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Abstract 
 

 At chemical synapses, synaptic vesicles, membrane-enclosed entities filled with 

neurotransmitters, undergo exocytosis at restricted areas of the presynaptic membrane 

called active zones (AZ). The core AZ proteins form a heterogeneous dynamic network in 

functional collaboration with many soluble and integral proteins. This network, called 

cytomatrix at the active zone (CAZ), represents a biochemical challenge due to its limited 

detergent solubilization. In addition, there is a big gap in the knowledge about the 

extractability of proteins associated with the presynaptic cytomatrix. Often, analyses 

focused on the extraction of a particular protein of interest and the identification of co-

purified proteins without any further validation of the findings. However, till date, no 

report has systematically investigated the solubilization of synaptic membranes by 

detergents. Our main goal was to characterize biochemically presynaptic membrane 

protein complexes. For this reason, I established a systematic protocol for non-denaturing 

solubilization of synaptic membranes. Moreover, the extractability of broad spectrum of 

presynaptic and postsynaptic proteins was assessed by immunoblots. The solubilization 

protocol considered experimental parameters like rotor type, centrifugation time as well 

as nature of the starting material. Interestingly, I found that the most proteins (integral, 

soluble and scaffolding) associated with the presynaptic CAZ were better extracted than 

the postsynaptic density-associated proteins. Importantly, for first time, a complete or 

partial extraction of very large cytomatrix proteins such as Piccolo and Bassoon using 

cholate, taurodeoxycholate and dodecyl-β-D-maltoside detergents was achieved. 

Moreover, the use of these detergents under optimized solubilization conditions allowed 

the extraction of all core AZ constituents as well as of many regulatory and scaffolding 

proteins, ion channels and receptors. Furthermore, I used density gradient centrifugation 

and size exclusion chromatography for separation of membrane-derived extracts. These 

results suggested possible preservation of protein-protein interactions during the 

solubilization process regardless of the used detergent. Additionally, in order to validate 

the established extraction protocol, I studied the presynaptic membrane protein syntaxin 1 

in more detail. The target was immunoprecipitated from cholate extracts under two 

different conditions. The proteins, co-immunopurified with syntaxin 1, were analyzed by 

quantitative mass spectrometry. The use of stringent parameters in the statistical 

evaluation of the proteomics data allowed identification of 158 and 275 proteins above 



VII 
 

the threshold margin under high and low salt conditions, respectively. Both groups of 

proteins overlapped almost completely and emphasized the reproducibility of the data. In 

line with our goals, more than 95% of the identified proteins, that passed the filtering 

criteria, were membrane proteins. Many of these proteins were shown in earlier studies to 

interact directly with syntaxin 1 or form multimeric complexes with its participation. 

These results supported the idea of successful membrane protein extraction under 

preservation of protein-protein interactions. They also underline the usefulness of our 

protocol for the study of other presynaptic proteins and their complexes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 
 

Contents 
 

Abstract ................................................................................................................................ VI 

List of Figures .................................................................................................................... XII 

List of Tables .................................................................................................................... XIV 

List of Abbreviations ......................................................................................................... XV 

1 Introduction .................................................................................................................... 1 

1.1 Aspects of structural and functional organization of the active zone ..................... 1 

1.2 Molecular organization of the active zone .............................................................. 3 

1.2.1 Core active zone proteins ................................................................................. 4 

1.2.1.1 RIM protein family members ....................................................................... 4 

1.2.1.2 UNC13/Munc13 protein family ................................................................... 5 

1.2.1.3 α-Liprins ....................................................................................................... 6 

1.2.1.4 ELKS proteins – major structural organizers of the CAZ ............................ 6 

1.2.1.5 RIM-binding proteins (RIM-BPs) ................................................................ 7 

1.2.2 Scaffolding proteins at the active zone ............................................................ 7 

1.2.3 Detergent classification .................................................................................. 11 

1.2.4 Detergent’s properties in solution .................................................................. 12 

1.2.5 Use of detergents for membrane solubilization ............................................. 15 

1.3 Affinity purification and quantitative proteomics .................................................... 17 

1.4 Aim of the study....................................................................................................... 20 

2 Materials & Methods ................................................................................................... 22 

2.1 Materials .................................................................................................................. 22 

2.1.1 Chemicals ....................................................................................................... 22 

2.1.2 Commercial kits ............................................................................................. 23 

2.1.3 Antibodies ...................................................................................................... 23 

2.1.4 Buffers and media .......................................................................................... 29 



IX 
 

2.2 Methods.................................................................................................................... 30 

2.2.1 Molecular biology methods ........................................................................... 30 

2.2.1.1 Protein concentration determination .......................................................... 30 

2.2.2 Biochemical methods ..................................................................................... 30 

2.2.2.1 SDS-PAGE and Western blotting .............................................................. 30 

2.2.2.2 Preparation of beads for immunoisolation ................................................. 31 

2.2.2.3 Preparation of synaptosomes and LP1 fraction .......................................... 33 

2.2.2.4 Proteolytic treatment (“shaving”) of synaptosomes ................................... 35 

2.2.2.5 Solubilization of synaptosomes and LP1 fraction ...................................... 35 

2.2.2.6 Sucrose density gradient centrifugation ..................................................... 36 

2.2.2.7 Chromatographic fractionation of solubilized LP1 samples ...................... 36 

2.2.3 Mass spectrometry methods ........................................................................... 37 

2.2.3.1 On-beads-digestion of immunoprecipitates ............................................... 37 

2.2.3.2 Protein digestion after denaturing elution from Eupergit C1Z beads ........ 37 

2.2.3.3 In-gel digestion of proteins after SDS-PAGE ............................................ 38 

2.2.3.3.1 Extraction of peptides ........................................................................... 39 

2.2.3.4 Peptide mixture desalting ........................................................................... 39 

2.2.3.5 Mass spectrometry, data analysis and quantification ................................. 39 

3 Results .......................................................................................................................... 41 

3.1 Protocol development for synaptosome solubilization and characterization of 
presynaptic protein complexes ......................................................................................... 41 

3.1.1 Detergent screen for synaptosome solubilization .......................................... 41 

3.1.2 Time- and detergent concentration-dependent solubilization ........................ 52 

3.1.3 New centrifugation protocol for solubilization experiments ......................... 54 

3.2 Fractionation of LP1 extracts by sucrose density gradient centrifugation ............... 63 

3.2.1 LP1 derived from non-treated synaptosomes ................................................ 63 

3.2.2 LP1 derived from synaptosomes subjected to limited proteolysis prior to 
lysis ........................................................................................................................ 68 



X 
 

3.3 Chromatographic fractionation of synaptic protein complexes ............................... 70 

3.4 Immunoprecipitation of presynaptic membrane proteins under optimized 
extraction and centrifugation conditions .......................................................................... 79 

3.4.1 Immunoprecipitation of stx 1A after cholate solubilization of LP1 fraction . 81 

3.5 Mass spectrometry ................................................................................................... 85 

3.5.1 Sample preparation for mass spectrometry .................................................... 85 

3.5.2 Study of the proteins co-immunoprecipitated with stx 1 by label-free 
quantitative proteomics ................................................................................................ 88 

3.5.2.1 Proteins co-purified with stx 1 under high salt conditions ......................... 90 

3.5.2.1.1 Synaptic vesicle proteins ...................................................................... 91 

3.5.2.1.2 SNAREs and trafficking proteins ......................................................... 92 

3.5.2.1.3 Receptor, transporter and channel proteins .......................................... 95 

3.5.2.1.4 Adhesion and cell surface molecules .................................................... 98 

3.5.2.1.5 Hypotethical and less characterized proteins ........................................ 99 

3.5.2.1.6 Others.................................................................................................... 99 

3.5.2.2 Proteins co-purified with stx 1 under low salt conditions ........................ 100 

3.5.2.2.1 Synaptic vesicle proteins .................................................................... 102 

3.5.2.2.2 SNAREs and trafficking proteins ....................................................... 103 

3.5.2.2.3 Channels, receptors and transporter proteins ...................................... 103 

3.5.2.2.4 Cell surface and adhesion molecules .................................................. 105 

3.5.2.2.5 Cytoskeleton proteins ......................................................................... 105 

3.5.2.2.6 Hypotethical and less characterized proteins ...................................... 105 

3.5.2.2.7 Others.................................................................................................. 106 

4 Discussion and conclusions ....................................................................................... 109 

Bibliography ...................................................................................................................... 115 

Acknowledgements ............................................................................................................ 127 

Appendix ............................................................................................................................ 129 

Curriculum Vitae ............................................................................................................... 160 



XI 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XII 
 

List of Figures 
 
 
FIGURE 1.1. ELECTRON MICROSCOPY OF SPINAL CORD SYNAPSE. ....................................................................... 1 
FIGURE 1.2. FUNCTIONAL ORGANIZATION OF CORE ACTIVE ZONE PROTEINS.. .................................................... 3 
FIGURE 1.3. PHASE DIAGRAM FOR SODIUM DODECYLSULPHATE (SDS) ............................................................ 14 
FIGURE 1.4. MECHANISM OF MEMBRANE SOLUBILIZATION BY DETERGENTS.. .................................................. 16 
FIGURE 2.1. EUPERGIT C1Z MICROBEADS IMMUNOPRECIPITATION OF SYNTAXIN 1.......................................... 33 
FIGURE 2.2. SCHEME FOR PURIFICATION OF SYNAPTOSOMES AND LP1 FRACTION. ........................................... 34 
FIGURE 3.1. DETERGENT SCREEN FOR SYNAPTOSOME SOLUBILIZATION.. ......................................................... 43 
FIGURE 3.2. DETERGENT SCREEN FOR SOLUBILIZATION OF LP1 FRACTION. ..................................................... 44 
FIGURE 3.3. EXTRACTION PATTERN OF LP1-RESIDENT PROTEINS WITH DDM.. ................................................ 47 
FIGURE 3.4. EXTRACTION PATTERN OF LP1-RESIDENT PROTEINS WITH TRITON X-100. ................................... 48 
FIGURE 3.5. EXTRACTION PATTERN OF LP1-RESIDENT PROTEINS WITH TDOC. ............................................... 49 
FIGURE 3.6. SOLUBILIZATION OF LP1 FRACTION WITH ZWITTERGENT 3-14. .................................................... 50 
FIGURE 3.7. EXTRACTION OF PICCOLO AND BASSOON.. ................................................................................... 51 
FIGURE 3.8. TIME- AND CONCENTRATION-DEPENDENT SOLUBILIZATION OF LP1 FRACTION............................. 53 
FIGURE 3.9. EXTRACTION OF SV AND PLASMA MEMBRANE PROTEINS BY TDOC-SOLUBILIZATION OF LP1 

FRACTION.. .............................................................................................................................................. 56 
FIGURE 3.10. EXTRACTION OF ACTIVE ZONE, CAZ-ASSOCIATED AND POSTSYNAPTIC PROTEINS BY TDOC 

FROM LP1 FRACTION.. ............................................................................................................................ 57 
FIGURE 3.11. PROTEIN EXTRACTION PROFILE AFTER LP1 SOLUBILIZATION WITH CHOLATE. ............................ 59 
FIGURE 3.12. PROTEIN EXTRACTION PROFILE AFTER LP1 SOLUBILIZATION WITH DDM. ................................. 60 
FIGURE 3.13. EXTRACTION OF SV AND PLASMA MEMBRANE PROTEINS FROM LP1 FRACTION WITH TRITON X-

100. ........................................................................................................................................................ 61 
FIGURE 3.14. EXTRACTION OF ACTIVE ZONE, POSTSYNAPTIC AND PLASMA MEMBRANE PROTEINS FROM LP1 

FRACTION WITH TRITON X-100. .............................................................................................................. 62 
FIGURE 3.15. TDOC SOLUBILIZATION OF LP1 FRACTION AND LINEAR GRADIENT CENTRIFUGATION.. ............. 64 
FIGURE 3.16. GRADIENT MEDIA SCREEN FOR LINEAR DENSITY CENTRIFUGATION AFTER SOLUBILIZATION OF 

FRESHLY PREPARED SYNAPTOSOMES WITH TDOC. ................................................................................. 65 
FIGURE 3.17. TDOC SOLUBILIZATION OF LP1 FRACTION AND EXTRACT SEPARATION BY 18 H 

CENTRIFUGATION STEP AT 271 000 G. ..................................................................................................... 67 
FIGURE 3.18. LP1 FRACTION ISOLATED FROM PROTEOLYTICALLY TREATED SYNAPTOSOMES WAS 

SOLUBILIZED WITH (A) TDOC, (B) TX-100 AND (C) ZWITTERGENT 3-14. ............................................. 69 
FIGURE 3.19. CHROMATOGRAPHIC SEPARATION OF CHOLATE-SOLUBILIZED LP1 FRACTION.. .......................... 71 
FIGURE 3.20. PROTEIN SEPARATION PROFILE AFTER CHOLATE SOLUBILIZATION OF LP1 FRACTION. ................ 72 
FIGURE 3.21. CHROMATOGRAPHIC SEPARATION OF PICCOLO AND BASSOON AFTER LP1 SOLUBILIZATION 

WITH CHOLATE........................................................................................................................................ 75 
FIGURE 3.22. CHROMATOGRAPHIC SEPARATION OF TDOC-SOLUBILIZED LP1 FRACTION.. .............................. 77 
FIGURE 3.23 CHROMATOGRAPHIC SEPARATION OF DDM-SOLUBILIZED LP1 FRACTION. ................................. 78 
FIGURE 3.24. IMMUNOISOLATION OF (A) STX1A AND (B) SYNCAM1/2/3 FROM CHOLATE-SOLUBILIZED LP1 

FRACTION. ............................................................................................................................................... 81 
FIGURE 3.25. STX 1 IMMUNOPRECIPITATION FROM CHOLATE-SOLUBILIZED LP1 FRACTION USING HPC-1 

ANTIBODY. .............................................................................................................................................. 82 
FIGURE 3.26. STX 1 IMMUNOPRECIPITATION FROM CHOLATE-SOLUBILIZED LP1 FRACTION WITH CL 78.2 

ANTIBODY. .............................................................................................................................................. 83 
FIGURE 3.27. DIRECT APPROACH FOR IMMUNOISOLATION OF STX 1 WITH EUPRGIT C1Z-78.2 BEADS.. ............ 84 
FIGURE 3.28. SILVER STAINED SDS-PAGE GELS OF BEADS’ SUPERNATANTS, TRYPSINIZED SAMPLES AND 

ELUATES.. ............................................................................................................................................... 86 
FIGURE 3.29. SILVER STAINING OF SDS-PAGE-RESOLVED PROTEINS FROM AN IP AND NEGATIVE CONTROL 

SAMPLE.. ................................................................................................................................................. 87 



XIII 
 

FIGURE 3.30. VOLCANO PLOT REPRESENTING RESULTS FROM STX 1 IMMUNOPRECIPITATION WITH EUPERGIT 
C1Z-CL 78.2 BEADS UNDER HIGH SALT CONDITIONS.. ............................................................................ 90 

FIGURE 3.31. PROTEIN GROUPS AND NUMBER OF IDENTIFIED PROTEINS IN EACH GROUP STX1 IMMUNO-
PRECIPITATE AT HIGH SALT CONCENTRATION. ........................................................................................ 91 

FIGURE 3.32. DISTRIBUTION OF SIGNIFICANTLY ENRICHED SV PROTEINS IN ANTI-STX 1 IPS. .......................... 92 
FIGURE 3.33. DISTRIBUTION OF SIGNIFICANTLY ENRICHED SNARE AND TRAFFICKING PROTEINS IN STX 1 IP 

SAMPLES. ................................................................................................................................................ 95 
FIGURE 3.34. SIGNIFICANT AND FOLD-CHANGE ENRICHED TRANSPORTER, CHANNEL AND RECEPTOR PROTEINS 

IN STX 1 IP SAMPLES. .............................................................................................................................. 97 
FIGURE 3.35. SIGNIFICANTLY AND FOLD-CHANGE ENRICHED CELL SURFACE AND ADHESION PROTEINS IN STX 

1 IPS.. ..................................................................................................................................................... 98 
FIGURE 3.36. VOLCANO PLOT REPRESENTATION OF RESULTS FROM STX 1 IP WITH EUPERGIT C1Z-CL 78.2 

BEADS UNDER LOW SALT CONDITIONS.. ................................................................................................ 101 
FIGURE 3.37. OVERLAP OF PROTEINS IDENTIFIED AS POSITIVE HITS UNDER LOW AND HIGH SALT IP 

CONDITIONS.. ........................................................................................................................................ 102 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XIV 
 

List of Tables 

 
TABLE 1.1. SUMMARY OF PROTEIN-PROTEIN INTERACTIONS BETWEEN CORE ACTIVE ZONE AND SCAFFOLDING 

PROTEINS. ................................................................................................................................................. 9 
TABLE 1.2. LIST OF DETERGENTS USED IN THE PRESENT STUDY AND SUMMARY OF THEIR MAIN 

PHYSICHOCHEMICAL PROPERTIES. .......................................................................................................... 18 

TABLE 2.1. LIST OF COMMERCIAL MATERIALS AND ALL DETERGENTS UTILIZED IN THIS STUDY. ...................... 22 
TABLE 2.2. LIST OF ALL ANTIBODIES USED IN VARIOUS APPLICATIONS DURING THE STUDY. ............................ 24 
TABLE 2.3. RECIPES OF ALL IN-HOUSE PREPARED NON-COMMERCIAL SOLUTIONS AND BUFFERS. .................... 29 
TABLE 3.1. CENTRIFUGATION CONDITIONS USED IN PREVIOUS AND FOLLOWING EXPERIMENTS. ...................... 55 
TABLE 3.2. LIST OF IMMUNOPRECIPITATED PROTEINS AFTER LP1 SOLUBILIZATION WITH CHOLATE, DDM OR 

TDOC. .................................................................................................................................................... 80 
TABLE 3.3. SV PROTEINS IDENTIFIED AS SIGNIFICANTLY ENRICHED IN THE STX1 IP SAMPLES. ........................ 93 
TABLE 3.4. SNARES AND TRAFFICKING PROTEINS IDENTIFIED WITH HIGH SIGNIFICANCE AND FOLD-CHANGE 

ENRICHMENT IN STX 1 IPS.. ..................................................................................................................... 94 
TABLE 3.5. RECEPTOR, TRANSPORTER AND CHANNEL PROTEINS IDENTIFIED WITH HIGH SIGNIFICANCE AND 

FOLD-CHANGE ENRICHMENT IN THE STX 1 IMMUNOPRECIPITATES.   ........................................................ 96 
TABLE 3.6. ADHESION AND CELL SURFACE PROTEINS IDENTIFIED WITH HIGH SIGNIFICANCE AND FOLD-

CHANGE ENRICHMENT IN STX 1 IPS.. ....................................................................................................... 98 
TABLE 3.7. HYPOTHETICAL OR POORLY CHARACTERIZED PROTEINS IDENTIFIED WITH HIGH SIGNIFICANCE AND 

FOLD-CHANGE ENRICHMENT IN THE STX 1 IPS.. ...................................................................................... 99 
TABLE 3.8. METABOLIC PROTEINS IDENTIFIED WITH HIGH SIGNIFICANCE AND FOLD-CHANGE ENRICHMENT IN 

ANTI-STX1 IMMUNOPRECIPITATION SAMPLE.. ....................................................................................... 100 
TABLE 3.9. SV PROTEINS ADDITIONALLY IDENTIFIED AS SIGNIFICANTLY ENRICHED UNDER LOW SALT 

CONDITIONS IN STX 1 IP SAMPLES. ........................................................................................................ 102 
TABLE 3.10.  SNARES AND TRAFFICKING PROTEINS ADDITIONALLY IDENTIFIED UNDER LOW SALT 

CONDITIONS IN STX 1 IP SAMPLES. ........................................................................................................ 103 
TABLE 3.11. RECEPTORS, CHANNELS AND TRANSPORTER PROTEINS ADDITIONALLY IDENTIFIED UNDER LOW 

SALT CONDITIONS IN STX 1 IP SAMPLES. ............................................................................................... 104 
TABLE 3.12. CELL SURFACE AND ADHESION PROTEINS ADDITIONALLY IDENTIFIED UNDER LOW SALT 

CONDITIONS IN STX 1 IP SAMPLES. ........................................................................................................ 105 
TABLE 3.13. HYPOTHETICAL OR POORLY CHARACTERIZED PROTEINS IDENTIFIED WITH HIGH SIGNIFICANCE 

AND FOLD-CHANGE ENRICHMENT IN STX 1 IP SAMPLES UNDER LOW SALT CONDITIONS........................ 106 
TABLE 3.14. METABOLIC PROTEINS ADDITIONALLY IDENTIFIED UNDER LOW SALT CONDITIONS IN STX 1 IP 

SAMPLES. .............................................................................................................................................. 107 
 

 

 

 

 

 

 



XV 
 

List of Abbreviations 
 

Ab............................................. antibody 
ACN........................................... acetonitrile 
AMPA........................................ α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 
AP............................................. affinity purification 
AZ.............................................. active zone 
BRP........................................... Bruchpilot 
CA............................................. 2-Chloracetamide 
CAST/ERC.................................. CAZ-associated structural protein/ELKS-rab6-interacting protein-CAST 
CAZ........................................... cytomatrix at the active zone 
CHAPS……………………................. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate 
CHAPSO…………………................. 3-([3-Cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate 
Cholate .................................... 3α,7α,12α-Trihydroxy-5β-cholan-24-oic acid sodium salt 
CMC.......................................... critical micellization concentration  
CMT.......................................... critical micellar temperature 
CNS........................................... central nervous system 
CV............................................. column volume 
DDM ........................................ dodecyl-beta-D-maltopyranoside 
DTT........................................... dithiothreitol 
FA.............................................. formic acid 
GABA........................................ γ-aminobutyric acid 
GF............................................. gel filtration 
GluR1........................................ glutamata receptor, ionotropic, AMPA1 
GRIP.......................................... glutamata receptor-interacting protein 
HRP........................................... horse radish peroxidase 
IP............................................... immunoprecipitation 
LDS............................................ lithium dodecylsulphate 
LFQ............................................ label-free quantification 
LH.............................................. liprin homology domain  
mAb.......................................... monoclonal antibody 
Mint1........................................ Munc18-interacting protein 1 
MS............................................ mass spectrometry 
Munc13.................................... mammalian unc-13 homologue 
Munc-18................................... mammalian unc-18 homologue 
Nlg............................................ neuroligin 
NMDA....................................... N-methyl-D-aspartate receptor 
Nrx............................................ neurexin  
NSF........................................... N-ethylmaleimide sensitive factor 
PBH........................................... Piccolo/Bassoon homology domains 
PBS............................................ phosphate buffered saline 
PDZ........................................... PSD95/SAP90-DlgA-ZO-1 
PM............................................ plasma membrane 
PMSF......................................... paramethylsulphonylfluoride 



XVI 
 

PRR........................................... proline-rich region 
PSD95....................................... postsynaptic density protein 95 
RIM........................................... Rab3 interacting molecule 
RIM-BP...................................... Rab3 interacting molecule-binding protein 
RT.............................................. room temperature 
SDS-PAGE.................................. sodium dodecylsulphate polyacrylamide gel electrophoresis  
SEC............................................ size exclusion chromatography 
SNAP-25.................................... synaptosomal-associated protein 25 
SNARE....................................... soluble NSF attachment protein 
Stx 1......................................... syntaxin 1 
SV.............................................. synaptic vesicle 
Syb 2......................................... synaptobrevin 2 
Syt-1.......................................... synaptotagmin-1 
Taurodeoxycholate................... 2-([3α,12α-Dihydroxy-24-oxo-5β-cholan-24-yl]amino)ethanesulfonic acid 
TBST.......................................... Tris-buffered saline with Tween 20 
TEMED...................................... N,N,N′,N′-Tetramethylethan-1,2-diamin 
UPS2......................................... universal protein standard mixture 
VGCC......................................... voltage-gated calcium channel 
WB............................................ Western blot 
ZF.............................................. zinc finger domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XVII 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

1 
 

1 Introduction 
1.1 Aspects of structural and functional organization of the active zone 
 

Synapses are specialized intercellular junctions between neurons or neurons and 

other excitable cell types and are defined as electrical or chemical depending on the 

mechanism of signal propagation. Electrical synapses have the characteristics of gap 

junctions between neurons and allow direct (bidirectional) propagation of the electrical 

stimulus. Interestingly, electrical synapses were recently reported to interconnect inhibitory 

interneurons in the neocortex and are involved in synchronizing neuronal activity [1-3]. In 

contrast to them, at chemical synapses (from now on termed only synapses) a signal 

discontinuity occurs. When an action potential arrives at the synapse, voltage-gated Ca2+ 

channels (VGCC) open and local increase in Ca2+ concentration triggers exocytosis of 

neurotransmitter-filled synaptic vesicles (SVs) [4, 5]. Released inhibitory and/or excitatory 

neurotransmitters pass the synaptic cleft and bind to receptors on the postsynaptic 

reception site, initiating a cascade of intracellular signaling events. A typical feature of 

synapses in the central nervous system (CNS) is their morphological and functional 

asymmetry. At ultrastructural level, pre- and postsynaptic specializations are precisely 

opposed to each other and are characterized by electron-dense thickening of the 

membranes [6, 7] (Figure 1.1). 

  

Figure 1.1. Electron microscopy of spinal cord synapse. Pre- and postsynapse show electron-dense and 
thickened membrane regions after phosphotungstic acid staining. mt: membrane thickening, ap: attachment 
plaque, sv: synaptic vesicle, den:dendrite, dp: presynaptic dense projection, m: mitochondrium, sp: 
subsynaptic particles, s: striation in dense zone. Image modified from [6]. 
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 The fusion of SVs is limited only to a small portion of the presynaptic membrane 

that contains the electron-dense material and is termed “active zone” [8]. At vertebrates’ 

CNS synapses, active zones are disc-like structures with diameter of 0.2-0.5 µm and 

consist of two major parts: the presynaptic active zone membrane and the associated 

cytoskeletal matrix, called cytomatrix assembled at the active zone (CAZ) or presynaptic 

grid [9]. In electron micrographs of chemically fixed and stained synapses, CAZ appears as 

an array of electron-dense pyramidically shaped particles, that extend ~50 nm into the 

cytoplasm and are connected by a network of cytoskeletal fibrils  [6, 10-12]. Electron 

microscopy combined with immunolabeling suggested that the two major AZ proteins 

Munc13 and RIM localize between the dense projections proximal to the plasma 

membrane [13]. Interestingly, these electron-dense projections are missing in unfixed and 

unstained cryo-electron microscopy studies of the synapses. The only visible structures are 

SVs and connecting filaments. The latter ones either connect SVs to each other or to the 

active zone membrane [14, 15].  

Moreover, in a functional perspective, active zones are the sites of action potential-

encoded signal transformation and transmission. The CAZ at the presynaptic active zone is 

involved in four main steps in the neurotransmitter release [16]. First, active zones are the 

sites of synaptic vesicle docking and priming. These two steps, recently shown to be the 

morphological and functional elements of the same  process [17], are dependent on the 

regulated assembly of evolutionary conserved proteins. The core constituents of CAZ 

protein complex are the proteins Munc13, RIM, RIM-BPs, ELKS and liprins. Interestingly, 

the main components of the release machinery – members of the soluble NSF-attached 

protein receptor (SNARE) family and Sec1p/Munc18-like (SM) proteins are not selectively 

enriched in the active zone [5, 18-20]. Second, active zone proteins recruit in an activity-

dependent manner VGCCs and thus ensure fast excitation-release coupling [11]. Third, 

active zones contribute to the precise localization of the presynaptic release machinery 

opposite to the postsynaptic site via binding to cell adhesion and surface molecules. And 

last but not least, active zones mediate short and long term plasticity either by direct 

excitation response or indirectly by recruitment of proteins to the release sites.  
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1.2  Molecular organization of the active zone 
 

The protein components of the active zone form a detergent insoluble matrix that is 

heterogeneous and difficult to purify. However, some protein interactions were identified 

in small protein-protein interactions studies, antibody and yeast two-hybrid system screens 

and genetic mutation experiments in Drosophila melanogaster and/or Caenorhabditis 

elegans. The studies suggest that the multidomain proteins – Munc13, RIM, RIM-BPs, 

liprins and ELKS – form the core regulatory protein complexes at the vertebrate active 

zone (Figure 1.2). These proteins are encoded by multiple genes in vertebrates, from which 

distinct protein isoforms and splice variants are expressed.  

 

Figure 1.2. Functional organization of core active zone proteins. AZ-resident proteins form protein 
complexes that regulate SV docking and priming and recruit VGCCs to the release sites, thus coupling 
excitation and release machineries. Spatial and temporal regulation of neurotransmission is achieved by 
controlled protein association into complexes differing in their stoichiometries and AZ positioning. Image 
modified from [11].  
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 These core five classes of proteins together with the largest AZ specific residents 

Bassoon and Piccolo/Aczonin are interconnected into complex machinery, which governs 

synaptic transmission in cooperation with cell adhesion and cytoskeleton elements. The AZ 

proteins and their known protein-protein are discussed in more detail and summarized 

below. 

 

1.2.1 Core active zone proteins 

1.2.1.1 RIM protein family members 
 

Invertebrates possess one gene for RIM (Rab3-interacting molecule, [21]) 

homologue UNC10. In contrast, in vertebrates four RIM genes encode for seven isoforms 

and splice variants: RIM1α and β, RIM2α, β and γ, RIM3γ and RIM4γ. Only the two 

isoforms RIM1α and RIM2α contain all five distinct protein domains: N-terminal zinc 

finger domain surrounded by α-helices, central PDZ (PSD95/SAP90-DlgA-ZO-1) domain, 

two C2 domains (C2A and C2B) and conserved proline-rich region (PRR) in the linker 

sequence between C2A and C2B [22]. RIM1 and RIM2 genes encode the two isoforms 

RIM1α and RIM2α, which contain the five structural domains. RIM1 gene contains a 

single additional internal promoter driving the expression of RIM1β that lacks the N-

terminal α-helix [23]. The RIM2 gene has two internal promoters leading to the expression 

of N-terminal domain-missing RIM2β [22] and RIM2γ isoform consisting only of short 

unique sequence followed by C2B domain [24]. RIM3 and RIM4 genes encode RIM3γ and 

RIM4γ, respectively, which have the same domain structure as RIM2γ. RIM proteins 

emerged as main organizers of the AZ and genetic experiments revealed their implication 

in SV docking and priming [25-31], Ca2+ channel tethering to the AZ [11, 26] and synaptic 

plasticity [28, 32]. RIM proteins fulfill these functions through versatile protein-protein 

interactions with the other constituents of the AZ. The N-terminal zinc domain of RIM1/2 

binds to C2A domain of Munc13-1 and ubMunc13-2 [33-35]. Munc13 forms C2A domain-

dependent homodimers that can be disrupted by the Munc13-RIM protein-protein 

interaction [35]. In addition, the zinc finger domain-surrounding α-helices bind to Rab3 

and Rab27 GTPases in a GTP-dependent manner to recruit SVs to the release sites [21, 24, 

36]. Furthermore, the central PDZ domain of RIMs binds directly to the C-terminal tails of 

P/Q- and N-type VGCC, thus increasing their density at the AZ [11] and to a C-terminal 

putative sequence of ELKS/CAST proteins [37]. Loss of the PDZ domain was shown to 
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desynchronize release and increase the Ca2+ ion concentration requirement for Ca2+-

dependent release of neurotransmitter [11]. N- and P/Q-type VGCC are tethered to the AZ 

not only by direct interaction with RIM, but also via RIM-BPs. SH3 domains of RIM-BPs 

bind to the PRR of RIMs and the cytoplasmic tails of VGCCs [11, 38]. The C2 domains of 

RIMs bind synaptotagmin-1 (syt-1) and liprins, but also the plasma membrane Q-SNARE 

SNAP-25 [28, 39]. Furthermore, RIMs can associate via their C2 domains in a Ca2+-

independent manner to α1B pore-forming subunit (Cav2.2) of N-type VGCC [39]. Thus, 

this class of proteins regulates different steps in SV exocytosis by a broad spectrum of 

protein-protein interactions.  

1.2.1.2 UNC13/Munc13 protein family 
 

The unc-13 gene encodes a protein whose mutation caused uncoordinated 

movements in C. elegans and was discovered in the early seventies [40]. The analysis of 

the mammalian homologs of unc-13 (Munc13) revealed their essential function for SV 

priming [41, 42]. Mammals possess five Munc13 genes from which six large proteins are 

expressed. Munc13-1, -2 and -3 genes encode proteins primarily expressed in the brain. 

However, Munc13-2 gene has two promoters driving the expression of ubiquitously 

expressed ubMunc13-2 protein and less abundant brain-specific bMunc13-2 isoform. 

Munc13-4 and BAP3 genes encode proteins expressed mainly outside of the brain [42, 43]. 

The common structure of Munc13 proteins consists of N-terminal C2A domain, followed 

by long sequence bearing a calmodulin-binding domain, C1 and C2B domains and C-

terminal MUN and C2C domain. The ubMunc13-2 and Munc13-1 proteins contain all 

described domains, whereas in bMunc13-2 and Munc13-3 the Ca2+-independent C2A 

domain is replaced by a long N-terminal sequence upstream the C1 domain. The short 

proteins Munc13-4 and BAP3 possess only C2B, MUN and C2C domains [43]. In a 

functional context, the MUN domain is the structural entity responsible for the priming 

activity of Munc13 proteins [44, 45]. In addition, a recent report suggested that a weak 

interaction of MUN domain with SNARE motif of syntaxin 1 in the closed syntaxin 1-

Munc18 complex helps syntaxin 1 opening and SNARE complex assembly [46]. At a 

molecular level, Munc13 interacts with several proteins: with RIM [33, 35], calmodulin 

[47], spectrin [48], syntaxin 1 [49], Munc18 [46] and double C2 domain protein (DOC2α) 

[50]. No functions and interactions are known up to date for the C2C domain of Munc13 

proteins. 
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1.2.1.3 α-Liprins 
 

Liprins (for LAR-interaction proteins) were originally identified as interaction 

partners of LAR-type (leukocyte common antigen related) receptor proteins with tyrosine 

phosphatase activity [51, 52]. In vertebrates, no studies on α-liprin functions exist, 

however, studies in C. elegans confirmed protein’s localization (encoded by syd-2 gene, 

for synaptic defect) at presynaptic termini and its importance for active zone formation, 

cell adhesion and cell migration during development [53, 54]. α-liprins exist in four 

homologous forms composed of N-terminal coiled-coil domain, containing “liprin-

homology domains” LH1 and LH2 [55], and three C-terminal SAM domains. As the other 

AZ proteins, liprins participate in multiple protein-protein interactions. The N-terminal half 

of the proteins containing the LH1 domain can bind to itself and results in homodimers 

[55]. ELKS/CAST protein and RIMs compete for binding to liprins via their coiled-coil 

domains or C2B domain, respectively [28]. It was suggested that the interaction with 

ELKS recruits liprins to the active zone [56, 57]. In addition, α-liprins can form complexes 

with MAGUK family protein member CASK [58], but also can bind via their C-terminal 

SAM domains to β-liprins to form heterodimers [51, 59].  

 

1.2.1.4 ELKS proteins – major structural organizers of the CAZ 
 

The CAST/ERC protein family (CAZ-associated structural protein/ELKS-Rab6-

interacting protein-CAST) consists of conserved proteins from worms to mammals, 

expressed from two genes: CAST1/ERC2 and ERC1. ERC1 gene undergoes alternative 

splicing resulting in the expression of two proteins diverging in their C-termini: brain-

specific ERC1b and ubiquitously expressed ERC1a isoforms [37, 60, 61]. CAST1/ERC2 

and ERC1b isoforms are localized at the AZ. ELKS consist mainly of three coiled-coil 

sequences. These sequences can serve as platform for self/homo-oligomerization and 

heterocomplex formation. The C-termini of the proteins bear IWA amino acid sequence 

motif and resemble canonical PDZ recognition sequences for interaction with RIM1α [37, 

60, 62]. The C-terminal motif probably binds also other PDZ domain-containing proteins 

as reported for syntenin-1 [63]. The first of three coiled-coil sequence domains is involved 

homodimerization of the proteins, whereas second and third coiled-coil regions interact 

with Piccolo/Basson and Munc13-1, respectively (for review and references [62]). 
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Furthermore, CAST/ERCs interact with liprins [57] and have been recently identified as a 

component of large interaction complex assemblied at the AZ [64]. Recently, a homologue 

of the human and C. elegans ELKS/CAST/ERC proteins, called Bruchpilot (BRP), was 

identified in Drosophila melanogaster as a crucial structural component of the AZ with C-

terminal structural similarity to multifunctional cytoskeleton proteins [65]. Furthermore, 

the protein is a constituent of donut-shaped structures localized at the AZ of neuromuscular 

junctions in Drosophila and is required for Ca2+ channel clustering, evoked 

neurotransmitter release and short-term plasticity [65, 66]. In addition, it was shown that 

brp mutants lose their electron-dense projections of the AZ cytomatrix (T-bars) [66] and 

that a functional collaboration between synaptotagmin and BRP is a prerequisite for AZ 

differentiation [67].  

 

1.2.1.5 RIM-binding proteins (RIM-BPs) 
 

In vertebrates, three RIM-BP genes encode large scaffolding proteins consisting of 

three SH3 and three fibronectin III (FNIII) domains. These proteins were identified as 

interactors of VGCC of N-, P/Q- and L-type and of RIM proteins [24, 68]. The SH3 

domains of RIM-BPs bind to the PRR between C2A and C2B domains of RIMs. The two 

classes of proteins are highly expressed in the brain and form tight complexes. The 

formation of RIM-RIM-BP complex, the direct interactions between PDZ domain of RIM 

with N- and P/Q-type VGCC [11, 24] and between RIM-BPs and VGCC [68] suggest a 

role of RIM-BPs for VGCC recruitment to the sites of release. This suggestion was 

confirmed recently by Liu et al. showing disruption of VGCC localization to the AZ in 

Drosophila carrying mutated RIM-BP gene, as well as impairment of AZ formation [69].  

 

1.2.2 Scaffolding proteins at the active zone 
 

Piccolo/Aczonin [70, 71] and Bassoon [72] are the two largest scaffolding proteins 

at the AZ with molecular weight of 530 kDa dn 420 kDa, respectively. Partial knockout of 

Bassoon impairs exocytosis and leads to partial lethality [73], in contrast to Piccolo, the 

deletion of which does not severely affect survival of cultured neurons [74]. However, 

partial deletion of both proteins disrupts SV clustering, indicating a possible role in 
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organizing the SV pools at the presynaptic site [74]. Piccolo and Bassoon share regions of 

sequence similarity called Piccolo/Basson homology (PBH) domains. Three of the PBH 

domains contain coiled-coil regions termed CC1, CC2 and CC3. Within the first PBHs, 

two zinc finger domains (ZF) with limited homology to ZF domains of RIM α isoforms are 

located. The ZF domains of Piccolo can bind PRA1 (prenylated Rab acceptor), interacting 

with synaptobrevin 2 (syb 2) as well as with Rab3 [71]. Piccolo contains also PRR N-

terminally, which is absent in Bassoon. This PRR interacts with F-actin binding proten 1 

(Abp1). Piccolo contains also unique PDZ and C2A and C2B domains, absent in Bassoon, 

but resembling the RIM domains. Interestingly, C2A shows high specific binding for Ca2+ 

at low affinity [75]. In addition, Piccolo is expressed in multiple alternative spliced 

variants [76, 77]. It can bind L-type VGCC and RIM2 and can form homodimers via its C2 

domains [78], whereas its CC3 and PDZ domains interact with ELKS and cAMP-GEFIII, 

respectively [78, 79]. The interaction with ELKS proteins is preserved also for Bassoon, 

explained by the homology of the CC3 domains [79].  

In addition to the described interactions between core AZ constituents and Piccolo 

and Bassoon (see Table 1.1), additional interconnections between other known synaptic 

proteins contribute to neurotransmission regulation and SV exocytosis. Although they are 

not classified as core AZ residents, the Velis (MALS/Lin-7), CASK and Mint proteins 

form complexes with variable stoichiometry and composition. These assemblies were 

reported to regulate exocytosis and AZ development and to link intracellular protein 

complexes with synaptic junctions [58, 80-82]. The functional and structural relevance of 

cell adhesion and cytoskeleton molecules for synaptic transmission and exocytosis remain 

elusive and is reviewed elsewhere (for references see [16, 83-85]).  
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Table 1.1. Summary of protein-protein interactions between core active zone and scaffolding proteins. 

Protein Interaction partners Reference 

ELKS (CAST/ERC) 

Bassoon, Piccolo 

α-liprins 

RIM1α 

Munc13 

Syntenin-1, Rab6-GTP 

[79] 

[57] 

[60] 

[37, 62, 64] 

[63, 86] 

Liprins 

ELKS 

KIF1A 

LAR-type tyrosine phosphatase 

GRIP 

Liprins 

GIT1 

CASK 

RIMs 

[56, 57] 

[87] 

[51, 52, 88] 

[89] 

[51, 55] 

[90] 

[58] 

[28] 

RIMs 

Munc13 

Rab3, Rab27 

RIM-BPs 

N- and P/Q-type VGCCs 

α-liprin 

synaptotagmin-1 

ELKS 

SNAP25 

Piccolo 

[33-35] 

[21, 24, 36] 

[24] 

[11, 39] 

[28] 

[28, 39] 

[37, 60] 

[39] 

[78] 

RIM-BPs 

 

N-, P/Q- and L-type VGCC 

RIMs 

 

 

[68] 

[24] 
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Munc13 

RIMs 

Calmodulin 

DOC2α 

Syntaxin-1 

SNARE/Munc18 assembly 

Diacylglycerol 

spectrin 

[33] 

[47] 

[50] 

[49] 

[46] 

[91] 

[48] 

Piccolo 

Abp1 

PRA1 

L-type VGCC 

ELKS 

RIM 

[92] 

[71] 

[78] 

[79] 

[78] 

Bassoon ELKS [79] 

CASK 

α-Liprins 

CASKIN 

Mint 

SynCAM 

[58, 59] 

[80] 

[80, 93] 

[94] 

 

 The major goal of our study was the development of a protocol for extraction of 

integral protein complexes from synaptic membranes. The focus was set specifically on 

presynaptic cytomatrix-associated proteins. This required the use of detergents with high 

extraction affinity towards the proteins of interest under preservation of their protein-

protein interactions and native structure. However, though membrane mimetics are 

essential component of daily biochemical work, detergents’ use is not trivial due to their 

complex physicochemical properties in solution. Therefore, in the following section, an 

afford was made to summarize the most important aspects, which need to be considered 

when using detergents for membrane solubilization and protein extraction. 
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1.2.3 Detergent classification  
 

Nowadays, a large number of detergents are commercially available. Often, the 

same detergents are available under different commercial names based on their purity 

degree or production source. These facts, together with the patent protection of the 

products, restrain transparency and hinder comparison of experimental results.  

Detergents are amphipathic (amphiphilic) molecules containing both hydrophobic 

and polar (hydrophilic) structural entities. The chemical nature of these entities varies 

broadly and their combination diversifies the available detergent structures. Nevertheless, 

detergents can be classified based on 1) the charge and/or nature of their polar (head) 

groups and 2) the flexibility and chemical nature of their hydrophobic portion. According 

to the chemistry of their hydrophilic head group detergents are classified as ionic, nonionic 

and zwitterionic.  

Ionic detergents contain head groups with a net positive or negative charge. The 

widely used sodium dodecylsulphate (SDS) contains a negatively charged sulphate group 

whereas trimethyl-amonium bromide (CTAB) represents an amine based quaternary 

detergent. In addition, the hydrophobic portion of the molecules can contain a hydrocarbon 

aliphatic chain like in SDS and CTAB or rigid sterane non-aromatic element like in sodium 

deoxycholate (DOC). The latter one is also considered as bile acid detergent. Anionic 

detergents can be bile acid salts with rigid hydrophobic portion of the molecule (cholic, 

taurodeoxycholic or deoxycholic acids). In addition to their aliphatic carboxylate (anionic) 

groups, the sterane ring of the bile acid derivatives carries hydroxyl groups. Thus, the 

structural complexity disables a strict definition of a polar head group. Generally, 

dihydroxy bile acid detergents (taurodeoxycholic and deoxycholic acid derivatives) are 

more effective than trihydroxy bile acids (e.g. sodium cholate) in membrane solubilization 

and disruption of protein-protein interactions. However, trihydroxy bile acids are milder in 

nature and preferable for use.  

Nonionic detergents contain hydrophilic head groups composed either of 

polyoxyethylene chains as in the Brij and Trition detergent series or of glycosidic groups 

(sugars) as in octyl glucoside or dodecyl maltoside. In general, these detergents are 

considered non-denaturing, mild and efficient in breaking lipid-lipid and lipid-protein 

interactions and preserving protein-protein interactions. Thus, they are widely used in 

membrane biochemical studies and for isolation of protein complexes. However, the Triton 
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class and NP-40 detergents contain aromatic rings in their hydrophobic portions, which 

might be limiting for their application. The absorbance at 280 nm and 254 nm interferes 

with spectrophotometric detection of proteins. For this reason, alkyl glycosides (containing 

sucrose, maltose or glucose polar head group) are preferred. Additionally, the attachment 

of alkyl chains to the sugar moieties can be achieved synthetically, however racemic 

mixtures are formed without the use of heterogeneous (surface) catalysis and the separation 

of stereoisomers increases the costs. A great advantage of this method is the resulting 

structural diversity encoding different physicochemical properties, which can be explored 

in membrane solubilization studies.  

Zwitterionic detergents are special because they combine properties of ionic and 

nonionic detergents. They resemble nonionic detergents in the net molecules charge 

lacking electrophoretic mobility and conductivity and are suitable for ion-exchange 

chromatography. In line with ionic detergents, they are efficient in breaking protein-protein 

interactions. However, intraclass differences are observed. The detergents CHAPS and 

CHAPSO, being zwitterionic with rigid sterane structure, are less denaturing than the 

Zwittergent 3-X series.  

 

1.2.4 Detergent’s properties in solution 
 

Detergents are also known as tensides, soluble amphiphiles, soaps (usually the metal 

salts of long-chain fatty acids) or surfactants. The latter term is a contraction of the word 

“surface-active agent” [95]. This term emphasizes an important physicochemical property 

of detergents. When small quantities of the compounds are dissolved in water, they reduce 

interfacial surface tension by adsorbing to the surface. They align in a monolayer at the 

water-air or water-organic phase with their hydrophobic portion in the air or organic phase 

and the polar groups pointing towards the water phase. The monomers, which are not 

involved in the monolayer formation at the phase interface, are dissolved as monomers in 

the water solution. However, detergents exhibit self-aggregation properties and thus the 

described situation exists only at low detergent concentrations [96]. Above a broad 

threshold concentration range, called critical micellization concentration (CMC), micelles 

are formed [96]. Micelles are defined as thermodynamically stable colloidal non-covalent 

aggregates, which are spontaneously formed by amphiphilic compounds above a narrow 

concentration range (CMC) [97]. This means that above CMC, hydrophobic interactions 
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force assembly of the hydrophobic portions of the detergent molecules in order to avoid 

contact with water, whereas the polar groups are exposed to the water environment [98]. 

Furthermore, from an application point of view, detergent solutions above the CMC values 

will be composed of micelles in equilibrium with the monomer. Increasing the detergent 

concentration above the CMC increases the micelle concentration, whereas the monomer 

concentration in the solution remains constant and equals the CMC [99, 100]. In addition, 

micelles are not static, but dynamic structure. This means that detergent monomers within 

the micelles are in constant exchange with monomers from the solution. Importantly, the 

solubilization properties of detergents are dependent on the formation of micelles in 

solution. The CMC of given detergents can be affected by few different factors: the 

hydrophobic and hydrophilic groups of the detergent molecules as well as the addition of 

electrolytes to the detergent solution [101]. In general, detergents with ionic head groups 

have higher CMC values than ones with nonionic head structure. This is due to 

electrostatic repulsion of the groups of neighbouring detergent molecules [101]. 

Additionally, zwitterionic head group-contaning detergents have smaller CMCs than ionic 

ones. Moreover, an extension of the alkyl chain (for straight alkyl chain containing 

detergents) of a detergent halves the CMC of the detergent  [101]. The effect of 

electrolytes on the CMC of detergents is more pronounced for ionic detergents. Addition of 

dissociative electrolytes (e.g. NaCl) shields the ionic groups of detergents and reduces their 

repulsion, thus decreasing the CMC [101, 102]. Decrease in the CMC is observed also for 

nonionic detergents like Triton X-100 and glucosides. However, this effect is dependent on 

the nature of the electrolyte. Cl- ions are highly hydrated and salt out the hydrophobic 

moieties of detergents, decreasing their CMC. An opposite effect results from the addition 

of ions with high radius:charge ratio (i.e. I- and SCN-) [101, 103, 104].  

Generally, the detergent micellar size is defined by the molecular weight of the 

monomer and/or the aggregation number of the detergent. The aggregation number (N) is 

the number of monomers assembled in a micelle. The higher N, the greater is the detergent 

micellar weight. However, this number is dependent on the nature of the detergent and is 

not constant. It varies and for some detergents and might exhibit a concentration 

dependence [105]. Most detergents with biochemical applications have N= ~50 to 100. 

Exceptions represent the bile acid detergents with N ~10 [100, 106].  

Few factors affect the detergent performance in experiments: temperature, pH, ionic 

strength, detergent concentration and the presence of salts in the solutions, as well as the 
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purity of the detergents. pH is most important when working with detergents other than 

nonionic ones. Anionic detergents remain soluble at pH greater than the pKa value of their 

ionizable group, i.e. they precipitate when the pH is lowered under the pKa value. The 

opposite is valid for catioinic detergents (e.g. primary, secondary and ternary amines) - pH 

lower than the pKa value is required. This is a noteworthy remark because some bile acid 

detergents as sodium deoxycholate and its derivates undergo gelation at pHs higher than 

their pKa’s [96]. Importantly, each detergent has a characteristic phase diagram describing 

its behavior in solution dependent on concentration and temperature. This behavior is 

exemplified by a SDS phase diagram (Figure 1.3). A phase diagram shows under which 

conditions the detergent exists in a crystalline form, as micelles or monomer. The line 

between the crystalline and the micelle phases defines the critical micellar temperature 

(CMT). Practically, this means that detergent solubilization, which is dependent on the 

micelle formation, will only occur above temperature higher than the CMT. In addition, at 

a characteristic temperature higher than the CMT, called cloud point (not shown in the 

diagram), the detergent solutions undergo a phase separation to yield a detergent-rich and 

aqueous layers. This is a phenomenon characteristic for polyoxyethylene detergents and 

results from dehydration of the polyoxyethylene groups and formation of giant micelles 

[107]. The exploitation of the cloud point has been described earlier and enables the 

concentration of solubilized integral proteins [108, 109] The horizontal line between the 

monomer and micelle phases represents the concentration range above which a 

micellization takes places. In addition as shown in the diagram, the Krafft point is the 

CMT at the CMC value (for reviews and more references see [95, 96, 99]).  

                             

Figure 1.3. Phase diagram for sodium dodecylsulphate (SDS). The phase diagram shows the 
concentration and temperature dependent behavior of a detergent in solution on the example of SDS. 
Diagram modified from [95]. 
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1.2.5 Use of detergents for membrane solubilization 
 

The majority of detergents are used for isolation and study of membrane proteins 

and their interactions. Importantly, from a definition point of view, the stage at which 

biological membranes lose their lamellar integrity and break down in their constituents is 

called “solubilization”. This definition is determined empirically and is usually based on 

decrease of the turbidity of a membrane solution, increase in non-sedimentable material 

and disappearance of the intact membrane structures as observed in electron microscopy 

[95, 96]. The mechanisms of detergent interaction with biological membranes do not 

follow general rules. However on molecular level the solubilization of membranes by 

detergents and the extraction of proteins are thought to take place in three different steps 

(Figure 1.4) [95]. Moreover, when membranes are solubilized, every step of the process 

follows the laws of equilibrium thermodynamics [95]. The first step occurs at low 

detergent concentrations and is characterized by incorporation of detergent monomers into 

the lipid bilayer of the membrane. Second, further increase in detergent concentration leads 

to saturation of the membrane bilayer and its destabilization. This step is followed by 

membrane disintegration, termed “lysis” or “solubilization”. Membrane solubilization is 

accompanied by formation of four different types of micelles in the solution: lipid-

detergent mixed micelles, detergent micelles, lipid-detergent-protein mixed micelles and 

protein-detergent mixed micelles (see Figure 1.4). 
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Figure 1.4. Mechanism of membrane solubilization by detergents. Membrane solubilization takes place in 
three steps. First, at low detergent concentrations, detergent monomers incorporate into the membrane lipid 
bilayer. Increase in the detergent concentration leads to membrane saturation  and destabilization followed by 
disintegration and breakdown of the lamellar membrane structure (detergent monomers:black head groups; 
lipids: blue head groups; peripheral and integral proteins: green, pink, violet, red and cyan colored).  

 

 For the isolation of integral and peripheral protein complexes from synaptic 

membranes, detergents from different classes and with different physicochemical 

characteristics were used and are listed below (see Table 1.2, data summarized from Sigma 

Aldrich and Calbiochem catalogues). 
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1.3 Affinity purification and quantitative proteomics 
 

Different approaches can be used for characterization of protein complexes and 

protein-protein interactions. First, protein interaction maps were described for the budding 

yeast Saccharomyces serevisiae using yeast two-hybrid (Y2H) system [110-113]. Although 

the strength of the method was proved over the years, the rate of false positives and the 

verification of the data limited the use of this time-consuming approach. In recent years, 

the combination of affinity purification with mass spectrometry (AP-MS) advanced our 

knowledge about protein interactomes among species [114]. One advantage of AP-MS 

over Y2H is the control of experimental conditions (near physiological) which can be 

determined and optimized by the researcher. However, two major problems accompany 

AP-MS. First, mass spectrometry identification of proteins is usually performed in a non-

quantitative manner. This makes it difficult to distinguish true interaction partners from 

background proteins binding to the affinity matrix and resulting in high false positive rates. 

Second problem is the use of overexpressed tagged proteins for immunoisolations due to 

limited availability of good antibodies. This might cause artefacts in protein localization 

and interactions. Importantly, the combination of AP-MS approach with quantitative 

proteomic techniques allows elucidating dynamic changes in protein complex 

compositions [114-119]. The most of the quantitative techniques developed in the last two 

decades relied on the use of chemical or metabolic labeling [120]. They allow 

distinguishing between true protein interactors and background proteins but also restrain 

experimentalists due to high costs and the dependence on labeling efficiency which varies 

between experiments [120].  

Proteomic analysis of membrane proteins and their associated assemblies represents 

a special case of interactome mapping with major experimental and technical challenges. 

First milestone is the efficient solubilization of the membrane proteins under preservation 

of their interaction partners. Mild extraction conditions might advance the number of 

identified associated proteins but also increase the background proteins detected. 

Solubilization often is seen as compromise between efficient extraction and protein-protein 

interaction preservation.  
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Table 1.2. List of detergents used in the present study and summary of their main physichochemical properties.  

Detergent Type Structure CMC 
(mM) 

Aggregation number 
(N) 

Average micellar weight 
(Da) 

Triton X-100 
Nonionic 

(alkyl 
polyoxyethylene) 

 

 
 

0.2 – 0.9 100 – 155 80 000 – 100 000 

CHAPS Zwitterionic 
(bile acid) 

 

 
 
 

6 10 6150 

CHAPSO Zwitterionic 
(bile acid) 

 

 
 

8 11 7000 

Sodium cholate Anionic 
(bile acid) 

 

9 – 15 2 – 3 900 – 1300 
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Sodium 
taurodeoxycholate Anionic (bile acid) 

 

 
 

1 – 4 6 3100 

Octyl-β-D-
glucopyranoside 

Nonionic 
(alkyl glucoside) 

 

20 – 25 84 25 000 

Dodecyl-β-D-maltoside Nonionic 
(alkyl maltoside) 

 

0.15 98 50 000 

Zwittergent 3-10 Zwitterionic 

 

25 – 40 41 12 600 

Zwittergent 3-12 Zwitterionic 

 

2 – 4 55 18 500 

Zwittergent 3-14 Zwitterionic 

 

0.1 – 0.4 83 30 200 
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Second, the limited availability of antibodies capable of isolating the membrane-

anchored or membrane embedded target proteins under the solubilization conditions 

hinders biochemists. Finally, often the low number of tryptic peptides obtained after 

digestion of isolated proteins, together with their hydrophobic character constrain the 

reliable identification of less abundant and smaller proteins.  

However, in recent years few studies reported successful identification of auxiliary 

subunits and regulatory proteins of ion channels and transmembrane proteins [121-128]. 

Some of these studies revealed the architecture and diversity of AMPA receptor proteome 

during development in different brain regions [126, 129] or identified cornichon proteins 

as novel auxiliary subunits of AMPARs [127]. Furthermore, the proteome of Cav2 channel 

family was recently reported and showed that more than 200 proteins are assembled in 

complexes with distinct stability and abundance in the mammalian brain. Although this 

study failed in deciphering the proteome of VGCC subtypes, it showed that label-free 

quantification (LFQ) can advance our knowledge about membrane protein-protein 

interactions. The LFQ method relies on spectral counts (limited by saturation and ion 

suppression effects), peak volume integration by correlation-based method or most 

applicably – on signal integration of peptide intensities (for reviews on LFQ see [119, 130-

132]). Interestingly, the quantification of SV proteins by time- and cost-consuming 

Western blotting was also validated using LFQ proteomics by Takamori et al. [133]. 

Moreover, the group of Fakler et al. identified novel interaction candidates and confirmed 

known interactions using the LFQ AP-MS strategy as exemplified on voltage-gated 

potassium channel Kv1.1 [134]. Interestingly, the LFQ approach was successfully used not 

only for synaptic membrane protein-protein interaction discovery [121, 122, 125, 135], but 

also when applied to chromatin-associated and anaphase-promoting protein complexes 

[136, 137].  

1.4 Aim of the study 
 

Biological membranes are the physical and physiological barriers that functionally 

and morphologically define biological entities like cells, intracellular compartments, 

organelles and also synaptosomes – re-sealed nerve terminals [138]. Synaptosomes possess 

membrane-dependent functional integrity (and preserved biological activity) and structural 

asymmetry. Importantly, their functionality is governed by multiple transmembrane and 

peripheral proteins with their extra- and intra-cellular protein interactions. 
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The structural features of the highly specialized synaptosomal membrane present 

major experimental challenges for its study – (1) extraction and preservation of integral 

proteins and their complexes in a native state using membrane mimetics (e.g. detergents), 

(2) biochemical separation and component identification of such complexes (3) 

deciphering the biological meaning behind the molecular interplay of protein complex 

constituents. Three main difficulties accompany the isolation of native integral and/or 

peripheral protein complexes from synaptosomes and synaptosomal membrane 

subfractions (e.g. LP1 fraction, [139]) and were addressed in our study. First, little is 

known about the extractability of synaptic proteins and the preservation of their protein-

protein interactions upon use of detergents. Therefore, I aimed on screening different 

classes detergents for their solubilization properties focusing on the extraction of 

presynaptic proteins. A main goal was the extraction of presynaptic integral and large 

scaffolding proteins in a native form. Second, there are technical limitations to separate 

protein complexes in the molecular weight range of few hundred kilodaltonds (kDA) to 

megadaltons (MDa). For his reason, I analyzed the usefulness of gradient centrifugation 

and size exclusion chromatography for separation of membrane-derived extracts upon 

preservation of protein-protein interactions. Third, up to date no systematic study evaluated 

the effect of the centrifugation step post-solubilization on the protein composition of the 

extracts. Thus, a semi-quantitative immunoblotting was performed in order to assess the 

extractability of synaptic proteins under two different centrifugation conditions. 

Additionally, in the context of synaptic membrane research and interactomics, I validated 

the efficiency of the newly developed protocol as follows. I screened different affinity 

matrices and available antibodies against syntaxin 1 in order to find best 

immunoprecipitation conditions for the target protein. LFQ AP-MS in combination with a 

recently developed method for data analysis and presentation (volcano plotting) was used 

to separate unspecifically bound proteins from true positive hits under stringent statistical 

filtering conditions. Importantly, the tandem use of non-denaturing protein extraction and 

LFQ AP-MS should provide a universal protocol for the isolation of membrane proteins 

and their protein interacting partners while keeping the number of target-nonspecific 

binding proteins low. 
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2 Materials & Methods  
2.1 Materials  

2.1.1 Chemicals  

 

All commercial chemicals such as salts, solvents and detergents used were of 

highest analytical purity grade. Unless indicated differently, the chemicals, kits and buffers 

were purchased  either from Glycon GmbH (Luckenwalde, Germany), Merck, Calbiochem 

(Darmstadt, Germany), Boehringer (Mannheim, Germany), Sigma Aldrich (Steinheim, 

Germany), Roth (Karlsruhe, Germany), Fluka (Buchs, Germany), Roche (Basel, 

Germany), Promega (Madison, USA), Waters (Milford, USA), Invitrogen (Carlsbad, 

USA), Expedeon (Cambridge, UK), Stratagene (Santa Clara, USA) or Pierce/Thermo 

Scientific (Waltham, MA USA). Other used materials and all detergents are listed below 

separately in Table 2.1. 

Table 2.1. List of commercial materials and all detergents utilized in this study. 

Material/Detergent Source  

Eupergit C1Z beads Roehm Pharma 

Dynabeads® Protein A Invitrogen Life technologies 

Dynabeads® Protein G Invitrogen Life technologies 

Triton X-100 Merck 

Dodecyl-beta-D-maltopyranoside Glycon 

Octyl-beta-D-glucopyranoside Anatrace 

Sodium taurodeoxycholate Calbiochem 

Sodium cholate Sigma Aldrich 

Tween 20 Sigma Aldrich 

Zwittergents (3-10, 3-12, 3-14) Calbiochem 

CHAPS Sigma-Aldrich 

CHAPSO Sigma-Aldrich 

Igepal CA 630 Sigma Aldrich 

CompleXiolyte 114 and 91 

(CL91,  CL114) 
Logopharm GmbH 

Protein A Pierce (Thermo Scientific) 
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Protein G Pierce (Thermo Scientific) 

Superdex 200 10/300 GL GE Healthcare 

Superose 6 10/300 GL GE Healthcare 

Universal protein standard 

(UPS2) 
Sigma Aldrich 

ReproSil C18-AQ Dr. Maisch 

 

2.1.2 Commercial kits 

 

 Kits were purchased and used according to manufacturer’s instructions - Western 

Lightening TMPlus-ECL for Chemoluminescence detection (Perkin Elmer), Pierce BCA 

Protein assay for protein quantification in a 96-well plate format (Thermo Fisher) [140], 

NucleoBond® Xtra Midi (Macherey-Nagel) for plasmid DNA isolation, Silver stain (Life 

Technologies), Simply stain Blue (Invitrogen), Pierce 660 nm protein assay (Pierce), DC 

protein assay (Bio-rad) 

. 

2.1.3 Antibodies 

 

Antibodies used in this study are listed in  Table 2.2 and were either produced in 

our laboratory or commercially purchased at Abcam (Cambridge, UK), BioRad (Hercules, 

CA, USA), Jackson Immunoresearch Europe (Newmarket, UK), NeuroMab (Davis, USA) 

or Synaptic Systems GmbH (Göttingen, Germany).  
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     Table 2.2. List of all antibodies used in various applications during the study. 

Antigen Epitope Antibody specification Application Source 

Synaptobrevin 2 
SATAATVPPAAPAGEG 

(aa 2-17) 

Cl 69.1, mouse monoclonal 

IgG1 
WB (1:1000) 

Synaptic systems 

(cat. #104211) 

Synaptophysin Cytoplasmic tail 
Cl 7.2, mouse monoclonal 

IgG1 
WB (1:1000) 

Synaptic systems 

(cat. #101011) 

Synaptotagmin-1 C-terminal part (aa 80-421) 
Cl 41.1, mouse monoclonal 

IgG2a 
WB (1:1000) 

Synaptic systems 

(cat. #105011) 

Synaptotagmin 2 aa 1-11 in lumenal domain Polyclonal rabbit, antiserum WB (1:1000) 
Synaptic systems 

(cat. #105222) 

Syntaxin 1A 
N-terminal part of rat 

syntaxin 1A 

Cl 78.3, mouse monoclonal 

IgG2a 

WB (1:1000), 

IP 

Synaptic systems 

(cat. #110 111) 

Syntaxin 1 
N-terminal part of rat 

syntaxin 1 

Cl 78.2, mouse monoclonal 

IgG1 
IP 

Synaptic systems 

(cat. #110 001) 

Rab3a 
C-terminal part of the 

molecule (aa 191 – 220) 

Cl 42.2, mouse monoclonal 

IgG2b 
WB (1:1000) 

Synaptic systems 

(cat. #107111) 

Scamp1 
SDFDSNPFADPDLN 

(aa 2 - 15 in rat) 
Polyclonal rabbit IgG WB (1:1000) 

Synaptic systems 

(cat. #121002) 

Scamp5 
NQPQTQYSATPNYTYSN 

(aa 217-233) 
Polyclonal rabbit IgG WB (1:1000) 

Abcam (cat. # ab3432) 
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V-ATPase 
FSFEHIREGKFDE 

(826-838 in rat) 
Polyclonal rabbit antiserum WB (1:1000) 

Synaptic systems 

(cat. #109002) 

Bassoon 
C-terminal part  of the 

protein (last 330 aa) 
mouse monoclonal IgG2b WB (1:1000) 

Synaptic systems 

(cat. #141021) 

Piccolo aa 4439 - 4776 
Polyclonal rabbit, affinity 

purified IgGs 
WB (1:1000) 

Synaptic systems 

(cat. # 142003) 

CASK aa 1-337 Polyclonal rabbit antiserum WB (1:1000) 
Synaptic systems 

(cat. #150002) 

CASK aa 318-415 
Cl K56A/50, Mouse mono-

clonal IgG1 
WB (1:1000) NeuroMab 

CASKIN1 aa 1416 - 1430 
Polyclonal rabbit, affinity 

purified 

WB (1:1000), 

IP 

Synaptic systems 

(cat. # 185003) 

ERCs (1b/2) 
CDQDEEEGIWA (aa 939 – 

948) 

Polyclonal rabbit, affinbity 

purified 

WB (1:1000), 

IP 

Synaptic systems 

(cat. # 143003) 

Liprin-α3 aa 463 - 604 
Polyclonal  rabbit, 

antiserum 
 

WB (1:1000), 

IP 

Synaptic systems 

(cat. # 169102) 

Mint1 aa 2 - 265 
Polyclonal rabbit, affinity 

purified 

WB (1:1000), 

IP 

Synaptic systems 

(cat. #144103) 

Munc13-1 aa 3 - 317 
Polyclonal rabbit, affinity 

purified 

WB (1:1000), 

IP 

Synaptic systems 

(cat. # 126103) 
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Munc13-1 aa 3 - 317 Polyclonal rabbit antiserum WB (1:1000) 
Synaptic systems 

(cat. # 126102) 

RIM1/2 
aa 1 – 466, Zn-finger 

domain 
Polyclonal rabbit 

WB (1:1000), 

IP 

Synaptic systems 

(cat. # 140203) 

Velis (1/ 2/ 3) N.A. 
Polyclonal rabbit, affinity 

purified 

WB (1:1000), 

IP 

Synaptic systems 

(cat. # 184003) 

Velis (1/ 2/ 3) N.A. Polyclonal rabbit antiserum WB (1:1000) 
Synaptic systems 

(cat. # 184002) 

Beta-actin aa 2-16 Polyclonal rabbit WB (1:3000) 
Synaptic systems 

(cat. #251003) 

Alpha-tubulin 
SEAREDMAALEKDYEEV 

(aa 419 – 435) 

Cl  3A2, Mouse monoclonal 

IgG1 
WB (1:3000) 

Synaptic systems 

(cat. #302211) 

Ca2+ channel  

N-type 

aa 2074-2314 of Ca2+-

channel α-1B subunit 

Polyclonal rabbit, affinity 

purified 
WB (1:500) 

Synaptic systems 

(cat. # 152303) 

Ca2+ channel  

N-type 
Synprint site Polyclonal rabbit WB (1:1000) In-house-made 

Ca2+ channel  

P/Q-type 
aa 856 - 888 

Polyclonal rabbit, affinity 

purified 
WB (1:500) 

Synaptic systems 

(cat. # 152103) 

ZnT3 aa 2 - 75 Polyclonal rabbit antiserum WB (1:1000) 
Synaptic systems 

(cat. #197003) 
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VGLUT1 N.A. 
Polyclonal rabbit, affinity 

purified 
WB (1:2000) 

In-house-made, 

Shigeo 03, #77 and #78 

Gephyrin aa 294 - 736 Polyclonal guinea pig WB (1:1000) 
Synaptic systems 

(cat. #147004) 

Homer1 aa 1 - 186 Polyclonal rabbit antiserum WB (1:1000) 
Synaptic systems 

(cat. #160002) 

PSD95 aa 77-299 
Cl K28/43,Mouse mono-

clonal, IgG2a 

  
 

WB (1:1000) NeuroMab 

GABAR N.A. Polyclonal rabbit, antiserum WB (1:1000) In-house-made 

NMDAR1 

(GluN1) 
aa 660-811 

Cl. 54.2 (M68), mouse 

monoclonal,  IgG2b 
WB (1:1000) 

Synaptic systems 

(cat. #114011) 

Neuroligin 1/2/3/4 aa 1 - 695 
Cl 4F9, Mouse monoclonal, 

IgG2a 
WB (1:1000) 

Synaptic systems 

(cat. #129011) 

SynCAM 1/2/3 C-terminal region Polyclonal rabbit WB (1:1000) Abcam 

SynCAM 1/2/3 aa 436 – 446 of SynCAM 1 
Polyclonal rabbit, affinity 

purified 
IP 

Synaptic systems 

(cat. #243003) 

Mouse IgG 

 

N.A. 

 

ChromPure mouse IgG, 

whole molecule 

IP 

 

Jackson Research 

(cat. # 015-000-003) 

Rabbit IgG N.A. 
ChromPure rabbit IgG, whole 

molecule 
IP 

Jackson Research 

(cat. # 011-000-003) 



 

 
 

28 

 

 

 

 

 

 

 

Mouse IgG  

(HRP-labeled) 
N.A. Goat anti-mouse IgG (H+L) WB (1:2000) BioRad 

Rabbit IgG 

(HRP-labeled) 
N.A. Goat anti-rabbit IgG (H+L) WB (1:2000) Biorad 

Guinea pig IgG 

(HRP-labeled) 
N.A. 

Goat anti-guinea pig IgG 

(H+L) 
WB (1:2000) 

Jackson 

Immunoresearch 

(cat. # 106-035-003) 
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2.1.4 Buffers and media  

The compositions of all the buffers, media and different solutions utilized in the 
working process are listed in Table 2.3. 

Table 2.3. Recipes of all in-house prepared non-commercial solutions and buffers. 

Buffer/Media (1x) Composition 

Phosphate buffered saline (PBS) 
137 mM NaCl,  2.7 mM KCl, 8.1 mM Na2HPO4, 

1.47 mM KH2PO4, pH 7.4 

high-salt PBS  
400 mM NaCl,  2.7 mM KCl, 8.1 mM Na2HPO4, 

1.47 mM KH2PO4, pH 7.4 

Tris-buffered saline with Tween 

20 (TBST) 

15 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5 % 

(v/v) Tween 20 

SDS running buffer  
25 mM Tris-HCl, 192 mM Glycine, 0.1 % (w/v) 

SDS 

Tris MOPS SDS running buffer 
50 mM MOPS , 50 mM Tris base, 0.1% (w/v) 

SDS, 1 mM EDTA, pH 7.7  

Transfer buffer   
200 mM Glycine, 25 mM Tris, pH 7.5, 20 % 2-

propanol or 20 % ethanol  

Homogenization buffer 320 mM sucrose, 5 mM HEPES, pH 7.4 

Low-salt IP washing buffer 1% Cholate/ PBS, pH 7.4  

High-salt IP washing buffer 1% Cholate/ high-salt PBS, pH 7.4 

Antibody dialysis buffer 150 mM NaCl/ H2O, pH 7.4 

Äkta - Gel filtratration (Superose 

6 10/300 GL) buffer 
1% detergent/PBS, pH 7.4 

Äkta – Superdex 200 10/300 GL 

buffer 
150 mM NaCl/H2O 

Digestion buffer 1 

For 120 µl – 15 µl of trypsin (Roche, 0.1 µg/µl), 

50 µl of fresh 100 mM NH4HCO3, 5 µl of 100 mM 

CaCl2, 50 µl of  H20  

Digestion buffer 2 
For 105 µl –50 µl of fresh 100 mM NH4HCO3, 5 

µl of 100 mM CaCl2, 50 µl of  H20 

Blocking buffer 5% non-fat milk in TBST 
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2.2 Methods 

2.2.1 Molecular biology methods 

2.2.1.1 Protein concentration determination 
 

Protein concentration was determined using PierceTM BCA, PierceTM 660 nm or 

DCTM Protein Assay (Bio-Rad) commercial kits. Commercially available BSA (Pierce) or 

IgG solutions (Bio-rad) were used as standards. Dilutions of BSA and/or IgG standards 

(according to manufacturer’s manual) and samples (5x, 10x and 15x) were prepared in 

duplicates with either 20 mM Tris pH 8.0 (Pierce BSA, Pierce 660 nm protein assay) or 

2% SDS/H2O as diluent (DC Protein Assay, Bio-rad).   

Concentration of IgGs was determined as well with Nanodrop ND-1000 (Thermo 

Scientific) in a IgG calculation mode.  

 

2.2.2  Biochemical methods  

2.2.2.1 SDS-PAGE and Western blotting 
 

Prior to immunoblot analysis, proteins with a molecular weight <130 kDa were 

separated on denaturing 10% Tris SDS polyacrylamide gels by electrophoresis, as 

previously described [141, 142]. Resolving gel (final concentration of 10% bis-acrylamide, 

375 mM Tris pH 8.8, 0.1% SDS) and stacking gel (final concentration of 3.75% bis-

acrylamide, 125 mM Tris pH 6.7, 0.1% SDS) were polymerized by addition of TEMED 

(catalyst) and ammoniumperoxodisulphate (polymerization initiator) in final 

concentrations of 0.1%. If not indicated differently, samples were boiled at 95°C for 5 min 

in 4x Laemmli sample buffer adjusted accordingly to final concentrations of 62.5 mM Tris 

pH 6.8, 10% sucrose or glycerol, 4% SDS or LDS, 5% beta-mercaptoethanol and 0.02% 

bromphenol blue. Separation was performed in a continuous Tris-Glycine buffer system, 

composed of 190 mM Tris, 25 mM glycine, 0.1% SDS. For analysis of large proteins >130 

kD and mass spectrometry, precast mini NUPAGE® Bis-Tris, Tris glycine or Expedeon 

SDS-PAGE 4-12% gradient gels were used. NUPAGE® Bis-Tris and Expedeon SDS-

PAGE gels were run with Tris MOPS SDS running buffer (50 mM MOPS, 50 mM Tris 

base, 0.1% SDS, 1 mM EDTA, pH 7.7) while Tris Glycine gel system operates only with 
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Tris-Glycine SDS PAGE running buffer (25 mM Tris base, 192 mM Glycine, 0.1% SDS, 

pH 8.3).   

Western blotting was performed as described by [143]. Proteins were transferred in 

wet mode using a Tris glycine transfer buffer (200 mM glycine, 25 mM tris, 0.04% SDS, 

20% ethanol). Small proteins <130 kDa were transferred at 200 mA for 2 h at RT or at 

4°C. Large proteins >130 kDa (e.g. Piccolo and Bassoon) were transferred over night for at 

least 16 h at 4°C with a pre-cooled transfer buffer composed of 200 mM glycine, 25 mM 

Tris, 0.04% SDS, 20% isopropanol at 400 mA on a magnetic stirrer. After transfer, 

membranes were either stained with Ponceau S (0.1% (w/v) Ponceau S in 5% (v/v) acetic 

acid) prior to blocking to make gel lanes visible for cutting or proceeded directly to 

blocking with 5% non-fat milk powder in TBST (50 mM Tris, 150 mM NaCl, 0.05% 

Tween-20, pH 7.6) for 20-30 min. Primary antibodies in the above indicated dilutions (see 

2.1.3) were incubated with the membranes overnight at 4°C and collected for reuse. The 

membranes were washed three times, 5 min each with TBST prior to incubation with HRP-

conjugated secondary antibodies (1:2000 dilution) in blocking buffer for 1 h at RT upon 

constant shaking, followed by three washing steps (10 min each). Western blots were 

developed using Super Signal West Pico kit (Thermo Scientific) and protein bands were 

visualized by using chemiluminescence detection on FUJIFILM Luminescent Image 

Analyzer LAS-1000.  

For dot blots, 2 µl of sample were spotted on a nictrocellulose membrane, which 

was dried for 5 min. The membrane was then blocked for 10 min at room temperature in 

blocking buffer and probed with primary antibodies (monoclonal α-synaptophysin, Cl 7.2 

and monoclonal α-PSD95, Cl K28/43) for 15-30 min. After washing of the membrane 3 

times for 3-5 min each with blocking buffer, the blot was incubated with secondary HRP-

conjugated antibody for 15 min, followed by 3 washing steps for 5 min each with TBST. 

Dot blot was developed as indicated above by chemiluminescence. 

2.2.2.2 Preparation of beads for immunoisolation 
 

Dynabeads® Protein A and/or Protein G magnetic beads (30 mg/mL, binding 

capacity of 8 ug human IgG/mg beads, Life Technologies) were used according to 

manufacturer’s manual. Briefly, 50 µl bead slurry (50% beads) were washed 3 times for 5-

10 min each with IP buffer (1% Cholate/1x PBS or 1x high-salt PBS) at 4°C and 

supernatants were discarded. After the last washing step, at least 15 µg of antibodies or 
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whole IgG fractions (H+L) from pre-immunized animals were allowed to bind to the 

Protein A/G-coupled magnetic Dynabeads® for 40 min at 4° C (rotating). Unbound 

antibody was removed with the supernatant. Samples were added to the beads and rotated 

at 4° C for 2 h, followed by 4 washing steps of 15 min each with either 1% cholate/PBS or 

1% cholate/high-salt PBS. After the final washing, beads were boiled in 50 µl 4x LDS 

sample buffer at 70°C for 15 min.  

Conjugation of monoclonal syntaxin 1a (Cl 78.2) antibody (mouse ascites), pre-

immunized rabbit anti-mouse, mouse or rabbit IgGs (H+L) to Eupergit C1Z beads was 

done as described earlier [144]. Prior to coupling, syntaxin 1a antibody (purified on 

Superdex 200 10/300 GL in 150 mM NaCl) and IgGs were dialyzed (MWCO 10K) against 

H2O or 150 mM NaCl for 4 days with at least 7 changes. After dialysis, the solution was 

centrifuged for 15 min at 10 000g in a bench centrifuge, supernatant used for coupling after 

determination of the antibody concentration. Eupergit C1Z beads were washed twice by 

vigorous vortexing in H2O and applying ultrasonication for 2 min. Beads were centrifuged 

at 1300 g for 6 min and resuspended in the antibody solution with concentration of at least 

1 mg/mL, vortexed vigorously and rotated for 8 h at 21°C. A ratio of 1 mg antibody to 100 

mg of beads was used. After coupling, the beads were centrifuged at 1300 g for 6 min and 

remaining reactive sites were quenched with 1 M glycine/H2O for 8 h or overnight. The 

antibody solution was collected in order to assess coupling efficiency. The beads were 

washed 3 times by vigorous vortexing with alternating 0.1 M potassium acetate, 0.5 M 

NaCl at pH 4.5 and 0.1 M Tris, 0.5 M NaCl at pH 8.0 (in total 6 washes). Finally, the 

beads were washed once with 1x PBS, resuspended 4x of their dry volume (assuming 100 

mg correspond to 100 ul) in 1x PBS (e.g. 100 mg beads in a total volume of 400 µl) and 

frozen at -80°C until usage without loss of activity (Figure 2.1).  
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Figure 2.1. Eupergit C1Z microbeads-mediated immunoprecipitation of syntaxin 1. In a direct approach 
(A) anti-syntaxin 1 antibody (Cl 78.2, subtype IgG1 ) or mouse IgGs (control) were directly coupled to the 
beads via epoxy groups to the surface of the matrix. The resulting conjugates were used for 
immunoprecipitations from pre-cleared solubilized LP1 fractions. In the second, indirect (B) approach, a two-
step protocol was used, as direct coupling of syntaxin 1a-specific antibody (Cl 78.3, subtype IgG2a) was not 
possible. In the first step, beads were coupled with bridging rabbit anti-mouse IgGs in order to obtain an 
immnoreactive matrix. In the second step, the matrix was incubated over night at 4°C either with Cl 78.3 
antibody or mouse IgGs (control). The resulting conjugate was used for the immunoprecipitations.  

 

2.2.2.3 Preparation of synaptosomes and LP1 fraction 
 

Synaptosomal subfractionation was performed as previously described [145]. 

Briefly, 12 six-week-old rats were sacrificed and cortices and cerebellum dissected. 

Samples were divided in two and each half was homogenized in 60 ml 

homogenization/sucrose buffer (320 mM sucrose, 5 mM HEPES, pH 7.4) supplemented 

with PMSF (0.2 mM in 100% ethanol) and pepstatin (1 µg/µl) in a glass-Teflon 

homogenizer with 9 strokes at 9000 rpm. Homogenate (BH) was cleared from cell debris 

and nuclei at 5000 rpm for 2 min in a SS34 rotor (Beckmann). Supernatant (S1) was re-

centrifuged at 11 000 rpm for 12 min in the same rotor to obtain a cytosolic fraction (S2) 
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and a crude synaptosomal fraction (P2). Synaptosomes were carefully resuspended with 

homogenization buffer in a total volume of 36 mL using pre-cut 1 mL tips and avoiding the 

brownish part of the pellet, which represents a mitochondrial contamination. 3 mL of 

synaptosomes were layered on a discontinuous Ficoll gradient (Ficoll dissolved in pre-

filtered homogenization buffer), composed of 4 mL 13% Ficoll, 1 mL 9% Ficoll and 4 mL 

6% Ficoll. Gradients were centrifuged in a swing-out SW41 rotor (Beckmann) at 22 500 

rpm for 35 min and the band from the 13% and 9% Ficoll interface was collected (Figure 

2.2).  

 

               

Figure 2.2. Scheme for purification of synaptosomes and LP1 fraction. The procedure of synaptosomal 
and LP1 preparation consists of steps of differential and non-continuous density gradient, followed by hypo-
osmotic lysis of synaptosomes resulting in release of soluble protein contents and SVs as well as AZ-
enriched presynaptic membrane fraction (LP1). 
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Bands from 6 gradients were pooled together, diluted for washing with 35 mL of 

fresh homogenization buffer supplemented with protease inhibitors and centrifuged at 11 

000 rpm for 12 min in a SS34 fixed-angle rotor. Pellets were resuspended in 4 mL sucrose 

buffer, 36 mL of ice-cold water were added and synaptosomes were osmotically lyzed with 

3 strokes of max speed in a glass-Teflon homogenizer, followed by immediate addition of 

protease inhibitors (PMSF and pepstatin) and 200 µl of 1 M HEPES-NaOH pH 7.4 (1:200 

stock solution. The pellet after lysis (LP1), containing mainly active zone (AZ)-enriched 

presynaptic membranes with docked vesicles attached to a portion of PSD, was isolated in 

a centrifugation step of 16 500 rpm for 20 min in a SS34 rotor and resuspended in a 

volume of 5-6 mL. The protein concentration was determined using BCA assay.  

 

2.2.2.4 Proteolytic treatment (“shaving”) of synaptosomes 
 

Five to ten mg of synaptosomes were proteolytically treated with sequencing grade 

trypsin (Roche) as described earlier [146]. In brief, synaptosomes were resuspended in 20 

to 40 mL homogenization buffer (pH 8.0 at 30°C) and 500 to 1000 µl trypsin (0.1 mg/mL 

in 1 mM HCl, final ratio of protein:protease = 100:1) were added. Synaptosomes were 

moderately shaken in a water bath at 30°C for 30 min and the trypsinization was 

terminated with 20 to 40 µl Pefabloc (400 mM 1:1000 stock solution in ddH2O). The 

trypsinized synaptosomes were isolated by differential centrifugation in a SS34 rotor for 5-

8 min at 8700 g followed by a washing step with homogenization buffer (pH 7.4) 

containing 400 µM Pefabloc inhibitor. The pellet was taken up in the respective volume of 

homogenization buffer for further experiments. 

 

2.2.2.5 Solubilization of synaptosomes and LP1 fraction 
 

The synaptosomes and the LP1 fraction were solubilized in detergent/PBS at 

protein: detergent ratios ranging from 1:10 to 1:30 for all initial experiments. The samples 

for fractionation by gel filtration, immunoprecipitations and mass spectrometry were 

solubilized at a protein:detergent ratio of 1:10.The protein content was determined using 

commercially available kits (Pierce BCA protein assay). The desired amount of protein 

was directly added to the ice-cold PBS (pH 7.4)/detergent solution and the final volume 
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(1mL for S140AT4 rotor and 3mL for TLA100.3 rotor) was adjusted by addition of ice-

cold PBS. The samples were rotated for 5-30 min at 4°C and pre-cleared by 

ultracentrifugation at 100 000 g for 20 min either in a S140AT4 rotor (Sorvall) or a 

TLA100.3 rotor (Beckmann). The pellets containing insolubilized material were 

resuspended in PBS buffer in ¼ of the supernatant volume and frozen at -20°C until use.  

 

2.2.2.6 Sucrose density gradient centrifugation 
 

Sucrose density gradients were prepared in SW41 rotor tubes using pre-

programmed settings on a Bio-comp gradient master mixer B107-202M. Fresh solutions of 

sucrose in PBS (pH 7.4 at 4°C) with 1% detergent were used in all experiments. Using a 

Minipuls 3 peristaltic pump (MP3 drive Unit 0.01 TO 48 RP, Gilson), 500 µl fractions of 

the gradients were collected on ice starting from high density. 

 

2.2.2.7 Chromatographic fractionation of solubilized LP1 samples 
 

After solubilization of the LP1 fraction, the pre-cleared supernatant was subjected 

to further fractionation by gel filtration chromatography on a Superpose 6 10/300 GL 

column usingan automated Äkta system (Äkta purifier, GE Healthcare). Prior to size 

exclusion chromatography, the sample was cleared at 100 000 g for 20 min in a TLA100.3 

rotor. Degassed 1% (w/v) detergent/PBS pH 7.4 was used to pre-equilibrate the column 

with 4 CV and as mobile phase. The protein-detergent complexes were eluted at a flow rate 

of 0.4 mL/min and the elution profile was monitored at 280 nm. Fractions of 500 µl were 

collected using a fraction collector (Fraction Collector Frac-900). The separation 

reproducibility was evaluated by western blotting. The remaining volume of each fraction 

was used for immunoprecipitations with Dynabeads Protein A/Protein G or antibody-

coupled Eupergit C1Z beads. 
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2.2.3 Mass spectrometry methods 

2.2.3.1 On-beads-digestion of immunoprecipitates 
 

Affinity enrichment of syntaxin 1 and syntaxin-binding proteins for mass 

spectrometry was performed using Eupergit C1Z beads coupled covalently either to 

syntaxin 1 antibody (Cl 78.2) or to bridging polyclonal rabbit-anti mouse IgGs. When 

bridging IgGs were used, beads were incubated overnight rotating at 4°C with an excess of 

syntaxin1a antibody (Cl 78.3). The immunoprecipitates were digested with trypsin directly 

on the beads following a new optimized version of a standard protocol [147] for digestion 

in the presence of detergent. Briefly, 1% Rapigest SF (Waters) were added to the beads, 

which were vigorously vortexed, spun down and incubated for 15 min at 60°C, upon 

shaking on a Thermomixer (ThermoMixer C, Eppendorf).  10 mM DTT (same volume as 

1% Rapigest SF) was added and the beads further incubated for 30 min at 60°C, upon 

shaking, followed by addition of 20 mM 2-Chloracetamide (CA). The incubation was 

continued at 37°C for 30 min. The samples were diluted with freshly prepared 50 mM 

NH4HCO3 to a final concentration of Rapigest= 0.1% and 5 µl (0.1 µg/µl) of sequencing 

grade modified trypsin (Promega) were added and mixed by vortexing. The samples were 

spun down and digested for 16 h at 37°C. After digestion, 100% formic acid (FA) (1 µl 

100% HCOOH per 10 µl of 1% Rapigest SF) was added to the samples to cleave Rapigest 

SF and inactivate the trypsin. The beads were incubated for 1 h at 37°C, and centrifuged 

for 30 min at maximal speed (14 800 rpm) in a bench centrifuge. The supernatant 

containing protein peptides was collected and dried in a speed-vac system (SpeedVac 

concentrator Savant SPD121P supplied with refrigerated Vapor Trap RVT5105, Savant 

and Vacuum Pump OFP400, Thermo Scientific).  

 

2.2.3.2 Protein digestion after denaturing elution from Eupergit C1Z beads 
 

In order to compare efficiencies of trypsin digestion after the elution from the 

immunobeads, in-gel-digestion and direct on-beads-digestion, immunoprecipitates from 

Eupergit C1Z beads (coupled to bridging anti-mouse IgGs and incubated with syntaxin 1 

antibody Cl 78.3) were eluted by addition of 50 µl of 2% SDS/H2O and incubation at 65°C 

for 15 min. Eluted proteins were precipitated by addition of the 4fold volume of ice-cold 

acetone (200 µl) and stored overnight at -20°C. Afterwards, the proteins were pelleted by 



 

38 
 

centrifugation in a table-top centrifuge at maximal speed for 30-40 min at 4°C. The 

acetone was completely removed and the pellets were dried at room temperature for 15-45 

min until residual acetone was evaporated. The dried samples were trypsinized as 

described (see 2.2.3.1).   

 

2.2.3.3 In-gel digestion of proteins after SDS-PAGE 
 

In-gel digestion of proteins after SDS-PAGE followed by Coomassie staining and 

extraction of peptides from gel pieces were performed as described [148]. Briefly, every 

lane of stained SDS-PAGE gels was cut in 24 small pieces of equal size. The gel pieces 

were washed with 150 µl H20 by incubation in a thermomixer for 5 min at 26°C, 1050 rpm. 

The pieces were centrifuged and the excess liquid removed. The samples were dehydrated 

with 150 µl acetonitrile, shaking at 1050 rpm for 15 min at 26 °C and the supernatant 

removed after spinning down. To assure full drying, the samples were additionally 

subjected to speed vacuum for at least 5 min. To reduce disulfide bridges, the gel cut-outs 

were supplied with 100 µl of 10 mM DTT/100 mM NH4HCO3 and shaken for 50 min at 56 

°C. The gel pieces were spun down, excess liquid was discarded and dehydrated again with 

150 µl of acetonitrile for 15 min at 26°C at 1050 rpm. The dehydrating agent was removed 

and alkylation of reduced cysteine residues was performed using 100 µl of 55 mM 

iodoacetamide/100 mM NH4HCO3 for 20 min at 26°C, 1050 rpm. The gel pieces were 

spun down and incubated for 15 min at 26°C, 1050 rpm in 150 µl of 100 mM NH4HCO3 

,after the excess liquid was removed,, followed by addition of 150 µl of acetonitrile and 

further incubation under the same conditions for 20 more minutes. The gel pieces were 

pelleted and shaken (1050 rpm) in 150 µl of acetonitrile for 15 min at 26°C after removal 

of the supernatant. The acetonitrile was discarded and the gel stripes dried for 5-10 min in 

a vacuum centrifuge. After rehydration at 4°C in a few microliters of digestion buffer 1 

(see Table 2.3) for 30-45 min (after approx. 15 min the samples were checked and more 

buffer was added in case the liquid was completely absorbed by the gel pieces). 10-20 µl of 

digestion buffer 2 (see Table 2.3) were added to cover the gel pieces and keep them wet 

during the trypsinization. The samples were incubated over night for max. 16 h at 37°C.  
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2.2.3.3.1 Extraction of peptides 
 

The peptide mixtures from the digested proteins were extracted as following.10-15 

µl of H2O were added to the digest (the samples should be completely covered with 

liquid). The samples were shortly spun down and incubated for 15 min at 37°C shaking at 

1050 rpm. 50 µl of acetonitrile were added and further incubated for 15 min. The gel 

pieces were removed by centrifugation and the supernatant containing the peptides was 

collected in protein LoBind Eppendorf tubes. 50 µl of 5% (v/v) HCOOH were added to the 

gel pieces and incubation was continued for 15 min at 37°C and 1050 rpm. The stripes 

were shortly centrifuged and 50 µl of acetonitrile were added and incubated for further 15 

min. The gels were finally removed by centrifugation, the supernatant was collected and 

both extracts were pooled and dried under speed-vacuum (approx.. 1 ½ h). 

2.2.3.4 Peptide mixture desalting  
 

The peptide mixture was preceded to desalting using StageTips (using gel loading 

tips and Empore C18 discs) [149].  In brief, speed-vacuum dried peptide mixtures were 

dissolved in 40 µl of 0.5 % HCOOH, vortexed, spun down, sonicated for 2 min and 

centrifuged at maximal speed in a table top centrifuge for 40 min at 4°C. During 

centrifugation 2 C18 desalting discs were excised and packed on a 10 µl pipetting tip. The 

columns were equilibrated using a bench centrifuge (5min, 2000 rpm) by washing once 

with 25 µl of 100% methanol, followed by one washing step with 80% acetonitrile (25 µl) 

and three washings with 0.5% HCOOH (25 µl each). After the last washing step, the 

dissolved peptides were loaded on the columns, centrifuged for 8 min at 2000 rpm and 

washed as described above at least three times with 0.5% HCOOH. Collecting vials were 

exchanged for 1.5 mL MS grade Protein LoBind tubes (Eppendorf) and desalted peptides 

were eluted three times with 25 µl of 80% acetonitrile each. Samples were speed-vacuum 

dried and stored at -80°C until measurements.  

2.2.3.5 Mass spectrometry, data analysis and quantification 
 

The samples were dissolved in 20 µl 5% (v/v) acetonitrile and 1% (v/v) formic acid 

and analyzed in two technical replicates on a Q Exactive Plus Hybrid Quadrupole-Orbitrap 

Mass Spectrometer coupled to Dionex UltiMate® 3000 RSLCnano system (Thermo 

Scientific). In the nano-LC system (equipped with in-house made ReproSil C18-AQ 5 u, 



 

40 
 

pre-column - 30 mm in length, inner diameter 150 µm and C18 (1.9 u) separation column – 

30 cm in length, inner diameter 75 µm), peptides were separated at a flow rate of 300 

nL/min on a 8-45% mobile phase B (80% acetonitrile, 0.15% formic acid) gradient with a 

duration of 118 min. Eluting peptides were analyzed on-line in the MS scan range 350-

1600 m/z (TopN 20 fragmentation mode, isolation window set at 2.0 m/z, NCE 30). The 

acquired data was analyzed using MaxQuant (version 1.3.0.5) with Andromeda search 

engine and data search was against SwissProt R. norvegicus database and UPS2 protein 

database (in case of iBAQ measurements) [150]. iBAQ values for  protein quantification 

were obtained as recently described [151].  
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3 Results 
 

3.1 Protocol development for synaptosome solubilization and characteriza-
tion of presynaptic protein complexes 

3.1.1 Detergent screen for synaptosome solubilization 
 

First studies with detergent on isolated nerve terminals were conducted by de 

Robertis and co-workers [152, 153] and followed up by Taylor and Bloom [153-155]. 

They discovered that Triton X-100 solubilizes synaptsosomal membranes releasing 

membrane-bound enzymes of interest. This process involved a post-solubilizational 

centrifugation step at 100 000 g for 60 min which led to the isolation of a detergent-

resistant residue (pellet). The pellet was considered to represent a junctional complex, 

comprised of membranes and underlying proteinaceous network. Since then, also the terms 

supernatant (S) and pellet (P) became conventional in detergent trials to describe detergent- 

soluble and resistant fraction, respectively. Few years later, Cotman et. al. [156] showed 

that N-lauroyl sarcosinate treatment of synaptosomes results in the isolation of 

postsynaptic densities, free of junction-flanking membranes and presynaptic structures. 

The results from these initial studies suggested differential solubilization of synaptosomes 

by different detergents. They also emphasized weak points in the application of Triton X-

100 that was not able to completely solubilize presynaptic membranes [157, 158].   

Up to date, only few reports addressed the extractability of individual synaptosomal 

membrane proteins and their complexes by different detergents [64, 126, 127, 129, 135, 

159, 160]. Moreover, they did not report an extensive detergent screen and did not provide 

an overview on the extractability of synaptic proteins. Rather, the authors focused on the 

extraction of one particular protein and relied on co-solubilization of its interaction 

partners.  

Our major goal was isolation and characterization of presynaptic protein 

complexes. As a first step in our protocol, an advanced detergent screen was performed on 

synaptosomes and LP1 fraction in order to analyze the extractability of proteins associated 

either with the presynaptic active zone or with the postsynaptic density. 

Synaptosomes represent resealed pinched-off nerve terminals and thus contain the 

proteins required for SV exocytosis and regulation of neurotransmitter release [138]. Some 
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of these proteins are core AZ constituents (e.g. Munc13 and ERC1b/2), AZ-associated (e.g. 

Munc-18) or plasma membrane proteins (e.g. SNAP-25 and syntaxin 1A). In addition, 

large portion of the proteins involved in neurotransmission are integral and represent 

transporter proteins, channels, receptors as well as SNAREs, often regulated by protein-

protein interactions with peripheral proteins. These protein groups are present also in the 

membrane-enriched LP1 fraction which is obtained by centrifugation after a hypotonic 

osmotic lysis of synaptosomes [139] (Figure 2.2). LP1 could be used as an alternative 

starting material to synaptosomes in the solubilization tests. It has the advantage of 

containing less soluble proteins compared to intact synaptosomes, but is enriched in core 

AZ and AZ-associated proteins as well as presynaptic membrane proteins (mainly ion 

channels, transporter proteins and receptors) which are in the focus of our study. In the 

performed screen, the extraction properties of different detergents (see Table 1.2) were 

analyzed by immunodetection of proteins in pellet (P) and supernatant (S) fractions. These 

two fractions were obtained after the solubilization of freshly prepared synaptosomes and 

LP1 fraction (see section 2.2.2.5) followed by pre-centrifugation for 20 min at 100 000 g in 

S140AT4 rotor. The g force factor for the pre-centrifugation step was adopted from the 

published studies. Considering the clearing factor k of the used rotors in former studies and 

our rotor (S140AT4), the centrifugation time was adjusted. Same amount of protein from 

the pellet and supernatant was resolved by SDS-PAGE and probed for the protein 

distribution by Western blotting (Figure 3.1 and Figure 3.2).  
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Figure 3.1. Detergent screen for synaptosome solubilization. Same amount of protein from pellet (P) and supernatant (S) samples was separated by SDS-PAGE and proteins 
were detected by Western blotting. Detergents used in the extraction tests and proteins probed by immunodetection are indicated above and right, respectively. Probed proteins 
cover five different protein classes abundant at the synapse: SV, AZ and AZ-associated, PM, postsynaptic and mitochondrial proteins.  
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Figure 3.2. Detergent screen for solubilization of LP1 fraction. Same amount of protein from pellet (P) and supernatant (S) fractions was separated by SDS-PAGE and were 
detected by Western blotting. Detergent used and proteins probed by immunodetection are indicated above and right, respectively. Probed proteins cover five different protein 
classes represented at the synapse: SV, AZ and AZ-associated, PM, postsynaptic and mitochondrial proteins. 
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The list of detergents tested for protein extraction from synaptosomes and LP1 

fraction (see Table 1.2) included two nonionic alkyl glycosidic detergents: octyl-β-

glucopyranoside (OβGlcp) and dodecyl-β-D-maltoside (DDM), a glucoside and maltoside, 

respectively; the nonionic polyoxyethylene detergent Triton X-100 (Tx-100); five 

zwitterionic detergents: the two bile acid derivatives CHAPS and CHAPSO and three 

aliphatic homologues -  zwittergent 3-10, 3-12 and 3-14; and two anionic bile acid 

derivatives: sodium cholate (cholate) and sodium taurodeoxycholate (TDOC). The 

solubilization potential of the detergents was evaluated by their ability to extract the 

representatives of five classes of proteins residing at the synapse: SV proteins 

(synaptobrevin 2 and synaptotagmin-1), plasma membrane (PM) proteins (SNAP-25, 

syntaxin 1A and K+/Na+ ATPase); AZ and AZ-associated proteins (Munc13, ERC1b/2 and 

Munc-18); postsynaptic density-associated proteins (PSD95 and NMDA receptor) and 

mitochondrial proteins (represented by mitofilin).  

Mitofilin, a protein from the inner mitochondrial membrane, was solubilized to a 

great extent when both samples, synaptosomes and LP1 fraction, were treated with the 

listed detergents. However, some portion of the protein was detected by immunoblotting in 

the pellet when CHAPS, CHAPSO, DDM and cholate were used (see Figure 3.1 and 

Figure 3.2). Similarly, the soluble protein Munc-18 was exclusively detected in the 

supernatant regardless of the starting material. Only exception was observed when CHAPS 

and CHAPSO were used for the solubilization of LP1 fraction (Figure 3.2). Additionally, 

full extraction from synaptic membranes was observed for the K+/Na+ ATPase, an enzyme 

that was one of the first membrane-bound proteins isolated from synaptosomes [161, 162]. 

In contrast to the ATPase, the two further plasma membrane proteins– SNAP-25 and sxt 

1A, were not completely extracted by the used detergents in either samples as judged by 

the immunoblots (Figure 3.1 and Figure 3.2). Although the larger portion of both proteins 

was solubilized, Western blot signals were detected also in the pellets. These results were 

in line with the extraction pattern of the SV proteins syb 2 and syt-1, both single 

transmembrane domain-containing proteins like stx 1. Although not quantitatively, they 

were also well solubilized by all detergents disregarding the used starting material. 

Interestingly, the AZ proteins Munc13 and ERC1b/2 (ERCs) showed more complex 

solubilization pattern. Munc13 was only partially solubilized by the listed detergents 

(Table 1.2), with OβGlcp and Triton X-100 being the least efficient detergents for its 

extraction. This finding was also in agreement with previous reports by others [163] (see 

Figure 3.2). Furthermore, OβGlcp, Tx-100 as well as DDM, CHAPS and CHAPSO failed 
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in solubilizing ERCs from the synaptic membranes (see Figure 3.2). The only detergents 

that successfully extracted ERCs to some extent were cholate and TDOC (Figure 3.1 and 

Figure 3.2). In contrast to the observations on presynaptic and soluble proteins was the 

extraction profile of the postsynaptic density (PSD)-associated proteins PSD95 and NMDA 

receptor (see Figure 3.2). SV proteins, presynaptic plasma membrane and soluble proteins 

showed similar extractability pattern, whereas the postsynaptic proteins differed in their 

solubilization profile. The NMDA receptor, reported to be challenging for solubilization 

trials [164, 165], was completely extracted by the three homologues of the zwittergent 

family: zwittergent 3-10, 3-12 and 3-14. Zwittergents resemble in their properties nonionic 

detergents but are also capable of breaking protein-protein interactions [106, 166]. This 

fact might explain the full extraction of NMDAR only by these detergents. In contrast, the 

PSD95 protein, known to interact with NMDAR [167], was partially extracted also by 

other detergents than the zwittergents (Figure 3.2). This result indicated no correlation in 

the extraction of PSD95 and NMDAR despite their direct interaction. 

The results from the detergent screen for solubilization of synaptosomes and LP1 

fraction allowed drawing some conclusions. First, soluble and membrane proteins were 

efficiently extracted by all detergents although some minor differences were observed 

when CHAPS and CHAPSO were used. This pattern applied to SV proteins as well as 

proteins from the presynaptic plasma membrane and mitochondrial proteins. Second, 

proteins associated with the presynaptic cytomatrix or the postsynaptic density show 

differences in their extractability. While presynaptic proteins showed correlation in their 

extractability, postsynaptic proteins were differentially extracted. Interestingly, SV 

proteins as well as presynaptic membrane and soluble proteins were well extracted by 

glycosidic, zwitterionic (alkyl and bile acid) as well as anionic bile acid detergents. 

However, the detergents showed minor differences towards the AZ proteins ELKS and 

Munc13. The glycosidic DDM and OβGlcp as well as CHAPS, CHAPSO and Triton X-

100 showed poor extraction of ELKS (Figure 3.2). They also poorly solubilized Munc13, 

which, in contrast, was well extractable when TDOC and cholate were used. In addition, 

all detergents, except the zwittergent family members, were unable of extracting NMDAR 

and only slighty solubilized PSD95. The PSD-associated proteins showed different 

extraction pattern. Zwittergent detergents completely extracted NMDAR and only partially 

solubilized PSD95. When other detergents were applied, PSD95 showed partial extraction, 

but NMDAR was quantitatively found in the pellet. These results confirmed the 

differential behavior of the immunodetected protein groups towards different detergents.  
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Since the major goal of our study was characterization of presynaptic membrane 

proteins complexes, we focused in more detail on presynaptic cytomatrix-associated and 

membrane proteins. Therefore, additional extractions with four of the tested detergents 

were performed. Based on the initial results (Figure 3.1 and Figure 3.2), we decided to 

further investigate the solubilization potential of TDOC, cholate, Triton X-100 and 

zwittergent 3-14. First, TDOC and cholate showed similar extraction profile, the 

solubilization efficiency towards the ELKS proteins was crucial for that choice of TDOC 

(see Figure 3.1and Figure 3.2). Second, DDM was chosen over OβGlcp due to better 

extraction of Munc13 (Figure 3.2). Triton X-100 was used as standard detergent in 

membrane biochemistry and finally yet importantly, zwittergent 3-14, which efficiently 

extracted NMDAR and PSD95 as well as presynaptic membrane, mitochondrial and SV 

proteins, was picked as novel candidate for further analyses. 

Solubilization procedures were repeated with the LP1 fraction as described above. 

Equal amounts of protein from P and S were resolved and fractions were immunoprobed 

for more proteins. The extended protein list contained plasma membrane, AZ and CAZ 

proteins, as well as PSD-associated and scaffolding proteins. The results obtained after the 

DDM treatment of LP1 fraction are shown below (Figure 3.3). 

 

 

Figure 3.3. Extraction pattern of LP1-resident proteins with DDM. LP1 sample was isolated after 
hypoosmotic lysis of freshly isolated synaptosomes. A pre-centrifugation step was performed at 100 000 g 
for 20 min in a S140AT4 rotor. Equal amounts of protein from pellet (P) and supernatant (S) was loaded on a 
4-12% gradient SDS-PAGE gel. Immunodetection of the indicated proteins (above the blots) was conducted.  
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 DDM extracted almost completely the probed proteins from the presynaptic plasma 

membrane but also CAZ-associated proteins and ion channels (Figure 3.3). The list of 

plasma membrane proteins that were detected by immunoblots was extended and included 

the excitatory amino acid transporter isoform 2 (EAAT2), potassium channel Kcnc1 

(Kv3.1b), VGCC of N-type (Ca N), neuroligins as well as the cell adhesion molecules of 

the IgG superfamily – SynCAM 1, 2 and 3 (~100 kDa, 60 kDa and 45 kDa, respectively) 

and α-protocadherin (~100 kDa). In contrast, a differential extraction was observed for the 

detected PSD-associated proteins, confirming the results from the initial experiments 

(Figure 3.1 and Figure 3.2). Gephyrin was partially extractable, glutamate receptor-

interaction protein (GRIP) and Homer1 were exclusively found in the pellet, whereas the 

GluR1 subunit of the ionotropic AMPA receptor was almost quantitatively extracted from 

the LP1 fraction (Figure 3.3). 

A similar solubilization analysis was performed using the nonionic Triton X-100 

and the anionic bile acid detergent TDOC (Figure 3.4 and Figure 3.5, respectively).  

 

 

Figure 3.4 Extraction pattern of LP1-resident proteins Triton X-100. LP1 sample was isolated after 
hypotonic osmotic lysis of freshly isolated synaptosomes. A pre-centrifugation step was performed at 100 
000 g for 20 min in a S140AT4 rotor. Equal amount of protein from pellet (P) and supernatant (S) was loaded 
on a 4-12% gradient SDS-PAGE gel. Indicated proteins (above the blots) were detected by Western blots.  

 

Triton X-100’s solubilization profile was intriguing since no study so far examined 

in detail which synaptic proteins can be extracted by this detergent. In addition to the 

presynaptic and CAZ-associated proteins probed in the DDM solubilization experiment 

(Figure 3.3), pellet and supernatant were immunoprobed also for Munc 18-interaction 

protein 1 (Mint1) and the VGCC of P/Q-type (Figure 3.4). A major difference in 
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solubilization pattern between DDM and Tx100 represented the extraction of RIM1/2: 

Tx100 extracted only the short splice variant (~70 kDa) of the protein (see Figure 3.4) 

whereas DDM solubilized it completely. Similar to the previous experiment with DDM, all 

plasma membrane and CAZ-associated proteins were well extractable. In agreement with 

the former data, the extraction profile of the postsynaptic proteins emphasized their 

differentiated solubilization pattern. They were either partially (Homer1, gephyrin, the 

GluR1 subunit of AMPA receptor) or not extracted (GRIP) (Figure 3.4).  

Interestingly, TDOC solubilized completely not only the presynaptic membrane and 

cytomatrix-associated proteins, but also all postsynaptic scaffolding proteins:  Homer1, 

gephyrin, GRIP and the AMPA receptor (Figure 3.5). The extraction of membrane proteins 

and AZ-residing constituents was in line with the previous observations. However, the 

extractability of the PSD-associated proteins from the LP1 fraction after TDOC treatment 

was a novel and intriguing finding.  

 

 

 

Figure 3.5. Extraction pattern of LP1-resident proteins with TDOC. LP1 sample was isolated from 
freshly prepared synaptosomes. A pre-centrifugation step at 100 000 g for 20 min (S140AT4 rotor) yielded 
two samples – pellet (P) and supernatant (S). Equal amount of protein from both samples was loaded on a 
gradient SDS-PAGE gel and indicated proteins (above the blots) were immunodetected.  
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All proteins immunoprobed after LP1 solubilization with zwittergent 3-14 were 

completely extracted except the PSD scaffolding protein Homer1 (Figure 3.6).  

 

Figure 3.6. Solubilization of LP1 fraction with Zwittergent 3-14. LP1 sample was isolated from freshly 
isolated synaptosomes. A pre-centrifugation step at 100 000 g for 20 min in a S140AT4 rotor yielded two 
fractions – pellet (P) and supernatant (S). Equal amount of protein from both samples was loaded on a 4-12% 
gradient SDS-PAGE gel. Indicated proteins (above the blots) were detected by Western blots.  

 

One of the great challenges in solubilization studies on synaptosomes has been the 

extraction of the two scaffolding proteins Bassoon (~420 kDa) and Piccolo (~550 kDa). 

Studies conducted with the detergent Triton X-100 reported major loss of the Piccolo 

protein in the pellet after a post-solubilizational centrifugation step [70]. Therefore, we 

tested whether the four detergents mentioned above were able of extracting Piccolo and 

Bassoon. In addition to zwittergent 3-14, Triton X-100, DDM and TDOC, two recently 

reported 1% detergent solutions CL 91 and CL 114 were also tested [135] (Figure 3.7). 

The results confirmed the inability of Triton X-100 to extract both scaffolding proteins. In 

addition to the full-length proteins, the antibodies detected protein bands ~60 kDa in the 

supernatant. Those could be due to protein degradation or represented short splice variants 

of the proteins that were solubilized due to their low molecular weight [76, 77]. When any 

of zwittergent 3-14, CL91 or CL114 was used, no clear immunodetection was possible. 

CL91 and CL114 detergent solutions impaired the detection of full length Bassoon and 

Piccolo via Western blotting (Figure 3.7). However, interesting results were obtained when 

the detergents TDOC and DDM were used for solubilization of LP1 fraction (Figure 3.7). 
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Figure 3.7. Extraction of Piccolo and Bassoon. LP1 fraction isolated from freshly prepared synaptosomes 
was subjected to solubilization with the detergents (stated above each blot). Equal amounts of protein from 
the pellet (P) and supernatant (S) fractions, obtained by centrifugation at 100 000 g for 20 min in S140AT4 
rotor, was resolved by SDS-PAGE. Western blots with polyclonal antibodies against Piccolo and Bassoon 
(indicated below the WB membranes) were developed.  

 

Up to date, no studies reported the extraction neither of Piccolo nor of Bassoon 

from synaptosomes using bile acid or glycosidic detergents. TDOC quantitatively extracted 

Bassoon and almost fully solubilized Piccolo. In contrast, DDM solubilized Piccolo only 

partially whereas Bassoon remained in the pellet fraction. These results suggested that no 

correlation in the extractability of both proteins exists.  

Based on the results from the screen few conclusions were drawn. First, the probed 

plasma membrane, SV and CAZ-associated proteins were efficiently extracted by most of 

the tested detergents. These observations also applied to mitochondrial and soluble 

proteins. Second, proteins associated either with CAZ or PSD showed major differences in 

the extractability. While presynaptic proteins showed good correlative extraction, no such 

trend was observed for the PSD-associated proteins.  Importantly, these results were 

strongly dependent on the solubilization conditions, i.e. conditions under which the 

membrane loses its lamellar integrity due to detergent treatment [95]. Thus, one critical 

parameter that affects the extraction of membrane proteins and their complexes is the 

detergent:protein ratio used during solubilization. Another factor is the pelleting efficiency 

of the rotor used in the centrifugation step after solubilization. This step determines 

whether only detergent-insoluble membrane remaining resides in the pellet or also large 
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protein assemblies are removed from the suspension. Therefore, the importance of the two 

factors was extensively addressed in the following sections.  

 

3.1.2 Time- and detergent concentration-dependent solubilization 
 

Optimal detergent concentrations for solubilization must be determined 

experimentally for each membrane model. Hjelmeland and co-coworkers provided some 

guidelines for establishing solubilization protocols [106, 168], and underlined the need for 

an empirical determination of protein:detergent ratios. Furthermore, analyses emphasized 

that the effective detergent:lipid:protein mole ratio is relevant for solubilization [169, 170].  

Up to date, studies addressing extraction times and detergent concentrations 

reported results from the solubilization of supported lipid bilayers [171, 172]. These results 

are not necessarily applicable to a more complex system. Therefore, it was important to 

test the effect of these two variables – time and detergent concentration – on synaptic 

membranes. For this purpose, LP1 fraction isolated from freshly prepared synaptosomes 

was solubilized in different protein:detergent ratios with TDOC (Figure 3.8). The same 

protocol was followed for both, DDM and cholate, but not shown here. A centrifugation 

step post-solubilization was performed as mentioned earlier (at 100 000 g for 20 min, 

S140AT4 rotor), the proteins from pellet and supernatant were resolved by SDS-PAGE 

and immunoblotted for presynaptic and postsynaptic proteins. The solubilization pattern of 

the immunoblotted proteins resembled the previous results obtained with TDOC (Figure 

3.2 and Figure 3.5). Presynaptic CAZ-associated, SV as well as soluble proteins were well 

extracted after 5 min of incubation with detergent. This pattern did not change for up to 4 h 

of incubation time for neither of the probed proteins (Figure 3.8). Unchanged time- and 

concentration-dependent solubilization behavior showed also the postsynaptic proteins 

PSD95 and NMDAR. In summary, the presynaptic cytomatrix proteins were well 

extractable whereas no correlation in the extraction pattern was observed for the PSD 

proteins. Moreover, the extraction of the proteins was detectable already after short time 

and remained unchanged with an increase in the detergent concentration.  
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Figure 3.8. Time- and concentration-dependent solubilization of LP1 fraction. LP1 fraction isolated by osmotic lysis of freshly prepared synaptosomes was solubilized with 
TDOC in (A) 1:10, (B) 1:20 or (C) 1:30 ratio of protein to detergent. After the indicated time points, solubilization was terminated by centrifugation at 100 000 g for 20 min 
(S140AT4). Equal amounts of protein from the pellet (P) and supernatant (S) fractions were resolved by SDS-PAGE and probed with antibodies for the indicated proteins. 
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3.1.3 New centrifugation protocol for solubilization experiments  
 

The selection of centrifugation parameters for separation of solubilized membrane 

material from detergent-insoluble residues is determined empirically [95]. However, the 

systematic characterization of different centrifugation conditions’ effect on the protein 

content of extracted material remains to be investigated. A recent report indicated a 

possibly too strong pelleting efficiency of our clearance step in S140AT4 rotor (Sorvall) 

[135]. This was confirmed by preliminary trials to isolate protein complexes in an 

immunoaffinity approach combined with mass spectrometry (AP-MS). They revealed lack 

of some previously reported protein-protein interactions. In addition, trials to immobilize 

and immunostain extracted proteins (data not shown) failed in detecting some core AZ 

constituents (e.g. Bassoon and liprin-α3).   

It is well known that not the g force and centrifugation time determine the pelleting 

efficiency of a rotor, but its clearing factor kadj at the actual rotation speed [173].  Thus, an 

actual pelleting efficiency of kadj=53 was calculated for the S140AT4 rotor (Table 3.1). 

The clearing factor was used to estimate also the maximal sedimentation coefficient of the 

particles remaining in solution – Scoeff,max ≈160 S. This value was compared to recently 

published results [135]. It suggested removal of the proteins of interest and their interacting 

partners from the suspension in the preliminary affinity purifications. Therefore, a new 

centrifugation procedure was adopted. It consisted of a single centrifugation step at 100 

000 g for 20 min in a TLA100.3 rotor (Beckman). Calculations showed that the pelleting 

efficiency of the TLA100.3 rotor was thus set to kadj=75 and Scoeff,max ≈227 S (Table 3.1).  
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Table 3.1. Centrifugation conditions used in previously reported and following experiments. The 
clearing factor kadj  at the actual used rotation speed (rpmactual) was calculated for two rotors – S140AT4 and 
TLA100.3. The actual clearing factor was used to calculate the maximal sedimentation coefficient Scoeff,max, at 
which solubilized material remained in the supernatant.  

 

Centrifugation/Rotor 
parameters 

Rotor type 

S140AT4 

(Sorvall) 

TLA100.3 

(Beckman) 

Centrifugation time of 
clearance step (min) 20 20 

Maximum rotation speed  
of rotor (rpm) 140 000 100 000 

k factor at rpmmax 5 14 

Rotation speed in 
experiment (rpmactual) 

43 000 43 000 

g force at rpmactual 100 000 100 000 

kadj=k*(rpmmax/rpmactual)^2 53 75 

Scoeff,max (Sverdberg, S) 160 227 

 

 With the newly optimized centrifugation procedure, the majority of the extracted 

proteins remained in solution, enabling the characterization of their protein-protein 

interactions. In order to validate the less intense pelleting efficiency by the adopted 

protocol change and to confirm the presence of the extracted proteins in solution, Western 

blots were performed. The LP1 fraction was solubilized with TDOC, Triton X-100 and 

DDM. Solubilization with the harsh detergent zwittergent 3-14 was omitted due to its 

potential denaturation character. In addition, the extraction properties of a cheaper 

commercial alternative to TDOC – cholate, were tested comprehensively. Pellet (P) and 

supernatant (S) fractions were obtained according to the changed protocol (TLA100.3 rotor 

centrifugation) and their protein contents resolved by SDS-PAGE.  

 The list of immonoblotted proteins was extended in order to cover the whole range 

of proteins associated with the AZ: SV and PM SNAREs, trafficking, scaffolding and 

regulatory proteins as well as transporters and ion channels. Major PSD-associated proteins 

and receptors were also immunoprobed. The first solubilizations were performed with 

TDOC (Figure 3.9 and Figure 3.10).  
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Figure 3.9. Extraction of SV and plasma membrane proteins by TDOC-solubilization of LP1 fraction. 
Solubilization of LP1 fraction isolated from freshly prepared synaptosomes was performed at 1:10 
protein:detergent ratio. Suspension was centrifuged at 100 000 g for 20 min in a TLA100.3 rotor. 
Constituents from the pellet (P) and supernatant (S) fractions were resolved and immunoblotted for the 
indicated proteins.  

 The SNARE proteins syb 2, SNAP-25 and stx 1 were well extractable in TDOC. 

Single transmembrane domain (TMD)-containing protein syt-1 and four TMD-containing 

synaptophysin were solubilized by the detergent as well as the 12 TMD-containing protein 

SV2 and the VGLUT1 transporter. In addition, good extractability was observed also for 

ion channels (VGCC of N-type and potassium channel Kv3.1b) and cell adhesion 

molecules (Figure 3.9). Remarkably, the scaffolding protein Bassoon was quantitatively 

extracted as well as large portion of Piccolo (see Figure 3.10). Importantly, lowering the 

pelleting efficiency of the centrifugation step resulted in nearly complete extraction of the 

core AZ proteins: liprin α-3 isoform, Munc13-1, ERC and, RIM protein isoforms (Figure 

3.10). Moreover, soluble CAZ-associated proteins like Munc18, Mint1, MAGUK 

superfamily protein CASK and its interacting partner CASKIN1 as well as the adaptor 

protein MALS (Lin-7 or Velis) were extracted and remained in the supernatant In line with 

the results from the initial experiments (section 3.1.1), the proteins associated with  the AZ 

cytomatrix and plasma membrane were easier to extract than the PSD proteins. In contrast 

to the preliminary results obtained with the S140AT4 rotor (see Figure 3.2), the ionotropic 

glutamate NMDA receptor was well extracted with TDOC when the new centrifugation 

conditions were applied (Figure 3.10).  
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Figure 3.10. Extraction of active zone, CAZ-associated and postsynaptic proteins by TDOC from LP1 fraction. Representative active zone, CAZ-associated as well as 
postsynaptic membrane and scaffolding proteins were immunodetected by Western blotting in pellet (P) and supernatant (S) fractions after solubilization with TDOC and pre-
centrifugation step of 100 000 g for 20 min (TLA100.3 rotor).  
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When a structural analog of TDOC – cholate was used (Figure 3.11), the 

presynaptic cytomatrix-associated proteins remained well extractable. Only few 

differences in the solubilization pattern of the proteins were observed as compared to 

TDOC (Figure 3.10). The extraction profile of the SV and PM proteins showed minor 

changes compared to TDOC. Synaptophysin as well as syt-1 and VGLUT1 transporter 

were well, however less extractable in cholate (Figure 3.11). Same trend was observed for 

the VGCC of N-type and the PM SNAREs SNAP-25 and stx 1A (see Figure 3.10 and 

Figure 3.11). Nevertheless, other immunoprobed PM proteins like VGCC of P/Q-type, 

potassium channels Kv2.2 and Kv3.1 as well as the adhesion molecules (SynCAM 

isoforms, neuroligins and neurexins) were well extractable with cholate. Importantly, all 

immunodetected core AZ constituents, CAZ-associated and scaffolding proteins (e.g. 

Piccolo and Bassoon) remained in the supernatant after the centrifugation step with 

TLA100.3 rotor (see Figure 3.11). Furthermore, larger portions of Munc13 and ELKS 

proteins were detected by Western blotting in the detergent-soluble fraction (see Figure 3.2 

and Figure 3.11). However, the postsynaptic glutamate receptor NMDAR remained in the 

pellet also when the new centrifugation protocol was applied. In contrast, the ionotropic 

receptor GABAA was partially extracted by cholate as well as by TDOC. The profile of the 

other PSD-associated proteins remained unchanged. These results confirmed an 

independent solubilization profile for the PSD-associated and showed better extractability 

for the proteins associated with the presynaptic cytomatrix. 

Solubilization of LP1 fraction with DDM (Figure 3.12), followed by the newly 

adjusted centrifugation step, resulted in a similar  extraction profile of the presynaptic 

proteins as obtained with TDOC and cholate (Figure 3.10 and Figure 3.11). CAZ proteins, 

PM and SV SNAREs were well solubilized, as well as multispanners such as VGLUT1, 

SV2A/B and synaptophysin. Liprin-α3 protein was less extractable with DDM than with 

TDOC and cholate. DDM solubilization of LP1 fraction resulted in retrieval of ERC1b/2 in 

the supernatant when the novel centrifugation step was applied (Figure 3.12). The protein 

was exclusively found in the pellet when the suspension was centrifuged in a S140AT4 

rotor. In addition, the extraction of RIM-binding protein 1 (RIM-BP1) and RIM1/2 

differed. Only the small splice variants of RIM (~70 kDa) were extracted, leaving the full-

length protein in the pellet. At the same time, RIM-BP1 was well retained in the detergent-

soluble fraction. Homer1, gephyrin and NMDAR showed stronger immunodetection signal 

in the supernatant compared to the results obtained with the S140AT4 centrifugation 

protocol. 
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Figure 3.11. Protein extraction profile after LP1 solubilization with cholate. LP1 fraction isolated from freshly prepared synaptosomes was solubilized in a 1:10 
protein:detergent ratio with cholate and suspension was subjected to centrifugation with TLA100.3 rotor. The centrifugation step lasted 20 min at 100 000 g. Same 
amount of protein from pellet (P) and supernatant (S) was resolved by SDS-PAGE and the indicated proteins were immunodetected by Western blots.  
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Figure 3.12. Protein extraction profile after LP1 solubilization with DDM. LP1 fraction isolated from freshly prepared synaptosomes was solubilized in a 1:10 
protein:detergent ratio with DDM. The suspension was subjected to centrifugation with TLA100.3 rotor for 20 min at 100 000 g. Same amount of protein from pellet (P) 
and supernatant (S) was resolved by SDS-PAGE and protein indicated were immunodetected by Western blots. 
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Additionally, a solubilization of LP1 fraction was performed with Triton X-100 (Figure 

3.13 and Figure 3.14). Detection of the proteins by Western blotting was more difficult 

compared with the cholate, TDOC and DDM. The antibodies often detected smeared 

protein bands or failed in detecting the proteins. However, similar to TDOC, cholate and 

DDM, Triton X-100 showed good extraction properties towards SV and PM proteins. 

Triton X-100 successfully extracted the potassium channels Kv2.2 and Kv3.1b, but also 

SNAREs like stx 1A, SNAP.25 and syb 2. Synaptophysin was quantitatively extracted, as 

well as Rab3a, although they showed weak Western blot signals. In contrast to the 

potassium channels, VGCC of N-type was not extracted well and P/Q-type VGCC could 

not be detected by Western blot.  

 

 

Figure 3.13. Extraction of SV and plasma membrane proteins from LP1 fraction with Triton X-100. 
LP1 fraction was solubilized in 1:10 protein:detergent ratio with Triton X-100. Same amount of protein from 
pellet (P) and supernatant (S) was resolved by SDS-PAGE and the indicated proteins were immunodetected 
(Western blots).  

 

Despite milder centrifugation conditions in the novel protocol, major AZ and 

presynaptic soluble proteins as well as cell adhesion molecules remained insoluble in 

Triton X-100 and were exclusively detected in the pellet (see Figure 3.14) 
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Figure 3.14. Extraction of active zone, postsynaptic and plasma membrane (PM) proteins from LP1 
fraction with Triton X-100. LP1 fraction was solubilized in 1:10 protein:detergent ratio with Triton X-100. 
Same amount of protein from pellet (P) and supernatant (S) was resolved by SDS-PAGE and the indicated 
proteins were immunodetected (Western blots).  

 

 The AZ proteins Munc13, liprin α-3, RIMs and ELKS were poorly extracted by Tx-

100. Only small splice variants of RIMs were detectable in the supernatant. Although 

CASK was well extracted, CASKIN1 was detected in the pellet. In addition, the soluble 

Munc-18 protein remained partially associated with the protein pellet post-solubilization 

and post-centrifugation. An advantage of Triton X-100 was the unextractability of 

postsynaptic proteins, which were mainly detected in the pellet even under the mild 

centrifugation conditions. NMDAR and neurexins failed in the immunodetection. 

However, neuroligins and neurexins were well solubilized by the other detergents, 

suggesting that neurexins might be extracted with Tx-100.  

 The detergents TDOC, cholate, DDM and Triton X-100 were screened for their 

ability to extract presynaptic CAZ- or PSD-associated proteins using a novel optimized 

centrifugation protocol. Among the tested detergents, Triton X-100 showed poor potential 

to extract core AZ constituents as also emphasized in earlier reports by others [70, 163]. 

However, an advantage of Triton X-100 is its disability to solubilize proteins associated 

with the postsynaptic density proteins. In addition, the mild centrifugation step after 

membrane solubilization did not improve the protein extraction. In contrast, TDOC and 

cholate extracted well all immunoprobed presynaptic CAZ-associated membrane, soluble 

and scaffolding proteins when applied in combination with the novel centrifugation step. 
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TDOC almost quantitatively extracted all probed presynaptic proteins, whereas cholate 

was less efficient but extracted well all presynaptic proteins of interest. This did not apply 

to the PSD proteins when both detergents were used. In comparison with the bile acid 

detergents, DDM extracted well SV and PM proteins but showed limited solubilization 

potential towards major AZ proteins like Munc13, liprin, ERC1b/2 and RIMs. It 

solubilized poorly the NMDAR in contrast to TDOC. Thus, the novel solubilization and 

centrifugation procedure enabled extraction of the postsynaptic receptor NMDA, whose 

interactions are poorly studied due to its difficult extractability by detergents [164, 165]. 

Importantly, cholate and TDOC, as well as DDM to some extent, showed great potential 

for extaction of presynaptic membrane and scaffolding proteins using the novel protocol.  

 

3.2  Fractionation of LP1 extracts by sucrose density gradient centrifugation 

3.2.1  LP1 derived from non-treated synaptosomes 
 

Up to now, experimental variables like protein:detergent ratio, solubilization time 

and starting material were evaluated. In addition, the extraction behavior of pre- and 

postsynaptic proteins in distinct detergents was analyzed. The performed experiments 

helped selecting few detergents (cholate, TDOC and DDM) with potential for isolation of 

presynaptic cytomatrix-associated proteins and their interacting partners.  Density gradient 

centrifugation was chosen as technique to separate the protein components of detergent 

extracts from LP1 fraction. The use of gradient centrifugation in the presence of detergent 

was reported earlier for the characterization of the 20 S particle, composed of  syb 2, stx 

1A, syt-1 and SNAP-25 [174, 175] and the 7S particle, consisting of syb2, stx 1A, SNAP-

25 assembled with NSF and αSNAP [176]. Moreover, the existence of distinct multimeric 

complexes of SV membrane proteins was proved using combination of detergents and 

density gradients [159].  

For this reason, LP1 fraction was isolated from freshly prepared synaptosomes 

[138, 146] and solubilized at protein:detergent ratio 1:10 for 15 min at 4 °C with TDOC. 

TDOC was chosen arbitrary over Triton X-100, cholate or DDM. Pre-centrifugation of the 

solubilized membrane fraction was performed at 33 000 g for 15 min and the supernatant 

was loaded on a 5-30% sucrose gradient. Collected fractions were immunoprobed for AZ 

(Munc13 and ERC), PSD-associated (PSD95), soluble (Munc-18), PM (SNAP-25 and stx 
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1A), and SV (syb 2, syt-1) proteins (Figure 3.15).  The immunoblotted proteins were 

poorly separated and enriched in top fractions 17-23 of the gradient (Figure 3.15).   

.   

 

Figure 3.15. TDOC solubilization of LP1 fraction and linear gradient centrifugation. LP1 fraction was 
isolated from freshly prepared synaptosomes and solubilized with TDOC in a 1:10 protein:detergent ratio. 
After mild centrifugation step at 33 000 g for 15 min (S140AT4 rotor), proteins from the supernatant were 
separated on a 5-30% sucrose gradient in a 14 h centrifugation at 70 000 g (SW41 rotor). Proteins (indicated 
on the left of the blots) were probed by Western blot.  

 

In order to explore the separation potential of the technique and to test whether the 

separation profile could be improved by the use of another gradient medium or starting 

material, the experiment was repeated with two changed parameters. First, freshly prepared 

synaptosomes were used for the solubilization instead of LP1 fraction. Second, four 

different gradients were tested: 5-20% sucrose, 5-15% Ficoll, 5-30% and 10-20% glycerol 

(Figure 3.16).  
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Figure 3.16. Gradient media screen for linear density centrifugation after solubilization of freshly 
prepared synaptosomes with TDOC. Separation was conducted by a centrifugation on a continuous density 
gradient of (A) 5-20% sucrose, (B) 5-15% Ficoll, (C) 5-30% glycerol or (D) 10-20% glycerol for 14 h at 70 
000 g in a SW41 rotor. Proteins indicated on the left of the blots were detected by Western blotting. 
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Since none of the newly tested conditions showed improved separation of the extracted 

proteins, we decided to keep unchanged the initially tested sucrose gradient medium and 

the concentration range of 5-30%. As further optimization step for better resolution, we 

increased the applied g force to the the max value for the SW41 rotor – 271 000 g. In 

addition, the centrifugation duration was extended to 18 h instead of 14 h. Centrifugation 

times longer than 18 h led to protein degradation and were omitted. The list of 

immunoprobed proteins was extended as well. The detected proteins were associated with 

the presynaptic AZ, SVs, postsynaptic density or were embedded in the plasma membrane. 

Longer centrifugation step improved the resolution of separation. Small and soluble 

proteins like syb 2 and MALS, respectively, were enriched in the upper gradient fractions. 

This might be due to their participation of smaller protein complexes. Stx 1A, SNAP-25, 

syt-1 and Munc-18 migrated together in fractions 17-19, whereas Munc13 and ERC1b/2 

were peak-separated in different fractions.  Generally, the presynaptic membrane and CAZ 

proteins showed broader distribution among the fractions and were detected in the lower 

density fractions. In contrast, PSD-associated proteins like NMDA receptor and gephyrin 

migrated to higher density portions of the gradient. This might indicate their association in 

detergent-insoluble assemblies, since they were either partially or incompletely extracted 

by TDOC (see Figure 3.10).  

The results with 5-30% sucrose gradient and 18 h centrifugation step at 271 000 g showed 

good separation of the extracted proteins. However, the question remained unanswered 

whether the co-migrating proteins were associated in protein complexes. In addition, the 

presence of postsynaptic proteins in the sample increased the complexity in the fractions 

complicating their analysis. For this reason, an additional step of limited proteolysis of 

synaptosomes prior to osmotic lysis was introduced [146]. This procedure is described in 

the following section and aimed on reducing the number of protein components in the 

individual fractions. 
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Figure 3.17. TDOC solubilization of LP1 fraction and extract separation by 18 h centrifugation step at 
271 000 g. LP1 fraction was isolated from fresh “non-shaved” synaptosomes. Solubilization and clearance 
were conducted as described above. Extracted proteins were separated on a 5-30% sucrose gradient for 18 h 
at 271 000 g (SW41 rotor). Proteins (indicated on the left of the blots) were immunoprobed.  
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3.2.2 LP1 derived from synaptosomes subjected to limited proteolysis prior to lysis 
 

The solubilization of synaptic membrane with TDOC and the centrifugation step at 

271 000 g for 18 h (SW41 rotor) showed good separation of proteins and co-migration of 

some proteins reported earlier to form complexes together, e.g. SNAP-25, syb 2 and stx 1A 

[174] or stx 1A and syt-1 [160]. It was aimed to reduce the content complexity in the 

fractions and thus to reduce the protein background for immunoisolation experiments from 

individual gradient fractions (not shown). This was achieved by subjecting of 

synaptosomes to limited proteolysis with trypsin as described recently [146]. The 

proteolytic step removed some of the PSD-associated proteins except of PSD95, which 

was in agreement with previous reports [146]. Interestingly, the removal of postsynaptic 

and cell adhesion molecules did not alter the distribution and co-migration profile of the 

probed proteins regardless of the used detergent (Figure 3.18). SNAP-25 and stx 1A co-

migrated only partially with syb 2 as observed in the previous experiment (Figure 3.17). 

Similar to the previous observation, syb 2 showed a concentrated presence in the low-

density fractions, probably as a single protein or a component of smaller protein 

complexes. Same distribution profile was observed for MALS (Velis 1/2/3). Munc-18 was 

enriched in the same fractions as stx1A suggesting possible association in a complex. 

Moreover, syt-1 showed peak in fractions 17-19, same as stx 1A disregarding the detergent 

used.  Actin was spread over the whole range of gradient, probably as a cytomatrix-

associated and supporting component in different complex associations.  

The solubilization of LP1 fraction derived from proteolytically untreated or treated 

synaptosomes in combination with density centrifugation allowed drawing some 

conclusions. First, the limited trypsinization of synaptosomes successfully removed PSD-

associated proteins, which were not in the focus of our study. Second, good reproducibility 

of the extract separation was observed regardless of the used detergent. Third, the 

separation profile of the probed proteins did not differ disregarding detergent and presence 

of postsynaptic proteins during membrane solubilization. This might indicate either similar 

mechanism of protein extraction and membrane solubilization or possibly preservation of 

protein-protein interactions regardless of the used detergent. 
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Figure 3.18. LP1 fraction isolated from proteolytically treated synaptosomes was solubilized with (A) TDOC, (B) Tx-100 and (C) Zwittergent 3-14. LP1 fraction (two 
mg) isolated from partially trypsinized synaptosomes was solubilized with three different detergents and pre-centrifuged at 33 000 g for 15 min (S140AT4 rotor). Supernatants 
were loaded on 5-30% linear sucrose gradients containing 1% of the solubilizing detergent and the extracted proteins were separated in a 18 h centrifugation step at 271 000 g 
(SW41 rotor). Gradient fractions were immunoprobed for the indicated proteins.  
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3.3 Chromatographic fractionation of synaptic protein complexes  
 

The sucrose gradient separation of LP1 extracts showed low resolution. To improve 

protein separation of the solubilized membrane-enriched fraction, extracted material was 

subjected to size exclusion (gel filtration, GF) chromatography. This biochemical 

technique allows separation of particles and protein complexes over a broad molecular-

weight range. Although it is frequently used for isolation of synaptic vesicles from rat and 

mouse brains [139, 177], its application for separation of extracted synaptic protein 

complexes has been barely explored [159]. As the molecular weight of the solubilized 

synaptic complexes was unknown, superose 6, a cross-linked agarose-based matrix, 

provided the optimal separation from 5 kDa to 5 MDa. The LP1 fraction (ten to twenty 

mg) was solubilized in a 1:10 protein:detergent ratio, pre-centrifuged at 100 000 g for 20 

min in a TLA100.3 rotor and the supernatant was applied on a pre-equilibrated Superose 6 

10/300 GL column (1% detergent in PBS). A representative chromatogram is shown in 

Figure 3.19. The large peak at the beginning of the chromatogram indicated protein-

containing particles eluted in or close to the void volume of the column (1 CV= 24 mL). 

The eluate was collected and the resolution of separation was evaluated by 

immunodetection of the proteins in the SEC fractions (Figure 3.20). The proteins probed 

by Western blotting belonged to five different groups: synaptic vesicle, active zone and 

CAZ-associated, postsynaptic membrane and scaffolding, plasma membrane and 

cytoskeleton proteins. In addition, the distribution profile of Bassoon and Piccolo was 

analyzed (Figure 3.21). 
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Figure 3.19. Chromatographic separation of cholate-solubilized LP1 fraction. LP1 fraction was 
solubilized with cholate and pre-centrifuged at 100 000 g for 20 min in a TLA100.3 rotor. Supernatant was 
loaded on a pre-equilibrated (1% cholate/PBS) Superpose 6 10/300 GL gel filtration column and extracted 
proteins were separated within 1 CV.  Protein elution was monitored at 280 nm and the concentration is 
represented in arbitrary units (mAU, y axis). First 60 fractions were collected (x axis) and analyzed by 
Western blotting. 

 

 The separation of extracted proteins by size exclusion chromatography (SEC) 

showed better resolution than by density gradient centrifugation (Figure 3.20). SEC 

allowed following the co-elution profile of proteins reported earlier to interact. For 

example synaptophysin, syt-1 and syb 2 co-eluted from the column, suggesting 

confirmation of results from earlier studies with detergents by Bennett et al. on the 

solubilization of vesicle membrane protein complexes using CHAPS [159]. Additionally, 

the plasma membrane Q-SNAREs SNAP-25 and stx 1A, which form SNARE complex 

with syb 2 [174, 176], showed an elution peak in the same fractions (15-23) (see Figure 

3.20).  
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Figure 3.20. Protein separation profile after cholate solubilization of LP1 fraction. Suspension after solubilization of LP1 fraction with cholate was pre-centrifuged for 20 
min at 100 000 g in a TLA100.3 rotor. The supernatant was loaded on a Superose 6 10/300 GL size exclusion column. Fractions were collected (indicated above the blots) and 
probed by Western blotting for proteins from five different classes – SV, AZ and CAZ-associated, PSD and PSD-associated scaffolding, PM proteins and cytoskeleton proteins. 
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The SV protein synaptophysin showed moderate distribution among the 

chromatographic fractions. Among others, it co-eluted with the R-SNARE syb 2. Both 

proteins were reported to interact, therefore it could be speculated that at least partially 

they were assembled in an extracted protein complex [178, 179]. Furthermore, we found 

that synaptophysin’s elution overlapped with that of syt-1, SV2A/B and stx 1A (Figure 

3.20). Previous work by Bennett et al. reported the co-purification of these proteins in anti-

syt-1 immunoprecipitations performed on solubilized crude SV fraction, supporting the 

idea of a preserved cholate-extracted protein complex [160]. Interestingly, the larger 

portion of syt-1 eluted close to the void volume. On the one hand, this indicated protein’s 

participation in large protein-containing particles, which were not resolved by SEC. On the 

other hand, it might be suggestive of an interaction with a ternary SNARE complex, the 

components of which also peak eluted in the same fractions 13-21 (see Figure 3.20) [174, 

180]. In comparison, the small GTPase Rab3a was later peak eluted (fractions 25-29) than 

the SNARE proteins (syb 2, SNAP-25 and stx 1A) and synaptophysin. This result 

resembled also earlier observations [159]. Nonetheless, Rab3a’s elution overlapped 

partially with that of syt-1. This was an interesting result since both proteins were recently 

shown to interact directly [181]. Furthermore, the immunodetection signals of Rab3a and 

RIM protein overlapped to some extent, which suggested a possible binding of RIM to 

GTP-bound Rab3 via RIM’s N-terminal α-helices [21, 36]. Interestingly, in SEC fractions 

19-23, which were also positive for Rab3a, RIM’s full-length isoforms co-eluted with 

Munc13-1 (Figure 3.20). This was an intriguing observation because the proteins can form 

a tripartite complex via RIM’s ZF domain binding to the C2A domain of Munc13-1 [35]. 

The major AZ proteins ELKS and liprin as well as N-type VGCC were eluted in a narrow 

range of fractions (15-21) close to the void volume of the column indicating a possible 

association in large protein complexes.  The N-terminal coiled-coil domain of α-liprins was 

shown to interact directly with ELKS family proteins [57]. The overlap between ELKS and 

RIM proteins in fractions 19-21 suggested a possible co-assembly at the central PDZ 

domain of RIM (Figure 3.20). Additionally, both proteins were reported to recruit 

Munc13-1 and Bassoon [37]. A possible confirmation for this complex formation delivered 

the elution of full length Bassoon and its smaller splice variants in the same fractions 

(Figure 3.21). It is possible that only a portion of the RIM protein is associated in a 

complex via direct binding to Munc13-1 and indirect binding to Basssoon via ELKS. In 

addition, RIM’s PDZ domain was reported to interact with the N-type VGCC [11], which 

showed peak elution in the same fractions as judged by the immunoblot signals.  
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Furthermore, the separation and co-elution profile of the mentioned proteins affirmed 

possible binding of the RIM C2B domain to liprin α-3 and syt-1 [28] and protein’s 

potential interference with vesicle docking and fusion by interaction with SNAP-25 and 

syt-1 [39], as all these proteins were identified in same SEC fractions. Additionally, 

Munc13-1 was reported to be involved in priming through an interaction with stx 1A [45]. 

An direct interaction between both proteins was confirmed in co-immunoprecipitation 

experiments after synaptosomes solubilization with cholate [49]. Our results showed an 

enrichment of stx 1A in the fractions 15-23 together with Munc13-1, supporting this 

hypothesis. The vesicular glutamate transporter 1 (VGLUT1) [133] was broadly distributed 

over the elution fractions. It is a multispanning 12 TMD-containing protein with only few 

known interaction partners (e.g. endophilins 1 and 3; Galpha (o2) [182-185]), however 

none of them was probed here. While the mammalian homolog of C. elegans unc-18 

protein (Munc-18) was detected in the most of the SEC fractions, its interaction partner 

Mint1 was enriched only in fractions 25-29 [186]. The co-elution of Munc18 overlapped to 

some extent with that of stx1A and Mint1. These three proteins were reported to interact 

within a multimeric complex and Munc-18 was identified as stx 1A binding protein [187, 

188]. The CAZ-associated proteins CASK and CASKIN1 were eluted in fractions 15-25 

together with the core AZ constituent liprin α-3. At the same time, Velis (MALS) isoforms 

were eluted later, similar to Rab3a, and SynCAM1/2/3 eluted in the fractions 25-31 (Figure 

3.20). The protein distribution might indicate specific protein associations. This hypothesis 

was supported by the findings of Butz et al. who described an isolation of tripartite 

complex composed of Velis, CASK and Mint1 [81]. However, only a small portion of 

Velis, mainly the Veli 1 isoform, co-eluted with CASK and Mint1, suggesting only partial 

participation of the protein in the protein complex.  In addition, under consideration of the 

elution profile of Munc18, it is likely that it is also associated to the heterotrimeric Veli-

CASK-Mint1 complex through the Munc18-interacting domain of Mint1. In the context of 

the tripartite complex, CASKIN1 was shown to compete with Mint1 for binding to CASK 

including the formation of an alternative Veli-CASK-CASKIN1 trimeric complex [80]. 

However, the elution pattern of Velis let its the participation in alternative protein 

complexes appear questionable in our study. It seemed that the protein was dissociated 

from the complexes, possibly due to the use of cholate instead of Triton X-100 as in the 

reported studies [80, 81]. Another protein complex consisting of liprins, CASK and Velis 

was identified from immunoprecipitations on Triton X-100 solubilized material [58]. 

Nonetheless, the CASK interaction with liprin might be preserved to some extent also in 
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cholate since both proteins were detected in the same fractions 27-31 (Figure 3.20). Also, 

co-elution of CASK and SynCAM in fractions 21-29 could be affiliated to their association 

with each other [94]. In the same fractions, neuroligins and PSD95 protein from 

postsynaptic structures were eluted together with NMDA receptor. This observation was in 

line with PSD95 binding to NMDA receptor subunits [167]. The elution pattern of CASK, 

PSD95 and the synaptic cleft proteins neurexins and neuroligins was also consistent with 

previous reports on complex between these proteins [189]. The GF fractions were probed 

also for cytoskeleton proteins, such as tubulin and actin (Figure 3.20). Both are present in 

the pre- and the postsynapse, which explained their broad distribution profile. The GABAA 

receptor and the PSD-associated scaffolding protein Homer1 were eluted in the first 

fractions of the chromatogram close to the void volume (Figure 3.20). Their interaction 

with each other and other postsynaptic protein were reported earlier (for review and 

references [190]).  

The two large AZ scaffolding proteins Piccolo and Bassoon and their splice 

variants were eluted according to their size and protein interactions as shown in Figure 

3.21. Both proteins co-eluted with most of the probed proteins. Some reported interactions 

with the core AZ proteins ELKS, RIM and Munc13 as well as with the presynaptic 

cytoskeleton were possibly preserved during the isolation and separation based on their co-

distribution pattern [64, 78, 79, 92]. Although both proteins are associated in 

supramolecular scaffolding complexes in synapses (for review [16, 191]), the interactome 

of Piccolo and Bassoon is barely studied due to the large size and poor extraction [70, 71]. 

Our novel protocol enables an extensive characterization of their interactions with 

presynaptic cytomatrix-associated proteins.  

 
 
Figure 3.21. Chromatographic separation of (A) Piccolo and (B) Bassoon after LP1 solubilization with 
cholate. After solubilization with cholate, pre-centrifuged LP1 fraction was loaded on superpose 6 10/300 GL 
column and collected fractions were analyzed for the distribution of Piccolo and Bassoon.  
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Importantly, protein complexes in different constellations and component 

stoichiometries were possibly formed and partially separated by SEC, representing distinct 

temporal and spatial steps in the presynaptic exocytosis process. Unfortunately, the 

identification of individual protein associations was not possible at this point due to limited 

resolution of the applied technique. 

In addition to cholate, protein separation by size exclusion chromatography was 

performed with TDOC and DDM. The protein elution profiles were similar to the ones 

obtained when cholate (see Appendices 1-4). A major difference between the three 

detergents (cholate, TDOC and DDM) was the size of the elution peak close to the void 

volume of the chromatogram (see also Figure 3.22 and Figure 3.23). Apart from the peak 

size, a few additional differences were observed. First, when using TDOC (see Appendix 1), 

CASK and liprin α-3 did not elute in the same fractions unlike with cholate- and DDM 

(Figure 3.20 and Appendix 2), suggesting  disruption of possible protein-protein interactions 

[59]. Second, in comparison to cholate, proteins like Munc-18, synaptophysin and Rab3a, 

but also PSD-associated Homer1 and were better solubilized when TDOC and DDM were 

used. The elution profile of synaptophysin, Munc-18 and GABAA differed when DDM-

extraction was performed. Third, despite the bigger size of DDM micelles (~ 50 kDa) 

compared to cholate (~ 1.3 kDa) or TDOC (~ 2.1 kDa) (see Table 1.2), DDM-solubilized 

protein complexes appeared smaller. DDM has a smaller CMC value (0.15 mM) than 

cholate (15 mM) and TDOC (4 mM) and for the mobile phase in the SEC experiments, 1% 

(w/v) detergent in PBS was used. Thus, the difference between used and CMC concentration 

of the detergent was bigger for DDM than for cholate and TDOC. It is known that the 

formation of smaller micelles is favored when the used detergent concentration is much 

higher than the CMC of the detergent (for review [99, 172, 192]). And finally yet 

importantly, the chromatographic resolution was better when cholate was used. Cholate had 

the smallest detergent micelles among the three detergents and better separation is achieved 

when the difference between protein-containing and non-protein-containing micelles is 

bigger [96, 100].  
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Figure 3.22. Chromatographic separation of TDOC-solubilized LP1 fraction. LP1 fraction was isolated 
from freshly prepared synaptosomes and proteins were extracted with taurodeoxycholate in 1:10 
protein:detergent ratio. Pre-centrifuged extract (100 000 g for 20 min in TLA100.3 rotor) was loaded on 
Superose 6 10/300 GL column and proteins were eluted with 1% TDOC/PBS.  
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Figure 3.23 Chromatographic separation of DDM-solubilized LP1 fraction. LP1 fraction was isolated 
from freshly prepared synaptosomes and solubilized with DDM in 1:10 protein:detergent ratio. Pre-centrifuged 
extract (100 000 g for 20 min in TLA100.3 rotor) was loaded on Superose 6 10/300 GL column and proteins 
were eluted with 1% DDM/PBS.  

 

In summary, the established solubilization protocol in combination with SEC 

represents a good tool for separation of extracted membrane protein complexes composed of 

presynaptic CAZ-associated proteins. The extract separation by SEC was better than by 

density gradient centrifugation. The technique, combined with immunodetection of proteins 

of interest, allows monitoring of possible protein-protein associations. However, it should be 

kept in mind, that co-elution of proteins in same fractions does not necessary indicated their 

assembly in protein complexes. It could reflect co-separation of distinct complexes of 

similar size. Trials to isolate complexes from individual fractions failed due to low protein 

amount accompanied by additional loss due to binding of the proteins to the walls of the 

Eppendorf tubes, which is well known problem in IP experiments.  
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3.4 Immunoprecipitation of presynaptic membrane proteins under optimized 
extraction and centrifugation conditions 

 

The performed detergent screen helped us to assess the extraction properties of synaptic 

proteins by different detergents. Cholate, TDOC and DDM were able to solubilize the synaptic 

membranes and extract a broad range of integral proteins (see section 3.1). SEC-based separation 

of the extracted proteins and a subsequent characterization of their elution pattern by 

immunoblotting suggested preservation at least of a portion of the reported protein interactions. 

One of our goals was development of solubilization protocol with focus on presynaptic CAZ-

associated proteins.  Second, we wanted to characterize presynaptic membrane protein 

complexes isolated by immunoprecipitation following the optimized extraction procedure. For 

this reason, a screen of selected antibodies for immune-enrichment experiments in the presence 

of cholate, TDOC or DDM was performed. The results of the screen are summarized in Table 

3.2. The LP1 fraction was solubilized with any of the three detergents, centrifuged at 100 000 g 

for 20 min (TLA100.3 rotor) and subjected to immunoprecipitation (IP) with the respective 

antibody. Magnetic Protein A or Protein G-coated Dynabeads were used as immunoisolation 

matrix. They were chosen instead of Sepharose beads due to less unspecific binding of proteins 

and easier handling. For the washing steps, the magnetic beads were “soft precipitated” by 

application of external magnetic field and not by centrifugation. This should prevent beads 

aggregation as well as loss of the when the supernatant is removed during the washing steps.  

Most of the tested antibodies were able to bind and isolate their targets in the presence of 

detergent (see Table 3.2). Positive results in all three detergent conditions were obtained e.g. 

with anti-stx 1A monoclonal antibody, whereas anti-SynCAM1/2/3 polyclonal antibody failed in 

the immunoisolation trials (Figure 3.24).  
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Table 3.2. List of immunoprecipitated proteins after LP1 solubilization with cholate, DDM or TDOC. 
Successful IPs were marked with “+”, whereas failed immunoprecipitations with “-“ . N.A. indicates non-tested 
combination of antibody in the presence of certain detergent. 

Antibody 
Source and 

catalog # 

Detergent 

Cholate Dodecyl-β-D-maltoside Taurodeoxycholate 

Bassoon 141 021 (SySy) + + + 

Piccolo 142 111 (SySy) - N.A. N.A. 

Piccolo 142 104 (SySy) N.A. - + 

Piccolo 142 113 (SySy) N.A. N.A. - 

CASKIN1 185 003 (SySy) + + + 

CASK 150 002 (SySy) - N.A. N.A. 

CASK 

75-000 

(Cl  K56A/50, 
Neuromab) 

N.A. + + 

Munc-18 116 011 (SySy) + + + 

Liprin-alpha3 169 002 (SySy) - N.A. - 

ERC1b/2 143 003 (SySy) + N.A. + 

RIM1/2 140 203 (SySy) + + + 

RIM2 140 303 (SySy) + N.A. N.A. 

Mint1 144 103 (SySy) + - - 

Syt-1 105 011 (SySy) + + - 

Stx 1A 110 111 (SySy) + + + 

SynCAM 
Ab3910 

(Abcam Ltd.) 
- N.A. N.A. 

Velis1/2/3 184 003 (SySy) + + + 

Munc13-1 126 103 (SySy) + + + 

Munc13-1 126 102 (SySy) + N.A. N.A. 
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Figure 3.24. Affinity enrichment of (A) stx 1A and (B) SynCAM1/2/3 from cholate-solubilized LP1 fraction. 
Antibody-saturated magnetic Protein A Dynabeads were incubated with pre-centrifuged LP1 extract for 4 h at 4 °C. 
After three hours of incubation, an aliquot was taken to check for target degradation. Samples were resolved by 
SDS-PAGE. A heavy chain-specific HRP-conjugated secondary antibody was used for detection of stx 1A (36 kDa). 
A light chain-specific HRP-conjugated secondary antibody was used for detection of the SynCAM isoforms (~40 
kDa, 53 kDa and 75 kDa). 

 

 Based on the initial IP screen, stx 1A was selected as target for further immunoisolation 

experiments. As a core component of the minimal exocytotic machinery and transmembrane 

domain-containing protein, stx 1A represented a suitable candidate for our study.  

3.4.1 Immunoprecipitation of stx 1A after cholate solubilization of LP1 fraction 
 

The immunoisolation experiments with stx 1A were performed with cholate as detergent. 

It showed overall milder solubilization properties compared to TDOC, but it was still capable of 

extracting the two scaffolding proteins Piccolo and Bassoon (see Figure 3.11).  

In order to find proper conditions for the immunoprecipitation, three different 

monoclonal antibodies against stx 1 were tested. In addition, two different washing steps after 

immunoprecipitation were tested. The aim was to find experimental conditions, under which the 
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target antigen and its protein-protein interactions were most efficiently preserved and 

immunoprecipitated, while keeping the background binding of contaminating proteins low 

(evaluated by mass spectrometry analysis). At first, we tested HPC-1 anti-stx 1 antibody (Ab) 

(Figure 3.25).  

 

 

Figure 3.25. Stx 1 immunoprecipitation from cholate-solubilized LP1 fraction usingHPC-1 antibody. Pre-
centrifuged suspension after LP1 solubilization was rotated for 2 h with Protein A- or Protein G-coated Dynabeads, 
which were pre-incubated with an excess of HPC-1 or mouse IgG (control) antibody. After 2 h, beads were washed 
either with low salt (1% cholate/127 mM NaCl-containing PBS) or high salt (1% cholate/400 mM NaCl-containing 
PBS) buffer. Input, supernatant after IP and beads were boiled in SDS sample buffer and their protein content was 
separated by SDS-PAGE. For immunodetection, mAb Cl 78.3 (1:1000) was used. 

  

Additionally, low salt (127 mM) and high salt (400 mM) washing buffers were compared, 

as high salt concentration stabilizes hydrophobic protein interactions and reduces unspecific 

ionic and polar binding. HPC-1 antibody could bind only to Protein G-coated Dynabeads. 

However, the isolation efficiency was poor, especially under the high salt condition (see Figure 

3.25). When Protein A Dynabeads were used, the control (mouse) IgGs bound stronger to the 

beads than the HPC-1 Ab, as judged by the IB signals of the light (LC, 25 kDa) and heavy chain 

(HC, 55 kDa) of the antibodies.  
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 Better results were obtained when anti-stx 1A mAb (Cl 78.3) was used (see Appendix  5). 

In contrast to the HPC-1 Ab, Cl 78.3 Ab bound better to Protein A-coated Dynabeads. The high 

salt condition seemed to stabilize the interaction of the anti-stx 1 Ab and the mock IgGs with the 

magnetic beads. Due to the “stickiness” of transmembrane proteins, a weak signal for stx 1A (36 

kDa) was immunodetected also in the negative control. Importantly, the IP matrix composed of 

Protein A-coated Dynabeads and Cl 78.3 Ab was able to immunoprecipitate stx 1A with similar 

efficiency under low and high salt conditions. 

 Strong affinity enrichment of stx 1 was obtained also with the anti-Stx 1 Cl 78.2 Ab. It is 

an IgG1 isotype antibody (compared to IgG2a in the case of Cl 78.3) and it could bind well to 

both kinds of beads: Protein A- and Protein G-coated Dynabeads. Under both washing  

conditions, the use of Protein G-coated Dynabeads with Cl 78.2 anti-stx 1 Ab showed stronger 

immunodetection of the antigen (Figure 3.26). 

 

 

Figure 3.26. Stx 1 immunoprecipitation from cholate-solubilized LP1 fraction with Cl 78.2 antibody. Pre-
centrifuged extract of LP1 fraction was rotated for 2 h with Protein A- or Protein G-coated Dynabeads, which were 
pre-incubated with an excess of Cl 78.2 Ab or mouse IgG (control) antibody. Beads were washed with either low 
salt or high salt washing buffer. Input, supernatant after IP and beads were boiled in SDS sample buffer and their 
protein content was separated by SDS-PAGE. For immunodetection mAb Cl 78.3 (1:1000) was used. 
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 The results from the immunoprecipitation experiments showed that both, Cl 78.3 and Cl 

78.2, anti-stx 1 antibodies were suitable the immunoprecipitation of the protein. However, mass 

spectrometry analysis of the IP and mock samples showed high abundance of mitochondrial and 

ribosomal proteins. Thus, both antibodies were covalently coupled to non-porous Eupergit beads. 

Their application in immunoisolation experiments and low affinity for unspecific binding were 

reported earlier [144, 146]. However, the immunoprecipitation after direct coupling of Cl 78.3 

Ab to Eupergit beads failed. This was probably due to destroying of the paratope, i.e. the 

epitope-binding region of the antibody. Therefore, bridging polyclonal rabbit anti-mouse IgGs 

were used in order to enable Cl 78.3 Ab’s use for the isolation of stx 1 (see Appendix  6). In 

contrast, the Cl 78.2 Ab was successfully coupled directly to the beads. In order to estimate the 

amount of beads suitable for optimal immunoprecipitation of stx 1, 10 µl, 20 µl and 40 µl of 

25% beads slurry were tested (Appendix  6 and Figure 3.27). The strong enrichment of stx 1 

under low as well as under high salt conditions was verified by Western blots and mass 

spectrometry (results not shown). Both Cl 78.3 and Cl 78.2 monoclonal antibodies, but not the 

HPC-1 antibody, were suitable for the immunoprecipitation of our target. For any further 

experiments, we used 40 µl of Eupergit-Cl 78.2 immunobeads and an incubation time of 2 h.  

 

Figure 3.27. Direct approach for immunoisolation of stx 1 with Euprgit C1Z-78.2 beads. Cl 78.2 mAb 
was directly coupled to Eupergit C1Z beads. Ab-coupled beads were used in different amounts (20 µl or 40 
µl) and under two washing conditions for optimal immunoisolation of the antigen. Beads were rotated with 
pre-centrifuged cholate-solubilized LP1 fraction for 2 h and washed with low or high salt IP washing buffer. 
Immunoprecipitates were resolved by SDS-PAGE and probed for stx 1A. 
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By systematical analysis of the variable parameters in the IP experiments, we were 

able to establish a protocol for an efficient affinity precipitation of stx 1 and detection of 

the co-immunopurified proteins using label-free quantitative mass spectrometry. The 

results from the affinity purifications and the analyzed proteomics data are discussed in the 

next section. 

 

3.5 Mass spectrometry 

3.5.1 Sample preparation for mass spectrometry  
 

Immunoprecipitates containing stx 1 and stx1-interacting proteins were analyzed in 

a label-free quantification approach combined with tandem mass spectrometry (nanoLC-

MS/MS) [132]. First step in a sample preparation for mass spectrometry analysis is the 

elution of bound proteins from beads with denaturing SDS containing sample buffer. This 

step is followed by protein separation on a SDS-PAGE gel, in-gel digestion, extraction of 

digestive peptides from the gel pieces and their mass spectrometry analysis. However, this 

procedure covers mainly soluble and highly abundant proteins and allows only partial 

identification of hydrophobic proteins, e.g. channels and transporters. This is due to the 

limited enzymatic proteolysis of membrane proteins in gel stripes, their poor extraction 

after sample digestion as well as limited detection in mass spectrometers. Moreover, 

boiling of beads for protein elution at 95 °C causes aggregation and precipitation of the 

membrane proteins.  

 In order to overcome these limitations, two strategies were tested. First alternative 

involved elution of bound proteins in 2% SDS solution at 60 °C or 95 °C. Application of 

this approach was reported to completely elute proteins from beads matrices [193]. Second 

method consisted of direct digestion of immunoprecipitates on the beads. This strategy is 

based on modified version of published protocol [146, 147] that covered most of the 

synaptic integral and peripheral proteins in mass spectrometry studies. 

 The elution with 2% SDS solution was conducted at two different temperatures. 

The reason was that boiling of samples containing membrane proteins at 95 °C caused their 

aggregation. Thus, an alternative condition was tested in which samples were heated at 60 

°C for 15 min. In addition, direct tryptic digestion of immunoprecipitates on the beads was 

tested with different amounts of trypsin: either with 5 µg or 10 µg trypsin. Proteolytic 
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enzymes used for protein digestion can be partially denatured or inactivated by detergent 

remaining on the beads after the IP washing steps. In addition, it is well known that 

digestion directly on the beads has limited efficiency. When the elution procedure was 

applied, proteins were first acetone precipitated overnight and their tryptic proteolysis was 

conducted the next day in parallel with the on-beads-digestion. Beads were boiled in SDS 

sample buffer after trypsinization and elution. Proteins from boiled beads and digested 

samples were loaded on SDS-PAGE and the gels were silver stained in order to assess the 

efficiency of elution, on-beads-digestion and protein proteolysis (Figure 3.28). 

 

Figure 3.28. Silver stained SDS-PAGE gels of beads’ supernatants, trypsinized samples and eluates. 
Beads were boiled in SDS sample buffer after on-beads-protein trypsinization or 2% SDS elution. Digested 
eluates and on-bead trypsinized proteins were also boiled in SDS sample buffer. The contents of the samples 
were resolved on SDS-PAGE gels. Gels were silver stained in order to assess the efficiency of the alternative 
protocols and tofind best proteolysis approach. 

 After the SDS elution, some protein bands were still detected on the silver stained 

gels (~75 kDa). This observation was more pronounced when elution was performed by 

sample boiling at 95 °C and was independent of the sample (IP as well negative control). 

The advantage of this approach was emphasized by the detection of antibody’s LC and HC 

on the beads, at ~25 kDa and ~55 kDa respectively. This result indicated that the 

antibodies remained largely attached to the beads and were, if at all, only partially co-

eluted with the immunoenriched proteins. A protein band visible at ~26 kDa in the eluate 

fractions corresponded to trypsin, which was not completely removed from the 
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proteolytically digested sample by acidic precipitation (see Figure 3.28). In contrast to 

these results, the tryptic processing directly on the beads successfully digested the co-

immunopurified proteins as judged by the silver staining of the gel. Although the 

sensitivity of the staining procedure lies in the nanomolar range [194], it is possible that 

low abundant proteins and very hydrophobic proteins remained undigested. The obtained 

results in the on-beads-digestion protocol were similar regardless of the enzyme amount 

used. Thus, we proceeded for further experiments with 5 µg trypsin per 40 µl Eupergit-Cl 

78.2-coupled beads (25% slurry).  

 

 

 

Figure 3.29. Silver staining of SDS-PAGE-resolved proteins from an IP and negative control sample. 
Immunoisolated proteins from an IP and mock samples were separated electrophoretically and visualized by 
silver staining. Since no trypsinization of the samples was performed, they were used as a control.  

 

The protein constituents of unprocessed samples (IP and mock) were resolved by 

SDS-PAGE and the gel was silver stained. Thus, it served as control to evaluate the 

efficiency of elution and trypsinization (Figure 3.29).   

Analysis of the results and comparison of both protocols allowed drawing few 

conclusions. First, elution of immunoprecipitated proteins with 2% SDS at 60 °C or 95 °C 

showed no significant differences. In both cases, the main portion of antibodies remained 

attached to the beads whereas most of the proteins were eluted (Figure 3.28). This result 
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offers an advantage since antibodies are unwanted in the AP-MS method due to their high 

abundance. They mask peptide signals from low abundant proteins, thus impairing their 

detection and identification. However, protein elution was not complete and this 

represented main limitation. In addition, the SDS detergent remained attached to the 

digestive peptides even after acetone washing post-precipitation. Consequently, only few 

peptides could be detected in the mass spectrometer. In contrast to these findings, tryptic 

digestion of immunoisolates directly on the beads showed good results. All proteins were 

fully trypsinized in a single step within 16 h. In addition, after the enzymatic proteolysis, 

trypsin was completely removed by acidic precipitation as a part of the standard sample 

processing procedure. This allowed collection of peptides derived only from precipitated 

proteins and not from the enzyme. Based on these results, in all following experiments, the 

proteolytic digestion of immunoprecipitates was performed directly on the beads with 5 µg 

trypsin. Furthermore, in an additional experiment (not shown), the on-beads-digestion 

protocol showed same protein coverage as achieved by using a standard protocol (protein 

separation on SDS-PAGE gel followed by an in-gel trypsinization).  

 

3.5.2 Study of the proteins co-immunoprecipitated with stx 1 by label-free 
quantitative proteomics 

 

The proteins, which co-immunopurified with stx 1, were studied by label-free 

quantitative proteomics under two conditions:  washing of the Ab-coupled Eupergit beads 

with low (127 mM NaCl) and high (400 mM NaCl) salt containing buffer. Affinity 

purification in combination with mass spectrometry (AP-MS) detection of proteins allows 

identification of protein complex constituents [195]. Two main difficulties accompany this 

method. First, the lack of an antibody often hinders the isolation of endogenous complexes. 

Second, it is difficult to distinguish true positive from false positive interaction partners 

because target non-related proteins co-purify due to unspecific binding to beads and 

antibody. 

The results obtained from the IP experiments showed strong and efficient 

immunoprecipitation when two monoclonal anti-stx 1 antibodies (Cl 78.2 and Cl 78.3) 

were used (see 3.4.1). Thereby, the first restriction for a successful AP-MS experiment was 

overcome.  
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Quantitative label-free mass spectrometry allowed solving the second problem. 

Quantitative ratios of proteins in the IP and mock sample helped distinguishing true 

interaction partners from background binders. These ratios were obtained by comparing the 

integrated signals of peptides from mass spectrometric measurements (label-free 

quantification) using MaxQuant software and Perseus [137, 196]. The bioinformatics 

package analyzed the raw data in label-free quantification (LFQ) mode considering unique 

and razor (non-unique peptides assigned to a protein) peptides. Immunoprecipitations in 

combination with LFQ data analysis must be performed at least in triplicate because the 

data validation is based on t-test statistics. In our study, data obtained from 5 biological 

replicates in two technical repeats in either condition (high and low salt) was used. 

Significant interaction partners were determined using a volcano-plot method based on 

ratio of proteins in the IP vs. the mock sample and t-test algorithm as recently described 

[137, 197]. This approach combines the p-values from a two-sample (equal group 

variance) t-test and the logarithmic ratio of protein intensities in stx 1 vs. control IP 

samples. Therefore, the logarithmic ratios of the intensities were plotted against the 

negative logarithmic p-values of t-test performed on the five biological replicates. 

Significance lines in the volcano plot were set according to a given false discovery rate 

(FDR) determined by a permutation based method [198]. The value of FDR was set at 

0.01. There are no recommendations for FDR value. FDR=0.01 and SO=1 (=significance 

line bend)  were selected as a high threshold based on previous reports [137]. The SO 

value is a minimal fold change parameter, which determines the margin between 

significantly and non-significantly enriched proteins. At SO=0, no fold change on the ratio 

logarithmic scale is observed and FDR equals the p-value from the two sample t-test. 

Proteins with low p-value (highly significant) were found in the top of the volcano plot. 

Due to the logarithmic fold-change of quantity ratios (x axis), enrichment of proteins in 

either sample resulted in equidistant distribution of proteins form the center (zero value). In 

this way, major regions of interest were observed in the top of the plot and far distant from 

the center on the left or right side. These points represented proteins identified with large 

fold-changes and high statistical significance. 

In total, 1872 proteins (excluding identified with reverse sequence or by site and 

MS contaminants, e.g. keratins) were identified in the immunoisolates in either condition. 

This list included protein isoforms and 17 detected UPS2 standard proteins, which were 

added to the immunoisolates and proteolytically co-digested. The results are presented in 

more details in the following sections. 
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3.5.2.1 Proteins co-purified with stx 1 under high salt conditions 
 

In the IP samples under high salt condition, 173 of 1872 proteins passed the 

threshold criteria (FDR=0.01 and SO=1). All significant proteins above the threshold 

values are listed in the appendix according to their significance in decreasing order 

(Appendix 7). 158 of these proteins were found above the significance curve in the anti-stx 

1 IP (right in the plot, see Figure 3.30). The remaining 15 proteins were significantly and 

high fold-change enriched in the negative control (left in the plot, see Figure 3.30 and 

Appendix 8). As indicated in the volcano plot, stx 1A showed lowest p-value from all 158 

significant hits in the IP sample and high fold enrichment. This result confirmed successful 

affinity enrichment of the target protein. Moreover, the 158 proteins were categorized 

according to their subcellular localization and biological function using previous reports as 

reference [133, 146]. A chart representing protein annotation and number of proteins in 

each group is shown below (Figure 3.31). 

 

 

Figure 3.30. Volcano plot representing results from stx 1 immunoprecipitation with Eupergit C1Z-Cl 
78.2 beads under high salt conditions. Logarithmic ratio of protein intensities difference was plotted 
against negative p-values from two sample t-test. Identified proteins from all biological and technical 
replicates were analyzed with LFQ algorithm in MaxQuant and Perseus software. Significantly, enriched 
proteins in IP (right in the plot) and negative control (left in the plot) are represented as blue squares above 
the threshold curve. Stx1A showed highest fold enrichment change and lowest p-value among all samples 
(Stx1 in upper right corner of the plot). 
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Figure 3.31. Protein groups and number of identified proteins in each group stx1 immuno-precipitate 
at high salt concentration. Proteins were annotated manually according to their subcellular localization and 
biological functions and categorized in seven groups: mitochondrial proteins; hypothetical/poorly 
characterized proteins;  adhesion and cell surface proteins; receptors, transporters and channels; SNAREs and 
trafficking proteins; synaptic vesicle proteins  and others;. Number of proteins in each category is indicated 
(left to the charts). 

 

3.5.2.1.1 Synaptic vesicle proteins  
 

26 from 158 proteins were annotated as SV constituents based on previous reports 

[133, 146] or sequence similarity. Proteins were sorted in decreasing order of their 

significance and enrichment in the stx 1 IPs (see Table 3.3). As summarized in Table 3.3, 

many major synaptic vesicle proteins were identified. This included synaptophysin, 

VGLUT isoforms 1 and 2, VGAT, SV2A and SV2B, Scamp1/3/5, synaptotagmins (1, 2 

and 12). Interestingly, different isoforms of the proteins were detected with different 

significance in the IP samples. This might indicate their participation in distinct complexes 

with the participation of stx 1. The distribution of some of the listed SV proteins in the 

scatter plot is shown in Figure 3.32. Interestingly, some less studied SV proteins were 

identified in the IPs: synaptogyrin 3 (syngr3), transmembrane protein 163 (SV31), orphan 

transporter NTT4 [199] and MAL2-like protein. Recent findings showed that syngr3 co-

localizes with Vamp1/2, Stx1A/B and Vglut1/2 [200], and SV31 protein was identified in 



 

92 
  

2007 as synaptic vesicle protein [201]. SV31 shows binding affinity for divalent 

Zn2+cations and was detected in Stx1A and SNAP25 positive puncta in 

immunocytochemistry studies in PC12 cells [202]. Interestingly, MAL2-like protein was 

also identified. It shows 99.4% identity with MAL2A protein by sequence alignment. 

 

 

Figure 3.32. Distribution of significantly enriched SV proteins in anti-stx 1 IPs. Some of the listed 26 SV 
proteins identified with high significance and large fold-change enrichment in stx1 IPs are indicated in the 
scatter plot.  

 

3.5.2.1.2 SNAREs and trafficking proteins 
 

Under the threshold conditions set for the data analysis, no core AZ proteins were 

not identified. Munc13, earlier reported to interact with stx 1 [49], did not pass the 

threshold criteria. It was detected in only three from five stx 1 IP samples and was not 

significantly enriched. This finding was in partial agreement with previous studies, which 

failed detecting Munc13 [146, 203]. This might be due to limited number of peptides or 

their hydrophobic character, what would limit their detection by mass spectrometry. 

Another explanation would be the use of Cl 78.2 Ab, which has partial affinity to stx 1B, 

not only to stx 1A. However, this fact is ambiguous because Munc13 binds to stx 1B as 

well as to stx 2 as shown in yeast two-hybrid screen [49]. In addition, Stxbp1 (Munc18) 

was also missed in the significant hits.  
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 Among the positive protein hits in the Stx1 IP, 18 proteins were annotated as 

SNARE (soluble N-ethyl-maleimide-sensitive factor attachment protein receptor) and 

regulatory proteins (see Table 3.4).  

Table 3.3. SV proteins identified as significantly enriched in the stx1 IP samples.  Proteins are listed 
according to their significance in a decreasing order. 

Synaptic vesicle proteins 
Protein 

ID 
Gene name Protein name 

P07825 Syp Synaptophysin 

Q5M7T6 Atp6v0d1 ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1 

Q2I6B2 Atp6v0a1 V-H+ATPase subunit a1-III 

P63045 Vamp2 Vesicle-associated membrane protein 2 

Q63564 Sv2b Synaptic vesicle glycoprotein 2B 

P60905 Dnajc5 DnaJ homolog subfamily C member 5 (CSP) 

Q6QIX3 Slc30a3 Zinc transporter 3 

O35458 Slc32a1 Vesicular inhibitory amino acid transporter 

M0RCJ9 LOC100911027 Protein LOC100911027 (MAL2-like) 

P97610 Syt12 Synaptotagmin-12 

Q62634 Slc17a7 Vesicular glutamate transporter 1 

Q6IRF8 Atp6ap1 ATPase, H+ transporting, lysosomal accessory protein 1 

P63081 Atp6v0c V-type proton ATPase 16 kDa proteolipid subunit 

P56603 Scamp1 Secretory carrier-associated membrane protein 1 

F1M9V2 Vamp1 Vesicle-associated membrane protein 1 (Fragment) 

G3V6M3 Syt2 Synaptotagmin II 

P21707 Syt1  Synaptotagmin-1 

Q02563 Sv2a Synaptic vesicle glycoprotein 2A 

P31662 Slc6a17 Sodium-dependent neutral amino acid transporter SLC6A17 (NTT4) 

A9CMA6 Tmem163 Transmembrane protein 163 (SV31) 

E9PTW1 Scamp3 Protein Scamp3 

G3V851 Slc17a6 Solute carrier family 17 (Sodium-dependent inorganic phosphate 
cotransporter), member 6 (VGLUT2) 

F1M882 Scamp5 Secretory carrier-associated membrane protein 5 (Fragment) 

D4A133 Atp6v1a Protein Atp6v1a 

D4ABK1 Syngr3 Protein Syngr3 

P62815 Atp6v1b2 V-type proton ATPase subunit B, brain isoform 
SNARE proteins form complexes, which represent the minimal exocytotic 

machinery. These complexes are formed in different constellations and are regulated by 

Sec1/Munc18-like (SM) proteins. Such regulatory proteins are the syntaxin binding 

proteins (Stxbp). Interestingly, Stxbp5 (tomosyn) was found as a positive hit in our IP 

experiments (see Table 3.4). It forms a 10 S complex with stx 1A, SNAP-25 and syt and is 

able of dissociating bound Munc-18 from stx 1A [204]. A novel tomosyn-like (stxbp5-like, 
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stxbp5l) protein of unknown function with 60.8% sequence similarity (by sequence 

alignment) to stxbp5 was also found among the co-immunoisolated proteins. In addition, 

stxbp6 (amysin) passed the set threshold parameters in our data analysis. Amysin a soluble 

brain-enriched protein without a transmembrane anchor but contains tomosyn- and VAMP-

like coiled-coil domain. It was reported to bind specifically to stx 1A [205]. SV membrane 

SNAREs SNAP29 and SNAP47, plasma membrane anchored t-SNARE SNAP-25 [133], 

Sec22b, which forms a non-fusiogenic trans-SNARE complex with stx 1 [206], were also 

found among the true stx 1-interacting proteins. In addition, SNARE proteins syntaxin 6, 7 

and 13 and VAMP7 were also co-purified with the stx 1 in the IP samples. Syntaxin 6 

resides on Golgi membranes showing sequence similarity to SNAP-25 [207], but it was 

also found with lysosomal SNARE stx 7 enriched in SV fractions [133] (see Figure 3.33). 

Interestingly, two less characterized proteins were identified and placed in this group: 

PRAF3 and PRA1 domain family 2 (PRAF2) protein. PRAF3 is proposed to bind to 

prenylated Rab1a and Rab3a GTPases by similarity and shown to bind to EAAT3 

glutamate transporter and regulate its activity [208, 209]. PRFA2 is recently described and 

involved in endo/exocytic vesicle trafficking [210-212].  

Table 3.4. SNAREs and trafficking proteins identified with high significance and fold-change 
enrichment in stx 1 IPs.  Proteins are listed according to their significance in a decreasing order. 

SNAREs and trafficking proteins 
Protein ID Gene name Protein name 

Q9QXG3 Stx1a Syntaxin 1A 

Q9WU70-2 Stxbp5 Isoform 2 of Syntaxin-binding protein 5 (M-tomosyn) 

P60881 Snap25 Synaptosomal-associated protein 25 

P61265 Stx1b Syntaxin-1B 

D3ZU84 Stxbp5l Protein Stxbp5l 

Q9JHW5 Vamp7 Vesicle-associated membrane protein 7 

O70257 Stx7 Syntaxin-7 

G3V7P1 Stx13 Syntaxin-13 

D3ZCI5 Stxbp6 Protein Stxbp6 

Q6P6S0 Snap47 Synaptosomal-associated protein 47 

Q63635 Stx6 Syntaxin-6 

Q5EGY4 ykt6 Synaptobrevin homolog YKT6 

P60881-2 SNAP-25a Isoform 2 of Synaptosomal-associated protein 25 

Q4KM74 sec22b Vesicle-trafficking protein SEC22b 

Q9ES40 Arl6ip5 PRA1 family protein 3 (PRAF3) 

D3ZAA0 Praf2 PRA1 domain family 2(PRAF2) 

Q9JI56 snap29  Synaptosomal-associated protein 29 

F1LNC4 Vti1b Protein LOC100359512 (Vti1b) 
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Figure 3.33. Distribution of significantly enriched SNARE and trafficking proteins in stx 1 IP samples. 
18 SNARE and regulatory proteins were identified with high significance and large fold-change enrichment 
in stx 1 immunopurifications. Some of these 18 proteins are indicated in the scatter plot. 

 

3.5.2.1.3 Receptor, transporter and channel proteins 
 

Synaptic transmission is governed by a broad spectrum of transmembrane proteins 

with various functions. Nevertheless, up to now their study has been restrained by 

insufficient solubilization and low number of digestive peptides for mass spectrometric 

identification. However, we successfully identified 31 transporter, channel and receptor 

molecules including protein subunits/isoforms. Three α (1, 2 and 3) and one β (2) subunits 

of Na+/K+ ATPase were detected (Table 3.5). The ATPase plays important role in cation 

equilibrium across the membrane, it is involved in recovery of resting potential in neurons 

and exchanges three Na+ outwards for two K+ ions inwards [213, 214]. In addition, it 

directly regulates the activity of glutamate transporters Eaat1/2, also identified among our 

positive hits, and thus terminates glutamate-mediated neurotransmission [215]. Significant 

enrichment in electrochemical and ion driven transporters was observed, e.g. Na+/Ca2+ 

exchanger, Na-K-Cl co-transporter, plasma membrane calcium-transporting ATPase 2, 

electrogenic sodium bicarbonate co-transporter 1 (isoform 3) and sodium-driven chloride 

bicarbonate exchanger (isoform 4) (Table 3.5). Interestingly, Na+/Ca2+ exchanger regulates 

presynaptic Ca2+ homeostasis [216], whereas electrogenic sodium bicarbonate co-
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transporter 1 was reported glia membrane-associated [217]. Furthermore, the function of 

sodium-driven chloride bicarbonate exchanger suggested its implication in pH regulation 

in the brain, where it was found in high expression levels [218]. 

Table 3.5. Receptor, transporter and channel proteins identified with high significance and fold-change 
enrichment in the stx 1 immunoprecipitates.  Proteins are listed according to their significance in a 
decreasing order. 

Receptor, transporter and channel proteins 

Protein ID Gene name Protein name 

P04775 Scn2a Sodium channel protein type 2 subunit alpha 

Q07647 Slc2a3 Solute carrier family 2, facilitated glucose transporter member 3 

F1LNE4 Gria2 Glutamate receptor 2 

F1M585 Atp8a1 Phospholipid-transporting ATPase 

P19492 Gria3 Glutamate receptor 3 

P07340 Atp1b1 Sodium/potassium-transporting ATPase subunit beta-1 

Q63633-2 Slc12a5 Isoform 2 of Solute carrier family 12 member 5 

P06685 Atp1a1 Sodium/potassium-transporting ATPase subunit alpha-1 

G3V846 Eaat1 Excitatory amino acid transporter 1 

Q9JI66-3 Slc4a4 Isoform 3 of Electrogenic sodium bicarbonate cotransporter 1 

P06687 Atp1a3 Sodium/potassium-transporting ATPase subunit alpha-3 

P23978 Slc6a1 Sodium- and chloride-dependent GABA transporter 1 

P63138 Gabrb2 Gamma-aminobutyric acid receptor subunit beta-2 

F1M9A2 Slc8a2 Sodium/calcium exchanger 2 

P19490 Gria1 Glutamate receptor 1 

D4A6L0 Gpr158 Probable G-protein coupled receptor 158 

G3V8F1 Slc6a7 L-proline transmembrane transporter 

P31596-2 Eaat2 Isoform Glt-1A of Excitatory amino acid transporter 2 

O88917-2 Lphn1 Isoform 2 of Latrophilin-1 

Q01728-2 Slc8a1 Isoform 2 of Sodium/calcium exchanger 1 

P31421 Grm2 Metabotropic glutamate receptor 2 

Q5M9H4 Atp1b2 ATPase, Na+/K+ transporting, beta 2 polypeptide 

Q9QX10 Slc12a2 Na-K-Cl cotransporter 

Q62976 Kcnma1 Calcium-activated potassium channel subunit alpha-1 

P11506-8 Atp2b2 Isoform ZB of Plasma membrane calcium-transporting ATPase 2 

P06686 Atp1a2 Sodium/potassium-transporting ATPase subunit alpha-2 

Q80ZA5-4 Slc4a10 Isoform 4 of Sodium-driven chloride bicarbonate exchanger 

Q6AY41 Tmem30a Cell cycle control protein 50A (CDC50A) 

Q91XV6-2 Fxyd6 Isoform 2 of FXYD domain-containing ion transport regulator 6 

Q6PW52 Gabrg2 GABA-A gamma2 long isoform 

P29994-8 Itpr1 Isoform 8 of Inositol 1,4,5-trisphosphate receptor type 1 

P04775 Scn2a Sodium channel protein type 2 subunit alpha 
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 Interestingly, also inositol 1,4,5-trisphosphate receptor type 1 passed the 

significance threshold in the stx 1 IPs. The receptor was recently reported to interact 

directly with SNARE domain of stx 1B [219] (Table 3.5).  Kcnma1 or Ca-dependent 

potassium channel (BK channel), a regulator of glutamatergic neurotransmission [220] and 

iono- and metabotropic GABA receptors were also highly enriched in stx 1 IP samples. 

However, it remains unclear whether GABA receptors were postsynaptic contamination or 

had presynaptic localization.The distribution of some channels, transporters and receptors 

in the volcano plot is shown below (Figure 3.34). With few exceptions, the proteins from 

this group were derived from the plasma membrane. Itpr1 receptor is intracellular as well 

as partially the phospholipid-transporting ATPase, which was identified among the 

positive hits together with its accessory component CDC50A protein. The ATPase 

undergoes CDC50A-dependent translocation from ER to Golgi and PM [221, 222]. And 

last but not least, Fxyd6 has a brain development-dependent expression [223] and has been 

shown to be a Na+/K+ ATPase regulator [224-227].  

 

Figure 3.34. Significant and fold-change enriched transporter, channel and receptor proteins in stx 1 
IP samples. Some significantly IP-co-purified transmembrane transporter, channel or receptor molecules are 
indicated in a zoomed right corner of volcano plot (random selection due to representation restrictions).   
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3.5.2.1.4 Adhesion and cell surface molecules 
 

Among the 158 enriched proteins in the stx 1 IP samples, nine proteins were 

adhesion and cell surface molecules. The glycoproteins M6a and M6b, involved in neurite 

outgrowth control [228] and neuronal differentiation [229], were found with low p-values 

but different fold-change distribution (Figure 3.35 and Table 3.6). 

Table 3.6. Adhesion and cell surface proteins identified with high significance and fold-change 
enrichment in stx 1 IPs.  Proteins are listed according to their significance in a decreasing order. 

Adhesion and cell surface molecules 
Protein ID Gene name Protein name 

Q812E9 Gpm6a Neuronal membrane glycoprotein M6-a 

F1LNY3 Ncam1 Neural cell adhesion molecule 1 (Fragment) 

P97846 Cntnap1 Contactin-associated protein 1 

F1M8G9 Ncam2 Protein Ncam2 (Fragment) 

P97829-2 Cd47 Isoform 2 of Leukocyte surface antigen CD47 

Q6P9V1 Cd81 CD81 antigen 

Q63198 Cntn1 Contactin-1 

E9PSV8 Gpm6b Neuronal membrane glycoprotein M6-b 

Q6MFX9 Mog Myelin oligodendrocyte glycoprotein 

 

 

Figure 3.35. Significantly and fold-change enriched cell surface and adhesion proteins in stx 1 IPs. 
Significantly IP-co-purified synaptic adhesion and surface molecules are indicated in a zoomed right corner 
of volcano plot (random selection due to representation restrictions).   
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 CD47, CD81, neuronal cell adhesion molecules (Ncam) isoforms 1 and 2 and 

myelin glycoprotein were as well among the positive hits (Table 3.6). Cd47 and Cd81 were 

identified as integrin-interacting partners [230, 231]. Although main portions of the 

molecules are localized between cells, they usually possess intracellular domains, which 

could link extracellular signals to intracellular signaling molecules.  

3.5.2.1.5 Hypothetical and less characterized proteins 
 

Few hypothetical and less characterized proteins were detected among the enriched 

hits in the IP samples (Table 3.7). These proteins had higher p-values and less ratio fold-

change than other identified proteins. They were distributed in proximity to the 

significance (threshold) curve set by the FDR value (FDR=0.01). Fas apoptotic inhibitory 

molecule 2 (Faim2) was reported to have neuroprotective role after ischemia [232]. Ttyh1 

has a predicted chloride channel function with predominant neuronal expression [233].  

 

Table 3.7. Hypothetical or poorly characterized proteins identified with high significance and fold-
change enrichment in the stx 1 IPs.  Proteins are listed according to their significance in a decreasing order. 

Hypothetical proteins or proteins with poorly characterized functions 
Protein ID Gene name Protein name 

D4A7L6 Rpia Protein Rpia 

Q64304 lLAT RATLE LLAT protein 

D4A3N4 Adcy1 Adenylate cyclase 1 (Predicted) 

B4F773 Ttyh1 Ttyh1 protein 

M0R531 Faim2 FAIM2 protein 

 

  

3.5.2.1.6 Others  
 

Only 7 of the 158 proteins detected over the threshold parameters were assigned as 

metabolic enzymes or homeostasis regulatory molecules (Table 3.8). Some of them are 

enzymes with functions in lipid metabolism (acyl carrier protein), glycerol uptake 

regulation (glycerol kinase).  
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Table 3.8. Metabolic proteins identified with high significance and fold-change enrichment in anti-Stx1 
immunoprecipitation sample.  Proteins are listed according to their significance in a decreasing order. 

Others 
Protein 

ID 
Gene 
name 

Protein name 

D3ZF13 LOC683884 Acyl carrier protein 

Q5BJZ3 Nnt Nicotinamide nucleotide transhydrogenase 

P27605 Hprt1 Hypoxanthine-guanine phosphoribosyltransferase 

Q6AY30 Sccpdh Saccharopine dehydrogenase-like oxidoreductase 

D3ZCI0 Gk Glycerol kinase 

P05708 Hk1 Hexokinase-1 

G3V864 Lppr4 Lipid phosphate phosphatase-related protein type 4 
 

 

In addition to the described proteins, 62 mitochondrial proteins were identified 

among the 158 positive hits (Appendix 9). Preliminary iBAQ quantification showed that 

their quantities are minor compared to the abundance of all other proteins identified. These 

proteins were annotated as NADH dehydrogenase complex components, ATP synthase 

subunits or Cox proteins. They are with highly hydrophobic character and their binding to 

the bead matrix and/or Abs are possibly favored under high salt concentrations. However, 

it should be emphasized that the distribution of these proteins was not random, but rather 

specific.  

 

3.5.2.2 Proteins co-purified with stx 1 under low salt conditions 
 

The analysis of proteomics data obtained under low salt washing conditions was 

conducted by applying the same threshold parameters as in the previous experiments 

(section 3.5.2.1): FDR=0.01 and SO=1.As a result, 275 and 457 proteins passed the 

threshold line in IP and mock sample, respectively (Appendix  10 and Appendix  11, 

respectively and Figure 3.36).  Comparison of the identified proteins above the threshold 

line in the IP samples under both conditions showed nearly complete overlap (Figure 3.37). 

Only three proteins identified under high salt condition were not present among the 

positive hits in the low salt condition. These proteins were: uncharacterized protein with 

protein ID D3ZC50 (predicted respiratory chain component in mitochondria); cell cycle 

control protein 50A and apoptosis inhibitor protein Faim2. The data emphasized clearly 
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that large number of unspecific proteins were enriched in the mock sample (457 proteins) 

under the low salt washing conditions. Not surprisingly, the number of  co-purified 

proteins which were enriched above the threshold margin was increased. 

High salt concentrations favored preservation of hydrophobic interactions and 

helped reducing the unspecific polar and ionic protein binding to beads and Ab. 155 of the 

proteins which passed the threshold criteria were found in both conditions. Thus, they will 

not be listed repeatedly in the following section. Only the additional 120 positive hits in the 

stx 1 IP samples were categorized as in the previous section (see 3.5.2.1) and discussed  in 

more detail below.  

 

 

 

Figure 3.36. Volcano plot representation of results from stx 1 IP with Eupergit C1Z-Cl 78.2 beads 
under low salt conditions. Logarithmic ratio of protein intensities difference was plotted against negative p-
values from two sample t-test. Identified proteins from all biological and technical replicates were analyzed 
with LFQ algorithm in MaxQuant and Perseus software. Significantly, enriched proteins in IP (right in the 
plot) and negative control (left in the plot) are represented as blue squares above the threshold curve. Stx1A 
showed highest fold enrichment change and lowest p-value among all samples (Stx1 in upper right corner of 
the plot). 

 

Syntaxin 1A 
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Figure 3.37. Overlap of proteins identified as positive hits under low and high salt IP conditions. Venn 
diagram was used to represent the overlap of proteins identified above the threshold line in both conditions 
[234]. Except of three proteins (Faim2; cell cycle control protein 50 (Tmem30A, CDC50A) and 
uncharacterized protein with protein ID: D3ZC50, predicted respiratory chain constituent), all 155 proteins 
identified in the high salt condition as positive hits were found as well in the stx 1 IP samples under low salt 
conditions. In addition, 120 more proteins were found above the threshold curve in the low salt IP condition.  

 

 

3.5.2.2.1 Synaptic vesicle proteins 
 

In total, 31 SV proteins were classified as significantly enriched under low salt conditions 

in the stx 1 IP samples. In addition to the 26 proteins detected before, five more proteins 

were found. Four positive hits represented H+ transporting ATPase subunits. Synaptogyrin-

1 was detected among the SV proteins in addition to synaptogyrin-3. Furthermore, 

synaptogyrin-1 was found among the positive hits. Synaptogyrins are implicated in 

neutransmission regulation and synaptic vesicle biogenesis in Drosophila [235-238].  

Table 3.9. SV proteins additionally identified as significantly enriched under low salt conditions in stx 
1 IP samples.   

Synaptic vesicle proteins 
Protein 
ID 

Gene 
name 

Protein name 

G3V7L8 Atp6v1e1 ATPase, H+ transporting, V1 subunit E isoform 1 
Q62876 Syngr1 Synaptogyrin-1 
Q6P503 Atp6v1d ATPase, H+ transporting, V1 subunit D 
Q5FVI6 Atp6v1c1 V-type proton ATPase subunit C 1 
Q5XIL1 Atp6v1h ATPase, H+ transporting, lysosomal V1 subunit H 
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3.5.2.2.2 SNAREs and trafficking proteins 
 

When buffer with low salt concentration was used for IP washing, seven additional 

proteins were found enriched above the threshold line (Table 3.10). Among them were 

lysosomal syntaxin-8, two isoforms of NSF cofactor: alpha and gamma SNAPs (soluble 

NSF associated protein) and Vti1a. The VAMP-associated protein was reported to be 

essential for neurotransmitter release [239, 240] and was detected. In addition, Golgi-

localized Sec1p-like protein VPS45 [241] and syntaphilin – syntaxin1 binding protein 

[242] were identified. Syntaphilin plays an important role in regulation of the 

neurotransmission process, because it competes with SNAP-25 for stx 1 binding and 

prevents SNARE complex assembly. 

 

Table 3.10.  SNAREs and trafficking proteins additionally identified under low salt conditions in stx 1 
IP samples.   

SNAREs and trafficking proteins 
Protein 
ID 

Gene 
name 

Protein name 

D4A0E2 Napg Protein Napg (gamma SNAP) 
O08700 Vps45 Vacuolar protein sorting-associated protein 45 
Q9Z2Q7 Stx8 Syntaxin 8 
Q9JI51 Vti1a Vesicle transport through interaction with t-SNAREs homolog 1A 
B5DF41 Snph Syntaphilin 
Q9Z270 Vapa Vesicle-associated membrane protein-associated protein A (VAMP-associated protein 

A) 
P54921 Napa alpha SNAP 
 

 

3.5.2.2.3 Channels, receptors and transporter proteins 
 

In addition to the 31 receptor, channel and transporter proteins identified when high 

salt washing buffer was used, 27 proteins passed the threshold criteria when the low salt 

washing step was applied (Table 3.11). This extended list of total 58 proteins included 

VGCC of N- and R-type. Identification of the α subunits (here 1B and 1E, respectively) 

allowed precise annotation of the channel type. Stx 1 was reported to interact with VGCC 

N-type channel by binding to the synprint site of the intracellular α subunit loop between 



 

104 
  

membrane domains II and III [243]. Furthermore, further GABA receptor subunits and 

GABAB receptor auxiliary subunit Kctd16 [128] were found as hits. The full list of 

additionally identified receptors, channels and transporters is presented below (Table 3.11).  

The list of integral proteins among the positive hits was longer under low salt 

conditions. Generally, hydrophobic interactions are stabilized when high salt buffers are 

used, but salt might also disturb weak protein-protein interactions at high concentrations. It 

is suggestive that the low salt containing buffer helped preserving such protein-protein 

interactions, which were lost before. 

 

Table 3.11. Receptors, channels and transporter proteins additionally identified under low salt 
conditions in stx 1 IP samples. 

Channels, receptors and transporter proteins 
Protein ID Gene 

name 
Protein name 

O89089 Cacna1b Voltage-dependent N-type calcium channel subunit alpha-1B 
F1M7K7 Cacng8 Voltage-dependent calcium channel gamma subunit 
D4ACN8 Plgrkt Plasminogen receptor (KT) 
D3ZSU3 Slc7a14 L-amino acid transmembrane transporter 
D3ZW84 Gabrb3 Gamma-aminobutyric acid receptor subunit beta-3 
P31422 Grm3 Metabotropic glutamate receptor 3 
Q64568-3 Atp2b3 Plasma membrane calcium-transporting ATPase 3 
M0R874 Atp9a Phospholipid-transporting ATPase 
Q76GL9 Slc1a4 Amino acid transporter 
Q9WUD2 Trpv2 Transient receptor potential cation channel subfamily V member 2 
P31647 Slc6a11 Sodium- and chloride-dependent GABA transporter 3 
Q64542-3 Atp2b4 Plasma membrane calcium-transporting ATPase 4 
P62813 Gabra1 Gamma-aminobutyric acid receptor subunit alpha-1 
F1LMS1 Cacna1e Voltage-dependent R-type calcium channel subunit alpha-1E 
O54701 Slc24a2 Sodium/potassium/calcium exchanger 2 
O88871 Gabbr2 Gamma-aminobutyric acid type B receptor subunit 2 
F1M1G5 Kctd16 Protein Kctd16 
P11505-4 Atp2b1 Plasma membrane calcium-transporting ATPase 1 
F1LSG1 Kcnt1 Potassium channel subfamily T member 1 
F1LPF3 Slc44a1 Choline transporter-like protein 1 
P30191 Gabra6 Gamma-aminobutyric acid receptor subunit alpha-6 
P31423 Grm4 Metabotropic glutamate receptor 4 
F1LSY2 Nptxr Neuronal pentraxin receptor 

G3V986 Kcnd2 Potassium voltage gated channel, Shal-related family, member 2 
Q9JHZ9 Slc38a3 Sodium-coupled neutral amino acid transporter 3 
P11507-2 Atp2a2 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 
F1M6X3 Kcnq2 Potassium voltage-gated channel subfamily KQT member 2 
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3.5.2.2.4 Cell surface and adhesion molecules 
 

In total 14 cell adhesion and surface proteins passed the threshold criteria set for the 

data analysis, and 5 of them were only found at low salt concentrations (Table 3.12). 

Initially identified as hepatocyte adhesion, Hepacam, is predominantly expressed on glial 

cells [244]. Sirpa’s detection failed under high salt conditions but was present when low 

salt washing buffer was used. Sirpa is immunoglobulin-like cell surface receptor for Cd47, 

which was also detected in both conditions. The interaction of latter two was reported to 

influence presynaptic patterning and organization [245].  

Table 3.12. Cell surface and adhesion proteins additionally identified under low salt conditions in stx 1 
IP samples. 

Cell adhesion and surface molecules 
Protein 
ID 

Gene 
name 

Protein name 

P35565 Canx Calnexin 
P97710 Sirpa Tyrosine-protein phosphatase non-receptor type substrate 1 
D3ZEI4 Hepacam Hepacam 
P08050 Gja1 Gap junction alpha-1 protein 
Q5XIN0 Cldnd1 Claudin domain containing 1 

 

3.5.2.2.5 Cytoskeleton proteins 
 

Only three cytoskeleton proteins were identified: myosin 5a, Myo5a; septin 5 and 

septin 8. Interestingly, among the myosin isoforms, myosin 5 was reported to interact with 

stx 1A in a Ca2+ dependent manner [246]. Furthermore, septin 5 is known bind to stx 1-

containing SNARE complex at the presynaptic AZ [247].  

 

3.5.2.2.6 Hypothetical and less characterized proteins 
 

When high salt washing was applied to the stx 1 IP samples, only five proteins were 

detected in this category among the significant hits in the volcano plot. This list was 

extended by ten additional proteins, identified only when low salt concentration was used 

for sample washing (Table 3.13). 
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Table 3.13. Hypothetical or poorly characterized proteins identified with high significance and fold-
change enrichment in stx 1 IP samples under low salt conditions. 

Hypothetical proteins and proteins with poorly characterized functions 
Protein 
ID 

Gene 
name 

Protein name 

D4A8V2 Ccdc177 Protein Ccdc177 
G3V881 Lingo1 Leucine rich repeat neuronal 6A 
D3ZSD8 Tmem143 Protein Tmem143 
F1M8Y2 Tspan7 Tetraspanin 
D3ZWQ0 Prrt3 Protein Prrt3 
D4A5X7 Gdap1 Ganglioside-induced differentiation-associated-protein 1 (Predicted) 
Q6MG82 Prrt1 Proline-rich transmembrane protein 1 
D3ZFB6 Prrt2 Proline-rich transmembrane protein 2 
M0R5F9 M0R5F9 Uncharacterized 
D4A249 Mblac2 Similar to metallo-beta-lactamase superfamily protein like (XL884) (Predicted) 
 

3.5.2.2.7 Others 
 

22 proteins involved in regulation of synaptic intracellular homeostasis and 

metabolic processes were detected (Table 3.14) in addition to the seven proteins from the 

same group identified before (see Table 3.8). Interestingly, pentraxins were detected in 

addition to the above mention pentraxin receptor (see Table 3.11). These proteins were 

suggested to function as novel neuronal uptake pathway involved in synaptic remodeling 

and function [248, 249].  
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Table 3.14. Metabolic proteins additionally identified under low salt conditions in stx 1 IP samples. 

Signaling proteins, enzymes and regulatory molecules 
Protein 
ID 

Gene 
name 

Protein name 

Q6IMX4 Ppap2b Lipid phosphate phosphohydrolase 3 
P47971 Nptx1 Neuronal pentraxin-1 
Q9Z0V5 Prdx4 Peroxiredoxin-4 
P62161 Calm1 Calmodulin 
Q765A7 Pgap1 GPI inositol-deacylase 
Q5YLM1 Dagla Sn1-specific diacylglycerol lipase alpha 
P07153 Rpn1 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 
D4ADS4 Mgst3 Microsomal glutathione S-transferase 3 
Q2THW7 Zdhhc5 Palmitoyltransferase ZDHHC5 
F1LRE1 Gsr Glutathione reductase 
Q52KJ9 Tmx1 Tmx1 
D4A5W8 Pgs1 Similar to phosphatidylglycerophosphate synthase (Predicted) 
Q6AXS4 Atp6ap2 Renin receptor 
B5DEN4 Ldha L-lactate dehydrogenase 
Q04400 Adcy5 Adenylate cyclase type 5 
P61023 Chp1 Calcineurin B homologous protein 1 
F1LSY2 Nptxr Neuronal pentraxin receptor 
Q6IU14 Acsl6 Long-chain-fatty-acid--CoA ligase 6 
B3SVE9 Tecr Neuroprotective protein 13 
Q6AXX6 Fam213a Redox-regulatory protein FAM213A 
E9PSK0 Man2b2 Alpha-mannosidase 2 
P35704 Prdx2 Peroxiredoxin-2 
 

 In addition to the proteins described above, 38 of the 120 additionally identified 

proteins at low salt concentration were assigned manually as mitochondrial, ribosomal or 

nuclear pore-associated and are listed in Appendix 12.  

 In summary, the stx 1 immunoprecipitations under two conditions resulted in the 

co-purification of a broad spectrum of proteins. These proteins were manually sorted into 

seven groups according to their biological functions and cellular distribution: SV proteins, 

SNAREs and trafficking proteins; channels, receptors and transporter proteins; adhesion 

and cell surface molecules; metabolic proteins; cytoskeleton proteins and 

hypothetical/poorly characterized proteins. Although mitochondrial proteins were present 

among the positive hits, their distribution was not random and they included mainly the 

respiratory chain components. Apart from this fact, the identified channels, receptors, 

transporter molecules as well as SNAREs, trafficking and SV proteins represented the 

majority of the proteins. Some of the proteins were known interacting partners of stx 1, 

however the explanation for the co-purification profile of others remains elusive. 
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Importantly, the number of identified membrane proteins affirmed the potential of the 

extraction and isolation protocols and increased when a low salt washing condition was 

used.  
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4 Discussion and conclusions 
 

The cytomatrix at the active zone and its associated proteins are in main focus of 

research for neurobiologists and biochemists. The AZ structure represents a great 

experimental challenge since the core AZ constituents and their protein assemblies often 

fail in non-denaturing detergent-based isolation trials. The knowledge about the protein 

constituents of the synapse has grown due to development of sensitive mass spectrometry 

techniques and lowering the detection limits for novel protein discovery. Recent reports 

from our lab combined biochemical fractionations with quantitative mass spectrometry and 

revealed the protein constituents of SVs and the differences between excitatory and 

inhibitory release sites [133, 146]. These findings together with the results of others [203, 

250] advanced our knowledge on the organization and regulation of neurotransmission. 

However, revealing the protein composition of synaptic membranes and characterization of 

native protein membrane complexes remains elusive. Poor extractability or harsh 

solubilization conditions restrain the isolation of protein-protein interactions. Moreover, 

successful solubilization of a transmembrane protein does not equal preservation of its 

native interactions. Nonetheless, in recent years few reports pioneered the synaptic 

biochemistry field by identifying protein complexes within the synaptic membranes [121, 

125-129, 134, 135, 164].  

Main challenge in the development of the novel systematic protocol for protein 

extraction represented the centrifugation step after membrane solubilization.  The 

solubilization process depends on the internal properties of the detergent as well as on the 

detergent:lipid:protein ratio [169, 170]. Practically, the degree of solubilization can be 

determined only by the use of further techniques like turbidity measurements and/or 

electron microscopy [95]. Usually, in daily biochemical work, the solubilization properties 

of a detergent are assessed by the presence or absence of a target protein in the supernatant 

after the centrifugation step.  Importantly, the parameter influencing the outcome of this 

step is the pelleting efficiency of the centrifugation, which is determined by the 

centrifugation time, applied g force and the k factor of the rotor. It should be also 

considered that this step clears the suspension not only from detergent insoluble membrane 

remaining, but it could also remove large protein complexes from the supernatant by 

pelleting them. Therefore, we addressed this problem quantitatively by calculating the 

maximal sedimentation coefficient Scoeff,max=227  of protein-lipid-detergent particles 
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remaining in the supernatant after centrifugation. Recently, Müller and co-workers 

reported that centrifugation steps, pelleting extracted protein complexes with Scoeff,max>300 

might reduce the number of co-immunopurified proteins. This observation was valid for 

the affinity purifications of presynaptic Ca2+ channels and the max. S coefficient value was 

set considering the molecular weight and size of other intracellular membranous and non-

membranous particles [135]. In order to ensure complete removal of insolubilized (intact) 

membranes in our protocol, we used a harsher centrifugation step and probed the resulting 

supernatant for proteins associated with the presynaptic protein network or the 

postsynaptic density. Herewith, we report for first time the successful extraction of the 

large scaffolding proteins Bassoon and Piccolo using three different detergents – TDOC, 

cholate and DDM. Furthermore, we were able to extract, completely or partially, all core 

AZ constituents, scaffolding proteins as well as ion channels and receptors. However, this 

applied also to mitochondrial proteins, which are discussed below. Many presynaptic 

CAZ-associated proteins were well extracted in nearly all tested detergents with some 

minor exceptions (e.g. CHAPS, CHAPSO). Remarkable result was the successful 

extraction of hydrophobic proteins like ELKS, liprins, Munc13 and Mint1, which are 

difficult to solubilize and often missed in proteomic studies [146, 163, 203]. Our results 

also showed that presynaptic proteins are better extractable than the ones associated with 

the PSD. Interestingly, postsynaptic proteins showed more differentiated extraction profile 

than the CAZ proteins.   

The extracted proteins were subjected to separation using two different techniques – 

linear gradient centrifugation and size exclusion chromatography. These techniques were 

successfully used earlier for separation of solubilized crude SV fraction (i.e. LP2 fraction) 

[159, 174, 176]. In contrast to the published results, we observed poor separation of the 

extracted proteins by density gradient centrifugation. Due to the complexity of the extracts 

and the low amount of material that can be loaded on a gradient, further gradient 

experiments were omitted.  However, better separation was achieved by SEC. 

Interestingly, when SEC was applied, similarity in the elution profiles of the protein was 

observed disregarding the detergent used. This suggests non-random, specific extraction of 

proteins possibly with preservation of their protein-protein interactions to some extent as 

discussed in sections 3.2 and 3.3. However, the co-elution profile of the immunodetected 

proteins does not necessary indicates intact protein-protein complex assemblies. There is a 

possibility that the proteins co-elute in the same fractions without complex formation. This 

question could be addressed by immunopurifications, followed by peptide elution and 
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separation of eluted protein complexes via BN-PAGE. In addition, native mass 

spectrometry, a newly developed technique for separation of intact membrane protein 

complexes could be used [251]. Recently, the preservation of detergent-extracted protein 

complexes during native MS measurement was also confirmed theoretically by molecular 

dynamics simulations [252]. In addition, detergent solubilization and biochemical 

fractionation followed by AP-MS could be performed in combination with mild chemical 

cross-linking to stabilize protein interactions or to probe for stoichiometrical changes in the 

protein complexes [253, 254]. The use of chemical short length cross-linkers prior to 

membrane solubilization would rule out possible artefacts, which are introduced by the use 

of detergent. In other words, it is possible that the added detergent first extracts larger 

portion of the membrane lipids causing an artificial clustering of membrane proteins. More 

importantly, the existence of such an artefact would lead to co-immunoisolation of 

proteins, which are not interacting under native conditions.  

In order to validate that our protocol not only enables extraction of integral proteins 

but also preserves their protein-protein interactions, we focused on the analysis of stx 1 co-

immunopurified proteins. Here, for first time we use a reported affinity matrix  (non-

porous epoxy-beads Euprgit C1Z coupled with anti-stx1 Ab (Cl78.2)) [144] for the affinity 

purification of  detergent-extracted proteins and their protein interactions. Importantly, the 

choice of affinity matrix is crucial because it affects the binding degree of target-

nonspecific proteins [114, 134].  

A positive extraction profile for the presynaptic CAZ-associated proteins was 

observed when cholate was used. At the same time, cholate did not extract many of the 

postsynaptic proteins, which were not in the focus of our study. Successful immune-

enrichment of stx 1 in cholate, in combination with the newly adopted protocol for on-

beads-proteolysis yielded better protein coverage than the follow of the classical in-gel 

digestion protocol. In total 1852 proteins were co-purified with stx 1. The tandem use of 

LFQ AP-MS proteomics and volcano plots for data analysis and representation [137, 197] 

excluded significant number of nonspecifically bound proteins. Up to date, volcano plots 

were successfully used for identification of novel and known proteins associated with 

chromatin or anaphase-promoting complexes [136, 137]. Thus, for first time we report the 

application of the method for analysis of membrane protein co-immunoprecipitates.  Out of 

1852, 158 proteins passed the adopted threshold criteria (SO=1, FDR=0.01) under the 

high-stringency co-IP condition (high salt washing step). First noteworthy observation was 
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the reproducibility of the data among the five biological replicates. Highest enrichment and 

lowest p-value in the volcano plot showed stx 1. This result confirmed successful 

immunoprecipitation of the target protein in all experiments. Over 95% of the proteins 

above the threshold margin were integral proteins. This result was remarkable compared to 

the published data from the VGCC proteome study, in which only 40% of the identified 

207 proteins were integral or membrane-associated [135]. This result affirmed efficient 

membrane solubilization, protein extraction upon preservation of protein-protein 

interactions as well as successful tryptic digestion by the novel protocol. Most of the 

identified proteins belonged to three protein groups: mitochondrial, synaptic vesicle and 

transporters/receptors/channel proteins. The presence of mitochondrial proteins was not 

surprising since they are common contamination in proteomic studies due to their high 

abundance and “stickiness” [114, 255]. Interestingly, the distribution of the mitochondrial 

proteins was not random, but rather specific. They exclusively belonged to the respiratory 

chain complex embedded in the inner mitochondrial membrane. Remarkably, no 

ribosomal, nuclear or heat shock proteins as well as only one myelin protein were detected 

among the positive hits when high salt washing steps were used. Only 7 proteins (~4 % of 

the positive hits) were metabolic enzymes.  

The two following largest groups of proteins were SV proteins and presynaptic plasma 

membrane proteins (transporters, channels and receptors). The high abundance of SV 

proteins could be explained by that the presence of our target protein stx 1 on SVs, 

therefore its association with some vesicle proteins could be presumed [133]. Among the 

detected SNAREs, trafficking molecules and channels were many known protein 

interaction partners of stx 1. This suggested possible association of stx 1 in protein 

complexes with different compositions. These complexes might be involved in 

intracellular trafficking or in regulation of neurotransmission at different spatial and 

temporal points. Some of these protein-protein assemblies are discussed here. Stx 1 is a 

main component of the exocytotic machinery and forms a SNARE complex with two other 

proteins, SNAP-25 and syb 2, which were as well significantly enriched in our samples 

[174]. Interestingly, two isoforms of SNAP-25 were detected, suggesting participation of 

stx 1 in developmentally and functionally distinct SNARE complexes [256]. Also VGAT 

was identified among our hits. This finding was a further example of a preserved direct 

binding: VGAT and stx 1A were shown to interact [257] and syntaxin’s binding to VGAT 

inhibits GABA uptake in hippocampal neurons.  This interaction suggests a link between 

the neurotransmitter release and uptake machinery. Significantly enriched proteins with 
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less characterized functions were also repeatedly found in our samples: e.g. SV31 protein, 

synaptogyrin 1 and 3, SV2A/B and Scamp protein isoforms. SV31 is a recently discovered 

SV protein, that was reported to co-localize with stx 1A and SNAP-25 in PC12 cells [201, 

202] whereas syngr-3 co-localizes with syb 2, stx 1 and VGLUT1 [200]. Since VGLUT1 

has no reported interaction with stx 1, it could be speculated that the proteins are linked 

together in a multimeric complex formed at syngr-3. These complexes might indicate a 

role of syntaxin for linking the fusion machinery at the AZ with the neurotransmitter 

uptake in SVs. Moreover, specific stx 1 interacting proteins like syt-1 [160], stxbp5 

(tomosyn) [204], stxbp6 (amysin) [205] and sec22b [206] were also detected above our 

threshold margin in both conditions. Interestingly, stxbp1 (Munc-18) was not identified in 

our IP samples. This could be due to binding of tomosyn to stx 1which causes dissociation 

of the bound Munc-18 protein [204, 258]. Well preserved interactions of stx 1 only at low 

salt concentration included syntaphilin [242], VGCCs of N- and R-type [243] and the 

cytoskeleton proteins myosin5a [246] and septin 5 [247]. Syntaphilin’s association with stx 

1A is phosphorylation dependent [259] and is possible that it was disrupted by high salt. 

Similarly, weak or polar interactions with ion channels might be lost during high salt 

washing procedures and were detectable only at low salt concentrations. As described, 

some of the identified proteins are direct binding partners of stx 1, whereas others might 

suggest a role in trafficking or intracellular ion and pH homeostasis. This idea is supported 

by the long list of identified voltage-gated channels, transporters as well receptors (e.g. 

presynaptic metabotropic glutamate receptors [260]). This list was extended when low salt 

washing buffer was used.  

A noteworthy remark is the excellent overlap of the results from the high-stringency 

condition with the ones obtained under the low salt IP conditions. Only three proteins 

identified under the high salt condition were not detected when low salt washings were 

used: antiapoptotic protein Faim2 (lifeguard 2) [261, 262], cell cycle control protein 50 

(Tmem30A, CDC50A) and an uncharacterized protein with predicted electron chain 

association. Under low-stringency conditions, more proteins passed the threshold filtering 

criteria: in total 255. They included also more members of the receptor/transporter/channel 

protein group. These proteins were lost during the high salt washing step probably due to 

weak association with the immunopurified target, low number of protein complexes with 

participation of stx 1, inefficient digestion or missed detection. As presumed and indicated 

in the results section, also the number of mitochiondrial proteins under these conditions 

was significantly increased. It is worth mentioning that only 15 proteins were significantly 
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enriched in the mock sample under the high-stringency conditions. . As comparison, more 

than 200 proteins were above the threshold line in the low salt IP experiments. These 

results emphasize the potential of our extraction, immunopurification and on-beads-

digestion protocols for specific enrichment and identification of great number of 

membrane proteins.  

In summary, the successful application of the adopted protocols relies on few critical 

points. First, the selection of detergent, which efficiently extracts the membrane proteins of 

interest, is crucial. This experimental challenge can be addressed only empirically. Second, 

the choice of pre-centrifugation conditions after solubilization affects the amount of 

extracted proteins remaining in the supernatant. It should be kept in mind, that this step 

aims not only on removing insoluble membrane remaining but it could also clear the 

supernatant from high molecular protein complexes of interest. Thus, the centrifugation 

step should be chosen with pre-caution and must be validated experimentally. Third, the 

combination of label-free quantitative proteomics with sophisticated data analysis is crucial 

for identification of true positive hits in the immunoisolation experiments. However, this 

does not rule out the verification of the obtained results by other biochemical or 

biophysical techniques like asymmetric field-flow fractionation, mutation and binding 

studies. 

The consideration of these points allows high enrichment and identification of 

membrane proteins upon preservation of their native protein-protein interactions.  

Furthermore, the established methodology can be used for the study of other presynaptic 

membrane proteins or core AZ constituents. Finally yet importantly, the systematic 

evaluation of the experimental parameters pointed out critical variables in the protocol. 

Their fine adjustment would allow the use of our protocol for the study of other membrane 

proteins and their interacting partners.  
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Appendix   

 

Appendix  1. Protein separation profile after TDOC solubilization of LP1 fraction. Pre-centrifuged extract after LP1 solubilization was loaded on Superose 6 10/300 GL gel 
filtration column. Fractions were collected (indicated above) and immunoprobed for proteins from five different classes – SV, AZ and CAZ-associated, PSD and PSD-
scaffolding, PM and cytoskeleton proteins. 
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Appendix  2. Protein separation profile after DDM solubilization of LP1 fraction. Pre-centrifuged extract after LP1 solubilization was loaded on Superose 6 10/300 GL gel 
filtration column. Fractions were collected (indicated above) and immunoprobed for proteins from five different classes – SV, AZ and CAZ-associated, PSD and PSD-
scaffolding, PM and cytoskeleton proteins. 
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Appendix  3. (A) Bassoon and (B) Piccolo elution profile after TDOC solubilization of LP1 fraction. 
After pre-centrifugation of TDOC-solubilized LP1 fraction at 100 000 g for 20 min (TLA100.3), supernatant 
was separated on a gel filtration column (Superose 6 10/300 GL). Sample fractions were probed for both 
scaffolding proteins by immunoblotting (IB).   

 

 

 

Appendix  4. (A) Bassoon and (B) Piccolo elution after DDM solubilization of LP1 fraction. After pre-
centrifugation of DDM-solubilized LP1 fraction at 100 000 g for 20 min (TLA100.3), supernatant was 
separated on a gel filtration column (Superose 6 10/300 GL). Sample fractions were probed for both 
scaffolding proteins by immunoblotting (IB). As shown before, Piccolo was less extractable in DDM than in 
cholate and TDOC. Therefore, only protein degradation products and/or splice variants were detected by 
immunoblotting (IB).  
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Appendix  5. Stx 1A immunoprecipitation from cholate-solubilized LP1 fraction with Cl 78.3 antibody. 
The pre-centrifuged suspension after LP1 solubilization was rotated for 2 h with Protein A- or Protein G-
coated Dynabeads, which were pre-incubated with an excess of Cl 78.3 Ab or mouse IgG (control) antibody. 
After 2 h, beads were washed with either low salt or high salt washing buffer. Input, supernatant after IP and 
beads were boiled in SDS sample buffer and their protein content was separated by SDS-PAGE. For 
immunodetection, mAb Cl 78.3 (1:1000) was used. 
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Appendix  6.  Immunoisolation of stx 1A with Euprgit C1Z-78.3 beads via rabbit anti-mouse bridging IgG molecules. Cl 78.3 mAb failed in direct coupling approach to 
Eupergit C1Z beads. A conjugate of Eupergit beads and anti-mouse IgGs was used to bind Cl 78.3 Ab. Different amounts (10 µl, 20 µl or 40 µl) of the resulting immunomatrix 
were used under two washing conditions for optimal immunoisolation of the target. Beads were rotated with pre-centrifuged cholate-solubilized LP1 fraction for 2 h and washed 
with low or high salt IP washing buffer. 
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Appendix  7. List of 158 significantly enriched proteins in stx 1 IP sample under high salt conditions. 

Protein ID Protein name 

Q9QXG3 Syntaxin 1A 

P19804 Nucleoside diphosphate kinase B 

P07825 Synaptophysin 

Q9WU70-2 Isoform 2 of Syntaxin-binding protein 5 

P60881 Synaptosomal-associated protein 25 

P61265 Syntaxin-1B 

Q5M7T6 ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1 

P11951 Cytochrome c oxidase subunit 6C-2 

Q2I6B2 V-H+ATPase subunit a1-III 

P63045 Vesicle-associated membrane protein 2 

Q63564 Synaptic vesicle glycoprotein 2B 

P60905 DnaJ homolog subfamily C member 5 

Q6QIX3 Zinc transporter 3 

D4A0T0 Protein Ndufb10 

Q641Y2 NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial 

Q812E9 Neuronal membrane glycoprotein M6-a 

D3ZU84 Protein Stxbp5l 

Q5XIN6 LETM1 and EF-hand domain-containing protein 1, mitochondrial 

O35458 Vesicular inhibitory amino acid transporter 

P04775 Sodium channel protein type 2 subunit alpha 

M0RCJ9 Protein LOC100911027 

D3ZF13 Acyl carrier protein 

D4A3V2 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6 

P12075 Cytochrome c oxidase subunit 5B, mitochondrial 

P97610 Synaptotagmin-12 

Q5XIF3 NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial 

D3ZZ21 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 6 (Predicted) 

B0BNE6 NADH dehydrogenase (Ubiquinone) Fe-S protein 8 (Predicted), isoform CRA 

D4A565 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 5 (Predicted), isoform CRA 

Q07647 Solute carrier family 2, facilitated glucose transporter member 3 

Q9JHW5 Vesicle-associated membrane protein 7 

O70257 Syntaxin-7 

Q8SEZ5 Cytochrome c oxidase subunit 2 

B5DEL8 NADH dehydrogenase (Ubiquinone) Fe-S protein 5 

Q62634 Vesicular glutamate transporter 1 

Q6IRF8 ATPase, H+ transporting, lysosomal accessory protein 1 

P19234 NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial 

P63081 V-type proton ATPase 16 kDa proteolipid subunit 

P56603 Secretory carrier-associated membrane protein 1 

F1LNE4 Glutamate receptor 2 

G3V7P1 Syntaxin-12 

D3ZLT1 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 7 (Predicted) 
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F1M9V2 Vesicle-associated membrane protein 1 (Fragment) 

F1M585 Protein Atp8a1 (Fragment) 

G3V6M3 Synaptotagmin II 

F1LNY3 Neural cell adhesion molecule 1 (Fragment) 

Q5XIH3 NADH dehydrogenase (Ubiquinone) flavoprotein 1 

P21707 Synaptotagmin-1 

Q5BK63 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial 

B2RYS0 Cox7a2 protein 

D3ZE15 Protein Ndufa13 

Q68FY0 Cytochrome b-c1 complex subunit 1, mitochondrial 

D3ZCI5 Protein Stxbp6 

P11240 Cytochrome c oxidase subunit 5A, mitochondrial 

A9UMV9 Ndufa7 protein 

Q5PQZ9 NADH dehydrogenase [ubiquinone] 1 subunit C2 

Q66HF1 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial 

P10888 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial 

Q63362 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 

P19492 Glutamate receptor 3 

Q6P6S0 Synaptosomal-associated protein 47 

D4A4P3 Protein LOC100361144 

F1LQZ0 Protein Tmem65 

D3ZG43 NADH dehydrogenase (Ubiquinone) Fe-S protein 3 (Predicted), isoform CRA 

Q8SEZ8 NADH-ubiquinone oxidoreductase chain 1 (Fragment) 

Q02563 Synaptic vesicle glycoprotein 2A 

P07340 Sodium/potassium-transporting ATPase subunit beta-1 

B2RYW3 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 9 

P31662 Sodium-dependent neutral amino acid transporter SLC6A17 

B2RYT5 Cox7a2l protein 

Q63633-2 Isoform 2 of Solute carrier family 12 member 5 

Q5RJN0 NADH dehydrogenase (Ubiquinone) Fe-S protein 7 

P06685 Sodium/potassium-transporting ATPase subunit alpha-1 

F1LPG5 Protein LOC688963 

G3V846 Excitatory amino acid transporter 1 

D4A7L4 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 11 (Predicted) 

D3ZD09 Cytochrome c oxidase subunit 6B1 

F1LXA0 NADH dehydrogenase (Ubiquinone) 1 alpha subcomplex, 12 (Predicted), isoform CRA 

Q63635 Syntaxin-6 

A9CMA6 Transmembrane protein 163 

P97846 Contactin-associated protein 1 

E9PTW1 Protein Scamp3 

B2RYS8 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex 8 

Q5RKI8 ATP-binding cassette sub-family B member 8, mitochondrial 

P31399 ATP synthase subunit d, mitochondrial 

Q920L2 Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial 
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O54755 MIPP65 

Q9JI66-3 Isoform 3 of Electrogenic sodium bicarbonate cotransporter 1 

Q6PCU8 NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial 

Q5EGY4 Synaptobrevin homolog YKT6 

P06687 Sodium/potassium-transporting ATPase subunit alpha-3 

P23978 Sodium- and chloride-dependent GABA transporter 1 

B2RYX1 LOC685322 protein 

F1M8G9 Protein Ncam2 (Fragment) 

Q06QG6 NADH-ubiquinone oxidoreductase chain 5 

P21913 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial 

P29419 ATP synthase subunit e, mitochondrial 

P63138 Gamma-aminobutyric acid receptor subunit beta-2 

Q5BJZ3 Nicotinamide nucleotide transhydrogenase 

P97829-2 Isoform 2 of Leukocyte surface antigen CD47 

P19643 Amine oxidase [flavin-containing] B 

Q64304 RATLE LLAT protein 

D3ZS58 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 

P27605 Hypoxanthine-guanine phosphoribosyltransferase 

F1M9A2 Sodium/calcium exchanger 2 

D3ZCZ9 Protein LOC100912599 

D3ZAF6 ATP synthase subunit f, mitochondrial 

Q06QG7 NADH-ubiquinone oxidoreductase chain 4 

P60881-2 Isoform 2 of Synaptosomal-associated protein 25 

P19490 Glutamate receptor 1 

G3V851 Solute carrier family 17 (Sodium-dependent inorganic phosphate cotransporter), 
member 6 

F1M882 Secretory carrier-associated membrane protein 5 (Fragment) 

D4A133 Protein Atp6v1a 

D4A7L6 Protein Rpia 

D4A6L0 Probable G-protein coupled receptor 158 

P21571 ATP synthase-coupling factor 6, mitochondrial 

D3ZC50 Uncharacterized protein 

D4ABK1 Protein Syngr3 

Q4KM74 Vesicle-trafficking protein SEC22b 

G3V8F1 Transporter 

P31596-2 Isoform Glt-1A of Excitatory amino acid transporter 2 

Q9ES40 PRA1 family protein 3 

O88917-2 Isoform 2 of Latrophilin-1 

Q01728-2 Isoform 2 of Sodium/calcium exchanger 1 

Q6AY30 Saccharopine dehydrogenase-like oxidoreductase 

D3ZFQ8 Cytochrome c-1 (Predicted), isoform CRA 

Q4FZT0 Stomatin-like protein 2, mitochondrial 

P31421 Metabotropic glutamate receptor 2 

D4A3N4 Adenylate cyclase 1 (Predicted) 
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D3ZCI0 Glycerol kinase 

Q6PDU7 ATP synthase subunit g, mitochondrial 

Q5M9H4 ATPase, Na+/K+ transporting, beta 2 polypeptide 

P62815 V-type proton ATPase subunit B, brain isoform 

Q9QX10 Na-K-Cl cotransporter 

Q62976 Calcium-activated potassium channel subunit alpha-1 

P11506-8 Isoform ZB of Plasma membrane calcium-transporting ATPase 2 

B4F773 Ttyh1 protein 

P06686 Sodium/potassium-transporting ATPase subunit alpha-2 

Q6P9V1 CD81 antigen 

B1WC61 Acad9 protein 

Q63198 Contactin-1 

Q80ZA5-4 Isoform 4 of Sodium-driven chloride bicarbonate exchanger 

Q6AY41 Cell cycle control protein 50A 

Q91XV6-2 Isoform 2 of FXYD domain-containing ion transport regulator 6 

D3ZAA0 PRA1 domain family 2 (Predicted) 

Q7TP78 Aa2-258 

Q6PW52 GABA-A gamma2 long isoform 

M0R531 Uncharacterized protein 

E9PSV8 Neuronal membrane glycoprotein M6-b 

Q75Q39 Mitochondrial import receptor subunit TOM70 

Q9JI56 Synaptosomal-associated protein 

B0BN30 Mtch1 protein 

P29994-8 Isoform 8 of Inositol 1,4,5-trisphosphate receptor type 1 

P05708 Hexokinase-1 

G3V864 Lipid phosphate phosphatase-related protein type 4 

Q6MFX9 Myelin oligodendrocyte glycoprotein 

Q561S0 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial 

F1LNC4 Protein LOC100359512 
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Appendix  8. List of 15 significantly enriched proteins in mock IP samples under high salt conditions 

Protein ID Protein name 

P20761 Ig gamma-2B chain C region 

D3ZBB2 RCG64160 

F1LVL4 Uncharacterized protein 

M0R628 Uncharacterized protein (Fragment) 

M9MMN0 Protein Ighg3 (Fragment) 

M0RDZ5 Uncharacterized protein (Fragment) 

F1LTN6 Uncharacterized protein (Fragment) 

M0RBJ7 Complement C3 

F1LYF1 Uncharacterized protein (Fragment) 

F1M5X4 Uncharacterized protein (Fragment) 

P17078 60S ribosomal protein L35 

M0R6R6 Uncharacterized protein 

P54311 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 

F1M195 Uncharacterized protein (Fragment) 

D4A4I4 Protein Iqsec2 
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Appendix  9. List of all 62 mitochondrial proteins identified above the threshold values in the stx 1 IP 
samples at high salt concentration. 

Protein ID Protein name 

P19804 Nucleoside diphosphate kinase B 

P11951 Cytochrome c oxidase subunit 6C-2 

D4A0T0 Protein Ndufb10 

Q641Y2 NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial 

Q5XIN6 LETM1 and EF-hand domain-containing protein 1, mitochondrial 

D4A3V2 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6 

P12075 Cytochrome c oxidase subunit 5B, mitochondrial 

Q5XIF3 NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial 

D3ZZ21 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 6 (Predicted) 

B0BNE6 NADH dehydrogenase (Ubiquinone) Fe-S protein 8 (Predicted), isoform CRA 

D4A565 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 5 (Predicted), isoform CRA 

Q8SEZ5 Cytochrome c oxidase subunit 2 

B5DEL8 NADH dehydrogenase (Ubiquinone) Fe-S protein 5 

P19234 NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial 

D3ZLT1 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 7 (Predicted) 

Q5XIH3 NADH dehydrogenase (Ubiquinone) flavoprotein 1 

Q5BK63 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial 

B2RYS0 Cox7a2 protein 

D3ZE15 Protein Ndufa13 

Q68FY0 Cytochrome b-c1 complex subunit 1, mitochondrial 

P11240 Cytochrome c oxidase subunit 5A, mitochondrial 

A9UMV9 Ndufa7 protein 

Q5PQZ9 NADH dehydrogenase [ubiquinone] 1 subunit C2 

Q66HF1 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial 

P10888 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial 

Q63362 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 

D4A4P3 Protein LOC100361144 

F1LQZ0 Protein Tmem65 

D3ZG43 NADH dehydrogenase (Ubiquinone) Fe-S protein 3 (Predicted), isoform CRA 

Q8SEZ8 NADH-ubiquinone oxidoreductase chain 1 (Fragment) 

B2RYW3 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 9 

B2RYT5 Cox7a2l protein 

Q5RJN0 NADH dehydrogenase (Ubiquinone) Fe-S protein 7 

F1LPG5 Protein LOC688963 

D4A7L4 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 11 (Predicted) 

D3ZD09 Cytochrome c oxidase subunit 6B1 

F1LXA0 NADH dehydrogenase (Ubiquinone) 1 alpha subcomplex, 12 (Predicted), isoform CRA 

B2RYS8 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex 8 

Q5RKI8 ATP-binding cassette sub-family B member 8, mitochondrial 

P31399 ATP synthase subunit d, mitochondrial 

Q920L2 Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial 
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O54755 MIPP65 

Q6PCU8 NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial 

B2RYX1 LOC685322 protein 

Q06QG6 NADH-ubiquinone oxidoreductase chain 5 

P21913 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial 

P29419 ATP synthase subunit e, mitochondrial 

P19643 Amine oxidase [flavin-containing] B (Monoamine oxidase type B) 

D3ZS58 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 

D3ZCZ9 Protein LOC100912599 

D3ZAF6 ATP synthase subunit f, mitochondrial 

Q06QG7 NADH-ubiquinone oxidoreductase chain 4 

P21571 ATP synthase-coupling factor 6, mitochondrial 

D3ZC50 Uncharacterized protein 

D3ZFQ8 Cytochrome c-1 (Predicted), isoform CRA 

Q4FZT0 Stomatin-like protein 2, mitochondrial 

Q6PDU7 ATP synthase subunit g, mitochondrial 

B1WC61 Acad9 protein 

Q7TP78 Aa2-258 

Q75Q39 Mitochondrial import receptor subunit TOM70 

B0BN30 Mtch1 protein 

Q561S0 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial 
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Appendix  10. List of 275 significantly enriched proteins in stx 1 IP sample under low salt conditions 

Protein ID Protein name 

Q9QXG3 Syntaxin 1A 

Q9WU70-2 Isoform 2 of Syntaxin-binding protein 5 

P61265 Syntaxin-1B 

P07825 Synaptophysin 

F1LNY3 Neural cell adhesion molecule 1 (Fragment) 

P60881 Synaptosomal-associated protein 25 

P19804 Nucleoside diphosphate kinase B 

D3ZF13 Acyl carrier protein 

P97610 Synaptotagmin-12 

Q5M7T6 ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1 

D4A7L4 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 11 (Predicted) 

B2RYS8 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex 8 

D3ZU84 Protein Stxbp5l 

O35458 Vesicular inhibitory amino acid transporter 

Q6IRF8 ATPase, H+ transporting, lysosomal accessory protein 1 

Q5PQZ9 NADH dehydrogenase [ubiquinone] 1 subunit C2 

Q920L2 Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial 

Q62634 Vesicular glutamate transporter 1 

F1M882 Secretory carrier-associated membrane protein 5 (Fragment) 

Q5XIF3 NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial 

D3ZZ21 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 6 (Predicted) 

B5DEL8 NADH dehydrogenase (Ubiquinone) Fe-S protein 5 

F1M585 Protein Atp8a1 (Fragment) 

D4A4P3 Protein LOC100361144 

D4A3V2 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6 

D3ZD09 Cytochrome c oxidase subunit 6B1 

Q63564 Synaptic vesicle glycoprotein 2B 

Q2I6B2 V-H+ATPase subunit a1-III 

Q06QG6 NADH-ubiquinone oxidoreductase chain 5 

P04775 Sodium channel protein type 2 subunit alpha 

O54755 MIPP65 

P56603 Secretory carrier-associated membrane protein 1 

D4A0T0 Protein Ndufb10 

Q02563 Synaptic vesicle glycoprotein 2A 

Q07647 Solute carrier family 2, facilitated glucose transporter member 3 

Q8SEZ8 NADH-ubiquinone oxidoreductase chain 1 (Fragment) 

F1M9V2 Vesicle-associated membrane protein 1 (Fragment) 

Q5XIN6 LETM1 and EF-hand domain-containing protein 1, mitochondrial 

B0BNE6 NADH dehydrogenase (Ubiquinone) Fe-S protein 8 (Predicted), isoform CRA 

Q641Y2 NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial 

Q6QIX3 Zinc transporter 3 

B2RYX1 LOC685322 protein 
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M0RCJ9 Protein LOC100911027 

F1LPG5 Protein LOC688963 

A9UMV9 Ndufa7 protein 

D3ZCZ9 Protein LOC100912599 

Q6PCU8 NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial 

F1LNE4 Glutamate receptor 2 

B2RYW3 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 9 

O70257 Syntaxin-7 

F1M9A2 Sodium/calcium exchanger 2 

F1M8G9 Protein Ncam2 (Fragment) 

D4A565 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 5 (Predicted), isoform CRA 

P19492 Glutamate receptor 3 

P23978 Sodium- and chloride-dependent GABA transporter 1 

P63045 Vesicle-associated membrane protein 2 

P97829-2 Isoform 2 of Leukocyte surface antigen CD47 

D4A133 Protein Atp6v1a 

D3ZS58 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2 

D4A6L0 Probable G-protein coupled receptor 158 

Q63362 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5 

B2RYS0 Cox7a2 protein 

P60905 DnaJ homolog subfamily C member 5 

D3ZLT1 NADH dehydrogenase (Ubiquinone) 1 beta subcomplex, 7 (Predicted) 

P21913 Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial 

P60881-2 Isoform 2 of Synaptosomal-associated protein 25 

Q5RJN0 NADH dehydrogenase (Ubiquinone) Fe-S protein 7 

B4F773 Ttyh1 protein 

Q6P6S0 Synaptosomal-associated protein 47 

G3V7P1 Syntaxin-12 

O88917-2 Isoform 2 of Latrophilin-1 

P19643 Amine oxidase [flavin-containing] B 

Q5EGY4 Synaptobrevin homolog YKT6 

Q5XIH3 NADH dehydrogenase (Ubiquinone) flavoprotein 1 

Q4FZT0 Stomatin-like protein 2, mitochondrial 

Q561S0 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial 

P19490 Glutamate receptor 1 

D4A7L6 Protein Rpia 

Q5RKI8 ATP-binding cassette sub-family B member 8, mitochondrial 

P62815 V-type proton ATPase subunit B, brain isoform 

P97846 Contactin-associated protein 1 

Q5BK63 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial 

G3V8F1 Transporter 

A9CMA6 Transmembrane protein 163 

B2RYS2 Cytochrome b-c1 complex subunit 7 

P19234 NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial 
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P31662 Sodium-dependent neutral amino acid transporter SLC6A17 

Q64304 RATLE LLAT protein 

Q66HF1 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial 

Q9JHW5 Vesicle-associated membrane protein 7 

F1LQZ0 Protein Tmem65 

G3V7L8 ATPase, H+ transporting, V1 subunit E isoform 1, isoform CRA 

G3V9N1 RCG21137 

Q812E9 Neuronal membrane glycoprotein M6-a 

Q7TP78 Aa2-258 

Q75Q39 Mitochondrial import receptor subunit TOM70 

G3V851 Solute carrier family 17 (Sodium-dependent inorganic phosphate cotransporter), 
member 6 

P11951 Cytochrome c oxidase subunit 6C-2 

B1WC61 Acad9 protein 

B2RYT5 Cox7a2l protein 

Q62976 Calcium-activated potassium channel subunit alpha-1 

P10888 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial 

E9PTW1 Protein Scamp3 

Q8SEZ5 Cytochrome c oxidase subunit 2 

Q9QX10 Na-K-Cl cotransporter 

D3ZG43 NADH dehydrogenase (Ubiquinone) Fe-S protein 3 (Predicted), isoform CRA 

Q63633-2 Isoform 2 of Solute carrier family 12 member 5 

Q80ZA5-4 Isoform 4 of Sodium-driven chloride bicarbonate exchanger 

Q68FY0 Cytochrome b-c1 complex subunit 1, mitochondrial 

D3ZCI5 Protein Stxbp6 

Q9JI66-3 Isoform 3 of Electrogenic sodium bicarbonate cotransporter 1 

Q01728-2 Isoform 2 of Sodium/calcium exchanger 1 

Q4KM74 Vesicle-trafficking protein SEC22b 

D3ZE15 Protein Ndufa13 

P11506-8 Isoform ZB of Plasma membrane calcium-transporting ATPase 2 

Q63635 Syntaxin-6 

D4ABK1 Protein Syngr3 

Q6P9V1 CD81 antigen 

P31421 Metabotropic glutamate receptor 2 

P11240 Cytochrome c oxidase subunit 5A, mitochondrial 

Q6AY30 Saccharopine dehydrogenase-like oxidoreductase 

F1LXA0 NADH dehydrogenase (Ubiquinone) 1 alpha subcomplex, 12 (Predicted), isoform CRA 

G3V6M3 Synaptotagmin II 

O89089 Pore-forming calcium channel alpha-1B subunit variant a 

Q62876 Synaptogyrin-1 

P07340 Sodium/potassium-transporting ATPase subunit beta-1 

P12075 Cytochrome c oxidase subunit 5B, mitochondrial 

P06685 Sodium/potassium-transporting ATPase subunit alpha-1 

F1M7K7 Voltage-dependent calcium channel gamma-8 subunit (Fragment) 
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D4ACN8 Plasminogen receptor (KT) 

P32551 Cytochrome b-c1 complex subunit 2, mitochondrial 

Q91XV6-2 Isoform 2 of FXYD domain-containing ion transport regulator 6 

B1WBY5 DnaJ (Hsp40) homolog, subfamily C, member 11 

Q9JI56 Synaptosomal-associated protein 

P21707 Synaptotagmin-1 

Q9QYF3 Unconventional myosin-Va 

D3ZAA0 PRA1 domain family 2 (Predicted) 

D3ZSU3 Protein Slc7a14 

Q6IMX4 Lipid phosphate phosphohydrolase 3 

D4A8V2 Protein Ccdc177 

P35565 Calnexin 

Q06QG7 NADH-ubiquinone oxidoreductase chain 4 

P35571 Glycerol-3-phosphate dehydrogenase, mitochondrial 

D3ZW84 Gamma-aminobutyric acid receptor subunit beta-3 (Fragment) 

Q63198 Contactin-1 

P63081 V-type proton ATPase 16 kDa proteolipid subunit 

G3V864 Lipid phosphate phosphatase-related protein type 4 

P06687 Sodium/potassium-transporting ATPase subunit alpha-3 

Q9ES40 PRA1 family protein 3 

D4A0E2 Protein Napg 

P47971 Neuronal pentraxin-1 

P63138 Gamma-aminobutyric acid receptor subunit beta-2 

M0RDI5 Protein Mcu 

P31422 Metabotropic glutamate receptor 3 

Q6AXV4 Sorting and assembly machinery component 50 homolog 

G3V9Z6 Septin 8 (Predicted) 

Q6PW52 GABA-A gamma2 long isoform 

Q64568-3 Isoform ZA of Plasma membrane calcium-transporting ATPase 3 

P97710 Tyrosine-protein phosphatase non-receptor type substrate 1 

E9PSV8 Neuronal membrane glycoprotein M6-b 

Q6P503 ATPase, H+ transporting, V1 subunit D, isoform CRA 

M0R874 Protein Atp9a (Fragment) 

G3V881 Leucine rich repeat neuronal 6A, isoform CRA 

Q9Z0V5 Peroxiredoxin-4 

D3ZCI0 Glycerol kinase 

Q641Z9 Protein Sdhc 

G3V7Y3 ATP synthase subunit delta, mitochondrial 

D4A3N4 Adenylate cyclase 1 (Predicted) 

Q76GL9 Neutral amino acid transporter ASCT1 

P62161 Calmodulin 

P29994-8 Isoform 8 of Inositol 1,4,5-trisphosphate receptor type 1 

P31596-2 Isoform Glt-1A of Excitatory amino acid transporter 2 

Q9WUD2 Transient receptor potential cation channel subfamily V member 2 
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Q5M9H4 ATPase, Na+/K+ transporting, beta 2 polypeptide 

D3ZSD8 Protein Tmem143 

M0R6L8 Protein RGD1560220 

A9UMW2 Ndufa3 protein (Fragment) 

P31399 ATP synthase subunit d, mitochondrial 

O08700 Vacuolar protein sorting-associated protein 45 

Q765A7 GPI inositol-deacylase 

Q5BJZ3 Nicotinamide nucleotide transhydrogenase 

Q5YLM1 Sn1-specific diacylglycerol lipase alpha 

Q5FVI6 V-type proton ATPase subunit C 1 

P07153 Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 

D4ADS4 Protein Mgst3 

Q812B0 Liver regeneration-related protein 1 

P31647 Sodium- and chloride-dependent GABA transporter 3 

B0BN30 Mtch1 protein 

F1LNC4 Protein LOC100359512 

P05708 Hexokinase-1 

P21571 ATP synthase-coupling factor 6, mitochondrial 

F1M8Y2 Protein Tspan7 (Fragment) 

G3V846 Excitatory amino acid transporter 1 

D3ZWQ0 Protein Prrt3 

Q6IRL2 Mitofusin 2 

Q2THW7 Palmitoyltransferase ZDHHC5 

G3V8F5 Mitochondrial import receptor subunit TOM40 homolog 

E9PU34 Protein Rmnd1 

Q64542-3 Isoform ZA of Plasma membrane calcium-transporting ATPase 4 

P36970-2 Isoform Cytoplasmic of Phospholipid hydroperoxide glutathione peroxidase, 
mitochondrial 

F1LRE1 Glutathione reductase 

Q6MFX9 Myelin oligodendrocyte glycoprotein 

Q5UAJ5 ATP synthase protein 8 

P19511 ATP synthase subunit b, mitochondrial 

D3ZEI4 Protein Hepacam 

P62813 Gamma-aminobutyric acid receptor subunit alpha-1 

F1LMS1 Voltage-dependent R-type calcium channel subunit alpha-1E 

D4A5X7 Ganglioside-induced differentiation-associated-protein 1 (Predicted) 

O54701 Sodium/potassium/calcium exchanger 2 

Q6MG82 Proline-rich transmembrane protein 1 

Q75Q41 Mitochondrial import receptor subunit TOM22 homolog 

P06686 Sodium/potassium-transporting ATPase subunit alpha-2 

P29419 ATP synthase subunit e, mitochondrial 

Q52KJ9 Protein Tmx1 

O88871 Gamma-aminobutyric acid type B receptor subunit 2 

Q9Z142 Transmembrane protein 33 
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Q9Z2Q7 Syntaxin-8 

D4A5W8 Protein Pgs1 

Q6AXS4 Renin receptor 

P08050 Gap junction alpha-1 protein 

D3ZUX5 Coiled-coil-helix-coiled-coil-helix domain containing 3 (Predicted), isoform CRA 

Q9JI51 Vesicle transport through interaction with t-SNAREs homolog 1A 

F1M1G5 Protein Kctd16 

D3ZFB6 Proline-rich transmembrane protein 2 

B5DEN4 L-lactate dehydrogenase 

B5DF41 Syntaphilin 

P11505-4 Isoform C of Plasma membrane calcium-transporting ATPase 1 

Q04400 Adenylate cyclase type 5 

Q5M9I5 Cytochrome b-c1 complex subunit 6, mitochondrial 

Q5XIN0 Claudin domain containing 1 

A1L1L6 Mitochondrial Rho GTPase 

D3ZDH8 Septin 5, isoform CRA 

F1LSG1 Potassium channel subfamily T member 1 

Q05BA4 Myadm protein 

Q9R1Z0-2 Isoform 2 of Voltage-dependent anion-selective channel protein 3 

O89035 Mitochondrial dicarboxylate carrier 

P61023 Calcineurin B homologous protein 1 

P97521 Mitochondrial carnitine/acylcarnitine carrier protein 

M0R5F9 Protein LOC100910864 

Q9Z270 Vesicle-associated membrane protein-associated protein A 

Q9TEE8 9MURI Cytochrome c oxidase subunit 3 (Fragment) 

F1LYI5 Protein RGD1564138 (Fragment) 

P27605 Hypoxanthine-guanine phosphoribosyltransferase 

Q3KR86 Mitochondrial inner membrane protein (Fragment) 

P34058 Heat shock protein HSP 90-beta 

Q6PDU7 ATP synthase subunit g, mitochondrial 

D3ZFQ8 Cytochrome c-1 (Predicted), isoform CRA 

D3ZS75 Protein Ndufc1 

P63031 Mitochondrial pyruvate carrier 1 

D4A7N1 Coiled-coil-helix-coiled-coil-helix domain-containing protein 6, mitochondrial 

F1LPF3 Choline transporter-like protein 1 (Fragment) 

P30191 Gamma-aminobutyric acid receptor subunit alpha-6 

P31423 Metabotropic glutamate receptor 4 

D3ZAF6 ATP synthase subunit f, mitochondrial 

Q2TA68 Dynamin-like 120 kDa protein, mitochondrial 

F1LSY2 Neuronal pentraxin receptor (Fragment) 

Q6IU14 Acyl-CoA synthetase isoform 6 variant2 

Q8CFD0 Sideroflexin-5 

B3SVE9 Neuroprotective protein 13 

G3V986 Potassium voltage gated channel, Shal-related family, member 2 
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Q80W89 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11 

Q6AXX6 Redox-regulatory protein FAM213A 

P54921 Alpha-soluble NSF attachment protein 

P32089 Tricarboxylate transport protein, mitochondrial 

B0K020 CDGSH iron-sulfur domain-containing protein 1 

Q9JHZ9 Sodium-coupled neutral amino acid transporter 3 

P11507-2 Isoform SERCA2A of Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 

E9PSK0 Protein Man2b2 

Q64548-2 Isoform RTN1-S of Reticulon-1 

Q5XIL1 ATPase, H+ transporting, lysosomal V1 subunit H 

P35704 Peroxiredoxin-2 

F1M6X3 Potassium voltage-gated channel subfamily KQT member 2 

G3V6D3 ATP synthase subunit beta 

B2RYK4 Similar to RIKEN cDNA 1200007B05 

D4A249 Protein Mblac2 
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Appendix  11. List of 457 significantly enriched proteins in the mock IP sample under low salt conditions. 

Protein ID Protein name 

P20761 Ig gamma-2B chain C region 

F1LVL4 Uncharacterized protein 

D3ZBB2 RCG64160 

M0R628 Uncharacterized protein (Fragment) 

M9MMN0 Protein Ighg3 (Fragment) 

M0RBJ7 Complement C3 

M0RDZ5 Uncharacterized protein (Fragment) 

F1M195 Uncharacterized protein (Fragment) 

M0R6R6 Uncharacterized protein 

F1LTN6 Uncharacterized protein (Fragment) 

F1LYF1 Uncharacterized protein (Fragment) 

D3ZYE2 Uncharacterized protein 

F1M5X4 Uncharacterized protein (Fragment) 

I7FKL4 Myelin basic protein transcript variant 1 

Q7M0E7 39S ribosomal protein L14, mitochondrial 

D4A0X3 Protein A830010M20Rik 

Q5BK32 FAS-associated factor 2 

D4AE56 Prostaglandin E synthase 2 (Predicted), isoform CRA 

P13264 Glutaminase kidney isoform, mitochondrial 

P62744 AP-2 complex subunit sigma 

O08651 D-3-phosphoglycerate dehydrogenase 

M0RBX3 Uncharacterized protein 

P49134 Integrin beta-1 

Q66HP7 YME1-like 1 (S. cerevisiae) 

P22199 Mineralocorticoid receptor 

Q5HZA9 Transmembrane protein 126A 

D3ZCB9 Protein Fam92b 

P02091 Hemoglobin subunit beta-1 

D3ZF99 Mitochondrial ribosomal protein L55 (Predicted), isoform CRA 

Q498U0 Uncharacterized protein C4orf3 homolog 

Q3T1L5 Dolichyl pyrophosphate Man9GlcNAc2 alpha-1,3-glucosyltransferase 

F1LRN5 Netrin receptor DCC (Fragment) 

D4ADS9 Protein Efr3a 

D4A9Z6 Mitochondrial ribosomal protein S35 (Predicted) 

Q62761 Casein kinase I isoform gamma-1 

P28073 Proteasome subunit beta type-6 

F1M7I8 Protein RGD1565617 

D3ZQX3 Mitochondrial ribosomal protein S12 (Predicted) 

Q6XUZ6 EG3-1RVC 

Q6Q3F5 SID1 transmembrane family member 1 

Q6PDV6 40S ribosomal protein S14 

F1LNM0 Disks large homolog 1 
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Q5XIG5 G kinase-anchoring protein 1 

Q5FWU3 Autophagy-related protein 9A 

B0BNB0 Golt1b protein 

D3Z949 Protein RGD1561671 

Q64560 Tripeptidyl-peptidase 2 

D4A229 Serine/threonine-protein kinase D 

Q78P75 Dynein light chain 2, cytoplasmic 

P62074 Mitochondrial import inner membrane translocase subunit Tim10 

G3V8V3 Phosphorylase 

Q6AYS7 Aminoacylase-1A 

D3ZE26 Protein Tmcc2 

G3V7N9 Complement C1q subcomponent subunit B 

F1M863 Liprin-alpha-4 

Q5FVJ0 Protein RUFY3 

Q9R1K2-4 Isoform 4 of Teneurin-2 

Q71UE8 NEDD8 

Q9R066-2 Isoform 2 of Coxsackievirus and adenovirus receptor homolog 

C6JUM5 Protocadherin gamma C5 

D3ZAW2 Protein Pisd (Fragment) 

D3ZGN7 Protein Mical3 

F1LNM4 Protein LOC100909666 

D3ZP98 Histocompatibility 13 (Predicted), isoform CRA 

K4DIC3 Cholinergic receptor, nicotinic, alpha polypeptide 4, isoform CRA 

D3ZY51 Plakophilin 1 (Predicted) 

D3ZCH7 Adducin 3 (Gamma), isoform CRA 

D3Z8L7 Ras-related protein R-Ras 

G3V602 Protein Xpr1 

F1M3Y4 Protein RGD1564184 

D3ZPC4 Neural cell adhesion molecule L1 

D3ZG95 Protein Efha2 

B5DFG5 Protein Sept6 

F1LPB9 Rabphilin-3A 

B2GUZ9 Fam49b protein 

D4A899 Protein Vps13a 

O35821 Myb-binding protein 1A 

P49088 Asparagine synthetase [glutamine-hydrolyzing] 

D3ZF21 Protein Gprin3 

O35276 Neuropilin-2 

F1LSQ6 Proteasome subunit alpha type 

O70196 Prolyl endopeptidase 

Q9QUH6-5 Isoform 5 of Ras GTPase-activating protein SynGAP 

Q5BK95 Gdi1 protein 

F1M3T0 ARF GTPase-activating protein GIT1 (Fragment) 

Q5XFV6 Ribosomal protein L34 
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D3ZRN3 Protein Actbl2 

P68370 Tubulin alpha-1A chain 

D3ZD48 Protein Rab11fip2 

B1WBY7 ER lipid raft associated 1 

D3ZJ86 Sodium/hydrogen exchanger 

D3Z946 Protein Tmem70 

B0BMU4 Presenilin associated, rhomboid-like 

F1M0Z1 Protein Trio 

M0R5K2 Protein Erbb2ip 

G3V856 Neuronal guanine nucleotide exchange factor (Predicted) 

D3ZVN7 Orexin 

P27008 Poly [ADP-ribose] polymerase 1 

F1LXY6 Uncharacterized protein (Fragment) 

G3V945 Aldehyde dehydrogenase family 5, subfamily A1 

Q5BJZ2 LOC367586 protein 

B1WC18 Podocalyxin-like 2 

F1LS01 Protein Pcdh9 

Q99P35 Protein Syt7 

Q6GT74 Basigin 

P28023 Dynactin subunit 1 

P81795 Eukaryotic translation initiation factor 2 subunit 3 

Q5XI77 Annexin 

F1LNF0 Protein Myh14 

P62494 Ras-related protein Rab-11A 

D4ACG2 IlvB (Bacterial acetolactate synthase)-like (Predicted), isoform CRA 

F1LMZ4 Ribosome-releasing factor 2, mitochondrial 

Q5U302 Catenin (Cadherin associated protein), alpha 1 

E9PTD7 Protein Kirrel3 

P61314 60S ribosomal protein L15 

F1M790 Prostaglandin F2 receptor negative regulator (Fragment) 

D3ZL45 Protein RGD1560784 

Q6P7B6 Ephrin B1 

Q62762 Casein kinase I isoform gamma-2 

O88767 Protein DJ-1 

D4A533 Protein Tapt1 (Fragment) 

P04182 Ornithine aminotransferase, mitochondrial 

F1M386 Rap guanine nucleotide exchange factor 2 

Q64617 Protein kinase C eta type 

Q56A29 Visinin-like 1 

D3ZJY1 Protein Mrpl28 

THIO_HUMAN_UPS UPS2 

Q5BJQ0 Chaperone activity of bc1 complex-like, mitochondrial 

D4A5X8 Protein Ahcyl1 

Q32Q06 AP-1 complex subunit mu-1 
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Q63151-2 Isoform Short of Long-chain-fatty-acid--CoA ligase 3 

D3ZKD9 Microtubule-associated protein 

Q5PPL3 Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating 

Q6IRH7 ClpB caseinolytic peptidase B homolog (E. coli) 

Q7TP91 Ab1-205 

Q68FU3 Electron transfer flavoprotein subunit beta 

Q5U2T0 Death associated protein 3 

P07895 Superoxide dismutase [Mn], mitochondrial 

F1M5X1 Protein Rrbp1 

Q5EB77 Ras-related protein Rab-18 

F1LZ55 Protein LOC690114 (Fragment) 

D4AE00 Protein Ap3b2 

Q811P6 Dimethyladenosine transferase 1, mitochondrial 

B0BNA3 Arginyl-tRNA synthetase 2, mitochondrial 

Q8R491 EH domain-containing protein 3 

Q6PW35 Neuronal cell adhesion molecule long isoform Nc7 

G3V7U1 Glutamate receptor, metabotropic 1, isoform CRA 

D4AAY3 Protein Rasal2 

D3ZXK3 Protein Tacc2 

F1LSL1 Transcription factor Pur-beta 

D3ZK56 Protein Rap2c 

D4ADA1 Fibrinogen C domain containing 1 (Predicted) 

D3ZMJ7 Protein Wnk2 

D4ACU6 Protein Gpr123 (Fragment) 

Q4G067 Mitochondrial ribosomal protein L44 

D3Z9Y3 Protein Cerk 

D3ZH41 Cytoskeleton-associated protein 4 (Predicted) 

P0C089 Phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1 

Q6AYQ8 Acylpyruvase FAHD1, mitochondrial 

Q4V887 Zinc transporter ZIP6 

F1M7T6 Translocon-associated protein subunit gamma 

D3ZH98 Uncharacterized protein 

Q4L2A2 CD99 (Fragment) 

F1LTD1 Uncharacterized protein (Fragment) 

F1LMT8 Rab3 GTPase-activating protein non-catalytic subunit (Fragment) 

Q5BJP4 Protein LOC100363776 

D4A193 Protein Reep1 

Q9JMI9 Short transient receptor potential channel 3 

B5DEK8 Vesicular, overexpressed in cancer, prosurvival protein 1 

Q6IMA8 ADP-ribosylation factor-like 10 

Q62991 Sec1 family domain-containing protein 1 

O88420 Sodium channel protein type 8 subunit alpha 

Q91V33 KH domain-containing, RNA-binding, signal transduction-associated protein 1 

Q9JIL3 Interleukin enhancer-binding factor 3 
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Q8VHI8 Vesicle transport protein SEC20 

D4A7Q5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 28 (Predicted) 

Q5FVL8 ATP-binding cassette, sub-family B (MDR/TAP), member 10 

Q63638 Striated muscle-specific serine/threonine-protein kinase 

P49804 Regulator of G-protein signaling 8 

D4A3H0 Oxysterol-binding protein 

O08662 230kDa phosphatidylinositol 4-kinase 

M0RAZ1 Uncharacterized protein (Fragment) 

Q920Q0 Paralemmin-1 

Q6AYQ1 Golgin subfamily A member 7 

P61515 Putative 60S ribosomal protein L37a 

E9PSS1 Serine/threonine-protein kinase DCLK2 

D3ZFK5 Protein Spcs1 

F1LNG7 Protein Gna13 (Fragment) 

B0BMT9 Protein Sqrdl 

P63182 Cerebellin-1 

B1WBX0 Protein Fam57b 

M0R480 Protein Sybu (Fragment) 

D3ZZI0 Protein Nipal3 

P62142 Serine/threonine-protein phosphatase PP1-beta catalytic subunit 

F1LW26 RCG53373 

F1M5M3 Inactive serine/threonine-protein kinase TEX14 

P97887 Presenilin-1 

D3ZZY4 Protein LOC100360426 

M0RDF2 Uncharacterized protein (Fragment) 

D3ZCF5 E3 ubiquitin-protein ligase 

P12346 Serotransferrin 

B5DF36 Placenta-specific 8 

D4A7T8 Protein Fam81a 

Q6MG10 Mitochondrial ribosomal protein S18B 

D3ZYX5 Protein Myo6 

Q7TP17 Splicing factor U2AF 26 kDa subunit 

P49655 ATP-sensitive inward rectifier potassium channel 10 

Q62950 Dihydropyrimidinase-related protein 1 

LYSC_HUMAN_UPS UPS2 

B5DEX6 Susd2 protein 

P00762 Anionic trypsin-1 

Q8CJG5 Gene 

Q9JKM5 Sphingosine 1-phosphate receptor 5 

Q8VHW9 Voltage-dependent calcium channel gamma-4 subunit 

D3ZQG0 Protein RGD1309077 

D4A771 Protein LOC100362049 

F1M8W5 Disintegrin and metalloproteinase domain-containing protein 10 (Fragment) 

P07335 Creatine kinase B-type 
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B8YDD2 HS1 binding protein variant X 

P13221 Aspartate aminotransferase, cytoplasmic 

Q7TQ74 Ac1573 

F1LQ93 Collagen alpha-1(IX) chain 

D4A4B1 Mitochondrial ribosomal protein L15 (Predicted), isoform CRA 

D4AC23 Protein Cct7 

D3ZU27 Protein Usp31 

F1LV34 Uncharacterized protein (Fragment) 

P10111 Peptidyl-prolyl cis-trans isomerase A 

D3ZAN1 Type I inositol 3,4-bisphosphate 4-phosphatase 

Q0QER8 Isocitrate dehydrogenase [NADP] (Fragment) 

F1M0B7 Uncharacterized protein 

Q9ERC5 Otoferlin 

D3ZNN7 Anoctamin 

Q9JI66 Electrogenic sodium bicarbonate cotransporter 1 

P21575-5 Isoform 5 of Dynamin-1 

P24155 Thimet oligopeptidase 

D3ZH53 Protein RGD1561871 

Q8R4Z9 Mitofusin-1 

A1L1L0 Bobby sox homolog (Drosophila) 

Q5XI34 Protein Ppp2r1a 

F1M013 Protein LOC100910109 (Fragment) 

P68511 14-3-3 protein eta 

Q6AY58 B-cell receptor-associated protein 31 

D4A3K5 Histone H1.1 

G3V894 Muscarinic acetylcholine receptor M4 

G3V7Z6 ATP-binding cassette sub-family D member 2 

M0RB74 Protein Ipo5 

P85108 Tubulin beta-2A chain 

G3V9U7 ATPase, Ca++ transporting, ubiquitous, isoform CRA 

Q5M9G3 Caprin-1 

Q5XIU4 B-cell receptor-associated protein 29 

F1LST1 Fibronectin 

D3ZF50 Protein RGD1310335 

M0R5Z5 Uncharacterized protein 

F1LUS1 Uncharacterized protein (Fragment) 

Q5PQV5 Trophoblast glycoprotein 

O35244 Peroxiredoxin-6 

Q6P791 Ragulator complex protein LAMTOR1 

M0R4G1 Uncharacterized protein 

D3ZCR2 Protein Tm9sf3 

D3ZZ02 Uncharacterized protein 

Q71RJ2 Voltage-dependent calcium channel gamma-2 subunit 

B5DF26 Similar to oxysterol-binding protein-like protein 8 isoform a 
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D4A978 Protein Plcd3 

D4A2F1 Agrin 

M0R692 Uncharacterized protein (Fragment) 

Q63754 Beta-synuclein 

G3V8L9 Polymerase I and transcript release factor 

D3ZAA9 Membrane protein, palmitoylated 2 (MAGUK p55 subfamily member 2), isoform 
CRA 

D4A7X1 Protein Mrps16 

Q6AXX5 Protein Rdh11 

B5DEX3 Copine 8 protein 

D3ZFQ3 Protein Nubpl 

Q6AY17 Alpha/beta hydrolase domain-containing protein 17B 

P11598 Protein disulfide-isomerase A3 

Q6AYT7 Monoacylglycerol lipase ABHD12 

G3V963 RCG47487, isoform CRA 

P62914 60S ribosomal protein L11 

Q6P9V6 Proteasome subunit alpha type 

Q5I0J0 Immunoglobulin heavy chain (Gamma polypeptide) 

Q5XIM9 T-complex protein 1 subunit beta 

F1LPT0 Gap junction protein (Fragment) 

P20417 Tyrosine-protein phosphatase non-receptor type 1 

O35952-2 Isoform 2 of Hydroxyacylglutathione hydrolase, mitochondrial 

D3ZRX7 Protein Pcdh10 

P16261 Graves disease carrier protein (Fragment) 

Q9QYV1 Tomoregulin-1 

F1M5L5 Uncharacterized protein (Fragment) 

G3V7Y7 Sodium/hydrogen exchanger 

Q7TP48 Adipocyte plasma membrane-associated protein 

F1MAA3 Protein LOC100909464 

M0R9Z7 Uncharacterized protein 

P63004 Platelet-activating factor acetylhydrolase IB subunit alpha 

D3ZEX7 Protein Spire1 

Q4G061 Eukaryotic translation initiation factor 3 subunit B 

F1LTJ9 Uncharacterized protein (Fragment) 

G3V9J8 Glycerol-3-phosphate acyltransferase 1, mitochondrial 

D4A3H5 Protein Clcn6 

F1LUM5 Protein Tubal3 

P20171 GTPase HRas 

F1MAQ3 Protein Hgsnat 

Q6QI16 LRRGT00192 

D3ZBN4 Protein RGD1310769 

F1LQQ8 Beta-glucuronidase 

P16617 Phosphoglycerate kinase 1 

Q8BHI5 O-acyltransferase 
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Q66H18 Protein Sypl1 

Q5XIK2 Thioredoxin-related transmembrane protein 2 

Q5HZE0 Mitochondrial carnitine/acylcarnitine carrier protein CACL 

D4A435 Protein Icam5 

B4F7E6 Syntaxin 3 

P63322 Ras-related protein Ral-A 

M0R5V7 Murinoglobulin-2 (Fragment) 

Q70AM4 Kinesin 13B 

Q5RK08 Glioblastoma amplified sequence 

G3V879 Ubiquinone biosynthesis protein COQ7 homolog 

Q6AYT3 tRNA-splicing ligase RtcB homolog 

D4A9C3 Protein Psd3 

M0RDL8 Protein RGD1561465 

B3GNI6-3 Isoform 3 of Septin-11 

M0RDY2 Protein Fam185a 

D3ZIP8 Protein Endod1 

Q5PPG2 Legumain 

M0RC66 Adenylate kinase isoenzyme 1 (Fragment) 

Q5BJS4 FUN14 domain-containing protein 1 

F1M9X0 Transient receptor potential cation channel subfamily M member 1 

P04762 Catalase 

F1LZY6 Uncharacterized protein (Fragment) 

F1LWD0 Uncharacterized protein (Fragment) 

D3ZWR4 Copine VII (Predicted), isoform CRA 

D4A318 Phospholipase D1 

Q68FR6 Elongation factor 1-gamma 

P34067 Proteasome subunit beta type-4 

F1LT85 Uncharacterized protein (Fragment) 

F1M1R0 Uncharacterized protein 

Q71DI1 Dermcidin 

M0R5Q9 Glycerophosphodiester phosphodiesterase 1 

P54313 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 

B5DEL9 RCG62292, isoform CRA 

D3ZCJ3 Protein Mfsd6 

P58295-2 Isoform b of Sodium- and chloride-dependent glycine transporter 2 

P19945 60S acidic ribosomal protein P0 

F1M4R1 Uncharacterized protein (Fragment) 

D4A3E8 Mitochondrial ribosomal protein S27 (Predicted), isoform CRA 

Q9R1T3 Cathepsin Z 

P27139 Carbonic anhydrase 2 

Q5FVQ8 NLR family member X1 

Q4V8C2 Centromere/kinetochore protein zw10 homolog 

P84889 Vang-like protein 2 

F1M3X3 Uncharacterized protein (Fragment) 
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D3ZCL4 Protein Zscan18 

P42123 L-lactate dehydrogenase B chain 

Q63128 CPG2 protein 

B5DEP7 Protein LOC100911683 

Q3B7V5 Protein Rab2b 

B2RYN6 Adaptor-related protein complex 1, gamma 1 subunit, isoform CRA 

P43278 Histone H1.0 

F1M7V6 Cell adhesion molecule 4 (Fragment) 

D3ZDC2 Protein Slc43a2 

D4AAS1 G protein-coupled receptor 162 (Predicted) 

D3ZAN3 Alpha glucosidase 2 alpha neutral subunit (Predicted) 

F1LX12 Protein Frmd5 

H9KVG0 Serine/threonine-protein kinase BRSK2 (Fragment) 

Q8CFN2-2 Isoform 2 of Cell division control protein 42 homolog 

Q9WV63 Kinesin-like protein KIF2A 

P38983 40S ribosomal protein SA 

Q6P6R2 Dihydrolipoyl dehydrogenase, mitochondrial 

Q3ZB98-5 Isoform 5 of Breast carcinoma-amplified sequence 1 homolog 

O08589 Phospholemman 

P10818 Cytochrome c oxidase subunit 6A1, mitochondrial 

B2RZD1 Protein Sec61b 

P84100 60S ribosomal protein L19 

Q6AYL4 RIB43A-like with coiled-coils protein 1 

D3ZTN1 Protein Tesc 

D3Z9K9 Glycerophosphodiester phosphodiesterase domain containing 2 (Predicted), 
isoform CRA 

Q6AY19 Uncharacterized aarF domain-containing protein kinase 4 

D4A3D4 Abhydrolase domain containing 3 (Predicted) 

B2GUX6 RGD1312005 protein 

Q5FVQ4 Malectin 

F1MAG7 Protein Ptpru 

Q6JP77-2 Isoform Gamma of A-kinase anchor protein 7 isoforms delta and gamma 

Q07936 Annexin A2 

D4A604 Phosphatidylinositol glycan, class T (Predicted), isoform CRA 

O55173 3-phosphoinositide-dependent protein kinase 1 

F1LN88 Aldehyde dehydrogenase, mitochondrial 

Q66HF3 Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial 

D3KR63 CAMPS 

D4A8X7 LOC361111 (Predicted), isoform CRA 

P84076 Neuron-specific calcium-binding protein hippocalcin 

B1WC28 Histone H2A 

Q569C0 Transmembrane protein 100 

Q5I0H4 Transmembrane and coiled-coil domains protein 1 

D3ZLU0 Protein C2cd4c 
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G3V667 Integrin, alpha 6, isoform CRA 

Q32Q54 Protein Uqcc 

Q9QZA2 Programmed cell death 6-interacting protein 

Q5I2Z0 Protein kinase C and casein kinase substrate in neurons 3 

P70549 Sodium/calcium exchanger 3 

Q8VGC3-2 Isoform 2 of Voltage-dependent L-type calcium channel subunit beta-2 

F1LU71 AU RNA binding protein/enoyl-coenzyme A hydratase (Predicted), isoform CRA 

P01830 Thy-1 membrane glycoprotein 

Q5U2V8 ER membrane protein complex subunit 3 

Q5XI78 2-oxoglutarate dehydrogenase, mitochondrial 

D3ZPN5 PAP associated domain containing 1 (Predicted) 

Q68FV0 Transmembrane protein 178A 

D3ZA31 Myotubularin related protein 2 (Predicted), isoform CRA 

Q66HI4 Tissue factor 

D3ZX87 Protein LOC100910017 

D3ZYK3 Potassium voltage-gated channel, Shal-related family, member 1 

Q62717 Calcium-dependent secretion activator 1 

Q5XIP9 Transmembrane protein 43 

Q5RK00 39S ribosomal protein L46, mitochondrial 

F1M3E9 Uncharacterized protein (Fragment) 

Q8CHJ1 Phosphatidylinositol glycan anchor biosynthesis class U protein 

Q9ERS1 Potassium channel subfamily K member 12 

P09606 Glutamine synthetase 

D4AB01 Histidine triad nucleotide binding protein 2 (Predicted), isoform CRA 

Q498E0 Thioredoxin domain-containing protein 12 

F1M6U3 Protein Pitpnm3 (Fragment) 

Q9WVJ4 Synaptojanin-2-binding protein 

E9PT29 Uncharacterized protein 

M0RAQ6 Hexokinase-1 

P40307 Proteasome subunit beta type-2 

P51792-2 Isoform 2 of H(+)/Cl(-) exchange transporter 3 

F7F134 Voltage-dependent calcium channel subunit alpha-2/delta-1 

F1M9C9 Protein Hars2 

E9PSV5 Protein Psat1 

Q9Z1T4-2 Isoform 2 of Connector enhancer of kinase suppressor of ras 2 

Q66HA9 Protein Sema4a 

B2RYT0 Mitochondrial ribosomal protein S21 (Predicted), isoform CRA 

Q6P9U5 Ribosomal protein L9 

P26772 10 kDa heat shock protein, mitochondrial 

F1LUG5 Protein 2310067B10Rik 

G3V6I2 Adenylate cyclase 3 

D3ZL30 Protein Mast3 

Q499N5 Acyl-CoA synthetase family member 2, mitochondrial 

M0R7A3 Uncharacterized protein (Fragment) 
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B1WC67 Protein Slc25a24 

P56819 Beta-secretase 1 

F1LSC8 RIMS-binding protein 2 

Q3B7U9 Peptidyl-prolyl cis-trans isomerase FKBP8 

P15865 Histone H1.4 

Q5PPM8 Transmembrane protein 55B 

G3V874 Erythrocyte protein band 4.1-like 3, isoform CRA 

Q6P3V8 Eukaryotic translation initiation factor 4A1 

Q921A2 Proton myo-inositol cotransporter 

Q5FWT1 Protein FAM98A 

Q9QYJ4-3 Isoform 3 of ATP-binding cassette sub-family B member 9 

B1WBL7 Tmem38a protein 

F1LVX6 Protein Tmem132b 

Q6MG11 Alpha-tubulin N-acetyltransferase 

Q5PQL3 Signal peptide peptidase-like 2B 

Q0D2L2 Protein LOC683519 

Q08415-2 Isoform 2 of Kynurenine--oxoglutarate transaminase 1, mitochondrial 

G3V9S0 Cytochrome b5 reductase 1 

D4ADU2 Protein Slc7a11 

Q1JU68 Eukaryotic translation initiation factor 3 subunit A 

Q6PEC4 S-phase kinase-associated protein 1 
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Appendix  12. List of 38 mitochondrial proteins additionally identified above the threshold line in the stx 1 
IPs. 

Protein 
ID 

Protein name 

B2RYS2 Cytochrome b-c1 complex subunit 7 
G3V9N1 Serine/threonine-protein phosphatase Pgam5 
P32551 Cytochrome b-c1 complex subunit 2, mitochondrial 
B1WBY5 DnaJ (Hsp40) homolog, subfamily C, member 11 
P35571 Glycerol-3-phosphate dehydrogenase, mitochondrial 
M0RDI5 Protein Mcu 
Q6AXV4 Sorting and assembly machinery component 50 homolog 
Q641Z9 succinate dehydrogenase 
G3V7Y3 ATP synthase subunit delta, mitochondrial 
M0R6L8 Similar to homolog of yeast TIM14 isoform c (Predicted) 
A9UMW2 Protein Ndufa3 
Q812B0 Liver regeneration-related protein 1 
Q6IRL2 Mitofusin 2 
G3V8F5 Mitochondrial import receptor subunit TOM40 homolog 
E9PU34 Protein Rmnd1 
P36970-2 Phospholipid hydroperoxide glutathione peroxidase, mitochondrial 
Q5UAJ5 ATP synthase protein 8 
P19511 ATP synthase F(0) complex subunit B1, mitochondrial 
Q75Q41 Mitochondrial import receptor subunit TOM22 homolog 
Q9Z142 Transmembrane protein 33 
D3ZUX5 Coiled-coil-helix-coiled-coil-helix domain containing 3 (Predicted) 
Q5M9I5 Cytochrome b-c1 complex subunit 6, mitochondrial 
A1L1L6 Mitochondrial Rho GTPase 
Q05BA4 Myeloid-associated differentiation marker 
O89035 Mitochondrial dicarboxylate carrier 
P97521 Mitochondrial carnitine/acylcarnitine carrier protein 
Q9TEE8 Cytochrome c oxidase subunit 3 
Q3KR86 MICOS complex subunit Mic60 
D3ZS75 Ndufc1 
P63031 Mitochondrial pyruvate carrier 1 
D4A7N1 MICOS complex subunit Mic25 
Q2TA68 Dynamin-like 120 kDa protein, mitochondrial 
Q8CFD0 Sideroflexin-5 
Q80W89 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11 
P32089 Tricarboxylate transport protein, mitochondrial 
B0K020 CDGSH iron-sulfur domain-containing protein 1 
G3V6D3 ATP synthase subunit beta 
B2RYK4 Similar to RIKEN cDNA 1200007B05 
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