent emitters in immobilized molecular complexes [6] [119] [42],

or to study energy transfer in fluorescently tagged biomolecules [27] [113]. In solution, the pho-

tophysical properties of fluorescent molecules are not influenced by any interaction with

surfaces or polymers, as is typically the case for immobilized molecules. Thus, provided

perfect control of excitation and detection conditions, each molecule in solution will show

identical emission properties. Moreover, in solution one can achieve extremely high data

quality by accumulating the fluorescence signal over many (thousands to millions) transits

of single molecules through the detection volume. This is particularly important for fluo-

rescence antibunching measurements, which require extremely high photon statistics, and

thus for using antibunching for determining molecular stoichiometries. In this Chapter, I will

start with introducing correlation functions and photon antibunching under continuous wave

(CW) excitation and then move to the more efficient pulsed excitation mode. Furthermore,

the influence of dye photophysics on antibunching measurements will be discussed. Finally,

I will present experiments which validate the applicability of antibunching for determining

the average stoichiometry of freely diffusing multi-emitter complexes.

2.1 Theoretical background

Typically, photon antibunching is measured by a confocal microscope with the single pho-

ton sensitive detector, which records the fluorescence signal as intensity time trace. The

signal I(t0) contains photons from the fluorescence of molecules within the sample and the

background Ibg, and reads:

I(t0) =
∑
j

Ij(t0) + Ibg(t0) (1)

Here the summation effects to all j molecules. The latter term is the background signal

resulting from light scattering, electronic and detector noise.
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In FCS, fluorescence intensity time trace is correlated with a time-shifted replica of itself

for different values of the time shift (i.e. lag time). The result is the Autocorrelation

Function (ACF) and is written as:

g(t) = 〈I(t0) · I(t0 + t)〉

=

〈[∑
j

Ij(t0) + Ibg(t0)

]
·

[∑
k

Ik(t0 + t) + Ibg(t0 + t)

]〉

=
∑
j

〈Ij(t0) · I(t0 + t)〉+ Ībg
2

+
∑
j

Īj Ībg +
∑
k

ĪkĪbg +
∑
j 6=k

Īj Īk

(2)

Here the bars and triangular brackets denote the average over all time values t0. Provided

that no intermolecular interaction is present, photon emissions from different molecules are

uncorrelated. Meanwhile, as all molecules in solution are indistinguishable and are treated

equally, Eq. 2 is then reduced to calculate the ACF of a single molecule, which is given by:

g1(t) = 〈i(t0) · i(t0 + t)〉 (3)

Here i(t0) denotes the recorded fluorescence signal from any individual molecule. Eq. 2 can

be further written as:

g(t) = N 〈i(t0) · i(t0 + t)〉+ Ībg
2

+ 2 ·N 〈i(t0)〉 Ībg +N(N − 1) 〈i(t0)〉2 (4)

where N is the total number of molecules recorded. Using the sample volume V , one can

write this equation in the form of molecular concentration c = N/V and N(N − 1)/V 2 ≈ c2.

There is

g(t) = cg1(t) + (cf̄ + b)2 (5)

Here, f̄ is the average fluorescence of individual molecules and b is the average detection

background.

The fluorescence ACF describes the probability to detect a photon after lag time t given that

there was a photon detection event at time zero. The average photon counting rate from a

single emitter (note the difference from single-molecule) at position r is described as fs(r). To

the perspective of a single-molecule that contains the same independent fluorescent emitters

of number n, the probability of detecting a photon at any time is then given as nfs(r).

Considering that a photon pair can either come from the same of the n emitters or from two
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different emitters, on the timescale fast enough that it can regard the diffusing molecules as

stationary, the single-molecule ACF will have the form:

g1 =
〈
〈nf(r, t0 + t)fs(r, t0) + n(n− 1)fs(r, t0 + t)fs(r, t0)〉t0

〉
r

(6)

where the angular brackets denote the averaging over all the molecular position in space.

From Eq. 5 and Eq. 6, the short time evolution of the ACF will take the form:

g0 = lim
t→0

g(t) = cn(n− 1)
〈
f 2
s (r)

〉
r

+ (b+ cn〈fs (r)〉r)
2 (7)

when the fluorescent molecule initially is in its ground state (f(r, 0) = 0). At infinite lag

times, one finds:

g∞ = lim
t→∞

g(t) = (b+ cn〈fs (r)〉r)
2 (8)

Similarly, at an intermediate time ti, when the molecule is in its photophysical equilibrium,

while before the molecular diffusion starts to influence the ACF, there is

gi = cn2
〈
f 2
s (r)

〉
r

+ (b+ cn〈fs (r)〉r)
2 (9)

Therefore, measuring those three values from a full timescale ACF, the number of fluorescent

emitters per molecule can be calculated by using the formula:

g0 − g∞
gi − g∞

= 1− 1

n
(10)

Antibunching measurements is then performed in a way to characterize the dip amplitude

(shown in Figure 5) that is antiproportional to the number of independent emitters.

Upon the traditional CW excitation, photon emissions from excited molecules occur ran-

domly. It leads to the loss of photons that fall within the detector dead time window and

provides insufficient statistics. A more effective measurement of photon pairs can be realized

by using pulsed excitation. With a typical ∼ 100 ps pulse width, a single emitter is excited

only once within one pulse. It allows to excite molecules at defined time points and the

arrival time of photon detection events can be expected with respect to the pulse ’start’

time. In principle, no photon pairs are missing during the dead time of the detector when a

sufficiently low laser repetition rate is applied [47].

When applying pulsed excitation, the photon emission is temporally modulated and the re-

laxation of f(r, t0) should be taken into account. Given the laser pulse width is negligible,



20
2. Exploring photon antibunching to determine the stoichiometry of

molecular complexes

Figure 5: Correlation curve for Alexa 647 dissolved in water, with lag times ranging from nanosec-

onds to seconds. Different processes contribute to the distinguishable shapes of curve at separable

time.

it can then be written as:

f(r, t0) =
κ0(r)

τ

(
e−

mod(t0,Trep)

τ − e−
t0
τ

)
(11)

where τ is the fluorescence lifetime and Trep is the repetition period of laser pulses. Generally,

τ is much smaller than Trep. κ0(r) is a complex position-dependent function that describes the

photon detection probability. It takes into account of the excitation intensity distribution,

molecular photophysics and system detection efficiency etc. On the long timescale, f(r, t0)

relaxes toward its stationary function and reads:

fs(r, t0) =
κ(r)

τ
· e−

mod(t0,Trep)

τ (12)

Notably, here κ(r) is a similar factor as κ0(r) while has to take into account the occupation

of non-fluorescing states after photophysical relaxation on this timescale.

The ACF is then modulated by the laser pulses and shown as equally separated photon

peaks according to the corresponding laser repetitions. From Eq. 11, Eq. 12 and Eq. 6, one

can obtain the forms of g0 and g∞ through carrying out the averaging and gives:

g∞ = b2 + 2bcn〈κ (r)〉r +
c2n2〈κ2 (r)〉r

2τ

∞∑
j=0

e−
|t0−jTrep|

τ (13)
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and

g0 =
c

2τ

[〈
n(n− 1)κ2(r) + nκ0(r)κ(r)

〉
r

∞∑
j=0

e−
|t0−jTrep|

τ − n 〈κ0(r)κ(r)〉r e−
t0
τ

]
+ g∞ (14)

To simplify the expression, antibunching data analysis is performed by fitting the intensity

correlation functions simultaneously with models:

A∞ +B∞

∞∑
j=0

e−
|t0−jTrep|

τ (15)

and

A0 +B0

∞∑
j=0

e−
|t0−jTrep|

τ − C0e
− t0
τ (16)

Here, those equations include fit parameters A∞,B∞,A0,B0,C0 and fluorescence lifetime τ .

Based on Eq. 13 and Eq. 14, there is the relation:

B0 −B∞
C0

=
〈n(n− 1)κ2(r) + nκ0(r)κ(r)〉r

n 〈κ0(r)κ(r)〉r
(17)

In the case that no significant photophysical process is present, κ0(r) and κ(r) share the

identical physical meaning and have equal values. Thus, it is easy to calculate the number

of fluorescent emitters per molecular complex and gives:

n = (B0 −B∞)/C0 (18)

In a more complicated situation, where the fluorescent molecules exhibit additional nonfluo-

rescing states due to triplet state or light-induced cis-trans isomerization, κ0(r) and κ(r) are

not identical. To calculate the number of emitters from Eq. 17, the ratio between 〈κ0(r)κ(r)〉

and 〈κ2(r)〉 need to be determined. As they are describing photon detection probabilities,

this ratio can be estimated from the relative correlation amplitudes. The estimation is per-

formed on the timescale where these photophysical processes are involved. Typically, the

photophysical kinetics is much faster than the molecular diffusion, and those dynamics are

separable in time, allowing to write the ACF for t ≥ 100 ns as:

g(t) = α · gd(t) · gp(t) + β (19)

where α and β are fit parameters containing information of sample concentration and back-

ground signal. gd(t) is the model function describing the molecular diffusion. gp(t) is the
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photophysical kinetics related part and can be described by exponential decays:

gp(t) = γ0 +
N∑
i=1

γie
− t
ti (20)

Here N is the number of components that required to fit the correlation curve, which is

essentially associated to the underlying photophysics. Typically, N = 1 or 2 for organic dyes

or fluorescent proteins [109]. γi is the amplitude of decay component i. One can estimate the

ratio between 〈κ0(r)κ(r)〉 and 〈κ2(r)〉 as

〈κ0(r)κ(r)〉
〈κ2(r)〉

=

∑N
i=0 γi
γ0

(21)

Therefore, from Eq. 17 and Eq. 21, the number of emitters n can be calculated from the

modified formula of Eq. 18, which is given as:

(n− 1)
γ0∑N
i=0 γi

+ 1 = (B0 −B∞)/C0 (22)

2.2 Experimental: probing the stoichiometry of single-molecule

and determining molecular labeling efficiency

Photon antibunching measurement is experimentally realized in a Hanbury Brown-Twiss

(HBT) setup [11], where the photon flux is equally split and detected by two detectors. Here,

successive photons hitting on those two detectors are recorded through a Time-correlated

single photon counting (TCSPC) electronics with picoseconds temporal resolution. The

HBT-type measurement with two detectors has benefits of avoiding the influence from the

dead time in single detector case and also enabling a high detection count rate. Photon

counting events are stored as a series of arrival times and can further be cross-correlated in

the picosecond to nanosecond regime for statistical analysis.

Figure 6 shows the schematic of HBT-type confocal-based fluorescence microscopy system

used for photon antibunching measurements. Briefly, the 40 MHz circular polarized pulsed

(∼50 ps FWHM) laser of 640 nm (LDH–D–C–640, PicoQuant) is guided by a polarization-

maintaining fiber before collimation. The beam diameter is adjusted to 8 mm by a ring-

actuated iris diaphragm and then reflected by a dichroic mirror (FITC/TRITC, Chroma

Technology) towards the microscope’s objective (UPLSAPO 60 × W, 1.2 N.A., Olympus).

Fluorescence is collected by the same objective, passed through the dichroic mirror, and
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focused onto a single circular aperture (diameter 150 µm). After the pinhole, the emission

light is split by a 50/50 beamsplitter, and filtered by band-pass filters (BrightLine HC 692/40,

Semrock) before refocused onto two single-photon avalanche diodes ( τ–SPAD, PicoQuant)

respectively. TCSPC electronics (HydraHarp 400, PicoQuant) records detected photons from

both detectors with an absolute temporal resolution of 2 ps.

Figure 6: Schematic of confocal microscopy for photon antibunching measurements

To mimic the protein oligomerization process, double-stranded Deoxyribonucleic acid (dsDNA)

fragments are chemically modified to contain different numbers of covalent binding sites.

These modified sites were labeled using the fluorescent dye Atto 647N. The samples are

purified to get rid of free Atto 647N in buffer solution. An 8-well tissue culture chamber

on a 170 µm coverslip (Sarstedt) is used for all the measurements. To avoid adsorption of

the dsDNA on surface, the chamber is cultured with 0.3 mg/ml BSA for 20 minutes before
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measurements. Afterwards, the passivated chamber is filled with 200 µL solution of dsDNA

sample for antibunching measurement. In all measurements, the excitation light is focused

in the solution 50 µm on top of the coverslip. The excitation power is ∼20 µW before the

objective. The sample concentration is adjusted to have on average 2 to 8 molecules in the

confocal detection volume. This gives a good SNR and ensures the linear working perfor-

mance of both detectors. Each sample is measured for 20 minutes at a constant temperature

of 22 ◦C. The photon detection events are stored and then processed with a custom Matlab

routine.

Figure 7: Correlation functions (dots) and the curve fit (solid lines) from the measurement of

single Atto 647N labeled dsDNA. The figure on the left compares the ACFs at lag times around 0

s and 3 s, on the right side is the result obtained from the subtraction of two ACFs.

The cross-correlation functions between two channels are calculated around two different lag

times, corresponding to ACFs of g0 and g∞. Figure 7 shows the photon correlation results

with a 200 ps time bin for single Atto 647N labeled dsDNA, both around 0 s lag time (blue

dots) and 3 s lag time (green dots). The correlation function around 3 s lag time represents

the same meaning as g∞ since the single-molecule correlation g1 has completely decayed

to zero on this timescale. In all the correlation figures, the data is shown on a symmetric

positive and negative lag time range, corresponding to the photon pair correlation from the

first detector against the second detector and from the second detector against the first

detector, respectively. It is noticeable that even though the pure single labeled sample is
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measured, a non-zero value is obtained at zero lag time. It is due to the scattering and

uncorrelated detector background. Since these also equally contribute to the ACF at lag

times around 3 s, it can be corrected. The right panel of Figure 7 shows the correlation

function after the subtraction, which represents the contribution only from the molecules

that passed through the detection volume. Models from Eq. 16 and Eq. 15 are then applied

to fit the two correlation functions simultaneously with fit parameters A∞,B∞,A0,B0,C0 and

fluorescence lifetime τ .

After the correction, it is noted that the correlation peak at lag time zero has diminished to

the background level and a calculated emitter numbers of 1.1 based on Eq. 22 is achieved.

It is nicely in agreement with the value one as expected.

Figure 8: Correlation functions (red dots) and the fits with model. The average emitter numbers

is then calculated for the case of (a) mixture of single and double Atto 647N labeled dsDNA and

the maximum (b) three, (c) four, (d) five Atto 647N labeled dsDNA.
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On the other hand, from the same photon counting data, the ACF at lag times in the

range from 100 ns to 1 s is also calculated. Here, the fluorophore photophysical relaxation

is demonstrated. Fitting the curve based on Eq. 20, one obtains the correction factor∑N
i=0 γi
γ0

for calculating the number of emitters. Typically, the total photon counting records

are divided into several bunches (e.g. 10,000,000 photon counts each) and a bootstrapping

algorithm is then used. It repeatedly resamples those bunches to produce a new averaged

FCS curve and thus be fitted. Multiple fitting results are achieved that allows an estimation

of the fitting error.

To check if this method is capable of determining the number of emitters, dsDNA samples

with two, three, four and five binding sites are measured. In all those cases, each sample

is composed of different labeled species depending on the labeling efficiency. For instance,

the sample of three binding sites contains the fluorescent species of one, two and three dyes

labeled dsDNA, as illustrated in Figure 8 (b). In Figure 8, the increasing peak amplitudes at

zero lag time going from panel (a) to panel (d) matches well with the sample compositions

and the average numbers of emitters per complex.

Furthermore, from this average number, statistical analysis can unveil more information

about the molecular complex. An example is the labeling efficiency, which refers to the

probability of a binding site being labeled. Given that a molecular complex contains the

maximum N emitters (i.e. N binding sites), the probability for a molecule to contain k

emitters is represented as P (k). Thus, from Eq. 17, the observed average number of emitters

has the form of

n =

∑N
k=0 P (k) · k2∑N
k=0 P (k) · k

(23)

For a constant labeling efficiency of ε, the p(k) equals the binomial distribution B(N, k).

The mean and variance of this distribution are:

E(k) =
N∑
k=0

P (k) = N · ε (24)

and

Var(k) =
N∑
k=0

P (k)(k − E(k))2 = N · ε(1− ε) (25)

Thus Eq. 23 can be simplified as:

n = 1 + (N − 1) · ε (26)
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which gives a direct way to calculate the labeling efficiency from the observed average number

of emitters. From the previous results, it gives

Binding sites (N) 2 3 4 5

Emitter numbers (n) 1.75 2.34 2.72 2.90

Labeling efficiency (ε) 0.75 0.68 0.57 0.48

where the more binding sites present the smaller is the achieved labeling efficiency.

2.3 Discussion

The presented results show that the exploration of photon antibunching is not limited

to a proof of single emitter, but can be a valuable tool for quantitative spectroscopy of

biomolecules. By applying pulsed excitation and state-of-the-art TCSPC electronics, rich

information of photon statistics is recorded that can simultaneously monitor important flu-

orescence properties such as intensity and fluorescence lifetime.

In comparison to alternative methods (e.g. PCH, FIDA) that distinguish molecular species

based on the fluorescent intensity fluctuations, photon antibunching analysis takes into ac-

count of the temporal behavior of photon counting and offers a reference-free investigation.

For example, Ly and coworkers have compared the photon antibunching and PCH in the

study of determining the number of apolipoprotein A-I molecules bound to high-density

lipoprotein and obtained the same stoichiometry of two [78]. However, the PCH method re-

quires additional calibration using a single labeled control sample to work. Moreover, the

PCH data analysis involves a careful determination of detection volume, which is sensitive

to many experimental conditions, e.g. coverslip thickness, refractive index of the solution,

or saturation [36]. In contrast, the photon antibunching approach is simpler and is immune

to changes of the detection volume. The data analysis only includes parameters of intrinsic

fluorescent properties of the molecule. It has also shown that the photophysical behavior

of different dyes can be well-determined and the remaining uncertainties do not noticably

influence the determined stoichiometry.

Nevertheless, from Eq. 10, the theoretical signature of n emitters in a correlation analysis

(i.e. the difference in correlation amplitudes) is proportional to 1 − 1/n [47]. In practice,

the feature becomes already very difficult to be discerned where more than four emitters
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present in a complex. It means that the characterization ability is degrading when going to

higher labeling stoichiometry. The molecular brightness-based method would possibly have

better performance in this case [78]. However, a potential solution is to investigate higher

orders of correlation, e.g. third-order correlations and fourth-order correlations. The physi-

cal understanding behind is to investigate the probability of detecting 3 or 4 photons from

one molecule after single pulse excitation. Therefore, more detection channels are required

for counting those coincident photons. The similar concept has been applied to count the

label number of immobilized DNA molecules and realized up to the stoichiometric number

of ∼20 [110] [111]. But an analytical method for in solution studies has never been proposed or

experimentally realized till now.

It is also noticeable that this photon statistics will fail to estimate the molecular stoichiom-

etry if the labels are in close proximity and energy transfer between the emitters is pro-

nounced [109] [55]. Another issue is that the stoichiometry is achieved by accumulating the

photon statistics from many molecules. Therefore, the method only gives an average num-

ber of emitters per molecule, which limits the application to samples of rather homogeneous

labeling stoichiometry [109]. In order to disentangle the heterogeneously labeled molecular

complexes and to measure the full distribution, an isolated investigation of each molecule is

required and more photon statistics is needed. For this purpose, another method of imaging-

based photon counting histogram assisted by a nanofluidic device is developed and will be

discussed in details from the next chapter.
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3 Single-molecule detection and manipulation in nanoflu-

idic channels

3.1 Nanoconfinements in single-molecule detection

Single-molecule fluorescence microscopy and spectroscopy enable deep insights into biolog-

ical processes. Due to the development of bright and stable fluorescent probes that can be

used to label target biomolecules, fluorescence microscopy is highly selective. The photo-

physical properties of dyes, such as brightness, excited state lifetime, spectra, etc., are highly

sensitive to their local environments, which makes them excellent molecular nanoprobes.

The fluctuations in the local environment can be monitored by observing the variations in the

photophysical properties of each single emitter. This requires an optical technique that can

illuminate single molecules selectively for a long duration. Conventional widefield microscopy

delivers no optical sectioning, and the fluorescence from a broad field of view is observed

simultaneously, which reduces the SNR. Techniques such as Light sheet fluorescence mi-

croscopy (LSFM) [63] [108] and TIRF microscopy [4] [114] provide the required optical sectioning,

but cannot be used to study single-molecule spectroscopy due to their slow camera frame

acquision rates and fast diffusion of the molecules. To date, confocal microscopy has held a

great promise in such single-molecule experiments due to its focused excitation spot which

is diffraction limited (on the order of half a wavelength), single photon detectors that have

high timing accuracy and high detection efficiency, and the ability to block background and

out-of-focus fluorescence (optical sectioning). A variety of tools such as FCS, Fluorescence

Lifetime Correlation Spectroscopy (FLCS) [61] exist that use confocal excitation and detec-

tion to study protein conformational dyanimcs, binding/unbining dynamics and aggregation

at single-molecule level. However, one of the major disadvantages is the residence time of

the molecule in the focus, which is on the order of a milisecond. Only the average properties

of the molecules measured through the focus of excitation are measured.

Recently, several approaches to confine the diffusion space of the molecules have been de-

veloped, in order to increase their observation times, such as nanocontainers, convex lens-

induced confinement, Nanochannels, etc. which will be discussed briefly below. The core

idea is to increase the single-molecule observation time, without having the need to immobi-
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lize them on the surface or tether them, which might interfere with the molecular dynamics.

The concept of nanoconfinement is a powerful tool for single molecule spectroscopy and has

been realized in various ways [5].

3.1.1 Nanocontainers

Methodological developments of nanoconfinement have been continued for last decades along-

side research of single-molecule techniques. One approach uses the idea of so-called nanocon-

tainers, which are taking advantage of the formation of nano-sized lipid vesicles [87] [10] or

droplets [44] to encapsulate the individual molecules in a confined space. The surrounding

solvent condition of encapsulated molecules remains similar to the bulk sample. In this sce-

nario, movement of the small molecule is coupled with the slow motion of its encapsulator.

Figure 9: Two types of nanocontainers: a. To extend the measurement time of individual

molecules by phospholipid vesicles encapsulation. The streptavidin-biotin chemistry is used here to

tether the vesicle to the surface [10]; b. Nanodroplets generated from emulsification can be trapped

using an optical tweezer, and the single-molecule in the nanodroplet can then be observed for long

time [44].

Since the molecule of interest is incomparable with the nanocontainer in size, its rotational

degree of freedom is only minimally influenced. The diameter of a typical nanocontainer is

around 2 to 3 orders of magnitude larger than that of studied single molecules [69], so the

observation time of these molecules can then be extended by 100 to 1000 times. Further

methods such as surface tethering or optical trapping that are not compliant with small
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molecules can now be applied to slow down or even fix the motion of nanocontainers, as

shown in Figure 9. This can further extend the observation time of single molecules. How-

ever, though this method has shown its applicability in studying soluble proteins [87], the

non-trivial sample preparation for desirable yield and the difficulty in providing buffer ex-

changes make it impractical for broad biological applications.

3.1.2 Micro/nanofabricated platforms

The technique of micro/nanofabrication also offers opportunity for long-term observation

of single molecules in solution. As the devices are typically made of optically transparent

materials, e.g. silicon dioxide, Polydimethylsiloxane (PDMS) and Poly(methyl methacrylate)

(PMMA), they are ready to combined with the optical detection. When the dimension of

these devices is scaled down to the range of hundreds of nanometers, along the direction of

optical axis for a high NA objective, molecules moving inside are always seen in focus.

Figure 10: Illustration of CLIC. Molecules in solution are confined in a thin layer between a

plano-convex lens and coverslip surface (left). The confinement is regulated by a Piezo controller

that can adjust the thickness of this layer (right).

A simple method known as convex lens-induced confinement (CLIC) has been developed

to achieve this goal [69]. As illustrated in Figure 10, A. Cohen and coworkers take use of

the curved surface of a plano-convex lens that is in close vicinity to the top surface of a

microscope coverslip. It can squeeze molecules in the gap of two sheets down to a dimension

of several nanometers [69]. Molecules from the bulk solution can enter into this gap through

diffusion and they are kept in the focal plane till diffusing out.
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Figure 11: Molecules enter into the nano-dimples array are trapped. (a) A polymer lid is used to

seal the dimples reversibly. (b) Atomic force microscope image shows the size of a dimple. It has

the radius of ca. 450 nm and height ca. 200 nm. Adapted from ref. [105].

In CLIC, the design can be conveniently adapted to a conventional inverted fluorescence

microscopy and is suitable for camera-based imaging. In their study, diffusing lipid vesicles

have been recorded for a time that is 10,000-fold longer than a confocal-based setup [69]. For

small molecules such as short DNA strands, another method is also developed by the same

group. There, nanofabricated holes or ’dimple’ are applied to trap the individual molecules

locally [105]. This idea of confinement is similar to the concept of aforementioned vesicle or

droplet nanocontainers, expect that the ’dimples’ can undergo reversible sealing with the

aid of a pneumatically controlled PDMS lid, as shown in Figure 11. With several hundred

nanometers in diameter and 200 nm in depth, the ’dimples’ allow fluorescent molecules to

be trapped and probed similar to immobilized molecules.

Though CLIC is a cheap and well-established design, it is not as desired to actively transport

molecules. The way of molecules stochastically diffusing in and out of the confined region

limits the throughput of this system [5]. Nevertheless, CLIC and ’dimples’ ideas lead the way

to perform on-chip single-molecule studies. Nanoconfinements can also be realized on an

micro/nanofluidic system, which can be finely tailored for precise single-molecule manipula-

tion and rapid detection [127]. This vivid research area is motivated by integrating chip-like

devices in a manner analogous to developed microelectronics. Therefore, the analysis of bio-

analytes can be accomplished with high throughput. It holds a great potential for massively
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parallel diagnostics [30]. The state-of-the-art micro/nanofabrication techniques enable the

format of sophisticated nanoconfinement on an optically transparent material such as glass

or PDMS. Depending on the requirements, various fabrication strategies can be designed for

the fluorescence-based single-molecule studies [12] [82] [1] [32].

Figure 12: Two types of Nanochannels that are applied for single-molecule detection. Both can

confine the molecular motion in a plane with height smaller than 200 nm.

As shown in Figure 12, the sheet-like (2D Nanochannels) or line-like (1D Nanochannels)

nanoconfinement can be applied to guide the transport of molecules. 2D Nanochannels

devices are routinely fabricated through conventional optical lithography in combination

with finely controlled wet etching. A patterned chip with inlet/outlet is afterwards bond to

a microscope coverslip for further applications. In this case, molecules in the channel imaged

by microscope objective are seen as moving in a 2D plane. Concerning the more confined

case of 1D Nanochannels, patterns width has a dimension smaller than the half wavelength

of visible light. Therefore, optical lithography can not work on this precision and electron-

beam lithography is commonly applied, which will dramatically increase the fabrication cost.

Many emerging techniques can facilitate the fabrication without costly lithography process,

such as using nanofluidic optical fiber [39] or PDMS patterning and adhesive bonding [121] [112].

As demonstrated in Figure 13, a procedure of making the low price micro/nanofluidic chip

with minimized requirement of cleanroom fabrication is proposed based on my primary

tests. PDMS is used as both the building materials and the sealing agent, and is stamped
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on a microscope coverslip to produce channel patterns. No etching process is required for

chip fabrication. Further improvement in line of this study can facilitate the integration of

nanofluidic devices into microfluidic systems [112].

Figure 13: A proposed method for fabricating low price chip by applying PDMS patterning and

adhesive bonding.

Benefiting from the precise feature of nanofluidic devices and underlying nanoscale phenom-

ena such as electrodynamics, sterics, and adsorption dynamics [86], versatile single-molecule

applications can be realized. In all these designs, at least one dimension of molecular motion

is physically confined, and different single-molecule detection strategies can be utilized.
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3.2 Single-molecule detection in 1D/2D Nanochannels

3.2.1 Confocal-based detection

H. G. Craighead and co-workers have pioneered the application of submicrometer-sized flu-

idic channels for single-molecule based epigenetic analysis [41] [18]. At the nanoscale, electric

fields are widely applied to drive flow and affect the transport or separation of biologi-

cal mixtures, which can be developed into novel detection or manipulation methods [86]. In

particular, ABEL trap enables to trap individual fluorescent biomolecules in an aqueous solu-

tion. Therefore, immobilization-based single-molecule analysis can be directly implemented

to probe long time single-molecule fluorescence signal in solution. It provides new insights

of biomolecular dynamics, e.g. protein folding, single-molecule binding, and conformational

changes, without the possibly perturbative interaction from the surface [23] [20] [21] [40]. Those

works on small fluorescent molecules have been performed by using the confocal-based point-

like detection. There, single-molecule detection events are manifested as individual intensity

bursts on a time trace of the fluorescence signal. Using high-speed single photon count-

ing electronics, the confocal-based detection provides advanced spectroscopic modalities for

comprehensive single-molecule studies.

As shown in Figure 14, experiment using a confocal microscope to detect single molecules

has been performed within 1D Nanochannels (Bionano Genomics). The intensity time trace

of molecules inside and outside the Nanochannels can be analyzed by FCS, providing infor-

mation of molecular mobilities. The models in each case are written as:

Free solution: gd(t) =
1

N
· 1√

1 + 4Dt/w2
x

· 1√
1 + 4Dt/w2

y

· 1√
1 + 4Dt/w2

z

(27)

and

1D-Flow: g(t) =
1

N
· 1√

1 + 4Dt/w2
x

· e
− t2

(wxvx
)2(1+4Dt/w2

x) (28)

where wi is the e−2 radius along each axis i of the excitation geometry, N is the average

number of molecules in the detection volume, vx is the average flow velocity of the fluorescent

sample and D is the diffusion coefficient of molecules. In Figure 14 A, the FCS analysis

of single Atto 647N labeled dsDNA (22bp) undergoing diffusion in free solution and 1D

flow transport in Nanochannel is compared. The correlation results are both well fitted by
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the corresponding models. A flow rate of ca. 1 mm/s is calculated for measurement in

Nanochannels.

Figure 14: Confocal-based single-molecule detection in 1D Nanochannels. (A) Comparing molec-

ular motion inside and outside of Nanochannels. Sample Atto 647N labeled dsDNA in solution is

measured and analyzed by FCS.(B) Typical fluorescent intensity bursts of dsDNA measured in 1D

Nanochannel. (C) BSD analysis of intensity bursts from (B).

This experimental configuration is further applied to perform the BSD analysis as shown

in Figure 14 B and C, where each intensity burst is regarded as one single-molecule detec-

tion event and the photon counts contained in each burst are integrated. The BSD is then

calculated from thousands of single-molecule detection events and is exhibited as a photon

counting histogram shown in Figure 14 C. A direct interpretation of this histogram would

suggest the presence of more than one species of molecules, though the measurement is in-

deed conducted only on single species. The additional distribution at the region of high

photon counts is an effect of the so-called molecular noise that results from multi-molecule
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burst events, which means two or more molecules passing in close succession through the

detection volume but yields only one single photon burst [37] [38]. As single-molecule detection

events are deduced indirectly, discerning multi-molecule burst events is very difficult in this

experimental configuration. Though sample dilution can alleviate this effect, the analysis

throughput would be dramatically reduced. Hence, to facilitate the brightness analysis into

a more practical platform, I turned to develop an imaging-based method that can directly

observe individual molecules in solution.

Imaging-based methods enable the parallel investigation of multiple molecules at one time,

which is in concert with the high-throughput analysis capability of the micro/nanofluidic

system. Compared with the confocal-based detection, the imaging-based method would

have to sacrifice in time-resolution due to the limit of camera read-out rate. However, the

visualization and localization of single molecules from an image frame reveals molecular

properties in a more straightforward manner.It holds the potential to develop into an an-

alytical tool that has fewer experimental constraints than confocal-based method. Large

micrometer-sized DNA strands have been stretched and successfully imaged in nanofluidic

channels before [48] [94], but the imaging of fast diffusing small molecules has not yet been

reached till now.

3.2.2 Imaging-based detection

With the advent of sensitive cameras such as EMCCD, it is possible to record the fast mov-

ing single-molecule in Nanochannels. The main concern is collecting enough photons (i.e.

photon budget) from the individual molecules. Using nanoconfinement, molecules can be

kept in focus and the out-of-focus background is tremendously reduced. Photons coming

from individual molecules would spread onto the camera pixels as patterns described by a

PSF. Each molecule is seen as individual PSF on an recorded image. The real molecule po-

sition can be re-mapped from those PSFs, nevertheless, with an uncertainty that is related

to the information including collected number of photons for each molecule, background and

molecular motion.

For example, in a short detection time window of 1 ms, in practice, ca. 100 photons are
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needed for properly visualizing a single-molecule. Thus, the systematic count rate should be

larger than 105 count/s. It demands a rather high excitation power density on the objective

focus plane. Since a system of high-throughput relies on a large illumination size in order to

record more molecules in parallel, the total input power that enters into the objective should

be sufficiently high. Particularly, when quantitative microscopy (e.g. molecular brightness

analysis, see in Chapter 4) is going to be performed, a homogeneous excitation is required.

Under a typically wide-field illumination condition, the input beam is focused at the back

focal plane (BFP) of the applied objective. In the vicinity of the first lens surface close to the

BFP of objective, power density is very high. Careful consideration and compromise should

be taken to avoid the potential damage of optical components. In practice, a power density

of ca. 100 kW/cm2 in a ca. 10µm × 10µm illumination area can be securely working on

a conventional microscope objective for typical organic dyes (e.g. Cy5, Atto655, Atto647n,

etc.). The later applied pulsed excitation in stroboscopic imaging (Section 4.1) can help

avoid the potential damage.

In the first generation of the imaging system, I employed a beam shaping design to gener-

ate a sheet-like illumination that can selectively excite molecules in the single Nanochannel.

The beam profile is coupled to the objective diagram to make the most of input energy. In

Figure 15 A, the incident laser is shaped as a rectangular flat-top beam by using a Powell

lens (PL) [14] and beam size is further adjusted by using a different combination of Cylin-

drical lens (CL) and telescope lens pairs. There, multiple images of fluorescence signal

under this illumination condition are averaged to demonstrate the excitation profile in one

channel. Figure 15 B and C compares the single frame image of 5 nM STAR 635P (Ab-

berior GmbH, Goettingen) labeled dsDNA diffusion outside and inside the Nanochannels

under constant experimental conditions. As it demonstrates, the nanoconfinement benefits

single-molecule detection by largely suppressing the out-of-focus fluorescence background

and isolating molecules spatially. Figure 15 D is the averaged image from multiple frames

of single molecules imaging in one Nanochannel, displaying the molecule transits along the

channel direction. The system can also work on a traditional Gaussian illumination, where

the PL and CL lens need to be replaced by a telescope lens. It allows for investigation of

molecules in multi-channels that improves the analysis throughput.

Though the moving molecule can already be evidently observed inside the nanofluidic device,
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Figure 15: Single-molecule imaging inside 1D Nanochannels. (A) Schematic diagram of single

channel excitation. The incident laser can be shaped as a rectangular flat-top beam by using

combination of Cylindrical lens (CL) and Powell lens (PL). The beam size is adjusted by three

other Plano-convex Lens (L1, L2, L3). (B) A typical image frame for fluorescent molecules in free

solution. (C) A typical image frame for fluorescent molecules in the Nanochannel. (D) Averaged

image of multiple frames as in (C).

the frame rate of EMCCD camera becomes the bottleneck for rapid imaging. Nonetheless,

it has been shown that electrokinetic force can expediently regulate the molecular motion

inside the Nanochannels [70]. In a diluted sample concentration, molecules imaged in a single

frame are well isolated from each other. Due to its fast diffusion or transport inside the

nanofluidic device, each single-molecule would be imaged as a smeared pattern under long

exposure time. Figure 16 shows the different patterns generated under line-like (1D) and

sheet-like (2D) confinements.

Molecular motion in a 1D Nanochannel leads to an ellipsoid shaped intensity pattern along

the channel arrays in a camera image as shown in Figure 16 left. It is in distinct contrast
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Figure 16: Comparison of single-molecule imaging with 1D and 2D confinements. The exposure

time is 10 ms. The scale bar is 2 µm.

to the pattern in 2D Nanochannel (Klearia) (Figure 16 right), where 2D molecular motion

results in irregular trajectories. Within more confined 1D channels, if a controlled flow is

applied, such that the molecular diffusion can be neglected, the intensity pattern is related

to the moleule’s brightness as a function of time. In other words, the intensity at each pixel

position can be related to time within the frame exposure period. Therefore, each image can

be regarded as a sum of multiple frames with shorter exposure times. In this way, one can

investigate a molecule’s brightness behavior with a higher temporal resolution.

One straightforward application of this method is to count molecules using photobleaching.

Photobleaching of immobilized molecules has been employed on probing of the number of

monomers per oligomer of protein assemblies [128] or membrane-bound proteins [116]. Such ex-

periments require careful surface immobilization and any heterogeneity of the surface proper-

ties, such as the presence of local charges can deteriorate the performance of counting results.

In contrast, the method described above allows one to measure the photobleaching steps on

molecules that are transported along the channels, free from surface induced perturbations.

Figure 17 shows the intensity pattern of Atto 647N labeled a dsDNA in the 1D Nanochan-

nel, acquired with a 10 ms exposure time. The photon counts from molecules are plotted

against the direct of single Nanochannel in pixel base. One can clearly see the photobleach-
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ing steps along the molecule’s trajectory. Typical two steps and one step photobleaching can

be observed as shown in bottom panels of Figure 17. Within the field of view on a single

frame, intensity patterns from multiple molecular trajectories can be obtained in parallel in

Nanochannels array. Thus, this method holds a great potential for high-throughput single

molecule counting experiments. Furthermore, smFRET experiments can be performed by

monitoring the molecular brightness changes in two color channels simultaneously. This

will allow one to probe into the molecular dynamics of complex biomolecules without the

requirement of surface tethering.

Figure 17: Single-molecule bleaching steps of Atto 647N labeled dsDNA detected in 1D Nanochan-

nels. Intensity trace is plotted with respect to the pixel axis along the channel (dashed blue line).

Examples of two steps (left) and one step (right) bleaching are demonstrated respectively.
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3.3 Single-molecule manipulation in 1D Nanochannels

3.3.1 Electrokinetic flow

Since the molecular motion is confined by the specific structure of the fluidic device, the

manipulation of single molecules can be facilitated by regulating flow transport. The active

flow control in a nanofluidic device can be realized through pressure pumping or more effi-

ciently electrokinetic force. Electrokinetic flow is preferred because it is capable of producing

a nearly uniform ’plug’ profile that reduces sample dispersion. In contrast, pressure-driven

flow produces a parabolic velocity distribution, leading different fluid layers to move with

various velocities [30]. Additionally, the average velocity by pressure-driven scales with the

square of the channel diameter, making it less favorable to work with submicrometer-sized

channels [25]. Hence, electrokinetic force has been chosen to generate the active flow and

manipulate single-molecule motion inside 1D Nanochannels.

Typically, electrokinetic flow is activated due to electroosmosis and electrophoresis. Elec-

troosmosis describes the flow of liquid solution about a charged surface. More specifically, it

is the so-called electrical double layer (EBL) moving along the channel wall under an exter-

nal electrical field, which eventually drags the movement of the overall bulk solution. The

EBL is formed by the immobile Stern layer and the mobile Gouy-Chapman layer, resulting

from the interaction between electrolyte and charged surface [2]. Debye length is used to

characterize the scale of EBL, which gives:

κ−1(nm) =
0.307√
I(M)

(29)

where I is the ionic strength written with a unit of Mol/L. κ−1 is less than 10 nm for ionic

strength higher than 1 mM. Therefore, under a typical physiological condition, the EBL

thickness is much smaller than the confinement size and a relative uniform flow velocity

could be assumed along the optical axis direction in the solution. The simplified form of

Navier-Stokes equation can be applied to calculate the electroosmotic mobility, and the

relation is:

µeo =
εζeo
µ

(30)

Here, ε is the dielectric constant and ζeo is the zeta potential that equals to the electric

potential at one Debye-length away from the charged surface.µ is the viscosity of the solution.
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Electrophoresis, on the other hand, describes the movement of a charged molecule or particle

about its surroundings under an external electric field. Assuming that a spherical particle

with radius R and surface charge q is moving in a liquid with viscosity µ, the steady-state

will reach to:

qE = 6πµRνep (31)

Here, the right-hide-side describes the Stokes drag for a particle velocity of νep. As the

electrophoretic velocity νep is proportional to applied electric field E, this proportionality

factor is then named as the electrophoretic mobility and is written as:

µep =
νep
E

=
q

6πµR
(32)

Another EBL also surrounds charged molecules such as DNA or proteins in solution. The

surface charge density of a molecule/particle can be estimated from its zeta potential ζep

and described as:

ρ =
εζep
R

(1 +
R

λd
) (33)

Here λd is the Debye length and is much larger than the size of small molecule [2]. Thus,

from Eq. 32, the electrophoretic mobility can be further estimated as:

µep =
4πR2εζep/R

6πµR
=
εζep
3µ

(34)

It should be noted here that the derivation didn’t take into account of the distorted ions

distribution that would generate a ’retardation force’ to move the molecule/particle in the

opposite direction. Therefore, an additional correction factor is needed to model the elec-

trophoretic mobility in Eq. 34.

As shown from Figure 18, the electrokinetic transport in the channel is a combined effect

of electroosmosis(EO) and electrophoresis(EP) for charged molecules. In practice, the exact

measurements of EO and EP mobility in the channel are very challenging due to the difficulty

of characterizing surface charges [117]. Nevertheless, for the experiments in this dissertation,

when a reasonable preliminary experimental condition is established, the molecular motion

can be monitored by real-time imaging. The elecltrokinetic flow is provided by applying

adjustable external voltage with specific ions strength that enables a flexible and adaptable

manipulation of single-molecule inside the channels.



44 3. Single-molecule detection and manipulation in nanofluidic channels

Figure 18: The electrokinetic response of molecule in solution combines the both effects of elec-

trophoresis (EP) and electroosmosis (EO).

3.3.2 Single-molecule recycling and trapping

One elegant application of the electrokinetic flow in single-molecule studies is ABEL trap,

developed by A. Cohen and W.E. Moerner [22] [23] [20]. In their device of a 2D nanoconfinement,

fast single-molecule detection combined with active flow control is capable of compensating

for Brownian diffusion, trapping the molecule on almost fixed position. Lately, J. F. Lesoine

and L. Novotny applied a similar concept but simplified the system by utilizing a nanofluidic

channel with a cross-section of ∼600 nm × 400 nm, which can confine the molecular motion

only to a line-shaped 1D space [70]. Two electrodes were placed on both sides of the channel,

and the direction of electrokinetic flow was changed alternatively depending on the detec-

tion events of single molecules passing through the laser focus. In this way each individual

molecule was shuffled back-and-forth through the detection volume until photobleaching.

This is termed single-molecule recycling.

Single-molecule recycling allows for measuring photophysical properties of the fluorescent

label on each individual molecule. In this way, conformational dynamics, and other physical

parameters such as charge/mass ratio can be measured on the same single molecule in solu-

tion. A severe limitation of this method is that one cannot distinguish the situation where

multiple molecules enter the focus simultaneously.

Imaging-based approach, combined with 1D Nanochannel, enables direct tracking of single

molecules (see in Section 3.2). As the sheet-like detection renders a much longer observation

window for each molecule, the trapping idea is implemented here to provide a simpler and

more flexible single-molecule manipulation system.

Two platinum electrodes are placed at each end of 1D Nanochannels to exert external voltage.
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Figure 19: Schematic diagram of single-molecule manipulation by electrokinetic flow.

Atto 647N labeled dsDNA (42bp) molecules are transported in the channels by electroki-

netic flow. Long residence time of molecules in the detection volume enables monitoring of

molecular motion response to applied voltage in real-time.

Figure 20: Real-time image of single-molecule motion in 1D Nanochannel under the voltage of

alternating aurrent (AC). The scale bar is 1 µm.

Interestingly, single-molecule recycling and trapping can be realized by adjusting the strength

and alternative frequency of the voltage. A square wave 5V AC voltage is applied to alter-

natively change the flow direction.

If applying a low 0.5 Hz frequency, recycling is realized as molecules are repeatedly moving

in and out from the detection field of view. On the accumulative fluorescent intensity plot,

the events appear as the periodic peaks, captured at a frame period of 20 ms. As shown in
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Figure 21: Single-molecule Recycling. Each data point of the time traces is the integration of the

photoelectrons from an overall single image frame, with time bin of 20ms.

Figure 21, the intensity is the directly photoelectrons integration of each single frame and

the acquisition of 40 seconds is demonstrated. The intensity peaks are fluctuating in tempo

with the applied voltage frequency.

If the frequency increase to be fast enough to maintain the residence of a molecule in the

detection field of view, recycling mode is switched into trapping mode. Therefore, the in-

dividual molecule can be kept visualized and investigated till it photobleaches. Figure 22

demonstrates the intensity time trace under a 20 Hz AC voltage driven, where a zoom-in fig-

ure shows a total trapping time of ∼3 seconds for an individual molecule inside the channel.

Figure 23 is the averaged images of the consecutive frames recorded in this trapping period,

and it manifests the residence location of this individual molecule under the electrokinetic

flow.

Compared to the confocal-based methods, this method enables a continuous image record-

ing of single-molecule motion in solution. It is also immune to multiple molecules problem.

Since the feedback control is no longer obligatory here, it is much easier to be implemented.

Moreover, by using multiple electrode pairs in a Nanochannel, more than one molecule can

be controlled and monitored in parallel. It provides a suitable platform to study single-
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Figure 22: Single-molecule Trapping. On the right side is a zoom-in plot of time trace in the

red shadow highlighted part for the left figure. It shows a trapping event of molecule for around 3

seconds till its photobleaching.

molecule conformational dynamics and molecular interactions in extended timescale under

controlled condition.

Figure 23: Residence position of the trapped molecule. The profile demonstrates the trapping

region for a single molecule under a 20 Hz AC voltage. The scale bar is 1 µm.
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4 Imaging-based photon counting histogram (iPCH)

for measuring the distribution of molecular mixtures

Nanofluidic devices greatly facilitate the detection and manipulation of single molecules [86].

In Chapter 3, I’ve shown using nanofluidic devices for single-molecule spectroscopy and

imaging, which enables the study of various single-molecule properties. One of the key pa-

rameters of a fluorophore is its molecular brightness, which is proportional to its absorption

cross-section times its fluorescence quantum yield. A method that could accurately and

quantitatively determine the brightness on a single-molecule level would make it possible to

determine the stoichiometry of a molecular complex.

Molecular brightness is typically determined from the number of detected photons in a given

period of time. When immobilized molecules are measured, the heterogeneity of their local

environments causes high variations of measured values [110]. Moreover, surface tethering

would often disrupt the molecular behavior [69], making the observed molecular properties

different from that of a molecule in biologically relevant environment. For these reasons,

accurate brightness analysis needs to be conducted in immobilization-free conditions, i.e.

in free solution. Different suggestions to perform such measurements exist, but suffer from

unsatisfactory performance or limited resolving power [15] [16] [62]. A confocal-based detection

configuration is usually applied to improve the SNR, using a single photon detector to record

the intensity time trace of single molecules. However, the drawback to brightness analysis

is that, due to Brownian motion, each diffusing molecule transits the detection volume (∼1

fL) along an irregular trajectory. Every molecule experiences different illumination and

generates a non-uniform fluorescence intensity time trace. One solution to this problem is

to devise a dynamic experimental scheme to keep the moving molecule under a constant

excitation/detection condition, which requires single-molecule tracking that is extremely

challenging when working with small molecules of only several nanometers in size [53]. A

more practical method is to employ active transport which helps ensuring an identical exci-

tation/detection process. R. Keller and colleagues exploited an optimized flow cell to align

a sheath flow that guides molecules across the stationary detection uniformly [79] [37] [38]. The

follow-up method of Cylindrical Illumination Confocal Spectroscopy (CICS) used a similar

idea but optimized the detection volume by creating a sheet-like illumination [74]. However,
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confocal-based single-molecule BSD analysis is only able to work on one molecule at a time,

which results in a low-throughput. The interpretation of fluorescence bursts is also error-

prone, as it requires the precise characterization of molecular transport and the detection

volume. In practice, a BSD with small variance can be achieved only if a relatively high flow

rate is applied, to alleviate the influence of diffusion. At the same time, this reduces the

residence time in the detection volume, which limits the photon budget from each molecule.

Nowadays, the advent of nanofluidics enables a different solution to this problem. As dis-

cussed in Chapter 3, instead of minimizing the optical detection volume, the high SNR

study of single-molecule is conducted by reducing the space molecules are able to move in

through nanoconfinement. By utilizing an EMCCD camera, the rather indirect intensity

burst is replaced by straightforward imaging of individual molecules during their diffusion

or flow transport through nanofluidic-channels. A full-glass-chips with channel heights of

less than 200 nm is used to confine the molecular motion to the focal plane of the observing

microscope. This provides a platform to precisely monitor and to manipulate individual

molecules in solution. Experimental results have shown that high-quality images of freely

diffusing single fluorophores can be recorded and their brightness can be determined with

high accuracy. Furthermore, as the molecular motion is directly visible from the images,

brightness analysis can be performed without influence from the irregular trajectories. Since

multiple molecules can be detected in parallel, this system has a much higher throughput,

detecting thousands of molecules in only several minutes.

4.1 Stroboscopic imaging

In the confocal-based method, single-molecule brightness information is extracted from the

fluorescence burst of an intensity time trace and the resolving power is determined by the

homogeneity of the BSD. Likewise, in the imaging-based scenario, single-molecule detection

events are represented as characteristic fluorescence imaging patterns. Therefore, a desirable

performance of the brightness analysis requires uniform single-molecule imaging patterns to

be recorded. Due to the molecular motion, the variance of these imaging patterns increases

with the duration of the exposure time (see the discussion in Section 4.4).
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Figure 24: Stroboscopic imaging system. (A) Schematic diagram of imaging single-molecule flow

in nanofluidic channels. Molecules are confined in a 1D channel or 2D plane, where the height

is less than 200nm. Fluorescence signal is capture by passing through the optical components of

dichroic mirror (DM), high-pass (HP) filter and tube lens (TL). (B) The synchronized work stream

of camera imaging and laser excitation.

An EMCCD working in fast frame transfer mode can reach a frame rate of ca. 1 kHz. For

a typical organic dye with a diffusion coefficient D that has a value of ∼100 µm2/s, in the

detection period t, the diffusion-based 2D mean squared displacement (MSD) is calculated

as 4Dt. Thus, in contrast to the detection PSF that is obtained from the image of the

immobilized molecule, imaging patterns for diffusing molecules are very much smeared by

this ∼0.4 µm2 displacement. In this case, an even shorter detection time that not restricts

to the camera frame rate is preferred. Meanwhile, the capability of identifying and localiz-

ing each molecule is connected with the number of recorded photons. With an average of

100 photons needed, the count rate should be larger than 105 counts/s. It requires a high

excitation power density, where photobleaching would be pronounced. For these reasons, a

stroboscopic imaging system is introduced with multiple advantages.
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This is realized by synchronizing the laser illumination pulses with the continuous EMCCD

camera recording. As shown in Figure 24 of the working stream, two TTL pulses with an

identical period (T2) are generated from a Programmable Counter/Timer Devices (PCI-

6602, NI). T3 represents the illumination time of the laser pulse, which can be shorter than

the minimum camera exposure time (a few milliseconds) that is usually limited by read-out

speed. In stroboscopic excitation, the illumination time of each frame is regulated by the

laser pulse length.

Typically, when the illumination time is short enough, molecules are regarded as stationary.

In Figure 25, a comparison of images recorded by using different pulse lengths is demon-

strated. The elongated ellipsoid shaped single-molecule intensity patterns extending along

the channel arrays are visualized when using a long illumination time. Analyzing the pat-

terns under various values of T3, information of molecular mobility e.g. diffusion coefficient

can be estimated, which is discussed further in Section 4.4.

Experiments are conducted on a home-built epi-fluorescence microscope by using a water-

immersion objective (UPLSAPO 60×W, 1.2 N.A., Olympus) for both illumination and de-

tection. The cleaned up laser beam (OBIS 637nm LX 140mW, Coherent, and MBL-III-473-

100mW, CNI Laser) is coupled into a single mode fiber (P1-460AR-2, Thorlabs) and then

collimated. A telescope lens pair (f1 = 50 mm, f2 = 75 mm) is applied to adjust the beam

size. Afterwards, it is focused on the back aperture plane of the objective by another lens (f

= 200 mm), producing an illumination region of ca. 10 µm × 10 µm at the focal plane. The

illumination area is adjusted to guarantee a high excitation power density (from 10 to 100

kW/cm2) with a relatively homogeneous excitation profile. The excitation beam is slightly

tilted to be strayed away from the imaging path, helping to reduce the strong backscattering

signal from the coverslip interface. A multi-band dichroic mirror (Di0-R405/488/561/635,

Semrock) is applied to separate the illumination/detection channel before a long pass filter

(F76-472 or F76-649, Semrock), which is also designed for further multi-color applications.

Images or movies are captured by an iXon back-illuminated electron multiplying charge cou-

pled device (EMCCD, iXon Ultra 897, Andor) working in frame transfer mode. Before the

EMCCD, a 3.3× expansion lens pair (MAP1030100-A, Thorlabs) is placed before the tube

lens (f= 200 mm). The corresponding pixel size of the image is 61nm. Pixel binning of 2 ×

2 is used during all the brightness characterization experiments.



4. Imaging-based photon counting histogram (iPCH) for measuring the
distribution of molecular mixtures 53

Figure 25: Comparison of stroboscopic images captured by using short (1 ms) and long (10 ms)

pulse excitation. From imaging of Atto 647N labeled DNA in 1D nanochannels.

For brightness characterization, multiple image frames are recorded. Since obtained images

are similar to immobilized single-molecule images, the analysis can be carried out using

well-established single-molecule analysis toolboxes. As described in Figure 26, the absolute

brightness of every single molecule can be determined from the movie by first localizing each

molecule and fitting with a suitable model to get the intensity distribution or simply sum-

ming up the pixels in a neighborhood around its localized position, which is conducted using

publicly available software [107]. The resulting analysis of thousands of molecules yields the

brightness distribution, which is termed imaging-based photon counting histogram (iPCH).

The brightness distributions presented are all calculated by integration of the pixel values

around each estimated position, which a certain area defined as region of interest (ROI)

pixels. Given that a larger ROI than the size of single-molecule image patterns is used for

photon counting, non-biased brightness information can be achieved simply by subtraction

of the properly estimated background signal.

To prove that an integration of pixel values in a ROI can precisely reveal the single-molecule

brightness distribution, the iPCH analysis is also tested on simulation data.

Here, random walks of molecules diffusing in a 2D plane are used to generate the single-

molecule imaging patterns, corresponding to the situation of molecular motion in 2D nanochan-
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Figure 26: Illustration of iPCH method. (1) Multiframe images are recorded for moving molecules

inside the nanofluidic channels. (2) Each localized molecule is fitted by a 2D Gaussian function.

The ROI pixels are chosen based on the fitting results. (3) Brightness distribution is obtained by

counting the photon numbers in each ROI, with a subtraction of background.

nels. At each simulation time steps of 10 µs, the mean displacement of molecule position is

less than one simulated pixel size (120 nm). Thus, molecules are regarded as stationary. A

certain amount of photons from individual molecules are spreading on a pixelated imaging

plane, with a range described by a 2D Gaussian detection PSF (here with standard devia-

tion set to 180 nm). In average 400 photons coming from a single-molecule are simulated

in an illumination time of 1 ms, exhibiting distinct emission patterns depending on various

diffusion coefficients. According to real experimental condition, a background is set as 3

photons/pixel.

, For brightness characterization, two different sizes of ROI centered around the localized

positions of molecules are compared in Figure 27. In the situation of 9 × 9 pixel window

size, single-molecule brightness is underestimated for fast diffusion coefficient of 100 µm2/s

and almost identical for the two slower diffusion cases. The reason is that photons spread

over a broader range cannot be covered by this window size for fast diffusing molecules. In

contrast, when a relatively larger ROI of 15 × 15 pixel window is applied, iPCH analysis
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shows identical performance for all three cases, even though the diffusion coefficients are

differing by two orders. Thus, using iPCH to measure the brightness distribution is free

from molecular motion induced heterogeneity, which must be strictly controlled in all the

confocal-based methods.

Figure 27: Test brightness characterizaiton ability by simulation data. Typical single-molecule

imaging patterns for three different diffusion coefficients are listed. The corresponding iPCH anal-

ysis using two different ROI window size is given. All histograms are fitted by a single Gaussian

model, where the mean values and standard deviations (in brackets) are stated.

Noticeably, when the big ROI window size is used, brightness distributions are broadened

due to the contribution of more background signal included (see the discussion in next Sec-

tion). Fortunately, as the background can be estimated from the overall image stack, it can

be corrected. Moreover, big ROI window size may also include the photons emitted by the
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nearby molecules, which result in a tail of the brightness histogram, as seen from the 15 ×

15 ROI case in Figure 27. This introduces additional uncertainty and needs to be carefully

considered especially when multiple molecular species are investigated. In practice, for fast

moving molecules, a low sample concentration is preferred in order to reduce this crosstalk

effect.

Furthermore, since a relative high excitation power density is required for gathering enough

photons from the individual molecule, photobleaching would deteriorate the accurate bright-

ness analysis. Using stroboscopic illumination and active flow control, a proper choice of T2

to a value of several tens of milliseconds helps to guarantee that each frame records new

molecules. It provides considerable statistics from thousands of molecule in minutes. In

combination with a short stroboscopic excitation pulse, the impact of photobleaching is al-

leviated. In addition, the pulse excitation also reduces the heat accumulation on optical

components that is otherwise tend to be damaged under high power continuous wave exci-

tation.

4.2 Precise brightness characterization

The resolving power of the iPCH method is determined by the quality of the obtained

brightness distribution. The experimental parameters, e.g. laser-induced background signal,

detector noise, emission properties of single-molecule and its interaction with the nanofluidic

device, would all potentially affect the obtained histogram. Hence, a thorough investigation

is performed to check the accuracy of iPCH method.

4.2.1 Shot noise

The brightness characterization is conducted by accumulating signal from a light source in a

defined period. Here, single-molecule fluorescent emission is sensed as a stream of individual

photons that hit onto the detector.

Under a constant excitation condition, the photon emission from single fluorophores follows
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Poissonian statistics. Therefore, given that the average photon counts per time intervals are

λ, the shot-noise-limited photon counting number k is distributed as:

p(k;λ) =
λk

k!
e−λ (35)

Here the mean value λ is also its variance. The sum of multiple random variables undergoing

the same physical process will still follow the Poisson distribution, and the variances and

mean values are simply additive.

4.2.2 Background

In nanoconfinement, background fluorescence from out-of-focus molecules is eliminated. The

readout and dark current noise from the EMCCD is negligible when EM gain is applied.

Thus, the laser excitation induced background signal b (e.g. scattering, autofluorescence) is

the dominant noise source in the measurement. Background photons are indistinguishable

from the photons emitted by the molecules and can be regarded as an independent process

that adds variance to the final brightness distribution.

4.2.3 EMCCD effect

The EMCCD camera with its superior sensitivity is especially suitable for applications where

photon budget is limited. However, the electron multiplication process introduces an addi-

tional multiplicative noise, which results in additional variation in the overall number of

signal counts. This uncertainty increases the shot noise based variance by a factor of two.

A detailed theoretical description and modeling can be found in ref. [54].

The detection property of our EMCCD is characterized by measuring the light source

backscattering from a constant blank plate. Here, the sets up of the system is identical

to the experiments with fluorescent samples (637 nm, 1 ms illumination time, 5 MHz read

out), except the emission filter is removed to ensure that the camera can detect more signal

from the laser. The peak power which reaches the EMCCD is adjusted to the same level

as the fluorescence molecules. A 5 × 5 pixel window in each frame is used to represent the
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single-molecule detection event and to integrate the photon counts, which is subsequently

demonstrated as the iPCH distribution from 1000 image frames. As shown in Figure 28, the

brightness distribution obtained here has a variance that is 2.05 times of the mean value.

This is in excellent agreement with the camera modeling. This measurement also proves the

stability of pulsed laser excitation, which won’t bring extra noise.

Figure 28: Illustration of the EMCCD effect. Here, iPCH analysis of backscattering from laser

excitation is performed. The standard deviation (in brackets) obtained is 1.43 times larger than

the shot-noise-limited distribution.

Consequently, the added-up detected signal variance with EM gain applied is simply written

as:

vardet(λ, b) = 2 · (λ+ b) (36)

4.2.4 Excitation profile

Excitation geometry is one of the essential experimental conditions in all presented single-

molecule brightness analysis methods. In confocal-based scenarios, the varying detection
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efficiency of irregular molecule trajectories in the excitation focus brings additional variance,

making the brightness distribution much broader.

Figure 29: Characterization of excitation profile. A Gaussian-shaped excitation profile is shown,

and iPCH analysis for Cy5 molecules under excitation of two different radii cutoffs is compared.

As a result of the large sheet-like detection volume in the imaging-based configuration, each

single-molecule can undergo a more uniform excitation. Moverover, excitation conditions

single molecules have been experienced are visible in each image frame. Since the excitation

profile can be obtained from the average of all image frames, the brightness distribution

can be further corrected. In Figure 29, measurement for Cy5 in 1D Nanochannels has

been performed and the frame-averaged image of the whole image stack shows a slightly

inhomogeneous excitation profile. As the fluorescence signal comes from the molecules dis-

tributed in the channel array, the profile is exhibited as a stripe pattern. The beam profile

is Gaussian-shaped, as illustrated from the normalized intensity plotting along the central

pixels (white line). The iPCH analysis of molecules localized in the two circular regions

(15 and 30 pixels from the center) is then compared. As it shown in the 30 pixels case, a
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non-negligible increased variance is introduced when the excitation strength varies strongly

between molecules. Fortunately, in a small circular region (e.g. 15 pixels), a homogeneous

excitation can be assumed.

4.2.5 Photophysics

Photophysical properties of fluorophores also play a significant role in brightness estimation.

The feature of short stroboscopic illumination can help lower the influence of photobleaching.

However, the faster photoblinking effect cannot be ruled out.

Figure 30: Characterization of blinking dynamics in free solution. FCS measurements of Cy5 in

free solution are performed under different excitation power density. The blinking on/off dynamic

rates are extracted from the fitting based on the model in Eq. 37.

A simple model of photoblinking assumes reversible transitions between two possible states

with on-state lifetime τon and off-state lifetime τoff . Interestingly, a comprehensive theoret-

ically modeling proves that the blinking dynamics can introduce substantial broadening of

the distribution even when the blinking on/off lifetime is two orders of magnitude shorter

that the stroboscopic exposure time. The work is done by my colleague Simon Stein, and
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it tells that the impact is also related to the ratio
τoff
τon

. FCS is then applied to characterize

these dynamics.

The effective on/off dynamic rate of fluorescent label Cy5 is determined from the fitting,

as shown in Figure 30. Since the timescale of blinking kinetics is much shorter than the

molecular diffusion, the dynamics are separable and the correlation model can be written in

the same form as Eq. 19, where the fast timescale is related to the blinking dynamics as [120]:

gp(t) =
τon

τon + τoff
+

τoff
τon + τoff

· e−
τon+τoff
τonτoff

·t
(37)

The transition rates are listed in the following table from measurements under a broad range

of excitation power (from ca. 5 kW/cm2 to ca. 50 kW/cm2 ).

Excitation τon τoff

High 1.1 µs 0.8 µs

Medium 1.3 µs 1.1 µs

Low 2.6 µs 2.2 µs

These excitation powers cover the applied power density of iPCH experiments. In all the

situations, both on and off lifetimes are changing, and they are comparable with each other.

The transition process is also accelerated by increasing the excitation power. The same mea-

surements have also been performed on another red emitting dye Alexa 647, which exhibits

similar transition dynamics.

Molecules in nanochannels are under a different environment in contrast to the free solution.

The frequent collision of molecule with the channel wall can potentially alter their fluores-

cence properties [20]. To check this influence, FCS measurement of Cy5 inside a Nanochannel

is also performed, as shown in Figure 31. Here, molecular motion is described by 1D-flow as

in Eq. 28 and in combination with the blinking dynamics, the model is written as:

g(t) =
1

N
· 1√

1 + 4Dt/w2
x

· e
− t2

(wxvx
)2(1+4Dt/w2

x) · ( τon
τon + τoff

+
τoff

τon + τoff
· e−

τon+τoff
τonτoff

·t
) (38)

The on/off lifetime is then extracted from the fitting. However, it should be mentioned that

the FCS fit is actually sensitive to the start point of correlation lag time. For instance, if

the model is applied to fit the correlation data points starting from 0.1 µs, the obtained
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Figure 31: Characterization of blinking dynamics in nanochannel. FCS measurements of Cy5 in

nanochannel is performed to extract blinking dynamics based on the model in Eq. 38.

on/off lifetime can be varied. This is due to the presence of additional fast dynamics prob-

ably induced by the molecular interaction in nanochannels. The problem is associated to

the inherent difficulty in fitting a mutli-exponential decay, where the ability to determine

the precise values of each decay time and amplitude is greatly hindered by parameter cor-

relation [67]. In principle, blinking on very fast timescale is averaged out and will not affect

our brightness analysis. For this reason, the simple two state is assumed and the fitting

is conducted by using reasonable start time from 0.1 µs to 1 µs. The achieved transition

lifetimes have values in the range from 2.3 µs ∼ 12.0 µs for τon and 2.0 µs ∼ 6.7 µs for τoff .

Nevertheless, since the excitation condition varies in the iPCH measurements, the charac-

terized values of transition rates here are only for reference.

As a result, this blinking induced broadening of brightness distribution is modeled theo-

retically (credit: Simon Stein), with a variance adding into the previous background and

EMCCD noise. Therefore, the overall variance is:

varsum(λ, τon, τoff , Texp) = vardet(λ, b) + varblink(λ, τon, τoff , Texp) (39)

Here Texp is the stroboscopic illumination time. In practice, a final brightness distribution

can be well approximated by a Gaussian function with a mean λ and the standard deviation
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σ =
√
varsum.

4.2.6 Single fluorophore brightness distribution

Figure 32: Brightness distribution of single fluorophores. The measured brightness distribution

histogram of Cy5 is in good agreement with the theoretical model (red solid line).

A measurement of single Cy5 molecules in 1D Nanochannels is conducted to characterize the

molecular brightness distribution. Previous work using burst size analysis requires careful

characterization of multiple parameters such as light collection efficiency, laser excitation,

molecular motion and photophysics to match a theoretical model [37]. Commonly, as uniform

intensity bursts are desired, a fast flow rate is applied to compete against the random mo-

tion of molecular diffusion. It in the meantime reduces the photon budget due to the short

residence time in detection volume. In contrast, iPCH measures the brightness distribution

by just counting the photons from images of individual molecules.

In Figure 32, it shows the brightness distribution of 1578 Cy5 molecules with an illumina-

tion time of 1 ms. To make sure single-molecule emission patterns in this period can be

well covered, an integration ROI pixel window of 12×12 (1.46 µm×1.46 µm in real space)

is used with background subtracted. Molecules in a relative uniform illumination region

with a diameter of 4 µm are taken into account, producing a normalized photon counting
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histogram. A model of simple Gaussian function with the variance based on Eq. 36 is also

demonstrated, which exhibits reasonable agreement with the measured distribution. The

slightly broader histogram of the experimental results is due to the impact of photoblinking.

As a comparison, corresponding shot-noise-limited distribution is also plotted. Furthermore,

two other fluorescent dyes are checked in the same channel. Figure 33 shows the good agree-

ment and consistent performance of iPCH method.

Figure 33: Brightness distribution of other two fluorophores. In both cases, the measured photon

counting histogram is in good agreement with the Gaussian model.

4.3 Applying iPCH to reveal the distribution of molecular mix-

tures

4.3.1 Disentangling the mixtures of two dyes

The detected photons carry the information of emission spectra, polarization or arrival time,

which is usually exploited to discriminate different molecules. With the accuracy of the iPCH

method, the brightness information can be used for the identification of single molecules.

Here, two fluorophores with substantial emission spectral overlap are measured to demon-

strate the resolving power of the iPCH method.

Under the same stroboscopic illumination time of 1 ms, two red-emitting fluorophores Cy5

and Oyster 647 are respectively transported and measured inside the 1D Nanochannels. With
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the sample concentration of 5 nM and constant excitation condition, individual molecules

are well-isolated and then analyzed by the iPCH routine. Figure 34 (A) and (B) show the

brightness histograms for both samples out of 1499 and 1245 molecules, respectively. They

both show single peak distribution and can be well fitted by a single Gaussian model.

Figure 34: Identification of single molecules. iPCH analysis of fluorescent brightness distribution

for two fluorophores and their mixtures. (A) Sample solution with only Cy5. (B) Sample solution

with only Oyster 647. (C) Sample solution with Cy5 and Oyster 647 with a mixing ratio of 1:3.

(D) Sample solution with Cy5 and Oyster 647 with a mixing ratio of 3:1.

Subsequently, the mixtures of those two fluorophores are measured under the same experi-

mental condition. It requires a meticulous cleaning procedure in order to get rid of the sticky

molecules. By applying a high electrokinetic force and adding buffer solution, channels can

be quickly washed and then refilled with another sample solution. Two other samples of
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Cy5 and Oyster 647 mixture are also measured in the same condition as before, the mixing

ratios are set as 1:3 and 3:1 (Cy5: Oyster 647). As shown in Figure 34 (C) and (D), broader

histograms have been obtained, showing a very noticeable contrast in shape and the single

Gaussian model is no longer feasible for a reasonable fitting. A two-component Gaussian

mixture model allows a good fit for the data of mixtures and the information of brightness

differences from previous measurements is used to put a constraint on the fitting. Though

the difference of mean brightness for the two fluorophores is only around ∼20% from each

other, the mixing ratios still can be reasonably revealed. Simply by integrating the area of

each Gaussian component, compositions of each sample are estimated as (19.5±2.9)% Cy5:

(80.5±2.9)% Oyster647 and (68.1±3.0)% Cy5: (31.9±3.0)% Oyster647. Here, datasets of

mixtures are obtained from 2585 and 1726 localized molecules. A bootstrap method has

been applied to estimate the fitting errors, where brightness values from each dataset have

been resampled 30 times. Fitting results of brightness histogram from those 30 datasets

allow to estimate the mean ratio of each species and its error. It is noted that the ratio of

Cy5 is underestimated in both cases, which could result from the uncertainty of concentra-

tion determination or the potential different adsorption properties of those two dyes to the

channel surface.

As the emission property is governed by Poisson statistics, the brightness histogram can be

better separated by recording more photons from each individual molecule. When a desired

resolving capability is achieved, this brightness characterization method can be developed

into a real-time single-molecule sorting system by combining the method with electrokinetic

manipulation, which has already attracted much interest in single-molecule epigenetic analy-

sis [18] and would open tremendous opportunities for further biomedical studies. Meanwhile,

the platform is inherently designed to be compatible with the multicolor application, where

the stroboscopic imaging can be facilitated by a pulsed interleaved excitation [85] mode to

realize the multiplexed single-molecule identification.

4.3.2 DNA sizing

It has been well-known that double-stranded DNA (dsDNA) can be stoichiometrically stained

with intercalating dyes. Thus, the number of labeled dyes on the base pairs is proportional
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to the DNA length, which allows using fluorescence brightness for DNA size. Measuring the

size of nucleic acid fragments has been performed for many years, with different methods [43].

Long DNA strands can be stretched on the surface or inside nanochannels to map its size

or barcode [93]. For short or randomly coiled DNA, the measured diffusion coefficient can

represent its size. However, resolving a DNA mixture with different length is challenging.

Fluorescence burst analysis has been applied in such case, where BSD is successfully inves-

tigated to reveal the length distribution [45]. Since the iPCH is a simple but powerful tool to

determine the brightness distribution of different species, the method is employed to measure

the mixture of small 0.5 kbp and 1 kbp DNA fragments labeled with intercalating YOYO-1

dyes. As the staining ratio also limits the size resolution [43], fragments that are smaller than

0.5 kbp is less suited for this type of measurements.

Figure 35: DNA sizing. The brigthness of individual molecules is plotted against their localization

uncertainty. S represents the fitting standard deviation.

A 2D nanochannel is used in combination with a stroboscopic illumination time of 2 ms. As

shown in Figure 35, the iPCH analysis is demonstrated along with the standard deviations S

from 2D symmetrical Gaussian fitting for single molecules. It is noted that at lower photon
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counts, a broader distribution of S is obtained. Two species can be distinguished based on

their mean brightness, and their difference is 2.05 fold, which is in great agreement with the

DNA lengths.

4.3.3 Determining distributions of stoichiometries for molecular

mixtures

The more interesting application is to probe the stoichiometry labeled subunits in a molec-

ular complex, which requires a very high sensitivity so that the brightness discrimination is

possible. For this purpose, samples of DNA fragments (42bp) with heterogeneous labeling

numbers are measured, which mimic the situation of protein oligomerization. There, three

covalent bonds are chemically modified on the DNA structure and selectively labeled by

fluorescent dye Atto 647N. The sample quality has been characterized by using fluorescence

antibunching, as shown in Figure 8 (b) of Chapter 2, where it can only extract a value of

the average emitters number. To determine the full distribution of each species, the iPCH

method is employed in a 2D nanochannel using a excitation pulse length of 2ms.

Figure 36 shows both the scattering plot and the brightness histogram, where three species

can be distinguished, and their mean photon counts match well with the expected label-

ing stoichiometry. Sample distribution of three species is revealed from the iPCH analysis

by using three-component Gaussian fitting, as shown in Figure 37. The information can be

compared with estimated average number of emitters from the photon antibunching method,

as discussed in Chapter 2. In Figure 8 b, the same sample has been measured in free solution

by photon antibunching method and given an average emitter number of 2.37 per complex.

Using relation in Eq. 23 (in Chapter 2), average number of emitters calculated from the

species distribution measured by iPCH is 2.19, which reasonably matches with the anti-

bunching estimation. In contrast, the measurements of maximum 2 and 4 Atto647n labeled

DNA gives distinct values of 1.75 and 2.60, as shown in Figure 8 c and d.

For Poissonian statistics, the standard deviation is proportional to the square root of the

mean value. Therefore, the brightness difference between N and N+1 labeled species becomes

less discernible when N is getting larger. Collecting more photons would certainly improve
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Figure 36: Single-molecule stoichiometry. DNA with one, two and three Atto 647N labeled sample

species can be well revealed from the iPCH analysis.

the resolving ability. Nevertheless, in the case of small photon budget, given that the bright-

ness distribution of each species can be precisely characterized and follows well with the

stoichiometric ratio, a deconvolution method might also improve the resolving power of the

iPCH method [7]. As this imaging-based chip-like platform enables the parallel investigation

of multiple molecules at one time, all the experiments can be performed within a few minutes

and with minimum sample volume.

Only very few fools are capable of measuring the brightness distribution of single molecules

in solution. Particularly, no other method has realized high-speed stoichiometric sensitivity

down to the single-molecule level. Thus, the iPCH method can help to fill the technological

gap for quantitative single-molecule investigation. The experiment illustrated here is similar

to protein aggregation studies, where the proportion of different oligomeric species such as

monomers, dimers, and trimers needs to be quantified within a mixed solution. The iPCH

method is able to determine this distribution with few experimental constraints and high

accuracy. It is ready to be implemented into a conventional microscopy system and holds

potential to solve real biological problems.
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Figure 37: iPCH analysis to reveal the sample distribution. The population of one, two and

three Atto 647N labeled sample species is extracted from a three-component Gaussian fitting of

the brightness histogram.

4.4 Estimating diffusion coefficient by spot size analysis

In solution, the translational diffusion coefficient is connected with molecular hydrodynamic

radius via the Stokes-Einstein relation [34]. By measuring the diffusion coefficient of a flu-

orescently labeled molecule, changes of molecular size can be monitored and it has found

numerous applications in biology and chemistry over the recent decades [122]. Among all the

well-established methods of determining the diffusion coefficient, FCS and Single-particle

tracking (SPT) are the most widely applied techniques at nanomolar sample concentrations.

FCS is typically measured in a confocal-based detection scheme and SPT is an imaging-based

method that can directly visualize the molecular motion in real-time.

SPT determines the diffusion coefficient from the video of moving particles. There, location

of each particle is obtained from every image frame, thus in consecutive recording single

particle locations from multiple frames enables to produce a trajectory of each particle. An-

alyzing lots of these time-correlated trajectories can help quantify the diffusion coefficient.

In practice, this method is based on the mean-square displacement (MSD) analysis [92], which

typically requires more than 20 consecutive locations for each single trajectory to ensure an
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accurate estimation [125]. This condition is extremely difficult to be achieved when measuring

single fluorophores or small biomolecules of only several nanometers in size. Due to the fast

Brownian motion, these molecules only reside at the focal plane for a short moment (a few

milliseconds or less), in which period a EMCCD camera can neither capture multiple image

frames nor precisely localize the molecule because of the limited photon budget. Nonethe-

less, a previous work estimated diffusion coefficient based on the spots size obtained from

multiple single-molecule snapshots [102] and it thus, found a favorable applicability in fast

moving small molecules and is suitable for stroboscopic single-molecule imaging in nanoflu-

idic device.

As the channels dimension along the optical axis is smaller than the focus size, molecules are

always kept in focus. Single-molecule imaging patterns are described as the convolution of

the detection PSF with the occupation frequency of certain positions during the illumination

time. The latter part is governed by diffusion and the observation time window. Fast moving

molecules or long illumination times will lead to smeared or blurred single-molecule image

patterns. In the stroboscopic image mode, it is convenient to set up various illumination

times and detected single-molecule patterns can provide a good estimation of the diffusion

coefficient.

Figure 38: Simulated single-molecule imaging patterns with different illumination time. The

situation of two diffusion coefficients is also compared.
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Here, the underlying theoretical model is briefly recalled, and simulated images are used to

test this estimation method.

As shown in Figure 38, under different illumination pulses, various imaging patterns of single

molecules were generated from a multi-step 2D random walks simulation. It is performed

without too much difference from that described before (Section 4.1), expect two diffusion

coefficients are used under different stroboscopic illumination pulses. The simulation time

step is 10 µs and within this time the simulated image is represented by a Gaussian-shaped

detection PSF with a standard deviation of 150 nm. The corresponding single-molecule

image is an accumulative image under a certain illumination time and is displayed in one

pixelated image frame with pixel size of 70 nm. The fast diffusion case shows a dramatical

change of patterns that exhibits as irregular shapes under long illumination time.

In the analytical calculation, the projection of an in-focus immobilized fluorescence molecule

at position r onto a 2D image is given as detection PSF, which can be well approximated by

a Gaussian function that reads:

f0(r) = I0 · e
− (r−r0)

2

2σ20 (40)

Here I0 is a multiplication factor that represents the amplitude of fitting function. The

final imaging spot of the single-molecule is then given by the convolution of this PSF with

a molecular diffusion trajectory p(r | T ) during the illumination time T . So, there is the

observed single-molecule PSF:

fd(r | T ) = p(r | T ) ∗ f0(r) (41)

Here p(r | T ) is a conditional probability density that describes the occupation frequency of

certain positions during the exposure time T and has the form:

p(r | T ) =

∫ T

0

1

8πDt
e−

(r−r0)
2

4Dt dt (42)

where r0 is the original molecular position and D is the diffusion coefficient.

The single-molecule pattern is broadened by diffusion and thus has a bigger variance , where

the relation

σ2 = σ2
0 + σ2

d (43)

holds. Here σ2 can be directly achieved from the fitting of observed single-molecule patterns

with 2D Gaussian function. σ2
d is related to both diffusion coefficient and illumination time.
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Therefore, it gives

σ2 = σ2
0 + cDT (44)

Here, c is a constant that is related to the dimension of diffusion model. In 2D Nanochannels,

the 2D diffusion model is well satisfied and c = 1/3 [102].

In practice, several different illumination times are used and multiple image stacks can be

used to extract the different values of σ2. The simple linear relation of Eq. 44 enables the

diffusion coefficient to be extracted. It should be noted that the σ2
d here has a physical

meaning of variance with respect to average position of the trajectory, instead of the start

position of the trajectory that is used in the SPT method. This is due to the fact that

this analysis of spot size determines the diffusion coefficient without knowing the sequence

of imaging recording [29]. Random walk simulations with given diffusion coefficients are also

used to validate this method.

Figure 39: iPCH analysis of simulated images under three different excitation pulse lengths.The

variance is calculated from 2D Gaussian fitting of each molecule.

Using the simple linear relation of Eq. 44, different values of T can be opted to reveal the

diffusion coefficient D. Therefore, the advantage of stroboscopic imaging is naturally imple-

mented, and the additional information of localization uncertainty that has been presented
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before can now be applied to evaluate single-molecule spots.

Figure 39 shows an overlapped scattering plot of iPCH analysis from simulated images using

three different illumination times. A fast diffusion coefficient of 100 µm2/s is set for simula-

tion and the EMCCD multiplicative noise is also included. A constant count rate of 5× 105

counts per second per molecule and background 5× 103 counts per second per pixel are set

to approximate a real experimental condition.

Furthermore, in Figure 40, the mean values of variance under four different illumination

times are shown. The simulated diffusion coefficients of 10 µm2/s and 100 µm2/s are used

respectively. In both cases, a simple linear fitting is applied and the value D is inferred from

the slope of each curve that has the value 10.4 µm2/s and 104.3 µm2/s. It is worth to men-

tion that, this determination method has a desirable performance when the Gaussian model

can well approximate the molecular patterns. Thus, stroboscopic imaging of too long laser

pulses is not preferred, even though more photons can be recorded. Given that a reasonable

count rate of 5 × 105 counts per second per molecule could be reached, simulation results

show that using pulse lengths from 0.2 ms to 1 ms can already reveal both the slow and fast

diffusion coefficients accurately.

Figure 40: Calculation of diffusion coefficient from the spot-size analysis. Diffusion coefficients

are obtained from the slope of each curve according to Eq. 44.
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5 Conclusions and outlook

To summarize, the work presented in this dissertation investigated two fluorescence methods

for probing molecular stoichiometry in solution. First, photon antibunching was used to

estimate the average emitter numbers on a molecular complex and was subsequently applied

as a tool to study labeling efficiency. Nanofluidic devices were then introduced to facilitate

the detection of single molecules in solution and accurately measure their brightness. A new

method of iPCH was developed to determine the in vitro single-molecule stoichiometry with

high throughput.

To the first time, direct imaging of fast moving single fluorophores was demonstrated in

nanofluidic channels. With this simple but novel combination, nanofluidics assisted single-

molecule fluorescence imaging has been demonstrated as a versatile platform for measuring

single-molecule properties. The equipment is ready to be implemented into a conventional

bio-imaging system, which holds potential for widespread biophysical and biomedical ap-

plications. Furthermore, when electrokinetic flow is applied to manipulate single-molecule

motion, the imaging system can monitor this process in real-time. This allows perform-

ing single-molecule trapping experiments without using sophisticated feedback control. The

iPCH method, with its simplicity and high accuracy, has been validated by experiments

on both single fluorophores and molecular complexes with multiple labels. It can be used

for various biological problems, such as disentangling oligomeric species during protein fibril

formation or revealing the protein aggregation pathway at its early stage [104].

Photon antibunching and iPCH measure the stoichiometry from different perspectives. Pho-

ton antibunching uses a confocal spectroscopy together with pulsed excitation and fast single

photon detectors, which enables the simultaneous determination of other fluorescence prop-

erties such as lifetime. The experimental configuration is also compatible to work on cultured

living cells and holds the potential to carry out in vivo molecular counting. iPCH takes ad-

vantage of the feature of the nanofluidic device which is able to spatially separate molecules

in solution. This has advantages for characterizing the distribution of molecular properties

in vitro. Thus, iPCH is more useful for molecular diagnostics where minimum sample con-

sumption and high precision are required.

In the future, the ability of precise brightness determination could be utilized in more com-
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plex setups, such as expanding the iPCH system into a multi-color excitation/detection

modality. It allows measuring smFRET in nanofluidic devices to study protein conforma-

tional dynamics and intramolecular interactions without the surface tethering [115]. Moreover,

the multi-color system is very practical in multiplexed single-molecule detection, where sin-

gle molecules of different colors can be detected and quantified in single measurement. It

is also of great interest to employ the photoactivatable fluorophores that can work on the

biological problems with extended concentration range [77].

Aside from the brightness analysis this dissertation concentrates on, it is certainly possible

to measure other molecular parameters. Since images obtained by using nanoconfinement

are similar to the results from immobilized single molecules, the imaging system can be

combined with other well-established single-molecule techniques. Investigation of light prop-

erties such as anisotropy [46], spectra [126] or scattering [39] would enable a multi-parameters

analysis in solution. Furthermore, the system will benefit from recent and future advances in

micro/nanofabrication. Notably, techniques have been recently developed to reduce the cost

of 1D nanochannels drastically [17], and incorporate nanostructures inside the channels, which

produces a potentially even more versatile platform [31]. For instance, plasmonic nanoantenna

can be integrated into nanochannels to sense biochemical changes or enhance fluorescence [31].

Also, nanofluidic devices with multiple metal electrodes enable the concurrent manipulation

of multiple molecules in the channels.

Although technological advancements allow increasingly better investigations of biological

processes, no tool comes entirely without drawbacks. Inevitably, a molecule in the nanocon-

fined environment is more perturbed than in free solution. It may also adhere to the channel

walls or undergo specific chemical interactions [20]. Caution should be taken when modifying

the surface properties, which could also impact the electrokinetic flow. As charges and ion

clouds are often part of or surrounding a real biomolecule, the external electrical field can

create an additional force that may alter the molecular properties. Additionally, experi-

ments of probing single-molecule stoichiometry require photon emission from all labels to

be indistinguishable and independent. Energy transfer occurs when fluorescence labels are

close together, it may strongly influence the result of the analysis. Therefore, rather than

relying on a single experimental method, a thorough single-molecule study should combine

information from multiple different methods. I hope that photon antibunching and iPCH
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will become useful methods that routinely applied to solve various problems in the future.
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Acronyms

smFRET single-molecule Foerster Resonance Energy Transfer

TIRF total internal reflection fluorescence

PD Parkinson’s disease

FCS Fluorescence Correlation Spectroscopy

SNR signal to noise ratio

PCH photon-counting histogram

ROI region of interest

FIDA Fluorescence Intensity Distribution Analysis

MDF molecular detection function

BSD burst size distribution

ABEL Anti-Brownian Electrokinetic

PSF Point Spread Function

ZMWs zero-mode waveguides

ACF Autocorrelation Function

dsDNA double-stranded Deoxyribonucleic acid

SPT Single-particle tracking
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