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0
Preface

The human brain is one of the most complex structures known to mankind, and ar-
guably the most elaborate biological system that ever evolved. Studying such complex
machinery whose precision and efficiency we witness in the simplest of acts, is a fasci-
nating challenge. Neuroscience, as a historically rather young discipline, has adopted
from the classical divisions of the natural sciences a wide array of experimental and
theoretical approaches. A detailed account of the components, from the molecular level
to the circuitry, is complemented by more abstract descriptions which aim to dissect
the fundamental ingredients of neuronal dynamics. The large variety of approaches and
complimentary levels of description add dimensions to the understanding of the brain
and constantly reshape our view of the object of study. One among the possible per-
spectives, and that which was taken in this thesis, is to devote effort to studying classes
of models that are broadly constrained by the statistics of the experimentally reported
neuronal dynamics, and to investigate their implications on information transmission.
Another possible perspective, which composes the last fraction of this work, is to dissect
the elements that lead to the emergence of a certain dynamical behavior in models that
allow one to make rigorous statements about their dynamics, in the hope that future
research can push forward its frontiers.

Neurons in the cortex, when confronted with identical stimuli, respond rather unreli-
ably. It was perhaps with some surprise, that the report of a reliable response to directly
injected fluctuating inputs164 arose, revealing that much of the observed variability de-
rives from the large amount of recurrent inputs that each of the neurons receive11.
This variability, which is certainly instrumental to the richness and flexibility of our
behavioral output, nevertheless renders the general mechanisms underlying information
encoding largely inaccessible. Approaches departing from the single neuron focus, which
had been leveraged by the success of early mathematical models123, embraced alternative
proposals for the brain’s building units and contributed to the exploration and devel-
opment of population-level approaches289. In particular, the emergence and dissolution
of coordinated activity at the population level have posed profound questions about
its possible use in brain computation. Broad theories involving the role of collective
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rhythms in representation71, coordination267 and communication216,86 have received as
much supporting evidence as sharp criticism, while only few cases have provided com-
pelling evidence for their role.

This thesis aims to shed light on the possible computational capabilities of oscillatory
neuronal dynamics by investigating the properties of large heterogeneous networks with
delayed interactions. For this purpose, Chapter 1 gives a detailed account of the exper-
imental evidence linking oscillatory neuronal dynamics to behavior, with a particular
focus on its role in attention and communication. Further, it reviews the mechanisms
underlying the emergence of oscillations in network models, and its dynamical counter-
part, the asynchronous irregular state. Finally, a review of the stability properties of
these cases is offered.

Chapter 2 composes the first result section of this thesis. We investigated a class of
network models in which neurons spike irregularly while the collective activity exhibits
an irregular rhythm in the gamma band. This regime, in which short transient episodes
of higher synchronization occur spontaneously, reproduces the frequency and power fluc-
tuations found in cortical measurements. In order to determine whether this variability
and irregularity presents an advantage or a limitation to flexible information transmis-
sion, we profited form small motifs of two or tree interconnected areas. When several
circuits with these characteristics are connected by long range excitatory connections,
the activity of the areas coordinate to spontaneously give rise to simultaneous gamma
bursts of sparsely synchronized activity. Within each gamma burst, the areas transiently
phase-lock, reproducing in the short bursts the out of phase locking patterns observed
in higher synchrony regimes. Profiting from state resolved information theoretical tools
we found that these transient patterns of coherence gate the information flow between
the areas. Information flows in a direction determined by the phase relation and with
a strength regulated by the fluctuating level of coherence. Externally injected inputs,
representing sensory information or feedback from surrounding areas, are transmitted
following the paths found by the analysis of the spontaneous activity. Finally, we found
that weak external biases can modulate the pattern of relative phases, favoring particular
directions of information transmission.

In Chapter 3, we advanced the tractability of large neuronal networks of exactly solv-
able neuronal models. We developed a framework that allows to study the delay-induced
transitions from an initial asynchronous and irregular state to that of collective rhyth-
micity together with the changes in dynamical stability. Delayed systems, which in
general have an infinite dimensional phase space, can be studied in equivalent systems
of fixed and finite degrees of freedom. By introducing a single compartment axon for
each neuron, delays arise from the extra steps of integration needed for the variable to
reach threshold. We find that depending on the action potential onset rapidness and
the level of heterogeneities, the asynchronous irregular regime characteristic of balanced
state networks loses stability with increasing delays to either a slow synchronous irregular
or a fast synchronous irregular state. In networks of neurons with slow action potential
onset, the transition to collective oscillations leads to an increase of the exponential rate
of divergence of nearby trajectories and of the entropy production rate of the chaotic
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dynamics. The attractor dimension, instead of increasing linearly with increasing de-
lay as reported in many other studies, decreases until eventually the network reaches
full synchrony. In the final chapter these results are discussed and understood in the
perspective offered by other findings. Proposals for future work at the interface of the
above perspectives are offered.

Both the possibility of information transmission in short transients of oscillatory ac-
tivity and the coexistence of high dimensional chaos with perfect oscillatory behavior
at the population level might in principle appear unintuitive. Reconciling our intuition
with precise technical knowledge is the motor behind each small step in the direction of
scientific progress212, whose tangled paths have alternatively been found by disparate
strategies such as specifying, generalizing, or simplifying previous approaches.
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1
Introduction

The evolution of the nervous system in mammals lead to a disproportional growth of the
cerebrum. The area occupied by its surface grows linearly with brain volume from in-
sectivores to higher primates, leading to a convoluted neocortex for larger brain sizes124.
This densely packed structure is a few millimeter thick, six layered sheet that occu-
pies the larger fraction of the human cortex. It contains in the order of 105 neuronal
cells per cubic mm, each forming on average 103 − 104 synapses. Neurons in an area,
project to tens of different other areas, receiving in turn projections from dozens of areas
with probabilities resembling that of a log normal distribution, spanning 6 orders of
magnitude167.

Neurons in the cortex have generally an irregular spiking behavior whose rate can
vary several tens of Hz depending on the neuronal type, the area they belong to and the
nature of the presented stimulus231. This irregular spiking does not arise from single
neuron dynamics which have been shown to be reliable164, and neither does the trial
to trial variability that is commonly observed in experiments. It is currently argued
that the irregularity of neuronal spiking is a consequence of a dynamic balance of in-
hibition and excitation223, an emergent property of the recurrent dynamics that allows
for a regime sensitive to fluctuations. At the population level, neurons can engage in
collective rhythms across the cortex48, both in a spontaneous manner or induced by
a stimulus. This oscillatory activity is compatible and shown to be coexistent with a
dynamic balance13. In Figure 1.1, an example of how the collective activity of an intact
macaque brain organizes in different areas is shown, exhibiting the high non stationar-
ity and strongly oscillatory nature of brain activity. When looked at closely, irregular
spiking from the recorded multi unit activity can be as well observed.

The high dimensionality, the large parameter space and intrinsic complexity of the
components and the connections of neuronal networks pose a challenge to deciphering
the neural code. Population rates of groups of 100 neurons224 could respond rapidly
and serve a robust, albeit redundant encoding mechanism.
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On the other end, non error-correcting combinatorial codes189,219 with high encoding
capacity might be too sensitive to small perturbations, given the possibly chaotic or
highly sensitive nature of the activity’s micro-structure160. Regardless of the underlying
encoding paradigm, collective oscillatory activity could work as a modulatory mechanism
to regulate local excitability and gate or enhance information transmission86,220,261.

In this thesis we study different types of models of cortical circuits that exhibit col-
lective oscillatory activity, and its role in information encoding and transmission. First,
we will show in small motifs of coupled networks that transient coordination between
rhythms together with the fluctuating oscillatory power observed in vivo act synergisti-
cally to flexibly route information between areas (see Chapter 2). Secondly, by means
of simplified schemes we will show in delayed neuronal networks that high dimensional
chaotic dynamics coexist with collective periodic rhythms (see Chapter 3). In order to
contextualize these findings, a review of the possible relevance of oscillatory activity
and of the mechanisms underlying the emergence of collective oscillations compose the
following sections.

1.1 Functional role of oscillatory dynamics

Rhythmic activity is a ubiquitous feature of the collective behavior of neurons in the
brain. Since its discovery by Hans Berger, brain rhythms have been reported in ani-
mal species from fish40 to human6, and have been related to cognitive, behavioral and
perceptual tasks. In the mammalian brain, oscillatory activity has been found in the
cortex and subcortical structures, while the behavioral and cognitive correlates of spe-
cific rhythms have been shown to be preserved across species51. Neural oscillations span
more than four orders of magnitude48. From this broad spectrum∗, frequency bands
aiming to reflect specific underlying cognitive or behavioral process have been defined
and utilized for conjecture and analysis of brain function. A guide to the functional
roles that have been correlated over time with each specific frequency band is shown in
Figure 1.2 and briefly reviewed in the following section.

1.1.1 A brief summary

From the leftmost side of the spectrum, the delta rhythm with frequencies smaller than
5 Hz, is most prominent in non rapid eye movement (NREM, slow wave) sleep, and has
been linked to memory consolidation: Performance of human subjects increases after
sleeping and correlates with the slow wave activity in task related regions239. Also, slow
oscillatory transcranial stimulation of human subjects during slow wave sleep improves
the retention of declarative memories168 (see Figure 1.2).

∗This and the following sections will be largely focused, with very few exceptions, on the analysis of
oscillatory activity reported from extra cellular recordings (local field potentials (LFP) and multi-unit-
activity (MUA)) in mammals, generally rodents, cats or monkeys.
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The faster theta rhythm (4-10 Hz) has been extensively investigated and discussed,
and much like the gamma and the beta rhythm nowadays, dozens of possible roles
have been assigned to it47 ∗. Although the theta rhythm matches the frequency of
whisking and sniffing in rats and the eye movements in humans Colgin 59 , much of its
role is currently linked to navigation and memory in the hippocampus and surrounding
areas. A fundamental phenomena for navigation is that of phase precession by place
cells in the hippocampus184, grid cells in the entorhinal cortex107 and by cells in medial
prefrontal cortex (mPFC)137, where neurons spike at successively earlier phases of the
extracellular theta rhythm as transversing their own firing field. The theta rhythm has
also been shown to be involved in working memory tasks200,158.

The beta band (12-30 Hz) has been classically linked to motor tasks. It is promi-
nent during muscle contraction and holding, and is generally linked to preparatory
movements; disappearing during the execution (or even the thought of execution) of
a movement68. It was shown to be prominent in the olfactory bulb5 and in the visual
cortex87 in the absence of stimulus, and has been conjectured to be signaling the lack
of change (or its prediction)68. Recently, work investigating the role of beta synchrony
and coherence between pre frontal and parietal areas has shown that patterns of beta
coherence can potentially store information about the objects identity during working
memory tasks215, and that modulations of beta coherence can be induced by top-down

∗The distribution of functional roles linked to the theta band over time was presented in47, more than
thirty roles were linked to the rhythm in the 1960s
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attention46. More recently and more generally the beta rhythm was proposed to mediate
feedback (top down) interactions17.

Gamma synchrony, with frequencies above the 30 Hz, was early described Adrian 5

as the response to odors (replacing prominent beta in the absence of stimulus) in the
olfactory bulb. It was later shown that the appearance of gamma activity is a more gen-
eral characteristic of the response to stimulus (evoked gamma) in the sensory cortices, as
shown in the auditory cortex21, the visual cortex101, somatosensory cortex228 and exten-
sively reported afterwards. Induced gamma synchrony and coherence have been linked
to attention87,243,284,46,131,283,103,105,26,102,270,198,106, working memory159,287,192 and even
consciousness71. Gamma coherence lies at the core of theories aiming to explain the
mechanisms mediating representation and inter-areal communication in the brain, that
are central to Chapter 2 and will be discussed in detail in later sections.

Lastly, in the fast (140-200 Hz) range, sharp wave-ripples complexes appearing in the
hippocampus during sleep or quiet rest are thought to play a role in memory consolida-
tion. In the rat hippocampus, it was shown that pairs of place cells that active while
performing a task are reactivated during post-learning sleep280, and that the order of
activation is preserved229 in a phenomena called hippocampal replay. Furthermore, elec-
trical stimulation applied to the hippocampus transiently silencing hippocampal ripples
resulted in impaired performances during a spacial memory task93.

As a closing remark, we consider it important to underline that in all but a few cases,
experimental neuroscience has assigned functional roles to oscillatory activity by means
of conditional experiments, as the ones summarized above. An animal is restricted to
a particular behavioral state and conclusions of how the brain might either represent,
store or transmit information are drawn by comparing the measured signals with those
in control experiments. As stated by Varela et al,267 “ The evidence available so far
regarding the function of synchronization is only correlative.” ∗

1.1.2 Neuronal assemblies and gamma synchrony in representation

Experiments trying to unveil the role of gamma synchrony in visual processing showed
that neurons within a cortical column, in either striate (primary) or extra striate visual
cortices of the cat, and responding to the same stimulus (orientation or direction) engage
in zero-lag gamma synchronization101. This stimulus specific synchronization in the
millisecond range, measured as a multi-unit cross correlation, persisted between neurons
in columns that were separated by several millimeters, with non overlapping receptive
fields (RF)100. These studies also showed that synchronization was strongly enhanced
when the same object covers both RFs compared to when two identical stimuli with
the same characteristics are shown100. Inter-areal synchronization was further observed

∗The quote continues: “ There is no direct proof that synchrony leads to changes in behavior when
it is selectively altered. Such direct evidence has only been obtained in the olfactory system of insects.
Stopfer et al240 showed that odor discrimination deteriorates if synchronization patterns among olfactory
bulb cells are disturbed. The search for similar evidence in the vertebrate brain is a daunting challenge,
but future studies in this direction are a priority.” .
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between neurons belonging to different areas, neurons in striate cortices present zero lag
synchronization with those in exra-striate areas70. Moreover, in neurons belonging to
the same area but located in different hemispheres, synchronization followed the same
rules and was disrupted by sectioning of the corpus callosum69.

These facts taken together, that i) synchrony is stimulus specific and that ii) inter-areal
synchronization is strongly enhanced where a single stimulus spans both RFs compared
to when two identical ones are presented, suggested that synchrony, both in the cat and
the awake macaque145, is sensitive to global stimulus features. These findings led to
the hypothesis that neurons encoding the same stimulus form assemblies that are bound
together by synchrony to form a representation of objects in the visual field and is known
as the temporal correlation or the temporal binding hypothesis. Synchrony, would be
the mechanism underlying integration of distributed cortical representations accounting
for the perception of a single object. Although the finding of synchronization-mediated
neuronal assemblies that codes for a particular feature continues to receive experimen-
tally evidenced support45,49,116, a key prediction of the temporal binding hypothesis
successfully shown to hold in the anesthetized cat54 failed to be reproduced in the awake
monkey245,157.

1.1.3 Synchrony in selective visual attention

The role of gamma synchrony, independently of the interpretation involving figure
ground segregation and binding, could be seen as a mechanism for enhancing synap-
tic integration. Synchronous spikes with precision in the mili-second range enlarge the
efficacy in driving a post synaptic neuron9,259,238, and it could be conjectured that at-
tention enhances synchrony among neurons coding for the attended stimulus as a means
to facilitate its transmission. Prior to any experimental evidence, a model by Niebur &
Koch 182 exploiting this idea and based on the temporal correlation hypothesis, showed
that without changes in the mean firing rate of a lower area (V2, see Fig. 1.3), syn-
chronous firing of the neurons coding for the attended stimulus in V2 would not only
more effectively drive V4, but silence those inputs related to the unattended stimulus.
This work motivated the first experimental work relating attention and synchrony, re-
vealing that attention modulates the neuronal synchrony of firing in the somatosensory
cortex of the macaque236.

In the visual cortex, gamma synchrony in the context of selective attention was first
investigated as an alternative or a complement to the biased competition theory (BCT)
of selective visual attention. This theory arose from the observation that when atten-
tion is directed to one among other objects within the same RF, the firing rate response
measured in extra-striate cortex (V4 or MT) equals that measured when only the at-
tended stimulus is present; as if attention would shrink the RF of the neuron around
the attended stimulus176,254. The biased competition theory states that stimuli inside
a single receptive field compete for representation and that attention to a particular
stimulus biases that competition to favor that relevant to behavior63. The experiments
as well show that when stimuli do not compete for representation in the same RF, the
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firing rates in the ventral areas are unaffected by attention unless several distractors are
present176,177.

The fact that attention does not always modulate the firing rate of the attended stim-
ulus in the presence of distractors outside the considered RF constrains the reach of the
biased competition theory. BCT would ultimately have to rely on the unattended objects
to be sequentially filtered out in later stages of processing, were RFs are large enough to
cover a substantial portion of the visual field, effectively bringing all present stimuli to be
in competition. These facts led to the search of alternative and possibly complementary
mechanisms. Fries and collaborators87 showed in the extra striate area V4 of the awake
monkey that when attention is directed to one of two presented stimuli with non over-
lapping RFs (see Figure 1.3), synchronization (measured as spike-field coherence ∗ and
not only cross-correlations) is larger in the signal of the attended stimulus over the non
attended one, even though no difference in their firing rates is appreciable in the first 500
ms87.
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Figure 1.3: Some relevant brain areas for the study of the attention. Cartoon of a

macaque brain with different areas shaded in colors (no exact design is intended)

in a typical experimental set up for selective attention. From posterior to anterior,

ventral pathway : Primary visual cortex (V1), Visual area V2, Visual area V4, Infe-

rior Temporal lobe (IT). Dorsal pathway: Primary visual cortex (V1),Middle Tempo-

ral area MT, Lateral Intra-parietal Cortex (LIP). In the frontal lobe, the Frontal Eye

Field (FEF). The inset shows the layered structure of the cortex. The screen shows

two visual stimuli, as in a classic selective attention tasks. Each stimulus is enclosed

by a green area representing two non-overlapping V1 receptive fields (measuring

electrodes indicated over V1), and a red area, corresponding to a larger V4 recep-

tive field.

That study was the first
one to show that only neu-
rons representing the at-
tended stimulus exhibit en-
hanced synchronization and
led to the conjecture that the
local changes in synchroniza-
tion may serve to amplify
behaviorally relevant signals
in the cortex87. Following
analyses on those same ex-
periments revealed that the
spike-field coherence value
was not only high during
attention, but that in tri-
als when coherence was high,
the monkey would perceive
a change in the stimulus
faster, and then that spike-
field coherence could work as
a predictor of the speed of
change detection284.

Studies focusing on exper-
imental configurations en-
forcing sustained attention243

showed that the gamma power in macaque’s V4 was accordingly modulated with the at-
tentional demands of the task. A later study focusing on laminar differences Buffalo

∗Spike Field coherence as used in87, is defined as the power spectrum of the spike-triggered average
normalized by the mean power spectrum over the LFP segments used to obtain the STA
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et al. 38 showed that spike-field coherence (taken as a measure for synchronization) in
the gamma range was predominant in superficial layers, while in the deep layers, low
frequency synchronization predominates. In that study it was further shown, that at-
tentional mediated changes in coherence in V1 and V2 are non significant ∗, while they
are in the gamma band in the superficial layers of V4 and in the alpha band in the deep
layers of V4.

1.1.4 Inter-areal coherence in attention and communication

The studies of attention in the context of monkey electrophysiology accompanied the
course of the field of human perception and attention. The latter, which had largely
embraced the role of oscillations as a mechanism for long range coordination, advanced on
the premise that areas communicate between each other by means of coherence between
the population rhythms210,267. In particular those studies underscored the need and
advantages of implementing tools that allow one to separate the contributions from the
power fluctuations and those arising from phase locking151,267,210, confounded in the
coherence measure†. An early indication of the link between phase synchronization and
attention was made in a magnetoencephalography study reporting that a difference in
phase synchronization is seen in humans while performing an attentional blink‡ task:

Our results reveal that communication within the fronto-parieto-temporal attentional
network proceeds via transient long-range phase synchronization in the beta band.104

This work already brings together the core concepts of what would later be coined
as communication-through-coherence hypothesis (CTC). The hypothesis, as postulated
by Fries 86 , states that different, in principle distant populations of neurons can flexibly
communicate depending on the patterns of phase locking of their oscillatory rhythms,
and builds on two facts86 : i) that neuronal populations do engage in oscillatory activity,
and ii) that this oscillatory activity provides excitability and sensitivity peaks effectively
creating windows enabling communication when aligned, and disrupting it when not §.

∗It has been previously found that gamma spike field coherence and power are decreased by attention
in V157

†The complex coherence γxy between two signals X and Y is the normalized cross spectrum:

γxy(ω) =
Sxy(ω)√

Sxx(ω)
√

Syy(ω)
(1.1)

Where Sxx(ω) is the power spectral density (the Fourier transform of the autocorrelation function) and
Sxy(ω) is the cross spectral density (the Fourier transform of the cross-correlation function) Coherence,
in this complex form can have larger values due to large phase locking or due to amplitude covariance,
making the separation between this two contributions hard151. The measure called coherence as used
in neuroscience is usually the real valued function Cxy(ω) = |γxy(ω)|2.

‡Attentional blink is the phenomenon that human subjects are unable to report the presentation of
a second object when the first one was presented less than 400 ms before

§Similar proposals and conclusions had been drawn in other (earlier) studies, detaching the role of
gamma oscillations from representation towards a modulatory role helping to gate or regulate information
flow. From work investigating the role of gamma oscillations in temporal coding in the hippocampus:
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Correlational evidence for this hypothesis was first presented in the context of cortico-
spinal interaction220. This work showed that coherence between motor cortex activity
and electromyogram signals in human subjects correlates with the subject’s readiness to
respond, showing that coherence can be a predictor of the subject’s reaction times. In
the context of attention in monkeys213, inter-areal (beta) spike-spike coherence in the
dorsal pathway (between LIP and MT) is enhanced by attention. This work interestingly
showed that the spikes of LIP preceded those of MT, as expected for a top down process.
Further work, focused on the differences between the inter-areal coordination between
LIP and frontal areas46 in processes involving both bottom-up and top-down attention.
In a scheme composed of two different attentional tasks i) visual pop-up (related to
bottom-up attention) or ii) visual search (related to top-down attention), it was revealed
that LFP-LFP coherence between LIP and frontal areas is enhanced by attention in the
gamma range for the visual pop-up case, and enhanced in the beta band during the
visual search task. This work importantly highlighted that information transmission
between different hierarchical stages of processing could profit from different bandwidths
depending on the top-down or bottom-up nature of the task.

Inter-areal coherence in the context of attention in the ventral stream103 reported
that inter-areal spike-field coherence and LFP-LFP coherence between V4 and FEF
were significantly modulated by attention in the gamma band, and that they influence
each other bi-directionally, as revealed by Granger Causality∗. Interestingly, the firing
rate in FEF is the first measure to be modulated by attention, followed by an increase
in the gamma power of V4. Causal influences from FEF to V4 are faster than those
from V4 to FEF, evidencing the prominent role of top-down processing in attention†.
Further evidence in this direction was provided by simultaneous recordings along the
ventral stream, where it was shown that firing rates in V4 were modulated by attention

In other words, it is the temporal relationship of firing patterns between communicating areas
that dictates the responses of target regions [...] The present observations demonstrate that
inhibitory gamma oscillations can powerfully gate afferent inputs to oscillating areas. This
gating is dependent on the timing of the afferent input relative to the local population
oscillation and is stable throughout a broad range of input amplitudes.41

And from work reviewing the role of synchrony in information flow in the brain :

Synchrony is another form of temporal relationship between neurons that has been intensely
studied. As with ‘oscillations’ and ‘rhythmic activity’, the term synchrony encompasses a
spectrum of neuronal behaviors with various spatial and temporal scales. Here, we will label
all of these phenomena as temporally correlated activity [...] We propose that correlations
could be controlled independently of firing rate and that this would serve to regulate the flow
of information rather than its meaning 216

∗Granger Causality measures the reduction of unexplained variance of a process x at time t when
considering only the past values compared to when also the past values of a process y are included.
Significant Granger Causality is used here and elsewhere as a synonym of causal influence.

†FEF having faster responses than V4 was also reported in a feature-attention task, in which no
frequency dependence was analyzed290
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more strongly and earlier than those of V2, and those of V2 than those of V139.

Regarding the role of the thalamus, studies directed to unveil the interaction between
the Pulvinar and the attentional network in the ventral stream, have arrived at somewhat
different results. On the one hand, analysis of the delay period (i.e. when only a spatial
cue is presented), found only a direct causal influence from the Pulvinar to both V4
and TEO in the alpha band214. On the other hand, in a classic attentional task with
a target and two distractors (as that shown in Figure 1.3), it was shown that spike-
field coherence between V4 spikes and the LFP signals in either IT or the Pulvinar are
both significantly modulated by attention291. Causal influences measured with granger
causality are significantly increased by attention from V4 to IT and from V4 to the
Pulvinar only in the gamma band.

Although the above studies showed that attention modulates inter-areal coherence in
a variety of configurations and areas, and that directed influences between areas are
frequency localized, the core statement of the CTC hypothesis, that areas communicate
aligning windows of excitability by establishing suitable phase relations, was only later
directly addressed. Grothe et al105 showed in a task requiring sustained attention that
V1 and V4 LFP signals have transient periods of significantly increased phase locking
only when the overlapping receptive fields of those areas enclose the attended stimulus. A
follow up study, that will be used as a base for the models described in the second Chapter
of this thesis, manipulated independently the luminance of the continuously morphing
shapes used as stimuli106. The study showed that the spectral coherence between the
LFP of V4 and the luminance of the stimuli was significant only for the stimulus that
was being attended. This constrains the understanding of the mechanisms underlying
attention, by showing that the non attended stimulus is already underrepresented in
the activity of the V4 population. They further showed, via a simple phenomenological
model, that gamma coherence solely as a routing mechanism can explain the selective
spectral coherence between the attended stimulus and the V4 LFP. It as well predicts
that the mechanisms underlying the underrepresentation of the non-attended object in
V4 might be mediated by a mixture of anti-phase and drifting phase relations between
upstream and downstream areas106.

Further insights into the nature of oscillation mediated communication between areas
was obtained from detailed layer-resolved measurements. As mentioned above, super-
ficial layers preferentially synchronize in the gamma band while deep layers do so at
lower frequencies38. The potential role of the frequency segregation in feedforward and
feedback pathways was addressed in studies performing simultaneous recordings in dis-
tant areas over the visual hierarchy. These works unanimously stated in their conclu-
sions that feedforward pathways, targeting the granular layer (layer 4) are mediated by
gamma synchronization while feedback pathways, originating from deep layers and tar-
geting superficial and deep layers of upstream areas are mediated by lower (alpha-beta)
frequencies209,17,261.
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1.1.5 Causal links between oscillations and behavior

Compared to the vast amount of correlative evidence directed towards elucidating the
role of coherence in situations of assumed enhanced communication (like attention),
only a small body of work reports on the behavioral correlates of direct manipulation of
the level of synchrony or coherence. This is in principle due to the intrinsic difficulties
of independently manipulating the level of synchronization while leaving other possible
confounded variables unaltered. A new avenue for controlled experimentation is due
to optogenetic targeting of fast spiking (FS) interneurons198, linked to the generation
of gamma oscillations16 (see section 1.3.1). Studies in anesthetized mice showed that
inhibition of fast spiking interneurons suppresses gamma oscillations232 and that opto-
genetic stimulation of that neuron type amplifies gamma oscillations232,53. Rhythmic
stimulation of FS cells in the gamma band increased the LFP power in those frequency
ranges, independently of the spiking probability (which can be independently manipu-
lated by the intensity of the light impulses), showing that the oscillation frequency is
a resonant-like network property53. Importantly, by rhythmically stimulating the FS
cells in barrel cortex, it was also revealed that a whisker deflection evoked a response in
regular spiking cells depending on the phase of the gamma stimulation. That study53

demonstrates that the ongoing rhythm of a local circuit modulates the evoked response to
stimuli, by maximizing its temporal precision in the release of inhibition and hindering it
in its peak. A follow up study228, reproduced these results in behaving mice and further
revealed that FS gamma stimulation increases the mean detectability of hard to detect
naturalistic stimuli. This result, in line with that showing that impaired oscillations in
the antennal lobe of the locust hinders the discrimination of similar odors240, suggest
that when finer perception is required, cognitive modulations like attention might profit
from oscillatory mechanisms198.

1.1.6 A critical view on the role of gamma synchrony and coherence

The role of gamma oscillations in representation and routing as part of the binding
and the communication through coherence hypotheses respectively, were prone to much
skepticism and criticism, presumably because of the generality of their claims and the
lack of detailed technical insights to support it. The concerns are detailed below, and
while the first four focus on the nature of the induced gamma in primary visual cortex,
the last two specifically refer to issues raised by the CTC hypothesis in attention and as
a general communication scheme, respectively.

The concerns below, stem from a discrepancy between the supposed requirements that
neuronal signals should accomplish for the communication through coherence hypothesis
to operate in the brain and what is observed experimentally. In Chapter 2, we will
incorporate some of the characteristics below described, which at first sight might appear
as a limitation for the usage of oscillatory coherence in information transmission, and
show that these features might actually facilitate the flexible gating of information flow.
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i) Transient nature of gamma episodes

When a preferred visual stimulus is presented, the primary visual cortex exhibits a broad-
band increase in gamma power, which is not phase locked to the stimulus but induced by
it209,132,204,133. This increase compared to baseline, is evident in the power spectra in a
single trial basis. The time-dependent analysis usually performed in most of the studies
that report induced increase in gamma power, involves a time-frequency analysis with a
sliding window and consists an average spectrogram across many trials141,157,204,203,286.
This type of analysis might falsely suggest a sustained and constant gamma increase
during the stimulus presentation. This however, is far from the structure that can be
seen in single trials where episodes of higher power have an average duration of 100-120
ms286 in the awake and the anesthetized macaque. The fact that gamma power is lo-
calized in short epochs, constrains the temporal extent of gamma-mediated information
processing in the brain, which would be restricted to only a few gamma cycles.

ii) Inconsistent power and drifting frequency of LFP signals

A second type of criticism, emphasizes the irregularity of the gamma oscillations observed
in the cortex. It can be argued, that the lack of regularity of the gamma rhythm might
preclude a proper alignment of communication windows, and that for gamma rhythms
to be suitable for binding or communication they should present clock-like characteris-
tics44,43,286. Single trial spectrograms as shown by Shapley and colleagues286,43,44, have
a fluctuating and inconsistent power, and a drifting frequency in the gamma band. In
particular, work by Burns et al. 44 directed towards inspecting the regularity of these
rhythms showed that gamma oscillations are far from periodic signals: the frequency and
duration of transient episodes of elevated power in the gamma band (gamma bursts) are
identical to those obtained by randomly shuffling the phases in Fourier space, both in
the anesthetized43 and the awake fixating macaque286.

iii) Low induced gamma power

The LFP signals measured in the mammalian cortex in the absence of stimulus, as
well as the EEG of primates, have a 1/f spectrum48. As previously mentioned, when
a visual stimulus is presented, LFP recordings in the macaque V1 usually exhibit a
modulation in the gamma frequency range209,132,204. This modulation nevertheless, lies
on top of the characteristic 1/f spectrum, where low frequencies always have a larger
power which can be enhanced or reduced comparatively depending on the behavioral
task17,103. The fact that gamma fluctuations are small (10-20 µV on average) and that
account for less than 10% of the total LFP power132 suggests a weak role for gamma
coherence in brain processing, and lead to presume that this spectral modulation is just a
natural consequence of the imbalance of excitation and inhibition produced by increased
excitation at the presentation of the stimulus203,44,132,133,135.
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iv) Stimulus dependence of gamma power

Gamma synchrony in the macaque V1 seems to be either better or solely induced by
Gabor patches (gratings). The sole modification of superimposing two Gabor patches
with different orientations and different contrasts (a plaid), disrupts the spike-spike
synchrony in the gamma band observed in all the experiments agreeing with binding
by synchrony101,100,70,69, and it considerably lowers and shifts the gamma peak in the
LFP157. This has not only been observed in macaques, but studies of human visual
cortex report similar results119. Furthermore gamma synchrony might not be induced
under naturalistic stimulation. Disparate results were obtained by different groups in
this respect. While some36 report a consistent increase of the narrow band gamma peak
during naturalistic stimulation of the macaque V1, this is only found for specific natural
stimuli in the human119.

Besides the differences observed in the gamma activity of V1 depending on the type of
stimulus, gratings or naturalistic, strong differences were as well observed in the neuronal
signals depending on the characteristics of the gratings themselves:

• The gamma power and peak are contrast dependent 203,135. Both the gamma peak
and the power, together with the firing rate increase with stimulus contrast135.
Despite these dependencies, the phases of spikes with respect to the LFP signal re-
main unaltered203. Time varying contrast induces dynamic changes in the gamma
power and frequency that is history dependent, and furthermore, spatially varying
contrast causes nearby assemblies to oscillate at different frequencies, unlike what
is observed for a fixed contrast grating203.

• The gamma power and peak are depending on noise masking. Similar changes are
observed when masking the gratings with noise. Both the peak and the gamma
power decrease with increasing noise masking, although in this case a modulation
of the firing rate is not observed135.

• Gamma power and peak are dependent on the size of the grating 132,204,133,135. This
is a particularly interesting manipulation, because increasing the size of the grating
increases the power and the peak value of the induced gamma, but reduces firing
rates due to surround suppression. Profiting from this difference, it was shown
that there is a high correlation between the rate signal and the high frequency
components of the local field potential (above 100 Hz) Ray2011.

v) inter areal phase relations do not match the expected synaptic delay

If collective oscillatory activity modulates network excitability, coordination between
rhythms could align excitability windows and thus provide a flexible mechanism for
routing. For the excitability windows to be aligned, a first intuitive constraint would
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be that the phase difference between the distant LFP rhythms (∆Φ) times the average
period (T) of the oscillation, is in the order of the inter-areal synaptic transmission delay
d:

δ := T∆Φ = d (1.2)

The estimation of the (mean) delay d is generally defined as the peak cross correlation
between spikes in the different areas. Although there seems to be general agreement that
spikes in an area usually spike in the trough of the local LFP signal165,65,134,204, whether
LFP-LFP delay matches the transmission delay d is still under active debate. Paired
recordings between V1 and V2 in experiments designed to address this question, showed
that the mean phase relation between V1 and V2 LFPs band pass filtered between 30
and 50 Hz is 90°, corresponding to a delay δV 1−V 2 of 5-8 ms, much larger than the
synaptic delay d of around 3 ms that they report134. Another study, investigated the
inter-areal phase shift between V4 and FEF and found it to be between 8-13 ms similar
to the estimated synaptic delay d of 10 ms103.

A study by Vinck et al. 269 shows that contrary to other works reporting that spikes
usually concentrate on the trough of the LFP, argue that actually spikes phase-lock to
the rhythms depending on the orientation preference of the spiking cell or depending
on the power of the rhythm, and show a wide-spread distribution of spike-LFP locking
values. Other study by Dotson et al. 65 , report that the LFP-LFP phase (in the beta
band), in frontal and parietal areas, is bi-modally distributed with peaks at 0° and 180°,
and that a full phase flip between rhythms can occur depending on the behavioral stage
of a task.

Whether the inter areal delay is uniquely determined by the synaptic delay, and the
implications of that difference on inter areal communication are still under debate. The
perspective that can be added to the above exposed views, is that the effective time that
it takes for a signal to propagate from one area to another might be effectively longer
than the transmission delay d, and will generally depend on the response properties of
the population per se. Work directed towards quantifying the time it takes for a stimulus
to elicit a response in areas in the ventral stream218 provided an estimate of the mean
effective latency between two areas showed that the mean response in V1 is at 66 ± 10
ms, while in V2 it is 88 ± 21 ms, with a 16 ms difference in the mean, different from the
3 ms of synaptic delay, and form the 5-8 ms calculated form the phase lag134.

vi) Lack of attentional modulation in V1

Beyond concerns regarding the nature of the induced gamma in primary visual cortex,
there is no agreement on whether attention can modulate the gamma power in V1. While
some studies261 find an increase of gamma power and coherence with attention, some
other26 find either no change or a reduction120,57. Although the differences might be
explained by changes in the stimulus paradigm, the concern that the induced power is
at least not robustly modulated by attention still holds.

All the points raised above, in particular the stochastic and transient nature of gamma

18



oscillations in vivo, appear hard to reconcile with a functional role of oscillatory coher-
ence. Models incorporating these features and investigating their impact on inter-areal
information transmission will be presented in Chapter 2

1.2 Theory of collective oscillations

Concomitant to the study and analysis of synchronization of neurons in the brain, efforts
have been devoted for more than five decades to theoretically study the emergence of
collective synchrony. Much of the early work was done in reduced and simplified systems
of coupled oscillators, and aimed to have an overall understanding of the emergent
dynamics of networks of periodic units. An early study by Winfree281 laid the foundation
of the study of a large number of almost identical coupled oscillators. Although providing
substantial insight, a general theory for the study of collective synchronization under the
weak coupling assumption only arrived with Kuramoto150. He showed that the dynamics
of any network of coupled oscillators with natural frequencies ωi, drawn from g(ω) have
a universal form where the rate of change of the individual phases is proportional to
a force that depends only on the pairwise difference between the oscillator’s phase and
its neighbors. Advancing on Winfree’s intuition that mean field like simplifications in
which the phases interact with the rest of the network only through a collective rhythm
could strongly simplify the analysis, Kuramoto defined an order parameter r to study
the simplest version of the model. The critical value of the coupling K at which the
network shows synchronized collective behavior could be obtained analytically, although
it was another 20 years before a rigorous derivation of the low dimensional dynamics of
the order parameter was obtained191.

1.2.1 Intuitions and the two neurons case

A step forward in the understanding of collective phenomena and towards a mathematical
study of the interaction of neuron-like oscillators was taken by Mirollo and Strogatz172.
Departing form the phase coupled approach by Kuramoto, they showed that a fully
connected network of integrate and fire neurons with instantaneous excitatory pulse-
like (delta) connections ∗ always synchronizes. Excitation was then thought to be the
required ingredient for network synchrony, and inhibition, specially delayed inhibition,
was suspected to serve a stabilizing role of the asynchronous state2,76. A systematic
study of the phase locking properties of two neurons depending on the sign and the
time course of the synaptic current, revealed that contrary to this belief, for the leaky
integrate and fire neuron (LIF†) non-instantaneous excitatory coupling leads to either

∗By delta connections it is meant that the input current to a neuron at time t as a consequence of an
incoming spike at time t0 is modeled as I ∝ δ(t− t0).

†The LIF neuron is defined as τmV̇ = −V + I, where τm is the membrane time constant, V is the
voltage and I is a constant input current. For the model to be completed, a threshold Vt and a reset Vr

voltage values have as well to be defined.
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anti-phase or out of phase locking, approaching the zero lag synchrony only in the limit of
instantaneous coupling263. This same analysis on inhibitory synapses showed that zero-
lag synchronization is stable for inhibitory connections, not only for the simple integrate
and fire neuron but as well for both a generic phase reduction and the Hodgkin-Huxley
neuron ∗ 263. Furthermore, even arbitrarily small delays give rise to stable, in phase
synchrony when the interaction is an inhibitory delta pulse, as opposed to the out of
phase locking obtained in the excitatory case76,77.

1.2.2 Fully connected inhibitory networks

Generalizing these results to fully connected networks, the synchronous solution is always
stable in the presence of slow inhibitory coupling, and for fast synapses it coexists with
clusters of synchronized neurons, whose number increases as the coupling time constant
becomes shorter, leading to an essentially asynchronous state for fast coupling262. For
phase oscillators with instantaneous (delta) but delayed interactions, it was shown that
the number of clusters formed in this case is inversely proportional to the delay of the
interaction76,77, therefore diverging for instantaneous coupling. It is worth mentioning
that this cluster-like configuration allows for a population frequency higher than the
single neuron rates, and is commonly observed in inhibitory networks, is stable and
robustly preserved for a mild level of noise96 or frequency heterogeneities285,181. By
means of a powerful approach34,90 Brunel and Hansel32 made a comprehensive analysis
of a fully connected inhibitory network with delayed interactions in the presence of
noise. They calculated the instability boundaries as a function of the strength of the
coupling, the mean firing rate of the neurons, the details of the synaptic coupling and
the variance of the noise and explicitly showed, recovering the above results in the limit
of small noise, up to which level of noise the n-cluster solutions would be stable. The
transitions, obtained for the LIF, the exponential integrate and fire ( eLIF †) and for a
conductance-based model, not only separate the n-cluster regimes from the asynchronous
state but they further show that even in these fully coupled networks a regime in which
the frequency of the population oscillation is much larger than that of the single neurons,
which fire in an irregular manner, can also exist (see section 1.2.6).

1.2.3 Fully connected excitatory networks

As stated by Hansel et al112, to understand collective states of neural systems, one can-
not separate the synaptic properties from cellular properties. A thorough investigation
of excitation-induced synchronization in fully coupled networks with non delayed inter-

∗Hodgkin-Huxley neuron refers to the 4-dimensional conductance based model as originally conceived
in123.

†The exponential integrate and fire model is τM V̇ = V + ∆ exp ((V − θ)/∆) + I where τm is the
membrane time constant, V is the voltage and I is a constant input current, θ is the threshold and ∆ is
a sharpness parameter.
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actions revealed that excitation can be synchronizing for fast although not necessarily
instantaneous synapses depending on the phase response curve of the neuron112. Type
I neurons, characterized by an always positive phase response curve, can hardly be syn-
chronized by slow excitatory connections even when the connections are strong. In the
particular case of LIF neurons with synapses modeled by an alpha function, it was shown
that for short (but not instantaneous) synaptic time constants there is a transition to
a non synchronous oscillatory state, known as partial synchronization262 where neurons
fire irregularly with rates larger than the oscillation frequency. Type II neurons, on
the contrary, can be synchronized if the synapses are fast enough. It was furthermore
shown analytically in the weak coupling limit that this is a generic feature of Type I
neurons73: They preferably synchronize through either delayed or slow inhibition. Type
I neurons, transition to tonic spiking via a saddle node bifurcation on an invariant circle,
and therefore correspond to neurons with a type I excitability (i.e. they can have achieve
arbitrarily small rates). Given that the LIF is also a type I neuron, the above results
make more intuitive that the inclusion of delays in the Mirollo-Strogatz scheme (delta
coupled excitatory connections of phase oscillators) leads to other firing patterns than a
synchronous state251.

1.2.4 The role of heterogeneity

A further step in understanding synchronization in all-to-all pulse-coupled networks was
made by studying the impact of heterogeneities in the neuronal frequencies. Unlike the
case in which the coupling is a smooth function of the dynamical variables, in which mild
heterogeneity doesn’t break the synchrony in the population activity for a high enough
coupling150, heterogeneities introduced in the single neuron parameters of networks with
pulse coupled interactions exhibit a wide range of behaviors. In networks of purely ex-
citatory connections in a Mirollo-Strogatz like setting, it was shown that the inclusion
of frequency heterogeneities breaks synchrony creating a subset of non-locked neurons,
that remains finite even in the limit of vanishing inhomogeneity256. When the connec-
tions have a non instantaneous synaptic time course, and are therefore not initially in
a synchronous state, the progressive increase of heterogeneities initially increases the
fraction of locked neurons to a non-zero value, to later decay again. This non monotonic
dependence of synchronization on the network’s heterogeneity was reported both in in-
tegrate and fire256 as in Hodgkin-Huxley neurons110. As discussed in White et al. 275 ,
in an homogeneous network, the synaptic coupling only needs to align the phases of
the neurons, while in the mild heterogeneous case, to achieve perfect synchrony it has
to both entrain the frequencies and align the phases. White et al275 showed in a pair
of self and mutually inhibited Wang-Buzsáki like neurons ∗, that mild heterogeneities
could disrupt synchrony in basically two ways: by effective decoupling (asynchrony) or
via suppression. They further showed that synchrony in a fully coupled network with

∗The Wang-Buzsáki neuron285 is a three dimensional conductance based model with fast sodium
activation. See next section and Methods of Chapter 2
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slow synapses, shown to be stable in an homogeneous configuration, can be also be dis-
rupted by the above mentioned mechanisms. The robustness of synchronization in a
looser definition including but not being limited to tight synchrony, was also studied
in the weak coupling limit181. There it was shown that, unlike in inhibitory networks,
excitatory networks could not bear even a small degree of synchrony at high firing rates
when heterogeneities were included.

A clarifying view of the effects of heterogeneities in the dynamics of fully coupled
networks was presented by Hansel and Mato111. They analytically derived the stability
boundaries of the asynchronous state as a function of network parameters for mixed ex-
citatory and inhibitory networks of quadratic integrate and fire neurons (QIF ∗). They
showed, that for strong inhibitory conductances a transition to spike-spike synchrony
was possible, in what they called mutual inhibition mechanisms. In another type of
transition, called cross-talk mechanism, the excitatory-inhibitory loop gives rise to os-
cillations. Although in their fully coupled network they observed that the frequency of
the oscillation was smaller than the rate in this case (bursting behavior), these two dif-
ferent routes to synchrony, one in which inhibition is the driving force for the collective
oscillation, and the other one, in which excitation is needed to drive inhibition, will be
further analyzed in section 1.3 of this chapter.

1.2.5 Synchrony in sparse inhibitory networks

Among the studies focusing on all to all connectivity, an interesting step was taken by
Wang and Buzsáki285 when considering on the one hand heterogeneities in the intrinsic
neuronal frequencies, and on the other, in the connectivity. They showed that the
synchrony of fully coupled inhibitory networks was fragile under the inclusion of 5%
current heterogeneities (inducing heterogeneous firing rates) in a neuronal model with a
broad and steep f-I curve † known as the Wang-Buzsaki model (WB). While keeping the
neuronal firing rates uniform, they showed that there is a minimal amount of connections
needed to achieve full synchrony. Under these two types of heterogeneity, the network
was only coherent for frequencies (and firing rates) in the gamma range. In the presence
of any of this two kinds of inhomogeneity, increasing the synaptic time constant didn’t
necessarily have a stabilizing effect, contrary to what was shown in the homogeneous
case. A systematic and analytically tractable approach was devised by Golomb and
Hansel95. By means of weak coupling approximation they could derive for the LIF
an expression for the minimal amount of connections for which the asynchronous state
looses stability in sparse inhibitory networks as a function of the firing rate and of the
rise and decay time constant of the inhibitory synaptic coupling, providing an scaling
low that keeps the degree of synchrony.

∗The QIF neuron, defined as τM V̇ = V 2 + I, will be studied in detail in Chapter 3.
†The f-I curve is the dependence of the firing rate of the neuron to an increasing input current.

Neurons with a Type I neuronal excitability122 as the one studied here, can achieve arbitrarily low firing
rates
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The studies mentioned above were no longer concerned with perfect spike to spike syn-
chrony, but rather with the existence of some degree of synchrony, and the conditions
to achieve collective oscillations in more realistic settings. Nevertheless, other theo-
retical work devoted to studying the mathematical aspects of the synchronous state,
devoted effort in making rigorous statements about its stability. It was proven that
pulse-coupled inhibitory networks with arbitrary connectivity and delayed interactions
have a stable synchronous state in models with few constrains on the underlying voltage
dynamics250,249. Although stable, the synchronous state is not the only attractor of the
system. When the connectivity is random (keeping a fixed in-degree), this synchronized
state is shown to coexist with a asynchronous irregular state. The inclusion of hetero-
geneities in the weights in this type of setting breaks the stability of the synchronous
state and leads to periodic spiking patterns62.

Spike-to-spike synchronization might appear to be unrealistic given the large vari-
ability of cortical activity. Nevertheless, fast spiking neurons, specially parvalbumin
positive basket cells, are abundant, densely connected and can fire approximately once
per gamma cycle52. These inhibitory subnetworks are believed to have a lead role in the
development of neural rhythms277,16,52. In the above models, synchronization is sensi-
tive to a minimal number of heterogenous parameters and is driven by a tonic form of
excitation, implicit in phase neuronal models. The following subsections explore alterna-
tive or complementary mechanisms to the generation of collective oscillations exploring
different types of synchronization and larger robustness to heterogeneity.

1.2.6 The synchronous irregular state

Pyramidal neurons in networks engaging in collective rhythms in hippocampal253,27,278

and cortical87 networks do not fire regularly in every cycle. Early models of the hip-
pocampus253 and the cortex144, succeeded in modeling circuits that emulate this syn-
chronous irregular (SI) or sparsely synchronized state, but not in unraveling its math-
ematical foundation. Brunel and Hakim30, developed a theory to study the transitions
to synchronous irregular states, as well as its behavior in the vicinity of the bifurcation.
They studied the instability boundaries of the asynchronous state in sparse inhibitory
networks of delta coupled LIF neurons with noisy inputs and delays, and found that
the transition to a SI state is given by a supercritical Hopf bifurcation. The population
frequency at the transition, is inversely proportional to the delay of the interactions,
giving frequencies of the order of 200 Hz, well in the gamma range ∗. An immediate ex-
tension to this work to both excitatory and inhibitory neurons in an otherwise identical
setting29, showed that the synchronous irregular state emerges robustly for sufficiently
large recurrent inhibition and delays. Interestingly, besides the high frequency syn-
chronous irregular state, there is a low frequency synchronous irregular state, in which
the population oscillates with in the alpha-beta band. For some parameter ranges, there

∗They also studied the dynamics in the vicinity of the instability and provided analytical expressions
for corrections to the oscillation frequency.
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is a fraction of the phase space in which these two regimes overlap resulting in a nested
beta gamma rhythm with low firing rates29.

Extending these works, Brunel and Wang34, developed a self-consistent framework to
generally calculate the frequency of the oscillation of the SI state in more biologically
realistic settings. They showed that when including temporal dynamics in the synapse,
the frequency of the oscillation of the inhibitory network is a nonlinear function of the
rise and decay time of the synapse and inversely proportional to the delay, and most
prominently defined by the fast time scales. The inclusion of excitatory connections,
generally slows down the oscillation frequency. Depending on the ratios of the inhibitory
and excitatory synaptic time constants, different oscillatory regimes can be identified:
An inhibition dominated one, characterized by a high 2̃00 Hz frequency, where excitation
is slow and hence almost tonic, and a E-I one, where excitation is faster than inhibition,
with population frequencies of around 7̃0 Hz. Further extension to account for the
differences introduced when moving from an overly simplified model like the LIF to
more complex neuronal models like the eLIF or conductance based ones, yielded similar
results90. The SI state, that naturally accounts for the low firing rates and oscillation
frequencies experimentally observed, seems to be of a universal kind given that it can
be found for models with great variety of neuronal and synaptic characteristics90. The
synchronous irregular state is the base of a large body of theoretical work modeling low
synchrony network oscillations143,15,37,56. It will be used as a basis for the class of models
presented in Chapter 2, and a transition similar to that described here will be obtained
in a different framework in Chapter 3.

1.3 Mechanisms of gamma oscillations

The insights provided by theoretical work pointing to inhibition as a fundamental mech-
anism in the generation of collective oscillations was paralleled by the experimental
corroboration of such a role. Nevertheless, although the existence of inhibition has
been shown to be a necessary condition82,277,278,52,276,53,228, whether it is a sufficient one
for the generation of brain rhythms remains unknown. In hippocampal slices, gamma
rhythms can be induced by a variety of pharmacological and electrical procedures. De-
pending on which one is performed, different conclusions have been drawn regarding
the role of excitation have been drawn16. While the blockade of GABAA receptors ∗

usually disrupts the induced gamma rhythm82,277,278,52, rhythms can be sensitive82 or
insensitive277 to AMPA receptors † antagonists.

Two possible mechanisms for the generation of gamma oscillations can be then dis-
tinguished278. That in which inhibition is necessary and sufficient for the generation of
gamma, known as interneuron network gamma oscillation (ING), or that in which the
feedback from the excitatory population plays a crucial role, without which the rhythms
would be abolished, named pyramidal-interneuron network gamma oscillations (PING).

∗GABAA mediates fast inhibition.
†AMPA is a glutamate receptor mediating fast excitation.
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It is worth to point out however, that except in the case of the cerebellum where the
principal cells are also GABAergic, or in optogenetically manipulated scenarios, in which
fast spiking interneurons can be targeted directly53,228, these mechanisms might coexist,
either spatially segregated or contributing simultaneously.

1.3.1 PING ING models of gamma rhythms

Models of ING synchrony, are usually, but not necessarily, networks of interneurons
driven by tonic excitation. Buzsáki & Wang 52 give three conditions for the existence
of such a rhythm: i) Mutually connected inhibitory interneurons ii) a time constant
provided by GABAA receptors and iii) sufficient drive to induce spiking in the interneu-
rons. Models have explored the ING mechanisms in “stripped down”52 configurations
in mainly two forms. One, in which excitation was present only tonically285,95,244, and
neurons fire, like fast spiking interneurons once per cycle giving rise to spike-spike syn-
chrony. The other one, is in which the neurons receive a noisy poisson like input34,
and synchronization is sparse (SI state). In both cases, the collective frequency depends
on the inhibitory synaptic time constant and lies in the gamma range. In the second
scenario, the frequency, which is much higher than the single neuron firing rates is only
weakly independent on the increase of the external excitatory input. Another possible
exploration of ING models is that in which there are excitatory neurons in the network,
but they play a secondary role. Examples with a tonic drive as in ter Wal & Tiesinga 244

and to some extent in one example in Börgers & Kopell 25 are determined by removing
the feedback from excitation to inhibition and verifying that the rhythms still develops.
As in the stripped down models, a noisy form of this version also exists34. In this case,
making AMPA synapses slow enough, excitation reaches tonic levels and leads to an
inhibition dominated oscillation.

The PING mechanisms that generate gamma, on the other hand, strongly rely on the
role of excitation. Volleys of excitatory neurons drive the inhibitory ones, which should
lag the former by a few ms. Heuristic arguments for the existence of a PING state
have been outlined by Börgers & Kopell 25 . Their four conditions are: i) that the ex-
citatory neurons are driven well over threshold, ii) E→I connections are strong enough
and fast iii) that the inhibitory neurons only spike in response to excitatory neurons
iv) I → E connections are strong enough for the inhibitory neurons to synchronize the
excitatory ones. It is important to notice, that in some scheme of PING, specially those
in which neurons are tonically driven, excitatory neurons also present spike to spike
synchrony25,244. Noisy schemes of PING, can be obtained both for when the “noise”
arises from the random connectivity or from an external source. These models, as devel-
oped in34,90 allow for a deeper mathematical treatment and therefore different regimes
can be identified. One, in which inhibition precedes excitation, in which decreasing the
AMPA/GABA ratio increases the frequency of the oscillation, and another one, that is
consistent with physiology, in which excitation precedes inhibition13 and a decrease in
AMPA/GABA ratio reduces the oscillation frequency as seen in vitro278. These models,
precisely reproduce the lower spiking of pyramidal cells and the fast spiking of interneu-
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rons, while the population peaks at the gamma band. In both cases, noisy and tonic
driven PING networks, the cornerstone of the rhythms lies in the feedback connections
between excitation and inhibition, E→I and I→E. Regarding the other two types of
connections, the role of recurrent excitation (i.e. E→E connections) in the generation of
the rhythm is not well understood25,52. Recurrent inhibition (I→I connections) on the
other hand, could serve to stabilize the rhythm in case the drive is too high25, although
large recurrent inhibition can lead to an ING rhythm instead.

1.3.2 Phase Locking of oscillating neuronal circuits

Neuronal populations as a whole can present in and out-of-phase locking patterns be-
tween them depending on the effective sign and delay of their interaction. In the cases
in which populations behave like oscillators, their dynamics are well described by its
phase evolution on the limit cycle. Small perturbations arising form interactions with
other neuronal populations, can be calculated in the weak-coupling limit in a framework
developed by Kuramoto150,75. Battaglia, Brunel and Hansel19, analytically calculated
the phase difference between two delayed rate units coupled by delayed “long-range” ex-
citation. They showed, that depending on the level of inhibition and the ratio between
the local and the inter-areal delay, transitions between in-phase and out-of-phase locking
can occur, out-of-phase locking being predominant and occupying a significantly larger
fraction of the parameter space. They further showed that the phase-locking patterns
obtained with the reduced rate model can also be found in both purely inhibitory and
both inhibitory and excitatory spiking networks coupled with long range excitatory con-
nections. Further work by Battaglia et al. has shown how to reverse the phase relation
of networks oscillating in a out of phase configuration by a strong excitatory pulse, both
in rate models20 and in spiking networks20,282.

1.4 The balanced state

Among the large variety of dynamical behaviors that are observed in the brain and
besides collective oscillatory activity, increasing interest was generated by the fact that
neuronal activity, particularly in the cortex, can be highly irregular with statistics closely
resembling that of a Poisson process92. This high variability, present in cortical circuits
whose population can (or not) be embedded in a rhythm, is not due to lack of reliabil-
ity at the single neuron level164, indicating that it is due to input fluctuations arising
from network interactions11. In principle, given that neurons in the cortex receive in-
puts coming from many different areas167, these inputs could be expected to be nearly
uncorrelated. If the large amount of synaptic inputs, of the order of 103 − 104 193 are
linearly summed in the soma, the net input to the cell can be expected to have a small
variance and a nonzero mean. The small variance (1/

√
N argument255) arises from the

central limit theorem, while the non zero mean would result from to the comparatively
small number of inhibitory synapses61. Constant inputs to neurons generate regular
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tonic spiking164, indicating that a small variance on top of a high mean would result
in a rather regular spiking output. On the contrary, correlated fluctuations could in
principle survive the averaging and provide a source of neuronal variability; but neither
the observed correlations in vivo are large enough, and if they were, models exploring
that regime result in synchronized bursting activity113.

Besides the interesting proposal that the variability observed in vivo probably arises
as a consequence of synchronous inputs to a neuron238, another is based on the premise
that inhibitory and excitatory synaptic inputs cancel each other and that the residual
fluctuations arising from the imperfect cancellation drive the neuronal firing. This last
conceptual framework to explain the spiking variability finds its origins in models de-
scribing the dynamics of the membrane potential as a random walk. In those models,
excitatory postsynaptic potentials drive the membrane potential towards the threshold
while inhibitory ones drive it towards its reversal potential with equal or similar rate92.
Shadlen & Newsome 223 developed this proposal, and argued in favor of the plausibility
of a balance between excitation and inhibition being the fundamental mechanism behind
variability. They reported its simple feasibility and argued that, contrary to all other
models to explain spiking irregularity, the balanced state proposal does not contradict
the experimental evidence. Mathematical and computational studies soon put on a solid
footing possible schemes that could explain how from network models, irregular spiking
activity could be obtained257,265,264. In particular, a mean field theory265,264 for the bal-
anced state was developed for sparse∗ and strongly connected networks. The dynamics
of this type of networks, sometimes called balanced state networks, are asynchronous
and irregular with a constant population mean, and will be used as a starting point to
analyze the delay-induced transitions to collective rhythms in Chapter 3.

The hypothesis that cortical dynamics are characterized by a balance between inhi-
bition and excitation, was tested experimentally in the ferret both in in vitro cortical
slices227 and in vivo109. In these studies they estimated, in a voltage-clamp configura-
tion, the values of the inhibitory and excitatory conductances by a single recording of
spontaneous activity and showed that on average, inhibition balances excitation. The
understanding of the dynamics of this balance took a further step by performing paired-
recordings in nearby neurons. It was shown, in the somatosensory cortex of anesthetized
rat both in spontaneous activity and under stimulation185, that inhibition and excitation
track each other dynamically with inhibition lagging excitation by a few ms. Theoretical
work aiming to explain the low correlations observed in cortical networks put forward
a mathematical framework that accounts for this tight balance206. Dense† and strongly
connected networks generate activity in which inhibition and excitation track each other
allowing to cancel out most of the input correlations, leading to asynchronous and irreg-
ular dynamics. In this case, the inhibitory and excitatory input currents also present a
lag of a few ms, but vanishes in the large N limit.

Interestingly, although the most prominent theoretical work describing the balance of
excitation and inhibition257,265,264,206 results in network dynamics that are asynchronous

∗The number of connections K is much smaller than the number of neurons N
†The number of connections K is no longer required to be much smaller than N
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and irregular, this balance has as well been experimentally observed in in vivo and in
vitro oscillatory networks13,23. Atallah and Scanziani13 showed in paired-recordings that
excitatory and inhibitory conductances of neurons in hippocampal CA3 dynamically and
proportionally track each other with a 2-3 ms lag while LFP recordings oscillates with
frequencies in the gamma range. The inhibition-excitation balance and the gamma oscil-
lations do not coexist independently. That study further showed that the modulation of
the inhibitory and excitatory balance underlies the changes in amplitude of the gamma
oscillations, that mediate (i.e. are correlated with) changes in the instantaneous fre-
quency of the gamma oscillation13. This work shows that the balanced state, loosely
defined as a state in which excitation and inhibition track each other dynamically, is in
principle fully compatible with oscillatory activity at the population level.

1.5 Dynamical stability of neuronal networks

The characterization of the firing patterns that emerge as a collective phenomena in
coupled networks as synchronous or asynchronous, regular or irregular is not sufficient
to describe the dynamics of the network. Although complex, these patterns could live
on a limit cycle, or present long and complex transients to it. A large body of work
has been dedicated to study whether the microscopic dynamics of neuronal networks are
sensitive to initial conditions or exhibit stable dynamics, and to explore the profound
questions for brain computation that distill from the possibility of chaos in the brain.

In the origins, network models of rate units with Gaussian distributed weights were
shown to have a sharp transition (in the large N limit) from a stable fix point to a
chaotic state when the variance of the weight distribution equals a critical value234. In
these type of networks, a particular type of mean field theory in which the input of the
network to a single neuron is approximated by a gaussian noise term whose covariance can
be found self-consistently, the first Lyapunov exponent∗ can be calculated analytically.
The dynamics beyond the chaotic transition are characterized by a vanishing correlation,
indicating asynchronous dynamics. Recently, this method has been extended to networks
of ‘realistic’ connectivity, in which the rate of the units is restricted to have positive values
and neurons obey Dale’s law170. Further extensions incorporate external periodic202 or
stochastic94 inputs. In both cases, it was shown that these external inputs suppress
chaos. In Appendix A we will study, by means of a simple approximation, the impact
of delayed interactions in networks of this type.

Another school of mean field theories is based on the analytical calculation of the order
parameter in fully phase coupled networks191. The order parameter of a single popu-
lation with the standard Kuramoto coupling and a Lorentzian distribution of intrinsic
frequencies has been shown to be one dimensional, but extensions to uni-directionally
coupled populations of those characteristics showed that the order parameter in that
case exhibits chaotic dynamics10. Furthermore, this approach can also be used to study

∗The first Lyapunov exponent is the rate of divergence of two trajectories as a consequence of an
infinitesimal perturbation. Rigorous definitions will be given in the Methods of Chapter 3.
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fully coupled theta neurons, as the ones studied in Chapter 3. Although the order pa-
rameter for the autonomous case with constant heterogeneous input has two dimensional
dynamics, the periodically driven case is as well chaotic230. An extension to the fully
coupled case for N populations can be found in Appendix B. Regarding the microscopic
dynamics of the standard Kuramoto network, it was shown that the dynamics before
the transition to full synchronization exhibit phase chaos for finite N. The maximum
Lyapunov exponent vanishes for increasing N like 1/N 196.

The precedent for the study of chaos in spiking neural networks was set by van
Vreeswijk & Sompolinsky 265 in their landmark work on balanced state networks ∗.
They showed that in these networks, the dynamics of binary neurons are chaotic with
an infinitely large maximum Lyapunov exponent. The asynchronous and irregular dy-
namics characterizing the balanced state networks arise from the non vanishing variance
of the large inhibitory and excitatory inputs received by each neuron in the network.
Intuitions for this mechanisms will be outlined in section 3.1. Although the statistics
of the balanced state networks appear to be largely independent of the single neuron
model265,128,174, its stability however is not common or intrinsic to the balanced state.
Random networks of inhibitory LIF neurons with delta like synapses in the balanced
state, have been shown to have stable dynamics128,129. After a transient of irregular
activity whose duration scales exponentially with network size, the dynamics settle in a
periodic orbit. However, finite size perturbations reveal a phase space of simultaneously
diverging and contracting trajectories175. Trajectories initially separated on average
by less than a critical value ϵFT, converge to each other exponentially (local stability),
while those separated further diverge exponentially. Remarkably, this critical value ϵFT
vanishes in the large N limit, leading to conjecture that is possibly the order of the
limit of N to infinity what might underlie the difference in the mean field results265 and
those obtained for the inhibitory LIF128,129. Interestingly, networks of LIF neurons in
the balanced state with more complex synaptic dynamics, like an exponentially decaying
synapse, exhibit extensive chaos after a critical value of the synaptic time constant173,199.

Quadratic integrate and fire neurons in the balanced state with non-delayed delta
coupling, exhibit chaotic dynamics174. The trajectories of this dissipative system, settle
on an attractor whose dimension increases linearly with network size (see Chapter 3),
denoting extensive chaos, and it is independent of the initial conditions and the specific
realization of the coupling matrix. The dynamics of these networks are also characterized
by a non zero entropy production rate. This entropy production rate or source informa-
tion rate is on the one hand a measure of how much new information about the initial
conditions is provided by the successive iterations of the dynamics, the information con-
tained in the micro-state of the system that is not available in the initial state measured
with a finite precision. On the other hand, it is a measure of how much, given the finite
resolution of the initial state, the next point in the trajectory is unpredictable; is the
extra entropy generated by the unpredictable dynamics at finite precision. Further work
on QIF neurons174, showed that the number of neurons involved in the most unstable

∗Generally, when referring to balanced state networks, the following is assumed: N neurons are
connected with on average K other neurons, and the weight of the connections J scales like 1/

√
K
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direction (that of the -time dependent- first covariant Lyapunov vector, associated to the
maximum Lyapunov exponent, see Chapter 3) is relatively small and changes variably
over time.

The transition from stable dynamics presented by a network of LIF neurons and the
chaotic behavior of otherwise identical networks of QIF neurons in the periodically spik-
ing regime was studied by designing a neuron model with tunable spike onset rapidness,
which allows to interpolate between these cases173,72. For a low and moderate spike on-
set rapidness, the dynamics of the network continue to exhibit high dimensional chaos as
observed for the QIF neuron studied in Monteforte & Wolf 174 . Although the first Lya-
punov exponent increases with a moderate increase in the rapidness, both the entropy
production rate and the attractor dimension decrease monotonically. Past a critical
rapidness value the stability is reached, meaning that even a finite albeit large action
potential onset rapidness suffices to achieve stability. Theta neurons in the excitable
regime, with a frozen noisy input can on the other hand present both chaotic and stable
dynamics, depending on the characteristics of the input152. In the chaotic setting, it was
also observed that the number of neurons contributing to the most unstable directions
is usually low and that this participation is highly variable in time. This work impor-
tantly shows, that neurons can respond reliably to the same presentation of the stimulus
despite the chaotic dynamics, depending on their alignment to the unstable directions.

Regarding the stability of networks presenting collective dynamics different from the
asynchronous irregular state reviewed above, a few studies have pointed out the coex-
istence of chaos and collective rhythms. Differently to phase and complete synchro-
nization of chaotic units194, it is of interest to neuroscience to study the synchronous
and/or oscillatory dynamics of coupled units that exhibit a periodically spiking response
to a tonic input, as reported experimentally164. A synchronous chaotic state can be
achieved with neuron models that can exhibit a wide variety of behaviors like chaos,
bursting and periodic spiking113, as with more canonical conductance based neurons114.
In those networks, neurons present a high degree of synchrony (although the population
activity is not necessarily oscillatory) while small perturbations change the trajectory
of the network, from which its chaotic nature is concluded. Of particular interest for
this thesis is coexistence of collective oscillations and chaos. A study187 analyzing the
microscopic dynamics of the partially synchronous state first described in262 (see 1.2.3)
reported that finite and densely connected networks of LIF neurons with temporally
extended excitatory synapses, exhibit chaotic dynamics∗. Nevertheless the maximum
Lyapunov exponent vanishes with increasing network size, with the scaling depending
on the type of disorder introduced (quenched or annealed). Surprisingly, further work
showed that when the connectivity is diluted instead of dense, these same networks show
extensive chaos161. It is worth to mention that in the partially synchronized regime
described above, neurons fire quasi-periodically at rates slightly higher than the pop-
ulation rhythm. A picture conciliating irregular spiking, high dimensional chaos and
collective oscillation at frequencies several times higher than the neuronal firing rates
will be offered in Chapter 3.

∗As opposed to the stable dynamics shown for the fully coupled case262,187
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’The experimental evidence consistently shows that synchronous networks
emerge and disappear in waves that last 100–300 ms; these transients repre-
sent a meaningful temporal scale of brain operation. The transient nature
of coherence is central [...] as it underscores the fact that the system does
not behave dynamically as having stable attractors, but rather metastable
patterns — a succession of self-limiting recurrent patterns. In the brain,
there is no settling down, but an ongoing change marked only by transient
coordination among populations, as the attractor itself changes owing to
activity-dependent changes and modulations of synaptic connections’

El compañero chileno267 2
Information routing with transient synchrony

Perception and cognition rely on context-dependent selection of relevant inputs and flex-
ible inter-areal brain communication. However, despite its fundamental role, the basis
of dynamic information routing remains an unsolved problem. In particular, the circuit
mechanisms that underlie the fast reconfiguration of selective information transfer on
behavioral time-scales are poorly understood. Proposals range from hypothetical cir-
cuitry dedicated to routing188,271,272,273,292, to conditional signal propagation147,3,108, to
the hypothesis that neuronal oscillations direct inter-areal communication, either by en-
abling conditional readout through frequency filtering7,8, or by exploiting coherence in
networks of regular oscillations115,37,20. Windows for efficient communication along dif-
ferent pathways might potentially also arise from irregular fluctuations of local network
excitability. In particular, this latter “communication through coherence” (CTC) hy-
pothesis has been invoked in the interpretation of many experimental findings in which
boosted inter-areal coherence seems to be associated with enhanced inter-areal com-
munication86,18. For instance, increased inter-areal gamma-band coherence and phase
synchronization are markers of selective attention, in which different input information
streams have to be transmitted or filtered according to their relevance103,105,106.

Conceptually, however, there are fundamental obstacles to the use of neuronal oscilla-
tions in routing. First, oscillatory synchronization is confined to short episodes lasting on
the order of ∼100 ms, and the statistical properties of these short-lived oscillatory bursts
bear strong signatures of stochasticity43,44,286. Second, neuronal spike firing is irregular
and only weakly synchronized, with spikes emitted at every possible phase within the
ongoing oscillation cycle135. Third, inter-areal synaptic transmission delays are long and
diverse and may counteract reliable phase synchronization205. Fourth, the frequency of
the transient oscillatory bursts fluctuates over time, varies between recording sites and
depends on characteristics of the presented stimuli134,205. The likelihood of the bursts
to spontaneously match a priory should be very low.

Here we investigate a class of circuit models that naturally exhibits extensive power,
frequency and timing variability, and contain key types of heterogeneity including hetero-
geneous transmission delays. In these models, below the onset of developing oscillatory
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synchrony, collective oscillations are short-lived, having durations on the order of a few
cycles, are weakly synchronized, and exhibit stochastically drifting frequency. When
multiple circuits with these characteristics are coupled by long-range excitatory connec-
tions, the large-scale dynamics spontaneously generates temporally co-occurring bursts
of synchrony. We find the drifting frequencies of each region to track each other giving
rise to transient phase-locking within the gamma bursts. Through state resolved infor-
mation theoretical analyses, we assessed whether these transient patterns of coherence
can gate information flow. We further examined the propagation of external input sig-
nals relayed from different source regions and under which conditions these signals can
be decoded from the activity of a downstream target region. We find that the transient
coherence between the activity of the local circuits dynamically shapes the flow of infor-
mation between them: Information transfer is either selectively boosted or suppressed
along different routes according to the transient phase pattern. These distinctive rout-
ing states have a direction set by the transient phase relations and are modulated by
the fluctuating level of synchrony. We find that the propagation of externally-supplied
information can be selectively gated on or off along different pathways depending on
the routing state. Surprisingly, the stochastic and fleeting nature of ongoing oscillations
more effectively modulates information flow than stronger and more coherent forms of
synchronized circuit activity.

This chapter is organized as follows: The section 2.1 details the mathematical and nu-
merical methods, including definitions of the measures used and details of the numerical
implementation. The section 2.2 contains the results summarized above, by increasing
order of circuits integrating the small motifs. Finally, the results are summarized and
briefly discussed in 2.3
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2.1 Methods

2.1.1 Network Models

The network model used to model local brain regions consisted of 1000 excitatory and
250 inhibitory conductance-based Wang-Buzsáki neurons285 with random connectivity.
Each neuron in the network follows the equations:

CV̇ = (I − gkn
4(V − Ek)− gnam

3
∞h(V − Ena)− gl(V − El) + IE

s + II
s) (2.1)

ṅ = ϕ(an(V )(1− n)− bn(Vi) ∗ n) (2.2)
ḣ = ϕ(ah(V )(1− h)− bh(Vi) ∗ h) (2.3)

where C is the membrane’s capacitance, V is the voltage, I is an external input
current, gk is the potassium conductance, gna is the sodium conductance, gl is the leak
conductance and Ek, Ena and El are respectively the potassium, sodium and leak reversal
potentials. The m∞(V ) = am(V )/(am(V ) + bm(V )) and an(V ), am(V ), ah(V ), bm(V ),
bn(V ), bh(V ) functions together with all the single neuron parameters take the form
originally defined by Wang and Buzsáki285.

Synaptic conductances were modeled with a difference-of-exponentials time-course,
proportional to a post-synaptic channel open probability Ps:

Ps = B[e(−(t−t0−d)/τ1) − e(−(t−t0−d)/τ2)] (2.4)

where t0 is the time of the pre-synaptic spike, d is a combined axonal and synaptic
transmission delay, τ1 , τ2 are the synaptic time-constants and B is a normalization
factor. Excitatory (E) or inhibitory (I) synaptic currents were then given by I

(E,I)
s =

g
(E,I)
s P

(E,I)
s (V

(E,I)
s −V ), where g

(E,I)
s is the peak conductance of the considered synapse

and V
(E,I)
s is the synaptic reversal potential. We used V E

s = 0 mV and V I
s = -80 mV,

for excitatory and inhibitory synapses, respectively.
Both peak synaptic conductances and synaptic delays were chosen to be heteroge-

neous. Their values are Gaussian-distributed random variables, with prescribed means
g
(E,I)
s and d and standard deviations σ

gE,I
s

and σd. The probability of establishing an
excitatory (inhibitory) connection within each modeled brain region is denoted by PE

(PI). The background drive to each neuron in the network was provided by external
excitatory inputs, modeled as Poisson processes with rate νin and statistically indepen-
dent for different neurons. Each spike injected by this external driving source induced
in the target neuron a synaptic current as in equation (2.4). Peak conductances of the
external drive were also heterogeneous and assumed values sampled from a truncated
Gaussian distribution with mean gνs and standard deviation σgνs . Long range synaptic
connectivity between two or three brain regions was purely excitatory, targeting both
excitatory and inhibitory neurons in the target region. In the two population scheme,
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the probability of having a long range excitatory projection, PLR
E , was held equal be-

tween areas. In the network architecture comprising three areas, the central population
Y received feedforward connections PFF

E from X and Z that were stronger than or equal
to the feedback ones PFB

E from Y to both X and Z. Both feedforward (and feedback)
connections had equal strength. No connection was present between X and Z. Long-
range excitatory synaptic conductance values were drawn from the same distribution as
for recurrent excitation within each local area.

Excitatory Synaptic time 1 τE1 3 ms
Inhibitory Synaptic time 1 τ I1 4 ms
Excitatory Synaptic time 2 τE2 1 ms
Inhibitory Synaptic time 2 τ I2 1 ms
Mean Synaptic delay d 1.5 ms
Mean Synaptic Excitatory Conductance gEs 5 nS
Mean Synaptic Inhibitory Conductance gIs 200 nS
Mean Input Synaptic Conductance gνs 3 nS
Standard deviation delay σd 0.1 ms
Standard deviation Synaptic Excitatory Conductance σgEs 1 nS
Standard deviation Synaptic Inhibitory Conductance σgIs 10 nS
Standard deviation Input Synaptic Conductance σgνs 1 nS
Local Inhibitory probability connection PI 0.2
Local Excitatory probability connection PE 0.3
Inter-Areal Excitatory probability connection PLR

E 0.08
Inter-Areal Excitatory FF probability connection PFF

E 0.08
Inter-Areal Excitatory FB probability connection PFB

E 0.01
Poisson input rate ν 10 · PI kHz

Table 2.1: List of default network parameters.

The default set of network parameters is summarized in Table 2.1. These default
values were used, unless specified otherwise (specific parameter variations are listed
in the following). The probability of establishing a (local) inhibitory connection was
changed depending on the considered working point. Simulations were performed: with
PI = 0.3 in Figures 2.2, 2.6, 2.27 and 2.28; with PI = 0.6 in Figure 2.10 and 2.29
a-c,e, and with PI = 0.1 in Figures 2.18 and 2.22 d,f,h. The probability of establishing
a local excitatory connection deviated from default values in Figures 2.13, 2.23, 2.24,
2.26, 2.28 with PE = 0.35, in Figures 2.18a, 2.22, 2.1 with PE=0.25 and in Figure 2.18
with PE = 0. In Figure 2.27 and 2.29d, we also adopted a smaller degree of input
conductance heterogeneity, σgνs = 0.1 nS; in Figures 2.15, 2.16, 2.20, 2.26 was σgνs =
0.5 nS and in Figures 2.24 and 2.28 σgνs =0 nS. Typical simulation runs were performed
with a fourth order Runge-Kutta method (fixed time step dt = 0.1 ms) when the input
was continuous or simple Poisson spike trains, and lasted 10 min of real time, unless
otherwise indicated (details found in the corresponding section). When the input was
modeled as an Orstein-Uhlenbeck process, an Euler-Maruyama integration scheme with
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dt = 0.01 ms was used. To sample neuronal activity distributions, we combined multiple
simulations with quenched heterogeneity and connectivity but different realizations of
the stochastic drive to the system.

All simulations and information theoretical analysis were made with custom code
written in C++. Analysis and illustration of simulation’s output were made in Matlab.

2.1.2 Characterization of network activity

The synchronization index was chosen to be χ2, where χ2 =
σ2
V (t)∑N

i=1 σ
2
V i(t)

/N
95. Here, V (t) =∑N

i=1 Vi(t)/N is the so called LFP-like signal. The variables σV (t) and σVi(t) denote
the standard deviation of LFP amplitudes over time or, respectively, of the membrane
potential traces Vi(t) of each individual neuron i. The χ2 coefficient is bounded to the
unit interval, with vanishing values indicating asynchronous dynamics. The frequency
of the collective oscillation of a region was calculated as the inverse of first peak position
of the autocorrelation function of a multi-unit rate signal, obtained by convolving the
raster plot of each local network with a Gaussian kernel of standard deviation of 2ms.
The rate signal in Figure 1b was calculated as a histogram with a 1 ms bin width.
Single neuron rates were calculated as the inverse of their mean inter-spike interval.
Spectrograms of LFP activity were calculated using a standard time-frequency Fourier
analysis with overlapping Hamming windows (300 ms size, 50 ms step, 250 ms overlap)
and the time-averaged spectra through the multi-taper method (sixteen tapers).

2.1.3 Analysis of gamma burst properties and coordination

To extract the joint distribution of frequencies and durations of oscillatory burst (Fig. 2.2
and 2.10b) we thresholded the LFP spectrograms at the 95% percentile of instantaneous
power values. The thresholded spectrograms were then scanned at different frequencies
(i.e. line by line) to extract the durations of time intervals over which power at the given
frequency was continuously sustained above threshold. Sampling of these burst duration
was performed combining 80 long trials (overall 800 min of signal). We then studied time
and frequency coordination between oscillatory bursts occurring in different coupled
regions (Fig. 2.6 c–d). As before, LFP spectrograms of each region were thresholded at
95 percentile and scanned line-by-line, creating a binary string for each frequency. Each
of them was then cross-correlated against the analogous strings obtained from the other
population, resulting in a distinct correlation value for each different pair of frequencies.
The calculation was made by pulling together 50 trials for Figure 2.6 c, ands 10 trials
for Figures 2.10, 2.20. Significance of the estimated correlations (Fig. 2.6c) was assessed
by comparing bootstrap with replacement confidence intervals (c.i.) for each correlation
value with the associated permutation-based chance levels (5000 replicas).
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2.1.4 Analysis of transient phase-locking

We calculated time-resolved cross-correlograms (XC) adopting an overlapping sliding
window of 50 ms length (roughly two average oscillation periods) and 0.1 ms step.
Within each time-window, standard cross-correlation was performed between chunks of
LFPs of each of the coupled populations:

XC(t, τ) =
⟨
(VX(t′)− V X) · (VY (t

′ − τ)− V Y )
⟩
t′∈W (t)

(2.5)

where ⟨·⟩t′∈W (t) denotes averaging over a 50 ms time window W (t) centered on time t,
and V X,Y are LFP averages over this same window.

The instantaneous phase of each LFP signal ΦX and ΦY was calculated by interpolat-
ing a straight line over the unit phase interval 0 < Φ < 1 between consecutive maxima of
population activity of a single repetition. A peak in population activity was considered
as such if it was the maximum in a neighborhood of a half-period radius of the central
oscillation frequency of the population activity. Such a fast approach avoids band-pass
filtering and leads to similar results as a Hilbert Transform analysis, as shown in282.
The relative phase ∆Φ was then found by a subtraction (mod 1) of the instantaneous
phases ΦX and ΦY , ∆ΦXY = ∆Φ = ΦY −ΦX mod 1. The joint probability distribution
of time-dependent phase difference ∆Φ and the time dependent peak of XC, denoted as
XC∗(t) = maxτ [XC(t, τ)] was sampled by pulling together 100 simulated trials (overall
1000 min of signal). The conditional probability distributions shown in Figure 2.8C
(right) were obtained by independently normalizing each row of the probability matrix
in Figure 2.8c (left). The XC∗ threshold for the Figure 2.8d was the 99 percentile (XC∗

= 0.37).
The circular variance of Figure 2.9 was calculated as follows: Given {si}x with i=1,...,N

the set of spike-times in a window of time W(t) centered at t, coming from neurons
belonging to a defined subset of the region X, Sx, we define θxi (t) as the phases of
the area’s LFP (ΦX) at spike-times: θxi (t) = ΦX(si). The local circular variance of
the subset Sx, CVSx(t) is then the circular variance of the set θi(t). The full CV(t) =
1
2(CVSx(t)+CVSy(t)) was evaluated considering two different conditions for the subsets
S. In Figures 2.11c (top) and 2.11d-e (left), Sx was the full network X, and Sy was
the full network Y. In right panels of Figure 2.11d-e, Sx,y was taken to be 10 randomly
chosen neurons. This measure of CV, quantifies how much the spikes from the regions
are locked to its own LFP, and therefore giving an alternative measure of joint synchrony.
In both cases, the length of the sliding window W was seven oscillation periods. Two
hundred noise realizations with the same network architecture one minute each were
used to obtain the joint distribution of CV(t) and XC∗(t). As before, the conditional
probability distributions shown in Figure S6d-e (bottom) were obtained by normalizing
each row of the probability matrix in Figure 2.9d-e (top).
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2.1.5 Analysis of information transfer

We evaluated Transfer Entropy221,279 (TE) between discrete time-series of the simulated
LFP signals VX(t) and VY (t). These signals can take values from the sets ΞX and ΞY

respectively, and have distributions p(x) and p(y) over these sets. These sets correspond
to signal values measured within a selection of specific temporal windows in which certain
conditions which define a consistent functional state are properly fulfilled. The state-
selection filtering procedure defining the pooling of time epochs into states is described
later in this section.

Transfer Entropy from the region X to the region Y is defined as a deviation from the
following Markov condition268:

p(yt|yk
t ) = p(yt|yk

t ,x
l
t) (2.6)

This reads: the probability of VY taking a value yt at time t given that the k past
values of VY were yk

t = (yt−t1 , ..., yt−tk) equals the probability of VY taking a value yt
at time t, given that the k past values of VY were yk

t and that the l past values of VX

were xl
t. This condition is only fulfilled if there is no influence of the past of VX on the

current values of VY ; in other words if the distributions are statistically conditionally
independent. TE is a measure of the deviation from the Markov condition in (2.6):

TEX→Y =
∑

yt,..,yt−tk
∈ΞY

xt−t1 ,..,xt−tl
∈ΞX

p
(
yt, ykt , x

l
t

)
log2

(
p
(
yt|ykt , xlt

)
p
(
yt|ykt

) ) (2.7)

Here we relaxed the Markov condition adopting a commonly used simplification98,125,162,237,20

(but see Fig. 2.19 ). We replaced in the previous expression the past activity history V k
Y

and V l
X with observations at a single past time VX,Y (t− τ), with a variable interaction

latency τ . With this approximation, TE in (2.7) can be written as:

TEX→Y (τ) = H [VY (t)|VY (t− τ)]−H [VY (t)|VX(t− τ), VY (t− τ)] (2.8)

An analogous (but not identical) expression for TE in the opposite Y -to-X direction is
obtained by exchanging the indices X and Y . Similar results are obtained when transfer
entropy is estimated by considering different interaction delays for sender and receiver,
or when considering more than a single interaction delay (see Fig. 2.19). The formulation
(2.8) makes clear that in the isolated scheme of two connected populations, TE from X
to Y measures information present in the collective activity of target region Y which
cannot be accounted for by the past activity of the target region Y itself, but must have
been transferred from X to Y . TE is the reduction of uncertainty in estimating the
current state of a given region Y by including the history of an afferent region X.

When more than two areas constitute the interacting system, the above expression for
transfer entropy must be modified to account for the possibility of non direct functional
interactions (e.g. transfer from X to Z via Y , etc.). We used partial transfer entropy260

to uncover the direct interactions between pairs of populations when embedded in a
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larger multi-areal system. Given a set of three populations X, Y and Z, partial Transfer
Entropy with a single interaction delay is defined as:

pTEX→Y (τ) = H [VY (t)|VY (t− τ), VZ(t− τ)]−H [VY (t)|VX(t− τ), VY (t− τ)VZ(t− τ)]
(2.9)

This expression reduces to Equation (2.8) when the activity of Z is statistically inde-
pendent from that of X and Y , as can be seen in the equivalent expression of discrete
time series below.

pTEX→Y (τ) =
∑

yt,yt−τy∈ΞY

xt−τ∈ΞX
zt−τ∈ΞZ

p (yt, yt−τ , xt−τ , zt−τ ) log2

(
p (yt|yt−τ , xt−τ , zt−τ )

p (yt|yt−τ , zt−τ )

)
(2.10)

All the probability densities required for the evaluation of Equation (2.8-2.10) can
be straightforwardly derived from the three-terms or the four-terms joint probability
distribution p (yt, yt−τ , xt−τ ) in the TE case, or p (yt, yt−τ , xt−τ , zt−τ ) in the pTE case.
These probabilities must be sampled over the sets ΞX ,ΞY ,ΞZ , constituted by the values
assumed by the time-series of neural activity, only over selected temporal epochs.

Sampling these probability distributions by pooling LFP epochs which fulfill a specific
set of conditions G allows evaluating TE and pTE within a consistent regime, specified by
the choice of the filtering conditions G themselves. The information theoretical analysis
with a specific filtering condition based on the instantaneous inter-areal phase-difference
∆Φ is what we call a state-specific directed functional connectivity (or, in short, routing
state). When considering a two region circuit in Figures 2.13b–c, 2.27, 2.14a–c and
2.28, the ∆Φ range is split into five relative phase bins of equal size (TE vs τ and ∆Φ
surfaces were then smoothed by linear interpolation). Figure 2.27 and 2.28 show the
Anisotropy index from single trials. The separation in just two Top and Bottom routing
states (Fig. 2.13e, 2.14d–e, 2.15-2.18, 2.22, 2.28) was based on the relative phase to fall,
respectively, in the coarser ranges ∆Φ↑, i.e. 0 < ∆Φ < 0.5, or ∆Φ↓, i.e. 0.5 < ∆Φ < 1.

In Figure 2.14, we adopted an additional filter conditional to the strength of inter-areal
coherence, on top of the instantaneous phase relation. Conditions on the instantaneous
value of XC∗ were imposed to be larger than median+0.5 (Fig. 2.14d, third dashed line
in Fig. 2.14b) or smaller than the median-0.5 of its distribution (Fig. 2.14e, first dashed
line in Fig. 2.14b).

In the three regions case in which a pairwise analysis was performed (Figs 2.27 and
2.28), the procedure was identical to that described above for the two regions case. More
complex state-filtering conditions were devised for the complete analysis of the dynamics
of the three regions. The six possible hierarchical configurations that the LFP signals
can take define six filtering conditions numbered from ∆Φ1 to ∆Φ6 that give rise to six
routing states, as illustrated in Figure 4d. The conditions can be written in terms of the
pairwise phase relations in the following way:
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∆Φxzy
1 = VX , VY , VZ | ∆ΦXY > 0.5,∆ΦXZ > 0.5,∆ΦXZ > ∆ΦXY (2.11)

∆Φxyz
2 = VX , VY , VZ | ∆ΦXY > 0.5,∆ΦXZ > 0.5,∆ΦXZ < ∆ΦXY (2.12)

∆Φzxy
3 = VX , VY , VZ | ∆ΦY Z < 0.5,∆ΦXZ < 0.5,∆ΦXZ < ∆ΦY Z (2.13)

∆Φzyx
4 = VX , VY , VZ | ∆ΦY Z < 0.5,∆ΦXZ < 0.5,∆ΦXZ > ∆ΦY Z (2.14)

∆Φyxz
5 = VX , VY , VZ | ∆ΦXY < 0.5,∆ΦZY < 0.5,∆ΦXY < ∆ΦZY (2.15)

∆Φyzx
6 = VX , VY , VZ | ∆ΦXY > 0.5,∆ΦZY > 0.5,∆ΦXY > ∆ΦZY (2.16)

For the two regions model, we estimated histograms (within the two possible top and
bottom routing states): in Figures 2.13e–f and 2.14d–e based on 5000 minutes of signal,
from 50 trials of the same network instance; in Figure 2.13b, Figure 2.27b,2.14c and 2.28,
based on 10 min of signal from a single network realization (while the mean over a total
of 150 min, from 15 different network instances is shown in Figure 2.14a); for Figures
2.15 and 2.16, based on single trial simulations each lasting 10 min; in Figure 2.17, based
on 40 different network instances (10 min of LFP signal for each considered parameter
configuration); in Figure 2.18, based on 10-min simulations from 50 different network
instances (while in Figure 2.18a, only 10 network instances were used, with the same
simulation time). When analyzing a three regions motif, we estimated histograms (within
each of the six state filtering conditions): in Figure 2.24, based on simulations each lasting
18000 minutes each from twelve different network instances; in Figure 2.26, based on
twenty simulations each lasting 9000 min from different network instances; while Figure
2.22 is based on simulations lasting each 50 minutes from 40 different network instances.
We note that qualitatively similar conclusions for most analyses may been obtained using
smaller data sets, but the associated confidence intervals for the computed quantities
would have been larger.

TE values obtained by plugging sampled histograms into the definition (2.8) were
then further corrected against finite-size bias by quadratic extrapolation toward infinite
sample size242 in the following way: Given a set of time series of length L from which
we want to estimate TE, we take three subsets of the same length Li, with Li = L

i
where i = 1, ..., 10. For each length Li, TE is calculated from each of the three subsets
(TEj=1,2,3

i ), and the mean of these, TEi = ⟨TEj
i ⟩j is obtained. The infinite sample size

value of TE is the y-intercept of a second order polynomial fit of TEi vs i.
The 95% confidence intervals (c.i.) for TE values were approximated as two times the

standard deviation above and two times below the mean, over the considered network
instances or trials (95% rule). These c.i. were then compared to the 95% c.i. obtained
under the null hypothesis of functional uncoupling, providing a baseline TE range for
significance testing. We adopted a resampling bootstrap with replacement building a
distribution out of 1500 surrogates for network realization, and collecting them together.
In order to keep the oscillatory nature of the analyzed time-series, we built bootstrap
surrogates using LFP blocks of a mean length Λ. This value should preserve the sig-
nal’s autocorrelation structure. To choose this value, we analyzed the behavior of the
bootstrapped TE vs the chunk length size Λ. For oscillatory signals in the transient syn-
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chrony regime, the value of the bootstrapped TE initially increases and then saturates
at around Λ=100 ms. We chose Λ=300 ms for the TE baseline calculations, and we
kept it for the MI calculations, although as the random input has no oscillatory nature,
the value of the bootstrapped MI were independent of Λ. TE values whose 95% c.i. fell
completely above (below) the baseline range were indicative of significantly enhanced
(damped) information transfer with respect to chance level.

We finally defined the Functional Anisotropy Index:

∆TE =
TEY→X(τ)− TEX→Y (τ)

max
ij

(|TEX→Y (τ)ij |, |TEY→X(τ)ij |)
(2.17)

bounded in the −1 ≤ ∆TE ≤ 1 range, as a simpler indicator of different efficiency of
information transfer in the two possible reciprocal communication senses between regions
in a considered pair.

2.1.6 Generation of Input Signals

Exogenous sources of information were first modeled as scalar gaussian random field
(GRF) input currents. GRFs were generated as follows: N discrete values were taken
from a continuously smooth correlation function given by

C(τ) =
2

cosh (τ/τs)
(2.18)

at regularly spaced times {∆τi}, i=1,..,N, and then used to obtain its Fourier transform
FC(τ) = Ĉ(k), with k = k0, ..., kN−1, evenly spaced with ∆k = 2π

∆τNτ
. The scalar

random field in Fourier representation was then obtained by

Φ̂(k) =

√
π

∆k
Ĉ(k)(Ak + iBk) (2.19)

The real part of Eq (2.19) in real space, i.e. ℜ
(
F−1Φ̂(k)

)
= Φ(τ), provided the desired

GRF stochastic variable.The current conveying the externally injected signal S(t) =
gΦ(t) was generated independently for each area. Each has a power spectrum given by:

Ĉ(f) =
2πgτs

cosh (π2τsf)
(2.20)

The fraction of power p contained in the spectrum up to a cut off frequency fc, is given
by

2/πgd(fc) = p where gd(x) =
∫ x

0

1

cosh(y)
dy. (2.21)

A stochastic realization of the GRF variable was first generated within Matlab and
then fed as an input to each neuron in a single region through the RK4 integrator in
custom code as described above. The parameters used in Figures 2.20, 2.22 and 2.26
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were τs = 1 ms and the gain factor g=2. Similar results are obtained for τs ranging from
0.5 ms to 5 ms.

In Figure 2.22 (right column), we confirmed our results adopting a different model
for the stochasticity of the external signals, and modeled inputs as Ornstein-Uhlenbeck
processes. The input signal was given by the following equation:

Ṡ(t) = −γS(t) + gη(t) (2.22)

where η is a Gaussian white noise with zero mean and unit variance. The variance of
the input signal was given by σ2 = g2

2γ . In this figure we took g=0.1 and γ=1. An Euler
Mayurama method was used to simulate the input and the network dynamics, with a
time step dt=0.01 ms.

2.1.7 Probing the propagation of input signals

Information theory functionals can be evaluated also on the continuous time-series pro-
vided by the external current sources S(t). In particular it is possible to evaluate state-
resolved Transfer Entropy between injected currents S(t) and LFP time-series, as we do
in Figures 2.22–2.24.

Sharing of information between the two endpoints of a communication line is assessed
via the classical measure Mutual Information (MI)60. In the case of MI between an
injected signal S and LFP from a region X we write:

MIS↔X(τ) =
∑
t∈G

∑
s,x

p (x(t), s(t− τ)) log2

(
p (x(t), s(t− τ))

p (x(t)) p (s(t− τ))

)
(2.23)

The estimation of MI can be state-filtered, by pooling only input and response value
pairs within the epochs fulfilling the filtering criteria specified by the chosen filter G.
When analyzing tri-areal motifs in Figures 2.11 and 2.26, as for TE, we computed partial
(also called conditional) mutual information85,60.

2.1.8 Baseline estimation

Information theoretical estimators, as many other estimators, are sensitive to the statisti-
cal structure of the time series over which they operate. In order to asses the significance
level, i.e. the information transmission that we could expect from chance, we compared
the information transmission of our networks with that of the 95% boundaries of the
distribution of the estimators obtained when randomly shuffling of the time series. The
advantages of this procedure in contrast to the comparison with the TE values obtained
from disconnected networks, is that bootstraps methods are independent of how the
parameter to be studied modifies the dynamics of the network. For example, the extra
amount of excitation received from the external connections might change the level of
synchrony and the statistical structure of the dynamics, and therefore the disconnected
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estimation can in principle be under or over estimated compared to a bootstrap. In
Figure 2.1 it is shown how the 95% band of the distribution of TE values of randomly
shuffled series depends on the length of the chunk Λ used for the randomization. If the
chunk is too short, then the series seems more asynchronous than it actually is, and the
estimators give a small value. For chunks over the ≈ 100 ms, the value saturates. For
all the simulations we used a value of Λ well inside the saturation area.
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Figure 2.1: Baseline estimation for information theoretical quantities on signals of oscillatory nature. We used a

bootstrapwith replacement for shuffling the series. Thiswas done as follows: Iteratively, we chose a chunk starting

in random point of the considered time series, and a random length from a gaussian distribution of meanΛ andwe

sequentially relocated it to anewstring. Given theoscillatorynatureof our signals, a short chunk lengthdisrupts its

structure, leading to surrogates thatdonot respect the statistical structureof theoriginal timeseries. (a)95% limits

of the distribution of Transfer Entropy surrogates, fromX toY (grey) and fromY toX (pink) of a in a Top state as
a function of themean chunk lengthΛ. We see that for lengths bigger than 150ms (i.e. longer than themean burst

length) the values of TE for this surrogates saturate. We used an average length of 300 ms (dashed line), well into

the saturation area. (b)Mutual information between input noise to a source area and the LFP-like signal of a target

one. As the input signalSx,y has no periodic structure, this transient is not observed in this case and the saturation

is reached immediately. We kept the choicemade for TE also in this case for practical reasons.

42



2.2 Results

2.2.1 Transient synchrony

Oscillatory neuronal activity in vivo is comprised of epochs of synchronous activity
arising from an overall poorly synchronized state. We identified and characterized a
regime of local circuit dynamics, below the onset of oscillatory synchrony, that mimics
this fundamental feature and reproduces the substantial fluctuations in both frequency
and power seen experimentally in local field potential (LFP) recordings44,286.
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Figure 2.2: Transient synchrony regime. (a) Cartoon of the local connectivity of a brain region or area, modeled as

a random network of heterogeneous inhibitory and excitatory conductance based neurons. (b) Simulated activity

at the edge of synchrony. Transient oscillatory bursts are noticeable in LFP time-series (bottom) and in multi-unit

activity (middle, measured as percentage of active neurons). Individual neurons however fire irregularly and not at

every oscillation cycle, as indicated by the raster plot of 300 excitatory neurons (top). (c) The degree of synchro-

nization of local neuronal activity, as quantified by the synchronization index (seeMethods 2.1.2), grows with the
probabilityPI of recurrent inhibitory connection and the rate νin of the Poisson background drive to the region,

revealing a smooth transition fromasynchronous to synchronousbehavior. (d)Dependencyof the frequencyof col-

lective regional oscillation fromPI andνin (seeFig. 2.3a for singleneuronal firing rates). Dashedcircles inpanels c–
dhighlight twoworking points, with similar collective oscillation frequencies in the gamma range but very different

synchronization levels. Upper left dashed circle (edge of synchrony working point)PI :∼0.25 and νin :∼2.5kHz,

the high synchrony working point PI :∼0.55 and νin :∼5.5kHz. (e) Transient gamma bursts are evident in the

spectrogramof LFPactivity at the edgeof synchrony. (f) Joint distributionof the frequencies anddurations of these

gamma bursts. Note the predominance of short-lived bursts covering a band of frequencies in the gamma range.

The dynamics of a local circuit (or region) with transient synchrony is characterized
in Figure 2.2. A circuit is modeled as a large network of excitatory and inhibitory spik-
ing neurons with a random local connectivity (Fig. 2.2a) and heterogeneous synaptic
conductances and latencies (see Methods). Figure 2.2b depicts the time evolution of the
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average membrane potential in the local circuit, together with a raster plot of individual
neurons and a histogram of the multi-unit activity rate (see Methods 2.1.2). In the fol-
lowing, we call the population-averaged membrane potential, a convenient descriptor of
the collective neuronal activity, an “LFP-like” signal186. As indicated in Figure 2.2b, the
amplitude of the LFP trace exhibits transient epochs of increased oscillatory amplitude.
These oscillatory events are more difficult to detect inspecting the spike traces of a few
single units whose firing always remains stochastic30,29,35,246. Individual neurons can fire
at every phase of the ongoing oscillation, as revealed by an average circular variance of
∼0.6 of the overall distribution of the phases of firing.
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Figure 2.3: Additional characterizations of the edge-of-synchrony regime. (a) Dependency on νin and PI of the
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same working points of Figure 2.2. (b) Synchronization index (left) and collective oscillation frequency (right) as a

function of themean inhibitory conductance strength gIs (top row), or themean synaptic delay d (bottom row) and

of the local background Poisson drive rate νin.

In our local circuit, similar to experimental observations16, the generation of oscil-
latory activity relies on delayed recurrent interactions, either occurring through direct
delayed connections or mediated by inhibitory-excitatory-inhibitory loops35,247,244. The
level of recurrent inhibition controls the overall level of synchrony of the network. En-
hancing recurrent inhibition induces a graded transition toward higher synchrony. In
Figure 2.2c this is shown via an increase of the probability PI of establishing local in-
hibitory connections, as captured by the network synchronization index97,95 (see Methods
2.1.2). Increasing local inhibition also leads to an overall reduction of the mean frequency
of the collective population oscillation (Fig. 2.2d) and of the firing rates of individual
neurons (Fig. 2.3a). Delayed recurrent inhibition can as well be modulated, beyond the
probability of establishing a local inhibitory connection, by increasing either the peak
inhibitory conductance (Fig. 2.3d) or the synaptic delay (Fig. 2.3c).

Proportionally increasing both the strength of recurrent inhibition and the background
drive, along the diagonal of Figure 2.2c–d, essentially maintains the value of population
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frequency (Fig. 2.2d) and firing rates (Fig. 2.3a), but increases the synchronization level,
rising smoothly along this line. The rise of the synchronization index along this line is
smoother and less steep the larger the adopted parameter heterogeneity, as can be seen
in Figure 2.4a-b. The increase of synchronization with increasing input drive is slow, as
shown in Figure 2.4c. The population frequency and the mean firing rates, on the other
hand, increase monotonically (Figure 2.4d-f).
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Figure 2.4: Edge-of-synchrony regime dependence on input heterogeneity. Synchronization index for different lev-

els of heterogeneity of the input conductances of the background drive, as measured by the standard deviation

σgν
s
of the Gaussian-distributed input conductances. (a)Dependency of the synchronization index on the rate νin

of the Poisson drive and the probability ofmaking a local inhibitory connectionPI , repeating and extending Figure

2.2 (a) for different values of heterogeneity. (b) Synchronization index as a function of PI , for different levels of

σgν
s
. The dashed curve is a cross section of the left panel of (a) at a rate νin = 2 kHz, also indicated with a dashed

line . Shaded areas are one standard deviation from themeanof 50 trials. (c) Synchronization index (left column) (d)

Collective oscillation frequency (e-f) Single neuron firing rates as a function of the mean Poisson rate of the input

for the chosen level different levels of heterogeneity σgin
s
. The heterogeneity generally favors the synchronous

irregular states of the network, while as well reducing the level of synchrony.

We define two working points (circles in Fig. 2.2c–d, 2.3 and 2.4): One with transient
synchrony (in black) and a second one at a stronger synchrony level (in light blue), both
giving rise to a collective oscillation frequency close to 60 Hz.

Bursts of transient oscillatory power are visible in the LFP spectrogram in the black
working point (Fig. 2.2e), while higher synchrony levels, which will be analyzed in detail
later, lack this transient nature. Statistical analysis of the duration and frequency of
these bursts, (joint distribution is shown in Figure 2.2f) shows that the edge of synchrony
regime gives rise to gamma bursts with frequencies broadly distributed over a range
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between 45 and 75 Hz and a short mean duration close to 100 ms (i.e. four to six
oscillation cycles). The simulated distribution is in good agreement with in vivo LFP
recordings44,286.

Figure 2.5 shows some classic network statistics of the transient synchrony regime.
For a chose neuron the excitatory and inhibitory input currents from the recurrent
connections tightly track each other (Fig. 2.5a), and are strongly anti-correlated (Fig.
2.5b). The mean zero lag correlation for the shown set is of ≈ −0.86. The oscillatory
nature of the input currents is also appreciable from the cross correlation functions. The
spike correlations in the networks are low (Fig. 2.5c), consistent with irregular spiking.
The distribution of firing rates, strongly modulated by the heterogeneity in the network,
is broad and similar for excitatory and inhibitory neurons, although this last have a
higher mean and a longer tail. Despite low spike correlations, membrane’s pairwise
correlations are higher, and its mean closely follows the value of the synchronization
index ξ (Fig. 2.5e). The inter spike interval (panel f), has a heavy tail and differs
from exponential by a noticeable bump around ≈ 20 ms, indicating collective oscillatory
activity.
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Figure 2.5: Fast tracking of inhibition and excitation at the Edge-of-synchrony regime. Synaptic excitatory (red)

and inhibitory (blue, flipped for comparison) current to a randomly chosen excitatory neuron (top). Corresponding

membranepotential of the chosenneuron (inmV). (b)Cross-correlationbetween the inputs for 300excitatory neu-

rons. The inset shows the decrease in absolute correlation due to spikes. (c). Distribution of Pearson correlation

coefficient between spike trains of inhibitory neurons, excitatory and inhibitory neurons (middle) and excitatory

neurons (right). (d) Firing rate distributions, for inhibitory neurons in light green and for excitatory neurons in dark

green. (d)Distribution of Pearson correlation coefficients between voltage traces of 300 randomly chosen excita-

tory neurons. (e) Inter-Spike-interval distribution. Notice the bump in the inset that hints oscillation.

It is important to underline that the transient synchrony regime should not be con-
sidered as a sharp transition line separating two qualitatively distinct regimes. It rather
represents a range of parameters (cf. Figs. 2.2–2.4) leading to a qualitatively similar
mixed dynamics in which asynchronous and synchronous epochs can both occur stochas-
tically.

In the following we consider multiple brain regions with transient synchrony, linked
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into simple structural connectivity motifs and analyze their emergent dynamics. In
particular, we study their coordinated oscillatory bursting dynamics, their phase locking
properties and, finally, test whether these features can subserve the selective and flexible
routing of information.

2.2.2 Simultaneous emergence of phase-locked gamma bursts
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sient synchrony. The time and frequency of emergent coordinated bursts are approximately matching in the two

coupled regions, as visible in this example. (c)Burst-timing correlations between same-frequency gamma bursts in

different regions (blue), comparedwith chance level expectations (grey). Shaded bands denote 95% c.i. (d)General

burst-timing correlations between oscillatory bursts with dissimilar frequencies. Strict frequency matching is not

required for burst timing correlation.

We treated the simplest case of two local circuits (corresponding to two generic areas
or regions X and Y ), coupled by long range excitatory projections (Fig. 2.6a) that
are established with equal probability (PLR

E ) and strength in both directions (i.e. X-
to-Y and Y -to-X). The seemingly haphazard nature of gamma bursts appears as an
obstacle for communication. If the duration and the frequency of oscillatory epochs
fluctuate independently in each brain region, observing simultaneous oscillatory bursts in
a source and a target region, aligned in a well defined phase relation, might be extremely
unlikely. To analyze the inter-region coordination (or lack of thereof) we examined the
relative timing, frequencies and phase relationships of gamma bursts in the two connected
regions.
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Interestingly, we found that our model gives rise to correlated episodes of sponta-
neous timing and frequency tracking between stochastically-emitted gamma bursts in
the two connected regions. This is depicted in the spectrograms of Figure 2.6b. This
phenomenon of burst-tracking can be quantified by the correlation between the times of
occurrence of oscillatory bursts in distinct regions, as a function of their instantaneous
frequency (see Methods 2.1.3). Figure 2.6c–d reveal that for frequencies in the gamma
band, correlations between the timing of bursts with matching frequencies can reach
relatively high values, peaking at ∼0.5 for nearby collective oscillation frequencies of 60
Hz. Analogous frequency tracking has been observed experimentally209. We find that
coordination between oscillatory episodes occurs not only between bursts with an exactly
matching main frequency (Fig. 2.6c), but even in a cross-frequency manner (Fig. 2.6d).
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(gEIntra
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s ). The dashed line represents a

sharp transition to spike-spike synchrony.

It is relevant to underscore, that the level of synchronization of the transient synchrony
working point depicted in Figure 2.2, is robust to the extra external input each network
receives in the two area motif. The level of synchronization is robust to moderate
changes in parameters that depends on the long range excitatory coupling, as the long
range probability connection (Fig. 2.7a–b) or the synaptic time constants (panel c).
In particular, while an inter-areal excitatory conductance twice as large as a local one
induces a transition to spike-spike synchronization, when kept similar in value the level
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of synchronization in the network remains unaffected (panel d).
Beyond time and frequency coordination, we find that oscillatory bursts also exhibit

transient phase synchronization (Fig. 2.8). A time-resolved cross-correlation (XC) anal-
ysis of the LFP signals from the two coupled regions of the structural motif is shown
in Fig. 2.8a (see Methods 2.1.3). Transiently rising values of XC denote the onset of
epochs of increased inter-region oscillatory coherence. The time dependent maximum of
XC (denoted XC∗(t)) occurs at a fluctuating time-lag τ∗(t), generally different from zero
(in-phase, dashed white line) and from the average half period (anti-phase, dashed black
line), indicating out-of-phase locking as frequently observed empirically18. To quantify
this further, we calculated the phases of each of the LFP signals and defined the relative
phase between the rhythms, ∆Φ (see Methods 2.1.4). The relative phase is a strongly
fluctuating quantity whose distribution P (∆Φ) is spread out (Fig. 2.8(b)).
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↑ < 0.5 can be observed. (c) Joint probability distribution of the
inter-areal relative phase∆Φ and of the time-dependent maximum XC∗ of the cross-correlation XC (left). To the
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∗ is high.
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The precision of phase-locking markedly increases with the instantaneous level of cross-
correlation (Fig. 2.8c). As shown by the joint probability distribution of ∆Φ and of XC∗

(Fig. 2.8c, left), events of higher values of XC∗ are less frequent than low values, but tend
to occur at specific relative phases. This phenomenon is revealed by conditioning the
joint distribution on the values of XC∗ (Fig. 2.8c, right). For low values, corresponding
to a poorly synchronized baseline activity, the distribution of the relative phase ∆Φ
remains spread out (Fig. 2.8d). During epochs of strong cross-correlation, however, it
becomes prominently bimodal (Fig. 2.8d, bottom).

a

b
c

d

1

0.5

0

1

0.5

0

0.5 1 2 5 10 20 50 100
−3
−2
−1

0
1

Frequency (Hz)

LF
P 

po
w

er
 

(a
rb

itr
ar

y 
lo

g 
un

its
)f

0.2

100 ms

e

5 
m

V

0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

x 10

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.80.2 0.4 0.6 0.8

(all cells)

(all cells)

(10 cells)

(10 cells)

-3

Figure2.9: Transientmodulations of neuronal firingphase-locking. (a)Raster plot of the2000excitatory neurons of

theX and Y regions in the bi-areal circuit of Figure 2.6. (b) Associated LFP traces. Transient oscillatory burst are

visible both in the global spiking activity raster and in theLFP. (c)Thecircular variance (CV)of the coupled systemas

ameasureof joint synchrony isbeobtainedbyconsidering themeanof thecircularvariances fromspikesof1) all the

neurons in each of the populations (CVall), or 2) the spikes coming from only 10 cells of each population(CVfew).

The full-population circular variance is on average elevated, however it transiently decreases below its average

level (dashed line) in correspondence of transients rise of inter-areal oscillatory coherence, as tracked by the time-

resolved cross-correlation peak XC∗ (cf. Figure 2.8). Notice how a single burst in a population but not in the other

one is not reflected in themeasures of joint synchrony. (d)The joint distribution of time-dependentCVall andXC
∗

(left) revealsaverymarkedpeakat lowoscillatorycoherenceandpoorphaseconcentrationoffiringwhenthespikes

fromthecompleteareaareused. The jointdistributionof time-dependentCVfew andXC∗(right)on theotherhand

shows a diffused peak. (e) The distribution ofCVall (left), conditioned on observing increasingly larger values of

XC∗ confirms the tendency toward stronger phase-locking of firing during high synchrony transients, commented

in panel c. The distribution ofCVfew conditioned on XC∗ presents a smeared out dependency. (f) Time-averaged

spectrum of the LFP signal (of regionX ). The logarithmic scale reveal a gamma-resonance on top of a 1/f -type
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High synchrony transients can be appreciated both in the rastergram of the coupled
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networks as well as in the LFP-like signals of Figure 2.9a-b. Spiking activity is only
weakly modulated by oscillations on average. Nevertheless we found that the phase-
concentration of neuronal firing, as quantified by the circular variance (see Methods 2.1.4)
transiently rises to higher values during high XC∗ transients. The instantaneous circular
variances of the distribution of firing phases drops to ∼0.3 during the strongest coherence
oscillatory bursts, and rises as high as ∼ 0.8 during inter-burst periods (2.9c). These
transients of coordinated synchronization can be estimated both from the maximum
value of the time resolved cross correlation XC∗ or from the CV (panel d). The structure
of the distributions of CV estimated based on small cell pools (CVfew) is a highly blurred
version of the analogous distributions built based on whole populations (CVall). The
values of CV estimated based on a few cells will, although matching population-based
averages, have a much larger variance, making a precise CV estimation from a few single
units more difficult.
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present in this working point. (b)Distribution of gamma bursts for the high synchrony regime. Given that this dis-

tributions are obtained by thresholding to the 95% percentile, transitions are still observed, but the length of this
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the two prominent out-of-phase peaks shown here.

A summary of the analysis performed in the high synchrony working point of Figure
2.2 can be found in Figure 2.10. This regime generates a persistent power peak in the
spectrogram (panel a). The power fluctuations, which do still occur, are nevertheless not
enough to reach seemingly desynchronized states (Fig. 2.10a–b). In this working point
a similar preference for out-of-phase inter-areal phase-locking is observed. Nevertheless,
the simulated LFPs are persistently oscillating and the two phase-locking configurations
are close to stable attractors (Fig. 2.10c), giving rise to a bimodal ∆Φ distribution,
even without conditioning on the values of XC∗ (Fig. 2.10d). The edge-of-synchrony
oscillatory dynamics can be then seen as transiently replicating oscillatory modes that
would be stable in the high synchrony regime.

Comparing Figures 2.10d and 2.8d, beyond the evident difference in the locking, it
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is apparent that the peaks of the bimodal phase distribution are closer to anti-phase
(∆Φ = 0.5) the higher the level of local inhibition. This feature, that different levels of
inhibition lead to different phase locking properties, can be better understood in a rate
model of analogous characteristics. In Figure 2.11, the dependence of the phase locking is
shown in panel (a) for coupled inhibitory populations connected by long range excitatory
axons. Each population obeys an equation of the form ṙi = −ri + [hext + K0ri(t −
Dlocal) +K1rj(t−Dlong-range)]+, where r is a rate variable, hext is an external source of
tonic excitation, K0 is a parameter regulating the self-inhibition and K1 modulates the
long range excitatory interaction. The analytical solution of the phase locking values
between the two populations of the rate model was obtained by Battaglia et al. 19 and
is reproduced here in Figure 2.11. Including independent white noise in such a model,
allows to have a bi-modal distribution of the phase distributions (not shown).
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This fact shows that the phase locking properties of coupled networks is not a sole
consequence of the synaptic delay, but that is am emergent property of the self organized
neuronal dynamics.

2.2.3 Emergence of routing states

Although generic, the canonic two regions motif of Fig. 2.6a may be viewed as represent-
ing two interconnected brain regions at two different levels in the cortical structural hier-
archy, such as e.g. a sensory and a prefrontal cortical regions (cf. cartoon in Fig. 2.12a)
interacting in an attention-modulated manner103or a fronto-parietal pair of regions in-
volved in motor planning55. It has been observed that the direction of influence can be
modulated between such region pairs depending on task and behavioral states103,46. We
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examined how the transient dynamics of gamma bursts emerging in our models ( Fig. 2.8
) modulate the direction and strength of information flow. We quantify the efficiency
and direction of inter-region information exchange of spontaneous activity depending on
the system’s states, by means of information theoretical analyses.
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Figure 2.12: Information transfer during transient burst events, the approach. (a) Cartoon of a macaque brain il-

lustrating areas potentially interacting is a manner similar to X and Y, e.g. visual area V4 and frontal eye field FEF,

respectively. Inputs to these areas, modeled as correlated random signalsSx andSy , account for input activity to

the cortical areas. (b) Cartoon depicting the state-filtering pipeline. LFP epochs fulfilling the tested constraints (in

this case concerning the relative phase∆Φ) are pooled across time and trials, sampling separate neural activity
distributions. State-dependent information transfer direction and efficiency is evaluated using these distributions.

A useful measure is provided by Transfer Entropy (TE)221,279, here computed based
on LFPs from different regions. TE, in a model-free fashion, quantifies how much the
knowledge of the past activity of a putative source region improves the prediction of the
future activity of a target system and constitutes in this sense a generalization of the
Granger Causality approach28. The information theoretical setting naturally allows to
condition the estimation of Transfer Entropy to an arbitrary set of constraints. We de-
signed state-selecting filters that condition information measures on consistent dynamics
features and so define a state-specific directed functional connectivity (or, in short, routing
state). As sketched in Figure 2.12b, transients of a system’s activity fulfilling specific
state-filtering conditions are pooled, through time and trials, into separate statistical
samples. Different distributions of activity were obtained from these separate samples,
and quantified information theoretically (see Methods 2.1.5). Using this approach we
probed information transfer through state filters selecting epochs in which the relative
phase between the region’s rhythms, ∆Φ, falls in different ranges.

By means of a TE analysis in which the relative phase is constrained to a narrow
band, we study state-specific directed functional connectivity between the collective
neural activity of the regions X and Y (Fig. 2.13a). For both directions of interaction,
TE exhibits a broad peak centered around a specific combination of the interaction delay
τ and ∆Φ (Fig. 2.13b, see Methods 2.1.5). In both panels, the interaction delay τ that
maximizes information transmission corresponds to the lag of ∼4 ms at which XC(t)
peaks during coordinated bursting events (Fig. 2.8a). This optimal delay τ depends on
the meta-stable phase of locking (∆Φ∗

↑,↓, see Fig.2.8) and differs therefore from the mean
inter-areal transmission delay d̄ of 1.5 ms, as previously discussed (Fig. 2.11).

Optimal functional coupling occurs at different relative phases for different directions
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Figure 2.13: Information transfer during transient burst events. (a)Cartoon illustrating themodel examined in pan-

els d–h (see also Fig. 2a). (b)Maps of Transfer Entropy (TE) between LFPs of theX and Y region, resolved as a

function of∆Φ and of different interaction delays τ . White background indicates that TE values do not rise above

chance-level. Information transfer is always significantly higher from the phase leading to the phase lagging re-

gion than vice versa. (c) Functional Anisotropy Index∆TE. Two lobes of different sign indicate the existence of two

distinct routing states: Top and Bottom. They are associated to effectively unidirectional information transfer in op-
posite directions (graph motif representation in panel (d)). (e–f) Information transfer in different directions, in a

∆Φ↑ configuration (Top state, panel e) or a∆Φ↓ configuration (Bottom state, panel f), for the optimal interaction

lag. Boxes and shaded bands give 95% c.i. of, respectively, actual TE and chance-level values.

of influence. This phenomenon can be better visualized by the Functional Anisotropy In-
dex ∆TE, proportional to (TEY→X −TEX→Y ) (Fig. 2.13c), see Methods). Two patches
with equal absolute value |∆TE| but different signs correspond to effectively unidirec-
tional configurations with opposite directions (Fig. 2.13d), supported by the same fixed
bidirectional structural connectivity. We refer to the states corresponding to these two
configurations, filtered by the ∆Φ↑ (Y leads X, 0 < ∆Φ < 0.5) and ∆Φ↓ (X leads Y and
0.5 < ∆Φ < 1) conditions, as Top and Bottom routing states respectively. Information
transfer proceeds from the region leading in phase to the region lagging in phase, as if
long-range synaptic connections from the laggard to the leader region were effectively
not functional. This information transfer is in a “top-down” sense (from Y to X) in the
Top state and “bottom-up” (from X to Y) in the Bottom state. Based on the analysis of
the relative phase dependency of TE in Figures 2.13(b–d), we also adopted coarser state
filtering criteria based solely on the ∆Φ↑ and ∆Φ↓ conditions. Figure 2.13(e–f) show the
net directed information transfer, in the Top (Fig. 2.13e), or the Bottom routing states
(Fig. 2.13f) compared to chance-level expectations (grey band, see Methods 2.1.5).

Complementary information to that of Figure 2.13, is presented in Figure 2.14. Figure
2.14a shows the mean TE map as a function of the relative phase for interaction delays
lasting a complete gamma cycle. It could be argued that the same hierarchy seen from
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Figure 2.14: Additional characterizations of directed information transfer. (a)Maps of mean TE as a function of

inter-areal relative phase∆Φ and interaction latency τ , up to larger values of τ . Note that information transfer at
a longer latency corresponding to the time between a laggard population oscillation peak and the next oscillation

peak of the leader population is not significant. (b)Distribution of instantaneous peak crosscorrelation values XC∗.

Shaded background indicate XC∗ smaller than the distributionmean. The three vertical dashed lines are, from left

to right, -0.5 + median, the median and 0.5 + the median respectively (seeMethods). (c–d) To illustrate the role of
the high synchrony episodes in the uni-directionality of information transmission, a phase resolved analysis was

performed for epochs in which XC∗ is larger or smaller than threshold levels (larger or smaller than 0.5± the me-

dian, as indicated in panel b, seeMethods). While information transfer during high-synchrony bursts is boosted, no

significant transfer occur in between the bursts epochs. (c) Samemaps of TE as in Figure 4d, (single trial) but evalu-

ated limited to higher-than-average XC∗ epochs. Such phase-resolvedmaps correspond to the coarser analyses of

panels d–e. (d–e) Information transfer in different directions, in a∆Φ↑ condition (Top state, upper row) or a∆Φ↓
condition (Bottom state, lower row) limited to high XC∗ values, i.e. within coordinated gamma bursts (d) or to low

XC∗ values, i.e. between coordinated gammabursts (e) for the optimal interaction lag. Boxes and shaded bands give
95% c.i. of, respectively, actual TE and chance-level values.

leader to laggard could be established from laggard to leader with an optimal interaction
time of the order of a period minus the average distance between the peaks, i.e. of
the order of 15-16 ms. In Figure 2.14a we show that information transmission is only
statistically significant up to latencies smaller than half an average oscillation cycle and
fails to reach significance otherwise.

As episodes of jointly synchronous activity are plausibly those that transmit the larger
fraction of information, we further constrained the analysis of information transmission
only to transients with large values of joint synchronization. We analyzed epochs of
activity in which the value peak XC∗ rising above (Fig. 2.14d , “inside the bursts”) or
dropping below (Fig. 2.14e, “outside the bursts”) specified threshold levels (see Methods
2.1.5). TE is shown as a function of phase and the interaction delay for a “inside the
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Figure 2.15: Full characterization of directed information transfer (Part 1). For three different values of inhibitory

probability connection PI (in shaded light yellow, orange and red), Transfer Entropy analysis is performed in the

Top (∆Φ ↑) and the Bottom (∆Φ ↓) states, as a function of the interaction latency τ . For eachPI value, the depen-

dence of the state dependent information transmission is shown for different values of local excitatory probability

connection PE and inter-areal excitation PLR
E . The panel shaded in green corresponds to the parameters cho-

sen in Figure 2.13. Gray band indicates chance level. We see that for a wide range of parameters (all giving rise to

edge-of-sync dynamical behavior) information flows uni-directionally from the phase leading to the phase lagging

area.

bursts” configuration in Figure 2.14c. In the “outside the bursts” configuration TE
is nowhere significant. As before, a corse grained analysis in which the information
transmission is analyzed in the Top and the Bottom configurations only, reveals that
the information anysotropy induced by the phase relation is modulated by the level of
synchronization. The instantaneous level of inter-areal synchrony works as a gain control
that boosts information transfer in both directions when synchronization is high, and
limits it during asynchronous epochs. The areas are functionally disconnected when
synchrony is very low, and directed information transfer occurs primarily inside the
bursts. This dual mechanisms that can work independently makes the problem of routing
conceptually accessible. The direction of information flow can be set by the phase
relation while possible distractors can be muted by a suitable regulation of the level of
inter areal synchronization. The modulations of functional interactions are explained by
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the enhanced phase concentration of spiking during high coherence transients (Fig. 2.8
and 2.9), which facilitates post-synaptic depolarization.
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Figure 2.16: Full characterization of directed information transfer (Part 2). For five different values of inhibitory

probability connectionPI , single trial Transfer Entropy analysis in the Top (∆Φ ↑) and the Bottom (∆Φ ↓) states,
as a function of the interaction latency τ are here shown for different values of the Poisson input rate νin. The
shaded areas in yellow and pink correspond to those shown in Figure S9. The values along the diagonal, shaded in

lilac, have a monotonic increase in the synchronization level, and correspond to different points along the curves

shown in Figure 2.17)a

Information transfer in the leader-to-laggard direction is highly significant despite
the coarseness of the ∆Φ↓ and ∆Φ↑ conditions. This indicates that the emergence of
information transfer anisotropy requires just a weak degree of phase locking. In fact, we
find unidirectional transfer of information during Top and Bottom transients to be robust,
persisting within extended ranges of the analyzed parameters (Figs. 2.15 and 2.16). In
Figure 2.15, Transfer Entropy in the Top and the Bottom configurations are shown as
a function of the delay for several values of local inhibitory (PI) and excitatory (PE)
probability connections, as well as long range excitatory connections PLR

E . The higher
PLR
E , the larger the difference in information transmission in the Top and the Bottom
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states. The effect of the local excitation, on the other hand, is to bring “balance”,
by effectively reducing the level of local synchronization and therefore restoring the
flexibility in schemes that would other wise be too synchronous for it. That balance,
does not diminish the difference between the TE values in a single Top or Bottom state,
which remains similar. The increase in the local inhibition PI form 0.1 (yellow shaded
area) to 0.3 (red shaded area) pushes the values of TE above baseline when the values
of local excitation are low. To investigate further the effect of inhibition, we computed
Transfer Entropy for some of the values of the synchronization map shown in Figure 2.15.

Figure 2.16 explores the impact on the information flexibility as a function of the
external input drive and the strength of the local inhibition. The values indicated in 2.15
are shown in shaded yellow and red in . We see that for values of PI smaller than 0.3, the
increase in the drive does not break the flexibility of information transfer. The “diagonal”
of this TE matrix, which corresponds to moving along the panels in lilac in Figure 2.16,
is shown in Figure 2.17. Figure 2.17a shows TE as a function of synchronization with
shaded color bands representing the 95% c.i. and the chance level expectations in gray.
As indicated above, the lack of compensatory balance increases the synchronization and
disrupts the flexibility of transfer. Effectively unidirectional information transfer is found
for broad ranges of inter-areal coupling and synchronization levels (black arrows indicate
parameter values in Figure 2.13), replaced by bidirectional but unbalanced functional
interactions at strong coupling and/or synchrony. The strength of inter-areal information
transfer grows monotonically with the level of synchronization37. This growth, however,
is fairly slow. Operating at the transient synchrony regime synchrony brings only a small
quantitative loss of communication capacity with respect to higher synchrony regimes.
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Figure 2.17: Information transfer dependence on synchronization and coupling strength . (a) TE in the Top (left) or
theBottom (right) states as a function of local networks synchronization (obtained by growingPI and adjustingνin
tomaintain constantfiring rate, as following thediagonal ofFigure2.16, shaded lilac area). (b)TE in theTop (left) and
the Bottom routing state (right), as a function of the strength of structural inter-areal coupling (growingPE ). This

curves correspond to an extended exploration of the parameters corresponding to the green shaded area in Figure

2.15. In both panels, colored lines and surrounding shadings indicate mean TE values and 95% c.i., in comparison

with chance-level expectations (gray bands).

As discussed in the Introduction section 1.3.1, two main scenarios have been iden-
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tified for the generation of oscillations in recurrent networks of spiking neurons. Os-
cillations can either emerge as an interplay between inhibition and excitation via the
pyramidal-interneuron gamma (PING), or by the activation of an inhibitory network
in the interneuron gamma (ING). All simulations performed elsewhere in this Chapter
correspond to a situation in which both excitatory and inhibitory neurons contribute to
determine the oscillation frequency. In Figure 2.18a we focus on a different scenario, en-
forcing a strictly ING mechanism for oscillation generation by artificially suppressing any
local excitatory interaction. By performing a Transfer Entropy analysis on this config-
uration we show that the routing states associated to different effectively unidirectional
information transfer profiles continue to robustly exist.

We have focused so far on using a local field potential (LFP) like signal as a descriptor
of the population activity of each of the considered local circuits. This measure, derived
as a direct average of the membrane potential of the individual neurons, captures both
spiking activity and the sub-threshold oscillations of the neuron’s membrane. In the
following, we show that the information anisotropy introduced by the relative phase can
also be obtained by population measures only based on spiking activity. In Figure 2.18b
we show that the TE analysis for multi-unit activity (MUA) like signal (the network’s
rastergram convolved with a gaussian kernel) yields similar results to those obtained
with the LFP-like signal.
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Figure 2.18: Information transmissionwith INGoscillationmechanisms andwithMUAsignals instead of LFP. (a) In-

formation transmission as measured by transfer entropy as a function of the interaction latency τ , in a top (∆Φ ↑,
left) and the bottom (∆Φ ↓, right) states, in a purely inhibitory network. Shaded areas represent the 95% con-

fidence interval, and the grey band the chance level. (b)We have so far described the population activity of each

of the considered local circuits by an LFP-like signal. Here we show transfer entropy analyses analogous to those

of Figure 2.13 e–f, but performed in terms of a Multi-Unit activity-like (MUA) signal. a Transfer entropy between

MUA signals as a function of the interaction latency τ , in a top (∆Φ ↑, left) and the bottom (∆Φ ↓, right) states
in a network in the transient synchrony regime. The MUA signals were obtained, as described in the methods, by

convolving the spiking activity of each network with a gaussian kernel with standard deviation = 2ms.

Transfer entropy and delayed mutual information are measures designed to estimate
increases in predictability between coupled Markov processes of order k. These measures,
by definition, depend on the k previous steps and not only on a single interaction delay
as was used in the figures of the present Chapter. More specifically, the estimation of
Transfer Entropy was based on the approximation of the past activity history V k

Y and V l
X
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Figure 2.19: Alternative estimation methods for Transfer Entropy. (a) The history terms of V k
Y and V l

X are evalu-

ated at t-τL (local delay) for the target andat t- τI (inter-areal interaction time) for the source, insteadof a single in-
teractiondelayτ forboth. The jointprobabilitiesp

(
yt|yk

t ,x
l
t

)
andp

(
yt|yk

t

)
are replacedbyp(yt|yt−τL , xt−τI )

and p(yt|yt−τL) respectively. (b) Left panels:∆TE=TY→X − TX→Y as a function of the local τL and the inter-

areal interaction delay τI in the top (upper row) and the bottom (lower row) states. In a top state TE is predominant

from Y to X for all values of τL, and markedly peaks at an interaction delay of τI around 4 ms. Right panels: TE in
both directions in an Top state at slices of constant τL. In the top row, τL = 0.1ms, the sampling time. (c) The his-
tory termsofV k

Y andV l
X are takenat twodifferentpast times separatedbetween thembyams : t1 = τ−a/2and

t2 = τ +a/2. The interaction delays t1 and t2, unlike the in panels a-b, are the same for both time series. The joint
probabilitiesp

(
yt|yk

t ,x
l
t

)
andp

(
yt|yk

t

)
are replacedbyp(yt|yt−τ+a/2, yt−τ−a/2, xt−τ+a/2, xt−τ−a/2)and

p(yt|yt−τ+a/2, yt−τ−a/2) respectively. Notice that now a 5-dimensional histogram is needed to estimate the

joint probability distributions. (d) Transfer Entropy from Y to X (red palette) and from X to Y (blue palette) in a Top
(upper row) and a Bottom (bottom row) states as a function of the intermediate interaction delay τ for different

values of separation between the considered points a. The estimations are based on a single 10 min long trial, for
clarity of illustration.

with observations at a single past time VX,Y (t−τ) (see Methods 2.1.5). The inclusion of
such simplification meant replacing the joint histogram terms p

(
yt|yk

t ,x
l
t

)
and p

(
yt|yk

t

)
in eq. (2.7) by p(yt|yt−τ , xt−τ ) and p(yt|yt−τ ) respectively. This figure explores two
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different ways of approximating the history of the time series V k
Y and V l

X . In Figure
2.19a-b, we show that the estimation is robust to taking different interaction delays to
evaluate the history of the activity of the coupled networks. One interaction delay, τL
is taken to evaluate the history of the local circuit (i.e. when analyzing TEY→X , τL
refers to the interaction delay of X). τI on the other hand, is the inter-areal interaction
delay. We can see that for all values of τL, = TEY→X − TEX→Y peaks at a value of
τI=5 ms. For the minimum possible interaction delay (the integration time), and as
discussed in130, taking the local delay equal to the sampling time allows to re obtain
the (mean) synaptic delay between the areas (d=1.5 ms, indicated as a black bar in the
x-axis) at the peak of the inter-areal interaction delay τI . In the bottom row, a slice at
τL=4.5 ms is shown. In Figure 2.19c-d, an analogous analysis is made, while taking into
consideration two possible interaction delays, instead of a single one. The inclusion of
several past times essentially leaves unchanged the TE estimation values.

2.2.4 Emergent routing of information streams

The existence of a phase gated dynamic switching between Top and Bottom routing
states only starts to address the question of routing. In particular, it is not obvious that
streams of external information entering the circuits are routed in a fashion similar to the
spontaneous activity analyzed so far. To examine this aspect in our models, we introduce
external input currents Sx and Sy modeling incoming activity from surrounding areas
or carrying information about sensory stimulation (Fig. 2.20a). We modeled the input
signals as S(t) = gΦ(t) where Φ(t) is Gaussian random field (see Methods 2.1.6) with
autocorrelation C(t) = 1/ cosh( t

τs
). The fraction of power p contained in the spectrum

up to a cut off frequency fc, is given by Eq (2.21) (for example, for p = 0.9, fc ≈ 5
2π2τs

).
For a value of τs = 0.5 ms, that cut off is around the 500 Hz, while when τs = 5 ms,
fc will be around 50 Hz. For an intermediate value of τs = 1 ms, we re-analyzed the
burst coordination properties observed in the isolated case of Figure 2.6. The inclusion
of external signals does not interfere with the burst tracking phenomenon (Fig. 2.20b),
but enlarges the frequency range in which this coordination takes place (Fig. 2.20c).
The frequencies of the LFP signals, together with the frequency range in which they
coordinate, is shifted to lower values (panels b-d).

We then study how these injected input streams propagate through the interconnected
regions conditional on the instantaneously active routing states. An exhaustive analysis
as a function of the sensory input parameters g and τs, unveils that there is a broad
parameter range in which information about the input to a source area Sx (or Sy) can
be read out from an output area Y(or X) (colored panels around Fig. 2.21a). When
the input becomes too strong (the gain parameter g is large), the network becomes
synchronous, driving the single units strongly (Fig. 2.21a-b). We note that the increase
of the amplitude of the input signals generally decreases the frequency of the network
while increasing the firing rates (Fig. 2.21b-c), leading to states of higher synchrony.
This frequency reduction should be contrasted to the effect in the population frequency
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that has an increase in the rate of the independent Poisson process that every neuron
receives (see Fig.2.2d). An increase in the input to the neurons, leads in both cases to
increasing firing rates and synchronization levels, but while an independent input leads
to higher population frequency, a fully correlated one, in this case leads to a frequency
reduction.
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Figure 2.20: Characterization of the transient synchrony regimewith input streams. (a)Cartoon of a canonical cir-

cuit of two brain regions receiving a continuous random signal. All neurons of each network receive, besides the

independent background Poisson input, the same random input signalSx inX andSy in Y independent between

them. (b)Spectrogramsof LFPactivity for couplednetworkswith transient synchrony receiving independent input.

The time and frequency of emergent gamma bursts remains coordinated. (c) Burst-timing correlations between

same-frequency gamma bursts in different regions (blue), compared with chance level expectations (grey). Burst

timing correlations are significant over a frequency range further expanded with respect to Figure 2.6c. Shaded

bands denote 95% c.i.. (d) Joint distribution of the frequencies and durations of gamma bursts. The average dura-

tion of bursts remains short, of the order of 100ms, but the frequency spread is even larger than in the not-driven

case featured in Fig. 2.2(f). Note also that the frequency range is shifted toward lower values.

The addition of external smooth inputs, even for a intermediate level of synchrony (g =
2,τs = 1 ms) does not modify the system’s states defined by TE, which remain markedly
unidirectional (Fig. 2.22c). Nevertheless, non-smooth inputs like OU processes (see
Methods 2.1.6) lead to high synchrony levels that cannot be compensated by reducing
the local inhibition, and therefore TE is significant both from leader to laggard and form
laggard to leader, although a marked asymmetry between the Top and Bottom states
still persists (Fig. 2.22d). State-resolved information theoretical analysis between the
input streams Sy (or Sx ) to the receiver region Y (or X) and the neuronal activity of
the target region X (or Y), revealed that the information injected into a source region
propagated towards an inter-connected distant target following the path imposed by the
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Figure 2.21: Characterization of the transient synchrony regime response to input streams of different character-

istics. (a) Synchronization index as a function of the input gain g and the correlation time τs of the input. For some
selected configurations, theMutual Information between the input to an areaSx (orSy) and the LFP signal of the

target oneY(or X) is aswell shown as a function of the interaction delay τs in the Top andBottom states, still defined

through the phase relation∆Φ of the LFP-like signals. (b)Mean firing rate for the excitatory (left) and inhibitory

(right) neuronal populations. (c)Mean frequency of the LFP signal.

routing states, defined by the state-specific TE analysis. As shown in Figure 2.22e for
smooth inputs and Figure 2.22f for OU inputs, when in a Top state, information about
the input injected into a the source area Y is uni-directionally transmitted to X, while
there is no information being transmitted about the input injected into X. This is also
seen by the state-filtered MI information measure as shown in panels g and h. Although
in the OU case, the directed functional connectivity between the regions estimated by
TE between LFPs is bidirectional, the propagation of the externally-supplied signals
remains to be unidirectional.

To summarize, the analysis of transfer entropy between LFP like signals allows to
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between the input signal to the source region and the LFP-like activity signal from the target region as a function

of the interaction latency (see Methods). They are shown for the Top (left) and Bottom (right) states, still defined

through the phase relation∆Φ of the LFP-like signals. MI between the input to the source region and the target

area’s activity is only significant when the source region is leading the target region in phase. Transmission of the

externally-supplied input signals is regulated by the phase relation between the interacting regions. (c) Transfer

Entropy between the LFP signals of the interacting regions as a function of the interaction latency τ , for this driven
case in Top (left) and Bottom (right) states. (d) Transfer Entropy from the input signal to the source region to the

target area, in Top (left) and Bottom (right) states. Input specific information is selectively gated deepening on the

phase configuration of the LFP rhythm. (e-h) Same analyses as in panels (a-d) but performed with a different input

noise model. Input signals are modeled as an Orstein-Uhlenbeck process (seeMethods 2.1.6 ) with variance σ2 =
g2

2γ with γ = 1 and g = 0.1. Note that in the case of OU inputs, the levels of synchronization reached by the

network are higher( 0.6) and far from transient synchrony .

quantify how much information about the spontaneous activity is transferred from a
source region to a target one without specifications on the nature of the information
being transmitted (functional connectivity). Here we showed that the same mechanisms
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that regulate the information transmission of endogenously generated network activity,
is the one that regulates the transmission of specific, input-related information.
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2.2.5 The routing problem in a selective attention setting

Next, we extended the model to include three interconnected regions with transient
synchrony, X, Y and Z. As shown in Figure 2.23, the state-selection procedure can
be extended straightforwardly to this case. The three region architecture enabled us
to study a setting typical of visual selective attention experiments106,26,105, as the ones
described in the Introduction in section 1.1.4. For instance, we considered a situation
in which two distinct visual stimuli —potentially with super-imposed noise flicker106—
are coded for by distinct populations X and Z in lower-order areas such as parts of V1,
whose distinct receptive fields both fall within the larger field of a third population Y in
a higher order area such as V4 (Fig. 2.23b). With increasing number of involved areas,
the complexity of the states defined by the rhythm’s phase relations increases, requiring
a refinement of the state filtering conditions to match the new possible configurations.
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Figure 2.23: State selecting filtering conditions of three regions architectures. (a) Cartoon showing the state fil-

tering pipeline for three interconnected regions. Six state filters are defined for all the permutations of XZY.(b)

Cartoon of a macaque brain, with three recoding sites, the brown and the blue in primary visual cortex V1, and the

red one in extra-striate cortex V4. Also indicated: screen with two stimuli and a fixation point and the receptive

fields of the recording sites in matched colors. (c) In systems involving N regions, the quantity of state selecting

filters scales asN !. In a three population area, there are six possible phase hierarchies, which define six informa-
tion constraining filters denoted by∆Φxzy

1 to∆Φyxz
6 (superscript indicates the ’order’ of the signals in the given

configuration,∆Φxzy
1 reads: Phase configuration in which X leads Z that leads Y. (SeeMethods, equation (2.11)).

The six state selecting filters for a three region scheme, numbered from ∆Φ1 to ∆Φ6,
are shown in Figure 2.23c. Each one represents a dynamic configuration constraining
the routes of information transmission. A directed functional connectivity analysis of
the three region model is shown in Fig. 2.24 for two different network architectures.
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Figure 2.24: Information transfer between three regions. (a) Three region circuit in which feed-forward connec-

tions from upstream regions X and Z are stronger than feed-back connections from the downstream region Y. (b)

Partial Transfer Entropy (See Methods, equation 2.10) fromX to Y (blue), from Y toX (dark red), fromZ to Y
(brown) and from Y toZ (green) in the six possible configurations. The dark shading bands correspond to chance

levels, different for each of the directions inmatching colors. We see that whenX andZ are both leading in phase

on Y (states∆Φ1 and∆Φ3), both regions can transmit information to Y , while pTE from Y toX andZ remains

at chance level. Depending on which is the phase configuration the optimal lag for information transmission dif-

fers. When the activity of the target region Y is between the senders, we can recover uni-directional information

transmission from a single region (states∆Φ2 and∆Φ4). (c) Symmetric, three-region structural motif in which

feed-forward and feed-back structural projections are equally strong. In this case, as shownby panel (d), additional

routing states arise, associated to newdirected functional connectivitymotifs. Significant information transfer can

also occur from the downstream region Y to one of the upstream regions (states∆Φ2 and∆Φ4), or to both (states

∆Φ5 and∆Φ6).

A predominantly feed forward architecture (A), in which two primary areas (X and Z)
project to a downstream target Y with a higher strength than that of the feedback (i.e
from Y to X and Z), is depicted in a cartoon in Figure 2.24a. A second possible, ’sym-
metric’ architecture (B), in which the strength of the long range excitatory connections
is equal between the areas, is shown in Figure 2.24c. TE analysis between the LFP sig-
nals of the three coupled regions show that multiple routing states can arise depending
on the phase pattern. The routing states defined by the phase configurations ∆Φxyz

2

and ∆Φzyx
4 , exhibit a unique asymmetry between the primary areas, in which one of
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them is leader and the other one is laggard with respect to the target area Y. These
phase configurations allow for a selective control of the information transmission from
afferent inputs, effectively blocking competing information channels during the transient
episodes. In architecture (A), uni-directional information transmission is of a merely bot-
tom up nature, as TE is only significant from X to Y (∆Φxyz

2 ) or from Y to X (∆Φzyx
4 ).

In architecture (B), there is as well a top-down like control from Y to the area lagging
in phase. Configurations in which both the primary areas lead in phase the downstream
area (∆Φ1 and ∆Φ3), result in convergent (bottom-up like) information transmission in
both architectures (A) and (B), as represented by the convergent motif obtained from
the transfer entropy analysis. It is worth to highlight, that although the downstream
area simultaneously receives and therefore integrates information from its afferent in-
puts, the peak information transmission occurs at different interaction latencies, keeping
a temporal segregation between them. The configurations in which the target area Y
leads in phase to both X and Z (∆Φ5 and ∆Φ6), leads to either a disconnected motif in
the architecture (A) or to a purely top-down like control in the symmetric network (B).
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Figure 2.25: Information transfer between three regions, alternativemodel. (a)Alternative state selecting filtering

procedure for a three area scheme. Episodes with low XC∗ between Z and Y (i.e. XC∗
ZY ) are pulled separately, and

later classified in TopXY, BottomXY, TopZY, BottomZY in the . Analogously, this four states can be as well definedwhen

XC∗
XY is low. Transfer Entropy is then calculated in this eight states. (b)Three region circuit inwhich feed-forward

connections from upstream regions X and Z are stronger than feed-back connections from the downstream region

Y. (c) (left) Partial Transfer Entropy between X and Y, while X leads Y (i.e. a TopXY, in violet) and between Z and Y,
while Z leads Y (i.e. a TopZY, in pink), in a lowXC∗

ZY configuration. Information transmission is only significant from

X to Y. All the other configurations (i.e. both Bottom and TE from Y to Z and X) are non significant. (right) Partial

Transfer Entropy between Z andY, while Z leads Y (i.e. a TopZY, in light brown) and betweenX and Y, while X leads Y
(i.e. a TopXY, in dar brown), in a low XC∗

XY configuration. Information transmission is only significant from Z to Y.
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The routing scheme shown in Figure 2.24 is based solely on constraining the phase
relation between the LFP signals of the involved areas. Although at the transient syn-
chrony regime such a scheme offers configurations that enable unidirectional information
transmission despite the presence of distractors, it does not exploit the fluctuating co-
herence of the rhythms for such a selection. Analogously to the two population case,
an alternative routing mechanism, based both on the phase relation and the level of
synchrony of the involved regions can be proposed. In this scheme, we analyze the infor-
mation transmission form X (Z) to Y, depending on their phase relation but conditioned
on Z (X) and Y to have low joint synchrony. The state-selecting filtering pipeline is
shown for this case in Figure 2.25a. For each pair (X and Y or Z and Y), Top and
Bottom states can be obtained constrained on the level of coherence of the competing
population. For a asymmetric three area architecture (panel b), is shown that when Z
and Y are “outside the burst”, information is transferred uni-directionally from X to Y
in a Top state, while no information is being transferred from Z to Y, and neither form
Y to X or Z in the bottom state, given the asymmetry of the connectivity. When X and
Y are “outside the burst”, then information is transmitted uni-directionally from Z to
Y. The level of synchronization and the phase relation can work as separate mechanisms
that gate information in a selective manner. By relaxing the conditions on the phase
relations, the scheme becomes scalable to large amount of connected areas.

In order to fully address the routing problem in a selective attention like set up,
input streams were injected to each neuron in the lower (V1-like) areas modeling sensory
input, and in the V4 area, representing feedback information (Fig. 2.26a–b). Typically in
these experiments (see Introduction section 1.1.4), the focus of attention is alternatively
directed to one stimulus or the other, defining an information routing problem in which
the transmission toward Y of the input stream S arising to X (or Z), associated to the
attended stimulus must be enhanced, while the other unattended stream arising to Z (or
X) should be gated off.

An information theoretical analysis of the full model is shown in Figure 2.26c–d. We
focus first on the routing of the signals Sx and Sz, coding for different stimuli. In a phase
configuration in which X leads Y, being Z a laggard of the dynamics, only information
about the input streams Sx is present in the downstream region Y (panel c, left) although
no other mechanism besides an unsuitable phase relation prevents information about Sz

to be present in Y. Analogously, when Z leads Y, being X a laggard of the dynamics,
only information about the input streams Sz is present in the downstream region Y
(panel c, right). Switching between the transient phase-locking patterns associated to
the two ∆Φxyz

2 and ∆Φzyx
4 conditions thus produces rerouting effects analogous to the

ones which would be associated to a re-orientation of the attentional spotlight. The
complete analysis of the system is shown in panel d. We see that, as in autonomous
case where no input signals was included (Fig. 2.24), there are routing states (∆Φ1 and
∆Φ3) in which the downstream area Y receives information coming from both sensory
stimuli, that can still be segregated temporally.

A full repertoire of dynamical states and corresponding information motifs are found
through the conditions imposed by the phase hierarchies. Information can be selectively
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and uni-directionally transmitted by a single input area among several afferent inputs
to a target area depending on the phase relation between the rhythms.
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Figure2.26: Routingof input signals in a selective attentionparadigm. Sensory inputSX,Z to primary regionsXand

Z, or top down input signals to YSY , are integrated in the system of Figure S14a andmodeled as independent and

smooth random fields identical to those of Figure 14a–d. Information conveyed by input signals is routed accord-

ingly to the phase relation between the population activity of the involved regions. (a-b) Full model. Each region in

themodel receives an independent input signal modeled as a gaussian random signal (seeMethods). For visual clar-
ityonly thatSx andSz areshown. (c)Left: Mutual informationbetweenthe input signal to thesource regionSx and

the LFP activity of a target region Y as a function of the interaction delay (blue curve) is strongly enhanced in the

associatedphaseconfiguration∆Φxyz
2 . This configurationhasaneffect similar toattentionbeingdirected towards

the stimulusover theblue receptivefield (RF).Nosignificant information is present in theV4site fromthe signalSz ,

representing the non attended stimulus. Right: Phase configuration∆Φzyx
4 , analogous to attention being directed

to the stimulus over the brown RF. Information of the competing stimulus again is non significant. Mutual informa-

tion between the activity of V4 and the input signal Sy is systematically increased and reaches a maximum at an

interaction delay. The state functional connectivity is indicated by motifs next to the graphs. (d) Complementary

information to the shown in panel (c). Analogously towhat is shown in Figure 2.24, when the downstream regionY
lags in phase the activity of both regionsX andY (∆Φ1,∆Φ3), both input signals toXandZcanbe simultaneously

transmitted with different peak interaction latencies.
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2.2.6 Controlling information routing

In the examples of all figures above, transients of the different phase-locking types —
Top and Bottom for the two region model and ∆Φ1 to ∆Φ6 for tree region model —
spontaneously arise with similar probabilities of occurrence.
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Figure 2.27: Biasing information transfer. (a) The application of a steady bias is modeled as a constant increasing

∆ν of the background drive νin of only one of the two interconnected brain regions. (b) The predominant direc-

tion of information transfer is biased towards the region with lower background drive, as indicated by the maps of

the Functional Anisotropy Index∆TE. Middle column: no input bias. Extreme columns: strong background bias

∆ν = +4 kHz (on top of a baseline drive of ν = 3 KHz) applied to populationX (extreme right) or to Y (ex-

treme left). Intermediate columns: weaker cases of∆ν = +2 kHz. (c) Pie charts of the time the system spends

in a Top or a Bottom state, matching the biased examples of panels a–b. The corresponding functional graphmotifs

are indicated below. For strong biases information can “leak” in the non-preferred direction (see also Fig. S11). (d)

Center row: Without background bias, the dynamics of a three-area system spend the same fraction of time in a

state∆Φxyz
2 and a∆Φzyx

4 . When amild bias perturbation is applied to populationX (Z), to the left (right) columns,

the fraction of time spent in a∆Φxyz
2 (∆Φzyx

4 ) increases, annihilating the fraction of time spent in themirror con-

figuration. Information is preferentially transmitted to the target downstream region Y from the region receiving

the background bias.
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Figure 2.28: Controlling the direction of information flow in a asymmetric three population scheme. Simulation

of the application to steady biases in each of the three populations. The resulting effect on the distributions of the

pairwisephase relations,∆ΦXY and∆ΦZY togetherwith thephase resolvedAsymmetry Index (seeMethods) for

the two pairs of signals are shown. (a) Analysis of the response of∆ΦXY and the Anisotropy Index (AI) to lateral

biases. Top row, center column: The phase relation between X and Y,∆ΦXY is initially slightly distorted, given the

asymmetry in the structural connectivity as detailed in Figure 2.24(a). As a bias is applied toX (columns to the left),

∆ΦXY shows a an increase in its right peak, indicating predominance ofX leading states. Correspondingly, the

index of information anisotropy shows increasing predominance information flowing form X to Y. When a bias is

applied to theZ population (right columns), the symmetry betweenX and Y is first restored and then switched

to a predominantly Y leading states. Bottom row: Analysis of the response of∆ΦZY . When a big external bias

(extreme left) is applied to the regionX , the relative information transmission betweenZ andY compared to that

betweenX and Y is severely diminished, as reflected by a near zero AI. Extreme bias to Z mutes the information

channel coming fromX. (b)A bias can also be applied to a downstream population Y, forcing states in which Y leads

in phase. Information is then transmitted primarily from Y to both X and Z in a top-down manner, as clear from

the predominant blob in the AI index for in Y leading states. (c) Alternatively, a bias with the same intensity can be

applied two both populations, having equal strength information transmission from both regions in a bottom-up

manner.



A given dominant direction of information transfer can nevertheless be enforced by
applying a weak bias (Fig. 2.27) and making the bursts of a given type more likely to
occur. Figure 2.27a–c refer to routing state control in the two region model of Figure
2.13. Figure 2.27d and 2.28 refer to the control in the three region model of Fig. 2.25.
Raising the baseline input to either one of the two possible source regions by a certain
amount ∆ν, increases the probability that the biased circuit becomes a transient phase
leader, favoring the occurrence of specific routing states. As indicated by the pie charts
of Fig. 2.27c, a bias to circuit X (or Y) increases the probability of occurrence of a
Bottom (or Top) state , as seen in the rightmost (or leftmost) columns.

Equivalently, for the three region model a bias to the region X increases the probability
of X leading Y and simultaneously of Y leading Z (Fig. 2.27c, left columns). Similarly,
a bias to the region Z increases the probability of Z leading Y and simultaneously of Y
leading X (right columns). As the relative phase distributions (Fig. 2.27d, Fig. 2.28) take
on more asymmetric shapes, the maps of the Functional Anisotropy Index reveal a strong
asymmetry in the direction of information transmission, showing that information flows
preferentially from the biased region towards the target one. High applied bias (extreme
right or left columns) eventually ends up muting the sub-dominant information transfer
channels, with one of the two peaks of the relative phase distribution being flattened.
For the three region model, this is further detailed in Figure 2.28. In panel a, the effects
on the relative phase distributions and the anisotropy maps is shown when increasingly
strong background inputs are added to the population X (left) or Z (right). Additionally,
as shown in panel b, the simultaneous increase in a background bias to both populations
X and Z traduces in an increase of the information transmitted to Z form both X and
Z, enforcing the routing states ∆Φxyz

1 , ∆Φxyz
3 .

2.2.7 Modulation of information transmission by spontaneous symmetry breaking

The examples discussed above are associated to a distribution of inter-areal phase dif-
ferences which is symmetric in the unbiased case (i.e. not spontaneously favored phase-
locking configurations). However, and very much surprisingly, combined high levels of
heterogeneity and local inhibition can spontaneously break the symmetry of the relative
phase distribution. Some instances of the network, depending on specific realization
of otherwise statistically identical variables, give rise to naturally asymmetric phase-
difference distributions and hence, to an intrinsically more frequent functional state. For
networks with no conductance heterogeneity although differences in the peaks might be
observed, a bimodal phase distribution is generally obtained. The inclusion of large in-
put conductance heterogeneity, can lead to asymmetric states. An example is shown in
Figure 2.29 for a high synchrony working point. The initial asymmetry observed cannot
be reverted even with large opposing biases. The asymmetric cases also occur in a lower
synchrony regime. Nevertheless, they occur more seldomly and when they do, the effect
is less drastic, given that the phase distribution is already spread out. This asymmetric
feature of the networks hints at an interesting venue for phase locking control, in which
tiny manipulations in the weight of the connectivity can lead to re-organizing effects at
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the network level with high impact in the information capabilities of the network.
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Figure2.29:Asymmetric information transfer. Some instancesofnetworkswithheterogeneous input conductances

give rise to distributions of the relative inter-areal phase difference which are not symmetric but display a marked

asymmetry even in absence of external input bias. An example of the relative phase distribution of an asymmet-

ric network is shown in panel (a) for the high synchrony working point. The application of external bias counter-

acting the network spontaneous asymmetry does not restore symmetry, even for stronger biases than the one de-

picted. The associated maps of information transfer anisotropy∆TE (panel (b)) and the time spent in Top- or Bot-
tom-like states (panel (c)) are as well shown. Note the significant leakage of information transfer occurring in the
sub-dominant direction. (d)Mean and 95% c.i. of the time spent in a Top state (dark green) and Bottom (light green)

as a continuous function of the applied bias for a network in a high synchronyworking point and in an initially asym-

metric state, aligned to be asymmetric in a X leader configuration, as in (a). Note how on average the symmetry

cannot be restored despite the application of a large bias. (e)Given the probabilityP↑ of having∆Φ in an interval

[-0.1+∆Φ∗
↑,∆Φ∗

↑ + 0.1] around the peak∆Φ∗
↑ and the analogously definedP↓, we define the asymmetry index

as the normalized difference between them: AI=
P↓−P↑
P↑+P↓

. Themean (left) and the variance (right) of this asymmetry

index over 40 network realizations per parameter combination is plotted as a function of the probability of local

inhibitory connectionPI and the background drive rate νin.

2.2.8 Optogenetic control of phase relations, past and future

In networks where the level of synchronization is high, and the oscillation is periodic,
an excitatory pulse to a single population can alter the phase relation in a long lasting
way. We developed a protocol that would allow to perturb the ongoing phase relation
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between either spontaneously occurring or optogenetically induced gamma rhythms. A
single strong excitatory pulse to a single population elicits a change in the relative phase,
with a probability that depends on the phase at which the rhythms is perturbed. This
protocol is suited to critically test the behavioral correlates of inter-areal phase relations
between highly synchronous rhythms; the resulting work can be found in Appendix C.
It remains a challenge to have a reliable perturbative method to set the rhythms of low
and fluctuating level of synchronization in a desired phase configuration in a controlled
manner. Possible avenues will be discussed in the next section.
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2.3 Summary and Discussion

Our results show that, in coupled circuits at the edge of developing oscillatory synchrony,
frequency-tracking and out-of-phase locking of oscillatory bursts are emergent features
of the large scale circuits collective dynamics. Bursts are generated in coordinated sets
of near simultaneous onset, and mediate transient phase locking between the region’s
activity. The transient patterns of inter-regional coherence define flexible routing states
that determine the direction of information flow both of endogenously generated rate
fluctuations and of externally supplied signals.

Our study sheds new light on several arguments against coherence mediated commu-
nication, introduced in detailed in section 1.1.6 of the Chapter 1. A first widespread
concern has been the low and inconsistent power of gamma oscillations in vivo44,286. In
our models, LFP oscillations show inconsistent power, fluctuating stochastically between
40 and 70 Hz and with a time-averaged LFP spectrum presenting broad-band gamma
modulation (see Fig. 2.9), consistent with other models of neuronal activity with tran-
sient synchrony171,15,56. Despite this weak-average gamma power, TE analyses revealed
that the transient power rise during oscillatory bursts is sufficient to impact on infor-
mation transfer between areas and propagation of externally supplied information. A
second issue relates to the low level of spiking correlations. While several studies identi-
fied marked and context-dependent oscillatory synchrony146, others found only weaker
spiking correlations66. In our simulations, spiking activity always remained highly ir-
regular (Fig. 2.5). In particular, neuronal firing is poorly phase-concentrated, with the
exception of bursting events, which are tightly localized in time (Fig. 2.9). These short
epochs nevertheless convey the largest net contribution to directed information transfer
(Fig. 2.14). A third obstacle may be the large variability of inter-areal conduction delays,
impeding the phase-matched arrival of pre-synaptic spikes with respect to the oscillation
in the target region. The regulation of information transfer, however, is the outcome of
collective dynamics and not just of direct mono-synaptic interactions. In fact, observed
inter-areal phase relations depend on a multitude of factors and don’t seem to follow
the inter-areal delay (see section 1.1.6 for details). As shown in Figure 2.11, different
inter-areal phase-locking relations can be implemented with a fixed inter-areal delay,
just by changing the level of local inhibition. It is thus plausible that the fine control of
local inhibition exerted by specialized interneuron types42 plays an active role in setting
inter-areal phase relationships. A further impediment to the function of gamma oscil-
lations as an internal coordination system may result from their sensitivity to external
stimuli203,134. However, coupled oscillating local circuits coordinate the emergence of
their own stochastic gamma bursting tracking each other’s frequency and timing in a
fully self-organized manner (Fig. 2.6), independently of their inputs (Fig. 2.20).

The out-of-phase relations we find may be potentially useful in establishing dynamic
functional hierarchies of inter-areal communication18, with information flowing prefer-
entially from phase-leading toward phase-lagging regions. Since the structure of the
phase patterns is not solely prescribed by connectivity, different regions can compete
flexibly assuming the functional roles of sender or receiver of information, depending on
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the specific context and modulatory signals.
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In the continuum of the reality of the world, in a
remote era, a radical heterogeneity was established
between any two things. A difference so irreducible
that there was no term that could encompass both.

Varamo, by Cesar Aira

3
Chaos and synchrony in delayed neuronal

networks

The dynamical stability of neuronal networks, and the possibility of chaotic dynamics
in the brain pose profound questions to the mechanisms underlying perception. In a
chaotic system, the exponential divergence of nearby trajectories implies an entropy
production rate. On the one hand, the chaotic dynamics amplifies differences in initially
undistinguishable states. When tracing backwards the diverging trajectories, we can
increase the resolution of the initial condition. On the other hand, at a given point in
time, the dynamics create new information that was not implicit in the initial conditions,
necessarily measured to a finite precision225, overwriting in a finite time any information
that they could have encoded. Whether the rapid amplification of differences in the
states and the finite-time dissolution of encoded information poses an advantage for
brain processing or works in detriment to it, depends both on the resolution of the initial
measurement, and on the time scales of integration needed to reunite the elements that
compose perception.

In this chapter we are going to analyze the dynamical properties of delayed pulse-
coupled neuronal networks. Rigorous approaches to study the stability and dimension-
ality of delayed dynamical systems, which have an infinite dimensional phase space, have
generally remained elusive. While analytical approaches to calculate the full spectrum
of delayed scalar equations have been successful in only few cases155, numerical methods
have provided some general intuitions about the dependence of the characteristics of the
attractor on the delay78,154,235. In globally pulse coupled excitatory networks, in which
the evolution of the units is continuous except at the reset point, the system has been
shown to be reduced to a finite dimension whose upper bound depends on the dynamics
of the network12. The existence of a finite spectrum of Lyapunov exponents character-
izing the rate of divergence of nearby trajectories in the phase space, or the existence of
a finite dimensional attractor is in principle not guaranteed in these systems.

Here we show that in pulse coupled neurons with delayed interactions the dependence
on its history can be circumvented and mapped to a system with fixed and finite degrees
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of freedom. By introducing a postsynaptic single-compartment-axon (SCA) for every
neuron, the effective transmission delays arise from the additional steps of input inte-
gration that is required by the delayer SCA to reach threshold. The dynamics of exactly
solvable neuron models can be analyzed by the evolution of a map that propagates the
activity from spike to spike in event-based simulations, which are only limited numeri-
cally by machine precision174,173. This approach can be equally extended to the study of
delayed interactions by a suitable choice of a model for the SCA. The equivalent system,
with a dimension that doubles that of the original, has a well defined map that iterates
the state of the network from spike to spike. A Jacobian, through which the stability of
the delayed system can be assessed is also defined.

We find that the inclusion of delays in inhibitory QIF networks in the balanced state∗

leads to a transition to a slow synchronous irregular state in which the frequency of
the oscillation is only a few times larger than the mean firing rate of the neurons.
The firing rate distributions remains broad, even in the absence of heterogeneity. At
the critical delay where the oscillation develops, the exponential rate of divergence of
nearby trajectories increases together with entropy production rate, indicating that chaos
intensifies while departing from the asynchronous irregular state. Further increases in
the delays mediate a transition to spike-spike synchronization. Nevertheless, even small
amounts of heterogeneity in the single neuron parameters prevent this pathological state,
working as counter-acting force to the delay, which tends to align the rhythm. After this
new transition, the firing rate distributions become bimodal, with neurons locking to
the rhythm and neurons with low firing rates acting independently of it, given the large
amount of heterogeneity121. The entropy production rate and the attractor dimension
decrease monotonically with increasing delay after this transition, as opposed to more
standard delayed differential equations in which an increasingly large attractor dimension
was reported78,154. The inclusion of excitation does not lead to a different dynamical
behavior, and a transition to an irregular synchronous state with increasing delay is
also observed, although the details of the transition depend on the details of the E-I
loop. Finally, we explored the stability and synchronization properties of a neuronal
model with tunable onset rapidness. For low values of heterogeneity, the increase of the
synaptic delay in these networks leads to a sharp transition to spike-spike synchrony.
Strikingly, for higher values of heterogeneity a fast synchronous irregular state emerges,
that differently from the one described in the LIF neurons29 is also chaotic.

This chapter is organized as follows: Section 3.1 will deal with the theoretical back-
ground on elements of ergodic theory of chaos and balanced state networks that will be
later implemented and discussed. Section 3.2 will detail the mathematical methods, the
spike to spike iteration map for different neuron classes, the mathematical definition of
the SCA and the details of the numerical implementation and the definition of some
network statistics. Section 3.3 will present the results briefly discussed above, that will
be further summarized and discussed in section 3.4

∗By balanced state networks in this context we refer to networks with random connectivity (i.e. given
by a Erdős–Rényi graph) in which the synaptic weight J scales with the average amount of connections
per neuron K like J ∝ 1/

√
K, see 3.1
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3.1 Theory

This section will deal with the theoretical background of both ergodic theory of chaos
and balanced state networks, that together with section 1.2 in the introduction frame
the work to be presented in the later sections.

3.1.1 Ergodic theory of chaos

Delta coupled neuronal networks are distinctly characterized by the independent evolu-
tion of the sub-threshold dynamics of each neuron between spikes. As the spike emission
and reception are discrete events in time, the temporal evolution of a network of these
characteristics can be analyzed like a discrete map, a procedure that will be detailed
in the Methods section of this chapter. In a one dimensional system, a discrete map
defined in an interval I, has the form:

x(n+ 1) = f(x(n)) (3.1)

where x ∈ I, f : I → I is an invertible continuously differentiable map and n ∈ Z. The
above equation is equivalent to compose the function f n times: x(n + 1) = f ◦ f... ◦
f(x(0)). The right hand side for a trajectory with a slightly different initial condition
will satisfy (f ◦f...◦f(x(0)+ δx(0))). Using the chain rule, the evolution of the distance
between these two trajectories on the tangent space can be approximated by:

δx(n+ 1) = f ′(x(n))f ′(x(n− 1))...f ′(x(0))δx(0) = Dx(0)f
nδx(0) (3.2)

With f ′ = df
dx . If the term on the right hand side evolves exponentially67, an average

growth rate λ of an infinitesimal perturbation can be defined as:

lim
n→∞

1

n
log |Dx(0)f

n|δx(0) = λ (3.3)

This limit, in principle depends on the perturbation δx(0) and the initial condition x(0).
In the more general scenario, given the m dimensional dynamical system (M,f),

f : M → M M ⊂ Rm such that x(n+1) = f(x(n)), the evolution of a perturbation δx,
will be given by

δx(n+ 1) = L(x(n))δx(n) =
n∏

i=0

L(x(i))δx(0) Pn[x(0)] =

n∏
i=0

L(x(i)) (3.4)

where L(x(n)) is the m-dimensional Jacobian evaluated in x(n), and Pn[x(0)] dictates
the evolution of perturbation in the tangent space after the nth iteration. The multi-
plicative theorem by V. Oseledets67,190, states that the following limit exists:

Λ[x(0)] = lim
n→∞

1

n

[
Pn[x(0)]

TPn[x(0)]
] 1
2n (3.5)
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The m eigenvalues of the Oseledets matrix, Λ[x(0)], are the Lyapunov numbers νi
67

and their logarithm the Lyapunov exponents. The exponents are usually ordered as
λmax = λ1 ⩾ λ2 ⩾ ... ⩾ λs, where m ⩾ s is due to the possible degeneracy. The set
of the Lyapunov exponents is usually referred as the Lyapunov spectrum. It is worth
mentioning that the theorem was alternatively proven by Raghunathan 201 without the
requirement of the matrices L(x(n)) to be invertible.

As an example, if the dynamics of the system have a stable fixed point, then the
value of L(x(n)) stays constant and the Lyapunov numbers are the eigenvalues of such
a matrix. Stability in a discrete setting means that those eigenvalues are smaller than
one, and therefore the Lyapunov exponents are all negative.

The Oseledets theorem shows its full power when dealing with ergodic systems, as
shown next. Generally, after a transient period, the orbits settle to a subset of M ,
A ⊂ M that can be called the attractor. A probability density over A for the one
dimensional case can be defined as:

ρ(x) = lim
n→∞

n∑
i=1

δ(x− x(i)) (3.6)

A measure is related to the density of the orbits (under certain smoothness conditions)
by dµ(x) = ρ(x)dx, such that µ(A) =

∫
A ρ(x)dx. The measure µ of that set is said to be

invariant if it does not change under the action of the dynamics, i.e. µ(f−t(A))=µ(A)
for t > 0. The measure is said to be ergodic when it cannot be decomposed in other
invariant measures. In that case, then the time and the spatial average can be used
interchangeably. If µ is ergodic, for any continuous function Φ holds:

Φ̄ = lim
n→∞

1

n

n∑
i=1

Φ(x(i)) =

∫
A
dµ(x)Φ(x) = ⟨Φ⟩ (3.7)

In that case, the Oseledets theorem states that the limits of Eqs. (3.3) and (3.5) not
only exist, but are independent of the trajectory and a characteristic of the attractor.
As discussed by Massimo et al. 169 , in the one dimensional case, the Oseledets theorem
as in (3.3), reduces to the law of large numbers. From Eq. (3.2)

λ = lim
n→∞

1

n
log

(
n∏

i=0

|f ′(x(i))|

)
= ⟨log |f ′|⟩ (3.8)

For the m dimensional case, the Lyapunov exponents measure the mean logarithmic
growth rate with which perturbations in the direction of the eigenvectors of the Oseledets
matrix, separate or converge to each other. The Oseledets theorem can equivalently be
defined as67:

λi = lim
n→∞

1

n
log ∥Pnδx∥ δx ∈ Ei \ Ei+1 (3.9)

Where the linear subspace Ei is defined as the one spanned by the eigenvectors with
Lyapunov number such that ν < νi (or equivalently that ν < exp(λi)). From that
definition follows that the subspace E1 includes the rest and the following holds: E1 ⊃
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E2 ⊃ ... ⊃ Em. E1 spans Rm and any perturbation will generally be aligned in the
direction of the maximum Lyapunov exponent. This is known as Oseledets splitting,
and holds even if the matrices L(x(n)) are non invertible as long as the underlying
dynamical system is invertible89.

Consider the k-dimensional parallelepiped spanned by k independent vectors wj , j =
1, ..., k in the m dimensional space tangent to the trajectory. The time evolution under
the effect of the dynamics will expand the volume in some directions and contract it in
others, such that after a long time, V (t) is approximately V (0) exp(λ1t)... exp(λkt). More
formally, an initially normalized k-dimensional volume will then satisfy:

Λk =

k∑
i=1

λi = lim
n→∞

1

n
log (Vk(n)) (3.10)

We note that from this equation, the Lyapunov exponents can be iteratively obtained
by considering volumes of different dimensions, given that λk = Λk − Λk−1. The com-
putation of the spectra via Eq. (3.10) is impractical numerically given that22 i) the
exponential growth of volumes leads to significant numerical errors for large times and
that ii) the alignment of the vectors wj with the direction of the maximum exponent
make the angles between the vectors wk very small, also introducing numerical error. For
the calculation of the first exponent, only the first obstacle is relevant, and is overcome
by a renormalization of the initially random vector w1 . The further introduction of an
orthonormalization step makes the calculation of the full spectrum possible148,22,91,67. In
order to clarify this further, let W be the m× k matrix of the vectors wj . If none of the
vectors is parallel then the matrix W is invertible and has a unique QR decomposition,
W = QR where Q = (q1|...|qj |...|qk) is orthogonal and R is upper triangular. The paral-
lelepiped spanned by the vectors Rjjqj , where Rjj are the diagonal terms of R, has the
same volume than that spanned by wk, Vk =

∏k
i=1Rii and then λi = limn→∞

1
n log (Rii)

holds. Keeping this in mind, given an initial volume spanned by vectors in the columns
of W (0), the evolution in the tangent space will be given by:

Wn+1 = LnLn−1...L1L0W 0 (3.11)

Where Ln = L(x(n)) and Wn = W (n). In every step of iteration, the matrix LnQn has
a QR decomposition, so we can write91,67 LnQn = Qn+1Rn, where W (0) = Q0, Qj is
orthonormal and Rj is upper triangular. Eq (3.11) then can be written as:

Wn+1 = Qn+1Rn...R0 = QR (3.12)

From Eq. (3.10) the iterative algorithm91,67 for obtaining the exponents is given by:

λi = lim
n→∞

1

n

m∑
i=0

log (Rn
ii) (3.13)

where in the case of a process with continuous time that is discretized for numerical
integration, n = ∆tn.
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A positive Lyapunov exponent and the consequent sensitivity to initial conditions
in compact sets is a signature of chaos. Chaotic dynamical systems in which volumes
are preserved are said to be conservative, and are dissipative otherwise. Attractors
of dissipative chaotic systems have a complex and self similar structure that emerges
from the stretching and folding mechanisms natural to the coexistence of stable and
unstable manifolds (see Fig 3.1). These attractors are called strange and have generally
non-integer dimensions, forming fractals sets. The simplest measure of an attractor
dimension is called Kolmogorov capacity or box-counting dimension80. It is a metric-
based measure in the sense that it does not take into account the density of orbits on
the attractor. Given a parallelepiped of side ϵ, the number N(ϵ) that is needed to cover
the set of points conforming the attractor A is expected to satisfy N(ϵ) ≈ ϵ−dc . The
capacity of the set can then be defined as:

DC = lim
ϵ→0

− log(N(ϵ))

log(ϵ)
(3.14)

A different measure that incorporates the frequency with which orbits visit the different
parts of the attractor can also be defined. If instead of considering the number of
hypercubes of side ϵ to cover the attractor, we consider the number of hypercubes N(ϵ, ϑ)
needed to cover a fraction ϑ of the attractor, then the ϑ capacity can be defined as:

DC(ϑ) = lim
ϵ→0

− log(N(ϵ, ϑ))

log(ϵ)
(3.15)

This measure, which for ϑ = 1 is directly the capacity and otherwise will be called
Dµ, satisfies Dµ ≤ DC . Finally, a pointwise dimension Dp(x) can be as well defined
by estimating the exponent with which the total probability within a ball of radius ϵ
decreases as the radius vanishes80:

Dp(x) = lim
ϵ→0

logµ(Bϵ(x))

log(ϵ)
(3.16)

For a definition of an attractor dimension that is related to the measure of the attrac-
tor, it is necessary to define a partition. Let B = {Bi} be a partition that covers the
phase space. At each measurement, the trajectory of the system can be found in one
Bi such that for sufficiently long times, a frequency of occurrence Pi can be assigned
to each Bi. When the size of the elements of the partition tends to zero, P defines a
probability density like that defined in Eq. (3.6), such that its sum over the attractor
is equivalent to the measure on the attractor µ(A). Then, the frequency of occurrence
can be written as Pi = µ(Bi) =

∫
Bi

ρ(x)dx.
When observing the state of the dynamical system at a given point if time, the infor-

mation that is gained about the state depends on the resolution of the instrument, the
diameter of the partition used. This diameter is basically given by the largest size of the
elements Bi of the chosen partition. If the partition has diameter ϵ, then the information
gained by making a measurement is given by:

I(B(ϵ)) = −
∑
i=1

µ(Bi(ϵ)) log (µ(Bi(ϵ))) (3.17)
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If now, from all the possible partitions to be chosen, we choose that one that minimizes
the above expression, I(ϵ) = infB(ϵ) I(B(ϵ)), then the information dimension DI is defined
as:

DI = lim
ϵ→0

I(ϵ)

− log(ϵ)
(3.18)

The information gained in a snapshot measurement of the state of the system with
an instrument of resolution ϵ can be approximated by I ∼ DI ∗ | log(ϵ)|79. An interest-
ing observation is that if instead of calculating I(ϵ), it is assumed that the probability
distribution is homogeneous over the attractor, then I(ϵ) = − 1

n

∑N(ϵ)
i=0

1
N(ϵ) log (N(ϵ)) =

log (N(ϵ)), and the information dimension reduces to the capacity. As the uniform dis-
tribution is the maximum entropy distribution in a bounded interval with no constraints
on the moments, it follows that DI ≤ DC .

If instead of estimating the information gained by a snapshot measurement, it is of
interest to estimate the information acquisition rate, then a sequence of snapshots has
to be considered. Roughly speaking, in the case of a system that can take n values, a
sequence of k state measurements of the trajectory can be defined as Sk,n. The average
information gained by knowing the actual trajectory will be given by the entropy of the
distribution of k-long words with n possible symbols: Ik = −

∑
i P (Sk,n

i ) logP (Sk,n
i )).

The average new information per symbol, the aaverage information we gain by making
a new measurement in a sequence of measurements, is ∆I = limk→∞ Ik/k

79. The ratio
∆I/∆t, with ∆t the time interval between measurements, equal to one in maps, will
then be the average information rate per symbol gained.

In the context of a dynamical system, a different approach to the calculation of I can
be made. Given an invariant measure µ over an attractor A and a partition B0 = {B0

i },
the set of points contained in B0

i will be evolved by the map. If the system initially is
in B0

i , and after an iteration can be located in B1
j the initial condition will be located

within f−1(B1
j )∩B0

i . If by C∨D we mean all the possible intersections of the components
of the partitions, i.e. C ∨D = {Ci∩Dj}, then after the kth iteration the initial condition
can be then located in:

Bk = B0 ∨ B1... ∨ Bk−1 = B0f−1B0... ∨ f−(k−1)B0 (3.19)
The partition Bk is a k refinement of B0. The information contained after the kth

measurement can be then written as Ik = I(Bk), which is defined as in Eq. (3.17). The
metric entropy, an upper bound to the information rate is defined as:

hµ = sup
B

lim
k→∞

I(Bk)/k (3.20)

Similarly as before, the topological entropy can be defined by instead of calculating I(Bk),
assuming that I is that of a uniform distribution. Then, ht = supB limk→∞ logNk/k.
Where Nk is the amount of elements in the k refined partition Bk.

Although the calculation of the above defined attractor dimensions and the metric
entropy can be done analytically for some low dimensional maps, in the general case for
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Figure 3.1: Features of chaos (a-b)Drawing (from Shaw 226 ) illustrating how trajectories can exponentially diverge

while remaining bounded. AB is expanded to twice its width, folded and sutured together. (c) Lyapunov dimension.

In the upper panel, a Lyapunov spectra is shown. The shaded area in black is the Lyapunov dimensionDL. This is

obtainedbythe linearextrapolationof thepointwhere thecumulativesumof theLyapunovexponentschangessign,

as shown in the bottom panel. (d)Metric entropy, the sum of the positive Lyapunov exponents (shaded in orange).

complex high dimensional nonlinear systems the estimation of these measures presents
a numerical challenge. Kaplan & Yorke 140 , defined a measure of an attractor, the
Lyapunov dimension, as a function of the Lyapunov exponents:

DL = l +

∑l
i=1 λi

|λl+1|
(3.21)

Where l is such that
∑l

i=1 λi > 0 and
∑l+1

i=1 λi < 0. A graphic illustration of this
formula can be found in Figure 3.1. Kaplan & Yorke 140 conjectured initially that the
Lyapunov dimension DL was generally equal to the fractal (box counting) dimension,
or a lower bound to it80. This form of the Kaplan-York conjecture can be found in the
literature88,140 and in text books169,222. In further work by both Kaplan and York84 and
York and colleagues80, this conjecture was updated to a form which includes information
of the density of orbits over the attractor. They specifically conjecture that

DL = DC(ϑ) (3.22)

Farmer et al. 80 further conjectured that this equality and the original Kaplan York
conjecture all hold. Rigorous results show that DP = DI = limϑ→1DC(ϑ) ≤ DL for
invertible smooth maps (as reviewed in Eckmann & Ruelle 67 , Farmer et al. 80). The
conjecture has been shown to hold whenever a Sinai-Ruelle-Bowen (SRB) measure (de-
fined as a measure that is absolutely continuos along the unstable manifolds) exists.
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Regarding the relation of the metric entropy with the Lyapunov exponents, Ruelle
proved67 that :

hµ ≤
l∑

i=1

λi, λi > 0 (3.23)

The equality, known as the Pesin identity, was shown to hold true for SRB measures. In
the general case, and in particular in the work that will be shown in this chapter, finding
an SRB measure is not a simple task. One possible way is to investigate whether the
system is hyperbolic. In this case, the tangent space to the trajectory can be decomposed
in the direct sum of its linear stable and unstable subspaces ∗. Hyperbolicity implies
the existence of an SRB measure, and that the Pesin identity and the Kaplan York
conjecture hold. Nevertheless, ruling out the hyperbolicity of the system allows for
no statement regarding the existence of an SRB measure. Investigations of the angle
between the stable and the unstable manifolds of delta coupled networks as the one
that will be studied in this chapter, have shown numerically that it is unlikely that the
system is hyperbolic156. Keeping in mind that the measures derived from the Lyapunov
spectrum are upper bounds and that no rigorous statement can be made in favor of the
equalities, we will nevertheless refer to them as the entropy production rate and the
Lyapunov attraction dimension.

3.1.2 The balanced state equations

Most of this chapter will deal with transitions from asynchronous irregular states towards
states exhibiting different types of rhythms at the population level. The theoretical
framework developed by van Vreeswijk & Sompolinsky 264 and generally called balanced-
state networks has as main mechanism to produce irregular and asynchronous activity the
mean cancellation of large inhibitory and excitatory inputs. The balanced-state model,
requires that the inputs to each neuron in the network have non-vanishing variance.
This requirement translates into a balanced state scaling, in which the weights J of the
synaptic connections between randomly connected neurons scales as 1/

√
K, where K

is the average number of connections per cell. In order to illustrate this fact, a short
motivational example is shown in what follows264,266,173:

Consider a neuron σi, whose purely stochastic time evolution is given by:

σi =

{
1 With probability m
0

The temporal average value of the variable is given by ⟨σi⟩ = m. Consider now a
postsynaptic test neuron that receives on average K inputs from neurons whose dynamics
are as described above. The net input I will be a weighted sum of the activity of its K

∗This means that the tangent spaces are never collinear, there is a finite angle between them, and the
tangent space can be written as TM = Eu ⊕

Es
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presynaptic neurons. If we call S the sum of the activities and J the synaptic weight,
then the input I satisfies I = JS. The mean and variance of the input are:

S =

K∑
i=1

σi ⇒ ⟨S⟩ =
K∑
i=1

m = Km (3.24)

⟨S2⟩ − ⟨S⟩2 =⟨
K∑
i=1

K∑
j=1

σiσj⟩ − ⟨S⟩2 (3.25)

=

K∑
i=1

K∑
i ̸=j

m2 +

K∑
i=1

m− ⟨S⟩2 (3.26)

= (Km)2 +K(m−Km2) = Km (3.27)

where ⟨σiσj⟩ = ⟨σi⟩⟨σj⟩ for i ̸= j ( and used σiσj = σi when i = j ). This is exact for
stochastic uncorrelated variables, and is in the more general case of neurons in a network
justified by the asynchronous, irregular and weakly correlated activity of the neurons.
The input to the test neuron has mean and variance:

⟨I⟩ = J⟨S⟩ = JKm VarI = J2Km (3.28)

In order to study the evolution of the test neuron in the limit in which the amount of
inputs is large (limK → ∞), a relation between the weights J and the average amount
of inputs K has to be given. A possible choice, J = J0

K seems reasonable given that it
leads to a finite mean. In that case, the variance vanishes for large amount of incoming
connections. Another choice, given by J = J0√

K
, allows for order one fluctuations in the

large K limit, while the mean inputs are large.

The balanced state equations

The intuition developed above for stochastic neurons firing with probability m can be
formalized to a mean field theory of binary neurons that linearly integrate their inputs
and define its state variable by comparing it with a threshold θx, where x is excitatory
or inhibitory. In this case, the state variable σx

i , is given by:

σx
i = Θ(Ixi ) (3.29)

The time dependent input current is given by:

Ixi (t) = IxExt +
JxE√
K

N∑
j=1

AxE
ij σE

i (t)−
JxI√
K

N∑
j=1

AxI
ij σ

I
i (t)− θx (3.30)

IxExt is the excitatory external input to the excitatory neurons, AxE
ij is a matrix of ones

and zeros indicating that there is a connection or not from an excitatory neuron j to i,
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and equivalently for an inhibitory neuron j to i in the case of AxI
ij . JxE is the weight of

the excitatory input to the population of type x. The mean input to a neuron of type x
is:

⟨Ixi ⟩ =IxExt +
JxE√
K

KmE − JxI√
K

KmI (3.31)

=
√
K

(
IxExt√
K

+ JEEm
E − JEIm

I

)
(3.32)

(3.33)

where mx = 1
Nx

∑Nx

i σx
i . We see from this equation that for the external input to make

a non-zero contribution in the large K limit, it should also be large, proportional to√
K. Writing IEExt =

√
KE0 and IIExt =

√
KI0, we obtain equations for the mean input

currents to the inhibitory and excitatory neurons:(
IE

II

)
=

√
K

((
E0

I0

)
+

(
JEE −JEI

JIE −JII

)(
mE

mI

))
(3.34)

For the large K limit to exist, the parenthesis should be O(1/
√
K). In the limit:

E0 + JEEmE − JEImI = 0 (3.35)
I0 + JIEmE − JIImI = 0 (3.36)

In compact form, X + Jm = 0, X =

(
E0

I0

)
. A first and important observation, is

that given that E0 and I0 are positive, JEEmE < JEImI , as well as JIEmE < JIImI .
To guarantee that the variables remain finite, we can explicitly request:

JEE < JEI JIE < JII (3.37)

Summarizing, JEE
JEI

< min(mI
mE

, 1) and JIE
JII

< min(mI
mE

, 1). The solution to equation

(3.35), is given by m = −J−1X, where J−1 = 1
|J |

(
−JII JEI

−JIE JEE

)
and |J | is the deter-

minant of the matrix.
The mean field variables have the form:

mE = −JEII0 − JIIE0

|J |
(3.38)

mI = −JEEI0 − JIEE0

|J |
(3.39)

Requesting that both numerators are negative and the determinant positive, leads to
inequalities that are compatible with the condition in (3.37).

JEE

JIE
<

JEI

JII
<

E0

I0

JIE
JII

< min
(
mI

mE
, 1

)
(3.40)
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3.2 Methods

The following subsections will first review how to construct a map that allows for ana-
lytical state propagation between spikes for different neuron models. Later, a model for
the delayer SCA will be specified, which allows to preserve the analytical treatment of
simplified neuronal circuit models while introducing interaction delays. These elements
together allow for deriving an expression for the Jacobian L(x(n)) of the delayed system
(as in Eq. (3.4)). In the last subsections, details about the numerical methods, the
definition of some network statistics, and parameter sets will be specified.

3.2.1 Non-delayed pulse coupled neural networks

For generic one-dimensional neuronal models, the voltage dynamics of neurons in a
network can be described by:

τmi V̇i = F (Vi) + Itot
i (3.41)

where τmi is the membrane time constant of the neuron i, and the total input cur-
rent Itot

i , is usually decomposed in an external component Ii, in principle different and
independent for each neuron, and a synaptic input Isyn

i arising from the activity of presy-
naptically connected neurons. Every time a neuron j∗ spikes, each of the postsynaptic
neighbors i∗, K on average, receive a synaptic current that is modeled by a delta pulse.
The input current to neuron i∗, is a weighted sum of the contributions of its neighbors,
with the weight, Ji∗j∗ , defined by the neuron pair. The equation for the evolution of the
network is given by:

τmi V̇i = F (Vi) + Ii + τmi
∑

j∈pre(i)

∑
s

Jijδ(t− tsj) (3.42)

The last term is the synaptic current Isyn
i that a neuron i receives at time t given

that its pre-synaptic neighbors j emitted spikes in the times tsj . This pulse induces
an instantaneous and constant change in the voltage, that can easily be obtained by
integrating Eq. (3.42) in a small window of time ϵ, and equals the summed weight of
the connections. If the rates of the individual neurons is low enough for two spikes not
to occur simultaneously, each spiking event of a neuron j will induce a change in the
voltage postsynaptic to the neuron i equal to Jij .

3.2.2 Event based simulations

Numerical simulation of networks of the type of defined in Eq. (3.42) can be made by
means of standard integration schemes. By discretizing time, simulations of this type
yield a numerical precision in the spike times given by the chosen step size used, dt.
Alternatively, when the single neuron dynamics can be solved analytically, numerical
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calculations are only needed to link the episodes of neuronal interaction, which are
discrete in time. This type of event based simulation requires a map that propagates
the state of the network between spikes. The link between such a map and Eq. (3.42)
is detailed below for specific single neuron models.

Simplified neuron models like the ones that will be used in this chapter have a defined
threshold xt that defines the spike event, and a reset value xr, to which the voltage, or the
equivalent dynamical variable x to which the voltage is mapped to, is reset afterwards.
The evolution between these two points in absence of recurrent input, as well as between
any pair of consecutive spiking events from the network, is given by the solution of Eq.
(3.41) or its variable-transformed form. Following the notation introduced in173, closely
related to that widely used in networks of coupled oscillators252,249,250,76,172 we define
the inter-spike neuronal propagator function f as:

xi(t
−
s+1) = f(xi(t

+
s ), t

−
s+1 − t+s ) (3.43)

The function f evolves the state of the neuron i after the last spike in the network,
xi(t

+
s ), to the state just before the next spike at ts+1. If the neuron i is not postsynaptic

to the neuron j∗ that produces an spike at ts+1, the state variable will be left unaffected,
and then xi(ts+1) = xi(t

−
s+1). On the contrary, if the neuron i∗ is postsynaptic to j∗,

then its state variable has to be further updated:

xi∗(t
+
s+1) = g(xi∗(t

−
s+1)) (3.44)

Eqs, (3.43) and (3.44), form the basis of the iterative evolution of the network from
spike to spike. Its precise form will depend on the neuron model considered, as will the
expression for the time to the next spike.

Phase reduction for supra-threshold regime models

Neuron models working in a regime in which in absence of any recurrent input have active
and periodic spiking activity can be mapped to a phase variable that linearly evolves
in time. This variable, ϕ, has a propagator function f(ϕ) that is a linear function of
the inter-spike times. All the information about the particular neuron model considered
next will then be condensed in the form of the update function g, which is transformed
from a simple step increase in the voltage representation to more complex forms.

1) Leaky integrate and fire neuron model33,1 (LIF)

The dynamics of LIF neuron model with threshold and reset values given by Vt and
Vr respectively, are given by:

τmi V̇i = −Vi(t) + Ii(t) (3.45)
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The solution for this equation gives the time evolution of the voltage, in the range
V ∈ (−∞, Vt), and defines the propagator function for the voltage between the network
spike times ts and ts+1:

f(Vi(t
+
s ), t

−
s+1 − t+s ) = Ii − (Ii − Vi(t

+
s )) exp

(
−
t−s+1 − t+s

τmi

)
(3.46)

The update function of a postsynaptic neuron i∗ of a spiking neuron j∗ in the voltage
representation is always, independently of the neuron model:

g(Vi∗(t
+
s )) = Vi∗(t

−
s ) + Ji∗j∗ (3.47)

In the phase representation, the LIF evolves linearly with time : ϕ(t) = ϕ(t0)+
ωi
τmi

(t−
t0), where ϕ ∈ (−∞, 1). The value of the variable ωi can be found by calculating the free
period (time from reset to threshold in the absence of recurrent input, ωi = τmi /T free

i ), by
direct integration of Eq. (3.45) we obtain that τmi

ωi
= T free

i = −τmi log
(

Ii−Vt
Ii−Vr

)
. Choosing

the value of the phase at the reset equal to zero, we obtain the desired mapping from
the voltage to the phase representation.

ϕi(t) = −ωi log
(
Ii − V

Ii − Vr

)
(3.48)

Finally, the propagator function f and the update function g in the phase represen-
tation are given by the following expressions:

f(ϕi(t
+
s ), t

−
s+1 − t+s ) = ϕi(t

−
s+1) = ϕi(t

+
s ) +

ωi

τmi
(t−s+1 − t+s ) (3.49)

g(ϕi∗(t
−
s+1)) = ϕi∗(t

+
s+1) = ωi∗ log

(
Ji∗j∗

Ii∗ − Vr
+ exp

(
−ϕi∗(t

−
s+1)/ωi∗

))
(3.50)

The update function g in the phase representation, for the LIF and all the neurons in
the following that allow for a phase representation, is equivalent to the phase transition
curve (PTC). The phase response (or resetting73) curve, is defined by:

Z(ϕ) = g(ϕ)− ϕ (3.51)

and defines both the synchronization properties of the network as well as its stability
properties of the network.

2) Quadratic integrate and fire model (QIF)

The quadratic integrate and fire neuron model is the canonical model for type I ex-
citability:

τmi V̇i = V 2
i (t) + Ii(t) (3.52)
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Although it is also possible to define reset and threshold values in this model, the
QIF, in contrast to the LIF, diverges in finite time and thus has an active mechanism for
spike generation. Eq. (3.52) together with the after-spike resetting is the normal form
of a saddle node on an invariant circle bifurcation126. When the current I changes sign,
the two fixed points at ±

√
I collide and the neuron spikes periodically with a frequency

that scales as
√
I as in class I excitable systems. The transformation to a phase variable

can be done via θ = 2 arctan(V ) for any value of I, arriving to a closed form equation
for the evolution of the phase θ, and is known as the theta neuron74. Nevertheless, this
model is not solvable analytically, limiting its usage for iterative simulations and for the
formalism that will be detailed later. Different solutions of Eq. (3.52) can be obtained
depending on the sign of I. In the supra-threshold regime (I > 0) the solution to Eq.
(3.52) is:

Vi(t) =
√
Ii tan

(
arctan

(
V0√
Ii

)
+
√

Ii

(
t− t0
τmi

))
(3.53)

The propagator function f and the update function g in the voltage representation
for the supra-threshold QIF are then:

f(Vi(t
+
s ), t

−
s+1 − t+s ) =

√
Ii tan

(
arctan

(
Vi(t

+
s )√
Ii

)
+
√
Ii

(
t−s+1 − t+s

τmi

))
(3.54)

g(Vi∗(t
+
s )) =Vi∗(t

−
s ) + Ji∗j∗ (3.55)

We see that from Eq. (3.53), that the variable change ϕ = 2 arctan
(

V√
I

)
strongly

reduces the complexity of the voltage dynamics, and reduces it to a linearly evolving
phase. Differently from the definition of the LIF, the phase equation that has reset
and threshold values given by ϕr = −π and ϕt = π respectively, satisfies ϕ ∈ (−π, π).
The free period can be now obtained as for the LIF, but requesting that Vt = +∞ and
Vr = −∞ : T free

i = τmi π/
√
Ii. This yields a value for the frequency ωi = τmi

2π
T free
i

= 2
√
Ii.

We obtain in this case:

f(ϕi(t
+
s ), t

−
s+1 − t+s ) = ϕi∗(t

−
s+1) = ϕi(t

+
s ) +

ωi

τmi
(t−s+1 − t+s ) (3.56)

g(ϕi∗(t
−
s+1)) = ϕi∗(t

+
s−1) = 2 arctan

(
tan

(
ϕi∗(t

−
s+1)

2
+

Ji∗j∗

ωi∗/2

))
(3.57)

3) Quadratic integrate and fire model with tunable onset rapidness (rQIF)72,173

The rQIF model is a neuronal model developed in Monteforte 173 that, while keeping
the analytical tractability of the QIF, allows to incorporate further complexity in the
dynamics of the action potential initiation. As shown in Figure 3.2, rQIF is a piecewise
quadratic function, in which the parameter r modulates the speed of the action potential
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initiation. In phase space, this is equivalent to a change of the slope at the unstable
fixed point.
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Figure 3.2: (a) Phase portrait for different values of the onset rapidness r. The symmetric parabola in purple corre-
sponding to r = 1 illustrates the case of the QIF. (b)Voltage traces for different rapidness values. (c) F-I curve for
the rQIF.Modified fromMonteforte 173

The temporal evolution of the rQIF neuron in voltage representation is given by:

τmi
dVi

dt
=

{
as(Vi − VG)

2 + I(t)− IT Vi ≤ VG

au(Vi − VG)
2 + I(t)− IT Vi > VG

(3.58)

The conditions for the left branch, ∂V̇
∂V

∣∣∣∣
Vs

= −1 and V̇

∣∣∣∣
Vs

= 0 and for the right branch

∂V̇
∂V

∣∣∣∣
Vu

= r and V̇

∣∣∣∣
Vu

= 0 define a system with four equations and four unknowns:

VG =
1

2

r − 1

r + 1
(3.59a)

IT =
1

2

r

r + 1
(3.59b)

as =
1

2

r + 1

r
(3.59c)

us =
1

2
r(r + 1) (3.59d)

Similarly as for the above cases, a transformation can be made such that the dynamics
between spikes is described by a phase that unwraps linearly in time. Integrating for
each branch of equation (3.58) the time spent in each branch, its sum (the total period),
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the phase velocity and the phase value of the glue point can be obtained:

ϕG = π
r − 1

r + 1
(3.60a)

Tfree =
πτm√

I

√
r + 1

2r
(3.60b)

ω =
2π

Tfree
(3.60c)

Solving for each branch independently the transformation between the neuron models
is:

ϕi = ϕG+


2
as

arctan
(

Vi−VG√
I/as

)
Vi ≤ VG

2
ras

arctan
(
r Vi−VG√

I/as

)
Vi > VG

Vi = VG+


√

I/as tan
(
as

ϕi−ϕG
2

)
ϕi ≤ ϕG√

I/r2as tan
(
ras

ϕi−ϕG
2

)
ϕi > ϕG

(3.61)
In order to calculate the phase response of the neuron, analogously as before, the jump

in the voltage given by g(Vi∗(t
+
s )) = Vi∗(t

−
s ) + Ji∗j∗ in the ϕ representation has to be

calculated. Although for jumps within each branch the calculation is identical to the
QIF, the special case when an incoming spike is such that Vi∗(t

+
s ) and Vi∗(t

−
s ) belong

to different branches has to be considered separately. If a neuron receives an incoming
inhibitory spike, the smallest voltage that stays in the same branch is Vi∗(t

−
s ) = VG + J .

Inserting this condition in (3.61), gives the value above ϕG below which a change of

branch would occur, ϕ− = ϕG + 2
ras

arctan
(
r

Ji∗j∗√
I/as

)
.

g(ϕi∗(t
−
s+1)) = ϕG+



2
as

arctan
(
tan
(
as

ϕi∗ (t
−
s+1)−ϕG

2 +
√
as

Ji∗j∗√
I

))
− π < ϕi∗(t

−
s+1) ≤ ϕG

2
as

arctan
(

1
r tan

(
ras

ϕi∗ (t
−
s+1)−ϕG

2 +
√
as

Ji∗j∗√
I

))
ϕG < ϕi∗(t

−
s+1) ≤ ϕ−

2
ras

arctan
(
tan
(
ras

ϕi∗ (t
−
s+1)−ϕG

2

)
+ r

√
as

Ji∗j∗√
I

)
ϕ− ≤ ϕi∗(t

−
s+1) ≤ π

(3.62)

3.2.3 Delayer single-compartment-axon

Synaptic and axonic delays consistent with the framework above specified can be in-
corporated to the network defined in Eq. 3.42 by means of the introduction of delayer
variables. The implementation at the network level of such variables will be detailed in
the subsection 3.3.1. Here, we will only give a mathematical definition of these variables,
the single compartment axons.
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Mapping QIF in the excitable regime to an exponentially decaying variable

To analyze the dynamics of the excitable (non-periodically spiking) regime of the QIF
neuron we focus on the solutions of :

τml V̇l = V 2
l − Il Il > 0 (3.63)

Excitable QIF Excitable Theta neuron Xi representation

Figure 3.3: QIF in the excitable regime Three possible representation for the dynamics of the QIF neuron in the

excitable regime. In the left, in the voltage representation given by Eq. (3.63), in the middle the theta neuron as
conceived by Ermentrout & Kopell 74 , and the ξ representation in the right. In this last scenario, the neuron at rest
in ξ = 0 is pulled towards−∞when receiving a spike, and evolves towards zero, emitting a spike at ξ = −1.

The solution of Eq. (3.63) for all three cases (i) Vl >
√
Il, (ii) |Vl| <

√
Il, (iii)

Vl < −
√
Il) can be written in the following compact form:

t− t0
τml

=
−1

2
√
Il

ln
(
(
√
Il + Vl)(

√
Il − V0)

(
√
Il − Vl)(

√
Il + V0)

)
(3.64)

The transition betweens the regimes (i),(ii),(iii) is dynamically forbidden. We can
define a change of variables

ξ =

√
I + V√
I − V

=⇒ V =
√
I
(ξ − 1)

(ξ + 1)
(3.65)

that simplifies the expression. Eq. (3.64) then reads:

ξl = ξoe
−2

√
Il(t−t0)

τm
l (3.66)

The three possible representations of this regime, are shown in Figure 3.3. Note that
the variable ξ can in principle take any real value, like its voltage representation. Given
that the time evolution given by Eq. (3.66) is sign preserving, the isolated ξ variable
will hit the threshold value ξt = −1 and spike if it was initially negative, and will just
relax to zero otherwise. Depending on the value of the reset ξr, three different dynamical
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regimes can be identified. By setting a reset value such that ξr < −1, a periodically
spiking regime is re-obtained. If the reset is set equal to the threshold ξt = ξr = −1,
after spiking the variable will exponentially relax to zero. A third possibility, is to set
the reset to the value of its stable fixed point, i.e. ξr = 0, which is illustrated in Figure
3.4.
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Figure3.4: (a)Phaseportrait of thedelayer neuron in the ξ representation (b)Phaseportrait in its usualQIF form. (c-
d) Time evolution with no reset, i.e. ξr = ξt = −1 . When the ξ variable crosses -1, in the voltage representation
the voltage diverges. (e-f) Time evolution with reset in the stable fix point, i.e. ξr = 0.

In this representation a propagator function η and an update function γ, analogous
to f and g of section 3.2.2 for the neuron models that allow for a phase representation,
can as well be defined:

η(ξl(t
+
s ), t

−
s+1 − t+s ) = ξl∗(t

−
s+1) = ξl(t

+
s )e

−2
√

Il(t
−
s+1−t+s )

τm
l (3.67)

γ(ξl∗(t
−
s+1)) = ξl∗(t

+
s+1) =

ξl∗(t
−
s+1)(1 +

2
√

Il∗

Jl∗j∗
) + 1

2
√

Il∗

Jl∗j∗
− 1− ξl∗(t

−
s+1)

(3.68)

The γ function is obtained analogously to the previous cases, by introducing Eq. (3.65)
in Vl∗(t

+
s+1) = Vl∗(t

−
s+1) + Jl∗j∗ .

Delayer single-compartment-axon from a excitable QIF in ξ representation

The ξ variable, when initially at ξ0 < −1 takes a finite time to spike given by δl =
τml
2
√
Il
ln(−ξ0). If the reset value is set to ξr = 0, there will be no dynamics after the

spiking event. If while in its resting state, an incoming spike from neuron j∗ is received,
then its state will be modified according to γ(0) and will depend only on the parameters
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of the system:

γ(0) =
Jl∗j∗

2
√
Il∗ − Jl∗j∗

(3.69)

If the incoming spike has a weight that was strong enough then the ξ variable will be
pushed beyond its unstable fixed point and emit an spike after a fraction of time given
by:

δl∗j∗ =
τml∗

2
√
Il∗

ln
(

Jl∗j∗

Jl∗j∗ − 2
√
Il∗

)
(3.70)

before relaying it to the next neuron. Note that in Eq. (3.70) the value of Jl∗j∗

has to be bigger than 2
√
Il∗ , the distance between the fixed points in equation (3.63),

formalizing the initial intuition of “strong enough” kick in the voltage. For the case in
which Jl∗j∗ is independent of the neuronal pair, the delay introduced by the SCA will
only depend on its own parameters, and then δl∗j∗ = δl∗ . The single-compartment-axon
(SCA), is then defined by Eqs. (3.68), with a reset value ξr = 0 for the “exact delay”
framework.

If the SCA has a reset value that is equal to any value between the threshold ξT = −1
and zero, the delay will depend on the dynamics of the network and change from spike
to spike. The delay in that case will be :

δl∗j∗ =
τml∗

2
√
Il∗

ln

−
ξl∗(t

−
s+1)(1 +

2
√

Il∗

Jl∗j∗
) + 1

2
√

Il∗

Jl∗j∗
− 1− ξl∗(t

−
s+1)

 (3.71)

For J > 0, this equation has solutions for ξ >
2
√

Il∗

Jl∗j∗
− 1. The smaller the value of

2
√

Il∗

Jl∗j∗
, the larger the range of ξ to which it can be reset, and the faster the function in

the logarithm reaches a value that is only weakly dependent on ξ. This configuration, is
what will can call “dynamic delay” framework.

In both cases, when the SCA is arranged post-synaptically to each neuron in a network,
it will delay the transmission of the spike by an amount given by Eq. (3.70) or (3.71),
while preserving the desirable features of iterable maps.

3.2.4 Balanced state

In the introduction, the balanced state framework for networks presenting asynchronous
and irregular dynamics was shown in the language of its original formulation, with binary
neurons. Equivalently, we could think of the mean activity as ml (with l excitatory or
inhibitory) as the mean firing rate in the units of the membrane time constant. In this
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case the firing rates satisfy:

νE = −JEII0 − JIIE0

τm|J |
(3.72)

νI = −JEEI0 − JIEE0

τm|J |
(3.73)

and identical conditions to those in Eq. (3.40) on the weights are obtained. The input
currents, in this case have a mean given by:

⟨Ix⟩ =
√
K(X0 + τmJxEν

E − τmJxIν
I) (3.74)

where X0, the excitatory input to the population x is E0 for the excitatory population
and I0 for the inhibitory one.The variance of the input currents are given by ∗:

σ2
Ix = ⟨(Ix)2⟩ − (⟨Ix⟩)2 = τm(J2

xEν
E + J2

xIν
I) (3.75)

For the particular case of only inhibitory neurons, the condition of a finite mean
imposes that I0 − τmJIIν has to be O(1/

√
K). In the limit of large K the firing rate

must then satisfy:

ν =
I0

τmJII
+O(1/

√
K) (3.76)

In the case of inhibitory and excitatory networks, conditions need to be imposed if
the statistics of these neuron types are to be indistinguishable. We request that the first
moment of the firing rates distributions are the same νE = νI , and that the variances of
the input currents are also equal: σ2

IE
= σ2

II
. Together, these conditions impose further

constraints on the synaptic weights: J2
EE+J2

EI = J2
IE+J2

II = J2
0 . In order to incorporate

these to those obtained in Eqs. (3.40), the weight matrix is written as a function of three
parameters: J0, η = JEE/JEI < 1 and ϵ = JIE/J0. The synaptic weights then have the
form:

J =
J0√
K

(
ϵη −

√
1− ϵ2η2

ϵ −
√
1− ϵ2

)
(3.77)

The inequalities of Eq. (3.40) then constrain the values of η and ϵ to fulfill: ηϵ < ϵ <√
1/2.
Equations (3.76) and (3.72) define the mean firing rate of the network as a function of

the input current to each neuron. For simulations in the fix rate configuration, a mean
firing rate will be chosen, and a guess on the current will be made. This guess, from Eq.
(3.76), is for the purely inhibitory network given by:

I0 = τmJIIν (3.78)
∗As in30,29, the variance of the input current is defined in units of the membrane time constant, and

therefore has a τm “less” than it would be obtained by the straight forward calculation.
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3.2.5 Numerical Methods

High performance parallel simulations of the network were written in C++, originally by
Monteforte 173 and later developed to deal with interaction delays. Smaller simulations
and comparison with delayed networks via standard integration schemes were made in
Python with custom code while the analysis was performed with custom code in Matlab.
The simulations are event based as described in the previous subsections. For each
simulation, random topologies (Erdős–Rényi) for the neuronal block (See Eq. (3.83) for
detail of the complete connectivity) and random initial conditions are generated, and an
over all firing rate is calculated. In the networks labeled as fixed rate, the mean firing
was kept fixed at a target value. By means of root finding algorithms (Regula Falsi and
Ridders method)197, a guess on the input current I needed to have a target firing rate
was made from Eq. (3.78). After a simulation lasting SR spikes per neuron, the rate
was calculated and a new guess on the currents is made. This procedure is then iterated
until the target mean firing rate is found with 1% precision. The multiplying factor
that measures the distance to the balance condition is defined by Is = I/I0. Once the
appropriate value of the current I is found, the network can be warmed up to disregard
transients, which can be large in delayed systems by a time equivalent to SW spikes
per neuron. Finally, a random orthonormal matrix Q is chosen and the QR algorithm
described in the theory section was left to warm up for a time duration equivalent to
SWONS spikes. This guarantees some degree of alignment of the first Lyapunov vector
to the first vector of the orthonormal system. The simulation runs for a time equivalent
to SC spikes per neuron (see subsection 3.2.7 for parameters).

The direct method for the estimation of the first LE

Numerical corroboration of the equations derived in the subsection 3.3.2 of the Results
can be done by direct perturbation of the trajectory of the network. After a long warm-
up, the state of the network is perturbed by adding a random vector of norm ϵ. After a
short simulation of T = 100 ms the norm η between the perturbed and the unperturbed
final states, simulated separately is stored. The iteration of this procedure N times, leads
to the estimation of the first Lyapunov exponent via the following formula:

λ1 =

N∑
i

1

NT
log(η(i)/ϵ) (3.79)

Where ϵ was chosen to be 10−10 and N=5000.
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3.2.6 Characterization of network activity

Rates, coefficient of variation, and silent percentages

The firing rates of each neuron νi were calculated by summing all the spikes and dividing
by the time spanned between the first and the last spike. The mean population rate is
then ν. The coefficient of variation is the square root of the squared inter-spike-interval
times the squared rate, i.e.

CV =
√
σ2

ISIν
2 =

σISI
µISI

(3.80)

If a neuron did not spike during the whole simulation, its CV and its rate are not
considered to build the respective distributions. Instead, they contributed to the measure
%S, defined as percentage of silent neurons respect to the total amount of neurons Nx

of its type, where x can be inhibitory or excitatory.

Oscillatory activity related quantities

The level of synchrony of the network was assessed by the synchronization index χ2 (see
also Chapter 2), defined as

χ2 =
σ2
ϕ(t)∑N

i=1 σ
2
ϕi(t)

/N
(3.81)

Where, ϕ(t) =
∑N

i=1 ϕi(t)/N is the mean activity in the phase representation. The
variables σϕ(t) and σϕi(t) are the standard deviation of the mean phase over time or,
respectively, of the phase trace Vi(t) of each individual neuron i. The χ coefficient is
bounded to the unit interval 0 < χ < 1, with vanishing values indicating asynchronous
dynamics.

The amplitude A (Hz) and the frequency f (Hz) of the population activity was calcu-
lated by making a binning histogram of a 1 ms bin of the spikes of the entire network.
This quantity normalized by the bin size and the number of neurons defines a Multi-
Unit like signal (glsMUA). The mean peak high defines the amplitude A (Hz). The
frequency of the MUA was obtained as the inverse of the first autocorrelation peak. In
the Results section the normalized value f (Hz)

ν (Hz) is usually shown, given that facilitates
the identification of different types of oscillatory synchrony.

Heterogeneities

Heterogeneities in the network were introduced by setting either the individual time
constants to different values, or by setting the input currents of each neuron to different
values. The level of heterogeneity is quantified by the standard deviation of τmi , στm ,
or the standard deviation of Ii, σI . Gaussian and uniform distributions yielded similar
results for adequate σ values, specified in the Results.
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3.2.7 Parameters of the simulations

Type of neuron QIF
Number of neurons N 10000
Average connections per neuron K 100
Mean firing rate in fixed rate configurations ν 5 Hz
Input current in the non fixed rate configurations I0 Eq. 3.78
Standard deviation of the input current distribution σI 0
Standard deviation of the membrane time constant distribution στm 0.5
Inhibitory to excitatory ratio in EI networks NI/NE 0.2N/0.8N
Strength of the Inhibitory-Excitatory loop in EI networks ϵ 0.1
Ratio of excitatory weights η = JEE/JEI in EI networks η 0.9
Spikes per neuron in firing rate search SR 200
Spikes per neuron in warm up SW 200
Spikes per neuron in warm up or orthonormal system SWONS 200
Spikes per neuron in simulation SC 300

Table 3.1: List of default network parameters.

The table 3.1 shows a list of default simulation parameters. Deviations from the
default are as follows: In Figures 3.8,3.10, 3.26 and 3.27, there was no fixed rate. In
Figure 3.14, the heterogeneity was in the input current (threshold heterogeneity), with
the value indicated in the Figure, while no heterogeneity in the membrane time constant
was included. In Figure 3.15(a-c),(e-f), and Figures 3.20,3.21,3.22 in panels (f-h) and
3.25(c-d) N was 2000, while in 3.17 N=400 and in all those cases SR=SQ=SWONS=600.
In Figure 3.12 no heterogeneity of any kind was present. Figures 3.23,3.24,3.25 had only
current heterogeneity and no membrane time constant heterogeneity. In the Figures
3.28, 3.29, N=20000, the membrane time constant heterogeneity was στm = 1.5 and the
threshold heterogeneity was σI =0.05.
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3.3 Results

3.3.1 Network of delayed phase neurons

The system we are interested in analyzing is of the generic form:

τmi V̇i(t) = F (Vi) + Ii + τmi
∑

j∈pre(i)

∑
s

Jijδ(t− tsj − δj) (3.82)

F (Vi) contains the dynamics of a one dimensional neuronal model, τmi is the membrane
time constant of the neuron, V is the neuron’s membrane voltage, Ii is an external input
current that is independent for every neuron. The last term represents the recurrent
input to the neuron i from its neighbors j, which consist of a pulse of amplitude Jij .
The pulse is emitted at time tsj , and reaches its post-synaptic target at tsj + δj ; with
δj a delay that depends only on the pre-synaptic neuron. The study of the dynamics
and the ergodic properties of such a system without sacrificing the possibility of an
analytical solution between spikes, can be done by the introduction of a delayer single-
compartment axon, SCA. When located post-synaptically to each neuron in a network,
the SCA (see Sec. 3.2.3) introduces a delay due to the extra integration steps needed to
reach threshold. Afterwards, it is reset to a XR value, that can also be a fixed point. In
this last case, a new incoming spike will depolarize the SCA to a precise value such that
it takes a time δj , given by Eq. (3.70), until the spike is transmitted to the postsynaptic
neighbors of neuron j.

A diagram of the network architecture of a delayed network with balanced state prop-
erties is shown in Fig. 3.5. A spiking neuron j∗ (in blue, left), described by its phase
variable ϕj∗ receives independent and large inputs proportional to the square root of the
average amount of connections per neuron K. Its spike is instantaneously transmitted
to the SCA, of variable ξl∗ in black. The parameters of the SCA define the time it will
take for the spike to be transmitted, from the SCA to the postsynaptic neurons of j∗,
whose phase variable is ϕi∗ .

Figure 3.5: Network connectivity of the delayed system. Every neuron is uniquely connected to a delayer SCA, that
later distributes the spike from neuron j∗ to its pot-synaptic neurons i∗. See details in text.
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The connectivity matrix, J has then the form in Eq. (3.83). For ease of notation,
indexes i and j (from 1 to N) will be reserved for phase neurons and l and m (from
N+1 to M = 2N) for the SCA. The connectivity matrix is a block matrix describing
an Erdős–Rényi random graph on the upper right block, with weights proportional to
1/
√
K and a diagonal matrix in the bottom left:

J =



J1,N+1 · · · J1,l · · · J1,M

...
. . .

...
. . .

...
Jj,N+1 · · · Jj,l · · · Jj,M

...
. . .

...
. . .

...
JN,N+1 · · · JN,l · · · JN,M

JN+1,1

. . .
Jl,j

. . .
JM,N



(3.83)

3.3.2 Derivation of the single spike Jacobian

Given a neuronal model F (Vi) and a model for the SCA that allow for an analytical
solution, the network can be propagated between spikes by Eq. (3.43) and updated by
(3.44). Also, a Jacobian L(x(n)) at each spike time can be obtained. This expression
enables the estimation of the Lyapunov dimension DL (Eq.(3.21)) and the metric entropy
production rate Hµ (Eq.(3.23)) via QR decomposition as in Eq. (3.13).

In the following, we will focus on the derivation of L(x(n)) for the delayed system of
neuronal types that allow for a phase representation, although it is not restricted to it.
For these neuronal models, the Jacobian elements can be written in terms of the phase
response curve (PRC) defined in Eq. (3.51).

Four cases will have to be distinguished. First, we consider the situation in which
a SCA, with associated variable ξm∗ , spikes at τs+1 between two other time events,
τs+1 ∈ [ts, ts+1]. The neurons that are not postsynaptic to it will evolve independently
of when the spike is exactly, following f(ϕi0(ts), ts+1− ts) (see Methods section 3.2.2 for
the definition of f for different neuron models). The ones that are postsynaptic to it
will follow the scheme presented in Fig. 3.6. Its temporal evolution through the spike is
given by f(g(f(ϕi(ts), τ

−
s+1 − ts)), ts+1 − τ+s+1).

Figure 3.6: Evolution of a neuron with dynamics described by ϕi∗ , when receiving a spike from a SCA described by

ξm∗
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Equivalently, when a spike is emitted by a neuron, it will be received only by its own
associated SCA. The effect of the incoming spike on the dynamics of the SCA will then
be η(γ(η(ξ∗l (ts), τ

−
s+1 − ts)), ts+1 − τ+s+1). SCA that are not post-synaptic to the spiking

neuron will evolve with η(ξi0(ts), ts+1 − ts).

Figure 3.7: Evolving a SCAwith dynamics described by ξl∗ after receiving a spike fromϕj∗

In order to calculate the single spike Jacobian, we first summarize the equations for
the phase neuron and the SCA, as derived in the Methods. We define:

Tl =
τm,ξ
l

2
√
Iξl

Alj =
2
√
Iξl

Jlj
(3.84)

Where the supra-index ξ was added to emphasize that those constants are only mean-
ingful for SCA. The propagation and update functions for the neurons f and g, and for
the SCA, η and γ, are:

Phase Neuron

f(ϕi(t0),∆t) = ϕi(t0) + ωi
∆t

τmi
(3.85)

With derivatives

∂xf(ϕi(t0),∆t) = 1 ∂tf(ϕi(t0),∆t) =
ωi

τmi
(3.86)

g(ϕi(t0)) = ϕi(t0) + PRC(ϕi) (3.87)

With derivatives

∂xg(ϕi(t0)) = 1 + PRC′(ϕi(t0)) (3.88)

SCA

η(ξl(t0),∆t) = ξl(t0)e
−∆t

Tl (3.89)
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With derivatives

∂xη(ξl(t0), t) = e
−∆t

Tl ∂tη(ξl(t0), t) = −ξl(t0)

Tl
e
−∆t

Tl (3.90)

γ(ξl(t0)) =
ξi(t0)(1 +Alj) + 1

Alj − 1− ξi(t0)
(3.91)

With derivatives

∂xγ(ξl(t0)) =
A2

lj

(Alj − 1− ξl(t0))2
(3.92)

For a generic neuron model with state variable x, that evolves with function f and
updates with function g, the derivative with respect to some other neuron variable
(possibly defined by a different neuron model) y can be written as:

dxi(ts + 1)

dyj(ts)
= (3.93a)

∂xf(xi(ts), ts+1 − ts)
∂xi(ts)

∂yj(ts)
δii0+ (3.93b)

∂xf(xi(τ
+
s+1), ts+1 − τ+s+1)∂xg(xi(τ

−
s+1))∂xf(xi(ts), τ

−
s+1 − ts)

∂xi(ts)

∂yj(ts)
δii∗ (3.93c)

∂xf(xi(τ
+
s+1), ts+1 − τ+s+1)∂xg(xi(τ

−
s+1))∂tf(xi(ts), τs+1 − ts)

∂τs+1

∂yj(ts)
δii∗ (3.93d)

− ∂tf(xi(τ
+
s+1), ts+1 − τ+s+1)

∂τs+1

∂yj(ts)
δii∗ (3.93e)

Where i0 is the index corresponding to the non-postsynaptic neurons, i∗ for the post-
synaptic ones and the spiking neuron j∗. Note that if the spiking neuron is reset, then
only the last term (Eq. (3.93e)) survives given that g(xi(τ

−
s+1)) = XR and therefore has

null derivative. The term ∂xi(ts)
∂yj(ts)

= δxyδij and ∂τs+1

∂yj(ts)
can be extracted from the fact that

f(yj∗(ts), τs+1 − ts)) = XT and therefore:

∂τs+1

∂yj(ts)
= −∂xf(yj(ts), τs+1 − ts)

∂tf(yj(ts), τs+1 − ts)
δjj∗ (3.94)

In the case we are analyzing here,

∂τs+1

∂ϕj∗(ts)
= −

τmj∗

ωj∗

∂τs+1

∂ξm∗(ts)
=

τm,ξ
m∗

2

√
Iξm∗ξm∗(ts)

=
Tm∗

ξm∗(ts)
(3.95)

The terms of the Jacobian for the delayed system can be summarized as follows:
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Non-postsynaptic neurons ϕi0(ts+1) = f(ϕi0(ts), ts+1 − ts)

• Contribute to the Jacobian only with diagonal terms from Eq. (3.93b)

dϕi0(ts+1)

dϕj(ts)
= δji0 (3.96)

Postsynaptic neurons ϕi∗(ts+1) = f(g(f(ϕi∗(ts), τ
−
s+1 − ts)), ts+1 − τ+s+1)

• From Eq. (3.93c) contribute with diagonal terms

dϕi∗(ts+1)

dϕj(ts)
= 1 + PRC

i∗j∗

′
(ϕi∗(t

−
s+1))δji∗ (3.97)

• Contribute with non diagonal terms (when receiving a spike from a neuron
ϕj∗) from Eq. (3.93d) and (3.93e)

dϕi∗(ts+1)

dϕj(ts)
= −PRC

i∗j∗

′
(ϕi∗(t

−
s+1))

ωi∗

τϕi∗

τϕj
ωj

δjj∗ (3.98)

• Contribute with non diagonal terms (when receiving a spike from a delayer
SCA ξm∗ , from Eq. (3.93d) and (3.93e)

dϕi∗(ts+1)

dξm(ts)
= PRC

i∗m∗

′
(ϕi∗(t

−
s+1))

ωi∗

τϕi∗

Tm

ξm(ts)
δmm∗ (3.99)

Spiking neuron ϕj∗(ts+1) = f(g(f(ϕj∗(ts), τ
−
s+1 − ts)), ts+1 − τ+s+1)

• Only one term in the Jacobian, from Eq. (3.93e), Eq. (3.93c) and (3.93d)
vanish

dϕj∗(ts+1)

dϕj(ts)
= δjj∗ (3.100)

Non-postsynaptic SCA ξl0(ts+1) = η(ξl0(ts), ts+1 − ts)

• Contribute with diagonal terms from Eq. (3.93b)

dξl0(ts+1)

dξm(ts)
= exp

(
−(ts+1 − ts)

Tl0

)
δml0 (3.101)
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Postsynaptic SCA ξl∗ = η(γ(η(ξl∗(ts), τ
−
s+1 − ts)), ts+1 − τ+s+1)

• Contribute with diagonal terms from Eq. (3.93c)

dξl∗(ts+1)

dξl(ts)
=

A2
l∗j∗(

Al∗j∗ − 1− ξl∗(t
−
s+1)

)2 exp(−(ts+1 − ts)

Tl∗

)
δl∗l (3.102)

• Contribute with non-diagonal terms (when receiving a spike from a neuron
ϕj∗) from Eq. (3.93d) and (3.93e)

dξl∗(ts+1)

dϕj(ts)
=

τϕj
wj

1

Tl∗

(
A2

l∗j(
Al∗j∗ − 1− ξl∗(t

−
s+1)

)2 ξl∗(ts) exp(−(ts+1 − ts)

Tl∗

)
− ξl∗(t

+
s+1)

)
δj∗j

(3.103)

• Contribute with non-diagonal terms (when receiving a spike from a neuron a
spiking SCA ξm∗) from Eq. (3.93d) and (3.93e)

dξl∗(ts+1)

dξm(ts)
=

−Tm

T ∗
l ξm(ts)

(
A2

l∗m(
Al∗m − 1− ξl∗(t

−
s+1)

)2 ξl∗(ts) exp(−(ts+1 − ts)

Tl∗

)
− ξl∗(t

+
s+1)

)
δm∗m

(3.104)

Spiking SCA ξm∗(ts+1) = η(γ(η(ξm∗(ts), τ
−
s+1 − ts)), ts+1 − τ+s+1)

• Only one term in the Jacobian, from Eq. (3.93e). Eq. (3.93c) and (3.93d)
cancel one each other

dξm∗(ts+1)

dξm(ts)
=

ξm∗(t+s+1)

ξm(ts)
δmm∗ =

ξR
ξm(ts)

(3.105)

If one chooses ξR = 0, then the delay introduced in the network is exact, and
the equation vanishes ξm∗(t+s+1) = XR = 0 for the delayer SCA. In this case,
the Jacobian is going to be singular. If the reset value is small but nonzero,
an invertible Jacobian is obtained. In this last case, is necessary to ensure
that the reset value is passed by the singularity at ξl = 1−Alj (see 3.91), so
an incoming spike takes finite time to drive the SCA to threshold (i.e. that
there is a solution for Eq. (3.71)). Then it is necessary that ξR > 1−Alj .

We note that although here the Jacobian was derived for the more generic case in
which phase neurons and the SCAs can interact directly with each other, those terms
will be unnecessary in the following, given the block-structure of the connectivity matrix.
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3.3.3 Network of delayed inhibitory QIF neurons

Non-delayed networks in the balanced state, as described in the Methods section 3.2.4,
exhibit asynchronous and irregular activity207,266,265,174,173,175. The introduction of mod-
erate delays, does not disrupt the irregularity and the asynchronicity of the dynamics in
the initial transient in LIF neurons129. Here we show that in the case of QIF neurons
a small delay δ preserves the irregularity and asynchronicity of the dynamics. Given a
set of network parameters, a large enough delay will eventually induce a transition to
collective rhythmicity. Figure 3.8 illustrates the effect of increasing synaptic delays in a
balanced network of QIF neurons, for two values of the membrane time constant hetero-
geneity (see Methods 3.2.6). Independently of the level of heterogeneity, the inclusion of
moderate delays leads to oscillatory collective behavior that preserves variability (δ ≈ 2
ms), where the collective activity is rhythmic while single neurons fire irregularly. Larger
delays induce a transition to sharp synchrony in the homogeneous case (στm = 0), while
in the heterogeneous case, although increasingly synchronized, presents still irregularity:
The CV and the firing rate distribution (Fig. 3.8(c-d)) are spread out.
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Figure 3.8: Network of QIF neurons with interaction delays Left panels: No heterogeneity. Right Panels: Large

Heterogeneity. (a,e) Raster plots of 500 neurons for 1 s of simulation. (b,f) Multi-Unit Activity like signal (time

dependent population rate) for 0.5 s of simulation. (c,g) Distribution of the neuron’s coefficient of variation. (d,h)

Distributionof the neuronal firing rates. Note that thefiring rate distributions in panel (h) are skewed toward lower

values, as is characteristic of heterogeneous networks121. Parameters: Default parameters in table 3.1.

The effect of the heterogeneity can be better understood in Figure 3.9. The Figure
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shows the joint distribution of membrane time constants and firing rates of the indi-
vidual neurons, in a fixed rate configuration (see Methods 3.2.5). For low delays in the
heterogeneous cases the distribution spreads along a line with negative slope. Contrary
to the scenario in which all neurons are identical, the inclusion of heterogeneity avoids
the collapse of the firing rate distribution to a delta function and the corresponding
transition to spike-spike synchronization. Neurons with small time constant (which tend
to spike faster) align with the population rhythm, while those with large time constant
contribute to spreading out the firing rate distribution. The smaller the heterogeneity,
the faster the system eventually reaches spike-spike synchrony.
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Figure 3.9: Effects of delay and heterogeneity in the firing rate distribution of a network of inhibitoryQIF neurons

Joint rate andmembrane time constant distribution for two levels of heterogeneity in themembrane time constant

and various delays. Note the different axes ranges. Parameters: Default parameters in table 3.1.

These results are summarized in Figure 3.10. The cases analyzed in Figure 3.8 are
shown in yellow and dark orange, together with two other levels of heterogeneity. In
the homogeneous case (yellow curve) the synchrony index (see Methods section 3.2.6),
exhibits a step jump to one, the fully synchronized state, together with a jump in the
mean firing rate, as seen in panel b. This jump can also be clearly seen in the amplitude
of the MUA signal, A in panel c. The heterogeneous cases still maintain a coexistence
between some degree of synchrony among neurons and variability. The ratio between
the population frequency f and the mean firing rate of the neurons ν approaches one
asymptotically and in a continuous manner (panel d). At the transition the network
oscillates at a frequency several times higher than the mean firing rate, while the neurons
fire in an irregular manner bearing some parallels from the case of the synchronous
irregular state SI described for the LIF neuron31,35,30,29. Unlike the LIF neuron, the
QIF neuron exhibits oscillation frequencies of around 20 Hz. Using the terms coined
in29, we refer to this state as the slow SI state. Finally, the coefficient of variation CV
(panel e), and the standard deviation of the firing rate distribution σν (panel f), also
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evident the lack of complete synchrony. We note that increasing heterogeneity skews
the firing rate distribution to lower values, as theoretically described in Hiemeyer 121 for
integrate and fire neurons with no reset.
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Figure 3.10: Characterization of a network of inhibitory QIF neurons with no fixed ratewith membrane time con-

stant heterogeneity (a) χ index. (b)Mean firing rate ν . (c) Amplitude of the MUA-like signal. (d) Population fre-

quency f normalized by the mean rate ν . (e)Coefficient of variation (f) Standard deviation of the firing rate distri-
bution. Parameters: Default parameters in table 3.1 , except explicitly indicated in the figure.

In order to analyze the impact of delayed interactions on the ergodic measures de-
scribed in the theory section 3.1, is necessary to control independently the variables that
characterize the stability properties of the network in the large N limit. Gicen that the
lyapunov spectrum depends stronglyon the mean firing rate, we analyze the network
properties together with the first Lyapunov exponent in a fixed rate configuration (see
Methods 3.2.5).

The first row of Figure 3.11, corresponds to the fixed rate configuration of Figure 3.10.
In this case, corresponding to a large average indegree K, the amplitude of the MUA
signal increases smoothly, for all levels of heterogeneity, including the homogeneous case.
The network oscillates at a frequency that is a few times larger than the neuronal firing
rate, in the slow SI state. When decreasing K, the transition to collective oscillations
is postponed to larger delays and for values of K low enough, the smooth transition
seen for large K is abolished. A transition to spike-spike synchronization occurs for all
analyzed values of K and heterogeneities provided a delay that is large enough.

A calculation of the mean squared deviation (MSD) of the MUA activity for the
homogeneous case is shown in Figure 3.12. A vanishing MSD indicates an asynchronous
state, while any degree of synchronization will have a non vanishing value for large N .

The asynchronous irregular state loses stability to oscillatory population activity
through Hopf bifurcation at a critical delay δ0. If the dependence of the oscillation
amplitude A on the bifurcation parameter δ follows A−A0 ∝

√
δ − δ0 as expected from

a Hopf bifurcation, then the dependence of the MSD of the MUA signal should be piece-
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Figure 3.11: Characterization of a network of inhibitory QIF neurons with fixed rate andmembrane time constant

heterogeneity (a) χ index. (b) Mean firing rate. (c) Amplitude of the MUA-like signal. (d) Population frequency

f normalized by the mean rate ν . (e) Coefficient of variation (f) Standard deviation of the firing rate distribution.
Parameters: Default parameters in table 3.1, except explicitly indicated in the figure.

wise linear with respect to the delay. In Figure 3.12a, the dependence of the MSD is
shown for various values of the average in-degree K as a function of the delay for the
homogeneous case for N=10000. The dashed color lines indicate the transition to full
synchrony. For low values of K, the MSD detaches from zero to directly reach a dashed
line, indicating that the transition is to full synchronization. For values of K larger than
K ≈ 40, MSD takes finite and non zero values indicating some degree of synchrony, and
corresponds to the slow SI state. In Figure 3.12c, a similar figure shows the case in which
heterogeneity is present. The dashed black guiding lines show the possible intersection
between the two arms of the piecewise linear function. A zoom of an example case is
presented for the homogeneous case in Figure 3.12c and the heterogeneous case in Figure
3.12d for several network sizes. It is apparent that for larger networks sizes, the system
departs from the asynchronous state, characterized by a vanishing MSD, with a MSD
that is linear with the delay.

The value of the critical delay after which a collective rhythm develops depends on the
level of heterogeneities, the average amount of connection per neuron K, the firing rate
of the network and the weight of the synaptic conductances. A further increase in the
delay mediates a transition to perfect synchrony. This transition occurs at increasingly
large delays the largest the level of heterogeneity and the smaller the value of the average
connections K.

The maximum Lyapunov exponent of the system characterized in 3.11 in shown in
Figure 3.13 as a function of the delay, for different levels of heterogeneity and average
amount of connections per neuron. Whenever the amplitude takes non-vanishing values,
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Figure 3.12: Characterization of the transition to collective oscillations for a network of inhibitory QIF neurons

(a)Mean Squared Deviation of theMUA signal for an homogeneous network and different levelsK . Black dashed

lines are guides to point out the points falling out the piecewise function. (b) Same as panel a for the heterogeneous
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DependenceofNof thehomogeneouscase forK = 50 (panel (c)) and theheterogeneouscase forK = 100 (panel
(d)). Mind the different color codes in all panels. Parameters: Default parameters in table 3.1, except explicitly

indicated in the figure.

indicating the emergence of a synchronous irregular state, the maximum Lyapunov expo-
nent exhibits a sharp increase. The system not only remains chaotic after the inclusion of
delayed interactions, but in the regime in which sparse oscillations are observed, nearby
trajectories separate exponentially faster than in the asynchronous case. This increase,
is accompanied by an increase in the CV of the neurons (panel b). For low values of
K (3.13,third row), the sharp transition to synchrony is accompanied by a transition
to dynamical stability. Nevertheless, moderate amounts of heterogeneity restore the
irregular oscillation seen for higher valued of K as indicated by the peak in the CV and
in the maximum Lyapunov exponent. Figure 3.13c, shows the measure Is quantifying
the deviation from the balanced state equation in (3.78), that departs from one as the
oscillation develops.

Given that in the phase representation the phase velocity of the QIF neuron is a ratio
between the external input current Ii and the membrane time constant, the inclusion
of heterogeneity in any of these parameters is expected to yield similar results. As the
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Figure 3.14: Chaos in a network of inhibitory QIF neurons with threshold heterogeneity (a)Maximum Lyapunov

exponent for three values of average in-degreeK . (b) CV. (c) Is. Parameters: Default parameters as in table 3.1,
with nomembrane time constant heterogeneity but threshold heterogeneity instead, as indicated in the figure.

fixed points of the QIF are only dependent on Ii, heterogeneity in this parameter can
also be called threshold heterogeneity. As shown in Figure 3.14, an identical smearing
out of the transition to spike-spike synchrony and the concomitant prolongation of the
chaotic regime is also obtained in this case.

Figure 3.15a shows a comparison between the maximum Lyapunov exponent shown
in Figure 3.13a (στm = 0.5) as obtained via the calculation of the Jacobian, and that
obtained via the direct method described in the Methods section 3.2.5, showing good
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(hµ = Hµ/N ) as a function of the delay for different levels of membrane time constant heterogeneity. (g) Lya-
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where N=2000.

agreement. To explore the properties of the system beyond the first exponent, we focus
on a mild level of heterogeneity, orange in panel b. All positive Lyapunov exponents
peak at a certain delay (Fig. 3.15 c-e), but are not necessarily aligned. As a consequence,
the entropy production rate per neuron hµ (Fig. 3.15f) exhibits a peak at a delay that is
generally between the onset of the oscillation and the peak of the maximum exponent.
The Lyapunov dimension on the other hand (Fig. 3.15g), has a mild linear increase
to later decay with increasing delay. This results, should be seen in the light of what
is observed in some scalar delayed systems, in which the spectrum decays as 1/δ, the
entropy production rate is independent of the delay and the attractor dimension grows
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Figure 3.16: Poincare section of a 3 neurons network for

various delays. Left: Small delay δ = 0.1ms,λ1 = 0.29
s−1,DL is 2.90. Right: When increasing the delay to 0.9

ms, λ1 decreases to 0.10 s
−1 and the dimensionDL to

2.72. Visually, the area occupied by the strange attractor

appears smaller, although this is only a zero volume sec-

tion of the attractor. Axis go from π to π. Parameters:
ν = 2Hz,J0 = 0.1,K = 2,στm = 0.5. SeeMethods.

linearly with increasing δ 78,153,154. In the spiking networks studied here, the shrinkage
of the chaotic attractor with the delay is characteristic, given that beyond the oscillatory
bifurcation neurons can only align tighter to the rhythm with increasing delay. It might
be nevertheless, that for small delays, before the oscillatory transition develops, these
classical dependences are observed (see also Fig. 3.20) but no in depth investigation was
made. A toy example of the shrinkage of the attractor with increasing delay in shown
in the Poincaré section of a three-neuron network in Figure 3.16.

As discussed in the Methods section 3.2.3 and in the first part of the Results (Eq.
3.3.2), depending on the value of the reset of the delayer SCA, the Jacobian of the
system will or not be singular. When the reset is chosen to be zero, the delay can be
controlled exactly. In this case, the Jacobian will be singular, with N singular columns
and the corresponding exponents will be −∞, denoting infinitely fast response. When
the reset is nonzero ( −1 < ξR < 0), the SCA will continue to evolve towards the stable
fixpoint at zero after reset. In that case, the delay we calculate via formula 3.70 will
be an approximation. Given the low firing rates of the neurons in the network, and
depending on the choice of the three free parameters defining the temporal evolution of
the SCA (Eq.(3.84)), the axon will relax back to the fixpoint before receiving another
spike. Figure 3.17a shows a comparison of the entropy production rate and the attractor
dimension as a function of the reset value of the SCA. Virtually no change in the ergodic
measures is observed when changing the reset value (Fig. 3.17a). The full Lyapunov
spectrum of the delayed system is shown in 3.17b-d for different values of the reset. For
this value of the delay (δ = 2 ms) and for reset values larger than 0.1, the second part
of the spectrum lies on the negative inverse of the membrane time constant, −1/τ ξ,
indicated with a dashed line. The first N components of the spectrum remain unaltered
despite the non-invertibility of the Jacobian with zero reset.

When considering smaller networks, the finite size effects can hinder the identifica-
tion of transition points, both in the network measures and those aiming to quantify
the characteristics of the strange attractor of the delayed system. An analysis of the
dependence of the first Lyapunov exponent as on the network size is shown in Figure
3.18. Small networks fail to reveal the onset of collective oscillations as revealed by
the monotonous increase in the maximum Lyapunov exponent (panel a). Larger system
sizes on the other hand, present a plateau corresponding to the still stable asynchronous
state for short delays. The maximum exponent approaches a fixed value for increasing
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of the delay. Parameters: Default parameters as in table 3.1 except those indicated in the figure.

network size, hinting at extensive chaos similar to that observed for non delayed systems.
Generally, it is also observed that not only the transition to synchrony is smoothed by
small system sizes but also the tail for larger delays is strongly underestimated. The
system remains chaotic for moderate amounts of heterogeneity for large delays.

The convergence of some example Lyapunov exponents is shown in Figure 3.19. Figure
3.19a shows the value of some positive exponents as a function of simulation time (i.e the
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value of Eq. (3.13)), for 10 different network realizations. In Figure 3.19b, the absolute
difference between any of the trajectories and the final mean value is shown. This plots
illustrate the rather slow convergence of the delayed system, to a precision of 10−2
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Figure 3.19: Convergence of the Lyapunov Exponents (a) Convergence of 10 selected Lyapunov Exponents as a

function of simulation time, for three different values of interaction delay. Each color represents a different expo-

nent, the color lines are 10different trials (randomization of both connectivity and initial conditions), wile the black

enclosing line is the standard deviation. (b) Absolute value of the distance to the mean for each realization. At the

end of the simulation all traces differ from the mean only in the second decimal. Parameters: Default parameters

as in table 3.1.

Figure 3.12, together with Figure 3.20 show that a transition to collective oscillations
in the QIF can also be obtained by increasing the average connectivity K. This tran-
sition in one dimension, together with that introduced by the delay in the other, are
independent mechanisms to generate collective rhythms. In Figure 3.1, the dependence
of the network characteristics and the ergodic properties on K is shown for a network
with mild heterogeneity. For values of K above ≈ 200 oscillatory activity emerges with-
out the need of a delay (see 3.20a and173). For decreasing values of K, increasingly larger
delays are needed to force the transition to synchrony. The frequency at the onset of the
oscillation increases approximately logarithmically with K, as seen in the inset of panel b.
The frequency as a function of the delay, for a fixed value of K, decreases approximately
as 1/δ, as indicated by the dashed lines. It is important to note that there is currently
no mathematical theory to describe this dependences for QIF networks, and that these
observations and future ones of this kind are simple numerical fits. Future work, could
use semi-analytical approaches to study the transitions to synchrony in similar networks
to the ones used here, by profiting from the framework developed by Richardson208? .
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The inset shows the dependence of the critical delay (the delay at which the dynamics depart from asynchronous

irregular state) onK. (b)Frequency of the oscillation. The values depicted are shownonlywhen theMUAamplitude

departed from baseline. The inset shows the value of the frequency at the critical delay. (c) Standard deviation of

the firing rate distribution. (d)Departure from the balanced state equation. (e)MaximumLyapunov Exponent. The

inset shows the dependence of the value of the exponent at the peak onK . (f) Coefficient of Variation. The inset

shows thedependenceof the location of the peakmaximumLyapunov exponent and the location of the peakCV. (g)

Entropy production rate under the assumption of the Pesin identity. (h) LyapunovDimension. Parameters: Default

parameters as in table 3.1 with panel (g,h) N=2000.

The peak value of the first Lyapunov exponent, which is not located at the onset of
oscillations but where the oscillations would collapse to a limit cycle in the homogeneous
case, also increases logarithmically with the average amount of connections (Fig. 3.20e).
The dependence of the first exponent and the coefficient of variation on the delay seem
to bear some parallels. The inset of Figure 3.20f shows that the peak exponent and the
peak CV value are approximately linearly related. After the critical delay, the hetero-
geneity opposes the synchronizing effect of delayed inhibition, effectively broadening the
firing rate distribution and introducing opposing mechanisms that act on each neuron,
increasing their variability compared to the asynchronous state. For larger delays, reg-
ularity is progressively reached by increasing the fraction of neurons that are aligned to
the rhythm. Figure 3.20g–h show the dependence of the entropy production rate and the
Lyapunov dimension with the delay for different values of K. It is interesting to note,
that for low values of K, the entropy production rate exhibits a large plateau, while the
attractor dimension grows linearly, although very slowly, with the delay. The Lyapunov
exponent in this case decays with δ.

The dependences of the network measures on the mean firing rate are shown in Figure
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figure.

3.21. For increasing mean firing rate ν, the transition to oscillations occurs for smaller
delays (Fig. 3.21a). We have not observed a transition to oscillations in the non-
delayed case. The balanced-state equations are guaranteed for any rate, given that the
weights satisfy the inequalities in Eq.(3.40). Nevertheless, those are derived for the
infinitely large networks, and for finite sizes it is conceivable that even small delays
force a transition to collective oscillations. Given the lack of clear tendency, we have
not attempted to fit functions to he dependences shown in the insets. The frequency at
the transition increases as a function of the delay. The maximum Lyapunov exponent,
increases with the firing rate, and so does its peak. The larger the delays, the faster
the transition to full synchrony occurs, and larger heterogeneities would be needed to
prevent the synchronous collapse. Notably the entropy production rate per neuron
increases drastically with increasing rate.

Finally, a characterization of the network as a function of increasing synaptic weights
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The inset shows thedependenceof the critical delayon the synapticweightJ0. (b)Frequencyof theoscillation. The
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where N=2000 and the changes indicated in the figure.

is shown in Figure 3.22. As a reminder, the connections between neurons have a weight
J = − J0√

K
. Here, we characterize the dependence of the network activity on J0. As

can be expected, large weights contribute to transition faster to the oscillatory regime.
The critical delay to the collective rhythms scales exponentially (with an offset) with the
connection weight. In the absence of heterogeneity, for very strong coupling (J0>25),
a transition to oscillations is as well seen for very small delay (10−4), but this was
not studied systematically. Interestingly, for low J0 < 0.1, the transition to collective
oscillations has a sharp jump, not to perfect synchrony but to a oscillatory state that
remains irregular and chaotic. This state that possibly corresponds to the weak coupling
limit has, judging from the firing rate distribution and the CV, a very low irregularity,
as opposed to that seen in balanced state networks. In this case, the frequency of the
oscillations has a very weak dependence on the delay.

The frequency dependence at the onset of the oscillation increases as the square root
of the synaptic coupling, as does the value of the maximum Lyapunov exponent. The
position of the peak of the maximum exponent, continues to be monotonically related to
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the maximum variability (the peak of the mean CV), but not linearly. Surprisingly, as
seen in Figure 3.22g, the attractor dimension depends non-monotonically on the coupling
J0. Previous work has shown173, that networks in the balanced state with low (≈ 1 Hz)
firing rates, the attractor dimension decreases exponentially with J0. Here, at higher
rates, we see that for very low values of J0, the dimension depends non monotonically
with J0. The higher the firing rates, and the lower the coupling, the more pronounced
this effect is (not shown).

3.3.4 Network of delayed excitatory and inhibitory QIF neurons

Much like in the analytically tractable case of LIF neurons29, the inclusion of excita-
tion in our networks does not contribute with novel dynamical behaviors. Its inclusion
exhibits parallel transitions to those observed in networks in which excitation is only
present in the form of an external current. In Figure 3.23 a characterization of the EI
network with 80% of excitatory neurons, η = JEE/JIE = 0.9 and ϵ = JIE/J0 = 0.1 (see
Eq. (3.77)) is shown for two different synaptic delays and various levels of heterogeneity.
As indicated in the Methods section 3.2.4, ϵ regulates the amount of feedback excitation
to the network. Non-delayed networks with ϵ < 1/

√
2 leads to asynchronous irregular

activity.
Figure 3.23a–d shows how the oscillatory dynamics are affected by increasing levels

of threshold heterogeneity. Both type of neurons, excitatory and inhibitory, show sim-
ilar behavior. The coefficient of variation for each E or I networks have overlapping
distributions as can be seen in panel b. The larger the heterogeneity, the CV distribu-
tion takes an increasingly exponential shape. The firing rate distributions are shown in
panel c. Inhibitory neurons appear more susceptible to the effects of the heterogeneity,
whose distribution is shifted leftwards. We note that as in the purely inhibitory network,
increasing heterogeneity at a fixed delay effectively increases the frequency of the popu-
lation rhythm (see panel d). This can as well be understood by a shift of the oscillatory
transition toward higher delays, after which the frequency decays with approximately
1/δ. In panels e-h, a higher synaptic delay is chosen. For low levels of heterogeneity
the network is in a fully synchronized state. Increasing the heterogeneity reduces the
amplitude of the oscillation as seen for inhibitory networks.

An analysis and summary of the measures presented in the screenshot of Figure 3.23
can be found in Figure 3.24. The amplitude of the MUA like signal, when separated in its
excitatory and inhibitory components, shows that the relative amplitude of the inhibitory
neurons is smaller than of the excitatory ones. This difference, can be understood as a
consequence of the distribution of firing rates. For intermediate levels of heterogeneity,
(Fig. 3.24c), the inhibitory firing rates have a broader distribution. This increased
variability leads to a reduced contribution to the amplitude of the rhythm. The frequency
of the oscillation, on the contrary, is indistinguishable between E and I neurons. The
effects of the heterogeneity can also be seen in Figure 3.24d, showing the percentage of
suppressed neurons, being always higher for the inhibitory ones. Finally, the coefficient
of variation in Figure 3.24d, are also higher valued for the inhibitory neurons.
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Figure 3.23: Networks of excitatory and inhibitoryQIF neurons, for various levels of threshold heterogeneity (a-d)

Small delay (e-h) Large delay. (a,e) Raster plots for various levels of threshold heterogeneity. Excitatory neurons

are in dark green. (b,f) Distribution of CV. (c,g) Distribution of firing rates. (d,h)MUA signal of both populations.

Parameters: Default parameters as in table 3.1, except forστm = 0 and the changes indicated in the figure.
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The dependence of the first Lyapunov exponent on the delay for EI networks with η =
JEE/JIE = 0.9 and ϵ = 0.1 is shown in Figure 3.25a. As with inhibitory neurons, large
values of heterogeneity trivially reduce the maximum exponent by effectively reducing
the K of the network. As before, highly heterogeneous networks bypass the transition
to sharp synchrony through the irregular firing that broadens the MUA signal. The
degrees of freedom that contribute to the chaotic dynamics are those associated to the
neurons that are not phase locked to the rhythm. Figure 3.25b shows the dependence
of the first exponent on the excitation-to-excitation/excitation-to-inhibition ratio η. We
see that mild modifications of this parameter do not result in a change of the maximum
exponent, or the ergodic measures (comparison not shown). This ratio is required to be
smaller than one for the balanced solution to be stable in the absence of delays. For each
level of η, the changes introduced in the maximum exponent are analyzed as a function
of the strength of the excitatory feedback loop variable ϵ in panels (b1-b3). Larger ϵ
(increased active excitation) postpones the transition to collective oscillations towards
larger delays, and therefore the peak in the maximum Lyapunov exponent. Panels c–d
show the entropy production rate and the Lyapunov dimension.

3.3.5 Network of delayed inhibitory QIF neurons with tunable onset rapidness

Neurons in vivo and in vitro have a rapid and variable action potential onset, as re-
vealed in somatic measurements179. For various different neuron classifications, cortical
areas and animals, the onset of the action potential is several times faster than the ones
that can be obtained by conductance based neurons179. This property, has at least two
consequences for population coding. First, high onset rapidness enlarges the encoding
bandwidth, as reported in studies analyzing the frequency response to fluctuating in-
puts72,83,178,180. Secondly, as shown in this Chapter and elsewhere173,72, balanced state
networks of neurons with a relatively slow action potential onset have chaotic dynamics.
Differently from LIF neurons with infinitely fast spike onset, QIF neurons have different
synchronization properties. The transition to synchrony for increasing delay is charac-
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Figure 3.25: Chaos in a network of excitatory-inhibitory QIF neurons with threshold heterogeneity (a)Maximum

Lyapunov exponent as a function of the delay for the values of heterogeneity shown in 3.23. (b)Themaximumexpo-

nent is invariant under small changes in the excitation ratio parameter η. (c)Different values of the feedback loop
ϵ delay the transition to collective rhythms and push the peak of the exponent towards larger delays. (c) Entropy
production rate per neuron hµ. Lyapunov dimension per neuron dL. Parameters: Default parameters in table 3.1
except forστm = 0, N=5000 in panel (b) and N=2000 in panel (c-d), as well as the changes indicated in the figure.

terized by slow collective oscillations that are only a few times faster than the mean
firing rate. The population oscillation is evident from the raster plots, as opposed to
the seemingly irregular rasters observed in the fast synchronous irregular state (SI) seen
with the LIF30,31,35,90,29.

Here we profit from one particular model with tunable onset rapidness that is analyti-
cally solvable and can be studied under the framework of event based simulations. This
model173, is a variation from the QIF, in the sense that its phase portrait is composed
of two connected parabolas. As shown in the Methods section 3.2.2, the rapidness of
the action potential initiation in this model can be controlled by a single parameter r.
Figure 3.26, shows the behavior of a network of rapid QIF neurons (rQIF) as a function
of the delay, for different values of rapidness and of heterogeneity. Rapidness greater
than r = 2 leads to a sharp transition to spike-spike synchrony, even in the heteroge-
neous case (upper row) while r = 2 has a similar dependence to that described for the
QIF network (corresponding to r = 1).

The inclusion of heterogeneity in networks of rQIF stabilizes the asynchronous irregu-
lar state for larger delays but, unlike the QIF case, it does not smooth the transition to
full synchrony (panels g–l). Interestingly, before the sharp transition, there is an increase
in the synchronization index χ. Although the increase is modest, it hints at a change in
the dynamical behavior of the network. This change is not appreciated in the CV (panel
h), the mean firing rate (panel i) or in the variance of the firing rate distribution (panel
l), but it can be appreciated from the amplitude of the MUA signal and its frequency
(panel j–k). The frequencies of the population oscillation for low rapidness follows a
behavior similar to that of the QIF neurons. Networks of neurons with high rapidness,
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Figure 3.26: Network of delayed inhibitory neurons with tunable onset rapidness with no fixed rate Upper row:

no heterogeneity. Bottom row: large heterogeneity in the membrane time constant. (a,g) Synchronization index

χ as a function of the delay for different values of the rapidness r. Notice how for the homogeneous case high

rapidness have a sharp transition to spike-spike synchrony. For high heterogeneity, at≈ δ = 5 ms the χ index

hints a transition to other than the AI state. (b,h) Coefficient of variation. (c,i)Mean firing rate. (d,j) Amplitude

of the MUA signal. (e,k) Frequency of the MUA signal relative to the mean firing rate. (f,l) Standard deviation of

the firing rate distribution. Parameters: Default parameters in table 3.1 except for στm = 1.5 and the changes
indicated in the figure.
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Figure 3.27: Comparison between LIF and rQIF networks for various degrees of heterogeneity Upper row: LIF

neurons. Bottom row: Rapid neurons with r = 100. (a,g) Synchronization index χ as a function of the delay for

different values of the heterogeneityστm . (b,h)Coefficient of variation. (c,i)Meanfiring rate. (d,j)Amplitude of the

MUA signal. (e,k) Frequency of theMUA signal relative to themean firing rate. (f,l) Standard deviation of the firing

rate distribution. Parameters: Default parameters in table 3.1 except for the changes indicated in the figure.

exhibit population rhythms with frequencies 20 times faster than the mean firing rates,
and that are well within the gamma band. We notice that the transition to stronger syn-
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chrony, occurring at larger delays, is not a transition to spike-spike synchrony. Similarly
to what was observed for the heterogeneous QIF, the network oscillates with frequencies
that are of the order of the firing rate, with large spread in the firing rate distribution
(panel i).

An explicit comparison between the delayed networks composed of LIF or rQIF neu-
rons is shown in Figure 3.27 for various degrees of heterogeneity in otherwise identical
networks. The SI state is robust in the LIF networks. The effect of heterogeneity is only
noticeable for larger delays, where a transition to stronger synchrony also occurs. On the
contrary, rapid neurons are highly sensitive to the effects of heterogeneity, developing a
SI state only in the highly heterogeneous case. This state is facilitated by large values
of the average in-degree K, although such dependences are not shown here.
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Figure 3.28: Networks of rapid QIF neurons before and after the transition to the synchronous irregular state. In-

setswith light greybackground indicate anetworkwith synaptic delayδ = 2.5ms,while the largerprincipal panels
have a synaptic delay of δ = 5ms. (a) Raster plots for different values of spike onset rapidness and a high level of
heterogeneity. Panels have the same temporal scale. (b)MUA signal. The signal before the transition exhibits small

transient oscillations that are visible by eye. (c) Firing rate distributions. Notice the difference in the fire rate dis-

tribution between the small rapidness, where the rhythm is evident in the raster plot, and the high rapidness. In

this last case, there are no neurons fully locked to the fast rhythm. (d)Coefficient of variation. Parameters: Default

parameters in table 3.1 except forστm = 1.5,σI = 0.05, N=20000 and the changes indicated in the Figure.

A example characterization of the heterogeneous case described above is shown in
Figure 3.28 for a fixed rate configuration. For various onset rapidness r, we compare the
network response for two values of the interaction delay: one below (insets with shaded
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background) and one above the transition to the synchronous irregular state. We can see
that for large rapidness there is virtually no change in the raster plots. The firing rate
distributions and the CV after the oscillatory transition (central panels) are identical to
those before the oscillatory transition (shown in the insets with a gray background). On
the other hand, a change in the rhythmicity of the MUA signal is apparent.
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Figure 3.29: Network of rapidQIF neurons. (a)Meanfiring rate as a function of the input current for a networkwith

r = 100 for three values of interaction delay δ. Unlike theQIF, the rQIF has a discontinuity in its f-I curve, making
it for some values of the delay impossible to fix themean rate at the desired value. Fixing the rate at 5Hz is possible

for low (δ = 1 ms) or high delay (δ = 8 ms), but not for δ = 5.5 ms. (b) Amplitude as a function of the delay.
The missing values correspond to those in which the rate could not be stabilized. (c) Frequency of the population

oscillation normalized by the mean firing rate (5 Hz). Values are only displayed when both the rate was stabilized

and there was a modulation of the amplitude. Three regimes can be distinguished, in (c1) before the oscillatory

transition, the asynchronous irregular state. Even in large networks (N=20000), collective oscillations are evident

close to the bifurcation. (c2) Immediately after the transition to the asynchronous irregular state. (c3) After the

transition to stronger synchrony. Population oscillations are clearly noticeable from the raster-gram. (d)Maximum

exponent as a function of the synaptic delay. All three regimes in panel (c) are chaotic, But themaximum Lyapunov

exponent seems to only decreasewith the delay. (e) Standard deviation of the firing rate distribution. (f)Departure

from the balanced state equation. (g) Coefficient of variation. No change is visible in this measure regarding the

transition to SI state. (g) Percentage of silent neurons.
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Networks of rQIF neurons have a discontinuity in their f-I curve (Fig. 3.29a). When
increasing the value of the input current I to every neuron in the network, the mean
firing rate of the network ν does not increase continuously. When analyzing the response
of the network at a fixed rate configuration for given a delay, not all values of the mean
firing rate are available: For a small delay (pink curve), the curve is continuous and the
desired mean firing rate of 5 Hz is successfully found. For a delay of 5 ms (red curve),
there is a discontinuity in the curve and the network cannot be settled to a fixed rate.
For even larger delays, the discontinuity is far from the desired mean firing rate value,
and the network can be set to the desired rate again. In the following panels, the missing
values in the curve correspond to those configurations in which the desired mean firing
rate could not be achieved. Figure 3.29b–c show the amplitude and the frequency of the
population oscillation for the mean firing rate fixed at 5 Hz. High onset rapidness leads
to collective rhythms well within the gamma range. In panel d, the maximum Lyapunov
exponent is shown as a function of the delay for different values of onset rapidness. As
previously described in networks of non delayed neurons173, the maximum exponent
peaks for intermediate values of rapidness. After the transition to stronger synchrony,
this peak exponent is flattened and the maximum Lyapunov exponent is smaller the
larger the rapidness. From this panel, it can also be seen that for a rapidness of r = 300,
the transition to stronger synchrony is accompanied by a further transition to dynamical
stability, although spike-spike synchronization has not yet occurred. This transition to
stable dynamics with higher rapidness is of a different nature than that observed for
the QIF, and is related to the fact that after a critical rapidness, non-delayed networks
of rQIF neurons present a transition to dynamical stability at a critical rapidness, that
scales as rc ≈ N0.6K0.4ν−0.8 173.
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3.4 Summary and Discussion

In this chapter we studied the impact of the delayed interactions and heterogeneities
on the stability properties of pulse-coupled neuronal networks. We showed that in net-
works of exactly solvable mathematical neuronal models, delays can be introduced with-
out sacrificing their semi-analytical tractability. By introducing a postsynaptic single-
compartment-axon (SCA) to every neuron, transmission delays between neurons consti-
tute the extra steps of integration required for the SCA to reach threshold, while the
interaction between neurons and the SCA remains instantaneous. This framework al-
lows to compute the dynamics of the network exactly and to asses its stability through
the numerical evaluation of the network’s Jacobian, which is calculated analytically.

We have shown that delayed QIF neurons of very diluted networks in the balanced
state are unaffected by the presence of relatively small delays. After a critical value
of the delay, the chaotic asynchronous irregular state loses stability to a perfectly syn-
chronous and dynamically stable one (Fig. 3.11 and 3.13, bottom row). For larger values
of the average amount of connections per neuron K, an intermediate transition develops
for increasing delay, with all the characteristics of a supercritical Hopf bifurcation (Fig.
3.11 and 3.13, top row, Fig. 3.12). In this state, collective regular oscillations at the
population level coexist with unimodal firing rate distributions and high dimensional
chaos (Figs. 3.8 and 3.13, bottom row). The firing patterns show a sparse synchro-
nization with a population frequency that is higher than the single neuron firing rate.
Nevertheless, as this oscillation is only a few times higher than the mean firing rate, and
slow compared to the synchronous irregular state that we described in the Introduction
section 1.2.6, we term it slow SI state. The transition to collective rhythms marks an
increase of the maximum Lyapunov exponent and of the entropy production rate of the
network (Fig. 3.15). The intensification of the chaotic measures does not rely on the
level of heterogeneity (Fig. 3.15), or on the presence of excitation (Fig. 3.25), whose
inclusion modulate but does not alter the qualitative characteristics of this transition.
Increasing the mean firing rate, the average amount of connections per neuron, or the
weight of the connections contribute to accelerating the oscillatory transition and to in-
tensity chaos (Figs. 3.22,3.21,3.20). The increase in the entropy production rate and in
the maximum Lyapunov exponent is particular the case studied here, and differs to what
is found in scalar delayed differential equations, and in which the entropy production
rate is largely independent of the delay78,154.

Networks in the balanced state are unaffected by a moderate amount of heterogeneity.
In delayed systems, the inclusion of heterogeneity is a counter-acting force that pushes
the oscillatory transition towards larger delays and enlarges the stability region of the
asynchronous irregular state (Figs, 3.8, 3.23, 3.28). When heterogeneities are present,
further increase of the delay after the first oscillatory transition does not lead to spike-
spike synchrony, but to a partial synchrony state characterized by a broad firing rate
distribution. This is due to the opposite effects of delays and heterogeneity in these
networks. The heterogeneity biases the distribution of rates towards lower values (Fig.
3.9), while the delay tends to align the neurons to the rhythm. The fraction of neu-
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rons phase locked to the rhythm increases with the delay until the full synchrony state
together with dynamical stability is reached.

Finally, we analyzed the delay-induced transitions in networks composed of neurons
with fast action potential onset. The increase of the synaptic delay in diluted networks
leads to a sharp transition to spike-spike synchrony in the absence of heterogeneity
(Figs. 3.26, 3.27). For the heterogeneous case, a synchronous irregular state emerges
(Fig. 3.28), with strong similarities to the SI obtained for LIF neurons30,31,35,90,29. The
larger the average connection per neuron and the wider the single neuron parameter
distributions, the bigger is the fraction of delay values that leads to this fast SI state. In
contrast to the LIF, whose transition to the SI state is independent of the heterogeneity
(Fig. 3.27), the one obtained for the rQIF neuron is chaotic (Fig. 3.29).
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4
Discussion and Outlook

4.1 Summary

In this thesis we have explored the encoding and transmission capabilities associated
with oscillatory network dynamics. For this purpose, we have taken a twofold approach.
First, we investigated a class of models that emulates the dynamical behavior of pop-
ulation activity in the mammalian cortex. Instead of aiming to exactly match specific
network parameters, we have rather studied landscapes in parameter space leading to a
stereotypical dynamical behavior of fluctuating synchrony, resembling the one reported
experimentally. We found that within this class of models, coupled networks give rise to
uni-directional information transmission that can be flexibly gated by the phase relation
between the rhythms and modulated by the level of fluctuating synchrony. In a second
part, we have taken a different approach. We have focused on models with reduced
complexity and developed a framework to study the dynamics of delayed heterogeneous
pulse-coupled neuronal networks of exactly solvable neuronal models. We found that
these networks, which in general have an infinite dimensional phase space, can be studied
in equivalent systems of finite and fixed degrees of freedom. Large synaptic delays be-
tween the coupled units can destabilize the initially irregular and asynchronous dynamics
and generate a transition to collective population rhythms. The onset of collective oscil-
lations leads to an increase in the exponential rate of divergence of nearby trajectories
and of the entropy production rate of the chaotic dynamics. Together, these approaches
not only show that a high encoding capability of chaotic dynamics is compatible with
regular behavior at the population level, but that this oscillatory behavior is suitable for
for the flexible routing of high dimensional patterns of complex activity.
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4.2 Information routing at the edge of synchrony: Discussion and
Outlook

Gamma oscillations are ubiquitous across brain areas and species48,50,52,274, yet their
functional role remains controversial132,204,134,43. The wide variety of studies that link
enhanced gamma synchrony with disparate behaviors258,36,284,195, rather than narrowing
its potential function to specific tasks, have lead to the hypothesis of a more central
role99,216,86,18. In particular, the proposal of oscillatory coherence as a mechanism for
information routing86,18 has found both a large amount of supportive evidence105,103,261

and a wide range of criticisms57,133,135,132,134,204,205,286.
Arguments against the potential use of gamma coherence in communication gener-

ally stress the large power and frequency variability found in population-based neuronal
recordings44,43,286,203, whose labile nature is furthermore strongly sensitive to the balance
of inhibition and excitation13. In the class of models analyzed in Chapter 2, fluctuations
of frequency and power arise spontaneously as a consequence of the complex dynamics
emerging from random, strongly-coupled delayed networks. Instead of fitting parameters
to experimentally reported values (as done in various degrees of detail118,127) we focused
on a region in parameter space where these fundamental dynamical features arise spon-
taneously and are characteristic. We hypothesize that refined models leading to similar
population dynamics can only affect quantitatively but not qualitatively the nature of
the analysis.

The firing patterns of models with transient synchrony are on average irregular 2.2
and exhibit low degrees of oscillatory synchronization. When coupled, their degree of
synchrony is only weakly modulated by the incoming long-range excitatory inputs from
distant areas (Figs. 2.6,2.7,2.9). Furthermore, the frequency fluctuations characteris-
tic of single population dynamics are coordinated between connected areas, while the
rhythms transiently phase-lock. These phase-locking patterns observed in our model are
reminiscent of those found at higher levels of synchrony20 and described mathematically
in rate models19. Nevertheless, in contrast to its synchronous counterparts, gamma
burst in our models are fast enough to conciliate transient locking with a rapid disso-
lution of oscillatory synchrony after a few cycles (Fig. 2.9). This coordination, while
so far unexplored in biologically plausible models, was reported experimentally209. In
our models, fast dynamic frequency matching is a robust emergent feature of interacting
oscillating neuronal populations and does not require an external controller.

The low degree of synchronization and phase coordination, far from hindering its us-
age in communication, provides a flexible scheme for information transmission. The
hierarchies imposed by the meta-stable phase relations translate to uni-directional in-
formation flow from the population leading in phase to the lagging one (Fig. 2.13). The
level of fluctuating synchrony boosts information flow when high, or decreases it when
low, working as a gain parameter on top of the anisotropy imposed by the phase relation
(Figs. 2.14, 2.17). The preferred relative phases, prominent within the gamma bursts
(Fig. 2.8), define the optimal inter-areal lag of information transmission (Figs. 2.13,2.14).
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This lag is not prescribed by the synaptic delay only (Fig 2.11) and is determined by
the phase response properties of the coupled circuits282,248. In fact, the experimentally
reported values o f inter-areal lag largely deviate from the inter-areal synaptic delay (see
section 1.1.6 for details), and strongly depend on the behavioral state65. As shown in
Figure 2.11, different inter-areal phase-locking relations can be implemented with a fixed
inter-areal delay, just by changing the level of local inhibition. Therefore, the regula-
tion of information transfer defined by the routing patterns is the outcome of collective
dynamics and not just of direct mono-synaptic interactions.

The routing patterns defined by the analysis of spontaneous activity constrain the
routes of information of externally supplied input signals. Smooth inputs are selectively
gated through the routing states, despite the coarseness of the defined phase relations and
the fluctuating level of power (Figs. 2.21, 2.22). Higher order motifs can rely either on
the combinatorial amount of phase locking patterns (Fig. 2.23) or on a combined phase-
fluctuating synchronization machinery (Fig. 2.25) to achieve targeted uni-directional
information transmission. We hypothesize that a combination of those are exploited by
the brain.

The high order motifs exhibit a large variety of routing patterns. Convergent in-
formation from lower order areas to those of higher order exists independently of the
feedback projections and allow for temporally segregated information transmission from
multiple areas to a single target area (Fig. 2.24). Alternatively, the existence of effec-
tively disconnected areas depends on the strength of the feedback projections (Fig.2.24,
compare ∆Φxyz

2 and ∆Φzyx
4 ). In symmetric configurations, the disconnected scheme is

replaced by a top down signal to the non leading area, of a possible suppressive na-
ture. Further advancements on the precise quantification of the macaque’s structural
connectome58,167,166 will allow to further constraint the current models.

Transitions between alternative routing states, multiplexed within a fixed structural
circuit20, are paralleled by switching patterns of inter-areal phase differences. Such a
scheme is compatible with both a rate coding as well as more complex representations re-
lying on finer organization of the spiking patterns. Future studies could explore whether
the simultaneous emergence of synchronized bursts can modulate the propagation of
stimuls-dependent cell assemblies116,49, or whether the information to be decoded in a
target area over specific spike words219 could be selectively gated by inter-areal phase
coordination20. We speculate that the inclusion of plasticity in our models could result
in the formation of stimulus-grouped neuronal assemblies. Gamma oscillations modulate
neuronal excitability in a a score of ms, which overlap with the time scale of synaptic
plasticity50,48. It seems plausible that in models of networks including Hebbian plastic-
ity, oscillating patterns of activity would form assembly-like neuronal groups coding for
a particular stimulus, carrying specific information. A possible avenue for further stud-
ies is to elucidate whether the flexibility of routing patterns could transmit information
about a particular input (e.g. orientation) to be read out with other tools than the ones
proposed here.

The information theoretic measures implemented in Chapter 2, as with those gener-
ally used in neuroscience260,268,98,37 are based on densities estimated over a certain time
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of simulated data. Given the highly fluctuating nature of our signals, we also aimed
to explore possible avenues of time dependent information theoretic analysis. We have
made attempts (not reported in this thesis) to develop time-dependent state filters over
which transfer entropy could operate in a trial based manner. Unlike circuits in highly
synchronous states282,20,142, homogeneous and weak pulse-like perturbations to all neu-
rons in the network fail to switch the phase pattern. Possible avenues for more efficient
and robust perturbation methods would need to be developed to unveil the time depen-
dent structure of information transmission. One so far unexplored possibility, lies in the
observed asymmetry of the phase distribution, arising as a product of the strong hetero-
geneity and the randomness of the connections. Disentangling the specific mechanisms
of this broken symmetry is part of the current research agenda, given the advantageous
insights that targeted stimulation can have into the control of information flow. In par-
ticular, it would be interesting to analyze and profit from the possible restructuring of
routing patterns by the introduction of time dependent conductances.

Lastly, for simplicity, our model was designed to generate transient oscillations within
a single gamma band. This specification, however, is not inherent to our approach
and can be relaxed to reproduce multifrequency oscillations. Inter-areal interactions
have also been shown to be mediated by coherence in the beta band. Future studies
should examine more complex models including multifrequency interactions or multi-
area networks of greater complexity. Our study follows a methodology that can be used
to asses their dynamic routing properties and to design future experimental studies.
It reveals that features which may at first sight appear dysfunctional with respect to
information routing may in fact provide the brain with a particularly flexible routing
mechanism.

4.3 Chaos and synchrony in delayed neuronal networks: Discus-
sion and Outlook

Reduced models in neuroscience allow the dissection of the mechanisms giving rise to
complex dynamics, and to relate them to known classes of systems of similar dynamical
properties. Contrary to the detailed descriptions used in the first part of this thesis,
which are useful for understanding the consequences for information transmission of a
certain type of dynamics, in the second part we studied the properties and mechanisms
underlying the complex dynamical behavior of delayed neuronal networks. Delayed
dynamical systems require for their initialization the definition of a history function
and thus even scalar differential equations are infinite dimensional when delayed. Al-
though under some assumptions ergodic theorems analogous to those known for finite-
dimensional systems exist67,217, this is in fact not known for the general case and a finite
spectrum of Lyapunov exponents acting on well defined subspaces is not guaranteed.
In delayed maps, where the system is finite dimensional for finite delay, the spectrum
can be obtained in only few cases155 without the aid of numerical methods based on
approximations. Generally, the calculation of the Lyapunov spectrum of delayed sys-
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tems, or even only of the maximum Lyapunov exponent has been relegated to numerical
estimations. Methods rank from direct discretization78,154, methods involving chaotic
synchronization235 to simple small delay approximations to numerically estimate the
stability properties of the system.

Pulse-coupled neuronal networks with interaction delays modeling cortical circuits
have in principle infinite degrees of freedom. In globally pulse-coupled excitatory net-
works it has been shown that the system reduces to a finite dimension, where an upper
bound can be calculated as a function of the maximum amount of spikes in the de-
lay interval. However, for the general case, no general approach to the study of the
effective dimension of the attractor has been developed. In Chapter 3 we introduce a
framework that allows to study the stability and ergodic properties of large networks of
coupled oscillators with interaction delays in an exact manner. The strategy consists
in introducing a dynamical variable to account for the time delay between neuronal in-
teractions, and allows to study the dynamics of these infinite dimensional systems on
the same footing with systems of fixed and finite degrees of freedom. This is possible
due to the pulse coupled nature of synaptic connections, which are discrete events in
time. Although phase coupling between phase oscillators149,241,4, or models with simple
variable coupling113,211 would not profit from this approach, analogous extensions could
be performed in more complex pulse coupled systems.

The inclusion of delays in non-linear systems can have a strong impact on their dynam-
ics. The inclusion of a delay can lead to changes as drastic as a chaotic transitions78,163,
or to synchronization in coupled chaotic maps14. In the context of networks of spiking
neurons, the inclusion of synaptic delays favors the emergence of collective rhythms. In
particular cases,288,183,76,249, the inclusion of interaction delays leads the dynamics from
an initially asynchronous state to a fully synchronous one. Although synaptic delays
could also mediate more complex transitions251,77, it is widely acknowledged that they
are a fundamental component mediating the emergence of collective rhythms31,29,30,211

as well as their locking properties19,150.
Delayed-induced transitions to collective oscillations, from initially asynchronous and

irregular dynamics of large networks in the balanced state were studied in Chapter 3.
We found that while a transition to collective rhythms occurs inexorably for increasing
delays (Fig. 3.12), the characteristics of the emergent oscillation and the magnitude of
the critical delay depend on the action potential onset rapidness and the level of het-
erogeneity (compare Figs 3.8 and 3.28). In networks of delayed QIF neurons with slow
action potential onset, the lost of stability of the asynchronous irregular state to a slow
SI state leads to an increase of the chaotic measures (Fig. 3.15). The entropy produc-
tion rate and the first Lyapunov exponent peak after the transition, while the attractor
dimension is either unaffected or exhibits a mild linear increase, depending on the net-
work parameters (Figs. 3.22,3.21,3.20). On the contrary, when the action potential
onset is fast, increasing delays in these heterogeneous networks leads to two different
types of oscillatory transitions (Fig. 3.29): the first to a fast SI state, and the second
to a slower, more regular oscillatory one, where the rhythms can be observed from the
raster plots and look similar to those obtained for QIF neurons for large delays. In this
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case, the first Lyapunov exponent decreases monotonically with the delay. Larger delays,
independently of the onset rapidness and the heterogeneity, will lead to increasingly syn-
chronized dynamics. Therefore, in the limit of large delays, both the entropy production
rate and the attractor dimension vanish. This is to be contrasted with the classic work
on delayed differential equations. In those cases, the limit of large delays leads to either a
constant maximum Lyapunov exponent in the strong chaos case117,138,155, or to a maxi-
mum exponent that scales like λmax ∝ 1/τ in the weak chaos case78,117,138. Furthermore,
numerical studies of the full Lyapunov spectrum have shown that in some cases, notably
in, but not restricted to, the Mackay-Glass model, the attractor dimension grows linearly
with the delay while the entropy production rate remains constant78,153,154. Similar re-
sults are obtained in a very simple small delay approximation of a network of rate units
with gaussian distributed weights, which lead to conjecture that the effects of delays
in systems that are variable coupled ∗ are very different from those that have a finite
temporal extension.

The inclusion of delays in balanced state like networks of QIF or rQIF neurons revealed
a state where high dimensional chaos coexists with interesting collective dynamics. This
coexistence was rarely reported: Some studies have pointed out how complex chaotic
dynamics at the population level arises in networks in which the units are themselves
chaotic161,114,113. Others, in networks of more conventional LIF neurons with tempo-
rally extended excitatory interactions, found asymptotically stable dynamics (in fully
or densely connected networks)187 or extensive chaos (in diluted networks)161, while
the network is in a partially synchronous state262. In the partially synchronous state,
neurons fire quasi-periodically at rates slightly higher than the oscillation period. In
contrast, in our networks, after the oscillatory transition, neurons fire irregularly, with a
broad firing rate distribution characteristic of balanced state networks which is compat-
ible to what it is observed experimentally231. An analogous transition can be obtained
for the QIF network in the non delayed case, by means of increasing the average amount
of connections per neuron (see Fig. 3.20 and Monteforte 173), that relates to the mini-
mal connectedness reported in early work of spiking networks95,285. In the fully coupled
case, where the dynamical equation of the order parameter can be obtained analytically
for arbitrary amount of coupled populations (see Appendix B), similar dynamics can be
obtained with yet a different type of coupling.

Large delays force a transition to spike-spike synchronization in the homogenous case
for both QIF and rQIF. Nevertheless, any type of heterogeneity can break the fully
synchronized state, replacing that transition with a partially locked one (Figs. 3.13 3.26
and 3.29). The larger the delay, the larger the fraction of neurons locked to the rhythm,
and the smaller the dimension of the attractor, which remains nonzero until the network
reaches full synchrony. The role of the neurons locked to the rhythm and those that
function seemingly independent from it, can be analyzed in the light of the recent findings
by Okun et al. 186 . Neurons in somatosensory cortices have a different attachment to the
population activity, and can be broadly classified by their population coupling (how much

∗By variable coupling we mean that the differential equation of a variable x depends on y, and not
only on the time of its spike
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they follow the mean). They find that the population coupling is an adequate measure
to predict the underlying connectivity and the response to sensory stimuli. Although
in these experiments population coupling is thought to arise from diversity in the mean
input186, we hypothesize that in cortical dynamics where population rhythms exist, the
heterogeneity of the neuronal properties can also create the same kind of diversity in the
population coupling as that observed here.

From a neuronal networks perspective, a possible avenue of future research is the
self consistent calculation of the critical delay at the oscillatory transition. Mean field
theories of neuronal networks have made use of the so called diffusion approximation, to
study the transitions from the asynchronous irregular to synchronous irregular states. In
particular ? 208 has proposed a method to self consistently find the frequency and phase of
the oscillation at the oscillatory bifurcation as a function of network parameters for rather
general neuronal models. Given the remarkably different synchronization properties that
the QIF and the rQIF neurons have with increasing rapidness, a proper quantification
of the nature of this transition is desirable. In particular, it would directly link the
rapidness of the action potential (related to a higher bandwidth capacity72) with the
frequency of the population oscillation, which we have only observed numerically.

Finally, the perfect rhythmicity of the oscillations observed in our networks is different
from that seen in experiments. The frequency and power fluctuations that are observed
and reproduced in the first part of this thesis are not present in these simplified models.
The challenge of developing biologically realistic models that describe these basic statis-
tics and further allow for exact mathematical treatment remains open (see also next
section). One avenue of possible exploration is the inclusion of multi-frequency oscilla-
tions, as discussed in the previous section. In detailed bifurcation analyses by Brunel 29 ,
in networks similar to ours, parameter ranges in which rhythms coexist were found. Fur-
thermore, the approach taken here can be extended to exponentially decaying synapses.
It would be interesting to see whether the temporal extent of the interaction, that in
the non delayed case can lead a transition from stability to extensive chaos with LIF
neurons199, leads to different population dynamics than the simple oscillations observed
here.

4.4 General Discussion and Outlook

We have explored the capacity for complex high dimensional dynamics and their impact
on information transmission in heterogeneous delayed neuronal networks. In the fol-
lowing, we delineate future directions of research at the interface of the aforementioned
approaches: to investigate the role of action potential onset rapidness in information
transmission on the one hand, and the role of inter-areal phase relations in shaping the
ergodic properties of connected areas on the other.

In Chapter 3, we have found that the action potential onset has profound impact
on the type of oscillatory rhythms that develop after the delay-induced transition. In
particular, we find that the chaotic measures have a different behavior depending on
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this parameter. The neurons that composed the networks studied in Chapter 2 were of
the Wang-Buzsaki type285, where the action potential onset has a rather small slope as
can be seen in Figure 4.1a. This is in strong contrast to the rapid action potential onset
observed in cortical neurons179. A possible avenue of future research is to understand
not only the synchronization properties of rapid neurons, but the impact that they have
on their information transmission capabilities.
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Figure4.1: ProjectsCrossover. (a)Phaseportrait of the rapidWangBuzsakiNeuronmodelwith different rapidness.

The parameter r changes the steepness of the fast sodium activation bymanipulating the sodium channel opening

rateαm = x/(1 − exp(−x))with x = r(V + 35). In blue in its original parameters (r=0.1), in brown r = 0.6
(b) Two populations of E-I QIF neurons connected by long range excitation. Parameters: Default parameters as in

table 3.1 for each populationwith a local and inter areal delay of 2ms. Themembrane time constant heterogeneity

is 0.5 and a threshold heterogeneity of 0.05. The inter-areal value of K is 50.

Lastly, a possible future exploration is the reduction of the complexity of the models
used in 2 to find the minimal components that give rise to reasonably similar dynamics,
and study the effect of the rhythms relative phase from an ergodic theory perspective.
Figure 4.1b shows an implementation of networks of heterogeneous QIF neurons similar
to those described in Chapter 3, connected by delayed long range excitation. Although
each population in isolation exhibits regular dynamics, the coupled case shown in Figure
3.8e–h exhibits transients of desynchronized activity and reveals frequency and locking
irregularities. Time dependent measures like the fraction of positive local Lyapunov
exponents, could aid in understanding the dependence of the micro state of these coupled
networks on the phase relation.
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A
Ergodic properties of a network of delayed rate

units

This appendix contains a small side project also studying chaos in delayed networks,
from a coarser level of description. Part of it (section A.2.1) has been independently
published by Bimbard et al. 24 .

A.1 The classic SCS network

In a seminal work by Sompolinsky et al. 234 , the study of networks that with further
restrictions in the coupling matrix J would relate to spin glasses, was translated to the
language of neuroscience. They describe the behavior of continuous units or neurons
that obey the equation:

ḣi = −hi +
N∑
j

Jijϕ(hj) ϕ(x) = g tanh(x) (A.1)

The variable h can be thought as a rate unit that integrates inputs from other sets
of units, with a nonlinear transfer function given by ϕ. For this model to achieve one
of the many basic requirements that a rate network should accomplish, the function ϕ
shouldn’t take negative values. Further, the connectivity matrix Jij , whose components
are drawn independently from a normal distribution with variance J2/N (without loss
of generality we take J=1), in this setting doesn’t accomplish dales law. Extensions of
this model in these directions exist139,170, but won’t be analyzed here.

Analytical treatment of the network defined by Eq. (A.1) is possible in many flavors,
as summarized in section 1.5 of the introduction. In its original form, the Eq. A.1 can
be reduced to an equation for a single neuron given by:

ḣi(t) = −hi(t) + η(t) (A.2)
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where η is a noise term whose autocorrelation can be found self-consistently. This
procedure, called dynamic mean field theory, allows also for a calculation of the maximum
Lyapunov exponent. A remarkable transition from full stability to chaos is observed at
g=1. The linear stability of the fixed point at hi = 0 can be studied by solving the
linearized version of A.1, given by :

ḣ = −h+ hJT (A.3)

By writing J = EΛE−1, where Λ is a diagonal matrix, and proposing solutions of the
form hi = ui exp(ντ), we obtain the following condition:

ν + 1 = λ (A.4)

For the proposed solutions to be stable, ℜ(ν) < 0 and then a =
ℜ(λ) < 1. This means that the eigenvalue distribution of J, which is
necessarily centered in zero, has to have a radius, given by g, that is
smaller than one.

A.2 The delayed SCS network

A.2.1 Estimation of the frequency of the first unstable mode

We are interested in a system similar to that defined above, but in
which the rate coupling is not instantaneous in time:

ḣi(t) = −hi(t) +
N∑
j

Jijϕ(hj(t− τ)) ϕ(x) = g tanh(x) (A.5)

This system is what we can call the delayed SCS. Identically as in the non-delayed
case, and as published before81,136, an equation for the instability boundary can as well
be found.

ν + 1 = λ exp(ντ) (A.6)

Looking for a Hopf bifurcation, we can replace ν =
iω. The resulting equation is a parametric form of the
Archimedean spirals81. Surprisingly, the intersection be-
tween the distribution of eigenvalues of J, given by the cir-
cle of radius g, and the spirals does not occur before g is
larger than one. Thus, the stability boundary of a network
with random gaussian connections is independent of the de-
lay. Graphically nevertheless, and indicated in the figure on
the right, by modifying the distribution of eigenvalues we
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might be able to see other transition beyond the one previ-
ously observed. For that, we look at asymmetric matrices
of the form233:

J = g

(
(1 + α)

2
(J + JT ) +

(1− α)

2
(J − JT )

)
(A.7)

The axis of the eigenvalue distribution of this matrix are233:

a0 = g2
(1 + α)2√
1 + α2

b0 = g2
(1− α)2√
1 + α2

(A.8)

For a given delay τ an intersection (i.e. a value for ω) between the instability boundary
given by Eq. (A.6) and the ellipse defined by the axis in Eq. (A.7) can be found. The
value of ω, is the frequency of the unstable mode. By direct numerical integration
(Fig. A.1a), the numerical estimation of the frequency of the first observed unstable
mode at the chosen value of the delay can be obtained(Fig. A.1c). The frequencies
obtained via this two methods are in good agreement (Fig. A.1d).
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Figure A.1: Predicting the value of the frequency of the first unstable mode. a Traces of the rate units for three

differentdelays. Parameters: N=5000,α=-0.3,τ=47 (top),τ=49 (middle),τ=55 (bottom)b Intersectionof thespiral
with the eigenvalue distribution boundary given by Eq. A.8. Parameters as in (a). c Example power spectrum at the
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mode.
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B
Mean field theory of M populations of fully

coupled networks of QIF neurons

This appendix contains another side project, of a particular case in which a dynamical
equation for the order parameter can be obtained analytically. This is an straightforward
extension of the one population case analyzed in So et al. 230 .

B.1 M populations of fully coupled networks of Theta neurons

We are going to consider a network of fully coupled θ neurons74:

θ̇ = (1− cos(θ)) + (1 + cos(θ))(η + Isyn) (B.1)

where Isyn(t) is a coupling function. To follow the approach orig-
inally proposed by Ott & Antonsen 191 and later extended by So
et al. 230 , we are going to use a coupling function that can be written
as a function of the variable θ. This coupling emulates the pulse like
connections between units for large N, but counts on the advantage
of being differentiable.

Isyn =
K

N

n∑
i=1

an(1− cos(θi))n (B.2)

The parameter n, controls the sharpness of the coupling function. For infinitely large
n, a delta-like pulse is obtained at θ = π, corresponding to the threshold used in Chapter

145



3. Two populations of theta neurons coupled by the current above described

θ̇1i = (1−cos(θ1i )+(1+cos(θ1i )

η1 +
K11

N1

N1∑
j=1

an1(1− cos(θ1j ))
n1 +

K12

N2

N2∑
j=1

an2(1− cos(θ2j ))
n2


(B.3)

θ̇2i = (1−cos(θ2i )+(1+cos(θ2i )

η2 +
K21

N1

N1∑
j=1

an1(1− cos(θ1j ))
n1 +

K22

N2

N2∑
j=1

an2(1− cos(θ2j ))
n2


(B.4)

This can be written, for M populations as

θ̇σi = (1− cos(θσi )) + (1 + cos(θσi ))

ησ +
M∑

σ′=1

Kσσ′

Nσ′

Nσ′∑
j=1

anσ′ (1− cos(θσ
′

j ))nσ′

 (B.5)

The problem as formulated in its original form Ott & Antonsen 191 can be expressed,
in the thermodynamic limit, as a function of the probability density ρ(θ, ω, t). ρ(θ, ω, t)
dθ dω is the probability that the phase of an oscillatory belongs to the interval [θ, θ+dθ]
while its frequency belongs to [ω, ω+dω]. In the case of theta neurons and in the absence
of synaptic input, the neuron starts to fire tonically with a frequency that scales as the
square root of the DC input. For this reason the thermodynamic limit in the case of
the theta neuron can be equivalently treated as a function of the mean external input
η̄. The probability density will have to satisfy the continuity equation:

∂ρσ(θ, η̄, t)

∂t
+

∂

∂θ
(ρσ(θ, η̄, t)vσθ ) = 0 (B.6)

Assuming that the frequency distribution is stationary the probability density will
have to satisfy, besides the normalization condition (left), that given a point in time the
integral over all active phases equals the initial frequency distribution gσ

′
(η̄) (right):∫ ∞

−∞

∫ 2π

0
ρσ(θ, η̄, t)dθdη̄ = 1

∫ 2π

0
ρσ(θ, η̄, t)dθ = gσ

′
(η̄) (B.7)

In the case of the M populations of theta neurons, the velocity term of Eq. (B.8) will
be given by the continuum equivalent of Eq. (B.5):

vσθ = (1−cos(θ))+(1+cos(θ))

(
ησ(t) +

M∑
σ′=1

Kσσ′
anσ′

∫ ∞

−∞

∫ 2π

0
ρσ

′
(θ′, η̄′, t)(1− cos(θ′))nσ′dθ′dη̄′

)
(B.8)
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The order parameter of the system, rσ will be the weighted sum of the mean of the
phasors for each population, zσ, also called the mean field variable.

rσ =
M∑

σ′=1

Kσσ′
zσ

′
zσ

′
(t) =

∫ ∞

−∞

∫ 2π

0
ρσ

′
(θ, η̄, t)dθdη̄ (B.9)

Replacing equation (B.8) into (B.6), gives us a differential equation for the probability
density. Analytical treatment for this type of equations was opened after what is now
known as the Ott-Antonsen ansatz: Given the Fourier expansion of the probability
density

ρσ
′
(θ, η̄, t) =

gσ
′
(η̄)

2π

(
1 +

∞∑
k=1

α∗σ′
k (η̄, t)eikθ +

∞∑
k=1

ασ′
k (η̄, t)e−ikθ

)
(B.10)

and that the velocity can be written in the form vσ
′

θ = h(η̄, t) + f(η̄, t)eiθ + f∗(η̄, t)e−iθ,
they showed choosing α(η̄, t)k = α(η̄, t)k leads to a differential equation for the coeffi-
cients α(η̄, t) whose solutions are an invariant manifold of the system, given that certain
condition over the coefficients are imposed. The equation of the coefficients can be
further linked to equations for the mean field variables by means of residue theory.

α̇σ(η̄, t) = i(fασ(η̄, t)2 + hασ(η̄, t) + f∗) (B.11)

B.2 The derivation of a mean field variable

For obtaining a differential equation for the mean field variable zσ the following steps
will be taken:

Step 1): Writing the synaptic coupling term in equation (B.8) in the form of the
Daido moments

Step 2): Write the Daido moments in terms of the Fourier coefficients of ασ′

k (η̄, t)

Step 3): Writing the velocity in the form vσ
′

θ = hσ′
(η̄, t)+fσ′

(η̄, t)eiθ+f ∗σ′
(η̄, t)e−iθ

Step 4): Give an explicit form for the frequency distribution gσ
′
(η̄) and use

equation (B.9) to obtain a dynamical equation for zσ
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Step 1)

We focus on the term H(zσ
′
, nσ′) =

∫∞
−∞

∫ 2π

0
ρσ

′
(θ′, η̄′, t)(1− cos(θ′))nσ′dθ′dη̄′ . We

can show that:

(1− cos(θ))n = c0 +
n∑

q=1

cq(e
iqθ + e−iqθ) (B.12)

Which leads to a synaptic coupling term of the form:

H(zσ
′
, nσ′) = c0+

n∑
q=1

cq

(∫ ∞

−∞

∫ 2π

0

ρσ
′
(θ′, η̄′, t)eiqθ

′
dθ′dη̄′ +

∫ ∞

−∞

∫ 2π

0

ρσ
′
(θ′, η̄′, t)e−iqθ′dθ′dη̄′

)
(B.13)

H(zσ
′
, nσ′) = c0 +

n∑
q=1

cq

(
zσ

′

q + zσ
′

−q

)
(B.14)

Where zσ
′

q are the Daido moments, defined as:

zσ
′

q =

∫ ∞

−∞

∫ 2π

0

ρσ
′
(θ′, η̄′, t)eiqθ

′
dθ′dη̄′ (B.15)

Step 2)

Including Fourier expansion of the probability density in this last definition we
obtain

zσ
′

q =

∫ ∞

−∞

∫ 2π

0

gσ
′
(η̄′)

2π

(
1 +

∞∑
k=1

α∗σ′

k (η̄′, t)eikθ
′
+

∞∑
k=1

ασ′

k (η̄
′, t)e−ikθ′

)
eiqθ

′
dθ′dη̄′

(B.16)
Using that

∫ 2π

0
ei(q−k)θ′dθ′ = 2πδqk, and that q and k are positive integers we

obtain the moment as a function of the Fourier coefficient (left), that takes the
form in the right after including the OA ansatz. The equations are analogous for
the conjugated variable.

zσ
′

q =

∫ ∞

−∞
gσ

′
(η̄′)ασ′

q (η̄
′, t)dη̄′ zσ

′

q =

∫ ∞

−∞
gσ

′
(η̄′)(ασ′

(η̄′, t))qdη̄′ (B.17)

Extending α to complex values of η̄ and asking for it to be analytical in the
upper part of the plane, its only needed to define the probability distribution for
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the excitability parameter

gσ
′
(η̄′) =

∆/π

(η̄ − η0)2 +∆2
=

1

2πi

(
1

η̄ − (η0 + i∆)
− 1

η̄ − η0 − i∆

)
(B.18)

Integrating in a semi-circle in the upper half of the plane,

zσ
′

q = 2πiRes(gσ
′
ασ′q, η0 + i∆) = ασ′

(η0 + i∆, t)q (B.19)
which therefore means that:

zσ
′

q = ασ′
(η0 + i∆, t)q = (zσ

′
)q (B.20)

And therefore,

H(zσ
′
, nσ′) = c0 +

n∑
q=1

cq

(
(zσ

′
)q + (z∗σ

′
)q
)

(B.21)

Step 3)

The velocity is then

vσθ = (1− cos(θ)) + (1 + cos(θ))

(
ησ(t) +

M∑
σ′=1

Kσσ′
anσ′H(zσ

′
, nσ′)

)
(B.22)

W σ(z⃗, n⃗,M) =
M∑

σ′=1

Kσσ′
anσ′H(zσ

′
, nσ′) (B.23)

Noticing that W is also real, we can the write:

vσθ = 1+ησ(t)+W σ(z⃗, n⃗,M)−1

2
(1−ησ(t)−W σ(z⃗, n⃗,M))eiθ−1

2
(1−ησ(t)−W σ(z⃗, n⃗,M))e−iθ

(B.24)
vσ

′

θ = hσ′
(η̄, t) + fσ′

(η̄, t)eiθ + f ∗σ′
(η̄, t)e−iθ

Step 4)

Given that the velocity can therefore be written in the “sinusoidal” form, the
equation (B.11) holds, and in our case, writing W σ(z⃗, n⃗,M) as W σ(t):

α̇σ(η̄, t) = − i

2
(1− ησ(t)−W σ(t))ασ(η̄, t)2+i(1+ησ(t)+W σ(t))ασ(η̄, t)− i

2
(1−ησ(t)−W σ(t))

(B.25)
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Multiplying both sides by gσ
′
(η̄′), integrating in the upper part of the complex

plane, we obtain for each term:

a)
∫∞
−∞ gσ(η̄′)α̇σ(η̄′, t)dη̄′ = żσ(t)

b)
∫∞
−∞

−i
2
gσ(η̄′)(ασ(η̄′, t))2(1−ησ(t)−W σ(t))dη̄′ = −i

2
zσ(t)(1−η0(t)−i∆−W σ(t))

c)
∫∞
−∞ igσ(η̄′)ασ(η̄′, t)(1 + ησ(t) +W σ(t))dη̄′ = izσ(t)(1 + η0(t) + i∆+W σ(t))

d)
∫∞
−∞

−i
2
gσ(η̄′)(1− ησ(t)−W σ(t))dη̄′ = −i

2
zσ(t)(1− η0(t)− i∆−W σ(t))

żσ =
−i

2
(zσ−1)2−1

2
(zσ+1)2

(
∆− iη0(t)−

M∑
σ′=1

Kσσ′
anσ′

(
c0 +

n∑
q=1

cq

(
(zσ

′
)q + (z∗σ

′
)q
)))

(B.26)
This equation can be re-written if we take zσ = ρσeϕ

σ

ρ̇σ =
1

2
sin(ϕσ)(ρσ2 − 1)(1− η0(t)− Iσsyn)−

∆

2
cos(ϕσ)(ρσ2 + 1)−∆ρσ (B.27)

ϕ̇σ = (1+ η0(t) + Iσsyn)−
1

2
cos(ϕσ)(ρσ +

1

ρσ
)(1− η0(t)− Iσsyn)−

∆

2
(ρσ − 1

ρσ
) sin(ϕσ)

(B.28)

Iσsyn =
M∑

σ′=1

Kσσ′
aσ

′

n (c0 + 2
n∑

q=1

cq(ρ
σ′
)q cos(qϕσ′

)) (B.29)

B.3 First case study: One population

In the single population case we obtain230 the following equations for the order
parameter:

ρ̇ =
1

2
sin(ϕ)(ρ2 − 1)(1− η0(t)− Isyn)−

∆

2
cos(ϕ)(ρ2 + 1)−∆ρ (B.30)

ϕ̇ = (1+ η0(t)+ Isyn)−
1

2
cos(ϕ)(ρ+

1

ρ
)(1− η0(t)− Isyn)−

∆

2
(ρ− 1

ρ
) sin(ϕ) (B.31)

Isyn = Ka2
(
c0 + 2c1ρ cos(ϕ) + 2c2ρ

2 cos(2ϕ)
)

(B.32)
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Where cq are the double binomial coefficients given by:

cq =
n∑

j.m=0

δj−2m,qQjm Qjm =
(−1)jn!

2jm!(n− j)!(j −m)!
(B.33)

For n=2 then we have

c0 =
3

2
c1 = −1 c2 = 1/4 (B.34)

Following equation B.2, an is chosen such an
∫ 2π

0
(1 − cos(θi))ndθ = 2π. In the

case of n=2, the integral is equal to 3π and therefore an = 2
3
.

Isyn =
2K

3

(
3

2
− 2ρ cos(ϕ) +

1

2
ρ2 cos(2ϕ)

)
(B.35)

To compare with simulations, networks of fully coupled networks of a few thou-
sand In the network simulation the same term, written as a function of the N
discrete phases, would be

Isyn =
K

N

n∑
i=1

2

3
(1− cos(θi))2 (B.36)

B.4 Second case study: Comparison with numerical simulations
for the E-I case

Similarly, using equations Eq.(B.30),(B.31),(B.32), the two population cases is
obtained. The current terms will have identical contributions from the local pop-
ulation and from the distant one, each one satisfying, for n = 2, Eq (B.35) with
the corresponding Kσσ′ . The sign of Kσσ′ determines the nature, inhibitory of
excitatory, of the connections. In the two population case, four different coupling
strengths can be defined, Kee,Kii,Kei,Kie. The notation of choice is that Kij is
the coupling from j to i.

Figure B.1 shows in panel a, color coded the absolute value of the order param-
eter at the fixed point. Lighter colors code for a higher absolute value, meaning
that the network is more synchronized. Black areas shows point in which no fixed
point was found: The order parameter oscillates indicating that the network be-
havior undergoes periodic changes in the level of synchronization. An example for
this regime can be found for Kee = 5 , Kei = −3.85, Kie = 3.85, Kii = −5, η0 = 5
In Figure B.1 b. The analytical results are compared with direct numerical sim-
ulations of N=10000, whose coupling is given by B.36. A snapshot of the spiking
activity of the networks, is shown in Figure B.1 c. The oscillation is irregular with
a degree of irregularity similar to that of delayed balanced networks of Chapter 3.
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Figure B.1:Mean field of two fully coupled E and I networks. Comparison with direct numerical Simulations. a)As

a function of the parametersKee andKie (withKii = −Kee andKei = −Kie), the fixed points of the absolute

value of ze (left) and zi (right) are shown for three values of the mean frequency distribution, η0. In black, points
were no fixed points were found are indicated. b) Parameters as indicated like a red and a blue squares in panel a,

are chosen. The absolute value of the order parameter of the excitatory population ze (blue) and inhibitory popu-
lation zi (red) are shown together with their estimation via direct numerical simulation, showing good agreement.
c)Raster plot showing the underlying network behavior.
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Dynamic oscillatory coherence is believed to play a central role in flexible communication
between brain circuits. To test this communication-through-coherence hypothesis,
experimental protocols that allow a reliable control of phase-relations between neuronal
populations are needed. In this modeling study, we explore the potential of closed-loop
optogenetic stimulation for the control of functional interactions mediated by oscillatory
coherence. The theory of non-linear oscillators predicts that the efficacy of local
stimulation will depend not only on the stimulation intensity but also on its timing
relative to the ongoing oscillation in the target area. Induced phase-shifts are expected
to be stronger when the stimulation is applied within specific narrow phase intervals.
Conversely, stimulations with the same or even stronger intensity are less effective when
timed randomly. Stimulation should thus be properly phased with respect to ongoing
oscillations (in order to optimally perturb them) and the timing of the stimulation onset
must be determined by a real-time phase analysis of simultaneously recorded local
field potentials (LFPs). Here, we introduce an electrophysiologically calibrated model
of Channelrhodopsin 2 (ChR2)-induced photocurrents, based on fits holding over two
decades of light intensity. Through simulations of a neural population which undergoes
coherent gamma oscillations—either spontaneously or as an effect of continuous
optogenetic driving—we show that precisely-timed photostimulation pulses can be used
to shift the phase of oscillation, even at transduction rates smaller than 25%. We
consider then a canonic circuit with two inter-connected neural populations oscillating
with gamma frequency in a phase-locked manner. We demonstrate that photostimulation
pulses applied locally to a single population can induce, if precisely phased, a lasting
reorganization of the phase-locking pattern and hence modify functional interactions
between the two populations.

Keywords: oscillations, functional connectivity, modeling, closed-loop systems, optogenetic stimulation, phase

response

INTRODUCTION
Neural activity of brain circuits at many scales has often been
reported to display oscillatory components at different frequen-
cies (Eckhorn et al., 1988; Gray et al., 1989; Kreiter and Singer,
1996; Tallon-Baudry et al., 1996; Roelfsema et al., 1997; Varela
et al., 2001; Brovelli et al., 2004; Samonds and Bonds, 2004;
Melloni et al., 2007; Buffalo et al., 2011). In particular, the
communication-through-coherence hypothesis (Fries, 2005) sug-
gests that oscillatory coherence between different neural cir-
cuits could control functional interactions between them with
a high degree of flexibility (Womelsdorf et al., 2007). In par-
ticular, evidence for a role of enhanced inter-areal oscillatory
coherence in attentional modulation is rapidly accumulating
(Fries et al., 2001; Gregoriou et al., 2009; Rotermund et al.,
2009; Bosman et al., 2012; Gregoriou et al., 2012; Grothe et al.,
2012).

The circuit mechanisms underlying the local generation of
oscillations, specifically in the gamma range of frequencies
(30–100 Hz) have been explored in studies in vitro (Whittington
et al., 1995; Bartos et al., 2007) and in silico (Brunel and Hakim,
1999; Whittington et al., 2000; Brunel and Hansel, 2006; Wang,
2010). All of these contributions have highlighted the crucial role
played by the interplay of GABAergic interneurons in creating
time-windows in which excitatory and inhibitory neurons can fire
in a sparsely synchronized manner, before being counteracted by
strong and delayed feedback inhibition. More recently, the func-
tional involvement of local inhibitory networks could be causally
verified in vivo by targeted selective optogenetic stimulation of
Parvalbumine-positive basket cells in a cortical circuit (Cardin
et al., 2006; Sohal et al., 2009).

In an analogous way, optogenetic techniques might be used for
direct tests of the communication-through-coherence hypothesis
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and other suggested functional roles of brain oscillations, like
their implication in phase coding (Lisman, 2005; Koepsell et al.,
2010; Nadasdy, 2010; Kayser et al., 2012). For such applications,
however, improved optogenetic stimulation protocols are needed
that allow for precise control of the phase relations between dif-
ferent neuronal populations or assemblies, rather than a pure
enhancement of oscillatory power.

Theoretical investigations suggest that, due to non-trivial
phase response properties (Pikovsky et al., 2001) of oscillating
neuronal populations (Akam et al., 2012), stimulation pulses
might have a strong influence on local and long-range phase-
relations, but only if properly timed with respect to the ongoing
oscillatory dynamics (Tiesinga and Sejnowski, 2010; Battaglia
et al., 2012). Application of phase-timed stimuli requires a real-
time estimate of the phase from continuously recorded local field
potential (LFP) data.

Optogenetic stimulation conditional on recorded activity con-
stitutes a closed-loop setup. The advantage of closed-loop stim-
ulation compared to open-loop stimulation is the possibility to
program an artificial feedback with defined rules and constraints
dependent on the target system’s dynamical history. Closed loop
electrical stimulation has been successfully used to clamp network
activity (Wallach et al., 2011), to control the firing rate of neurons
(Miranda-Dominguez et al., 2010), to control bursting activity
(Wagenaar et al., 2005), and to train cultured neuronal networks
(Marom and Shahaf, 2002). Closing the loop between living neu-
rons and robotics has also been used to realize embodiment—by
using representations generated by network activity either to con-
trol a robotic arm (Bakkum et al., 2007) or control autonomous
systems (Bandyopadhyay, 2005)—or to study neuronal plasticity
(Novellino et al., 2007).

In this study, we explore through a modeling approach the
feasibility of closed-loop optogenetic control of the phase of a
local oscillation and of inter-areal phase synchronization. To this
end, we simulated the activity of populations of excitatory and
inhibitory conductance-based neurons with random connectiv-
ity. To investigate the case where a sparse transduction with
Channelrhodopsin 2 (ChR2) is achieved in vitro or in vivo, small
fractions of these neurons were endowed with a newly devel-
oped and data-constrained conductance-based model of a light-
activated channel. This case is of particular interest, since it has
been shown that low transduction rates achieved through either
particle mediated gene transfer or via lipid reagents (Takahashi
et al., 2012) can increase the spatial specificity of light stimula-
tion (Schoenenberger et al., 2008). Our model, however, applies
robustly also to the case of higher ChR2 transduction rates, as the
ones that can be achieved using viral transfection (Adamantidis
et al., 2007; Aravanis et al., 2007), in utero electroporation
(Petreanu et al., 2007) or in T helper type 1 (Thy1) transgenic
mice (Wang et al., 2007).

Demonstrating the reliability of our model, we first simu-
lated phase shifting of LFP oscillations with open-loop opto-
genetic stimulation, quantitatively reproducing and generalizing
experimental results in vitro (Akam et al., 2012). We moved then
to the analysis of a canonical cortical circuit with two interact-
ing areas. Here, we simulated a realistic closed-loop stimulation
protocol which was suited to trigger lasting changes of inter-areal

phase relations and, correspondingly, to affect communication-
through-coherence. Thus, we intend our modeling exploration
to foster the implementation of a new generation of closed-loop
optogenetic experiments in vitro and in vivo aiming at inducing
distributed reorganization of functional interactions at the system
level.

MATERIALS AND METHODS
ChR2 PHOTOCURRENT EXPERIMENTAL CHARACTERIZATION
Human embryonic kidney cells were transfected with a plasmid
encoding a ChR2-YFP fusion protein. The pcDNA 3.1-ChR2-
YFP construct was kindly provided by Ernst Bamberg, (MPI for
Biophysics, Frankfurt, Germany). After two–four days, success-
fully transfected cells were identified by their YFP fluorescence. In
the whole-cell configuration, the membrane voltage was clamped
to −60 mV. Channelrhodopsin’s conductance was changed by
500 ms long light pulses. The conductance change was moni-
tored as a time and light-intensity dependent current change
(Figure 1B). In the case of cultured hippocampal neurons, cell
were transfected at 7 DIV with AAV1/2-CAG-ChR2-YFP virus.
After 1 week, successfully transduced cells could be identified by
their YFP fluorescence.

Whole-field illumination was provided by an extended laser
beam (488 nm). Light intensity was controlled by neutral density
filters (optical density 1 and 2, respectively) and by means of the
software provided for the laser. A comparison of the light-induced
current waveforms for 90% attenuation by software and a neu-
tral density filter with an optical density of 1.0 showed excellent
agreement, indicating that the software produced the intended
attenuation. The laser was switched using a built-in mechanical
shutter with a response time in the μs range, achieved through
the minute spatial extent of the beam.

BIOPHYSICALLY CALIBRATED MODEL OF ChR2 PHOTOCONDUCTANCE
Based on the results of the previously described experiment,
we modeled the evoked photocurrents as the product of acti-
vation and inactivation functions. The current activation could
be described by a single exponential function and the current
inactivation by the sum of two exponential functions (see also
Figure 1B). This light-induced conductance change could be well
described by the functional form:

FChR2(t) = Aact

(
1 − e− t−tON−d

τact

)

·
(

Apersist + A(1)
inacte

− t−tON−d

τ
(1)
inact + A(2)

inacte
− t−tON−d

τ
(2)
inact

)
(1)

Here d represents a latency observed between the times tON of
light onset and the actual start of the conductance rise and Apersist

is set to Apersist = 1 − A(1)
inact − A(2)

inact in order to prevent the inac-
tivation conductance factor from becoming negative. Note that
Equation 1 holds true only as long as the light is switched on.
After switching off the light, the response returns to baseline
with a single exponential time course with time constant τOFF.
When individual current responses were fitted, the latency d, the

amplitude Aact, the inactivating fractions A(1)
inact and A(2)

inact, and
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FIGURE 1 | Evoked ChR2 photocurrent: conductance-based model.

(A) Whole cell voltage clamp recording of a cultured neuron, transduced with
Channelrhodopsine 2 (ChR2) and illuminated with LED light (during the time
interval shown by a green horizontal bar). Two current intensity recordings
have been performed, the first in a physiological solution, i.e., with all
channels active (black curve), the second with TTX in the bath, i.e., with
blocked Na-channels (red curve). When the Na channels are still active (black
curve), even the voltage clamp (−70 mV) at the soma cannot prevent the cell
from spiking. (B) Activation kinetics of the photo-induced conductance in
human embryonic kidney cells (HEK-293) that are transfected with ChR2. For
increasing light power density (100% Wmax corresponds approximately to
130 mW/mm2) the activation becomes faster. Peak conductance increases

from 0 to ∼10% of the maximal intensity and decreases for higher light
intensities. Note the different scale of evoked currents in neurons and HEK
cells. (C) Simulated photocurrents generated by the conductance-based model
described by Equation (1), for different light intensities (expressed relatively to
maximum illumination intensity) and for a rectangular shaped light pulse
stimulation with a duration of 3 ms. Model parameters and their dependence
on light intensity (see Table 2) are obtained from fits to photoconductance
recordings analogous to the one shown in panel (B), performed for different
light intensities. For short light pulses as used here, the experiments indicate
that the largest conductances are obtained for light intensities between 10%
and 50% (interpolation of the simulated photocurrent results in an optimal
value of 18% of the maximum light intensity).

the activation time constant τact were found to be dependent on
the light-intensity Wlight when individual current responses were
fitted. However, the time constants related to inactivation were
almost unchanged for different light intensities. Therefore, for
simultaneously fitting current responses evoked by different light
intensities (ranging over two orders of magnitude), two global

(i.e., light-independent) parameters τ
(1)
inact and τ

(2)
inactwere used. In

order to model the dependence on the light intensity of the other

parameters (d, τact, Aact, A(1)
inact, and A(2)

inact) we fitted the following
functions to the recorded data:

d = dA + dBWlight + dC

Wlight
(2)

τact = τ
(0)
act + cacte

−kactWlight (3)

Aact = a0 + amin − 1

1 + (
W0.5/Wlight

)2
(4)

A(1)
inact = b0 + b1

b2 + (
Wlight − Winact

)2
(5)

A(2)
inact = cinacte

−kinactWlight (6)

All the parameters of Equations (2–5) are the result of least-
squared fits. For Equation (6) kinact has been set manually to

assure convergence of the fitting procedure. All fitted parame-
ters of the ChR2 conductance model, together with their standard
deviations, are summarized in Table 1. Light intensity is mea-
sured relatively to the maximum intensity Wmax that can be
achieved in our setup. A precise calibration of the absolute power
density at the maximal intensity was not performed. We have esti-
mated it to be approx. Wmax = 130 mW/mm2 for a continuous
illumination, which is rather high if compared to 5–6 mW/mm2

used by Ishizuka et al. (2006) and Ernst et al. (2008) and the
maximum (around 20 mW/mm2) used in Nikolic et al. (2009).

ChR2-TRANSDUCED NEURONAL POPULATIONS MODEL
A local neuronal population was modeled as a random net-
work of NE = 4000 excitatory and NI = NE/4 = 1000 inhibitory
conductance-based model neurons of the Wang-Buzsáki (WB)
type (Wang and Buzsáki, 1996). The WB model describes a sin-
gle compartment neuron endowed with sodium and potassium
currents. The membrane potential follows the equation:

C
dV

dt
= −IL − INa − IK + Isyn + Inoise + κIChR2 (7)

where C is the capacitance of the neuron, IL = gL(V − VL) is
the leakage current, Isyn reflects recurrent interactions with other
neurons in the network, Inoise models the driving exerted by
background noise and IChR2 is the photocurrent-induced by
external light stimulation. Sodium and potassium currents are
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Table 1 | Parameters of the ChR2 conductance model.

Type of parameter Parameter Value ± SD l.sq fit (unit)

Latency dA 0.27 ± 0.04 (ms)

dB −0.05 ± 0.06 (ms/[Wlight])
dC 0.0126 ± 0.0006 (ms × [Wlight])

Activation τ
(0)
act 0.74 ± 0.20 (ms)

cact 12.0 ± 0.4 (ms)

kact 25 ± 2 (1/[Wlight ])

a0 1.00 ± 0.04

amin 0.4 ± 0.1

W0.5 0.38 ± 0.15 ([Wlight])

Inactivation (first
component)

τ
(1)

inact 9.06 (ms)

b0 0.16 ± 0.01

b1 0.013 ± 0.004 ([Wlight]2)

b2 0.027 ± 0.007 ([Wlight]2)

Winact 0.11 ± 0.01 ([Wlight])

Inactivation (second
component)

τ
(2)

inact 59.6 (ms)

cinact 0.29

kinact 2.4 (1/[Wlight])

Deactivation τoff 10 (ms)

Coupling prefactor gChR2 0.007 (μS)

Parameters to simulate time and light-intensity dependent conductance changes

mediated by channelrhodopsin 2. Errors are sample standard deviations.

Parameters returned from the global fit procedure do not have a measure of

uncertainty. See section Materials and methods for the model description.

voltage-dependent and given by INa = gNam3∞h(V − VNa) and
IK = gK n4(V − VK). The activation of the sodium current was
modeled as instantaneous. We used sodium and potassium cur-
rent voltage-dependent activation and inactivation functions as
given in Wang and Buzsáki (1996).

The synaptic current evoked by a single presynaptic action
potential was given by Ispike(t) = −gαsspike(t)(V − Vα), where
the reversal potential Vα of the synapse is 0 mV for excita-
tory AMPA synapses (α = E) and −80 mV for inhibitory GABA
synapses (α = I). The time-course of the postsynaptic conduc-
tance was described as a difference of exponentials:

sspike(t) ∝
(

e−(t + dsyn − tspike)/τrise − e−(t + dsyn − tspike)τdecay

)
(8)

for t > tspike, 0 otherwise, where tspike is the time of the presy-
naptic spike, dsyn is a combined conduction and synaptic delay,
and τrise and τdecay are respectively the rise- and decay time con-
stants. The normalization constant of sspike(t) was chosen such
that its peak value is equal to 1. The peak conductances of all exci-
tatory and inhibitory synapses were set to gE and gI , respectively.
The total recurrent current Isyn(t) was then given by the sum of
the contributions Ispike(t) from all presynaptic spikes fired before
time t.

The background noise input Inoise to each neuron was modeled
as an additional synaptic current-induced by statistically indepen-
dent Poisson trains of excitatory spikes with a common firing rate
νnoise and a peak conductance gnoise.

Excitatory and inhibitory neurons in the populations were
transduced by ChR2 with a same probability, given by the
transduction rate PChR2. The photocurrent prefactor κ was set
to 1 and 0 respectively for transduced and non-transduced
neurons. The induced photocurrent was given by IChR2(t) =
−gChR2FChR2

[
Wlight(t)

]
(V − VChR2). The conductance wave-

form FChR2(t) given by Equation (1)—that depends on the
applied waveform Wlight(t) of the optical stimulation—was mul-
tiplied by a prefactor gChR2, such that the peak photocurrent
evoked by a pulse with optimal light intensity in the used model
neurons (simulated at resting potential) was 2 nA . The reversal
potential was VChR2

∼= 0.
Excitatory neurons established synapses with other excitatory

or inhibitory neurons within the same local circuit with prob-
ability PE, inhibitory neurons with probability PI . In addition,
when considering multiple interconnected local areas, excitatory
neurons within a local circuit established long-range connections
with excitatory or inhibitory neurons in a remote local area with

a probability P(lr)
E .

ADOPTED PARAMETERS AND OSCILLATORY SYNCHRONY
The neuronal population model described in the previous sec-
tion can generate two qualitatively different dynamical regimes,
characterized by different degrees of oscillatory coherence. The
network resides in one or the other regime depending both on the
drive to the network, controlled in this study by varying the back-
ground firing rate νnoise, and on the strength of local inhibitory
interactions, controlled in this study by varying the probability of
inhibitory connection PI .

The single neuron and network parameters used for all simu-
lations are summarized in Table 2. However, we note that qual-
itatively similar dynamical features, in particular the existence
of a smooth transition between a weakly and a strongly syn-
chronous oscillatory regime, would be obtained for a broad range
of parameters, with the frequency of the collective oscillation
primarily determined by the synaptic time constants, τrise and
τdecay, (Brunel and Wang, 2003). We also find that the transi-
tion toward strong synchrony tends to get sharper with increasing
network size [not shown, but see as well (Brunel and Hakim,
1999)].

Synchronization of the population activity was quantified
through the synchronization index χ (Golomb and Hansel,
2000):

χ = σ2
LFP

〈σ2
Vi

〉 (9)

given by the ratio between the variance of the average membrane
potential of all excitatory and inhibitory neurons in the local
population—here briefly defined conventionally as the “LFP”
signal—and the average variance of the membrane potentials
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Table 2 | Parameters of the spiking neuronal network model.

Type of parameter Parameter Value (unit)

Single neuron gL 0.01 (μS)

VL −65 (mV)

C 100 (pF)

gNa 3.5 (μS)

VNa 55 (mV)

gk 0.9 (μS)

Vk −90 (mV)

m∞, h, n See Wang and Buzsáki

(1996)

Population size NE 4000

NI 1000

Excitatory synapses τrise 1 (ms)

τdecay 3 (ms)

gE 0.5 (μS)

Inhibitory synapses τrise 1 (ms)

τdecay 4 (ms)

gI 18 (μS)

Synaptic latencies dsyn (local) 1.5 (ms)

dsyn (long-range) 1.0 (ms)

Connection probabilities PI 0.3

PE 0.12

P(lr)
E 0.06

Background noise vnoise 3 (kHz)

gnoise 0.5 (μS)

Parameters to simulate the activity of transduced neuronal populations (see

section Materials and methods for the model description).

Vi of individual neurons in the population. The synchroniza-
tion index χ is bounded in the unit range, χ = 0 meaning
asynchronous and χ = 1 fully synchronous dynamics.

The dependency of firing rate of excitatory and inhibitory neu-
rons, of the collective oscillation frequency and of the synchrony
level χ was studied by systematically varying the parameters νnoise

in the range between 2 and 6 kHz and PI between 0.2 and 0.6
(the reference values, tabulated in Table 2, being νnoise = 3 kHz
and PI = 0.3). All the quantities were evaluated over simulated
time-series lasting 20 s of real time.

ANALYSIS OF PHASE RESPONSE
Although the simulation generates spike trains for all neurons,
we focus here on alterations of the ongoing collective activity
and, therefore, on the oscillating LFP signal. A single rectangular-
shaped light pulse with a given intensity Wlight and duration
Tlight was applied to the considered network at a specific time
of application tON. For different values of Wlight and Tlight, we
tested the effects of overall 1500 different light onset times tON,
distributed uniformly over a time interval of approximately 50
oscillation periods. Indeed, averaging over multiple periods was
required, because of stochastic fluctuations of the period length.

For each stimulation pulse, the activity of the network was further
simulated over 60 oscillation cycles following the perturbation.

In every simulation run, the initial conditions, the network
topology and the background noise were kept identical, in order
to exclusively study the dependence of the induced perturbation
on the parameters of the light stimulation and its application
time. Pairs of LFP time series were thus generated consisting of
a time series after the application of a photostimulation and a
time series of the corresponding unperturbed neural dynamics.
For every such pair of time series, instantaneous phase values were
extracted using a Hilbert transform (Gabor, 1946), an approach
extensively used for investigating phase dynamics and synchro-
nization of non-linear oscillators (Pikovsky et al., 2001). The
induced phase shift was then measured by averaging the phase
difference �φ between the perturbed and the unperturbed LFPs
over the last 50 recorded oscillation cycles. A transient of 10 oscil-
lation cycles immediately following tON was discarded to ignore
transient effects caused by the applied light pulse. The times
of perturbation application tON were translated into phases and
binned into 30 equally sized phase bins. The observed phase shifts
�φ were averaged over each bin and plotted as a function of the
phase of perturbation application φ(tON) for different light inten-
sities Wlight and perturbation pulse duration Tlight, and also for
networks with different transfection rates PChR2.

The dependency of phase responses on varying values of light
intensity, pulse duration and timing of the perturbation were
investigated for a specific realization of the network random
connectivity. We have repeated our analysis for three different
random realizations of connectivity (with the same homogeneous
probabilities of connection, PI and PE). The corresponding phase
responses to light stimuli were qualitatively and quantitatively
very similar (not shown). In particular, differences between ran-
dom network instances were of the same order of magnitude as
the error bars shown in Figure 4, corresponding to fluctuations
of the phase response over time for a same connectivity realiza-
tion. These similarities are not surprising and match theoretical
expectations, since dynamical effects arising from fluctuations
due to finite-size connectivity are small for the large network size
adopted here (Golomb and Hansel, 2000). Therefore, we can con-
clude that our results hold in general for random networks with
the same (in a probabilistic sense) connectivity features.

ANALYSIS OF PHASE LOCKING CHANGES
If two coupled neuronal populations are simulated with the
parameters given in Table 2, the oscillations of the two LFPs
self-organize in a phase-locked configuration. The temporar-
ily stable relative phase difference, �φ, can have two different
values: �φlocked or 1−�φlocked (phases are measured over the
cyclic unit interval 0 ≤ φ ≤ 1). Both phase-locking values corre-
spond to out-of-phase configurations in which either of the two
populations leads in phase over the other.

In our simulations, only one of the two local neuronal pop-
ulations was transduced with ChR2. We applied light stimula-
tion pulses to this transduced population, with a light intensity
Wlight = 20% (expressed as the percentage of the maximum pos-
sible light intensity of our setup Wmax) and a pulse duration of
Tlight = 3 ms. Similar to the protocol used for the phase response
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analysis of a single population, 1500 different pulse onset times,
tON, were used, which were uniformly distributed over 50 oscil-
lation cycles. Starting from random initial conditions, no pertur-
bation was applied for the first 100 oscillation cycles, to ensure
complete convergence to a stable phase-locked attractor. Without
loss of generality, we considered the configuration in which the
phase of the transduced population leads over that of the not
transduced population (i.e., in which the stable inter-circuit phase
difference is close to �φlocked before the perturbation).

Variations of the phase-difference between the two popula-
tions were measured in two different time-windows. We first
studied the short-term effects of the light stimulation, by aver-
aging the instantaneous Hilbert phase difference over the first 5
oscillation cycles after the perturbation. Binning different onset
times according to the corresponding phase of application of
the perturbation (as done for the estimation of single popula-
tion phase response), we quantified the probability Pshifting(φ),
that a light pulse induces a relative variation of more than 10%
(reduction or increase) of the inter-population phase-difference.
For each application phase bin, Pshifting(φ) was compared with the
probability of observing similarly large spontaneous fluctuations
of �φ in the unperturbed activity of the same network.

We then studied longer term effects of the light stimulation
by averaging the difference of the instantaneous Hilbert phases
over the 50 cycles that follow the ten omitted oscillation cycles
directly after stimulation. The aim of this long-term analysis was
to assess the occurrence of a switching from the phase-locking
pattern with phase-difference close to �φlocked toward the other
phase-locking pattern with phase difference close to 1-�φlocked.
Once again binning onset times according to the corresponding
phase of perturbation application, we quantified the probabil-
ity Pswitching(φ) that the long-term averaged phase difference was
within a tolerance interval of 1 − �φlocked ± δ, with δ = 0.05
(i.e., the transduced population switched steadily from the role of
phase leader to phase laggard). For each phase bin, Pswitching(φ)

was compared to the probability of observing a spontaneous
switching of the phase locking (from �φlocked to 1-�φlocked) over
an equivalent time span of 50 cycles, based on time-series of the
unperturbed dynamics of the same network.

The probabilities Pshifting(φ) and Pswitching(φ) were finally plot-
ted as polar histograms with ten equally-spaced bins for the phase
of the onset of the light stimulation φ(tON), in which the corre-
sponding probabilities of spontaneous shifting or switching were
also reported in order to identify phase bins in which the effects
induced by the perturbation pulse were significantly low or high
(Figure 5).

ONLINE PHASE PREDICTION
A closed-loop approach (Figure 6) is necessary to estimate a time
tON which corresponds to a future occurrence of a given tar-
get phase φtarget, leading to the largest possible probability of
switching of the inter-areal locking (Figure 5).

To study the feasibility of such an approach, we modeled its
implementation, considering the same bi-areal network used to
characterize induced switching between phase-locked states (see
previous section and Figure 5). Simulated LFPs were recorded
from both the stimulation target area and a second coupled

area. However, the calculations performed online involved only
the LFP time-series V(t) recorded in the target area. The time-
series Ṽ(t) of the second area were recorded and analyzed
offline to determine phase-locking patterns before and after the
stimulation.

We approximated the “true” Hilbert phase φH(t) associated to
V(t) by a linearly interpolated phase. This approximation could
be simply done by interpolating a variable φL(t)that was lin-
early growing in the unit interval 0 ≤ φL < 1 between any two
times tk and tk+1 delimiting an oscillation cycle. As shown by
Figure 7B, the phase variables φH(t) and φL(t) are related by a
mildly non-linear map, described as a static non-linearity φH =
fLH(φL). However, we systematically ignored this non-linearity in
the following by approximating φH(t) directly by φL(t).

The workflow for the prediction of the perturbation onset time
tON is split up into multiple stages (Figure 6). First of all, it was
necessary, during a testing stage, to detect the presence of suf-
ficiently strong local oscillations and to measure their average
frequency fpeak. It was important to monitor the characteristics
of LFP oscillations (band-passed around fpeak) in the stimulation
target area (monitoring stage) and to extract, based on observa-
tions of past activity, a model able to approximately predict future
phase evolution (prediction stage).

Even in the ideal case of an elevated synchrony index χ and
sustained oscillations, the duration of oscillation periods Ti fluc-
tuated from cycle-to-cycle around their average T̄(cf. Figure 7A).
Let us suppose that the last oscillation period recorded in the
monitoring stage was Tk = tk − tk−1 and that the prediction
stage lasts (less than) s oscillation cycles. Neglecting correlations
between period lengths of consecutive cycles, the time of begin-
ning of the next cycle after the end of the prediction stage could
be estimated via a simple linear extrapolation:

t(0)
k + s = tk + sT̄ (10)

However, for our network model, the temporal autocorrelation
function of period lengths Ti, i = 1, . . . , k displayed a fast but not
instantaneous decay for increasing lags (measured in oscillation
cycles). These weak, positive correlations between consecutive
cycle durations could be well captured by a first order autore-
gressive process [AR(1)], Ti = T̄ + a(Ti − 1 − T̄) + εi, with T̄ the
average oscillation period over the monitoring time-window, a
the AR(1) coefficient and i an i.i.d. Gaussian distributed residual
noise term (Brockwell and Davis, 1996). With this AR(1) model,
the beginning of the next cycle was estimated as:

t(1)
k + s = tk + sT̄ +

(
as + 1 − a

a − 1

)
· Tk (11)

The AR(1) coefficient was derived as:

a = k

k − 1

∑k − 1
i = 1

(
Ti − T̄

) (
Ti+1 − T̄

)
∑k

i = 1

(
Ti − T̄

)2 (12)

based on the periods Ti, i = 1, . . . , k, measured during the mon-
itoring stage and on their average duration T̄.
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Spectral analysis of LFPs recorded in the stimulation target
area and in a second coupled area was performed during the test-
ing stage. A windowed Fast Fourier Transform (FFT) was applied
to demeaned chunks of the LFP signal, to extract a rough esti-
mate of the instantaneous power spectrum. When the power at
some frequency fpeak in the gamma range exceeded a determined
threshold in both recorded areas, the monitoring stage started.

During the monitoring stage, a computationally efficient low-
order recursive time domain filter (Percival and Walden, 1993)
was applied to clean the oscillating LFP signals. The filtered time-
series was computed online as:

Vfiltered(t) = V(t) + α1Vfiltered(t − 1) + α2Vfiltered(t − 2) (13)

Filter coefficients were chosen as α2 = −0.99 and α1 =
4α2 cos(2π(1 − fpeak))/(1 − α2) (assuming a sampling rate of
1 kHz). The pass frequency was then equal to fpeak and the main
frequency of the activity of recorded areas was maintained. The
LFP time-series V(t) and Ṽ(t) recorded during the monitoring
stage were stored. An analysis of the inter-areal phase-locking
pattern before stimulation was then performed offline, while
the closed-loop experiment was continuing. A monitoring stage
including approximately 20 oscillation cycles was found to be
sufficiently long to achieve accurate model estimation.

The limited amount of fast computations to be performed
during the prediction stage is summarized as follows:

1. Subtract the mean value from the band-passed LFP time series
Vfiltered(t) measured during the monitoring window in the
stimulation target area.

2. Calculate the timings t0, t1, . . . , tk at which the LFP Vfiltered(t)
crosses zero. Their differences Ti = ti − ti − 1, i = 1, . . . , k are
the estimated period lengths of the observed oscillations.

3. Calculate the average period length T̄ from the series of Ti.
4. If the AR(1) approach is used, then compute the a coeffi-

cient based on equation (12) and compute the perturbation

onset time as t(1)
ON = t(1)

k + s + φtargetT̄, where t(1)
k + s is given by

Equation (11).
5. If a simpler linear extrapolation is used, compute the pertur-

bation onset time directly as t(0)
ON = t(0)

k+s + φtargetT̄, where t(0)
k+s

is given by Equation (10).

After the application of the perturbation pulse, the LFPs of
both areas were recorded and stored. An analysis of the inter-
areal phase-locking pattern after stimulation was then performed
offline and compared to the phase-locking assessed before stim-
ulation. In case of failed switching, either the same linear model
was used to extrapolate directly the time tON of a further stim-
ulation pulse, or a new testing stage was initiated, verifying that
oscillations were still ongoing or waiting for the next oscillatory
epoch to begin.

The decision between a prediction scheme based on the AR(1)
model and a simpler linear extrapolation scheme depends ulti-
mately on the correlation statistics of the series of period lengths.
It can be shown that the prediction error of the estimated phase
is reduced by the AR(1) prediction scheme compared to lin-
ear extrapolation by a maximal amount of 100%/

√
1 − a2 (and

by exactly this amount for Gaussian distributed samples). If the
AR(1) parameter a estimated from the recordings during the
monitoring window is small (as a rule of thumb, a < 0.3), then
the performance improvement is negligible and advantage can be
taken from the faster computation of the simpler linear extrapo-
lation. Unfortunately, this criterion requires the evaluation of a.
Nevertheless, the analysis of Figure 7E indirectly suggests that the
AR(1) coefficient depends non-monotonically on the synchrony
level, and that it increases going from low to intermediate syn-
chrony indices χ, but drops again going toward higher χ. The
choice of a high power threshold during the testing stage guar-
antees a high level of synchrony and, therefore, small values of a
during the monitoring stage. This allows one to adopt the compu-
tationally faster step (5) instead of (4). However, a tradeoff should
be made between the need of a fast prediction and the probability
to detect a number of oscillatory epochs sufficient for meeting the
testing stage criteria.

RESULTS
DATA-CONSTRAINED MODEL OF ChR2-PHOTOCURRENT
In order to assess from in silico experiments the efficacy of opto-
genetic stimulation in inducing changes of local phase or of
inter-areal phase relations, we first derived a realistic and fully
data-constrained model of the evoked ChR2 conductance. To
do so, we first performed an experimental characterization of
photocurrents evoked in living cells in vitro by light stimulation
over a broad range of light intensities spanning two decades of
power (see section Materials and Methods). Then, based on this
systematic set of measurements, we fitted to the whole dataset
a unique conductance-based model that describes the evoked
time-dependent photocurrent, and hence the conductance, as the
product of activation and inactivation factors.

The light-activated ChR2 ion channel mediates a current that
is carried mostly by Na+, K+, and H+ with contributions of Ca2+.
Its reversal potential is typically around 0 mV and therefore it is
depolarizing at neuronal resting potential. We found that upon
illumination onset, a current built up with a nearly exponential
time course with a time constant τact ranging from 10 ms, for very
weak light intensities that barely evoked any current response,
to below 1 ms for high intensities. For a large range of intensi-
ties the current displayed a transient behavior and its amplitude,
after reaching a peak, decayed over tens of milliseconds to reach
a plateau. This inactivation behavior was biphasic and its time
constants were not dependent on light intensity, unlike the acti-
vation time constant. Finally, when the light was switched off, the
current decayed back to baseline with a time course that was well
described by a single exponential with a 10 ms time constant.

Figure 1A depicts inward currents induced by a light pulse
of moderate intensity (approximately 3 mW/mm2 for 10 ms) in
a cultured hippocampal neuron transduced with ChR2. Even
such a weak light pulse was able to elicit an action current, as
the axon escaped the voltage-clamp (Figure 1A, black line). The
ChR2 photocurrent could be isolated, by blocking Na-channels
with tetrodotoxin (Figure 1A, red line).

To achieve an improved characterization of the photocurrent
time-course, we systematically analyzed recordings over (non-
spiking) transfected kidney cells (Figure 1B) using a very large
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range of light power densities for the characterization of ChR2
activation and inactivation kinetics. We found that the peak and
steady state photocurrent do not increase monotonically with
light power density. A maximal peak current is achieved around
10–20% of the maximum power density (see section Discussion).
For applications, where such power densities can be attained, for
instance with a laser or a strongly focused LED, a careful tuning
of the applied light intensity could thus potentially reduce the
minimum transduction rate needed to efficiently drive the local
oscillations in a target area.

As detailed in section Materials and Methods, it was possible to
capture the time-course of the evoked ChR2 current with a single
conductance-based model with light-dependent parameters. The
simulated photocurrents generated by the model in response to a
single square pulse of light lasting 3 ms are shown in Figure 1C
for various light intensities (corresponding to the typical short
pulse length used in the simulations of next sections). As evident
from Figure 1C, our data-constrained model was able to cap-
ture the non-monotonic dependence of peak photocurrent on the
light intensity, leading to the largest peak photocurrent for a light
intensity of approximately 18% the largest deliverable intensity
Wmax.

SPIKING NETWORK MODELS OF TRANSDUCED OSCILLATING AREAS
To study the response to light stimulation of systems involving
transfected neuronal areas, we simulated the activity of simple
canonic circuits composed of just one local area or of two local
areas mutually coupled with equal strength. Each area was mod-
eled as a large network of randomly interconnected excitatory and
inhibitory neurons. As shown in Figure 2A, a fraction of these
excitatory and inhibitory model neurons were equipped with
ChR2 photoconductances, inducing depolarization in response to
simulated light stimulation.

For most of the analyses reported in this study, we adopted
within each local area strong and delayed inhibition and a suffi-
ciently strong background drive (see Table 2). With such a choice
of parameters, local circuits underwent—through an “ING”-
type (i.e., “interneuron-generated”) mechanism (Whittington
et al., 2000; Brunel and Wang, 2003; Brunel and Hansel, 2006;
Tiesinga and Sejnowski, 2009) a marked and persistent oscil-
latory activity, well visible in the traces of a LFP-like signal.
The collective frequency of oscillation was in the gamma range.
Since driving was provided by background Poisson noise, the
spiking activity of individual neurons was very irregular and
characterized by a weaker firing rate (cf. Figure 2B). Weak
pairwise correlations between spike trains coexisted thus with
stronger pairwise correlations between membrane potential fluc-
tuations (Yu and Ferster, 2010; Battaglia and Hansel, 2011). While
inhibitory connections were confined within each local area,
excitatory neurons could additionally establish long-range con-
nections between distant local areas (Figure 5A). In this case,
the gamma oscillations generated by each local circuit were
set into one of many possible multistable phase-locked states
(Figure 5B).

The dynamical features of the simulated neural activity,
including in particular its degree of oscillatory synchrony,
depended sensibly on the noisy drive to the network and on the

A
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Transduced

B

#1

#100

Spikes

“LFP”

40 ms

FIGURE 2 | Model of a ChR2-transduced population. (A) Graphic cartoon
of a randomly-connected network of inhibitory and excitatory spiking
neurons. In order to model the effects of local ChR2 transduction a variable
fraction of the neurons is endowed with a ChR2 photoconductance. (B)

Sample activity from the local circuit model of panel (A). Due to strong and
delayed recurrent mutual inhibition, the network undergoes a collective
oscillatory activity with a frequency in the gamma range. Even when
oscillations at the population level are very regular (see an example
“LFP”—i.e., average membrane potential—time series), individual neurons
spike very irregularly with a much lower firing rate (see raster plot of the
activity of 100 excitatory neurons).

strength of local inhibition. For increased drive intensity and/or
stronger inhibitory interactions, a smooth transition occurred
toward a dynamic regime characterized by elevated collective
synchronization (Figure 3A). In this synchronous regime, the fre-
quencies of the network oscillation were in the gamma range,
varying between 40 and 70 Hz (Figure 3B), while the average fir-
ing rate of individual excitatory neurons varied between 1 and
3 Hz (Figure 3C) and of inhibitory neurons between 2 and 7 Hz
(Figure 3D).

Starting from a very wide range of parameters including the
probability of inhibitory connections and the strength of the
external driving force (Figure 3), oscillatory synchrony can be
robustly boosted by enhancing the external drive to the net-
work. Qualitatively reproducing existing experimental findings
(Adesnik and Scanziani, 2010; Akam et al., 2012), our simulations
showed that slowly ramping or constant low-intensity optoge-
netic stimulation can be used to “switch on” a markedly oscil-
latory behavior. As shown by Figure 3E a network with poorly
synchronous activity can be optogenetically driven toward higher
oscillatory synchrony, as evident not only from LFP spectrograms
but also visually from LFP traces.

In the following, we will mainly consider model networks
tuned to generate strong LFP gamma oscillations. However, such

Frontiers in Neural Circuits www.frontiersin.org April 2013 | Volume 7 | Article 49 | 8



Witt et al. Precisely-phased optogenetic stimulation

A

C D

B E

0 2 4 6 8
0

0.5

%
 W

Time (s)

0

0.5

1.0 P
ow

er (a.u.)

10

0 2 4 6 8 10
Time (s)

0 Hz

50 Hz

100 Hz

“LFP”

Light

0.2 0.60.4

2

6

4

ν no
is

e 
(k

H
z)

PI

E firing rate

0

5

10

H
z

0

5

10

H
z

0.2 0.60.4

I firing rate

PI

0.2 0.60.4
PI

30

50

80

H
z

Collective freq.Synchrony

0

0.4

0.8

χ

0.2 0.60.4
PI

2

6

4

ν no
is

e 
(k

H
z)

FIGURE 3 | Driving the network toward coherent oscillations. The
dynamical regime of a neuronal population depends on the strength of
local inhibition (parameterized by the probability pI of inhibitory
connections) and on the strength of an external driving force
(parameterized by the rate νnoise of background inputs). Shown are the
synchronization index (A) which has values in the unit interval (0
corresponds to asynchronous and 1 to perfectly synchronous dynamics);
the oscillation frequency of collective activity (B); and the average
firing rates of excitatory (C) and inhibitory (D) neurons. All four quantities

are presented in their dependence on the probability of inhibitory
connections, PI , and the rate of background noise input, νnoise. (E)

Constant or slowly ramping optogenetic stimulation increases the
external drive to a neuronal population. This results in intensified
collective oscillations and enhanced synchronization at the population
level. From top to bottom: LFP time-series (purple) observed during a
slowly ramping photostimulation (green); the associated spectrogram
(graph at the bottom) indicates the development of highly coherent
gamma oscillations as an effect of continuous photostimulation.

a choice is not an arbitrary restriction. Indeed, high synchrony
regimes—either spontaneously emergent or induced artificially
by continuous photostimulation—are particularly suited for
analyses of phase shifting and locking.

SHIFTING THE PHASE OF AN ONGOING LOCAL OSCILLATION
It is well known that the effect of a perturbation to an oscillat-
ing system depends on the phase at which the perturbation is
applied (Pikovsky et al., 2001). To explore the phase dependency
of light stimulation, we applied simulated stimulation pulses
with different durations Tlight to local populations with different
transduction rates PChR2 (Figure 4). Light intensity was always
set to the optimum value of Wlight = 18% Wmax, which led to
maximum evoked peak photocurrents.

For all the explored conditions, we always found strongest
effects on the phase of an ongoing oscillation when the pertur-
bation was applied at a phase half-way between the trough and
the peak of the collective population oscillation (Figure 4B). In
this case the phase of the perturbed oscillation was advanced
with respect to the unperturbed case (Figures 4C,D). Short pulses
lasting 1 or 3 ms led only to phase advance effects. As shown
in Figure 4C, phase advances of the order of one quarter of a
cycle could be achieved using such short pulses, over a very wide
range of transduction rates, going from very high (100%) down
to moderate (25%). Noticeable phase advance effects (although
reduced to just one tenth of a cycle) could even be detected for
transduction rates as low as 5%.

As displayed by Figure 4D, longer stimulation durations also
led to phase lagging effects. These effects occurred in different

ranges of perturbation application phases than for phase advanc-
ing effects. However, phase lagging effects were always weaker
than phase advancing effects. For instance, for a transduction rate
of 25%, pulses lasting 10 ms could induce phase advances of over
a quarter of cycle, but only phase laggings of less than one tenth
of cycle.

The positive peaks of the phase response curves (PRCs) plotted
in Figures 4C,D were aligned across all conditions. The strongest
phase shifting effects were always observed when the perturba-
tion was applied in proximity of the phase φ = 0.17. We also
mention that for the short stimulation duration used, the evoked
photocurrent was dominated by the fast activation time-course.
Inactivation played no role in determining the response. As a mat-
ter of fact, the effect of the fast initial rise of the photocurrent was
to evoke a spike in the transduced neurons, as in panel 1A, and
additional synchronous spikes evoked in a subpopulation of cells
were the dynamic cause of the induced phase shift, as in Battaglia
et al. (2012).

PERTURBING PHASE RELATIONS BETWEEN DIFFERENT OSCILLATING
POPULATIONS
After the controlled shifting of the phase of a local oscillation, we
explored whether precisely phased stimulation could be used to
manipulate phase relations between different local oscillating cir-
cuits. To do so, we considered a canonic circuit of two coupled
oscillating areas, interconnected by long-range random excitatory
projections (Figure 5A). In general, when driven into a syn-
chronous regime, motifs of a few local areas mutually connected
with equal strength can give rise to different phase-locked states.
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FIGURE 4 | Phase shifts induced by photostimulation. (A) Examples of
phase shifts induced by a single light pulse. Top: the phase (blue curve) of
the oscillation of the transduced population is shifted by light perturbation
(illustrated as a lightning symbol with green background) and, afterwards
(magenta curve), remains advanced with respect to the unperturbed
oscillation (gray curve). Bottom: such a phase shift cannot be seen when
the timing of the light perturbation corresponds to other differently chosen
oscillation phases. (B) Waveform of the oscillating LFP in dependence on
the Hilbert phase. Shown are 500 oscillation cycles (gray) of a LFP and
their average waveform (blue). By our conventions, the phase ranges in
the unit interval. The maximum of the LFP is obtained for (Hilbert) phase

values close to 0.3 while the minimum occurs for phase values close to
0.6. (C,D) phase shifts caused by light pulses applied at different (Hilbert)
phases of the ongoing LFP oscillation. An optimal light intensity of 18%
Wmax is used. (C) Dependence of the phase shift on the transduction rate
PChR2 of the population (for a stimulus duration Tlight = 3 ms). (D)

Dependence of the phase shift on the stimulus duration Tlight (for a fixed
transduction rate of PChR2 = 25%). Bold characters in the legend denote
the “reference” phase shift, i.e., PChR2 = 25% and Tlight = 3 ms of
stimulus duration (green curves). In panels (C) and (D), error bars are
standard deviation of the phase shifts obtained for different perturbations
applied in a same time-bin.

These states are associated to different patterns of inter-areal
phase relations, which are maintained in a relatively stable man-
ner over long time intervals (Battaglia et al., 2007, 2012).

The specific bi-areal network of Figure 5A generated two
multi-stable phase-locked states. In the unperturbed system,
background noise caused spontaneous switching between these
two states (i.e., from one configuration of inter-areal phase rela-
tions to another). The result of these stochastic fluctuations was a
clearly bimodal distribution of the instantaneous phase difference
between the two areas (Figure 5B). The actual phase relations
in the phase-locked modes depend ultimately on the PRC of
the coupled populations. As discussed in Battaglia et al. (2007,
2012), the PRCs associated to our network model are such that
they lead to out-of-phase locking for sufficiently strong inhibi-
tion (unless long-range synaptic delays are tuned ad-hoc within
narrow intervals associated to in- or anti-phase configurations).
Out-of-phase locking is found also in more general systems of
pulse-coupled neurons (or neuronal masses) under certain con-
ditions on synaptic delays (Woodman and Canavier, 2011; Wang
et al., 2012).

In out-of-phase locked modes, it is always possible to iden-
tify one area (leader) whose oscillations lead in phase over the
oscillations of the other area (laggard). This leads to anisotropic
directed functional influences between local circuits (Battaglia
et al., 2012), in agreement with the communication-through-
coherence hypothesis (Fries, 2005), despite the fact that inter-
areal connections are reciprocal and of equal strength in both

directions. Switching between alternative phase-locking con-
figurations would thus correspond to changes in the domi-
nant direction of inter-areal functional influences. Spontaneous
switching was a relatively rare event in the high synchrony
regime explored here (the average waiting time for sponta-
neous switching was over 60 periods). Nevertheless, optogenetic
stimulation could be used to actively trigger switching events
(Figure 5C).

Inter-areal phase relations after the application of a single
perturbation pulse were compared to the average locked phase
difference before the pulse itself. We studied how both transient
short-term and persistent long-term effects depend on the phase
of perturbation onset. Figure 5D shows the probability that the
average inter-areal phase difference for the five cycles directly fol-
lowing the perturbation has increased or reduced by at least 10%
relative to the average phase difference prior to the perturbation.
For a wide range of phases of stimulation onset, such proba-
bility was larger than 50% and remarkably larger than the level
accounted for by spontaneous fluctuations of the inter-areal phase
difference.

The dependency on the perturbation phase was more pro-
nounced for long-term effects. Figure 5E shows the probability of
a switch in phase locking, i.e., that the average inter-areal phase
difference over a long time window beginning ten cycles after
the perturbation has changed its sign (note, indeed, that the two
phase-locked configurations of the simulated bi-areal motif are
characterized by average phase-differences of �φ = ±�φlocked,
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FIGURE 5 | Local photostimulation can reorganize long-range

phase-locking patterns. (A) Cartoon of two local populations (each of
them with an individual background color: orange and violet) coupled by
long-range excitatory connections. (B) Both populations oscillate in a
non-regular way but with the same main frequency. A histogram of the
instantaneous phase difference is shown for a pair of very long LFP time
series (over 50,000 oscillation cycles). This distribution is clearly bimodal,
indicating the existence of two favorite modes of approximate out-of-phase
locking (with the orange population leading in phase over the violet, or the
other way around). (C) LFP traces of two phase-locked populations. The
application of a light pulse stimulation (denoted by a green background and
a lightning symbol) can induce switching to another phase-locked mode.
This is shown by the qualitative changes between the crosscorrelogram
(XC, computed over 500 ms) of the two LFPs before (left) and after (right)
light stimulation. Note the changed sign of the lag of the highest XC peak,

which corresponds to an inversion of the direction of functional
connectivity. (D) Probability of changing the average inter-population phase
difference of more than 10% during five oscillation cycles after light
stimulation (PChR2 = 25%, Tlight = 3 ms). This probability is presented by a
polar histogram in dependence on the phase of the onset of the light
stimulation (with respect to the leader population). The red circle indicates
the probability of similarly large spontaneous phase shifts (i.e., without
photostimulation). (E) Phase difference averaged over 50 cycles starting 10
cycles after the light pulse. A switching is considered as successful if the
sign of this average phase difference has changed (see panel B). The
probability of successful phase switching is given by a polar histogram, as
in panel (D). The red circle indicates the probability of spontaneous
switching in the case of non-stimulated activity. Ignoring transient effects,
switching can be induced with high probability only if the perturbation is
applied within a specific narrow phase range.

cf. Figure 5B). In contrast to short-term shifting, the probability
of actual switching was concentrated in a narrow phase interval
centered on the peak of the single-area PRC, as expected from
theory (Battaglia et al., 2012). The switching probability for other
phase bins dropped quickly to the level of spontaneous switching.

Our simulations show that the peak probability of
optogenetically-induced switching could rise above 60% even
for small transduction rates of 25%. However, this happened
only if the phase of the perturbation onset was precisely selected.
Indeed, the comparison of Figures 5D,E shows that many of the
short-term shifting effects observed for randomly phased pertur-
bations did not develop into lasting changes in phase-locking. To
conclude, we would like to mention that a similar pulse-induced
reorganization of inter-areal phase relations could be achieved
even when the perturbation was applied to the laggard rather than
to the leader area [not shown, but see (Battaglia et al., 2012)].

CLOSING THE LOOP
As discussed in the last section, the controlled switching of inter-
areal phase-locking—and, hence, of functional connectivity—
required perturbations optimally phased with respect to ongoing

oscillations. To increase the probability to induce switching, the
timing of perturbation must thus be determined based on phase
information extracted from recordings of the recent popula-
tion activity. We suggest here a possible closed-loop protocol for
the online prediction of the timing of stimulation achieving an
optimal switching rate. The workflow of the proposed idealized
experiment is outlined by a schematic time bar (Figure 6A) and
a corresponding flow chart (Figure 6B). The potential perfor-
mance of such protocol was studied by simulating the induction
of switching in the bi-areal network of Figure 5A.

In contrast to this well behaved in silico model, oscillatory
coherence in vivo or in vitro recordings is usually transient and
confined to specific epochs. There is nevertheless experimental
evidence that epochs of phase synchronization at fast gamma fre-
quencies can persist over several hundreds of ms in vivo (Varela
et al., 2001; Pesaran et al., 2002; Gregoriou et al., 2009; Bosman
et al., 2012; Grothe et al., 2012). Detecting the onset of one of such
oscillatory epochs was precisely the aim of the testing stage, in
which LFPs in both areas of the bi-areal motif were recorded and
their spectral characteristics extracted in real-time to verify that
LFP power and inter-areal coherence with respect to a common
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FIGURE 6 | Closed loop strategy for precisely phased

photostimulation. (A) Schematic illustration of the proposed experimental
protocol. During the testing stage (light blue) the LFP is recorded and
tested for sufficiently strong power in the gamma-range. If the gamma
band power is high enough, then a bandpass-filter is tailored to its peak
frequency (light gray arrow). In the monitoring stage (red), phases are
extracted from the band-passed LFP. Based on these observations, during
the prediction stage (yellow), lasting only a very few oscillation periods, a
linear model of phase evolution is extrapolated to predict the time at which
the target phase of the oscillation will occur next. A light pulse is then
delivered at this predicted time (green background with lightning symbol).
(B) The workflow of the closed loop experiment is presented as a flow
chart, with the left swim lane presenting computation and decision steps
and the right swim lane showing recording and stimulation of the
transfected neuronal population. Curved green arrows highlight the
closed-loop nature of the workflow, i.e., the light pulse stimulation delivered
at a time depending on the phase evolution of LFP oscillations during the
monitoring window.

frequency (band) rose above a minimum threshold (see section
Materials and Methods).

The monitoring stage was entered immediately after the detec-
tion of an epoch of reliable inter-areal coherence. During this
monitoring stage, LFP signals were recorded, filtered in real
time through a low-order band-pass filter with a pass frequency
optimized during the testing window and, finally, stored.

A fast online analysis of the phase dynamics of the stored LFP
of only the target area was then performed during the follow-
ing prediction stage. Its aim was to predict the timing of one of
the next occurrences of the target phase, solely from the phase
information acquired during the monitoring stage. To keep the
prediction window as short as possible, we propose to use com-
putationally cheap and consequently linear techniques for phase
extrapolation. Indeed, the “real” phase values (given by Hilbert
Transform of the LFP signal, see section Materials and Methods)
and a simple linear descriptor of the phase are strongly corre-
lated (Figure 7B) and non-linear effects can be neglected in a
first-order approximation.

The phase-locking between LFPs recorded after the stimula-
tion application was finally compared with the locking existing
before the stimulation to verify the successful induction of state
switching.

Figure 7 analyzes the simulated performance of the proposed
protocol, when applied to in silico recordings from the bi-areal
network motif of Figure 5. Figure 7C shows how the predicted
onset phases of light stimulation concentrate around the actual
target phase given by the peak PRC value of φtarget = 0.18.
The scattering of predicted phases is computed by hypothesiz-
ing prediction stages with different possible (short) durations.
This estimate was done with two prediction schemes which both
have fast implementations: a simple linear extrapolation based on
the average period length and a first-order autoregressive model
[AR(1)] (see section Materials and Methods), accounting for cor-
relations between the durations of successive oscillation cycles, at
least approximately. For increasing lengths of the prediction win-
dow, the median and the average value of the predicted Hilbert
phase remained very close to the target (Figure 7C). However, the
distribution of extrapolated phase values broadened, as indicated
by their increasing dispersion. Nevertheless, for a prediction win-
dow lasting three oscillation cycles—a sufficiently long time to
perform the fast computation required for linear extrapolation
(see section Discussion)—the interquartile range of predicted
phase values was still contained in the width of the reference PRC.
Consequently, we still expect an enhanced effectiveness of light
stimulation pulses applied at the inferred time tON, compared to
randomly timed pulses.

The error made in predicting a target phase depends neces-
sarily on the quality of the recorded oscillation. The dynamical
regime of the simulations in Figures 5 and 7C was strongly syn-
chronous. As previously discussed, the degree of synchrony of
the collective response depends on the external driving force to
the network and on the strength of local inhibition (Figure 3A).
We performed phase prediction based on recordings of simu-
lated dynamics with different degrees of synchrony. As shown in
Figure 7D, stronger synchrony was associated to smaller predic-
tion errors. Interestingly, prediction errors remained moderate
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FIGURE 7 | Online prediction of the phase of stimulation onset. (A) The
period length of LFP oscillations fluctuates from cycle to cycle and has a
broad-range uni-modal distribution (here shown for period lengths as
estimated from the Hilbert phases). (B) Hilbert phase versus linear phase for
a sample LFP time series. To speed-up the computation of tON in the
prediction stage, the Hilbert phase can be approximated by a linear phase,
since, as here shown, they are strongly correlated and the mild static
non-linearity fLH linking them can be neglected. (C) Distribution of the phase
of tON predicted by two different methods and for different lengths of the
prediction window (measured in oscillation cycles). Shown are histograms
and box plots (box giving median and interquartile range, white circle the
mean value and whiskers the 5-th and 95-th percentiles) of the predicted
phase of light stimulation φ(tON) for two prediction methods—pure linear
extrapolation based on the average period length (green) and first order
autoregressive [AR(1)] models (orange)—applied to period lengths recorded

during the monitoring stage. Both the median and the mean of predicted
Hilbert phase are in good agreement with the exact target phase (leading
with highest probability to a phase shift) with a dispersion not larger than the
width of the positive part of the reference phase-shift response curve
(reproduced from Figures 4C,D on the top of the panel). (D) The prediction
error (i.e., the standard deviation of the inferred phase φ(tON) of
photostimulation onset) depends on the synchronization level of the neuronal
population activity (cf. Figure 3A). The prediction error based on linear
extrapolation (measured in units of average oscillation period lengths) is
shown for different probabilities of local inhibitory connection pI and
background noise rates νnoise. Larger synchronization leads to better
prediction. (E) The ratio of the prediction error based on the AR(1) model and
the prediction error based on linear extrapolation in dependence on the same
parameters. For intermediate synchrony levels, the prediction error can be
consistently reduced by the use of an AR(1) model.

even when considering regimes “at the edge of synchrony.”
Furthermore adopting a more elaborate AR(1) approach yielded
the strongest performance improvement with respect to simpler
linear extrapolation precisely for these intermediate synchrony
values (Figure 7E).

In contrast, prediction errors associated to weak synchronous
dynamics were larger and even the AR(1) approach failed to
improve over linear extrapolation in these cases. However, in
these regimes, the dynamics rarely displayed long-lasting oscil-
latory epochs and the probability of spontaneous switching was
comparable to the one of induced switching, thus invalidating
our analysis protocol. In these cases, therefore, continuous photo-
stimulation should be used to enhance the degree of coherence of
the coupled populations activity (analogously to Figure 3E).

DISCUSSION
FROM POWER BOOSTING TO RELIABLE PHASE CONTROL
Optogenetic stimulation has been successfully applied to boost
the power of fast neural oscillations in vivo and in vitro. In
Cardin et al. (2006), pulsed optogenetic stimulation in vivo was
used to highlight the existence of a resonance at gamma range
frequencies of local inhibitory cortical microcircuits. Adesnik
and Scanziani (Adesnik and Scanziani, 2010) and Akam et al.

(2012) experimented with ramped light stimulation to induce
long-lasting oscillatory episodes in slices.

Beyond controlling oscillation power, the experiments by
Akam et al. (2012) are closely related to the first part of our
model study. They used 5 ms-long light stimulation pulses to shift
local oscillation phases and quantify the phase response curves
(PRCs) of oscillations in hippocampal slices, analogously to the
simulated experiment of Figure 4. The hippocampal PRC mea-
sured by Akam et al. (2012) was distinctly biphasic, leading to
phase advancement or phase delaying, depending on the phase
of application of the stimulation. Such biphasic PRC shape is
in qualitative and approximately in quantitative agreement with
the PRCs extracted from our local population model for stimu-
lation pulses of comparable lengths (cf. Figure 4D, orange curve
for 5 ms-long pulses and red curve for 10 ms-long pulses).

Interestingly, however, the PRCs extracted from our model
for shorter stimulation durations lacked phase-delaying regions
and displayed only a narrow phase range leading to consistent
phase advancement. Furthermore, they were characterized by a
relatively broad range of application phases for which light stim-
ulation was completely ineffective. These features of the PRC
shapes are robustly obtained if the circuit mechanism for the
generation of oscillations dominantly relies on delayed mutual
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interactions within interneuronal networks (Battaglia et al., 2007,
2012). One can actually use very different neuronal models to
obtain oscillatory and phase-locking behaviors that qualitatively
match those observed. For instance, spatially structured networks
of integrate-and-fire neurons (Battaglia and Hansel, 2011) have
dynamical regimes that tightly correspond to those of homo-
geneous networks of the conductance-based neurons (Battaglia
et al., 2007) that we adopt here. We predict therefore that sim-
ilarly looking PRCs could be obtained in the case of Kainate-
induced in vitro oscillations in slices, in which excitatory neurons
are entrained by a coherently oscillating interneuronal popula-
tion but are not actively involved in the generation of the local
rhythm (Fisahn et al., 2004; Bartos et al., 2007; Andersson et al.,
2012).

Narrow phase ranges associated to large PRC values reduce
the probability of inducing stable phase shifting by applying
stimulation at arbitrary times. However such narrow intervals
become a desirable resource when optogenetic stimulation is pre-
cisely phased conditional to ongoing oscillations, as executable
in perspective with a closed-loop setup. Indeed, PRC shapes
like the reference PRC discussed in Figure 3 (green curve for
PChR2 = 25%, and Tlight = 3 ms light-pulses) could allow an
“all-or-none” control of phase shifting, in which strong effects
are obtained only if the stimulation is applied within a spe-
cific target range of phases, but in which undesired switch-
ing triggered by noise or by a misapplied input is largely
suppressed.

A SIMPLE ChR2 MODEL CAPTURES NON MONOTONIC
PHOTORESPONSE
The light-activated cation channel ChR2 activates more rapidly
and supports larger peak current amplitudes for increasing light
intensities. Therefore, we speculated that brief, high intensity light
pulses would provide the optimal stimulation for our purposes.
To our knowledge there were no studies that systematically docu-
mented ChR2 current responses for stimuli with light intensities
above 20 mW/mm2 (Ishizuka et al., 2006; Ernst et al., 2008; Lin
et al., 2009). At this intensity the activation rate is still light sensi-
tive and we aimed to increase it even more using light intensities
as high as approximately 130 mW/mm2. While the activation rate
did indeed decrease further, the fact that the peak current ampli-
tude decreased for intensities above approximately 20 mW/mm2

came to us as a surprise (Figures 1B,C). This behavior has not
been reported before, to the best of our knowledge, though the
measurements published in Lin et al. (2009) hint at a decreasing
peak amplitude for the highest intensity applied there, which was
approximately 19.8 mW/mm2.

Such phenomenon might be reminiscent of the photoreactive
P480b intermediate state, which can be converted by blue light to
the early P500 intermediate state. This transition was proposed as
a shortcut of the photocycle from a spectroscopic study of ChR2
channels (Ritter et al., 2008). Since previously published models
of ChR2 currents (Nikolic et al., 2006, 2009) could not account
for this non-monotonic light response, it was necessary to deploy
a novel model. Our simple conductance-based model correctly
captures the existence of an optimal light intensity for photostim-
ulation, without need to incorporate elaborate details about the

ChR2 molecular structure and dynamics. Note that the applica-
tion of our model is not limited to brief light pulses, but can also
predict light-induced conductance in response to ramps of light
(cf. Figure 3E).

Our model is also accurately data-constrained. To calibrate
model parameters, light induced changes of ChR2 conductance
were measured in voltage clamp. If the voltage can be clamped
throughout a cell, any changes in the whole-cell current can
be attributed to ChR2 conductances. In differentiated neurons,
however, this perfect voltage control cannot be attained. This is
obvious from the recording in Figure 1A (black trace), where
the activation of ChR2 depolarized the axon sufficiently to
activate voltage-dependent sodium channels, which created an
unclamped spike. Even when sodium channels are blocked, the
conditions are not optimal for a precise biophysical characteriza-
tion. Using essentially passive and electrotonically compact cells,
such as HEK-293 cells (Nikolic et al., 2009), provided optimal
recording conditions (Figure 1B). The smaller amplitude of the
photocurrents in these cells reflected differences in cell surface
and expression levels, while the biophysical properties of ChR2
were most likely identical to those expressed in neurons.

TECHNICAL FEASIBILITY
As discussed above, the extraction of PRCs describing the col-
lective response of a transduced neuronal population to light
stimulation was already achieved in vitro (Akam et al., 2012).
Our modeling study suggests that a similar approach could be
successfully applied in vivo, since phase-shifting effects can be
robustly obtained with high and low transduction rates, covering
the wide range achievable with different experimental techniques
(Adamantidis et al., 2007; Petreanu et al., 2007; Wang et al.,
2007; Takahashi et al., 2012). The success rate will depend on
a suitably tuned light intensity and on the ability to select the
phase of the stimulation onset conditional on ongoing oscillation
dynamics. Another factor that might enhance the controllability
of phases is the use of faster variants of Chr2, such as ChETA
(Gunaydin et al., 2010) and the E123T/T159C (Berndt et al.,
2011) mutants.

A closed-loop approach is required for determining the opti-
mal timing of pulse stimulations. Figure 7C shows that if the
time required for the prediction stage is of the order of a
few oscillation cycles, then the discrepancy between the tar-
get and the actual perturbation phase is comparable to the
width of the peak of the PRC. Consequently the resulting
phase shifting should remain close to the optimum. The pre-
diction strategy that we propose (Figure 6) is based uniquely
on a small number of linear computations, which are par-
ticularly suited for ultrafast (millisecond scale) implementa-
tion on reconfigurable hardware chips (Zhuo and Prasanna,
2008; Sadrozinski and Wu, 2011) or on GPU architectures
(Owens et al., 2008; Volkov and Demmel, 2008) on which
FFT algorithms can be efficiently implemented (Bhattacharyya
et al., 2010). As a matter of fact, hardware implementations
of period extraction (Waskito et al., 2010) and autoregres-
sive modeling of biologic signals (Marinkovic et al., 2005;
Kim and Rosen, 2010) have already proven to be order(s)
of magnitude faster than on conventional CPUs. Taking into
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account these high levels of performance and the approx-
imations we propose to implement, a length of the pre-
diction window of ∼50 ms that corresponds to approxi-
mately three cycles of a 40–70 Hz rhythm appears completely
realistic.

Our simulated oscillations constitute an idealized model
for neuronal rhythms measured in vivo or in vitro. In our
model, especially when the synchronization index is very
high, cycle-to-cycle period length fluctuations are positively
correlated with weak to intermediate correlation strength.
In real neuronal oscillations, however, adaptation or other
phenomena might introduce more complex correlation pat-
terns between the lengths of different periods. Nevertheless,
such correlations might still be captured by AR(1) mod-
eling, as hinted to by the better performance of AR(1) in
dynamic regimes at the “edge of synchrony” (Figure 7E),
in which period length fluctuations are more strongly
correlated.

Under specific experimental conditions, long-lasting oscil-
latory epochs might be a rare event. It would then become
difficult to meet the conditions for the applicability of our pro-
tocol (i.e., the testing stage of Figure 6 might never be passed).
In this case, continuous optogenetic stimulation could be used
to stabilize and boost oscillations, as simulated in Figure 3E.
Then, similarly to the approach of Akam et al. (2012), pre-
cisely timed “kicks,” superposed on this continuous light stim-
ulation, could be used to perturb the instantaneous phase. In
this sense, optogenetic stimulation is more promising than elec-
tric micro-stimulation. First, it allows combining continuous and
pulsed stimulation within a single setup. Second, it can con-
trol with high selectivity the degree of synchronization, not only
by providing an unspecific drive to the entire network, but also
enhancing the drive to specific neuronal subpopulations, like for
instance FS-PV cells which provide the phasic inhibition cru-
cial for rhythm generation (Cardin et al., 2006; Sohal et al.,
2009).

Finally, we are optimistic that the network models of trans-
duced neural populations that were pioneered by Talathi et al.
(2011) and further developed in this study are powerful tools,
which will be increasingly adopted to conduct, optimize and
accelerate the design and the calibration of closed-loop optoge-
netic experimental protocols.

PROBING PHASE-CODING AND
COMMUNICATION-THROUGH-COHERENCE
Reliable optogenetic manipulation of the phase dynamics of
oscillating neuronal populations would open the way to an
interventional exploration of phase coding schemes. In the
phase coding framework, it is argued that the phase of spikes
relative to a “reference clock”—paced either by a stimulus-
locked (De Charms and Merzenich, 1996; Arabzadeh et al.,
2006) or an internally-generated oscillation (O’Keefe and
Recce, 1993; Siegel et al., 2009)—carry information, which
is independent from and multiplexed with the one conveyed
by rate fluctuations (Montemurro et al., 2008). Anticipating
or delaying the ticks of such a “reference clock,” as the

one putatively framed by slow cortical oscillations (Kayser
et al., 2012), should perturb the decoding of phase-based
representations.

Beyond the control of the phase of a local oscillation,
inter-areal phase correlations could be disrupted transiently by
unspecific optogenetic stimulation (Figure 5D). Furthermore,
precisely-phased perturbations determined within a closed-loop
system could induce persistent switching between alternative
phase-locked dynamic patterns (Tiesinga and Sejnowski, 2010;
Battaglia et al., 2012). In this sense, the realization of an exper-
iment inspired by the idealized analysis of Figure 4, would pro-
vide a direct testing of the communication-through-coherence
hypothesis (Fries, 2005). More specifically, it would allow exper-
imental testing of whether different sets of inter-areal phase
relations lead to different inter-areal functional interactions
and to an altered balance between bottom-up and top-down
information flows, as predicted by theory (Battaglia et al.,
2012).

A reorganization of phase relations between distant neu-
ronal populations might have perceptual or behavioral conse-
quences. Selective alteration of inter-population phase relations,
for instance between areas FEF and V4 (Gregoriou et al., 2009)
or areas V1 and V4 (Grothe et al., 2012), might be used to sup-
press or boost attentional effects or even to emulate reorienting
of attention. Furthermore, our theoretical investigations suggest
that stimulation applied locally to a single area might induce dis-
tributed reorganization of phase relations between other more
distant areas (Battaglia et al., 2012). Closed-loop optogenetic
stimulation might then in perspective be used to trigger system-
level switching between global brain states (Deco et al., 2009;
Freyer et al., 2011).
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CTC Communication through coherence. 12, 14, 15

EEG Electroencephalogram. 16

EI Excitatory Inhibitory networks.. 122, 124
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