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Summary 

The Tibetan Plateau hosts the world’s largest alpine pastoral ecosystems, dominated by 

the endemic sedge Kobresia pygmaea C.B.Clarke. Overgrazing on the Tibetan Plateau 

has caused severe degradation of vegetation and soils over the past 30-50 years. Due 

to the very harsh environment and nitrogen (N) and phosphorus (P) limitations in soils, 

these pastoral ecosystems are particularly sensitive to disturbances (e.g. anthropogenic 

activities and climate change) and exhibit slow recovery. 

The objectives of this thesis were to 1) summarize the mechanisms of pasture 

degradation, 2) elucidate the effect of pasture degradation on carbon (C) and nutrient 

cycles and 3) assess the impacts of recovery strategies on degraded Tibetan pastures. 

Laboratory chamber incubation experiments were established to investigate the effects 

of pasture degradation on C and N cycles, the response of Tibetan pastures to the 

simulated warming and increased precipitation and the impacts of manure application 

strategies on plant growth. A literature review was conducted to summarize the 

consequences of pasture degradation on soil organic carbon (SOC), N and P stocks 

across the entire Tibetan plateau, in order to evaluate the primary mechanisms of the 

SOC and nutrient losses. Additionally, the impacts of recovery strategies on degraded 

pastures were also summarized accordingly. 

Tibetan pastures at the intermediate degradation stage exhibited the highest C loss as 

CO2 emission and DOC leaching, while the highest N loss occurred in the extreme 

degradation stage of Tibetan pastures. These are primarily explained by the gradual 

disappearance of living plants and the decrease of C stocks, along with the more 

serious Tibetan pasture degradation. The simulated warming increased the activities of 

all enzymes relating to C, N and P cycles. Similarly, simulated increases in precipitation 

enhanced CO2 emission from pasture soils. These results indicated that both simulated 

environmental factors (i.e. increased temperature and precipitation) prompted nutrient 

release and CO2 emission, inducing greater loss of C and nutrients from Tibetan 

pastures. The literature review showed that degradation on the Tibetan Plateau has 

triggered significant loss of SOC (-42 ± 2 %), N (-33 ± 6 %) and P (-17 ± 4 %) contents 

compared to non-degraded pastures. While losses of total N and plant biomass were 
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found to be accompanied by SOC losses, total P loss was resistant to decreasing SOC 

content because of its precipitation as Ca3(PO4)2. While various strategies have been 

implemented to cease and even reverse the degradation processes, their effects on soil 

quality are still ambiguous, and restoration of soil fertility and ecosystem stability is 

infeasible due to very slow pedogenic processes, slow vegetation restoration, as well as 

continuously increasing anthropogenic pressures and global climate change. As a result 

of the rapid losses of SOC and nutrients and the very slow recovery potential, natural 

Kobresia root mats will disappear in the coming decades. This will dramatically 

destabilize these unique alpine ecosystems and have broader negative impacts on 

global environmental changes. 

 



Zusammenfassung                                                                                                                                                       IV 
 

IV 
 

Zusammenfassung 

Das Tibetische Plateau beherbergt die weltweit größten alpinen pastoralen Ökosysteme, 

dominiert von der endemischen Sedge Kobresia pygmaea C.B.Clarke. Die 

Überweidung auf dem Tibetischen Plateau hat in den vergangenen 30-50 Jahren einen 

starken Abbau von Vegetation und Böden verursacht. Aufgrund der sehr harten Umwelt 

und die Einschränkung der Stickstoff (N) und Phosphorus- (P) in Böden sind diese 

pastoralen Ökosysteme besonders gegenüber Störungen (z. B. anthropogene 

Aktivitäten und Klimawandel) empfindlich und sie zeigen eine langsame Erholung. 

Daher waren die Ziele dieser Arbeit wie folgt: 1) die abbau-Mechanismen der Kobresia 

pastoralen  zusammenzufassen, 2) die Wirkungen des Kobresia pastoralen abbau auf 

Kohlenstoff- (C) und Nährstoff-zyklen zu ermitteln und 3) die Auswirkungen von 

Rückgewinnungs strategien auf abgebaute Tibetischer Kobresia pastoralen zu 

beurteilen. 

Laborator-Inkubationsexperimente wurden durchgeführt, um die Wirkungen des 

Kobresia abbau auf C- und N-Zyklen zu untersuchen. Außerdem, wurde die Reaktion 

der Tibetischen Kobresia auf die simulierte Erwärmung und die Niederschlag erhöhung 

beurteilt und die Auswirkungen der anwendungsstrategien der Dünger auf das 

Pflanzenwachstum untersucht. Zuerst wurde eine Literaturrecherche durchgeführt um 

die abbau-folgen der Kobresia auf organischen Kohlenstoff (SOC) des Bodens, N- und 

P-Beständen auf dem gesamten Tibetischen Plateau zusammenzufassen und die 

primären Mechanismen des SOC und der Nährstoffverluste zu bewerten. Darüber 

hinaus wurden auch die Auswirkungen von Erholungsstrategien auf abgebaute 

Kobresia entsprechend zusammengefasst. 

Tibetische Kobresia in der mittlerenabbauphase zeigten die höchsten C-Verluste als 

CO2-Emission und DOC-Auslaugung  und die höchsten N-Verluste traten in der 

extremen Abbaustufe der Tibetischen Kobresia auf. Diese werden vor allem durch das 

allmählich Verschwinden der lebenden Pflanzen und den Rückgang der C-Bestände 

erklärt da die ernsteren Tibetischen Kobresia abbau diese Prozesse schon intensiviert 

hat. Die simulierte Erwärmung erhöhte die Aktivitäten aller Enzyme in Bezug auf die 

Zyklen der C, N und P. Ebenso verbesserte die simulation der Niederschlag Erhöhung 



Zusammenfassung                                                                                                                                                       V 
 

V 
 

die CO2-Emission von Kobresia bedeckte Böden. Diese Ergebnisse zeigten, dass 

simulierte Umwelteinflüsse (d.h. erhöhte Temperatur und Niederschlag) 

Nährstofffreisetzung und CO2-Emissionen veranlassten, wodurch größere Verluste an C 

und Nährstoffen aus Tibetischen Kobresia hervorgerufen wurden. Die 

Literaturrecherche ergab, dass der Kobresia Abbau auf dem Tibetischen Plateau 

signifikante Verluste an SOC (-42 ± 2%), N (-33 ± 6%) und P (-17 ± 4%) im Vergleich zu 

nicht abgebauten Weiden ausgelöst hat. Während die Verluste an Gesamte N und 

Pflanzen-Biomasse mit SOC-Verlusten begleitet wurden, war der verlust der Gesamte P 

unabhängig derabnehmenden SOC-Gehalt weil P als Ca3(PO4)2 ausfällen kann. Obwohl 

verschiedene Strategien schon implementiert wurden um die Abbauprozesse 

einzustellen oder sogar umzukehren, sind ihre Auswirkungen auf die Bodenqualität 

immer noch zweideutig. Da die Wiederherstellung der Bodenfruchtbarkeit und der 

Ökosystemstabilität durch sehr langsame pedogene Prozesse, langsame 

Vegetationswiederherstellung, kontinuierlich zunehmende Anthropogenen Drucke und 

globaler Klimawandel undurchführbar sind. Infolge der schnellen Verluste von SOC und 

Nährstoffen und dem sehr langsamen Erholungspotential werden die natürliche 

Kobresienwurzelmatten in den kommenden Jahrzehnten verschwinden und so wird 

diese einzigartigen alpinen Ökosysteme dramatisch destabilisieren und in folge 

verstärken die negative auswirkungen auf globale Umweltveränderungen. 
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1 Extended Summary 

1.1 Introduction 

1.1.1 Overview of Grassland and its worldwide degradation 

Grasslands, covering around 40% of the total global terrestrial area (Suttie et al., 2005), 

support the livelihoods of around 800 million people worldwide and also provide forage 

for livestock and wildlife. Grasslands store ca. 30% of the global soil carbon (Tennigkeit 

and Wilkies, 2008), and nutrients (nitrogen (N) and phosphorus (P)). These carbon and 

nutrient statuses matter not only for soil fertility, forage production and climate change, 

but also have important feedbacks in soil water condition, plant community composition 

and biodiversity. However, in recent decades, global grassland ecosystems have 

experienced serious degradation, which incurred dramatic repercussions for ecosystem 

functioning and socio-economic development. For instance, 20-35 % of grasslands 

have been affected by degradation (Bai et al., 2008; FAO, 2010). A meta-analysis of 55 

studies by Dlamini et al., (2016) found that 4-14% of soil organic carbon (SOC) stock in 

grasslands has already been lost due to various intensities of degradation. Grassland 

degradation also induced loss of global livestock productivity, with an estimated 

economic cost of around 6.8 billion US $ in 2007 (Kwon et al., 2015). Degradation-

induced nutrient losses also resulted in eutrophication of rivers and soil erosion resulting 

from strong sand storms and land desertification. 

1.1.2 Overview of Grassland and its degradation status across the whole Tibetan 

Plateau 

Tibetan pastures, hotspots of global grassland research, are the world’s largest pastoral 

alpine ecosystems, covering around 450,000 km2. More than 4.0% of the world’s 

grassland soil carbon (C) is stored in soils under Tibetan pastures (ca. 10.7 Pg C; Ni, 

2002). Around 920 Tg of nitrogen (N) is preserved in Tibetan pastures soils, which 

represents 0.7-1.0 % of the total global N storage (Tian et al., 2006) and is required for 

sufficient forage production. Over the last half century, Tibetan pastures have provided 

an important basis for livestock (i.e. 12 million of yaks, 30 million of sheep and goats; 

Suttie et al., 2015), thus ensuring the livelihood of Tibetan herders (Harris, 2010). 

Additionally, several major Asian rivers originate from the Tibetan Plateau and pass 
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through Tibetan pastures. These rivers collectively constitute the primary water sources 

for billions of people in the surrounding regions of southeastern Asia (Fan and Hou, 

2016). The Tibetan pastures play a critical role in ecological security, such as 

conservation of water and soil as well as the protection of biodiversity. In total, the 

values of these ecosystem services from Tibetan pastures were estimated to reach 

approximately 25.3 billion dollars (Squires et al., 2009; Xie et al., 2003), accounting for 

more than 62% of the entire economic output of the Tibetan grasslands. Therefore, due 

to their undisputed importance, the status of Tibetan pastures matters considerably for 

socio-economic development and ecological security in China and the surrounding 

Asian region (Sun et al., 2012; Babel et al., 2014; Zhong et al., 2006). 

Tibetan pastures remained stable throughout the last millennia of nomadic animal 

husbandry. However, these ecosystems have been intensively exploited in recent 

decades due to the high demands of socio-economic developments, e.g., overgrazing, 

land use change and infrastructure construction. These disturbances, together with a 

warming rate of about twice the global mean, have induced serious Tibetan pasture 

degradation. To date, around 30-70% of Tibetan pastures have been being degraded to 

different degrees (Li et al., 2013; Holzner and Kriechbaum, 2000; Wang et al., 2016). 

These degraded grasslands have caused considerable economic losses due to  

unexpected losses of organic C, N and species diversity (Wen et al., 2013), while 

simultaneously threatening human well-being. 

1.1.3 Classification and Definition of degradation in the Tibetan Plateau 

Degradation of Tibetan pastures in this particularly harsh environment have drawn 

considerable research interest to investigate the mechanisms of pasture degradation 

and its consequences for ecosystem services, water dynamics and plant and soil 

variations. For instance, Wen et al. (2013) reported that until 2008, economic losses 

resulting from C emissions and N loss on extremely degraded pastures reached around 

$8000 ha-1 and $13000 ha-1, respectively. Babel et al. (2014) concluded that increasing 

Tibetan pasture degradation significantly decreased the C uptake, as well as the 

function of pastures as a C sink, by classifying the pasture degradation into three stages. 

Similarly, Ma et al (2002) classified the pasture degradation into five degradation stages 
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using several vegetation characteristics (Fig. 1). They found that plant biomass strongly 

decreased and plant community composition also shifted from gramineae and sedges to 

weeds along the degradation continuum. Besides vegetation characteristics, various 

indicators, such as soil properties (Kimetu et al., 2008; Alados et al., 2007), plant 

species composition (Van der Westhuizen et al., 2005; Jordaan et al., 1997), species 

abundance of wildlife, and death rate of domestic livestock (Behnke & Scoones, 1993; 

White et al., 2000), have been proposed to assess and classify pasture degradation. 

Though several indicators have been recommended, it is challenging to make a general 

and globally accepted definition for pasture degradation due to differences in which 

pasture conditions are emphasized (e.g. pastoral productivity, vegetation composition, 

biological diversity, soil fertility, C and nutrient stocks) (White et al., 2000). Considering 

the importance of soil fertility and plant productivity for pasture quality, we define 

“pasture degradation” as the retrogressive succession of a pasture ecosystem affected 

by interference of rational and irrational anthropogenic (e.g. overgrazing, deforestation, 

and infrastructure construction) and/or environmental (e.g. permafrost melting and 

climate change) factors, leading to decreases in plant productivity, soil quality etc. 

 

Figure 1 Classification of Tibetan pasture degradation. The two classifications of degradation stages (① & ②) were 

determined based on vegetation coverage, plant productivity, portion of edible plants and height of edible plants 
(Babel et al., 2014; Ma et al., 2002). The first classification was used in Studies 3 & 4, while the second classification 
was used in Study 1. 

1.1.4 Unknown or unclear questions related to pasture degradation 

 Many local studies have investigated the impact of pasture degradation on soil 

properties and plant characteristics by classifying the degradation (Zeng et al., 2013; Li 
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et al., 2014) and varied conclusions have been reached. Meanwhile, strategies to 

recover soil fertility have also been proposed and examined (Dong et al., 2012; Feng et 

al., 2010). However, regional-scale analyses offering a better understanding of the 

relationship between SOC and nutrient status and degradation remain unexplored.  

Furthermore, the pathways and mechanisms of degradation-induced SOC and nutrient 

losses were also still unclear. 

1.2 Objectives 

As the introduction has shown a clear lack of knowledge on the mechanisms of pasture 

degradation, its effect on C and nutrient cycles and the strategies for Tibetan pasture 

recovery, this thesis focuses on the following objectives:  

1.2.1 Identification of the mechanisms of pasture degradation to 

—  determine the drivers of accelerated pasture degradation (Study 1) 

—  summarize the socio-economic factors inducing pasture degradation (Study 1) 

—  investigate the environmental factors which result in pasture degradation, providing 

an overview (study 1) but a detailed understanding of the effect of warming on 

biochemical functions (study 2) and the effect of increased precipitation on soil CO2 

emission. 

1.2.2 Elucidation of the effect of degradation on C and nutrient cycles to 

—  identify the processes of C losses with pasture degradation (Study 3) 

—  identify the processes of N losses with pasture degradation (Study 4) 

—  synthesize and generalize the consequences of pasture degradation for SOC and 

nutrient cycles (Study 1). 

1.2.3 Assessment of the recovery strategies of degraded Tibetan pastures to 

—  summarize the effect of reseeding and grazing exclusion on pasture recovery 
(Study 1) 

—  summarize the effect of N and P fertilization on pasture recovery (Study 1) 

—  investigate the effect of yak manure strategies on plant growth (Study 5) 
 

1.3 Material and Methods 

To achieve these objectives, we took samples from several sites on the Tibetan Plateau, 

conducted relevant incubation experiments and compiled related datasets. 
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1.3.1 Sampling sites 

1.3.1.1 Site 1-KEMA research station 

The first sampling for studies 3, 4 and 5 was carried out on field sites located at the 

research station of the Tibet University and the Institute of Tibetan Plateau Research-

“Kobresia Ecosystem Monitoring Area” (KEMA) (31°16′45''N, 92°59′37''E, 4410 m a.s.l.) 

in Nagqu, Tibet. The station is located in the core area of the Kobresia pygmaea 

distribution. Mean annual temperature and precipitation are -1.2 °C and 430 mm, 

respectively. From June to September, the mean summer precipitation reaches 272 mm, 

whereas snowfall is low (climate station in Nagqu, Miehe et al., 2011). The growing 

season ranges from May to October. 

1.3.1.2 Site 2-Reting 

The second sampling site for study 2 is located in the upper Kyi Chu catchment north of 

Lhasa in Pando County, Tibet, above the Reting Monastery of Qinghai-Tibetan Plateau 

(south west of China, 4330 m a.s.l.). The mean precipitation during the growing season 

(from May to October) is 330 mm. The temperature during the growing season ranges 

from –4 to +17.7 °C. This site has the largest and most sacred Juniperus forest in Tibet, 

diffusely growing in a carpet-like felty turf of Kobresia pygmaea C.B. Clarke (Miehe et al., 

2008). 

1.3.2 Incubation experiments 

1.3.2.1 Climate chamber incubation (Studies 3 and 4) 

Six samples from each root mat were selected to conduct the experiment. These 

samples were put in incubation boxes (Fig. 2, left) allowing for simultaneous analyses of 

CO2 efflux and leaching. A constant temperature of 20°C was maintained throughout 

the experiment. Samples were illuminated diurnally for 14 h with a photosynthetic 

photon flux density of 80 μm m-2 s-1 and kept in the darkness for 10 h. 
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Figure 2 Longitudinal 

section of chamber (left) 
and origin of three 
Kobresia root mat types 
(right). “Living” = living 
root mat; “Dying” = 
dying root mat; “Dead” 
= dead root mat. 

1.3.2.2 Temperature gradient incubation (Study 2) 

Thirty grams of soil was placed in air-tight vials (125 ml) equipped with rubber seals. Six 

enzymes targeting C-, N- and P-containing substrates were investigated after 

progressively incubating the soil at 0, 5, 10, 15, 20, 25, 30, 35 and 40 °C for one month. 

During the incubation, soil moisture was maintained gravimetrically at 60 % of WHC. 

Nine temperature-regulating climate chambers (SBS C120) were used for the 

incubations (< ± 0.5 °C). 

1.3.2.3 Manure application incubation (Study 5) 

 
 
 
 

Figure 3 Rhizoboxes with 

barley growing under three 
manure application 
strategies: No manure (left), 
manure homogenized with 
the whole soil (middle), and 
manure localized in the soil 
layer between 1.0 and 2.5 
cm below the soil surface 
(right). 

Experimental samples were prepared to simulate the following manure applications (Fig. 

3): 1) Localized manure: manure applied as a layer buried in the upper soil; 2) 

Homogenized manure: manure mixed into the soil. Homogenized manure application 

was comparable to fertilizer broadcasting and plowing; and 3) No manure: a control 

without manure application. For the localized manure application, 110 g fresh soil was 

first added to a rhizobox and then 5 g of composted yak dung was evenly spread across 

manure layer

soil

mixture of 

soil & manure

barley 

root

12.4 cm

1
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 c
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the soil surface in a 1.5 cm layer. For the homogenized manure strategy, 110 g fresh 

soil and 5 g composted yak dung were mixed homogeneously and placed in rhizoboxes. 

The third treatment only included 110 g soil and was the control (“No manure”). Each 

application strategy had three replicates. Tibetan barley seeds (Hordeum vulgare L.) 

were germinated on filter paper for 72 h. One seedling was then planted in each 

rhizobox at a depth of 5 mm. The rhizoboxes were placed in an incubation chamber set 

to 20 °C, with a photosynthetically active radiation intensity of 300 μmol m-2 s−1 and a 

14/10 hour light/dark cycle. 

1.3.3 Data collection for review (Study 1) 

Literature about the effects of pasture degradation on SOC and nutrient content was 

assembled mainly through four channels: 1) Web of Science V.5.22.1 (available online), 

2) ScienceDirect (Elsevier B.V.), 3) Google Scholar and 4) Chinese-language literature 

using the China Knowledge Resource Integrated Database (CNKI). The search terms 

were “degradation gradient/stages”, “alpine meadow”, “Tibetan Plateau” and “soil”. 

The criteria for inclusion in the review were: (1) the classification of degradation stages 

is clearly stated; (2) the literature includes analysis of SOC (or soil organic matter), total 

nitrogen (TN), total phosphorus (TP), vegetation characteristics or soil properties; (3) 

the non-degradation stage (stage 1 according to Fig. 1) is included as the “reference”, to 

enable the “effect size” analysis. At least one of the degradation stages (light 

degradation, moderate degradation, heavy degradation and extreme degradation) is 

also presented in relation to the “reference”; and (4) the sampling depth and study 

location are clearly presented. 

1.4 Main results and discussion 

1.4.1 Mechanisms of pasture degradation 

—  Harsh environmental conditions on the Tibetan Plateau, for example, low mean 

annual temperature, low CO2 pressure, short vegetation period and shallow soil 

depth, accelerates the pasture degradation (Table 1). The harsh conditions on the 

Tibetan Plateau make the region very sensitive to changes in environmental and 

socio-economic factors and accelerate pasture degradation. 
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Table 1 Factors and drivers of pastures degradation on Tibetan Plateau 

Factors inducing degradation 

o Environmental 

 Glacial retreat; snow melting 

 Permafrost degradation 
 Drying of wetlands  
 Shrinkage of lakes 

 Destruction of root mats by rodents  

o Socio-economic 

o Socio 

 Overgrazing 

 Population growth 

 Sedentarization of nomads 

 Privatization of pastures 

 Removal and burning of yak dung 

 Deforestation 
 Land use change 

o Economic 

 Mining 

 Road construction 

 Dam construction 

 Booming tourist industry 

Drivers accelerating degradation 

o Soil 

 Shallow soil depth (~30-50 cm) 

 Nutrient (N, P) limitation 

 Nutrient-poor parent materials 

 Slow weathering (because of climate) 

o Climate 

 Very strong solar radiation (21 MJ m
-2

 day
-1

) 

 Low mean annual temperature (< 0 °C) 

 High variation of spatial and temporal precipitation  

 Low mean annual precipitation (~440 mm) 

 Low CO2 pressure 

o Vegetation 
 Very short vegetation period (< 3.5 months) 

 Poor plant germination 

o Topography 
 Steep slopes 

 Slope exposition 

—  Socio-economic and environmental factors which may induce pasture degradation 

were summarized (Table 1). The interferences of all these environmental and socio-

economic factors in recent decades, and their interactions, have intensified Tibetan 

pasture degradation and accelerated SOC and nutrient losses. In contrast to 

environmental factors, socio-economic factors (e.g. overgrazing) have stronger, 

progressive and more rapid negative impacts on Tibetan pastures. 

— Simulated warming accelerated activities of enzymes relating to C, N and P cycles 

(Fig. 4). Continuous warming in the region will increase C and nutrient release and 

may contribute to C and nutrient losses.  
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Figure 4 Enzyme activity as a function of 

temperature demonstrates a gradual increase for 
cellobiohydrolase (top), tyrosine aminopeptidase 
(middle) and acid phosphomonoesterase (bottom) 
within the range of nine temperatures. 

—  Soil respiration was positively related to simulated increasing precipitation, 

indicating an enhancement of SOC decomposition with increasing moisture in 

Tibetan pastures (Fig. 5). This implies that increasing precipitation will accelerate C 

loss from Tibetan pastures. 

 

 

 

 

 

 

 

Figure 5 Correlation between soil moisture content (% 

dw) and nighttime CO2 efflux during the second 
experiment. ‘Living’ = living root mat; ‘Dead’ = dead 
root mat. 

1.4.2 Effect of pasture degradation on C and nutrient cycles 

—  Carbon loss as CO2 emissions and DOC leaching was highest in dying root mat (Fig. 

6). The initial dying of plants will rapidly convert pastures to a C source. However, 

photosynthesis of plant shoots in living root mat mitigated the respiratory C losses 

and consequently prevented Tibetan pastures from becoming a C source. The low C 

losses from dead root mat suggest that the stimulation of SOC mineralization by the 

high root litter inputs may disappear, and CO2 release subsequently decline, when 

labile OC stocks are not sufficient to support microbial activity. 
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Figure 6 Conceptual diagram of C and N 
losses from K. pygmaea pastures depending 

on degradation stages. “Living”, “Dying” and 
“Dead” correspond to the degradation stages 
of “Living root mat”, “Dying root mat” and 
“Dead root mat,” respectively, in Fig. 1. 

— Nitrogen loss from the leaching was highest in dead root mat compared with other 

root mats (Fig. 6). Leaching was the primary cause of high N losses (mainly as NO3
-) 

from dying and dead root mats, while the lower N loss from living root mats can be 

attributed to N uptake by living plants (Fig. 7). The large NO3
- losses from dead root 

mats were mainly caused by long-term NO3
- accumulation during SOC 

decomposition in the field, which were subsequently flushed by leaching. These 

losses reduce the potential of Tibetan pastures to recover from degradation, as N is 

often a limited nutrient in alpine grasslands. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Relations between foliar 
15

N uptake and total N in the leachate (top) 

and N2O efflux (bottom). p values less than 0.05 represent the significance of 
the correlation. 

 

— In total, 20-60% of SOC stocks were lost from degraded pastures, relative to their 

non-degraded counterparts (Fig. 1 & 8). These SOC losses are very close to the 
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decreases in N stocks (-33 ± 6%), as well as aboveground (-42 ± 3%) and 

belowground (-45 ± 6%) plant biomass. Phosphorus losses were lower (-17 ± 4%), 

likely due to the reduced bioavailability of P when precipitated as Ca3(PO4)2. SOC 

and nutrient stocks in the upper 10 cm are especially sensitive to pasture 

degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Effect sizes of SOC content, nutrient 

content, plant biomass, soil bulk density (BD) and 
soil pH for four degradation stages compared to 
non-degraded pastures. Colors represent 
degradation stages “②” in Fig. 1. The percentage 

value at the top shows the average effect size of 
the four degradation stages. The number in the 
parenthesis is the number of sampling points. 
Lower-case letters indicate significant differences 
between the degradation stages. 

1.4.3 Recovery strategies of degraded Tibetan pastures 

—  Reseeding strategy has no significant effect on soil organic carbon; Grazing 

exclusion showed inconsistent results among different studies. Inconsistent results 

of reseeding and grazing exclusion strategies suggest that recovery strategies must 

be implemented over a long period of time to realize improvements in soil fertility. 
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This reflects the time necessary for soil formation, restoration of the eroded soil and 

accumulation of nutrients – by weathering and N2 fixation. Therefore, to improve soil 

fertility, a complex of various strategies is necessary. 

 

 

 

 

 

 

Figure 9 Response of aboveground biomass (AGB) to single and 

combined additions of N and P. The short red line represents the 
calculated N+P effect without N+P interactions. The numbers in 
parenthesis show the number of experiments. This figure was 
generated based on the database from Miehe et al.’s (unpublished) 
literature. Error bars show standard errors (SE). 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Plant biomass and shoot/root ratio under three manure 

application strategies: 1) No manure, 2) Homogenized manure and 
3) Localized manure. The capital and lower-case letters show 
significant differences between application strategies (p<0.05). 
Error bars represent standard deviations (± SD). 

 

— Mineral fertilization (N and P) significantly increased aboveground biomass (Fig. 9); 

N addition directly increased the N losses from leaching in degraded Tibetan 

pastures. Nitrogen addition can facilitate plant growth in intact Tibetan pastures. In 
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the degraded stages of Tibetan pastures, N addition directly increased the N losses 

from leaching. Thus, degradation together with N addition intensifies N losses in 

Tibetan pastures, hampering pasture restoration, increasing the NO3
- loading of 

adjacent lower landscapes and exasperating headwater pollution. 

—  Shoot and root biomass was 3.1 and 6.7 times higher, respectively, with localized 

manure application (Fig. 10), but homogenized manure led to 3-29% higher enzyme 

activities than localized manure. Localized manure application decreases 

competition for nutrients between microorganisms and roots and simultaneously 

increases plant performance. This may represent a potential strategy to recover 

degraded Tibetan pastures using yak manure. 

1.5 Conclusions 

Highly intensive anthropogenic activities (e.g. overgrazing) have occurred for decades 

across the entire Tibetan Plateau to meet the demands of fast socio-economic 

development. These, in addition to a warming rate of about twice the global mean, have 

exerted extreme pressure on the vulnerable alpine pastoral ecosystems sensitive to 

disturbances, which induced widespread pasture degradation. This thesis summarized 

the mechanisms of Tibetan pasture degradation and investigated the impact of 

simulated warming on enzyme activities and the effect of simulated increasing 

precipitation on CO2 emission of pasture soils. Both simulated environmental factors 

prompted nutrient release and CO2 emission, indicating more losses of C and nutrients 

from Tibetan pastures. Investigation of the effect of pasture degradation on C and N 

cycles showed that Tibetan pastures at the intermediate degradation stage have the 

highest C losses as CO2 emission and DOC leaching, while the highest N losses occur 

in the extreme degradation stage of Tibetan pastures. These are primarily explained by 

the gradual disappearance of living plants and decrease of C stocks, along with the 

more serious Tibetan pasture degradation. The literature review revealed that 

degradation on the Tibetan Plateau has triggered significant losses of SOC (-42 ± 2 %), 

N (-33 ± 6 %) and P (-17 ± 4 %) contents compared to the non-degraded pastures. 

While losses of TN and plant biomass are found to be accompanied by SOC losses, TP 

loss is resistant to decreasing SOC content because of its precipitation as Ca3(PO4)2. 

While various strategies have been implemented to cease and even reverse the 
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degradation processes, their effects on soil quality are still unclear, and restoration is 

impossible without strong support and cooperation at regional, local and household 

scales. If pasture degradation in the Tibetan Plateau continues, the natural Kobresia 

root mats will disappear in the coming decades. This will dramatically destabilize these 

unique alpine ecosystems and have lasting negative impacts on global environmental 

changes. 

 

Figure 11 Synthesis of the main results of the studies. Carbon loss rate refers to losses as CO2 emission and DOC 

leaching. Nitrogen loss refers to losses from leaching processes. 
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2 Publications and Manuscripts 

2.1 Study 1: Degradation of Tibetan grasslands: Consequences for carbon and 

nutrient cycles  
 

Shibin Liua*, Kazem Zamanianb, Per-Marten Schleussa, Mohsen Zarebanadkoukic, Yakov 

Kuzyakova,b,d 

Status: Submitted to Agriculture, Ecosystems and Environment 

 
a 

Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany  

b 
Department of Agricultural Soil Science, University of Göttingen, Göttingen, Germany

 

c
 Division of Soil Hydrology, University of Göttingen, Göttingen, Germany 

d
 Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia 

2.1.1 Abstract 

The Tibetan Plateau hosts the world’s largest alpine pastoral ecosystems, dominated by the 

endemic sedge Kobresia pygmaea. Owing to the very harsh environment and also to soil 

nitrogen (N) and phosphorus (P) limitations, these pastoral ecosystems are very sensitive to 

disturbances (e.g. anthropogenic activities and climate change) and recover extremely slowly. 

Overgrazing on the Tibetan Plateau has caused severe degradation of vegetation and soils in 

the last 30-50 years. For the first time, for the whole Tibetan Plateau, we have summarized and 

generalized the consequences of pasture degradation for soil organic carbon (SOC) and 

nutrient stocks, and evaluated the main biotic and abiotic mechanisms of their loss. Based on 

44 literature studies as well as own data, we demonstrated that 42 % of SOC stocks were lost, 

relative to non-degraded pastures. These SOC losses are similar to the decreases in N stocks (-

33 %), and aboveground (-42 %) and belowground (-45 %) plant biomass. Although P losses 

are lower (-17 ± 4%), its precipitation as Ca3(PO4)2 makes it unavailable for plants. These losses 

are in fact underestimates, since undisturbed natural sites no longer exist on the Tibetan 

Plateau. The losses are much higher in the upper 10 cm and in some areas extend to complete 

removal of soil cover. This has dramatic repercussions for local livestock, human populations 

and river pollution. While some rehabilitation projects have shown positive outcomes, the 

complete recovery of degraded pastures (e.g. soil fertility, ecosystem stability) is infeasible, 

because of very slow pedogenic processes, slow vegetation restoration, as well as continuously 

increasing anthropogenic pressure and climate change. Considering the rapid losses of SOC 
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and nutrients, and the very slow recovery potential, Tibetan pastures may disappear in the next 

few decades. 

Key words: Tibetan Plateau, Soil organic matter, Pasture degradation, Soil nutrients, Carbon 

sequestration 

Corresponding Author: Shibin Liu, sliu3@gwdg.de 
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2.1.2 Introduction 

The Kobresia pastures, commonly known as “alpine meadow”, cover the southeastern 

quarter of the Tibetan Highlands (~450,000 km2) and form the world’s largest alpine 

pastoral ecosystem (Babel et al., 2015). Several major Asian rivers, such as the Huang 

He, Salween River, Yangtze River, Mekong River etc., originate on the Tibetan Plateau 

and flow through Kobresia pastures (Fig. 1). These rivers collectively constitute the main 

water resource for billions of people in the adjacent regions of southeastern Asia 

(Pomeranz, 2013). The Kobresia pastures provide important grazing grounds for 

livestock (i.e. yaks, sheep and goats) and thus ensure the livelihood of the Tibetan 

herders (Harris, 2010). More than 4.0% of the world’s grassland soil carbon (C) is stored 

in soils under Tibetan pastures (ca. 10.7 Pg C; Ni, 2002). Around 920 Tg nitrogen (N) is 

preserved in the Tibetan pasture soils, which represents 0.7-1.0 % of total global N 

storage (Tian et al., 2006) and is required for sufficient forage production. Consequently, 

Tibetan pastures are of considerable importance to livestock productivity, Tibetan 

herders (ca. 5 million), nutrient cycling and ecosystem stability. 

 

Figure 1 Degradation of pastures on the Tibetan Plateau. The circular green points are the locations of the study 
sites included in the literature review. The extent of Tibetan pastures is taken from Lehnert et al., (2015). The three 
degradation stages were classified by integrating the current status (low or high degradation) and future trend 
(degrading or improving) of four aggregated biophysical ecosystem factors (plant biomass, soil, water and plant 
biodiversity) (Nachtergaele et al., 2011). This map was created in ArcGIS based on distribution and degradation 
information for Tibetan pastures. The degradation information was derived from: 
http://www.fao.org/nr/lada/gladis/glad_ind/. 

The Tibetan pastures are developed over centuries in extreme environments: low mean 

http://www.fao.org/nr/lada/gladis/glad_ind/
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annual temperatures (below 0°C, Frauenfeld et al., 2005), high temperature and 

precipitation variation (Kuang & Jiao, 2016), low annual mean precipitation (~437 mm, 

Xu et al., 2008), very high solar radiation (Liu et al., 2012), very short plant growing 

season (~3.5 months, Leonard & Crawford, 2002), strong erosion by wind and water (48 

t ha-1 yr-1, Yan et al., 2000), very limited nutrients (e.g. N and phosphorus (P); Li et al., 

2014a), very shallow soil profiles (~30-50 cm, Chang et al., 2014) and low air pressure 

and CO2 concentration. These harsh conditions make the region very sensitive to 

changes in environmental and socio-economic factors (Wang et al., 2008b). For 

instance, warming across the whole plateau is greater and faster than the global mean 

(Kuang & Jiao, 2016). In response to this, glaciers retreat dramatically and permafrost 

thaws rapidly. The water table subsequently drops, erosion is exacerbated, and soil 

fertility declines (Chen et al., 2013). This directly contributes to the removal of the 

shallow soil profile and soil organic carbon (SOC) and nutrient losses, i.e. the 

degradation of vulnerable Tibetan pastures. 

The Tibetan pastures have suffered from serious degradation for several decades, due 

to frequent and very strong anthropogenic pressure (e.g. overgrazing) and large-scale 

environmental changes (e.g. climate change). This has had a variety of ecological 

consequences, including decreased plant species richness (Wang et al., 2009a), 

accelerated soil erosion (Wu & Tiessen, 2002) and shrinking grazing ground (Wu & Du, 

2007). To characterize the degradation problems and compare the situation in various 

pastures, the term “pasture degradation” needs to be defined. Considering differences 

in which pasture conditions are emphasized (e.g. pastoral productivity, vegetation 

composition, biological diversity, soil fertility, C and nutrient stocks), making a general 

and globally accepted definition is challenging (White et al., 2000). Instead, various 

indicators, for instance soil properties (Kimetu et al., 2008; Alados et al., 2007), plant 

species composition (Van der Westhuizen et al., 2005; Jordaan et al., 1997), species 

abundance of wildlife, and death rate of domestic livestock (Behnke & Scoones, 1993; 

White et al., 2000), have been recommended to assess pasture degradation. Among 

them, vegetation characteristics (i.e. vegetation coverage, productivity and proportion of 

edible plants) are most frequently proposed (Zeng et al., 2013), as vegetation status not 

only relates to animal productivity but also reflects soil quality. For instance, Ma et al. 
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(2002) divided the degradation of Tibetan pastures into five stages: non-degradation, 

light degradation, moderate degradation, heavy degradation and extreme degradation 

(Table S1, Fig. 2). This is the most frequently used degradation classification for 

pastures of the Tibetan Plateau. Similar classification systems have also been applied in 

other studies, but with variable percentage ranges (Zeng et al., 2013). In this review, we 

use the classification of degradation stages proposed by Ma et al. (2002). We define 

“pasture degradation” as the retrogressive succession of a pasture ecosystem affected 

by interference of rational and irrational anthropogenic (e.g. overgrazing, deforestation, 

and infrastructure construction) and/or environmental factors (e.g. permafrost melting 

and climate change) leading to decreases in plant productivity, soil quality etc. 

 

Figure 2 Classification of Tibetan pasture degradation. The degradation stages were determined based on vegetation 

coverage, plant productivity, portion of edible plants and height of edible plants. 

When applying this classification to pasture degradation, the primary concern is the 

assessment of SOC and nutrient status, due to their fundamental roles in 

biogeochemical cycles, plant productivity and ecosystem stability. By far, many studies 

have been implemented at the local scale and reached varied conclusions. Meanwhile, 

mechanisms for SOC and nutrient losses and the consequences have also been 

investigated (Babel et al., 2015; Liu et al., 2016; Li et al., 2015) and strategies to restore 

soil quality have been proposed and examined (Dong et al., 2012; Feng et al., 2010). 

However, regional-scale generalization with a better understanding of SOC and nutrient 

status in Tibetan pastures and the current degradation situation remains unknown.  
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To clarify these points and provide generalizations, the literature that has classified the 

pastures’ degradation using vegetation characteristics was assembled and the data 

concerning SOC, N and P content or stocks were extracted. We focused this review on 

degradation-related losses of two nutrients (N and P) because these are the most 

limiting nutrients worldwide (Vitousek et al., 2010) and especially on Tibetan Plateau. 

Our objectives were to: 1) quantify SOC and nutrient losses under five degradation 

stages of Tibetan pasture ecosystems; 2) relate vegetation characteristics and a broad 

range of soil properties to SOC and nutrient losses; 3) comprehensively understand 

how socio-economic and environmental factors contribute to pasture degradation and 4) 

identify the negative feedbacks of degradation to ecosystem services and functions. 

2.1.3 Materials and Methods 

2.1.3.1 Data collection 

Literature about the effects of pasture degradation on SOC and nutrient content was 

assembled mainly through four channels: 1) Web of Science V.5.22.1 (available online), 

2) ScienceDirect (Elsevier B.V.), 3) Google Scholar and 4) Chinese-language literature 

using the China Knowledge Resource Integrated Database (CNKI). The search terms 

were “degradation gradient/stages”, “alpine meadow”, “Tibetan Plateau” and “soil”. 

The criteria for inclusion in this review were: (1) the classification of degradation stages 

is clearly stated; (2) the literature includes analysis of SOC (or soil organic matter), total 

nitrogen (TN), total phosphorus (TP), vegetation characteristics or soil properties; (3) the 

non-degradation stage (stage 1 according to Table S1) is necessarily included as the 

“reference”, to enable the “effect size” analysis. At least one of the degradation stages 

(light degradation, moderate degradation, heavy degradation and extreme degradation) 

is also presented in relation to the “reference”; and (4) the sampling depth and study 

location are clearly presented. Totally, 44 literature studies were found (Fig. 1). 

2.1.3.2 Data analysis 

Data examination and standardization was performed to standardize the units of each 

parameter. Data illustrated in original publications as graphs were extracted using 
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g3data (v.1.5.1) software (http://www.frantz.fi/software/g3data.php). When soil organic 

matter content was presented, this was converted to soil organic carbon content using a 

conversion factor of 2.0 (Pribyl, 2010). Soil organic C and nutrient stocks were 

calculated using the following equation: 

Stock = 100 × Cont × BD × Depth                                            (1) 

Where Stock is C or nutrient (N, P) stock [kg ha-1]; Cont is soil C or nutrient (N, P) 

content, [g kg-1]; BD is soil bulk density, [g cm-3]; and Depth is the soil sampling depth, 

[cm]. To continue this conversion, only studies were considered which took samples in 

10 cm intervals because of the relatively large database size compared to other depth 

intervals. In some studies, bulk density was not presented. To calculate stocks for these 

studies, significant relationships between SOC or nutrient content and their stocks were 

established using existing data (Fig. S1). Based on these relationships, SOC or nutrient 

stocks were calculated.  

Power regressions between vegetation coverage and SOC or nutrients for the five 

degradation stages (N, P) were performed. When studies presented ranges for 

vegetation coverage, we took the median value. The effect sizes of individual variables 

(i.e. SOC, nutrients, bulk density and plant biomass) were quantified to illustrate 

differences between the non-degraded and the degraded stages. The following equation 

was used: 

ES = (D - R) / R × 100%                                                      (2) 

Where ES is the effect size, in %; D is the value of the corresponding variable in the 

relevant degradation stage (light degradation, moderate degradation, heavy degradation 

and extreme degradation); and R is the value of each variable in the non-degradation 

stage (reference site). When ES is positive, zero or negative, this indicates an increase, 

no change or a decrease, respectively, of the parameter compared to the non-

degradation stage. 95% confidence intervals were also calculated and illustrated in the 

figures. Because pH is the negative of the base 10 logarithm of the H+ concentration, 

the effect size of degradation on soil pH cannot be quantified by Eq. (2). Therefore, we 

used the difference: D - R, which was expressed as ΔpH. For instance, when D=8 and 
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R=7, ΔpH=1, meaning that pH increases by one pH unit with degradation to the relevant 

extent, i.e. -log 10-8-(-log 10-7) = -log 10-1 or 1. Significant differences of effect size 

among the degradation stages were tested using one-way analysis of variance 

(ANOVA). Before ANOVA was applied, data were checked for normality (Shapiro–Wilk 

test, p > 0.05) and homogeneity of variance (Levene test, p > 0.05). After a significant 

omnibus test result was obtained, a post hoc test (Tukey’s honestly significant difference 

test) was conducted for multiple comparisons. 

Sensitivity of 1) soil fertility (e.g. TN, TP) and 2) vegetation (e.g. aboveground plant 

biomass (AGB), belowground plant biomass (BGB)) indicators to SOC losses were 

evaluated for each degradation stage. All parameters were standardized to the non-

degraded stage as reference (every indicator of the non-degraded stage equals to 1.0). 

Consequently, all the values range from 1.0 to 0. The standardized SOC contents were 

then plotted against the standardized soil fertility and vegetation indicators. 

2.1.4 Results and discussion 

2.1.4.1 Degradation-induced losses of soil carbon, nitrogen and phosphorus 

Degraded Tibetan grasslands have lost on average 42 ± 2% of their SOC content 

relative to the non-degraded pastures (Fig. 3). Soil total N contents had declined by 33 ± 

6% (Fig. 3) and total P and K content were reduced by 17 ± 4 % and 15 ± 3 %, 

respectively (Fig. 3). Furthermore, SOC, N and K losses significantly increase from light 

to extreme degradation, while P loss is consistent among degradation stages. Because 

the non-degraded stage is defined by wide ranges for several indicators (Table S1; Fig. 

2), the reference sites may also have experienced some degradation compared to 

completely intact sites. Therefore, the SOC and nutrient losses reviewed here are 

actually underestimations and should be considered as minimum values. 
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Figure 3 Effect sizes of SOC content, nutrient content, plant biomass, soil bulk density (BD) and soil pH for four 

degradation stages compared to non-degraded pastures. The effect size is calculated by Equation 2 and presented 
as percent (except for pH, which is expressed as ΔpH = pHDegraded – pHNon-Degraded). Colors represent degradation 
stages. The percentage value at the top shows the average effect size of four degradation stages. The number in the 
parenthesis is the number of sampling points. Low-case letters show the significant differences between the 
degradation stages.  
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SOC and nutrients are inherently related to vegetation characteristics and soil properties. 

Therefore, these parameters directly contribute to variations in SOC and nutrient 

composition. In the following, we present the responses of vegetation characteristics 

and soil properties to pasture degradation and discuss how they can be related to SOC 

and nutrient losses. 

(1) Degradation effects on vegetation 

Plants assimilate CO2 and allocate part of this C belowground. The amount of C 

incorporated into the SOC pool from this newly assimilated C largely depends on plant 

biomass and vegetation coverage (Phillips et al., 2011). Pasture degradation leads to 

strong decreases in plant coverage, aboveground biomass (AGB, ~42 ± 3 %) and 

belowground biomass (BGB, ~45 ± 6 %) (Fig. 3) and consequently decreases C input 

into soil, with negative feedbacks on SOC storage. Further, plants take up nutrients, 

recycle them within the ecosystem, and thus protect them from being leached. 

Following degradation, however, there is less nutrient preservation in vegetation and 

they are more prone to leaching. Furthermore, pasture degradation decreases plant 

species richness and diversity and changes functional groups from graminoids and 

legumes in favour of forbs (Wang et al., 2009a; Li et al., 2014b; Wang et al., 2014). In 

sum, a decrease in vegetation cover and changes in species composition reduce C 

assimilation and nutrient uptake (i.e. less complementarity and facilitation) and so have 

negative effects on the total productivity of plant communities (Vicca et al., 2007), and 

ultimately on SOC storage and nutrient retention. 
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Figure 4 Relationships between vegetation coverage (in % of area) and stocks of soil organic carbon: SOC (top), 

total nitrogen: TN (middle) and total phosphorus: TP (bottom) for three depth intervals (0-10, 10-20 and 20-30 cm). 
‘Slope’ shows the slopes of the regression lines. p values represent the significance of the regressions. The Y axis for 
C, N, and P are presented at ratios: 50:5:1. All regressions show clear decreases of the closeness (slope) and 
significance (p) of the degradation (here as vegetation coverage) with depth, confirming that degradation starts from 
the vegetation and topsoil. 

High vegetation coverage significantly increases SOC and nutrient stocks (Fig. 4) by: i) 

facilitating photosynthesis (McAllister et al., 1998), which induces more belowground C 

input, including roots and the organic compounds released through roots; ii) protecting 
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SOC and nutrients from being lost directly (decreasing water and wind erosion rates) 

and indirectly (storing nutrients in the living biomass) (Mchunu & Chaplot, 2012; Chaplot 

et al., 2005; Wu & Tiessen, 2002); and iii) preventing soil heating by absorbing strong 

solar radiation, which subsequently decreases soil temperature and slows down SOC 

decomposition and CO2 release (Schrott, 1991; Liu et al., 2012). 

Though pasture degradation leads to lower C input from plants, it does not necessarily 

mean microbial decomposition of SOC will be limited and C losses via respiration will 

decrease after degradation. Two mechanisms support this statement: First, additional C 

supply from root litter (i.e. dying and dead roots) is available for microbes following 

degradation. Second, the decrease of root biomass eliminates the competition between 

plants and microbes for limited nutrients (especially nitrogen, Kuzyakov, 2002; Xu et al., 

2006). In fact, a significant increase in soil CO2 emission from degraded pastures has 

been confirmed (Li et al., 2015; Wang et al., 2010), indicating stimulated microbial 

activities that lead to more C loss via SOC and root litter decomposition. This 

demonstrates that degraded grassland ecosystems release more CO2 and lose more C 

than will be sequestered from plant input into the soil (i.e. net CO2 loss). 

Decreased plant biomass and vegetation coverage are also accompanied by intensified 

soil erosion, leading to removal of nutrient-enriched topsoil and exposure of the 

underlying soil layer (FAO, 1990; Tan, 2000). In consequence, soil structure becomes 

weaker, bulk density increases and pH may also increase due to higher CaCO3 content 

in the subsoil. These changes in soil physical and chemical properties may further affect 

microbial activity and contribute to the modification of SOC and nutrient status and 

cycles. 

(2) Degradation effects on soil chemical properties 

Soil pH increased by 0.66 units on average over the full range of degradation 

(ΔpH=0.66 ± 0.1; Fig. 3). The common sources of acidity in soil are either H+ released 

via roots to take up basic cations or dissociated H+ from functional groups of organic 

matter. Intensified degradation will decrease both acidity sources, and so soil pH will be 

mostly controlled by CaCO3 from parent materials (including continuous loess 
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deposition) and/or hydrolysis of basic cations. This causes increased soil pH following 

intensified degradation. Soil erosion can also elevate the pH by exposing the subsoil, 

which generally has higher pH than the removed surface soil. Increased soil pH 

facilitates microbial activity, which stimulates SOM mineralization and may thus further 

increase nutrient release into the soil solution (Pietri & Brookes, 2008; McLaren & 

Cameron, 1996). 

Soil with high cation exchange capacity (CEC), like Kobresia root mats, can protect the 

nutrients from being leached. However, Tibetan pasture degradation substantially 

decreased CEC (effect size: -19 to -40 %, Wang et al., 2007; Wu & Tiessen, 2002), 

because of the decrease in clay and SOM content and increase in soil pH, reducing 

both the soil permanent and pH-dependent charges (Zeng et al., 2013; McLaren & 

Cameron, 1996). Consequently, the released nutrients will be more easily leached 

following pasture degradation.  

Soil inorganic carbon (SIC) content showed inconsistent responses to pasture 

degradation, with its effect size ranging from -60 to +80% (Wen et al., 2013; Liu et al., 

2015; Li et al., 2014b). SIC density (on average 11.9 kg C m-2 down to 1 m depth) in 

Tibetan pastures has very high spatial heterogeneity across the whole plateau (Yang et 

al., 2010b). This largely depends on underlying parent materials: In sites with non-

calcareous parent materials, SIC content decreases with depth and degradation stage 

(Liu et al., 2015). The higher SIC in the topsoil derives from CaCO3-containing dusts. In 

soils developed from calcareous parent materials (e.g. loess, limestone, marl), SIC 

content increases with depth and degradation stage (Wen et al., 2013; Li et al., 2014b). 

Because of these two contrasting scenarios - parent materials with or without CaCO3 - 

soil pH responds to pasture degradation in different directions, and therefore the overall 

effect of pasture degradation on pH has the strongest variability (Fig. 3). 

(3) Degradation effects on soil physical properties 

Clay content decreases (effect size: -29 to -91%; Zeng et al., 2013; Lu et al., 2014; Li et 

al., 2015; Li et al., 2016) and BD increases by 30 ± 5 % (Fig. 3) with pasture 

degradation. This is the result of soil erosion that preferentially removes the fine 
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particles (Lal, 2003) and simultaneously exposes the deeper, often clay-depleted subsoil. 

Decreased clay content results in less formation of organic-clay complexes and less 

protection of incorporated SOC against microbial and enzymatic attacks. This 

additionally facilitates SOC decomposition and CO2 emission rates in degraded 

pastures. CO2 emission has already been shown to be higher in degraded pasture than 

in non-degraded pasture (Li et al., 2015; Liu et al., 2016). However, this stimulation of 

SOC mineralization may disappear and CO2 release decline, when the labile OC stock 

is not sufficient to support microbial activity (Vinton & Burke, 1995; Kuzyakov et al., 

2009). This may occur at extreme degradation stages, where plant coverage is 

generally around 15% and belowground C stocks are even less than ~13 Mg C ha-1 for 

0-10 cm (Fig. 4). 

2.1.4.2 Depth profiles of SOC and nutrient contents 

SOC and nutrient contents decrease with depth for all degradation stages (Fig. 5). In 

Tibetan pastures, 60~80 % of roots are concentrated at 0-10 cm (Fig. 5, Wang et al., 

2009a; Li et al., 2011). Therefore, C and nutrient inputs through root litter decomposition 

and rhizodeposition are the highest in the topsoil. Furthermore, other sources of C and 

nutrients (e.g. animal excretion, atmospheric deposition) are also readily incorporated 

into the topsoil.  

The differences in SOC and nutrient contents between degradation stages is most 

marked in the top 10 cm of soil, and gradually decreases for 10-20 and 20-30 cm 

depths. This suggests that 1) the degradation starts from the topsoil, and 2) SOC and 

nutrients in the topsoil are the most sensitive to losses. This sensitivity is also revealed 

by the significant relationships between vegetation coverage and SOC or nutrient stocks 

(Fig. 4): All regression lines show the highest slope for the 0-10 cm depth, meaning that 

with one unit decrease in vegetation coverage, SOC and nutrient contents in the top 10 

cm show the highest decrease. Consequently the degradation, which initiates from and 

is more intensive in the topsoil, has especially strong relevance for nutrient losses. 
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Figure 5 Soil organic carbon (SOC) and nutrient contents, belowground biomass (BGB) and soil properties 

depending on depths. “Non”, “Light”, “Moderate”, “Heavy” and “Extreme” represent non-degraded, light degradation, 
moderate degradation, heavy degradation and extreme degradation stages, respectively. For a better overview, the 
standard errors (SE) are deleted here. 

2.1.4.3 Sensitivity of soil nutrients and plant biomass losses to the decreasing SOC due 

to pasture degradation 

According to the trend lines (Fig. S2), high consistency of TN and some resistance of 

TP to SOC losses are evident. The trend line between the decreasing SOC and 
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decreasing TN fits well with a 1:1 line, indicating that TN losses are accompanied by 

SOC decrease. Even though the loss rate of TN is similar to that of SOC, the pathways 

of losses are different. Pathways of SOC losses include 1) SOC mineralization to CO2; 2) 

leaching of DOM and 3) wind and water erosion of particulate organics. In contrast, soil 

N is lost by 1) gas emissions (e.g. N2O, ~0.1 Tg N yr-1 for Tibetan pastures; Du et al., 

2008) through nitrification and denitrification; 2) leaching of N, mainly in inorganic form 

(i.e. NO3
-, Liu et al., 2016); 3) surface soil erosion; and 4) removal of N by grazing 

animals.  

In contrast, P losses are generally less than SOC and N losses, as indicated by the 

trend line for decreasing TP and SOC, which is above the 1:1 line (Fig. S2). Available P 

in soils of Tibetan pastures accounts for only 0.3-2.2% of the TP (Shang et al., 2016; Li 

et al., 2016), indicating that most P is insoluble, and would thus be lost mainly by 

erosion. Even though SOM decomposition releases soluble P, in soils with pH ≥ 7.0 (Fig. 

5) this P leaching from surface SOM-rich horizons to the deeper horizons rich in CaCO3 

will finally be precipitated as insoluble tricalcium phosphate (McLaren & Cameron, 

1996). This precipitation reduces P losses by leaching, but causes less P availability for 

plant growth. 

The trend between decreasing plant biomass (AGB and BGB) and decreasing SOC 

content almost overlaps with the 1:1 line (Fig. S2), suggesting that most of the SOC 

stocks are closely related to degradation of vegetation cover. As plant biomass 

decreases due to pasture degradation, the labile C input and subsequently total SOC 

stocks decrease. This means that the SOC stock is quite fragile and very sensitive to 

pasture degradation, and emphasizes the importance of pasture preservation. 

2.1.5 Synthesis 

2.1.5.1 Factors inducing pasture degradation 

Multiple factors are responsible for degradation of Tibetan grasslands and consequently 

for the SOC and nutrient losses. These can be classified into two groups: (1) 

environmental factors and (2) socio-economic factors (Wang et al., 2015b; Harris, 2010). 
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(1) Environmental factors: Very harsh conditions of climate, soils, relief etc. (Table 1) 

have existed on the Tibetan Plateau for millennia. The natural Tibetan pastures were 

adapted to this harsh environment and a dynamic equilibrium existed between 

vegetation, grazing livestock and burrowing animals as well as local nomads. However, 

this equilibrium has been disturbed because of fast climate change, which induced 

widespread permafrost degradation and glacial retreat. Permafrost degradation, for 

instance, increases the thickness of the active layer and lowers the groundwater table. 

Deeper groundwater decreases water availability for plants during dry seasons, and 

hence reduces total plant biomass and coverage and also SOC content (Fig. S3; Yang 

et al., 2010a; Wang et al., 2012; Wang et al., 2006). Burrowing activity by pika 

(Ochotona curzoniae; a small diurnal and non-hibernating mammal) and plateau zokors 

(Myospalax baileyi, a small blind subterranean rodent) causes an additional ~8-23 % 

loss of SOC stock in the topsoil by improving soil aeration, decreasing plant C input and 

transferring underlying nutrient-poor soil to the surface (Qin et al., 2015; Li et al., 2009). 

These and other environmental factors (Table 1) make the Tibetan pastures very fragile 

and very slow-recovering ecosystems. 

(2) Socio-economic factors: For thousands of years, domestic yaks, sheep and goats on 

the eastern Tibetan Highlands have grazed on the pastures (Miehe et al., 2014; Guo et 

al., 2006), and the ecosystem has remained stable. This has changed markedly since 

the 1960s because of a rapid increase in population and food and energy demand 

(Chen et al., 2013). Increasing population led to land-use change from pastures to 

cropland, as well as higher livestock density (particularly of yak) causing severe 

overgrazing. Large pressures on Tibetan pastures also arise from two widely-

implemented policies based on two misleading assumptions: 1) Sedentarization of 

Tibetan nomads with the hope that this would benefit the herdsmen and their families 

(Lu et al., 2009); 2) Privatization of pastures, assuming that open access to common 

pastures for privately owned livestock was the underlying cause of degradation (Yan et 

al., 2005). Both raising of yaks and removal of yak dung for heating and cooking also 

cause large SOC and nutrient losses and regional redistribution. For instance, of the ca. 

40 million tons of dung produced by livestock in 2006, about 60% was removed. Carbon, 

N and P contents in yak dung comprise about 40, 2 and 0.4 % of dung dry weight, 
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respectively (Cai et al., 2013). This implies that a total of 16 million tons C, 0.8 million 

tons N and 0.2 million tons P are removed annually from the pasture ecosystems. This 

equates to 0.1, 0.1 and 0.3% per year of the total C, N and P (ca. 77 Tg P) stocks, 

respectively, in Tibetan pastures (Ni, 2002; Tian et al., 2006; Lu et al., 2015a). 

In addition to the direct effects of higher population and grazing intensity, economic 

growth led to a rapid increase in infrastructure construction (Table 1, Fig. S4), which 

further intensified soil and land disturbance (Cui & Graf, 2009; Harris, 2010; Wang et al., 

2015b). From 2000 to 2014, the length of highways increased 3.6 times (Fig. S4). Such 

construction directly fragmented the pastures and destroyed the soil cover. The 

terrestrial ecosystems adjacent to this construction were also severely affected by 

excavation, road dust, blockage of natural water fluxes and heavy metal and gasoline 

contamination.  

Overall, the interferences of all these environmental and socio-economic factors in 

recent decades, and their interactions, have intensified Tibetan pasture degradation and 

accelerated SOC and nutrient losses (Qiao & Duan, 2016). In contrast to environmental 

factors, socio-economic factors have stronger, continuously increasing and more rapid 

negative impacts on Tibetan pastures. This is because 1) socio-economic activities are 

more intensive at local scales, compared to regional environmental effects; and 2) 

socio-economic activities, such as fossil-fuel burning, fertilization and pollutant release, 

subsequently accelerate environmental changes. 
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Table 1 Factors, drivers and consequences of pastures degradation on Tibetan Plateau
*
 

Factors inducing degradation Consequences References
**
 

o Environmental 

 Glacial retreat; snow melting - Irregular water fluxes  Accelerated vegetation drying; Wang et al. 2015b 

 Permafrost degradation (Figure S2) 
 Drying of wetlands  
 Shrinking of lakes 

- Deeper groundwater table; Less plant water availability; Soil shrinking Yang et al. 2010a 
Cheng et al. 2007 
Wang et al. 2012 

 Destruction of root mats by rodents  - Plant dying; Root-mat destruction; Increased erosion Qin et al. 2015 

o Socio-
economic 

o Socio 

 Overgrazing (Figure S3) - Soil compaction; Plant dying; Removal of nutrients Wu et al. 2009 

 Population growth - High resource demand from pastures; Pasture deterioration Harris, 2010 

 Sedentarization of nomads - Habitat fragmentation; Very strong local overgrazing Lu et al. 2009 

 Privatization of pastures - Intensive pasture use; Strong local overgrazing Yan et al. 2005 

 Removal and burning of yak dung - Nutrient losses; Increased GHG (CH4, N2O) emissions Wang, 2009b 

 Deforestation 
 Land use change 

- Stronger soil erosion; Nutrient leaching; GHG emissions Cui & Graf, 2009 

o Econo
mic 

 Mining - Water contamination by heavy metals; Reduced vegetation coverage; 
Complete soil destruction 

Huang et al. 2009 

 Road construction (Figure S3) - Habitat fragmentation; Root-mat destruction Zheng & Cao, 2015 

 Dam construction - High evaporation from the reservoir  Changing microclimate Zheng & Cao, 2015 

 Booming tourist industry (Figure S3) - Trampling; Contamination; Increase of all kinds of anthropogenic 
pressure 

Foggin, 2012 

Drivers accelerating degradation Consequences References
**
 

o Soil 

 Shallow soil depth (~30-50 cm) - High soil erosion; Slow recovery; Low nutrient stocks Harris, 2010 

 Nutrient (N, P) limitation (Figure S4) - Limited plant growth; Slow recovery Zong et al. 2014 

 Nutrient-poor parent materials - Low compensation of nutrient losses by weathering  

 Slow weathering (because of climate) - Slow recovery; Slow compensation of lost nutrients  

o Climate 

 Very strong solar radiation (21 MJ m
-2

 day
-1

) - Higher bare soil temperature; Plant damage; Decreased plant 
productivity and species richness 

Liu et al. 2012 

 Low mean annual temperature (< 0 °C) - Slow plant growth; Slow SOM decomposition and nutrient release Xu et al. 2008 

 High variation of spatial and temporal precipitation  - Uneven plant water availability Chen et al. 2013 

 Low mean annual precipitation (~440 mm) - Low plant water availability; Slow litter and SOM decomposition  

 Low CO2 pressure - Low photosynthetic rate Fan et al. 2011 

o Vegetation 
 Very short vegetation period (< 3.5 months) - Very low primary production; Poor recovery potential FAO, 2005 

 Poor plant germination - Slow and poor recovery potential  

o Topography 

 Steep slopes - Strong erosion; Water redistribution  

 Slope exposition - Contrasting solar radiation on different slopes  Diverse plant 
community composition 

 

* Please note that in some cases the consequences of degradation are also the drivers.  
** Only some of the references are mentioned to the respective topic; they do not cover all the literature sources. 
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2.1.5.2 Socio-economic and environmental consequences of pasture degradation 

Besides SOC and nutrient losses, pasture degradation has substantial negative impacts 

on the ecosystem services and functions of Tibetan pastures (Table 1). Pasture 

degradation directly exacerbates N and P limitation (Vitousek et al., 2010) by inducing 

greater losses of both these nutrients. This impacts plant establishment and survival, 

and forage production rapidly declines. The reduction of forage production directly 

impedes development of animal husbandry, which decreases the economic income of 

the local population (Wen et al., 2013).  

Degradation-induced leaching of nutrients also pollutes surface and groundwater 

(Zhang et al., 2013). Therefore, the local and regional degradation of Tibetan pastures 

has large-scale consequences for large rivers (Huang He, Salween River, Yangtze River, 

Mekong River and etc.) and threatens the livelihood of human beings living downstream 

in the whole of southern and eastern Asia. Increasing frequency of strong wind and dust 

storms was also evident after pasture degradation (Wang et al., 2008a). Each year, 

90×109 kg of soil and sand are carried into the rivers by erosion (Dong et al., 2013). 

About 20% of all settlements in the central-west part of Nagqu Prefecture are at risk of 

being covered with transported sand (Squires & Zhang, 2009). 

2.1.5.3 Strategies for pasture recovery and restoration 

The high SOC and nutrient (N, P) losses and their far-reaching consequences require 

urgent intervention to slow pasture degradation or even improve the grassland’s status. 

Direct recovery strategies: Considering overgrazing as the major driver of degradation, 

grazing exclosure has been most frequently undertaken for pasture recovery. Weeding, 

fertilization and rodenticide applications are considered appropriate countermeasures, 

which are generally applied to light and moderate degradation stages (Dong et al., 

2013). For heavy and extreme degradation stages, reseeding is also proposed in 

addition to the above-mentioned strategies. Nevertheless, these recovery strategies 

have produced inconsistent outcomes (Harris, 2010): (1) grazing exclosure decreased 

soil C sequestration and C input as assessed by plant 13CO2 pulse labelling, because 
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high C allocation belowground requires moderate grazing (Hafner et al., 2012). Positive 

(Wu et al., 2009; Sun et al., 2014) or insignificant (Zhang et al., 2015; Lu et al., 2015b) 

effects of grazing exclosure on soil fertility were also reported. (2) Nitrogen and P 

fertilization or combined applications of both fertilizers on Tibetan pastures showed a 

significant promotion of AGB production by 37-110% (Fig. 6). However, the fertilizer 

applications also contribute to nutrients leaching in degraded pastures, which may 

hamper pasture recovery and exasperate headwater pollution (Liu et al., 2017). (3) 

Reseeding was ineffective (Dong et al., 2012) or had positive effects (Feng et al., 2010) 

on ameliorating soil fertility. In fact, recovery strategies must be implemented over a 

long period of time to realize improvements in soil fertility (Cao et al., 2014). To return 

SOC and nutrient contents to the status before degradation, at least hundreds of years 

are required (Preger et al., 2010). This reflects the time necessary for soil formation, 

restoration of the eroded soil and accumulation of nutrients – by weathering and N2 

fixation. Therefore, to improve soil fertility, a complex of various strategies is necessary.  

 

 
 
 
 
 
 

Figure 6 Response of aboveground biomass (AGB) to single and 

combined additions of N and P. The short red line represents the 
calculated N+P effect without N+P interactions. The higher 
response of AGB to simultaneous N and P addition reflects the 
positive effect of interactions between the nutrients for higher AGB. 
The numbers in parenthesis show the number of experiments. 
This figure was generated based on the database from Miehe et 
al.’s (unpublished) literature. Error bars show standard errors (SE). 

Indirect recovery strategies: Improving stove efficiency, use of solar energy and 

construction of household or communal biogas plants have been proposed as effective 

strategies to reduce yak dung collection for energy (Wang, 2009b). This is because yak 

dung collection (ca. 53% of Tibet’s total rural energy consumption) prevents the return of 

nutrients from dung to the soil, and so continuously decreases soil fertility. All these 

strategies, however, require large investments at the regional, local and household 
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scales and are impossible without strong governmental support. 

2.1.5.4 Current degradation status and expected patterns of future change 

Tibetan pasture degradation status is estimated at various spatial and temporal scales 

and is conducted by remote sensing techniques coupled with spatial modelling. These 

estimations mostly focus on vegetation state (i.e. vegetation coverage and net primary 

production) and disregard soil degradation. From 1987 to 2004, 34% of the total 

grassland area has been degraded in the source region of the Three Rivers, which 

caused an annual decrease of aboveground biomass by 4-16 kg ha-1 yr-1 (Li et al., 

2013). A similar rate of decrease in aboveground biomass (22 kg ha-1 yr-1, Wang et al., 

2008c) from 2001 to 2004 was also observed on the northeastern Tibetan Plateau. We 

speculate that the degradation rates in the last decade have been even faster. Even if 

the decrease in grassland productivity remains the same (~4-22 kg ha-1 yr-1) for the 

whole plateau, the grassland will disappear over the next 30-170 years, given the 

estimated total AGB for Tibetan grasslands in 2001-2004 (688 kg ha-1, Yang et al., 2009).  

Since the beginning of the century, a series of ecological projects and special policies 

were implemented, mostly in the source regions of the Three Rivers, to restore the 

Tibetan grasslands and save their ecosystem functions. Countermeasures in these 

projects include various combinations of the above-mentioned recovery strategies. 

Some positive results, at least for vegetation characteristics, have been achieved. For 

instance, positive trends in NDVI residues and net primary production have been seen 

since the implementation of these projects, indicating significantly restored vegetation 

(Cai et al., 2015; Wang et al., 2016). Nevertheless, it is still challenging (and may be 

impossible) to completely recover the degraded Tibetan pastures because of very 

strong and continuously ongoing SOC and nutrient losses and much slower 

pedogenetic processes and vegetation recovery, compared to rapid and increasing 

anthropogenic pressures and climate change. 

2.1.6 Conclusions 

Highly intensive anthropogenic activities (e.g. overgrazing) have occurred for decades 

across the whole Tibetan Plateau at the demand of fast socio-economic development. 
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These, in addition to a warming rate of about twice the global mean, have exerted 

extreme pressure on the vulnerable alpine pastoral ecosystems and induced 

widespread pasture degradation. The literature review elucidated that degradation on 

the Tibetan Plateau has triggered significant losses of SOC (42 ± 2 %), N (33 ± 6 %) 

and P (17 ± 4 %) contents compared to the non-degraded pastures. Because of the 

absence of natural, undisturbed pastures, all these values are underestimations of the 

real losses. Various vegetation characteristics and soil properties are closely related to 

SOC and nutrient losses. While losses of TN and plant biomass are found to be 

accompanied by SOC losses, TP loss is resistant to the decreasing SOC content 

because of its precipitation as Ca3(PO4)2. Though various strategies have been 

implemented to cease and even reverse the degradation processes, their effects on soil 

quality are still ambiguous, and restoration is impossible without strong support and 

cooperation at regional, local and household scales. If pasture degradation in the 

Tibetan Plateau continues, the natural Kobresia root mats will disappear in the coming 

decades. This will dramatically destabilize these unique alpine ecosystems and have 

strong negative impacts on global environmental changes. 
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2.1.9 Supporting information 

Table S1 Classification of pasture degradation (adapted from Ma et al., 2002) 

Degradation stages 
Vegetation 
coverage  

(%) 

Productivity 
(%) 

Portion of edible 
plants (%) 

Height of edible 
plants (cm) 

Pasture 
quality 

1. Non-degraded 80-90 100 > 70 > 25 Excellent 

2. Light degradation 70-85 50-75 50-70 20-25 Good 

3. Moderate 
degradation 

50-70 30-50 30-50 15-20 Bad 

4. Heavy 
degradation 

30-50 15-30 15-30 10-15 Worse 

5. Extreme 
degradation 

< 30 < 15 0 ― Worst 

 

 

 

 

 

 

 

 

Figure S1 Relationships between content and stocks of soil organic 

carbon: SOC (top), total nitrogen: TN (middle) and total phosphorus: TP 
(bottom) in a 10 cm depth intervals. The calculation of stocks based on 
Equation 1 involves 10 cm sampling depth intervals: 0-10 cm, 10-20 cm, 
20-30 cm. R

2
 values show the strength of the correlation. All correlations 

are significant at p < 0.0001. The Y axis for C, N, and P are presented at 
ratios: 50:5:1. 
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Figure S2 Indicators of 

degradation of vegetation and 
soil fertility: Sensitivity of 
nutrient losses in plant biomass 
(top row) and soil (bottom row) 
to SOC losses. The (1.0, 1.0) 
point represents the status of 
SOC and nutrients/plant 
biomass in non-degraded 
Tibetan pastures. The centroids 
(±SE) show the average values 
for each degradation stage. The 
grey solid line is the 1:1 (Y = X) 
line. The dashed lines are the 
correlation lines for all data 
points. The closer the dashed 
line is to the 1:1 line, the 
stronger is the dependence 
between SOC losses and the 
related parameter. The positive 
deviation from 1:1 line (e.g. for 
P) shows that the losses are 
less sensitive to SOC losses 
and are dependent from other 
factors. 

 

 

 

 

 

 

 

 

 

 

 

Figure S3 Response of vegetation coverage 

(%) and SOC content (g C kg
-1

) to thickness of 
the active layer of permafrost (m). Data are 
collected from Yang et al. (2010), Wang et al. 
(2012) and Wang et al. (2006). 
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Figure S4 Decadal development of socio-economic factors affecting pasture degradation: livestock numbers in 

Qinghai (top left) and Tibet (top right), length of highways (bottom left) and tourists (bottom right) in Qinghai and Tibet. 
All the numbers for the provinces Qinghai and Tibet were taken from the official statistical surveys (Gao et al., 2015; 
Wang et al., 2015a). The absolute numbers of different animals were converted to sheep equivalents (FAO, 2005). 
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2.2 Study 2: Hot experience for cold-adapted microorganisms: Temperature 

sensitivity of soil enzymes 
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2.2.1 Abstract 

High latitude and cold ecosystems, which constitute the major environment on Earth, are 

particularly threatened by global warming. Consequently, huge amounts of SOC stored in these 

ecosystems may be released to the atmosphere by accelerated enzymatic decomposition. 

Effects of intensive warming on temperature sensitivity and catalytic properties of soil enzymes 

were tested in cold-adapted alpine grassland of the Tibetan Plateau. We hypothesized that 1) 

maximal reaction rate will be insensitive to intensive warming at high temperature range (Vmax-

Q10=1); 2) substrate affinity (Km) remains constant at elevated temperatures due to expression 

of enzymes with less flexibility. These hypotheses were tested by examining the kinetics of six 

enzymes involved in carbon (cellobiohydrolase, β-glucosidase, xylanase), nitrogen (tyrosine-

aminopeptidase, leucine-aminopeptidase) and phosphorus (acid phosphomonoesterase) cycles 

after soil incubation at temperatures from 0 to 40°C.  

Q10 and Ea decreased at high temperature (25–40°C). However, enzymes that degrade low 

quality polymers remained temperature-sensitive even above 25°C (Vmax-Q10=2), which 

explains the faster decomposition of recalcitrant C compounds under warming. Substrate affinity 

of all enzymes gradually increased up to 20°C. At 25°C, however, Km increased rapidly, leading 

to an extreme decrease in catalytic efficiency. Above 25°C, Km of C and N cycles remained 

nearly constant, while Vmax gradually increased from 0–40°C. These results reveal two important 

implications of warming: 1) there are some temperature thresholds (here 20–25°C) that lead to 

sudden reductions in substrate affinity, decreasing temperature sensitivity and catalytic 

efficiency, 2) decoupled temperature sensitivity of Vmax and Km and the resulting maintenance of 

stable enzyme systems at high temperatures ensured efficient enzymatic functioning and 
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persistent decomposition of SOM at temperatures much higher than the common adaptation 

range of the ecosystem. Thus, the temperature thresholds of strong changes in enzyme-based 

processes should be considered and included in the next generation of models in order to 

improve the prediction of SOM feedbacks to warming. 

Key words: cold-adapted enzymes, soil enzymes, Michaelis-Menten kinetics, catalytic 

efficiency, activation energy 

Corresponding Authors: Bahar S. Razavi, brazavi@gwdg.de; Shibin Liu, sliu3@gwdg.de 
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2.2.2 Introduction 

Microorganisms in the natural environment cope with changing conditions that demand 

a wide range of metabolic adaptations (Neidhart et al., 1990). Among the most 

challenging environments are high latitude and cold ecosystems, which are threatened 

by global warming (Davidson and Janssens, 2006). Warming has a fundamental impact 

on microbial activity, metabolism and enzyme activities (Allison et al., 2010; Van Gestel 

et al., 2013; Zimmermann and Bird, 2012). Enzymes are essential to microbial 

metabolism and soil functioning, as they depolymerize large organic compounds and 

generate soluble oligomers and monomers that can be transported into the cells 

(Blagodatskaya et al., 2016; Wallenstein et al., 2010). Three mechanisms have been 

proposed to explain thermal adaptation of enzyme catalyzed processes: 1) change in 

the enzyme systems 2) the alterations in soil microbial biomass and enzyme expression 

at higher temperatures and 3) changes in quantity and quality of substrate, affecting 

reaction rates (Blagodatskaya et al., 2016). 

Enzyme activity is a saturating function of substrate concentration and is described by 

the Michaelis-Menten relationship (Michaelis and Menten, 1913). Enzyme saturation 

occurs when all the enzyme active sites are already occupied by substrate. In this case 

adding more substrate will not increase the overall rate of the reaction.  Both 

parameters of the Michaelis-Menten equation – the maximal catalytic reaction rate at a 

given temperature (Vmax) and the half-saturation constant (Km), are temperature-

sensitive (Davidson et al., 2006; Davidson and Janssens, 2006) and usually increase 

with temperature (Stone et al., 2012). Various enzymes have different temperature 

sensitivities and changes in soil temperature may also alter the relative rates of 

decomposition of different components of organic matter (Koch et al., 2007; Wallenstein 

et al., 2010; Stone et al., 2012; Razavi et al., 2015). This may affect nutrient availability, 

for instance it has been observed that N availability may be decoupled from C and P 

cycling under warming conditions (Allison and Treseder, 2008). Therefore, the 

temperature sensitivity of enzymes responsible for organic matter decomposition is the 

most crucial parameter for predicting the effects of global warming on the nutrient and C 

cycles (Davidson et al., 2006; Davidson and Janssens, 2006).  
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The temperature sensitivity of Vmax is directly related to the activation energy for enzyme 

reaction (Davidson and Janssens, 2006). Activation energies are parameters that 

mechanistically link enzyme kinetics and temperature response through the Arrhenius 

equation (Wallenstein et al., 2010). Based on the Arrhenius law, when activation energy 

is low, the exponential term will tend to 1 and consequently the reaction will become 

temperature independent (Marx et al., 2007). In the other words, the lower the activation 

energy, the lower the temperature sensitivity of the reaction rate. Enzymes catalyze 

biochemical reactions by lowering their activation energy (Gerlt and Gassman, 1993). 

Thus, a super-efficient enzyme will bring the activation energy to zero (Marx et al., 

2007). This is important because, in the context of cold-adapted microorganisms, one 

way to maintain decomposition processes at low temperatures would be to develop 

enzymes that are temperature-independent (Marx et al., 2007). 

Microbial physiology is evolutionarily selected for the most efficient enzyme systems 

(Allison et al., 2010; Hochachka and Somero, 2002). Moreover, the activities of 

hydrolytic enzymes could be adapted to different temperature regimes (Baldwin and 

Hochachka, 1969; German et al., 2012) with the goal of maintaining critical enzymatic 

functions. There is evidence for biogeographical patterns in enzyme temperature 

sensitivity (Huston et al., 2000; Feller, 2003; German et al., 2012). Many studies have 

observed that cold-adapted microorganisms can produce cold-adapted enzymes that 

catalyze reactions at lower temperatures with lower activation energy and with higher 

binding affinity (i.e. low Km) (Fields, 2001; Bradford, 2013) than their mesophilic 

counterparts (Gerday et al., 1997). Importantly, microbial adaptation and acclimation 

strategies have physiological costs (Schimel et al., 2007) and can reduce enzyme 

catalytic efficiency – determined as Vmax/Km (Stone et al., 2012; Tischer et al., 2015).  

The parameters of enzyme kinetics – specifically Km, which determines the binding 

affinity of the enzyme to substrate – are indicative of enzyme flexibility (the capacity for 

quick conformation change) (Somero, 1975). The increased flexibility would cause the 

cold-adapted enzyme to spend more time maintaining conformations that are not 

optimal for substrate binding (Siddiqui and Cavicchioli, 2006). This can be measured as 

a gradual increase of Km with temperature (Fields, 2001). Key to effective enzymatic 
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function is the trade-off between functional capacity and enzyme flexibility, which co-

vary with habitat temperature (Somero, 1995; Fields, 2001; Tokuriki et al., 2012). 

Conformational flexibility and enzyme function are closely related, and organisms have 

evolved to produce enzymes with thermal optima at their habitat temperature. For 

example, more flexible enzyme systems are expected under cold conditions, while 

strongly reduced enzyme flexibility (i.e. low temperature sensitivity of Km) is predicted in 

warmer climates (Johns and Somero, 2004; Dong and Somero, 2009; Bradford, 2013).  

Furthermore, as enzyme systems are altered by climate warming, different sets of 

isoenzymes (i.e., enzymes with the same function but different conformations and 

structures) are expected to be expressed at cold and warm temperatures (Somer, 1978; 

Bradford, 2013; Razavi et al., 2016). Isoenzymes with higher temperature optima can 

be produced by the same microbial species adapted to warming (Hochachka and 

Somero, 2002). Alternatively, isoenzymes can be expressed as a result of changes in 

microbial community structure caused by warming (Baldwin and Hochachka, 1970; 

Vanhala et al., 2011). In both cases, temperature sensitivity of catalytic reactions is 

dependent on enzyme isoforms. Nonetheless, all these mechanisms suggest that 

microbes prefer to produce enzymes that maintain optimal activity under native soil 

conditions. 

Despite intensive discussion on the mechanisms of enzyme temperature sensitivity, it 

remains unclear how the functional characteristics of enzymes in cold-adapted soil will 

be altered by temperature increases. This is extremely important because it provides 

evidence of the response of cold-adapted soil microbes and the fate of huge amounts of 

SOC stored in these ecosystems by acceleration of enzymatic decomposition in a 

warmer world. In addition, there is a lack of studies on the catalytic efficiency of soil 

enzymes in cold ecosystems as affected by warming.  

This study was designed to test the effects of intensive warming on the catalytic 

properties of soil enzymes in a cold-adapted environment. We hypothesized that 

maximal reaction rate will be insensitive to intensive warming at high temperature range 

(H1); and that the substrate affinity (Km) will remain constant at elevated temperature 
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(H2). To test our hypothesis we collected soil from the Tibetan Plateau and incubated 

the samples for one month over a temperature range of 0–40 °C (with 5 °C steps) and 

determined the kinetics, temperature sensitivities and activation energy of six enzymes 

involved in decomposition of soil organics: cellobiohydrolase and β-glucosidase, which 

are commonly measured as enzymes responsible for consecutive stages of cellulose 

degradation (German et al., 2011); xylanase, which degrades xylooligosaccharides into 

xylose and is thus responsible for breaking down hemicelluloses (Chen et al., 2012); 

acid phosphomonoesterase, which hydrolyzes (mono) ester bonds of organic P to 

phosphate under acidic conditions (Eivazi and Tabatabai, 1977; Malcolm, 1983; 

German et al., 2011).  Activities of tyrosine aminopeptidase and leucine aminopeptidase 

were analyzed to assess the hydrolysis of peptide bonds (Koch et al., 2007; Chen et al., 

2012).  

2.2.3 Material and methods 

2.2.3.1 Site description and soil collection  

The sampling site is located in the upper Kyi Chu catchment north of Lhasa in Pando 

County, above the Reting Monastery in Qinghai-Tibetan Plateau (south west of China, 

4330 m a.s.l.) (Table 1). The mean precipitation during the growing season (from May to 

October) is 330 mm. The temperature during the growing season ranges between –4 to 

+17.7 °C. This site has the largest and most sacred Juniperus forest in Tibet, diffusely 

growing in a carpet-like felty turf of Kobresia pygmaea C.B. Clarke (Miehe et al., 2008) 

which is the dominant and eponymous species (covering up to 98% of the root-mat 

surface). 

Table 1 Basic information of the sampling site 

Site Location 
MAP  

(mm yr
-1

) 
MAT (°C) 

Dominant soil 
types 

Horizon Dominant species 

Reting, Lahsa 30°18’50”N   91°30’47”E 549 2.4 Cambisols A 

Juniperus tibetica,  

Kobresia pygmaea 

C.B. Clarke 

Four composites of six soil samples each were collected using soil cores (18.5 cm long 

4.5 cm diameter). Each composite sample was collected over a 30 m2 area. A variable-

depth sampling scheme was used to obtain the entire A-horizon. This sampling scheme 

increases our confidence for minimizing random variation in soil properties. Samples 
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were collected in August 2015 when the mean monthly air temperatures were around 

2.4 °C.  

Once collected, samples were hand-mixed, roots and stones were separated and 

composite samples were placed in ziplock bags, and kept cold (~4 °C) for transport 

back to the laboratory (Göttingen University). Thereafter, samples were passed through 

a 2 mm screen and prepared for incubation. 

Extra soil samples were oven-dried under 60°C for 48 hours and used for measurement 

of soil properties. Soil pH, at the ratio of 1 to 2.5 (soil to water), was measured using a 

pH-meter (Metrohm, Herisau, Switzerland). Soils were analyzed for total C and N using 

an elemental analyzer (Vario Max CN, Hanau, Germany). Soil properties are shown in 

Table 2. 

Table 2 Description of soil properties 

Site 
Soil bulk density 

(g cm
-3

) 
C (%) N (%) C/N Soil pH 

Reting 1.1 4.4±0.2  0.3±0.01  14±0.3 5.5 

2.2.3.2. Soil incubation and enzyme assays 

Enzyme assays were prepared by placing 30 g of soil in air-tight vials (125 ml) equipped 

with rubber seals. Six enzymes targeting C-, N- and P-containing substrates were 

investigated after progressively incubating the soil at 0, 5, 10, 15, 20, 25, 30, 35 and 40 

°C for one month. During the incubation, soil moisture was checked by weighing and 

was immediately adjusted to equal 60 % of WHC. In order to avoid anaerobiosis, all the 

samples were regularly aerated by opening the vials for 1 minute. Nine climate 

chambers (SBS C120) were used to regulate the temperature (< ± 0.5 °C).  

The kinetics of hydrolytic enzymes involved in C, N and P cycles were measured by 

fluorimetric microplate assays of 4-methylumbelliferone (MUF) and 7-amino-4-

methylcoumarin (AMC) (Marx et al., 2005). Four types of fluorogenic substrates based 

on MUF and two types based on AMC were used to assess enzymatic activities: 4-

methylumbelliferyl-β-D-cellobioside (MUF-C) to detect cellobiohydrolase activity; 4-

methylumbelliferyl-β-D-glucoside (MUF-G) to detect β-glucosidase activity; and 4-

methylumbelliferyl-β-D-xylopyranoside (MUF-X) to detect xylanase activity. The 
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activities of tyrosine aminopeptidase and leucine aminopeptidase were measured using 

L-tyrosine-7-amido-4-methyl-coumarin (AMC-T) and L-leucine-7-amino-4-methyl 

coumarin (AMC-L). 4-methylumbelliferyl-phosphate (MUF-P) was used to detect acid 

phosphomonoesterase activity. All substrates and chemicals were purchased from 

Sigma (Germany). 

We determined enzyme activities over a range of substrate concentrations from low to 

high (0, 10, 20, 30, 40, 50, 100, 200 µmol g-1 soil). At each temperature four replicates 

were incubated. In addition, for all four incubation replicates, the assay of each enzyme 

at each substrate concentration was performed using three analytical replicates (12 

wells in the microplate). To ensure the saturation concentrations of fluorogenic 

substrates preliminary experiments were performed. Besides, linear increase of 

fluorescence over time during the assay was properly checked and data, which was 

obtained after 2 h, was used for further calculation (German et al., 2011).  

Suspensions of 0.5 g soil (dry weight equivalent) with 50 ml water were prepared using 

low-energy sonication (40 J s-1 output energy) for 2 min (Stemmer et al., 1998). Then 50 

μl of soil suspension was added to 100 μl substrate solution and 50 μl of buffer [MES 

(pH:6.8) buffer for MUF substrate and TRIZMA (pH:7.2) buffer for AMC substrate] in a 

96-well microplate (Koch et al., 2007). During pipetting, the soil suspension was kept 

agitation. Later each well was homogenized with 2 or 3 aspirations/ejections using a 

multi-channel micropipette. Fluorescence was measured in microplates at an excitation 

wavelength of 355 nm and an emission wavelength of 460 nm, slit width of 25 nm, with 

a Victor 3 1420-050 Multi Label Counter (Perkin Elmer, USA). Right before each 

measurement each plate was shaken for 1 min. All enzymes were determined and 

incubated at exact temperature over 2 hours. After each fluorescence measurement (i.e. 

after 30 min, 1 h and 2 h) the microplates were promptly returned to the climate 

chambers, so that the measurement time did not exceed 2–2.5 min. During assay-

incubation, microplates, at all different temperatures, were covered tight to prevent 

evaporation of solutions within the microplates.  



Publications and Manuscripts                                                                                                                                  56 
 

56 
 

Enzyme activities were expressed as MUF or AMC release in nmol per g dry soil per 

hour (nmol product released h-1 g-1 dry soil). Enzyme activity (nmol product released h-1 

g-1 dry soil) was calculated from the MUF or AMC standard curve following German et al. 

(2011). We checked possible temperature effects on the chemical decomposition and 

thermal hydrolysis of the four MUF-substrates and two AMC-substrates, but no 

significant effects were detected over the range 0–40 °C (Razavi et al., 2015).  

The Michaelis-Menten equation was used to determine parameters of the enzyme 

activity (V): 

 

 S
m

K

SV
V


 max         (1)  

where Vmax is the maximum enzyme activity; Km represents the half-saturation constant, 

or the substrate concentration at which the reaction rate equals Vmax/2; and S is the 

substrate concentration at active site of the enzyme (Michaelis and Menten, 1913; 

Segel, 1975; Von Lützow and Kögel-Knabner, 2009). Both Vmax and Km parameters 

were approximated by the Michaelis-Menten equation (1) with the non-linear regression 

routine of STATISTICA. Fitting was performed for the mean of 12 replicates. Analysis of 

variance (ANOVA) followed by the Tukey HSD at a probability level of p<0.05 was used 

to define the ranges of temperatures with significantly different Km (p<0.05). This means 

that pairwise differences were applied to distinguish the significant differences for each 

neighboring pair of independent variables (mean values of Km at 0, 5, 10, 15, 20, 25, 30, 

35, 40 °C) (Razavi et al., 2015; Razavi et al., 2016). Homogeneity of variance and 

normality of the values was tested by Levene’s test and the Shapiro-Wilk test. We used 

the routine Q10 function (2) to examine temperature sensitivity and to express 

temperature responses of each enzyme kinetic parameter (i.e., Km or Vmax separately). 
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where R is the rate of a process or a value of a kinetic parameter and T is temperature 

(Kirschbaum, 1995).  
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The activation energy was calculated according to the classical Arrhenius equation (Eq. 

3):  

                                                   (3) 

where k is the reaction rate constant; A is the frequency of molecular collisions; Ea is the 

required activation energy in Joules per mole; R is the gas constant (8.314 J mol-1 K-1) 

and T is the temperature in Kelvin. The activation energy was calculated in two steps: 

once for the low temperature range from 0–20 °C and once for the elevated range from 

25–40 °C. These two steps were selected on the basis of the absolute maximum 

temperature of the studied area: 24.1 °C (Miehe et al., 2008). 

 

Figure 1 Enzyme activity as a function of temperature demonstrates a gradual increase for cellobiohydrolase (top), 

tyrosine aminopeptidase (middle) and acid phosphomonoesterase (bottom) within the range of nine temperatures. 
Each enzyme was assayed at a range of substrate concentrations (8 concentrations) at each of 9 temperatures. 
Values are means of 4 replications (± SE). (Activities of the other three enzymes are presented in Table S1). 

2.2.4 Results 

2.2.4.1 Temperature sensitivity of enzyme activity  

The Vmax values increased with temperature for all enzymes (Fig. 1 and Fig. S1). 
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Changes in Vmax-Q10 were not gradual over the whole range of temperatures tested, and 

were clearly pronounced between 0 and 15 °C (Fig. 2). The magnitude of the 

temperature response varied between enzymes, ranging from 1.3 to 3.8, which 

corresponds to Ea values of 19 to 53 kcal mol-1 (Fig. 3). For all enzymes, Ea was higher 

in the low temperature range (0-20 °C) and decreased strongly from 25 to 40 °C (Fig. 3). 

The fitting of Vmax to the Arrhenius model demonstrated higher Ea values for 

cellobiohydrolase and xylanase compared to proteases, acid phosphomonoesterase 

and β-glucosidase.  

 

Figure 2 Temperature sensitivity of maximal reaction rate (Vmax-Q10) and substrate affinity (Km-Q10) of six enzymes as 

a function of temperature with 5 °C increments.  

2.2.4.2 Response of substrate affinity to temperature  
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The changes in Km-Q10 were not gradual over the range of temperatures tested, and 

were maximal between 0 and 15 °C (Fig. 2, Table S1). The Q10 values for Km varied 

over a more narrow range of 1.0 to 2.5 that was 1.5 times lower compared to Vmax-Q10. 

The Km-Q10 demonstrated two enzyme-specific patterns: 1. Decrease of Km-Q10 for the 

whole temperature ranges; this pattern corresponded to enzymes of the C and N cycles. 

2. The pattern observed for acid phosphomonoesterase Km-Q10 was nearly constant 

over the whole temperature range. 

 

 

 

 

 

 

 

 

Figure 3 The activation 

energy (Ea) of all tested 
enzymes at two temperature 
ranges: low (0-20 °C) and 
high (25–40 °C). 

The temperature effect on Km revealed a distinct threshold with a significant decrease in 

the affinity of all enzymes to substrate at temperatures above 25 °C (Fig. 4).  

Cellobiohydrolase, β-glucosidase and xylanase demonstrated stepwise increases of Km 

values at low to moderate temperatures (0–20 °C). The Km values of these enzymes 

strongly increased (by around 40%) between 20 and 25 °C (Fig. 4). After such an 

extreme increase, the Km values did not change significantly up to 40 °C (Fig. 4). The 

changes of acid phosphomonoesterase’s Km followed a pattern different to that of the 

enzymes involved in carbohydrate decomposition and proteases. Acid 

phosphomonoesterase demonstrated slightly increased Km values across the whole 

temperature range (0–40 °C), (Fig. 4). 
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Figure 4 Km and catalytic efficiency (Vmax/Km) 

of cellobiohydrolase (top), tyrosine 
aminopeptidase (middle) and acid 
phosphomonoesterase (bottom). Shading 
indicates temperature ranges with extreme 
Km increases accompanied by decreases in 
catalytic efficiency. (Km and catalytic 
efficiency of the other three enzymes are 
presented in Table S1).  

Thus, the Km of all C and N cycle enzymes changed significantly within psychrophilic 

and mesophilic temperatures, while substrate affinity was relatively constant within the 

elevated range (25–40 °C).  
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2.2.4.3 Catalytic efficiency of enzymes as affected by temperature 

The catalytic efficiency of the enzymes (Vmax/Km) increased from cold to moderate 

temperatures (0–20 °C). Further extreme increases in Km at the 25 °C threshold were 

always accompanied with a sharp decrease in the catalytic efficiency of enzymes of the 

C and N cycles (Fig. 4), and leveled off above 25 °C. In contrast, the catalytic efficiency 

of acid phosphomonoesterase increased gradually from 0 to 40 °C (Fig. 4). 

2.2.5 Discussion  

Most soil studies and models tacitly accept the gradual (according to Q10) increase of 

reaction rates (and consequently process intensities) with temperature. Both Vmax and 

Km increased with temperature for all tested enzymes, although the increase was not 

linear and indicated different temperature sensitivities of Vmax and Km (Fig. 1, 4). The 

Q10 values of reaction rates varied from 1.9 to 3.8 within the low temperature range and 

decreased to 1.3 at higher temperature. Similarly, the activation energy of all tested 

enzymes was higher at low and moderate temperatures (0–20 °C) compared to 

elevated levels (25–40 °C). This general reduction of temperature sensitivity confirms 

theoretical predictions (Davidson and Janssens, 2006) and experimental observations 

on reduced reaction rate Q10 values at elevated temperature (Tjoelker et al., 2001; 

Razavi et al., 2015). In line with previous studies, activation energy and temperature 

sensitivity of enzymes responsible for complex C-compound degradation (i.e. xylanase 

and cellobiohydrolase) were higher compared to β-glucosidase (Craine et al., 2010; 

Conant et al., 2011). However, contrary to our hypothesis (H1), reaction rates of 

enzymes that degrade low quality polymers remained temperature sensitive (i.e. Vmax–

Q10= 2) even in warm temperature ranges. According to Arrhenius law the higher 

activation energy associated with the breakdown of recalcitrant substrates could result 

in a greater temperature sensitivity of decomposition (Knorr et al., 2005; Hartley and 

Ineson, 2008). This logic appears to be supported by measurements of the temperature 

sensitivity of leaf litter decomposition (Fierer et al., 2005). 

We found a gradual increase of Km from 0–40 °C (acid phosphomonoesterase) and for 

all other tested enzymes from 0–20 °C. This could be a consequence of increased 

http://www.sciencedirect.com/science/article/pii/S003807170800059X#bib15
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enzyme flexibility, i.e. the capacity for quick conformation changes ensuring a fast rate 

of catalytic reaction by changing temperature. We also assume that the gradual 

increase of Km with increasing temperature may reflect stepwise expression of 

isoenzymes. Proteases and cellulolytic enzymes demonstrated constant Km from 25 to 

40 °C which is in line with the previous findings of Fields and Somero (1998) and the 

theoretical prediction of Bradford (2013) regarding the stability of enzyme systems at 

high temperatures. A strong increase in Km by 40–50% at high temperatures (25 versus 

20°C) reflected a two-fold reduction of the enzyme-substrate affinities. However, such 

temperature thresholds seem to be higher in temperate climates (30 °C), (Razavi et al., 

2016) compared to highland areas like Tibet (25 °C). 

Following the strong increase at 20 °C, the Km remained nearly constant from 25 to 40 

°C, while the maximal enzyme activity (Vmax) gradually increased with temperature. The 

accelerated enzymatic activity (Vmax) by temperature could indicate the increase in 

enzyme production due to an increase in microbial biomass. Alternatively, constant Km – 

accordance with our hypothesis (H2) – can be explained by an expression of multiple 

isoenzymes each with a different temperature optimum (Somero, 1995; Bradford, 2013). 

Such isoenzyme expression leads to an optimal balance between the static character of 

the enzyme (responsible for high efficiency at constant optimal temperature) and 

functional capacity, under their respective optimal working conditions (Zavodsky et al., 

1998; Conant et al., 2011; Razavi et al., 2016).  

Sudden and strong changes in Km at 25 °C indicated a switch from cold- and moderate- 

to warm-adapted enzyme systems with decreased substrate affinity. In fact, such an 

increase was responsible for the reduced temperature sensitivity and catalytic efficiency 

of overall enzyme function. A constant Km value from 25 to 40 °C was accompanied by 

a gradual increase of catalytic efficiency with temperature. From another point of view, 

production of enzymes with similar substrate affinity and higher efficiency might be a 

preferred microbial strategy (Stone et al., 2012; Hoang et al., 2016) in the studied soil. 

Catalytic efficiency demonstrated a general trend of gradually increasing with 

temperature at both cold and warm temperatures (Fig. 4, 5). The only remarkable 

exception occurred at 25 °C, where a strong increase in Km was accompanied by a 
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significant decrease in catalytic efficiency (Fig. 5). Thus, decoupled responses of Vmax 

and Km to temperature resulted in irregular increases of catalytic efficiency with 

temperature. Quite simply, if catalytic properties are to be maintained under a particular 

thermal regime, the "goal" that must be met would be expression of isoenzymes with 

similar Km values (Somero, 1978). Thus, maintaining the high binding affinity to 

substrate (constant Km) ensured efficient enzyme conformation within the 

unaccustomed temperate range.  

 

Figure 5 Generalized thermal responses of enzyme catalytic properties to a temperature increase. The scheme 

explains that catalytic efficiency gradually increases with temperature at both cold and warm temperatures except at 
25 °C, where a strong increase in Km occurs. 

However, to generalize the conclusions based on one soil type from alpine climate, 

more soils from various zones need to be tested. Therefore, we need more mechanistic 

work, in situ studies along with the studies of pure and isolated enzymes from a range 

of habitats to verify assumptions regarding temperature responses of specific proteins. 

Previous studies on pure cultures demonstrated a decline in catalytic efficiency between 

20-30 °C (Siddiqui and Cavicchioli, 2006). However, the pattern observed here was 

different which might be due to the complex composition of microbial communities in 

20        25 °C 
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soil. In addition, as these temperatures are extremely unusual for the original microbial 

community under the natural climate, with an annual temperature of 2.4 °C (Bárcenas-

Moreno et al., 2009), such sharp changes in Km could be an indicator of isoenzyme 

expression (Baldwin and Hochchka, 1970) due to a major shift in species dominance 

above 25 °C or an alteration in enzyme systems (Khalili et al., 2011; Bradford, 2013). 

However, while such a conclusion has been done for the one soil studied here, the 

relevance of the observed patterns needs to be proven for soils with contrasting 

properties (e.g., texture, structure, pH, C content, etc.) in a range of climate zones, e.g., 

in boreal and tropical environments. Furthermore, thermal denaturation – usually 

occurring at temperatures much higher than 40°C (dos Santos et al., 2004; Goyal et al., 

2014) – affects the kinetic constants of enzymes and also increases Km (Dick and 

Tabatabai, 1987). These indirect mechanisms of Km increase with temperature due to 

interactions of enzymes with soil particles.  

Overall, i) enzymes that degrade low quality polymers are temperature-sensitive over 

the whole range of temperatures (0 – 40 °C); ii) soil microorganisms are able to 

maintain stable or flexible enzyme systems with low or high substrate affinity within wide 

temperature ranges to ensure efficient enzymatic functioning under diurnally and 

annually varying temperatures. This ensures the easier adaptation of microbially driven 

decomposition to changing climate. Thus, acclimation may involve the expression of 

enzymes at a warmer temperature, potentially with the same Km but not necessarily. We 

conclude that consideration must be given to the temperature thresholds of strong 

changes in enzyme-based processes and that this is crucial to modeling the 

consequences of warming for C, N and P cycles and predicting the fate of soil carbon 

stocks in a warmer world. 
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2.2.8 Supporting information 

Table S1 Km and catalytic efficiency (Vmax/Km) of β-glucosidase, xylanase and leucine aminopeptidase 

Enzymes 
Temperature 

(°C) 

Vmax 

(nmol MUF/AMC g
-1

 soil h
-1

) 

Km 

(μmol g
-1

 soil) 
Vmax/Km 

β-glucosidase 0 30 ± 1.3 6 ± 0.3 4.9±0.3 

 
5 80 ± 1.8 12 ± 0.4 6.8±0.3 

 
10 98 ± 1.7 14 ± 0.4 6.8±0.2 

 
15 166 ± 1.8 22 ± 0.3 7.6±0.1 

 
20 230 ± 2.7 23 ± 0.3 9.8±0.2 

 
25 369 ± 2.6 40 ± 0.3 9.3±0.1 

 
30 429 ± 7.7 41 ± 0.7 10.6±0.3 

 
35 487 ± 6.3 43 ± 0.3 11.3±0.2 

 
40 564 ± 14 44 ± 0.8 12.7±0.4 

Xylanase 0 5 ± 0.1 5.3 ± 0.9 1.0±0.2 

 
5 11 ± 0.3 6.5 ± 1.4 1.7±0.4 

 
10 17 ± 0.3 8.6 ± 1.4 2.0±0.3 

 
15 31 ± 0.3 12 ± 1.1 2.6±0.2 

 
20 42 ± 0.6 13 ± 1.9 3.2±0.4 

 
25 59 ± 0.3 20 ± 0.9 2.9±0.1 

 
30 77 ± 0.4 21 ± 1.3 3.7±0.2 

 
35 113 ± 0.4 20 ± 1.5 5.6±0.4 

 
40 138 ± 0.5 21 ± 1.7 6.6±0.5 

Leucine aminopeptidase 0 33 ± 0.4 5 ± 1.3 6.3±1.5 

 
5 50 ± 0.6 7.8 ± 1.0 6.4±0.8 

 
10 64 ± 0.5 11 ± 0.9 5.8±0.5 

 
15 105 ± 0.4 15 ± 0.6 7.0±0.3 

 
20 145 ± 0.6 18 ± 0.7 8.3±0.3 

 
25 204 ± 0.7 25 ± 1.5 8.0±0.5 

 
30 295 ± 1 27 ± 1.1 10.8±0.4 

 
35 365 ± 1 29 ± 0.7 12.5±0.3 

 
40 448 ± 2 31 ± 1.1 14.7±0.5 
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Figure S1 Examples of Michaelise Menten kinetics (enzyme activity as a function of substrate concentration) in 

response to increasing temperature for cellobiohydrolase (top), tyrosine aminopeptidase (middle), acid 
phosphomonoesterase (bottom) measured at nine temperatures. Each enzyme was assayed at a range of substrate 
concentrations (8 concentrations) at each of 9 temperatures. Error bars stand for standard error. 
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2.3.1 Abstract 

Degradation of Kobresia pygmaea pastures has strongly increased on the Tibetan Plateau over 

the last few decades and contributed to a high loss of soil organic carbon (SOC) and nutrients. 

Nonetheless, the pathways of carbon (C) and nitrogen (N) losses from degraded K. pygmaea 

pastures are still unclear but is a prerequisite to assess the recovery of Tibetan grasslands. We 

investigated the response of day- and nighttime CO2 efflux and leaching of DOC, DON, NH4
+ 

and NO3
- from K. pygmaea root mats in three degradation stages: living root mat, dying root mat 

and dead root mat. Dying root mat had the highest C loss as CO2 and DOC from leaching. This 

indicates K. pygmaea pastures shift from a C sink to a C source following plant death. In 

contrast, living root mat had the lowest daytime CO2 efflux (0.38 ± 0.1 μg C g
-1 h-1) because CO2 

was assimilated via photosynthesis. Nighttime CO2 efflux positively correlated with soil moisture 

for living and dead root mats. It indicates that increasing precipitation might accelerate C losses 

due to enhanced SOC decomposition. Furthermore, dead root mat had the highest average 

NO3
- loss (23 ± 2.6 mg N L-1) from leaching compared to other root mats. It reflects that leaching 

increases the negative impacts of pasture degradation on N availability in these often N limited 

ecosystems and thus impedes the recovery of K. pastures following degradation. 

Key words: Kobresia pygmaea pasture, CO2 efflux, Nitrate leaching, Grassland degradation, 

Dissolved organic carbon. 
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2.3.2 Introduction 

Globally, grasslands occupy an area of about 24 million km² (Scurlock & Hall, 1998) and 

play an important role because they provide large grazing ground and store huge 

amounts of carbon (C) in soil (ca. 343 Gt C; FAO, 2010). However, about 20-35 % of 

the world’s grasslands are degraded with the consequence of declining vegetation 

cover, decreasing soil organic carbon (SOC) storage and soil fertility (FAO, 2010). The 

drivers for grassland degradation are numerous including biotic and abiotic impacts and 

are mostly amplified by human activities. For instance, overgrazing is expected to 

trigger grassland degradation by reducing the vegetation cover, changing vegetation 

composition and causing direct damages via trampling (Hiernaux, 1998). Fire, 

permafrost and drought were also considered as factors which may influence soil 

structure and C storage (Pereira et al., 2014; Liu & Diamond, 2005; Novara et al., 2013; 

Yang et al., 2010). A reversal of grassland degradation, however, can be induced by 

changing management options i.e. by planting legumes or shifting to organic farming 

(Parras-Alcántara et al., 2015; Hu et al., 2015). 

The Tibetan Plateau (TP) covers up to 2.5 million square kilometers and hosts the 

largest montane and alpine grasslands of the world. As the only dominant Cyperaceae 

mats in southeastern humid TP (450,000 km²), the pastures of Kobresia pygmaea 

C.B.Clarke (K. pygmaea) are often characterized by very dense root mats, which 

developed as a consequence of the long-term grazing history (Miehe et al., 2008). This 

selected plants with very high belowground investments (Hafner et al., 2012). 

Accordingly, K. pygmaea is very competitive compared to other plant species because 

its belowground reserves ensure a rapid regrowth following grazing and the recapture of 

nutrients such as N is very efficient (Schleuss et al., 2015).  

Due to the high altitude of about 4500 m a.s.l. (Thompson et al., 1997) and the harsh 

environment (i.e. strong solar radiation, high diurnal and annual temperature variations, 

low CO2 partial pressure, strong temporal and spatial precipitation variations and steep 

slopes) (Fan et al., 2011; Liu-Zeng et al., 2008; Ren et al., 1997; Zhang et al., 2015), K. 

pygmaea pastures are considered to be very vulnerable ecosystems (Wang et al., 2002; 

Schleuss et al., 2015). The Kobresia pastures are intensively affected by grassland 
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degradation (Wang et al., 2015). Almost all K. pygmaea pastures are degraded in 

Nagqu, 90% of which is under medium degradation stage (Wei et al., 2004). According 

to Babel et al. (2014) roughly 20% of the Kobresia root mats on the Kema study sites 

were dead, whereas still 65% were in intact conditions or showed only light degradation. 

For the remaining part, the topsoil was removed (bare soil) by SOC decomposition or 

soil erosion.  

Most researchers attribute the Kobresia pasture degradation to overgrazing (Shao & Cai, 

2008). Climate change, i.e. increasing temperature or precipitation, can also stimulate 

SOC turnover and plant species richness and thus amplify degradation (Du et al., 2004; 

Klein et al., 2004). Soil pools of C and nitrogen (N) and plant biomass decreased along 

grassland degradation from healthy to severe status (Wang et al., 2015; Yao et al., 

2016). Seedling density in the soil seed bank also significantly decreased with 

grassland degradation (Kassahun et al., 2009). However, knowledge about C and N 

losses via SOC decomposition and leaching is limited for Kobresia root mats in different 

degradation stages. 

 

Figure 1 Longitudinal section of chamber (left) and origin of three Kobresia root mat types (right). “Living” = living root 

mat; “Dying” = dying root mat; “Dead” = dead root mat. 

Therefore, root mats of different degradation stages were investigated in this study 

(Fig.1): (a) living root mat (Living), (b) dying root mat (Dying) and (c) dead root mat 

(Dead). The dying stage represents the transition between living and dead root mats. It 
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was in living condition during sampling but died during transport reflecting the initial 

stage of root mat degradation. We hypothesized that the dying root mat shows the 

highest C losses (mineralized as CO2 and leached as DOM) and N losses (leached as 

organic and mineral N) because of rapid decomposition of SOC and fresh root litter 

(Hansson et al., 2010). Considering the presence of living plants, we also hypothesized 

that living root mat assimilates CO2 and counterbalances C losses (Ingrisch et al., 2015). 

We also investigated the effect of soil moisture on nighttime CO2 efflux and 

hypothesized that CO2 efflux from living and dead K. pygmaea root mats will strongly 

increase with higher soil moisture because it stimulates SOC mineralization 

(Mukhopadhyay & Maiti, 2014). 

2.3.3 Materials and Methods 

2.3.3.1 Site description 

Sampling was carried out on sites at the research station of the Tibet University and the 

Institute of Tibetan Plateau Research-“Kobresia Ecosystem Monitoring Area” (KEMA) 

(31°16′45''N 92°59′37''E, 4410 m a.s.l.) in Nagqu, Tibet. The station is located in the 

core area of the Kobresia pygmaea distribution (Babel et al., 2014) and lies in the 

“Plateau Frigid Monsoon Region with semi-moist climate” (Leber et al., 1995). Mean 

annual temperature and precipitation are -1.2 °C and 430 mm, respectively. From June 

to September, the mean summer precipitation reaches 272 mm, whereas snowfall is 

low (climate station in Nagqu, Miehe et al., 2011). The growing season ranges from May 

to October and mainly depends on the on- and off-set of the summer monsoon (Miehe 

et al., 1988). 

The soils are classified as Stagnic Eutric Cambisol (Humic) (WRB, 2014) with a texture 

of 50% sand, 33% silt, and 17% clay. The mean pH value (H2O) is 6.9 ± 0.03, and the 

topsoil is free of carbonates. Large amounts of living and dead roots are present in the 

topsoil, developing very dense root mats (Schleuss et al., 2015). The root mats are 

mainly covered by K. pygmaea and have an average shoot height of not more than 2 

cm (Miehe et al., 2008). 

Kobresia pygmaea is the dominant vegetation type across the whole catchment of the 

Nagqu River (He & Richards, 2015). Average shoot biomass was 0.3 ± 0.02 kg dry 
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mass m-2. Besides Kobresia pygmaea (covering up to 98%), other monocotyledons 

occur, such as Carex spp., Festuca spp., K.humilis, Poa spp., Stipa purpurea and 

Trisetum spp. (Babel et al., 2014). 

Large areas on the study sites are affected by grassland degradation. Around 65% of 

the area is covered by living Kobresia root mats, while the remaining parts are occupied 

by dead root mats (16%) and bare soil patches (19%) (Babel et al., 2014). The sites are 

grazed by livestock (yaks and sheep) from January to April and also by ground-dwelling 

Plateau pika (Ochotona curzoniae) (He & Richards, 2015). 

2.3.3.2 Soil sampling and preparation 

Samples were randomly selected within an area of about 25,000 m² to maintain equal 

environmental conditions. We used soil cores (diameter: 5 cm; height: 5 cm) to take 

undisturbed samples from living and dead root mats at a depth of 5 cm (Fig. 1, right). 

Before transportation, the shoot biomass was removed and samples were put into PVC 

collars, which had the same size as the sampling cores. In the laboratory, samples were 

pre-incubated for 28 days but some samples of living stage did not recover. These 

recently died samples were used as an additional treatment (dying root mat). In total, 

we had three treatments: living root mat, dying root mat and dead root mat (Fig. 1, 

middle). Since the dying stage was still living before sampling but died during transport 

or storage, they had the same initial soil characteristics compared to the intact stage i.e. 

C and N contents, microbial biomass and root biomass. The only difference between 

both root mats (Living vs Dying) is the presence of Kobresia shoots, which assimilate 

CO2-C. Consequently, the dying stage was disabled from C assimilation and began to 

degrade. In contrast, the soil characteristics of the dead root mat totally differed 

compared to the living and dying stages because of long-term degradation in the field: 

i.e. lower C and N contents, microbial biomass and root biomass. Therefore, the three 

treatments reflect a gradual degradation sequence (Living < Dying < Dead). 

Three samples were selected from living and dead root mats to determine water holding 

capacity (WHC). Another three samples were used to separate root from soil. Roots 

were washed carefully with distilled water to remove soil particles. Afterwards, roots 

were oven-dried (60 °C) and subsequently milled. Soil was oven-dried under 105 °C, 
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sieved (2 mm) and grounded respectively. Then soil and root were analyzed for total C 

and N using an elemental analyzer (Vario Max CN, Hanau, Germany). The dying root 

mat stage was considered to have the same initial C and N content and bulk density as 

living root mat. 

2.3.3.3 Experimental set-up 

Six samples from each root mat were selected to conduct the experiment. These 

samples were put in incubation boxes (Fig. 1, left) allowing simultaneous analyses of 

CO2 efflux and leaching. According to Geng et al. (2012), diurnal soil temperature 

variation in Nagqu had no strong effect on soil respiration. Moreover, the average daily 

soil temperature during growing season was in the range of 9.3-21.3˚C. Within the 

experiments, we used a constant temperature of 20°C during day and night. Samples 

were illuminated diurnally for 14 h with a photosynthetic photon flux density of 80 μm m-

2 s-1 and kept in the darkness for 10 h. 

The first experiment was conducted to assess CO2-C loss and leaching of dissolved C 

and N. Living, dying and dead root mats were included. Daytime and nighttime CO2 

efflux was measured separately. To measure the CO2 efflux, soil moisture was firstly 

adjusted to 70% of WHC (i.e. 59% of dry weight for living and dying root mats; 33% of 

dry weight for dead root mat) for all soil cores at the beginning of the photosynthetic 

period. Distilled water was added homogeneously on the surface using a syringe. Vials 

with 3 ml 1.0 M NaOH solution were placed into the incubation box to trap CO2. NaOH 

solution was exchanged before the start of the night period. Net ecosystem production 

(difference between gross primary production and ecosystem respiration) was 

measured with simulated solar radiation during daytime. Only ecosystem respiration 

was investigated during nighttime. The leaching was examined on the day following 

CO2 measurement. Soil moisture of each sample was slowly adjusted to 100% of WHC 

(i.e. 84% of dry weight for living and dying root mats; 47% of dry weight for dead root 

mat). Distilled water (11 ml) was then added to each incubation box with a syringe to 

simulate increasing precipitation. The amount corresponded to 5 mm precipitation and 

reflected strong rainfall events, which occurred several times on the study sites (Ingrisch 

et al., 2015). The leachates were collected at the outlet of the incubation box (Fig. 1, 
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left). After taking the leachate samples, the cover of the incubation box was opened 

again for ensuring photosynthesis. This two-day collection of CO2 efflux and leachate 

was repeated weekly and lasted in total nine weeks. 

The second experiment focused on the effect of soil moisture on nighttime CO2 efflux. 

Soil moisture was regulated to two levels of WHC: 100% (at Day 11) and 70% of WHC 

(at Day 15 and 17) as above. Nighttime CO2 efflux was measured every two days. Vials 

with 3 ml 1.0 M NaOH solution were placed into the incubation box to trap CO2. This 

second experiment included living and dead root mats and lasted for 17 days. 

To measure CO2 efflux, 1 ml of the NaOH trap solution was titrated against 0.1 M HCl 

solution. Leachate was passed through filter paper (0.45 μm) and analyzed for total 

carbon (TC), total nitrogen (TN) and dissolved inorganic carbon (DIC) using a multi N/C 

2100s analyzer (Analytik Jena Inc, Germany). Dissolved inorganic nitrogen (DIN: NH4
+ 

and NO3
-) was measured using Cenco (Dual Tubingpump, Instrumenten B.V., Breda the 

Netherlands). Dissolved organic carbon (DOC) and organic nitrogen (DON) were 

calculated by subtracting DIC and DIN from TC and TN. Microbial biomass carbon 

(MBC) and nitrogen (MBN) were determined by the fumigation-extraction method 

(Brookes et al., 1985; Vance et al., 1987). SOC contents in soils were also separately 

determined after the incubation using the elemental analyzer (Vario Max CN, Hanau, 

Germany). 

2.3.3.4 Statistical analyses 

Soil and plant properties were analyzed and expressed as means with standard errors 

(mean ± SE). Normality (Shapiro-Wilk-test, p>0.05) and homogeneity of variance 

(Levene-test, p>0.05) were examined. The significance was tested at p<0.05 using one-

way ANOVA following Tukey’s HSD test for multiple comparisons. Relationship between 

soil moisture content and nighttime CO2 efflux was analyzed using linear regression. 

The cumulative CO2-C for all replicates during this experiment was correlated to their 

final SOC contents. All analyses were conducted using STATISTICA 10.0 (StatSoft Inc.). 
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2.3.4 Results 

2.3.4.1 Plant and soil characteristics 
 

 

 

 

 

 

 

 

Figure 2 Relations 

between microbial 
biomass carbon 
(MBC) and nighttime 
CO2 efflux (top) and 
DOC concentration in 
the leachate (bottom) 
at Day 114. “Living” = 
living root mat; 
“Dying” = dying root 
mat; “Dead” = dead 
root mat. 

Carbon and N contents in soils of living and dying root mats 

were approximately 1.8 and 1.4 times higher than those of dead 

root mat, while the C and N content of the root biomass did not 

differ significantly from each other (Table 1). After the incubation, 

the MBC content of dying root mat was roughly twice that of 

dead root mat. MBC was positively correlated with nighttime CO2 

efflux and DOC concentration in the leachate (Fig. 2). Living root 

mat had an average aboveground biomass of 215 ± 2.2 g m-2. 

2.3.4.2 CO2 efflux related to degradation stages of Kobresia 

pastures 

The hypothesis of the highest C loss from dead root mats was 

confirmed considering the nighttime CO2 efflux. It was roughly 

1.2 and 3.1 times higher compared to living and dead root mats, 
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respectively (Fig. 3, top). Nighttime CO2 efflux of dying root mat was stable over time, 

whereas it increased for living root mat until the fifth week and then remained stable. 

After the fifth week the nighttime CO2 efflux did not differ significantly from that of dying 

root mat. The cumulative CO2-C for all replicates during this experiment was positively 

related to their final SOC contents (Fig. 4, p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Nighttime (top) and daytime 
(bottom) CO2 efflux of three Kobresia root 

mat types. “Living” = living root mat; “Dying” 
= dying root mat; “Dead” = dead root mat. 
Error bars represent standard error (n=6). 

Daytime CO2 efflux of living root mat was the lowest (Fig. 3, bottom), confirming our 

second hypothesis about the strong CO2 assimilation by living Kobresia. The average 

daytime CO2 efflux of living root mat was even 6 and 2 times lower than dying and dead 

root mats, respectively. The trend of daytime CO2 efflux for the three root mat types was 

stable during the two months. 
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Overall, the dying of K. pygmaea induced the significantly highest CO2-C losses, 

whereas the presence of living K. pygmaea, in reverse, showed a strong CO2-C uptake 

by photosynthesis. 

 

 

 

 

 

 

Figure 4 Correlation between 

cumulative CO2-C for all replicates and 
their final soil organic carbon (SOC) 
contents. “Living” = living root mat; 
“Dying” = dying root mat; “Dead” = dead 
root mat. 

 

2.1.4.3 Effects of soil moisture on nighttime CO2 efflux 

 

 

 

 

 

Figure 5 Correlation between soil 

moisture content (% dw) and nighttime 
CO2 efflux during the second experiment. 
“Living” = living root mat; “Dead” = dead 
root mat. 

 

A strong positive relation between nighttime CO2 efflux and soil moisture was obtained 

for living and dead root mats considering the total duration of the second experiment 

(Fig. 5, p=0.001). This confirmed our third hypothesis. Moreover, nighttime CO2 efflux 

was the higher under the increased soil moisture level (70% vs 100% WHC) for living 

and dead root mats (Fig. 6). Soil moisture of living root mat was also higher than dead 
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root mat. After the first rewetting at Day 11, CO2 efflux of living and dead root mats 

increased. The CO2 efflux of living root mat continued to increase from Day 11 to Day 

13 (p=0.04), although soil moisture decreased. 

2.3.4.4 Leaching of C and N related to degradation stages of Kobresia pastures 

 

 

 

 

 

 

 

 

 

 

Figure 6 Change of soil moisture 

content (top) and response of nighttime 
CO2 efflux (bottom) in living and dead 
root mats to increased moisture. “Living” 
= living root mat; “Dying” = dying root 
mat; “Dead” = dead root mat. Soil 
moisture content is expressed as 
percent of dry weight (% dw). When the 
experiment started, samples were over-
saturated. For the 1st rewetting, 
samples from living and dead root mats 
were rewetted to 84 and 47 % dw, which 
correspond to 100% of WHC. For the 
2nd and 3rd rewetting, their moisture 
were adjusted to 59 and 33 % dw, which 
correspond to 70% of WHC. Error bars 
represent standard error (n=6). 

 

The dying root mat had the highest DOC and DON concentrations in leachates 

compared to living and dead root mats (Fig. 7, top and middle). This was consistent with 

our first hypothesis. However, the NO3
- concentration was highest from the dead root 

mat compared to the living and dying stages (Fig. 7, bottom). It strongly decreased over 

time but was significant higher throughout the experiment. The nitrate concentration 

from the dying root mat was slightly higher than that of the living stage at the beginning 
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and decreased to zero within the first 14 days. In contrast, no nitrate was leached from 

the living stage (Fig. 7, bottom). The ammonium concentrations in leachates were very 

low (below the detection limit) for all three root mats. As we hypothesized, dying of K. 

pygmaea resulted in the highest DOM losses from the leaching; unexpectedly, dead 

root mat showed the highest nitrate loss from leaching. 

 

Figure 7 Concentrations of DOC (top), DON (middle) and NO3
-
-

N (bottom) in the leachate of three Kobresia root mat types 
during the leaching experiment. “Living” = living root mat; “Dying” 
= dying root mat; “Dead” = dead root mat. Error bars represent 
standard error (n=6). 

 

 

 

2.3.5 Discussion 

2.3.5.1 C loss from soil respiration 

The nighttime CO2 efflux was highest from the 

dying, slightly lower from living and lowest from 

dead Kobresia root mat throughout the 

incubation period. In fact, the dead root mat had 

the lowest SOC content and consequently a 

lower C availability explaining the lower soil 

respiration rates. In contrast, the SOC contents 

were up to 1.8 times higher for living and dying 

root mats (Table 1), indicating that the higher C-

availability stimulated microbial respiration 

(Cleveland et al., 2007). This finding was 

supported by a positive correlation of cumulative 

CO2-C for all degradation stages and their SOC 

contents (Fig. 4). The positive relation between 

MBC and nighttime CO2 efflux also supported this finding (Fig. 2, top). 
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The CO2 efflux was slightly higher for the dying versus living root mat. This was 

especially pronounced in the first four weeks. We suggest that an additional supply of 

root litter following plant death was respired and slightly increased the CO2 efflux to a 

constantly high level. However, the absence of living root biomass in the dying stage 

may have eliminated the competition between uptake by K. pygmaea and microbes for 

limited nutrients (i.e. nitrogen, Kuzyakov, 2002; Xu et al., 2006). Therefore, the higher 

SOC and nutrient availability in dying root mat stimulated microbial growth and then 

increased heterotrophic respiration. In agreement with this, the highest microbial 

biomass C was detected for dying stage (Table 1). 

Nighttime CO2 efflux from living root mat increased within the first four weeks due to the 

gradual growth of plant biomass. Respiration by living roots and shoots as well as 

microbial decomposition of root exudates contributed to a higher CO2 efflux (Lehmeier 

et al., 2008; Wild et al., 2014). We argue that the release of exudates from living root 

biomass stimulated the microorganisms to decompose additional SOC (“priming effect”, 

de Graaff et al., 2014). However, after reaching the maximal shoot biomass the root 

respiration and the input of rhizodeposition remained stable (ca. 30 days, Peng et al., 

2010). This is because root exudation strongly depends on the photosynthetic 

assimilation during net primary production (Aulakh et al., 2001). Thus a constant input of 

root exudates explains the stable CO2 efflux after Day 28. 

2.3.5.2 Effects of photosynthesis on CO2 losses 

To consider for the photosynthetic C input with regard to SOC loss, we included daytime 

CO2 efflux measurements and hypothesized that living root mat strongly mitigated C 

loss from Kobresia pastures. Daytime CO2 efflux of living root mat was 6 times lower 

than that of dying stage due to CO2 assimilation via photosynthesis. It mitigated the C 

loss from soil respiration compared to the dying and dead stages but didn t́ totally 

prevented the switch from being a C sink to becoming C source. This is inconsistent 

with several other studies, demonstrating that alpine grasslands are considered to be C 

sinks due to the photosynthetic CO2 fixation during the growing season (Ingrisch et al., 

2015; Peng et al., 2014). We suggest that the increased soil moisture and the constant 

high temperature (20°C in this study) stimulated soil respiration. In fact we found that 
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the nighttime CO2 efflux increased during plant growth within the first four weeks, 

whereas the daytime CO2 efflux remained on a constant low level for the living stage 

(Fig. 3). It demonstrates that the increasing CO2 uptake during plant growth was offset 

by a higher CO2 release from soil respiration (Suter et al., 2002). 

2.3.5.3 Soil respiration as influenced by soil moisture 

The effect of changing soil moisture on soil respiration (nighttime CO2 efflux) for living 

and dead root mats was tested in the second experiment. Soil moisture was positively 

correlated with nighttime CO2 efflux for living and dead root mats, indicating that 

increasing moisture enhanced SOC decomposition. Therefore, the expected increase of 

precipitation on the Tibetan Plateau (Xu et al., 2008) is assumed to trigger additionally C 

and N losses from Kobresia pastures. This implies that the intact Kobresia pastures are 

at risk to become a C source by increasing precipitation rates, which accelerates the 

pasture degradation (Babel et al., 2014). 

Degradation from living to dead root mat is accompanied with a decrease of the plant 

biomass (especially the root biomass: 4.2 kg m-2 for living and 2.5 g m-2 for dead root 

mat). Consequently it enhances the soil bulk density in this root-dominated soil after 

root turnover, which thereby decreased the WHC (Wang et al., 2003). Therefore, lower 

soil moisture was observed for the dead root mat when we adjusted soil moisture to 

100% of WHC (Fig. 6, top). 

Surprisingly, nighttime CO2 efflux from living root mat continued to increase between 

Day 11 and Day 13, although soil moisture already decreased. This can be explained by 

the time lag for transporting photosynthetic assimilates from shoots to roots (Hill et al., 

2007). This time lag delayed the stimulation of root exudates to soil respiration and 

ultimately caused a delayed response of nighttime CO2 efflux. This lag was longer than 

that for most other grassland ecosystems (Kuzyakov & Gavrichkova, 2010). 

When soil moisture was kept at around 100% dw on the first day, nighttime CO2 efflux 

remained at a relatively high level for living and dead root mats (Fig. 6). This contrasted 

to some studies showing that SOC decomposition and CO2 production decreased under 

a high soil moisture level because oxygen diffusion into the soil was inhibited (Ganjurjav 
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et al., 2014; Tang et al., 2006). The Kobresia root mats, however, have very low bulk 

density (around 0.8 g cm-3 for living and dead root mats, 1.1 g cm-3 for dead root mat) 

and with a large pore system so that O2 diffusion was not hindered in our study. 

2.3.5.4 C and N loss from leaching 

DOM leaching was highest from dying root mats compared to living and dead root mats. 

This confirmed our hypothesis regarding highest C and N losses from dying root mat via 

leaching. We suggest that the strong decomposition of insoluble organic matter, 

especially of dying root mat, resulted in an enrichment of low and high weight molecular 

substances. Low molecular weight components of DOM will be very rapidly taken up or 

respired by microorganisms (Fischer et al., 2010), whereas the high molecular weight 

pool with much lower turnover rates becomes the major source for DOM (Jones et al., 

2004). This explained why the dying stage showed far higher DOC losses (Fig. 2, 

bottom). 

The highest NO3
- losses were observed from dead root mat. This partly contradicted our 

first hypothesis about the highest N loss from dying root mat. We suggest that nitrate 

accumulated in the dead root mat during long-term decomposition in the field and later 

was leached by water amendments. To a minor contribution, it is also possible that N2 

fixation by lichen-dominated crusts increased the N transfer into soil (Neff et al., 2005). 

The leaching of NO3
- from living root mat was always close to zero and only slightly 

higher for dying root mat in the first few days. It indicated that active N uptake by living 

plants significantly decreased the NO3
- concentration in the soil during plant growth 

(Wirén et al., 1997; Xu et al., 2011). We argue that the NO3
- released from 

mineralization of organic carbon was rapidly immobilized by microorganisms before and 

after transformation to nitrate or ammonium. The decreasing C/N ratio in the microbial 

biomass from the living (C/NLiving: 9.4), dying (C/NDying: 7.3) and dead stage (C/NDead: 4.9) 

also supported this finding. The C/N ratio of the microbial biomass in the living stage 

was 1.3 and 1.9 than that of the dying and dead stage, respectively. It clearly reflects 

that N gets limited for microorganisms in the presence of living plants. 

There was no ammonium leaching for any root mat type during the two months. The 

growing plants in the living stage took up NH4
+ and thus prevented ammonium from 
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being leached. Since the Kobresia root mats are well aerated and nitrifying bacteria are 

abundant in the upper soil compared with that in subsoil (Guan et al., 2013), NH4
+ will 

be immediately converted to NO3
- and then NO3

- will be taken up by plants or will be 

leached. 

 

Figure 8 Conceptual diagram of C and N loss from K. pygmaea pastures depending on degradation stages. C loss as 

CO2 emission and leaching was highest in dying root mat. This is mainly caused by the high initial root litter inputs 
after plant dying and the elimination of competition between plant and microbes for nutrient acquisition. N loss from 
the leaching of dead root mat was the highest compared with other root mats. We argued that nitrate accumulated in 
the dead root mat during long-term decomposition in the field and later was leached by water amendments. “Living” = 
living root mat; “Dying” = dying root mat; “Dead” = dead root mat. 

2.3.6 Conclusions 

The dying root mat showed the highest C losses (Fig. 8) from: (a) decomposition of 

SOC and roots (CO2 efflux) and (b) leaching of DOM. The dying of K. pygmaea 

provided more labile organic matter to microorganisms due to the high initial root litter 

inputs after plant dying. It indicated that the initial dying of K. pygmaea will rapidly 

convert pastures into a C source. However, photosynthesis in living root mat mitigated 

the respiratory C losses and consequently prevents Kobresia pastures from becoming a 

C-source. Highest nitrate loss from dead root mat was mainly caused by long-term 

nitrate accumulation during SOC decomposition in the field and then initiated by the 

leaching. It demonstrates that the increasing precipitation on the TP, as predicted with 

climate change, will enhance N losses. Probably this induces a negative feedback 
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mechanism because N is often a limited nutrient in alpine grasslands. Thus any N loss 

reduces the potential of Kobresia pastures to recover from degradation. 
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2.4.1 Abstract 

Kobresia pastures on Tibetan Plateau are the largest alpine pastoral ecosystems. K. pastures 

have experienced severe degradation in recent decades, inducing large nitrogen (N) losses 

from these ecosystems. This is particularly problematic, as it intensifies prevailing N limitation in 

these regions. Simultaneously, anthropogenic N deposition has increased across these 

ecosystems, but the fate of added N on variously-degraded K. pastures remains unclear. K. 

pastures of three degradation stages were investigated: living-, dying- and dead root mats. High 

and very low (as a tracer) amounts of 15N-labelled ammonium nitrate (NH4NO3) were applied to 

root mats under controlled conditions. Leaching was simulated over 3 months and 15N recovery 

was measured in the plant-soil system. N addition promoted aboveground biomass and foliar N 

content of Kobresia during the early growth period, indicating a short-term offset of N limitation. 

After 7-8 weeks, plant growth and 15N uptake were reduced in plants with initial N-addition, 

reflecting a transition to N limitation induced by N uptake and leaching from soil. This limitation 

was also indicated by the strong decline of NO3
- in leachates from living root mats compared to 

degraded root mats. Leaching N losses from dying and dead root mats increased 2.2 and 6.3 

times, respectively, compared to those of living root mats. We conclude that N addition can 

facilitate plant growth in living root mats, but contributes to N leaching in degraded pastures. 

This contribution to N leaching may weaken ecosystem recovery, increase NO3
- loading of 

adjacent lower landscape parts and eutrophicate aquatic ecosystems. 

Key words: Pasture degradation, N loss, Tibetan Plateau, 15N labeling, NO3
- leaching 
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2.4.2 Introduction 

The Kobresia pastures of the Tibetan Plateau cover approximately 45 million ha and are 

the world ś largest alpine pastoral ecosystems. These ecosystems are the source 

region for the largest rivers in southeastern Asia and are mainly dominated by Kobresia 

pygmaea C.B.Clarke (K. pygmaea) (Miehe et al., 2008a; Zhou et al., 2005). K. pastures 

store vast amounts of soil organic carbon (SOC) and nutrients (nitrogen (N), 

phosphorus), while providing important grazing grounds for native fauna and cattle 

(Unteregelsbacher et al., 2012; Yang et al., 2009).  

However, K. pastures have experienced severe degradation in recent decades. In this 

study, degradation is defined as a deterioration of plant and soil characteristics 

(including decreasing vegetation cover, variations in species composition, as well as 

changes in physical and chemical soil characteristics) due to harsh environmental 

conditions and improper management. The primary drivers of degradation can be 

summarized as anthropogenic factors (e.g. deforestation, overgrazing and infrastructure 

construction) and/or environmental factors (e.g. permafrost degradation and climate 

change) (Harris, 2010; Wang et al., 2015a). Ongoing pasture degradation has initiated 

high losses of carbon (C) and N via erosion, soil organic matter mineralization and 

leaching (Wang et al., 2009b; Feng et al., 2009; He & Richards, 2015). Degradation also 

causes plant death (i.e. reduces vegetation cover and above- and belowground 

biomass) and impairs grassland recovery (Wang et al., 2013; Zhang et al., 1998; Wang 

et al., 2009a). This has put the large human population of the Tibetan Plateau at risk 

regarding their livelihoods and food security (O’Mara, 2012).  

Nitrogen is a limited nutrient in most terrestrial ecosystems (Lebauer & Treseder, 2008; 

Menge et al., 2012). This is particularly true for the degraded Kobresia grasslands, 

where low temperature and precipitation hamper N fixation as well as mineralization of 

soil organic matter and therefore nutrient release (Shi et al., 2012; Vitousek & Howarth, 

1991). Nitrogen fertilization has been proposed to improve degraded K. pastures by 

mitigating N limitation (Dong et al., 2013). The suggested fertilization rates range from 

10-150 kg N ha-1 yr-1 and have been observed to facilitate plant growth (Li et al., 2014; 
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Zong et al., 2014; Jiang et al., 2015). Atmospheric N deposition on the Tibetan Plateau 

has also increased since the mid-20th century (Thompson et al., 2000; Kang et al., 

2002), with total N deposition rates recently reaching 3.43 kg N ha-1 yr-1 in rural areas of 

the Qinghai-Tibetan plateau (Xu et al., 2015b). Lü & Tian (2007) estimated that the total 

N deposition rate ranges from 7.0 to 7.5 kg N ha-1 yr-1 across the whole Tibetan Plateau. 

These alterations in atmospheric N deposition likely result from changes in annual mean 

ambient N2O concentrations, which increased 79%-124% in southern Tibet from 1994 to 

2003 (Lü & Tian, 2007) and will continue to increase in the near future (Kanakidou et al., 

2016). However, the impact of increasing N addition (from either N deposition or 

fertilization) on degraded pastures remains unknown. In contrast to the aforementioned 

benefits, higher N additions may pose environmental risks by enhancing N leaching, 

which could pollute these ecosystems and the surrounding headwaters of the Tibetan 

Plateau that supply billions of people with clean water in southeastern Asia (Pomeranz 

et al., 2013). 

To clarify the impact of increasing N addition, previous studies focused on various 

aspects of K. pygmaea pastures (e.g. plant biomass, plant species richness, plant 

community stability and soil microbial activities etc.) (Wang et al., 2015b; Fang et al., 

2014; Song et al., 2012; Song et al., 2015). The fate of added N in K. pasture 

ecosystems was also investigated using a 15N-labelling technique (Xu et al., 2003 & 

2004). A recent study determined the 15N recovery in soil and plant of non-crust and 

crust patches of K. pastures, in which the crust patches were considered to be 

degraded (Zhang et al., 2016). They observed lower total recovery from inorganic N but 

higher from organic N in crust patches, concluding that crusts changed the fate of added 

N. However, these 15N-labelling studies only added very low levels of N as a tracer and 

did not consider the impact of increasing N addition (from increasing N deposition or 

fertilizer inputs to reverse degradation) on the fate of N in intact and degraded K. 

pastures.  

We investigated the effects of increasing N addition using three types of Kobresia 

pygmaea root mats with increasing degradation: (a) living root mats, (b) dying root mats 

and (c) dead root mats. Living root mats were sampled from intact K. pastures (covering 
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approximately 65% of the study site, Babel et al., 2014). Dying root mats—from plants 

which were alive during sampling but died during transport—represent the transition 

between living and dead root mats. Consequently, they reflect the initial stage of root 

mat degradation. Dead root mats were sampled from degraded K. pastures in the field, 

covering approximately 16 % of the study area (Babel et al., 2014). For the dead root 

mats the exact time of initial degradation is unknown, but presumably it is in the range 

of years to decades. Consequently, soil characteristics of dead root mats were 

substantially different compared with the living and dying root mats. NH4NO3 was added 

to evaluate the effects of increasing N addition on K. pygmaea growth as well as on N 

cycling. The 15N labelling technique was utilized to quantify N partitioning among 

different pools (soil, microbial biomass, above- and belowground biomass, and root 

litter). Leaching was simulated to determine losses of dissolved N (organic N, NH4
+ and 

NO3
-) and organic C from soil. We hypothesize that N addition increases Kobresia 

biomass (above- and belowground) and its foliar N stock in the living root mats because 

the Kobresia pastures are N limited and extra N promotes plant growth (H1). 

Furthermore, we hypothesize that degraded root mats (dying and dead root mats) are 

less capable of retaining N due to the absence of the N uptake by living plants, 

indicating that N addition of degraded pastures will result in higher levels of N leaching 

rather than ecosystem improvement (H2). Finally, total N stocks were hypothesized to 

be significantly lower in the degraded stages compared to the intact stage, due to higher 

N losses from leaching and N2O emissions with degradation (H3). 

2.4.3 Materials and Methods 

2.4.3.1 Sampling site and soils 

The sampling site was located at the research station “Kobresia Ecosystem Monitoring 

Area” (KEMA) (31°16′45''N 92°59′37''E, 4410 m a.s.l.) close to the village Kema, near 

Nagqu, Tibetan Autonomous Region (TAR). The region is described as “Plateau Frigid 

Monsoon Region with semi-moist climate” (Leber et al., 1995). Mean annual 

precipitation and temperature are 430 mm and -1.2 °C, respectively. The site is located 

in the core area of K. pygmaea distribution, and K. pygmaea is the dominant plant 

species with an average height of no more than 2 cm (Miehe et al., 2008a). The other 
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species are Carex spp., Festuca spp., Kobresia humilis, Poa spp., Stipa purpurea and 

Trisetum spp. (Seeber et al., 2015). The growing season of K. pygmaea pastures mainly 

depends on the summer monsoon and ranges from May to October (Miehe et al., 1989). 

Soils contain 50% sand, 33% silt and 17% clay and are categorized as Stagnic Eutric 

Cambisol (Humic) (WRB, 2014). No carbonates were found in the soils and their pH 

(H2O) was 6.85. The topsoil (0-5 cm) contains large amount of living and dead roots 

which form a very dense root mat (Miehe et al., 2008b; Schleuss et al., 2015). Intact 

living Kobresia root mats cover 65% of the area, while dead Kobresia root mats occupy 

16% of the area. The remaining part is covered by completely degraded bare soil 

patches (19%), which are entirely devoid of the dense Kobresia pygmaea turf (Babel et 

al., 2014). Bare soil degradation was not considered during this experiment. 

2.4.3.2 Sampling, preparation and experimental set-up  

Undisturbed soil cores (height: 5.0 cm, diameter: 5.0 cm) were collected in August, 2012 

from intact living and dead Kobresia pygmaea root mats. Shoot biomass was removed 

from the surface prior to transport. Sub-samples from each root mat (n=6) were 

collected to measure the water holding capacity (WHC). All samples were put in PVC 

collars (height: 5.0 cm, diameter: 5.0 cm) and transferred to the laboratory. 

Before beginning the experiment, samples of living and dead root mats were pre-

incubated for two months to enable K. pygmaea to recover and reach maximum 

biomass. In some samples of the living root mats, however, the K. pygmaea did not 

recover. These samples were considered as an additional treatment “dying root mats.” A 

total of three root mats were considered: living root mats, dying root mats and dead root 

mats. Since the dying root mats were still living before sampling but died during 

transport or storage, they had the same initial soil properties compared to the living root 

mats (i.e. C and N contents, microbial biomass and root biomass). The main difference 

between the living and dying root mats is: (a) the presence of living Kobresia plants in 

the “living stage,” in contrast to (b) recently deceased plants in the “dying stage.” 

Consequently, the Kobresia plants assimilate and reallocate C, take up nutrients and, 

with this, preserve leaching losses in the living root mats. In contrast, the dying root 

mats were unable to assimilate C and began the initial stages of degradation. The 
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primary causes of death in Kobresia root mats are overgrazing and natural mortality of 

single Kobresia clones (Unteregelsbacher et al., 2012; Zhang et al., 2016). Over time, 

intensified root and SOC decomposition as well as increasing leaching losses result in 

altered soil properties. These long-term degradation processes gradually shift the 

Kobresia pastures to dead root mats with lower C and N contents, microbial biomass 

and root biomass. Thus, the three root mats varieties sampled in our study represent 

the degradation continuum of Kobresia pastures (Living < Dying < Dead, Liu et al., 

2016). 

Six samples were randomly picked out from each root mat type and transferred to 

incubation boxes (Liu et al., 2016). The experiment was conducted at a constant 

temperature (20 °C), which is in the range of daily mean temperatures during the 

growing season in Nagqu (9.3-21.3°C, Geng et al., 2012). Samples were illuminated 

diurnally for 14 h with a photosynthetic photon flux density of 80 μm m-2 s-1 and were 

kept in darkness for 10 h. 

15N labelling and addition were conducted when the incubation started. 15N-labelled 

NH4NO3
 solution (95% 15N enrichment in total) with a total N amount of 0.5 mg was 

homogeneously injected as a tracer (very low N addition level) into each soil core (multi-

needle injection technique, Murphy et al., 1997). Three replicates from each type of 15N 

labelled root mat were then randomly selected and added with unlabeled NH4NO3 

solution (9.5 mg N per soil core). This consequently changed the 15N tracer enrichment 

from 95 atom% to 4.75 atom% in the N-added treatment and was considered for the 

calculation of the 15N recovery (see equation 2). In total, a two-factor design included 

the three root mats (living, dying and dead) and two N-addition levels (high N addition: 

50.9 kg N ha-1 and low N addition: 2.5 kg N ha-1). The low N addition (as a tracer) will 

henceforth be referred to as “no N” and the high N addition as “with N”.  

One week after labelling and addition (Day 7), all shoots from living root mats were 

harvested (termed “1st generation”) and the 15N recovery in shoots determined. A small 

proportion of the “new” upcoming shoot biomass in living stage (termed “2nd generation”) 

was harvested on days 21, 28, 35, 42, 49, 56, 63, 70, 77 and 98. The total dry weight of 
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the upcoming shoot biomass at each sampling event was estimated and 15N recovery 

was measured. 

N2O emission was measured weekly starting at Day 1. Before measuring the N2O efflux, 

soil moisture was first adjusted to 70% of WHC (i.e. 59% of dry weight for living and 

dying root mats; 33% of dry weight for dead root mats) for all soil cores. Briefly, the 

chamber was sealed and an aliquot of 15 ml gas was extracted from the chamber using 

an evacuated tube. After one day, another aliquot of 15 ml gas was extracted from the 

chamber. 

The leaching experiment was conducted from Day 10 to assess the effect of N addition 

on dissolved C and N concentration in the leachate. Soil moisture was initially adjusted 

to 100% WHC (i.e. 84% of dry weight for living and dying root mats; 47% of dry weight 

for dead root mats). Then, 11 ml distilled water was added onto each sample from the 

inlet of the incubation box to simulate precipitation events (5 mm week-1). Later, a glass 

tube was connected to the outlet of the incubation box to collect leachate. Leaching was 

repeated weekly during the experiment, i.e. on Days 10, 17, 24, 31, 38, 45, 52, 59, 66, 

73, 80, 87, 94 and 101. The leachate was analyzed for dissolved organic carbon (DOC), 

dissolved organic nitrogen (DON), NH4
+ and NO3

- concentration.  

Total aboveground biomass (AGB) and belowground biomass (BGB; including living and 

dead roots) was determined at the end of the incubation by separating roots from soil 

cores, washing with distilled water and drying at 60 ˚C for 24 h. Carbon and N contents 

in soil and roots of each sample were analyzed using an elemental analyzer (Vario Max 

CN, Hanau, Germany). DOC, DON, NH4
+ and NO3

- concentration in the leachate were 

determined with a multi N/C 2100s analyzer (Analytik Jena Inc., Germany) and Cenco 

(Dual Tubingpump, Instrumenten B.V., Breda, The Netherlands). Soil microbial biomass 

C and N were determined using the chloroform fumigation extraction method (Brookes 

et al., 1985; Vance et al., 1987). The N2O concentration was measured using a gas 

chromatograph (GC 6000 Vega series 2, Carlo Erba Instruments, Milan, Italy) equipped 

with an electron capture detector and an auto-sampler. 

For microbial biomass 15N analysis, fumigated and non-fumigated soil extracts were 
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freeze-dried. Samples of oven-dried soil, shoots (1st and 2nd generations) and roots 

were ground. All samples were analyzed using an isotope ratio mass spectrometer 

(Delta plus, Conflo III, Thermo Electron Cooperation, Bremen, Germany) coupled to an 

elemental analyzer (NA1500, Fisons instruments, Milano, Italy) to obtain the stable 

isotope signatures of N. Nitrogen stable isotope values were reported as atom% 15N via 

the following equation: 

atom%15N ＝ (100×Rstandard×( δ15N/1000+1))/(1+Rstandard×( δ15N/1000+1))             (1) 

Where Rstandard is the absolute ratio of 15N/14N in the standard (i.e. air). N recovery was 

calculated from atom%15N according to the equation presented by Cabrera & Kissel 

(1989): 

                                   (2) 

Where Nstock is the total N (mg) in soil, shoot, root and microbial biomass (non-

fumigated and fumigated), respectively; Nadded is the added N (mg); atom%15Nlabeled is 

the content of 15N atoms in the sample; atom% 15NNA is the content of 15N atoms in the 

sample (i.e. soil, shoot and root) before labeling; atom% 15Nadded is the content of 15N 

atoms in the added N pool, which is 4.75% for N-added samples and 95% for non-

added samples. 15N recovery in microbial biomass was calculated as the difference in 

15N mass between fumigated and non-fumigated soil extracts.  Atom% 15NNA for 

microbial biomass was assumed to be the same as that of the soil. 

2.4.3.3 Statistical analysis 

Soil and plant characteristics were analyzed and expressed as means with standard 

errors (mean ± SE). Significance differences of 15N among the three root mats were also 

tested using two-way ANOVA. Before applying ANOVA, data were checked for normality 

(Shapiro-Wilk-test, p>0.05) and homogeneity of variance (Levene-test, p>0.05). After 

obtaining a significant omnibus test result, a post-hoc test (Tukey’s HSD test) was 

conducted for multiple comparisons. Repeated measures ANOVA was conducted to 

evaluate the impact of N addition on AGB and its foliar N content. All analyses were 

conducted using STATISTICA 10.0 (StatSoft Inc.).  
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2.4.4 Results 

2.4.4.1 Plant and soil characteristics 

The AGB of the 1st generation was similar in N-added and non-added root mats, 

whereas in the 2nd generation, N addition increased AGB and its foliar N stock (Fig. 1, 

top and bottom left; p=0.008). Some moss was found growing in dying root mats (ca. 

0.04 kg m-2), whereas the dead root mats were free of any vegetation. After the 2nd 

generation, total BGB of the living stage significantly increased to 4.2 ± 0.02 kg m-2, 

which was nearly double that of the dying and dead root mats (Table 1, p<0.05). Soil C 

content decreased from 70 ± 7g kg-1 to 48 ± 2 g kg-1 along the degradation stages 

(Table 1). Soil bulk density increased from 0.66 ± 0.07 g cm-3 to 0.92 ± 0.01 g cm-3 with 

intensified degradation. Microbial biomass C in dying root mats was 1.4 times higher 

than in living root mats and 1.9 times than in dead root mats (p<0.05). The microbial 

biomass C/N ratio decreased from living to dead root mats. 

 

 

 

 

 
 

 
 
 

Figure 1 Aboveground 

biomass (AGB, top left), 
foliar N content (top right), 
foliar N stock (bottom left) 
and 

15
N uptake (bottom 

right) by K. pygmaea. The 

shading area corresponds 
to a period during which 
the factors showed a 
gradual switch in their 
trends. “no N”: samples 
with low N addition (as a 
tracer); “with N”: samples 
with high N addition. “1

st
” 

and “2
nd
”: first and second 

generations of K. pygmaea. 
Error bars are standard 
error (SE).  
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Foliar N contents in N-added living root mats were higher than 

those in the non-added root mats but then decreased and 

were lower after 6 weeks (Fig. 1, top right). The foliar N stock 

increased strongly from Day 21 to Day 49, but the magnitude 

of this increase slowed after 7-8 weeks. The 15N recovery of 

the AGB in the N-added root mats gradually increased and 

became stable after 7 weeks, whereas in the non-added root 

mats this response was delayed (after ca. 10-11 weeks) (Fig. 

1, bottom right). 

2.4.4.2 Effects of N addition on C and N leaching 

Nitrogen addition increased the NO3
- concentration in the 

leachate of all degradation stages (living, dying and dead 

stages), but had a minor effect on NH4
+ and DON 

concentrations. Overall, N addition resulted in higher total N 

losses from all N-added root mats compared to non-added 

root mats (Fig. 2). After 38 days, NO3
- leaching from the living 

root mats dropped to zero, whereas DON and NH4
+ leaching 

remained the same (Fig. 2, top left). In contrast, NO3
- was still 

present in the leachate of dying root mats after 45 days when 

the total N concentration stabilized (Fig. 2, top right). The total 

N concentration in the leachate of N-added dead root mats 

was higher in comparison to non-added throughout the 

experiment (Fig. 2, bottom left). This increment was mainly 

caused by high NO3
- concentrations in dead root mats. 
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Figure 2 Total N concentration in the leachate of living (top left), dying (top right) and dead (bottom left) root mats and 

comparison among three N-added root mats (bottom right). The data in the inserted table showed the cumulative N 
loss during the whole incubation period. The shading area means that during this period the non-added samples 
show the similar N concentration with the N-added samples. The data above the shading area demonstrated the 
percentage of each form of N (DON, NH4

+
, NO3

-
) in the cumulative N during this period. “Living”: living root mats; 

“Dying”: dying root mats; “Dead”: dead root mats; “no N”: samples with low N addition (as a tracer); “with N”: samples 
with high N addition.  Error bars are standard error (SE). 

The DOC concentration in the leachate of N-added root mats was similar to that of non-

added root mats (Fig. 3). Living and dying root mats had an average DOC concentration 

of 29 ± 2.5 and 34 ± 6.9 mg L-1, respectively. However, dead root mats always 

demonstrated lower DOC concentrations (24 ± 2.7 mg L-1) regardless of N addition. 

 

 
 
 
 

Figure 3 DOC concentrations averaged over 

101 days in the leachate of three root mats. 
Abbreviations are as in Fig. 2. Different 
lowercase letters represent significant 
difference among the three root mats. Error 
bars are standard error (SE). 
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2.4.4.3 N recovery in plant, soil and microbial biomass 

Total recovered 15N (% of total 15N input) of N-added root mats was similar to non-added 

root mats for all three degradation stages 91 days after labelling (Fig. 4). 15N recovery in 

living root mats was the highest (93 ± 2.2 % for non-added, 81 ± 2.4 % for N-added; 

p<0.05) among the three root mats. In non-added and N-added dying root mats, 69 ± 

9.4 % and 57 ± 4.0 % of 15N was recovered, respectively. Surprisingly, 75 ± 4.5 % and 

61 ± 7.7 % of 15N was allocated into root litter, soil and microbes in non-added and N-

added dead root mats, respectively. 

In the living shoots, 45 ± 2.1 % of 15N was recovered, of which 23 ± 1.9 % and 22 ± 

1.2 % were contributed by the 1st generation and the 2nd generation, respectively (Fig. 

4). Moss in dying root mats recovered approximately 9.4 ± 1.2 % of 15N.  

15N recovery in total BGB of N-added living root mats (21 ± 2.4 %) was similar to that of 

non-added mats (24 ± 3.4 %). Non-added dying root mats allocated 19 ± 5.9 % of 15N in 

their root litter, which was twice that of N-added dying root mats (9.0 ± 1.7 %). Similarly, 

15N allocated by the root litter of non-added dead root mats (34 ± 0.6 %) was also twice 

that of N-added dead root mats (17 ± 1.5 %) (Fig. 4, p<0.001).  

Soil of dying and dead root mats retained 37 ± 2.6 % and 35 ± 3.4 % of 15N, respectively, 

while only 17 ± 2.0 % was retained in soil of living root mats. Microbial biomass in dead 

root mats immobilized 6.1± 0.9 % of 15N, which was more than twice that of dying root 

mats (2.8 ± 0.2 %, p<0.01). In comparison, microbes in living root mats immobilized only 

1.5 ± 0.3 % of 15N. 

2.4.5 Discussions 

2.4.5.1 Sensitivity of plants to N addition 

Nitrogen addition increased the AGB of K. pygmaea during the second generation, 

confirming our first hypothesis (H1) of a sensitive response of the AGB to N addition. 

This is in agreement with data from field experiments, where addition with NO3
- or NH4

+ 

increased the shoot biomass of K. pygmaea (Seeber, 2016; Xu et al., 2004). This is 

because N addition offset the prevailing N limitation at least over the short-term (Xu et 
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al., 2015a). The shoot biomass of the first generation did not increase after N addition 

because shoots were already full-grown at the time of N-addition (Fig. 1, top left). 

 

Figure 4 
15

N recovery in plant and soil pools of three non-added and N-added root mats 91 days after labelling.  Data 

above/below the zero line is for AGB/BGB. AGB represents “aboveground biomass” and BGB “belowground biomass”. 
Because living and dead roots were not differentiated, 

15
N recovery in the roots of living root mats included the total 

recovery in “living root and root litter”. For dying and dead root mats, only root litter existed and thus 
15

N recovered in 
the “root litter” for both root mats. Other abbreviations are as in Fig. 2. Lowercase and capital letters represent 
significant difference among the three root mats. Error bars are standard error (SE). 

The increase of AGB (2nd generation) after N addition was stronger than in the non-

added living root mats during the first 7-8 weeks (Fig. 1, top left). N addition offset N 

limitation in living K. pygmaea but shifted to a N-limited state again after 7-8 weeks. This 

is because most of the added N was already incorporated in AGB and BGB (Fig. 4), 

immobilized by microorganisms, fixed by soil organic matter or lost via leaching and gas 

emissions (i.e. N2O).  

The transition from an N-unlimited to N-limited state (after 7-8 weeks) was also 

supported by foliar N content, aboveground N stock and 15N uptake dynamics (Fig. 1), 

which also shifted their trend after 5-10 weeks. The constant 15N recovery for both N-
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added and non-added root mats after 10-11 weeks demonstrated that no 15N was taken 

up by plants after this period. We suggest that aboveground N demands were almost 

saturated at a recovery rate of about 20-23% of total input, because aboveground 

biomass approximated to its maximum. The strategy of K. pygmaea to develop dense 

root mats indicates that the plants mainly invested resources belowground rather than in 

AGB (Wang et al., 2015b; Ingrisch et al., 2015). Wen et al. (2013) also observed that 

98% of plant biomass was allocated to belowground biomass in K. pastures. The fact 

that the plants grew to no more than 2-3 cm high during their flowering time also 

supported this finding (Miehe et al., 2009). This recovery rate precisely matches results 

from the field, where K. pygmaea shoots took up 18% of the total added 15N 45 days 

after labeling (Schleuss et al., 2015).  

Nitrogen addition did not stimulate belowground root production, which partly 

contradicted our first hypothesis (H1). This non-significant response of BGB to N 

addition was also observed by other studies with K. pygmaea (i.e. Seeber, 2016; Yang 

et al., 2014). We suggest that living K. pygmaea initially allocated more resources (e.g. 

N) to shoots, as indicated by the increase of AGB. This is presumably because K. 

pygmaea needs to cover the high belowground C costs to maintain the root biomass 

(root to shoot ratio: 90, Ingrisch et al., 2015) by producing photosynthetically-active 

shoot biomass for CO2 assimilation (Zong et al., 2012; Schleuss et al., 2015). High 

belowground investments of C and N in upper root mats (0-5 cm) were also indicated by 

field 15N and 13C pulse labelling studies, where approximately 50 % of labelled 15N and 

13C were incorporated into topsoil root biomass 45 and 15 days after labeling, 

respectively (Schleuss et al., 2015; Ingrisch et al., 2015). 

2.4.5.2 Sensitivity of microbes to N addition 

Microbial biomass was not sensitive to N addition in any of the three root mats, but 

changed with intensifying degradation stages (Dying > Living > Dead, Table 1). The ratio 

of microbial biomass C to N decreased with degradation, suggesting that microbes shift 

from an N-limited to N-unlimited state with increased degradation. In N-limited living root 

mats, microbes compete with plants for N (Kuzyakov & Xu, 2013). Xu et al. (2011) 

concluded that the amount of root biomass strongly controls the competition between 
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plants and microbes: a high root biomass (> 4.2 kg m-2) enables plants to outcompete 

microbes for N uptake. This was also supported by the low ratio of 15N recovered by 

microbial biomass to 15N recovered in living plants (ca. 0.03<1.0), with ratios lower than 

1.0 indicating that plants recover more 15N and thus, outcompete microbes. Dying root 

mats provided a favorable environment for microbial growth because of the abundance 

of easily decomposable organic residues. Furthermore, there was no competition with 

living roots for N. These conditions lead to a weak effect of N addition on microbial 

growth in dying root mats. Microbial growth in dead root mats was not N limited. Dead 

root mats possessed the lowest root C/N as well as DOC concentrations, suggesting 

that availability of labile organic C was the limiting factor for microbial growth in dead 

root mats. 

2.4.5.3 Fate of N in the belowground pools 

Total 15N recovery was higher in living root mats compared with dying and dead root 

mats (Fig. 4), confirming our second hypothesis (H2). However, the belowground pools 

(root litter, soil, and microbial biomass) in dying and dead root mats retained more 15N 

than that in the living root mats (Fig. 4). 

The higher 15N recovery in the belowground pools of dying and dead root mats was 

mainly induced by the stronger N affinity of soil and root litter (Fig. 4). 15N recovery in 

soil of dying and dead root mats was about twice that of living root mats irrespective of 

N addition. Once released to the soil, 15N can adhere to soil particles or be fixed in soil 

organic matter as NH4
+ (Drury & Beauchamp, 1991; Burge & Broadbent, 1960). 15N can 

also be released by microbes. The higher turnover rate of microbes in dying and dead 

root mats induced the release of immobilized 15N in the form of organic N (Schmidt et al., 

2007), which was then incorporated into the 15N pool in soil. 

Roots in dying and dead root mats did not take up 15N as living roots did. Nonetheless, a 

certain amount of 15N was still retained in their root litter due to microbial N 

immobilization (Fig. 4). Thus, the magnitude of root litter 15N was controlled by the size 

and activity of the root-associated microorganisms (Gallardo et al., 1992). As it is 

challenging for microorganisms to maintain metabolic homeostasis when utilizing 
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substrates with high C/N ratios such as root litter (Table 1), microorganisms living under 

these conditions must take up all available forms of N to meet their N demands 

(Mooshammer et al., 2014; Cleveland & Liptzin, 2007). Since reactive N forms (i.e. NO3
- 

and NH4
+) were added with the 15N tracer, it is likely that they were immobilized by root-

associated microorganisms. This interpretation is also partly supported by Downs et al. 

(1996), who found that several litter types retained a substantial proportion of added 

15NO3
--N, indicating that NO3

- was a viable source of N for microbial immobilization in 

litter decomposition. 

2.4.5.4 Nitrogen loss via leaching and N2O emission 

Nitrogen loss via leaching increased with degradation stage (Living < Dying < Dead, Fig. 

2). Cumulative DON loss was similar in the three root mats and the loss of NH4
+ was 

negligible compared with that of DON and NO3
-. Therefore, the N loss pattern – 

increasing from the living to the dead root mats – was mainly explained by intensified 

NO3
- leaching. The much lower N loss (especially as NO3

-) from living root mats 

indicates that the plants efficiently recapture N, reducing N leaching. This was also 

reflected by the correlations between N uptake and N loss due to leaching (Fig. 5 top). 

This agrees with Xu et al. (2004), who showed that K. pygmaea preferentially took up 

NO3
-. In contrast, the root litter in dying root mats provided abundant labile organic 

matter for microbial decomposition and mineralization. In the absence of living plants, 

less NO3
- released from mineralization processes will be taken up by plants or 

immobilized by microorganisms and will accumulate in soil. The subsequent leaching of 

unbound N explains the increase in NO3
- losses from dying root mats as compared to 

living root mats. 
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Figure 5 Relations between foliar 
15

N uptake and total N in the leachate (top) and N2O efflux (bottom). p values less 

than 0.05 represent the significance of the correlation. 

The N loss by N2O emission was relatively low compared with that from leaching, and 

increased with the degree of degradation (Dying > Dead > Living, Fig. S1). Our 

interpretation is that increasing amounts of labile organic matter from root litter in the 

dying stage stimulated heterotrophic microbial activity and promoted denitrification 

(Killham, 1994; Senbayram et al., 2012). By contrast, the lowest N2O emission from 

living root mats may be attributed to relatively lower microbial activity and higher N 

uptake by living plants (Fig. 5 bottom). 
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2.4.5.5 Net N losses and N stocks along degradation stages 

 

Figure 6 Total N stock and N fluxes in the three root mats during the growing season. “Mic Bio” means microbial 
biomass. Values in bold: N stock (kg N ha

-1
 in the upper 5 cm); values in italics: N flux (kg N ha

-1
 yr

-1
). The data along 

the dash line show the partitioning of deposited N into various pools. We used 3.4 kg N ha
-1

 as total atmospheric N 
deposition (Xu et al., 2015b). N2 emission from denitrification was calculated using an average N2/N2O ratio of 7.8 for 
sandy loam soil (Maag and Vinther, 1996). Ammonia emission from volatilization was calculated as 2% of the 
deposited mineral N (van der Hoek, 1998). Total N loss from leaching during the growing season was predicted 
based on mean precipitation in growing season in Nagqu (356 mm, Hua et al., 2015). Negative values of N budget 
represents net N losses from the three root mats. By extrapolation for the field, the N fluxes and intensities of 
processes might be different, but the mechanisms remain the same. 

Net N losses and N stocks along degradation stages were illustrated based on our 

observations and those of previous studies (Fig. 6). Despite the fact that it is unrealistic 

to extrapolate observed data from the laboratory to those from field conditions because 

of environmental variations (i.e. light density, diurnal temperature variation), the 

pathways of N losses (i.e. gas emission, leaching) and N recovery were similar between 

lab and field experiments. Thus, while the N transformation rates and intensities of 

processes might be different under field conditions, the overall mechanisms remain the 

same. Knowledge of these mechanisms may give us a better understanding of the N 

cycling components along different degraded stages.   
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Net N losses from dead root mats were slightly higher than those of dying root mats, 

and much higher than those of the living root mats (Fig. 6). Leaching was the primary 

cause of high N losses (mainly as NO3
-) from dying and dead root mats, while the lower 

N loss from living root mats can be attributed to N uptake by K. pygmaea. The negative 

relationships between foliar 15N recovery and N2O flux or TN leachate also confirmed 

the importance of living K. pygmaea for N preservation (Fig. 5). 

Total N stocks in the three root mats were similar (p>0.05). This contradicted our third 

hypothesis for declining N stocks with degradation stages (H3). Most N was stored in 

soil, but the soil N content decreased with degradation stages (Table 1), indicating that 

the similarity in total N stocks resulted from the increase in soil bulk density (Table 1). As 

pasture degrades, roots decompose and their biomass decreases, which tends to 

weaken their reinforcement of the soil (Trükmann et al., 2009). The concurrent livestock 

trampling on Kobresia pasture as well as the higher relative portion of mineral particles 

then increases soil bulk density (Hiltbrunner et al., 2012). 

2.4.6 Conclusions 

Aboveground biomass and the foliar N content of K. pygmaea increased with N addition 

during the early growth period. This indicates that the N limitation common in Kobresia 

pastures on the Tibetan Plateau was alleviated. Nonetheless, plant growth and 15N 

uptake were not further promoted after around 7-8 weeks. This suggests that living root 

mats reverted to an N limited state due to N uptake by plants and N leaching. NO3
- 

leaching in living root mats strongly decreased and became undetectable after 38 days. 

In contrast, NO3
- leaching markedly increased in dying and dead root mats and 

accounted for most of the N losses from leaching (NO3
- > DON > NH4

+). Leaching N 

losses from dying and dead mats increased remarkably compared to living root mats. N 

losses from leaching were also considerably higher than N losses from N2O emissions 

for dying and dead root mats. We conclude that N addition can facilitate plant growth in 

intact K. pygmaea pastures at least over the short term, and that continuous N addition 

in the field conditions may prolong this facilitation based on the permanent supply of N 

from dust deposition and rainfall. In the degraded stages of K. pygmaea pastures, N 

addition directly increased the N losses from leaching. Thus, degradation together with 
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N addition intensifies N losses in K. pygmaea pastures, hampering pasture restoration, 

increasing the NO3
- loading of adjacent lower landscapes and exasperating headwater 

pollution. 
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2.4.9 Supporting information 

 

Figure S1 N2O efflux from living (top), dying (middle) and dead (bottom) root mats during the incubation. “Living”: 

living root mats; “Dying”: dying root mats; “Dead”: dead root mats. “no N”: samples with low N addition (as a tracer); 
“with N”: samples with high N addition.  Error bars are standard error (SE). 
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2.5.1 Abstract 

Manure is an important source of nutrients for plants and stimulates a wide range of enzyme-

mediated microbial processes. Such stimulation, however, depends on manure distribution and 

the duration of its decomposition in soil. For the first time, we investigated the spatio-temporal 

patterns of enzyme activities as affected by manure application strategies: 1) Localized manure: 

manure application as a layer in the upper soil; 2) Homogenized manure: mixing manure 

throughout the soil; and 3) Control without manure. Tibetan barley was planted on soil managed 

with yak manure from the Tibetan Plateau. Soil zymography was used to visualize the two-

dimensional distribution and dynamics of the activities of three enzymes responsible for cycling 

of carbon (β-glucosidase), nitrogen (N-acetylglucosaminidase) and phosphorus 

(phosphomonoesterase) over 45 days. The manure detritusphere increased enzyme activities 

relative to the control (which had only the rhizosphere effect of barley) and this stimulation 

lasted less than 45 days. Enzyme activities in the manure-induced hotspots were higher than on 

the barley rhizoplane, indicating that the detritusphere stimulated microbial activities more 

strongly than roots. Homogenized manure led to 3-29% higher enzyme activities than localized 

manure, but shoot and root biomass was respectively 3.1 and 6.7 times higher with localized 

manure application. Nutrients released by high enzyme activities within the whole soil volume 

will be efficiently trapped by microorganisms. In contrast, nutrients released from manure locally 

are in excess for microbial uptake and remain available for roots. Consequently, 
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microorganisms were successful competitors for nutrients from homogeneous manure 

application, while plants benefited more from localized manure application. We conclude that 

localized manure application decreases competition for nutrients between the microbial 

community of manure and the roots, and thereby increases plant performance. 

Keywords: Manure application strategies, Direct zymography, Tibetan Plateau, Enzyme activity 

visualization, Barley roots, Hordeum vulgare. 

Corresponding Author: Shibin Liu, sliu3@gwdg.de 
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2.5.2 Introduction 

Livestock manure application has been widely accepted as a sustainable management 

practice in agriculture, providing environmentally and agronomically sound outcomes 

(Risse et al., 2006; Brandjes et al., 1996; Scotti et al., 2015). Manure incorporation into 

soil forms a detritusphere abundant in organic carbon (OC) and nutrients (Moore et al., 

2004). It is beneficial for improvement of soil quality and crop production (Butler et al., 

2013; Calleja-Cervantes et al., 2015; Zaller et al., 2004).  

The application strategy is an important aspect of manure management (Webb et al., 

2010; Thomsen, 2005). It affects soil-plant-microbial interactions by determining the 

locations of nutrients or altering soil properties (moisture, O2 diffusion, bulk density) 

(Acosta-Martínez and Waldrip, 2014; Zhu et al., 2015). As a consequence, responses of 

plants and microorganisms vary depending on the manure application strategy. For 

instance, mixing of manure into soil increased soil microbial biomass (Lovell and Jarvis, 

1996; Malik et al., 2013), but no response of soil microbial biomass was observed when 

manure pats were placed on the soil surface (Lovell and Jarvis, 1996; Cai et al., 2014). 

Although remarkable increases in plant production have been reported after either 

incorporating manure into soil (Malik et al., 2013) or broadcasting manure on the soil 

surface (Aarons et al., 2009; Matilla, 2006), a direct comparison of plant production 

under various manure application strategies is still lacking. 

Enzymes, excreted by both plants and microbes, are early indicators of soil quality and 

the main mediators of organic matter decomposition (Nannipieri et al., 2007; 

Sinsabaugh et al., 2008). Assays of enzyme activities have been widely used to 

investigate the influence of manure application on soil nutrient cycling and microbial 

activities. Most studies observed significantly increased enzyme activities in soils 

amended with livestock manures (Liang et al., 2014; Calleja-Cervantes et al., 2015; Bell 

et al., 2006). However, the study of spatial and temporal responses of enzyme activities 

requires advanced visualization technology (Acosta-Martínez and Waldrip, 2014).  

On the Tibetan Plateau, yaks are one of the main species of livestock, and around 40% 

of their manure is used as fertilizer for cropland and pastures (FAO, 2003; Wang, 2009). 
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However, the impact of yak manure application strategies on the growth of Tibetan 

barley – a staple crop – and on soil enzyme activities remains unknown. Such 

knowledge could lead to better manure application strategies. We used soil from the 

Tibetan Plateau for better consideration of local nutrient conditions and soil properties, 

and in the context of prevalent ecosystem degradation (Babel et al., 2014; Hafner et al., 

2012).  

 

Figure 1 Rhizoboxes with barley growing under three manure application strategies: No manure (left), manure 

homogenized with the whole soil (middle), and manure localized in the soil layer between 1.0 and 2.5 cm below the 
soil surface (right). 

Here we used direct soil zymography (Razavi et al., 2016) to investigate the impact of 

different yak manure application strategies on the growth of Tibetan barley (Hordeum 

vulgare L.) and on the temporal and spatial patterns of enzyme activities in Tibetan soil. 

We compared manure application strategies using three treatments (Fig. 1): 1) 

Localized manure: manure application as a layer in the upper soil; 2) Homogenized 

manure: mixing manure throughout the soil; and 3) No manure: a control without 

manure application. Our objectives were to investigate the effects of manure application 

strategy on plant shoot and root biomass and on the spatial and temporal patterns of 

soil enzyme activities. Direct soil zymography was used to visualize and quantify the 

spatial and temporal distribution of enzyme activity for the three enzymes: β-

glucosidase, phosphomonoesterase and N-acetylglucosaminidase. β-glucosidase is 

responsible for catalyzing the hydrolysis of terminal 1, 4-linked β-D-glucose residues 

from β-D-glucosides (German et al., 2011) and is involved in the carbon (C) cycle. 

Phosphomonoesterase, which catalyzes the hydrolysis of organic phosphorus (P) 

compounds to inorganic P (Eivazi and Tabatabai, 1977; Malcolm, 1983), is involved in 
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the P cycle. N-acetylglucosaminidase (chitinase), which accomplishes the 

decomposition of chitin to yield low molecular weight chitooligomers (Hamid et al., 2013), 

is responsible for C- and nitrogen (N) -acquisition. 

The considerable addition of labile organic compounds and nutrients in manure are 

expected to greatly influence plant and microorganism activities, and therefore soil 

enzyme activities.  We hypothesized - H1: weaker enzyme activities at the root-soil 

interface as compared with a strong increase of enzyme activities in the manure-

induced detritusphere; H2: stronger stimulation of plant growth by the homogenized 

manure application strategy. 

2.5.3 Materials and methods 

2.5.3.1 Soil and yak dung sampling 

Soil was sampled at the research station “Kobresia Ecosystem Monitoring Area” 

(KEMA), which was established by Prof. Georg Miehe with the support of the VW 

foundation, and which now belongs to the Tibet University and the Institute of Tibetan 

Plateau Research (31°16’45’’N 92°59’37’’E, 4410 m a.s.l.) in Nagqu. The soil was 

classified as a Stagnic Eutric Cambisol (Humic) (WRB, 2014) with a texture of 50% 

sand, 33% silt and 17% clay. The pH value (H2O) was 6.9 ± 0.03 and soil bulk density 

was 0.92 g cm-3. Yak dung was collected from Nangqian town, Yu Shu Prefecture 

(32°04’N, 96°31’E, 3600 m a.s.l.). Before being sampled, dung was piled and 

composted in the field.  

In total, 10 soil core samples (25 cm deep, 5 cm diameter) were taken within an area of 

ca. 100 m2. All the samples were hand-mixed and roots and stones were removed. The 

composite soil and composted yak dung samples were stored in ziplock bags at 4 °C, 

transported to the laboratory of the University of Göttingen and passed through a 2 mm 

sieve in preparation for incubation. Daily mean temperature during the sampling month 

ranged from 3.2 °C to 21.3 °C, so the temperature used for transportation was not 

uncommon and would not strongly affect soil and manure characteristics.  
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Additional soil and dung samples were oven-dried at 60 °C for 48 hours to measure 

carbon (C) and nitrogen (N) content. Initial water content was measured by oven-drying 

samples at 105 °C. Soil C and N contents were 3.4 ± 0.11% and 0.3 ± 0.01%, 

respectively. The yak dung contained 37 ± 0.3% C and 1.3 ± 0.04% N. 

2.5.3.2 Experimental set-up 

Experimental samples were prepared to simulate the following manure applications (Fig. 

1): 1) Localized manure: manure application as a layer buried in the upper soil; 2) 

Homogenized manure: mixing manure into the soil. Homogenized manure application 

was comparable to fertilizer broadcasting and plowing; and 3) No manure: a control 

without manure application. For the localized manure application, 110 g fresh soil (water 

content: 10 %) was first added to a rhizobox (14.2×12.4×1.0 cm) and then 5 g of 

composted yak dung (water content: 94%) was evenly spread across the soil surface in 

a 1.5 cm layer. A small quantity of soil was then spread above the manure to form a 

shallow soil layer (~1 cm) to ensure plant growth. For the homogenized manure strategy, 

110 g fresh soil and 5 g composted yak dung were mixed homogeneously and placed in 

rhizoboxes (mixture: 4.5 % C and 0.3 % N; water content: 11 %). The third treatment 

only included 110 g soil and was the control (“No manure”). Each application strategy 

had three replicates, so a total of nine rhizoboxes were prepared. Tibetan barley seeds 

(Hordeum vulgare L.) were germinated on filter paper for 72 h to ensure plant growth, to 

avoid fungal contamination and errors caused by seedling difference. One seedling was 

planted in each rhizobox at a depth of 5 mm. Yak dung (5 g) was added to 110 g soil to 

meet the optimal C/N ratio for barley growth, taking into consideration the low plant 

density used in this study (i.e. one seedling for each rhizobox) (Aarons et al., 2009; Liu 

et al., 2013). The rhizoboxes were placed in an incubation chamber set to 20 °C, with 

photosynthetically active radiation intensity of 300 μmol m-2 s−1 and 14 hours daytime, 

which is within the range of the field conditions during the growing season. 

Plants grew for 45 days, after which the roots completely occupied the rhizoboxes. 

During growth, the rhizoboxes were kept inclined at an angle of 45°, so that the roots 

grew along the lower wall of the rhizoboxes. The soil water content was maintained at 
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65% of the water holding capacity by maintaining the rhizobox at constant weight with 

distilled water.  

After the incubation was stopped at day 45, the barley plants were destructively 

sampled. All visible roots were also picked out from the soil. The roots were washed 

with distilled water to remove soil particles and plant biomass was oven-dried at 60 °C 

for 48 hours. Shoot and root biomass were then weighed. 

2.5.3.3 Soil zymography and imaging procedure 

Zymography was performed after 5, 25 and 45 days as an in situ non-destructive 

technique to study the spatial and temporal patterns of enzyme activities as affected by 

manure applications. We made the first zymogramms at day 5 (at early stage of growth) 

to avoid strong effects of roots and physical disturbances. We followed the protocol 

proposed by Spohn and Kuzyakov (2013) and improved by Razavi et al. (2016). 

Membranes saturated with 4-methylumbelliferone (MUF) substrates were used for 

visualization of enzyme activities. The substrates become fluorescent when 

enzymatically hydrolyzed by the corresponding enzyme (Dong et al., 2007). 4-

Methylumbelliferyl-β-D-glucoside (MUF-G) was used as substrate to detect β-

glucosidase activity; 4-methylumbelliferyl-phosphate (MUF-P) to detect 

phosphomonoesterase activity; and 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide 

(MUF-C) to detect chitinase activity. Each of these substrates was separately dissolved 

to a concentration of 10 mM in universal buffer (MES buffer, pH: 6.7) (Koch et al., 2007) 

(Sigma-Aldrich, Germany). Polyamide membrane filters (Tao Yuan, China) with a 

diameter of 20 cm and a pore size of 0.45 μm were cut to fit the rhizoboxes. Membranes 

were saturated with the substrate solution for each enzyme. The rhizoboxes were 

opened from the lower, rooted side and the saturated membranes were applied directly 

to the soil surface (Razavi et al., 2016). After incubation for 1 h, the membranes were 

carefully lifted off the soil surface and any attached soil particles were gently removed 

using tweezers. One hour of incubation time was selected based on preliminary 

experiments and previous studies (Hoang et al., 2016).  
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To quantify the zymogram images, a standard calibration that relates the activities of 

various enzymes to zymogram fluorescence (i.e. fluorescence of the saturated 

membrane) is required. The calibration was based on zymography of 2×2 cm 

membranes soaked in a solution of MUF – the fluorescent tag attached to each 

substrate proxy – with concentrations of 0.01, 0.05, 0.1, 0.5, 1, 3, 6, 8, 10 mM. The 

amount of MUF on an area basis was calculated from the solution volume taken up by 

the membrane and its size. The membranes used for calibration were photographed 

(EOS 5D, Canon) under UV light and analyzed in the same way as for the samples 

(Razavi et al., 2016). 

2.5.3.4 Image processing and analysis 

Fluorescence of the zymograms under UV light shows the areas where substrate has 

been enzymatically degraded. The intensity of fluorescence is proportional to the activity 

of the enzyme. To get quantitative information, we processed the zymogram images in 

Matlab, according to Razavi et al. (2016). Briefly, zymograms were transformed to 16-bit 

grayscale images as matrices and corrected for light variations and camera noise 

(Menon et al., 2007; Zarebanadkouki et al., 2012). Then, all zymograms were 

referenced based on the grayvalue of a reference object embedded in all the 

zymograms. The scaled black flat field identical in all images was considered as a 

background (reference object) during the whole image processing. We used the 

grayvalue obtained from these black sides of the sample as the referencing point. After 

referencing the zymograms, we calculated an average background grayvalue through 

the zymograms of calibration lines at concentration of zero and subtracted this value 

from all the zymograms. The grayvalue of each zymography pixel was converted to 

enzyme activity using the calibration function obtained for each enzyme (Razavi et al., 

2016). 

The processed 16-bit grayscale images were used for further analysis. To assess the 

response of plant roots to the manure application strategies in the context of enzyme 

activities, the average enzyme activities of the rhizoplane were compared with the 

activities of soil hotspots. Entirely visible, non-overlapping roots at the soil surface were 

selected. Hotspots were considered to be areas in which the grayvalues of five adjacent 
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pixels (each equals 0.1×0.1 mm) all exceeded the average greyvalue of the whole 

image (i.e. >0.7, represented by red in Fig. S1). Twenty squares (each 50×50 pixels) 

were randomly arranged on these hotspots and the average grayvalue of these squares 

(GH) was calculated to represent the average for soil hotspots. The roots distinguishable 

on a zymogram were segmented and the average grayvalues of the segments (GR) 

were calculated. GR and GH were then converted to respective enzyme activities: ER 

and EH. The ratio of ER to EH was used to compare enzyme activities on the rhizoplane 

with that in the soil hotspots. Only the ratios at days 25 and 45 were considered in this 

study, as plant roots were not recognizable for most images at day 5. 

To represent the vertical extension of enzyme activities in the localized manure 

application, the standardized grayvalues were plotted against the depth (cm) from the 

top of the rhizobox. Briefly, a segmented vertical line was drawn through the image from 

the top to bottom, and the grayvalues of all the pixels on this line were extracted. All 

grayvalues were then standardized to the maximal grayvalue. Consequently, all the 

values ranged from 0 to 1.0. In total, 20 separate vertical lines were randomly selected 

from each image and the average standardized grayvalues of these replicates were 

plotted against depth. Five-parameter Weibull regression in Sigmaplot (v. 12.5) was 

used to correlate the relative units with depth. The depth from the manure application to 

the constant level of the regression curve was considered as the detritusphere 

extension of enzyme activity. 

Effects of manure application on enzyme activities were quantified as effect sizes:  

Effect size = (EM - ECON) / ECON                                            (1) 

where EM is the enzyme activity with manure application (homogenized or localized), 

and ECON is the enzyme activity of the control. An effect size greater than zero indicates 

that the manure application strategy had a positive effect on enzyme activity. 

To confirm the boundaries of categories of enzyme activities during soil hotspots 

consideration, one-way analysis of variance (ANOVA) was applied to assess significant 

differences between independent variables (mean values of five adjacent pixels, i.e. 

equal to 0.1 mm). The significant results were then considered as a boundary of each 
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category (from very low activity to hotspot) (Fig. S1). Differences in enzyme activity and 

plant biomass between the three treatments (no manure, homogenized manure and 

localized manure) were also tested with ANOVA, where p < 0.05 from Tukey’s HSD test 

indicated significance. Normality of the values and homogeneity of variance were tested 

using Shapiro-Wilk's W test and Levene's test. When data did not meet the normality 

requirement (e.g. shoot biomass data), the data were transformed by logarithm or 

square root. All these analyses were performed in STATISTICA 12.0 (StatSoft Inc.).  

2.5.4 Results 

2.5.4.1 Manure application strategies affected temporal patterns of enzyme activity 

Enzyme activities increased from day 5 to day 25 after manure application, but 

decreased after 25 days (Fig. 2, 3, S2 and S3). Phosphomonoesterase, β-glucosidase 

and chitinase activities were 47-104 % higher on day 25 than on day 5. However, their 

activities had decreased 10-27 % by day 45 relative to the activities on day 25. In the 

control, these enzyme activities had increased 40-72 % by day 25 compared with their 

activities on day 5, but showed no significant changes between days 25 and 45 (-12 % - 

+9 %, p>0.05). 

All enzyme activities increased with manure application relative to the control (Fig. 4). 

Homogenized manure generally induced larger increases than localized manure. 

Homogenized manure increased phosphomonoesterase, β-glucosidase and chitinase 

activity by 6-41 % in comparison with the control (Fig. 4). In contrast, localized manure 

induced an increase of phosphomonoesterase and chitinase activities by 7-29 % 

compared with the control. Localized manure also increased β-glucosidase activity by 

16 and 37 % on days 5 and 25, but its activity was 8 % lower than the control on day 45 

(p>0.05). 
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Figure 2 Response of phosphomonoesterase (top), β-glucosidase (middle) and chitinase (bottom) activities to 

manure application strategies over time. The embedded tables show relative changes of enzyme activities between 5 
and 25 days, and 25 and 45 days. Error bars represent standard deviations (± SD). 
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Figure 3 Examples of zymograms for phosphomonoesterase activities. Three rows represent response of activities to 

three manure application strategies: 1) No manure, 2) Homogenized manure and 3) Localized manure. Figures from 
left to right are the measurements at days 5, 25 and 45. The color bar corresponds to phosphomonoesterase activity 
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Figure 4 Effects of manure application strategies on 

phosphomonoesterase (top), β-glucosidase (middle) and 
chitinase (bottom) activities in the whole soil. The effect 
size (Eq. 1) shows the change of enzyme activities in soil 
with homogenized or localized manure addition compared 
to the control. Error bars represent standard deviations (± 
SD). 

2.5.4.2 Detritusphere extension of enzyme activities 

A clear downward extension of enzyme activities from the manure layer into the 

underlying soil was observed with localized manure application (Fig. 5). This extension 

was enzyme-specific: for example, phosphomonoesterase activity extended from 3.1 

cm on day 5 to 9.2 cm on day 25 and finally exceeded 10 cm depth on day 45. In 

comparison, the extension of β-glucosidase activity was less (3.1 cm on day 5, 4.7 cm 

on day 25 and 7.0 cm on day 45). Such extension was not seen for chitinase (data not 
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shown). All distances were measured from the top of the rhizobox and included the 

depth of the manure layer. 

 

Figure 5 The detritusphere extension for phosphomonoesterase (left) and β-glucosidase activities (right) from the 

initial manure layer at the top (presented as the shaded area between 1.0 and 2.5 cm) over time. The depth from the 
manure application to the constant level of the regression curve was considered as the detritusphere extension of 
enzyme activity. This distance at days 5 and 25 was marked by semitransparent strips (black for 5 days and green for 
25 days). Due to the limited rhizobox size, the roots started to grow laterally once they reached the bottom, after 
around 10-15 days of growth, inducing very high root densities at the bottom (ca. 2-3 cm). To avoid artefacts from 
high root densities, we used only the upper 10 cm of the membrane. According to the regression, the depth at day 45 
already exceeded the membrane boundary (> 10 cm) and thus was not presented. Five-parameter Weibull regression 
was used to fit enzyme activities with the distance from the top of the rhizobox. 

2.5.4.3 Response of plants to manure application strategies 

The ratio of ER to EH (enzyme activities on the rhizoplane to that in soil hotspots) were 

all below 1.0 following manure application (Fig. 6, p<0.05), indicating that average 

enzyme activities on the rhizoplane were lower than the activities in manure-induced 

soil hotspots. This ratio did not change over time for homogenized manure application. 

Phosphomonoesterase and β-glucosidase activities on the rhizoplane were both around 

10% lower than that in the soil hotspots, while chitinase activity was 15% lower. In 
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contrast to the homogenized manure, when localized manure was applied, the ER to EH 

ratio decreased from day 25 to day 45. For instance, the ratio of phosphomonoesterase 

activities decreased from 0.89 to 0.74, while that of β-glucosidase decreased from 0.79 

to 0.68. For chitinase, this ratio had the highest change (from 0.98 to 0.75). For the 

control, this ratio was always around 1.0, except for that of phosphomonoesterase at 

day 25 (~1.13). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Ratio of ER to EH for phosphomonoesterase (top), β-

glucosidase (middle) and chitinase (bottom). ER and EH are 
the average enzyme activities on the rhizoplane and in the 
soil hotspots, respectively. The values above 1.0 reflect higher 
enzyme activities around the roots than in hotspots in root-
free soil areas. Error bars represent standard deviations (± 
SD). 
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Manure application strategy had significant impact on shoot and root biomass of barley 

(Fig. 7). Localized manure produced the highest shoot and root biomass (respectively, 

3.1 and 6.7 times higher than for homogenized manure, p<0.05). Localized manure 

significantly decreased the shoot/root ratio from 2.7 to 1.1 (p<0.05), indicating that 

manure application strategies modified the trade-off between shoot and root biomass. 

 

Figure 7 Plant biomass and shoot/root ratio under three manure application strategies: 1) No manure, 2) 

Homogenized manure and 3) Localized manure. The capital and lower-case letters show significant differences 
between application strategies (p<0.05). Error bars represent standard deviations (± SD). 

2.5.5 Discussion 

2.5.5.1 Temporal response of enzyme activities to manure application strategy 

The capability of manure to regulate soil biological processes was controlled by the 

manure application strategy. Homogenized manure induced higher activities of C-, N-, 

and P-acquisition enzymes than localized manure (Fig. 4). Three mechanisms drove 

these differences in response to manure application strategies. The first two 
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mechanisms were manure-induced changes to soil physico-chemical properties 

(Haynes and Naidu, 1998; Dungait et al., 2009). First, by mixing into soil, manure 

directly loosened the soil, decreased the bulk density and increased the soil porosity 

(Celik et al., 2004). Second, labile organic compounds and nutrients in the manure were 

also sufficiently mixed with soil following homogenized manure application. The third 

mechanism was the loading of indigenous enzymes and microbes from manure into the 

soil (Dinesh et al., 1998; Criquet et al., 2007; Tiquia et al., 2002). These mechanisms 

provided a favorable environment for soil microbial proliferation and activity in the 

rhizoboxes with homogenized manure. In contrast, localized manure affected biological 

processes through gradual leaching of soluble organic substances and mineral nutrients 

into the soil (Dickinson et al., 1981). Transport of indigenous enzymes from the manure 

layer into the soil was negligible due to strong adsorption by soil particles (Poll et al., 

2006). Consequently, the combined effects of abiotic (e.g. loose soil structure) and 

biotic factors (e.g. organic carbon, nutrients, enzymes and microbes) induced higher 

enzyme activities in the rhizoboxes with homogenized manure. 

Activities of all tested enzymes demonstrated a consistent pattern over time for both 

manure application strategies: i) All enzyme activities increased in the first 25 days. 

Most enzyme activities in the homogenized and localized manure applications were 

higher than in the control (Fig. 2). ii) Enzyme activities decreased from day 25 to day 45 

in the homogenized and localized manure applications. In contrast, all enzyme activities 

in the control remained stable during this period. This indicated that the heightened 

enzyme activities in the homogenized and localized manure applications were mainly 

caused by the manure-induced detritusphere. Indeed, manure added quite substantial 

amounts of labile organic substances to the soil, thereby increasing microbial activity 

and thus nutrient demand and enzyme expression. Over time, these substances were 

completely decomposed, resulting in lower microbial activity and thus reductions in 

enzyme activity. Similarly, studies based on destructive methods demonstrated such 

short-term acceleration of microbial processes induced by sewage sludge (Criquet et al., 

2007; Pascual et al., 2002).  
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Furthermore, the stable enzyme activities from day 25 to day 45 in the control (with only 

the rhizosphere effect of barley, Fig. 8) demonstrated that the duration of hot moments 

in the rhizosphere was at least 20 days. This was much longer than the lifetime (only a 

few days) of hotspots initiated by single releases of root exudate, as evidenced by time-

resolved 14C imaging after 14CO2 pulse labeling of Lolium perenne (Pausch and 

Kuzyakov, 2011). Therefore, we conclude that continuous inputs of labile organics due 

to root growth prolonged the duration of hot moments in the rhizosphere. 

 

Figure 8 General responses and localization of soil enzyme activities to manure application strategies over time. A 

clear detritusphere extension of enzyme activities was observed below the localized manure. The manure-induced 
detritusphere stimulated larger increases of enzyme activities than the “No manure” treatment (i.e. only the 
rhizosphere effect of barley), although the increase lasted less than 45 days. Homogenized manure elevated enzyme 
activities more than localized manure, while localized manure induced higher shoot and root biomass than 
homogenized manure 

2.5.5.2 Spatial response of enzyme activities to manure application strategies 

The spatial distribution of enzyme activities was noticeably affected by manure 

application strategy. In localized manure application, enzyme activities in the top 
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manure layer were higher than in the control and in the soil below this top manure layer 

(Fig. 3, S2 and S3), which was in accordance with our first hypothesis (H1) about the 

strong increase of enzyme activities in the detritusphere compared with the root-soil 

interface below the manure layer. This means that manure itself had higher enzyme and 

microbial activities, in support of the mechanism that manure-derived enzymes or 

microorganisms contributed to the increased enzyme and microbial activities (Calleja-

Cervantes et al., 2015; Dinesh et al., 1998). Though indigenous enzymes of manure 

were all concentrated in the localized manure layer, the nutrients in this layer could be 

leached downward. Leaching of available nutrients and available organics from the 

manure layer stimulated microorganisms, and consequently enzyme activities, in the 

soil below the layer (Kang et al., 2009). Therefore, enzyme activities extended 

downwards over time because of the redistribution of nutrients and organics (Fig. 5). 

Such extension indicated a gradual influence of manure on soil biochemical processes 

and this influence was also enzyme-specific. For instance, phosphomonoesterase 

exhibited deeper and faster downward extension (Fig. 5). In contrast, this extension was 

narrower for β-glucosidase. The significantly higher ratio of ER to EH for 

phosphomonoesterase (~1.13) in the control also demonstrated that 

phosphomonoesterase activity on the rhizoplane was 13 % higher than in the soil 

hotspots, suggesting that the soil was P-deficient (Ren et al., 2016) and thus the plant 

secreted more phosphomonoesterase to obtain inorganic P for its growth (Hunter et al., 

2014). In comparison, β-glucosidase, which is mostly involved in the degradation of 

cellulose, showed a narrower extension. The wider extension of phosphomonoesterase 

compared to β-glucosidase activities has also been observed in the rhizosphere (Razavi 

et al., 2016). In the present study, the detritusphere extension of enzyme activities was 

much wider than the rhizosphere extension observed in other studies (e.g. Razavi et al., 

2016; Tarafdar and Jungk, 1987; Sauer et al., 2006). This is explained by the direction 

of water fluxes: to the roots in the rhizosphere, but from the manure layer downwards. 

Consequently, extension of enzyme activities was much faster and wider in the 

detritusphere than in the rhizosphere, due to vertical diffusion and leaching processes. 
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2.5.5.3 Response of plants to manure application strategies 

Following manure application, enzyme activities in the manure-induced detritusphere 

were higher than on root surfaces. This – in accordance with our first hypothesis (H1) - 

indicated that the detritusphere became more attractive to microbes than the 

rhizosphere, because high microbial activities tended to be in the hotspots of bulk soil 

instead of being balanced between the rhizoplane and soil hotspots, as in the control 

(ER≈EH). Furthermore, though enzyme activities on the rhizoplane were lower, the 

reason for this may differ between homogenized and localized manure applications. For 

the homogenized manure application, tough competition for inorganic and organic 

nutrients between microbes and roots was initiated as soon as manure-derived 

microbes and labile substrates were introduced by mixing manure into the soil 

(Kuzyakov and Blagodatskaya, 2015; Malik et al., 2013; Xu et al., 2006, 2011). This 

may temporarily reduce plant nutrient availability, depress root growth and explain the 

lower enzyme activities on the root surface for homogenized manure application. In 

contrast, with localized manure application, the pre-existing and newly mineralized 

nutrients were easily leached downward and competition between microbes and plant 

roots within the localized manure layer was weaker than for the homogenized manure 

application. This spatial niche differentiation for the manure microbial community and 

roots decreased their competition for nutrients and simultaneously increased nutrient 

uptake, and so, the plant biomass. Both situations were also reflected in the shoot and 

root biomass at day 45: shoot and root biomass with localized manure application were 

respectively 3.1 and 6.7 times higher than for homogenized manure application, and so 

our second hypothesis (H2) was rejected. Compared to the control, the relatively low 

plant biomass in the homogenized manure application also indicated that strong 

competition between microbes and roots existed when manure was homogenized with 

soil. This significant difference demonstrated that localized manure was more 

advantageous for barley growth than homogenized manure.  

This is especially important on the Tibetan Plateau, because soils have been very 

seriously degraded in the last 30-50 years due to intensive human activities (e.g. 

overgrazing) and climate change (Chen et al., 2013). This has induced large soil 
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organic carbon and nutrient losses and thus considerably decreased soil fertility. 

Localized manure application has been found to increase soil ammonium and nitrate 

concentrations in soils of the Tibetan Plateau (Cai et al., 2014; He et al., 2009). 

However, manure application at the soil surface leads to ammonia volatilization, 

involving significant nitrogen losses and negative effects on the environment. This is 

especially important on the Tibetan Plateau, because the solar radiation is much higher 

compared with other regions around the world (Liu et al., 2012), which increases the 

temperature of manure and accelerates the ammonia volatilization. Alternatively, 

homogenized manure application may reduce nitrogen losses by avoiding the impact of 

solar radiation. Therefore, to thoroughly investigate the impact of both manure 

application strategies, the effects on nitrogen emissions and leaching should be 

considered. 

2.5.6 Conclusions 

For the first time, we elucidated and visualized the impacts of different manure 

application strategies on enzyme activities in soil in situ, spatially and temporally. The 

manure-induced detritusphere increased enzyme activities more than the rhizosphere 

effect of barley alone. Manure-induced hotspots also showed higher enzyme activities 

than the rhizoplane. Together, these findings demonstrate that microbial activities in the 

detritusphere are much more stimulated than on the root-soil interface (i.e. rhizosphere 

and rhizoplane). The detritusphere’s vertical extension of phosphomonoesterase activity 

from the localized manure application was much faster than that of β-glucosidase 

activity. Overall, homogenized manure increased enzyme activities more than localized 

manure. However, localized manure induced 3.1 and 6.7 times higher shoot and root 

biomass, respectively. We conclude that localized manure application decreases 

competition for nutrients between microorganisms and roots and simultaneously 

increases plant performance. 
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2.5.9 Supporting information 

 

Figure S1 Example of detecting the boundaries of three categories of enzyme activities: Low activity, Medium activity, 

and Hotspots. The percentage of the area of MUF concentration in the total image was considered as a function of 
color intensity. Data points depict means calculated from five adjacent pixels. Asterisks indicate significant differences 
between the mean values of five adjacent pixels. 
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Figure S2. Examples of zymograms for β-glucosidase activity. Three rows represent response of activities to three 

manure application strategies: 1) No manure, 2) Homogenized manure and 3) Localized manure. Figures from left to 
right are the measurements at days 5, 25 and 45. The color bar corresponds to β-glucosidase activity (nmol cm

-2
 h

-1
). 
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Figure S3 Examples of zymograms for chitinase activity. Three rows represent response of activities to three manure 

application strategies: 1) No manure, 2) Homogenized manure and 3) Localized manure. Figures from left to right are 
the measurements at days 5, 25 and 45. We speculated that the higher chitinase activity at the rhizoplane in soil with 
localized manure at day 25 may be induced by the interactions between roots and mycorrhizal fungi. The color bar 
corresponds to chitinase activity (nmol cm

-2
 h

-1
). 
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3 Abstracts of additional studies 

3.1 The Kobresia pygmaea ecosystem of the Tibetan highlands – origin, 

functioning and degradation of the world’s largest alpine pastoral ecosystem 
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3.1.1 Abstract 

Kobresia pastures in the eastern Tibetan highlands occupy an area of 450000 km² and form the 

world’s largest pastoral alpine ecosystem. The main constituent is an endemic dwarf sedge, 

Kobresia pygmaea, which forms a lawn with a durable turf cover anchored by a felty root mat, 

and occurs from 3000 m to nearly 6000 m a.s.l. The existence and functioning of this unique 

ecosystem and its turf cover have not yet been explained against a backdrop of natural and 

anthropogenic factors, and thus its origin, drivers, vulnerability or resilience remain largely 

unknown. Here we present a review on ecosystem diversity, the reproduction and ecology of the 

key species, pasture health, cycles of carbon (C), water and nutrients, and on the paleo-

environment, The methods employed include molecular analysis, grazing exclusion, 

measurements with micro-lysimeters and gas exchange chambers, 13C and 15N labelling, eddy-

covariance flux measurements, remote sensing and atmospheric modelling. 

The following combination of traits makes Kobresia pygmaea resilient against disturbance and 

highly competitive under grazing: dwarf habit, predominantly below-ground allocation of 

photoassimilates, mixed reproduction strategy with both seed production and clonal growth, and 

high genetic diversity. For an unknown period Kobresia pastures have been co-limited by low 

rainfall during the short growing season and livestock-mediated nutrient withdrawal. 

Overstocking has caused pasture degradation, yet the extent remains debated. In addition to 

the grazing-driven changes, we newly describe natural autocyclic processes of turf erosion 

initiated through polygonal cracking of the turf cover, and increased by soil-dwelling endemic 

small mammals. The major consequences of the deterioration of the vegetation cover and its 

turf include: (1) the release of large amounts of C and nutrients and earlier diurnal formation of 

clouds resulting in decreased surface temperatures with likely consequences for atmospheric 

circulation on large regional and, possibly global, scales.  

Paleo-environmental reconstruction, in conjunction with grazing experiments, suggests that the 

present grazing lawns of Kobresia pygmaea are synanthropic since the onset of pastoralism. 

The traditional migratory rangeland management was largely sustainable and possibly still 

offers the best strategy to conserve, and possibly increase, the C stocks in the Kobresia turf, as 

well as its importance for climate regulation. 

Keywords: alpine meadow, alpine plant ecology, carbon cycle and sequestration, grazing 

ecology, hydrological cycle, Kobresia pygmaea, nutrient cycle, Paleo-environment, Qinghai-

Tibet Plateau, rangeland management. 

Corresponding author: Elke Seeber, seeber.elke@gmx.net 



Abstracts of additional studies                                                                                                                               142 
 

142 
 

3.2 Mechanisms and consequences of Tibetan grassland degradation 
 

In preparation for resubmission to Nature Geoscience 

 

Per-Marten Schleuss1, Lukas Lehnert2, Georg Miehe2, Felix Heitkamp3, Elke Sebeer2,4, Shibin 

Liu1, Yun Wang4, Sandra Spielvogel5, Xingliang Xu6, Karsten Wesche4, Jörg Bendix2, Georg 
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1.
 Department of Soil Science of Temperate Ecosystems, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany 
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 Department of Agricultural Soil Science, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany 

3.2.1 Abstract 

Kobresia grasslands store tremendous amounts of soil organic carbon (SOC), are an important 

grazing ground for local herdsmen, host a major portion of the regional terrestrial biodiversity, 

and supply large areas of SE Asia with water – all threatened by large-scale soil degradation on 

the Tibetan Plateau. Nonetheless, the patterns and mechanisms of pasture degradation, visible 

across the entire Tibetan Plateau, remain unknown. 

Here we (a) provide a novel degradation concept combining anthropogenic and natural impacts 

and (b) demonstrate the mechanisms for associated SOC loss. We show that soil drought and 

frost lead to polygonal cracking of the Kobresia turf, already weakened by overgrazing. This 

induces gradual erosion by wind and water, extends the cracks and removes the upper carbon-

enriched soil. Erosion-derived SOC loss amounts to 5 kg C m-2 and is aggravated by decreasing 

root C-input and increasing SOC mineralization (ca. 2.5 kg C m-2 combined). Mineralization-

driven SOC loss was reflected in a negative δ13C shift of SOC going from intact to severely 

degraded stages, and was caused by a relative enrichment of 13C-depleted lignin. In sum, 

degradation triggered high SOC loss from this ecosystem with profound consequences for 

carbon sequestration, atmospheric CO2, water quality and ecosystem stability. 
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