
A Framework for Property-preserving
Encryption in Wide Column Store

Databases

Dissertation

zur Erlangung des Doktorgrades
Doctor rerum naturalium (Dr. rer. nat.)

der mathematisch-naturwissenschaftlichen Fakultäten
der Georg-August-Universität zu Göttingen

im Promotionsprogramm Computer Science (PCS)
der Georg-August-University School of Science (GAUSS)

vorgelegt von

Tim Waage
aus Nordhausen

Göttingen
im Mai 2017

Betreuungsausschuss

Erster Betreuer Dr. Lena Wiese
Institut für Informatik, Georg-August-Universität Göttingen

Zweiter Betreuer Prof. Dr. Carsten Damm
Institut für Informatik, Georg-August-Universität Göttingen

Prüfungskommision

Referent Dr. Lena Wiese
Institut für Informatik, Georg-August-Universität Göttingen

Koreferent Prof. Dr. Carsten Damm
Institut für Informatik, Georg-August-Universität Göttingen

weitere Mitglieder

Prof. Dr. Marcus Baum
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Jens Grabowski
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Dieter Hogrefe
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Stephan Waack
Institut für Informatik, Georg-August-Universität Göttingen

Tag der mündlichen Prüfung: 05.07.2017

Abstract

While traditional database software usually relies on the relational SQL model,
a lot of alternative approaches, commonly referred to as NoSQL (short for “Not
only SQL”) databases, occurred within the last years to meet the new require-
ments of the so called “Web 2.0” services, that are hard to achieve with SQL
based systems, especially in terms of availability, partition tolerance and scala-
bility.

Nowadays, cloud storage providers widely utilize a particular sub-category of
NoSQL databases, namely wide column stores, for outsourcing data, whether
it is for backups or reducing operational costs. Unfortunately security was not
a primary concern of the NoSQL systems designers. In most cases some sort
of front end is assumed to take care of authentication, user management, etc.
Hence these remote cloud servers are not trustworthy when it comes to storing
sensitive data, since at least the administrators have full access. However, data
confidentiality can still be achieved by using encryption before outsourcing the
data, but that limits the options for interaction, since the encrypted data lacks
properties of the plaintext data that the database systems rely on. For instance
equality checks or order comparisons are either not possible any more or lead
to wrong results.

Various schemes have been proposed for property-preserving encryption in
order to overcome these issues, allowing a database to process queries over en-
crypted data. Only very few of them can be considered feasible or have ever
been practically implemented. Beside rare exceptions none of them have been
tested with existing database systems at all.

Hence, this thesis presents a simple to use a application programming interface
that allows using property-preserving encryption in unmodified wide column
stores. Therefore appropriate schemes have been identified and implemented.
It hides the complexity of the encryption and decryption process and allows
various adjustments on concrete use cases in order to achieve a maximum of
security, functionality and performance.

Zusammenfassung

Während traditionelle Datenbankanwendungen oftmals auf relationalen Ta-
bellen und SQL basieren, entstanden in den letzten Jahren viele alternative
Ansätze, die häufig unter dem Sammelbegriff NoSQL (kurz für “Not only SQL”)
zusammengefasst werden. Ihr Bestreben ist es hauptsächlich den Anforderungen
moderner “Web 2.0” Services gerecht zu werden, die mit SQL Datenbanken nur
schwer erreicht werden können, vor allem in punkto Hochverfügbarkeit, Partiti-
onstoleranz und Skalierbarkeit.

Heutzutage nutzen Cloud-Speicher Anbieter insbesondere NoSQL Technolo-
gien einer bestimmten Kategorie, namentlich der sogenannten Spaltenfamili-
endatenbanken. Sie ermöglichen die Auslagerung von Daten in die Cloud, sei
es für Backups oder einfach um die eigenen laufenden (Server-)Kosten zu sen-
ken. Leider wurden diese Technologien jedoch nicht unter Sicherheitsaspekten
konzipiert. So wird in der Regel angenommen, dass der Datenbank ein Front-
End vorgeschaltet ist, welches sich um Authentifizierung, Nutzerverwaltung etc.
kümmert. Der entfernte NoSQL Datenbankserver ist also erst einmal nicht ver-
trauenswürdig, wenn es darum geht sensible Daten zu speichern. So können
beispielsweise dessen Administratoren den Datenbestand ungehindert einsehen.
Einen wirksamen Schutz bietet in diesem Fall die Verschlüsselung der Daten
noch bevor diese in der Datenbank abgelegt werden. Leider büßt die Datenbank
damit aber auch Funktionalität ein, denn den Schlüsseltexten mangelt es in der
Regel an bestimmten Eigenschaften, welche die Datenbank zur Beantwortung
von Anfragen benötigt. So ändert sich beispielsweise die Ordnungsrelation von
numerischen Werten.

Es gibt jedoch viele Ansätze zur Durchführung von Verschlüsselung in einer
Art und Weise, die diese Eigenschaften erhält und somit die Datenbank trotz
Verschlüsselung weiterhin zur Beantwortung von Anfragen befähigt. Nur we-
nige davon sind jedoch praktisch einsetzbar. Implementationen, die auch eine
Nutzbarkeit im Zusammenspiel mit den Datenbanksystemen bringen, existieren
kaum (bzw. in Kontext mit NoSQL Datenbanken gar nicht).

Die vorliegende Arbeit präsentiert daher eine benutzerfreundliche Program-
mierschnittstelle, die es erlaubt eigenschaftsbewahrende Verschlüsselung in un-
modifizierten Spaltenfamiliendatenbanken einzusetzen. Dafür wurden geeignete
Ansätze identifiziert und implementiert. Die Komplexität der Ver- und Ent-
schlüsselungsprozesse bleibt dem Nutzer dabei verborgen, umfangreiche Möglich-
keiten zur Anpassung an konkrete Nutzungsszenarien sind aber trotzdem vor-
handen, um ein Maximum an Sicherheit, Funktionalität und Geschwindigkeit
zu erzielen.

Contents

1. Introduction 1
1.1. Problem and Motivation . 2
1.2. Thesis Contributions . 4
1.3. Thesis Impact . 5
1.4. Thesis Structure . 6

2. Background 9
2.1. NoSQL Wide Columns Store Databases 10

2.1.1. History . 10
2.1.2. Data Model and Operating Principles 10

2.2. “Cloud” Computing . 14
2.2.1. Technical Cloud Stack . 14
2.2.2. Cassandra and HBase in the Cloud 15

2.3. The Adversary Scenario . 17
2.4. Property-preserving Encryption 17

2.4.1. Cryptography Basics . 18
2.4.2. Searchable Encryption . 20
2.4.3. Order-Preserving Encryption 24
2.4.4. Homomorphic Encryption 26

3. Related Work 31
3.1. Software Architectures . 32

3.1.1. Approaches for Relational Databases 32
3.1.2. Approaches for Non-relational Databases 35
3.1.3. Approaches relying on Fully Homomorphic Encryption . . 37

3.2. Hardware Architectures . 38
3.3. A Related Problem: Data Integrity 39

4. Selecting and Modifying Appropriate Encryption Schemes 43
4.1. Overview . 44

4.2. Deterministic Encryption . 45
4.2.1. Requirements . 45
4.2.2. Applicable Schemes . 45
4.2.3. Inapplicable Schemes . 47

4.3. Order Preserving Encryption . 47
4.3.1. Requirements . 47
4.3.2. Applicable Schemes . 49
4.3.3. Inapplicable Schemes . 54

4.4. Searchable Encryption . 55
4.4.1. Requirements . 55
4.4.2. Applicable Schemes . 57
4.4.3. Inapplicable Schemes . 63

5. Architecture of FamilyGuard 67
5.1. Concepts and Overview . 68
5.2. Managing Encrypted Data on Server Side 70

5.2.1. Onion layers in WCS . 70
5.2.2. Selective Encrypting . 79
5.2.3. Separation of Duties . 79
5.2.4. Table Profiles . 81
5.2.5. Unifying the Data Models of Cassandra and HBase 83

5.3. Required Metadata Structures . 86
5.4. Key Management . 87
5.5. Interacting with the Databases 91

5.5.1. Writing . 91
5.5.2. Querying . 93

5.6. The API . 96
5.6.1. API Methods for Database Interactions 96
5.6.2. API Methods for Decrypted Result Sets 105
5.6.3. API usage . 106

6. Implementation 109
6.1. Overview . 110
6.2. Cryptographic Primitives . 111
6.3. Data Flow . 112

6.3.1. Application Layer and Unified Request Objects 113
6.3.2. Encryption Layer . 115
6.3.3. Transformation Layer . 115

6.4. Extensibility . 116
6.4.1. Other databases . 116
6.4.2. Other PPE schemes . 116

7. Evaluation 119
7.1. Performance . 120

7.1.1. PPE Schemes . 120
7.1.2. API overhead . 127

7.2. Functionality . 134
7.2.1. Apache Cassandra . 134
7.2.2. Apache HBase . 137

7.3. Security . 139
7.3.1. PPE related issues . 139
7.3.2. Onion-Layer-Model Related Issues 141

8. Conclusion 145
8.1. Discussion . 146

8.1.1. Strengths . 146
8.1.2. Limitations/Weaknesses 147

8.2. Future Work . 147
8.3. Summary . 148

A. Appendix - Towards Optimizing Searchable Encryption 153
A.1. Optimizing SWP . 153
A.2. Optimizing SUISE . 154

B. Appendix - Benchmark Queries 157

Bibliography 161

List of Figures

2.1. Technical stack of cloud computing 14

4.1. Average number of samplings required in [100] with increasing
dataset size. 52

4.2. Average number of samplings required per encryption in [100]
with increasing dataset size (the black line represents the average
of 20 runs, as indicated by the grey dots) 53

5.1. Overall architecture of FamilyGuard 69
5.2. Encryption key and IV management of the RND and DET layer 71
5.3. Onions used in FamilyGuard . 73
5.4. Transformation of a plaintext string column into onion-layered

ciphertext columns . 77
5.5. Transformation of a plaintext integer column into onion-layered

ciphertext columns . 78
5.6. Transformation of a plaintext byte blob column into onion-layered

ciphertext columns . 78
5.7. Human resources table of an imaginary company with secret

salary information . 79
5.8. Human resources table of an imaginary company distributed across

two independent databases . 80

6.1. Architecture of FamilyGuard . 113
6.2. URO examples for reading (left) and writing (right) data 114
6.3. URO examples from Figure 6.2 after passing the encryption layer 115

7.1. Time needed for encryption with increasing data set size in Cas-
sandra . 121

7.2. Time needed for encryption with increasing data set size in HBase 122
7.3. Number of (unique) words with increasing size of the data set . . 123
7.4. Time needed for encrypting the data set with increasing size . . . 124

7.5. Time needed for searching the data set with increasing size . . . 125
7.6. Time needed for the searching previously searched words in SUISE126
7.7. Time needed for onion layer encryption in Apache Cassandra . . 129
7.8. Time needed for onion layer encryption in Apache HBase 130
7.9. Query runtime with Apache Cassandra 131
7.10. Query runtime with Apache HBase 132

A.1. performance and disk usage of SWP with increasing n 154
A.2. size of γf with growing length of s 155

List of Tables

2.1. Architectural principles of Apache Cassandra and Apache HBase 12

4.1. Overview about the PPE schemes discussed and used in this thesis 45
4.2. Evaluation of the practical feasibility of the OPE schemes dis-

cussed in this chapter based on the criteria introduced in section
4.3.1, ordered chronologically by date of publication 50

4.3. Evaluation of the practical feasibility of the SE schemes discussed
in this chapter based on the criteria introduced in section 4.4.1,
ordered chronologically by date of publication 58

5.1. Overview about the table profiles and their corresponding PPE
schemes . 82

5.2. List of metadata items maintained by FamilyGuard for every
keyspace . 87

5.3. List of metadata items maintained by FamilyGuard for every
physical table . 88

5.4. List of metadata items maintained by FamilyGuard for every col-
umn . 90

6.1. Cryptographic primitives used in this thesis 112

7.1. Comparison of overall query runtimes for Q1.x - Q5.x in seconds,
the profile for optimized reading vs. unencrypted storage 133

Acronyms

ACID Atomicity, Consistency, Isolation, Durability

AES Advanced Encryption Standard

AMI Amazon Machine Image

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AWS Amazon Web Services

CAP Consistency, Availability, Partition Tolerance

CBC Cipher Block Chaining

CCA Chosen Ciphertext Attack

CKA Chosen Keyword Attack

CPA Chosen Plaintext Attack

CQL Cassandra Query Language

DBMS Database Management System

DES Data Encryption Standard

DET Deterministic Encryption

EMR Elastic MapReduce

FHE Fully Homomorphic Encryption

FKS Fredman, Komlos and Szemeredi

FPE Format-preserving Encryption

FPGA Field Programmable Gate Array

GSM Global System for Mobile Communications

HDFS Hadoop Distributed File System

IaaS Infrastructure-as-a-Service

IT Information technology

IV Initialization Vector

JCA Java Cryptography API

JCE Java Cryptography Extension

JCEKS Java Cryptography Extension Key Store

mOPE modular Order-preserving Encryption

NoSQL Not only SQL

OACIS Optimal Average-Complexity Ideal-Security

ODBC Open Database Connectivity

OCPA Ordered Chosen Plaintext Attack

OPE Order-preserving Encryption

OPF Order-preserving Function

P2P Peer-to-Peer

PaaS Platform-as-a-Service

POPF Pseudo Random Order-preserving Function

PPE Property-preserving Encryption

PRF Pseudo Random Function

PRG Pseudo Random Generator

RAM Random Access Memory

RC4 Ron’s Code 4

RC6 Ron’s Code 6

RND Random Encryption

ROA Random Offset Addition

RSS Random Subrange Selection

RUS Random Uniform Sampling

SaaS Software-as-a-Service

SCPU Secure Co-Processor Unit

SDK Software Development Kit

SE Searchable Encryption

SEM Semantic Security

SQL Structured Query Language

SSH Secure Shell

SUISE Securely Updating Index-based Searchable Encryption

SWIFT Society for Worldwide Interbank Financial Telecommunication

SWP Song, Wagner and Perrig

TPC Transaction Processing Performance Council

TTL Time-to-Live

UDF User Definded Function

URO Unified Request Object

WCS Wide Column Store

WOW Window One-Wayness

XML eXtensible Markup Language

XOR eXclusive OR

1
Introduction

This chapter presents the problem statement and summarizes the contributions
of this thesis. It then lists the author’s publications, the majority of which
presents intermediate results. Finally it outlines the structure of the thesis.

Contents

1.1. Problem and Motivation 2

1.2. Thesis Contributions 4

1.3. Thesis Impact . 5

1.4. Thesis Structure . 6

1

1.1. Problem and Motivation

In times of “Big Data” and the “Web 2.0” [67] traditional SQL-based database
services have their difficulties with the changing demands. On the one hand
there are new performance requirements. While SQL environments usually fo-
cus on being ACID [44] compliant, it is much more important for modern web
services to deliver high availability, consistency and (since they naturally run
in distributed environments) to be tolerant regarding network partitions in the
underlying infrastructure [20]. On the other hand there are different demands
regarding the data structures themselves. SQL tables are not well suited to rep-
resent loosely structured data items like they are typical for today’s webservices.

As NoSQL (Not only SQL) databases [46, 96] were designed for meeting those
new requirements, they attracted more and more attention over the last years.
Many of the global players on the market developed their own solutions, espe-
cially in the sub-category of so called wide column stores (WCS). Examples like
Google’s Bigtable [24](used for instance in the Google search engine, Google
Maps, Google Earth, Youtube) or Facebook’s Cassandra [57] (used for instance
in Twitter, Reddit and Facebook itself until 2011) show, that almost everybody
uses services in their daily life, that heavily utilize NoSQL WCSs.

Nowadays it is also common to use WCSs directly. Countless cloud database
providers offer flexible on-demand services for running Cassandra or other WCS
databases remotely in their clusters. Popular examples are Google Cloud Plat-
form, Microsoft Azure, Amazon EC2 (Amazon Web Services) and Rackspace.
All of them even simplify the usage of WCSs by providing web interfaces or pre-
configured images. Thus, there are a lot of easily usable options for outsourcing
data to clouds services based on WCSs.

The benefits of doing so are well known. In particular, outsourcing database
hosting to a cloud service can lead to lower costs by increasing the utilization of
an IT infrastructure and sharing administrative staff. Various scenarios profit,
starting from business, research and health care applications to social media and
government scenarios. Hence the goal of many organizations today is to push
as much data and as many computations into the cloud as possible.

However, storing and processing sensitive data on infrastructures provided by
a third party increases the risk of unauthorized disclosure if the infrastructure
is compromised by an adversary, which is a key problem. There are numerous
examples for such sensitive data, for instance business secrets, credit card num-
bers, or personal health records. Thus, theft of this data is a serious problem.
The fact that WCSs usually lack security features like authentication or user
(rights) management exacerbates it. WCSs have not been designed having se-
curity aspects in mind. Instead an external front end is assumed to take care of
such tasks.

Thus, despite the increasing adoption of cloud database technology, significant
challenges still exist. So far the majority of such services requires their customers

2

to absolutely trust the provider with full access to the outsourced data. Hence
there is a strong need for providing security and privacy guarantees in those
environments.

There are several ways of how sensitive data can be leaked. A data owner
might trust a cloud provider to correctly operate provisioned services, but may
not trust the employees of the cloud provider to keep data confidential. In
certain cases, a data owner might not even trust their own employees who run
a private cloud. Three main cases can be distinguished:

• An adversary can exploit software vulnerabilities to gain unauthorized
access to servers1.

• Curious or malicious administrators at a hosting provider can snoop on
private data.

• Attackers with physical access to servers can steal data from disk or even
memory [4].

Such scenarios are not theoretical, they frequently happen on small and large
scale. Some popular examples that have made it into the press over the last
years are:

• 2015/16: SWIFT banking hack - A malware issued unauthorized SWIFT
messages and concealed that they had been sent. After that it manipulated
the database records of the transfers2.

• 2014: Sony Pictures Entertainment hack - A hacker group naming itself
”Guardians of Peace” leaked confidential data from the film studio Sony
Pictures Entertainment, including personal information of its employees
and their families, e-mails between employees, salary information and even
copies of films that had not been released yet3.

• 2011: Sony Playstation Network hack - Attackers gained access to about
77 million personal user profiles. Besides personal data most of them also
included credit card information4.

1NIST National Vulnerability Database. http://nvd.nist.gov (all URLs have been checked
on May 19th 2016)

2Michael Corkery, New York Times (12/05/2016). “Once
Again, Thieves Enter Swift Financial Network and Steal”.
http://www.nytimes.com/2016/05/13/business/dealbook/swift-global-bank-

network-attack.html
3Mike Lennon, Security Week (19/12/2014). “Hack-

ers Used Sophisticated SMB Worm Tool to Attack Sony”.
http://www.securityweek.com/hackers-used-sophisticated-smb-worm-tool-attack-

sony
4Quinn, B., Arthur, C., The Guardian (26/04/2011). “Playsta-

tion network hackers access data of 77 million users”
https://www.theguardian.com/technology/2011/apr/26/playstation-network-

hackers-data

3

• 2010: German Tax Evasion Relevation - Database administrators of sev-
eral Swiss banks sold customer information to German and French tax
authorities5.

One possible solution to reduce the damage caused by server compromises
is encrypting the data on a trusted client machine before it gets uploaded to
the cloud servers, then processing queries by reading back the encrypted data
from the server to the client, decrypting it, and executing the query on the
client machine. However, this approach comes with a few downsides. Firstly, it
requires transferring much more data than necessary. Typically large fractions
of a database are read in order to create relatively small data aggregations.
Secondly, many applications require servers to not just store data, but also
perform computations on the data. Existing approaches (see Section 3.1) made
use of property-preserving encryption (PPE) schemes (see Sections 2.4 and 4.1)
to get rid of these problems, but they still leave issues to solve, for example

• bad efficiency in large datasets (the used encryption technologies do not
scale well)

• no support for data distribution over multiple databases (mostly only one
SQL based system is supported)

• bad security properties (the used encryption technologies are not state of
the art)

• bad feasibility (most approaches still have the state of being research pro-
totypes or being not even practically implemented)

Furthermore, a problem of cryptography in general is the additional effort
necessary to use it. A user-friendly way to make it feasible in practice is the
basic foundation for a broad adoption. Confronting the user directly with cryp-
tographic algorithms has to be avoided.

1.2. Thesis Contributions

In order to overcome the problems described above, this thesis makes the fol-
lowing contributions:

• It identifies the requirements for utilizing property-preserving encryption
PPE schemes in NoSQL WCSs.

5David Crawford, Vanessa Fuhrmans, Deborah Ball. Wall Street Journal
(07/02/2010). “Germany Tackles Tax Evasion.” http://www.wsj.com/articles/

SB10001424052748704197104575051480386248538

4

• Based on these requirements it evaluates the practical strengths, weak-
nesses and feasibility of popular PPE schemes and proposes modifications
to improve them (see Section 4.2 - 4.4).

• It introduces an easy to use Java Framework called “FamilyGuard” (see
Section 5.6) for using PPE with WCSs, based on own implementations
(see Chapter 6). The encryption/decryption behaviour can easily be set
by using profiles for optimizing storage efficiency or processing speed (see
Section 5.2.4).

• It conducts practical performance comparisons using the currently most
popular NoSQL WCSs6 Apache Cassandra [57] and Apache HBase [17]
as underlying platforms (see Chapter 7). This allows making statements
in the context of real world technologies in contrast to the unrealistic in-
memory benchmarks usually provided in most other research works in this
field.

• Apache Cassandra and HBase support is built-in. Other WCS database
technologies as well as more PPE schemes can easily be added (see Section
6.4).

1.3. Thesis Impact

During the course of this work, intermediate results have been published in the
following peer reviewed conference proceedings:

• Tim Waage, Daniel Homann, Lena Wiese. Practical Application of
Order-Preserving Encryption in Wide Column Stores (SECRYPT2016),
Proceedings of the 13th International Joint Conference on e-Business and
Telecommunications, pages 352-359, Scitepress, 2016.

• Tim Waage, Lena Wiese. Ordnungserhaltende Verschlüsselung in Cloud-
Datenbanken (DACH Security 2016), Proceedings of DACH2016, pages
75-86, syssec, 2016.

• Tim Waage. Order Preserving Encryption for Wide Column Stores
(SICHERHEIT2016), GI Lecture Notes in Informatics volume 256, pages
209-216, Köllen Druck+Verlag, 2016

• Tim Waage. Durchsuchbare Verschlüsselung in NoSQL Datenbanken
(INFORMATIK2015), Lecture Notes in Informatics volume 246, pages
1747-1758, Bonner Köllen Verlag, 2015

6Solit-IT: DB-engines ranking - http://db-engines.com/en/ranking

5

• Tim Waage, Ramaninder Singh Jhajj, Lena Wiese. Searchable Encryp-
tion in Apache Cassandra. In Foundations and Practice of Security - 8th
International Symposium (FPS2015), Lecture Notes in Computer Science
volume 9482. Springer, 2015

• Lena Wiese and Tim Waage. Benutzerfreundliche Verschlüsselung für
Cloud- Datenbanken (DACH Security 2015), IT Security & IT Manage-
ment, pages 12-23. syssec, 2015.

• Tim Waage and Lena Wiese. Benchmarking encrypted data storage in
HBase and Cassandra with YCSB. In Foundations and Practice of Security
- 7th International Symposium (FPS2014), Lecture Notes in Computer
Science volume 8930, pages 311-325. Springer, 2014.

In addition, the following papers have been published in peer reviewed journal
articles:

• Tim Waage, Lena Wiese. Implementierung von kryptographischen Sicher-
heitsverfahren für Apache Cassandra und Apache HBase, HMD Praxis in
der Wirtschaftsinformatik 53.4, pages 499-513, Springer, 2016

• Lena Wiese, Tim Waage. A Fragmentation and Replication Scheme for
Flexible Query Answering, The Computer Journal 60.3, pages 308-321,
Oxford University Press, 2016.

Moreover, the author contributed to the following related work in the field of
searchable encryption:

• Christian Göge, Tim Waage, Daniel Homann, Lena Wiese. Improving
Fuzzy Searchable Encryption with Direct Bigram Embedding (TRUST-
BUS 2017), to appear in the conference proceedings in August 2017.

1.4. Thesis Structure

The thesis is structured as follows. Chapter 1 is this introduction. Chapter 2
starts with the foundations. Cloud computing is introduced in general, but also
NoSQL WCSs in particular. This leads to the adversary scenario and PPE as
counter measure. Chapter 3 shows how related approaches in this field tried to
solve the problem of maintaining privacy and confidentiality in scenarios, where
sensitive data is outsourced to third party platforms. It also presents related
problem formulations. Chapter 4 presents the theoretical core of the thesis.
It explains how PPE can be utilized to store and process encrypted data in
remote database systems. In particular it elaborates on the requirements of such
encryption schemes in the context of NoSQL WCSs and shows how appropriate
approaches have been selected and modified for this thesis. Chapter 5 presents

6

the integration of encryption technologies into WCS databases, while Chapter 6
explains concrete implementation details. Chapter 7 gives an evaluation in terms
of performance, functionality and security properties of the approach introduced
by this thesis. Finally, Chapter 8 summarizes the thesis, presents a discussion
regarding the strengths and weaknesses/limitations and points out directions of
future work in this research area.

7

2
Background

This chapter presents the foundations of the thesis. It provides the required
background knowledge on which the following considerations are based.

In order to provide a certain understanding of how NoSQL WCSs work it
starts with introducing their technical background, including their working prin-
ciples and security weaknesses. The following section presents a definition of
and further elaboration on cloud computing. In particular, it clarifies the role
of NoSQL WCSs in this area. Having settled on the technical details the adver-
sary scenario is introduced followed by an introduction to PPE.

Contents

2.1. NoSQL Wide Columns Store Databases 10

2.1.1. History . 10

2.1.2. Data Model and Operating Principles 10

2.2. “Cloud” Computing . 14

2.2.1. Technical Cloud Stack 14

2.2.2. Cassandra and HBase in the Cloud 15

2.3. The Adversary Scenario 17

2.4. Property-preserving Encryption 17

2.4.1. Cryptography Basics 18

2.4.2. Searchable Encryption 20

2.4.3. Order-Preserving Encryption 24

2.4.4. Homomorphic Encryption 26

9

2.1. NoSQL Wide Columns Store Databases

2.1.1. History

Distributed data storage becomes more and more important due to the increased
amount of data being produced every day, by private persons (for example in
social media platforms) as well as by business or research. Especially modern
web services have a high demand for consistency, availability, partition tolerance,
as well as performance and scalability, that are at best difficult and expensive
to achieve with traditional relational databases.

However, NoSQL databases, running in distributed cloud environments, were
made to meet these requirements. Their development is often driven by so called
“Web 2.0” services, e.g. Cassandra for Facebook’s inbox search [57]. Strengths
of traditional relational databases, like transaction consistency, realtime writing
or complex (multi-table) queries on structured data are not that crucial in these
environments, where the ability to process large amounts of unstructured data
is much more important.

NoSQL is a collective term to describe many database designs, that are dif-
ferent from the traditional relational SQL-based architectures. Thus they come
in a variety of working principles. Excellent introductions can be found for ex-
ample in [23, 46]. The most popular categories (which sometimes do overlap)
are key-value-stores (e.g. Redis [22]), document stores (e.g. MongoDB [27],
CouchDB [5]) and as foundation for this work: wide column stores.

Since it is in the nature of their purpose NoSQL databases are distributed
systems, which makes them often being mentioned in the context of the CAP
theorem [21, 20]. Roughly summarized the CAP theorem says that a distributed
system can only accomplish two out of the three properties: consistency (all
data replicas have the same state after an update), availability (all queries to
the system are answered within an acceptable time) and partition tolerance (the
system keeps working in case of a loss of messages or nodes). Two examples of
how different concrete architectural designs fulfill the CAP theorem are given
in Section 2.1.2.1 and 2.1.2.2.

2.1.2. Data Model and Operating Principles

WCSs (sometimes also called extensible record stores) are inspired by Google’s
BigTable architecture [24], but there are also publicly available open source
databases, that rely on the same or a very similar data model (for example Hy-
pertable [55], Apache Cassandra [57], Apache HBase [17] and Apache Accumulo
[83]). In literature the term “table” is used synonymously to the term “column
family”. For the rest of this thesis we will prefer “table” as well to not get
confused with separate columns.

The operating principles of WCSs can be roughly described as follows. While
they use tables, rows and columns like traditional relational (SQL-based) data-

10

bases, the fundamental difference is that columns are created for each row in-
stead of being predefined by the table structure. Thus, except a row’s identifier
(see next paragraph), two rows can have a completely different set of columns,
even though they belong to the same table. In a way rows are comparable to
documents. They can consist of an arbitrary number of fields, that are required
to have unique names (“column qualifiers”) and can be of any type (but some
WCSs do not distinguish between data types). They can also be grouped, which
results in column families, commonly also simply referred to as tables.

WCSs are distributed systems. They achieve scalability by splitting both rows
and columns or in other words: their distribution strategy includes horizontal
and vertical partitioning (simultaneously on the same table).

• Rows (horizontal partitioning). As mentioned above, every row has
an identifier that is unique for the table, commonly referred to as “row
key”. However in this thesis the term “row identifier” is used to avoid
confusion with cryptographic keys.

Data is maintained in lexicographic order by that row identifier. As WCSs
are distributed systems, ranges of such row identifiers serve as units of
distribution. Hence similar row identifiers (and thus data items that are
likely to be semantically related to each other) are always kept physically
close together, in best case on neighbouring sectors on disk, but at least
on the same node of a cluster for the purpose that reads of ranges require
communication to a minimum number of machines.

Because row identifiers are used for coordinating distribution, changing
them would result in changing the data’s physical position within the
database (cluster), which is prohibitively expensive. That is why most
WCSs do not even support changing row identifiers at all after a row has
been inserted.

• Columns (vertical partitioning). Disk access and memory manage-
ment in WCSs are performed at column family level.

The smallest units of information are key-value-pairs with the key itself having
multiple components. One of these components is a timestamp, enabling the
database to maintain an automatic version control, which can be operated in
two ways: either by setting a maximum number of versions to keep, or by
specifying a “time-to-live” (TTL) after which data items are to be deleted.
Other components of the key are of course table and column names.

Thus, more formally WCSs can be considered sparse, distributed, multidi-
mensional maps of the form

(keyspace, table, column, row identifier, timestamp)→ value

11

(see [24]).
Even though all WCSs share the general data model described above with

only minor individual modifications, they may differ fundamentally in the ar-
chitectural concepts they are pursuing. Apache Cassandra and Apache HBase
provide excellent examples here, as can be seen in the following sections (for a
quick comparison of the two, see Table 2.1). Since both of them can be used for
FamilyGuard, more detailed introductions follow in Section 2.1.2.1 and 2.1.2.2.

Cassandra HBase

file system local file system HDFS/local file system
architecture P2P master/slave
consistency weak strong
optimized for writes reads
node coordination Gossip protocol Zookeeper
data placement virtual nodes HRegionServers
data types Strings, Integers, etc. byte arrays only
query language CQL native Java API
custom code execution UDFs via CQL “Co-Processors”

Table 2.1.: Architectural principles of Apache Cassandra and Apache HBase

WCSs in general heavily profit from table layouts, that are tailored to the
queries appearing later on. They are designed for queries with filter conditions
involving (if possible) only the row identifier column or columns that maintain
a secondary index. Thus it is not unusual to have one table per query, even if
that causes data redundancy. The fact that storage space is usually not an issue
in cloud scenarios, is also helpful in this regard.

2.1.2.1. Apache Cassandra

Apache Cassandra has been a top-level-project of the Apache Foundation since
early 2010 and continuously gets updates. It appears in literature also as table
store, extensible record store or column family store.

Cassandra follows a strictly symmetric P2P concept using the Gossip protocol
for coordination purposes. It runs in a single Java process per node and can
make use of the local file system. Nodes back up each other, depending on
the chosen replication factor and replication strategy. Data is distributed using
consistent hashing in order to perform the data allocation among the cluster.
Thus, concerning the CAP Theorem introduced in Section 2.1.1 Cassandra is
designed for high availability and partition-tolerance.

The writing process of Cassandra consists of four phases.

1. Firstly, the data operation gets recorded to a log file (“CommitLog”).

12

2. Then the update is written to a so called “memtable” for temporal caching.
Memtables are sorted by row identifiers.

3. When the amount of cached data reaches certain thresholds, the data is
written sequentially (“flushed out”) to a so called “SSTable” on disk for
persistent storage. This process can also be triggered manually and can
be done very quickly, which makes writes very fast. SSTables are final,
once they are written, they can not be changed in the future.

4. To reduce the number of SSTables that have to be involved in read opera-
tions multiple SSTables are merged into single new ones, using a procedure
called “compaction” in order to get rid of outdated records. There are a
couple of different strategies for when and how to do that. They should be
chosen carefully depending on the kind of workload. When the compaction
process has finished, the old SSTables are deleted.

Apache Cassandra is the backbone of many popular services, e.g. Spotify,
Twitter, Netflix and more1.

2.1.2.2. Apache HBase

The process of writing data in HBase is similar to that of Cassandra. Only the
terminology is slightly different, having an “HLog” instead of an CommitLog,
a “MemStore” instead of a memtable and a “StoreFile” instead of an SSTable.
However, unlike Cassandra HBase is not designed to provide the concept of data
types like numbers (Integers) or text (Strings). Everything is treated as byte
array instead.

Another fundamental difference to Cassandra is the master-slave concept. A
master node (“HMatser”) monitors multiple slave instances (“HRegionServers”).
A Zookeeper system is necessary for managing different HBase processes. While
the system is robust against failures of region server nodes, the failure of a mas-
ter can have a severe impact on the cluster. However, having a master also
allows strictly consistent reads and writes. Thus, concerning the CAP theo-
rem HBase covers consistency and partition tolerance. Master and region server
nodes serve a variety of purposes and run multiple processes in the background:

• The HMaster is responsible for assigning regions (tables or ranges of rows)
to HRegionServers. It also monitors the health of each HRegionServer
and manages metadata changes as well as table related tasks (e.g. en-
abling/disabling of tables, table schema changes like adding, modifying or
deleting column families). Furthermore it runs a load balancer in order to
move regions within the cluster to balance its load.

1Planet Cassandra: Apache Cassandra Use Cases - http://www.

planetcassandra.org/apache-cassandra-use-cases/

13

• The HRegionServer handles read and write requests (get, put, scan, delete).
Furthermore it is responsible for flushing Memstores to StoreFiles and
managing compactions.

HBase can use the Hadoop Distributed File System (HDFS) out of the box
and supports parallelized data processing via MapReduce. Hadoop is a Java
framework for large scale data processing in distributed environments. Amongst
others2 the most popular use case for HBase surely is Facebook’s inbox search
[17].

2.2. “Cloud” Computing

While the “Cloud” often is referred to as just “other peoples computers”, there
are indeed comprehensive definitions of what cloud computing is. They can
be found for example in [65]. Roughly summarized cloud computing has the
following characteristics. It is an on-demand service, made available over a broad
network access. The cloud computing provider makes use of resource pooling in
the sense that multiple customers share processing capabilities, memory and
network bandwidth, all of which can scale rapidly to provide elasticity. These
resources come as measured services and can be monitored, controlled, and thus
be invoiced in certain intervals.

There are mainly two ways of categorizing cloud services, either by their form
of deployment (private, community, public, hybrid, etc.) or as in particular
relevant for this thesis: by their form of service or business model.

2.2.1. Technical Cloud Stack

The technical cloud stack consists of three layers, as shown in Figure 2.1.

Figure 2.1.: Technical stack of cloud computing

2The Apache Software Foundation: Powered By Apache HBase - https://hbase.

apache.org/ poweredbyhbase.html

14

2.2.1.1. Software as a Service

Software as a Service (SaaS) is an alternative to the traditional software license
model. Its primary goal is to avoid a complex, expensive and risky develop-
ment of IT solutions. Instead the customer rents all necessary components
(applications running on a cloud infrastructure) on demand. The SaaS provider
takes care of all maintenance tasks, which reliefs the customer from additional
hardware costs, initial setup costs, taking care of updates, etc. However, the
customer pays for certain intervals of usage instead of for separate software
licenses.

2.2.1.2. Platform as a Service

Platform as a Service (PaaS) means the capability of the customer to deploy
applications onto the cloud infrastructure using services of the provider. How-
ever the customer has in particular no control over operating systems, storage or
network and servers. They only manage the applications and their configuration
(usually via a web interface). Sometimes it is difficult to seperate PaaS from
IaaS (see next section), since many providers bundle PaaS with the underlying
IaaS. For instance AWS can also be considered a PaaS provider. Other popular
examples are Microsoft Azure [99] or Google’s App Engine3.

2.2.1.3. Infrastructure as a Service

Infrastructure as a Service (IaaS) means rather than buying computing infras-
tructure the user rents it flexibly on demand. This results in a couple of advan-
tages: applications can become affordable, workload peaks can be compensated
and the system scales easily. A popular IaaS provider is Amazon Web Services
(AWS)4, offering products for computing (“EC2”) and storing (“S3”).

2.2.2. Cassandra and HBase in the Cloud

Cloud computing and storage providers offer infrastructures and platforms for a
variety of services, starting from website hosting over large scale data processing
to setting up virtual machines for countless applications. Widely used cloud
service providers are the Google Cloud Platform, Microsoft Azure, Amazon Web
Services and Rackspace. They differ primarily in price and service. Instead of a
“manual” deployment of Cassandra and HBase clusters, they offer mechanisms
to simplify the deployment process. This chapter gives a brief introduction on
how that works.

3Zahariev, Alexander: Google App Engine - http://www.cse.tkk.fk/en/publications/B/5/
papers/1Zahariev final.pdf

4Amazon Web Services - https://aws.amazon.com/

15

• The Google Cloud Platform is based on the same infrastructure that
Google uses for its end-user products like its web search or YouTube.
It has a very good native support for Cassandra. A web interface (“cloud
launcher”) can be used to configure and run a Cassandra cluster on hard-
ware of different performance levels. Googles cloud SDK provides tools
for interacting with it mainly via SSH. A Hadoop cluster as required by
HBase for running in distributed environments, can be created in the same
way.

• Microsoft Azure is Microsoft’s cloud computing platform, publicly avail-
able since 2010. It does not come with native support for Cassandra,
which has opened the market for third party entities, e.g. “Instaclustr”,
which provide all the necessary tools to make running Cassandra on Azure
as simple as on the Google Cloud Platform. In contrast, HBase is natively
supported via “HDInsight”, a service provided by Microsoft for managing
hadoop-based projects, that comes with an appropriate web interface.

• Amazon Web Services is a set of online services that was started in 2006
and meanwhile became the foundation of many other popular cloud ser-
vices, e.g. Dropbox or Foursquare. AWS (in particular Amazon EC2)
does not support Cassandra in a native way. Instead third party develop-
ers provide so called Amazon Machine Images (AMIs) in order to simplify
the management of Cassandra clusters. Using a web interface (“AWS Con-
sole”) they can be installed on the desired hardware and provide another
web interface (“OpsCenter”) that is used to create and monitor Cassan-
dra clusters. Managing HBase environments also requires some work in
advance. AWS provides a service called “Amazon Elastic MapReduce”
(Amazon EMR) that comes with a web interface for creating Hadoop
clusters as they are required by HBase. It can be installed using AMIs
similarly as required by the pre-installation process of Cassandra. HBase
is part of these AMIs.

• Rackspace is primarily a web hoster that extended its business to cloud
computing in 2010 with the OpenStack project, an open source platform
for cloud computing. Rackspace provides hosting of Cassandra Clusters
as managed service. Internally they use Ansible, which is an Open Source
Platform for configuring and maintaining computers in general. HBase
is supported with a set of tools that Rackspace has designed in cooper-
ation with third party developers. However, both databases can also be
deployed on Rackspace using Apache Whirr, a set of libraries provided by
the Apache Foundation for managing cloud services. Unfortunately that
has not been further maintained since early 2015.

16

2.3. The Adversary Scenario

FamilyGuard provides data confidentiality in case an attacker gets (hacker) or
has (administrator) full read access to the database server. This may also include
its hardware (even the physical RAM) as well as its communication to and from
the clients. The attacker behaves passively and follows the designated protocol
specifications. He wants to analyze and infer information from the data, but he
does not manipulate it in any way. He further does not modify queries from the
clients or the results being returned. This threat model is commonly referred to
as “honest-but-curious” [39]. Note that an active manipulation of the encrypted
data without knowing the appropriate keys would render it useless anyway, but
still: no information would leak.

The “honest-but-curious” threat model has applications in various practical
scenarios. Examples for sensitive data range from electronic health records [94]
to classified business data. As a matter of fact more and more individuals or
companies outsource such data to the cloud in order to get rid of the burden
of buying and maintaining additional infrastructure5. As mentioned in Section
1.1 use cases are for instance backups or the reduction of operational coasts.
Unfortunately, in general it is not guaranteed that data confidentiality will be
preserved. Problems can arise as well, if once trustworthy storage providers sell
their business to untrusted companies.

Note that while the attacker in the honest-but-curious model remains passive,
there is also the possibility of a malicious attacker, that manipulates result sets
or protocols. This leads to the problem of data integrity, which is discussed
further in Section 3.3.

2.4. Property-preserving Encryption

There are many cryptographic algorithms for providing data confidentiality, but
besides the protection of data there is also the requirement for the ability to pro-
cess it efficiently. Thus, in general there is a tension between these two needs.
Ideally direct processing of encrypted data should be possible in order to avoid
decrypting, processing and then re-encrypting again. For the sake of not com-
promising the working principles of the database systems, the data needs to be
kept searchable (e.g. text) and sortable (e.g. text, numeric values). That means
certain information (e.g. order relations) is supposed to leak intentionally (Sec-
tion 4.1 explains in detail, how this intentional leakage is utilized in the context
of databases). This concept is commonly referred to as property-preserving en-
cryption (PPE). The following sections provide a basic understanding of how
that works.

5KPMG International: Cloud Survey Report 2014 -
http://www.kpmg.com/US/en/about/alliances/ Documents/2014-kpmg-cloud-survey-

report.pdf

17

2.4.1. Cryptography Basics

Before getting to the principles of PPE we introduce the fundamental cryp-
tographic concepts and primitives, that are the foundation for the concrete
schemes, that are used later on (see Section 4.2, 4.3 and 4.4).

2.4.1.1. Pseudo Random Generators

Pseudo random generators (PRG) are deterministic (hence “pseudo”-random)
algorithms that generate long bit sequences from shorter randomly selected
seeds. These sequences should be indistinguishable from truly random se-
quences. There are several definitions for what it really means to have such
a random appearance, e.g. statistical measures or the Kolmogorov complexity
[60]. This work however relies on the definition of computational indistinguisha-
bility.

Definition 2.1 (Computational Indistinguishability). Random variables X and
Y having the form of 0, 1m are (t, ε) indistinguishable, if for every non-uniform
algorithm A running at most in time t, we have |Pr[A(X) = 1] − Pr[A(Y) =
1]| ≤ ε.

The left-hand side of the above equation is also called the advantage of A,
where as “Pr[S]” is short for the probability of a statement S to be true. Non-
uniform means that A is allowed to work in different unrelated ways, depending
on the input length m. That serves as foundation for defining the PRG formally,
as it was already informally introduced at the beginning of this section:

Definition 2.2 (Pseudo Random Generator). A deterministic function G :
0, 1m → 0, 1n is a (t, ε) pseudo random generator, satisfying the following two
conditions:

1. expansion: m < n

2. pseudorandomness: G(Xm) and Xn are (t, ε) indistinguishable.

PRGs are widely used in cryptography. Since perfectly secure encryption is
expensive in terms of key lengths, a main application for them is the reduction
of these key lengths. Another common use case is their usage in stream ciphers.
This thesis utilizes them in both ways (see Section 2.4.1.3 and 4.4). Further
descriptions and analysis of PRGs can be found in [38].

2.4.1.2. Pseudo Random Functions

Outputs of pseudo random functions (PRFs) cannot efficiently be distinguished
from truly random outputs (see Definition 2.1) by an adversary A. This even
holds, if A is allowed to chose own inputs depending on previously obtained
outputs [38] (commonly referred to as “adaptive querying”). Having a key k, a

18

PRF F with domain D and range R, all of the form {0, 1}∗, F can be defined
as follows.

Definition 2.3 (Pseudo Random Function). A function F : k × D → R is a
(t, q, ε)-secure pseudo random function, if every adversary A executing at most q
oracle queries with runtime at most t has an advantage |Pr[AFk = 1]−Pr[AX =
1]| ≤ ε, where X represents a random function selected uniformly from all maps
from D to R, and where the probabilities are taken over the choice of k and X.

Popular applications for PRFs are key derivations and dynamic hashing [40].

2.4.1.3. Symmetric Cryptography

Using the same secret key k for encryption and decryption is the main charac-
teristic of symmetric cryptography [39] in contrast to public key cryptography.
That requires the participating entities to agree on k first, which can be done
having one party generate the key and then send it to the other one over a
supposedly secure channel. In the database scenario of this thesis both parties
can be represented by the same entity (the data owner) or by different enti-
ties (data owner and database users). Cryptographic primitives of symmetric
cryptography are usually either stream ciphers or block ciphers.

2.4.1.3.1. Stream Ciphers Stream ciphers [75] operate on single digits (bits)
in the way that every digit of the plaintext is combined with the correspond-
ing digit of the keystream in order to get a digit for the ciphertext stream. In
practice the keystream often is created using pseusorandom generators (see Sec-
tion 2.4.1.1) and the combination is done using an exclusiv-or (XOR) operation.
Popular stream ciphers are RC4 [79] (used e.g. in BitTorrent and in a modified
version in Skype, even though it is more and more considered insecure) and A5
[11] (used e.g. for voice encryption in GSM).

2.4.1.3.2. Block Ciphers Block ciphers [56] encrypt units of bits at once.
Thus, fixed size blocks of the plaintext are encrypted to equally sized blocks of
ciphertext (which means plaintexts have to be split and/or padded eventually).
Block ciphers can formally be considered PRFs (see Definition 2.3), parameter-
ized by a key with a length matching the blocksize. Popular examples are the
Data Encryption Standard [77] (DES, widely utilized during the 1970s until the
1990s, but by now considered insecure), the Advanced Encryption Standard [76]
(AES), and Blowfish [84] (see also Section 4.2).

The traditional interest of symmetric cryptography schemes is based on effi-
ciency considerations. Due to the fact, that they are mainly based on simple
binary operations, they can be implemented in hardware very easily and thus
perform well in practice with low latency. However, this also comes with the

19

disadvantage that all encrypted messages can of course be decrypted once k gets
stolen.

2.4.2. Searchable Encryption

The purpose of searchable encryption (SE) is enabling a server to search over
encrypted data without gaining any information about the plaintext data.

2.4.2.1. How it works

Schemes for SE usually use search indexes for sets of documents. Depending
on the schema design these indexes are forward indexes or inverted indexes (see
below), containing predefined or extracted keywords. Indexes are encrypted
in a way, that only a trapdoor allows for comparing the searchword with the
predefined keywords in the index. Index-based schemes for SE can be divided
in three subcategories based on their index type: index per word, index per
document or tree-based index. However, there are also schemes, that do not
require an index at all.

2.4.2.1.1. Index-based

Index per Word This index structure contains one entry for every keyword,
accompanied by a list of identifiers of all the documents in the dataset containing
this keyword. Thus it is called an “inverted index”. Searches are just a lookup
in the index and hence highly efficient. The downside however are increased
computational costs when adding data, since all the index entries containing
the corresponding keywords have to be updated as well.

Index per Document This index structure is also known as “forward index”
and based on building an index for each document (or one entry per document
respectively) in the dataset, containing its keywords. This makes updating less
expensive than working with inverted indexes.

Tree-based index SE can also be designed to work with trees, e.g. (multi-
dimensional) B-trees. However, this thesis does not consider these schemes,
because the data model of WCS databases is not well suited for maintaining
tree structures. Thus working with them would be computationally expensive
in practice.

20

2.4.2.1.2. Not Index-based

Schemes without index structures have to embed the trapdoor in a special format
in the ciphertext itself. During search that trapdoor gets extracted again and
can then be checked for that very format in order to determine whether there is
a match or not. Because of not having an index SE schemes of this kind have to
iterate by the nature of their design at least once over the complete plaintext for
encryption and at least once over the complete ciphertext for decryption. On
the other hand no resources are necessary for building, maintaining and storing
indexes at all.

2.4.2.1.3. Related Problems

This thesis focuses on exact keyword search schemes for one searchword per
query. However there are schemes designed to deliver results for multiple search-
words or even when the user entered a searchword with typos. They are com-
monly referred to as “multiple keyword search” and “fuzzy search” schemes,
needing much larger data structures and more computational time than exact
keyword search schemes, which makes them hardly feasible in practical database
scenarios (for details, see Section 4.4.1).

2.4.2.2. Security

Mainly three kinds of information can leak unintentionally when using SE schemes:

• index information (e.g. number of words per document, number of docu-
ments, lengths of documents, document-IDs)

• search pattern information (what was searched for?)

• access pattern information (how many answers do I get from executing a
certain query compared to executing another one?)

There are several security classifications in order to categorize this information
leakage. Hence in general it makes no sense to use the word “secure” for a SE
algorithm without defining what security really means, it has to be clarified what
sort of security can be expected against what sort of attacks. Thus the schemes
for searchable encryption that are used in this work, can be categorized in the
form “X − Y ”, where X represents the security level that can expected to hold
against an attacker model Y . Although there are lots of these classifications the
following sections focus only on the ones that are crucial for this thesis.

21

2.4.2.2.1. Levels of Security

SEM - Semantic Security The concept of SEM was first introduced by [41]
for public key cryptosystems, even though they started to use the actual term
“semantic security” two years later [42]. According to their definition a system
is semantically secure if “whatever an eavesdropper can compute about the
cleartext given the ciphertext, he can also compute without the ciphertext”.
Concerning a symmetric-key cryptosystem, an adversary must not be able to
compute any information about a plaintext from its ciphertext.

Definition 2.4 (Semantic security in symmetric-key cryptosystems). Given two
plaintexts of equal length and their two respective ciphertexts, an adversary can-
not determine which ciphertext belongs to which plaintext.

Literature is in disagreement, if the definition of SEM means that no infor-
mation about the plaintext can be revealed at all or just cannot be feasibly
extracted [39]. However SEM is usually considered being equivalent to IND-
CPA security [42] (see Definition 2.5 and 2.6) .

IND - Indistinguishability Ciphertext indistinguishability can not be defined
clearly without making assumptions about the capabilities of a particular ad-
versary. Common definitions present it as a game, considering a cryptographic
system to be secure, if an adversary can not win with significantly greater prob-
ability than an adversary who guesses randomly. Thus, the following minimum
requirement holds for every attacker model.

Definition 2.5 (Ciphertext Indistinguishability). Given an encryption of a
plaintext randomly chosen from two plaintexts, any adversary is not able to
identify the message that has been encrypted with probability better than that of
random guessing (0.5).

Definition 2.6 clarifies, what “better” means in that context.

2.4.2.2.2. Attacker Models

CPA - Chosen Plaintext Attacks As the the name of the concept already
suggests, the CPA attacker model gives the adversary as described in Section
2.3 the ability to chose the plaintext space. This leads to the following definition
for IND-CPA security.

Definition 2.6 (IND-CPA: Indistinguishability under Chosen Plaintext At-
tacks). IND-CPA security for symmetric crypto systems can be defined using a
game between a (probabilistic polynomial time) adversary A, a challenger C and
an encryption oracle O, consisting of the the following steps:

22

• The challenger C allows the adversary A to perform a polynomially bounded
number of encryptions or other operations using the encryption oracle O.

• A submits two distinct chosen plaintexts P0 and P1 to C.

• C selects x ∈ 0, 1 uniformly at random and returns the challenge ciphertext
EncO(Px) to A.

• A is allowed to perform any number of computations and outputs a guess
x′ for the value of x.

• A wins, if x′ = x.

A cryptographic system is IND-CPA secure, if A has only a negligible advantage
over random guessing to win the game. A negligible advantage is given, if A
wins the game with probability 0.5 + ε(k), where ε is a negligible function and k
is a security parameter in the way that for every polynomial function p, there
exists a k0 such that |ε(k)| < | 1

p(k) | for all k > k0.

The concept of IND-CPA security was first introduced by [42], calling it “poly-
nomial security”. Note, that IND-CPA completely ignores whether a scheme for
searchable encryption has an index or not. Thus, it is by definition not appli-
cable for index-based SE schemes.

CKA - Chosen Keyword Attacks The main cause for information leakage
in index-based schemes for SE are are the indexes themselves. Thus, IND-
CPA can not be considered appropriate for such schemes. The first to realize
that were [36], proposing the notion of IND1-CKA (indistinguishability against
adaptive chosen keyword attacks), which guarantees a scheme for index-based
searchable encryption produces indexes of equal size for documents of equal
size. In other words: given an index I and two documents D1 and D2 of equal
size, an adversary A is unable to decide which of the documents D1 or D2 is
encoded in I. Later [36] introduced the stronger IND2-CKA notion, based on
[25], in which A cannot even distinguish indexes from two documents of unequal
size. In other words: all indexes have to look like they were containing the same
amount of words. Still, those notions are not appropriate for SE, because they do
not consider trapdoors (and have later been proven to be incorrect, see Section
4.4.3). [31] finally shows that the security of indexes is strongly connected to the
security of trapdoors and introduced two adversarial models, IND-CKA1 and
IND-CKA2, that can be considered the current standard security definitions for
SE. A compressed informal version of those notion definitions can be given as
follows.

Definition 2.7 (IND-CKA1: Non-Adaptive Indistinguishability Security). Let
“history” be the interaction between client and server, in particular containing
a document collection and a set of searchwords. Let the history’s “view” be the

23

corresponding index, trapdoors, the number of documents in the collection as
well as their ciphertexts. Note, that the view should not leak any information
about the history, that is not supposed to leak, in particular the search results.
That information is denoted as “trace”. A trace includes the identifiers of the
documents containing searchwords as well as the corresponding trapdoors.

A cryptosystem is IND-CKA1 secure, if “for any two adversarially constructed
histories with equal length and trace, no (probabilistic polynomial-time) adver-
sary can distinguish the view of one from the view of the other with probability
non-negligibly better than 0.5.” [31].

Non-negligibility is defined as in Definition 2.6. Thus IND-CKA1 obviously
includes security for trapdoors. Furthermore it guarantees that trapdoors do
not reveal any information about the corresponding keywords, except for access
and search patterns. “Non-adaptive” means the assumption that the clients
executes all searches at once. Knowing that this is not realistic in practice,
there is also an adaptive version of IND-CKA1:

Definition 2.8 (IND-CKA2: Adaptive Indistinguishability Security). Let “his-
tory”, a history’s “view” and “trace” be defined as in Definition 2.7.

A cryptosystem is IND-CKA2 secure, if “for any two adaptively-constructed
histories with equal length and trace, no (probabilistic polynomial-time) adver-
sary can distinguish the view of one history from the view of the other with
probability non-negligibly better than 0.5.” [31]

Again, non-negligibility is defined as in Definition 2.6. Thus, IND-CKA2
allows the adversary to adapt its queries to previously obtained trapdoors and
outcomes, which can lead to more sophisticated attacks. Hence, IND-CKA2 is
a strong security notion for SE.

2.4.3. Order-Preserving Encryption

The purpose of order-prerserving encryption (OPE) is enabling a server to learn
about the relative order of data elements without gaining any information about
their exact values. Thus, its main use cases are sorting and range queries over
encrypted data.

2.4.3.1. How it works

[2] were the first to introduce the problem of OPE and proposed a theoretical
scheme to address it. Formal definitions followed mainly by [13]. In summary,
OPE schemes have to satisfy the conditions as given in Definition 2.9.

Definition 2.9 (Order-Preserving Encryption). An order-preserving (symmet-
ric) encryption scheme with plaintext space D (domain) and ciphertext space
R (range) is a tuple of algorithms (KGen,Enc,Dec) satisfying the following
conditions:

24

• The key-generation algorithm KGen outputs a random key k.

• The encryption algorithm Enc uses k and a plaintext p to output the ci-
phertext c = Enck(p).

• The decryption algorithm Dec uses k and a ciphertext c to output the
plaintext p. Thus it holds: Deck(Enck(p)) = p.

• The order relation of plaintexts is preserved, i.e. p1 ≤ p2 ⇒ Enck(p1) ≤
Enck(p2) for all p1, p2 ∈ D.

Approaches to OPE can be divided in two groups, index-based and not index-
based schemes.

2.4.3.1.1. Index-based The index of an OPE scheme is its state, containing
plaintext-ciphertext-mappings. That state can also be considered the scheme’s
key k, playing the role of the secret information. KGen initializes k. Performing
the encryption algorithm Enc with not yet encrypted plaintexts as input updates
k. The decryption algorithm uses k to perform lookups.

2.4.3.1.2. Not Index-based Not index-based OPE schemes generate plaintext-
cipher-text-mappings independent from any internal state. They use the key k
for their underlying cryptographic primitives.

2.4.3.2. Security

Compared to SE (see Section 2.4.2), specifying the information leakage of OPE
is an open problem. An indistinguishability notion like IND-CPA (see Definition
2.6) can not be achieved by design, because OPE schemes reveal more about the
plaintexts than their order, for example information about the relative distance
between plaintexts. Since the encryption algorithm Enc has to use a monotone
increasing function the distance between two ciphertexts Enck(p1) and Enck(p2)
is always related to the distance between the corresponding plaintexts p1 and
p2.

Unfortunately the number of ways to define OPE security in literature is
almost equal to the number of approaches to OPE itself. However, there are a
few frequently appearing security notions, mainly defined by [13, 14].

IND-OCPA IND-OCPA (indistinguishability under ordered chosen-plaintext
attack) was introduced by [13]. It is a weakened form of IND-CPA defined
as follows: the adversary is allowed to chose plaintexts adaptively and should
not be able to find out about a secret bit of corresponding ciphertexts better
than with random guessing (similar to Definition 2.6). [13] showed further, that
IND-OCPA can not be achieved, unless the size of its ciphertext-space is expo-
nential in the size of its plaintext-space. Thus, even though the authors describe

25

this definition as useless for most practical cases, the IND-OCPA notion became
quite popular in the field of OPE to date.

POPF-CCA In order to avoid further restricting the IND-OCPA definition [13]
also introduced another approach, called POPF-CCA (pseudo random order-
preserving function against chosen-ciphertext attack). For an OPE scheme to
fulfill this notion an adversary must not be able to distinguish between the
outputs of the encryption/decryption oracle and a truly random order-preserving
oracle and its inverse. Unfortunately no statements are made concerning what
actually leaks or is hidden.

(r,z)-WOW r,z-Window One-Wayness (sometimes also referred to as (r,q+1)-
WOW) is defined as follows: the adversary A gets a set of z ciphertexts of
randomly chosen plaintexts. Then A has to come up with an Interval I of max-
imum length r. A wins, if at least one of the underlying plaintext lies within
I. Note that this notion captures a very practical aspect of database security:
consider z data items are stored in a database using OPE encryption and an
adversary who wants to know one of them breaks into the system and steals all
ciphertexts.

Compared to the security definitions for SE all of these security notions are
not really helpful in stating what information about the plaintexts can be se-
mantically hidden. However there are approaches (e.g. [63]) trying to answer
this question, but none of them can be considered a standard OPE security
notion so far.

2.4.4. Homomorphic Encryption

Homomorphic encryption allows performing computations using ciphertext data
as input with the output being in encrypted form as well. When decrypted, it
matches the result as if it was carried out on plaintext. Since NoSQL wide
column stores and their query methods barely feature server-side computations
(rare exceptions are for instance the SUM and AVG operators in Cassandra’s query
language), homomorphic encryption would only be of little use for this thesis.
However for the sake of completeness and to understand how other architectures
for encrypted databases use it (see Section 3.1), it is discussed here briefly in
that regard. Thus, the following elaboration on it is limited to its important
definitions and usage for encrypting databases.

2.4.4.1. Homomorphic Cryptosystems

Homomorphic encryption schemes can be divided into two sub-categories: par-
tially and fully homomorphic encryption schemes. However, a small number

26

of approaches does not really fit in either of these categories, for instance [15],
allowing multiple additions, but only one multiplication.

2.4.4.1.1. Partially Homomorphic Cryptosystems Partially homomorphic en-
cryption schemes allow only certain computations, while others are not sup-
ported. Thus, these schemes can be divided in further sub-categories, the most
important of which are additive and multiplicative homomorphic encryption.

Additive Homomorphic Encryption Schemes of this category allow carrying
out additions on ciphertexts. Thus, their homomorphic property is:

Enc(x1) · Enc(x2) = Enc(x1 + x2)

with x1 and x2 being the plaintexts. That means a multiplication of the cipher-
texts is equivalent to the encrypted sum of the plaintexts. Examples for those
schemes are Goldwasser-Micali [41], Benaloh [10] and Pallier [68], with Paillier
being the most practically relevant scheme (publicly available implemented6 and
also used in practical approaches for encrypted databases, see Section 3.1.1).

Multiplicative Homomorphic Encryption Schemes of this category allow mul-
tiplications on ciphertext, which means their homomorphic property is

Enc(x1) · Enc(x2) = Enc(x1x2).

Well known examples are RSA [80] and ElGamal [32].

2.4.4.1.2. Fully Homomorphic Cryptosystems Fully homomorphic cryptosys-
tems allow arbitrary computations on ciphertexts. They are additive and mul-
tiplicative at the same time. The first scheme for fully homomorphic encryption
[34] was proposed by Craig Gentry in 2009.

2.4.4.2. Encrypting Databases with Homomorphic Encryption

Since the input and output of computations using homomorphic encryption are
encrypted, different steps in processing database queries can be chained without
leaking information. This is very appealing, especially in the SQL world, where
it is possible to have calculations in the query, like for instance SELECT ...

FROM ... WHERE x + 10 < 50).
Unfortunately homomorphic encryption is computationally expensive. In

2009 Craig Gentry estimated, that processing a Google search request based

6Google Code Project: “The Homomorphic Encryption Project - Computation on Encrypted
Data for the Masses” https://code.google.com/archive/p/thep/

27

on his approach would multiply the necessary time by 1 trillion7. Partially ho-
momorphic cryptosystems usually offer better performance. They are still slow,
but efficient enough for specific operations to a certain degree. For instance the
Paillier scheme can be used to sum encrypted data on the server side, but the
cost of decrypting its ciphertexts at the client can be prohibitively high when
computing the sum of a couple of values. That means in certain situations, it can
be more efficient to decrypt and sum individual data items at the client rather
than run aggregates on the server [95]. Thus, improving Pailliers performance
is subject to ongoing research [48] (see also Section 3.1.3).

Besides the performance issues, homomorphic encryption comes with another
fundamental problem. Due to randomization steps in the algorithms the re-
sults start to get prohibitively imprecise after a certain number of operations.
This phenomenon is referred to as “ciphertext noise” or “ciphertext dirt” [88].
Making them “cleaner” (meaning more precise again) is possible, but is again
computationally expensive.

7Michael Cooney, Network World (25/06/2009). “IBM touts encryption innovation”
http://www.networkworld.com/article/2259168/data-center/ibm-touts-encryption-

innovation.html

28

3
Related Work

The previous chapters introduced the background of NoSQL WCSs and PPE.
After these theoretical concepts were described in detail, the following chapter
provides a survey on related approaches for building encrypted databases. The
review is started with an overview about how this can be achieved in software
for relational databases, for non-relational databases and platform independent
using fully homomorphic encryption. Then the focus is switched to architec-
tures involving specialized trusted hardware. Finally, the chapter is concluded
discussing a problem that is closely related to the problem of providing data
confidentiality: providing data integrity.

Contents

3.1. Software Architectures 32

3.1.1. Approaches for Relational Databases 32

3.1.2. Approaches for Non-relational Databases 35

3.1.3. Approaches relying on Fully Homomorphic Encryption 37

3.2. Hardware Architectures 38

3.3. A Related Problem: Data Integrity 39

31

The research interest in processing queries over encrypted data continuously
grows with the increasing number of offers by cloud service providers. Since the
area covering related topics is very wide, comparability to this thesis can be lost
easily. Hence, in order not to lose the scope this chapter is limited to describing
approaches, that

• are designed for the honest-but-curious adversary, as discussed in Section
2.3. As this scenario reflects the typical cloud database provider setting,
it is of high practical relevance.

• actually compute on encrypted data, in contrast to just storing it, like for
example in [37, 59].

• rely on encryption only to provide data confidentiality. Apart from that
there are approaches also using data fragmentation as an additional manda-
tory mechanism to achieve their privacy goals (while that is only an op-
tional feature of the architecture described in this thesis). Examples can
be found in [30, 1, 29].

3.1. Software Architectures

3.1.1. Approaches for Relational Databases

A first algebraic approach by Hacigumus et. al [43]

One of the first approaches to processing queries over encrypted data in the con-
text of outsourced databses to untrustworthy providers comes from Hacigumus
et. al [43], published in 2002. Assuming the database server only stores data
in encrypted form, it introduces an algebraic framework in order to split SQL
queries in a way that only a minimum of computation has to be done on client
side.

Unfortunately PPE was not very sophisticated back in the year of this work’s
publication, which is why the key idea here is to transform SQL queries into
query trees and then pull selections and projections as high as possible “above”
all other relational operations. This separates the tasks doable on server side
from the tasks doable on client side. While the database performs relational
operations on encrypted versions of the data, the final selection and projection
operations along with decryption steps take place on the trusted client machine.
This results in hardware requirements on client side that are similar to the
ones on the server side, which makes this approach unfeasible in today’s cloud
computing scenarios.

CryptDB by Popa et. al [74]

The most popular approach to using databases with encrypted content is Crypt-
DB [74] for mySQL and PostgreSQL. It was the first system that could be con-

32

sidered practical, introducing a variety of innovative features, most important:
the onion layer model, which this thesis uses as well in an improved adaptation
(see Section 5.2.1). Data items are encrypted multiple times using PPE, starting
with the weakest scheme, that leaks enough information to process the desired
query, up to a very strong scheme, that leaks no information (usually random
encryption). If an SQL query has to be processed, only the outer encryption
layers are removed, until the query can be processed with the strongest possi-
ble scheme in order to leak as little information as possible. The authors call
that “adjustable query-based encryption”. A proxy client acts as middleware
between the client application and the unmodified database server that takes
care of adjusting the onion layers as well as the key management.

A major drawback of CryptDB is the fact, that it only uses quite slow PPE
schemes and does not provide any alternatives. It seems the authors wanted to
avoid (client side or server side) indexes at all costs.Thus, CryptDB does not
scale well when datasets reach a certain size. In contrast, this thesis also utilizes
faster index-based schemes (see Section 4.3.2.1, 4.3.2.2 and 4.4.2.2).

However, it still receives a lot of scientific attention, in favorable as well as
critic ways. A few examples of projects involving it directly are given in this
paragraph. Focusing on performance rather than security Shahzad et. al come
to the conclusion that CryptDB is well suited for the usage as backbone of health
record management systems like OpenEMR1 [87]. At least when deployed in a
cloud environment with reasonable hardware underneath (for instance Amazon
EC2 m3.medium machines2) the average response time in the tested workloads
never exceeded more than two seconds. Tetali et. al use CryptDBs implementa-
tions of various PPE schemes for “MrCrypt” [91], a a system that provides data
confidentiality in Java programs. It works by statically analyzing a concrete
program in order to identify the operations performed on each input data which
is a column in a confidential database. Then, it selects an appropriate encryp-
tion scheme from CryptDBs stack for that column and transforms the program
correspondingly. Akin et. al showed in the context of using CryptDB for web
applications in multi-user settings that adversaries or malicious database admin-
istrators can easily steal information and even become the administrator of the
application [3]. Strikingly they achieve that without targeting the proxy or the
web application server itself. Their attack is based on the fact, that CryptDB
does not change the order of rows and columns in a table during creation. Both
get scrambled in the approach of this thesis, which renders the attack useless
when attempted. Another extension of CryptDB is Cipherbase [7] (see Section
3.2).

1http://www.open-emr.org/
22 CPUs, 4GB RAM, 8GB SSD

33

Monomi by Tu et. al [95]

Monomi can be considered being an extension of CryptDB as well, trying to
support even arbitrary SQL queries. It introduces a so called “designer” for
choosing an efficient physical design at the server for a given workload, and a
“planner” for selecting efficient execution plans for a given queries at runtime.

The key idea is to split every query into parts for the untrusted server and the
trusted client machine. Unlike using transformations of query trees as done in
[43] the server utilizes the architecture of CryptDB with the same PPE schemes.
Hence it comes with its benefits (more computation possible on server side), but
also with the same limitations (slow encryption schemes). Moreover there are
still (parts of) queries that are unprocessable for the server and thus have to be
done by the client.

While this indeed allows for a lot more queries to be executed at all (for ex-
ample 19 of 22 TPC-H3 queries compared to 4 using CryptDB), it also leads to
higher requirements for the client machine in order to still allow reasonable com-
putation times. Furthermore, depending on the concrete dataset and queries, a
large amount of the data may have to be stored (at least temporarily) on client
side, which also causes more network overhead. In some cases this problem
can be avoided by pre-computing values, that only depend on other columns in
the same row, which results in processing overhead and the need of additional
storage capacity for columns that store intermediate results.

BlindSeer by [69]

BlindSeer particularly addresses sub-linear searches for arbitrary boolean SQL-
queries. It is based on using two additional entities called index server (that
receives the client’s queries) and query checker (that privately enforces policies
over queries). The key idea is to identify small privacy relevant sub-problems,
solve them securely and use their outputs for completing the overall task, which
is search over a large encrypted database. Therefore the authors propose a data
structure called bloom filter search tree, that stores collections of keywords in
bloom filters in its nodes. Then the query processing works roughly as follows:

Before being able to perform queries a pre-processing step is required. There-
fore the server permutes the contents of the database, so that no information
about their order can be inferred later on. Then it creates the bloom filter
search tree based on that. The permuted database as well as the search tree are
sent in encrypted form to the index server. A search gets done by traversing
the tree (that is global for the entire database) starting from the root. The
client transforms the query in a boolean circuit, where variables correspond to
keyword matches, ranges or negotiations. If the circuit outputs true, all children
in the tree are evaluated recursively until the leaf nodes are reached. The client
receives tokens for the database records associated to these leafs from the index

3http://www.tpc.org/tpch/

34

server and can request the final encrypted output from the server for decryption.
The speed of this approach depends heavily on the size of the result set of the
query.

FamilyGuard avoids the expensive process of building a bloom filter search
tree as well as the two additional architectural components (index server and
query checker).

L-EncDB by [58]

The authors of [58] use the general architecture of CryptDB, but they replace
a few parts with new ideas. They also use a trusted instance between the
application and database for tasks like query rewriting and PPE encryption.
But instead of using SE in connection with server side UDFs, they use so called
format-preserving encryption4 (FPE) to realize fuzzy searches. They do not
adapt the concept of layered encryption.

Even though the authors claim their work to be a solution for cloud comput-
ing, their framework relies completely on SQL only. They mention the option
of extending their work to the syntax of NoSQL databases only very briefly and
not very specifically, leaving out the fact, that most NoSQL databases do not
possess query mechanisms that can be mapped to L-EncDB’s features like fuzzy
search (see Section 4.4.1). Furthermore OPE and FPE ciphertexts are stored
without an additional layer of a more secure encryption scheme, leaking order
and format information even if that is never required by a query. FamilyGuard
provides better security guarantees from the start due to its RND layer (see
Section 5.2.1) and more flexibility regarding the underlying data structures due
to its database independent implementation (see Section 6.3).

Summary

As could be seen approaches for encrypted relational (thus, SQL based) database
systems have two main problems: scalability and/or limited query expressive-
ness. The most popular and practically feasible designs are extensions of the
idea of CryptDB. All approaches require some kind of query pre-processing.

3.1.2. Approaches for Non-relational Databases

Search on Encrypted Graph Data by [52]

An approach aiming for executing queries over encrypted triple patterns using
SPARQL is presented by [52]. Here the data owner chooses eight different basic
keys for every plaintext document corresponding to the eight binding possibili-
ties of a triple pattern. Additionally, so called restriction patterns can be defined

4FPE means encrypting in a way that the the ciphertext is in the same format as the plaintext.
In other words: domain and range are equal, for instance 16-digit numbers or german words.

35

to further restrict the set of allowed queries. The data owner then generates a
symmetric encryption key for every plaintext triple, that encodes the basic key
and the bound parts required for the corresponding query. It is used for all
unbound parts, that are not already encoded in itself. The data owner then cre-
ates query keys for every allowed query, that encode basic keys and restriction
patterns. They are distributed to the users and used for the final decryption.
The decryption process then is quite simple: if a triple can be decrypted using
the custom query key, it fulfills the desired query.

Note that the number of keys in this approach is quite high and every plaintext
triple results in eight ciphertext triples. That leads to high overheads in terms
of processing (various key generations and encryptions) as well as to obvious
storage inefficiency. The authors’ evaluation also revealed, that the encryption
is relatively slow in practice with only about 15 triples per second. FamilyGuard
is more efficient in all of these aspects.

An Encrypted, Distributed, Searchable Key-Value Store by [102]

In addition to the client application and database server nodes this very re-
cent approach introduces an additional entity called dispatcher, that distributes
encrypted data to all the database server nodes evenly to build a distributed key-
value store. It also handles put/get requests generated by the client. However,
the database nodes send the encrypted values directly back to the client. They
also maintain local indexes to allow secure querying using secondary attributes
of data. Keys are encrypted by the client in a certain fashion that allows the
dispatcher to locate the right database server node containing the correspond-
ing values. In order to support more advanced queries than just put and get
requests, the authors propose using a set of PPE schemes similar to CryptDB,
depending on the desired functionality (meaning deterministic encryption for
equality checks and so on), but without organizing them in a layer model.

With FamilyGuard, the dispatcher functionality can be provided by the data-
bases native mechanisms to distribute data.

Arx by [70]

Another very recent approach is Arx, implemented on top of MongoDB. It
encrypts each data item with IND-CPA security, mostly using AES. Thus, it
provides the same level of security as fully homomorphic encryption or “regular”
encryption (that usually is unfunctional for computations).

In contrast to most other approaches Arx introduces two proxy servers, one
on client side and one co-located to the database server. The client side proxy
has the master key, stores metadata (schema information), rewrites queries and
encrypts sensitive data. Arx needs to know in advance what operations will
be performed on what fields in order to let the client side proxy maintain the
required indexes on the server. When a query is issued the server side proxy

36

receives cryptographic tokens from its client side pendant, that it uses to traverse
the index structures on the database server.

The key idea of Arx is to embed computations into special data structures
(“Arx-Range” for range and order-by-limit queries and “Arx-EQ” for equality
checks) on top of AES, instead of embedding it into PPE schemes. Arx-EQ
comes in three versions, depending on the usage of the encrypted values: using
SE for regular fields, deterministic encryption for fields containing only unique
values and additionally homomorphic encryption, if computation is required on
the encrypted fields. However Arx-Range is more complicated. It is based on a
B+ Tree, that the server side proxy has to traverse. Since this tree is stored on
server side, it is not allowed by Arx’s concept to store processable values (e.g.
generated using PPE) in its nodes. Instead the authors utilize garbled circuits
[101]. Each garbled circuit’s output is used for the relevant child’s garbled circuit
to traverse the tree. Unfortunately these circuits are only secure if used once.
Thus, the client side proxy generates and supplies new ones after a query has
been processed, which is quite an expensive thing to do.

As can be seen, the price for IND-CPA security of the entire database is quite
large, architectural as well as computational. In contrast, FamilyGuard does
not need two additional proxy servers or knowledge about queries in advance.

Summary

Due to the different working principles of the database systems in this category
the approaches are hardly comparable. So far there are much less approaches for
building architectures for encrypted non-relational databases compared to the
number of proposed systems for relational databases (where most works focus
on extending CryptDB, thus the number of key ideas is relatively small as well).
A really practical approach still seems to be missing.

3.1.3. Approaches relying on Fully Homomorphic Encryption

Architectures like CryptDB would not be needed and the query processing could
still be done straight forward, if fully homomorphic encryption (FHE) could be
used consequently to perform all computations. Indeed it has been proved that
it is possible to perform arbitrary computations over encrypted data (and thus
arbitrary queries) this way [34]. Unfortunatley, as mentioned earlier (see Section
2.4.4) such constructions are prohibitively computational expensive in practice.
For instance, the same authors’ homomorphic evaluation of the AES circuit [35]
showed a slow down by the order of 109 compared to computations on plaintext
data. Most recent research in the field [19] makes progress, but still states their
own scheme to be “not by itself practical”.

37

3.2. Hardware Architectures

In contrast to the previously discussed approaches there are schemes relying
also on cryptographic hardware instead of software only. The following section
briefly discusses two examples.

Cipherbase by Arasu et. al [7]

Cipherbase is an extension of Microsoft’s SQL Server with two modified parts:
the ODBC driver at the client side and the query processor at the server side.
The cipherbase ODBC driver holds an 128bit AES key in order to encrypt data,
constants and parameters of queries and updates, as well as to decrypt the
server’s results. It also keeps track of statistics for query optimization. Ci-
pherbase’s query processor integrates a secure coprocessor within a so called
“trusted machine” on server side, used as a submodule for operations over en-
crypted data. It is realized utilizing field programmable gate arrays (FPGAs),
which are, briefly described, reconfigurable hardware devices. They are equipped
with an own encryption key burned into hardware, used to encrypt the applica-
tion keys provided by the ODBC driver.

Of course this concept requires additional steps for computing a query. En-
crypted tuples have to be transferred from the untrusted part of the query
processor to the trusted machine, where they are decrypted, processed an then
re-encrypted to be transferred back to the untrusted query processor part. After
all computations are done the encrypted results can finally be sent back to the
client.

TrustedDB by Bajaj et. al [9]

Like Cipherbase TrustedDB aims on SQL processing using trusted hardware in
a similar way, but with tamper-proof cryptographic coprocessors (SCPUs) such
as the IBM 47645 instead of FPGAs.

In brief, the query execution of TrustedDB works as follows. The user creates
and populates an SQL schema, marking sensitive data items with the keyword
“SENSITIVE” in the queries. The client then sends them through a standard
SQL interface, encrypted using the public key of the SCPU. Thus, the database
server cannot decrypt the query. The encrypted query is then forwarded to the
request handler of the SCPU, that decrypts it and then forwards it to the query
parser. During the query parsing a set of execution plans is constructed by
rewriting the client’s original query into a set of sub-queries. Each sub-query
is again classified as either public or private according to their target data set
classification of the original query. Afterwards the query optimizer estimates
the runtime of each plan and choses the one with least execution cost. Then the
query dispatcher forwards public queries to the “regular” database server and

5https://www.ibm.com/support/knowledgecenter/ssw i5 54/rzajc/rzajcco4758.htm

38

the private ones to the SCPU, while at the same time taking care of eventual
dependencies. Thereby it tries to move as much work as possible to the database
server. Finally, the client receives the results back, assembled, re-encrypted and
signed by the SCPU dispatcher.

Summary

Even though hardware approaches like these overcome the limitations of CryptDB-
based techniques in many points (particularly regarding the query expressive-
ness), they rely on expensive trusted hardware at the server side, which makes
them unattractive (and in contrast to FamilyGuard not out-of-the-box usable)
for today’s typical cloud services providers. Note that they also require the
database to have the user’s decryption keys. Furthermore there are apparently
no approaches for non-relational databases in this field.

3.3. A Related Problem: Data Integrity

The main difference between problems of data confidentiality and data integrity
is the attacker model they take as basis. The honest-but-curious model describes
the adversary as a completely passive entity, that does not manipulate the data
items or their transportation to the client. However, there are many possibilities
for a malicious attacker to interfere actively, for example: returning incomplete
or outdated query result sets. Thus, this tackles not only data privacy, but
also the related problem of data integrity, where correctness (did I get the right
results?), freshness (did I get the most recent results?) and completeness (did I
get all results?) of result sets are in focus. A couple of approaches for detecting
issues of that sort are discussed briefly in this section to present the key ideas.

One way to achieve data integrity independently from the database is to in-
tegrate mechanisms for data integrity checking already on file system level. [37]
proposes doing this using an extra layer on top of the unmodified file system.
That allows the file server to remain unchanged. Files are kept in two sections,
one contains the file data (symmetrically encrypted content using a unique key
per file) and the other one contains the metadata (access control information).
Files are also signed, using a unique key per file. While possession of the en-
cryption key is enough for reading data, the signing key is required to also write.
Additional “metadata freshness files” are located in every directory, containing
the root of a hash tree that was build from all the metadata files in the direc-
tory and its sub-directories. The root metadata freshness file gets continuously
signed by the client. [59] additionally introduces block servers to store blocks of
data that clients interpret as a file system. Here, the file system implementation
resides entirely on the client, which requires new storage servers in contrast to
[37]. Apart from that the ideas are similar: encryption is done using per-file
keys and file integrity checks are implemented using hash trees. Note that both

39

approaches can detect attacks, but do not resolve them.
[66] proposes an approach for integrity checks on XML documents. Therefore

the authors introduce an authenticated structure indexing all elements of the
XML document (elements as well as attributes). This gets done using a data
structure called “Nested Merkle B+ Tree”, a combination of various auxiliary
data structures, organized in the fashion of a nested B+ tree. Complemented
by different hash chains the nested Merkle B+ Tree is formed. Correctness and
completeness can be verified by checking the root’s hash value and signature
similar to the previously discussed approaches. For also guaranteeing freshness
of the data the authors use the timestamp value of the root node, that has to
match the timestamp broadcasted by the data owner.

[93] proposed a scheme that aims at verifying results of aggregation queries in
particular. Database storage providers hosting outsourced databases compute
aggregate queries collaboratively without gaining knowledge of intermediate re-
sults. The users are able to verify the results of these queries relying only on
their trust of the data owner.

[72] introduces “Cloudproof”, a storage system that runs on top of cloud
storage services like Amazon S3. It is designed to not only detect data integrity
violations, but also to prove the occurrence of these violations to a third party.
It is realized in the form of a key-value store. The data is organized in blocks
with corresponding access control lists, naming users with permissions. The
interface provided consists of a get(BlockID) and a put(BlockID, byte[] content)
method. When users access cloud storage using these methods, each request
and response is associated with an attestation, which then can be used by any
client to check data integrity later on. The data owner checks integrity during
an auditing process that is performed once in a certain time slot (“epoch”),
in which for efficiency reasons, each block is not guaranteed to, but only has
a certain probability of being audited. Therefore, users send the attestations
they receive from the cloud to the owner, who can detect any violations and
construct proofs for convincing third parties.

Summary

The field of data integrity involves data correctness, freshness and completeness.
It can be treated without manipulating the data itself (e.g. on file system level or
using auxiliary data structures). The problems of data integrity and privacy can
be mainly separated by the attacker model (active vs. passive). Interestingly,
to the best of our knowledge mechanisms for protecting integrity and (property-
preserving) encryption were never combined in a single system.

40

4
Selecting and Modifying Appropriate
Encryption Schemes

The following chapter lays the foundation for the architecture of FamilyGuard
as introduced in the Chapter 5. It explains the concepts behind using PPE in
the context of databases, gives an overview about existing encryption schemes
and introduces the particular requirements of using PPE in practice with WCSs.
Considering these requirements a number of schemes are then selected for the
use in this work and discussed in detail. However, some chosen schemes still
need modifications or leave room for improvements, which are elaborated on as
well.

Contents

4.1. Overview . 44

4.2. Deterministic Encryption 45

4.2.1. Requirements . 45

4.2.2. Applicable Schemes 45

4.2.3. Inapplicable Schemes 47

4.3. Order Preserving Encryption 47

4.3.1. Requirements . 47

4.3.2. Applicable Schemes 49

4.3.3. Inapplicable Schemes 54

4.4. Searchable Encryption 55

4.4.1. Requirements . 55

4.4.2. Applicable Schemes 57

4.4.3. Inapplicable Schemes 63

43

4.1. Overview

Traditional1 encryption schemes can provide strong security guarantees (like
for example AES provides IND-CPA security). However, using such schemes
for encryption unavoidably leads to the loss of certain plaintext characteris-
tics, that database systems rely on for processing data. Mainly three of these
characteristics are important:

• Equality: After a plaintext has been encrypted using a traditional scheme,
it cannot be used by the database for equality checks with plaintexts any-
more (and neither for joins, grouping or counting). Note that a special
instance of this problem is text search. Furthermore, if different keys or
initialization vectors were used, equality checking can not even performed
between ciphertexts only.

• Order relations: Once plaintexts are encrypted using a traditional scheme,
they lose their (usually numerical or lexicographical) order relation. This
is a problem for ordering, sorting or finding a minimum or maximum value
in a given dataset.

• Computability: Ciphertexts produced by traditional schemes cannot be
used for computations like additions or multiplications. This is important
when it comes to aggregations, for example when computing the sum or
average of all values of a column.

This thesis focuses only on aspects regarding equality and order relations,
since computations are only needed in a very small subset of most NoSQL
database’s query mechanisms. For example the SUM and AVG commands are
the only ones in Apache Cassandra’s query language, that would profit from
computability of ciphertexts. Out-of-the-box HBase even has no use for it at
all. Thus, the following sections describe how to select appropriate and feasible
schemes in order to enable the database server to perform

• equality checks, grouping and counting, using deterministic encryption
(Section 4.2)

• range queries, sorting, ordering, using OPE (Section 4.3)

• text search, using SE (Section 4.4)

Table 4.1 gives an overview on all PPE schemes that are discussed in this
thesis.

1meaning not property-preserving

44

Table 4.1.: Overview about the PPE schemes discussed and used in this
thesis

functionality approaches

deterministic encryption [76], [84]
order-preserving encryption [54], [100], [14], [71], [81], [61], [62],

[13], [64], [50]
searchable encryption [89], [45], [31], [51], [36], [25], [97],

[86], [47]

[x] discussed in this thesis, but not practically used due to lack of feasibility
[x] third-party implementation used for this thesis
[x] implementation used for this theses
[x] implementation with own improvements used for this theses

4.2. Deterministic Encryption

4.2.1. Requirements

With deterministic encryption the server is able to learn which encrypted data
items correspond to the same plaintext data value, since when deterministically
generated, the same ciphertexts are mapped to the same plaintexts. In contrast
to OPE and SE, there are no other relevant practical requirements to this type
of PPE besides this determinism (except of course for a certain level of runtime
performance and security, which will be discussed for the applicable schemes
individually). Deterministic encryption is mostly realized using a block cipher
(see Section 2.4.1.3).

4.2.2. Applicable Schemes

4.2.2.1. Advanced Encryption Standard (AES) by [76]

Description AES is a symmetric block sipher. It allows block lengths of 128,
160, 192, 224 and 256 bits, as well as key lengths of 128, 192 or 256 bits. It
can be used to achieve strong security guarantees, like IND-CPA. Furthermore
a lot of widely used Intel and AMD mainstream processors are equipped with
AES optimized instruction sets2, which is why AES usually performs well in
real-world applications.

As AES is a well known and publicly available encryption standard for over
15 years now, this thesis will only give a high level explanation of its working
principles. AES operates on 4x4 Byte matrices on which it performs transforma-
tion rounds. The cipher key length specifies the number of repetitions of these
rounds (128 bit = 10 cycles, 192 bit = 12 cycles, 256 = 14 cycles). Therefore
firstly, round keys are derived from the cipher key. Afterwards, it follows an

2see https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-

09-22-v01.pdf

45

initial round, in which each byte of the matrix is combined with a block of the
round key using a bitwise XOR operation. Then the transformation rounds are
performed, each consisting of four steps: (i) each byte is replaced with another
one according to a lookup table using a so called “S-box” (where S stands for
substitution), (ii) the last three rows of the matrix are shifted cyclically by a
certain number of steps, (iii) for diffusion in the cipher, every column’s four
bytes are combined to another four bytes in a way that each input byte affects
all four output bytes using linear transformation with a fixed matrix and (iv)
the initial round step. After the required number of transformation round cy-
cles was processed, a final round concludes the algorithm, that is basically like
a regular transformation round, but without step (iii).

Weaknesses There are a couple of theoretical attacks on AES, but none of
them is of practical relevance with today’s hardware capabilities. The most
popular and “efficient” one was proposed in [12]. It is only four times faster than
bruteforcing and thus poses no security risk. Note that side-channel attacks do
not attack ciphers, but the underlying hardware and thus, there are not related
to security in the context of this thesis.

4.2.2.2. Blowfish by [84]

Description Blowfish comes with a fixed block length of 64 bit, while the cipher
key length can vary between 32 and 448 bit. Similar to AES the first step is
to derive round keys from the cipher key. Then the plaintext is split into a left
and right half. After that the algorithm continues with 16 rounds, in each of
which the following happens: (i) the left half gets XORed with the current round
key, (ii) the output of (i) is used as input for Blowfish’s round function. The
result gets XORed with the right half. (iii) Both halves are swapped. After the
16 rounds are processed both halves get XORed with the round keys of round
17 and 18. Eventhough meanwhile the successor “Twofish” [85] is available,
Blowfish is still of special interest for this thesis due to the fact, that its 64 bit
block length is enough to cover a lot of basic numeric datatypes (in particular
the most ciphertexts produced by OPE, see Section 4.3). That makes it more
storage-efficient than Twofish.

Weaknesses So far there are no efficient attacks on Blowfish, when executed
with the full 16 rounds. Unfortunately, compared to AES there are not many
specialized hardware implementations either.

4.2.2.3. Others

There are a couple of other block ciphers, that would also work fine for this
thesis, like RC6 [78], Serpent [6] and the previously mentioned Twofish. How-
ever, the discussion and practical usage for this thesis is limited to AES due

46

to its wide adoption and performance as well as to Blowfish due to its storage
efficiency. No other schemes are needed.

4.2.3. Inapplicable Schemes

The main reason for a block cipher based scheme to be inapplicable for the
architecture of this thesis is a lack of security. A typical example is DES [77].
Once widely used, it can be broken by specialized hardware in a few hours since
20103.

4.3. Order Preserving Encryption

4.3.1. Requirements

Due to the general working principles of wide columns stores as described in
Section 2.1.2, OPE schemes have to satisfy certain requirements, leading to the
following criteria for evaluating their practical feasibility:

(I) Ciphertext (im-)mutability. The ciphertext produced by an OPE scheme
is called mutable, if it may change as more and more input gets encrypted.
An example of this category is [54], described in detail in Section 4.3.2.2. In
contrast, there are OPE schemes producing immutable ciphertexts. Immutable
means once a plaintext is encrypted, the corresponding ciphertext is final. This
avoids a possible re-encryption overhead. An instance of this category is [100],
described in Section 4.3.2.1.

As discussed in Section 2.1.2 the encryption of row identifiers must be order-
preserving to preserve the way data gets distributed in the cluster. The usage of
a mutable OPE scheme for the row identifiers would cause row keys to change
over time and hence would result in changing the data’s physical position inside
the database (cluster), which is prohibitively expensive (and thus, generally not
supported at all by WCS databases). Hence, at least for row identifiers an
immutable OPE scheme is required. However, mutable OPE schemes can still
be used for other column data to gain more performance, as can be observed
in Section 7.1.1.2. Note that ciphertext mutability is often strongly related to
criterion II and V.

(II) Need for additional data structures. Most OPE schemes need to maintain
an inner state, for example to maintain plaintext-ciphertext-mappings. There-
fore they need to maintain appropriate data structures for indexes, trees, dic-
tionaries etc., either on client side (or at least a trusted enviroment), e.g. [54],
or on server side, e.g. [71, 81]. Note that in particular maintaining tree struc-
tures is expensive for (non-graph-based) database systems. Hence, additional

3see http://www.sciengines.com/company/news-a-events/74-des-in-1-day.html

47

components on server side are sometimes proposed for performance reasons (see
criterion III), which makes practical implementations rather complex. Further-
more such architectures do not fit today’s usual cloud computing offers well.
Hence, OPE schemes are well suited for this thesis, if they use simple and fast
accessible data structures for maintaining their state. Note that also a stateless
scheme is used later on (see Section 4.3.2.3).

(III) Need for additional architectural components Client applications and
database platforms normally do not have built-in mechanisms for OPE. Thus
additional components are required for both rewriting queries to make them
work with the server side data structures (as they might have to be altered
for functioning with the OPE schemes) as well as for performing decryption
and encryption itself. Usually those components have to reside in the trusted
(client side) environment (e.g. [73, 95]), but some OPE schemes even require
components running co-located to the database server (e.g. [71]), which cannot
be considered practical due to the architectural overhead. In particular (like in
criterion II) SaaS providers usually do not support that. Hence, OPE schemes
are well suited for this thesis, if they do not require any further components
besides the client application and the database server.

(IV) Input capabilities This criterion can be further sub-divided into three
problems:

• IV-a The authors of all OPE proposals discussed in this thesis assume
only positive integer input for their schemes. This is hard to apply to real
world datasets in which we also find negative or floating point numbers.
One option to deal with negative input would be adding an offset value to
the plaintext space, that is large enough to push every value above zero.
The question is how to determine this offset, when the entire plaintext
(dataset) space is not known in advance.

• IV-b Handling floating point input is an even bigger problem. To our
knowledge there is no technique for encrypting floating point numbers in
an order-preserving way. This rises the question whether existing OPE
schemes can be modified to also work with negative and/or floating point
input. We will answer that for the schemes we have investigated in Section
4.3.2.1 - 4.3.2.3.

• IV-c Independent from the input type, some OPE schemes further re-
quire detailed knowledge of all the plaintexts before encryption (e.g. [61]),
which is hard to realize in practical scenarios as databases may grow un-
predictably over time. Some schemes even need to encrypt the whole
plaintext space D in advance [100, 62], instead of encrypting only the de-
sired values on demand. The unfeasibility of such an approach can be

48

illustrated easily using the following example: let D be defined by a com-
mon Integer datatype. Having a typical length of 32 bit, |D| would be
of size 232, which means 4.3 billion items would have to be pre-computed
and stored in an index (even if the majority is never used).

Hence, since to the best of our knowledge there are no OPE schemes available
for negative and/or floating point input, schemes are suitable for the architecture
of this thesis, if they at least support on demand encryption of arbitrary values
of the plaintext space.

(V) Security The first formal security analysis of OPE [13] proved that ideal
security4 with immutable ciphertexts can only be accomplished, if the cipher-
text space size |R| is exponential in the plaintext space size |D|, which is hard to
achieve in practice. OPE schemes deal with this problem in different ways (which
often has a direct impact on the criteria II and III). One example is modular
plaintext shifting [14], meaning adding a fixed offset to all ciphertexts, starting
again from zero when the cipertext space upper bound is reached. This is easy
to implement, but only a small security enhancement. Another example is using
fake queries to hide the query distribution [64], but that causes communication
and computation overhead. In practice ideal security can be achieved more eas-
ily by OPE schemes producing mutable ciphertexts, because they do not have
the requirement of a ciphertext space size being exponential in the plaintext
space size. They also hide the frequency distribution of plaintext-ciphertext
assignments much better, thus being able to achieve an almost uniform distri-
bution (as shown e.g. by [100]). Still, that also means dealing with unavoidable
re-encryptions of (at least parts of) the ciphertext, that is already stored in the
database. Recent schemes try to keep the number of such updates to a minimum
[54] or take the burden of reassigning ciphertexts to components on server side
[71] to reduce at least communication costs. An alternative approach to avoid
re-encryption in the first place is pre-encrypting the whole plaintext space in
advance as discussed in criterion IV-c.

For a quick overview and brief evaluation of the schemes that were investigated
based on the above described criteria, see Table 4.2.

4.3.2. Applicable Schemes

For this thesis the three schemes from Table 4.2 were selected for implementation
and testing, that fulfil the above introduced criteria the best, namely [14, 100,
54]. Detailed explanations of these schemes and our modifications to improve
the practical feasibility of two of them are given in the following Sections 4.3.2.1
- 4.3.2.3. For not losing scope of this thesis the concepts of the schemes that were
ruled out are not explained in detail, but their flaws are discussed in Section
4.3.3.
4meaning IND-OCPA: ciphertexts reveal nothing, but their order

49

Table 4.2.: Evaluation of the practical feasibility of the OPE schemes
discussed in this chapter based on the criteria introduced in
section 4.3.1, ordered chronologically by date of publication

Scheme I II III IV V

[50] + −− + − −− (?2)
[14]1 + ++ + − + (POPF)
[61] + −− + −− −− (?3)
[71] − −− − ++ + (IND-OCPA)
[100]1 + − + + ++ (> IND-OCPA4)
[62] + − + − −− (?2)
[54]1 − − + ++ + (IND-OCPA)
[26] + + + − ++ (> POPF4)

1 scheme used and implemented in this thesis
2 only rather informal security analysis provided by the authors
3 no security analysis provided by the authors
4 “>” = proved by the authors to be better than...

4.3.2.1. Random Subrange Selection using Random Uniform Sampling by
[100]

Description In their work the authors introduce not one, but three OPE
schemes, namely random offset addition (ROA), random uniform sampling (RUS)
and random subrange selection (RSS). Since ROA is somewhat trivial and an
attacker only needs to know a single plaintext-ciphertext-pair to break the en-
cryption, this thesis focuses on RSS with RUS being a sub-procedure of it.

RSS can roughly be described as follows. First of all, randomly decide how
to draw the lower and upper bounds rmin and rmax of the ciphertext range R,
either by choosing rmin ∈ [1, |R| − |D| + 1] and rmax ∈ [rmin + |D| − 1, |R|]
or by choosing rmax ∈ [|D|, |R|] and rmin ∈ [1, rmax − |D| + 1]. Afterwards an
order-preserving function (OPF) from D = [1, |D|] to R = [1, rmax − rmin + 1]
is sampled using an alternative OPE construction scheme. Therefore this thesis
uses the authors’ RUS as described in the next paragraph. Finally add rmin− 1
to all ciphertexts.

RUS gets initialized with an empty OPF f and the minimum and maximum
elements of D and R as specified by RSS before. A recursive sample procedure
then randomly selects an element p ∈ [dmin, dmax] and c ∈ [rmin+p−dmin, rmax+
p − dmax]. Thus, p splits D in a lower and a higher sub-domain and c splits R
in a lower and a higher sub-range. The pair (p, c) is then added to f and the
sample procedure continues recursively as before with the new sub-domains and
sub-ranges until D is completely covered.

Practical Strengths and Weaknesses. The following list provides an overview
of the Pros(+) and Cons (–) of the RSS scheme when it comes to putting it into

50

practice.

+ Ciphertexts are immutable.

+ No cryptographic primitives are needed, just random selections.

− RSS with RUS can handle only positive numerical inputs.

− It processes the whole domain D at once instead of computing and re-
turning only the ciphertexts for actually desired plaintexts on demand
(an example illustrating the impracticability of this approach was given in
Section 4.3-IV)

Modifications We now describe our approach to make RSS with RUS practical
in real-world applications. We can get rid of the first weakness trivially by
initializing the sample function in RUS with a negative value for dmin instead of
1. This extends the domain D into the range of negative numbers (as far as we
want). Since the algorithm only works with random selections in intervals and
some additions and subtractions, that does not affect its working principle. We
can eliminate the second weakness by modifying RSS and RUS in the following
way.

First of all, we define p′ specifying the plaintext value that we are actually
aiming for in the encryption process (instead of the whole domain D). We
modify the sample procedure of RUS by adding an extra parameter for p′. Now
instead of always continuing recursively after a split for the lower sub-domain
[dmin, p− 1] and the higher sub-domain [p+ 1, dmax], we only process the lower
sub-domain if p′ ∈ [dmin, p − 1] or the higher sub-domain if p′ ∈ [p + 1, dmax].
This reduces the average number of sample function executions (in the following
short: “samplings”) from |R| to log2(|R|).

Then we modify RSS itself. Instead of always starting with the full domain |D|
(which in combination with our RUS sample function modification would result
in an inconsistent encryption anyway), we now initialize the sample function
of RUS only with the sub-domain [d1, d2], in which d1 is the highest already
encrypted value smaller than p′ and d2 is the smallest already encrypted value
greater than p′. As more and more values get encrypted, this reduces the average
number of samplings further (see Figure 4.2). In order to make that work for
the first p′ that we would like to encrypt after we have determined rmin and
rmax in the initialization phase of RSS, we add the minimum and maximum
pairs (pmin, cmin) and (pmax, cmax) to f by sampling cmin from [rmin, rmax − 1]
and cmax from [cmin + 1, rmax].

Figure 4.1 and 4.2 present an example that illustrates the improvements by
showing the average number of necessary samplings for computing the cipher-
texts of 10000 uniformly and randomly generated 32 bit Integer plaintext values
20 times. Instead of always having to sample |D| = 232 = 4294967296 times to
cover the whole domain and then pick the 10000 (p, c) pairs that are actually

51

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 2000 4000 6000 8000 10000

nu
m

be
r o

f s
am

pl
in

gs

number of inserted numerical values

Figure 4.1.: Average number of samplings required in [100] with increasing
dataset size.

required, only 186.287 samplings (= 0.004%) for those 10000 values are neces-
sary on average. Note that the implementation done for this thesis is able to
do this in less than a second (for details see Section 7.1.1.2). Of course this
number decreases, if less values are supposed to be encrypted (see Figure 4.1).
Furthermore it can be observed, that as more and more values have been en-
crypted already, the average number of necessary samplings required per value
decreases from the expected log2(|R|) = log2(2

32) = 32 for the first encryption
to 21 for the 10000th encryption (see Figure 4.2).

4.3.2.2. Optimal Average-Complexity Ideal-Security (OACIS) OPE by [54]

Description The OPE scheme introduced in [54] can be briefly described as
follows. The OPF f is initialized with two plaintext-ciphertext-pairs, namely
(−1,−1) and (|D|, |R|). New pairs (p, c) are always inserted between (pn, cn)
and (pn+1, cn+1) with pn ≤ p < pn+1 and c = cn + d cn+1−cn

2 e. If p = pn, the
value was already encrypted. If cn+1 − cn = 1 there is no gap large enough to
accommodate the new ciphertext c. In this case a re-encryption procedure is
executed: From all the sorted and distinct plaintexts p1...pm that have already
been encrypted, start over like described above with p = pbm

2
c+1 and continue

recursively with the interval p1...pbm
2
c if m > 1 and pbm

2
c+2...pm if m > 2.

52

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000

nu
m

be
r

of
 s

a
m

pl
e

s
ne

ce
ss

a
ry

 to

co
m

pu
te

 t
he

 ta
rg

e
te

d
va

lu
e

 p
'

number of inserted numerical values

Figure 4.2.: Average number of samplings required per encryption in [100] with
increasing dataset size (the black line represents the average of 20
runs, as indicated by the grey dots)

Practical Strengths and Weaknesses. Like done before for the RSS scheme
the following list provides an overview of the Pros(+) and Cons (–) of OACIS
OPE.

+ This scheme works with very simple computations, that do not even in-
volve randomness. Thus it can be computed very fast.

− Ciphertexts are mutable. Thus, the most obvious weakness is the re-
encryption phase, because in practice that means reading all already en-
crypted values from the database, re-encrypt them and finally write them
back into the database. In order to keep the occurrences of those re-
encryptions as rare as possible, the ciphertext space should be chosen
large enough. Having a plaintext space of length n bits the authors rec-
ommend a ciphertext space of size λn bits, with a theoretical safe upper
bound of λ = 6.31107, but they also show in their practical experiments
that λ = 3 (sometimes even λ = 2) is already sufficient for most datasets.

− Insertion order matters. The best case is when all elements of a perfectly
balanced binary search tree are inserted in pre-order traversal order. The
average case is a uniform input distribution. The worst case is inserting
pre-sorted values, which should be avoided at all (see Section 7.1.1.2).

− By the authors’ definition the scheme cannot handle negative input.

53

Modifications Since we cannot avoid the re-encrytion phase other than by
defining the range large enough and we also might not have any influence on
the insertion order of the plaintexts later on, the only modification we can
apply is initializing f with (−|D|,−|R|) and (|D|, |D|λ), instead of (−1,−1)
and (|D|, |R|). Similar to our modification for [100] this extends the domain to
also cover negative input. To make sure this does not increase the number of
necessary re-balancings, we adjusted the ciphertext space as recommended by
the authors.

4.3.2.3. mOPE by [14]

Description mOPE is an extension of [13], which is the only OPE scheme of
practical relevance so far (implemented in [73, 95]). It is based on the fact that
any OPF from {1...M} to {1...N} can be represented by a combination of M
out of N ordered items. Thus, ciphertexts can be computed by sampling values
according to the hypergeometric distribution. mOPE adds a secret modular
shift to the encryption in the following way: if DECOPE and ENCOPE are the
decryption and encryption function of the standard Boldyreva OPE [13], then
ENCmOPE(x) = ENC(x+m) (where m is a secret offset) and DECmOPE(x) =
DECOPE(x) −m mod |D| (where |D| is the size of the plaintext space). For
not losing scope at this point, the reader is kindly referred to [13, 14] for more
details.

Practical Strengths and Weaknesses.

+ This scheme is the only OPE scheme that does not require maintaining
a state at all. That makes it easy to implement the algorithm for client
server scenarios. No indexes are required.

− The core element of this algorithm is sampling from the hypergeometric
distribution, which is computationally expensive and requires the input to
be a positive integer value.

4.3.3. Inapplicable Schemes

To give an idea of why other OPE schemes from Table 4.2 have been considered
impractical, a few of their characteristics that cannot be read from this table
are pointed out in the following paragraphs.

The approaches of [49] and [62] require splitting and partitioning of the plain-
text space. Hence, they have to keep track of more metadata than most other
schemes. Furthermore the pre-processing of query conditions is quite complex,
in contrast to most other schemes that simply replace plaintext values with
ciphertext values in the query.

The scheme of [61] requires detailed knowledge of the plaintext space. In
particular it needs to know the smallest distance between two input values for

54

adding random noise to the ciphertexts in a way that does not corrupt the orig-
inal order. As mentioned before, in practice usually there often is no detailed
information about the plaintext in advance. Furthermore, this is a problem
when encrypting floating point numbers, since in theory the minimum distance
between such numbers can be arbitrarily small. Moreover, the indexing mech-
anism is complicated, working with an index of indexes and storing a single
plaintext value requires storing three values in the database (for a hash, a index
value and an encrypted representation).

The approach of [71] needs an additional component running co-located to
the database server, which the authors call “OPE-server”. It is responsible for
performing re-encryption operations as described in Section 4.3-I and holds two
data structures: a tree containing deterministic ciphertexts in each node and
a table mapping these ciphertexts to OPE encodings. In real world scenarios
running additional applications on the same platform as or co-located to the
database server often is not possible or does not fit the offers of cloud database
providers. Furthermore it makes this approach very expensive in terms of net-
work communication overhead.

The approach of [26] (calling it order-revealing encryption) completely lacks
a practical decryption functionality. Instead it comes with a custom compare
operator. Thus it is not applicable for a database scenario, since it surely would
preserve the order of the plaintext, but their exact values would not be recov-
erable with regular query mechanisms. Instead, decryption requires applying
the compare operator multiple times and then traversing a binary tree. Al-
ternatively the authors propose to store every encrypted value together with a
CPA-secure encrypted representation of the plaintext in order to avoid the tree
traversal.

4.4. Searchable Encryption

4.4.1. Requirements

Like previously done for OPE this chapter discusses practical requirements of
schemes for SE in the context of databases. However, in contrast to the previous
chapter, some restrictions can be made in the selection process of available
schemes, given by the database scenario of this thesis. That significantly limits
the number of possible candidates in advance. Thus this thesis does not discuss
schemes involving

• fuzzy search - Query mechanisms for NoSQL databases do not support
fuzzy search functionality so far5 (unlike SQL’s LIKE operator, that sup-
ports at least wildcards). Hence, most applications that rely on NoSQL

5with rare exceptions, for example MongoDB and HBase realize fuzzy search with regular
expressions, which has major impacts on query runtime.

55

technology today are not designed to work with fuzzy search. They ask
questions to the database and expect exact answers, not fuzzy ones.

• multi-keyword search6 - Searching for multiple keywords at the same time
could improve the performance of a small subset of possible queries, but
like fuzzy search schemes, multi-keyword search is very complex and re-
quires a lot of extra pre-processing and data structures. Thus, for this
thesis the extra effort is in no relation to the benefits. However this can
be considered an option for future work (see Section 8.2).

• multi-user functionality - User rights management in the scenario of this
thesis is performed on another (higher) level (e.g. by the database itself
or a frontend), rather than encoded in the layer for searchable encryption.
Other layers (for example OPE) do not support it either, which would be
necessary for a consequent implementation.

• ranked search - In the scenario of this thesis ordering search results is task
of the database, since the user might have specified certain criteria for that
in the query. It cannot be left to the searchable encryption layer.

An evaluation of practical feasibility of the remaining schemes for SE can be
done based on the following criteria (some of them similar to the criteria for
OPE):

(I) Need for additional data structures. Searchable encryption can be done in
two ways. On the on hand, the plaintext can be encrypted directly in a certain
fashion. That means the ciphertext can be queried directly as well, but since
every word has to be checked for a match, this results in a search time linear to
the length of the plaintext data. That is why, on the other hand, indexes can be
used to significantly speed up the search process and achieve sub-linear search
time (Section 2.4.2.1 described, how indexes can be constructed). Unfortunately
using indexes also has downsides. It comes with the cost of additional pre-
processing steps (e.g. selecting keywords, set up the index data structure, etc.),
requires index maintenance and often an extra round of communication (first
for querying the index and then for getting the actual results). Furthermore the
underlying data structure of the index should be manageable for the database
without too much effort (for instance tree structures are hard to maintain within
a WCS, but easy for a graph database). Hence, a good SE scheme in the context
of this thesis has either no index at all or an index with a data structure that is
simple to maintain.

Interestingly, the scheme of Song et. al [89] (see Section 4.4.2.1) is the only
approach that does not rely on an index. However, other schemes even combine
different index types (as explained in Section 2.4.2.1, for example the approach
of Hahn et. al [45], see Section 4.4.2.2).

6sometimes also referred to as conjunctive keyword search

56

(II) Support for Updates. When used in databases, a scheme for performing
SE needs the ability to process updates, since in most practical cases it is un-
likely that the complete data set is known in advance or remains completely
unchanged once written to the database. This can be a problem for index
based schemes, since new document identifiers or keywords have to be added
to existing indexes. Thus, schemes requiring the exact number of documents
or keywords per documents (see Section 4.4.3) prior to encryption can hardly
be used, except for so called “write once”-databases7. By design the problem
of updates is only a problem for index-based schemes. SE schemes supporting
update operations are usually referred to as “dynamic” schemes.

(III) Performance Requirements Checking for matches does not work with
simple operations like in DET or OPE. Instead, more complex procedures are
necessary, dependent on how the scheme was designed. This can involve per-
forming lookups in auxiliary data structures like bloom filters or traversing trees,
using cryptographic primitives or concatenate strings. For efficiency reasons this
cannot become too complex and should involve only data structures that can
be held by WCSs without too much effort.

(IV) Security vs. (V) Search Efficiency. A broad introduction into security
considerations for SE was already given in Section 2.4.2.1. Note that security
for index-based schemes and not index-based schemes is hardly comparable due
to the information leakage that comes with querying indexes. Thus, in practice
there are two competitive requirements here: avoiding an index leads to more
security but is generally slow for searches. Using an index may slow down en-
cryption and leaks additional information, but speeds up querying significantly
(see Section 7.1.1.3).

For a quick overview and brief evaluation of the schemes that were investigated
in this thesis based on the above described criteria, see Table 4.3.

4.4.2. Applicable Schemes

This thesis uses the two schemes for SE that appear to be best suited in Table
4.3. Both follow very different approaches.

Firsty, the scheme proposed by Song et al. [89] (short “SWP” scheme, which
is an abbreviation for the author’s names Song, Wagner and Perrig) is one of
the first approaches to searchable encryption at all. It is based on linear scans,
which means, it most likely will be not as fast as index-based schemes, but
is has a couple of features that still make it interesting to use in a practical
environment.

7like the name suggests: databases that are written to only once and then solely queried

57

Table 4.3.: Evaluation of the practical feasibility of the SE schemes discussed
in this chapter based on the criteria introduced in section 4.4.1,
ordered chronologically by date of publication

Scheme I II III2 IV V3

[89]1 ++ ++ − (XOR, PRF) ++ (IND-CPA) O(n)
[36] − ++ ++ −− (IND1-CKA) O(d)
[25] −− + ++ −− (IND2-CKA) O(d)
[31] −− −− −− (XOR, SC, DED) + (IND-CKA2) O(m)
[86] − + − (XOR) + (IND-CKA2) O(log(u))
[97] −− ++ −− (XOR, PRF, HSH) + (IND-CKA2) O(log(u))4

[51] −− + −− (XOR, PRF, HOM) + (IND-CKA2) O(m)
[45]1 − ++ − (SC, PRF) + (IND-CKA2) O(n/u)
[47] −− −− −− (XOR, SC, DED) + (IND-CKA2) O(m)

1 scheme used and implemented in this thesis
2 XOR = perform bitwise exclusive OR operations, PRF = execute pseudo-random
functions, SC = string concatenation, DED = perform deterministic encryp-
tion/deccryption, HOM = perform homomorphic encryption, HSH = compute
hash functions
3 searching on a dataset with size of n words (u of which are unique) in d docu-
ments, resulting in m matches
4 more precisely: O(log(u) + N/2 + l), with N = length of the used hash chain, l
= average number of encrypted document identifiers added since the last search

Secondly, we focus on a fairly new scheme proposed by Hahn and Kerschbaum
[45] (short “SUISE” scheme, which is the authors’ abbreviation for “securely up-
dating index-based searchable encryption”). It is index-based and thus expected
to perform better than the SWP scheme, but it comes with the price of building,
maintaining and storing two indexes.

In this section we briefly introduce both schemes and discuss their strengths
and weaknesses in practical environments.

4.4.2.1. SWP

Overview. [89] is to our knowledge the only scheme for searchable encryption,
that has been implemented for the use with real world database software before
[73] (see Section 3.1.1), namely for Postgres and MySQL, which are in contrast
to the databases considered in this work both SQL-based.

The SWP algorithm is basically the only choice when it is desired to avoid
having an index (e.g. for practical reasons) [18]. It is presented in four schemes.
The first one is the basic scheme, that is already provably secure. The en-
cryption phase basically works as follows: every word W in the plaintext is
modified by padding and/or splitting to have a length of n bytes. For every one
of those words a pseudorandom value S of length n − m bytes (with m < n)
is created using a pseudorandom number generator G. S is then used to com-

58

pute a (hash)value F (S) of length m using some key k. S and F (S) are now
concatenated and after that XORed with W to produce the final ciphertext C.

The search phase is rather simple then. If the search aims for a certain word
W , it just has to be checked for every ciphertext word C whether W ⊕ C is of
the form S||F (S) for some S. If so, there is a match.

All the other schemes presented by the authors are extensions of that basic
version to provide additional features. Thus the second scheme (“controlled
searching”) extends the basic scheme in order to allow the data storage provider
to search only for desired search words. Therefore it modifies the key generation
process to be dependent on the encrypted words. The third scheme (“hidden
searches”) takes care of the fact that the data owner has to reveal the search
word to the data storage provider in order to search for it. To address this issue
it adds a pre-encryption step E(W) to the scheme. Unfortunately considering
the extension of the second scheme that means the key generation now depends
on pre-encrypted words with the consequence that data owners are no longer
able to decrypt their own data. The last scheme (“final scheme”) fixes this
problem by splitting the pre-encrypted word E(W) in two parts, one of which
can be reconstructed, knowing the seed of the used PRG G. As only this very
brief overview can be given here without losing the scope of this thesis, we
refer to the original work [89] for more detailed explanations. We only further
discuss the aspects that are relevant for the architecture introduced in Chapter
5. This thesis focuses exclusively on the “hidden searches” version, because it
includes all possible security features and the ability to decrypt is not needed,
since other copies of the data will be available in different encryption layers (see
Chapter 5.2.1). Thus, whenever the SWP scheme is referred to in the following
paragraphs, the “hidden searches” version is subject of discussion.

Practical Strengths and Weaknesses. The following list provides an overview
of the Pros (+) and Cons (–) of the SWP scheme when it comes to putting it
into practice.

+ The SWP algorithm does not require any state maintenance. Due to its
nature as linear scan algorithm there is no need for storing an index on
server side or other state information, that would require any additional
space besides the data to be encrypted itself.

+ In contrast to most index-based algorithms the SWP algorithm is able
to deliver not only information on whether a document contains a search
word or not, it can also tell how often and where exactly the search word
occurs in a document.

+ The SWP algorithm is very easy to handle for the underlying database (as
we will discuss further below).

59

− As being typical for a linear scan algorithms, searches can take a long time
for large datasets.

− The SWP algorithm assumes that all words in the plaintext have a length
of n bytes. In practice shorter words get padded, longer words are split
in multiple parts of n byte length (while if the last part is too short, it
gets padded again). Thus the ciphertext can become much larger than
the plaintext, depending on n. We discuss below, how this effect can me
minimized.

Practical Issues When putting the SWP algorithm into practice there are a few
things to consider the authors did not mention explicitly. This section presents
our critic view on these issues one has to be aware of when implementing it.

• How to split words. The first issue comes with the fact that the SWP
algorithm encrypts the plaintext word by word. That means there has
to be some kind of definition where exactly a word ends. That is impor-
tant, because after the encryption is done, only those exact words can be
searched for. This problem can get very tricky. Consider the following
example: a simple solution that comes to mind intuitively might be to use
just whitespaces as markers for word’s ends. But if one only relies on that,
the data owner would not find the word “ends” in the previous sentence,
because it would have been encrypted as “ends.” So other characters have
to be considered to be markers for a word’s end as well. For example if
one wants to be able to find the word “ends” even though it is followed
by a “.”, one might be tempted to use the “.” as marker, too. That would
raise a new problem. For example in case the plaintext contains email
addresses of the form “abc@xyz.com”. The algorithm would split that
into “abc@xyz” and “com”. The data owner would not be able to search
for complete email addresses anymore. Other types of plaintexts contain
similar challenges, which means markers for signalizing a word’s ending
have to be chosen very carefully, depending on the plaintext itself and
what the data owner wants to be able to search for later on.

There are basically two solutions to overcome this problem. The first
one makes use of regular expressions. They can be used to check for
semantics of words during the encryption phase. For example a regular
expression could check, whether a word represents a valid email address, so
that splitting it could be avoided. Depending on the plaintext one might
choose a certain number of regular expressions to check for. Of course this
would slow down the encryption process significantly. Hence a different
solution might be more feasible. Besides whitespaces one could just add
more characters to the list of markers that define word endings. Obviously
this method is not as flexible and sophisticated as the first solution, but it

60

is much faster and with a careful adjustment to the plaintext the results
can still be satisfying.

• How to choose a good word length n.

The SWP algorithm assumes a fixed word length n throughout the whole
plaintext. That means smaller words have to be padded and larger words
have to be split (maybe multiple times). Padding leads to more bytes in
the ciphertext, while splitting words leads to more words in the ciphertext.
That means the ciphertext is larger in terms of the amount of words as
well as in size in bytes compared to the plaintext. The exact impact of
both depends on the actual n.

With a growing n there are less words needed to be split, so the amount of
additional words due to splitting during the encryption phase decreases.
If n gets bigger, every word in the ciphertext gets bigger as well, no matter
how small it was originally in the plaintext, which means the size of the
ciphertext increases. Less words mean the encryption/decryption process
can be done slightly faster, but the ciphertext will need more space in
the database. In contrast, a small n means a smaller ciphertext in terms
of size, but also more chunks of split words, which cause more iterations
when encrypting and searching and thus, more runtime. This issue gets
investigated in detail in Appendix A.1.

• What is needed for decryption.

According to the scheme description in [89] everything necessary for the
data storage provider in order to perform a search is a searchword and a
(number of) key(s). In practice it is necessary to reveal n and m as well.
Without the data storage provider knowing the word length n, it is hard to
do the decryption. A couple of decryption phases with n running through
a certain range would be necessary. Based on the number of matches the
data storage provider then would have to guess the right n. Note, that
false positives are possible and there is no way to tell n if there are no
matches at all. Basically the same applies for m. During the decryption
phase there is a check required looking for whether Ci⊕Wi is of the form
Si||F (Si) or not. That can hardly be done, because without knowing m
there is no way to tell where Si ends and F (Si) begins. In conclusion that
means either data owner and data storage provider agree to certain values
for n and m in advance or n and m have to be provided in addition to key
and searchword at least once per ciphertext. For the rest of this thesis we
use n = 8 and m = 4 as default values, as obtained in the tests presented
in Appendix A.1.

61

4.4.2.2. SUISE

Overview. In contrast to the SWP scheme the SUISE algorithm basically
works with two indexes: γf and γw. γf is a forward index storing all the unique
words per document in an encrypted form. γw is an inverted index. Once a
word has been searched for it stores the identifiers of all the documents where
the search word occurred.

Adding documents during the encryption phase basically works as follows:
On the client side a list of unique words (w1, ..., wn) per document f is created.
Then a PRG G creates an equal amount (s1, ..., sn) of pseudo random values.
Afterwards for every word wi three steps are performed: (1) a search token
rw is created using a PRF F and a key k1: rw = Fk1(w), (2) if that search
token has been used previously, it is added to a list x and (3) a representation
c = Hrw(s)||(s) is created, where H is a random oracle. The server then stores
all c’s of f in γf . Additionally, the identifier of f is added to the inverted index
γw for all entries of x.

Besides the indexes the originating documents are stored encrypted, using a
block cipher (e.g. AES). Therefore different cryptographic keys should be used,
otherwise the ciphertexts leak equality (which they do in the author’s original
publication).

Searching for documents containing a word w then works as follows: first, the
search token rw = Fk1(w) is computed. If there is an entry for rw in γw (which
means the word has been previously searched for), then the search can simply
be finished by just returning the list of file identifiers that is stored in γw for
rw. Otherwise that list has to be created first: every c in every entry of γf is
split into l||r and then checked if Hrw(r) = l (note that this concept is not much
different from the SWP algorithm). If so, the according file identifier is added
to the result list, which is then stored in γw to accelerate future searches.

Practical Strengths and Weaknesses. Like for the SWP scheme the following
list provides an overview of the Pros(+) and Cons (–) of the SUISE scheme from
a practical perspective.

+ Searches for previously used searchwords can be done in constant time.

+ The encryption process only needs as much itereations as there are unique
words per document. In contrast, the SWP scheme has to carry out the
necessary encryption steps for the entire data set.

− Despite the indexes searches for previously not used search words still
require linear time like in the SWP scheme.

− The index γf stores encrypted representations of all unique plaintext
words for every document. As described above those representations
c = Hrw(s)||(s) are in most cases much longer than the original plaintext

62

words, which means depending on the plaintext γf can become quite large
in terms of disk size it utilizes (actually much larger than the plaintext
size itself).

− It is part of the algorithm to create a list of unique words per document,
which means the algorithm can by design only deliver the information
whether a searchword occurs in a document or not. This is less information
than provided by the SWP scheme.

Practical Issues There are no practical issues similar to the ones described for
the SWP approach, except for the problem of how to split the plaintext into
searchable words. Since that is the same issue as for SWP, it is not discussed
again at this point.

4.4.3. Inapplicable Schemes

Like previously done for OPE schemes, this chapter gives an idea of why other
schemes for SE from Table 4.3 have not been considered practical, even though
their authors usually claim that they are.

[36] proposes to use bloom filters as indexes per document. Each distinct word
gets pre-processed by a PRF twice and is then inserted into the bloom filter,
mapped by a number of independent hash functions. Additionally a unique
file identifier is taken into account to make sure, that the same documents do
not lead to the same bloom filter contents. Querying bloom filters is by design
connected to a certain probability of false positives, which can be encountered
by padding the plaintext words to a certain length and using very large bloom
filters, both at the cost of less overall performance in practice. Furthermore
most databases are not able to perform bitwise operations on bloom filters.

[25] proposed a similar approach but with using pre-build dictionaries, that
store the mappings from keywords to bloom filter positions. They can be stored
either on client side (which defeats the purpose of remote searchable encryp-
tion to a certain degree) or on server side. [36] (providing the new definition
of “IND1-CKA” security) as well as [25] (later providing “IND2-CKA”8) do
not guarantee that the database cannot infer information about keywords from
trapdoors. Thus, their security definitions are considered weak in the context
of SE and (as pointed out later by [31]) are incorrect9.

The approach of [31] achieves sub-linear search time. Unfortunately it relies
on (for a database) complicated index structures: Firstly, it requires an array,
who’s elements represent a number of scrambled linked lists, each of which stores
sets of document identifiers from the input document collection, containing its

8The main difference between IND1-CKA and IND2-CKA is the fact, that IND1-CKA does
not hide the plaintext document’s size, while IND2-CKA does

9meaning insecure schemes can fulfill them (which is why there were not discussed in Section
2.4.2.2)

63

unique words. Since the elements of that array also contain encrypted pointers
to other list elements and keys for decrypting them, it quickly becomes very
large. Secondly, a lookup table (based on another special data structure: a
FKS dictionary [33]) is required to identify the first node in the array for a
particular word being searched for. The index is created per unique word from
the document collection and it is linear in the number of distinct words per
document. Due to the fact that all unique words of the dataset must be known
in advance, updates are not supported, (at least the authors do not provide an
algorithm for that). Thus, while this scheme might be suitable for “write once”
databases, it is not practical for dynamic databases.

Being aware of that problem [51] proposed an extension, in which two addi-
tional data structures are introduced. Firstly, another array structure (“deletion
array”) helps to recover pointers to the nodes that correspond to the files being
deleted. Secondly, the “free list” keeps track of what positions in the main array
are free and can be filled with new elements. Furthermore, pointers are now en-
crypted using homomorphic encryption in order to modify them without having
to decrypt them. While all these measures improve the update performance,
this extension brings even more metadata that has to be maintained, than the
original approach. Furthermore, it requires the server to perform homomorphic
encryption. Thus, the original scheme can not be considered more practical with
that extension.

Another recent extension of [31] is the approach of [47], trying to make range
queries more efficient. The key idea is to connect the linked lists of “adjacent”
keywords, that are scrambled hidden in the main array. That creates one large
linked list with the same size like the main array. The problem is, that the
trapdoor of the first word of the desired range can then be used to traverse all
the way to the end of the array. Hence the list is split up in two halfs, the first
of which is only traversable in forward direction, while the other one always
points backwards. If the endpoint of the desired query range lies within the
second half this guarantees the appropriate list traversal. Of course, this only
works, if start and endpoint of a range query are located in different halves. To
make sure that this is always the case, the authors need to further split the list
in order to create sub-lists. To cover every possible case, l list are needed for
a dataset of size 2l. While this technique indeed speeds up range queries, the
main disadvantage of the original scheme remains: is does not allow updates.

[86] proposes storing a searchable representation of each unique keyword at
server side, consisting of the encrypted keyword itself, a masked version of the
list of identifiers of documents that contain the keyword and a part of a secret
that is necessary to unmask this list. When realizing these lists as bit vectors,
updates and masking can be performed using bitwise XOR operations, which
relieves the server of having to perform cryptographic computations. While this
is indeed a unique feature for an index-based IND-CKA2 secure scheme, note
that inserting new data items may require updating the masked lists, which

64

makes not only searches interactive10, but also storage (in contrast for example
to the also index-based approach of [45] that is used for this thesis). Furthermore
depending on the number of unique keywords, the bit vectors can become very
large.

Being aware of these problem, the authors of [97] proposed an extended version
of that approach, getting rid of the interactivity and long bit vectors. Unfor-
tunately (without going into further detail to not lose scope at this point), this
requires a counter for every keyword on client side as well as computing PRFs
and hash values on server side.

10meaning it requires mltiple rounds of communication between client and server

65

5
Architecture of FamilyGuard

This chapter describes the Architecture of FamilyGuard. It starts with a general
overview of all participating entities, followed by a detailed view on how to
store PPE-encrypted data on server side. It then discusses the management of
auxiliary data in form of metadata and encryption keys, that is necessary to
operate on the encrypted database content. Afterwards, the chapter presents,
how interacting with the encrypted data works and introduces the concrete API
of FamilyGuard.

Contents

5.1. Concepts and Overview 68

5.2. Managing Encrypted Data on Server Side 70

5.2.1. Onion layers in WCS 70

5.2.2. Selective Encrypting 79

5.2.3. Separation of Duties 79

5.2.4. Table Profiles . 81

5.2.5. Unifying the Data Models of Cassandra and HBase . . 83

5.3. Required Metadata Structures 86

5.4. Key Management . 87

5.5. Interacting with the Databases 91

5.5.1. Writing . 91

5.5.2. Querying . 93

5.6. The API . 96

5.6.1. API Methods for Database Interactions 96

5.6.2. API Methods for Decrypted Result Sets 105

5.6.3. API usage . 106

67

5.1. Concepts and Overview

FamilyGuard aims for executing queries over encrypted data in WCSs. There-
fore it uses the basic concept of onion layers (see Section 5.2.1). However, it
does not follow the approach of using a proxy server between the application
and database for re-writing queries for the encrypted database, decrypting query
results, etc (like e.g. CryptDB [73] does). Instead it introduces a simple ap-
plication programming interface (API) taking care of these tasks, that is used
by the client application. This approach has various advantages over the proxy
model:

+ A third entity besides client and server can be avoided, which results in
less computation and network overhead.

+ In contrast to the SQL world, where most of the approaches described
in section 3.1.1 make use of the fact, that the majority of SQL queries
use a well defined (and rather small) subset of SQL commands, some
NoSQL databases do not even have query languages. Thus, there would
be no uniform way for a proxy to manage incoming requests. The API
of FamilyGuard hides the complexity of the databases’ native APIs. The
user does not has to deal with it.

+ The same is true for the realization of the WCS data model (as introduced
in 2.1.2). It is shared by all WCSs, but implemented differently in some
aspects (see Table 2.1 and Section 5.2.5). FamilyGuard unifies the data
access.

+ The user is able to configure the parameters of the used PPE schemes
much more fine-grained and individually, while a proxy can only work
with standard parameters.

The only disadvantage is that the client application itself has to be changed
to use the methods of FamilyGuard. However, the effort for doing so can be
considered to be very small (see Chapter 5.6.3).

Figure 5.1 shows the overall architecture. The client application using the
API of FamilyGuard runs in a trusted environment. For the API to be able to
manage its tasks, it has to maintain auxiliary data, namely keys, metadata and
(if necessary) indexes on client side. Since this data has to be stored persistently,
it is kept outside the application in the client machine’s file system. The API
manages the database connections, data transfer, encrypting and decrypting.
Furthermore it keeps track of metadata and key management. FamilyGuard
utilizes advanced (index-based) encryption schemes, which allow the system
to scale better when datasets become large. Partly, they even provide new
functionality (e.g. the ability to search for single words without the need of
secondary indexes). The database server never sees any decryption keys, hence it

68

is never able to decrypt private data. Thus, any adversaries (e.g. administrators)
are not able to gain sensitive information only from read access. The database
server does not require any changes in order to work with FamilyGuard.

Figure 5.1.: Overall architecture of FamilyGuard

Figure 5.1 can be considered a map for this chapter with the numbers pointing
to corresponding sections in the following way:

1. Section 5.2 describes how encrypted data is managed on server side. This
includes the introduction of the onion layer model for the WCSs, enhancing
security via further distribution of data and options for fine-tuning the
encryption process.

2. Section 5.3 explains the structure of the metadata neccessary to manage
the tasks described in Section 5.2.

3. Using PPE and onion lyaer encryption can require a large amount of en-
cryption keys. Section 5.4 presents their management.

4. Explanations of the client side indexes can be found in the descriptions of
the used PPE schemes, see sections 4.3 and 4.4.

5. Section 5.5 explains how PPE encryption and the onion layer model work
together in the process of reading from and writing to the databases.

69

6. A comprehensive description of the working principles and available com-
mandos of the API can be found in Section 5.6.

7. Finally Section 5.6.3 describes how the API can be applied in a client
application.

5.2. Managing Encrypted Data on Server Side

5.2.1. Onion layers in WCS

The concept of onion layers was introduced in CryptDB by [73], also calling it
adjustable query-based encryption. The idea is to encrypt every value with a PPE
scheme that leaks just enough information to still be able to perform certain
query operations on the encrypted data. In contrast to CryptDB’s design for
SQL-based databases, this thesis focuses on the data model and the operation
set of WCS databases. While at first glance both seem very similar, they have
some fundamental differences, that affect the designs of the onion layer model.
Furthermore, the used PPE schemes as well have a certain impact. Hence, the
influence of both aspects on the onion layer design is discussed in detail in the
following sections.

5.2.1.1. Required Onions

This thesis uses four types of onion layers. Except for the random encryption
layer, the purpose of the PPE schemes they are using was already described
in Chapter 4. The following paragraphs describe the onion layers from the
database perspective.

RND - Random Encryption The Random Encryption layer provides the max-
imum security possible, which is indistinguishability under an adaptive chosen-
plaintext attack (IND-CPA, see Chapter 2.4.2.2). Two equal plaintext values are
mapped to different ciphertexts with a very high probability. This is achieved
using AES (CBC) or Blowfish with randomly generated encryption keys and
IVs. Every row of a table has a column for storing its own individual IV (“RND
Row-IVs” in Figure 5.2) and for every column an own individual encryption
key is stored in the column’s metadata on client side (“RND column encryption
key” in Figure 5.2, see also “column key” later on in Table 5.4). Thus, the
server cannot learn any information, which is why this layer is used as outer-
most layer for all onions, except for the SE onion, which already provides strong
security guarantees by itself (depending on the used scheme either IND-CPA or
IND-CKA2, again see Chapter 2.4.2.2). The RND layer cannot be used for any
computations over the encrypted data, because it leaks no information relevant
for database operations. Thus it protects data that is never required to process
query conditions (see Section 5.5.2).

70

DET - Deterministic Encryption The layer for deterministic encryption needs
to store non probabilistic ciphertexts, meaning the same plaintexts have to be
mapped to the same ciphertexts, e.g. in order to check for equality. As discussed
in Chapter 4.2.2, this is achieved using AES (CBC) with the same randomly
generated encryption key and IV throughout the entire table. Both are stored
in the table’s metadata on client side (see Figure 5.2 and Table 5.3 later on).
Since the used WCSs do not support join operations, managing the same keys
and IVs for multiple tables is not necessary.

Figure 5.2.: Encryption key and IV management of the RND and DET layer

71

OPE - Order-Preserving Encryption The onion layer for OPE is realized using
the OPE schemes introduced in Chapter 4.3.2: RSS, OACIS and mOPE. Their
different strengths and weaknesses qualify them for different tasks within the
encryption of a table. RSS and mOPE have to be used for the OPE layer of
columns that hold a table’s row identifiers (see Chapter 2.1.2, not to be confused
with the column that holds the RND layer IVs), because their ciphertexts are
immutable. Mutable ciphertexts as produced by OACIS are not allowed here
for the reasons discussed in detail in Chapter 2.1.2 and 4.3.1-I. mOPE can be
used further, if client side indexes are to be be avoided. Thus it is the most
storage-efficient solution, that can be used for the OPE layers of all columns,
but it is also the computationally most expensive OPE scheme. RSS is a good
allrounder, as it can be also used for all columns and is faster to compute, but
it requires a client side index. As mentioned before, OACIS cannot be used for
row identifier columns because of its mutable ciphertexts, but as it does not even
involve pseudo randomness, it has the best runtime properties of the available
schemes, which makes it especially attractive for large amounts of data. Only
pre-sorted input has to be avoided and a client side index is needed with OACIS
(as discussed in Section 4.3.2.2). Section 5.2.4 explains how the available OPE
schemes can be chosen in the encryption process.

SE - Searchable encryption The onion layer for SE is realized using the SE
schemes presented in Section 4.4.2: SWP and SUISE. Similar to the OPE
schemes their strengths and weaknesses determine their individual use cases
when it comes to encrypting a table. SWP does not require maintaining a state
or index and thus can avoid using client side storage. That also means it has a
search time linear to the dataset size, since it requires reading the data entirely
when searching. If storage space is not an issue, that can be avoided by using
SUISE for the price of a very small client side index and a rather large additional
server side index, as discussed in Chapter 4.4.2.2. SUISE is especially helpful
when certain queries are supposed to be executed frequently, as it can return
results beginning from a second search for the same keyword in constant time.
Similar as for the OPE schemes, Chapter 5.2.4 explains how the available SE
schemes can be chosen in the encryption process.

These four layers result in three onions, as can be seen in Figure 5.3.
In contrast to SQL-based databases, WCSs like Cassandra and HBase do

not allow join operations of any kind and have only very limited capabilities of
aggregating data items by design. This simplifies the onion design in the way
that other onion layers are not required, in particular:

• Onion layers for join operations: CryptDB introduced a JOIN layer for
equality join operations and a JOIN-OPE layer to enable joins by order
relation. WCSs do not need both of them. However the JOIN layer
in CryptDB is also responsible for detecting repeating values in different

72

Figure 5.3.: Onions used in FamilyGuard

columns of the same table, which is a functionality that is needed in WCSs
as well. This thesis solves this problem in the layer for deterministic
encryption by using the same cryptographic key and IV throughout the
entire table (both stored in the table’s metadata at client side).

• Onion layers for homomorphic encryption: The only options provided for
aggregating data (and thus, making use of homomorphic encryption) in
Cassandra’s CQL are SUM and AVG operators for calculating sums and
averages. HBase does not even have any aggregation functionality in its
native API. Furthermore, since homomorphic encryption is very costly in
terms of runtime (see chapter 2.4.4.2), having an extra onion layer for it
means a lot of effort for very little benefit.

5.2.1.2. Mapping Plaintext Columns to Ciphertext Columns

After having defined the onions, one might be tempted to just encrypt all
columns using all onions and strip off the necessary layers when querying re-
quires it. However, the WCS data model as well as the PPE schemes themselves
come with some aspects that hinder this approach.

Limitations caused by the WCS data model While the lack of join capabilities
of WCS databases seems to make the onion design easier compared to SQL-
based databases, their data model comes with another challenge. As explained
in Section 2.1.2 a fundamental working principle of WCSs is keeping all rows
of a table sorted by the content of the row identifier column. That means the
database has to perform a sorting by this column already at data insertion
time. Thus, it has to be able to compare the row identifier of a new row to be
inserted with already existing ones in the database. That means the standard
OPE onion can not be used, since its outermost RND layer does not allow order
comparisons. Using it anyway would break the WCS data model. Therefore row

73

identifier columns must be treated differently from all other columns regarding
the onion layer design. They must leak the order of values, before it comes to
querying the database and therefore, they are not allowed to have a RND layer
as outermost layer.

Limitations caused by query operators Depending on the type of data it
makes no sense or it is not possible/too costly to encrypt and maintain all
onions. For the sake of simplicity we distinguish between three types of data in
this thesis: strings, numerical values and byte blobs. All other data types are
strongly related to or can be inferred from these three basic types. An example
for an onion that makes no sense is the SE onion for numerical values. There
is no query mechanism provided by a database, that allows searching within
numerical values. It is not even apparent, how searching within numerical values
could be defined or what benefit it might have. Thus, SE is useless in that case.
The same holds for using SE onions with byte blobs. More examples are shown
below.

Limitations caused by OPE As explained earlier in Section 2.4.3 OPE schemes
work by mapping values from a plaintext space (“domain”) to a ciphertext
space (“range”). Thereby it is crucial to define the exact size of both spaces in
advance. This is a hard thing to do for strings and byte blobs as they can become
extremely large. A straight forward solution to this problem was introduced by
[61], proposing to pad all strings to the same length using 0x00s and then simply
use the numerical values given per character by the ASCII table1. Assuming
a small maximum allowed string length of only 4 bytes “abc”2 would result in
0x61626300 (which is equivalent to 97 · 2563 + 98 · 2562 + 99 · 2561 + 0 · 2560 =
1627389952 + 6422528 + 25344 = 1633837824 in decimal notation). As can be
seen from this example, even for very short strings the numbers soon become
very large even though the input string was very small. Storing the above
number would require 31 bits3 (which is not really surprising given an input
of 4 characters, meaning 4 · 8 = 32 bits). Limiting the message space to the
96 actually allowed and printable characters of the ASCII table barely improves
the situation: 97 ·963+98 ·962+99 ·961+0 ·960 = 86732064 which appears to be
a much smaller number in decimal notation, but still takes 27 bits when written
binary4. However, for performance reasons it is highly desirable to operate with
native data types like Java’s Integer (32 bits) and Long (64 bits), in contrast for
example to using Java’s BigInteger type, that can grow arbitrarily depending
on the value it represents. Even if BigInteger was less expensive in terms of
memory and CPU consumption its arbitrary size for representable values would

1see for instance http://www.asciitable.com/
2numerical values from the ASCII table: a = 97 = 0x61, b = 98 = 0x62, c = 99 = 0x63
3110 0001 0110 0010 0110 0011 0000 0000
4101 0010 1011 0110 1101 0010 0000

74

not be a solution, since still a maximum string length needs to be known in
advance for initializing the used OPE schemes properly, which is a problem we
cannot get rid of.

In order to still deliver a good compromise between string length flexibility
and performance, this thesis uses the following approach. To keep a certain
security level the ciphertext space should be at least twice as big in terms of
bit length compared to the plaintext space (see Section 4.3.1-V), so that a 32
bit Integer should be the preferred input size for the OPE schemes, while a 64
bit Long serves as output. Strings longer than 4 characters (and thus 32 bit)
are split up into chunks, each with a length of 4 bytes, while the last (= least
significant) part is padded with random bytes, if necessary. Those chunks are
then used as input being 4 bytes = 32 bits long. After they are OPE-encrypted
separately, they are (now having a size of 8 bytes = 64 bits) concatenated again
and stored in the database in byte array representation. Since having a pre-
defined maximum string length is still mandatory for producing results that are
comparable to each other later on, this is done for a exactly eight chunks (= 32
characters). If the plaintext string is not long enough to produce eight chunks,
the ”least sigificant” chunks are generated randomly. This will not have an
impact on the order after encryption, since the actually existing characters of
the original plaintext strings are always completely considered (up to the 32nd
byte). Padding with zeros as in [61] or using “0000”-chunks would leak the
plaintext string length.

Using this approach means the “least significant” bytes of strings longer than
32 bytes, (thus, starting from the 33rd character), are being ignored in this
process, which has three implications:

• The accuracy of the order of the encrypted values involves only the first 32
bytes of the plaintext string. A set of strings with their first 32 characters
being equal has a high probability of being not exactly order preservingly
stored. However if absolutely necessary, the accuracy can be increased by
sacrificing performance and simply taking more than eight 4-byte-chunks
into account when encrypting. Alternatively one should try to select the
used values in the row identifier column more carefully, since being able
to store 9632 = 2, 7 · 1063 unique row identifier values should be sufficient
in practice.

• If only the OPE-encrypted chain of chunks was used as input for the
database, two strings with the first 32 byte being equal would produce
the same encryption output and thus column input for the row identifier
OPE column. Since values in row identifier columns must be unique (see
Section 2.1.2) the row containing the second string as identifier would just
overwrite the row containing the first string as identifier when inserting
the data, which has to be strictly avoided. The user would lose data
unnoticed. Thus, in order to still produce unique representations with

75

high probability a SHA256 hash of the entire plaintext string is appended
to the byte array representation. In this way, only identical inputs produce
identical outputs, which moves the problem of rows overwriting each other
to the quality of the generation process of the dataset. Assuming a string
consists of the characters c1...cx, the final OPE encoding then is

OPE-Encode(c1..cx) = EncOPE(c1..c4) || ... || EncOPE(c29..c32) ||
SHA256(c1..cx)

Another advantage is the constant output length of OPE-encoded strings,
which is 8 · 8 + 256/8 = 64 + 32 = 96 bytes, independent from the length
of the plaintext string, which means no information about the plaintext
string length can be inferred.

• It is obvious, that decrypting byte arrays constructed in the above de-
scribed fashion is time consuming and in case the plaintext was longer
than 32 bytes even impossible. However, that is no problem, since for
decryption the values of the DET onion layer can be used. Moreover, the
DET onion can be used directly without the RND layer, because deter-
minism is and has to be leaked in row key columns by the OPE onions
anyway. Otherwise the database’s behaviour regarding overwriting rows
with the same identifier would change.

Independent from the data type of a row identifier column, there is a second
requirement to consider for its OPE onion, that affects the choice of the OPE
scheme to be used. Recalling the three available schemes (see Section 4.3.2,
there is only one scheme, that can be used for row identifier columns. OACIS
produces mutable ciphertexts, which would be a problem, since row identifiers
are not allowed to change over time. The approach of mOPE involves a secret
offset, that the database must not know about, but that has to be taken into
account, when comparing values, in particular at data insertion time. Thus, only
RSS is left, which works fine for the purpose of OPE-encrypting row identifier
columns.

Mapping for atomic data types The concrete onion layout for the different
data types can be seen in Figures 5.4, 5.5 and 5.6, where the red OPE onion
for row identifier columns denotes the absolute minimum requirement necessary
for maintaining the WCS data model, which would break, if a RND layer was
wrapped around it.

String columns as shown in Figure 5.4 mark the most complex cases, mainly
due to the costly transformation procedure necessary for realizing OPE column
as described above. Apart from that all three onion types make sense for strings.
The DET layer can be used for equality checks. The OPE layer is not only
mandatory for the data model, it is also useful and desirable to be able to

76

Figure 5.4.: Transformation of a plaintext string column into onion-layered ci-
phertext columns

sort strings lexicographically or for example do range queries from ”A” to ”Z”.
Furthermore the SE onion enables the user to query for single words in within
strings.

Integer columns as shown in Figure 5.5 are a little easier to handle. Since they
already contain numerical values, the costly conversion process is not needed.
Furthermore the SE layer makes no sense for integers, as explained earlier. It
cannot be searched within numbers and even if something like this is desired,
string columns can (and should) be used. Having an integer column as row
identifier column even makes the DET layer unnecessary, because since all used
OPE schemes are deterministic, information regarding determinism can also be
drawn from the mandatory OPE onion anyway.

Finally, byte blob columns (see Figure 5.6) are the most limited cases. Byte
blobs, as the name suggests, usually represent raw binary data (e.g. images),
which is not supposed to be searched, ordered by or compared to something.
Thus, it is enough to have it deterministically encrypted in order to be able to
recover it or perform equality checks. All other onions do not make practical
sense. Especially the conversion to a numerical value for the OPE layer would
be extremely expensive in terms of computation time, since compared to the
process with strings much more than 32 bytes would have to be taken into
account due to the usually larger sizes of byte blobs. That is why an OPE onion
for row identifing byte blob columns is not efficiently computable and thus, a
byte blob column is not allowed as row identifier column.

77

Figure 5.5.: Transformation of a plaintext integer column into onion-layered ci-
phertext columns

Figure 5.6.: Transformation of a plaintext byte blob column into onion-layered
ciphertext columns

78

5.2.2. Selective Encrypting

“Selective encryption” means to treat only pre-determined parts of a data set as
sensitive and not to encrypt all other data. Depending on the concrete dataset
it might not be necessary to encrypt every column of all tables in the database.
Consider the table shown in Figure 5.7, that lists the salary of employees. Em-
ployee names and departments are no secret, but the salary information is sup-
posed to be kept private. Thus, the salary column is encrypted according to the
onion layer model like previously introduced in Section 5.2.1. Since the salary is
numeric data, it results in an OPE and a DET column while all other columns
remain readable without any decryption.

Figure 5.7.: Human resources table of an imaginary company with secret salary
information

Selective encryption helps to save computation time when reading from as well
as writing to the database, because it reduces the number of required encryption
and decryption operations. It also reduces storage space, because it avoids
unnecessary indexes. Since in this example the employee names and department
affiliations are no company secret, they do not have to be encrypted. That makes
querying simpler and faster later on.

5.2.3. Separation of Duties

“Separation of Duties” describes the concept of more than one person being
responsible and able to complete a task. The idea is to have an internal control
mechanism, that prevents fraud and errors. The same principle can be used
to take care of privacy issues that the onion layer model alone is not able to
cover. Consider again the table shown in Figure 5.7. Imagine some query that

79

involved ordering has already removed the RND layer of the salary column. The
exact salary of the employees still does not leak, since it is encrypted in (most
likely very large) different numerical values, but it can easily be seen, who earns
the most or who earns more money than others. That might be unwanted. If
more than one database instance is available (and the available databases are
managed by individual and independent authorities), it makes sense to further
split up the table in order to avoid that conclusions can be drawn. Therefore the
principle of columnwise (vertical) partitioning (see Section 2.1.2) can be taken
one step further by storing different columns on different database instances.
One possible result for the example described above is shown in figure 5.8.

Figure 5.8.: Human resources table of an imaginary company distributed across
two independent databases

As can be seen, neither the administrator of database server 1, nor the admin-
istrator of database server 2 can infer any information about a specific salary or
about who earns more than someone else, at least as long as they do not talk to
each other. Hiding this information would not be possible by only using onion
layered PPE. Of course at least the row identifier column (in the example the
employee ID column) has to be present in all involved tables in order to link
the information when queried later on. The API presented in this thesis allows
splitting a table into an arbitrary number of database instances (see Section
5.6.1.4). Because of the data model unification as described in Section 5.2.5,
even different database types can be arbitrarily mixed (e.g. use Cassandra as
database server 1 and HBase as database server 2).

Thus, for the rest of this thesis the term logical table describes a table as
shown in Figure 5.7. It contains all columns as desired when creating the table.
In contrast, the term physical table refers to tables like shown in Figure 5.8.

80

One logical table can result in multiple physical tables, whereas a physical table
always belongs to exactly one logical table. Physical tables are actually stored
in databases, while logical tables represent their overall structure. If a logical
table was not split up, it is equal to its physical table. As can be seen in Table
5.3, the client side metadata keeps track of all relevant data in order to map
logical tables to physical tables and vice versa when querying.

This thesis proposes three strategies for splitting logical tables to physical tables:

• Random distribution: In this approach a logical table’s columns are dis-
tributed randomly across the database instances available for the keyspace
(see Section 5.6.1.2).

• Round Robin distribution: This approach distributes a logical table in
round robin fashion across the available database instances. That means
the data gets distributed as equally as possible at the point of creating a
table.

• Custom Distribution: Using custom distribution the user actively speci-
fies, which columns have to be stored separated from which other columns.
In that way precise security enhancements can be achieved. Considering
the example above the user could select the sensitive salary column to be
stored separately from all other columns (this example is shown Section
5.6.1.4).

Which of the three options is used for a specific table has to be determined
when creating that table (see Section 5.6.1.4). The set of available database
instances is defined in the process of creating the keyspace, that is supposed to
contain the table later on (see Section 5.6.1.2).

5.2.4. Table Profiles

As discussed in Chapter 4, especially the schemes for OPE and SE have their
individual strengths and weaknesses. Depending on the application the user
might want to exploit these strengths and minimize the impact of these weak-
nesses. That is why the API introduced in this thesis provides the option of
specifying so called table profiles when creating tables (see Section 5.6.1.4). A
table profile determines what PPE encryption schemes are actually used during
data insertion. The selection of the PPE schemes it contains is based on the
theoretical aspects described in Chapter 4, but also on practical performance
evaluations introduced later in Sections 7.1.1. While for RND and DET layer
encyption all profiles use AES, they differ regarding their OPE and SE schemes
like follows:

• OPTIMIZED READING: This profile prioritizes schemes that have advantages
for queries that involve mainly reading from the database. Thus it is the

81

best choice for “write-once” databases. The OPE schemes best suited
for fast reading are RSS and OACIS. They have the same type of index,
which results in equal reading performance. However, RSS is the preferred
choice for this profile, because is does not have the flaw of bad writing
performance in case of a pre-sorted input (see Section 4.3.2.2). For the SE
layer the SUISE scheme is used. It is faster than SWP in the process of
searching, in particular for repeated queries.

• OPTIMIZED WRITING: This profile prioritizes schemes that have advantages
for queries that involve mainly writing to the database. Thus, it should be
used for scenarios, in which writing occurs more often than reading. The
OPE scheme best suited for fast writing is OACIS, as long as pre-sorted
inputs are avoided. For the SE layer the SWP scheme is used. Since it
does not have to maintain indexes, it can insert data faster than SUISE.

• STORAGE-EFFICIENT: This profile prioritizes storage needs over computa-
tion time and selects the PPE schemes, that require the least amount of
storage for data and indexes, on client side as well as on server side. Thus,
OPE layer columns are encrypted using mOPE, since that does not require
an index at all and for the same reason SE layer columns are encrypted
using SWP.

Table 5.1 gives the corresponding overview, to which there is only one excep-
tion, meaning the choice of the profile does not affect the choice of the PPE
scheme: the OPE layer of row identifier columns is always encrypted using RSS
for reasons explained in detail in Section 5.2.1.2. Note that SE layer encryption
is only performed, if the plaintext data is a string. OPE layer encryption is only
executed, if the plaintext data is a string or numerical value.

Table 5.1.: Overview about the table profiles and their corresponding PPE
schemes

Profile Data type OPE scheme SE scheme

Optimized Reading
String RSS SUISE
Integer RSS -
Byte - -

Optimized Writing
String OACIS SWP
Integer OACIS -
Byte - -

Storage-efficient
String mOPE SWP
Integer mOPE -
Byte - -

Independent from the used profile, every column gets its own instances of
the PPE schemes they use. That means in particular, indexes are maintained

82

per column, not per table. This allows the separation of duties as described
in Section 5.2.3 and involves only the index data that is actually required for
answering a query.

5.2.5. Unifying the Data Models of Cassandra and HBase

Cassandra as well as HBase follow the data model of WCSs as described in
Section 2.1.2. However, they differ in the way of achieving that. Involving both
databases at the same time for storing data therefore requires analyzing their
differences, which have to be compensated for by the API (see Section 6.3), but
a few of them have to be dealt with in the individual process of designing a
scenario’s data model, if necessary. The following section provides insights into
the key differences of the way both databases realize the WCS data model and
helps understanding the design of the API later on.

5.2.5.1. How to Address the Row Identifier Column

The WCS data model dictates the existence of (at least) one column, that stores
unique row identifiers per table: throughout this thesis that column is referenced
to as row identifier column (see Section 2.1.2). Cassandra and HBase have
different ways of addressing this column. Cassandra requires assigning a concrete
name and data type for it in the process of creating a table. In contrast, HBase
does not need any of that information, because its row identifying columns do
not get a name and are always of type byte blob.

Thus, since Cassandra has to be be given the more precise definitions re-
garding the row identifier column when creating tables, it defines what input is
necessary when creating tables in FamilyGuard. That is why defining a name
and data type is mandatory for this process of creating tables using the API
(see Section 5.6.1.4).

5.2.5.2. Composite Keys

Apache Cassandra has a concept of defining key values per row, similar to the
way of doing so in the SQL world. It encompasses a variety of key types. First
of all, there is the row identifier. It can be considered equivalent to SQL’s
primary key, since both have the task to uniquely identify each row in a table.
Thus, fields containing row identifiers must contain unique values and cannot
have NULL values. In Cassandra it is also possible to combine multiple fields
to create a row identifying key, which is then called a composite (or sometimes
compound) key. A composite key always consists of two parts. The first part
is the partition key, that is responsible for data distribution across the nodes
like a “regular” row identifier consisting of a single field. The second part is the
clustering key, that is responsible for storing data within a partition defined by

83

a certain partition key. Both parts can again consist of multiple fields, like for
example in this table definition:

CREATE TABLE fancytable (

part_key_1 text,

part_key_2 int,

cl_key_1 text,

cl_key_2 int,

cl_key_3 text,

other_data text,

PRIMARY KEY((part_key_1, part_key_2), cl_key_1, cl_key_2,

cl_key_3)

);

In contrast, HBase does not know the concept of multiple fields defining a
row identifier. It always uses only one single-field row identifier per row. No
other options are available. If the combination of multiple fields is desired for
generating unique row identifying key values, that has to be created “manually”
(by concatenating values, e.g. append one string to another) and stored as single
row identifier. Then, HBase’s native Java API provides options for defining
column prefix filters, that can be used to “simulate” compound keys, in a way
that the prefix plays the role of the partition key:

// create HBase table object (HTable)

Configuration conf = HBaseConfiguration.create();

HTable table = new HTable(conf, "fancytable");

// manually create row key

String part_key_1 = "foo";

String part_key_2 = "bar";

byte[] rowkey = Bytes.add(Bytes.toBytes(part_key_1),

Bytes.toBytes(Bytes.toBytes(part_key_1));

// put the data

Put p = new Put(rowKey);

p.add(Bytes.toBytes("column"), Bytes.toBytes("qualifier"),

Bytes.toBytes("VALUE"));

table.put(p);

// get the data

Scan s = new Scan();

Filter filter = new PrefixFilter(Bytes.toBytes("foo"));

s.setFilter(filter);

ResultScanner rs = table.getScanner(s);

// do something with the result

// ...

84

There are frameworks available doing just that, for example Apache Spark5

or Apache Phoenix6, but since this thesis focuses on plain versions of the under-
lying databases, these frameworks are not considered here, which makes HBase
the more restrictive database concerning the row identifier design. Thus, Fam-
ilyGuard only allows row identifiers consisting of a single field, which means
if more information is supposed to be included in a row identifier, it has to
be composed appropriately during the design of the dataset, for example by
concatenating values in a certain fashion as described above.

5.2.5.3. Collection Types

Apache Cassandra supports collection types. That means, a single field in a row
cannot only contain a single value, but also a list, set or map. In this case, the
value in

(keyspace, table, row identifier, column, timestamp)→ value

is not a single value, but a further subset of values. The single elements of these
subsets can be addressed by traversal (set), specifying an index (list) or a key
(map). In contrast, HBase does not support collection types, but has another
mechanism for addressing elements of a row. The mapping to a concrete value
in HBase looks like this:

(keyspace7, table, row identifier, column, column
qualifier, timestamp)→ value

Here, the additional column qualifier can be used as an indexing mechanism
within a “single” row element and thus, realize collection types. While using
the API proposed in this thesis, the user does not need to care about the differ-
ence. When a column is for example specified to contain a set, the underlying
differentiation between using Cassandra’s collection type set and using HBase’s
additional column qualifiers for indexing the different values of a set is hidden.
Thus, even though this design aspect of the databases is fundamentally differ-
ent, there are no restrictions or compromises regarding the use of collections,
when using FamilyGuard.

5.2.5.4. Data types

As already briefly mentioned in Section 2.1.2 Cassandra differentiates between
a variety of data types8), whereas HBase stores everything as byte array. This

5http://spark.apache.org/
6https://phoenix.apache.org/index.html
7To be exact, keyspaces in HBase are called “namespaces”, but they are conceptually the

same: the highest organizational level for organizing tables.
8for a complete list, see: https://docs.datastax.com/en/cql/3.1/cql/cql reference/

cql data types c.html

85

thesis will follow the HBase approach and store only byte arrays in encrypted
columns in Cassandra as well. This has two advantages:

• Except for OPE schemes, outcomes of all used encryption schemes are
byte arrays anyway. Storing them as such avoids conversions back to their
original data type and saves runtime. Only OPE ciphertexts have to be
converted to byte arrays, which can be done fast.

• Seeing only byte blobs in the database makes it much harder for an at-
tacker to infer information. Since column and table names are randomly
generated as well, an adversary can only count the number of columns, but
even that does not necessarily lead to useful information, since different
plaintext data types require a different amount of ciphertext columns (see
Figures 5.4, 5.5 and 5.6 and Section 7.3).

However, columns that are not supposed to be encrypted and are specified as
such in the table definition (see Sections 5.6.1.4) will use appropriate data types
in Cassandra.

5.3. Required Metadata Structures

Operating the DBMS with encrypted content requires keeping track of addi-
tional metadata structures, in particular to identify columns representing the
onion layers and initiate PPE schemes with the right parameters. The following
paragraphs and Table 5.2 - 5.4 provide an overview what metadata is required
to manage keyspaces, tables and columns.

Keyspace Level

The keyspace is an object that groups all tables of a certain concept or design.
It is usually the outermost container of the data in a DBMS. In some cases it is
also called namespace (e.g. in HBase). Table 5.2 lists the metadata items Fam-
ilyGuard maintains for every plaintext keyspace in order to enable operations
on encrypted data.

Table Level

A table groups columns that belong to the same concept or design and are likely
to be queried together. Thus, a table has a similar organizational function for
columns like a keyspace has for tables. As mentioned in Section 2.1.2, liter-
ature uses the term “column family” synonymously. For every physical table
FamilyGuard maintains the metadata like described in Table 5.3.

86

Table 5.2.: List of metadata items maintained by FamilyGuard for every
keyspace

plaintext
name

The name of the keyspace in plaintext representation, given
by the user in the process of creating the keyspace. The
database never sees it.

ciphertext
name

The name of the keyspace in ciphertext representation. This
is a randomly generated string with a length of 8 printable
characters that is used to identify the keyspace in queries.
Due to the random generation no information about the
plaintext name can leak. The mapping from plaintext to
ciphertext name is only stored on the trusted client side.

a list of
available
database
connections

A list containing all the available database connections this
keyspace is allowed to use for storing tables. Every list entry
consists of the type of the database (e.g. Apache Cassandra)
and the IP address that can be used to access the database.
One logical table might be split and distributed in form of
multiple physical tables using these connections (see Section
5.2.3).

a list of
physical
tables

A list of all physical tables present in this keyspace. Every
table in this list is stored with the metadata as described in
Table 5.3.

keystore The keystore (see Section 5.4) that is used by PPE schemes
to store keys in order to perform encryption and decryption
tasks for columns of tables of the keyspace.

Column Level

A column stores key-value pairs, which are the most basic unit of information
that can be stored in a WCS database (see Section 2.1.2). For every column the
metadata as listed in Table 5.4 is maintained in order to enable operations over
encrypted data.

5.4. Key Management

Using the framework of FamilyGuard means dealing with a number of crypto-
graphic keys, caused by the need of multiple encryption schemes in the different
encryption layers. The number of required keys per table can be calculated as
follows:

• For the encryption of the RND layer it is necessary, that the same values in
different columns of the same row result in different ciphertexts. Otherwise
determinism would leak (at least within the row). Since the initialization

87

Table 5.3.: List of metadata items maintained by FamilyGuard for every physi-
cal table

plaintext
name

The name of the table in plaintext representation, given by
the user in the process of creating the (logical) table. Like
the plaintext name of the keyspace, the database never sees
it.

ciphertext
name

The name of the table in ciphertext representation. Like
the keyspace ciphertext name this is a randomly generated
string with a length of 8 printable characters, used to iden-
tify the table in queries. Due to the random generation no
information about the plaintext name can leak. The map-
ping from plaintext to ciphertext name is only stored on the
trusted client side.

initialization
vector for
determinis-
tic
encryption

This is the initialization vector used by the onion layer re-
sponsible for deterministic encryption. It is a byte array
of length 16, randomly generated in the process of creating
the table. It has to be the same for all values stored inside
the table, otherwise equality checks over multiple columns
would produce wrong results. Thus it has to be stored only
once per table.

key for de-
terministic
encryption

For the key the same is true as stated for the initialization
vector, except for the length, which is 32 bytes. For compa-
rable results over multiple values the same key has to be used
for deterministic encryption throughout the entire table.

a list of
columns
that belong
to this table

This is a list of all columns that are associated to the table.
For every column metadata is stored as described in Table
5.4.

table profile The table profile specifies in which way the columns of the
table shall be encrypted (for details, see Section 5.2.4). For
the sake of of API simplicity the same profile is used for all
columns. However, there is no reason to not specify the pro-
file for every column separately in order to achieve a better
performance for each individual dataset. This can be consid-
ered an opportunity for future work (for details, see Section
8.2).

keyspace The keyspace the table belongs to.

database
connection

This specifies the database type and IP address of the
database storing this table.

row
identifier
column

This is the column that contains the row identifiers for this
particular table. According to the WCS data model (see
Section 2.1.2) every table has exactly one.

88

IV column This is the column that contains the initialization vectors
for RND layer encryption. Each row needs an individual IV,
otherwise equality could leak from the RND layer, which has
to be avoided (see Section 5.2.1 for details).

vector for the used RND encryption scheme is unique only per row, the
encryption key has to be different for every column in order to produce
different ciphertexts for the same plaintexts in different columns. Thus,
the RND layer needs one cryptographic key for every column.

• The encryption of the DET layer is required to produce the same ci-
phertexts for the same plaintext. Since joins are not possible in WCS
databases that has to be true only for all ciphertexts per table (not the
whole database). Thus, the DET layer requires one cryptographic key for
every table.

• OPE encryption does not require any keys. The cryptographic secret is
the index itself.

• The number of cryptographic keys required in the SE layer heavily de-
pends on the used SE scheme. Like in the RND layer, different keys are
needed for every column in order to not leak determinism. As discussed
in Section 4.4.2.1 the SWP scheme needs two keys per column, one for
its pre-encryption step and one for a keyed hashing computation. The
SUISE scheme as described in Section 4.4.2.2 also needs two keys, one
for generating search tokens and one for directly encrypting the plaintext
using some IND-CPA secure encryption algorithm (which is AES for the
implementation of this thesis).

As FamilyGuard can be extended to the use of other PPE schemes (see Section
6.4.2), the number of necessary cryptographic keys might grow further. However,
since the database server is not allowed to possess these keys, they have to be
managed and stored on the client side. Doing that manually is impractical
for the user, which is why FamilyGuard uses a Java Cryptography Extension
KeyStore (JCEKS) provided by the Java Cryptography Extension (JCE) for
that task.

A JCEKS allows storing an arbitrary number of keys, each of which can be
accessed using a custom label. The user has to provide only on single password to
gain access to all keys, which massively improves the usability. In FamilyGuard
this happens when the metadata is loaded (see Section 5.3 and 5.6.1.1).

Since all keys have to be available independently from each other, no key
derivation algorithm is used when generating them. Instead they are created
purely randomly using the random number generator of java.security.Secure

89

Table 5.4.: List of metadata items maintained by FamilyGuard for every column

plaintext
name

The name of the column in plaintext representation, given
by the user in the process of creating the table or (in case
a column was added later to an existing table) the column
itself. The database never sees it.

ciphertext
name of the
DET
column

The onion layer model requires multiple ciphertext columns
for each individual plaintext column in order to store the
values resulting from the different PPE schemes. This field
contains the name of the column storing deterministically
encrypted values. It is a randomly generated string of 32
printable characters. Thus, it does not leak any information
about the plaintext name.

ciphertext
name of the
OPE
column

Similar to the ciphertext name of the DET column, this is
the name of the corresponding ciphertext OPE column.

ciphertext
name of the
SE column

Similar to the ciphertext names of the DET and OPE
columns, this is the name of the corresponding ciphertext
SE column.

ciphertext
name of the
RND
column

Similar to the ciphertext names of the DET, OPE and SE
columns, this is the name of the corresponding ciphertext
column for the RND layer. Note that this column is only re-
quired when storing sets for reasons as discussed in Chapter
5.2.1.

RND layer
of DET
column

This is a boolean value indicating whether the RND layer of
the DET column was already stripped off in the process of
performing operations over the encrypted data (which was
the case if e.g. an equality check was computed).

RND layer
of OPE
column

This is a boolean value indicating whether the RND layer of
the OPE column was already stripped off in the process of
performing operations over the encrypted data (which was
the case if e.g. comparisons or sorting were computed)

rowkey This is a boolean value indicating whether the column con-
tains rowkeys of a table or not.

column key The column key is needed to perform the encryption of the
RND layer. It has to be different for every column, oth-
erwise information could leak about plaintexts of the same
row (since the same IV and key would be used).

90

column
type

The column type stores information about the data type
that the column is housing. Supported types are strings,
numbers and byte blobs. Supporting more types (like e.g.
timestamps) can be considered subject of future work (see
Chapter 8.2)

encrypted Not all columns have to be encrypted and stored in onion
layer fashion. If the column contains no sensitive data, this
parameter is set to false and the content of this column is
stored in plaintext (see Chapter 5.2.2)

Random9.

5.5. Interacting with the Databases

Using encryption requires additional efforts, when reading from and writing to
the databases. This section describes the necessary steps in detail, in which
the concepts of the PPE schemes itself (Chapter 4 and Section 5.2.4) as well
as of the onion layer model (Section 5.2.1), data distribution (Section 5.2.3),
key management (Section 5.4) and metadata management (Section 5.3) come
together.

5.5.1. Writing

5.5.1.1. Creating Keyspaces and Tables

Creating a keyspace using FamilyGuard requires the following extra steps com-
pared to using the databases regularly:

• For hiding the plaintext name of the keyspace later on a new name for
it is created, consisting of 8 randomly chosen characters (referred to as
“ciphertext name” in Table 5.2).

• A metadata object representing the keyspace is created, containing the
plaintext ciphertext mapping and all other relevant metadata as described
in Section 5.3.

• One or multiple (see Section 5.2.3) queries are built and executed to ac-
tually create the keyspace on server side.

The process of creating a table is basically quite similar, but requires more
attention when creating the individual columns:

9see https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

91

• For hiding the plaintext name of the table later on a new name for it is
created, consisting of 8 randomly chosen characters (referred to as “cipher-
text name” in Table 5.3) like previously done for the keyspace. The same
is also done for every column. Note that depending on its datatype one
plaintext column might result in multiple columns on server side, each of
which represents a required onion (see Figures 5.4 - 5.6). Thus, multiple
ciphertext names per column might be necessary.

• Metadata objects representing all future columns of the table and the table
itself are created, as described in Section 5.3, in particular Table 5.3 and
5.4.

• Column keys for RND layer encryption as well as a table key and IV for
DET layer encryption are created and associated to the table’s metadata
object.

• According to the distribution profile that was chosen for this table (see
Section 5.2.3), it is decided how the individual columns are spread across
the available database instances. The only exception is the row identifier
column, which is written to every database in order to be able to join the
data items again in the query process (see Section 5.5.2).

• One or multiple (see Section 5.2.3) queries are built and executed to ac-
tually create the (physical) table on server side.

5.5.1.2. Inserting Rows in Tables

Creating keyspaces and tables did not involve using the PPE schemes yet. That
changes, if actual data is written to the database, that is supposed to be queried
later on. Inserting data requires two types of information (see Section 5.6.1.6):
what is supposed to be inserted (the actual row data) and where is it supposed
to be inserted (keyspace, table and column names).

• Given the plaintext names of keyspace and table for the new data items,
the first step is to look up the corresponding ciphertext names in the
metadata, as well as the involved databases (type and IP address) that
are responsible for storing the table. Furthermore if not done yet, the
keystore associated to the keyspace is loaded.

• An IV for the RND layer encryption of the row is created, that will be
stored in the row along with its other data items.

• Using this IV and (depending on the used PPE scheme) crypographic keys
from the keystore all data items are encrypted in a property-preserving
way according to the onion layer model (see Section 5.2.1). Thus, one
plaintext data item may result in multiple ciphertext data items (each of
which maybe the result of multiple encryptions).

92

• Finally the write queries can be constructed (one per row and involved
database instance) involving all previously collected information.

The impact on the runtime required by all this pre-processing steps is inves-
tigated further in Section 7.1.2.

5.5.2. Querying

On the one hand, querying encrypted data requires the database’s ability to
deal with the property-preserving encrypted values. This is no problem, except
for the SE layer. On the other hand, it requires decrypting, before the data can
be used by the application that asked for it. Both aspects are discussed in this
chapter.

5.5.2.1. The Problem of Performing SE on Server Side

In order to understand why processing SE requests cannot be performed on
server side like OPE or DET encryption does, it is necessary to take a closer
look on how the database deals with PPE.

The DET layer is mainly responsible for equality checks. Performing such a
check is a native capability of the database. No matter what format the data
item has, the database can determine whether it is equal to another reference
object or not. For example the database is able to check the string “BMW” for
equality with every other string without being modified in any way. In partic-
ular, it can also natively handle encrypted representations of these strings (or
numbers/byte blobs). The same holds true for the OPE layer, that is responsi-
ble to check for order relations. The database is able to compare data items to
one another independent from their format. It can tell whether 2 < 4, A < Z,
etc. or not without being modified therefore in any way.

Unfortunately that does not hold true for the SE layer. As pointed out in
Section 2.4.2.1, SE always relies on trapdoors that are passed to the database
server, which are used to check for matches. This checking procedure requires
computations, that the unmodified databases investigated for this thesis are not
able to perform. Table 4.3 already gave an overview about the types of necessary
computations for a variety of existing SE schemes. To recall the details for the
two implemented schemes:

• For the SWP scheme (Section 4.4.2.1) to check for a certain word W ,
it has to be checked for every ciphertext word C whether W ⊕ C is of
the form S||Fk(S) for some S, where S is a pseudorandomly generated
value and F is a pseudorandom function, that has to process an input
value S and a key k. That includes two things neither Cassandra nor
HBase is capable of doing being unmodified: performing bitwise XOR
operations and computing pseudorandom functions (e.g. keyed hashing)
on data items.

93

• For the SUISE scheme (Section 4.4.2.2) the concept for checking for mat-
ches is quite similar. Every encrypted representation of a word c in the
index γf is split into l||r and then checked if Hrw(r) = l, where H is
(again) a pseudorandom function and rw the search token provided by
the client (used as key for H). Again, that includes two things neither
Cassandra nor HBase is capable of doing: splitting strings or byte arrays
and perform pseudorandom functions on the resulting fragments.

That means SWP and SUISE cannot be implemented with the functionality
to check for matches on server side. However, even though for practical reasons
the scenario of this thesis aims for unmodified databases, this raises the ques-
tion, whether Cassandra or HBase could be modified in some way to enable the
operations described above, if a database modification was allowed (not includ-
ing the obvious option to directly rewrite parts of their source code). Currently
this question can be answered as follows:

• In Cassanda the only mechanism for executing custom code are so called
user defined functions (UDFs), that can be specified in a CQL query.
While this would allow bitwise XOR operations and splitting data items,
it does not enable computing pseudorandom functions, because there is no
mechanism to import the necessary cryptographic libraries. The reason
for that is the template all custom code gets inserted into10.

• The equivalent to UDFs in Cassandra are so called co-processors in HBase.
Using them means implementing some given interfaces11 or extending
given classes12 and making them available to the HRegionServers (see
Section 2.1.2.2) by distributing all custom code in form of a single jar file.
This file may include cryptographic libraries as well, which would allow
HBase (in contrast to Cassandra) the execution of SE. However, a major
disadvantage of this method is the fact, that the distribution of the jar file
requires direct write access to the HDFS HBase is running on. The vast
majority of today’s IaaS/PaaS providers (see Section 2.2) does not offer
an option for doing so. Instead, for the sake of simplicity everything is
managed via a web interface, that does not let the user set up the database
cluster in the required detail.

For the scenario of this thesis, which forbids modifying the databases, that
means a performance drawback that we investigate further in Section 7.1.2. The
client has to perform computations that otherwise could be done by a database

10which allows only access to java.nio.ByteBuffer, java.util.*,
org.apache.cassandra.cql3.functions.JavaUDF and com.datastax.driver.core.

TypeCodec. For more details, see: http://batey.info/cassandra-udfs.html
11org.apache.hadoop.hbase.coprocessor and org.apache.hadoop.hbase.coprocessor

Service
12org.apache.hadoop.hbase.coprocessor.BaseRegionObserver

94

(cluster). However, one has to keep in mind, that the SE-powered functionality
to query for single words within a value field is a functionality, that the database
otherwise either would not have at all (in case of Cassandra) or could only be
realized with filters for substrings or regular expressions (in case of HBase).

In the implementation of this thesis, query conditions requiring processing
SE are always evaluated at last, after as much rows as possible are filtered out
through other query conditions involving the DET and/or OPE layer. This way
as few as possible SE is involved. The following section explains this issue in
the overall query processing.

5.5.2.2. The Query Process

From the client application’s query against the encrypted data until the de-
crypted results are available for it to work with, the following steps are neces-
sary:

1. The query may contain a number of conditions that have to be met for
a row to be included in the result set. These conditions are parsed to
identify the columns that are involved in those conditions.

2. In order to check, if a condition is met by a column that was identified
in the first step, it might be necessary to remove the RND layer from a
particular onion to get to its underlying DET or OPE encrypted values.
Therefore the metadata is asked if the RND layer on that column still
exists. If so, it is removed.

3. Afterwards the set of all columns is identified, that have to read from the
database(s). This set consists of two subsets, that might overlap. The
first subset consists of all columns that are involved in query conditions,
as identified in the first step. Depending on the type of condition, the
appropriate ciphertext column is selected (e.g. the column representing
the OPE onion, if the condition it is involved in is an order comparison).
The second subset consists of all columns, that were selected by the user
(and thus, are not necessarily involved in any query conditions). In this
case the DET onion representing column gets chosen, because it is the
fastest one to be decrypted later on.

4. Furthermore, there are two columns, that are always read from the data-
base, independent from the query: the row identifier column (needed to
address rows in the result set later and to join result sets from multiple
database instances) and the IV column (maybe needed for further RND
layer decryption on columns, that were never involved in query conditions).

5. After all necessary columns are identified the metadata is used to look
up the database instances responsible for storing them. One query is con-
structed for each database instance. In every query the plaintext keyspace,

95

table and column names are replaced by their ciphertexts counterparts, as
well as concrete terms in conditions are replaced by their PPE encrypted
equivalents. In the end no query contains any plaintext information any-
more and can be executed. For reasons discussed in Section 5.5.2.1 all SE
involving conditions are left out for the moment.

6. After all database instances have sent back their results to the client, the
remaining rows are checked for whether they fulfill conditions involving
SE (see Chapter 5.5.2.1), which leads to the final result set.

7. If multiple database instances were involved in the initial query, the rows of
their individual result sets are now joined using the row identifier column.

8. As a last step the final result set is decrypted using the DET onion repre-
senting column, as discussed in Step 3.

5.6. The API

5.6.1. API Methods for Database Interactions

This section introduces the methods provided by the API developed for this
thesis. To allow a faster understanding, every method is introduced in the
following way. Firstly, a CQL statement demonstrates a certain functionality.
Since CQL is very similar to the well known SQL, a CQL query’s intention is
easy to grasp13. Secondly, the general usage of the API method is explained,
that can be used to achieve the same functionality. Finally an API example is
given, that corresponds to the introducing CQL statement.

The API provides methods for:

• Initializing itself by loading keyspace metadata from an XML file

• Creating and deleting keyspaces

• Creating and deleting tables

• Writing PPE-encrypted or unencrypted data to these tables, either by
writing whole rows or updating only single values

• Reading/querying tables

As the implementation has a proof-of-concept character, there is of course
room for more functionality, which can be considered options for future work.
Details can be found in Section 8.2.

13In contrast, one has to become familiar with the native HBase Java API first to understand
its working principles. Therefore, no examples in form of HBase API calls are shown at
this point.

96

5.6.1.1. Initializing/Closing

In order to be able to interact with the databases the API has to be aware of the
existing database instances as well as of the data inside them. Thus, it has to
load the available keyspace metadata first and initialize the necessary database
connections. All of that is taken care of by the API’s constructor.

public API(String path, String password, boolean silent);

• path: The file path of the XML metadata file.

• password: The password that is needed in order to access the keystores
managed by this API instance.

• silent: If set to false, status output and error messages will be printed
to the console. While this helps to see what is going on, it can be a
performance bottleneck. If set to true, no console output will occur.

Assuming the XML metadata file is located in /home/user/mydb.xml and no
console output is wanted, the corresponding constructor call would be:

API api = new API("/home/user/mydb.xml", "mypassword", true);

Analogous to the initialization, a closing process is required to save the current
keyspace metadata state back to the XML file and save client side indexes for
future use. All is done by a close method.

public void close();

Thus, after all database interactions are done, the necessary corresponding
call is

api.close();

5.6.1.2. Creating Keyspaces/Namespaces

Keyspaces14 are the highest level of data organisation within the databases. At
least one keyspace has to be created in order to house tables. Hence, that is
also the first thing that has to be done using the API introduced in this thesis.
Consider the following CQL statement:

14Whenever keyspaces are mentioned in this chapter, everything that is referred to is also true
for HBase’s namespaces.

97

CREATE KEYSPACE ksn

WITH REPLICATION = {

’class’ : ’SimpleStrategy’,

’replication_factor’ : 1

};

As can be seen, it creates a keyspace called “ksn” (short for keyspace name)
with the keyspace to be created having certain parameters. When using Fam-
ilyGuard, not only the keyspace name is important, but also what database
instances are available to store the tables of the keyspace in the future. One
database is mandatory, but arbitrarily more are possible (see Section 5.2.3).
Thus, the API method for creating keyspaces looks like follows:

public void addKeyspace(String keyspaceName, String[] dbs,

HashMap<String, String> params, String password);

• keyspaceName: the plaintext name of the new keyspace to be created.
The API will replace that name with a randomly generated string in every
interaction with the database. Thus it will not leak at any point in time.

• dbs: The database instances available for storing tables of this keyspace.
Every string in this array has to be of the form "<DatabaseType>->

<IPAddress>", e.g. Cassandra->192.168.2.101.

• params: Additional parameters that specify, how the new keyspace is
handled locally by the database instances. Supported parameters are
replication class and replication factor. If not specified Family-
Guard will use the defaults replication class = SimpleStrategy and
replication factor = 115.

• password: The password that is needed to access the JCEKS keystore
which is used to manage all cryptographic keys required by the PPE
schemes that are applied to tables and columns in this keyspace (see also
Section 5.4).

The following example shows, how the keyspace “ksn” from the example above
could be created, assuming there is an instance of Cassandra and an instance of
HBase available for storing table data of this keyspace later on.

15Note that this parameters only have an impact in Cassandra (see
https://docs.datastax.com/en/cql/3.1/cql/cql reference/create keyspace r.html).
HBase does not allow specifying such parameters for certain namespaces individually.

98

api.addKeyspace("ksn",

new String[]{"Cassandra->192.168.0.1" ,

"HBase->192.168.0.2"},

new HashMap<String, String>() {{

put("replication_class", "SimpleStrategy");

put("replication_factor", "1");

}}

"mypassword");

5.6.1.3. Deleting Keyspaces

Assuming the keyspace created above should be deleted, the necessary CQL
query would look like this:

DROP KEYSPACE IF EXISTS ksn;

The corresponding API method for deleting tables is:

public void dropKeyspace(String keyspaceName);

• keyspaceName: The name of the keyspace to be deleted. Note that all
tables existing in this keyspace will be dropped as well.

To delete the keyspace created above, the following API call would be sufficient:

api.dropKeyspace("ksn");

5.6.1.4. Creating Tables

After a keyspace has been created, it can be filled with tables. Consider the
following CQL query:

CREATE TABLE ksn.cars (

id int PRIMARY KEY,

model text

);

It creates a very simple table named “cars” within the previously mentioned
keyspace “ksn”. It has two columns: an integer column “id”, which is also the
primary key (thus, the row identifier) and a text column “model”. To do the
same in FamilyGuard, the following method has to be used:

public int addTable(String keyspace, String tablename, TableProfile

profile, DistributionProfile distribution, String[] columns);

99

• keyspace: The keyspace in which the new table is to be created.

• tablename: The plaintext name of the new table. Similar to the keyspace
name, it will be replaced by a randomly generated string during every
interaction with the database. Thus, it will not leak either.

• profile: The profile that determines which PPE schemes are used for en-
crypting the content of the columns in the new table. The available profiles
are Table Profile.FAST, TableProfile.ALLROUND and TableProfile.

STORAGEEFFICIENT. For details see Section 5.2.4.

• distribution: The algorithm, that determines how the table’s columns
are distributed across the available database instances. Note that the
selection of an algorithm only makes any difference, if more than one
database instance was provided during the process of creating the table’s
keyspace. Otherwise no distribution is possible, since only one database
is available. The possible options are DistributionProfile.RANDOM,
DistributionProfile.ROUNDROBIN and
DistributionProfile.CUSTOM. For details see Section 5.2.3.

• columns: An array, that contains a string for every column of the new
table. Each of those strings has to have the following format:

[<x>->][un]encrypted-><type>-><name>[->rowid]

– x: A numerical value in the interval [1 ... number of available
database instances]. The column is stored in the xth available database.
Specifying this value is only allowed (and makes sense), if Dis-

tributionProfile.CUSTOM was used and more than one database
instance was specified when the table’s keyspace was created. As-
suming the distribution from the example shown in Figure 5.8 from
Section 5.2.3 should be achieved, one can seperate the salary column
from all the other columns by using 1 for the firstname, lastname and
department column and 2 for the salary column (see the example be-
low).

– [un]encrypted: By specifying a column as unencrypted its contents
will be stored without any encryption. In contrast, using the keyword
encrypted enables the complete onion layer encryption with the PPE
schemes used as described in Section 5.2.4.

– type: The data type of the column’s contents. The available op-
tions are “string”, “string set”, “integer”, “integer set”, “byte” and
“byte set” for text, numerical values and byte blobs and correspond-
ing sets of these types.

– name: The plaintext name of the column.

100

– rowid: The rowid attribute must be set to exactly one column of the
table definition in order to specify the row identifier column. If no
or more than one column is set to be the row identifier column, the
creation of the table will fail. For details about why that is necessary
see Section 2.1.2 and 5.2.5. Note that the row identifier column is
always stored on every database instance. Otherwise there would be
no way to link data stored on different database instances in a query
process.

While this seems complicated at first glance, it is quite intuitive in practice, as
the following two examples will show. In order to create a completely encrypted
“cars” table as in the CQL example above, the necessary API call would be:

api.addTable("ksn", "cars", TableProfile.ALLROUND,

DistributionProfile.RANDOM, new String[] {

"encrypted->integer->id->rowid",

"encrypted->string->model"

});

To illustrate the creation of a more advanced and actually distributed table,
the API call for a table as shown in Figure 5.7/5.8 looks like:

api.addTable("company", "employees", TableProfile.ALLROUND,

DistributionProfile.CUSTOM,

new String[] {

"1->unencrypted->integer->emp-ID->rowid",

"1->unencrypted->string->firstname",

"1->unencrypted->string->lastname",

"1->unencrypted->string->department",

"2->encrypted->integer->salary"

}

);

As can be seen, the all columns containing information, that is not sensitive,
are stored in database 1. Only the salary is stored encrypted in database 2. Note
that the row identifier column emp-ID is stored in database 2 automatically as
well. Row identifier columns always have to be present in all databases in order
to be able to identify (parts of) rows across multiple databases (as described in
Section 5.2.3).

5.6.1.5. Deleting Tables

Deleting tables is very similar to deleting keyspaces. Assuming the cars table
created above is supposed to be dropped, that could be done in CQL issuing:

101

DROP TABLE IF EXISTS ksn.cars;

The corresponding API method is:

public void dropTable(String keyspaceName, String tableName);

• keyspaceName: The keyspace that contains the table to be deleted.

• tableName: The table to be deleted.

In order to drop the cars table from the example above, one can use:

api.dropTable("ksn", "cars");

5.6.1.6. Writing Data

Continuing the example of the cars table introduced above, a CQL statement
supposed to fill this table with actual data could look like follows:

INSERT INTO ksn.cars (id, model)

VALUES (12, ‘Audi’);

It creates a new row inside the table with the id (and row identifier) 12 and
the text “Audi” in the model column. The API method for inserting a row in
FamilyGuard is:

public void insertRow(String keyspaceName, String tableName,

HashMap<String, String> stringData, // "regular" values

HashMap<String, Long> intData,

HashMap<String, byte[]> byteData,

HashMap<String, HashSet<String>> stringSetData, // collection

types

HashMap<String, HashSet<Long>> intSetData,

HashMap<String, HashSet<ByteBuffer>> byteSetData)

• keyspaceName: The keyspace of the table, that the new row is written to.

• tableName: The name of the table, that the new row is written to.

• stringData/intData/byteData: Maps, that contain the actual values,
that are written into the new row, one for each possible data type. The
key of the map always contains the name of the column in which the
new value is supposed to be written, whereas the value of the map entry

102

contains the actual value. Thus for example: if the numerical value 12 shall
be written in the column named id, the map intData has to contain the
key-value-pair < ”id”, 12 >. The API then uses the available metadata to
find out to which database instance and to what columns the new values
have to be written. Note that if columns are encrypted to multiple onion
layer columns (see Section 5.2.1), one key-value-pair can result in multiple
columns.

• stringSetData, intSetData, byteSetData: The equivalent to string-
Data/intData/byteData for collection types as explained in Section 5.2.5.3.
Instead of having one single element in a map’s value field, sets of values
can be inserted at once. Note that sets can only be inserted into columns,
that where specified as collection type columns while creating the table
previously.

Usually one will not have to insert values of every available type. If a type is
not needed, one can use null, instead of passing an empty map, which is the
normal case in practice. The example CQL-query from above can be translated
into the following API call:

api.insertRow("ksn", "cars",

new HashMap<String, String>(){{ //stringData

put("model", "Audi");

}},

new HashMap<String, Long>(){{ //intData

put("id", 12);

}},

null, //byteData

null, //stringSetData

null, //intSetData

null //byteSetData

);

5.6.1.7. Reading/Querying Data

The API methods introduced so far involved only writing or deleting data, which
are operations, that do not return any interesting results. However, a fundamen-
tal purpose of databases is of course reading data and thus, getting back exactly
specified information. This specification usually comes by executing queries like:

SELECT id, model

FROM ksn.cars

WHERE ps>100 AND model=’BMW’;

103

This example is supposed to return all cars with more than 100 PS that where
manufactured by BMW. To achieve the same in FamilyGuard the API method
query has to be used, which comes with the following signature:

public DecryptedResults query(String[] columns, String keyspace, String

table, String[] conditions)

In contrast to the previously discussed API methods it returns an instance
of the class DecryptedResults instead of a primitive data type or void. This
class is introduced in detail in Section 5.6.2. The remaining parameters are as
follows:

• columns: The columns that are supposed to be part of the result set. In
general, all columns that one would write into the SELECT clause of an
CQL/SQL query should appear here. The column that contains a table’s
row identifier is always automatically added.

• keyspace: The plaintext name of keyspace of the table, that the query is
executed against.

• table: The plaintext name of the table, that the query is executed against.
To continue the analogy to CQL/SQL queries: keyspace and table names
would appear in the FROM clause.

• conditions: A set of conditions that the resulting rows are supposed to
meet. Each element of this set is a string representing a condition in the
form

<columnname><operator><term>

– columnname: The plaintext name of the column that is involved in
this condition.

– operator: The operator used to define the condition. The following
operators are allowed:

= equal (makes use of the DET layer)
> greater than (makes use of the OPE layer)
>= greater than or equal (makes use of the OPE layer)
< less than (makes use of the OPE layer)
<= less than or equal (makes use of the OPE layer)
includes (makes use of the SE layer, only for text columns)

Note the difference between = and # when it comes to text values.
While = checks for equality of complete strings, # can be used to
search for single words within these strings. Details on what is con-
sidered to be a word can be found in Section 4.4.2.1. For example

104

working with the condition “model=BMW” would return only rows,
where model exactly matches the string “BMW”, whereas using the
“#” operator would also return rows like “BMW 320d”, “new great
BMW car”, etc. Thus the # operator works similar to SQL’s LIKE

%term% operator.

Note further, that the # operator is only available in encrypted text
columns, since it realizes its functionality utilizing the capabilities of
SE.

– term: The term used to define the condition.

Thus, the call for the above presented example looks as follows:

DecryptedResults results = api.query

(new String[]{"id", "model", "ps"}, // SELECT

"ksn", "cars", // FROM

new String[]{"ps>100", "model=BMW"}); // WHERE, also # possible

// for getting everything

// that includes "BMW"

More examples for queries can be found in Appendix B.

5.6.2. API Methods for Decrypted Result Sets

When a query is issued using the provided API method as described in Section
5.6.1.7, an instance of the class DecryptedResults is returned. If the (log-
ical) table, that the query was executed against, was spread across multiple
databases as described in Section 5.2.3, it joins the individual column data from
all of the corresponding (physical) tables (only from rows that fulfill the query’s
conditions, of course). It also provides access to columns that have been stored
originally in unencrypted form.

Depending on the expected result type the user can access individual de-
crypted values by calling one of these methods:

• public String getStringValue(byte[] id, String column);

• public int getIntValue(byte[] id, String column);

• public byte[] getByteValue(byte[] id, String column);

• public Set<String> getStringSetValue(byte[] id, String column);

• public Set<Integer> getIntSetValue(byte[] id, String column);

• public Set<byte[]> getByteSetValue(byte[] id, String column);

105

In all of these methods the parameter id is the row identifier of the row that is
about to be accessed, whereas column is the name of the column that is about
to be accessed. Of course, only columns that were specified in the columns-
parameter of the corresponding query call (see Section 5.6.1.7) are available
here, because only those have been selected to be in the result set in the first
place.

The DecryptedResults class also provides two more auxiliary methods for
handling a query’s result set:

• public int getSize();

• public void print(int numberOfRowsToPrint);

As their names suggest getSize() delivers the total numbers of rows of the
result set and print(int numberOfRowsToPrint) prints the specified number
of rows to the standard console.

5.6.3. API usage

This section describes the simple rules one has to follow when using the API
provided by FamilyGuard.

• Before database interactions can be performed, the current metadata al-
ways has to be loaded upfront by calling the constructor method, described
in Section 5.6.1.1. In order to keep the metadata and the database con-
tents consistent, the close method has to be called after all database
related tasks are finished. Doing so saves the current table metadata as
well as client side indexes of the used PPE schemes, if required.

API api = new API("pathtometadata", "mypassword", true);

... // interactions with the database(s)

api.close();

• FamilyGuard can only manipulate tables, that have been created using
it. Otherwise there would be no metadata available to describe the data
structures necessary for the layered encryption, possible data distribution
across multiple database instances, etc.

• In particular, writing as well as querying only works for keyspaces and ta-
bles, that have been created using the methods addKeyspace and addTable,
described in Section 5.6.1.2 and 5.6.1.4.

No more rules need to be followed. The user is free to combine arbitrary
interactions with the database as he would do without FamilyGuard.

106

6
Implementation

This chapter describes the implementation of the PPE schemes as well as of the
API that uses them. It starts with an overview on some basic design aspects,
followed by a closer look at the cryptographic primitives used for this work.
Afterwards it presents the data flow from the client application to the database
and back. Finally, the chapter is concluded by a description of how this work
can be extended to support other databases and PPE schemes.

Contents

6.1. Overview . 110

6.2. Cryptographic Primitives 111

6.3. Data Flow . 112

6.3.1. Application Layer and Unified Request Objects 113

6.3.2. Encryption Layer . 115

6.3.3. Transformation Layer 115

6.4. Extensibility . 116

6.4.1. Other databases . 116

6.4.2. Other PPE schemes 116

109

6.1. Overview

All implementations were entirely done in Java 8 in about 10.000 lines of code,
including all PPEschemes, API methods and database communication. The
complete source code is available online1. It was entirely written by the author
of this thesis, except for the implementation of the OPE scheme of [14], as
described in Section 4.3.2.3, which was implemented by Daniel Homann 2.

Package Organization

The source code is divided in five packages.

• The crypto package bundles implementations of all used PPE schemes
and their indexes. Furthermore it contains classes for extending the func-
tionality of the JCEKS and implementing the javax.crypto.SecretKey

interface.

• The databases package contains classes for managing the keyspace, table
and column metadata as described in Section 5.3 and communicating with
the supported databases.

• The enums package bundles all enumeration types.

• The interfaces package bundles all interfaces.

• The misc package contains auxiliary functionality like writing serialized
data structures to the file system, converting data types, etc.

Furthermore the project root contains the API.java, which bundles all API
methods described in Section 5.6 end exposes them for external usage.

Indexes of PPE Schemes

Since disk access and memory management in WCSs are performed at column
level, the indexes of all PPE schemes are designed the same way. That means
every column that uses a PPE scheme relying on an index, gets its own index.
Thus, if a column is part of a filter condition specified in the query, only the
index information of that column has to be taken into account when processing
that query.

1see https://gitlab.gwdg.de/twaage1/FamilyGuard
2Research Group for Knowledge Engineering, Institute of Computer Science, University of

Goettingen

110

Interacting with the Databases

The Cassandra Java Driver 3.13 is used to interact with Apache Cassandra,
which allows utilizing the current version 3 of the Cassandra Query Language
(CQL). CQLv3 is the first version of CQL, that explicitly supports collections,
as described in Section 5.2.5.3. Internally it creates a key-value-pair for every
item of a set with the item as key and null as value. Querying Cassandra can be
done either by directly passing query strings to the driver or using the integrated
query builder.

In contrast, HBase does not provide a high level query language. The fastest
way to interact with it is its native Java API4. All operations have to be per-
formed creating put-, get-, or delete-objects first, equip them with appropriate
row filters that correspond to query conditions (if desired) and hand them over
in form of “scanners” to objects, that represent tables and keyspaces.

Client Side Storage

Persistent storage on client side is mainly needed for two things. On the one
hand, OPE schemes need to store their indexes here. For that purpose it is
sufficient to just save the serialized representation of the corresponding data
structures in files. On the other hand, there is the metadata of the encrypted
columns, which is stored in XML representation and thus, in a structured and
easily accessible manner. For that purpose, every class, that represents a meta-
data object, implements the interface interfaces.SaveableInXMLElement.

6.2. Cryptographic Primitives

The Java Cryptography API is the foundation for using cryptographic algo-
rithms in Java. It specifies interfaces, that can be used further by so called
crypto providers. This thesis uses two of them:

• The Java Cryptography Extension (JCE) has been Java’s built-in solution
since JDK 1.4. It is a framework for various cryptographic tasks like
encryption, authentication or key management.

• The “Legion of the Bouncy Castle” package (BC) is an open source alter-
native to the JCE, which is a little faster in many cases, but sometimes
does not offer the same comprehensive functionality.

If the desired functionality can be realized with both crypto providers, this
thesis always uses the one with the faster implementation. Table 6.1 gives an
overview about what cryptographic primitive was used for which purpose.

3see https://github.com/datastax/java-driver
4http://hbase.apache.org/apidocs/

111

Table 6.1.: Cryptographic primitives used in this thesis

Purpose Layer Scheme Crypto Provider

Encrypt plaintexts RND AES BC (AES CBC)

Encrypt plaintexts DET AES BC (AES CBC)

part of lazy-sampling range
gaps

OPE mOPE JCE (HMAC-SHA256)

part of sampling the final
range point to a domain
value

OPE mOPE BC (AES CBC)

Randomly initialize the
index, randomly split domain
and range

OPE RSS JCE (SecureRandom,
SHA1PRNG)

Pre-encrypt searchwords
E(W)

SE SWP BC (AES CBC)

Compute the key for
“controlled searching”

SE SWP JCE (HMAC-SHA1)

Padding plaintexts to length
n

SE SWP BC (PKCS7 Padding)

Random numbergenerator G SE SWP JCE (SecureRandom,
SHA1PRNG)

Compute F (S) SE SWP JCE (HMAC-MD5)

Encrypt plaintexts SE SUISE BC (AES CBC)
Compute the search token rw SE SUISE JCE (HMAC-SHA1)
Random oracle H SE SUISE JCE (HMAC-SHA1)
Random numbergenerator G SE SUISE JCE (SecureRandom,

SHA1PRNG)

As previously mentioned in Section 5.4, apart from the usage of cryptographic
primitives in the implementation of the various PPE schemes, this thesis uses
the keystore implementation of the JCE for managing and storing all necessary
cryptographic keys.

6.3. Data Flow

This section discusses the data flow and involved components of FamilyGuard’s
architecture in detail. As can be seen in Figure 6.1 the data passes three layers
on its way from the application to the database: the application layer, the
encryption layer and the transformation layer. Each layer serves individual
tasks.

112

Figure 6.1.: Architecture of FamilyGuard

6.3.1. Application Layer and Unified Request Objects

Every interaction with the database is initiated by calling one of the available
methods provided by the application layer as described in Section 5.6.1. Thus,
this layer fulfills the following tasks:

• It provides a unified way of querying the supported databases. The de-
tails of the database’s native query languages are no longer of concern
for the user. Therefore the application layer creates “unified request ob-
jects” (UROs) for every interaction with the database. These UROs de-
scribe exactly, what is supposed to happen (using their Type filed, e.g.
CREATE TABLE, INSERT ROW etc.), where it is supposed to happen (us-
ing their DBLoc field, short for DBLocation) and what data is involved
(String/Int/Byte[Set] Args)5. As the name suggests, DBLoc is a data
structure, that precisely describes a location within the database, con-
sisting of a keyspace/namespace, table name and row/column restricting
patterns. For example, when creating keyspaces only the keyspace name

5To be precise: a URO has one more field, that stores a reference to the row identifier
column, which is important for some query types. However, for the sake of simplicity of
the explanations in this chapter, this is only mentioned when important in the following
sections.

113

is of interest and all other values can be set to null, while querying the
database is the more challenging case for DBLocation. Then keyspace/-
namespace and table names have to be provided, as well as the selected
columns and row restricting conditions (for example in range queries).
The use of the String/Int/Byte[Set] Args is very versatile. They can
contain nothing or very few data e.g. when creating a keyspace or be filled
with values, when actually inserting rows of data into tables.

Consider for instance the examples from Section 5.6.1.6 and 5.6.1.7 (read-
ing and writing data). The corresponding UROs can be seen in Figure
6.2. Fields not necessary for a specific type of opration are set to null.
Note that plaintext values only appear in UROs, if a column was marked
to be stored unencrypted (see Section 5.2.2). Otherwise the corresponding
fields in the String/Int/Byte Args section are empty when passed to the
encryption layer and filled there.

Figure 6.2.: URO examples for reading (left) and writing (right) data

• It takes care of the client side metadata, which consists of two subtasks.
Firstly, it always synchronizes the metadata. If new keyspaces, tables or
only columns are created or deleted, the metadata has to be updated. This
is important for knowing the location of actual data and for translating
plaintext UROs into their ciphertext counterparts later on. Secondly, it
stores the metadata persistently on client side, and loads/saves it to an
XML file whenever necessary.

• When data is returned from the database(s) it collects and accumulates the
results from the individual sources and creates an instance of Decrypted

Results, which it then passes to the application in order to provide an
easy and unified access to the result set of a query.

114

6.3.2. Encryption Layer

The UROs outputted by the application layer still contain plaintext data and
plaintext metadata that must not leak to the database. Thus, when querying
the database it is the purpose of the encryption layer to replace all sensitive
information within a URO with the corresponding ciphertext data. That en-
compasses mainly two sub tasks:

• All URO data that describes a location within the database is replaced
by the appropriately mapped ciphertext names read from the client side
metadata.

• All plaintext data items within the URO are replaced by their correspond-
ing onion layer ciphertexts. Information about the state of the onions are
read from the metadata as well.

Figure 6.3.: URO examples from Figure 6.2 after passing the encryption layer

The results can be seen in Figure 6.3. Ciphertexts generated from and main-
tained in the client side metadata are shown in red, whereas ciphertexts pro-
duced by PPE schemes for onion layers are shown in green. In the opposite case
when data is returned from the database, the encryption layer decrypts these
ciphertexts.

6.3.3. Transformation Layer

After having received the UROs with ciphertexts from the encryption layer it
is now the task of the transformation layer to translate the UROs into the
databases’ native query mechanisms and actually connect to and interact with
them. In case of Apache Cassandra that means composing and issuing CQL
queries, in case of HBase it means executing the corresponding calls of the
native HBase-Java-API.

115

The transformation layer also receives the database’s individual result objects
and makes them accessible in a unified way for the encryption layer.

Note that the transformation layer is the only part of the entire architecture,
that deals with database individual details. Thus, it is also the only part, that
has to be changed, if there is the desire to support other databases in the future.
Therefore only two Java classes have to be implemented (see Section 6.4.1).

6.4. Extensibility

6.4.1. Other databases

Supporting other WCSs can be achieved easily by extending only two classes
of the databases-package: DBClient.java implements methods for interacting
with the database (e.g. managing connections, inserting data and querying),
while Result.java implements methods for accessing the databases’ individual
resultset objects. The corresponding implementations for Cassandra and HBase
are about 400 lines of code each.

6.4.2. Other PPE schemes

Supporting other PPE schemes works similar. Depending on the layer in which
the new scheme is supposed to operate, either the abstract class RNDScheme,
DETScheme, OPEScheme or SEScheme of the crypto package has to be imple-
mented. If the scheme requires an index, the Index class has to be extended
as well. The only requirement for new PPE schemes is, that they have to be
dynamic (as discussed in Section 4.3.1-IV-c for OPE and Section 4.4.1-II for
SE). Otherwise the database could only be used in a “write-once” fashion.

116

7
Evaluation

This chapter evaluates the approach of this thesis as described in Chapter 4 and
5 focussing on three aspects. The first one is performance. Cryptography always
comes with the cost of additional runtime. This performance loss is quantified
in Section 7.1. The second aspect is functionality, because having to deal with
ciphertexts limits the databases’ native capabilities. Details can be found in
in Section 7.2. Finally, the third aspect is security. The question of what
information about the plaintext data can still be inferred from the ciphertext
data is answered in Section 7.3.

Contents

7.1. Performance . 120

7.1.1. PPE Schemes . 120

7.1.2. API overhead . 127

7.2. Functionality . 134

7.2.1. Apache Cassandra . 134

7.2.2. Apache HBase . 137

7.3. Security . 139

7.3.1. PPE related issues . 139

7.3.2. Onion-Layer-Model Related Issues 141

119

7.1. Performance

This section evaluates the performance of running Cassandra and HBase using
PPE encryption. It starts with focus on the pure PPE schemes to explore
their individual strengths and weaknesses in terms of runtime (Section 7.1.1).
However, using the database for real world queries requires more effort (keeping
track of encryption metadata, encryption keys, managing the onion layers and
indexes etc). Thus, the corresponding overhead is taken into account afterwards
in Chapter 7.1.2 to get a more realistic picture.

7.1.1. PPE Schemes

All experiments in this section were run on an Intel Core i7-4600U CPU @
2.10GHz, 8GB RAM, a Samsung PM851 256GB SSD using Ubuntu 16.04. Since
these tests are supposed to evaluate the pure performance of the schemes and
databases, the overhead caused by the onion layer model and this thesis’ API
(as introduced in Section 5.6) is avoided by using Cassandra’s Java Driver and
HBase’s native Java API only. Furthermore, in order to avoid measuring net-
work effects local installations of the databases were used, as only the com-
putation time of the schemes in combination with the insertion speed of the
databases was of interest. Cassandra was used in version 3.9, HBase was used
in version 1.3.

7.1.1.1. Random and Deterministic Encryption

In the implementation of this thesis AES and Blowfish are used to realize the
RND and DET layer encryption (see Section 4.2). Both are well known crypto-
graphic algorithms with hardware support on many platforms, for which plenty
of performance evaluations can be found in literature (for example [28, 92, 82]).
Thus, there is no need to perform another analysis at this point.

7.1.1.2. Order-Preserving Encryption

Since the authors of the OPE schemes used in this thesis did not benchmark
their work1, the individual results as well as a comparison between them is of
interest.

Encrypting Thus, for the measurement of this thesis up to 20000 uniformly
distributed and randomly created 32-bit integer values were inserted into Cas-
sandra and HBase using the three OPE schemes as described in Section 4.3.2.1

1Except for [54]. However, in their work only small numbers up to 16 bit length were en-
crypted and the insertion order was always random, which does not allow a comprehensive
measurement, because it does not reflect the fact that insertion order matters.

120

0

2

4

6

8

10

12

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
[s

]

number of inserted numeric values

unencrypted
mOPE

RSS
OACIS (best)

OACIS (average)
OACIS (worst)

Figure 7.1.: Time needed for encryption with increasing data set size in
Cassandra

- 4.3.2.3. A value is always encrypted and inserted, before the next one is en-
crypted and inserted. For the sake of a fair comparison between the databases
no bulk loading features are used. While for mOPE [14] and RSS [100] the
order of insertion does not matter, for OACIS [54] the three cases as described
in Section 4.3.2.2 have been tested.

Figure 7.1 and 7.2 present the results, showing the average of ten measure-
ments. Except for the worst case scenario of OACIS, which runs in O(n2

logn), all
other test cases require O(n) with only slightly different constant factors. Even
though they have an index to maintain the approaches of RSS and OACIS are
generally faster than the stateless mOPE scheme. The only exception is using
OACIS with pre-sorted input, which is prohibitively slow and should be avoided.
The best combination of OPE scheme and WCS is OACIS in its best and aver-
age case with Cassandra, where the encryption step causes a performance loss
of only 3%.

Cassandra is generally ca. 40% faster than HBase, mainly because RSS and
OACIS are so fast that the database system’s mere insertion time requires a
significant share in the overall process of encrypting and inserting. With Cas-
sandra being optimized for writes it takes advantage of this. An exception is the
worst case usage of OACIS, because its re-balancing phase requires also reading
performance. In this case HBase is always 12-15% faster than Cassandra, which
seems to reflect the fact, that while Cassandra is optimized for writes, HBase is
optimized for reads.

121

0

2

4

6

8

10

12

14

16

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

ti
m

e
[s

]

number of inserted numeric values

unencrypted
mOPE

RSS
OACIS (best)

OACIS (average)
OACIS (worst)

Figure 7.2.: Time needed for encryption with increasing data set size in HBase

Decrypting Because decrypting is very simple, there is no need for an elab-
oration in the same level of detail as for the encryption process. In RSS and
OACIS it is just a trivial lookup in the index which takes less than 1 ms. In
contrast, mOPE is computationally more expensive, since it has no index for
lookups. Instead it has to compute the decryption. Hence it requires up to 4
ms for a single value.

Summary The results show that OPE can be used in WCSs efficiently. How-
ever, when choosing an OPE scheme it makes sense to think about the future
use of the database. If insertion speed matters and there is a low probability
of pre-sorted inputs, the scheme of [54] is advisable, which is used in the ta-
ble profile OPTIMIZED WRITING (see Table 5.1). If an index should be avoided
and ciphertexts are required to be immutable mOPE is the way to go (table
profile STORAGE-EFFICIENT). RSS is a compromise between both. It delivers
immutable ciphertexts almost as fast as OACIS. Since it has an index, that
provides short lookup runtimes, it can be used by choosing the table profile
OPTIMIZED READING.

Of course in practical applications a combination of the different OPE schemes
is possible. There is only one use case in which RSS is without an alternative:
row identifier columns are always (and only can be) encrypted with RSS, since
OACIS is not qualified for that task due to its mutable ciphertexts and mOPE
needs a secret offset that the database is not allowed to know about (see Section
5.2.4).

122

2 · 106

4 · 106

6 · 106

8 · 106

1 · 107

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n
u
m

b
er

o
f

(u
n
iq

u
e)

w
o
rd

s

number of mails

words
unique words

Figure 7.3.: Number of (unique) words with increasing size of the data set

7.1.1.3. Searchable Encryption

Like the previous section did for OPE, this section quantifies the performance of
both of the SE schemes that have been implemented for this thesis: SWP (see
Section 4.4.2.1) and SUISE (see Section 4.4.2.2). The hardware setup remains
the same as for the OPE benchmarks.

The Dataset. When benchmarking OPE encrypting randomly chosen numer-
ical values is sufficient. If a value shows up again, it can either be looked up in
the index (RSS, OACIS) or encrypting it again takes exactly the same amount
of resources as it took for encrypting it the first time. The situation for SE is
different. Text length and word distributions have an impact on how long en-
cryption and decryption takes. For example, the search time of SWP depends
on where exactly in the text (if at all) the search word occurs. The speed of
encryption and decryption in SUISE depends on the size of the index so far and
whether the searchword was searched for before or not. Thus, instead of testing
the SE schemes with just randomly chosen words, a real dataset is needed. This
thesis uses a subset of the Enron email dataset2, which is a set of about 500,000
e-mails of any size. It reflects the practical scenario of using SE for protecting
sensitive mailbox data. For the benchmarks it is assumed that an average mail-
box may have a size from 1,000 up to 10,000 emails. Hence, the measurements
are started with 1,000 randomly chosen emails of the corpus. That number is
increased up to 10,000 emails in order to see how the schemes and databases
scale.

Figure 7.3 presents the key characteristics of the dataset. As can be seen

2available at https://www.cs.cmu.edu/~./enron/

123

the total number of words in the dataset increases from roughly 780,000 in
1000 mails to over 10 million words in 10,000 mails. In order to evaluate the
measurements of the SUISE scheme, it is important to know how many unique
words are contained in this total number of words, as that leads to the number
of entries in its indexes. In the sense of the SUISE scheme a word counts as a
“unique” word, if it appears once per text3. The same word counts again, if it
appears in another text. Hence, the number of unique words is not necessarily
the same as the number of different words (which is most likely much lower).
Figure 1 shows that the amount of unique words compared to the total number
of words is always around 30% as the dataset grows.

Encrypting The first test measures the time taken by the encryption processes
of SWP and SUISE. This includes all steps necessary for the encryption itself
as well as the time needed for outputting the results to the databases. In case
of the SWP scheme the output only consist of the encrypted texts, whereas in
case of the SUISE scheme it consists of the encrypted texts and the indexes γf
and γw (see Section 4.4.2. The word length for SWP is set to n = 8 for reasons
described further below (see Appendix A.1).

0

10

20

30

40

50

60

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
[s

]

number of mails

Cassandra, SWP
Cassandra, SUISE

HBase, SWP
HBase, SUISE

Figure 7.4.: Time needed for encrypting the data set with increasing size

Figure 7.4 illustrates the results. Since both algorithms have to iterate once
over the complete plaintext input, it is no surprise that they require O(n) with
SUISE having a factor of 1.5 compared to SWP.

Therefore, the SWP scheme always finishes the encryption process faster than
the SUISE scheme, no matter which underlying database is used. Even though
SUISE only iterates over unique words and thus only needs around 30% of the

3In this context a text is the content of one row item (“table cell”) within the database.

124

iterations compared to SWP (see Figure 7.3), this is not enough to compensate
for the extra effort of maintaining its two indexes. Thus, SWP’s overall encryp-
tion performance is better. Of course, this result depends on the given dataset.
With a dataset having less than 30% unique words, SUISE might be faster than
SWP. Concerning the databases it can be observed, that Cassandra and HBase
perform nearly at the same level with HBase being slightly, but not significantly,
faster.

Searching The second test measures the time taken by the search process.
For allowing a fairer comparison between the two schemes the SWP scheme
is slightly modified. In order for it to deliver the same kind of results as the
SUISE scheme does, we allow the SWP scheme to abort the search as soon as
it finds the first match within a text. That is sufficient to identify matches and
include the affected row(s) to the result set when answering queries. Otherwise
the SWP scheme could even tell the number and exact positions of matches
within a text, but that functionality is not needed in the context of this thesis.
SUISE cannot offer that information by design (like the majority of index-based
SE schemes). After that modification of SWP both schemes deliver the same
information, namely whether a document (table cell) contains the search word
or not.

0

5

10

15

20

25

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
[s

]

number of mails

Cassandra, SWP
Cassandra, SUISE

HBase, SWP
HBase, SUISE

Figure 7.5.: Time needed for searching the data set with increasing size

Figure 7.5 shows the results. While SWP has to itereate over the ciphertext
and SUISE has to iterate over its index γf both schemes require O(n). Note
that the measurements presented here for the SUISE scheme were taken with
the search word being searched for for the first time, which results in a search
time linearly growing with the data set, like it is the case for SWP. SUISE is
also able to provide constant search time, when words are being searched for

125

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
[s

]

number of mails

Cassandra, SUISE
HBase, SUISE

Figure 7.6.: Time needed for the searching previously searched words in SUISE

for a second time, thanks to its second index γw, that stores search results (see
Figure 7.6).

Even with the SWP scheme being allowed to abort the search process after
finding the search word once (which of course only helps, if it occurs at all)
it is not faster than SUISE. Concerning the databases it can be stated, that
Cassandra is faster, no matter which scheme is used. The difference is always
about 20%. Note that there was not much of a difference during the encryption
process (see previous test).

As mentioned before Figure 7.6 presents the results for a second search of
the same word using the SUISE scheme. Using its second index it can deliver
constant search time (O(1)). As the SWP scheme does not have a comparable
feature, nothing can be presented on its behalf here. Since the second search
is just a lookup in γw both databases are very fast (note the scale of time,
compared to the previous tests). HBase outperforms Cassandra when it comes
to a second search. It is roughly twice as fast here, which is exactly the opposite
picture compared to a first time search.

Note that for SUISE γw fulfils the functionality of a cache that stores search
results. There is no reason why a similar index would not work for SWP as well.
However, the authors do not mention anything in that direction and an we do
not implement a cache in this thesis either, because that would defeat the main
advantage of SWP: no need for auxiliary data structures of any kind.

Summary Concerning the tested schemes for SE the following recommenda-
tions can be given:

• The SUISE scheme should be preferred if search performance is a primary
concern. In this discipline it is faster than the SWP scheme, roughly by

126

factor 1.3 to 1.5. Especially in scenarios, where it is very likely for certain
words to be searched for more than once, SUISE is clearly the way to go,
since it delivers outstanding constant performance in that case.

• The SWP scheme should be preferred if storage space and encryption
performance is of primary concern, because SUISE advantage in searching
comes with the price of maintaining two indexes, at least one of which
is very large by design. Thus, in environments with smaller data sets,
where search performance is not the key requirement, multiple searches
for the same words are unlikely and disk usage matters, the usage of
SWP is advisable. Its much smaller demand for disk space is not its
only advantage. Since it is very simple in its design without indexes, it
can be used for typical client server scenarios (like the scenario of this
thesis) with much less effort. There is no need to implement and carry
out index maintenance and index querying, because the search process is
barely more than one simple iteration through the ciphertext.

Appandix A explores options for finetuning both schemes.

Concerning the databases it can be stated, that there is no clear winner. HBase
is slightly faster during the encryption in SWP and a second time search in
SUISE. Cassandra is faster in performing the search process.

7.1.2. API overhead

The benchmarks conducted in the previous section gave an insight into the
PPE schemes used in this thesis in order to reveal their individual strengths
and weaknesses. However, they can only be a hint (and serve as basis for the
table profiles as introduced in Section 5.2.4) on what to expect in a real world
scenario, because executing an actual query against encrypted data requires
more than the previously benchmarked encryption/search steps. Using PPE
in databases with arbitrary table structures additionally needs amongst other
things (explained in detail in Section 5.5):

• translating queries to make them work with the encrypted tables on server
side (see Section 6.3)

• managing metadata (see Section 5.3) in a consistent and persistent way
to keep track of the mapping from plaintext to ciphertext data structures

• managing encryption keys (see Section 5.4) as well as RND and DET layer
IVs (see Section 5.2.1.1)

• creating and maintaining column level PPE indexes on client and server
side (if needed)

127

• decrypting the column set that the client application has asked for

• removing the RND layer from DET and OPE columns, if necessary

As can be seen from this (non-exhaustive) list, real world PPE usage in com-
bination with the onion layer model requires some extra efforts. The following
benchmarks take all of this additional overhead into account. Therefore the
dataset as described in Section 7.1.1.3 is used again, but compared to the pre-
vious benchmarks the following tests differ in two key aspects. Firstly, while in
the previous benchmarks for SE the individual mails have been written to the
database in their raw format to evaluate the schemes throughput, they are now
parsed by their data fields4. This allows querying for concrete information (like
the sender, subject, timestamp, etc.) in the following benchmarks. All fields are
encrypted/decrypted. No column remains in plaintext (compare Section 5.2.2).
Secondly, in constrast to the tests conducted in Section 7.1.1, all database com-
munication in the following benchmarks is done using the API as introduced in
Section 5.6.1. That means the data flows are as described in Section 6.3 and
in particular as shown in Figure 6.1. Thus, the encryption is no longer limited
to a certain PPE scheme, but follows the onion layer model. That means every
plaintext value is encrypted four times, if it is a string value (RND, DET, OPE
and SE), three times, if it is a numerical value (RND, DET and OPE) or two
times, if it is a byte blob (RND and DET) as described in Section 5.2.1. The
software and hardware setup, as well as the dataset, remains the same as for
the previous benchmarks in Section 7.1.1.

Encryption The first test measures the time for encrypting and inserting up to
10,000 mails (1, 03 · 107 words) using the available table profiles as introduced
in Section 5.2.4.

Figure 7.7 presents the results for Cassandra, Figure 7.8 for HBase. Since all
involved PPE schemes require O(n) runtimes, it is no surprise, that the overall
process does as well. The measurements shown in theses figures take everything
into account as listed above, except for the parsing of the mails, as this a dataset
related issue and has nothing to do with the PPE encryption or the onion layer
model. As the number of encryptions caused by the onion layer model is high
and there is no hardware support for OPE and SE, it is no surprise that a certain
price in terms of runtime has to be paid for encryption. The results are very
different for the available profiles. Since encrypting and inserting data requires
mainly writes to the database, the profile for OPTIMIZED WRITING performs best,
increasing the average insertion time compared to writing plaintext data to the
database by a factor of 5.92 using Cassandra and 5.62 using HBase. It does not
require any server side index maintenance, which is why encryption and insertion

4which are the following: ID, from, to, cc, bcc, subject, body, x-cc, x-bcc, x-folder, x-origin,
x-filename, x-to, x-from, mime version, content transfer encoding, content type and times-
tamp. Additionally the size of a mail is stored as well.

128

0

50

100

150

200

250

300

350

400

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
[s

]

number of mails

optimized reading
optimized writing

storage efficient
without encryption

Figure 7.7.: Time needed for onion layer encryption in Apache Cassandra

into the database can be done a lot faster compared to the OPTIMIZED READING-
profile, where these factors are 26.1 and 22.9. The STORAGE EFFICIENT-profile
has the same advantage, but it suffers from the slow mOPE scheme in the OPE
layer, which results in overall encryption factors of 40.4 and 34.5. Thus, the best
performance in write-heavy scenarios, where querying is a rather rare event, is
delivered by the profile for OPTIMIZED WRITING. By increasing the runtime by
a factor of roughly 6 it is expensive, but in relation to the security that can be
gained, it can still be a justifiable option that is feasible in most scenarios.

Concerning the databases one can observe, that there are only non significant
differences. HBase is faster than Cassandra for the OPTIMIZED WRITING-profile
by 5% and STORAGE EFFICIENT-profile by 9%. All other measurements are
nearly identical.

Querying Querying is more complicated than encrypting. The runtime of a
query depends on many aspects, for example the query type, the state of the
onion layers and the PPE schemes used. These aspects are considered during
the benchmarks in the following ways:

• First of all, five queries are tested, that involve dealing with different
combinations of PPE schemes and are based on real world use cases:

1. Q1 (DET): This query asks for all emails by a certain sender. There-
fore it involves one equality check on the sender field.

2. Q2 (OPE): This query asks for all emails larger than a certain size.
That involves one order comparison on the size field.

3. Q3 (SE): This query asks for all emails with a certain word in their
body, which involves performing searchable encryption in the body

129

0

50

100

150

200

250

300

350

400

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ti
m

e
[s

]

number of mails

optimized reading
optimized writing

storage efficient
without encryption

Figure 7.8.: Time needed for onion layer encryption in Apache HBase

field. Note that this is the worst case for SE in this scenario, since
the body field is by far the largest. It comprises about 90% of the
entire dataset.

4. Q4 (DET + OPE + SE): This query combines the filters of the
previous queries Q1-Q3 and asks for all emails by a certain sender
(equality check) with a certain minimum size (order comparision) and
a certain word, which has to appear in the mail’s body (word search).

5. Q5 (DET + 2x OPE + 2x SE): This is a more complicated query,
that is supposed to evaluate more complex filters. It asks for all
emails by a certain sender (equality check), that have been written
in a certain time interval (two order comparisons with the start and
endpoint of this interval) and contain certain words in their subject
and body (requiring two applications of searchable encryption)

The concrete API calls that have been used to execute these queries for
the following benchmarks can be found in Appendix B.

• When performing a query, it makes a significant difference in terms of
runtime whether the same or a similar query has already been performed
before or not, which the following two reasons are responsible. Firstly, if a
column is involved in an equality check for the first time, the RND layer has
to be removed from that column (see Section 5.2.1.1 and 5.2.1.2), which
requires a certain amount of time. The column has to be read, decrypted
and written back to the database. The same is true for columns involved
in order comparisons. If a column is involved in equality checks or order
comparisons in the future, this effort is not necessary again as the RND
layer has already been removed. Secondly, when the SUISE scheme is

130

involved in SE more than once, it might already have the search results in
its index γw, which also can improve the query runtime significantly. For
these two reasons every query is executed twice with Qx.1 indicating the
first execution of the query Qx after encryption and Qx.x indicating the
runtime, that can be expected from all future executions of Qx.

• Before an application can use the results of a query, it’s resultset has to be
decrypted again. Decryption is always done using the AES encrypted ci-
phertexts of the DET column. The decryption time of a result set heavily
depends on its size. This size does not only depend on the query’s filter
conditions, but also on the columns that have been selected in the query.
However, since the decryption speed of AES is not subject of this bench-
mark, every query only asks for the content of the ID column, which is
enough to identify the set of mails that fulfill the query’s conditions. That
means, there is only one “word” to decrypt per mail in the resultset. This
keeps the time needed for decrypting resultsets under 5ms for all queries
and thus eliminates the decryption time as an disruptive factor, which the
following benchmarks are not aiming for5.

• Of course, another important runtime factor is the choice of PPE schemes,
that were used for encryption in the first place. For this reason all queries
are executed with all table profiles as introduced in Section 5.2.4.

All benchmarks have been conducted with the largest dataset that has been
used in the previous encryption benchmarks, having a volume of 1.03 ·107 words
in 10.000 emails.

0

2

4

6

8

10

12

14

16

18

20

Q1.1 Q1.x Q2.1 Q2.x Q3.1 Q3.x Q4.1 Q4.x Q5.1 Q5.x

ti
m

e
[s

]

storage efficient,

OLM overhead

storage efficient, DB

communication

optimized writing,

OLM overhead

optimized writing,

DB communication

optimized reading,

OLM overhead

optimized reading,

DB communication

Figure 7.9.: Query runtime with Apache Cassandra

5Note that decryption does not cause a RND layer removal.

131

0

2

4

6

8

10

12

14

16

18

20

Q1.1 Q1.x Q2.1 Q2.x Q3.1 Q3.x Q4.1 Q4.x Q5.1 Q5.x

ti
m

e
[s

]

storage efficient,

OLM overhead

storage efficient, DB

communication

optimized writing,

OLM overhead

optimized writing,

DB communication

optimized reading,

OLM overhead

optimized reading,

DB communication

Figure 7.10.: Query runtime with Apache HBase

The results are presented in Figure 7.9 for Cassandra and Figure 7.10 for
HBase. In these figures “DB communication” denotes the pure runtime of the
databases’ communication mechanisms (which is the execution time of driver
calls in case of Cassandra and the execution time of HBase’s native API calls)
and “OLM6 overhead” denotes everything that is a direct or indirect conse-
quence of the onion layer model, for example query rewriting, RND layer removal
or the SE processing as described in Section 5.5.2.1. The following observations
can be made:

• If encryption was done using the table profile for OPTIMIZED READING, all
Qx.x queries perform well under one second, except for Q3.x in combina-
tion with Cassandra. This can be considered practically feasible perfor-
mance (compare [87]).

• Qx.x queries are always faster than Qx.1 queries. That means the perfor-
mance always improves, if similar queries are executed.

• Performing SE is very expensive compared to requiring DET or OPE func-
tionality only. This could have been expected for the reasons discussed in
Section 5.5.2.1.

• HBase seems to have a slight overall performance advantage. A possible
explanation for this might be the RND layer removal, which HBase is
doing almost twice as fast as Cassandra. This can be seen in Q1 and Q2,
in which most of the time is need for the RND layer removal.

6short for onion layer model

132

• Performing SE on small fields of data has barely a performance impact
(compare Q4 and Q5, even though Q5 adds the subject field to SE, it is
still faster than Q4 due to the smaller intermediate results after processing
the DET and OPE conditions), but can slow down querying significantly,
if done on a large subset of the data (compare Q1 and Q2 against Q3).

Table 7.1 investigates the concrete performance loss caused by PPE and the
onion layer model. It compares the runtime for executing the queries Q1.x - Q5.x
over unencrypted data and the runtime for the same queries executed over data
that has been encrypted using the profile for optimized reading (see Section
5.2.4). This comparison is reasonable, because one will choose this profile if
query runtime matters and most applications run similar queries mutliple times.
It can be observed, that as long as SE is not involved (Q1 and Q2) queries take
ca. twice as long in Cassandra. In HBase there is almost no performance loss
on database side; the extra time can be explained by the decryption process.
However, as soon as SE is involved, query runtimes increase roughly by factor 3-
5. Note that in this case no measurements can be shown on behalf of Cassandra,
because it does not support querying for single words within strings (see Section
5.5.2.1).

Table 7.1.: Comparison of overall query runtimes for Q1.x - Q5.x in seconds, the
profile for optimized reading vs. unencrypted storage

Database Q1.x Q2.x Q3.x Q4.x Q5.x

Cassandra
Opt. Reading 0.46 0.44 1.97 0.36 0.42

none (unencrypted) 0.22 0.19 n/a n/a n/a
factor of performance loss 2.09 2.32 n/a n/a n/a

HBase
Opt. Reading 0.19 0.21 0.79 0.57 0.88

none (unencrypted) 0.17 0.16 0.15 0.17 0.16
factor of performace loss 1.12 1.31 5.26 3.35 5.5

Summary NoSQL WCSs are by design databases with very limited query capa-
bilities compared to standard SQL. They heavily profit from a table design that
is tailored to the queries, that are to be performed later on. The same is true for
using these databases with encrypted content. Knowing the scenario upfront (in
particular the relation between reading from and writing to the database) and
choosing the PPE schemes (via the given table profiles) appropriately has a cru-
cial impact on the performance and can decide whether the encrypted database
is practically feasible or not.

133

7.2. Functionality

Since the supported databases differ in functionality, it has to be evaluated for
every supported database individually what functionality is still available and
what functionality is lost due to the architecture of this thesis. Thus, this section
also answers the question of what would be possible, if only one database was
supported. That means, after the onion-layered PPE was applied, it has to be
differentiated between functionality that is

• still possible: the functionality is available in the same manner as with
unencrypted data (eventually with a non-significant overhead). However,
some of it might not yet be implemented and thus can be considered
subject of future work (see Section 8.2).

• theoretically feasible for the individual database: the functionality is pos-
sible, but not supported due to the unification of datamodels (see Sec-
tion 5.2.5) or because it cannot be mapped to all available databases.
It could be handled by the individual database, but cannot be realized
in all databases (at least not without prohibitive overhead). Hence, this
section describes the price to be paid for supporting multiple databases
simultaneously.

• not possible: functionality that is possible with unencrypted data, but is
impossible or involves a disproportionate effort when realizing it with PPE
encrypted onion layer data.

Note that in order to not lose scope the lists in the following sections only
present the most important aspects and are not meant to be exhaustive. Going
into more detail is not expedient at this point.

7.2.1. Apache Cassandra

7.2.1.1. Still Possible

The following functionality is still available in Apache Cassandra:

• Almost all data types7 can be used with PPE encryption, except for the
ones mentioned in Section 7.2.1.3.

• The general CQL limitations8 (for example regarding the size of partitions,
lengths of keys or keyspace/table names, number of query parameters,
maximum blob size, etc.) remain unaffected.

7see https://docs.datastax.com/en/cql/3.1/cql/cql reference/cql data types c.html.
The support for booleans, frozens, lists and maps is not yet implemented, but possible.

8see https://docs.datastax.com/en/cql/3.1/cql/cql reference/refLimits.html

134

• The same is true for the creation of keyspaces, in which Cassandra specific
arguments9 (for example the cluster internal data distribution strategy)
can still be used.

• Altering keyspaces also works like with unencrypted data (for which the
metadata does not even have to be changed).

Since the implementation of this thesis is of prototypical character, the fol-
lowing functionality is possible, but has not (yet) been implemented:

• Table properties10 could be set like the keyspace properties mentioned
above.

• Altering tables can be done like follows

– Adding a column can be done trivially by creating and adding the
corresponding metadata and the new columns inside the database,
that represent the necessary onions.

– Dropping a column can be done trivially as well by removing the
column from the metadata and dropping the corresponding onion
columns in the database.

– Renaming a column can be done in two ways, depending on the de-
sired result. Either the column is only renamed in the metadata (thus,
the new name can already be used for queries) or the entire plain-
text ciphertext mapping can be changed, which means the column
is renamed in the database as well. However there is the question
of why this would make sense, since the ciphertext name of a table
already is a randomly generated string with no leakage, that (using
the framework of this thesis) would be replaced by another randomly
generated string causing no leakage.

– Changing a column’s data type is still possible, but very costly, since
it may require completely new onions and corresponding columns11.

• Expiring data with a time-to-live (TTL) works like with unencrypted data.

• The same is true for limiting the fetch size of a query.

• Granting or revoking user permissions on keyspace or table level is also still
possible, but limited to permission types, that can be mapped to HBase’s
permission types. Thus, the available types would be ALTER, CREATE, DROP,
SELECT and MODIFY.

9see https://docs.datastax.com/en/cql/3.1/cql/cql reference/create keyspace r.html
10see https://docs.datastax.com/en/cql/3.1/cql/cql reference/create table r.html
11Note that changing the column’s datatype is already very restricted even without using

encryption. When it changes, the bytes stored in values for that column remain unchanged.
If the data cannot be deserialized to conform to the new datatype, the conversion fails,
regardless of the encryption

135

7.2.1.2. Theoretically Feasible

The following functionality is theoretically feasible with PPE encrypted and
onion layered data in Cassandra, but cannot be mapped to HBase.

• In the framework provided by this thesis creating tables can only be done
with simple primary keys, even though Cassandra has very sophisticated
mechanism for designing individual row identifiers, since HBase does not
allow anything else. This problem is discussed in detail in Section 5.2.5.2.

• HBase also does not know the concept of triggers, which is why they
are not supported by FamilyGuard. However, depending on the concrete
trigger functionality, one could use HBase’s coprocessors, but that could
cause the need for further modifications of the database, which are not
allowed in the scenario investigated by this thesis.

• Ordering result sets (like with ORDER BY in a CQL query) depends on
compound keys in Cassandra, which cannot be supported for the reasons
discussed in Section 5.2.5.2. However, sorting independently on client side
is doable, if required.

• Secondary indexes could be used like with unencrypted data. However,
HBase does not have a mechanism like that. Secondary indexes would
have to be created and maintained manually. For reasons of programmatic
complexity this is not supported in FamilyGuard.

• Batch operations consisting of INSERT, UPDATE and DELETE statements are
generally possible with encrypted data in Cassandra and HBase. Unfortu-
nately both databases treat batch operations differently. While Cassandra
guarantees the execution order of the individual statements, HBase does
not. That means with HBase it is mere coincidence whether values can
be read that were written into the database within the same batch op-
eration or not. Thus batch operations cannot be used in both databases
consistently, which is why FamilyGuard does not support them.

• Creating user defined types could be realized by using PPE and the corre-
sponding onion layer columns for every field individually. However, HBase
does not know this concept. A work-around could be to use different col-
umn qualifiers to address different data fields.

7.2.1.3. Not Possible

While the onion layer model does not cause any restrictions, PPE comes with
certain limits that have an impact on Cassandra’s functionality.

• OPE encryrption requires to map values from a plaintext space to a much
larger ciphertext space. For security reasons (see Section 7.3.1.3) the data

136

type chosen for the ciphertext space should be the largest one available.
In Cassandra this is bigint12, which is equal to a 64 bit signed long in
Java. The plaintext input should not be larger than half of this size in
bits, which would be a 32 bit signed integer (the int type in Cassandra).
Thus, this is the upper bound for numerical plaintext values, that can be
stored, even though 64 bit ciphertexts are used to represent them in the
database after encryption. However, unencrypted columns are still allowed
to contain values larger than 32 bit.

• Floating point values cannot be stored (at least not OPE encrypted),
because at this point in time no OPE scheme exists that is able to encrypt
and decrypt floating point values with the precision necessary to cover the
widely used IEEE-754 standard. This forbids the usage of Cassandra’s
float and double type. However it is not a problem to use them in
unencrypted columns.

• Booleans cannot be stored in a property-preserving way, that Cassandra
is able to handle natively. The same challenges as described in Section
5.5.2.1 arise.

A work-around for the problems described above could be storing all cipher-
texts in form of byte blobs. While this would enable at least encrypted storage,
only DET layer functionality would be available for reasons described in Section
5.2.1.2.

• CQL’s commands for calculating the sum (SUM) and average (AVG) of a
column’s values are not available in encrypted columns for reasons already
mentioned in Section 5.2.1.1. An extra onion for homomorphic encryption
would be necessary, which is not only costly in terms of runtime, but would
also require either to change the source code of the database to modify the
way these calculations are done or to introduce cryptographic primitives
into Cassandra UDFs (which is not possible with the current version13).

7.2.2. Apache HBase

As some aspects are very similar to the ones discussed for Cassandra in the
previous Section, these points are listed in following section as well, but not
discussed in the same level of detail.

7.2.2.1. Still Possible

The following functionality is still available in HBase:

12not to be confused with Java’s BigInteger type that can store arbitrarily large numbers
13which is Cassandra 3.10

137

• PUT, GET and DELETE requests can be used with PPE ciphertexts like with
plaintexts.

• Altering tables can be done like in Cassandra, except for the renaming
process. HBase does not support renaming tables natively, but a work-
around is cloning snapshots using a new table name and then delete the
old table14. However, when using the API provided by FamilyGuard it
would be sufficient to change the table name in the metadata to enable
usage of the new table name in queries.

• Limiting the fetch size of a query is not affected by the onion layer model
or PPE.

• Expiring data with a TTL also works like with unencrypted data.

• The same is true for granting and revoking user permissions.

• All Hbase-individual parameters for creating tables (e.g. blocksize, TTL,
etc.) can be used like with unencrypted data15.

7.2.2.2. Theoretically Feasible

The following functionality is theoretically still feasible with PPE encrypted and
onion layered data in HBase, but cannot be mapped to Cassandra.

• In contrast to Cassandra, HBase allows versioning not only via a specified
TTL, but also via a pre-defined maximum number of versions that are
stored per table cell, before inserting new data causes deletions of old
data.

• HBase supports additional operations, that could be used in batch opera-
tions: increment and append, both not being available in Cassandra.

• HBase allows a more fine-grained adjustment for user permissions. Grant-
ing and revoking is available also on column and even cell level, whereas
Cassandra only supports user permissions on keyspace (namespace) and
table level.

7.2.2.3. Not Possible

The problem of storing very large numerical values, floating point and boolean
values as described previously in Section 7.2.1.3 is caused by the concept of PPE
and hence is also a problem in HBase.

14see http://hbase.apache.org/book.html#table.rename
15see https://hbase.apache.org/book.html#schema

138

Another loss of functionality occurs by using SE. HBase’s Java API features
computationally expensive, but also powerful filters for querying texts, e.g. scan-
ning for prefixes or matching regular expressions. SE does not allow such things.
Due to the working principles of SE (see Section 2.4.2.1) everything that can be
matched by an SE scheme’s search algorithm has to be predefined in advance
and can only be matched in that exact form. In practise those are extracted
words, usually separated by white space characters16.

7.3. Security

A formal security analysis of OPE and SE was already given in Section 2.4.
The following section provides a security analysis from a more practical point
of view. It reviews security aspects of the individual PPE schemes used in this
thesis and discusses their concrete security leaks, that have been introduced
formally in Section 2.4.

7.3.1. PPE related issues

7.3.1.1. Deterministic Encryption

As described in Section 4.2.2, both schemes used for the DET layer in this
thesis, AES and Blowfish, leak the equality of plaintexts, if used with the same
encryption key and IV for all plaintexts. Besides this intentional leakage, there
are no known attacks of practical relevance.

7.3.1.2. Searchable Encryption

SWP

The SWP scheme (see Section 4.4.2.1) does not need an index and thus does not
leak any index information (see Section 2.4.2.2) like for example the number of
words or documents. By using a fixed word length for its ciphertext output it
also hides the true length of plaintext words. However it leaks search patterns,
since the pre-encrypted search words are deterministically encrypted, which al-
lows linking them to actual plain words. SWP also leaks access patterns, which
is unavoidable in the client server scenario, in which a request (pre-encrypted
searchword) can always be linked to the corresponding answer (the result set).

16There are SE schemes that support at least encrypted fuzzy search, meaning words with a
certain distance to the searchword can be found, but that helps only very little when doing
prefix search and not at all when trying to check for matches with regular expressions.
Furthermore fuzzy search is too computationally expensive for being used in the context of
this thesis

139

SUISE

The SUISE scheme (see Section 4.4.2.2) uses two indexes and thus, leaks index
information. The number of encrypted items per column is equal to the number
of rows in the index γf . While this is an information the database is able to
see anyway, the number of unique words per document is equal to the set size
in its corresponding row in γf , which might be a more valuable information for
an attacker. Since search tokens are generated deterministically (like the pre-
encrypted searchwords in SWP) the search pattern leaks, because that enables
an attacker to link search tokens to plain words, although the plain words remain
hidden. Even if that was not the case the database server could learn, if a word
has been searched for before, because if not, both indexes have to be accessed.

Access patterns leak for the same reason as described previously for SWP.
Since trapdoors have a constant length and the information outside the indexes
is encrypted using a block cipher (AES) the length of plaintext words is hidden.

7.3.1.3. Order Preserving Encryption

In contrast to SE the working principles of almost all OPE schemes are the
same: when a range query has to be performed, the plaintext boundaries in
the query are replaced by the encrypted boundaries of the search term. The
database performs a regular range query as it would do on plaintext data using
these encrypted boundaries, since the order of the plaintexts is preserved in the
ciphertexts. Because this procedure is the same for all OPE schemes used in
this thesis, their leakage is quite similar. As already mentioned in Section 2.4.3,
specifying the theoretical leakage of OPE schemes is still an open problem, but
some observations can be made in the practical context.

OPE schemes cannot leak any index information, because the index (if exists)
resides on client side. Search patterns can leak, because OPE schemes produce
deterministic ciphertexts17 that are used for queries and can be tracked. Access
patterns leak for the same reasons as explained earlier for SE.

Furthermore, the security of all OPE schemes heavily depends on the relation
between the sizes of plaintext space and ciphertext space: the more ciphertexts
potentially available per plaintext, the better.

Another security risk for OPE is having only very few or many values of a
domain actually being encrypted. This can be explained very easily considering
the extreme examples: On the one hand, if only two values of a domain p1 and
p2 are encrypted, they can easily be mapped to their corresponding ciphertexts
c1 and c2. Obviously the smaller p value is encrypted in the smaller c value and
the larger p value is encrypted in the larger c value. There is no other option.
On the other hand, it is equally severe if all values of a specific domain are to
be encrypted. The ordered ciphertexts can simply be matched to the ordered
plaintexts. [64] showed, that under certain conditions this can even be achieved

17with only very few exceptions, for example [49] and [53]

140

for schemes like mOPE (see Section 4.3.2.3), that try to hinder such an attack by
adding a secret offset. Note that both problems also occur in non-deterministic
OPE schemes. That means it makes sense to think about how to store data in
certain scenarios. For example it is much more secure to store a date in form
of a unix timestamp, which results for every date in a different 32 bit integer
value, compared to storing it split in individual characteristics like day (domain
size only 31), month (domain size only 12) and year (reasonable domain size
depending on the scenario).

7.3.2. Onion-Layer-Model Related Issues

The onion layer model as described in Section 5.2.1 is able to hide the structure
of the plaintext table up to a certain degree, even if the attacker knows about
it. Every plaintext column results in one, two or three ciphertext columns
representing the onions depending on its data type. Using the API proposed
in this thesis, every one of these ciphertext columns is of data type byte blob,
no matter what type of content it represents. As soon as there are more than
two columns in an encrypted table (which is the absolute minimum18 for the
model as introduced in Section 5.2.1) the attacker is not able to make reasonable
assumptions about the structure of the originating plaintext table. For example
two (non-IV) ciphertext columns can originate from two byte blob columns or
one integer type column, three ciphertext columns can originate from one text
column, one integer and one byte blob column or three byte blob columns,
etc. The more ciphertext columns a table consists of, the more originating
combinations are possible. Since the column names of the ciphertext columns
(and tables) are also generated randomly, the attacker does not get any clues
from them either.

Thus, (initially) there is no way for an adversary to figure out to which onion
or plaintext data a certain ciphertext column belongs. The plaintext table
scheme remains hidden. However, if the attacker is familiar with the used onion
layer model, they could recognize the event of removing the RND layer from a
DET or OPE onion representing column, because this requires reading from and
updating every value of this column. In connection with the query that caused
the removal (equality check or order comparison), it is possible to determine
the onion type that the column is responsible for (DET onion or OPE onion).
However, that still does not help to identify neither the data type nor the name
of the originating plaintext column. The only information that can actually
be inferred is the following: if the attacker was able to identify an OPE onion
column, that means the plaintext table must contain either an integer or a text
column, because plaintext byte blob columns do not result in OPE columns. If
however reading and updating all values in a column is an event that occurs

18The smallest possible table consists of the IV column and the OPE encrypted row identifier
column.

141

on a regular basis in the domain of the database’s content, RND layer removals
might not even attract the attention of a possible attacker.

If the attacker knows about the existence of OPE columns (and the onion
layer design of this thesis), they might be able to identify them based on the
fact, that all of their contents have the same length19. This can be a security
risk in particular if other columns of the table were stored unencrypted in the
first place. Remember for instance the example shown in Figure 5.7. Knowing
the concept of OPE and the corresponding column, the attacker would be able
to identify the person with the highest salary20. However, distributing tables
across independent database instances as described in Section 5.2.2 is an effective
countermeasure.

If the attacker gets access to the metadata file, that will help them to com-
pletely reveal the plaintext table structure, but it still does not enable her to
decrypt the actual contents. Therefore the password of the JCE keystore is
required.

19To be exact: this is also true for the column that stores the IVs. However these are only of
16 byte length, which does not qualify for OPE, which the attacker might know about.

20but still not the exact amount

142

8
Conclusion

This final chapter of the thesis summarizes findings and contributions. Further-
more, an outlook on future work in this research direction is given.

Contents

8.1. Discussion . 146

8.1.1. Strengths . 146

8.1.2. Limitations/Weaknesses 147

8.2. Future Work . 147

8.3. Summary . 148

145

8.1. Discussion

In this section strengths and weaknesses/limitations of the approach as proposed
in this thesis are pointed out.

8.1.1. Strengths

The approach of this thesis as introduced in the Chapters 4-7 has the following
advantages that are unique in this combination, compared to related work

• By utilizing SUISE ([45], see Section 4.4.2.2) for SE as well as OACIS
([54], see Section 4.3.2.2) and RSS ([100], see Section 4.3.2.1) for OPE the
architecture proposed in this thesis takes advantage of index-based PPE
schemes, that lead to a better performance for querying larger datasets.

• No proxy-client or any other additional architectural component is re-
quired. The client application talks directly to the database server(s).
This avoids extra network traffic and reduces latencies. Thus, it leads to
a better query performance.

• The database server(s) remain unmodified. That means the approach
of this thesis can be extended to databases, that are not open source.
Furthermore no specialized cryptographic hardware is necessary. Hence,
offers from today’s real-world cloud database providers can easily be used.

• Very different native query mechanisms (CQL of Cassandra, the native
Java API of HBase) are unified in an easy to use API. Others can be
integrated as well by implementing a single abstract Java class (see Section
6.4.1), most likely resulting in no more than ca. 300 lines of code.

• The same is true for the corresponding resultset objects. Access to all
decrypted query results can be obtained using an iterator or even by di-
rectly addressing a value by its row identifier and column name (which is
not possible in the native resultset objects of Cassanda and HBase), no
matter what underlying database was used.

• The user can optimize the performance by selecting PPE schemes based
on profiles for certain use cases (see Section 5.2.4) or exclude non-sensitive
data columns from encryption (see Section 5.2.2).

• Tables can be spread across a set of independent database instances (con-
sisting even of different database types) to increase security and minimize
the threat of statistical attacks.

• Simple interfaces can be implemented to support further databases and
PPE schemes (see Section 6.4).

146

8.1.2. Limitations/Weaknesses

The limitations of this thesis’ approach are mainly the limitations of PPE:

• OPE schemes do not support encrypting floating point values. Hence,
they cannot be stored in FamilyGuard.

• For some datatypes there are no PPE schemes available. A possible solu-
tion is a representation in another format. For example a boolean value
can be represented as numerical value (true = 1, false = 0) or as string
(true = “true”, false = “false”), a date/time type can be represented as
unix timestamp or split up in multiple numerical values for day, month,
hour, minute, etc.

• PPE encrypted ciphertexts are usually longer than their corresponding
plaintexts. OPE-encrypted numerical values are at least twice as long in
bit length compared to the corresponding plaintexts and SE-encrypted
words are much longer than the average length of a word in the English
(or almost any other) language (see Appendix A).

• The effect of this problem is amplified by the fact, that the onion layer
model causes the storage of every plaintext multiple times using various
PPE schemes of different categories. However, in cloud scenarios storage
space is usually not a problem.

Besides the limitations caused by PPE a weakness of the architrecture as intro-
duced in Chapter 5 is the fact that applications have to be changed. However, as
only the original database interactions have to be replaced by the corresponding
API calls (see Section 5.6), these changes do not cause much effort.

Nevertheless, as the data model and working principles of WCSs remain un-
changed and are not affected by the architecture proposed in this thesis, the
“right” way to use these databases remains unchanged, too. With or without
PPE they heavily profit from table layouts, that are tailored to the queries
appearing later on (as described in Section 2.1.2).

8.2. Future Work

The area of processing queries over encrypted data as well as this thesis itself
leaves room for further research. A few directions are pointed out as follows.

• While the concepts in this thesis are designed for WCS, they are not lim-
ited to them. The data model of WCSs can be mapped easily to key-value
stores (in which the key might be composed as table:column:qualifier:
timestamp) or document stores (where rows can be mapped to documents
and columns can be mapped to fields of a document). The general idea of

147

doing so pops up in literature every now and then (e.g. [8, 102]) and Sec-
tion 6.4.1 discusses the effort that would be necessary in case of extending
the implementation of this thesis.

• The API can be integrated into a proxy client between application and
database server. In this way, no modifications to the application would
be necessary, but an additional architectural component is introduced (as
done e.g. the approach of “CryptDB”, see Section 3.1.1). A step further
would be the integration of the onion layer model and PPE schemes into
the database drivers/native APIs, combining the architectural simplicity
of the approach of this thesis with the opportunity to leave the client
application as well as the database server unchanged. Of course this solu-
tion would be very database specific and the option to transparently use
different databases would not be available.

• SE schemes for multi-keyword-search (sometimes also called conjunctive
keyword search) (e.g. [16, 90, 98]) allow searching for multiple keywords
simultaneously. Even though their encryption step is usually more com-
plex, they might significantly speed up queries involving corresponding
searches. Thus, practical evaluations are needed, maybe using an extra
onion.

• The table profiles as introduced in Section 5.2.4 can be used more fine-
grained by applying them to individual columns instead of whole tables.
Depending on the concrete scenario this enables further performance im-
provements, if read/write ratios differ significantly for different columns of
the same table. However, this would make the table creation process (see
Section 5.6.1.4) more complex.

• Besides the differentiation of onions based on text, numerical values and
byte blobs, more onions are possible, “specialized” on certain data types
(e.g. booleans, timestamps, etc.).

• The API as introduced in Section 5.6 can be extended to support simple
aggregations on client side, like calculation of sums or averages. Thus, no
extra onion for homomorphic encryption has to be kept on client side for
that purpose.

8.3. Summary

In Chapter 2 the foundation of this thesis was laid by identifying the char-
acteristics of NoSQL WCSs data model that are relevant for this work, most
important the role of row identifiers. Afterwards Apache Cassanda and HBase
were presented as the basis of the architecture, implementations and experiments
later on. Both databases were discussed in detail and compared regarding their

148

fundamental working principles. It followed a firm description of cloud com-
puting as the definition of this term is often very blurry in literature, including
a description of how Cassandra and HBase work in this context. After having
completed the technical aspects, Chapter 2 moved on to the description of the
“honest-but-curious” adversary scenario as it is the basis of all further consider-
ations in this work. The Chapter is completed by a comprehensive introduction
into property-preserving encryption, explaining its basic building blocks as well
as its general working principles and security definitions.

Chapter 3 presented an overview on related work. Since the research field
of enabling databases to process queries over encrypted data is quite large, the
discussions in this chapter are limited to approaches that are also designed for
the “honest-but-curious” adversary as introduced in Chapter 2, compute over
encrypted data and rely on encryption as the only mechanism to provide data
confidentiality1. Since the number of these approaches is still quite high they
were split into further sub-categories, to which the following observations could
be made. Approaches that rely on either relational databases often suffer from
scalability issues and limited query expressiveness. Approaches that rely on non-
relational databases (like this thesis) have the problem of not being practical
due to significant storage inefficiency or computation overhead. Approaches
based on homomorphic encryption are not (yet) practically computable either.
Finally, approaches relying on specialized hardware are expensive and thus not
adopted by real world cloud database providers.

Chapter 4 paved the way for designing an own architecture. It explained the
purpose of PPE schemes in the context of processing queries over encrypted data.
It grouped the schemes into approaches for deterministic, order-preserving and
searchable encryption. For each of these categories the following contributions
were made. Firstly, the exact requirements were identified that schemes of
their category are supposed to meet in order to be useful in a WCS database
scenario as described in Chapter 2. Secondly, various schemes were surveyed and
evaluated based on these requirements. Applicable schemes were identified and
selected for implementation (Chapter 6) and experiments (Chapter 7) later on.
For some of them modifications were proposed and implemented to improve their
practicability. Finally, schemes not fulfilling the requirements as introduced
above were discussed to point out the reasons for their inapplicability.

Having laid the theoretical foundations in the previous chapters, Chapter 5
proposed the first architecture for a practical usage of PPE schemes in WCSs,
starting with the organization of data on server side. Therefore an adapted
version of [73]’s onion layer model was proposed, as well as optional table frag-
mentation across multiple independent database instances. The PPE schemes
selected in Chapter 4 were grouped into profiles for use cases with certain charac-
teristics (write-heavy, read/query-heavy, storage limited) to ease their practical

1Note that the mechanisms for data fragmentation over multiple database instances for im-
proving security as described in Chapter 5.2.3 is optional, not mandatory

149

application. Afterwards the metadata on clientside, that is necessary to keep
track of the encrypted data structures on serverside, was identified, . Since some
of the PPE schemes require multiple cryptographic keys, a solution for their
management on clientside was discussed as well. Afterwards it was shown, how
metadata and cryptographic keys must be incorporated when pre-processing
queries. Therefore the steps necessary for read and write operations were pre-
sented in detail. Finally an API for applying the PPE schemes in the above
proposed onion layer model was introduced, that hides the complexity of the
PPE schemes and onion layer model from the user and provides methods for
the main tasks that occurring in a database scenario (like e.g. creating tables,
inserting rows, querying). The proposed API works independent from whether
Cassandra or HBase is used as underlying technology and can be easily ex-
tended to support other database systems and PPE schemes as well. Different
databases can even be used for columns of the same table, which is a unique
feature of this thesis’ approach.

Chapter 6 presented the building blocks of the API implementation. Thus it
discusses aspects like communication to the databases, cryptographic primitives
and libraries as well as management of information that is stored on clientside.
Furthermore it showed, how other PPE schemes or databases can be integrated
easily in the future.

An evaluation of the approach of this thesis as described in Chapter 4 and
5 was presented in Chapter 7, focussing on three aspects. The first one is
performance. Thus, for individual PPE schemes selected in 4 as well as for
using the API as introduced in Chapter 5 detailed measurements were provided,
showing the time necessary to insert data in encrypted form and query against it.
Using a real world data set with realistic queries, the performance loss caused
by the encryption steps was quantified. It could be observed that selecting
the PPE schemes carefully according to the later database usage can lead to
feasible response times. The second aspect is functionality. Therefore detailed
descriptions were given of what functionality is affected by using PPE schemes
in Cassandra and HBase. It was shown that the databases keep the majority
of their functionality. However some functionality cannot be maintained due to
the lack of support by the PPE schemes (e.g. floating point numbers cannot
be encrypted using OPE). The third aspect is security. PPE schemes as well
as the onion layer model leak information unintentionally. Hence, Chapter 7
concluded with a characterization of this leakage.

Chapter 8 gave this summary, discussed the strengths and weaknesses of the
approach presented in this thesis, and pointed out directions for future exten-
sions of this work.

150

A
Appendix - Towards Optimizing
Searchable Encryption

The schemes for SE introduced in Chapter 4.4.2.1 and 4.4.2.2 can be finetuned
in terms of speed and storage efficiency.

A.1. Optimizing SWP

In the SWP scheme the common word length n is the most important parameter.
As described in Chapter 4.4.2.1 words smaller than n have to be padded. Words
larger than n have to be split (multiple times eventually). Padding leads to more
bytes in the ciphertext. Splitting words leads to more words in the ciphertext,
and thus more iterations during the encryption and search process. That means
in practice: a small n can cause a slower performance, but saves disk space.
A larger n leads to more consumption of disk space due to large ciphertext
words, but it can accelerate the encryption/search process, since less iterations
are required. In order to examine the actual impact of changing the value of
the word length n we ran a test starting from n = 4 up to n = 9, assuming the
average word length of the data set is within that range.

Figure A.1 presents the results. As the ciphertext increases linearly with n
growing, the performance does not get significantly better after n = 8, which
is precisely the reason, why the previous tests were conducted with n = 8
as parameter for the word length in SWP. It represents the best compromise
between performance and disk usage. Strictly speaking, this examination should
be performed for every data set individually and as data sets in practice tend
to grow over time, it might be difficult to predict an appropriate word length n,
since it cannot be changed during future use without re-encrypting the whole
data set.

153

0

5

10

15

20

25

30

35

40

4 5 6 7 8 9
0

20

40

60

80

100

ti
m

e
[s

]

in
cr

ea
se

o
f

ci
p
h
er

te
x
t

co
m

p
a
re

d
to

p
la

in
te

x
t

[%
]

word length n [byte]

Cassandra, SWP, encryption
Cassandra, SWP, search
HBase, SWP, encryption

HBase, SWP, search
increase of ciphertext

Figure A.1.: performance and disk usage of SWP with increasing n

Another option for optimizing SWP in the context of this thesis is given by
the onion layer model as follows. The original work of the authors introduced
the SWP algorithm in 4 tiers, the last of which is an extension that enables
the user to decrypt the ciphertexts produced by their algorithm (referred to
as “final scheme” in Chapter 4.4.2.1). The onion layer model already uses the
ciphertexts of the DET column for decryption, since with AES that can be
done much faster. That means tier 3 of the SWP scheme (“hidden searches”)
is sufficient for providing all functionality and security needed for this thesis. It
avoids a number of computationally expensive steps of the final scheme, which
speeds up encryption as well as searching.

A.2. Optimizing SUISE

SUISE does not leave room for improvements regarding the encryption and
decryption speed like SWP. Thus the only options for improvement concern
its storage efficiency. SUISE has to maintain two indexes, which can become
quite large. While it is not possible to make general assumptions regarding the
size of γw, as its size highly depends on the search patterns, it can be stated,
that γf grows fast in relation to the size of the plaintext data. This can easily
be explained pointing out the fact, that every plaintext word, no matter how
long it is, gets stored in γf in form of Hrw(s)||(s) (see Chapter 4.4.2.2). Using
HMAC-SHA-1 for H, as suggested by the authors [45], that leads to 20 + x
bytes, depending on the length x chosen for the pseudorandom values s (=
output length of G). The authors used 160 bits as output size of G, which
results in another 20 bytes. In other words: every unique word of the plaintext
will consume 40 bytes in γf , even if that word originally consisted of only one

154

0

10

20

30

40

50

60

70

64 96 128 160 192 224 256

d
is

k
u
sa

g
e

fo
r
γ
f

[M
B

]

output length of G [bit]

plaintext size
γf in Cassandra

γf in HBase

Figure A.2.: size of γf with growing length of s

byte. That means even though only unique words are stored in γf (which make
just 40% of the total number of words, as we showed earlier), it can be expected
that γf is a multiple in size compared to the plaintext. In practice this situation
can get even worse, depending on how the databases store the index internally.

Figure A.2 presents the actual size of γf when stored in Cassandra and HBase.
Input for this examination were 2000 randomly chosen emails from the dataset.
As can be seen the size of γf grows linearly with the length of the output s of
the pseudorandom generator G used by SUISE. By following the authors’ value
of 160 bit we already get an index more than twice as big as the plaintext data
set. Note that this is pure index size. It does not include the actual encrypted
files. Using HBase this issue becomes quite severe. Figure A.2 also shows, that
using smaller output lengths for G does not improve this situation very much1.
Summing up, the index size of γf can be reduced a little if saving storage space is
important. However, in most practical cloud computing scenarios storage space
is not an issue.

1The performance with different output lengths of G was also tested with no evidence for a
significant gain or loss

155

B
Appendix - Benchmark Queries

Q1

A query for the IDs of all mails of a certain sender (sender=eric.bass@enron.com).

api.query(new String[]{"id"},

"enron", "mail",

new String[]{"sender=eric.bass@enron.com"});

Q2

A query for the IDs of all mails that are larger than 5000 bytes.

api.query(new String[]{"id"},

"enron", "mail",

new String[]{"size<5000"});

Q3

A query for the IDs of all mails that have the word “party” in their body.

api.query(new String[]{"id"},

"enron", "mail",

new String[]{"body#party"});

157

Q4

A query for the IDs of all mails with eric.bass@enron.com as sender, that are
larger than 5000 bytes and have the word “party” in their body. Thus, it
combines the filter conditions of Q1, Q2 and Q3.

api.query(new String[]{"id"},

"enron", "mail",

new String[]{"sender=eric.bass@enron.com", "size<5000",

"body#party"});

Q5

A query for the IDs of all mails, that came from eric.bass@enron.com, written
between the 1st1 and 31st2 January 2002 with the word “Bachelor” in the subject
and the word “party” in the body.

api.query(new String[]{"id"},

"enron", "mail",

new String[]{"sender=eric.bass@enron.com",

"timestamp>1009843200",

"timestamp<1012435200",

"subject#Bachelor",

"body#party"});

1The unix timestamp of 01/01/2002 00:00am is 1009843200.
2The unix timestamp of 31/01/2002 00:00am is 1012435200.

158

Bibliography

[1] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hector Garcia-
Molina, Krishnaram Kenthapadi, Rajeev Motwani, Utkarsh Srivastava,
Dilys Thomas, and Ying Xu. Two can keep a secret: A distributed archi-
tecture for secure database services. CIDR 2005, 2005.

[2] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
Order preserving encryption for numeric data. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of Data, pages
563–574. ACM, 2004.

[3] Ihsan H Akin and Berk Sunar. On the difficulty of securing web applica-
tions using CryptDB. In Big Data and Cloud Computing (BdCloud), 2014
IEEE Fourth International Conference on, pages 745–752. IEEE, 2014.

[4] Halderman Alex, Seth Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph Calandrino, Ariel Feldman, Jacob Appelbaum, and
Edward Felten. Lest we forget - cold boot attacks on encryption keys.
Proceedings of the 17th Usenix Security Symposium, 2008.

[5] J Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: The Defini-
tive Guide. O’Reilly Media, Inc., 2010.

[6] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for
the advanced encryption standard. NIST AES Proposal, 174:1–23, 1998.

[7] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Koss-
mann, Ravishankar Ramamurthy, and Ramarathnam Venkatesan. Or-
thogonal security with Cipherbase. In CIDR, 2013.

[8] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. SOS (Save Our Sys-
tems): A uniform programming interface for non-relational systems. In
Proceedings of the 15th International Conference on Extending Database
Technology, pages 582–585. ACM, 2012.

161

[9] Sumit Bajaj and Radu Sion. TrustedDB: A trusted hardware-based
database with privacy and data confidentiality. Knowledge and Data En-
gineering, IEEE Transactions on, 26(3):752–765, 2014.

[10] Josh Benaloh. Dense probabilistic encryption. In Proceedings of the work-
shop on selected areas of cryptography, pages 120–128, 1994.

[11] Eli Biham and Orr Dunkelman. Cryptanalysis of the A5/1 GSM stream
cipher. In Progress in Cryptology, pages 43–51. Springer, 2000.

[12] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Bi-
clique cryptanalysis of the full AES. In International Conference on the
Theory and Application of Cryptology and Information Security, pages
344–371. Springer, 2011.

[13] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam Oneill.
Order-preserving symmetric encryption. In Advances in Cryptology-
EUROCRYPT 2009, pages 224–241. Springer, 2009.

[14] Alexandra Boldyreva, Nathan Chenette, and Adam ONeill. Order-
preserving encryption revisited: Improved security analysis and alterna-
tive solutions. In Advances in Cryptology–CRYPTO 2011, pages 578–595.
Springer, 2011.

[15] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas
on ciphertexts. In Theory of Cryptography Conference, pages 325–341.
Springer, 2005.

[16] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on
encrypted data. In Theory of Cryptography Conference, pages 535–554.
Springer, 2007.

[17] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan
Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ran-
ganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, et al. Apache
Hadoop goes realtime at Facebook. In Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of data, pages 1071–1080.
ACM, 2011.

[18] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas Peter. A
survey of provably secure searchable encryption. ACM Computing Surveys
(CSUR), 47(2):18, 2015.

[19] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-
key fhe with short ciphertexts. CRYPTO, 2016.

162

[20] Eric Brewer. A certain freedom: thoughts on the CAP theorem. In Pro-
ceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, pages 335–335. ACM, 2010.

[21] Eric A Brewer. Towards robust distributed systems. In PODC, volume 7,
2000.

[22] Josiah L Carlson. Redis in Action. Manning Publications Co., 2013.

[23] Rick Cattell. Scalable sql and nosql data stores. ACM SIGMOD Record,
39(4):12–27, 2011.

[24] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E
Gruber. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[25] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving key-
word searches on remote encrypted data. In Applied Cryptography and
Network Security, pages 442–455. Springer, 2005.

[26] Nathan Chenette, Kevin Lewi, Stephen A Weis, and David J Wu. Practical
order-revealing encryption with limited leakage. 2015.

[27] Kristina Chodorow. MongoDB: The Definitive Guide. O’Reilly Media,
Inc., 2013.

[28] Pawel R Chodowiec. Comparison of the hardware performance of the
AES candidates using reconfigurable hardware. PhD thesis, George Mason
University, 2002.

[29] Sherman SM Chow, Jie-Han Lee, and Lakshminarayanan Subramanian.
Two-Party Computation Model for Privacy-Preserving Queries over Dis-
tributed Databases. In NDSS, 2009.

[30] Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil
Jajodia, Stefano Paraboschi, and Pierangela Samarati. Combining frag-
mentation and encryption to protect privacy in data storage. ACM Trans-
actions on Information and System Security (TISSEC), 13(3):22, 2010.

[31] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient construc-
tions. In Proceedings of the 13th ACM Conference on Computer and
Communications Security, pages 79–88. ACM, 2006.

[32] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Workshop on the Theory and Application of
Cryptographic Techniques, pages 10–18. Springer, 1984.

163

[33] Michael L Fredman, János Komlós, and Endre Szemerédi. Storing a sparse
table with 0(1) worst case access time. Journal of the ACM (JACM),
31(3):538–544, 1984.

[34] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stan-
ford University, 2009.

[35] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of
the aes circuit. In Advances in Cryptology–CRYPTO 2012, pages 850–867.
Springer, 2012.

[36] Eu-Jin Goh et al. Secure indexes. IACR Cryptology ePrint Archive,
2003:216, 2003.

[37] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. Sir-
ius: Securing remote untrusted storage. In NDSS, volume 3, pages 131–
145, 2003.

[38] Oded Goldreich. Foundations of cryptography - fragments of a book, 1995.

[39] Oded Goldreich. Foundations of Cryptography: Basic Applications, vol-
ume 2. Cambridge university press, 2004.

[40] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the crypto-
graphic applications of random functions. In Advances in Cryptology,
pages 276–288. Springer, 1985.

[41] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to
play mental poker keeping secret all partial information. In Proceedings
of the fourteenth annual ACM symposium on Theory of computing, pages
365–377. ACM, 1982.

[42] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984.

[43] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehrotra. Execut-
ing SQL over encrypted data in the database-service-provider model. In
Proceedings of the 2002 ACM SIGMOD International Conference on Man-
agement of Data, pages 216–227. ACM, 2002.

[44] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys (CSUR), 15(4):287–317,
1983.

[45] Florian Hahn and Florian Kerschbaum. Searchable encryption with secure
and efficient updates. In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 310–320. ACM,
2014.

164

[46] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on NoSQL databases.
In Pervasive Computing and Applications (ICPCA), 2011 6th Interna-
tional Conference on, pages 363–366. IEEE, 2011.

[47] Nam-Su Jho, Ku-Young Chang, Dowon Hong, and Changho Seo. Sym-
metric searchable encryption with efficient range query using multi-layered
linked chains. The Journal of Supercomputing, pages 1–14, 2015.

[48] Christine Jost, Ha Lam, Alexander Maximov, and Ben JM Smeets. En-
cryption performance improvements of the paillier cryptosystem. IACR
Cryptology ePrint Archive, 2015:864, 2015.

[49] Hasan Kadhem, Toshiyuki Amagasa, and Hiroyuki Kitagawa. MV-OPES:
multivalued-order preserving encryption scheme: A novel scheme for en-
crypting integer value to many different values. IEICE TRANSACTIONS
on Information and Systems, 93(9):2520–2533, 2010.

[50] Hasan Kadhem, Toshiyuki Amagasa, and Hiroyuki Kitagawa. A secure
and efficient order preserving encryption scheme for relational databases.
In KMIS, pages 25–35, 2010.

[51] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic
searchable symmetric encryption. In Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security, pages 965–976. ACM,
2012.

[52] A Kasten, A Scherp, F Armknecht, and M Krause. Towards search on
encrypted graph data. Proceedings of PrivOn, 2013.

[53] Florian Kerschbaum. Frequency-hiding order-preserving encryption. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, pages 656–667. ACM, 2015.

[54] Florian Kerschbaum and Axel Schröpfer. Optimal average-complexity
ideal-security order-preserving encryption. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
pages 275–286. ACM, 2014.

[55] Ankur Khetrapal and Vinay Ganesh. HBase and Hypertable for large
scale distributed storage systems. Dept. of Computer Science, Purdue
University, pages 22–28, 2006.

[56] Xuejia Lai. On the design and security of block ciphers. PhD thesis, Diss.
Techn. Wiss ETH Zürich, Nr. 9752, 1992. Ref.: JL Massey; Korref.: H.
Bühlmann, 1992.

165

[57] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Review, 44(2):35–
40, 2010.

[58] Jin Li, Zheli Liu, Xiaofeng Chen, Fatos Xhafa, Xiao Tan, and Duncan S
Wong. L-EncDB: a lightweight framework for privacy-preserving data
queries in cloud computing. Knowledge-Based Systems, 79:18–26, 2015.

[59] Jinyuan Li, Maxwell N Krohn, David Mazières, and Dennis Shasha. Secure
untrusted data repository (sundr). In OSDI, volume 4, pages 9–9, 2004.

[60] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and
its applications. Springer Science & Business Media, 2013.

[61] Dongxi Liu and Shenlu Wang. Programmable order-preserving secure
index for encrypted database query. In Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on, pages 502–509. IEEE, 2012.

[62] Zheli Liu, Xiaofeng Chen, Jun Yang, Chunfu Jia, and Ilsun You. New
order preserving encryption model for outsourced databases in cloud en-
vironments. Journal of Network and Computer Applications, 2014.

[63] Tal Malkin, Isamu Teranishi, and Moti Yung. Order-preserving encryption
secure beyond one-wayness. IACR Cryptology ePrint Archive, 2013:409,
2013.

[64] Charalampos Mavroforakis, Nathan Chenette, Adam O’Neill, George Kol-
lios, and Ran Canetti. Modular order-preserving encryption, revisited. In
Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, pages 763–777. ACM, 2015.

[65] Peter Mell and Tim Grance. The NIST definition of cloud computing.
2011.

[66] Viet Hung Nguyen, Tran Khanh Dang, Nguyen Thanh Son, and Josef
Kung. Query assurance verification for dynamic outsourced xml databases.
In Availability, Reliability and Security, 2007. ARES 2007. The Second
International Conference on, pages 689–696. IEEE, 2007.

[67] Tim O’Reilly. What is Web 2.0: Design patterns and business models for
the next generation of software. Communications and Strategies, 65(1):17–
37, 2007.

[68] Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 223–238. Springer, 1999.

166

[69] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin,
Seung Geol Choi, Wesley George, Angelos Keromytis, and Steve Bellovin.
Blind seer: A scalable private DBMS. In 2014 IEEE Symposium on Se-
curity and Privacy, pages 359–374. IEEE, 2014.

[70] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: A strongly
encrypted database system. IACR Cryptology ePrint Archive, 2016:591,
2016.

[71] Raluca Ada Popa, Frank H Li, and Nickolai Zeldovich. An ideal-security
protocol for order-preserving encoding. In Security and Privacy (SP),
2013 IEEE Symposium on, pages 463–477. IEEE, 2013.

[72] Raluca Ada Popa, Jacob R Lorch, David Molnar, Helen J Wang, and
Li Zhuang. Enabling security in cloud storage slas with cloudproof. In
USENIX Annual Technical Conference, volume 242, 2011.

[73] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. CryptDB: protecting confidentiality with encrypted query pro-
cessing. In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles, pages 85–100. ACM, 2011.

[74] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. CryptDB: processing queries on an encrypted database. Com-
munications of the ACM, 55(9):103–111, 2012.

[75] Bart Preneel and Hongjun Wu. Cryptanalysis and design of stream ci-
phers. 2008.

[76] Vincent Rijmen and Joan Daemen. Advanced encryption standard. Pro-
ceedings of Federal Information Processing Standards Publications, Na-
tional Institute of Standards and Technology, pages 19–22, 2001.

[77] R Rivest and A Shamir. Data Encryption Standard (DES). Federal Infor-
mation Processing Standards Publications (FIPS PUBS) no 46-3, 1999.

[78] Ronald L Rivest, MJB Robshaw, Ray Sidney, and Yiqun Lisa Yin. The
rc6tm block cipher. In First Advanced Encryption Standard (AES) Con-
ference, 1998.

[79] Ronald L Rivest and Jacob CN Schuldt. Spritz - A spongy RC4-like stream
cipher and hash function, 2014.

[80] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

167

[81] Daniel Roche, Daniel Apon, Seung Geol Choi, and Arkady Yerukhimov.
POPE: partial order-preserving encoding. Technical report, Cryptology
ePrint Arch. 2015/1106, 2015.

[82] Giacinto Paolo Saggese, Antonino Mazzeo, Nicola Mazzocca, and Anto-
nio GM Strollo. An FPGA-based performance analysis of the unrolling,
tiling, and pipelining of the AES algorithm. In International Conference
on Field Programmable Logic and Applications, pages 292–302. Springer,
2003.

[83] Scott M Sawyer, B David O’Gwynn, An Tran, and Tao Yu. Understanding
query performance in Accumulo. In High Performance Extreme Comput-
ing Conference (HPEC), 2013 IEEE, pages 1–6. IEEE, 2013.

[84] Bruce Schneier. Description of a new variable-length key, 64-bit block
cipher (Blowfish). In Fast Software Encryption, pages 191–204. Springer,
1994.

[85] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
and Niels Ferguson. Twofish: a 128-bit block cipher. NIST AES Proposal,
15, 1998.

[86] Saeed Sedghi, Peter Van Liesdonk, Jeroen M Doumen, Pieter H Hartel,
and Willem Jonker. Adaptively secure computationally efficient searchable
symmetric encryption. 2009.

[87] Faisal Shahzad, Waheed Iqbal, and Fawaz S Bokhari. On the use of
CryptDB for securing electronic health data in the cloud: A performance
study. In 2015 17th International Conference on E-health Networking,
Application & Services (HealthCom), pages 120–125. IEEE, 2015.

[88] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption
with relatively small key and ciphertext sizes. In International Workshop
on Public Key Cryptography, pages 420–443. Springer, 2010.

[89] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. In Security and Privacy, 2000.
S&P 2000. Proceedings. 2000 IEEE Symposium on, pages 44–55. IEEE,
2000.

[90] Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Y Thomas
Hou, and Hui Li. Privacy-preserving multi-keyword text search in the
cloud supporting similarity-based ranking. In Proceedings of the 8th ACM
SIGSAC symposium on Information, Computer and Communications Se-
curity, pages 71–82. ACM, 2013.

168

[91] Sai Deep Tetali, Mohsen Lesani, Rupak Majumdar, and Todd Millstein.
Mrcrypt: Static analysis for secure cloud computations. ACM SIGPLAN
Notices, 48(10):271–286, 2013.

[92] Jawahar Thakur and Nagesh Kumar. DES, AES and Blowfish: Symmet-
ric key cryptography algorithms simulation based performance analysis.
International journal of emerging technology and advanced engineering,
1(2):6–12, 2011.

[93] Brian Thompson, Stuart Haber, William G Horne, Tomas Sander, and
Danfeng Yao. Privacy-preserving computation and verification of aggre-
gate queries on outsourced databases. In International Symposium on Pri-
vacy Enhancing Technologies Symposium, pages 185–201. Springer, 2009.

[94] John J Trinckes Jr. The Definitive Guide to Complying with the
HIPAA/HITECH Privacy and Security Rules. CRC Press, 2012.

[95] Stephen Tu, M Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich.
Processing analytical queries over encrypted data. In Proceedings of the
VLDB Endowment, volume 6, pages 289–300. VLDB Endowment, 2013.

[96] Bogdan George Tudorica and Cristian Bucur. A comparison between sev-
eral NoSQL databases with comments and notes. In Roedunet Interna-
tional Conference (RoEduNet), 2011 10th, pages 1–5. IEEE, 2011.

[97] Peter Van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and
Willem Jonker. Computationally efficient searchable symmetric encryp-
tion. In Workshop on Secure Data Management, pages 87–100. Springer,
2010.

[98] Bing Wang, Shucheng Yu, Wenjing Lou, and Y Thomas Hou. Privacy-
preserving multi-keyword fuzzy search over encrypted data in the cloud.
In INFOCOM, 2014 Proceedings IEEE, pages 2112–2120. IEEE, 2014.

[99] Bill Wilder. Cloud architecture patterns: using Microsoft Azure. O’Reilly
Media, Inc., 2012.

[100] Sander Wozniak, Michael Rossberg, Sascha Grau, Ali Alshawish, and
Guenter Schaefer. Beyond the ideal object: towards disclosure-resilient
order-preserving encryption schemes. In Proceedings of the 2013 ACM
workshop on cloud computing, pages 89–100. ACM, 2013.

[101] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foun-
dations of Computer Science, 1986., 27th Annual Symposium on, pages
162–167. IEEE, 1986.

169

[102] Xingliang Yuan, Xinyu Wang, Cong Wang, Chen Qian, and Jianxiong
Lin. Building an encrypted, distributed, and searchable key-value store.
In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, pages 547–558. ACM, 2016.

170

Tim Waage
Curriculum Vitae

Personal Data
Date of birth 11/06/1983
Nationality German
Civil status married

Professional Experience
Georg-August-University Göttingen

since 2014 Research assistant / PhD student, Institute of Computer Science, Researchgroup
Knowlegde Engineering.
{ PhD Topic “Property-preserving encryption in NoSQL Wide Column Stores”
{ Supervision of lectures and seminars, partly in cooperation with the Otto-Friedrich-

University, Bamberg
{ Techincal conception and coordination of workshops
{ Expertise/Research interests: Security in NoSQL-Databases, cloud computing platforms

2010 Student assistant, Kooperationsstelle Hochschulen und Gewerkschaften.
{ Conception and initial maintenance of a project-related website

2009 - 2010 Student assistant, Department of Developmental Psychology.
{ Conception and programming of a PHP/MySQL database for gathering personal data of

clinical trials
{ Technical supervision of an audio/video setup with multiple cameras and microphones to

conduct studies with infants
{ Website maintenance (GCMS)
{ Administration of active-directory-based computers

2006 – 2010 Student assistant, Institute of Computer Science.
{ Assistant for nine lectures, incl. weekly seminars and conception of lecture accompanying

content
{ Correction of homework and exams
{ Teaching support in block courses

2008 Student assistant, Department of Economic and Social Psychology.
{ Programming of applications for computer-based tests
{ Maintenance of the department website and other project-related websites

University Medical Center Göttingen (UMG)
2011 – 2014 IT-Coordinator, Department of Nephrology and Rheumatology.

{ Supervision of department-specific software and medical equipment
{ Coordination of department-specific needs and UMG/external service providers
{ Administration of active-directory-based computers
{ Daily IT-support
{ Conception and maintencance of several websites

Malamut Team Catalyst GmbH
2010 – 2012 Webdeveloper, Göttingen.

{ Realization of an online testcenter for determining social competences in work life

Miscellaneous
since 2010 Freelance photographer.

{ Weddings, Product-/Eventphotography, Travel-/Portraitphotography

Education
2007 – 2010 Master of Science, Georg-August-University, Institute of Computer Science,

Göttingen.
{ Thesis Topic: Implementation of a Tool for Determining the Nominal Capacity of Wireless

Mesh Networks
{ Advisor: Prof. Dr. Dieter Hogrefe
{ Thesis Grade: 1.0
{ Degree Grade: 1.3 (graduated with honors)

2004 – 2007 Bachelor of Science, Georg-August-University, Institute of Computer Science in
cooperation with the Faculty of Law, Göttingen.
{ Thesis Topic: Softwarepatente in Deutschland, Europa und den Vereinigten Staaten von

Amerika
{ Advisor: Prof. Dr. Gerald Spindler
{ Thesis Grade: 1.7
{ Degree Grade: 1.5, Specialization: Law of Informatics

Conference Publications
2017 { Christian Göge, Tim Waage, Daniel Homann, Lena Wiese. Improving Fuzzy

Searchable Encryptionwith Direct Bigram Embedding (TRUSTBUS 2017), to
appear in the conference proceedings in August 2017

2016 { Tim Waage, Daniel Homann, Lena Wiese. Practical Application of Order-
Preserving Encryption in Wide Column Stores (SECRYPT2016), Proceedings of
the 13th International Joint Conference on e-Business and Telecommunications,
pages 352-359, Scitepress, 2016.

{ Tim Waage, Lena Wiese. Ordnungserhaltende Verschlüsselung in Cloud-
Datenbanken (DACH Security 2016), Proceedings of DACH2016, pages 75-86,
syssec, 2016.

{ Tim Waage. Order Preserving Encryption for Wide Column Stores (SICHER-
HEIT2016), GI Lecture Notes in Informatics volume 256, pages 209-216, Köllen
Druck+Verlag, 2016

2015 { Lena Wiese and Tim Waage. Benutzerfreundliche Verschlüsselung für Cloud-
Datenbanken (DACH Security 2015), IT Security & IT Management, pages 12-23.
syssec, 2015.

{ Tim Waage. Durchsuchbare Verschlüsselung in NoSQL Datenbanken (INFOR-
MATIK2015), Lecture Notes in Informatics volume 246, pages 1747-1758, Bonner
Köllen Verlag, 2015

{ Tim Waage, Ramaninder Singh Jhajj, Lena Wiese. Searchable Encryption
in Apache Cassandra. In Foundations and Practice of Security - 8th Interna-
tional Symposium (FPS2015), Lecture Notes in Computer Science volume 9482.
Springer, 2015

2014 { Tim Waage and Lena Wiese. Benchmarking encrypted data storage in HBase and
Cassandra with YCSB. In Foundations and Practice of Security - 7th International
Symposium (FPS2014), Lecture Notes in Computer Science volume 8930, pages
311-325. Springer, 2014.

2010 { Roman Seibel, Nils-Hendrik Klann, Tim Waage, Dieter Hogrefe. Wireless
Mesh Networks for Infrastructure Deficient Areas (WCC2010). Communications:
Wireless in Developing Countries and Networks of the Future volume 327, pages
26-38. Springer Berlin Heidelberg, 2010

Other Publications
2016 { Tim Waage, Lena Wiese. Implementierung von kryptographischen Sicherheitsver-

fahren für Apache Cassandra und Apache HBase, HMD Praxis in der Wirtschaftsin-
formatik 53.4, pages 499-513, Springer, 2016

{ Lena Wiese, Tim Waage. A Fragmentation and Replication Scheme for Flexible
Query Answering, The Computer Journal 60.3, pages 308-321, Oxford University
Press, 2016.

Research Visits
06/2014 Institute Mihajlo Pupin, Belgrade, Serbia
12/2014 Faculty of Mathematics and Computer Science, Charles University, Prague, Czech

Republic

Peer Review Service
2016 DPM
2015 FPS, DPM

Teaching Experience
WS14/15 NoSQL Databases Execise
WS14/15 Intelligent Information Systems Seminar

SS15 NoSQL Databases Execise
WS15/16 NoSQL Databases Execise
WS15/16 Intelligent Information Systems Seminar

SS16 Advanced Data Management Practical Course
WS16/17 Anwendungsentwicklung mit NoSQL Datenbanken Praktikum

Student exchange
2009 Study abroad, University of Wollongong, New South Wales, Australia.

Qualifications
2016 IREB Certified Professional for Requirements Engineering Foundation Level
2017 ISTQB Certified Tester Foundation Level

Languages
German native speaker
English fluent

Russian, Latin basic knowledge

Göttingen, 19/05/2017

	Introduction
	Problem and Motivation
	Thesis Contributions
	Thesis Impact
	Thesis Structure

	Background
	NoSQL Wide Columns Store Databases
	History
	Data Model and Operating Principles

	``Cloud'' Computing
	Technical Cloud Stack
	Cassandra and HBase in the Cloud

	The Adversary Scenario
	Property-preserving Encryption
	Cryptography Basics
	Searchable Encryption
	Order-Preserving Encryption
	Homomorphic Encryption

	Related Work
	Software Architectures
	Approaches for Relational Databases
	Approaches for Non-relational Databases
	Approaches relying on Fully Homomorphic Encryption

	Hardware Architectures
	A Related Problem: Data Integrity

	Selecting and Modifying Appropriate Encryption Schemes
	Overview
	Deterministic Encryption
	Requirements
	Applicable Schemes
	Inapplicable Schemes

	Order Preserving Encryption
	Requirements
	Applicable Schemes
	Inapplicable Schemes

	Searchable Encryption
	Requirements
	Applicable Schemes
	Inapplicable Schemes

	Architecture of FamilyGuard
	Concepts and Overview
	Managing Encrypted Data on Server Side
	Onion layers in WCS
	Selective Encrypting
	Separation of Duties
	Table Profiles
	Unifying the Data Models of Cassandra and HBase

	Required Metadata Structures
	Key Management
	Interacting with the Databases
	Writing
	Querying

	The API
	API Methods for Database Interactions
	API Methods for Decrypted Result Sets
	API usage

	Implementation
	Overview
	Cryptographic Primitives
	Data Flow
	Application Layer and Unified Request Objects
	Encryption Layer
	Transformation Layer

	Extensibility
	Other databases
	Other PPE schemes

	Evaluation
	Performance
	PPE Schemes
	API overhead

	Functionality
	Apache Cassandra
	Apache HBase

	Security
	PPE related issues
	Onion-Layer-Model Related Issues

	Conclusion
	Discussion
	Strengths
	Limitations/Weaknesses

	Future Work
	Summary

	Appendix - Towards Optimizing Searchable Encryption
	Optimizing SWP
	Optimizing SUISE

	Appendix - Benchmark Queries
	Bibliography

