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Summary 

 

In the new millennium, the soaring economic growth in Asia and Africa, the increase 

of world trade, and globalization have boosted the global demand for cocoa. However, world 

cocoa supply could barely keep up with demand. These processes triggered a high volatility in 

global cocoa prices. Volatility induces uncertainty among market participants, hence 

preventing the market from working properly. It also makes the millions of cocoa farmers in 

the developing world highly vulnerable to poverty.  

Our first essay helps to inform development policies of the elements involved in the 

global cocoa bean market to understand the roots of the recent price volatility. A large volatility 

in the value of an agricultural commodity is linked to the inelasticity of its supply or demand. 

Therefore, we test the hypothesis that the price elasticities of the global cocoa supply and 

demand are low. We find that the global cocoa supply is extremely price-inelastic: the 

corresponding short- and long-run estimates are 0.07 and 0.57. The price elasticity of the world 

cocoa demand also falls into the extremely inelastic range: the short- and long-run estimates 

are −0.06 and −0.34. Based on these empirical results, we consider the prospects for cocoa 

price stabilization. The cocoa price volatility was treated with various unsuccessful methods in 

the past. A possible solution for reducing the price volatility would be the encouragement of 

crop diversification. This increases the price elasticity of cocoa supply by adjusting the effort 

and money allocation between the crops, thus decreasing price volatility. 

Our second essay investigates how the cocoa sector can be made more productive to 

increase supply and farmer incomes. We concentrate on Indonesia, which gives 10 percent of 

the world cocoa production. According to our results, technical efficiency growth and the 

increased chemicals use supported by government subsidies were responsible for the majority 

of average productivity gains (75 percent) between 2001 and 2013. Furthermore, we find large 

distortions in the input allocations. Hence, policies that encourage the adjustment of the cocoa 

farms’ input use would be highly beneficial. Moreover, because of the weather-induced 

volatility in cocoa production, policy makers should also promote investment in agricultural 

research and transfer of drought-resistant cocoa varieties to farmers. Additionally, the average 

efficiency of cocoa farmers is estimated to be around 50 percent. We find that farmers’ 

educational attainment and their experience in cocoa farming are significant factors that can 

increase the efficiency levels. Our research also shows the insignificant effect of existing 

agricultural extension services, farmer associations, and rural credit programs on the technical 
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efficiency of cocoa farming. Hence, public policy should focus on adjusting the public 

extension programs, fostering the mutual benefits in the farmer groups, and developing viable 

credit institutions. 

In our third essay in Chapter 4, we look at the trade-off between smallholder cocoa 

intensification and the ecosystem in Indonesia and investigate the determinants of 

environmental efficiency in cocoa production. In our analysis, we apply a distance output 

function that includes cocoa production and the abundance of native rainforest plants as 

outputs. Our data set, based on a household and environment survey conducted in 2015, allows 

us to analyze 208 cocoa producers with both measured and self-reported data. We find that the 

intensification of cocoa farms results in higher ecosystem degradation. Additionally, the 

estimations show substantial average inefficiencies (50 percent). Increasing efficiency could 

lead to a win-win-win situation: more production coming from less hectares, with more native 

plants co-existing with cocoa on the remaining hectares. On average, the efficiency scores point 

to a possible production expansion of 367 kg of cocoa per farm and year, to a possible increase 

of 43680 rainforest plants per farm, or to a possible acreage reduction of 0.52 hectares per farm. 

Furthermore, we find that agricultural extension services have a substantial role in increasing 

efficiency. Finally, our results show that credit access does not have a significant effect on 

efficiency. Feasible agricultural credit services are viewed by numerous economists as a crucial 

prerequisite for improving efficiency, a critical part of encouraging development. We 

recommend linking credit to extension services as part of this effort. 
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1. Introduction 

 

1.1 Problem 

 

The high economic and population growth in Africa and Asia, the increase of 

international trade, and globalization have largely boosted the global demand for cocoa 

(Squicciarini and Swinnen, 2016). However, cocoa growing countries can barely meet this 

expanding demand (ICCO, 2016). These enduring processes triggered a high volatility in world 

cocoa prices in this new century (Onumah et al., 2013).  Volatility induces uncertainty among 

market participants, hence preventing the market from working properly (Piot-Lepetit and 

M’Barek, 2011). Extreme volatility of the world cocoa price also makes the millions of cocoa 

farmers in the developing world highly vulnerable to poverty (Fountain and Hütz-Adams, 

2015). Our first essay in Chapter 2 helps to inform development policies of the elements 

involved in the global cocoa bean market to understand the roots of the recent price volatility. 

According to Piot-Lepetit and M’Barek (2011), the wide fluctuation in the price of an 

agricultural commodity is linked to the inelasticity of its supply and demand. Therefore, we 

test the hypothesis that the price elasticities of the global cocoa supply and demand are low. 

After the Ivory Coast and Ghana, Indonesia is the third largest cocoa producing country 

with 10 percent of the global production (ICCO, 2016). Nearly 1.5 million Indonesian 

households depend on cocoa farming (ICCO, 2012). On the island of Sulawesi, which accounts 

for two thirds of Indonesia’s cocoa production (Ministry of Agriculture, 2015), 60 percent of 

cocoa farmers were living below the World Bank poverty threshold of 1.90 US dollar per day 

in 2009 (van Edig et al., 2010). Farmer incomes can be improved and cocoa demand can be 

met by increasing the cultivated area, by increasing input use, or by increasing technical 

efficiency (Onumah et al., 2013). As a consequence of acreage expansion, cocoa plantations 

are increasingly intruding into the Indonesian rainforest, which is a world biodiversity hotspot 

hosting a large number of endemic species (REDD, 2012). Production levels can also be 

enhanced by input intensification. However, this pathway may also cause environmental 

deterioration and raise concerns about biodiversity conservation (Asare, 2005). The third 

method to increase production is to improve technical efficiency. For environmental 

sustainability, this is the most desirable option. Our second essay in Chapter 3 investigates to 

what extent and how cocoa cultivation can be made more productive considering technical 

efficiency.  
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Our third essay in Chapter 4 analyses how the proposed measures affect the 

environment. For this purpose, the interdependence of economic performance and ecosystem 

disturbance and the magnitude of efficiency losses has to be determined. The economic 

literature promotes environmental efficiency to describe how the performance of 

environmental elements meet human demand (Huppes and Ishikawa, 2005). We study the 

environmental efficiency of cocoa production in Sulawesi, Indonesia. This region is an 

important example of environmental degradation due to economic development in terms of 

agricultural expansion and intensification. On this island, 80 percent of the rainforests were 

gone by 2010 causing sometimes irreversible losses of biodiversity (FAO, 2010).  

Based on discussion above, this thesis deals with three research questions in the three 

essays that make up Chapters 2, 3 and 4: 

1. how low is the price elasticity in the global cocoa market? 

2. how can the productivity of Indonesian cocoa farms be increased? 

3. how can the environmental efficiency of Indonesian cocoa farms be increased?  

The next three sections of the introduction provide descriptions of the specific research 

contributions, methodologies, findings, and implications of these essays. 

 

1.2 Topic 1: Price elasticity in the cocoa market 

 

Regarding cocoa price elasticity, the papers from the last decades investigate only 

domestic cocoa markets over a period of 23–34 years (Hameed et al., 2009; Gilbert and 

Varangis, 2003; Uwakonye et al., 2004). The main contribution of our essay is twofold: we 

integrate a number of variables from a global cocoa data set that covers half a century (1963–

2013) and carry out estimations with three different methods employing rigorous unit root, 

cointegration, and instrumental variable testing.  

We describe the global cocoa market with three cointegration dynamic structural sub-

models (supply, demand, and price) in addition to the market equilibrium condition identity 

(Labys, 2006). It is assumed that four variables (cocoa price, supply, demand, and stocks) are 

determined jointly in the system. We estimate the model with the OLS, SUR, and 2SLS 

methods. Results compare favorably with theory: all significant variables carry the a priori 

expected signs. The world cocoa supply is extremely price-inelastic: the corresponding short- 

and long-run estimates are 0.07 and 0.57. In addition, coffee appears to be a weak cocoa supply 

substitute. The price elasticity of the world cocoa demand also falls into the extremely inelastic 
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range: the short- and long-run estimates are −0.06 and −0.34. Finally, palm oil seems to be a 

weak cocoa demand substitute.  

Based on these empirical results, we consider the prospects for cocoa price stabilization. 

The cocoa price volatility was treated with various unsuccessful methods in the past: planned 

economies, marketing boards, and explicit supply or price manipulations (Dand, 2011). These 

experiments caused inefficiencies, lead to market failures, and are unlikely to win wide support 

(Sarris and Hallam, 2006). In 1973, the International Cocoa Organization (ICCO) was set up 

to manipulate the global cocoa buffer stocks and production to stabilize world cocoa price in a 

zone. However, it has been ineffective in maintaining the stability of cocoa prices due to 

insufficient funding as well as the absence of the biggest cocoa consumer, the United States 

(Dand, 2011). According to Piot-Lepetit and M’Barek (2011), a possible solution for reducing 

the price volatility would be the encouragement of crop diversification. This increases the price 

elasticity of cocoa supply by adjusting the effort and money allocation between the crops, thus 

decreasing price volatility. 

 

1.3 Topic 2: The productivity and efficiency of cocoa farms 

 

Previous research on the efficiency of cocoa farming is only available with cross-

sectional data from African countries (Adedeji et al., 2011; Awotide et al., 2015; Ogundari and 

Odefadehan, 2007). We use household panel data from surveys conducted in Indonesia 

between 2001 and 2013. Our sample size of 1290 observations is larger than any previously 

used in the efficiency analysis of cocoa production. With the information gain of this data, we 

can characterize inefficiencies more realistically and we can also decompose productivity 

change. 

Our study applies stochastic frontier analysis (Coelli et al., 2005) to investigate to what 

extent and how the Indonesian cocoa production can be made more productive and technically 

efficient. In multiple models, we explain cocoa bean output as a function of farm size, labor 

use, chemicals cost, and technological factors. These are augmented by inefficiency variables 

to express farmers’ management capacities and their access to information and productive 

assets. 

According to our results, the productivity of Indonesian cocoa farming increased by 75 

percent between 2001 and 2013. Technical efficiency growth and the increased chemicals use 

supported by government subsidies were responsible for the majority of this gain. Furthermore, 

the calculations show large distortions in input allocation. Hence, policies that encourage the 
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adjustment of the cocoa farms’ input use would be highly beneficial. Moreover, the technical 

change component points to a weather-induced volatility in cocoa production. Thus, policy 

makers should also promote investment in agricultural research and transfer of drought-

resistant cocoa varieties to farmers. 

Additionally, the average efficiency of cocoa farmers is estimated to be around 50 

percent. This result suggests that there is ample scope to expand Indonesian cocoa output 

without increasing input use. The significant factors that can increase efficiency levels are the 

smallholders’ educational attainment and their experience in cocoa farming. Our research also 

shows the insignificant effect of existing agricultural extension services, farmer associations, 

and rural credit programs on the technical efficiency of cocoa farming. Hence, public policy 

should focus on adjusting the public extension programs, fostering the mutual benefits in the 

farmer groups, and developing viable credit institutions. 

 

1.4 Topic 3: The environmental efficiency of cocoa farms 

 

A number of studies (Ruf and Schroth, 2004; Schroth et al., 2004; Scherer-Lorenzen et 

al., 2005) address various issues related to the environmental effects of cocoa farming. 

However, these papers do not consider efficiency. We look at the trade-off between smallholder 

cocoa intensification and the ecosystem in Central Sulawesi, Indonesia and investigate the 

determinants of environmental efficiency in cocoa production. In our analysis, we apply a 

distance output function (Coelli et al., 2005) that includes cocoa production and the abundance 

of native rainforest plants as outputs. Our data set, based on a household and environment 

survey conducted in 2015, allows us to analyze 208 cocoa producers with both measured and 

self-reported data. 

We find that there is a trade-off between cocoa yields and the abundance of native 

rainforest plants. According to this connection, the intensification of cocoa farms results in 

higher ecosystem degradation. By calculating the shadow prices (Fare et al., 2005) of these 

native plants, we estimate the monetary value of reductions in their abundance.  

The estimations show substantial inefficiencies for the majority of cocoa farmers. The 

low average efficiency value of 50 percent indicates a less specialized and less competitive 

market with low pressure for cocoa producers. Increasing efficiency could lead to a win-win-

win situation: more production coming from less hectares, with more native plants co-existing 

with cocoa on the remaining hectares. On average, the efficiency scores point to a possible 
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production expansion of 367 kg of cocoa per farm and year, to a possible increase of 43680 

rainforest plants per farm, or to a possible acreage reduction of 0.52 hectares per farm. 

Looking at the inefficiency effects, we can see that agricultural extension services have 

a substantial role in increasing efficiency. We also observe that the model using self-reported 

variables overestimates the inefficiency effects, as well as the distance elasticities and 

efficiencies. Finally, we find that credit access does not have a significant effect on efficiency. 

This result is inconsistent with African studies which show positive linkages. Feasible 

agricultural credit services are viewed by numerous economists as a crucial prerequisite for 

improving efficiency, a critical part of encouraging development. We recommend linking 

credit to extension services as part of this effort. 

The rest of this dissertation is structured as follows. The next tree chapters present the 

three essays outlined above. Furthermore, the fifth chapter summarizes the main findings and 

their policy implications and presents the limitations of our studies as well as possible avenues 

for future research. 
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2. How low is the price elasticity in the global cocoa market?1 

 

Abstract 

 

The high volatility of the world cocoa price makes the millions of cocoa farmers in the 

developing world highly vulnerable to poverty. A large volatility in the value of an agricultural 

commodity is linked to the inelasticity of its supply or demand. Therefore, we test the 

hypothesis that the price elasticities of the global cocoa supply and demand are low. We 

describe the global cocoa market with cointegration dynamic supply, demand and price sub-

models. Our OLS, 2SLS, and SUR estimates are based on annual global observations covering 

the years 1963 through 2013. We find that the global cocoa supply is extremely price-inelastic: 

the corresponding short- and long-run estimates are 0.07 and 0.57. The price elasticity of cocoa 

demand also falls into the extremely inelastic range: the short- and long-run estimates are −0.06 

and −0.34. Based on these empirical results, we consider the prospects for cocoa price 

stabilization. The cocoa price volatility was treated with various unsuccessful methods in the 

past. A possible solution for reducing the price volatility would be the encouragement of crop 

diversification. This increases the price elasticity of cocoa supply by adjusting the effort and 

money allocation between the crops, thus decreasing price volatility. 

 

Keywords: cocoa, supply, demand, price elasticity. 

 

JEL codes: O13, Q11.  

                                                 
1 I am the only author of this paper. I would like to thank Stephan von Cramon-Taubadel, Sebastian Lakner, and 

Ayako Ebata for their comments. Furthermore, this project would have been impossible without the funding from 

the German Research Foundation. 
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2.1 Introduction 

 

The soaring economic and population growth in Africa and Asia, the increase of global 

trade, and globalization have considerably boosted demand for cocoa beans (ICCO, 2012). 

However, cocoa growing countries can barely meet this expanding demand (ICCO, 2016). 

These sustained processes triggered extraordinary cocoa price volatility in this new century 

(Onumah et al., 2013). Price volatility induces uncertainty among cocoa market participants, 

hence preventing the market from working properly (Piot-Lepetit and M’Barek, 2011). 

Extreme volatility of the world cocoa price also makes the millions of cocoa farmers in the 

developing world highly vulnerable to poverty (Fountain and Hütz-Adams, 2015).  

This study helps to inform development policies of the elements involved in the cocoa 

bean market to understand the roots of the recent price volatility. According to Piot-Lepetit and 

M’Barek (2011), a large volatility in the value of an agricultural commodity is connected to 

the inelasticity of its supply or demand. Therefore, we test the following two hypotheses. First, 

the global cocoa demand is extremely price-inelastic. Second, the price elasticity of global 

cocoa supply is extremely low. We model the global cocoa supply, demand, and price between 

1963 and 2013 with cointegration dynamic simultaneous equations (Hsiao, 1997a and 1997b). 

Because OLS may not be an adequate estimation method, our model is also estimated with two 

other techniques: SUR (seemingly unrelated regressions) and 2SLS.  

 Regarding cocoa price elasticity, the papers from the last decades investigate only 

domestic cocoa markets over a period of 23–34 years. Shamsudin et al. (1993) and Hameed et 

al. (2009) analyze the Malaysian cocoa market. Furthermore, Gilbert and Varangis (2003) 

examine the cocoa markets in four West African countries. Moreover, Uwakonye et al. (2004) 

focus on Ghanaian cocoa. Our contribution to the literature, in the testing of the hypotheses 

above, is twofold. We integrate a number of variables from a global cocoa data set that covers 

half a century and carry out estimations with three different methods employing rigorous unit 

root, cointegration, and instrumental variable testing. 

 This paper is divided into six parts. We begin in part 2 with an overview of the global 

cocoa supply, demand, and price. Then in part 3, we review the methodologies of the previous 

cocoa market models and the estimation issues. Furthermore, the specification of our cocoa 

market model and our data sources are presented in part 4. Next, the different estimation results 

for the cocoa supply, demand, and price equations are reported in part 5. Last, we summarize 

our findings and draw a brief conclusion in part 6. 
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2.2 Background 

 

2.2.1 Cocoa supply and demand 

 

 Cocoa is primarily grown by smallholders in tropical areas. Usually, cocoa trees reach 

their productive age around three years after planting and their yields top out at around the 

seventh year, but decent cocoa yields can be harvested for additional 20 years (Dand, 2011). 

The presumed implication of the long cocoa cycle along with no close cocoa substitutes is 

extremely inelastic cocoa supply (Siswoputranto, 1995). Adverse weather and pests are also 

major factors influencing cocoa yields: it is estimated that diseases destroy about 30 percent of 

the global production every year (UNCTAD, 2006).  

 The three main cocoa-growing and exporting nations are the Ivory Coast, Ghana, and 

Indonesia. In 2013, their share of the global production were 38, 20, and 9 percent, while their 

share of global net exports were 37, 22, and 14 percent (ICCO, 2016). Figure 2.1 illustrates the 

development of the global cocoa supply over the last half a century. Cocoa production rose 

from 1.3 million tons to over 4 million tons in 2013, representing an average yearly growth rate 

of 2.60 percent. Moreover, with yearly growth rates between -10 and 13 percent, the global 

cocoa production fluctuated widely around the trend line due to climatic factors. 

 Because of the differences between the sources of cocoa production and the uses of 

cocoa, over two thirds of all cocoa production is traded internationally (Figure 2.1). Africa is 

by far the leading cocoa exporter. Furthermore, the largest regional cocoa bean trade is between 

Africa and the EU. Europe constitutes for more than half of all net cocoa imports (ICCO, 2016), 

but the United States is the main importing country with a 21 percent of the world cocoa 

imports.  

Most of the cocoa grindings take place in cocoa importing nations near the main centers 

of cocoa consumption. Netherlands is the leading cocoa bean processor with a 13 percent share 

of the world grindings. However, origin cocoa grindings are also widespread: the Ivory Coast 

is the second largest cocoa processor (ICCO, 2016). Figures 2.1 also displays the global cocoa 

demand between 1963 and 2013. Demand, as measured by grindings, rose on average by 2.63 

percent per year over the period from 1.2 million tons to 4.3 million tons. Furthermore, cocoa 

grindings showed a steadier trend than cocoa supply with yearly growth rates between -7 and 

10 percent. Finally, we can also see from Figure 2.1 that the ratio of cocoa stocks-to-grindings 

peaked in 1990 and has been falling ever since.  
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Figure 2.1: World cocoa production, grindings, stocks-to-grindings, and import-to-grindings (1963–2013). 

 

 

Source: FAO Statistics, ICCO Quarterly Bulletin of Cocoa Statistics. 

 

2.2.2 World cocoa price  

 

 The world cocoa bean price is determined at the two primary cocoa futures exchanges 

in New York and London. Because cocoa has very limited uses and no major substitutes, the 

main influencing factors of the global cocoa price are cocoa supply and demand (Dand, 2011). 

World cocoa prices usually reflect a long-term pattern connected to the cocoa production cycle, 

which is judged to be about 25 years long. In the course of cocoa booms a supply surplus is 

generated that results first in the fall and then in the stagnation of cocoa prices. Continuously 

low cocoa prices have a negative effect on harvesting, prompting cocoa farmers to shift to 

alternative crops. This permits world cocoa prices to rise again (Siswoputranto, 1995; 

UNCTAD, 2006).  

The International Cocoa Organization (ICCO), whose 40 members include both 

exporter and importer countries, was established in 1973 to promote international cooperation, 
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to assist a balanced evolution of the global cocoa market, and to manipulate the cocoa buffer 

stocks and production to stabilize world cocoa price in a zone. However, it has been ineffective 

in maintaining the stability of cocoa prices due to insufficient funding as well as the absence 

of the biggest cocoa consumer, the United States (Dand, 2011). 

 Figure 2.2 shows the development of the world cocoa price. In midst of the general 

global commodity boom of the 1970s, the value of cocoa beans experienced a striking increase, 

which later boosted cocoa production in countries such as Indonesia and Malaysia. From the 

beginning of the 1980s, owing to the higher cocoa stocks-to-grindings ratio (Figure 2.1), cocoa 

prices plummeted for two decades. The price bottom was reached in 2000. Then, the nominal 

value of cocoa rose from 888 to 3064 U.S. dollars/ton and the real value from 1116 to 2836 

U.S. dollars/ton, which coincided with the drop of the cocoa stocks-to-use ratio from over 70 

percent to under 40 percent. However, it can be observed that the world cocoa price is still low 

compared with those dominating 40 years ago, while real chocolate prices were maintained 

since the 1970s. The volatility of the world cocoa price, though, increased considerably in the 

new millennium (ICCO, 2012).  

  

Figure 2.2: The real and nominal world cocoa price in US dollar/ton (1963–2013). 

 

Source: World Bank Global Economic Monitor.  

Note: The price index is Manufacture Unit Value (MUV) index from the World Bank and the base year is 2010.  
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2.3 Methodology and literature review 

 

2.3.1 Commodity market models 

 

 We use the popular commodity market framework of Hallam (1990) and Labys (2006) 

to devise our own cocoa market model. This framework is composed of four equations. The 

supply, demand, and price sub-models in addition to the market equilibrium condition are the 

following: 

𝑆𝑡  =  𝑠 (𝑆𝑡−1, 𝑃𝑡−1, 𝑃𝐴𝑡−1, 𝑊𝑡)          (2.1) 

𝐷𝑡  =  𝑑 (𝐷𝑡−1, 𝑃𝑡, 𝑃𝑆𝑡, 𝑌𝑡)           (2.2) 

𝑃𝑡  =  𝑝 (𝑃𝑡−1, 𝐼𝑡, 𝐷𝑡)            (2.3) 

𝐼𝑡  =  𝐼𝑡−1 + 𝑆𝑡 − 𝐷𝑡  ,           (2.4) 

where 𝑆𝑡 is the commodity supply, 𝐷𝑡 is the commodity demand, 𝑃𝑡 is the commodity price, 𝐼𝑡 

denotes the commodity inventories, 𝑃𝐴𝑡 indicates the prices of alternative commodities, 𝑃𝑆𝑡 

represents the prices of substitute commodities, 𝑌𝑡 is income, and 𝑊𝑡 reflects the weather 

effects. 

In this framework, commodity supply is determined by lagged supply, lagged own price, 

lagged prices of alternative crops, and weather. Moreover, commodity demand depends on 

lagged demand, own price, prices of substitute commodities, as well as income. Furthermore, 

lagged commodity price, commodity inventories along with commodity demand are used to 

explain the commodity price. Finally, the model is closed with the commodity stocks identity 

which equates commodity quantity demanded with quantity supplied plus the change in 

commodity inventories.  

 The framework above is adopted in many price elasticity studies concerning tropical 

commodities. For example, Behnman and Adams (1976) and Hwa (1979, 1985) use it to model 

various cocoa, rubber, cotton, tea, coffee, and sugar markets. Because we could not find a world 

cocoa market model, we highlight three preceding domestic cocoa studies in the next three 

paragraphs.  

In the first study, Hameed et al. (2009) investigate the Malaysian cocoa market between 

1975 and 2008. They specify three equations: domestic cocoa supply, export demand for 

Malaysian cocoa, and domestic cocoa price. These equations are estimated with the SUR 

technique because they find no endogeneity in their model. The four main results of their paper 

are the following. First, the short-run price elasticities of cocoa supply and demand are low: 
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0.39 and –0.37. Second, palm oil is not a supply substitute for cocoa beans. Third, the world 

industrial production index greatly affects the cocoa export demand. Finally, the domestic 

cocoa price is highly determined by the world cocoa price. The weakness of their findings is 

that they do not use unit root and cointegration tests. 

In the second study, Uwakonye et al. (2004) focus on Ghanaian cocoa over the period 

1980–2002. They estimate two equations, domestic cocoa supply and cocoa export demand, 

with the 2SLS method. Their results also suggest price-inelastic cocoa supply and demand: the 

corresponding estimates are 0.26 and –0.54. Additionally, they find that the domestic cocoa 

supply is highly influenced by the world corn price. Moreover, sugar does not turn out to be a 

cocoa demand substitute in their paper. Finally, the world GDP is highly significant in 

explaining the cocoa export demand in their model. The weakness of their paper is that they do 

not apply any unit root, cointegration, or instrumental variables tests. 

 In the third study, Gilbert and Varangis (2003) examine the cocoa market of the Ivory 

Coast between 1969 and 1999. By applying the FIML method, they estimate three equations: 

domestic cocoa supply, world cocoa demand, and domestic cocoa price. Their results also point 

to the low short-run price elasticities of cocoa supply (0.43) and demand (–0.10). Surprisingly, 

the world GDP does not shift the world cocoa demand in their model. Finally, they find that 

the domestic cocoa price in the prior year considerably affects its current value. The weakness 

of their results is that they do not test for unit roots and cointegration. 

  

2.3.2 Estimation issues and tests 

 

 In the case of a commodity market framework, it is expected that several variables 

(commodity supply, commodity demand, commodity price, and commodity inventories) are 

simultaneously determined (Hallam, 1990). This means that these variables are endogenous. 

By using instrumental variables (IV), the 2SLS approach is the most common estimation 

method of simultaneous equations models. Still, it is at least of passing interest to examine the 

results of the OLS estimation, despite its inconsistency.  

 Using the 2SLS method, an important question to ask is whether regressors assumed to 

be endogenous could rather act as exogenous. If the endogenous variables are exogenous then 

the OLS estimation method is more efficient and we may sacrifice a considerable amount of 

efficiency with the use of an IV method, thus OLS should be used instead. Therefore, we test 

for endogeneity with Eichenbaum et al. (1988) method. 
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Furthermore, excluded exogenous regressors can be valid instrumental variables only 

if they are sufficiently correlated with the included endogenous variables. Weakly correlated 

instruments can lead to bias toward the OLS inference and the standard errors reported can be 

severely misleading, as well. Therefore, we test the strength of the instruments with the 

Kleibergen and Paap (2006) method. Its test statistic does not follow a standard distribution, 

but Stock and Yugo (2005) present a table with critical values for some combinations of 

instrumental and endogenous variable numbers. 

 The second validity condition of instrumental variables is that they are not correlated 

with the error term. However, we can assess this only if the model is overidentified, i.e., the 

number of instrumental variables is larger than the number of endogenous variables. We 

evaluate with the Hansen (1982) test whether the second validity premise holds for a subgroup 

of the instrumental variables but not for the remaining instruments.  

 Using time series variables, non-stationarity can create severe problems for standard 

inference methods. Hsiao (1997a, 1997b) provides an updated view of structural equations that 

takes into consideration non-stationarity and cointegration. His three key conclusions are the 

following. First, a legitimate drawback (simultaneity bias) also arises in OLS when regressors 

are integrated. Second, identification conditions for stationary variables hold for integrated 

ones under proper premises. Third, conventional IV formulas can be applied in parameter 

estimations, formulating Wald statistics, and testing procedures. 

 We employ the autoregressive distributed lag (ARDL) bounds framework (Pesaran et 

al., 2001) to test for cointegration instead of the Johansen procedure, because the latter suffers 

from serious flaws when regressors are not integrated of the same order. In contrast, the ARDL 

bounds approach yields unbiased and efficient results in small sample sizes irrespective of 

whether the underlying variables are stationary or integrated. This method estimates the 

following equation if there is only one independent variable: 

∆ln𝑌𝑡 =∝0+ ∑ 𝛽𝑖∆𝑙𝑛𝑌𝑡−𝑖
𝑛
𝑖=1 + ∑ 𝛾𝑖∆𝑙𝑛𝑋𝑡−𝑖

𝑛
𝑖=0 + 𝜆1𝑙𝑛𝑌𝑡−1 + 𝜆2𝑙𝑛𝑋𝑡−1 + 𝜀1,𝑡   (2.5) 

The first component of the equation with 𝛽𝑖 and 𝛾𝑖 reflects the short-term relationships of the 

model whereas the parameters 𝜆1, 𝜆2 represent the long-term dynamics. The null hypothesis of 

the model is: 𝐻0: 𝜆1 = 𝜆2 = 0 (there are no long-term relationships). 

 The asymptotic distribution of the obtained F-statistic is nonstandard. It is compared 

with the lower and upper bounds of critical F-values determined by Pesaran et al. (2001). If the 

test statistic is smaller than the lower bound, the null hypothesis is accepted. Similarly, if the 

test statistic is larger than the upper bound, the null hypothesis is rejected. However, if the test 
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statistic falls between these two bounds, the results are ambiguous. If there is evidence that the 

variables are cointegrated, we estimate the long-term model: 

ln𝑌𝑡 =∝1+ ∑ 𝛽𝑖𝑙𝑛𝑌𝑡−𝑖
𝑛
𝑖=1 + ∑ 𝛾𝑖𝑙𝑛𝑋𝑡−𝑖 + 𝜀2,𝑡

𝑛
𝑖=0  .       (2.6) 

Otherwise we should take first differences to estimate the short-run model:  

∆ln𝑌𝑡 =∝2+ ∑ 𝛽𝑖∆𝑙𝑛𝑌𝑡−𝑖
𝑛
𝑖=1 + ∑ 𝛾𝑖∆𝑙𝑛𝑋𝑡−𝑖 + 𝜀3,𝑡

𝑛
𝑖=0  .       (2.7) 

 

2.4 Empirical specification 

 

2.4.1 Cocoa market model  

 

 Based on the commodity market framework of Labys (2006) and the earlier cocoa 

market models, we describe the world cocoa bean market with three structural equations in 

addition to the annual ending stocks identity. The cocoa supply, demand, and price equations 

are the following: 

𝑆𝑢𝑝𝑝𝑙𝑦𝑡 = 𝛽0 + ∑ (𝛽1𝑛𝐶𝑜𝑐𝑜𝑎𝑃𝑟𝑖𝑐𝑒𝑡−𝑛 + 𝛽2𝑛𝐶𝑜𝑓𝑓𝑒𝑒𝑃𝑟𝑖𝑐𝑒𝑡−𝑛)7
𝑛=0 + 𝛽3𝑌𝑖𝑒𝑙𝑑𝑡 +

∑ 𝛽4𝑚𝑆𝑢𝑝𝑝𝑙𝑦𝑡−𝑚
2
𝑚=1 + 𝜀𝑡1           (2.8) 

𝐷𝑒𝑚𝑎𝑛𝑑𝑡 = 𝛾0 + 𝛾1𝐶𝑜𝑐𝑜𝑎𝑃𝑟𝑖𝑐𝑒𝑡 + 𝛾2𝑃𝑎𝑙𝑚𝑜𝑖𝑙𝑃𝑟𝑖𝑐𝑒𝑡 + 𝛾3𝐺𝐷𝑃𝑡 + 𝛾4𝐷𝑒𝑚𝑎𝑛𝑑𝑡−1 + 𝜀𝑡2 

(2.9) 

𝐶𝑜𝑐𝑜𝑎𝑝𝑟𝑖𝑐𝑒𝑡 = 𝛿0 + 𝛿1𝑆𝑡𝑜𝑐𝑘𝑠𝑡 + 𝛿2𝐷𝑒𝑚𝑎𝑛𝑑𝑡 + 𝛿3𝐶𝑜𝑐𝑜𝑎𝑝𝑟𝑖𝑐𝑒𝑡−1 + 𝜀𝑡3                           (2.10) 

𝑆𝑢𝑝𝑝𝑙𝑦𝑡 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑡 + 𝑆𝑡𝑜𝑐𝑘𝑠𝑡 − 𝑆𝑡𝑜𝑐𝑘𝑠𝑡−1.                                                                                      (2.11) 

It is assumed that the 𝜀𝑡1,  𝜀𝑡2,  𝜀𝑡3 stochastic disturbances, which express random effects, a 

number of separately unimportant omitted regressors and measurement errors, are 

homoscedastic, not autocorrelated, and exhibit normal distributions:  

 𝜀𝑡𝑗 ~ 𝒩(0, 𝜎𝑗), for all 𝑡 =  1 … 𝑇 and 𝐸( 𝜀𝑚𝑗𝜀𝑛𝑗) =  0 for all 𝑚, 𝑛 =  1 … 𝑇, 𝑚 ≠ 𝑛, 𝑗 =  1, 2, 3. 

We specify a dynamic cocoa market model containing both autoregressive and 

distributed lag components (ARDL), since cocoa farmers and firms spread their responses over 

time due to adjustment costs and incomplete and lagged information. It includes four jointly 

determined variables (cocoa supply, cocoa demand, cocoa price, and cocoa stocks), four 

exogenous variables (cocoa yield, coffee price, palm oil price, and world GDP) and many 

predetermined variables. Furthermore, we formulate the model in double-log functional form, 

implying that we can approximate relationships in constant-elasticity form.  

In the cocoa supply equation, the current and the lagged values of the cocoa price 

correspond to the short-run harvesting and the long-run farm investment decisions (Shamsudin 
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et al., 1993). We include seven lags for the prices because cocoa trees reach full bearing 

capacity at the age of seven years. Based on Dand (2011), the coffee price in the cocoa supply 

sub-model denotes the battle for acreage. We expect that this variable has a negative effect on 

cocoa production. Moreover, the cocoa yield variable accounts for weather, diseases, and 

technological advances in cocoa cultivation. Finally, the autoregressive part in the supply 

model depicts the long-run constraints of cocoa production (Shamsudin et al., 1993). 

 In the cocoa demand equation, we assume that palm oil is a substitute for cocoa in the 

manufacture of chocolate because European laws accept a 5 percent content of palm oil in 

chocolate products (Dand, 2011). Moreover, the world GDP captures the effect of the economic 

activity on the global cocoa demand. Finally, the autoregressive part in the demand sub-model 

indicates that cocoa processing adjusts only gradually to changes due to institutional and 

technological rigidities (Hameed et al., 2009). For instance, sizable cocoa inventories are 

acquired by chocolate manufacturers to weather price increases (Dand, 2011). 

 In the cocoa price equation, the price clears the market in a partial adjustment process. 

Based on Hameed et al. (2009), we stipulate the world cocoa price as a function of annual 

cocoa ending stocks, cocoa demand, and lagged cocoa price. Because of the four endogenous 

variables, one more equation is needed in our cocoa market model. Thus, the market 

equilibrium condition completes the model: it equates the cocoa supply with the cocoa demand 

plus the change in the annual cocoa ending stocks. 

   

2.4.2 Data description 

 

Our cocoa market model estimates are based on annual global observations covering 

the years 1963 through 2013. We compose this data set from various sources. The cocoa 

production and grindings data stem from FAO Statistics and ICCO Quarterly Bulletin of Cocoa 

Statistics. Furthermore, the benchmark commodity prices are drawn from World Bank’s Global 

Economic Monitor, UNCTAD Statistics, and IMF International Financial Statistics. The 

variable descriptions in addition to the units of measurement are presented in Table 2.1.  

A crucial issue we need to tackle is the exact definition of our variables. The measure 

of a particular commodity world price can be calculated in numerous ways based on various 

futures, export, or auction prices from different countries. We decide to use the most 

widespread variable definitions. For example, the world cocoa price is derived from the nearest 

three trading months on two key cocoa futures markets. Furthermore, we use the ex-dock New 
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York Arabica/Robusta coffee composite price as the world coffee price. Additionally, the 5-

percent-bulk CIF Rotterdam palm oil price in Malaysia represents the world palm oil price.  

 

Table 2.1: Description of the cocoa market variables. 

Variable Description 

Supply World cocoa bean crop (in 1000 metric tons) 

Yield World cocoa bean yield (in kilograms/hectare) 

Demand World cocoa bean grindings (in 1000 metric tons) 

Stocks World cocoa bean ending stocks (in 1000 metric tons) 

Cocoa price Average of real daily cocoa futures prices: New York/London (in US dollars/metric ton) 

Coffee price Average of real daily ex-dock coffee prices: New York (in US dollars/metric ton) 

Palm oil price Average of real daily CIF Rotterdam palm oil prices: Malaysia (in US dollars/metric ton) 

GDP World real GDP (in billion US dollars) 

 

Another issue we are confronted with is the selection of the price deflator to form real 

commodity prices. In this matter, we accept the recommendation of the World Bank to 

calculate with its Manufactures Unit Value Index for imported goods. Furthermore, we obtain 

the real world GDP from the World Bank World Development Indicators (WDI) to capture the 

effect of economic activity level. Table 2.2 provides the summary statistics for all the variables 

in our global cocoa market model before taking natural logarithms. 

 

Table 2.2: Summary statistics of the cocoa market variables. 

Variable Observations Mean Standard deviation Minimum Maximum 

Supply 51 2430 960 1221 4373 

Yield 51 384 47 266 461 

Demand 51 2389 947 1305 4335 

Stocks 51 1069 535 263 1892 

Cocoa price 51 2742 1362 1116 8283 

Coffee price 51 3533 1730 1285 11048 

Palm oil price 51 681 255 290 1518 

GDP 51 38641 17225 13793 72970 

Sources: FAOStat, ICCO Quarterly Bulletin of Cocoa Statistics, UNCTADStat, World Bank Pink Sheet, World 

Bank WDI. 

Notes: We deflate the commodity prices with the MUV Index of the World Bank. The base year is 2010. 
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We assess the stationarity of variables with DF–GLS (Elliott et al., 1996) and KPSS 

(Kwiatkowski et al., 1992) tests, and, to consider one structural break, with Zivot and 

Andrews (1992) tests. The KPSS tests have a null hypothesis of stationarity, while the DF–

GLS tests have a null hypothesis of unit root. Furthermore, the Zivot–Andrews tests have a 

null hypothesis of unit root without structural break. The results of the three unit root tests 

are mostly consistent. We find that nearly all the variables at level are integrated and none of 

our variables have unit roots in first differenced form (Table 2.3). Additionally, we test for 

cointegration with the ARDL bounds technique (Pesaran et al., 2001). Table 2.4 reports the 

results: the cocoa market equations represent cointegrating relationships.  

 

Table 2.3: Unit root tests of the cocoa market variables. 

Variable KPSS 
 

DF–GLS 
 

Zivot–Andrews 

 
Without 

trend 

With 

trend 

Without 

trend 

With 

trend 

Break 

in const. 

Break 

in trend 

Break 

in both 

Supply 1.980***   0.214**   1.518 −2.970* −6.045*** −5.882*** −7.160*** 

Yield 1.640***   0.270***   0.020 −1.678 −6.070*** −6.494*** −6.982*** 

Demand 1.980***   0.302***   2.427 −1.838 −4.088 −3.930 −4.147 

Stocks 1.680***   0.186** −0.423 −1.890 −3.382 −2.553 −3.457 

Cocoa price 0.629**   0.191** −1.326 −1.406 −3.500 −2.084 −3.140 

Coffee price 0.899***   0.157** −2.038* −2.261 −3.756 −2.736 −3.345 

Palm oil price 0.821***   0.242*** −0.992 −1.024 −2.576 −2.399 −3.552 

GDP 1.980***   0.392***   1.699 −0.706 −3.021 −3.350 −3.130 

∆Supply 0.046   0.035 −6.554*** −6.539*** −8.276*** −7.654*** −8.204*** 

∆Yield 0.167   0.038 −7.686*** −7.390*** −9.420*** −9.006*** −9.451*** 

∆Demand 0.081   0.071 −4.904*** −4.910*** −7.269*** −7.098*** −8.226*** 

∆Stocks 0.078   0.070 −4.327*** −4.296*** −6.927*** −6.327*** −6.878*** 

∆Cocoa price 0.063   0.063 −5.849*** −6.104*** −8.216*** −7.106*** −8.164*** 

∆Coffee price 0.077   0.076 −4.844*** −4.832*** −7.033*** −6.522*** −7.008*** 

∆Palm oil price 0.119   0.048 −7.864*** −8.492*** −9.589*** −9.505*** −9.603*** 

∆GDP 0.872***   0.115 −2.816*** −4.908*** −6.464*** −6.130*** −6.445*** 

Notes: The KPSS tests (Kwiatkowski et al., 1992) employ the Quadratic Spectral kernel with automatic bandwidth 

selection. In the Zivot and Andrews (1992) and DF–GLS (Elliott et al., 1996) tests, the Schwarz information 

criterion selects the lag length with a maximum of 10 lags. 

* p < 0.1. ** p < 0.05. *** p < 0.01.  
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Table 2.4: Cointegration tests of the cocoa market model. 

Model Without trend With trend 

Supply equation   6.92 [3.23, 4.35]***   2.33 [4.01, 5.07] 

Demand equation   2.46 [3.23, 4.35]  26.81 [4.01, 5.07]***  

Cocoa price equation 22.36 [3.79, 4.85]***  47.97 [4.87, 5.85]***  

Notes: The statistics are the F-values of the bounds cointegration technique (Pesaran et al., 2001). The numbers 

in brackets are the critical lower and upper bounds at the 5 percent significance level. The tests use the Bartlett 

kernel with Newey−West automatic bandwidth selection and small-sample adjustments.  

* p < 0.1. ** p < 0.05. *** p < 0.01. 

 

2.5 Results and discussion 

 

2.5.1 Estimator selection 

 

First, we estimate the cocoa market model with the OLS and 2SLS methods (Tables 6, 

7, and 8). In the 2SLS estimation, the instruments consist of the lagged endogenous variables. 

This means that all the equations are overidentified. Furthermore, the instrumental variable 

tests show proper instrument choices (Table 2.5). However, similar to Hameed et al. (2009), 

we find no endogeneity problem in our model. Therefore, both the OLS and 2SLS methods are 

consistent, but the OLS is more efficient.  

 

Table 2.5: Instrumental variables tests of the cocoa market model. 

Model Weak instruments test  Overidentifying restrictions test  Endogeneity test  

Supply equation   27.70 0.1473 0.7135 

Demand equation 192.58 0.2854 0.7136 

Cocoa price equation 133.81 0.1546 0.9485 

Notes: The weak instruments test statistics are the F-values of the Kleibergen and Paap (2006) method. 

Furthermore, the overidentifying restrictions and the endogeneity test statistics are the p-values of the Hansen 

(1982) and Eichenbaum et al. (1988) methods. The tests use the Bartlett kernel with Newey−West automatic 

bandwidth selection and small-sample adjustments. The instruments consist of the lagged endogenous variables: 

Supplyt−1, Demandt−1, Cocoa pricet−1, and Stockst-1. The endogeneity tests have a null hypothesis of exogeneity, 

and the overidentifying restrictions tests have a null hypothesis of instrument exogeneity. As a rule of thumb, the 

instruments are weak if the Kleibergen and Paap F-statistic is smaller than 10. 

 

We reestimate the cocoa market model with the seemingly unrelated regressions (SUR) 

method for efficiency gains. This system estimation method is appropriate when all regressors 
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are assumed to be exogenous. It takes into account contemporaneous correlations in the errors 

across equations and heteroscedasticity (Greene, 2011). In contrast to the 2SLS technique, we 

find that the OLS and SUR methods produce largely coherent results. However, we reject the 

hypothesis of the SUR approach that the regressions are related because the p-value of the 

Breusch and Pagan (1980) test for independent equations is 0.136. Therefore, we discuss only 

the OLS results in detail.  

 

2.5.2 Cocoa supply model 

 

The estimates of the cocoa supply model are presented in Table 2.6. We find that all 

significant coefficients carry the a priori anticipated signs. According to our results, the current 

and lagged prices of cocoa beans are significant determinants of the global cocoa production. 

They reflect the effect of the short-run harvesting and the long-run farm investment decisions. 

Furthermore, we find that the world cocoa supply is extremely price-inelastic: the 

corresponding short- and long-run estimates are 0.07 and 0.57.2 We attribute this to the long 

cocoa production cycle and the large fixed farm investments (Dand, 2011).  

 In addition, the prices of coffee lagged three and seven years are also factors influencing 

cocoa supply, which reveals that farmers decide about crop production many years in advance. 

However, coffee appears to be a weak cocoa supply substitute. This is a plausible result: the 

land suitable for cocoa is very able to support coffee, but uprooting and replanting an existing 

plantation costs labor, time, and money, and the new crop gives no return for a couple of years 

(Dand, 2011). 

Moreover, the yield of cocoa turns out to be a significant factor in the cocoa supply 

model due to its explicit association with production. Finally, the previous years’ cocoa 

production also emerges as a major determinant. Agreeing with the national cocoa market 

models, supply adjusts slowly to its equilibrium value, again partially as a result of the long 

cultivation process.  

                                                 
2 To compute long-term elasticities, the lagged values of the explained variables are equated with the current 

values of the regressands. 
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Table 2.6: Estimates of the cocoa supply equation. 

Variable OLS 2SLS SUR 

Cocoa pricet   0.069 (0.027)**   0.254 (0.066)***    0.090 (0.040)** 

Cocoa pricet−1   0.083 (0.060) −0.130 (0.117)   0.060 (0.058) 

Cocoa pricet−2 −0.026 (0.050)   0.084 (0.089) −0.029 (0.060) 

Cocoa pricet−3   0.079 (0.038)**   0.070 (0.044)   0.083 (0.058) 

Cocoa pricet−4 −0.042 (0.037) −0.039 (0.075) −0.048 (0.057) 

Cocoa pricet−5   0.005 (0.035) −0.002 (0.065)   0.008 (0.055) 

Cocoa pricet−6   0.013 (0.041)   0.013 (0.060)   0.013 (0.050) 

Cocoa pricet−7   0.029 (0.018)   0.045 (0.021)**   0.028 (0.038) 

Coffee pricet −0.078 (0.051) −0.150 (0.051)*** −0.077 (0.035)** 

Coffee pricet−1   0.063 (0.068)   0.119 (0.092)   0.066 (0.038)* 

Coffee pricet−2 −0.032 (0.052) −0.055 (0.062) −0.033 (0.038) 

Coffee pricet−3 −0.071 (0.032)** −0.088 (0.028)*** −0.062 (0.037)* 

Coffee pricet−4   0.004 (0.030) −0.001 (0.032)   0.004 (0.038) 

Coffee pricet−5 −0.024 (0.032) −0.026 (0.036) −0.024 (0.036) 

Coffee pricet−6   0.042 (0.032)   0.086 (0.033)**   0.041 (0.036) 

Coffee pricet−7 −0.095 (0.035)** −0.162 (0.053)*** −0.093 (0.039)** 

Yieldt   1.022 (0.118)***   1.254 (0.101)***   1.013 (0.108)*** 

Supplyt−1   0.410 (0.056)***   0.504 (0.067)***   0.429 (0.080)*** 

Supplyt−2   0.331 (0.067)***   0.165 (0.083)*   0.322 (0.089)*** 

R2   0.991   0.987   0.991 

Notes: Small-sample standard errors are in parentheses. The OLS and 2SLS statistics use the Bartlett kernel with 

Newey−West automatic bandwidth selection. The instruments consist of the lagged endogenous variables: 

Supplyt−1, Demandt−1, Cocoa pricet−1, and Stockst-1. 

* p < 0.1. ** p < 0.05. *** p < 0.01. 

 

2.5.3 Cocoa demand model 

 

 The estimated cocoa demand parameters along with their statistical significances are 

shown in Table 2.7. Conforming to our hypothesis, they indicate that the world cocoa demand 

is negatively linked to the world cocoa price and the connection between the two variables is 

statistically significant. Furthermore, the own-price elasticity of cocoa demand falls into the 

extremely inelastic range: the corresponding short- and long-run estimates are −0.06 and −0.34. 
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We attribute this to the luxury good nature of cocoa and also to the fact that chocolate bars and 

confectionary products contain less than 10 percent cocoa by value (Dand, 2011). 

In addition, our results show that the global cocoa demand is sensitive to the world palm 

oil price: chocolate manufacturers are induced to shift away from cocoa if it becomes more 

expensive relative to palm oil. However, the magnitude of the coefficient (0.036) concludes 

that palm oil is a weak demand substitute. The substitution of cocoa with vegetable oils is 

limited because of the legal restrictions and the unique properties of cocoa butter (Dand, 2011). 

 Similar to the previous cocoa country studies, we find that the economic activity level 

has a significant positive effect on cocoa demand. This is expected since most of the cocoa 

bean consumption is to feed the grinding industry and consumers with a rising income buy 

more cocoa products. However, our long-term GDP coefficient (0.721) falls into the inelastic 

range.  

Finally, the parameter of the lagged cocoa demand is statistically significant in our 

estimation. Its value (0.817) signals that global cocoa processing adapts slowly to its 

equilibrium level. This is a plausible result: cocoa firms spread their responses over time due 

to incomplete information and additional costs (Shamsudin, 1998).  

 

Table 2.7: Estimates of the cocoa demand equation. 

Variable OLS 2SLS SUR 

Cocoa pricet −0.063 (0.021)*** −0.058 (0.028)** −0.033 (0.020)* 

Palm oil pricet   0.036 (0.011)***   0.032 (0.017)*   0.014 (0.019) 

GDPt   0.132 (0.030)***   0.124 (0.025)***   0.224 (0.061)*** 

Demandt−1   0.817 (0.042)***   0.828 (0.038)***   0.744 (0.072)*** 

R2   0.992   0.992   0.992 

Notes: Small-sample standard errors are in parentheses. The OLS and 2SLS statistics use the Bartlett kernel with 

Newey−West automatic bandwidth selection. The instruments consist of the lagged endogenous variables: 

Supplyt−1, Demandt−1, Cocoa pricet−1, and Stockst-1. 

* p < 0.1. ** p < 0.05. *** p < 0.01. 

 

2.5.4 Cocoa price model 

 

 The results of the cocoa price model estimations are displayed in Table 2.8. They show 

that the short-term stocks and consumption elasticities of the world cocoa price are −0.517 and 

0.547. Furthermore, we find that their long-term counterparts are rather high with absolute 
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values exceeding 1.5. In the domestic cocoa studies, these elasticities are usually insignificant, 

owing to the vast influence of the world cocoa price (Hameed, 2009).  

In addition, the coefficient of the lagged cocoa price (0.660) indicates that the 

adjustment process to achieve the equilibrium is relatively slow. It is slower than for most 

agricultural commodities and is comparable to industrial commodities (Radetzki, 2008). 

 

Table 2.8: Estimates of the cocoa price equation. 

Variable OLS 2SLS SUR 

Stockst −0.517 (0.041)*** −0.701 (0.064)*** −0.534 (0.099)*** 

Demandt   0.547 (0.070)***   0.797 (0.094)***   0.647 (0.169)*** 

Cocoa pricet−1   0.660 (0.030)***   0.617 (0.046)***   0.710 (0.076)*** 

R2   0.830   0.817   0.850 

Notes: Small-sample standard errors are in parentheses. The OLS and 2SLS statistics use the Bartlett kernel with 

Newey−West automatic bandwidth selection. The instruments consist of the lagged endogenous variables: 

Supplyt−1, Demandt−1, Cocoa pricet−1, and Stockst-1. 

* p < 0.1. ** p < 0.05. *** p < 0.01. 

 

2.6 Conclusion 

 

The economic and population growth in Africa and Asia have largely boosted the world 

demand cocoa and triggered an extraordinary volatility in the world cocoa price in this new 

century. This price volatility makes the millions of cocoa farmers in the developing world 

highly vulnerable to poverty. A large volatility in the value of an agricultural commodity is 

linked to the inelasticity of its supply or demand. Therefore, we test the hypothesis that the 

price elasticities of the global cocoa supply and demand are low.  

We describe the world cocoa market is described with three cointegration dynamic 

structural sub-models (supply, demand, and price) in addition to the market equilibrium 

condition identity. Integrating a number of variables from a global data set that covers half a 

century (1963–2013), we estimate the models with the OLS, 2SLS, and SUR methods. 

Furthermore, we employ rigorous unit root, cointegration, and instrumental variable testing.  

Our results compare favorably with theory: all significant variables carry the a priori 

expected signs. Furthermore, we find that the world cocoa supply is extremely price-inelastic: 

the corresponding short- and long-run estimates are 0.07 and 0.57. In addition, coffee appears 

to be a weak cocoa supply substitute. The price elasticity of global cocoa demand also falls 
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into the extremely inelastic range: the short- and long-run estimates are −0.06 and −0.34. 

Finally, palm oil seems to be a weak cocoa demand substitute.  

Based on these empirical results, we consider the prospects for cocoa price stabilization. 

The cocoa price volatility resulting from factors above was treated with various unsuccessful 

methods in the past: planned economies, marketing boards, and explicit supply or price 

manipulations (Dand, 2011). These experiments caused inefficiencies, lead to market failures, 

and are unlikely to win wide support (Sarris and Hallam, 2006). In 1973, the International 

Cocoa Organization (ICCO) was established to manipulate the global cocoa buffer stocks and 

production to stabilize world cocoa price in a zone. However, it has been ineffective in 

maintaining the stability of cocoa prices due to insufficient funding as well as the absence of 

the biggest cocoa consumer, the United States (Dand, 2011). According to Piot-Lepetit and 

M’Barek (2011), a possible solution for reducing the price volatility would be the 

encouragement of crop diversification. This increases the price elasticity of cocoa supply by 

adjusting the effort and money allocation between the crops, thus decreasing price volatility. 
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3. How can the productivity of Indonesian cocoa farms be increased?3 

 

Abstract 

 

This study investigates the Indonesian cocoa production to reveal the possibilities for 

poverty alleviation while considering the threats to environmental sustainability. We estimate, 

based on a large household panel data set and stochastic frontier analysis, the technical 

efficiency of cocoa production and decompose productivity growth. According to our results, 

the productivity of Indonesian cocoa farming increased by 75 percent between 2001 and 2013. 

Technical efficiency growth and the increased chemicals use supported by government 

subsidies were responsible for the majority of this gain. Furthermore, we find large distortions 

in the input allocations. Hence, policies that encourage the adjustment of the cocoa farms’ input 

use would be highly beneficial. Moreover, because of the weather-induced volatility in cocoa 

production, policy makers should also promote investment in agricultural research and transfer 

of drought-resistant cocoa varieties to farmers. Additionally, the average efficiency of cocoa 

farmers is estimated to be around 50 percent. We find that farmers’ educational attainment and 

their experience in cocoa farming are significant factors that can increase the efficiency levels.   

 

Keywords: cocoa, Indonesia, productivity change decomposition, technical efficiency. 

 

JEL codes: D24, O13, Q01, Q12. 

  

                                                 
3 This paper is a joint work with Verina Ingram (Wageningen UR). We would like to thank Stephan von Cramon-

Taubadel, Bernhard Brümmer, and Malte Ehrich for their comments. Furthermore, we are also grateful to Stephan 

Klasen for providing us the data set. Finally, this project would have been impossible without the funding from 

the German Research Foundation. 
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3.1 Introduction 

 

3.1.1 Background 

 

Cocoa, one of the main ingredients of chocolate is primarily cultivated by smallholders 

in developing countries. Most of these producers live below the poverty line and have never 

tasted chocolate (Hütz-Adams and Fountain, 2012). After the Ivory Coast and Ghana, 

Indonesia is the third largest cocoa producer in the world with 10 percent of the global 

production (ICCO, 2016). Nearly 1.5 million Indonesian households depend on cocoa farming 

(ICCO, 2012). On the island of Sulawesi, which accounts for two thirds of Indonesia’s cocoa 

production (Ministry of Agriculture, 2015), 60 percent of cocoa farmers were living below the 

World Bank poverty threshold of 1.90 US dollar per day in 2009 (van Edig et al., 2010).  

 Cocoa is consumed mainly by the developed countries such as the US and Germany 

(21 and 13 percent of the total net imports in 2012). The average chocolate consumption per 

capita in both countries is over 10 kilograms (ICCO, 2012). The global demand for cocoa grew 

steeply over the last 15 years. This growth was primarily due to the Asian and African countries 

(Squicciarini and Swinnen, 2016). The prospect for cocoa demand growth is still high in China 

and India because the average chocolate consumption there is under 1 kilograms per capita 

(ICCO, 2012). However, cocoa growing countries can barely meet this expanding demand due 

to lack of appropriate production procedures and resources (ICCO, 2016). This generated an 

imbalance between the cocoa supply and demand in the global market and, because of their 

low price elasticity (Tothmihaly, 2017), an increase and high volatility in world cocoa prices 

(Onumah et al., 2013b). 

Cocoa demand can be met and the income of cocoa farmers can be improved by 

increasing the cocoa growing area, by increasing input use, or by increasing technical 

efficiency (Onumah et al., 2013b). Both in Indonesia and Africa, most expansion in the cocoa 

cultivation was achieved by the first route (Nkamleu et al., 2010). The increased cocoa prices, 

together with the incentives provided by government subsidies for the sector, triggered farmers 

to increase cocoa production by raising cultivated land. This led to the conversion of virgin 

tropical forests to cocoa plantations (Teal et al., 2006).  

This procedure usually includes tree felling, slash-and-burning, followed by the 

planting of cocoa and other crop trees (for example, banana) together. The latter trees provide 

shade for the young cocoa plants for two years. After three years, the cocoa trees start to 

produce and until about 10 years after planting, production rises yearly (Dand, 2010). Then, 
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the cocoa yield starts to decrease gradually because of the higher frequency of cocoa diseases, 

erosion, and the decrease of soil nutrients (Smaling and Dixon, 2006). Some 20 years after 

planting, cocoa farmers have to either invest in uprooting, soil improvement, replanting, and 

disease reduction or shift to a new area. In places with low population density, it is easier to 

move the cocoa production than to use the old growing area (Asase et al., 2009). Also, 

replanting is usually more costly for smallholders with regard of intermediate inputs, labor, 

crops risks, and capital demand.  

As a consequence of acreage expansion, cocoa plantations are increasingly intruding 

into the Indonesian rainforest, which is a world biodiversity hotspot hosting a large number of 

endemic species (REDD, 2012).4 In Sulawesi, 80 percent of the rainforests were gone by 2010 

causing, sometimes, irreversible losses of biodiversity (FAO, 2010). Findings from Frimpong 

et al. (2007) show a similar phenomenon in Africa. 

Cocoa production can also be enhanced by increasing the cocoa yield with input 

intensification. Cocoa yields in Indonesia average just above 400 kilograms/hectare. This 

number is much lower than the potential 1500 kilograms/hectare based on the best 

performances of Indonesian cocoa farmers (ICCO, 2012). Various pests (mainly the vascular 

streak dieback and the cocoa pod borer) and the fact that most of the cocoa plants are more 

than 15 years old have contributed to the decline in cocoa yields (Ministry of Agriculture, 

2015). In the face of this situation, the Indonesian Government announced the 3-year, 350-

million US dollar Gernas Pro Kakao revitalization program (KKPOD, 2013) for the cocoa 

industry in 2009. It was established to increase the adoption of pesticides and fertilizers to 

restore soil nutrients and the use of enhanced cocoa seedlings to boost productivity. However, 

the support of intensification and the ensuing increase in cocoa production can cause 

environmental deterioration and raise concerns about biodiversity conservation (Asare, 2005). 

The third method to increase cocoa production is to improve technical efficiency. For 

environmental sustainability, this is the most desirable option. According to the Ministry of 

Agriculture (2015), the main causes of the low productive efficiency in Indonesia are aging 

farmers, aging farms, lack of knowledge, poor farming techniques, and capital problems (high 

bank interests). To tackle these issues, the government introduced a number of measures such 

                                                 
4 Indonesia has only 1.2 percent of the world’s land area. However, its forests host 11 percent of all plant species, 

12 percent of all mammal species, 17 percent of all bird species, 16 percent of all reptile and amphibian species, 

33 percent of all insect species, and 24 percent of all fungi species. In this country, 772 species are threatened or 

endangered, among them 147 mammal species. Moreover, 20 of Indonesia’s 40 primate species have lost more 

than 50 percent of their original habitat in the last ten years, among them orangutans (FAO, 2010). 
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as the formation of agricultural extension services and later the expansion of credit access 

(Ministry of Agriculture, 2015).  

Negating the adverse environmental outcomes of the low productivity systems requires 

large investments from both the private and public sectors. The first important question for 

decision makers is to what extent and how cocoa cultivation can be made more technically 

efficient. The second question is how the proposed measures affect the environment.  

 

3.1.2 Contribution 

 

Our research investigates the scope for improving the efficiency of Indonesian cocoa 

production as a means of alleviating poverty and fostering environmental sustainability. We 

estimate based on household, agricultural, and environmental surveys and stochastic frontier 

analysis (Coelli et al., 2005), the technical efficiency of production and decompose the total 

factor productivity change. With the results, we aim to determine the magnitude of the 

attainable efficiency increases and the methods that can be used to attain them.  

We extend the previous research on the technical efficiency of cocoa farming. 

Technical efficiency estimations are available for the large producing countries such as Ghana: 

Aneani et al. (2011), Besseah and Kim (2014), Danso-Abbeam et al. (2012), Kyei et al. (2011), 

Nkamleu et al. (2010), Ofori-Bah and Asafu-Adjaye (2011), Onumah et al. (2013a), Onumah 

et al. (2013b) and Nigeria: Adedeji et al. (2011), Agom et al.(2012), Amos (2007), Awotide et 

al. (2015), Nkamleu et al. (2010), Ogundari and Odefadehan (2007), Ogunniyi et al. (2012), 

Oladapo et al. (2012), Oyekale (2012). However, they all use cross-sectional data. With the 

information gain of our panel data, which contains 4 time periods over 13 years, we decompose 

the total factor productivity change and characterize inefficiencies more realistically. We can 

track changes in time and control for omitted and mismeasured variables to produce more 

reliable estimates (Hsiao, 2007). Furthermore, previous cocoa studies analyze the effect of 

shading trees and intercropping only on efficiency and this leads to inconclusive results 

(Besseah and Kim, 2014; Nkamleu et al., 2010; Ofori-Bah and Asafu-Adjaye, 2011). We 

include these variables in the production frontier because we assume that they have a direct 

effect on cocoa production.  

In Indonesia, Effendi et al. (2013) assess the technical efficiency of cocoa smallholders. 

However, additionally to the previous issues, they do not include the Gernas Pro Kakao 

government program in their model and work with just a small sample size of 98. Table 3.A1 

summarizes the estimated average technical efficiencies and the sample sizes in previous cocoa 
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studies. With 1290 observations, our sample size is larger than in any previous study on the 

technical efficiency of cocoa production. 

  Our results can be used to inform policies and practices to sustainably improve yields 

and income, thus reducing deforestation. The estimates could tell us which investments 

produce the highest marginal benefits: for example, improving education, access to financing 

or to extension services, or fostering the formation of farmer groups (Ingram et al., 2014). 

 

3.2 Methodology 

 

3.2.1 Stochastic frontier analysis 

 

Efficiency is the capability to maximize outputs given a level of inputs used in the 

production. Debreu (1951) introduced the first concept of creating a production frontier to 

measure efficiency. This has led to two main empirical methods for frontier estimation: the 

deterministic Data Envelopment Analysis (DEA) and the parametric Stochastic Frontier 

Analysis (SFA). We assess efficiency using the parametric method since it can differentiate 

between technical inefficiency and the effects of random shocks (Coelli et al., 2005). It is used 

by various researchers including Brümmer et al. (2006). 

Based on Coelli et al. (2005), we can write the basic frontier model the following 

way:  

ln 𝑦𝑖 = ln 𝑓(𝒙𝒊; 𝛽𝑖) + 𝑣𝑖 − 𝑢𝑖                          (3.1) 

where 𝑦𝑖 represents the output, 𝑓(𝒙𝒊; 𝛽𝑖) denotes the production function at complete efficiency 

with 𝒙𝒊 as input vectors and 𝛽𝑖 as the parameters to be estimated, vi is a random error term 

independently and identically distributed as 𝑁(0, 𝜎𝑣
2), and ui is a non-negative unobservable 

term assumed to be independently and identically distributed as 𝑁(0, 𝜎𝑢
2) and independent of 

vi. The last component measures the shortfall of the output from its maximum attainable level 

and, therefore, captures the effect of technical inefficiency. In this case, the technical efficiency 

of farm i can be written as  

𝑇𝐸𝑖  =  𝑒𝑥𝑝 (−𝑢𝑖).           (3.2)

 The parameters of the production function in equation (3.1) must theoretically satisfy 

the regularity conditions: monotonicity and curvature (Coelli et al., 2005). We specify a 

translog production function. In this function, the inclusion of squared and interaction terms 

provides a high level of flexibility.  
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The extension of our model in equation (3.1) enables us to measure how household 

characteristics influence efficiency. We choose a specification proposed by Coelli et al. 

(2005), which models the technical inefficiency (𝑢𝑖) as a function of several variables: 

𝑢𝑖 = 𝜑𝑍𝑖 + 𝑒𝑖            (3.3) 

where 𝑍𝑖 is a vector with farm-specific factors that are assumed to affect efficiency, 𝜑 is a 

vector with the parameters to be estimated, and 𝑒𝑖 is an independent and identically distributed 

random error term. If the estimated parameter is positive, then the corresponding variable has 

a negative influence on technical efficiency.  

 

3.2.2 Estimation issues 

 

 We have to look at four issues of the statistical inference: the estimation technique of 

the frontier model, the estimation technique of the inefficiency model, the estimation with panel 

data, and endogeneity. 

First, standard techniques such as OLS are inappropriate for estimating the 

unobservable frontier function from observable input and output data because they focus on 

describing average relationships. Therefore, we base the parameters on ML. Before carrying 

out the estimation, each variable is normalized by its sample mean. Given this transformation, 

the first-order coefficients can be viewed as partial production elasticities at the sample mean 

(Coelli et al., 2005).  

Regarding the second inference issue, Greene (2008) points out that researchers often 

incorporate inefficiency effects using two-step estimation techniques. In the first step, the 

production function is specified and the technical inefficiency is predicted. The second step 

regresses the assumed characteristics on the predicted inefficiency values via OLS. This 

approach leads to severely biased results. The issue is addressed by using a simultaneous 

estimation that includes the efficiency effects in the production frontier estimation. 

 With the availability of a large panel dataset, we can characterize inefficiencies more 

realistically. However, panel data also causes some issues in the estimation. The common 

feature of pooled SFA models is that the intercept is the same across productive units, thus 

generating a misspecification bias in presence of unobserved time-invariant variables. As a 

consequence, the inefficiency term may capture the influences of these variables, generating 

biased  results. Greene (2008) approaches this problem with unit-specific intercepts. In contrast 

to the pooled model, his true fixed-effect (TFE) and true random-effect (TRE) panel 
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specifications allow to differentiate between time-varying inefficiency and unit-specific 

unobservable time-invariant heterogeneity. The TFE model assumes the non-randomness while 

the TRE model the randomness of the unobserved unit-specific heterogeneity.  

The ML estimation of the TFE specification needs the solution of the so-called 

incidental parameters problem. This inferential issue arises when the length of the panel is 

relatively small compared with the number of units, causing the inconsistent estimation of the 

parameters. As shown in Belotti and Ilardi (2012), the dummy variable approach for estimation 

appears to be suitable only when the panel length is large enough (T >10). Our sample is highly 

unbalanced and contains just 5 time periods. The common method to solve this problem is 

based on the elimination of the individual effects through within transformation, i.e., working 

with the deviations from the means. The consistent estimation of the TFE variant is proposed 

by Belotti and Ilardi (2012). However, the disadvantage of these methods is that they do not 

permit the use of time-invariant factors such as gender and education, which we assume are 

significant determinants of inefficiency. In our estimations, we use both the TRE and TFE 

specifications and choose between the two according to the Mundlak (1978) approach. 

 As pointed out by Greene (2008), neither the pooled nor the “true” formulation is 

completely satisfactory. Although the “true” model may appear to be the most flexible 

choice, it can be argued that a portion of the time-invariant unobserved heterogeneity does 

belong to inefficiency or that these two components should not be disentangled at all . 

Therefore, we estimate both extremes: the Coelli et al. (2005) model in which all time-

invariant unobserved heterogeneity is considered as inefficiency and the TRE/TFE 

specification in which all time-invariant unobserved heterogeneity is ruled out from the 

inefficiency component. 

Finally, the direct inference of a stochastic frontier may be susceptible to simultaneity 

bias that occurs if each farmer selects the output and input levels to maximize profit for given 

prices. But no simultaneity bias ensues if farmers maximize expected rather than actual profit 

(Coelli et al., 2005). We make this reasonable assumption meaning that technical efficiency is 

unknown to producers before they make their input decisions. Thus, the quantities of variable 

inputs are largely predetermined and uncorrelated with technical efficiency.  
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3.2.3 Total factor productivity change 

 

We base our calculations of total factor productivity (TFP) change on Brümmer et al. 

(2006). The TFP change is decomposed into technical efficiency change (TEC), scale 

efficiency change (SEC), allocative efficiency change (AEC), and technical change (TC) to 

control for productivity adjustments connected to these factors: 

𝑇𝐹𝑃𝐶1  =  𝑇𝐸𝐶 +  𝑆𝐸𝐶 +  𝐴𝐸𝐶 +  𝑇𝐶         (3.4) 

According to Zhu and Lansink (2010), we can disaggregate technical efficiency change 

further:  

𝑇𝐸𝐶 =  𝑇𝐸𝐶𝐸𝑉 +  𝑇𝐸𝐶𝑇𝐶 +  𝑇𝐸𝐶𝑈𝐹          (3.5) 

where 𝑇𝐸𝐶𝐸𝑉, 𝑇𝐸𝐶𝑇𝐶, and 𝑇𝐸𝐶𝑈𝐹 are effects of the change in various inefficiency model 

variables, technical change of the inefficiency component, and unspecified factors. 

Because we have dummy variables that further describe the production technology, we 

also calculate an augmented TFP change that includes two additional components connected to 

technology:  

𝑇𝐹𝑃𝐶2  =  𝑇𝐹𝑃𝐶1 + 𝑇𝐼𝑈 +  𝑇𝐺𝐾               (3.6) 

where 𝑇𝐼𝑈 and 𝑇𝐺𝐾 are contributions from input use change and the Gernas Pro Kakao program. 

Thus, we arrive at the following detailed decomposition: 

𝑇𝐹𝑃𝐶2 = 𝑇𝐸𝐶𝐸𝑉 + 𝑇𝐸𝐶𝑇𝐶 +  𝑇𝐸𝐶𝑈𝐹 + 𝑇𝐶 + 𝑇𝐺𝐾 +  𝑇𝑊𝑃 + 𝑆𝐸𝐶 + 𝐴𝐸𝐶    (3.7) 

 

3.3 Empirical specification 

 

3.3.1 Production frontier model 

 

The translog production function for the cocoa farm i with four inputs, and seven 

dummy variables is specified as: 

𝑙𝑛𝑦𝑖𝑡 =  𝛼0 + ∑ 𝛽𝑘𝑙𝑛𝑥𝑘𝑖𝑡
4
𝑘=1 +

1

2
∑ ∑ 𝛽𝑗𝑘𝑙𝑛𝑥𝑗𝑖𝑡𝑙𝑛𝑥𝑘𝑖𝑡

4
𝑘=1

4
𝑗=1 + ∑ 𝛿𝑗𝐷𝑗𝑖𝑡 + ∑ 𝜃𝑗𝑇𝑗𝑡

3
𝑗=1 +7

𝑗=1

𝑣𝑖𝑡 − 𝑢𝑖𝑡                  (3.8) 

where yi is the amount of cocoa beans harvested in kilograms, xk is a vector of observations 

on inputs, Dj is a vector of observations on dummy variables characterizing the production 

process, Tj represents time dummies controlling for unobservable influences that vary 

between the years, such as technical change, the 𝛼’s, 𝛽’s, 𝛿’s, and 𝜃’s are unknown 

parameters to be estimated, v is a random error term, and finally u is a non-negative 
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unobservable variable describing inefficiency. We do not include tree biomass and other crop 

outputs in the production function because of the small number of forest and other crop trees 

on the cocoa farms in our sample area. 

 We draw on Nkamleu et al. (2010) and Ofori-Bah and Asafu-Adjaye (2011) to 

identify the production factors that we consider in our analysis (Table 3.1). The variables 

used in these and other previous cocoa technical efficiency studies are summarized in Table 

3.A2. According to the classical model, with a given technology, output is determined by 

land (x1), labor (x2), and intermediate inputs (x3). In our model, land indicates the total 

cultivated cocoa area measured in ares, while labor is calculated in Rupiah and involves all 

harvest and maintenance tasks on the cocoa farm.5 We assume that the latter is a good 

approximation for quality-adjusted labor input. Furthermore, intermediate inputs are 

measured as the cost of fertilizers, pesticides, transport, and processing in Rupiah. We 

aggregate these inputs to avoid multicollinearity (Brümmer et al., 2006) and presume that the 

value of material inputs reflects the quality of inputs better than quantity because of the 

different concentrations of active components and nutrients (Wollni and Brümmer, 2012). 

The age of cocoa trees (x4) is also added to the classical production factors. It influences the 

cocoa output the following way. Cocoa trees begin to produce pods only from about three 

years after planting, reach full bearing capacity around the age of 10 years, and their output 

starts to diminish gradually thereafter (Dand, 2010). In some previous studies, the sign of this 

variable is positive and in other studies, negative depending on the average tree age in the 

sample (Table 3.A2).  

We enhance the basic production frontier with seven dummy variables to describe the 

cocoa cultivation process more accurately (Wollni and Brümmer, 2012). Because zero values 

of input variables can cause biased inference, a dummy variable is added that equals one if 

intermediate inputs equal zero (D1). The second dummy variable is equal to one if the 

smallholder participated in the Gernas Pro Kakao government program. The objective of this 

program is to rehabilitate cocoa farms and expand intensification by providing easier access 

to inputs (KKPOD, 2013). The third dummy variable equals one if hybrid cocoa variety is 

cultivated by the farmer. We anticipate that hybrids produce higher yields than the local 

varieties (Dand, 2010). Moreover, the pruning of cocoa trees (D4) is expected to improve 

output levels because it gives room for sufficient sunlight that stimulates the growth of 

                                                 
5 1 hectare equals 100 ares. During the last 15 years, 1 euro fluctuated between 10000 and 17000 Indonesian 

Rupiahs. 
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flowers. Additionally, it keeps the farm environment clean, preventing the development and 

spread of pests (Danso-Abbeam et al., 2012; Effendi et al., 2013; Amos, 2007). Furthermore, 

a dummy for yield loss is used to reflect the effect of pests and adverse weather on the cocoa 

harvest quantity. 

 

Table 3.1: Description of the cocoa farm variables. 

Variable Description 

Output  

Cocoa Cocoa quantity harvested on the farm (kilograms) 

Input 

Tree age Average cocoa tree age (years) 

Land Total area planted with cocoa (ares) 

Labor Maintenance and harvest labor costs for the cocoa farm (constant 2001 Rupiah) 

Intermediate inputs Fertilizer, pesticide, transport, and processing costs for the farm (constant 2001 Rupiah) 

Technology 

No input Dummy, 1 = household did not use intermediate inputs for the cocoa farm 

Gernas  Dummy, 1 = household joined the Gernas Pro Kakao program in the last 3 years 

Hybrid Dummy, 1 = hybrid cocoa variety was cultivated by the farmer 

Pruning Dummy, 1 = cocoa trees were pruned 

Intercrop  Dummy, 1 = there was intercropping on the cocoa farm 

Shade 60 Dummy, 1 = shade level of the cocoa farm is larger than 60 percent 

Crop loss Dummy, 1 = cocoa yield loss because of adverse weather or pests  

Inefficiency 

Male  Dummy, 1 = household head is male 

Age Age of the household head (years) 

High school  Dummy, 1 = household head completed the senior high school 

Extension Dummy, 1 = household head had agricultural extension contacts 

Credit Dummy, 1 = household head obtained credit in the last 3 years 

Association  Dummy, 1 = household head was member in a cocoa cooperative in the last 3 years 

Time 

Year 2004 Dummy, 1 = observation is in 2004 

Year 2006 Dummy, 1 = observation is in 2006 

Year 2013 Dummy, 1 = observation is in 2013 

Notes: All variables refer to the last 12 months with the mentioned exceptions. Labor and intermediate input costs 

are adjusted for inflation with the Indonesian Consumer Price Index (2001=1.00). 

 

Some cocoa is grown in an agroforestry or an intercropping system (Ofori-Bah and 

Asafu-Adjaye, 2011). Ruf and Zadi (1998) and Asare (2005) suppose that cocoa yields can be 

maintained in the long run only with the use of forest tree species in cocoa cultivation. Cocoa 

agroforests also support conservation policies because they connect rainforest areas and 
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provide habitat for native plants and animals. However, the influence of shading trees on cocoa 

yields is highly debated. Although some papers report the advantages of these trees because 

they decrease plant stress, others provide evidence that shade can limit cocoa yields (Frimpong 

et al., 2007). The current consensus on this issue implies that shade starts to reduce cocoa yields 

beyond a level of around 30 percent. Following Bentley et al. (2004), we add a sixth dummy 

variable to our model that captures the influence of the high shade (larger than 60 percent) 

production system and expect the sign to be negative.  

To assess the effect of crop diversification on cocoa production (Ofori-Bah and Asafu-

Adjaye, 2011), a seventh dummy variable for intercropping is also added to the model. Farmers 

can grow a variety of fruit-bearing trees to help cope with the volatile cocoa prices by 

supplementing their income. In Indonesia, banana and coconut are mainly intercropped with 

cocoa at its fruit-bearing age (Ministry of Agriculture, 2015). But crop diversification has also 

another advantage. An increasing number of studies demonstrate that intercropping improves 

erosion control (soil and water retention), nutrient cycling, carbon dioxide capture, 

biodiversity, and the relationship of fauna and flora (Scherer-Lorenzen et al., 2005; Gockowski 

and Sonwa, 2011). Therefore, interplanting is often supported to take advantage of the 

mutualism between different plants and to compensate for the low level of intermediate inputs 

(Pretzsch, 2005). We anticipate that intercropping has a positive effect on cocoa yields. 

 

3.3.2 Inefficiency model 

 

In addition to the production frontier model above, we specify the following 

inefficiency equation for cocoa farm i: 

𝑢𝑖𝑡 = 𝜑0 + ∑ 𝜑𝑗𝑍𝑗𝑖𝑡 +6
𝑗=1 ∑ 𝜔𝑗𝑇𝑗𝑡 + 𝑒𝑖𝑡

3
𝑗=1          (3.9) 

where 𝑢 are the inefficiency estimates that follow a truncated normal distribution (Coelli et 

al., 2005), Zj is a vector of observations on six factors that are expected to affect the efficiency 

level, Tj again denotes the three time dummies that account for variations in mean efficiency 

between the years, the 𝜑’s and 𝜔’s are the unknown parameters to be estimated, and e is the 

random error term. We include explanatory variables in the inefficiency model that express 

the management skills of cocoa smallholders and their access to productive resources and 

knowledge (Wollni and Brümmer, 2012). 

The first two explanatory variables reflect the household structure (Wollni and 

Brümmer, 2012). First, we expect that it is more difficult for households with female heads 
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to access markets. They are also usually widows, which can limit labor availability to 

accomplish agricultural work timely (Onumah et al., 2013b). As a result, we expect female-

headed households to display lower efficiency levels (Table 3.A2).  

Furthermore, farmer age is thought to increase technical inefficiency partly because 

older smallholders take up less likely the latest technologies (Coelli et al., 2005). They are 

also less energetic than their younger counterparts. However, Onumah et al. (2013b) suggest 

that older farmers might develop a higher technical efficiency level than younger farmers 

because of their longer farming experience.  

The next variable refers to the inner capabilities of the household head (Ofori-Bah 

and Asafu-Adjaye, 2011). The education dummy equals one if the head of the household 

completed high school. We expect that it affects positively the management skills of the 

cocoa farmers and hence efficiency (Ingram et al., 2014). However, a number of papers show 

that smallholders with higher educational attainment reveal lower technical efficiency levels 

(Teal et al., 2006). An explanation of these findings is that smallholders with higher 

educational levels have more likely additional sources of income and they concentrate more 

on these off-farm activities than on the farm management.  

The last three variables indicate the external support for cocoa farming households 

(Nkamleu et al., 2010; and Ofori-Bah and Asafu-Adjaye, 2011). Contacts with extension agents 

are commonly considered to influence efficiencies positively since the information circulated 

in extension services should enhance farming methods (Dinar et al., 2007). However, some 

factors such as other information sources, the ability and willingness of smallholders to employ 

the distributed information, and the quality of agricultural extension services can confound the 

results of extension contacts (Feder et al., 2004; Table 3.A2).  

Furthermore, the credit dummy variable indicates whether the cocoa farmer has access 

to credit. If smallholders can buy intermediate inputs with credit when required and not just 

when they have sufficient cash, then input use can become more optimal. Consequently, the 

economic literature underlines the failure of credit markets as the cause of non-profit 

maximizing behaviors and poverty traps (Dercon, 2003). Additionally, reducing capital 

constraints decreases the opportunity cost of intermediate inputs relative to family labor and 

allows the application of labor-saving technologies such as enhanced cocoa hybrid-fertilizer 

methods (Nkamleu et al., 2010). Thus, many economists view the spread of feasible 

agricultural credit services crucial for raising the productivity of labor and land (Zeller et al., 

1997).  
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Finally, we include a dummy variable for membership in a cocoa association. We 

expect that associations assist smallholders in reducing transaction costs and, therefore improve 

their access to various resources and increase their technical efficiency (Binam et al., 2004; 

Hafid et al., 2013). 

 

3.4 Data description 

 

3.4.1 Data sources 

 

We acquire the data using the STORMA (Stability of Rainforest Margins in Indonesia) 

project survey data from Göttingen.6 This project conducted four rounds of household and 

agricultural surveys in Indonesia in 2001, 2004, 2006, and 2013. The survey data were 

collected from 722 cocoa farmer households in 15 random villages near the Lore Lindu 

National Park in Central Sulawesi province. This province is the second largest cocoa producer 

in Indonesia with 17 percent of the Indonesian production in 2014 (Ministry of Agriculture, 

2015). The park provides habitat for some of the most unique animal and plant species in the 

world. However, the increase of land used for farming is threatening its integrity.  

In each sample village, the head of the village and the leaders of the hamlets listed the 

names of every household head living in the village. Next, the sample households were 

randomly selected from these lists and interviewed using standardized structured 

questionnaires. The researchers edited the questionnaire in English first, then translated it into 

Indonesian and tested it with a pilot survey. The interviews lasted, on average, about 2 hours. 

Because some farmers cultivated several cocoa plots simultaneously, output and input details 

were collected at plot level to increase data accuracy. In the four rounds, those panel and split-

off households were tracked who were still living in those 15 villages.  

 

3.4.2 Descriptive statistics 

 

Table 3.2 shows the summary statistics of the independent and dependent variables in 

the production frontier and inefficiency equations. The dataset is an unbalanced panel of 722 

cocoa farms and contains 1290 observations. Therefore, on average, one farm appears in just 

1.8 rounds.  

                                                 
6 Funded by the German Research Foundation (DFG). 
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 Over the 12 years, the average output of the cocoa farms rose almost twofold, while the 

average farm size remained almost constant at around 0.75 hectares, which is about one third 

of the African average (Nkamleu et al., 2010; ICCO, 2012). This resulted in an almost twofold 

increase in the average cocoa yield, which was in 2013 with around 600 kg/hectare above the 

world average of about 500 kg/hectare and well above the Indonesian average of about 400 

kg/hectare (ICCO, 2016). We can list two reasons for this. First, cocoa trees reached their most 

productive age around 2011 and they were, on average, 12 years old in 2013. According to 

Nkamleu et al. (2010), this is just one half of the African average because of the later start of 

cocoa cultivation in Indonesia. Second, the use of labor and intermediate inputs (mostly, 

fertilizer and pesticide) increased more than threefold and the ratio of cocoa farms that used 

both increased from 15 percent to 42 percent. The Gernas Pro Kakao government program 

implemented in 2009 could have contributed to this phenomenon by providing easier access to 

intermediate inputs (KKPOD, 2013). However, the use of labor and intermediate inputs is still 

just one third and one half of the African average (Nkamleu et al., 2010; Maytak, 2014). 

Over the years, we could also observe the spread of hybrid cocoa varieties: in 2013, 

they were planted on 10 percent of the cocoa farms. This is significantly larger than the world 

average of 5 percent (ICCO, 2012). Furthermore, the practice of tree pruning fluctuated around 

95 percent in the last three survey rounds which is much higher than in Africa (Maytak, 2014). 

According to the data, cocoa in our sample area is cultivated mostly in a full-sun monoculture 

system, in contrast to Africa (Gockowski and Sonwa, 2011; Nkamleu et al., 2010). The ratio 

of intercropping decreased to 8 percent in 2013, while the share of high shade farms stood at 

just 2 percent. Finally, in accordance with the world average, 43 percent of the cocoa farms 

experienced significant yield losses due to adverse weather and pests (Dand, 2010). 

The statistics of the inefficiency variables point to a slow cultural change in our 

sample area, to more female household heads. The share of female household heads stood at 

10 percent in 2013, which is consistent with past studies that show cocoa cultivation as a 

male-dominated livelihood (Nkamleu et al., 2010; Maytak, 2014). Moreover, the age and the 

educational attainment of the average household head increased considerably over the years. 

The average farmer age of 49 years in 2013 is consistent with data collected by Nkamleu et 

al. (2010) and Vigneri (2007). Furthermore, we do not observe an increase in extension 

services from the initial 25 percent but do see that credit access rose dramatically from almost 

zero to 23 percent. Finally, in 2013 about every third household was member of a cocoa 

farmer group. All the last three statistical values are close to the African averages (Nkamleu 

et al., 2010).   
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Table 3.2: Summary statistics of the cocoa farm variables. 

Variable 
2001 2004 2006 2013 Pooled 

Mean  SD Mean  SD Mean SD Mean SD Mean SD 

Output  

Cocoa 315 464 379  618 300  328 607  729 427  589 

Input 

Tree age   6.9  3.8 7.2 4.3 12.0 6.5   

Land 75 67 73 59 72 57 77 70 74 64 

Labor 43838 139602 58497 257185 64283 195650 338792  822868 157764 535064 

Int. inputs 152520  307663 122226 232994 77799 226500 319243 701444 185231 476924 

Technology 

No input 0.85 0.36 0.86 0.35 0.79 0.41 0.58 0.49 0.74 0.44 

Gernas 0 0 0 0 0 0  0.14 0.35 0.05 0.22 

Hybrid   0.03 0.16 0.11 0.31 0.10 0.31   

Pruning   0.95 0.22 0.97 0.18 0.93 0.26   

Intercrop   0.16 0.36 0.11 0.32 0.08 0.27   

Shade 60       0.02 0.14   

Crop loss       0.43 0.50   

Inefficiency  

Male  0.99 0.12 0.97  0.18 0.93 0.25 0.90 0.30 0.94 0.24 

Age 45 14 47 14 46 14 49 15 47 14 

High school  0.12 0.33 0.15 0.36 0.19 0.40 0.17 0.38 0.17 0.37 

Extension 0.31 0.46 0.25 0.44 0.22 0.41 0.25 0.43 0.25 0.43 

Credit   0.01 0.09 0.09 0.28 0.23 0.42   

Association       0.36 0.48   

Time 

Year 2004 0 0 1 0 0 0 0 0 0.19 0.40 

Year 2006 0 0 0 0 1 0 0 0 0.29 0.45 

Year 2013 0 0 0 0 0 0 1 0 0.36 0.48 

N  207 251 372 460 1290 

 

3.5 Results and discussion 

 

3.5.1 Production frontier 

 

 Table 3.3 displays the parameter estimates of the production frontiers. Because the 

Mundlak (1978) approach selects the random-effect specification over the fixed-effect model, 

we include only the random-effect results in this table. To check for the correct functional form 

of the models, we use likelihood ratio (LR) tests and the Akaike Information Criterion (AIC). 
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They suggest that the Cobb-Douglas production function is preferred with our panel data and 

the translog function with the 2013 data. Thus, we report only these estimation results. 

For the translog functional form, regularity properties must be checked after estimation 

since they are not automatically satisfied (Wollni and Brümmer, 2012). Therefore, we test for 

monotonically increasing marginal products and decreasing marginal returns regarding tree 

age, land, labor, and intermediate inputs in the 2013 model. The first-order coefficients are 

interpreted as partial output elasticities at the sample mean because we mean-correct each 

variable. We find both positive elasticities and diminishing marginal productivities at the 

sample mean. The monotonicity assumptions are violated in less than 1 percent of the 

observations for land, labor, and intermediate inputs but in 57 percent of the cases for tree age. 

We can explain the latter by the fact that, in 2013, the average age of cocoa trees was a little 

higher than their most productive age. 

In the pooled panel model, the output elasticities of land, labor, and intermediate inputs 

are 0.622, 0.118, and 0.079. We employ a t-test to evaluate whether the elasticity of scale 

(0.819) at the sample mean significantly differs from one. The null hypothesis of constant 

returns to scale is rejected at the 5 percent level, according to the test results. This implies that 

cocoa production exhibits a diminishing returns to scale. Normally, undertakings with this 

characteristics are viewed as too big. However, the average cocoa farm size in our sample is 

smaller than one hectare. A plausible cause of the diminishing return to scale can be some 

impediments to growth (Brümmer et al., 2006).  

Additionally, various dummy variables are incorporated into the models to describe 

cocoa farming more accurately. The variable “No input” is negative and significant at the 1 

percent level. This means that, as anticipated, farms not using intermediate inputs have lower 

cocoa output levels. Furthermore, the variable “Gernas” indicates that smallholders who 

participated in the Gernas Pro Kakao government program achieve higher cocoa output 

levels. Finally, the negative signs of the 2004 and 2006 year dummies reflect lower cocoa 

production levels in these two years compared with the other years. This is the consequence 

of an exceptionally strong negative El Niño weather effect between 2004 and 2006.  

The outcomes of the true random effect model are similar to pooled panel model. In 

the 2013 model, the square of the tree age variable is significant and negative. This points to 

the maturing and aging process of the cocoa trees. Furthermore, the output elasticities of land, 

labor, and intermediate inputs are 0.505, 0.257, and 0.088. According to the t-test results, the 

scale elasticity amounts to 0.850 and significantly differs from one. Therefore, we can also 

conclude here that cocoa farms exhibit a decreasing returns to scale. Finally, all dummy 
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variables of the 2013 model confirm the expected signs, but two of them are not significant. 

Our findings show the positive effect of intermediate input use, pruning, and the Gernas Pro 

Kakao program, but the negative effect of high shade on cocoa production. 

 

Table 3.3: Parameter estimates of the cocoa production frontier models. 

Variable Pooled panel model TRE panel model 2013 model 

Input 

ln Tree age   0.071 (0.086) 

ln Land 0.622 (0.033)*** 0.616 (0.034)*** 0.505 (0.062)*** 

ln Labor 0.118 (0.028)*** 0.123 (0.028)*** 0.257 (0.051)*** 

ln Int. inputs 0.079 (0.026)*** 0.081 (0.026)*** 0.088 (0.045)** 

0.5 (ln Tree age)2   -0.584 (0.154)*** 

0.5 (ln Land)2   0.006 (0.072) 

0.5 (ln Labor)2   0.002 (0.096) 

0.5 (ln Int. inputs)2   -0.010 (0.054) 

ln Tree age * ln Land   0.285 (0.093)*** 

ln Tree age * ln Labor   -0.210 (0.095)** 

ln Tree age * ln Int. inputs   -0.099 (0.070) 

ln Land * ln Labor   -0.038 (0.094) 

ln Land * ln Int. inputs   0.070 (0.052) 

ln Labor * ln Int. inputs   0.022 (0.035) 

Technology 

No input -0.531 (0.058)*** -0.506 (0.059)*** -0.389 (0.114)*** 

Gernas 0.359 (0.145)** 0.308 (0.141)** 0.323 (0.122)*** 

Hybrid   0.170 (0.154) 

Pruning   0.494 (0.171)*** 

Intercrop   0.058 (0.232) 

Shade 60   -0.422 (0.208)** 

Crop loss   -0.144 (0.087)* 

Time 

Year 2004 -0.201 (0.117)* -0.235 (0.116)**  

Year 2006 -0.410 (0.091)*** -0.405 (0.091)***  

Year 2013 0.130 (0.143) 0.182 (0.141)  

Constant 1.061 (0.087)*** 1.004 (0.090)*** 0.419 (0.195)** 

Variance 

σu 2.258 (0.377)*** 2.301 (0.411)*** 1.633 (0.313)*** 

σv 0.535 (0.039)*** 0.475 (0.048)*** 0.493 (0.065)*** 

RTS 0.819 0.820 0.850 

Notes: Robust standard errors are in the parentheses. *: p<0.10, **: p<0.05, ***: p<0.01. 
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3.5.2 Efficiency levels 

 

 Generalized likelihood ratio tests are employed to evaluate whether average response 

functions would fit the models or inefficiency effects are present in the models. We reject the 

null hypothesis for all three specifications at the 1 percent level, which means that the stochastic 

frontier model represents the data better than the OLS model. 

 Table 3.4 documents the average annual rates of technical efficiency, while Figure 3.A1 

presents the efficiency distributions of the sample farms. Based on the panel models, the mean 

technical efficiency of cocoa farmers is estimated to be around 50 percent, but the range is very 

wide (1-90) and many scores are inside the bottom quarter of the range of the distribution. This 

means that most cocoa farmers have an ample scope to expand cocoa output without increasing 

input use. African cocoa farmers (Table 3.A1) seem to have higher technical efficiencies which 

can be partly explained by the much longer cultivation of cocoa on the African continent. In 

terms of technical efficiency change over time, we find an overall increasing trend. This is not 

surprising, since cocoa production was introduced in Indonesia only in the 1990s and farmers 

had to learn to know-hows of cultivation. 

  

Table 3.4: Descriptive statistics of the cocoa farm efficiency estimates (percentages). 

Year 
Pooled panel model TRE panel model 2013 model 

Mean SD Min Max Mean SD Min Max Mean SD Min Max 

2001 36 24 1 83 37 24 1 86     

2004 46 22 1 87 48 24 1 89     

2006 51 22 1 83 52 23 1 85     

2013 50 22 2 88 51 23 2 90 50 22 3 87 

2001–2013 47 23 1 88 49 24 1 90     

 

3.5.3 Inefficiency effects 

 

 Table 3.5 presents the results of the inefficiency model estimations: both the estimated 

coefficients and the corresponding marginal effects at the means. For dummy variables, the 

marginal effects are calculated for a discrete change from zero to one. A negative sign indicates 

that the variable in question has a negative influence on inefficiency, which means a positive 

influence on efficiency. We check the joint significance of the possible inefficiency effects 

with likelihood ratio tests. Based on the results, we reject at the 1 percent level for all three 

models that all inefficiency variables are insignificant.  
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In the panel models, the cocoa farmers’ age and the year dummies are the only significant 

factors that affect the productive efficiencies. As anticipated, efficiency increases with farmer 

age, which is also a proxy for experience in cocoa cultivation in our study. According to our 

model, every additional year provides a 0.7 percent increase in technical efficiency, on average. 

Furthermore, the significant year dummies identify an overall increasing trend in technical 

efficiency. The 2013 model finds an additional significant factor: educational attainment. As 

expected, a higher educational level enhances an individual’s understanding of farming. 

Finally, we find that credit access, extension services, and farmer associations do not 

significantly affect efficiency. These results are inconsistent with many African cocoa studies 

which show positive linkages (Table 3.A2). For example, many economists view the spread of 

feasible agricultural credit services crucial for raising technical efficiency (Zeller et al, 1997). 

The limited effect of agricultural extension programs on efficiency can be due to the inherent 

deficiencies of public information systems, flawed service design (“top-down” manner), or 

bureaucratic inefficiency (Nkamleu et al., 2010). Furthermore, the ineffectiveness of farmer 

groups can be attributed to the missing social capital, that is, the lack of assistance to each other 

in the times of need (Ingram et al., 2014). 

 

Table 3.5: Estimates and average marginal effects of the cocoa farm inefficiency models. 

Variable Pooled panel 

model 

 TRE panel model  2013 model  

Coefficients Marg. eff. Coefficients Marg. eff. Coefficients Marg. eff. 

Male  -0.173 (1.112) -0.029 -0.164 (1.204) -0.025 0.530 (0.911) 0.121 

Age -0.041 (0.018)** -0.007** -0.041 (0.020)** -0.006** -0.029 (0.016)* -0.007* 

High school 0.084 (0.595) 0.014 0.092 (0.652) 0.014 -1.272 (0.729)* -0.291* 

Extension -0.108 (0.417) -0.018 -0.100 (0.446) -0.015 0.780 (0.494) 0.178 

Credit     -0.137 (0.528) -0.031 

Association     0.039 (0.437) 0.009 

Time       

Year 2004 -1.769 (0.940)* -0.296* -2.078 (1.060)** -0.320**   

Year 2006 -2.705 (0.800)*** -0.453*** -2.840 (0.881)*** -0.437***   

Year 2013 -2.549 (0.950)*** -0.426*** -2.853 (1.111)*** -0.439***   

Constant 2.241 (1.346)*  2.323 (1.418)  0.336 (1.437)  

Notes: Robust standard errors are in the parentheses. *: p<0.10, **: p<0.05, ***: p<0.01.  

 

3.5.4 Productivity change 

 

 Table 3.6 shows the decomposition of the total factor productivity change into several 

sources: technical efficiency factors, technical change, scale and allocative efficiency effects, 
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and additional factors connected to technology. Land allocative effects are not calculated 

because if the size of a cocoa farm was changed over the years, we consider it a different 

farm. Since the pooled and random-effect model results are similar, we discuss only the RE 

estimates.  

The total productivity growth of the cocoa farms over the 12 years amounts to around 

75 percent. This means about a 6 percent annual improvement, on average. The fastest 

productivity growth (more than 36 percent) was accomplished in the third observation period, 

between 2006 and 2013. In the first and second periods, cocoa farms experienced total factor 

productivity increases of about 13 and 27 percent. 

Examining the individual components of TFP change, we find that the growth in the 

2001–2004 period is primarily caused by technical efficiency change, especially by its TECTC 

component (30.4 percent increase). The distribution of this effect is shown in Figure 3.A2. This 

improvement might be the result of the fact that cocoa production in our sample area started 

just in the 1990s and farmers needed to gain knowledge and experience in the early stages of 

cultivation. In our first sample period, the sharp decrease (−23.5 percent) of the standard 

technology component was counteracting this growth. This could be mainly due to the very 

dry 2004 cocoa growing season. The allocative effect of the intermediate inputs had an 

additional negative influence (−12.8 percent) on productivity. Finally, we find that changes in 

scale and labor allocative efficiency are relatively small compared with the other elements. 

The TFP increase between 2004 and 2006 is dominated by the technical efficiency 

change (16.4 percent) and the allocative effects of the intermediate inputs (14.9 percent). The 

value of the former points to the slowdown of the technical efficiency increase, while the latter 

shows a tremendous improvement in the input allocation. The allocative effect induced by labor 

input and the technology effect of the input use had a further positive influence on productivity. 

Again, the technical change component was offsetting the improvement because of the 

unfavorable weather conditions (-17 percent). 

In contrast to the first two periods, the main driver for productivity growth in the last 

observation period was technical progress (40.5 percent increase). This is due to the positive 

effect of the La Niña climate pattern. However, the distortion in the allocation of intermediate 

inputs (-33.1 percent change) was counterbalancing this improvement. We can also notice the 

increasing technology effect of input use and the Gernas Pro Kakao government program. 

However, technical efficiency growth continued to slow down. A possible explanation for this 

finding could be the deterioration of land infrastructure because of the heavy rains. 
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Table 3.6: Decomposition of the total factor productivity change in cocoa farming (percentages). 

Time period TECEV TECTC TECUF TC SEC AECLA AECII TFPC1 TIU TGK TFPC2 

Pooled model            

2001–2004 2.3 29.3 18.7 -20.1 -1.3 -3.5 -12.6 12.8 1.2 0.0 14.0 

2004–2006 0.9 12.6 4.8 -20.9 -0.1 5.8 14.6 17.7 6.8 0.0 24.5 

2006–2013 2.9 -2.1 3.7 41.0 -1.5 8.7 -32.4 20.3 10.5 6.1 36.9 

2001–2013 6.1 39.8 27.2 0.0 -2.9 11.0 -30.4 50.8 18.5 6.1 75.4 

Average annual 

change 

0.5 3.3 2.3 0.0 -0.2 0.9 -2.5 4.3 1.5 0.5 6.3 

TRE model            

2001–2004 2.1 30.4 20.7 -23.5 -1.3 -3.5 -12.8 12.1 1.1 0.0 13.2 

2004–2006 0.8 9.6 6.0 -17.0 0.0 5.8 14.9 20.1 6.5 0.0 26.6 

2006–2013 2.6 0.2 3.0 40.5 -1.6 9.2 -33.1 20.8 10.0 5.3 36.1 

2001–2013 5.5 40.2 29.7 0.0 -2.9 11.5 -31.0 53.0 17.6 5.3 75.9 

Average annual 

change 

0.5 3.4 2.5 0.0 -0.2 1.0 -2.6 4.5 1.5 0.4 6.4 

Notes: TECEV = technical efficiency change from the variable “age of household head”, TECTC = technical 

efficiency change from technical change, TECUF = technical efficiency change from unspecified factors, TC = 

technical change, SEC = scale efficiency change, AECLA = allocative efficiency change (labor), AECII = allocative 

efficiency change (intermediate inputs), TFPC1 = standard total factor productivity change, TIU = the effect of 

non-zero intermediate input use, TGK = the effect of the Gernas Pro Kakao program, TFPC2 = augmented total 

factor productivity change. Values are calculated according to Brümmer et al. (2002), and Zhu and Lansink 

(2010). 

 

3.6 Conclusion 

 

The surge in cocoa demand and price prompts us to search for sustainable ways to 

improve cocoa yields and thus, farmer income. We investigate the productivity and efficiency of 

the Indonesian cocoa production using a panel survey data of 1290 observations and a stochastic 

frontier model. The results indicate a decreasing return to scale in production. Given the small 

average cocoa farm size, this could reflect the impediments to growth.  

According to our results, the productivity of Indonesian cocoa farming increased by 75 

percent between 2001 and 2013. We decompose total factor productivity change into several 

sources: technical efficiency factors, technical change, scale and allocative efficiency effects, 

and additional factors connected to technology. The calculations show large distortions in input 

allocation. Hence, policies that encourage the adjustment of the cocoa farms’ input use would 

be highly beneficial. Furthermore, the technical change component points to a weather-induced 

volatility in cocoa production. Thus, policy makers should also promote investment in 

agricultural research and transfer of drought-resistant cocoa varieties to farmers. The estimates 
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also show the important role of the increasing input use and the Gernas Pro Kakao government 

program in achieving productivity growth.  

Finally, the biggest growth in cocoa productivity was caused by the increasing technical 

efficiency. However, the average technical efficiency in Indonesia is still under 50 percent, 

which is much smaller than the West African average. To sustainably boost cocoa productivity 

further, we have to look at the possible sources in our detailed technical efficiency results. The 

significant factors identified to have a positive influence on the efficiency levels are the 

smallholders’ educational attainment and their experience in cocoa farming. Our findings also 

show that the extension services, the rural credit system, and the farmer groups do not have a 

significant effect on the efficiency of cocoa farms in our research area.  

The limited effect of existing agricultural extension programs on efficiency can be due 

to the inherent deficiencies of public information systems, flawed service design, or 

bureaucratic inefficiency. Furthermore, the ineffectiveness of farmer groups can be attributed 

to the missing social capital, that is, the lack of assistance to each other in the times of need. 

Hence, policy should focus on adjusting the public extension programs, fostering the mutual 

benefits in the farmer groups, and developing viable credit institutions to expand the Indonesian 

cocoa output without increasing input use. 
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3.8 Appendix 

 

Table 3.A1: Technical efficiencies in previous cocoa studies.  

Country No. of datasets Weighted mean TE Mean sample size Total sample size 

Ghana 10 56 313 3125 

Ivory Coast 1 58 1372 1372 

Cameroon 1 65 1003 1003 

Nigeria 11 72 246 2701 

Indonesia 1 81 98 98 

World 24 63 346 8299 

Sources: Own calculations from Aneani et al. (2011), Awotide et al. (2015), Besseah and Kim (2014), Danso-

Abbeam et al. (2012), Kyei et al. (2011), Nkamleu et al. (2010), Ofori-Bah and Asafu-Adjaye (2011), Onumah et 

al. (2013a), Onumah et al. (2013b), Adedeji et al. (2011), Agom et al.(2012), Amos (2007), Ogundari and 

Odefadehan (2007), Ogunniyi et al. (2012), Oladapo et al. (2012), Oyekale (2012), and Effendi et al. (2013). 

Notes: There are 24 datasets in 17 studies. We used the sample sizes as weights for the aggregation of the technical 

efficiency scores. TE = technical efficiency.  
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Table 3.A2: Determinants of production and inefficiency in previous cocoa studies. 

Variable 
No. of positive 

effects 

Number of negative 

effects 

No. of insignificant 

effects 

No. of 

datasets 

Production 

Tree age 6 5 3 14 

Farm size 19  2 21 

Labor cost 20  3 23 

Fertilizer cost 10 1 6 17 

Pesticide cost 19 1 4 24 

Processing cost 3  1 4 

Transport cost 2   2 

Pruning 1  2 3 

Inefficiency 

Male 1 10 3 14 

Farmer age 3 5 12 20 

Educational level 3 11 9 23 

Extension services 1 8 8 17 

Credit access  6 4 10 

Association member 1 5 4 10 

Intercropping  1 1 2 

Shade cover 1 2 2 5 

Sources: Own calculations from Aneani et al. (2011), Awotide et al. (2015), Besseah and Kim (2014), Danso-

Abbeam et al. (2012), Kyei et al. (2011), Nkamleu et al. (2010), Ofori-Bah and Asafu-Adjaye (2011), Onumah et 

al. (2013a), Onumah et al. (2013b), Adedeji et al. (2011), Agom et al.(2012), Amos (2007), Ogundari and 

Odefadehan (2007), Ogunniyi et al. (2012), Oladapo et al. (2012), Oyekale (2012), and Effendi et al. (2013). 

Notes: There are 24 datasets in 17 studies. 
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Figure 3.A1: Distribution of efficiencies in the cocoa production models. 

a) Pooled panel model, 2001-2013 

 

b) TRE panel model, 2001-2013 

 

c) 2013 model 
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Figure 3.A2: Distribution of the TECTC productivity change component in 2004. 

a) Pooled panel model 

 

b) TRE panel model 
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4. How can the environmental efficiency of Indonesian cocoa farms be 

increased?7 

 

Abstract 

 

We look at the trade-off between smallholder cocoa intensification and the ecosystem 

in Indonesia and investigate the determinants of environmental efficiency in cocoa production. 

In our analysis, we apply a distance output function that includes cocoa production and the 

abundance of native rainforest plants as outputs. Our data set, based on a household and 

environment survey conducted in 2015, allows us to analyze 208 cocoa producers with both 

measured and self-reported data. We find that the intensification of cocoa farms results in 

higher ecosystem degradation. Additionally, the estimations show substantial mean 

inefficiencies (50 percent). On average, the efficiency scores point to a possible production 

expansion of 367 kg of cocoa per farm and year, to a possible increase of 43680 rainforest 

plants per farm, or to a possible acreage reduction of 0.52 hectares per farm. Finally, our results 

show that agricultural extension services have a substantial role in increasing efficiency.  
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4.1 Introduction 

 

4.1.1 Background 

 

The global demand for cocoa grew steeply over the last 15 years. This increase was 

primarily due to the population and economic growth of the Asian and African countries 

(ICCO, 2014; Squicciarini and Swinnen, 2016). Growing demand led to increased cocoa prices 

which, together with the incentives provided by government subsidies for the sector, triggered 

farmers to increase production by raising cultivated land and intensification (Teal et al., 2006).  

As a consequence of the acreage expansion, the more fertile rainforest soils, and the 

lack of other available land, cocoa plantations are increasingly intruding into the Indonesian 

rainforest, which is a world biodiversity hotspot hosting a large number of endemic species 

(REDD, 2012).8 Findings from Frimpong et al. (2007) show a similar phenomenon in Africa. 

The production expansion into rainforest areas threatens biodiversity conservation and the 

functionality of ecological systems, and it contributes to climate change (Asare, 2005).  

The Indonesian Government announced the Gernas Pro Kakao revitalization program 

(KKPOD, 2013) for the cocoa industry in 2009. It was established to increase the adoption of 

pesticides and fertilizers to restore soil nutrients and the use of enhanced cocoa seedlings to 

boost productivity. However, the support of intensification and the ensuing increase in cocoa 

production can also cause environmental deterioration and raise concerns about biodiversity 

conservation (Asare, 2005). 

Welford (1995) consolidates the widespread definition of sustainable development into 

three components. First, the environment is not observed separately from the economic process 

but is included in it. Second, the prospective recognition of resources and third, the equal 

distribution of goods between all members of society. 

Agriculture is a crucial source of income for many low-income households in countries 

such as Indonesia. However, the benefits of income generation must be weighed against 

possible environmental effects such as nutrient losses, pollution, biodiversity losses, and 

climate change effects. The concept of environmental efficiency was developed in the 

economics literature to describe how the performance of environmental elements meet human 

                                                 
8 Indonesia has only 1.2 percent of the world’s land area. However, its forests host 11 percent of all plant species, 

12 percent of all mammal species, 17 percent of all bird species, 16 percent of all reptile and amphibian species, 

33 percent of all insect species, and 24 percent of all fungi species. In this country, 772 species are threatened or 

endangered, among them 147 mammal species. Moreover, 20 of Indonesia’s 40 primate species have lost more 

than 50 percent of their original habitat in the last ten years, among them orangutans (FAO, 2010). 
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demand (Huppes and Ishikawa, 2005). The World Business Council for Sustainable 

Development (WBCSD, 1992) probably first provided a formal definition of environmental 

efficiency. They describe environmental efficiency as a ratio of reduced environmental impact 

and increased production value. 

The goal of this paper is to study the environmental efficiency of cocoa production in 

Sulawesi, Indonesia. This region is an important example of environmental degradation due to 

economic development in terms of agricultural expansion and intensification. On this island, 

80 percent of the rainforests were gone by 2010 causing, sometimes, irreversible losses of 

biodiversity (FAO, 2010).  

 

4.1.2 Contribution 

 

Our research investigates the scope for increasing the environmental efficiency of 

Indonesian cocoa production as a means of fostering sustainability. We estimate based on 

household, agricultural and environmental surveys and stochastic frontier analysis (Coelli et 

al., 2005), the environmental efficiency of production. With the results, we aim to determine 

the magnitude of the attainable efficiency increases, and the methods that can be used to attain 

them.  

A number of studies (Ruf and Schroth, 2004; Schroth et al., 2004; Scherer-Lorenzen et 

al., 2005a) address various issues related to the environmental effects of cocoa farming. 

However, these papers do not deal with efficiency. Efficiency estimations are available for the 

large producing countries such as Ghana: Besseah and Kim (2014), Nigeria: Awotide et al. 

(2015), and Indonesia: Effendi et al. (2013). However, none of them consider the 

environmental effect of production. In order to do this, we include an environmentally relevant 

variable, the abundance of native rainforest plants, in the analysis. We use this, together with 

the cocoa production quantity, as multiple outputs in an output distance function (Fare et al., 

2005).  

Furthermore, previous studies analyze the effect of shading trees and intercropping only 

on efficiency and this leads to inconclusive results (Besseah and Kim, 2014; Nkamleu et al., 

2010; Ofori-Bah and Asafu-Adjaye, 2011). We include these variables in the production 

frontier because we assume that they have a direct effect on production. Additionally, unlike 

previous studies in Indonesia, we include the Gernas Pro Kakao government program in our 

analysis. 
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Moreover, based on Maytak (2014), we collect both measured and self-reported data to 

improve the reliability of estimation. He synthesizes results from cocoa studies using household 

data and shows that self-reported data can exhibit significant bias. For example, he reports an 

average of 10 percent underestimation of farm size when self-reported, with substantial 

deviations from farm sizes 10 hectares and above. 

  Our research sheds more light on the environmental effects of cocoa production and 

on the dissonances between economic and environmental objectives. We focus on yield 

expansion because, with appropriate technologies, it has a smaller negative effect than acreage 

expansion. Our results help to inform policies and practices to sustainably improve yields and 

income, thus reducing deforestation. The results indicate which investments produce the 

highest marginal benefits: for example, improving education or access to financing or to 

extension services (Ingram et al., 2014). 

 

4.2 Methodology 

 

4.2.1 Multi-output frontier model 

 

In the economic literature, there are three main frameworks to measure environmental 

efficiency. First, one can compare the environmental performances of production units 

(Yaisawarng and Klein, 1994). Second, one can use environmental variables as inputs in the 

production function (Reinhard et al., 2002). In the latest methodology, environmental effects 

are treated as outputs of production (Fare et al., 2005). Following Picazo-Tadeo et al. (2014), 

we choose this third framework to account for environmental outputs.  

Efficiency is the capability to maximize outputs given a level of inputs used in the 

production. Debreu (1951) introduced the first concept of creating a production frontier to 

measure efficiency. This led to two main empirical methods for frontier estimation: the 

deterministic Data Envelopment Analysis (DEA) and the parametric Stochastic Frontier 

Analysis (SFA). We assess efficiency using the parametric method since it can differentiate 

between technical inefficiency and the effects of random shocks (Coelli et al., 2005). The most 

established SFA model is based on the output distance function. It is used by a number of 

researchers including Brümmer et al. (2006). 

According to Coelli et al. (2005), the output distance function treats inputs as fixed and 

extends output vectors as long as the outputs are still technically feasible:  
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𝐷𝑜(𝒙, 𝒚) = 𝑖𝑛𝑓 {𝜃 > 0:
𝒚

𝜃
∈ 𝑃(𝒙)}          (4.1) 

where 𝑃(𝒙) represents the set of feasible output vectors (y) which can be produced using the 

input vectors (x). 𝐷𝑜(𝒙, 𝒚) describes the technology completely and gives the reciprocal of the 

maximum proportional expansion of the output vector with given inputs. It is linearly 

homogeneous, non-decreasing, and convex in outputs and non-increasing and quasi-convex in 

inputs. For two outputs, Figure 4.1 depicts the distance function in output space (Brümmer et 

al., 2006). The output set 𝑃(𝒙) is bounded by the production-possibility frontier (PPF), which 

represents the technically efficient points for all output combinations, given the input 

combination x. To determine the value of the distance function, all observed points of 

production are scaled radially toward the output set boundary. The distance function shows the 

relation of a given output vector (𝑂𝐴 in Figure 4.1) to the maximal feasible output with 

unchanged output mix (𝑂𝐵 in Figure 4.1). The output orientated measure of technical 

efficiency equals the reciprocal of the output distance function: 

 𝑇𝐸 = 1/𝐷𝑜(𝒙, 𝒚).            (4.2) 

It is difficult to estimate the output distance function directly with ordinary least squares 

(OLS) or maximum likelihood (ML) methods because its value is unobserved. However, we 

can transform the function into an estimatable equation by exploiting its linear homogeneity 

property in outputs. A possible way to impose this condition is by normalizing the output 

distance function by an output (Coelli et al., 2005). We choose y1, which leads to the following 

expression: 

𝐷𝑜 (𝒙𝒊,
𝒚𝒊

𝑦1𝑖
) =

1

𝑦1𝑖
𝐷𝑜(𝒙𝒊, 𝒚𝒊).           (4.3) 

Subsequently, taking the log of both sides and rearranging yields 

ln 𝑦1𝑖 = − ln 𝐷𝑜 (𝒙𝒊,
𝒚𝒊

𝑦1𝑖
) + ln 𝐷𝑜(𝒙𝒊, 𝒚𝒊)        (4.4) 

In this case, the technical efficiency of farm i can be written as  

𝑇𝐸𝑖  =  𝑒𝑥𝑝 (−𝑢𝑖)            (4.5) 

where ui is a non-negative unobservable term assumed to be independently and identically 

distributed as 𝑁(µ𝑖, 𝜎𝑢
2). Finally, substituting equations (4.2) and (4.5) into (4.4), and then 

adding a random error term vi that is independently and identically distributed as 𝑁(µ𝑖, 𝜎𝑢
2) and 

independent of ui gives 

ln 𝑦1𝑖 = −ln 𝐷𝑜 (𝒙𝒊,
𝒚𝒊

𝑦1𝑖
) + 𝑣𝑖 − 𝑢𝑖          (4.6) 
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The parameters of the distance function in equation (4.6) must theoretically satisfy the 

regularity conditions: monotonicity and curvature (Coelli et al., 2005). Because the Cobb-

Douglas production function has the wrong curvature in the yi/y1i space of a distance function 

framework, we use a translog functional form. In this function, the inclusion of squared and 

interaction terms provides a high level of flexibility, an easy calculation, and the possibility to 

impose homogeneity (Brümmer et al., 2006). 

The extension of our model in equation (4.6) enables us to measure how household 

characteristics influence efficiency. We choose a specification proposed by Coelli et al. (2005), 

which models the technical inefficiency (𝑢𝑖) as a function of several variables: 

𝑢𝑖 = 𝜑𝑍𝑖 + 𝑒𝑖            (4.7) 

where 𝑍𝑖 is a vector of farm-specific factors that are assumed to affect efficiency, 𝜑 is a vector 

with parameters to be estimated, and 𝑒𝑖 is an independent and identically distributed random 

error term. If the estimated parameter is positive, then the corresponding variable has a negative 

influence on technical efficiency.  

 

Figure 4.1: Output distance function for two outputs 

  

  

Source: Brümmer et al. (2006). 
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4.2.2 Estimation issues 

 

 We look at three issues of the statistical inference: the estimation technique of the 

frontier model, the estimation technique of the inefficiency model, and endogeneity. 

First, standard techniques such as OLS are inappropriate for estimating the 

unobservable frontier function from observable input and output data because they focus on 

describing average relationships. Therefore, we base the parameters on ML. Before carrying 

out the estimation, each variable is normalized by its sample mean. Given this transformation, 

the first-order coefficients can be viewed as partial production elasticities at the sample mean 

(Coelli et al., 2005).  

Regarding the second inference issue, Greene (2008) points out that researchers often 

incorporate inefficiency effects using two-step estimation techniques. In the first step, the 

production function is specified and the technical inefficiency is predicted. The second step 

regresses the assumed characteristics on the predicted inefficiency values via OLS. This 

approach leads to severely biased results. The issue is addressed by using a simultaneous 

estimation that includes the efficiency effects in the production frontier estimation. 

 Furthermore, the direct inference of a stochastic frontier may be susceptible to 

simultaneity bias that occurs if each farmer selects the output and input levels to maximize 

profit for given prices. But no simultaneity bias ensues if farmers maximize expected rather 

than actual profit (Coelli et al., 2005). We make this reasonable assumption meaning that 

technical efficiency is unknown to producers before they make their input decisions. Thus, the 

quantities of variable inputs are largely predetermined and uncorrelated with technical 

efficiency. 

Finally, according to Brümmer et al. (2006), several studies also question the 

transformation of the distance function by applying the ratio method. For example, Kumbhakar 

and Lovell (2000) argue that the Euclidean norm of output model, which avoids the choice of 

a specific output, might be less susceptible to the endogeneity bias than the ratio model. 

However, Sickles et al. (2002) conclude that in the stochastic production frontier context, the 

ratio of two output variables is not endogenous, even if the output levels are. Another advantage 

of the ratio transformation is that in this model, the degree of multicollinearity is considerably 

smaller than in the norm model.  
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4.3 Empirical specification  

 

4.3.1 Production frontier model 

 

The translog output distance function for the observation i with two outputs, three 

inputs, and five dummy variables is specified as: 

𝑙𝑛𝑦1𝑖 =  −𝛼1 − 𝛼2𝑙𝑛
𝑦2𝑖

𝑦1𝑖
− ∑ 𝛽𝑘𝑙𝑛𝑥𝑘𝑖

3
𝑘=1 −

1

2
𝛼11𝑙𝑛

𝑦2𝑖

𝑦1𝑖
𝑙𝑛

𝑦2𝑖

𝑦1𝑖
−

1

2
∑ ∑ 𝛽𝑗𝑘𝑙𝑛𝑥𝑗𝑖𝑙𝑛𝑥𝑘𝑖

3
𝑘=1

3
𝑗=1 −

∑ 𝛾1𝑘𝑙𝑛
𝑦2𝑖

𝑦1𝑖
𝑙𝑛𝑥𝑘𝑖

3
𝑘=1 − ∑ 𝛿𝑗𝐷𝑗𝑖 + 𝑣𝑖 − 𝑢𝑖

5
𝑗=1         (4.8) 

where the unit of observation is the farm of household i, y1i is the amount of cocoa beans 

harvested in kilograms, y2i is the environmental output, xk is a vector of observations on inputs, 

Dj is a vector of observations on dummy variables characterizing the production process, the 

𝛼’s, 𝛽’s, 𝛾’s, and 𝛿’s are unknown parameters to be estimated, v is a random error term, and 

finally u is a non-negative unobservable variable representing inefficiency. 

 Based on Gockowski and Sonwa (2011), we use plant abundance as a measure of the 

environmental output y2. We did not include tree biomass and other crop outputs in the 

production function because of the small number of forest and other crop trees on the sample 

cocoa farms. 

We draw on Nkamleu et al. (2010) and Ofori-Bah and Asafu-Adjaye (2011) to identify 

the production factors that we consider in our analysis (Table 4.1). These include land (x1), 

costs (x2), tree age (x3), and dummies representing the cocoa farmers’ management capabilities 

(Wollni and Brümmer, 2012). In our model, land indicates the total cultivated cocoa area 

measured in ares, while costs are calculated in Rupiah and involve all labor, fertilizer, and 

pesticide costs used on the cocoa farm.9 We aggregate the latter inputs to avoid 

multicollinearity (Brümmer et al., 2006) and assume that the value of material inputs and labor 

costs reflects the quality of inputs better than quantity (Wollni and Brümmer, 2012). The age 

of cocoa trees (x4) is also added to the classical production factors. It influences the cocoa 

output the following way. Cocoa trees begin to produce pods only from about three years after 

planting, reach full bearing capacity around the age of 10 years, and their output starts to 

diminish gradually thereafter (Dand, 2010). Hence, the sign and magnitude of the effect of tree 

age varies depending on the average tree age in the sample.  

                                                 
9 1 hectare equals 100 ares. In December 2015, 1 euro cost around 15000 Rupiahs. 



76 

 

Following Wollni and Brümmer (2012), we enhance the basic production frontier with 

five dummy variables to describe the cocoa cultivation process more accurately. The first 

dummy variable equals one if only family labor (no material inputs or hired labor) was used 

for maintenance and harvesting tasks. According to Binswanger and Rosenzweig (1986), if 

family members cannot get off-farm jobs in imperfect input and labor markets, their time may 

be allocated to work on the cocoa farms up to the extent where the marginal utility of 

production is equal to the marginal utility of leisure. Therefore, using exclusively family 

workers may negatively affect production if cocoa plantations are used to absorb surplus family 

labor. The second dummy variable equals one if the smallholder participated in the Gernas Pro 

Kakao government program. The objective of this program is to rehabilitate cocoa farms and 

expand intensification by providing easier access to inputs (KKPOD, 2013). The third dummy 

variable for yield loss is used to reflect the effect of pests and adverse weather on cocoa harvest 

quantity. 

Some cocoa is grown in an agroforestry or an intercropping system (Ofori-Bah and 

Asafu-Adjaye, 2011). Ruf and Zadi (1998) and Asare (2005) suppose that cocoa yields can be 

maintained in the long run only with the use of forest tree species in cocoa cultivation. Cocoa 

agroforests also support conservation policies because they connect rainforest areas and 

provide habitat for native plants and animals. However, the influence of shading trees on cocoa 

yields is highly debated. Although some papers report the advantages of these trees because 

they decrease plant stress, others provide evidence that shade can limit cocoa yields (Frimpong 

et al., 2007). Following Bentley et al. (2004), we add a fourth dummy variable to our model that 

captures the influence of the higher shade (larger than 35 percent) production system and 

expect the sign to be negative.  

To assess the effect of crop diversification on cocoa production (Ofori-Bah and Asafu-

Adjaye, 2011), a fifth dummy variable for intercropping is also added to the model. Farmers 

can grow a variety of fruit-bearing trees to help cope with the volatile cocoa prices by 

supplementing their income. In Indonesia, banana, durian, and coconut are mainly intercropped 

with cocoa at its fruit-bearing age (Ministry of Agriculture, 2015). But crop diversification has 

also another advantage. An increasing number of studies demonstrate that intercropping 

improves erosion control (soil and water retention), nutrient cycling, carbon dioxide capture, 

biodiversity, and the relationship of fauna and flora (Scherer-Lorenzen et al., 2005b; 

Gockowski and Sonwa, 2011). Therefore, interplanting is often supported to take advantage of 

the mutualism between different plants and to compensate for the low level of intermediate 

inputs (Pretzsch, 2005). We anticipate that intercropping has a positive effect on cocoa yields.  
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Table 4.1: Description of the cocoa farm variables. 

Variable Description 

Output  

Cocoa Cocoa quantity harvested on the farm (kilograms) 

Plants Number of native rainforest plants in a random 5*5m area on the cocoa farm 

Input 

Tree age_M Average cocoa tree age (years), measured 

Tree age_S Average cocoa tree age (years), self-reported 

Land_M Total area planted with cocoa, measured (ares) 

Land_S Total area planted with cocoa, self-reported (ares) 

Costs Fertilizer, pesticide, transport, processing, and labor costs for the farm (1000 Rupiah) 

Technology 

No expense Dummy, 1 = household used only family labor (no material inputs or hired labor) 

Gernas  Dummy, 1 = household joined the Gernas Pro Kakao program in the last 3 years 

Intercrop_M  Dummy, 1 = there was intercropping on the cocoa farm, measured 

Intercrop_S Dummy, 1 = there was intercropping on the cocoa farm, self-reported 

Shade_M Dummy, 1 = shade level of the cocoa farm is larger than 35 percent, measured 

Shade_S Dummy, 1 = shade level of the cocoa farm is larger than 35 percent, self-reported 

Crop loss Dummy, 1 = yield loss because of adverse weather or pests  

Inefficiency 

Male  Dummy, 1 = household head is male 

High school  Dummy, 1 = household head completed the junior high school 

Extension Dummy, 1 = household head had extension contacts 

Credit Dummy, 1 = household head obtained credit in the last 3 years 

Notes: All variables refer to the last 12 months with the mentioned exceptions. 

 

4.3.2 Inefficiency model 

 

We specify six elements in the vector Z in equation (4.7) that express the management 

skills of cocoa smallholders and their access to productive resources and knowledge (Wollni 

and Brümmer, 2012). First, we anticipate that it is more difficult for households with female 

heads to access markets (Wollni and Brümmer, 2012). They are also usually widows, which 

can limit labor availability to accomplish agricultural work timely (Onumah et al., 2013b). 

As a result, we expect female-headed households to display lower efficiency levels.  

Second, the education dummy equals one if the head of the household completed junior 

high school. We expect that it affects positively the management skills of the cocoa farmers 

and hence efficiency (Ingram et al., 2014). However, a number of papers show that 

smallholders with higher educational attainment reveal lower technical efficiency levels (Teal 

et al., 2006). An explanation of these findings is that smallholders with higher educational 
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levels have more likely additional sources of income and they concentrate more on these off-

farm activities than on the farm management. 

The next two variables indicate the external support for cocoa farming households 

(Nkamleu et al., 2010; and Ofori-Bah and Asafu-Adjaye, 2011). Contacts with extension agents 

are commonly considered to influence efficiencies positively since the information circulated 

in extension services should enhance farming methods (Dinar et al., 2007). However, some 

factors such as other information sources, the ability and willingness of smallholders to employ 

the distributed information, and the quality of agricultural extension services can confound the 

results of extension contacts (Feder et al., 2004). 

Furthermore, the credit dummy variable indicates whether the cocoa farmer has access 

to credit. If smallholders can buy intermediate inputs with credit when required and not just 

when they have sufficient cash, then input use can become more optimal. Consequently, the 

economic literature underlines the failure of credit markets as the cause of non-profit 

maximizing behaviors and poverty traps (Dercon, 2003). Additionally, reducing capital 

constraints decreases the opportunity cost of intermediate inputs relative to family labor and 

allows the application of labor-saving technologies such as enhanced cocoa hybrid-fertilizer 

methods (Nkamleu et al., 2010). Therefore, many economists view the spread of feasible 

agricultural credit services crucial for raising the productivity of labor and land (Zeller et al., 

1997). 

Based on Rao et al. (2012), we also include production frontier variables in the 

inefficiency model. Following Wollni and Brümmer (2012) and Waarts et al. (2015), the size 

of the farm reflects households’ endowments. It influences the technical efficiency 

ambiguously. If farmers with larger plantations specialize less in cocoa cultivation, then the 

size of the farm may negatively affect efficiency. However, farm size as a proxy for total wealth 

is anticipated to positively influence technical efficiency if financial markets are constrained 

(Binswanger and Rosenzweig, 1986).  

The Gernas variable is also part of the inefficiency specification because we expect that 

this government program did not just influence the output directly but also indirectly through 

the efficiency. In particular, we hypothesize that, although Gernas increases output, it reduces 

efficiency temporarily due to a learning curve effect: it shifts out the production frontier but 

producers are not able to keep pace in the short run (Brümmer et al., 2006).  
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4.4 Data description 

 

4.4.1 Data sources 

 

We acquire the data using the survey infrastructure of the earlier STORMA (Stability 

of Rainforest Margins in Indonesia) project in Göttingen. This project conducted four rounds 

of household and agricultural surveys in Indonesia between 2001 and 2013. The survey data 

were collected from 722 randomly selected cocoa farmer households in 15 random villages 

near the Lore Lindu National Park in Central Sulawesi province. This province is the second 

largest cocoa producer in Indonesia with 17 percent of the Indonesian production in 2014 

(Ministry of Agriculture, 2015). The park provides habitat for some of the most unique 

animal and plant species in the world. However, the increase of land used for farming is 

threatening its integrity (Zeller et al., 2002).  

For our survey, we randomly selected one third (240) of the STORMA households in 

2015. First, these households were interviewed using standardized structured questionnaires. 

The researchers edited the questionnaire in English first, then translated it into Indonesian and 

tested it with a pilot survey. The interviews lasted, on average, about 2 hours. Because some 

farmers cultivated several cocoa plots simultaneously, output and input details were collected 

at plot level to increase data accuracy (Rao et al., 2012).  

Second, we extended this data by verifying the self-reported values of variables and by 

measuring environmental outputs such as native plant abundance on the farm of every sampled 

household. Based on Maytak (2014), we expect that estimations with measured and self-

reported data lead to significantly different results. In particular, we hypothesize that self-

reported data overestimates efficiencies because farmers tend to paint a too rosy picture of their 

operations. 

The data collection protocol for our survey was developed with the help of the 

EFFORTS (Ecological and Socioeconomic Functions of Tropical Lowland Rainforest 

Transformation Systems) project at Göttingen.10 We tested this protocol on 12 cocoa farms to 

improve it. To implement it, we hired six BA graduates in botany from the University of 

Tadulako in Palu, Central Sulawesi, who also carried out the household interviews. A 

representative 5 meter by 5 meter area in the middle of the each cocoa farm was selected for 

plant counting and plant identification in the understory vegetation (Gockowski and Sonwa, 

                                                 
10 Funded by the German Research Foundation (DFG). 
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2011). Furthermore, cameras with GPS reception were used to photograph all the unknown 

plants for later identification and to verify the farm size and the other farm characteristics.  

 

4.4.2 Descriptive statistics 

 

Table 4.2 shows the summary statistics of the independent and dependent variables in 

the production frontier and inefficiency equations. On average, we find 106 native rainforest 

plants on the 5x5 meter sampling areas. However, the standard deviation and the extreme 

values reveal huge differences between the farms. Compared with the last survey done in our 

sample area in 2012, the average output of the cocoa farms almost halved in 2015, while the 

average farm size remained almost constant at around one hectare, which is about one third of 

the African average (ICCO, 2016). This resulted in an almost 50 percent decrease in the average 

cocoa yield, which was in 2015 around 350 kg/hectare. We can list two reasons for this. First, 

cocoa trees are now considerably older than the most productive age: in 2015, they were on 

average 15 years old. This is still just one half of the African average because of the later start 

of cocoa cultivation in Indonesia. Second, a record drought hit Sulawesi in 2015 because of the 

latest El Niño cycle. Due to the extremely dry weather, 90 percent of the households reported 

significant yield losses.  

Labor, fertilizer, and pesticide use more than doubled in the last three years. The 

continued expansion of the Gernas Pro Kakao government program could have contributed 

to this phenomenon by providing easier access to intermediate inputs (KKPOD, 2013). 

According to our survey data, the level of labor and intermediate input use is now 

approaching the African average (Maytak, 2014). Furthermore, we find that cocoa in our 

sample area is cultivated mostly in a full-sun monoculture system, in contrast to Africa 

(Gockowski and Sonwa, 2011; Nkamleu et al., 2010).  

The statistics of the inefficiency variables show that the share of female household 

heads stood at 6 percent in 2015, which is consistent with past studies that show cocoa 

cultivation as a male-dominated livelihood (Nkamleu et al., 2010; Maytak, 2014). Moreover, 

the educational attainment of the average household head increased considerably over the 

years: in 2015, more than 50 percent of the household heads completed junior school. 

Furthermore, we could observe an increase of extension services in the last three years: 40 

percent of household heads had extension contacts in 2015. However, credit access fell back 

significantly just to 8 percent in 2015.  
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Finally, let us compare the measured and self-reported variables. Two dummy variables 

have both values: intercropping and shade cover. As we can see from Table 4.A1, the self-

reported dummy variables differ in about 5-10 percent of observations from the measured ones 

and there are no clear directions in the inaccuracies. Figure 4.A1 shows us the differences in the 

two continuous variables: tree age and farm size. We can find alternative values in 30 and 80 

percent of the observations. Again, the inaccuracies seem to be random. T-tests confirm that there 

are no significant differences in the means of the four self-reported and measured variables. 

 

Table 4.2: Summary statistics of the cocoa farm variables. 

Variable Observations Mean Standard 

deviation 

Minimum Maximum 

Output      

Cocoa 208 372 542 15 4500 

Plants 208 106 65 10 315 

Input      

Tree age_M 208 14.9 5.8 3 40 

Tree age_S 208 15.0 5.6 3 40 

Land_M 208 104 73 20 500 

Land_S 208 106 74 17 540 

Costs 208 1557 2027 30 11735 

Technology      

No expense 208 0.02 0.14 0 1 

Gernas 208 0.26 0.44 0 1 

Intercrop_M  208 0.13 0.34 0 1 

Intercrop_S 208 0.14 0.35 0 1 

Shade_M 208 0.15 0.36 0 1 

Shade_S 208 0.16 0.37 0 1 

Crop loss 208 0.90 0.30 0 1 

Inefficiency    0 1 

Male  208 0.94 0.24 0 1 

High school  208 0.51 0.50 0 1 

Extension 208 0.40 0.49 0 1 

Credit 208 0.08 0.27 0 1 

 

4.5 Results and discussion 

 

4.5.1 Production frontier 

 

 Table 4.3 shows the parameter estimates of the frontier models. According to equation 

(4.8), a positive rainforest plants distance elasticity implies a negative effect on the cocoa 
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production. Similarly, a negative input distance elasticity is interpreted as a positive contribution 

of the input to the cocoa production. 

 The coefficients of the native plants variable are significant and have the expected 

positive signs. Their values, 0.651 and 0.698, mean that a one percent increase in the number 

of rainforest plants on the cocoa farm reduces the cocoa output by almost 0.7 percent. Each 

significant first-order input distance elasticity possesses the expected sign and, therefore, satisfies 

the monotonicity property at the sample mean. In the measured variables model, the partial 

production elasticities of land and costs are 0.699 and 0.194. The values from the model using 

the self-reported variables are similar. We use t-tests to evaluate whether the scale elasticities 

of 0.893 and 0.906 at the sample mean significantly differ from one. The null hypothesis of 

constant returns to scale is rejected at the 5 percent level, according to the test results. This 

implies that cocoa production exhibits a diminishing returns to scale. Normally, undertakings 

with this characteristics are viewed as too big. However, the average cocoa farm size in our 

sample is small: just around one hectare. A plausible cause of the diminishing return to scale 

can be some impediments to growth (Brümmer et al., 2006). 

 The positive square terms of plants and tree age fulfil the curvature conditions of the 

production function at the sample mean. The values for the tree age variable point to the maturing 

and aging process of the cocoa trees, although the coefficient in the self-reported variables model 

is not significant. Moving to the cross-term coefficients, we find evidence of input complementary 

effect between land and costs. In the case of the measured variables model, two additional 

interaction terms are significant. They show complimentary effect between plants and costs, and 

substitution effect between plants and tree age. 

Additionally, various dummy variables are incorporated into the models to describe 

cocoa farming more accurately. The coefficient of the Gernas Pro Kakao government program 

is negative and significant at the 1 percent level in both models. This means that, as anticipated, 

farms participating in this program have higher cocoa output levels. However, it seems that the 

self-reported variables substantially overestimate the effect of Gernas Pro Kakao. The crop loss 

variable is also significant in both models and possesses the expected sign. This points to the 

exceptionally dry El Niño weather. However, the self-reported variables largely 

underestimated its effect. Finally, high shade cover seems to decrease production, but its 

coefficient is only significant in the self-reported model.  
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Table 4.3: Parameter estimates of the cocoa production frontier models. 

Variable TE measured variables TE self-reported variables 

Input   

ln Plants 0.651 (0.058)*** 0.698 (0.065)*** 

ln Tree age_M/S 0.221 (0.165) 0.042 (0.123) 

ln Land_ M/S -0.699 (0.355)** -0.697 (0.165)*** 

ln Costs -0.194 (0.080)** -0.209 (0.071)*** 

0.5 (ln Plants)2 0.113 (0.039)*** 0.143 (0.047)*** 

0.5 (ln Tree age_ M/S)2 0.609 (0.283)** 0.242 (0.197) 

0.5 (ln Land_ M/S)2 0.026 (0.362) -0.118 (0.165) 

0.5 (ln Costs)2 -0.048 (0.064) -0.062 (0.051) 

ln Plants * ln Tree age_ M/S 0.082 (0.039)** 0.028 (0.054) 

ln Plants * ln Land_ M/S 0.024 (0.081) -0.090 (0.059) 

ln Plants * ln Costs -0.078 (0.022)*** -0.044 (0.039) 

ln Tree age_ M/S * ln Land_ M/S 0.019 (0.180) -0.059 (0.115) 

ln Tree age_ M/S * ln Costs 0.072 (0.075) 0.038 (0.081) 

ln Land_ M/S * ln Costs -0.195 (0.051)*** -0.232 (0.065)*** 

Technology   

No expense 0.380 (0.240) 0.170 (0.336) 

Gernas -0.357 (0.031)*** -0.516 (0.121)*** 

Intercrop_ M/S 

 

0.153 (0.117) 0.103 (0.094) 

Shade_ M/S 0.121 (0.080) 0.212 (0.072)*** 

Crop loss 0.459 (0.195)** 0.282 (0.133)** 

Constant -0.389 (0.098)*** -0.007 (0.152) 

Variance   

σu 0.487 (0.052)*** 0.501 (0.071)*** 

σv 0.000 (0.000)*** 0.154 (0.049)*** 

RTS 0.893 0.906 

Notes: Robust standard errors are in the parentheses. *: p<0.10, **: p<0.05, ***: p<0.01. 

 

4.5.2 Efficiency levels 

 

 Generalized likelihood ratio tests are employed to evaluate whether average response 

functions would fit the models or inefficiency effects are present in the models. We reject the 

null hypothesis for both specifications at the 1 percent level, which means that the stochastic 

frontier model represents the data better than the OLS model. 

 Table 4.4 documents the average degree of technical efficiency, while Figure 4.A2 

presents the distributions of efficiencies for the sample farms. Based on the measured variables, 

we estimate that the average technical efficiency of cocoa farms is around 50 percent. Low 

values such as this tend to indicate a less specialized and less competitive market (Coelli et al., 
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2005). According to our field observations, this coincides with smallholder cocoa markets in 

Sulawesi, where the only controllable characteristic is the quality of the raw product and many 

producers do not pay too much attention to this. Compared with this value, the self-reported 

variables model overestimates the efficiency by 7 percentage points. The histogram of the 

differences is depicted in Figure 4.A3. Using a t-test, we find that the difference in means is 

statistically significant.  

In both cases, the range of efficiency estimates is very wide and many scores are inside 

the bottom quarter of the distribution range. This means that most cocoa farmers have an ample 

scope to expand cocoa output or increase the number of native rainforest plants without 

increasing input use. The efficiency scores point, on average, to a possible expansion of 

production by 367 kg of cocoa per farm and year or to a possible increase of 43680 rainforest 

plants per farm. 

By plotting the individual efficiencies against the numbers of rainforest plants on the 

corresponding farms, we can detect a logistic increase of efficiencies with the increasing 

number of native plants (Figure 4.2). This means that native plants can positively affect the 

output level via efficiency. Furthermore, the efficiency distributions show, at the mean, a higher 

degree of efficiency for producers with smaller farms. Other factors such as allocation of labor, 

fertilizer, and pesticide are also lower on farms with higher efficiencies, suggesting a more 

efficient use of the available labor force and materials. 

 

Table 4.4: Descriptive statistics of the cocoa farm efficiency estimates (percentages). 

Model Observations Mean Standard deviation Minimum Maximum 

TE measured variables 208 50 22 13 100 

TE self-reported 

variables 

208 57 21 12 93 

TE difference 208 7 9 -24 32 
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Figure 4.2: Scatter plot of the cocoa farm efficiencies and the number of native rainforest plants. 

a) technical efficiency estimated using measured explanatory variables 

 

b) technical efficiency estimated using self-reported explanatory variables 

 

  

Efficiency 

Efficiency 

Number of native plants 

Number of native plants 
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4.5.3 Inefficiency effects 

 

 Table 4.5 presents the results of the inefficiency model estimations: both the estimated 

coefficients and the corresponding marginal effects at the means. For dummy variables, the 

marginal effects are calculated for a discrete change from zero to one. A negative sign indicates 

that the variable in question has a negative influence on inefficiency, which means a positive 

influence on efficiency. We check the joint significance of the possible inefficiency effects 

with likelihood ratio tests. Based on the results, we reject at the 1 percent level for all three 

models that all inefficiency variables are insignificant.  

In both models, the Gernas Pro Kakao government program has a significant influence 

on farm-specific productive efficiencies. Efficiency decreases by 34 percent, on average, with 

participation in this program in the measured variables model. This is plausible because Gernas 

farmers have to apply new production methods due to new hybrid cocoa varieties and 

chemicals. The model using the self-reported data substantially overestimates the effect of the 

Gernas Pro Kakao program. Agricultural extension is the other variable that is significant in 

both cases. In the measured variables model, it increases efficiency by 21 percent. Again, the 

coefficient is largely overestimated with the self-reported variables. 

Finally, we find that credit access does not have a significant effect on efficiency. This 

result does not match with African studies which show positive linkages (Nkamleu et al., 2010; 

Awotide et al., 2015). For example, many economists view the spread of feasible agricultural 

credit services crucial for raising technical efficiency (Zeller et al, 1997).  

 

Table 4.5: Estimates and average marginal effects of the cocoa farm inefficiency models. 

Variable TE measured variables TE self-reported variables 

 Coefficients Marginal effects Coefficients Marginal effects 

ln Land_M/S 0.321 (0.317) 0.236 0.309 (0.216) 0.184 

Gernas 0.337 (0.99)*** 0.248*** 0.660 (0.233)*** 0.394*** 

Male  0.408 (0.226)* 0.300* 0.547 (0.341) 0.326 

High school  0.148 (0.105) 0.109 0.186 (0.116) 0.111 

Extension -0.211 (0.104)** -0.155** -0.318 (0.155)** -0.190** 

Credit -0.254 (0.204) -0.187 -0.242 (0.216) -0.144 

Constant 0.306 (0.337)  -0.134 (0.433)  

Notes: Robust standard errors are in the parentheses. *: p<0.10, **: p<0.05, ***: p<0.01.  
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4.5.4 Shadow prices 

 

To understand the trade-off between the cocoa output and the native rainforest plants, 

the monetary quantification of this connection is desirable. Because markets for these 

herbaceous plants in our specification do not exist, we estimate the shadow price based on our 

output distance function and the corresponding revenue function. In combination with the 

cocoa bean price, we can calculate the absolute price for the native plants. According to FAO 

Statistics, the aggregated Indonesian cocoa price was 1.74 US dollars/kg in 2015. We compute 

the shadow price with the following equation (Fare et al., 2005): 

𝑞 = −𝑝 ∗
𝜕𝐷𝑜(𝒙,𝑦1,𝑦2)/𝜕𝑦2

𝜕𝐷𝑜(𝒙,𝑦1,𝑦2)/𝜕𝑦1
∗

𝜇𝑦1

𝜇𝑦2
          (4.9) 

Because of the normalization of our variables, we have to multiply the derivatives in the 

equation by the ratio of output averages to obtain real values. The shadow price of a rainforest 

plant describes the monetary value of production that must be forgone to increase the number 

of native plants by one moving along the efficient points on the production frontier. According 

to the measured variables model (Table 4.6), the average price for one plant is 3.7 US cents. The 

t-test did not find a significant difference (Figure 4.A4) between the results of two estimates. 

Due to violations of monotonicity, two observations of the shadow price estimations are dropped 

to prevent scaling in the reverse direction on the production frontier (Fare et al., 2005). 

The connection between the abundance of native plants and the shadow price gives an 

additional insight on the shape of the trade-off function. It appears that farms with lower 

abundance of rainforest plants are linked to higher shadow prices than farms with a high 

abundance. Plotting the individual shadow prices against the characteristics of producers also 

reveals that bigger farm sizes and costs are connected to lower prices. 

  

Table 4.6: The calculated shadow prices of the native rainforest plants in US cents. 

Model Observations Mean Standard deviation Minimum Maximum 

SP measured variables 206 3.71 4.93 0.47 48.47 

SP self-reported 

variables 

206 3.57 2.79 0.60 20.48 

SP difference 206 -0.14 3.06 -27.98 3.94 

  

4.6 Conclusion  

 

The surge in cocoa demand and price prompts us to search for sustainable ways to 

improve cocoa yields. We look at the trade-off between smallholder cocoa intensification 
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and the ecosystem in Central Sulawesi and investigate the determinants of environmental 

efficiency in cocoa production. We apply a distance output function that includes cocoa 

production and the abundance of native rainforest plants as outputs. Our data set, based on a 

household and environmental survey conducted in 2015, allows us to analyze 208 cocoa 

producers with both measured and self-reported data. 

We find that there is a trade-off between cocoa yields and abundance of native 

rainforest plants. According to this connection, the intensification of cocoa farms results in 

higher ecosystem degradation. By computing the shadow prices of these rainforest plants, we 

estimate the monetary value of reductions in their abundance. Additionally, each significant 

first-order input distance elasticity possesses the expected sign and the results indicate that 

most cocoa farmers operate under diminishing returns to scale. Given the small average farm 

size, the latter could reflect the impediments to growth. As expected, the Gernas Pro Kakao 

government program helps the participating farmers to increase their output. 

The estimations show substantial inefficiencies for the majority of cocoa farmers. The 

low average efficiency value of 50 percent indicates a less specialized and less competitive 

market with low pressure for cocoa producers. Increasing efficiency could lead to a win-win-

win situation: more production coming from less hectares, with more native plants co-existing 

with cocoa on the remaining hectares. On average, the efficiency scores point to a possible 

production expansion of 367 kg of cocoa per farm and year, to a possible increase of 43680 

rainforest plants per farm, or to a possible acreage reduction of 0.52 hectares per farm. 

Looking at the inefficiency effects, we can see that the participation in the Gernas Pro 

Kakao program decreases efficiency. This is plausible because Gernas farmers have to learn 

new production methods due to new cocoa varieties and chemicals and they are not able to 

catch up to the outward-shifting production frontier in the short run. Furthermore, we find that 

agricultural extension services have a substantial role in increasing efficiency, confirming 

evidence from West Africa. We can also observe that the model using self-reported variables 

overestimates the inefficiency effects, as well as the distance elasticities and efficiencies.  

Finally, we find that credit access does not have a significant effect on efficiency. This 

result is inconsistent with African studies which show positive linkages. Feasible agricultural 

credit services are viewed by numerous economists as a crucial prerequisite for improving 

efficiency, a critical part of encouraging development. We recommend linking credit to 

extension services as part of this effort. 
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4.8 Appendix 

 

Figure 4.A1: Histograms of the differences between the self-reported and measured cocoa farm variables. 

a) Cocoa tree age  

 

b) Total cocoa farm size 
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Figure 4.A2: Distribution of cocoa farm efficiencies in the models. 

a) technical efficiency estimated using measured explanatory variables 

 

b) technical efficiency using self-reported explanatory variables 
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Figure 4.A3: Histogram of the differences between the cocoa farm efficiencies (self-reported – measured variables 

method). 

 

Figure A4: Histogram of the differences between the shadow prices of native rainforest plants in US cents (self-

reported – measured variables method). 
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Table 4.A1: Comparison of the self-reported and measured values of the cocoa farm dummy variables. 
Variables Observations Same 1 → 0 0 → 1 

Intercrop_M vs. Intercrop_S 208 199 3 6 

Shade_M vs. Shade_S 208 189 8 11 
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5. Conclusion 

 

5.1 Main findings and policy implications 

 

The high economic and population growth in Africa and Asia, the increase of global 

trade, and globalization have largely boosted the global cocoa demand. However, cocoa 

growing countries can barely meet this expanding demand. These enduring processes triggered 

a high volatility in world cocoa prices in this new century. This price volatility makes the 

millions of cocoa farmers in the developing world highly vulnerable to poverty. 

Our first essay in Chapter 2 helps to inform development policies of the elements 

involved in the global cocoa bean market to understand the roots of the recent price volatility. 

A large volatility in the value of an agricultural commodity is linked to the inelasticity of its 

supply or demand. Therefore, we test the hypothesis that the price elasticities of the global 

cocoa supply and demand are low. We describe the global cocoa market with three 

cointegration dynamic structural sub-models (supply, demand, and price). Our estimates are 

based on annual global observations covering the years 1963 through 2013. We find that the 

world cocoa supply is extremely price-inelastic: the corresponding short- and long-run 

estimates are 0.07 and 0.57. The price elasticity of the world cocoa demand also falls into the 

extremely inelastic range: the short- and long-run estimates are −0.06 and −0.34. Based on 

these empirical results, we consider the prospects for cocoa price stabilization. The cocoa price 

volatility was treated with various unsuccessful methods in the past. A possible solution for 

reducing the price volatility would be the encouragement of crop diversification. This increases 

the price elasticity of cocoa supply by adjusting the effort and money allocation between the 

crops, thus decreasing price volatility. 

Our second essay in Chapter 3 investigates to what extent and how cocoa cultivation 

can be made more productive to increase supply and farmer incomes. We concentrate on 

Indonesia which gives 10 percent of the world production. Nearly 1.5 million Indonesian 

households depend on cocoa farming and the majority of them are poor. We estimate, based 

on a large household panel data set and stochastic frontier analysis, the technical efficiency of 

cocoa production and decompose productivity growth. According to our results, the 

productivity of Indonesian cocoa farming increased by 75 percent between 2001 and 2013. 

Technical efficiency growth and the increased chemicals use supported by government 

subsidies were responsible for the majority of this gain. Furthermore, the calculations show 

large distortions in the input allocations. Hence, policies that encourage the adjustment of the 
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cocoa farms’ input use would be highly beneficial. Moreover, the technical change component 

points to a weather-induced volatility in cocoa production. Thus, policy makers should also 

promote investment in agricultural research and transfer of drought-resistant cocoa varieties to 

farmers. Additionally, the average efficiency of cocoa farmers is estimated to be around 50 

percent. We find that farmers’ educational attainment and their experience in cocoa farming 

are significant factors that can increase the efficiency levels. Our research also shows the 

insignificant effect of existing agricultural extension services, farmer associations, and rural 

credit programs on the technical efficiency of cocoa farming. Hence, public policy should focus 

on adjusting the public extension programs, fostering the mutual benefits in the farmer groups, 

and developing viable credit institutions. 

In our third essay in Chapter 4, we look at the trade-off between smallholder cocoa 

intensification and the ecosystem in Indonesia and investigate the determinants of environmental 

efficiency in the production. We apply a distance output function that includes cocoa production 

and the abundance of native rainforest plants as outputs. Our data set, based on a household and 

environment survey conducted in 2015, allows us to analyze 208 cocoa producers with both 

measured and self-reported data. We find that the intensification of cocoa farms results in higher 

ecosystem degradation. Additionally, the estimations show substantial average inefficiencies (50 

percent), similar to our second essay. Increasing efficiency could lead to a win-win-win situation: 

more production coming from less hectares, with more native plants co-existing with cocoa on 

the remaining hectares. On average, the efficiency scores point to a possible production 

expansion of 367 kg of cocoa per farm and year, to a possible increase of 43680 rainforest plants 

per farm, or to a possible acreage reduction of 0.52 hectares per farm. In contrast to our second 

essay, we find that agricultural extension services have a substantial role in increasing efficiency. 

Finally, similar to our second paper, our results show that credit access does not have a significant 

effect on efficiency. Feasible agricultural credit services are viewed by numerous economists as 

a crucial prerequisite for improving efficiency, a critical part of encouraging development. We 

recommend linking credit to extension services as part of this effort. 

 

5.2 Limitations of the study and ideas for future research 

 

Our analysis has several limitations, which are mostly due to the shortcomings of our 

cocoa data sets. First, we take into account only one environmental variable in the farm 

efficiency estimations: the abundance of native rainforest plants. Thus, future research should 

add more environmental output variables to the cocoa production frontier by extending the data 
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collection. For example, we could include biomass such as above-ground and below-ground 

carbon stocks (Gockoswki and Sonwa, 2011) and soil quality such as moisture and nutrients 

(Smaling and Dixon, 2006) in the farm efficiency models. 

Second, we do not consider undesirable outputs such as pollution in the environmental 

efficiency calculations. To overcome this limitation, we could you use the nutrient balance 

approach (Hoang and Nguyen, 2013) by extending the cocoa data set. This perspective 

examines negative environmental effects that arise from the emissions of inputs such as 

nitrogen fertilizers. However, this approach necessitates a different efficiency measurement 

framework: the use of a directional distance function (Fare et al., 2005).  

Finally, our environmental efficiency study with cross-sectional data cannot assess 

changes in environmental variables caused by farm management choices. It is also unable to 

investigate the role of farm investments, although cocoa is a perennial crop. Future research 

with panel data would allow us to examine dynamic technical efficiency (Stefanou, 2009). For 

example, we could incorporate costs for cocoa uprooting and replanting into our efficiency 

models. For this purpose, a framework with dynamic directional distance function (Serra et al., 

2011) could be selected.  
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Appendix: Survey questionnaire 

 



 

 

 

Interviewer   : _________________________ Code : 
└─┴─┴─┘       

Date/Month/Year of interview:      
└─┴─┘/└─┴─┘/└─┴─┘ 

Data Entrier 1 : _________________________ Code : 
└─┴─┴─┘      

Code    : 72       
└─┴─┘    └─┴─┴─┘   └─┴─┴─┘   └─┴─┴─┘ 

Data Entrier 2 : _________________________ Code : 
└─┴─┴─┘         Prov      Regency     District       Village      HHID 

 

                           

C O N F I D E N T I A L  

HOUSEHOLD AND COCOA QUESTIONNAIRE 2015 – GlobalFood – A02 

Section: LK, HH – PS, EI, FI, CR 

 

A.1 Name of respondent/HHMID/Signature : ______________________________  / └─┴─┴─┘ /  ________________________ 

A.2/A.3 District / Village name   : _______________________________ / ___________________________________ 

 

Interview First visit: └─┴─┘/  └─┴─┘ /  └─┴─┘ Second visit: └─┴─┘/  └─┴─┘ /  └─┴─┘ 

A.4 Time the interview started └─┴─┘:└─┴─┘ └─┴─┘:└─┴─┘ 

A.5 Time the interview ended 
└─┴─┘:└─┴─┘ └─┴─┘:└─┴─┘ 

 

A.6 Interview result A.9 Researcher A.10 Data entry 1 A.11 Data entry 2 

1. Completed 

2. Half completed, excuse: ... 

3. Refuse 

4. Move 

5. Deceased 

6. Not interviewed, excuse: ... 

a. Observed                        1. Yes    2. No 

b. Verified                           1. Yes    2. No 

c. Examined                     1. Yes    2. No 

 

1. Completed entries 

2. No entries, excuse: … 

1. Completed entries 

2. No entries, excuse: … 

 
University of Göttingen –Tadulako University 



HH. ID.: 
└─┴─┴─┘ 

 

2 

 

LK. CONTROL SHEET 
Note: Complete the control sheet prior to the interview. 
 

LK.1 Province ......................................................................................................................CODE:└─┴─┘ 

LK.2 Regency/City ......................................................................................................................CODE:└─┴─┘ 

LK.3 District ......................................................................................................................CODE:
└─┴─┴─┘

 

LK.4 Village ......................................................................................................................CODE:
└─┴─┴─┘

 

LK.6 GPS location:  

LK.7 Full address (including sub-village/ neighborhood/kampong, house number) 
 
   

LK.8 RT.            RW/Hamlet. RT.  
└─┴─┴─┘

                                   RW/Hamlet*   
└─┴─┴─┘

 

LK.9 Is the RW of your residence the same with the village office (kelurahan office)? └──┘
 1.  Yes        

2.  No→ LK.11 

LK.10 What is the distance between your house and the village office (kelurahan office)? └─┴─┴─┴─┴─┘m 

LK.11 Phone number └──┘
 

 

1. Yes  Phone number:  └─┴─┴─┴─┘ - └─┴─┴─┴─┴─┴─┴─┴─┘ 

2. Not applicable 

LK.12 
Other information concerning the location of this household: identify area nearby 
the research position that is on the same street as the school, mosque, church, or 
any other important buildings. 

 

*please choose one

  



HH. ID.: 
└─┴─┴─┘ 
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HH.  HOUSEHOLD COMPOSITION 
 

HH.1 HH.2 HH.4 HH.10 HH.11 HH.13 HH.15 HH.NEW 

HHMID 
 
 
 

Code 1 

Full name 
 

Gender 
 
 
 
1.Male 
2.Female 

Age 
(years) 

Marital status 
 
 
 

Code 6 

Highest education 
 
 
 

Code 8 

Main occupation 
 
 
 

Code 10 

Number of 
household members 
over the age of 14 

└──┘
 

 └──┘
 

└─┴─┘
 

└──┘ 
 

└──┘
 

└─┴─┘
 

 

└─┴─┘ 

 

 

Code 1 Code 6 Code 8 Code 10 

1. Household head 1. Unmarried 
2. Married 
3. Widow/er 
4. Divorce/separated 

0. No school 
1. Primary school 
2. Junior high school 
3. Senior high school 
4. General/vocational school 
5. Diploma I/II  
6. Diploma III  
7. Dimploma IV/Sarjana S1  
8. S2/S3  

1. Self-employed in agriculture 
2. Self-employed in non-farm enterprise 
3. Government employee 
4. Casual worker in agriculture 
5. Casual worker in non-agriculture 
6. Salaried worker in agriculture 
7. Salaried worker in non-agriculture 
8. Domestic worker (household wife) 
9. Student 
10. Unemployed, working for job  
11. Unwilling to work or retired  
12. Unable to work (handicapped) 



HH. ID.: 
└─┴─┴─┘ 
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PS.  COCOA PLOT SPECIFIC DATA 
 

PS.2  Cocoa output data 
Note: Don’t ask the following questions for the lahan pekarangan. The next questions concern to all plots cultivated with cocoa beans, and refer to the last 12 months. The input use refers to the same time 
period as the output. The output for each plot has to be transferred into kg. Please write your calculations on the bottom of this sheet.  
 

PS.2a PS.2f PS.2i PS.2k 

Code of plot Area planted in ares Quantity harvested in kg 
 

Did the crop fail? 
 
1.yes 
2.no 
 

└──┘
 

└─┴─┴─┘
  

 

└──┘
 

└──┘
 

└─┴─┴─┘
  

 

└──┘
 

└──┘
 

└─┴─┴─┘
  

 

└──┘
 

└──┘
 

└─┴─┴─┘
  

 

└──┘
 

└──┘
 

└─┴─┴─┘
  

 

└──┘
 

└──┘ └─┴─┴─┘
  

 

└──┘
 

└──┘ └─┴─┴─┘
  

 

└──┘
 



HH. ID.: 
└─┴─┴─┘ 
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PS.2  Cocoa input data 
Note: Please fill in the code of the plot. Remember that input use refers to the last 12 months. 
 

PS.2p PS.2q PS.2r PS.2s PS.2t PS.2u PS.2v 

Code of 
plot 

Planting 
distance 
m x m 

Fertilizer use Expenses for 
pesticides in Rp. 

Transportation 
costs in Rp. 

Crop processing 
costs in Rp. 

Total labor costs 

Type 
 
 

Code 1 
 

Quantity in 
kg/l 

Price 
per kg/l in Rp. 

Type 
 
 
Code 1 

Quantity in 
kg/l 

Price 
per kg/l in Rp. 

Paid  
in Rp. 

Family  
in hr. 

└──┘
 └─┴x┴─┘ └──┘

   
 

└──┘
        

└──┘
 └─┴x┴─┘ └──┘

   
 

└──┘
        

└──┘
 └─┴x┴─┘ └──┘

   
 

└──┘
        

└──┘
 └─┴x┴─┘ └──┘

   
 

└──┘
        

└──┘
 └─┴x┴─┘ └──┘

   
 

└──┘
        

└──┘ └─┴x┴─┘ └──┘
   

 
└──┘

        

└──┘ └─┴x┴─┘ └──┘
   

 
└──┘

        

  

Code 1 

1.urea (kg) 
2.triple super phosphate (TSP) (kg) 
3.ZA (kg) 
4.KCL (kg) 
5.NPK (kg) 
6.pupuk daun (kg) 
7.pupuk kandang (organic) (kg) 
8.PONSKA (kg) 
9.other, specify (give unit in kg/l): ... 
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PS.3  Additional cocoa questions 
Note: Please fill in the code of the plot. Remember that input use refers to the last 12 months. 
 

 

 
 

 
 
 
 
 
 

PS.3a PS.3b PS.3c PS.3e PS.3j PS.3k 

Code of plot Age of trees in years Variety 
 

Code 1 

Did you prune your cocoa? 
 

1.yes 
2.no 

 

How high is the percentage of shade tree cover? 
 

Code 5 

Are there other crops planted in between the 
cocoa? 

 
1.yes 
2.no 

└──┘
 

└─┴─┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└─┴─┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└─┴─┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└─┴─┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└─┴─┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└─┴─┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

└─┴─┘
 

└──┘
 

└──┘
 

└──┘
 

└──┘
 

Code 1 Code 5 

1.local (green) 
2.hibrida (violet) 
3.hibrida (green) 
4.Sulawesi 1 (S1) 
5.other, specify: …………. 

1.less than 35 % 
2.between 35 % and 60% 
3.between 60 and 80 % 
4.higher than 80 % 
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EI.  ENVIRONMENTAL INDICATORS 

EI.10 Have you met an extension officer in the last 12 months? └──┘
 1.yes  

2.no  

 
 

FI. FARMERS' INSTITUTIONS  

 
 

CR. CREDITS  

 
  

FI.2 Did you participate in farmer associations/groups in the last 12 months? └──┘ 
1.yes 
2.no 

FI.4 Did you participate in the government program GERNAS pro Kakao in the last 3 years? └──┘ 
1.yes 
2.no 

CR.2 Have you obtained a credit in the last 3 years? └──┘
 1.yes 

2.no 
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