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I am a part of all that I have met; 

Yet all experience is an arch wherethrough 

Gleams that untraveled world, whose margin fades 

For ever and for ever when I move. 

How dull it is to pause, to make an end,  

To rust unburnished, not to shine in use! 

As though to breathe were life. Life piled on life 

Were all too little, and of one to me 

Little remains: but every hour is saved 

From that eternal silence, something more,  

A bringer of new things; and vile it were 

For some three suns to store and hoard myself,  

And this grey spirit yearning in desire 

To follow knowledge like a sinking star,  

Beyond the utmost bound of human thought. 

[…] 

Tho' much is taken, much abides; and though 

We are not now that strength which in old days 

Moved earth and heaven; that which we are, we are; 

One equal temper of heroic hearts, 

Made weak by time and fate, but strong in will 

To strive, to seek, to find, and not to yield. 

Lord Alfred Tennyson 
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Abstract 

Ecological theory names interacting mechanisms that allow competing species to coexist 

in limited available space, some of them are perceive as antagonistic. Most prominent are 

niche differentiation, heterogeneity and neutrality (ecological equivalence). Species 

similarity is also influenced by two mechanisms: Habitat filtering selects for ecologically 

similar species, while niche differentiation reduces competitive pressure and thus prefers 

ecologically different species.  The spatial arrangement of abiotic resources can 

determine the spatial pattern and competition framework for a pre-selected tree species 

ensemble. Spatial occurrence patterns of trees are formed by dispersal, growth and 

mortality which are influenced by the interacting abiotic and abiotic conditions. The 

relative impact of these mechanisms are underresearched in temperate forest trees, 

especially in Europe.  

We analysed a data set of a temperate old-growth forest with spatially explicit information 

about more than 15 000 individual trees of six tree species (90 % beech admixed with 

Ash, Hornbeam, Sycamore, Norway Maple, and Wych Elm) located in the central region of 

the Hainich National Park in central Germany.  

We tested space-related coexistence mechanisms under heterogeneous conditions.  

For this, we employed Point Pattern Analysis for testing several ecological hypotheses on 

inter- and intraspecific interactions of the species, varying from randomness to strict 

ecological niche. In order to identify the critical components of possible niches, we 

collected field data on the abiotic conditions such as the availability of water and light, 

and considered topography using a Digital Elevation Model. These field data were used 

for fitting suitability surfaces depending on tree species identity using spatial 

interpolation methods such as Kriging and Generalised Additive Models. We used Spatial 

Point Process Models to reconstruct the spatial distribution processes composed of 

purely biotic, abiotic or mixed covariates of the tree species.  

We found that spatial heterogeneity was important in all aspects we studied. Both, tree 

density and the distribution of the abiotic habitat components varied in space. Especially 

when species interacted with beech, abiotic heterogeneity played an important role: 

beech outcompeted the admixed species under most prevailing abiotic conditions.  
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This way, beech influenced the spatial pattern of the six studied species by limiting 

available (niche) space via inter- and intraspecific competition. Here, Beech proved to be 

the superior competitor with no pronounced abiotic niche, but is mostly excluded from 

slopes. The remaining available niche space was often occupied by ecologically similar 

species, which formed typical associations in subregions of the study area less suitable 

for beech. We found spatial segregation between the three most abundant species Beech, 

Ash, and Hornbeam, coexistence by niches seem to be rather trait based rather than based 

on abiotic preferences. Habitat suitability and spatial distribution of Ash, Sycamore, and 

Norway Maple were more affected by the abiotic environmental condition than Beech, 

Hornbeam, and Elm. This indicates that the coexistence of rare species seems to be 

mediated by heterogeneity.  

Our study revealed that the difference in abiotic conditions, such as soil depth and plant-

available water were relevant for habitat suitability at small spatial and temporal scales.   

When simulating the distribution pattern of the surveyed species, it became apparent that 

biotic interactions play an important part in shaping the scales at which aggregation or 

segregation happen in the abiotic environment. Beech and Sycamore both showed 

endogenous heterogeneity. For both species, point processes models incorporated 

several different interaction scales of intraspecific interaction. The interspecific 

interaction played only a minor role compared to the intraspecific one.  

All results together seem to underline that niche differentiation happens at the level of 

the individual allowing ecologically similar species to interact de facto neutrally within 

their niche space and thus, to coexist in presence of a strong competitor. 
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“The world is a patchy place.” (Dale 2001) 

0 Introduction 

Standing on the brink of the sixth mass extinction (Ceballos et al. 2015), it seems more 

important than ever to understand the mechanisms that allow species to form stable populations 

and co-exist with other species. Although ecologists have been aware of the importance of 

heterogeneity for species coexistence for decades, e.g. (Holt 1984), statistically evaluating its 

impact is still a major task under field conditions where not all processes within the 

environment are known (Pélissier and Goreaud 2001). Here, I aim to study spatial 

heterogeneity and species coexistence in a near-natural forest to fill this gap.  

The more species of a guild are present in a habitat, the higher the probability of overlapping 

niches (Gravel et al. 2006). Such a niche-overlap would allow for neutral population processes 

(Hubbell 2006). In this case, species can be considered ecologically equivalent and the species 

identity would be of minor importance relative to stochastic processes (Hubbell 2001). Also, 

abiotic heterogeneity would not drive species assembly because the abiotic habitat would not 

differ in its impact on the different species. However, there is evidence, that especially in 

temperate regions, niche processes seem to predominate over neutral processes (Gilbert and 

Lechowicz 2004, Zhang et al. 2014). Niches are the result of competition, selecting individuals 

towards minimal competition pressure (Gause 1934; Hardin et al. 1960).  

There has been a focus on explaining species coexistence by the differences between 

species. Driven by the classic understanding of species ecology as a mixture of traits and 

requirements, the habitat filtering hypothesis (Keddy 1992) states that coexistence 

depends on the suitability of site conditions while the habitat heterogeneity theory  

proposes the diversity of site conditions as the main driver (Tilman 1982, Potts et al. 

2004). However, Hubbel argues, that most of the coexistence patterns can be reproduced 

with the sole assumption of stochastic events in population dynamics given a certain 

species pool even with ecologically equivalent species (Hubbell 2001, 2006).   

There are two main categories of processes that determine spatial forest patterns a) tree-

habitat interactions and b) tree-tree interactions.  Habitat interactions include processes 

such as water uptake or nutrient depletion. Depending on the species ecology and the 
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individuals’ life stage, and given an abiotic resource pool, these interactions result in 

suitable and less suitable patches within the habitat. In tree-tree interactions, 

competition and facilitation are the major biotic processes. While facilitation is an 

enhancement usually by provision of nutrients or water (Callaway 1997), competition in 

forests is mainly a light-driven process (Kohyama 1993). Species’ light requirements are 

thus the major driver of succession. Shade tolerance determines the degree of 

(self-)thinning in the juvenile phase as well as the ability to outlast adverse light 

conditions until a gap opens (Whitmore 1989, Kobe et al. 1995). 

Virgin old-growth forests are ideal for studying these dynamics. These forests are rare in 

central Europe because this region is densely populated, thus, most forests have been cut 

and land put to agricultural use for a long time, and most of the remaining forests are 

managed (Peterken 1996, Bengtsson et al. 2000). One of the largest deciduous forest 

areas that have been under no intense use for several decades is the National Park Hainich 

(Thuringia) in the Hainich-Du n region. The study area Hainich National Park, central 

Germany, is remarkable in several ways. First, several competing species co-occur under 

near-natural conditions (Butler-Manning 2008), in a higher proportion of admixture to a 

Beech forest than known from other National Parks (Commarmot et al. 2005, Parviainen 

2005). This is especially interesting, as beech is also known to be highly competitive over 

a variety of abiotic conditions (Leuschner and Ellenberg 2010a). Second, while 

topography shows little variation on small scale, soil conditions are known to be 

heterogeneous (Mund 2004). Thus, abiotic heterogeneity may impact co-occurrence of 

species on different scales and across different resource types in this forest.   

 

The key goal of this dissertation is to investigate the prevailing mechanisms in the 

study region that might allow tree species to coexist. For this, we 1) characterised 

the spatial patterns of the tree species with respect to inter- or intraspecific 

interactions and niche behaviour 2) investigated to what extend abiotic 

heterogeneity influences habitat suitability for the individual tree species 3) 

identified spatial biotic and abiotic interactions that influence the tree species 

patterns.  



5 

 

Study area 

Location 

The study area is located in the Hainich National Park in the Hainich-Du n region. The 

forest is part of one of the largest continuous broad-leaved forests in Europe, covering 

about 13,000 ha (Großmann 2001). The forest type is a mixed beech forest on shell 

limestone (Muschelkalk), typical of low mountain ranges. The study plot (“Huss plot”, 

Figure 0-1) is located  in the “Weberstedter Holz” in the core zone I of the National Park 

and is part of the UNESCO world heritage area by the. It is a 28.5 ha large area within an 

old-growth mixed beech forest of trees up to 250 years old. The climate is suboceanic to 

subcontinental with a long-term mean annual precipitation of 750 to 800 mm (320 to 370 

mm during growth season) and mean air temperature of 7.5 to 8 °C. The plot lies at an 

elevation of 425 to 455m with a gentle slope of mostly 1° to 5°. In the north-east is a gully 

area where slope can locally increase to 17 °.  

The predominant parent material is shell limestone. Mund (2004) classified the soil 

conditions as calcareous rendzina or brown rendzina covered by a layer of loess, whose 

thickness varied at small scales, but tended to be thicker in the central and north eastern 

area. Springs and areas of occasional water logging lead to a highly variable hydrology in 

the plot area (Klaus and Reisinger 1995).  
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Figure 0-1 The study plot (“Huss plot”, outlined in white) is in the world heritage area of the 

core zone of the Hainich National park. 

 

History 

Although information concerning the history of the Hainich in past centuries is scarce, the 

reconstructed history (Mund 2004, Butler-Manning 2008) is as follows: From 12th to 15th 

century, the area was used by local people to their needs as cattle pastures (Hutewald) 

and later (16th to 19th century) turned to a coppice forest or coppice with standards. At 

the end of the 19th century, the study area was put to intense selective cutting. During the 

two world wars, the management was unordered. Around 1930 the forest was possibly 

used as a beech selective forest (Huss 2005). In order to promote rejuvenation, gap 

cuttings were increased in the following 30 years within a selection forest system. From 

1965 to 1990 the Weberstedter Holz was used as a military training site by the Nationale 

Volksarmee of the German Democratic Republic. Because the forest served as a buffer 

region between shooting sites, human access was very limited for several decades. When 

the area became a National Park in 1997, all management stopped. With little to no human 

interference over the last 50 to 100 years, the spatial structure of the forest in this core 

zone can be considered to be comparable to virgin beech forests in other parts of Europe 

(Peterken 1996 p. 15).  
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Species composition and stand structure 

The forest is dominated by beech (Fagus sylvatica L.), accounting for 90 % of all trees. The 

past regimes of forest pasture and coppice management resulted in a high proportion of 

high quality timber species (Ash, Hornbeam, oak, lime and wild service tree). Ellenberg 

indicator values classify the species as different in their preferences (Table 0-1). The 

forest was classified by Hofmann (1965) as a Hordelymo-Fagetum (Waldgersten-

Buchenwald).  

 

Table 0-1 Study species and Ellenberg indicator values (Ellenberg et al. 1991)  on a 

gradient along a nine point scale, abbreviates according to German names (L=light, 

T=temperature, K=continentality (Kontinentalität), F=wetness (Feuchte), R= soil acidity 

(Reaktion), N=soil productivity/Nitrogen. x mark indifference, i.e. broad tolerance towards 

environmental factor. 

 

Species name Indicator values 

Latin  English L  T  K  F R  N  

Acer platanoides Norway maple 4 x 3 5 5 5 

Acer pseudoplatanus  Sycamore maple 4 x 4 6 x 7 

Carpinus betulus hornbeam 4 6 4 x x x 

Fagus sylvatica European beech  3 5 2 5 x x 

Fraxinus excelsior European ash 4 5 3 x 7 7 

Ulmus glabra Wych elm  4 5 3 6 7 7 

 

Point pattern analysis and spatial heterogeneity 

Point pattern analysis is increasingly applied in ecology for characterising spatial 

arrangements of individuals/point-like entities and understanding the pattern forming 

processes (Wiegand and Moloney 2014). It is based on the assumption that an observed 

point pattern within a region is generated by a point process. Ecological processes leave 

an imprint in the spatial arrangement of individuals and can therefore be reconstructed 

by analysing spatial patterns (Vela zquez et al. 2015). In sessile organisms like trees, the 

spatial pattern is a direct result of reproduction, dispersal, growth, competition, and 
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mortality. For example, if the position of all individuals in a given forest area is mapped, 

the cumulative result of these processes within this area can be evaluated and inference 

on the single components (e.g. competition) can be drawn. There are several summary 

functions that characterise different aspects of spatial point patterns (Wiegand et al. 

2013), the most common of which are Ripley´s K(Ripley 1977), the pair-correlation 

function(Stoyan and Ohser 1982, Stoyan and Stoyan 1994a), the empty-space function 

(Diggle 1983), and the nearest neighbour distribution (Hanisch 1984) function These will 

be introduced in Chapter 1. 

All these functions aim at detecting deviations from demographic noise, i.e. true spatial 

trends within the mapped census. If there are no or neutral, i.e. stochastic, interactions 

between individuals, a random and independent spatial distribution is to be expected. 

This is called Complete Spatial Randomness (CSR) and modelled by a homogeneous 

Poisson process (Figure 0-2a). In cases of negative interaction, e.g. competition, a regular 

pattern (Figure 0-2b) is to be expected, because the distance between events is 

maximised. If there are positive interactions, e.g. facilitation, clumping will occur 

(Figure 0-2c). These patterns can be less easily detected under heterogeneous conditions 

(next section).  

If all individuals (in this thesis, trees) are considered to be equal in all qualities, they can 

be treated as an unmarked point process. To take differences in qualities, e.g., species 

identity or size into account, a mark can be assigned to each point or individual (Penttinen 

et al. 1992). These marks can then be used to make an inference on the impact of the 

observed qualities by comparing the spatial patterns of events within (univariate) or 

between (bivariate) classes of marks.  

In this thesis, species identity is used as a mark to study the spatial interactions between 

the species. In addition, for beech we also analyses differences between life-stages based 

on DBH-size classes. Size classes can also influence the spatial structure of a forest 

because differences in the physiological properties of life stages lead to differences in 

critical scales. This is considered in Chapter 1. 
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Heterogeneity and habitat suitability 

Taking heterogeneity (Figure 0-2d) into account complements the point pattern approach 

with concepts adapted from the classic approach of spatial ecology, species distribution 

or habitat suitability models (Elith and Leathwick 2009, Wiegand and Moloney 2014). 

Habitat suitability can influence ecological processes by increasing establishment 

probability, growth, or mortality (Hirzel and Le Lay 2008). Given that species show 

different ecological traits, their habitat preferences or ecological potential differs. Abiotic 

conditions can favour the performance of different species while limiting the growth of 

the dominant species. Thus, large-scale abiotic heterogeneity the potential of allowing 

species to co-exist even if one species predominates the other (Chesson 2000). At the 

same time, physiological properties of life stages lead to differences in critical scales, e.g. 

a larger tree may integrate over several less suitable patches, while those sites are 

unsuitable for a smaller tree, to which such patches appear disconnected. Juvenile stages 

tend to be more shade tolerant. As a consequence, while seedlings of a particular species 

may grow under a closed canopy, there may be no adult trees in the canopy layer of that 

species because a later stage exhibits little shade tolerance. 

   

Figure 0-2 Point patterns showing contrasting mechanisms: 

a) Complete  Spatial  Randomness, b) regularity (repulsion) c) clumping (aggregation), 

d) randomness with a spatial trend (anisotropic), showing heterogeneity. 
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Null-models 

Observed point patterns are usually compared to the expected outcome of the summary 

function. This expectation is formulated in null-models. These null-models are used to infer on 

the link between the observed spatial pattern and the pattern generating process. Null-models 

can be used to define an expectation or to separate mechanisms of the underlying processes 

even if the outcome is similar (s. Table 0-2). Depending on the hypothesis, null-models can 

vary in their complexity. The simplest null-model assumption is CSR, which assumes no 

interaction between habitat or trees. In cases of heterogeneity in the abiotic habitat, the 

underlying null-model should include the anisotropic influence of the habitat on the species 

(Wiegand and Moloney 2014 p. 87). Thus, we would assume a spatial trend, and for example, 

incorporate a limiting resource (Shen et al. 2009, Lin et al. 2011). If there are interactions 

between trees, e.g., they facilitate each other, or dispersal is clumped, assuming a cluster 

process will be more appropriate as an underlying assumption than a Poisson process without 

this biotic interaction (Baddeley et al. 2015 p. 449).  As many processes occur at the same time, 

the application of more than one null-model can help to disentangle involved processes 

(Johnson and Omland 2004, Wiegand and Moloney 2004).
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Table 0-2 Link of pattern, ecological hypothesis and null-model. Grey scenarios are not applied in this thesis. 

Observable  
spatial pattern 

Mechanism/ 
Hypothesis 

Null-model 

Clustering   

of one or multiple 
species 

Heterogeneous habitat suitability leads to 
clustering in suitable patches and gaps or lower 
densities in less suitable or unsuitable patches 

Remove clustering by using heterogeneous Poisson 
process, i.e. tree or, if known, resource density as null-model for 
redistribution 
 

between species  
Resource partitioning of species allows spatial 
coexistence  

Heterogeneous Poisson process including niches (species-specific large 
trees). If null-model sharpens repulsion patterns this hints towards niche 
differentiation, if it does not, it may hint towards density dependence or de 
facto neutrality. 

in particular species 
Heterogeneous habitat conditions limits 
specialist species to sub-habitats  

Underlie critical resource density or species density as proxy 

in particular species 
Species reproduces in clusters (e.g. small 
dispersal kernel)  

Use cluster process, e.g. Cox 

between species One species facilitates the other 
Bivariate random labelling: 
Pattern of species 1 fixed, randomisation of pattern 2  

 
between life stages 

Dispersal limitation leads to clustering between 
juvenile, and subsequently, small trees. If 
dispersal e.g. via nuts, usually also clustering 
around mature/ large trees 
 

Random labelling, case/control design to model a two-step process, where 
one process produces the pattern and the second the life-stages.  
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 in dead trees 

Scramble competition leads to cluster-wise 
mortality due to resource depletion, Random 
mortality hypothesis (Kenkel 1988)  
 

Random labelling where the first process distributes the trees and the 
second the alive/dead labels 
  

Randomness   

between species 
Species interact neutrally, thus showing 
independence or randomness towards the 
occurrence of the other  

CSR to check for randomness. Under homogenous conditions: toroidal shift 
to test for independence between patterns of species 1 and species 2. Under 
heterogeneous conditions: pattern reconstruction to produce 
heterogeneous, but random, reference patterns  

Ubiquity in space 
Broad ecological niche allows generalist to occur 
in whole observation area 

CSR at large scales, intraspecific patterns still can show small-scale 
repulsion 

Repulsion   

Spatial segregation 

Former competition lead to different niches, that 
are spatially segregated (larger time scale), or 
competition-driven mortality eradicated one 
species from the area of the other. Competition 
past 

Heterogeneous Poisson process testing including niches to look for niche 
differentiation. Toroidal shift under homogeneous conditions to check for 
independence between species patterns 

Repulsion within species 
Intra-specific  
competition (self-thinning) 

Heterogeneous Poisson process (under heterogeneous conditions, 
otherwise homogeneous) 

Repulsion within species competition leads to minimum distance 
Include hardcore process (, e.g. Gibbs) or softcore (with rare small 
distances) process 

Repulsion between life 
stages of same species 

Contest competition between life stages forms 
regular pattern. Random mortality hypothesis 
(Kenkel 1988)  

Random labelling where the first process distributes the trees and the 
second the life-stage labels 
  

Repulsion at small scales Competition between individuals Heterogeneous Poisson Process, removable by using hard-core processes 
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Thesis rationale and structure 

 

The aim of this thesis is to analyse and model the effect of environmental heterogeneity 

on spatial tree patterns. Particular focus lies on the tracing of effects that indicate 

neutrality (stochastic interaction between species), niche effects (species-specific effects) 

or the response to heterogeneity (response to topography or resources). 

Chapter 1 

The spatial pattern within and between the six studied species in the study area are 

analysed with regard to heterogeneity and niche structures with standard point pattern 

analysis (PPA). Chapter 1-3 formatted according to requirements of target journal 

Ecography. 

Chapter 2 

Afterwards, I will introduce indicators of abiotic spatial heterogeneity. They are based on 

information derived from a Digital Elevation Model (DEM) and measurements done in the 

field. I combined these indicator variables to derive a spatially explicit habitat model of 

the prevailing heterogeneity.  

Chapter 3 

In Chapter 3, I used the derived spatially explicit model of the abiotic habitat and to fit abiotic 

null-models for point process models. The accuracy of the point process models were compared 

to the results of the null-models used in Chapter 1, which based on e.g. heterogeneous point 

processes and were not derived from field measurements. Moreover, I added neutral and 

species specific biotic interaction between the species. The comparison of abiotic, species 

indifferent, species specific models, and models including abiotic and biotic covariates will be 

used as hypotheses on the relative impact of abiotic and biotic interactions for the species. 

Chapter 4 

In the last step, I shifted the focus from the spatial patterns to the implications of neutral species 

interaction in conservation practice (here, formatting is according to target journal 

Conservation Biology). 
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1 Chapter 1: Spatial analysis of coexistence 

in a heterogeneous environment 

Abstract 

Within and between species, there is an omnipresent competition for resources. Only few 

sets of conditions seem to allow stable coexistence with ongoing competition. Known 

coexistence mechanisms are for example differences in resource utilisation, or spatial 

heterogeneity of environmental conditions.  

In order to test space-related coexistence mechanisms under heterogeneous conditions, 

we analysed a temperate old-growth mixed-beech forest in central Germany that is 

considered to be near-natural in its spatial structures. To describe the overall spatial 

pattern of multiple species and characterise the nature of inter- and intraspecific 

interactions, we employed inhomogeneous pair-correlation, nearest neighbour, and 

empty-space functions. We used three null-model assumptions to relate the spatial 

arrangement of the environmental conditions to the spatial tree pattern. The first null-

model assumed homogeneity, giving each location the same suitability for all tree species. 

The second null-model assumed heterogeneous abiotic conditions and that tree species 

were equal in their environmental preferences. The third null-model also assumed 

heterogeneity but allowed separate niches for the species. Homogeneity was rejected for 

all univariate species-interactions except Norway Maple, and Elm. 

Spatial heterogeneity of environmental conditions describes the spatial pattern of the 

trees best whenever the interaction with beech was considered. Our results suggest that 

in a temperate forest, spatial segregation and spatial niche differentiation are evident 

within the three main species beech, sh, and hornbeam. Beech and hornbeam show 

density-dependent spatial patterns, while for ash, sycamore, and Norway maple, the null-

model assuming niches performed better. Beech proves to be a strong competitor in 

interaction within and between the species. 
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1.1 Introduction: Species coexistence mechanisms in space 

To identify and explain the mechanisms behind species coexistence is one of the 

fundamental tasks in ecology (Sutherland et al. 2013). The concept of limiting similarity 

predicts that species evolve distinct niches because they need to be sufficiently different 

to coexist. Thus, the coexistence of species with very similar ecology in spatial proximity 

(Simberloff and Dayan 1991) seems to challenge the concept of distinct niches. But to 

prove or disprove the existence or quantify the importance of niches is challenging (Adler 

et al. 2010). This difficulty stems from practical reasons: First, considering niches in 

Hutchinson‘s sense as n-dimensional (Hutchinson 1957) implies that the sufficient 

difference might lie in any of these dimensions. Second, while dynamics of populations 

with short generation times are observable (Turner et al. 1996, Meyer and Leveau 2012), 

slow population dynamics as for example in forests are not easily detectable. Moreover, 

usually only two species are considered, because of the challenges of a full-factorial 

analysis for many species. While recent theory-based coexistence studies (Plotnick and 

Gardner 2002, Snyder and Chesson 2003) or studies located in the tropics made 

considerable advances (Hubbell 2001, Chave 2004, Wiegand et al. 2012), the mechanisms 

in temperate forests still deserve some study (Mart’ınez et al. 2013, Zhang et al. 2013).  

While it has been acknowledged for a long time that space plays an important role in 

species interaction and population dynamics (Duarte et al. 1998; Snyder and Chesson 

2004; Amarasekare 2003), interpreting spatial patterns is not trivial. Spatial tree patterns 

result from a number of processes of population dynamics, such as dispersal, growth, and 

mortality. These processes are influenced by abiotic and biotic interactions: Abiotic 

interactions refer to trees interacting with their abiotic environmental conditions, e.g. 

resource availability. These conditions may vary over space and thus may form patches 

that are more or less suitable, with suitability also depending on species preferences. 

Ultimately, heterogeneous abiotic conditions change the population dynamics (Oliver and 

Larson 1996) and, thus, the spatial patterns of plants (Huston and DeAngelis 1994; Getzin 

et al. 2008). Biotic interactions constitute the second type of interaction. While competition 

and density-dependent mortality cause spatial repulsion between individuals, facilitation and 

dispersal may lead to spatial aggregation (Stoyan and Penttinen 2000a). However, these biotic 

interactions are likely influenced by abiotic conditions and the spatial arrangement of the 
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abiotic conditions.  

Spatial heterogeneity itself can change competition patterns within the population (Day et al. 

2003). For example, the growth of the dominant species can be locally limited by less suitable 

abiotic conditions. This, in turn, can favour the performance of a suppressed species. As a 

consequence, large-scale heterogeneity has the potential of allowing species to coexist even if 

one species predominates the other (Chesson 2000a). An additional layer of complexity is 

added by considering both, intra- and interspecific competition as intraspecific competition that 

produces regular patterns. For example, competition can disperse the clumping effect of 

heterogeneity that leads to aggregation on suitable patches. Thus, multiple processes affect 

spatial tree patterns and these patterns are influenced by a combination of abiotic and biotic 

interaction types that act with different strength. 

 

1.1.1 Niches 

The interactions of all required abiotic resources and tolerances of a species define the 

fundamental ecological niche of a species (Hutchinson 1957). However, individuals of 

species with similar fundamental niches have to compete for the available resources, 

leading to realised niches that are smaller than the physiologically possible, fundamental 

niche (Begon et al. 2006). Unless the intraspecific competition outweighs the interspecific 

competition, interspecific competition results in an exclusion of species (Lotka 1907, 

Wilson et al. 2003). Because species with the same requirements are likely to find the 

same habitats suitable they show spatial co-occurrence. Thus, the spatial arrangement of 

abiotic resources can pre-define the species ensemble (Fauth et al. 1996), and determine 

their spatial pattern (gradual decline vs. patchy occurrence) and competition framework.  

1.1.2 Coexistence mechanisms 

The competition mechanisms outlined above imply that most forms of coexistence 

between species are unstable (Huston 1979). However, species coexistence can be 

expected to be either stabilised if intraspecific limitation is more important than 

interspecific interactions or populations can be equalized in their performance, if 

differences between species are reduced (Chesson 2000a). There are several more 

mechanisms that can stabilise or precondition species coexistence: Pacala et al. (1996) 

found that spatial coexistence due to spatial segregation over evolutionary time scales 

works via the ecological mechanism of forming conspecific clusters through spatially 
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separating heterospecific individuals by repeated exclusion of single individuals. Thus, 

spatial segregation can be a sign of a former competition (Connell 1980). 

In contrast to spatial segregation, if species evolve niche differentiation, these species can 

spatially coexist with no or little competition (Hardin and others 1960, Whittaker 1965). 

Niche differentiation can be found due to resource partitioning that may occur in time or 

space or due to morphological adaptation that allow the use of a common resource in 

different ways. Moreover, the differentiation may lie in the utilisation of a resource 

depending either on the varying abiotic conditions or on the lowest limit for survival in a 

combination of resources (R*, (Tilman 1980, 1982)). 

At local scales, stable coexistence can have its cause either in different ecological niches 

or neutral mechanisms (Chave and Leigh 2002). However, in temperate forests niche 

differentiation can be especially pronounced for water and light (Coomes and 

Grubb 2000), and competition mechanisms are mostly light-mediated (Pacala et al. 

1996). Therefore, in temperate forests, niche differentiation seems to be of greater 

importance than neutral processes (Kohyama 1993, Gilbert and Lechowicz 2004, Zhang 

et al. 2014).  

1.1.3 Spatial patterns  

Spatial environmental properties form the competition landscape for plants and, vice 

versa, competition patterns result in spatial plant patterns. However complex the 

processes leading to the spatial patterns may be, there are still only three spatial 

interaction types extractable from point pattern analysis: Clustering, randomness, or 

repulsion. The same spatial pattern can result from different ecological processes 

(Wiegand et al. 2000). Thus, even under scale-explicit pattern analysis, the interpretation 

of spatial patterns can be disputable. An appropriate interpretation depends on 

incorporating the critical ecological processes under the assumptions that are 

represented in the null-model. For example, a species can show a clustered pattern 

because of clustered dispersal, because suitable abiotic conditions occur patchily or both. 

To test this, a null-model that takes habitat suitability into account would for example be 

appropriate because it mimics the abiotic conditions and thereby isolates effects of 

clustered dispersal. Here, we describe the spatial patterns and identify the pattern-

forming processes in a near-natural temperate forest dominated by beech trees:  
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Aim 1: Characterise the uni- and bivariate spatial pattern of the six co-occurring species. 

Hypothesis 1: Beech (Fagus sylvatica) shows repulsion patterns with all species and within life 

stages, because beech is a supreme competitor. 

Aim 2: Test the importance of niches under near-natural conditions in a heterogeneous, 

multispecies set-up.  

Hypothesis 2: Spatial randomness occurs both when regarding heterogeneity and when 

regarding niches as a null-model, but assuming niches shows stronger patterns of deviation 

from randomness. This follows the assumption that in temperate forests both neutral and niche 

mechanisms occur (Chave 2004), but niche mechanisms prevail (Gilbert and Lechowicz 2004, 

Zhang et al. 2013). 

Hypothesis 3: Fagus occurs everywhere randomly, whereas Fraxinus and Acer sp. are 

clustered. The generalist Fagus should be less sensitive towards a change of environmental 

conditions than the specialist species that can outperform beech in suboptimal patches.

 

1.2 Material and Methods 

1.2.1 Study area 

In order to investigate the natural mechanisms of coexistence in a temperate multi-

species forest, we used data collected in a 28.5 ha area (“Huss plot”, Figure 1-1) in the core 

zone of the National Park Hainich, Thuringia, Germany. The first census was conducted in 

1999, the second in 2007. Trees were mapped with: coordinates (Easting, Northing), 

species identity, and viability. The sampled area is part of a continuous beech forest 

(Hordelymo-Fagetum) with beech accounting for 90% of all trees, admixed with ash, 

hornbeam, sycamore, Norway maple, Wych elm, and few individuals of seven other tree 

species. However, only the named six species occurred in large enough numbers for 

statistical analysis (Table 1-1). The area is an old-growth forest of little and further 

decreasing human influence over the last 60-150 years (Butler-Manning 2008). For a 

more detailed description of mapping method and data set see Butler-Manning (2008). 
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Figure 1-1 Spatial distribution of the density of the six most abundant species in the 

28.5 ha-sized study plot in the core zone of the Hainich National Park, Thuringia, Germany. 

Legend shows intensity in individuals per square meter (light colour means high intensity). 

Note that the densities have different scaling between the species. Black dots mark the 

position of trees 
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Table 1-1 Abundance of species in the plot (total area 28.5 ha) in 2007: total and 

divided in size classes according to diameter at breast height (DBH). The second column also 

gives the total number of trees in 1999 in parentheses. 

Species 
total 2007 

(1999) 
small  
(0 - 10 cm) 

medium  
(>10 -30 cm) 

large  
(>30 cm ) 

beech 
 (Fagus sylvatica)  

12191 (13307) 6098 3434 2658 

ash  
(Fraxinus 
excelsior) 

527 (550) 5 16 505 

hornbeam  
(Carpinus betulus) 

361 (389) 2 77 282 

sycamore 
(Acer 
pseudoplatanus) 

345 (321) 38 10 297 

Norway maple 
(Acer platanoides) 

40 (44) 0 6 34 

elm 
(Ulmus glabra) 

39 (69) 5 6 28 

sum 13503 (14680) 6148 3549 3804 

  

1.2.2 Spatial analyses 

Mund (2004) and Butler-Manning (2008) observed spatial heterogeneity in soil 

conditions that seems to influence the tree layer. In the present study, we characterized 

the abiotic environment indirectly, via density of large trees (details in section 2.3, see 

also Baddeley et al. 2000). We used the intensity function of all tree species for a global 

estimate of habitat heterogeneity, and the intensity function of individual species for 

species-specific estimates of habitat heterogeneity.  

Biotic interactions were analysed at species level. Interactions at species level give 

information about the competition patterns between the species and thus allow 

conclusions about the stability of coexistence. Here, univariate analyses gave information 

on intraspecific interactions, and bivariate analyses on interspecific interactions.  

In order to analyse the effect of recruitment on stand dynamics, we conducted uni- and 

bivariate analyses at size-class level. However, only beech occurred in large enough 

numbers to be analysed at the intraspecific level of size classes (Table 1-1).  
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Therefore, we conducted uni- and bivariate analyses within and between size classes of 

beech (small: ≤ 10 cm, medium: > 10 cm and ≤ 30 cm, large: > 30 cm). For the other five 

species, we restricted the analyses to the species level. All results shown in the main text 

refer to the 2007 census. All spatial analyses were conducted using the statistical software 

R 3.2.2 and the spatstat package 1.46-0 (Baddeley and Turner 2005). 

 

1.2.3 Summary statistics 

Wiegand et al. (2013) argued that only a combination of spatial summary statistics may 

capture all characteristics of a complex spatial pattern. Therefore, we used three 

summary statistics: 1) pair-correlation function (Stoyan and Stoyan 1994b) for 

explorative pattern detection and scale identification, 2) nearest neighbour distribution 

(van Lieshout and Baddeley 1996; Baddeley et al. 2000) to characterise the direct, short-

range spatial interactions, and 3) the empty-space function (Lieshout and Baddeley 1996) 

to identify clustering. These summary statistics serve for measurements. The null-models 

used to investigate Aims 1 – 3 given in the Introduction are given in Section 2.3. Briefly, 

our null-models were variations of homo- and heterogeneous Poisson processes. We 

applied homo- and inhomogeneous versions of functions 1)-3) to simulations of these 

processes and as well as to field data.  

 

Considerations on the interaction scale 

We attributed deviations from a given null-model at small distances to direct tree-tree 

interactions and deviations at large scales as outcome of a heterogeneous environment. 

Stoyan and Penttinen (2000) suggest the use of 10 m as a general distance threshold, but 

as there are crown diameters of 15 m and more for canopy trees in our study plot (Jacob 

et al. 2010), we considered up to 15 m as direct interaction range for large trees. We 

accordingly chose a general distance threshold of 15 m, or in other words a kernel width 

sigma of 30 m, arguing that this reflects the ecological window for grasping both 

meaningful heterogeneity and the interaction scale of large canopy trees. However, we are 

aware that sigma is a sensitive parameter.   
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Intensity function λ(x) 

The intensity function describes the number of points per unit area (density distribution 

function λ(x) (Wiegand and Moloney 2014). Here, intensity was calculated as the number 

of tree individuals per species per square meter. 

 

Ripley's K and Pair-correlation function g(r) 

For an observed pattern, Ripley's K (Ripley 1976) calculates point densities within the 

entire circle of a given radius r, it is thus a cumulative distribution function.  

𝐾(𝑟) = 2𝜋 ∫ g(t)tdt
𝑟

𝑡=0

 

The pair-correlation function g(r) (Stoyan and Stoyan 1994b) describes the number of 

expected points of type i at distance r around a typical point of type j. Here, i and j could 

represent species or size classes. The analysis is univariate if i=j, and bivariate otherwise. 

The pair-correlation function is related to the derivative of Ripley’s K-function (Ripley 

1976), but is, in contrast, non-cumulative.  

𝑔(𝑟) =

𝑑𝐾(𝑟)
𝑑𝑟

2𝜋𝑟
⁄  

Wiegand et al. (2012) found that the pair-correlation function is the most powerful 

function in characterising a spatial pattern and it is recommended for exploratory data 

analyses to identify critical scales of deviation from the null-model (Illian et al. 2008; 

Perry, Miller, and Enright 2006; Wiegand and Moloney 2014). Deviations of the observed 

patterns that show lower values than predicted by the null-model are interpreted as 

repulsion. Observed values higher than predicted are considered to show a spatial 

clumping, whereas observations that are within the null-model prediction are considered 

to be random within the null-model assumptions.  
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Cumulative nearest neighbour distribution function G(r) 

The nearest neighbour distribution function (G-function (Diggle 2003)) describes the 

probability distribution of one individual having its kth -closest neighbour at distance r. It 

is an appropriate function for considering short-range interaction patterns. 

 

𝜆𝑔(𝑟)2𝜋𝑟 =  ∑ 𝐺2(𝑟)

∞

𝑘=1

 

 

Observations below the null-model prediction show shorter nearest neighbour distances, 

and thus, clumping. Similar to the pair-correlation function, the nearest neighbour 

distribution function is point-based, i.e. it describes spatial correlation between 

individuals. Here, we summarize the function by reporting the distance at which 90% of 

the trees have their nearest neighbour. 

 

Empty space function (spherical contact distribution function) 

The empty-space function is location-based, i.e. it describes the spatial distribution of 

individuals relative to random locations, not between individuals. The spatial distribution 

is described in terms of a frequency distribution of distances between random locations 

and the nearest tree. If the observed pattern is below the null-model prediction, the 

observed empty space is smaller than expected. This indicates regularity. Observations 

above the predicted values show large empty spaces and thus, indicate clustering in 

presence of also short empty-space distances. Please note that for Poisson processes 

nearest neighbour and empty-space functions are the same function (Stoyan et al. 1995). 

Thus, if no deviations from the simulated Poisson process are observable, empty space 

and nearest neighbour distribution look the same. Here, we summarize the empty-space 

function by reporting the distance for which for 90% of random locations there is at least 

one tree found at or within this distance. 

 

1.2.4 Choice of null-models 

Null-Models are usually used to produce simulated randomised reference patterns of 

spatial characteristics that are anticipated in the absence of specific ecological processes 

(Gotelli and Graves 1996). Rejection of a null-model then indicates the presence of the 
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respective ecological processes. Taking the opposite perspective, null-models can also be 

seen as representing a particular spatial process such as Complete Spatial Randomness 

(CSR) or clustering. Then, the non-rejection of a null-model indicates that the process 

represented by the null-model could be the main driver of the observed pattern (Wiegand 

and Moloney 2004). Here, we thus consider as the best null-model the one that produces 

simulation envelopes with the smallest deviations in respect to the observed pattern, for 

an example graphic, see Figure 1-2. 

 

Figure 1-2 Example (Ash-Ash) result of a pair-correlation function and presentation 

as quantum plots. The results of the pair-correlations will be presented as the lower 

coloured plot (quantum plot) only. Deviations from the simulation envelope towards 

clustering are green, deviations towards repulsion are red. If the function follows the 

envelope, the quantum plot is grey. Therefore, the null-model that shows where the pair-

correlation function shows little deviation from the envelope will have a mostly grey 

simulation envelope. 

 

Complete Spatial Randomness (CSR) 

The above mentioned CSR is the simplest null-model. CSR assumes the absence of all 

spatial pattern-generating ecological processes that could lead to anisotropy or 

non-stationarity (Baddeley et al. 2015 p. 409). It corresponds to a homogeneous Poisson 

process (Cressie 1993 p. 586). In our particular study, the assumption of CSR implies that 

all locations have the same suitability for tree occurrence and thus the same probability 
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of holding trees (Specific Hypothesis 1, short SH1, null-model: CSR (nullubiq) with 

homogeneous pair-correlation function gubiq).  

 

Including heterogeneity 

However, heterogeneity was observed for soil properties (Mund 2004). Thus, we 

investigated if this heterogeneity also showed in the spatial tree patterns (technically, by 

rejecting SH1) and then separately applied two null-models to include two different forms 

of habitat heterogeneity: The first assumed species do not differ in their reaction to 

abiotic heterogeneity (Aim 2), the second allowed for differences depending on species 

identity (Aim 3). In lack of an explicit habitat model that included influential abiotic field-

measured variables, we characterized habitat heterogeneity by tree density, considering 

tree density as the indirect outcome of differences in habitat suitability (Baddeley et al. 

2000). To support the null-model choice and deal with the difficulties of estimating first 

and second order properties from the same model, we included ecological pre-knowledge 

(Diggle and Ribeiro Jr 2007). The deliberate inclusion of explicit pre-knowledge also 

promotes the possibility of separating between clumping due to heterogeneity, due to 

niche properties or due to tree-tree interactions. We assumed that large trees (> 30 cm 

DBH) are mature trees and that their differences in density indicated differences in 

abiotic habitat suitability. These trees had already survived the thinning process caused 

by adverse abiotic conditions. Following the approach of Getzin et al. (2008), we first 

hypothesized that suitability is equal for all species (Specific Hypothesis 2, short SH2, 

null-model: heterogeneous Poisson process (nullequal) with inhomogeneous pair-

correlation function gequal). 

However, depending on species identity, abiotic habitat heterogeneity may have a 

different impact on occurrence probability. Indeed, Zhang et al. (2013) observed that 

niche effects seem to be more important than stochastic processes in a temperate forest. 

Thus, as an alternative to assuming equal habitat suitability for all species, we secondly 

hypothesized species-specific suitability. To this end, we characterised species-specific 

experienced habitat heterogeneity based on tree density of large trees (> 30 cm DBH) of 

each species individually (Specific Hypothesis 3, short SH3, null-model: inhomogeneous 

Poisson process (nullniche) with inhomogeneous pair-correlation function gniche).  

Using a non-parametric approach, we estimated the intensity λ(x) of the spatial 

distribution of mature trees overall and species-wise for the two null-models SH2 and 
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SH3, respectively, by applying a moving window approach combined with an 

Epanechnikov kernel as suggested in Stoyan and Stoyan (1994b, 2008) and Getzin et al. 

(2008). Following Baddeley et al. (2000), technically, the intensities λ(x) are not part of 

the null-models but are used as thinning surfaces to adjust the pair-correlation function 

(gequal or gniche).    

1.2.5 Construction of simulation envelopes 

In order to evaluate significant departure from the null-model under consideration, we 

performed 199 Monte-Carlo simulations of the respective null-model process, using the 

highest and lowest 2.5% simulation values in order to get an approximately 5%-error-

probability of the constructed simulation envelopes. In order to consider the multiple-

testing problem of simulation envelopes (Loosmore and Ford 2006) of the used point-

wise envelopes, we also conducted a goodness of fit test for significance of deviations 

from the simulation envelope in steps of r <10 m, 10-20 m and 20-30 m (Stoyan und 

Penttinen 2000). Whenever the observed pattern deviated from the simulation envelope 

we conducted a goodness of fit test. Only statistically significant deviations from 

predicted patterns were included in the graphics, discarding insignificant differences.  

 

 

1.3 Results 

1.3.1 Interactions at species level – univariate and bivariate 

The pair-correlation function characterises the overall spatial pattern with respect to 

the null-model and the critical scales of deviation, if present. When assuming 

homogeneous habitat suitability (SH1, CSR; nullubiq with homogeneous gubiq), there were 

large scale deviations towards aggregation in univariate pair-correlation functions except 

for Norway Maple and Elm (see Appendix A.7-1,). To identify the influence of 

heterogeneity and niches, two further null-models were applied (Figure 1-3). Assuming 

equal suitability for all species in the intensity estimation (heterogeneity without niches; 

Inhomogeneous Poisson process nullequal with inhomogeneous gequal), the univariate 

interactions were largely random (Figure 1-3a, plots on main diagonal). Exceptions with 

a small scale intraspecific clustering were beech at < 2m and ash with clustering at ≤ 8 m, 

and repulsion at > 16 m.  
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For analysing the niche effect, only the density of conspecific large trees of the particular 

species of interest were used in the pair-correlation function for including habitat 

heterogeneity (heterogeneity with niches; inhomogeneous Poisson process nullniche with 

gniche Figure 1-3b, plots on main diagonal). Here, the univariate interactions were random 

for Elm and the Acer species. Beech showed clustering from 0 m to almost 20 m. Ash 

showed small scale clustering up to 8 m.  

For bivariate (between-species) interactions, under SH1, there were large-scale 

deviations in all bivariate interactions with beech except for elm. Under SH2, there were 

no deviations from the simulation envelopes for most species combinations (Figure 1-3a, 

off-diagonal plots). Exceptions to this were combinations of the Acer species with Ash and 

beech. The only bivariate attraction is observed in beech aggregating around Ash at a very 

small scale. In fact, under SH3, interspecific interactions showed repulsion patterns in 

gniche, almost over the whole range of scales from 0 m to 30 m. In all combinations of the 

three most abundant species, beech, ash, and hornbeam, strong repulsion patterns 

occurred. Thus, the assumption of niches removed all interspecific attraction processes, 

in some cases to the extent of adding interspecific repulsion. There was a strong positive 

correlation between Ripley’s K and the number of large trees per species (Fig 1-4a, 

showing K(r= 30 m)), with beech being a clear exception. 

 The Nearest neighbour distance distribution function gives information about the spatial 

co-occurrence of species and their evenness in space. While in intraspecific combinations 

the nearest neighbour distances were the shortest, there were significant deviations from 

a heterogeneous Poisson process in all combinations of the three most abundant species 

(Figure 1-4b). Beech, ash and, hornbeam exhibited strong repulsion patterns under the 

assumption of a heterogeneous Poisson process (SH2). Amongst all species, beech 

showed the shortest distances to its inter- and intraspecific nearest neighbours (s. 

Appendix Table A7-1) and the highest asymmetry in its interspecific distances, especially 

towards Sycamore. Moreover, while still being clumped, beech comes closest to a random 

nearest neighbour distribution of large trees (Figure 1-4b).  

The empty-space function is suggested to be more sensitive towards the detection of 

clustering than the nearest neighbour distribution, as the detection of large empty spaces 

indicates gaps between conspecific clusters (Dixon 2002). The observed empty space was 

in all cases larger than expected within a species both under homogeneity (not shown) 
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and heterogeneity (Figure 1-4c). This implies a tendency towards clumping with 

conspecifics. Beech comes closest to a random empty space distribution of large trees. 

Please note that there is no bivariate version of the empty-space function.  

 

a) SH2 - gequal (r) 

  

b) SH3 - gniche(r) 

Figure 1-3 Univariate (plots on main diagonal) and bivariate (off-diagonal plots) pair-

correlation functions within and between species for two null-models: a) SH2 - equal 

heterogeneity, b) SH3 - niche heterogeneity. Diagonal plots show the results of univariate 

(intraspecific) pair-correlation functions, the off-diagonal plots of bivariate (interspecific) 

pair-correlation functions. Rows: focal species, columns: neighbouring species gequal: 

simulation envelope created by heterogeneous Poisson process using large-tree density to 

characterize heterogeneity. gniche: using species-specific large-tree density. Red= repulsion, 

grey= randomness or neutral interactions, green= clustering, bandwidth of smoothing kernel 

σ= 30 m. See Figure 2 for an illustration of how the colour code is derived. 
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1= beech, 2=ash, 3=hornbeam, 4=sycamore, 5= Norway Maple, 6=elm 

Figure 1-4 Number of large trees and the applied three summary functions 

a)  Ripley’s K (the expected number of trees within r=30, normalised for density), b) the 

distance r where trees had a 90% probability to have their conspecific nearest neighbour, 

c) maximum distance r between a random location and the nearest tree for 90 % of the 

particular species (empty space). Dashed line: expected value under Complete Spatial 

Randomness (CSR; homogeneous Poisson process), calculated as a) λπr2 and b), c) 

expected value following Stoyan (2006, S. 140).  
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1.3.2 Interaction between size classes within beech (SH 2) 

The spatial patterns differed both within and between the size classes of beech. In the 

univariate pair-correlation-functions, i.e. within their size class, small and medium trees 

were clumped at small scales (< 15 m). In contrast, large trees showed repulsion at small 

scales (≤ ca. 8 m; Figure 1-5, plots on main diagonal). The bivariate cases, i.e. between size 

classes, the differences were more consistent. Between small and medium trees, there 

was a repulsion across all scales (Figure 4). Between small and large trees, there was also 

repulsion at almost all scales, except for clumping at small distances (ca. 2 m; Figure 1-5). 

Medium and large trees showed small scale repulsion (≤ ca. 8 m; Figure 1-5) and 

distributed randomly at larger scales. 

 

Figure 1-5 Bivariate intraspecific pair-correlation functions between the three size 

classes within beech under heterogeneity (SH2) across all six species. Small trees DBH 

<10 cm, medium trees DBH 10-30 cm, large trees DBH >30 cm. 
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1.3.3 Null-Model implications 

We judged the adequacy of the null-models by their ability to capture a pattern as a 

random realisation of the modelled process. The assumption that habitat heterogeneity 

is experienced equally by all species as described by the large tree density of all species 

(SH2, nullequal - gequal) led to more random patterns than the assumption of global 

suitability (SH1, CSR; nullubiq; Figure 1-3a). Assuming a species-specific habitat 

heterogeneity (SH3, nullniche - gniche) seemed to reproduce the point process only for the 

three more rare species: Sycamore, N. Maple, and Elm (Figure 1-3b). In most species and 

over most scales, the assumption of species-specific habitat heterogeneity poorly 

captured the patterns of the three most abundant species, indicating that for abundant 

species the null-model of species-specific habitat heterogeneity (SH3) does not mimic the 

pattern-creating process well.  

At the level of interspecific interactions, the assumption of niches (SH3) sharpened the 

differences in the spatial distribution. Between the spatial distribution patterns of the 

three main species, comparing results under SH2 and SH3, assuming niches (i.e. SH3) 

moved the pattern towards stronger repulsions for the bivariate interaction of beech with 

hornbeam and of beech with maple (Figure 1-3a vs. Figure 1-3a). There was clear 

repulsion in the interactions between ash and hornbeam at scales above 10 m. At small 

distances the spatial distribution of ash and hornbeam fell within the simulation envelope 

as one realisation of the niche-assuming spatial process. With Maple, there was a switch 

from clustering in nullequal (SH2) to repulsion in nullniche(SH3). 

 

1.4 Discussion 

In our detailed spatial analysis of coexistence mechanisms in a near-natural old-growth 

temperate forest, we found that spatial patterns were not homogeneous for four of the six 

studied tree species. Heterogeneity of spatial patterns was particularly apparent when 

intra- and interspecific interactions involved beech, the most common species in our 

study area. Thus, the necessary condition for resource competition is met, because 

heterogeneity is a factor in competitive interactions (Pielou 1961; Dovc iak, Frelich, and 

Reich 2001). In classic ecological theory, species that co-occur in spite of niche overlap 

either outcompete one another, segregate, or evolve towards character displacement 

(Chesson 2000a). We found evidence of segregation for the three most abundant species 
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in our study, because interactions of beech, ash and, hornbeam showed repulsion under 

the assumption of niches. This fulfils the sufficient condition for competitive interactions 

and, in line with our first hypothesis, supports the status of beech as a supreme 

competitor. The spatial distribution of rare species was in accordance with the niche 

assumption, i.e. distributions of rare species were strongly determined by niche structure. 

Our second hypothesis concerning niche processes being more prevalent than neutral 

processes predominantly applies to the rare species of this study. Moreover, it agrees with 

our third hypothesis that rare species depend on safe sites, which was particularly 

apparent for light-demanding species such as ash. 

Coexistence of the six species in the studied temperate forest is thus possible, at least 

theoretically, as it was indicated by the repulsion observed in the niche-based analysis. In 

practice, the natural coexistence potential between species can be difficult to identify 

because other processes co-occur, such as anthropogenic creation of admixtures as it was 

likely the case in our study plot (Butler-Manning 2008). Coexistence of different species 

is also promoted by density-dependent effects such as self-thinning (Clark and Clark 

1984). Strong density-dependence indicates a concentration of intraspecific competition 

relative to interspecific competition (Cosner and Lazer 1984, Begon et al. 2006) and leads 

to monospecific clusters that are more likely to be attacked by pathogens. This effect 

seems to be more relevant in tropical forests (called Janzen-Connell-effect, (Janzen 1970, 

Connell 1971)). Here, we show strong density-dependence leading to coexistence also for 

a temperate forest, because density (SH 2, Figure 1-3a) was a better predictor than niches 

(SH 3, Figure 2b) for interactions with beech between the three most abundant species.  

The asymmetric distances revealed in our nearest neighbour contingency analysis 

(Appendix Table A1) may be interpreted as evidence against species coexistence, because 

asymmetric competition over time necessarily leads to species exclusion. However, these 

analyses were done on a species level, so that species with different size structures were 

compared. For instance, ash that showed very little rejuvenation was compared with 

beech with diameters at breast height of less than 10 cm for most of the trees. This lack 

of saplings > 1.30 m in height in other species than beech is not necessarily an indication 

of species exclusion. In studies conducted in 2004, 2011, and 2012, plenty of trees with a 

height < 1.30m could be recorded (s. Chapter 2). There is heavy browsing damage by roe 

and red deer, which favour Acer sp., ash, and hornbeam over beech. Ammer and Vor 
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(2013a) showed that asymmetric browsing puts ash and hornbeam at a disadvantage and 

leads to a higher proportion of beech. This also coincides with observations of Butler-

Manning (2008) and our observations during field seasons 2011-2012 (Chapter 2). 

The spatial arrangement between species seems to be driven by multiple processes, 

showing characteristics of density dependence as well as ecological distance. The number 

of large trees per species proved to be a good indicator for the order in nearest neighbour 

distances and empty space distribution functions. Here, Sycamore did follow that order, 

but seemed to form denser clusters than expected. This is in line with the assumption that 

rare species show higher clustering (Condit et al. 2000). The fact that we found a similar 

line-up of species depending on the numbers of large trees with respect to Ripley’s K was 

unexpected as this index is already corrected for density. Here, beech showed less 

clumping than the other species at a given tree density. This might be due to strong 

intraspecific competition that leads to intraspecific repulsion effects. Alternatively, this 

intriguing dependence of spatial indices on tree density could also indicate that the 

studied tree species show a self-similar spatial distribution (Ostling et al. 2000). In this 

case, the strong competitive interactions between the three main species that we inferred 

from our analyses would be a result of numbers, not of ecological traits. However, there is 

no true evidence if this sorting according to numbers is either an ecological species effect 

or an effect of numbers. 

Niche processes rather than neutral processes prevailed in the temperate forest under 

study. This is supported by the niche-based null-models that included species-specific 

heterogeneity. The three rare species were distributed randomly within their species-

specific habitats in these models. However, this was not true for beech and hornbeam. 

Only for Ash, the niche-based null-model performed better than the one of equal 

heterogeneity. For these three most abundant species, assuming niches led to a full-scale 

repulsion pattern whenever they were considered in combination with each other. This 

seems to indicate that especially between the three most abundant species the repulsion 

effects (spatial segregation) becomes more pronounced during the interspecific thinning 

process. As we here only considered the density of large trees to reconstruct 

heterogeneity, we implicitly applied a space-for-time replacement, thus looking at a late 

point of a multi-species thinning process. This allows for the conclusions that niches do 

exist and are tangible by spatial analyses. Although, if present, full spatial co-occurrence 
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or even complete spatial overlap could be detected with the applied method, the results 

stressed contrasts between the three most abundant species. The spatial separation of 

species was revealed even without further knowledge of the prevailing environmental 

conditions. These results suggest that niches in temperate forests are detectable by 

comparison to suitable heterogeneous null-models. If interactions are not strong, species-

specific large-tree densities allowed reproducing the point process over several scales. 

However, if interactions are strong (i.e. in the case of competition), assuming niches led 

to a repulsion at all scales. The trees form only monospecific clusters, apart from a few 

small scale attractions between beech and ash. These seem to result from indifference of 

the large canopy Ash trees towards smaller beech trees and an attraction of beech 

towards the lighter canopies of ash. All in all, our findings strengthen the hypothesis that 

in a temperate forest system niches are important.  

This analysis, although clearly indicating the existence of niches, does not reveal the 

properties that form the differences of the species’ niches. For this, additional sampling 

on prevailing abiotic conditions especially concerning topography, light- and water 

availability is necessary.  

 

1.5 Conclusions 

Niches are detectable in temperate forests by describing species-specific habitat 

heterogeneity based on the spatial distribution of conspecific large trees. Furthermore, 

there are strong indications of density effects that might promote multi-species 

coexistence in these forests. We believe that this study is a step towards measuring and 

quantifying niche differentiation between coexisting and competing species. Moreover, 

our result that niches seem to be more pronounced in abundant than in rare species may 

hint at processes that are driven by frequency and less on species identity in a temperate 

forest context that merit further investigation.  
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2 Chapter 2: The effects of spatial heterogeneity on abiotic 

niche separation in a semi-natural forest  

Abstract 

Most tree species compete for the same set of optimal conditions. If there is a niche 

overlap in species, habitat heterogeneity can still allow for species coexistence. While 

adverse conditions filter for similar species traits, competition drives evolution towards 

species differing in their traits. Our first aim was thus, to characterise abiotic conditions 

in a temperate forest under near-natural conditions. Our second aim was, to identify 

abiotic covariates that were critical for niche separation as well as abiotic covariates that 

were subject to niche overlap. We used a data set of almost 15,000 trees in the Hainich 

National Park in a mixed beech forest. We sampled the abiotic conditions on the study 

plot (28.5 ha) and used GAMs for predicting the abiotic covariates that would influence 

habitat suitability for each of the six studied species. Our results showed that the studied 

species indeed differed in the abiotic covariates that were important for modelling their 

size distribution in space. It is striking that species-specific habitat suitability was most 

affected by factors that were not facilitating but inhibiting, for example, beech was most 

influenced by slope. The critical variables of differentiation were small-scaled, e.g. in soil 

layers that were only 10 cm apart. This might indicate that while habitat filtering acts at 

larger scale (e.g. excluding beech from steep slopes), niche differentiation is small-scaled 

where competing species co-occur.  

2.1 Introduction: Spatial heterogeneity, indicator values and species 

dominance 

The spatial patterns of commonness or rarity of species over different scales play a key 

role in ecology (Chesson 2000b, Chave 2004). A general pattern is that there are few 

abundant and many rare species (McGill et al. 2007). The persisting presence of rare species 

is puzzling, especially in cases of rare species that persist in the presence of strong competitors 

despite niche overlap. Theory attributes the persistence of these rare species to specialisation, 

reduction of niche overlap, and to rare-species advantages such as lower intraspecific 

competition in small populations (McGill et al. 2007), or in neutral theory, be the result of 

ecological drift (Hubbell 2001). The persistence of species in general and the abundance 
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of species in specific can be affected by a number of factors acting over different temporal 

scales. At the scale of a few generations, species may persist due to local adaptation to 

environmental conditions, due to competitiveness relative to co-occurring species, and 

due to intraspecific regulation, due to density dependence in competing species or by 

stochasticity. At evolutionary time scales, individuals of a species are selected towards 

stabilising the fundamental niche (Pearman et al. 2008) of the species in heterogeneous 

landscapes(Holt and Gaines 1992). Classic niche theory predicts that species may co-

occur if they tend to differ in their requirements, i.e. in their niches (Kraft et al. 2008), 

resulting in niche differentiation. At the same time, habitat filtering might limit the suite of 

species that can occur at any one location (Keddy 1992), resulting in a species ensemble of 

ecologically similar species. Both mechanisms, niche formation and habitat filtering, form 

opposing poles of species similarity in space (Scheffer and van Nes 2006; Hardy and Sonke  

2004). Scheffer and van Nes (2006b) proposed to consider the slow replacement of species 

by similar competitors as an additional mechanism of coexistence, explaining the co-

occurrence of similar species in spatial clusters. By acknowledging transient coexistence, they 

softened the contrasting requirements for coexistence that species either need to be different 

enough or similar enough to coexist (Vergnon et al. 2012). 

Niche availability is variable in space because habitat properties show spatial patterns. 

Some abiotic habitat properties tend to form larger continuous patches (e.g. topographic 

habitats), while other properties tend to vary at smaller scales (e.g. water availability). 

Due to these complex patterns, few individuals grow at their maximum growth rate 

because most individuals occur in non-optimal conditions. They survive because they can 

still show higher growth rates than other individuals of other species for which a certain 

location is even more suboptimal (Ellenberg et al. 1991; Blanco 1993; Leuschner and 

Ellenberg 2010).  

Previous studies have linked the spatial patterns of trees to the prevailing differences in 

topography (Pelissier 1998, Harms et al. 2001, Itoh et al. 2003, Punchi-Manage et al. 

2013). However, these studies address tropical forests whereas in temperate broadleaved 

forests, topography is rarely distinct enough to form disjunctive sub-habitats and explain 

the observed heterogeneity in the spatial pattern of tree species distribution. Topography 

is an indirect descriptor of habitat properties and in absence of pronounced variation in 

topography one can expect changes in habitat properties to be more subtle as well. 
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Therefore, different approaches are necessary to explain spatial patterns of trees in 

temperate broadleaved forests. In order to link spatial patterns of trees and 

environmental properties, it seems thus necessary to combine directly measured abiotic 

variables under field conditions and statistical analysis of the relationship between 

spatial tree distributions (Wang et al. 2011).  

We tested this approach of directly linking abiotic and biotic patterns in the temperate 

broadleaved forest of Hainich National Park. Chapter 1 showed that heterogeneity in overall 

abiotic conditions (derived from the spatial distribution of all species) was a useful explanatory 

variable of the spatial pattern of most species (except Ash and Sycamore, and its combination) 

and of their spatial patterns of co-occurrence. Thus heterogeneity in abiotic conditions can be 

expected to be an important driver of these spatial coexistence patterns. In the Hainich, first 

steps in this direction have been taken, however, using indirect measures of the abiotic 

environment only. Ratcliffe et al. (Ratcliffe et al. 2015) found that topography-derived 

estimators of abiotic conditions have little power to predict tree growth patterns. Instead, 

individual tree growth in the Hainich is sensitive to diversity and composition of neighbouring 

trees (Ratcliffe et al. 2015), and mortality links tree growth with tree density (Holzwarth et al. 

2012). As there are indications that the observation of a non-homogeneous tree pattern may 

result from abiotic heterogeneity (Getzin et al. 2008, Wang et al. 2011, Shen et al. 2013), we 

aim at uncovering the links between the prevailing abiotic conditions and spatial patterns of 

tree distribution in this multi-species setting. 

Thus, our first aim (Aim 1) was to describe potential abiotic drivers of spatial pattern formation 

in the tree layer. This was done to identify properties that characterise sub-habitats that are 

especially suitable for one particular or several species. In the Hainich, the proportion of 

admixed species is higher than usual for old-growth National Parks with beech as a main 

species (Tabaku 2000, Butler-Manning 2008, Leuschner et al. 2009, Trotsiuk et al. 2012). 

Although most of the admixed species have been favoured by previous management (Butler-

Manning 2008), environmental heterogeneity still allows a continued coexistence of the 

dominant and admixed species, and Aim 1 specifically asks for the sub-habitats that allow 

for growth of the admixed species. 

Our results in Chapter 1 indicated that during succession in the temperate broadleaved forest 

of Hainich National Park, the three most common species (beech, ash and hornbeam) would 

exhibit patterns of spatial exclusion, presumably due to competitive interactions and niche 
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processes. In contrast, the three locally rare species (sycamore, Norway maple, and elm) 

showed patterns of spatial randomness or spatial patterns of heterogeneity in tree density. Thus, 

our second aim (Aim 2) was to assess whether divergent patterns of locally common and rare 

tree species are an effect of competitive exclusion or of different habitat requirements, i.e. if 

differences in the fundamental niche along the gradient of abundant, intermediate, and rare 

species lead to spatial exclusion among abundant species.  

In order to describe the abiotic heterogeneity (Aim 1) potentially critical for the 

persistence of admixed species, we followed three approaches. First, similar to studies of 

tropical forests, we described topography using a Digital Elevation Model (DEM) from 

high-resolution LiDAR data. Second, we additionally measured physical and chemical 

conditions, to describe e.g. light and soil properties. Third, we determined indicator 

values (Ellenberg et al. 1991). Indicator values are ordinal classifications of ground 

vegetation along gradients reflecting light, temperature, continentality, moisture, soil pH, 

fertility, and salinity. They integrate over temporal variations at a location and thereby 

relate measurements to plant-perception (Jongman et al. 2002). We applied both 

approaches (two and three) to be able to compare such direct and indirect measurements 

for niche construction. 

We characterised the abiotic environment (Aim 1) to characterise the abiotic 

heterogeneity for the whole study area. We used generalised additive models (herein 

GAMs) as a spatial interpolation method between sample points. First, each measured 

abiotic covariate was interpolated and we chose the spline type that would produce the 

most accurate fit for each abiotic covariate. Second, to infer on the impact of the abiotic 

environment on the tree layer (Aim 2), we used GAMs to explain the tree size of each 

species by combining abiotic covariates and thus delineating the abiotic conditions that 

determine habitat suitability and, ultimately, the (realised) abiotic niche of the tree 

species. We were interested whether the spatial segregation observed in Chapter 1 could 

be attributed to differences in utilised abiotic components or the impact of the abiotic 

environment on the tree layer. 
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2.2 Material and Methods 

2.2.1 Study area and ecological properties of the studied tree species 

This study was conducted in a 28.5 ha area of an old-growth mixed-beech forest in the 

Hainich National Park (51° 06’ N, 10° 31’ E), Thuringia, Germany. The study area has a 

gentle slope of <1°, except for a gully area, where the slope is about 8° degrees and the 

soil is considerably wetter. In contrast to the slope, soil type, and soil depth are highly 

heterogeneous (Mund 2004). Triassic limestone bedrock is covered by layers of loess 

varying in their depth at small spatial scales (Mund 2004). Rendzina or Terra fusca soil 

types dominate where the loess layer is very thin, and various brown soils (Braun- and 

Parabraunerde) or Cambisols to Luvisols are found in locations with a thicker loess layer 

(Mund 2004). All trees were mapped in 1999 and 2007 (Butler-Manning 2008). Within the 

study area, beech accounts for about 90% of the trees. It is the only tree species that 

shows noticeable successful recruitment (Huss and Butler-Manning 2006).  

Beech (Fagus sylvatica) is largely considered a highly dominant species as it has a large 

niche breadth (Pignatti et al. 1996, Leuschner and Ellenberg 2010a). However, the 

occurrence of beech can be limited by late frost, sunburn, and dry and wet soils. Less 

competitive species can thus outperform beech in habitats prone to the occurrence of 

these limiting conditions (Leuschner and Ellenberg 2010a). Ash (Fraxinus excelsior) is the 

second most abundant species, with most of the Ash individuals being large-canopy trees 

(Butler-Manning 2008). Ash changes its light preference from being fairly shade tolerant 

in juvenile stages to light demanding as adult trees (Dobrowolska et al. 2011). Hornbeam 

(Carpinus betulus) shows ecological preferences similar to beech, but is less shade 

tolerant and culminates early in height and diameter growth (Lockow and Lockow 2009). 

However, hornbeam can outperform beech on soils that show a high content of loam or 

clay (Schmidt et al. 2011).  

Hornbeam and Sycamore (Acer pseudoplatanus) occurred in almost equal numbers. 

Sycamore is light-demanding but can tolerate wetter and steeper habitats than hornbeam 

or beech. In other conditions, sycamore is inferior competitor to beech (Roloff 2009). 

Norway maple (Acer platanoides) was in 1999 the rarest of the six studied species. It can 

tolerate drier and wetter sites than sycamore with lesser nutrients and poorer aerated 

soils. However, Norway maple is light-demanding, sensitive to late frosts and of limited 
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height (Hein et al. 2009). Fraxinus and Acer species are known as specialists of alluvial and 

slope forests. We thus expected especially wet and steep subareas to influence the distribution 

of these admixed species. Elm (Ulmus glabra) prefers half-shade conditions on nutrient-

rich, deep soils without consolidation (Schmidt et al. 2011). Being more abundant than 

Norway maple in 1999, elm lost almost half its individuals between 1999 and 2007.  

2.2.2  Digital Elevation Model (DEM) and Topographic Wetness Index 

A DEM derived from data surveyed on a LiDAR flight (Schulze, unpublished data) was 

used as continuous topography data. The resolution was 0.5 m by 0.5 m and covered the 

whole study area. SAGA GIS and RSAGA (Olaya 2004, Cimmery 2010, Conrad et al. 2015) 

were used to calculate the abiotic covariates from the DEM (Tab. 1). The TWI 

(Topographic Wetness Index) describes the amount of water at a location depending on 

the upslope area and the slope and can be used to characterise hydrological conditions 

(Kopecky and Cizkova 2010). Due to nutrient leaching and erosion, the TWI can also be 

an indicator for nutrient availability (Chapin, Matson, and Vitousek 2011). Hill Shading 

gives information on the direction of incoming light and the Cross Sectional Curvature 

(Zevenbergen and Thorne 1987) gives information of the divergent or convergent 

character of the water flow, thus is can detect areas without drain.  

 

Table 2-1 Topographic variables estimated from LiDAR data 

Name Description 
Aspect Horizontal direction that the ground faces 
Catchment area Upslope area (m2) 
Curvature Rate of change of the slope 
Cross Sectional Curvature Convergent or divergent character of the flow 
Elevation Height above sea level 
Hill Shading Direction of incoming light 
Slope Inclination of the ground 

Topographic Wetness 
Index (TWI) 

ln(a/tan(b)), where a is the specific upslope area 
(catchment area) and b is the slope 
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2.2.3 General sampling design and data collection 

Information on tree position, tree species identity, and tree size was collected in 1999 and 

again in 2007. We used a modification of the 50 m × 50 m sample grid established in 1999 

in the study area (Figure. 2-1, (Butler-Manning 2008) to characterise spatial 

heterogeneity in terms of physical and chemical conditions as well as indicator values. We 

established a coarser sampling grid within the study area. Each grid cell was 100 m by 

100 m. We took our measurements in each corner of the grid cell plus at the grid cell 

centre (sample plots). We marked a 10 m × 10 m (100 m2) sample area around each centre 

point of our sample plots. Within the 62 resulting sample plots, all physical 

measurements, and vegetation releve s were conducted (not including the LiDAR data). 

Figure 2-1 Sample design. Grey outline: study plot. Dots: tree positions in 2007. Black lines: 

transects forming the 100 x100 m grid. At each intersect and in the grid cell centre: red square: 

sample area (10 m x10 m) of vegetation relevés and soil samples brown dots: soil samples within 

sample area (up to three soil samples per sample period, three sample periods in total, blue square: 

centre point of sample plot 

 

2.2.4 Soil samples and water content  

Pu rckhauer soil samples were taken in all 62 sample plots in early May 2011, end of July 

2011, and March 2012. In order to include information on soil conditions before and after 
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budburst as well as in full foliation, we conducted a series of soil core sampling and field 

capacity measurements. 

Before sampling, the litter layer was removed. Soil samples were taken at the coarse grid 

scale with a gauge auger (Pu rckhauer) of 100 cm core length and inner diameter of 18 

mm. The auger was driven into the soil with as few strikes as possible. The end was 

defined by making no progress for a maximum of three powerful strikes to ensure that 

smaller obstacles e.g., small roots or stones, would be destroyed.  

Total soil depth was defined as the depth from the top of the mineral soil (A-horizon) 

down to the transition zone to the bedrock (C-horizon). Sampling was repeated twice 

within 50 cm of the first sample if a) no bedrock was visible in the soil core, b) a root or a 

smaller rock seemed to have stopped the auger, and c) soil depth was greater than 

100 cm. 

In order to minimise soil compaction or dislocation, the auger was pulled out as straight 

and smoothly as possible, avoiding rocking or rotating the tube if at all possible. After 

taking the sample, sampling depth was determined and the extracted core was divided 

into 10 cm pieces to gain information on the spatial water distribution. Each sub-sample 

was kept in a sampling paper bag. In order to minimise transpiration, each paper bag was 

enclosed into three layers of plastic bags. All samples were kept in the shade and 

transported with cooling. Weight measurements were conducted on the same day as the 

sampling, with samples stored in the fridge (< 7 °C) as soon as possible. After determining 

the fresh weight, samples were dried at 105 °C for at least 24 hours. Afterwards, soil 

samples were returned into the oven and re-weighted up to three times within one week 

until weight no longer changed. The final weight was considered as dry weight. We 

defined water content per 10 cm piece as the difference between fresh weight 

(FW_sampledepth/10) and dry weight (DW sampledepth/10). Total soil water content 

was defined as the sum of the water content of all pieces within one sample. A high 

content of clay and stone in the soil prevented us from extracting undisturbed samples. 

As a consequence, we determined gravimetric water content, but not volumetric water 

content. 
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2.2.5 Soil water storage and plant-available water 

Soil samples for field capacity measurements were taken in March 2012. Water 

availability depends on physical soil properties, such as grain and pore sizes. The matrix 

potential of a given soil determines how difficult it is for a plant to extract water from this 

soil. The smaller the grain and pore size (i.e. the greater the clay content), the more 

difficult water extraction becomes while soil water storage ability increases. 

Consequently, water content can differ from plant available water. Thus, we determined 

both water storage ability of the soil and plant-available water. 

The soil sample ring for measuring soil water storage ability had an inner volume of 

100 cm³ (internal dimension 57.0 mm x 40.5 mm). These samples were taken at the 

coarse grid scale after removing the litter layer. We calculated plant-available water as: 

 

PAW = FC - PWP   

 

where PAW is the plant-available water, FC the field capacity (180 kPa), which is the 

contained water two days after saturation when excess water has run off, and PWP is the 

contained water at permanent wilting point (20 kPa). The measurements of field capacity 

were conducted after two days of soil water saturation, increasing pressure each week in 

the steps 180, 200, 250, 300, 350, 370, and 420 kPa and weight measurements after 

sampling, and after drying. 

2.2.6 Light availability and canopy photos 

We took hemispherical photos for light measurements with a NIKON (D90 camera and 

AF-S DX NIKKOR 10–24 mm 1:3.5–4.5G ED lens, effective angular field 109°) at the centre 

pole of the sample areas when foliation was complete (July 2011). The camera was turned 

skywards, a bubble level ensured a horizontal position photos at a height of 130 cm. To 

account for underestimation of leaf coverage due to overexposure (Glatthorn and 

Beckscha fer 2014), we took photos with automatic exposure as well as underexposed 

pictures with exposure value -3.0 (Zhang et al. 2005). Photos were taken against a cloud 

cover as uniform as possible, preferring overcast days to avoid scattered light (Seidel 

2011). In cases where taking photos at the centre of the sample areas prevented by a 

blocking tree or low large branches, photos were taken at each of the four corners of the 

sample area. We took high resolution pictures (4288 x 2848 pixels) with ISO set to 200 
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and focus ring set to infinity (Jonckheere et al. 2005). The photos were converted into 

binary pictures (Jonckheere et al. 2004) and further analysed with the freeware image 

tool ImageJ (Abra moff et al. 2004). We calculated the mean gap area, perimeter and shape 

of all gaps larger than 10 pixels for all plot photos. In cases where photos were taken at 

the sample plot corners, these statistics were calculated as the mean over the four 

positions. Where manual exposure yielded a higher value for vegetation cover than 

automated, these photos were used. From these extracted values, we calculated the gap 

shape complexity index GSCI of all gaps, and median GSCI considering the three largest 

gaps (Getzin et al. 2012). 

2.2.7 Species composition and indices 

The vegetation releve s were conducted from May to June 2011 at the 62 sample plots of 

100 m2 size (Muller-Dombois and Ellenberg 1974). Vegetation cover of all vascular plants 

< 130 cm was estimated per species in steps of 5% and estimated on a modified Braun-

Blanquet scale (Reichelt and Wilmanns 1973, Wilmanns 1989). If species cover was 

below 5% (Londo 1976), individuals were counted. Ellenberg’s indicator values 

(Ellenberg et al. 1991) describe the occurrence probability of species along the gradients 

of several abiotic habitat properties on a nine level scale (Ellenberg et al. 1991). As these 

values describe the realised niches of the understorey, we used these realised niches of 

the species from the undergrowth layer to infer the conditions that may form the 

fundamental niches for the tree layer. We expected to find the most pronounced 

differentiation in light and wetness; we thus focused on these two abiotic factors. For 

these two, we considered several aspects, whereas we represented other abiotic 

environmental variables by indicator values only.  

2.2.8 Statistical methods 

Environmental variables were sampled at 62 sample plots spread over the whole study 

plot. Afterwards, we conducted a sequence of statistical analyses: 1) Data interpolation, 

2) choice of variables for abiotic habitat model, and 3) building of tree model 

(Figure 2 - 2). Our first step was spatial interpolation of the variables sampled in grid 

mode to cover the whole area.  
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Because our previous analyses suggested a highly non-linear relationship between abiotic 

covariates and tree layer (Saefken et al. 2013), we used generalised additive models 

(herein: GAMs). We chose the spline type that would produce the most accurate fit for 

each abiotic covariate. We chose the most suitable model based on lowest AIC and highest 

R2-values (Wood and Augustin 2002).  

 

 

Figure 2-2 Work flow of statistical analysis from field data to habitat description (Aim 

1) to an abiotic model for tree size distribution (Aim 2). 
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Most of the abiotic covariates did not share the same units and moreover, they could not 

be assumed to occur in isotropic formations. We therefore used anisotropic tensor 

products for smoothing, (Wood 2006), allowing different units and the unsymmetrical 

smoothing kernel shape, because spline shape is estimated in x- and y- direction 

separately. The interpolation results were used to describe the spatial distribution of 

abiotic conditions, thus characterising the habitat conditions (Aim 1) for each species. 

Aim 2 was to identify suitable sub-regions as suggested by DBH-distribution. From the total 

of 101 sampled possible variables plus 10 derived from topography, we needed to reduce the 

number of variables considered as candidates for an abiotic habitat model. For this, we used 

Random Forests (Breiman 2001), implemented in the R-package randomForest (Liaw and 

Wiener 2002). Random Forests is an ensemble learning method for classification. It gives 

estimates of what variables are important in the classification by growing multiple independent 

decision trees from randomly selected subspaces of data. Classes or mean predictions that are 

chosen with the highest frequency over all grown trees are used. A further advantage for using 

Random Forests on field data is that it can handle missing data well and is insensitive to noise 

(Biau 2012). Random forests correct for overfitting to their training set (Breiman 2001). For 

the tree model, we used the abiotic covariates identified as important by the classification 

method as a point of departure for a backward selection. This was possible for beech, ash, 

hornbeam, and sycamore, while Norway maple and elm had too few individuals compared to 

the possible variables influencing them. For the two latter species, we did a backward selection 

when implementing the GAMs based on the common variables chosen in the models for beech, 

ash, and sycamore. 

In order to account for possible multicollinearity, we conducted PCAs to check whether 

related covariates (Graham 2003) were successfully avoided in the Random Forests 

approach. Within the correlated variables we ensured that the variable that showed the 

higher coverage for variance, i.e. the one contributing most to the axis, was included in 

the candidate model. Log-transformation was performed on gap metric values. By log-

transforming these values we avoided gap area being chosen as highly influential due to 

their high variance alone. 

When the set of possible, non-correlated variables was determined, we applied GAMs to 

link tree patterns with spatial patterns of environmental variables. We chose GAMs as 

there were no indications for assuming a linear relationship between the spatial pattern 
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of tree sizes and the abiotic variables. We used tree size as a response variable and the 

previously interpolated values of the environmental variables at the tree position as explaining 

variables. While tree density is used more frequently than tree size as a response variable (Clark 

and Clark 1984, Chesson 2000b, Bagchi 2007), we decided not to use tree density because in 

our study area tree density is likely to be influenced by strong interaction links, such as 

competition, that may cause mortality (Bagchi et al. 2011, Holzwarth et al. 2013). We also 

included space into the tree model where it performed better than the non-spatial 

equivalent. Because Elm had too few individuals for this analysis, we were restricted in 

the tree size model for Elm to identifying the amount explained by the two most 

influential covariates.  

Thus, this general model (hereafter called tree model) for modelling the DBH structure 

was adjusted depending on the best suitable abiotic covariates for the different tree 

species: 

 

DBH species i (x, y) = f(x, y)+ f(abiot1(x, y))+…+ f(abiotn(x, y)) + ε 

 

The species specific DBH was predicted for each location by using the predicted values 

for topographic and measured covariates for this location. The best model was chosen 

based on AIC and R2. All statistical analyses were carried out in R 3.2.2 (R Core Team 

2015) using the mgcv package (Wood 2006). 

 

2.3 Results 

2.3.1 Abiotic covariates and their interpolation (Aim 1) 

Our first aim was to describe and characterise their spatial distribution of the prevailing 

abiotic conditions which the different tree species experience in the study area. We 

therefore measured or calculated in total 101 abiotic environmental variables (see Table 

2-2) at a regular grid of 62 sample plots covering the whole study area. The measured 

environmental variables included information on soil depth, the vertical distribution of 

water at a 10 cm resolution, and differences in water content per 10 cm as well as the 

whole sampling core. The differences in space were observable within the vertical 

distribution of water. Typically, the mid-parts of the soil cores would include the least 
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water, the upper levels would show the highest variability within time and the lowest 

parts were less variable. Usually, the clay content increased in depth above 60 to 70 cm.  

Sampling the soil was conducted three times in roughly two month intervals, resulting in 

a description of the seasonal variation in time. Soil moisture varied both in space and time 

(see Table 2-2 and Figure 2-3) but with no obvious trend. 

 

Figure 2-3 Best interpolation results of the sampled abiotic covariates that were most 

influential for predicting tree size. The lighter the colouring the higher the predicted values. Note 

that interpolations in each picture has its own scaling and different units. Continentality is a measure 

of the range of temperatures that tend to occur, it is a good indicator for variations in the difference 

between January and July temperatures. 

Gap properties varied largely between the plots. Some plots contained gaps a hundred 

times larger than the largest gaps of other plots (Appendix Table 9-1). Moreover, we 

computed seven abiotic Ellenberg indicator values based on Ellenberg (1991) with the 

plant information from the vegetation releve s (Table 2-3). We identified 65 different plant 

species on our sample areas, eight of which were tree species. The range of species 

richness was 5 to 28 species per 100 m2 with a mean of 12 (±4) species. The indicator 

values showed a small range and little variation between the sample plots (Table 2-3).  
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Table 2-2 Abiotic variables calculated from field capacity and field measurements (soil 

samples, hemispherical photos) 

Variable name Description    
wL.spec Light indicator value weighted by species cover 
wT.spec Temperature indicator value weighted by species cover 
wK.spec Continentality indicator value weighted by species cover 
wR.spec  Acidity indicator value weighted by species cover 
wF.spec Wetness indicator value weighted by species cover 
wN.spec Nitrogen indicator value weighted by species cover 
Area.max1 Largest gap area 
Area.max2 Second largest gap area 
Area.max3 Third largest gap area 
GSCI.max1 Gap Shape Complexity index of largest gap 
GSCI.max2        Gap Shape Complexity index of second largest gap 
GSCI.max3        Gap Shape Complexity index of third largest gap 
GCSIplot.median Median of Gap Shape Complexity index of three  

largest gap 
nFK  or PAW             Plant available water 
pF1_8            Fresh weight when saturated with water  

(pF 1.8 bar) 
MD1_1  Maximum soil depth in May 
MD2_1  Maximum soil depth in July 
MD3_1  Maximum soil depth in March 
var_depth        Variation in soil depth between samples 
sd_depth         Standard deviation of soil depth between samples 
mean_depth       Mean soil depth over three sample periods 
Perim.max1      Largest gap perimeter 
Perim.max2       Second largest gap perimeter 
Perim.max3       Third largest gap perimeter 
DUS2_1 Dry weight of upper soil in July 
FWUS2_1          Fresh weight of upper soil cm in July (Pürckhauer) 
DWUS2_1          Fresh weight of upper soil cm in July (Pürckhauer) 
FW2_1_1          Fresh weight of upper 10 cm soil in July (Pürckhauer) 
FW2_1_2          Fresh weight of upper 10-20 cm soil in July (Pürckhauer) 
FW2_1_3      Fresh weight of upper 20-30 cm soil in July (Pürckhauer) 
FW2_1_4         Fresh weight of upper 30-40 cm soil in July (Pürckhauer) 
FW2_1_5          Fresh weight of upper 40-50 cm soil in July (Pürckhauer) 
FW2_1_6 Fresh weight of upper 50-60 cm soil in July (Pürckhauer) 
FW2_1_7          Fresh weight of upper 60-70 cm soil in July (Pürckhauer) 
FW2_1_8          Fresh weight of upper 70-80 cm soil in July (Pürckhauer) 
FW2_1_9          Fresh weight of upper 80-90 cm soil in July (Pürckhauer) 
DW2_1_1 - DW2_1_9                 Same as above for dry weight  
diff.soil1       Contained water in first 10 cm soil  
diff.soil2       Contained water in first 10-20 cm soil 
diff.soil3       Contained water in first 20-30 cm soil 
diff.soil4      Contained water in first 30-40cm soil 
diff.soil5       Contained water in first 40-50 cm soil 
cont.water Sum of contained water in first 10-50 cm soil 
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Table 2-3 Summary of indicator values and number of species < 130 cm height over all 62 

sample plots (10 m x10 m). Ellenberg indicator values were weighted by species cover at the plot 

level. Weighted Ellenberg indicator values following standard German abbreviations : wL= light, 

wT=temperature, wK= Continentality (Kontinentalität), wF=wetness (Feuchte), wR=reaction, 

wN=nitrogen. R2 = explained variance by best interpolation model of field data (GAM). 

Weighted indicator 
values 

Mean Range  
 (± standard 
deviation) 

R2 

wL 3.4 2.57-5 (±0.42) 0.19 

wT 4.9 3.36-4.67 (±0.31) 0.27 

wK 2.15 1.67-2.5 (±0.2) 0.11 

wF 5.39 4.22-6.68 (±0.52) 0.25 

wR 6.49 5.25-7.37 (± 0.52) 0.25 

wN 5.07 4.06-6.25 (±0.45) 0.18 

Num. species  11.94 5-28 (±4.34) not applicable 

 

In order to gain continuous spatial information, we interpolated all 101 different abiotic 

covariates (Appendix Table A7-2). In all interpolations of abiotic covariates, tensor 

product splines outperformed isotropic smoothers, except for the weighted indicator 

values for light and the logarithm of the gap area. The fit of the interpolation was generally 

low, usually explaining about 20% of the observed variance. R2 varied from 0.03 for the 

differences in soil water content at 40 cm depth to 0.56 for the soil depth in July. In 

general, soil depth, mean values, and largest gap area were better predicted by our models 

than parameters with stronger fluctuations, such as contained water in soil and gap 

shape. Also, Ellenberg indicator values were predicted with low fit (R2=0.11 to 0.27). Soil 

water content and soil depth differed in local values as well as in spatial distribution 

(Figure 2-3) between the three sampling periods. Differences in soil depth can be partly 

attributed to seasonal changes in water content that made it difficult to drive the auger 

deeper into the soil.   

2.3.2 Modelling tree species diameter from the interpolated abiotic covariates  

(Aim 2) 

Our second aim was to connect the abiotic environment to the tree layer. In order to 

analyse the fundamental niches of the tree species more closely, we tried to predict the 

DBH distribution in space for each species. Based on our analysis with Random Forests, 

continentality 

moisture 

Ellenberg indicators 
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tree size was influenced by multiple covariates (Table 2-4). The best performing tree 

models included more detailed variables, especially in soil information, than the 

respective PCAs. We did not include correlated variables in the final species models (Table 

2-4). That reduced the variables for light to the logarithm of the largest gap and median 

GCSI. Included in the final tree size models were also variables derived from the DEM: 

Slope, TWI, Hill shading, and Cross Sectional Curvature (Table 2-4 and 2-5). The included 

variables for the model with the highest R2 value and the lowest AIC are presented in 

Table 4 and 5 (R2 of final model).  

The PCA (Appendix Figures A 8-1 to A 8-3) showed that most measured variables have 

little shared variance. PCA had soil effects as a first principle component with the variance 

in soil depth over time contributing most. The second principal component can be 

characterised as describing water related summer conditions. This axis was loaded by 

plant-available water capacity, soil depth in summer, contained water in summer and Hill 

Shading. The PCA confirmed that the indicator values did not share variance but contain 

different information.  

Tree species differed in the abiotic covariates that had the greatest influence (based on 

variable importance from Random Forests and R2) on their size (Table 2-5). Including 

space into the model improved model predictions for Ash and Hornbeam, which were the 

second and third most abundant species. The best tree models included information that 

was specific to soil layer and time. Covariates that influenced water availability appeared 

to have the highest impact on most of the tree species. Fresh weight was identified to be 

more influential for tree size, although dry weight can be considered the more constant 

property. Before including topographic variables, species showed the abundance- 

dependent line- up as indicated from the spatial patterns of Chapter 1 (Appendix Table 

A9-5), meaning that the DBH of beech could be predicted with the least, Elm with the 

highest accuracy. However, including topographic variables improved the model fit, but 

dissolved the abundance-dependent pattern. Especially for beech, including topography 

improved the predictive power (cf. Table 2-5 to Appendix Table A 8-5). However, the tree 

size model of beech still had a low fit, although it was the most complex model.  

Only Slope considerably influenced habitat suitability for beech, with only few beech trees 

growing into large trees on steeper slopes whereas the other covariates had relatively 

small influence. Soil information related to summer droughts were also influential. The 
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tree size distribution of ash, sycamore, and Norway maple could be better predicted than 

for beech, hornbeam or elm by abiotic habitat information. This better model fit was not 

related to DBH distribution or species frequency. It coincided with one of the water-

related covariates being most influential on the tree size of the concerning species. 

Predictions for beech improved when allowing for a higher degree of non-linearity i.e. 

increasing the number of nodes. 

Predicting beech sizes required the highest number of abiotic covariates included into the 

model. We found evidence of the different tree species showing different realised niches 

in the subset of abiotic conditions (Table 2-4) that was most influential for their habitat 

suitability. Within the model, beech reacted particularly sensitive towards slope. Ash was 

sensitive to temporal variation in soil depth, and water content in the upper layers, 

especially in summer, and topography. The tree size of Hornbeam is also influenced by 

numerous factors, soil acidity being the most pronounced among them. Sycamore was 

most influenced by covariates that are related to light and water availability. The tree size 

of Norway maple could be explained best by water content in summer, slope and nitrogen. 

The low abundance of elm made tree size modelling difficult, as we could only account for 

two covariates at a time due to lack of data points. We identified slope and continentality 

to be the two most important determinants for tree size in Elm. The R2-value for elm is 

thus a value for a model including only two covariates (cf. Table 2-5). 
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Table 2-4 Abiotic covariates included in the final species-specific tree size distribution model. 

Note that, other than suggested by PCA, indicator values are suggested as contributing to prediction 

in all six species, whereas variance in soil depth is chosen only for beech and ash. The final species 

model can be read a combination of all variables marked with x in the particular species-column. 

The included covariates are a result of a backward selection based on AIC within the candidate GAMs 

for DBH-distribution with the results of Random Forests as a point of departure.  

Covariate beech ash hornbeam sycamore 

Norway 

maple elm 

Analytical.Hillshading x 
 

x x  
 

cont.water_1 x 
 

x x  
 

cont.water_2 x x x  x 
 

cont.water_3 x 
 

 x  
 

Cross.Sectional_Curvature  x    
 

diff.soil1_2  x    
 

diff.soil1_3  x    
 

DW1_1_4 x 
 

   
 

FW1_1_1  x    
 

FW2_1_1  x    
 

GSCIplot.median x 
 

 x  
 

logArea.max1  x x   
 

logArea.max2   x    

MD1_1 x 
 

x x  
 

MD2_1 x x  x  
 

MD3_1 x 
 

x x  
 

PAW x x x x  x 

Slope x 
 

x  x 
 

Space included x x x   
 

Topographic_Wetness_Index  x    
 

var_depth x x    x 

wF.spec x 
 

x x  
 

wK.spec  (x)    
 

wL.spec x 
 

 x  
 

wN.spec  x   x 
 

wR.spec x 
 

x   
 

wT.spec  x    
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Table 2-5 Species identity, abundance and abiotic covariate in tree size distribution models 

that influenced species specific tree size most (, i.e. resulted in highest R2 as sole independent 

covariate) 

 

2.4 Discussion 

With this study on abiotic drivers of spatial pattern formation in forest communities, we 

rose to the call that more assessments of habitat suitability have to be done under field 

conditions to evaluate the role of niches for species coexistence (Pulliam 2000). Our study 

confirms and refines classic theoretical assumptions: Species coexistence has long been 

Species Number of 

individuals 

R2 

Including 

topography 

Most influential 

covariate 

AIC highest - lowest 

1999 2007   

 beech 

 (Fagus 

sylvatica)  

13307 12191 0.17 Slope 107214.1-1064229 

ash  

(Fraxinus 

excelsior) 

550 527 0.32 Water content 

(spring) 

4523.023-4507.443 

hornbeam  

(Carpinus 

betulus) 

389 361 0.16 Soil acidity 2709.013- 2698.533 

sycamore 

(Acer 

pseudoplatanus) 

321 345 0.55 Water content 

(summer) 

2880.668-2849.574 

Norway maple 

(Acer 

platanoides) 

44 40  0.41 Water content 

(summer) 

441.43-336.3 

elm 

(Ulmus glabra) 

69 39 0.24 continentality 862.94-854.81 
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attributed to niche separation (Gause 1934, Hutchinson 1961). We found that species 

differed in the subset of abiotic conditions that had resulted in the most suitable habitat 

patches. The idea of niche separation was later augmented by acknowledging 

environmental heterogeneity (Levin and Paine 1974, Levin 1992a, Dale 1999). Our 

findings fit into this setting, where highly heterogeneous abiotic conditions were utilised 

differently between species, leading to spatial segregation (Chapter 1 and 3). This 

assumption of influential heterogeneity has been complemented by re-emphasising the 

influence of similarity for the spatial formation of coexistence patterns (Abrams 1975, 

1976, Webb et al. 2002) and abundance (Condit 2006, Baldeck et al. 2013). However, 

delineating niches and conclusively assessing habitat suitability remains difficult. Our 

study highlights the need of comprehensive field data as well as the consideration of other 

species to reflect on the interaction between suitable habitat and available spaces in the 

light of competition (see Chapter 3).  

In compliance with Aim 1, we have assembled a comprehensive data set on the spatial 

distribution of light, water availability, and topographic information in a near-natural forest. 

We found spatial and temporal variation in all measured data. This highlights the advantage of 

a constant habitat component like topography, which is often used for niche and habitat studies 

(Guisan and Zimmermann 2000, Wright 2002). However, the temporal and small scale spatial 

resource partitioning we found e.g. in soil also implies, that if explicit niche separation is a 

study aim, detailed and repeated sampling is necessary. We suggest that further studies should 

consider including samples that allow inferring at the scale of the individual tree within habitat 

patches. However, in order to be able to separate the suitable habitat between the different 

species, large scale heterogeneity proved to be valuable. We notice that despite the low fit at 

which abiotic covariates were sometimes interpolated, there is valuable information to be 

gained on the interaction between species and habitat. We therefore would like to encourage 

more field studies to complement existing data. There was no direct link between a covariate 

being influential on the tree layer and the quality of its interpolation (water content at high 

depth) or small differences (continentality). We conclude that subtle differences and weakly 

linked covariates can add valuable information, if supported by unambiguous data. The ability 

of tracing determining factors over a longer time frame merits the conclusion that the general 

framework allows an assessment of the abiotic environment with a longer time lag. However, 

further studies should consider sampling concurrent to the census and adding samples at finer 

spatial and temporal scales.  
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We used the interpolated abiotic data compiled for Aim 1 to attain Aim 2, which was to 

determine whether the differences in the spatial patterns of common and rare tree 

species (Chapter 1) were an effect of species’ competitive abilities, i.e. result of 

competitive exclusion, or of differences in their fundamental niches. Here, we found that 

species did indeed differ in their fundamental niches. The number of relevant 

environmental variables differed (9 to 14, not considering Maple and Elm) as well as the 

abiotic habitat variables that were important.  

We expect that differences especially in the link between soil conditions and tree pattern 

could be tighter, if there had been a typical dry period in summer. The year 2011 included 

a dry spring and a wet but warm summer (DWD 2011). In the summer 2011, soil samples 

could thus only be taken within a week without rain, but no more. This might mask typical 

trends. However, as weather is expected to change with climate change, there is a need of 

more investigation. Other studies predict short-term changes in the tree layer dynamics 

under severe changes of the environmental conditions (Jump et al. 2006, Lindner et al. 

2010).  

There seems to be a tendency that abundance influences the impact of abiotic covariates 

on tree size negatively, indicating that the abiotic niche restrictions seem to be less severe 

in this study. This seems not to be a mere artefact of sample size, but of species niche 

traits. We conclude this from the two Acer species occurring in different numbers but 

showed a similar impact of the abiotic environment on the species.  

Abiotic niche covariates alone were not a good predictor for beech tree size. Even a large 

number of covariates included did not result in a particularly high model fit. This seems 

to indicate that beech was not restricted to a certain set of abiotic conditions and thus no 

limiting factor for beech was identified, as expected for a generalist species. As a shade-

tolerant species, the best beech model did not include light covariates but only those that 

held information on topography and water content (Metz et al. 2016). Beech showed only 

small tree sizes on sites with a steep slope that exhibit shallow soil, low water availability 

while proposing an increased risk of wind throw. Thus, slope being the most influential 

covariate for beech is in line with beech being largely excluded ravine forests (Bartsch 

and Bartsch 2013, p. 44).  

Surprisingly, while ash, the second most abundant study-species, is known to be highly 

light-dependent (Ellenberg et al. 1991; Leuschner and Ellenberg 2010) the resultant 
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model did not include any of the light-related covariates. This could either mean that our 

methods were not able to grasp the true influencing light covariates or, that light is indeed 

not a limiting factor because Ash is mostly present in the canopy in our study area (Butler-

Manning 2008). Ash seems to react to changes in deeper soil layers than beech, with 

deeper soil layer being included into the tree size model. Probably due to the higher 

wetness tolerance indicated by the higher occurrence of ash in the gully area, the TWI had 

a significant influence on the tree size of ash.  

Analogously to the exclusion of beech by slope, the best predictive variable for the DBH of 

hornbeam was the Ellenberg indicator for soil acidity. Hornbeam is known to avoid acidic 

soils (Lockow and Lockow 2009) which our best predictive model confirmed. 

Additionally, hornbeam was influenced by gap area. This is in line with the observation 

that hornbeam requires canopy gaps to successfully compete against beech (Frech et al. 

2003, Lockow and Lockow 2009). 

Despite their difference in abundance, sycamore (intermediate numbers) and Norway 

maple (rare) showed similar spatial patterns (Chapter 1, Figure 1-3) and were similarly 

well modelled by the abiotic conditions based on R2. Both sycamore and Norway maple 

responded strongest to water availability in summer. These results seem to support that 

trait similarity, abundance, and small phylogenetic distance can lead to spatial clustering 

(Scheffer and van Nes 2006; Hardy and Sonke  2004). The similar spatial and niche 

patterns of sycamore and maple despite their difference in number can thus be attributed 

to habitat filtering and the niche differentiation forced by beech as a strong competitor 

(Molofsky and Bever 2002a).   

This seems to suggest, that for these species differences in fundamental niches allow 

coexistence, whereas for the other species (beech, hornbeam, and elm) competitive 

exclusion mostly determines the spatial distribution of suitable habitats. This process 

seemed to be driven by the competitive exclusion by beech, as species only occur in higher 

numbers where beech cannot reach dominance (see Chapter 1). However, Molofsky and 

Bever (2002a) demonstrated that positive frequency dependence between species 

combined with limited habitat suitability can maintain species diversity even in presence 

of a strong competitor such as, in our case, beech. 

For Ash, Sycamore, and Norway Maple, the differences in the influencing abiotic 

conditions indicate niche separation. In this study, the tree size for these three was better 
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explained by strictly abiotic models than those of beech, hornbeam or elm. Ash, sycamore, 

and Norway maple form a species combination known to the specialist habitat of ravine 

forests. This corresponds to the results of Wang et al. (2010)who hypothesised that 

species poor forests would show stronger species associations that species rich forests. 

The importance of niches in these results are in line with Chapter 1 (Figure 1-3) that Ash 

and the Acer species were mostly determined by abiotic conditions are also those that are 

best explained in their spatial distribution by niche processes. As we used tree size as an 

indicator for habitat suitability in the present analysis, this implies that Ash, Sycamore, 

and Norway Maple differ in their fundamental niches and can thus coexist. The 

probability of these species establishing large trees is more determined by abiotic 

covariates than beech, hornbeam or elm.  

The validity of the indicator values is not universal (Barkman et al. 1964, Jongman et al. 

2002). However, they were designed for the area in which we sampled, thus we believe 

they are appropriate for our case study. Despite very small variation within most indicator 

values, indicator values were clearly a useful proxy for the habitat conditions to model 

tree size. For instance, continentality in which the study species differed most (Ellenberg 

et al. 1991), differed less than one level between all plots, but influenced almost all 

species. Similarly, the topography showed little variability in our study area. Still, 

topography proved to be an important determinant for tree size distribution, especially 

as an excluding factor for beech.  

While the species’ tree models that did not include topography showed a clear line-up in model 

fit according to abundance, this pattern was dissolved when including topography. This allows 

the conclusion that self-similar patterns (Chapter 1, Figure 1-4) can be tied to abundance 

(Condit 2006). However, the reverse is not true: Abundances alone cannot be used to infer on 

the relative impact abiotic conditions have on habitat suitability for a species. 

The commonness of species influences the per capita growth rates of species, because due to 

higher numbers common species more often encounter and compete with conspecifics than 

with individuals of other species. A growth reduction by intraspecific competition consequently 

is or becomes less severe if species are or become rare (Levine and HilleRisLambers 2009).  

Due to a lower niche overlap, usually other species have less competitive impact on per capita 

growth. Moreover, there can be mechanisms working that allow rare species to persist in the 

presence of a strong competitor, such as strong self-limitation within the superior competitor 
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species (Yenni et al. 2012). 

This is in line with results showing that own and neighbour species identity determined 

growth patterns while neighbourhood diversity was unimportant (Jacob et al. 2010, 

Ratcliffe et al. 2015). This influence of neighbouring trees is also a possible explanation 

for the low model fit and shows the need to investigate the proportion of biotic 

interactions on growth patterns (see Chapter 3).  

It becomes apparent that species differ in their sensitivity towards the different abiotic 

covariates. There seemed to be a negative impact of depth above 60 to 70 cm (Saefken et 

al. 2013), that seemed to be linked to the high clay content, which results in a high amount 

of water being stored, but inaccessible for plants. It seems that the best explaining 

variables for tree size for the particular species are interestingly not those that would 

facilitate the species, but those that are known to be adverse to a particular species. This 

stresses the influence of habitat filtering (Baldeck et al. 2013). The observed importance 

of fine spatial scales, e.g. differentiation happening at soil layers only 10 cm apart (e.g. 20 

to 30 cm depth), or sensitivity to variation within a few months, may very well be the 

ecological answer to reconcile both contrasting mechanisms, niche separation, selecting 

for ecologically different species, and habitat filtering, which results in ecologically 

similar species while excluding non-similar species that are not adapted to the excluding 

abiotic conditions. Our results might imply that habitat filtering acts at coarser scales 

while niche differentiation can happen at small temporal and spatial scales (Peterson 

1999, John et al. 2007). 

This seems to support the suggestion that the supposedly opposing mechanisms of 

similarity and differentiation can –as a result- lead to emergent neutrality (Holt 2006; 

Vergnon, van Nes, and Scheffer 2012; Scheffer and van Nes 2006). The theory of emergent 

neutrality suggests that species can coexist when they differ ecologically so much that 

they minimise interspecific competition or they differ so little in their ecology that the 

outcome of competition is stochastic and they thus behave de facto neutral. Therefore, 

even in a setting that clearly contains niche structures, there seem to be subsets where 

neutral or de facto neutral interactions should be considered. This is the case, where niche 

overlap is large (Bewick et al. 2015) – as in our study setting– or species interactions do 

not result in different demographic rates (Hubbell 2001). Our results underline that niche 

and neutral processes can happen in parallel in a complex study system and should not 



61 

 

be considered as mutually exclusive. The difference between species that are irrelevant 

under a certain set of conditions, may, however, be important under changing 

environmental conditions. 

 

2.5 Conclusions 

Habitat filtering and niche separation are stated opposing mechanisms in coexistence. 

This gradient seems to be a good explanation for species that react to heterospecifics 

either in dependence of the density of the interacting species or their ecological similarity. 

We found species association of ecologically similar species. Our results indicate that 

strong competitors, in our case beech, can influence the inferior species to occupy 

subspaces of the niches by competitive exclusion. Thus the density of beech seems to 

influence the other species. Niche differentiation in the abiotic conditions allows admixed 

species to occupy habitat outside the range of beech’s optimal habitat. Habitat filtering 

pre-defines the traits required for existence in these marginal habitats. This filtering thus 

constrains the ecological differences between the admixed species. Our study 

demonstrates that a possible mechanism for coexistence is the differentiation in abiotic 

conditions at small spatial and temporal scales under a larger filtering mechanism.  
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3 Chapter 3: Pattern to process in a near-natural temperate 

forest 

Abstract 

Ecological spatial patterns work as an archive of the processes that created them. It is one 

of the key questions in ecology to identify those processes. This is often difficult because 

several processes happen at the same time or influence later processes. Moreover, the 

individuals are influenced not only by other individuals, but also by their abiotic 

environment. Despite the recent advances on including field data, our study contributes 

to closing the gap on spatial processes that created the distribution pattern of species in 

a temperate forest. We used a data set from the Hainich National Park in Central Germany. 

The forest is beech dominated with admixed ash, hornbeam, sycamore, Norway maple 

and Wych elm. We included previously sampled and interpolated spatial data on abiotic 

condition, and topography. These information were included in ten different Spatial Point 

Process Models to infer on the relative importance of abiotic and biotic interactions, and 

on the scales of biotic interactions. We found that the intraspecific interactions influences 

the spatial distribution of all species most. Interspecific interactions influenced only the 

two rarest species, elm and Norway maple, and small beech. However, abiotic conditions 

play a role in the spatial distribution process in creating sub-habitats were competitive 

pressure, especially coming from beech, is lower. Moreover, we found an influence of 

small-scale abiotic heterogeneity (small areas without drain) that also influences small 

scale spatial patterns in ash. While the other four species were sufficiently modelled 

assuming little local interaction, the distribution process of sycamore (narrow niche) and 

beech (narrow dispersal kernel) were heavily influenced by small scale intraspecific 

interactions (Cluster processes), which indicates biotic heterogeneity. Our study suggests 

that small scale heterogeneity can result from many sources. Therefore, ecologists should 

act cautious when analyzing small scale interactions. 
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3.1 Introduction 

Linking observed patterns and underlying drivers and processes is one of the 

fundamental issues in ecology and ecological point pattern analysis ( Watt 1947, Dale et 

al. 2002; Vela zquez et al. 2016; Genet et al. 2014; Law et al. 2009; Levin 1992). This link 

is especially difficult to uncover when several dynamic processes interact to shape the 

observed spatial pattern (McIntire and Fajardo 2009). Patterns are observations showing 

non-random structures (Grimm et al. 2005) they thus contain information on the 

processes that formed them over the course of time. However, information on spatial 

patterns is usually used only indirectly conclude about ongoing processes, such as 

competition, spatial segregation(Vela zquez et al. 2016). This creates an ambiguity 

because patterns could be explained by abiotic heterogeneity or by biotic interactions. 

This mixture of information can only be separated by using real data directly taken from 

the abiotic environment. Up to now, this approach has been rarely taken (but see Uria-

Diez, Iba n ez, and Mateu 2013; Zhang et al. 2011). 

Spatial patterns of trees in a forest are formed by concurrent components (Chesson 

2000). Abiotic components may refer to topography or soil type (Wang et al. 2012) and 

biotic components may refer to competition (Stoll and Bergius 2005) or dispersal 

(Kimmins 2009; Clark et al. 1999). Different abiotic conditions offer different resources 

and thus niches. This creates sub-habitats whose suitability varies depending on species 

identity (Hirzel and Le Lay 2008). Species tend to prefer similar conditions, which may 

result in niche overlap and thus greater competition. Depending on biotic factors such as 

competitive strength, species may exclude one another in space, evading to patches of 

suboptimal abiotic conditions where the inferior species might realise higher growth 

rates than the superior competitor species (Tilman 1982, Leuschner and Ellenberg 

2010b). Thus, abiotic and biotic components can have varying relative importance for a 

particular species. In heterogeneous environments, the identification of the most 

important process components has to be spatially explicit (Beckage and Clark 2003): To 

derive the underlying processes from a particular spatial tree pattern, not only the critical 

abiotic and biotic process components need to be identified, but also their spatial 

arrangement (Levin 1992b, Rahbek 2004, Wang et al. 2012, Boyden et al. 2012). In 

addition, some components, such as resources, can be partitioned concerning space 
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(Schoener 1974, McKane et al. 2002), certain components of the abiotic environment, 

such as soil moisture (Le Roux et al. 1995, Weltzin and McPherson 1997), but also 

concerning temporal scales (Chesson and Warner 1981).  

How abiotic resources are partitioned and how this influences biotic interactions such as 

competition is highly dependent on species traits (Gremer et al. 2013) and can change 

spatial assembly patterns (Chaco n-Labella et al. 2016). These traits can refer to 

physiology (e.g. root shape), life history (e.g. switch in shade-tolerance) or typical 

rejuvenation patterns (e.g. in gaps or as clusters). Abiotic and biotic process components 

can thus be linked to the spatial pattern of trees in forests to uncover mechanisms of 

spatial forest assembly.  

Point Pattern Analysis (PPA) provides powerful techniques for characterizing ecological 

patterns in the spatial distribution of individuals (points). The applications of PPA range 

from epidemiology(Bailey and Gilligan 2004) to ornithology(Cornulier and Bretagnolle 

2006) and forestry (Stoyan and Penttinen 2000b, Wang et al. 2012). Recent advances in 

PPA have made it possible to include spatial information on abiotic covariates such as pH 

or elevation. To include these additional information can underpin the link between 

pattern and process, but requires both data on the spatial pattern and data on prevailing 

abiotic conditions.  

Spatial point process models (SPPM) are stochastic models which are used to generate 

point patterns. SPPMs can be used to the establish the pattern-to-process-link by 

including processes assumed to have created the observed pattern into the model (Mø 

ller and Waagepetersen 2003, Illian et al. 2008). SPPMs can simulate the impact of 

ecological processes that form ecological point patterns. SPPMs can thus test data-driven 

null-models on the consequences of the ecological process. For example, SPPMs can be 

used to study how heterogeneity influences tree density (Chapter 1) by affecting the 

spatial distribution of habitat suitability for tree growth (Chapter 2). Although the 

technical methods are improving, the application of SPPMs in ecology seems to have been 

largely restricted to one- or two-species settings or disregarding species identity 

(Rathbun and Cressie 1994, Getzin et al. 2006), mostly did not account for heterogeneity 

(Vela zquez et al. 2016), and are only recently combined with findings from abiotic field 

data (Zhang et al. 2011, Uria-Diez et al. 2013, Mi et al. 2014) .  
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In this paper, we carry out a comprehensive analysis of the patterns and processes in a 

near-natural temperate forest plot, consisting of over 13,000 tree individuals from six 

studied species. To characterise the abiotic environment, we considered 20 abiotic 

covariates (preselected in Chapter 2 from 101 abiotic covariates measured in the field). 

Patterns and processes were linked by building spatial point process models (SPPM) for 

the distribution of the tree species. Biotic covariates (nearest neighbour distances and 

local tree density) were considered. For each species pattern, we investigated ten 

hypothesis representing different combinations of the abiotic framework for the biotic 

interactions involved in the spatial distribution process. In order to assess the quality of 

the pattern-to-process-link, and based on the best hypothesis as selected by AIC, we 

simulated species specific point patterns and compared the results to the observed tree 

patterns. We were able to identify the biotic and abiotic factors required to reconstruct 

the spatial distribution process for all six species. Similar to previous investigations 

(Chapter 2) the resource separation between species happened at small vertical spatial 

scales. We found that no tree pattern depended on abiotic conditions alone, but also a 

purely biotic model sufficed only for the two rarest species, Norway maple and Wych elm. 

The distribution of beech and sycamore followed a cluster process, suggesting 

dependence between the trees, whereas all other species followed a Poisson process.  

  

3.2 Methods 

3.2.1 Study area 

We chose a near-natural mixed-Beech forest area of 28.5 ha in the Hainich National Park 

(51° 06’ N, 10° 31’ E), Thuringia, Germany. The study area lies in the core zone of the 

National Park (Figure 0-1) and has experienced decreasing management in the last 150 

years. Management ceased completely in 1997 with the foundation of the National Park. 

It is thus not a primary forest, but an old-growth stand (Mund 2004) with spatial 

characteristics very similar to virgin beech forest found in other parts of Europe (Butler-

Manning 2008).  
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Within the study area, all trees taller than 130 cm were fully mapped in 2007, yielding 

data from 13503 individual trees of the six studied species (Figure 1-1). Beech (Fagus 

sylvatica) accounted for 90% of the individuals, with the admixed species ash (Fraxinus 

excelsior), hornbeam (Carpinus betulus), sycamore (Acer pseudoplatanus), Norway maple 

(Acer platanoides) and, Wych elm (Ulmus glabra) .  

3.2.2 Model covariates (abiotic and biotic) 

We investigated the spatial process that formed the spatial distribution of the six studied 

tree species. To examine the effect of abiotic heterogeneity on the spatial distribution of 

each of the tree species, we included environmental covariates derived from topography 

(elevation, slope, hillshading, Topographic Wetness Index (TWI)) and measured in the 

field regarding light (Ellenberg L-Value, canopy gap area, and canopy gap shape), soil 

properties (Ellenberg F, R, N values, soil depth), and water availability (e.g. water 

contained per 10 cm soil layer, water content, seasonal variability). Topographic 

information was available at a 0.5 x 0.5 m scale, other abiotic information at a 75 x 75 m 

scale. In order to identify the crucial covariates required to recreate the spatial process 

creating the observed pattern, we used the interpolation surfaces fitted to the abiotic 

covariates (Chapter 2) and the estimated intensity functions of the species-specific point 

processes (Chapter 1).  

3.2.3 Point Process Analyses  

Results of Chapter 2 suggest that the spatial pattern formation includes the interaction of 

several abiotic and biotic covariates. Here, we developed several point process models to 

predict local tree density. A first set of models included only the abiotic heterogeneity. 

Second, both abiotic and biotic covariates were included. Here, we assumed that all tree 

individuals irrespective of size and species are equal in their impact. Third, in the 

combined abiotic and biotic models, we distinguished between conspecific and 

heterospecific individuals. For each tree species, we used the abiotic covariates identified 

in Chapter 2 (based on habitat suitability). For the biotic interactions, we considered two 

measures: nearest neighbor distance, which should be sensitive to the existence of 

clusters, and the density of trees in the neighbourhood, which should mirror density-

dependent effects. In order to identify the most parsimonious model, we used both 

backward and forward selection of variables for the point process models.  
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To create the point process models, we used the inbuilt point process functions in R 3.3.0 

{spatstat 1.4.2} (Baddeley and Turner 2005). This function was used to build linear 

additive models with the spatial covariates explained above and using the spatial 

distribution of trees observed in the field (Chapter 1) as response variable. These spatial 

models predict the number of expected points per unit area, i.e. the expected intensity at 

each location of the study area for each species (Baddeley et al. 2015).  

For each species, we tested the AIC-performance of the following models, moving to the 

next model, if the inhomogeneous pair-correlation function of the observed pattern 

deviated from the simulation envelopes built from realisations of the point process 

model: 

1) Neither abiotic nor biotic covariates drive tree density distribution. This 

corresponds to a homogeneous Poisson point process. 

2) All abiotic covariates (identified in Chapter 2) drive tree density distribution (full 

model). This and the following models up to model 9) correspond to 

inhomogeneous Poisson point processes 

3) Selected abiotic covariates drive process (selected via backward and forward 

selection) 

4) as 3, but  including interaction 

5) biotic covariates (local tree densities and nearest neighbour distances) drive tree 

density distribution  

6) as 4, but additionally allowing biotic interactions as represented by local tree 

density and nearest neighbour distance  

7) as 6, but distinguishing between inter- and intraspecific local tree densities and 

nearest neighbour distances 

8) Abiotic and separated inter- and intraspecific interactions (performing backwards 

selection and forward) 

9) As 8, but including smaller bandwidth by using cross-validation algorithm (Diggle 

1985, 2001, Berman and Diggle 1989)  to select a smoothing bandwidth for the 

kernel 

10)  As 9, but including dependence between individuals in the distribution process of 

the trees. This corresponds to a LogGaussian Cluster process. 
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For each species, we used the AIC to evaluate the model performance, with lower AIC 

values indicating better performance. This means better ability to predict the observed 

intensity for the species in question. As a next step, we investigated the scale-dependent 

performance of the selected models. To this end, for each species we simulated the model 

selected by AIC and compared these simulated patterns to the observed tree point 

patterns. For each species, 199 simulations of the selected point process model for were 

used to construct a simulation envelope based on a 95% confidence interval. If the 

selected model describes the process forming the real tree pattern well, the 

(inhomogeneous) pair-correlation function calculated from the observed tree 

distribution should fall into the simulation envelope(Gotelli 2000, Potts et al. 2004).  

 

3.3 Results 

In order to identify the determinants of the spatial pattern forming process, we built 

species-specific Poisson or Cluster point process models (models 2– 10, cf. Methods) that 

potentially included a combination of biotic and abiotic covariates. For each species, we 

chose the Poisson point process model with the lowest AIC as the best, i.e. parsimonious, 

model.  

The homogeneous Poisson point process was never selected (model 1). Species differed 

in the combination of factors included in their best-fitting model, i.e., that determined 

their spatial pattern forming process (Tables 3-1, 3-2). No two species shared a similar 

factor combination. From the abiotic variables, no variable was important for more than 

three species. From five investigated Ellenberg indicator values, only Light, Wetness, and 

Acidity (L,F, R) were included in any of the species’ point process model.   
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3.3.1 Biotic interactions 

The best point process model (Figure 3-1) for beech (DBH 10-30 cm), ash, hornbeam, and 

Norway maple included only intraspecific interactions, no interspecific interactions 

(model no. 8, 8, and 5). The models for small and large beech, sycamore and elm 

additionally included interspecific interactions (model no. 10, 10, and 5. respectively)). 

Only the models for the two rarest species, elm and Norway maple included biotic 

interactions only even after backward or forward selection (model 5). This is the case 

although a purely biotic model also had a lower AIC for ash, hornbeam, and big beech. To 

reproduce the spatial patterns, these models also required several abiotic covariates, 

corresponding to model no. 8 (Interactions between biotic and abiotic covariates, 

performing variable selection) 

3.3.2 Abiotic interactions 

Beech was the only species that was influenced by large topography (slope, hillshading) 

and gap shape (GSCI, (Getzin et al. 2012)). Beech density was influenced by water content 

of the whole sampled soil body. The beech-model included indicator values for wetness 

and acidity. Most variables included in the ash model refer to summer conditions. Ash 

density was best described by water contained in the upper soil, including small scale 

topography (as closed depressions) lead to a huge model improvement (AIC drop from 

8626 to 526). Hornbeam is the only species where density was influenced by pure gap 

size (logArea.max). Sycamore is influenced by summer conditions (July), but by no further 

measured abiotic covariate. However, Ellenberg indicator values of light and water were 

included in the Sycamore point process model. The best point process model for the two 

rare species were including only biotic interactions (Norway Maple: inter- and 

intraspecific) and Elm (interspecific). All species except Norway Maple and Elm were 

dominated by variables that describe attributes of water-availability, e.g. plant-available 

water appearing in all other species point process models. In all models, residuals were 

larger where tree density increased. Except in explicit gap areas, tree density was 

overestimated. This underlines the importance of less suitable conditions for spatial 

pattern formation in trees.  

.  
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Table 3-1 Abiotic variables and seperated inter- and intraspecific interactions between trees remaining in the best-fitting Poisson point 

process model (models 2 – 9, cf. Methods),  or cluster process model (model 10) based on AIC (Table 2). Variables were calculated/interpolated 

( Chapter 2). GCSIplot.median=Median of GapShapeComplexityIndex of three largest gaps in plot, logArea.max1= log(largest gap area), 

DW1_1_4=Dry weight in May in 40 cm depth, FW1_1_1= Fresh weight in May, upper 10 cm, FW2_1_1= Fresh weight in May, upper 10 cm, PAW= 

plant-available water, Cont.water: Sum of contained water in first 10-50 cm soil, diff.soil1_3= Contained water in May in first 20-30 cm soil, 

MD1-3= maximum soil depth (Pürckhauer), var_depth= Variation in soil depth between samples, wF, wL, wR= indicator value weighted by 

species cover for wetness, for light, or for soil acidity. 

Variables beech ash hornbeam sycamore maple elm 

No. of best model 10 8 8 10 5 5 

Topography       

Analytical Hillshading x s, m      

Cross-sectional Curvature  x     

Slope x 
   

  

Canopy gap metrics       

GSCIplot.median x s, m 
   

  

logArea.max1  
 

x 
 

  

Weight of soil samples       

DW1_1_4 x 
   

  

FW1_1_1  x 
  

  

FW2_1_1  x 
  

  

Contained or available water in soil       

PAW x x x 
 

  



72 

 

 

Included variables are marked by x. Beech was modeled in three size classes. Where covariates have not been included in all size classes, letters are given for the size classes 

the covariate was used in. s=small trees (DBH < 30 cm), m= medium sized trees trees (DBH 10-30 cm), b= big trees trees (DBH >30 cm). 

                                                 
1 For intraspecific interactions nearest neighbour distances and densities of the separate size classes of beech were included: for Norway Maple and Hornbeam only 
included the densities. Beech included both, distances and densities: small beech: density of all three size classes; for medium: density of small and big trees; for big beech: 
density of all three size classes 
2 Same as for intraspecific, but heterospecifics not divided into size classes 

Continued Table3- 1  
   

  

cont.water_May x x x 
 

  

Variables beech ash hornbeam sycamore maple elm 

diff.soil1_3  x 
  

  

Soil depth       

MD1_1 x 
 

x 
 

  

MD2_1 x x 
  

  

MD3_1 x 
 

x x   

var_depth x x     

Ellenberg indicator values       

wF.spec x 
 

x x   

wL.spec  
  

x   

wR.spec x 
 

x 
 

  

Biotic interactions       

intraspecific interaction1 x s,m x x  x  x 

small scale intraspecific x    x   

interspecific interaction2 x s,b x x x x x 
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Table 3-2 AIC selection process of the 10 different model hypothesis. Bold= best model. More than one selected means that the one with 

higher AIC performed better when evaluated with the pair-correlation function. 

Point process type 

model 

hypothesis 
beech 

beech. 

small 

beech. 

medium 

beech. 

big 
ash hornbeam sycamore 

N. 

maple 
elm 

homogeneous 

Poisson 

1. 

Randomness 
127898.2 59030.5 37186.9 30145.7 8827.3 6330.7 6081.4 846.8 859.3 

inhomogeneous 

Poisson 
2. All abiotic 127322.3 57851.8 36836.6 30040.9 8760.2 6214.9 6026.9 851.4 862.9 

 3. Abiotic 

selection 
127320.8 57847.1 36832.7 30029.3 8751.6 6210.9 6019.6 846.8 859.3 

 
4. Abiotic 

Interactions 

(selections) 

126563.2 57279.3 37074.3 30064.7 8631.2 6093.2 5981.8 844.4 854.8 

 

5. Biotic 

interactions 

only 

(selection) 

99579.3 56608.9 36674.3 27670.9 7475.4 5281.0 5196.3 767.5 750.9 
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Continued Table 3-2 
          

Point process type 

model 

hypothesis 
beech 

beech. 

small 

beech. 

medium 

beech. 

big 
ash 

horn- 

beam 
sycamore 

N. 

maple 
elm 

 

6. Abiotic + 

Biotic (all 

equal) 

inter-

actions 

126568.6 57101.6 37105.8 30143.1 
8827.

9 
6331.8 6074.7 847.2 

860.

2 

 

7. All 

covariates,  

separate 

inter+ intra 

126523.1 56791.6 36772.9 29971.8 
8638.

6 
6098.0 5966.5 848.1 

858.

7 

 

6. Abiotic + 

Biotic 

(inter+ 

intra) 

selection 

126511.8 56786.2 36763.8 29961.4 
8626.

6 
6087.1 5957.8 844.4 

854.

8 

 9. include 

small scales 
99499.3 565450.0 36628.1    4864.3   

inhomogeneous 

Cluster process 

10. use 

Cluster 

process3 

23360991 
1504113

2 

688923

5 

463854

0 
  

114254.7   

                                                 
3 The given cluster process models are a new model type. Thus, the given AIC is not comparable to the AIC from the Poisson process models. The given AIC is the lowest AIC 
amongst the tested cluster process models.  
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3.3.3 Spatial evaluation of the point process models 

For elm, Norway maple, hornbeam, and ash, the pair-correlation function fell into the 

simulation envelopes built from the best-fitting Poisson point process model (Fig. 3-1). 

However, for beech, ash, and sycamore species, the pair-correlation function of the 

observed pattern deviated from the simulation envelopes at small distances (Fig. 3-2). 

The largest deviations occur at distances < 15 m. At farther distances, for all species, the 

pair-correlation function fell into the built SPPM. To simulate the small scale spatial 

pattern at distances < 15 m, ash required adding small-scale heterogeneity (cross 

sectional curvature) to recreate the spatial pattern forming process. To recreate the small 

scale spatial pattern of beech and sycamore required the assumption of dependence 

between trees (cluster process) while the other four species could be modelled in their 

distribution without explicitly including paternal trees (Poisson process). Moreover, 

sycamore and beech both required a fine-scale spatial resolution in neighbourhood 

density which did not smooth over individual trees.  The repulsion pattern at small 

distances between large beech trees could not be recreated in any of the built point 

process models. In all species distribution models, residuals were larger where the 

species occurred in higher density (Figure 3-3). 

 



76 

 

 

Figure 3-1Results of best Point Process Models: Heterogeneous Poisson point process 

models including biotic and biotic interactions. Radius r ranges from 0 to 30. ). Black 

line= observed pattern evaluated with inhomogenous pair-correlation function, red = mean 

model assumption, grey envelope: created from 199 random realisation of the point process 

 

 

Figure 3-2 Results of LogGaussian Cluster process. Radius r ranges from 0 to 30. Small 

inner graphics also share these axis. Graphics for medium and large beech trees included in 

Appendix Fugure A 10-1.  
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Figure 3-3 Spatial distribution of residuals from best-fitting SPPM. Lighter colours 

indicate higher residual values. Black dots: tree positions. Note that the scaling of the colour 

gradient differ between species and size classes. 

 

3.4 Discussion 

We were interested in linking the observed spatial distribution patterns of six tree species 

in a near natural forest to the prevailing abiotic conditions, while taking biotic 

interactions within and between the species into account. For this link, we built several 

Spatial Point Process Models (SPPMs) that included different assumptions on the 

influencing covariates that shape the distribution process of the six species. Our 

assumptions were built along a gradient from random distribution (CSR) over purely 

abiotic and purely biotic models to models including abiotic and biotic components 

(model 1-10). In all cases, those models that included biotic interactions performed better 

than purely abiotic models. This was especially true for beech, which was sensitive to 

different scales of biotic interactions. Only when models that took biotic interactions into 

account came close to fitting the observed patterns. However, abiotic components were 

necessary to account for deviations that were not included in biotic interaction (e.g. small-
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scale heterogeneity in increased soil moisture influenced ash). The identities of the 

abiotic components included in the point process models differed between all six species. 

While the distribution of beech and sycamore could be reconstructed applying Log-

Gaussian-Cluster-Processes (model no. 10), the other four species followed Poisson point 

processes.  

 

Influence of the biotic environment  

For all species, the spatial point process models improved dramatically and were further 

improved when a distinction was made between con- and heterospecific neighbourhood 

interactions, so that it was possible to exclude either intra- or interspecific interactions. 

For all species, the spatial distribution was best predicted if conspecific neighbours were 

taken into account. This is in line with the assumption that self-limitation (Pacala and 

Deutschman 1995, Chesson 2000b) reduces the speed of exclusion even in the presence of a 

strong competitor (Molofsky and Bever 2002b, Scheffer and van Nes 2006a).  

The distances to (or densities of) heterospecific neighbours were only important for 

beech, sycamore, and elm. This is unexpected for beech. As a superior competitor (Otto 

1994), beech should not depend on the distribution of other species. However, the other 

species might enable a better spatial description of the beech distribution as they 

delineate those areas that are unsuitable for beech, as they can only here realise a higher 

growth rate (Pignatti et al. 1996, Leuschner and Ellenberg 2010a). This is in line with Chapter 

1 where the large trees of the three main species showed a spatial segregation against 

each other. 

 

The scale of interactions/ endogenous heterogeneity 

Local-scale interactions may lead to heterogeneous spatial patterns. In other words, 

heterogeneous spatial patterns can be of endogenous or biotic origin. In splitting the 

abiotic from the biotic interactions, it became apparent that some aspects of the 

heterogeneous spatial patterns could not be attributed to the abiotic environment. 

Interestingly, beech and sycamore were the only species that required a high spatial 

resolution and a spatial cluster process in their best fitting models. This indicates the 

importance of local interactions at the level of individual trees. For beech, this may 

emphasize the overarching importance of short-range dispersal for spatial pattern 

formation, because Beech produces nuts as seeds and is the only studied species that is 
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not wind dispersed. As a strong competitor, previous studies also found evidence for the 

dominating effect of intraspecific interactions (Ratcliffe et al. 2015). For sycamore, spatial 

clustering in when co-occurring with beech was observed in previous studies (Janı k et al. 

2016). As a wind-dispersed species this clustering seems to occur rather driven by its 

ecological potential (sensu (Otto 1994)), than by a narrow dispersal kernel. These results 

also indicate that the biotic interactions within sycamore and beech are very strong, 

introducing a biotically-generated, or endogenous, heterogeneity that cannot be 

represented at levels beyond the individual tree (Pacala and Levin 1997) .  

Niches often have only few important dimensions, such as light availability or topography 

that dominate the species interactions because. This influence of few dimensions is owed 

to competitors resource consumption can reduce them to a level where environmental 

requirements of the competitors are no longer met and thus limit their occurrence 

(Tilman 1980, 1982, Leibold 1995). However, niche separation in the studied species must 

have evolved in several dimensions, because the components that influenced the 

distribution of the studied species differed in all considered resource aspects, i.e. type, 

spatial distribution and temporal distribution of resources. These resource aspects 

formed species-unique combinations.  

The species seemed to have separated with respect to root allocation (e.g. beech vs. ash) 

as well as the period of time they are most sensitive to (summer: sycamore and maple, 

spring: ash). Moreover, ash seemed to respond to small-scale heterogeneity in topography 

which had an aggregating effect. Thus, the results of this study indicate multi-dimensional 

niche separation. 

 

Influence of the abiotic environment 

Physiology 

The influence of the abiotic environment is often linked to certain physiological traits of 

the studied species. For instance, differences in the root system may influence which soil 

layers are more important to the particular species. The distribution of beech was mostly 

influenced by variables describing the water content of the total soil depth available. This 

is probably related to the heart root system (Bu sgen 1897) of beech. Beech roots have a 

maximum density between 5-10 cm (Rust and Savill 2000), but roots regularly are found 

at soil depths > 50 cm (Schmid and Kazda 2001). In contrast to beech, ash was sensitive 
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to parameters that referred to water content of shallower soil depths. This corresponds 

to the differences in the root system, since Ash builds surface roots, where  most of them 

at 0-5 cm (Bu sgen 1897, Rust and Savill 2000). 

 

Life stages 

Life stages may differ in their response to abiotic variables, so that the relative importance 

of abiotic variables changes across the life stages of trees (NakAshizuka 2001). In this 

study, this was particularly apparent for beech.  The distribution of small beech trees was 

best described with models including several parameters for light. This is not surprising, 

because light is the typical target variable of aboveground competition and self-thinning 

(Coomes and Grubb 1998). Furthermore, light parameters were almost absent in the 

models for larger beech trees. This change of parameter importance indicates different 

selection determinants over the life-history of beech.   

 

Competitive ability 

Interestingly, only the Hornbeam model included canopy gap area (Table 1). This relates 

to the analyses in Chapter 1 where Hornbeam showed spatial segregation in combination 

with large trees of all species except the two least frequent species.  However, it is 

surprising that none of the more light demanding species, such as Ash or Acer included 

gap area in its distribution. One reason for this abstinence from gap areas may be that 

these species lack rejuvenation (Huss and Butler-Manning 2006, Butler-Manning 2008), so 

that only trees that are part of the canopy are included in the data set. Instead, the shape 

of gaps (GSCI) seems to have an influence on the spatial pattern of Hornbeam, Ash and 

Acer sp. (Huss and Butler-Manning 2006), possibly influencing the success of establishing 

in the understorey (Getzin et al. 2012). 
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3.5 Conclusions 

As the methodological contribution, our study highlights that point process models based 

on field data can indeed be connected to species traits (e.g. their physiology). In this way, 

they can be used to gain more detailed insights into ecological processes, such as niche 

separation. 

In ecological terms, this study highlights the importance of considering small-scale 

endogenous heterogeneity in spatial patterns of trees. We show that clustering at scales 

of less than 8 m could be fully explained (i.e., the observation falls into the simulation 

envelope) or turned into repulsion (i.e., the observation is below the simulation envelope) 

by including small-scale heterogeneity in the analysis. This might imply that ecologists 

have to act cautiously when interpreting small-scale deviations as a result of second-

order pattern properties and interactions. Instead, small-scale abiotic heterogeneity 

(which is a first-order property of patterns) may be much more important in shaping 

small-scale spatial patterns.  
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Abstract 

Neutral theories of biodiversity have been heavily debated in ecology, but their 

application potential for conservation practice is unclear. Neutral theories assume that 

species establishment success in a community does not depend on the differences 

between species, but is mostly a stochastic process. On the contrary, niche theories 

highlight the importance of species differences for establishment success, because 

specialization of species leads to higher conspecific than interspecific competition and 

thus coexistence. Our review shows that neutral theories have rarely been used in 

conservation research. This is probably due to their lack of species-specificity or their 

less intuitive assumptions and lower acceptance than niche theories. This is the case 

although models based on neutral theory proved to be useful in biodiversity hotspots, 

which are especially prone to conservation action. Moreover, models based on neutral 

theories often subdivide space into local community and metacommunity, which 

reflects concepts such as metapopulation dynamics, which are commonly used in 

conservation science. We propose that neutral theories can serve as a valuable null-

model to reduce complexity, account for stochasticity, and, where appropriate, can 

serve as a starting point for conscious stepwise addition of niche structure and other 

non-random processes. Alternatively, recent integrative concepts that combine aspects 

of neutral and niche theory such as the stochastic niche or emergent neutrality may 

provide a promising foundation for future conservation practice.  
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4.1 Introduction 

Neutral theory has sparked controversy among ecologists (e.g. Ricklefs 2003; Nee 2005)  

when it was suggested as a unified theory to explain biodiversity without the need to 

refer to niches (Hubbell 2001). However, thus far, Hubbell’s neutral theory and its 

modifications have not been discussed very much in the field of conservation biology. 

On the one hand, this is not surprising, since neutral theories assume that species are 

ecologically equivalent, whereas conservation often focuses on species-specific 

differences. On the other hand, neutral species assembly has critical consequences for 

conservation goals, especially in its implications for species protection and invasive 

species management. Moreover, most successful tests of Hubbell’s neutral theory 

originate from species-rich tropical ecosystems (Wiegand et al. 2012), which are often 

hotspots of conservation concern. In this review, we compile studies that explicitly or 

implicitly address the implications of neutral theories for conservation, often in the 

form of neutral models. These case studies can be used to identify further conservation 

settings in which the assumption of neutrality might be reasonable. We also compare 

these studies to the established perspectives on conservation purely based on niche 

theory (MacArthur 1972; Tilman 1982; Gause 2003), but also on more intermediate 

concepts such as the stochastic niche theory (Tilman 2004), the continuum theory 

(Gravel et al. 2006) and the concept of emergent neutrality (Scheffer & van Nes 2006).  

Conservation decisions are rarely explicitly based on theoretical considerations, 

but theory influences the viewpoints that are adopted in conservation biology and 

applied ecology. The few existing investigations of the conservation value of ecological 

theories cover mainly niche theory (Tilman 1982), stability theories related to 

resilience and multiple stable states (Gunderson 2000; Scheffer et al. 2001), and spatial 

theories such as the metapopulation (Hanski & Gilpin 1991) or island biogeography 

theory (MacArthur & Wilson 1967). These studies address, for instance, biodiversity 

loss in economic models (Eppink & van den Bergh 2007) and conservation concepts for 

forests (Schulte et al. 2006) and for ecosystems in general (Driscoll & Lindenmayer 

2012). Apart from island biogeography theory, which is a precursor of neutral theory, 

the consideration of neutral assumptions in conservation studies seems to have been 

very limited. In general, considering neutral assumptions may be relevant whenever 

species show large niche overlap or are not very habitat-specific. We note that many 

species of conservation concern show high habitat-specificity (e.g. Goerck 1997), so that 
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neutral theories cannot be applied to communities with these species. However, for the 

remaining communities, neutral theories could be valuable alternatives to niche 

theoretical approaches. Notably, together with the niche theory, the island 

biogeography theory has been considered more influential with respect to the 

development of conservation concepts than other tested theories (Schulte et al. 2006). 

Thus, niche theory and neutral theory both provide worthwhile (and potentially 

complementing) scopes for investigating the conservation implications of ecological 

theory.  

Niche theory (MacArthur 1972; Tilman 1982; Gause 2003) explains the 

coexistence and co-occurrence of species with differences between species that are 

relevant for their survival under environmental conditions that vary in space and time. 

Each species has a specific ecological niche, i.e. a set of environmental conditions to 

which it is better adapted than its competitors. For conservation, this implies that 

species are not easily interchangeable or only with respect to a single or a few ecological 

functions. To a certain degree, this justifies the protection of every single species, 

challenges insurance effects, and calls for the combat of invasive species if they 

eliminate local species. However, since species can differ in many different traits, niche-

based explanations of biodiversity often come with the disadvantage of increased 

complexity (Rosindell et al. 2011). This can make the implementation of niche theory 

into practice challenging.  

Neutral theory (Hubbell 2001), in contrast, is very simple. It assumes that 

differences between species are irrelevant for demographic rates. Independent of 

species identity, individuals are equivalent in their fitness (Munoz & Huneman in press), 

e.g. with respect to birth and death rates or dispersal ability. The probability of a species 

to establish in an available habitat patch in a local community then depends solely on its 

frequency in the local community and not on how well it might be adapted to the 

environmental conditions in the gap (Purves & Pacala 2005). Additionally, in Hubbell 

(2001)’s neutral theory, there is a small probability that a species that is not present in 

the local community establishes in the gap by migration from the metacommunity or by 

speciation. Lacking differences in demographic rates, all species in a neutral community 

would be interchangeable at any time (Purves & Pacala 2005) without destabilizing the 

local community. Neutrality is related to the concept of functional redundancy of 

species. The functional overlap of species or communities reflects the potential domain 
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of neutrality. However, species that differ in their function can still be ecologically 

equivalent, as it is required by neutral theory (Hubbell 2001). Here, functions denote 

capacities to provide a certain ecosystem service. If the applicability of neutral theories 

is established for a case study, e.g. by functional overlap or ecological equivalency of 

species, an additional value of actually applying neutral theories for conservation is 

their implementation of stochasticity and the high tractability of many neutral models 

(Rosindell et al. 2012). With respect to conservation management, protection of single 

species would only be necessary to the degree to which neutrality (and functional 

redundancy) can be rejected. Where there is evidence for neutrality (or functional 

redundancy), at most the protection of species numbers, not species identities or niches, 

can be derived from the neutrality assumption. Probably the most intuitive 

conservation targets for neutral communities would be the whole (meta-) community 

and its ecosystem processes.  

The neutral theory has been strongly debated and criticized, not only for its 

disregard of niches and adaptation, but also for the weak speciation parts of the theory 

and the de facto-limitation to sessile species within the same trophic level (Ricklefs 

2003). Hubbell (2006) argued that species can have differing characteristics in his 

theory. However, possible differences between species are not the focus of neutral 

theory, but rather what they have in common and makes them ecologically equivalent. 

For instance, tropical tree species are surrounded by many different species, which will 

lead to generalist strategies and thus quasi-equivalency on evolutionary time scales 

(Hubbell 2006). It has also been criticized that key parameters of the neutral theory are 

not clearly defined. Recent efforts have improved the definition of these key 

parameters, for instance with respect to ecological drift (Ricklefs 2006), size of the local 

community (Richardson, Barry J.; Arias-Bohart 2011), species age (Chisholm & O’Dwyer 

2014), and spatial structure (Rosindell & Cornell 2013). Especially including spatial 

structure into neutral theory is important for discussions on metapopulations and 

habitat fragmentation, which are highly relevant in conservation biology.  

Validation of biodiversity theories against real-world data and delineation of the 

applicability of niche versus neutral theories can be achieved with patterns such as 

rank-abundance distributions. Empirical rank-abundance distributions were 

successfully reproduced by the neutral theory for a range of ecosystems, such as 

tropical rainforests in Panama (Hubbell 2001), for prokaryotic communities (Sloan et al. 
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2006) and partly for microbial communities in waste water treatment plants (Ofiteru et 

al. 2010). Neutral theory was rejected and niche processes were shown for a coral reef 

community (Dornelas et al. 2006) and salt meadows (Anderson & Mouillot 2007). 

Purely neutral dynamics are especially rare on large scales where adaptation to 

environmental conditions can often be shown. In contrast, neutral dynamics do often 

occur at local scales where also most conservation efforts operate. In the following, we 

will first summarize conservation implications of the niche theory as a reference 

standard for comparisons. We will then compile cases studies based on neutral theories 

in two categories, i.e. (i) only implicit conclusions for conservation efforts can be drawn 

and (ii) explicit conservation conclusions are drawn in the study. Finally, we will 

synthesize our findings by evaluating the beneficial and detrimental consequences of 

neutral theory for conservation and highlighting the implications of current 

developments in biodiversity theory for conservation.  

 

4.2 Methods 

We searched the Web of Science for papers published between 2001 and June 2016 to 

obtain a sample of studies linking neutral theory and nature conservation (see 

Appendix S1 for a documentation of search terms). For a publication to be included in 

the review, it had to match one of the following criteria: i) It had to address a link 

between niche theory and conservation; ii) it had to introduce a new approach based on 

a neutral theory, which could theoretically be applied in conservation; or iii) it had to 

introduce an already established approach for the application of neutral theories in 

conservation. In the following, we consider neutral theories and neutral models that 

include (e.g. Hubbell 2001) or do not include speciation. 

 

4.3 Results 

Niche theory and conservation 

The niche concept is firmly established as a basis for decision-making in modern nature 

conservation. A majority of nature conservation studies therefore implicitly or explicitly 

refer to the niche concept and its derivations. As explicit examples, ecological niche 

models have been used for the delineation of conservation areas (Eppink & van den 

Bergh 2007; Girardello et al. 2009; Cianfrani et al. 2013; Mateo et al. 2015), the 
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assessment of habitat loss (Barrows et al. 2008, 2011), and invasive species 

management (Caplat et al. 2013; Vicente et al. 2013; Guisan et al. 2014; Thalmann et al. 

2015). The following synthesis links the niche concept with nature conservation 

applications in the fields of ecological niche modeling, habitat loss and fragmentation, 

and invasive species management. 

 

Ecological niche modeling 

Ecological niche modeling is widely used to predict potential distributions of organisms 

in space (Giovanelli et al. 2008; Murray et al. 2011; Vasconcelos et al. 2012). This 

information provides guidelines for the selection of conservation areas and future 

strategies in conservation planning (Girardello et al. 2009; Knapp et al. 2009; 

Kleinbauer et al. 2010; Robinson et al. 2010; Vega Rivera et al. 2011; Tobler & 

Morehouse 2013). Beyond theoretical use, niche models are focused on explicit 

locations and landscapes (Girardello et al. 2009). This spatial context can help to 

evaluate the range in which species are protected by current conservation areas 

(Ochoa-Ochoa et al. 2009). Ortiz-Martínez et al. (2008) describe a modeling approach in 

which they discuss the use of projections by niche models for areas with no information 

about effective species distributions and the establishment of conservation areas based 

on this approach. Under the current impact of climate change, niche models improve the 

static network of nature reserves by providing predictions of responses of species to 

future environmental variation (Kleinbauer et al. 2010).  

 

Habitat loss and habitat fragmentation 

Habitat loss can only be critically assessed under the consideration of former 

geographical distribution of species - which can be estimated by niche models combined 

with abiotic variables that are independent of anthropogenic influence (Barrows et al. 

2008). These historical distributions further can be used to locate suitable areas for 

restoration and reintroduction of species (Barrows et al. 2008). Habitat loss often leads 

to habitat fragmentation that can reduce population viability, and so a core objective of 

biological conservation is to maintain linkages between habitats (Barrows et al. 2011), 

e.g. in the form of habitat corridors. Again, niche models have been used to identify 

pertinent linkages, which can then be proposed as conversation areas (Barrows et al. 



88 

 

2011). 

 

Invasive species 

Most of the niche-related analyses that we found estimate the hypothetical distribution 

of non-native invasive species (Peterson & Robins 2003; Giovanelli et al. 2008; 

Kleinbauer et al. 2010; Murray et al. 2011). A common output is the determination of 

containment boundaries for ecological threats (Giovanelli et al. 2008; Murray et al. 

2011). Furthermore, the results of niche-related analyses have been used to derive 

invasion potentials and to explain why species can invade new areas (Murray et al. 

2011; Tobler & Morehouse 2013). While a majority of the analyses have dealt with 

spatial models, Batalha et al. (2013) used an ecological niche comparison to predict the 

potential threat on native species. A novel and creative approach has been promoted by 

Benito et al. (2009), in which they treated buildings (greenhouses in this case) like 

invasive species and built distribution models for them. To assess the extinction risks of 

an endangered native plant species, they identified overlaps in the predicted 

distributions of this species and the buildings. 

 

Neutral theory with implicit conservation implications 

Neutral theory has explicitly been addressed in only few studies with conservation 

concern (see next section). Implicitly, however, conservation conclusions can be drawn 

from many more applications of neutral theory as the following comprehensive, but 

probably not conclusive selection of studies demonstrates.  

Neutral models, which are implementations of a neutral theory, have often been 

used to answer questions on species richness and extinction on different spatio-

temporal scales (Adler & Muller-Landau 2005; Babak & He 2009; Dornelas 2010). 

Moreover, scenarios with different levels of ecological disturbance have been compared 

with the help of neutral models (Bell 2000; Kadmon & Benjamini 2006). Overall, the 

responses of the models to these scenarios were used to evaluate if these disturbances 

drive community assembly.  

Metacommunity dynamics have recently found entrance to nature conservation 

studies (Gimona et al. 2012; Diaz et al. 2013). The knowledge gained about what drives 

metacommunities and which ecological impacts influence these species is fundamental 

for conservation. Neutral theory-derived models can be used for explorations of 
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metacommunity theory, because of the appropriate representation of rare species in 

neutral theory (Driscoll & Lindenmayer 2009) and the recent advances in spatially-

explicit implementations of neutral models (e.g. Rosindell & Cornell 2013). In particular, 

the progress made by Desjardins-Proulx & Gravel (2012) in the field of speciation 

within neutral theory improved the evolutionary parts of the neutral theory. The 

spatially-explicit version of the neutral theory has proven its ability to explain spatial 

patterns in several studies (Gardner & Engelhardt 2008; Seri et al. 2012; White & 

RAshleigh 2012; Yakimov et al. 2014). Predictions from a spatial neutral model can 

easily be applied to real landscapes, which provides a valuable simplification of 

conservation efforts. Such insights could be used to draw conclusions on the effects of 

disturbance on species loss, especially for rare species, or on the vulnerability of whole 

communities.  

 

Neutral theory with explicit conservation implications 

Explicit conservation implications are formulated only in a few studies that address 

neutral theories or neutral models. These studies aim to delineate protected areas, 

approximate species richness measures and predict extinction rates.  

 

Habitat fragmentation and protected areas 

A major concern of conservation is habitat fragmentation, since it is one of the primary 

causes of species loss (Tilman et al. 2001; Rands et al. 2010). To improve conservation 

management, it is crucial to develop tools that allow insights into the effects of habitat 

fragmentation on biodiversity. However, only few studies link habitat fragmentation 

and neutral theory. In one of these studies, Babak & He (2008) investigated habitat 

fragmentation impacts on species diversity with a neutral simulation model for species 

abundance dynamics in two local communities. These two local communities were 

connected to a regional metacommunity. In essence, this was similar to a source-sink 

metapopulation approach where the subpopulation dynamics are neutral. Scenarios 

with species extinctions and species monodominance were explored. In this neutral 

simulation model, migration between local communities leads to a homogenization of 

community composition, whereas immigration from the metacommunity into local 

communities causes community differentiation. Hence, the size of spatial habitat 

fragments mattered for biodiversity. With a similar approach, Economo & Keitt (2010) 
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attempted to quantify the isolation of local communities in a network to assess the 

influence of spatial geographic structure on broad-scale biodiversity patterns. With a 

different spatially-explicit neutral model, Economo (2011) shifted the focus from the 

quantification of biodiversity to the identification of important habitat patches and 

suggests this shift as key to a longterm conservation of biodiversity. Using a neutral 

model, Borile et al. (2012) confirm the intuitive tenet that local sanctuaries for different 

competing species can result in an increase in species diversity at a given site and can 

thus contribute to species protection even under neutral assumptions. 

 

Biodiversity and extinction 

Biodiversity is a major concern for conservation efforts, first because it is considered a 

value in itself, second because it often is the basis for ecosystem functioning (Hooper et 

al. 2005). Tropical rain forests are hotspots of biodiversity with a distribution with a 

long tail of rare species, which can be described by the neutral theory (Hubbell 2001). 

Furthermore, (Hubbell 2013) identified the linkage between absolute abundance and 

geographic range of species as fundamental for conservation in these regions. By 

modelling species abundances and spatial distributions, neutral theory may inform 

strategies to combat species extinctions in these hotspots. Another modelling approach 

transferred an existing individual-based stochastic lattice model into a spatially-explicit 

neutral model to explore hypotheses of species richness and abundance patterns 

(Gardner & Engelhardt 2008). The results of the simulations showed that even small 

disturbances can cause increases, albeit small ones, in species diversity in plant 

communities. This could lead to strategic recommendations for the conservation of 

biodiversity such as considering already small disturbances in management schemes. 

Hubbell et al. (2008) were able to estimate stand characteristics such as number, 

relative abundance and range size for trees in an Amazonian metacommunity by 

implementing neutral assumptions. Based on this neutral model, they predicted the 

probability of extinction for a range of species under different scenarios. Furthermore, 

species vulnerability has been assessed for several global change scenarios by analyzing 

the degree of connectivity for estuarine communities along the Iberian coast (Chust et 

al. 2013). By combining these correlative analyses with neutral theory, a prioritization 

of the most vulnerable species and habitats for conservation plans was achieved. The 

recent work of Halley et al. (2014) provides a framework based on neutral theory linked 
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to species area-relationships that can be used to evaluate results from extinction 

forecasts or simulated habitat contractions. Their work improves the distinction 

between imminent and delayed extinction debts by clarifying the relationship between 

extinction debt and species-area relationships and introducing refined species-area 

relationships. This in turn leads to more precise species-area relationships compared to 

those predicted by non-neutral models. This framework can highlight the driving forces 

of extinction processes and can be used to define area requirements of species and 

communities as a basis for planning protected areas.  

 

Invasive species 

Habitats that are more prone to species invasion are often created by stochastic 

disturbances (Daehler 2003; Davis et al. 2005). This calls for including stochasticity into 

ecological models of community dynamics. In their review of invasion of natural 

communities by alien species, Daleo et al. (2009) highlighted this need of including 

stochasticity in models of community structure. They emphasize that biological 

invasions and the ecological patterns that arise from invasions indicate that trait 

differences between species are not necessarily the only drivers of ecological patterns. 

Therefore, conservation research should consider random processes as they are 

provided by the neutral theory. Including stochasticity in invasion models has been 

shown to be justified: Herben (2009) observed broad agreement between the 

predictions of a simple neutral model with observations from field studies with respect 

to invasion patterns. Neutral theory, therefore, seems capable of elucidating invasion 

processes and provides tools for conservation purposes that do not require species-

specific assumptions.  

 

4.4 Discussion 

Neutral and niche theories of biodiversity are complementary in their consequences for 

conservation, especially with respect to species conservation. Studies with a niche 

perspective focus on interactions of species with the environment and with other 

species. Neutral approaches ignore such interactions and highlight similarities between 

species and the influence of stochastic processes. Where niche theories apply, they can 

be used to justify protection of single species and niches as well as eradication of 
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invasive species. As a contrast, a conservation strategy guided by neutrality 

assumptions would argue for the protection of communities, processes and areas 

instead of single species. Invasive species would be treated as any other species in a 

community, since all individuals, and thus all species, are ecologically equivalent in 

neutral theory (Hubbell 2001).  

Neutral and niche theories have similar fields of application in conservation, but 

show great differences in their frequency of application. We found that niche theory still 

is the main theory driving conservation decisions. For instance, niche modelling is a 

very common technique and has been applied to plan protected areas, assess habitat 

fragmentation and derive invasion potential of exotic species. Contrastingly, our review 

shows that neutral theories have found much fewer explicit uses in conservation 

applications. Implicit applications of neutral assumptions can be found in several 

conservation contexts including stochastic disturbances or addressing 

metacommunities with many rare species. Explicit applications of neutral theory have 

dealt with species-abundance distributions, species-area relationships, habitat 

fragmentation, invasion patterns and extinction probabilities. Analogous to the heated 

debates that have accompanied the publication of the neutral theory (e.g. Ricklefs 2003, 

2006), there are both reasons for and against considering neutral theories in the context 

of conservation. 

As an argument in favor of neutral theories, they promote a more conscious 

consideration of stochasticity (Alonso et al. 2006) at the level of populations 

(reproduction, mortality) and communities (colonization, speciation; Fig. 1). This 

mirrors the awareness of conservation biology that stochasticity, e.g. in the form of 

demographic stochasticity (Lee et al. 2011), environmental stochasticity (Stacey & 

Taper 1992; Higgins et al. 2000), or random catastrophes (Lande 1993; Vélez-Espino & 

Koops 2012) can have huge impacts on species extinctions and community composition. 

The focus of neutral theory on individuals and abundances may at first glance differ 

from the traditional focus of conservation biology on species. However, it is single 

individuals that start an invasion, that make up the small populations of rare species, 

that are the level of natural selection or that use wildlife bridges and connect 

populations. Moreover, whenever knowledge about species traits is sparse, adopting a 

neutral approach that makes no assumptions on species differences might be more 

suitable than a niche approach (Rosindell et al. 2012; Fig. 1). Neutral theory, especially 
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in its spatially-explicit versions, also highlights the importance of spatial processes such 

as dispersal and predicts reliable species-area relationships (Rosindell & Cornell 2007). 

In conservation, spatial relationships play an important role, for instance in the context 

of delineation of protected areas (Patiño et al. 2014), connectivity of 

(meta-)populations, and habitat fragmentation. It is thus not surprising that Holt (2006) 

declares the neutral theory crucial for understanding fundamental processes of 

community ecology and applying this understanding to conservation issues. 

 In disfavor of neutral theory, there are some communities, where its applicability 

was explicitly rejected (Bode et al. 2012), such as coral reefs (Dornelas et al. 2006) or 

salt meadows (Anderson & Mouillot 2007) or generally wherever species are strongly 

habitat-specific. Moreover, disregarding conspicuous differences in species has proven 

counterintuitive to many ecologists and conservationists. Here, niches are an appealing 

concept, because they explain community assembly based on the observable species 

differences. Hence, conclusions drawn on the basis of models based on neutral theory 

may be less acceptable to stakeholders and conservation funders than those based on 

niches. This should not be used as an argument against neutrality, but may be one 

reason for the fact that we found only few explicit neutral theory-related studies in the 

context of conservation biology. Another reason might be the de facto limited range of 

application of Hubbell’s neutral theory to sessile organisms within trophic levels in 

homogeneous areas at local scales. Conclusively, in their compilation of the influential 

ecological theories with respect to forest biodiversity conservation, Schulte et al. (2006) 

list niche theory and island biogeography theory, but not neutral theory. Clark (2009) 

cautions against the loss of process knowledge should the process-free neutral theory 

be adopted in biodiversity science. Based on these arguments, there are claims to call 

the applicability of neutral theory to conservation contexts entirely into question (e.g. 

Clark 2009; Bode et al. 2012). We argue, however, that the fact that neutral theory 

applies only to some and not all cases does not call for a blanket ban of the theory. We 

rather advocate a conscious choice based on the assumptions that are fulfilled of the one 

or other theory. Further, this choice should account for the limitations of the different 

theories.  

Theory in general may also be considered a source of confusion in normative 

conservation practice. This applies to both niche and neutral theories. According to 

Driscoll & Lindenmayer (2012), this confusion can be overcome if the predictive 
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capacity of theory is better delineated, so that appropriate conservation applications 

can be identified. Here, both the simple assumptions and the limited, but clear set of 

possible predictions of neutral theory are advantageous. Thus, neutral theory can serve 

as a perfect null-model which can be accepted or rejected with the chance to “fail in 

informative ways” (Rosindell et al. 2011). Such an informative failure can lead to the 

successive addition of more assumptions, e.g. in the form of different degrees of niche 

structure, until realistic patterns are produced. More complex models can thus be 

inspired by neutral theory as a starting point (Fig. 1). Conservation can benefit 

indirectly (dAshed arrow in Fig. 1) from such applications of neutral theory if they lead 

to more accurate models for the projection of population and community dynamics. 

This approach also changes the point of view from an unquestioned niche perspective to 

a conscious and parsimonious choice of the amount of niche structure that is necessary 

to describe a given community. Thus, theory can be of great benefit to conservation if it 

is well defined and can flexibly be adapted to the case at hand. 

Integrative biodiversity theories that accommodate both neutral and niche 

processes at variable proportions comply with Bode et al.’s (2012) call for new 

ecological theories that can better inform conservation (Fig. 1). Based on their study of 

species-area relationships as a basis of protected area design, Patiño et al. (2014) argue 

that rather than relying on a single framework that includes either niche or neutral 

parameters, the focus should shift further to integrative approaches that take advantage 

of both theories.  Reconsidering the concept of functional redundancy (Wellnitz & Poff 

2001; Rosenfeld 2002), niche-based approaches could be used to delineate functional 

overlaps, and neutral approaches could be applied to model species within the overlaps. 

Attempts to integrate niche and neutral processes into a single framework include 

stochastic niche theory (Tilman 2004), continuum theory (Gravel et al. 2006), a 

generalized neutral theory including environmental stochasticity (Bewick et al. 2015; 

Kalyuzhny et al. 2015) and a mathematical blend of both concepts (Noble & Fagan 

2015), as well as the rising concept of emergent neutrality (e.g. Holt 2006). For instance, 

Noble & Fagan (2015) explicitly highlight the capacity of their blended model to 

quantify the impact of forces that stabilize or destabilize niches on population extinction 

times. Niche theory states that species need to be sufficiently different to coexist. 

Emergent neutrality additionally predicts that at evolutionary time scales, the opposing 

effects of habitat filtering and niche differentiation lead to the coexistence of 
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ecologically similar species, ultimately resulting in neutral interactions (Scheffer & van 

Nes 2006). The progress in these hybrid models revealed the necessity of including 

further factors beyond those covered by niche or neutral theory alone (Kalyuzhny et al. 

2014). This would advance the understanding of the dynamic properties of 

communities, which is of crucial importance for conservation decision-making.  

In conclusion, models based on neutral theories have thus far been implicitly or 

explicitly used in only few conservation studies compared to the popularity of niche-

based approaches. However, models based on the assumption of neutral theories could 

be an asset to many more conservation endeavors in the future if applications respect 

the limitations of the theory. We suggest to intensify the use of neutral models as null-

models, especially whenever stochasticity is important or knowledge on species 

properties scarce. If a purely neutral null-model is rejected, the next step would be to 

use integrative hybrid models that add adjustable levels of niche structure. This shift of 

perspective towards approaches that unify niche and neutral views has been very much 

supported recently (Matthews & Whittaker 2014). Conservation could also use neutral 

theory and its derivations to attain a more scale-explicit understanding of communities 

as a basis for scale-explicit conservation decisions in the future. Since spatial and 

temporal scales can have a great influence on ecological processes and patterns (Meyer 

et al. 2010), they should be addressed in the corresponding conservation measures 

(Connolly et al. 2005). This can be achieved with neutral models that are inherently 

scale-explicit, e.g. more rare species at local than meta-community scales (Hubbell 

2001). Overall, conservation practitioners and ecologists should thus work towards 

identifying and applying the suitable mix of neutrality and niche for their cases as a 

basis for successful future conservation. 
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Figure 4-1: The neutral theory of biodiversity can affect conservation directly (solid arrows) 

and indirectly via its influence on the scientific community and on modelling practice 

(dAshed arrows). 
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5 Concluding discussion 

This thesis had the aims to identify possible coexistence mechanisms of six co-occurring 

tree species in near-natural temperate forests with known abiotic heterogeneity. Our 

study is one of the few taken (Zhang et al. 2011, Uria-Diez et al. 2013) that combines 

spatial analyses with field data and links the tree-environment interaction to the 

distribution process of trees. We achieved this by taking the following steps: 

1) characterise the spatial pattern with regard to niche patterns (Chapter 1), 2a) compile 

abiotic habitat information of the study plot (Chapter 2), 2b) build abiotic species-specific 

habitat suitability model to infer on the impact of abiotic heterogeneity for niche 

processes and spatial occurrence (Chapter 2), and 3) for all six species, build species-

specific distribution models that combine abiotic and biotic information (density and 

nearest neighbour distances) to infer on the scales of the tree-tree and tree-environment 

interactions (Chapter 3).  

Heterogeneity was expressed in various forms throughout our study. This included spatial 

variability in tree density (e.g. beech, ash, and hornbeam), heterogeneous distribution of 

abiotic resources in time and three-dimensional space (e.g. contained water in soil for 

beech), and endogenous heterogeneity caused by strong intraspecific interactions due to 

a small niche breadth (e.g. sycamore) or a narrow dispersal kernel (e.g. beech). 

The spatial tree pattern of the forest as a whole was affected by the density of beech trees. 

More specifically, the three most abundant species beech, ash, and hornbeam were 

spatially segregated with respect to their large trees (Chapter 1). However, we did find an 

influence of the frequency per species on the spatial pattern, where all three applied 

summary functions (pair-correlation function, nearest-neighbour distribution function, 

and empty-space function) revealed increasing clumping with increasing frequency. 

The analysis of the abiotic basis of niche separation showed that species differed in their 

dependence on the abiotic habitat. We used tree size as an indicator for habitat suitability. 

This assumption allowed us to infer an the interaction strength between abiotic 

environment and tree size distribution in space: Species that were better predicted by 

large-tree density in general than by species-specific density experienced a weaker 

impact of the abiotic environment (Chapter 2, beech, hornbeam, elm). In contrast to this, 

if tree size distribution was better predicted by the distribution of conspecific large trees 
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only, the abiotic habitat had more influence on the habitat suitability for a species, 

(Chapter 1, Ash, Sycamore, and Norway Maple).  

Species also differed in the identity of the abiotic components that were useful to model 

habitat suitability (Chapter 2). More specifically, niche separation occurred with respect 

to resource type (e.g. gap space between beech and hornbeam and soil water content 

between beech and ash), seasonal patterns of abiotic components (sensitivity towards 

spring conditions in beech vs. sensitivity to summer conditions in ash) and small-scale 

distribution of abiotic components (e.g. soil water content between seasons and soil 

layers). A key finding of our study is that abiotic factors that have a negative impact on the 

species in question (Chapter 2, 3, and (Saefken et al. 2013)) seem to be those that separate 

the abiotic niche factors of the species. The inclusion of adverse factors (e.g. slope for 

beech and high soil acidity for Hornbeam) is therefore useful to identify available niche 

space because these adverse factors can imply a competitive inferiority compared to the 

other species. The importance of biotic interactions was also visible in the spatial 

distribution (point) processes of the species (Chapter 3). We were able to underline the 

importance of intraspecific competition for coexistence schemes. While interspecific 

interactions significantly influenced the distribution of elm, sycamore, and small beech, 

intraspecific competition influenced the spatial distributions of all species. For sycamore 

and beech, this impact of intraspecific interactions prevailed over several spatial scales 

from very local (< 1 m) to the scale of large tree interactions (20-30 m). 

Our results suggest that most of the spatial dynamics in this forest communities is driven 

by beech. Beech is known to push other species to the margins of their potential niche 

(Pignatti et al. 1996, Leuschner and Ellenberg 2010a), making their realised niche much 

smaller than the potential niche. This was also tangible in our study, where beech seemed 

to define the available niche space for the other species which leads to the distinct 

segregated patterns between the tree most abundant species (beech, ash, and hornbeam) 

and repulsion patterns in late point of competitive thinning (Chapter 1).  

It is long known that there are typical plant associations or types of forest communities 

that occur due to a certain set of abiotic conditions. These typical formations can be 

interpreted as arising from habitat filtering which selects for similar species at different 

locations within a similar set of abiotic conditions (Baldeck et al. 2013). The stability of 

these communities may be explained by our results that niche differentiation happens at 
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fine scales (see also (John et al. 2007). This encourages the conclusion that the level of 

niche differentiation is – within the limits of habitat filtering and phylogeny - the 

individual. This is a conclusive result of the individual being the units of competition and 

evolution. Therefore, the outcome of interaction between species on the level of 

individuals can be considered the link towards both, niche differentiation and de facto 

neutral interactions.  

There is growing evidence that de facto neutrality can result from ecological similarity. 

This was (implicitly) included in the neutral theory by Hubbel (2001) and explicitly stated 

as such by Holt (2006) and Scheffer and van Nes (2006b) in the concept of emergent 

neutrality. This concept includes niche separation as the result of competitive exclusion 

(Abrams 1986), but also assumes that coexistence comes into being by species being 

sufficiently similar, so that the outcome of the competitive exclusion is stochastic between 

the competing species. Bar-Massada (2014) refined these argument in observing that the 

importance of neutrality (along the gradient between niche and neutrality) is affected by 

dispersal mode (in our study: beech), and the distribution of resources (in our study: 

sycamore, ash, Norway maple) and individuals (in our study: beech, hornbeam, elm). We 

thus present evidence for the influence of all these factors, showing that the spatial 

pattern is formed by combined neutral drivers (frequency and dispersal mode) and niche 

dynamics (resource and space partitioning). This is in line with our findings that species 

segregate in space (Chapter 1) and differ in their abiotic niches (Chapter 2), but within 

these habitats the distribution of the individuals is only marginally affected by the 

presence of other species (Chapter 3).  

Especially for modelling spatial distributions, the species identity of the heterospecific 

neighbours did not need to be explicitly included. The only exception to this was the very 

strong negative link between hornbeam and beech in spatial patterns where the two 

species showed full-scale repulsion (Chapter 1). This is in line with Ratcliffe et al. (2015) 

who found that neighbourhood interactions where largely irrelevant for the productivity 

of the stand, but highly negative between beech and hornbeam.  

Our results suggest that theoretically the forest community found in the Hainich could 

coexist without extinctions over ecological time scales. This possibility, however, is 

thwarted by the severe lack of rejuvenation in all other species than beech. Several studies 

(Huss and Butler-Manning 2006) found that browsing is highly asymmetric: Beech is 
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much less browsed than other species, especially Acer sp. and Ash. This effect is 

particularly dramatic because even small differences in browsing damage can put other 

species into such a disadvantage that can lead over time to species exclusion (Heinrichs 

et al. 2012, Ammer and Vor 2013b). Therefore, we argue that, despite the chances of 

coexistence revealed by this dissertation, over time the study area in the Hainich National 

Park can be assumed to turn into an almost pure beech stand which was also argued 

before (Butler-Manning 2008). In a mainly neutral setting, this would be of little concern. 

However, in our study area, as known for other temperate forest (Gilbert and Lechowicz 

2004, Zhang et al. 2013) we found evidence for dominating niche processes. Forest 

structure changes rapidly if the environmental conditions change (Wohlgemuth et al. 

2006). Therefore, the conscious application of niche properties should be considered 

under conservation concern (Chapter 4) in the National Park area.  

Our study found that under heterogeneity, niche and neutral processes influence the 

spatial forest pattern simultaneously, stabilising the coexistence of species due to spatial 

and temporal resource partitioning, and spatial segregation at the level of the individual. 
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7 Appendix 1: Supplementary material for Chapter 1 

7.1 Homogeneity 

 

Figure A 7-1 Complete spatial randomness and exclusion of homogeneity Univariate 

pair-correlation function. Confidence envelopes result from 199 simulations of a 

homogeneous Poisson process as a null-model. Black line: data, red dashed line: expectation 

under CSR, grey area: 95% confidence envelope derived from simulating the CSR null-model. 

Large scale deviations from the envelope indicate heterogeneity. Here, this is the case for 

beech, ash, hornbeam and sycamore. For N. maple and elm, observed pattern is very close to 

the upper border of the envelope. Thus we allow for heterogeneity in all six species in our 

spatial analyses. 
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7.2 Nearest neighbour contingency tables 

We applied nearest neighbour contingency tables (Dixon 1994) that contain the observed 

mean nearest neighbour distances and applied a Dixon test to compare the nearest 

neighbour distances to the expected distances (Dixon 1994). 

Nearest neighbour contingency tables can provide information whether competition is 

roughly symmetric (Dixon 1994) and thus cam imply stability properties of coexistence. 

The intra-specific combinations ranged from 2 m to 48 m. Interspecific distances ranged 

from 15 to 55 m. The intraspecific distances were distinctly shorter than the interspecific 

distances, except for elm, where both the distances were roughly equal. Deviations from 

expectation under random distributions were observed in combinations that involved the 

three main species, beech, ash, and hornbeam. However, combinations with ash showed 

distances smaller than expected, whereas distances in combinations with Beech and 

Hornbeam were larger than expected (Tab. A1). 

 

Table A 7-1 Nearest neighbour contingency table of observed mean nearest neighbour 

distances between target species (rows) and neighbour species (columns). Asterisks indicate 

significant deviations from expectation (* p < 0.05, ** p<0.01) according to Dixon-test.. 

Significant deviations towards clumping are indicated by +, deviations to repulsion by -.  

 
beech ash hornbeam sycamore elm 

beech 2 15 - 22** 52 55 

ash -15** +10** 22 -52** 53 

hornbeam 22 22 12 52 -43* 

sycamore -16** 16 15 +17* 52 

elm 55 -53* 43 45 48 
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7.3 Spatial summary functions 

Table A 7-2 Summary of spatial statistics. To reduce the pair-correlation function to one 

value, it is transformed to Ripley’s K(r=30).  

𝐾 = 2𝜋 ∫ 𝑔(𝑟)
𝑟

𝑟=0

 

The empty space and nearest neighbour distribution are characterised by the proportion of 

locations or, respectively, trees that have their nearest tree within the distances r [m].  In 

cases where the function values differ, the proportions are characterised by the benchmarks 

of 10 %, 50%, or 90 % of trees falling within this distance Example: Beech: Empty-space 

function 90%: Around a Beech tree, in 90% of the cases, the empty space will be 8.28, i.e. 

between Beech trees, the gaps are usually not larger than roughly 8 m. 

 

  Ripley's K empty-space-function   nearest-neighbour-function 

species (r=30) 10% 50% 90%  10% 50% 90% 

beech 29784.63 1.77    4.55 8.28  1.15    3.19 6.17 

ash 37755.60 
 

44.42   14.49   41.81 44.42 

hornbeam 32976.22 53.67     53.67 

sycamore 32786.90 54.90  10.08    32.17 54.90 

maple 18898.71 161.22    161.22 

elm 9422.55 163.28    163.28 
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8 Appendix 2: Supplementary material for Chapter 2 

Table A 8-1 Measured and calculated abiotic covariates and the variance explained 

by the best predicting model . a= few data points. b = not interpolated, derived from DEM. 

An abbreviation code is included in Chapter 2, Table 1. 

Abiotic 
variable mean min max var R2 

Area.max1 
298994.
742 26183 2485885 

215413424600
.359 0.26 

Area.max2 
284400.
097 25768 2426017 

211052409231
.368 0.26 

Area.max3 
213441.
258 23003 2288468 

127500838371
.047 0.18 

cont.water_1 30.833 11.060 54.480 63.727 0.26 
cont.water_2 35.970 12.000 131.380 421.080 0.21 
cont.water_3 33.174 18.580 53.130 65.081 0.21 
diff.soil1_1 3.720 -27.830 23.610 26.813 0.04 
diff.soil1_2 5.922 1.120 14.110 6.106 0.12 
diff.soil1_3 5.933 1.180 11.040 5.952 0.20 
diff.soil1_4 7.935 2.190 36.480 25.102 0.17 
diff.soil1_5 8.653 1.750 38.270 28.505 0.21 
diff.soil2_1 5.239 -0.050 58.700 58.357 0.06 
diff.soil2_2 6.265 0.630 25.070 15.659 0.14 
diff.soil2_3 6.136 1.680 20.900 9.190 0.05 
diff.soil2_4 7.383 1.590 31.330 18.910 0.08 
diff.soil2_5 8.936 2.800 57.350 56.340 0.18 
diff.soil3_1 6.544 0.460 11.000 3.948 0.22 
diff.soil3_2 6.867 1.480 12.380 5.052 0.17 
diff.soil3_3 7.034 1.300 14.570 9.009 0.06 
diff.soil3_4 6.551 2.410 11.110 4.591 0.06 
DUS2_1 5.930 2.000 75.000 118.257 0.06 
DW1_1_1 13.520 4.260 52.410 73.839 0.09 
DW1_1_2 19.376 5.870 33.130 47.943 0.08 
DW1_1_3 20.082 5.850 44.680 62.852 0.15 
DW1_1_4 25.533 8.030 55.910 127.416 0.35 
DW1_1_5 31.037 6.120 56.730 187.468 0.40 
DW1_1_6 34.634 11.360 61.980 195.972 0.16 
DW1_1_7 47.588 16.880 65.680 165.392 0.30 
DW1_1_8 42.824 4.890 61.910 419.158 0.81 
DW1_1_9 57.163 47.680 66.830 61.138 a 
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Continued  

Table A 8-1      

Abiotic 

variable mean min max var R2 

DW2_1_2 21.568 3.110 71.810 95.761 0.20 
DW2_1_3 22.638 7.500 55.160 85.483 0.01 
DW2_1_4 27.371 7.510 61.200 143.093 0.05 
DW2_1_5 32.873 5.450 67.560 239.228 0.14 
DW2_1_6 39.861 18.490 68.480 182.273 0.16 
DW2_1_7 49.916 24.620 71.760 156.482 0.20 
DW2_1_8 44.420 13.750 80.180 402.986 0.40 
DW2_1_9 41.223 19.170 54.900 220.615 a 
DW3_1_1 14.907 2.530 30.270 17.317 0.20 
DW3_1_2 18.630 6.750 31.180 29.086 0.20 
DW3_1_3 20.748 7.380 39.630 58.748 0.06 
DW3_1_4 20.158 7.110 38.170 35.806 0.06 
DW3_1_5 20.861 3.440 40.490 58.139 0.27 
DW3_1_6 26.876 3.610 227.260 861.515 0.08 
DW3_1_7 26.659 3.330 42.680 101.204 0.38 
DW3_1_8 22.744 5.870 46.330 144.311 0.29 
DW3_1_9 23.554 7.920 38.910 122.243 0.55 
DW3_1_10 12.305 7.170 17.440 52.736 a 
DWUS1_1 47.323 7.710 171.080 901.470 0.20 
DWUS2_1 56.718 12.420 115.590 488.702 0.38 
FW1_1_1 17.398 5.310 76.020 109.376 0.19 
FW1_1_2 25.580 6.990 42.750 83.018 0.17 
FW1_1_3 26.041 7.030 55.410 100.863 0.13 
FW1_1_4 33.497 10.290 68.480 210.492 0.24 
FW1_1_5 39.871 7.870 71.600 287.778 0.37 
FW1_1_6 43.429 12.980 78.500 278.612 0.13 
FW1_1_7 58.661 20.350 81.220 234.864 0.01 
FW1_1_8 52.298 5.220 79.690 725.949 0.69 
FW1_1_9 69.520 55.810 78.450 93.659 a 
FW2_1_1 18.767 4.920 82.170 163.275 0.06 
FW2_1_2 27.525 3.740 96.880 170.920 0.17 
FW2_1_3 28.436 9.500 66.440 122.399 0.10 
FW2_1_4 34.319 9.100 73.790 197.897 0.04 
FW2_1_5 42.263 12.640 79.830 308.555 0.34 
FW2_1_6 48.857 24.330 83.240 260.245 0.17 
FW2_1_7 60.602 27.430 114.400 333.415 0.19 
FW2_1_8 62.542 27.280 88.210 379.838 0.65 
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Continued  
Table A 8-1 
 

Abiotic 
variable mean min max var R2 
FW3_1_2 25.535 8.230 43.560 55.562 0.18 
FW3_1_3 27.608 9.150 52.490 110.762 0.05 
FW3_1_4 26.572 9.520 48.740 63.574 0.19 
FW3_1_5 27.111 4.090 52.230 103.528 0.32 
FW3_1_6 29.766 4.640 57.380 125.862 0.18 
FW3_1_7 33.825 4.090 58.180 169.062 0.09 
FW3_1_8 28.857 6.900 56.830 224.432 0.39 
FW3_1_9 27.065 5.360 47.840 220.101 0.16 
FW3_1_10 14.565 8.800 20.330 66.470 a 
FWUS1_1 66.262 12.290 237.850 1687.624 0.20 
FWUS2_1 83.286 15.900 156.720 1248.663 0.54 
GSCI.max2 7.669 3.869 16.409 6.679 0.21 
GSCI.max3 6.957 2.727 12.466 5.125 0.17 
GSCIplot.medi
an 7.647 3.072 16.507 6.783 0.19 
logArea.max1 12.000 10.173 14.726 1.018 0.42 
logArea.max2 11.873 10.157 14.702 1.177 0.05 
logArea.max3 11.597 10.043 14.643 1.141 0.09 
MD1_1 59.210 26.000 90.000 190.627 0.56 
MD2_1 59.008 25.000 86.000 199.869 0.51 
MD3_1 69.393 30.000 94.000 178.743 0.38 
mean_depth 62.742 43.667 86.333 88.888 0.53 
nFK 95.355 60.200 221.975 401.388 0.32 

Perim.max1 
13715.6
63 2636.664 60087.427 152428194.257 0.31 

Perim.max2 
13162.1
09 3183.480 57011.784 149300183.144 0.29 

Perim.max3 
10502.4
28 1571.741 61711.751 98652927.757 0.31 

pF1_8 121.925 87.260 155.230 186.373 0.18 
sd_depth 12.341 1.155 25.865 34.081 0.26 
var_depth 185.824 1.333 669.000 25913.768 0.25 
Analytical.Hill
shading 42.120 0.087 117.376 196.535 b 
Aspect 2.694 0.000 6.283 5.825 b 
Catchment_Ar
ea 761.718 1.000 

981133.31
3 136765160.851 b 

Cross.Sectiona
l_Curvature 0.000 -0.276 0.311 0.000 b 
dtmHuss 433.869 365.760 475.585 652.265 b 
Slope 0.087 0.000 0.836 0.004 b 
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Table A 8-2 Interpolated abiotic covariate with best spline type and explained 

variance by best model.  

interpolated abiotic 
variable 

Smoothing spline /kernel 
type 

R2 of best interpolation 
model 

Area1 s.aniostropic  0.52 
Area2 s.aniostropic  0.51 
Area3 s.aniostropic  0.2 
cont.water s.aniostropic  0.24 
diff.soil1 s.aniostropic  0.3 
diff.soil2 s.aniostropic  0.33 
diff.soil3 s.aniostropic  0.16 
diff.soil4 s.aniostropic  0.03 
diff.soil5 s.aniostropic  0.18 

DUS2_1 s.aniostropic  0.07 
FWUS2_1 s.aniostropic  0.48 
GCSI1 s.aniostropic  0.19 
GCSI2 s.aniostropic  0.21 
GCSI3 s.aniostropic  0.19 
GCSIplot.median s.aniostropic  0.19 
logArea isotropic 0.44 
MD1_1 s.aniostropic  0.56 
MD2_1 s.aniostropic  0.51 
MD3_1 anisotropic 0.51 
mean_depth s.aniostropic  0.53 
nFK anisotropic 0.24 

pF1_8 s.aniostropic  0.18 
sd_depth s.aniostropic  0.26 
var_depth s.aniostropic  0.24 
wF s.aniostropic  0.25 
wK s.aniostropic  0.05 
wL isotropic 0.35 
wN anisotropic 0.17 
wT s.aniostropic  0.27 
wR s.aniostropic  0.24 

 

Table A 8-3 available on CD: Results of vegetation relevés at all 62 sample plots. 

Information include Plot name, Gauss-Krueger coordinates, date of relevé, Species name 

(Latin and German), vegetation type, total cover per plot (in per cent and on ordinal Braun-

Blanquet scale) 
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Table A 8-4 Summary table of species identified in relevés and the according indicator 

values used for weighing with cover. Lay= Layer (T=Tree, H= Herbacious, S=Shrub) 

Abbreviations according to German Ellenberg indicator values (L=Light, T=Temperature, 

K=Continentality, F-Wetness, R=Soil acidity, N=Nitrogen/ soil productivity) 

Species Latin Species German Lay L T K F R N 

Acer platanoides Spitz-Ahorn T 4 x 4 6 x 7 

Acer pseudoplatanus Berg-Ahorn T 4 x 4 6 x 7 

Aegopodium podagraria Giersch H 5 5 3 6 7 8 

Ajuga reptans Kriechender Günsel H 6 x 2 6 6 6 

Alliaria petiolata Knoblauchsraute H 5 6 3 5 7 9 

Allium ursinum Bärlauch H 2 x 2 6 7 8 

Anemone nemorosa Busch-Windröschen H x x 3 5 x x 

Anemone ranunculoides Gelbes Windröschen H 3 6 4 6 8 8 

Arctium lappa Große Klette H 3 3 4 2 4 5 

Arum maculatum Gefleckter Aronstab H 2 4 2 3 4 3 

Asarum europaeum Europäische Haselwurz H 2 4 2 3 4 3 

Athyrium filix-femina Gewöhnlicher Frauenfarn H 2 3 2 3 2 3 

Brachypodium 

sylvaticum Wald-Zwenke H 3 3 3 3 3 3 

Cardamine bulbifera Zwiebel-Schaumkraut H 3 5 4 5 7 6 

Cardamine heptaphylla Fiederblättrige Zahnwurz H 2 3 2 3 4 4 

Cardamine pentaphyllos Fingerblättrige Zahnwurz H 3 5 2 5 7 6 

Carex remota Lockerährige Segge H 3 5 3 8 x x 

Carex sylvatica Wald-Segge H 2 5 3 5 6 5 

Carpinus betulus Hainbuche T 4 6 4 x x x 
Convallaria majalis Maiglöckchen H 5 x 3 4 x 4 
Corydalis cava Hohlknolliger Lerchensporn H 3 6 4 6 8 8 
Crataegus laevigata Zweigriffeliger Weissdorn H 6 6 4 5 7 5 
Crataegus monogyna Eingriffeliger Weissdorn H 7 5 3 4 8 4 

Crataegus sp. Zweigriffeliger Weissdorn H 6 6 4 5 7 5 
Deschampsia cespitosa Rasen-Schmiele H 6 x x 7 x 3 
Dryopteris carthusiana Dorniger Wurmfarn H 5 x 3 x 4 3 
Dryopteris dilatata Breiter Wurmfarn H 4 x 3 6 x 7 
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Species Latin Species German Lay L T K F R N 

         
Dryopteris filix-mas Echter Wurmfarn H 3 x 3 5 5 6 
Euonymus europaeus  Gemeines Pfaffenhütchen H 3 3 3 3 4 3 
Fagus sylvatica Rot-Buche T 3 5 2 5 x x 
Fraxinus excelsior Gemeine Esche T 4 5 3 x 7 7 
Geum urbanum Echte Nelkenwurz H 4 5 5 5 x 7 
Hedera helix Efeu H 4 5 2 5 x x 
Hordelymus europaeus Waldgerste H 4 5 4 5 7 6 
Hypericum perforatum Echtes Johanniskraut H 7 6 5 4 6 4 
Juncus effusus Flatter-Binse H 8 5 3 7 3 4 
Lamium maculatum Gefleckte Taubnessel H 5 x 4 6 7 8 
Lamium purpureum  Rote Taubnessel H 7 5 3 5 7 7 

Lathyrus vernus Gewöhnliche Frühlings-Platterbse H 4 6 4 5 8 4 
Lilium martagon Türkenbund-Lilie H 4 x 5 5 7 5 
Melica nutans Nickendes Perlgras H 4 x 3 4 x 3 
Mercurialis perennis Wald-Bingelkraut H 2 x 3 x 8 7 
Milium effusum Waldhirse H 4 x 3 5 5 5 
Oxalis acetosella Wald-Sauerklee H 1 x 3 5 4 6 
Paris quadrifolia Vierblättrige Einbeere H 3 x 4 6 7 7 
Polygonatum 
multiflorum Vielblütiges Salomonssiegel H 2 x 5 5 6 5 
Polygonatum odoratum Echtes Salomonssiegel H 7 5 5 3 7 3 
Polygonatum 
verticillatum Quirlblättriges Salomonssiegel H 4 4 2 5 4 5 
Primula elatior Hohe Schlüsselblume H 6 x 4 6 7 7 

Prunus avium Süsskirsche T 4 5 4 5 7 5 
Ranunculus auricomus Gold-Hahnenfuss H 5 6 3 x 7 x 
Ranunculus lanuginosus Wolliger Hahnenfuss H 3 6 4 6 7 7 
Rubus fruticosus agg. Brombeere H 3 6 4 6 7 7 
Rumex sanguineus Blut-Ampfer H 4 6 2 8 7 7 
Sanicula europaea Sanikel H 4 5 3 5 8 6 
Scrophularia nodosa Knotige Braunwurz H 4 5 3 6 6 7 
Senecio ovatus Fuchs' Greiskraut H 7 x 4 5 x 8 
 
Stachys sylvatica Wald-Ziest H 4 x 3 7 7 7 
Stellaria holostea Grossblütige Sternmiere H 5 6 3 5 6 5 
Ulmus glabra Berg-Ulme T 4 5 3 6 7 7 

Urtica dioica Grosse Brennnessel H x x x 6 7 9 
Viola reichenbachiana Wald-Veilchen H 4 x 4 5 7 6 
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Table A 8-5 Species-specific tree-size model results when not including topography, 

aligned with species number in both census years 

 

 

 

  

Species Number of 
individuals 

R2 

no topography 
Most influential covariate 

1999 2007  

 beech 
 (Fagus 
sylvatica)  

13307 12191 0.05 no niche 

ash  
(Fraxinus 
excelsior) 

550 527 0.10 Light 

hornbeam  
(Carpinus 
betulus) 

389 361 0.16 plant-avail. water 

sycamore 
(Acer 
pseudoplatanus) 

321 345 0.44 plant-avail. water 

Norway maple 
(Acer 
platanoides) 

44 40  0.34 plant-avail. water 

elm 
(Ulmus glabra) 

69 39 0.08 continentality 
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Figure A 8-1- PCA analyses of soil sample results. Variation in soil depth over time was by far the most 

pronounced variables, followed by plant-available water and contained water in summer. 
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Figure A 8-2PCA of Ellenberg's indicator values from vegetation releves, weighted by 

coverage. Numbers are numbers of plot, showing an ordering from south-east to north-west 

plots in left to right direction. This is also discernible in spatial distribution of indicator 

values. 
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Figure A 8-3 PCA of light-related variables, calculated from hemispherical photos and 

topography 



133 

 

 

Figure A 8- 4 Result of RandomForest variable selection for beech (tree size distribution 

explained by abiotic covariates). The Kraft class (dominance in canopy) as the covariate of 

best explaining growth was also found in (Saefken et al. 2013). We did not include this a) 

because it is not abiotic and b) to avoid tautology (large trees are, where large trees are). 

An abbreviation key to the covariates is included in Chapter2, Table 1. 
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Figure A 8-5 Result of RandomForest variable selection for ash (tree size distribution 

explained by abiotic covariates). Note the majority of water content related covariates and 

fresh weight (FW) compared to dry weight (DW).  
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Figure A 8-6 Result of RandomForests for hornbeam (tree size distribution explained by 

covariates) Note that soil acidity is selected as most influential and light related covariates 

occur amongst the most important covariates. 
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Figure A 8-7 Results of Random Forest variable selection for sycamore. Note the 

increased importance of indicator values. 
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9 Appendix 3: Supplementary material for Chapter 3 

 

 

Figure A 9-1 Results of LogGaussian Cluster Process including biotic and abiotic 

covariates for Beech with DBH 10-30 cm (top) and > 30 cm (bottom). Black line = observed 

pattern evaluated with inhomogenous pair-correlation function, red = mean model 

assumption, grey envelope: created from 199 random realisation of the point process.  
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