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Abstract 

The combination of the Wee1 inhibitor MK-1775 and gemcitabine is highly efficient in killing 

cancer cells in vitro and in mouse xenograft experiments, but the complete molecular 

mechanism of this potent sensitizing effect remains unknown. We found that MK-1775 does 

not only block Wee1 activity in gemcitabine treated cells, but also reduces the activation of 

the ATR/Chk1 pathway in a Cyclin-dependent kinase 1 (Cdk1) dependent manner. These 

findings suggest that Wee1 inhibitors do not only interfere with cell cycle checkpoints to 

force cell cycle progression, but also to enhance replicative stress and intensify 

chemosensitivity towards nucleoside analogues through Chk1 inhibition and replicative 

stress, making them interesting therapeutic agent candidates for clinical oncology. However, 

considerable MK-1775 toxicities have been observed in preclinical as well as in clinical trials.  

Over 50% of all cancers carry a mutation in the TP53 gene. Using the MDM2-antagonist 

Nutlin-3a, we provide a selective protection of p53-proficient cells against the cytotoxic 

effects of Wee1 inhibitors. Pretreatment of p53 wildtype cells with Nutlin-3a results in a 

transient cell cycle arrest, which effectively benefits cell survival upon subsequent treatment 

with the combination of the Wee1 inhibitor MK-1775 and gemcitabine. Nutlin-3a 

pretreatment reduced both the DNA damage response, as well as caspase activation in a 

p53-dependent manner. MDM2 antagonists might therefore selectively protect p53-

proficient cells against the cytotoxic effects of Wee1 inhibitors, especially when combined 

with an S-phase specific drug, such as the nucleoside analogue gemcitabine. This approach 

might help to avoid toxic side effects of Wee1 inhibitors in anticipated clinical applications. 
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I Introduction 

I.1 Cancer and the origins of chemotherapy 

Cancer is a group of related diseases, in which cells undergo malignant transformation to 

promote uncontrolled cell growth and loss of differentiation. They all have a genetic cause of 

malignancy. Furthermore, some cancers will metastasize in later stages to evolve into 

systemic illnesses. If metastasis has not yet occurred, local tumors can be operated and/or 

irradiated. These procedures are very promising and can lead to complete remission of the 

patient. Unfortunately, a metastasizing tumor cannot be efficiently eradicated by local 

treatments. Until now, the only promising approach for late stage metastasized cancers is 

chemotherapy. Chemotherapy is applied orally or injected into the bloodstream or spinal 

fluid of the patient and acts on the entire human system. This way, even metastases too 

small to be detected by our current diagnostic tools can be targeted and destroyed. 

The pioneer of cancer chemotherapy, Sidney Farber, has established the folic acid antagonist 

aminopterin as an intravenous chemotherapeutic drug to send young acute lymphoblastic 

leukemia (ALL) patients into temporal remission. This revolutionary approach, this systemic 

targetting on leukemia, a cancer of the blood, was the onset of modern chemotherapy. 

Farber’s efforts to treat cancer were not limited to the application of aminopterin, he worked 

relentlessly to establish different chemotherapies and to develop a cure for cancer in general 

(Mukherjee 2011). Over the last century it has become clear, that cancers are as 

heterogeneous as their host patients, as not all chemotherapeutical drugs would work with 

the same efficiency on different patients with the same type of cancer. Overcoming this 

obstacle is the promise of personalized medicine, with more and more advanced 

technologies and computational power, we will soon be able to reveal the weaknesses of 

individual tumors in single patients at affordable expenses. To exploit these weaknesses, we 

also need to broaden the variety of combinatory chemotherapeutical drug regimen. 

Therefore, personalized medicine is an interdisciplinary approach: We need physicists and 

computer scientists to improve information technology, chemists to synthesize a broad 

variety of new substances, biologists to test these putative drugs in cell lines and animal 

models, and finally empower medical doctors to evaluate the information about the unique 

cancer of the individual patient to apply a personalized chemotherapeutic drug regimen to 

treat the tumor.    
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Farber’s dream of finding cures through 

chemotherapy lives on, and the promise is 

renewed by the prospect of personalized 

medicine. We might not ever be able to cure all 

cancers, but we might take off the death sentence 

from a cancer diagnosis, as it has happened with 

once lethal diseases such as multiple sclerosis, 

diabetes and AIDS, and turn it into a chronic 

disease, with impaired life quality, but non-lethal, 

giving these patients decades more to live.  

Figure I.1: Sidney Farber with a young patient in 

1960 (wikipedia.com). 

 

I.2 Cell cycle and molecular responses to DNA damage  

The cell cycle is an important molecular machinery all eukaryotes share in common, this 

intricate system tightly regulates cell growth, DNA replication, mitosis, apoptosis and 

senescence; without it, multicellular life would be impossible. The necessity for a functional 

cell cycle in higher eukaryotes can be observed in the pathology of cancer: Uncontrolled cell 

divisions lead to tumor formation, metastasis and inevitably to the death of the organism. In 

this case, regulatory mechanisms governing the cell cycle have been lost or hijacked by the 

disease (Chow and Poon 2010). Untransformed cells are resistant to cancerogenesis through 

various mechanisms: One important feature is the ability to detect, measure and repair DNA 

damage (Hanahan and Weinberg 2011). This core machinery is encased within the cell cycle 

and tightly regulated by the so-called cell cycle checkpoints, which are governed by various 

important proteins, including the famous p53 protein, the guardian of the genome. p53 is of 

such importance, because it stands at the crossroads of a cells decision to survive or to 

undergo apoptosis. It gathers various cellular inputs to either promote cell cycle arrest and 

subsequent DNA damage repair, or to have the cell undergo programmed cell death (Bieging 

and Attardi 2012). Because of these features, it is not surprising that p53 is the most 

frequently mutated gene in human cancers, almost 50% of all cancers carry a TP53 mutation, 
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the protein has therefore established itself as the most investigated molecule in cancer 

research (Vogelstein et al. 2000). 

I.2.1 Cell cycle regulation through Cyclins and Cdks 

The tight regulation of the cell cycle is ensured by various Cyclins and Cyclin-dependent 

kinases (Cdks) (Bloom and Cross 2007). Cdks are the key regulators of the cell cycle, which 

are activated through hetero-dimerization with their corresponding Cyclins and subsequent 

phosphorylation by Cdk-activating kinases (Caks) (Malumbres and Barbacid 2009). Different 

Cyclin-Cdk complexes are specific to their respective cell cycle phase: In the G1 phase, in 

which the cell synthesizes molecules in preparation for the S-phase, Cyclin D forms 

complexes with Cdk4 and Cdk6. In the late G1-phase, Cyclin E complexes with Cdk2, this 

combination is called the S-phase promoting complex. The S-phase induced Cyclin A-Cdk2 

complex arises during DNA replication and remains stable throughout the G2 phase until the 

cell enters mitosis. Finally, the Cyclin B-Cdk1 complex, historically called the mitosis 

promoting factor (MPF) is crucial for the G2/M transition (Malumbres and Barbacid 2009). 

I.2.2 Activation of cell cycle checkpoints 

The cell cycle needs to be tightly orchestrated to ensure the generation of two healthy 

daughter cells, for which cell size and DNA ploidy, to ensure a viable cell size and to prevent 

aneuploidy, are crucial parameters. Regarding this already intricate machinery alone, it is still 

insufficient to protect the genome from genotoxic stress, DNA damage and subsequent 

mutations. Therefore, evolution has developed an emergency control mechanism by 

introducing checkpoints to the cell cycle: DNA damage induces cell cycle arrests at the G1/S 

and G2/M checkpoints. Furthermore, the S-phase cell is also able to stop the cell cycle upon 

replicative stress, and induces the so-called intra-S checkpoint (Leemans et al. 2011).  

Upon genotoxic stress, the G1/S checkpoint is activated and halts the cell cycle. This process 

is tightly regulated by p53 (Leemans et al. 2011). The canonical DNA damage kinases ATM 

(Ataxia Telangiectasia Mutated) and ATR (ATM and Rad3-related) become active upon DNA 

damage and transduce their signal through the Checkpoint kinases 1 and 2 (Chk1 and Chk2) 

(Bouwman and Jonkers 2012). ATM and ATR induce the degradation of Cdc25A, an activating 

phosphatase of Cdks. Loss of Cdc25A inhibits DNA replication by inactivation of the Cyclin 

E/A-Cdk2 complex (Tse et al. 2007). ATM and ATR further activate p53 by phosphorylation at 
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Ser15 and Ser20, which then, as a tetrameric transcription factor, activates its target genes to 

promote cell cycle arrest, DNA repair and possibly apoptosis (Kastan and Bartek 2004). For 

the G1/S phase, the prominent p53 target gene p21 acts as a Cyclin E/A-Cdk2 and Cyclin 

D/Cdk4,6 inhibitor. Furthermore, p21 binds to PCNA, hampering with the DNA replication 

core machinery itself (Funk et al. 1997). p21, acting as powerful gatekeeper for S-phase 

entry, is therefore strongly prohibiting DNA replication progression by two distinct 

mechanisms.   

Another important regulator of the G1/S transition is the RB/E2F1 complex. The 

retinoblastoma (RB) protein has been discovered to be an important tumor suppressor 

protein, loss of the RB protein leads to the malignant pathology of retinoblastoma, most 

frequently diagnosed in infants (Nevins 1992). The RB/E2F1 complex is regulated by 

phosphorylation through Cyclin D/Cdk4,6 and Cyclin E/Cdk2 complexes, a phosphorylated RB 

protein cannot bind to the E2F1 transcription factor, which then induces Cyclins E and A to 

promote entry into S-phase. Upon genotoxic stress, p53 activation and inhibition of the 

Cyclin/Cdk complexes through p21, RB protein is predominantly found in its 

dephosphorylated state, in which it binds and inactivates E2F1, prohibiting its transcriptional 

activity and thereby halting the G1/S cell cycle transition (Kastan and Bartek 2004). 

Therefore, the RB/E2F1 complex represents another switch-like regulatory mechanism for S-

phase entry and progression, which also acts downstream of p21. 

Within the S-phase exists another checkpoint protecting the replicating genome from 

genotoxic stress, the so-called intra-S-checkpoint. It is also activated through ATM and ATR 

signaling pathways, which lead to inhibition of Cdk1 and Cdk2 activity through p21 (Bartek 

and Lukas 2003). Upon activation of this checkpoint, the nucleus seizes origin of replication 

firing and activates DNA repair mechanism pathways (Kastan and Bartek 2004).  
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When DNA damage is present during the G2 phase, the cell triggers activation of the G2/M 

checkpoint. Upon its activation, both the ATR-Chk1 and the ATM-Chk2 axis target the mitosis 

promoting factor (MPF), i.e. Cyclin B/ Cdk1 (Kastan and Bartek 2004), the cell cycle will halt 

at the entry into mitosis. Three p53 target genes contribute to the inhibition of the MPF, 

which are GADD45, p21 and 14-3-3σ (Taylor and Stark 2001). p21 inactivates Cdk1 directly, 

whereas 14-3-3σ traps Cdk1 in the cytoplasm, preventing its mitotic inducing activity. 

GADD45 interferes with Cyclin B / Cdk1 complex formation, thus decreasing Cdk1 activity 

(Zhan et al. 1999). All three factors thus hamper with Cdk1 function, preventing the cells 

entrance into mitosis. 

 

Figure I.2: Cell cycle regulation by different cell cycle checkpoint control pathways. 

When DNA damage occurs during the G1 phase of the cell cycle, it activates the G1/S 

checkpoint, which is controlled by both the p53 and the RB/E2F pathways. RB binds E2F, 

preventing its S-phase inducing function and the p53 downstream effector protein p21 

inhibits the Cyclin E / Cdk2 complex which promotes replication progression by 

phosphorylating and inhibiting RB function. Furthermore, p21 it is able to inhibit the G2/M 

checkpoint upon DNA damage in the G2 phase by counteracting the mitosis promoting Cyclin 

A and B / Cdk1 complexes (Image taken from Leemans et al. 2011). 
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I.2.3 Replicative stress and DNA damage response pathways 

The genome is most vulnerable during the S phase of the cell cycle. During unwinding and 

replication of the DNA, many errors and chemical modifications can occur to the 

macromolecule, these events can be summarized and described as DNA damage. DNA 

damage endogenously occurs in the cell at high rates, mostly induced by its oxidative 

metabolism, but it can also be induced exogenously by chemical or irradiation stressors 

(Kastan and Bartek 2004). The ability of the cell to repair these damaged DNA sites is crucial 

for its survival. Accumulated DNA damage can lead to mutations and subsequent 

cancerogenesis, DNA repair pathway genes are thus often mutated in transformed cells. 

Paradoxically, oncologists utilize DNA damage through chemo- and radiotherapy to kill cancer 

cells, but at the same time they might lay the base for a secondary tumor to occur (Boffetta 

und Kaldor 1994; Ng und Shuryak 2014). It is therefore crucial to gain an in-depth 

understanding of DNA damage and the cells response towards it. Canonically, DNA damage is 

detected through two hallmark kinases of the PI3K (phosphatidylinositol 3-kinase related 

kinase) family, which are ATR and ATM, the two first line DNA damage kinases (Giglia-Mari et 

al. 2011).  

I.2.3.1 The ATR-Chk1 pathway responds to single-stranded DNA breaks (ssDNA breaks) 

Single-stranded DNA breaks (ssDNA breaks) in the cell can arise through different 

mechanisms: Genotoxic stress in S-phase leads to replication fork stalling, the replication fork 

stops, but the helicase continues to unwind the double-stranded DNA (dsDNA), directly 

exposing ssDNA (Kastan and Bartek 2004). Upon ssDNA formation, the lesion site is 

immediately covered by replication protein A (RPA), which then recruits the ATR - ATR 

interacting protein (ATRIP) complex (Zou and Elledge 2003). ATR transmits its signal through 

phosphorylation of various substrates, most importantly Chk1 (Liu et al. 2000). Chk1 is able 

to halt the cell cycle through various functions: Chk1 mediated phosphorylation leads to 

proteasomal degradation of the Cdc25A and Cdc25B phosphatases, which remove inhibitory 

phosphorylations from Cdks. Chk1 is therefore able to stop cell cycle progression at any given 

cell cycle checkpoint by functionally inhibiting Cdks (Chen and Poon 2008). Furthermore, 

Chk1 activates Wee1, a kinase that introduces inhibitory phosphorylations to Cdk1 at Tyr15 

and Thr14, which halt the cell cycle at the G2/M-phase checkpoint (Smith et al. 2010). The 

inhibitory phosphorylation at Tyr15 can be removed by Cdc25C, thus activating Cdk1. Chk1 
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can phosphorylate Cdc25C at Ser216, the phosphorylated form is bound by 14-3-3 proteins 

and therefore removed from the active pool and the G2/M cell cycle checkpoint stays 

activated due to impaired Cdk1 function (Peng et al. 1997). Chk1 signaling is therefore able 

to inhibit Cdks and thus cell cycle progression through distinct mechanisms.  

I.2.3.2 The ATM-Chk2 pathway responds to DSB 

If stalled replication forks persists, dsDNA breaks form upon disintegration of the replication 

complex. This process signals to inactive ATM dimers, which auto-phosphorylate at Ser1981 

and dissociate to active ATM monomers (Bakkenist and Kastan 2003). ATM is then recruited 

to the DNA damage site by the MRE11/RAD50/NBS1 (MRN) complex (Lee and Paull 2007). At 

the site of DNA damage, ATM activates its target protein checkpoint kinase 2 (Chk2) via 

phosphorylation at Thr68 (Buscemi et al. 2004). Like Chk1, Chk2 down-regulates Cdc25 

protein levels and promotes cell cycle arrest at various cell cycle checkpoints (Lee and Paull 

2007). Furthermore, both ATM and Chk2 phosphorylate and activate the transcription factor 

p53. In addition, ATM hampers with the MDM2/p53 auto-regulatory negative feedback loop 

by phosphorylating MDM2 at Ser395 (Buscemi et al. 2004). Ser395 lies within the N-terminus 

of MDM2, its phosphorylation impairs the ubiquitination of and subsequent degradation of 

p53. Most interestingly, phosphorylation at Ser395 also enhances ubiquitination and 

subsequent protein degradation of MDM2 itself (Valentine et al. 2011). Through elevated 

levels of activated p53 by decreasing MDM2 function, the ATM-Chk2 axis regulates the cell 

fate upon genotoxic stress.  

Nucleosomes are composed of histone octamers, in a single octamer one can find two copies 

of histone H2A. In about every fifth nucleosome, H2A is replaced by its isoform H2AX, which 

is different in its biological features (Redon et al. 2002). Upon activation of the DNA damage 

signaling pathways, H2AX is phosphorylated at Ser139 by the ATM kinase, which is then 

called γH2AX (Huang et al. 2004). The scaffold of yH2AX, ATM and mediator of DNA damage 

checkpoint 1 (MDC1), which is also phosphorylated by ATM (Lou et al. 2006), is crucial in 

supporting the spread of this DNA damage signal. Subsequently, the ring finger proteins 8 

and 168 (RNF8 and RNF168) E3 ubiquitin ligases add poly-ubiquitin residues to yH2AX, 

creating a scaffold for further downstream DNA double strand repair mechanism such as 

non-homologous end joining (NHEJ) or homologous recombination (HR) (reviewed in van 

Attikum and Gasser 2009).   
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Figure I.3: Cell cycle checkpoints are 

activated by Chk1 and Chk2 kinases. 

Upon different stressors, the apical 

kinases ATM and ATR activate their 

downstream kinases Chk2 and Chk1, 

which either act via the p53-p21 axis 

or through CDC25 phosphatase 

mediated inhibition of Cyclin/Cdk 

complexes to halt the cell cycle at 

either the G1/S or G2/M transition 

(Image taken from Bouwman and 

Jonkers 2012). 
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I.2.4 p53 – The guardian of the genome 

Since its discovery in 1979, p53 has established itself as the most studied protein in the field 

of cancer biology. The interest in p53 is based on its important function as a molecular switch 

for a cell to either live or die, which makes p53 the most important tumor suppressor gene 

known. This hypothesis is further supported by the observation, that 50% of all cancers will 

carry a mutation in the TP53 locus (Vogelstein et al. 2000). p53 accumulates upon DNA 

damage and halts the cell cycle, it then evaluates to either repair the damage or to induce 

programmed cell death, so-called apoptosis. All these molecular mechanisms are governed 

by p53 through its transcriptional activation of its plethora of target genes.  

Figure I.4: p53 at the hub of cellular stress responses. 

The p53 pathway is activated upon various cellular stressors and has a wide range on cellular 

responses to these different types of stresses. The triggered responses range from cell 

protective, such as DNA repair, to cell destructive reactions, such as apoptosis. Taken 

together, the p53 pathway is a powerful molecular machinery, which can decide the fate of a 

cell upon external and internal stressors (Image taken from Bieging and Attardi 2012). 
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I.2.4.1 p53 stabilization, activation and transcriptional activity 

Different stressful conditions lead to various post-translational modifications of p53, 

including addition or removal of phosphate, acetyl, ubiquitin and sumo residues (Meek 

1999). Upon DNA damage, p53 is activated and stabilized by the canonical DNA damage 

response kinases ATM, ATR, Chk1 and Chk2, through phosphorylation at Ser15 and Ser20 

(Vogelstein et al. 2000). Stabilization occurs due to the disruption of the p53/MDM2 

interaction site through ATM and ATR mediated phosphorylation at Ser15, which lies within 

the binding pocket of this protein-protein interaction (Milczarek et al. 1997). Chk1 and Chk2 

promote tetramerization of the protein via phosphorylation at Ser20, thus enhancing the 

transcriptional activity of p53 (Meek 1999). Once in a homo-tetrameric complex, p53 

activates a multitude of target genes, among the most intensively investigated are its 

negative regulator MDM2 itself, GADD45, the infamous Cdk inhibitor p21 and the pro-

apoptotic bax protein (Tokino and Nakamura 2000). By transcriptionally activating numerous 

cellular functions, including cell-cycle arrest, senescence and apoptosis, the tumor 

suppressor p53 is thus able to decide the fate of a cell (Bieging and Attardi 2012). 

I.2.4.2 The MDM2-p53 auto-regulatory negative feedback loop 

p53 levels within a cell are mainly regulated by MDM2 mediated proteasomal degradation. 

MDM2 is a RING E3 ubiquitin ligase, which binds p53 and subsequently adds poly-ubiquitin 

chains to its target protein. Both the binding of MDM2 to the p53 N-terminal transactivation 

domain and the proteasomal degradation of p53 protein diminish its transcription factor 

activity and cellular functions (Michael and Oren 2003). p53 induces MDM2 mRNA 

transcription, this negative feedback loop therefore tightly controls p53 levels within a 

healthy cell. Upon genotoxic stress, the MDM2-p53 interaction is disrupted by DNA damage 

kinase mediated phosphorylation of p53 at Ser15 (Shieh et al. 1997). Furthermore, ATM 

phosphorylates MDM2 within the RING domain at Ser395, adding to the steric hindrance of 

the MDM2/p53 protein-protein interaction (Valentine et al. 2011). 
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Figure I.5: p53-MDM2 feedback loops.  

Two feedback loops can be distinguished within the p53-MDM2 interaction: The negative 

feedback loop describes the proteasomal degradation of p53 through MDM2 mediated 

protein poly-ubiquitination, whereas the positive feedback loop is created via p53 mediated 

transcriptional induction of MDM2 mRNA and subsequent high intracellular levels of MDM2 

protein (Image take from Fahraeus 2005). 

I.2.5 Extrinsic and intrinsic induction of apoptosis 

Another important step for the evolution of multicellular organisms is the possibility to 

sacrifice a cell for the good of a genetically identical cellular population. This intrinsic 

removal of old or damaged cells is called programmed cell death or apoptosis (Elmore 2007). 

Since resistance to pro-apoptotic signals can promote the formation of cancers, this process 

is crucial for aging and survival of higher organisms. 

Upon extensive and irreparable amounts of cellular stress, tumor suppressor proteins, such 

as p53, pressurize the cell to undergo programmed cell death, so-called apoptosis. In 

contrast to necrosis, in which catastrophic cell disintegration leads to cell membrane rupture 

and cytoplasm spilling into the extracellular space, triggering an inflammatory response, 

apoptosis itself is a highly regulated and organized, non-inflammatory process. The apoptotic 

cell detaches from its surrounding environment, all macromolecules are internally digested 

into fragments and the cell is formatted into multiple vesicles, called apoptotic bodies, which 
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are subsequently taken up and digested by macrophages (Elmore 2007). Apoptosis is 

therefore a silent way to remove dysfunctional cells from a homeostatic cell population.  

Intracellular signaling of apoptosis is governed by the class of caspase proteins (cysteine-

dependent aspartate-directed proteases). Caspases are activated from their inactive 

precursor form, so-called procaspases, by catalytic cleavage from another activated caspase 

protein (Nunez et al. 1998). Initiator caspases are part of activating protein complexes, for 

instance, caspase 9 is part of the apoptosome complex, whereas caspases 8 and 10 are 

essential for the function of the death-inducing signaling complex (DISC) (Nunez et al. 1998). 

One important function of downstream effector caspases, such as caspases3, 6 and 7, is the 

activation of caspase activated DNAses (CADs), which fragment genomic DNA by cutting 

predominatly between the nucleosomes, creating the apoptotic phenomenon of DNA 

laddering when run on an agarose gel (Nunez et al. 1998).                                                   

Intrinsic activation of apoptosis is triggered upon extensive cellular stress, such as massive 

DNA damage. The main trigger for intrinsic apoptosis is the release of cytochrome c from the 

mitochondria into the cytoplasm forming the caspase activating apoptosome (Ashkenazi 

2008). Cytochrome c is released due to increased porosity of the mitochondrial membrane, 

the stability of the latter is determined by a delicate balance of pro- and anti-apoptotic 

proteins at the mitochondrial surface, which is critically influenced by p53 transcriptional 

activity. Both pro- and anti-apoptotic proteins belong to the Bcl-2 protein family, they are 

further classified into three subgroups: Anti-apoptotic, such as Bcl-2 and Bcl-XL, pro-

apoptotic, such as Bax and Bak, and pro-apoptotic activating proteins of the BH-3 family, 

such as Bid, Bad, Puma and Noxa (Tait and Green 2010). Anti-apoptotic proteins are outer 

mitochondrial membrane proteins, whereas most pro-apoptotic proteins can be found 

within the cytosol (Hardwick and Soane 2013). Upon activation of intrinsic apoptotic 

signaling, the pro-apoptotic proteins Bax and Bak undergo a conformational change and 

integrate into the outer mitochondrial membrane. Subsequent oligomerization of the 

proteins form pores into the mitochondria, releasing cytochrome c into the cytosol (Tait and 

Green 2010). Cytosolic cytochrome c binds Apaf-1 (apoptotic protease activating factor 1), 

leading to the formation of the so-called apoptosome, which, through activation of caspase 

9, transduces its signal to caspase 3, leading into a common output pathway with the 

extrinsically activated pathway of apoptosis. Importantly, caspase 3 also cleaves Poly-ADP-
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Ribose-Polymerase (PARP), which is frequently used as a molecular marker for apoptosis 

(Boulares et al. 1999). 

 

Figure I.6: Apoptosis can be induced through intrinsic as well as extrinsic cues. Upon DNA 

damage, p53 induces pro-apoptotic proteins of the BH-3 family, e.g. Puma and Noxa, these 

activate the pro-apoptotic proteins Bax and Bak by inhibiting anti-apoptotic proteins, such as 

Bcl-2 and Bcl-XL. Bax and Bak trigger the release of cytochrome c from the mitochondria, 

which contributes to the formation of the apoptosome. This complex activates the effector 

caspases 3, 6, and 7 via the initiator caspase 9, this activation effectively induces apoptosis in 

the cell. The effector caspases can also be activated by extracellular cues (Image taken from 

Ashkenazi 2008). 
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I.3 Chemotherapeutic drugs 

Today, there are numerous classes of classical chemotherapeutics, which resemble cellular 

toxins, such as alkylating agents, antimetabolites, topoisomerase and mitosis inhibitors, 

platinum compounds and others (Espinosa et al. 2003). More recently, with an increased 

understanding of molecular cancer biology, new drugs targeting single proteins, so-called 

small molecule inhibitors in targeted therapies, have gotten into the focus of translational 

research approaches and clinical trials (Wu et al. 2015). Amongst the small molecule 

inhibitors, Imatinib (Gleevec®) has risen to fame for being a single drug to send a large 

proportion of chronic myeloid leukemia (CML) patients into complete remission (Hochhaus 

2004; Roskoski 2015). The “magic bullet” is no longer fiction, but has become reality, at least 

in a small subset of human malignancies. 

In this study, we have investigated the pharmacological functions and combinatory effects of 

the small molecule Wee1 kinase inhibitor MK-1775, the small molecule MDM2 inhibitor 

Nutlin-3a and the classical nucleoside analogue gemcitabine in human cancer cell lines. 

I.3.1 Nucleoside analogues: Gemcitabine 

Nucleoside analogues are a group of antimetabolites, which interfere with normal DNA and 

RNA synthesis. They are most effective in rapidly dividing cells, as these need to replicate 

their DNA at high rates and therefore have a high turnover of nucleotides. Their applications 

in cancer medicine are various, as they are active in solid tumors, metastases and 

hematological malignancies (Jordheim et al. 2006).  

In our study, we have further investigated the classical nucleoside analogue gemcitabine, a 

first line drug for advanced ovarian and pancreatic cancers (Lorusso et al. 2006; Shore et al. 

2003). Gemcitabine is a deoxycytidine/pyrimidine analogue, the hydrogen atoms at the 2’-

carbon are substituted by two fluorine residues. After application, the prodrug gemcitabine 

is taken up into the cell via human nucleoside transporters (hNTs) and is then further 

phosphorylated by deoxycytidine kinase (dCK) to its monophosphate and subsequently into 

its main active triphosphate metabolite 2',2'-difluorodeoxycytidine triphosphate (dFdCTP), 

which is either incorporated into the DNA directly, or indirectly inhibits DNA synthesis 

through inhibition of ribonucleotide reductase, the rate limiting step of DNA synthesis 

(Veltkamp et al. 2008). Through its direct and indirect action on DNA synthesis and the 
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pharmacological stability of its active form, gemcitabine is a powerful drug capable of dealing 

collateral damage to dividing cells (Gesto et al. 2012). In more detail, gemcitabine is an 

efficient DNA replication specific drug, it depletes the deoxynucleoside triphosphate (dNTP) 

pool and stalls replication forks through steric hindrance during S-phase, creating massive 

amounts of DNA damage (Dobbelstein and Sorensen 2015). Such DNA damage during DNA 

replication is called replicative stress, which, through genome instability and mutations, has 

been named one of the new hallmarks of cancer (Hanahan and Weinberg 2011). By its 

actions, gemcitabine powerfully activates the G1/S phase checkpoint through its impact on 

DNA replication. 

Gemcitabine is used as a first line drug in the very malignant pancreatic cancer (Burris et al. 

1997; Moore et al. 2003). Nonetheless, medium survival rates remain low, as pancreatic 

tumors often develop resistance against gemcitabine, such as elimination of the drug from 

the cell through the human Nucleoside-Transporter 1 (hNT1) (Giovannetti et al. 2006) or 

increased nucleoside metabolism through upregulation of deoxycytidine kinase and 

ribonucleoside reductases M1 and M2 (Nakano et al. 2007). Therefore, chemo-sensitization 

of pancreatic cancer cells to gemcitabine through combinatory treatments is of great medical 

interest and clinical importance. 

 

Figure I.7: Structures of deoxycytidine and gemcitabine.  

Gemcitabine is a deoxycytidine/pyrimidine analogue, the hydrogen atoms at the 2’-carbon 

are substituted by two fluorine residues (modified from Ewald et al. 2008). 
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I.3.2 Small molecule inhibitors 

Small molecule inhibitors are low molecular weight compounds, which inhibit a specific 

target protein, their application has therefore been coined targeted therapy. Some small 

molecule inhibitors prolong patient survival just for weeks or months longer, rendering them 

as ineffective in clinical trials, other compounds would send patients into stable complete 

remission, e.g. Imatinib (Roskoski 2015). In our study we have further investigated the Wee1 

kinase inhibitor MK-1775 and the MDM2 inhibitor Nutlin-3a. 

I.3.2.1 Wee1 kinase inhibitor (MK-1775) 

The Wee1 kinase is an important regulator of the G2/M transition, this serine / threonine / 

tyrosine kinase adds inhibitory phosphorylations on Cdk1 at T14 and Y15 and thereby 

inhibits entry into mitosis (Watanabe et al. 1995). Wee1 protein levels and activity increase 

during S and G2 phase, peaking at the G2/M transition. Its activity decreases during M phase, 

where the protein gets hyper-phosphorylated by Cdk1 and Plk1 at Ser123 and Ser53, 

respectively, and is further subjected to proteolytic degradation through the E3 ubiquitin 

ligase SCFβ-TrCP1/2 (Watanabe et al. 1995; Watanabe et al. 2004; Ovejero et al. 2012). 

Inhibition of Wee1 and therefore uncontrolled Cdk1 activity forces S-phase-arrested cells 

directly into mitosis without completing DNA synthesis, resulting in cell death induced by 

mitotic catastrophe (Aarts et al. 2012). Furthermore, knockdown of the Wee1 kinase has 

been shown to stall DNA replication and to generate DNA damage, this is due to activation of 

the heterodimeric Mus81-Eme1 structure-specific endonuclease, which is capable of 

generating DSBs (Dominguez-Kelly et al. 2011).  

MK-1775, a Wee1 small molecule inhibitor, has been found to sensitize cancer cells to a 

variety of DNA-damaging agents, including 5-fluorouracil (Hirai et al. 2010), gemcitabine and 

platinum based agents (Hirai et al. 2009), as Wee1 inhibition forces premature entry into 

mitosis upon DNA damaging agent induced cell cycle arrest. A xenograft experimental series 

has suggested a synergistic effect between MK-1775 and gemcitabine (Rajeshkumar et al. 

2011). In this study, we have made an effort to describe this synergism mechanistically. 

Furthermore, although promising, MK-1775 has not achieved FDA approval due to enhanced 

cytotoxicity, such as myelosuppression and tachyarrythmia, in clinical trials (Do et al. 2015). A 

possibility to counter this toxicity could be cytoprotection of untransformed and p53 
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proficient cells through activation of cell cycle checkpoints. Therefore, we have investigated 

this hypothesis by co-treatment with the MDM2 small molecule inhibitor Nutlin-3a. 

 

Figure I.8: MK1775 (MK-1775 medchemexpress.com) 

I.3.2.2 The Mdm2 antagonist Nutlin-3a 

Nutlin-3a is a small molecule inhibitor against the ubiquitin ligase MDM2, which is the main 

antagonist of p53 (Wade et al. 2013). Upon inhibition of MDM2, p53 accumulates and 

subsequently upregulates its target genes, such as p21 and MDM2 itself in a feedback loop 

fashion, leading to cell cycle arrest and possibly apoptosis (Khoo et al. 2014; Vassilev et al. 

2004). Nutlin-3a acts in a non-genotoxic fashion (Miyachi et al. 2009) and stabilizes wildtype, 

but not mutant p53. It can therefore be utilized to protect untransformed cells from 

chemotherapeutics, such as mitosis active drugs (e.g. paclitaxel) and S phase active drugs 

(e.g. gemcitabine) (Carvajal et al. 2005; Kranz and Dobbelstein 2006). This observation might 

be of importance as approximately 50% of all tumors acquire a p53 functional deficiency 

during their malignant transformation (Vogelstein et al. 2000). Exploiting these genetic 

differences between malignant and untransformed cells might be a promising approach for 

clinical cancer research. 

Nutlin-3a stabilizes p53 in a non-genotoxic fashion, as post-translational modifications 

specific to genotoxic stress do not appear on Nutlin-3a stabilized p53 (Shen and Maki 2011). 

This sounds like a good trait for a chemotherapeutic agent, but unfortunately, Nutlin-3a has 

been proven a weak drug in clinical trials, barely efficient against the rare tumor class of 

liposarcomas (Ray-Coquard et al. 2012). Prolonged treatment causes a prolonged cell cycle 

arrest, which is mostly reversible once the drug gets discontinued, further generating 

populations of resistant cells (Huang et al. 2009). Nutlin-3a has disappointed as the killer it 
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was designed to be, but its cellular protective function through p53 might be utilized for the 

concept of cyclotherapy (Blagosklonny und Pardee 2001).  

We have exploited the possibility of cytoprotection through Nutlin-3a stabilized p53 against 

the potent trial combination regimen of gemcitabine and the small molecule Wee1 kinase 

inhibitor MK-1775. 

I.4 Scope of the thesis 

The aims of this study were the characterization of the mechanism behind the synergism of 

the chemotherapeutical combination of Wee1 kinase inhibition and gemcitabine treatment. 

Furthermore, we wanted to demonstrate a cytoprotective effect by activating p53 through 

treatment with Nutlin-3a against the potent combination of Wee1 inhibitor and gemcitabine. 

We wish to enforce the concept of cyclotherapy, giving the possibility of increasing 

chemotherapeutic drug concentrations to target malignant cells selectively with small 

molecule inhibitors and at the same time protect p53 untransformed cells pharmacologically 

from side effects. As the main difficulty of oncology is the specific targeting of the cancer, 

whilst avoiding collateral damage to normal cells, this concept of non-genotoxic chemical 

cytoprotection might help to distinguish these two cell populations within one cancer 

patient. This concept of cyclotherapy using a small molecule inhibitor might eventually be 

evaluated in a clinical trial. 
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II Materials and Methods 

II.1 Materials 

II.1.1 Technical devices 

Table II.1.1 Technical Devices 

Device Company 

Blotting chamber  Biozym, Hessisch Oldendorf, Germany 

Centrifuge 5415R Eppendorf, Hamburg, Germany 

Centrifuge 5810R Eppendorf 

Chemiluminescence imager Chemocam HR 

16 3200 

Intas Science Imaging Instruments, 

Göttingen, Germany 

Cytometer Celigo Cyntellect, San Diego, CA, US 

Electrophoresis system, for SDS-PAGE Amersham Biosciences, GE Healthcare, UK 

FACS machine Guava PCA-96 Base Millipore, Merck, Darmstadt, Germany 

Freezer -20°C Liebherr, Bulle, Switzerland 

Freezer -80°C Heraeus, Thermo Scientific, MA, US 

Heating Block Grant Instruments, Hillsborough, NJ, US 

Incubator for cell culture Hera Cell 150 Heraeus, Thermo Scientific, MA, US 

Laminar flow cabinet Hera Safe Heraeus, Thermo Scientific 

Luminometer DLReady™Centro LB 960  

Magnetic stirrer MR Hei-Standard 

Berthold, Bad Wildbad, Germany 

Heidolph, Schwabach, Germany 

Mini Centrifuge MCF-2360 

Multichannel Pipette Transferpette S-8  

LMS, Tokyo, Japan 

BrandTech Scientific, CT, US 

pH-meter WTW-720 WTW, Weilheim, Germany 

Pipets Eppendorf Research Series 2100 Eppendorf 

Refrigerator 4°C Liebherr 

Roller RM5 V-30 CAT, Staufen, Germany 
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Scales Acculab ALC-6100.1 Sartorius, Göttingen, Germany 

Scanner CanoScan 8600F Canon, Tokyo, Japan 

Shaker PROMAX 2020 

Shaker POLYMAX 2040 

Shaker VXR Basic Vibrax 

Heidolph 

Heidolph 

Ika, Germany 

Spectrophotometer NanoDrop ND-1000 PeqLab, Erlangen, Germany 

Thermomixer comfort Eppendorf, Germany 

Vacuum pump IBS Integra Biosciences, Germany 

Vortex Genie 2 Scientific Industries, Bohemia, NY, USA 

 

II.1.2 Consumables 

Table II.1.2 Consumables 

Product Company 

96-well plates for microscopy, clear bottom Corning, Corning, NY, US 

96-well plates for luminometer, white bottom 

Cell culture dishes (10 cm, 15 cm) 

Perkin Elmer, US 

Greiner, Frickenhausen, Germany 

Cell culture plates (6-well, 12-well) Greiner 

Cell scraper (16 cm, 25 cm) Sarstedt, Germany  

Cryo tubes Cryoline Nunc, Thermo Scientific 

Pipet tips (10 µL, 20-200 µL, 1,000 µL) Greiner 

Protran nitrocellulose transfer membrane Whatman, Dassel, Germany 

Reaction tube (0.5 mL, 1.5 mL, 2.0 mL) Eppendorf 

Reaction tube (15 mL, 50 mL) Greiner 

Whatman paper Whatman 
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II.1.3 Chemicals and reagents 

Table II.1.3 Chemicals and reagents 

Substance Company 

Albumin Fraction V (Bovine Serum Albumine) Roth, Karlsruhe, Germany 

Ammonium persulfate (APS) Roth 

Calcium chloride dihydrate (CaCl2 x 2H2O) Roth 

CellTiter-Glo®Reagent  

Complete Mini Protease Inhibitor 

Promega, WI, US 

Roche, Basel, Schweiz 

Dimethyl sulfoxide (DMSO) AppliChem, Darmstadt, Germany 

Guava ICF Cleaning Solution Millipore, Merck 

Isopropanol Th. Geyer, Renningen, Germany 

Lipofectamine 2000 Invitrogen, Life Technologies 

Magnesium chloride (MgCl2) for PCR Fermentas, Thermo Scientific 

MgCl2 hexahydrate (MgCl2 x 6H2O) Roth 

Methanol >99% (MetOH) Roth 

Nuclease free water Ambion, Life Technologies, CA, US 

Ponceau S Roth 

Potassium chloride (KCl) Roth 

Potassium hydrogenphosphate (KH2PO4) Roth 

Prestained Protein Ladder Fermentas, Thermo Scientific 

Propidium iodide (PI) Sigma-Aldrich, MI, US 

Rotiphorese Gel 30 Roth 

Sodium chloride (NaCl) Roth 

Sodium dodecyl sulfate (SDS) Roth 

Sodium-hydrogenphosphate-heptahydrate 

(Na2HPO4 x 7H2O) 

Roth 
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TetraCycline Sigma-Aldrich 

Tetramethylethylenediamine (TEMED) Roth 

Thymidine Sigma-Aldrich 

Trisamine (Tris) Roth 

Triton X-100 Applichem 

Tween 20 Applichem 
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II.1.4 Buffers and solutions 

Table II.1.4 Buffers and solutions 

Cell lysis buffer 

Urea 

RIPA lysis buffer 

2.5 M 

100% 

for SDS PAGE, diluted with 6x 

Laemmli 1:5 

 

PBS++ 

NaCl 

KCl 

Na2HPO4 x 7H2O 

KH2PO4 

CaCl2 x 2H2O 

MgCl2 x 6H2O 

dissolved in H2O 

24.00 mM 

0.27 mM 

0.81 mM 

0.15 mM 

1.00 mM 

0.50 mM 

 

 

Laemmli buffer, 6x 

Tris pH 6.8 

Glycerin 

SDS 

Dithiotreitol 

Bromophenol blue 

dissolved in H2O 

0.35 M 

30.00% 

10.00% 

9.30% 

0.02% 

 

Phosphat buffered saline (PBS), pH 7.5 

NaCl 

KCl 

Na2HPO4 x 7H2O 

KH2PO4 

dissolved in H2O 

24.00 mM 

0.27 mM 

0.81 mM 

0.15 mM 

 

Ponceau S solution 

 

Ponceau S 

Acetic acid 

dissolved in H2O 

0.5% 

1.0% 
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RIPA lysis buffer, pH 7.5 

Triton X-100 

Na deoxycholate 

SDS 

NaCl 

EDTA 

Tris, pH 7.5 

Trasylol 

dissolved in H2O 

1.0% 

1.0% 

0.1% 

150 mM 

10 mM 

20 mM 

50,000 KIU 

 

SDS running buffer 

Tris 

Glycin 

SDS 

dissolved in H2O 

25.0 mM 

86.1 mM 

3.5 mM 

 

 

Tris buffered saline + Tween 20 

(TBST), pH 7.6 

Tris 

NaCl 

Tween 20 

dissolved in H2O 

50 mM 

150 mM 

0.1% 

 

Western blot blocking solution 

BSA or milk powder 

dissolved in TBST 

5% 

 

Western blot buffer, pH 8.3 

Tris 

Glycin 

MetOH 

dissolved in H2O 

25 mM 

192 mM 

20% 
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II.1.5 Chemotherapeutics and pharmacological inhibitors 

Table II.1.5 Chemotherapeutics 

Name Systematic name Company 

Gemcitabine 2',2'-difluorodeoxycytidine (dFdC) Eli Lilly, IN, US 

 

Table II.1.6 Pharmacological inhibitors 

Inhibitor Commercial name Target Company 

ATRi VE-821 ATR Selleckchem 

Chk1i  SB-218078 Chk1 Calbiochem, Merck 

Nutlin-3 Nutlin-3 Mdm2 Sigma-Aldrich 

RO-3306 RO-3306 Cdk1 Sigma-Aldrich 

Wee1i MK-1775 Wee1 Selleckchem 

    

 

II.1.6 Kits 

Table II.1.7 Kits 

Name Company 

Guava Check Kit Millipore, Merck 

Immobilon Western HRP Substrate Peroxide Solution  Millipore, Merck 

SuperSignal West Femto Maximum Sensitivity Substrate Thermo Scientific 

CellTiter-Glo®Luminescence Cell Viability Assay      Promega 
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II.1.7 Antibodies 

Table II.1.8 Primary antibodies 

Target Clone 
Source 

organism 

Dilution 

immunoblotting 
Company 

Cdc2 POH-1 mouse 1:2,000 CST, Beverly, MA, USA 

Cdc2 pY15  rabbit 1:1,000 Abcam 

Chk1 2G1D5 mouse 1:1,000 Cell Signaling Technology 

Chk1 pS317  rabbit 1:1,000 Cell Signaling Technology 

H2AX pS319 JBW301 mouse 1:4,000 Millipore, Merck 

H2AX pS319  rabbit 1:1,000 Cell Signaling Technology 

H3 pS10 (D2C8) XP rabbit 1:1,600 Cell Signaling Technology 

HSC70 B-6 mouse 1:15,000 Santa Cruz Biotechnology 

Mdm2 (Ab-1), IF-2 mouse 1:300 Calbiochem 

p21 (Ab-1) EA10 mouse 1:500 Calbiochem 

p53 DO-1 mouse 1:1,000 Santa Cruz Biotechnology 

PARP  rabbit 1:1,000 Cell Signaling Technology 

Rad17pS645 D5H5 rabbit 1:1,000 Cell Signaling Technology  

Wee1  rabbit 1:1,000 Cell Signaling Technology 

β-Actin AC-15 mouse 1:20,000 Abcam 

 

Table II.1.9 Secondary antibodies 

Antibody Cat. Number Company 

HRP-coupled AffiniPure F(ab')2 

fragment, anti-mouse IgG (H+L)  

711-036-152  Jackson Immunoresearch, 

Europe, Newmarket, UK 

HRP-coupled AffiniPure F(ab')2 

fragment, anti-rabbit IgG (H+L)  

715-036-150  Jackson, Immunoresearch  
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II.1.8 Human cell culture 

Table II.1.10 Cell lines 

Cell line Origin 

HeLa Cervical adenocarcinoma 

PANC-1 Pancreatic epithelioid carcinoma 

U2OS Osteosarcoma 

 

Table II.1.11 Cell culture reagents 

Reagent Company 

Ciprofloxacin Bayer 

Dulbecco’s Modified Eagle Medium (DMEM), powder Gibco, Life Technologies 

Fetal Calf Serum (FCS) Gibco, Life Technologies 

L-Glutamine Gibco, Life Technologies 

PBS (tablets) Gibco, Life Technologies 

Penicillin/Streptomycin Gibco, Life Technologies 

Tetracycline Gibco, Life Technologies 

Trypsin/EDTA Gibco, Life Technologies 

 

DMEM  

DMEM, powder 10.0 g 

NaHCO3 3.7 g 

HEPES 5.96 g 

dissolved in H2O 
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II.1.9 Software 

Table II.1.12 Lab Software 

Name Company 

Celigo Software  Cyntellect 

Excel Microsoft, Redmond, WA, United States 

Guava Express Software  Millipore, Merck 

INTAS lab ID  Intas Science Imaging Instruments 

NanoDrop Software Peqlab 

Adobe Photoshop CS5 Adobe Systems, San Jose, CA, United States 

  

The “Materials” part was adapted from the PhD thesis “Combining gemcitabine with 

checkpoint kinase inhibitors to sensitize pancreatic tumors” by Dr. Priyanka Saini, Göttingen 

2014, Dobbelstein group. 

https://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0022-5FB7-

B/final%20thesis%20for%20publication%20no%20cv.pdf?sequence=1 
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II.2 Methods 

II.2.1 Cell culture work 

II.2.1.1 Human cell culture 

For our in vitro experiments, immortalized adherent human cell lines were cultured in cell 

culture dishes at 37°C and 5% CO2 under humidified conditions. For cell splitting, cells were 

shortly washed with 1xPBS and then treated with trypsin. After stopping the reaction with 

full medium, the cells were sub-cultured at the desired ratio. 

Table II.2.1 Cell culture media recipes 

Cell lines Media Supplements 

U2OS (Osteocarcinoma) DMEM FCS, L-Glutamine, Penicillin/Streptomycin, 

Ciprofloxacin, Tetraycline  

Panc1 (Pancreatic tumor) DMEM FCS, L-Glutamine, Penicillin/Streptomycin, 

Ciprofloxacin, Tetraycline 

HeLa (Cervical cancer) DMEM FCS, L-Glutamine, Penicillin/Streptomycin, 

Ciprofloxacin, Tetraycline 

 

II.2.1.2 Long term storage of cells 

For long term storage of cells, confluent cell culture plates with low passage numbers were 

trypsinized and centrifuged at 1000 rpm for 5 min at room temperature. The supernatant 

was removed and the cells were then resuspended in previously ice cooled freezing medium, 

which consists of FCS/DMSO in a 9:1 ratio. The cells were aliquoted into cryo-vials, frozen at -

80°C, and afterwards transferred into liquid nitrogen for long term storage.  

 

II.2.1.3 siRNA reverse transfection of cells 

For an efficient siRNA transfection of cells, the reverse-transfection approach was used: 

Adherent cells were trypsinized and the cell density was adjusted to 80.000 cells / ml. siRNAs 

and Lipofectamine 2000 (LF 2000) were diluted in DMEM without supplements as mentioned 

in Table II.2.2. 
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Table II.2.2 siRNA transfection protocol 

 Plate 

Format 

Cell number* 

(U2OS)  

Medium 

(µl) 

siRNA 

(50 µM) 

Medium 

(µl) 

LF2000 

(µl) 

6 well 160,000 200 0,6 µl (10 nM) 200 4 

 

The prepared dilutions were incubated for 5 min at room temperature and then mixed in a 

1:1 ratio and further incubated for 20 min. After incubation, the mixture was combined with 

2ml of cell suspension into a well of a cell culture dish. The medium was exchanged after 24 

h and the cells were either treated or harvested for further experiments. 

 

Table II.2.3 Small interfering RNAs 

Name (Silencer select, Ambion) siRNA ID 

Negative Control Undisclosed  

Wee1 s21  

Mus81 s37038  

Claspin s34330 

Cdk1-1     s464 

Cdk1-2     s465 
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II.2.1.4 Chemical or drug treatment  

Table II.2.4 Compound concentrations 

Inhibitor Target Solvent Stock 

concentration 

Working 

concentration 

SB 218078 Chk1 DMSO 2.5 mM 2.5 µM/ 5 µM 

VE-821 ATR DMSO 10 mM 10 µM/ 5 µM 

MK-1775 Wee1 DMSO 1 mM 1 µM/ 0.5 µM 

RO-3306 CDK1 DMSO 10 mM 10 µM 

Nutlin-3 Mdm2 DMSO 20mM 8 µM 

 

Chemotherapeutic 

Drug 

Solvent Stock 

concentration 

Working 

concentrations 

Gemcitabine Water 64 mM 300/ 25/ 5 nM 
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II.2.2 Protein Biochemistry 

II.2.2.1 Preparation of whole cell lysates 

The entire protein extraction protocol was conducted on ice. Cells were mechanically 

brought into suspension by scraping and were transferred into a 2 ml tube, which was then 

centrifuged at 4400 rpm for 4 min at 4 °C. After removal of the supernatant, the cells were 

washed with 1 ml 1xPBS and centrifuged again. Finally, the cells were again resuspended in 

90 µl of freshly prepared lysis buffer and strongly shaken for 30 min at 4°C. Before use, the 

samples were centrifuged at 13,200 rpm for 13 min to pellet the DNA. 

The protein concentration of the samples was measured using the bicinchoninic acid assay 

(BCA assay) kit. This colorimetric assay measures the color reaction of the substrate with the 

protein. The kit reagents A and B were mixed in a 49:1 ratio. 5 µl of the protein sample to be 

measured is added to 95 µl of the substrate mixture and incubated at 37 °C for 30 min. The 

samples were then measured using a spectrophotometer and referenced to a standard curve 

for an estimated protein concentration.  

 

II.2.2.2 Separation of proteins by SDS-PAGE  

For gel electrophoresis, a loading dye (6 x Laemmli buffer) was added to the sample for a 1 x 

final concentration. The samples were then boiled 10 min at 95°C for protein linearization. 

The acrylamide gel consists of a high percentage and a low percentage part: The low 

percentage component concentrates the protein sample from the loading pocket, whereas 

the high percentage part of the gel separates the proteins according to size. The components 

of the two gels are summarized in Table II.1.8. The prepared protein samples were loaded 

into the well pockets alongside a protein marker for size determination and run at a voltage 

of initially 100 V and later 130 V, until the desired separation has been achieved. 
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Table II.2.5 Acrylamide gel protocol 

 Stacking gel Resolving gel 

Acrylamide/bisacrylamide 5% 6-12% 

1M Tris, pH 6.8 126 mM   - 

1.5M Tris, pH 8.8    - 375 mM 

10% SDS 0.1% 0.1% 

10% APS 0.1% 0.1% 

TEMED 0.3% 0.4% 

 

II.2.3 Western blotting 

The separated proteins in the gel were blotted onto a nitrocellulose membrane, the transfer 

was conducted at 100 V for 120 min in the cold room. The membrane was then Ponceau S 

stained, scanned for archiving, and subsequently blocked with blocking buffer for 30 min. 

The membranes were incubated overnight in primary antibodies (refer to Table II.1.8), on a 

rotator at 4°C. The next day, a secondary antibody, which specifically targets the primary 

antibody, is applied to the membrane in a 1:10,000 dilution for 1h on a rotator at room 

temperature. These secondary antibodies are further coupled to a horse-radish peroxide 

enzyme, which is able to turn over the substrate to produce a luminescent product. The 

protein amount can thus be estimated through a light signal. 
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II.2.3 Cell biology methods 

II.2.3.1 Cell proliferation assay 

To visualize proliferation rates, adherent cells were seeded in 96 well plates and monitored 

over time with an automated optical microscope, the Celigo cell cytometer. This imaging of 

living cells allows access to their different growth rates in different chemical environments. 

The cells were treated with chemical inhibitors and chemotherapeutic drugs for 24h and the 

medium was exchanged 24h after treatment. The culture medium in gemcitabine treated 

samples was exchanged twice. The plates were measured daily at approximately the same 

time points to record the confluency status of each well. The medium was exchanged every 

second day. For analysis, confluency was plotted against time. The experiment was 

conducted as technical triplicates. 

 

II.2.3.2 Cell Viability Assay 

Quantification of ATP can be used as a marker for cell viability in cultured cells. Using the 

CellTiter-Glo®Luminescence Cell Viability Assay (Promega), the number of metabolically 

active cells can be assessed through cellular lysis and subsequent conversion of ATP into a 

light signal. 

In preparation for the assay, cells were seeded into white 96 well plates and treated with 

different chemicals after 24h. After another 72h, cells were lysed by addition of the CellTiter-

Glo®Reagent in a 1:1 ratio. The plate was gently shaken in the dark for 10 min and 

subsequently measured using the Luminometer DLReady™Centro LB 960 plate reader. The 

experiments were conducted as technical triplicates. 
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II.2.3.3 Cell cycle analysis  

Using flow cytometry, the DNA content of a single cell can be evaluated. By pooling the DNA 

contents of all cells in a well, one can access the cell cycle profile of the entire cellular 

population. After permeabilization of cells, the DNA content can be visualized by the 

fluorescent dye Propidum iodide, a DNA intercalating substance. The amount of the PI signal 

in the cell indicates its cell cycle status, 1n for G1 and 2n for G2, S phase cells between 1n 

and 2n.   

Cells in 6 well plates were pretreated with Nutlin-3a for 24h. Subsequently, the cells were 

treated with Wee1 inhibitor and gemcitabine in addition to Nutlin-3a. After another 24h, the 

samples were harvested with trypsin and centrifuged at 1000rpm for 5 min at 4°C. The 

supernatant was removed and the cells were resuspended in ice-cold 1xPBS. Ice-cold ethanol 

was added slowly in drops, while vortexing the sample, to the final volume of 2ml. The cells 

were fixed at -20°C for the minimum of 1 hour or overnight and longer. For analysis 

preparation, the samples were spun at 2,4k rpm for 5 min at 4°C and subsequently 

rehydrated in 1ml 1xPBS++ on ice for 10 min. The cells were again centrifuged and RNAse 

digested in 100 µl 0.5 mg/ml RNAse A in 1xPBS++ at 37°C for 30 min. The RNAse working 

solution was previously DNAse inactivated at 70°C for 10 min. The samples were diluted and 

sieved before addition of 3 µl 30 µg/ml PI to 100 µl of cell suspension and finally loaded for 

flow cytometry using the Guava PCA-96 Base System.  

 

The “Methods” part was in part adapted from the PhD thesis “Combining gemcitabine with 

checkpoint kinase inhibitors to sensitize pancreatic tumors” by Dr. Priyanka Saini, Göttingen 

2014, Dobbelstein group. 

https://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0022-5FB7-

B/final%20thesis%20for%20publication%20no%20cv.pdf?sequence=1 
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III Results 

III.1  The mechanism of Wee1i – gemcitabin mediated synergistic lethality in cancer cell 

lines 

III.1.1  The combination treatment of Wee1i and gemcitabine is highly efficient in killing 

transformed cells  

To evaluate their combinatory effects on cancer cell lines, U2OS (osteosarcoma) and Panc1 

(pancreatic adenocarcinoma) cells were treated with pharmacological small molecule 

inhibitors against Chk1, Wee1 and ATR in combination with gemcitabine. In the assay 

conducted, we have measured the increase in cell confluency over 8-13 days after treatment 

via an automated optical microscope (Celigo Cytometer). Cells were treated with different 

inhibitors in addition with gemcitabine, the medium was exchanged after 24h and 

confluency measurements were taken daily. We have observed that combining inhibitors of 

either Wee1 or ATR with gemcitabine leads to a slower growth of the cells compared to the 

Chk1 inhibitor gemcitabine combination in both Panc1 and U2OS cells (see Figure III.1). This 

effect seems to be p53 independent, as U2OS cells are p53 wildtype and Panc1 cells are p53 

DNA binding mutants. 

III.1.2  The Wee1 inhibitor – gemcitabine combination reduces Chk1 phosphorylation over 
time 

After observing a synergistic effect on cell proliferation in a Wee1 inhibitor – gemcitabine co-

treatment situation, we wanted to understand whether inhibition of the Wee1 kinase affects 

DNA damage signaling directly. We have therefore conducted a Chk1 activation time course 

experiment and evaluated early effects of the inhibitor treatment by immunoblot analysis. As 

a result, the combination of Wee1 inhibitor and gemcitabine clearly upregulates 

phosphorylation of yH2AX when compared with the gemcitabine single treatment condition 

at all observed time points (see Figure III.2). Furthermore, a 12h inhibition of Wee1 is 

sufficient to reduce phosphorylation of Chk1 at Ser317, which becomes clearly visible at the 

24h. Due to the delayed decrease of Chk1 phosphorylation, we suggest not a direct but an 

indirect function of the Wee1 kinase to maintain Chk1 phosphorylation. We have also 

observed cleaved PARP in the 24h treated sample, suggesting apoptosis to occur in the Wee1 

inhibitor – gemcitabine co-treated cells. For validation of the functionality of our Wee1 

inhibitor we detected a decrease at the previously described Wee1 phosphorylation site on 

Cdk1 at Tyr15 (Parker and Piwnica-Worms 1992) when treated with the inhibitor (see Figure 

S1). Furthermore we have observed the same effects on the DDR pathway when transfecting 

a siRNA targeting Wee1 and subsequently treating with gemcitabine (see Figure S2). In 

conclusion, we can observe a strong synergistic effect on yH2AX at all time points 

investigated and a decreased phosphorylation of Chk1 in Wee1 inhibitor – gemcitabine co-

treated cells after 24h. 
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Figure III.1: Inhibitors of Chk1, Wee1 and ATR kinases enhance gemcitabine mediated 

cytotoxicity. The cells were treated for 24h with Chk1 (2.5μM), Wee1 (0.5μM) and ATR (5μM) 

inhibitors with or without gemcitabine (Gem, 10nM). The confluency of the wells was 

monitored daily for one or two weeks. The error bars represent standard deviation, n=3. p-

values (based on Student’s t-test, 2-sided, assuming different variances) were determined for 

the last measurement of the respective experiment. The experiments were performed by Dr. 

Priyanka Saini. 

 

III.1.3 Wee1 inhibition effects on DDR are not due to induction of apoptosis 

As we have observed PARP cleavage in the Wee1 inhibitor – gemcitabine co-treatment (see 

Figure III.2), induction of apoptosis could lead to yH2AX phosphorylation as previously 

described (Rogakou et al. 2000). Apoptosis also induces the Chk1 phosphatase PP2A (Santoro 

et al. 1998; Leung-Pineda et al. 2006), we therefore had to rule out the contribution of 

apoptosis to our Wee1 kinase inhibition – Chk1 dephosphorylation effect. U2OS and Panc1 

cells were subjected to the Wee1 inhibitor – gemcitabine combination treatment in the 

presence of the caspase inhibitor Z-VAD, which potently inhibits the apoptotic pathways 

(Garcia-Calvo et al. 1998). Our western blot results suggest, that Chk1 dephosphorylation 

upon Wee1 inhibition occurs independently from apoptotic activities in the cell (see Figure 

III.3).   
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Figure III.2: Wee1 inhibition decreases Chk1 activation in Wee1 inhibitor – gemcitabine co-

treated cells in a time dependent manner. U2OS and Panc1 cells were treated with Wee1 

inhibitor (MK-1775) and gemcitabine. Samples were harvested according to the time course 

experiment and prepared for western blotting. 
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Figure III.3: Decrease in Chk1 phosphorylation is independent of caspase activity. U2OS and 

Panc1 cells were treated with with Wee1 inhibitor (MK-1775) and gemcitabine, with and 

without 20 µM of caspase inhibitor Z-VAD. The samples were harvested after 24 h and 

prepared for western blotting. tChk1, tCdk1 describe total proteins while pChk1, pCdk1 

denominate phosphorylated forms. 

 

III.1.4  Cdk1 loss of function rescues Wee1 inhibition-induced decrease of Chk1 

phosphorylation  

The Wee1 kinase is an important cell cycle gatekeeper for the G2/M phase transition, as it is 

able to phosphorylate Cdk1 at the inhibitory Tyr15 phosphorylation site (Parker et al. 1992). 

Inhibition of the kinase therefore leads to Cdk1 activation and forces entry into mitosis (Aarts 

et al. 2012). To investigate whether the decrease of Chk1 inhibition upon Wee1 inhibition is 

due to Cdk1, we have used the ATP-competitive small molecule inhibitor RO-3306 against 

Cdk1 (Vassilev et al. 2004) in combination with the Wee1 inhibitor MK-1775 and 

gemcitabine. Upon this treatment, the phosphorylation of Chk1 was restored (see Figure 

III.4). In line with these observations, the removal of Cdk1 by siRNAs also restored Chk1 

phosphorylation upon simultaneous knockdown of Wee1 in the presence of gemcitabine 

(see Figure III.5). In conclusion, Cdk1 is specifically required for inactivating the ATR-Chk1 

pathway upon Wee1 inhibition. 
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Figure III.4: Decrease in Chk1 phosphorylation in Wee1i treated cells is mediated by Cdk1. 

Cells were treated with Cdk1 and Wee1 inhibitors in the presence of gemcitabine. The 

samples were harvested after 24 h and prepared for western blotting. 

 

III.1.5: Wee1 inhibition induced decrease of Chk1 phosphorylation through Cdk1 is    

independent from pRb 

The inactivation of the Retinoblastoma protein (pRb) has been shown to be regulated by 

various Cyclin-Cdk complexes (Lundberg and Weinberg 1998). To investigate whether pRb 

contributes to the effects of Wee1 inhibition on DNA damage signaling, we have tested the 

Cdk1 and Wee1 inhibitor with gemcitabine in the HeLa cell line, in which pRb has been 

inactivated by the E7 viral protein (Gonzalez et al. 2001). As a result, even in HeLa cells Cdk1 

inhibition is able to rescue Chk1 phosphorylation upon Wee1 kinase inhibition (see Figure 

III.6). We therefore suggest, that Wee1 inhibition effects on Chk1 phosphorylation are 

dependent on Cdk1, but independent of pRb.  
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Figure III.5: siRNA mediated knockdown of Cdk1 restores the phosphorylation of Chk1 

upon simultaneous knockdown of Wee1 and treatment with gemcitabine. 10nM of each 

siRNA (Cdk1, Wee1, scrambled) was used for transfecting cells. After 48 h of transfection, 

300 nM gemcitabine was added for another 24 h. The cells were then harvested and 

immunoblotted. 
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III.2  How can we possibly protect untransformed cells from the highly potent Wee1i – 

gemcitabine chemotherapeutic combination? 

III.2.1  Mdm2 inhibition benefits cell survival upon treatment with Wee1 inhibitor and/or 

gemcitabine 

To assess whether pretreatment with an Mdm2 inhibitor affects the survival of p53-

proficient cells upon chemotherapeutic treatment, we first incubated U2OS cells with Nutlin-

3a for 24h. The cells were then treated again with Nutlin-3a and in addition with gemcitabine 

and/or Wee1 inhibitor for another 24h. Subsequently, all drugs were removed, and the cell 

density was monitored by automated optical microscopy (Celigo) for 12 days. Gemcitabine 

and Wee1i single treatments only moderately prevented cell growth (see Figure III.7A). 

However, when applied in combination, the two drugs strongly restricted cells proliferating 

towards confluency. Nutlin-3a pretreatment was able to increase confluency percentages in 

all drug combinations, therefore protecting p53-proficient cells from the cytotoxic effects of 

the chemotherapeutic compounds. 

Next, we investigated whether Nutlin-3a pre-treatment also affects cell viability when cells 

are subsequently exposed to gemcitabine and/or Wee1i. Therefore U2OS cells were pre-

treated with Nutlin-3a for 24 h, followed by 72 h incubation with Nutlin-3a, gemcitabine 

and/or Wee1i. The cells were then lysed and a viability assay based on the determination of 

cellular ATP levels by luciferase was performed (see Figure III.7B). As a result, the viability 

was reduced in all three single drug treatments, most strongly in the Wee1 inhibitor treated 

condition. Importantly, Nutlin-3a was able to rescue the viability of Wee1i-treated cells, with 

or without gemcitabine. Thus, Nutlin-3a pretreatment strongly protects cells from Wee1 

inhibitor induced cytotoxicity. 

III.2.2  Mdm2 inhibition reduces the DNA damage response and decreases caspase activity 

upon Wee1 inhibition 

To further characterize our finding that Nutlin-3a is able to protect against the gemcitabine- 

Wee1 inhibitor combination induced cytotoxicity, we have analyzed cell lysates via western 

blotting. U2OS cells were incubated with Nutlin-3a for 24h. Subsequently they were then 

treated again with Nutlin-3a, in addition with gemcitabine and/or Wee1 inhibitor for another 

24h. The cells were then harvested and the lysates were subjected to immunoblotting. 

Western blot analysis showed that γH2AX, cleaved PARP and phospho-H3 levels decrease 

upon Nutlin-3a pretreatment, indicating a reduced DNA damage response, apoptosis and 

mitotic activity within the Nutlin-3a treated cell population in comparison with the untreated 

sample (see Figure III.8A). Furthermore, as expected, p53 was stabilized upon Nutlin-3a pre-

treatment and the p53 downstream effector protein p21 was induced (see Figure III.8B), 

indicating that the effects are indeed p53-dependent. 
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III.2.3  Nutlin-3a protection against Wee1 inhibition is dependent on the p53 status of the 

cell  

To show that the Nutlin-3a protection against the gemcitabine – Wee1 inhibitor combination 

therapy is p53 dependent, we have conducted similar experiments in a p53 

proficient/deficient isogenic pair of the HCT116 human colon carcinoma cell line. We treated 

HCT116 cells with wild-type p53 (HCT116wtp53) and HCT116 lacking p53 (HCT116p53−/−) at 

the same conditions as previously described for western blotting in U2OS cells. As a result, 

Nutlin-3a pretreatment protected HCT116wtp53 cells against cytotoxic effects of the 

gemcitabine – Wee1 inhibitor combination therapy (see Figure III.9). In contrast, 

HCT116p53−/− were not protected in a Nutlin-3a-dependent manner. These results provide 

further proof that the observed effects are strictly p53 dependent. 

 

 

Figure III.6: Wee1 inhibition decreases Chk1 phosphorylation independent from pRb. HeLa 

cells were treated with Wee1 and Cdk1 inhibitors with gemcitabine for 24h. The samples 

were then harvested and prepared for western blot analysis. 
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Figure III.7: Nutlin-3a protects cells against Wee1 inhibition and/or gemcitabine. (A) U2OS 

were treated with Nutlin-3a for 24 h, followed by treatment with 4μ M Nutlin-3a, 300 nM 

gemcitabine and/or 1μM Wee1 inhibitor for 24 h. The confluency of each well was 

monitored for 12 days. Error bars represent the standard deviation (n=3). (B) Cells were 

treated with Nutlin-3a (8 μM) for 24 h, and subsequently treated with Wee1 inhibitor and 

gemcitabine, along with continuous treatment with 8 μM Nutlin3-a. At 72 h cells were lysed 

using the CellTiter-Glo®Reagent, and cell viability was measured via an ATP-dependent 

luciferase signal. Student’s t-test p-values are stated above the horizontal bars. Error bars 

represent the standard error, n=3. 
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Figure III.8: Nutlin-3a protects cells against the gemcitabine – Wee1 inhibitor co-treatment. 

Cells were treated with Nutlin-3a (8µM) for 24h, followed by treatment with Wee1 inhibitor 

and gemcitabine with Nutlin-3a for another 24h. The samples were then harvested and 

prepared for western blot analysis. 

 

Figure III.9: Nutlin-3a mediated protection against Wee1i/gemcitabine co-treatment is p53 

dependent. HCT116 cell lines with different p53 status were pretreated with Nutlin-3a for 24 

h, followed by treatment with Wee1 inhibitor and gemcitabine with Nutlin-3a for another 

24h. The samples were then harvested and prepared for western blot analysis. Experiments 

performed by Priyanka Saini. 
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III.2.4  Nutlin-3a treatment triggers activation of cell cycle checkpoints  

It has been previously shown that treatment with Nutlin-3a halts the cell cycle in a p53-

dependent manner, reducing the number of cells in S-phase (Miyachi et al. 2009). To 

investigate whether this is also true for our experimental system, especially in combination 

with the Wee1 inhibitor MK-1775, we have performed a cell cycle analysis using flow 

cytometry technology. As a result, Nutlin-3a was indeed able to reduce the number of cells in 

S-phase, enriching cellular populations at G1 and G2 phases with a 1n and 2n DNA content 

respectively (see Figure III.10). Most interestingly this was also the case for the combination 

treatments with gemcitabine and/or Wee1 inhibitor. We therefore suggest that the 

protective function of Nutlin-3a treatment arises from the cellular exclusion from the chemo-

sensitive S-phase. 

 

Figure III.10: Nutlin-3a reduces the amount of cells in S phase. Cells were pretreated with 

Nutlin-3a for 24 h, followed by treatment with Wee1 inhibitor and gemcitabine with Nutlin-

3a for another 24 h. Subsequently, the DNA content was assessed by flow cytometry 

analysis. Histograms depict the relative number of cells found within a small window of DNA 

content, as determined by propidium iodide stain. 
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IV Discussion 

IV.1 Chemotherapy: Where will we go? 

The cancer diseases remain a frontier of our modern time. Their incidence will increase in 

industrialized countries with their aging populations, as cancer is mainly a disease of the 

elderly (Rahib et al. 2014), matching up with the cancerogenesis hypothesis of accumulated 

mutations (Vogelstein et al. 2000). Therefore it is the responsibility of these countries and 

their politicians, scientists and industrials to improve the cancer treatment situation, to meet 

the demands of this upcoming and growing cohort of patients.  

So how can we go about this problem? Until today, three main categories of treatment have 

established themselves in western medicine which are steel, ray, and pill. Whereas steel and 

ray, representing surgical removal and irradiation of tumors, depend on a precise localization 

of the cancerous tissue, the pill, alias chemotherapy, is a systemic approach to treat a disease 

which is likely to turn systemic through metastasis of the primary tumor. These three schools 

of cancer doctors, cancer surgeons, radiotherapists and clinical oncologists, have formed the 

necessary firm alliances, bringing about a combination of steel, ray and pill to treat a cancer 

patient. Still, in my opinion, as the steel and the ray are only able to treat the visualized 

cancer, an even greater importance will be upon chemotherapy, the only currently possible 

treatment for late stage metastasized tumors, as it represents a systemic approach for a 

systemic disease. 

Chemotherapeutical agents in the early days were chosen merely on empirical evidence 

(Mukherjee 2011). It was not until major advances in molecular biology that we have begun 

to understand the mechanisms of their action. Most interestingly, many of these agents are 

genotoxic towards DNA. It is therefore promising to understand the cellular responses upon 

DNA damaging agents in detail. DNA damage and repair, including replicative stress and 

checkpoint regulation, provide a promising research field, to further enhance the efficacy 

and specificity of established chemotherapeutic agents through combination with novel and 

specific small-molecule inhibitor compounds. Another approach would be to chemically 

protect untransformed cells from being targeted by the chemotherapeutic agent, further 

enhancing the specificity of the treatment. 
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As we are looking into a dark future with more and more cancer patients on the wards, there 

might be promise from technological advances of our time: With the establishment of 

personalized medicine through next-next generation sequencing, each individual patient may 

soon get his or her individual chemotherapy, which best fits the genotype of the patient and 

the patients cancer at the time treated. Being cancer researchers of chemotherapy, it is our 

task to characterize these individual combinatory treatments, so that they are ready when 

eventually needed. 

IV.2 A novel connection between Wee1 and the ATR-Chk1 pathway 

As pancreatic tumors tend to grow resistant against gemcitabine (Giovannetti et al. 2006; 

Nakano et al. 2007), combinatory treatments to further chemo-sensitize these resistant 

cancers are currently of great interest to improve medical care for this group of patients. 

Combining cell cycle checkpoint inhibitors with gemcitabine has been shown to further 

enhance its toxicity (Zabludoff et al. 2008; Prevo et al. 2012). In our hands and in agreement 

with previous studies (Hirai et al. 2009; Rajeshkumar et al. 2011), the combination of Wee1 

inhibition and gemcitabine was potently inhibiting the growth of pancreatic cancer cells (see 

Figure III.1). What are the mechanisms behind this observation? For one, inhibition of Wee1 

ablates the Cdk1 mediated G2/M cell cycle arrest and strongly forces entry into mitosis 

(Aarts et al. 2012). As gemcitabine delivers a massive amount of replicative stress and thus 

arrests cells within the S-phase through the intra-S-checkpoint by inhibiting Cdk1 and Cdk2 

(Bartek and Lukas 2003; Dobbelstein and Sorensen 2015), it seems logical that cells within 

the S-phase will be susceptible towards the Wee1 inhibition forced premature mitotic entry, 

which prevents the inhibitory phosphorylations Tyr15 and Thr14 on Cdk1 by the Wee1 

kinase, thus activating Cdk1 and overriding the intra-S-checkpoint (Smith et al. 2010). Indeed 

we have shown this in a two-dimensional flow cytometry, quantifying both the DNA content 

and the amount of phosphorylated H3 in each cell, showing that the co-treatment with 

gemcitabine and Wee1 inhibitor leads to a larger cellular population within the premature 

mitosis window as compared with the Wee1 inhibitor treatment alone (Li et al. 2015, the 

experiment was conducted by Dr. Priyanka Saini). Furthermore, within this work, we have 

observed a significant increase in DNA damage via yH2AX and a reduced activation of the 

DDR via reduced phosphorylation of Chk1 upon the combination with gemcitabine and the 

Wee1 inhibitor (see Figure III.2). It has been previously shown that knockdown of the Wee1 
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kinase leads to stalling of DNA replication forks and generates DNA damage due to activation 

of the hetero-dimeric Mus81-Eme1 structure-specific endonuclease, which is capable of 

generating DSBs (Dominguez-Kelly et al. 2011). However, siRNA mediated knockdown of 

Mus81 neither rescued Wee1 siRNA knockdown induced reduction of Chk1 phosphorylation, 

nor did it reduce the DNA damage measured via yH2AX (see Figure S3). Therefore, we had to 

characterize a novel mechanism by which Wee1 loss of function would lead to a decreased 

phosphorylation of Chk1 while at the same time synergistically accumulating DNA damage 

when treated with gemcitabine.  

IV.2.1 Cdk1 decreases ATR-Chk1 activation upon Wee1 inhibition 

Our results show that the Wee1-inhibition-induced reduction in Chk1 phosphorylation is 

mediated through the activity of Cdk1 (see Figures III.4 and III.5). Therefore, we suggest Cdk1 

to play an important role in shutting down the checkpoint activation by ATR. This observation 

might be of importance for tumor therapies, as Cdk inhibitors are currently being tested in 

clinical trials (Cicenas and Valius 2011). The combination of Wee1 inhibition and gemcitabine 

might therefore be an effective approach to treat tumors expressing high levels of Cdks. As 

there is no reported evidence of direct interactions between Cdk1 and the ATR-Chk1 

pathway, we have looked at different Cdk1 downstream factors. Mus81 is such a Cdk1 

substrate, and as mentioned above, it does not seem to play a role in rescuing Chk1 

phosphorylation upon Wee1 inhibition (see Figure S3). In addition, we have investigated 

whether pRb impacts the ATR-Chk1 pathway either through its target E2F or through direct 

protein-protein interaction. Upon Wee1 inhibition, the transcription factor E2F might 

suppress ATR on mRNA level (Ren et al. 2002). However, we did not observe a difference in 

transcription of the ATR gene upon Wee1 inhibition when compared with the DMSO treated 

control in a qRT-PCR experiment (Saini et al. 2015b). Furthermore, pRb does not modulate 

this pathway on a protein level, as even in HeLa cells which possess an impaired pRb 

pathway, inhibition of Cdk1 is able to rescue the effects of Wee1 inhibition (see Figure III.6). 

As a conclusion, effects of the Wee1 inhibitor MK-1775 and gemcitabine combination are 

independent of Mus81 and the pRb status.  
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IV.2.2 Unraveling the mechanism 

With the data presented I have contributed to the publication from Dr. Priyanka Saini, who 

has conducted further experiments to unravel the mechanism of the Wee1i – gemcitabine 

mediated lethality in cancer cells (Saini et al. 2015b). Dr. Saini has shown that Wee1-

inhibition-induced and hyper-activated Cdk1 transduces its signal through Polo-like kinase 1 

(Plk1) (Yamaguchi et al. 2005), which then activates its effector protein Claspin (Peschiaroli et 

al. 2006). Claspin binding to Chk1 increases its affinity as an ATR substrate (Chini and Chen 

2003). Plk1 mediated Claspin phosphorylation marks it for ubiquitin mediated proteasomal 

degradation (Peschiaroli et al. 2006), thereby reducing Chk1 phosphorylation through ATR 

and allowing recovery from an activated DNA replication checkpoint. Furthermore Dr. Saini 

has found CtIP to be downregulated upon Wee1 inhibition in a Cdk1 dependent manner. CtIP 

is a factor associated with DNA resection and it also contributes to ATR-Chk1 signaling 

(Kousholt et al. 2012), thus upholding Chk1 phosphorylation. Taken together, Dr. Saini has 

unraveled the mechanism of the Wee1i – gemcitabine mediated synthetic lethality in cancer 

cell lines: The reduction of the DDR pathway, via dephosphorylation of Chk1 through 

downregulation of the proteins Claspin and CtIP in a Cdk1-dependent manner, leads to an 

increased susceptibility towards the DNA damage issued by the nucleoside analogue 

gemcitabine (Saini et al. 2015b, see Figure IV.1). 
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Figure IV.1: Molecular communication between Wee1 and Chk1. Wee1 inhibition can be 

achieved by direct small molecule inhibitors, or otherwise by HSP90 inhibition (Aligue et al. 

1994). Chk1 and ATR are subject to similar inhibition strategies. Kinase activities mediate 

signaling cross-talk as depicted. Blue arrows indicate pathways investigated in this new study, 

black arrows refer to literature available (Figure was taken from the editorial Saini et al. 

2015a). 
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IV.3 Pharmacological activation of p53 offers protection against the highly potent Wee1i-

gemcitabine combination 

Chemotherapies are known to produce various unwanted side effects. These include 

depletion of normal stem cell populations in blood, gut epithelia and hair (Galmarini et al. 

2002). For instance, the nucleoside analogue gemcitabine frequently causes 

myelosuppression (Fossella et al. 1997). How can we improve this situation and protect non-

cancerous cells from chemotherapy induced collateral damage? One approach might be the 

exploitation of the naturally occurring cell cycle checkpoint activation and DNA damage 

sensing machinery. It is commonly known, that p53 is a potent regulator of the cell cycle 

upon DNA damage, and that it is frequently mutated in cancers (Nigro et al. 1989). The drug 

Nutlin-3a is able to activate normal, but not mutant p53 (Coll-Mulet et al. 2006). This might 

be utilized to protect normal cells from chemotherapy-induced cellular toxicity. And indeed, 

previous reports have shown, that Nutlin-3a is able to protect p53 proficient cells from 

gemcitabine issued toxic effects (Kranz and Dobbelstein 2006). p53 activation through Nutlin-

3a strongly induces its target gene p21, which halts the cell cycle at the G1/S transition 

(Polager und Ginsberg 2009) and therefore prevents cytotoxic effects of S phase 

chemotherapeutics. As we have used a Wee1 inhibitor and gemcitabine in combination, with 

both drugs being most active during S phase, our cells were protected in a p53 dependent 

manner when pretreated with Nutlin-3a (see Figure III.9).       

According to our model, MDM2 antagonists might find new clinical applications as protective 

drugs. Chemical activation of cell cycle checkpoints in normal cells might help to reduce 

chemotherapeutic side effects in patients and could also further allow an increase of the 

total chemotherapeutic drug concentration applied. 
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Figure IV.2: Summary of protective mechanisms triggered by MDM2 inhibition upon Wee1 

inhibition. p53 stabilization via Nutlin-3a inhibits the G1/S phase transition by inhibiting 

Cdk1 through p21. This effect is able to protect p53 proficient cells against the Wee1 

inhibitor MK-1775, as this inhibition normally hyper-activates Cdk1 and forces progression 

through both S and M phase, leading to premature mitosis. In this scheme, activators of cell 

cycle progression are depicted in red, inhibitors of cell cycle progression in blue, and drugs in 

green. Arrows indicate activation, lines that end with a bar indicate inhibition. The figure 

concept was drawn by Prof. Dr. Matthias Dobbelstein (from Li et al. 2015). 
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IV.4 Can nutlins still find their intended broad applications in clinics? 

The engineering of nutlins and other MDM2 antagonizing drugs thrilled the cancer research 

community, the finding was termed the “awakening of the guardian angel” (Brown et al. 

2009), and it did seem straightforward, cancer cells would stop proliferating and go into 

apoptosis upon the reactivation or overactivation of the p53 pathway. And indeed, in 

preclinical trials, this promise seemed to hold true, Nutlin-3a did induce cell death in both in 

vitro wildtype p53 cell lines and in vivo mouse xenograft experiments (Vassilev et al. 2004), 

with cell lines overexpressing MDM2 being the most sensitive to the drug. However, once the 

way was cleared for clinical patient trials, the results were more than disappointing: 

Liposarcoma patients were selected for the initial MDM2 antagonist clinical trial, as this 

tumor entity possesses wildtype p53 and amplified MDM2 expression (Momand et al. 1998), 

in theory a very suitable molecular situation for a MDM2 antagonist treatment approach. But 

in reality the study was not successful, as only 1 patient (out of 20) showed a partial 

response, with 14 showing stable disease and 5 remaining patients with progressive disease 

(Ray-Coquard et al. 2012). Furthermore, the patients were tormented with heavy side effects 

of the drug, such as thrombocytopenia and neutropenia. These adverse effects were not 

predicted from the preclinical studies and could have various causes, such as the p53-

dependent activation of apoptotic markers NOXA and PUMA in the depleted blood cell 

populations. To explain these phenomena molecularly, MDM2 antagonist function needs to 

be investigated more intensively in normal tissues and animal experiments could be 

extended to non-human primates (Khoo et al. 2014). Taken together, Nutlin-3a seems to be a 

weak drug, as it induces cell cycle arrest reversibly in cell lines such as colon cancer cells 

(Paris et al. 2008), but not apoptosis (Rigatti et al. 2012). These observations imply that the 

amount of p53 accumulation needs to surpass the threshold from cell cycle arrest towards 

apoptosis induction, pushing the concentrations applied into the toxic segment, in which 

severe side effects arise. Taking this into consideration, MDM2 antagonists, as a single agent 

treatment against cancer, have failed in clinics. 
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IV.4.1 Hyper-activation of p53 through Nutlin-3a – Wip1 inhibitor combinatory treatment  

So how can we still utilize Nutlin-3a as a chemotherapeutic drug? One possibility is the 

combination treatment with an agent, which also enhances p53 pathway functionality 

synergistically. As MDM2 antagonists have been shown to be cytotoxic substances in clinical 

trials, it might represent a concentration limiting constant in a combination therapy setup. 

Synergistic effects on apoptosis induction in various cell lines have been observed upon 

combining Nutlin-3a with Cdk inhibitors (Cheok et al. 2007) and thus there is the possibility, 

that Nutlin-3a reveals its full clinical potential when given in a combination with another 

synergistic drug.  

In one of our other projects we have shown, that the inhibition of Wip1, a phosphatase that 

is induced by and inactivates p53 (Fiscella et al. 1997), through the allosteric small-molecule 

inhibitor GSK2830371 (Gilmartin et al. 2014), acts synergistically with Nutlin-3a to induce cell 

cycle arrest and senescence through strong induction of p21 (Sriraman et al. 2016). 

Independent from our findings, two other research groups have shown the same drug 

combination to act synergistically on induction of apoptosis in MDM2 overexpressing cell 

lines (Esfandiari et al. 2016; Pechackova et al. 2016). Taken together, these findings present a 

potent p53-pathway-activating drug combination, which might be suitable for clinical trials. 
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Figure IV.3: Potentiation of p53 activity through Mdm2 and Wip1 inhibition. p53 receives 

negative feedback from both Mdm2 and Wip1. When both feedback regulators are targeted 

by drugs simultaneously, p53 activity is enhanced to a greater extent than with each drug 

alone. As a result, the cells undergo sustainable cell cycle arrest and/or senescence. The 

figure concept was drawn by Prof. Dr. Matthias Dobbelstein (from Sriraman et al. 2016). 

 

IV.4.2 The concept of cyclotherapy 

The concept of cyclotherapy implies the protection of normal tissues, but not of malignant 

cells, from a cytotoxic drug, i.e. focusing toxicity on cycling cells, but not on cells that were 

arrested in the cell cycle. This approach aims at the reduction of side effects with 

intensification of the cytotoxic effects on the cancerous tissue. The main idea is to exploit the 

deficiency of cancer cells of certain cell cycle checkpoints: While the normal cell arrests upon 

chemical stimulation, the malignant cell continues to move into the chemotherapeutic 

sensitive cell phase and is hit with a lethal dose of the cytotoxic drug. Some possibilities to 

achieve cell cycle arrest include targeting of Cdks, growth factor starvation, and, of course, 

activation of p53 (reviewed in Blagosklonny und Pardee 2001; van Leeuwen 2012). The p53 

inhibitor Nutlin-3a has already been tested for this purpose: Arresting the cell cycle at the 

G1/S phase in a p53 dependent manner protects the arrested cell from chemotherapeutic 

agents active in other cell cycle phases (van Leeuwen et al. 2012). This might have further 

importance for avoiding secondary cancers induced by chemotherapies (Boffetta and Kaldor 
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1994) or even radiation therapies (Ng and Shuryak 2014), as they are induced by the 

collateral damage of the primary tumor treatment. Different studies have reported 

pretreatment with Nutlin-3a to protect p53 proficient cells from both M-phase (Carvajal et 

al. 2005) and S-phase chemotherapeutic drugs (Kranz and Dobbelstein 2006; Li et al. 2015). 

Utilizing the p53 pathway as a molecular brake for cytoprotection of non-transformed and 

p53 wildtype cells seems an attractive idea to be implied in clinical cancer treatment, as it 

provides an approach to distinguish cancerous p53 loss of function from non-cancerous wild-

type p53 cells. This distinction with p53 status as a biomarker has already been 

demonstrated in cell culture experiments (van Leeuwen et al. 2012), and most interestingly, 

Nutlin-3a pretreatment has already been shown to reduce toxic side effects of a Plk1 

inhibitor in vivo, without affecting its anti-cancer effects (Sur et al. 2009). Intensifying the 

molecular Nutlin-3a brake by boosting the p53 pathway, for instance by simultaneous 

inhibition of the Wip1 phosphatase (Sriraman et al. 2016), might add to the potency of the 

cyclotherapy approach and furthermore give a renaissance to p53 pathway modifying drugs 

in clinics. 

Until today, oncologists struggle to make a difference between malignant and untransformed 

tissues in most cancer types, commonly causing collateral damage by applying classical 

chemotherapeutic drugs to the patient, being unable to specifically target the malignant 

tissue of the disease. Personalized medicine, through introduction of highly sophisticated 

molecular diagnostic technologies into clinics, will try to unravel single specific weaknesses 

of the unique cancer in the unique patient. This is the promise of the cancer patient care of 

tomorrow. Already today, specific targeting of a unique molecular abnormality in CML via 

Imatinib (Roskoski 2015) has provided millions of patients with a long and high quality life. 

Cancer can be contained, but we have to take the clinics to the molecular big data level. It is 

time to mine the –omics era for the cancer answer. 
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VI Supplement 

 

 

Figure S1: Wee1 inhibition prevents phosphorylation of Cdk1 at Tyr15. 

The Wee1 inhibitor MK-1775 (0,5μM), but not Chk1 (2,5μM) or ATR (5μM) inhibitors prevent 

phosphorylation of Cdk1 at Tyr15 after 24h of treatment in both Panc1 and U2OS cells. This 

phosphorylation site has been previously described and suggests the specific functionality of 

the Wee1 MK-1775 inhibitor. Experiments were performed by Dr. Priyanka Saini. 

 

 

Figure S2: Wee1 siRNA knockdown prevents phosphorylation of Cdk1 at Tyr15. 

In both U2OS and Panc1 cell lines, reduction of the Wee1 protein via siRNA mediated 

knockdown for 48h also reduced the phosphorylation of Cdk1 at Tyr15 upon a subsequent 

treatment with 300nM gemcitabine, further providing evidence for the functionality of the 

Wee1 inhibitor MK-1775 compound. The experiment was performed by Dr. Priyanka Saini. 
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Figure S3: Wee1 knockdown induced p-Chk1 reduction and yH2AX elevation is 

independent of Mus81. (A) In both U2OS and Panc1 cell lines, reduction of the Wee1 protein 

via siRNA mediated knockdown for 48h reduced Chk1 phosphorylation and induced 

accumulation of yH2AX upon a subsequent treatment with 300nM gemcitabine. This effect 

has been shown to be independent from Mus81 function. (B) A siRNA knockdown with 

Mus81 was performed. After 48h, cells were harvested and processed for western blot 

analysis which shows functionality of the Mus81 siRNA. The experiments were performed by 

Dr. Priyanka Saini. 
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VII Deutsche Zusammenfassung 

Die Kombination Wee1 Inhibitor MK-1775 und Gemcitabin kann sowohl Krebszellen in vitro, 

als auch Xenografts in Mäusen effizient abtöten, aber der molekulare Mechanismus dieser 

wirkungsvollen Kombination wurde bislang nicht vollständig aufgeklärt. Unsere Ergebnisse 

zeigen, daß MK-1775 nicht nur die Wee1 Aktivität blockiert, sondern zudem die Aktivierung 

des ATR / Chk1-Signalwegs in Gemcitabin-behandelten Zellen in einer Cdk1-abhängigen 

Weise reduziert. Diese Ergebnisse legen nahe, dass Wee1 Inhibitoren nicht nur dazu in der 

Lage sind, Zellzyklus-Checkpoints zu übergehen, sondern zudem auch replikativen Stress 

erhöhen und die Chemosensitivität gegenüber Nukleosidanaloga durch Reduktion der DNA 

damage response verstärken. Jedoch limitiert die erhebliche Toxizität von MK-1775 sowohl in 

präklinischen als auch in klinischen Studien seinen Anwendungsbereich stark.  

Mehr als 50% aller malignen Tumoren tragen eine Mutation im TP53-Gen. Wir konnten unter 

Verwendung des p53-MDM2-Antagonisten Nutlin-3a einen selektiven Schutz für p53-

Wildtyp-Zellen gegen die zytotoxischen Wirkungen von Wee1-Inhibitoren herstellen. Die 

Vorbehandlung von p53-Wildtyp-Zellen mit Nutlin-3a bewirkt eine transiente Arretierung im 

Zellzyklus bei G1/S. Nutlin-3a-vorbehandelte, transient arretierte Zellen zeigen ein 

verbessertes Überleben gegenüber der Kombination aus dem Wee1-Inhibitor MK- 1775 und 

Gemcitabin. Die Nutlin-3a-Vorbehandlung reduziert sowohl die DNA damage response als 

auch die Caspasen-Aktivierung in einer p53-abhängigen Weise. MDM2-Antagonisten können 

daher selektiv p53-kompetente Zellen gegen die zytotoxischen Wirkungen von Wee1- 

Inhibitoren schützen, insbesondere wenn sie mit einer S-phasenspezifischen Substanz wie 

dem Nukleosidanalogon Gemcitabin kombiniert werden. Dieser Ansatz könnte helfen, 

Nebenwirkungen von Wee1-Hemmstoffen in der klinischen Anwendung für Patienten zu 

verringern oder ganz zu vermeiden. 
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Dear commission members, 

Many thanks for your efforts to evaluate my thesis entitled “Inhibition of the kinase Wee1 - 
Cytotoxic mechanisms and autoprotection by the tumor suppressor p53”.  

I was informed that the reproducibility of my experiments, and especially of some results 
obtained by immunoblot analyses, were questioned by some of the reviewers. Therefore, 
please find attached an addendum. This supplementary material is supposed to confirm the 
observations described in the Western Blots of my thesis.  

Before describing this material, let me also draw your attention to the fact that the majority 
of my findings have been peer-reviewed, revised and published in a well-renowned journal. 
Thus, at least our reviewers deemed the quality of our experiments and results as being 
sufficient to support our conclusions. 

Moreover, some of the experiments were carried out in different cell lines, derived from 
different cancer entities, and the results were all supporting the same biological model. This 
further argues in favor of the reproducibility of our results. In most figures of this addendum, 
both the osteosarcoma derived U2OS cell line and the pancreatic cancer derived Panc1 cell 
line have been evaluated in side by side experiments. 

Furthermore, a time course experiment was presented, which shows the accumulation of 
DNA damage in a yH2AX readout and the induction of apoptosis through a PARP cleavage 
readout from 4 to 24 hours (see Figure 1.1). Finding the same tendency at different time 
points, albeit to different extent, also argues that the results are reproducible. 

Despite these considerations, we do appreciate the demand of the committee for further 
confirmation of the results. The following addendum contains a collection of immunoblot 
analyses that correspond to figures in my thesis. Whenever possible, densitometry 
measurements were made for the DNA damage indicator proteins phospho-Chk1 (pChk1) 
and yH2AX, in further support of our conclusions. 

 

I hope this additional presentation of our data will help to convince the commission of its 
reproducibility. 

 

With many thanks for your efforts in evaluating my thesis, and with my best regards, 

 

Yizhu Li 

Göttingen, 3rd of July 2017 
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1. Wee1 inhibition decreases Chk1 activation in Wee1i – Gemcitabine co-treated cells 

1.1 Thesis Figure III.2 (p. 38) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Wee1 inhibition decreases Chk1 activation in Wee1 inhibitor – Gemcitabine co-

treated cells in a time dependent manner. U2OS and Panc1 cells were treated with Wee1 

inhibitor (MK-1775) and Gemcitabine. Samples were harvested according to the time course 

experiment and prepared for Western Blotting. 

 

  

A 
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1.2 Figure 2A and 2B from publication (Saini et al.,2015) 

 

 

Figure 1.2: Inhibition of Wee1 decreases the phosphorylation of Chk1 in Gemcitabine-
treated cells. A, B. Panc1 and U2OS cells were treated with 1μM Wee1i or DMSO, with or 
without 300nM Gemcitabine, for 24 h. Blots of cell lysates were stained. From Figure 2 from 
Saini et al., 2015. 

 

The Figure 1.2 from Saini et al., 2015 corresponds to the 24h time point of Figure 1.1 from 
the thesis. The induction of PARP cleavage and yH2AX upon the co-treatment of 
Gemcitabine and Wee1i and the reduction of pChk1 upon Wee1i treatment can be clearly 
observed in both figures. 
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2. Decrease in Chk1 phosphorylation is independent of caspase activity 

2.1 Thesis Figure III.3 (p. 39) 

 

 

Figure 2.1: Decrease in Chk1 phosphorylation is independent of caspase activity. U2OS and 
Panc1 cells were treated with with Wee1 inhibitor (MK-1775) and Gemcitabine, with and 
without 20 µM of caspase inhibitor Z-VAD. The samples were harvested after 24 h and 
prepared for Western Blotting.  

 

2.2 Figure 2E and 2F from publication (Saini et al., 2015) 

 

Figure 2.2: Inhibition of Wee1 decreases the phosphorylation of Chk1 in Gemcitabine-
treated cells. Cells were treated with Wee1i or DMSO, with or without Gemcitabine, in the 
presence or absence of the pan-caspase inhibitor Z-VAD.fmk at the indicated concentrations. 
After 24 h, the cells were subjected to immunoblot analysis. From Figure 2 Saini et al., 2015. 
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Cells in this experimental setup (Figures 2.1 and 2.2) were treated with inhibitors for 24h. As 
the pChk1 expression pattern is not altered upon the caspase inhibitor ZVAD, we propose 
that dephosphorylation of Chk1 upon Wee1i treatment is independent from apoptosis. 

 

3. Decrease in Chk1 phosphorylation in Wee1i treated cells is mediated by Cdk1 

3.1 Western Blots 

3.1.1 Thesis figure III.4 (p. 40) 

 

Figure 3.1: Decrease in Chk1 phosphorylation in Wee1i treated cells is mediated by Cdk1. 
Cells were treated with Cdk1 and Wee1 inhibitors in the presence of Gemcitabine. The 
samples were harvested after 24 h and prepared for western blotting. 

 

Using the Figures 3.1-3 densitometry measurements for pChk1 and yH2AX were conducted. 
It can be observed in both U2OS and Panc1 cell lines that the co-incubation of Gemcitabine 
with a Wee1 inhibitor significantly decreases the pChk1 signal (Graphs 3.1). Furthermore, 
upon the addition of the Cdk1 inhibitor RO-3306 the suppression of the signal was rescued, 
and this effect was more prominent in the Panc1 cell line. 

Co-treatment with Gemcitabine and Wee1i resulted in a synergistic accumulation of yH2AX 
signal in the densitometry measurements, which was rescued by additional treatment with 
a Cdk1 inhibitor (Graph 3.2). The effects were visible in both cell lines, but the decrease of 
the yH2AX signal through Cdk1i treatment was more prominent in the Panc1 cell line.   

Taken together, there is an opposing correlation between the signals of yH2AX and 
phosphorylated Chk1 which can be manipulated by Cdk1 inhibition, suggesting its regulation 
by Cdk1 and emphasizing the S-phase DNA replication protective role of Chk1 in the DNA 
damage response. Furthermore, the Panc1 cell line seems to rely more on Chk1 for the DNA 
damage response than U2OS cells, this might be due to its mutant p53 status, therefore 
relying more on additional cell cycle checkpoint mechanisms. 
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3.1.2 Figure 4D from publication (Saini et al., 2015) 

 

Figure 3.2: Cdks mediate the attenuation of the ATR-Chk1 pathway by Wee1 inhibition. 
Panc1 and U2OS cells were treated with Wee1 inhibitor (Wee1i) or DMSO, with or without 
Gemcitabine, in the presence or absence of RO-3306 (a Cdk1 inhibitor) at the indicated 
concentrations for 24 h. From Figure 4 Saini et al., 2015. 

3.1.3 Additional Figure 

 

Figure 3.3: Cells were treated with Cdk1 and Wee1 inhibitors in the presence of 
Gemcitabine. The samples were harvested after 24 h and prepared for Western Blotting. 

 



8 
 

3.2 Densitometry measurements 

3.2.1 Densitometry of the pChk1 signal from Western Blots 

 

 

 

Table 3.1: Decrease in Chk1 phosphorylation in Wee1i treated cells is mediated by Cdk1. 
Gemcitabine induced pChk1 was significantly reduced with Wee1i co-treatment. This effect 
was reversed by further addition of a Cdk1 inhibitor (Cdk1i). Results in the Panc1 cell line 
were not significant in the densitometry measurement as the standard error was too high. 
Error bars represent the standard error (n=3). Significance was assessed by Student’s t-test.  
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3.2.2 Densitometry of the yH2AX signal from Western Blots 

 

 

 

Table 3.2: Wee1i induced yH2AX accumulation with Gemcitabine co-treatment is rescued 
by Cdk1i addition. Co-incubation of Wee1i with Gemcitabine significantly increases yH2AX 
in both U2OS and Panc1 cell lines. This effect is rescued by addition of a Cdk1i. The 
observation is more prominent in the Panc1 cell line, this might be due to the stronger 
increase in pChk1 when compared to the U2OS cell line. Error bars represent the standard 
error (n=3). Significance was assessed by Student’s t-test.  
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4. siRNA mediated knockdown of Cdk1 restores the phosphorylation of Chk1 

4.1 Figure S2D and S2E from thesis (Saini et al., 2015) and thesis figure III.5 (p. 41) 

 

 

 

Figure 4.1: siRNA mediated knockdown of Cdk1 restores the phosphorylation of Chk1 
upon simultaneous knockdown of Wee1 and treatment with Gemcitabine. 10nM of each 
siRNA (Cdk1, Wee1, scrambled) was used for transfecting cells. After 48 h of transfection, 
300 nM Gemcitabine was added for another 24 h. The cells were then harvested and 
immunoblotted. 
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4.2 Additional figures 
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Figure 4.2: Corresponding figures to Figure 4.1. 

 

4.3 Densitometry of the pChk1 signal from Western Blots.  

 

Table 4.1: siRNA mediated knockdown of Cdk1 restores the phosphorylation of Chk1 upon 
simultaneous knockdown of Wee1 and treatment with Gemcitabine. Gemcitabine induced 
pChk1 was strongly reduced by Wee1 knockdown, the pChk1 signal was rescued by co-
knockdown of Cdk1. Error bars represent the standard error (n=3).  The differences were 
not statistically significant, maybe due to the leakiness of siRNA mediated knockdowns. 
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5. Nutlin-3a protects cells against the Gemcitabine – Wee1 inhibitor co-treatment 

A 24h Nutlin-3a pre-treatment is able to reduce Gemcitabine and Wee1i induced yH2AX, this is due 

to activation of the p53 depended G1/S cell cycle checkpoint, which protecting the cell to 

accumulate DNA damage in the sensitive S-phase. This rescuing effect was quantified by 

densitometry (n=3) and proved to be significant for the Wee1i and Wee1i / Gemcitabine conditions. 

 

5.1 Thesis figure III.8 (p. 45) 

 

Figure 5.1: Nutlin-3a protects cells against the Gemcitabine – Wee1 inhibitor co-treatment. 
Cells were treated with Nutlin-3a (8µM) for 24h, followed by treatment with Wee1 inhibitor 
and Gemcitabine with Nutlin-3a for another 24h. The samples were then harvested and 
prepared for western blot analysis. 
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5.2 Additional Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Corresponding figure to Figure 5.1. 

 

5.3 Densitometry of the yH2AX signal from Western Blots 

Table 5.1: Nutlin-3a significantly reduces the yH2AX signal upon Wee1i and Wee1i 
Gemcitabine co-treatment. Error bars represent the standard error (n=3). Significance was 
assessed by Student’s t-test. 
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