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Summary 

Ecosystem functions of tropical mountain ecosystems and their ability to provide ecosystem services 

are particularly threatened by the combined impact of climate and land-use change. Carbon and 

nutrient cycling are fundamental ecosystem function that control C storage and pools, provide plant 

nutrients and regulate microbial and faunal activity. Soils, as the linkage between abiotic and biotic 

components of an ecosystem, are strongly affected by changes in these cycles. To understand the 

impacts of climate and land-use changes on biodiversity and associated ecosystem services and 

stability on Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic 

controls on ecosystem soil C and nutrient fluxes are needed. Therefore, this research described and 

quantified cycles of C and major nutrients (N, P, K, Ca, Mg, Mn, Na, S and Si) on pedon and stand scale 

along a 3400 m elevation gradient and across three stages of land-use intensity. The first objective was 

to assess the effects of land-use change and climatic variation along the elevation gradient, on litter 

fall, litter quality, litter decomposition, and C stabilization in soil. The second objective was to use 

qualitative indicators (composition of soil organic matter and microbial communities) to relate pool 

changes to the underlying processes. The third objective was to link spatial variability and 

characteristics of the aboveground biomass to belowground pools and processes under contrasting 

climatic conditions in alpine and colline ecosystems. 

Twelve research sites (0.25 - 1 ha) were selected between 800 and 4200 m a.s.l., representing natural 

forests, savanna and alpine vegetation as well as traditional subsistence and plantation farming. 

Litterfall was measured every two weeks over one year and inputs of C, macro and micronutrients was 

calculated for a subset of these sites. Decomposition rates of native and standardized (TBI) litter were 

quantified and TBI indices for decomposition and C stabilization were used to assess seasonal 

variabilities. Annual patterns of litterfall and decomposition were closely related to rainfall seasonality 

and temperature. Leaf litterfall contributed 60-75% to total litterfall and decreased from 1900 to 2900 

m a.s.l. Within the same elevation range, annual litter decomposition decreased by about 25%. Further 

decrease of decomposition rates in (sub-) alpine ecosystems indicated a strong decline of productivity 

and turnover at 2900 m and above. Maxima of decomposition rates occurred between 1900 and 2500 

m and were linked to the seasonal homogeneity of temperature and moisture availability. At this 

elevation, litterfall, decomposition rates and C stabilization showed the least seasonal variation. 

Ecosystems below 1900 m were subjected to pronounced seasonal moisture limitation. Particularly C 

stabilization in savanna (950 m) was up to 23 times higher during the rainy season compared to the 

dry season. Above 2900 m, seasonality increased again with lower annual precipitation and greater 

temperature limitation during cold seasons. Land-use change from natural forests to agroforestry 

systems increased litter macronutrient content and deposition (N, P, K), thus enhancing 
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biogeochemical cycles. Carbon stabilization in these ecosystems and in the colline zone was reduced 

by about 30% by land-use intensification. Soil microbes in these ecosystems were less efficient in soil 

organic matter (SOM) decomposition but at the same time more demanding for new C sources. 

Topsoil samples (0-10 cm) were analyzed for C and N content, pH, microbial biomarkers and soil 

organic matter chemical composition (py-GC/MS). Total phospholipid-derived fatty acids (PLFA) 

content increased with elevation until Ocotea forest (2100 m), reaching a maximum of 2100 nmol g-1 

soil, followed by a decrease in (sub-) alpine ecosystems. Gram-negative bacteria abundance, 

accounting for 25-40% of total PLFAs, mainly determined this trend. Changes in the composition of 

microbial communities along the slopes of Mt. Kilimanjaro are a result of this climatic optimum and 

the consequent niche differentiation of certain groups. With increasing elevation and the harsh 

environmental conditions in the alpine zone above 4000 m (low temperature, low soil C and N 

contents), gram-positive bacteria are replaced by fungi. These variations were indirectly dependent on 

climatic factors, and mainly explained by changes in vegetation composition and soil parameters. 

Pyrolysis fractions (>280°C) quantitatively dominated the soil organic matter composition. The 

contribution of volatile compounds in SOM increased with elevation, indicating an increase of easily 

available SOM components. However, the increase of total SOM content at mid elevation is mainly 

determined by a more stable C pool (i.e. bound alkanes/-enes/-ols).  

Two intensive research campaigns were conducted in alpine Helichrysum and colline savanna 

ecosystems. Three different vegetation cover types in Helichrysum were characterized. For each cover 

type, soil C and N pools, gross N turnover and diurnal greenhouse gas fluxes were measured, On the 

savanna plain, six trees were selected (legume Acacia nilotica and non-legume Balanites aegyptiaca) 

and crown area was distinguished from open area. Carbon, N and δ13C in plant biomass and soil, soil C 

and N pools, water content, available nutrients, cation exchange capacity, temperature, pH, as well as 

root biomass and greenhouse-gas exchange were measured for each cover type. Shrub-covered 

patches in Helichrysum ecosystem had between 60% and 170% higher soil C and N compared to low-

vegetation patches. Higher amounts of aboveground litter promoted microbial growth, soil C 

stabilization and competition for N. This led to higher substrate availability and microbial biomass, and 

consequently higher respiration rates. Under savanna trees, soil C and N content, microbial biomass 

and N availability were about 40% higher than in open area. δ13C values in soil under the crown shifted 

towards the signal of tree leaves, suggesting that tree litterfall contributes 15% to SOM. These inputs 

increased microbial carbon use efficiency under the trees due to narrower C:N ratios compared to C4-

grass litter. Wide C:N ratios require microorganisms to dispose of the C surplus via increased 

respiration to achieve their optimum C:N stoichiometry. Therefore, CO2 efflux was 15% higher in 

grassland than under the trees. 
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Ecosystems at mid elevation (~2000 m) represent the interception zone of optimal moisture and 

temperature conditions throughout the year. High litter inputs and fast turnover control the C 

sequestration in these ecosystems, while climatic restraints on decomposition limit the C turnover in 

soils at lower (drought) and higher elevation (low temperatures). Soil organic matter chemistry in Mt. 

Kilimanjaro forests is strongly dependent on a precipitation and temperature equilibrium. High 

ecosystem productivity at mid-elevations leads to increased amounts of volatile compounds but at the 

same time increases stabile carbon pools. Land-use intensification decreases stabilization of new C 

inputs through higher microbial C demand and turnover. This increases C and nutrient cycles in 

agricultural compared to natural ecosystems. The variability of vegetation cover types controls 

substrate availability in Helichrysum and savanna ecosystems. Two contrasting processes control the 

effects on CO2 fluxes in both ecosystems: Carbon mineralization at Helichrysum sites is enhanced by 

higher substrate availability under vegetated patches. In contrast, dry season C fluxes in savanna are 

related to the litter substrate quality and microbial C-use efficiency.
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1 Extended Summary 

1.1 Introduction 

1.1.1 Background and Motivation 

Tropical climate and land-use change are two of the major issues mankind is facing in the 21st century 

(Alcamo 2012; Steffen 2004). Related processes are rapidly ongoing and occur in many dimensions. 

For the terrestrial ecosystems, this includes changes in the biogeochemical cycles of carbon (C), water 

and nutrients. Those changes have far reaching implications for sustainability, biodiversity, and 

ecosystem services, such as provision of water, food and biomass, erosion control and carbon storage 

(Kremen 2005; Chan et al. 2006). Effects of land use and climate on biogeochemical cycles and 

ecosystem properties in turn feed back on global changes (Bardgett et al. 2008). Such feedbacks to the 

climate system depend on the response of the natural vegetation and its ability to adapt and migrate, 

since shifts in vegetation strongly affect the biophysical and biogeochemical characteristics of the land 

surface (Higgins & Harte 2006; Gonzalez et al. 2010). Understanding those effects and feedback 

mechanism is crucial to predict future scenarios and mitigate negative impacts of climate and land-use 

change, especially in tropical ecosystems and montane areas (Pounds et al. 1999; Lambin et al. 2003). 

Tropical forests are among the ecologically most diverse and richest areas on Earth. They cover only 

about 13 % of the land surface but harbor more than half of the terrestrial species (Groombridge & 

Jenkins 2002). Also, they account for one third of the terrestrial net primary productivity (Saugier et 

al. 2001) and store roughly 25% of the terrestrial biosphere carbon (C) (Bonan 2008). This makes them 

a biome of major importance for research on biodiversity, ecosystem functioning and global C cycling 

(Brown 1993; Sayer et al. 2011). With their high belowground C sequestration potential, this is 

particularly true for mountain areas (Wilcke et al. 2008). Tropical mountains are exceptional 

ecosystems with huge climatic gradients and variations, and a large percentage of endemic species, 

which is why they are considered global hotspots of biodiversity (Gradstein et al. 2008). They are 

characterized by the frequent envelopment in orographic clouds, mists and related convective rainfall 

(Still et al. 1999). Especially cloud forests are an accumulation zone for the montane water tower, 

supplying lower elevation ecosystems with water in dry season and regulating floods and erosion in 

rainy seasons (Hamilton et al. 1995). An effect that is particularly important for the semi-arid East 

Africa. However, most research on ecosystem cycles and soil feedbacks has been focused on the 

Neotropics and South East Asia (Fisher et al. 2013), while Africa has received much less attention 

(Martin et al. 2012). 

Recently efforts increased to close this knowledge gap (Dawoe et al. 2010; Pabst et al. 2016; Pabst et 

al. 2013; Mganga & Kuzyakov 2014; Mganga et al. 2015; Nyirambangutse et al. 2016). These studies 
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significantly helped to increase our knowledge on specific above or belowground processes in 

Afromontane ecosystems. However, most of these studies concentrated on single factors or processes 

and studies including feedback mechanisms, e.g. Schrumpf et al. (2006), are still scarce. It is crucial to 

understand functioning and interaction of C and nutrient cycles in these ecosystems as a whole to 

estimate their vulnerability and predict future effects from climate and land-use change (Stuart Chapin 

III et al. 2009). 

1.1.2 Climatic control of ecosystem cycles 

Carbon and nutrient cycling are major processes that define ecosystem functioning, control C storage 

and pools, provide plant nutrition and regulate microbial activity (Marschner 2012; Kuzyakov & 

Blagodatskaya 2015). These functions are affected by climate variables (moisture and temperature) 

and geological properties (Schulze & Mooney 1993; Doetterl et al. 2015). While climate is the factor 

determining biome distribution on a large scale, ecosystem specific structure and cycles are 

additionally controlled by geogenic nutrient supply. Mt Kilimanjaro as a stratovolcano offers the 

chance to exclude one of these covariates and study climate effects on soils that developed from 

similar parent material and have a similar age. 

The elevation gradient of a mountain provides an ideal condition to investigate the response of 

biogeochemical cycles to climatic changes (Wang et al. 2016). Large variations of moisture availability 

and temperature occur successively along the slope, shaping ecosystem structure and affecting 

ecosystem cycles (Silver 1998; Hemp 2006a). Precipitation generally controls soil moisture and thus 

drought or water stress for plants and microorganisms (Boyer 1982; Manzoni et al. 2012). Higher 

temperatures can increase NPP (Pounds et al. 1999) and directly increase organic matter 

decomposition in soil (Davidson & Janssens 2006; Razavi et al. 2017). This again triggers feedback 

mechanisms that additionally accelerate C turnover processes – such as increased litterfall and root 

exudation (Uselman et al. 2000; Chave et al. 2010). Plant communities react to these changes through 

adaption – altered molecular structure of plant tissues (Aerts 1997), or investment in above or 

belowground productivity – affecting decomposability and recycling of organic matter in soil (Puget & 

Drinkwater 2001; Leuschner et al. 2007). 

Soils, as the linkage between abiotic and biotic components of an ecosystem, are particularly affected 

by climatic changes. Soils are the largest terrestrial Carbon storage and account for more than 2500 

GT C of which more than 60% is part of soil organic matter (SOM) (Lal 2008). Soil organic matter is 

defined as the total sum of all substances in the soil containing organic carbon, this comprises of a 

mixture of plant and animal residues in various stages of decomposition, substances synthesized 

microbiologically and/or chemically from the breakdown products, and the bodies of living and dead 

microorganisms and their decomposing remains (Schnitzer & Khan 1972). The amount of organic C 
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that is stored in soil depends on the interaction of climate variables, soil mineralogy, input from 

vegetation and decomposer organisms (Vitousek & Sanford 1986; Doetterl et al. 2015; Blagodatskaya 

et al. 2014b). As long as these processes are balanced, soil C storage remains stable. However, effects 

of global change will eventually unbalance the steady state, leading to either accumulation or losses 

of soil C (Davidson & Janssens 2006). Microbial mineralization of plant residues and organic matter in 

soil is a major flux in global C cycling, and releases about 58 Pg C year-1 to the atmosphere (Houghton 

2007). This flux is depending on the activity and community structure (heterotrophic vs. autotrophic) 

of soil microbes (Kuzyakov 2006; Blagodatskaya & Kuzyakov 2013) and their ability to effectively utilize 

the available substrate (Blagodatskaya et al. 2014a). While microbial communities govern the 

allocation of soil C (Schimel & Schaeffer 2012), they are directly dependent on the chemical 

composition of litter and SOM substrates. Hence, the interaction of these components are strongly 

related to the stability and turnover of C in soil (Allison & Vitousek 2004; Ng et al. 2014; Chen et al. 

2014). A lot is known about quantitative effects on soil C (Jones et al. 2005), in contrast the variation 

of SOM chemistry across ecosystem scales and its relation to climate, vegetation and abiotic factors 

remains poorly understood (Vancampenhout et al. 2010). SOM chemistry is strongly varying on 

ecosystem scale (Vancampenhout et al. 2009; Yassir & Buurman 2012; Plante et al. 2009) and can easily 

change with vegetation and climatic boundary conditions (Andersen & White 2006; Stewart et al. 2011; 

Carr et al. 2013). These previous results indicate that local conditions cannot be easily applied to other 

regions and ecosystem specific fingerprints are necessary for global estimations (Schmidt et al. 2011). 

1.1.3 Land-Use Change at Mt. Kilimanjaro 

The montane areas of East Africa are an ecological and biodiversity hotspot (Mittermeier 2004). 

However, deforestation and the conversion of natural sites into arable land are rapidly ongoing 

processes (Lewis 2006). Between 2000 and 2005 the total area of forest cover losses in Africa 

amounted to about 11.5 Mio ha (Hansen et al. 2010). With its large deforestation rates, Tanzania is 

one of the areas most affected by land-cover change (Fisher 2010). Driven by large increases of 

population density, the slopes of Mt. Kilimanjaro experienced considerable agricultural land-use 

intensification within the last 50 years (Sébastien 2010; Misana et al. 2012). 

Mt. Kilimanjaro ecosystems, in close vicinity to the ‘cradle of mankind’ (Leakey 1987), probably have 

been affected by human activities for millions of years. Early traces of civilization date back to more 

than 2200 years BP (Odner 2010) and within this time of continuous settlement, the forests below 

1700m were largely transformed into agricultural land (Mwasaga 1991). The Chagga tribe, inhabiting 

Mt. Kilimanjaro region for more than five centuries (Odner 2010; Maro 1974), has established a form 

of subsistence agroforestry that is used until today: the Chagga homegardens. Homegardens are a 

sustainable, multilayered agroforestry system with a large variety of crops and high floral and faunal 



 
Extended Summary 4 

 

 

diversity (Fernandes et al. 1986; Hemp 2006b). Fertilization mainly occurs in the form of livestock and 

household wastes while pest control is realized through a variety of anti-pest plant species (Fernandes 

et al. 1986). In 2005, one third of all homegardens were cultivated without using any fertilizers at all 

(Soini 2005). However, recently the usage of fertilizers and pesticides started to increase. With the 

introduction of cash crops (mainly Coffea arabica) in the late 19th century, homegardens were largely 

transformed into coffee plantations (Maghimbi 2007). This trend ended in the 1960th but 

intensification of the existing plantations is ongoing (Hemp 2006b). Increasing population pressure and 

cash-crop farming led to the expansion of agriculture to the down slope savanna zone (Maro 1974). 

The area of savanna shrub land decreased by 85% between 1961 and 2000 as it was turned into fields 

for maize (Zea mays), millet (Eleusine coracanaarea) and bean (Phaseolus vulgaris) production (Soini 

2005). 

These land-use changes already have had a strong negative impact on various ecosystem services and 

biodiversity parameters (Sébastien 2010; Winowiecki et al. 2016; Classen et al. 2014). However, from 

a scientific perspective this offers valuable possibilities to study the effects of anthropogenic 

disturbances on ecosystem C cycling in Afromontane ecosystems. Land-use change alters numerous 

ecological factors, which in turn, affect ecosystem functions and lead to high complexity and 

unpredictability of these changes (Groffman et al. 2001). It is especially important to assess the 

anthropogenic impacts on C sequestration, nutrient cycling and related ecosystem services, and to 

understand the underlying mechanisms of organic matter turnover and C incorporation in soil. 

Converting tropical forests to agricultural systems can lead to soil organic matter losses of up to 30% 

(Don et al. 2011), mainly from topsoil layers (Guo & Gifford 2002). Soil C losses from land-use change 

are particularly large in tropical regions (Ogle et al. 2005) and current estimates might still 

underrepresent these effects (Blécourt et al. 2013). Yet it remains unclear how agricultural land use 

affects carbon and nutrient balances and its interrelation to above- and belowground element cycles 

in Afromontane (agro-) ecosystems. 

1.1.4 Spatial interaction of above and belowground processes 

A major factor controlling the inter-ecosystem dynamic of carbon and nutrient cycles is the spatial 

distribution of aboveground biomass (Uriarte et al. 2015; Rascher et al. 2012). Above and belowground 

patterns are strongly linked especially when spatial diversity is high (Hooper et al. 2000). The 

characterization of spatial patterns in natural environments are essential to understand ecological 

processes and to initiate sustainable management techniques that aim to minimize degradation and 

alteration of ecosystem dynamics (Meyers 2012). Spatial variations are particularly large in the tropics 

(Houghton et al. 2009) and most interactions of above and belowground processes change with the 

climatic boundary conditions of each ecosystem. Therefore, it is important to understand these 
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interactions under various environmental limitations. Tropical alpine Helichrysum and East African 

savanna ecosystems each occur at one end of the vegetated slopes of Mt. Kilimanjaro (Hemp 2006a). 

Both ecosystems are exposed to strong, yet contrasting, climatic seasonality and are characterized by 

a distinctly heterogeneous vegetation cover. While Helichrysum sites are affected by large diurnal 

temperature fluctuations, savanna undergoes a pronounced seasonal dry-wet-season cycle 

throughout the year:  

Helichrysum vegetation cover is sparse and reaches from open gravel and eroded patches, over tussock 

grass and herb communities, to Erica shrub patches. These vegetation patterns may feed back on soil 

C and N cycling through plant litter quality, root exudation of labile organic compounds and via 

competition for organic and mineral nutrients (Chapman et al. 2006; Rennenberg et al. 2009). Despite 

the important role in constraining potential changes to the C balance, soil N turnover and plant 

availability in high latitude and high altitude ecosystems are still poorly understood (Weintraub and 

Schimel 2005). Tropical alpine ecosystems are generally considered one of the least investigated 

ecosystems in the world (Buytaert et al. 2011). It is important to distinguish them from temperate 

alpine ecosystems, which are subjected to seasonal climatic variations with a distinct vegetation period 

and increased biogeochemical soil processes in summer (Schmidt et al. 2009). Tropical alpine 

ecosystems generally have lower atmospheric pressure, higher UV irradiance and variations, different 

rainfall regimes as well as extreme diurnal temperature changes. Particularly temperature variations 

are important for regulating C and N cycling. While metabolic activity increases with temperatures up 

to 37°C, microbes are still active under low soil temperatures (<5°C), and in particular during freeze-

thaw events, and contribute significantly to gross soil N turnover and CO2 fluxes (Schütt et al. 2014; 

Bore et al. 2017). 

Co-dominance of trees and grasses is one of the main attributes that defines the savanna biome 

(Scholes & Archer 1997). Ecological interactions due to this contrasting vegetation cover have been a 

major research topic (Huntley & Walker 1982). Several studies have shown positive effects of trees on 

soil fertility, N availability, understory growth and C pools compared to open grassland. The term 

‘islands of fertility’ was introduced to describe these patchy areas of distinctly altered biogeochemical 

conditions (Garcia-Moya & McKell 1970). It is assumed that N-fixation, whether by Acacia trees or by 

undergrowth species, is responsible for increased soil fertility of tree patches (Sitters et al. 2015). 

However, previous results are ambiguous (Bernhard-Reversat 1982; Belsky et al. 1989), and to date 

little is known about the interaction between affected soil properties and C cycle feedbacks, especially 

under water-limited conditions. While savannas are considered active or potential C sinks (Grace et al. 

2006), they act as a net source of CO2 during the dry season (Miranda et al. 1997). It remains unclear 

which factors regulate these C losses and how the vegetation cover affects them.  
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1.1.5 Objectives 

The main objective of this research was to investigate climatic and land-use effects on soil nutrient and 

carbon pools, turnover, availability, and losses in natural and agricultural ecosystems along the 

elevation gradient of Mt. Kilimanjaro. The knowledge on land use and climate driven effects on 

nutrient cycles in these ecosystems is a prerequisite to predict future changes in biodiversity, 

ecosystem stability, productivity, and services in the Eastern Afromontane region. The specific 

objectives were: 

 First, to assess the effects of land-use change and climatic conditions along the elevation 

gradient on litterfall (Study 1), litter quality (Study 1 & 3), litter decomposition and C 

stabilization in ecosystems with similar soil parent material (Study 2 & 3).  

 Second, to identify the response of SOM pools to the highly variable climatic conditions along 

a 3500 m elevation gradient of Mt. Kilimanjaro by investigating: 

o the composition and abundance of microbial groups in topsoil and separating direct 

and indirect climatic (i.e. altered edaphic conditions) effects (Study 4) 

o the chemical composition of SOM compounds and evaluating quantitative changes in 

the specific SOM fractions in relation to ecosystem productivity and carbon turnover 

(Study 5) 

 Third, to link spatial patterns of soil parameters and greenhouse gas emissions to the spatial 

variability and characteristics of aboveground biomass and to compare these relationships in 

ecosystems with very contrasting climate regimes and 3000m difference in elevation: 

o Alpine Helichrysum cushion vegetation with a diurnal freeze-thaw cycle (Study 6) 

o Lowland savanna with seasonal droughts (Study 7) 
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1.2 Material and Methods 

1.2.1 Study area 

The studies were conducted on the southern slope of Mt. Kilimanjaro (3°4′33″S, 37°21′12″E) Tanzania, 

along an elevation gradient from 770 to 4200 m a.s.l. The research sites were provided and maintained 

by the German Research Foundation Project: Kilimanjaro ecosystems under global change (KiLi-FOR 

1246). 

 

Figure 1.2-1: Research sites along the elevation and land-use gradients of Mt. Kilimanjaro. Labels are equivalent 
to abbreviations in the text: SAV – savanna, RAU – dry broadleaf forest, FLM – lower montane forest, FOC – 
Ocotea forest, FPO – Podocarpus forest, FER – Erica forest, HEL – Helichrysum, HOM – Chagga homegardens, MAI 
– maize fields, COF – coffee plantations. 
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Twelve plots (0.25 to 1 ha) were selected, representing typical natural and agricultural ecosystems of 

the region (Figure 1.2-1). The savanna woodland (SAV) with Acacia and C4-grass species is represented 

by the least disturbed site within the Lake Chala Game Reserve. Remnants of lowland dry-broadleaf 

forest (RAU) can be found in the Rau Forest Reserve, near Moshi town (770 m). This forest is dominated 

by Milicia excelsa, Macaranga capensis and Albizia gummifera in the upper tree layer. Effects of 

transforming of these natural vegetation types into arable land (below 1200 m) are assessed by 

comparison to maize fields (MAI). To represent land-use change in the densely populated area 

between 1200 m and 1800 m, two Chagga homegardens (HOM) and one Coffee Plantations (COF) were 

selected. The homegardens are mainly used for smallholder crop production (Musa ssp. and Coffea 

ssp.) under cultivated fruit trees (e.g. Persea Americana, Grevillea robusta) and remnant forest trees 

(e.g. Albizia schimperiana, Cordia africana) (Hemp 2006b). They are traditionally managed with 

sporadic addition of organic fertilizers and household waste and a strongly variable species 

composition (Fernandes et al. 1986). The shaded coffee (COF) represents intensively managed 

plantations, with regular application of mineral fertilizers and pesticides. Natural forests and montane 

ecosystems above 1800 m are located inside the Kilimanjaro National Park along the Machame and 

Umbwe ridges. These ecosystems were thoroughly described by (Hemp 2006a). In short, with 

increasing elevation: Lower montane forest (FLM) at 1920 m is dominated by Macaranga 

kilimandscharica, Agauria salicifolia and partly Ocotea usambarensis. In Ocotea forest (FOC) at 2100 m, 

O. usambarensis dominate and is accompanied by large tree fern (Cyathea manniana). The Podocarpus 

forest (FPO) above 2800 m is dominated by Podocarpus latifolius together with Prunus africana and 

Hagenia abyssinica. In the subalpine Erica forest around 4000 m (FER), Erica trimera is dominating and 

reaches up to 10 m growth height. Between 4000 and 4500 m (HEL), the alpine forest is displaced by 

Helichrysum cushion vegetation with only a few specimens of E. trimera, Dendrosenecio kilimanjari 

and Euryops dacrydioides reaching over one meter height. The herb layer covers about 30% and is 

dominated by Helichrysum newii, H. citrispinum and H. forskahlii as well as Haplosciadium abyssinicum 

and tussock grasses (Ensslin et al. 2015). Two additional sites (~2 ha) were selected to study spatial 

heterogeneity in severe environments. One is representing the Helichrysum ecosystem located close 

to Shira 2 hut (3°05’36’’S; 37°27’68’’E). The other is located in the Lake Chala Game Reserve (3°18′39″S, 

37°41′8″E), representing savanna shrubland vegetation. 

In the colline zone, soils developed on erosion deposits from Mt. Kilimanjaro and were classified as 

Vertisols (Kühnel 2015). Soils in the forest zone were classified as Andosols with folic, histic or umbric 

topsoil horizons and accordingly high C contents in the upper horizons (Zech 2006). In the alpine zone, 

soils are mainly Leptosols and Vitric Andosols (WRB 2014). These soils developed from volcanic rocks, 

such as basalt, trachyte and olivine basalts over the last 0.2 to 2.3 Mio years (Dawson 1992). The similar 

parent material throughout the elevation gradient makes the comparison of ecosystems on Mt. 
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Kilimanjaro especially beneficial, because soil conditions are solely a function of local ecosystem 

characteristics. 

The climate at Mt. Kilimanjaro follows a bimodal rainfall regime with long rains from March to May 

and a shorter rainy season between October and December (Appelhans et al. 2016). Mean annual 

precipitation (MAP) varies between 750 mm and about 3000 mm, dependent of elevation and 

exposition (Table 1.2-1). Mean annual temperature (MAT) ranges from 2.5 °C to 20.9 °C and monthly 

means vary around ±3 °C.  

Table 1.2-1: Site characteristic and C and N contents in 0-10 cm soil depth for twelve ecosystems on the 
southern slope of Mt. Kilimanjaro* 

Ecosystem ID Land-use 
class 

Elevation 
[m] 

MAT 
[ºC] 

MAP 
[mm] 

C 
[%] 

N 
[g kg-1] 

pH 

Colline forest 
 

RAU Natural, 
disturbed 

767 23.7 845 9.5 7.4 7.5 

Savanna 
 

SAV Natural, 
disturbed 

951 23.7 
 

536 
 

2.8 
 

2.0 
 

5.4 

Maize field 
 

MAI Agricultural, 
intensive 

1009 22.6 
 

693 
 

1.5 
 

1.2 
 

4.6 

Chagga 
homegarden (a) 

HOMa Agricultural, 
traditional 

1275 20.8 
 

1336 
 

3.8 
 

3.4 
 

5.4 

Chagga 
homegarden (b) 

HOMb Agricultural, 
traditional 

1647 17.0 
 

2616 
 

8.5 
 

6.7 
 

4.8 

Coffee plantation COF Agricultural, 
intensive 

1305 20.1 1485 1.9 1.8 4.3 

Lower montane 
forest 

FLM Natural, 
disturbed 

1920 15.3 2378 17.3 11.7 4.0 

Ocotea forest 
 

FOC Natural 2120 12.1 2998 24.2 15.1 3.8 

Podocarpus 
forest 

FPO Natural 2850 9.4 1773 26.6 13.9 3.9 

Erica forest 
 

FER Natural 3880 4.5 1188 15.0 8.2 4.9 

Helichrysum 
cushion 1 

HEL1 Natural 3880 5.3 778 
 

13.1 8.8 n.d. 

Helichrysum 
cushion 2 

HEL2 Natural 4190 4.5 962 3.6 
 

2.6 5.2 

*site average may differ from individual sampling values in each study 
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1.2.2 Research approaches 

 

Figure 1.2-2: Scheme of steps and processes in ecosystem C and nutrient cycles. Numbers and colors indicate 
related studies in this PhD project. 

1.2.2.1 Litterfall and decomposition studies 

Annual patterns of C and nutrient input via litterfall and subsequent litter decomposition were 

analyzed and quantified in natural forests and agroforestry systems. Carbon and nutrient depositions 

were quantified and related to seasonal variations in decomposition and C stabilization. Tree litter in 

four natural (lower montane, Ocotea forest, Podocarpus forest and Erica forest), two sustainably used 

(homegardens) and one intensively managed (shaded coffee plantation) ecosystems was collected on 

a biweekly basis from May 2012 to July 2013 (Study 1). Leaves, branches and remaining residues were 

separated and analyzed for C and nutrient contents. The collected leaf litter was exposed for three, six 

and twelve months, in the natural forests sites covering an elevation gradient from 1920 to 3880 m 

(Study 3). Microcosm were covered with mesh of three different sizes (0.25 mm, 2 mm and 5 mm) to 
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selectively exclude decomposer fauna (Makkonen et al. 2012). Initial and final contents of C, N and 

major nutrient cations were measured. To assess the effects of climate and land-use on decomposition 

of standardized litter substrate Tea Bag Indices (decomposition rate constant k and stabilization factor 

S) were used (Study 2). Nine pairs of litterbags were exposed in ten ecosystems (adding savanna, maize 

fields, homegarden, coffee plantation and Helichrysum) during the warm-wet, warm-dry, cold-wet and 

cold-dry season 2015. Land-use effects were considered under the assumption that elevation related 

variability is neglectable when compared on the same altitudinal zone (i.e. colline and lower montane) 

(Hemp 2006a; Ensslin et al. 2015). 

1.2.2.2 Soil sampling and analysis 

Soil samples were collected from six research sites, representing natural forest and alpine ecosystems 

along the elevation gradient from 767 to 4190 m: RAU, FLM, FOC, FPO, FER and HEL2. At each site, four 

subplots (5x5 m) were selected. Five topsoil samples (0-10 cm depth) per subplot were taken randomly 

and pooled to reflect ecosystem heterogeneity. The samples were sieved (2 mm), and roots and plant 

materials were removed. Field samples were split and stored dry (60 °C and 104 °C) as well as frozen 

(-20 °C) until analysis. Basic characteristics, such as C and N contents, pH and water content were 

measured. Microbial composition was determined on frozen samples using phospholipid fatty acid 

biomarkers (PLFAs) following Frostegard & Baath (1996) (Study 4). Soil organic matter composition and 

stability was determined from dry samples by a combination of thermal combustion methods (Study 

5).  

1.2.2.3 Spatial interaction of above and belowground processes 

Spatial patterns of soil parameters and greenhouse gas emissions were investigated in two ecosystems 

with very contrasting climate regimes (Savanna and Helichrysum). The spatial variability of 

belowground parameters was related to aboveground biomass and vegetation characteristics. 

The tropical alpine Helichrysum site at ~4000 m a.s.l. was investigated over a 6-day period in December 

2014 (Study 6). Soil characteristics in 0-5 cm and 5-10 cm depth, as well as CO2, N2O and CH4 fluxes 

from soils were measured depending on vegetation cover (low, medium and high). Major gross N 

turnover rates on these patches were investigated by δ15N pool dilution. 

An intensive research campaign was conducted in September 2014 at the savanna site close to Lake 

Challa (Study 7). Three trees were selected from each of the two most dominant species: the legume 

Acacia nilotica and the non-legume Balanites aegyptiaca. For each tree, one transect was selected with 

nine sampling intervals depending on crown radius. Greenhouse gas (GHG) fluxes were measured 

once. Soil cores were taken from 0-10 cm and 10-30 cm depth. A broad range of soil parameters, GHG 

exchange, plant properties, as well as soil and biomass δ13C signature were compared between tree 

crown area and open area. 
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1.2.2.4 Analytical Methods 

Phospholipid fatty acid analysis 

PLFAs were determined according to Frostegard & Baath (1996). Polar lipids were extracted and 

separated into neutral, glycol, and phospholipids. Phospholipids were then purified by liquid-liquid and 

solid phase extraction chromatography, and derivatized to their fatty acid methyl esters (FAMEs). Gas 

chromatography–mass spectrometry (GC–MS) was then used to analyze FAMEs against an internal 

standard (13:0). PLFAs were classified according to available reference datasets (Leckie 2005; 

Lewandowski et al. 2015) and grouped into gram negative and gram positive bacteria, actinomycetes 

as well as fungi and arbuscular mycorrhiza fungi. Quantification of PLFAs was based on an external 

standard containing 28 PLFAs as described by (Gunina et al. 2014). 

Analytical pyrolysis 

Analytical double-shot pyrolysis gas chromatography mass spectrometry (Py/GC-MS) was used to 

chemically characterize SOM composition (Leinweber & Schulten 1999). Double-Shot analysis was 

performed to increased resolution in MS spectra by separating the release of chemically sorbed 

compounds (thermal desorption 100-280 °C) and cracking of covalent bounds (pyrolysis: 280-600 °C). 

Evolving gas analysis mass spectrometry (EGA-MS) was used to quantitatively assess the results of 

Py/GC-MS and estimate the compound’s chemical stability (Plante et al. 2009). 

Greenhouse gas fluxes 

Gas samples were collected using a static chamber approach. At each sampling location, collars for 

GHG measurements were installed (383 cm²). Opaque polypropylene chambers (25.2 x 15.2 x 14.7 cm) 

were fixed gas tight to the collars and gas samples were taken with a 60ml gas tight syringe. Headspace 

gas was sampled five times at 0, 15, 30, 45 and 60 min after chamber closure. Gas samples were 

analyzed using a gas chromatograph equipped with an electron capture detector (ECD N2O) and a 

flame ionization detector/methanizer (FID: CH4 and CO2). Flux rates were calculated with R version 

3.2.0 including HMR package 0.3.1 for calculation of GHG flux rates by linear increase or decrease in 

gas concentration over time (n = 5). 

Soil chemical characteristics 

Carbon and N contents were measured in an automated dry combustion C:N analyzer. Inorganic C 

content was found neglectable on the sites and total C content was considered as equal to organic C 

(Becker, unpublished data; Kuehnel, unpublished data). Microbial biomass C (MBC) and microbial 

biomass N (MBN) were estimated by fumigation extraction (Vance et al. 1987) using correction factors 

of 0.45 (MBC) and 0.54 (MBN) (Joergensen 1996; Joergensen & Mueller 1996). Carbon that was 

extractable by K2SO4 was used as approximation of dissolved organic C. Available N (NH4
+ and NO3

- 

concentrations) in the extracts were measured by continuous flow injection colorimetry. Availability 
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of major nutrient cations (Al3+, Ca2+, Fe2+, H+, K+, Na+, Mg2+, Mn2+) was determined by inductively 

coupled plasma optical emission spectrometry (ICP-OES) following a preparative extraction in 

unbuffered salt solution (1 mol l-1 NH4Cl). Total cation exchange capacity (CEC) and base saturation 

were calculated as described by Chesworth (2008). Soil pH was measured in H2O as well as CaCl2 or KCl 

solution. 

Soil physical properties 

Bulk density (BD) was calculated from oven dried (72 h at 105°C) undisturbed soil cores (100 cm³) taken 

at the center of the respective soil depth. Stone fraction (>2 mm) was measured as displaced water 

volume and subtracted from total core volume. Soil temperature was measured electronically at 5 and 

10 cm depth. 

Fine root biomass 

Macroscopically visible roots (>10 mm length) were extracted by hand and were separated as 

belonging to shrubs, grasses, herbs and mosses (Helichrysum) and trees and grasses (Savanna) under 

the stereomicroscope. Root elasticity and degree of cohesion of cortex, periderm and stele was used 

to distinguished between live roots (biomass) and dead roots (necromass) (Leuschner et al. 2001). Fine 

root biomass and necromass samples were dried at 70 °C (48 h) and weighed. 

Stable isotope measurements 

Natural abundance of 13C isotopes was analyzed by an elemental analyzer (EA) coupled to an isotope 

ratio mass spectrometry (IRMS). Delta values (δ13C) were calculated as the divergence from the 

standard reference for 13C to 12C ratio (Vienna-PDB). Gross N mineralization and nitrification rates were 

measured using isotope labeling of sieved soil (Dannenmann et al. 2009). Diffusion of 15N on acid traps, 

and the analysis of isotopic signatures were measured by EA-IRMS. 
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1.3 Results and Discussion 

1.3.1 Overview of Main Results 

Table 1.3-1: Summary of main objectives and results 

Study Objective Main Conclusion 

Study 1:  

Annual litterfall dynamics and 

nutrient deposition depending on 

elevation and land use at Mt. 

Kilimanjaro 

 Investigating annual dynamics 

 Quantification of annual C and 

nutrient inputs 

 Comparing natural and 

managed ecosystems and 

address implications for the 

ecosystem nutrient cycle 

 Annual leaf litter production 
peaks at the end of dry season 
and decreased at higher 
elevations due to lower 
temperatures and reduced net 
primary production 

 Nutrient cycles in agroforestry 
ecosystems were accelerated 
by fertilization and the 
associated changes in 
dominant tree species 

Study 2:  

Teatime on Mount Kilimanjaro: 

Seasonal variation in standardized 

litter decomposition and effects of 

elevation and land use 

 Evaluating effects of climatic 

seasonality on decomposition 

rates of standardized litter  

 Assessing effects of land-use 

intensification on 

decomposition rates and C 

sequestration. 

 Decomposition rates were 
reduced though seasonal 
moisture limitation below 
1900 m and annual 
temperature limitation above 
2850 m.  

 Due to their temperature 
sensitivity, alpine Afromontane 
ecosystems must be 
considered future CO2 sources 

 Land-use intensification 
decreases stabilization of new 
C inputs 

Study 3:  

Climatic and decomposer 

community effects of leaf-litter 

decomposition along the elevation 

gradient of Mt. Kilimanjaro 

 Quantify annual decomposition 

of native leaf litter 

 Quantification of annual C and 

nutrient release through 

decomposition 

 Asses effects of accessibility for 

decomposer communities 

 Climatic variables are more 
important than litter nutrients 
and complexity of decomposer 
communities for controlling 
litter decomposition along the 
gradient of Mt. Kilimanjaro.  

 Annual release rates vary 
considerably between 
ecosystems and indicate high 
demand for litter recycling. 

Study 4:  

Soil microbial community 

structure in forest soils along the 

elevation gradient of Mount 

Kilimanjaro 

 Evaluating the distribution of 

total microbial biomass 

(obtained by PLFA analysis) and 

particular microbial groups 

along the Mt. Kilimanjaro 

climosequence  

 Reveal effects of climatic (MAT 

and MAP) and edaphic factors 

(C, N and pH) on soil microbial 

communities 

 Gram-negative biomarkers 
dominated PLFAs composition, 
accounting 25-40%, thus 
regulating the trend of PLFA 
distribution with elevation  

 Gram-positive biomarkers 
decreased with elevation, due 
to the harsh environmental 
conditions in the alpine zone 

 Fungal biomarkers increased 
with elevation gradient, 
showing resistance to the low 
MAT, and decrease in nutrient 
contents 
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Study 5:  

Thermal and Structural 

Characterization of Soil Organic 

Matter Composition at Mount 

Kilimanjaro 

 Identifying changes in SOM 

composition along a 3500 m 

elevation gradient 

 Quantifying changes in specific 

C fractions and relate these 

changes to ecosystem carbon 

turnover processes 

 EGA curves do not reflect the 
chemical composition derived 
from py-GC/MS.  

 High productivity at mid-
elevation increased the 
amounts of volatile 
compounds but at the same 
time increases stabile 
carbon pools. 

Study 6:  

Nitrogen turnover and 

greenhouse gas emissions in a 

tropical alpine ecosystem, Mt. 

Kilimanjaro, Tanzania 

 Quantification and 

characterization of key gross N 

turnover rates and soil 

greenhouse gas (CO2, N2O, CH4) 

exchange under different 

vegetation cover types 

 Investigating effects of 

precipitation and freeze thaw 

cycles on biogeochemical 

processes 

 Carbon input from the 
vegetation and root exudates 
increase C and N substrate 
availability, and thus, increase 
microbial biomass and CO2 
fluxes in vegetated patches 

 N cycle is tight and dominated 
by closely coupled 
ammonification and NH4

+-
immobilization, which is little 
prone to N losses 

 Warming could increase 
vegetation cover and thus, N 
turnover, but only more 
narrow C:N ratios due to 
atmospheric N deposition may 
open the N cycle of 
Helichrysum ecosystems 

Study 7:  

Legume and non-legume trees 

increase soil carbon sequestration 

in Savanna 

 Determine patterns of soil 
properties and soil-greenhouse-
gas fluxes, depending on the 
spatial variability and 
characteristics of the 
vegetation (legume vs. non-
legume tree) 

 Quantifying effects of trees on 
soil C and nutrient contents and 
identify controlling mechanisms  

 The spatial structure of 
aboveground biomass in 
savanna ecosystems leads to a 
spatial redistribution of 
nutrients 

 Lower litter quality of C4 
grasses reduces microbial C use 
efficiency and thus increases 
mineralization rates  

 The capability of savanna 
ecosystems to act as C sinks is 
both directly and indirectly 
dependent on the abundance 
of trees, regardless of their N-
fixing abilities 
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1.3.2 Effects of elevation and land use on C and nutrient cycling 

1.3.2.1 Effects of elevation 

Within the natural forests of Mt. Kilimanjaro, between 1900 and 2900 m a.s.l., leaf litterfall decreased 

with elevation (Figure 2.1-1). Leaf litter production depends on net primary production and 

temperature, thus usually decreases at higher elevations (Girardin et al. 2010). Sporadic sampling at 

sub-alpine Erica forest (data not included) indicated that this trend would be further strengthened in 

ecosystems above 3000 m a.s.l. The effect of elevation is less clear across ecosystems (Röderstein et 

al. 2005) and by including branches and other residues the trend disappears within the Mt. Kilimanjaro 

forest belt (Figure 2.1-1). Nonetheless, litter decomposition experiments along the extended elevation 

gradient (i.e. including Erica forest) indicated a decline of productivity at 2900 m and above (Figure 

2.2-3). Decomposition maxima occurred in FLM and FOC, between 2000 and 2500 m and can be 

directly linked to temperature and precipitation patterns (Figure 1.3-1). In upper montane and alpine 

environments (≥2850 m), the decomposition was strongly limited by temperature and increased 

during the warm seasons. This is commonly expected because temperature sensitivity of 

decomposition is generally higher at low temperatures (Davidson & Janssens 2006) and at higher 

elevation (Schindlbacher et al. 2010; Blagodatskaya et al. 2016). Another factor that might reduce 

decomposition specifically in Podocarpus forest (2850 m) is the regular water logging of soil due to 

clouds inhibiting evaporation of the perennial rainfall water (Bruijnzeel & Veneklaas 1998). However, 

neither negative nor positive effects of precipitation were found during the seasons (Figure 2.2-5). 

Strong seasonality of decomposition rates in Erica and Helichrysum ecosystems implies strong 

dependency on climate variables and low potential to adapt to fast climate changes compared to lower 

elevation forests (Hemp & Beck 2001). The projected increase of surface temperature (Bradley et al. 

2006) will reduce C stocks. Therefore, future C losses into the atmosphere might be considerably large 

and fast in east African mountain ecosystems. 

 

Figure 1.3-1: Climate and land-use effects on standardized litter decomposition at Mt. Kilimanjaro. 
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The elevation pattern was the same for native and standardized litter substrate (Study 2, Study 3): 

Resembling trends for litter substrates indicate that in Mt. Kilimanjaro forests - along the elevation 

gradient of 1900 to 3900 m - climatic drivers are more important for controlling litter decomposition 

rates between ecosystems than changes in leaf litter quality. Generally, native and standardized litter 

react similarly to environmental changes (Didion et al. 2016) and trends along the montane elevation 

zones can be regarded equivalent to longitudinal biome zonation (Stevens 1992). Decomposition 

patterns between biomes are usually controlled by climatic factors (Berg et al. 1993). Including 

ecosystems below 1900 m further reinforced the importance of climatic effects on C and nutrient 

cycles at Mt. Kilimanjaro (Figure 1.3-1). Tea Bag indices k and S had their critical values at mid elevation: 

the decomposition rate k – its maximum, and the stabilization factor S – its minimum (Figure 2.2-3). 

Ecosystems at lower elevation are highly subjected to seasonal moisture limitation (Appelhans et al. 

2016). During the rainy season, soil microbial activity in Savanna strongly increases (Otieno et al. 2010) 

and the turnover is less selective regarding OM quality (Davidson & Janssens 2006). This effect is only 

present in semi-arid elevation zones (i.e. colline and sub montane). FLM and FOC (i.e. mid-elevation 

forests) represent the interception zone between sufficient moisture availability and temperature. This 

indicates that C sequestration in these ecosystems is mainly driven by amounts of litter input and 

productivity. At lower and higher elevation, decomposition is reduced by climatic restrictions.  

Seasonal variability of leaf litterfall in natural forests on Mt. Kilimanjaro followed a U shaped pattern 

with increasing elevation (Figure 2.1-2). In tropical montane forests, the seasonality of litterfall is 

generally low compared to tropical lowland forests (Chave et al. 2010). The weakest seasonal variation 

was observed in Ocotea forest in 2190 m a.s.l., featuring the highest annual precipitation and least 

varying soil moisture conditions (Table 1.3-1). At FPO (2850 m a.s.l.), seasonality increased again with 

lower MAP and an increasing temperature limitation. Litter production at higher elevation was 

distributed over the warmer period between October and May when canopy productivity is usually 

higher (Girardin et al. 2010). This pattern is based on the dependency of litterfall seasonality on rainfall 

intensities as well as temperatures (Zhou et al. 2006; Chave et al. 2010). Litterfall peaks during the dry 

season are well documented in tropical forests and plantation systems and mainly reflect drought 

stress (Okeke & Omaliko 1994; Barlow et al. 2007; Selva et al. 2007). A recent meta-analysis by Zhang 

et al. (2014) has shown that this connection is a characteristic feature of tropical ecosystems. Leaf 

aging, caused by photo inhibition, stomatal closure and subsequent leaf overheating, might lead to 

leaf shedding at the end of the dry season (Röderstein et al. 2005).  

Litterfall peaks at the end of the dry season promote an accumulation of particulate organic matter on 

the surface soil. This accumulation entails increased microbial activity and mobilization of C and 

nutrients during the following wet season (Sayer et al. 2007). Particularly at lower elevation, 
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decomposition was additionally enhanced during the wet season. Therefore, peaks of freshly mobilized 

C and nutrients just before the early wet season increase the possibility of leaching or translocation to 

deeper soil layers (Qiu et al. 2005; Pabst et al. 2013). As a consequence, an increased nutrient 

deposition via litterfall might not necessarily result in higher nutrient availability, but may actually 

increase nutrient losses. The investigated agricultural ecosystems at Mt. Kilimanjaro experienced 

distinct climatic seasonality and accumulated large amounts of litter at the end of dry season (Figure 

2.1-2). This implies that the nutrient cycles in these ecosystems are especially vulnerable to changes in 

vegetation structure and species composition. 

1.3.2.2 Land-use effects 

Land-use intensification affected C and nutrient cycles at various levels: First, litter macronutrient 

content (N, P, K) in agroforestry systems increased (Figure 2.1-4), enhancing biogeochemical cycles in 

these ecosystems compared to natural forests. Second, C and macro nutrient deposition (N, P, K) 

further increased with the transformation of traditional (HOM) to plantation agriculture (COF) (Table 

1.3-1). Third, C stabilization in these ecosystem and in the colline zone (SAV, MAI), was reduced by 

land-use intensification due to the higher microbial demand for fresh substrate (Figure 2.2-6). 

Macronutrient contents in leaf litter of managed ecosystems were two to five times higher than in 

natural forests (Figure 2.1-4). Independent from elevation, HOM and COF at Mt. Kilimanjaro had higher 

N contents and therefore lower C:N ratios in leaf litter than natural forests. N-deprived plants usually 

have a high C:N ratio in litter (Chave et al., 2010). Fertilization in agroforestry systems leads to higher 

N contents in plants and consequently in leaf litter (O'Connell and Grove, 1993). Furthermore, the 

introduction of crops such as Musa ssp. and Coffea ssp. affects the nutrient content of vegetation and 

litter in general. As a result, the annual N deposition by litterfall in HOM and COF increased and N 

cycling in these ecosystems was enhanced. This is in line with Zech et al. (2011), who found evidence 

for accelerated N-cycling in the cultivated areas of Mt. Kilimanjaro. Fertilization with N and P also 

increases the content of other macronutrients in leaf litter (O'Connell and Grove, 1993). This 

corresponds to our findings that the content of most macronutrients in land-use ecosystems either 

increased or remained on the same level compared to natural forests. Decomposition is generally 

accelerated by a higher macronutrient content (Allison and Vitousek, 2004; Debusk and Reddy, 2005). 

The abundant macronutrients in the litter of the investigated agricultural ecosystems therefore imply 

an accelerated C and nutrient turnover in the respective ecosystems. Easily available substrate is 

decomposed faster, and soil respiration (i.e. soil CO2 efflux) is generally higher in soils of intensively 

managed versus natural ecosystems at Mt. Kilimanjaro (Mganga and Kuzyakov, 2014). Together with 

tillage and crop removal, this explains the lower C and N stocks in the topsoil of agroforestry systems 

compared to natural forests at Mt. Kilimanjaro (Table 2.1-1). Consequently, the conversion of natural 
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forests to perennial plantations or homegardens probably represents a source of atmospheric CO2 

despite their structural resemblance to natural forests. 

Land-use intensification from semi-natural savanna to maize monocultures and from traditional 

homegardens to large-scale coffee plantations decreased C stabilization and showed the tendency to 

increase decomposition rates (Figure 2.2-6). The total content of soil organic matter and microbial 

biomass commonly decrease with land use intensification (Don et al., 2011; Junior et al., 2016). This 

effect was also found at Mt. Kilimanjaro (Pabst et al., 2013). However, at the same time decomposition 

rates at Mt. Kilimanjaro tended to increase while C stabilization decreased. This is in contrast to 

previous findings that connected land-use intensification to decreasing decomposition rates (Attignon 

et al., 2004; Violita et al., 2016). Even under similar environmental conditions as compared to the lower 

slopes of Mt. Kilimanjaro (i.e. western Kenya, 1500 m), Kagezi et al. (2016) found a decrease of 

decomposition rates with agricultural land use. This decrease of SOM decomposition can be connected 

to the application of N fertilizers and reduced microbial biomass (Zang et al., 2016). Decomposition 

studies tend to exhibit strong site and method specific variation (Makkonen et al., 2012) and land-use 

intensification was likewise found to increase decomposition of litter and soil organic matter 

(Lisanework & Michelsen, 1994; Guillaume et al., 2015). Decreasing decomposition with higher land-

use intensity is often related to changes in decomposer communities (Kagezi et al., 2016). Recent 

studies from Mt. Kilimanjaro found only minor effects of land-use change on overall arthropod 

abundance and composition (Röder et al., 2016) but indicated accelerated organic matter turnover on 

agricultural sites (Becker et al., 2015). In addition, glucose decomposition increases with land-use 

intensification from savanna to maize fields and homegardens to coffee plantations (Mganga & 

Kuzyakov, 2014). This is because soil microbes in these ecosystems are less efficient in SOM 

decomposition but at the same time more demanding for new C sources (Pabst et al., 2016), reducing 

S values on agricultural sites (Figure 2.2-6). This concept relates decomposition patterns primarily to 

the microbial decomposers nutritional status (Manzoni et al., 2008). Considering the features of the 

TBI method (i.e. standardized litter, exclosure of exogeic and >0.25 mm fauna) this points out the 

importance of pre-existing soil nutrient conditions on litter decomposition and C stabilization. 

1.3.3 Effects of elevation on soil microbial communities and organic matter composition 

1.3.3.1 Effects of elevation on microbial communities 

Total PLFA content increased with elevation until Ocotea forest (2100 m), reaching a maximum of 

2100 nmol g-1 soil, followed by a decrease in (sub-) alpine ecosystems (Figure 1.3-2). Gram-negative 

bacteria abundance, making up for 25-40% of total PLFAs, mainly determined this trend. 

Actinomycetes, fungi and arbuscular mycorrhizal fungi followed a U-shaped pattern and gram-positive 
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Figure 1.3-2: Mean Total PLFAs content, mean annual precipitation (MAP), and mean annual temperature 
(MAT) in six ecosystems along the elevation gradient of Mt. Kilimanjaro. 

 

bacteria abundance decreased with elevation (Figure 2.4-2). Total PLFA content is a proxy for microbial 

biomass and therefore strongly correlated C contents as well as to previously reported MBC values 

(Pabst et al. 2013, Study 6). As proposed by Pabst (2015), elevation patterns of these variables are a 

combined result of the strong climate dependency of net primary productivity (NPP) and microbial 

activity. Annual moisture availability and moderate temperatures at mid-elevation (2100 m) increase 

NPP (i.e. leaf and root inputs) and turnover rates, simultaneously increasing C content and thus 

microbial biomass content. While NPP at low elevation (e.g. RAU) might be potentially high in rainy 

season, seasonal variations are large (Study 2) and strongly reduce productivity in dry season (Otieno 

et al. 2010). Low temperatures at high elevation decrease the activity of microorganisms (Study 2); 

however, they do not necessarily decrease the amount of soil microbial biomass (Blume et al. 2002). 

This indicates that low inputs at high elevation (Ensslin et al. 2015; Hemp 2006a) decrease of total 

PLFAs from 3800 m to 4100 m, mainly due to a low vegetation cover at Helichrysum (Gütlein et al. 

2016). 

Changes in the composition of microbial communities along the slope of Mt. Kilimanjaro are a result 

of this climatic optimum gradient and the consequent niche differentiation through certain groups. A 

partial redundancy analysis (RDA) was used to distinguish the effects of soil parameters and the 

underlying climatic conditions. The combined RDA model was highly significant (p-value < 0.001) and 

explained 65% of the variance in the PLFA dataset. Soil N content was the main factor contributing to 

RDA1 (r = -0.79), while soil C/N ratio was the strongest related to RDA2 (r = -0.89). Variation in the soil 

parameters (partial RDA) explained 19% of the total variance in PLFAs (Figure 2.4-6). Climatic variable 

(MAT, MAP) alone explained 6%. The interaction of soil parameters with climatic variable added 44% 

of the explained variance. Hence, both effects have to be considered as combined factors explaining 
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microbial community changes along the elevation gradient of Mt. Kilimanjaro. Gram-negative bacteria 

dominated the microbial communities throughout the elevation gradient. Their content peaked at 

2900 m elevation, which agrees with increasing of bacterial richness at mid elevation (Singh et al. 

2012). Gram-negative bacteria are usually more active at high elevation and more resistant to freeze–

thaw cycles than gram positives. Gram-positive bacteria contributed mainly to microbial community 

composition below 2900 m. Their content decreased at higher elevation. This decrease is common for 

alpine soils and related to the weak tolerance of gram-positive bacteria to low temperatures and 

freeze-thaw cycles (Margesin et al. 2009). Direct climatic effects aside, The G+/G- ratio indicates 

substrate availability for microorganisms (Hammesfahr et al. 2008). Therefore, the relatively high 

abundance of gram-negative bacteria at mid elevation is explained by an increase of soil C content and 

the overall substrate availability. Fungal PLFAs were highest in colline RAU and alpine Helichrysum 

ecosystems (Figure 2.4-2). Above 2000 m, fungi increased linearly with elevation. Fungi are usually 

more resistant to cold and dry environments (Schinner & Gstraunthaler 1981; Ma et al. 2015). 

Accordingly, fungi/bacteria ratio reflects this pattern. In terms of soil conditions, fungal PLFAs 

increased with decreasing N content, as fungi are more adapted to low N supply, compared to gram-

negative bacteria. In addition, the pH values increased at the highest elevation indicating an increasing 

role of fungi in the microbial community in alpine ecosystems (Zhang et al. 2013; Xu et al. 2014). 

1.3.3.2 Effects of elevation on soil C chemistry 

Pyrolysis fractions (>280°C) quantitatively dominated the soil organic matter composition (Figure 

2.5-1). The contribution of volatile compounds in SOM increases with elevation (Table Supplementary 

2.5-2), indicating an increase of easily available SOM components. While the thermally volatile fraction 

is nearly absent in lowland RAU forest soil, sub-montane Erica forest and alpine Helichrysum SOM 

already loose considerable amounts of volatile compounds below 280 °C.  

Patterns of alkanes/-enes/-ols with elevation were similar for thermal desorption and pyrolysis steps 

and were highly correlated with total C content in soil. Both had their minimum at low elevation (RAU 

and FLM) and peaked in cloud forests (FOC and FPO) (Figure 2.5-4). These compounds were the major 

components of SOM in montane cloud forests (2100-2900 m), especially in the volatile fraction. They 

were also the main factor separating ecosystem characteristics along the elevation gradient (Figure 

2.5-2). In soil, n-alkanes and n-alkenes occur in free form or bound in SOM by non-covalent binding 

(Lichtfouse et al. 1998). Decomposition leads to relative enrichment of aliphatic compounds in organic 

soil (Biester et al. 2014). Especially mid-chained alkanes and alkenes are considered relative 

recalcitrant products of vegetation litter degradation (Buurman et al. 2007; Vancampenhout et al. 

2010). The increase of alkanes/-enes/-ols at around 2000 m can be a result of high leaf litter inputs 

(Becker et al. 2015) and incomplete decomposition. Further degradation and consequent increase of 

aromatic compounds was suppressed by the steady delivery of fresh litter inputs. C excess limits 



 
Extended Summary 22 

 

 

degradation of less easily available compounds (Chen et al. 2014), explaining contrary elevation trends 

for more labile compounds. 

Percentage of most easily degradable SOM compounds followed a decrease-increase pattern along 

the elevation gradient, reaching a minimum at around 2000 m a.s.l. (Figure 2.5-4). This included fatty 

acids and fatty acid esters, lignin monomers and phenolic compounds. These are seen as part of a labile 

C pool in soil and are readily decomposed in soil with high biological activities (Aerts 1997; Mueller et 

al. 2013). Phenols in SOM can be derived from various polymeric sources (Otto & Simpson 2006), but 

are mainly seen as decomposition products of lignin (Hedges & Mann 1979; Min et al. 2015). Soil lignin 

content peaks at low elevation (RAU) and in sub-montane Erica forest. Lignin mainly originates from 

leaf litter and woody debris and its content in soil is strongly depending on decomposition rates (Aerts 

1997). Therefore, enriched soil lignin content reflects a skewed input-turnover balance. Decomposition 

rates below 1000 m are generally low due to the restricted productivity in dry season at Mt. Kilimanjaro 

(Study 2). In contrast, montane forest ecosystems (FLM, FOC, FPO) have high inputs but even higher 

decomposition rates compared to RAU and (sub-) alpine ecosystems (FER, HEL) (Becker et al. 2015; 

Study 2), which explains low contents in between 2000 and 3000 m. Above the tree line (i.e. HEL) low 

amounts of woody inputs decreases lignin content in soil. The different source and low decomposition 

at Helichrysum is reflected by a strong relative increase of volatile lignin components (Figure 2.5-3). 

N containing compounds (amino N and N-heterocycles) in Mt. Kilimanjaro soils followed two 

contrasting trends with elevation. While amino N had their maximum at around 2000m, N-

Heterocycles decreased at mid-elevation (Figure 2.5-4). The origin of N-containing components in SOM 

is not completely clear and can be either attributed to microbial or vegetal precursors 

(Vancampenhout et al. 2010). Still, amino acids, whether plant litter or microbial product, are easily 

degradable and part of a ‘fast-cycle’ turnover (Curry 1993). They mainly occur in fresh Litter and upper 

soil horizons (van Bergen et al. 1998). N-heterocycles (such as Pyridines, Pyrroles and Indole) are more 

stable and are products of the microbial decomposition of lignin or amino acids in further degraded 

SOM (Schulten & Schnitzer 1997; Chiavari & Galletti 1992). Strong N limitation and high perennial 

productivity in mid-elevation ecosystems might induce increased decomposition of N compounds. The 

more stable pool (N-heterocycles) is reduced (Sims 2006) and transferred into a fast cycling pool 

(amino N) and the aboveground biomass (Curry 1993). 

1.3.4 Spatial interaction of above and belowground processes 

Tropical alpine Helichrysum and savanna are open landscapes that are characterized by a patchy 

vegetation cover. The spatial distribution of these aboveground patterns strongly affected soil C and 

nutrient storage as well as CO2 fluxes in both ecosystems. However, the underlying mechanisms were 

related to ecosystem specific properties. Both ecosystems showed a strong interaction of above and 
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belowground patterns and processes, controlling nutrient availability, and eventually greenhouse gas 

fluxes. High N retention in combination with low soil N2O fluxes indicates N limitation in both 

ecosystems (Gerschlauer et al. 2016, Study 6). While precipitation had no effect on biogeochemical 

cycles in Helichrysum (Figure 2.6-4), soil microbial activity in savanna strongly increases at higher 

moisture availability (Pabst et al. 2016). Therefore, the study on Helichrysum is probably 

representative on a perennial scale whereas results from savanna are solely describing dry season 

patterns. This raises questions for future research on warming effects at Helichrysum and wet season 

processes in savanna. 

Soil under shrub covered patches at Helichrysum had between 60% and 170% higher content of total 

and microbial C and N compared to low-vegetation patches (Table 2.6-2). The higher amounts of 

aboveground litter under shrubs facilitate microbial community growth and soil C stabilization (Sun et 

al. 2016). Consequently, higher substrate availability and soil microbial biomass lead to higher 

respiration rates with increased vegetation cover (Wang et al. 2003 Table 2.6-4). Higher autotrophic 

respiration from larger root density additionally contributed to elevated CO2 fluxes from vegetated 

patches. Root and microbial respiration are positively related to temperature and solar radiation (Fitter 

et al. 1998; Luo et al. 2006). Solar radiation triggers root respiration via photosynthesis and subsequent 

stimulation of root exudation (Kuzyakov & Gavrichkova 2010), which in turn feeds back on microbial 

respiration (Kuzyakov & Domanski 2000). However, lower soil temperatures due to shading reduce 

emissions from shrub compared to herb patches (Figure 2.6-2). This indicates that changes in soil 

temperature strongly controlled soil N and C cycling in the tropical alpine Helichrysum. Positive 

correlation between CO2 fluxes and N mineralization, without the effect of nitrification (Table 2.6-5, 

Table 2.6-6), indicate that heterotrophic microorganisms outcompete autotrophic nitrifiers. This 

suggests that increased N turnover rates at vegetated plots, caused by higher litter production and 

rhizodeposition (Hodge et al. 2000; Schimel and Bennett 2004; Phillips et al. 2011; Kuzyakov and 

Blagodatskaya 2015), do not enhance the risk of N loss, as long as the C:N ratio is not narrowing. In 

contrast, plants may even further compete with nitrification for soil NH4
+. In this context, increasing 

microbial inorganic N immobilization (Table 2.6-7) and N retention capacity (Table 2.6-3) at shrub plots 

is pointing at intense plant-microbe competition for the limited N resources. Even though intense 

microbial competition may reduce short-term plant N availability, the process of internal N recycling 

along microbial loops also enables ecosystem nitrogen retention. This can even lead to sustainable 

nitrogen provision to plants, since plants on the long term may better compete versus microbes due 

to their longer and higher N storage capacity (Kuzyakov et al. 2013, Hodge et al. 2000). Paleoclimatic 

studies have shown movements in the vegetation belts of Mt. Kilimanjaro (Zech, 2006; Zech et al. 2014) 

and future climate change might increase vegetation cover at Helichrysum. Currently, about 60% of 

the Helichrysum ecosystem is covered with vegetation. Nitrogen turnover rates would increase in 
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parallel to vegetation cover (Table 2.6-7), without opening the N cycle. Therefore, Helichrysum 

ecosystem may be rather vulnerable to expected increase of atmospheric N deposition (Dentener et 

al. 2006; Vitousek et al. 1997) which may narrow the soil C:N ratio and thus could increase nitrification. 

 

Figure 1.3-3: Effect of savanna trees on soil C and nutrient pools, carbon use efficiency (CUE) and related changes 
in soil respiration. 

Soil C and N contents under savanna trees were about 40% higher compared to open area – similar 

redistribution occurred for microbial biomass, mineral N, available nutrient cations and soil pH (Study 

7 – Appendix). These effects were strictly bounded to the crown area and the upper soil horizons 

(Figure 2.7-1, Appendix), indicating a spatially limited source of nutrient supply. N-fixation by the 

legume Acacia species is often regarded as a major source for the increase of fertility under savanna 

trees (Yelenik and others 2004). However, no effect on litter quality and soil properties was found, 

comparing a leguminous versus non-leguminous tree species (Table 2.7-2). Secondary effects of an 

altered species composition in the herb layer under the tree, as suggested by Bernhard-Reversat 

(1982) could be ruled out, since neither tree nor grass and herb roots showed noteworthy nodulation 

during dry season. Under dry conditions, symbiotic N-fixation is shifted to lower horizons (Vetaas 

1992). While this may still play a direct role for plant and tree nutrition, the N availability in the 

microbial active topsoil horizons is independent from N-fixing effects and overall pool sizes are 

unaffected. Instead, the main responsible sources are the amount and quality of plant litter and 

throughfall water (Perakis and Kellogg 2007), which is in agreement with the theory that savanna trees 

act as vertical nutrient pumps (Ludwig and others 2004). Isotopic signatures of soil and plant material 

allowed partial quantification of this process: Shifts in soil δ13C values under the crown towards the 

signal of tree leaf litter suggested that tree leaf litterfall contributes about 15% of SOM (Figure 2.7-2), 
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and is a major driver maintaining higher SOM levels under the crown. However, higher SOM and 

nutrient content under the crown did not result in higher C mineralization. Instead, higher CO2 efflux 

was measured under open area (Figure 2.7-3). Under the conditions of this study, effects of soil 

moisture and autotrophic respiration were neglectable (Figure 2.7-1; Balogh et al. 2016; Kühnel 2015), 

hence increased CO2 are most likely linked to lower leaf litter quality and microbial carbon use 

efficiency under C4 grasses (Blagodatskaya et al. 2014a). C4-grass litter had a wider C:N ratio than tree 

litter, which requires microorganisms to dispose of the C surplus via increased respiration to achieve 

their optimum C:N stoichiometry (Spohn 2015). This was further indicated by a wider microbial C:N 

ratio under open compared to crown area and a negative correlation of CO2 fluxes and mineral N 

availability. Both are strong indicators of microbial N deficiency, amplifying microbial activity and N 

mining (Nicolardot et al. 2001; Sinsabaugh et al. 2013). 
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1.4 Conclusions 

This research provides new insight into the effects of land-use and elevation on SOM characteristics 

and biogeochemical cycles on Mt. Kilimanjaro. These cycles and their underlying mechanisms were 

described and analyzed with regard to aboveground vegetation patterns under strongly contrasting 

climatic conditions. 

On the southern slope of Mt. Kilimanjaro, leaf litter fall, decomposition seasonality and C stabilization 

were strongly dependent on climatic conditions along the elevation gradient. Annual leaf litter 

production decreased at higher elevations due to lower temperatures and reduced primary 

production. Decomposition rates are reduced by seasonal moisture limitation on the lower slopes 

(below 1900 m) and temperature limitation at high elevation (above 2850 m). Ecosystems at mid 

elevation (between 1900 and 2200 m) represent the zone of sufficient moisture and temperature 

conditions, with the highest plant biomass and productivity. High litter input and fast turnover regulate 

the C sequestration in these ecosystems and lead to increased amounts of volatile SOM compounds. 

However, at the same time stabile soil C pools increase through the excess of fresh C inputs. Climatic 

restraints control decomposition and C stabilization in lower and higher elevation zones. Due to their 

temperature sensitivity, (sub-) alpine Afromontane ecosystems must be considered future 

atmospheric CO2 sources. Climatic variables are more important than litter quality and decomposer 

community complexity for controlling litter decomposition along the large climate gradient of Mt. 

Kilimanjaro. 

The elevation trends are reflected by microbial abundance and changes in microbial community 

composition. Soil microbial biomarker contents at Mt. Kilimanjaro (between 800 and 4200 m), 

followed a bell-shaped curve with elevation, with a maximum at 2100 m. Gram-negative bacteria 

dominate the microbial community in Mt. Kilimanjaro soils, accounting for 25-40%, and, thus, 

determining the major trend of PLFAs distribution with elevation. With increasing elevation, gram-

positive bacteria are replaced by fungi in response to the harsh environmental conditions in the alpine 

zone above 4000 m (low temperature, low soil C and N contents). These variations are indirectly 

dependent on climatic factors, and are explained by changes in vegetation composition and soil 

parameters. The optimal conditions for microbial biomass in mountain soils commonly occur at 

elevations around 2000 m, mainly because optimal properties combination of climate conditions for 

vegetation and soil development. 

Land-use intensification decreases the stabilization of new C inputs in the transition from savanna to 

maize monocultures and from traditional homegardens to large-scale coffee plantations. Conversion 

of natural forests to sustainably or intensively used agroforestry systems leads to direct (change of 



 
Extended Summary 27 

 

 

dominant species) and indirect (increased nutrient uptake after fertilization) enrichment of 

macronutrients in leaf litter. The change in litter quality reduces the C:N ratio, increases the C and 

nutrient turnover rates in soil, and so, accelerates the ecosystem C and nutrient cycles. This results in 

decreased C stocks in agroecosystems, with consequences for their fertility and ecosystem 

vulnerability. This calls for considering these effects when addressing land-use change and evaluating 

the sustainability of agroforestry and plantation management. Vegetation cover controls the spatial 

distribution of substrate availability in alpine Helichrysum and colline savanna ecosystems. This affects 

CO2 fluxes in both ecosystems, however due to contrasting processes: Carbon mineralization rates at 

Helichrysum sites are mainly controlled by substrate availability from vegetation inputs. In contrast, 

dry season C fluxes in savanna are more related to litter substrate quality. 

Litter inputs and root exudation from herbs and shrubs increase C and N availability in Helichrysum 

ecosystem. Hence, microbial biomass and activity increase, and, together with higher autotrophic 

respiration from larger root densities, elevate CO2 fluxes from vegetated patches. N turnover at 

Helichrysum sites is primarily temperature controlled, and due to shallow, well-draining soils, is less 

affected by changes in soil moisture. The nitrogen cycle is tight and dominated by closely coupled 

ammonification-NH4
+-immobilization, which is not prone to N losses. This cycling might accelerate if 

vegetation cover increases with progressive warming. An expected increase of atmospheric N 

deposition may be followed by higher nitrification due to narrowed soil C:N ratios. This transiently 

opens the N cycle, which means losses of N to the atmosphere and waters from the hitherto 

undisturbed Helichrysum ecosystem. 

Savanna trees (C3), whether leguminous or non-leguminous, increase soil fertility in the C4 grassland 

through locally higher litter inputs and quality under the crown. This is the result of an active vertical 

transport by the trees (nutrient pumping) and a passive accumulation of C and N from litterfall over 

time. Thus, soil C pools and fluxes are directly related to the spatial abundance of trees and react more 

rapidly to increased tree cover than to vertical tree growth. In the open grassland and against the 

background of low N availability, the wide C:N ratios of C4-grass litter reduce the carbon use efficiency 

of soil microbes. This increases microbial respiration and the CO2 efflux from soil. Therefore, savanna 

trees affect soil C storage through two processes: first by actively increasing biomass inputs, and 

second by passively suppressing output mechanisms.  

In conclusion, the combined effects of seasonal and long-term climatic conditions, land-use change as 

well as related variation in above and blowground ecosystem characteristics control biogeochemical 

cycles in East-African ecosystems. Thus, projecting effects of climate change and regionalizing C cycling 

patterns must consider the broad spectrum of these factors.  
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1.5 Contribution to studies 
 

Study 1: Annual litterfall dynamics and nutrient deposition depending on elevation and land use at 
Mt. Kilimanjaro 
Status: Published in Biogeosciences (2015), 12, 5635-5646, doi:10.5194/bg-12-5635-2015 

Authors Contribution 

Joscha Becker Laboratory work; Data analysis; Writing 
Holger Pabst Study design; Laboratory work; Commenting 
James Mnyonga Field work; Laboratory work; Commenting 
Yakov Kuzyakov Study design; Commenting 

 

Study 2: Teatime on Mount Kilimanjaro: Seasonal variation in standardized litter decomposition 
and effects of elevation and land use 
Status: Submitted, under review since 19.02.2017 

Authors Contribution 

Joscha Nico Becker Study design; Field work; Laboratory work; Data analysis; Writing 
Yakov Kuzyakov Study design; Commenting 

 

Study 3: Climatic controls of leaf-litter decomposition and decomposer communities along an 
elevation gradient of Mt. Kilimanjaro 
Status: Extended abstract 

Authors Contribution 

Joscha Nico Becker Study design; Field work; Laboratory work; Data analysis; Writing 
Antonia Mayr Laboratory work; Commenting 
Yakov Kuzyakov Study design; Commenting 

 

Study 4: Soil microbial community structure in forest soils along the elevation gradient of Mount 
Kilimanjaro 
Status: Manuscript in preparation 

Authors Contribution 

Anna Gunina* Study design; Laboratory work; Data analysis; Writing 
Joscha Nico Becker* Study design; Field work; Data analysis; Writing 
Andreas Hemp Data contribution; Commenting 
Luo Yu Supporting data analysis; Commenting 
Davie Jones Supporting data analysis; Commenting 
Yakov Kuzyakov Study design; Commenting 

*both authors contributed equally to the study 

Study 5: Ashes to Ashes: Thermal Characterization of Soil Organic Matter Composition in Mount 
Kilimanjaro Andosols 
Status: Manuscript in preparation 

Authors Contribution 

Joscha Nico Becker Study design; Field work; Laboratory work; Data analysis; Writing 
Michaela Dippold Laboratory work; Data analysis; Commenting 
Andreas Hemp Data contribution; Commenting 
Yakov Kuzyakov Study design; Commenting 

 



 
Extended Summary 29 

 

 

Study 6: Nitrogen turnover and greenhouse gas emissions in a tropical alpine ecosystem, Mt. 
Kilimanjaro, Tanzania 
Status: Published in Plant and Soil (2017), 411, 243-259, doi:10.1007/s11104-016-3029-4 

Authors Contribution 

Adrian Gütlein Study design; Field work; Laboratory work; Data analysis; Writing 
Markus Zistl-Schlingmann Field work; Laboratory work; Data analysis; Writing 
Joscha Nico Becker Field work; Laboratory work; Data analysis; Commenting 
Natalia Sierra Cornejo Field work; Laboratory work; Data analysis; Commenting 
Florian Detsch Field work, Data analysis; Commenting 
Tim Appelhans Supporting data analysis; Commenting 
Dietrich Hertel Supporting data analysis; Commenting 
Yakov Kuzyakov Supporting data analysis; Commenting 
Ralf Kiese Study design; Writing 

 

Study 7: Legume and non-legume trees increase soil carbon sequestration in Savanna 
Status: Published in ECOSYSTEMS (2017), 20, 989-999, doi:10.1007/s10021-016-0087-7 

Authors Contribution 

Joscha N. Becker Study design; Field work; Laboratory work; Data analysis; Writing 
Adrian Gütlein Field work; Laboratory work; Data analysis; Commenting 
Natalia Sierra Cornejo Field work; Laboratory work; Commenting 
Dietrich Hertel Study design; Commenting 
Ralf Kiese Supporting data analysis; Commenting 
Yakov Kuzyakov Study design; Commenting 
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Abstract 

Litterfall is one of the major pathways connecting above- and belowground processes. The effects of 

climate and land-use change on carbon (C) and nutrient inputs by litterfall are poorly known. We 

quantified and analyzed annual patterns of C and nutrient deposition via litterfall in natural forests and 

agroforestry systems along the unique elevation gradient of Mt. Kilimanjaro. 

Tree litter in three natural (lower montane, Ocotea and Podocarpus forests), two sustainably used 

(homegardens) and one intensively managed (shaded coffee plantation) ecosystems was collected on 

a biweekly basis from May 2012 to July 2013. Leaves, branches and remaining residues were separated 

and analyzed for C and nutrient contents. 

The annual pattern of litterfall was closely related to rainfall seasonality, exhibiting a large peak 

towards the end of the dry season (August – October). This peak decreased at higher elevations with 

decreasing rainfall seasonality. Macronutrients (N, P, K) in leaf litter increased at mid elevation (2100 

m a.s.l.) and with land-use intensity. Carbon content and micronutrients (Al, Fe, Mn, Na) however, 

were unaffected or decreased with land-use intensity. 

While leaf litterfall decreased with elevation, total annual input was independent of climate. Compared 

to natural forests, the nutrient cycles in agroforestry ecosystems were accelerated by fertilization and 

the associated changes in dominant tree species. 
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2.1.1 Introduction 

With their high biodiversity and importance for the global carbon (C) cycle, tropical forests are often 

highlighted as ecosystems of specific research interest (Brown, 1993; Sayer et al., 2011). Tropical forest 

ecosystems account for one third of the terrestrial net primary production (NPP) (Saugier et al., 2001) 

and contain more than half of the world’s terrestrial species (Groombridge and Jenkins, 2002). Tropical 

forests also act as a net sink for CO2 (FAO, 2010) and contain roughly 25% of the terrestrial biosphere 

C (Bonan, 2008). 

Tree litterfall is one of the major pathways in C and nutrient cycles that connect above- and 

belowground processes (Vitousek and Sanford, 1986). As an important and regular source of nutrients 

and organic matter, litterfall has been well studied over the past decades (Vitousek, 1984; Meier et al., 

2005; Carnol and Bazgir, 2013). Nonetheless, litterfall varies considerably between ecosystems, 

depending on climate, tree species composition, stand structure and soil fertility (Vitousek and 

Sanford, 1986). Elevation is strongly affecting these parameters in montane ecosystems (Ensslin et al., 

2015; Pabst et al., 2013) and is of particular importance regarding potential ecosystem shifts through 

climate change (Beniston, 2003). Therefore, the effect of elevation on litterfall is an important indicator 

for estimating future changes in ecosystem cycles. 

Land-use change affects numerous biological, chemical and physical factors as well as their 

interactions, leading to a high complexity and unpredictability of anthropogenic effects on ecosystem 

functions (Groffman et al., 2001). Especially the functioning of C and nutrient cycles under natural and 

disturbed conditions is important to assess the overall impact of anthropogenic land use on tropical 

forest ecosystems. As reviewed by Don et al. (2011), soil organic matter decreases up to 30% by 

converting tropical forests to agricultural systems. These effects might still be underrepresented in 

estimates of overall ecosystem C fluxes (de Blécourt et al., 2013). 

This underrepresentation is particularly relevant because deforestation and conversion to intensive 

agriculture are common transformations in tropical regions and are projected to remain a major issue 

in the future (Lewis, 2006). Between 2000 and 2005, forest cover in Africa decreased by 11.5 million ha 

(Hansen et al., 2010) and this number is feared to further increase (UCS, 2011). The deforestation rate 

in Tanzania, for example, is already one of the largest in Africa (Fisher, 2010). In contrast to other 

tropical regions, it is mainly driven by small-scale farming for regional food production. Moreover, 

there was a considerable intensification of agricultural land use at Mt. Kilimanjaro within the last 50 

years (Misana et al., 2012). 

Most of the recent research on nutrient cycling in tropical forest ecosystems has been conducted in 

the Neotropics and Southeast Asia (Zhou et al., 2006; Chave et al., 2010; Celentano et al., 2011; 
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González-Rodríguez et al., 2011; Fontes et al., 2014; Vasconcelos et al., 2008), while African forests, 

especially montane rainforests in East Africa, have received much less attention (Schrumpf et al., 2006; 

Dawoe et al., 2010). Mt. Kilimanjaro offers the possibility to investigate nutrients cycles and litterfall 

along an elevation gradient were soils have a similar age and developed from the same parent material 

(Dawson, 1992). We are aware of only one study that published data on nutrient cycling with partial 

focus on litterfall in Mt. Kilimanjaro ecosystems (Schrumpf et al., 2006). Various studies in other 

ecosystems have shown that artificial nutrient addition accelerate nutrient cycles (Allison and 

Vitousek, 2004; Forrester et al., 2005; Homeier et al., 2012). It remains unclear how agricultural land 

use affects nutrient balances and its interrelation to litter quantity, quality and the above- and 

belowground element cycles in tropical (agro)ecosystems. 

Our primary objective was to assess the effect of climate and of agricultural land use on litterfall and 

nutrient and carbon cycles in the dominant ecosystems of Mt. Kilimanjaro. Therefore, we (1) collected 

the annual litter deposition and examined the litterfall dynamics throughout the year, (2) measured 

the annual C and nutrient return and (3) compared differences between natural and managed 

ecosystems and address implications for the ecosystem nutrient cycle. 

2.1.2 Methods 

2.1.2.1 Study site 

The study was conducted on the south-western slope of Mt. Kilimanjaro (3°4′33″S, 37°21′12″E), 

Tanzania, along an elevation gradient from 1 275 to 2 850 m a.s.l. Our study was part of the German 

Research Foundation Project: Kilimanjaro ecosystems under global change. This interdisciplinary 

project provided a number of long term research locations, plots, data and facilities along the south-

western slope of Mt. Kilimanjaro. Six research sites were selected according to the joint study design. 

Each is representing either a typical tropical montane forest zone or a representative land-use class of 

the region (Table 2.1-1). Lower montane forest (FLM), Ocotea forest (FOC) and Podocarpus forest (FPO) 

are three natural sites located in Kilimanjaro National Park with minor anthropogenic impact. 

Nonetheless, illegal logging for firewood and building material may occur, especially in the lower FLM 

areas (Lambrechts et al., 2002; Rutten et al., 2015). The vegetation and zonation of these ecosystems 

was classified and described in detail by Hemp (2006a). Summarily, FLM is dominated by Macaranga 

kilimandscharica, Agauria salicifolia and partly Ocotea usambarensis, while at higher elevation Ocotea 

usambarensis prevails, accompanied by Cyathea manniana (FOC). The forest above 2 800 m a.s.l. is 

dominated by Podocarpus latifolius together with Prunus africana and Hagenia abyssinica (FPO). Two 

Chagga homegardens (HOMa, HOMb) represent a traditional form of sustainably managed 

agroforestry with sporadic organic fertilization with manure and household waste (Fernandes et al., 

1986). Homegardens are multilayered agroforestry systems with Musa ssp. and Coffea ssp. as 
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dominant crops under remnant forest trees (e.g. Albizia schimperiana, Cordia africana) and cultivated 

fruit trees (e.g. Persea Americana, Grevillea robusta)(Hemp, 2006b). Shaded coffee plantation (COF) 

represented an intensively managed land-use type with regular application of mineral fertilizers and 

pesticides. A detailed description of land-use history of Mt. Kilimanjaro was given by Pabst (2015) and 

further information on aboveground biomass and vegetation structure is available from Ensslin et al. 

(2015). 

The climate at Mt. Kilimanjaro is characterized by a bimodal rainfall regime with a short rainy season 

around November and a longer one from March to May (Hemp, 2006a). Mean annual precipitation 

(MAP) varies depending on elevation and exposition between 1 336 mm and about 3 000 mm per year 

(Table 2.1-1). Mean annual temperature (MAT) ranges from 9.8 °C to 20.9 °C and monthly means vary 

around ±3 °C. 

The comparison of ecosystems and litterfall on Mt. Kilimanjaro is especially beneficial because the soils 

have a similar age and developed from similar parent material over the last 0.2 to 2.3 Mio years 

(Dawson, 1992). These parent materials are formed by volcanic rocks such as basalt, trachyte and 

olivine basalts. Soils are classified as Andosols with folic, histic or umbric topsoil horizons with 

accordingly high C contents in the upper horizons (Zech 2006), often underlain by C rich paleosol 

sequences (Zech et al., 2014). Water extractable and microbial biomass C increase with elevations and 

decrease with management intensity (Pabst et al., 2013). 

Table 2.1-1: Land-use classification, topographic and climatic information and C and N stocks in 0-10 cm soil 
depth of research plots on the southern slope of Mt. Kilimanjaro 

Ecosystem 
Plot 
ID 

Land-use class 
Elevatio
n 

MAP MAT Soil C Soil N 

   (m a.s.l.) 
(mm yr-

1)a 
(°C)b 

(mg 
cm-3)c 

(mg 
cm-3)c 

Chagga homegarden HOMa Agricultural, 
traditional 

1275 1336 20.9 24.7 2.1 

Coffee plantation COF Agricultural, intensive 1305 1485 20.2 19.3 1.9 

Chagga homegarden HOM
b 

Agricultural, 
traditional 

1647 2616 17.3 36.1 2.7 

Lower montane 
forest 

FLM Natural, disturbed 1920 2378 15.3 45.8 3.1 

Ocotea forest FOC Natural  2120 2998 11.2 55.8 3.2 

Podocarpus forest FPO Natural  2850 1773 9.8 53.5 2.6 

a mean annual precipitation (Appelhans and others 2014) 
b mean annual temperature in 2012 (Appelhans, unpublished) 
c stocks in 0-10 cm soil depth (calculated from Pabst and others (2013)) 

2.1.2.2 Sampling 

Within each ecosystem, 10 litter traps (1m², 1mm mesh size) were installed as replicates along two 

100m transects (5 per transect). Due to the areal structure of one of the homegardens (HOMb), the 
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number of litter traps had to be reduced and only five replicates could be installed. To exclude 

undergrowth, net heights were set between 20 and 100cm above ground. Between April 2012 and July 

2013, litter was collected twice a month. 

Litter samples were oven-dried for one week at 60 °C and then weighed. Within the two-week sampling 

interval the weight loss by decomposition was presumed negligible. Litter was manually sorted into 

leaves, branches (<2 cm in diameter) and a rest fraction containing blossoms and fruits as well as 

unidentified materials. Wooden material >2 mm is too persistent to be evaluated within the timescale 

of our study and was thus excluded from analysis. Leaf litter samples were coarsely ground and stored 

in paper bags for further analysis. 

2.1.2.3 Analyses of carbon and nutrient contents 

We expected leaves to contain most of the litter nutrients (Yang et al., 2004). Therefore, nutrient 

analyses were limited to the leaf fraction. Leaf litter samples were bulked randomly and divided into 

two subsamples from five nets per time step. Nutrient content of leaf litter was analyzed from six 

sampling dates equally distributed over one year. In line with Celentano et al. (2011) we refrained from 

seasonal subdivision because most nutrients show low seasonal variation. A total number of 12 

samples per ecosystem were fine ground and analyzed for C and nutrient contents. C and N contents 

were determined with a dry combustion automated C:N analyzer (Vario EL, Elementar). After a 

preparative pressure digestion, inductively coupled plasma optical emission spectrometry (ICP-OES, 

Spectro Analytical Instruments) was used to determine contents of major macro- (Ca, K, Mg, P, S) and 

micro- (Al, Fe, Mn, Na) nutrients. All chemical analyses were conducted in the laboratory of the 

Department of Soil Science of Temperate Ecosystems, University of Göttingen. 

2.1.2.4 Calculations and statistical analyses 

Annual litter deposition per ecosystem was calculated as the average from nets over one year (June 

2012 to May 2013). Monthly deposition rates were calculated assuming a constant amount per day for 

each sampling interval. For missing values we assumed a linear behavior of litterfall between the 

previous and the following date. Nutrient deposition was calculated as the product of annual leaf 

deposition and mean nutrient content. 

As our data do not meet the requirements for ANOVA and non-normal distribution must be assumed 

(Shapiro-Wilk test, p < 0.05), we applied non-parametric statistics. Significant differences were 

detected using the Kruskal-Wallis test with a Bonferroni correction at p-level = 0.05 (Katz, 2006). The 

presented data are means of 5 to 10 replications ± standard error (SE). 

All statistical analyses were conducted in R 3.0.1 (R Core Team, 2013) using core and agricolae 

(Mendiburu, 2014) packages as well as the ggplot2 package for data visualization (Wickham, 2009). 
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2.1.3 Results 

2.1.3.1 Annual amount of litterfall 

The annual amount of total litterfall was independent of land use and elevation, whereas the amount 

of leaf litter in natural forests decreased with elevation (Figure 2.1-1). The total annual input varied 

from 4.6 Mg ha-1 in HOMa to 10.7 Mg ha-1 in HOMb. Accordingly, HOMb had a significantly higher total 

litterfall than HOMa as well as FOC and FPO. 

Total litterfall was dominated by the portion of leaves, contributing between 61% (FPO) and 74% 

(HOMb). The annual value in FLM was significantly higher than in FPO (Figure 2.1-1). Deposition of 

branches and rest were on the same level for all sites: each constituted less than 30% of total litterfall. 

 

Figure 2.1-1: Annual litterfall and its components (2012 to 2013) in Chagga homegardens (HOMa & HOMb), 
shaded coffee plantation (COF), lower montane forest (FLM), Ocotea forest (FOC) and Podocarpus forest (FPO). 
Error bars indicate standard errors for total amount with significance levels shown as small letters a-c (p ≤ 0.05). 
Letters in brackets (a-d) indicate significance levels for leaf fraction only. 

2.1.3.2 Seasonal dynamics of litterfall 

The seasonal patterns of litterfall were the same for natural and agroforestry systems if compared on 

the closest elevation level. In forests at higher elevation the seasonality was less pronounced and the 

peak values shifted from the end of the dry season towards the rainy season (Figure 2.1-2). 

Similar to the annual litterfall, changes in monthly litterfall were determined by the portion of leaves. 

Maximum values in homegardens, COF and FLM were recorded between the mid- and late dry season 

(Figure 2.1-2). A second smaller peak appeared in the second rainy season around April. Within these 
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peaks, monthly litterfall increased three- (HOMa) to nine-fold (COF) in agroforestry systems. In natural 

forests, peaks increased about 350% in FLM, 300% in FOC and 450% in FPO. In FOC and FPO the first 

peak was delayed until November or December and was extended because litterfall rates remained 

high in the short dry season between January and March. Litterfall maxima within the year were 

positively related to elevation (Figure 2.1-3). Deposition patterns of branches were independent of 

seasons, and peaks occurred erratically (Figure 2.1-2). The deposition of the rest fraction did not follow 

pronounced dynamics but the peaks tended to increase during the rainy seasons. 

 

Figure 2.1-2. Monthly litterfall from May 2012 to July 2013 in Chagga homegardens (HOM), shaded coffee 
plantation (COF), lower montane forest (FLM), Ocotea forest (FOC) and Podocarpus forest (FPO). Total litterfall 
(squares) is divided into leaves (diamonds), branches (triangles) and rest (circles). 10-year-mean of monthly 
precipitation (2000 to 2010, TRMM, http://pmm.nasa.gov) is indicated as bars. Standard errors (SE) are displayed 
by error bars. 

2.1.3.3 Nutrient contents and deposition 

Agroforestry systems showed higher macronutrient content and deposition rates than natural forests 

(Table 2.1-2). With increasing elevation in the natural forests, nine of eleven analyzed nutrients 

followed a hump-shaped pattern with the highest content in FOC (2120 m a.s.l.) and lower contents in 

FLM (1920 m a.s.l.) and FPO (2850 m a.s.l.) (Appendix Table 2.1-3). 

The N, P, and S contents in leaves under agricultural land use were significantly higher compared to 

those in natural forests (Figure 2.1-4; Appendix Table 2.1-3). Potassium was enriched in the leaf litter 

of managed ecosystems (7.4 to 15.8 mg g-1) versus most natural forests (3.1 to 7.2 mg g-1). The contents 
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of C, Al, Mg, Fe, and Ca were independent of land use. Due to the similar C and the increased N content, 

the C:N ratio was significantly lower in managed ecosystems. It ranged from 16.9 (± 0.6) to 20.4 (± 0.6) 

in agroforestry systems and from 32.1 (± 0.4) to 44.9 (± 0.5) in natural forests. Na and Mn contents 

were lower under agricultural land use (Table 2.1-2). 

Table 2.1-2: Annual nutrient deposition via leaf litterfall (Mean ± SE, kg ha-1 yr-1) from six ecosystems at Mt. 
Kilimanjaro 

 
Homegarden-a Coffee plantation Homegarden-b 

Forest lower 

montane 
Ocotea forest Podocarpus forest 

(kg ha-1 yr-1)     

C 1454.1 ± 294.5c 2230.8 ± 160.4ab 3948.2 ± 606.8a 2169.1 ± 71.1ab 1635.7 ± 134.1bc 1600.8 ± 176.2bc 

N 87.0 ± 17.6bc 110.3 ± 7.9ab 233.5 ± 35.9a 48.7 ± 1.6cd 51.9 ± 4.3cd 38.2 ± 4.2d 

Al 2.9 ± 0.6b 5.1 ± 0.4a 6.1 ± 0.9a 1.9 ± 0.1b 4.5 ± 0.4a 2.4 ± 0.3b 

Ca 54.6 ± 11.1ab 63.5 ± 4.6a 63.0 ± 9.7a 30.0 ± 1.0c 33.6 ± 2.8ab 29.8 ± 3.3c 

Fe 3.4 ± 0.7abc 3.8 ± 0.3ab 5.2 ± 0.8a 1.3 ± 0.0d 2.6 ± 0.2bc 2.4 ± 0.3c 

K 22.6 ± 4.6b 59.9 ± 4.3a 125.4 ± 19.3a 14.0 ± 0.5c 13.0 ± 1.1c 23.6 ± 2.6b 

Mg 12.2 ± 2.5ab 9.9 ± 0.7ab 15.8 ± 2.4a 8.4 ± 0.3bc 9.0 ± 0.7b 4.8 ± 0.5c 

Mn 0.4 ± 0.1c 1.0 ± 0.1bc 0.9 ± 0.1bc 2.3 ± 0.1a 2.2 ± 0.2a 2.7 ± 0.3a 

Na 0.5 ± 0.1c 1.0 ± 0.1b 1.7 ± 0.3a 1.9 ± 0.1a 2.0 ± 0.2a 0.7 ± 0.1bc 

P 5.2 ± 1.1ab 5.3 ± 0.4bc 10.9 ± 1.7a 3.0 ± 0.1cd 2.6 ± 0.2d 2.4 ± 0.3d 

S 5.2 ± 1.0b 7.4 ± 0.5a 15.7 ± 2.4a 4.8 ± 0.2b 4.0 ± 0.3bc 2.9 ± 0.3bc 

Superscript letters indicate significant differences between sites (Kruskal-Wallis Test; p-level ≤ 0.05) 

The effect of land use on the annual nutrient deposition was buffered by the amount of litterfall, but 

remained present. HOMb had the highest C and nutrient deposition (except for Mn and Na) via litterfall 

compared to all other ecosystems (Table 2.1-2). The coffee plantation also had significantly higher N, 

P, K, Fe, and Ca deposition than all natural forests. Due to minimal litterfall in HOMa the annual 

nutrient deposition was low despite high concentrations in leaves. The deposition of most 

macronutrients in HOMa was still higher or on the same level as in natural forests. The Al and Na 

deposition was unaffected by land-use intensity. Annual Mn deposition was significantly higher in 

natural forests than in managed sites. 

Figure 2.1-3: Linear regression between 
elevation and month of highest leaf litterfall 
in six ecosystems of Mt. Kilimanjaro. 
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Figure 2.1-4: Contents of selected elements (C, N, P, Mn) in leaf litter from six ecosystems at Mt. Kilimanjaro. 
Medians, interquartile distances and extreme values are displayed as bold lines, boxes with whiskers and dots, 
respectively. Managed (left) and natural (right) ecosystems are separated by dashed line. 

2.1.4 Discussion 

2.1.4.1 Litterfall characteristics 

The amounts of litterfall in Mt. Kilimanjaro ecosystems were within the common range for tropical 

mountain forests and followed a pronounced seasonality dependent on climatic variations. The annual 

leaf litterfall (4.6-10.7 Mg ha-1) was also within the same range as at various other tropical sites (Chave 

et al., 2010; Zhang et al., 2014). A previous study at Mt. Kilimanjaro found similar amounts of fine 

litterfall (7.5 Mg ha-1) at an elevation of 2250 to 2350 m. a.s.l. (Schrumpf et al., 2006). Lisanework and 

Michelsen (1994) reported annual fine litter production ranging from 5.0 Mg ha-1 to 6.5 Mg ha-1 in tree 

plantations and 10.9 Mg ha-1 in a natural forest in the Ethiopian highlands. Similar results were found 
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for cacao plantations in lowland humid Ghana where total litter ranged from 5.0 Mg ha-1 to 10.4 Mg 

ha-1 (Dawoe et al., 2010). The portion of leaf litter commonly varies between 60% and 90% (Lisanework 

and Michelsen, 1994; Schrumpf et al., 2006, Zhou et al., 2006; González-Rodríguez et al., 2011). 

Accordingly, leaf portions in Mt. Kilimanajro litterfall (60-75%) were at the lower end of tropical forest 

values. 

The factors affecting litterfall amounts are succession stage, tree age and dominant plant or tree 

species (Barlow et al., 2007; Celentano et al., 2011). Varying management practices and crops in 

homegardens may alter these factors. The heterogeneity of the traditional agroforestry systems 

explains the low annual litterfall in HOMa. Compared to HOMb, there were more banana plants (Musa 

ssp.) in HOMa, which were manually cut as a management practice and thus were not accounted for 

by our litter traps. 

Litterfall peaks during the dry season are well documented in tropical forests and plantation systems 

and mainly reflect drought stress (Okeke and Omaliko, 1994; Barlow et al., 2007; Selva et al., 2007). A 

recent meta-analysis by Zhang et al. (2014) has shown that this connection is a characteristic feature 

of tropical ecosystems. Leaf aging, caused by photoinhibition, stomatal closure and subsequent leaf 

overheating, might lead to leaf shedding at the end of the dry season (Röderstein et al., 2005). As a 

side effect, trees are preparing for the upcoming season of highest net primary production. By contrast, 

the peaks during the rainy season are the result of strong winds and thunderstorms (Dawoe et al., 

2010; González-Rodríguez et al., 2011). This explains the observed increase in peaks of branch and rest 

deposition during wet months. 

2.1.4.2 Effects of elevation 

The Mt. Kilimanjaro forest ecosystems are characterized by the absence of a pronounced trend of total 

annual litterfall with elevation. When the leaf fraction was compared separately though, the annual 

deposition was significantly higher in FLM than in higher forests (FOC, FPO) (Error! Reference source n

ot found.). Leaf litter production is considered to depend on temperature and thus decreases at higher 

elevations (Okeke and Omaliko, 1994; Zhou et al., 2006; Girardin et al., 2010). Nonetheless, a series of 

other studies from various ecosystems also show no decrease with elevation (Röderstein et al., 2005; 

Köhler et al., 2008). Within our elevation range of ~900 m in natural forests, the percentages of leaf 

litterfall were too small to determine a notable decrease of total litterfall with elevation. Sporadic 

sampling at higher elevations (data not shown) indicated that a litterfall decrease would become 

apparent in ecosystems above 3000 m a.s.l. 

Seasonal variability of leaf litterfall in the natural forests on Mt. Kilimanjaro followed a U shaped 

pattern with increasing elevation (Figure 2.1-2). In tropical montane forests, the seasonality of litterfall 
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is generally low compared to tropical lowland forests (Chave et al. 2010). We observed the weakest 

seasonal variation in Ocotea forest in 2190 m a.s.l., featuring the highest annual precipitation and least 

varying soil moisture conditions (Table 2.1-1). At FPO (2850 m a.s.l.) seasonality increased again with 

lower MAP and an increasing temperature limitation. Litter production at higher elevation was 

distributed over the warmer period between October and May when canopy productivity is usually 

higher (Girardin et al., 2010). This pattern is based on the dependency of litterfall seasonality on rainfall 

intensities as well as temperatures (Zhou et al., 2006; Chave et al., 2010). Changes of seasonality 

patterns occurred within 200 m elevation difference (FLM to FOC). This suggests that elevation effects 

can easily overlay biome specific litterfall patterns and can contribute to the explanation of variabilities 

in large scale data (Zhang et al., 2014). 

We found no consistent effect of elevation on litter nutrient content within the agroforestry systems 

(Appendix Table 2.1-3). This indicates a strong overlay of elevation effects by land-use practices. This 

enables discussing the changes in contents along an elevation gradient only by comparing natural 

forests with each other. Carbon and most nutrient contents in leaf litter followed a hump-shaped 

pattern with elevation. This pattern is typical for other ecosystem properties along montane elevation 

gradients (Kluge et al., 2006; Mölg et al., 2009). It is also present for MAP at Mt. Kilimanjaro (Table 

2.1-1) as well as for aboveground biomass (Ensslin et al., 2015). Pabst et al. (2013) reported hump-

shaped soil moisture curves and mirroring patterns for soil pH from the same Kilimanjaro ecosystems. 

Both parameters control soil nutrient availability and they are without a doubt also key factors for 

variations of nutrient uptake by plants and consequently for the litter nutrient contents. 

2.1.4.3 Effects of land use 

The contents of most macronutrients in leaf litter of managed ecosystems were two to five times 

higher than in natural forests. This suggests that the chemical composition of leaf litter at Mt. 

Kilimanjaro was significantly altered by land use and the associated change of dominant plant or tree 

species. 

Especially for studying land-use effects it can be difficult to find adequate and comparable sites. At Mt. 

Kilimanjaro there is nearly no natural forest below and no land use above 1800 m a.s.l. Given this 

limitation to our study design we will only discuss land-use effects that are significant when compared 

on the closest elevation levels (FLM and HOMb). According to Hemp (2006) Mt. Kilimanjaro exhibits a 

strong ecological zonation. FLM and HOMb are both located in the same altitudinal zone (i.e. lower 

montane) and were selected to represent the respective zone of natural species composition (Ensslin 

et al., 2015). Therefore, we assume low elevation related variability. This assumption is also supported 

by the similar litter peak seasonality in both ecosystems (Figure 2.1-3) Several studies from the tropics 

focus on nutrient contents in leaf litter of agricultural plantations (Beer, 1988; Dawoe et al., 2010), tree 
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plantations (Sharma and Pande, 1989; Carnol and Bazgir, 2013) and natural forests (Dent et al., 2006; 

Lu and Liu, 2012). Some studies also compared tree plantations to natural forests (Lisanework and 

Michelsen, 1994; Celentano et al., 2011). However, the results vary considerably between study sites 

and are not directly comparable to each other. For example, the N content in litter is higher in Ethiopian 

natural forests than in tree plantations (Lisanework and Michelsen, 1994), while the opposite results 

were recorded from Costa Rican sites (Celentano et al., 2011). Independent from elevation, HOM and 

COF at Mt. Kilimanjaro had higher N contents and therefore lower C:N ratios in leaf litter than natural 

forests (Figure 2.1-4). Nitrogen is a limiting factor in tropical montane forests (Vitousek, 1984; Fisher 

et al., 2013), and N-deprived plants usually have a high C:N ratio in litter (Chave et al., 2010). We expect 

two processes to mitigate the natural N limitation. First, the introduction of crops such as Musa ssp. 

and Coffea ssp. affects the nutrient content of vegetation and litter in general. Second, fertilization 

leads to higher N contents in plants and consequently in leaf litter (O'Connell and Grove, 1993). As a 

result the annual N deposition by litterfall in HOM and COF increased and N cycling in these ecosystems 

was enhanced. This is well in line with Zech et al. (2011), who found evidence for accelerated N-cycling 

in the cultivated areas of Mt. Kilimanjaro. Fertilization with N and P also increases the content of other 

macronutrients in leaf litter (O'Connell and Grove, 1993). This corresponds to our findings because the 

content of most macronutrients in land-use ecosystems either increased or remained on the same 

level compared to the natural forests. Specific micronutrient fertilization can be ruled out in 

homegardens (Fernandes et al., 1986). Consequently, micronutrients were either unaffected (Al, Fe) 

or decreased under managed conditions (Mn, Na). 

2.1.4.4 Implications for ecosystem cycles 

The effects of land use and elevation on litterfall and nutrient contents also lead to two specific 

implications for C and nutrient cycles at the ecosystem level. The first implication can be drawn from 

the seasonal dynamics of litterfall. Litterfall peaks at the end of the dry season promote an 

accumulation of particulate organic matter on the surface soil. This accumulation entails increased 

microbial activity and mobilization of C and nutrients during the following wet season (Sayer et al., 

2007; Blagodatskaya et al., 2009). Several studies reported a peak in freshly mobilized C and nutrients 

in the early wet season, increasing the possibility of leaching or translocation to deeper soil layers (Qiu 

et al., 2005; Pabst et al., 2013). As a consequence, an increased nutrient deposition via litterfall might 

not necessarily result in higher nutrient availability, but may actually increase nutrient losses. The 

investigated agricultural ecosystems at Mt. Kilimanjaro experience distinct climatic seasonality and 

accumulate large amounts of litter at the end of dry season. This implies that the nutrient cycles in 

these ecosystems are especially vulnerable to changes in vegetation structure and species 

composition. 
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The altered nutrient deposition rates lead to the second implication regarding turnover rates and C 

losses from soils. There is ambiguous information on the effects of single nutrient addition and 

fertilization on the decomposition rates of leaf litter (Khan et al., 2007; Grandy et al., 2013). While N 

or P addition alone might delay nutrient mobilization, decomposition is generally accelerated by a 

higher macronutrient content (Allison and Vitousek, 2004; Debusk and Reddy, 2005). In addition, 

Debusk and Reddy (2005) postulated that this acceleration is independent of soil nutrient content. The 

abundant macronutrients in the litter of the investigated agricultural ecosystems therefore imply an 

accelerated C and nutrient turnover in the respective ecosystems. Easily available substrate is 

decomposed faster, and soil respiration (i.e. soil CO2 efflux) is generally higher in soils of intensively 

managed versus natural ecosystems at Mt. Kilimanjaro (Mganga and Kuzyakov, 2014). Together with 

tillage and crop removal, this explains the lower C and N stocks in the topsoil of agroforestry systems 

compared to natural forests at Mt. Kilimanjaro (Table 2.1-1). As a consequence, the conversion of 

natural forests to perennial plantations or homegardens probably represents a source of atmospheric 

CO2 despite their structural resemblance to natural forests. 

2.1.5 Conclusions 

At the southern slope of Mt. Kilimanjaro, the annual pattern of litterfall depends on seasonal climatic 

conditions. Seasonality at lower elevations leads to a distinct peak of litter production in the late dry 

season (August – October) that is less pronounced at higher elevations. Annual leaf litter production 

decreased at higher elevations due to lower temperatures and reduced primary production. 

Nonetheless, other litter components (branches and rest) mask this effect and total annual litterfall 

was independent of climate and land-use. 

Conversion of natural forests to sustainably or intensively used agroforestry systems leads to direct 

(change of dominant species) and indirect (increased nutrient uptake after fertilization) enrichment of 

macronutrients in leaf litter. The change in litter quality reduces the C:N ratio, increases the C and 

nutrient turnover rates in soil and so, accelerates the ecosystem C and nutrient cycles. This is followed 

by decreased C stocks in agroecosystems, with consequences to their fertility and ecosystem 

vulnerability. This calls for considering these effects when addressing land-use change and evaluating 

the sustainability of agroforestry and plantation management. 
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2.1.8 Appendix A 

Appendix Table 2.1-3: Nutrient content in leaf litter (± SE) from six ecosystems at Mt. Kilimanjaro, Tanzania 

 Chagga 
homegarden 

1(b) 

Chagga 
homegarden 4(a) 

Coffee 
plantation 

Forest lower 
montane 

Ocotea 
forest 

Podocarpus 
forest 

(%mass) 
C 49.82 ± 0.38a 47.36 ± 0.43b 47.97 ± 

0.35b 
47.88 ± 0.28b 49.09 ± 

0.41a 
48.75 ± 
0.62ab 

N 2.95 ± 0.14a 2.83 ± 0.11a 2.37 ± 0.10b 1.08 ± 0.08d 1.56 ± 0.07c 1.16 ± 0.08d 
C:N 17.09 ± 0.77d 16.85 ± 0.63d 20.40 ± 0.61c 44.93 ± 0.52a 32.10 ± 

0.40b 
42.30 ± 
0.50a 

       
(mg g-1) 
Al 0.77 ± 0.12ab 0.94 ± 0.17ab 1.10 ± 0.18ab 0.43 ± 0.18c 1.36 ± 

0.19a 
0.74 ± 0.19bc 

Ca 7.95 ± 0.26a 17.77 ± 1.09cd 13.65 ± 
1.80a 

6.63 ± 2.00d 10.09 ± 
2.18b 

9.08 ± 1.88bc 

Fe 0.66 ± 0.11a 1.10 ± 0.29a 0.82 ± 0.29a 0.29 ± 0.30b 0.79 ± 
0.30a 

0.72 ± 0.29b 

K 15.83 ± 1.51a 7.36 ± 2.45b 12.87 ± 
2.78ab 

3.08 ± 3.12c 3.89 ± 3.09c 7.17 ± 2.29b 

Mg 1.99 ± 0.05bc 3.99 ± 0.24a 2.14 ± 0.34bc 1.86 ± 0.33cd 2.70 ± 
0.41a 

1.47 ± 0.38d 

Mn 0.11 ± 0.01d 0.12 ± 0.01d 0.21 ± 0.01c 0.52 ± 0.01b 0.67 ± 
0.01ab 

0.82 ± 0.01a 

Na 0.22 ± 0.04b 0.17 ± 0.04b 0.22 ± 0.03b 0.41 ± 0.03a 0.60 ± 
0.03a 

0.21 ± 0.03b 

P 1.37 ± 0.09ab 1.70 ± 0.07a 1.15 ± 0.05b 0.67 ± 0.05c 0.77 ± 0.09c 0.74 ± 0.15c 
S 1.98 ± 0.05a 1.68 ± 0.08ab 1.59 ± 0.09b 1.06 ± 0.10cd 1.19 ± 0.10c 0.89 ± 0.12d 

Superscript letters indicate significant differences between the sites (derived from Kruskal-Wallis Test; p-level ≤ 
0.05). 
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2.2.1 Abstract 

Decomposition is one of the most important processes in ecosystem carbon (C) and nutrient cycles, 

and is a major factor controlling ecosystem functions. The functioning of Afromontane ecosystems and 

their ability to provide ecosystem services are particularly threatened by climate and land-use change. 

Our objectives were to assess the effects of climatic conditions (elevation and seasonality) and land-

use intensity on litter decomposition and C stabilization in ten ecosystems along the unique 3000 m 

elevation gradient of Mt. Kilimanjaro. 

Tea-Bag Index parameters (decomposition-rate-constant k and stabilization-factor S) were used to 

quantify decomposition of standardized litter substrate. Nine pairs of tea bags (green and rooibos tea) 

were exposed in each ecosystem during the short-wet, warm-dry, long-wet and cold-dry season. 

Decomposition rate increased from k=0.007 in savanna (950 m elevation), up to a maximum of k=0.022 

in montane cloud forest (2100 m). This was followed by a 50% decrease in (sub-)alpine ecosystems 

(>4000 m). Savanna experienced the strongest seasonal variation, with 23 times higher S-values in dry 

season compared to wet season. The conversion of savanna to maize monocultures (~1000 m), and 

traditional agroforestry to large-scale coffee plantations (~1300 m) increased mean k-values, and 

stabilization factors were about one third lower. 

Forests between 1900 and 2100 m represent the zone of sufficient moisture and optimal temperature 

conditions. Seasonal moisture (lower slope) and temperature limitation (alpine zone) decreases litter 

decomposition. Mt. Kilimanjaro ecosystems are highly sensitive to land-use change, which accelerates 

ecosystem cycles and decreases C stabilization. 

 

Keywords: East Africa, Tropical mountain forest, Land-use change, Carbon cycle, Tea Bag Index, 

Elevation gradient  
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2.2.2 Introduction 

Decomposition of plant residues and organic matter in soil is a major flux in global carbon (C) cycling, 

and contributes about 58 Pg C year-1 to emissions into the atmosphere (Houghton, 2007). At the global 

scale, litter decomposition and recycling is controlled by climatic factors and soil properties (Aerts, 

1997). At the local scale, secondary regulators, such as litter quality, (plant species composition) and 

consumer organisms, play a greater role for decomposition in natural ecosystems (Makkonen et al., 

2012). However, the importance of these factors also changes throughout the decomposition process 

(Bonanomi et al., 2013). These factors are also directly depending on climatic conditions and therefore 

can be attributed to the specific ecosystem characteristics along elevation gradients (Wilcke et al., 

2008; Röder et al., 2016). It is important to understand general and specific ecosystem mechanisms, 

to estimate and predict consequences of future climate change scenarios for global C and nutrient 

fluxes (Stuart Chapin III et al., 2009). A standardized approach is necessary to identify these 

mechanisms and to examine the role of environmental drivers of decomposition in highly diverse 

ecosystems (Didion et al., 2016). Previous studies used cotton strips or standardized leaf litter mixtures 

(Harrison et al., 1988; Wall et al., 2008). However, these methods required multiple measurements in 

time and were labor intensive, thus could not achieve high resolution required for global modelling. 

Keuskamp et al. (2013) presented an easily applicable method that enables decomposition 

measurements with a single sampling time, the Tea Bag Index (TBI). Using this method allows to 

identify seasonal environmental drivers, even under logistically demanding conditions. 

As one of the most important steps in organic matter and nutrient cycles, litter decomposition has 

been extensively studied over the past decades (Vitousek, 1984; Berg, 2000; Singh et al., 2016). 

However, most studies were conducted in temperate and boreal ecosystems and data from tropical 

regions is still scarce, and have high uncertainties (Zhang et al., 2008). 

There are even fewer studies considering the effects of climatic conditions along tropical altitudinal 

gradients on decomposition. Most of these studies either looking at comparably short gradients 

(Ostertag et al., 2003, Guo et al., 2007, Illig et al., 2008), or excluded certain factors, such as seasonality 

(Coûteaux et al., 2002). In general, research on C cycling in tropical ecosystems has focused on 

Southeast Asia and South and Central America (e.g. Powers et al., 2009). In contrast, African 

ecosystems have received much less attention in global assessments (Zhang et al., 2008). The 

knowledge gap is especially large when it comes to East African mountain forests and effects of 

anthropogenic disturbances. This underrepresentation is of particular relevance because montane 

East Africa is an ecological and biodiversity hotspot (Mittermeier, 2004) and deforestation and land-

use intensification are rapidly ongoing (Lewis, 2006).  

With its large deforestation rates, Tanzania is one of the areas most affected by land-cover change 

(Fisher, 2010). For example, Mt. Kilimanjaro region experienced considerable intensification of 
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agricultural land use within the last 50 years (Misana et al., 2012). Despite the risks for ecosystem 

services, this offers valuable possibilities to study effects of these anthropogenic factors on ecosystem 

C cycling. Land-use change can alter numerous ecological factors, which in turn, affect ecosystem 

functions and lead to high complexity and unpredictable implications of these changes (Groffman et 

al., 2001). To assess the anthropogenic impacts on C sequestration in tropical forest ecosystems, it is 

important to understand the functioning of C recycling through decomposition under natural and 

disturbed conditions. Current estimates might still underrepresent effects of converting tropical 

forests to agricultural land (Blecourt et al., 2013). It is yet unclear how climate and agricultural land 

use affect C cycling in Afromontane ecosystems. 

We used the unique elevation gradient of Mt. Kilimanjaro to investigate the effects of climate and land 

use on standardized litter decomposition. This allows drawing inferences about the dominating 

ecosystems of East Africa, covering a broad range of climate and land-use conditions. These are the 

first data on decomposition of plant materials from Mt. Kilimanjaro ecosystems and our contribution 

to the Tea Bag Index project (www.teatime4science.org). 

Our first objective was to assess the effects of climatic conditions (changing with elevation) on 

decomposition and C stabilization in ecosystems with similar soil parent material. Secondly, we 

investigated the seasonal variations in decomposition and C stabilization along a climate and land-use 

gradient. We hypothesize, that (1) decomposition rates are increasing under seasonally stable climatic 

conditions (i.e. mid-elevation), that (2) seasonality is more important at low elevation (semi-arid 

climate) compared to higher elevation, and that (3) land-use intensification increases decomposition 

rates and reduces C sequestration potential. 

2.2.3 Methods 

2.2.3.1 Study site 

The study sites are located at the southwestern slope of Mt. Kilimanjaro (3°4′33″S, 37°21′12″E) and 

cover an elevation gradient from 951 to 4190 m a.s.l. (Table 2.2-1). Ten plots (0.25 to 1.00 ha) were 

selected, representing typical natural and agricultural ecosystems of the region as characterized by 

Hemp (2006a). The colline area, below 1200 m, is naturally covered with savanna woodland (SAV) 

dominated by Acacia species (Becker et al., 2016). This natural vegetation is increasingly transformed 

into arable land for intensive maize and sorghum production (MAI) (Lambrechts et al., 2002). The 

densely populated area between 1200 m and 1800 m is mainly covered by Chagga homegardens 

(HOM) and Coffee plantations (COF). Homegardens are multilayered agroforestry systems with Musa 

ssp. and Coffea ssp. as dominant crops under fruit and remnant forest trees (e.g. Albizia schimperiana, 

Grevillea robusta) (Hemp, 2006b). They are traditionally managed with sporadic addition of organic 

fertilizers and household waste (Fernandes et al., 1986). Shade-coffee plantations (COF) are an 
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intensively managed land-use type, with regular application of mineral fertilizers and pesticides. We 

categorized land-use intensity of these sites according to the indices proposed and calculated by 

Classen et al. (2015) and Schellenberger-Costa et al. (2017) (Supporting Table 2.2-2). These indices 

consider factors such as annual biomass removal, input of fertilizers and pesticides, vegetation 

structure as well as surrounding land-use types. 

Table 2.2-1: Land-use classification, annual precipitation (MAP), mean annual temperature (MAT) and soil 
characteristics (in 0-10 cm) of the research sites on Mt. Kilimanjaro 

Ecosystem Plot ID Land-use class Elevation 
(m a.s.l.) 

MAP* 
(mm) 

MAT* 
(°C) 

Soil C 
(mg g-1) 

Soil N 
(mg g-1) 

Soil pH 

Savanna SAV Natural, 
disturbed 

951 663 23.7 27.5 2.0 5.38 

Maize field MAI Agricultural, 
intensive 

1009 744 22.6 14.5 1.2 4.56 

Chagga homegarden HOM Agricultural, 
traditional 

1275 1267 20.8 38.4 3.5 5.42 

Coffee plantation COF Agricultural, 
intensive 

1305 1250 20.1 18.9 1.8 4.28 

Lower montane 
forest 

FLM Natural, 
disturbed 

1920 2257 15.3 134.8 9.2 4.34 

Ocotea forest FOC Natural 2120 2500 12.1 214.6 12.4 3.49 
Podocarpus forest FPO Natural 2850 2063 9.4 205.9 10.0 3.83 
Erica forest FER Natural 3880 1389 4.5 137.5 7.6 4.5 
Helichrysum HEL1 Natural 3880 1417 5.3 131.3 8.8 5.0‡ 
Helichrysum HEL2 Natural 4190 1308 4.5 29.8 2.4 5.2 

* Appelhans et al. (2014) 
‡ Estimated from Gütlein et al. (2016) 
 

Five natural sites were located inside the Kilimanjaro National Park along the Machame and Umbwe 

ridges. The Lower montane forest (FLM) at 1920 m is dominated by Macaranga kilimandscharica, 

Agauria salicifolia and occasional Ocotea usambarensis. Ocotea forest (FOC) at 2120 m is defined by 

the lone dominance of O. usambarensis and tree fern, such as Cyathea manniana. The forest at 2850 

m was classified as Podocarpus forest (FPO) and is dominated by Podocarpus latifolius together with 

Prunus africana and Hagenia abyssinica. In the subalpine zone around 4000 m (FER), Erica trimera is 

dominating and can reach up to 10 m growth height. Between 4000 and 4500 m (HEL), the alpine forest 

is displaced by Helichrysum cussion vegetation with tussock grasses (Ensslin et al., 2015). An additional 

HEL plot (HEL1) was added to represent the zone of ongoing vegetation shift between Erica and 

Helichrysum. 

Climate at Mt. Kilimanjaro follows a bimodal rainfall regime with a short rainy season between October 

and December and a longer rainy season from March to May (Hemp, 2006a). Interpolated, mean 

annual and monthly (2011-2014) meteorological data from the study sites are available from 

Appelhans et al. (2014). Mean annual precipitation (MAP) varies between 663 mm and about 2500 mm 

per year (Table 2.2-1). Mean annual temperature (MAT) ranges from 4.5 °C to 23.7 °C. 
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The comparison of ecosystems on Mt. Kilimanjaro is especially valuable because soils have a similar 

age and developed from similar parent material. In the colline zone, soils developed on erosion 

deposits from Mt. Kilimanjaro and were classified as Vertisols. Soils in the forest zone were classified 

as Andosols with folic, histic or umbric topsoil horizons and accordingly high C contents in the upper 

horizons, often underlain by C rich paleosol sequences (Zech 2014). In the alpine zone, dominating soil 

types are mainly Leptosols and Vitric Andosols. These soils developed from volcanic rocks, such as 

basalt, trachyte and olivine basalts (Dawson 1992). 

 

Figure 2.2-1. Annual variation in temperature (T, red dashed line) and monthly precipitation (P, blue bars) 
averaged over 10 ecosystems at Mt. Kilimanjaro slopes. Details for individual ecosystems are available from 
Appelhans et al. (2014) 

2.2.3.2 Sampling and analyses 

We used the Tea-Bag Index (TBI), as introduced by Keuskamp et al. (2013), to assess seasonal effects 

on decomposition of a standardized substrate. At each of the ten plots, nine pairs of litterbags (green 

tea & rooibos tea) were buried in 8 cm depth along a 100 m transect parallel to the line of the slope. 

The litterbags were exposed for ~90 days before collection. This was repeated during the short-wet 

(October-December 2014), warm-dry (December-March 2014), long-wet (March-July) and cold-dry 

season (July-September) (Figure 2.2-1). The recovered litterbags were dried at 60°C for 48 hours and 

weighed afterwards. 

TBI is based on the decomposition rate constant (k) and stabilization factor (S). Both were calculated 

according to Keuskamp et al. (2013). In short: The k value is calculated from mass loss W after 

incubation time t, assuming a double-exponential decomposition due to faster decomposition of 

hydrolysable fractions (a) and relative increase of the more recalcitrant fraction (1 - a) over time (eq. 

1). 

(eq. 1) 
𝑊(𝑡) = 𝑎𝑒−𝑘𝑡 + (1 − 𝑎)   
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Environmental conditions can alter the stability of less recalcitrant compounds, reducing the mass loss 

of the originally hydrolysable (i.e. chemically labile) fraction. This inhibiting effect is therefore referred 

to as S (eq. 2), with ag being the decomposed fraction and Hg the hydrolysable fraction of green tea. 

   (eq. 2) 

 

 

2.2.3.3 Statistical analyses 

The effect of elevation was assessed by linear regression at p-level ≤ 0.05. The polynomial degree of 

the model fit was determined using Akaike’s Information Criterion (AIC) on linear, second-order and 

third-order models. We identified seasonal variations by comparing slopes and intercepts of the final 

regression models using analysis of covariance (ANCOVA) (p≤0.05). Effects of land use were compared 

separately for each elevation class (colline and montane). Significant effects were determined by using 

linear mixed effect model ANOVA for nested designs with season as random factor (p≤0.05). 

Seasonality of both TBI parameters (k and S) was related to seasonal amount of precipitation and mean 

temperature in each ecosystem using partial correlation to correct for T and P respectively (Supporting 

Table 2.2-2). Continuous measurements of climatic variables were available only from SAV, FLM, FPO 

and FER (Supporting Table 2.2-3), thus we limited our analysis to these sites. All statistical analyses 

were conducted in R 3.3.1 (R Core Team, 2016). 

2.2.4 Results 

2.2.4.1 Effect of elevation 

Figure 2.2-2. Annual means of Tea Bag Indicees: 
decompostion rates (k) vs. stabilization factor (S) in 
ten ecosystems along the elevation gradient of Mt. 
Kilimanjaro: Savanna (SAV), maize (MAI), 
homegarden (HOM), coffe plantation (COF), lower 
montane forest (FLM), Ocotea forest (FOC), 
Podocarpus forest (FPO), Erica forest (FER) and 
Helichrysum (HEL). Land-use classes are presented 
as: Natural and semi-natural ecosystems (squares), 
extensive agroforestry (circle), intensive land use 
(triangle). Black dots indicate global TBI references 
taken from Keuskamp et al. (2013). 

 

 

𝑆 = 1 −
𝑎𝑔

𝐻𝑔
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Mean annual decomposition rate constant k decreased logarithmically with increasing stabilization 

factor S (Figure 2.2-2). Average S values were highest in alpine and sub-alpine ecosystems as well as in 

SAV. FOC exhibited the maximal k values. 

Average S values were highest in alpine and sub-alpine ecosystems as well as in SAV. FOC exhibited the 

maximal k values. Annual means of k and S were strongly affected by elevation (Figure 2.1-3). These 

relationships were best explained by left skewed third-order (or higher) polynomial functions 

(Supporting Table 2.2-3), indicating stronger effects within the colline and lower-montane zones 

compared to the montane and alpine zones. 

Mean decomposition rate increased from k=0.007 in SAV, up to a maximum of k=0.022 in FOC. The 

increase of k was followed by its decrease to around k=0.010 in the (sub-) alpine ecosystems. 

Stabilization factor decreased from SAV (S=0.33) to COF or FOC (S=0.11) and strongly increased again 

to a maximum of S=0.41 in the alpine Helichrysum ecosystem. 

 

Figure 2.2-3. Annual means of Tea-Bag Index 
decompostion rate constant (k) and stabilization factor (S) 
in ten ecosystems along an elevation gradient at Mt. 
Kilimanjaro. Dashed lines and grey areas indicate best fit 
polynomial regression and respective areas of 95%-
confidence. 
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2.2.4.2 Effect of seasonality 

During all seasons, we found the highest decomposition rates in the mid-elevation forest belt (Figure 

4). However, during both warm seasons the peak is shifted upslope.  

Regression slopes between k and elevation differed significantly between seasons (p≤0.05). Maximum 

k values in cold-wet and cold-dry season were found at 2220 m in FOC. During the warm-dry season, k 

peaks at 2850 m (FPO). At most sites below 2220 m, seasonal maxima were found during the longer 

cold-wet season with the highest precipitation. While at higher elevation, maxima occurred solely 

during the warm-wet season. 

Seasonal fluctuations strongly affected stabilization factor in SAV (Figure 4). In all ecosystems, the S-

factor values were highest during the cold dry season. This seasonality was less influential at mid 

elevation. Both, highest and lowest S values were measured for wet and dry season in SAV, 

respectively. The mean S values in SAV during cold and dry season (S=0.54) were about 23 times higher 

compared to the warm-wet season (S=0.02). The lowest seasonal fluctuation was measured for FOC, 

where S varied between 0.13 during the cold dry season and 0.09 during the warm-wet season. 

Figure 2.2-4. Seasonal variability of Tea-Bag Index 
decompostion rates (k) and stabilization factor (S) in ten 
ecosystems along an elevation gradient at Mt. 
Kilimanjaro. Linetypes indicate 3rd-order polynomial fits 
for cold-dry (CD), cold-wet (CW), warm-dry (WD) and 
warm-wet (WW) seasons. Arrows indicate the range of 
seasonal variation as maximal effects of temperature and 
precipitation. 
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Partial correlation between k in natural ecosystems and precipitation was significant (p≤0.05) except 

at mid elevation (FPO) (Figure 2.2-5). At mid and high elevation (FPO & FER) k was significantly affected 

by temperature. The correlation between stabilization factor and seasonal precipitation linearly 

decreased with elevation. Contrary, the stabilization factor was significantly affected by temperature, 

already at FLM and above. 

2.2.4.3 Effects of land use 

Land-use intensification slightly increased decomposition rates and significantly decreased S values 

(Figure 2.2-6). In both elevation zones, mean annual k-values increased by about 30% with land-use 

intensity, but these effects were not significant when considering seasonal variations (SAV-MAI: p = 

0.14 & HOM-COF: p = 0.16). Mean annual stabilization factor in the colline zone decreased from 0.33 

in SAV to 0.22 in MAI. Likewise, the stabilization factor in COF was around 20% lower compared to 

HOM. 

Figure 2.2-5. Partial correlation coefficients of 
both Tea-Bag Indices: k (left) and S (right) with 
seasonal precipitation (top) and seasonal mean 
temperature (bottom) in four natural 
ecosystems: Savanna (SAV, 950 m), lower 
montane forest (FLM, 1900 m), Podocarpus 
forest (FPO, 2850) and Erica forest (3880 m) on 
Mt. Kilimanjaro. Significant correlations (p ≤ 
0.05) are highlighted (*). 

 

 

 

 

 

2.2.5 Discussion 

2.2.5.1 Evaluation of TBI indices 

All measured values of k and S and their variances were in a similar range as global reference data 

derived from Keuskamp et al. (2013), but mean annual k values were mainly on the lower half (Figure 

2). The mean k values in the Kilimanjaro forest belt (i.e. FOC, FLM, FPO) were comparable to temperate 

forest sites from Keuskamp et al. (2013), but were not as high as in tropical moist or lowland forests. 

Lower slopes of Kilimanjaro region are under stronger water limitation than lowland forests in Central 

and South American tropics (Legates & Willmott, 1990), while lower MAT at high elevation restricts 

decomposition. Annual S means covered the whole range of global reference values. In cold alpine and 
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semi-arid savanna ecosystems, S was higher compared to most reference sites (except desert). This 

supports the underlying assumption of the TBI, that S is strongly depending on environmental and 

climatic factors (Berg & Meentemeyer, 2002) and can reflect climatic limitation. 

  

Figure 2.2-6: Effect of land-use change from semi-natural savanna (SAV) and traditional agroforestry (HOM) to 
maize field (MAI) and coffee plantation (COF), on mean annual TBI decomposition rates (k) and stabilization 
factor (S). Significant differences (p < 0.05) are indicated (*) according to linear mixed effect model ANOVA for 
nested design with seasons as random effect 

 

The TBI appears to be a valid and reproducible method for estimating decomposition rates and C 

stabilization potential at Mt. Kilimanjaro and our results are consistent within this context. However, 

further improvements of the TBI method might be recommended (Didion et al., 2016). Measurements 

are limited to 3 months of incubation but are highly sensitive to seasonal fluctuations. If the TBI data 

should contribute to a global annual modelling, this should be considered in method standardization. 

2.2.5.2 Effects of elevation 

Elevation (i.e. climatic conditions) had a strong effect on decomposition rate and stabilization factor 

(Figure 2.2-7). Both parameters have their critical values at mid elevation: the decomposition rate k – 

its maximum, and the stabilization factor S – its minimum (Figure 2.2-3).  

Unimodal and U-shaped patterns are typical for various ecosystem properties along montane elevation 

gradients (Kluge et al., 2006; Campos et al., 2014). Peaks at mid elevation were recently found for 

photosynthesis (NDVI), soil C content, litter quality and species abundance at Mt. Kilimanjaro (Hemp, 

2006a; Pabst et al., 2013; Becker et al., 2015; Röder et al., 2016). Especially the distribution of 

aboveground biomass is distinctly hump shaped at Mt. Kilimanjaro (Ensslin et al., 2015). The maximum 

occurs in FLM and FOC, between 2000 and 2500 m elevation. This mid-elevation peak of ecosystem 

productivity is highly correlated with precipitation, i.e. water availability, (Röder et al., 2016) and it can 

be directly linked to decomposition patterns (Figure 2.2-3). 

Seasonal temperature variations start to affect C stabilization at FLM (1920 m) and become 

increasingly important at higher elevation (Figure 2.2-5). Precipitation can be seasonally limiting below 

FPO (< 2850 m). However, FLM and FOC represent the interception zone between mostly sufficient 
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moisture availability and temperature. This indicates that C sequestration in these ecosystems is 

mainly driven by amounts of litter input and productivity. At lower and higher elevation, 

decomposition is restrained by climatic factors. 

Ecosystems at lower elevation are highly subjected to seasonal moisture limitation (Appelhans et al., 

2016). Especially in semi-arid environments, low water availability negatively affects litter decay rates 

(Incerti et al., 2011). During the rainy season, soil microbial activity in savanna strongly increases 

(Otieno et al., 2010) and the turnover is less selective regarding organic matter quality (Davidson & 

Janssens, 2006). This effect is only present in semi-arid elevation zones (i.e. colline and submontane). 

At mid-elevation S values were low and unaffected by seasonality, thus the preference of easily 

available substrate was rather constant throughout the year. 

In upper montane and alpine environments (≥2850 m), the decomposition was strongly limited by 

temperature (Figure 2.2-5) and increased during the warm seasons (Figure 2.2-4). This is commonly 

expected because temperature sensitivity of decomposition is generally higher at low temperatures 

(Davidson & Janssens, 2006) and at higher elevation (Schindlbacher et al., 2010; Blagodatskaya et al., 

2016). Another factor that might reduce decomposition specifically in Podocarpus forest (2850 m) is 

the regular water logging of soil due to clouds inhibiting evaporation (Bruijnzeel & Veneklaas, 1998). 

However, neither negative nor positive effects of precipitation were found during the seasons (Figure 

2.2-5). Strong seasonality in Erica and Helichrysum ecosystems implies strong dependency on climate 

variables and low potential to adapt to fast climate changes compared to lower elevation forests 

(Hemp & Beck, 2001). The projected increase of surface temperature (Bradley et al., 2006) will reduce 

the stabilization of fresh C and accelerate organic matter decomposition. Therefore, future soil C losses 

into the atmosphere might be considerably large and fast in East African mountain ecosystems. 

2.2.5.3 Effects of land use 

Land-use intensification from semi-natural savanna to maize monocultures and from traditional 

homegardens to large-scale coffee plantations decreased C stabilization and showed the tendency to 

increase decomposition rates (Figure 2.2-6; Figure 2.2-7). The total content of soil organic matter 

(SOM) and microbial biomass commonly decrease with land use intensification (Don et al., 2011; Junior 

et al., 2016). This effect was also found at Mt. Kilimanjaro (Pabst et al., 2013). However, at the same 

time decomposition rates at Mt. Kilimanjaro tended to increase while C stabilization decreased. This is 

in contrast to previous findings that connected land-use intensification to decreasing decomposition 

rates (Attignon et al., 2004; Violita et al., 2016). Under similar environmental conditions as compared 

to the lower slopes of Mt. Kilimanjaro (i.e. western Kenya, 1500 m), Kagezi et al. (2016) found 

decreased decomposition rates on agricultural compared to natural sites. This decrease of organic 

matter decomposition can be connected to the application of N fertilizers and reduced microbial 
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biomass (Zang et al., 2016). Decomposition studies tend to exhibit strong site and method specific 

variation (Makkonen et al., 2012) and land-use intensification was likewise found to increase 

decomposition of litter and SOM (Lisanework & Michelsen, 1994; Guillaume et al., 2015). Decreasing 

decomposition with higher land-use intensity are often related to changes in decomposer communities 

(Kagezi et al., 2016). Recent studies from Mt. Kilimanjaro found only minor effects of land-use change 

on overall arthropod abundance and composition (Röder et al., 2016) but indicated accelerated 

organic matter turnover on agricultural sites (Becker et al., 2015). Also, glucose decomposition 

increases with land-use intensification from savanna to maize fields and homegardens to coffee 

plantations (Mganga & Kuzyakov, 2014). This is because soil microbes in these ecosystems are less 

efficient in SOM decomposition but at the same time more demanding for new C sources (Pabst et al., 

2016), reducing S values on agricultural sites (Figure 2.2-6). This concept relates decomposition 

patterns primarily to the microbial decomposers nutritional status (Manzoni et al., 2008). Considering 

the features of the TBI method (i.e. standardized litter, exclosure of exogeic and >0.25 mm fauna) this 

points out the importance of pre-existing soil nutrient conditions on litter decomposition and C 

stabilization. 

2.2.6 Conclusions 

This is the first study that gives insight into mechanisms of organic matter decomposition in Mt. 

Kilimanjaro ecosystems, representing a broad range of natural and agricultural areas in East-Africa. Soil 

organic matter turnover and stabilization at Mt. Kilimanjaro is strongly dependent on the climatic 

conditions along the elevation gradient. Ecosystems at mid elevation (between 1900 and 2200 m) 

represent the zone of sufficient moisture and optimal temperature conditions, with the highest plant 

biomass and productivity. High litter input and fast turnover regulate the C sequestration in these 

ecosystems, while climatic restrains control decomposition and C stabilization in lower and higher 

elevation zones. Decomposition in the colline savanna, Africa’s most abundant biome, is strongly 

controlled by seasonal moisture limitation and highly sensitive to changing rainfall patterns. Small 

seasonal temperature variations had a strong effect on decomposition in Erica and Helichrysum sites 

(> 3000 m), implying a strong temperature sensitivity of these ecosystems. Therefore, with raising 

global temperatures, soils in (sub-) alpine Afromontane ecosystems must be considered potential 

future atmospheric CO2 sources. 

Land-use intensification at Mt. Kilimanjaro decreases soil C sequestration potential by increasing 

microbial demands for fresh C sources. The transformation of natural savannas to maize monocultures 

and from traditional subsistence farming to large-scale plantations may have strong negative impact 

on the C stocks of East-African soils. Especially considering the future increase in population and thus 

food-demand land-use intensification is likely to substantially act as a future CO2-source in this area, 

too. 
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We conclude that decomposition rates in East-African ecosystems are controlled by the combined 

effects of long-term climatic conditions, seasonal variability and land-use change. Thus, projecting 

effects of climate change and regionalizing C cycling patterns must consider these factors. Especially 

for conducting short term decomposition experiments with standardized litter (e.g. TBI) in semi-arid 

or temperature limited regions, the consideration of seasonal variations, as a major controlling factor 

of decomposition, is required. 

 

Figure 2.2-7: Conceptual outline of climatic and land-use effects on standardized litter decomposition at Mt. 
Kilimanjaro. Arrows indicate effect direction of increasing land-use intensity and decreasing temperature and 
precipitation. 
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2.2.9 Supporting tables 

Supporting Table 2.2-2: Land-use indices for savanna (SAV), maize field (MAI), homegarden (HOM) and coffee 
plantation (COF). Higher values (0 to 1) indicate stronger anthropogenic disturbance. 

Ecosystem Category Land-use index1 Disturbance index2 

SAV Natural disturbed 0.246 0.333 
MAI Agricultural intensive 0.692 0.909 
HOM Agricultural traditional 0.523 0.634 
COF Agricultural intensive 0.865 0.998 

1 includes vegetation structure, data and method available from Classen et al. (2015) 
2 no vegetation structure included, data and method available from Schellenger-Costa et al. (2017) 

 

Supporting Table 2.2-3: Comparison of polynomial regression fits for mean annual k and S with elevation. 

 polynomial degree R2 p-value AIC 

 
k 

    

 1st order -0.12 n.s. -74.8 
 2nd order 0.68 0.007 -86.8 
 3rd order 0.78 0.007 -89.7 
 4th order 0.74 0.026 -88.0 
 
S 

    

 1st order 0.35 0.042 -14.9 
 2nd order 0.73 0.004 -22.9 
 3rd order 0.84 0.003 -27.7 
 4th order 0.86 0.006 -29.0 

 
 

Supporting Table 2.2-4: Seasonal climate variables from four sites at Mt. Kilimanjaro. Savanna (SAV), Lower 
montane forest (FLM), Podocarpus forest (FPO), Erica forest (FER). 

PlotID Season Precipitation [mm] Mean temperature [°C] 

SAV warm-wet 285 24.2 
SAV cold-dry 50 21.7 
SAV cold-wet 350 23.6 
SAV warm-dry 83 25.3 
FLM warm-wet 398 15.9 
FLM cold-dry 161 12.9 
FLM cold-wet 756 14.9 
FLM warm-dry 65 17.5 
FPO warm-wet 812 9.8 
FPO cold-dry 134 8.1 
FPO cold-wet 1307 9.2 
FPO warm-dry 520 10.6 
FER warm-wet 89 4.9 
FER cold-dry 39 3.4 
FER cold-wet 311 4.3 
FER warm-dry 260 5.5 
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2.3.1 Abstract 

Decomposition of plant litter, as one of the major process in ecosystem cycling is depending on 

ecosystem specific characteristics, including temperature, precipitation, plant species composition, 

availability of substrate, and decomposer organisms. Therefore, it is important to identify ecosystem 

specific patterns to understand competition and demand of plants and decomposers for nutrient 

sources as well as their response to global changes. In this study, we relate previously collected data 

from Mt. Kilimanjaro with a new decomposition dataset to provide further insight on C and nutrient 

cycling in Mt. Kilimanjaro ecosystems. 

Native leaf litter was exposed for one year in four forest ecosystems along an elevation gradient from 

1900 to 3900 m of Mt. Kilimanjaro. Mesh sizes of 0.2, 2 and 5 mm were used to selectively exclude 

decomposer organisms. Initial and final content of litter nutrients (C, N, P, K, S, Ca, Al, Fe, Mg, Mn and 

Na) was used to calculate annual release rates. 

The effect of elevation on litter decomposition was the same between native and standardized litter 

in previous studies. Annual litter-mass loss decreased for about 30% between 2100 and 2900 m and 

was mostly unaffected by accessibility for decomposer communities. However, under the most 

favorable condition (1900 – 2200) annual litter-mass loss decreased for about 15% from large to small 

mesh size. The annual release of nutrient cations was negatively correlated to initial C to nutrient 

ratios. 

Climatic variables are more important than litter nutrients and decomposer community complexity for 

controlling litter decomposition along the large climate gradient of Mt. Kilimanjaro. Ecosystem specific 

nutrient demand is reflected in release rates from litter decomposition. 
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2.3.2 Introduction 

Tropical mountain ecosystem are characterized by huge climatic gradients and a large percentage of 

endemic species, making them global hotspots of biodiversity (Gradstein et al. 2008). The specific 

biodiversity structure feeds back on ecosystem processes and changes the ecosystem resilience to 

environmental change (Stuart Chapin III et al. 2009). Thus, ecosystem functions and mechanisms are 

highly responsive to climatic variability. Montane elevation gradients, with their large climatic 

diversity, provide the ideal conditions to investigate the response of biogeochemical cycles to climatic 

changes (Wang et al. 2016). 

Decomposition of plant litter is a major process in ecosystem carbon and nutrient cycles (Vitousek 

1984). The rate and effectiveness of litter turnover depends on ecosystem specific characteristics, 

including temperature, precipitation, plant species composition, availability of substrate, and 

decomposer organisms (Gavazov 2010; Dale et al. 2015). Decomposition of litter substrate is directly 

linked to mineralization rates and nutrient cycling per unit soil organic matter, thus low decomposition 

rates could induce nutrient shortage at high elevation (Gütlein et al. 2016; Unger 2010). In contrast, 

fast litter turnover in tropical lowland forests leads to a strong dependency of plants and microbes on 

direct nutrient supply from decomposition.  

Decomposer organisms are responsible for organic matter breakdown and nutrient release, which in 

turn promotes plant growth and fitness (Poveda et al. 2005). Concurrently, plant-microbial 

competition enhances the release of specific elements (Semmartin et al. 2004). Decomposition rates 

therefore are closely linked to diversity of plant and decomposer community structure (Liu et al. 2010). 

These conditions and processes are strongly varying between ecosystems and biomes (Wardle 2002). 

Therefore, it is important to identify ecosystem specific nutrient recycling to understand competition 

and demand of plants and decomposers for nutrient sources (Stuart Chapin III et al. 2009; Brovkin et 

al. 2012). Currently there is a lack of data from low latitude regions (Zhang et al. 2008), despite their 

importance for global assessments on ecosystem climate response. In this study, we aim to relate 

previously collected data from Mt. Kilimanjaro with a new decomposition dataset to provide further 

insight on C and nutrient cycling in Mt. Kilimanjaro ecosystems. 

Our first objective was to assess the effects of climatic conditions (i.e. elevation) and decomposer 

communities on C and nutrient release from native leaf litter in ecosystems with similar geogenic 

nutrient supply (i.e. initial substrate/bedrock conditions). Secondly, to put these effects in context with 

previous studies on litter inputs (Becker et al. 2015), standardized litter decomposition (Study 2) and 

C storage and mineralization at Mt. Kilimanjaro (Pabst et al. 2016). 
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2.3.3 Methods 

This was study was conducted at the Machame ridge of Mt. Kilimanjaro (3°10'26"S, 37°14'22"E). Four 

natural forests sites were selected, covering an elevation gradient from 1900 to 3900 m a.s.l. This 

included lower montane forest (FLM), Ocotea forest (FOC), Podocarpus forest (FPO) and Erica trimera 

forest that were previously studied and described by Becker et al. (2015), Hemp (2006) and Study 2. 

Comparing these ecosystems is particularly advantageous because soils are of similar age and 

developed from similar parent materials. These soils are Andosols with folic, histic or umbric topsoil 

horizons (WRB 2014) and accordingly high C contents in the upper horizons (Zech et al. 2011). 

Five grams of previously collected leaf litter was dried (60°C, 36 h) and exposed for one year in field 

microcosms. These microcosms were covered with mesh of 0.2, 2 and 5 mm sizes to selectively exclude 

decomposer fauna (Makkonen et al. 2012). Each mesh size was replicated six times per site. Triplicates 

were placed along two transects parallel to slope and with a minimum distance of 25 m.  

2.2. Laboratory and Data Analyses 

After exposure, decomposer organisms were extracted from litter samples and identified under the 

stereo microscope. Litter C and N contents were determined by automated dry combustion (Vario EL, 

Elementar). Preparative pressure digestion, followed by inductively coupled plasma optical emission 

spectrometry (ICP-OES, Spectro Analytical Instruments) was used to determine contents of major 

macro- (Ca, K, Mg, P, S) and micro- (Al, Fe, Mn, Na) nutrient cations. Annual decomposition rates of 

leaf litter were calculated from differences in dry weight before and after one-year exposure. Annual 

mass loss was used to calculate nutrient release (eq. 1): 

(𝑊𝑡0∗𝑐𝑡0)−(𝑊𝑡1∗𝑐𝑡1)

𝑊𝑡0
 (1) 

With Wt0 being the litter exposed in each cosm, ct0 the average litter nutrient content before exposure 

and Wt1 and ct1 being the litter weight and nutrient content after recovery, respectively. Effects of 

meshsize and sites were assessed by analysis of variance (ANOVA) with TukeyHSD post-hoc 

comparison at p-level 0.05. Requirements for ANOVA were tested using Shapiro-Wilk test (normality) 

and Bartlett’s test (homogeneity of variances) at p-level 0.05. All statistical analyses were conducted 

in R 3.3.1 (R Core Team 2016). 

2.3.4 Results and Discussion 

Litter decomposition decreased at higher elevation and was unaffected by accessibility for decomposer 

communities in most ecosystems, except FOC (Figure 2.3-1). Annual litter-mass loss decreased from 

0.41 g per g initial litter mass in FLM and FOC to 0.30 g in FPO and further to 0.27 g in FER. The 

decreasing pattern with elevation was in line with results from the same sites at Mt. Kilimanjaro using 
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standardized litter substrate (Study 2): Decomposition reaches a maximum at around 2000 m a.s.l. and 

decreases at higher elevation due to temperature limitation. These resembling trends indicate that in 

Mt. Kilimanjaro forests - along the elevation gradient of 1900 to 3900 m - climatic drivers are more 

important for controlling litter decomposition rates between ecosystems than changes in leaf litter 

quality. Generally, native and standardized litter react similarly to environmental changes (Didion et 

al. 2016) and decomposer communities show little specialization and high metabolic flexibility in 

processing plant litter of different origins (Makkonen et al. 2012). Furthermore, trends along the 

montane elevation zones can be regarded equivalent to longitudinal biome zonation (Stevens 1992) 

and decomposition patterns between biomes are usually controlled by climatic factors (Berg et al. 

1993). Litter traits can have a strong effect on litter decomposition (Cornwell et al. 2008). However, 

litter quality is a less important regulator under unfavorable conditions (Coûteaux et al. 2002). Its effect 

is even more reduced when plant biodiversity is high because decomposer communities are diverse 

and less selective regarding species specific traits. 

 

Figure 2.3-1: Annual litter-mass loss through decomposition in four forest ecosystems at Mt.Kilimanjaro. 
Accessibility for decomposers through mesh size 0.25, 2 and 5 mm is indicated by colour. Small letters (a-e) 
indicate significant differe differences according to ANOVA with TukeyHSD post-hoc comparison (p ≤ 0.05). 

There was no overall effect of mesh size on decomposition rates (Figure 2.3-1). However, at mid 

elevation (FOC) annual litter-mass loss decreased for about 15% from large to small mesh size 

(p=0.019). Here and tendentially in FLM, increased accessibility for soil fauna led to increased litter 

decomposition. This is in line with results from (Wall et al. 2008; Makkonen et al. 2012), who reported 
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that faunal effects on decomposition are mainly important in tropical forests or when climatic 

conditions are most favorable.  

Table 2.3-1: Correlation between carbon (C) to nutrient ratio in litter and average annual nutrient release from 
decomposition per plot (n=4). Significance levels are indicated as ‘, * and ** for 0.1, 0.05 and 0.01 respectively 

ratio r p-value 

C:N -0.94 0.064’ 
C:Al -0.99 0.013* 
C:Ca -0.52 0.480 
C:Fe 0.23 0.771 
C:K -0.98 0.023* 
C:Mg -0.88 0.119 
C:Mn -0.82 0.176 
C:Na -0.99 0.011* 
C:P -0.97 0.032* 
C:S -0.94 0.061* 

 

FLM and FOC are ecosystems with relatively stable climatic conditions throughout the year (Appelhans 

et al. 2016) and consequently accelerated litter turnover (Study 2). Furthermore, the combination of 

high decomposer and floral diversity, through higher plant biomass, can increase decomposition rates 

(Ebeling et al. 2014). All these variables are higher in FLM and FOC compared to higher elevation 

ecosystems (Röder et al. 2016; Ensslin et al. 2015; Hemp 2002). 

The annual release of nutrient cations was mainly negatively correlated to the respective initial C-

nutrient ratios (Table 2.3-1). While this relationship was strongly expressed by macro nutrients (N, P, 

K, S) and Al, most micro and ballast element releases were not related to initial C-nutrient 

stoichiometry. Especially P and N limitation can lead to microbial mining for the respective nutrient 

from low quality sources (Sinsabaugh et al. 2013). Thus, litter breakdown increased when C-nutrient 

ratios were wide. 

Table 2.3-2: Annual carbon and nutrient release per gram of exposed leaf litter 

 FLM FOC FPO FER 

C [%] 23.29 ± 0.47c 22.74 ± 0.76c 17.23 ± 0.46b 13.12 ± 0.8a 

N [%] 0.01 ± 0.03a 1.19 ± 0.08c 0.19 ± 0.03b 0.74 ± 0.03d 

P [mg/g] 4.87 ± 0.21c 0.17 ± 0.10a 0.6 ± 0.11a 1.85 ± 0.14b 

K [mg/g] 4.19 ± 0.13c 2.34 ± 0.07b 1.16 ± 0.03a 2.68 ± 0.13b 

S [mg/g] 43.39 ± 3.41c -2.11* ± 0.61a* 13.32 ± 1.54b 19.88 ± 3.78b 

Al [mg/g] 0.16 ± 0.00c -0.21* ± 0.03a 0.06 ± 0.00b 0.16 ± 0.00c 

Fe [mg/g] -1.06* ± 0.08a -0.83* ± 0.08a 0.48 ± 0.23b 5.62 ± 0.53c 

Ca [mg/g] 11.28 ± 0.49c 10.27 ± 0.62c -14.89* ± 1.12a -3.43* ± 0.96b 

Mg [mg/g] 10.41 ± 0.49b 1.49 ± 0.19a 9.32 ± 0.88b 0.84 ± 0.15a 

Mn [mg/g] 3.05 ± 0.13d 1.7 ± 0.17c -1.13* ± 0.14b -2.31* ± 0.24a 

Na [mg/g] 2.1 ± 0.08c -0.13* ± 0.05a 1.33 ± 0.08b 0.01 ± 0.14a 
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FLM and FOC are ecosystems with relatively stable climatic conditions throughout the year (Appelhans 

et al. 2016) and consequently accelerated litter turnover (Study 2). Furthermore, the combination of 

high decomposer and floral diversity, through higher plant biomass, can increase decomposition rates 

(Ebeling et al. 2014). All these variables are higher in FLM and FOC compared to higher elevation 

ecosystems (Röder et al. 2016; Ensslin et al. 2015; Hemp 2002). 

The annual release of nutrient cations was mainly negatively correlated to the respective initial C-

nutrient ratios (Table 2.3-1). While this relationship was strongly expressed by macro nutrients (N, P, 

K, S) and Al, most micro and ballast element releases were not related to initial C-nutrient 

stoichiometry. Especially P and N limitation can lead to microbial mining for the respective nutrient 

from low quality sources (Sinsabaugh et al. 2013). Thus, litter breakdown increased when C-nutrient 

ratios were wide. 

C loss decreased with elevation from 23% (FLM) to 13% of initial litter mass in (FER) (Table 2.3-2) and 

was the main factor for total weight loss (R²=0.93, p<0.001). N release was highest in FOC and FER 

reaching 1.2% and 0.7% respectively. Indicating strong reliance of these ecosystems’ productivity on N 

recycling through leaf litter (Parton et al. 2007). P, S, Al and Fe releases decreased from FLM to FOC 

and increased again at higher elevation. Release of P was particularly low and not different from zero 

in FOC and FPO (Table 2.3-2). Assuming low particulate P losses through the small mesh below the 

microcosms, P losses could only occur through leaching. If these fractions are retained by high 

microbial P demand losses would decrease (McGroddy et al. 2008), as microbial biomass was included 

in our final content measurements. Including measurements of gaseous N fluxes, N retention and 

soluble N and P fractions might help to explain these discrepancies. However, these interpretations 

are rather speculative and further discussion would go beyond the constraints of this thesis. 

Negative values were calculated for some nutrients (Al, Fe, Ca, Mg) and may indicate contamination 

with soil particles. Other than that, we used average initial nutrient contents for calculation release 

rates, which might result in negative values if variability is high and losses are low. 

2.3.5 Conclusions 

This study provides additional understanding of the biogeochemical cycling of Mt. Kilimanjaro forest 

ecosystems. In context with previous studies, we showed that climatic variables are more important 

than litter nutrients and decomposer community complexity for controlling litter decomposition along 

the large climate gradient of Mt. Kilimanjaro. Initial litter nutrient content is an important variable for 

nutrient release. However, annual release rates vary considerably between ecosystems and indicate 

high demand for litter recycling. 
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2.4.1 Abstract 

Climate is crucial for the development of mountain ecosystems, including vegetation and soils. Due to 

strong interactions between environmental variables, plant communities and edaphic properties, it is 

unclear, how each factor controls microbial community structure. We used the unique elevation 

gradient of Mt. Kilimanjaro along a transect of ~3500 m to prove the effects of a) mean annual 

temperature (MAT: from +4.7 to +23.7 ºC), b), mean annual precipitation (MAP, 845 to 3000 mm) and 

c) edaphic factors on the content of soil microbial biomass and particular microbial groups.  

Topsoil samples (0-10 cm) were collected from six natural forest ecosystems from 740 to 4190 m a.s.l. 

Microbial community structure was assessed by phospholipid fatty acids (PLFAs). To generalize the 

effects of MAP and MAT on the total soil microbial biomass, a literature about the total PLFAs content 

in soils of the mountain forest ecosystems in humid continental, humid subtropical, temperate 

continental, monsoon, and semiarid climates was reviewed.  

Total PLFAs content followed bell shape curve with its maximum at 2120 m a.s.l. (2 µmol g-1 soil), which 

is explained by optimal combination of annual mean temperature (>10 °C) and precipitation (3000 

mm). The minimum PLFAs content (0.2 µmol g-1 soil) was found at the location with the lowest 

temperature and lowest productivity (4190 m a.s.l). The meta-analysis showed that PLFAs content 

peaked in mountain forest soils worldwide around 2000 m independently from the biogeographical 

region. Thus, bell shaped curve of PLFAs distribution with a peak of around 2000 m a.s.l. may be a 

general pattern in mountain forests. 

Gram-negative PLFAs (25-40 %), which determined the distribution of total PLFAs along the elevation 

gradient, dominated microbial communities. Contents of gram-positives bacteria decreased, reacting 

on the decrease of MAP and MAT with elevation. In contrast, fungi and actinomycetes followed a U-

shaped distribution, which reflect their adaptation to low precipitation, MAT and low nutritional status 

of the soils at the highest elevation. The principal component analysis of PLFAs distribution along the 

elevation revealed the preferences of distinct microbial communities for the low (below 3000 m) and 

high elevations (above 3000 m). Soil parameters (C, N, pH) explained 19% of the total variance (partial 

RDA) of PLFAs, whereas climatic variables (MAT, MAP) alone explained 2%. Consequently, the effect 

of climate on the formation of microbial community structure in mountain regions is indirect and is 

mediated through plant productivity and soil properties.  

 

Keywords: Climate effects, Elevation gradient, Environmental variables, PLFAs, Microbial community 

structure, Ecological niche differentiation  
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2.4.2 Introduction 

The structure of microbial communities governs the allocation of carbon (C) in soil and affects 

ecosystem C cycles (Schimel and Schaeffer 2012). In turn, chemical soil properties, plant community 

type, and climatic variables contribute to the development of soil microbial community structure. The 

major edaphic factors affecting the distribution of microbial communities are soil pH (Meng Xu, 2014) 

and C/N ratios of plant residues and subsequent soil organic matter (SOM). Therefore, acidic pH and 

wide C/N ratio of SOM, promote the development of fungal populations and are less favorable for 

bacteria (Zhang et al., 2013, Xu et al., 2014; Bossuyt et al., 2001). Bacterial populations are suppressed 

in coniferous forests (Saetre and Baath, 2000), whereas stimulated in grassland soils (Djukic et al., 

2010). At the same time, contribution of fungal biomass to microbial communities is higher in forest 

soils compared to grassland soils (Joergensen and Wichern, 2008). However, at the large scales 

(continental and global) effects of plant communities on soil bacterial and fungal diversity weakens 

(Tedersoo et al., 2014; Fierer and Jackson, 2006), while climatic factors become more important 

(Tedersoo et al., 2014). Mean annual precipitation (MAP) has a strong positive effect on the richness 

of fungal communities, and the closer an ecosystem is located to the equator, the richer fungal soil 

community becomes (Tedersoo et al., 2014). Thus, it is still an open question, which factors control 

the soil microbial community composition, especially in places with strong climatic variability – such 

as mountain ecosystems.  

The elevation gradient of a mountain provides an ideal situation to investigate the response of 

biogeochemical ecosystem characteristics to climatic variability (i.e. temperature and precipitation) 

(Wang et al. 2016). MAP and mean annual temperature (MAT) change gradually along the slope, which 

leads to an expressed ecosystem zonation along the elevation (Hemp 2006). Soil properties are also 

strongly affected by climate along mountain slope (Silver 1998, Antonio Vaquez and Givnish 1998, 

Seibert et al. 2007). Firstly, increasing precipitation accelerates nutrient losses from soil, which 

decreases pH and, secondly, the decreasing temperature suppresses decomposition of plant litter and 

increases the C/N ratio of SOM (Wang 2016, Yoh 2001). Thus, both factors (plant community change 

and a shift in soil chemical properties) can alter microbial community structure with elevation. 

However, it is still unclear, whether these factors have a direct impact or if their effect is mediated by 

the climatic variables.  

Both, MAP and MAT affect the microbial community structure in soils of mountain climosequences. 

The negative effect of MAP was shown for the elevation gradient of 540-2360 m located in temperate 

monsoon climate, whereas positive effect of temperature was observed (Xu et al., 2014); bacterial 

diversity was strongly correlated with MAP at the 100-1950 m elevation gradient located in subtropical 

moist climate (Singh et al., 2014). In contrast, MAP had a rather weak effect in the humid continental 
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climate, whereas the effect of MAT was prevailing (Zhao, 2014). Thus, the climatic zone as well as the 

length of climosequence transect can affect the MAT or MAP impact on soil microbial community 

structure. To reveal the impact of both climatic variables, mountain ecosystems allocated in various 

elevations should be compared. 

Development of natural forests on similar soil parent material and along the elevation gradient allows 

investigating the formation of microbial communities and reveals the dominant factors affecting their 

composition. The Kilimanjaro mountain climosequence was chosen for this study, because it has i) 

broad range of climatic variables due to long elevation gradient (from 767 to 4190 m), ii) identical 

parent material on all sites (volcanic materials), iii) similar time of soil formation and iv) natural 

vegetation (represented by forests and alpine heather) with dominance of broadleaf species.  

Additional data on the total PLFA content in the forest mountain ecosystems were collected from the 

literature, to reveal the general effect of elevation, MAP, and MAT on PLFAs content. Based on the 

literature data we hypothesized that i) total PLFA content will be lower at the highest elevation (harsh 

weather conditions) compared to middle and low elevations, ii) the sites where MAP or MAT are 

shifted in both directions from optimal conditions will have different microbial community 

composition compared to plots with optimal conditions.  

Based on these hypotheses and previous findings the objectives of the study were i) to evaluate the 

distribution of total microbial biomass (assessed by PLFA analysis) and particular microbial groups 

along the mountain climosequence, ii) to reveal the effect of climatic (MAT and MAP) and edaphic 

factors (C, N and pH) on the distribution of soil microbial communities and consequently iii) to find 

optimal climatic conditions for development of total soil microbial biomass and microbial groups. 

2.4.3 Material and methods 

2.4.3.1 Study site 

The study sites are located on the southern slope of Mt. Kilimanjaro (3°4′33″S, 37°21′12″E), Tanzania. 

Soils at Mt. Kilimanjaro were classified as Andosols with folic, histic or umbric topsoil horizons (WRB) 

and were formed over a similar time span from volcanic rocks, including trachyte, olivine basalt and 

basalt. The climate is characterized by a bimodal rainfall regime with a long rainy season from March 

to May and a short rainy season between October and December (Appelhans et al. 2016). Mean annual 

precipitation (MAP) varies between about 750 and 3000 mm, dependent of elevation and exposition. 

Mean annual temperature (MAT) ranges from 5 °C to 25 °C and monthly means vary around ±3 °C. 

Six research sites were selected representing natural forest and alpine ecosystems along the elevation 

gradient from 767 to 4190 m above sea level: Lowland dry broadleaf forest (RAU) dominated by Milicia 
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excelsa, Macaranga capensis, Oxystigmna msoo, Newtonia buchananii and Albizia gummifera, lower 

montane forest (FLM) dominated by Macaranga kilimandscharica, Agauria salicifolia and partly by 

Ocotea usambarensis, Ocotea forest (FOC) dominated by Ocotea usambarensis and Cyathea 

manniana, Podocarpus forest (FPO) dominated by Podocarpus latifolius with Prunus africana and 

Hagenia abyssinica, Erica bush (FER) dominated by Erica trimera and Helichrysum cushion (HEL) 

dominated by Helichrysum newii, H. citrispinum and H. forskahlii and tussock grasses (Ensslin et al. 

2015). A detailed description of the ecosystems is available from Hemp (2006). 

2.4.3.2 Soil sampling and analysis 

Soil samples were taken in October 2014. At each site, four subplots (5x5 m) were selected. Five topsoil 

samples (0-10 cm depth) per subplot were taken randomly and pooled to reflect ecosystem 

heterogeneity. The samples were sieved (2 mm), and roots and plant materials were removed. Field 

samples were separated into two portions: one was dried at room temperature and the other was 

frozen (-20 ºC) until biomarker analysis. Soil carbon (C) and nitrogen (N) contents were measured using 

an elemental analyzer (Vario EL II, Germany). Soil pH was measured in water (soil to water ratio 1:5). 

2.4.3.3 Extraction of PLFAs 

Extraction of PLFAs from the soil samples was done according to Frostegard (1991). Briefly, lipids were 

extracted by one phase mixture of chloroform, methanol and citric acid (0.15 M, pH 4.0) (ratio 1:2:0.8 

(v/v/v)). The 19:0 phospholipid (dinonadecanoylglycerol-phosphatidylcholine) was used as internal 

standard one and was added to the each soil sample prior to extraction (25 µL, 1 µg µL-1) (Gunina et 

al., 2014).  

The lipids were separated to neutral-, glyco- and phospholipids on the silica column, by eluting them 

from the column by chloroform (5 mL), acetone (20 mL) and methanol (20 mL), respectively. 

Phospholipid fraction was collected, saponified (0.3 M solution of BF3 in methanol) and PLFAs were 

methylated (1 M solution of NaOH in methanol) and fatty acids methyl esters (FAMEs) were extracted 

to hexane. The FAMEs were dried under N2 stream, and redissolved in toluene (185 µL) with addition 

of internal standard two (15 µL of 13:0 fatty acid methyl ester, 1 µg µL-1). 

The PLFAs were measured by GC-MS, with following parameters: a 15 m HP-1 methylpolysiloxane 

column connected to a 30 m HP-5 (5% Phenyl)-methylpolysiloxane column (i.d. 0.25 mm, film thickness 

of 0.25 µm), rate of the He flow was 2 ml min-1, injection volume was 1 µL. The temperature program 

of GC-MS was set up to 80 ºC and then ramped to 164 ºC at 10 ºC min-1, then to 230 ºC at 0.7 ºC min-1 

and finally to 300 ºC at 10 ºC min-1. Quantity of PLFAs was calculated based on the 29 external 

standards (Gunina et al., 2014), which were prepared at six concentrations (Apostel et al., 2014). Final 

content of PLFAs was presented as molar percentages (mol %). Classification of PLFAs was done 
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according to existing data on their presence in various microorganisms (Leckie, 2005; Lewandowski et 

al., 2015): for G- bacteria the 16:1ω7c, cy17:0, 18:1ω7c, 18:1ω9c, cy19:0 PLFAs were used, for G+ i15:0, 

a15:0, i16:0, i17:0 PLFAs were used, for actinomycetes (Ac) 10Me16:0 and 10Me18:0 were used, for 

fungi and arbuscular mycorrhiza fungi (AMF) 18:2ω6 and 16:1ω5c PLFAs were used, respectively. 

2.4.3.4 Statistical analysis 

The mol % of PLFAs were subjected to principal component analysis to reveal the major variation 

pattern. The scores of the first two components from the PCA were used to separate the soils formed 

at various elevations. Redundancy Analysis (RDA) was conducted to evaluate relation between PLFAs 

and environmental factors in all ecosystems. Explanatory (i.e. environmental) variables were 

preselected to prevent multicollinearity (variance inflation factor < 10). The RDA results were 

presented as correlation plot (type 2 scaling). The arrow projection on the 3rd and 4th axes equals the 

score of environmental variables on the respective RDA axis. Angles between arrows indicate strength 

of correlation. The coefficient of determination was corrected for the number of variables (adjusted 

R2). Analyses were conducted in R v3.3.1 (R core team, 2008) using the ''vegan'' package for community 

data analysis (Okansen et al 2016). Variance partitioning by partial RDA (pRDA) was conducted to 

determine partial linear effects of each explanatory matrix in the RDA model (eq. 1) (environmental 

variables: MAT, MAP and soil parameters: N, C/N ratio, pH) on the response data (PLFAs). 

𝑃𝐿𝐹𝐴 = 𝑁 + 𝐶/𝑁 + 𝑝𝐻 +𝑀𝐴𝑃 +𝑀𝐴𝑇 (eq. 1) 

2.4.4 Results 

2.4.4.1 Effect of elevation, temperature and precipitation on PLFAs. 

The MAT decreased with elevation, whereas MAP peaked at 2100 m and decreased afterwards (Figure 

2.4-1). The total PLFAs followed the trend of MAP distribution, with the maximum of 2100 nmol g-1 soil 

at mid elevation (2100 m) (Figure 2.4-1). The G- bacterial PLFAs followed a bell-shaped curve with 

elevation, whereas actinomycetes, fungi and AMF showed U-shaped curves. The content of G+ 

bacterial biomarkers decreased with elevation (Figure 2.4-2). Thus, microbial groups have a various 

behavior to elevation change, and, due to the domination of G- bacterial biomarkers in PLFAs 

composition (25-40%), this group determined the general PLFAs trend. 

Total PLFAs content decreased with decreasing precipitation, whereas it had bell-shaped relationships 

with MAT (Figure Supplementary 2.4-9). Distinct microbial biomarkers were affected in three ways by 

MAP decrease: G- bacterial PLFAs decreased, fungal PLFAs increased and other groups had no 

significant trends (Figure 2.4-3). Most of the group specific PLFAs decreased with decreasing MAT, and 

only G- and fungal biomarker contents increased. Content of total PLFA decreased with decreasing 

precipitation, whereas it had bell-shaped relationships with MAT. Distinct microbial biomarkers were 
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affected in three ways by MAP decrease: G- bacterial PLFAs showed decrease, fungal PLFAs increased, 

and other groups showed no significant trends. Most of the biomarkers decreased with decreasing 

MAT, and only G- and fungal biomarker contents increased.  

 

Figure 2.4-1: Mean annual temperature (MAT) and mean annual precipitation (MAP), soil organic C and N, and 
total PLFAs content along the 3500 m elevation gradient of Mt. Kilimanjaro.  
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Figure 2.4-2: Specific microbial PLFA biomarker contents along a 3500 m elevation gradient at Mt. Kilimanjaro: 
Gram-positive (G+) and gram-negative (G-) bacteria, actinomycetes (Ac), putative arbuscular mycorrhizal fungi 
(AMC), and fungi (F). Data is presented as ecosystem means and standard error (n = 4).  

2.4.4.2 Effect of soil properties and plant community on PLFA content and composition  

Total C and N contents showed increase with elevation until 2800 m, and decreased at the highest 

elevations (Figure 2.4-1). Total PLFAs content increased with soil C and N contents (Figure 

Supplementary 2.4-11), showing quadratic (with C) and linear (with N) relationships. Increasing of soil 

C and N content increased G- biomarkers content, whereas other biomarkers decreased (VAM, F, Ac) 

or were unaffected (G+) (Figure 2.4-4). The increase of soil pH from 4.0 to 7.5 stimulated fungal and 

actinomycetes biomass, whereas G- bacterial PLFAs decreased, and G+ as well as VAM did not show 

consistent trends (Figure Supplementary 2.4-10).  

The PCA explained 67 % of PLFAs variability. Investigated plots showed a distinct discrimination for 

microbial community composition (Figure 2.4-5): soils allocated below 3000 m were separated from 

those above, along the PC 1. The G- bacterial biomarkers (18:1ω7, 18:1ω9 and 16:1ω7) were 

responsible for separation of soils at low and high elevations. The PC2 separated ecosystems at the 

highest (HEL) and the lowest elevations (RAU, FLM) from the other sites. The RDA model was highly 

significant (p-value < 0.001) and explained 65% of the variance in the PLFA dataset. RDA axis one 
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(RDA1) and two (RDA2) explained the 79% and 16% of the within model variance, respectively. Soil N 

content was the main factor contributing to RDA1 (r = -0.78), while soil C/N ratio was the strongest 

related to RDA2 (r = -0.89). The C/N ratio was negatively correlated with MAT and soil pH. The MAP 

and soil N were positively correlated, but unrelated to C/N ratio and MAT. Variation in the soil 

parameters (pRDA) explained 19% of the total variance in PLFAs (Figure 2.4-6). Climatic variable (MAT, 

MAP) alone explained 2%. The interaction of soil parameters with climatic variable added another 44% 

of the explained variance. 

 

Figure 2.4-3: Microbial biomarkers contents with mean annual temperature (MAT) and mean annual 
precipitation (MAP) for the 3500 m elevation gradient for the Mt Kilimanjaro: Gram-positive (G+) and gram-
negative (G-) bacteria, actinomycetes (Ac), putative arbuscular mycorrhizal fungi (AMC), and fungi (F). 
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Figure 2.4-4: Microbial biomarker contents with soil C (top) and N (bottom) contents along a 3500 m elevation 
gradient of Mt Kilimanjaro. Gram-positive (G+) and gram-negative (G-) bacteria, actinomycetes (Ac), putative 
arbuscular mycorrhizal fungi (AMC), and fungi (F). 

2.4.5 Discussion 

2.4.5.1 Changes of soil properties with elevation 

The distribution of soil chemical properties (C, N & pH) (Figure 2.4-1, Figure Supplementary 2.4-10) 

along the elevation gradient was well in line with previous findings from the experimental sites at Mt. 

Kilimanjaro (Ensslin et al., 2015; Becker et al., 2015; Pabst et al., 2013; Pabst et al., 2016). These 

changes reflect direct effects of climatic variables on mountain ecosystems. The bell-shaped 

distribution of soil C and N contents are the consequences of decreasing MAT with simultaneous 

increase of MAP. Both climatic variables affect net primary production, and consequently the amount 

of aboveground biomass and litter inputs (Ensslin et al., 2015, Becker et al., 2015), and thus, regulate 

the amount of C and N entering the soil (Becker et al. 2016). MAP strongly affected soil pH, which 
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followed the precipitation gradient and decreased with elevation due to the leaching of cations (Ca2+, 

Mg2+, Na+, K+) from the soil profile by high rainfall (Hemp, 2006b). 

2.4.5.2 Effect of elevation, temperature and precipitation on total PLFAs. 

Total PLFAs content was ten times higher than reported earlier for mineral forest soils (Moore-Kucera 

and Dick, 2008; Myers et al., 2001; Murugan et al., 2014) and was within the range reported for organic 

soil horizons (Ushio et al., 2008; Baath et al., 1995). Recalculated data (PLFAs content per g of soil 

organic C) showed values between 3.8 - 7.5 µmol PLFAs g-1 C, which are higher than reported for other 

organic mountain soils (4 µmol PLFAs per g-1 C) (Djukic et al., 2010). Even at the highest elevations 

(3800-4200 m), the content of total PLFAs was higher (5 - 6 µmol PLFAs per g-1 C) than found for 

comparable sites (1.5 - 3.5 µmol PLFAs g-1 C) (Xu et al., 2014). These specific differences can be related 

to the low MAT in these studies (from -2.4 to +4 °C), than in our experimental sites (+9.4 to +4.5 °C). 

 

Figure 2.4-5: PCA score plot separating ecosystems on PC1 and PC2 (top) and loadings for the PLFAs (bottom). 
Lowland evergreen broadleaf forest (RAU), lower montane evergreen forest (FLM), montane evergreen Ocotea 
forest (FOC), upper montane evergreen Podocarpus forest (FPO), subalpine Erica forest (FER), alpine Helichrysum 
cushion vegetation (HEL). 
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A bell-shaped relationship between total PLFAs content and elevation was found with its maximum at 

2100 m (Figure 2.4-1). Such pattern can a sequence of combination of optimal climatic conditions (MAP 

and MAT), as well as the highest plant productivity at this elevation. Similar results were found for a 

540 - 2360 m elevation sequence in the northeast China mountain forests (Xu et al., 2014). This can be 

a result of developing the organisms with different ecological strategies, and thus, their similar 

contribution to the total biomass with elevation in various mountain ecosystems (Singh et al., 2012). 

 

Figure 2.4-6: Type II scaled Redundancy Analysis (a) of the relation between PLFAs and environmental factors at 
six Mt. Kilimanjaro ecosystems. The arrow projection on the axis equals the score of environmental variables on 
the respective RDA axis. Angles between arrows indicate strength of correlation. Partial Redundancy Analysis (b) 
shows single and combined contribution of climate and environmental variables for explaining the model 
variance. 
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To prove the optimum for microbial biomass experimentally obtained in our study, we collected 

literature data on the effects of elevation on the total PLFA contents in mountain forests soils from 

various biogeographical regions (Figure 2.4-7). This meta-analysis showed that soils located at the 

same elevation, but in the different climatic zones, vary in total PLFA contents for 40 times (between 

0.2 and 8 µmol PLFAs g-1 C): the maximum PLFA content was recorded for tropical savanna climate 

(present study) and minimum for the temperate monsoon and humid continental zones. However, the 

maximum PLFAs content was found at around 2000 m in all regions, which shows that a mid-elevation 

peak of PLFAs observed in present research can be taken as a general trend. Plotting the total PLFAs 

content against MAP revealed maximum PLFAs is common in soils located in the tropical savanna 

climate (Figure 2.4-7), and a minimum for temperate monsoon climate. Thus, not precipitation alone, 

but a combination of climatic variables drives the microbial biomass development in the mountain 

soils. 

2.4.5.3 Effect of soil properties and plant communities on PLFAs composition. 

PCA analysis distinctly separated high elevation ecosystems (3800 and 4200 m) from one located below 

3000 m (Figure 2.4-4). Such separation can be explained by i) climatic factors, namely MAT, which was 

the lowest for the FER and HEL plots, ii) soil nutritional status - low C and N contents, and iii) low 

amount of above ground biomass (Ensslin et al 2015). The G- bacteria, arbuscular micorrhizal fungi 

(16:1w5) and actinomycetes (10Me18:0) contributed the most to separation of high altitude soils 

(3800-4200 m) from low altitude ecosystems. Contribution of G- bacteria increased from subalpine 

(1700 m) to alpine soils (2400 m), which is related to the tolerance of G- bacteria to freeze–thaw cycles 

(Margesin et al., 2008), common for FER and HEL plots, where freezing occurs on a daily basis (Hemp 

2006, Gütlein et al 2016). The G- PLFAs peaked at the 3000 m elevation, which agrees with increase of 

bacterial richness at mid elevation reported by Singh et al. (2012) and shift in bacterial community 

composition from G+ to G- (Margesin et al., 2008). Decrease of G- bacteria at the highest elevation is 

a consequence of open vegetation cover within the Helichrysum ecosystem (4200 m), and, thus, the 

low amount of easily available root exudates (Gütlein et al., 2016), which are the preferred C source 

for this microbial group.  

In contrast, G+ bacterial groups contributed the most to microbial communities at the low elevations 

(below 767 m), but their content decreased along the climosequence. A similar trend for G+ bacteria 

was reported for alpine soils (Margesin et al., 2008), and is related to low tolerance of this group to 

harsh weather conditions (i.e. low temperature and a daily freeze-thaw cycles common for HEL and 

partly for FER ecosystems) (Figure 2.4-3). The G+/G- ratio, characterizing starvation stress for 

microorganisms (Hammesfahr et al., 2008), decreased with elevation (Figure 2.4-2). The decrease of 

starvation stress is explained by an increase of SOC content, creating better condition for functioning 
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of G- bacteria compared to G+. In contrast, the highest stress found at RAU (760 m) ecosystem was 

due to low SOC content, which favors development of G+ bacteria.  

Reported increase of fungi content with elevation (Figure 2.4-2) is connected with three reasons: 1) 

decrease of litter decomposability and increase of its C/N ratio, which facilitates fungal development, 

2) general adaptation of fungi to low soil N supply, 3) and adaptation to harsh (dry and cold) 

environmental conditions, which include decrease MAT and MAP along the climosequence (Xu et al., 

2014, Cheng et al., 2015, Zhang et al., 2013, Schinner and Gstraunthaler, 1981; Ma et al., 2015).  

The RDA analysis (Figure 2.4-5) was consistent with the trends of distinct microbial biomarkers 

distribution and showed that climatic variables affected PLFAs composition in two opposite directions, 

with temperature being more important. Soil chemistry controls PLFAs composition in three directions: 

total N, C/N ratio and inversely to both soil acidity. The pRDA analysis showed that climatic factors 

indirectly affect the PLFAs through changes in vegetation and soil parameters. 

 

Figure 2.4-7: Literature derived total PLFA contents in forest soils along mountain elevation gradients in 
mountain ecosystems of various climatic zones. 

2.4.6 Conclusions 

Development of natural forests on similar parent material and along the elevation gradient allows 

investigating the effects of climatic variables on the formation of soil microbial communities. The study 

of soil microbial community structure in natural ecosystems of Mt. Kilimanjaro (from 770 until 4200 

m), revealed a bell-shaped curve of total biomarkers (PLFAs) contents with elevation, with a maximum 

at 2100 m. Literature review has shown that both, MAP and MAT affect the PLFAs content not only in 

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Elevation (m)

P
L
F

A
s
 c

o
n
te

n
t 

(µ
m

o
l 
g-1

 C
)

Humid continental Humid subtropical

Temperate continental Temperate monsoon

Temperate semiarid Tropical climate



 
Publications and Manuscripts 107 

 

 

the studied Mt. Kilimanjaro ecosystems, but in other mountain ecosystems as well, and total PLFAs 

content peaks at the mid-elevation (~2000 m) as a general trend in a broad range of ecosystems around 

the world. 

Soil microbial communities at the highest elevation ecosystems (above 3000 m) were distinctly 

different from those at lower elevations (below 3000 m). Gram-negative bacteria dominated the 

microbial community in Mt. Kilimanjaro soils, accounting for 25-40%, and, thus, regulating the major 

trend of PLFAs distribution with elevation. With increasing elevation, gram-positive bacteria were 

replaced by fungi as a reaction to the harsh environmental conditions in the alpine zone above 4000 

m (low MAT, and soil C and N contents). These variations were indirectly depending on climatic factors, 

and mainly explained by changes in vegetation composition and soil parameters. We conclude that the 

optimal conditions for microbial biomass in mountain soils are common at elevations between 1700 

and 2700 m, mainly because optimal combination of climatic conditions for vegetation and soil 

development. 
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2.4.9 Supplementary figures 

 

Figure Supplementary 2.4-8: Changes of microbial biomarkers content with mean annual precipitation (MAP) 
(top) and mean annual temperature (MAT) (bottom) for the 3500 m elevation gradient for the Mt Kilimanjaro. 
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Figure Supplementary 2.4-9: Changes of microbial biomarker contents with soil pH along the 3500 m elevation 
gradient of Mt. Kilimanjaro. 

 

 

 

Figure Supplementary 2.4-10: Soil pH values along the 3500 m elevation gradient of Mt. Kilimanjaro 
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Figure Supplementary 2.4-11: Changes of microbial biomarkers content with soil C and N contents along the 
3500 m elevation gradient of Mt Kilimanjaro 
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2.5.1 Abstract 

Tropical mountain ecosystems cover a broad variety of climatic and vegetation zones and are a global 

hotspot of biodiversity. However, these ecosystems are severely threatened by climate and land-use 

change, which also strongly affect soil properties. Mt. Kilimanjaro with its associated large climate and 

land-use gradients provides a unique opportunity to observe and more fully interpret ecosystem 

responses to climate and land use change. Montane Andosols are of specific interest regarding carbon 

(C) sequestration and ecosystem services. They are characterized by thick litter layers and A-horizons 

that contain up to 20% organic C and are expected to promote soil carbon stabilization and storage. 

Our objectives are to identify key soil organic matter compounds that are affected by the different 

climatic conditions along a ~3000 m elevation gradient and how changes in SOM composition is related 

to ecosystem specific characteristics. Furthermore, we aim to estimate quantitative changes in the 

specific C fractions and relate these changes to C turnover processes in various ecosystems. Therefore, 

topsoil samples were thermally decomposed using evolving gas analysis mass spectrometry (EGA-MS) 

and analytical double-shot pyrolysis gas chromatography mass spectrometry (Py/GC-MS). EGA curves 

were used to assess quantitatively the results of Py/GC-MS. 

Thermal desorption chromatograms show a relative increase of volatile C compounds in higher 

mountain forests followed by a decrease in alpine ecosystems. More stable fractions were affected 

contrarily which is closely related to the overall ecosystem productivity. Cloud forest types possess a 

similar organic matter composition with higher percentage of stabile n-alkyl lipids and isoprenoid 

derivates. Polysaccharides and lignin derivates have their maxima at mid elevations due to decreasing 

inputs with elevation as well as slow decomposition at high elevations. 

Soil organic matter composition in Mt. Kilimanjaro forests is strongly dependent on a precipitation and 

temperature equilibrium. Hence, high productivity at mid-elevation levels leads to increased amounts 

of volatile compounds but at the same time increases stabile carbon pools. 

 

Keywords: Py GC-MS, EGA, tropical mountain forest, East Africa, Carbon Cycle  
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2.5.2 Introduction 

Soils are the largest terrestrial carbon (C) reservoir and account for more than 2500 GT C of which 

more than 60% is part of soil organic matter (SOM) (Lal 2008). The amount of organic C that is stored 

in soil depends on the interaction of climate variables, soil mineralogy, input from vegetation and 

decomposer organisms (Vitousek, Sanford 1986; Doetterl et al. 2015; Blagodatskaya et al. 2014). 

Understanding the functioning of this pool is of major importance for understanding the global C cycle 

and its response to climate and land-use change (Lal 2004; Lehmann, Kleber 2015). Composition and 

quality of SOM are strongly related to the input, the stability and the turnover of C in soil (Allison, 

Vitousek 2004; Ng et al. 2014; Chen et al. 2014). While a lot is known about quantitative effects on soil 

C, the variation of SOM chemistry across ecosystem scales and its relation to climate, vegetation and 

abiotic factors remains poorly understood (Vancampenhout et al. 2010). Recent studies have shown 

that SOM chemistry is strongly varying on ecosystem scale (Vancampenhout et al. 2009; Plante et al. 

2011; Yassir, Buurman 2012) and can easily change with vegetation and climatic boundary conditions 

(Andersen, White 2006; Stewart et al. 2011; Carr et al. 2013; Amelung et al. 1997). These efforts were 

a huge step in understanding ecosystem specific conditions and mechanisms of soil C sequestration 

and turnover dynamics. However, they also indicated that previous results cannot be easily applied to 

other regions and local fingerprints are necessary for global estimations of soil C dynamics (Schmidt et 

al. 2011). 

Tropical mountain ecosystems are characterized by a large variety of climatic and biogeographic zones 

and are global hotspots of biodiversity (Myers et al. 2000). With their high belowground C 

sequestration potential (Wilcke et al. 2008), these ecosystems are of major importance concerning 

effects of global change on soil properties. Mt. Kilimanjaro with its associated large elevation (i.e. 

climatic) gradient provides a unique opportunity to observe and more fully interpret ecosystem 

responses to climate change, specifically regarding soil C balances. The major soil types in the forests 

of Kilimanjaro’s southern slope are Andosols (Zech 2006). These soils are characterized by pronounced 

organic layers and thick A-horizons that contain up to 20% organic C. Andosols particularly promote 

soil C stabilization and storage through the formation of stabile organo-mineral complexes with 

aluminosilicates such as allophanes and imogolites (Aran et al. 2001). Soil minerals are selective 

regarding complexation with organic compounds (Adhikari, Yang 2015) and thus can change overall 

SOM composition in Andosols (Buurman et al. 2007; González-Pérez et al. 2007). It is yet unclear how 

these processes are affected by climatic conditions and how SOM composition in general changes 

along large climatic gradients. 

Our objectives were to identify key SOM compounds that are affected by the different climatic 

conditions along a ~3500 m elevation gradient of Mt. Kilimanjaro. Further, to estimate quantitative 
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changes in the specific C fractions and relate these changes to ecosystem turnover processes and C 

cycle. Therefore, topsoil samples were thermally decomposed by analytical pyrolysis gas 

chromatography mass spectrometry (Py/GC-MS). This is a powerful tool to identify organic fractions 

and their relative contribution to SOM (Saiz-Jimenez, Leeuw 1986). By using evolving gas analysis mass 

spectrometry (EGA-MS) curves, this can be extended to quantitative assessment and inferences about 

SOM stability (Plante et al. 2009). EGA curves can also be used as indicators of humification status and 

stability of SOM (Katsumi et al. 2016). 

We hypothesize that (1) stabile C pool increase at mid elevation, (2) which is related to an accumulation 

of aromatic compounds and (3) ecosystem specific characteristics in alpine environments alter SOM 

composition. 

2.5.3 Methods 

2.3.1 Study site 

The study was conducted on the southern slope of Mt. Kilimanjaro (3°4′33″S, 37°21′12″E), Tanzania. 

Along an elevation gradient from 770 to 4200 m a.s.l., six research sites were selected, each 

representing a typical natural forest or alpine ecosystem of the region (Table 2.5-1). The lowland 

broadleaf forest (RAU) is part of the Rau Forest Reserve, near Moshi town (770 m). Important species 

in its upper tree layer are Milicia excelsa, Khaya anthotheca, Oxystigmna msoo, Newtonia buchananii 

and Albizia gummifera. Trilepisium madagascariense, Tabernaemontana elegans, Blighia unijugata, 

Lecaniodiscus fraxinifolius and Trichilia emetica build up a second tree layer. In the dense shrub layer 

Allophylus pervillei, Blighia unijugata, Rothmannia urcelliformis, Turraea holstii, Vernonia amygdalina 

and Acalypha ornata dominate. Lower montane forest (FLM), middle montane Ocotea forest (FOC), 

upper montane Podocarpus forest (FPO), subalpine Erica forests (FER) and alpine Helichrysum cushion 

vegetation (HEL) are located in Kilimanjaro National Park. According to fog-water input and structure 

(e.g. richness in epiphytes) the forests of the middle and upper montane and subalpine zone, in 

particular on the southern slope, can be defined as “cloud forests” (Hemp 2010). Hemp (2006; 2008) 

offers a detailed description and classification of these ecosystems. Summarily, FLM is dominated by 

Macaranga kilimandscharica, Syzygium guineense, Agauria salicifolia and partly Ocotea usambarensis. 

At higher elevation (FOC) Ocotea usambarensis prevails, accompanied by Xymalos monospora, Ilex 

mitis and Cyathea manniana. The forest above 2800 m a.s.l. is dominated by Podocarpus latifolius 

together with Prunus africana and Hagenia abyssinica (FPO). In the subalpine zone at around 4000 m 

(FER), Erica trimera is dominating and can reach up to 10 m growth height. Between 4000 and 4500 m 

(HEL), the alpine forest is displaced by Helichrysum cushion vegetation with a herb layer of about 30% 

dominated by Helichrysum newii, H. citrispinum and H. forskahlii and  grasses. Logging for firewood 

and building material occurs, especially in RAU and the lower FLM areas (Lambrechts et al. 2002). 
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The climate at Mt. Kilimanjaro follows a bimodal rainfall regime with long rains from March to May 

and a shorter rainy season between October and December (Appelhans et al. 2016). Mean annual 

precipitation (MAP) varies between 845 mm and about 3000 mm, dependent of elevation and 

exposition. Mean annual temperature (MAT) ranges from 4.5 °C to 23.7 °C and monthly means vary 

around ±3 °C. 

Soils in the southern forest zone were classified as Andosols with folic, histic or umbric topsoil horizons 

and accordingly high C contents in the upper horizons (Zech 2006). In the alpine zone, Leptosols and 

vitric Andosols are prevalent (WRB 2014). Soils have developed from volcanic rocks, such as basalt, 

trachyte and olivine basalts over the last 0.2 to 2.3 Mio years (Dawson 1992). The similar parent 

material throughout the elevation gradient makes the comparison of ecosystems on Mt. Kilimanjaro 

especially beneficial, because soil conditions are mainly a function of local ecosystem characteristics. 

Table 2.5-1: Site specific topographic and climatic information as well as C and N contents in 0-10 cm soil depth 
for six ecosystems on the southern slope of Mt. Kilimanjaro 

Ecosystem ID Elevation 
[m] 

MAT 
[ºC] 

MAP 
[mm] 

C 
[%] 

N 
[g kg-1] 

pH 

Lowland forest RAU 767 23.7 845 9.5±1.1 7.4±0.1 7.5±0.1 
Lower montane forest  FLM 1920 15.3 2378 21.2±1.1 14.1±0.1 4.0±0.1 
Ocotea forest  FOC 2120 12.1 2998 27.0±2.7 17.8±0.2 3.8±0.1 
Podocarpus forest  FPO 2850 9.4 1773 32.6±2.5 18.0±0.1 3.9±0.1 
Erica forest FER 3880 4.5 1188 18.7±2.5 10.0±0.1 4.9±0.1 
Helichrysum cushion  HEL 4190 4.5 962 4.8±0.7 3.1±0.0 5.2±0.0 

2.3.2 Sampling and laboratory analyses 

Soil samples were taken in March 2014. Four subplots (5x5 m) were selected at each corner of each 

plot. At each subplot, five topsoil samples (0-10 cm depth) were taken with a soil probe and pooled to 

reflect ecosystem heterogeneity. The samples were sieved (2 mm), and roots and plant materials were 

removed. Field samples were dried at 105 °C for 46 hours and ground for further analysis. 

Soil samples were taken in March 2014. Four subplots (5x5 m) were selected at each corner of each 

plot. At each subplot, five topsoil samples (0-10 cm depth) were taken with a soil probe and pooled to 

reflect ecosystem heterogeneity. The samples were sieved (2 mm), and roots and plant materials were 

removed. Field samples were dried at 105 °C for 46 hours and ground for further analysis. 

Total C and N content was measured using a dry combustion automated C:N analyzer (Vario EL cube, 

Elementar). Evolved gas analysis (EGA-MS) was conducted using a multi-Shot Pyrolyzer (EGA/PY-

3030D, Frontier Lab, Koriyama, Fukushima, Japan) coupled to a GC (7890A, Agilent, Santa Clara, CA, 

USA) and MS detector (7000C Triple Quadrupole, Agilent, Santa Clara, CA, USA). The sample was 

heated constantly in a micro furnace from 100 to 600°C. The evolved gases flow to the detector 

without chromatographic separation (EGA tube, L = 2.5 m, I.D. = 0.15 mm, Frontier Lab). The same 

Instrumental setup as for EGA-MS was used for pyrolysis-gas chromatography mass spectrometry 
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(Py/GC-MS), exchanging the column for a high temperature Ultra ALLOY® Metal Capillary Separation 

Column (L=30 m, I.D. = 0.25mm, Frontier Lab). Double-Shot analysis was performed to increased 

resolution in MS spectra by separating the release of chemically sorbed compounds (thermal 

desorption: 100-280 °C) and cracking of covalent bounds (pyrolysis: 280-600 °C) (Derenne, Quénéa 

2015). MassHunter Workstation Software (V. B.06.00, Agilent Inc, 2012) was used to identify peaks (> 

0.5% of relative maximum peak height) with manual adjustment and identify compounds using 

software NIST08 library and pyrolysis-GC/MS literature. Compounds were subsumed in twelve classes 

according to chemical, genetical and analytical similarities: Alkanes/-enes/-ols, alkyle aromatics, fatty 

acids and fatty acid esters, lignin monomers, phenols, sterols, terpenes and isoprenoids, 

polyaromatics, polysaccharides, amino N, heterocyclic N. 

2.3.3 Calculations and statistical analyses 

EGA curves were normalized and compared between ecosystems using 95% confidence intervals. 

Previous research indicated that relationships between different ecological variables, e.g. total 

biomass and elevation at Mt. Kilimanjaro follow a unimodal trend (Becker et al. 2015, Pabst et al. 2016, 

Ensslin et al. 2015). Therefore, compound percentage along the elevation gradient was evaluated by 

second order polynomial regression. Multivariate statistics were used to evaluate relationships 

between chemical SOM composition and forest types: Principal components analysis (PCA) was 

visualized via type I scaling biplots. 

All statistical analyses were conducted in R 3.3.2 (R Core Team 2016) using Bolstad2 and Agricolae 

packages (Mendiburu 2014; Curran 2013) as well as ggplot2 package for data visualization (Wickham 

2009). 

2.5.4 Results 

2.5.4.1 EGA-MS analysis 

All EGA curves show a distinct peak around 460°C and two less expressed peaks around 300°C and 

370°C (Figure 2.5-1). Within plot variation is low and signals were very ecosystem specific (Table 

Supplementary 2.5-2). The lowland tropical forest (RAU) has a neglectable percentage of volatile SOM. 

The percentage of volatile compounds (i.e. thermally desorbed fraction) varied between 0.5 and 5.5%. 

It increases with elevation until crossing the tree line at HEL, where it decreases again. Ecosystems at 

higher elevation show an early peak in the low temperature zone and subalpine Erica forest (FER) starts 

to loose volatile compounds already below 280 °C. 

2.5.4.2 Multivariate analysis of SOM chemistry 

SOM composition in the pyrolyzed fraction separates well on the PC1 axis (61%) for ecosystems along 

the elevation gradient (lowland<montane>alpine) (Figure 2.5-2). This is strongly correlated to 
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Alkanes/-enes/-ols (positive) and heterocyclic N compound percentage (negatively). PC2 (16%) 

explains more within plot variation in the lower elevation and separates the sub-alpine from alpine 

ecosystem, mainly through lignin (positive), Polyaromatics and aromatics percentage (negatively). 

Around 75% variance of the thermal desorbed SOM fractions was explained by PC1 (48%) and PC2 

(27%) (Figure 2.5-2). PC1 again, was positively related to Alkanes/-enes/-ols percentage. PC2 was 

strongly related to sterols (positive) and polysaccharides (negative). 

 

Figure 2.5-1: Average EGA curves for soil samples from six Kilimanjaro ecosystems (n=4). Dashed line sepparates 
temperature zones for thermal desorption (100-300 °C) and pyrolysis (300-600 °C). 

2.5.4.3 Effect of elevation on thermally desorpable compounds 

No compounds were detectable in the thermal desorption step at low elevation (RAU, 750m). Along 

the remaining elevation from 1920 to 4120 m, most compounds fractions followed an increase-

decrease trend or reverse (Figure 2.5-3). 

Alkanes/-enes/-ols strongly increased to a maximum of nearly 60% at FPO (2900 m) and decreased to 

around 15% in the (sub-) alpine ecosystems (FER and HEL). Aromatic compounds followed no clear 

trend with elevation, but reached a maximum at FLM (1920 m). Fatty acids and fatty acid esters 

expressed a small peak at FOC and, fatty acids in particular, a second peak at high elevation – with up 

to 25% contribution of FAs at HEL (4120 m). Lignin monomers contributed between 5 and 12% to 

volatile SOM composition. This percentage decreased with elevation until a sudden increase in the 

alpine Helichrysum area (4120 m). Phenols were not present at higher elevation and strongly increased 

only at FLM. Sterols decreased with elevation, except for a strong peak at the Erica forest (3880m) with 

nearly 10 times increased values. Terpenes and isoprenoids followed no clear trend with elevation, but 

were slightly enriched in FLM and FER. Polysaccharides varied between 3 and 8% in all ecosystems, 
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except for a strong peak in alpine Helichrysum. Both N compound fractions followed a similar trend 

with elevation. Maxima were reached at FLM (1920 m) followed by a decrease with higher elevation. 

 

Figure 2.5-2: PCA biplot (Type I scaling) for pyrolyzed components and thermally decomposed components in six 
ecosystems (n = 4) of Mt. Kilimanjaro. Compounds were abbreviated as: AL – Alkanes/-enes/-ols, AR – Alkyle 
aromatics, FA – Fatty acids, FE – Fatty acid esters, LM – Lignin monomers, PH – Phenols, ST – Sterols, TI – Terpenes 
and Isoprenoids, PA – Poly aromatics, PS – Polysaccharides, AN – aminoacids, HN – heterocyclic N. 
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Figure 2.5-3: Percentage of thermally desorped compounds from soil organic matter in six ecosystems along the 
elevation gradient of Mt. Kilimanjaro. Small letters (a-c) indicate significant difference between ecosystems 
(p < 0.05) according to Kruskal-Wallis test with Benjamini-Hochberg correction for multiple comparisons 
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2.5.4.4 Effect of elevation and ecosystems 

Similar to thermal desorption, most compounds in the pyrolysed fraction followed a parabolic trend 

with elevation and increased or decreased at mid elevation (Figure 2.5-4). Percentage of alkanes/-

enes/-ols varied between 4% and 30%, with a maximum at mid elevation (2120 m). Alkyl aromatic 

compounds were slightly above 20% on all plots and showed no trend with elevation. Fatty acids and 

fatty acid esters contributed with less than 3% to SOM composition on all plots. Both decreased to a 

minimum at Podocarpus forest (2900 m), followed by an increase at higher elevation. Polycyclic 

aromatic compounds had no clear trend with elevation and contributed with around 15% to SOM 

composition. Maxima and minima were found at directly adjacent ecosystems: 18 % at FLM and 11% 

FOC. Lignin monomers generally had a U-shaped trend with elevation; however, a sudden decrease 

appeared above the tree line in the alpine zone (HEL). There were nearly no sterols found at Rau forest 

(750 m). However, same as isoprenoids, contents increased with elevation to their maxima at Ocotea 

Forest (2120 m) and afterwards decreased again. Polysaccharides linearly decreased with elevation, 

from around 10% in Rau forest to less than 4% at Helichrysum. Amino N compounds were highest at 

mid-elevation (FLM and FOC). Opposed to this, N-heterocycle percentage was highest at low elevation 

(RAU) and decreased in the cloud forests (FOC and FPO, followed by an increase in the (sub-) alpine 

zone (FER and HEL). 

2.5.5 Discussion 

2.5.5.1 SOM resistance to pyrolytic degradation 

Pyrolysis fractions (>280°C) quantitatively dominated the SOM composition (Figure 2.5-1). The 

contribution of volatile compounds in SOM increases with elevation (Table Supplementary 2.5-2), 

indicating an increase of easily available SOM components. While the thermally volatile fraction is 

nearly absent in lowland RAU forest soil, sub-montane Erica forest and alpine Helichrysum SOM 

already loose considerable amounts of volatile compounds below 280 °C. 

EGA intensities (counts mg-1 C) were within the range of previously reported values for Japanese 

Andisols (USDA) and showed a similar curve against temperature (Katsumi 2016, Figure 2.5-1). The 

release of volatile compounds with sample heating can be linked to either their chemical composition 

or their binding and complexation with mineral particles. Early and late peaks in EGA curves are 

connected to more labile OM components (e.g. lipids) and recalcitrant OM (e.g. lignin), respectively 

(Katsumi 2016). Low percentage of measurable volatile components in soils with andic characteristics 

is commonly explained by complexation with Al hydroxides or aluminosilicates (Shoji et al. 1994). 

However, neither mechanism would explain the elevation pattern at Mt. Kilimanjaro. The volatile 

signal more or less follows the amount of total organic C. Therefore, EGA results could not directly be 
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related to the chemical SOM composition. Most SOM compounds showed either decrease-increase, 

increase-decrease or site specific patterns with elevation. 

 

Figure 2.5-4: Percentage of pyrolysis compound classes from soil organic matter in six ecosystems along the 
elevation gradient of Mt. Kilimanjaro. Small letters (a-c) indicate significant difference between ecosystems (p < 
0.05) according to Kruskal-Wallis test with Benjamini-Hochberg correction for multiple comparisons 
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2.5.5.2 Compounds with maximum at mid elevation 

Patterns of alkanes/-enes/-ols with elevation were similar for thermal desorption and pyrolysis steps 

and were highly correlated with total C content in soil. Both had their minimum at low elevation (RAU 

and FLM) and peaked in cloud forests (FOC and FPO) (Figure 2.5-4, Table 1.2-1). These compounds 

were the major components of SOM in montane cloud forests (2100-2900 m), especially in the volatile 

fraction. They were also the main factor separating ecosystem characteristics along the elevation 

gradient (Figure 2). Depending on chain length, n-alkanes and n-alkenes originate from either fresh 

litter or microbial sources (Li et al. 2015). In soil, they occur in free form or bound in SOM by non-

covalent binding (Lichtfouse et al. 1998). Decomposition leads to relative enrichment of aliphatic 

compounds in organic soil (Biester et al. 2014). Especially mid-chain alkanes and alkenes are 

considered relative recalcitrant products of vegetation litter degradation (Buurman et al. 2007; 

Vancampenhout et al. 2010). The increase of alkanes/-enes/-ols at around 2000 m can be a result of 

high leaf litter inputs (Becker et al. 2015) and incomplete decomposition. Further degradation and 

consequent increase of more stable compounds (e.g. aromatics) is reduced by the steady delivery of 

fresh litter inputs. C excess limits degradation of less easily available compounds (Chen et al. 2014; 

Guenet et al. 2010), explaining contrary elevation trends for more labile compounds. 

Sterols, terpenes and isoprenoids occur in plant waxes, free or bound to n-alkanoic acids or 

carbohydrates (Otto, Simpson 2006). They are highly volatile compounds (Rowan 2011) and thus 

together contribute between 20% and 60% to the thermally desorbed fraction. These fractions are 

freely available and easily decomposed under aerobic conditions (Mehrabanian 2013). Elevation 

patterns of the volatile fractions were therefore strongly related to litter input and ecosystems specific 

conditions. Sterols and triterpenoids are specifically produced by Erica species (Fokina et al. 1988) and 

can be used as biomarkers to trace Ericaceous inputs in soil (Pancost et al. 2002). This explains the 

sudden increase of both fractions in the desorption step of Erica forest SOM. However, sterols and 

terpenes released in the pyrolysis step are from microbial origin and stabilized through ester bonds 

(Gobé et al. 2000). As part of the same bound lipids, they followed the elevation pattern of alkanes. 

2.5.5.3 Compounds with minimum at mid-elevation 

Percentage of most easily degradable SOM compounds (fatty acids, fatty acid esters and lignin) 

followed a decrease-increase pattern along the elevation gradient, reaching a minimum at around 

2000 m a.s.l. (Figure 2.5-4). Fatty acids and fatty acid esters showed a very similar pattern. Both are 

usually seen as part of a labile C pool in soil and are readily decomposed in soil with high biological 

activities (Mueller et al. 2013). Accordingly, their decreasing content in SOM until 2900 m is negatively 

related to the increase of microbial biomass (Pabst et al. 2013). Increasing content at 3900 m and 

above is the consequence of decelerated microbial decomposition. We have to note that pyrolysis of 
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fatty acids leads to their decarboxylation and thus underestimation in favor of alkanes and alkenes and 

might affect the visible trends (Saiz-Jimenez 1994). 

Soil lignin content peaks at low elevation (RAU) and in subalpine Erica forest. Lignin mainly originates 

from leaf litter and woody debris and its content in soil is strongly depending on decomposition rates 

(Aerts 1997). Therefore, enriched soil lignin content reflects a skewed input-turnover balance. 

Decomposition rates below 1000 m are generally low due to the restricted productivity in dry season 

at Mt. Kilimanjaro (Study 2). The necessity of drought resistance of vegetation RAU might additionally 

increase litter derived lignin inputs as plant avoid cell wall damage from water stress through 

lignification (Moura et al. 2010). In contrast, montane forest ecosystems (FLM, FOC, FPO) have high 

inputs but even higher decomposition rates compared to RAU and (sub-) alpine ecosystems (FER, HEL) 

(Becker et al 2015, Study 2), which explains low contents in between 2000 and 3000 m. While litter fall 

decreases with elevation (Becker et al. 2015), litter inputs at FER are mainly derived from woody 

materials and the very sclerophyllous needle leaves and thus increase the relative lignin content in soil. 

Low decomposition rates at FER additionally reduced lignin degradation (Study 2). Above the tree line 

(i.e. HEL), lignin content is input controlled and low amounts of woody inputs decreases lignin content. 

The different source (i.e. no trees and shrubs herb layer) and low decomposition at Helichrysum is 

reflected by a strong relative increase of volatile lignin components (Figure 2.5-4) reflecting the signal 

of untransformed lignin input. 

Phenolic compounds made up for about 15% and followed a similar trend as lignin with elevation. In 

alpine Helichrysum however, they deviate from this trend exhibiting a strong relative increase in the 

pyrolyzed fraction. Phenols are a major component of SOM (Otto, Simpson 2006) and can be derived 

from various polymeric sources (Otto, Simpson 2006), but are mainly seen as decomposition products 

of lignin (Hedges, Mann 1979; Min et al. 2015). The high phenol, yet low lignin content in HEL soil 

indicates a shift to other sources above the tree line. It might be the result of an expectable increase 

of plant root to shoot ratios in alpine ecosystems (Wilson 2016). Suberin can contribute significantly 

to phenol origin in SOM (Otto, Simpson 2006) and is a distinct biomarker for root derived SOM inputs 

(Nierop 2001; Spielvogel et al. 2014) and very likely dominates the pattern observed in the alpine zone 

at Mt. Kilimanjaro. 

2.5.5.4 N compounds 

N containing compounds (amino N and N-heterocycles) in Kilimanjaro soils followed two contrasting 

trends with elevation. While amino N had their maximum at around 2000m, N-Heterocycles decreased 

at mid-elevation (Figure 2.5-4). The origin of N-containing components in SOM is not completely clear 

and can be either attributed to microbial or vegetal precursors (Vancampenhout et al. 2010). Still, 

amino acids, whether plant litter or microbial product, are easily degradable and part of a ‘fast-cycle’ 
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turnover (Curry 1993). They mainly occur in fresh litter and upper soil horizons (van Bergen et al. 1998). 

N-heterocycles (such as pyridines, pyrroles and indoles) are more stable and are products of the 

microbial decomposition of lignin or amino acids in further degraded SOM (Schulten, Schnitzer 1997; 

Chiavari, Galletti 1992). Strong N limitation and high perennial productivity in mid-elevation 

ecosystems might induce increased decomposition of N compounds. The more stable pool (N-

heterocycles) is reduced (Sims 2006) and transferred into a fast cycling pool (amino N) and thus into 

aboveground biomass N (Curry 1993). 

Note, the slight increase of N–compounds in alpine soils might stem from cell wall chitin of fungi 

(Mehrabanian 2013), which are increasingly abundant in the alpine zone of Mt. Kilimanjaro (Gunina et 

al, Study4). We are aware, that separating N compounds using py GCMS tends to be error-prone as 

amino acids are transformed into indoles, imidazoles and, most commonly, nitriles during pyrolysis 

(Schulten, Schnitzer 1997). We pooled nitriles and amino N together to reduce the effect of 

misclassification. However, percentage of N compounds is not always in line with total C:N indicating 

a potential additional methodological bias. 

2.5.5.5 Site-specific patterns 

Aromatic pyrolysis products originate from proteins, tannins and other polyphenols including charcoal 

and usually are an important fraction in tropical forest (Vancampenhout et al. 2009). Alkyl-aromatic 

compounds were unaffected by elevation and were nearly absent in the volatile fraction (Figure 2.5-3, 

Figure 2.5-4). A sudden peak in FLM might be related to the high amount of other aromatic compounds 

(e.g. polycyclic aromatics and phenols). 

Polycyclic aromatic compounds are mainly derived from the incomplete combustion of organic 

material from burning fuels or forest fires (Rumpel et al. 2007; Abdel-Shafy, Mansour 2016). High 

amount of polycyclic aromatic compounds in SOM from natural sites is considered an indicator of 

previous wild fires (Vergnoux et al. 2011). Consequently, the lowest amounts of PAs were found in 

ecosystems with no or low fire disturbance (e.g. FOC and FPO) (Figure 2.5-4). Beside the subalpine 

zone, burning is quite frequent in the densely populated areas directly below the national park border. 

These fires sometimes affect the adjacent forest areas (Hemp & Beck 2001). The high contribution of 

polyaromatics in the pyrolized and the desorpable SOM fraction of FLM could be a result of a fire more 

than 100 years ago. Furthermore, particularly labile PAs are strongly related to sooth and ashes than 

to onsite burning residues (Han et al. 2015). Sooth particles are transported uphill by the orographic 

lift and subsequently deposited during the perennial rains (Mladenov et al. 2012). Such atmospheric 

depositions may have added to the polyaromatics in the pyrolized and the desorpable SOM fraction of 

FLM. In this context, we would have expected higher percentage of PAs in RAU, which is located in the 

direct vicinity of Moshi town. However, no such signal was found. While the semi-arid climate explains 
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low wet deposition of such particles and compounds, it remains unclear why RAU did not even receive 

a detectable proportion of polyaromatics by dry dust deposition (Lohse et al. 2008). 

Polysaccharide content in soil linearly decreased with elevation (Figure 2.5-4). Polysaccharides in soils 

originally derive from plant inputs, mainly cellulose and hemicellulose. These are easily biodegraded 

and replaced by microbial polysaccharides that accumulate on the forest floor and in mineral horizons 

(Kögel-Knabner 2000). At least in arable soil, polysaccharides are equally abundant in the labile and 

the stabile C pool (Kiem, Kögel-Knabner 2003). Therefore, high polysaccharide content in soil can be 

related either to large amounts of fresh litter inputs or strong microbial turnover and stabilization of 

these inputs. However, without separating plant and microbial derived compounds reasons for the 

declining trend with elevation are not easily explained. There are no litterfall data available for RAU 

forest. However, cover of litter on the Rau plot was 100% compared to 10% in the FER plot (Hemp 

unpublished data). Therefore, we assume that inputs are a lot higher compared to (sub-) alpine 

ecosystems. This may also explain low percentage of polysaccharides in the thermally desorbed 

fraction of RAU and FLM, because cellulose signals in pyrolysis usually appear only at more than 300 °C 

(Wang et al. 2013). However, litter input alone cannot explain the similar contribution of 

polysaccharides to SOM at forests and at high elevation ecosystems. Unexpectedly high content of 

thermally desorbable polysaccharides in the alpine zone might be derived from bacteria producing 

extracellular biofilms for adapting to the cold environment (Limoli et al. 2015). Here, further 

investigations by compound-specific analysis would be required to confirm such potential 

explanations. 

 

Figure 2.5-5: Schematic overview of processes and drivers affecting soil organic matter (SOM) composition in six 
along a 3000m elevation gradient of Mt. Kilimanjaro: Lowland evergreen broadleaf forest (RAU), lower montane 
evergreen forest (FLM), montane evergreen Ocotea forest (FOC), upper montane evergreen Podocarpus forest 
(FPO), subalpine Erica forest (FER), alpine Helichrysum cushion vegetation (HEL) 

 

 



 
Publications and Manuscripts 129 

 

 

2.5.6 Conclusions 

Results from EGA are very distinct and replicable for each ecosystem. However, EGA curves do not 

reflect the chemical composition derived from py-GC/MS and thus provide just very first insights into 

proportions of volatile compounds without allowing any conclusion on SOM quality and controlling 

dynamics. SOM chemistry varied considerably between ecosystems along the elevation gradient of Mt. 

Kilimanjaro. Fast decomposition rates around 2000 m a.s.l. lead to relative enrichment of litter 

degradation products, especially mid-chain alkanes and alkenes, in soil organic matter. C excess limits 

degradation of less easily available compounds, explaining a decrease-increase pattern along the 

elevation gradient for more labile compounds. Lignin derived compounds peak at low elevation (RAU) 

and in sub-montane Erica forest reflecting restricted decomposition rates below 1000 m in dry season, 

high inputs but even higher decomposition rates between 2000 and 3000 m and HEL low amounts of 

woody inputs decreases lignin content in soil. Nitrogen limitation and high perennial productivity in 

mid-elevation forests promotes decomposition of N compounds and shifts composition from a stable 

pool (N-heterocycles) into a fast cycling pool (amino N). Thus, we identified two main factors 

controlling SOM quality and composition: first, the rate and composition of OM inputs which is 

controlled by vegetation type and climatic characteristics, and second, the microbial decomposition 

rate controlled mainly by soil environmental parameters (e.g. temperature and soil moisture) and thus 

having its maximum at mid elevation. 
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2.5.9 Appendix 

Table Supplementary 2.5-2: Percent of the thermally desorbed fraction in EGA pyrograms (≤ 280°C). Mean 
values (mean), standard deviation (sd) and standard error of the mean (se) are presented for each ecosystem 
(n = 4). Small letters indicate significant difference according to ANOVA (p-level = 0.05). 

 RAU FLM FOC FPO FER HEL 

mean 0.55c 2.76b 5.00a 5.30a 5.41a 3.36b 
sd 0.12 0.67 0.38 1.01 0.30 0.95 
se 0.06 0.34 0.12 0.51 0.15 0.48 
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2.6 Study 6:  
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2.6.1 Abstract 

Background and Aims Tropical alpine ecosystems have been identified as the most vulnerable to global 

environmental change and despite their sensitivity they are among the least studied ecosystems in the 

world. Given the important role in constraining potential changes to the C balance, soil N turnover and 

plant availability in high latitude and high altitude ecosystems is still poorly understood. 

Methods In this study, for the first time, a tropical alpine Helichrysum ecosystem at Mt. Kilimanjaro, 

Tanzania, at 3880 m altitude was characterized for its vegetation composition and investigated for 

major gross N turnover rates by the 15N pool dilution method for three different vegetation covers. In 

addition greenhouse gas exchange (CO2, N2O and CH4) was manually measured by use of static 

chambers. 

Results Gross N turnover rates and soil CO2 and N2O emissions were generally lower than reported 

values for temperate ecosystems, but similar to Tundra ecosystems. Gross N mineralization, NH4
+ 

immobilization rates and CO2 emissions were significantly higher on densely vegetated plots than on 

low-vegetated plots. Relative soil N retention was high and increased with vegetation cover, which 

suggests a high competition of soil available N between microbes and plants. Due to high percolation 

rates, irrigation/rainfall had no impact on N turnover rates and greenhouse gas (GHG) emissions. 

Whereas soil N2O fluxes were below the detection limit at all plots, soil respiration rates and CH4 uptake 

rates were higher at more densely vegetated plots. Only soil respiration rates followed the pronounced 

diurnal course of air and soil temperature. 

Conclusion Overall our data show a tight N cycle dominated by closely coupled ammonification-NH4
+-

immobilization which is little prone to N losses. Warming could enhance vegetation cover and thus, N 

turnover, but only more narrow C:N ratios due to atmospheric nitrogen deposition may open the N 

cycle of Helichrysum ecosystems. 

 

Keywords Soil-N cycling, Gross-N turnover, 15N-pool dilution, Greenhouse gas emission, Tropical alpine 

ecosystem  
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2.6.2 Introduction 

Due to harsh environmental conditions pushing organisms close to their physiological limits, high 

latitude and high altitude ecosystems are among the most vulnerable ecosystems affected by global 

environmental changes. Furthermore, these ecosystems are exposed to extraordinarily strong 

warming well above the global average (Wookey et al. 2009). Typically, productivity of these 

ecosystems is strongly limited by availability of nitrogen (N) and phosphorus (P) (Shaver et al. 1992; 

Güsewell 2004; Weintraub & Schimel 2005). In a warming climate, the delicate balance of increased 

primary productivity - induced by higher nitrogen availability - and carbon (C) losses from promoted 

decomposition of SOM, may determine whether high latitude and high altitude ecosystems become a 

net sink or source for atmospheric carbon dioxide. Vice versa, the vegetation itself may exert feedback 

on soil C and N cycling through its litter quality, root exudation of labile organic compounds and via 

competition for organic and mineral nutrients (Rennenberg et al. 2009, Chapman et al. 2006). Despite 

the important role in constraining potential changes to the C balance, soil N turnover and plant 

availability in high latitude and high altitude ecosystems are still poorly understood (Weintraub and 

Schimel 2005). In particular this holds for tropical alpine ecosystems, which are considered to be one 

of the least well investigated ecosystems in the world (Buytaert et al. 2011). To our knowledge the 

study of Schmidt et al. (2009), is currently the only soil biogeochemical study providing gross N 

turnover rates for a tropical alpine ecosystem exposed to extreme diurnal temperature fluctuation. 

Studies on biogeochemical nutrient cycling are much more available for higher latitudinal and alpine 

ecosystems of the temperate zone (e.g. Jaeger III et al. 1999; Ernakovich et al. 2014; Clein and Schimel 

1995; Alm et al. 1999; Gulledge and Schimel 2000; Kielland et al. 2006; Kielland et al. 2007; Kurganova 

et al. 2003). However, environmental conditions in tropical alpine ecosystems at >4000m are not 

directly comparable to those ecosystems due to generally lower atmospheric pressure, higher UV 

irradiance and different rainfall regimes. Even more, tropical alpine ecosystems are rather exposed to 

extreme diurnal temperature and radiation variations, whereas high latitude and alpine ecosystems 

are subject to strong seasonal variations of soil and air temperature as well as solar radiation resulting 

in highest activity of plant and biogeochemical soil processes in summer (Schmidt et al. 2009). 

Nevertheless, it was reported that even at periods with low soil temperatures (<5°C), and in particular 

at freeze-thaw events, microbes are still active and contribute to significant rates of gross soil N 

turnover (Schmidt et al. 2009; Mican et al. 2002; Wu et al. 2012, Wolf et al. 2010, Schütt et al. 2014) 

and associated N2O emissions with significant or even dominating contribution to the annual budgets 

(Holst et al.; 2008; Luo et al. 2012). Various physical, chemical and biological processes and their 

interaction have been proposed to explain the occurrence of low temperature related N2O emissions 

(De Bruijn et al., 2009; Matzner and Borken 2008). Due to pronounced diurnal changes in air and soil 

temperature freeze-thaw events could occur in tropical alpine ecosystems at unprecedented temporal 
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frequency likely to be disruptive to soil microbial communities with hitherto unresolved impacts on 

ecosystem availability of soil nitrogen (Larsen et al. 2002; Henry et al. 2007).  

Therefore, for the first time we conducted a field study in an African Helichrysum ecosystem, with the 

aim of improving our understanding of soil nitrogen cycling and availability in a tropical high altitude 

site. The focus of this paper is on i) the quantification and characterization of key gross N turnover 

rates (i.e. mineralization, nitrification, microbial immobilization) and soil greenhouse gas (CO2, N2O, 

CH4) exchange under different vegetation covers and ii) the influence of precipitation and freeze thaw 

cycles on biogeochemical processes.  

 

Figure 2.6-1. Picture of the tropical alpine Helichrysum site (A) characterized by different vegetation classes (B: 
low-vegetation, C: herb and D: shrub). 

2.6.3 Material and Methods 

2.6.3.1 Site characteristics and sampling design 

Mount Kilimanjaro is located in Tanzania, next to the border of Kenya (2°45’ to 3°25’ S and 37°00’ to 

37°43 E) and is the highest peak on the African continent (5895 m. a.s.l.). Geologically it is a 

stratovolcano with a large spread of about 80 x 48 km (Downie et al. 1956). The study area (2500 m²) 

representing a tropical alpine ecosystem (3°053637’ S; 37°276770’ E, 3880 m a.s.l.) was selected in a 

slightly sloping area with no anthropogenic influence. The site is characterized by diurnal climate  
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Table 2.6-1: Classification (moss, herb, shrubs) and coverage of different plant species at non-vegetated, herb 
and shrub plots 

Plot Species 
Mean  
cover class 

Mean  
area cover 

Vegetation type 
Mean  
cover class 

Mean  
area cover 

Low veg Mosses + <5% Mosses + <5% 

  Agrostis kilimandscharica 2 5-25% Herbs 1 5-25% 

  Haplosciadium abyssinium + <5%       

  Luzula abyssinica 2 5-25%       

  Pentaschistis borussica + <5%       

  Pentaschistis minor 1 5-25%       

  Alchemilla argylophylla + <5% Shrubs 0 5-25% 

  Alchemilla johnstonii 0 <5%       

  Euryops dacrydiodes + <5%       

  Helichrysum citrispinum + <5%       

  Helichrysum forskhalii r <5%       

  Helichrysum newii 1 5-25%       

  Helichrysum splendidum 1 <5%       

        Total 2 25-50% 

Herb Mosses + <5% Mosses + <5% 

  Agrostis kilimandscharica 1 5-25% Herbs 2 25-50% 

  Haplosciadium abyssinium + <5%       

  Luzula abyssinica 1 5-25%       

  Pentaschistis minor + 5-25%       

  Alchemilla argyrophylla 1 5-25% Shrubs 3 50-75% 

  Alchemilla johnstonii + <5%       

  Alchemilla microbetula + <5%       

  Erica trimera r <5%       

  Euryops dacrydiodes 1 5-25%       

  Helichrysum citrispinum 1 5-25%       

  Helichrysum forskhalii 2 5-25%       

  Helichrysum newii 1 5-25%       

  Helichrysum splendidum r <5%       

        Total 4 50-75% 

Shrub Mosses 1 5-25% Mosses 1 5-25% 

  Agrostis kilimandscharica + 5-25% Herbs + <5% 

  Haplosciadium abyssinium + <5%       

  Luzula abyssinica + <5%       

  Alchemilla argyrophylla r <5% Shrubs 4 >75% 

  Alchemilla johnstonii + <5%       

  Erica trimera 4 50-75%    

  Helichrysum citrispinum + <5%       

  Helichrysum newii 1 5-25%       

        Total 4 >75% 
1) r < 5% single individual of the species with less than 5% coverage 

 
2) + < 5% 2-20 individuals of a species and collectively cover less than 5% 

 
3) 1 < 5% numerous individuals of a species collectively cover less than 5% 

4) 2 5% - 25% species cover 5% and 25%  
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5) 3 25% - 50% species cover 25% and 50%  
  

6) 4 50% - 75% species cover 50% and 75% 
  

7) 5 75% - 100% species cover 75% and 100% 
  

Coverage is expressed as percental contribution (area coverage) and classified (cover class) in the Braun-Blanquet 
scale, adapted by Mueller-Dombois and Ellenberg (1974) 

with considerably high daily fluctuations in air temperature. The mean annual temperature is 5.3 °C 

and the mean annual precipitation is about 1417 mm (Appelhans et al. 2015a). The dominant 

vegetation species is alpine Helichrysum and a variety of mosses, herbs and also subalpine Erica shrubs 

(Hemp 2006) (Table 2.6-1). Thus, we defined three vegetation cover classes: low-vegetation (low-veg), 

herbal vegetation (herb) and shrub vegetation (shrub) (Figure 2.6-1). Regarding these categories, areal 

coverages were calculated from google maps satellite images by unsupervised k-means clustering, 

resulting in 40.5 % low-vegetation (10 cm height), 51.9 % herbs (30 cm height) and 7.6 % shrubs (260 

cm height) (Table 2.6-2) at a total site area of 50x50m (Appelhans et al. 2015b). Within this area, three 

replicated plots per vegetation cover (app. 15 x 15m; N=3 * 3=9) were selected, each being represented 

by three randomly selected sampling locations (app. 1.5 x 1.5m; N=3 * 9=27). At any of the 9 plots 

replicated sampling locations were used to collect pooled samples for measurements of gross N 

turnover rates, GHG fluxes, microbial biomass, root abundance and other physicochemical soil 

properties (see section soil properties). At any of the 27 sampling locations relative abundance of each 

plant species was recorded based on a visual estimation of the space a species covered in the 1.5 – 

1.5m area and expressed in the Braun-Blanquet scale, adapted by Mueller-Dombois and Ellenberg 

(1974). Information on the level of single plant species was aggregated and summarized as relative 

abundance of shrubs, herbs and mosses as well as the total vegetation coverage for any of the three 

vegetation classes (Table 2.6-1, Table 2.6-2). 

The soil is a Vitric Andosol (WRB, 2014) characterized by partly shallow soil depths ranging from 5 to 

about 40 cm. Overall, an A-horizon of up to 10 cm depth was followed by either a B-horizon or bedrock, 

especially on surfaces without vegetation. An O-horizon was formed for the litter of the shrub 

vegetation. 

Measurements of gross N turnover rates and GHG emissions were conducted between 25th – 30th 

November 2014. As an additive treatment to the vegetation cover classes each of the 27 sampling 

locations was irrigated (2.5 mm m-²) at the end of 27th November, in order to simulate impacts of 

rainfall on N turnover processes and GHG emissions. Due to continuous heavy rainfall events soon 

after this irrigation event with even higher intensities during consecutive days, further irrigation was 

not necessary. 

  



 
Publications and Manuscripts 143 

 

 

Table 2.6-2: Top soil (0-10cm) characteristics 

Parameters   Low-veg Herb Shrub 

NH4
+-N [µg N / g BTG] 1.25 a ± 0.25 2.72 b ± 0.35 1.19 a ± 0.11 

NO3
--N [µg N / g BTG] 0.84 a ± 0.18 0.47 ab ± 0.18 0.20 b ± 0.13 

DON-N [µg N / g BTG] 23.46 a ± 1.14 26.66 a ± 2.24 30.79 a ± 5.63 

total extractable nitrogen [µg N / g BTG] 25.55 a ± 1.37 29.85 a ± 2.57 32.03 a ± 5.53 

total extractable carbon [µg C / g BTG] 429.03 a ± 63.2 390.31 a ± 79.12 314.79 a ± 35.84 

SOC (0-10 cm) [%] 6.16 a ± 0.94 10.87 ab ± 1.09 12.32 b ± 2.09 

N (0-10 cm) [%] 0.46 a ± 0.06 0.71 a ± 0.07 0.74 a ± 0.1 

C:N ratio (0-10 cm)   12.86 a ± 0.44 15.00 b ± 0.23 16.13 b ± 0.61 

MBN [mg/kg] 25.76 a ± 4.43 61.26 b ± 6.25 69.77 b ± 14.29 

MBC [mg/kg] 367.79 a ± 32.79 606.43 ab ± 51.64 834.43 b ± 144.8 

MBC:MBN ratio   16.86 a ± 2.09 10.13 b ± 0.32 12.98 ab ± 0.83 

bulk density [g/cm3] 0.79 a ± 0.07 0.60 b ± 0.09 0.61 b ± 0.09 

stone content [%] 11.17 a ± 2.4 1.47 b ± 0.81 2.33 b ± 1.09 

pH   5.30 a ± 0.1 4.80 b ± 0.1 4.80 b ± 0.1 

live roots [g l-1 ] 0.75 a ± 0.14 0.51 a ± 0.1 0.92 a ± 0.19 

dead roots [g l-1 ] 0.07 a ± 0.02 0.36 b ± 0.04 0.25 a ± 0.11 

soil temperature (-2 cm) [°C] 6,40 a ± 0,05 5,90 b ± 0,05 5,91 b ± 0,04 

soil temperature (-10 cm) [°C] 6.21 a ± 0.02 7.08 b ± 0.02 5.83 c ± 0.01 

VWC [Vol. %] 30.17 a ± 2.56 27.56 a ±2.60 26.37 a 0.93 

area coverage [%] 40.50 a   51.90 b   7.60 c   

DON dissolved organic nitrogen, DOC dissolved organic carbon, TN total extractable nitrogen, TC total extractable 
carbon; SOC soil organic carbon; N total soil nitrogen, MBN microbial nitrogen, MBC microbial carbon, VWC 
volumetric water content and area coverage of different vegetation classes of a tropical alpine Helichrysum site. 
Different superscript letters show significant differences between vegetation classes (p ≤ 0.05) 

2.6.3.2 Gross nitrogen rates, dissolved inorganic N and organic C and N concentrations 

For determination of gross N-turnover rates, soil sampling and 15N labeling of the soil was carried on 

the 25th (no rain) and the 28th (irrigation/rain) of November 2014. Gross N turnover rates were 

quantified using the 15N pool dilution technique described by Rosenkranz et al. (2005) and (Davidson 

et al. 1992) with slight modifications. At any of the 9 plots 300g (composite of the 3 sampling locations) 

from the upper mineral soil (0-10 cm) were sampled. Bulk soil was sieved (5 mm mesh width, 

Dannenmann et al. 2006) and a subsample of 150g was labeled either with 4.5 ml solution containing 

(15NH4)2SO4 or K15NO3 (50 atom% 15N, N addition rate 3 mg N kg-1 dry soil) for investigation of gross N 

mineralization and nitrification rates, respectively. Isotope labeling of sieved soil was conducted by 

spraying the labeled solution on the soil as described by Dannenmann et al. (2009). One third of the 

15N labeled soil was extracted 15 min after labeling (t1) and the second third incubated in-situ, covered 

with top soil layer material, for subsequent extraction 24 hours (t2) later (for details see Dannenmann 

et al. 2009). The remaining 50 g were used for the determination of volumetric soil water content 
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(VWC) of the labeled soil. Additional 60 g of sieved unlabeled soil were used for measurements of VWC, 

dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and dissolved organic carbon 

(DOC) concentrations (Dannenmann et al. 2009). Further processing and analysis of soil extracts such 

as 15N diffusion on acid traps, and analysis of isotopic signatures with EA-IRMS (Flash EA 1112 Series 

coupled to Finnigan Delta Plus XP, Thermo Fisher, USA); DIN (Epoch, BioTek Instruments Inc., USA) TN, 

DOC (Multi N/C 3100, Analytik Jena, Germany) were carried out at laboratory facilities of KIT IMK-IFU 

(Garmisch-Partenkirchen, Germany) and followed the protocols described by Dannenmann et al. 

(2009). Gross N mineralization and nitrification rates and NH4
+ and NO3

- consumption were calculated 

using the equations given by Kirkham and Bartholomew (1954). Microbial immobilization of NH4
+ was 

calculated as 15NH4
+ consumption minus gross nitrification, assuming that gaseous losses and 

heterotrophic nitrification of organic N were negligible (Davidson et al. 1991a). Microbial 

immobilization of NO3
- was assumed to equal NO3

- consumption. Based on the gained gross rates of 

inorganic N production and consumption, specific indicators of N cycling were calculated. The ratio of 

gross NH4
+ immobilization plus gross NO3

- consumption to gross N mineralization plus gross 

nitrification is referred to as relative N retention and the ratio of gross NH4
+ immobilization to gross N 

mineralization is referred to as relative NH4
+ immobilization. 

2.6.3.3 Greenhouse gas measurements  

For GHG exchange measurements (CO2, N2O and CH4) one static chamber (25.2x15.2x14.7cm) was 

installed at each of the 27 sampling locations. A rubber sealing and clamps maintained gas tightness 

of the chamber at collars driven 3-5cm into the soil. The opaque polypropylene chambers were 

equipped with a rubber septum and a 30 cm long and 1/8 inch Teflon tubing to allow pressure 

equilibrations during sampling. Gas sampling was performed with a 60ml gas tight syringe 

(Omnifix®, B. Braun, Melsungen, Germany) equipped with a one way LuerLock stop cock (VWR 

International, Darmstadt, Germany). Over the whole measuring campaign four times a day (6:00, 

9:00, 14:00 and 18:00), headspace gas was sampled at t1=0, t2=15, t3=30, t4=45 and t5=60 minutes 

after chamber closure in order to cover potential diurnal patterns. Sampling followed the gas pooling 

protocol of Arias-Navarro et al. (2013) by subsequently taking and mixing 15 ml gas samples from three 

replicated plot chambers at any sampling time t1 – t5 with one syringe. Thus, this approach integrates 

gas flux measurements at replicated sampling locations but still maintains plot replication. The total of 

45 ml pooled sample was used to flush and finally over-pressurize (5ml) 10 ml glass vials (SRI 

Instruments, Bad Honnef, Germany). The samples were shipped to IMK-IFU (Garmisch-Partenkirchen, 

Germany) for further analysis using a headspace auto sampler (HT200H, HTA s.r.l, Brescia, Italy) 

coupled to a gas chromatograph (8610 C, SRI Instruments, Torrence, USA) equipped with an electron 

capture detector (ECD N2O) and a flame ionization detector/ methanizer (FID: CH4 and CO2). Samples 



 
Publications and Manuscripts 145 

 

 

were continuously calibrated with standard gas samples (N2O: 406 ppb; CH4: 4110 ppb; CO2: 407.9 

ppm, Air Liquide, Düsseldorf, Germany). Flux rates were calculated with R version 3.2.0 including HMR 

package 0.3.1 for calculation of GHG flux rates by linear increase or decrease in gas concentration over 

time (n = 5). Quality checks were applied and flux measurements were discarded at r2<0.6. Mean 

detection limits (MDL) calculated according to Baker et al. (2003) were 0.17 mg CO2-C, 5.3 µg, CH4-C or 

0.6 µg N2O -N m-2 h-1, respectively 

2.6.3.4 Microbial biomass and fine root biomass 

Soil samples were taken from 27 sampling locations (9 per vegetation class) with a steel corer (5 cm 

diameter) to a depth of 10 cm and separated into two depths: 0-5 cm and 5-10 cm. In three low-veg 

plots we only could take samples until 5 cm and 2.5 cm depth, because of underlying bedrock material. 

Samples were transferred into plastic bags and transported to the laboratory in Nkweseko station, 

Tanzania, and stored at 5°C. Processing of the samples was done within 60 days. All the macroscopically 

visible roots longer than 10 mm were extracted by hand with tweezers. The method described by Van 

Praag et al. (1988) and modified by Hertel and Leuschner (2002) was inapplicable under field 

conditions. Thus, roots were separated belonging to shrubs and the ones from grasses, herbs and 

mosses under the stereomicroscope. Also, we distinguished between live roots (biomass) and dead 

roots (necromass) by root elasticity and degree of cohesion of cortex, periderm and stele. An indicator 

of root death is a non-turgid cortex and stele, or the only presence of the periderm (Leuschner et al. 

2001). Fine root biomass and necromass samples were dried at 70 °C (48 h) and weighed. After 

separation of roots, soil samples were stored in 60 ml PE-Tubes (VWR, Germany) at 4°C and shipped 

to Göttingen (Germany) for further analysis. Microbial biomass C (MBC) and microbial biomass N 

(MBN) were quantified by fumigation-extraction method following the protocol introduced by Vance 

et al. (1987). 

2.6.3.5 Measurements of soil properties 

All physicochemical soil properties were measured from pooled samples (N=3) at any of the 3 

replicated vegetation plots (N=9). Soil pH was measured from air dried soil samples dissolved in 0.01 

molar CaCl2 solution with a SenTix 61 electronic pH-meter (WTW GmbH, Weilheim, Germany). Bulk 

density (BD) was calculated from oven dried (72 h at 105°C) undisturbed soil cores (100 cm³) taken at 

0-5cm soil depth. From the same samples stone fraction was measured as water displacement of 

stones >2mm. Carbon (C) and nitrogen (N) contents were determined using an automated C:N analyzer 

(Vario EL cube, Elementar, Germany). About 40 mg of dry soil were fine ground and combusted at 

950°C. The evolving CO2 and NOx were then measured by a thermal conductivity detector.  

Soil temperature was continuously (1 minute intervals) measured in 2 and 10cm soil depth over the 

whole measuring campaign at 27 sampling locations (EBI 20-TH1; ebro Eletcronic, Ingolstadt, 
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Germany). Means were calculated per vegetation class and soil depth. In addition to the determination 

of VWC from soil samples used for quantification of N turnover rates, VWC was also measured after 

GHG measurements in any chamber by a portable frequency domain sensor (GS3, Decagon Devices©, 

Pullman, USA). 

2.6.3.6 Statistics 

Kolmogorov–Smirnov statistics was applied to test normal distribution of data for any measured 

parameter. Since neither N gross turnover rates nor GHG emissions were normally distributed, we 

applied log transformation on N gross turnover rates and square root transformation on greenhouse 

gas data. Differences between the no-rain and irrigation/rainfall treatments for all sites were assessed 

using independent-samples t-test. For greenhouse gas data a two way ANOVA (Tukey’s HSD) was 

conducted to test differences in time and between vegetation classes. Additionally, a one way ANOVA 

(Tukey’s HSD) was executed for N-turnover rates and all other soil parameters to test for differences 

between vegetation classes. Correlation analyses between GHG, N turnover and soil parameters were 

conducted across all 9 plots using Pearson product-moment correlation coefficient. For identification 

of main controls of N gross rates and GHG emissions multiple stepwise regression analysis was applied. 

Level of significance was chosen at p < 0.05. All statistical analyses were calculated with IBM® SPSS® 

statistics 21 (IBM Corporation, New York, USA). 

2.6.4 Results 

2.6.4.1 Soil properties 

The temperatures at 2 cm soil depth showed a strong diurnal cycle with a maximum of up to 22°C 

around noon and minimum 0°C in the early morning hours. Even though soil surface was covered with 

frost, minimum temperatures in 2cm soil depth were slightly higher than 0°C. Overall in 2 cm soil depth 

the mean diurnal temperature variation of 15°C was much higher compared to the temperature 

differences between the vegetation classes which were mostly <1°C. The temperature in 10cm soil 

depth showed a dampened diurnal variation with temporarily delayed maximum (12°C) and minimum 

temperatures (3°C) and a more pronounced difference (2°C) across the three vegetation classes (Figure 

2.6-2). Over the whole measuring campaign mean soil temperatures at 2 and 10cm soil depth ranged 

between 5.9 – 7.1 °C with significantly highest values found in 2cm at the low-veg and in 10cm at the 

herb plots (Table 2.6-2).  

In contrast to soil temperature, temporal variation of volumetric water content at all three vegetation 

classes was minor, even though soils were exposed to one irrigation and consecutive rainfall events 

since 28th November 2014 (Figure 2.6-2). For the low-veg and herb plots mean daily VWC ranged 

between 22 and 40 vol% with a tendency of decreasing VWC at beginning of the measuring campaign. 
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VWC at the shrub plots did not vary significantly over time and ranged between 26-28 vol%. Only the 

low-veg treatment showed an increase of VWC after irrigation. Mean VWC of the low-veg, herb and 

shrub treatments, measured daily at the GHG chamber positions, were not significantly different 

(Table 2.6-2) and in the same range than VWC measurements calculated from soil samples used for 

quantification of gross N turnover rates (Figure 2.6-3). 

Figure 2.6-2: Course of soil 
temperature (2 and 10 cm) and 
volumetric soil water content (0-5 cm) 
at three vegetation classes of a 
tropical alpine Helichrysum site. Stars 
represent gas sampling times and 
lines below the stars the incubation 
time for the 15N labeled soil. 
 

 

 

 

 

 

 

Measurement of pH revealed more acidic conditions for the herb and shrub than for low-vegetated 

plots. Bulk density (BD) was higher for the low-veg plots (0.8 g cm-3) compared to the herb and shrub 

plots (0.6 g cm-3), whereas the C and N content as well as C/N ratio increased with vegetation cover 

(Table 2.6-2). 

2.6.4.2 Gross N turnover rates and extractable soil C and N concentrations 

At the first sampling time under no rain conditions gross N mineralization significantly increased with 

vegetation cover (Figure 2.6-3A). Rates on the herb plots were four times and on shrub plots more 

than 5 times higher than on the low-veg plots. Gross nitrification rates showed the same, though not 

significant trend as N mineralization rates but were four times lower than gross N mineralization rates 

on the low-veg and about ten times lower than on the vegetated plots. NH4
+ immobilization rates 

significantly increased with growing vegetation cover. Gross NO3
- consumption rates showed the same 

trend but were found to be much lower than NH4
+ immobilization rates (Figure 2.6-3B).  

For the sampling after the irrigation/rain event, magnitude and trends of gross N mineralization and 

nitrification rates across the three treatments were comparable to the no-rain situation. However, 

plant effects were less pronounced which resulted in diminished statistical significance of the 

differences across the vegetation cover treatments (Figure 2.6-3E). The same was true for NH4
+ 
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immobilization rates which were slightly lower in the vegetated plots compared to the no-rain 

situation. NO3
--consumption rates declined after irrigation/rainfall and were detectable only in the 

shrub treatment. 

 

Figure 2.6-3: Gross N-turnover rates, soil N concentration and water content at three vegetation classes of a 
tropical alpine Helichrysum site. A-D represent measurements for no-rain, E-H represent measurements after 
irrigation (rain). Stars indicate times of GHG chamber measurements, lines indicate incubation time of gross N 
turnover measurements. A-Error bars are standard errors of the mean. Lower case letters represent significant 
difference (p<0.05) between the vegetation classes. 
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Before irrigation NH4
+ and NO3

- concentrations (Figure 2.6-3C) showed a different pattern across the 

three treatments than gross N turnover rates. NH4
+concentrations were highest at the herb plots, while 

NO3
- concentrations even showed a decreasing trend with increasing vegetation cover. After 

irrigation/rainfall mineral N concentrations were slightly lower but showed the same trends compared 

to the no-rain sampling. (Figure 2.6-3G). Across all vegetation classes NO3
- concentrations were 

persistently lower than NH4
+ concentrations, irrespective of irrigation/rainfall (Figure 2.6-3C and G). 

Overall the Helichrysum site was characterized by more than 10 times higher DON than DIN 

concentrations. DON concentrations did not differ significantly between treatments, nevertheless 

showed an increasing trend with increasing vegetation cover (Table 2.6-2). 

Both relative N retention as well as relative NH4
+ immobilization significantly increased in the presence 

of shrub as compared to the low-veg plots in the irrigation/rain treatment, but were not significantly 

affected by vegetation in the no-rain treatment (Table 2.6-3). 

Table 2.6-3: N turnover indicators for the three vegetation classes for no-rain, irrigation/rain and combined 
conditions. Nretrel: relative N retention; ImmNH4

+rel: relative NH4
+ immobilization 

   Vegetation class Nretrel ImmNH4
+

rel 

no rain low-veg 2.59 aA ± 0.85 3.45 aA ± 1.12 

  herb 1.74 aA ± 0.15 1.53 aA ± 0.16 

  shrub 2.07 aA ± 0.08 1.69 aA ± 0.06 

Irrigation/ rain low-veg 0.55 aB ± 0.41 0.96 aA ± 0.22 

  herb 0.70 abB ± 0.22 0.92 aB ± 0.18 

  shrub 1.89 bA ± 0.2 1.93 bA ± 0.09 

combined low-veg 1.26 a ± 0.75 2.21 a ± 0.55 

  herb 1.22 a ± 0.17 1.23 a ± 0.07 

  shrub 1.74 a ± 0.09 1.82 a ± 0.08 

Superscript in small letters represent significant differences (p<0.05) between vegetation classes.  
Superscript in capital letters represent significant differences (p<0.05) of no-rain and irrigation/rain within one 
vegetation class. 
Nretrel: relative N retention; ImmNH4

+rel: relative NH4
+ immobilization 

2.6.4.3 Soil GHG emission CO2, CH4 and N2O emissions 

Since soil GHG emissions did not show any significant changes to the irrigation/rainfall event, data 

were aggregated over the whole measuring campaign (Table 2.6-4), and for evaluation of diurnal 

patterns divided into four classes representing different hours of the day (Figure 2.6-4). 

Soil CO2 emissions were low and ranged between 3.3 and 28.3 mg C m-2 h-1. Emission were significantly 

higher on the herb and shrub plots compared to the low-veg plots (Table 2.6-4). At all plots, the highest 

CO2 fluxes were measured at 2 pm and the lowest fluxes occurred at 6 am. This diurnal pattern was 

most obvious for the herb plots, which also showed highest daily maximum fluxes (Figure 2.6-4A). The 

difference between minimum and maximum fluxes at the shrub plots was lower but still higher than 
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at the low-veg plots which showed only a minor diurnal pattern. For all three vegetation classes 

chamber measurements revealed a net uptake of CH4 into the soil, with rates ranging between -4.9 

and -45.7 µg CH4-C m-2 h-1 (Table 2.6-4). At the herb and shrub plots, uptake rates were significantly 

higher (app. 50%) than on the low-veg plots (Table 2.6-4). At medium and high vegetated plots diurnal 

patterns of fluxes were less pronounced than for CO2 emissions and not existent at low vegetated plots 

(Figure 2.6-4B). For all vegetation classes N2O emissions were below the detection limit (0.6 µg N2O -

N m-2 h-1) and showed no diurnal pattern (Figure 2.6-4C, Table 2.6-4). 

Table 2.6-4: Compilation of minimum, mean, maximum and area weighted mean fluxes of CO2 (mg C m-2 h-1), 
CH4 (µg C m-2 h-1) and N2O (µg N m-2 h-1) for different vegetation classes and the whole Helichrysum ecosystem 

GHG emission Vegetation class min max mean 

CO2  
[mg C m-2 h-1] low-veg 3.38 14.60 7.20 a ± 0.55 

 herb 3.85 28.32 11.54 b ± 0.71 

  shrub 4.96 17.42 10.86 b ± 0.56 

 area weighted total   9.73  ± 0.63 

CH4 low-veg -3.64 -33.14 -15.37 a ± 2.24 

[µg C m-2 h-1] herb -4.91 -45.71 -22.44 ab ± 1.70 

  shrub -9.04 -33.90 -23.75 b ± 1.78 

 area weighted total   -19.68  ± 1.92 

N2O low-veg -2.69 3.48 0.25 a ± 0.23 

[µg N m-2 h-1] Herb -1.48 1.65 0.20 a ± 0.13 

  shrub -0.83 4.01 0.11 a ± 0.16 

 area weighted total   0.21  ± 0.17 

Superscript letters show significant differences between vegetation classes (p ≤ 0.05) 

2.6.4.4 Microbial biomass (N and C) and fine root biomass 

Microbial biomass N was significantly lower at low-veg plots compared to herb and shrub plots (Table 

2.6-2). Microbial biomass C showed a comparable pattern across vegetation treatments, however with 

only significant differences between the low-veg and shrub plots. Overall at all vegetation classes, 

biomass of live roots was much higher than biomass of dead roots. Dead root abundance was 

significantly higher at the herb plots than at the low-vegetated and shrub plots. In contrast, abundance 

of live roots did not differ across vegetation treatments with herb plots tending to have lowest values 

(Table 2.6-2). 

2.6.4.5 Correlation and controls of gross N turnover rates and GHG emissions 

Both N mineralization and nitrification were positively correlated with soil CO2 emission, but 

surprisingly no correlation was found between them. In addition N mineralization was also positively 

correlated with NH4
+ immobilization and NO3

- consumption. Also for the latter two a high positive 

correlation was found (Table 2.6-5). Stepwise linear regression revealed total extractable N, soil NO3
-/ 
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NH4
+ concentration and MBN as main parameters controlling gross N turnover rates. Highest r2 (> 0.9) 

of the regression was found for N mineralization and NH4
+ immobilization by combination of three of 

the before mentioned parameters (Table 2.6-6). NO3
- consumption as well as indicators of N cycling 

could be best explained either by soil NO3
- or NH4

+ concentration, however with much lower predictive 

power (r2<0.5). Note that nitrification, N2O and CH4 emissions could not be explained by any of the 

parameters. 

 

Figure 2.6-4 Diurnal patterns of soil GHG exchange (A: CO2, B: N2O, C: CH4) at three vegetation classes of a tropical 
alpine Helichrysum site. Error bars represent standard error of the mean. Letters indicate significant (p < 0.05) 
temporal differences of fluxes within a vegetation class. Note no letters are presented for CH4 and N2O since no 
significant differences were detected. Lines at 0.6 and -0.6 in (Figure 2.6-4C), represent the MDL for N2O 
measurements. Correlation coefficients of soil CO2 emissions and temperature were 0.53 (p<0.01), 0.88 
(p<0.001), 0.67 (p<0.001) for low-veg, herb and shrub plots. 

2.6.5 Discussion 

In the tropical alpine Helichrysum ecosystem variations in air and soil temperature are rather driven 

by diurnal (diff. 20°C) than seasonal patterns (diff 2°C of warmest and coldest month). Even though 

rainfall has a more pronounced seasonal pattern than air temperature, changes in soil moisture were 

not significant as proved by the results from the no-rain and irrigation/rain treatment (Table 2.6-7). 

That is related to a high vertical water percolation caused by high porosity and cleaved bedrock 

material. Regarding this specific soil conditions, we are convinced that the short term character of our 

study is not a significant limitation. In contrast to soil temperature and moisture, vegetation cover 

exerted pronounced effects on gross N turnover rates and GHG emissions. Therefore, gross N turnover 

rates and GHG emission sink or source strength presented, should be representative for the 

Helichrysum ecosystem investigated also for longer time scales. Accordingly, the following discussion 

focuses mainly on effects of vegetation cover. 

2.6.5.1 Gross N turnover rates 

Our approach of quantifying gross rates of N turnover together with extractable organic and mineral 

C and N substrates allowed a hitherto unavailable functional insight into N cycling of the Helichrysum 

ecosystems at Mt. Kilimanjaro. Overall, the N cycle was characterized by more than an order of 
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magnitude larger DON than mineral N availability, by high NH4
+ immobilization rates and small 

nitrification rates with minimal soil NO3
- concentrations, accompanied by an overall high microbial 

inorganic N retention capacity. This characterizes a rather undisturbed, N-limited and thus closed N 

cycle, which is confirmed also by extremely low N2O emissions. Nevertheless, the high DON versus low 

mineral N availability is challenging the current paradigm of the N cycle, that depolymerization of 

organic macromolecules is the dominant “bottleneck” of overall N cycling (Schimel and Bennett 2004). 

At least for the tropical alpine Helichrysum ecosystem under investigation, nitrification seems to be 

the limiting step of overall N cycling.  

Table 2.6-5: Pearson’s correlation coefficients (R) between N gross turnover rates and CO2 emissions: NH4
+ 

immob. = immobilization and NO3
- cons. = consumption, *p <0.05, **p <0.01. 

 N mineralization Nitrification NH4
+ immob. NO3

- cons. 

CO2 0.76* 0.74* 0.59 0.42 

N mineralization 
 

0.25 0.94** 0.75** 

Nitrification   
 

0.16 0.29 

NH4
+ immob.     

 

0.88** 

NH4
+ immob. immobilization and NO3

- cons. consumption  
*p <0.05, **p <0.01. 

Gross N mineralization rates (Table 2.6-7) were considerably higher on the vegetated plots and agree 

well with compiled data by Booth et al. (2005) for arctic/montane grassland ecosystems and Cookson 

et al. (2002) for winter conditions of soils in temperate regions. However, the area weighted gross 

nitrification rate for the Helichrysum site (Table 2.6-7), including all vegetation classes, is much lower, 

but in the same range as rates reported for an N-limited beech forest soil in southern Germany 

(Dannenmann et al. 2006). However, the latter as well as other studies, which report about boreal and 

alpine ecosystem nitrogen turnover processes (Clein and Schimel 1995; Jaeger III et al. 1999; Kielland 

et al. 2006; Schütt et al. 2014), are hardly comparable to the Helichrysum ecosystem. This is mainly 

due to different climatic (e.g. temperature, precipitation, and radiation regimes) and vegetation 

characteristics, i.e. larger vegetation cover, higher litter input and decomposition rates as compared 

to the Helichrysum site. Similarly, vegetation dependent variation of soil properties can also be 

observed at the site scale in our study, i. e., between the vegetation cover types at our Helichrysum 

site. Since larger vegetation cover leads to an increase of litter production and dead roots in the soil, 

SOM contents were found to increase with vegetation cover (Table 2.6-2), a finding in line with other 

studies (e.g. Prescott, 2010). Such plant-soil interactions provide the explanation for the observation 

of increased microbial biomass and gross N turnover rates with higher SOC contents (e.g., Geßler et al. 

2005; Pabst et al. 2013), as also observed at our Helichrysum ecosystem (Table 2.6-7). Results of the 

regression analysis support this finding. From the total set of soil environmental parameters, except 
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nitrogen substrate, only MBN and SOC were selected as main controls for the dominating N processes 

of N mineralization and NH4
+ immobilization. 

Table 2.6-6: Multiple regression analysis for identification of main environmental controls on gross N processes 
and greenhouse gas emissions. Selected variables 

  Parameter Coefficient Change in R² p value 
Multiple 

R² 
Adjusted R² 

p 
value 

gross N mineralization Intercept -17.858     0.947 0.928 <0.001 

 
TN 13.694 0.605 <0.001       

  NO3
- -0.697 0.896 0.018       

  MBN 0.045 0.947 0.004       

gross nitrification none             

NH4
+ immobilization Intercept -16.431     0.951 0.93 <0.001 

  NO3
- -2.824 0.544 <0.001       

  TN  11.849 0.872 0.001       

  SOC 0.119 0.951 0.12       

NO3
- consumption Intercept -0.418     0.804 0.782 <0.001 

  NO3
- -1.498 0.804 <0.001       

rel. N retention Intercept 0.028     0.402 0.335 0.036 

  NO3
- -0.177 0.036 0.036       

Rel. NH4
+ immob. Intercept 2.616     0.479 0.422 0.018 

  NH4
+ 0.512 0.479 0.018       

CO2 flux Intercept 5.901     0.46 0.382 0.045 

  MBN 0.055 0.682 0.045       

N2O flux none             

CH4 flux none             

Discarded parameters (p>0.05): NH4
+, NO3

-, DON, total extractable N, total extractable C, SOC, N, MBC, live roots, 
dead roots 
TN total extractable nitrogen, NO3

- soil NO3
- concentration, NH4

+ soil NH4
+ concentration, SOC soil organic carbon, 

MBN microbial biomass N 

The very low relative importance of nitrification versus NH4
+ immobilization facilitated the overall 

closed N cycle of the Helichrysum ecosystem. Though it has been reported that nitrification might be 

more sensitive to low temperatures than ammonification (Cookson et al. (2002), the low nitrification 

rates of this study may also be related to the high DOC availability, which favors heterotrophic 

microbial NH4
+ immobilization over gross autotrophic nitrification (Butterbach-Bahl & Dannenmann 

2012). The trend of declining DOC with growing vegetation cover might also be explained by 

heterotrophic microbial NH4
+ immobilization, which is, in contrast to the mainly autotrophic 

nitrification, a carbon consuming process (Rennenberg et al. 2001; Dannenmann, 2007; Sutton et al. 

2011). The positive correlation between CO2 fluxes and N mineralization and no correlation between 

nitrification and N mineralization (Table 2.6-5, Table 2.6-6) contrasts the general finding of other 



 
Publications and Manuscripts 154 

 

 

studies (summarized by Booth et al. 2005). However, it supports the assumption of dominant 

heterotrophic microorganisms versus autotrophic nitrifiers. Heterotrophic microorganisms use NH4
+ 

solely for growth, whereas autotrophic nitrifiers need NH4
+ also for energy production, impairing their 

competition for NH4
+ against microbial NH4

+ immobilization at high DOC over N availability (Verhagen 

and Laanbroek 1991; Booth et al. 2005; Dannenmann, 2007). This suggests that increased N turnover 

rates at vegetated plots, caused by higher litter production and rhizodeposition (Hodge et al. 2000; 

Schimel and Bennett 2004; Phillips et al. 2011; Kuzyakov and Blagodatskaya 2015), do not enhance the 

risk of N loss, as long as the C:N ratio is not narrowing. In contrast, plants may even further compete 

with nitrification for soil NH4
+. In this context, increasing microbial inorganic N immobilization (Table 

2.6-7) and N retention capacity (Table 2.6-3) at shrub plots is pointing at intense plant-microbe 

competition for the limited N resources. This is further confirmed by e.g., declining NO3
- concentrations 

and residence time of NH4
+ (i.e., the ratio of NH4

+ concentration to ammonification) with increasing 

vegetation cover (Figure 2.6-3). Even though intense microbial competition may reduce short term 

plant N availability, the process of internal N recycling along microbial loops also enables ecosystem 

nitrogen retention. This can even lead to sustainable nitrogen provision to plants, since plants on the 

long term may better compete versus microbes due to their longer and higher N storage capacity 

(Kuzyakov et al. 2013, Hodge et al. 2000).  

Table 2.6-7: Mean (no-rain and irrigation/rain treatment) gross N-turnover rates for three vegetation classes 
and for the whole (area weighted mean) Helichrysum ecosystem 

  low-veg herb   shrub   area weighted mean 

  [µg N g-1 SDW d-1]   

gross N mineralization 1.05 a ± 0.3 3.31 b ± 0.35 3.58 b ± 0.46 2.42 ± 0.8 

gross nitrification 0.29 a ± 0.09 0.46 a ± 0.11 0.42 a ± 0.04 0.39 ± 0.05 

NH4
+ immobilization 1.48 a ± 0.27 4.13 b ± 0.65 6.26 c ± 0.64 3.22 ± 1.38 

NO3
- consumption n.d.   n.d. 0.49 ab ± 0.44 1.65 b ± 0.41 0.38 ± 0.58 

  [kg N ha-1 d-1]   

gross N mineralization 0.83 a ± 0.29 1.97 b ± 0.7 2.17 b ± 0.82 1.52 ± 0.42 

gross nitrification 0.23 a ± 0.08 0.27 a ± 0.1 0.26 a ± 0.09 0.25 ± 0.01 

NH4
+ immobilization 1.17 a ± 0.41 2.46 b ± 0.87 3.80 c ± 1.44 2.04 ± 0.76 

NO3
- consumption n.d.   n.d. 0.29 ab ± 0.1 1.00 b ± 0.38 0.23 ± 0.37 

Superscript in small letters represent significant difference (p<0.05) between vegetation classes 

Currently, about 60% of the Helichrysum system is covered with vegetation. Palaeosols reflecting 

movements of vegetation belts caused by palaeoclimatic fluctuations (Zech, 2006; Zech et al. 2014) 

show that climate change may induce an increase in vegetation cover in the Helichrysum ecosystem. 

Since N turnover rates are highest at vegetated plots (Table 2.6-7), this may increase gross N turnover 

rates, but based on our findings this does not necessarily open the N cycle. Therefore, the Helichrysum 
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ecosystem may be rather vulnerable to expected increase of atmospheric N deposition in tropical 

regions of Africa (Dentener et al. 2006; Vitousek et al. 1997) which may narrow the soil C:N ratio and 

thus could increase nitrification, transiently opening the N cycle of the hitherto undisturbed 

ecosystem.  

2.6.5.2 Greenhouse gas emissions 

The area weighted mean CO2 flux measured for the Helichrysum ecosystem was 86.4 g CO2-C m-2 yr-1 

which is only slightly higher than soil respiration rates reported for Tundra ecosystems (60 g CO2-C m-2 

yr-1; Raich and Schlesinger 1992). Because decreasing temperatures inhibit soil respiration, we assume 

that similarly to Tundra ecosystems, soil respiration of the Helichrysum ecosystem at Mt. Kilimanjaro 

is mainly temperature limited. The total CO2 production in intact soils is the sum of respiration from 

soil organisms, roots and mycorrhizae. Litter production, dead root decomposition and root exudates 

increase the organic matter inputs and thus soil respiration rates (Raich and Schlesinger 1992). 

Significant differences in organic matter inputs reflected by higher SOC contents at herb and shrub 

plots and highest live root abundance at shrub plots explain the increase of soil CO2 emissions with 

increasing vegetation cover. Root respiration is positively correlated to temperature (Luo and Xuhui 

2006) and solar radiation, the latter triggering root respiration via photosynthesis and subsequent 

stimulation of root exudation (Kuzyakov & Gavrichkova 2010). This is supported by our findings with 

more pronounced diurnal patterns of soil CO2 emissions at the vegetated plots (Figure 2.6-4A). The 

slightly lower emissions on the shrub plots might be caused by lower soil temperatures during daytime 

due to higher shading compared to herbs (Figure 2.6-1; Figure 2.6-2). The minor influence of root 

respiration and lower SOM contents leads to the lowest temperature sensitivity of CO2 emissions on 

the low-veg plots, which is also represented in the lower correlation coefficient with soil temperature 

(Figure 2.6-4A). Except soil temperature, also soil moisture has been found to correlate positively with 

soil respiration (e.g. Davidson et al. 1998; Raich and Tufekcioglu, 2000). Due to the high percolation 

rates, changes in soil moisture caused by irrigation/rainfall events were dampened, and had neither 

impact on N turnover rates nor GHG emissions. From this one can conclude that soil N and C cycling in 

the tropical alpine Helichrysum ecosystem is mainly controlled by changes in soil temperature.  

During the whole measuring campaign the Helichrysum ecosystem was a net sink for atmospheric CH4 

for all vegetation classes. The area weighted mean uptake rate of 1.72 kg C ha-1 yr-1 is higher than the 

mean uptake rate of 1.12 kg C ha-1 yr-1 reported for Tundra ecosystems (Dutaur and Verchot, 2007), 

indicating a high adaptation of microorganism to the specific climatic and soil conditions. CH4 uptake 

in soils is driven by oxidation via methanotrophic microorganisms (Conrad 1996, Butterbach-Bahl 

2002) which is primarily influenced by diffusive properties regulating the availability of atmospheric 

CH4 and oxygen in the soil (Ball et al. 1997; Boeckx et al. 1997) and therefore occurs predominantly in 
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the top soil (Bender and Conrad 1994; Steinkamp et al. 2001). The significantly lower CH4 uptake rates 

on the low-vegetated plots may result from generally lower soil aeration caused by significantly higher 

soil BD (Table 2.6-2). In addition, during the observation period, soil moisture was highest at the low-

veg plots (Figure 2.6-2) which further reduced gas exchange with the atmosphere and thus, lowered 

O2 and CH4 supply for methanotrophic microorganisms. Due to favoring physical soil conditions 

observed CH4 uptake rates are highest in forest ecosystems (Dutaur and Verchot, 2007; Adamsen and 

King, 1993; Castro et al. 1995), which is also supported by Matzner and Borken (2008) who pointed out 

that vegetation generally enhances soil diffusivity. Various studies also showed a positive correlation 

of temperature and CH4 uptake rates in particular for forest ecosystems (Butterbach-Bahl 2002; Kiese 

et al. 2008). Likewise, CH4 fluxes at the vegetated plots show a weak diurnal trend with general lowest 

uptake rates at 6am (Figure 2.6-4B). Contradictory to our hypothesis, there was no impact of 

irrigation/rainfall on CH4 uptake in any of the three vegetation classes which again can be attributed 

to the shallow soils and the high water drainage capacity.  

The majority of N2O fluxes of the Helichrysum ecosystem are below the mean detection limit, showing 

that N2O emissions are negligible in the Helichysum ecosystem. N2O production end emissions in soils 

predominantly occur indirectly via nitrification and directly via denitrification (Conrad 1996; 

Butterbach-Bahl et al. 2011). Since in our study nitrification rates are very low and denitrification 

proceeds mainly under anaerobic soil conditions at WFPS >70% (Butterbach-Bahl et al. 2013; Silver et 

al. 2001), none of the two relevant processes could produce significant amounts of N2O. Contrary to 

our hypothesis, neither the vegetation nor irrigation/rainfall affected the magnitude of N2O emissions. 

N2O emissions were assumed to be higher on the vegetated plots since former studies revealed higher 

microbial biomass and activity as well as increased N-turnover to be positively correlated with N2O 

emissions (e.g. Butterbach-Bahl et al. 2011). Due to the high rates of microbial NH4
+ immobilization 

and high relative N retention, indicating low nitrogen availability in particular at vegetated plots (Table 

2.6-3, Table 2.6-7), the increase of N2O emissions with vegetation cover was likely hampered at the 

investigated Helichrysum ecosystem. 

Contrary to our assumption, daily freeze-thawing was existent only at the soil surface and, thus in 

combination with low N availability did not affect the magnitude of N2O emissions as reported for 

other ecosystems under similar climatic conditions (e.g. Holst et al. 2008). Since N2O fluxes did not 

increase with vegetation cover, progressed warming and potentially associated expansion of 

vegetation will have only minor impacts on the overall N2O budget of the Helichrysum ecosystem. 

2.6.6 Conclusions 

Our study is the first presenting N turnover processes and greenhouse gas exchange in an afro-alpine 

tropical ecosystem. N turnover at the investigated Helichrysum ecosystem is primarily temperature 
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controlled and due to shallow, well-draining soils, less affected by changes in soil moisture. SOM input 

from the vegetation and root exudates increase C and N substrate availability, and thus, increase 

microbial biomass and activity in vegetated patches. Overall this leads to higher N mineralization rates 

favoring subsequent microbial NH4
+ immobilization. The high N retention and the low DIN 

concentrations reveal strong microbial competition for N, and thus, potential N limitation for plant 

growth. This indicates a rather closed N cycle, which is confirmed by the extremely low N2O emissions. 

Most striking is the low nitrification, which seems to limit overall N cycling in the Helichrysum 

ecosystem. Nitrogen cycling will be accelerated if vegetation cover expands with progressed warming. 

Since this does not necessarily open the N cycle, the Helichrysum ecosystem may be rather vulnerable 

to expected increase of atmospheric N deposition. The latter could lead to narrowing of the soil C:N 

ratio, and thus, may increase nitrification and transiently opening the N cycle, which means losses of 

N to the atmosphere and waters of the hitherto undisturbed Helichrysum ecosystem. 
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2.7.1 Abstract 

Savanna ecosystems are increasingly pressured by climate and land-use changes, especially around 

populous areas such as the Mt. Kilimanjaro region. Savanna vegetation consists of grassland with 

isolated trees or tree groups and is therefore characterized by high spatial variation and patchiness of 

canopy cover and aboveground biomass. Both are major regulators for soil ecological properties and 

soil-atmospheric trace gas exchange (CO2, N2O, CH4), especially in water-limited environments. Our 

objectives were to determine spatial trends in soil properties and trace-gas fluxes during the dry 

season and to relate above- and belowground processes and attributes. 

We selected a Savanna plain with vertic soil properties, south east of Mt. Kilimanjaro. Three trees were 

chosen from each of the two most dominant species: the legume Acacia nilotica and the non-legume 

Balanites aegyptiaca. For each tree, we selected one transect with nine sampling points, up to a 

distance of 4 times the crown radius from the stem. At each sampling point we measured carbon (C) 

and nitrogen (N) content, δ13C of soil (0-10, 10-30 cm depth) and in plant biomass, soil C and N pools, 

water content, available nutrients, cation exchange capacity (CEC), temperature, pH, as well as root 

biomass and greenhouse-gas exchange. 

Tree species had no effect on soil parameters and gas fluxes under the crown. CEC, C and N pools 

decreased up to 50% outside the crown-covered area. Tree leaf litter had a far lower C:N ratio than 

litter of the C4 grasses. δ13C in soil under the crown shifted about 15% in the direction of tree leaf litter 

δ13C compared to soil in open area reflecting the tree litter contribution to soil organic matter. The 

microbial C:N ratio and CO2 efflux were about 30% higher in the open area and strongly dependent on 

mineral N availability. This indicates N limitation and low microbial C use efficiency in the soil of open 

grassland areas. 

We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a 

spatial redistribution of nutrients and thus in C mineralization and sequestration. Therefore, the 

capability of savanna ecosystems to act as C sinks is both directly and indirectly dependent on the 

abundance of trees, regardless of their N-fixing. 

 

Keywords: Carbon-use efficiency; Balanites aegyptiaca; Acacia nilotica; Soil respiration; Spatial 

variability; C:N stoichiometry  
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2.7.2 Introduction 

The savanna biome covers nearly 20% of the earth’s terrestrial surface (Scholes and Walker 1993). It 

is a hotspot for biodiversity and wildlife conservation in temperate and tropical regions of America, 

Asia, Australia and Africa. Savannas are under strong pressure from climate and land-use changes. 

They are particularly threatened by desertification, shrub encroachment and conversion into arable 

land (Meyer and others 2007; Lambin and others 2003; Goldewijk 2001). 

One of the main attributes that defines the savanna biome is the co-dominance of trees and grasses 

(Scholes and Archer 1997). Ecological interactions due to this contrasting vegetation cover have been 

a major research topic (Huntley and Walker 1982). Most research, however, has focused on species 

interactions or the impact of disturbances such as fire, grazing or droughts (Otieno and others 2005; 

Meyer and others 2009; Schleicher and others 2011). Other approaches estimated carbon (C) and 

nutrient stocks or fluxes in the ecosystem as a whole (Varella and others 2004; Veenendaal and others 

2004; Grace and others 2006; Werner and others 2014; Chen and others 2016). 

Several studies combined these approaches and analyzed the spatial effects of the highly 

heterogeneous vegetation cover on soil ecological properties (Bernhard-Reversat 1982; Belsky and 

others 1993; Hibbard and others 2001; Ludwig and others 2004; Perakis and Kellogg 2007; Rascher and 

others 2012; Otieno and others 2015). These studies have shown positive effects of trees on soil 

fertility, nitrogen (N) availability, understory growth and C pools compared to open grassland areas. 

This results in patchy areas of distinctly altered biogeochemical conditions: ‘islands of fertility’ (Garcia-

Moya and McKell 1970). These changes in physical (e.g. water budget and temperature), chemical (pH, 

CEC, N content) and biological (microbial biomass and composition) soil properties result from a 

multitude of processes, including altered water balance, shading, and accumulation of biomass in the 

form of litter. It is often assumed that plant N-fixation, whether by the tree itself or by undergrowth 

species, is a main factor for the increased soil fertility of tree patches (Vitousek and Walker 1989; 

Sitters and others 2015). Legume trees such as Acacia species can resolve N limitation in African 

savanna grasslands (Ludwig and others 2001). However, the extent of this effect strongly depends on 

other limiting factors, such as nutrients and water (Vetaas 1992), and some studies did not show 

stronger effects of N-fixing tree species on soil parameters compared to other tree species (Bernhard-

Reversat 1982; Belsky and others 1989). 

Few studies have measured the broad spectrum of above- and belowground parameters and their 

interactions to determine the mechanistic effects of tree islands on soil C sequestration. The potential 

of an ecosystem to sequester C in soil is largely controlled by soil microbial activity and carbon use 

efficiency (CUE) (Bradford and Crowther 2013). If tree islands alter substrate quality and nutrient 

supply, this may also change microbial CUE. To date, little is known about how the affected properties 



 
Publications and Manuscripts 167 

 

 

interact to control the C and N cycles, especially under water-limited conditions. While savannas are 

generally considered to be active or potential C sinks (Grace and others 2006), they act as a net source 

of CO2 during the dry season (Miranda and others 1997). It remains unclear which factors regulate 

these C losses and how they are affected by the vegetation. Especially the spatial distribution of these 

variables and the connection between above- and belowground processes are important for 

understanding and predicting ecosystem changes. This is crucial in estimating vulnerability to climate 

and land-use change. 

Our objective was to determine the interrelations and patterns of soil properties and soil greenhouse 

gas fluxes, depending on the spatial variability and characteristics of the vegetation (i.e. legume or 

non-legume tree). We hypothesize that (1) soil C and nutrient contents increase with the presence of 

trees through increased litter inputs (independent of tree species), (2) lower litter quality outside the 

crown area will result in reduced N availability and (3) C mineralization will increase due to higher 

microbial N mining outside the crown area. 

2.7.3 Methods 

2.7.3.1 Study site 

The study was conducted in a semi-arid savanna plain of the Lake Chala Game Reserve, close to the 

Kenyan-Tanzanian border (3°18′39″S, 37°41′8″E). The research area covers about two hectares. It is 

located at the bottom of the southeastern slope of Mt. Kilimanjaro at an elevation of 950 m a.s.l. Soils 

of this area were classified as Vertisols and developed on erosion deposits from Mt. Kilimanjaro main 

peaks and from various parasitic volcanoes along the eastern slope (Kühnel 2015). These soils have 

high clay (66-79 %) and low sand (2 %) content in the upper 40 cm. Bulk density varies from 0.8 to 1.0 

g cm-3 at 0-10 cm, and from 0.9 to 1.1 g cm-3 at 10-30 cm soil depth. 

Mean annual temperature and precipitation are 21 °C and 536 mm respectively (Appelhans and others 

2014). Rainfall mainly occurs over a short rainy season around November and a longer rainy season 

from April to June. 

Table 2.7-1: Tree characteristics and transect orientation 

ID Species 
tree height  
[m] 

DBH  
[cm] 

crown radius 
[m] 

transect orientation 
[°N] 

AN1 Acacia nilotica 4.9 73.6 3.0 142 
AN2 Acacia nilotica 4.5 41.8 2.4 304 
AN3 Acacia nilotica 2.8 32.2 1.9 84 
BA1 Balanites aegyptiaca 3.0 46.0 1.8 338 
BA2 Balanites aegyptiaca 2.6 35.0 1.5 302 
BA3 Balanites aegyptiaca 4.0 50.4 2.2 316 
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The dominant woody plant species are various acacias (Acacia nilotica, Acacia senegal and Acacia 

tortilis) and Balanites aegyptiaca. The most abundant grass species are Heteropogon contortus, 

Eragrostis superba and Botriochloa insculpta, which all fix carbon by the C4 pathway. 

2.7.3.2 Field sampling 

Field work was conducted during the dry season in September 2014. We identified the two dominant 

tree species in our research area: the leguminous A. nilotica, and the non-leguminous B. aegyptiaca. 

For both species we selected three solitary individuals that covered the common range of tree sizes in 

the region (Table 2.7-1). At each tree, one transect was placed in random orientation. Along each 

transect we selected nine sampling locations in relation to the respective crown radius r. Locations 50 

cm, 0.50 and 0.66 times r distance from the stem represented the area under the canopy. The border 

zone was defined as 1 x crown radius. The open area outside the crown was sampled at distances of 

1.5 and 2.0, 2.5, 3.0 and 4.0 x r. 

At each sampling location, collars for greenhouse gas (GHG) chamber measurements were installed 

(383 cm²). Before GHG measurements, we measured soil temperature and above-ground grass and 

herb biomass was collected from inside the collar area. Because of the dry conditions, these samples 

were assumed to represent dead plant material (i.e. undergrowth litter). GHG exchange was measured 

twice at each transect (9:00 and 12:00 o’clock, two transects per day). Opaque polypropylene 

chambers (25.2 x 15.2 x 14.7 cm) were fixed gas-tight to the collars and fluxes of CO2, N2O and CH4 

were calculated from concentration changes in the chamber headspace air (n=5 in 60 min). Soil cores 

were taken from the collar area with a closed soil-core sampler (30 cm x 5 cm Ø) and separated into 0-

10 and 10-30 cm depths. Fine roots (<2 mm Ø) with length ≥10 mm were collected from each soil 

sample and stored at 4 °C until analysis. In each soil sample, total carbon (C) and nitrogen (N), microbial 

carbon (MBC) and nitrogen (MBN), water extractable carbon, density of living and dead roots, 

gravimetric water content, extractable nutrients (NO3
-, NH4

+ and cations of Al, Mg, K, Mn, Ca, Mg, Fe), 

cation exchange capacity (CEC), base saturation (BS), soil pH (in H2O and KCl), and bulk density were 

measured. Litter traps (70 x 70 cm) were placed under each tree and tree leaf litter was collected for 

one month. 

2.7.3.3 Laboratory analyses 

Soil chemical analyses were conducted in the laboratory of the Department of Soil Science of 

Temperate Ecosystems, University of Göttingen. Carbon and N contents were determined using a dry 

combustion automated C:N analyzer (Vario EL, Elementar). We considered total C as equal to organic 

C because the inorganic C content was negligible at our site (Kühnel and Becker, Unpublished Data). 

Microbial biomass C (MBC) and microbial biomass N (MBN) were estimated by fumigation-extraction 

(Vance and others 1987) with correction factors of 0.45 for MBC (Joergensen 1996) and 0.54 for MBN 
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(Joergensen and Mueller 1996). K2SO4-extractable C was taken as extractable organic C (Beck and 

others 1997). NH4
+ and NO3

- concentrations in the extracts were measured by continuous flow injection 

colorimetry (SEAL Analytical AA3, SEAL Analytical GmbH, Norderstedt, Germany). Samples were 

prepared by salicylate and dichloro-isocyanuric acid reaction for NH4
+ and by cadmium reduction with 

NH4Cl buffer for NO3
-. Availability of major nutrient cations (Al3

+, Ca2
+, Fe2

+, H+, K+, Na+, Mg2
+, Mn2

+) was 

determined by inductively coupled plasma optical emission spectrometry (ICP-OES, Spectro Analytical 

Instruments) following a preparative extraction in unbuffered salt solution (1.0 mol l-1 NH4Cl). Total 

cation exchange capacity (CEC) and base saturation were calculated as described by Chesworth (2008). 

Soil pH was measured in H2O as well as in KCl solution. 

Dried and ground bulk soil, tree leaf litter and grass biomass samples were analyzed for 13C natural 

abundance by isotope ratio mass spectrometry (Delta V Advantage with Conflo III interface, Thermo 

Electron, Bremen Germany) and a Flash 2000 elemental analyzer (Thermo Fisher Scientific, Cambirdge 

UK). Delta values (δ13C) are given as the divergence from the standard reference for 13C to 12C ratio 

(Vienna-PDB). 

Fine root samples were analyzed according to Hertel and Leuschner (2002) with slight modification. 

Tree roots were separated from herb and grass roots under a stereomicroscope and separated into 

living and dead roots based on morphological criteria. All root samples were dried for 48 hours at 70 °C 

and weighed. 

CO2, CH4 and N2O concentrations from 10 ml vials of chamber headspace were determined at the IMK-

IFU (Garmisch-Partenkirchen, Germany), using a gas chromatograph (8610 C, SRI Instruments, 

Torrence, USA) equipped with an electron capture detector and a flame ionization detector. Calculated 

flux rates were corrected for pressure and air temperature measured in the field. All flux rates lower 

than the minimum detection limit (CO2-C: 0.09 mg m-2 h-1; CH4-C: 5.76 µg m-2 h-1; N2O-N: 0.83 µg m-2 h-

1), were set to zero. 

2.7.3.4 Data analysis 

Dixon’s Q test was used to identify and remove outliers from each factor. We used all data points and 

applied linear mixed effect model (LME) analysis of variances for nested designs (each tree as random 

factor) at significance level p<0.05 to identify differences between the tree species (as fixed factor). 

The same method was used to compare areas below and outside the crown, with the addition of soil 

depth (if available) as a second fixed factor and using Tukey’s HSD post-hoc adjustment for multiple 

comparisons. Satterthwaite approximation of degrees of freedom was used to correct for unbalanced 

replicate number when appropriate. 
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Variable interactions (GHG fluxes vs. soil parameters & tree characteristics vs. soil parameters) were 

analyzed by Pearson product-moment correlation at p-level < 0.05. Statistical analysis was conducted 

in R 3.3.0 (R Core Team 2013). 

2.7.4 Results 

2.7.4.1 Effect of tree species and characteristics 

The total N content as well as extractable N fractions in soil under the crown were the same for both 

tree species and were also unaffected by structural variables such as tree size. For A. nilotica and B. 

aegyptiaca, mean N contents at 0-30 cm soil depth were 0.14 and 0.16%, respectively (Table 2.7-2). C 

content was also unaffected, and therefore the soil C:N ratio was the same under both tree species. 

The concentration of plant-available NO3
--N varied from below the detection limit (0.15 mg l-1) to 1.05 

mg l-1 under A. nilotica N and to 0.84 mg l-1 under B. aegyptiaca. Available NH4
+-N was mainly below 

the detection limit and reached 0.85 and 0.75 mg l-1 for A. nilotica and B. aegyptiaca, respectively. 

Microbial C and N were the same in soil under both tree species. Tree height and crown radius 

positively affected water content at 0-10 cm (p < 0.01) but did not affect any other measured property 

at either depth under the crown (p > 0.05). As most of the soil attributes and GHG fluxes were 

unaffected by tree characteristics (Table 2.7-2), we pooled data from all trees of both species for 

further comparisons. 

2.7.4.2 Soil properties and understory vegetation 

C and N content, MBC and CEC at 0-10 cm depth decreased with distance from the tree (Appendix). 

Most of the decline occurred over the transition from crown cover to open area, and there were no 

further changes with greater distance from the tree. In soil below 10 cm, the decrease was less 

pronounced or completely absent. We therefore used crown and open area as distance classes for LME 

analysis. Values directly at the interface (1 radius) could be attributed to either of the distance classes 

and were not considered in further analysis. 

In the upper 10 cm of soil, most variables were lower in the open area than under the crown (Figure 

2.7-1). Carbon and N content as well as MBC decreased by about 25%. The extractable N fraction and 

MBN decreased by about 41%. The stronger decline of MBN versus MBC resulted in a wider microbial 

C:N-ratio in the open area. Gravimetric soil-water content was the same under both cover classes. 



 
Publications and Manuscripts 171 

 

 

 

Figure 2.7-1 Soil properties at 0-10 and 10-30 cm depth, under the crown (n=18) and open area (n=30). Standard 
error of the mean is shown as error bars with significance levels (a-c) derived from mixed effect model ANOVA 
for nested designs (p ≤ 0.05). 
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Table 2.7-2: Effects of tree species on soil conditions at 0-30 cm depth, understory biomass (BM) and trace-gas 
fluxes under the crown (arithmetic mean ± standard error). P-values are derived from mixed-effect model for 
nested ANOVA. 

 Acacia nilotica Balanites aegyptiaca p-value 

C [%] 2.00 ± 0.05 2.09 ± 0.08 0.2985 

N [%] 0.14 ± 0.00 0.16 ± 0.01 0.3004 

Soil C:N 13.5 ± 0.3 13.1 ± 0.1 0.5200 

δ13C [‰] -14.6 ± 0.22 -14.6 ± 0.3 0.9334 

δ15N [‰] 5.79 ± 0.09 5.63 ± 0.07 0.2379 

MBC [mg kg-1] 287 ± 14 320 ± 22 0.4375 

MBN [mg kg-1] 18.9 ± 1.97 26.41 ± 2.52 0.2300 

WOC [mg l-1] 5.59 ± 0.30 6.08 ± 0.36 0.5066 

NO3
- [mg l-1] 0.31 ± 0.03 0.26 ± 0.03 0.4654 

NH4
+ [mg l-1] 0.20 ± 0.03 0.19 ± 0.02 0.4815 

CEC [mmol kg-1] 252 ± 4 255 ± 5 0.7990 

BM [kg m-2] 1.16 ± 0.09 1.36 ± 0.08 0.2403 

BM C:N 59.0 ± 2.7 67.5 ± 5.1 0.3229 

CO2 [mg m-2 h-1] 19.3 ± 1.2 20.3 ± 1.1 0.7365 

N2O [mg m-2 h-1] -0.50 ± 0.24 0.17 ± 0.15 0.5999 

CH4 [mg m-2 h-1] -20.0 ± 1.3 -19.8 ± 0.7 0.8504 

Compared to the upper 10 cm of soil, the values of most parameters were lower at 10-30 cm soil depth 

(Figure 2.7-1). CEC decreased with soil depth and was about 7% lower outside the crown area. This 

effect was related to K+ availability, which declined by 50%. The other dominant cations (Ca2
+, Mg2

+) 

decreased with soil depth but were unaffected by vegetation cover. 

Above- and belowground grass and herb biomass was lower in the open area than under the crown 

(Table Appendix 2.7-4 Appendix Table A1). Living and dead roots in the topsoil (0-30cm) mainly 

originated from grass and herb species. The average N content in the grass biomass was 50% lower 

than in the tree leaf litter, and the C:N ratio was much wider in grass (40.6 ± 2.1, LME p-value = 0.0048). 

2.7.4.3 Isotopic composition 

The abundance of 13C in soil under the crown was shifted towards the values of tree litter (Figure 2.7-2). 

The δ13C composition of leaf litter from A. nilotica and B. aegyptiaca varied between -29.4‰ and -

31.7‰. Delta values of grass biomass did not differ between the crown and open area, averaging -

15.9‰ and -15.5‰, respectively. Due to the incorporation of grass biomass into soil organic matter 

(SOM), δ13C values increased by about 1.0‰ on average. Mean δ13C values in the top 10 cm were more 

negative under the crown than in open area (-16.8‰ and -14.5‰, respectively). δ13C values increased 

evenly with soil depth under both cover types. Assuming similar 13C fractionation during the 

incorporation of tree leaf and grass litter into SOM, we estimated the percentage of biomass input by 

trees: the isotopic composition in soil under the crown was shifted by 2.3‰ in the direction of tree 

leaf litter δ13C, which is equivalent to a 15% mass contribution of tree leaf litter to SOM (Figure 2.7-2).  
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Figure 2.7-2 δ13C at 0-10 and 10-30 cm soil depth 
with increasing distance from the stem. Solid lines 
indicate average δ13C composition of tree and grass 
litter. Dashed lines show mean δ13C values in 0-10 
cm soil under the crown (black) and outside the 
crown (red) and potential value at 100% tree litter 
contribution. Black arrows indicate 13C 
fractionation through grass litter incorporation in 
soil organic matter (ΔSOM) and the difference to 
tree litter incorporation (ΔSOMtree). Contribution 
of tree litter to SOM (Δtree litter input) is 
calculated as percentage of ΔSOMtree. 

 

 

 

 

2.7.4.4 Soil greenhouse gas exchange 

Measurements of greenhouse gas exchange revealed generally low soil CO2 emissions, with higher 

rates in open areas than under the crown (Figure 2.7-3). At the same time the savanna ecosystem was 

a sink for CH4, with average flux rates of -20 µg C m-2 h-1. N2O fluxes varied between -4.0 and 2.7 µg N 

m-2 h-1 but were not different from zero (t-test, p>0.05). Both N2O and CH4 fluxes were unaffected by 

vegetation cover. 

GHG fluxes under the crown area were uncorrelated to soil properties at 0-10 cm depth (Table 2.7-3). 

Outside the crown, under low-nutrient conditions, there was a positive effect of soil water content on 

CO2 efflux. Furthermore, CO2 production was negatively correlated to NO3
- availability, indicating a 

higher substrate turnover under nutrient-limited conditions. Flux rates of CH4 were not related to any 

of the measured variables. N2O fluxes in the open area were positively correlated to the C content in 

the soil (r=0.55, p<0.01). 

Table 2.7-3: Pearson correlations coefficients between gas fluxes and selected soil properties at 0-10 cm under 
the crown (n = 18) and under open area (n = 30). Significance levels of p<0.05 and p<0.01 are indicated as * 
and ** respectively. 

 C N MBC MBN NO3
- (a) NH4

+ 
(a) 

Living 
roots 

Water 
content 

Tsoil CEC pH 
(H2O) 

Crown area   
CO2 -0.20 -0.13 -0.22 -0.12 -0.14 -0.40 0.15 0.16 -0.29 -0.52* -0.11 
N2O -0.05 -0.04 0.09 -0.01 -0.06 -0.04 -0.16 0.29 0.27 0.22 0.01 
CH4 -0.01 -0.07 -0.16 0.01 -0.37 0.06 0.29 -0.25 -0.25 -0.13 -0.17 
Open area   
CO2 -0.25 -0.08 0.23 -0.02 -0.55* -0.31 0.25 0.37* -0.15 -0.27 -0.20 
N2O 0.55*

* 
0.30 0.10 0.29 0.26 -0.11 0.12 0.07 0.29 0.27 -0.04 

CH4 0.18 0.05 -0.10 0.07 0.28 0.01 -0.09 0.01 0.22 0.26 -0.05 

(a) Values below detection limit were excluded 
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2.7.5 Discussion 

2.7.5.1 Effects of savanna trees on soil C and nutrient contents 

The presence of trees increased most soil fertility attributes as well as above- and below-ground grass 

biomass through higher litter inputs and quality. Tree species (and therefore N-fixing capability) had 

no effect on soil C, N or soil greenhouse gas fluxes under the crown. 

The most apparent effect of trees was an increase in C and N content, microbial biomass (C and N), 

understory biomass and soil nutrient content. This is a common phenomenon for savanna ecosystems 

(Scholes and Archer 1997). It becomes more distinct with tree age and can remain for several years 

after tree dieback (Ludwig and others 2004). Nonetheless, the underlying mechanisms of this effect 

are under debate. 

 

Figure 2.7-3 Soil greenhouse gas emissions under tree crowns and in open savanna area. Medians, interquartile 
range (IQR) and extreme values (>1.5 x IQR deviation) are displayed as bold lines, boxes with whiskers and dots, 
respectively. Significance levels derived from mixed effect model ANOVA for nested designs are shown as letters 
a-b (p ≤ 0.05). 

The N-fixing capability of Acacia species is often seen as one of the main mechanisms for subsequent 

C and nutrient accumulation under the trees (Yelenik and others 2004). In contrast to this 

interpretation, we found no effect on a large set of soil properties of a leguminous versus non-

leguminous tree species (Table 2.7-2). Particularly, N content and availability as well as N2O fluxes were 

the same under the crown of either species. Bernhard-Reversat (1982) attributed a similar finding 

(comparing B. aegyptiaca and A. senegal) to N fixation by an altered species composition in the herb 

layer under the tree, rather than by the tree itself. In our case, tree root densities in 0-30 cm soil depth 

were low and had nearly no visible nodules. Grass and herb roots showed no nodulation under or 

outside the crown. Even though nodulation potential increases with soil depth and maxima can occur 

more than 4 m below ground (Virginia and others 1986), we would expect at least a sporadic 

occurrence in the topsoil. Rhizobial nodulation depends on environmental conditions and decreases in 

dry soil. At the end of the dry season, topsoil horizons are dry and symbiotic N-fixation is shifted to 
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lower horizons (Vetaas 1992). While this may still play a direct role for plant and tree nutrition, the N 

turnover rates and N availability in the most microbially active soil horizons are independent of N-fixing 

effects. 

 

Figure 2.7-4 Effect of savanna trees on soil C and nutrient pools and related changes in soil respiration under dry 
conditions. The wide C:N ratio of C4 plant litter reduces N availability (Nmin) and microbial biomass (MBC). Soil 
microbial C:N ratios and respiration increase due to low carbon use efficiency (CUE). 

 

The higher soil C and N content is limited to the area under the crown and to the upper 10 cm of soil 

(Figure 2.7-1). This indicates a spatially limited source, such as the amount and quality of plant litter or 

throughfall water, as the main reason for increased C and N under the trees (Perakis and Kellogg 2007). 

Overall inputs from grass litter under and outside the crown did not differ in δ13C. A few grass biomass 

samples under the crown area, however, showed a lower δ13C value, which implies the co-occurrence 

of C3 herbs or grasses with the dominant C4 grass species (Cerling and others 1997). This agrees with 

previous findings that the species composition in savanna herb-grass layers changes with varying tree 

cover (Belsky 1994; Ludwig and others 2004). Grass biomass, however, can only partially explain 

elevated soil C and nutrient contents. Soil δ13C values under the crown were shifted towards the signal 

of tree leaf litter, suggesting that tree leaf litterfall contributes about 15% of SOM (Figure 2.7-2) and is 

a major driver maintaining higher SOM levels under the crown. This interpretation is supported by the 

fact that CEC (i.e. available nutrient cations: K+, Na+, Ca2+) showed a redistribution as well (Figure 

2.7-1) and supports the theory that savanna trees act as nutrient pumps (Scholes 1990). Nutrients from 

the weathering zone are transported through the tree and return to the soil as litterfall, leachate, root 

litter or exudate. This explains the increase in cation availability in topsoil, followed by a decrease with 

soil depth. Similar to Ludwig and others (2004), there was no obvious lateral pump effect and the 
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absence of tree roots in the topsoil layers indicates a preferential vertical nutrient and water flow from 

deeper soil layers. Additionally, the accumulation of decomposition-resistant woody debris from trees 

and roots adds to higher C contents under crowns.  

2.7.5.2 Interactions between variables 

We expected the strongest effects of trees on soil microbial activity during the dry season because 

canopy shading and hydraulic lift are especially important under water-limited conditions (Horton and 

Hart 1998; Raz-Yaseef and others 2010). However, we found no differences in water contents under 

and outside the tree crowns at the end of the dry season (Figure 2.7-1). Water content was below or 

just around the permanent wilting point (Kühnel 2015), and all activities (i.e. biomass production, GHG 

fluxes) were reduced due to water limitation. This allowed us to look at other parameter effects on 

GHG exchange without the overriding effect of water content. While soil water content was constant 

under and outside the crown, CO2 efflux was higher in the open area (Figure 2.7-3). This efflux trend 

was negatively related to fine root density. Because these variables are usually positively correlated 

under dry conditions (Ceccon and others 2011), we rule out a large contribution of rhizomicrobial and 

root respiration or an effect of water content. Instead, the higher CO2 efflux outside the crown can be 

attributed to increased microbial respiration by decomposition of SOM and litter. CO2 production 

under low-N conditions (i.e. outside the crown) is inversely related to NO3
- availability (Table 2.7-3). 

Since NO3
- addition is known to reduce microbial C mineralization (Burton and others 2004), this 

relationship might indicate N limitation. We found a stronger decrease in MBN than in MBC outside 

the tree crown, widening the microbial C:N ratio. These wide microbial C:N ratios are directly related 

to the C:N ratio of available substrate (Nicolardot and others 2001) and reflect a low carbon use 

efficiency (Sinsabaugh and others 2013; Blagodatskaya and others 2014). New available substrate for 

microbial turnover (i.e. litterfall from trees and grasses) differs in C:N ratio: leaf litter from C4 grasses 

has a wider C:N ratio than litter from trees and C3 grasses. This requires microorganisms to dispose of 

the C surplus via increased respiration to achieve their optimum C:N stoichiometry (Chen and others 

2007; Spohn 2015). 

2.7.5.3 Implications and relevance 

We chose two widely different species and individual trees that cover the whole range of tree sizes in 

the study area in order to increase representativeness. All measured properties were in a typical range 

for soil characteristics, but the values were highly variable between trees and for each tree. 

Nonetheless, despite water limitation and the overall reduced biological activity (represented by low 

soil respiration rates), tree-cover effects on soil respiration were evident. Apparently, there is strong 

competition for nutrients within the microbial community in savanna soils, even under strongly water-

limited conditions.  
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Tree effects on soil properties were independent of tree height, DBH and crown radius – all 

characteristics directly linked with tree age (Diallo and others 2013). Therefore, trees can affect the 

surrounding soil independent of their age. This indicates that soil C pools and fluxes react more rapidly 

to increased tree cover than to vertical tree growth. Tree cover is expected to change in natural 

savanna ecosystems of Africa due to improved wildlife management and climate change: On the one 

hand, the already decreased abundance of mega-herbivores and prevention of wildfires will increase 

tree-cover percentage (Staver and others 2011). On the other hand, the predicted irregularity of 

precipitation and increased air temperatures (IPCC 2013) might lower tree cover. This would in turn 

decrease soil fertility and directly increase CO2 losses during the dry season because of lower carbon 

use efficiency (Figure 2.7-4). The potential of savanna ecosystems to act as a C sink, as proposed by 

Grace and others (2006), is very variable and directly depends on how the vegetation structure affects 

N availability. 

2.7.6 Conclusions 

The occurrence of trees (C3) in a C4 grassland increased soil fertility through higher litter inputs and 

quality in the local area under the crown. In soil deeper than 10 cm, the increase was less pronounced 

or disappeared completely. This effect is the result of active vertical transport by the trees (nutrient 

pumping) and a passive accumulation of C and N from litterfall over time. Tree species, whether 

leguminous or non-leguminous, had the same effects on soil properties. We conclude that soil C pools 

and fluxes are directly related to the spatial abundance of trees and react more rapidly to increased 

tree cover than to vertical tree growth. 

In the open area and against the background of low N availability, the wider C:N ratio of C4-grassesr 

compared to C3-tree litter inputs reduced the carbon use efficiency of soil microbes (Figure 2.7-4). This 

increased microbial respiration and the CO2-efflux from soil. Therefore, savanna trees affect soil C 

storage through two processes, (1) actively by increasing biomass inputs and (2) passively by 

hampering output mechanisms. 
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2.7.9 Appendix 

 

Figure Appendix 2.7-5: Total carbon (C) and nitrogen (N) content, microbial biomass (MBC) and cation exchange 
capacity (CEC) in soil of 0-10 cm depth in relative distance to the stem of two dominant savanna tree species.  
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Table Appendix 2.7-4: Means and standard errors of soil (in 0-10 and 10-30 cm depth) and understory 
vegetation properties under (Crown) and outside (Open) the tree crown. Small letters (a-d) indicate significant 
differences according to mixed-effect model for nested ANOVA with Tukey’s HSD post-hoc comparison. 

Position Crown (n=18) Open (n=29) 

Depth 0-10 cm 10-30 cm 0-10 cm 10-30 cm 

C [%] 2.97±0.09a 1.55±0.04c 2.20±0.04b 1.37±0.04c 

N [%] 0.22±0.01a 0.12±0.00c 0.16±0.00b 0.11±0.00c 

C:N 13.71±0.21a 13.08±0.16b 13.71±0.19a 12.59±0.22c 

WOC [mg l-1] 6.46±0.47a 5.53±0.21ab 4.56±0.18bc 4.38±0.18c 

MBC [mg kg-1] 476.4±24.5a 217.6±11.4c 357.8±15.2b 192.5±7.2c 

MBN [mg kg-1] 46.8±3.7a 10.9±1.3c 27.5±1.6b 10.5±0.8c 

MB C:N 10.64±0.45a 18.98±1.46a 13.52±0.53b 19.82±1.37c 

NO3 [mg l-1] 0.54±0.05a 0.16±0.01c 0.32±0.03b 0.16±0.01c 

NH4 [mg l-1] 0.35±0.06a 0.15±0.00b 0.19±0.02b 0.15±0.00b 

Soil water [g gsoil
-1] 0.14±0.01a 0.19±0.00b 0.14±0.00a 0.19±0.00b 

Tsoil [°C] 36.3±0.9a NA 36.8±0.8a NA 

pH(H2O) 6.67±0.09c 6.17±0.07b 6.24±0.03a 6.07±0.03ab 

pH(KCl) 5.52±0.12c 4.99±0.09b 5.07±0.03a 4.83±0.02ab 

Grass biomass [kg m-2] 1.5±0.13a NA 1.10±0.10b NA 

Grass biomass C:N 51.18±2.81a NA 69.82±3.60b NA 

GrassRootalive [g l-1] 1.31±0.21a 0.61±0.10b 0.62±0.07b 0.36±0.05b 

GrassRootdead [g l-1] 0.32±0.06c 0.22±0.04bc 0.13±0.02ab 0.10±0.01a 

TreeRootalive [g l-1] 0.06±0.03a 0.07±0.02a 0.00±.0.00b 0.00±.0.00b 

TreeRootdead [g l-1] 0.01±0.00a 0.01±.0.00a 0.00±0.00a 0.00±.0.00a 

CEC [mmol kg-1] 328.7±10.0a 246.4±4.3c 267.1±3.0b 229.4±2.7c 

Al3+ [mmol kg-1] 0.04±0.01a 0.08±0.01bc 0.05±0.01ab 0.10±0.01c 

Ca2+ [mmol kg-1] 182.7±6.5a 130.0±3.0c 147.2±1.9b 122.7±2.3c 

Fe2+ [mmol kg-1] 0.04±0.01a 0.05±0.01a 0.05±0.01a 0.04±0.01a 

K+ [mmol kg-1] 47.39±3.16a 26.43±2.17b 24.97±0.65b 17.47±0.82c 

Mg2+ [mmol kg-1] 97.20±2.03a 88.25±1.50b 93.59±1.08a 87.78±0.69b 

Mn2+ [mmol kg-1] 0.69±0.08a 0.79±0.06a 0.82±0.03a 0.68±0.02a 

Na+ [mmol kg-1] 0.62±0.04b 0.79±0.05c 0.39±0.02a 0.59±0.52b 
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