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Abstract

During B cell maturation within the germinal centers of lymph nodes, genetical alterations,

such as chromosomal translocations and mutations are introduced into the genome in order

to increase the B cell receptor (BCR) specificity. Errors occurring during these processes,

namely class switch recombination and somatic hypermutation, can affect the expression of

tumor suppressors and proto-oncogenes, resulting in lymphomagenesis. Two major subtypes

of germinal center derived aggressive Non-Hodgkin B cell lymphoma are Burkitt lymphoma

(BL) and Diffuse Large B Cell Lymphoma (DLBCL). The MIR23A cluster, coding for miR-23a,

miR-27a and miR-24-2 is induced during normal germinal center reaction. While the MIR23A

cluster expression is low in germinal center B cells, it is upregulated in mature memory B cells.

However, BL and DLBCL tumors have aberrantly high MIR23A expression levels compared

to healthy controls, indicating that the cluster is de-regulated during lymphomagenesis. This

study identified the BCR signaling, which plays a key role during germinal center reaction, as

a general mechanism responsible for the induction of the MIR23A cluster in BL and DLBCL

cell lines. MEK/ERK signaling was shown to be the major signaling cascade mediating this

effect. Downstream transcription factors ELK1 and c-MYC are not involved in activation of the

MIR23A cluster in DLBCL. Since the MIR23A cluster could not be induced by BCR signaling

in normal germinal center B cells, this study hypothesizes that aberrant BCR signaling in BL

and DLBCL is responsible for the increased MIR23A cluster levels. The MIR23A cluster is

involved in many different solid cancers as well as leukemia and lymphoma. Its cellular func-

tion is discussed controversially among the different cancer entities, indicating that it is cell

type and context specific. One study reported that DLBCL patients with high miR-23a levels

show worse overall survival rates, suggesting an onco-miR function for the MIR23A cluster

in DLBCL. However, the processes that are regulated by the MIR23A cluster in DLBCL re-

main unknown. In order to elucidate the biological function of the MIR23A cluster in the B cell

lymphoma context, the targetomes of miR-23a and miR-27a were identified via Ago2-RNA

immunoprecipitation in a DLBCL cell line stably overexpressing miR-23a, miR-27a or a non

silencing control. By this approach 46 novel direct miR-23a and miR-27a targets in DLBCL

were identified. LIMK1 and PUMA were validated as miR-27a targets on protein level. Fur-

thermore, functional analyses demonstrated that miR-23a and miR-27a attenuate the ability of

DLBCL cells to undergo apoptosis in response to DNA damage. This might be one plausible

explanation why DLBCL patients with high miR-23a expression levels have a worse overall

survival rate than patients with low levels, supporting the onco-miR hypothesis for the MIR23A

cluster.





1. Introduction

A eukaryotic cell encountersmany intra- and extracellular signals. These signals are integrated

by sophisticated signaling cascades, resulting in activation or inhibition of genes directing the

cell to grow, divide, rest or even to die. Normally, these processes are tightly controlled. If

errors occur, the cell either undergoes apoptosis or it is eliminated by the immune system.

However, in some cases mutations can lead to de-regulation of tumor suppressors or proto-

oncogenes, leading to uncontrolled growth and proliferation (Hanahan and Weinberg, 2011).

The resulting tumor mass is termed neoplasm. If the cells have the ability to invade the sur-

rounding tissue or to spread into other tissues it is considered as malignant, otherwise it is said

to be benign. A malignant neoplasm is also referred to as cancer. Cancer can affect any part of

the body and is classified by its origin. Carcinomas arise from epithelial cells, sarcomas from

connective tissue or muscle cells and leukemia and lymphoma from the hematopoietic sys-

tem. While leukemias develop from the bone marrow and spread into the blood, lymphomas

develop from the lymphatic system forming solid tumors in the lymph nodes, bone marrow,

spleen and other non-lymphatic organs. According to the classification of the WHO to date

101 subtypes of leukemias and lymphomas exist (Swerdlow et al., 2016). The classification

is based on morphology, immunology, genetic aberrations and clinical aspects. The two main

subgroups of lymphoma are Hodgkin lymphoma (HL) and Non-Hodgkin lymphoma (NHL). HL

show big multi-nucleated Reed-Sternberg cells (Sternberg, 1897; Reed, 1902), which are lack-

ing in NHL. NHL can further be divided in B cell or T cell derived and aggressive or indolent

NHL (Armitage et al., 2009). This study focuses on the aggressive B cell NHL (B-NHL) sub-

type, which constitutes the biggest group of NHL with about 90% of NHL cases (Armitage

et al., 2009). In developed countries aggressive NHL is one of the tenth most frequent cancer

diagnosed (Torre et al., 2015). Due to improved living circumstances and prolonged life ex-

pectancies, cancer is one of the leading cause of death worldwide (Ferlay et al., 2013).

Although much progress has been made in the last decades of cancer research leading to a

better understanding of the underlying mechanisms of malignant transformation, more effort

must be put into the molecular characterization of each individual cancer entity in order to

develop specific and effective treatments.

1
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1.1. B cell development, maturation and malignant transformation

B lymphocytes (B cells) are part of the adaptive immune system and are essential for the

humoral immune response against foreign antigens. They generate high affinity antibodies

that are secreted to effectively inactivate the specific antigen. Antibodies are composed of four

immunoglobulins (Ig): two identical heavy chain immunoglobulins (IgH) and two identical light

chain immunoglobulins (IgL) linked by disulfide bonds. Each of these polypeptides consists of a

carboxyterminal constant region (C) and an aminoterminal variable (V) region. Each mature B

cell expresses a membrane bound antibody on its surface that is associated with cofactors (Igα

and Igβ). Together they form the B cell receptor (BCR). This receptor gains its high specificity

during B cell maturation where complex genomic modifications to the immunoglobulin genes

are introduced.

Early development of B cells is initiated in the fetal liver and subsequently relocated into

the bone marrow of the mammalian embryo (reviewed in (Melchers, 2015)). A multipotent

hematopoietic stem cell in the bone marrow gives rise to a lymphoid progenitor, which devel-

ops into a precursor B cell that subsequently undergoes complex rearrangements of the im-

munoglobulin heavy and light chain variable region genes (reviewed in (Seifert et al., 2013)).

This process is called V(D)J recombination, because the variable region of the heavy and light

chain immunoglobulin gene is encoded on different gene segments: variable (V), diversity (D)

and joining (J) segments. From each of these segments one is randomly selected and step

wise joined together with the other segments. This process leads to a high variability in newly

formed immunoglobulins. Cells that express a functional, but non-autoreactive B-cell receptor

survive the selection process and are released as naive B cells into the blood.

Upon encountering of a T cell dependent antigen these cells are activated, migrate into sec-

ondary lymphatic organs like the lymph nodes, tonsils, spleen, mucosa associated lymphoid

tissue (MALT) or Peyer’s patches, where they maturate their B-cell receptor, undergo clonal

expansion and further differentiate into antibody secreting plasma cells or long lived memory

cells (reviewed in (De Silva and Klein, 2015)).

One site of B cell maturation are the lymph nodes. They are characterized by follicles that

are build up from naive B cells which are separated from each other by an interfollicular re-

gion that is surrounded by a T cell zone. Within the follicular centers a network of follicular

dendritic cells (FDC) can be found. When a naive B cell encounters an antigen, it migrates to

the border of T cell and B cell zone and forms long-lived interactions with antigen-specific T

cells leading to full activation of the B cell. A subset of these B cells differentiate into short-

lived plasmablasts, which secrete low affinity antibodies. Another subset of these cells enter

the germinal center (GC) pathway, where the BCR is further refined. Activated T and B cells

migrate to the follicular center and interact with the dendritic cells. The T cells become T follic-
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ular helper cells (TFH ) thus they upregulate B cell lymphoma 6 (BCL6), the master regulator of

TFH and GC B cell development (Baumjohann et al., 2011). The B cells start to divide rapidly

and to populate the follicle displacing the naive B cells, which thereby form a so called “mantle

zone” around the newly formed germinal center. Within the germinal center two different zones

develop: a densely packed “dark zone” containing proliferating B cells (centroblasts) and retic-

ular cells and a “light zone” containing non-proliferating B cells (centrocytes), TFH cells, FDCs

and macrophages. The centroblasts in the dark zone undergo somatic hypermutation (SHM),

a process that further diversifies the rearranged IgV genes. SHM results in different B cell

clones with a broad range of affinities against the antigen. The clones expressing a high-

affinity antigen receptor are positively selected within the light zone. Effective antigen binding

leads to enriched antigen capture followed by strong BCR signaling (see section 1.2.1) and

longer interactions with FDCs and TFH cells (fig. 1.1). The bystander cells (FDCs and TFH

cells) provide CD40L and secrete interleukine-4 and -21 (IL-4 and Il-21) (Liu et al., 2015; Shul-

man et al., 2014). In sum, these stimulations provide a survival signal, promoting positive

selection. Cells expressing an auto-reactive or defective BCR undergo apoptosis. Induction

of MYC expression during the selection process induces recircularization of the positive se-

lected cells between dark and light zone resulting in further refinement of the antigen specificity

(Dominguez-Sola et al., 2012). CD40 stimulation leads to nuclear factor kappa-light-chain-

enhancer of activated B cells (NFκB) mediated upregulation of Interferon Regulatory Factor

4 (IRF4) expression (Saito et al., 2007), which represses BCL6 thereby terminating the dark

zone program. Within the light zone the cells undergo class switch recombination (CSR) or

finally differentiate into plasmablasts or memory cells and leave the germinal center (reviewed

in (De Silva and Klein, 2015)). CSR is a process were the isotype of the immunoglobulin is

switched (from IgM or IgD) by a new combination of the variable hypermutated VDJ gene ele-

ments with genes encoding for a different heavy chain (IgA, IgE or IgG), rendering their effector

function.

Notably, most aggressive B cell lymphoma resemble germinal center B cells expressing mark-

ers that reflect their origin. The cells seem to be frozen at a particular differentiation step during

germinal center reaction (reviewed in (Küppers, 2005)). Notably, some GC derived lymphoma

still undergo SHM. Indeed, aberrant SHM and CSR can promote lymphomagensis (Lenz et al.,

2007; Pasqualucci et al., 2008). If errors occur during CSR, free DNA ends are produced that

can cause chromosomal translocations, a genetic hallmark of lymphoma. The translocations

of proto-oncogeneMYC and BCL6 to immunoglobulin promoters are characteristic for aggres-

sive B cell lymphoma. Moreover, constitutive expression of BCL6 maintains a pro-proliferative

and DNA-damage tolerant phenotype leading to additional mutations which might further pro-

mote lymphomagensis (Cattoretti et al., 2005). Enhanced expression of MYC results from the

translocation into the immunoglobulin heavy chain or light chain loci and is characteristic for

Burkitt lymphoma (BL) cells (section 1.3). Aberrant SHM acting in the 5´ regulatory or coding
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Figure 1.1.: Germinal center reaction
During germinal center reaction activated B cells generate due to genomic modification of the immunoglobulin

genes high affinity antibodies and differentiate into antibody secreting plasmablasts or memory cells. Upon antigen

binding, activated B cells differentiate into centroblasts that undergo clonal expansion and somatic hypermutation

(SHM). SHM introduces point mutations into the V(D)J region of already rearranged immunoglobulin variable region

(IgV) genes (red dots). These cells move into the light zone, were T follicular helper cells (TFH cells) and follicular

dendritic cells (FDCs) help to elect these cells, that generated an B cell receptor (BCR) with improved binding

specificity. Higher affinity leads to increased antigen capture and promotes TFH cell binding and CD40L signaling

resulting in a survival signal. Cells with low binding capacity to the antigen undergo apoptosis. A subset of positive

selected B cells recirculates into the dark zone to further refine the BCR, whereas another subgroup undergoes

class switch recombination (CSR). CD40L = CD40 ligand, TCR = T cell receptor, MHC = major histocompatibility

complex, BL = Burkitt Lymphoma, FL = Follicular Lymphoma, DLBCL = Diffuse Large B cell Lymphoma. (modified

from de Silva and Klein, 2015)
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regions of proto-oncogenes or tumor suppressors may cause deregulation of those genes.

In fact, aberrant SHM mutates the negative regulatory region of BCL6 in Diffuse large B cell

lymphoma (DLBCL, see section 1.3) preventing BCL6 downregulation and termination of GC

reaction (reviewed in (Klein and Dalla-Favera, 2008)).

In general, lymphomagensis is considered to be a multistep process. The gene arrangements

performed during GC reaction are mutagenic processes that strongly increase the risk of ma-

lignant transformation, but tumor progression is also dependent on survival signals. These

signals are provided by the microenvironment and dependent on the expression of a func-

tional receptor (e.g. BCR and CD40 receptor (see sections 1.2.1 and 1.2.2)).

1.2. Signaling pathways involved in B cell activation

During B cell maturation autocrine signaling of the BCR is crucial for B cell survival, prolifera-

tion and differentiation. Only cells that express a functional BCR activate downstream signaling

cascades including PI3K (phosphoinositol 3-kinase), MAPK (mitogen-activated protein kinase)

and NFκB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling, which in

sum provide a survival signal (see section 1.2.1). This signal is enforced by co-stimulatory

factors provided by the microenvironment within the GCs. FDCs and TFH cells present impor-

tant survival signals to the maturating B cell (reviewed in (De Silva and Klein, 2015)). In detail,

the antigen activated B cell presents peptides of this antigen by the major histocompatibility

complex II (MHCII) on its cell surface. This is recognized by the TFH cells, which express

membrane bound CD40L. This ligand activates the CD40 receptor of the B cell, resulting in

CD40 mediated NFκB signaling (Basso et al., 2004). Besides, FDCs express soluble sonic

hedgehog (Shh) providing an additional survival signal during GC reaction (Sacedon et al.,

2005). Moreover, it was shown that IL-21 and BAFF promote B cell survival by the activation

of JAK/STAT and NFκB signaling (Konforte et al., 2009; Khan, 2009).

In summary, the B cell activation is dependent on complex mechanisms including cell-cell in-

teractions, paracrine and autocrine signaling, which activates different signaling pathways that

subsequently activate gene expression resulting in the induction of proliferation and differenti-

ation of the GC B cell.

1.2.1. B cell receptor signaling

Each B cell expresses a unique membrane bound antibody, namely the B cell receptor (BCR).

The BCR is a multimeric complex, consisting of two identical heavy chain immunoglobulins

(IgH) and two identical light chain immunoglobulins (IgL) linked by disulfide bonds. Each of
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these polypeptides consist of a carboxyterminal constant region (C) and an aminoterminal

variable (V) region. The V region mediates the antigen binding whereas the C region anchors

the antibody within the membrane (Janeway et al., 2001). The antibody itself lacks signaling

capacity, thus the transmembrane proteins CD79A (Igα) and CD79B (Igβ) are intracellular, but

non-covalent associated to the C terminus of the immunoglobulin heavy chain (fig. 1.2). Both

CD79 chains contain an immunoreceptor tyrosine based activation motif (ITAM) in their intra-

cellular part, which are able to transduce signals intracellularly (reviewed in (Bojarczuk et al.,

2015)). Antigen binding induces BCR cross-linking followed by Sarcoma-family (SRC) kinase

LYN (Lck/Yes novel tyrosine kinase) recruitment and phosphorylation of the ITAM. Phospho-

rylated ITAM recruits spleen tyrosine kinase (SYK), which is subsequently phosphorylated

by LYN. Phosphorylated SYK further propagates the signal via B cell linker protein (BLNK)

to Burton’s tyrosine kinase (BTK) and phospholipase Cγ2 (PLCγ2). PLCγ2 hydrolyses PIP2

(phosphatidyl inositol-4,5-bisphosphate) to IP3 (inositol-1,4,5-trisphosphate) and DAG (diacyl-

glycerol). Increasing IP3 levels lead to the release of Ca2+ from the endoplasmatic reticulum

and consequently to the activation of calcineurin and the transcription factor NFAT (nuclear

factor of activated T cells). DAG activates protein kinase C (PKC), which in turn phosphory-

lates the multiprotein complex CBM (consisting of CARD11, BCL-10 and MALT1), that acti-

vates IκBα kinase complex (IKK) thereby initiating NFκB signaling. Another function of PLCγ2

is to activate mitogen-activated protein kinase (MAPK) pathway, including c-junNH2-terminal

kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 (Hashimoto et al.,

1998). Besides, LYN activated phosphorylation of co-receptor CD19 leads to activation of PI3K

(phosphoinositol 3-kinase) which in turn activates AKT signaling.

The BCR signaling activates many different signaling pathways, which also show “cross-talk”

with each other and also other signaling cascades (e.g. chemokine receptors) further increas-

ing complexity (Seda and Mraz, 2015). These signaling cascades activate many different

transcription factors, which regulate the expression of a set of GC-specific genes.

Beside the antigen induced activation of BCR signaling, a second form called “tonic” BCR sig-

naling exists. The tonic signaling is found in mature B cells and ensures antigen-independent

B cell survival.
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Figure 1.2.: Signaling cascades activated upon BCR activation
This figure depicts a simplified scheme of BCR downstream signaling cascades. The BCR consists of a pairs of

immunoglobulin heavy (IgH) and light (IgL) chains, whose variable region allows the BCR to bind an antigen. It is

intracellularly coupled to the heterodimer CD79A and CD79B, which mediates signal transduction. The immunore-

ceptor tyrosine based activation motif (ITAM) is phosphorylated upon antigen binding by the SRC-familiy kinase

LYN, which initiates the recruitment and activation of several signaling proteins that spread the signal on different

downstream signaling cascades as depicted in the scheme (for detailed description refer to the main text). Acti-

vation of these signaling cascades leads to activation of transcription factors (ERK, NFAT, NFκB, MYC etc.) that

activate genes responsible for survival of the cell. Ras = rat sarcoma, RAF = rapidly accelerated fibrosarcoma,

MEK = MAPK/ERK Kinase, ERK = extracellular signal regulated kinase, MYC = v-myc avian myelocytomatosis

viral oncogene homolog, BTK = Burton’s tyrosine kinase, PLCγ2 = phospholipase Cγ2, PI3K = phosphoinositol

3-kinase, PIP2 = phosphatidyl inositol-4,5-bisphosphate, IP3 = inositol-1,4,5-trisphosphate, DAG = diacylglycerol,

PKC = protein kinase C, NFAT = nuclear factor of activated T-cells, PKC = protein kinase C, CBM = CARD11-

BCL10-MALT1 signalosome, IKK = IκB kinase komplex, NFκB = nuclear factor kappa-light-chain-enhancer of acti-

vated B cells, AKT = protein kinase B, mTORC2 = mammalian target of Rapamycin complex 2, GSK3 = Glycogen

synthase kinase 3, FOXO = forkhead box. (figure taken from Bojarczuk et al., 2015)

It is not surprising that lymphoma take advantage of the BCR signaling, thus it provides survival

signals. In Burkitt lymphoma (section 1.3), which is characterized by MYC translocations, it

was shown that tonic BCR signaling via PI3K allows the cell to tolerate the otherwise lethal

ectopic MYC expression in absence of growth factors (Evan et al., 1992). 70% of BL harbor

transcription factor 3 (TCF3) mutations, that prevent the inhibition of TCF3 by ID3. Moreover

frequent ID3 mutations have been reported in BL (Richter et al., 2012; Schmitz et al., 2013).

Hyperactive TCF3 leads to decreased SHP1 activity, a negative regulator of PI3K dependent

BCR signaling, which results in enhanced BCR signaling.
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Another lymphoma subtype, namely activated B cell like (ABC) DLBCL (see section 1.3) shows

chronic active BCR signaling. Many ABC DLBCL patients carry Caspase recruitment domain-

containing protein 11 (CARD11) mutations affecting the coiled-coil domain, causing it to form

spontaneous aggregates that recruit all downstream signaling components of the NFκB path-

way (Lenz et al., 2008). Moreover, the ITAM of CD79 were reported to bemutated leading to an

exchange of the tyrosine residue to another amino acid (Davis et al., 2010). These mutations

prevent endocytosis of the BCR and blunt the activity of LYN, a SRC-family tyrosine kinase

that delivers negative feedback signals that attenuate BCR activity. Another mechanism for

chronic active BCR signaling is the reactivity against self antigen (Young et al., 2015). The

presence of BCR clusters on the cell surface of ABC DLBCL, which resemble the clusters that

are formed after antigen encountering, support this observation (Rui et al., 2011).

The high complexity of BCR signaling, which is misused by lymphoma to survive and pro-

liferate, provides many possibilities to interfere with, using targeted therapy. Indeed, many

inhibitors were developed to target BCR downstream kinases, such as BTK, SYK, SRC family

and PI3K, are already used in the clinics or in clinical trials (Young and Staudt, 2013; Gayko

et al., 2015).

1.2.2. CD40 signaling

Cluster of differentiation 40 (CD40) is a co-stimulatory receptor expressed on the surface of

many cells, including B cells. It belongs to the tumor necrosis factor receptor (TNFR) superfam-

ily and is activated by the soluble or membrane bound ligand CD40L. This ligand is regarded

as the classical co-stimulatory signal presented by T helper cells during GC formation (section

1.1) and promotes GC formation, immunoglobulin isotype switching, somatic hypermutation

and differentiation of GC B cells (reviewed in (Bojarczuk et al., 2015)). Ligand binding to CD40

leads to the activation of downstreamNFκB andMAPK signaling (reviewed in (Elgueta, 2009)).

In detail, binding of CD40L to CD40 promotes CD40 clustering and recruits TNFR-associated

factors (TRAFs) to the cytoplasmatic domain of CD40. In vivo studies in mice showed that

TRAF 1, 2, 3 and 5 are recruited to CD40 upon CD40L binding in B cells. TRAF1 activates

canonical NFκB signaling, while TRAF 5 activates both canonical and non-canonical NFκB

signaling (Xie et al., 2006; Hauer et al., 2005; Nakano et al., 1999) (section 1.2.3). TRAF2 has

multiple functions, hence it was shown to activate canonical NFκB signaling, while repressing

non-canonical NFκB signaling and furthermore activating MAPK (including JNK and p38) sig-

naling. In contrast, TRAF3 represents only a negative NFκB signaling regulator. In conclusion,

CD40 signaling activates primarily TRAFmediated NFκB signaling with an autoregulatory loop,

resulting in the expression of anti-apoptotic factors (BCL-XL, A20, survivin, Bfl-1, and c-FLIP).

Studies with B-NHL cells showed that cells expressing low levels of CD40L are protected from
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apoptosis (Pham et al., 2002), while transient in vitro and in vivo activation of CD40L in BL,

multiple myeloma and high-grade B cell lymphoma inhibited cell proliferation (Funakoshi et al.,

1994), indicating that quantitative levels might play a role in cell fate decision.

1.2.3. NFκB signaling

NFκB is a pleiotropic transcription factor involved in many biological processes such as in-

flammation, immunity, differentiation, proliferation, apoptosis and tumorigenesis (reviewed by

(Vallabhapurapu and Karin, 2009)). Five different NFκB family members exist: NF-κB1 (p50

and its precursor p105), NF-κB2 (p52 and its precursor p100), p65 (RelA), c-Rel and RelB.

These NFκB family members form homo- or heterodimers that bind to DNA to regulate spe-

cific target genes. In the inactive state their nuclear translocation sequence is shielded by

the inhibitors IκBα, IκBβ and IκBε. The release from the IκBs is controlled by IκB kinases

(IKKα/IKK1, IKKβ/IKK2 and IKKγ/NEMO). After activation by a given stimulus the IKKs phos-

phorylate IκB, leading to proteasomal degradation of IκB and the nuclear translocation of the

NFκB dimer.

Many different stimuli can activate NFκB signaling (cytokines, chemokines and adhesion mole-

cules) (Lawrence, 2009). Two NFκB signaling pathways are described: the canonical and the

non-canonical pathway. They differ in the mode of activation and utilization of NFκB mem-

bers. In the canonical pathway (e.g. activated by tumor necrosis factor (TNF) alpha) the NFκB

dimers p65/p50 and c-Rel/p50 are activated by the proteasomal degradation of IκBs which is

induced by phosphorylation from the trimeric IKK complex. The non-canonical pathway is acti-

vated by TNF family members, including CD40L (Berberich et al., 1994). Subsequently NFκB

inducing kinase (NIK) phosphorylates IKK which leads to partial proteasomal degradation of

p100 precursor into p52 and subsequent activation of RelB/p52 dimers.

Deregulated NFκB signaling was shown to play an important role in B-NHL, thus hyperacti-

vation of canonical NFκB signaling is characteristic for ABC DLBCL ((Davis et al., 2001), see

section 1.3).

1.2.4. MAPK/ERK signaling

The mitogen-activated protein kinase (MAPK) cascade is a central pathway that transmits sig-

nals from extracellular stimuli (growth factors, hormones, neurotransmitters and others) to reg-

ulate a broad variety of cellular processes, such as proliferation, differentiation, apoptosis and

stress response (Plotnikov et al., 2011). Each MAPK cascade consists of three main kinases:

MAP3K, MAP2K and MAPK, which subsequently phosphorylate each other in response to a

stimulus (reviewed in (Plotnikov et al., 2011)). Four different MAPK cascades were identified:
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extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and

ERK5. Each of this MAPKs is activated by different MAP2Ks (Raman et al., 2007), leading

to distinct responses to a specific stimulus. In the context of B cell activation ERK1/2 cas-

cade plays a central role. Upon activation of the BCR (section 1.2.1), protein kinase C (PKC)

activates rapidly accelerated fibrosarcoma 1 (RAF1) signaling dependent phosphorylation of

ERK1/2 (Hashimoto et al., 1998). Activated RAF1 (the MAPK3) phosphorylates MEK1/2 (the

MAP2K), which in turn activates ERK1/2 (Ueda et al., 1996). ERK1/2 are Ser/Thr kinases that

phosphorylate a large number of downstream substrates of different cellular compartments

(Plotnikov et al., 2011). Among these substrates are many transcription factors, such as ELK1,

c-MYC, c-Fos and Ets domain factors, but also dual-specificity MAPK phosphatases (MKPs

or DUSPs) (Yoon and Seger, 2006). DUSPs are key negative regulators of MAPK signaling,

which inactivate the MAPKs but can furthermore mediate crosstalk between different MAPK

cascades (Kidger and Keyse, 2016). One of the first described ERK1/2 substrates was ETS

domain-containing protein ELK1, a transcription factor responsible for the activation of imme-

diate early genes (Gille et al., 1995). In detail, it was shown in fibroblasts that ELK1 forms a

ternary complex by p62TCF with serum response factor (SRF) thereby binding to serum re-

sponse element (SRE) of the c-Fos promoter, which facilitates c-Fos transcription. Induction

of c-Fos is important for cell proliferation and differentiation (Hisanaga et al., 1990; Shaulian

and Karin, 2001). Interestingly, ERK1/2 phosphorylation of ELK1 induces binding of c-Fos to

c-Jun, which together form the transcriptionally active AP-1 complex (Whitmarsh and Davis,

1996). AP-1 activity is required for cyclin D1 induction and cell cycle progression (Shaulian

and Karin, 2001).

The MAPK/ERK pathway is a key signaling system for the decision of cell fate. It is frequently

overactivated in human cancer due to genetic aberrations and is therefore considered to be

a driver for cancer development (reviewed in (Fey et al., 2016)). For aggressive lymphoma

it was reported that the ERK substrate ELK1 binds to LMO2, which is overexpressed in GC

derived B cell lymphoma (Cubedo et al., 2012).

1.3. B cell non Hodgkin Lymphoma (B-NHL)

According to the WHO in 2012 the incidence for NHL was estimated with 93.4 cases per

100,000 people and a mortality of 37.9 cases per 100,000 people in male and female (Ferlay

et al., 2013). More than 85% of newly diagnosed NHL cases are from B-cell origin and affect

men more frequently than women (Armitage et al., 2009). Aggressive B-NHL includes diffuse

large B-cell lymphoma (DLBCL), mantle-cell lymphoma (MCL), Burkitt lymphoma (BL) and fol-

licular lymphoma (FL) (Maxwell and Mousavi-Fard, 2013). The most common subtype with

approximately 40% of all NHL cases is DLBCL (Küppers, 2005).
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DLBCL mostly affects patients with an average age of mid-60. Symptoms can be swollen

lymph nodes, sweating at night, fever and dramatic weight loss (CancerresearchUK, 2016).

DLBCL is clinically, morphologically and genetically a heterogeneous disease. Morphologi-

cally it is characterized by nuclei that have double or more than double times the size of a

macrophage nucleus and a diffuse growth pattern (Paepe and Wolf-Peeters, 2007; Armitage

et al., 2009). According to their origin, DLBCL can be further be subdivided by gene expression

profiling on molecular level in germinal center B-like (GCB) and activated B-like (ABC) DLBCL

(Alizadeh et al., 2000). Each subtype is characterized by specific chromosomal translocations

and gene expression patterns.

A common feature of GCB DLBCL is the overexpression of BCL6, the master regulator and

transcriptional repressor during germinal center formation. BCL6 overexpression is caused

by translocations of BCL6 to heterologous promoters or point mutations in negative regulatory

elements of BCL6 promoter, which leads to the survival of DLBCL cells (Iqbal et al., 2007;

Ci et al., 2008). These cells constantly undergo somatic hypermutations thereby accumulat-

ing further mutations (Shaffer III et al., 2011). 20-30% of DLBCL harbor t(14;18) translocation

leading to the juxtaposion of BCL2 to immunoglobulin heavy chain gene (IGH) enhancer re-

sulting in BCL2 protein overexpression and inhibition of apoptosis (Lu et al., 2015). In 5-10%

of the cases translocations that juxtapose MYC with the IGH, κ, and λ genes (t(8;14), t(2;8)

and t(8;22)) lead to an upregulation of MYC (Li et al., 2012). MYC and BCL2 or BCL6 dou-

ble hit lymphoma show highly aggressive behavior leading to extremely poor outcome (Caimi

et al., 2016). Furthermore, the amplification of MIHG1 region, containing miR-17-92 cluster

was observed in approximately 12% of the cases (De Jong and Balagué Ponz, 2011).

The second molecular subtype, ABC DLBCL, is characterized by a constitutive active NFκB

signaling (Davis et al., 2001). Several pathway components leading to NFκB activation have

been shown to be mutated. Deletions and mutations in A20, a negative regulator, were found

in 20% of ABC DLBCL cases (Compagno et al., 2010). In 10% of ABC DLBCL cases mis-

sense mutations in the coiled-coiled domain of CARD11, which mediates oligomerization and

is crucial for NFκB activation, occur (Lenz et al., 2008). Moreover, somatic mutations in the

ITAM tyrosine kinase motifs of BCR signaling proteins CD79A and CD79B were demonstrated

to produce a sustained pseudo-BCR signal (Davis et al., 2010), which leads to chronic BCR

signaling that is important for ABC DLBCL cell survival (Davis et al., 2001). The large num-

ber of NFκB targets contribute to poor prognosis of ABC DLBCL patients by the prevention

of apoptosis, which reduces the sensitivity of the cells to chemotherapy (Baldwin, 2001). In

general, the prognosis for GCB DLBCL is better than for ABC DLBCL patients (Paepe and

Wolf-Peeters, 2007).

Usually, DLBCL arises de novo, but it can also develop from an indolent lymphoma, such

as follicular lymphoma (Martinez-Climent et al., 2003), chronic lymphocytic leukemia (Rossi
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and Gaidano, 2009), marginal zone lymphoma or nodular lymphocytic predominant Hodgkin

lymphoma (Fanale and Younes, 2008).

Nowadays the standard therapy for aggressive B-NHL, independent of the molecular sub-

type, is R-CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone and the mon-

oclonal antibody rituximab), a combination of cytostatic and immunosuppressive drugs with

a chimeric human/murine immunoglobulin G1 monoclonal antibody that specifically binds to

CD20, a surface antigen expressed on each B cell (Feugier, 2005). Crosslinking of CD20 in-

duces complement-mediated cell lysis, antibody dependent cellular cytotoxicity and antibody

dependent apoptosis (Shan et al., 2000). Although the response rates, event free survival and

overall survival significantly improved compared to CHOP therapy alone, there are still patients

that do not respond to treatment or suffer from relapse (30-40%) or refractory disease (10%)

(Coiffier et al., 2002; Kahl, 2008; Cultrera and Dalia, 2012; Raut and Chakrabarti, 2014).

Another type of aggressive B-NHL is Burkitt lymphoma (BL). It was first described by De-

nis Burkitt in 1958 as the most prevalent African childhood lymphoma which localizes to the

mandible and other extranodal sites (Burkitt, 1958). This type of BL is the endemic form of BL

which can be found in Equatorial Africa and is in 98% of the cases associated with Epstein-

Barr virus (EBV) infections (McNally and Parker, 2006). In contrast, the sporadic form of BL

occurs worldwide and accounts for 2% of lymphoma in adults and up to 40% of lymphoma in

children in Western countries (Ferry, 2006). A third subtype of BL is associated with immunod-

eficiency and affects HIV carriers (Franceschi et al., 1999; Ferry, 2006) and patients that were

treated with immunosuppressiva (Gong et al., 2003). Characteristic for all three BL subtypes

is the translocation of proto-oncogene MYC into one of the three immunoglobulin gene loci

(Hummel et al., 2006). These translocations are considered to be the central event in Burkitt

lymphomagensis

(Dalla-Favera et al., 1982). BL develops within the germinal centers of the lymph node, hence

they display germinal center like features: expression of CD10 and BCL6, but no expres-

sion of BCL2 or CD5 (Stein and Hummel, 2007). The prognosis of BL is favorable with cure

rates > 90% in low stage BL and 70% in high stage BL, if treated intensively with multi-agent

chemotherapy for at least 48-72h in order to target all tumor cells passing through mitosis (De

Jong and Balagué Ponz, 2011).

According to their gene expression profile BL and GCB DLBCL are thought to derive from

centroblasts of the dark zone of the germinal center, while ABC DLBCL are thought to derive

from terminal determined centroblasts that differentiate into plasmablasts of the light zone

(Tamaru et al., 1995; Rosenwald et al., 2002; Pasqualucci and Dalla-Favera, 2014; Sehn and

Gascoyne, 2015).
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One major challenge in the clinics is to discriminate BL from DLBCL. Two studies aimed to

distinguish them on molecular level using gene expression profiles and cytogenetic analyses

(Hummel et al., 2006; Dave et al., 2006). Hummel and colleagues developed a molecular

classifier that reliably distinguishes BL from other mature aggressive B cell lymphoma. Cases

with an index score (I) greater than 0.95 were classified as molecular BL (mBL) and cases

with a score lower than 0.05 as non-molecular Burkitt lymphoma (non-mBL). Cases in be-

tween were designated as intermediate group, resembling mostly DLBCL cases. While this

study used predominantly genes that are NFκB target genes for discrimination, Dave and col-

leagues applied a gene set composed of MYC target genes, several germinal center B cell

and major-histocompatibility-complex (MHC) class I genes (Dave et al., 2006). Although, the

classification of aggressive B cell lymphomas can be achieved using different gene sets, not

every subtype can be identified by this approach alone. Characterization is crucial to identify

the best treatment strategy for the patients.

1.4. MicroRNAs

MicroRNAs (miRNAs or miRs) are small, single stranded and non-protein coding RNAs (ca.

21 nt) that mediate post-transcriptional gene silencing. The first miRNA lin-4 was identified

in Caenorhabditis elegans in 1993 and reported to have antisense complementarity to lin-14

messenger RNA (mRNA) (Lee et al., 1993). With the discovery of let-7 (Reinhart et al., 2000)

and its high conservation amongmany vertebrates, including humans (Pasquinelli et al., 2000),

the miRNA field rapidly expanded. Since then thousands of miRNAs have been identified in

various species (Kozomara and Griffiths-Jones, 2011). The expression of miRNAs is tissue

and cell type specific. About 60% of human protein coding genes are thought to be targeted by

miRNAs, thus harboring conserved miRNA binding sites in their mRNA sequences (Friedman

et al., 2009). One miRNA can target multiple mRNAs thereby regulating different cellular pro-

cesses. However, it was shown that one miRNA can inhibit multiple targets of gene networks

thereby applying additional levels of regulation (Na and Kim, 2013). Furthermore, they can

also act at different genes within a linear pathway resulting in a potentiation of the inhibitory

effect. Vice versa, one mRNA can be targeted by several different miRNAs, suggesting that

different miRNAs might act in concert to effectively downregulate their target. Furthermore,

miRNAs are frequently found in feedforward or feedback loops that mediate the amplification

or downregulation of the respective signal. Nowadays the mechanisms of miRNA biogenesis

is mostly understood, while the exact mode of action is still being debated on (reviewed in

(Filipowicz et al., 2008; Ameres and Zamore, 2013)). However, it is clear that miRNAs are

involved in the regulation of many important cellular processes. Therefore, deregulation may

lead to severe defects and result in diseases and cancer.
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1.4.1. MicroRNA biogenesis

In vertebrates, miRNAs are transcribed by RNA polymerase II (Lee et al., 2004) from miRNA

genes, introns of other host genes or intergenic regions (van Rooij, 2011; Cai et al., 2004)

(fig. 1.3). Approximately one third of miRNAs derive from transcripts that code for several

miRNAs and are termed miRNA clusters (Farazi et al., 2013). MiRNA biogenesis can be

exerted in canonical or non-canonical manner (reviewed in (Rottiers and Näär, 2012)). In the

canonical pathway miRNAs are first transcribed into the primary transcript (pri-miRNA), which

has a 5’ cap and a 3’ poly-A tail and forms one or more stem loop structures (Lee et al., 2004).

These stem loop structures are recognized by the microprocessor complex, which consists of

DGCR8 (DiGeorge syndrome chromosomal region 8) and Dicer. During transcription of the

primary transcript, DGCR8 binds to the double stranded part of the stem loop in the nascent pri-

miRNA (Morlando et al., 2008). Finally, DGCR8 assists Drosha to cleave the bound stem loop

approximately 11 nt distant from the ssRNA to dsRNA junction thereby producing a ~70 bp long

transcript called precursor miRNA (pre-miRNA) (Han et al., 2006). In non-canonical miRNA

pathway, miRNAs are either directly transcribed as short hairpin RNAs (shRNAs) or derive

from spliced introns, that re-fold into hairpins (mirtrons). In both pathways the newly generated

pre-miRNAs are transported by Exportin 5 into the cytoplasm (Bohnsack et al., 2004). There

Dicer and transactivation response RNA binding protein (TRBP) RNase III complex recognize

the pre-miRNA and cleave off the loop generating a ~21 bp long miRNA dublex composed of

sense and anti-sense (guide and passenger strand or miRNA and miRNA*) mature miRNAs

(Hutvágner et al., 2001). TRBP furthermore facilitates the loading of mature miRNA duplex

into the RISC complex, consisting mainly of argonaute (Ago), Dicer and TRBP (Chendrimada

et al., 2005). The strand with the weaker base pairing at the 5’ terminus of the miRNA duplex

binds to Ago, the effector protein of the RNA-induced silencing complex (RISC) (Khvorova

et al., 2003). In most cases, the anti-sense strand is degraded (Matranga et al., 2005). Four

different Ago proteins are expressed in humans: Ago1-4. Ago proteins harbor three domains:

the PAZ domain recognizes the two nucleotides that overhang at the 3’ end of the miRNA,

the Mid domain recognizes the cap structure of mRNAs and the PIWI domain has RNase-H-

like features (Hutvagner and Simard, 2008). Several studies report a high overlap of miRNAs

loaded into the different Ago isoforms (Burroughs et al., 2011; Siomi and Siomi, 2008; Hafner

et al., 2010). Indeed, it was reported that all Ago isoforms repress miRNA-mRNA duplexes

(Janas et al., 2012). However, only Ago2 protein has endonuclease/slicer activity, mediating

mRNA cleavage (Liu, 2004).
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Figure 1.3.: MiRNA biogenesis pathway
In the canonical pathway RNA polymerase II (Pol II) transcribes miRNAs either from intergenic, intronic or poly-

cistronic genomic loci. Drosha and DGCR8 recognize the stem loop sequence within the primary transcript (pri-

miRNA) and trim it to produce the precursor transcript (pre-miRNA). In the non-canonical pathway pre-miRNAs are

generated by splicing of introns (mirtrons) or are directly transcribed by short hairpins (shRNA). The pre-miRNA

from both pathways is exported into the cytoplasm by exportin 5, where DICER and transactivation-response RNA-

binding protein (TRBP8) cleave of the loop structure and produce a mature miRNA duplex. The guide strand of

this duplex is incorporated into the AGO-containing RNA-induced silencing complex (RISC), which then mediates

translational repression, mRNA degradation or sequestration. (figure taken from Rottiers et al. 2012)
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Each of these biogenesis steps can be modulated. Drosha dependent cleavage of pri-miRNA

to pre-miRNA can bemodified by accessory proteins like hnRNPA1, KKSHP and SMAD (Mich-

lewski and Cáceres, 2010; Davis et al., 2008). Additionally, Drosha processing of pri-miRNAs

can be prevented by RNA editing of adenine deaminases (ADARs), which change specific

adenins into inosines (Siomi and Siomi, 2010; Iizasa et al., 2010). Moreover, it was shown,

that hyper-edited double stranded miRNAs are degraded within the RISC complex (Scadden,

2005). Besides RNA modification, the major factors of the miRNA biogenesis machinery can

be regulated by post-transcriptional modifications, such as phosphorylation, hydroxylation or

ubiquitination leading to alterations in their localization, activity and stability (reviewed in (Kim

et al., 2010)).

1.4.2. Mechanism of translational inhibition by microRNAs

Once the mature miRNA is incorporated into the RISC (miRISC), the miRNA guides the protein

complex via its seed sequence to target mRNAs, leading to their translational inhibition or

degradation (reviewed in (Filipowicz et al., 2008)). In contrast to plants, where miRNAs are

often fully complementary to their target mRNAs and induce mRNA cleavage and degradation,

metazoan miRNAs bind only with partial complementarity and inhibit translation (Bartel, 2004).

In mammalia, the miRNA recognizes its target by perfect base pairing of nucleotide 2-8 at the 5’

end (Lewis et al., 2003). This sequence is called “seed” sequence. Besides the seed pairing,

supplementary pairing of the 3’ part of the miRNA is supportive but plays a minor role in target

recognition (Grimson et al., 2007; Brennecke et al., 2005). In principle miRNA binding sites can

be recognized all over a mRNA (Lytle et al., 2007), but effective translational repression was

shown for mRNAs that harbor conserved miRNA binding sites within their 3’UTR (Kuersten

and Goodwin, 2003).

While total complementarity of miRNAs to their target mRNAs (plant miRNAs or siRNAs) in-

duces mRNA cleavage, the exact mechanism by which miRNA interfere with the translation

machinery in mammalia is not well understood. However, it is known that Ago2 can compete

with translation initiation factor eIF4E for the m7G cap of the mRNA, disrupting translation initi-

ation and mRNA circularization (Filipowicz et al., 2008). Additionally, a drop-off model in which

miRNAs render ribosomes prone to premature termination is discussed (Petersen et al., 2006).

Furthermore, translation inhibition can be mediated by mRNA deadenylation (Fabian et al.,

2009; Braun et al., 2011) or sequestration in processing bodies (P-bodies) (Rottiers and Näär,

2012). P-bodies are cytoplasmatic foci, where enzymes that are involved in mRNA decay and

translational repression (incl. GW182, Ago proteins and miRNAs) accumulate (Kulkarni et al.,

2010). The translational repression of mRNAs and their localization to P-bodies are shown to
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be transient, thus they can be reactivated followed by ribosome recruitment and subsequent

translation (Bhattacharyya et al., 2006).

1.4.3. MiRNAs in tumorigenesis

MiRNAs regulate virtual all cellular processes, including genes that are associated with tu-

morigenesis: cell cycle regulation, differentiation, apoptosis, stress response, inflammation,

migration and invasion. Therefore, dysfunctional expression of miRNA is considered as a

hallmark of cancer (Lawrie, 2013). Alterations of miRNA expression is often observed due

to genetical alterations, such as amplification, deletion or translocation of genes. Indeed, ap-

proximately 50% of annotated human miRNAs are located in fragile sites and associated with

cancer (Esquela-Kerscher and Slack, 2006). MiRNAs function as tumor-suppressor miRNAs,

when targeting an oncogene, or as onco-miRNAs, when targeting a tumor suppressor. Dele-

tion of a tumor suppressive miRNA as well as amplification of an oncogenic-miRNA (onco-miR)

can consequently lead to tumorigenesis.

Several miRNAs are deregulated in B cell lymphoma (e.g. miR-155, miR-17-92 cluster, miR-21,

miR-34a, miR-125B etc., reviewed in (Lawrie, 2013)). These miRNAs were shown to play

crucial roles during B cell development (reviewed in (de Yébenes et al., 2013)). One well de-

scribed example is miR-155, which is overexpressed in DLBCL (Kluiver et al., 2005). MiR-155

is considered as a key regulator in immune function under normal physiological conditions,

thus it can contribute to tumorigenesis in many different ways. MiR-155 negatively regulates

somatic hypermutation by targeting AID (Teng et al., 2008) and class switch recombination

by targeting PU.1 (purine-rich DNA sequence (PU-box) binding protein) (Vigorito et al., 2007).

Furthermore, it was reported that miR-155 targets SMAD5, preventing the growth inhibitory

effect of TGFβ1 and BMP2/4 (Rai et al., 2010). Overexpression of miR-155 inhibits INPP5D

which leads to TNFα dependent growth of DLBCL cells (Pedersen et al., 2009). While miR-155

seems to have onco-miR function in DLBCL, it is downregulated in BL, indicating that it might

have a tumor suppressor function in BL (Kluiver et al., 2005, 2006). Therefore, the function of

a miRNA seems to be dependent on the cellular context.

In summary, miRNA deregulation contributes to tumorigenesis by various means. However,

the fact that miRNA levels are altered within lymphoma subtypes, can be used as markers for

diagnosis (Lenze et al., 2011; Roehle et al., 2008). Furthermore, it was shown that miRNAs

can have prognostic value (Goswami et al., 2013) and can be used as therapeutic targets

(reviewed in (Oom et al., 2014)).
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1.5. The MIR23A cluster

ThemiR-23a~27a~24-2 cluster (MIR23A) is a polycistronic cluster coding formiR-23a, miR-27a

and miR-24 (fig. 1.4). It is encoded in an intergenic region on chromosome 19p13, which is

conserved among vertebrates and harbors its own promoter region. In fact, the MIR23A cluster

was one of the first miRNAs that were described to be transcribed by RNA polymerase II into

a ~2.2 kb long pri-miR-23a~27a~24-2 transcript (pri-miR-23a) (Lee et al., 2004). The MIR23a

cluster promoter lacks common promoter elements, such as the TATA box, initiator element,

downstream promoter element (DPE), TFIIB recognition element (BRE), downstream core el-

ement (DCE) and MED-1 (multiple start site element). Reporter gene assays showed that the

region from -806 to -603 bp has negative regulatory function, while the region between -603

to +36 bp has the strongest positive function of all tested promoter sequences and strongly

induces pri-miR-23a expression. The promoter region from -74 to -42 bp was absolutely nec-

essary for transcription (Lee et al., 2004).

Figure 1.4.: MIR23A cluster
The polycistronic MIR23A cluster is localized on the reverse strand of chromosome 19 and codes for the 2.2 kb

long primary transcript miR~23a~27a~24-2, which is processed into ~ 70 bp precursor transcripts pre-miR-23a,

pre-miR-27a and pre-miR-24-2 and subsequently into mature miR-23a, miR-27a and miR-24.
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Although all three miRNAs of this cluster are transcribed in one polycistronic transcript (pri-

miRNA), it was observed that the mature miR-23a and miR-27a expression is inconsistent in

leukemic cell lines, while miR-24 is not expressed (Yu et al., 2006), indicating that regulation

of the single miRNAs might be independent from each other, a well documented phenomenon

for miRNAs (Buck et al., 2010; Filipowicz et al., 2008).

Inmammals the paralogous clustermiR-23b~27b~24-1 (MIR23B), coding formiR-23b, miR-27b

and miR-24, exists in an intronic region of a zinc-dependent metallopeptidase on chromosome

9q22. The sequences of miR-23a and miR-23b, miR-27a and miR-27b differ only in one base,

while mature miR-24 sequence is identical and can only be distinguished from each other

as precursor miRNAs. As the paralogous miRNAs harbor the same seed sequences, it has

been suggested, that both clusters target the same set of mRNAs and might therefore have

similar functions within the cell. However, the regulation of both clusters might be indepen-

dent, as differential expression was reported in several cancer entities (reviewed in (Chhabra

et al., 2010)). Notably, the paralogous cluster is not expressed in leukemic cell lines (Yu et al.,

2006).

Interestingly, Karposi’s sacroma-associated herpesvirus (KSHV) expresses a miR-23-Mimic

(miR-K3) with high 5’ sequence complementarity to miR-23a and miR-23b, harboring the iden-

tical seed-sequence as miR-23a and miR-23b thereby targeting the same mRNAs (Manzano

et al., 2013). Since KSHV infections are associated in tumorigenesis (Giffin and Damania,

2014), this might indicate a onco-miR function for miR-23a.

Various miRNA profiling studies have reported that all three members of the MIR23A clus-

ter are deregulated in several diseases including muscle diseases, neurologic disorders and

many different cancer entities (reviewed in (Chhabra et al., 2010)). In particular, deregulation

of MIR23A cluster was observed for acute promyelocytic leukemia (APL) caused by the fu-

sion gene PML-RARA (Saumet et al., 2009). Furthermore, the MIR23A cluster is differentially

expressed between acute lymphoblastic leukemia (ALL; down) and acute myeloid leukemia

(AML, up) (Mi et al., 2007) as well as between BL (down) and DLBCL (up) (Lenze et al., 2011;

Iqbal et al., 2015), indicating that aberrant factors or events during hematopoiesis might be

responsible for MIR23A deregulation. Indeed, the MIR23A cluster was shown to play a crucial

role during hematopoiesis, hence it is regulated by PU.1, a potent repressor of the lymphoid

line, thereby promoting the myeloid line (Kong et al., 2010). Very recently, it was reported

that MIR23A germline knockout mice show an increased number of B lymphocytes in bone

marrow and spleen and a decreased number of myeloid cells (Kurkewich et al., 2016). For

later steps of B cell development several groups showed by miRNA profiling (micro array, RNA

sequencing or qRT-PCR) that the MIR23A cluster expression is induced during GC reaction

in normal healthy B cells (Basso et al., 2009; Tan et al., 2009; Zhang et al., 2009; Malumbres

et al., 2009)
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(Iqbal et al., 2015). Although none of these groups investigated the MIR23A cluster in detail,

all show in principle the same expression pattern for the MIR23A cluster: naive B cells and

GCB cells have low MIR23A cluster expression, while mature memory B cells have upregu-

lated MIR23A cluster levels (Basso et al., 2009; Tan et al., 2009; Zhang et al., 2009; Malumbres

et al., 2009; Iqbal et al., 2015), indicating that a process within the GCmight induce theMIR23A

cluster. Notably, Iqbal et al. verified the MIR23A cluster data by qRT-PCR (Iqbal et al., 2015).

Only Thapa et al. show higher miR-23a levels in naive B cells, that are downregulated in GCBs

and again upregulated in memory B cells (Thapa et al., 2011). These differences might be ex-

plained by different cell surface markers used to sort distinct B cell subpopulations. However,

the function of MIR23A cluster in B cells still remains unknown. Moreover, the mechanism by

which it is induced under physiological conditions is still unclear. Considering the fact, that

MIR23A cluster is differentially expressed between BL and DLBCL, which both develop from

GCB cells (Tamaru et al., 1995; Rosenwald et al., 2002; Pasqualucci and Dalla-Favera, 2014;

Sehn and Gascoyne, 2015), it can be suggested that pathways activated during GC reaction

might be responsible for the regulation of MIR23A cluster expression. First indications sup-

porting this hypothesis came from an arbitrary cell system, which mimics BL (P493-6) and

demonstrated that MYC can repress MIR23A cluster expression (Gao et al., 2009). Addition-

ally, for non-small cell lung cancer cells the transcription factor ELK1, which acts downstream

from MEK/ERK cascade, was reported to activate the MIR23A cluster (Acunzo et al., 2013).

Furthermore, the NFκB member p65 induced the MIR23A cluster in human leukemic T cells

(Rathore et al., 2012). However, experimental data supporting this hypothesis for DLBCL are

still missing.

Recently, Wang and colleagues reported that tumor samples of DLBCL patients show aberrant

high miR-23a levels compared to reactive lymph nodes of healthy control patients. Further-

more, they showed that patients with higher miR-23a levels have a worse overall survival rate

than patients with lower levels, indicating an onco-miR function of MIR23A cluster in DLBCL

(Wang et al., 2014). In order to understand why miR-23a worsens prognosis, knowledge about

the targets of the MIR23A cluster would be needed to explain which cellular processes are af-

fected by the MIR23A cluster. Indeed, several targets were already described for all three

members of the MIR23A cluster for different malignancies, except for lymphoma, indicating

that this cluster acts in many different cellular processes and can have diverse functions.

In pancreatic cancermiR-27a is overexpressed and acts as an onco-miR by targeting Sprouty2,

a negative regulator of Ras/MEK signaling, thereby inducing growth, colony formation and mi-

gration of pancreatic cells (Ma et al., 2010). Similar results were gained in colon cancer, where

miR-23a was shown to promote migration and invasion by targeting metastasis suppressor 1

(MTSS1) (Jahid et al., 2012). Moreover, the same group showed that miR-27a promotes prolif-

eration. In breast cancer miR-27a overexpression leads to downregulation of transcription fac-
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tor FOXO1 and induced cell proliferation as well as survival (Guttilla andWhite, 2009). FOXO1

is a putative tumor suppressor, which is also activated upon BCR signaling (see section 1.2.1).

In contrast, miR-23a acts as a tumor suppressor miRNA in osteosarcoma, where ectopic over-

expression of miR-23a inhibited proliferation, migration and invasion by targeting RUNX2 and

CXCL12 (He et al., 2014). A tumor suppressor function was also reported for miR-27a in col-

orectal cells (Bao et al., 2014). This group demonstrated, that miR-27a inhibited proliferation,

promoted apoptosis and attenuated migration. Furthermore, miR-27a inhibited tumor growth

in vivo (Bao et al., 2014). Gao et al. showed that miR-23a levels are downregulated in BL

upon MYC expression (Gao et al., 2009). Low miR-23a levels lead to increased mitochondrial

glutaminase (GLS) levels promoting glutamine metabolism resulting in higher energy produc-

tion. In this example, the oncogene MYC abolishes the tumor suppressor function of miR-23a

in order to facilitate cancer metabolism.

Taken together, these current findings indicate that the MIR23A cluster is aberrantly regulated

in DLBCL and that the biological function of the MIR23A cluster is cell type and context specific.

A previous study suggests that theMIR23A cluster might act as an onco-miR in DLBCL patients

(Wang et al., 2014). However, neither the reason for MIR23A cluster deregulation, nor the

biological function of the MIR23A cluster in DLBCL are understood.
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1.6. Aims

TheMIR23A cluster was shown to be deregulated inmany different diseases, including leukemia

and lymphoma. BL and DLBCL, two aggressive B-NHL subtypes, are derived from GCB cells.

Gene expression profiles show, that naive B cells and normal GCBs have low MIR23A clus-

ter levels compared to increased levels in memory B cells. Due to complex interactions with

the microenvironment of the GC, many different signaling cascades are activated during GC

reaction modulating survival, proliferation and differentiation of GCB cells. However, DLBCL

patients show aberrant highMIR23A cluster levels compared to healthy controls, indicating that

signaling cascades deregulated during GC reaction might be responsible for MIR23A cluster

activation. However, experimental data for the factors responsible for aberrant MIR23A cluster

regulation in DLBCL are missing.

The function of MIR23A cluster is controversially discussed, since onco-miR as well as tu-

mor suppressive functions were reported for the MIR23A cluster in different cancer entities.

Because miRNA function is dependent on the mRNAs targeted by the miRNA, its function is

context and cell type specific. A previous study reported that DLBCL patients with increased

miR-23a levels have a worse overall survival rate than patients with lower miR-23a levels.

These observations indicate the MIR23A cluster to function as an onco-miR in DLBCL. How-

ever, the processes in which the MIR23A cluster is involved in DLBCL are unknown.

Consequently, this study aims to answer the following two questions:

1. Which signaling pathways are responsible for the aberrant regulation of the MIR23A cluster

in DLBCL?

2. What is the DLBCL specific targetome of the MIR23A cluster? In detail, which mRNAs are

targeted by miR-23a and miR-27a?

By the identification of the miR-23a and miR-27a targetomes the cellular function of MIR23A

cluster in DLBCL can be predicted. Furthermore, the onco-miR hypothesis can be tested.

In order to investigate the MIR23A cluster regulation, MIR23A cluster levels were analyzed

upon stimulation of B cell relevant signaling pathways with different factors from the GC mi-

croenvironment, followed by the inhibition of downstream factors within the respective signaling

cascades. The cellular function of the MIR23A cluster was investigated by the identification

of miR-23a and miR-27a targetomes in a DLBCL model cell line. Therefore, DLBCL cell lines

overexpressing the respective miRNA or control were generated. These cell lines were used

to establish an Ago2-RNA immunoprecipitation assay. By this in vitro approach several novel

mRNA targets of the MIR23A cluster were identified for a DLBCL model cell line and were

subjected to functional validation.



2. Materials and Methods

2.1. Biological Material

2.1.1. Primary Material and Data

Primary material of human pediatric tonsils was obtained with informed consent from the legal

guardians of the children and ethical approval (34/7/06 Ethic-Commission University Göttin-

gen). Tonsillectomies were performed in the University Medical Center Göttingen.

Patient RNA sequencing data were obtained from the data base of the International Cancer

Genome Consortium (ICGC) Project “Determining Molecular Mechanisms in Malignant Lym-

phoma by Sequencing” (ICGC-MMML-Seq, https://ddc.icgc.org/releases/current/Projects/MALY-

DE, release v22 24.08.2016, published in (Hezaveh et al., 2016)).

2.1.2. Cell Lines

Cell lines used in this study are listed in table 2.1.

Table 2.1.: Cell lines

Cell line Description Distributor Reference

BL-2 Burkitt Lymphoma Bornkamm, Munich (Bertrand et al., 1981)

HEK293T Embryonal kidney DSMZ, Brunswick (Rio et al., 2015)

OCI-LY3 Diffuse large B cell lymphoma

(ABC)

DSMZ, Brunswick (Tweeddale et al., 1987)

OCI-LY7 Diffuse large B cell lymphoma

(GCB)

DSMZ, Brunswick (Tweeddale et al., 1987)

P493-6 MYC transformed lymphoblas-

toid cell line

Bornkamm, Munich (Polack et al., 1996)

U2932 R1 Diffuse large B cell lymphoma DSMZ, Brunswick (Quentmeier et al., 2013)

U2932 R2 Diffuse large B cell lymphoma DSMZ, Brunswick (Quentmeier et al., 2013)

2.1.3. Bacteria

E.coli Subcloning Efficiency DH5α Competent Cells were used for subcloning and plasmid

DNA amplification (Thermo Fisher Scientific, Waltham, USA). Genotype: F- φ80lacZ∆M15

∆(lacZYA-argF)U169 recA1 endA1 hsdR17(rk
− , mk

+) phoA supE44 thi-1 gyrA96 relA1

λ
−

23
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2.2. Chemicals, Buffers & Consumables

2.2.1. Chemicals

Chemicals used in thesis study are listed in table 2.2:

Table 2.2.: Chemicals and Solutions

Chemical or solution Manufacturer

30% Acrylamid/Bis Solution (37,5:1) Bio-Rad, California, USA

Adenosine 5’triphosphate, ATP Roth, Karlsruhe, Germany

Agarose Sigma-Aldrich, Steinheim, Germany

anti FITC microbeads Miltenyi Biotec, Bergisch Gladbach, Germany

auto MACS rinsing buffer Miltenyi Biotec, Bergisch Gladbach, Germany

β-Mercaptoethanol Sigma-Aldrich, Steinheim, Germany

Bacillol Bode, Hamburg, Germany

Biocoll Lymphoprep Solution Biochrom, Berlin, Germany

Bovine Serum Albumin BSA Serva, Heidelber, Germany

Brilliant Blue G Sigma-Aldrich, Steinheim, Germany

Chloroform J. T. Baker, Deventer, Netherlands

Complete protease inhibitor, EDTA-free Roche, Mannheim, Germany

Coomassie Plus Thermo Scientific, Massachusetts, USA

Disodiumhydrogenphosphate Roth, Karlsruhe, Germany

Dithiothreitol (DTT) Sigma-Aldrich, Steinheim, Germany

DMSO Sigma-Aldrich, Steinheim, Germany

dNTPs Peqlab, Erlangen, Germany

Dynabeads Protein G Life Technologies AS, Oslo, Norway

EDTA Sigma-Aldrich, Steinheim, Germany

EGTA Sigma-Aldrich, Steinheim, Germany

Ethanol J. T. Baker, Deventer, Netherlands

Ethidiumbromide Sigma-Aldrich, Munich, Germany

FACS flow Becton Dickinson, Heidelberg, Germany

FCS Sigma-Aldrich, Steinheim, Germany

Formaldehyde Sigma-Aldrich, Munich, Germany

Formic acid Sigma-Aldrich, Steinheim, Germany

Glycerol Roth, Karlsruhe, Germany

Glycine Roth, Karlsruhe, Germany

IGEPAL CA-630 Sigma-Aldrich, St. Louis, USA

Methanol J. T. Baker, Deventer, Netherlands

Methanol J. T. Baker, Deventer, Netherlands

MTT (Thiazolyl Blue Tetrazolium Bromide) Sigma-Aldrich, Steinheim, Germany

Nonidet P-40 Fluka, Missouri, USA

NXA931 GE Healthcare (Little Chalfont, UK)

PBS Sigma-Aldrich, Steinheim, Germany

Penicillin/Strepomycin Gibco, Massachusetts, USA

PhosSTOP Roche, Mannheim, Germany

Ponceau S solution Sigma-Aldrich, Steinheim, Germany

Potassiumchloride Roth, Karlsruhe, Germany

Potassiumhydrogenphosphate Roth, Karlsruhe, Germany

2-Propanol J. T. Baker, Deventer, Netherlands

Propidiumiodid Sigma-Aldrich, Steinheim, Germany

Puromycin Invivogen, Toulouse, France

Continued on next page
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Chemical or solution Manufacturer

Random Primers Invitrogen, Karlsruhe, Germany

Re-Blot Plus Mild Solution (10x) Millipore, Massachusetts, USA

RNase away Molecular BioProducts, San Diego, USA

RNase free H2O Sigma-Aldrich, Steinheim, Germany

RNAse Out Invitrogen, Karlsruhe, Germany

RPMI1640 Gibco, Massachusetts, USA

Sigma-AldrichAST Protease Inhibitor Sigma-Aldrich, Steinheim, Germany

Sodiumchloride Roth, Karlsruhe, Germany

Sodiumdeoxycholat Roth, Karlsruhe, Germany

Sodiumfluoride Sigma-Aldrich, Steinheim, Germany

Sodiumhydroxid Roth, Karlsruhe, Germany

TEMED Bio-Rad, California, USA

Triton X-100 Serva, Heidelberg, Germany

Tris Base Sigma-Aldrich, Steinheim, Germany

Tris HCl Sigma-Aldrich, Steinheim, Germany

Trypanblaue 0.4% in PBS Sigma-Aldrich, Steinheim, Germany

Tween 20 Sigma-Aldrich, Steinheim, Germany

Western lightning Plus ECL Perkin Elmer, Waltham, USA

2.2.2. Buffers and Solutions

Buffers and solutions used in this study are listed in table 2.3:

Table 2.3.: Buffers

Buffer Recipe

Ago2-RIP lysis buffer 25 mM Tris HCl pH 7.5

150 mM KCl

2 mM EDTA

0.5% (v/v) IGEPAL CA-630

0.5 mM DTT

4U/mL Rnase Out

1x Protease Inhibitor Cocktail, EDTA free

Ago2-RIP wash buffer 50 mM TrisHCl pH 7.5

300 mM NaCl

5 mM MgCl2

1 mM NaF

0.1% (v/v) IGEPAL CA-630

4U/mL Rnase Out

1x Protease Inhibitor Cocktail, EDTA free

6x Laemmli buffer 375 mM Tris HCl pH 6,8

9% SDS

50% (v/v) Glycerol

0.03% Bromphenoleblue

9% (v/v) beta-Mercaptoethanol

MTT Solution I 5 mg/mL MTT in PBS

MTT Solution II 33 % DMSO (v/v),

5 % (v/v) Formic acid

62 % (v/v) Isopropanol

Nucl. extraction buffer A 10 mM HEPES pH 7.9

10 mM KCl

Continued on next page
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Buffer Recipe

10 mM EDTA

10 mM EGTA

1 mM DTT

Nucl. extraction buffer B 20 mM HEPES

400 mM KCl

1 mM EDTA

1 mM EGTA

1 mM DTT

RIPA lysis buffer 100 mM NaCl

50 mM TrisHCl pH 7.4

0.1% SDS

1% (v/v) NP-40

1x Protease Inhibitor Cocktail

1x Phosphatase Inhibitor Cocktail

0.25% Sodium-deoxycholat

Running buffer (1x) 25 mM Tris-base

192 mM Glycin

34.67 mM SDS

Separation gel mix 250 mM Tris-base, pH 8.8

25% (v/v) Acrylamid/Bis solution (40 %)

0.0004% (w/v) APS

0.00125% (v/v) TEMED

Stacking gel mix 250 mM Tris Base pH 6.8

12.5% (v/v) Acrylamid/bis solution (40 %)

0.0004% (w/v) APS

0.00125% (v/v) TEMED

TBS (1x) 20 mM Tris-base

137 mM Sodium chloride

Adjusted to pH 7.6

TBS-T 0.1% (v/v) Tween-20

Transfer buffer (1x) 25 mM Tris-base

192 mM Glycin

20% (v/v) MeOH

2.2.3. Inhibitors

Inhibitors used in this study are listed in table 2.4:

Table 2.4.: Inhibitors

Inhibitor Final Concentration Manufacturer

BEZ235 200 nM Selleckchem, Munich, Germany

Cyclohexamide 100 μg/mL Sigma-Aldrich, Steinheim, Germany

Etoposide 100 μM Sigma-Aldrich, Steinheim, Germany

Ibrutinib 1 μM Selleckchem, Munich, Germany

MK2206 3 μM Selleckchem, Munich, Germany

Trametinib 125 nM Selleckchem, Munich, Germany
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2.2.4. Consumables

Consumables used in this study are listed in table 2.5:

Table 2.5.: Consumables

Consumable Manufacturer

96 well PCR plates Applied Biosystems, Foster City, California, USA

Agilent RNA 6000 Pico Kit Agilent Technologies, Waldbronn, Germany

Agilent Small RNA kit Agilent Technologies, Waldbronn, Germany

Cell culture flasks Nunclon, Rosklide, Denmark

Cryotubes Nunc, Wiesbaden, Germany

DNA loBind tubes 1,5 mL, safe lock PCR clean Eppendorf, Hamburg, Germany

FACs tubes Becton Dickinson, Franklin Lakes, USA

Falcon tubes 15 ml Falcon, Reynosa, Mexico

Falcon tubes 50 ml Greiner Bio-One, Kremsmuenster, Austria

MACS LS columns Miltenyi Biotec, Bergisch Gladbach, Germany

MACS pre separation filters Miltenyi Biotec, Bergisch Gladbach, Germany

Multiwell cell culture plates Nunclon, Rosklide, Denmark

Nucleofection cuvettes Amaxa-biosystems, Cologne, Germany

PVDF membrane Biorad, Hercules, USA

Reaction tubes (0.5, 1.5, 2.0 mL) Eppendorf, Hamburg, Germany

Siliconized Tubes, 1,7ml (25 Tubes) Active Motif, La Hulpe, Belgium

2.3. Equipment

Equipment used in this study is listed in table 2.6:

Table 2.6.: Equipment

Instrument Manufacturer

7500 Fast Real-Time PCR System Applied Biosytems, Foster City, California, USA

Advanced Fluorescence Imager Intas, Goettingen, Germany

Amaxa Nucleofector 4D Lonza, Basel, Switzerland

Bioanalyzer2100 Agilent Waldbronn, Germany

FACS Calibur, FACS Aria III Becton Dickinson, Franklin Lakes, USA

Heraeus Multifuge 3L Thermo, Waltham, USA

Microcentrifuge 5424 Eppendorf, Hamburg, Germany

Multiscan Ex Platereader Thermo, Waltham, USA

NanoDrop1000 Thermo, Waltham, USA

Neubauer Counting Chamber Improved Lo Labor Optik, Friedrichsdorf, Germany

Thermocycler T3000 Biometra, Goettingen, Germany



28 2 | Materials and Methods

2.4. Stimulants

Stimulants used in this study are listed in table 2.7:

Table 2.7.: Stimulants

Description Final conc. Manufacturer

F(ab’)2 Fragment Goat α-human IgG 13 μg/mL Jackson ImmunoResearch, Suffolk, UK

F(ab’)2 Fragment Goat α-human IgM 13 μg/mL Jackson ImmunoResearch, Suffolk, UK

sCD40L 200 ng/mL Autogen bioclear, Wiltshire, UK

LPS 1 μg/mL Sigma-Aldrich, Steinheim, Germany
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2.5. Antibodies

Antibodies used for immunoblotting, FACS and Ago2-RIP are listed in table 2.8.

Table 2.8.: Antibodies

Antibody Species Order no. Working solution Manufacturer

Ago2 clone 11A9 rat SAB4200085 1:1,000 5% BSA TBS-T SIGMA, St. Louis, USA

3.6 μg per 4.5 μg beads

P-AKT (Ser473) rabbit 4060P 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
AKT (67E7) rabbit 4691P 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
BCL-6 rabbit 5650 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
BTK (D3H5) rabbit 8547 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
P-BTK (Tyr223) rabbit 5082 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
CD77 mouse 551353 50 μL per 1x108 cells Beckton Dickinson, New Jersey,

USA
c-MYC rabbit ab32072 1:5,000 5% BSA TBS-T Abcam, Cambridge, UK

ELK-1 rabbit 9182 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
P-ELK1 (Ser383) rabbit 9180 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
ERK rabbit sc-94 1:1,000 5% BSA TBS-T Santa Cruz, Dallas, US

P-ERK (Tyr204) mouse sc-7383 1:1,000 5% BSA TBS-T Santa Cruz, Dallas, US

GAPDH mouse ab8245 1:10,000 5% BSA TBS-T Abcam, Cambridge, UK

LIMK1 rabbit 3842 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
p53 rabbit 9282 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
PCNA rabbit ab19167 1:1,000 5% BSA TBS-T Abcam, Cambridge, UK

PUMA rabbit 12450 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
VRK3 rabbit 3260 1:1,000 5% BSA TBS-T Cell Signalling Technology, Dan-

vers, USA
IgG2a (aRTK2758) rat ab18450 3.6 μg per 4.5 μg beads Abcam, Cambridge, UK

(iso type ctrl)

mouse IgG HRP sheep NXA931 1:10,000 5% BSA TBS-T GE Healthcare Chicago, USA

rabbit IgG HRP donkey NA934V 1:10,000 5% BSA TBS-T GE Healthcare Chicago, USA

rat IgG HRP goat sc-2032 1:10,000 5% BSA TBS-T Santa Cruz, Dallas, USA
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2.6. Oligonucleotides

2.6.1. Primer

MiRNAs were detected using miScript Precursor Assays. Used primers are listed in table

2.9:

Table 2.9.: miScript primer

Order No primer description

MP00001645 Hs_mir-23a_PR_1 pre-miR-23a primer

MP00001701 Hs_mir-27a_PR_1 pre-miR-27a primer

MP00001666 Hs_miR-24-2_PR_1 pre-miR-24-2 primer

MS00031633 Hs_miR-23a_2 miR-23a-3p primer

MS00003241 Hs_miR-27a_1 miR-27a-3p primer

MS00006552 HS_miR-24_1 miR-24-3p primer

MS00007511 SNORD48_11 SNORD48 primer

Conventional primers used for qRT-PCR or conventional PCR are listed in table 2.10:

Table 2.10.: Primer

Primer Sequence (5’-3’)

c-MYC fw CTACCCTCTCAACGACAGC

c-MYC rev CTTGTTCCTCCTCAGAGTCG

CD58 fwd ATGAAGATGAGTATGAAATGGAATCGCCA

CD58 rev AGTGTGGGAGATGGAAGAGACTCAAGC

ICAM1 fw TTCACAATGACACTCAGCGGTC

ICAM1 rev AGTGCAAGCTCCCAGTGAAATG

ELK1 fw CTGTCTGGAGGCTGAAGAGG

ELK1 rev GCCTTGGTGGTTTCTGGCAC

GAPDH fw TGGGTGTGAACCATGAGAAG

GAPDH rev TCCACGATACCAAAGTTGTCA

miR-23a XhoI fw CTCGAGTGCTCTCTCTCTCTTTCTCC

miR-23a MluI rev ACGCGTACAGGCTTCGGGGCCTCT

miR-27a XhoI fw CTCGAGTTCCAACCGACCCTGAGC

miR-27a MluI rev ACGCGTTAGGCACGGGAGGCAGAGC

pri-miR-23a fw CCAGGGATTTCCAACCGACC

pri-miR-23a rev AGC TAA GCC CTG CTC CTC AG

pri-miR-23b fw AGCTGAGGAAGATGCTCAC

pri-miR-23b rev ACCAATCACTGTTCACCAATC

SLAMF7 fw CAGAGAGCAATATGGCTGGTTCC

SLAMF7 rev GCTGCTGACCCTGTGAGCTG
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2.6.2. siRNAs

SiRNAs used in this study are listed in table 2.11:

Table 2.11.: siRNAs

siRNA Cat. No. Manufacturer

MYC_5 SI00300902 Qiagen, Hilden, Germany

ELK1_7 SI02662506 Qiagen, Hilden, Germany

all stars negative SI03650318 Qiagen, Hilden, Germany

2.7. Ready to use reaction systems

Annexin V Apoptosis Detection kit PE (ebioscience, San Diego, USA), miRNeasy kit (Qiagen,

Hilden, Germany), SsoFast EvaGreen Supermix with Low Rox (Biorad, California, USA), miS-

cript SYBR Green PCR Kit (Qiagen, Hilden, Germany), miScript II RT Kit (Qiagen, Hilden, Ger-

many), RNA 6000 Pico Kit (Agilent Technologies, Waldbronn, Germany), Small RNA kit (Ag-

ilent Technologies, Waldbronn, Germany), QiaEx DNA fragment isolation kit, Machery-Nagel

Plasmid isolation kit. innuPREP Plasmid Mini Kit (Analytic Jena, Germany), NucleoBond®

Xtra Midi EF (Machery-Nagel, Düren, Germany).

2.8. Software

The following software products were used: the present thesis was written with LyX and Bib-

TeX. Literature-management and bibliography were generated using Mendeley Desktop Ver-

sion 1.16.1. Graphs were created using Microsoft Excel 2010. Figures were assembled using

GIMP and Microsoft Office PowerPoint 2010. Densidometry analyses were performed with Im-

ageJ 1.49v. qRT-PCR analysis was performed using SDS 2.4 and RQ Manager 1.2.1 (Applied

Biosystems). Bioanalyzer measurements were performed with Agilent Bioanalyzer expert

B.02.08.SI648 software. Western Blot chemoluminescence was detected by Intas Chemostar

Imager V 0.3.12.



32 2 | Materials and Methods

2.9. Eukaryotic expression vectors

Figure 2.1.: Lentiviral vector pGIPZ

ns ctrl hairpin sequence: 5´TGCTGTTGACAGTGAGCGATCTCGCTTGGGCGAGAGTAAG-

TAGTGAAGCCACAGATGTACTTACTCTCGCCCAAGCGAGAGTGCCTACTGCCTCGGA3´



2.9. EUKARYOTIC EXPRESSION VECTORS 33

Figure 2.2.: MiR-23a pGIPZ
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Figure 2.3.: MiR-27a pGIPZ
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Figure 2.4.: Topo TA cloning vector pCR2.1

Figure 2.5.: Transient expression vector pSG5
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Figure 2.6.: MiR-23a in transient expression vector pSG5
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Figure 2.7.: MiR-27a in transient expression vector pSG5

2.10. Cell Biology

2.10.1. Cell culture

All cells were maintained at 37°C in 5 % CO2 and subcultivated every second day. The BL

cell line BL-2 was cultured in RPMI-1640 with 10% fetal calf serum (FCS), 200 U/mL Penicilin

and 200 μg/mL Streptomycin. The DLBCL cell lines U2932 R1, U2932 R2 and OCI-LY3 were

cultured in cell culture medium RPMI-1640 with 20% FCS, 200 U/mL Penicilin and 200 μg/mL

Streptomycin and the DLBCL cell line OCI-LY7 was cultured in IMDM with 20% FCS, 200

U/mL Penicilin and 200 μg/mL Streptomycin. The BL cells were seeded at a density of 3 x 105

cells/mL the day before the experiment while DLBCL cell lines were seeded at a density of 5 x

105 cells/mL. HEK293T cells have been cultured in DMEM with 10% FCS. Approximately 2-3

x 106 cells/80 cm2 have been seeded and subcultivated (ratio: 1:4 to 1:5) every three days.

For cell number measurement cells were mixed in an equal ratio with 0.4 % Trypan blue and

counted using the Neubauer counting chamber.
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All cell lines have been tested regularly for mycoplasma contamination. Cells were no longer

than four weeks continuously cultivated. For cell freezing 4-5 x 106 cells were centrifuged for

5 min at 120xg at RT and resuspended in 1 mL freezing medium (normal culture medium sup-

plemented with 10% DMSO). For the freezing process cryo boxes which contain isopropanol

were used to ensure a constant cooling of approximately 1°C/min. Cryo boxes were stored im-

mediately at -80°C for 16-24 hours before they were transferred to liquid nitrogen for long-term

storage. For thawing, cells were washed with their corresponding culture medium, counted

and seeded in new culture medium (DLBCLs: 5 x 105 cells/mL; BLs: 3 x 105 cells/mL).

2.10.2. Isolation of CD77+ GCB cells from primary pediatric tonsills

Isolation of tonsillar mononuclear cells

Primary tonsillar tissue was kept on ice after tonsillectomy. The tonsillar cells were extracted by

mincing the tonsil in a petri dish with cold RPMI1640 plus P/S. To obtain tonsillar mononuclear

cells (TMCs), the cell solution was overlaid with Lymphoprep™ solution and separated by

density gradient centrifugation (400 x g, 30min at RTwithout break). The interphase containing

the TMCs was collected, washed once with cold RPMI1640 plus P/S and a second time with

cold autoMACS™ buffer plus.

Enrichment of CD77+ GC B cells

Cell enrichment was performed by an indirect labeling of the GC B cell marker CD77 on the

cell surface with an antibody coupled to magnetic beads (MACS™ MicroBeads). The mag-

netic sorting was performed usingMACS™ columns placed in a precooled MACS™Separator,

a strong permanent magnet. Thereby the MACS™ Column provides a magnetic field which

retains labeled cells. Elution was achieved by removing the column from the magnet and rins-

ing the column with buffer. TMCs were counted and resuspended in autoMACS™ buffer plus

(1x108 cells/250 μL). Cells were stained with anti CD77-FITC antibody (50 μL per 1x108 cells)

for 10 min at 4°C in the dark. Cells were washed once with 50 mL autoMACS™ buffer plus P/S

(centrifugation 300xg, 10 min, 4°C) and afterwards adjusted to a concentration of 40 μL/1x107

cells in autoMACS™buffer plus P/S. 10 μL anti-FITCmicrobeads per 1x107 TMCs were added

and incubated for 20 min at 4°C. Cells were washed with 50x volume of autoMACS™ buffer

plus P/S and resuspended in autoMACS™ buffer plus P/S. CD77+ cells were enriched using

LS MACS™ separation columns topped with pre-separation filters (500 μL with 1x108 CD77

cells per column). After the equilibration of the columns and filters with 500 μL autoMACS™

buffer plus P/S in the magnetic field, 1x108 cells in 500 μL autoMACS™ buffer plus P/S were

given onto each column. The columns were washed three times with 3 mL autoMACS™ buffer
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plus P/S. The first washing step was executed through a pre-separation filter. Elution was per-

formed with 5 mL autoMACS™ buffer plus P/S. An aliquot of CD77+ enriched cells was stored

at 4°C for cell characterisation by flow cytometry.

2.10.3. Nucleofection of cells

Small-interfering RNA (siRNA) against the indicated target genes or scrambled control were

transfected into the cells using Lonza Amaxa Nucleofection Kit (SF Cell Line 4D-Nucleofector®

X Kit L) and the Lonza Amaxa Nucleofector 4D device (100 pmol siRNA or 5 μg plasmid per

five million cells) according to the manufacturer’s instructions (program: Primary cell P3, CD

137 for U2932 R1). After the nucleofection process, cells were incubated in pre-warmed RPMI

1640 supplemented with 20 % FCS for 24/48 hours at 37°C in 5 % CO2. Knockdown quality

was verified with qRT-PCR and immunoblotting.

2.10.4. Inhibitor treatment

Cells were seeded in fresh cell culture medium at a density of 1 x 106 cells/mL and treated for

the indicated time span with the respective inhibitor (table 2.4). When performing combined

inhibitor and stimulation experiment, cells were pretreated 1-2 h before stimulation. Depending

on the experimental question, the cells were harvested for RNA isolation and/or for Western

blot analysis.

2.10.5. MTT Assay

For cell viability tests, the cell lines were treated with the inhibitor or solvent only as a control in

a cell density of 5 x 105 cells/mL for 24 h and 48 h at 37°C in 5 % CO2 . After X-4 h incubation

100 μL cell suspension was seeded into a 96 well plate and 10 μL MTT I solution was added

following an incubation for four hours at 37°C in 5 % CO2. Afterwards the cells were pelleted

for 10 min at 1200 rpm. The supernatant was discarded and the cell pellet was resuspended

in acidic MTT II solution. Optical density was afterwards determined at 560 nm and 750 nm

as reference wavelength using Thermo Multiscan Ex Platereader.

2.10.6. Stimulation of cells

One day prior to the experiment, cells were seeded at a cell density of 5 x 105 cells/mL in

the corresponding medium. At the day of the experiment cells were seeded at a density of

1 x 106 cells/mL in fresh medium without Penicillin and Streptomycin. The stimulant and the
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corresponding solvent as control (table 2.7) were added to the cells and resuspended before

incubation for the indicated time span at 37°C and 5% CO2. For harvesting, cells were cen-

trifuged 5 min at 210 x g and washed once with PBS. When analyzing phosphoproteins, cells

were harvested in a pre-cooled centrifuge, washed once with cold PBS and handled on ice

prior to cell lysis.

2.10.7. Generation of stable transduced U2932 R1 cells

Lentivirus production

For lentivirus production 5 x 106 HEK293T cells have been seeded per 10 cm2 cell culture

dish and grown to 80 % confluence in DMEM +10% FCS. Two hours prior to the experiment

HEK293T medium has been renewed without disturbing cell confluence.

Expression vector (pGIPZ LEF1 shRNA or pGIPZ non-silencing control), packaging plasmid

(pCMV delta R8.2) and envelope plasmid (pMD.2G) have been mixed in a ratio of 3:2:1. Cal-

cium chloride solution has been added to a final concentration of 0.5 M. While the calcium

chloride-plasmid mixture has been mixed thoroughly the same volume of 2x Hepes-buffered

NaCl solution has been added drop by drop. The final mixtures have been incubated for 3 min

at room temperature, mixed again and then carefully been added drop by drop to the HEK293T

cells. The next day cell supernatant has been removed and 5 ml fresh culture medium was

added carefully to each dish. HEK293T cells have been incubated for 24 hours at 37°C in 5 %

CO2 before the first virus harvest was performed. For that purpose HEK293T cell supernatant

was removed, stored at 4°C and HEK293T cells were covered for a second time with 5 ml of

cell culture medium per dish. After another day of incubation the second supernatants was

removed and mixed with the respective first supernatant. The resulting virus solutions were

centrifuged at 2,000 x g for 10 min at 4°C. To remove residual cell debris supernatants have

been transferred to new tubes and sterile filtered (0.45 μm pores). Virus solution has either

been used immediately for transduction or stored in liquid nitrogen.

Lentiviral transduction and selection of U2932 R1 pGIPZ

U2932 R1 cell concentration was adjusted to 1 x 106 cells/mL in RPMI1640 medium supple-

mented with 20 % FCS, 200 U/ml penicillin, 200 μg/ml streptomycin and 10 μg/mL protamin-

sulfate. Equal volume of virus solution (concentrated, 1:2 or 1:3) was added to the cell sus-

pension, mixed and centrifuged at 300 x g for 90 min at 37°C. 7 hours after transduction fresh

Medium without protaminsulfate was added to the cells. If green fluorescing cells could be ob-

served, 48h hours after transduction the selection process was started by addition of puromycin
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to a final concentration of 1.5 μg/mL to the cells. To control the selection process untransduced

cells were also treated with puromycin. Lentiviral transduced U2932 R1 cells have been ex-

panded, checked for GFP expression and frozen for long-term storage as described in section

2.10.1. MiRNA overexpression was regularly confirmed using qRT-PCR.

Figure 2.8.: Experimental outline for the generation of stable overexpressing clones
Pre-miR-23a, pre-miR-27a and non silencing control sequences were cloned into the stable transduction vector

pGIPZ. Triple tansfection of HEK293T cells with envelope vector pMD2.G, packaging vector pCMV∆R8.2 and

miRNA encoding vector pGIPZ in a ratio of 1:2:3 and lead to the secretion of lentiviruses coding for the respective

miRNA or non silencing control. The virus containing supernatant of HEK293T cells was subsequently used to

infect the DLBCL cell line U2932 R1. Positive clones were selected by puromycin and GFP expression.
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2.10.8. Flow cytometry

FACS (fluorescence activated cell sorting) analysis was performed with the BD FACS Calibur

and FACS Aria III flow cytometer and the BD FACS DIVA software. To analyze the cells, 1 x

106 cells were harvested, washed once with PBS and resuspended in 500 μL PBS. Cells were

either stained with antibody according to the manufacturer’s instructions or directly supple-

mented with propidiumiodide in an end concentration of 0.004 mg/mL before measurement.

Cells were gated to living PI negative population. For AnnexinV/7AAD staining, cells were not

gated.

2.11. Protein biochemistry

2.11.1. Whole cell lysates and cell fractionation

Whole cell lysates

Cells were harvested by centrifugation at 178 x g for 5 min at 4°C, washed once with PBS

and centrifuged for 4 min at 300 x g at 4°C. For whole cell lysates, cell pellets of 1 x 106 to

2 x 106cells were resuspended in 50 μL RIPA lysis buffer (supplemented with Protease and

Phosphatase Inhibitor) respectively and incubated on ice for 25 min. Subsequently, residual

cell debris was lost by centrifuging cell suspensions at 20,000 x g for 15 min at 4°C. Super-

natants were transferred to new reaction tubes and total protein amount was measured using

Bradford Assay.

Cell fractionation

Cell fractionation has been performed as described by (Schreiber et al., 1989). In short, cell

pellets of 5 x 106 cells were resuspended in 400 μl Nuclear Extract Buffer A and incubated

on ice for 13 min. Afterwards 25 μL 10 % NP-40 solution was added to each tube, mixed

thoroughly for 5 seconds and immediately centrifuged at 15.800 x g for 5 min at 4°C. The

supernatant containing the cytosolic fraction was transferred to a new tube. The pellets were

resuspended in 50 μl Nuclear Extract Buffer B and shaken thoroughly for 1-4 h at 4°C. After

centrifugation at 15.800 x g for 5 min at 4°C the supernatant, containing the nuclear fraction,

was transferred to a new tube and protein amount of both fractions was measured using Brad-

ford assay.
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2.11.2. Determination of protein concentration by Bradford assay

Determination of protein concentration was carried out by photometrical analysis using a mod-

ified Bradford assay (Bradford, 1976). A BSA standard curve was prepared and protein sam-

ples were diluted 1:200. 100 μL of Bradford solution was added to 50 μL diluted samples

and BSA standards and incubated for 10 min at RT. Measurement was performed at 620 nm

with Thermo Multiscan Ex Platereader. Protein concentration was calculated, adjusted with

RIPA to 1 μg/μL and boiled for 5 min at 95°C in 6x Laemmli Buffer. Samples were stored at

-20°C.

2.11.3. SDS PAGE and Western Blotting

SDS PAGE

Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) was used for sep-

aration of proteins according to molecular weight (Laemmli, 1970). Modified buffers listed in

table 2.3 were used to prepare a gel composed of a 5% stacking and a 10-15% separation gel.

15 -25 μg total protein per sample was loaded onto the gel and electrophoresis was performed

in 1x Running buffer at constant 15 mA per gel for the stacking gel and 30 mA per gel for the

separation gel.

Western blotting and immunodetection

Separated proteins were transferred from SDS gel onto a hydrophobic PVDF membrane using

wet tank sandwich method (Renart et al., 1979; Towbin et al., 1979). The membrane was

activated for 30 sec in 100% MeOH, rehydrated in H2O for 2 min and equilibrated in transfer

buffer prior to use. Membrane and gel were stacked between filter papers into a wet tank

chamber filled with ice cold transfer buffer. Protein transfer was performed at 4°C and 100V for

1 h. Effective transfer of proteins was visualized by ponceau S staining and unspecific binding

sites were blocked using 5% BSA-TBS-T for 1 h at RT. After blocking, antibody solutions listed

in table 2.8 were added over night at 4°C. Next day, blots were washed four times 5 min with 1x

TBS-T. The secondary HRP coupled antibody against the species of origin of the first antibody

was added in a dilution of 1:10,000 in 5%BSA-TBS-T for 1 h at RT. Themembrane was washed

four times for 5 min with TBS-T, before detection of bound antibody using Western lightning

Plus ECL Solution and Western Lightning Image Reader. For reblotting, the membrane was

stripped of bound antibody for 20 min with 1x ReBlot mild buffer, blocked in 5% BSA-TBS-T for

60 min at RT and another primary antibody was added over night as described before.
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2.11.4. Ago2-RNA immunoprecipitation

The protocol for Ago2-RNA Immunoprecipitation (Ago2-RIP) used in this thesis was based

on the paper “Systematic Analysis of Viral and Cellular MicroRNA Targets in Cells Latently In-

fected with Human γ-Herpesvirus by RISC Immunoprecipitation Assay” (Dölken et al., 2010).

1.5 x 108 cells per replicate were harvested and washed twice in cold PBS before lysis in 4.2

mL Ago2-RIP lysis buffer in DNAlo bind reaction tubes. DTT, protease inhibitors and RNase-

Out were prepared freshly and added immediately before use. Lysates were incubated for

20 min on ice, frozen at -80°C for 10 min and thawed for 8 min at 30°C and 300 rpm. Cell

lysates were cleared by centrifugation at 15,000 x g for 30 min at 4°C. An aliquot was taken

as input control for Western blotting. Supernatants were supplemented with 4.5 mg mag-

netic beads that were coupled to 3.6 μg rat anti human Ago2 antibody or isotype control over

night at 4°C and washed once with Ago2-RIP wash buffer supplemented with protease and

RNase inhibitors. After incubation for 2.5 h rotating at 4°C, an aliquot from the supernatant

was taken as depletion control for Western blotting and the beads were washed 5 times with

ice cold Ago2-RIP wash buffer supplemented with protease and RNase inhibitors followed by

two wash steps with ice cold PBS supplemented with RNase inhibitor. An aliquot of beads was

taken for Western blotting output control. RNA was recovered from the remaining beads by

adding 1 mL Qiazol. Total RNA was prepared using the miRNeasy kit (QIAGEN) following the

manufacturer’s instructions including DNase digestion.

CDNA library preparation and Next Generation Sequencing were performed at the GMAK, HZI

Brunswick using Illumina kits and technology. For mRNA sequencing, poly A enrichment was

applied (ScriptSeq™v2RNA-Seq Library Preparation kit, Illumina). For small RNA sequencing

no enrichment was performed (TruSeq Small RNA Library Preparation kit). For sequencing

library pool of 12 pM was multiplexed on a single lane. Cluster generation was performed with

cBot (Illumina) using TruSeq SR Cluster Kit v3–cBot-HS (Illumina). Samples were sequenced

(50 bp single-end) on the Illumina High Seq 2500 using TruSeq SBS Kit v3 - HS (Illumina) for

50 cycles.

RNA sequencing reads were pre-processed including trimming of reads (fastq-mcf, ea-utils)

and quality control (FastQC) ensuring high quality reads and removal of adapter sequences.

Trimmed reads were mapped to the human genome (hg38) by STAR (Dobin et al., 2013) and

counted by HTseq (Anders et al., 2015). Further analysis was performed using the software

environment R/Bioconductor and the respective software packages. Normalization was per-

formed according to total number of reads within a sample and between samples (Anders et al.,

2010). Thresholds for differentially expressed genes were set to at least 2-fold enrichment and

a Benjamini-Hochberg adjusted p-value lower than 0.05.
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For gene ontology analyses of differentially expressed genes sets, the R-packages goseq and

Go.db were used (Young et al., 2010).

2.12. Molecular Biology

2.12.1. Total RNA isolation

Total RNA of cell pellets (1-5 x 106 cells, beads from Ago2-RIP assay) was isolated using the

miRNeasy kit (QIAGEN) t according to the manufacturer’s instructions. Total RNA was eluted

in 40 μl RNAse free water and the corresponding concentration has been determined using

the NanoDrop2000.

2.12.2. Reverse transcription

The Superscript II first-strand synthesis kit (Invitrogen) and random hexamer primers have

been used for the reverse transcription of mRNA to cDNA. For the cDNA synthesis 1 - 2 μg

total RNA were mixed with RNAse free water to a final volume of 10 μL. 2 μL random hexamer

primers (100 μM) were added, mixed and incubated at 70°C for 10 min in a thermocycler.

Subsequently, the tubes were cooled on ice before adding 8 μL master mix. The mixture was

incubated for 10 min at RT, before incubation in a thermocycler with the program shown in

table 2.12.

Master mix Thermocycler program

4 μL 5x First Strand Buffer 60 min 42°C

2 μL 0.1 M DTT 10 min 65°C

1 μL dNTPs (10 mM each ) constant 4°C

1 μL SuperScript RT II

Table 2.12.: Master mix and thermocycler program for reverse transcription of mRNAs

For miRNA detection, the miScript cDNA kit (Qiagen) was used. 1 μg total RNA (isolated with

the miRNeasy kit, Qiagen) was adjusted to a volume of 10 μL with RNase free water. 10

μL RT-Mastermix (see table 2.13) was added. High Flex buffer was used for parallel reverse

transcription of miRNA, mRNA and pre-miRNA. For reverse transcription of mature miRNAs

only, the High Spec buffer was used. The RNA-Mastermix solution was incubated for 1-2 min

at ice before starting the reverse transcription using the following protocol:
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Master mix Thermocycler program

4 μL 5x miScript Buffer 60 min 37°C

2 μL miScript Nucleics Mix 5 min 95°C

1 μL miScript II RT Mix constant 4°C

Table 2.13.: Master mix and thermocycler program for reverse transcription of mRNAs, pre-

miRNAs and miRNAs

2.12.3. Quantitative real-time polymerase chain reaction (qRT-PCR)

For relative transcript quantification, the fluorescent DNA binding dye SYBR Green was used.

If SYBR Green binds double-stranded DNA, this complex of DNA and the SYBR Green dye

will absorb blue light (λmax = 488 nm) and emit green light (λmax = 522 nm). Therefore, the

increasing fluorescence is used to quantify the amount of transcripts, which corresponds to

the number of PCR cycles with an exponential increase of fluorescence (cycle threshold =

CT -value). For the PCR reaction and the simultaneous fluorescence detection, the Applied

Biosytems 7500 Fast Real-Time PCR System was used.

For detection of mRNAs each reaction contained 10 μL SsoFast™ EvaGreen® Supermix (Bio-

rad), 10 pmol of each primer and 2-25 ng cDNA mRNA and had a final volume of 20 μl. For

detection of miRNAs or pre-miRNAs each reaction contained 10 μL 2 x QuantiTect SYBR Mix,

2 μL 10 x Universal Primer and 2 μL 10 xmiScript Primer (for pre miRNA detection no Universal

primer was added) and 2 -10 ng miScript cDNA in an final volume of 20 μL.

Each analysis has been performed in technical triplicates. The corresponding qRT-PCR pro-

grams are shown in table 2.14. A melt curve was performed after each PCR run to identify

unspecific PCR products.

Gene expression was evaluated relative to a house keeper using the SDS 2.4 and RQManager

1.2.1 (Applied Biosystems). Target gene transcript abundance was calculated using theΔΔCT

method. Therefore, the actual CT -values of genes of interest have been normalized to the CT -

values of the house keeper:

ΔCT = CT geneofinterest - CT housekeeper

The changes between a treated sample and untreated controls is formed as follows:

ΔΔCT = ΔCT treatment - ΔCT control

The number of cycles exponentially correlates with the amount of detected DNA in the sample,

thus relative n-fold changes can be calculated as:

RQ = 2−∆∆CT
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For mRNA detection CT values in this study were normalized to GAPDH. For miRNA or pre-

miRNA detection CT values were normalized to SNORD48.

miScript PCR SSoFast mix PCR

95°C 15 min 95°C 2 min

94°C 15 s 95°C 3 s

55°C 30 s 40x 40x

70°C 34 s 60°C 25 s

Table 2.14.: qRT-PCR programs

2.12.4. Conventional PCR

Polymerase chain reaction (PCR; (Mullis et al., 1986)) was used for amplification of DNA-

fragments and addition of restriction sites for cloning purposes. A typical PCR reaction, was

performed according to following protocol:

component amount thermocycling conditions:

template 1 colony/100 ng DNA

reaction buffer 1x initial denaturation 5 min 95°C

primer fw 20 pmol denaturation 30 s 95°C

primer rev 20 pmol annealing 30 s Tmelting 25x

dNTP mix 4 mmol elongation 1 min/kb 72°C

polymerase 1 U final elongation 5 min 72°C

total volume 15 μL

Table 2.15.: conventional PCR

2.12.5. DNA restriction digestion

For sequence specific hydrolysis of plasmid DNA, restriction endonucleases and the corre-

sponding buffers from Thermo Scientific were used. For hydrolysis of plasmid DNA with two

different restriction endonucleases the following protocol was used:

analytical preparative

1 μg plasmid DNA 3 μg plasmid DNA

3 U restriction endonuclease 1 10 U restriction endonuclease 1

3 U restriction endonuclease 2 10 U restriction endonuclease 2

2 μL 10 x reaction buffer 5 μL 10 x reaction buffer

x dd H2O x dd H2O

20 μL final volume 50 μL final volume

Table 2.16.: DNA restriction digestion



48 2 | Materials and Methods

Analytical samples were incubated for 1 h and preparative samples over night at 37°C. Tem-

peratures and buffers were chosen according to the manufacturer’s instructions.

2.12.6. Agarose gel electrophoresis

The negative charged DNA fragments can be separated according to their molecular weight

within an electrical field. Therefore, the DNA was mixed with 6 x loading dye (50% (v/v) glyc-

erol, 0.21% (w/v) bromphenole blue, 0.1% (w/v) xylene blue, 0.2 M EDTA pH 8.0 ) and loaded

onto a TAE-agarose gel (1-2 % (w/v) agarose in TAE buffer containing 0.5 μg/mL EtBr). The

percentage depended on the expected fragment size. Horizontal agarose gel electrophoresis

was performed for 30-60 min at 100-120 V in TAE buffer (40 mM Tris-HCL, pH 7.5, 1 mM Na2-

EDTA, pH 8.0, 0.2% (v/v) CH3COOH). Due to the intercalation of EtBr into double stranded

DNA, the DNA fragments could be visualized by exposure to UV-light.

2.12.7. DNA fragment extraction

DNA fragments were extracted from the agarose gel using QIAquick gel extraction kit (Qiagen,

Hilden, Germany) according to the manufacturer’s instructions.

2.12.8. Determination of DNA and RNA concentration

DNA and RNA concentration was photometrically determined using NanoDrop2000 (Thermo

Scientific, St.Leon-Rot, Germany). DNA was measured at 360 nm and 280 nm. The ratio of

extinction at 260 nm to 280 nm should be ~1.8 for high quality DNA. RNA was measured at

260 nm and 230 nm. The ratio of extinction at 260 nm to 230 nm should be ~2.0 for high

quality RNA.

Before RNA sequencing, the RNA concentration and quality was assessed using Agilent RNA

6000 Pico Kit and Agilent Small RNA kit according to themanufacturer’s instructions. RNAwas

measured at Bioanalyzer2100 and quantified using Agilent Bioanalyzer expert B.02.08.SI648

software. High quality RNA has a RIN value of 8-10.

2.12.9. Ligation of DNA fragments

To mediate covalent linking of DNA fragments, 50 ng of dephosphorylated vector was mixed

with the insert in a molecular ratio of 5:1 (sticky end ligation) and incubated with T4DNA ligase
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(Thermo Scientific, St.Leon-Rot, Germany) over night at 16°C. Following standard protocol

was used:

amount component

50 ng linearized vector

x ng insert

2 Weiss U T4DNA ligase

1 μL 10 x T4DNA ligase buffer

x dd H2O

10 μL final volume

Table 2.17.: Ligation of DNA fragments

5 μL of the ligation mix was used for transformation into E.coli DH5 α.

2.12.10. Transformation

Transformation of E.coli DH5 α was performed by heat shock procedure: an aliquot with 50 μL

of chemical competent bacteria were thawed for several minutes on ice before gently mixing

with low amounts of plasmid DNA or 1-5 μL of ligation mix. After an incubation of 30 min on ice,

heat shock was performed for 90 s at 42°C. The cells were cooled down on ice immediately

and afterwards incubated with 200 μL LB-medium for 45 min at 37°C under constant shaking.

Finally, the cells were plated onto LB-Agar plates or pipetted into 200 mL fluid LB-medium

containing appropriate antibiotics for selection. Flasks or plates were incubated for 16 h at

37°C.

2.12.11. Cultivation of Bacteria

Escherichia coli (E.coli) bacteria were cultured in Luria-Bertani medium (LB medium) at 37°C.

For selection of transformed bacteria, media were supplemented with the corresponding an-

tibiotics (final concentration of ampicillin 100 μg/mL).

2.12.12. Plasmid Isolation

Plasmid DNA was isolated using innuPREP Plasmid Mini Kit (Analytic Jena) for cloning ap-

proaches or NucleoBond® Xtra Midi Plus EF kit (Machery-Nagel) for transfections in cell

lines. Plasmid DNA was dissolved in water and concentration was determined using Nan-

oDrop2000.





3. Results

3.1. Identification of signaling pathways regulating the MIR23A cluster

One aim of this thesis was to identify the signaling pathways responsible for MIR23A regulation

in DLBCL. Since the MIR23A cluster expression is induced during normal GC reaction, factors

present in the microenvironment of the GC were used to stimulate the cells and tested whether

MIR23A cluster expression can be induced.

3.1.1. CD40L signaling does not change MIR23A cluster expression in B-NHL

Signaling via the CD40 receptor plays an important role during B cell maturation (see section

1.2.2). The CD40 receptor activates a cascade of signaling molecules including PI3K and

MAPK signaling (JNK, p38 and ERK), resulting in the activation of many transcription factors

(Basso et al., 2004). Many described CD40 effects are NFκB dependent, hence it can be

considered asmain downstream effector (Berberich et al., 1994). Previous data from our group

already confirmed for BL that CD40L stimulation changes global gene expression (Dissertation

Alexandra Schrader 2011, published in (Schrader et al., 2012)).

To test whether CD40 signaling regulates the MIR23A cluster in GC derived lymphoma, a BL

and a DLBCL cell line were treated with sCD40L and analyzed for MIR23A expression by

qRT-PCR.

In order to detect only miR-24 levels that originate from MIR23A cluster and not from MIR23B

cluster, the pre-miR-24-2 levels were detected, because the mature miR-24 sequences are

identical and cannot be distinguished from each other.

The relative expression levels of mature miR-23a, miR-27a and pre-miR-24-2 do not change

upon stimulation with sCD40L, neither in BL-2 nor in U2932 R1 within the tested time period

(fig. 3.1). Only in U2932 R1, the pre-miR-23a and pre-miR-27a levels slightly increase after

4 hours of treatment. But this does not affect mature miR-23a and miR-27a levels. Both cell

lines respond on CD40L treatment with an increase in ICAM1 expression levels (Schrader

et al., 2012), indicating, that the stimulation was successful.

Lymphoma cells are transformed cells with altered signaling characteristics. Therefore, CD77

germinal center B-cells, which represent the precursor cells of GC derived B cell lymphoma

(centroblasts) (Pascual et al., 1994; Klein et al., 2003), were isolated from human pediatric

tonsils by MACs technology and treated for 10 h with 200 ng/mL sCD40L. In contrast to the

BL and DLBCL cell lines, primary CD77 GCBs respond to sCD40L treatment with a 2-fold

51
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induction of miR-23a and a slight induction of miR-27a (fig. 3.2). Successful CD40L stimulation

was verified by the induction of ICAM1.

These data indicate that CD40 signaling is not responsible for regulation of the MIR23A in BL

and DLBCL.

Figure 3.1.: CD40L does not change MIR23A cluster expression in B-NHL cell lines
(a) BL cell line BL-2 and (b) DLBCL cell line U2932 R1 were treated for the indicated time points with 200 ng/μL

sCD40L. RelativeMIR23A and ICAM1 levels were detected by qRT-PCRanalyses. Meanwith 95%CI, endogenous

control: SNORD48 for miRNA, GAPDH for mRNA.
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Figure 3.2.: CD40L induces MIR23A cluster expression in primary CD77 GCBs
Primary CD77 positive germinal center B-cells were isolated by MACS technology from human pediatric tonsils

and treated for 10h with 200 ng/μL sCD40L. Relative MIR23A levels were detected by qRT-PCR analyses. ICAM1

served as control for successful CD40L stimulation. One of two experiments is shown. Mean with 95% CI, en-

dogenous control: SNORD48 for miRNAs, GAPDH for ICAM1.

3.1.2. LPS does not change MIR23A cluster expression

Bacterial lipopolysaccharide (LPS) is a component of the cell wall of gram negative bacteria.

As an T cell independent antigen LPS activates Toll-like receptor 4 (TLR4). TLR4 signaling

was shown to activate GC response, resulting in the production of high affinity class switched

antibodies of plasma cells (reviewed in (Defranco et al., 2012)).

Activation of TLR4 recruits MyD88 and activates via TRAF6 and TAK1 the MAPK (JNK and

p38) and NFκB signaling (reviewed in (Doyle and O’Neill, 2006)). One LPS responsive target

gene isCD58, which served in this experiment as a control for successful stimulation (Schrader

et al., 2012).
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Figure 3.3.: LPS does not change MIR23A expression in DLBCL cell lines U2932 R1 and R2
U2932 R1 (a and b) and U2932 R2 (c and d) were stimulated for 16h with 1 μg/mL LPS. (a and c) relative pre-miR-

23a, miR-23a and miR-27a expression levels measured by qRT-PCR. (b) and (d) relative CD58 levels measured

by qRT-PCR. This experiment was performed once. Mean with 95% CI, house keeper: GAPDH for CD58 and

SNORD48 for pre-miR23a and miR-23a/27a.

The U2932 R2 clone responds to LPS stimulation with an increase of 50% ofCD58 expression,

but the MIR23A levels are not affected (fig. 3.3 c and d). Although, the U2932 R1 clone

responds stronger to LPS treatment with an upregulation of nearly 2.5-fold ofCD58 expression,

LPS treatment does not change pre-miR-23a, miR-23a or miR-27a levels.

In summary, together with the previous experiments (section 3.1.1) these data indicate, that

downstream NFκB signaling is not central for the regulation of the MIR23A cluster in BL and

DLBCL cell lines.



3.1. IDENTIFICATION OF SIGNALING PATHWAYS REGULATING THE MIR23A CLUSTER 55

3.1.3. BCR signaling activates the MIR23A cluster in BL and DLBCL

3.1.3.1. BCR signaling activates the MIR23A cluster in BL cell line BL-2

Previous data from our group revealed a large set of transcripts that is altered upon stimulation

of the B-cell receptor in the human BL cell line BL-2 (Schrader et al., 2012; Pirkl et al., 2015).

The gene expression micro array used in the latter publication to detect transcript expression in

this cell line covers the whole human transcriptome including non-coding RNAs and is therefore

able to detect precursor transcripts of miRNAs (dissertation Elisabeth Hand 2013, published

in (Pirkl et al., 2015)). Hence, this micro array data set was used in this study to analyze

MIR23A and paralogous MIR23B cluster expression patterns upon BCR stimulation during a

time course in BL-2 (fig. 3.4). An increase of pre-miR-24-2 transcript 60 min upon anti-IgM

F(ab)2-fragment stimulation, followed by pre-miR-23a after 210 min, but no induction of pre-

miR-27a in the examined time span of stimulation was observed (fig. 3.4 a). Since all pre-miRs

of the MIR23A cluster are processed from a single polycistronic transcript one would expect,

that all pre-miRs are induced. Moreover, one could speculate that the time order in which the

pre-miRs are induced may correlate with the position at which they are encoded on the primary

transcript.

The paralogous MIR23B cluster is also induced upon anti-IgM F(ab)2-fragment stimulation as

pre-miR-27b expression increases 180 min after stimulation (fig. 3.4 b). Instead, pre-miR-23b

and pre-miR-24-1 levels are not affected. These observations raise the question, whether the

DNA probes of the micro array correctly detect the small precursor transcripts.
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Figure 3.4.: Induction of MIR23A cluster in BL cell line BL-2 upon BCR stimulation
(a) and (b) Micro array gene expression analyses of MIR23A cluster (a) and MIR23B cluster (b) in BL cell line

BL-2 upon stimulation with 13 μg/mL anti-IgM F(ab)2-fragment for a 480 min time course. The mean of three

experiments is shown. Microarray gene expression dataset taken from the dissertation of Elisabeth Hand in 2013,

published in (Pirkl et al., 2015). (c) and (d) qRT-PCR gene expression analyses of relative (c) pri-miR-23a/b and

(d) miR-23a, miR-27a and pre-miR-24-2 expression in BL-2 upon 13 μg/mL anti-IgM F(ab)2-fragment stimulation

in a time course experiment. Mean with 95% CI, endogenous controls: c) GAPDH d) SNORD48. One out of two

representative experiments is shown.

Therefore, the micro array data were validated by quantitative real time PCR analyses (see fig.

3.4 c an d). According to the micro array data both MIR23 clusters are activated upon BCR

stimulation. Interestingly, the qRT-PCR data show, that the primary transcript of the MIR23A

cluster is clearly induced, while the primary transcript of the MIR23B cluster shows only minor

expression changes (fig. 3.4 c). Next the expression of the mature miRNAs was analyzed

by qRT-PCR (fig. 3.4 d). Because the mature miR-24 sequence is identical disregarding from

which locus it is transcribed, the precursor transcript pre-miR-24-2, which can be clearly distin-

guished from the pre-miR-24-1 transcript, was analyzed. As expected the pre-miR24-2 tran-

script is induced first followed by an induction of mature miR-23a and miR-27a after 120 min.

While the expression of the mature miRNAs constantly increases, the pre-miR-24-2 transcript

reaches its maximum of 2-fold induction after two hours followed by a decrease.

In summary, these data show for the first time that BCR signaling is responsible for the activa-

tion of the MIR23A cluster in BL.
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3.1.3.2. BCR signaling activates the MIR23A cluster in DLBCL cell line U2932 R1

Since BCR signaling was demonstrated to activate the MIR23A cluster in BL-2 cell line (see

section 3.1.3.1), it was questioned whether a DLBCL cell line, which develops from later stages

in GC reaction can also activate the MIR23A cluster expression in response to BCR signaling.

Therefore, the DLBCL cell line U2932 R1 was chosen as a model cell line (Quentmeier et al.,

2013). This cell line is on the one hand well characterized and shows on the other hand

relatively low levels of MIR23A cluster, making it favorable for induction and overexpression

experiments. Indeed, the MIR23A levels are induced upon BCR cross-link in DLBCL cell line

U2932 R1 (fig. 3.5 a).

Figure 3.5.: Induction of the MIR23A cluster in DLBCL cell line U2932 R1 upon BCR stimulation
The DLBCL cell line U2932 R1 was treated with 13 μg/mL anti-IgM F(ab)2-fragment . Relative MIR23A expression

was measured after 1, 2, 4, 8, 16 and 24 hours of stimulation by qRT-PCR. (a) primary transcript expression of

MIR23A and paralogous MIR23B cluster. (b) pri-/pre- and mature miR-23a expression. (c) pri-miR-23a, pre-miR-

27a and mature miR-27a expression. (d) pri-miR-23a, pre-miR-24-2 and mature miR-24 expression. Mean with

95% CI, endogenous control: GAPDH for pri-miRs and SNORD48 for mature and pre-miRs, one representative

experiment out of two is shown.

The primary miR-23a transcript is induced already after 60 min of BCR stimulation reaching its

maximum of 4.5-fold induction after 2 hours followed by a slow decrease. Instead, the primary

transcript of the paralogous cluster (pri-miR-23b) is only induced 1.5-fold after 60 min, stays

constant before it starts to decrease after 8 hours (fig. 3.5 a). Because the induction of the

paralogous cluster is weak compared to the MIR23A cluster all following analyses focus on

the MIR23A cluster.
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Interestingly, the kinetics of miRNA processing are fast, since the precursor transcripts of all

three miRNAs (blue lines in fig. 3.5 b, c and d) are induced already within 60 min, at the same

time as the primary transcript does. All precursor transcripts reach their maximum between

8 and 16 hours and decrease afterwards very slowly. With a short time delay after precursor

induction the mature miRNAs (green lines fig. 3.5 b, c and d) levels increase. The miR-23a

expression is induced after 5-8 hours followed by a slight induction of miR-27a after 8 hours

of stimulation, while miR-24 is not induced.

These data together with data from section 3.1.3.1 demonstrate that BCR signaling is respon-

sible for the MIR23A cluster activation in BL and in DLBCL cell lines.

3.1.3.3. BCR dependent MIR23A activation is a general mechanism in DLBCL, but not
in healthy germinal center B cells

BCR signaling induced the MIR23A cluster expression in a BL and a DLBCL cell line (section

3.1.3.1 and 3.1.3.2). The focus of this study was to elucidate the regulation of MIR23A cluster

in DLBCL. To analyze whether the activation of the MIR23A cluster is a general mechanism

in DLBCL, the DLBCL cell lines U2932 R2 (sister clone of U2932 R1, “ABC-like” DLBCL),

OCI-LY3 (ABC-DLBCL) and OCI-LY7 (GCB-DLBCL) were stimulated with anti-IgM F(ab)2-

fragment or anti-IgG F(ab)2-fragment, respectively. Furthermore, primary non transformed

CD77 positive germinal center B cells (CD77 GCBs) (Pascual et al., 1994; Klein et al., 2003)

were isolated from human pediatric tonsils and treated in the same manner as the DLBCL

cell lines in order to analyze whether the induction of MIR23A cluster by BCR signaling is a

physiological or an aberrant process.

All tested DLBCL cell lines respond with an induction of MIR23A cluster expression upon BCR

stimulation. In general, the miR-23a induction is stronger than the miR-27a induction, except

for OCI-LY3, where both were induced 2-fold. In contrast, primary non-transformed CD77

GCBs do not respond with an increase of miR-23a or miR-27a upon BCR cross-link, although

the BCR signaling is clearly activated since one BCR target gene SLAMF7 (Schrader et al.,

2012) is induced (fig. 3.6 b).

These data strongly indicate that BCR mediated MIR23A cluster activation is a general mech-

anism in BL and DLBCL. Although GCBs show active BCR signaling upon stimulation, they

do not upregulate the MIR23A cluster upon activation. This indicates that BCR signaling is

aberrantly modified in BL and DLBCL.
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Figure 3.6.: BCR signaling activates MIR23A cluster in different DLBCL cell lines, but not in

healthy control cells
The BCR was cross linked in different DLBCL cell lines for 16 hours with 13 μg/mL anti-IgM F(ab)2- or anti-IgG

F(ab)2-fragment and in primary CD77 germinal center cells for 10 hours with 13 μg/mL anti-IgM F(ab)2-fragment.

(a) miR-23a, miR-27a and (b) SLAMF7 expression were detected by qRT-PCR. Mean with 95% CI, endogenous

control: GAPDH for SLAMF7 and SNORD48 for miRNAs. One representative experiment of three for the cell lines

and two for GCBs is shown.

3.1.3.4. Inhibition of protein de-novo synthesis does not affect the MIR23A activation
upon BCR stimulation

To test whether the MIR23A cluster is induced by direct downstream signaling, the U2932

R1 cells were treated with cyclohexamide (CHX) simultaneously to BCR stimulation. CHX

inhibits protein de-novo synthesis by blocking translation elongation of the ribosome. Under

this conditions only transcription factors, that were activated by direct upstream signaling, but

not by secondary effects, are translocated into the nucleus and can induce MIR23A cluster

expression. In order to control effective CHX treatment, the c-MYC protein levels were an-

alyzed. C-MYC has a high protein turnover rate, being rapidly degraded by the proteasome

(Gregory and Hann, 2000). Thus, it functions perfectly as an indicator for effective ribosomal

inhibition.

As depicted in fig. 3.7 a) the MIR23A levels (pri-miR-23a, pre-miR-23a and pre-miR-27a) can

still be activated upon BCR stimulation with anti-IgM F(ab)2-fragment, when protein de-novo

synthesis is effectively blocked by CHX treatment. Notably, c-MYC accumulates upon BCR

stimulation in U2932 R1 fig. 3.7 b), hence it was further analyzed as a potential transcription

factor responsible for MIR23A regulation in section 3.1.3.6.

In summary, no protein de-novo synthesis is required for BCR dependent activation of the

MIR23A cluster, indicating a direct activation of MIR23A promoter.
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Figure 3.7.: Inhibition of protein de-novo synthesis does not interfere with MIR23A activation

upon BCR cross-link
U2932 R1 was pre-treated for 1 h with 100 μg/mL cyclohexamide (CHX) before stimulation with 13 μg/mL anti-IgM

F(ab)2-fragment for 2 h. (a) qRT-PCR analyses of pri-miR-23a, pre-miR-23a and pre-miR-27a (b) Western blot

analyses of c-MYC. GAPDH served as loading control. Mean with 95% CI, endogenous control: SNORD48 for

pre-miRNAs and GAPDH for pri-miR, one representative experiment of three is shown.
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3.1.3.5. BTK/MEK/ERK signaling activates the MIR23A cluster

In order to narrow down which signaling cascade downstream of the BCR is responsible for

activation of the MIR23A cluster in U2932 R1, the key enzymes BTK, MEK, PI3K and AKT,

which mediate the downstream effects of BCR (section 1.2.1), were systematically inhibited

by treatment with chemical inhibitors. These pre-treated cells were then stimulated with anti-

IgM F(ab)2-fragment followed by MIR23A cluster expression analyses. NFκB signaling was

excluded, because previous experiments showed no effect on MIR23A cluster expression

when stimulating this pathway in BL (BL-2) or DLBCL (U2932 R1) cell lines (fig. 3.1.1 and

3.1.2).

Ibrutinib irreversibly inhibits the Burton tyrosine kinase (BTK) by covalent binding to Cys-481 in

the ATP binding domain (Davids and Brown, 2014). BTK is one of the first proteins that is phos-

phorylated upon antigen binding. Importantly, BTK plays a key role in BCR signaling, because

it spreads the message by phosphorylation of PLCγ2 onto different downstream cascades: the

ERK, NFκB and PI3/AKT signaling. As a consequence, BTK inhibition should impair all sig-

naling cascades downstream of the B cell receptor. As a proof of principle it should no longer

be possible to activate the MIR23A cluster, when treating the cells with Ibrutinib and anti-IgM

F(ab)2-fragment simultaneously. This is exactly what could be observed when performing this

experiment with U2932 R1 (fig. 3.8 a): The pre-miR-23a and pre-miR-27a levels are acti-

vated upon anti-IgM F(ab)2-fragment stimulation as already previously observed. Treatment

with Ibrutinib alone does not alter pre-miR-23a and pre-miR-27a expression levels. Further-

more, the used ibrutinib concentration was not toxic to the cells, as shown in MTT assays (fig.

A.3). As expected, the MIR23A cluster is not activated upon double treatment with Ibrutinib

and anti-IgM F(ab)2-fragment. As shown in fig. 3.8 b) and 3.9 b) Ibrutinib effectively inhibited

phosphorylation of BTK and further downstream of P-ERK.
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Figure 3.8.: MIR23A cluster expression upon inhibition of key enzymes of BCR signaling
U2932 R1 was pre-treated for 2 hours with the respective inhibitor (1 μM Ibrutinib, 200 nM BEZ235, 3 μM MK2206)

before simultaneous stimulation with 13 μg/mL anti-IgM F(ab)2-fragment for 2h. Relative expression levels of

(a) pre-miR-23a and pre-miR-27a were detected by qRT-PCR analyses. (Mean with 95% CI, endogenous control:

SNORD48) (b-c) Western blot analyses of BCR downstream kinases P-ERK/ERK and P-AKT/AKT. GAPDH served

as loading control. One representative experiments of three is shown.

BEZ235 is an ATP-competitive PI3-kinase (p110α/γ/δ/β) and mTOR (p70S6K) inhibitor. PI3K

phosphorylates PIP2 to make PIP3, which recruits PDK1 and AKT to the cell membrane, where

AKT is activated by phosphorylation of mTORC2 and PDK1. Treatment with BEZ235 inhibits

therefore effectively the PI3K/mTOR/AKT signaling (Barrett et al., 2012). Indeed, Western blot

analyses show effective inhibition of P-AKT in U2932 R1 (fig. 3.8 c). The pre-miR-23a and

pre-miR-27a levels are slightly increased upon treatment of U2932 R1 with BEZ235 alone, but

can not be further increased when treated together with anti-IgM F(ab)2-fragment (fig. 3.8 a).

However, the error bars are high, making interpretations difficult. In order to interpret these data
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correctly, in a next experiment the cells were treated with an additional inhibitor specific for AKT:

MK2206. MK2206 allosterically inhibits auto-phosphorylation of T308 and S473 of AKT1, 2 and

3. It thereby prevents the AKT-dependent phosphorylation of numerous downstream targets.

Indeed, the control Western blot shows an effective inhibition of AKT phosphorylation (fig. 3.8

c). In contrast to BEZ235, MK2206 itself does not increase the pre-miR-23a or pre-miR-27a

levels (fig. 3.8 a). However, double treatment with MK2206 and anti-IgM F(ab)2-fragment lead

to an activation of the MIR23A cluster. Therefore, AKT signaling is not responsible for MIR23A

cluster activation upon BCR stimulation in U2932 R1.

Next, the MAPK/ERK signaling was studied by inhibition of MEK1/2 with Trametinib in U2932

R1. Trametinib is a high specific inhibitor acting allosterically and reversible (Lugowska et al.,

2015). Non-toxic concentrations of trametinib were used for the following experiments (see

MTT assays fig. A.3) Interestingly, Trametinib alone slightly downregulated pri-miR-23a, pre-

miR-23a and pre-miR-27a levels (fig. 3.9 a). Furthermore, cells that were pre-treated with

Trametinib were not able to activate the MIR23A cluster when simultaneously stimulated with

anti-IgM F(ab)2-fragment. As a control, Western blot analyses (fig. 3.9 b) show that Trametinib

effectively inhibited downstream ERK phosphorylation.

These observations indicate that BTK/MEK/ERK signaling is the BCR downstream cascade

that is predominantly responsible for the MIR23A cluster activation in DLBCL model cell line

U2932 R1.



64 3 | Results

Figure 3.9.: Inhibition of BTK and MEK1/2 prevents MIR23A activation upon BCR stimulation in

U2932 R1
DLBCL cell line U2932 R1 was pretreated with Ibrutinib (1 μM) and Trametinib (125 nM) for 2 hours, before BCR

stimulation by 13 μg/mL anti-IgM F(ab)2-fragment. Protein samples were taken after 30 min and RNA samples

after 2 h of stimulation. (a) qRT-PCR analyses of pri-miR-23a, pre-miR-23a and pre-miR-27a expression upon

inhibitor/anti-IgM F(ab)2-fragment double treatment. (Mean with 95% CI, endogenous control: SNORD48 for miR-

NAs, GAPDH for pri-miR-23a) (b and c) Western blot analyses verifying effective inhibition of P-BTK by Ibrutinib

and P-ERK by Trametinib. GAPDH served as loading control. (Ibrutinib n=3, Trametinib n=2)

3.1.3.6. c-MYC as a potential activator of MIR23A cluster in DLBCL

The proto-oncogene c-MYC (MYC) plays an important role in early B-cell development where it

induces proliferation and contributes to lymphomagenesis (section 1.1). Previous experiments
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(fig. 3.7) indicated that MYC is activated upon BCR signaling in U2932 R1. Indeed, it was

already reported that MEK/ERK and PI3K signaling phosphorylate MYC, which leads to an

extended half life and accumulation of MYC protein (Sears et al., 2000), exactly as observed

for U2932 R1 (fig. 3.7).

Additionally, the sister clones of U2932 (subclones U2932 R1 and U2932 R2) differ in MYC

expression (Quentmeier et al., 2013). The subclone U2932 R1 expresses low MYC levels,

while the subclone U2932 R2 expresses high MYC levels (fig. 3.11). Interestingly, the MYC

low subclone U2932 R1 shows also low MIR23A levels, while the MYC high subclone U2932

R2 exhibits higher MIR23A levels. Furthermore, gene expression analyses showed that MYC

and pri-miR-23a are induced simultaneously upon BCR stimulation, indicating that MYC might

be a target gene of BCR signaling and might activate the MIR23A cluster in U2932 R1 (fig.

3.10). Moreover, previous studies showed that MYC can either activate (Li et al., 2013b) or

repress the MIR23A cluster (Gao et al., 2009), depending on the cellular context.

Figure 3.10.: c-MYC and pri-miR-23a are simultaneously induced upon BCR cross-link
Relative expression levels of pri-miR23a and c-MYC upon 13 μg/mL anti-IgM F(ab)2-fragment treatment in U2932

R1. Endogenous control: GAPDH, mean with 95% CI, one representative experiment of two is shown.
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Figure 3.11.: U2932 subclones R1 and R2 differ in c-MYC and MIR23A cluster expression
(a) qRT-PCR analysis of relative miR-23a/-27a, pre-miR-24-2 and c-MYC levels in U2932 subclones R1 and R2.

(Mean with 95% CI, endogenous control: SNORD48 or GAPDH) (b) Western blot analysis of MYC protein levels

in U2932 subclones R1 and R2. GAPDH served as loading control. One representative experiment out of three is

shown.

Taken together these positive correlations led to the hypothesis that MYC might be a good

candidate transcription factor for regulation of the MIR23A cluster. This hypothesis is further

supported by Gao and colleagues, who showed that c-MYC binds to the paralogous MIR23B

promoter by chromatin immunoprecipitation (ChIP) assay in P493-6 B cells (Gao et al., 2009).

Whether MYC can bind to the MIR23A promoter is not known. Controversial to the hypothesis

in this thesis, MYC inhibited miR-23a and the miR-23b levels in P493-6 B cells. The P493-6

cell line contains a tetracycline inducible c-MYC expression cassette (Tet-off system) by which

MYC levels can be regulated.
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Figure 3.12.: c-MYC inhibits MIR23A in P493-6
P493-6 cells were treated for the indicated time points with 1 ng/mL doxycycline to downregulate c-MYC protein

levels. a) qRT-PCR analysis of MIR23A cluster expression with and without doxycycline. (Mean with 95% CI,

endogenous control: SNORD48) b) control Western Blot showing efficient downregulation of c-MYC protein levels

upon doxycycline treatment. Dox = doxycycline. This experiment was performed once, samples were kindly

provided by Maren Schmidt.

To confirm the observations from Gao et al. 2009, the P493-6 cell line was treated for 4,

8, 12, and 24 hours with doxycycline to efficiently downregulate c-MYC levels (samples were

kindly provided by Maren Schmidt). These MYC low samples where then analyzed for MIR23A

cluster expression by qRT-PCR. Indeed, miR-23a is activated upon withdrawal of MYC (fig.

3.12), exactly as shown by Gao et al. in 2009. Additionally, the miR-27a and pre-miR-24-2

levels increase, indicating that the whole MIR23A cluster and not only miR-23a or miR-23b is

inhibited by MYC in P493-6.

However, the P493-6 is a model cell line for BL. In order to answer the question whether

MYC is the transcription factor, which activates the MIR23A cluster in DLBCL, classical ectopic

overexpression experiments were performed in U2932 R1. 24 hours after nucleofection of

the eukaryotic c-MYC expression vector, cells were analyzed for primary miR-23a transcript

expression via qRT-PCR. MYC overexpression was analyzed by Western blotting. Although,

MYC was strongly overexpressed (fig. 3.13 b), the relative expression levels of pri-miR-23a

were not altered.
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Figure 3.13.: Overexpression and knockdown of c-MYC do not alter pri-miR-23a levels in U2932

R1

5 μg plasmid per 5x10
6

cells was transfected by nucleofection in U2932 R1 (a and b). For MYC knock down

100 pmol siRNA per 5x10
6

cells was transfected (c and d). 24h after nucleofection pri-miR-23a expression levels

were detected by qRT-PCR (a and c). Mean with 95% CI, endogenous control: GAPDH. MYC protein levels were

detected by Western blotting (b and d). GAPDH served as loading control. One representative experiment of three

is shown.

The interpretation of ectopic overexpression experiments can be problematic in some cases,

because many proteins act in complexes. When their binding partners are not available in

excess, overexpression of the target protein might not exert any effect. Therefore, in a second

approach c-MYC was knocked down in the same cell line by a specific siRNA against c-MYC.

24h after nucleofection the pri-miR-23a levels and the MYC protein levels were analyzed (fig.

3.13 c and d). Although, the MYC protein levels were clearly reduced, the primary miR-23a

transcript levels were not significantly altered.
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This data are supported by another experiment, where MIR23A levels can be induced upon

BCR signaling although c-MYCprotein levels were abolished byCHX treatment (section 3.1.3.4,

fig. 3.7).

In conclusion, the hypothesis that c-MYC is responsible for activation of the MIR23A cluster in

response to BCR signaling, was refused for DLBCL cell line U2932 R1.

3.1.3.7. ELK1 as a potential activator of MIR23A in response to BCR

One transcription factor acting downstream of MEK/ERK signaling, is the E26-like kinase 1

(ELK1). ELK1 is a member of the ternary complex factor (TCF) subfamily of ETS-domain

transcription factors and is phosphorylated by ERK2 (MAPK1). Acunzo et al. showed by

chromatin immunoprecipitation, that ELK1 binds to the MIR23A promoter in lung cancer cells,

and that knockdown of ELK1 leads to a decrease in pri-miR-23a expression (Acunzo et al.,

2013). To check whether ELK1might be a potential candidate to activate the MIR23A cluster in

DLBCL, U2932 R1 cells were stimulated with anti-IgM F(ab)2-fragment and/or treated with the

MEK1/2 inhibitor Trametinib using non-toxic concentrations (see MTT assays fig. A.3).

Figure 3.14.: ELK1 phosphorylation is MEK1/2 dependent
Western blot analyses of nuclear extracts of DLBCL cell line U2932 R1 treated with 125 nM Trametinib and/or

13 μg/mL anti-IgM F(ab)2-fragment. PCNA serves as loading control. One of three independent experiments is

shown.

Western blot analyses of nuclear extracts show that P-ELK1 is induced within 15 min of BCR

stimulation (fig. 3.14). The P-ELK1 signal rapidly vanishes within one hour after stimulation.

In contrast, cells stimulated with anti-IgM F(ab)2-fragment and simultaneously treated with

Trametinib show no phosphorylation of ELK1. ELK1 protein levels are not affected by the

treatments. Consequently, ELK1 is activated by MEK/ERK pathway in U2932 R1. These

observation together with the Chip data from Acunzo et al. 2013 lead to the hypothesis that

ELK1 might be the MEK/ERK downstream transcription factor responsible for the activation of

the MIR23A cluster in response to B-cell receptor stimulation in U2932 R1.
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Figure 3.15.: Overexpression and knockdown of ELK1 does not alter pri-miR-23a levels

5 μg plasmid (pCMV or pCMV_ELK1) per 5x10
6

cells was transfected by nucleofection in U2932 R1 (a and b).

For ELK1 knock down 100 pmol siRNA (si ctrl or si ELK1) per 5x10
6

cells was transfected (c and d). 24h after

nucleofection pri-miR-23a expression levels were detected by qRT-PCR (a and c). Mean with 95% CI, endogenous

control: GAPDH. ELK1 protein levels were detected by Western blotting. GAPDH served as loading control (b and

d). One representative experiment of three is shown.

In order to test this hypothesis, ectopic overexpression experiments were performed in U2932

R1 cells. An eukaryotic expression plasmid coding for ELK1 was transfected by nucleofection

in U2932 R1. 24h after transfection, cells were harvested and analyzed for MIR23A expres-

sion by qRT-PCR and ELK1 protein overexpression by Western blotting. Although the ELK1

protein is markedly overexpressed, the pri-miR-23a levels are not affected (fig. 3.15 a and b).

Vice versa, knocking ELK1 down by siRNA has the same effect: the pri-miR-23a levels stay

constant while ELK1 is clearly down regulated (fig. 3.15 c and d).

These classical overexpression and knock down experiments are critical, because on the one

hand simple overexpression does not necessarily mean, that more ELK1 is phosphorylated.

Only the phosphorylated form acts as a transcription factor. On the other hand, it is very dif-

ficult to detect pri-miR-23a, because it is already very low expressed in U2932 R1. Knocking
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ELK1 down should lead to further decreased pri-miR-23a levels. Therefore, one additional ex-

periment was performed to prove that ELK1 does not activate the MIR23A cluster: ELK1 was

overexpressed in U2932 R1 and 24 h post transfection the overexpressing cells were stimu-

lated with anti-IgM F(ab)2-fragment. By this approach, the overexpressed ELK1 is activated by

phosphorylation and transported into the nucleus where it can bind to its target genes.

Figure 3.16.: Overexpression and activation of ELK1 in U2932 R1

5 μg plasmid (pCMV or pCMV_ELK1) per 5x10
6

cells was transfected by nucleofection in U2932 R1. 24 h post

transfection cells were stimulated with 13 μg/mL anti-IgM F(ab)2-fragment for 15 min. (a) ELK1 and P-ELK1 levels

were detected by Western blotting. GAPDH served as loading control. (b) Relative pre-miR-23a and pre-miR-27a

expression levels by qRT-PCR analyses. Endogenous control: SNORD48. One of two independent experiments

is shown.

Figure 3.16 a shows that cells transfected with ELK1 express enhanced ELK1 protein levels.

Additionally, BCR stimulation leads to an induction of P-ELK1 in the nuclear fractions. As

expected, cells that overexpress ELK1 and are subsequently stimulated with anti-IgM F(ab)2-

fragment (aIgM) show higher P-ELK levels as control transfected cells. However, higher nu-

clear P-ELK1 levels did not enhance the pri-miR-23a levels compared to cells that were trans-

fected with control vector and simultaneously stimulated with anti-IgM F(ab)2-fragment (fig.

3.16 a and b). Although high P-ELK1 levels are present in the nucleus, the induction of the

MIR23A cluster is not stronger than normal BCR stimulation.

Taken together, these knockdown and overexpression results show that, although MEK/ERK

signaling is active upon BCR stimulation leading to phosphorylation of ELK1, P-ELK1 is not

the downstream transcription factor responsible for induction of the MIR23A cluster.
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3.2. Identification of the MIR23A targetome

3.2.1. Experimental setup for MIR23A targetome identification

In order to analyze the biological function of the MIR23A cluster in DLBCL, the targetomes of

miR-23a and miR-27a were identified for the DLBCL model cell line U2932 R1. This approach

was achieved by an Ago2-RNA immunoprecipitation (Ago2-RIP), followed by high-throughput

RNA-Sequencing (fig. 3.17). Ago2 protein mediates the interaction of miRNA and mRNA

within the RISC. Hence, Ago2 immunoprecipitation captures miRNAs and RISC associated

mRNAs. These were compared between a miRNA overexpressing cell line to a non-silencing

control cell line. Under the assumption that the proportion of overexpressed miRNAs incorpo-

rated in the Ago2-RISC complex is enhanced, the comparison of RNA-sequencing data from

non silencing control cells (ns ctrl) to miR-23a or miR-27a overexpressing cells should provide

an enrichment of a) the miRNA of interest and b) a set of mRNA sequences that are bound to

and therefore targeted by the respective miRNA. In detail, mRNA sequencing was performed

for Ago2-RIP input and output samples (fig. 3.18). Additionally, small RNAs of the input sam-

ples were sequenced, to check whether the global miRNA expression is affected by lentiviral

miRNA overexpression. In total, three independent experiments were performed resulting in

triplicates for each cell line (U2932 R1 pGIPZ ns ctrl1, miR-23a1 and miR-27a1) and each

sample (Ago2-RIP input and output).

In order to identify the mRNAs that are targeted by the respective miRNA, first the enriched

transcripts of Ago2-RIP output vs. input were compared. This comparision identifies all tran-

scripts that are incorporated within the RISC complex and bound to Ago2. In a next step,

these Ago2-bound transcripts were compared between miRNA overexpressing cell line to ns

ctrl cell line. The differentially expressed mRNAs of this comparison are identified as targets

of the respective miRNA (enrichment higher than two-fold, p-value less than 0.05; see section

3.2.7).

This approach will give insight into the yet unknown DLBCL specific MIR23A targetome and

may predict in which cellular processes the MIR23A cluster is involved in DLBCL.
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Figure 3.17.: Experimental design of miR-23a/27a targetome identification via Ago2-RIP

Scheme of Ago2-RIP approach for identification of the miRNA targetome of a DLBCL cell line. 1,5x108 cells of

control or miRNA overexpressing (miR OE) cell line are lysed and cell lysates are used for Ago2-RNA immunopre-

cipitation (Ago2-RIP) with an Ago2-specific antibody that is coupled to magnetic beads. The RNA from Ago2-RIP

input and output samples is isolated and used for cDNA library preparation, which is subsequently analyzed by

Next Generation Sequencing.

Figure 3.18.: Bioinformatical comparisons for miRNA targetome identification
Scheme of bioinformatical comparisons of Ago2-RIP sequencing data performed for miRNA target identification.

Compared are Ago2-RIP samples of miR-23a or miR-27a overexpressing cell lines to non silencing control. First

the enrichment of Ago2-bound mRNAs are analyzed by comparison of Ago2-RIP input and output samples for

each cell line. Next, these enriched transcripts from miRNA overexpressing cell line are compared to non silencing

ctrl. These transcripts are identified as miR-23a or miR-27a bound targets within the Ago2-RISC complex.

Since a large cell number is needed for such an experiment, a DLBCL cell line stably overex-

pressing the miRNA of interest (miR-23a or miR-27a) or a non silencing control (ns ctrl), was

generated. For this purpose, the cell line U2932 R1 was chosen as a DLBCL model cell line,



74 3 | Results

because it is on the one hand well characterized (Quentmeier et al., 2013) and shows on the

other hand relatively low levels of MIR23A, making it favorable for induction and overexpres-

sion experiments. Therefore, lentiviral expression vectors for stable miR-23a, miR-27a and

ns ctrl overexpression were cloned. MiR-24 was not cloned, because it is not expressed in B

cells and it did not respond to B-cell receptor activation (fig. 3.5 d). In parallel, also vectors for

transient miRNA overexpression were cloned in order to validate the identified MIR23A targets

in transient overexpression experiments.

3.2.2. Cloning of pre-miR-23a and pre-miR-27a into the transient expression vector pSG5
for miRNA overexpression

The pSG5 expression vector coding for miR-23a~miR-27a was kindly provided by Friedrich

Grässer. Using PCR the restriction sites for XhoI and MluI were added 74 bp in 5’ direction

and 62 bp in 3’ direction of the pre-miR-23a sequence. The flanking sequences ensure that

the miRNA processing machinery is able to bind correctly to the stem loop sequence. The

PCR product was subcloned into the TopoTA cloning vector pCR2.1, excised by EcoRI and

ligated into the pSG5 expression vector (section 2.9).

The same cloning strategy was applied for miR-27a. In this case the XhoI and MluI restric-

tion sites were added 81 bp 5’ direction and 98 bp in 3’ direction of miR-27a stem loop se-

quence.

The restriction sites XhoI and MluI were used for subcloning into a lentiviral expression vec-

tor.

3.2.3. Cloning of pre-miR-23a and pre-miR-27a into the lentiviral vector pGIPZ

The lentiviral transduction vector pGIPZ ns ctrl (coding for a non silencing control, GFP and a

puromycin resistance) was chosen to generate lentiviral particles that transduce miR-23a and

miR-27a into U2932 R1 (section 2.9). The non-silencing sequence is flanked by a XhoI and

a MluI restriction site. These were used to excise the ns ctrl sequence and replace it by the

pre-miR23a or pre-miR-27a sequences described in section 3.2.2.
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3.2.4. Generation of stable miR-23a and miR-27a overexpressing clones

HEK293T cells were used to produce lentiviral particles harboring the ns ctrl, miR-23a or

miR-27a sequences. These lentiviral particles were harvested from HEK293T supernatant,

the virus titer was determined and the virus solution was used for transduction of the target

cell line U2932 R1. Successfully transduced clones were selected by Puromycin resistance

and GFP expression (strategy see fig. 2.8). Next, the miRNA expression of each selected

clone was verified by qRT-PCR (figure 3.19).

By this approach, many clones overexpressing ns ctrl, miR-23a and miR-27a were generated.

Selection criteria for new generated cell lines were: homogeneous and constant GFP expres-

sion over several generations, functional mature miRNA expression and unchanged c-MYC,

BCL-6 and Ago2 expression. U2932 R1 pGIPZ ns ctrl1, ns ctrl2, miR-23a1, miR-23a2 and

miR-27a1 fulfilled this criteria, whereas the miR-27a10 clone was found to be a double clone,

showing two distinct GFP populations. Since only two miR-27a clones were obtained, both

were used for further experiments (fig. 3.19, supplementals A.1 and A.2).

Figure 3.19.: MIR23A expression of stable ns ctrl/miR-23a/miR-27a overexpressing U2932 R1

pGIPZ clones
QRT-PCR results of mature miR-23a and miR-27a expression in lentiviral transduced U2932 R1 clones compared

to U2932 R1 qnd R2. (Mean with 95% CI, endogenous control: SNORD48.) These cell lines fulfilled all selection

criteria (for details refere to main text) and were used for all further experiments. Note that U2932 R1 pGIPZ

miR-27a10 is a GFP-double clone.



76 3 | Results

3.2.5. Characterization of stable miR-23a and miR-27a overexpressing clones

Since miR-23a and miR-27a were previously described to be associated with proliferation and

growth (Liu et al., 2013; Jahid et al., 2012; Jiang and Melnick, 2015; Pan et al., 2014), cell num-

bers of the parental cell line U2932 R1 and the ns ctrl, miR-23a and miR-27a overexpressing

U2932 R1 pGIPZ clones were assessed to identify differences in proliferation rates. In detail,

equal cell numbers were seeded and cell number as well as cell viability were determined after

24, 48, 72 and 96 hours.

Figure 3.20.: Proliferation of U2932 R1 pGIPZ clones

U2932 R1 pGIPZ clones and U2932 R1 were seeded at a density of 5x105 cells/mL in RPMI1640 +20% FCS. After

24, 48 and 72 hours cell were manually counted using a Neubauer counting chamber. Viability was determined by

trypanblue exclusion. One representative experiment of two is shown.

Neither the overexpression of ns ctrl, nor miR-23a or miR-27a altered the proliferation rate

of U2932 R1 (fig. 3.20 a). The cell numbers of all clones increase with time, doubling after

around 30 hours and stagnate between 48 and 72 hours. Cell viability of all clones stays

constant between 90 to 95% for 48 hours before slightly decreasing between 48 and 72 hours

(fig. 3.20 b). The miR-23a and ns ctrl overexpressing cell lines did not differ from the parental

clone in cell viability, while the miR-27a overexpressing clones showed a slight worse viability

by ca. 5%. Stagnation of cell growth and reduction of viability is possibly due to starvation,

because the cells were not feeded during this time span.

3.2.6. Establishment of an Ago2-RNA immunoprecipitation assay for miRNA targetome
identification in DLBCL

In order to identify the miR-23a and miR-27a mRNA targets in DLBCL, an Ago2-RNA im-

munoprecipitation assay (Ago2-RIP) was established for the DLBCL cell line U2932 R1. The

protocol used in this thesis was based on the paper “Systematic Analysis of Viral and Cellular



3.2. IDENTIFICATION OF THE MIR23A TARGETOME 77

MicroRNA Targets in Cells Latently Infected with Human g-Herpesvirus by RISC Immunopre-

cipitation Assay” (Dölken et al., 2010). It was optimized for the use with the suspension cells

U2932 R1. Most important was to obtain enough high quality RNA for mRNA Sequencing,

therefore cell number, lysis volume, number of freeze and thaw cycles and antibody to bead

ratio were systematically tested and adjusted.

Figure 3.21.: Ago2 protein is enriched by immunoprecipitation
ControlWestern blot of Ago2-RIP fromU2932R1 pGIPZmiR-23a1. The 100 kDa band represents Ago2. 40 μg total

protein per lane. Output 1/40 (v/v) of input. Iso ctrl = isotype control, depl. ctrl = depletion control. Housekeeper:

GAPDH. One representative blot from more than three is shown.

As could be seen on the Western blot in fig. 3.21 the Ago2 protein (ca. 100 kDa) could

successfully be enriched upon immunoprecipitation in the output fraction, especially because

only 1/40 of input volume was loaded on the lanes. The depletion controls (or flow through)

show a depletion of Ago2 protein when Ago2-antibody was used, but not when an isotype

control was used. Additionally, no Ago2 protein was enriched in the output fraction of isotype

control, showing that the immunoprecipitation was specific for Ago2 protein.

Figure 3.22.: MiRNAs are enriched in Ago2-RIP output
(a) Bioanalyzer small RNA chip data of small RNA fractions of U2932 R1 Ago2 RIP. The 4 nt peak resembles

the marker nucleotide. (b) Ago2-RNA immunoprecipitation in U2932 R1. qRT-PCR analyzes show an 40-fold

enrichment of mature miRNAs and only 6-fold enrichment of pre-miR-24-2 compared to input fractions. Mean with

95% CI, endogenous control: SNORD48.
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To check whether the Ago2 immunoprecipitation also includes an enrichment of miRNAs,

the output RNA was fractionated into small and large RNAs and analyzed using Bioanalyzer

agarose chips (fig. 3.22 a). Input as well as output RNA fractions show a peak between 40

and 80 nt, which represent small RNAs, such as 5S and 5.8S rRNA, tRNAs and other small

RNA species. As expected, the Ago2 output shows an additional peak at 20 bp, which is not

present in the isotype control output. This peak represents the enrichment of mature miRNAs,

that bind within the RISC complex to Ago2 and have a size between 18-22 bp. The relative

abundance of miRNAs in the input fraction is low, so this 20 bp peak is not visible without en-

richment. Comparing the height of the small RNA peak (40-80 bp), one can clearly see that the

peak decreases upon immunoprecipitation, showing that the immunoprecipitation is specific,

but still there is a background of other RNA species. Over all, about 150 ng high quality total

RNA per sample was obtained upon Ago2-RNA immunoprecipitation from 1.5 x 108 cells (RIN

values > 8 , supplementary fig. A.4).

In a next step, it was validated by qRT-PCR analyses that these 20 nt long RNA sequences,

which were enriched in the Ago2-RIP output fractions, are mature miRNAs (fig. 3.22 b). In-

deed, the mature miR-23a and miR-27a transcripts were 40-fold enriched compared to input.

As a proof of principle, the precursor miRNA of miR-24 was only 6-fold enriched. Pre-miRNAs

were not expected to be bound to Ago2, because they are not incorporated into the RISC. No-

tably, the ratio of miR-23a to miR-27a did not change upon immunoprecipitation in unmodified

parental cell line U2932 R1, showing that the procedure per se did not alter the composition

of different miRNAs incorporated into the RISC complex.

Nevertheless, still other RNA species can be found after immunoprecipitation. Especially, ri-

bosomal RNA is still present in the output samples (supplementary fig. A.4). Therefore, and in

order to enrich mRNAs, poly A enrichment was applied before cDNA library generation for next

generation sequencing of mRNA transcripts. For small RNA sequencing (only of miR-23a1

and ns ctrl1 inputs) the 5’-phosphate and 3’-hydroxyl groups of mature miRNAs, that are gen-

erated by Drosha and Dicer processing, were used for adapter ligation before cDNA library

preparation.

In summary, the Ago2-RIP could successfully be established for DLBCL cell line U2932 R1.

The Ago2 protein together with its bound miRNAs could be specifically and highly enriched

upon immunoprecipitation. The RNA amount gained from Ago2-RIP output (~150 ng total

RNA per sample) was sufficient for RNA sequencing. Additionally, the RNA quality was still

high upon Ago2-RNA immunoprecipitation.
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3.2.7. RNA sequencing & analysis

In order to identify the MIR23A targetome in DLBCL an Ago2-RIP assay was established for

the DLBCL cell line U2932 R1 (section 3.2.6). Ago2-RIP assays were performed for U2932

R1 pGIPZ clones: miR-23a1, miR-27a1 and ns ctrl 1 (section 3.2.1, fig. 3.17 and 3.18). Total

RNA was isolated from Ago2-RIP input and output samples for each cell line in triplicates

(three independent experiments). Besides mRNA sequencing of Ago2-RIP input and output

samples, small RNA sequencing was performed for U2932 R1 miR-23a1 and ns ctrl1 inputs

to check whether global miRNA expression was affected by miR-23a overexpression.

cDNA library preparation and Next Generation Sequencing were performed at the GMAK, HZI

Brunswick. For mRNA sequencing, poly A enrichment was applied. For small RNA sequencing

no enrichment was performed. All Ago2-RIP samples were sequenced (50 bp single-end) on

the Illumina High Seq 2500.

Sequencing yield was 20-50 Mio reads per mRNA sample and 12-16 Mio reads per small RNA

sample. Reads were trimmed form adapter sequences and low quality bases, mapped to the

human genome (hg38) by STAR and counted by HTseq. Normalization was performed accord-

ing to total number of reads within a sample and between samples , followed by the comparison

of the sequences according to the scheme in fig. 3.18 (Claudia Pommerenke, unpublished).

Thresholds for differentially expressed genes were set to at least two-fold enrichment and a

Benjamini-Hochberg adjusted p-value lower than 0.05.

The mapping efficiency of ~83% of all reads to the human genome resulted in ~25 Mio uniquely

mapped reads per sample, which is suitable to analyze global gene expression profiles (fig.

3.23).

Principal Component Analyses (PCA) of all sequencing data showed that the input and output

samples formed as expected two different groups distinct from each other (fig. 3.24). The only

exception was input sample ns ctrl1 batch b (fig. 3.24 blue squares b), which differs from all

other samples.

In summary, the sequencing data obtained from the input and output samples of Ago2-RIP

were consistent and reliable. Hence, they could further be analyzed as depicted in fig. 3.18.
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Figure 3.23.: Alignment efficiency for all mRNA sequencing samples
Sequences gained by mRNA sequencing of Ago2-RIP samples were mapped to human genome (hg38). Percent

of uniquely mapped reads to annotated gene regions of Ago2-RIP samples are depicted in green. Light grey:

sequences, that are too short for uniquely mapping to annotated regions. Dark grey: sequences that could not

be uniquely aligned. (a) Ago2-RIP samples of U2932 R1 miR-23a1 and ns ctrl1. (b) Ago2-RIP samples of U2932

R1 miR-23a1 and ns ctrl 1. Note, that ns1 ctrl samples are identical in (a) and (b). a, b, c = different triplicates,

Ago_XXX_X = output sample, miR/ns_X = input sample.
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Figure 3.24.: Principal component analysis of Ago2-RIP RNA sequencing samples
PCA analyses of mRNA sequencing data gained from Ago2-RIP input and output samples: (a) miR-23a1 compared

to ns ctrl1 Ago2-RIP RNA sequencing samples. (b) miR-27a1 compared to ns ctrl1 Ago2-RIP RNA sequencing

samples. a, b, c = different triplicates of Ago2-RIP RNA samples, black squares = Ago2-RIP output RNA sequenc-

ing samples of U2932 R1 pGIPZ miR-23a1/miR-27a1, red squares = Ago2-RIP output RNA sequencing samples

of U2932 R1 pGIPZ ns ctrl1, green squares = Ago2-RIP input RNA sequencing samples of U2932 R1 pGIPZ

miR-23a1/miR-27a1, blue squares = Ago2-RIP input RNA sequencing samples of U2932 R1 pGIPZ ns ctrl 1.

3.2.8. MiR-23a and miR-27a targetome in DLBCL

In order to identify the miR-23a and miR-27a targetome, Ago2-RIPs were performed for the

miRNA overexpressing cell lines U2932 R1 pGIPZ miR-23a1, miR-27a1 and ns ctrl1 (detailed

description in section 3.2.1, fig. 3.17 and 3.18). Total RNA of input and output samples was

sequenced. Additionally, small RNA sequencing was performed for the inputs of U2932 R1

pGIPZ miR-23a1 and ns ctrl1.

As a proof of principle, small RNA sequencing revealed that only miR-23a was highly enriched

(190-fold) in the miR-23a overexpressing cell line compared to ns ctrl cell line (fig. 3.25 in-

ner circle). However, also seven other miRNAs (miR-3919, miR-4662B, miR-618, miR-129-1,

miR-199B, miR-99a and miR-150) were enriched, but the base mean values of these miR-

NAs lay between 11-300 reads compared to 29643 reads for miR-23a. It is therefore highly

probable, that the identified targets are only targeted by miR-23a and no other miRNA.

In total, the comparison of enriched RNA sequences from Ago2-RIP input to output of miR-23a

or miR-27a overexpressing cells to non silencing control cells lead to the identification of 26

miR-23a and 20 miR-27a targets in the DLBCL cell line U2932 R1 (fig. 3.25 and 3.26, table 3.1

and 3.2). The threshold of enrichment was set to a minimum of two-fold and the p-value was

set to less than 0.05 (see section 3.2.7). Many of the targets were already predicted by the
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algorithm the web tool “Target Scan” uses. Nearly all identified targets (see table 3.3 and 3.4)

harbor at least one miR-23a or miR-27a 7mer binding sites. Notably, most binding sites are

located in the 3’UTR, except for the identified Zinc finger proteins (ZNFs), which have more

miR-23a 7mer binding sites in their coding sequences (CDS).

Interestingly, this approach also detected two long non coding RNAs (lncRNA), one targeted

by miR-23a the other by miR-27a. Long non-coding RNAs are transcribed by Pol II and are

therefore also polyadenylated. Since the RNA samples were enriched over poly A tails at cDNA

synthesis, it is not surprising to find lncRNAs among the sequencing data. Nevertheless, this

study focused on the protein coding mRNAs that are targeted by the MIR23A cluster.

For miR-23a 25 novel protein coding target mRNAs were identified for DLBCL cell line U2932

R1. 12 of them were zinc finger proteins, that contain a DNA binding ZNF domain. All these

identified ZNFs belong to the same protein family: KRAB-C2H2-ZNFs. Members of this family

comprise a high sequence homology, which might be an explanation why so many are targeted

by miR-23a. Notably, many ZNFs as well as other miR-23a targets are encoded on chromo-

some 19, where also the MIR23A cluster itself is encoded. In fact, the identified ZNFs belong

to two separate ZNF clusters, that were generated due to gene duplication during evolution:

ZNF cluster 269 on chromosome 19 and ZNF cluster 114 on chromosome 7. For the other

miR-23a targets no such similarities could be identified. Those targets, that are already de-

scribed, function in a wide range of cellular processes (table 3.1). The same is true for the 19

newly identified protein coding mRNAs of miR-27a (table 3.2). Strikingly, many of the miR-27a

targets are encoded on chromosome 19, as already observed for the miR-23a targets.

Taken together, 37% of all identified miR-23a and miR-27a targets are encoded on chromo-

some 19, where also the MIR23A is encoded, indicating an unknown mechanism underlying

these observations (see section 3.2.8.1).

Comparing the identified miR-23a/27a targets with the differentially expressed genes between

miRNA overexpressing cell line compared to control (at least two-fold difference), 12 of 46

targets are differentially expressed (fig. 3.27). These targets are possibly targeted for RNA-

degradation by the respective miRNA (Braun et al., 2011). Technically, the miRNA effect on

these targets can be analyzed by qRT-PCR.
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Figure 3.25.: MiR-23a targetome and differentially expressed transcripts in U2932 R1 pGIPZ

miR-23a1 vs. ns ctrl1
Outer circle: differential expressed transcripts (log2FC) of miR-23a1 clone vs. non silencing control clone. blue:

downregulated, red: upregulated; middle circle: chromosomal localization of identifiedmiR-23a targets (enrichment

at least two-fold, p-value ≤ 0.05); inner circle: differential expressed miRNAs (log2FC) of miR-23a1 clone vs. non

silencing control clone. blue: downregulated, red: upregulated; DE: differential expression, FC: fold change.
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Figure 3.26.: MiR-27a targetome and differentially expressed transcripts in U2932 R1 pGIPZ

miR-27a1 vs. ns ctrl1
Outer circle: differentially expressed transcripts (log2FC) of miR-27a1 clone vs. non silencing control clone. blue:

downregulated, red: upregulated; middle circle: chromosomal localization of identifiedmiR-27a targets (enrichment

at least two-fold, p-value≤ 0.05); inner circle: differentially expressed miRNAs (log2FC) of miR-27a1 clone vs. non

silencing control clone. blue: downregulated, red: upregulated; DE: differential expression, FC: fold change.
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Table 3.1.: miR-23a targets in DLBCL cell line U2932 R1

gene description chromosome log2(fc) padj predicted

ZNF92 zinc finger protein 92 7 3.21 1.06E-04 yes

ZNF708 zinc finger protein 708 19 3.05 4.41E-04 yes

KIAA1467 KIAA1467 12 2.69 5.31E-13 yes

ZNF257 zinc finger protein 257 19 2.62 3.36E-03 yes

ZNF253 zinc finger protein 253 19 2.56 1.17E-02 yes

UQCR10 ubiquinol-cytochrome c re-

ductase, complex III subunit

X

22 2.49 3.20E-02 no

ZNF254 zinc finger protein 254 19 2.44 1.27E-02 yes

ZNF273 zinc finger protein 273 7 2.43 1.12E-02 yes

WBP2 WW domain binding protein

2

17 2.42 1.78E-03 yes

MALSU1 mitochondrial assembly of ri-

bosomal large subunit 1

7 2.32 3.88E-04 no

IGSF8 immunoglobulin superfamily,

member 8

1 2.22 3.90E-02 yes

ZNF43 zinc finger protein 43 19 2.19 2.79E-02 yes

NDUFA2 NADH dehydrogenase

(ubiquinone) 1 alpha sub-

complex, 2

5 2.17 4.11E-02 yes

RP11-1017G21.5 lncRNA RP11-1017G21.5 14 2.08 3.09E-02 no

ZNF430 zinc finger protein 430 19 1.95 3.77E-02 yes

CNN2 calponin 2 19 1.95 3.36E-03 yes

ZNF138 zinc finger protein 138 7 1.91 3.17E-02 yes

VRK3 vaccinia related kinase 3 19 1.75 1.25E-05 yes

SDHD succinate dehydrogenase

complex, subunit D, integral

membrane protein

11 1.72 3.17E-02 yes

ZNF85 zinc finger protein 85 19 1.62 6.56E-03 yes

PNRC2 proline-rich nuclear receptor

coactivator 2

1 1.61 3.88E-04 yes

CRIPT cysteine-rich PDZ-binding

protein

2 1.60 2.79E-02 no

ZNF93 zinc finger protein 93 19 1.50 8.97E-03 yes

DUSP5 dual specificity phosphatase

5

10 1.38 1.27E-02 yes

ZNF195 zinc finger protein 195 11 1.33 3.17E-02 yes

STK35 serine/threonine kinase 35 20 1.18 3.09E-02 yes
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Table 3.2.: miR-27a targets in DLBCL cell line U2932 R1

gene description chromosome log2(fc) p value predicted

CTC-246B18.10 lncRNA CTC-246B18.10 19 3.32 1.28E-02 n.d.

HNRNPLP1 heterogeneous nuclear

ribonucleoprotein L pseudo-

gene 1

6 3.26 1.45E-03 n.d.

PLEKHJ1 pleckstrin homology domain

containing, family J member

1

19 2.90 3.42E-03 no

TOR2A torsin family 2, member A 9 2.84 1.43E-02 no

C12orf73 chromosome 12 open read-

ing frame 73

12 2.50 8.63E-05 yes

CLECL1 C-type lectin-like 1 12 2.15 1.03E-03 yes

LIMK1 LIM domain kinase 1 7 1.90 1.23E-02 yes

EEF1A1P16 eukaryotic translation elon-

gation factor 1 alpha 1 pseu-

dogene 16

12 1.83 2.63E-03 n.d.

DPF1 D4, zinc and double PHD fin-

gers family 1

19 1.80 1.40E-02 no

BBC3 BCL2 binding component 3 19 1.77 3.92E-03 yes

FBXO46 F-box protein 46 19 1.68 4.99E-02 yes

CALM3 calmodulin 3 (phosphorylase

kinase, delta)

19 1.68 1.68E-03 yes

C2orf44 chromosome 2 open reading

frame 44

2 1.68 3.55E-08 no

FAM193B family with sequence similar-

ity 193, member B

5 1.51 3.20E-05 yes

WDYHV1 WDYHV motif containing 1 8 1.50 1.36E-03 no

CEBPG CCAAT/enhancer binding

protein (C/EBP), gamma

19 1.33 1.36E-03 no

TSPYL1 TSPY-like 1 6 1.30 1.27E-03 no

FAM206A family with sequence similar-

ity 206, member A

9 1.23 1.28E-02 yes

FAM98A family with sequence similar-

ity 98, member A

2 1.22 1.91E-02 yes

PRCP prolylcarboxypeptidase (an-

giotensinase C)

11 1.14 1.27E-03 no
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Table 3.3.: Number and location of 7 mer miR-23a binding sites in identified miR-23a targets

target 3’UTR CDS 5’UTR

CNN2 1 0 0

CRIPT 3 1 0

DUSP5 1 0 0

IGSF8 2 1 0

KIAA1467 3 1 0

MALSU1 0 1 0

NDUFA2 2 0 0

PNRC2 4 0 0

SDHD 3 0 0

STK35 5 3 0

UQCR10 2 0 0

VRK3 2 5 0

WBP2 2 0 0

ZNF138 34 27 1

ZNF195 10 77 2

ZNF253 3 21 0

ZNF254 5 45 0

ZNF257 5 28 1

ZNF273 4 19 0

ZNF43 6 89 4

ZNF430 5 28 0

ZNF708 4 20 0

ZNF85 6 158 0

ZNF92 3 58 2

ZNF93 1 10 0

RP11-1017G21.5 n.d. 1 n.d

Table 3.4.: Number and location of 7 mer miR-27a binding sites in identified miR-27a targets

target 3’UTR CDS 5’UTR

BBC3 2 0 0

C12orf73 1 0 0

C2orf44 4 2 0

CALM3 1 0 0

CEBPG 1 1 1

CLECL1 5 0 0

DPF1 1 9 0

FAM193B 1 5 6

FAM206A 2 0 0

FAM98A 1 0 1

FBXO46 1 0 0

LIMK1 3 1 0

PLEKHJ1 3 0 0

PRCP 0 2 0

TOR2A 4 0 0

TSPYL1 1 1 0

WDYHV1 1 4 2

HNRNPLP1 n.d. 3 n.d.

EEF1A1P16 n.d. 0 n.d.

CTC-246B18.10 n.d. 1 n.d.
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Figure 3.27.: Differentially expressed miR-23a and miR-27a targets
Dark grey: number of differentially expressed genes between (a) miR-23a overexpressing cell line compared to non
silencing control (ns ctrl) and (b) miR-27a overexpressing cell line compared to ns ctrl. light grey: newly identified
miR-23a/-27a targets. overlap: differentially expressed miR-23a/-27a targets.

3.2.8.1. Clustering of miR-23a and miR-27a target genes on chromosome 19

When examining the lists of newly identified miR-23a and miR-27a targets in detail (table 3.1

and 3.2 ), one can observe that 17 of 46 identified targets (37%) are encoded on chromosome

19, where also the MIR23A cluster is encoded (fig. 3.28). Plotting the number of identified

miR-23a/27a targets against the number of expressed genes per chromosome, one can ob-

serve a linear positive correlation (fig. 3.29). The more genes are expressed from a certain

chromosome, the more targets are identified from it. However, chromosome 19 shows a clear

overrepresentation of miR-23a/27a target genes compared to other chromosomes. Moreover,

chromosome 7 also codes for slightly more miR-23a/27a targets than expected for a linear

correlation of miRNA targets and expressed genes per chromosome.
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Figure 3.28.: Clustering of targets on chromosome 19
Location of the MIR23A cluster compared to the identified miR-23a and miR-27a targets that are also encoded on

chromosome 19.

Figure 3.29.: MiR-23a and miR-27a targets are enriched on chromosome 19
Number of genes expressed per chromosome in ns ctrl 1 cell line plotted against the number of identified targets

per chromosome.

A possible explanation for this observation could be, that the model cell line expresses more

transcripts encoded on chromosome 19 than transcripts from other chromosomes, leading to

an increased probability of the miRNAs to target those transcripts. However, this was not the

case. As depicted in fig. 3.30 a) the most expressed transcripts are encoded by chromosome

1. The transcript expression of chromosome 19 was similar to that of chromosome 2,3,11,12

and 17, which showed no accumulation of targets.
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Figure 3.30.: Transcripts of chromosome 19 are not overrepresented
Transcript expression analyses of U2932 R1 pGIPZ non silencing control cell line 1 (a) Sum of reads per chromo-

some. (b) normalized gene expression for all genes (red), identifiedmiR-23a/-27a targets encoded on chromosome

19 (blue) and identified miR-23a/-27a targets encoded on other chromosomes (green).

Moreover, it was tested whether miR-23a/miR-27a targets are overexpressed compared to

other genes (fig. 3.30 b). Neither the expression of miR-23a/miR-27a targets on chromosome

19, nor the expression of miR-23a/miR-27a targets on the other chromosomes differed from

the mean expression of all genes. The transcripts of chromosome 19 are not overrepresented

in the cell.

One further reason, that could explain the observation of target clustering on chromosome 19,

could be that chromosome 19 codes for more miR-23a and miR-27a binding sites in the 3’UTR

of its expressed genes. Plotting the number of miR-23a/27a binding sites against the number of

3’UTRs per Mb per chromosome, one can observe the exact opposite: the miR-23a/-27a bind-

ing sites are underrepresented in the 3’UTR of chromosome 19 transcripts (fig. 3.31).

Taken together, the observation that the miR-23a/27a targets cluster on chromosome 19 is not

due to overrepresentation of transcripts encoded on chromosome 19, nor due to accumulation

of miRNA binding sites in transcripts encoded by chromosome 19.
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Figure 3.31.: MiR-23a/-27a binding sites are underrepresented on chromosome 19 transcripts
Percentage of 7mer binding sites for miR-23a (a) and miR-27a (b) in 3’UTRs of genes expressed in ns ctrl1 cell

line in respect to chromosomal gene density.

3.2.9. Validation of Ago2-RIP targets

The Ago2-RIP approach led to a list of 26 miR-23a and 20 miR-27a newly identified mRNA

targets in U2932 R1, from which three were chosen for in vitro validation. Selection criteria

were: transcript expression, high enrichment in Ago2-RIP samples, p-value, possible contribu-

tion in tumorigenesis, availability of an specific antibody and previous description as a MIR23A

target in literature. Since miRNAs inhibit protein biosynthesis, the protein levels of the target

candidates were investigated in miR-23a/miR-27a overexpressing cells compared to control

cells.

3.2.9.1. VRK3 protein is not regulated by miR-23a

The newly identified miR-23a target vaccina related kinase 3 (VRK3) was chosen for validation

on protein level. VRK3 is a serine/threonine kinase, localized to the endoplasmatic reticulum

(ER) and the nucleus. It was 3.3-fold enrichedwith a very low p-value of 1.25x10−5 in miR-23a1

Ago2-RIP samples compared to control (table 3.1). VRK3 was shown to play an important role

in negative feedback loop of MAPK/ERK signaling by targeting a phosphatase of ERK (Kang

and Kim, 2006). Because MEK/ERK signaling was identified to activate the MIR23A cluster

(section 3.1.3), VRK3 might therefore be involved in a negative feedback loop of MIR23A

activation upon BCR stimulation.

To test whether VRK3 protein level is indeed downregulated by miR-23a, total cell lysates of

stable miR-23a overexpressing clones were analyzed by Western blotting using an antibody

specific against VRK3 (fig. 3.32). Comparing the intensity of the VRK3 protein band on West-
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Figure 3.32.: VRK3 protein levels are not changed by miR-23a overexpression
Western blot of VRK3 in total cell lysates of U2932 R1 pGIPZ miR-23a/27a or non silencing control overexpressing

clones. Loading control: GAPDH, one representative result of three is shown.

ern blot membrane, no difference between miR-23a overexpressing U2932 R1 pGIPZ clones

vs. ns ctrls or miR-27a overexpressing clones could be observed. Consequently, VRK3 protein

levels are, at least under default conditions, not downregulated by miR-23a.

3.2.9.2. LIMK1 protein is downregulated by miR-27a

The novel identified miR-27a target, LIM domain kinase 1 (LIMK1) was chosen for validation

on protein level. It was enriched 3.7-fold in miR-27a1 Ago2-RIP samples compared to con-

trols with a p-value of 1.23x10−2 (table 3.2). The LIMK1 is a serine/threonine kinase, that is

implicated in migration by inhibition of Cofilin (Arber et al., 1998) and in mitosis by inhibition of

p25/TPPP (Acevedo et al., 2007) (for details see discussion). Additionally, LIMK1 was already

shown to be a target of the paralogous miR-27b in non small cell lung cancer (NSCLC), where

it regulates invasion and proliferation (Wan et al., 2014).

To validate LIMK1 as a miR-27a target in DLBCL, LIMK1 protein levels from total cell lysates of

miR-27a stable overexpressing U2932 R1 pGIPZ clones and ns ctrl clones were compared by

Western blotting (fig. 3.33 a). The LIMK1 protein levels are downregulated to 38% in miR-27a1

and to 28% in miR-27a10 stable overexpressing U2932 R1 pGIPZ clones. The sister clone

U2932 R2, which expresses higher miR23A levels than the U2932 R1 clone (fig. 3.11) shows

also considerable low LIMK1 levels. Surprisingly, the U2932 R1 pGIPZ miR-23a1 clone shows

also a slight downregulation of LIMK1 to 76%. However, the miR-23a2 clone showed no such

effect. The ns ctrl 3 clone is different from the other two control clones, hence LIMK1 level

are downregulated by 17%. This observation may be due to other reasons, but not a direct

miR-27a effect.
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Figure 3.33.: LIMK1 is a miR-27a and miR-23a target
(a) Total cell lysates of U2932 R1 pGIPZ non silencing control, miR-23a or miR-27a stable overexpressing clones.

(Loading control: GAPDH, one representative result of three is shown). b) Total cell lysates of parental U2932 R1

48 h post transient transfection with miR-23a, miR-27a or miR-23a~27a expression vector (pSG5). 5 μg plasmid

DNA per 5x106 cells, one representative result of three is shown. (c) corresponding relative expression of miR-23a

and miR-27a upon transfection in U2932 R1. Endogenous control: GAPDH.

To validate these results and to clarify whether miR-23a also targets LIMK1, transient over-

expression experiments were performed. Therefore, the parental cell line U2932 R1 was

transfected with pSG5_miR-23a, pSG5_miR-27a or pSG5_miR-23a~27a expression vector

(section 3.2.2). Mature miR-23a and miR-27a expression levels were detected by qRT-PCR

(fig. 3.33 c) and LIMK1 protein levels were analyzed by Western blotting 48 hours after trans-

fection (3.33 b). Indeed, the LIMK1 protein levels decreased by 25%, when miR-27a was

overexpressed only 5-fold compared to empty vector pSG5. Furthermore, the double trans-

fection with miR-23a and miR-27a, which led to higher levels of miR-27a (ca. 9-fold) than the

single-miR-27a transfection, decreased LIMK1 levels to a higher degree (down to 47%). To
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test whether this effect was due to higher miR-27a level or due to an additive effect of miR-23a,

the same cells were transfected with miR-23a alone. Surprisingly, the same effect (downreg-

ulation to 47%) could also be obtained when overexpressing miR-23a 20-fold higher than the

empty vector control.

Taken together, LIMK1 protein levels are downregulated bymiR-23a andmiR-27a in stable and

transient miRNA overexpressing experiments for DLBCL cell line U2932 R1, although LIMK1

mRNAwas only 3.7-fold enriched in miR-23a Ago2-RIP samples compared to ns control.

3.2.9.3. PUMA protein can not be induced in miR-27a overexpressing cells

BCL-2 binding component 3 (BBC3) or P53 upregulated modulator of apoptosis (PUMA) is

a pro-apoptotic protein and was described as a tumor suppressor in different cancer entities.

It was chosen as a target candidate for validation on protein level, because it was enriched

3.4-fold, had a good p-value of 3.92x10−3 (see table 3.2) and is implicated in apoptosis, which

plays an important role during B cell maturation process (section 1.1). Moreover, it was shown

in mice, that PUMA is targeted by mmu-miR-23a and mmu-miR-27a in a traumatic brain injury

model (Sabirzhanov et al., 2014).

Because of low PUMA levels, it was difficult to detect PUMA by Western blotting. Conse-

quently, PUMA levels were induced by etoposide treatment of miR-27a or ns ctrl overexpress-

ing U2932 R1 pGIPZ clones. Etoposide induces DNA double strand breaks, that activate p53,

which subsequently induces PUMA. Although p53 was induced in all samples upon etoposide

treatment, only the β-isoform, but not the α-isoform, of PUMA was induced in the parental

cell line U2932 R1 and the ns ctrl clones (fig. 3.34). Notably, PUMA-β was not induced in the

miR-27a overexpressing clone miR-27a1. It seems as if it is only slightly induced in miR-27a10

clone, but this is due to unequal loading as indicated by the endogenous control GAPDH.

When comparing the basal PUMA levels in DMSO treated controls of the stable overexpress-

ing clones to ns ctrl clones, unexpectedly no regulatory pattern could be observed. Obviously,

PUMA has to be induced in order to monitor the inhibitory miR-27a effect.

In summary, the expression of PUMA-β isoform is inhibited bymiR-27a upon etoposide-induced

DNA damage in DLBCL cell line U2932 R1.
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Figure 3.34.: PUMA is a miR-27a target
U2932 R1 pGIPZ miR-27a and non silencing control (ns ctrl) overexpressing cells were treated for 7 hours with 100

μM etoposide (+) or 1:500 DMSO (-). Loading control: GAPDH, one representative experiment of three is shown.

3.3. MIR23A function

3.3.1. Global affected processes by miR-23a or miR-27a overexpression

The identification of the direct miR-23a and miR-27a targets in DLBCL cell line U2932 R1 by

Ago2-RIP resulted in two different gene sets with no overlap. Thus, miR-23a andmiR-27a have

distinct direct targets. However, it is likely that miRNAs of the same cluster act in the same

cellular processes. Because miRNA overexpression resulted in differential gene expression

profiles, these genes can be considered as indirect miRNA targets. Their expression is not

altered by direct binding of the miRNA and subsequently inhibition of proteinbiosynthesis, but

by indirect means, such as downregulation of a transcriptional repressor or activator, etc..

To analyze in which biological processes these indirect targets are involved, gene ontology

analyses for differentially expressed genes were performed.
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Figure 3.35.: Top 20 GO terms enriched in U2932 R1 pGIPZ miR-23a1 vs. ns ctrl1
Hypergeometrical test for overrepresentation of gene ontology terms (GO) of differentially expressed genes be-

tween U2932 R1 pGIPZ miR-23a1 and ns ctrl1 cell lines. FDR = false discover rate. Shown are GO terms with

p-value ≤0.05. FDR = false discovery rate, FDR q-value is the correction of the p-value for multiple testing using

the Benjamini and Hochberg method.

Gene ontology analyses of differentially expressed genes (DEG) upon miR-23a overexpres-

sion in U2932 R1 show that genes are affected, which are involved in many different cellu-

lar processes (fig. 3.35). Notably, processes involved in ribosomal protein biosynthesis are

enriched. Additionally, processes that direct proteins to membranes emerge, indicating that

protein trafficking or secretion might be affected by miR-23a overexpression. Gene ontology

terms related to a virus might be explained by the lentivirus, that was introduced to gain miRNA

overexpression in these cells.

Figure 3.36.: GO terms enriched in U2932 R1 pGIPZ miR-27a1 vs. ns ctrl1
Hypergeometrical test for overrepresentation of gene ontology terms (GO) of differentially expressed genes be-

tween U2932 R1 pGIPZ miR-27a1 and ns ctrl1 cell lines. FDR = false discover rate. Shown are GO terms with

p-value ≤0.05. FDR = false discovery rate, FDR q-value is the correction of the p-value for multiple testing using

the Benjamini and Hochberg method.
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Gene ontology analyses of differentially expressed genes upon miR-27a overexpression in

U2932 R1 revealed interestingly only two significantly enriched GO terms: “regulation of apop-

totic process” and “regulation of programmed cell death” (fig. 3.36). This was one reason to

test the rate of apoptosis in U2932 R1 miR23a/27a overexpressing cells (fig. 3.38).

To assess a possible cooperative effect of miR-23a andmiR-27a the overlap of differentially ex-

pressed genes upon miR-23a and miR-27a overexpression in U2932 R1 was analyzed. These

overlap generated a list of 104 genes that are affected by overexpression of both, miR-23a and

miR-27a (fig. 3.37 and table A.1). Surprisingly, GO term analyses with these genes could not

identify significantly enriched cellular processes, indicating that miR-23a and miR-27a act sep-

arately to regulate different cellular processes.

Figure 3.37.: Venn diagram of DEG of miR-23a1 vs. ns ctrl1 compared to ns ctrl1 vs. miR-27a1
Differentially expressed genes (DEG) of U2932 R1 pGIPZ miR-23a1 vs. ns ctrl1 compared to ns ctrl1 vs. miR-27a1

identifies 104 genes affected by both, miR-23a and miR-27a overexpression.

In conclusion, miR-23a and miR-27a might act separately regulating different cellular pro-

cesses. Neither the overlap of direct nor indirect miR-23a with miR-27a targets leads to a

significant enrichment of GO terms using a hypergeometrical test.

3.3.2. miR-27a attenuates the sensitivity of DLBCL cells to undergo apoptosis

The pro apoptotic protein PUMA could be validated in U2932 R1 as amiR-27a target on protein

level (section 3.2.9.3), favouring together with theGO term analyses of indirect miR-27a targets

(fig. 3.36) apoptosis as a possible cellular function in which theMIR23A cluster is involved. The

introduction of DNA double strand breaks led to the induction of p53, which in turn activated

the β-isoform of PUMA in the control cells (parental cell line U2932 R1 and U2932 R1 pGIPZ

ns ctrl1 and 2), but not in the miR-27a overexpressing cells (fig. 3.34). Furthermore, also

LIMK1, which could also be validated as an miR-27a target on protein level (section 3.2.9.2),
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was shown to be implicated in apoptosis (Tomiyoshi et al., 2004). It is therefore probable that

overexpression of miR-27a attenuates apoptosis by targeting PUMA-β and LIMK1.

To test this hypothesis, apoptosis was induced for 16h in the parental cell line U2932R1 and the

stable miR-23a, miR-27a and ns ctrl overexpressing U2932 R1 pGIPZ clones using etoposide.

The apoptosis rate was determined by AnnexinV/7AAD staining following FACS analyses.

Percent of positive cells were normalized to DMSO control (fig. 3.38, for FACS profiles see

supplementals).

Figure 3.38.: Overexpression of miR-27a reduces sensitivity to etoposide induced apoptosis in

DLBCL cell line U2932 R1
Parental cell line U2932 R1, U2932 R1 non silencing control (ns1, ns2), miR-23a (miR-23a1, miR-23a2) and

miR-27a (miR-27a1, miR27a10) overexpressing cell lines were treated for 16h with 100 μM etoposide to induce

apoptosis. Cells were double stained with Annexin V-PE and 7AAD prior to FACS analysis. Mean +/- SD, n=3,

students t-test, *p≤0.05

Comparing the induction of Annexin V positive cells from parental cell line U2932 R1 to U2932

R1 pGIPZ non silencing control cell lines ns ctrl1 and ns ctrl2, one can observe an higher

apoptosis rate for the control clones. The parental clone showed an induction rate of 7-fold

compared to DMSO treated control, while ns ctrl cell lines showed an induction rate of approx-

imately 11-fold. It may be speculated that the genetical modification of the cells by insertion of

the lentivirus, overexpression of eGFP as well as overexpression of an hairpin sequence might

induce cellular stress leading to an enhanced disposition to undergo apoptosis. Therefore, the

correct controls to compare the miRNA overexpressing clones to, are the non silencing control

cell lines. While U2932 R1 pGIPZ ns ctrl cells have an induction rate of early apoptotic cells

(Annexin V positive) of 11-fold, the miR-23a overexpressing clones show decreased apoptotic
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rates of 7-fold. Notably, the miR-27a overexpressing clones show a significant reduction of

apoptosis rate (5-fold) compared to controls. The rate of double positive (Annexin V/7AAD)

late apoptotic or dead cells is not affected by miRNA overexpression.

In conclusion, the overexpression of miR-23a and miR-27a reduces the ability of etoposide

treated cells to undergo apoptosis.

3.4. The MIR23A cluster in BL and DLBCL patients

The role of the MIR23A cluster is discussed controversially in literature. Although intensively

investigated in many different human diseases and cancers, the miRNAs encoded in this clus-

ter can have diverse functions. MiR-23a was reported to act as a tumor suppressor or as an

onco-miR, depending on the cellular context (Cao et al., 2012; He et al., 2014). Nevertheless,

several studies have shown altered expression of MIR23A cluster in different cancers, among

these also some hematopoietic malignancies (APL (Saumet et al., 2009), ALL and AML (Mi

et al., 2007)). For B-NHL it was shown by Lenze et al. that miR-23a is differentially expressed

between BL vs. DLBCL (Lenze et al., 2011). Wang et al. already indicated that miR-23a is

aberrantly expressed in DLBCL compared to healthy controls (Wang et al., 2014). However,

the expression status of the whole MIR23A cluster in DLBCL compared to germinal center

cells, which are the healthy progenitor cells from which DLBCL develops, was unknown so

far.

Therefore, the publicly available data base of the International Cancer Genome Consortium

(ICGC) Project “Determining Molecular Mechanisms in Malignant Lymphoma by Sequencing”

(ICGC-MMML, release v22, published in (Hezaveh et al., 2016)) was retrieved to compare the

MIR23A expression of BL and DLBCL patients to healthy GCBs (fig. 3.39). The differential

expression of miR-23a in BL vs. DLBCL described by Lenze et al. in 2011 could be verified.

Additionally, the comparison of the MIR23A cluster expression of BL and DLBCL patients to

healthy GCBs reveals a significant overexpression of miR-23a, miR-27a and miR-24 in the

patient samples (fig. 3.39).

Taken together, the patient sequencing data show that the whole MIR23A cluster is aberrantly

activated in BL and in DLBCL compared to healthy controls (GCBs).
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Figure 3.39.: MIR23A cluster expression in B-NHL patients
MicroRNA sequencing data of 14 BL and 16 DLBCL patients compared to GCB isolated from three healthy controls

(ICGC v22 published in Hezaveh et al. 2016). Mann-Whitney U-test *p≤ 0.05.

3.4.1. Expression of newly identified and validated miR-23a and miR-27a targets in BL and
DLBCL patients

The observation that MIR23A levels are aberrantly high in BL and DLBCL compared to controls

raises the question which consequences arise from this aberrant high expression of MIR23A

cluster for the DLBCL patients. Wang et al. showed already in 2014 that high miR-23a lev-

els were correlated with a worse overall survival rate of DLBCL patients. Thus, the MIR23A

cluster might have an onco-miR function in DLBCL. Although a miRNA does not necessarily

downregulate their targets on RNA level, the expression of the direct miR-23a/27a targets,

identified in this study, were analyzed for BL and DLBCL patients on RNA sequencing data

provided by the ICGC data base.

Although VRK3 protein could not be validated to be downregulated by miR-23a overexpres-

sion under normal conditions in DLBCL cell line U2932 R1 (fig. 3.32), its mRNA levels are

decreased in BL and DLBCL patients compared to healthy GCBs (fig. 3.40 a).

In the case of LIMK1, a validated target gene of miR-27a in this study (fig. 3.2.9.2), BL and

DLBCL patients show a decrease in LIMK1 mRNA levels (fig. 3.40 b).
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Figure 3.40.: MiR-23a and miR-27a target expression in BL and DLBCL patients
Expression of selected targets in BL and DLBCL patients and normal GCBs (ICGC v22 published in Hezaveh et

al. 2016). (a) Expression of possible miR-23a target VRK3. (b) Expression of validated miR-27a target LIMK1. (c)

Expression of validated miR-27a target PUMA. (d) Expression of ZNFs that are targeted by miR-23a. BL = Burkitt

lymphoma, DLBCL = diffuse large B cell lymphoma, GCB = germinal center B cells, VRK3 = Vaccina related

kinase 3, LIMK1 = LIM domain kinase 1, PUMA = p53 upregulated modulator of apoptosis, ZNF = zinc finger.

Mann-Whitney U-test *p≤ 0.05.

In contrast, the mRNA levels of validated miR-27a target PUMA (fig. 3.34) are downregulated

in BL, whereas the mean expression of DLBCL patients is higher compared to controls (fig.

3.40 c).
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Interestingly, most ZNFs, that were identified as possible miR-23a targets in DLBCL model cell

line U2932R1, are downregulated in BL andDLBCL patients compared to healthyGCBs.

In general, miRNA regulation in mammalia must not result in downregulation of target mRNA

levels. However, the mRNA transcripts of VRK3, LIMK1 and most ZNFs are decreased in

B-NHL compared to healthy GCBs.



4. Discussion

This study had two major aims: the first one was to identify signaling pathways that regulate

the expression of MIR23A cluster in DLBCL, in order to enlighten the processes that lead

to aberrant high MIR23A cluster expression in DLBCL. The second aim was to identify the

targetomes of miR-23a and miR-27a in DLBCL in order to predict the cellular functions in

which miR-23a and miR-27a are involved and to test the onco-miR hypothesis for the MIR23A

cluster.

DLBCL and BL patients show increased miR-23a levels compared to healthy controls (Wang

et al., 2014) (fig. 3.39), indicating that the MIR23A cluster is de-regulated in aggressive B cell

lymphoma. Furthermore, DLBCL patients with higher miR-23a levels show a worse overall

survival rate than patients with low miR-23a levels, suggesting the MIR23A cluster to have a

onco-miR function in DLBCL (Wang et al., 2014).

This thesis shows that the MIR23A cluster is activated by BCR signaling in BL and DLBCL cell

lines. In detail, the BCR downstream MEK/ERK signaling cascade was identified to mediate

the activation of MIR23A cluster in DLBCL cell lines. Furthermore the onco-miR hypothesis

for the MIR23A cluster in DLBCL could be supported by identification and validation of the

miR-23a and miR-27a specific targetome in a DLBCL model cell line.

4.1. Regulation of the MIR23A cluster

4.1.1. BCR signaling activates the MIR23A cluster

This study identified MEK/ERK dependent BCR signaling in DLBCL cell lines as a general

mechanism responsible for the activation of the MIR23A cluster.

The MIR23A cluster is activated during normal GC reaction: while naive B cells and centro-

blasts show low MIR23A cluster expression, memory B cells have high MIR23A cluster ex-

pression (Malumbres et al., 2009; Tan et al., 2009; Zhang et al., 2009; Iqbal et al., 2015). DL-

BCL develops from GCB cells, thus DLBCL cells still harbor GC characteristics and a related

gene expression profile (Küppers, 2005). However, tumor samples of DLBCL patients express

aberrant high MIR23A levels compared to healthy controls ((Wang et al., 2014) and fig. 3.39).

Notably, the healthy controls used in both studies were different. Wang et al. used paraffin em-

bedded reactive lymph nodes, while primary tonsillar GCBs were sorted in the ICGC-MMML

project to get a normal control, which represents the precursor cells from BL and DLBCL. How-

ever, the results were similar. This indicates that a deregulated process during GC reaction

103
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might lead to aberrant high MIR23A cluster expression in GC derived lymphoma. The BCR

signaling, which plays a key role in GC reaction (section 1.2.1), was identified in this study to be

responsible for MIR23A cluster activation. This might be a general mechanism for GC derived

lymphoma, since BCR dependent activation of the MIR23A cluster was observed in several

DLBCL and one BL cell line (section 3.1.3). The observation, that CD77 positive GCBs isolated

from human pediatric tonsils, which represent centroblasts (Pascual et al., 1994; Klein et al.,

2003), did not respond to BCR stimulation with an upregulation of MIR23A cluster expression

(fig. 3.6), supports the hypothesis of aberrant BCR signaling in BL and DLBCL. However,

these experiments were only performed twice. Although widely accepted, the CD77 marker

was questioned as an appropriate marker for centroblasts (Högerkorp and Borrebaeck, 2006).

Thus, it was shown, that CD77 positive and negative populations are both actively cycling and

that gene expression profiles of both populations did not fit to functional characteristics of cen-

troblasts or centrocytes (Högerkorp and Borrebaeck, 2006). Additionally, GCBs used in this

study were isolated from pediatric tonsils due to frequent infections and abnormal growth, ask-

ing whether these cells are an appropriate normal control. The MIR23A cluster levels might

not be further increased by BCR stimulation, because the GCB cells are already fully activated

due to antigen response and inflammation.

During GC reaction SHM and CSR lead to affinity maturation of the BCR. These processes

include genetic modifications, such as chromosomal translocations and somatic mutations.

Errors that occur during these processes can lead to malignant transformation of these cells,

as observed in BL, DLBCL and FL. Indeed, many activating mutations within BCR signaling

components were reported occurring in aggressive B cell lymphoma (Seda and Mraz, 2015).

Importantly, B cell lymphoma are dependent on the survival signals provided by BCR signal-

ing, as shown by their sensitivity to chemical inhibitors that specifically target effectors of the

BCR signaling network (Young and Staudt, 2013; Blachly and Baiocchi, 2014; Gaudio et al.,

2016). E.g. for ABC DLBCL a chronic BCR signaling due to different mutations was reported:

many ABC DLBCL patients carry CARD11 mutations that cause the spontaneous formation of

aggregates, which recruit all downstream signaling components of the NFκB pathway (Lenz

et al., 2008). Additionally, the ITAMs of CD79 are frequently mutated preventing endocytosis

of the BCR and inhibit the activity of LYN to deliver negative feedback signals that attenu-

ate BCR activity (Davis et al., 2010). Another mechanism for chronic active BCR signaling is

the reactivity against self antigen (Young et al., 2015). The presence of BCR clusters on the

cell surface of ABC DLBCL, resembling the clusters that are formed after antigen encounter-

ing, support this observation (Rui et al., 2011). In contrast to chronic active BCR signaling in

ABC DLBCL, in GCB DLBCL and BL tonic BCR signaling was reported (Young and Staudt,

2013; Efremov, 2016). It predominantly activates the PI3K pathway in an antigen-independent

manner to provide the cell with survival signals. Responsible for tonic BCR signaling are al-

terations of signaling pathway components, such as SYK amplification (Monti et al., 2005) or
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tensin homolog (PTEN) deletion in GCB DLBCL (Pfeifer et al., 2013). Many BL cases harbor

transcription factor 3 (TCF3) mutations that prevent ID3 to inhibit TCF3 resulting in increased

activity of PI3K (Richter et al., 2012; Schmitz et al., 2013). However, inhibition of PI3K/AKT

signaling did not inhibit MIR23A cluster activation upon BCR stimulation in U2932 R1 (fig. 3.8),

indicating that it is not responsible for MIR23A cluster activation in this cell line. Furthermore,

when comparing differential expressed miRNAs from ABC DLBCL with GCB DLBCL cell lines,

the MIR23A cluster does not appear in these analyses (Malumbres et al., 2009), indicating,

that neither the NFκB pathway nor PI3K/AKT signaling are predominantly responsible for the

activation of the MIR23A cluster in DLBCL.

Indeed, this study could identify MEK/ERK signaling as the major BCR downstream signal-

ing cascade responsible for activation of the MIR23A cluster in DLBCL cell line U2932 R1.

Although mutations of Ras/Raf, which act upstream of MEK and ERK, were reported for differ-

ent cancers (Masliah-Planchon et al., 2015; Downward, 2003), including hairy cell leukemia,

where BRAF mutations were shown to result in constitutive active RAF/MEK/ERK signaling

(Vaqué et al., 2014), no such mutations are known for DLBCL. However, constitutive active

ERK signaling was found in DLBCL (Hollmann et al., 2006). ERK2 itself can bind to DNA

and act as a transcriptional repressor (Hu et al., 2009). Furthermore, ERK2 was reported to

promote a “poised” state of developmental genes by potentiating PRC2-mediated trimethy-

lation of H3K27 and phosphorylation of RNA Pol II in mice (Tee et al., 2014). Indeed, the

MIR23A promoter harbors six canonical ERK2 binding sites, but as the MIR23A cluster is in-

duced upon ERK1/2 activation, ERK2 itself might not be the transcription factor responsible

for the activation of the MIR23A cluster. Instead, a downstream factor of ERK1/2 might exert

this function. Many downstream factors were already described for the MAP kinase ERK1/2

(Yoon and Seger, 2006). Among these downstream ERK1/2 targets are many transcription

factors, including MYC and ELK1 (Gille et al., 1995; Yoon and Seger, 2006).

4.1.2. BCR downstream transcription factors

Proto-oncogene MYC was of special interest, because it is downstream of the BCR signal-

ing and many lymphomas harbor MYC translocations (Küppers, 2005). Furthermore, MYC is

considered to promote lymphomagenesis (Dalla-Favera et al., 1982). In regard to transcrip-

tional regulation of the MIR23A cluster, MYC was reported to bind to the paralogous MIR23B

promoter and suppress miR-23a and miR-23b levels in BL model cell line P493-6 (Gao et al.,

2009). This observation was validated in this study and extended to the whole MIR23A cluster

in P493-6 (fig. 3.12), indicating that MYC might also bind to the MIR23A promoter. Instead,

Li et al. showed that c-MYC induced the MIR23A cluster expression in mammary carcinoma

(Li et al., 2013a). However, in DLBCL model cell line U2932 R1 ectopic MYC overexpression
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and siRNA knockdown approaches revealed, that MYC does neither activate nor repress the

MIR23A cluster in DLBCL. Furthermore, the MIR23A cluster could still be activated by BCR

stimulation, when MYC protein levels were abolished by CHX treatment (fig. 3.7). These data

indicate, that MYC is not responsible for the regulation of the MIR23A cluster in DLBCL cell

line U2932 R1.

The first transcription factor described to be a substrate of ERK1/2 was ELK1 (Gille et al., 1995).

Indeed, this was validated in U2932 R1 (fig. 3.14). Upon BCR stimulation ERK and ELK1

were phosphorylated. Furthermore, the inhibition of ERK phosphorylation by trametinib also

inhibited ELK1 phosphorylation. ELK1 forms a ternary complex with serum response factor

(SRF) and serum response element (SRE) of c-Fos promoter (Gille et al., 1995). Induction

of c-Fos is important for cell proliferation and differentiation. Furthermore, phosphorylated

ELK1 induces the binding of c-Fos to c-Jun, which together form the transcriptionally active

AP-1 complex (Whitmarsh and Davis, 1996). AP-1 subsequently induces cyclin D1, which

is responsible for cell cycle progression (Shaulian and Karin, 2001). ELK1 was regarded as

candidate for MIR23A cluster activation, because Acunzo et al. showed by ChIP assay that

ELK1 binds to the promoter of MIR23A cluster in non-small cell lung cancer (NSCLC) and

activates it. However, systematical ELK1 overexpression and knockdown experiments could

not confirm this hypothesis for DLBCL cell line U2932 R1 (fig. 3.15).

Although both transcription factors MYC and ELK1 were described to regulate the miR-23a

levels in other cancer entities, neither did this in DLBCLmodel cell line U2932R1. One possible

explanation might be, that the binding sites of ELK1 and MYC within the MIR23A promoter

are not available due to chromatin modifications. Indeed, somatic mutations of epigenetic

modifier proteins are a hallmark of DLBCL (Morin et al., 2010, 2011) (Pasqualucci and Dalla-

Favera, 2014). One example is EZH2 in GCB DLBCL. It is upregulated during normal GC

reaction in centroblasts and induces bivalent chromatin at genes required for memory and

plasma cell differentiation (e.g. IRF4 and PRDM1) (Béguelin et al., 2013). Importantly, EZH2

mutation of the key tyrosine in catalytic site of SET domain enhances EZH2 activity (Sneeringer

et al., 2010) and subsequently leads to permanent silencing of target genes, resulting in a

differentiation block and accelerated lymphoid transformation (Béguelin et al., 2013).

Another possibility is that the co-factors, which bind to MYC or ELK1, are de-regulated or

mutated. One co-factor of ELK1 is cyclic AMP response element binging (CREB) protein

(CBP) (Janknecht and Nordheim, 1996). Indeed, CBP translocations were reported for several

hematopoietic diseases, such as acute myeloid leukemia (AML) (Borrow et al., 1996; Giles

et al., 1997; Panagopoulos et al., 2001), but not for aggressive B cell lymphoma. Interestingly,

CBP loss was shown to induce T cell lymphomagenesis in mice (Kang-Decker et al., 2004).

For cofactors of MYC, such as MIZ1, ATAD2, Mad or MAX, no alterations were described in
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lymphoma. However, mutations for PIM1, a serine/threonine kinase, which strongly synergizes

with MYC, were reported for ABC DLBCL (Peters et al., 2016).

ERK was described to phosphorylate various different proteins, including transcription factors

(Yoon and Seger, 2006). It would therefore be necessary to analyze whether binding sites

of these ERK downstream transcription factors can be found within the MIR23A promoter re-

gion.

Other transcription factors regulating the MIR23A cluster are described in literature, such as

PU.1, NFAT and NFκB family members. PU.1 was reported to activate the MIR23A cluster in

early stages of B cell development in the bone marrow, where the MIR23A cluster inhibits the

development of the lympoid line (Kong et al., 2010), an observation that was recently validated

in a MIR23A knockout mice (Kurkewich et al., 2016). Indeed, PU.1 is also expressed in GCB

cells (centroblasts) (Torlakovic et al., 2005; Cattoretti et al., 2006) and might therefore be an

interesting candidate for further analyses.

Another interesting candidate is NFAT, because it can be activated upon BCR signaling by

PLCγ-Ca2+-Calcineurin signaling (Gachet and Ghysdael, 2009). In detail, NFATc3 was shown

to activate theMIR23A cluster in cardiomyocytes (Lin et al., 2009). Indeed, it was reported, that

another NFAT family member, NFATc1 was localized in the nucleus of BL and DLBCL samples

(Marafiot et al., 2005) and constitutively activated together with NFκB in DLBCL (Fu et al.,

2006). Bioinformatical analyses of the MIR23A cluster promoter for transcription factor binding

sites revealed ETS1 as a promising candidate, since ETS1 deregulation was reported in BL

and DLBCL (Testoni et al., 2015). Furthermore, ETS1 deregulation was shown to contribute

to pathogenesis in DLBCL (Bonetti et al., 2013). Moreover, ETS1 is a substrate of ERK (Yoon

and Seger, 2006; Plotnik et al., 2014).

Although the NFκBmembers cRel and p65 were already shown to activate the MIR23A cluster

in a T cell leukemic cell line (Rathore et al., 2012), initial stimulation experiments did not support

these findings for DLBCL cell line U2932 R1. In detail, the activation of CD40 signaling and

LPS stimulation, which predominantly activate NFκB signaling, did not result in an activation

of the MIR23A cluster in U2932 R1 and BL-2 (fig. 3.1 and 3.3). However, the CD77 positive

GCBs responded to CD40L stimulation with an increase of MIR23A expression, showing that

NFκB signaling might activate the MIR23A cluster in healthy GCBs, but not in the DLBCL cell

line U2932 R1.

In summary, this study shows for the first time, that BCR dependent MEK/ERK signaling ac-

tivates the MIR23A cluster in DLBCL cell lines. The activation of MIR23A cluster in DLBCL

is aberrant compared to healthy GCB cells, suggesting that aberrant BCR signaling might be

responsible for the high MIR23A cluster expression in BL and DLBCL patients.
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4.2. MiR-23a & miR-27a targetome identification in DLBCL

In order to identify the cellular processes in which miR-23a and miR-27a are involved, their

mRNA targets in DLBCL cell line U2932 R1 were analyzed using Ago2-RIP approach. This

led to the identification of 26 novel direct miR-23a and 20 novel direct miR-27a targets for the

DLBCL model cell line U2932 R1. Both, direct (miRNA bound mRNAs) and indirect targets

(differentially expressed genes) identified in this study indicate, that the MIR23A cluster acts

as an onco-miR in DLBCL.

4.2.1. Ago2-RIP assay

Many different methods for the identification of miRNA targets are available, such as in silico

predictions, expression profiling or ribosome profiling, proteomic approaches (stable isotope

labeling with amino acids in cell culture (SILAC)), immunoprecipitation of miRISC proteins

with/without cross-linking and pull-down experiments (Thomson et al., 2011; Martinez-Sanchez

and Murphy, 2013). Each of these methods has its own advantages and disadvantages. No

matter by which means the targets were identified, for each target the downregulation of a

protein by a miRNA has to be validated experimentally.

The Ago2-RIP approach, applied in this study, identifies genome wide direct miRNA-mRNA

interactions mediated within the RISC complex. Furthermore, targets that are targeted by

non-canonical binding of the miRNA can be identified, a great benefit compared to in silico

predictions. Moreover, miRNAs that do not alter the target mRNA levels can be identified. This

is of importance in mammalia, because many miRNAs are thought to mediate mild changes in

mRNA levels, since they are supposed to work as fine tuners, which generate thresholds for

their target mRNAs (Mukherji et al., 2011; Hadjimichael et al., 2016).

A major disadvantage of an Ago2-RIP, as well as for other experimental approaches, is the

ectopic overexpression of the miRNA (miRNA mimics, stable or transient expression vectors).

Unphysiological overexpression might overload the miRNA biogenesis machinery and alter

the composition of different miRNAs incorporated into the RISC complex. This might disturb

other cellular processes not related to the specific miRNA, leading to undesired secondary

effects and false interpretations. Furthermore, low affinity targets might be overrepresented.

Therefore, inhibition of miRNA by an anti-sense miRNAs or miRNA-sponges can help to avoid

these problems. However, it is difficult to determine effective miRNA inhibition, because the

miRNA is sequestered by anti-sense miRNAs or miRNA-sponges, leaving miRNA levels con-

stant.
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In this study, stable overexpression of pre-miR-23a and pre-miR-27a was used. Small RNA

sequencing revealed an overexpression rate of miR-23a of 190-fold compared to control. This

high miRNA levels did not significantly alter the global miRNA expression profile, as shown

by small RNA sequencing of miR-23a overexpressing U2932 R1 pGIPZ clones compared to

control (fig. 3.25 inner ring). However, the composition of miRNAs in Ago2-RIP output samples

could not be analyzed because the RNA amount was not enough for mRNA and small RNA

sequencing.

To gain most reliable results, Ago2-RIP assay was optimized and performed in three inde-

pendent experiments. Most challenging was the aim to obtain enough RNA amounts of high

quality for RNA sequencing. The immunoprecipitation was shown to specifically pull down

Ago2 protein and enrich mature miRNAs (fig. 3.21 and 3.22). Furthermore, the RNA qual-

ity was high after immunoprecipitation (fig. A.4) and sequencing reads could successfully be

mapped against the human genome (fig. 3.23). Three independent experiments were per-

formed to identify possible outliers. Only targets that were at least 2 times enriched compared

to control and had a p-value lower than 0.05 were considered as possible miR-23a or miR-27a

targets, thereby lowering the chance to get unspecific results.

4.2.2. Direct miR-23a and miR-27a targets in DLBCL

The majority of identified targets of miR-23a and miR-27a in DLBCL cell line U2932 R1 harbor

canonical miRNA binding sites for the respective miRNA, showing that the applied Ago2-RIP

approach successfully enriched mRNAs that directly bind to the respective miRNA. All targets,

except of one, harbor at least one canonical 7 mer binding site (table 3.3 and 3.4). The pseu-

dogene EEF1A1P16, which has no canonical binding site, might be targeted by non-canonical

binding of miR-27a. However, since it is not coding for a protein, it was excluded from further

analyses. Interestingly, most identified miR-23a and miR-27a targets were novel in human

cells, indicating that indeed the targetome of a miRNA is context and cell type specific.

4.2.2.1. PUMA and apoptosis

Apoptosis was the only GO term, that was significantly enriched in differential gene expression

analyses of miR-27a overexpressing U2932 R1 pGIPZ clones to controls. Therefore PUMA

(or BBC3) was chosen as a miR-27a candidate for validation on protein level. Furthermore, it

was already described as a miR-23a and miR-27a target in mice upon traumatic brain injury

(Sabirzhanov et al., 2014).

PUMA is a pro-apoptotic protein belonging to the family of BCL-2 homology (BH) domain 3-

only proteins, which mediate canonical mitochondrial apoptosis in response to intrinsic stress,
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such as DNA damage (Lomonosova and Chinnadurai, 2008). In response to cellular stress

p53 is activated, which in turn induces PUMA. In a next step PUMA activates pro-apoptotic

BH domain proteins, such as Bax and Bak, which subsequently cause permeabilization of

mitochondrial outer membrane and the release of pro-apoptotic molecules from mitochondria

(Cytochrome c and apoptosis inducing factor (AIF)) resulting in controlled cell death (Shamas-

Din et al., 2011; Ashkenazi, 2008).

The basal level of PUMA is low in U2932 R1 cell line, as expected in a viable and proliferating

cell line. It was therefore not expected, that miR-27a overexpression will not further reduce

miR-27a levels under normal conditions. Indeed, it was reported, that PUMA expression is

silenced as a consequence of DNA methylation in human BL and loss of PUMA induces lym-

phomagenesis in mouse (Garrison et al., 2008; Michalak et al., 2009), supporting the onco-miR

hypothesis for the MIR23A cluster. Furthermore, PUMA levels are lower in BL compared to

healthy controls, while DLBCL patients show similar or higher levels compared to control (fig.

3.40). In order to induce PUMA protein levels, DNA double strand breaks were introduced

by etoposide treatment. This led to the induction of p53, which activates PUMA. Only under

these stress conditions, the miR-27a effect on PUMA-β could be observed. MiR-27a inhib-

ited the induction of PUMA-β in stable overexpressing clones upon etoposide treatment (fig.

3.34). Interestingly, the alpha isoform of PUMA was neither induced by p53, nor inhibited by

miR-27a. Previously, both isoforms were reported to be induced upon p53 in p53-inducible

NSCLC cells (Nakano and Vousden, 2001). The 3’UTRs of both isoforms are identical and

harbor the same canonical miR-27a 8mer binding site and could therefore both be targeted by

miR-27a. PUMA-α is encoded by exon 1a, 2, 3 and 4 while PUMA-β is encoded by exon 1b,

3 and 4. However, no additional canonical 7mer or 8mer miR-27a binding sites can be found

in exons coding for PUMA-β, but not for PUMA-α. This indicates, that miR-27a might target

PUMA-β by a non-canonical binding site within exon 1b, which could be missing in PUMA-α.

Another possibility is, that in principle all PUMA isoforms are targeted by the common binding

site in their 3’UTR, but the PUMA-α isoform is specifically stabilized, e.g. by RNA editing in the

3’UTR. Thus, it can no longer be targeted by miR-27a (Liang and Landweber, 2007; Zhang

et al., 2016).

NOXA is another BH3-only protein, which is induced by p53 and promotes apoptosis in the

same way as PUMA (Ashkenazi, 2008). Previously, Roufayel and colleagues demonstrated

that NOXA is a miR-23a target under heat-stress conditions (Roufayel et al., 2014). This

indicates, that the whole cluster might regulate apoptosis. Furthermore, this might explain

why miR-23a and miR-27a attenuated the ability of U2932 R1 cells to undergo apoptosis upon

etoposide treatment (fig. 3.38). This aspect has to be addressed in further experiments. First

it has to be shown that this effect can be reversed by miRNA inhibition. Secondly, it has to
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be proven whether PUMA-β or NOXA can rescue the attenuated apoptosis of miR-23a and

miR-27a overexpressing cells.

4.2.2.2. LIMK1 and migration

Another newly identified miR-27a target in DLBCL cell line U2932 R1 was LIMK1. It is a

serine/threonine kinase, activated by p21-activated kinase 6 (PAK6). PAKs are kinases, that

are frequently upregulated or hyperactivated in various human cancers (Kumar et al., 2006).

Moreover, it was already shown that PAK6 is a miR-23a target in prostate cancer (Cai et al.,

2014), leading to the hypothesis, that the whole MIR23A cluster might act in the PAK/LIMK

signaling pathway. Indeed LIMK1 levels are lower in BL and DLBCL patients compared to

GCBs, showing a negative correlation to MIR23A cluster expression (fig. 3.39 and 3.40).

LIMK1 could be validated as a miR-27a target in stable and transient overexpressing cells (fig.

3.33). Notably, alsomiR-23a was able to decrease LIMK1 protein levels. This can be explained

due to three 7mer1A binding sites for miR-23a in the CDS of LIMK1 mRNA. However, this

raises the question, why LIMK1 was not found in the miR-23a-Ago2-RIP. Indeed, LIMK1 was

shown to be a target for the paralogous miR-27b in non-small cell lung cancer (NSCLC) (Wan

et al., 2014). MiR-27b has the identical seed region to miR-27a, thus targeting presumably the

same mRNAs.

LIMK1 phosphorylates and thereby inactivates actin depolymerizing factor (ADF)/Cofilin (Ar-

ber et al., 1998), which regulates actin dynamics to modulate cell polarity and motility. LIMK1

is therefore involved in cancer cell invasion and metastasis. Unphosphorylated Cofilin binds

to actin filaments (f-actin) and induces fragmentation of the filament and depolymerisation of

the pointed end of the filament (Bailly and Jones, 2003). This increases the actin filament

turnover resulting in the generation of barbed ends that subsequently form lamellipodial pro-

trusions, which are required for directed cell migration (Bailly and Jones, 2003; Nishita et al.,

2005). Phosphorylation of Cofilin inhibits the ability of Cofilin to bind to f-actin and to generate

barbed ends (Zebda et al., 2000). It was shown that overexpression of LIMK1 or constitutive

active LIMK1 led to high levels of P-Cofilin, which inhibited cell polarity and the formation of

lamellipodia (Zebda et al., 2000; Dawe et al., 2003). Therefore, the downregulation of LIMK1

by miR-27a might lead to unphosphorylated Cofilin, which increases cell polarity and migra-

tory potential. Enhanced cell migration might result in dissemination of the primary tumor and

the formation of distant secondary tumors. Although, very hypothetical, this might support the

onco-miR hypothesis for the MIR23A cluster.

However, there are also studies showing that miR-23a inhibits migration and invasion by tar-

geting PAK6 in prostate cancer (Cai et al., 2014). Downregulation of PAK6 led to low P-LIMK1

and consequently low P-Cofilin levels (Cai et al., 2014). In contrast to other studies, were phos-
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phorylated Cofilin abolished cell migration (Zebda et al., 2000; Dawe et al., 2003; Nishita et al.,

2005), in this study unphosphorylated Cofilin also abolished migration and invasion (Cai et al.,

2014). This paradoxon was not addressed by the authors. Moreover, another study reported

similar findings: the inhibition of LIMK1 by a cell-permeable peptide led to unphosphorylated

Cofilin and to impairedmigration of Jurkat cells (Nishita et al., 2002). These observations show,

that actin dynamics are very sensitive to perturbations in protein concentration. Possibly the

balance of P-Cofilin to Cofilin or the correct distribution of Cofilin within the cell determines

whether a cell responds to a stimulus with cell polarity and consequently directed migration or

not.

LIMK1 does not only regulate actin dynamics, but also microtubule dynamics during mitosis.

In detail, it was shown to mediate microtubule disassembly by phosphorylation of p25 (also

known as tubulin polymerization promoting protein (TPPP)) (Acevedo et al., 2007). TPPP/p25

is responsible for correct spindle formation during mitosis (Tirián et al., 2003). Moreover, it

was shown that LIMK1 mediated phosphorylation of Cofilin was also implicated in accurate

spindle orientation during mitosis (Chakrabarti et al., 2007; Kaji et al., 2008). Incorrect spindle

formation might lead to unequal distribution of chromosomes to the daughter cells

(Bakhoum and Compton, 2012). However, chromosomal instability is not a common feature

of lymphomas.

SinceWan et al. showed, that high miR-27b levels downregulated LIMK1 and thereby inhibited

cell invasion as well as cell growth (Wan et al., 2014), it would be interesting to check in future

studies whether miR-27a has the same effect in DLBCL.

4.2.2.3. VRK3 and MEK/ERK signaling

ThemiR-23a target candidate VRK3 was of special interest in this study, because it is known to

be involved in negative regulation of ERK (Kang and Kim, 2006). Because MEK/ERK signaling

was identified in this study to activate the MIR23A cluster, VRK3 might therefore be involved

in a feedback loop of MIR23A activation upon BCR stimulation.

VRK3 is a serine/threonine kinase, mainly located in the ER and the nucleus (Nichols and

Traktman, 2004), which binds and activates vaccinia H1-related (VHR) (Kang and Kim, 2006),

also known as dual-specificity phosphatase 3 (DUSP3). DUSP3 is a nuclear phosphatase

that specifically de-phosphorylates and thereby inactivates ERK (Kang and Kim, 2006). In-

terestingly, another dual-specificity phosphatase DUSP5, which was previously reported to

de-phosphorylate ERK1 (Ishibashi et al., 1994) (Ueda et al., 2003), was found to be enriched

in the miR-23a Ago2-RIP, indicating that miR-23a might regulate several levels of ERK feed-

back loop. Targeting ERK dephosphorylating enzymes might lead to enhanced ERK signaling,
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which would reinforce the MIR23A cluster expression, creating a positive feedback loop for the

MIR23A cluster.

Strikingly, miR-23a did not decrease VRK3 protein levels in stable overexpressing U2932 R1

cell lines under normal conditions. Although VRK3 harbors two miR-23a binding sites in the

3’UTR and five in the CDS, the VRK3 protein levels were not affected in stable overexpressing

cells. Indeed, VRK3 protein levels are already very low and may not be further decreased

by miRNA action. Maybe miR-23a is responsible to hold VRK3 protein levels on a constant

low level. Increased VRK3 levels would lead to decreased survival signals by BCR signaling,

being a disadvantage for the tumor cell. Indeed, patient samples show, that VRK3 levels in

BL and DLBCL patients are lower compared to GCB controls. This supports the onco-miR

hypothesis for the MIR23A cluster. It is possible, that the inhibitory function of the miRNA can

not be observed until VRK3 levels are induced in response to a certain stimulus. The same

was observed for the miR-27a target PUMA. A reasonable stimulus might be the activation

of the BCR, which activates ERK, that subsequently should be dephosphorylated by VRK3

activated DUSP3 activity.

However, it can not be excluded, that VRK3might be a false positive miR-23a target candidate,

identified by secondary interactions during immunoprecipitation. Direct physical interaction of

miR-23a to VRK3 mRNA can be analyzed by Luciferase reporter gene assays and mutation

of miRNA binding sites in future studies.

4.2.2.4. Zinc finger proteins

12 of 25 novel identified miR-23a targets were zinc finger proteins (ZNF), that contain a DNA

binding ZNF domain and therefore potentially act as transcription factors. All these identified

ZNFs belong to the same protein family: KRAB-C2H2-ZNFs. Members of this family com-

prise a high sequence homology, which might be an explanation why so many are targeted

by miR-23a. This sequence homology makes it difficult to analyze ZNF expression by qRT-

PCR or Western Blot. The identified ZNFs belong to two separate ZNF clusters, that were

generated due to gene duplication during evolution: ZNF cluster 269 on chromosome 19 and

ZNF cluster 114 on chromosome 7. Notably, many ZNFs as well as other miR-23a targets are

encoded on chromosome 19, where also the MIR23A cluster itself is encoded (see section

4.2.3). Interestingly, all identified ZNFs were downregulated in BL and DLBCL patients com-

pared to healthy controls (fig. 3.40d), indicating that they might have cooperative or redundant

functions. Indeed, ZNFs belonging to the KRAB ZNF family were reported to be highly ex-

pressed in T-lymphoid cells (Bellefroid et al., 1993). Since the MIR23A cluster was reported to

suppress the B cell development (Kong et al., 2010) one might speculate, that this inhibition is

mediated through the downregulation of these ZNFs.



114 4 | Discussion

4.2.3. Enrichment of targets on chromosome 19

More than one third (37%), namely 17 out of 46 newly identified miR-23a and miR-27a tar-

gets in the DLBCL model cell line U2932 R1, are encoded on chromosome 19, where also

the MIR23A cluster is encoded (fig. 3.28). A closer look at the location of the targets on chro-

mosome 19 reveals that they are encoded on both arms of the chromosome, although this

finding is referred to as “clustering of targets”. This study could show, that it is not due to an

overrepresentation of expressed transcripts from chromosome 19 in the used cell line or due

to a higher percentage of potential miR-23a or miR-27a binding sites on transcripts from chro-

mosome 19. This indicates, that it might not just be a coincidence, but that there might be a

biological mechanism underlying this observation.

It is well known that during interphase the chromosomes are arranged in a highly defined

manner within the nucleus (Marshall et al., 1997). Furthermore, fluorescent in situ hybridiza-

tion (FISH) analyses and chromosome conformation capture (C3) assays revealed, that there

is a correlation between chromatin topology and gene activity (Sexton and Cavalli, 2015). It

would therefore be of interest to find out whether the MIR23A cluster is in near proximity of its

targets. Chen et al. addressed this question on a global scale by Chromatin Interaction Analy-

sis by Paired-End Tag Sequencing (ChIA-PET) analyses, where they identified the interactions

of miRNA genes with target genes (Chen et al., 2014). They could show that miRNA genes

and protein coding genes were organized in functionally compartmentalized chromatin com-

munities that are expressed together when they are spatially co-located (Chen et al., 2014).

Furthermore, miRNA-target interactions were enriched between communities with functional

homogeneity (Chen et al., 2014). Instead, no miRNA-target interactions were detected when

miRNA and target originated from the same community (Chen et al., 2014). These chromatin

communities were related to topologically associated domain (TAD) structures of the genome

(Chen et al., 2014; Pombo and Dillon, 2015). This might represent a mechanism by which a

miRNA is co-expressed with its targets.

Another mechanism which could explain the co-expression would be a coordinated activation

of the MIR23A cluster together with its targets by the same transcription factor, as suggested in

other studies (Wang et al., 2011; Le et al., 2014). Indeed, the MIR23A cluster and most of the

identified miR-23a and miR-27a target harbor putative myeloid zinc finger 1 (MZF1) binding

sites in their promoter regions. MZF1 was already implicated to play a role in various cancer

entities (Mudduluru et al., 2010).

Furthermore, miRNAs as well as the miRNA processing machinery and Ago2 protein are

present in the nucleus (Hwang et al., 2007; Park et al., 2010). It was shown, that a long

non coding RNA (lncRNA) silences gene expression at certain loci by the recruitment of tran-

scriptional repressors, such as the polycomb repressive complex 2 (PRC2) (Roberts, 2014).
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Silencing of the lncRNA by a miRNA disrupts this complex, leading to the activation of the tar-

get gene (Roberts, 2014). Since the Ago2-RIP identified several lncRNAs (RP11-1017G21.5,

CTC-246B18.10 and KIAA1467), this might be an interesting aspect for further investigations,

especially because CTC-246B18.10 is also expressed on chromosome 19.

4.3. Biological function & global effects of MIR23A cluster in DLBCL

Targetome identification via Ago2-RIP assay in DLBCL cell line U2932 R1 revealedmany novel

and direct targets for miR-23a and miR-27a, from which two (LIMK1 and PUMA) were verified

on protein level by miRNA overexpression experiments.

Furthermore, this study showed, that miR-23a and miR-27a are both implicated in the regu-

lation of apoptosis. In detail, miR-23a and miR-27a attenuated the ability of DLBCL cell line

U2932 R1 to undergo apoptosis when DNA damage was induced (fig. 3.38). This strongly

supports the onco-miR hypothesis for the MIR23A cluster, which was tested in this study. In

addition, this observation could contribute to an explanation for the worse overall survival rate

of patients with higher miR-23a levels. Cells that have a lower ability to undergo apoptosis,

might not respond to chemotherapy. Future experiments have to address, whether PUMA is

indeed the key player mediating this observation. Indications that this cluster is involved in

multidrug resistance came also from Zhang et al., who showed that miR-27a downregulation

increased the sensitivity of eosphageal cancer to undergo apoptosis (Zhang et al., 2010).

Interestingly, identified miR-27a target LIMK1, which is mainly known to function in migration,

was also shown to be cleaved by caspase-3 like proteases, generating an N-terminally trun-

cated, constitutively active fragment, that induces membrane blebbing, a common feature of

apoptotic cells (Tomiyoshi et al., 2004).

Besides these direct targets, miR-23a and miR-27a overexpression also affected global gene

expression profiles of U2932 R1. 904 genes were differentially expressed between miR-27a

overexpressing and ns ctrl cell line. These genes are referred to as indirect miRNA targets.

GO-term enrichment analyses of these indirect target genes revealed a significant enrichment

for gene sets associated with apoptosis (fig. 3.36). This indicates that the direct miR-27a

target PUMA is definitely not the only player mediating apoptosis in the context of miR-27a

overexpressing DLBCL cells, as expected for amiRNA that can have several direct and indirect

targets. Furthermore, the onco-miR hypothesis is supported by this results.

GO-term enrichment analyses of the 651 differentially expressed genes of miR-23a overex-

pressing vs. ns ctrl U2932 R1 cells revealed an enrichment of many different cellular processes

(fig. 3.35). The majority is associated with the ribosome and proteinbiosynthesis, because
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many ribosomal proteins are differentially regulated. Indeed, cancer cells frequently exhibit

increased ribosome biogenesis (Takada and Kurisaki, 2015).

Strikingly, GO-term enrichment analyses of the overlap of indirect targets of miR-23a with indi-

rect targets of miR-27a did not show any significant enriched cellular process. This indicates,

that both miRNAs might function in different cellular processes and do not have any coopera-

tive effect. However, this is contradictory to the observation, that both, miR-23a and miR-27a,

attenuate the ability of U2932 R1 cells to undergo apoptosis. GO-term enrichment analyses

using the hypergeometrical test has some limitations. It does not include the direction and

fold change of gene expression changes. If a certain process is e.g. targeted by the miRNA

directly, one might expect, that the differentially expressed genes involved in this process are

downregulated. This is not covered by GO-term analyses. Moreover, this analyses strongly

depend on the information listed in the provided gene sets. Thus, it is possible that many iden-

tified indirect targets are not functionally described yet and are therefore not found in these

GO-terms gene sets.

In summary, functional analyses showed that the MIR23A cluster is involved in the regulation

of apoptosis. High levels of miR-23a and miR-27a decreased the ability of the DLBCL model

cell line to undergo apoptosis. This supports the onco-miR hypothesis for the MIR23A cluster

and might be one possible explanation for the worse outcome of DLBCL patients with higher

miR-23a levels.



5. Summary and Conclusion

The MIR23A cluster, encoding miR-23a, miR-27a and miR-24 is aberrantly activated in BL and

DLBCL cells compared to their normal counterparts, the germinal center B cells. This study

identified the BCR signaling as a general mechanism in BL and DLBCL cell lines responsi-

ble for the induction of the MIR23A cluster. Since normal GCBs did not increase MIR23A

cluster levels in response to BCR signaling, it is hypothesized that aberrant BCR signaling to-

gether with factors of the microenvironment might cause high MIR23A cluster expression in BL

and DLBCL patients compared to healthy controls. As the main BCR-downstream signaling

cascade mediating MIR23A cluster activation the MEK/ERK signaling pathway was identified.

Downstream transcription factors ELK1 and c-MYC were not involved in the activation of the

MIR23A cluster in DLBCL cell lines.

Ago2-RIP assay followed by RNA-sequencing identified 46 novel direct miR-23a and miR-27a

targets in a DLBCL model cell line. Interestingly, 37% of the newly identified targets were en-

coded on chromosome 19. Moreover, LIMK1 and PUMA-β were validated as direct miR-27a

targets being downregulated on protein level upon miR-27a overexpression. Bioinformatical

prediction of MIR23A cluster function based on DEG upon miR-27a overexpression in DL-

BCL cell line U2932 R1 indicated, that the MIR23A cluster might regulate apoptosis. Indeed,

this could be verified in functional analyses. Hence, this study demonstrated that miR-23a

and miR-27a attenuate the ability of DLBCL cells to undergo apoptosis in response to DNA

damage. This might be one possible explanation why DLBCL patients with high miR-23a ex-

pression levels have a worse overall survival rate than patients with low levels, supporting the

onco-miR hypothesis for the MIR23A cluster.
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A.Supplementals

Figure A.1.: GFP expression profile of U2932 R1 pGIPZ clones
FACS analyses of GFP expression profile of stable transduced U2932 R1 pGIPZ clones. 10000 counts were

measured. Cells were gated to the living, PI negative population. Percentage of living green M1 population cells

are depicted.
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Figure A.2.: Western blot characterization of U2932 R1 pGIPZ clones
Expression of Ago2, c-MYC and Bcl-6 in U2932 R1 pGIPZ miR-23a/-27a and ns ctrl overexpressing clones com-

pared to the parental clone U2932 R1 and sister clone U2932 R2. (20 μg total protein per well, one representative

blot of three is shown)
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Figure A.3.: MTT Assay for U2932 R1 upon Ibrutinib and Trametinib treatment
U2932 R1 was treated with inhibitor dilution series for 24h and 48h and cell viability was assesed using MTT assay.

Trametinib: 12800 - 50 nM; Ibrutinib 1280 - 5 nM; 0 nM = DMSO ctrl

Figure A.4.: High quality of total RNA after Ago-RIP
Bioanalyzer total RNA Chip analyzes for quality control of Ago2-RIP input and output samples of U2932 R1

miR-23a1. The 25 nt peak represents the marker. In both samples the 18S and 28S RNA peaks are clear and

distinct. No RNA degradation could be observed. The RNA Integrity Numbers (RIN) indicate high RNA quality.
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Table A.1.: Differentially expressed genes of miR-23a1/ns crtl1 vs. miR-27a1/ns ctrl1

Gene ID Gene name Description

ENSG00000207980 MIR23A microRNA 23a

ENSG00000111052 LIN7A lin-7 homolog A (C. elegans)

ENSG00000163618 CADPS Ca++-dependent secretion activator

ENSG00000166503 HDGFRP3 Hepatoma-derived growth factor-related protein 3

ENSG00000146938 NLGN4X neuroligin 4, X-linked

ENSG00000196482 ESRRG estrogen-related receptor gamma

ENSG00000113140 SPARC secreted protein, acidic, cysteine-rich (osteonectin)

ENSG00000253941 IGHVII-51-2 immunoglobulin heavy variable (II)-51-2 (pseudogene)

ENSG00000128641 MYO1B myosin IB

ENSG00000179455 MKRN3 makorin ring finger protein 3

ENSG00000169862 CTNND2 catenin (cadherin-associated protein), delta 2

ENSG00000254167 IGHVIII-51-1 immunoglobulin heavy variable (III)-51-1 (pseudogene)

ENSG00000151623 NR3C2 nuclear receptor subfamily 3, group C, member 2

ENSG00000164362 TERT telomerase reverse transcriptase

ENSG00000100385 IL2RB interleukin 2 receptor, beta

ENSG00000168672 FAM84B family with sequence similarity 84, member B

ENSG00000057657 PRDM1 PR domain containing 1, with ZNF domain

ENSG00000184635 ZNF93 zinc finger protein 93

ENSG00000111249 CUX2 cut-like homeobox 2

ENSG00000203706 SERTAD4-AS1 SERTAD4 antisense RNA 1

ENSG00000185668 POU3F1 POU class 3 homeobox 1

ENSG00000124491 F13A1 coagulation factor XIII, A1 polypeptide

ENSG00000048740 CELF2 CUGBP, Elav-like family member 2

ENSG00000213967 ZNF726 zinc finger protein 726

ENSG00000126353 CCR7 chemokine (C-C motif) receptor 7

ENSG00000076356 PLXNA2 plexin A2

ENSG00000188868 ZNF563 zinc finger protein 563

ENSG00000207827 MIR30A microRNA 30a

ENSG00000182253 SYNM synemin, intermediate filament protein

ENSG00000213626 LBH limb bud and heart development

ENSG00000105974 CAV1 caveolin 1, caveolae protein, 22kDa

ENSG00000171291 ZNF439 zinc finger protein 439

ENSG00000163590 PPM1L protein phosphatase, Mg2+/Mn2+ dependent, 1L

ENSG00000198369 SPRED2 sprouty-related, EVH1 domain containing 2

ENSG00000156535 CD109 CD109 molecule

ENSG00000137285 TUBB2B tubulin, beta 2B class IIb

ENSG00000114790 ARHGEF26 Rho guanine nucleotide exchange factor (GEF) 26

ENSG00000173083 HPSE heparanase

ENSG00000064692 SNCAIP synuclein, alpha interacting protein

ENSG00000148600 CDHR1 cadherin-related family member 1

ENSG00000124785 NRN1 neuritin 1

ENSG00000183813 CCR4 chemokine (C-C motif) receptor 4

ENSG00000173198 CYSLTR1 cysteinyl leukotriene receptor 1

ENSG00000118985 ELL2 elongation factor, RNA polymerase II, 2

ENSG00000119138 KLF9 Kruppel-like factor 9

ENSG00000163518 FCRL4 Fc receptor-like 4

ENSG00000105997 HOXA3 homeobox A3

ENSG00000249679 RP11-279O9.4

ENSG00000106004 HOXA5 homeobox A5

ENSG00000081818 PCDHB4 protocadherin beta 4

ENSG00000150593 PDCD4 programmed cell death 4 (neoplastic transformation inhibitor)

ENSG00000005513 SOX8 SRY (sex determining region Y)-box 8

ENSG00000248905 FMN1 formin 1

ENSG00000160050 CCDC28B coiled-coil domain containing 28B

ENSG00000235159 RP6-109B7.4

Continued on next page
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Gene ID Gene name Description

ENSG00000159618 GPR114 G protein-coupled receptor 114

ENSG00000186026 ZNF284 zinc finger protein 284

ENSG00000196664 TLR7 toll-like receptor 7

ENSG00000142178 SIK1 salt-inducible kinase 1

ENSG00000072694 FCGR2B Fc fragment of IgG, low affinity IIb, receptor (CD32)

ENSG00000121742 GJB6 gap junction protein, beta 6, 30kDa

ENSG00000164484 TMEM200A transmembrane protein 200A

ENSG00000072110 ACTN1 actinin, alpha 1

ENSG00000188596 CFAP54 cilia and flagella associated 54

ENSG00000158715 SLC45A3 solute carrier family 45, member 3

ENSG00000124942 AHNAK AHNAK nucleoprotein

ENSG00000078900 TP73 tumor protein p73

ENSG00000164695 CHMP4C charged multivesicular body protein 4C

ENSG00000179431 FJX1 four jointed box 1 (Drosophila)

ENSG00000187676 B3GALTL beta 1,3-galactosyltransferase-like

ENSG00000224565 RP1-148H17.1

ENSG00000184702 SEPT5 septin 5

ENSG00000177628 GBA glucosidase, beta, acid

ENSG00000115297 TLX2 T-cell leukemia homeobox 2

ENSG00000135631 RAB11FIP5 RAB11 family interacting protein 5 (class I)

ENSG00000082497 SERTAD4 SERTA domain containing 4

ENSG00000138760 SCARB2 scavenger receptor class B, member 2

ENSG00000260022 LA16c-306A4.1

ENSG00000124813 RUNX2 runt-related transcription factor 2

ENSG00000238287 RP11-656D10.3

ENSG00000134986 NREP neuronal regeneration related protein

ENSG00000249004 PRMT5P1 protein arginine methyltransferase 5 pseudogene 1

ENSG00000118515 SGK1 serum/glucocorticoid regulated kinase 1

ENSG00000121753 BAI2 brain-specific angiogenesis inhibitor 2

ENSG00000204954 C12orf73 chromosome 12 open reading frame 73

ENSG00000158792 SPATA2L spermatogenesis associated 2-like

ENSG00000189171 S100A13 S100 calcium binding protein A13

ENSG00000075420 FNDC3B fibronectin type III domain containing 3B

ENSG00000151150 ANK3 ankyrin 3, node of Ranvier (ankyrin G)

ENSG00000176771 NCKAP5 NCK-associated protein 5

ENSG00000003147 ICA1 islet cell autoantigen 1, 69kDa

ENSG00000225724 LL22NC03-80A10.11

ENSG00000273619 RP5-908M14.9

ENSG00000069702 TGFBR3 transforming growth factor, beta receptor III

ENSG00000071051 NCK2 NCK adaptor protein 2

ENSG00000136929 HEMGN hemogen

ENSG00000246095 LINC01096 long intergenic non-protein coding RNA 1096

ENSG00000140931 CMTM3 CKLF-like MARVEL transmembrane domain containing 3

ENSG00000182175 RGMA repulsive guidance molecule family member a

ENSG00000185792 NLRP9 NLR family, pyrin domain containing 9

ENSG00000137266 SLC22A23 solute carrier family 22, member 23

ENSG00000064393 HIPK2 homeodomain interacting protein kinase 2

ENSG00000175741 RWDD4P2 RWD domain containing 4 pseudogene 2

ENSG00000177494 ZBED2 zinc finger, BED-type containing 2
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Figure A.5.: FACS analysis of AnnexinV/7AAD staining of U2932 R1 clones upon etoposide treat-

ment
U2932 R1 pGIPZ cell lines overexprssing a non silencing control, miR-23a or miR-27a were treated for 16h with

100 μM etoposide to induce apoptosis. Cells were double stained with AnnexinV-PE and 7AAD prior to FACS

analysis. (one representative experiment of three is shown)
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