
 
 

 
 

Translating Advanced Myocontrol for 
Upper Limb Prostheses from the 

Laboratory to Clinics 

This dissertation is submitted for the degree of Dr. sc. hum.  

at Medical University of Göttingen / Georg-August-Univeristy Göttingen 

Promotionsprogramm „Humanwissenschaften in der Medizin“ 

Submitted by: 

Ivan Vujaklija, MSc. 

from Belgrade 

Göttingen, 2016



   

 
 

Thesis committee 

Main Supervisor: Prof. Dr. Dr. Dario Farina 
Department of Bioengineering, Imperial College London 
Institute for Neurorehabilitation Systems, UMG 

Co-Supervisor: Prof Dr. Russell Luke 
Institute for Numerical and Applied Mathematics, UG 

External Supervisor: Dr. Robert Wendlandt 
Biomechanics Laboratory, UKSH Lübeck 

Examination committee 

Prof. Dr. Arndt Shilling 

Prof. Dr. David Liebetanz 

Prof. Dr. Florentin Wörgötter 

Prof. Dr. Xiaoming Fu 

Date of the oral defense: 09.12.2016.



   

 
 

Preface and Declarations 

The results, outcomes and conclusions presented in this thesis are the result of my own 

work done at the Institute of Neurorehabilitation Systems at the University Medical Center 

Göttingen. All collaborations with external partners, as well as the extent of their 

involvement, have been clearly indicated in the text. My work has been partly funded by the 

Advanced European Research Council Grant DEMOVE (#267888).  

All experiments involving human subjects have been approved by the local ethics boards 

and all subjects have signed informed consents prior to their participation. The methods 

were carried out in accordance to the relevant guidelines. 

This thesis has been originally and entirely written by me. Certain portions of the presented 

material have also been published in form of conference or journal articles elsewhere by me 

as the principal author or as a co-author. These, as well as all the other relevant parts, have 

been cited herein adhering to the scientific practice. In cases of previously published 

material all rights for re-use have been obtained and appropriately labeled. 

Herby I declare that I have written this thesis independently, on my own, and with no other 

aids and resources but those quoted. 

Göttingen, 01.10.2016. 

 

Ivan Vujaklija 

  



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

 
 

 

If you have an important point to make, don't try to be subtle or clever. 

Use a pile driver. Hit the point once. Then come back and hit it again. 

Then hit it a third time - a tremendous whack. 

Winston Churchill



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

1 
  

 

Table of content 
 

Index of figures .......................................................................................................................... 3 

Index of equations ..................................................................................................................... 6 

List of abbreviations ................................................................................................................... 7 

Acknowledgments...................................................................................................................... 8 

Abstract ...................................................................................................................................... 9 

Introduction and background .................................................................................................. 11 

1.1 Shortcomings of the current neurorehabilitation systems ....................................... 13 

1.1.1 Solutions primarily based on clinical interventions ........................................... 13 

1.1.2 Solutions primarily based on engineering techniques ...................................... 15 

1.2 How to validate new myoelectric systems? .............................................................. 19 

1.2.1 Laboratory metrics ............................................................................................. 19 

1.2.2 Clinical metrics ................................................................................................... 21 

1.3 EMG as a gateway to the movement intention ........................................................ 23 

1.3.1 Motor units and generation of EMG.................................................................. 23 

1.3.2 EMG decomposition .......................................................................................... 24 

1.4 The goal and the outline of the thesis ...................................................................... 26 

2 Performance assessment methods .................................................................................. 28 

2.1 Methods and materials ............................................................................................. 29 

2.1.1 Experiment 1 ...................................................................................................... 30 

2.1.2 Experiment 2 ...................................................................................................... 31 

2.2 Results and discussion ............................................................................................... 31 

2.2.1 Experiment 1 ...................................................................................................... 31 

2.2.2 Experiment 2 ...................................................................................................... 33 

2.3 Conclusion ................................................................................................................. 35 

3 Bionic reconstruction enables dexterous prosthetic control after elective amputation 

for critical soft tissue injuries ................................................................................................... 36 

3.1 Results ....................................................................................................................... 37 

3.1.1 Standardized Functional Outcome Measurements ........................................... 37 



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

2 
 

3.1.2 Assessment of Simultaneous, Proportional & Dexterous Control..................... 38 

3.1.3 Pain & Quality of Life ......................................................................................... 40 

3.2 Discussion .................................................................................................................. 41 

3.3 Materials and Methods ............................................................................................. 43 

3.3.1 Study population ................................................................................................ 43 

3.3.2 Clinical Evaluation .............................................................................................. 45 

3.3.3 Tech-Neuro-Rehabilitation Program.................................................................. 46 

3.3.4 Amputation in Preparation for Hand Prosthesis Fitting .................................... 47 

3.3.5 Materials ............................................................................................................ 47 

4 Neural decoding for improved force estimation in TMR patients ................................... 50 

4.1 Results ....................................................................................................................... 51 

4.2 Discussion .................................................................................................................. 52 

4.3 Methods .................................................................................................................... 53 

4.3.1 Patients .............................................................................................................. 53 

4.3.2 Experimental set-up and protocol ..................................................................... 54 

5 Thesis discussion and conclusions .................................................................................... 56 

References ............................................................................................................................... 59 

Appendix I – Multichannel transradial socket design .............................................................. 73 

Appendix II – Simultaneous and proportional myocontrol algorithm..................................... 78 

Appendix III – Dissemination ................................................................................................... 83 

Journal publications: ............................................................................................................ 83 

Conference publications: ..................................................................................................... 84 

Presentations, workshops and lectures: .............................................................................. 84 

Teaching activities: ............................................................................................................... 85 

Google Scholar metrics: ....................................................................................................... 85 

 

  



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

3 
 

 

 

Index of figures 

Figure 1 – Schematic representation of parts belonging to Götz von Berlichingen's hand 

(16th century), an early iron prosthetic substitution for a transaradial amputee. Even though 

passive, its fingers can be prepostioned and latched in order to offer certain degree of 

functionality in combat. ©|2006|de.wikipedia-commons ..................................................... 11 

Figure 2 - Belgrade hand was the first model of a multifunctional externally powered 

prosthetic limb. It was developed at the institute “Mihajlo Pupin” in Belgrade, 1964. 

©|2006|cyberneticzoo.com-commons .................................................................................. 12 

Figure 3 – Advanced prosthetic hand – Michelangelo, Ottobock Healthcare GmbH - with a 

rotation unit, extra battery pack and a pair of surface EMG electrodes. This particular 

prosthesis has an actuated thumb which allows it to close in two ways: pinch grip and key 

grip. .......................................................................................................................................... 13 

Figure 4 – TMR operation. Surgeon checks the conductivity using hand held electrical 

stimulator. Nerves of interest have been marked using yellow strips.  

©|2006|curtecy of CDL ........................................................................................................... 14 

Figure 5 – Assorted clinical evaluation tools (A) Clothes Pin Reallocation Test (B) Box and 

Blocks Test, and (C) an exemplary jug pouring task from SHAP .............................................. 21 

Figure 6 – Schematic representation of the descending motor pathway starting from the 

spinal cord (left) and terminating at the muscle (right). Main components of a motor unit 

are depicted including an exemplary sketch of detectable firings .......................................... 23 

Figure 7 – Position of passive reflective markers used for motion tracking during the 

performance evaluation. 10mm markers are depicted in green and 20mm ones in blue. .... 29 

Figure 8 - (A) The correlation between the clinical SHAP score and the offline classification 

accuracy indicates a weak association. The offline scores have been obtained in realistic 

conditions with the patients wearing their prostheses and training and testing performed on 

sets of data obtained in different arm positions. Despite the realistic conditions, the 

associations shown here are not strong. For example, a SHAP score of approximately 40 may 

correspond to classification accuracy lower than 70% or greater than 85% depending on the 

user.  The SHAP requires precise manipulation over short periods of time which is not 

captured by this offline metrics. (B) The correlation between the clinical Box and Blocks test 

and the offline classification accuracy shows almost complete absence of association 

between the two. For instance, the two patients who achieved the classification accuracies 

>95% were radically different n the number of blocks they could transfer............................ 32 



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

4 
 

Figure 9 - Classification output for two patients with substantially different Box and Blocks 

outcomes but very similar classification accuracies over all motions. The focus is here on the 

three hand motions that are most relevant for the Box and Blocks task – hand open, key grip 

and fine pinch. The offline accuracy for these motions is lower for the subject with the 

higher clinical score. ................................................................................................................ 33 

Figure 10 - Recorded kinematics with respect to anatomical segments and joints across 

different sub-groups of SHAP test and CPRT for able-bodied group (1), Patient 1 with 

classical prosthesis (2) and Patient 1 with advanced prosthesis (3). Notably, in terms of 

kinematics, Patient 1 was more efficient during the execution of tasks than on average all 

five able-bodied participants. .................................................................................................. 34 

Figure 11 - Recorded centroid traces of respective anatomical sections across all three axes 

during the execution of an example task of the SHAP test, the key task, for able bodied 

group, patient 1 with classical prosthesis and patient 1 with advanced prosthesis ............... 34 

Figure 12 - The critical soft tissue injuries suffered by the patients in this study were due to 

(left) electrocution, (centre) degloving injury, and (right) complications secondary to 

compartment syndrome. In all cases the reconstructive surgical ladder was attempted first, 

but with poor functional outcome. ......................................................................................... 37 

Figure 13 - Patient 2, (A) before bionic reconstruction, (B) during hybrid hand training, (C) 

healed residual limb after elective amputation, and (D) final prosthetic fitting with patient’s 

own customized socket design and art. .................................................................................. 38 

Figure 14 - Schematic of the patient training to achieve proportional and simultaneous 

control at the level of the wrist.  First the patient’s EMG activity is recorded using eight 

equidistantly placed surface electrodes during a calibration phase.  The gross EMG signal is 

then decomposed into specific patterns that correspond to seven actions of the prosthetic 

hand, plus a resting condition. These patterns are uploaded to the prosthetic hand for real 

time control, which allows for both proportional and simultaneous movements of prosthesis 

in real-world situations. Details of the used algorithm are describe in Appendix II. .............. 39 

Figure 15 - Motor neuron behaviour ramp like activation in patient T1. (A) Amplitude maps 

of the interference EMG during a contraction of increasing and decreasing force (linear). (B) 

Prompt that was given to the patient as visual feedback to modulate the intensity of the 

contraction is shown as a black line. The surface EMG amplitude is shown as a red line. (C) 

Spike trains of motor neurons decoded through EMG decomposition. (D) Smoothed 

discharge rates of individual motor neurons with respect to the cue. (E) Instantaneous 

discharge rate estimated over intervals of 200 ms computed from the cumulative spike train 

of the decoded motor neurons for three repetitions of the same task (circles; each 

repetition is represented with a different color), showing the association between the 

instantaneous rate of motor neurons and intensity of activity. The behavior of motor 

neurons during the ramp contractions in this representative example fully reflects the 



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

5 
 

general observation on all patients tested and all trials. This is evident from the results on 

each patient shown in Figure 4 (lower panel). ........................................................................ 51 

Figure 16 - Force estimates without (left column) and with (right column) post processing 

based on averaging over three consecutive past intervals. The plots in the top panels 

(representatively for patient T4) show the comparison between force estimates based on 

the EMG envelope (blue) and motor neuron spike trains (red) with respect to the cue 

(black). The bottom panels show the standard deviations (σ) of estimation (colour coded for 

each of the three patients T4-T6) after linear de-trending when varying the processing 

interval, without (left) and with (right) post processing. ........................................................ 52 

Figure 17 - Interfacing spinal motor neurons in humans. Following TMR, nerves are 

redirected to innervate neighbouring muscles which are treaded as biological amplifiers of 

nerve activity. The spike trains discharged by the innervating motor neurons are decoded by 

deconvolution of the surface EMG signals. The spike trains are then used to generate the 

proportional control signal for potential neurorehabilitation applications. The spike trains 

shown here are extracted from data acquired from patient T1. These spike trains are 

represented with the sole purpose of describing the general concept proposed  

in this work. .............................................................................................................................. 54 

Figure 18 – An example of a negative cast with the second layer made out of cellecast. This 

particular patient has a rather long and strong stump which enables easy and  

neat sampling. .......................................................................................................................... 74 

Figure 19 - Positive cast after molding ready for refinement and polishing. Strong anchoring 

line across the front of the elbow can be observed. ............................................................... 75 

Figure 20 - Warmed up thermoplast has to be carefully applied on the positive in order to 

ensure tight and comfortable fit. This is being done using a vacuum pump during gentle and 

slow stretching of the material. ............................................................................................... 75 

Figure 21 – Positive cast with a thermoplastic liner still attached and polished polyurethane 

extension pre-shaped to provide a solid base for casting the outer semi-permanent socket 76 

Figure 22 – Examples of different semi-permanent sockets built using the presented 

technique. Four sockets featuring the black Velcro strips are so called open designs intended 

for users with transcarpal amputations or generally longer stumps ...................................... 77 

Figure 23 - Hybrid myoelectric control algorithm capable of estimating simultaneous and 

proportional movements. Based on intrinsic dimensionality of the movement, new incoming 

data point will be forwarded to either sequential estimator (SEQ-E) in case of the single DoF 

activation or to the simultaneous estimator (SIM-E) if the processed EMG is a product of a 

multiple DoF activation. ©|2015|IEEE TNSRE ........................................................................ 79 

 

  



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

6 
 

Index of equations 

Equation (1) – Mean Absolute Value ....................................................................................... 17 

Equation (2) – Zero Crossings .................................................................................................. 17 

Equation (3) – Slope Sign Changes ........................................................................................... 17 

Equation (4) – Waveform Length ............................................................................................. 17 

Equation (5) – Root Mean Square ........................................................................................... 17 

Equation (6) – Linear Regression Model .................................................................................. 18 

Equation (7) – Linear regression model multiplied by the right pseudo inverse of the 

measurement matrix, from the right ....................................................................................... 18 

Equation (8) – Definition of the mapping for the pseudo inverse measurement matrix 

considering a given set and number of channels .................................................................... 18 

Equation (9) – Further mapping constrains considering the given Y ...................................... 18 

Equation (10) – The set from which linear regression is formed ............................................ 18 

Equation (11) - Physiological model of surface EMG  as a time-varying convolution of MUAP 

shapes ...................................................................................................................................... 25 

Equation (12) - i-th output of linear, time-invatriant, convolutive, multiple-input-multiple-

output model of EMG .............................................................................................................. 25 

Equation (13) – Sampling term of the EMG model.................................................................. 25 

Equation (14) – EMG mixing process presented in the matrix form ....................................... 25 

Equation (15) – Mahalanobis distance measure ..................................................................... 79 

Equation (16) – Linear weighting of the input signals from different channels ...................... 80 

Equation (17) – Variance of m-dimensional vector of outputs ............................................... 80 

Equation (18) – Maximization of the generalized Rayleigh quotient in order to obtain 

weighting matrix ...................................................................................................................... 80 

Equation (19) – Constrained optimization problem of equation (18) ..................................... 80 

Equation (20) – Quadratic programming transformed into Lagrangian formulation ............. 80 

Equation (21) – Equation (20) differentiated with respect to W and equalized to 0 .............. 80 

Equation (22) – Equation (21) writtent in a different form ..................................................... 80 

 

  



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

7 
 

List of abbreviations 

AP Action Potential 

ARAT Action Research Arm Test 

ACMC Assessment of Capacity for Myoelectric Control 

BSS Blind Source Separation 

BBT Box and Blocks Test 

CPRT Clothespin Relocation Test 

CSP Common Spatial Patterns 

DoF Degree of Freedom 

DASH Disability of the Shoulder, Arm, and Hand 

EMG Electromyography 

HD High Density 

JTHF Jebsen-Taylor Test of Hand Function 

MAV Mean Absolute Value 

MU Motor Unit 

NMF Non-negative Matrix Factorisation 

PE Proportional Estimator 

RMS Root Mean Square 

SSC Slope Sign Change 

SHAP Southampton Hand Assessment Protocol 

SoA State-Of-The-Art 

TMR Targeted Muscle Reinnervation 

VR Virtual Reality 

VAS Visual Analogue Scale 

WL Wave Length 

ZC Zero Crossing 



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

8 
 

Acknowledgments 

Majority of the work presented in this thesis has been done as a part of the Advanced 

European Research Council Grant DEMOVE (#267888) and within the Institute of 

Neurorehabilitation System at the University Medical Centre Göttingen. Significant portions 

of the work and the knowledge needed for completing this thesis have been acquired during 

the research fellowships conducted at Human Oriented Robotics and Control (HORC) 

Laboratory at Arizona State University (ASU) and Christian Doppler Laboratory (CDL) for 

Extremity Reconstruction and Rehabilitation at Medical University of Vienna. 

I would like to thank Professor Dario Farina for his guidance throughout the course of my 

PhD studies and more importantly for providing me with a constant advice on how to 

develop as a researcher in a highly dynamic field. I would also like to extend my gratitude to 

Professor Russel Luke and Dr. Robert Wendlandt for supporting me in my research and for 

constructive supervision during the delivery of this thesis. 

Crucial clinical experience and overview of the real world impact of my work was made 

possible due to comprehensive mentoring by Professor Oskar Aszmann to whom I would 

like to additionally thank for constantly prompting me to re-evaluate ethical principles and 

focus points of both my work and my private life. 

Needless to say, this whole thesis would not be possible without the extensive support 

during and outside office hours of current and former members of my Institute and hosting 

organizations. I would specifically like to express my appreciation for encouragements and 

even more so for discouragements which came before, during and at the very end of my 

doctoral studies from Marghe, Leo, Chris, and Fra, along with their better halves. 

Finally, I would like to acknowledge my family for their endless support and understanding 

which kept this whole thing on the solid, unbendable pillars high above all the ups and 

downs that came at it. 

  



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

9 
 

Abstract 

Versatility and dexterity in combination with supreme control makes human hands an 

unmatched tool for interacting with the world around us. Because of our dependence on 

hands, we are highly challenged in all aspects of our lives when their functionality is 

compromised. Considering the high incidence rate of partial or total hand function loss, 

development of suitable solutions for their substitution are of high priority. 

The devastating impact of a missing or a dysfunctional upper limb and the need for solutions 

to these impairments has been recognized centuries ago. Besides the obvious difficulties 

which it creates in performing everyday activities, it also reflects on the psychological and 

emotional state, with difficulties in social re-integration. This can lead to severe long-term 

consequences in everyday life. 

So far, commercial prosthetic limbs have failed to provide a solution capable of delivering 

intuitive and naturally looking control across several driveable joints. Regardless of being 

body powered or myoelectrically controlled, these systems depend on rather crude driving 

mechanisms, limiting the effectiveness of the provided solutions. These limitations 

eventually lead to rejection and abandonment of the technology. Academic research has 

addressed this challenge in various ways throughout the last 50 years, though a very limited 

number of solutions have reached the market. This fact indicates the size and the 

complexity of the problem of translating the laboratory based systems into the real world 

environment. 

The work presented in this thesis aims at addressing the aforementioned issues by enriching 

the amount of information that can be used for delivering control inputs over different 

prosthetic solutions. Theoretically, if the entire neural code sent from the brain to the 

muscles through the spinal cord could be decoded, its interpretation would allow natural 

and robust control over virtually any kind of prosthetic system. However, this requires the 

establishment of an interface that can access this detailed information. Here, several 

successful attempts to improve the control performance of prosthesis by advanced 

information methods of identification of the properties of the neural drive to muscles have 

been described and applied to already established prosthetic solutions. Focus has been put 

on translational potentials of these approaches and challenges which arise when systems 

initially developed in laboratory environment are further put to test in clinical setting. 

First, an in depth re-evaluation of the way in which the functional prosthetic assessment has 

been performed in academic and clinical studies is presented through a set of experiments. 

Comparison between the most commonly used offline evaluation technique and several 

typically applied clinical tests has been performed on a pool of transradial amputees. A poor 

correlation was found between the two sets of performance metrics, indicating the need of 

using more meaningful assessment scores in academic research to evaluate novel 

myoelectric systems. In addition, a kinematic analysis has been made during the execution 
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of selected clinical tests, indicating that even the well-established clinical tools fail to 

completely evaluate all the aspects of the tested systems. 

The second set of experiments focused on advanced myoelectric control for patients who 

have sustained critical soft tissue injuries. So far, there has not been a suitable solution for 

recovering function in these severe cases. Here, through a combination of surgical 

interventions and rehabilitation technics, an interface for accessing myoelectric information 

sufficient for advanced control of sophisticated prosthetic technology has been established. 

A case series is presented to prove that surgical and engineering solutions can be combined 

for solving open clinical challenges through means of bionic reconstruction. 

The final set of experiments was designed to test the possibility of providing precise 

proportional control from motor unit spike trains originating in the spinal cord. The motor 

unit discharge patterns were decoded from high density surface EMG recordings obtained 

from reinnervated auxiliary muscles in the proximity of a high level amputation. This 

approach provides an enhanced prosthetic function across a difficult pool of transhumeral 

patients. 

Results presented here emphasise the importance of clinical testing of myoelectrical 

systems and provide an insight into the complexity of the translational challenges which 

arise once laboratory systems are exposed to the reality of clinical environment. The data 

provided in this thesis support the idea that advanced control approaches can be translated 

to effective clinical solutions even in cases that were earlier considered beyond the reach of 

myoelectric technologies. Finally, a new generation of neural interfaces, relying on the 

decoded neural drive to muscles, has been shown to be able to deliver highly refined 

control, and thus potentially revolutionize the way the prosthetic devices are driven. 
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Introduction and background 

Considering that virtually all of our daily activities require a certain level of hand 

manipulation, it is not surprising that upper limb injuries are among the most common 

ones. Indeed, a significant portion of overall injuries treated in the emergency rooms 

around the world involve upper extremities [1]–[3]. Most often they occur during work 

[4], [5], at home [2] or while performing sports [6]. 

The consequences of these incidents may lead to prolonged disabilities which can 

further affect the mental and social state of the patients. The effects of these 

complications can result in difficult reintegration into the society. 

The severe difficulties of a life without a limb have been recognized centuries ago [7]. 

The early ideas of artificial substitution appeared appealing, even in their very simple 

(Figure 1) or purely cosmetic form. Evolution towards more functional solutions was 

just a matter of time and the high demand yielded the first body-powered systems. 

These simple, yet effective, devices delivered much needed support in everyday life of 

an amputee through a set of cable driven joints. Their effectiveness has proven so 

significant that some of their fundamental principles can still be found in modern 

prosthetics. Roughly 50% of the current market share of the upper limb prosthesis is 

based on cable driven systems [8]. 

 

Figure 1 – Schematic representation of parts belonging to Götz von Berlichingen's hand (16th century), an early 
iron prosthetic substitution for a transaradial amputee. Even though passive, its fingers can be prepostioned and 
latched in order to offer certain degree of functionality in combat. ©|2006|de.wikipedia-commons 
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The turn of the last century brought the first pneumatic hands which were soon 

accompanied by the electrically powered ones. Some forty years later, at the end of 

the Second World War, basic myoelectric prostheses were developed, revolutionizing 

the way the neurorehabilitation technologies are interfaced [9]. Researchers soon 

embraced this concept which allowed linear translation of the electrical activity of the 

residual muscles of the stump into the velocity of closing and opening of mechatronic 

gripers. By late 50s,  the first myoelectric devices became available on the market and 

the concept of direct proportional control is still present in current commercially 

available systems, primarily due to its simplicity and robustness. 

 

Figure 2 - Belgrade hand was the first model of a multifunctional externally powered prosthetic limb. It was 
developed at the institute “Mihajlo Pupin” in Belgrade, 1964. ©|2006|cyberneticzoo.com-commons 

With advancements in technology, pneumatic prosthetic devices became capable of 

driving several joints and grip types (Figure 2) offering functional options, even for 

users with more distal deficiencies. However, the supporting control paradigm was 

crude, lacked robustness and required specific anatomical features, dexterity and 

cognitive effort from the patient [10]. Myoelectric interfaces allowed a state-based 

control to be introduced. The user is fitted with a multi articulated prosthesis using 

two control sites which are responsible for driving a single degree of freedom (DoF). 

When another DoF is required, such as a different joint control or a grip type, a switch 

in the form of a co-contraction of the muscles beneath the two recording sites is 

introduced and the control state of the prosthesis is changed. In this way, the user is 

able to robustly cycle through as many DoFs as they are available. Even though 

cumbersome, unintuitive and cognitively demanding, this paradigm is still dominant on 

the market. 
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Light weight dexterous prosthetic hands and wrists (Figure 3) are nowadays 

commercially available due to recent advancements in micromachining and material 

design. Alongside tiny, precise and low powered electromotors, these technological 

flagships delivered some of the state of the art solutions in modern robotics. Research 

and implementation of more intuitive and dexterous myoelectric control algorithms 

intensified once high-speed processing units with the top end battery management 

and large memories in small housing were made broadly available (Figure 3). 

 

Figure 3 – Advanced prosthetic hand – Michelangelo, Ottobock Healthcare GmbH - with a rotation unit, extra 
battery pack and a pair of surface EMG electrodes. This particular prosthesis has an actuated thumb which allows 
it to close in two ways: pinch grip and key grip. 

1.1 Shortcomings of the current neurorehabilitation systems 

Various attempts were made to provide improved and functional neurorehabilitation 

solutions to individuals with upper limb deficiencies. However, this has proven to be 

quite a challenging task. One of the main difficulties lies in the fact that the disabilities 

of such a highly articulated and complex system such as human arm, tend to come in a 

variety of forms, shapes and limitations. Therefore, a simple “one fits all” solution 

doesn’t seem to be an option here at the moment. Considering strictly the cases in 

which neural drive stays intact, still quite often the current neurorehabilitation 

technologies tend to underperform or even not to be able to provide any functional 

benefit at all. 

1.1.1 Solutions primarily based on clinical interventions 

Namely, the most obvious reason for poor performance comes from a general lack of 

sources from which necessary neural information can be retrieved. This creates 

significant difficulties in providing functional solutions to high level amputees. 

Recently, targeted muscle reinnervation (TMR) technique (Figure 4) has been 

introduced with the idea of rerouting the nerves which originated in the missing limb 

to the muscles in the proximity of the amputation [11].  
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Figure 4 – TMR operation. Surgeon checks the conductivity using hand held electrical stimulator. Nerves of 
interest have been marked using yellow strips. ©|2006|curtecy of CDL 

The main motivation for this procedure is that muscles can be seen as amplifiers of 

nerve activity [12]. Reinnervated muscles will not be used for their functional role, but 

rather as sources of EMG signals [13]. During the surgical procedure the nerves of 

interest are located and end neuromas are excised. The residual nerves are trimmed 

back until healthy fascicles are observed [14]. The remaining nerves are then 

appropriately transposed and fixed using locally available anatomy. Native innervation 

of the target muscles is disrupted and confirmed using local stimulation (Figure 4). The 

mobilized segments of the remaining nerves intended for transfer are then coapted to 

the motor nerve entry point using 6-0 or 7-0 polypropylene suture under appropriate 

magnification [14]. Four to six weeks post-op patients can expect to be able to wear 

again their original prosthesis, while after three to six months the full reinnervation 

should take place [15]. The obtained activation does very well reflect the neural 

activity of the missing limb and that has been shown in various practical applications 

[16]–[18]. 

Even though this solution restores the possibility for non-invasive access to the original 

neural drive, still a large number of DoFs, which need to be addressed, deems the 

classically provided “one source - one DoF direction” control to be crude. Additionally, 

since only four main nerves serve the entire arm: Median Nerve, Ulnar Nerve, Radial 

Nerve, Musculocutaneous Nerve, the maximum number of control sights limits this 

control algorithm to drive up to six joint directions using peripheral branches and some 

rehabilitation tricks [19]. An example of nerve transfer matrix is shown in Table I. Even 

though an improvement, this is still not fully satisfactory for the majority of users 

especially given the rough end control which is being delivered. 
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Table I – Nerve transfer matrix example in glenohumeral patient with targeted prosthesis function 

Source Nerve Target Nerve Target Function Prosthesis Function 

N. Musculocutaneous N. Pectoralis Clav. Elbow Flexion Elbow Flexion 

N. Medianus N. Pectoralis stern. 
Finger Flexion /  
Wrist Pronation 

Fast: Wrist Pronation 

Slow: Wrist Extension 

N. Medianus N. Pectoralis Abd. Wrist Flexion Elbow Extension 

N. Ulnaris N. Pectoralis Minor Fist Hand Close 

N. Radialis N. Thoravodorsalis Finger Extension Hand Open 

Various difficulties in applying neurorehabilitation technologies can also be observed 

in individuals where poor stump management has been done during initial amputation 

treatment. In these cases standard surface EMG based solutions are not able to 

retrieve sufficient amount of neural drive information to run properly. Similarly, there 

may be pathologies or structural shortcomings present at the muscular level which 

partially or even completely prevent this type of users to have any functional systems 

applied. In these cases it is sometimes possible to perform surgical or correctional 

interventions which will either on its own or in combination with assistive 

neurotechnologies be able to deliver certain functional benefits. These include such 

techniques as tendon transfers [20], [21], a variety of flaps [22]–[25], digit and toe 

transfers [26]–[28], and skin grafting [29], [30]. 

In some particular yet not so uncommon cases, functional state of the patient might be 

severely compromised even though anatomically there is a significant portion of the 

limb which remained. In those situations offering a proper functional solution might be 

rather difficult. For instance, this is commonly the case in patients who have suffered 

plexus or critical soft tissue injures. 

It should be noted that, as an alternative to the prosthetic devices, the hand 

transplantation represents a functional substitute with superior visual appeal and on 

top of it, integrated sensory function [31]. However, it is associated with the lifelong 

immunosuppressant therapy, lengthy rehabilitation, loss of grip force, and high risk of 

complications leading to the possible rejection [32], [33]. These issues are further 

combined with very high costs and necessity of treatment in specialised clinics. Current 

recommendations for hand transplantation target bilateral transradial amputees pass 

the stage of family planning, with superior mental health and with explicit evidence of 

dedication and devotion to rehabilitation. 

1.1.2 Solutions primarily based on engineering techniques 

Even in the cases where there is a sturdy interface to the neural drive, current 

neurorehabilitation technologies seem not to fully deliver. Surveys conducted in the 

past 20 years indicate significant rejection rates of all types of upper limb prosthetic 

solutions [34]–[39]. Depending on the user population at question, rejection rates of 
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myoelectric devices vary from 25% to over 50%. In case of body powered devices 35% 

of prosthesis ends up being discarded by their users. Some consolation can be found in 

the fact that these numbers have been stagnating compared to previous periods [40], 

[41] and this has been mainly attributed to the introduction of modern technology. 

Still the highest number of complaints by users is directed towards cumbersome, 

unreliable and unintuitive control of all prosthetic solutions – old or new. 

The current industrial state-of-the-art (SoA), from a technical control point offers quite 

a rudimental solution. The implemented principle didn’t change much from 1960s 

when sensed amplitude of the EMG signal was linearly translated into the directional 

velocity of the given DoF [9]. Nowadays market is dominated by two electrode 

systems, monitoring available antagonist muscle groups. Depending on the simple 

threshold breach one or the other direction of the controlled DoF is activated. This 

approach is rather robust and it offers quite a steep learning curve for novice users. 

Though, this is only a case in systems offering single DoF functionality such as simple 

grippers. On the other hand, if the dexterity of the prosthesis is extended beyond that, 

multiple DoF control becomes rather cumbersome. These kinds of systems mostly rely 

on state machine schemes which are guiding users through each controllable DoF with 

a switching signal. Switching signals can be myoelectric based, such as co-contraction 

of monitored sites [42], quick repetitive activation of the dedicated site [43] or 

prolonged contraction of single muscle group [43]. Conversely, they can also be 

implemented in a form of a simple button on the prosthesis [44], a digital signal sent 

from an external device, actual physical prepositioning of a prosthetic joint or an 

external digital trigger originating from an active or passive device in prosthesis’ 

proximity [45]. Regardless of the switching paradigm, all of these solutions are 

suffering from the intrinsically cumbersome underlying control principle that is driving 

the device. Namely, if one was to control the elbow joint after prepositioning the wrist, 

the system would force the user to cycle through several available grasping types only 

to gain the control over it. 

Researchers and developers have been addressing the issue of cumbersomeness for 

the last decades by combining and developing different engineering techniques. 

Majority of the solutions have been relying on the machine learning methods 

specifically adapted for the problem at hand. The assumption that distinguishable and 

repeatable EMG signal patterns exist among different motor tasks [46], [47] gives an 

opportunity for selecting one of many well established estimators to be used in 

deciding which DoF is being activated. The estimation methods can be roughly divided 

into classification and regression approaches. The first ones yield discrete outputs used 

as class labels, while the later fit smooth curves to, for instance, force functions. 

Ease of implementation has put classification based algorithms as top contenders for 

revolutionizing myoelectric control. Namely, the early works from 1960s and 1970s 
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[48]–[50] relied on discriminant analysis for differentiating as many as three DoFs from 

EMG motion data sets described solely by the global muscle activation. In early 1990s, 

first step was made towards extracting more of the available information from the 

EMG [46]. EMG signals were split into 300ms interlaced windows which were used 

from calculating the following signal features (adapted from [46]): 

Mean Absolute 
Value 

 
𝑀𝐴𝑉 ≔

1

𝑁
∑|𝑥𝑘|

𝑁

𝑘=1

 (1) 
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with 𝑥𝑘 being the 𝑘𝑡ℎ sample of the observed 𝑁 samples long time window. 𝑥𝑘 has 

been obtained through a process of quantization by analogue-digital converter and as 

such represents a single real number equivalent to the EMG voltage for a given 

channel during the 𝑘-th sampling time frame. These features were extracted from 

each channel and once used as a set (in myoelectric pattern recognition community 

referred to as Hudgins time domain set [51]) they contain the information on both 

amplitude (MAV, WL) and frequency (ZC, SSC, WL) of the sensed EMG. Alternatively, 

MAV is in some myocontrol systems substituted by root mean square (RMS) value of 

the signal: 

 

𝑅𝑀𝑆 ∶= √
1

𝑁
∑(𝑥𝑘)2

𝑁

𝑘=1

 (5) 

The basic concept for this kind of control algorithms set by Hudgins, Parker and Scott 

[46] remained in essence the same to the day. Most of the work has been directed 

towards different classifiers [52]–[54] and extending the feature sets [55], [56]. 

Roughly a decade ago an alternative to classifiers with hard boundaries and discrete 

outputs was proposed in a form which allows direct estimation of the movements 

speeds or forces of desired DoFs. This is done by performing a regression between the 

input signal features and the target outputs. Assuming the linear relation between the 

two, a simple linear regressor can be implemented. It would linearly map the input 
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features 𝒙 with the desired state of the actuators contained within the target vector 𝒚 

using a weight matrix 𝑊: 

 𝒚 = 𝑊𝑇𝒙 (6) 

Considering the three DoF case, 𝒚 would be a three and  𝒙 would be a 𝑛-dimensional 

vector. Therefore, the matrix of weights will be 𝑊 ∈ ℝ𝑛×3. Fit with the least squared 

error between all measurements 𝑋 and all targets 𝑌 can be obtained by multiplying 

the previous equation with the right pseudo inverse of the measurement matrix, from 

the right: 

 𝑋𝑟
−1𝑌 = 𝑊𝑇 (7) 

where for a given set and number of channels 𝑁, following mapping is defined: 

 𝑋𝑟
−1: ℝ3×𝑁 ⇉ ℝ𝑛×𝑁 (8) 

such that for given 𝑌 ∈ ℝ3×𝑁: 

 𝑌𝑋𝑟
−1 ≔ {𝑊𝑇 ∈ ℝ3×𝑁|𝑊𝑇𝑋 = 𝑌} (9) 

In general, 𝑊𝑇 is represents a part of a whole set of weight matrices 𝑊𝑇 ∈ 𝑌𝑋𝑟
−1 and 

linear regression that is formed is just a selection from this set: 

 𝑊𝐿𝑅
𝑇 ≔ 𝑌𝑋𝑇(𝑋𝑋𝑇)−1 ∈ 𝑌𝑋𝑟

−1 (10) 

It should be noted that such selection is reasonable only for linear models with 

Gaussian noise. 

This, of course, represents the most straight forward regression approach, which can 

be further extended by regularization or application of the kernel trick for generating 

non-linear estimations [57]. For instance, in what is commonly known in the field as 

the kernel trick (kernel ridge regression), the kernel extension of Tikhonov 

regularization method of ill-posed problems is made [58]. In this way the same error 

function as in linear regression is minimized (6), though not in the in the input space, 

but rather in the space formed by potentially nonlinear mapping of the inputs [57]. For 

myocontrol applications, Gaussian kernel function is commonly used. 

Both classifiers and linear regression with its derivatives represent the fully supervised 

methods, meaning that they require meticulously labelled target data corresponding 

to each input vector. This can be achieved by tracking the kinematics of the sound limb 

during the bilateral mirrored movements [57], [59]–[61]. Though, understandably, a 

certain degree of error will be introduced in this way, which will highly reflect on the 

performance of the system. However, once a more model based approaches are 

considered, semi-supervised regressors may be applied. For instance, derived from a 

muscle synergy driven model [62], a non-negative matrix factorization (NMF) algorithm 
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[63] can be used to generate the desired mapping by only having the information on 

which DoF was active at the time and not necessarily the exact force trajectories [64]. 

Main advantage of regression based approaches is that, compared to classifiers, they 

are not providing just labels as their outputs, but rather give the estimation of the 

actual physical values. In addition, these methods can intrinsically extrapolate from 

single DoF training data and predict the multi DoF movements [65]. This is in particular 

important for providing more natural control of the prosthesis. Unfortunately, 

regression based systems are less resistant to noise. Even though through some 

training, smart unintuitive mapping and high density (HD) EMG recording, the number 

of controllable DoFs can be as high as seven in able bodied subjects [66], two DoF 

control seems to be the reasonable framework to work with [67]. 

Recently, a myocontrol system combining the two approaches has been proposed [67]. 

Two estimators, one based on a classifier and one on a regressor, are designed and 

trained in parallel. With every new feature vector, based on its distance from the 

centre of the feature data point clouds of each class, a simple threshold based decision 

is made determining whether the intended motion is single DoF (if the point falls 

within one of the classes) or multi DoF (if it lands between the clouds). Depending on 

the decision, all single DoF motions are forwarded to the classifier for further 

processing, while all the others are handled by the regressor. In this way precise 

movements are estimated by a strict, more robust estimator while gorse, usually pre-

positioning movements, are dealt by softer control method able of driving 

combinations of DoFs. 

1.2 How to validate new myoelectric systems? 

Assessing a performance of a neurorehabilitation technology is not an easy task. There 

are numerous parameters involved, and getting a sound and a fully describing score is 

a rather complex endeavour. Finally, the most valid evaluation in the end comes in the 

form of a user’s subjective opinion after prolonged exposure to the technology. 

Understandably this is not always a possible way to go when deciding which method or 

system should be further pursued, therefore academia and clinics have developed 

their own ways of quantifying the delivered performance. 

1.2.1 Laboratory metrics 

Researchers working on the developments of myoelectric prostheses have come up 

with numerous ways of assessing the performance of their newly developed systems. 

Roughly, these scores can be separated into those which are strictly quantifying the 

system’s behaviour using offline metrics and those based on online assessments in 

virtually generated scenarios. 
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As aforementioned, academia is mostly developing solutions for dexterous control 

which are as control outputs delivering estimations in form of a discrete class or a 

physical value such as end effector force or position. With respect to that, the most 

common offline performance scores used are either classification accuracy [68] or 𝑅2 

error with respect to a given prompt [53] respectively. In the first case, the score is 

formed based on the amount of correct estimates that the tested classifier is able to 

make, given the new unseen data. The later directly compares the estimated physical 

value to the reference cue generating the score in the form of a widely used coefficient 

of determination 𝑅2. 

With the advancements of computer graphics several very emerging virtual reality 

based evaluation benches have been proposed. Their purpose is to simulate the real, 

online use of prosthesis at various levels of abstraction. The main advantage is that 

they still provide all the benefits of the research environment while not demanding the 

full system implementation. In addition, time consuming and quite effort heavy socket 

fitting can be avoided as well as the optimization phase required for transferring the 

algorithm, or its parts, to an embedded hardware. These VR benches can be rather 

abstract compared to the intended control [69] involving some sort of a computer 

avatar which needs to be steered across the screen. Though, they can also be 

sufficiently simple video games prompting users to drive various cursors in order to 

reach given targets presented to them [53], [64]. Lastly, VRs can even consist of a 

digital replica of the actual prosthesis which then needs to be placed and matched to a 

target posture [70]. Regardless of the setup, all these are aiming at analysing ones 

performance for a given control algorithm during the activation of a specific DoF or a 

combination DoFs. 

The online systems are superior to the offline evaluations since they directly set the 

user in the loop and therefore account for human adaptation to the system. 

Parameters such as completion rate, path efficiency, number of overshoots or 

throughput, provide a solid quantitative evaluation of online performance. Further, 

[71] introduced the Fitts’ law [72] in evaluating myocontrol. Through some iterations 

[65], [73], [74], a single statistical measure has been proposed to characterize a 

myocontroller online. Nonetheless, even if some of these test benches offer realistic 

testing scenarios, they have limitations. For example, weight bearing by the prosthesis 

and stump dynamics causing pressure changes within the socket fitting are important 

realistic factors of influence [75], not included in these tests. On the other hand, VR 

systems have found relevant applications in patient training [76], [77] and can be 

combined with table-top prosthetics [15]. 
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1.2.2 Clinical metrics 

Clinicians and rehabilitation specialists are relying on their own set of metrics and 

questioners for evaluating patient’s functional improvement given a certain 

neurorehabilitation technology. These tests have been mainly based on the techniques 

used for post stroke evaluation and the influence of the upper limb rehabilitation. They 

mainly consist of a various abstract object manipulation and tasks resembling those of 

everyday activities. The main outcome of the majority of these tests is whether or not 

the subject is capable of actually completing them and in which time. In a smaller 

number, some of the clinical tests account for subjective and personal perception of 

how the tasks have been executed and therefore require a presence of a certified 

examiner. 

The most commonly used and perhaps the simplest of the clinical evaluation 

techniques is box and blocks test (BBT) shown in Figure 5B. It is intended to quantify 

the severity of the upper limb deficiency in a very straight forward manner. It requires 

from a subject to transport as many of the wooden blocks as possible in one minute 

while standing, from one side of the barrier to the other. The final score is formed as 

an average of three such repetitions. Though simple and effective, this test focuses 

strictly on a limited number of DoFs and requires minimal amount of skill by the 

subject. 

 

Figure 5 – Assorted clinical evaluation tools (A) Clothes Pin Reallocation Test (B) Box and Blocks Test, and (C) an 
exemplary jug pouring task from SHAP 
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For assessing user’s and system’s performance in tasks which typically require wrist 

activation, an adaptation of Royal Graded Pinch Exerciser is used. Namely, clothes pin 

relocation test (CPRT) depicted in Figure 5A prompts a subject to move a set of clothes 

pins of various resistances from a horizontal to a vertical bar. Being primarily a 

rehabilitation device, an exact procedure for performing an assessment has not been 

defined. Still, majority of clinicians agrees on using four clothespins of different 

resistances (1, 2, 4 and 8 lbs.) and instructs subject to relocate each of them from the 

lowest horizontal bar to the most suitable position along the vertical bar. The overall 

time needed is recorded and averaged over three repetitions in order to form the final 

score. The entire test is performed while standing. 

The most elaborate clinical upper limb assessment tool is the Southampton Hand 

Assessment Protocol (SHAP) [78]. It evaluates user’s performance during an execution 

of 26 different tasks which include six different grip types and their combinations. The 

final score is number which ranges from 0 to 100. Reaching the ultimate side of the 

scale corresponds to a healthy hand function, while the opposite represents an 

absence of it. The achieved score takes into the account one’s ability to complete the 

task and the time that it took. Being a very elaborate test, SHAP’s down point is that it 

tends to be lengthy and tiring, especially for those patients with limited capabilities. 

While the previous clinical tests are mostly focused on the specific hand functions the 

Action Research Arm Test (ARAT) is a global arm function evaluation tool. Grasp, grip, 

pinch and gross movement are the four sub-scales within ARAT and each of them 

evaluate the abstract object manipulation strategies. Score is once again represented 

on a scale which this time ranges up to 57 corresponding to the normal upper limb 

function. The score is purely based on the subjective opinion of the certified examiner 

which can judge the quality of execution of each individual task on a scale from 0 

(cannot perform) to 3 (performs normally). 

Besides the four aforementioned tests, in order to target different upper limb 

functions and functional improvements while using assistive technologies, several 

other clinical tests have been developed. Some quite elaborate ones are the 

Assessment of Capacity for Myoelectric Control (ACMC) [79] and the Jebsen-Taylor 

Test of Hand Function (JTHF) [80]. The former is a clinical evaluation test specifically 

tailored for myocontrol and, although it suffers of a strong subjective component and 

it has not yet received wide recognition, may be a promising evaluation tool. 
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1.3 EMG as a gateway to the movement intention 

The EMG has been used as one of the sturdiest interfaces for neurorehabilitation 

technologies for over half of a century now [81]. It is an electrophysiological signal 

which is easy to access and it very well reflects the intention of a movement. So far the 

majority of applications were relying only on the global processing of EMGs in order to 

interpret the controls sent by the user. However, the EMG itself contains much higher 

volume of information on the neural drive which has so far been neglected for 

myocontrol purposes. In order to be able to extract this information and further apply 

it, basics of muscle physiology and EMG generation should be understood. 

1.3.1 Motor units and generation of EMG 

The motor unit (MU) provides the primary output for the central nervous systems and 

it translates sensory and descending neural information into forces which finally 

generate the movement [82]. As such, MU is the basic functional unit of the 

neuromuscular system and it is comprised of a motor neuron along with its dendrites, 

axon and the corresponding muscle fibres [83]. Motor neurons are located in the spine 

and its axon projects in a peripheral nerve to the target muscle fibres which it 

innervates [84]. 

 

Figure 6 – Schematic representation of the descending motor pathway starting from the spinal cord (left) and 
terminating at the muscle (right). Main components of a motor unit are depicted including an exemplary sketch 
of detectable firings 

Motor neuron pool, sometimes also referred to as motor nucleus, is a population of 

motor neurons that entirely innervate a single muscle [82]. A single motor neuron pool 

may be comprised of a few up to a couple hundred motor neurons [85], [86]. 

The number of muscle fibres innervated by a single axon of a motor neuron varies 

drastically across the motor neuron pool [84]. During a voluntary contraction first 

recruitment done is of those MUs which innervate fewer muscle fibres [82]. In general, 
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majority of MUs in a muscle have smaller muscle units [87]–[89]. The MU territory 

represents the spatial distribution of all fibres belonging to a single MU [82]. The fibres 

of a single MU usually do not spread form one end to the other of a given muscle, but 

rather get terminated within the muscle fascicle [90], [91]. This ensures that the force 

generated by individual muscle fibres gets transmitted through various connective 

tissues during which it gets attenuated and the influence of different contractile 

properties ends up being reduced and having almost no effect on the generated 

motion [84]. 

Given the very conservative threshold for synaptic transmission at the neuromuscular 

junction during voluntary contractions, the motor neuron generated action potential 

invariably leads to propagation of action potentials along all the muscle fibres of a 

muscle unit at approximately the same time [92]–[95]. By placing the electrodes on the 

skin surface above the muscle, recording of the field potential generated by the 

summation of the extracellular currents comprised of sarcolemmal action potentials 

can be done [96]. Therefore, the resulting EMG provides the global measure of muscle 

activation as a result of the increasing number of motor units involved in an action 

[97]. 

1.3.2 EMG decomposition 

As previously elaborated, there is a direct correspondence between the discharge of a 

motor neuron and MUAPs propagated by the innervated muscle fibres [84]. This 

means that the recorded EMG is a summation of the individual contributions of the 

currently active MUs. Therefore, by decomposing the EMG into its constitutive action 

potentials, an assessment of the neural drive to the muscle can be made. 

The most straight forward way for identifying MU discharges is by acquiring an 

intramuscular EMG. Even though this technique is a common practice in clinical 

environment, it has significant drawbacks in neurorehabilitation applications. 

Therefore, numerous non-invasive methods have been proposed for indirectly 

assessing the neural drive. 

Early algorithms suffered from the inability to deal with superimposition and 

interference between the MUAPs [98]–[101]. However, the more recent methods have 

managed to overcome this problem and to successfully identify even the complete MU 

discharge patterns [102]–[105]. These techniques are able to compensate for the 

variability in the shapes of the MUAPs by decomposing an interference signal into the 

discharge times of the MUs that contribute to the signal itself [82]. 

Through physiological modelling, according to [84] the surface EMG can be 

represented as a time-varying convolution of MUAP shapes: 
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𝑥𝑖(𝑡) = ∑ ∑ 𝒉𝑖𝑗,𝜏𝑗(𝑘) ∗ 𝛿 (𝑡 − 𝜏𝑗(𝑘)) + 𝜔𝑖(𝑡) 

𝐾

𝑘=1

𝑁

𝑗=1

,

𝑖 = 1, … , 𝑀;  𝑡 = 1, … , 𝑇 

(11) 

where ∗ stands for convolution, 𝑥𝑖(𝑡) is the i-th surface EMG channel, 𝜔𝑖(𝑡) is an 

additive noise, 𝛿(∙) is the unit-sample pulse and the k-th MUAP of the j-th MU appears 

at time 𝜏𝑗(𝑘). The MUAP observation 𝒉𝑖𝑗,𝜏𝑗(𝑘) = [ℎ𝑖𝑗,𝜏𝑗(𝑘)(1) ⋯ ℎ𝑖𝑗,𝜏𝑗(𝑘)(𝐿)] varies in 

time, modelling all the temporal MUAP changes. 

The described model enables for MU discharge patterns to be represented as binary 

time series (1 when MU discharge is present and 0 when it’s not) even though MUAP 

shapes vary in space. This particular fact is then further exploited by some 

decomposition algorithms. 

Changing muscle geometry and its influence to MUAP shapes can be neglected if an 

assumption of an isometric contraction is made. If in addition the observation interval 

is short enough not to allow muscle fatigue to appear, the MUAP shapes can be 

treated as stationary. This allows for EMG to be treated as linear, time-invariant, 

convolutive, multiple-input-multiple-output model where the i-th output is presented 

as [84]: 

 
𝑥𝑖(𝑡) = ∑ ∑ ℎ𝑖𝑗(𝑙)𝑠𝑗(𝑡 − 𝑙) + 𝜔𝑖(𝑡), 𝑖 = 1, … , 𝑀;  𝑡 = 1, … , 𝑇 

𝐿−1

𝑙=0

𝑁

𝑗=1

 (12) 

where 

 
𝑠𝑗(𝑡) = ∑ 𝛿[𝑡 − 𝜏𝑗(𝑘)]

∞

𝑘=−∞

, 𝑗 = 1, … , 𝑁 (13) 

For the simplicity of notation this EMG mixing process can be also stated in the matrix 

form: 

 𝒙(𝑡) = 𝑯�̅�(𝑡) + 𝝎(𝑡) (14) 

with 𝒙(𝑡) = [𝑥1(𝑡), … , 𝑥𝑀(𝑡)]𝑇 being a vector of 𝑀 surface EMG channels, 𝝎(𝑡)  =

[𝜔1(𝑡), … , 𝜔𝑀(𝑡)]𝑇 representing an additive noise vector and �̅�(𝑡) = [𝑠1(𝑡), 𝑠1(𝑡 −

1), … , 𝑠1(𝑡 − 𝐿 + 1), … , 𝑠𝑁(𝑡), … , 𝑠𝑁(𝑡 − 𝐿 + 1)]𝑇 standing for vectorised block of L 

samples from all the MU discharge patterns. 𝑯 is a 𝑀 × 𝑁𝐿 mixing matrix containing 

all the MUAP waveforms in ideal recording conditions. 

In general decomposition techniques can be divided into template matching or blind 

source separation (BSS) approaches. The first ones are aiming to segment the EMG 

into recognizable waveforms, identify MUAP templates and match them together 
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(perform clustering) [99], [104]. The latter algorithms are trying to directly estimate 

the mixing matrix 𝑯 from the observations 𝒙(𝑡) without introducing any a priori 

knowledge on either the mixing process or MU discharge patterns [84]. 

1.4 The goal and the outline of the thesis 

The aim of this PhD project is to enhance the information extracted from the EMG 

signal for providing better clinical solutions for myocontrol than currently available in 

commercial and research-based systems. The approach applied include patients in all 

stages of the developments, as a way to effectively translate research efforts in 

solutions useful for the prosthetic users. This achievement provides a solid ground for 

development of a novel, more intuitive and effective generation of rehabilitation 

technologies. To achieve this goal, a set of techniques, combining engineering and 

clinical approaches, is proposed and evaluated. The main characteristics of the work 

done is a strong translational approach, so that all studies performed included patients 

with amputations, with a range of conditions, including very challenging clinical cases 

(e.g., transhumeral amputees or soft tissue injury patients). 

The thesis includes three main studies, strongly linked to each other. In the first study, 

an evaluation of an advanced myocontrol algorithm in transradial amputees has been 

made and compared using different metrics for objective evaluation of performance. 

In the second study, the same advanced control has been applied to a very challenging 

clinical case - patients with severe soft tissues injuries who underwent elective 

amputations. Finally, the last study addresses another challenging clinical case, that of 

transhumeral amputees. These patients have undergone TMR and were treaded using 

the most advanced way of estimating the neural drive to muscle from the surface 

EMG, i.e. the direct estimation of the output discharges of the spinal cord circuitries.  

Measuring the functional benefit of a novel neurorehabilitation technology is a difficult 

endeavour, and especially in the case of upper limb prosthetics. The user experience 

itself is influenced by numerous factors making it rather tough to determine whether 

the new myocontrol algorithm has potential in the real world applications or not. So 

far, academia has settled for using rather exact metrics derived from the machine 

learning community which delivers simple descriptive scores. However, a comparison 

presented here, between the most established offline scores and the clinically 

recognized tests, shows little to no correlation between the two, raising doubts on the 

validity of the former. This has also given a potential glimpse into where some of the 

reasons for such a strong dichotomy between academic and industrial solutions might 

be coming from. In addition, a revision of the most commonly used clinical evaluation 

tools has been suggested after analysing subject’s kinematics during the execution of 

some of these tests. 
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In the cases of severe soft tissue injuries a limb might remain present, but due to 

structural damage its function is most often highly compromised. Unfortunately, even 

with the most advanced reconstructive efforts, so far not much could have be done for 

these patients. Here, an extension of a bionic reconstruction method [106], involving 

elective amputation, advanced tech-neurorehabilitation and prosthetic fitting is 

presented and successfully tested on a case series of patients. The intention was to 

improve the functionality in everyday situation of the affected individuals. Through 

advanced signal processing and application of the machine learning algorithms 

presence of the full and intact neural drive is exploited for the purpose of delivering 

highly dexterous prosthetic control to this particularly difficult group of patients. 

Clinical evaluation shows clear improvement of functionality following this approach. 

High level amputees suffer from the myocontrol paradox where the more distal 

amputations require articulation of larger number of joints, yet fewer muscle sources 

are available for sensing the desired control signals. Fortunately, Targeted Muscle 

Reinnervation (TMR) approach [11] is able to grant access to the full original neural 

drive by rerouting the remaining portions of the nerves initially hosted within the 

missing limb to the new target muscles in the proximity of the amputation. Even 

though significant, improvement achieved by simple one-to-one mapping between the 

newly reinnervated sources and joint functions of the prosthetic limb, is not exploiting 

the full neural information available after TMR. By decoding the activation properties 

MUs of the newly innervated muscle from the decomposed surface EMG, the neural 

drive information contained at the level of the spinal cord can be observed. Using this 

technique, data presented here suggests an improvement in the delivery of the 

proportional control signal compared to the standard approaches which could be of 

high significance for the new generation of the prosthetic technologies. 

As an addition, two appendices are supplemented as a part of this thesis. The first one 

provides a technical note on the manufacturing process of specific sockets which have 

been particularly designed for the testing described throughout the monography. The 

second one refers to the details of the advanced myoelectric algorithm which has been 

used in the first two studies. 

The main outcome of the thesis is a full clinical evaluation in a large variety of patients 

of an advanced simultaneous and proportional control algorithm and the proposal of a 

new way of interfacing patients through the identification of motor neuron discharges. 

The first algorithm has been developed and evaluated in this thesis at a level that it 

could be implemented in clinical devices. The second algorithm requires further steps 

for its full pre-clinical testing, but has been extensively tested in actual patients that 

could benefit from it. All cases presented in the thesis are related to challenging clinical 

conditions that are difficult to treat with current commercial solutions and that have 

been successfully addressed with the methods proposed in this thesis.  
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2 Performance assessment methods 

This chapter is based on the work currently under revision: 

Vujaklija, I., Roche, A. D., Hasenoehrl, T., Sturma, A., Amsuess, S., Farina, D., et al. 

(2016). Translating Research on Myoelectric Control into Clinics – Are the Performance 

Assessment Methods Adequate? Front. Neurorobot. 

Current gap between myoelectric solutions developed by academia and those that can 

be freely found on the market is substantial. This issue has been already raised [107], 

[108] and numerous attempts have been made in order to address it. Recently new 

control approaches have been introduced [54], [64], [67], different sensor types and 

sensor fusions were made [109]–[113], new surgical techniques have been developed 

[11], [106], and advanced hardware has been engineered [114]–[116]. However, all 

this progress hasn’t still made a sizable step towards improving the experience of the 

everyday end user. Though, it is quite relevant for better understanding of the control 

problem at hand and its challenges. A common pattern which can be observed across 

all these studies is the general lack of tests performed on larger number of potential 

users. Additionally, most of the evaluations have been conducted in non-standardized 

scenarios. 

The necessity for testing prosthetic solutions in a greater number of amputees than 

currently done is a widely recognized issue. Moreover, it is also evident that the tests 

used often fail to fully include clinically relevant metrics. Rather, performance metrics 

prevalent in laboratory research may be poorly associated to the clinical outcome [65], 

[70], [117]. Here, new insights and data are presented in order to further substantiate 

the relevance of this problem. 

Transferring myoelectrical systems developed in the laboratory to clinical settings is a 

challenge that requires multidisciplinary efforts. Clinical tests, although not ideal, offer 

the most realistic prediction of the system performance in the daily use. These tests 

account for several of the challenges that laboratory-based assessment methodologies 

tend to neglect. For example, noiseless laboratory-based evaluation platforms fail to 

account for the end effector loads, poor socket fitting, and sweating. 

Though, a down point of clinical tests is the fact that they only account for whether or 

not the subject is able to execute a certain task and in which time. Consideration for 

how the given task has been executed is either included through examiner’s subjective 

opinion or it is not incorporated into the score at all. Here, in one subject, an amount 

of body compensation during the execution of several clinical tests has been observed 

using a motion tracking system. This is a proof of concept experiment which aims to 

show the necessity of this kind of evaluation during the testing of prosthetic 

performance. 
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In this study, we review evaluation methods regularly applied for prosthetics use. 

Moreover, in Experiment 1 we provide data from seven conventional myoelectric users 

tested for prosthetic control ability with both classification accuracy and clinical 

assessments. Additionally, in Experiment 2 we provide a comparison of one patient 

using two types of control approaches against a pool of healthy volunteers performing 

same clinical tests, which supports the idea of having to extend the current clinical 

scores to account for body compensation in order to have the full performance 

evaluation of the given system. 

2.1 Methods and materials 

Seven male transradial amputees participated in this study. All of them are regular 

users of commercial myoelectric devices. For the purpose of the experiments they 

have all been fitted with a custom made sockets (Appendix I) and the Michelangelo 

hand (Ottobock Healthcare GmbH, Austria) with additional rotation and 

flexion/extension unit. All users controlled the aforementioned advanced prosthesis 

using an algorithm  based on the common spatial pattern (CSP) based classifier, as 

described by [67] (Appendix II). The EMG signals were recorded with 8 bipolar surface 

electrodes (Otto Bock raw signal electrodes 13E200=50AC). The control system 

allowed the subjects to access seven prosthetic functions – wrist flexion/extension, 

wrist pronation/supination, hand open, pinch, and key grip. 

 

Figure 7 – Position of passive reflective markers used for motion tracking during the performance evaluation. 
10mm markers are depicted in green and 20mm ones in blue. 

In order to accurately analyse the kinematics of the upper limb and trunk during 

prosthesis usage, 17 passive reflective markers (diameter: 10 mm, except for 3 with 

diameter 20 mm) were secured to the dorsum of the participant’s left arm at well-

defined anatomical positions to clearly identify all movements made by the arm 

(Figure 7). Reference markers were positioned above C7, sternal angle, and the 
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acromion processes. Clusters of markers were used to define the centroids of four 

segments of interest – palm, lower arm, upper arm and thorax. An eight-camera 

VICON MX+ optoelectronic motion capture system (Oxford Metrics Ltd., Oxford, UK) 

was used to capture the movements of the passive markers at a sampling rate of 200 

Hz. The coordinates of the markers were recorded in 3D-space in relation to time. The 

motion data were processed using MATLAB 2013a (Mathworks, Massachusetts, USA). 

For assessing the movements of the upper limb in relation to natural movements, five 

able-bodied male subjects were also measured as a normative group. 

The whole study has been was performed in accordance with the recommendations of 

the local ethics board of the Medical University of Vienna (Ethics Commission number 

1044/2015), with written informed consent from all subjects. All given consents are in 

accordance with the Declaration of Helsinki. 

2.1.1 Experiment 1 

Purpose of Experiment 1 was to test the correlation between standardized offline 

myoelectic control assessment score and two clinical tests - of BBT and SHAP. We 

provide data on amputees that compare the accuracy estimated offline, for one of the 

classic control schemes developed over the past decades, with clinical scores. These 

data serve the purpose of reinforcing the conclusion for the need of clinical tests in an 

exemplary way. Therefore, the experiment and results do not aim at providing general 

conclusions on all myocontrol schemes and evaluation methods but rather support the 

view presented in this perspective. All patients were asked to mount their custom 

made sockets with the advanced prosthetic system in place. They were prompted to 

perform the following hand and wrist motions: wrist flexion/extension, wrist 

pronation/supination, hand open, lateral and pinch grip. All the motions were 

recorded in three arm positions (relaxed, fully extend arm in front of the ipsilateral 

shoulder and fully extended arm across the contralateral shoulder) and at three force 

levels (30%, 60% and 90% of EMG based maximum voluntary contraction for each 

motion). For offline accuracy assessment, the classifier was trained by data collected in 

only one arm position and tested against the remaining two data sub-sets. The average 

of the three scores was the reference performance of the subject. The entire data set 

was used for training the same CSP classifier that allowed execution of BBT and SHAP 

tests. These particular clinical tests have been representatively chosen since they cover 

a wide range of assessment goals while being entirely objective. Additionally, these 

two tests have been widely recognized and familiar to academic and industry-based 

developers as well as clinical experts. 
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2.1.2 Experiment 2 

Experiment 2 was designed in order to assess the compensatory movements of a 

patient while performing CPRT and SHAPT tests. Besides the previously described 

fitting (Figure 14), the patients were instructed to use his regular device as well. This 

system was equipped with the classic control algorithm for hand closing, opening and 

rotation of the Michelangelo hand that he used for more than 18 months and which 

allowed robust control during the activities of daily living. This fitting enabled him to 

use the prosthesis in daily activities quickly after the elective amputation. 

Upon finishing the Experiment 1, selected patient underwent further training to 

optimize his control of these additional DoFs using both proportional and simultaneous 

movements at the wrist (Figure 14). After a short training period of 2 weeks, the 

patient completed the SHAP and CPRT with the advanced prosthesis and control 

algorithm for comparison with his traditional device. During this execution the 

patient’s upper body movements have been monitored using the aforementioned 

camera setup. 

Five able bodied subject which participated in this experiment in order to form a 

normative group were also instructed to complete SHAP and CPRT. Their kinematics 

was as well monitored for the whole duration of the experiment.  

2.2 Results and discussion 

2.2.1 Experiment 1 

The performance scores in both offline and clinical tests are presented in Figure 8. The 

offline classification accuracies are slightly lower than in other studies [118], [119] 

presumably because of the different arm positions used for training and testing as well 

as the full prosthetic fitting which is not usual in offline evaluation studies. Although 

with these choices we have maximized the prediction capacity of offline indexes for 

clinical scores, still the clinical scores did not strongly correlate with the offline 

performance measures. The clinical scores had poor correlation with the offline 

performance measures. For example, there were two patients who achieved a similar 

SHAP score just below 40 whereas they showed substantially different classification 

accuracies of < 70% and > 85% (Figure 8A). Similarly, two patients who had very similar 

classification accuracies of 70-75% had SHAP scores of 27 and 47 (Figure 8A). The BBT 

requires less skill to be performed than the SHAP. However, the BBT score was even 

less associated to the offline classification than the SHAP was (Figure 8B). For example, 

subjects with an offline accuracy of over 95% performed very differently in this test 

(Figure 8B).  
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Figure 8 - (A) The correlation between the clinical SHAP score and the offline classification accuracy indicates a 
weak association. The offline scores have been obtained in realistic conditions with the patients wearing their 
prostheses and training and testing performed on sets of data obtained in different arm positions. Despite the 
realistic conditions, the associations shown here are not strong. For example, a SHAP score of approximately 40 
may correspond to classification accuracy lower than 70% or greater than 85% depending on the user.  The SHAP 
requires precise manipulation over short periods of time which is not captured by this offline metrics. (B) The 
correlation between the clinical Box and Blocks test and the offline classification accuracy shows almost complete 
absence of association between the two. For instance, the two patients who achieved the classification 
accuracies >95% were radically different n the number of blocks they could transfer. 

Furthermore, by considering strictly the hand movements – hand open, fine pinch and 

key grip - that are primarily used for this test, the mismatch between this test and 

offline performance is even more substantial (Figure 9). For the two subjects 

representatively considered in Figure 9, the average classification rate across the three 

hand motions was 89% and 79% whereas the transferred blocks (score of the BBT) 

were 5 and 12, respectively. 

When the offline evaluation was performed by using data collected without wearing 

the prosthesis and tested on the same arm position as the training, as more commonly 

done in laboratory tests (e.g., [120]–[123]), the resulting offline classification rates 

were high and comparable to those reported in the literature (>90% on average). 

However, once fully fitted, the majority of patients were unable to successfully 

conclude the clinical evaluations without retraining, indicating that the classic offline 

evaluation procedure performed in several research studies does not provide strongly 

relevant clinical information. 
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Figure 9 - Classification output for two patients with substantially different Box and Blocks outcomes but very 
similar classification accuracies over all motions. The focus is here on the three hand motions that are most 
relevant for the Box and Blocks task – hand open, key grip and fine pinch. The offline accuracy for these motions 
is lower for the subject with the higher clinical score. 

2.2.2 Experiment 2 

The control capabilities of the patient, as revealed by the SHAP, were similar for the 

classic (score of 83), and the advanced prostheses (score of 68). This was achieved 

even if the subject had trained substantially less time with the advanced control with 

respect to the traditional prosthesis. Moreover, the observation of the movements of 

this patient during the standardized tests clearly indicated that he could perform more 

natural tasks with the advanced prosthesis (Figure 10 and Figure 11). The ability of the 

adapted prosthesis to provide additional DoFs, and the intuitive control algorithm to 

make use of these motions, was judged subjectively as very important by the patient, 

although it was not quantified by the SHAP, which is not designed to assess dexterity 

but only the time needed to complete each sub-task. 
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Figure 10 - Recorded kinematics with respect to anatomical segments and joints across different sub-groups of 
SHAP test and CPRT for able-bodied group (1), Patient 1 with classical prosthesis (2) and Patient 1 with advanced 
prosthesis (3). Notably, in terms of kinematics, Patient 1 was more efficient during the execution of tasks than on 
average all five able-bodied participants. 

 

Figure 11 - Recorded centroid traces of respective anatomical sections across all three axes during the execution 
of an example task of the SHAP test, the key task, for able bodied group, patient 1 with classical prosthesis and 
patient 1 with advanced prosthesis 
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2.3 Conclusion 

Abandonment rates among upper limb myoelectric prosthetic users are still very high 

[38], [40], [41]. At the same time, research efforts have provided several new solutions 

for myocontrol that have been proven to be highly functional under strictly laboratory 

conditions. The negligible transfer from research to real world applications likely 

depends, as one of the most relevant factors, on an insufficient level of evaluation 

procedures. 

Using novel prototypes of myoelectric systems in daily life would provide the ultimate 

assessment but this strategy would neither be safe nor always legal. Therefore, clinical 

evaluations are a compromise between laboratory conditions and real-life tests. 

Although not perfect, clinical tests are closer to the conditions of interest for the users 

than offline assessments or online tests using virtual prostheses. The results presented 

in this study indicate a poor association between common research scores and clinical 

ones, which may justify the gap between research prototypes and commercial 

products. 

Considering the discrepancy presented in the literature and supported here with new 

data, it is imperative that novel myoelectric systems are fully clinically evaluated when 

assessing their performance. In addition, clinical test either should not be fully taken 

for granted. As data presented in Experiment 2 suggests, not all aspects of the user 

and system performance are accounted for in the current clinical evaluations. Even 

though the scores might be high, the way they have been achieved might not be the 

most natural one. This, if not straight away, then maybe later during the everyday use, 

might result in overuse of compensatory joints and finally system abandonment. 

For this reason, researchers and clinicians should jointly devise a standardized testing 

framework for quantitatively and qualitatively assessing the performance of upper 

limb prosthetic devices and their users. 

  



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

36 
 

3 Bionic reconstruction enables dexterous prosthetic control 

after elective amputation for critical soft tissue injuries 

This chapter has been based on the recently published paper: 

Aszmann, O. C., Vujaklija, I., Roche, A. D., Salminger, S., Herceg, M., Sturma, A., et al. 

(2016). Elective amputation and bionic substitution restore functional hand use after 

critical soft tissue injuries. Nat. Sci. Reports. 

As previously mentioned hands are an essential part of our everyday interaction with 

the outside world. Though, exactly this puts them into harm’s way at all times. It has 

been reported that as much as a third of all work-related injuries are involving upper 

limbs, out of which 30% either involve a crushing mechanism, fracture or amputation 

[124]. Traumatic events, such as high voltage electrocution, crush, or degloving injuries 

can indeed be devastating for a limb [23], [125]–[127]. Therefore, it is of outmost 

surgical importance that the limb and its function are preserved to the greatest extent 

possible [25], [128], [129]. Until now, a battery of reconstruction techniques has been 

developed and described in literature [25], [129].  

Biological reconstruction techniques will always be the ones attempted first, but they 

can be successful only until a certain degree. In severe cases of critical tissue loss, 

functional recovery is not always possible, resulting in a limb that is not only useless 

but may also constitute an impediment to the patient [23], [130]–[133]. In cases where 

blood supply to the arm is transiently interrupted with ischemia and reperfusion injury, 

similar outcomes can occur leading to established Volkmann’s contractures [134]. It is 

known that radiation treatment in oncological cases can cause the loss of entire 

compartments resulting in a useless hand [135]. Considering the severity of these 

complications, resorting to advanced prosthetic technology may be the only option for 

restoring some functionality of the limb. 

Bionic reconstruction has recently been demonstrated to provide useful hand function 

in patients with global plexopathies with multiple root avulsion injuries [106]. In those 

patients, prosthetic control was challenged by damaged peripheral nerves, which 

limited the quality and quantity of electromyographic (EMG) signals that the patients 

could generate for control. Similar to the patients with damage to peripheral nerves, 

patients who have suffered critical soft tissue defects are also left with a stiff, 

insensate hand that is beyond surgical reconstruction. However, unlike the peripheral 

nerve patients, the remaining muscles have been critically damaged limiting them as 

sources for existing EMG based prosthetic control [136]. 

As previously indicated, nowadays of the shelf myoelectric prostheses are able to 

deliver simple proportional control over 1 or 2 DoFs. Even though robust, limitations of 

these systems are obvious and have been previously elaborated. In order to expand 
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the possibilities of prosthetic control, recently methods suited for the dexterous 

control of multiple DoFs using the residual EMG activity have been developed [67], 

[136]. This system focuses on movements of the wrist and hand in order to provide a 

high gain in function, while preserving the robustness of control, needed for reliable 

daily use.  

This chapter reports the concept of elective amputation and prosthetic replacement in 

three patients with critical soft tissue injuries who, despite all attempted biological 

reconstructive efforts, could not regain any useful hand function years after the injury. 

This is the first attempt of bionic reconstruction in this group of patients, and it is 

based on a recent report of this intervention after global brachial plexus injuries with 

multiple root avulsions [106]. Therefore, the versatility of this concept is confirmed by 

expanding the patient group to those with critical soft tissue defects to gain 

simultaneous and proportional prosthetic hand control. 

3.1 Results 

3.1.1 Standardized Functional Outcome Measurements 

In three patients who had suffered critical soft tissue defects (Figure 12), prosthetic 

hand function was measured both before and after bionic reconstruction using 

standardized functional outcome measurements. Clinical test selected were the Action 

Research Arm Test (ARAT), the Southampton Hand Assessment Procedure (SHAP), and 

the Disability of the Shoulder, Arm, and Hand (DASH) questionnaire [78], [137], [138]. 

All three patients were fitted with commercially available prosthetic hands. 

 

Figure 12 - The critical soft tissue injuries suffered by the patients in this study were due to (left) electrocution, 
(centre) degloving injury, and (right) complications secondary to compartment syndrome. In all cases the 
reconstructive surgical ladder was attempted first, but with poor functional outcome. 

Pre-interventional testing confirmed absence of any sensory and motor hand function 

in all patients (Figure 13). All participants stated that they neglected the use of the 

impaired hand in daily life. Once specifically asked to perform bimanual tasks, use of 

impaired limbs was reduced to minimum. Post-interventional testing took place at 

least three months after prosthetic fitting, except in the case of Patient 3 who was 

evaluated at 10 days after, before she returned to her home country. 
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Figure 13 - Patient 2, (A) before bionic reconstruction, (B) during hybrid hand training, (C) healed residual limb 
after elective amputation, and (D) final prosthetic fitting with patient’s own customized socket design and art. 

Functional outcomes are documented in Table II. Across all patients, the DASH 

outcome scores improved from a mean of 40.4 ± 19.7 to 14.5 ± 10.6, the mean ARAT 

score also improved from 7.67 ± 4.16 during intermediary testing with a hybrid hand to 

21.0 ± 4.36, and, after final prosthetic fitting, to 36.0 ± 6.00. This trend of gradual 

improvement was also observed during SHAP testing. Before the intervention, the 

patients scored a mean of 12.0 ± 3.61, with hybrid fitting 28.7 ± 2.89, and, after final 

fitting, 60.0 ± 29.3. Patient 3 was unable to attend the 3-month follow-up as she lived 

in another country, thus her final reported SHAP score was measured 10 days after the 

final fitting. 

Table II - Functional outcome scores for all critical soft tissue patients before (Pre) and after (Post) bionic 
reconstruction 

3.1.2 Assessment of Simultaneous, Proportional & Dexterous Control 

Patient 1 was first fitted with a classic control algorithm for hand closing, opening and 

rotation that he used for more than 18 months and that allowed robust control during 

the activities of daily living. This fitting allowed him to use the prosthesis in daily 

activities quickly after the elective amputation. However, from the EMG signals 

recorded from this patient, it was evident that he could likely control additional 

movements with respect to closing, opening and rotation of the prosthetic hand, in a 

 
DASH ARAT SHAP 

 
Pre Post Pre Hybrid Post Pre Hybrid Post 

Patient 1 62·0 7.5 9 24 42 11 27 83 

Patient 2 23.33 9.17 11 23 36 16 32 70 

Patient 3 35.83 26.67 3 16 30* 9 27 27* 

Mean 40.39 14.45 7.67 21 36 12 28.67 60 

Standard Deviation 19.73 10.62 4.16 4.36 6 3.61 2.89 29.31 

Notes: DASH - Lower scores represents better function. In both the ARAT & SHAP higher scores represents 

better function. Normal hand function is regarded as equal to or above 100 points in the SHAP. *Note Patient 2 

was evaluated at 10 days after prosthetic fitting, and as lives in a separate country was unavailable for further 

follow up by our group. 
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more natural way. Therefore, a customized Michaelangelo prosthetic hand that 

included wrist flexion, extension and rotation in addition to two grasps (palmar and 

lateral), was developed and custom-fit to the patient. The specific socket capable of 

hosting the prosthesis has been developed for this particular purpose (Appendix I). He 

then underwent further training to optimize his control of these additional DoFs using 

both proportional and simultaneous movements at the wrist (Figure 14). After a short 

training period of 2 weeks, the patient completed the SHAP with the advanced 

prosthesis and control algorithm (Appendix II) for comparison with his traditional 

device. The control capabilities, as revealed by the SHAP, were similar for the classic 

and advanced prostheses (SHAP score of 68), even if he had trained substantially less 

time with the advanced control with respect to the traditional prosthesis.  

 

Figure 14 - Schematic of the patient training to achieve proportional and simultaneous control at the level of the 
wrist.  First the patient’s EMG activity is recorded using eight equidistantly placed surface electrodes during a 
calibration phase.  The gross EMG signal is then decomposed into specific patterns that correspond to seven 
actions of the prosthetic hand, plus a resting condition. These patterns are uploaded to the prosthetic hand for 
real time control, which allows for both proportional and simultaneous movements of prosthesis in real-world 
situations. Details of the used algorithm are describe in Appendix II. 
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3.1.3 Pain & Quality of Life 

10-point Visual Analogue Scale (VAS) was used to evaluate pain scores relevant to the 

affected limb. Prior to bionic reconstruction, patients 1, 2, and 3 reported pain scores 

of 0, 0.5, and 1.5, respectively. No pain was reported by any of them after the bionic 

reconstruction. 

Changes of quality of life, after bionic reconstruction, were assessed by SF-36 Health 

Survey (German Version, 4-week recall) [139]. Evaluated sub-items and summary 

scales are documented in Table III. Upon final prosthetic fitting and restored ability to 

perform bimanual tasks, a marked improvement of physical functioning was noted in 

all patients. Overall, bodily pain was successfully reduced in all three patients, 

exhibiting optimized social and emotional role functioning. Additionally, mental health 

was enhanced. General health perception improved in Patient 1 and 2, implying the 

importance of functional recovery in these patients. This score remained the same in 

Patient 3. 

Table III - Quality of life rated for the three patients before (Pre) and after (Post) bionic reconstruction, evaluated 
with the SF 36 (rated from 0-100, where 0 represents the poorest quality of life, and 100 the best) 

   Patient 1 Patient 2 Patient 3 

Pre Post Pre  Post Pre Post 

Physical functioning 75 95 70 95 85 90 

Physical role functioning 100 100 0 25 100 100 

Bodily pain 84 100 84 100 84 74 

General health perception 87 100 72 82 72 67 

Vitality 60 50 75 70 80 90 

Social role functioning 100 100 87.5 100 100 87.5 

Emotional role functioning 100 100 33.3 66.7 100 100 

Mental health 84 88 68 72 84 96 

Physical component summary 

scale 

50.9 57.7 43.8 51.9 51.2 48.8 

Mental component summary 

scale 

56.6 53.8 48 50.2 58 60.8 

All patients reported improvement of social engagement and in general higher 

functionality during activities of daily living. Interaction with their environment was 

simplified and physical appearance with regards to self-confidence got enhanced.  

Following the prosthetic replacement, Patient 2 was able to continue working as a 

manual labourer, a wish he had long given up before bionic reconstruction offered him 

motor recovery of his injured hand. Patient 1 was able to return to work as an 

electrician after receiving treatment. 
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3.2 Discussion 

Study presented in this chapter reports successful restoration of hand function 

following bionic reconstruction in three patients which have suffered critical soft tissue 

injuries. This procedure was undertaken only after all established biological 

reconstruction techniques have previously failed. The success was achieved through a 

combination of surgical reconstruction, structured rehabilitation training, sophisticated 

signal extraction, carefully planned elective amputation, and advanced prosthetic 

systems. 

Functional recovery following mutilating hand injury depends on a variety of factors, 

each of which might have impeding consequences [140]. Multiple level injuries such as 

crush with subsequent tissue ischemia, or massive loss of functional tissue are the 

ones leading to the worst functional outcomes [141]. The subject pool presented in 

this study comprised exactly out of these patients who have suffered devastating 

injuries, either due to electrocution, degloving or compartment syndrome. All of them 

have extended even far beyond the hand, affecting the limb at multiple levels, and are 

as such representative of the difficult cases that confront reconstructive teams. As 

later thoroughly explained, all biological reconstructive means were first attempted to 

restore function, yet the functional outcomes were non-existent. As there were no 

other autologous means that could be attempted in these patients, bionic 

reconstruction was offered to them as the last resort. This chapter demonstrated that 

the restoration of hand function in patients with critical soft tissue injuries is 

achievable with this multidisciplinary reconstructive approach. 

Muscles, or more precisely EMG signals, were used as the interface for prosthetic 

control in this study. Property of muscles to act as translators of intuitive neural 

information and biological amplifiers of nerve activity was extensively relied on. Good 

prosthetic control depends heavily on consistency, accuracy, intuitiveness, function, 

and, above all, robustness over a broad range of conditions, including activities of daily 

living. Despite important developments in brain and nerve interfacing [142], [143], 

muscle interfacing is the only current viable way for daily use of prosthetic systems. 

With this in mind, it is understandable why critical soft tissue defects represent a 

particular challenge for applying neurorehabilitation technologies. The technique we 

have developed utilizes what soft tissue is left, and uses the gross EMG signal for 

myoelectric control, without the need for invasive interfaces [144]. 

All patients in this study have been fitted with customized commercially available 

devices which included the standardly available myocontrol. In addition to it, in order 

to further explore the possibilities of the presented approach, an advanced control 

algorithm, previously tested in realistic conditions by transradial amputees [52], has 

been adapted for use in one of the presented patients. Relaying on this algorithm, in 

comparison to the industrial state of the art in myocontrol, patient had an advantage 
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of controlling multiple DoF concurrently, which corresponds to natural movements, in 

an intuitive way (without switches or similar mechanisms). It has been shown that a 

patient undergoing bionic reconstruction following elective amputation is able to 

control 3.5 DoFs in a dexterous way.  

All the results present in this study reflect situations closely resembling daily activities, 

with an array of tests that quantified in depth their functional capacity. Moreover, all 

patients used the prosthetic systems they received in this study at home and during 

work. In this way evidence of the real functional gain achieved by bionic reconstruction 

was made available, and is the direct basis for translating research outcomes into 

clinical systems for daily use. Indeed, the three patients currently use their prostheses 

on a daily basis for an average of 6 to 14 hours per day. 

Besides the severe motor impairment, major upper limb injuries are not only physically 

devastating, but also contribute greatly to psychological harm, leading to anxiety and 

depression [145], [146]. If biological reconstruction fails, as in the three patients 

described in the present study, the patients are confronted with the prospect of life 

with a useless limb. Beyond impairment in daily life this also reflects their self-image 

and self-worth [147]. Addressing the psychological impact of mutilating hand injuries is 

likely to improve functional outcomes [148]. In relation to failure of limb salvage, 

amputation has been shown to have no disadvantage from a psychological perspective 

in critical soft tissue defects [149], and wearing prosthesis helps amputees to maintain 

a body schema in which the missing limb is matched to the prosthesis [150]. Therefore, 

it can be stated that replacing a non-functioning limb with a prosthetic one besides 

functional gain, can also be psychologically rewarding. This has been confirmed in this 

study, by the improvement in quality of life metrics in all patients.  

In cases where biological reconstruction was not successful, as those shown here, it is 

imperative that solutions outside the biological arena are considered and offered to 

patients. As has been previously demonstrated, the careful application of bionic 

systems can replace hand function in neurological injuries [106]. The same philosophy 

was applied in this study to three patients with critical soft tissue injuries, with 

different challenges with respect to our previous report. The surgical procedures and 

rehabilitation program were similar to those used for neurological injuries, albeit for 

different indications, but with similar successful results in terms of recovered function. 

Moreover, intact efferent pathways allowed the demonstration of highly dexterous 

control (3.5 DoF simultaneously and proportionally controlled) in one of the patients 

treated. We foresee that the two remaining patients will also be able to use this 

advanced control system after appropriate training. The technique of bionic 

reconstruction is a clinical reality and not a laboratory-based concept, and institutions 

with similar resources and skill could apply this method to patients with similar 

devastating injuries. 
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3.3 Materials and Methods 

3.3.1 Study population 

Three patients (Table IV), who had suffered critical bone and soft tissue defects, 

participated in this study. They have read and signed informed consents between 

January 2010 and November 2014. Ethical approval was obtained from the Medical 

University of Vienna’s Institutional Human-Studies Review Board (Ethic Commission 

Number 1209/2012). 

Table IV - Characteristics of three patients who have suffered critical soft tissue injuries and have participated in 
this study 

Patient Sex 
Age at 

amputation 
Mode of Injury 

Time between 

Injury & 

Amputation 

Original 

Dominant 

Handedness 

Side of 

Injury 

1 Male 23 
Electrical burn 

injury 
29 months Right Left 

2 Male 29 
Traumatic 

degloving injury 
20 months Right Left 

3 Female 26 

Tumor and 

compartment 

syndrome 

60 months 

(5 years) 
Right Right 

Table V - British Medical Research Council power assessment of the affected limb after brachial plexus 
reconstruction and before amputation. The values above the elbow did not change after amputation 

    
Patient 1 Patient 2 Patient 3 

Shoulder 
Abduction M5 M5 M5 

Adduction M5 M5 M5 

Elbow 
Flexion M5 M5 M4 

Extension M5 M5 M4 

Wrist 
Flexion M1 M4 M1 

Extension M1 M4 M1 

Finger 
Flexion M1 M2 M1 

Extension M1 M1 M1 

Table VI - Active range of motion for each patient of the affected limb after injury but before amputation. The 
values above the elbow did not change after amputation. All shoulder range of motions were unaffected. 

    
Patient 1 Patient 2 Patient 3 

Elbow Extension/Flexion 0 135 30 90 85 100 

Hand 

Extension/Flexion MCP II-V 0 5 0 0 0 0 

Extension/Flexion PIP II-V 0 0 0 0 0 0 

Extension/Flexion DIP II-V 0 0 0 0 0 0 

Extension/Flexion Wrist 5 5 10 5 0 0 

CMC Thumb 0 0 5 5 0 0 

Extension/Flexion MCP I 0 0 0 0 0 0 

Extension/Flexion IP I 0 0 0 0 0 0 

Intrinsic Muscle Function 0 0 0 0 0 0 
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Patient 1 (male) sustained an electrocution injury in February 2008 at the age of 21. 

Both hands were severely injured requiring admission to the Intensive Care Unit for 

several weeks. Both arms were acutely fasciotomized and multiple surgeries followed 

to salvage the extremities. On his dominant right hand, the thumb and parts of the 

middle finger had to be amputated. On the left forearm the entire volar compartment 

had to be removed and the fifth finger amputated. The soft tissue defect was acutely 

reconstructed with a large groin flap. After consolidation of all wounds, the right 

thumb was reconstructed with single homologous finger transplantation, using the 

fourth finger of his left hand. Six months later, a myocutaneous free flap from his left 

thigh was transplanted with vascularized fascia lata strips in an attempt to reconstruct 

finger flexion of his left hand. Additionally, a long vascularized ulnar nerve graft was 

used to reconstruct median nerve function. Even though the surgery was successful, 

the trophic defects of the hand itself were so great that the hand was intrinsic minus 

and insensate (Figure 12 (left), Table V and Table VI). However, EMG signals were 

recordable from the median nerve activity in the forearm, and the remaining muscles 

of the extensor compartment could serve as radial nerve signals. As such, after careful 

assessment and discussion with the patient, an elective transradial amputation was 

performed to allow prosthetic replacement. 

Patient 2 (male), an industrial worker, suffered a degloving injury of his entire left arm 

and an avulsion of his right adductor pollicis muscle in February 2012 at the age of 28. 

After multiple debridements (including muscles, tendons, nerves and both ulnar and 

radial artery at the forearm), split skin grafts, and negative pressure dressing, over the 

course of many weeks, the hand was buried under the abdominal skin for soft tissue 

recovery. Despite these reconstructive efforts the fingers had to be finally amputated 

at the proximal interphalangeal joints. The patient was discharged from hospital after 

two months of inpatient treatment. There was still hope of regaining some degree of 

hand function, but the remaining joints were stiff (Table V and Table VI) and the skin 

quality continually degraded to open wounds. The hand was completely insensate. In 

addition, at the elbow and the amputation stumps, the poor skin quality led to 

recurrent ulcerations and bone protrusions. Unfortunately, attempts at using orthotic 

supports to encourage remaining hand movement failed due to further skin 

breakdown (Figure 12 (centre)). After careful assessment and discussion with the 

patient and prosthetist, the best level of amputation was determined to save 

remaining forearm and wrist function for optimal prosthetic use. Thus, an elective 

transmetacarpal amputation was performed. Additionally, the chronic ulceration over 

the left olecranon was covered with a free vascularized latissimus dorsi flap together 

with an arthrolysis of wrist and elbow to enhance range of motion of these joints. 

Patient 3 (female) fractured both ulna and radial bones of her right forearm 

accidentally in July 2007 in Mexico at the age of 20. In a follow up appointment later 

that year by the local surgical team, formation of tumors in the upper forearm were 



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

45 
 

noted, with concerns that these might be related to rejection of implanted plates and 

screws. During the operation to remove these implants, tumor formation was 

additionally observed in the surrounding muscle, and was later diagnosed as a benign, 

but aggressive, desmoid tumor. Three operations followed due to residual tumor 

formation, together with perfusion chemotherapy. The chemotherapy provoked an 

arterial spasm leading to the development of compartment syndrome of both the 

volar and dorsal right forearm. In February 2012, an attempt to restore some hand 

function with z-plasties and tendon transfers was not successful. A further fracture of 

both radius and ulna occurred during aggressive attempts of intraoperative 

mobilization of the elbow, and was subsequently treated conservatively with a whole 

arm cast. Due to delayed bone healing the cast was in situ for 8 months. After removal, 

the elbow was stiff and the patient had developed a “frozen hand”. In June 2013 the 

patient was referred to the surgical authors of this paper. The hand was completely 

atrophied with no useful sensation (Table V and Table VI), but she still had some 

activity in her flexor and extensor muscles in the upper forearm, which had no 

functional effect on the hand or wrist (Figure 12 (right)). The patient had previously 

been offered an above elbow transplantation by a separate surgical team, but declined 

in favour of bionic reconstruction with the main motivation of being of child bearing 

age without completed family planning. After assessment, discussion, intensive EMG 

signal training and hybrid fitting, an arthrolysis and tendon lengthening at the elbow 

was performed to allow adequate range of motion. An elective transradial amputation 

was then done to allow prosthetic replacement.  

In all of these patients (Table IV) previous biological reconstruction had been 

attempted, as described above, but resulted in a stiff, insensate, and intrinsic minus 

hand, together with insufficient skin and soft tissue coverage. These characteristics 

were the indications to undergo bionic reconstruction. The absolute exclusion criteria 

were the presence of useful sensation in the hand, or severe damage to the elbow and 

shoulder, which would result in an inability to lift the forearm against resistance (< 

British Medical Research Council Power 4) or stabilize the shoulder joint. 

3.3.2 Clinical Evaluation 

All participants have undergone the initial screening in the specialist hand clinic. 

Neurological and musculoskeletal examination of upper limb function was performed 

including high-resolution ultrasound and nerve conduction studies to assess the state 

of existing muscles and nerves. In addition, quality of life metrics (Short-Form 36) and 

related pain scores [139] were evaluated. Thorough psychological evaluation of all 

patients was performed by a qualified psychologist both before and after the 

intervention. The evaluation contained a structured clinical interview (SCID), 

Freiburger assessment to evaluate adequate coping strategies (FKV-LIS) and behavioral 

observations [151]. 
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3.3.3 Tech-Neuro-Rehabilitation Program 

Cognitive training was started straight after the surgical reconstruction took place 

(Figure 13A) and before the amputation. Surface EMG was used to provide visual 

feedback to patients in order to train and ensure strong, consistent muscle electrical 

activity. This biofeedback was provided on a computer screen, in form of graphs that 

responded accordingly to the activation of each individual electrode. Once satisfactory 

signals were obtained, patients were presented with a virtual hand which then 

simulated the control performance of a desired prosthetic device (Figure 13B). While 

the non-functioning hand was in place, the use of virtual rehabilitation encouraged the 

patients by demonstrating that they still could control hand function. Repeated surface 

EMG recordings showed that this training improved signal quality and control. The 

patients could then practice the different functions of the prosthesis through virtual 

rehabilitation before the actual fitting. The virtual hand reproduced the functions and 

physical constraints of the real prosthesis. This process took between a few days and 

several weeks depending on the cognitive training requirements of the patient and the 

time elapsed since injury. Once confident in the virtual environment, the patients were 

fitted with a “hybrid hand”, where a prosthetic hand was attached to a splint-like 

device fixed to their remaining hand (Figure 13B). The device provided direct proof for 

the patients that they could achieve better hand function using the prosthesis than 

their non-functioning biological hand. As it is expected in standard myoelectric 

prosthesis rehabilitation, the patients needed a few intensive hours of training to 

become familiar with prosthetic function. Depending on their outcome with the virtual 

and hybrid prosthetic systems, the patients were offered different control algorithms 

and were tested with them. The control algorithms evaluated by the patients were 

either based on direct control of 1-2 DoF or on a more advanced processing to extract 

the maximum number of control signals. The advanced processing applied in this study 

has been adapted from the method described in Amsuess et al. [52] and allows the 

concurrent and proportional activation of rotation, flexion, and extension of the wrist 

and two fine proportional grasping types [67]. This control type therefore allows an 

increase of the available DoFs from 1-2, typical of direct control, to 3.5, allowing a 

higher degree of function and versatility. The advanced control tested is natural and 

intuitive, without the need to switch between DoFs or between simultaneous 

activation of DoFs and single DoF control [67]. Testing different possibilities of control 

guided further rehabilitation treatment and supported the patient’s decision making 

process. 
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3.3.4 Amputation in Preparation for Hand Prosthesis Fitting 

After the tech-neuro-rehabilitation program had been performed successfully, the 

amputation of the non-functioning hand was planned in order to fit the prosthetic limb 

(Figure 13C). According to the anatomical status of the patient and to the 

requirements of the fitting prosthesis, the adequate distance for amputation varied on 

the individual patient’s remaining functional anatomy. Patient 2 had useful remaining 

wrist movement, so a transmetacarpal amputation and fitting with customized short 

hand prosthesis was performed. Depending on the remaining sensation of the 

forearm, the most sensitive skin surface was used for coverage to obtain a fully 

sensate stump for better prosthetic fitting and feedback. Early after amputation a 

compressive garment was applied for edema control. Prosthetic training and fitting 

then could be applied as early as six weeks post amputation (Figure 13D). 

3.3.5 Materials 

Patient 1, 2 and 3 were respectively fitted with commercially available prosthetic 

hands: Michelangelo hand, Transcarpal Hand, and Myobock Hand – all by Otto Bock 

Healthcare Products GmbH, Vienna, Austria. All patients were trained with direct 

proportional control, for which all electronics were embedded in the prosthesis, 

enabling them to take their prosthesis home and use on a daily basis. 

In addition, for advanced control purposes, the Michelangelo hand for Patient 1 was 

equipped with a prototype wrist flexion/extension (not present in the commercial 

version of the prosthesis) and rotation unit. This setup, including the lateral and pinch 

grasp provided by the hand, allowed manipulation of 3.5 DoFs. The whole prosthesis 

was mounted on a custom fit socket containing eight Otto Bock raw signal electrodes 

(type 13E200=50AC). The socket itself housed the power unit as well as the AxonBus 

system, which allowed EMG sampling at the rate of 1000Hz with 10 bit resolution.  

Electronics embedded into the electrodes provided the amplification and initial 

filtering of the signals. For advanced control, Bluetooth connection was established 

between the AxonBus and a PC, allowing the main computational burden and patient 

training to be transferred to a more convenient hardware.  

3.3.5.1 Control Algorithms 

After the training phase, it was decided that patients 2 and 3 should use conventional 

direct control. They could articulate at least one single DoF and the speed of the 

prosthetic was linearly correlated to the level of activity of the dedicated agonist or 

antagonist muscle depending on the direction within the DoF. Patient 3 was fitted with 

the rotation unit, in addition to hand opening/closing, and therefore was given an 

opportunity to switch between DoFs using co-contraction of agonist/antagonist with 

classic control. Moreover, Patient 1 presented sufficient signal quality to attempt 

advanced simultaneous and proportional control of the multifunctional prosthesis, 



Translating Advanced Myocontrol for Upper Limb Prostheses from the Laboratory to Clinics 

48 
 

with the possibility of acting intuitively on 3.5 DoFs [67] (Appendix II). The tests on this 

patient are reported for both classic control algorithms as well as for the more 

advanced algorithms. The classic control algorithms were those for which the patient 

was first trained and which he used at home. 

3.3.5.2 Software Framework 

The electrodes and signal conditioning were integrated into the sockets of the 

prostheses, which also included batteries and therefore were stand-alone systems.  

For the sake of convenience and the empowerment of the advanced control system, 

communication between the prosthesis and a PC was established via Bluetooth. A 

custom developed software framework was used to handle this communication 

allowing acquisition and processing of the data, decision-making, prosthesis control, as 

well as patient training in real time. 

In order to enhance the efficacy of the patient training, a visualization tool provided a 

polar chart of the root mean square (RMS) EMG values as a function of the electrode 

position. In this way a structured training program was made available, promoting the 

user’s familiarization with the control scheme. 

In order to train the system with the representative data set, the framework was 

granted a function to collect EMG activations in the standard pattern recognition 

manner. Initially, it prompted the user to elicit maximal long-term voluntary 

contractions (MLVC) of each controllable motion for calibration. Next, it imposed a set 

of trapezoidal cues with plateaus reaching 30%, 60% and 90% of the calibrated MLVC 

for movement. In this way the participant was prompted to slowly step in, hold and 

step out of the desired motion while constantly receiving feedback of the current 

contraction level based on the cumulative RMS value across all eight electrodes. Each 

cue was treated as a single trial lasting in total 5s with the trapezoid’s plateau of 3s. 

Considering the three desired levels of activation, seven of the prosthetic functions 

and no movement as a separate class summed up to a total of 24 trials forming a single 

run. Three runs recorded in relaxed, reaching in front and reaching across arm 

positions, were used for training the system. 

3.3.5.3 Functional Assessment 

Regained hand function was evaluated using a battery of established clinical tests 

including those that resemble activities of daily living, both using the hybrid system 

with the prosthesis mounted in parallel to the non-functioning hand and after elective 

amputation and prosthetic fitting. The global upper extremity function was evaluated 

both pre- and post-intervention with the Action Research Arm Test (ARAT), 

Southampton Hand Assessment Procedure (SHAP), and the Disabilities of the Arm, 

Shoulder and Hand (DASH) questionnaire, which monitor hand and upper extremity 

function closely related to activities of daily living [78], [137], [138]. All tests were 
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performed in accordance to the standardized protocols. The DASH was not performed 

using the hybrid device, as it was a training device not available at the patients’ homes 

(a requirement of the DASH questionnaire).   

3.3.5.4 Pain and Quality of Life Assessment 

Pain scores were evaluated using visual analogue scales (VAS). SF-36 Health Survey 

(German Version, 4-week recall) [139] was used to quantify the changes of quality of 

life after bionic reconstruction in all study patients. The questionnaire addresses eight 

independent subscales: physical functioning, physical role functioning, bodily pain, 

general health, vitality, social role functioning, emotional role functioning, and mental 

health. Each listed subscale ranges from 0 to 100, where the latter represents the 

maximum.  Based on the subscales, two superior physical and mental component 

summary scales can be identified. These have mean values of 50 and a standard 

deviation of 10. For example, a patient with a psychological sum scale of 65 exhibits 

above average mental health compared against published age- and sex-matched norm 

samples of an overall representation for the German population. All the patients 

completed the questionnaire both prior to bionic reconstruction and after the 

prosthetic device has been incorporated into their regular daily living.  
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4 Neural decoding for improved force estimation in TMR 

patients 

This chapter has been based on the work currently under revision: 

Farina, D., Vujaklija, I., Kapelner, T., Sartori, M., Negro, F., Jiang, N., et al. Man-machine 

interfacing with discharge timings of spinal-motor neurons after targeted muscle 

reinnervation. Nature Biomedical Engineering 

Modern neurorehabilitation technologies are aiming to deliver natural and intuitive 

control. In order to achieve it, an interface based on biological signals which explores 

all the properties of neural drive is needed [136], [152]. In this way, a gateway for 

assessing the information on user’s intent can be established and used for controlling a 

prosthetic device. This can be done at various levels of neuromuscular system – brain, 

nerve or muscle [67], [81], [153]–[156]. Though, the most reliable level of interaction is 

considered to be at the most distal of three - muscle [81], [108]. 

However, recordings made at the muscular level are only possible when the remaining 

tissue following the amputation is available and functional to a sufficient extent. 

Therefore, in cases of very proximal amputations up until recently very limited number 

of control signals could have been retrieved. With the development of TMR an 

opportunity for reinnervating the muscles in the proximity of the amputation was 

made possible, using the nerves that once carried the neural code to the affected limb 

[12], [14], [16], [17]. 

Following the TMR, an insight into efferent activity of any nerve can be made using 

EMG recordings. This, in principle, allows indirect detection of the neural drive 

descending from the spinal cord which is dispatched by motor neurons. However, 

current TMR based man-machine interfaces do not exploit this fact fully, but rather 

describe the elicited activation through a few global features [157]. In addition, by 

operating in the quite rigid space of designated movements [158] not much is left for 

the development of flexible control paradigms. 

In this study a preliminary investigation into a possible more accurate neural interface 

is made. A proportional control signal is extracted from the decoded discharge timings 

of motor neurons. These spike trains have been retrieved through EMG deconvolution 

in three transhumeral patients who have undergone TMR. In this way a man-machine 

interface with an accurate physical output has been established based on information 

that has been retrieved from the outputs of the circuits in the spinal cord. In addition 

this was done in a clinically viable way through a combination of surgical procedures 

and advanced neural decoding. Preliminary results presented here indicate the 

superiority of this approach to the current state-of-the-art (SoA) in terms of ability to 

modulate the reconstructed force estimate. 
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4.1 Results 

Three transhumeral patients (Table VII) who have undergone TMR surgery participated 

in an experiment aimed to assess the use of motor neuron spike trains for proportional 

control. The purpose was to see whether this kind of approach could have implications 

on direct control methods following TMR. The 64 channel EMG recordings were 

successfully decomposed using CKC algorithm [103] and identifying on average 11.8 ± 

3.8 motor units across all three patients. An example of linearly increasing and 

decreasing intensity of activation by patient T1 (Table VII) is shown in Figure 15. By 

decomposing the generated EMG during linear increase and decrease of the activation 

level, two underlying mechanisms have been qualitatively revealed: recruitment of 

additional motor neurons and modulation of the discharge frequency of the active 

motor neurons (Figure 15C). In addition, high correlation has been found between the 

information on the population activity of motor neurons and the intensity of muscle 

activity. This was repeatable over different trials of the same task (Figure 15). 

 

Figure 15 - Motor neuron behaviour ramp like activation in patient T1. (A) Amplitude maps of the interference 
EMG during a contraction of increasing and decreasing force (linear). (B) Prompt that was given to the patient as 
visual feedback to modulate the intensity of the contraction is shown as a black line. The surface EMG amplitude 
is shown as a red line. (C) Spike trains of motor neurons decoded through EMG decomposition. (D) Smoothed 
discharge rates of individual motor neurons with respect to the cue. (E) Instantaneous discharge rate estimated 
over intervals of 200 ms computed from the cumulative spike train of the decoded motor neurons for three 
repetitions of the same task (circles; each repetition is represented with a different color), showing the 
association between the instantaneous rate of motor neurons and intensity of activity. The behavior of motor 
neurons during the ramp contractions in this representative example fully reflects the general observation on all 
patients tested and all trials. This is evident from the results on each patient shown in Figure 4 (lower panel). 

Observations made for patient T1 were confirmed in the other patients from the same 

pool. Contraction intensities for one patient are presented in Figure 16.  The variability 

of the estimates for all three patients across different processing windows can be seen 

in the lower panels of Figure 16.  
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Figure 16 - Force estimates without (left column) and with (right column) post processing based on averaging 
over three consecutive past intervals. The plots in the top panels (representatively for patient T4) show the 
comparison between force estimates based on the EMG envelope (blue) and motor neuron spike trains (red) with 
respect to the cue (black). The bottom panels show the standard deviations (σ) of estimation (colour coded for 
each of the three patients T4-T6) after linear de-trending when varying the processing interval, without (left) and 
with (right) post processing. 

4.2 Discussion 

This study presented a concept of a new neural interface for proportional control of 

neurorehabilitation technologies based on the discharge timings of spinal motor 

neurons. Proposed gateway to human neural day was achieved by a combination of 

TMR, which connects the axons of the target motor neurons to available muscle fibres, 

and the decoupling through deconvolution of the electrical activity of the muscle fibres 

innervated by each axon obtained from multi-channel EMG recordings. It has been 

shown that this kind of interface allows generation of meaningful and accurate control 

signal which can be used for novel prosthetic control. Presented technique 

outperformed standard interface based on classic EMG. 

Using the proposed interface, a large number of motor neurons was detected from the 

observed reinnervation site in each of the patients. Clear assessment of the decoded 

neural information was possible due to accurate identification of these motor neurons. 

This allowed the proposed interface to go beyond the usual global description of EMG 

based on either amplitude or frequency features. The obtained result can be compared 

to the decoding of the output circuits of the spinal cord and to the identification of the 

spike trains directly from axonal interfacing with implanted electrodes. Though here, 

differently from the implanted nerve recordings, observation of the greater number of 

motor neurons was made. In addition, identification of the complete series of 

discharges was possible for the decoded motor neurons, while during the direct nerve 

interfacing error rate is close to 30% with 5 to 6 decoded MUs on average. This leads 
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to a conclusion that using the proposed interface, motor neuron spike trains can be 

effectively used as relevant source of neural information for generating prosthetic 

commands. 

The accuracy of the proposed interface has been proven through a fairly standard 

scenario of single DoF proportional control. The decoded neural information allowed a 

finer separation of intensity levels while the classic surface EMG amplitude based 

approach has proven itself to be more coarse. Theoretically speaking, the extracted 

neural information has a potential to exactly predict force [159], while on the other 

hand surface EMG relays on the signal variance which is constrained by the bandwidth 

of the signal [160]. 

4.3 Methods 

4.3.1 Patients 

Total of three patients (Table VII) participated in this study. All of them are traumatic 

transhumeral amputees who have undergone TMR surgery at the Medical University 

of Vienna. During the procedure medianus, ulnaris, and radialis nerves have been 

transferred into the brachialis, caput breve bicipitis, and caput laterale tricipitis 

muscles, respectively. This study has been approved by the local ethics committee 

“Ethikkommission der Medizinischen Universität Wien”, approval number 1234/2015. 

All participants have read and signed informed consents before experiments were 

conducted. 

Table VII - Transhumeral TMR Patinets' characteristics 

Pat. Age Sex Amputation 

Time since 
TMR site in m. 
Bicpesc brachii 

TMR site 
in m. 
Caput 

laterale 
tricipitis 

Amputation 
TMR 

surgery 
Caput 

longum 
Caput 
breve 

T1 31 M 
Transhumeral, 

left 
2y, 3m 9m radialis ulnaris radialis 

T2 17 M 
Transhumeral, 

left 
>5 y 4y, 2m radialis ulnaris radialis 

T3 51 M 
Transhumeral, 

left 
>10 y 4y, 4m radialis ulnaris radialis 
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4.3.2 Experimental set-up and protocol 

For the purpose of this study an electrode grid containing 64 sensors has been placed 

over the reinnervated short head of the biceps using double adhesive foam. Signals 

sensed in this way were further acquired using a multichannel biosignal amplifier 

(OTBioelettronica EMGUSB2). Gain was set at either 500 or 1000 and the sampling rate 

used was 2048Hz with the sampling depth of 12bits. In hardware realized band pass 

filter had cut-off frequencies at 3 and 900Hz. Schematic representation of the set-up is 

shown in Figure 17.  

 

Figure 17 - Interfacing spinal motor neurons in humans. Following TMR, nerves are redirected to innervate 
neighbouring muscles which are treaded as biological amplifiers of nerve activity. The spike trains discharged by 
the innervating motor neurons are decoded by deconvolution of the surface EMG signals. The spike trains are 
then used to generate the proportional control signal for potential neurorehabilitation applications. The spike 
trains shown here are extracted from data acquired from patient T1. These spike trains are represented with the 
sole purpose of describing the general concept proposed in this work. 

The patients seated comfortably facing a computer screen. One surface EMG electrode 

grid was mounted over the reinnervated short head of the biceps. Initially, all 

participants were asked to perform a maximal voluntary contraction by attempting a 

hand open gesture of their missing limb. The maximum EMG envelope across all EMG 

channels during this task was taken as reference for providing feedback in percent of 

the maximum intensity. Each subject was then prompted to increase and decrease the 

intensity of muscle activity from the relaxation state to the maximal intensity, over 20 

s. This was done using a visual cue in a form of a ramp, which was then supposed to be 

matched using a cursor which changed its vertical position in relation to the muscle 

activation. 
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The intensity of muscle activation was estimated using the EMG envelope, as a classic 

reference approach, and the spike trains of the identified motor neurons. The EMG 

signals were decomposed by a blind source separation algorithm [161] in order to 

provide the discharges of activation of the innervating motor neurons. These 

approaches were compared varying the processing interval from 50 ms to 500 ms, with 

an interval overlap of 50%. Moreover, a post processing was applied by averaging over 

three consecutive past intervals. For each condition, the standard deviation of the 

intensity estimate, after linear de-trending, was computed to determine the accuracy 

in the control.  
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5 Thesis discussion and conclusions 

The work presented in this thesis addressed the problem of deriving high quality 

neural information in order to provide a basis for a superior control of 

neurorehabilitation systems to users with upper limb deficiencies. Furthermore, this 

approach has been implemented and tested on some of the most difficult patient 

pools for which very limited solutions were previously available. The strong 

translational efforts are made throughout the studies, resulting in successful clinical 

implementations of the majority of the developed approaches.  

The current market of upper limb prosthetics offers a variety of highly dexterous 

devices, though a major complain is directed towards the way in which they are 

controlled. Conventional cable driven systems offer limited range of motion and allow 

steering of just a few degrees of freedom (DoFs) which are usually coupled. 

Furthermore, they rely on presence of specific anatomy and patient stature while 

delivering somewhat unnatural control. Alternative myoelectric systems overcome 

some of these issues by translating the amplitude of the sensed electrical activity of 

the muscle contractions into the velocity of the currently controlled DoF. Through a 

simple state machine approach, relying on simple tricks, users of these systems are 

able to access a variety of DoFs and to control them in a proportional way. However, it 

is clear that this is not the most intuitive way of interacting with the world and cycling 

through individual DoFs can be rather frustrating and cumbersome. 

Academia has been addressing these issues in the past decades in various ways, out of 

which those based on machine learning approaches seemed to be the most promising 

ones. Though, their commercialization hasn’t quite taken off, mostly due to robustness 

issues and still not fully intuitive control. These approaches base themselves on a fact 

that the electromyographic (EMG) signals originating from various motions are 

essentially different once properly described. However, all the descriptors used so far 

are based on amplitude or spectral moments of the observed signals. 

In addition, both approaches are unable to provide functional improvements in critical 

clinical cases. For instance, in case of high level amputations, the number of DoFs 

which needs to be controlled is large yet muscles, which are commonly used as 

sources of control signals, are few. This leaves classic machine learning based solutions 

with very few inputs to work with resulting in poor performance. Industrial one-to-one 

systems have been able to prosper from surgical interventions such as TMR, though 

the delivered control is still quite rudimental and overwhelmingly crude. On the other 
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hand, in patients who have suffered critical soft tissue injuries it is hard to gain access 

to the usually intact neural drive do the remaining anatomy which now represents 

more of the impediment than anything else. In these cases, both academic and 

industrial solutions are currently standing little to no chance of delivering any 

functional benefit. 

Even though research into neurorehabilitation technologies has yielded many 

interesting concepts, the way academia classifies which of them might be promising in 

everyday life seems not to be delivering quite as expected. As the first study of this 

thesis, concept of offline testing of myoelectric systems has been re-evaluated. Most 

commonly used classification accuracy score has been compared to clinically 

recognized tests. Correlation between them was shown to be poor indicating necessity 

for improving or further shifting the academic evaluation tools towards clinically used 

ones. Furthermore, during this process, the validity of clinical tests themselves has 

been questioned. The work presented here indicates that even these scores fail to 

account for all major parameters describing ones functionality given the tested 

technology. Main issue arises from the fact that the majority of clinical evaluations rely 

strictly on whether or not the tested subject is able to perform the given task and in 

which time. What is neglected is the quantitative description of the way that the task 

has been done. Here, it is shown through a side by side comparison of an industrial 

and an academic flagship, transradial solutions that even though the former one has 

obtained slightly better clinical scores, the amount of compensatory movements 

expressed in the later is smaller. This leads to a conclusion that the system proposed 

by academia is offering more natural control which on a long run might provide higher 

quality of life to a prosthetic user. Moreover, the significance of translational activities 

within myocontrol research has been strongly outlined in this study and it has been 

shown that despite all the challenges clinical implementation of the newly proposed 

systems is of out most importance. 

As aforementioned, the majority of patients with critical soft tissue upper limb injury 

currently cannot be provided with any of the available neurorehabilitation 

technologies in order to sufficiently increase or substitute their lack of functionality. 

Case series presented in this thesis lays down a viable solution to this problem. A 

combination of surgical techniques and engineering solutions was developed as an 

extension of bionic reconstruction technique previously implemented for improving 

everyday experience in patients suffering from brachial plexus injuries. This technique, 

through means of surgical interventions, elective amputation, tech-neuro-

rehabilitation and advanced human-machine interfacing enabled access and utilization 

of the neural drive present in patient suffering from this specific, yet not so rare, 

disability. As shown here through a set of clinical tests conducted before, during and 

post intervention the functional improvement is high and rewarding. Through a 

battery of psychological tests and testimonials by all of the tested patients, success of 
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this approach extends beyond functionality. Namely, all three patients in this case 

series managed to reintegrate into the society and continue their lives with a higher 

level of social and emotional engagement. This study was yet another example in 

which strong translational approach to a very complex problem led to a clinical and 

finally real world application of a laboratory based concept.  

Finally a concept of using high level neural information, which was made accessible by 

TMR in transhumeral amputees, for potentially delivering precise proportional control 

signal was investigated. Namely, by deconvolution of the HD EMG signals obtained 

from reinnervated muscles the MU spike trains were obtained allowing precise and 

highly modulated reconstruction of the intended force signal. On a small pool of three 

patients it has been shown that this approach is able to potentially deliver finer and 

more articulated output which could be of use for driving various neurorehabilitation 

technologies. This might be the study which is at this point furthest from a clinical 

scenario, but on a long run, introduction of this indirect interface to spinal cord, into 

already available TMR prosthetic solutions could deliver more precise and natural 

steering over all driveable DoFs. Therefore, this result is putting a strong basis for 

future clinically viable solutions which could revolutionize the way novel 

neuroethologies are being interfaced. 

The outcomes of this thesis strongly support the idea that the engineering research in 

man-machine interfacing for prosthesis control needs to be evaluated in real clinical 

cases relying on extensive clinical testing. The laboratory tests are evidently not 

sufficient and the simplified conditions which they provide, relaying on classic metrics, 

are misleading and useless. The current state of the art in commercial myocontrol 

systems can be advanced by applying algorithms which support simultaneous and 

proportional control, though only if they have been extensively clinically tested. This 

seems to be the only way to make a sound prediction on whether or not a system 

could stand a chance in the real world. 

In order to set a new frontier in myocontrol system design the necessity to further 

deepen the information extracted from muscle electrical activity seems eminent. The 

way to achieve this is by estimating the neural drive sent to the muscles directly, which 

has been proven feasible for the first time in clinically challenging conditions of 

transhumeral amputations.  

Overall, the thesis provides new horizons for the clinical translation of advanced 

myocontrol. This has been achieved after decades in which the clinical transferability 

of new methods for man-machine interfacing, in upper limb prostheses, has been close 

to none. The key to this success has been in combining new surgical interventions, 

advanced methods for EMG detection, integrative engineering, and clinical tests. This 

multidisciplinary effort was only made possible through collaborations with surgeons, 

clinicians, physiotherapists, orthopaedics, mathematicians, and engineers.  
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Appendix I – Multichannel transradial socket design 

Myoelectric transradial systems containing more than two electrodes are still not 

freely available on the market. Therefore, procedures for producing sockets needed 

for conducting studies presented in this thesis have not been yet established and are 

not part of regular activities of orthopaedic technicians. For the purpose of the studies 

conducted here over 20 semi-permanent sockets have been custom designed and 

made for more than 15 impaired individuals. 

Brief conceptual design and technical notes are given in this appendix as a future 

reference. The details presented are far from ideal and further improvements are 

planned and needed. In addition, it should be noted that the presented concept was 

developed specifically with Ottobock’s Michelangelo Hand in mind, equipped with 

standard rotation and experimental flexion/extension unit. Additionally, sockets were 

made in such way so that they can host up to eight Ottobock surface EMG electrodes 

of either kind. However, with minor adjustments, this design can be adapted for other 

prosthetic solutions as well. 

In order to secure a snug fit of the socket, any access soft tissue and prominent 

scarring that can be observed on the stump should be noted. A plan for dealing with 

potential loose skin is an absolute must and critical areas should be marked ensuring a 

firm and reliable mold sampling. This procedure is a fairly standard one and requires 

technician to have an average level of skill. For the purpose of tight fitting and easy 

removal of negative mold, plastic foil should be neatly wrapped around the stump in 

not more than three layers. First layer of medical plaster cast needs to be lightly 

soaked and used to quickly yet firmly cover the entire region of the forearm and up to 

one third of the upper arm. Region around the elbow usually needs to be additionally 

strengthened. At this point, while the plaster is still soft, a firm pressure has to be 

applied using thumb and middle finger distributing the grip force on the back side of 

the elbow between the two epicondyles. If done properly, all the prominent landmarks 

of this region should be enhanced and comfortable socket fit is guaranteed. 

At this point, the foundation is set for applying the second layer of plaster made out of 

cellacast, which will provide the necessary sturdiness of the negative. Same as before, 

special care needs to be given to the elbow region. In order to have easier time in 

removing the applied layers from the subject’s stump, it is recommended to wrap 

cellacast around one centimetre shorter along the upper arm than the medical plaster. 
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Once the desired level of hardness is achieved, negative cast should be removed by 

making two incisions on both sides of the upper arm all the way to the forearm. An 

example of a negative is shown in Figure 18. 

 

Figure 18 – An example of a negative cast with the second layer made out of cellecast. This particular patient has 
a rather long and strong stump which enables easy and neat sampling. 

Production of a positive is almost the same as in any other socket design requiring the 

negative to be filled with a mixture of fine cement and water allowing smooth molding 

and easy removal from the plaster. Once the cement is hardened, negative cast needs 

to be removed and the general surface of the obtained stump positive should be 

polished (Figure 19). Special care of prominent landmarks as well as thorough grinding 

of the upper arm region needs to be done and at this point it is of outmost importance 

that the socket “end line” is enhanced and smoothly defined as it will highly reflect on 

the subject’s comfort. This stage additionally requires that the electrode positions are 

marked and appropriately flattened down. Using a previously determined paper 

template with exact sizes and positions of the sensors helps in this process. In addition, 

a centre axis point of the tip of the stump should also be marked determining the 

appropriate fitting of the exhaust anchoring point. 
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Figure 19 - Positive cast after molding ready for refinement and polishing. Strong anchoring line across the front 
of the elbow can be observed.  

Once the polishing of the positive is done to a satisfactory level, a rapid socket liner 

can be made. First, the cast needs to be wrapped into temperature resilient foil or 

textile mash, allowing easy separation of the highly warmed up (~1200ᵒC) 

thermoplastic liner material. As soon as the thermoplast is applied all the access air is 

vacuumed out securing the tight following of the contours defined on the positive 

(Figure 20). This is a critical point of the process, since too rapid air extraction might 

cause the unwanted folding of the material. Albeit, if the vacuuming process is too 

slow it can lead to gap and bubble formation resulting in a loos or uncomfortable fit. 

 

Figure 20 - Warmed up thermoplast has to be carefully applied on the positive in order to ensure tight and 
comfortable fit. This is being done using a vacuum pump during gentle and slow stretching of the material.  
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Upon the removal of the liner, some trimming and subtle polishing should be done in 

order to remove the access plastic around the edges. Hard rubber rotating chisel can 

be used for making the holes for the electrodes on, now clearly visible, markings and 

similar should be done for the fitting exhaust. First test fitting of the patient should be 

performed at this stage. In case of discomfort, still some minor changes can be made 

at this point by targeted reheating and remolding of the material. 

Once satisfied with the fit, depending on the size and shape of the stump the outer 

semi-permanent socket can be made. If the stump is very short or narrow, a hard 

polyurethane extension can be made on the top of the positive mold holding the liner 

so that it gives a solid structure for application of a fresh layer of cellacast (Figure 21). 

This layer will then be used as a chassis for mounting of the lamination ring and 

guiding the fitting exhaust. When dry, outer cast needs to be removed, cleaned, 

trimmed and provided with the screw holes which will secure the connection to the 

liner. 

 

Figure 21 – Positive cast with a thermoplastic liner still attached and polished polyurethane extension pre-shaped 
to provide a solid base for casting the outer semi-permanent socket 

In case of longer stumps, an open design of the socket is recommended, as in Figure 

22, promoting easy donning and doffing. In this way, standard fitting vacuum problems 

are also avoided. Open design sockets usually are not well suited for standard 

lamination rings, therefore a 3D printed carrier can be mounted on the distal part of 

the outer socket. 
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Figure 22 – Examples of different semi-permanent sockets built using the presented technique. Four sockets 
featuring the black Velcro strips are so called open designs intended for users with transcarpal amputations or 
generally longer stumps 

Finally, electrodes can be attached using a rubber band hosting 3D printed electrode 

housings which allows adjustable fitting and tension distribution. This has proven to be 

a good solution for compensating slight stump volume changes and intrinsic muscle 

movements during contractions.  
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Appendix II – Simultaneous and proportional myocontrol 

algorithm 

This appendix is based on the following publication*: 

Amsuess, S., Vujaklija, I., Gobel, P., Roche, A., Graimann, B., Aszmann, O., et al. (2015). 

Context-Dependent Upper Limb Prosthesis Control for Natural and Robust Use. IEEE 

Trans. Neural Syst. Rehabil. Eng., 1–1. doi:10.1109/TNSRE.2015.2454240. 

*This paper is core of the PhD thesis of the first author. I contributed as second author 

to the developments of the algorithm and to the experimental tests and data analysis. 

The study and paper are not included as a main study but as an appendix as they are 

part of the cited PhD thesis. An appendix on this paper is, however, provided since this 

work is at the basis of the subsequent developments described as the core of the 

present thesis. 

Advanced myoelectric control algorithm used throughout this thesis is an adaptation 

of the approach described in [67]. Due to its extensive use and pivotal point in testing 

some of the presented hypotheses, this control paradigm, which we have developed in 

parallel to the presented work, is further discussed in this appendix. 

The main goal of this advanced control system was to provide users with more natural 

control. Based on a survey [162] of current myoelectric users, simultaneous activation 

of two joints ranked quite high on a wish list of desired prosthetic improvements. 

Considering that in general, during reaching tasks we tend to first perform gross 

prepositioning of our entire arm and only then perform the final fine act of grasping, 

this was set as a main design goal while developing the system. 

Taking into account the design experiences and the developments of similar systems in 

the past, pros and cons of simultaneous and sequential estimators have been 

observed. Namely, the first ones are able to deliver intuitive, simultaneous control 

over dynamic activations, while the later ones are suited for precise, single DoF control 

over many motions in a reasonably robust way. This has led to an idea of a hybrid 

system which would be capable of combining the best of both worlds while not 

compromising the strong points of either. An idea of the two parallel estimators 

working exclusively as needed has been proposed (Figure 23). 
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Figure 23 - Hybrid myoelectric control algorithm capable of estimating simultaneous and proportional 
movements. Based on intrinsic dimensionality of the movement, new incoming data point will be forwarded to 
either sequential estimator (SEQ-E) in case of the single DoF activation or to the simultaneous estimator (SIM-E) if 
the processed EMG is a product of a multiple DoF activation. ©|2015|IEEE TNSRE 

The first point which had to be carefully considered was the determination of the 

intrinsic dimensionality of the incoming data sample. More precisely, the overall 

system had to obtain knowledge whether the observed EMG is a result of an individual 

or simultaneous motion. Simple yet effective measure has been taken at this point 

relaying on a pre-set threshold. Once the training data for all the single motions has 

been collected, a feature space can be formed resulting in the clustering of the points 

originating from the same motion. New unseen feature then lands into the formed 

space and based on its distance from each of the point clouds a sturdy decision on 

whether it belongs to a single or simultaneous motion can be made. Basically, if it fits 

into one of the clouds or in a near proximity of it, system should classify it as a single 

DoF activation, yet if this is not the case it is going to be treated as a multiple DoF 

motion. This is a reasonable assumption considering that a feature vector containing 

the information from the two distinct movement classes lies somewhere between 

those two classes [163]. 

In order to measure the distance between the new point and the training clouds, after 

exhausting testing, a simple Mahalanobis distance measure proved itself to be the best 

trade-off between the accuracy of made decisions and computation time: 

 𝐷𝑀𝑎ℎ𝑎𝑙 = (𝒙 − 𝝁𝑖)
𝑇𝛴𝑖

−1(𝒙 − 𝝁𝑖) (15) 

where 𝒙 is a feature vector, 𝑖 is a given class with its mean vector 𝝁𝑖 and the 

covariance matrix 𝛴𝑖. Though, it should be noted that the threshold for determining 

whether the new data point is novel, and as such originating from a simultaneous 

activation, has to be set manually in this case. 

The rest of the system was implemented as shown in Figure 23. As the sequential 

estimator, a Common Spatial Pattern Proportional Estimator (CSP-PE) [52] was chosen. 

CSP is in essence a supervised spatial filtering method which aims at maximally 

discriminating between data stemming from two differentiable classes. This is being 

achieved by using a linear weighting of the input signals from different channels. 
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Considering, it performs a linear transformation of an input signal 𝑥 ∈ ℝ𝑛 using a 

weighting matrix 𝑊 ∈ ℝ𝑛𝑥𝑚 on 𝑚-dimensional vector 𝑦 ∈ ℝ𝑚: 

 𝑦 = 𝑊𝑇𝑥 (16) 

If both 𝑥 and 𝑦 have been drawn from centred distributions, and if 𝐸[∙] is the 

expectation operator and Σ̂ is empiric covariance matrix of 𝑥, then the variance of 𝑦 

can be obtained as: 

 𝑣𝑎𝑟(𝑦) = 𝐸[𝑦𝑦]𝑇 = 𝑊𝑡𝐸[𝑥𝑥]𝑇𝑊 = 𝑊𝑇Σ̂𝑊 (17) 

In order to obtain the optimal weighting matrix 𝑊 the generalized Rayleigh quotient is 

maximized. This basically maximizes the variance of the output for data from class 1, 

while at the same time it minimizes it for the data from class 2: 

 𝑊 ≔ arg𝑊 𝑚𝑎𝑥𝑊𝑇Σ̂1𝑊(𝑊𝑇Σ̂2𝑊)
−1

 (18) 

with Σ̂1 and Σ̂2 representing the empiric covariance matrices for the classes 1 and 2 

respectively. Maximization of the previous expression with respect to 𝑊 can be 

achieved by applying the Lagrangian method through generalized eigenvalue 

decomposition of Σ̂2
−1Σ̂1. 

For this problem to be well defined, scaling of 𝑊 has to be fixed. That can be done by 

setting the norm of 𝑊 to 1: ‖𝑊‖2 = 𝑊𝑇𝑊 = 1, which results in the constrained 

optimization problem: 

 arg𝑊 𝑚𝑎𝑥𝑊𝑇Σ̂1𝑊(𝑊𝑇Σ̂2𝑊)
−1

 subject to 𝑊𝑇𝑊 = 1 (19) 

This is known as quadratic programing and in order to obtain a closed form solution 

(19) can be transformed into Lagrangian formulation ℒ(𝑊) 

 ℒ(𝑊) = 𝑊𝑇Σ̂1𝑊(𝑊𝑇Σ̂2𝑊)
−1

− 𝜆(𝑊𝑇𝑊 − 1) (20) 

where 𝜆 are Lagrange multipliers. If (20) is differentiated with respect to 𝑊 and 

equalized to 0 it reads: 

 𝜕ℒ(𝑊)

𝜕𝑊
= 2𝑊�̂�2

−1Σ̂1 − 2𝜆𝑊 = 0 (21) 

 → 𝑊�̂�2
−1Σ̂1 = 𝜆𝑊 (22) 

(22) is true for all tuples (𝑊, λ) where 𝑊 ∈ 𝒲 and 𝜆 ∈ ℝ and 𝒲 is the set of 

eigenvectors of �̂�2
−1Σ̂1 and 𝜆 the corresponding eigenvalues. The quantity of 𝜆 is a 

measure of separation quality for its corresponding 𝑊. When sorting the obtained 

generalized eigenvectors according to their respective eigenvalues from largest to 

lowest, the first vector constitutes the optimal spatial filter which maximizes the 
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variance of 𝑦 for the data of class 1 while minimizing it for the data of class 2. The last 

vector operates in the same way for the data of class 2. 

Once this approach is applied on a feature vector, the obtained operator ends up 

linearly combining the EMG features which, if proportional to the exerted force, result 

in delivering a transformation that combines feature values across all channels. 

Weighted average using CSP can be extended to obtain the maximized ratio of 

activation between all involved competing classes by calculating the separation 

through optimization of weighting matrices on one against one basis among all the 

possible class pairs. This finally results in a regression method which correlates EMG 

activation and the target output (velocity or force of the prosthesis) while at the same 

time it promotes the maximum separation between the movement classes. This 

approach has been shown to outperform classical LDA classification during online 

control of a physical prosthesis [52].  

For the simultaneous estimator, linear regression was selected. Since linear regression 

was shown to work well with 2 DOF only [57], control of wrist rotation and wrist 

flexion/extension was done using this estimator for natural positioning of the hand. 

CSP-PE was capable of controlling all functions of the prosthesis individually. 

Practical pilot tests have shown that the border between the single and the multiple 

activations should not be hard step like function, but rather smooth sigmoidal one. 

This is mostly due to the noise present in the system. It should be noted that errors in 

the estimation of the intrinsic movement dimensionality did not automatically result in 

a wrong activation of the prosthesis. It only implied that an intended simultaneous 

movement was performed sequentially or vice-versa. Since unintended simultaneous 

movements were more detrimental to the control than unintended sequential 

movements, the manually set threshold for the Mahalanobis distance approach was 

selected to slightly favour the sequential estimation. 

For the purpose of the online feasibility evaluation, series of test scenarios have been 

devised and conducted. Two transradial amputees were fitted with a prosthetic devise 

previously described in chapter 2.1. Besides BBT, CPRT and SHAP tests, a custom 

designed block turn test was used for evaluating performance of the proposed system. 

This custom test was intended to enforce the users to activate all available movements 

(3.5 DoF) of the prostheses in order to ensure that the full provided functionality is 

available. Namely, subjects were prompted to pick up a rectangular wooden block 

which was lying on a shelf at shoulder level, rotate it and place it in the upward 

position at the lower shelf at the hip level. In order to conclude the task, block was 

supposed to be picked up one last time and placed horizontally at the same shelf level. 

The time of each successful execution as well as the number of drops was recorded 

over three trials. In addition to these two patients, ten able bodied volunteers were 

recruited and fitted with a hybrid device in order to execute all tests but SHAP. 
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As a conclusion, these experiments have indicated high potential of the proposed 

approach and a possibility of its integration into a reasonable prosthetic system. Since 

all of the participants were able to execute all of the presented tasks, certain level of 

confidence that the system can be transferred across the population was gained. The 

same achievement in combination with the reported scores showed a degree of 

sturdiness of this approach with respect to various environmental factors.  

Though, as outlined throughout this thesis, testing of a novel myoelectric system 

requires larger number of fully fitted amputees which have been systematically 

evaluated using clinically recognized metrics. Therefore, this particular publication has 

been focused on communicating the idea of a novel algorithmic concept and its 

capability to be implemented in a constrained environment such as the one of the 

presented prosthetic system. The actual performance evaluation was made and 

presented in different scenarios as a part of this thesis, but only after the rigorous 

consideration of all clinically relevant parameters. 
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